From f95462fa73fbe91a99239cf553064defefa456e6 Mon Sep 17 00:00:00 2001 From: SevgiAkten Date: Wed, 14 Aug 2024 14:09:30 +0000 Subject: [PATCH] deploy: ab871daf02709476dcb84b7364c05f29e7cf10ff --- _modules/index.html | 282 +- .../{src => pycellga}/byte_operators.html | 14 +- .../example/example_alpha_cga.html | 14 +- .../example/example_ccga.html | 14 +- .../example/example_cga.html | 14 +- .../example/example_mcccga.html | 14 +- .../example/example_sync_cga.html | 14 +- _modules/{src => pycellga}/grid.html | 12 +- .../mutation/bit_flip_mutation.html | 12 +- .../mutation/byte_mutation.html | 12 +- .../mutation/byte_mutation_random.html | 12 +- .../mutation/float_uniform_mutation.html | 12 +- .../mutation/insertion_mutation.html | 12 +- .../mutation/mutation_operator.html | 10 +- .../mutation/shuffle_mutation.html | 12 +- .../mutation/swap_mutation.html | 12 +- .../mutation/two_opt_mutation.html | 12 +- .../neighborhoods/compact_13.html | 12 +- .../neighborhoods/compact_21.html | 12 +- .../neighborhoods/compact_25.html | 12 +- .../neighborhoods/compact_9.html | 12 +- .../neighborhoods/linear_5.html | 12 +- .../neighborhoods/linear_9.html | 12 +- .../problems/abstract_problem.html | 10 +- .../single_objective/continuous/ackley.html | 10 +- .../continuous/bentcigar.html | 10 +- .../continuous/bohachevsky.html | 10 +- .../continuous/chichinadze.html | 10 +- .../single_objective/continuous/dropwave.html | 10 +- .../single_objective/continuous/fms.html | 10 +- .../single_objective/continuous/griewank.html | 10 +- .../single_objective/continuous/holzman.html | 10 +- .../single_objective/continuous/levy.html | 10 +- .../single_objective/continuous/matyas.html | 10 +- .../single_objective/continuous/pow.html | 10 +- .../single_objective/continuous/powell.html | 10 +- .../continuous/rastrigin.html | 10 +- .../continuous/rosenbrock.html | 10 +- .../continuous/rothellipsoid.html | 10 +- .../single_objective/continuous/schaffer.html | 10 +- .../continuous/schaffer2.html | 10 +- .../single_objective/continuous/schwefel.html | 10 +- .../single_objective/continuous/sphere.html | 10 +- .../continuous/styblinskitang.html | 10 +- .../continuous/sumofdifferentpowers.html | 10 +- .../continuous/threehumps.html | 10 +- .../single_objective/continuous/zakharov.html | 10 +- .../single_objective/continuous/zettle.html | 10 +- .../discrete/binary/count_sat.html | 10 +- .../single_objective/discrete/binary/ecc.html | 10 +- .../single_objective/discrete/binary/fms.html | 10 +- .../discrete/binary/maxcut100.html | 10 +- .../discrete/binary/maxcut20_01.html | 10 +- .../discrete/binary/maxcut20_09.html | 10 +- .../discrete/binary/mmdp.html | 10 +- .../discrete/binary/one_max.html | 10 +- .../discrete/binary/peak.html | 10 +- .../discrete/permutation/tsp.html | 14 +- .../recombination/arithmetic_crossover.html | 12 +- .../recombination/blxalpha_crossover.html | 14 +- .../byte_one_point_crossover.html | 12 +- .../recombination/byte_uniform_crossover.html | 14 +- .../recombination/flat_crossover.html | 14 +- .../recombination/linear_crossover.html | 14 +- .../recombination/one_point_crossover.html | 12 +- .../recombination/pmx_crossover.html | 12 +- .../recombination/recombination_operator.html | 10 +- .../recombination/two_point_crossover.html | 12 +- .../unfair_avarage_crossover.html | 12 +- .../recombination/uniform_crossover.html | 14 +- .../selection/roulette_wheel_selection.html | 12 +- .../selection/selection_operator.html | 10 +- .../selection/tournament_selection.html | 12 +- .../{src => pycellga}/tests/test_ackley.html | 8 +- .../tests/test_arithmetic_crossover.html | 16 +- .../tests/test_bentcigar_function.html | 10 +- .../tests/test_bit_flip_mutation.html | 8 +- .../tests/test_blxalpha_crossover.html | 16 +- .../tests/test_bohachevsky.html | 8 +- .../tests/test_byte_mutation.html | 16 +- .../tests/test_byte_mutation_random.html | 16 +- .../tests/test_byte_one_point_crossover.html | 16 +- .../tests/test_byte_operators.html | 14 +- .../tests/test_byte_uniform_crossover.html | 16 +- .../tests/test_chichinadze_function.html | 10 +- .../tests/test_compact_13.html | 8 +- .../tests/test_compact_21.html | 8 +- .../tests/test_compact_25.html | 8 +- .../tests/test_compact_9.html | 8 +- .../tests/test_count_sat.html | 8 +- .../tests/test_dropwave_function.html | 10 +- .../{src => pycellga}/tests/test_ecc.html | 10 +- .../tests/test_flat_crossover.html | 16 +- .../tests/test_float_uniform_mutation.html | 16 +- .../{src => pycellga}/tests/test_fms.html | 10 +- .../{src => pycellga}/tests/test_grid.html | 8 +- .../tests/test_griewank_function.html | 10 +- .../tests/test_holzman_function.html | 10 +- .../tests/test_individual.html | 22 +- .../tests/test_insertion_mutation.html | 8 +- .../tests/test_levy_function.html | 10 +- .../tests/test_linear_5.html | 8 +- .../tests/test_linear_9.html | 8 +- .../tests/test_linear_crossover.html | 16 +- .../tests/test_matyas_function.html | 10 +- .../tests/test_maxcut100.html | 10 +- .../tests/test_maxcut20_01.html | 10 +- .../tests/test_maxcut20_09.html | 10 +- .../{src => pycellga}/tests/test_mmdp.html | 10 +- .../{src => pycellga}/tests/test_one_max.html | 8 +- .../tests/test_one_point_crossover.html | 8 +- .../tests/test_optimizer_alpha_cga.html | 32 +- .../tests/test_optimizer_ccga.html | 14 +- .../tests/test_optimizer_cga.html | 32 +- .../tests/test_optimizer_mccga.html | 14 +- .../tests/test_optimizer_sync_cga.html | 32 +- .../{src => pycellga}/tests/test_peak.html | 10 +- .../tests/test_pmx_crossover.html | 8 +- .../tests/test_population.html | 18 +- .../tests/test_pow_function.html | 10 +- .../tests/test_powell_function.html | 10 +- .../tests/test_rastrigin.html | 8 +- .../tests/test_rosenbrock.html | 8 +- .../tests/test_rothellipsoid_function.html | 10 +- .../tests/test_roulette_wheel_selection.html | 8 +- .../tests/test_schaffer2_function.html | 10 +- .../tests/test_schaffer_function.html | 10 +- .../tests/test_schwefel.html | 8 +- .../tests/test_shuffle_mutation.html | 8 +- .../{src => pycellga}/tests/test_sphere.html | 8 +- .../tests/test_styblinskitang_function.html | 10 +- .../test_sumofdifferentpowers_function.html | 10 +- .../tests/test_swap_mutation.html | 8 +- .../tests/test_threehumps_function.html | 10 +- .../tests/test_tournament_selection.html | 8 +- .../{src => pycellga}/tests/test_tsp.html | 8 +- .../tests/test_two_opt_mutation.html | 8 +- .../tests/test_two_point_crossover.html | 8 +- .../tests/test_unfair_average_crossover.html | 16 +- .../tests/test_uniform_crossover.html | 8 +- .../tests/test_zakharov_function.html | 8 +- .../tests/test_zettle_function.html | 10 +- _sources/modules.rst.txt | 8 +- _sources/pycellga.example.rst.txt | 53 + _sources/pycellga.mutation.rst.txt | 85 + _sources/pycellga.neighborhoods.rst.txt | 61 + _sources/pycellga.problems.rst.txt | 29 + ...oblems.single_objective.continuous.rst.txt | 205 ++ ...s.single_objective.discrete.binary.rst.txt | 85 + ...gle_objective.discrete.permutation.rst.txt | 21 + ...problems.single_objective.discrete.rst.txt | 19 + ...pycellga.problems.single_objective.rst.txt | 19 + _sources/pycellga.recombination.rst.txt | 109 + _sources/pycellga.rst.txt | 67 + _sources/pycellga.selection.rst.txt | 37 + _sources/pycellga.tests.rst.txt | 573 ++++ _sources/setup.rst.txt | 7 + _sources/src.example.rst.txt | 53 - _sources/src.mutation.rst.txt | 85 - _sources/src.neighborhoods.rst.txt | 61 - _sources/src.problems.rst.txt | 29 - ...oblems.single_objective.continuous.rst.txt | 205 -- ...s.single_objective.discrete.binary.rst.txt | 85 - ...gle_objective.discrete.permutation.rst.txt | 21 - ...problems.single_objective.discrete.rst.txt | 19 - .../src.problems.single_objective.rst.txt | 19 - _sources/src.recombination.rst.txt | 109 - _sources/src.rst.txt | 67 - _sources/src.selection.rst.txt | 37 - _sources/src.tests.rst.txt | 573 ---- genindex.html | 1898 ++++++------ index.html | 2 +- modules.html | 298 +- objects.inv | Bin 4241 -> 4338 bytes py-modindex.html | 316 +- src.example.html => pycellga.example.html | 156 +- pycellga.html | 1081 +++++++ pycellga.mutation.html | 537 ++++ ...rhoods.html => pycellga.neighborhoods.html | 152 +- pycellga.problems.html | 225 ++ ....problems.single_objective.continuous.html | 474 +-- ...lems.single_objective.discrete.binary.html | 224 +- ...ga.problems.single_objective.discrete.html | 247 ++ ...single_objective.discrete.permutation.html | 82 +- pycellga.problems.single_objective.html | 389 +++ ...nation.html => pycellga.recombination.html | 308 +- src.selection.html => pycellga.selection.html | 100 +- pycellga.tests.html | 2699 +++++++++++++++++ searchindex.js | 2 +- setup.html | 106 + src.html | 1081 ------- src.mutation.html | 537 ---- src.problems.html | 225 -- src.problems.single_objective.discrete.html | 247 -- src.problems.single_objective.html | 389 --- src.tests.html | 2699 ----------------- 196 files changed, 9605 insertions(+), 9498 deletions(-) rename _modules/{src => pycellga}/byte_operators.html (95%) rename _modules/{src => pycellga}/example/example_alpha_cga.html (93%) rename _modules/{src => pycellga}/example/example_ccga.html (93%) rename _modules/{src => pycellga}/example/example_cga.html (93%) rename _modules/{src => pycellga}/example/example_mcccga.html (93%) rename _modules/{src => pycellga}/example/example_sync_cga.html (93%) rename _modules/{src => pycellga}/grid.html (93%) rename _modules/{src => pycellga}/mutation/bit_flip_mutation.html (93%) rename _modules/{src => pycellga}/mutation/byte_mutation.html (95%) rename _modules/{src => pycellga}/mutation/byte_mutation_random.html (94%) rename _modules/{src => pycellga}/mutation/float_uniform_mutation.html (93%) rename _modules/{src => pycellga}/mutation/insertion_mutation.html (94%) rename _modules/{src => pycellga}/mutation/mutation_operator.html (88%) rename _modules/{src => pycellga}/mutation/shuffle_mutation.html (95%) rename _modules/{src => pycellga}/mutation/swap_mutation.html (94%) rename _modules/{src => pycellga}/mutation/two_opt_mutation.html (94%) rename _modules/{src => pycellga}/neighborhoods/compact_13.html (95%) rename _modules/{src => pycellga}/neighborhoods/compact_21.html (95%) rename _modules/{src => pycellga}/neighborhoods/compact_25.html (95%) rename _modules/{src => pycellga}/neighborhoods/compact_9.html (95%) rename _modules/{src => pycellga}/neighborhoods/linear_5.html (94%) rename _modules/{src => pycellga}/neighborhoods/linear_9.html (95%) rename _modules/{src => pycellga}/problems/abstract_problem.html (90%) rename _modules/{src => pycellga}/problems/single_objective/continuous/ackley.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/bentcigar.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/bohachevsky.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/chichinadze.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/dropwave.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/fms.html (94%) rename _modules/{src => pycellga}/problems/single_objective/continuous/griewank.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/holzman.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/levy.html (93%) rename _modules/{src => pycellga}/problems/single_objective/continuous/matyas.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/pow.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/powell.html (93%) rename _modules/{src => pycellga}/problems/single_objective/continuous/rastrigin.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/rosenbrock.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/rothellipsoid.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/schaffer.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/schaffer2.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/schwefel.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/sphere.html (90%) rename _modules/{src => pycellga}/problems/single_objective/continuous/styblinskitang.html (91%) rename _modules/{src => pycellga}/problems/single_objective/continuous/sumofdifferentpowers.html (89%) rename _modules/{src => pycellga}/problems/single_objective/continuous/threehumps.html (92%) rename _modules/{src => pycellga}/problems/single_objective/continuous/zakharov.html (93%) rename _modules/{src => pycellga}/problems/single_objective/continuous/zettle.html (92%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/count_sat.html (92%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/ecc.html (93%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/fms.html (96%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/maxcut100.html (99%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/maxcut20_01.html (97%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/maxcut20_09.html (97%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/mmdp.html (93%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/one_max.html (89%) rename _modules/{src => pycellga}/problems/single_objective/discrete/binary/peak.html (93%) rename _modules/{src => pycellga}/problems/single_objective/discrete/permutation/tsp.html (93%) rename _modules/{src => pycellga}/recombination/arithmetic_crossover.html (94%) rename _modules/{src => pycellga}/recombination/blxalpha_crossover.html (94%) rename _modules/{src => pycellga}/recombination/byte_one_point_crossover.html (95%) rename _modules/{src => pycellga}/recombination/byte_uniform_crossover.html (94%) rename _modules/{src => pycellga}/recombination/flat_crossover.html (94%) rename _modules/{src => pycellga}/recombination/linear_crossover.html (94%) rename _modules/{src => pycellga}/recombination/one_point_crossover.html (94%) rename _modules/{src => pycellga}/recombination/pmx_crossover.html (96%) rename _modules/{src => pycellga}/recombination/recombination_operator.html (86%) rename _modules/{src => pycellga}/recombination/two_point_crossover.html (95%) rename _modules/{src => pycellga}/recombination/unfair_avarage_crossover.html (95%) rename _modules/{src => pycellga}/recombination/uniform_crossover.html (93%) rename _modules/{src => pycellga}/selection/roulette_wheel_selection.html (93%) rename _modules/{src => pycellga}/selection/selection_operator.html (87%) rename _modules/{src => pycellga}/selection/tournament_selection.html (94%) rename _modules/{src => pycellga}/tests/test_ackley.html (95%) rename _modules/{src => pycellga}/tests/test_arithmetic_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_bentcigar_function.html (94%) rename _modules/{src => pycellga}/tests/test_bit_flip_mutation.html (96%) rename _modules/{src => pycellga}/tests/test_blxalpha_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_bohachevsky.html (95%) rename _modules/{src => pycellga}/tests/test_byte_mutation.html (93%) rename _modules/{src => pycellga}/tests/test_byte_mutation_random.html (93%) rename _modules/{src => pycellga}/tests/test_byte_one_point_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_byte_operators.html (94%) rename _modules/{src => pycellga}/tests/test_byte_uniform_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_chichinadze_function.html (94%) rename _modules/{src => pycellga}/tests/test_compact_13.html (95%) rename _modules/{src => pycellga}/tests/test_compact_21.html (95%) rename _modules/{src => pycellga}/tests/test_compact_25.html (95%) rename _modules/{src => pycellga}/tests/test_compact_9.html (95%) rename _modules/{src => pycellga}/tests/test_count_sat.html (94%) rename _modules/{src => pycellga}/tests/test_dropwave_function.html (94%) rename _modules/{src => pycellga}/tests/test_ecc.html (94%) rename _modules/{src => pycellga}/tests/test_flat_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_float_uniform_mutation.html (93%) rename _modules/{src => pycellga}/tests/test_fms.html (94%) rename _modules/{src => pycellga}/tests/test_grid.html (95%) rename _modules/{src => pycellga}/tests/test_griewank_function.html (94%) rename _modules/{src => pycellga}/tests/test_holzman_function.html (94%) rename _modules/{src => pycellga}/tests/test_individual.html (91%) rename _modules/{src => pycellga}/tests/test_insertion_mutation.html (95%) rename _modules/{src => pycellga}/tests/test_levy_function.html (94%) rename _modules/{src => pycellga}/tests/test_linear_5.html (95%) rename _modules/{src => pycellga}/tests/test_linear_9.html (95%) rename _modules/{src => pycellga}/tests/test_linear_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_matyas_function.html (94%) rename _modules/{src => pycellga}/tests/test_maxcut100.html (94%) rename _modules/{src => pycellga}/tests/test_maxcut20_01.html (94%) rename _modules/{src => pycellga}/tests/test_maxcut20_09.html (94%) rename _modules/{src => pycellga}/tests/test_mmdp.html (95%) rename _modules/{src => pycellga}/tests/test_one_max.html (94%) rename _modules/{src => pycellga}/tests/test_one_point_crossover.html (95%) rename _modules/{src => pycellga}/tests/test_optimizer_alpha_cga.html (92%) rename _modules/{src => pycellga}/tests/test_optimizer_ccga.html (91%) rename _modules/{src => pycellga}/tests/test_optimizer_cga.html (92%) rename _modules/{src => pycellga}/tests/test_optimizer_mccga.html (92%) rename _modules/{src => pycellga}/tests/test_optimizer_sync_cga.html (92%) rename _modules/{src => pycellga}/tests/test_peak.html (95%) rename _modules/{src => pycellga}/tests/test_pmx_crossover.html (95%) rename _modules/{src => pycellga}/tests/test_population.html (92%) rename _modules/{src => pycellga}/tests/test_pow_function.html (94%) rename _modules/{src => pycellga}/tests/test_powell_function.html (94%) rename _modules/{src => pycellga}/tests/test_rastrigin.html (94%) rename _modules/{src => pycellga}/tests/test_rosenbrock.html (94%) rename _modules/{src => pycellga}/tests/test_rothellipsoid_function.html (93%) rename _modules/{src => pycellga}/tests/test_roulette_wheel_selection.html (95%) rename _modules/{src => pycellga}/tests/test_schaffer2_function.html (93%) rename _modules/{src => pycellga}/tests/test_schaffer_function.html (93%) rename _modules/{src => pycellga}/tests/test_schwefel.html (95%) rename _modules/{src => pycellga}/tests/test_shuffle_mutation.html (95%) rename _modules/{src => pycellga}/tests/test_sphere.html (95%) rename _modules/{src => pycellga}/tests/test_styblinskitang_function.html (93%) rename _modules/{src => pycellga}/tests/test_sumofdifferentpowers_function.html (93%) rename _modules/{src => pycellga}/tests/test_swap_mutation.html (95%) rename _modules/{src => pycellga}/tests/test_threehumps_function.html (93%) rename _modules/{src => pycellga}/tests/test_tournament_selection.html (95%) rename _modules/{src => pycellga}/tests/test_tsp.html (95%) rename _modules/{src => pycellga}/tests/test_two_opt_mutation.html (95%) rename _modules/{src => pycellga}/tests/test_two_point_crossover.html (95%) rename _modules/{src => pycellga}/tests/test_unfair_average_crossover.html (94%) rename _modules/{src => pycellga}/tests/test_uniform_crossover.html (95%) rename _modules/{src => pycellga}/tests/test_zakharov_function.html (94%) rename _modules/{src => pycellga}/tests/test_zettle_function.html (94%) create mode 100644 _sources/pycellga.example.rst.txt create mode 100644 _sources/pycellga.mutation.rst.txt create mode 100644 _sources/pycellga.neighborhoods.rst.txt create mode 100644 _sources/pycellga.problems.rst.txt create mode 100644 _sources/pycellga.problems.single_objective.continuous.rst.txt create mode 100644 _sources/pycellga.problems.single_objective.discrete.binary.rst.txt create mode 100644 _sources/pycellga.problems.single_objective.discrete.permutation.rst.txt create mode 100644 _sources/pycellga.problems.single_objective.discrete.rst.txt create mode 100644 _sources/pycellga.problems.single_objective.rst.txt create mode 100644 _sources/pycellga.recombination.rst.txt create mode 100644 _sources/pycellga.rst.txt create mode 100644 _sources/pycellga.selection.rst.txt create mode 100644 _sources/pycellga.tests.rst.txt create mode 100644 _sources/setup.rst.txt delete mode 100644 _sources/src.example.rst.txt delete mode 100644 _sources/src.mutation.rst.txt delete mode 100644 _sources/src.neighborhoods.rst.txt delete mode 100644 _sources/src.problems.rst.txt delete mode 100644 _sources/src.problems.single_objective.continuous.rst.txt delete mode 100644 _sources/src.problems.single_objective.discrete.binary.rst.txt delete mode 100644 _sources/src.problems.single_objective.discrete.permutation.rst.txt delete mode 100644 _sources/src.problems.single_objective.discrete.rst.txt delete mode 100644 _sources/src.problems.single_objective.rst.txt delete mode 100644 _sources/src.recombination.rst.txt delete mode 100644 _sources/src.rst.txt delete mode 100644 _sources/src.selection.rst.txt delete mode 100644 _sources/src.tests.rst.txt rename src.example.html => pycellga.example.html (55%) create mode 100644 pycellga.html create mode 100644 pycellga.mutation.html rename src.neighborhoods.html => pycellga.neighborhoods.html (58%) create mode 100644 pycellga.problems.html rename src.problems.single_objective.continuous.html => pycellga.problems.single_objective.continuous.html (59%) rename src.problems.single_objective.discrete.binary.html => pycellga.problems.single_objective.discrete.binary.html (56%) create mode 100644 pycellga.problems.single_objective.discrete.html rename src.problems.single_objective.discrete.permutation.html => pycellga.problems.single_objective.discrete.permutation.html (58%) create mode 100644 pycellga.problems.single_objective.html rename src.recombination.html => pycellga.recombination.html (52%) rename src.selection.html => pycellga.selection.html (53%) create mode 100644 pycellga.tests.html create mode 100644 setup.html delete mode 100644 src.html delete mode 100644 src.mutation.html delete mode 100644 src.problems.html delete mode 100644 src.problems.single_objective.discrete.html delete mode 100644 src.problems.single_objective.html delete mode 100644 src.tests.html diff --git a/_modules/index.html b/_modules/index.html index 238ef20..f0aee89 100644 --- a/_modules/index.html +++ b/_modules/index.html @@ -70,147 +70,147 @@

All modules for which code is available

-
diff --git a/_modules/src/byte_operators.html b/_modules/pycellga/byte_operators.html similarity index 95% rename from _modules/src/byte_operators.html rename to _modules/pycellga/byte_operators.html index e5162cf..3700efa 100644 --- a/_modules/src/byte_operators.html +++ b/_modules/pycellga/byte_operators.html @@ -3,7 +3,7 @@ - src.byte_operators — PYCELLGA Documentation 1.0.0 documentation + pycellga.byte_operators — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@ @@ -70,11 +70,11 @@
-

Source code for src.byte_operators

+  

Source code for pycellga.byte_operators

 import ctypes
 
 
-[docs] +[docs] def float_to_bits(float_number: float) -> list[int]: """ Convert a float to its bit representation. @@ -96,7 +96,7 @@

Source code for src.byte_operators

 
 
 
-[docs] +[docs] def bits_to_float(bit_list: list[int]) -> float: """ Convert a bit representation to its float value. @@ -120,7 +120,7 @@

Source code for src.byte_operators

 
 
 
-[docs] +[docs] def floats_to_bits(float_list: list[float]) -> list[int]: """ Convert a list of floats to their combined bit representation. @@ -144,7 +144,7 @@

Source code for src.byte_operators

 
 
 
-[docs] +[docs] def bits_to_floats(bit_list: list[int]) -> list[float]: """ Convert a combined bit representation back to a list of floats. diff --git a/_modules/src/example/example_alpha_cga.html b/_modules/pycellga/example/example_alpha_cga.html similarity index 93% rename from _modules/src/example/example_alpha_cga.html rename to _modules/pycellga/example/example_alpha_cga.html index 3e13299..81e1019 100644 --- a/_modules/src/example/example_alpha_cga.html +++ b/_modules/pycellga/example/example_alpha_cga.html @@ -3,7 +3,7 @@ - src.example.example_alpha_cga — PYCELLGA Documentation 1.0.0 documentation + pycellga.example.example_alpha_cga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.example.example_alpha_cga

+  

Source code for pycellga.example.example_alpha_cga

 import sys
 import os
 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
@@ -80,7 +80,7 @@ 

Source code for src.example.example_alpha_cga

from numpy import power as pw
-[docs] +[docs] class ExampleProblem: """ Example problem class to be minimized. @@ -90,13 +90,13 @@

Source code for src.example.example_alpha_cga

"""
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -118,7 +118,7 @@

Source code for src.example.example_alpha_cga

-[docs] +[docs] def run_alpha_cga_example(): """ Run the Alpha Cellular Genetic Algorithm (alpha_cga) using the optimizer module. diff --git a/_modules/src/example/example_ccga.html b/_modules/pycellga/example/example_ccga.html similarity index 93% rename from _modules/src/example/example_ccga.html rename to _modules/pycellga/example/example_ccga.html index 900354c..0bb9579 100644 --- a/_modules/src/example/example_ccga.html +++ b/_modules/pycellga/example/example_ccga.html @@ -3,7 +3,7 @@ - src.example.example_ccga — PYCELLGA Documentation 1.0.0 documentation + pycellga.example.example_ccga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.example.example_ccga

+  

Source code for pycellga.example.example_ccga

 import sys
 import os
 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
@@ -79,7 +79,7 @@ 

Source code for src.example.example_ccga

 from individual import GeneType
 
 
-[docs] +[docs] class ExampleProblem: """ Example problem class to be minimized. @@ -88,13 +88,13 @@

Source code for src.example.example_ccga

     """
     
 
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -116,7 +116,7 @@

Source code for src.example.example_ccga

 
 
 
-[docs] +[docs] def run_ccga_example(): """ Run the Compact Cellular Genetic Algorithm (ccga) using the optimizer module. diff --git a/_modules/src/example/example_cga.html b/_modules/pycellga/example/example_cga.html similarity index 93% rename from _modules/src/example/example_cga.html rename to _modules/pycellga/example/example_cga.html index 38bf7fb..0022210 100644 --- a/_modules/src/example/example_cga.html +++ b/_modules/pycellga/example/example_cga.html @@ -3,7 +3,7 @@ - src.example.example_cga — PYCELLGA Documentation 1.0.0 documentation + pycellga.example.example_cga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.example.example_cga

+  

Source code for pycellga.example.example_cga

 import sys
 import os
 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
@@ -79,7 +79,7 @@ 

Source code for src.example.example_cga

 from numpy import power as pw
 
 
-[docs] +[docs] class ExampleProblem: """ Example problem class to be minimized. @@ -89,13 +89,13 @@

Source code for src.example.example_cga

     """
     
 
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -117,7 +117,7 @@

Source code for src.example.example_cga

 
 
 
-[docs] +[docs] def run_cga_example(): """ Run the Cellular Genetic Algorithm (cga) using the optimizer module. diff --git a/_modules/src/example/example_mcccga.html b/_modules/pycellga/example/example_mcccga.html similarity index 93% rename from _modules/src/example/example_mcccga.html rename to _modules/pycellga/example/example_mcccga.html index 0d58f07..05c2f44 100644 --- a/_modules/src/example/example_mcccga.html +++ b/_modules/pycellga/example/example_mcccga.html @@ -3,7 +3,7 @@ - src.example.example_mcccga — PYCELLGA Documentation 1.0.0 documentation + pycellga.example.example_mcccga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.example.example_mcccga

+  

Source code for pycellga.example.example_mcccga

 import sys
 import os
 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
@@ -80,7 +80,7 @@ 

Source code for src.example.example_mcccga

 from individual import GeneType
 
 
-[docs] +[docs] class RealProblem: """ Example problem class to be minimized. @@ -90,13 +90,13 @@

Source code for src.example.example_mcccga

     """
     
 
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -118,7 +118,7 @@

Source code for src.example.example_mcccga

 
 
 
-[docs] +[docs] def run_mcccga_example(): """ Run the Machine-Coded Compact Cellular Genetic Algorithm (mcccga) diff --git a/_modules/src/example/example_sync_cga.html b/_modules/pycellga/example/example_sync_cga.html similarity index 93% rename from _modules/src/example/example_sync_cga.html rename to _modules/pycellga/example/example_sync_cga.html index cdf8cb4..8bd5b7b 100644 --- a/_modules/src/example/example_sync_cga.html +++ b/_modules/pycellga/example/example_sync_cga.html @@ -3,7 +3,7 @@ - src.example.example_sync_cga — PYCELLGA Documentation 1.0.0 documentation + pycellga.example.example_sync_cga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.example.example_sync_cga

+  

Source code for pycellga.example.example_sync_cga

 import sys
 import os
 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
@@ -80,7 +80,7 @@ 

Source code for src.example.example_sync_cga

from numpy import power as pw
 
 
-[docs] +[docs] class ExampleProblem: """ Example problem class to be minimized. @@ -90,13 +90,13 @@

Source code for src.example.example_sync_cga

    """
     
 
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -118,7 +118,7 @@

Source code for src.example.example_sync_cga

-[docs]
+[docs]
 def run_sync_cga_example():
     """
     Run the Synchronous Cellular Genetic Algorithm (sync_cga) using the optimizer module.
diff --git a/_modules/src/grid.html b/_modules/pycellga/grid.html
similarity index 93%
rename from _modules/src/grid.html
rename to _modules/pycellga/grid.html
index 1e6dfe2..dbdd038 100644
--- a/_modules/src/grid.html
+++ b/_modules/pycellga/grid.html
@@ -3,7 +3,7 @@
 
   
   
-  src.grid — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.grid — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
@@ -70,9 +70,9 @@
           
-

Source code for src.grid

+  

Source code for pycellga.grid

 
-[docs] +[docs] class Grid: """ A class to represent a 2D grid. @@ -86,7 +86,7 @@

Source code for src.grid

     """
 
 
-[docs] +[docs] def __init__(self, n_rows: int, n_cols: int): """ Initialize the Grid with the number of rows and columns. @@ -103,7 +103,7 @@

Source code for src.grid

 
 
 
-[docs] +[docs] def make_2d_grid(self) -> list: """ Create a 2D grid where each cell is represented by a tuple (row, column). diff --git a/_modules/src/mutation/bit_flip_mutation.html b/_modules/pycellga/mutation/bit_flip_mutation.html similarity index 93% rename from _modules/src/mutation/bit_flip_mutation.html rename to _modules/pycellga/mutation/bit_flip_mutation.html index 1b3a14b..9734a41 100644 --- a/_modules/src/mutation/bit_flip_mutation.html +++ b/_modules/pycellga/mutation/bit_flip_mutation.html @@ -3,7 +3,7 @@ - src.mutation.bit_flip_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.bit_flip_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.mutation.bit_flip_mutation

+  

Source code for pycellga.mutation.bit_flip_mutation

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
 from mutation.mutation_operator import MutationOperator
 
 
-[docs] +[docs] class BitFlipMutation(MutationOperator): """ BitFlipMutation performs a bit flip mutation on an individual in a Genetic Algorithm. @@ -91,7 +91,7 @@

Source code for src.mutation.bit_flip_mutation

"""

-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the BitFlipMutation object. @@ -108,7 +108,7 @@

Source code for src.mutation.bit_flip_mutation

-[docs] +[docs] def mutate(self) -> Individual: """ Perform a bit flip mutation on the candidate individual. diff --git a/_modules/src/mutation/byte_mutation.html b/_modules/pycellga/mutation/byte_mutation.html similarity index 95% rename from _modules/src/mutation/byte_mutation.html rename to _modules/pycellga/mutation/byte_mutation.html index 62c8808..38ed5b9 100644 --- a/_modules/src/mutation/byte_mutation.html +++ b/_modules/pycellga/mutation/byte_mutation.html @@ -3,7 +3,7 @@ - src.mutation.byte_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.byte_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@

  • - +
@@ -70,7 +70,7 @@
-

Source code for src.mutation.byte_mutation

+  

Source code for pycellga.mutation.byte_mutation

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.mutation.byte_mutation

 from mutation.mutation_operator import MutationOperator
 
 
-[docs] +[docs] class ByteMutation(MutationOperator): """ ByteMutation operator defined in (Satman, 2013). ByteMutation performs a byte-wise mutation @@ -93,7 +93,7 @@

Source code for src.mutation.byte_mutation

     """
 
 
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the ByteMutation object. @@ -110,7 +110,7 @@

Source code for src.mutation.byte_mutation

 
 
 
-[docs] +[docs] def mutate(self) -> Individual: """ Perform a byte-wise mutation on the candidate individual. diff --git a/_modules/src/mutation/byte_mutation_random.html b/_modules/pycellga/mutation/byte_mutation_random.html similarity index 94% rename from _modules/src/mutation/byte_mutation_random.html rename to _modules/pycellga/mutation/byte_mutation_random.html index ee8c670..be8aace 100644 --- a/_modules/src/mutation/byte_mutation_random.html +++ b/_modules/pycellga/mutation/byte_mutation_random.html @@ -3,7 +3,7 @@ - src.mutation.byte_mutation_random — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.byte_mutation_random — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.mutation.byte_mutation_random

+  

Source code for pycellga.mutation.byte_mutation_random

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.mutation.byte_mutation_random

from mutation.mutation_operator import MutationOperator
-[docs] +[docs] class ByteMutationRandom(MutationOperator): """ ByteMutationRandom operator defined in (Satman, 2013). ByteMutationRandom performs @@ -93,7 +93,7 @@

Source code for src.mutation.byte_mutation_random

"""
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the ByteMutationRandom object. @@ -110,7 +110,7 @@

Source code for src.mutation.byte_mutation_random

-[docs] +[docs] def mutate(self) -> Individual: """ Perform a random byte mutation on the candidate individual. diff --git a/_modules/src/mutation/float_uniform_mutation.html b/_modules/pycellga/mutation/float_uniform_mutation.html similarity index 93% rename from _modules/src/mutation/float_uniform_mutation.html rename to _modules/pycellga/mutation/float_uniform_mutation.html index 0cfd3b3..5585e9e 100644 --- a/_modules/src/mutation/float_uniform_mutation.html +++ b/_modules/pycellga/mutation/float_uniform_mutation.html @@ -3,7 +3,7 @@ - src.mutation.float_uniform_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.float_uniform_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.mutation.float_uniform_mutation

+  

Source code for pycellga.mutation.float_uniform_mutation

 import random
 from individual import *
 from problems.abstract_problem import AbstractProblem
 from mutation.mutation_operator import MutationOperator
 
 
-[docs] +[docs] class FloatUniformMutation(MutationOperator): """ FloatUniformMutation performs a uniform mutation on an individual's chromosome in a Genetic Algorithm. @@ -91,7 +91,7 @@

Source code for src.mutation.float_uniform_mutation

"""
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the FloatUniformMutation object. @@ -108,7 +108,7 @@

Source code for src.mutation.float_uniform_mutation

-[docs] +[docs] def mutate(self) -> Individual: """ Perform a uniform mutation on the candidate individual. diff --git a/_modules/src/mutation/insertion_mutation.html b/_modules/pycellga/mutation/insertion_mutation.html similarity index 94% rename from _modules/src/mutation/insertion_mutation.html rename to _modules/pycellga/mutation/insertion_mutation.html index 12ac9b7..2f6e97c 100644 --- a/_modules/src/mutation/insertion_mutation.html +++ b/_modules/pycellga/mutation/insertion_mutation.html @@ -3,7 +3,7 @@ - src.mutation.insertion_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.insertion_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.mutation.insertion_mutation

+  

Source code for pycellga.mutation.insertion_mutation

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
 from mutation.mutation_operator import MutationOperator
 
 
-[docs] +[docs] class InsertionMutation(MutationOperator): """ InsertionMutation performs an insertion mutation on an individual's chromosome in a Genetic Algorithm. @@ -91,7 +91,7 @@

Source code for src.mutation.insertion_mutation

< """
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the InsertionMutation object. @@ -108,7 +108,7 @@

Source code for src.mutation.insertion_mutation

<
-[docs] +[docs] def mutate(self) -> Individual: """ Perform an insertion mutation on the candidate individual. diff --git a/_modules/src/mutation/mutation_operator.html b/_modules/pycellga/mutation/mutation_operator.html similarity index 88% rename from _modules/src/mutation/mutation_operator.html rename to _modules/pycellga/mutation/mutation_operator.html index 20009c9..3a26799 100644 --- a/_modules/src/mutation/mutation_operator.html +++ b/_modules/pycellga/mutation/mutation_operator.html @@ -3,7 +3,7 @@ - src.mutation.mutation_operator — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.mutation_operator — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.mutation.mutation_operator

+  

Source code for pycellga.mutation.mutation_operator

 
-[docs] +[docs] class MutationOperator:
-[docs] +[docs] def mutate(self): pass
diff --git a/_modules/src/mutation/shuffle_mutation.html b/_modules/pycellga/mutation/shuffle_mutation.html similarity index 95% rename from _modules/src/mutation/shuffle_mutation.html rename to _modules/pycellga/mutation/shuffle_mutation.html index cfe90c6..5415c64 100644 --- a/_modules/src/mutation/shuffle_mutation.html +++ b/_modules/pycellga/mutation/shuffle_mutation.html @@ -3,7 +3,7 @@ - src.mutation.shuffle_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.shuffle_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.mutation.shuffle_mutation

+  

Source code for pycellga.mutation.shuffle_mutation

 import numpy as np
 import random as rd
 from individual import *
@@ -78,7 +78,7 @@ 

Source code for src.mutation.shuffle_mutation

from mutation.mutation_operator import MutationOperator
-[docs] +[docs] class ShuffleMutation(MutationOperator): """ ShuffleMutation performs a shuffle mutation on an individual's chromosome in a Genetic Algorithm. @@ -92,7 +92,7 @@

Source code for src.mutation.shuffle_mutation

"""
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the ShuffleMutation object. @@ -109,7 +109,7 @@

Source code for src.mutation.shuffle_mutation

-[docs] +[docs] def mutate(self) -> Individual: """ Perform a shuffle mutation on the candidate individual. diff --git a/_modules/src/mutation/swap_mutation.html b/_modules/pycellga/mutation/swap_mutation.html similarity index 94% rename from _modules/src/mutation/swap_mutation.html rename to _modules/pycellga/mutation/swap_mutation.html index b035859..75f1e89 100644 --- a/_modules/src/mutation/swap_mutation.html +++ b/_modules/pycellga/mutation/swap_mutation.html @@ -3,7 +3,7 @@ - src.mutation.swap_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.swap_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.mutation.swap_mutation

+  

Source code for pycellga.mutation.swap_mutation

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
 from mutation.mutation_operator import MutationOperator
 
 
-[docs] +[docs] class SwapMutation(MutationOperator): """ SwapMutation performs a swap mutation on an individual's chromosome in a Genetic Algorithm. @@ -91,7 +91,7 @@

Source code for src.mutation.swap_mutation

     """
 
 
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the SwapMutation object. @@ -108,7 +108,7 @@

Source code for src.mutation.swap_mutation

 
 
 
-[docs] +[docs] def mutate(self) -> Individual: """ Perform a swap mutation on the candidate individual. diff --git a/_modules/src/mutation/two_opt_mutation.html b/_modules/pycellga/mutation/two_opt_mutation.html similarity index 94% rename from _modules/src/mutation/two_opt_mutation.html rename to _modules/pycellga/mutation/two_opt_mutation.html index 6e9dbe9..5c6bb69 100644 --- a/_modules/src/mutation/two_opt_mutation.html +++ b/_modules/pycellga/mutation/two_opt_mutation.html @@ -3,7 +3,7 @@ - src.mutation.two_opt_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.mutation.two_opt_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.mutation.two_opt_mutation

+  

Source code for pycellga.mutation.two_opt_mutation

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
 from mutation.mutation_operator import MutationOperator
 
 
-[docs] +[docs] class TwoOptMutation(MutationOperator): """ TwoOptMutation performs a 2-opt mutation on an individual's chromosome in a Genetic Algorithm. @@ -91,7 +91,7 @@

Source code for src.mutation.two_opt_mutation

"""
-[docs] +[docs] def __init__(self, mutation_cand: Individual = None, problem: AbstractProblem = None): """ Initialize the TwoOptMutation object. @@ -108,7 +108,7 @@

Source code for src.mutation.two_opt_mutation

-[docs] +[docs] def mutate(self) -> Individual: """ Perform a 2-opt mutation on the candidate individual. diff --git a/_modules/src/neighborhoods/compact_13.html b/_modules/pycellga/neighborhoods/compact_13.html similarity index 95% rename from _modules/src/neighborhoods/compact_13.html rename to _modules/pycellga/neighborhoods/compact_13.html index 56607cc..10f2560 100644 --- a/_modules/src/neighborhoods/compact_13.html +++ b/_modules/pycellga/neighborhoods/compact_13.html @@ -3,7 +3,7 @@ - src.neighborhoods.compact_13 — PYCELLGA Documentation 1.0.0 documentation + pycellga.neighborhoods.compact_13 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.neighborhoods.compact_13

+  

Source code for pycellga.neighborhoods.compact_13

 
-[docs] +[docs] class Compact13: """ Compact13 calculates the positions of the 12 neighbors in a 2D grid for a given position, @@ -89,7 +89,7 @@

Source code for src.neighborhoods.compact_13

    """
 
 
-[docs] +[docs] def __init__(self, position, n_rows, n_cols): """ Initialize the Compact13 object. @@ -109,7 +109,7 @@

Source code for src.neighborhoods.compact_13

-[docs]
+[docs]
     def calculate_neighbors_positions(self) -> list:
         """
         Calculate the positions of the 12 neighbors for the given position in the grid.
diff --git a/_modules/src/neighborhoods/compact_21.html b/_modules/pycellga/neighborhoods/compact_21.html
similarity index 95%
rename from _modules/src/neighborhoods/compact_21.html
rename to _modules/pycellga/neighborhoods/compact_21.html
index b6afe26..60c5e57 100644
--- a/_modules/src/neighborhoods/compact_21.html
+++ b/_modules/pycellga/neighborhoods/compact_21.html
@@ -3,7 +3,7 @@
 
   
   
-  src.neighborhoods.compact_21 — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.neighborhoods.compact_21 — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.neighborhoods.compact_21

+  

Source code for pycellga.neighborhoods.compact_21

 
-[docs] +[docs] class Compact21: """ Compact21 calculates the positions of the 20 neighbors in a 2D grid for a given position, @@ -89,7 +89,7 @@

Source code for src.neighborhoods.compact_21

    """
 
 
-[docs] +[docs] def __init__(self, position, n_rows, n_cols): """ Initialize the Compact21 object. @@ -109,7 +109,7 @@

Source code for src.neighborhoods.compact_21

-[docs]
+[docs]
     def calculate_neighbors_positions(self) -> list:
         """
         Calculate the positions of the 20 neighbors for the given position in the grid.
diff --git a/_modules/src/neighborhoods/compact_25.html b/_modules/pycellga/neighborhoods/compact_25.html
similarity index 95%
rename from _modules/src/neighborhoods/compact_25.html
rename to _modules/pycellga/neighborhoods/compact_25.html
index 8688a65..567385b 100644
--- a/_modules/src/neighborhoods/compact_25.html
+++ b/_modules/pycellga/neighborhoods/compact_25.html
@@ -3,7 +3,7 @@
 
   
   
-  src.neighborhoods.compact_25 — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.neighborhoods.compact_25 — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.neighborhoods.compact_25

+  

Source code for pycellga.neighborhoods.compact_25

 
-[docs] +[docs] class Compact25: """ Compact25 calculates the positions of the 24 neighbors in a 2D grid for a given position, @@ -89,7 +89,7 @@

Source code for src.neighborhoods.compact_25

    """
 
 
-[docs] +[docs] def __init__(self, position, n_rows, n_cols): """ Initialize the Compact25 object. @@ -109,7 +109,7 @@

Source code for src.neighborhoods.compact_25

-[docs]
+[docs]
     def calculate_neighbors_positions(self) -> list:
         """
         Calculate the positions of the 24 neighbors for the given position in the grid.
diff --git a/_modules/src/neighborhoods/compact_9.html b/_modules/pycellga/neighborhoods/compact_9.html
similarity index 95%
rename from _modules/src/neighborhoods/compact_9.html
rename to _modules/pycellga/neighborhoods/compact_9.html
index fce6002..a19f227 100644
--- a/_modules/src/neighborhoods/compact_9.html
+++ b/_modules/pycellga/neighborhoods/compact_9.html
@@ -3,7 +3,7 @@
 
   
   
-  src.neighborhoods.compact_9 — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.neighborhoods.compact_9 — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.neighborhoods.compact_9

+  

Source code for pycellga.neighborhoods.compact_9

 
-[docs] +[docs] class Compact9: """ Compact9 calculates the positions of the 8 neighbors in a 2D grid for a given position, @@ -89,7 +89,7 @@

Source code for src.neighborhoods.compact_9

     """
 
 
-[docs] +[docs] def __init__(self, position, n_rows, n_cols): """ Initialize the Compact9 object. @@ -109,7 +109,7 @@

Source code for src.neighborhoods.compact_9

 
 
 
-[docs] +[docs] def calculate_neighbors_positions(self) -> list: """ Calculate the positions of the 8 neighbors for the given position in the grid. diff --git a/_modules/src/neighborhoods/linear_5.html b/_modules/pycellga/neighborhoods/linear_5.html similarity index 94% rename from _modules/src/neighborhoods/linear_5.html rename to _modules/pycellga/neighborhoods/linear_5.html index 3f3068f..080a15f 100644 --- a/_modules/src/neighborhoods/linear_5.html +++ b/_modules/pycellga/neighborhoods/linear_5.html @@ -3,7 +3,7 @@ - src.neighborhoods.linear_5 — PYCELLGA Documentation 1.0.0 documentation + pycellga.neighborhoods.linear_5 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.neighborhoods.linear_5

+  

Source code for pycellga.neighborhoods.linear_5

 
-[docs] +[docs] class Linear5: """ Linear5 calculates the positions of the 4 neighbors in a 2D grid for a given position, @@ -89,7 +89,7 @@

Source code for src.neighborhoods.linear_5

     """
 
 
-[docs] +[docs] def __init__(self, position, n_rows, n_cols): """ Initialize the Linear5 object. @@ -109,7 +109,7 @@

Source code for src.neighborhoods.linear_5

 
 
 
-[docs] +[docs] def calculate_neighbors_positions(self) -> list: """ Calculate the positions of the 4 neighbors for the given position in the grid. diff --git a/_modules/src/neighborhoods/linear_9.html b/_modules/pycellga/neighborhoods/linear_9.html similarity index 95% rename from _modules/src/neighborhoods/linear_9.html rename to _modules/pycellga/neighborhoods/linear_9.html index 687956a..a380e60 100644 --- a/_modules/src/neighborhoods/linear_9.html +++ b/_modules/pycellga/neighborhoods/linear_9.html @@ -3,7 +3,7 @@ - src.neighborhoods.linear_9 — PYCELLGA Documentation 1.0.0 documentation + pycellga.neighborhoods.linear_9 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.neighborhoods.linear_9

+  

Source code for pycellga.neighborhoods.linear_9

 
-[docs] +[docs] class Linear9: """ Linear9 calculates the positions of the 8 neighbors in a 2D grid for a given position, @@ -89,7 +89,7 @@

Source code for src.neighborhoods.linear_9

     """
 
 
-[docs] +[docs] def __init__(self, position, n_rows, n_cols): """ Initialize the Linear9 object. @@ -109,7 +109,7 @@

Source code for src.neighborhoods.linear_9

 
 
 
-[docs] +[docs] def calculate_neighbors_positions(self) -> list: """ Calculate the positions of the 8 neighbors for the given position in the grid. diff --git a/_modules/src/problems/abstract_problem.html b/_modules/pycellga/problems/abstract_problem.html similarity index 90% rename from _modules/src/problems/abstract_problem.html rename to _modules/pycellga/problems/abstract_problem.html index 40c7c71..761f304 100644 --- a/_modules/src/problems/abstract_problem.html +++ b/_modules/pycellga/problems/abstract_problem.html @@ -3,7 +3,7 @@ - src.problems.abstract_problem — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.abstract_problem — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,9 +70,9 @@
-

Source code for src.problems.abstract_problem

+  

Source code for pycellga.problems.abstract_problem

 
-[docs] +[docs] class AbstractProblem: """ An abstract base class for optimization problems. @@ -84,7 +84,7 @@

Source code for src.problems.abstract_problem

"""
-[docs] +[docs] def f(self, x): """ Evaluate the fitness of a given solution x. diff --git a/_modules/src/problems/single_objective/continuous/ackley.html b/_modules/pycellga/problems/single_objective/continuous/ackley.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/ackley.html rename to _modules/pycellga/problems/single_objective/continuous/ackley.html index 11a6b49..a8bd526 100644 --- a/_modules/src/problems/single_objective/continuous/ackley.html +++ b/_modules/pycellga/problems/single_objective/continuous/ackley.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.ackley — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.ackley — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.continuous.ackley

+  

Source code for pycellga.problems.single_objective.continuous.ackley

 from numpy import pi, e, cos, sqrt, exp
 from problems.abstract_problem import AbstractProblem
 
-[docs] +[docs] class Ackley(AbstractProblem): """ Ackley function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.ackley

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Ackley function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/bentcigar.html b/_modules/pycellga/problems/single_objective/continuous/bentcigar.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/bentcigar.html rename to _modules/pycellga/problems/single_objective/continuous/bentcigar.html index 23ec716..c0456e7 100644 --- a/_modules/src/problems/single_objective/continuous/bentcigar.html +++ b/_modules/pycellga/problems/single_objective/continuous/bentcigar.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.bentcigar — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.bentcigar — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.bentcigar

+  

Source code for pycellga.problems.single_objective.continuous.bentcigar

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Bentcigar(AbstractProblem): """ Bentcigar function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.bentcigar

"""
-[docs] +[docs] def f(self, X: list) -> float: """ Calculate the Bentcigar function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/bohachevsky.html b/_modules/pycellga/problems/single_objective/continuous/bohachevsky.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/bohachevsky.html rename to _modules/pycellga/problems/single_objective/continuous/bohachevsky.html index 08a3ce8..fdb3e88 100644 --- a/_modules/src/problems/single_objective/continuous/bohachevsky.html +++ b/_modules/pycellga/problems/single_objective/continuous/bohachevsky.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.bohachevsky — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.bohachevsky — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.problems.single_objective.continuous.bohachevsky

+  

Source code for pycellga.problems.single_objective.continuous.bohachevsky

 from numpy import cos
 from numpy import pi
 from mpmath import power as pw
 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Bohachevsky(AbstractProblem): """ Bohachevsky function implementation for optimization problems. @@ -101,7 +101,7 @@

Source code for src.problems.single_objective.continuous.bohachevsky

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Bohachevsky function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/chichinadze.html b/_modules/pycellga/problems/single_objective/continuous/chichinadze.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/chichinadze.html rename to _modules/pycellga/problems/single_objective/continuous/chichinadze.html index a1dfcb3..047de4c 100644 --- a/_modules/src/problems/single_objective/continuous/chichinadze.html +++ b/_modules/pycellga/problems/single_objective/continuous/chichinadze.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.chichinadze — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.chichinadze — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.chichinadze

+  

Source code for pycellga.problems.single_objective.continuous.chichinadze

 from problems.abstract_problem import AbstractProblem
 import numpy as np
 
 
-[docs] +[docs] class Chichinadze(AbstractProblem): """ Chichinadze function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.chichinadze

"""
-[docs] +[docs] def f(self, X: list) -> float: """ Calculate the Chichinadze function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/dropwave.html b/_modules/pycellga/problems/single_objective/continuous/dropwave.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/dropwave.html rename to _modules/pycellga/problems/single_objective/continuous/dropwave.html index 60878b8..ddf46e7 100644 --- a/_modules/src/problems/single_objective/continuous/dropwave.html +++ b/_modules/pycellga/problems/single_objective/continuous/dropwave.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.dropwave — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.dropwave — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.problems.single_objective.continuous.dropwave

+  

Source code for pycellga.problems.single_objective.continuous.dropwave

 from problems.abstract_problem import AbstractProblem
 import math
 from numpy import *
@@ -79,7 +79,7 @@ 

Source code for src.problems.single_objective.continuous.dropwave

# Global minimum at f(0,0) = −1
-[docs] +[docs] class Dropwave(AbstractProblem): """ Dropwave function for optimization problems. @@ -94,7 +94,7 @@

Source code for src.problems.single_objective.continuous.dropwave

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Evaluate the Dropwave function at a given point. diff --git a/_modules/src/problems/single_objective/continuous/fms.html b/_modules/pycellga/problems/single_objective/continuous/fms.html similarity index 94% rename from _modules/src/problems/single_objective/continuous/fms.html rename to _modules/pycellga/problems/single_objective/continuous/fms.html index 971bd10..932fd63 100644 --- a/_modules/src/problems/single_objective/continuous/fms.html +++ b/_modules/pycellga/problems/single_objective/continuous/fms.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.fms — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.fms — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.fms

+  

Source code for pycellga.problems.single_objective.continuous.fms

 from problems.abstract_problem import AbstractProblem
 from numpy import pi, sin, random
 
 
-[docs] +[docs] class Fms(AbstractProblem): """ Fms function implementation for optimization problems. @@ -100,7 +100,7 @@

Source code for src.problems.single_objective.continuous.fms

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Fms function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/griewank.html b/_modules/pycellga/problems/single_objective/continuous/griewank.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/griewank.html rename to _modules/pycellga/problems/single_objective/continuous/griewank.html index 2bffbc5..f95cde0 100644 --- a/_modules/src/problems/single_objective/continuous/griewank.html +++ b/_modules/pycellga/problems/single_objective/continuous/griewank.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.griewank — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.griewank — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.griewank

+  

Source code for pycellga.problems.single_objective.continuous.griewank

 from problems.abstract_problem import AbstractProblem
 import math
 
 
-[docs] +[docs] class Griewank(AbstractProblem): """ Griewank function implementation for optimization problems. @@ -95,7 +95,7 @@

Source code for src.problems.single_objective.continuous.griewank

"""
-[docs] +[docs] def f(self, X: list) -> float: """ Calculate the Griewank function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/holzman.html b/_modules/pycellga/problems/single_objective/continuous/holzman.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/holzman.html rename to _modules/pycellga/problems/single_objective/continuous/holzman.html index 42723ac..a43f33f 100644 --- a/_modules/src/problems/single_objective/continuous/holzman.html +++ b/_modules/pycellga/problems/single_objective/continuous/holzman.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.holzman — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.holzman — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.holzman

+  

Source code for pycellga.problems.single_objective.continuous.holzman

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Holzman(AbstractProblem): """ Holzman function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.holzman

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Holzman function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/levy.html b/_modules/pycellga/problems/single_objective/continuous/levy.html similarity index 93% rename from _modules/src/problems/single_objective/continuous/levy.html rename to _modules/pycellga/problems/single_objective/continuous/levy.html index 0cd1a71..00cfbde 100644 --- a/_modules/src/problems/single_objective/continuous/levy.html +++ b/_modules/pycellga/problems/single_objective/continuous/levy.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.levy — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.levy — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.problems.single_objective.continuous.levy

+  

Source code for pycellga.problems.single_objective.continuous.levy

 from problems.abstract_problem import AbstractProblem
 import math
 from mpmath import power as pw
 
 
-[docs] +[docs] class Levy(AbstractProblem): """ Levy function implementation for optimization problems. @@ -100,7 +100,7 @@

Source code for src.problems.single_objective.continuous.levy

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Levy function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/matyas.html b/_modules/pycellga/problems/single_objective/continuous/matyas.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/matyas.html rename to _modules/pycellga/problems/single_objective/continuous/matyas.html index baa1443..3d2a054 100644 --- a/_modules/src/problems/single_objective/continuous/matyas.html +++ b/_modules/pycellga/problems/single_objective/continuous/matyas.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.matyas — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.matyas — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.matyas

+  

Source code for pycellga.problems.single_objective.continuous.matyas

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Matyas(AbstractProblem): """ Matyas function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.matyas

"""
-[docs] +[docs] def f(self, X: list) -> float: """ Calculate the Matyas function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/pow.html b/_modules/pycellga/problems/single_objective/continuous/pow.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/pow.html rename to _modules/pycellga/problems/single_objective/continuous/pow.html index 42afcc8..f8a6a0d 100644 --- a/_modules/src/problems/single_objective/continuous/pow.html +++ b/_modules/pycellga/problems/single_objective/continuous/pow.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.pow — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.pow — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.pow

+  

Source code for pycellga.problems.single_objective.continuous.pow

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Pow(AbstractProblem): """ Pow function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.pow

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Pow function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/powell.html b/_modules/pycellga/problems/single_objective/continuous/powell.html similarity index 93% rename from _modules/src/problems/single_objective/continuous/powell.html rename to _modules/pycellga/problems/single_objective/continuous/powell.html index 6499d27..0ae8e69 100644 --- a/_modules/src/problems/single_objective/continuous/powell.html +++ b/_modules/pycellga/problems/single_objective/continuous/powell.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.powell — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.powell — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.problems.single_objective.continuous.powell

+  

Source code for pycellga.problems.single_objective.continuous.powell

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
 
-[docs] +[docs] class Powell(AbstractProblem): """ Powell function implementation for optimization problems. @@ -100,7 +100,7 @@

Source code for src.problems.single_objective.continuous.powell

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Powell function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/rastrigin.html b/_modules/pycellga/problems/single_objective/continuous/rastrigin.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/rastrigin.html rename to _modules/pycellga/problems/single_objective/continuous/rastrigin.html index e2bafbe..bf288ab 100644 --- a/_modules/src/problems/single_objective/continuous/rastrigin.html +++ b/_modules/pycellga/problems/single_objective/continuous/rastrigin.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.rastrigin — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.rastrigin — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.continuous.rastrigin

+  

Source code for pycellga.problems.single_objective.continuous.rastrigin

 from numpy import cos, pi
 from problems.abstract_problem import AbstractProblem
 
-[docs] +[docs] class Rastrigin(AbstractProblem): """ Rastrigin function implementation for optimization problems. @@ -98,7 +98,7 @@

Source code for src.problems.single_objective.continuous.rastrigin

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Rastrigin function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/rosenbrock.html b/_modules/pycellga/problems/single_objective/continuous/rosenbrock.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/rosenbrock.html rename to _modules/pycellga/problems/single_objective/continuous/rosenbrock.html index 481fcaf..266cf28 100644 --- a/_modules/src/problems/single_objective/continuous/rosenbrock.html +++ b/_modules/pycellga/problems/single_objective/continuous/rosenbrock.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.rosenbrock — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.rosenbrock — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.continuous.rosenbrock

+  

Source code for pycellga.problems.single_objective.continuous.rosenbrock

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
-[docs] +[docs] class Rosenbrock(AbstractProblem): """ Rosenbrock function implementation for optimization problems. @@ -98,7 +98,7 @@

Source code for src.problems.single_objective.continuous.rosenbrock

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Rosenbrock function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/rothellipsoid.html b/_modules/pycellga/problems/single_objective/continuous/rothellipsoid.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/rothellipsoid.html rename to _modules/pycellga/problems/single_objective/continuous/rothellipsoid.html index 2faf2bb..1f85974 100644 --- a/_modules/src/problems/single_objective/continuous/rothellipsoid.html +++ b/_modules/pycellga/problems/single_objective/continuous/rothellipsoid.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.rothellipsoid — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.rothellipsoid — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.rothellipsoid

+  

Source code for pycellga.problems.single_objective.continuous.rothellipsoid

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Rothellipsoid(AbstractProblem): """ Rotated Hyper-Ellipsoid function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.rothellipsoid

< """
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Rotated Hyper-Ellipsoid function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/schaffer.html b/_modules/pycellga/problems/single_objective/continuous/schaffer.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/schaffer.html rename to _modules/pycellga/problems/single_objective/continuous/schaffer.html index 42f5af0..cefcb3f 100644 --- a/_modules/src/problems/single_objective/continuous/schaffer.html +++ b/_modules/pycellga/problems/single_objective/continuous/schaffer.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.schaffer — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.schaffer — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.problems.single_objective.continuous.schaffer

+  

Source code for pycellga.problems.single_objective.continuous.schaffer

 import numpy as np
 from mpmath import power as pw
 from problems.abstract_problem import AbstractProblem
 
 
 
-[docs] +[docs] class Schaffer(AbstractProblem): """ Schaffer's Function. @@ -92,7 +92,7 @@

Source code for src.problems.single_objective.continuous.schaffer

"""
-[docs] +[docs] def f(self, X: list) -> float: """ Evaluate the Schaffer's function at a given point. diff --git a/_modules/src/problems/single_objective/continuous/schaffer2.html b/_modules/pycellga/problems/single_objective/continuous/schaffer2.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/schaffer2.html rename to _modules/pycellga/problems/single_objective/continuous/schaffer2.html index d1ed242..f34dfe4 100644 --- a/_modules/src/problems/single_objective/continuous/schaffer2.html +++ b/_modules/pycellga/problems/single_objective/continuous/schaffer2.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.schaffer2 — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.schaffer2 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.problems.single_objective.continuous.schaffer2

+  

Source code for pycellga.problems.single_objective.continuous.schaffer2

 import numpy as np
 from numpy import power as pw
 from problems.abstract_problem import AbstractProblem
 
 
 
-[docs] +[docs] class Schaffer2(AbstractProblem): """ Modified Schaffer function #2 implementation for optimization problems. @@ -101,7 +101,7 @@

Source code for src.problems.single_objective.continuous.schaffer2

"""
-[docs] +[docs] def f(self, X: list) -> float: """ Calculate the Modified Schaffer function #2 value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/schwefel.html b/_modules/pycellga/problems/single_objective/continuous/schwefel.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/schwefel.html rename to _modules/pycellga/problems/single_objective/continuous/schwefel.html index 073768f..2230abf 100644 --- a/_modules/src/problems/single_objective/continuous/schwefel.html +++ b/_modules/pycellga/problems/single_objective/continuous/schwefel.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.schwefel — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.schwefel — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.schwefel

+  

Source code for pycellga.problems.single_objective.continuous.schwefel

 from numpy import sin, sqrt
 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Schwefel(AbstractProblem): """ Schwefel function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.schwefel

