-
Notifications
You must be signed in to change notification settings - Fork 6
CodeExplain
Hou Shengren edited this page Aug 5, 2024
·
1 revision
This page provides an overview and explanation of the core code components in the RL-ADN framework. The framework is designed to solve the optimal ESSs dispatch in active distribution networks using deep reinforcement learning (DRL).
The environment in RL-ADN is initialized using the RL_ADN_Environment
class. This class sets up the simulation environment, including loading the configuration, initializing the data manager, and setting up the distribution network simulator.
from RL_ADN import RL_ADN_Environment
# Define the configuration for the environment
config = {
'network_data': 'path_to_network_data',
'time_series_data': 'path_to_time_series_data',
'ess_model': 'path_to_ess_model',
'other_parameters': 'value'
}
# Initialize the RL-ADN environment
env = RL_ADN_Environment(config=config)