-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfraud_voting_model_api_with_docker.py
30 lines (23 loc) · 1.66 KB
/
fraud_voting_model_api_with_docker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import pandas as pd
from pycaret.classification import load_model, predict_model
from fastapi import FastAPI
import uvicorn
# Create the app
app = FastAPI()
# Load trained Pipeline
model = load_model('fraud_voting_model_api')
# Define predict function
@app.post('/predict')
def predict(Time, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, Amount):
data = pd.DataFrame([[Time, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, Amount]])
data.columns = ['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount']
predictions = predict_model(model, data=data)
return {'prediction': list(predictions['Label'])}
@app.get('/get_predict')
def predict(Time, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, Amount):
data = pd.DataFrame([[Time, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, Amount]])
data.columns = ['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount']
predictions = predict_model(model, data=data)
return {'prediction': list(predictions['Label'])}
if __name__ == '__main__':
uvicorn.run(app, host='0.0.0.0', port=8007)