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Schwefel function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/sphere.html b/_modules/pycellga/problems/single_objective/continuous/sphere.html similarity index 90% rename from _modules/src/problems/single_objective/continuous/sphere.html rename to _modules/pycellga/problems/single_objective/continuous/sphere.html index 461a06b..7bb1dbd 100644 --- a/_modules/src/problems/single_objective/continuous/sphere.html +++ b/_modules/pycellga/problems/single_objective/continuous/sphere.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.sphere — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.sphere — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.continuous.sphere

+  

Source code for pycellga.problems.single_objective.continuous.sphere

 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Sphere(AbstractProblem): """ Sphere function implementation for optimization problems. @@ -98,7 +98,7 @@

Source code for src.problems.single_objective.continuous.sphere

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Sphere function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/styblinskitang.html b/_modules/pycellga/problems/single_objective/continuous/styblinskitang.html similarity index 91% rename from _modules/src/problems/single_objective/continuous/styblinskitang.html rename to _modules/pycellga/problems/single_objective/continuous/styblinskitang.html index 48f1241..bbab8a8 100644 --- a/_modules/src/problems/single_objective/continuous/styblinskitang.html +++ b/_modules/pycellga/problems/single_objective/continuous/styblinskitang.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.styblinskitang — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.styblinskitang — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.styblinskitang

+  

Source code for pycellga.problems.single_objective.continuous.styblinskitang

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class StyblinskiTang(AbstractProblem): """ Styblinski-Tang function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.styblinskitang

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Styblinski-Tang function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/sumofdifferentpowers.html b/_modules/pycellga/problems/single_objective/continuous/sumofdifferentpowers.html similarity index 89% rename from _modules/src/problems/single_objective/continuous/sumofdifferentpowers.html rename to _modules/pycellga/problems/single_objective/continuous/sumofdifferentpowers.html index af5c651..0a0e942 100644 --- a/_modules/src/problems/single_objective/continuous/sumofdifferentpowers.html +++ b/_modules/pycellga/problems/single_objective/continuous/sumofdifferentpowers.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.sumofdifferentpowers — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.sumofdifferentpowers — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,20 +70,20 @@
-

Source code for src.problems.single_objective.continuous.sumofdifferentpowers

+  

Source code for pycellga.problems.single_objective.continuous.sumofdifferentpowers

 import numpy as np
 from mpmath import power as pw
 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Sumofdifferentpowers(AbstractProblem): """ Sum of Different Powers function implementation for optimization problems. """
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Sum of Different Powers function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/threehumps.html b/_modules/pycellga/problems/single_objective/continuous/threehumps.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/threehumps.html rename to _modules/pycellga/problems/single_objective/continuous/threehumps.html index 84bc5b0..fb6469a 100644 --- a/_modules/src/problems/single_objective/continuous/threehumps.html +++ b/_modules/pycellga/problems/single_objective/continuous/threehumps.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.threehumps — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.threehumps — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.threehumps

+  

Source code for pycellga.problems.single_objective.continuous.threehumps

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Threehumps(AbstractProblem): """ Three Hump Camel function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.threehumps

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Three Hump Camel function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/zakharov.html b/_modules/pycellga/problems/single_objective/continuous/zakharov.html similarity index 93% rename from _modules/src/problems/single_objective/continuous/zakharov.html rename to _modules/pycellga/problems/single_objective/continuous/zakharov.html index 7c88c13..20cc0fe 100644 --- a/_modules/src/problems/single_objective/continuous/zakharov.html +++ b/_modules/pycellga/problems/single_objective/continuous/zakharov.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.zakharov — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.zakharov — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.continuous.zakharov

+  

Source code for pycellga.problems.single_objective.continuous.zakharov

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
-[docs] +[docs] class Zakharov(AbstractProblem): """ Zakharov function implementation for optimization problems. @@ -98,7 +98,7 @@

Source code for src.problems.single_objective.continuous.zakharov

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Zakharov function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/continuous/zettle.html b/_modules/pycellga/problems/single_objective/continuous/zettle.html similarity index 92% rename from _modules/src/problems/single_objective/continuous/zettle.html rename to _modules/pycellga/problems/single_objective/continuous/zettle.html index fd856a0..1d1a468 100644 --- a/_modules/src/problems/single_objective/continuous/zettle.html +++ b/_modules/pycellga/problems/single_objective/continuous/zettle.html @@ -3,7 +3,7 @@ - src.problems.single_objective.continuous.zettle — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous.zettle — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.continuous.zettle

+  

Source code for pycellga.problems.single_objective.continuous.zettle

 from problems.abstract_problem import AbstractProblem
 from mpmath import power as pw
 
 
-[docs] +[docs] class Zettle(AbstractProblem): """ Zettle function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.continuous.zettle

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Zettle function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/discrete/binary/count_sat.html b/_modules/pycellga/problems/single_objective/discrete/binary/count_sat.html similarity index 92% rename from _modules/src/problems/single_objective/discrete/binary/count_sat.html rename to _modules/pycellga/problems/single_objective/discrete/binary/count_sat.html index 561370d..d81536a 100644 --- a/_modules/src/problems/single_objective/discrete/binary/count_sat.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/count_sat.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.count_sat — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.count_sat — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,10 +70,10 @@
-

Source code for src.problems.single_objective.discrete.binary.count_sat

+  

Source code for pycellga.problems.single_objective.discrete.binary.count_sat

 from problems.abstract_problem import AbstractProblem
 
-[docs] +[docs] class CountSat(AbstractProblem): """ CountSat function implementation for optimization problems. @@ -97,7 +97,7 @@

Source code for src.problems.single_objective.discrete.binary.count_sat

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the CountSat function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/discrete/binary/ecc.html b/_modules/pycellga/problems/single_objective/discrete/binary/ecc.html similarity index 93% rename from _modules/src/problems/single_objective/discrete/binary/ecc.html rename to _modules/pycellga/problems/single_objective/discrete/binary/ecc.html index a378ddb..1b0d0a5 100644 --- a/_modules/src/problems/single_objective/discrete/binary/ecc.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/ecc.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.ecc — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.ecc — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.discrete.binary.ecc

+  

Source code for pycellga.problems.single_objective.discrete.binary.ecc

 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Ecc(AbstractProblem): """ Error Correcting Codes Design Problem (ECC) function implementation for optimization problems. @@ -98,7 +98,7 @@

Source code for src.problems.single_objective.discrete.binary.ecc

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the ECC function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/discrete/binary/fms.html b/_modules/pycellga/problems/single_objective/discrete/binary/fms.html similarity index 96% rename from _modules/src/problems/single_objective/discrete/binary/fms.html rename to _modules/pycellga/problems/single_objective/discrete/binary/fms.html index 313d65f..6fdbb93 100644 --- a/_modules/src/problems/single_objective/discrete/binary/fms.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/fms.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.fms — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.fms — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.discrete.binary.fms

+  

Source code for pycellga.problems.single_objective.discrete.binary.fms

 from problems.abstract_problem import AbstractProblem
 from numpy import pi, sin, random
 
-[docs] +[docs] class Fms(AbstractProblem): """ Frequency Modulation Sound (FMS) function implementation for optimization problems. @@ -98,7 +98,7 @@

Source code for src.problems.single_objective.discrete.binary.fms

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the FMS function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/discrete/binary/maxcut100.html b/_modules/pycellga/problems/single_objective/discrete/binary/maxcut100.html similarity index 99% rename from _modules/src/problems/single_objective/discrete/binary/maxcut100.html rename to _modules/pycellga/problems/single_objective/discrete/binary/maxcut100.html index 6fc2f07..dd74dba 100644 --- a/_modules/src/problems/single_objective/discrete/binary/maxcut100.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/maxcut100.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.maxcut100 — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.maxcut100 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.discrete.binary.maxcut100

+  

Source code for pycellga.problems.single_objective.discrete.binary.maxcut100

 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Maxcut100(AbstractProblem): """ A class used to represent the Maximum Cut (MAXCUT) function for 100 nodes. @@ -94,7 +94,7 @@

Source code for src.problems.single_objective.discrete.binary.maxcut100

Maximum Fitness Value = 1077.0 """
-[docs] +[docs] def f(self, x: list) -> float: """ Calculates the fitness value of a given chromosome for the Maxcut problem. diff --git a/_modules/src/problems/single_objective/discrete/binary/maxcut20_01.html b/_modules/pycellga/problems/single_objective/discrete/binary/maxcut20_01.html similarity index 97% rename from _modules/src/problems/single_objective/discrete/binary/maxcut20_01.html rename to _modules/pycellga/problems/single_objective/discrete/binary/maxcut20_01.html index 69fce07..c34c5b1 100644 --- a/_modules/src/problems/single_objective/discrete/binary/maxcut20_01.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/maxcut20_01.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.maxcut20_01 — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.maxcut20_01 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,10 +70,10 @@
-

Source code for src.problems.single_objective.discrete.binary.maxcut20_01

+  

Source code for pycellga.problems.single_objective.discrete.binary.maxcut20_01

 from problems.abstract_problem import AbstractProblem
 
-[docs] +[docs] class Maxcut20_01(AbstractProblem): """ Maximum Cut (MAXCUT) function implementation for optimization problems. @@ -96,7 +96,7 @@

Source code for src.problems.single_objective.discrete.binary.maxcut20_01 """
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the MAXCUT function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/discrete/binary/maxcut20_09.html b/_modules/pycellga/problems/single_objective/discrete/binary/maxcut20_09.html similarity index 97% rename from _modules/src/problems/single_objective/discrete/binary/maxcut20_09.html rename to _modules/pycellga/problems/single_objective/discrete/binary/maxcut20_09.html index e3f8ba3..9792e28 100644 --- a/_modules/src/problems/single_objective/discrete/binary/maxcut20_09.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/maxcut20_09.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.maxcut20_09 — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.maxcut20_09 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,10 +70,10 @@
-

Source code for src.problems.single_objective.discrete.binary.maxcut20_09

+  

Source code for pycellga.problems.single_objective.discrete.binary.maxcut20_09

 from problems.abstract_problem import AbstractProblem
 
-[docs] +[docs] class Maxcut20_09(AbstractProblem): """ Maximum Cut (MAXCUT) function implementation for optimization problems. @@ -96,7 +96,7 @@

Source code for src.problems.single_objective.discrete.binary.maxcut20_09 """
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the MAXCUT function value for a given list of variables. diff --git a/_modules/src/problems/single_objective/discrete/binary/mmdp.html b/_modules/pycellga/problems/single_objective/discrete/binary/mmdp.html similarity index 93% rename from _modules/src/problems/single_objective/discrete/binary/mmdp.html rename to _modules/pycellga/problems/single_objective/discrete/binary/mmdp.html index 262cc66..fb676cf 100644 --- a/_modules/src/problems/single_objective/discrete/binary/mmdp.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/mmdp.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.mmdp — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.mmdp — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.discrete.binary.mmdp

+  

Source code for pycellga.problems.single_objective.discrete.binary.mmdp

 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class Mmdp(AbstractProblem): """ Represents the Massively Multimodal Deceptive Problem (MMDP). @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.discrete.binary.mmdp

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Evaluates the fitness of a given chromosome for the MMDP. diff --git a/_modules/src/problems/single_objective/discrete/binary/one_max.html b/_modules/pycellga/problems/single_objective/discrete/binary/one_max.html similarity index 89% rename from _modules/src/problems/single_objective/discrete/binary/one_max.html rename to _modules/pycellga/problems/single_objective/discrete/binary/one_max.html index 2a22b9d..afc8963 100644 --- a/_modules/src/problems/single_objective/discrete/binary/one_max.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/one_max.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.one_max — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.one_max — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.problems.single_objective.discrete.binary.one_max

+  

Source code for pycellga.problems.single_objective.discrete.binary.one_max

 from problems.abstract_problem import AbstractProblem
 
 
-[docs] +[docs] class OneMax(AbstractProblem): """ Represents the OneMax problem. @@ -93,7 +93,7 @@

Source code for src.problems.single_objective.discrete.binary.one_max

"""
-[docs] +[docs] def f(self, x) -> float: """ Evaluates the fitness of a given chromosome for the OneMax problem. diff --git a/_modules/src/problems/single_objective/discrete/binary/peak.html b/_modules/pycellga/problems/single_objective/discrete/binary/peak.html similarity index 93% rename from _modules/src/problems/single_objective/discrete/binary/peak.html rename to _modules/pycellga/problems/single_objective/discrete/binary/peak.html index 8a2e3c5..71f334a 100644 --- a/_modules/src/problems/single_objective/discrete/binary/peak.html +++ b/_modules/pycellga/problems/single_objective/discrete/binary/peak.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.binary.peak — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary.peak — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.problems.single_objective.discrete.binary.peak

+  

Source code for pycellga.problems.single_objective.discrete.binary.peak

 from problems.abstract_problem import AbstractProblem
 from numpy import random
 
 
-[docs] +[docs] class Peak(AbstractProblem): """ Represents the Peak problem. @@ -99,7 +99,7 @@

Source code for src.problems.single_objective.discrete.binary.peak

"""
-[docs] +[docs] def f(self, x: list) -> float: """ Evaluates the fitness of a given chromosome for the Peak problem. diff --git a/_modules/src/problems/single_objective/discrete/permutation/tsp.html b/_modules/pycellga/problems/single_objective/discrete/permutation/tsp.html similarity index 93% rename from _modules/src/problems/single_objective/discrete/permutation/tsp.html rename to _modules/pycellga/problems/single_objective/discrete/permutation/tsp.html index 8a080d0..e8e01ac 100644 --- a/_modules/src/problems/single_objective/discrete/permutation/tsp.html +++ b/_modules/pycellga/problems/single_objective/discrete/permutation/tsp.html @@ -3,7 +3,7 @@ - src.problems.single_objective.discrete.permutation.tsp — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.permutation.tsp — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.problems.single_objective.discrete.permutation.tsp

+  

Source code for pycellga.problems.single_objective.discrete.permutation.tsp

 from problems.abstract_problem import AbstractProblem
 import tsplib95
 from math import sqrt
@@ -78,7 +78,7 @@ 

Source code for src.problems.single_objective.discrete.permutation.tsp

< import os
-[docs] +[docs] class Tsp(AbstractProblem): """ Represents the Traveling Salesman Problem (TSP). @@ -96,7 +96,7 @@

Source code for src.problems.single_objective.discrete.permutation.tsp

< """
-[docs] +[docs] def f(self, x: list) -> float: """ Evaluates the fitness of a given chromosome (route) for the TSP. @@ -161,7 +161,7 @@

Source code for src.problems.single_objective.discrete.permutation.tsp

<
-[docs] +[docs] def euclidean_dist(self, a: list, b: list) -> float: """ Computes the Euclidean distance between two nodes. @@ -183,7 +183,7 @@

Source code for src.problems.single_objective.discrete.permutation.tsp

<
-[docs] +[docs] def gographical_dist(self, a: list, b: list) -> float: """ Computes the geographical distance between two nodes using the geodesic distance. diff --git a/_modules/src/recombination/arithmetic_crossover.html b/_modules/pycellga/recombination/arithmetic_crossover.html similarity index 94% rename from _modules/src/recombination/arithmetic_crossover.html rename to _modules/pycellga/recombination/arithmetic_crossover.html index 84de5e7..404ae01 100644 --- a/_modules/src/recombination/arithmetic_crossover.html +++ b/_modules/pycellga/recombination/arithmetic_crossover.html @@ -3,7 +3,7 @@ - src.recombination.arithmetic_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.arithmetic_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.arithmetic_crossover

+  

Source code for pycellga.recombination.arithmetic_crossover

 import random
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.arithmetic_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class ArithmeticCrossover(RecombinationOperator): """ ArithmeticCrossover performs an arithmetic crossover operation on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.arithmetic_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the ArithmeticCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.arithmetic_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the arithmetic crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/blxalpha_crossover.html b/_modules/pycellga/recombination/blxalpha_crossover.html similarity index 94% rename from _modules/src/recombination/blxalpha_crossover.html rename to _modules/pycellga/recombination/blxalpha_crossover.html index b4c4d86..a749f15 100644 --- a/_modules/src/recombination/blxalpha_crossover.html +++ b/_modules/pycellga/recombination/blxalpha_crossover.html @@ -3,7 +3,7 @@ - src.recombination.blxalpha_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.blxalpha_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.blxalpha_crossover

+  

Source code for pycellga.recombination.blxalpha_crossover

 import random
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.blxalpha_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class BlxalphaCrossover(RecombinationOperator): """ BlxalphaCrossover performs BLX-alpha crossover on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.blxalpha_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the BlxalphaCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.blxalpha_crossover

-[docs] +[docs] def combine(self, p1: Individual, p2: Individual, locationsource: Individual) -> Individual: """ Combine two parent individuals using BLX-alpha crossover to produce a single offspring. @@ -166,7 +166,7 @@

Source code for src.recombination.blxalpha_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the BLX-alpha crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/byte_one_point_crossover.html b/_modules/pycellga/recombination/byte_one_point_crossover.html similarity index 95% rename from _modules/src/recombination/byte_one_point_crossover.html rename to _modules/pycellga/recombination/byte_one_point_crossover.html index b619bfc..a3de532 100644 --- a/_modules/src/recombination/byte_one_point_crossover.html +++ b/_modules/pycellga/recombination/byte_one_point_crossover.html @@ -3,7 +3,7 @@ - src.recombination.byte_one_point_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.byte_one_point_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.byte_one_point_crossover

+  

Source code for pycellga.recombination.byte_one_point_crossover

 import numpy as np
 from individual import Individual
 from problems.abstract_problem import AbstractProblem
@@ -79,7 +79,7 @@ 

Source code for src.recombination.byte_one_point_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class ByteOnePointCrossover(RecombinationOperator): """ ByteOnePointCrossover operator defined in (Satman, 2013). ByteOnePointCrossover performs a @@ -94,7 +94,7 @@

Source code for src.recombination.byte_one_point_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the ByteOnePointCrossover object. @@ -111,7 +111,7 @@

Source code for src.recombination.byte_one_point_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the one-point crossover on the parent individuals at the byte level to produce offspring. diff --git a/_modules/src/recombination/byte_uniform_crossover.html b/_modules/pycellga/recombination/byte_uniform_crossover.html similarity index 94% rename from _modules/src/recombination/byte_uniform_crossover.html rename to _modules/pycellga/recombination/byte_uniform_crossover.html index dab1aec..1d574af 100644 --- a/_modules/src/recombination/byte_uniform_crossover.html +++ b/_modules/pycellga/recombination/byte_uniform_crossover.html @@ -3,7 +3,7 @@ - src.recombination.byte_uniform_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.byte_uniform_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.byte_uniform_crossover

+  

Source code for pycellga.recombination.byte_uniform_crossover

 import numpy.random as randomgenerator
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -79,7 +79,7 @@ 

Source code for src.recombination.byte_uniform_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class ByteUniformCrossover(RecombinationOperator): """ ByteUniformCrossover operator defined in (Satman, 2013). ByteUniformCrossover performs a @@ -94,7 +94,7 @@

Source code for src.recombination.byte_uniform_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the ByteUniformCrossover object. @@ -111,7 +111,7 @@

Source code for src.recombination.byte_uniform_crossover

-[docs] +[docs] def combine(self, p1: Individual, p2: Individual, locationsource: Individual) -> Individual: """ Combine two parent individuals using uniform crossover at the byte level to produce a single offspring. @@ -158,7 +158,7 @@

Source code for src.recombination.byte_uniform_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the uniform crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/flat_crossover.html b/_modules/pycellga/recombination/flat_crossover.html similarity index 94% rename from _modules/src/recombination/flat_crossover.html rename to _modules/pycellga/recombination/flat_crossover.html index 46d7c0e..e27d80d 100644 --- a/_modules/src/recombination/flat_crossover.html +++ b/_modules/pycellga/recombination/flat_crossover.html @@ -3,7 +3,7 @@ - src.recombination.flat_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.flat_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.flat_crossover

+  

Source code for pycellga.recombination.flat_crossover

 import random
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.flat_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class FlatCrossover(RecombinationOperator): """ FlatCrossover performs a flat crossover on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.flat_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the FlatCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.flat_crossover

-[docs] +[docs] def combine(self, p1: Individual, p2: Individual, locationsource: Individual) -> Individual: """ Combine two parent individuals using flat crossover to produce a single offspring. @@ -154,7 +154,7 @@

Source code for src.recombination.flat_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the flat crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/linear_crossover.html b/_modules/pycellga/recombination/linear_crossover.html similarity index 94% rename from _modules/src/recombination/linear_crossover.html rename to _modules/pycellga/recombination/linear_crossover.html index 076fb95..d3689cd 100644 --- a/_modules/src/recombination/linear_crossover.html +++ b/_modules/pycellga/recombination/linear_crossover.html @@ -3,7 +3,7 @@ - src.recombination.linear_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.linear_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.linear_crossover

+  

Source code for pycellga.recombination.linear_crossover

 import random
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.linear_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class LinearCrossover(RecombinationOperator): """ LinearCrossover performs a linear crossover on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.linear_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the LinearCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.linear_crossover

-[docs] +[docs] def combine(self, p1: Individual, p2: Individual, locationsource: Individual) -> Individual: """ Combine two parent individuals using linear crossover to produce a single offspring. @@ -159,7 +159,7 @@

Source code for src.recombination.linear_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the linear crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/one_point_crossover.html b/_modules/pycellga/recombination/one_point_crossover.html similarity index 94% rename from _modules/src/recombination/one_point_crossover.html rename to _modules/pycellga/recombination/one_point_crossover.html index 6dba7bf..9003341 100644 --- a/_modules/src/recombination/one_point_crossover.html +++ b/_modules/pycellga/recombination/one_point_crossover.html @@ -3,7 +3,7 @@ - src.recombination.one_point_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.one_point_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.one_point_crossover

+  

Source code for pycellga.recombination.one_point_crossover

 import numpy as np
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -79,7 +79,7 @@ 

Source code for src.recombination.one_point_crossover

-[docs] +[docs] class OnePointCrossover(RecombinationOperator): """ OnePointCrossover performs a one-point crossover on a pair of parent individuals @@ -94,7 +94,7 @@

Source code for src.recombination.one_point_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the OnePointCrossover object. @@ -111,7 +111,7 @@

Source code for src.recombination.one_point_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the one-point crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/pmx_crossover.html b/_modules/pycellga/recombination/pmx_crossover.html similarity index 96% rename from _modules/src/recombination/pmx_crossover.html rename to _modules/pycellga/recombination/pmx_crossover.html index aeebf6e..e5c2095 100644 --- a/_modules/src/recombination/pmx_crossover.html +++ b/_modules/pycellga/recombination/pmx_crossover.html @@ -3,7 +3,7 @@ - src.recombination.pmx_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.pmx_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.recombination.pmx_crossover

+  

Source code for pycellga.recombination.pmx_crossover

 from individual import *
 from problems.abstract_problem import AbstractProblem
 from typing import List
 from recombination.recombination_operator import RecombinationOperator
 
 
-[docs] +[docs] class PMXCrossover(RecombinationOperator): """ PMXCrossover performs Partially Mapped Crossover (PMX) on a pair of parent individuals @@ -92,7 +92,7 @@

Source code for src.recombination.pmx_crossover

< """
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the PMXCrossover object. @@ -109,7 +109,7 @@

Source code for src.recombination.pmx_crossover

<
-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the PMX crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/recombination_operator.html b/_modules/pycellga/recombination/recombination_operator.html similarity index 86% rename from _modules/src/recombination/recombination_operator.html rename to _modules/pycellga/recombination/recombination_operator.html index 21933f3..b10bc69 100644 --- a/_modules/src/recombination/recombination_operator.html +++ b/_modules/pycellga/recombination/recombination_operator.html @@ -3,7 +3,7 @@ - src.recombination.recombination_operator — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.recombination_operator — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.recombination.recombination_operator

+  

Source code for pycellga.recombination.recombination_operator

 
-[docs] +[docs] class RecombinationOperator:
-[docs] +[docs] def get_recombinations(self) -> list: pass
diff --git a/_modules/src/recombination/two_point_crossover.html b/_modules/pycellga/recombination/two_point_crossover.html similarity index 95% rename from _modules/src/recombination/two_point_crossover.html rename to _modules/pycellga/recombination/two_point_crossover.html index 4e9479f..bedd360 100644 --- a/_modules/src/recombination/two_point_crossover.html +++ b/_modules/pycellga/recombination/two_point_crossover.html @@ -3,7 +3,7 @@ - src.recombination.two_point_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.two_point_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.two_point_crossover

+  

Source code for pycellga.recombination.two_point_crossover

 import numpy as np
 from individual import Individual
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.two_point_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class TwoPointCrossover(RecombinationOperator): """ TwoPointCrossover performs a two-point crossover on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.two_point_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the TwoPointCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.two_point_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the two-point crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/unfair_avarage_crossover.html b/_modules/pycellga/recombination/unfair_avarage_crossover.html similarity index 95% rename from _modules/src/recombination/unfair_avarage_crossover.html rename to _modules/pycellga/recombination/unfair_avarage_crossover.html index b3b7ee8..d756678 100644 --- a/_modules/src/recombination/unfair_avarage_crossover.html +++ b/_modules/pycellga/recombination/unfair_avarage_crossover.html @@ -3,7 +3,7 @@ - src.recombination.unfair_avarage_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.unfair_avarage_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.unfair_avarage_crossover

+  

Source code for pycellga.recombination.unfair_avarage_crossover

 import random
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.unfair_avarage_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class UnfairAvarageCrossover(RecombinationOperator): """ UnfairAvarageCrossover performs an unfair average crossover on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.unfair_avarage_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the UnfairAvarageCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.unfair_avarage_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the unfair average crossover on the parent individuals to produce offspring. diff --git a/_modules/src/recombination/uniform_crossover.html b/_modules/pycellga/recombination/uniform_crossover.html similarity index 93% rename from _modules/src/recombination/uniform_crossover.html rename to _modules/pycellga/recombination/uniform_crossover.html index 8ae9a9b..e9694d0 100644 --- a/_modules/src/recombination/uniform_crossover.html +++ b/_modules/pycellga/recombination/uniform_crossover.html @@ -3,7 +3,7 @@ - src.recombination.uniform_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination.uniform_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.recombination.uniform_crossover

+  

Source code for pycellga.recombination.uniform_crossover

 import numpy.random as randomgenerator
 from individual import *
 from problems.abstract_problem import AbstractProblem
@@ -78,7 +78,7 @@ 

Source code for src.recombination.uniform_crossover

from recombination.recombination_operator import RecombinationOperator
-[docs] +[docs] class UniformCrossover(RecombinationOperator): """ UniformCrossover performs a uniform crossover on a pair of parent individuals @@ -93,7 +93,7 @@

Source code for src.recombination.uniform_crossover

"""
-[docs] +[docs] def __init__(self, parents: list, problem: AbstractProblem): """ Initialize the UniformCrossover object. @@ -110,7 +110,7 @@

Source code for src.recombination.uniform_crossover

-[docs] +[docs] def combine(self, p1: Individual, p2: Individual, locationsource: Individual) -> Individual: """ Combine two parent individuals using uniform crossover to produce a single offspring. @@ -146,7 +146,7 @@

Source code for src.recombination.uniform_crossover

-[docs] +[docs] def get_recombinations(self) -> List[Individual]: """ Perform the uniform crossover on the parent individuals to produce offspring. diff --git a/_modules/src/selection/roulette_wheel_selection.html b/_modules/pycellga/selection/roulette_wheel_selection.html similarity index 93% rename from _modules/src/selection/roulette_wheel_selection.html rename to _modules/pycellga/selection/roulette_wheel_selection.html index a016a37..d3793bd 100644 --- a/_modules/src/selection/roulette_wheel_selection.html +++ b/_modules/pycellga/selection/roulette_wheel_selection.html @@ -3,7 +3,7 @@ - src.selection.roulette_wheel_selection — PYCELLGA Documentation 1.0.0 documentation + pycellga.selection.roulette_wheel_selection — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.selection.roulette_wheel_selection

+  

Source code for pycellga.selection.roulette_wheel_selection

 from typing import List
 from individual import Individual
 from selection.selection_operator import SelectionOperator
 import random
 
 
-[docs] +[docs] class RouletteWheelSelection(SelectionOperator): """ RouletteWheelSelection performs a roulette wheel selection on a population of individuals @@ -92,7 +92,7 @@

Source code for src.selection.roulette_wheel_selection

"""
-[docs] +[docs] def __init__(self, pop_list: List[Individual] = [], c: int = 0): """ Initialize the RouletteWheelSelection object. @@ -109,7 +109,7 @@

Source code for src.selection.roulette_wheel_selection

-[docs] +[docs] def get_parents(self) -> List[Individual]: """ Perform the roulette wheel selection to get parent individuals. diff --git a/_modules/src/selection/selection_operator.html b/_modules/pycellga/selection/selection_operator.html similarity index 87% rename from _modules/src/selection/selection_operator.html rename to _modules/pycellga/selection/selection_operator.html index b36c200..b639d75 100644 --- a/_modules/src/selection/selection_operator.html +++ b/_modules/pycellga/selection/selection_operator.html @@ -3,7 +3,7 @@ - src.selection.selection_operator — PYCELLGA Documentation 1.0.0 documentation + pycellga.selection.selection_operator — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.selection.selection_operator

+  

Source code for pycellga.selection.selection_operator

 
-[docs] +[docs] class SelectionOperator:
-[docs] +[docs] def get_parents(self) -> list: pass
diff --git a/_modules/src/selection/tournament_selection.html b/_modules/pycellga/selection/tournament_selection.html similarity index 94% rename from _modules/src/selection/tournament_selection.html rename to _modules/pycellga/selection/tournament_selection.html index fdf11a3..bf22944 100644 --- a/_modules/src/selection/tournament_selection.html +++ b/_modules/pycellga/selection/tournament_selection.html @@ -3,7 +3,7 @@ - src.selection.tournament_selection — PYCELLGA Documentation 1.0.0 documentation + pycellga.selection.tournament_selection — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.selection.tournament_selection

+  

Source code for pycellga.selection.tournament_selection

 from typing import List
 from individual import Individual
 from selection.selection_operator import SelectionOperator
@@ -78,7 +78,7 @@ 

Source code for src.selection.tournament_selection

-[docs] +[docs] class TournamentSelection(SelectionOperator): """ TournamentSelection performs a tournament selection on a population of individuals @@ -95,7 +95,7 @@

Source code for src.selection.tournament_selection

"""
-[docs] +[docs] def __init__(self, pop_list: List[Individual] = [], c: int = 0, K: int = 2): """ Initialize the TournamentSelection object. @@ -115,7 +115,7 @@

Source code for src.selection.tournament_selection

-[docs] +[docs] def get_parents(self) -> List[Individual]: """ Perform the tournament selection to get parent individuals. diff --git a/_modules/src/tests/test_ackley.html b/_modules/pycellga/tests/test_ackley.html similarity index 95% rename from _modules/src/tests/test_ackley.html rename to _modules/pycellga/tests/test_ackley.html index c219680..f8794bc 100644 --- a/_modules/src/tests/test_ackley.html +++ b/_modules/pycellga/tests/test_ackley.html @@ -3,7 +3,7 @@ - src.tests.test_ackley — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_ackley — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_ackley

+  

Source code for pycellga.tests.test_ackley

 from problems.single_objective.continuous.ackley import Ackley
 import numpy as np
 
 
-[docs] +[docs] def test_ackley(): """ Test the Ackley function implementation. diff --git a/_modules/src/tests/test_arithmetic_crossover.html b/_modules/pycellga/tests/test_arithmetic_crossover.html similarity index 94% rename from _modules/src/tests/test_arithmetic_crossover.html rename to _modules/pycellga/tests/test_arithmetic_crossover.html index 06a5649..ca65a35 100644 --- a/_modules/src/tests/test_arithmetic_crossover.html +++ b/_modules/pycellga/tests/test_arithmetic_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_arithmetic_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_arithmetic_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_arithmetic_crossover

+  

Source code for pycellga.tests.test_arithmetic_crossover

 import pytest
 import random
 from individual import Individual, GeneType
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_arithmetic_crossover

from recombination.arithmetic_crossover import ArithmeticCrossover # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_arithmetic_crossover

-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -125,7 +125,7 @@

Source code for src.tests.test_arithmetic_crossover

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -140,7 +140,7 @@

Source code for src.tests.test_arithmetic_crossover

-[docs] +[docs] def test_arithmetic_crossover(setup_parents, setup_problem): """ Test the ArithmeticCrossover function implementation. diff --git a/_modules/src/tests/test_bentcigar_function.html b/_modules/pycellga/tests/test_bentcigar_function.html similarity index 94% rename from _modules/src/tests/test_bentcigar_function.html rename to _modules/pycellga/tests/test_bentcigar_function.html index 723a364..ade32a5 100644 --- a/_modules/src/tests/test_bentcigar_function.html +++ b/_modules/pycellga/tests/test_bentcigar_function.html @@ -3,7 +3,7 @@ - src.tests.test_bentcigar_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_bentcigar_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_bentcigar_function

+  

Source code for pycellga.tests.test_bentcigar_function

 import pytest
 from problems.single_objective.continuous.bentcigar import Bentcigar  # Replace with the actual path if different
 
 
-[docs] +[docs] @pytest.fixture def setup_bentcigar(): """ @@ -90,7 +90,7 @@

Source code for src.tests.test_bentcigar_function

-[docs] +[docs] def test_bentcigar_function(setup_bentcigar): """ Test the Bentcigar function implementation. diff --git a/_modules/src/tests/test_bit_flip_mutation.html b/_modules/pycellga/tests/test_bit_flip_mutation.html similarity index 96% rename from _modules/src/tests/test_bit_flip_mutation.html rename to _modules/pycellga/tests/test_bit_flip_mutation.html index d1df9f3..daf7360 100644 --- a/_modules/src/tests/test_bit_flip_mutation.html +++ b/_modules/pycellga/tests/test_bit_flip_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_bit_flip_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_bit_flip_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_bit_flip_mutation

+  

Source code for pycellga.tests.test_bit_flip_mutation

 import numpy as np
 import pytest
 from mutation.bit_flip_mutation import BitFlipMutation
@@ -78,7 +78,7 @@ 

Source code for src.tests.test_bit_flip_mutation

from individual import Individual, GeneType
-[docs] +[docs] def test_bit_flip_mutation(): """ Test the BitFlipMutation class for the Individual class on the OneMax problem. diff --git a/_modules/src/tests/test_blxalpha_crossover.html b/_modules/pycellga/tests/test_blxalpha_crossover.html similarity index 94% rename from _modules/src/tests/test_blxalpha_crossover.html rename to _modules/pycellga/tests/test_blxalpha_crossover.html index bf43113..2546c3c 100644 --- a/_modules/src/tests/test_blxalpha_crossover.html +++ b/_modules/pycellga/tests/test_blxalpha_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_blxalpha_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_blxalpha_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_blxalpha_crossover

+  

Source code for pycellga.tests.test_blxalpha_crossover

 import pytest
 import random
 from individual import Individual, GeneType
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_blxalpha_crossover

from recombination.blxalpha_crossover import BlxalphaCrossover # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_blxalpha_crossover

-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -125,7 +125,7 @@

Source code for src.tests.test_blxalpha_crossover

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -140,7 +140,7 @@

Source code for src.tests.test_blxalpha_crossover

-[docs] +[docs] def test_blxalpha_crossover(setup_parents, setup_problem): """ Test the BlxalphaCrossover function implementation. diff --git a/_modules/src/tests/test_bohachevsky.html b/_modules/pycellga/tests/test_bohachevsky.html similarity index 95% rename from _modules/src/tests/test_bohachevsky.html rename to _modules/pycellga/tests/test_bohachevsky.html index afa08d9..14813f9 100644 --- a/_modules/src/tests/test_bohachevsky.html +++ b/_modules/pycellga/tests/test_bohachevsky.html @@ -3,7 +3,7 @@ - src.tests.test_bohachevsky — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_bohachevsky — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_bohachevsky

+  

Source code for pycellga.tests.test_bohachevsky

 from problems.single_objective.continuous.bohachevsky import Bohachevsky
 
 
-[docs] +[docs] def test_bohachevsky(): """ Test the Bohachevsky function implementation. diff --git a/_modules/src/tests/test_byte_mutation.html b/_modules/pycellga/tests/test_byte_mutation.html similarity index 93% rename from _modules/src/tests/test_byte_mutation.html rename to _modules/pycellga/tests/test_byte_mutation.html index 2b7c17d..47e6fca 100644 --- a/_modules/src/tests/test_byte_mutation.html +++ b/_modules/pycellga/tests/test_byte_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_byte_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_byte_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_byte_mutation

+  

Source code for pycellga.tests.test_byte_mutation

 import pytest
 import numpy as np
 from individual import Individual, GeneType
@@ -79,13 +79,13 @@ 

Source code for src.tests.test_byte_mutation

-[docs]
+[docs]
 class MockProblem(AbstractProblem):
     """
     A mock problem class for testing purposes.
     """
 
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -105,7 +105,7 @@

Source code for src.tests.test_byte_mutation

-[docs]
+[docs]
 @pytest.fixture
 def setup_individual():
     """
@@ -123,7 +123,7 @@ 

Source code for src.tests.test_byte_mutation

-[docs]
+[docs]
 @pytest.fixture
 def setup_problem():
     """
@@ -138,7 +138,7 @@ 

Source code for src.tests.test_byte_mutation

-[docs]
+[docs]
 def test_byte_mutation(setup_individual, setup_problem):
     """
     Test the ByteMutation function implementation.
diff --git a/_modules/src/tests/test_byte_mutation_random.html b/_modules/pycellga/tests/test_byte_mutation_random.html
similarity index 93%
rename from _modules/src/tests/test_byte_mutation_random.html
rename to _modules/pycellga/tests/test_byte_mutation_random.html
index 9cdcc88..5486b8d 100644
--- a/_modules/src/tests/test_byte_mutation_random.html
+++ b/_modules/pycellga/tests/test_byte_mutation_random.html
@@ -3,7 +3,7 @@
 
   
   
-  src.tests.test_byte_mutation_random — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.tests.test_byte_mutation_random — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_byte_mutation_random

+  

Source code for pycellga.tests.test_byte_mutation_random

 import pytest
 import numpy as np
 from individual import Individual, GeneType
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_byte_mutation_random

from mutation.byte_mutation_random import ByteMutationRandom # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_byte_mutation_random

-[docs] +[docs] @pytest.fixture def setup_individual(): """ @@ -122,7 +122,7 @@

Source code for src.tests.test_byte_mutation_random

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -137,7 +137,7 @@

Source code for src.tests.test_byte_mutation_random

-[docs] +[docs] def test_byte_mutation_random(setup_individual, setup_problem): """ Test the ByteMutationRandom function implementation. diff --git a/_modules/src/tests/test_byte_one_point_crossover.html b/_modules/pycellga/tests/test_byte_one_point_crossover.html similarity index 94% rename from _modules/src/tests/test_byte_one_point_crossover.html rename to _modules/pycellga/tests/test_byte_one_point_crossover.html index e0fe484..d989dde 100644 --- a/_modules/src/tests/test_byte_one_point_crossover.html +++ b/_modules/pycellga/tests/test_byte_one_point_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_byte_one_point_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_byte_one_point_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_byte_one_point_crossover

+  

Source code for pycellga.tests.test_byte_one_point_crossover

 import pytest
 import numpy as np
 from individual import Individual, GeneType
@@ -79,13 +79,13 @@ 

Source code for src.tests.test_byte_one_point_crossover

-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -105,7 +105,7 @@

Source code for src.tests.test_byte_one_point_crossover

-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -126,7 +126,7 @@

Source code for src.tests.test_byte_one_point_crossover

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -141,7 +141,7 @@

Source code for src.tests.test_byte_one_point_crossover

-[docs] +[docs] def test_byte_one_point_crossover(setup_parents, setup_problem): """ Test the ByteOnePointCrossover function implementation. diff --git a/_modules/src/tests/test_byte_operators.html b/_modules/pycellga/tests/test_byte_operators.html similarity index 94% rename from _modules/src/tests/test_byte_operators.html rename to _modules/pycellga/tests/test_byte_operators.html index 10242fe..7c74159 100644 --- a/_modules/src/tests/test_byte_operators.html +++ b/_modules/pycellga/tests/test_byte_operators.html @@ -3,7 +3,7 @@ - src.tests.test_byte_operators — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_byte_operators — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_byte_operators

+  

Source code for pycellga.tests.test_byte_operators

 import pytest
 from byte_operators import float_to_bits, bits_to_float, floats_to_bits, bits_to_floats
 
 
-[docs] +[docs] def test_float_to_bits(): """ Test the float_to_bits function. @@ -88,7 +88,7 @@

Source code for src.tests.test_byte_operators

-[docs] +[docs] def test_bits_to_float(): """ Test the bits_to_float function. @@ -100,7 +100,7 @@

Source code for src.tests.test_byte_operators

-[docs] +[docs] def test_floats_to_bits(): """ Test the floats_to_bits function. @@ -112,7 +112,7 @@

Source code for src.tests.test_byte_operators

-[docs] +[docs] def test_bits_to_floats(): """ Test the bits_to_floats function. diff --git a/_modules/src/tests/test_byte_uniform_crossover.html b/_modules/pycellga/tests/test_byte_uniform_crossover.html similarity index 94% rename from _modules/src/tests/test_byte_uniform_crossover.html rename to _modules/pycellga/tests/test_byte_uniform_crossover.html index 82cc40c..9ce58b8 100644 --- a/_modules/src/tests/test_byte_uniform_crossover.html +++ b/_modules/pycellga/tests/test_byte_uniform_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_byte_uniform_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_byte_uniform_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_byte_uniform_crossover

+  

Source code for pycellga.tests.test_byte_uniform_crossover

 import pytest
 import numpy.random as randomgenerator
 from individual import Individual, GeneType
@@ -79,13 +79,13 @@ 

Source code for src.tests.test_byte_uniform_crossover

import struct
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -105,7 +105,7 @@

Source code for src.tests.test_byte_uniform_crossover

-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -126,7 +126,7 @@

Source code for src.tests.test_byte_uniform_crossover

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -141,7 +141,7 @@

Source code for src.tests.test_byte_uniform_crossover

-[docs] +[docs] def test_byte_uniform_crossover(setup_parents, setup_problem): """ Test the ByteUniformCrossover function implementation. diff --git a/_modules/src/tests/test_chichinadze_function.html b/_modules/pycellga/tests/test_chichinadze_function.html similarity index 94% rename from _modules/src/tests/test_chichinadze_function.html rename to _modules/pycellga/tests/test_chichinadze_function.html index 8a66055..1e5ba55 100644 --- a/_modules/src/tests/test_chichinadze_function.html +++ b/_modules/pycellga/tests/test_chichinadze_function.html @@ -3,7 +3,7 @@ - src.tests.test_chichinadze_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_chichinadze_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_chichinadze_function

+  

Source code for pycellga.tests.test_chichinadze_function

 import pytest
 from problems.single_objective.continuous.chichinadze import Chichinadze
 
 
-[docs] +[docs] @pytest.fixture def setup_chichinadze(): """ @@ -90,7 +90,7 @@

Source code for src.tests.test_chichinadze_function

-[docs] +[docs] def test_chichinadze_function(setup_chichinadze): """ Test the Chichinadze function implementation. diff --git a/_modules/src/tests/test_compact_13.html b/_modules/pycellga/tests/test_compact_13.html similarity index 95% rename from _modules/src/tests/test_compact_13.html rename to _modules/pycellga/tests/test_compact_13.html index 1bafe89..50da854 100644 --- a/_modules/src/tests/test_compact_13.html +++ b/_modules/pycellga/tests/test_compact_13.html @@ -3,7 +3,7 @@ - src.tests.test_compact_13 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_compact_13 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_compact_13

+  

Source code for pycellga.tests.test_compact_13

 from neighborhoods.compact_13 import Compact13
 
 
-[docs] +[docs] def test_compact_13(): """ Test the Compact13 class for calculating neighbor positions in a grid. diff --git a/_modules/src/tests/test_compact_21.html b/_modules/pycellga/tests/test_compact_21.html similarity index 95% rename from _modules/src/tests/test_compact_21.html rename to _modules/pycellga/tests/test_compact_21.html index cc3bc37..21a833b 100644 --- a/_modules/src/tests/test_compact_21.html +++ b/_modules/pycellga/tests/test_compact_21.html @@ -3,7 +3,7 @@ - src.tests.test_compact_21 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_compact_21 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_compact_21

+  

Source code for pycellga.tests.test_compact_21

 from neighborhoods.compact_21 import Compact21
 
 
-[docs] +[docs] def test_compact_21(): """ Test the Compact21 class for calculating neighbor positions in a grid. diff --git a/_modules/src/tests/test_compact_25.html b/_modules/pycellga/tests/test_compact_25.html similarity index 95% rename from _modules/src/tests/test_compact_25.html rename to _modules/pycellga/tests/test_compact_25.html index e6a8c87..c90e18b 100644 --- a/_modules/src/tests/test_compact_25.html +++ b/_modules/pycellga/tests/test_compact_25.html @@ -3,7 +3,7 @@ - src.tests.test_compact_25 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_compact_25 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_compact_25

+  

Source code for pycellga.tests.test_compact_25

 from neighborhoods.compact_25 import Compact25
 
 
-[docs] +[docs] def test_compact_25(): """ Test the Compact25 class for calculating neighbor positions in a grid. diff --git a/_modules/src/tests/test_compact_9.html b/_modules/pycellga/tests/test_compact_9.html similarity index 95% rename from _modules/src/tests/test_compact_9.html rename to _modules/pycellga/tests/test_compact_9.html index 988f995..6f41874 100644 --- a/_modules/src/tests/test_compact_9.html +++ b/_modules/pycellga/tests/test_compact_9.html @@ -3,7 +3,7 @@ - src.tests.test_compact_9 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_compact_9 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_compact_9

+  

Source code for pycellga.tests.test_compact_9

 from neighborhoods.compact_9 import Compact9
 
 
-[docs] +[docs] def test_compact_9(): """ Test the Compact9 class for calculating neighbor positions in a grid. diff --git a/_modules/src/tests/test_count_sat.html b/_modules/pycellga/tests/test_count_sat.html similarity index 94% rename from _modules/src/tests/test_count_sat.html rename to _modules/pycellga/tests/test_count_sat.html index 246c460..14961d9 100644 --- a/_modules/src/tests/test_count_sat.html +++ b/_modules/pycellga/tests/test_count_sat.html @@ -3,7 +3,7 @@ - src.tests.test_count_sat — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_count_sat — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_count_sat

+  

Source code for pycellga.tests.test_count_sat

 from problems.single_objective.discrete.binary.count_sat import CountSat
 
 
-[docs] +[docs] def test_count_sat(): """ Test the CountSat function implementation. diff --git a/_modules/src/tests/test_dropwave_function.html b/_modules/pycellga/tests/test_dropwave_function.html similarity index 94% rename from _modules/src/tests/test_dropwave_function.html rename to _modules/pycellga/tests/test_dropwave_function.html index 637bfee..63494f1 100644 --- a/_modules/src/tests/test_dropwave_function.html +++ b/_modules/pycellga/tests/test_dropwave_function.html @@ -3,7 +3,7 @@ - src.tests.test_dropwave_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_dropwave_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_dropwave_function

+  

Source code for pycellga.tests.test_dropwave_function

 import pytest
 from problems.single_objective.continuous.dropwave import Dropwave
 
 
-[docs] +[docs] @pytest.fixture def setup_dropwave(): """ @@ -90,7 +90,7 @@

Source code for src.tests.test_dropwave_function

-[docs] +[docs] def test_dropwave_function(setup_dropwave): """ Test the Dropwave function implementation. diff --git a/_modules/src/tests/test_ecc.html b/_modules/pycellga/tests/test_ecc.html similarity index 94% rename from _modules/src/tests/test_ecc.html rename to _modules/pycellga/tests/test_ecc.html index 38d2cdb..2917962 100644 --- a/_modules/src/tests/test_ecc.html +++ b/_modules/pycellga/tests/test_ecc.html @@ -3,7 +3,7 @@ - src.tests.test_ecc — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_ecc — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_ecc

+  

Source code for pycellga.tests.test_ecc

 import pytest
 from problems.single_objective.discrete.binary.ecc import Ecc
 
 
-[docs] +[docs] @pytest.fixture def ecc_instance(): """ @@ -87,7 +87,7 @@

Source code for src.tests.test_ecc

 
 
 
-[docs] +[docs] def test_ecc(ecc_instance): """ Test the ECC function implementation. diff --git a/_modules/src/tests/test_flat_crossover.html b/_modules/pycellga/tests/test_flat_crossover.html similarity index 94% rename from _modules/src/tests/test_flat_crossover.html rename to _modules/pycellga/tests/test_flat_crossover.html index a69e28a..69c75c3 100644 --- a/_modules/src/tests/test_flat_crossover.html +++ b/_modules/pycellga/tests/test_flat_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_flat_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_flat_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_flat_crossover

+  

Source code for pycellga.tests.test_flat_crossover

 import pytest
 import random
 from individual import Individual, GeneType
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_flat_crossover

from recombination.flat_crossover import FlatCrossover # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_flat_crossover

-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -125,7 +125,7 @@

Source code for src.tests.test_flat_crossover

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -140,7 +140,7 @@

Source code for src.tests.test_flat_crossover

-[docs] +[docs] def test_flat_crossover(setup_parents, setup_problem): """ Test the FlatCrossover function implementation. diff --git a/_modules/src/tests/test_float_uniform_mutation.html b/_modules/pycellga/tests/test_float_uniform_mutation.html similarity index 93% rename from _modules/src/tests/test_float_uniform_mutation.html rename to _modules/pycellga/tests/test_float_uniform_mutation.html index b6e94a7..a4a0c8b 100644 --- a/_modules/src/tests/test_float_uniform_mutation.html +++ b/_modules/pycellga/tests/test_float_uniform_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_float_uniform_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_float_uniform_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_float_uniform_mutation

+  

Source code for pycellga.tests.test_float_uniform_mutation

 import pytest
 import random
 from individual import Individual, GeneType
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_float_uniform_mutation

from mutation.float_uniform_mutation import FloatUniformMutation # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_float_uniform_mutation

-[docs] +[docs] @pytest.fixture def setup_individual(): """ @@ -122,7 +122,7 @@

Source code for src.tests.test_float_uniform_mutation

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -137,7 +137,7 @@

Source code for src.tests.test_float_uniform_mutation

-[docs] +[docs] def test_float_uniform_mutation(setup_individual, setup_problem): """ Test the FloatUniformMutation function implementation. diff --git a/_modules/src/tests/test_fms.html b/_modules/pycellga/tests/test_fms.html similarity index 94% rename from _modules/src/tests/test_fms.html rename to _modules/pycellga/tests/test_fms.html index 7045ec0..f10e3e9 100644 --- a/_modules/src/tests/test_fms.html +++ b/_modules/pycellga/tests/test_fms.html @@ -3,7 +3,7 @@ - src.tests.test_fms — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_fms — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_fms

+  

Source code for pycellga.tests.test_fms

 import pytest
 from problems.abstract_problem import AbstractProblem
 from problems.single_objective.continuous.fms import Fms  # Replace with the actual path if different
 from numpy import random
 
 
-[docs] +[docs] @pytest.fixture def fms_instance(): """ @@ -94,7 +94,7 @@

Source code for src.tests.test_fms

 
 
 
-[docs] +[docs] def test_fms(fms_instance): """ Test the Fms function implementation. diff --git a/_modules/src/tests/test_grid.html b/_modules/pycellga/tests/test_grid.html similarity index 95% rename from _modules/src/tests/test_grid.html rename to _modules/pycellga/tests/test_grid.html index 13827de..e0dfcb3 100644 --- a/_modules/src/tests/test_grid.html +++ b/_modules/pycellga/tests/test_grid.html @@ -3,7 +3,7 @@ - src.tests.test_grid — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_grid — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_grid

+  

Source code for pycellga.tests.test_grid

 from grid import Grid
 
 
-[docs] +[docs] def test_grid(): """ Test the Grid class implementation. diff --git a/_modules/src/tests/test_griewank_function.html b/_modules/pycellga/tests/test_griewank_function.html similarity index 94% rename from _modules/src/tests/test_griewank_function.html rename to _modules/pycellga/tests/test_griewank_function.html index dc2adb0..53a7825 100644 --- a/_modules/src/tests/test_griewank_function.html +++ b/_modules/pycellga/tests/test_griewank_function.html @@ -3,7 +3,7 @@ - src.tests.test_griewank_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_griewank_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_griewank_function

+  

Source code for pycellga.tests.test_griewank_function

 import pytest
 from problems.single_objective.continuous.griewank import Griewank
 
 
-[docs] +[docs] @pytest.fixture def setup_griewank(): """ @@ -90,7 +90,7 @@

Source code for src.tests.test_griewank_function

-[docs] +[docs] def test_griewank_function(setup_griewank): """ Test the Griewank function implementation. diff --git a/_modules/src/tests/test_holzman_function.html b/_modules/pycellga/tests/test_holzman_function.html similarity index 94% rename from _modules/src/tests/test_holzman_function.html rename to _modules/pycellga/tests/test_holzman_function.html index 4e08c12..8fbbcf9 100644 --- a/_modules/src/tests/test_holzman_function.html +++ b/_modules/pycellga/tests/test_holzman_function.html @@ -3,7 +3,7 @@ - src.tests.test_holzman_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_holzman_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_holzman_function

+  

Source code for pycellga.tests.test_holzman_function

 import pytest
 from problems.single_objective.continuous.holzman import Holzman
 
 
-[docs] +[docs] @pytest.fixture def setup_holzman(): """ @@ -90,7 +90,7 @@

Source code for src.tests.test_holzman_function

<
-[docs] +[docs] def test_holzman_function(setup_holzman): """ Test the Holzman function implementation. diff --git a/_modules/src/tests/test_individual.html b/_modules/pycellga/tests/test_individual.html similarity index 91% rename from _modules/src/tests/test_individual.html rename to _modules/pycellga/tests/test_individual.html index 259c4a5..ee00a05 100644 --- a/_modules/src/tests/test_individual.html +++ b/_modules/pycellga/tests/test_individual.html @@ -3,7 +3,7 @@ - src.tests.test_individual — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_individual — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_individual

+  

Source code for pycellga.tests.test_individual

 import pytest
 from numpy import random
 import random as rd
@@ -78,7 +78,7 @@ 

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] @pytest.fixture def setup_individual(): """ @@ -88,7 +88,7 @@

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] def test_individual_init(): """ Test the initialization of the Individual class. @@ -104,7 +104,7 @@

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] def test_randomize_binary(): """ Test the randomization of the chromosome for a binary genome type. @@ -116,7 +116,7 @@

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] def test_randomize_permutation(): """ Test the randomization of the chromosome for a permutation genome type. @@ -132,7 +132,7 @@

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] def test_randomize_real_valued(): """ Test the randomization of the chromosome for a real-valued genome type. @@ -145,7 +145,7 @@

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] def test_illegal_genome_type(): """ Test that an exception is raised when an illegal genome type is provided. @@ -159,7 +159,7 @@

Source code for src.tests.test_individual

 
 
 
-[docs] +[docs] def test_get_set_neighbors_positions(): """ Test getting and setting the positions of the individual's neighbors. @@ -168,7 +168,7 @@

Source code for src.tests.test_individual

     
 
 
-[docs] +[docs] def test_get_set_neighbors(): """ Test getting and setting the list of neighbors for the individual. diff --git a/_modules/src/tests/test_insertion_mutation.html b/_modules/pycellga/tests/test_insertion_mutation.html similarity index 95% rename from _modules/src/tests/test_insertion_mutation.html rename to _modules/pycellga/tests/test_insertion_mutation.html index 4bce711..bfe77c2 100644 --- a/_modules/src/tests/test_insertion_mutation.html +++ b/_modules/pycellga/tests/test_insertion_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_insertion_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_insertion_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_insertion_mutation

+  

Source code for pycellga.tests.test_insertion_mutation

 from mutation.insertion_mutation import InsertionMutation
 from problems.single_objective.discrete.permutation.tsp import Tsp
 from individual import Individual, GeneType
 import random
 
 
-[docs] +[docs] def test_insertion_mutation(): """ Test the InsertionMutation class for the Individual class on the TSP problem. diff --git a/_modules/src/tests/test_levy_function.html b/_modules/pycellga/tests/test_levy_function.html similarity index 94% rename from _modules/src/tests/test_levy_function.html rename to _modules/pycellga/tests/test_levy_function.html index ce4f733..6c64abb 100644 --- a/_modules/src/tests/test_levy_function.html +++ b/_modules/pycellga/tests/test_levy_function.html @@ -3,7 +3,7 @@ - src.tests.test_levy_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_levy_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_levy_function

+  

Source code for pycellga.tests.test_levy_function

 import pytest
 from problems.single_objective.continuous.levy import Levy
 
 
-[docs] +[docs] @pytest.fixture def setup_levy(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_levy_function

-[docs]
+[docs]
 def test_levy_function(setup_levy):
     """
     Test the Levy function implementation.
diff --git a/_modules/src/tests/test_linear_5.html b/_modules/pycellga/tests/test_linear_5.html
similarity index 95%
rename from _modules/src/tests/test_linear_5.html
rename to _modules/pycellga/tests/test_linear_5.html
index 3e9e2aa..d48f18f 100644
--- a/_modules/src/tests/test_linear_5.html
+++ b/_modules/pycellga/tests/test_linear_5.html
@@ -3,7 +3,7 @@
 
   
   
-  src.tests.test_linear_5 — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.tests.test_linear_5 — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_linear_5

+  

Source code for pycellga.tests.test_linear_5

 from neighborhoods.linear_5 import Linear5
 
 
-[docs] +[docs] def test_linear_5(): """ Test the Linear5 class for calculating neighbor positions in a grid. diff --git a/_modules/src/tests/test_linear_9.html b/_modules/pycellga/tests/test_linear_9.html similarity index 95% rename from _modules/src/tests/test_linear_9.html rename to _modules/pycellga/tests/test_linear_9.html index 17a01fe..a6cf136 100644 --- a/_modules/src/tests/test_linear_9.html +++ b/_modules/pycellga/tests/test_linear_9.html @@ -3,7 +3,7 @@ - src.tests.test_linear_9 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_linear_9 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_linear_9

+  

Source code for pycellga.tests.test_linear_9

 from neighborhoods.linear_9 import Linear9
 
 
-[docs] +[docs] def test_linear_9(): """ Test the Linear9 class for calculating neighbor positions in a grid. diff --git a/_modules/src/tests/test_linear_crossover.html b/_modules/pycellga/tests/test_linear_crossover.html similarity index 94% rename from _modules/src/tests/test_linear_crossover.html rename to _modules/pycellga/tests/test_linear_crossover.html index 1c78a64..4e99afc 100644 --- a/_modules/src/tests/test_linear_crossover.html +++ b/_modules/pycellga/tests/test_linear_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_linear_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_linear_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_linear_crossover

+  

Source code for pycellga.tests.test_linear_crossover

 import pytest
 import random
 from individual import Individual
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_linear_crossover

< from recombination.linear_crossover import LinearCrossover # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_linear_crossover

<
-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -125,7 +125,7 @@

Source code for src.tests.test_linear_crossover

<
-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -140,7 +140,7 @@

Source code for src.tests.test_linear_crossover

<
-[docs] +[docs] def test_linear_crossover(setup_parents, setup_problem): """ Test the LinearCrossover function implementation. diff --git a/_modules/src/tests/test_matyas_function.html b/_modules/pycellga/tests/test_matyas_function.html similarity index 94% rename from _modules/src/tests/test_matyas_function.html rename to _modules/pycellga/tests/test_matyas_function.html index e8f4327..fb4c848 100644 --- a/_modules/src/tests/test_matyas_function.html +++ b/_modules/pycellga/tests/test_matyas_function.html @@ -3,7 +3,7 @@ - src.tests.test_matyas_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_matyas_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_matyas_function

+  

Source code for pycellga.tests.test_matyas_function

 import pytest
 from problems.single_objective.continuous.matyas import Matyas
 
 
-[docs] +[docs] @pytest.fixture def setup_matyas(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_matyas_function

-[docs] +[docs] def test_matyas_function(setup_matyas): """ Test the Matyas function implementation. diff --git a/_modules/src/tests/test_maxcut100.html b/_modules/pycellga/tests/test_maxcut100.html similarity index 94% rename from _modules/src/tests/test_maxcut100.html rename to _modules/pycellga/tests/test_maxcut100.html index ac75eaa..d268d55 100644 --- a/_modules/src/tests/test_maxcut100.html +++ b/_modules/pycellga/tests/test_maxcut100.html @@ -3,7 +3,7 @@ - src.tests.test_maxcut100 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_maxcut100 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@

  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_maxcut100

+  

Source code for pycellga.tests.test_maxcut100

 import pytest
 
 from problems.single_objective.discrete.binary.maxcut100 import Maxcut100
 
 
 
-[docs] +[docs] @pytest.fixture def maxcut_instance(): """ @@ -89,7 +89,7 @@

Source code for src.tests.test_maxcut100

 
 
 
-[docs] +[docs] def test_maxcut100(): # Maxcut100 sınıfı örneği oluştur problem = Maxcut100() diff --git a/_modules/src/tests/test_maxcut20_01.html b/_modules/pycellga/tests/test_maxcut20_01.html similarity index 94% rename from _modules/src/tests/test_maxcut20_01.html rename to _modules/pycellga/tests/test_maxcut20_01.html index b297a54..ba417b4 100644 --- a/_modules/src/tests/test_maxcut20_01.html +++ b/_modules/pycellga/tests/test_maxcut20_01.html @@ -3,7 +3,7 @@ - src.tests.test_maxcut20_01 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_maxcut20_01 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_maxcut20_01

+  

Source code for pycellga.tests.test_maxcut20_01

 import pytest
 from problems.single_objective.discrete.binary.maxcut20_01 import Maxcut20_01
 
 
-[docs] +[docs] @pytest.fixture def maxcut_instance(): """ @@ -87,7 +87,7 @@

Source code for src.tests.test_maxcut20_01

 
 
 
-[docs] +[docs] def test_maxcut20_01(maxcut_instance): """ Test the MAXCUT function implementation. diff --git a/_modules/src/tests/test_maxcut20_09.html b/_modules/pycellga/tests/test_maxcut20_09.html similarity index 94% rename from _modules/src/tests/test_maxcut20_09.html rename to _modules/pycellga/tests/test_maxcut20_09.html index 3b7fbb2..d0c2947 100644 --- a/_modules/src/tests/test_maxcut20_09.html +++ b/_modules/pycellga/tests/test_maxcut20_09.html @@ -3,7 +3,7 @@ - src.tests.test_maxcut20_09 — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_maxcut20_09 — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_maxcut20_09

+  

Source code for pycellga.tests.test_maxcut20_09

 import pytest
 from problems.single_objective.discrete.binary.maxcut20_09 import Maxcut20_09
 
 
-[docs] +[docs] @pytest.fixture def maxcut_instance(): """ @@ -87,7 +87,7 @@

Source code for src.tests.test_maxcut20_09

 
 
 
-[docs] +[docs] def test_maxcut20_09(maxcut_instance): """ Test the MAXCUT function implementation. diff --git a/_modules/src/tests/test_mmdp.html b/_modules/pycellga/tests/test_mmdp.html similarity index 95% rename from _modules/src/tests/test_mmdp.html rename to _modules/pycellga/tests/test_mmdp.html index 976ad94..eb3fbd0 100644 --- a/_modules/src/tests/test_mmdp.html +++ b/_modules/pycellga/tests/test_mmdp.html @@ -3,7 +3,7 @@ - src.tests.test_mmdp — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_mmdp — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_mmdp

+  

Source code for pycellga.tests.test_mmdp

 import pytest
 from problems.single_objective.discrete.binary.mmdp import Mmdp  # Replace with the actual path if different
 
 
-[docs] +[docs] @pytest.fixture def mmdp_instance(): """ @@ -87,7 +87,7 @@

Source code for src.tests.test_mmdp

 
 
 
-[docs] +[docs] def test_mmdp_function(mmdp_instance): """ Test the Mmdp function implementation. diff --git a/_modules/src/tests/test_one_max.html b/_modules/pycellga/tests/test_one_max.html similarity index 94% rename from _modules/src/tests/test_one_max.html rename to _modules/pycellga/tests/test_one_max.html index 78209c4..e43f57f 100644 --- a/_modules/src/tests/test_one_max.html +++ b/_modules/pycellga/tests/test_one_max.html @@ -3,7 +3,7 @@ - src.tests.test_one_max — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_one_max — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_one_max

+  

Source code for pycellga.tests.test_one_max

 from problems.single_objective.discrete.binary.one_max import OneMax
 
 
-[docs] +[docs] def test_one_max(): """ Test the OneMax function implementation. diff --git a/_modules/src/tests/test_one_point_crossover.html b/_modules/pycellga/tests/test_one_point_crossover.html similarity index 95% rename from _modules/src/tests/test_one_point_crossover.html rename to _modules/pycellga/tests/test_one_point_crossover.html index 97276cb..a58172c 100644 --- a/_modules/src/tests/test_one_point_crossover.html +++ b/_modules/pycellga/tests/test_one_point_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_one_point_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_one_point_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.tests.test_one_point_crossover

+  

Source code for pycellga.tests.test_one_point_crossover

 from recombination.one_point_crossover import OnePointCrossover
 from individual import Individual, GeneType
 from problems.single_objective.discrete.binary.one_max import OneMax
 
 
-[docs] +[docs] def test_one_point_crossover(): """ Test the OnePointCrossover class for generating offspring from two parents. diff --git a/_modules/src/tests/test_optimizer_alpha_cga.html b/_modules/pycellga/tests/test_optimizer_alpha_cga.html similarity index 92% rename from _modules/src/tests/test_optimizer_alpha_cga.html rename to _modules/pycellga/tests/test_optimizer_alpha_cga.html index 75df8ba..028d2cf 100644 --- a/_modules/src/tests/test_optimizer_alpha_cga.html +++ b/_modules/pycellga/tests/test_optimizer_alpha_cga.html @@ -3,7 +3,7 @@ - src.tests.test_optimizer_alpha_cga — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_optimizer_alpha_cga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_optimizer_alpha_cga

+  

Source code for pycellga.tests.test_optimizer_alpha_cga

 import pytest
 from optimizer import alpha_cga, GeneType, TournamentSelection, ByteOnePointCrossover, ByteMutationRandom, OnePointCrossover, BitFlipMutation, PMXCrossover, SwapMutation
 import mpmath as mp
 from typing import List
 
 
-[docs] +[docs] class RealProblem: """ Example problem class to be minimized. @@ -87,13 +87,13 @@

Source code for src.tests.test_optimizer_alpha_cga

"""
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -115,7 +115,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] def test_optimizer_alpha_cga_real(): """Test alpha_cga on a real-valued sum of squares problem.""" result = alpha_cga( @@ -139,7 +139,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] class BinaryProblem: """ Example problem class to be maximized for binary chromosomes. @@ -148,13 +148,13 @@

Source code for src.tests.test_optimizer_alpha_cga

"""
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -176,7 +176,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] def test_optimizer_alpha_cga_binary(): """Test alpha_cga on a binary OneMax problem.""" result = alpha_cga( @@ -201,7 +201,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] class PermutationProblem: """ Example problem class to be minimized using a permutation-based approach. @@ -211,7 +211,7 @@

Source code for src.tests.test_optimizer_alpha_cga

"""
-[docs] +[docs] def __init__(self, target: List[int]): """ Initialize the PermutationProblem with a target permutation. @@ -225,7 +225,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] def f(self, x: List[int]) -> float: """ Compute the objective function value. @@ -247,7 +247,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] def test_optimizer_alpha_cga_permutation(self): """ Test alpha_cga on a permutation-based problem where the target is the identity permutation. @@ -281,7 +281,7 @@

Source code for src.tests.test_optimizer_alpha_cga

-[docs] +[docs] def test_optimizer_alpha_cga_no_variation(): """Test alpha_cga with no crossover or mutation.""" result = alpha_cga( diff --git a/_modules/src/tests/test_optimizer_ccga.html b/_modules/pycellga/tests/test_optimizer_ccga.html similarity index 91% rename from _modules/src/tests/test_optimizer_ccga.html rename to _modules/pycellga/tests/test_optimizer_ccga.html index b675e3b..34a4e82 100644 --- a/_modules/src/tests/test_optimizer_ccga.html +++ b/_modules/pycellga/tests/test_optimizer_ccga.html @@ -3,7 +3,7 @@ - src.tests.test_optimizer_ccga — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_optimizer_ccga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.tests.test_optimizer_ccga

+  

Source code for pycellga.tests.test_optimizer_ccga

 import pytest
 from optimizer import ccga, GeneType, TournamentSelection, ByteOnePointCrossover, ByteMutationRandom, OnePointCrossover, BitFlipMutation, PMXCrossover, SwapMutation
 from typing import List
 
 
-[docs] +[docs] class BinaryProblem: """ Example problem class to be maximized for binary chromosomes. @@ -85,13 +85,13 @@

Source code for src.tests.test_optimizer_ccga

"""
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -113,7 +113,7 @@

Source code for src.tests.test_optimizer_ccga

-[docs] +[docs] def test_optimizer_ccga_binary(): """Test ccga on a binary OneMax problem.""" result = ccga( diff --git a/_modules/src/tests/test_optimizer_cga.html b/_modules/pycellga/tests/test_optimizer_cga.html similarity index 92% rename from _modules/src/tests/test_optimizer_cga.html rename to _modules/pycellga/tests/test_optimizer_cga.html index d2f4f2c..137dd17 100644 --- a/_modules/src/tests/test_optimizer_cga.html +++ b/_modules/pycellga/tests/test_optimizer_cga.html @@ -3,7 +3,7 @@ - src.tests.test_optimizer_cga — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_optimizer_cga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_optimizer_cga

+  

Source code for pycellga.tests.test_optimizer_cga

 import pytest
 from optimizer import cga, GeneType, TournamentSelection, ByteOnePointCrossover, ByteMutationRandom, OnePointCrossover, BitFlipMutation, PMXCrossover, SwapMutation
 import mpmath as mp
 from typing import List
 
 
-[docs] +[docs] class RealProblem: """ Example problem class to be minimized. @@ -87,13 +87,13 @@

Source code for src.tests.test_optimizer_cga

    """
     
 
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -115,7 +115,7 @@

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
 def test_optimizer_cga_real():
     """Test CGA on a real-valued sum of squares problem."""
     result = cga(
@@ -138,7 +138,7 @@ 

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
 class BinaryProblem:
     """
     Example problem class to be maximized for binary chromosomes.
@@ -147,13 +147,13 @@ 

Source code for src.tests.test_optimizer_cga

    """
     
 
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -175,7 +175,7 @@

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
 def test_optimizer_cga_binary():
     """Test CGA on a binary OneMax problem."""
     result = cga(
@@ -200,7 +200,7 @@ 

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
 class PermutationProblem:
     """
     Example problem class to be minimized using a permutation-based approach.
@@ -210,7 +210,7 @@ 

Source code for src.tests.test_optimizer_cga

    """
     
 
-[docs] +[docs] def __init__(self, target: List[int]): """ Initialize the PermutationProblem with a target permutation. @@ -224,7 +224,7 @@

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
     def f(self, x: List[int]) -> float:
         """
         Compute the objective function value.
@@ -246,7 +246,7 @@ 

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
     def test_optimizer_cga_permutation(self):
         """
         Test CGA on a permutation-based problem where the target is the identity permutation.
@@ -280,7 +280,7 @@ 

Source code for src.tests.test_optimizer_cga

-[docs]
+[docs]
 def test_optimizer_cga_no_variation():
     """Test CGA with no crossover or mutation."""
     result = cga(
diff --git a/_modules/src/tests/test_optimizer_mccga.html b/_modules/pycellga/tests/test_optimizer_mccga.html
similarity index 92%
rename from _modules/src/tests/test_optimizer_mccga.html
rename to _modules/pycellga/tests/test_optimizer_mccga.html
index 4fdd743..f001af7 100644
--- a/_modules/src/tests/test_optimizer_mccga.html
+++ b/_modules/pycellga/tests/test_optimizer_mccga.html
@@ -3,7 +3,7 @@
 
   
   
-  src.tests.test_optimizer_mccga — PYCELLGA Documentation 1.0.0 documentation
+  pycellga.tests.test_optimizer_mccga — PYCELLGA Documentation 1.0.0 documentation
       
       
 
@@ -61,7 +61,7 @@
   
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_optimizer_mccga

+  

Source code for pycellga.tests.test_optimizer_mccga

 import pytest
 from optimizer import mcccga, GeneType, TournamentSelection, ByteOnePointCrossover, ByteMutationRandom, OnePointCrossover, BitFlipMutation, PMXCrossover, SwapMutation
 import mpmath as mp
 from typing import List
 
 
-[docs] +[docs] class RealProblem: """ Example problem class to be minimized. @@ -87,13 +87,13 @@

Source code for src.tests.test_optimizer_mccga

"""

-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -115,7 +115,7 @@

Source code for src.tests.test_optimizer_mccga

-[docs] +[docs] def test_optimizer_mcccga_binary(): """Test mcccga on a binary OneMax problem.""" result = mcccga( diff --git a/_modules/src/tests/test_optimizer_sync_cga.html b/_modules/pycellga/tests/test_optimizer_sync_cga.html similarity index 92% rename from _modules/src/tests/test_optimizer_sync_cga.html rename to _modules/pycellga/tests/test_optimizer_sync_cga.html index 76b5220..a16babc 100644 --- a/_modules/src/tests/test_optimizer_sync_cga.html +++ b/_modules/pycellga/tests/test_optimizer_sync_cga.html @@ -3,7 +3,7 @@ - src.tests.test_optimizer_sync_cga — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_optimizer_sync_cga — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@

  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_optimizer_sync_cga

+  

Source code for pycellga.tests.test_optimizer_sync_cga

 import pytest
 from optimizer import sync_cga, GeneType, TournamentSelection, ByteOnePointCrossover, ByteMutationRandom, OnePointCrossover, BitFlipMutation, PMXCrossover, SwapMutation
 import mpmath as mp
 from typing import List
 
 
-[docs] +[docs] class RealProblem: """ Example problem class to be minimized. @@ -87,13 +87,13 @@

Source code for src.tests.test_optimizer_sync_cga

"""
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -115,7 +115,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] def test_optimizer_sync_cga_real(): """Test sync_cga on a real-valued sum of squares problem.""" result = sync_cga( @@ -138,7 +138,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] class BinaryProblem: """ Example problem class to be maximized for binary chromosomes. @@ -147,13 +147,13 @@

Source code for src.tests.test_optimizer_sync_cga

"""
-[docs] +[docs] def __init__(self): pass
-[docs] +[docs] def f(self, x): """ Compute the objective function value. @@ -175,7 +175,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] def test_optimizer_sync_cga_binary(): """Test sync_cga on a binary OneMax problem.""" result = sync_cga( @@ -200,7 +200,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] class PermutationProblem: """ Example problem class to be minimized using a permutation-based approach. @@ -210,7 +210,7 @@

Source code for src.tests.test_optimizer_sync_cga

"""
-[docs] +[docs] def __init__(self, target: List[int]): """ Initialize the PermutationProblem with a target permutation. @@ -224,7 +224,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] def f(self, x: List[int]) -> float: """ Compute the objective function value. @@ -246,7 +246,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] def test_optimizer_sync_cga_permutation(self): """ Test sync_cga on a permutation-based problem where the target is the identity permutation. @@ -280,7 +280,7 @@

Source code for src.tests.test_optimizer_sync_cga

-[docs] +[docs] def test_optimizer_sync_cga_no_variation(): """Test sync_cga with no crossover or mutation.""" result = sync_cga( diff --git a/_modules/src/tests/test_peak.html b/_modules/pycellga/tests/test_peak.html similarity index 95% rename from _modules/src/tests/test_peak.html rename to _modules/pycellga/tests/test_peak.html index be17cdc..fee8f58 100644 --- a/_modules/src/tests/test_peak.html +++ b/_modules/pycellga/tests/test_peak.html @@ -3,7 +3,7 @@ - src.tests.test_peak — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_peak — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.tests.test_peak

+  

Source code for pycellga.tests.test_peak

 import pytest
 from numpy import random
 from problems.single_objective.discrete.binary.peak import Peak  
 
 
-[docs] +[docs] @pytest.fixture def peak_instance(): """ @@ -88,7 +88,7 @@

Source code for src.tests.test_peak

 
 
 
-[docs] +[docs] def test_peak(peak_instance): """ Test the Peak function implementation. diff --git a/_modules/src/tests/test_pmx_crossover.html b/_modules/pycellga/tests/test_pmx_crossover.html similarity index 95% rename from _modules/src/tests/test_pmx_crossover.html rename to _modules/pycellga/tests/test_pmx_crossover.html index c412ddc..1f65032 100644 --- a/_modules/src/tests/test_pmx_crossover.html +++ b/_modules/pycellga/tests/test_pmx_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_pmx_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_pmx_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_pmx_crossover

+  

Source code for pycellga.tests.test_pmx_crossover

 from problems.single_objective.discrete.permutation.tsp import Tsp
 from recombination.pmx_crossover import PMXCrossover
 from individual import Individual, GeneType
 import random
 
 
-[docs] +[docs] def test_pmx_crossover(): """ Test the PMXCrossover class for generating offspring from two permutation parents. diff --git a/_modules/src/tests/test_population.html b/_modules/pycellga/tests/test_population.html similarity index 92% rename from _modules/src/tests/test_population.html rename to _modules/pycellga/tests/test_population.html index c064b30..8b1ddfb 100644 --- a/_modules/src/tests/test_population.html +++ b/_modules/pycellga/tests/test_population.html @@ -3,7 +3,7 @@ - src.tests.test_population — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_population — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_population

+  

Source code for pycellga.tests.test_population

 import pytest
 from individual import Individual, GeneType
 from grid import Grid
@@ -82,7 +82,7 @@ 

Source code for src.tests.test_population

 
 
 
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem for testing purposes. @@ -94,7 +94,7 @@

Source code for src.tests.test_population

     """
 
 
-[docs] +[docs] def f(self, chromosome: List[float]) -> float: return sum(chromosome)
@@ -102,7 +102,7 @@

Source code for src.tests.test_population

 
 
 
-[docs] +[docs] @pytest.fixture def setup_population(): """ @@ -126,7 +126,7 @@

Source code for src.tests.test_population

 
 
 
-[docs] +[docs] def test_initial_population_size(setup_population): """ Test the size of the initial population. @@ -147,7 +147,7 @@

Source code for src.tests.test_population

 
 
 
-[docs] +[docs] def test_fitness_evaluation(setup_population): """ Test the fitness evaluation of the individuals. @@ -171,7 +171,7 @@

Source code for src.tests.test_population

 
 
 
-[docs] +[docs] def test_neighborhood_assignment(setup_population): """ Test the neighborhood assignment for the individuals. diff --git a/_modules/src/tests/test_pow_function.html b/_modules/pycellga/tests/test_pow_function.html similarity index 94% rename from _modules/src/tests/test_pow_function.html rename to _modules/pycellga/tests/test_pow_function.html index e2df345..f887eb8 100644 --- a/_modules/src/tests/test_pow_function.html +++ b/_modules/pycellga/tests/test_pow_function.html @@ -3,7 +3,7 @@ - src.tests.test_pow_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_pow_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_pow_function

+  

Source code for pycellga.tests.test_pow_function

 from problems.abstract_problem import AbstractProblem
 from numpy import power as pw
 
 
-[docs] +[docs] class Pow(AbstractProblem): """ Pow function implementation for optimization problems. @@ -99,7 +99,7 @@

Source code for src.tests.test_pow_function

     """
 
 
-[docs] +[docs] def f(self, x: list) -> float: """ Calculate the Pow function value for a given list of variables. diff --git a/_modules/src/tests/test_powell_function.html b/_modules/pycellga/tests/test_powell_function.html similarity index 94% rename from _modules/src/tests/test_powell_function.html rename to _modules/pycellga/tests/test_powell_function.html index 02800d8..1884075 100644 --- a/_modules/src/tests/test_powell_function.html +++ b/_modules/pycellga/tests/test_powell_function.html @@ -3,7 +3,7 @@ - src.tests.test_powell_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_powell_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_powell_function

+  

Source code for pycellga.tests.test_powell_function

 import pytest
 from problems.single_objective.continuous.powell import Powell
 
 
-[docs] +[docs] @pytest.fixture def setup_powell(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_powell_function

-[docs] +[docs] def test_powell_function(setup_powell): """ Test the Powell function implementation. diff --git a/_modules/src/tests/test_rastrigin.html b/_modules/pycellga/tests/test_rastrigin.html similarity index 94% rename from _modules/src/tests/test_rastrigin.html rename to _modules/pycellga/tests/test_rastrigin.html index d921135..32d7aac 100644 --- a/_modules/src/tests/test_rastrigin.html +++ b/_modules/pycellga/tests/test_rastrigin.html @@ -3,7 +3,7 @@ - src.tests.test_rastrigin — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_rastrigin — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@

  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_rastrigin

+  

Source code for pycellga.tests.test_rastrigin

 from problems.single_objective.continuous.rastrigin import Rastrigin
 
 
-[docs] +[docs] def test_rastrigin(): """ Test the Rastrigin function implementation. diff --git a/_modules/src/tests/test_rosenbrock.html b/_modules/pycellga/tests/test_rosenbrock.html similarity index 94% rename from _modules/src/tests/test_rosenbrock.html rename to _modules/pycellga/tests/test_rosenbrock.html index 5808633..733363a 100644 --- a/_modules/src/tests/test_rosenbrock.html +++ b/_modules/pycellga/tests/test_rosenbrock.html @@ -3,7 +3,7 @@ - src.tests.test_rosenbrock — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_rosenbrock — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_rosenbrock

+  

Source code for pycellga.tests.test_rosenbrock

 from problems.single_objective.continuous.rosenbrock import Rosenbrock
 
 
-[docs] +[docs] def test_rosenbrock(): """ Test the Rosenbrock function implementation. diff --git a/_modules/src/tests/test_rothellipsoid_function.html b/_modules/pycellga/tests/test_rothellipsoid_function.html similarity index 93% rename from _modules/src/tests/test_rothellipsoid_function.html rename to _modules/pycellga/tests/test_rothellipsoid_function.html index 467e3e9..c3eefd2 100644 --- a/_modules/src/tests/test_rothellipsoid_function.html +++ b/_modules/pycellga/tests/test_rothellipsoid_function.html @@ -3,7 +3,7 @@ - src.tests.test_rothellipsoid_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_rothellipsoid_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_rothellipsoid_function

+  

Source code for pycellga.tests.test_rothellipsoid_function

 import pytest
 from problems.single_objective.continuous.rothellipsoid import Rothellipsoid
 
 
-[docs] +[docs] @pytest.fixture def setup_rothellipsoid(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_rothellipsoid_function

-[docs] +[docs] def test_rothellipsoid_function(setup_rothellipsoid): """ Test the Rotated Hyper-Ellipsoid function implementation. diff --git a/_modules/src/tests/test_roulette_wheel_selection.html b/_modules/pycellga/tests/test_roulette_wheel_selection.html similarity index 95% rename from _modules/src/tests/test_roulette_wheel_selection.html rename to _modules/pycellga/tests/test_roulette_wheel_selection.html index 2334c09..10804b9 100644 --- a/_modules/src/tests/test_roulette_wheel_selection.html +++ b/_modules/pycellga/tests/test_roulette_wheel_selection.html @@ -3,7 +3,7 @@ - src.tests.test_roulette_wheel_selection — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_roulette_wheel_selection — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_roulette_wheel_selection

+  

Source code for pycellga.tests.test_roulette_wheel_selection

 from problems.single_objective.discrete.binary.one_max import OneMax
 from selection.roulette_wheel_selection import RouletteWheelSelection
 from population import Population, OptimizationMethod
 from individual import GeneType
 
 
-[docs] +[docs] def test_roulette_wheel_selection(): """ Test the RouletteWheelSelection class implementation. diff --git a/_modules/src/tests/test_schaffer2_function.html b/_modules/pycellga/tests/test_schaffer2_function.html similarity index 93% rename from _modules/src/tests/test_schaffer2_function.html rename to _modules/pycellga/tests/test_schaffer2_function.html index a6abf5e..8e1c212 100644 --- a/_modules/src/tests/test_schaffer2_function.html +++ b/_modules/pycellga/tests/test_schaffer2_function.html @@ -3,7 +3,7 @@ - src.tests.test_schaffer2_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_schaffer2_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_schaffer2_function

+  

Source code for pycellga.tests.test_schaffer2_function

 import pytest
 from problems.single_objective.continuous.schaffer2 import Schaffer2
 
 
-[docs] +[docs] @pytest.fixture def setup_schaffer2(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_schaffer2_function

-[docs] +[docs] def test_schaffer2_function(setup_schaffer2): """ Test the Modified Schaffer function #2 implementation. diff --git a/_modules/src/tests/test_schaffer_function.html b/_modules/pycellga/tests/test_schaffer_function.html similarity index 93% rename from _modules/src/tests/test_schaffer_function.html rename to _modules/pycellga/tests/test_schaffer_function.html index 8f648fa..c5c274f 100644 --- a/_modules/src/tests/test_schaffer_function.html +++ b/_modules/pycellga/tests/test_schaffer_function.html @@ -3,7 +3,7 @@ - src.tests.test_schaffer_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_schaffer_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_schaffer_function

+  

Source code for pycellga.tests.test_schaffer_function

 import pytest
 from problems.single_objective.continuous.schaffer import Schaffer
 
 
-[docs] +[docs] @pytest.fixture def setup_schaffer(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_schaffer_function

-[docs] +[docs] def test_schaffer_function(setup_schaffer): """ Test the Modified Schaffer function #1 implementation. diff --git a/_modules/src/tests/test_schwefel.html b/_modules/pycellga/tests/test_schwefel.html similarity index 95% rename from _modules/src/tests/test_schwefel.html rename to _modules/pycellga/tests/test_schwefel.html index 36fa77e..7627cfd 100644 --- a/_modules/src/tests/test_schwefel.html +++ b/_modules/pycellga/tests/test_schwefel.html @@ -3,7 +3,7 @@ - src.tests.test_schwefel — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_schwefel — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_schwefel

+  

Source code for pycellga.tests.test_schwefel

 from problems.single_objective.continuous.schwefel import Schwefel
 
 
-[docs] +[docs] def test_schwefel(): """ Test the Schwefel function implementation. diff --git a/_modules/src/tests/test_shuffle_mutation.html b/_modules/pycellga/tests/test_shuffle_mutation.html similarity index 95% rename from _modules/src/tests/test_shuffle_mutation.html rename to _modules/pycellga/tests/test_shuffle_mutation.html index 069a889..b7d90e7 100644 --- a/_modules/src/tests/test_shuffle_mutation.html +++ b/_modules/pycellga/tests/test_shuffle_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_shuffle_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_shuffle_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_shuffle_mutation

+  

Source code for pycellga.tests.test_shuffle_mutation

 from mutation.shuffle_mutation import ShuffleMutation
 from problems.single_objective.discrete.permutation.tsp import Tsp
 from individual import Individual, GeneType
 import random
 
 
-[docs] +[docs] def test_shuffle_mutation(): """ Test the ShuffleMutation class for the Individual class on the TSP problem. diff --git a/_modules/src/tests/test_sphere.html b/_modules/pycellga/tests/test_sphere.html similarity index 95% rename from _modules/src/tests/test_sphere.html rename to _modules/pycellga/tests/test_sphere.html index 2db7c51..44d78a2 100644 --- a/_modules/src/tests/test_sphere.html +++ b/_modules/pycellga/tests/test_sphere.html @@ -3,7 +3,7 @@ - src.tests.test_sphere — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_sphere — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,11 +70,11 @@
-

Source code for src.tests.test_sphere

+  

Source code for pycellga.tests.test_sphere

 from problems.single_objective.continuous.sphere import Sphere
 
 
-[docs] +[docs] def test_sphere(): """ Test the Sphere function implementation. diff --git a/_modules/src/tests/test_styblinskitang_function.html b/_modules/pycellga/tests/test_styblinskitang_function.html similarity index 93% rename from _modules/src/tests/test_styblinskitang_function.html rename to _modules/pycellga/tests/test_styblinskitang_function.html index 3067fb0..8292c18 100644 --- a/_modules/src/tests/test_styblinskitang_function.html +++ b/_modules/pycellga/tests/test_styblinskitang_function.html @@ -3,7 +3,7 @@ - src.tests.test_styblinskitang_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_styblinskitang_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_styblinskitang_function

+  

Source code for pycellga.tests.test_styblinskitang_function

 import pytest
 from problems.single_objective.continuous.styblinskitang import StyblinskiTang
 
 
-[docs] +[docs] @pytest.fixture def setup_styblinski_tang(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_styblinskitang_function

-[docs] +[docs] def test_styblinskitang_function(setup_styblinski_tang): """ Test the Styblinski-Tang function implementation. diff --git a/_modules/src/tests/test_sumofdifferentpowers_function.html b/_modules/pycellga/tests/test_sumofdifferentpowers_function.html similarity index 93% rename from _modules/src/tests/test_sumofdifferentpowers_function.html rename to _modules/pycellga/tests/test_sumofdifferentpowers_function.html index 0ffe1c4..ddf07d3 100644 --- a/_modules/src/tests/test_sumofdifferentpowers_function.html +++ b/_modules/pycellga/tests/test_sumofdifferentpowers_function.html @@ -3,7 +3,7 @@ - src.tests.test_sumofdifferentpowers_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_sumofdifferentpowers_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_sumofdifferentpowers_function

+  

Source code for pycellga.tests.test_sumofdifferentpowers_function

 import pytest
 from problems.single_objective.continuous.sumofdifferentpowers import Sumofdifferentpowers  
 
 
-[docs] +[docs] @pytest.fixture def setup_sumofdifferentpowers(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_sumofdifferentpowers_function

-[docs] +[docs] def test_sumofdifferentpowers_function(setup_sumofdifferentpowers): """ Test the Sum of Different Powers function implementation. diff --git a/_modules/src/tests/test_swap_mutation.html b/_modules/pycellga/tests/test_swap_mutation.html similarity index 95% rename from _modules/src/tests/test_swap_mutation.html rename to _modules/pycellga/tests/test_swap_mutation.html index 5007719..17cde37 100644 --- a/_modules/src/tests/test_swap_mutation.html +++ b/_modules/pycellga/tests/test_swap_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_swap_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_swap_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_swap_mutation

+  

Source code for pycellga.tests.test_swap_mutation

 from mutation.swap_mutation import SwapMutation
 from problems.single_objective.discrete.permutation.tsp import Tsp
 from individual import Individual, GeneType
 import random
 
 
-[docs] +[docs] def test_swap_mutation(): """ Test the SwapMutation class for the Individual class on the TSP problem. diff --git a/_modules/src/tests/test_threehumps_function.html b/_modules/pycellga/tests/test_threehumps_function.html similarity index 93% rename from _modules/src/tests/test_threehumps_function.html rename to _modules/pycellga/tests/test_threehumps_function.html index cf29382..c8f365f 100644 --- a/_modules/src/tests/test_threehumps_function.html +++ b/_modules/pycellga/tests/test_threehumps_function.html @@ -3,7 +3,7 @@ - src.tests.test_threehumps_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_threehumps_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_threehumps_function

+  

Source code for pycellga.tests.test_threehumps_function

 import pytest
 from problems.single_objective.continuous.threehumps import Threehumps
 
 
-[docs] +[docs] @pytest.fixture def setup_threehumps(): """Fixture to provide the Threehumps problem instance.""" @@ -83,7 +83,7 @@

Source code for src.tests.test_threehumps_function

-[docs] +[docs] def test_threehumps_function(setup_threehumps): """ Test the Three Hump Camel function implementation. diff --git a/_modules/src/tests/test_tournament_selection.html b/_modules/pycellga/tests/test_tournament_selection.html similarity index 95% rename from _modules/src/tests/test_tournament_selection.html rename to _modules/pycellga/tests/test_tournament_selection.html index c74360d..6c83486 100644 --- a/_modules/src/tests/test_tournament_selection.html +++ b/_modules/pycellga/tests/test_tournament_selection.html @@ -3,7 +3,7 @@ - src.tests.test_tournament_selection — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_tournament_selection — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_tournament_selection

+  

Source code for pycellga.tests.test_tournament_selection

 from problems.single_objective.discrete.binary.one_max import OneMax
 from selection.tournament_selection import TournamentSelection
 from population import Population, OptimizationMethod
 from individual import GeneType
 
 
-[docs] +[docs] def test_tournament_selection(): """ Test the TournamentSelection class implementation. diff --git a/_modules/src/tests/test_tsp.html b/_modules/pycellga/tests/test_tsp.html similarity index 95% rename from _modules/src/tests/test_tsp.html rename to _modules/pycellga/tests/test_tsp.html index 6422dba..2e2945a 100644 --- a/_modules/src/tests/test_tsp.html +++ b/_modules/pycellga/tests/test_tsp.html @@ -3,7 +3,7 @@ - src.tests.test_tsp — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_tsp — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_tsp

+  

Source code for pycellga.tests.test_tsp

 from problems.single_objective.discrete.permutation.tsp import Tsp
 import random
 
 
-[docs] +[docs] def test_tsp(): """ Test the Tsp function implementation. diff --git a/_modules/src/tests/test_two_opt_mutation.html b/_modules/pycellga/tests/test_two_opt_mutation.html similarity index 95% rename from _modules/src/tests/test_two_opt_mutation.html rename to _modules/pycellga/tests/test_two_opt_mutation.html index 0ed636d..3883e68 100644 --- a/_modules/src/tests/test_two_opt_mutation.html +++ b/_modules/pycellga/tests/test_two_opt_mutation.html @@ -3,7 +3,7 @@ - src.tests.test_two_opt_mutation — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_two_opt_mutation — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_two_opt_mutation

+  

Source code for pycellga.tests.test_two_opt_mutation

 from mutation.two_opt_mutation import TwoOptMutation
 from problems.single_objective.discrete.permutation.tsp import Tsp
 from individual import Individual, GeneType
 import random
 
 
-[docs] +[docs] def test_two_opt_mutation(): """ Test the TwoOptMutation class for the Individual class on the TSP problem. diff --git a/_modules/src/tests/test_two_point_crossover.html b/_modules/pycellga/tests/test_two_point_crossover.html similarity index 95% rename from _modules/src/tests/test_two_point_crossover.html rename to _modules/pycellga/tests/test_two_point_crossover.html index bfb4659..4aa13e6 100644 --- a/_modules/src/tests/test_two_point_crossover.html +++ b/_modules/pycellga/tests/test_two_point_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_two_point_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_two_point_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,14 +70,14 @@
-

Source code for src.tests.test_two_point_crossover

+  

Source code for pycellga.tests.test_two_point_crossover

 import numpy as np
 from problems.single_objective.discrete.binary.one_max import OneMax
 from recombination.two_point_crossover import TwoPointCrossover
 from individual import Individual, GeneType
 
 
-[docs] +[docs] def test_two_point_crossover(): """ Test the TwoPointCrossover class implementation. diff --git a/_modules/src/tests/test_unfair_average_crossover.html b/_modules/pycellga/tests/test_unfair_average_crossover.html similarity index 94% rename from _modules/src/tests/test_unfair_average_crossover.html rename to _modules/pycellga/tests/test_unfair_average_crossover.html index 266c066..ac86ac2 100644 --- a/_modules/src/tests/test_unfair_average_crossover.html +++ b/_modules/pycellga/tests/test_unfair_average_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_unfair_average_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_unfair_average_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,7 +70,7 @@
-

Source code for src.tests.test_unfair_average_crossover

+  

Source code for pycellga.tests.test_unfair_average_crossover

 import pytest
 import random
 from individual import Individual, GeneType
@@ -78,13 +78,13 @@ 

Source code for src.tests.test_unfair_average_crossover

from recombination.unfair_avarage_crossover import UnfairAvarageCrossover # Replace with the actual path if different
-[docs] +[docs] class MockProblem(AbstractProblem): """ A mock problem class for testing purposes. """
-[docs] +[docs] def f(self, x: list) -> float: """ A mock fitness function that simply sums the chromosome values. @@ -104,7 +104,7 @@

Source code for src.tests.test_unfair_average_crossover

-[docs] +[docs] @pytest.fixture def setup_parents(): """ @@ -125,7 +125,7 @@

Source code for src.tests.test_unfair_average_crossover

-[docs] +[docs] @pytest.fixture def setup_problem(): """ @@ -140,7 +140,7 @@

Source code for src.tests.test_unfair_average_crossover

-[docs] +[docs] def test_unfair_average_crossover(setup_parents, setup_problem): """ Test the UnfairAvarageCrossover function implementation. diff --git a/_modules/src/tests/test_uniform_crossover.html b/_modules/pycellga/tests/test_uniform_crossover.html similarity index 95% rename from _modules/src/tests/test_uniform_crossover.html rename to _modules/pycellga/tests/test_uniform_crossover.html index 642cfa9..4c628a3 100644 --- a/_modules/src/tests/test_uniform_crossover.html +++ b/_modules/pycellga/tests/test_uniform_crossover.html @@ -3,7 +3,7 @@ - src.tests.test_uniform_crossover — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_uniform_crossover — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.tests.test_uniform_crossover

+  

Source code for pycellga.tests.test_uniform_crossover

 from problems.single_objective.discrete.binary.one_max import OneMax
 from recombination.uniform_crossover import UniformCrossover
 from individual import Individual, GeneType
 
 
-[docs] +[docs] def test_uniform_crossover(): """ Test the UniformCrossover class implementation. diff --git a/_modules/src/tests/test_zakharov_function.html b/_modules/pycellga/tests/test_zakharov_function.html similarity index 94% rename from _modules/src/tests/test_zakharov_function.html rename to _modules/pycellga/tests/test_zakharov_function.html index a0d737c..0c01c8c 100644 --- a/_modules/src/tests/test_zakharov_function.html +++ b/_modules/pycellga/tests/test_zakharov_function.html @@ -3,7 +3,7 @@ - src.tests.test_zakharov_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_zakharov_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,13 +70,13 @@
-

Source code for src.tests.test_zakharov_function

+  

Source code for pycellga.tests.test_zakharov_function

 import pytest
 from problems.single_objective.continuous.zakharov import Zakharov
 
 
 
-[docs] +[docs] def test_zakharov_function(): """ Test the Zakharov function implementation. diff --git a/_modules/src/tests/test_zettle_function.html b/_modules/pycellga/tests/test_zettle_function.html similarity index 94% rename from _modules/src/tests/test_zettle_function.html rename to _modules/pycellga/tests/test_zettle_function.html index add8254..54679b5 100644 --- a/_modules/src/tests/test_zettle_function.html +++ b/_modules/pycellga/tests/test_zettle_function.html @@ -3,7 +3,7 @@ - src.tests.test_zettle_function — PYCELLGA Documentation 1.0.0 documentation + pycellga.tests.test_zettle_function — PYCELLGA Documentation 1.0.0 documentation @@ -61,7 +61,7 @@
  • - +
@@ -70,12 +70,12 @@
-

Source code for src.tests.test_zettle_function

+  

Source code for pycellga.tests.test_zettle_function

 import pytest
 from problems.single_objective.continuous.zettle import Zettle
 
 
-[docs] +[docs] @pytest.fixture def setup_zettle(): """ @@ -85,7 +85,7 @@

Source code for src.tests.test_zettle_function

-[docs] +[docs] def test_zettle_function(setup_zettle): """ Test the Zettle function implementation. diff --git a/_sources/modules.rst.txt b/_sources/modules.rst.txt index 1d567b6..452e130 100644 --- a/_sources/modules.rst.txt +++ b/_sources/modules.rst.txt @@ -4,10 +4,4 @@ pycellga .. toctree:: :maxdepth: 4 - src - byte_operators - grid - individual - optimizer - population - + pycellga diff --git a/_sources/pycellga.example.rst.txt b/_sources/pycellga.example.rst.txt new file mode 100644 index 0000000..fb2219f --- /dev/null +++ b/_sources/pycellga.example.rst.txt @@ -0,0 +1,53 @@ +pycellga.example package +======================== + +Submodules +---------- + +pycellga.example.example\_alpha\_cga module +------------------------------------------- + +.. automodule:: pycellga.example.example_alpha_cga + :members: + :undoc-members: + :show-inheritance: + +pycellga.example.example\_ccga module +------------------------------------- + +.. automodule:: pycellga.example.example_ccga + :members: + :undoc-members: + :show-inheritance: + +pycellga.example.example\_cga module +------------------------------------ + +.. automodule:: pycellga.example.example_cga + :members: + :undoc-members: + :show-inheritance: + +pycellga.example.example\_mcccga module +--------------------------------------- + +.. automodule:: pycellga.example.example_mcccga + :members: + :undoc-members: + :show-inheritance: + +pycellga.example.example\_sync\_cga module +------------------------------------------ + +.. automodule:: pycellga.example.example_sync_cga + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.example + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.mutation.rst.txt b/_sources/pycellga.mutation.rst.txt new file mode 100644 index 0000000..123848b --- /dev/null +++ b/_sources/pycellga.mutation.rst.txt @@ -0,0 +1,85 @@ +pycellga.mutation package +========================= + +Submodules +---------- + +pycellga.mutation.bit\_flip\_mutation module +-------------------------------------------- + +.. automodule:: pycellga.mutation.bit_flip_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.byte\_mutation module +--------------------------------------- + +.. automodule:: pycellga.mutation.byte_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.byte\_mutation\_random module +----------------------------------------------- + +.. automodule:: pycellga.mutation.byte_mutation_random + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.float\_uniform\_mutation module +------------------------------------------------- + +.. automodule:: pycellga.mutation.float_uniform_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.insertion\_mutation module +-------------------------------------------- + +.. automodule:: pycellga.mutation.insertion_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.mutation\_operator module +------------------------------------------- + +.. automodule:: pycellga.mutation.mutation_operator + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.shuffle\_mutation module +------------------------------------------ + +.. automodule:: pycellga.mutation.shuffle_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.swap\_mutation module +--------------------------------------- + +.. automodule:: pycellga.mutation.swap_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.mutation.two\_opt\_mutation module +------------------------------------------- + +.. automodule:: pycellga.mutation.two_opt_mutation + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.mutation + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.neighborhoods.rst.txt b/_sources/pycellga.neighborhoods.rst.txt new file mode 100644 index 0000000..4df161d --- /dev/null +++ b/_sources/pycellga.neighborhoods.rst.txt @@ -0,0 +1,61 @@ +pycellga.neighborhoods package +============================== + +Submodules +---------- + +pycellga.neighborhoods.compact\_13 module +----------------------------------------- + +.. automodule:: pycellga.neighborhoods.compact_13 + :members: + :undoc-members: + :show-inheritance: + +pycellga.neighborhoods.compact\_21 module +----------------------------------------- + +.. automodule:: pycellga.neighborhoods.compact_21 + :members: + :undoc-members: + :show-inheritance: + +pycellga.neighborhoods.compact\_25 module +----------------------------------------- + +.. automodule:: pycellga.neighborhoods.compact_25 + :members: + :undoc-members: + :show-inheritance: + +pycellga.neighborhoods.compact\_9 module +---------------------------------------- + +.. automodule:: pycellga.neighborhoods.compact_9 + :members: + :undoc-members: + :show-inheritance: + +pycellga.neighborhoods.linear\_5 module +--------------------------------------- + +.. automodule:: pycellga.neighborhoods.linear_5 + :members: + :undoc-members: + :show-inheritance: + +pycellga.neighborhoods.linear\_9 module +--------------------------------------- + +.. automodule:: pycellga.neighborhoods.linear_9 + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.neighborhoods + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.problems.rst.txt b/_sources/pycellga.problems.rst.txt new file mode 100644 index 0000000..a59cb89 --- /dev/null +++ b/_sources/pycellga.problems.rst.txt @@ -0,0 +1,29 @@ +pycellga.problems package +========================= + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + pycellga.problems.single_objective + +Submodules +---------- + +pycellga.problems.abstract\_problem module +------------------------------------------ + +.. automodule:: pycellga.problems.abstract_problem + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.problems + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.problems.single_objective.continuous.rst.txt b/_sources/pycellga.problems.single_objective.continuous.rst.txt new file mode 100644 index 0000000..7c9be72 --- /dev/null +++ b/_sources/pycellga.problems.single_objective.continuous.rst.txt @@ -0,0 +1,205 @@ +pycellga.problems.single\_objective.continuous package +====================================================== + +Submodules +---------- + +pycellga.problems.single\_objective.continuous.ackley module +------------------------------------------------------------ + +.. automodule:: pycellga.problems.single_objective.continuous.ackley + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.bentcigar module +--------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.bentcigar + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.bohachevsky module +----------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.bohachevsky + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.chichinadze module +----------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.chichinadze + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.dropwave module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.dropwave + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.fms module +--------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.fms + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.griewank module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.griewank + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.holzman module +------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.holzman + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.levy module +---------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.levy + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.matyas module +------------------------------------------------------------ + +.. automodule:: pycellga.problems.single_objective.continuous.matyas + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.pow module +--------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.pow + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.powell module +------------------------------------------------------------ + +.. automodule:: pycellga.problems.single_objective.continuous.powell + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.rastrigin module +--------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.rastrigin + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.rosenbrock module +---------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.rosenbrock + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.rothellipsoid module +------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.rothellipsoid + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.schaffer module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.schaffer + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.schaffer2 module +--------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.schaffer2 + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.schwefel module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.schwefel + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.sphere module +------------------------------------------------------------ + +.. automodule:: pycellga.problems.single_objective.continuous.sphere + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.styblinskitang module +-------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.styblinskitang + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.sumofdifferentpowers module +-------------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.sumofdifferentpowers + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.threehumps module +---------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.threehumps + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.zakharov module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.continuous.zakharov + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.continuous.zettle module +------------------------------------------------------------ + +.. automodule:: pycellga.problems.single_objective.continuous.zettle + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.problems.single_objective.continuous + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.problems.single_objective.discrete.binary.rst.txt b/_sources/pycellga.problems.single_objective.discrete.binary.rst.txt new file mode 100644 index 0000000..ea2e50d --- /dev/null +++ b/_sources/pycellga.problems.single_objective.discrete.binary.rst.txt @@ -0,0 +1,85 @@ +pycellga.problems.single\_objective.discrete.binary package +=========================================================== + +Submodules +---------- + +pycellga.problems.single\_objective.discrete.binary.count\_sat module +--------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.count_sat + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.ecc module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.ecc + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.fms module +-------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.fms + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.maxcut100 module +-------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.maxcut100 + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.maxcut20\_01 module +----------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.maxcut20_01 + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.maxcut20\_09 module +----------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.maxcut20_09 + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.mmdp module +--------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.mmdp + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.one\_max module +------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.one_max + :members: + :undoc-members: + :show-inheritance: + +pycellga.problems.single\_objective.discrete.binary.peak module +--------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary.peak + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.problems.single_objective.discrete.binary + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.problems.single_objective.discrete.permutation.rst.txt b/_sources/pycellga.problems.single_objective.discrete.permutation.rst.txt new file mode 100644 index 0000000..6f63f68 --- /dev/null +++ b/_sources/pycellga.problems.single_objective.discrete.permutation.rst.txt @@ -0,0 +1,21 @@ +pycellga.problems.single\_objective.discrete.permutation package +================================================================ + +Submodules +---------- + +pycellga.problems.single\_objective.discrete.permutation.tsp module +------------------------------------------------------------------- + +.. automodule:: pycellga.problems.single_objective.discrete.permutation.tsp + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.problems.single_objective.discrete.permutation + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.problems.single_objective.discrete.rst.txt b/_sources/pycellga.problems.single_objective.discrete.rst.txt new file mode 100644 index 0000000..620fe43 --- /dev/null +++ b/_sources/pycellga.problems.single_objective.discrete.rst.txt @@ -0,0 +1,19 @@ +pycellga.problems.single\_objective.discrete package +==================================================== + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + pycellga.problems.single_objective.discrete.binary + pycellga.problems.single_objective.discrete.permutation + +Module contents +--------------- + +.. automodule:: pycellga.problems.single_objective.discrete + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.problems.single_objective.rst.txt b/_sources/pycellga.problems.single_objective.rst.txt new file mode 100644 index 0000000..4561c68 --- /dev/null +++ b/_sources/pycellga.problems.single_objective.rst.txt @@ -0,0 +1,19 @@ +pycellga.problems.single\_objective package +=========================================== + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + pycellga.problems.single_objective.continuous + pycellga.problems.single_objective.discrete + +Module contents +--------------- + +.. automodule:: pycellga.problems.single_objective + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.recombination.rst.txt b/_sources/pycellga.recombination.rst.txt new file mode 100644 index 0000000..19e4c58 --- /dev/null +++ b/_sources/pycellga.recombination.rst.txt @@ -0,0 +1,109 @@ +pycellga.recombination package +============================== + +Submodules +---------- + +pycellga.recombination.arithmetic\_crossover module +--------------------------------------------------- + +.. automodule:: pycellga.recombination.arithmetic_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.blxalpha\_crossover module +------------------------------------------------- + +.. automodule:: pycellga.recombination.blxalpha_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.byte\_one\_point\_crossover module +--------------------------------------------------------- + +.. automodule:: pycellga.recombination.byte_one_point_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.byte\_uniform\_crossover module +------------------------------------------------------ + +.. automodule:: pycellga.recombination.byte_uniform_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.flat\_crossover module +--------------------------------------------- + +.. automodule:: pycellga.recombination.flat_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.linear\_crossover module +----------------------------------------------- + +.. automodule:: pycellga.recombination.linear_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.one\_point\_crossover module +--------------------------------------------------- + +.. automodule:: pycellga.recombination.one_point_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.pmx\_crossover module +-------------------------------------------- + +.. automodule:: pycellga.recombination.pmx_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.recombination\_operator module +----------------------------------------------------- + +.. automodule:: pycellga.recombination.recombination_operator + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.two\_point\_crossover module +--------------------------------------------------- + +.. automodule:: pycellga.recombination.two_point_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.unfair\_avarage\_crossover module +-------------------------------------------------------- + +.. automodule:: pycellga.recombination.unfair_avarage_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.recombination.uniform\_crossover module +------------------------------------------------ + +.. automodule:: pycellga.recombination.uniform_crossover + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.recombination + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.rst.txt b/_sources/pycellga.rst.txt new file mode 100644 index 0000000..dd76889 --- /dev/null +++ b/_sources/pycellga.rst.txt @@ -0,0 +1,67 @@ +pycellga package +================ + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + pycellga.example + pycellga.mutation + pycellga.neighborhoods + pycellga.problems + pycellga.recombination + pycellga.selection + pycellga.tests + +Submodules +---------- + +pycellga.byte\_operators module +------------------------------- + +.. automodule:: pycellga.byte_operators + :members: + :undoc-members: + :show-inheritance: + +pycellga.grid module +-------------------- + +.. automodule:: pycellga.grid + :members: + :undoc-members: + :show-inheritance: + +pycellga.individual module +-------------------------- + +.. automodule:: pycellga.individual + :members: + :undoc-members: + :show-inheritance: + +pycellga.optimizer module +------------------------- + +.. automodule:: pycellga.optimizer + :members: + :undoc-members: + :show-inheritance: + +pycellga.population module +-------------------------- + +.. automodule:: pycellga.population + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.selection.rst.txt b/_sources/pycellga.selection.rst.txt new file mode 100644 index 0000000..adab0ab --- /dev/null +++ b/_sources/pycellga.selection.rst.txt @@ -0,0 +1,37 @@ +pycellga.selection package +========================== + +Submodules +---------- + +pycellga.selection.roulette\_wheel\_selection module +---------------------------------------------------- + +.. automodule:: pycellga.selection.roulette_wheel_selection + :members: + :undoc-members: + :show-inheritance: + +pycellga.selection.selection\_operator module +--------------------------------------------- + +.. automodule:: pycellga.selection.selection_operator + :members: + :undoc-members: + :show-inheritance: + +pycellga.selection.tournament\_selection module +----------------------------------------------- + +.. automodule:: pycellga.selection.tournament_selection + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.selection + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/pycellga.tests.rst.txt b/_sources/pycellga.tests.rst.txt new file mode 100644 index 0000000..4f676b7 --- /dev/null +++ b/_sources/pycellga.tests.rst.txt @@ -0,0 +1,573 @@ +pycellga.tests package +====================== + +Submodules +---------- + +pycellga.tests.conftest module +------------------------------ + +.. automodule:: pycellga.tests.conftest + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_ackley module +---------------------------------- + +.. automodule:: pycellga.tests.test_ackley + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_arithmetic\_crossover module +------------------------------------------------- + +.. automodule:: pycellga.tests.test_arithmetic_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_bentcigar\_function module +----------------------------------------------- + +.. automodule:: pycellga.tests.test_bentcigar_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_bit\_flip\_mutation module +----------------------------------------------- + +.. automodule:: pycellga.tests.test_bit_flip_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_blxalpha\_crossover module +----------------------------------------------- + +.. automodule:: pycellga.tests.test_blxalpha_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_bohachevsky module +--------------------------------------- + +.. automodule:: pycellga.tests.test_bohachevsky + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_byte\_mutation module +------------------------------------------ + +.. automodule:: pycellga.tests.test_byte_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_byte\_mutation\_random module +-------------------------------------------------- + +.. automodule:: pycellga.tests.test_byte_mutation_random + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_byte\_one\_point\_crossover module +------------------------------------------------------- + +.. automodule:: pycellga.tests.test_byte_one_point_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_byte\_operators module +------------------------------------------- + +.. automodule:: pycellga.tests.test_byte_operators + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_byte\_uniform\_crossover module +---------------------------------------------------- + +.. automodule:: pycellga.tests.test_byte_uniform_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_chichinadze\_function module +------------------------------------------------- + +.. automodule:: pycellga.tests.test_chichinadze_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_compact\_13 module +--------------------------------------- + +.. automodule:: pycellga.tests.test_compact_13 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_compact\_21 module +--------------------------------------- + +.. automodule:: pycellga.tests.test_compact_21 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_compact\_25 module +--------------------------------------- + +.. automodule:: pycellga.tests.test_compact_25 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_compact\_9 module +-------------------------------------- + +.. automodule:: pycellga.tests.test_compact_9 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_count\_sat module +-------------------------------------- + +.. automodule:: pycellga.tests.test_count_sat + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_dropwave\_function module +---------------------------------------------- + +.. automodule:: pycellga.tests.test_dropwave_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_ecc module +------------------------------- + +.. automodule:: pycellga.tests.test_ecc + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_flat\_crossover module +------------------------------------------- + +.. automodule:: pycellga.tests.test_flat_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_float\_uniform\_mutation module +---------------------------------------------------- + +.. automodule:: pycellga.tests.test_float_uniform_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_fms module +------------------------------- + +.. automodule:: pycellga.tests.test_fms + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_grid module +-------------------------------- + +.. automodule:: pycellga.tests.test_grid + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_griewank\_function module +---------------------------------------------- + +.. automodule:: pycellga.tests.test_griewank_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_holzman\_function module +--------------------------------------------- + +.. automodule:: pycellga.tests.test_holzman_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_individual module +-------------------------------------- + +.. automodule:: pycellga.tests.test_individual + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_insertion\_mutation module +----------------------------------------------- + +.. automodule:: pycellga.tests.test_insertion_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_levy\_function module +------------------------------------------ + +.. automodule:: pycellga.tests.test_levy_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_linear\_5 module +------------------------------------- + +.. automodule:: pycellga.tests.test_linear_5 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_linear\_9 module +------------------------------------- + +.. automodule:: pycellga.tests.test_linear_9 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_linear\_crossover module +--------------------------------------------- + +.. automodule:: pycellga.tests.test_linear_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_matyas\_function module +-------------------------------------------- + +.. automodule:: pycellga.tests.test_matyas_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_maxcut100 module +------------------------------------- + +.. automodule:: pycellga.tests.test_maxcut100 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_maxcut20\_01 module +---------------------------------------- + +.. automodule:: pycellga.tests.test_maxcut20_01 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_maxcut20\_09 module +---------------------------------------- + +.. automodule:: pycellga.tests.test_maxcut20_09 + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_mmdp module +-------------------------------- + +.. automodule:: pycellga.tests.test_mmdp + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_one\_max module +------------------------------------ + +.. automodule:: pycellga.tests.test_one_max + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_one\_point\_crossover module +------------------------------------------------- + +.. automodule:: pycellga.tests.test_one_point_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_optimizer\_alpha\_cga module +------------------------------------------------- + +.. automodule:: pycellga.tests.test_optimizer_alpha_cga + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_optimizer\_ccga module +------------------------------------------- + +.. automodule:: pycellga.tests.test_optimizer_ccga + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_optimizer\_cga module +------------------------------------------ + +.. automodule:: pycellga.tests.test_optimizer_cga + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_optimizer\_mccga module +-------------------------------------------- + +.. automodule:: pycellga.tests.test_optimizer_mccga + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_optimizer\_sync\_cga module +------------------------------------------------ + +.. automodule:: pycellga.tests.test_optimizer_sync_cga + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_peak module +-------------------------------- + +.. automodule:: pycellga.tests.test_peak + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_pmx\_crossover module +------------------------------------------ + +.. automodule:: pycellga.tests.test_pmx_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_population module +-------------------------------------- + +.. automodule:: pycellga.tests.test_population + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_pow\_function module +----------------------------------------- + +.. automodule:: pycellga.tests.test_pow_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_powell\_function module +-------------------------------------------- + +.. automodule:: pycellga.tests.test_powell_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_rastrigin module +------------------------------------- + +.. automodule:: pycellga.tests.test_rastrigin + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_rosenbrock module +-------------------------------------- + +.. automodule:: pycellga.tests.test_rosenbrock + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_rothellipsoid\_function module +--------------------------------------------------- + +.. automodule:: pycellga.tests.test_rothellipsoid_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_roulette\_wheel\_selection module +------------------------------------------------------ + +.. automodule:: pycellga.tests.test_roulette_wheel_selection + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_schaffer2\_function module +----------------------------------------------- + +.. automodule:: pycellga.tests.test_schaffer2_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_schaffer\_function module +---------------------------------------------- + +.. automodule:: pycellga.tests.test_schaffer_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_schwefel module +------------------------------------ + +.. automodule:: pycellga.tests.test_schwefel + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_shuffle\_mutation module +--------------------------------------------- + +.. automodule:: pycellga.tests.test_shuffle_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_sphere module +---------------------------------- + +.. automodule:: pycellga.tests.test_sphere + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_styblinskitang\_function module +---------------------------------------------------- + +.. automodule:: pycellga.tests.test_styblinskitang_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_sumofdifferentpowers\_function module +---------------------------------------------------------- + +.. automodule:: pycellga.tests.test_sumofdifferentpowers_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_swap\_mutation module +------------------------------------------ + +.. automodule:: pycellga.tests.test_swap_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_threehumps\_function module +------------------------------------------------ + +.. automodule:: pycellga.tests.test_threehumps_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_tournament\_selection module +------------------------------------------------- + +.. automodule:: pycellga.tests.test_tournament_selection + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_tsp module +------------------------------- + +.. automodule:: pycellga.tests.test_tsp + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_two\_opt\_mutation module +---------------------------------------------- + +.. automodule:: pycellga.tests.test_two_opt_mutation + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_two\_point\_crossover module +------------------------------------------------- + +.. automodule:: pycellga.tests.test_two_point_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_unfair\_average\_crossover module +------------------------------------------------------ + +.. automodule:: pycellga.tests.test_unfair_average_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_uniform\_crossover module +---------------------------------------------- + +.. automodule:: pycellga.tests.test_uniform_crossover + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_zakharov\_function module +---------------------------------------------- + +.. automodule:: pycellga.tests.test_zakharov_function + :members: + :undoc-members: + :show-inheritance: + +pycellga.tests.test\_zettle\_function module +-------------------------------------------- + +.. automodule:: pycellga.tests.test_zettle_function + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: pycellga.tests + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/setup.rst.txt b/_sources/setup.rst.txt new file mode 100644 index 0000000..552eb49 --- /dev/null +++ b/_sources/setup.rst.txt @@ -0,0 +1,7 @@ +setup module +============ + +.. automodule:: setup + :members: + :undoc-members: + :show-inheritance: diff --git a/_sources/src.example.rst.txt b/_sources/src.example.rst.txt deleted file mode 100644 index 032f3f4..0000000 --- a/_sources/src.example.rst.txt +++ /dev/null @@ -1,53 +0,0 @@ -src.example package -=================== - -Submodules ----------- - -src.example.example\_alpha\_cga module --------------------------------------- - -.. automodule:: src.example.example_alpha_cga - :members: - :undoc-members: - :show-inheritance: - -src.example.example\_ccga module --------------------------------- - -.. automodule:: src.example.example_ccga - :members: - :undoc-members: - :show-inheritance: - -src.example.example\_cga module -------------------------------- - -.. automodule:: src.example.example_cga - :members: - :undoc-members: - :show-inheritance: - -src.example.example\_mcccga module ----------------------------------- - -.. automodule:: src.example.example_mcccga - :members: - :undoc-members: - :show-inheritance: - -src.example.example\_sync\_cga module -------------------------------------- - -.. automodule:: src.example.example_sync_cga - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.example - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.mutation.rst.txt b/_sources/src.mutation.rst.txt deleted file mode 100644 index 952638e..0000000 --- a/_sources/src.mutation.rst.txt +++ /dev/null @@ -1,85 +0,0 @@ -src.mutation package -==================== - -Submodules ----------- - -src.mutation.bit\_flip\_mutation module ---------------------------------------- - -.. automodule:: src.mutation.bit_flip_mutation - :members: - :undoc-members: - :show-inheritance: - -src.mutation.byte\_mutation module ----------------------------------- - -.. automodule:: src.mutation.byte_mutation - :members: - :undoc-members: - :show-inheritance: - -src.mutation.byte\_mutation\_random module ------------------------------------------- - -.. automodule:: src.mutation.byte_mutation_random - :members: - :undoc-members: - :show-inheritance: - -src.mutation.float\_uniform\_mutation module --------------------------------------------- - -.. automodule:: src.mutation.float_uniform_mutation - :members: - :undoc-members: - :show-inheritance: - -src.mutation.insertion\_mutation module ---------------------------------------- - -.. automodule:: src.mutation.insertion_mutation - :members: - :undoc-members: - :show-inheritance: - -src.mutation.mutation\_operator module --------------------------------------- - -.. automodule:: src.mutation.mutation_operator - :members: - :undoc-members: - :show-inheritance: - -src.mutation.shuffle\_mutation module -------------------------------------- - -.. automodule:: src.mutation.shuffle_mutation - :members: - :undoc-members: - :show-inheritance: - -src.mutation.swap\_mutation module ----------------------------------- - -.. automodule:: src.mutation.swap_mutation - :members: - :undoc-members: - :show-inheritance: - -src.mutation.two\_opt\_mutation module --------------------------------------- - -.. automodule:: src.mutation.two_opt_mutation - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.mutation - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.neighborhoods.rst.txt b/_sources/src.neighborhoods.rst.txt deleted file mode 100644 index 6ab1e8e..0000000 --- a/_sources/src.neighborhoods.rst.txt +++ /dev/null @@ -1,61 +0,0 @@ -src.neighborhoods package -========================= - -Submodules ----------- - -src.neighborhoods.compact\_13 module ------------------------------------- - -.. automodule:: src.neighborhoods.compact_13 - :members: - :undoc-members: - :show-inheritance: - -src.neighborhoods.compact\_21 module ------------------------------------- - -.. automodule:: src.neighborhoods.compact_21 - :members: - :undoc-members: - :show-inheritance: - -src.neighborhoods.compact\_25 module ------------------------------------- - -.. automodule:: src.neighborhoods.compact_25 - :members: - :undoc-members: - :show-inheritance: - -src.neighborhoods.compact\_9 module ------------------------------------ - -.. automodule:: src.neighborhoods.compact_9 - :members: - :undoc-members: - :show-inheritance: - -src.neighborhoods.linear\_5 module ----------------------------------- - -.. automodule:: src.neighborhoods.linear_5 - :members: - :undoc-members: - :show-inheritance: - -src.neighborhoods.linear\_9 module ----------------------------------- - -.. automodule:: src.neighborhoods.linear_9 - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.neighborhoods - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.problems.rst.txt b/_sources/src.problems.rst.txt deleted file mode 100644 index 2e31853..0000000 --- a/_sources/src.problems.rst.txt +++ /dev/null @@ -1,29 +0,0 @@ -src.problems package -==================== - -Subpackages ------------ - -.. toctree:: - :maxdepth: 4 - - src.problems.single_objective - -Submodules ----------- - -src.problems.abstract\_problem module -------------------------------------- - -.. automodule:: src.problems.abstract_problem - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.problems - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.problems.single_objective.continuous.rst.txt b/_sources/src.problems.single_objective.continuous.rst.txt deleted file mode 100644 index b348372..0000000 --- a/_sources/src.problems.single_objective.continuous.rst.txt +++ /dev/null @@ -1,205 +0,0 @@ -src.problems.single\_objective.continuous package -================================================= - -Submodules ----------- - -src.problems.single\_objective.continuous.ackley module -------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.ackley - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.bentcigar module ----------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.bentcigar - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.bohachevsky module ------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.bohachevsky - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.chichinadze module ------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.chichinadze - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.dropwave module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.dropwave - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.fms module ----------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.fms - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.griewank module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.griewank - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.holzman module --------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.holzman - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.levy module ------------------------------------------------------ - -.. automodule:: src.problems.single_objective.continuous.levy - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.matyas module -------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.matyas - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.pow module ----------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.pow - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.powell module -------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.powell - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.rastrigin module ----------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.rastrigin - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.rosenbrock module ------------------------------------------------------------ - -.. automodule:: src.problems.single_objective.continuous.rosenbrock - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.rothellipsoid module --------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.rothellipsoid - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.schaffer module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.schaffer - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.schaffer2 module ----------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.schaffer2 - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.schwefel module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.schwefel - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.sphere module -------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.sphere - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.styblinskitang module ---------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.styblinskitang - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.sumofdifferentpowers module ---------------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.sumofdifferentpowers - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.threehumps module ------------------------------------------------------------ - -.. automodule:: src.problems.single_objective.continuous.threehumps - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.zakharov module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.zakharov - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.continuous.zettle module -------------------------------------------------------- - -.. automodule:: src.problems.single_objective.continuous.zettle - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.problems.single_objective.continuous - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.problems.single_objective.discrete.binary.rst.txt b/_sources/src.problems.single_objective.discrete.binary.rst.txt deleted file mode 100644 index 3e6c6d2..0000000 --- a/_sources/src.problems.single_objective.discrete.binary.rst.txt +++ /dev/null @@ -1,85 +0,0 @@ -src.problems.single\_objective.discrete.binary package -====================================================== - -Submodules ----------- - -src.problems.single\_objective.discrete.binary.count\_sat module ----------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.count_sat - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.ecc module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.ecc - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.fms module ---------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.fms - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.maxcut100 module ---------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.maxcut100 - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.maxcut20\_01 module ------------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.maxcut20_01 - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.maxcut20\_09 module ------------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.maxcut20_09 - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.mmdp module ----------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.mmdp - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.one\_max module --------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.one_max - :members: - :undoc-members: - :show-inheritance: - -src.problems.single\_objective.discrete.binary.peak module ----------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.binary.peak - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.problems.single_objective.discrete.binary - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.problems.single_objective.discrete.permutation.rst.txt b/_sources/src.problems.single_objective.discrete.permutation.rst.txt deleted file mode 100644 index 83949cf..0000000 --- a/_sources/src.problems.single_objective.discrete.permutation.rst.txt +++ /dev/null @@ -1,21 +0,0 @@ -src.problems.single\_objective.discrete.permutation package -=========================================================== - -Submodules ----------- - -src.problems.single\_objective.discrete.permutation.tsp module --------------------------------------------------------------- - -.. automodule:: src.problems.single_objective.discrete.permutation.tsp - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.problems.single_objective.discrete.permutation - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.problems.single_objective.discrete.rst.txt b/_sources/src.problems.single_objective.discrete.rst.txt deleted file mode 100644 index b99c408..0000000 --- a/_sources/src.problems.single_objective.discrete.rst.txt +++ /dev/null @@ -1,19 +0,0 @@ -src.problems.single\_objective.discrete package -=============================================== - -Subpackages ------------ - -.. toctree:: - :maxdepth: 4 - - src.problems.single_objective.discrete.binary - src.problems.single_objective.discrete.permutation - -Module contents ---------------- - -.. automodule:: src.problems.single_objective.discrete - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.problems.single_objective.rst.txt b/_sources/src.problems.single_objective.rst.txt deleted file mode 100644 index 15678ee..0000000 --- a/_sources/src.problems.single_objective.rst.txt +++ /dev/null @@ -1,19 +0,0 @@ -src.problems.single\_objective package -====================================== - -Subpackages ------------ - -.. toctree:: - :maxdepth: 4 - - src.problems.single_objective.continuous - src.problems.single_objective.discrete - -Module contents ---------------- - -.. automodule:: src.problems.single_objective - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.recombination.rst.txt b/_sources/src.recombination.rst.txt deleted file mode 100644 index 11795d6..0000000 --- a/_sources/src.recombination.rst.txt +++ /dev/null @@ -1,109 +0,0 @@ -src.recombination package -========================= - -Submodules ----------- - -src.recombination.arithmetic\_crossover module ----------------------------------------------- - -.. automodule:: src.recombination.arithmetic_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.blxalpha\_crossover module --------------------------------------------- - -.. automodule:: src.recombination.blxalpha_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.byte\_one\_point\_crossover module ----------------------------------------------------- - -.. automodule:: src.recombination.byte_one_point_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.byte\_uniform\_crossover module -------------------------------------------------- - -.. automodule:: src.recombination.byte_uniform_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.flat\_crossover module ----------------------------------------- - -.. automodule:: src.recombination.flat_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.linear\_crossover module ------------------------------------------- - -.. automodule:: src.recombination.linear_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.one\_point\_crossover module ----------------------------------------------- - -.. automodule:: src.recombination.one_point_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.pmx\_crossover module ---------------------------------------- - -.. automodule:: src.recombination.pmx_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.recombination\_operator module ------------------------------------------------- - -.. automodule:: src.recombination.recombination_operator - :members: - :undoc-members: - :show-inheritance: - -src.recombination.two\_point\_crossover module ----------------------------------------------- - -.. automodule:: src.recombination.two_point_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.unfair\_avarage\_crossover module ---------------------------------------------------- - -.. automodule:: src.recombination.unfair_avarage_crossover - :members: - :undoc-members: - :show-inheritance: - -src.recombination.uniform\_crossover module -------------------------------------------- - -.. automodule:: src.recombination.uniform_crossover - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.recombination - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.rst.txt b/_sources/src.rst.txt deleted file mode 100644 index a5651a4..0000000 --- a/_sources/src.rst.txt +++ /dev/null @@ -1,67 +0,0 @@ -src package -=========== - -Subpackages ------------ - -.. toctree:: - :maxdepth: 4 - - src.example - src.mutation - src.neighborhoods - src.problems - src.recombination - src.selection - src.tests - -Submodules ----------- - -src.byte\_operators module --------------------------- - -.. automodule:: src.byte_operators - :members: - :undoc-members: - :show-inheritance: - -src.grid module ---------------- - -.. automodule:: src.grid - :members: - :undoc-members: - :show-inheritance: - -src.individual module ---------------------- - -.. automodule:: src.individual - :members: - :undoc-members: - :show-inheritance: - -src.optimizer module --------------------- - -.. automodule:: src.optimizer - :members: - :undoc-members: - :show-inheritance: - -src.population module ---------------------- - -.. automodule:: src.population - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.selection.rst.txt b/_sources/src.selection.rst.txt deleted file mode 100644 index 86c24d5..0000000 --- a/_sources/src.selection.rst.txt +++ /dev/null @@ -1,37 +0,0 @@ -src.selection package -===================== - -Submodules ----------- - -src.selection.roulette\_wheel\_selection module ------------------------------------------------ - -.. automodule:: src.selection.roulette_wheel_selection - :members: - :undoc-members: - :show-inheritance: - -src.selection.selection\_operator module ----------------------------------------- - -.. automodule:: src.selection.selection_operator - :members: - :undoc-members: - :show-inheritance: - -src.selection.tournament\_selection module ------------------------------------------- - -.. automodule:: src.selection.tournament_selection - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.selection - :members: - :undoc-members: - :show-inheritance: diff --git a/_sources/src.tests.rst.txt b/_sources/src.tests.rst.txt deleted file mode 100644 index a6ee6a5..0000000 --- a/_sources/src.tests.rst.txt +++ /dev/null @@ -1,573 +0,0 @@ -src.tests package -================= - -Submodules ----------- - -src.tests.conftest module -------------------------- - -.. automodule:: src.tests.conftest - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_ackley module ------------------------------ - -.. automodule:: src.tests.test_ackley - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_arithmetic\_crossover module --------------------------------------------- - -.. automodule:: src.tests.test_arithmetic_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_bentcigar\_function module ------------------------------------------- - -.. automodule:: src.tests.test_bentcigar_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_bit\_flip\_mutation module ------------------------------------------- - -.. automodule:: src.tests.test_bit_flip_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_blxalpha\_crossover module ------------------------------------------- - -.. automodule:: src.tests.test_blxalpha_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_bohachevsky module ----------------------------------- - -.. automodule:: src.tests.test_bohachevsky - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_byte\_mutation module -------------------------------------- - -.. automodule:: src.tests.test_byte_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_byte\_mutation\_random module ---------------------------------------------- - -.. automodule:: src.tests.test_byte_mutation_random - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_byte\_one\_point\_crossover module --------------------------------------------------- - -.. automodule:: src.tests.test_byte_one_point_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_byte\_operators module --------------------------------------- - -.. automodule:: src.tests.test_byte_operators - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_byte\_uniform\_crossover module ------------------------------------------------ - -.. automodule:: src.tests.test_byte_uniform_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_chichinadze\_function module --------------------------------------------- - -.. automodule:: src.tests.test_chichinadze_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_compact\_13 module ----------------------------------- - -.. automodule:: src.tests.test_compact_13 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_compact\_21 module ----------------------------------- - -.. automodule:: src.tests.test_compact_21 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_compact\_25 module ----------------------------------- - -.. automodule:: src.tests.test_compact_25 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_compact\_9 module ---------------------------------- - -.. automodule:: src.tests.test_compact_9 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_count\_sat module ---------------------------------- - -.. automodule:: src.tests.test_count_sat - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_dropwave\_function module ------------------------------------------ - -.. automodule:: src.tests.test_dropwave_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_ecc module --------------------------- - -.. automodule:: src.tests.test_ecc - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_flat\_crossover module --------------------------------------- - -.. automodule:: src.tests.test_flat_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_float\_uniform\_mutation module ------------------------------------------------ - -.. automodule:: src.tests.test_float_uniform_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_fms module --------------------------- - -.. automodule:: src.tests.test_fms - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_grid module ---------------------------- - -.. automodule:: src.tests.test_grid - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_griewank\_function module ------------------------------------------ - -.. automodule:: src.tests.test_griewank_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_holzman\_function module ----------------------------------------- - -.. automodule:: src.tests.test_holzman_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_individual module ---------------------------------- - -.. automodule:: src.tests.test_individual - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_insertion\_mutation module ------------------------------------------- - -.. automodule:: src.tests.test_insertion_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_levy\_function module -------------------------------------- - -.. automodule:: src.tests.test_levy_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_linear\_5 module --------------------------------- - -.. automodule:: src.tests.test_linear_5 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_linear\_9 module --------------------------------- - -.. automodule:: src.tests.test_linear_9 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_linear\_crossover module ----------------------------------------- - -.. automodule:: src.tests.test_linear_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_matyas\_function module ---------------------------------------- - -.. automodule:: src.tests.test_matyas_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_maxcut100 module --------------------------------- - -.. automodule:: src.tests.test_maxcut100 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_maxcut20\_01 module ------------------------------------ - -.. automodule:: src.tests.test_maxcut20_01 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_maxcut20\_09 module ------------------------------------ - -.. automodule:: src.tests.test_maxcut20_09 - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_mmdp module ---------------------------- - -.. automodule:: src.tests.test_mmdp - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_one\_max module -------------------------------- - -.. automodule:: src.tests.test_one_max - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_one\_point\_crossover module --------------------------------------------- - -.. automodule:: src.tests.test_one_point_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_optimizer\_alpha\_cga module --------------------------------------------- - -.. automodule:: src.tests.test_optimizer_alpha_cga - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_optimizer\_ccga module --------------------------------------- - -.. automodule:: src.tests.test_optimizer_ccga - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_optimizer\_cga module -------------------------------------- - -.. automodule:: src.tests.test_optimizer_cga - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_optimizer\_mccga module ---------------------------------------- - -.. automodule:: src.tests.test_optimizer_mccga - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_optimizer\_sync\_cga module -------------------------------------------- - -.. automodule:: src.tests.test_optimizer_sync_cga - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_peak module ---------------------------- - -.. automodule:: src.tests.test_peak - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_pmx\_crossover module -------------------------------------- - -.. automodule:: src.tests.test_pmx_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_population module ---------------------------------- - -.. automodule:: src.tests.test_population - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_pow\_function module ------------------------------------- - -.. automodule:: src.tests.test_pow_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_powell\_function module ---------------------------------------- - -.. automodule:: src.tests.test_powell_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_rastrigin module --------------------------------- - -.. automodule:: src.tests.test_rastrigin - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_rosenbrock module ---------------------------------- - -.. automodule:: src.tests.test_rosenbrock - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_rothellipsoid\_function module ----------------------------------------------- - -.. automodule:: src.tests.test_rothellipsoid_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_roulette\_wheel\_selection module -------------------------------------------------- - -.. automodule:: src.tests.test_roulette_wheel_selection - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_schaffer2\_function module ------------------------------------------- - -.. automodule:: src.tests.test_schaffer2_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_schaffer\_function module ------------------------------------------ - -.. automodule:: src.tests.test_schaffer_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_schwefel module -------------------------------- - -.. automodule:: src.tests.test_schwefel - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_shuffle\_mutation module ----------------------------------------- - -.. automodule:: src.tests.test_shuffle_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_sphere module ------------------------------ - -.. automodule:: src.tests.test_sphere - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_styblinskitang\_function module ------------------------------------------------ - -.. automodule:: src.tests.test_styblinskitang_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_sumofdifferentpowers\_function module ------------------------------------------------------ - -.. automodule:: src.tests.test_sumofdifferentpowers_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_swap\_mutation module -------------------------------------- - -.. automodule:: src.tests.test_swap_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_threehumps\_function module -------------------------------------------- - -.. automodule:: src.tests.test_threehumps_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_tournament\_selection module --------------------------------------------- - -.. automodule:: src.tests.test_tournament_selection - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_tsp module --------------------------- - -.. automodule:: src.tests.test_tsp - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_two\_opt\_mutation module ------------------------------------------ - -.. automodule:: src.tests.test_two_opt_mutation - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_two\_point\_crossover module --------------------------------------------- - -.. automodule:: src.tests.test_two_point_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_unfair\_average\_crossover module -------------------------------------------------- - -.. automodule:: src.tests.test_unfair_average_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_uniform\_crossover module ------------------------------------------ - -.. automodule:: src.tests.test_uniform_crossover - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_zakharov\_function module ------------------------------------------ - -.. automodule:: src.tests.test_zakharov_function - :members: - :undoc-members: - :show-inheritance: - -src.tests.test\_zettle\_function module ---------------------------------------- - -.. automodule:: src.tests.test_zettle_function - :members: - :undoc-members: - :show-inheritance: - -Module contents ---------------- - -.. automodule:: src.tests - :members: - :undoc-members: - :show-inheritance: diff --git a/genindex.html b/genindex.html index e799bfe..7cd3548 100644 --- a/genindex.html +++ b/genindex.html @@ -98,94 +98,94 @@

Index

_

@@ -194,13 +194,13 @@

_

A

@@ -208,37 +208,37 @@

A

B

@@ -246,45 +246,45 @@

B

C

@@ -292,7 +292,7 @@

C

D

@@ -300,22 +300,22 @@

D

E

@@ -324,151 +324,151 @@

E

F

@@ -476,47 +476,47 @@

F

G

@@ -524,7 +524,7 @@

G

H

@@ -532,7 +532,7 @@

H

I

@@ -540,15 +540,15 @@

I

L

@@ -556,390 +556,390 @@

L

M

@@ -947,70 +947,70 @@

M

N

@@ -1019,11 +1019,11 @@

N

O

@@ -1031,1260 +1031,1260 @@

O

P

- -
- -

R

- - - -
- -

S

- - - + +
  • - src.recombination.arithmetic_crossover + pycellga.recombination.flat_crossover
  • - src.recombination.blxalpha_crossover + pycellga.recombination.linear_crossover
  • - src.recombination.byte_one_point_crossover + pycellga.recombination.one_point_crossover
  • +
  • - src.recombination.byte_uniform_crossover + pycellga.recombination.pmx_crossover
  • - src.recombination.flat_crossover + pycellga.recombination.recombination_operator
  • - src.recombination.linear_crossover + pycellga.recombination.two_point_crossover
  • - src.recombination.one_point_crossover + pycellga.recombination.unfair_avarage_crossover
  • - src.recombination.pmx_crossover + pycellga.recombination.uniform_crossover
  • - src.recombination.recombination_operator + pycellga.selection
  • - src.recombination.two_point_crossover + pycellga.selection.roulette_wheel_selection
  • - src.recombination.unfair_avarage_crossover + pycellga.selection.selection_operator
  • - src.recombination.uniform_crossover + pycellga.selection.tournament_selection
  • - src.selection + pycellga.tests
  • - src.selection.roulette_wheel_selection + pycellga.tests.conftest
  • - src.selection.selection_operator + pycellga.tests.test_ackley
  • - src.selection.tournament_selection + pycellga.tests.test_arithmetic_crossover
  • - src.tests + pycellga.tests.test_bentcigar_function
  • - src.tests.conftest + pycellga.tests.test_bit_flip_mutation
  • - src.tests.test_ackley + pycellga.tests.test_blxalpha_crossover
  • - src.tests.test_arithmetic_crossover + pycellga.tests.test_bohachevsky
  • - src.tests.test_bentcigar_function + pycellga.tests.test_byte_mutation
  • - src.tests.test_bit_flip_mutation + pycellga.tests.test_byte_mutation_random
  • - src.tests.test_blxalpha_crossover + pycellga.tests.test_byte_one_point_crossover
  • - src.tests.test_bohachevsky + pycellga.tests.test_byte_operators
  • - src.tests.test_byte_mutation + pycellga.tests.test_byte_uniform_crossover
  • - src.tests.test_byte_mutation_random + pycellga.tests.test_chichinadze_function
  • - src.tests.test_byte_one_point_crossover + pycellga.tests.test_compact_13
  • - src.tests.test_byte_operators + pycellga.tests.test_compact_21
  • - src.tests.test_byte_uniform_crossover + pycellga.tests.test_compact_25
  • - src.tests.test_chichinadze_function + pycellga.tests.test_compact_9
  • - src.tests.test_compact_13 + pycellga.tests.test_count_sat
  • - src.tests.test_compact_21 + pycellga.tests.test_dropwave_function
  • - src.tests.test_compact_25 + pycellga.tests.test_ecc
  • - src.tests.test_compact_9 + pycellga.tests.test_flat_crossover
  • - src.tests.test_count_sat + pycellga.tests.test_float_uniform_mutation
  • - src.tests.test_dropwave_function + pycellga.tests.test_fms
  • - src.tests.test_ecc + pycellga.tests.test_grid
  • - src.tests.test_flat_crossover + pycellga.tests.test_griewank_function
  • - src.tests.test_float_uniform_mutation + pycellga.tests.test_holzman_function
  • - src.tests.test_fms + pycellga.tests.test_individual
  • - src.tests.test_grid + pycellga.tests.test_insertion_mutation
  • - src.tests.test_griewank_function + pycellga.tests.test_levy_function
  • - src.tests.test_holzman_function + pycellga.tests.test_linear_5
  • - src.tests.test_individual + pycellga.tests.test_linear_9
  • - src.tests.test_insertion_mutation + pycellga.tests.test_linear_crossover
  • - src.tests.test_levy_function + pycellga.tests.test_matyas_function
  • - src.tests.test_linear_5 + pycellga.tests.test_maxcut100
  • - src.tests.test_linear_9 + pycellga.tests.test_maxcut20_01
  • - src.tests.test_linear_crossover + pycellga.tests.test_maxcut20_09
  • - src.tests.test_matyas_function + pycellga.tests.test_mmdp
  • - src.tests.test_maxcut100 + pycellga.tests.test_one_max
  • - src.tests.test_maxcut20_01 + pycellga.tests.test_one_point_crossover
  • - src.tests.test_maxcut20_09 + pycellga.tests.test_optimizer_alpha_cga
  • - src.tests.test_mmdp + pycellga.tests.test_optimizer_ccga
  • - src.tests.test_one_max + pycellga.tests.test_optimizer_cga
  • - src.tests.test_one_point_crossover + pycellga.tests.test_optimizer_mccga
  • - src.tests.test_optimizer_alpha_cga + pycellga.tests.test_optimizer_sync_cga
  • - src.tests.test_optimizer_ccga + pycellga.tests.test_peak
  • - src.tests.test_optimizer_cga + pycellga.tests.test_pmx_crossover
  • - src.tests.test_optimizer_mccga + pycellga.tests.test_population
  • - src.tests.test_optimizer_sync_cga + pycellga.tests.test_pow_function
  • - src.tests.test_peak + pycellga.tests.test_powell_function
  • - src.tests.test_pmx_crossover + pycellga.tests.test_rastrigin
  • - src.tests.test_population + pycellga.tests.test_rosenbrock
  • - src.tests.test_pow_function + pycellga.tests.test_rothellipsoid_function
  • - src.tests.test_powell_function + pycellga.tests.test_roulette_wheel_selection
  • - src.tests.test_rastrigin + pycellga.tests.test_schaffer2_function
  • - src.tests.test_rosenbrock + pycellga.tests.test_schaffer_function
  • - src.tests.test_rothellipsoid_function + pycellga.tests.test_schwefel
  • - src.tests.test_roulette_wheel_selection + pycellga.tests.test_shuffle_mutation
  • - src.tests.test_schaffer2_function + pycellga.tests.test_sphere
  • - src.tests.test_schaffer_function + pycellga.tests.test_styblinskitang_function
  • - src.tests.test_schwefel + pycellga.tests.test_sumofdifferentpowers_function
  • - src.tests.test_shuffle_mutation + pycellga.tests.test_swap_mutation
  • - src.tests.test_sphere + pycellga.tests.test_threehumps_function
  • - src.tests.test_styblinskitang_function + pycellga.tests.test_tournament_selection
  • - src.tests.test_sumofdifferentpowers_function + pycellga.tests.test_tsp
  • - src.tests.test_swap_mutation + pycellga.tests.test_two_opt_mutation
  • - src.tests.test_threehumps_function + pycellga.tests.test_two_point_crossover
  • - src.tests.test_tournament_selection + pycellga.tests.test_unfair_average_crossover
  • - src.tests.test_tsp + pycellga.tests.test_uniform_crossover
  • - src.tests.test_two_opt_mutation + pycellga.tests.test_zakharov_function
  • - src.tests.test_two_point_crossover + pycellga.tests.test_zettle_function
  • -
  • - src.tests.test_unfair_average_crossover +
+ +

R

+ + + +
+ +

S

+ + +
@@ -2292,193 +2292,193 @@

S

T

@@ -2486,11 +2486,11 @@

T

U

@@ -2498,11 +2498,11 @@

U

Z

diff --git a/index.html b/index.html index c788782..b704470 100644 --- a/index.html +++ b/index.html @@ -86,7 +86,7 @@

PYCELLGA DocumentationContents:

diff --git a/modules.html b/modules.html index 634fc49..6a1640a 100644 --- a/modules.html +++ b/modules.html @@ -21,7 +21,7 @@ - + @@ -47,7 +47,7 @@

Contents:

@@ -80,174 +80,174 @@

pycellga


diff --git a/objects.inv b/objects.inv index 84a5e90045f4a7a286188c8ec43147e95432f48e..b49c443d6b17a86c191e48db63e260f22c97999b 100644 GIT binary patch delta 4244 zcmV;F5Nq#|A@U)RhJRag+_o8g_pi`Q`)Z6OM@cttwiBnBu^Nr!OxwJ0uw3kt6_?mUFTvaL0`LMHkUP`35-;Z*eCLn^F9M=hmj%IrUPZ4zANlSSu&a03&&5LGrN`iJ z#p1Vrzk2(oUa@^mnZqL%)0D@F(avP+r-_qtXCH8y3aI@lbbnKyhga7fu*oQiHcY;| zz!7+6D9L;n_KhB+tcuclmMhhDtu`qC-=RU|QO8x8tB*&1EtcHJd>gQ%fOi9$B+bUP z(6wNR6;@orL#<>?)mn9R>n*Y#XVwY!BY(#pBKhd2pR)yb4ThefZ30c? z5$iD=`3h#hAUglJYB$ly$Lu%rGAkhw^;LsI3+u!*-0>r}z9nc&_Cw8MUTif!y7B`| zrZyD!#HY~T^Z1Ahx*V2#7K{HZmKrC21_!{9Ic%n;_+i50+<2HFeMs_qwaD0sDc}GL zCefJIzJEUEswY0irSBnmfQW#hJ zg#tTwEj03&{bpWdB_yJ}YH-uSrY}4@NK#yFyMW~D3;!cZjSD=23#jrKgJ!8i<{!K* zk3G(Jinj)>P1H4RZ|3r2MBUW6es2Yod@6n{;D39TNziA)jyMJ&aB1M4g3L3g+Bk6{ zp7_G31j%}HZNY+@>#8XQJjjA3tQ8Ad1j|`)Yr}%ux+%9v3mUL?ENBueX2HgS1DmQL z8({sQ?*uI;d%?YP10B#nbG-m2o#WfC>IR9Z)xM}0jpk#w6Xo&J1KhNhllJY zjc@lxPcvRZ-KT)Pu1rrp)GE}$7!_g2PX5J1 zrhGlKoQ$y$j|!L?@aB$N7N)L$pz&%+sDBlZk4-I$=0T!iy;R7=0J3pCUkLZ8>#^tL zX}$AALj(EP*0XFv}hiJ&Ptqp<}(Is00C$ z@_x3MUCg5w`n+CDDgoq|hLS}C(o=wN;)mHX_Q&-)pBXp#T<|Yi`jU6OW3dtdaDV)E zHu)j;*$WMyRg-i@09P^*5#XMo*Hs14DOteT6C6htcKKQc@rkHzb~L@VgYW36J@JT%!?%tA{BA_w!IASUVSHt@sb$xmr` zST7GP8RW74^=qkW*?bJCS${DvgR&6$ng8f9IUV_a=Zgy*3sdn#Bwp`%v`h?nR480F zQB#$f+c;lb>cxzCr(?99b7u+UYfH_dE=g6acf8BxAimF<|GfD-ee!6`pI1vrC4l_Z zP_k$`dJ5J{Mqdgd74x4ye`jeLtk;Vy=*eHTie>ZAWM450Eg6U$On-dPyz>(`X6bDE ztNnD$ulL>hA&pwj<+|Fri zcrPdNB2NZ0Xzk=@A5c4If;KSuoc)Rn$`Cv>8G}T?D1Qv{*zvv`5Y>kJUFdSmRb&Fj zD4;1AB?Bg5l*>*U>~;)f*GU`wfk`~jXiQ_Y<5_h4X2q=*F1f$^57HtvIMkN`8armR zejAx`NXr#D0eNUH9-M{<(H=RSrIL#2P3)bMB41I432dlXBrIUA z`nhwxT5bM$lbB~K)9fDj#bYdRmVhP?<%)lc<&RCqUcfqp7^abw+2IuCM^yYNTw+37 z|1{FQndMX;l+?lpyED3)`|zmxr2G_z^vJ|#@PEK8%V5dZdLbgjQz;^|c($&z$$GHT0z)oF~v8iNcgrYIoi40p;p?FUQ zJKCCHkj$z8P2$?ZEaK#cJOA0=ooIk6B`&8eRJmseXeXxOjvt{BC^6wlkl>;MQ9;|v zMH?R+j|zOyT@#|oZ?a|vM)sx$6`B!j(|_Q|;9-})5dutlWCWv@8xfYz1`w1bsGKYO`n_>YY9tx5p}d=Gl)Rg38M3LoTYs3m zTN$#UybVg-MuMxYZEzT%IohfLYWldE+N${iVdsk;V0p4=&drF@I?x173gv)1(+eO5 zh{^uT?rM^hhAuNx(~_kLGvyoE>Fw)$=n3dPs1Xgi4INNacR>zo+)e1fDs0mR7k%EU zqk(!1B}c{NVGP+Q7gBKGlZZhEM1NGI@FPy^k{yk2AH}dp*?)-hp@3@2(u6t0s@Y7Y zw@P5N(e%aSbA`e#z&*e+dCdu0QCbI@ph;2AnF*^#7q2WvV~$jiP_=wbg7&${qy}ds z5Q`rK>_CHzE#yb$q^}V}qJP)F=U<=z zk&CC!es-699{Cgw-5CG@jvuqEFwZnNv7Hfq!s7fs@l%Bgr;lnTYy%Ru>7$wngWb^e{$2~vg&)E+=)Ct}QMYv}VB_9; z4_IlTCP6X9Fzn>ffh+59o_|Xkqf#kd8-8%i(>cwrM&K-dLfo~SG5cDLAP2_hoZI4J zj7W5w3sjk6W7rL@-5V?I-bfYe!Yao)oY7!0B%k;P(oO+Z|AaV%2S@9h-pXn`xh|%G zD)6Tm$`1js-vIC^^+m@zcFGU!4%AqAACi2`?>G#53!}gzU+qIE_J2_9`}6IRh2r$l z?Nms@W4lbsZM%1%Fbxmcou>tl8nAZEX%b*vQCeX9d|?(_$em{z`=&S7vpB_L2nd%8 zJ>j|*&b6-9)2wUf4C_kVbHUNXI%mN+tG?N>&C(^&{>9MZWpLUB5P#`|U-T?q?rdD> zWTz1L8AQeazo032V1E~}Blaqm!(pS>gG7d}559+?_7{RPn7oEA_EJ_MqOWIiT%?f- zhCLG6#^r4Q+)8;YUFe4J6`O)Dd9?!Q$w!82#TWD`s0LP5-@AJZhW;@}%MzXp=v z>T2T&3%7B0UVkzcS0l-gwdJK=w$P6f?(bkRlB1SsYORDzA8VF2*_<)w=2S{CB-<#f zWa`#y)F-DeyIQre4gLcREHmqa~1~z2`Mp z#e+@JrI|cT>5R(A#`GLy(-of>f66Cj>uX}^DtY1J=@{%#=;Ena3XSKg6Y} zydDFcO@A3we!6@WF5+R<6l{a1(MovKH~nJ-#^3fU2}Ui~CIk-&q!^e6IVR0_`sC4= zKf^9zJ-`7TUCr5@Zh#vSqXSpwuULvxsgyne{=h;%+_7(0NxJ(vpxf-;=UZ(uoAYKn?uv~XTipNm)30B?{PyAM7w(?K^?x!y-@nPKBLR$(Rc9II)G!;yfr>;?p=qjS_Q+6DmonYVSG0Ko+yO!(P5cM8C zsQS_!yGI=Jnvb*DQh qK@vt|*K42Bi)F=bkHz}?V%zL`+T_U>6b;)I>xyf~oBso3w3(*3!$J`N delta 4146 zcmV-25Y6xMA(0`FhJRgioH!PJ&#!RR?rT)BGoIO=wMbv`~QH)*?|Y)p3|VPUz;trd3qmj1%4d@K6KFS;_!|_M{AcCuH&UUOGN7cnylm*l{?0V^}zz*)%kA zy+eR;I8p7cg>?kQjUfYNa^c;x&-feP>unnYhXsy8A zV%oQi?tiY{F{Cpb)(QJV0R{wg9ni7H#o@Hu#pqsS3d8Q24UYM<2IrhRtH6#?eB$WK znGpuNtG>Ag&j{omHZ!DKz{;nzO63w8vndSw@|6COm5za1L357Y8ZIb=iHP=x`!qkK z>2^N0I@+s^-S~(wJ!U*CgUh#sQ0znVu>n;L(0^dsgPG%xgAI8cp5n@ZpgXt-vb2a~ z>?u ziLi_wg}J8FBbTc_J3360GD=SAsQ^$6g`C+K4u-F<@$Tn1c0B!q{k`Y++zZ^Cm1D9r4`ScQiSFtGd10Fw+{2E2tx*yd^W z#2c@3f5=aG2g$$x`q zJ3CtW{zcF4!PpruGS)vr$Pa1!?Z^|)p>A2(KL>UXfu6AXZb?&moXbB!sAKWy`yy0Q zvQI6q2XlKq-?k3KI79ydAwBZ)nfvbV8d7%Cb9=CL#Od4GF*(lO4TLyLpFDe8F|yl+ z)q|@on{PimTI49e8z85MWB+beq<^xmEw>*}2hKA%tB@o81r77$yr^opk9=Q3^}Ot} zs=$NM8fM>i>m(pe2aW9HX(5vPJPm!{qYT9C^GJga-*w#Ho!5#$djA%tpgdG3nJ6n# z&F>Lj+J1$*3cy5(mn1MM@Sh51DaeEX4LlX$f$w(0_p_ajmfb1*9x`CYi+>IFwF~>z znWBBwSNqCyycK5OElno@Y5I>q{wJ{$v478NT3PF!-;d*C-ZS_;5rA|XG+0$+2a)@J zWYUnbyPn&J&nl;Pk4NN4e?encMfrRmM@jJzl|0$|_IX6k?)tA^S}i_&U((<`4;IBB z^8z&JRh*9LZX3z&MI@!XqkqqRk8tWFusee;ADLpS2W1pUQhCUQIGm1|Z*K--_GP5O zgAZD6-z`-y0{K1*Xe{#^e>m_wee~>nN6Y?F_&vBj#&BD z{nc~(@LA>b?(v8m>F@d=<~AzAT$B)7yCOhS`(pP|!t-Yr!lopSw|@%LDJg@ZnY-+~ z3fKqv>8_Dtm)Ke*6cQZr{N=Pj(q5~==6&pGK@o;$ONok`{o3$*&4ZTreCBro2pqoz zlfzySq;(wpvLI2w-Cr9d7C_+m6`1_UzlNvs^39vG`Q9sFH>wt|IiS&SzI@P$A;^ul zjzX^91aB_SoE^1>Hh&zwo-<^~OvkyiWG;vxQ+_~**?b3?vQYxEIb)`bbbJq)G8ROT zDc5i@$8C1L6sgGBO{>6fQgqB`OoLtmf$=|r>8ol7RVJRz`<9>mk%*f{hSvlb)1NO3 zCOQaG;U}<$Oz?-Z<$)w;x2*!NDbO>Y&;3CHf${&ar_V%goPRtER@~Kn6{0M%??VOq zQn++QGa)zyOq{|v+6tZo)nTPeVo)pEeGek`=|1P#Aqsg+ADCQ(=~1>PZJQYF)h65c z2%bmfq0$zGL71mSkv?kPwxa-L@A{1&R3bHlH9R;1^BgtwRC`edqoRd7>3#gQU95r3 zlQ|@N-)_SDVSfWo;Dr@UQ$V~h3#r@n0xQ+!RhC9cN$I%(xSk5Rx{kY*n+eK&dVuaJI5W~&oy8IPgg0>zOFJ*dixSxtADQdq3cnt&5b>BTA8@hA`YBhUF>5E^0vW`EW@-Zk6t)&O}3OoB4f+C_aoG{2T7yA4{0 zCUIkx1b=-EWx;_nxe&1kwWEyv9<7zb-aM_gm({)5(?N(hcsW4!x!v(^x&2P%QIljs zgT^;!3OSRsGUM`RDFvLY|75-xuytS##d?vZ&fh`b926IUGCk!9KMMJJEIJEyVC+l3 z(LMcaff0FUP2mvkQWWLU@ zcYix$l}XBVh%hyatI^u&87=tgo?|8$czTVHnnZ|_ZS)vzPdvtj2%A?UEWHEnfTqQ9 z;Wl=w%+k22LBpBa0n&OqMkTShgIx3q4sY`ez}|G-xH-=F6+}1lb)d*@V+9tI0Xo=K z1087E`^f_1e}~au!W2Q72K8#lNL3odf`0_ES*p3hl-P8L1rBn3=+NGk`G6R%O)lcO zwa7UnL3=cUVp`)Ibj36fg|dJM@>WWR)YgBpNDNxwvUC`{c|lscS`RC{YVe$-Xclk< zNx8bz;kikEL*y4$SRilBVX1Rk^hUO$gU<256E zQFUiE%xp#kIQbzd5o#`~sz37hB(@Hyg~;oHOm(?2;^C`!bZLl@l5Y}v?RR;sp&3{Z}S0y>Aj{JkDiG=7sxi=-#EIU^9=;nr*B7qfXVy}Qv23>`vh_*4bj`yD+jwG#a9rMWT)(pfXZ+}w}3?acuE+jj@ zg)eYw3n|ZPp~j1lB&jHTAhY2GT%a_8v{QMh?u5J}vFk#pIuD|5gS^9_>ne0jnW!b} zaEZDE13I!BI8yWjH3&u0%z*G|Gl$$EvE~~|vZr`XLW<6y!=dRB^k{fn47fWyAYBKs z07)1C(yn3&)o>_Dr+?A&5}X8dScLJWITiG9rl^vg4~z^%{mLqjQxBt^)z|7wR?kW+ z|G1Bz)es{Yu;PpJ+1OQLG%1W86{ac8PBG$v;!xiG5sn^Xxe*O34e5c}CoQAeIR>VE z%_S-mQ51oYPjG1<<(Vhqv9diVB8T^nr?}l40f#i*29*iXK7Wxv*LJ{tLOvBz5!h|| z1kH~)SJ4G>LgT;}&H=~>9bBO_@vY($)tW4=?CDnxHK44*k2p$78g5usmU4wOe z7u5*6Y9Nq?N{BB24#o?mx6n$kB-ARC${dWA~VZfXwBp2O-Me9vDgFe~`C&(*mj8PgPk=iy;o zu-Vp>xoh^{R;^A3UX>%GSRW&|XFPmpk742~KYwNw!{pd@b6=)EPA%JaM3cg!<)}tm zM#a^U%3_K!+BpD?%cyAGN?B8&eg&-_qd!tte74Y*5pT94*Nk9}WyL7xxh$jPl%5KE z@}Z1{4wb=9Qn%Wey`X-5G7C99I!sKvSfGO@WtBl#5vW4-F(_Q-bZNH>m$eWT!Q&O- wCM$a8^E+Q?R*_TChHLW)(si^&Yp3PLjt?4Python Module Index

- s + p
- +
 
- s
+ p
- src + pycellga
    - src.byte_operators + pycellga.byte_operators
    - src.example + pycellga.example
    - src.example.example_alpha_cga + pycellga.example.example_alpha_cga
    - src.example.example_ccga + pycellga.example.example_ccga
    - src.example.example_cga + pycellga.example.example_cga
    - src.example.example_mcccga + pycellga.example.example_mcccga
    - src.example.example_sync_cga + pycellga.example.example_sync_cga
    - src.grid + pycellga.grid
    - src.mutation + pycellga.mutation
    - src.mutation.bit_flip_mutation + pycellga.mutation.bit_flip_mutation
    - src.mutation.byte_mutation + pycellga.mutation.byte_mutation
    - src.mutation.byte_mutation_random + pycellga.mutation.byte_mutation_random
    - src.mutation.float_uniform_mutation + pycellga.mutation.float_uniform_mutation
    - src.mutation.insertion_mutation + pycellga.mutation.insertion_mutation
    - src.mutation.mutation_operator + pycellga.mutation.mutation_operator
    - src.mutation.shuffle_mutation + pycellga.mutation.shuffle_mutation
    - src.mutation.swap_mutation + pycellga.mutation.swap_mutation
    - src.mutation.two_opt_mutation + pycellga.mutation.two_opt_mutation
    - src.neighborhoods + pycellga.neighborhoods
    - src.neighborhoods.compact_13 + pycellga.neighborhoods.compact_13
    - src.neighborhoods.compact_21 + pycellga.neighborhoods.compact_21
    - src.neighborhoods.compact_25 + pycellga.neighborhoods.compact_25
    - src.neighborhoods.compact_9 + pycellga.neighborhoods.compact_9
    - src.neighborhoods.linear_5 + pycellga.neighborhoods.linear_5
    - src.neighborhoods.linear_9 + pycellga.neighborhoods.linear_9
    - src.problems + pycellga.problems
    - src.problems.abstract_problem + pycellga.problems.abstract_problem
    - src.problems.single_objective + pycellga.problems.single_objective
    - src.problems.single_objective.continuous + pycellga.problems.single_objective.continuous
    - src.problems.single_objective.continuous.ackley + pycellga.problems.single_objective.continuous.ackley
    - src.problems.single_objective.continuous.bentcigar + pycellga.problems.single_objective.continuous.bentcigar
    - src.problems.single_objective.continuous.bohachevsky + pycellga.problems.single_objective.continuous.bohachevsky
    - src.problems.single_objective.continuous.chichinadze + pycellga.problems.single_objective.continuous.chichinadze
    - src.problems.single_objective.continuous.dropwave + pycellga.problems.single_objective.continuous.dropwave
    - src.problems.single_objective.continuous.fms + pycellga.problems.single_objective.continuous.fms
    - src.problems.single_objective.continuous.griewank + pycellga.problems.single_objective.continuous.griewank
    - src.problems.single_objective.continuous.holzman + pycellga.problems.single_objective.continuous.holzman
    - src.problems.single_objective.continuous.levy + pycellga.problems.single_objective.continuous.levy
    - src.problems.single_objective.continuous.matyas + pycellga.problems.single_objective.continuous.matyas
    - src.problems.single_objective.continuous.pow + pycellga.problems.single_objective.continuous.pow
    - src.problems.single_objective.continuous.powell + pycellga.problems.single_objective.continuous.powell
    - src.problems.single_objective.continuous.rastrigin + pycellga.problems.single_objective.continuous.rastrigin
    - src.problems.single_objective.continuous.rosenbrock + pycellga.problems.single_objective.continuous.rosenbrock
    - src.problems.single_objective.continuous.rothellipsoid + pycellga.problems.single_objective.continuous.rothellipsoid
    - src.problems.single_objective.continuous.schaffer + pycellga.problems.single_objective.continuous.schaffer
    - src.problems.single_objective.continuous.schaffer2 + pycellga.problems.single_objective.continuous.schaffer2
    - src.problems.single_objective.continuous.schwefel + pycellga.problems.single_objective.continuous.schwefel
    - src.problems.single_objective.continuous.sphere + pycellga.problems.single_objective.continuous.sphere
    - src.problems.single_objective.continuous.styblinskitang + pycellga.problems.single_objective.continuous.styblinskitang
    - src.problems.single_objective.continuous.sumofdifferentpowers + pycellga.problems.single_objective.continuous.sumofdifferentpowers
    - src.problems.single_objective.continuous.threehumps + pycellga.problems.single_objective.continuous.threehumps
    - src.problems.single_objective.continuous.zakharov + pycellga.problems.single_objective.continuous.zakharov
    - src.problems.single_objective.continuous.zettle + pycellga.problems.single_objective.continuous.zettle
    - src.problems.single_objective.discrete + pycellga.problems.single_objective.discrete
    - src.problems.single_objective.discrete.binary + pycellga.problems.single_objective.discrete.binary
    - src.problems.single_objective.discrete.binary.count_sat + pycellga.problems.single_objective.discrete.binary.count_sat
    - src.problems.single_objective.discrete.binary.ecc + pycellga.problems.single_objective.discrete.binary.ecc
    - src.problems.single_objective.discrete.binary.fms + pycellga.problems.single_objective.discrete.binary.fms
    - src.problems.single_objective.discrete.binary.maxcut100 + pycellga.problems.single_objective.discrete.binary.maxcut100
    - src.problems.single_objective.discrete.binary.maxcut20_01 + pycellga.problems.single_objective.discrete.binary.maxcut20_01
    - src.problems.single_objective.discrete.binary.maxcut20_09 + pycellga.problems.single_objective.discrete.binary.maxcut20_09
    - src.problems.single_objective.discrete.binary.mmdp + pycellga.problems.single_objective.discrete.binary.mmdp
    - src.problems.single_objective.discrete.binary.one_max + pycellga.problems.single_objective.discrete.binary.one_max
    - src.problems.single_objective.discrete.binary.peak + pycellga.problems.single_objective.discrete.binary.peak
    - src.problems.single_objective.discrete.permutation + pycellga.problems.single_objective.discrete.permutation
    - src.problems.single_objective.discrete.permutation.tsp + pycellga.problems.single_objective.discrete.permutation.tsp
    - src.recombination + pycellga.recombination
    - src.recombination.arithmetic_crossover + pycellga.recombination.arithmetic_crossover
    - src.recombination.blxalpha_crossover + pycellga.recombination.blxalpha_crossover
    - src.recombination.byte_one_point_crossover + pycellga.recombination.byte_one_point_crossover
    - src.recombination.byte_uniform_crossover + pycellga.recombination.byte_uniform_crossover
    - src.recombination.flat_crossover + pycellga.recombination.flat_crossover
    - src.recombination.linear_crossover + pycellga.recombination.linear_crossover
    - src.recombination.one_point_crossover + pycellga.recombination.one_point_crossover
    - src.recombination.pmx_crossover + pycellga.recombination.pmx_crossover
    - src.recombination.recombination_operator + pycellga.recombination.recombination_operator
    - src.recombination.two_point_crossover + pycellga.recombination.two_point_crossover
    - src.recombination.unfair_avarage_crossover + pycellga.recombination.unfair_avarage_crossover
    - src.recombination.uniform_crossover + pycellga.recombination.uniform_crossover
    - src.selection + pycellga.selection
    - src.selection.roulette_wheel_selection + pycellga.selection.roulette_wheel_selection
    - src.selection.selection_operator + pycellga.selection.selection_operator
    - src.selection.tournament_selection + pycellga.selection.tournament_selection
    - src.tests + pycellga.tests
    - src.tests.conftest + pycellga.tests.conftest
    - src.tests.test_ackley + pycellga.tests.test_ackley
    - src.tests.test_arithmetic_crossover + pycellga.tests.test_arithmetic_crossover
    - src.tests.test_bentcigar_function + pycellga.tests.test_bentcigar_function
    - src.tests.test_bit_flip_mutation + pycellga.tests.test_bit_flip_mutation
    - src.tests.test_blxalpha_crossover + pycellga.tests.test_blxalpha_crossover
    - src.tests.test_bohachevsky + pycellga.tests.test_bohachevsky
    - src.tests.test_byte_mutation + pycellga.tests.test_byte_mutation
    - src.tests.test_byte_mutation_random + pycellga.tests.test_byte_mutation_random
    - src.tests.test_byte_one_point_crossover + pycellga.tests.test_byte_one_point_crossover
    - src.tests.test_byte_operators + pycellga.tests.test_byte_operators
    - src.tests.test_byte_uniform_crossover + pycellga.tests.test_byte_uniform_crossover
    - src.tests.test_chichinadze_function + pycellga.tests.test_chichinadze_function
    - src.tests.test_compact_13 + pycellga.tests.test_compact_13
    - src.tests.test_compact_21 + pycellga.tests.test_compact_21
    - src.tests.test_compact_25 + pycellga.tests.test_compact_25
    - src.tests.test_compact_9 + pycellga.tests.test_compact_9
    - src.tests.test_count_sat + pycellga.tests.test_count_sat
    - src.tests.test_dropwave_function + pycellga.tests.test_dropwave_function
    - src.tests.test_ecc + pycellga.tests.test_ecc
    - src.tests.test_flat_crossover + pycellga.tests.test_flat_crossover
    - src.tests.test_float_uniform_mutation + pycellga.tests.test_float_uniform_mutation
    - src.tests.test_fms + pycellga.tests.test_fms
    - src.tests.test_grid + pycellga.tests.test_grid
    - src.tests.test_griewank_function + pycellga.tests.test_griewank_function
    - src.tests.test_holzman_function + pycellga.tests.test_holzman_function
    - src.tests.test_individual + pycellga.tests.test_individual
    - src.tests.test_insertion_mutation + pycellga.tests.test_insertion_mutation
    - src.tests.test_levy_function + pycellga.tests.test_levy_function
    - src.tests.test_linear_5 + pycellga.tests.test_linear_5
    - src.tests.test_linear_9 + pycellga.tests.test_linear_9
    - src.tests.test_linear_crossover + pycellga.tests.test_linear_crossover
    - src.tests.test_matyas_function + pycellga.tests.test_matyas_function
    - src.tests.test_maxcut100 + pycellga.tests.test_maxcut100
    - src.tests.test_maxcut20_01 + pycellga.tests.test_maxcut20_01
    - src.tests.test_maxcut20_09 + pycellga.tests.test_maxcut20_09
    - src.tests.test_mmdp + pycellga.tests.test_mmdp
    - src.tests.test_one_max + pycellga.tests.test_one_max
    - src.tests.test_one_point_crossover + pycellga.tests.test_one_point_crossover
    - src.tests.test_optimizer_alpha_cga + pycellga.tests.test_optimizer_alpha_cga
    - src.tests.test_optimizer_ccga + pycellga.tests.test_optimizer_ccga
    - src.tests.test_optimizer_cga + pycellga.tests.test_optimizer_cga
    - src.tests.test_optimizer_mccga + pycellga.tests.test_optimizer_mccga
    - src.tests.test_optimizer_sync_cga + pycellga.tests.test_optimizer_sync_cga
    - src.tests.test_peak + pycellga.tests.test_peak
    - src.tests.test_pmx_crossover + pycellga.tests.test_pmx_crossover
    - src.tests.test_population + pycellga.tests.test_population
    - src.tests.test_pow_function + pycellga.tests.test_pow_function
    - src.tests.test_powell_function + pycellga.tests.test_powell_function
    - src.tests.test_rastrigin + pycellga.tests.test_rastrigin
    - src.tests.test_rosenbrock + pycellga.tests.test_rosenbrock
    - src.tests.test_rothellipsoid_function + pycellga.tests.test_rothellipsoid_function
    - src.tests.test_roulette_wheel_selection + pycellga.tests.test_roulette_wheel_selection
    - src.tests.test_schaffer2_function + pycellga.tests.test_schaffer2_function
    - src.tests.test_schaffer_function + pycellga.tests.test_schaffer_function
    - src.tests.test_schwefel + pycellga.tests.test_schwefel
    - src.tests.test_shuffle_mutation + pycellga.tests.test_shuffle_mutation
    - src.tests.test_sphere + pycellga.tests.test_sphere
    - src.tests.test_styblinskitang_function + pycellga.tests.test_styblinskitang_function
    - src.tests.test_sumofdifferentpowers_function + pycellga.tests.test_sumofdifferentpowers_function
    - src.tests.test_swap_mutation + pycellga.tests.test_swap_mutation
    - src.tests.test_threehumps_function + pycellga.tests.test_threehumps_function
    - src.tests.test_tournament_selection + pycellga.tests.test_tournament_selection
    - src.tests.test_tsp + pycellga.tests.test_tsp
    - src.tests.test_two_opt_mutation + pycellga.tests.test_two_opt_mutation
    - src.tests.test_two_point_crossover + pycellga.tests.test_two_point_crossover
    - src.tests.test_unfair_average_crossover + pycellga.tests.test_unfair_average_crossover
    - src.tests.test_uniform_crossover + pycellga.tests.test_uniform_crossover
    - src.tests.test_zakharov_function + pycellga.tests.test_zakharov_function
    - src.tests.test_zettle_function + pycellga.tests.test_zettle_function
diff --git a/src.example.html b/pycellga.example.html similarity index 55% rename from src.example.html rename to pycellga.example.html index 10d5c62..198382a 100644 --- a/src.example.html +++ b/pycellga.example.html @@ -4,7 +4,7 @@ - src.example package — PYCELLGA Documentation 1.0.0 documentation + pycellga.example package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

Contents:

  • pycellga
      -
    • src package
        -
      • Subpackages @@ -86,10 +86,10 @@
        @@ -97,28 +97,28 @@
        -
        -

        src.example package

        +
        +

        pycellga.example package

        Submodules

        -
        -

        src.example.example_alpha_cga module

        +
        +

        pycellga.example.example_alpha_cga module

        -
        -class src.example.example_alpha_cga.ExampleProblem[source]
        +
        +class pycellga.example.example_alpha_cga.ExampleProblem[source]

        Bases: object

        Example problem class to be minimized.

        This class implements a simple sum of squares function with a global minimum value of 0, achieved when all elements of the chromosome are equal to 0.

        -
        -__init__()[source]
        +
        +__init__()[source]
        -
        -f(x)[source]
        +
        +f(x)[source]

        Compute the objective function value.

        This method implements the sum of squares function.

        @@ -137,8 +137,8 @@

        Submodules -
        -src.example.example_alpha_cga.run_alpha_cga_example()[source]
        +
        +pycellga.example.example_alpha_cga.run_alpha_cga_example()[source]

        Run the Alpha Cellular Genetic Algorithm (alpha_cga) using the optimizer module.

        The alpha_cga is configured with a 5x5 grid, 100 generations, and a chromosome size of 10. The problem being solved is an instance of the ExampleProblem class, @@ -154,22 +154,22 @@

        Submodules -

        src.example.example_ccga module

        +
        +

        pycellga.example.example_ccga module

        -
        -class src.example.example_ccga.ExampleProblem[source]
        +
        +class pycellga.example.example_ccga.ExampleProblem[source]

        Bases: object

        Example problem class to be minimized.

        This class implements a simple binary optimization problem, where the goal is to maximize the number of 1s.

        -
        -__init__()[source]
        +
        +__init__()[source]
        -
        -f(x)[source]
        +
        +f(x)[source]

        Compute the objective function value.

        This method implements a simple sum of binary values.

        @@ -188,8 +188,8 @@

        Submodules -
        -src.example.example_ccga.run_ccga_example()[source]
        +
        +pycellga.example.example_ccga.run_ccga_example()[source]

        Run the Compact Cellular Genetic Algorithm (ccga) using the optimizer module.

        The ccga is configured with a 5x5 grid, 100 generations, and a chromosome size of 10. The problem being solved is an instance of the ExampleProblem class, @@ -205,23 +205,23 @@

        Submodules -

        src.example.example_cga module

        +
        +

        pycellga.example.example_cga module

        -
        -class src.example.example_cga.ExampleProblem[source]
        +
        +class pycellga.example.example_cga.ExampleProblem[source]

        Bases: object

        Example problem class to be minimized.

        This class implements a simple sum of squares function with a global minimum value of 0, achieved when all elements of the chromosome are equal to 0.

        -
        -__init__()[source]
        +
        +__init__()[source]
        -
        -f(x)[source]
        +
        +f(x)[source]

        Compute the objective function value.

        This method implements the sum of squares function.

        @@ -240,8 +240,8 @@

        Submodules -
        -src.example.example_cga.run_cga_example()[source]
        +
        +pycellga.example.example_cga.run_cga_example()[source]

        Run the Cellular Genetic Algorithm (cga) using the optimizer module.

        The cga is configured with a 5x5 grid, 100 generations, and a chromosome size of 5. The problem being solved is an instance of the ExampleProblem class, @@ -257,23 +257,23 @@

        Submodules -

        src.example.example_mcccga module

        +
        +

        pycellga.example.example_mcccga module

        -
        -class src.example.example_mcccga.RealProblem[source]
        +
        +class pycellga.example.example_mcccga.RealProblem[source]

        Bases: object

        Example problem class to be minimized.

        This class implements a simple sum of squares function with a global minimum value of 0, achieved when all elements of the chromosome are equal to 0.

        -
        -__init__()[source]
        +
        +__init__()[source]
        -
        -f(x)[source]
        +
        +f(x)[source]

        Compute the objective function value.

        This method implements the sum of squares function.

        @@ -292,8 +292,8 @@

        Submodules -
        -src.example.example_mcccga.run_mcccga_example()[source]
        +
        +pycellga.example.example_mcccga.run_mcccga_example()[source]

        Run the Machine-Coded Compact Cellular Genetic Algorithm (mcccga) using the optimizer module.

        The mcccga is configured with a 5x5 grid, 100 generations, and a chromosome size of 10. @@ -310,23 +310,23 @@

        Submodules -

        src.example.example_sync_cga module

        +
        +

        pycellga.example.example_sync_cga module

        -
        -class src.example.example_sync_cga.ExampleProblem[source]
        +
        +class pycellga.example.example_sync_cga.ExampleProblem[source]

        Bases: object

        Example problem class to be minimized.

        This class implements a simple sum of squares function with a global minimum value of 0, achieved when all elements of the chromosome are equal to 0.

        -
        -__init__()[source]
        +
        +__init__()[source]
        -
        -f(x)[source]
        +
        +f(x)[source]

        Compute the objective function value.

        This method implements the sum of squares function.

        @@ -345,8 +345,8 @@

        Submodules -
        -src.example.example_sync_cga.run_sync_cga_example()[source]
        +
        +pycellga.example.example_sync_cga.run_sync_cga_example()[source]

        Run the Synchronous Cellular Genetic Algorithm (sync_cga) using the optimizer module.

        The sync_cga is configured with a 5x5 grid, 100 generations, and a chromosome size of 5. The problem being solved is an instance of the ExampleProblem class, @@ -362,8 +362,8 @@

        Submodules -

        Module contents

        +
        +

        Module contents

        @@ -371,8 +371,8 @@

        Submodules - - + +


        diff --git a/pycellga.html b/pycellga.html new file mode 100644 index 0000000..1f7d3d6 --- /dev/null +++ b/pycellga.html @@ -0,0 +1,1081 @@ + + + + + + + pycellga package — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + + + +
        + + +
        + +
        +
        +
        + +
        +
        +
        +
        + +
        +

        pycellga package

        +
        +

        Subpackages

        +
        + +
        +
        +
        +

        Submodules

        +
        +
        +

        pycellga.byte_operators module

        +
        +
        +pycellga.byte_operators.bits_to_float(bit_list: list[int]) float[source]
        +

        Convert a bit representation to its float value.

        +
        +
        Parameters:
        +

        bit_list (list of int) – A list of 32 integers (0 or 1) representing the bit pattern of the float.

        +
        +
        Returns:
        +

        The float value represented by the bit pattern.

        +
        +
        Return type:
        +

        float

        +
        +
        +
        + +
        +
        +pycellga.byte_operators.bits_to_floats(bit_list: list[int]) list[float][source]
        +

        Convert a combined bit representation back to a list of floats.

        +
        +
        Parameters:
        +

        bit_list (list of int) – A list of integers (0 or 1) representing the combined bit patterns of the floats.

        +
        +
        Returns:
        +

        The list of float values represented by the bit pattern.

        +
        +
        Return type:
        +

        list of float

        +
        +
        +
        + +
        +
        +pycellga.byte_operators.float_to_bits(float_number: float) list[int][source]
        +

        Convert a float to its bit representation.

        +
        +
        Parameters:
        +

        float_number (float) – The float number to be converted.

        +
        +
        Returns:
        +

        A list of 32 integers (0 or 1) representing the bit pattern of the float.

        +
        +
        Return type:
        +

        list of int

        +
        +
        +
        + +
        +
        +pycellga.byte_operators.floats_to_bits(float_list: list[float]) list[int][source]
        +

        Convert a list of floats to their combined bit representation.

        +
        +
        Parameters:
        +

        float_list (list of float) – The list of float numbers to be converted.

        +
        +
        Returns:
        +

        A list of integers (0 or 1) representing the combined bit patterns of the floats.

        +
        +
        Return type:
        +

        list of int

        +
        +
        +
        + +
        +
        +

        pycellga.grid module

        +
        +
        +class pycellga.grid.Grid(n_rows: int, n_cols: int)[source]
        +

        Bases: object

        +

        A class to represent a 2D grid.

        +
        +
        +n_rows
        +

        Number of rows in the grid.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +n_cols
        +

        Number of columns in the grid.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +__init__(n_rows: int, n_cols: int)[source]
        +

        Initialize the Grid with the number of rows and columns.

        +
        +
        Parameters:
        +
          +
        • n_rows (int) – Number of rows in the grid.

        • +
        • n_cols (int) – Number of columns in the grid.

        • +
        +
        +
        +
        + +
        +
        +make_2d_grid() list[source]
        +

        Create a 2D grid where each cell is represented by a tuple (row, column).

        +
        +
        Returns:
        +

        A list of tuples where each tuple represents a grid cell. +Each tuple is of the form (row, column), with rows and columns starting from 1.

        +
        +
        Return type:
        +

        list

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.individual module

        +
        +
        +

        pycellga.optimizer module

        +
        +
        +

        pycellga.population module

        +
        +
        +

        Module contents

        +
        +
        + + +
        +
        + +
        +
        +
        +
        + + + + \ No newline at end of file diff --git a/pycellga.mutation.html b/pycellga.mutation.html new file mode 100644 index 0000000..303f607 --- /dev/null +++ b/pycellga.mutation.html @@ -0,0 +1,537 @@ + + + + + + + pycellga.mutation package — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + + + +
        + + +
        + +
        +
        +
        + +
        +
        +
        +
        + +
        +

        pycellga.mutation package

        +
        +

        Submodules

        +
        +
        +

        pycellga.mutation.bit_flip_mutation module

        +
        +
        +class pycellga.mutation.bit_flip_mutation.BitFlipMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        BitFlipMutation performs a bit flip mutation on an individual in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the BitFlipMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a bit flip mutation on the candidate individual.

        +

        A single bit in the candidate’s chromosome is randomly selected and flipped +(i.e., a 0 is changed to a 1, or a 1 is changed to a 0).

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.byte_mutation module

        +
        +
        +class pycellga.mutation.byte_mutation.ByteMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        ByteMutation operator defined in (Satman, 2013). ByteMutation performs a byte-wise mutation +on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the ByteMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a byte-wise mutation on the candidate individual.

        +

        A single byte in one of the candidate’s chromosome’s floating-point numbers is randomly selected +and either incremented or decremented by 1, wrapping around if necessary.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.byte_mutation_random module

        +
        +
        +class pycellga.mutation.byte_mutation_random.ByteMutationRandom(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        ByteMutationRandom operator defined in (Satman, 2013). ByteMutationRandom performs +a random byte mutation on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the ByteMutationRandom object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a random byte mutation on the candidate individual.

        +

        A single byte in one of the candidate’s chromosome’s floating-point numbers is randomly selected +and mutated to a random value.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.float_uniform_mutation module

        +
        +
        +class pycellga.mutation.float_uniform_mutation.FloatUniformMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        FloatUniformMutation performs a uniform mutation on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the FloatUniformMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a uniform mutation on the candidate individual.

        +

        Each gene in the candidate’s chromosome is mutated by adding or subtracting a random float uniformly +sampled from [0, 1]. The mutation is rounded to 5 decimal places.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.insertion_mutation module

        +
        +
        +class pycellga.mutation.insertion_mutation.InsertionMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        InsertionMutation performs an insertion mutation on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the InsertionMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform an insertion mutation on the candidate individual.

        +

        A gene in the candidate’s chromosome is randomly selected and moved to a new position in the chromosome.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.mutation_operator module

        +
        +
        +class pycellga.mutation.mutation_operator.MutationOperator[source]
        +

        Bases: object

        +
        +
        +mutate()[source]
        +
        + +
        + +
        +
        +

        pycellga.mutation.shuffle_mutation module

        +
        +
        +class pycellga.mutation.shuffle_mutation.ShuffleMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        ShuffleMutation performs a shuffle mutation on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the ShuffleMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a shuffle mutation on the candidate individual.

        +

        A subsequence of genes in the candidate’s chromosome is randomly selected and shuffled.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.swap_mutation module

        +
        +
        +class pycellga.mutation.swap_mutation.SwapMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        SwapMutation performs a swap mutation on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the SwapMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a swap mutation on the candidate individual.

        +

        Two genes in the candidate’s chromosome are randomly selected and swapped.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        pycellga.mutation.two_opt_mutation module

        +
        +
        +class pycellga.mutation.two_opt_mutation.TwoOptMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Bases: MutationOperator

        +

        TwoOptMutation performs a 2-opt mutation on an individual’s chromosome in a Genetic Algorithm.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        +
        +__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
        +

        Initialize the TwoOptMutation object.

        +
        +
        Parameters:
        +
          +
        • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

        • +
        • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

        • +
        +
        +
        +
        + +
        +
        +mutate() Individual[source]
        +

        Perform a 2-opt mutation on the candidate individual.

        +

        A segment of the candidate’s chromosome is randomly selected and reversed.

        +
        +
        Returns:
        +

        A new individual with the mutated chromosome.

        +
        +
        Return type:
        +

        Individual

        +
        +
        +
        + +
        + +
        +
        +

        Module contents

        +
        +
        + + +
        +
        + +
        +
        +
        +
        + + + + \ No newline at end of file diff --git a/src.neighborhoods.html b/pycellga.neighborhoods.html similarity index 58% rename from src.neighborhoods.html rename to pycellga.neighborhoods.html index 97d3e29..69f9fbc 100644 --- a/src.neighborhoods.html +++ b/pycellga.neighborhoods.html @@ -4,7 +4,7 @@ - src.neighborhoods package — PYCELLGA Documentation 1.0.0 documentation + pycellga.neighborhoods package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

        Contents:

        • pycellga
            -
          • src package
              -
            • Subpackages @@ -86,10 +86,10 @@
              @@ -97,16 +97,16 @@
              -
              -

              src.neighborhoods package

              +
              +

              pycellga.neighborhoods package

              Submodules

              -
              -

              src.neighborhoods.compact_13 module

              +
              +

              pycellga.neighborhoods.compact_13 module

              -
              -class src.neighborhoods.compact_13.Compact13(position, n_rows, n_cols)[source]
              +
              +class pycellga.neighborhoods.compact_13.Compact13(position, n_rows, n_cols)[source]

              Bases: object

              Compact13 calculates the positions of the 12 neighbors in a 2D grid for a given position, considering wrapping at the grid edges.

              @@ -120,8 +120,8 @@

              Submodules -
              -__init__(position, n_rows, n_cols)[source]
              +
              +__init__(position, n_rows, n_cols)[source]

              Initialize the Compact13 object.

              Parameters:
              @@ -135,8 +135,8 @@

              Submodules -
              -calculate_neighbors_positions() list[source]
              +
              +calculate_neighbors_positions() list[source]

              Calculate the positions of the 12 neighbors for the given position in the grid.

              The neighbors are determined by considering wrapping at the grid edges.

              @@ -152,11 +152,11 @@

              Submodules -

              src.neighborhoods.compact_21 module

              +
              +

              pycellga.neighborhoods.compact_21 module

              -
              -class src.neighborhoods.compact_21.Compact21(position, n_rows, n_cols)[source]
              +
              +class pycellga.neighborhoods.compact_21.Compact21(position, n_rows, n_cols)[source]

              Bases: object

              Compact21 calculates the positions of the 20 neighbors in a 2D grid for a given position, considering wrapping at the grid edges.

              @@ -170,8 +170,8 @@

              Submodules -
              -__init__(position, n_rows, n_cols)[source]
              +
              +__init__(position, n_rows, n_cols)[source]

              Initialize the Compact21 object.

              Parameters:
              @@ -185,8 +185,8 @@

              Submodules -
              -calculate_neighbors_positions() list[source]
              +
              +calculate_neighbors_positions() list[source]

              Calculate the positions of the 20 neighbors for the given position in the grid.

              The neighbors are determined by considering wrapping at the grid edges.

              @@ -202,11 +202,11 @@

              Submodules -

              src.neighborhoods.compact_25 module

              +
              +

              pycellga.neighborhoods.compact_25 module

              -
              -class src.neighborhoods.compact_25.Compact25(position, n_rows, n_cols)[source]
              +
              +class pycellga.neighborhoods.compact_25.Compact25(position, n_rows, n_cols)[source]

              Bases: object

              Compact25 calculates the positions of the 24 neighbors in a 2D grid for a given position, considering wrapping at the grid edges.

              @@ -220,8 +220,8 @@

              Submodules -
              -__init__(position, n_rows, n_cols)[source]
              +
              +__init__(position, n_rows, n_cols)[source]

              Initialize the Compact25 object.

              Parameters:
              @@ -235,8 +235,8 @@

              Submodules -
              -calculate_neighbors_positions() list[source]
              +
              +calculate_neighbors_positions() list[source]

              Calculate the positions of the 24 neighbors for the given position in the grid.

              The neighbors are determined by considering wrapping at the grid edges.

              @@ -252,11 +252,11 @@

              Submodules -

              src.neighborhoods.compact_9 module

              +
              +

              pycellga.neighborhoods.compact_9 module

              -
              -class src.neighborhoods.compact_9.Compact9(position, n_rows, n_cols)[source]
              +
              +class pycellga.neighborhoods.compact_9.Compact9(position, n_rows, n_cols)[source]

              Bases: object

              Compact9 calculates the positions of the 8 neighbors in a 2D grid for a given position, considering wrapping at the grid edges.

              @@ -270,8 +270,8 @@

              Submodules -
              -__init__(position, n_rows, n_cols)[source]
              +
              +__init__(position, n_rows, n_cols)[source]

              Initialize the Compact9 object.

              Parameters:
              @@ -285,8 +285,8 @@

              Submodules -
              -calculate_neighbors_positions() list[source]
              +
              +calculate_neighbors_positions() list[source]

              Calculate the positions of the 8 neighbors for the given position in the grid.

              The neighbors are determined by considering wrapping at the grid edges.

              @@ -302,11 +302,11 @@

              Submodules -

              src.neighborhoods.linear_5 module

              +
              +

              pycellga.neighborhoods.linear_5 module

              -
              -class src.neighborhoods.linear_5.Linear5(position, n_rows, n_cols)[source]
              +
              +class pycellga.neighborhoods.linear_5.Linear5(position, n_rows, n_cols)[source]

              Bases: object

              Linear5 calculates the positions of the 4 neighbors in a 2D grid for a given position, considering wrapping at the grid edges.

              @@ -320,8 +320,8 @@

              Submodules -
              -__init__(position, n_rows, n_cols)[source]
              +
              +__init__(position, n_rows, n_cols)[source]

              Initialize the Linear5 object.

              Parameters:
              @@ -335,8 +335,8 @@

              Submodules -
              -calculate_neighbors_positions() list[source]
              +
              +calculate_neighbors_positions() list[source]

              Calculate the positions of the 4 neighbors for the given position in the grid.

              The neighbors are determined by considering wrapping at the grid edges.

              @@ -352,11 +352,11 @@

              Submodules -

              src.neighborhoods.linear_9 module

              +
              +

              pycellga.neighborhoods.linear_9 module

              -
              -class src.neighborhoods.linear_9.Linear9(position, n_rows, n_cols)[source]
              +
              +class pycellga.neighborhoods.linear_9.Linear9(position, n_rows, n_cols)[source]

              Bases: object

              Linear9 calculates the positions of the 8 neighbors in a 2D grid for a given position, considering wrapping at the grid edges.

              @@ -370,8 +370,8 @@

              Submodules -
              -__init__(position, n_rows, n_cols)[source]
              +
              +__init__(position, n_rows, n_cols)[source]

              Initialize the Linear9 object.

              Parameters:
              @@ -385,8 +385,8 @@

              Submodules -
              -calculate_neighbors_positions() list[source]
              +
              +calculate_neighbors_positions() list[source]

              Calculate the positions of the 8 neighbors for the given position in the grid.

              The neighbors are determined by considering wrapping at the grid edges.

              @@ -402,8 +402,8 @@

              Submodules -

              Module contents

              +
              +

              Module contents

              @@ -411,8 +411,8 @@

              Submodules - - + +


              diff --git a/pycellga.problems.html b/pycellga.problems.html new file mode 100644 index 0000000..f4c806f --- /dev/null +++ b/pycellga.problems.html @@ -0,0 +1,225 @@ + + + + + + + pycellga.problems package — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + + + +
              + + +
              + +
              +
              +
              + +
              +
              +
              +
              + +
              +

              pycellga.problems package

              +
              +

              Subpackages

              +
              + +
              +
              +
              +

              Submodules

              +
              +
              +

              pycellga.problems.abstract_problem module

              +
              +
              +class pycellga.problems.abstract_problem.AbstractProblem[source]
              +

              Bases: object

              +

              An abstract base class for optimization problems.

              +
              +
              +f(x)[source]
              +

              Evaluates the fitness of a given solution x.

              +
              + +
              +
              +f(x)[source]
              +

              Evaluate the fitness of a given solution x.

              +
              +
              Parameters:
              +

              x (list) – A list representing a candidate solution.

              +
              +
              Returns:
              +

              The fitness value of the candidate solution.

              +
              +
              Return type:
              +

              float

              +
              +
              Raises:
              +

              NotImplementedError – If the method is not implemented by a subclass.

              +
              +
              +
              + +
              + +
              +
              +

              Module contents

              +
              +
              + + +
              +
              + +
              +
              +
              +
              + + + + \ No newline at end of file diff --git a/src.problems.single_objective.continuous.html b/pycellga.problems.single_objective.continuous.html similarity index 59% rename from src.problems.single_objective.continuous.html rename to pycellga.problems.single_objective.continuous.html index 28e63d5..2d1286e 100644 --- a/src.problems.single_objective.continuous.html +++ b/pycellga.problems.single_objective.continuous.html @@ -4,7 +4,7 @@ - src.problems.single_objective.continuous package — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.continuous package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

              Contents:

              • pycellga
                  -
                • src package
                    -
                  • Subpackages @@ -86,12 +86,12 @@
                    @@ -99,29 +99,29 @@
                    -
                    -

                    src.problems.single_objective.continuous package

                    +
                    +

                    pycellga.problems.single_objective.continuous package

                    Submodules

                    -
                    -

                    src.problems.single_objective.continuous.ackley module

                    +
                    +

                    pycellga.problems.single_objective.continuous.ackley module

                    -
                    -class src.problems.single_objective.continuous.ackley.Ackley[source]
                    +
                    +class pycellga.problems.single_objective.continuous.ackley.Ackley[source]

                    Bases: AbstractProblem

                    Ackley function implementation for optimization problems.

                    The Ackley function is widely used for testing optimization algorithms. It has a nearly flat outer region and a large hole at the center. The function is usually evaluated on the hypercube x_i ∈ [-32.768, 32.768], for all i = 1, 2, …, d.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Ackley function value for a given list of variables.

                    @@ -130,7 +130,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Ackley function value for a given list of variables.

                    Parameters:
                    @@ -148,23 +148,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.bentcigar module

                    +
                    +

                    pycellga.problems.single_objective.continuous.bentcigar module

                    -
                    -class src.problems.single_objective.continuous.bentcigar.Bentcigar[source]
                    +
                    +class pycellga.problems.single_objective.continuous.bentcigar.Bentcigar[source]

                    Bases: AbstractProblem

                    Bentcigar function implementation for optimization problems.

                    The Bentcigar function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-100, 100], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(X: list) float[source]
                    +
                    +f(X: list) float[source]

                    Calculates the Bentcigar function value for a given list of variables.

                    @@ -173,7 +173,7 @@

                    Submodules
                    -f(X: list) float[source]
                    +f(X: list) float[source]

                    Calculate the Bentcigar function value for a given list of variables.

                    Parameters:
                    @@ -191,23 +191,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.bohachevsky module

                    +
                    +

                    pycellga.problems.single_objective.continuous.bohachevsky module

                    -
                    -class src.problems.single_objective.continuous.bohachevsky.Bohachevsky[source]
                    +
                    +class pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky[source]

                    Bases: AbstractProblem

                    Bohachevsky function implementation for optimization problems.

                    The Bohachevsky function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-15, 15], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Bohachevsky function value for a given list of variables.

                    @@ -216,7 +216,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Bohachevsky function value for a given list of variables.

                    Parameters:
                    @@ -234,23 +234,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.chichinadze module

                    +
                    +

                    pycellga.problems.single_objective.continuous.chichinadze module

                    -
                    -class src.problems.single_objective.continuous.chichinadze.Chichinadze[source]
                    +
                    +class pycellga.problems.single_objective.continuous.chichinadze.Chichinadze[source]

                    Bases: AbstractProblem

                    Chichinadze function implementation for optimization problems.

                    The Chichinadze function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x, y ∈ [-30, 30].

                    -
                    -None
                    +
                    +None
                    -
                    -f(X: list) float[source]
                    +
                    +f(X: list) float[source]

                    Calculates the Chichinadze function value for a given list of variables.

                    @@ -259,7 +259,7 @@

                    Submodules
                    -f(X: list) float[source]
                    +f(X: list) float[source]

                    Calculate the Chichinadze function value for a given list of variables.

                    Parameters:
                    @@ -277,24 +277,24 @@

                    Submodules -

                    src.problems.single_objective.continuous.dropwave module

                    +
                    +

                    pycellga.problems.single_objective.continuous.dropwave module

                    -
                    -class src.problems.single_objective.continuous.dropwave.Dropwave[source]
                    +
                    +class pycellga.problems.single_objective.continuous.dropwave.Dropwave[source]

                    Bases: AbstractProblem

                    Dropwave function for optimization problems.

                    The Dropwave function is a multimodal function commonly used as a performance test problem for optimization algorithms. It is defined within the bounds -5.12 ≤ xi ≤ 5.12 for i = 1, 2, and has a global minimum at f(0, 0) = -1.

                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Computes the value of the Dropwave function at a given point x.

                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Evaluate the Dropwave function at a given point.

                    Parameters:
                    @@ -326,22 +326,22 @@

                    Submodules -

                    src.problems.single_objective.continuous.fms module

                    +
                    +

                    pycellga.problems.single_objective.continuous.fms module

                    -
                    -class src.problems.single_objective.continuous.fms.Fms[source]
                    +
                    +class pycellga.problems.single_objective.continuous.fms.Fms[source]

                    Bases: AbstractProblem

                    Fms function implementation for optimization problems.

                    The Fms function is used for testing optimization algorithms, specifically those dealing with frequency modulation sound.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Fms function value for a given list of variables.

                    @@ -352,7 +352,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Fms function value for a given list of variables.

                    Parameters:
                    @@ -370,18 +370,18 @@

                    Submodules -

                    src.problems.single_objective.continuous.griewank module

                    +
                    +

                    pycellga.problems.single_objective.continuous.griewank module

                    -
                    -class src.problems.single_objective.continuous.griewank.Griewank[source]
                    +
                    +class pycellga.problems.single_objective.continuous.griewank.Griewank[source]

                    Bases: AbstractProblem

                    Griewank function implementation for optimization problems.

                    The Griewank function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-600, 600], for all i = 1, 2, …, n.

                    -
                    -f(X: list) float[source]
                    +
                    +f(X: list) float[source]

                    Calculates the Griewank function value for a given list of variables.

                    @@ -390,7 +390,7 @@

                    Submodules
                    -f(X: list) float[source]
                    +f(X: list) float[source]

                    Calculate the Griewank function value for a given list of variables.

                    Parameters:
                    @@ -408,23 +408,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.holzman module

                    +
                    +

                    pycellga.problems.single_objective.continuous.holzman module

                    -
                    -class src.problems.single_objective.continuous.holzman.Holzman[source]
                    +
                    +class pycellga.problems.single_objective.continuous.holzman.Holzman[source]

                    Bases: AbstractProblem

                    Holzman function implementation for optimization problems.

                    The Holzman function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-10, 10], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Holzman function value for a given list of variables.

                    @@ -433,7 +433,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Holzman function value for a given list of variables.

                    Parameters:
                    @@ -451,23 +451,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.levy module

                    +
                    +

                    pycellga.problems.single_objective.continuous.levy module

                    -
                    -class src.problems.single_objective.continuous.levy.Levy[source]
                    +
                    +class pycellga.problems.single_objective.continuous.levy.Levy[source]

                    Bases: AbstractProblem

                    Levy function implementation for optimization problems.

                    The Levy function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-10, 10], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Levy function value for a given list of variables.

                    @@ -476,7 +476,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Levy function value for a given list of variables.

                    Parameters:
                    @@ -494,23 +494,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.matyas module

                    +
                    +

                    pycellga.problems.single_objective.continuous.matyas module

                    -
                    -class src.problems.single_objective.continuous.matyas.Matyas[source]
                    +
                    +class pycellga.problems.single_objective.continuous.matyas.Matyas[source]

                    Bases: AbstractProblem

                    Matyas function implementation for optimization problems.

                    The Matyas function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-10, 10], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(X: list) float[source]
                    +
                    +f(X: list) float[source]

                    Calculates the Matyas function value for a given list of variables.

                    @@ -519,7 +519,7 @@

                    Submodules
                    -f(X: list) float[source]
                    +f(X: list) float[source]

                    Calculate the Matyas function value for a given list of variables.

                    Parameters:
                    @@ -537,23 +537,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.pow module

                    +
                    +

                    pycellga.problems.single_objective.continuous.pow module

                    -
                    -class src.problems.single_objective.continuous.pow.Pow[source]
                    +
                    +class pycellga.problems.single_objective.continuous.pow.Pow[source]

                    Bases: AbstractProblem

                    Pow function implementation for optimization problems.

                    The Pow function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5.0, 15.0].

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Pow function value for a given list of variables.

                    @@ -562,7 +562,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Pow function value for a given list of variables.

                    Parameters:
                    @@ -580,23 +580,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.powell module

                    +
                    +

                    pycellga.problems.single_objective.continuous.powell module

                    -
                    -class src.problems.single_objective.continuous.powell.Powell[source]
                    +
                    +class pycellga.problems.single_objective.continuous.powell.Powell[source]

                    Bases: AbstractProblem

                    Powell function implementation for optimization problems.

                    The Powell function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-4, 5], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Powell function value for a given list of variables.

                    @@ -605,7 +605,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Powell function value for a given list of variables.

                    Parameters:
                    @@ -623,23 +623,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.rastrigin module

                    +
                    +

                    pycellga.problems.single_objective.continuous.rastrigin module

                    -
                    -class src.problems.single_objective.continuous.rastrigin.Rastrigin[source]
                    +
                    +class pycellga.problems.single_objective.continuous.rastrigin.Rastrigin[source]

                    Bases: AbstractProblem

                    Rastrigin function implementation for optimization problems.

                    The Rastrigin function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5.12, 5.12], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Rastrigin function value for a given list of variables.

                    @@ -648,7 +648,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Rastrigin function value for a given list of variables.

                    Parameters:
                    @@ -666,23 +666,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.rosenbrock module

                    +
                    +

                    pycellga.problems.single_objective.continuous.rosenbrock module

                    -
                    -class src.problems.single_objective.continuous.rosenbrock.Rosenbrock[source]
                    +
                    +class pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock[source]

                    Bases: AbstractProblem

                    Rosenbrock function implementation for optimization problems.

                    The Rosenbrock function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5, 10], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Rosenbrock function value for a given list of variables.

                    @@ -691,7 +691,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Rosenbrock function value for a given list of variables.

                    Parameters:
                    @@ -709,23 +709,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.rothellipsoid module

                    +
                    +

                    pycellga.problems.single_objective.continuous.rothellipsoid module

                    -
                    -class src.problems.single_objective.continuous.rothellipsoid.Rothellipsoid[source]
                    +
                    +class pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid[source]

                    Bases: AbstractProblem

                    Rotated Hyper-Ellipsoid function implementation for optimization problems.

                    The Rotated Hyper-Ellipsoid function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-100, 100], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Rotated Hyper-Ellipsoid function value for a given list of variables.

                    @@ -734,7 +734,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Rotated Hyper-Ellipsoid function value for a given list of variables.

                    Parameters:
                    @@ -752,24 +752,24 @@

                    Submodules -

                    src.problems.single_objective.continuous.schaffer module

                    +
                    +

                    pycellga.problems.single_objective.continuous.schaffer module

                    -
                    -class src.problems.single_objective.continuous.schaffer.Schaffer[source]
                    +
                    +class pycellga.problems.single_objective.continuous.schaffer.Schaffer[source]

                    Bases: AbstractProblem

                    Schaffer’s Function.

                    This class implements the Schaffer’s function, which is a common benchmark problem for optimization algorithms. The function is defined over a multidimensional input and is used to test the performance of optimization methods.

                    -
                    -f(X: list) float[source]
                    +
                    +f(X: list) float[source]

                    Calculates the value of the Schaffer’s function for a given list of input variables.

                    -f(X: list) float[source]
                    +f(X: list) float[source]

                    Evaluate the Schaffer’s function at a given point.

                    @@ -800,23 +800,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.schaffer2 module

                    +
                    +

                    pycellga.problems.single_objective.continuous.schaffer2 module

                    -
                    -class src.problems.single_objective.continuous.schaffer2.Schaffer2[source]
                    +
                    +class pycellga.problems.single_objective.continuous.schaffer2.Schaffer2[source]

                    Bases: AbstractProblem

                    Modified Schaffer function #2 implementation for optimization problems.

                    The Modified Schaffer function #2 is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-100, 100], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(X: list) float[source]
                    +
                    +f(X: list) float[source]

                    Calculates the Modified Schaffer function #2 value for a given list of variables.

                    @@ -825,7 +825,7 @@

                    Submodules
                    -f(X: list) float[source]
                    +f(X: list) float[source]

                    Calculate the Modified Schaffer function #2 value for a given list of variables.

                    Parameters:
                    @@ -843,23 +843,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.schwefel module

                    +
                    +

                    pycellga.problems.single_objective.continuous.schwefel module

                    -
                    -class src.problems.single_objective.continuous.schwefel.Schwefel[source]
                    +
                    +class pycellga.problems.single_objective.continuous.schwefel.Schwefel[source]

                    Bases: AbstractProblem

                    Schwefel function implementation for optimization problems.

                    The Schwefel function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-500, 500], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Schwefel function value for a given list of variables.

                    @@ -868,7 +868,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Schwefel function value for a given list of variables.

                    Parameters:
                    @@ -886,23 +886,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.sphere module

                    +
                    +

                    pycellga.problems.single_objective.continuous.sphere module

                    -
                    -class src.problems.single_objective.continuous.sphere.Sphere[source]
                    +
                    +class pycellga.problems.single_objective.continuous.sphere.Sphere[source]

                    Bases: AbstractProblem

                    Sphere function implementation for optimization problems.

                    The Sphere function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5.12, 5.12], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Sphere function value for a given list of variables.

                    @@ -911,7 +911,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Sphere function value for a given list of variables.

                    Parameters:
                    @@ -929,23 +929,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.styblinskitang module

                    +
                    +

                    pycellga.problems.single_objective.continuous.styblinskitang module

                    -
                    -class src.problems.single_objective.continuous.styblinskitang.StyblinskiTang[source]
                    +
                    +class pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang[source]

                    Bases: AbstractProblem

                    Styblinski-Tang function implementation for optimization problems.

                    The Styblinski-Tang function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5, 5], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Styblinski-Tang function value for a given list of variables.

                    @@ -954,7 +954,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Styblinski-Tang function value for a given list of variables.

                    Parameters:
                    @@ -972,16 +972,16 @@

                    Submodules -

                    src.problems.single_objective.continuous.sumofdifferentpowers module

                    +
                    +

                    pycellga.problems.single_objective.continuous.sumofdifferentpowers module

                    -
                    -class src.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers[source]
                    +
                    +class pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers[source]

                    Bases: AbstractProblem

                    Sum of Different Powers function implementation for optimization problems.

                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculate the Sum of Different Powers function value for a given list of variables.

                    Parameters:
                    @@ -999,23 +999,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.threehumps module

                    +
                    +

                    pycellga.problems.single_objective.continuous.threehumps module

                    -
                    -class src.problems.single_objective.continuous.threehumps.Threehumps[source]
                    +
                    +class pycellga.problems.single_objective.continuous.threehumps.Threehumps[source]

                    Bases: AbstractProblem

                    Three Hump Camel function implementation for optimization problems.

                    The Three Hump Camel function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5, 5], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Three Hump Camel function value for a given list of variables.

                    @@ -1024,7 +1024,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Three Hump Camel function value for a given list of variables.

                    Parameters:
                    @@ -1042,23 +1042,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.zakharov module

                    +
                    +

                    pycellga.problems.single_objective.continuous.zakharov module

                    -
                    -class src.problems.single_objective.continuous.zakharov.Zakharov[source]
                    +
                    +class pycellga.problems.single_objective.continuous.zakharov.Zakharov[source]

                    Bases: AbstractProblem

                    Zakharov function implementation for optimization problems.

                    The Zakharov function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5, 10], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Zakharov function value for a given list of variables.

                    @@ -1067,7 +1067,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Zakharov function value for a given list of variables.

                    Parameters:
                    @@ -1085,23 +1085,23 @@

                    Submodules -

                    src.problems.single_objective.continuous.zettle module

                    +
                    +

                    pycellga.problems.single_objective.continuous.zettle module

                    -
                    -class src.problems.single_objective.continuous.zettle.Zettle[source]
                    +
                    +class pycellga.problems.single_objective.continuous.zettle.Zettle[source]

                    Bases: AbstractProblem

                    Zettle function implementation for optimization problems.

                    The Zettle function is widely used for testing optimization algorithms. The function is usually evaluated on the hypercube x_i ∈ [-5, 5], for all i = 1, 2, …, n.

                    -
                    -None
                    +
                    +None
                    -
                    -f(x: list) float[source]
                    +
                    +f(x: list) float[source]

                    Calculates the Zettle function value for a given list of variables.

                    @@ -1110,7 +1110,7 @@

                    Submodules
                    -f(x: list) float[source]
                    +f(x: list) float[source]

                    Calculate the Zettle function value for a given list of variables.

                    Parameters:
                    @@ -1128,8 +1128,8 @@

                    Submodules -

                    Module contents

                    +
                    +

                    Module contents

                    @@ -1137,8 +1137,8 @@

                    Submodules - - + +


                    diff --git a/src.problems.single_objective.discrete.binary.html b/pycellga.problems.single_objective.discrete.binary.html similarity index 56% rename from src.problems.single_objective.discrete.binary.html rename to pycellga.problems.single_objective.discrete.binary.html index 23ad7c6..fbea5f7 100644 --- a/src.problems.single_objective.discrete.binary.html +++ b/pycellga.problems.single_objective.discrete.binary.html @@ -4,7 +4,7 @@ - src.problems.single_objective.discrete.binary package — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.binary package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

                    Contents:

                    • pycellga
                        -
                      • src package
                          -
                        • Subpackages @@ -86,13 +86,13 @@
                          @@ -100,27 +100,27 @@
                          -
                          -

                          src.problems.single_objective.discrete.binary package

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary package

                          Submodules

                          -
                          -

                          src.problems.single_objective.discrete.binary.count_sat module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.count_sat module

                          -
                          -class src.problems.single_objective.discrete.binary.count_sat.CountSat[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.count_sat.CountSat[source]

                          Bases: AbstractProblem

                          CountSat function implementation for optimization problems.

                          The CountSat function is used for testing optimization algorithms, particularly those involving satisfiability problems.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Calculates the CountSat function value for a given list of variables.

                          @@ -130,7 +130,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Calculate the CountSat function value for a given list of variables.

                          Parameters:
                          @@ -148,23 +148,23 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.ecc module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.ecc module

                          -
                          -class src.problems.single_objective.discrete.binary.ecc.Ecc[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.ecc.Ecc[source]

                          Bases: AbstractProblem

                          Error Correcting Codes Design Problem (ECC) function implementation for optimization problems.

                          The ECC function is used for testing optimization algorithms, particularly those involving error-correcting codes.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Calculates the ECC function value for a given list of variables.

                          @@ -173,7 +173,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Calculate the ECC function value for a given list of variables.

                          Parameters:
                          @@ -191,22 +191,22 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.fms module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.fms module

                          -
                          -class src.problems.single_objective.discrete.binary.fms.Fms[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.fms.Fms[source]

                          Bases: AbstractProblem

                          Frequency Modulation Sound (FMS) function implementation for optimization problems.

                          The FMS function is used for testing optimization algorithms, particularly those involving frequency modulation sound.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Calculates the FMS function value for a given list of variables.

                          @@ -216,7 +216,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Calculate the FMS function value for a given list of variables.

                          Parameters:
                          @@ -234,21 +234,21 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.maxcut100 module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.maxcut100 module

                          -
                          -class src.problems.single_objective.discrete.binary.maxcut100.Maxcut100[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100[source]

                          Bases: AbstractProblem

                          A class used to represent the Maximum Cut (MAXCUT) function for 100 nodes.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Calculates the fitness value of a given chromosome.

                          @@ -257,7 +257,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Calculates the fitness value of a given chromosome for the Maxcut problem.

                          Parameters:
                          @@ -275,22 +275,22 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.maxcut20_01 module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.maxcut20_01 module

                          -
                          -class src.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01[source]

                          Bases: AbstractProblem

                          Maximum Cut (MAXCUT) function implementation for optimization problems.

                          The MAXCUT function is used for testing optimization algorithms, particularly those involving maximum cut problems.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Calculates the MAXCUT function value for a given list of variables.

                          @@ -299,7 +299,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Calculate the MAXCUT function value for a given list of variables.

                          Parameters:
                          @@ -317,22 +317,22 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.maxcut20_09 module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.maxcut20_09 module

                          -
                          -class src.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09[source]

                          Bases: AbstractProblem

                          Maximum Cut (MAXCUT) function implementation for optimization problems.

                          The MAXCUT function is used for testing optimization algorithms, particularly those involving maximum cut problems.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Calculates the MAXCUT function value for a given list of variables.

                          @@ -341,7 +341,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Calculate the MAXCUT function value for a given list of variables.

                          Parameters:
                          @@ -359,24 +359,24 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.mmdp module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.mmdp module

                          -
                          -class src.problems.single_objective.discrete.binary.mmdp.Mmdp[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp[source]

                          Bases: AbstractProblem

                          Represents the Massively Multimodal Deceptive Problem (MMDP).

                          The MMDP is designed to deceive genetic algorithms by having multiple local optima. The problem is characterized by a chromosome length of 240 and a maximum fitness value of 40.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Evaluates the fitness of a given chromosome.

                          @@ -385,7 +385,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Evaluates the fitness of a given chromosome for the MMDP.

                          The fitness function is calculated based on the number of ones in each of the 40 subproblems, each of length 6.

                          @@ -407,29 +407,29 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.one_max module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.one_max module

                          -
                          -class src.problems.single_objective.discrete.binary.one_max.OneMax[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.one_max.OneMax[source]

                          Bases: AbstractProblem

                          Represents the OneMax problem.

                          The OneMax problem is a simple genetic algorithm benchmark problem where the fitness of a chromosome is the sum of its bits.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Evaluates the fitness of a given chromosome.

                          -f(x) float[source]
                          +f(x) float[source]

                          Evaluates the fitness of a given chromosome for the OneMax problem.

                          The fitness function is the sum of all bits in the chromosome.

                          @@ -449,23 +449,23 @@

                          Submodules -

                          src.problems.single_objective.discrete.binary.peak module

                          +
                          +

                          pycellga.problems.single_objective.discrete.binary.peak module

                          -
                          -class src.problems.single_objective.discrete.binary.peak.Peak[source]
                          +
                          +class pycellga.problems.single_objective.discrete.binary.peak.Peak[source]

                          Bases: AbstractProblem

                          Represents the Peak problem.

                          The Peak problem evaluates the fitness of a chromosome based on its distance to a set of target peaks.

                          -
                          -None
                          +
                          +None
                          -
                          -f(x: list) float[source]
                          +
                          +f(x: list) float[source]

                          Evaluates the fitness of a given chromosome.

                          @@ -474,7 +474,7 @@

                          Submodules
                          -f(x: list) float[source]
                          +f(x: list) float[source]

                          Evaluates the fitness of a given chromosome for the Peak problem.

                          The fitness function calculates the distance between the given chromosome and a set of randomly generated target peaks.

                          @@ -495,8 +495,8 @@

                          Submodules -

                          Module contents

                          +
                          +

                          Module contents

                          @@ -504,8 +504,8 @@

                          Submodules - - + +


                          diff --git a/pycellga.problems.single_objective.discrete.html b/pycellga.problems.single_objective.discrete.html new file mode 100644 index 0000000..d65ea01 --- /dev/null +++ b/pycellga.problems.single_objective.discrete.html @@ -0,0 +1,247 @@ + + + + + + + pycellga.problems.single_objective.discrete package — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + + + +
                          + + +
                          + +
                          +
                          +
                          + +
                          +
                          +
                          +
                          + +
                          +

                          pycellga.problems.single_objective.discrete package

                          +
                          +

                          Subpackages

                          + +
                          +
                          +

                          Module contents

                          +
                          +
                          + + +
                          +
                          + +
                          +
                          +
                          +
                          + + + + \ No newline at end of file diff --git a/src.problems.single_objective.discrete.permutation.html b/pycellga.problems.single_objective.discrete.permutation.html similarity index 58% rename from src.problems.single_objective.discrete.permutation.html rename to pycellga.problems.single_objective.discrete.permutation.html index b864528..0495a05 100644 --- a/src.problems.single_objective.discrete.permutation.html +++ b/pycellga.problems.single_objective.discrete.permutation.html @@ -4,7 +4,7 @@ - src.problems.single_objective.discrete.permutation package — PYCELLGA Documentation 1.0.0 documentation + pycellga.problems.single_objective.discrete.permutation package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

                          Contents:

                          • pycellga
                              -
                            • src package
                                -
                              • Subpackages @@ -86,13 +86,13 @@
                                @@ -100,16 +100,16 @@
                                -
                                -

                                src.problems.single_objective.discrete.permutation package

                                +
                                +

                                pycellga.problems.single_objective.discrete.permutation package

                                Submodules

                                -
                                -

                                src.problems.single_objective.discrete.permutation.tsp module

                                +
                                +

                                pycellga.problems.single_objective.discrete.permutation.tsp module

                                -
                                -class src.problems.single_objective.discrete.permutation.tsp.Tsp[source]
                                +
                                +class pycellga.problems.single_objective.discrete.permutation.tsp.Tsp[source]

                                Bases: AbstractProblem

                                Represents the Traveling Salesman Problem (TSP).

                                This class solves the TSP using geographical distances (GEO) for node coordinates.

                                @@ -121,8 +121,8 @@

                                Submodules -
                                -euclidean_dist(a: list, b: list) float[source]
                                +
                                +euclidean_dist(a: list, b: list) float[source]

                                Computes the Euclidean distance between two nodes.

                                Parameters:
                                @@ -141,8 +141,8 @@

                                Submodules -
                                -f(x: list) float[source]
                                +
                                +f(x: list) float[source]

                                Evaluates the fitness of a given chromosome (route) for the TSP.

                                This method calculates the total distance of the given route using geographical distances.

                                @@ -159,8 +159,8 @@

                                Submodules -
                                -gographical_dist(a: list, b: list) float[source]
                                +
                                +gographical_dist(a: list, b: list) float[source]

                                Computes the geographical distance between two nodes using the geodesic distance.

                                Parameters:
                                @@ -181,8 +181,8 @@

                                Submodules -

                                Module contents

                                +
                                +

                                Module contents

                                @@ -190,8 +190,8 @@

                                Submodules - - + +


                                diff --git a/pycellga.problems.single_objective.html b/pycellga.problems.single_objective.html new file mode 100644 index 0000000..f4549f4 --- /dev/null +++ b/pycellga.problems.single_objective.html @@ -0,0 +1,389 @@ + + + + + + + pycellga.problems.single_objective package — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + + + +
                                + + +
                                + +
                                +
                                +
                                + +
                                +
                                +
                                +
                                + +
                                +

                                pycellga.problems.single_objective package

                                +
                                +

                                Subpackages

                                +
                                + +
                                +
                                +
                                +

                                Module contents

                                +
                                +
                                + + +
                                +
                                + +
                                +
                                +
                                +
                                + + + + \ No newline at end of file diff --git a/src.recombination.html b/pycellga.recombination.html similarity index 52% rename from src.recombination.html rename to pycellga.recombination.html index 0c9947e..d2a98b9 100644 --- a/src.recombination.html +++ b/pycellga.recombination.html @@ -4,7 +4,7 @@ - src.recombination package — PYCELLGA Documentation 1.0.0 documentation + pycellga.recombination package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

                                Contents:

                                • pycellga
                                    -
                                  • src package
                                      -
                                    • Subpackages @@ -86,10 +86,10 @@
                                      @@ -97,16 +97,16 @@
                                      -
                                      -

                                      src.recombination package

                                      +
                                      +

                                      pycellga.recombination package

                                      Submodules

                                      -
                                      -

                                      src.recombination.arithmetic_crossover module

                                      +
                                      +

                                      pycellga.recombination.arithmetic_crossover module

                                      -
                                      -class src.recombination.arithmetic_crossover.ArithmeticCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.arithmetic_crossover.ArithmeticCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      ArithmeticCrossover performs an arithmetic crossover operation on a pair of parent individuals to produce offspring individuals.

                                      @@ -114,27 +114,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the ArithmeticCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the arithmetic crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -149,11 +149,11 @@

                                      Submodules -

                                      src.recombination.blxalpha_crossover module

                                      +
                                      +

                                      pycellga.recombination.blxalpha_crossover module

                                      -
                                      -class src.recombination.blxalpha_crossover.BlxalphaCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.blxalpha_crossover.BlxalphaCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      BlxalphaCrossover performs BLX-alpha crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -161,27 +161,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the BlxalphaCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]
                                      +
                                      +combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]

                                      Combine two parent individuals using BLX-alpha crossover to produce a single offspring.

                                      Parameters:
                                      @@ -201,8 +201,8 @@

                                      Submodules -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the BLX-alpha crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -217,11 +217,11 @@

                                      Submodules -

                                      src.recombination.byte_one_point_crossover module

                                      +
                                      +

                                      pycellga.recombination.byte_one_point_crossover module

                                      -
                                      -class src.recombination.byte_one_point_crossover.ByteOnePointCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      ByteOnePointCrossover operator defined in (Satman, 2013). ByteOnePointCrossover performs a one-point crossover at the byte level on a pair of parent individuals to produce offspring individuals.

                                      @@ -229,27 +229,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the ByteOnePointCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the one-point crossover on the parent individuals at the byte level to produce offspring.

                                      Returns:
                                      @@ -264,11 +264,11 @@

                                      Submodules -

                                      src.recombination.byte_uniform_crossover module

                                      +
                                      +

                                      pycellga.recombination.byte_uniform_crossover module

                                      -
                                      -class src.recombination.byte_uniform_crossover.ByteUniformCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      ByteUniformCrossover operator defined in (Satman, 2013). ByteUniformCrossover performs a uniform crossover at the byte level on a pair of parent individuals to produce offspring individuals.

                                      @@ -276,27 +276,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the ByteUniformCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]
                                      +
                                      +combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]

                                      Combine two parent individuals using uniform crossover at the byte level to produce a single offspring.

                                      Parameters:
                                      @@ -316,8 +316,8 @@

                                      Submodules -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the uniform crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -332,11 +332,11 @@

                                      Submodules -

                                      src.recombination.flat_crossover module

                                      +
                                      +

                                      pycellga.recombination.flat_crossover module

                                      -
                                      -class src.recombination.flat_crossover.FlatCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.flat_crossover.FlatCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      FlatCrossover performs a flat crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -344,27 +344,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the FlatCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]
                                      +
                                      +combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]

                                      Combine two parent individuals using flat crossover to produce a single offspring.

                                      Parameters:
                                      @@ -384,8 +384,8 @@

                                      Submodules -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the flat crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -400,11 +400,11 @@

                                      Submodules -

                                      src.recombination.linear_crossover module

                                      +
                                      +

                                      pycellga.recombination.linear_crossover module

                                      -
                                      -class src.recombination.linear_crossover.LinearCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.linear_crossover.LinearCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      LinearCrossover performs a linear crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -412,27 +412,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the LinearCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]
                                      +
                                      +combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]

                                      Combine two parent individuals using linear crossover to produce a single offspring.

                                      Parameters:
                                      @@ -452,8 +452,8 @@

                                      Submodules -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the linear crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -468,11 +468,11 @@

                                      Submodules -

                                      src.recombination.one_point_crossover module

                                      +
                                      +

                                      pycellga.recombination.one_point_crossover module

                                      -
                                      -class src.recombination.one_point_crossover.OnePointCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.one_point_crossover.OnePointCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      OnePointCrossover performs a one-point crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -480,27 +480,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the OnePointCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the one-point crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -515,11 +515,11 @@

                                      Submodules -

                                      src.recombination.pmx_crossover module

                                      +
                                      +

                                      pycellga.recombination.pmx_crossover module

                                      -
                                      -class src.recombination.pmx_crossover.PMXCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.pmx_crossover.PMXCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      PMXCrossover performs Partially Mapped Crossover (PMX) on a pair of parent individuals to produce offspring individuals.

                                      @@ -527,27 +527,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the PMXCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the PMX crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -562,25 +562,25 @@

                                      Submodules -

                                      src.recombination.recombination_operator module

                                      +
                                      +

                                      pycellga.recombination.recombination_operator module

                                      -
                                      -class src.recombination.recombination_operator.RecombinationOperator[source]
                                      +
                                      +class pycellga.recombination.recombination_operator.RecombinationOperator[source]

                                      Bases: object

                                      -
                                      -get_recombinations() list[source]
                                      +
                                      +get_recombinations() list[source]
                                      -
                                      -

                                      src.recombination.two_point_crossover module

                                      +
                                      +

                                      pycellga.recombination.two_point_crossover module

                                      -
                                      -class src.recombination.two_point_crossover.TwoPointCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.two_point_crossover.TwoPointCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      TwoPointCrossover performs a two-point crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -588,27 +588,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the TwoPointCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the two-point crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -623,11 +623,11 @@

                                      Submodules -

                                      src.recombination.unfair_avarage_crossover module

                                      +
                                      +

                                      pycellga.recombination.unfair_avarage_crossover module

                                      -
                                      -class src.recombination.unfair_avarage_crossover.UnfairAvarageCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      UnfairAvarageCrossover performs an unfair average crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -635,27 +635,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the UnfairAvarageCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the unfair average crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -670,11 +670,11 @@

                                      Submodules -

                                      src.recombination.uniform_crossover module

                                      +
                                      +

                                      pycellga.recombination.uniform_crossover module

                                      -
                                      -class src.recombination.uniform_crossover.UniformCrossover(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +class pycellga.recombination.uniform_crossover.UniformCrossover(parents: list, problem: AbstractProblem)[source]

                                      Bases: RecombinationOperator

                                      UniformCrossover performs a uniform crossover on a pair of parent individuals to produce offspring individuals.

                                      @@ -682,27 +682,27 @@

                                      SubmodulesParameters:

                                      -
                                      -__init__(parents: list, problem: AbstractProblem)[source]
                                      +
                                      +__init__(parents: list, problem: AbstractProblem)[source]

                                      Initialize the UniformCrossover object.

                                      Parameters:
                                      • parents (list) – A list containing two parent individuals.

                                      • -
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      • +
                                      • problem (AbstractProblem) – The problem instance that provides the fitness function.

                                      -
                                      -combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]
                                      +
                                      +combine(p1: Individual, p2: Individual, locationsource: Individual) Individual[source]

                                      Combine two parent individuals using uniform crossover to produce a single offspring.

                                      Parameters:
                                      @@ -722,8 +722,8 @@

                                      Submodules -
                                      -get_recombinations() List[Individual][source]
                                      +
                                      +get_recombinations() List[Individual][source]

                                      Perform the uniform crossover on the parent individuals to produce offspring.

                                      Returns:
                                      @@ -738,8 +738,8 @@

                                      Submodules -

                                      Module contents

                                      +
                                      +

                                      Module contents

                                      @@ -747,8 +747,8 @@

                                      Submodules - - + +


                                      diff --git a/src.selection.html b/pycellga.selection.html similarity index 53% rename from src.selection.html rename to pycellga.selection.html index a8f9429..5646246 100644 --- a/src.selection.html +++ b/pycellga.selection.html @@ -4,7 +4,7 @@ - src.selection package — PYCELLGA Documentation 1.0.0 documentation + pycellga.selection package — PYCELLGA Documentation 1.0.0 documentation @@ -21,8 +21,8 @@ - - + + @@ -47,24 +47,24 @@

                                      Contents:

                                      • pycellga
                                          -
                                        • src package
                                            -
                                          • Subpackages @@ -86,10 +86,10 @@
                                            @@ -97,16 +97,16 @@
                                            -
                                            -

                                            src.selection package

                                            +
                                            +

                                            pycellga.selection package

                                            Submodules

                                            -
                                            -

                                            src.selection.roulette_wheel_selection module

                                            +
                                            +

                                            pycellga.selection.roulette_wheel_selection module

                                            -
                                            -class src.selection.roulette_wheel_selection.RouletteWheelSelection(pop_list: List[Individual] = [], c: int = 0)[source]
                                            +
                                            +class pycellga.selection.roulette_wheel_selection.RouletteWheelSelection(pop_list: List[Individual] = [], c: int = 0)[source]

                                            Bases: SelectionOperator

                                            RouletteWheelSelection performs a roulette wheel selection on a population of individuals to select parent individuals for crossover.

                                            @@ -119,8 +119,8 @@

                                            Submodules -
                                            -__init__(pop_list: List[Individual] = [], c: int = 0)[source]
                                            +
                                            +__init__(pop_list: List[Individual] = [], c: int = 0)[source]

                                            Initialize the RouletteWheelSelection object.

                                            Parameters:
                                            @@ -133,8 +133,8 @@

                                            Submodules -
                                            -get_parents() List[Individual][source]
                                            +
                                            +get_parents() List[Individual][source]

                                            Perform the roulette wheel selection to get parent individuals.

                                            Returns:
                                            @@ -149,25 +149,25 @@

                                            Submodules -

                                            src.selection.selection_operator module

                                            +
                                            +

                                            pycellga.selection.selection_operator module

                                            -
                                            -class src.selection.selection_operator.SelectionOperator[source]
                                            +
                                            +class pycellga.selection.selection_operator.SelectionOperator[source]

                                            Bases: object

                                            -
                                            -get_parents() list[source]
                                            +
                                            +get_parents() list[source]
                                            -
                                            -

                                            src.selection.tournament_selection module

                                            +
                                            +

                                            pycellga.selection.tournament_selection module

                                            -
                                            -class src.selection.tournament_selection.TournamentSelection(pop_list: List[Individual] = [], c: int = 0, K: int = 2)[source]
                                            +
                                            +class pycellga.selection.tournament_selection.TournamentSelection(pop_list: List[Individual] = [], c: int = 0, K: int = 2)[source]

                                            Bases: SelectionOperator

                                            TournamentSelection performs a tournament selection on a population of individuals to select parent individuals for crossover.

                                            @@ -181,8 +181,8 @@

                                            Submodules -
                                            -__init__(pop_list: List[Individual] = [], c: int = 0, K: int = 2)[source]
                                            +
                                            +__init__(pop_list: List[Individual] = [], c: int = 0, K: int = 2)[source]

                                            Initialize the TournamentSelection object.

                                            Parameters:
                                            @@ -196,8 +196,8 @@

                                            Submodules -
                                            -get_parents() List[Individual][source]
                                            +
                                            +get_parents() List[Individual][source]

                                            Perform the tournament selection to get parent individuals.

                                            Returns:
                                            @@ -212,8 +212,8 @@

                                            Submodules -

                                            Module contents

                                            +
                                            +

                                            Module contents

                                            @@ -221,8 +221,8 @@

                                            Submodules - - + +


                                            diff --git a/pycellga.tests.html b/pycellga.tests.html new file mode 100644 index 0000000..ff69d1d --- /dev/null +++ b/pycellga.tests.html @@ -0,0 +1,2699 @@ + + + + + + + pycellga.tests package — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + + +
                                            + + +
                                            + +
                                            +
                                            +
                                            + +
                                            +
                                            +
                                            +
                                            + +
                                            +

                                            pycellga.tests package

                                            +
                                            +

                                            Submodules

                                            +
                                            +
                                            +

                                            pycellga.tests.conftest module

                                            +
                                            +
                                            +

                                            pycellga.tests.test_ackley module

                                            +
                                            +
                                            +pycellga.tests.test_ackley.test_ackley()[source]
                                            +

                                            Test the Ackley function implementation.

                                            +

                                            This test verifies the correctness of the Ackley function by evaluating it at several points and +comparing the results to expected values.

                                            +

                                            The Ackley function is commonly used as a benchmark for optimization algorithms. It is a continuous +function with multiple local minima and a single global minimum.

                                            +

                                            The test performs the following checks: +1. Evaluates the Ackley function at a set of given points. +2. Compares the computed values to expected results.

                                            +
                                            +
                                            Parameters:
                                            +

                                            None

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the computed values do not match the expected values.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_arithmetic_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_arithmetic_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_arithmetic_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_arithmetic_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_arithmetic_crossover.test_arithmetic_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the ArithmeticCrossover function implementation.

                                            +

                                            This test checks the arithmetic crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_bentcigar_function module

                                            +
                                            +
                                            +pycellga.tests.test_bentcigar_function.setup_bentcigar()[source]
                                            +

                                            Fixture for creating an instance of the Bentcigar problem.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the Bentcigar problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            Bentcigar

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_bentcigar_function.test_bentcigar_function(setup_bentcigar)[source]
                                            +

                                            Test the Bentcigar function implementation.

                                            +

                                            This test checks the calculation of the Bentcigar function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_bentcigar (fixture) – The fixture providing the Bentcigar problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_bit_flip_mutation module

                                            +
                                            +
                                            +pycellga.tests.test_bit_flip_mutation.test_bit_flip_mutation()[source]
                                            +

                                            Test the BitFlipMutation class for the Individual class on the OneMax problem.

                                            +

                                            This test verifies that the BitFlipMutation correctly mutates the chromosome of +an Individual by flipping some bits and ensures that the mutation is applied +correctly. The test checks that: +1. The chromosome is mutated. +2. The chromosome size remains unchanged. +3. The fitness value of the mutated individual is computed correctly.

                                            +

                                            The function uses a fixed random seed to ensure reproducibility of the results.

                                            +

                                            Notes

                                            +

                                            The test assumes that the BitFlipMutation class correctly implements bit flipping +mutation and that the OneMax problem correctly evaluates the fitness of an individual.

                                            +

                                            The following assertions are made: +- At least one bit in the chromosome is changed. +- The size of the mutated individual’s chromosome matches the original size. +- The fitness value of the mutated individual is calculated correctly.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for correctness are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_blxalpha_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_blxalpha_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_blxalpha_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_blxalpha_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_blxalpha_crossover.test_blxalpha_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the BlxalphaCrossover function implementation.

                                            +

                                            This test checks the BLX-alpha crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_bohachevsky module

                                            +
                                            +
                                            +pycellga.tests.test_bohachevsky.test_bohachevsky()[source]
                                            +

                                            Test the Bohachevsky function implementation.

                                            +

                                            This test verifies the correctness of the Bohachevsky function by evaluating it at several points and +comparing the results to expected values.

                                            +

                                            The Bohachevsky function is used as a benchmark for optimization algorithms. It has multiple local minima +and is designed to test the performance of optimization algorithms.

                                            +

                                            The test performs the following checks: +1. Evaluates the Bohachevsky function at specific points. +2. Compares the computed values to the expected rounded results.

                                            +
                                            +
                                            Parameters:
                                            +

                                            None

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the computed values do not match the expected rounded values.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_byte_mutation module

                                            +
                                            +
                                            +class pycellga.tests.test_byte_mutation.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_mutation.setup_individual()[source]
                                            +

                                            Fixture for creating a sample Individual instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An individual instance with a predefined chromosome and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            Individual

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_mutation.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_mutation.test_byte_mutation(setup_individual, setup_problem)[source]
                                            +

                                            Test the ByteMutation function implementation.

                                            +

                                            This test checks the byte-wise mutation on an individual’s chromosome by verifying the mutation +operation and the integrity of the chromosome.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_individual (fixture) – The fixture providing the sample individual.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_byte_mutation_random module

                                            +
                                            +
                                            +class pycellga.tests.test_byte_mutation_random.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_mutation_random.setup_individual()[source]
                                            +

                                            Fixture for creating a sample Individual instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An individual instance with a predefined chromosome and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            Individual

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_mutation_random.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_mutation_random.test_byte_mutation_random(setup_individual, setup_problem)[source]
                                            +

                                            Test the ByteMutationRandom function implementation.

                                            +

                                            This test checks the byte mutation on an individual’s chromosome by verifying the mutation +operation and the integrity of the chromosome.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_individual (fixture) – The fixture providing the sample individual.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_byte_one_point_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_byte_one_point_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_one_point_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_one_point_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_one_point_crossover.test_byte_one_point_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the ByteOnePointCrossover function implementation.

                                            +

                                            This test checks the byte-level one-point crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_byte_operators module

                                            +
                                            +
                                            +pycellga.tests.test_byte_operators.test_bits_to_float()[source]
                                            +

                                            Test the bits_to_float function.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_operators.test_bits_to_floats()[source]
                                            +

                                            Test the bits_to_floats function.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_operators.test_float_to_bits()[source]
                                            +

                                            Test the float_to_bits function.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_operators.test_floats_to_bits()[source]
                                            +

                                            Test the floats_to_bits function.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_byte_uniform_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_byte_uniform_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_uniform_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_uniform_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_byte_uniform_crossover.test_byte_uniform_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the ByteUniformCrossover function implementation.

                                            +

                                            This test checks the byte-level uniform crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_chichinadze_function module

                                            +
                                            +
                                            +pycellga.tests.test_chichinadze_function.setup_chichinadze()[source]
                                            +

                                            Fixture for creating an instance of the Chichinadze problem.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the Chichinadze problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            Chichinadze

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_chichinadze_function.test_chichinadze_function(setup_chichinadze)[source]
                                            +

                                            Test the Chichinadze function implementation.

                                            +

                                            This test checks the calculation of the Chichinadze function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_chichinadze (fixture) – The fixture providing the Chichinadze problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_compact_13 module

                                            +
                                            +
                                            +pycellga.tests.test_compact_13.test_compact_13()[source]
                                            +

                                            Test the Compact13 class for calculating neighbor positions in a grid.

                                            +

                                            This test verifies that the Compact13 class correctly calculates the positions +of the 12 neighbors surrounding a given position in a grid. It ensures that: +1. The number of neighbors is always 12 for positions not on the boundary of the grid. +2. Positions on the boundary of the grid still correctly return 12 neighbors.

                                            +

                                            The test uses three different positions within the grid to validate the functionality +of the Compact13 neighborhood calculation.

                                            +

                                            Notes

                                            +

                                            The Compact13 neighborhood considers all 12 surrounding cells in a 5x5 grid centered +on a given position, excluding the cell itself. The grid is assumed to be toroidal, +meaning that positions on the edges wrap around to the opposite edge.

                                            +

                                            The following assertions are made: +- The number of calculated neighbor positions is 12 for various positions in the grid.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the number of calculated neighbor positions is not 12.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_compact_21 module

                                            +
                                            +
                                            +pycellga.tests.test_compact_21.test_compact_21()[source]
                                            +

                                            Test the Compact21 class for calculating neighbor positions in a grid.

                                            +

                                            This test verifies that the Compact21 class correctly calculates the positions +of the 20 neighbors surrounding a given position in a grid. It ensures that: +1. The number of neighbors is always 20 for positions not on the boundary of the grid. +2. Positions on the boundary of the grid still correctly return 20 neighbors.

                                            +

                                            The test uses three different positions within the grid to validate the functionality +of the Compact21 neighborhood calculation.

                                            +

                                            Notes

                                            +

                                            The Compact21 neighborhood considers all 20 surrounding cells in a 5x5 grid centered +on a given position, excluding the cell itself. The grid is assumed to be toroidal, +meaning that positions on the edges wrap around to the opposite edge.

                                            +

                                            The following assertions are made: +- The number of calculated neighbor positions is 20 for various positions in the grid.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the number of calculated neighbor positions is not 20.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_compact_25 module

                                            +
                                            +
                                            +pycellga.tests.test_compact_25.test_compact_25()[source]
                                            +

                                            Test the Compact25 class for calculating neighbor positions in a grid.

                                            +

                                            This test verifies that the Compact25 class correctly calculates the positions +of the 24 neighbors surrounding a given position in a grid. It ensures that: +1. The number of neighbors is always 24 for positions not on the boundary of the grid. +2. Positions on the boundary of the grid still correctly return 24 neighbors.

                                            +

                                            The test uses three different positions within the grid to validate the functionality +of the Compact25 neighborhood calculation.

                                            +

                                            Notes

                                            +

                                            The Compact25 neighborhood considers all 24 surrounding cells in a 5x5 grid centered +on a given position, excluding the cell itself. The grid is assumed to be toroidal, +meaning that positions on the edges wrap around to the opposite edge.

                                            +

                                            The following assertions are made: +- The number of calculated neighbor positions is 24 for various positions in the grid.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the number of calculated neighbor positions is not 24.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_compact_9 module

                                            +
                                            +
                                            +pycellga.tests.test_compact_9.test_compact_9()[source]
                                            +

                                            Test the Compact9 class for calculating neighbor positions in a grid.

                                            +

                                            This test verifies that the Compact9 class correctly calculates the positions +of the 8 neighbors surrounding a given position in a grid. It ensures that: +1. The number of neighbors is always 8 for positions not on the boundary of the grid. +2. Positions on the boundary of the grid still correctly return 8 neighbors.

                                            +

                                            The test uses three different positions within the grid to validate the functionality +of the Compact9 neighborhood calculation.

                                            +

                                            Notes

                                            +

                                            The Compact9 neighborhood considers all 8 surrounding cells in a 3x3 grid centered +on a given position. The grid is assumed to be toroidal, meaning that positions on the +edges wrap around to the opposite edge.

                                            +

                                            The following assertions are made: +- The number of calculated neighbor positions is 8 for various positions in the grid.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the number of calculated neighbor positions is not 8.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_count_sat module

                                            +
                                            +
                                            +pycellga.tests.test_count_sat.test_count_sat()[source]
                                            +

                                            Test the CountSat function implementation.

                                            +

                                            This test verifies the calculation of the CountSat function value for specific binary input values.

                                            +

                                            The CountSat function evaluates the satisfaction of a set of binary clauses. This test ensures the +function computes the correct results for specific test inputs, including cases where all variables +are set to 1.

                                            +

                                            Examples

                                            +
                                            >>> test_count_sat()
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_dropwave_function module

                                            +
                                            +
                                            +pycellga.tests.test_dropwave_function.setup_dropwave()[source]
                                            +

                                            Fixture for creating an instance of the Dropwave problem.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the Dropwave problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            Dropwave

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_dropwave_function.test_dropwave_function(setup_dropwave)[source]
                                            +

                                            Test the Dropwave function implementation.

                                            +

                                            This test checks the calculation of the Dropwave function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_dropwave (fixture) – The fixture providing the Dropwave problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_ecc module

                                            +
                                            +
                                            +pycellga.tests.test_ecc.ecc_instance()[source]
                                            +

                                            Fixture for creating an instance of the Ecc class.

                                            +

                                            This fixture returns an instance of the Ecc class to be used in tests.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_ecc.test_ecc(ecc_instance)[source]
                                            +

                                            Test the ECC function implementation.

                                            +

                                            This test checks the calculation of the ECC function value for a given list of binary variables. +It uses predefined inputs and compares the outputs to expected values.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_flat_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_flat_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_flat_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_flat_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_flat_crossover.test_flat_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the FlatCrossover function implementation.

                                            +

                                            This test checks the flat crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_float_uniform_mutation module

                                            +
                                            +
                                            +class pycellga.tests.test_float_uniform_mutation.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_float_uniform_mutation.setup_individual()[source]
                                            +

                                            Fixture for creating a sample Individual instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An individual instance with a predefined chromosome and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            Individual

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_float_uniform_mutation.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_float_uniform_mutation.test_float_uniform_mutation(setup_individual, setup_problem)[source]
                                            +

                                            Test the FloatUniformMutation function implementation.

                                            +

                                            This test checks the uniform mutation on an individual’s chromosome by verifying the mutation +operation and the integrity of the chromosome.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_individual (fixture) – The fixture providing the sample individual.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_fms module

                                            +
                                            +
                                            +pycellga.tests.test_fms.fms_instance()[source]
                                            +

                                            Fixture for creating an instance of the Fms class.

                                            +

                                            This fixture returns an instance of the Fms class to be used in tests.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the Fms class.

                                            +
                                            +
                                            Return type:
                                            +

                                            Fms

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_fms.test_fms(fms_instance)[source]
                                            +

                                            Test the Fms function implementation.

                                            +

                                            This test checks the calculation of the FMS function value for a given list of binary variables. +It uses a predefined input and compares the output to the expected value.

                                            +
                                            +
                                            Parameters:
                                            +

                                            fms_instance (Fms) – An instance of the Fms class.

                                            +
                                            +
                                            +

                                            Notes

                                            +

                                            The test uses a randomly generated sample input chromosome of length 192 and checks if the function output is a float +and non-negative. Additional checks with known values can be added for more thorough testing.

                                            +
                                            +

                                            Assertions

                                            +
                                              +
                                            • The fitness value should be a float.

                                            • +
                                            • The fitness value should be non-negative, as it’s a sum of squares of differences.

                                            • +
                                            +

                                            Examples

                                            +
                                            >>> test_fms(fms_instance)
                                            +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_grid module

                                            +
                                            +
                                            +pycellga.tests.test_grid.test_grid()[source]
                                            +

                                            Test the Grid class implementation.

                                            +

                                            This test checks the functionality of the Grid class for creating a 2D grid. +It verifies the type, length, and content of the generated grid.

                                            +

                                            The test performs the following steps: +1. Create an instance of the Grid class with a 5x5 grid. +2. Generate the 2D grid using the make_2d_grid method. +3. Verify that the result is a list. +4. Verify that the length of the list is 25 (5x5). +5. Verify that each element in the list is a tuple. +6. Verify the first and last elements of the list.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the result does not match the expected values.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_griewank_function module

                                            +
                                            +
                                            +pycellga.tests.test_griewank_function.setup_griewank()[source]
                                            +

                                            Fixture for creating an instance of the Griewank problem.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the Griewank problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            Griewank

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_griewank_function.test_griewank_function(setup_griewank)[source]
                                            +

                                            Test the Griewank function implementation.

                                            +

                                            This test checks the calculation of the Griewank function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_griewank (fixture) – The fixture providing the Griewank problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_holzman_function module

                                            +
                                            +
                                            +pycellga.tests.test_holzman_function.setup_holzman()[source]
                                            +

                                            Fixture for creating an instance of the Holzman problem.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the Holzman problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            Holzman

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_holzman_function.test_holzman_function(setup_holzman)[source]
                                            +

                                            Test the Holzman function implementation.

                                            +

                                            This test checks the calculation of the Holzman function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_holzman (fixture) – The fixture providing the Holzman problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_individual module

                                            +
                                            +
                                            +pycellga.tests.test_individual.setup_individual()[source]
                                            +

                                            Fixture to provide an instance of the Individual class with different configurations.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_get_set_neighbors()[source]
                                            +

                                            Test getting and setting the list of neighbors for the individual.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_get_set_neighbors_positions()[source]
                                            +

                                            Test getting and setting the positions of the individual’s neighbors.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_illegal_genome_type()[source]
                                            +

                                            Test that an exception is raised when an illegal genome type is provided.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_individual_init()[source]
                                            +

                                            Test the initialization of the Individual class.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_randomize_binary()[source]
                                            +

                                            Test the randomization of the chromosome for a binary genome type.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_randomize_permutation()[source]
                                            +

                                            Test the randomization of the chromosome for a permutation genome type.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_individual.test_randomize_real_valued()[source]
                                            +

                                            Test the randomization of the chromosome for a real-valued genome type.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_insertion_mutation module

                                            +
                                            +
                                            +pycellga.tests.test_insertion_mutation.test_insertion_mutation()[source]
                                            +

                                            Test the InsertionMutation class for the Individual class on the TSP problem.

                                            +

                                            This test verifies that the InsertionMutation correctly mutates the chromosome of +an Individual by inserting elements and ensures that the mutation is applied +correctly. The test checks that: +1. The chromosome is mutated. +2. The chromosome size remains unchanged.

                                            +

                                            The function uses random permutation for the chromosome initialization.

                                            +

                                            Notes

                                            +

                                            The test assumes that the InsertionMutation class correctly implements insertion +mutation and that the TSP problem correctly evaluates the fitness of an individual.

                                            +

                                            The following assertions are made: +- At least one element in the chromosome is changed. +- The size of the mutated individual’s chromosome matches the original size.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for correctness are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_levy_function module

                                            +
                                            +
                                            +pycellga.tests.test_levy_function.setup_levy()[source]
                                            +

                                            Fixture to provide an instance of the Levy problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_levy_function.test_levy_function(setup_levy)[source]
                                            +

                                            Test the Levy function implementation.

                                            +

                                            This test checks the calculation of the Levy function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_levy (fixture) – The fixture providing the Levy problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_linear_5 module

                                            +
                                            +
                                            +pycellga.tests.test_linear_5.test_linear_5()[source]
                                            +

                                            Test the Linear5 class for calculating neighbor positions in a grid.

                                            +

                                            This test verifies that the Linear5 class correctly calculates the positions +of the 4 neighbors surrounding a given position in a grid. It ensures that: +1. The number of neighbors is always 4, which should include the positions

                                            +
                                            +

                                            directly adjacent in the linear neighborhood.

                                            +
                                            +

                                            The test uses three different positions within the grid to validate the functionality +of the Linear5 neighborhood calculation.

                                            +

                                            Notes

                                            +

                                            The Linear5 neighborhood considers 4 neighboring cells aligned in a linear fashion +(left, right, up, and down) in a 5x5 grid centered on a given position.

                                            +

                                            The following assertions are made: +- The number of calculated neighbor positions is 4 for various positions in the grid.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the number of calculated neighbor positions is not 4.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_linear_9 module

                                            +
                                            +
                                            +pycellga.tests.test_linear_9.test_linear_9()[source]
                                            +

                                            Test the Linear9 class for calculating neighbor positions in a grid.

                                            +

                                            This test verifies that the Linear9 class correctly calculates the positions +of the 8 neighbors surrounding a given position in a grid. It ensures that: +1. The number of neighbors is always 8, which should include the positions

                                            +
                                            +

                                            surrounding the given position in the linear neighborhood.

                                            +
                                            +

                                            The test uses three different positions within the grid to validate the functionality +of the Linear9 neighborhood calculation.

                                            +

                                            Notes

                                            +

                                            The Linear9 neighborhood considers 8 neighboring cells aligned in a linear fashion +(left, right, up, down, and the diagonals) in a 5x5 grid centered on a given position.

                                            +

                                            The following assertions are made: +- The number of calculated neighbor positions is 8 for various positions in the grid.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If the number of calculated neighbor positions is not 8.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_linear_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_linear_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_linear_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_linear_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_linear_crossover.test_linear_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the LinearCrossover function implementation.

                                            +

                                            This test checks the linear crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_matyas_function module

                                            +
                                            +
                                            +pycellga.tests.test_matyas_function.setup_matyas()[source]
                                            +

                                            Fixture to provide an instance of the Matyas problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_matyas_function.test_matyas_function(setup_matyas)[source]
                                            +

                                            Test the Matyas function implementation.

                                            +

                                            This test checks the calculation of the Matyas function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_matyas (fixture) – The fixture providing the Matyas problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_maxcut100 module

                                            +
                                            +
                                            +pycellga.tests.test_maxcut100.maxcut_instance()[source]
                                            +

                                            Fixture for creating an instance of the Maxcut100 class.

                                            +

                                            This fixture returns an instance of the Maxcut100 class to be used in tests.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_maxcut100.test_maxcut100()[source]
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_maxcut20_01 module

                                            +
                                            +
                                            +pycellga.tests.test_maxcut20_01.maxcut_instance()[source]
                                            +

                                            Fixture for creating an instance of the Maxcut20_01 class.

                                            +

                                            This fixture returns an instance of the Maxcut20_01 class to be used in tests.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_maxcut20_01.test_maxcut20_01(maxcut_instance)[source]
                                            +

                                            Test the MAXCUT function implementation.

                                            +

                                            This test checks the calculation of the MAXCUT function value for a given list of binary variables. +It uses predefined inputs and compares the outputs to expected values.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_maxcut20_09 module

                                            +
                                            +
                                            +pycellga.tests.test_maxcut20_09.maxcut_instance()[source]
                                            +

                                            Fixture for creating an instance of the Maxcut20_09 class.

                                            +

                                            This fixture returns an instance of the Maxcut20_09 class to be used in tests.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_maxcut20_09.test_maxcut20_09(maxcut_instance)[source]
                                            +

                                            Test the MAXCUT function implementation.

                                            +

                                            This test checks the calculation of the MAXCUT function value for a given list of binary variables. +It uses predefined inputs and compares the outputs to expected values.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_mmdp module

                                            +
                                            +
                                            +pycellga.tests.test_mmdp.mmdp_instance()[source]
                                            +

                                            Fixture for creating an instance of the Mmdp class.

                                            +

                                            This fixture returns an instance of the Mmdp class to be used in tests.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_mmdp.test_mmdp_function(mmdp_instance)[source]
                                            +

                                            Test the Mmdp function implementation.

                                            +

                                            This test checks the calculation of the MMDP fitness value for given lists of binary variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_one_max module

                                            +
                                            +
                                            +pycellga.tests.test_one_max.test_one_max()[source]
                                            +

                                            Test the OneMax function implementation.

                                            +

                                            This test verifies the calculation of the OneMax function value for specific binary input values.

                                            +

                                            The OneMax function evaluates the number of 1s in a binary list. This test ensures that the function +computes the correct number of 1s for various test inputs.

                                            +

                                            Examples

                                            +
                                            >>> test_one_max()
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_one_point_crossover module

                                            +
                                            +
                                            +pycellga.tests.test_one_point_crossover.test_one_point_crossover()[source]
                                            +

                                            Test the OnePointCrossover class for generating offspring from two parents.

                                            +

                                            This test verifies that the OnePointCrossover class correctly performs one-point crossover +between two parent individuals. It ensures that: +1. The offspring generated have the same chromosome size as the parents. +2. The chromosomes of the offspring contain only valid binary values (0 or 1).

                                            +

                                            The test performs the following checks: +- Both offspring have the same chromosome size. +- Each chromosome in the offspring is composed of binary values (0 or 1).

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_optimizer_alpha_cga module

                                            +
                                            +
                                            +class pycellga.tests.test_optimizer_alpha_cga.BinaryProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be maximized for binary chromosomes.

                                            +

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method counts the number of 1s in the binary chromosome.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value, which is the count of 1s in the chromosome.

                                            +
                                            +
                                            Return type:
                                            +

                                            int

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +class pycellga.tests.test_optimizer_alpha_cga.PermutationProblem(target: List[int])[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized using a permutation-based approach.

                                            +

                                            This class implements a simple objective function that measures the sum of absolute differences +between the chromosome and a target permutation.

                                            +
                                            +
                                            +__init__(target: List[int])[source]
                                            +

                                            Initialize the PermutationProblem with a target permutation.

                                            +
                                            +
                                            Parameters:
                                            +

                                            target (list of int) – The target permutation that the algorithm aims to find.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +f(x: List[int]) float[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of absolute differences function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – The input chromosome represented as a list of integers (permutation).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +test_optimizer_alpha_cga_permutation()[source]
                                            +

                                            Test alpha_cga on a permutation-based problem where the target is the identity permutation.

                                            +
                                            + +
                                            + +
                                            +
                                            +class pycellga.tests.test_optimizer_alpha_cga.RealProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized.

                                            +

                                            This class implements a simple sum of squares function with a global minimum value of 0, +achieved when all elements of the chromosome are equal to 0.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of squares function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_binary()[source]
                                            +

                                            Test alpha_cga on a binary OneMax problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_no_variation()[source]
                                            +

                                            Test alpha_cga with no crossover or mutation.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_real()[source]
                                            +

                                            Test alpha_cga on a real-valued sum of squares problem.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_optimizer_ccga module

                                            +
                                            +
                                            +class pycellga.tests.test_optimizer_ccga.BinaryProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be maximized for binary chromosomes.

                                            +

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method counts the number of 1s in the binary chromosome.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value, which is the count of 1s in the chromosome.

                                            +
                                            +
                                            Return type:
                                            +

                                            int

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_ccga.test_optimizer_ccga_binary()[source]
                                            +

                                            Test ccga on a binary OneMax problem.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_optimizer_cga module

                                            +
                                            +
                                            +class pycellga.tests.test_optimizer_cga.BinaryProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be maximized for binary chromosomes.

                                            +

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method counts the number of 1s in the binary chromosome.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value, which is the count of 1s in the chromosome.

                                            +
                                            +
                                            Return type:
                                            +

                                            int

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +class pycellga.tests.test_optimizer_cga.PermutationProblem(target: List[int])[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized using a permutation-based approach.

                                            +

                                            This class implements a simple objective function that measures the sum of absolute differences +between the chromosome and a target permutation.

                                            +
                                            +
                                            +__init__(target: List[int])[source]
                                            +

                                            Initialize the PermutationProblem with a target permutation.

                                            +
                                            +
                                            Parameters:
                                            +

                                            target (list of int) – The target permutation that the algorithm aims to find.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +f(x: List[int]) float[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of absolute differences function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – The input chromosome represented as a list of integers (permutation).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +test_optimizer_cga_permutation()[source]
                                            +

                                            Test CGA on a permutation-based problem where the target is the identity permutation.

                                            +
                                            + +
                                            + +
                                            +
                                            +class pycellga.tests.test_optimizer_cga.RealProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized.

                                            +

                                            This class implements a simple sum of squares function with a global minimum value of 0, +achieved when all elements of the chromosome are equal to 0.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of squares function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_cga.test_optimizer_cga_binary()[source]
                                            +

                                            Test CGA on a binary OneMax problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_cga.test_optimizer_cga_no_variation()[source]
                                            +

                                            Test CGA with no crossover or mutation.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_cga.test_optimizer_cga_real()[source]
                                            +

                                            Test CGA on a real-valued sum of squares problem.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_optimizer_mccga module

                                            +
                                            +
                                            +class pycellga.tests.test_optimizer_mccga.RealProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized.

                                            +

                                            This class implements a simple sum of squares function with a global minimum value of 0, +achieved when all elements of the chromosome are equal to 0.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of squares function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_mccga.test_optimizer_mcccga_binary()[source]
                                            +

                                            Test mcccga on a binary OneMax problem.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_optimizer_sync_cga module

                                            +
                                            +
                                            +class pycellga.tests.test_optimizer_sync_cga.BinaryProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be maximized for binary chromosomes.

                                            +

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method counts the number of 1s in the binary chromosome.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value, which is the count of 1s in the chromosome.

                                            +
                                            +
                                            Return type:
                                            +

                                            int

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +class pycellga.tests.test_optimizer_sync_cga.PermutationProblem(target: List[int])[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized using a permutation-based approach.

                                            +

                                            This class implements a simple objective function that measures the sum of absolute differences +between the chromosome and a target permutation.

                                            +
                                            +
                                            +__init__(target: List[int])[source]
                                            +

                                            Initialize the PermutationProblem with a target permutation.

                                            +
                                            +
                                            Parameters:
                                            +

                                            target (list of int) – The target permutation that the algorithm aims to find.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +f(x: List[int]) float[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of absolute differences function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – The input chromosome represented as a list of integers (permutation).

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +test_optimizer_sync_cga_permutation()[source]
                                            +

                                            Test sync_cga on a permutation-based problem where the target is the identity permutation.

                                            +
                                            + +
                                            + +
                                            +
                                            +class pycellga.tests.test_optimizer_sync_cga.RealProblem[source]
                                            +

                                            Bases: object

                                            +

                                            Example problem class to be minimized.

                                            +

                                            This class implements a simple sum of squares function with a global minimum value of 0, +achieved when all elements of the chromosome are equal to 0.

                                            +
                                            +
                                            +__init__()[source]
                                            +
                                            + +
                                            +
                                            +f(x)[source]
                                            +

                                            Compute the objective function value.

                                            +

                                            This method implements the sum of squares function.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            +
                                            +
                                            Returns:
                                            +

                                            The computed value of the function given the input x.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_binary()[source]
                                            +

                                            Test sync_cga on a binary OneMax problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_no_variation()[source]
                                            +

                                            Test sync_cga with no crossover or mutation.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_real()[source]
                                            +

                                            Test sync_cga on a real-valued sum of squares problem.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_peak module

                                            +
                                            +
                                            +pycellga.tests.test_peak.peak_instance()[source]
                                            +

                                            Fixture for creating an instance of the Peak class.

                                            +

                                            This fixture returns an instance of the Peak class to be used in tests.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_peak.test_peak(peak_instance)[source]
                                            +

                                            Test the Peak function implementation.

                                            +

                                            This test checks the calculation of the Peak fitness value for given lists of binary variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_pmx_crossover module

                                            +
                                            +
                                            +pycellga.tests.test_pmx_crossover.test_pmx_crossover()[source]
                                            +

                                            Test the PMXCrossover class for generating offspring from two permutation parents.

                                            +

                                            This test verifies that the PMXCrossover class correctly performs partially matched crossover +(PMX) between two parent individuals. It ensures that: +1. The offspring generated have the same chromosome size as the parents.

                                            +

                                            The test performs the following checks: +- Both offspring have the same chromosome size as the parents.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_population module

                                            +
                                            +
                                            +class pycellga.tests.test_population.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem for testing purposes.

                                            +
                                            +
                                            +f(chromosome: List[float]) float[source]
                                            +

                                            Returns the sum of the chromosome as the fitness value.

                                            +
                                            + +
                                            +
                                            +f(chromosome: List[float]) float[source]
                                            +

                                            Evaluate the fitness of a given solution x.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list representing a candidate solution.

                                            +
                                            +
                                            Returns:
                                            +

                                            The fitness value of the candidate solution.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            Raises:
                                            +

                                            NotImplementedError – If the method is not implemented by a subclass.

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_population.setup_population()[source]
                                            +

                                            Fixture for setting up a Population object.

                                            +
                                            +
                                            Returns:
                                            +

                                            A population instance with a mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            Population

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_population.test_fitness_evaluation(setup_population)[source]
                                            +

                                            Test the fitness evaluation of the individuals.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_population (Population) – The population fixture.

                                            • +
                                            • Asserts

                                            • +
                                            • -------

                                            • +
                                            • performed. (True if the fitness evaluation is correctly)

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_population.test_initial_population_size(setup_population)[source]
                                            +

                                            Test the size of the initial population.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_population (Population) – The population fixture.

                                            • +
                                            • Asserts

                                            • +
                                            • -------

                                            • +
                                            • correct. (True if the size of the population is)

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_population.test_neighborhood_assignment(setup_population)[source]
                                            +

                                            Test the neighborhood assignment for the individuals.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_population (Population) – The population fixture.

                                            • +
                                            • Asserts

                                            • +
                                            • -------

                                            • +
                                            • assigned. (True if neighborhood positions are correctly)

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_pow_function module

                                            +
                                            +
                                            +class pycellga.tests.test_pow_function.Pow[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            Pow function implementation for optimization problems.

                                            +

                                            The Pow function is widely used for testing optimization algorithms. +The function is usually evaluated on the hypercube x_i ∈ [-5.0, 15.0].

                                            +
                                            +
                                            +None
                                            +
                                            + +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            Calculates the Pow function value for a given list of variables.

                                            +
                                            + +

                                            Notes

                                            +

                                            -5.0 ≤ xi ≤ 15.0 +Global minimum at f(5, 7, 9, 3, 2) = 0

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            Calculate the Pow function value for a given list of variables.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The Pow function value.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_powell_function module

                                            +
                                            +
                                            +pycellga.tests.test_powell_function.setup_powell()[source]
                                            +

                                            Fixture to provide an instance of the Powell problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_powell_function.test_powell_function(setup_powell)[source]
                                            +

                                            Test the Powell function implementation.

                                            +

                                            This test checks the calculation of the Powell function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_powell (fixture) – The fixture providing the Powell problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_rastrigin module

                                            +
                                            +
                                            +pycellga.tests.test_rastrigin.test_rastrigin()[source]
                                            +

                                            Test the Rastrigin function implementation.

                                            +

                                            This test verifies the calculation of the Rastrigin function value for a given list of continuous variables. +It compares the function output with known expected values.

                                            +

                                            Notes

                                            +

                                            The Rastrigin function is a well-known benchmark function used in optimization problems. +It has a global minimum value of 0, which is achieved when all variables are 0.

                                            +
                                            +

                                            Assertions

                                            +
                                              +
                                            • The function should return the correct values for predefined inputs.

                                            • +
                                            • The function should return 0 for an input list of all zeros.

                                            • +
                                            +

                                            Examples

                                            +
                                            >>> test_rastrigin()
                                            +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_rosenbrock module

                                            +
                                            +
                                            +pycellga.tests.test_rosenbrock.test_rosenbrock()[source]
                                            +

                                            Test the Rosenbrock function implementation.

                                            +

                                            This test verifies the calculation of the Rosenbrock function value for a given list of continuous variables. +It compares the function output with known expected values.

                                            +

                                            Notes

                                            +

                                            The Rosenbrock function, also known as the Rosenbrock’s valley or Rosenbrock’s banana function, +is a common test problem for optimization algorithms. The global minimum is at (1, …, 1), where the function value is 0.

                                            +
                                            +

                                            Assertions

                                            +
                                              +
                                            • The function should return the correct values for predefined inputs.

                                            • +
                                            • The function should return 0 for an input list of all ones.

                                            • +
                                            +

                                            Examples

                                            +
                                            >>> test_rosenbrock()
                                            +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_rothellipsoid_function module

                                            +
                                            +
                                            +pycellga.tests.test_rothellipsoid_function.setup_rothellipsoid()[source]
                                            +

                                            Fixture to provide an instance of the Rotated Hyper-Ellipsoid problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_rothellipsoid_function.test_rothellipsoid_function(setup_rothellipsoid)[source]
                                            +

                                            Test the Rotated Hyper-Ellipsoid function implementation.

                                            +

                                            This test checks the calculation of the Rotated Hyper-Ellipsoid function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_rothellipsoid (fixture) – The fixture providing the Rotated Hyper-Ellipsoid problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_roulette_wheel_selection module

                                            +
                                            +
                                            +pycellga.tests.test_roulette_wheel_selection.test_roulette_wheel_selection()[source]
                                            +

                                            Test the RouletteWheelSelection class implementation.

                                            +

                                            This test verifies the functionality of the RouletteWheelSelection for selecting parent individuals +from a population. It ensures that the selected parents have valid attributes and different chromosomes +and positions.

                                            +

                                            The test performs the following checks: +1. Each selected parent has the correct chromosome size and a non-None fitness value. +2. Each selected parent has valid types for neighbors_positions and position attributes. +3. The selected parents have different chromosomes and positions.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for the parent selection are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_schaffer2_function module

                                            +
                                            +
                                            +pycellga.tests.test_schaffer2_function.setup_schaffer2()[source]
                                            +

                                            Fixture to provide an instance of the Schaffer2 problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_schaffer2_function.test_schaffer2_function(setup_schaffer2)[source]
                                            +

                                            Test the Modified Schaffer function #2 implementation.

                                            +

                                            This test checks the calculation of the Modified Schaffer function #2 value +for given lists of float variables. It uses predefined inputs and compares +the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_schaffer2 (fixture) – The fixture providing the Schaffer2 problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_schaffer_function module

                                            +
                                            +
                                            +pycellga.tests.test_schaffer_function.setup_schaffer()[source]
                                            +

                                            Fixture to provide an instance of the Schaffer problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_schaffer_function.test_schaffer_function(setup_schaffer)[source]
                                            +

                                            Test the Modified Schaffer function #1 implementation.

                                            +

                                            This test checks the calculation of the Modified Schaffer function #1 value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_schaffer (fixture) – The fixture providing the Schaffer problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_schwefel module

                                            +
                                            +
                                            +pycellga.tests.test_schwefel.test_schwefel()[source]
                                            +

                                            Test the Schwefel function implementation.

                                            +

                                            This test verifies the functionality of the Schwefel function on a set of predefined input values.

                                            +

                                            The Schwefel function is used as a benchmark in optimization problems, and this test ensures +that the function computes the expected results for given inputs.

                                            +

                                            It performs assertions to check: +- The correctness of the function’s output for specific input values. +- The proper rounding of the function’s output to three decimal places.

                                            +

                                            Notes

                                            +

                                            The Schwefel function is typically used to evaluate optimization algorithms, and the expected values +for the test cases are specific to the known behavior of the function.

                                            +

                                            Examples

                                            +
                                            >>> test_schwefel()
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_shuffle_mutation module

                                            +
                                            +
                                            +pycellga.tests.test_shuffle_mutation.test_shuffle_mutation()[source]
                                            +

                                            Test the ShuffleMutation class for the Individual class on the TSP problem.

                                            +

                                            This test verifies that the ShuffleMutation correctly mutates the chromosome of +an Individual by shuffling the elements. It ensures that: +1. The chromosome is mutated. +2. The chromosome size remains unchanged.

                                            +

                                            The function initializes the chromosome with a random permutation of integers +from 1 to CHSIZE and applies the shuffle mutation.

                                            +

                                            Notes

                                            +

                                            The test assumes that the ShuffleMutation class correctly implements shuffle +mutation and that the TSP problem correctly evaluates the fitness of an individual.

                                            +

                                            The following assertions are made: +- At least one element in the chromosome is changed. +- The size of the mutated individual’s chromosome matches the original size.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for correctness are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_sphere module

                                            +
                                            +
                                            +pycellga.tests.test_sphere.test_sphere()[source]
                                            +

                                            Test the Sphere function implementation.

                                            +

                                            This test checks the calculation of the Sphere function value for given input values.

                                            +

                                            The Sphere function is a common benchmark function in optimization, where the global minimum is +at f(0, 0, …, 0) = 0. This test ensures that the function computes the correct results for specific +input values and verifies that the function behaves as expected.

                                            +

                                            It performs assertions to validate: +- The correctness of the function’s output for specific test inputs. +- The rounding of the function’s output to three decimal places.

                                            +

                                            Examples

                                            +
                                            >>> test_sphere()
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_styblinskitang_function module

                                            +
                                            +
                                            +pycellga.tests.test_styblinskitang_function.setup_styblinski_tang()[source]
                                            +

                                            Fixture to provide an instance of the StyblinskiTang problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_styblinskitang_function.test_styblinskitang_function(setup_styblinski_tang)[source]
                                            +

                                            Test the Styblinski-Tang function implementation.

                                            +

                                            This test checks the calculation of the Styblinski-Tang function value +for given lists of float variables. It uses predefined inputs and compares +the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_styblinski_tang (fixture) – The fixture providing the StyblinskiTang problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_sumofdifferentpowers_function module

                                            +
                                            +
                                            +pycellga.tests.test_sumofdifferentpowers_function.setup_sumofdifferentpowers()[source]
                                            +

                                            Fixture to create an instance of the Sumofdifferentpowers problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_sumofdifferentpowers_function.test_sumofdifferentpowers_function(setup_sumofdifferentpowers)[source]
                                            +

                                            Test the Sum of Different Powers function implementation.

                                            +

                                            This test checks the calculation of the Sum of Different Powers function value +for given lists of float variables. It uses predefined inputs and compares +the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_sumofdifferentpowers (fixture) – The fixture providing the Sumofdifferentpowers problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_swap_mutation module

                                            +
                                            +
                                            +pycellga.tests.test_swap_mutation.test_swap_mutation()[source]
                                            +

                                            Test the SwapMutation class for the Individual class on the TSP problem.

                                            +

                                            This test verifies that the SwapMutation correctly mutates the chromosome of +an Individual by swapping two elements. It ensures that: +1. The chromosome is mutated. +2. The chromosome size remains unchanged.

                                            +

                                            The function initializes the chromosome with a random permutation of integers +from 1 to CHSIZE and applies the swap mutation.

                                            +

                                            Notes

                                            +

                                            The test assumes that the SwapMutation class correctly implements swap mutation +and that the TSP problem correctly evaluates the fitness of an individual.

                                            +

                                            The following assertions are made: +- At least one element in the chromosome is changed. +- The size of the mutated individual’s chromosome matches the original size.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for correctness are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_threehumps_function module

                                            +
                                            +
                                            +pycellga.tests.test_threehumps_function.setup_threehumps()[source]
                                            +

                                            Fixture to provide the Threehumps problem instance.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_threehumps_function.test_threehumps_function(setup_threehumps)[source]
                                            +

                                            Test the Three Hump Camel function implementation.

                                            +

                                            This test checks the calculation of the Three Hump Camel function value +for given lists of float variables. It uses predefined inputs and compares +the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_threehumps (fixture) – The fixture providing the Threehumps problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_tournament_selection module

                                            +
                                            +
                                            +pycellga.tests.test_tournament_selection.test_tournament_selection()[source]
                                            +

                                            Test the TournamentSelection class implementation.

                                            +

                                            This test verifies the functionality of the TournamentSelection for selecting parent individuals +from a population. It ensures that the selected parents have valid attributes and different chromosomes +and positions.

                                            +

                                            The test performs the following checks: +1. Each selected parent has the correct chromosome size and a non-None fitness value. +2. Each selected parent has valid types for neighbors_positions and position attributes. +3. The selected parents have different chromosomes and positions.

                                            +
                                            +
                                            Parameters:
                                            +

                                            None

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for the parent selection are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_tsp module

                                            +
                                            +
                                            +pycellga.tests.test_tsp.test_tsp()[source]
                                            +

                                            Test the Tsp function implementation.

                                            +

                                            This test verifies the calculation of the TSP (Traveling Salesman Problem) function value for +different permutations of cities.

                                            +

                                            The TSP function evaluates the total distance for a given permutation of cities. This test checks +if the function computes the correct distance for specific permutations generated using different +random seeds.

                                            +

                                            Examples

                                            +
                                            >>> test_tsp()
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_two_opt_mutation module

                                            +
                                            +
                                            +pycellga.tests.test_two_opt_mutation.test_two_opt_mutation()[source]
                                            +

                                            Test the TwoOptMutation class for the Individual class on the TSP problem.

                                            +

                                            This test verifies that the TwoOptMutation correctly mutates the chromosome of +an Individual by applying the 2-opt mutation technique. It ensures that: +1. The chromosome is mutated by swapping two edges in the permutation. +2. The chromosome size remains unchanged.

                                            +

                                            The function initializes the chromosome with a random permutation of integers +from 1 to CHSIZE and applies the two-opt mutation.

                                            +

                                            Notes

                                            +

                                            The test assumes that the TwoOptMutation class correctly implements the 2-opt mutation +and that the TSP problem correctly evaluates the fitness of an individual.

                                            +

                                            The following assertions are made: +- At least one element in the chromosome is changed. +- The size of the mutated individual’s chromosome matches the original size.

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for correctness are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_two_point_crossover module

                                            +
                                            +
                                            +pycellga.tests.test_two_point_crossover.test_two_point_crossover()[source]
                                            +

                                            Test the TwoPointCrossover class implementation.

                                            +

                                            This test verifies the functionality of the TwoPointCrossover class for binary chromosomes. +It ensures that the crossover operation produces valid offspring with the expected chromosome size.

                                            +

                                            The test performs the following checks: +1. Both offspring have the same chromosome size as the parents. +2. The chromosomes of the offspring contain only valid binary values (0 or 1).

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_unfair_average_crossover module

                                            +
                                            +
                                            +class pycellga.tests.test_unfair_average_crossover.MockProblem[source]
                                            +

                                            Bases: AbstractProblem

                                            +

                                            A mock problem class for testing purposes.

                                            +
                                            +
                                            +f(x: list) float[source]
                                            +

                                            A mock fitness function that simply sums the chromosome values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            x (list) – A list of float variables.

                                            +
                                            +
                                            Returns:
                                            +

                                            The sum of the list values.

                                            +
                                            +
                                            Return type:
                                            +

                                            float

                                            +
                                            +
                                            +
                                            + +
                                            + +
                                            +
                                            +pycellga.tests.test_unfair_average_crossover.setup_parents()[source]
                                            +

                                            Fixture for creating a pair of parent Individual instances.

                                            +
                                            +
                                            Returns:
                                            +

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            +
                                            +
                                            Return type:
                                            +

                                            list

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_unfair_average_crossover.setup_problem()[source]
                                            +

                                            Fixture for creating a mock problem instance.

                                            +
                                            +
                                            Returns:
                                            +

                                            An instance of the mock problem.

                                            +
                                            +
                                            Return type:
                                            +

                                            MockProblem

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_unfair_average_crossover.test_unfair_average_crossover(setup_parents, setup_problem)[source]
                                            +

                                            Test the UnfairAvarageCrossover function implementation.

                                            +

                                            This test checks the unfair average crossover on a pair of parent individuals by verifying the recombination +operation and the integrity of the offspring chromosomes.

                                            +
                                            +
                                            Parameters:
                                            +
                                              +
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • +
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • +
                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_uniform_crossover module

                                            +
                                            +
                                            +pycellga.tests.test_uniform_crossover.test_uniform_crossover()[source]
                                            +

                                            Test the UniformCrossover class implementation.

                                            +

                                            This test verifies the functionality of the UniformCrossover class for binary chromosomes. +It ensures that the crossover operation produces valid offspring with the expected chromosome size.

                                            +

                                            The test performs the following checks: +1. Both offspring have the same chromosome size as the parents. +2. The chromosomes of the offspring contain only valid binary values (0 or 1).

                                            +
                                            +
                                            Raises:
                                            +

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_zakharov_function module

                                            +
                                            +
                                            +pycellga.tests.test_zakharov_function.test_zakharov_function()[source]
                                            +

                                            Test the Zakharov function implementation.

                                            +

                                            This test checks the calculation of the Zakharov function value +for given lists of float variables. It uses predefined inputs and compares +the outputs to the expected values.

                                            +
                                            + +
                                            +
                                            +

                                            pycellga.tests.test_zettle_function module

                                            +
                                            +
                                            +pycellga.tests.test_zettle_function.setup_zettle()[source]
                                            +

                                            Fixture to provide an instance of the Zettle problem.

                                            +
                                            + +
                                            +
                                            +pycellga.tests.test_zettle_function.test_zettle_function(setup_zettle)[source]
                                            +

                                            Test the Zettle function implementation.

                                            +

                                            This test checks the calculation of the Zettle function value for given lists of float variables. +It uses predefined inputs and compares the outputs to the expected values.

                                            +
                                            +
                                            Parameters:
                                            +

                                            setup_zettle (fixture) – The fixture providing the Zettle problem instance.

                                            +
                                            +
                                            +
                                            + +
                                            +
                                            +

                                            Module contents

                                            +
                                            +
                                            + + +
                                            +
                                            + +
                                            +
                                            +
                                            +
                                            + + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js index b949842..97c29a5 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"Assertions": [[14, "assertions"], [14, "id2"], [14, "id3"]], "Contents:": [[0, null]], "Module contents": [[2, "module-src"], [3, "module-src.example"], [4, "module-src.mutation"], [5, "module-src.neighborhoods"], [6, "module-src.problems"], [7, "module-src.problems.single_objective"], [8, "module-src.problems.single_objective.continuous"], [9, "module-src.problems.single_objective.discrete"], [10, "module-src.problems.single_objective.discrete.binary"], [11, "module-src.problems.single_objective.discrete.permutation"], [12, "module-src.recombination"], [13, "module-src.selection"], [14, "module-src.tests"]], "PYCELLGA Documentation": [[0, null]], "Submodules": [[2, "submodules"], [3, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"], [8, "submodules"], [10, "submodules"], [11, "submodules"], [12, "submodules"], [13, "submodules"], [14, "submodules"]], "Subpackages": [[2, "subpackages"], [6, "subpackages"], [7, "subpackages"], [9, "subpackages"]], "pycellga": [[1, null]], "src package": [[2, null]], "src.byte_operators module": [[2, "module-src.byte_operators"]], "src.example package": [[3, null]], "src.example.example_alpha_cga module": [[3, "module-src.example.example_alpha_cga"]], "src.example.example_ccga module": [[3, "module-src.example.example_ccga"]], "src.example.example_cga module": [[3, "module-src.example.example_cga"]], "src.example.example_mcccga module": [[3, "module-src.example.example_mcccga"]], "src.example.example_sync_cga module": [[3, "module-src.example.example_sync_cga"]], "src.grid module": [[2, "module-src.grid"]], "src.individual module": [[2, "src-individual-module"]], "src.mutation package": [[4, null]], "src.mutation.bit_flip_mutation module": [[4, "module-src.mutation.bit_flip_mutation"]], "src.mutation.byte_mutation module": [[4, "module-src.mutation.byte_mutation"]], "src.mutation.byte_mutation_random module": [[4, "module-src.mutation.byte_mutation_random"]], "src.mutation.float_uniform_mutation module": [[4, "module-src.mutation.float_uniform_mutation"]], "src.mutation.insertion_mutation module": [[4, "module-src.mutation.insertion_mutation"]], "src.mutation.mutation_operator module": [[4, "module-src.mutation.mutation_operator"]], "src.mutation.shuffle_mutation module": [[4, "module-src.mutation.shuffle_mutation"]], "src.mutation.swap_mutation module": [[4, "module-src.mutation.swap_mutation"]], "src.mutation.two_opt_mutation module": [[4, "module-src.mutation.two_opt_mutation"]], "src.neighborhoods package": [[5, null]], "src.neighborhoods.compact_13 module": [[5, "module-src.neighborhoods.compact_13"]], "src.neighborhoods.compact_21 module": [[5, "module-src.neighborhoods.compact_21"]], "src.neighborhoods.compact_25 module": [[5, "module-src.neighborhoods.compact_25"]], "src.neighborhoods.compact_9 module": [[5, "module-src.neighborhoods.compact_9"]], "src.neighborhoods.linear_5 module": [[5, "module-src.neighborhoods.linear_5"]], "src.neighborhoods.linear_9 module": [[5, "module-src.neighborhoods.linear_9"]], "src.optimizer module": [[2, "src-optimizer-module"]], "src.population module": [[2, "src-population-module"]], "src.problems package": [[6, null]], "src.problems.abstract_problem module": [[6, "module-src.problems.abstract_problem"]], "src.problems.single_objective package": [[7, null]], "src.problems.single_objective.continuous package": [[8, null]], "src.problems.single_objective.continuous.ackley module": [[8, "module-src.problems.single_objective.continuous.ackley"]], "src.problems.single_objective.continuous.bentcigar module": [[8, "module-src.problems.single_objective.continuous.bentcigar"]], "src.problems.single_objective.continuous.bohachevsky module": [[8, "module-src.problems.single_objective.continuous.bohachevsky"]], "src.problems.single_objective.continuous.chichinadze module": [[8, "module-src.problems.single_objective.continuous.chichinadze"]], "src.problems.single_objective.continuous.dropwave module": [[8, "module-src.problems.single_objective.continuous.dropwave"]], "src.problems.single_objective.continuous.fms module": [[8, "module-src.problems.single_objective.continuous.fms"]], "src.problems.single_objective.continuous.griewank module": [[8, "module-src.problems.single_objective.continuous.griewank"]], "src.problems.single_objective.continuous.holzman module": [[8, "module-src.problems.single_objective.continuous.holzman"]], "src.problems.single_objective.continuous.levy module": [[8, "module-src.problems.single_objective.continuous.levy"]], "src.problems.single_objective.continuous.matyas module": [[8, "module-src.problems.single_objective.continuous.matyas"]], "src.problems.single_objective.continuous.pow module": [[8, "module-src.problems.single_objective.continuous.pow"]], "src.problems.single_objective.continuous.powell module": [[8, "module-src.problems.single_objective.continuous.powell"]], "src.problems.single_objective.continuous.rastrigin module": [[8, "module-src.problems.single_objective.continuous.rastrigin"]], "src.problems.single_objective.continuous.rosenbrock module": [[8, "module-src.problems.single_objective.continuous.rosenbrock"]], "src.problems.single_objective.continuous.rothellipsoid module": [[8, "module-src.problems.single_objective.continuous.rothellipsoid"]], "src.problems.single_objective.continuous.schaffer module": [[8, "module-src.problems.single_objective.continuous.schaffer"]], "src.problems.single_objective.continuous.schaffer2 module": [[8, "module-src.problems.single_objective.continuous.schaffer2"]], "src.problems.single_objective.continuous.schwefel module": [[8, "module-src.problems.single_objective.continuous.schwefel"]], "src.problems.single_objective.continuous.sphere module": [[8, "module-src.problems.single_objective.continuous.sphere"]], "src.problems.single_objective.continuous.styblinskitang module": [[8, "module-src.problems.single_objective.continuous.styblinskitang"]], "src.problems.single_objective.continuous.sumofdifferentpowers module": [[8, "module-src.problems.single_objective.continuous.sumofdifferentpowers"]], "src.problems.single_objective.continuous.threehumps module": [[8, "module-src.problems.single_objective.continuous.threehumps"]], "src.problems.single_objective.continuous.zakharov module": [[8, "module-src.problems.single_objective.continuous.zakharov"]], "src.problems.single_objective.continuous.zettle module": [[8, "module-src.problems.single_objective.continuous.zettle"]], "src.problems.single_objective.discrete package": [[9, null]], "src.problems.single_objective.discrete.binary package": [[10, null]], "src.problems.single_objective.discrete.binary.count_sat module": [[10, "module-src.problems.single_objective.discrete.binary.count_sat"]], "src.problems.single_objective.discrete.binary.ecc module": [[10, "module-src.problems.single_objective.discrete.binary.ecc"]], "src.problems.single_objective.discrete.binary.fms module": [[10, "module-src.problems.single_objective.discrete.binary.fms"]], "src.problems.single_objective.discrete.binary.maxcut100 module": [[10, "module-src.problems.single_objective.discrete.binary.maxcut100"]], "src.problems.single_objective.discrete.binary.maxcut20_01 module": [[10, "module-src.problems.single_objective.discrete.binary.maxcut20_01"]], "src.problems.single_objective.discrete.binary.maxcut20_09 module": [[10, "module-src.problems.single_objective.discrete.binary.maxcut20_09"]], "src.problems.single_objective.discrete.binary.mmdp module": [[10, "module-src.problems.single_objective.discrete.binary.mmdp"]], "src.problems.single_objective.discrete.binary.one_max module": [[10, "module-src.problems.single_objective.discrete.binary.one_max"]], "src.problems.single_objective.discrete.binary.peak module": [[10, "module-src.problems.single_objective.discrete.binary.peak"]], "src.problems.single_objective.discrete.permutation package": [[11, null]], "src.problems.single_objective.discrete.permutation.tsp module": [[11, "module-src.problems.single_objective.discrete.permutation.tsp"]], "src.recombination package": [[12, null]], "src.recombination.arithmetic_crossover module": [[12, "module-src.recombination.arithmetic_crossover"]], "src.recombination.blxalpha_crossover module": [[12, "module-src.recombination.blxalpha_crossover"]], "src.recombination.byte_one_point_crossover module": [[12, "module-src.recombination.byte_one_point_crossover"]], "src.recombination.byte_uniform_crossover module": [[12, "module-src.recombination.byte_uniform_crossover"]], "src.recombination.flat_crossover module": [[12, "module-src.recombination.flat_crossover"]], "src.recombination.linear_crossover module": [[12, "module-src.recombination.linear_crossover"]], "src.recombination.one_point_crossover module": [[12, "module-src.recombination.one_point_crossover"]], "src.recombination.pmx_crossover module": [[12, "module-src.recombination.pmx_crossover"]], "src.recombination.recombination_operator module": [[12, "module-src.recombination.recombination_operator"]], "src.recombination.two_point_crossover module": [[12, "module-src.recombination.two_point_crossover"]], "src.recombination.unfair_avarage_crossover module": [[12, "module-src.recombination.unfair_avarage_crossover"]], "src.recombination.uniform_crossover module": [[12, "module-src.recombination.uniform_crossover"]], "src.selection package": [[13, null]], "src.selection.roulette_wheel_selection module": [[13, "module-src.selection.roulette_wheel_selection"]], "src.selection.selection_operator module": [[13, "module-src.selection.selection_operator"]], "src.selection.tournament_selection module": [[13, "module-src.selection.tournament_selection"]], "src.tests package": [[14, null]], "src.tests.conftest module": [[14, "module-src.tests.conftest"]], "src.tests.test_ackley module": [[14, "module-src.tests.test_ackley"]], "src.tests.test_arithmetic_crossover module": [[14, "module-src.tests.test_arithmetic_crossover"]], "src.tests.test_bentcigar_function module": [[14, "module-src.tests.test_bentcigar_function"]], "src.tests.test_bit_flip_mutation module": [[14, "module-src.tests.test_bit_flip_mutation"]], "src.tests.test_blxalpha_crossover module": [[14, "module-src.tests.test_blxalpha_crossover"]], "src.tests.test_bohachevsky module": [[14, "module-src.tests.test_bohachevsky"]], "src.tests.test_byte_mutation module": [[14, "module-src.tests.test_byte_mutation"]], "src.tests.test_byte_mutation_random module": [[14, "module-src.tests.test_byte_mutation_random"]], "src.tests.test_byte_one_point_crossover module": [[14, "module-src.tests.test_byte_one_point_crossover"]], "src.tests.test_byte_operators module": [[14, "module-src.tests.test_byte_operators"]], "src.tests.test_byte_uniform_crossover module": [[14, "module-src.tests.test_byte_uniform_crossover"]], "src.tests.test_chichinadze_function module": [[14, "module-src.tests.test_chichinadze_function"]], "src.tests.test_compact_13 module": [[14, "module-src.tests.test_compact_13"]], "src.tests.test_compact_21 module": [[14, "module-src.tests.test_compact_21"]], "src.tests.test_compact_25 module": [[14, "module-src.tests.test_compact_25"]], "src.tests.test_compact_9 module": [[14, "module-src.tests.test_compact_9"]], "src.tests.test_count_sat module": [[14, "module-src.tests.test_count_sat"]], "src.tests.test_dropwave_function module": [[14, "module-src.tests.test_dropwave_function"]], "src.tests.test_ecc module": [[14, "module-src.tests.test_ecc"]], "src.tests.test_flat_crossover module": [[14, "module-src.tests.test_flat_crossover"]], "src.tests.test_float_uniform_mutation module": [[14, "module-src.tests.test_float_uniform_mutation"]], "src.tests.test_fms module": [[14, "module-src.tests.test_fms"]], "src.tests.test_grid module": [[14, "module-src.tests.test_grid"]], "src.tests.test_griewank_function module": [[14, "module-src.tests.test_griewank_function"]], "src.tests.test_holzman_function module": [[14, "module-src.tests.test_holzman_function"]], "src.tests.test_individual module": [[14, "module-src.tests.test_individual"]], "src.tests.test_insertion_mutation module": [[14, "module-src.tests.test_insertion_mutation"]], "src.tests.test_levy_function module": [[14, "module-src.tests.test_levy_function"]], "src.tests.test_linear_5 module": [[14, "module-src.tests.test_linear_5"]], "src.tests.test_linear_9 module": [[14, "module-src.tests.test_linear_9"]], "src.tests.test_linear_crossover module": [[14, "module-src.tests.test_linear_crossover"]], "src.tests.test_matyas_function module": [[14, "module-src.tests.test_matyas_function"]], "src.tests.test_maxcut100 module": [[14, "module-src.tests.test_maxcut100"]], "src.tests.test_maxcut20_01 module": [[14, "module-src.tests.test_maxcut20_01"]], "src.tests.test_maxcut20_09 module": [[14, "module-src.tests.test_maxcut20_09"]], "src.tests.test_mmdp module": [[14, "module-src.tests.test_mmdp"]], "src.tests.test_one_max module": [[14, "module-src.tests.test_one_max"]], "src.tests.test_one_point_crossover module": [[14, "module-src.tests.test_one_point_crossover"]], "src.tests.test_optimizer_alpha_cga module": [[14, "module-src.tests.test_optimizer_alpha_cga"]], "src.tests.test_optimizer_ccga module": [[14, "module-src.tests.test_optimizer_ccga"]], "src.tests.test_optimizer_cga module": [[14, "module-src.tests.test_optimizer_cga"]], "src.tests.test_optimizer_mccga module": [[14, "module-src.tests.test_optimizer_mccga"]], "src.tests.test_optimizer_sync_cga module": [[14, "module-src.tests.test_optimizer_sync_cga"]], "src.tests.test_peak module": [[14, "module-src.tests.test_peak"]], "src.tests.test_pmx_crossover module": [[14, "module-src.tests.test_pmx_crossover"]], "src.tests.test_population module": [[14, "module-src.tests.test_population"]], "src.tests.test_pow_function module": [[14, "module-src.tests.test_pow_function"]], "src.tests.test_powell_function module": [[14, "module-src.tests.test_powell_function"]], "src.tests.test_rastrigin module": [[14, "module-src.tests.test_rastrigin"]], "src.tests.test_rosenbrock module": [[14, "module-src.tests.test_rosenbrock"]], "src.tests.test_rothellipsoid_function module": [[14, "module-src.tests.test_rothellipsoid_function"]], "src.tests.test_roulette_wheel_selection module": [[14, "module-src.tests.test_roulette_wheel_selection"]], "src.tests.test_schaffer2_function module": [[14, "module-src.tests.test_schaffer2_function"]], "src.tests.test_schaffer_function module": [[14, "module-src.tests.test_schaffer_function"]], "src.tests.test_schwefel module": [[14, "module-src.tests.test_schwefel"]], "src.tests.test_shuffle_mutation module": [[14, "module-src.tests.test_shuffle_mutation"]], "src.tests.test_sphere module": [[14, "module-src.tests.test_sphere"]], "src.tests.test_styblinskitang_function module": [[14, "module-src.tests.test_styblinskitang_function"]], "src.tests.test_sumofdifferentpowers_function module": [[14, "module-src.tests.test_sumofdifferentpowers_function"]], "src.tests.test_swap_mutation module": [[14, "module-src.tests.test_swap_mutation"]], "src.tests.test_threehumps_function module": [[14, "module-src.tests.test_threehumps_function"]], "src.tests.test_tournament_selection module": [[14, "module-src.tests.test_tournament_selection"]], "src.tests.test_tsp module": [[14, "module-src.tests.test_tsp"]], "src.tests.test_two_opt_mutation module": [[14, "module-src.tests.test_two_opt_mutation"]], "src.tests.test_two_point_crossover module": [[14, "module-src.tests.test_two_point_crossover"]], "src.tests.test_unfair_average_crossover module": [[14, "module-src.tests.test_unfair_average_crossover"]], "src.tests.test_uniform_crossover module": [[14, "module-src.tests.test_uniform_crossover"]], "src.tests.test_zakharov_function module": [[14, "module-src.tests.test_zakharov_function"]], "src.tests.test_zettle_function module": [[14, "module-src.tests.test_zettle_function"]]}, "docnames": ["index", "modules", "src", "src.example", "src.mutation", "src.neighborhoods", "src.problems", "src.problems.single_objective", "src.problems.single_objective.continuous", "src.problems.single_objective.discrete", "src.problems.single_objective.discrete.binary", "src.problems.single_objective.discrete.permutation", "src.recombination", "src.selection", "src.tests"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.rst", "modules.rst", "src.rst", "src.example.rst", "src.mutation.rst", "src.neighborhoods.rst", "src.problems.rst", "src.problems.single_objective.rst", "src.problems.single_objective.continuous.rst", "src.problems.single_objective.discrete.rst", "src.problems.single_objective.discrete.binary.rst", "src.problems.single_objective.discrete.permutation.rst", "src.recombination.rst", "src.selection.rst", "src.tests.rst"], "indexentries": {"__init__() (src.example.example_alpha_cga.exampleproblem method)": [[3, "src.example.example_alpha_cga.ExampleProblem.__init__", false]], "__init__() (src.example.example_ccga.exampleproblem method)": [[3, "src.example.example_ccga.ExampleProblem.__init__", false]], "__init__() (src.example.example_cga.exampleproblem method)": [[3, "src.example.example_cga.ExampleProblem.__init__", false]], "__init__() (src.example.example_mcccga.realproblem method)": [[3, "src.example.example_mcccga.RealProblem.__init__", false]], "__init__() (src.example.example_sync_cga.exampleproblem method)": [[3, "src.example.example_sync_cga.ExampleProblem.__init__", false]], "__init__() (src.grid.grid method)": [[2, "src.grid.Grid.__init__", false]], "__init__() (src.mutation.bit_flip_mutation.bitflipmutation method)": [[4, "src.mutation.bit_flip_mutation.BitFlipMutation.__init__", false]], "__init__() (src.mutation.byte_mutation.bytemutation method)": [[4, "src.mutation.byte_mutation.ByteMutation.__init__", false]], "__init__() (src.mutation.byte_mutation_random.bytemutationrandom method)": [[4, "src.mutation.byte_mutation_random.ByteMutationRandom.__init__", false]], "__init__() (src.mutation.float_uniform_mutation.floatuniformmutation method)": [[4, "src.mutation.float_uniform_mutation.FloatUniformMutation.__init__", false]], "__init__() (src.mutation.insertion_mutation.insertionmutation method)": [[4, "src.mutation.insertion_mutation.InsertionMutation.__init__", false]], "__init__() (src.mutation.shuffle_mutation.shufflemutation method)": [[4, "src.mutation.shuffle_mutation.ShuffleMutation.__init__", false]], "__init__() (src.mutation.swap_mutation.swapmutation method)": [[4, "src.mutation.swap_mutation.SwapMutation.__init__", false]], "__init__() (src.mutation.two_opt_mutation.twooptmutation method)": [[4, "src.mutation.two_opt_mutation.TwoOptMutation.__init__", false]], "__init__() (src.neighborhoods.compact_13.compact13 method)": [[5, "src.neighborhoods.compact_13.Compact13.__init__", false]], "__init__() (src.neighborhoods.compact_21.compact21 method)": [[5, "src.neighborhoods.compact_21.Compact21.__init__", false]], "__init__() (src.neighborhoods.compact_25.compact25 method)": [[5, "src.neighborhoods.compact_25.Compact25.__init__", false]], "__init__() (src.neighborhoods.compact_9.compact9 method)": [[5, "src.neighborhoods.compact_9.Compact9.__init__", false]], "__init__() (src.neighborhoods.linear_5.linear5 method)": [[5, "src.neighborhoods.linear_5.Linear5.__init__", false]], "__init__() (src.neighborhoods.linear_9.linear9 method)": [[5, "src.neighborhoods.linear_9.Linear9.__init__", false]], "__init__() (src.recombination.arithmetic_crossover.arithmeticcrossover method)": [[12, "src.recombination.arithmetic_crossover.ArithmeticCrossover.__init__", false]], "__init__() (src.recombination.blxalpha_crossover.blxalphacrossover method)": [[12, "src.recombination.blxalpha_crossover.BlxalphaCrossover.__init__", false]], "__init__() (src.recombination.byte_one_point_crossover.byteonepointcrossover method)": [[12, "src.recombination.byte_one_point_crossover.ByteOnePointCrossover.__init__", false]], "__init__() (src.recombination.byte_uniform_crossover.byteuniformcrossover method)": [[12, "src.recombination.byte_uniform_crossover.ByteUniformCrossover.__init__", false]], "__init__() (src.recombination.flat_crossover.flatcrossover method)": [[12, "src.recombination.flat_crossover.FlatCrossover.__init__", false]], "__init__() (src.recombination.linear_crossover.linearcrossover method)": [[12, "src.recombination.linear_crossover.LinearCrossover.__init__", false]], "__init__() (src.recombination.one_point_crossover.onepointcrossover method)": [[12, "src.recombination.one_point_crossover.OnePointCrossover.__init__", false]], "__init__() (src.recombination.pmx_crossover.pmxcrossover method)": [[12, "src.recombination.pmx_crossover.PMXCrossover.__init__", false]], "__init__() (src.recombination.two_point_crossover.twopointcrossover method)": [[12, "src.recombination.two_point_crossover.TwoPointCrossover.__init__", false]], "__init__() (src.recombination.unfair_avarage_crossover.unfairavaragecrossover method)": [[12, "src.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.__init__", false]], "__init__() (src.recombination.uniform_crossover.uniformcrossover method)": [[12, "src.recombination.uniform_crossover.UniformCrossover.__init__", false]], "__init__() (src.selection.roulette_wheel_selection.roulettewheelselection method)": [[13, "src.selection.roulette_wheel_selection.RouletteWheelSelection.__init__", false]], "__init__() (src.selection.tournament_selection.tournamentselection method)": [[13, "src.selection.tournament_selection.TournamentSelection.__init__", false]], "__init__() (src.tests.test_optimizer_alpha_cga.binaryproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.BinaryProblem.__init__", false]], "__init__() (src.tests.test_optimizer_alpha_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.PermutationProblem.__init__", false]], "__init__() (src.tests.test_optimizer_alpha_cga.realproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.RealProblem.__init__", false]], "__init__() (src.tests.test_optimizer_ccga.binaryproblem method)": [[14, "src.tests.test_optimizer_ccga.BinaryProblem.__init__", false]], "__init__() (src.tests.test_optimizer_cga.binaryproblem method)": [[14, "src.tests.test_optimizer_cga.BinaryProblem.__init__", false]], "__init__() (src.tests.test_optimizer_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_cga.PermutationProblem.__init__", false]], "__init__() (src.tests.test_optimizer_cga.realproblem method)": [[14, "src.tests.test_optimizer_cga.RealProblem.__init__", false]], "__init__() (src.tests.test_optimizer_mccga.realproblem method)": [[14, "src.tests.test_optimizer_mccga.RealProblem.__init__", false]], "__init__() (src.tests.test_optimizer_sync_cga.binaryproblem method)": [[14, "src.tests.test_optimizer_sync_cga.BinaryProblem.__init__", false]], "__init__() (src.tests.test_optimizer_sync_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_sync_cga.PermutationProblem.__init__", false]], "__init__() (src.tests.test_optimizer_sync_cga.realproblem method)": [[14, "src.tests.test_optimizer_sync_cga.RealProblem.__init__", false]], "abstractproblem (class in src.problems.abstract_problem)": [[6, "src.problems.abstract_problem.AbstractProblem", false]], "ackley (class in src.problems.single_objective.continuous.ackley)": [[8, "src.problems.single_objective.continuous.ackley.Ackley", false]], "arithmeticcrossover (class in src.recombination.arithmetic_crossover)": [[12, "src.recombination.arithmetic_crossover.ArithmeticCrossover", false]], "bentcigar (class in src.problems.single_objective.continuous.bentcigar)": [[8, "src.problems.single_objective.continuous.bentcigar.Bentcigar", false]], "binaryproblem (class in src.tests.test_optimizer_alpha_cga)": [[14, "src.tests.test_optimizer_alpha_cga.BinaryProblem", false]], "binaryproblem (class in src.tests.test_optimizer_ccga)": [[14, "src.tests.test_optimizer_ccga.BinaryProblem", false]], "binaryproblem (class in src.tests.test_optimizer_cga)": [[14, "src.tests.test_optimizer_cga.BinaryProblem", false]], "binaryproblem (class in src.tests.test_optimizer_sync_cga)": [[14, "src.tests.test_optimizer_sync_cga.BinaryProblem", false]], "bitflipmutation (class in src.mutation.bit_flip_mutation)": [[4, "src.mutation.bit_flip_mutation.BitFlipMutation", false]], "bits_to_float() (in module src.byte_operators)": [[2, "src.byte_operators.bits_to_float", false]], "bits_to_floats() (in module src.byte_operators)": [[2, "src.byte_operators.bits_to_floats", false]], "blxalphacrossover (class in src.recombination.blxalpha_crossover)": [[12, "src.recombination.blxalpha_crossover.BlxalphaCrossover", false]], "bohachevsky (class in src.problems.single_objective.continuous.bohachevsky)": [[8, "src.problems.single_objective.continuous.bohachevsky.Bohachevsky", false]], "bytemutation (class in src.mutation.byte_mutation)": [[4, "src.mutation.byte_mutation.ByteMutation", false]], "bytemutationrandom (class in src.mutation.byte_mutation_random)": [[4, "src.mutation.byte_mutation_random.ByteMutationRandom", false]], "byteonepointcrossover (class in src.recombination.byte_one_point_crossover)": [[12, "src.recombination.byte_one_point_crossover.ByteOnePointCrossover", false]], "byteuniformcrossover (class in src.recombination.byte_uniform_crossover)": [[12, "src.recombination.byte_uniform_crossover.ByteUniformCrossover", false]], "calculate_neighbors_positions() (src.neighborhoods.compact_13.compact13 method)": [[5, "src.neighborhoods.compact_13.Compact13.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (src.neighborhoods.compact_21.compact21 method)": [[5, "src.neighborhoods.compact_21.Compact21.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (src.neighborhoods.compact_25.compact25 method)": [[5, "src.neighborhoods.compact_25.Compact25.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (src.neighborhoods.compact_9.compact9 method)": [[5, "src.neighborhoods.compact_9.Compact9.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (src.neighborhoods.linear_5.linear5 method)": [[5, "src.neighborhoods.linear_5.Linear5.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (src.neighborhoods.linear_9.linear9 method)": [[5, "src.neighborhoods.linear_9.Linear9.calculate_neighbors_positions", false]], "chichinadze (class in src.problems.single_objective.continuous.chichinadze)": [[8, "src.problems.single_objective.continuous.chichinadze.Chichinadze", false]], "combine() (src.recombination.blxalpha_crossover.blxalphacrossover method)": [[12, "src.recombination.blxalpha_crossover.BlxalphaCrossover.combine", false]], "combine() (src.recombination.byte_uniform_crossover.byteuniformcrossover method)": [[12, "src.recombination.byte_uniform_crossover.ByteUniformCrossover.combine", false]], "combine() (src.recombination.flat_crossover.flatcrossover method)": [[12, "src.recombination.flat_crossover.FlatCrossover.combine", false]], "combine() (src.recombination.linear_crossover.linearcrossover method)": [[12, "src.recombination.linear_crossover.LinearCrossover.combine", false]], "combine() (src.recombination.uniform_crossover.uniformcrossover method)": [[12, "src.recombination.uniform_crossover.UniformCrossover.combine", false]], "compact13 (class in src.neighborhoods.compact_13)": [[5, "src.neighborhoods.compact_13.Compact13", false]], "compact21 (class in src.neighborhoods.compact_21)": [[5, "src.neighborhoods.compact_21.Compact21", false]], "compact25 (class in src.neighborhoods.compact_25)": [[5, "src.neighborhoods.compact_25.Compact25", false]], "compact9 (class in src.neighborhoods.compact_9)": [[5, "src.neighborhoods.compact_9.Compact9", false]], "countsat (class in src.problems.single_objective.discrete.binary.count_sat)": [[10, "src.problems.single_objective.discrete.binary.count_sat.CountSat", false]], "dropwave (class in src.problems.single_objective.continuous.dropwave)": [[8, "src.problems.single_objective.continuous.dropwave.Dropwave", false]], "ecc (class in src.problems.single_objective.discrete.binary.ecc)": [[10, "src.problems.single_objective.discrete.binary.ecc.Ecc", false]], "ecc_instance() (in module src.tests.test_ecc)": [[14, "src.tests.test_ecc.ecc_instance", false]], "euclidean_dist() (src.problems.single_objective.discrete.permutation.tsp.tsp method)": [[11, "src.problems.single_objective.discrete.permutation.tsp.Tsp.euclidean_dist", false]], "exampleproblem (class in src.example.example_alpha_cga)": [[3, "src.example.example_alpha_cga.ExampleProblem", false]], "exampleproblem (class in src.example.example_ccga)": [[3, "src.example.example_ccga.ExampleProblem", false]], "exampleproblem (class in src.example.example_cga)": [[3, "src.example.example_cga.ExampleProblem", false]], "exampleproblem (class in src.example.example_sync_cga)": [[3, "src.example.example_sync_cga.ExampleProblem", false]], "f() (src.example.example_alpha_cga.exampleproblem method)": [[3, "src.example.example_alpha_cga.ExampleProblem.f", false]], "f() (src.example.example_ccga.exampleproblem method)": [[3, "src.example.example_ccga.ExampleProblem.f", false]], "f() (src.example.example_cga.exampleproblem method)": [[3, "src.example.example_cga.ExampleProblem.f", false]], "f() (src.example.example_mcccga.realproblem method)": [[3, "src.example.example_mcccga.RealProblem.f", false]], "f() (src.example.example_sync_cga.exampleproblem method)": [[3, "src.example.example_sync_cga.ExampleProblem.f", false]], "f() (src.problems.abstract_problem.abstractproblem method)": [[6, "id0", false], [6, "src.problems.abstract_problem.AbstractProblem.f", false]], "f() (src.problems.single_objective.continuous.ackley.ackley method)": [[8, "id0", false], [8, "src.problems.single_objective.continuous.ackley.Ackley.f", false]], "f() (src.problems.single_objective.continuous.bentcigar.bentcigar method)": [[8, "id1", false], [8, "src.problems.single_objective.continuous.bentcigar.Bentcigar.f", false]], "f() (src.problems.single_objective.continuous.bohachevsky.bohachevsky method)": [[8, "id2", false], [8, "src.problems.single_objective.continuous.bohachevsky.Bohachevsky.f", false]], "f() (src.problems.single_objective.continuous.chichinadze.chichinadze method)": [[8, "id3", false], [8, "src.problems.single_objective.continuous.chichinadze.Chichinadze.f", false]], "f() (src.problems.single_objective.continuous.dropwave.dropwave method)": [[8, "id4", false], [8, "src.problems.single_objective.continuous.dropwave.Dropwave.f", false]], "f() (src.problems.single_objective.continuous.fms.fms method)": [[8, "id5", false], [8, "src.problems.single_objective.continuous.fms.Fms.f", false]], "f() (src.problems.single_objective.continuous.griewank.griewank method)": [[8, "id6", false], [8, "src.problems.single_objective.continuous.griewank.Griewank.f", false]], "f() (src.problems.single_objective.continuous.holzman.holzman method)": [[8, "id7", false], [8, "src.problems.single_objective.continuous.holzman.Holzman.f", false]], "f() (src.problems.single_objective.continuous.levy.levy method)": [[8, "id8", false], [8, "src.problems.single_objective.continuous.levy.Levy.f", false]], "f() (src.problems.single_objective.continuous.matyas.matyas method)": [[8, "id9", false], [8, "src.problems.single_objective.continuous.matyas.Matyas.f", false]], "f() (src.problems.single_objective.continuous.pow.pow method)": [[8, "id10", false], [8, "src.problems.single_objective.continuous.pow.Pow.f", false]], "f() (src.problems.single_objective.continuous.powell.powell method)": [[8, "id11", false], [8, "src.problems.single_objective.continuous.powell.Powell.f", false]], "f() (src.problems.single_objective.continuous.rastrigin.rastrigin method)": [[8, "id12", false], [8, "src.problems.single_objective.continuous.rastrigin.Rastrigin.f", false]], "f() (src.problems.single_objective.continuous.rosenbrock.rosenbrock method)": [[8, "id13", false], [8, "src.problems.single_objective.continuous.rosenbrock.Rosenbrock.f", false]], "f() (src.problems.single_objective.continuous.rothellipsoid.rothellipsoid method)": [[8, "id14", false], [8, "src.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.f", false]], "f() (src.problems.single_objective.continuous.schaffer.schaffer method)": [[8, "id15", false], [8, "src.problems.single_objective.continuous.schaffer.Schaffer.f", false]], "f() (src.problems.single_objective.continuous.schaffer2.schaffer2 method)": [[8, "id16", false], [8, "src.problems.single_objective.continuous.schaffer2.Schaffer2.f", false]], "f() (src.problems.single_objective.continuous.schwefel.schwefel method)": [[8, "id17", false], [8, "src.problems.single_objective.continuous.schwefel.Schwefel.f", false]], "f() (src.problems.single_objective.continuous.sphere.sphere method)": [[8, "id18", false], [8, "src.problems.single_objective.continuous.sphere.Sphere.f", false]], "f() (src.problems.single_objective.continuous.styblinskitang.styblinskitang method)": [[8, "id19", false], [8, "src.problems.single_objective.continuous.styblinskitang.StyblinskiTang.f", false]], "f() (src.problems.single_objective.continuous.sumofdifferentpowers.sumofdifferentpowers method)": [[8, "src.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.f", false]], "f() (src.problems.single_objective.continuous.threehumps.threehumps method)": [[8, "id20", false], [8, "src.problems.single_objective.continuous.threehumps.Threehumps.f", false]], "f() (src.problems.single_objective.continuous.zakharov.zakharov method)": [[8, "id21", false], [8, "src.problems.single_objective.continuous.zakharov.Zakharov.f", false]], "f() (src.problems.single_objective.continuous.zettle.zettle method)": [[8, "id22", false], [8, "src.problems.single_objective.continuous.zettle.Zettle.f", false]], "f() (src.problems.single_objective.discrete.binary.count_sat.countsat method)": [[10, "id0", false], [10, "src.problems.single_objective.discrete.binary.count_sat.CountSat.f", false]], "f() (src.problems.single_objective.discrete.binary.ecc.ecc method)": [[10, "id1", false], [10, "src.problems.single_objective.discrete.binary.ecc.Ecc.f", false]], "f() (src.problems.single_objective.discrete.binary.fms.fms method)": [[10, "id2", false], [10, "src.problems.single_objective.discrete.binary.fms.Fms.f", false]], "f() (src.problems.single_objective.discrete.binary.maxcut100.maxcut100 method)": [[10, "id3", false], [10, "src.problems.single_objective.discrete.binary.maxcut100.Maxcut100.f", false]], "f() (src.problems.single_objective.discrete.binary.maxcut20_01.maxcut20_01 method)": [[10, "id4", false], [10, "src.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.f", false]], "f() (src.problems.single_objective.discrete.binary.maxcut20_09.maxcut20_09 method)": [[10, "id5", false], [10, "src.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.f", false]], "f() (src.problems.single_objective.discrete.binary.mmdp.mmdp method)": [[10, "id6", false], [10, "src.problems.single_objective.discrete.binary.mmdp.Mmdp.f", false]], "f() (src.problems.single_objective.discrete.binary.one_max.onemax method)": [[10, "id7", false], [10, "src.problems.single_objective.discrete.binary.one_max.OneMax.f", false]], "f() (src.problems.single_objective.discrete.binary.peak.peak method)": [[10, "id8", false], [10, "src.problems.single_objective.discrete.binary.peak.Peak.f", false]], "f() (src.problems.single_objective.discrete.permutation.tsp.tsp method)": [[11, "src.problems.single_objective.discrete.permutation.tsp.Tsp.f", false]], "f() (src.tests.test_arithmetic_crossover.mockproblem method)": [[14, "src.tests.test_arithmetic_crossover.MockProblem.f", false]], "f() (src.tests.test_blxalpha_crossover.mockproblem method)": [[14, "src.tests.test_blxalpha_crossover.MockProblem.f", false]], "f() (src.tests.test_byte_mutation.mockproblem method)": [[14, "src.tests.test_byte_mutation.MockProblem.f", false]], "f() (src.tests.test_byte_mutation_random.mockproblem method)": [[14, "src.tests.test_byte_mutation_random.MockProblem.f", false]], "f() (src.tests.test_byte_one_point_crossover.mockproblem method)": [[14, "src.tests.test_byte_one_point_crossover.MockProblem.f", false]], "f() (src.tests.test_byte_uniform_crossover.mockproblem method)": [[14, "src.tests.test_byte_uniform_crossover.MockProblem.f", false]], "f() (src.tests.test_flat_crossover.mockproblem method)": [[14, "src.tests.test_flat_crossover.MockProblem.f", false]], "f() (src.tests.test_float_uniform_mutation.mockproblem method)": [[14, "src.tests.test_float_uniform_mutation.MockProblem.f", false]], "f() (src.tests.test_linear_crossover.mockproblem method)": [[14, "src.tests.test_linear_crossover.MockProblem.f", false]], "f() (src.tests.test_optimizer_alpha_cga.binaryproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.BinaryProblem.f", false]], "f() (src.tests.test_optimizer_alpha_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.PermutationProblem.f", false]], "f() (src.tests.test_optimizer_alpha_cga.realproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.RealProblem.f", false]], "f() (src.tests.test_optimizer_ccga.binaryproblem method)": [[14, "src.tests.test_optimizer_ccga.BinaryProblem.f", false]], "f() (src.tests.test_optimizer_cga.binaryproblem method)": [[14, "src.tests.test_optimizer_cga.BinaryProblem.f", false]], "f() (src.tests.test_optimizer_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_cga.PermutationProblem.f", false]], "f() (src.tests.test_optimizer_cga.realproblem method)": [[14, "src.tests.test_optimizer_cga.RealProblem.f", false]], "f() (src.tests.test_optimizer_mccga.realproblem method)": [[14, "src.tests.test_optimizer_mccga.RealProblem.f", false]], "f() (src.tests.test_optimizer_sync_cga.binaryproblem method)": [[14, "src.tests.test_optimizer_sync_cga.BinaryProblem.f", false]], "f() (src.tests.test_optimizer_sync_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_sync_cga.PermutationProblem.f", false]], "f() (src.tests.test_optimizer_sync_cga.realproblem method)": [[14, "src.tests.test_optimizer_sync_cga.RealProblem.f", false]], "f() (src.tests.test_population.mockproblem method)": [[14, "id0", false], [14, "src.tests.test_population.MockProblem.f", false]], "f() (src.tests.test_pow_function.pow method)": [[14, "id1", false], [14, "src.tests.test_pow_function.Pow.f", false]], "f() (src.tests.test_unfair_average_crossover.mockproblem method)": [[14, "src.tests.test_unfair_average_crossover.MockProblem.f", false]], "flatcrossover (class in src.recombination.flat_crossover)": [[12, "src.recombination.flat_crossover.FlatCrossover", false]], "float_to_bits() (in module src.byte_operators)": [[2, "src.byte_operators.float_to_bits", false]], "floats_to_bits() (in module src.byte_operators)": [[2, "src.byte_operators.floats_to_bits", false]], "floatuniformmutation (class in src.mutation.float_uniform_mutation)": [[4, "src.mutation.float_uniform_mutation.FloatUniformMutation", false]], "fms (class in src.problems.single_objective.continuous.fms)": [[8, "src.problems.single_objective.continuous.fms.Fms", false]], "fms (class in src.problems.single_objective.discrete.binary.fms)": [[10, "src.problems.single_objective.discrete.binary.fms.Fms", false]], "fms_instance() (in module src.tests.test_fms)": [[14, "src.tests.test_fms.fms_instance", false]], "get_parents() (src.selection.roulette_wheel_selection.roulettewheelselection method)": [[13, "src.selection.roulette_wheel_selection.RouletteWheelSelection.get_parents", false]], "get_parents() (src.selection.selection_operator.selectionoperator method)": [[13, "src.selection.selection_operator.SelectionOperator.get_parents", false]], "get_parents() (src.selection.tournament_selection.tournamentselection method)": [[13, "src.selection.tournament_selection.TournamentSelection.get_parents", false]], "get_recombinations() (src.recombination.arithmetic_crossover.arithmeticcrossover method)": [[12, "src.recombination.arithmetic_crossover.ArithmeticCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.blxalpha_crossover.blxalphacrossover method)": [[12, "src.recombination.blxalpha_crossover.BlxalphaCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.byte_one_point_crossover.byteonepointcrossover method)": [[12, "src.recombination.byte_one_point_crossover.ByteOnePointCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.byte_uniform_crossover.byteuniformcrossover method)": [[12, "src.recombination.byte_uniform_crossover.ByteUniformCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.flat_crossover.flatcrossover method)": [[12, "src.recombination.flat_crossover.FlatCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.linear_crossover.linearcrossover method)": [[12, "src.recombination.linear_crossover.LinearCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.one_point_crossover.onepointcrossover method)": [[12, "src.recombination.one_point_crossover.OnePointCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.pmx_crossover.pmxcrossover method)": [[12, "src.recombination.pmx_crossover.PMXCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.recombination_operator.recombinationoperator method)": [[12, "src.recombination.recombination_operator.RecombinationOperator.get_recombinations", false]], "get_recombinations() (src.recombination.two_point_crossover.twopointcrossover method)": [[12, "src.recombination.two_point_crossover.TwoPointCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.unfair_avarage_crossover.unfairavaragecrossover method)": [[12, "src.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.get_recombinations", false]], "get_recombinations() (src.recombination.uniform_crossover.uniformcrossover method)": [[12, "src.recombination.uniform_crossover.UniformCrossover.get_recombinations", false]], "gographical_dist() (src.problems.single_objective.discrete.permutation.tsp.tsp method)": [[11, "src.problems.single_objective.discrete.permutation.tsp.Tsp.gographical_dist", false]], "grid (class in src.grid)": [[2, "src.grid.Grid", false]], "griewank (class in src.problems.single_objective.continuous.griewank)": [[8, "src.problems.single_objective.continuous.griewank.Griewank", false]], "holzman (class in src.problems.single_objective.continuous.holzman)": [[8, "src.problems.single_objective.continuous.holzman.Holzman", false]], "insertionmutation (class in src.mutation.insertion_mutation)": [[4, "src.mutation.insertion_mutation.InsertionMutation", false]], "levy (class in src.problems.single_objective.continuous.levy)": [[8, "src.problems.single_objective.continuous.levy.Levy", false]], "linear5 (class in src.neighborhoods.linear_5)": [[5, "src.neighborhoods.linear_5.Linear5", false]], "linear9 (class in src.neighborhoods.linear_9)": [[5, "src.neighborhoods.linear_9.Linear9", false]], "linearcrossover (class in src.recombination.linear_crossover)": [[12, "src.recombination.linear_crossover.LinearCrossover", false]], "make_2d_grid() (src.grid.grid method)": [[2, "src.grid.Grid.make_2d_grid", false]], "matyas (class in src.problems.single_objective.continuous.matyas)": [[8, "src.problems.single_objective.continuous.matyas.Matyas", false]], "maxcut100 (class in src.problems.single_objective.discrete.binary.maxcut100)": [[10, "src.problems.single_objective.discrete.binary.maxcut100.Maxcut100", false]], "maxcut20_01 (class in src.problems.single_objective.discrete.binary.maxcut20_01)": [[10, "src.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01", false]], "maxcut20_09 (class in src.problems.single_objective.discrete.binary.maxcut20_09)": [[10, "src.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09", false]], "maxcut_instance() (in module src.tests.test_maxcut100)": [[14, "src.tests.test_maxcut100.maxcut_instance", false]], "maxcut_instance() (in module src.tests.test_maxcut20_01)": [[14, "src.tests.test_maxcut20_01.maxcut_instance", false]], "maxcut_instance() (in module src.tests.test_maxcut20_09)": [[14, "src.tests.test_maxcut20_09.maxcut_instance", false]], "mmdp (class in src.problems.single_objective.discrete.binary.mmdp)": [[10, "src.problems.single_objective.discrete.binary.mmdp.Mmdp", false]], "mmdp_instance() (in module src.tests.test_mmdp)": [[14, "src.tests.test_mmdp.mmdp_instance", false]], "mockproblem (class in src.tests.test_arithmetic_crossover)": [[14, "src.tests.test_arithmetic_crossover.MockProblem", false]], "mockproblem (class in src.tests.test_blxalpha_crossover)": [[14, "src.tests.test_blxalpha_crossover.MockProblem", false]], "mockproblem (class in src.tests.test_byte_mutation)": [[14, "src.tests.test_byte_mutation.MockProblem", false]], "mockproblem (class in src.tests.test_byte_mutation_random)": [[14, "src.tests.test_byte_mutation_random.MockProblem", false]], "mockproblem (class in src.tests.test_byte_one_point_crossover)": [[14, "src.tests.test_byte_one_point_crossover.MockProblem", false]], "mockproblem (class in src.tests.test_byte_uniform_crossover)": [[14, "src.tests.test_byte_uniform_crossover.MockProblem", false]], "mockproblem (class in src.tests.test_flat_crossover)": [[14, "src.tests.test_flat_crossover.MockProblem", false]], "mockproblem (class in src.tests.test_float_uniform_mutation)": [[14, "src.tests.test_float_uniform_mutation.MockProblem", false]], "mockproblem (class in src.tests.test_linear_crossover)": [[14, "src.tests.test_linear_crossover.MockProblem", false]], "mockproblem (class in src.tests.test_population)": [[14, "src.tests.test_population.MockProblem", false]], "mockproblem (class in src.tests.test_unfair_average_crossover)": [[14, "src.tests.test_unfair_average_crossover.MockProblem", false]], "module": [[2, "module-src", false], [2, "module-src.byte_operators", false], [2, "module-src.grid", false], [3, "module-src.example", false], [3, "module-src.example.example_alpha_cga", false], [3, "module-src.example.example_ccga", false], [3, "module-src.example.example_cga", false], [3, "module-src.example.example_mcccga", false], [3, "module-src.example.example_sync_cga", false], [4, "module-src.mutation", false], [4, "module-src.mutation.bit_flip_mutation", false], [4, "module-src.mutation.byte_mutation", false], [4, "module-src.mutation.byte_mutation_random", false], [4, "module-src.mutation.float_uniform_mutation", false], [4, "module-src.mutation.insertion_mutation", false], [4, "module-src.mutation.mutation_operator", false], [4, "module-src.mutation.shuffle_mutation", false], [4, "module-src.mutation.swap_mutation", false], [4, "module-src.mutation.two_opt_mutation", false], [5, "module-src.neighborhoods", false], [5, "module-src.neighborhoods.compact_13", false], [5, "module-src.neighborhoods.compact_21", false], [5, "module-src.neighborhoods.compact_25", false], [5, "module-src.neighborhoods.compact_9", false], [5, "module-src.neighborhoods.linear_5", false], [5, "module-src.neighborhoods.linear_9", false], [6, "module-src.problems", false], [6, "module-src.problems.abstract_problem", false], [7, "module-src.problems.single_objective", false], [8, "module-src.problems.single_objective.continuous", false], [8, "module-src.problems.single_objective.continuous.ackley", false], [8, "module-src.problems.single_objective.continuous.bentcigar", false], [8, "module-src.problems.single_objective.continuous.bohachevsky", false], [8, "module-src.problems.single_objective.continuous.chichinadze", false], [8, "module-src.problems.single_objective.continuous.dropwave", false], [8, "module-src.problems.single_objective.continuous.fms", false], [8, "module-src.problems.single_objective.continuous.griewank", false], [8, "module-src.problems.single_objective.continuous.holzman", false], [8, "module-src.problems.single_objective.continuous.levy", false], [8, "module-src.problems.single_objective.continuous.matyas", false], [8, "module-src.problems.single_objective.continuous.pow", false], [8, "module-src.problems.single_objective.continuous.powell", false], [8, "module-src.problems.single_objective.continuous.rastrigin", false], [8, "module-src.problems.single_objective.continuous.rosenbrock", false], [8, "module-src.problems.single_objective.continuous.rothellipsoid", false], [8, "module-src.problems.single_objective.continuous.schaffer", false], [8, "module-src.problems.single_objective.continuous.schaffer2", false], [8, "module-src.problems.single_objective.continuous.schwefel", false], [8, "module-src.problems.single_objective.continuous.sphere", false], [8, "module-src.problems.single_objective.continuous.styblinskitang", false], [8, "module-src.problems.single_objective.continuous.sumofdifferentpowers", false], [8, "module-src.problems.single_objective.continuous.threehumps", false], [8, "module-src.problems.single_objective.continuous.zakharov", false], [8, "module-src.problems.single_objective.continuous.zettle", false], [9, "module-src.problems.single_objective.discrete", false], [10, "module-src.problems.single_objective.discrete.binary", false], [10, "module-src.problems.single_objective.discrete.binary.count_sat", false], [10, "module-src.problems.single_objective.discrete.binary.ecc", false], [10, "module-src.problems.single_objective.discrete.binary.fms", false], [10, "module-src.problems.single_objective.discrete.binary.maxcut100", false], [10, "module-src.problems.single_objective.discrete.binary.maxcut20_01", false], [10, "module-src.problems.single_objective.discrete.binary.maxcut20_09", false], [10, "module-src.problems.single_objective.discrete.binary.mmdp", false], [10, "module-src.problems.single_objective.discrete.binary.one_max", false], [10, "module-src.problems.single_objective.discrete.binary.peak", false], [11, "module-src.problems.single_objective.discrete.permutation", false], [11, "module-src.problems.single_objective.discrete.permutation.tsp", false], [12, "module-src.recombination", false], [12, "module-src.recombination.arithmetic_crossover", false], [12, "module-src.recombination.blxalpha_crossover", false], [12, "module-src.recombination.byte_one_point_crossover", false], [12, "module-src.recombination.byte_uniform_crossover", false], [12, "module-src.recombination.flat_crossover", false], [12, "module-src.recombination.linear_crossover", false], [12, "module-src.recombination.one_point_crossover", false], [12, "module-src.recombination.pmx_crossover", false], [12, "module-src.recombination.recombination_operator", false], [12, "module-src.recombination.two_point_crossover", false], [12, "module-src.recombination.unfair_avarage_crossover", false], [12, "module-src.recombination.uniform_crossover", false], [13, "module-src.selection", false], [13, "module-src.selection.roulette_wheel_selection", false], [13, "module-src.selection.selection_operator", false], [13, "module-src.selection.tournament_selection", false], [14, "module-src.tests", false], [14, "module-src.tests.conftest", false], [14, "module-src.tests.test_ackley", false], [14, "module-src.tests.test_arithmetic_crossover", false], [14, "module-src.tests.test_bentcigar_function", false], [14, "module-src.tests.test_bit_flip_mutation", false], [14, "module-src.tests.test_blxalpha_crossover", false], [14, "module-src.tests.test_bohachevsky", false], [14, "module-src.tests.test_byte_mutation", false], [14, "module-src.tests.test_byte_mutation_random", false], [14, "module-src.tests.test_byte_one_point_crossover", false], [14, "module-src.tests.test_byte_operators", false], [14, "module-src.tests.test_byte_uniform_crossover", false], [14, "module-src.tests.test_chichinadze_function", false], [14, "module-src.tests.test_compact_13", false], [14, "module-src.tests.test_compact_21", false], [14, "module-src.tests.test_compact_25", false], [14, "module-src.tests.test_compact_9", false], [14, "module-src.tests.test_count_sat", false], [14, "module-src.tests.test_dropwave_function", false], [14, "module-src.tests.test_ecc", false], [14, "module-src.tests.test_flat_crossover", false], [14, "module-src.tests.test_float_uniform_mutation", false], [14, "module-src.tests.test_fms", false], [14, "module-src.tests.test_grid", false], [14, "module-src.tests.test_griewank_function", false], [14, "module-src.tests.test_holzman_function", false], [14, "module-src.tests.test_individual", false], [14, "module-src.tests.test_insertion_mutation", false], [14, "module-src.tests.test_levy_function", false], [14, "module-src.tests.test_linear_5", false], [14, "module-src.tests.test_linear_9", false], [14, "module-src.tests.test_linear_crossover", false], [14, "module-src.tests.test_matyas_function", false], [14, "module-src.tests.test_maxcut100", false], [14, "module-src.tests.test_maxcut20_01", false], [14, "module-src.tests.test_maxcut20_09", false], [14, "module-src.tests.test_mmdp", false], [14, "module-src.tests.test_one_max", false], [14, "module-src.tests.test_one_point_crossover", false], [14, "module-src.tests.test_optimizer_alpha_cga", false], [14, "module-src.tests.test_optimizer_ccga", false], [14, "module-src.tests.test_optimizer_cga", false], [14, "module-src.tests.test_optimizer_mccga", false], [14, "module-src.tests.test_optimizer_sync_cga", false], [14, "module-src.tests.test_peak", false], [14, "module-src.tests.test_pmx_crossover", false], [14, "module-src.tests.test_population", false], [14, "module-src.tests.test_pow_function", false], [14, "module-src.tests.test_powell_function", false], [14, "module-src.tests.test_rastrigin", false], [14, "module-src.tests.test_rosenbrock", false], [14, "module-src.tests.test_rothellipsoid_function", false], [14, "module-src.tests.test_roulette_wheel_selection", false], [14, "module-src.tests.test_schaffer2_function", false], [14, "module-src.tests.test_schaffer_function", false], [14, "module-src.tests.test_schwefel", false], [14, "module-src.tests.test_shuffle_mutation", false], [14, "module-src.tests.test_sphere", false], [14, "module-src.tests.test_styblinskitang_function", false], [14, "module-src.tests.test_sumofdifferentpowers_function", false], [14, "module-src.tests.test_swap_mutation", false], [14, "module-src.tests.test_threehumps_function", false], [14, "module-src.tests.test_tournament_selection", false], [14, "module-src.tests.test_tsp", false], [14, "module-src.tests.test_two_opt_mutation", false], [14, "module-src.tests.test_two_point_crossover", false], [14, "module-src.tests.test_unfair_average_crossover", false], [14, "module-src.tests.test_uniform_crossover", false], [14, "module-src.tests.test_zakharov_function", false], [14, "module-src.tests.test_zettle_function", false]], "mutate() (src.mutation.bit_flip_mutation.bitflipmutation method)": [[4, "src.mutation.bit_flip_mutation.BitFlipMutation.mutate", false]], "mutate() (src.mutation.byte_mutation.bytemutation method)": [[4, "src.mutation.byte_mutation.ByteMutation.mutate", false]], "mutate() (src.mutation.byte_mutation_random.bytemutationrandom method)": [[4, "src.mutation.byte_mutation_random.ByteMutationRandom.mutate", false]], "mutate() (src.mutation.float_uniform_mutation.floatuniformmutation method)": [[4, "src.mutation.float_uniform_mutation.FloatUniformMutation.mutate", false]], "mutate() (src.mutation.insertion_mutation.insertionmutation method)": [[4, "src.mutation.insertion_mutation.InsertionMutation.mutate", false]], "mutate() (src.mutation.mutation_operator.mutationoperator method)": [[4, "src.mutation.mutation_operator.MutationOperator.mutate", false]], "mutate() (src.mutation.shuffle_mutation.shufflemutation method)": [[4, "src.mutation.shuffle_mutation.ShuffleMutation.mutate", false]], "mutate() (src.mutation.swap_mutation.swapmutation method)": [[4, "src.mutation.swap_mutation.SwapMutation.mutate", false]], "mutate() (src.mutation.two_opt_mutation.twooptmutation method)": [[4, "src.mutation.two_opt_mutation.TwoOptMutation.mutate", false]], "mutationoperator (class in src.mutation.mutation_operator)": [[4, "src.mutation.mutation_operator.MutationOperator", false]], "n_cols (src.grid.grid attribute)": [[2, "src.grid.Grid.n_cols", false]], "n_rows (src.grid.grid attribute)": [[2, "src.grid.Grid.n_rows", false]], "none (src.problems.single_objective.continuous.ackley.ackley attribute)": [[8, "src.problems.single_objective.continuous.ackley.Ackley.None", false]], "none (src.problems.single_objective.continuous.bentcigar.bentcigar attribute)": [[8, "src.problems.single_objective.continuous.bentcigar.Bentcigar.None", false]], "none (src.problems.single_objective.continuous.bohachevsky.bohachevsky attribute)": [[8, "src.problems.single_objective.continuous.bohachevsky.Bohachevsky.None", false]], "none (src.problems.single_objective.continuous.chichinadze.chichinadze attribute)": [[8, "src.problems.single_objective.continuous.chichinadze.Chichinadze.None", false]], "none (src.problems.single_objective.continuous.fms.fms attribute)": [[8, "src.problems.single_objective.continuous.fms.Fms.None", false]], "none (src.problems.single_objective.continuous.holzman.holzman attribute)": [[8, "src.problems.single_objective.continuous.holzman.Holzman.None", false]], "none (src.problems.single_objective.continuous.levy.levy attribute)": [[8, "src.problems.single_objective.continuous.levy.Levy.None", false]], "none (src.problems.single_objective.continuous.matyas.matyas attribute)": [[8, "src.problems.single_objective.continuous.matyas.Matyas.None", false]], "none (src.problems.single_objective.continuous.pow.pow attribute)": [[8, "src.problems.single_objective.continuous.pow.Pow.None", false]], "none (src.problems.single_objective.continuous.powell.powell attribute)": [[8, "src.problems.single_objective.continuous.powell.Powell.None", false]], "none (src.problems.single_objective.continuous.rastrigin.rastrigin attribute)": [[8, "src.problems.single_objective.continuous.rastrigin.Rastrigin.None", false]], "none (src.problems.single_objective.continuous.rosenbrock.rosenbrock attribute)": [[8, "src.problems.single_objective.continuous.rosenbrock.Rosenbrock.None", false]], "none (src.problems.single_objective.continuous.rothellipsoid.rothellipsoid attribute)": [[8, "src.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.None", false]], "none (src.problems.single_objective.continuous.schaffer2.schaffer2 attribute)": [[8, "src.problems.single_objective.continuous.schaffer2.Schaffer2.None", false]], "none (src.problems.single_objective.continuous.schwefel.schwefel attribute)": [[8, "src.problems.single_objective.continuous.schwefel.Schwefel.None", false]], "none (src.problems.single_objective.continuous.sphere.sphere attribute)": [[8, "src.problems.single_objective.continuous.sphere.Sphere.None", false]], "none (src.problems.single_objective.continuous.styblinskitang.styblinskitang attribute)": [[8, "src.problems.single_objective.continuous.styblinskitang.StyblinskiTang.None", false]], "none (src.problems.single_objective.continuous.threehumps.threehumps attribute)": [[8, "src.problems.single_objective.continuous.threehumps.Threehumps.None", false]], "none (src.problems.single_objective.continuous.zakharov.zakharov attribute)": [[8, "src.problems.single_objective.continuous.zakharov.Zakharov.None", false]], "none (src.problems.single_objective.continuous.zettle.zettle attribute)": [[8, "src.problems.single_objective.continuous.zettle.Zettle.None", false]], "none (src.problems.single_objective.discrete.binary.count_sat.countsat attribute)": [[10, "src.problems.single_objective.discrete.binary.count_sat.CountSat.None", false]], "none (src.problems.single_objective.discrete.binary.ecc.ecc attribute)": [[10, "src.problems.single_objective.discrete.binary.ecc.Ecc.None", false]], "none (src.problems.single_objective.discrete.binary.fms.fms attribute)": [[10, "src.problems.single_objective.discrete.binary.fms.Fms.None", false]], "none (src.problems.single_objective.discrete.binary.maxcut100.maxcut100 attribute)": [[10, "src.problems.single_objective.discrete.binary.maxcut100.Maxcut100.None", false]], "none (src.problems.single_objective.discrete.binary.maxcut20_01.maxcut20_01 attribute)": [[10, "src.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.None", false]], "none (src.problems.single_objective.discrete.binary.maxcut20_09.maxcut20_09 attribute)": [[10, "src.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.None", false]], "none (src.problems.single_objective.discrete.binary.mmdp.mmdp attribute)": [[10, "src.problems.single_objective.discrete.binary.mmdp.Mmdp.None", false]], "none (src.problems.single_objective.discrete.binary.one_max.onemax attribute)": [[10, "src.problems.single_objective.discrete.binary.one_max.OneMax.None", false]], "none (src.problems.single_objective.discrete.binary.peak.peak attribute)": [[10, "src.problems.single_objective.discrete.binary.peak.Peak.None", false]], "none (src.tests.test_pow_function.pow attribute)": [[14, "src.tests.test_pow_function.Pow.None", false]], "onemax (class in src.problems.single_objective.discrete.binary.one_max)": [[10, "src.problems.single_objective.discrete.binary.one_max.OneMax", false]], "onepointcrossover (class in src.recombination.one_point_crossover)": [[12, "src.recombination.one_point_crossover.OnePointCrossover", false]], "peak (class in src.problems.single_objective.discrete.binary.peak)": [[10, "src.problems.single_objective.discrete.binary.peak.Peak", false]], "peak_instance() (in module src.tests.test_peak)": [[14, "src.tests.test_peak.peak_instance", false]], "permutationproblem (class in src.tests.test_optimizer_alpha_cga)": [[14, "src.tests.test_optimizer_alpha_cga.PermutationProblem", false]], "permutationproblem (class in src.tests.test_optimizer_cga)": [[14, "src.tests.test_optimizer_cga.PermutationProblem", false]], "permutationproblem (class in src.tests.test_optimizer_sync_cga)": [[14, "src.tests.test_optimizer_sync_cga.PermutationProblem", false]], "pmxcrossover (class in src.recombination.pmx_crossover)": [[12, "src.recombination.pmx_crossover.PMXCrossover", false]], "pow (class in src.problems.single_objective.continuous.pow)": [[8, "src.problems.single_objective.continuous.pow.Pow", false]], "pow (class in src.tests.test_pow_function)": [[14, "src.tests.test_pow_function.Pow", false]], "powell (class in src.problems.single_objective.continuous.powell)": [[8, "src.problems.single_objective.continuous.powell.Powell", false]], "rastrigin (class in src.problems.single_objective.continuous.rastrigin)": [[8, "src.problems.single_objective.continuous.rastrigin.Rastrigin", false]], "realproblem (class in src.example.example_mcccga)": [[3, "src.example.example_mcccga.RealProblem", false]], "realproblem (class in src.tests.test_optimizer_alpha_cga)": [[14, "src.tests.test_optimizer_alpha_cga.RealProblem", false]], "realproblem (class in src.tests.test_optimizer_cga)": [[14, "src.tests.test_optimizer_cga.RealProblem", false]], "realproblem (class in src.tests.test_optimizer_mccga)": [[14, "src.tests.test_optimizer_mccga.RealProblem", false]], "realproblem (class in src.tests.test_optimizer_sync_cga)": [[14, "src.tests.test_optimizer_sync_cga.RealProblem", false]], "recombinationoperator (class in src.recombination.recombination_operator)": [[12, "src.recombination.recombination_operator.RecombinationOperator", false]], "rosenbrock (class in src.problems.single_objective.continuous.rosenbrock)": [[8, "src.problems.single_objective.continuous.rosenbrock.Rosenbrock", false]], "rothellipsoid (class in src.problems.single_objective.continuous.rothellipsoid)": [[8, "src.problems.single_objective.continuous.rothellipsoid.Rothellipsoid", false]], "roulettewheelselection (class in src.selection.roulette_wheel_selection)": [[13, "src.selection.roulette_wheel_selection.RouletteWheelSelection", false]], "run_alpha_cga_example() (in module src.example.example_alpha_cga)": [[3, "src.example.example_alpha_cga.run_alpha_cga_example", false]], "run_ccga_example() (in module src.example.example_ccga)": [[3, "src.example.example_ccga.run_ccga_example", false]], "run_cga_example() (in module src.example.example_cga)": [[3, "src.example.example_cga.run_cga_example", false]], "run_mcccga_example() (in module src.example.example_mcccga)": [[3, "src.example.example_mcccga.run_mcccga_example", false]], "run_sync_cga_example() (in module src.example.example_sync_cga)": [[3, "src.example.example_sync_cga.run_sync_cga_example", false]], "schaffer (class in src.problems.single_objective.continuous.schaffer)": [[8, "src.problems.single_objective.continuous.schaffer.Schaffer", false]], "schaffer2 (class in src.problems.single_objective.continuous.schaffer2)": [[8, "src.problems.single_objective.continuous.schaffer2.Schaffer2", false]], "schwefel (class in src.problems.single_objective.continuous.schwefel)": [[8, "src.problems.single_objective.continuous.schwefel.Schwefel", false]], "selectionoperator (class in src.selection.selection_operator)": [[13, "src.selection.selection_operator.SelectionOperator", false]], "setup_bentcigar() (in module src.tests.test_bentcigar_function)": [[14, "src.tests.test_bentcigar_function.setup_bentcigar", false]], "setup_chichinadze() (in module src.tests.test_chichinadze_function)": [[14, "src.tests.test_chichinadze_function.setup_chichinadze", false]], "setup_dropwave() (in module src.tests.test_dropwave_function)": [[14, "src.tests.test_dropwave_function.setup_dropwave", false]], "setup_griewank() (in module src.tests.test_griewank_function)": [[14, "src.tests.test_griewank_function.setup_griewank", false]], "setup_holzman() (in module src.tests.test_holzman_function)": [[14, "src.tests.test_holzman_function.setup_holzman", false]], "setup_individual() (in module src.tests.test_byte_mutation)": [[14, "src.tests.test_byte_mutation.setup_individual", false]], "setup_individual() (in module src.tests.test_byte_mutation_random)": [[14, "src.tests.test_byte_mutation_random.setup_individual", false]], "setup_individual() (in module src.tests.test_float_uniform_mutation)": [[14, "src.tests.test_float_uniform_mutation.setup_individual", false]], "setup_individual() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.setup_individual", false]], "setup_levy() (in module src.tests.test_levy_function)": [[14, "src.tests.test_levy_function.setup_levy", false]], "setup_matyas() (in module src.tests.test_matyas_function)": [[14, "src.tests.test_matyas_function.setup_matyas", false]], "setup_parents() (in module src.tests.test_arithmetic_crossover)": [[14, "src.tests.test_arithmetic_crossover.setup_parents", false]], "setup_parents() (in module src.tests.test_blxalpha_crossover)": [[14, "src.tests.test_blxalpha_crossover.setup_parents", false]], "setup_parents() (in module src.tests.test_byte_one_point_crossover)": [[14, "src.tests.test_byte_one_point_crossover.setup_parents", false]], "setup_parents() (in module src.tests.test_byte_uniform_crossover)": [[14, "src.tests.test_byte_uniform_crossover.setup_parents", false]], "setup_parents() (in module src.tests.test_flat_crossover)": [[14, "src.tests.test_flat_crossover.setup_parents", false]], "setup_parents() (in module src.tests.test_linear_crossover)": [[14, "src.tests.test_linear_crossover.setup_parents", false]], "setup_parents() (in module src.tests.test_unfair_average_crossover)": [[14, "src.tests.test_unfair_average_crossover.setup_parents", false]], "setup_population() (in module src.tests.test_population)": [[14, "src.tests.test_population.setup_population", false]], "setup_powell() (in module src.tests.test_powell_function)": [[14, "src.tests.test_powell_function.setup_powell", false]], "setup_problem() (in module src.tests.test_arithmetic_crossover)": [[14, "src.tests.test_arithmetic_crossover.setup_problem", false]], "setup_problem() (in module src.tests.test_blxalpha_crossover)": [[14, "src.tests.test_blxalpha_crossover.setup_problem", false]], "setup_problem() (in module src.tests.test_byte_mutation)": [[14, "src.tests.test_byte_mutation.setup_problem", false]], "setup_problem() (in module src.tests.test_byte_mutation_random)": [[14, "src.tests.test_byte_mutation_random.setup_problem", false]], "setup_problem() (in module src.tests.test_byte_one_point_crossover)": [[14, "src.tests.test_byte_one_point_crossover.setup_problem", false]], "setup_problem() (in module src.tests.test_byte_uniform_crossover)": [[14, "src.tests.test_byte_uniform_crossover.setup_problem", false]], "setup_problem() (in module src.tests.test_flat_crossover)": [[14, "src.tests.test_flat_crossover.setup_problem", false]], "setup_problem() (in module src.tests.test_float_uniform_mutation)": [[14, "src.tests.test_float_uniform_mutation.setup_problem", false]], "setup_problem() (in module src.tests.test_linear_crossover)": [[14, "src.tests.test_linear_crossover.setup_problem", false]], "setup_problem() (in module src.tests.test_unfair_average_crossover)": [[14, "src.tests.test_unfair_average_crossover.setup_problem", false]], "setup_rothellipsoid() (in module src.tests.test_rothellipsoid_function)": [[14, "src.tests.test_rothellipsoid_function.setup_rothellipsoid", false]], "setup_schaffer() (in module src.tests.test_schaffer_function)": [[14, "src.tests.test_schaffer_function.setup_schaffer", false]], "setup_schaffer2() (in module src.tests.test_schaffer2_function)": [[14, "src.tests.test_schaffer2_function.setup_schaffer2", false]], "setup_styblinski_tang() (in module src.tests.test_styblinskitang_function)": [[14, "src.tests.test_styblinskitang_function.setup_styblinski_tang", false]], "setup_sumofdifferentpowers() (in module src.tests.test_sumofdifferentpowers_function)": [[14, "src.tests.test_sumofdifferentpowers_function.setup_sumofdifferentpowers", false]], "setup_threehumps() (in module src.tests.test_threehumps_function)": [[14, "src.tests.test_threehumps_function.setup_threehumps", false]], "setup_zettle() (in module src.tests.test_zettle_function)": [[14, "src.tests.test_zettle_function.setup_zettle", false]], "shufflemutation (class in src.mutation.shuffle_mutation)": [[4, "src.mutation.shuffle_mutation.ShuffleMutation", false]], "sphere (class in src.problems.single_objective.continuous.sphere)": [[8, "src.problems.single_objective.continuous.sphere.Sphere", false]], "src": [[2, "module-src", false]], "src.byte_operators": [[2, "module-src.byte_operators", false]], "src.example": [[3, "module-src.example", false]], "src.example.example_alpha_cga": [[3, "module-src.example.example_alpha_cga", false]], "src.example.example_ccga": [[3, "module-src.example.example_ccga", false]], "src.example.example_cga": [[3, "module-src.example.example_cga", false]], "src.example.example_mcccga": [[3, "module-src.example.example_mcccga", false]], "src.example.example_sync_cga": [[3, "module-src.example.example_sync_cga", false]], "src.grid": [[2, "module-src.grid", false]], "src.mutation": [[4, "module-src.mutation", false]], "src.mutation.bit_flip_mutation": [[4, "module-src.mutation.bit_flip_mutation", false]], "src.mutation.byte_mutation": [[4, "module-src.mutation.byte_mutation", false]], "src.mutation.byte_mutation_random": [[4, "module-src.mutation.byte_mutation_random", false]], "src.mutation.float_uniform_mutation": [[4, "module-src.mutation.float_uniform_mutation", false]], "src.mutation.insertion_mutation": [[4, "module-src.mutation.insertion_mutation", false]], "src.mutation.mutation_operator": [[4, "module-src.mutation.mutation_operator", false]], "src.mutation.shuffle_mutation": [[4, "module-src.mutation.shuffle_mutation", false]], "src.mutation.swap_mutation": [[4, "module-src.mutation.swap_mutation", false]], "src.mutation.two_opt_mutation": [[4, "module-src.mutation.two_opt_mutation", false]], "src.neighborhoods": [[5, "module-src.neighborhoods", false]], "src.neighborhoods.compact_13": [[5, "module-src.neighborhoods.compact_13", false]], "src.neighborhoods.compact_21": [[5, "module-src.neighborhoods.compact_21", false]], "src.neighborhoods.compact_25": [[5, "module-src.neighborhoods.compact_25", false]], "src.neighborhoods.compact_9": [[5, "module-src.neighborhoods.compact_9", false]], "src.neighborhoods.linear_5": [[5, "module-src.neighborhoods.linear_5", false]], "src.neighborhoods.linear_9": [[5, "module-src.neighborhoods.linear_9", false]], "src.problems": [[6, "module-src.problems", false]], "src.problems.abstract_problem": [[6, "module-src.problems.abstract_problem", false]], "src.problems.single_objective": [[7, "module-src.problems.single_objective", false]], "src.problems.single_objective.continuous": [[8, "module-src.problems.single_objective.continuous", false]], "src.problems.single_objective.continuous.ackley": [[8, "module-src.problems.single_objective.continuous.ackley", false]], "src.problems.single_objective.continuous.bentcigar": [[8, "module-src.problems.single_objective.continuous.bentcigar", false]], "src.problems.single_objective.continuous.bohachevsky": [[8, "module-src.problems.single_objective.continuous.bohachevsky", false]], "src.problems.single_objective.continuous.chichinadze": [[8, "module-src.problems.single_objective.continuous.chichinadze", false]], "src.problems.single_objective.continuous.dropwave": [[8, "module-src.problems.single_objective.continuous.dropwave", false]], "src.problems.single_objective.continuous.fms": [[8, "module-src.problems.single_objective.continuous.fms", false]], "src.problems.single_objective.continuous.griewank": [[8, "module-src.problems.single_objective.continuous.griewank", false]], "src.problems.single_objective.continuous.holzman": [[8, "module-src.problems.single_objective.continuous.holzman", false]], "src.problems.single_objective.continuous.levy": [[8, "module-src.problems.single_objective.continuous.levy", false]], "src.problems.single_objective.continuous.matyas": [[8, "module-src.problems.single_objective.continuous.matyas", false]], "src.problems.single_objective.continuous.pow": [[8, "module-src.problems.single_objective.continuous.pow", false]], "src.problems.single_objective.continuous.powell": [[8, "module-src.problems.single_objective.continuous.powell", false]], "src.problems.single_objective.continuous.rastrigin": [[8, "module-src.problems.single_objective.continuous.rastrigin", false]], "src.problems.single_objective.continuous.rosenbrock": [[8, "module-src.problems.single_objective.continuous.rosenbrock", false]], "src.problems.single_objective.continuous.rothellipsoid": [[8, "module-src.problems.single_objective.continuous.rothellipsoid", false]], "src.problems.single_objective.continuous.schaffer": [[8, "module-src.problems.single_objective.continuous.schaffer", false]], "src.problems.single_objective.continuous.schaffer2": [[8, "module-src.problems.single_objective.continuous.schaffer2", false]], "src.problems.single_objective.continuous.schwefel": [[8, "module-src.problems.single_objective.continuous.schwefel", false]], "src.problems.single_objective.continuous.sphere": [[8, "module-src.problems.single_objective.continuous.sphere", false]], "src.problems.single_objective.continuous.styblinskitang": [[8, "module-src.problems.single_objective.continuous.styblinskitang", false]], "src.problems.single_objective.continuous.sumofdifferentpowers": [[8, "module-src.problems.single_objective.continuous.sumofdifferentpowers", false]], "src.problems.single_objective.continuous.threehumps": [[8, "module-src.problems.single_objective.continuous.threehumps", false]], "src.problems.single_objective.continuous.zakharov": [[8, "module-src.problems.single_objective.continuous.zakharov", false]], "src.problems.single_objective.continuous.zettle": [[8, "module-src.problems.single_objective.continuous.zettle", false]], "src.problems.single_objective.discrete": [[9, "module-src.problems.single_objective.discrete", false]], "src.problems.single_objective.discrete.binary": [[10, "module-src.problems.single_objective.discrete.binary", false]], "src.problems.single_objective.discrete.binary.count_sat": [[10, "module-src.problems.single_objective.discrete.binary.count_sat", false]], "src.problems.single_objective.discrete.binary.ecc": [[10, "module-src.problems.single_objective.discrete.binary.ecc", false]], "src.problems.single_objective.discrete.binary.fms": [[10, "module-src.problems.single_objective.discrete.binary.fms", false]], "src.problems.single_objective.discrete.binary.maxcut100": [[10, "module-src.problems.single_objective.discrete.binary.maxcut100", false]], "src.problems.single_objective.discrete.binary.maxcut20_01": [[10, "module-src.problems.single_objective.discrete.binary.maxcut20_01", false]], "src.problems.single_objective.discrete.binary.maxcut20_09": [[10, "module-src.problems.single_objective.discrete.binary.maxcut20_09", false]], "src.problems.single_objective.discrete.binary.mmdp": [[10, "module-src.problems.single_objective.discrete.binary.mmdp", false]], "src.problems.single_objective.discrete.binary.one_max": [[10, "module-src.problems.single_objective.discrete.binary.one_max", false]], "src.problems.single_objective.discrete.binary.peak": [[10, "module-src.problems.single_objective.discrete.binary.peak", false]], "src.problems.single_objective.discrete.permutation": [[11, "module-src.problems.single_objective.discrete.permutation", false]], "src.problems.single_objective.discrete.permutation.tsp": [[11, "module-src.problems.single_objective.discrete.permutation.tsp", false]], "src.recombination": [[12, "module-src.recombination", false]], "src.recombination.arithmetic_crossover": [[12, "module-src.recombination.arithmetic_crossover", false]], "src.recombination.blxalpha_crossover": [[12, "module-src.recombination.blxalpha_crossover", false]], "src.recombination.byte_one_point_crossover": [[12, "module-src.recombination.byte_one_point_crossover", false]], "src.recombination.byte_uniform_crossover": [[12, "module-src.recombination.byte_uniform_crossover", false]], "src.recombination.flat_crossover": [[12, "module-src.recombination.flat_crossover", false]], "src.recombination.linear_crossover": [[12, "module-src.recombination.linear_crossover", false]], "src.recombination.one_point_crossover": [[12, "module-src.recombination.one_point_crossover", false]], "src.recombination.pmx_crossover": [[12, "module-src.recombination.pmx_crossover", false]], "src.recombination.recombination_operator": [[12, "module-src.recombination.recombination_operator", false]], "src.recombination.two_point_crossover": [[12, "module-src.recombination.two_point_crossover", false]], "src.recombination.unfair_avarage_crossover": [[12, "module-src.recombination.unfair_avarage_crossover", false]], "src.recombination.uniform_crossover": [[12, "module-src.recombination.uniform_crossover", false]], "src.selection": [[13, "module-src.selection", false]], "src.selection.roulette_wheel_selection": [[13, "module-src.selection.roulette_wheel_selection", false]], "src.selection.selection_operator": [[13, "module-src.selection.selection_operator", false]], "src.selection.tournament_selection": [[13, "module-src.selection.tournament_selection", false]], "src.tests": [[14, "module-src.tests", false]], "src.tests.conftest": [[14, "module-src.tests.conftest", false]], "src.tests.test_ackley": [[14, "module-src.tests.test_ackley", false]], "src.tests.test_arithmetic_crossover": [[14, "module-src.tests.test_arithmetic_crossover", false]], "src.tests.test_bentcigar_function": [[14, "module-src.tests.test_bentcigar_function", false]], "src.tests.test_bit_flip_mutation": [[14, "module-src.tests.test_bit_flip_mutation", false]], "src.tests.test_blxalpha_crossover": [[14, "module-src.tests.test_blxalpha_crossover", false]], "src.tests.test_bohachevsky": [[14, "module-src.tests.test_bohachevsky", false]], "src.tests.test_byte_mutation": [[14, "module-src.tests.test_byte_mutation", false]], "src.tests.test_byte_mutation_random": [[14, "module-src.tests.test_byte_mutation_random", false]], "src.tests.test_byte_one_point_crossover": [[14, "module-src.tests.test_byte_one_point_crossover", false]], "src.tests.test_byte_operators": [[14, "module-src.tests.test_byte_operators", false]], "src.tests.test_byte_uniform_crossover": [[14, "module-src.tests.test_byte_uniform_crossover", false]], "src.tests.test_chichinadze_function": [[14, "module-src.tests.test_chichinadze_function", false]], "src.tests.test_compact_13": [[14, "module-src.tests.test_compact_13", false]], "src.tests.test_compact_21": [[14, "module-src.tests.test_compact_21", false]], "src.tests.test_compact_25": [[14, "module-src.tests.test_compact_25", false]], "src.tests.test_compact_9": [[14, "module-src.tests.test_compact_9", false]], "src.tests.test_count_sat": [[14, "module-src.tests.test_count_sat", false]], "src.tests.test_dropwave_function": [[14, "module-src.tests.test_dropwave_function", false]], "src.tests.test_ecc": [[14, "module-src.tests.test_ecc", false]], "src.tests.test_flat_crossover": [[14, "module-src.tests.test_flat_crossover", false]], "src.tests.test_float_uniform_mutation": [[14, "module-src.tests.test_float_uniform_mutation", false]], "src.tests.test_fms": [[14, "module-src.tests.test_fms", false]], "src.tests.test_grid": [[14, "module-src.tests.test_grid", false]], "src.tests.test_griewank_function": [[14, "module-src.tests.test_griewank_function", false]], "src.tests.test_holzman_function": [[14, "module-src.tests.test_holzman_function", false]], "src.tests.test_individual": [[14, "module-src.tests.test_individual", false]], "src.tests.test_insertion_mutation": [[14, "module-src.tests.test_insertion_mutation", false]], "src.tests.test_levy_function": [[14, "module-src.tests.test_levy_function", false]], "src.tests.test_linear_5": [[14, "module-src.tests.test_linear_5", false]], "src.tests.test_linear_9": [[14, "module-src.tests.test_linear_9", false]], "src.tests.test_linear_crossover": [[14, "module-src.tests.test_linear_crossover", false]], "src.tests.test_matyas_function": [[14, "module-src.tests.test_matyas_function", false]], "src.tests.test_maxcut100": [[14, "module-src.tests.test_maxcut100", false]], "src.tests.test_maxcut20_01": [[14, "module-src.tests.test_maxcut20_01", false]], "src.tests.test_maxcut20_09": [[14, "module-src.tests.test_maxcut20_09", false]], "src.tests.test_mmdp": [[14, "module-src.tests.test_mmdp", false]], "src.tests.test_one_max": [[14, "module-src.tests.test_one_max", false]], "src.tests.test_one_point_crossover": [[14, "module-src.tests.test_one_point_crossover", false]], "src.tests.test_optimizer_alpha_cga": [[14, "module-src.tests.test_optimizer_alpha_cga", false]], "src.tests.test_optimizer_ccga": [[14, "module-src.tests.test_optimizer_ccga", false]], "src.tests.test_optimizer_cga": [[14, "module-src.tests.test_optimizer_cga", false]], "src.tests.test_optimizer_mccga": [[14, "module-src.tests.test_optimizer_mccga", false]], "src.tests.test_optimizer_sync_cga": [[14, "module-src.tests.test_optimizer_sync_cga", false]], "src.tests.test_peak": [[14, "module-src.tests.test_peak", false]], "src.tests.test_pmx_crossover": [[14, "module-src.tests.test_pmx_crossover", false]], "src.tests.test_population": [[14, "module-src.tests.test_population", false]], "src.tests.test_pow_function": [[14, "module-src.tests.test_pow_function", false]], "src.tests.test_powell_function": [[14, "module-src.tests.test_powell_function", false]], "src.tests.test_rastrigin": [[14, "module-src.tests.test_rastrigin", false]], "src.tests.test_rosenbrock": [[14, "module-src.tests.test_rosenbrock", false]], "src.tests.test_rothellipsoid_function": [[14, "module-src.tests.test_rothellipsoid_function", false]], "src.tests.test_roulette_wheel_selection": [[14, "module-src.tests.test_roulette_wheel_selection", false]], "src.tests.test_schaffer2_function": [[14, "module-src.tests.test_schaffer2_function", false]], "src.tests.test_schaffer_function": [[14, "module-src.tests.test_schaffer_function", false]], "src.tests.test_schwefel": [[14, "module-src.tests.test_schwefel", false]], "src.tests.test_shuffle_mutation": [[14, "module-src.tests.test_shuffle_mutation", false]], "src.tests.test_sphere": [[14, "module-src.tests.test_sphere", false]], "src.tests.test_styblinskitang_function": [[14, "module-src.tests.test_styblinskitang_function", false]], "src.tests.test_sumofdifferentpowers_function": [[14, "module-src.tests.test_sumofdifferentpowers_function", false]], "src.tests.test_swap_mutation": [[14, "module-src.tests.test_swap_mutation", false]], "src.tests.test_threehumps_function": [[14, "module-src.tests.test_threehumps_function", false]], "src.tests.test_tournament_selection": [[14, "module-src.tests.test_tournament_selection", false]], "src.tests.test_tsp": [[14, "module-src.tests.test_tsp", false]], "src.tests.test_two_opt_mutation": [[14, "module-src.tests.test_two_opt_mutation", false]], "src.tests.test_two_point_crossover": [[14, "module-src.tests.test_two_point_crossover", false]], "src.tests.test_unfair_average_crossover": [[14, "module-src.tests.test_unfair_average_crossover", false]], "src.tests.test_uniform_crossover": [[14, "module-src.tests.test_uniform_crossover", false]], "src.tests.test_zakharov_function": [[14, "module-src.tests.test_zakharov_function", false]], "src.tests.test_zettle_function": [[14, "module-src.tests.test_zettle_function", false]], "styblinskitang (class in src.problems.single_objective.continuous.styblinskitang)": [[8, "src.problems.single_objective.continuous.styblinskitang.StyblinskiTang", false]], "sumofdifferentpowers (class in src.problems.single_objective.continuous.sumofdifferentpowers)": [[8, "src.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers", false]], "swapmutation (class in src.mutation.swap_mutation)": [[4, "src.mutation.swap_mutation.SwapMutation", false]], "test_ackley() (in module src.tests.test_ackley)": [[14, "src.tests.test_ackley.test_ackley", false]], "test_arithmetic_crossover() (in module src.tests.test_arithmetic_crossover)": [[14, "src.tests.test_arithmetic_crossover.test_arithmetic_crossover", false]], "test_bentcigar_function() (in module src.tests.test_bentcigar_function)": [[14, "src.tests.test_bentcigar_function.test_bentcigar_function", false]], "test_bit_flip_mutation() (in module src.tests.test_bit_flip_mutation)": [[14, "src.tests.test_bit_flip_mutation.test_bit_flip_mutation", false]], "test_bits_to_float() (in module src.tests.test_byte_operators)": [[14, "src.tests.test_byte_operators.test_bits_to_float", false]], "test_bits_to_floats() (in module src.tests.test_byte_operators)": [[14, "src.tests.test_byte_operators.test_bits_to_floats", false]], "test_blxalpha_crossover() (in module src.tests.test_blxalpha_crossover)": [[14, "src.tests.test_blxalpha_crossover.test_blxalpha_crossover", false]], "test_bohachevsky() (in module src.tests.test_bohachevsky)": [[14, "src.tests.test_bohachevsky.test_bohachevsky", false]], "test_byte_mutation() (in module src.tests.test_byte_mutation)": [[14, "src.tests.test_byte_mutation.test_byte_mutation", false]], "test_byte_mutation_random() (in module src.tests.test_byte_mutation_random)": [[14, "src.tests.test_byte_mutation_random.test_byte_mutation_random", false]], "test_byte_one_point_crossover() (in module src.tests.test_byte_one_point_crossover)": [[14, "src.tests.test_byte_one_point_crossover.test_byte_one_point_crossover", false]], "test_byte_uniform_crossover() (in module src.tests.test_byte_uniform_crossover)": [[14, "src.tests.test_byte_uniform_crossover.test_byte_uniform_crossover", false]], "test_chichinadze_function() (in module src.tests.test_chichinadze_function)": [[14, "src.tests.test_chichinadze_function.test_chichinadze_function", false]], "test_compact_13() (in module src.tests.test_compact_13)": [[14, "src.tests.test_compact_13.test_compact_13", false]], "test_compact_21() (in module src.tests.test_compact_21)": [[14, "src.tests.test_compact_21.test_compact_21", false]], "test_compact_25() (in module src.tests.test_compact_25)": [[14, "src.tests.test_compact_25.test_compact_25", false]], "test_compact_9() (in module src.tests.test_compact_9)": [[14, "src.tests.test_compact_9.test_compact_9", false]], "test_count_sat() (in module src.tests.test_count_sat)": [[14, "src.tests.test_count_sat.test_count_sat", false]], "test_dropwave_function() (in module src.tests.test_dropwave_function)": [[14, "src.tests.test_dropwave_function.test_dropwave_function", false]], "test_ecc() (in module src.tests.test_ecc)": [[14, "src.tests.test_ecc.test_ecc", false]], "test_fitness_evaluation() (in module src.tests.test_population)": [[14, "src.tests.test_population.test_fitness_evaluation", false]], "test_flat_crossover() (in module src.tests.test_flat_crossover)": [[14, "src.tests.test_flat_crossover.test_flat_crossover", false]], "test_float_to_bits() (in module src.tests.test_byte_operators)": [[14, "src.tests.test_byte_operators.test_float_to_bits", false]], "test_float_uniform_mutation() (in module src.tests.test_float_uniform_mutation)": [[14, "src.tests.test_float_uniform_mutation.test_float_uniform_mutation", false]], "test_floats_to_bits() (in module src.tests.test_byte_operators)": [[14, "src.tests.test_byte_operators.test_floats_to_bits", false]], "test_fms() (in module src.tests.test_fms)": [[14, "src.tests.test_fms.test_fms", false]], "test_get_set_neighbors() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_get_set_neighbors", false]], "test_get_set_neighbors_positions() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_get_set_neighbors_positions", false]], "test_grid() (in module src.tests.test_grid)": [[14, "src.tests.test_grid.test_grid", false]], "test_griewank_function() (in module src.tests.test_griewank_function)": [[14, "src.tests.test_griewank_function.test_griewank_function", false]], "test_holzman_function() (in module src.tests.test_holzman_function)": [[14, "src.tests.test_holzman_function.test_holzman_function", false]], "test_illegal_genome_type() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_illegal_genome_type", false]], "test_individual_init() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_individual_init", false]], "test_initial_population_size() (in module src.tests.test_population)": [[14, "src.tests.test_population.test_initial_population_size", false]], "test_insertion_mutation() (in module src.tests.test_insertion_mutation)": [[14, "src.tests.test_insertion_mutation.test_insertion_mutation", false]], "test_levy_function() (in module src.tests.test_levy_function)": [[14, "src.tests.test_levy_function.test_levy_function", false]], "test_linear_5() (in module src.tests.test_linear_5)": [[14, "src.tests.test_linear_5.test_linear_5", false]], "test_linear_9() (in module src.tests.test_linear_9)": [[14, "src.tests.test_linear_9.test_linear_9", false]], "test_linear_crossover() (in module src.tests.test_linear_crossover)": [[14, "src.tests.test_linear_crossover.test_linear_crossover", false]], "test_matyas_function() (in module src.tests.test_matyas_function)": [[14, "src.tests.test_matyas_function.test_matyas_function", false]], "test_maxcut100() (in module src.tests.test_maxcut100)": [[14, "src.tests.test_maxcut100.test_maxcut100", false]], "test_maxcut20_01() (in module src.tests.test_maxcut20_01)": [[14, "src.tests.test_maxcut20_01.test_maxcut20_01", false]], "test_maxcut20_09() (in module src.tests.test_maxcut20_09)": [[14, "src.tests.test_maxcut20_09.test_maxcut20_09", false]], "test_mmdp_function() (in module src.tests.test_mmdp)": [[14, "src.tests.test_mmdp.test_mmdp_function", false]], "test_neighborhood_assignment() (in module src.tests.test_population)": [[14, "src.tests.test_population.test_neighborhood_assignment", false]], "test_one_max() (in module src.tests.test_one_max)": [[14, "src.tests.test_one_max.test_one_max", false]], "test_one_point_crossover() (in module src.tests.test_one_point_crossover)": [[14, "src.tests.test_one_point_crossover.test_one_point_crossover", false]], "test_optimizer_alpha_cga_binary() (in module src.tests.test_optimizer_alpha_cga)": [[14, "src.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_binary", false]], "test_optimizer_alpha_cga_no_variation() (in module src.tests.test_optimizer_alpha_cga)": [[14, "src.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_no_variation", false]], "test_optimizer_alpha_cga_permutation() (src.tests.test_optimizer_alpha_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_alpha_cga.PermutationProblem.test_optimizer_alpha_cga_permutation", false]], "test_optimizer_alpha_cga_real() (in module src.tests.test_optimizer_alpha_cga)": [[14, "src.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_real", false]], "test_optimizer_ccga_binary() (in module src.tests.test_optimizer_ccga)": [[14, "src.tests.test_optimizer_ccga.test_optimizer_ccga_binary", false]], "test_optimizer_cga_binary() (in module src.tests.test_optimizer_cga)": [[14, "src.tests.test_optimizer_cga.test_optimizer_cga_binary", false]], "test_optimizer_cga_no_variation() (in module src.tests.test_optimizer_cga)": [[14, "src.tests.test_optimizer_cga.test_optimizer_cga_no_variation", false]], "test_optimizer_cga_permutation() (src.tests.test_optimizer_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_cga.PermutationProblem.test_optimizer_cga_permutation", false]], "test_optimizer_cga_real() (in module src.tests.test_optimizer_cga)": [[14, "src.tests.test_optimizer_cga.test_optimizer_cga_real", false]], "test_optimizer_mcccga_binary() (in module src.tests.test_optimizer_mccga)": [[14, "src.tests.test_optimizer_mccga.test_optimizer_mcccga_binary", false]], "test_optimizer_sync_cga_binary() (in module src.tests.test_optimizer_sync_cga)": [[14, "src.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_binary", false]], "test_optimizer_sync_cga_no_variation() (in module src.tests.test_optimizer_sync_cga)": [[14, "src.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_no_variation", false]], "test_optimizer_sync_cga_permutation() (src.tests.test_optimizer_sync_cga.permutationproblem method)": [[14, "src.tests.test_optimizer_sync_cga.PermutationProblem.test_optimizer_sync_cga_permutation", false]], "test_optimizer_sync_cga_real() (in module src.tests.test_optimizer_sync_cga)": [[14, "src.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_real", false]], "test_peak() (in module src.tests.test_peak)": [[14, "src.tests.test_peak.test_peak", false]], "test_pmx_crossover() (in module src.tests.test_pmx_crossover)": [[14, "src.tests.test_pmx_crossover.test_pmx_crossover", false]], "test_powell_function() (in module src.tests.test_powell_function)": [[14, "src.tests.test_powell_function.test_powell_function", false]], "test_randomize_binary() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_randomize_binary", false]], "test_randomize_permutation() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_randomize_permutation", false]], "test_randomize_real_valued() (in module src.tests.test_individual)": [[14, "src.tests.test_individual.test_randomize_real_valued", false]], "test_rastrigin() (in module src.tests.test_rastrigin)": [[14, "src.tests.test_rastrigin.test_rastrigin", false]], "test_rosenbrock() (in module src.tests.test_rosenbrock)": [[14, "src.tests.test_rosenbrock.test_rosenbrock", false]], "test_rothellipsoid_function() (in module src.tests.test_rothellipsoid_function)": [[14, "src.tests.test_rothellipsoid_function.test_rothellipsoid_function", false]], "test_roulette_wheel_selection() (in module src.tests.test_roulette_wheel_selection)": [[14, "src.tests.test_roulette_wheel_selection.test_roulette_wheel_selection", false]], "test_schaffer2_function() (in module src.tests.test_schaffer2_function)": [[14, "src.tests.test_schaffer2_function.test_schaffer2_function", false]], "test_schaffer_function() (in module src.tests.test_schaffer_function)": [[14, "src.tests.test_schaffer_function.test_schaffer_function", false]], "test_schwefel() (in module src.tests.test_schwefel)": [[14, "src.tests.test_schwefel.test_schwefel", false]], "test_shuffle_mutation() (in module src.tests.test_shuffle_mutation)": [[14, "src.tests.test_shuffle_mutation.test_shuffle_mutation", false]], "test_sphere() (in module src.tests.test_sphere)": [[14, "src.tests.test_sphere.test_sphere", false]], "test_styblinskitang_function() (in module src.tests.test_styblinskitang_function)": [[14, "src.tests.test_styblinskitang_function.test_styblinskitang_function", false]], "test_sumofdifferentpowers_function() (in module src.tests.test_sumofdifferentpowers_function)": [[14, "src.tests.test_sumofdifferentpowers_function.test_sumofdifferentpowers_function", false]], "test_swap_mutation() (in module src.tests.test_swap_mutation)": [[14, "src.tests.test_swap_mutation.test_swap_mutation", false]], "test_threehumps_function() (in module src.tests.test_threehumps_function)": [[14, "src.tests.test_threehumps_function.test_threehumps_function", false]], "test_tournament_selection() (in module src.tests.test_tournament_selection)": [[14, "src.tests.test_tournament_selection.test_tournament_selection", false]], "test_tsp() (in module src.tests.test_tsp)": [[14, "src.tests.test_tsp.test_tsp", false]], "test_two_opt_mutation() (in module src.tests.test_two_opt_mutation)": [[14, "src.tests.test_two_opt_mutation.test_two_opt_mutation", false]], "test_two_point_crossover() (in module src.tests.test_two_point_crossover)": [[14, "src.tests.test_two_point_crossover.test_two_point_crossover", false]], "test_unfair_average_crossover() (in module src.tests.test_unfair_average_crossover)": [[14, "src.tests.test_unfair_average_crossover.test_unfair_average_crossover", false]], "test_uniform_crossover() (in module src.tests.test_uniform_crossover)": [[14, "src.tests.test_uniform_crossover.test_uniform_crossover", false]], "test_zakharov_function() (in module src.tests.test_zakharov_function)": [[14, "src.tests.test_zakharov_function.test_zakharov_function", false]], "test_zettle_function() (in module src.tests.test_zettle_function)": [[14, "src.tests.test_zettle_function.test_zettle_function", false]], "threehumps (class in src.problems.single_objective.continuous.threehumps)": [[8, "src.problems.single_objective.continuous.threehumps.Threehumps", false]], "tournamentselection (class in src.selection.tournament_selection)": [[13, "src.selection.tournament_selection.TournamentSelection", false]], "tsp (class in src.problems.single_objective.discrete.permutation.tsp)": [[11, "src.problems.single_objective.discrete.permutation.tsp.Tsp", false]], "twooptmutation (class in src.mutation.two_opt_mutation)": [[4, "src.mutation.two_opt_mutation.TwoOptMutation", false]], "twopointcrossover (class in src.recombination.two_point_crossover)": [[12, "src.recombination.two_point_crossover.TwoPointCrossover", false]], "unfairavaragecrossover (class in src.recombination.unfair_avarage_crossover)": [[12, "src.recombination.unfair_avarage_crossover.UnfairAvarageCrossover", false]], "uniformcrossover (class in src.recombination.uniform_crossover)": [[12, "src.recombination.uniform_crossover.UniformCrossover", false]], "zakharov (class in src.problems.single_objective.continuous.zakharov)": [[8, "src.problems.single_objective.continuous.zakharov.Zakharov", false]], "zettle (class in src.problems.single_objective.continuous.zettle)": [[8, "src.problems.single_objective.continuous.zettle.Zettle", false]]}, "objects": {"": [[2, 0, 0, "-", "src"]], "src": [[2, 0, 0, "-", "byte_operators"], [3, 0, 0, "-", "example"], [2, 0, 0, "-", "grid"], [4, 0, 0, "-", "mutation"], [5, 0, 0, "-", "neighborhoods"], [6, 0, 0, "-", "problems"], [12, 0, 0, "-", "recombination"], [13, 0, 0, "-", "selection"], [14, 0, 0, "-", "tests"]], "src.byte_operators": [[2, 1, 1, "", "bits_to_float"], [2, 1, 1, "", "bits_to_floats"], [2, 1, 1, "", "float_to_bits"], [2, 1, 1, "", "floats_to_bits"]], "src.example": [[3, 0, 0, "-", "example_alpha_cga"], [3, 0, 0, "-", "example_ccga"], [3, 0, 0, "-", "example_cga"], [3, 0, 0, "-", "example_mcccga"], [3, 0, 0, "-", "example_sync_cga"]], "src.example.example_alpha_cga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_alpha_cga_example"]], "src.example.example_alpha_cga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "src.example.example_ccga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_ccga_example"]], "src.example.example_ccga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "src.example.example_cga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_cga_example"]], "src.example.example_cga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "src.example.example_mcccga": [[3, 2, 1, "", "RealProblem"], [3, 1, 1, "", "run_mcccga_example"]], "src.example.example_mcccga.RealProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "src.example.example_sync_cga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_sync_cga_example"]], "src.example.example_sync_cga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "src.grid": [[2, 2, 1, "", "Grid"]], "src.grid.Grid": [[2, 3, 1, "", "__init__"], [2, 3, 1, "", "make_2d_grid"], [2, 4, 1, "", "n_cols"], [2, 4, 1, "", "n_rows"]], "src.mutation": [[4, 0, 0, "-", "bit_flip_mutation"], [4, 0, 0, "-", "byte_mutation"], [4, 0, 0, "-", "byte_mutation_random"], [4, 0, 0, "-", "float_uniform_mutation"], [4, 0, 0, "-", "insertion_mutation"], [4, 0, 0, "-", "mutation_operator"], [4, 0, 0, "-", "shuffle_mutation"], [4, 0, 0, "-", "swap_mutation"], [4, 0, 0, "-", "two_opt_mutation"]], "src.mutation.bit_flip_mutation": [[4, 2, 1, "", "BitFlipMutation"]], "src.mutation.bit_flip_mutation.BitFlipMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.byte_mutation": [[4, 2, 1, "", "ByteMutation"]], "src.mutation.byte_mutation.ByteMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.byte_mutation_random": [[4, 2, 1, "", "ByteMutationRandom"]], "src.mutation.byte_mutation_random.ByteMutationRandom": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.float_uniform_mutation": [[4, 2, 1, "", "FloatUniformMutation"]], "src.mutation.float_uniform_mutation.FloatUniformMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.insertion_mutation": [[4, 2, 1, "", "InsertionMutation"]], "src.mutation.insertion_mutation.InsertionMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.mutation_operator": [[4, 2, 1, "", "MutationOperator"]], "src.mutation.mutation_operator.MutationOperator": [[4, 3, 1, "", "mutate"]], "src.mutation.shuffle_mutation": [[4, 2, 1, "", "ShuffleMutation"]], "src.mutation.shuffle_mutation.ShuffleMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.swap_mutation": [[4, 2, 1, "", "SwapMutation"]], "src.mutation.swap_mutation.SwapMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.mutation.two_opt_mutation": [[4, 2, 1, "", "TwoOptMutation"]], "src.mutation.two_opt_mutation.TwoOptMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "src.neighborhoods": [[5, 0, 0, "-", "compact_13"], [5, 0, 0, "-", "compact_21"], [5, 0, 0, "-", "compact_25"], [5, 0, 0, "-", "compact_9"], [5, 0, 0, "-", "linear_5"], [5, 0, 0, "-", "linear_9"]], "src.neighborhoods.compact_13": [[5, 2, 1, "", "Compact13"]], "src.neighborhoods.compact_13.Compact13": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "src.neighborhoods.compact_21": [[5, 2, 1, "", "Compact21"]], "src.neighborhoods.compact_21.Compact21": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "src.neighborhoods.compact_25": [[5, 2, 1, "", "Compact25"]], "src.neighborhoods.compact_25.Compact25": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "src.neighborhoods.compact_9": [[5, 2, 1, "", "Compact9"]], "src.neighborhoods.compact_9.Compact9": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "src.neighborhoods.linear_5": [[5, 2, 1, "", "Linear5"]], "src.neighborhoods.linear_5.Linear5": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "src.neighborhoods.linear_9": [[5, 2, 1, "", "Linear9"]], "src.neighborhoods.linear_9.Linear9": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "src.problems": [[6, 0, 0, "-", "abstract_problem"], [7, 0, 0, "-", "single_objective"]], "src.problems.abstract_problem": [[6, 2, 1, "", "AbstractProblem"]], "src.problems.abstract_problem.AbstractProblem": [[6, 3, 1, "id0", "f"]], "src.problems.single_objective": [[8, 0, 0, "-", "continuous"], [9, 0, 0, "-", "discrete"]], "src.problems.single_objective.continuous": [[8, 0, 0, "-", "ackley"], [8, 0, 0, "-", "bentcigar"], [8, 0, 0, "-", "bohachevsky"], [8, 0, 0, "-", "chichinadze"], [8, 0, 0, "-", "dropwave"], [8, 0, 0, "-", "fms"], [8, 0, 0, "-", "griewank"], [8, 0, 0, "-", "holzman"], [8, 0, 0, "-", "levy"], [8, 0, 0, "-", "matyas"], [8, 0, 0, "-", "pow"], [8, 0, 0, "-", "powell"], [8, 0, 0, "-", "rastrigin"], [8, 0, 0, "-", "rosenbrock"], [8, 0, 0, "-", "rothellipsoid"], [8, 0, 0, "-", "schaffer"], [8, 0, 0, "-", "schaffer2"], [8, 0, 0, "-", "schwefel"], [8, 0, 0, "-", "sphere"], [8, 0, 0, "-", "styblinskitang"], [8, 0, 0, "-", "sumofdifferentpowers"], [8, 0, 0, "-", "threehumps"], [8, 0, 0, "-", "zakharov"], [8, 0, 0, "-", "zettle"]], "src.problems.single_objective.continuous.ackley": [[8, 2, 1, "", "Ackley"]], "src.problems.single_objective.continuous.ackley.Ackley": [[8, 4, 1, "", "None"], [8, 3, 1, "id0", "f"]], "src.problems.single_objective.continuous.bentcigar": [[8, 2, 1, "", "Bentcigar"]], "src.problems.single_objective.continuous.bentcigar.Bentcigar": [[8, 4, 1, "", "None"], [8, 3, 1, "id1", "f"]], "src.problems.single_objective.continuous.bohachevsky": [[8, 2, 1, "", "Bohachevsky"]], "src.problems.single_objective.continuous.bohachevsky.Bohachevsky": [[8, 4, 1, "", "None"], [8, 3, 1, "id2", "f"]], "src.problems.single_objective.continuous.chichinadze": [[8, 2, 1, "", "Chichinadze"]], "src.problems.single_objective.continuous.chichinadze.Chichinadze": [[8, 4, 1, "", "None"], [8, 3, 1, "id3", "f"]], "src.problems.single_objective.continuous.dropwave": [[8, 2, 1, "", "Dropwave"]], "src.problems.single_objective.continuous.dropwave.Dropwave": [[8, 3, 1, "id4", "f"]], "src.problems.single_objective.continuous.fms": [[8, 2, 1, "", "Fms"]], "src.problems.single_objective.continuous.fms.Fms": [[8, 4, 1, "", "None"], [8, 3, 1, "id5", "f"]], "src.problems.single_objective.continuous.griewank": [[8, 2, 1, "", "Griewank"]], "src.problems.single_objective.continuous.griewank.Griewank": [[8, 3, 1, "id6", "f"]], "src.problems.single_objective.continuous.holzman": [[8, 2, 1, "", "Holzman"]], "src.problems.single_objective.continuous.holzman.Holzman": [[8, 4, 1, "", "None"], [8, 3, 1, "id7", "f"]], "src.problems.single_objective.continuous.levy": [[8, 2, 1, "", "Levy"]], "src.problems.single_objective.continuous.levy.Levy": [[8, 4, 1, "", "None"], [8, 3, 1, "id8", "f"]], "src.problems.single_objective.continuous.matyas": [[8, 2, 1, "", "Matyas"]], "src.problems.single_objective.continuous.matyas.Matyas": [[8, 4, 1, "", "None"], [8, 3, 1, "id9", "f"]], "src.problems.single_objective.continuous.pow": [[8, 2, 1, "", "Pow"]], "src.problems.single_objective.continuous.pow.Pow": [[8, 4, 1, "", "None"], [8, 3, 1, "id10", "f"]], "src.problems.single_objective.continuous.powell": [[8, 2, 1, "", "Powell"]], "src.problems.single_objective.continuous.powell.Powell": [[8, 4, 1, "", "None"], [8, 3, 1, "id11", "f"]], "src.problems.single_objective.continuous.rastrigin": [[8, 2, 1, "", "Rastrigin"]], "src.problems.single_objective.continuous.rastrigin.Rastrigin": [[8, 4, 1, "", "None"], [8, 3, 1, "id12", "f"]], "src.problems.single_objective.continuous.rosenbrock": [[8, 2, 1, "", "Rosenbrock"]], "src.problems.single_objective.continuous.rosenbrock.Rosenbrock": [[8, 4, 1, "", "None"], [8, 3, 1, "id13", "f"]], "src.problems.single_objective.continuous.rothellipsoid": [[8, 2, 1, "", "Rothellipsoid"]], "src.problems.single_objective.continuous.rothellipsoid.Rothellipsoid": [[8, 4, 1, "", "None"], [8, 3, 1, "id14", "f"]], "src.problems.single_objective.continuous.schaffer": [[8, 2, 1, "", "Schaffer"]], "src.problems.single_objective.continuous.schaffer.Schaffer": [[8, 3, 1, "id15", "f"]], "src.problems.single_objective.continuous.schaffer2": [[8, 2, 1, "", "Schaffer2"]], "src.problems.single_objective.continuous.schaffer2.Schaffer2": [[8, 4, 1, "", "None"], [8, 3, 1, "id16", "f"]], "src.problems.single_objective.continuous.schwefel": [[8, 2, 1, "", "Schwefel"]], "src.problems.single_objective.continuous.schwefel.Schwefel": [[8, 4, 1, "", "None"], [8, 3, 1, "id17", "f"]], "src.problems.single_objective.continuous.sphere": [[8, 2, 1, "", "Sphere"]], "src.problems.single_objective.continuous.sphere.Sphere": [[8, 4, 1, "", "None"], [8, 3, 1, "id18", "f"]], "src.problems.single_objective.continuous.styblinskitang": [[8, 2, 1, "", "StyblinskiTang"]], "src.problems.single_objective.continuous.styblinskitang.StyblinskiTang": [[8, 4, 1, "", "None"], [8, 3, 1, "id19", "f"]], "src.problems.single_objective.continuous.sumofdifferentpowers": [[8, 2, 1, "", "Sumofdifferentpowers"]], "src.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers": [[8, 3, 1, "", "f"]], "src.problems.single_objective.continuous.threehumps": [[8, 2, 1, "", "Threehumps"]], "src.problems.single_objective.continuous.threehumps.Threehumps": [[8, 4, 1, "", "None"], [8, 3, 1, "id20", "f"]], "src.problems.single_objective.continuous.zakharov": [[8, 2, 1, "", "Zakharov"]], "src.problems.single_objective.continuous.zakharov.Zakharov": [[8, 4, 1, "", "None"], [8, 3, 1, "id21", "f"]], "src.problems.single_objective.continuous.zettle": [[8, 2, 1, "", "Zettle"]], "src.problems.single_objective.continuous.zettle.Zettle": [[8, 4, 1, "", "None"], [8, 3, 1, "id22", "f"]], "src.problems.single_objective.discrete": [[10, 0, 0, "-", "binary"], [11, 0, 0, "-", "permutation"]], "src.problems.single_objective.discrete.binary": [[10, 0, 0, "-", "count_sat"], [10, 0, 0, "-", "ecc"], [10, 0, 0, "-", "fms"], [10, 0, 0, "-", "maxcut100"], [10, 0, 0, "-", "maxcut20_01"], [10, 0, 0, "-", "maxcut20_09"], [10, 0, 0, "-", "mmdp"], [10, 0, 0, "-", "one_max"], [10, 0, 0, "-", "peak"]], "src.problems.single_objective.discrete.binary.count_sat": [[10, 2, 1, "", "CountSat"]], "src.problems.single_objective.discrete.binary.count_sat.CountSat": [[10, 4, 1, "", "None"], [10, 3, 1, "id0", "f"]], "src.problems.single_objective.discrete.binary.ecc": [[10, 2, 1, "", "Ecc"]], "src.problems.single_objective.discrete.binary.ecc.Ecc": [[10, 4, 1, "", "None"], [10, 3, 1, "id1", "f"]], "src.problems.single_objective.discrete.binary.fms": [[10, 2, 1, "", "Fms"]], "src.problems.single_objective.discrete.binary.fms.Fms": [[10, 4, 1, "", "None"], [10, 3, 1, "id2", "f"]], "src.problems.single_objective.discrete.binary.maxcut100": [[10, 2, 1, "", "Maxcut100"]], "src.problems.single_objective.discrete.binary.maxcut100.Maxcut100": [[10, 4, 1, "", "None"], [10, 3, 1, "id3", "f"]], "src.problems.single_objective.discrete.binary.maxcut20_01": [[10, 2, 1, "", "Maxcut20_01"]], "src.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01": [[10, 4, 1, "", "None"], [10, 3, 1, "id4", "f"]], "src.problems.single_objective.discrete.binary.maxcut20_09": [[10, 2, 1, "", "Maxcut20_09"]], "src.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09": [[10, 4, 1, "", "None"], [10, 3, 1, "id5", "f"]], "src.problems.single_objective.discrete.binary.mmdp": [[10, 2, 1, "", "Mmdp"]], "src.problems.single_objective.discrete.binary.mmdp.Mmdp": [[10, 4, 1, "", "None"], [10, 3, 1, "id6", "f"]], "src.problems.single_objective.discrete.binary.one_max": [[10, 2, 1, "", "OneMax"]], "src.problems.single_objective.discrete.binary.one_max.OneMax": [[10, 4, 1, "", "None"], [10, 3, 1, "id7", "f"]], "src.problems.single_objective.discrete.binary.peak": [[10, 2, 1, "", "Peak"]], "src.problems.single_objective.discrete.binary.peak.Peak": [[10, 4, 1, "", "None"], [10, 3, 1, "id8", "f"]], "src.problems.single_objective.discrete.permutation": [[11, 0, 0, "-", "tsp"]], "src.problems.single_objective.discrete.permutation.tsp": [[11, 2, 1, "", "Tsp"]], "src.problems.single_objective.discrete.permutation.tsp.Tsp": [[11, 3, 1, "", "euclidean_dist"], [11, 3, 1, "", "f"], [11, 3, 1, "", "gographical_dist"]], "src.recombination": [[12, 0, 0, "-", "arithmetic_crossover"], [12, 0, 0, "-", "blxalpha_crossover"], [12, 0, 0, "-", "byte_one_point_crossover"], [12, 0, 0, "-", "byte_uniform_crossover"], [12, 0, 0, "-", "flat_crossover"], [12, 0, 0, "-", "linear_crossover"], [12, 0, 0, "-", "one_point_crossover"], [12, 0, 0, "-", "pmx_crossover"], [12, 0, 0, "-", "recombination_operator"], [12, 0, 0, "-", "two_point_crossover"], [12, 0, 0, "-", "unfair_avarage_crossover"], [12, 0, 0, "-", "uniform_crossover"]], "src.recombination.arithmetic_crossover": [[12, 2, 1, "", "ArithmeticCrossover"]], "src.recombination.arithmetic_crossover.ArithmeticCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.blxalpha_crossover": [[12, 2, 1, "", "BlxalphaCrossover"]], "src.recombination.blxalpha_crossover.BlxalphaCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.byte_one_point_crossover": [[12, 2, 1, "", "ByteOnePointCrossover"]], "src.recombination.byte_one_point_crossover.ByteOnePointCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.byte_uniform_crossover": [[12, 2, 1, "", "ByteUniformCrossover"]], "src.recombination.byte_uniform_crossover.ByteUniformCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.flat_crossover": [[12, 2, 1, "", "FlatCrossover"]], "src.recombination.flat_crossover.FlatCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.linear_crossover": [[12, 2, 1, "", "LinearCrossover"]], "src.recombination.linear_crossover.LinearCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.one_point_crossover": [[12, 2, 1, "", "OnePointCrossover"]], "src.recombination.one_point_crossover.OnePointCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.pmx_crossover": [[12, 2, 1, "", "PMXCrossover"]], "src.recombination.pmx_crossover.PMXCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.recombination_operator": [[12, 2, 1, "", "RecombinationOperator"]], "src.recombination.recombination_operator.RecombinationOperator": [[12, 3, 1, "", "get_recombinations"]], "src.recombination.two_point_crossover": [[12, 2, 1, "", "TwoPointCrossover"]], "src.recombination.two_point_crossover.TwoPointCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.unfair_avarage_crossover": [[12, 2, 1, "", "UnfairAvarageCrossover"]], "src.recombination.unfair_avarage_crossover.UnfairAvarageCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "src.recombination.uniform_crossover": [[12, 2, 1, "", "UniformCrossover"]], "src.recombination.uniform_crossover.UniformCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "src.selection": [[13, 0, 0, "-", "roulette_wheel_selection"], [13, 0, 0, "-", "selection_operator"], [13, 0, 0, "-", "tournament_selection"]], "src.selection.roulette_wheel_selection": [[13, 2, 1, "", "RouletteWheelSelection"]], "src.selection.roulette_wheel_selection.RouletteWheelSelection": [[13, 3, 1, "", "__init__"], [13, 3, 1, "", "get_parents"]], "src.selection.selection_operator": [[13, 2, 1, "", "SelectionOperator"]], "src.selection.selection_operator.SelectionOperator": [[13, 3, 1, "", "get_parents"]], "src.selection.tournament_selection": [[13, 2, 1, "", "TournamentSelection"]], "src.selection.tournament_selection.TournamentSelection": [[13, 3, 1, "", "__init__"], [13, 3, 1, "", "get_parents"]], "src.tests": [[14, 0, 0, "-", "conftest"], [14, 0, 0, "-", "test_ackley"], [14, 0, 0, "-", "test_arithmetic_crossover"], [14, 0, 0, "-", "test_bentcigar_function"], [14, 0, 0, "-", "test_bit_flip_mutation"], [14, 0, 0, "-", "test_blxalpha_crossover"], [14, 0, 0, "-", "test_bohachevsky"], [14, 0, 0, "-", "test_byte_mutation"], [14, 0, 0, "-", "test_byte_mutation_random"], [14, 0, 0, "-", "test_byte_one_point_crossover"], [14, 0, 0, "-", "test_byte_operators"], [14, 0, 0, "-", "test_byte_uniform_crossover"], [14, 0, 0, "-", "test_chichinadze_function"], [14, 0, 0, "-", "test_compact_13"], [14, 0, 0, "-", "test_compact_21"], [14, 0, 0, "-", "test_compact_25"], [14, 0, 0, "-", "test_compact_9"], [14, 0, 0, "-", "test_count_sat"], [14, 0, 0, "-", "test_dropwave_function"], [14, 0, 0, "-", "test_ecc"], [14, 0, 0, "-", "test_flat_crossover"], [14, 0, 0, "-", "test_float_uniform_mutation"], [14, 0, 0, "-", "test_fms"], [14, 0, 0, "-", "test_grid"], [14, 0, 0, "-", "test_griewank_function"], [14, 0, 0, "-", "test_holzman_function"], [14, 0, 0, "-", "test_individual"], [14, 0, 0, "-", "test_insertion_mutation"], [14, 0, 0, "-", "test_levy_function"], [14, 0, 0, "-", "test_linear_5"], [14, 0, 0, "-", "test_linear_9"], [14, 0, 0, "-", "test_linear_crossover"], [14, 0, 0, "-", "test_matyas_function"], [14, 0, 0, "-", "test_maxcut100"], [14, 0, 0, "-", "test_maxcut20_01"], [14, 0, 0, "-", "test_maxcut20_09"], [14, 0, 0, "-", "test_mmdp"], [14, 0, 0, "-", "test_one_max"], [14, 0, 0, "-", "test_one_point_crossover"], [14, 0, 0, "-", "test_optimizer_alpha_cga"], [14, 0, 0, "-", "test_optimizer_ccga"], [14, 0, 0, "-", "test_optimizer_cga"], [14, 0, 0, "-", "test_optimizer_mccga"], [14, 0, 0, "-", "test_optimizer_sync_cga"], [14, 0, 0, "-", "test_peak"], [14, 0, 0, "-", "test_pmx_crossover"], [14, 0, 0, "-", "test_population"], [14, 0, 0, "-", "test_pow_function"], [14, 0, 0, "-", "test_powell_function"], [14, 0, 0, "-", "test_rastrigin"], [14, 0, 0, "-", "test_rosenbrock"], [14, 0, 0, "-", "test_rothellipsoid_function"], [14, 0, 0, "-", "test_roulette_wheel_selection"], [14, 0, 0, "-", "test_schaffer2_function"], [14, 0, 0, "-", "test_schaffer_function"], [14, 0, 0, "-", "test_schwefel"], [14, 0, 0, "-", "test_shuffle_mutation"], [14, 0, 0, "-", "test_sphere"], [14, 0, 0, "-", "test_styblinskitang_function"], [14, 0, 0, "-", "test_sumofdifferentpowers_function"], [14, 0, 0, "-", "test_swap_mutation"], [14, 0, 0, "-", "test_threehumps_function"], [14, 0, 0, "-", "test_tournament_selection"], [14, 0, 0, "-", "test_tsp"], [14, 0, 0, "-", "test_two_opt_mutation"], [14, 0, 0, "-", "test_two_point_crossover"], [14, 0, 0, "-", "test_unfair_average_crossover"], [14, 0, 0, "-", "test_uniform_crossover"], [14, 0, 0, "-", "test_zakharov_function"], [14, 0, 0, "-", "test_zettle_function"]], "src.tests.test_ackley": [[14, 1, 1, "", "test_ackley"]], "src.tests.test_arithmetic_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_arithmetic_crossover"]], "src.tests.test_arithmetic_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_bentcigar_function": [[14, 1, 1, "", "setup_bentcigar"], [14, 1, 1, "", "test_bentcigar_function"]], "src.tests.test_bit_flip_mutation": [[14, 1, 1, "", "test_bit_flip_mutation"]], "src.tests.test_blxalpha_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_blxalpha_crossover"]], "src.tests.test_blxalpha_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_bohachevsky": [[14, 1, 1, "", "test_bohachevsky"]], "src.tests.test_byte_mutation": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_mutation"]], "src.tests.test_byte_mutation.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_byte_mutation_random": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_mutation_random"]], "src.tests.test_byte_mutation_random.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_byte_one_point_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_one_point_crossover"]], "src.tests.test_byte_one_point_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_byte_operators": [[14, 1, 1, "", "test_bits_to_float"], [14, 1, 1, "", "test_bits_to_floats"], [14, 1, 1, "", "test_float_to_bits"], [14, 1, 1, "", "test_floats_to_bits"]], "src.tests.test_byte_uniform_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_uniform_crossover"]], "src.tests.test_byte_uniform_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_chichinadze_function": [[14, 1, 1, "", "setup_chichinadze"], [14, 1, 1, "", "test_chichinadze_function"]], "src.tests.test_compact_13": [[14, 1, 1, "", "test_compact_13"]], "src.tests.test_compact_21": [[14, 1, 1, "", "test_compact_21"]], "src.tests.test_compact_25": [[14, 1, 1, "", "test_compact_25"]], "src.tests.test_compact_9": [[14, 1, 1, "", "test_compact_9"]], "src.tests.test_count_sat": [[14, 1, 1, "", "test_count_sat"]], "src.tests.test_dropwave_function": [[14, 1, 1, "", "setup_dropwave"], [14, 1, 1, "", "test_dropwave_function"]], "src.tests.test_ecc": [[14, 1, 1, "", "ecc_instance"], [14, 1, 1, "", "test_ecc"]], "src.tests.test_flat_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_flat_crossover"]], "src.tests.test_flat_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_float_uniform_mutation": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_float_uniform_mutation"]], "src.tests.test_float_uniform_mutation.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_fms": [[14, 1, 1, "", "fms_instance"], [14, 1, 1, "", "test_fms"]], "src.tests.test_grid": [[14, 1, 1, "", "test_grid"]], "src.tests.test_griewank_function": [[14, 1, 1, "", "setup_griewank"], [14, 1, 1, "", "test_griewank_function"]], "src.tests.test_holzman_function": [[14, 1, 1, "", "setup_holzman"], [14, 1, 1, "", "test_holzman_function"]], "src.tests.test_individual": [[14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "test_get_set_neighbors"], [14, 1, 1, "", "test_get_set_neighbors_positions"], [14, 1, 1, "", "test_illegal_genome_type"], [14, 1, 1, "", "test_individual_init"], [14, 1, 1, "", "test_randomize_binary"], [14, 1, 1, "", "test_randomize_permutation"], [14, 1, 1, "", "test_randomize_real_valued"]], "src.tests.test_insertion_mutation": [[14, 1, 1, "", "test_insertion_mutation"]], "src.tests.test_levy_function": [[14, 1, 1, "", "setup_levy"], [14, 1, 1, "", "test_levy_function"]], "src.tests.test_linear_5": [[14, 1, 1, "", "test_linear_5"]], "src.tests.test_linear_9": [[14, 1, 1, "", "test_linear_9"]], "src.tests.test_linear_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_linear_crossover"]], "src.tests.test_linear_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_matyas_function": [[14, 1, 1, "", "setup_matyas"], [14, 1, 1, "", "test_matyas_function"]], "src.tests.test_maxcut100": [[14, 1, 1, "", "maxcut_instance"], [14, 1, 1, "", "test_maxcut100"]], "src.tests.test_maxcut20_01": [[14, 1, 1, "", "maxcut_instance"], [14, 1, 1, "", "test_maxcut20_01"]], "src.tests.test_maxcut20_09": [[14, 1, 1, "", "maxcut_instance"], [14, 1, 1, "", "test_maxcut20_09"]], "src.tests.test_mmdp": [[14, 1, 1, "", "mmdp_instance"], [14, 1, 1, "", "test_mmdp_function"]], "src.tests.test_one_max": [[14, 1, 1, "", "test_one_max"]], "src.tests.test_one_point_crossover": [[14, 1, 1, "", "test_one_point_crossover"]], "src.tests.test_optimizer_alpha_cga": [[14, 2, 1, "", "BinaryProblem"], [14, 2, 1, "", "PermutationProblem"], [14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_alpha_cga_binary"], [14, 1, 1, "", "test_optimizer_alpha_cga_no_variation"], [14, 1, 1, "", "test_optimizer_alpha_cga_real"]], "src.tests.test_optimizer_alpha_cga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_alpha_cga.PermutationProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"], [14, 3, 1, "", "test_optimizer_alpha_cga_permutation"]], "src.tests.test_optimizer_alpha_cga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_ccga": [[14, 2, 1, "", "BinaryProblem"], [14, 1, 1, "", "test_optimizer_ccga_binary"]], "src.tests.test_optimizer_ccga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_cga": [[14, 2, 1, "", "BinaryProblem"], [14, 2, 1, "", "PermutationProblem"], [14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_cga_binary"], [14, 1, 1, "", "test_optimizer_cga_no_variation"], [14, 1, 1, "", "test_optimizer_cga_real"]], "src.tests.test_optimizer_cga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_cga.PermutationProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"], [14, 3, 1, "", "test_optimizer_cga_permutation"]], "src.tests.test_optimizer_cga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_mccga": [[14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_mcccga_binary"]], "src.tests.test_optimizer_mccga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_sync_cga": [[14, 2, 1, "", "BinaryProblem"], [14, 2, 1, "", "PermutationProblem"], [14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_sync_cga_binary"], [14, 1, 1, "", "test_optimizer_sync_cga_no_variation"], [14, 1, 1, "", "test_optimizer_sync_cga_real"]], "src.tests.test_optimizer_sync_cga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_optimizer_sync_cga.PermutationProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"], [14, 3, 1, "", "test_optimizer_sync_cga_permutation"]], "src.tests.test_optimizer_sync_cga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "src.tests.test_peak": [[14, 1, 1, "", "peak_instance"], [14, 1, 1, "", "test_peak"]], "src.tests.test_pmx_crossover": [[14, 1, 1, "", "test_pmx_crossover"]], "src.tests.test_population": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_population"], [14, 1, 1, "", "test_fitness_evaluation"], [14, 1, 1, "", "test_initial_population_size"], [14, 1, 1, "", "test_neighborhood_assignment"]], "src.tests.test_population.MockProblem": [[14, 3, 1, "id0", "f"]], "src.tests.test_pow_function": [[14, 2, 1, "", "Pow"]], "src.tests.test_pow_function.Pow": [[14, 4, 1, "", "None"], [14, 3, 1, "id1", "f"]], "src.tests.test_powell_function": [[14, 1, 1, "", "setup_powell"], [14, 1, 1, "", "test_powell_function"]], "src.tests.test_rastrigin": [[14, 1, 1, "", "test_rastrigin"]], "src.tests.test_rosenbrock": [[14, 1, 1, "", "test_rosenbrock"]], "src.tests.test_rothellipsoid_function": [[14, 1, 1, "", "setup_rothellipsoid"], [14, 1, 1, "", "test_rothellipsoid_function"]], "src.tests.test_roulette_wheel_selection": [[14, 1, 1, "", "test_roulette_wheel_selection"]], "src.tests.test_schaffer2_function": [[14, 1, 1, "", "setup_schaffer2"], [14, 1, 1, "", "test_schaffer2_function"]], "src.tests.test_schaffer_function": [[14, 1, 1, "", "setup_schaffer"], [14, 1, 1, "", "test_schaffer_function"]], "src.tests.test_schwefel": [[14, 1, 1, "", "test_schwefel"]], "src.tests.test_shuffle_mutation": [[14, 1, 1, "", "test_shuffle_mutation"]], "src.tests.test_sphere": [[14, 1, 1, "", "test_sphere"]], "src.tests.test_styblinskitang_function": [[14, 1, 1, "", "setup_styblinski_tang"], [14, 1, 1, "", "test_styblinskitang_function"]], "src.tests.test_sumofdifferentpowers_function": [[14, 1, 1, "", "setup_sumofdifferentpowers"], [14, 1, 1, "", "test_sumofdifferentpowers_function"]], "src.tests.test_swap_mutation": [[14, 1, 1, "", "test_swap_mutation"]], "src.tests.test_threehumps_function": [[14, 1, 1, "", "setup_threehumps"], [14, 1, 1, "", "test_threehumps_function"]], "src.tests.test_tournament_selection": [[14, 1, 1, "", "test_tournament_selection"]], "src.tests.test_tsp": [[14, 1, 1, "", "test_tsp"]], "src.tests.test_two_opt_mutation": [[14, 1, 1, "", "test_two_opt_mutation"]], "src.tests.test_two_point_crossover": [[14, 1, 1, "", "test_two_point_crossover"]], "src.tests.test_unfair_average_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_unfair_average_crossover"]], "src.tests.test_unfair_average_crossover.MockProblem": [[14, 3, 1, "", "f"]], "src.tests.test_uniform_crossover": [[14, 1, 1, "", "test_uniform_crossover"]], "src.tests.test_zakharov_function": [[14, 1, 1, "", "test_zakharov_function"]], "src.tests.test_zettle_function": [[14, 1, 1, "", "setup_zettle"], [14, 1, 1, "", "test_zettle_function"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "terms": {"": [4, 8, 14], "0": [2, 3, 4, 8, 10, 13, 14], "001": 8, "003791": 8, "01": [8, 10], "028": 8, "0299": 8, "0674": 10, "1": [2, 3, 4, 8, 10, 14], "10": [3, 8, 10], "100": [3, 8, 10], "1077": 10, "119812": 10, "12": [5, 8, 14], "14": 11, "144": 10, "15": [8, 14], "192": [10, 14], "2": [4, 8, 10, 13, 14], "20": [5, 10, 14], "2013": [4, 12], "24": [5, 14], "240": 10, "25": 14, "2d": [2, 5, 14], "3": [8, 14], "30": 8, "3159": 8, "32": [2, 8], "332": 8, "3323": 11, "35": 8, "3x3": 14, "4": [5, 8, 14], "40": 10, "420": 8, "43": 8, "5": [3, 4, 8, 14], "500": 8, "554": 8, "56": 10, "5x5": [3, 14], "6": [8, 10, 14], "600": 8, "6860": 10, "7": [8, 14], "740064": 10, "768": 8, "78": 8, "8": [5, 14], "9": [8, 14], "90133": 8, "903534": 8, "9687": 8, "A": [0, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "At": 14, "If": [6, 14], "It": [8, 14], "The": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "__init__": [1, 2, 3, 4, 5, 12, 13, 14], "absolut": 14, "abstract": 6, "abstract_problem": [1, 2], "abstractproblem": [2, 4, 6, 8, 10, 11, 12, 14], "achiev": [3, 14], "acklei": [6, 7, 14], "ad": [4, 14], "addit": 14, "adjac": 14, "aim": 14, "algorithm": [0, 3, 4, 8, 10, 14], "align": 14, "all": [3, 8, 10, 14], "allow": 0, "alpha": [0, 3, 12, 14], "alpha_cga": [3, 14], "also": 14, "alwai": 14, "an": [3, 4, 6, 12, 14], "ani": 14, "appli": 14, "approach": 14, "ar": [3, 4, 5, 8, 14], "arithmet": [12, 14], "arithmetic_crossov": [1, 2], "arithmeticcrossov": [2, 12, 14], "around": [4, 14], "arrai": [3, 14], "assertionerror": 14, "assign": 14, "assum": 14, "attribut": 14, "automata": 0, "averag": [12, 14], "b": 11, "back": 2, "balanc": 0, "banana": 14, "base": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "behav": 14, "behavior": 14, "being": 3, "benchmark": [8, 10, 14], "bentcigar": [6, 7, 14], "besid": 0, "best": [3, 11], "between": [0, 10, 11, 14], "binari": [3, 7, 9, 14], "binaryproblem": [2, 14], "bit": [2, 4, 10, 14], "bit_flip_mut": [1, 2], "bit_list": 2, "bitflipmut": [2, 4, 14], "bits_to_float": [1, 2, 14], "blx": [12, 14], "blxalpha_crossov": [1, 2], "blxalphacrossov": [2, 12, 14], "bohachevski": [6, 7, 14], "both": 14, "bound": 8, "boundari": 14, "burma14": 11, "byte": [0, 4, 12, 14], "byte_mut": [1, 2], "byte_mutation_random": [1, 2], "byte_one_point_crossov": [1, 2], "byte_oper": 1, "byte_uniform_crossov": [1, 2], "bytemut": [2, 4, 14], "bytemutationrandom": [2, 4, 14], "byteonepointcrossov": [2, 12, 14], "byteuniformcrossov": [2, 12, 14], "c": 13, "calcul": [5, 8, 10, 11, 14], "calculate_neighbors_posit": [2, 5], "camel": [8, 14], "can": 14, "candid": [4, 6, 14], "case": 14, "ccga": [3, 14], "cdot": 8, "cell": [2, 14], "cellular": [0, 3], "center": [8, 14], "cga": [0, 3, 14], "chang": [4, 14], "character": 10, "check": 14, "chichinadz": [6, 7, 14], "chosen": 13, "chromosom": [3, 4, 8, 10, 11, 14], "chsize": 14, "citi": 14, "class": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "claus": 14, "co": 8, "code": [0, 3, 10], "column": [2, 5], "combin": [0, 2, 12], "common": [8, 14], "commonli": [8, 14], "compact": [0, 3], "compact13": [2, 5, 14], "compact21": [2, 5, 14], "compact25": [2, 5, 14], "compact9": [2, 5, 14], "compact_13": [1, 2], "compact_21": [1, 2], "compact_25": [1, 2], "compact_9": [1, 2], "compar": 14, "complex": 0, "compos": 14, "comput": [3, 8, 11, 14], "condit": 14, "configur": [3, 14], "conftest": [1, 2], "consid": [5, 14], "constrain": 3, "contain": [3, 12, 13, 14], "content": 1, "continu": [6, 7, 14], "convert": 2, "coordin": [8, 11], "copi": 12, "correct": [10, 14], "correctli": 14, "correspond": 3, "count": 14, "count_sat": [7, 9], "countsat": [9, 10, 14], "creat": [2, 14], "crossov": [12, 13, 14], "cut": 10, "d": 8, "deal": 8, "deceiv": 10, "decept": 10, "decim": [4, 8, 10, 11, 14], "decrement": 4, "default": 4, "defin": [4, 8, 12], "design": [10, 14], "determin": 5, "diagon": 14, "differ": [8, 14], "directli": 14, "discret": [6, 7], "distanc": [10, 11, 14], "divers": 0, "do": 14, "doe": 14, "down": 14, "dropwav": [6, 7, 14], "dure": 0, "e": 4, "each": [0, 2, 4, 10, 11, 14], "ecc": [7, 9, 14], "ecc_inst": [2, 14], "edg": [5, 14], "edge_weight_typ": 11, "either": 4, "element": [3, 8, 10, 11, 14], "ellipsoid": [8, 14], "ensur": 14, "equal": [3, 14], "error": [8, 10], "euclidean": 11, "euclidean_dist": [9, 11], "evalu": [6, 8, 10, 11, 14], "exampl": [1, 2, 8, 14], "example_alpha_cga": [1, 2], "example_ccga": [1, 2], "example_cga": [1, 2], "example_mcccga": [1, 2], "example_sync_cga": [1, 2], "exampleproblem": [2, 3], "except": 14, "exclud": 14, "expect": 14, "exploit": 0, "explor": 0, "f": [2, 3, 6, 7, 8, 9, 10, 11, 14], "fashion": 14, "find": 14, "first": [11, 12, 14], "fit": [4, 6, 8, 10, 11, 12, 14], "fix": 14, "fixtur": 14, "flat": [8, 12, 14], "flat_crossov": [1, 2], "flatcrossov": [2, 12, 14], "flip": [4, 14], "float": [2, 3, 4, 6, 8, 10, 11, 14], "float_list": 2, "float_numb": 2, "float_to_bit": [1, 2, 14], "float_uniform_mut": [1, 2], "floats_to_bit": [1, 2, 14], "floatuniformmut": [2, 4, 14], "fm": [6, 7, 9, 14], "fms_instanc": [2, 14], "follow": 14, "form": 2, "frequenc": [8, 10], "from": [2, 4, 12, 13, 14], "function": [3, 4, 8, 10, 11, 12, 14], "gene": [3, 4], "gener": [3, 10, 14], "genet": [0, 3, 4, 10], "genom": 14, "geo": 11, "geodes": 11, "geograph": 11, "get": [13, 14], "get_par": [2, 13], "get_recombin": [2, 12], "given": [3, 5, 6, 8, 10, 11, 14], "global": [3, 8, 14], "goal": [3, 14], "gographical_dist": [9, 11], "grid": [0, 1, 3, 5, 14], "griewank": [6, 7, 14], "ha": [0, 8, 14], "have": [10, 14], "hole": 8, "holzman": [6, 7, 14], "hump": [8, 14], "hyper": [8, 14], "hypercub": [8, 14], "i": [0, 2, 3, 4, 6, 8, 10, 11, 14], "ident": 14, "ight": 8, "illeg": 14, "implement": [0, 3, 6, 8, 10, 14], "improv": 0, "includ": 14, "increment": 4, "index": [11, 13], "individu": [0, 1, 4, 12, 13, 14], "inform": 12, "initi": [2, 4, 5, 12, 13, 14], "input": [3, 8, 14], "insert": [4, 14], "insertion_mut": [1, 2], "insertionmut": [2, 4, 14], "instanc": [3, 4, 12, 14], "int": [2, 3, 5, 13, 14], "integ": [2, 14], "integr": 14, "interact": 0, "involv": 10, "its": [0, 2, 3, 10], "itself": 14, "k": 13, "known": [11, 14], "larg": 8, "last": 14, "least": [8, 14], "left": [8, 14], "length": [8, 10, 11, 14], "level": [12, 14], "levi": [6, 7, 14], "like": 0, "linear": [12, 14], "linear5": [2, 5, 14], "linear9": [2, 5, 14], "linear_5": [1, 2], "linear_9": [1, 2], "linear_crossov": [1, 2], "linearcrossov": [2, 12, 14], "list": [2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "local": [10, 14], "locationsourc": 12, "machin": [0, 3], "made": 14, "maintain": 0, "make_2d_grid": [1, 2, 14], "male": 0, "map": 12, "massiv": 10, "match": 14, "matya": [6, 7, 14], "max": 3, "maxcut": [10, 14], "maxcut100": [7, 9, 14], "maxcut20_01": [7, 9, 14], "maxcut20_09": [7, 9, 14], "maxcut_inst": [2, 14], "maxim": [3, 14], "maximum": [8, 10], "mcccga": [3, 14], "mean": 14, "measur": 14, "met": 14, "method": [3, 6, 8, 11, 14], "min": 3, "minim": [3, 14], "minima": 14, "minimum": [3, 8, 14], "minumum": 11, "mmdp": [7, 9, 14], "mmdp_instanc": [2, 14], "mock": 14, "mockproblem": [2, 14], "modifi": [8, 14], "modul": 1, "more": 14, "move": 4, "multidimension": 8, "multimod": [8, 10], "multipl": [10, 14], "mutat": [1, 2, 14], "mutation_cand": 4, "mutation_oper": [1, 2], "mutationoper": [2, 4], "n": 8, "n_col": [1, 2, 5], "n_row": [1, 2, 5], "ndarrai": [3, 14], "nearli": 8, "necessari": 4, "neg": 14, "neighbor": [0, 5, 13, 14], "neighborhood": [1, 2, 14], "neighbors_posit": 14, "new": 4, "node": [10, 11], "non": 14, "none": [2, 4, 7, 8, 9, 10, 14], "normal": 10, "note": [8, 10, 11, 14], "notimplementederror": [6, 14], "number": [2, 3, 4, 5, 8, 10, 13, 14], "numpi": [3, 14], "object": [2, 3, 4, 5, 6, 12, 13, 14], "offspr": [12, 14], "one": [4, 11, 12, 14], "one_max": [7, 9], "one_point_crossov": [1, 2], "onemax": [9, 10, 14], "onepointcrossov": [2, 12, 14], "ones": [10, 14], "onli": [0, 14], "oper": [0, 4, 12, 14], "operaor": 0, "opposit": 14, "opt": [4, 14], "optim": [0, 1, 3, 6, 8, 10, 14], "optima": 10, "option": 4, "organ": 0, "origin": 14, "outer": 8, "output": 14, "over": 8, "p1": 12, "p2": 12, "packag": [0, 1], "pair": [12, 14], "paramet": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "parent": [12, 13, 14], "partial": [12, 14], "particularli": 10, "pattern": 2, "peak": [7, 9, 14], "peak_inst": [2, 14], "perform": [4, 8, 12, 13, 14], "permut": [7, 9, 14], "permutationproblem": [2, 14], "place": [4, 8, 10, 11, 14], "pmx": [12, 14], "pmx_crossov": [1, 2], "pmxcrossov": [2, 12, 14], "point": [4, 5, 8, 12, 14], "pop_list": 13, "popul": [0, 1, 13, 14], "posit": [4, 5, 12, 14], "pow": [2, 6, 7, 14], "powel": [6, 7, 14], "power": [8, 14], "predefin": 14, "principl": 0, "problem": [0, 1, 2, 3, 4, 12, 14], "process": 0, "produc": [12, 14], "promot": 0, "proper": 14, "provid": [4, 12, 14], "purpos": 14, "python": 0, "rac": 8, "rais": [6, 14], "random": [4, 13, 14], "randomli": [4, 10, 14], "rang": 10, "rastrigin": [6, 7, 14], "real": [0, 3, 14], "realproblem": [2, 3, 14], "recombin": [1, 2, 14], "recombination_oper": [1, 2], "recombinationoper": [2, 12], "region": 8, "remain": 14, "repres": [2, 3, 5, 6, 8, 10, 11, 14], "represent": 2, "reproduc": 14, "result": [12, 14], "return": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "revers": 4, "right": 14, "rosenbrock": [6, 7, 14], "rotat": [8, 14], "rothellipsoid": [6, 7], "roulett": 13, "roulette_wheel_select": [1, 2], "roulettewheelselect": [2, 13, 14], "round": [4, 8, 10, 11, 14], "rout": 11, "row": [2, 5], "run": 3, "run_alpha_cga_exampl": [2, 3], "run_ccga_exampl": [2, 3], "run_cga_exampl": [2, 3], "run_mcccga_exampl": [2, 3], "run_sync_cga_exampl": [2, 3], "salesman": [11, 14], "same": 14, "sampl": [4, 14], "satisfact": 14, "satisfi": 10, "satman": [4, 12], "schaffer": [6, 7, 14], "schaffer2": [6, 7, 14], "schwefel": [6, 7, 14], "second": [11, 12], "seed": 14, "segment": 4, "select": [1, 2, 4, 14], "selection_oper": [1, 2], "selectionoper": [2, 13], "set": [10, 14], "setup_bentcigar": [2, 14], "setup_chichinadz": [2, 14], "setup_dropwav": [2, 14], "setup_griewank": [2, 14], "setup_holzman": [2, 14], "setup_individu": [2, 14], "setup_levi": [2, 14], "setup_matya": [2, 14], "setup_par": [2, 14], "setup_popul": [2, 14], "setup_powel": [2, 14], "setup_problem": [2, 14], "setup_rothellipsoid": [2, 14], "setup_schaff": [2, 14], "setup_schaffer2": [2, 14], "setup_styblinski_tang": [2, 14], "setup_sumofdifferentpow": [2, 14], "setup_threehump": [2, 14], "setup_zettl": [2, 14], "sever": 14, "should": [8, 14], "shuffl": [4, 14], "shuffle_mut": [1, 2], "shufflemut": [2, 4, 14], "simpl": [3, 10, 14], "simpli": 14, "sin": 8, "singl": [4, 12, 14], "single_object": [2, 6], "size": [3, 14], "solut": [3, 6, 14], "solv": [3, 11], "some": 14, "sound": [8, 10], "sourc": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "spatial": 0, "specif": [8, 14], "specifi": 3, "sphere": [6, 7, 14], "sqrt": 8, "squar": [3, 14], "src": [0, 1], "start": [2, 13], "step": 14, "still": 14, "string": 14, "structur": 0, "styblinski": [8, 14], "styblinskitang": [6, 7, 14], "subclass": [6, 14], "submodul": [1, 7, 9], "subpackag": 1, "subproblem": 10, "subsequ": 4, "subtract": 4, "sum": [3, 8, 10, 14], "sum_": 8, "sumofdifferentpow": [6, 7, 14], "surround": 14, "swap": [4, 14], "swap_mut": [1, 2], "swapmut": [2, 4, 14], "sync_cga": [3, 14], "synchron": 3, "tang": [8, 14], "target": [10, 14], "techniqu": 14, "test": [1, 2, 8, 10], "test_acklei": [1, 2], "test_arithmetic_crossov": [1, 2], "test_bentcigar_funct": [1, 2], "test_bit_flip_mut": [1, 2], "test_bits_to_float": [2, 14], "test_blxalpha_crossov": [1, 2], "test_bohachevski": [1, 2], "test_byte_mut": [1, 2], "test_byte_mutation_random": [1, 2], "test_byte_one_point_crossov": [1, 2], "test_byte_oper": [1, 2], "test_byte_uniform_crossov": [1, 2], "test_chichinadze_funct": [1, 2], "test_compact_13": [1, 2], "test_compact_21": [1, 2], "test_compact_25": [1, 2], "test_compact_9": [1, 2], "test_count_sat": [1, 2], "test_dropwave_funct": [1, 2], "test_ecc": [1, 2], "test_fitness_evalu": [2, 14], "test_flat_crossov": [1, 2], "test_float_to_bit": [2, 14], "test_float_uniform_mut": [1, 2], "test_floats_to_bit": [2, 14], "test_fm": [1, 2], "test_get_set_neighbor": [2, 14], "test_get_set_neighbors_posit": [2, 14], "test_grid": [1, 2], "test_griewank_funct": [1, 2], "test_holzman_funct": [1, 2], "test_illegal_genome_typ": [2, 14], "test_individu": [1, 2], "test_individual_init": [2, 14], "test_initial_population_s": [2, 14], "test_insertion_mut": [1, 2], "test_levy_funct": [1, 2], "test_linear_5": [1, 2], "test_linear_9": [1, 2], "test_linear_crossov": [1, 2], "test_matyas_funct": [1, 2], "test_maxcut100": [1, 2], "test_maxcut20_01": [1, 2], "test_maxcut20_09": [1, 2], "test_mmdp": [1, 2], "test_mmdp_funct": [2, 14], "test_neighborhood_assign": [2, 14], "test_one_max": [1, 2], "test_one_point_crossov": [1, 2], "test_optimizer_alpha_cga": [1, 2], "test_optimizer_alpha_cga_binari": [2, 14], "test_optimizer_alpha_cga_no_vari": [2, 14], "test_optimizer_alpha_cga_permut": [2, 14], "test_optimizer_alpha_cga_r": [2, 14], "test_optimizer_ccga": [1, 2], "test_optimizer_ccga_binari": [2, 14], "test_optimizer_cga": [1, 2], "test_optimizer_cga_binari": [2, 14], "test_optimizer_cga_no_vari": [2, 14], "test_optimizer_cga_permut": [2, 14], "test_optimizer_cga_r": [2, 14], "test_optimizer_mcccga_binari": [2, 14], "test_optimizer_mccga": [1, 2], "test_optimizer_sync_cga": [1, 2], "test_optimizer_sync_cga_binari": [2, 14], "test_optimizer_sync_cga_no_vari": [2, 14], "test_optimizer_sync_cga_permut": [2, 14], "test_optimizer_sync_cga_r": [2, 14], "test_peak": [1, 2], "test_pmx_crossov": [1, 2], "test_popul": [1, 2], "test_pow_funct": [1, 2], "test_powell_funct": [1, 2], "test_randomize_binari": [2, 14], "test_randomize_permut": [2, 14], "test_randomize_real_valu": [2, 14], "test_rastrigin": [1, 2], "test_rosenbrock": [1, 2], "test_rothellipsoid_funct": [1, 2], "test_roulette_wheel_select": [1, 2], "test_schaffer2_funct": [1, 2], "test_schaffer_funct": [1, 2], "test_schwefel": [1, 2], "test_shuffle_mut": [1, 2], "test_spher": [1, 2], "test_styblinskitang_funct": [1, 2], "test_sumofdifferentpowers_funct": [1, 2], "test_swap_mut": [1, 2], "test_threehumps_funct": [1, 2], "test_tournament_select": [1, 2], "test_tsp": [1, 2], "test_two_opt_mut": [1, 2], "test_two_point_crossov": [1, 2], "test_unfair_average_crossov": [1, 2], "test_uniform_crossov": [1, 2], "test_zakharov_funct": [1, 2], "test_zettle_funct": [1, 2], "thi": [0, 3, 8, 11, 14], "thorough": 14, "those": [8, 10], "three": [8, 10, 14], "threehump": [6, 7, 14], "topologi": 0, "toroid": 14, "total": [11, 14], "tournament": 13, "tournament_select": [1, 2], "tournamentselect": [2, 13, 14], "tradit": 0, "travel": [11, 14], "true": 14, "tsp": [7, 9, 14], "tupl": [2, 3, 5, 14], "two": [4, 8, 11, 12, 14], "two_opt_mut": [1, 2], "two_point_crossov": [1, 2], "twooptmut": [2, 4, 14], "twopointcrossov": [2, 12, 14], "type": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "typic": 14, "unchang": 14, "unfair": [12, 14], "unfair_avarage_crossov": [1, 2], "unfairavaragecrossov": [2, 12, 14], "uniform": [4, 12, 14], "uniform_crossov": [1, 2], "uniformcrossov": [2, 12, 14], "uniformli": 4, "up": 14, "us": [3, 8, 10, 11, 12, 14], "usual": [8, 14], "util": 0, "valid": 14, "vallei": 14, "valu": [0, 2, 3, 4, 6, 8, 10, 11, 14], "variabl": [8, 10, 14], "variou": 14, "verifi": 14, "well": 14, "wheel": 13, "when": [3, 14], "where": [2, 3, 8, 10, 11, 14], "which": [8, 10, 12, 14], "whose": 5, "wide": [8, 14], "wise": [4, 14], "within": [8, 14], "wrap": [4, 5, 14], "x": [3, 5, 6, 8, 10, 11, 14], "x1": 8, "x2": 8, "x_": 8, "x_i": [8, 14], "xi": [8, 14], "y": [5, 8], "zakharov": [6, 7, 14], "zero": 14, "zettl": [6, 7, 14]}, "titles": ["PYCELLGA Documentation", "pycellga", "src package", "src.example package", "src.mutation package", "src.neighborhoods package", "src.problems package", "src.problems.single_objective package", "src.problems.single_objective.continuous package", "src.problems.single_objective.discrete package", "src.problems.single_objective.discrete.binary package", "src.problems.single_objective.discrete.permutation package", "src.recombination package", "src.selection package", "src.tests package"], "titleterms": {"abstract_problem": 6, "acklei": 8, "arithmetic_crossov": 12, "assert": 14, "bentcigar": 8, "binari": 10, "bit_flip_mut": 4, "blxalpha_crossov": 12, "bohachevski": 8, "byte_mut": 4, "byte_mutation_random": 4, "byte_one_point_crossov": 12, "byte_oper": 2, "byte_uniform_crossov": 12, "chichinadz": 8, "compact_13": 5, "compact_21": 5, "compact_25": 5, "compact_9": 5, "conftest": 14, "content": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "continu": 8, "count_sat": 10, "discret": [9, 10, 11], "document": 0, "dropwav": 8, "ecc": 10, "exampl": 3, "example_alpha_cga": 3, "example_ccga": 3, "example_cga": 3, "example_mcccga": 3, "example_sync_cga": 3, "flat_crossov": 12, "float_uniform_mut": 4, "fm": [8, 10], "grid": 2, "griewank": 8, "holzman": 8, "individu": 2, "insertion_mut": 4, "levi": 8, "linear_5": 5, "linear_9": 5, "linear_crossov": 12, "matya": 8, "maxcut100": 10, "maxcut20_01": 10, "maxcut20_09": 10, "mmdp": 10, "modul": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "mutat": 4, "mutation_oper": 4, "neighborhood": 5, "one_max": 10, "one_point_crossov": 12, "optim": 2, "packag": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "peak": 10, "permut": 11, "pmx_crossov": 12, "popul": 2, "pow": 8, "powel": 8, "problem": [6, 7, 8, 9, 10, 11], "pycellga": [0, 1], "rastrigin": 8, "recombin": 12, "recombination_oper": 12, "rosenbrock": 8, "rothellipsoid": 8, "roulette_wheel_select": 13, "schaffer": 8, "schaffer2": 8, "schwefel": 8, "select": 13, "selection_oper": 13, "shuffle_mut": 4, "single_object": [7, 8, 9, 10, 11], "sphere": 8, "src": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "styblinskitang": 8, "submodul": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "subpackag": [2, 6, 7, 9], "sumofdifferentpow": 8, "swap_mut": 4, "test": 14, "test_acklei": 14, "test_arithmetic_crossov": 14, "test_bentcigar_funct": 14, "test_bit_flip_mut": 14, "test_blxalpha_crossov": 14, "test_bohachevski": 14, "test_byte_mut": 14, "test_byte_mutation_random": 14, "test_byte_one_point_crossov": 14, "test_byte_oper": 14, "test_byte_uniform_crossov": 14, "test_chichinadze_funct": 14, "test_compact_13": 14, "test_compact_21": 14, "test_compact_25": 14, "test_compact_9": 14, "test_count_sat": 14, "test_dropwave_funct": 14, "test_ecc": 14, "test_flat_crossov": 14, "test_float_uniform_mut": 14, "test_fm": 14, "test_grid": 14, "test_griewank_funct": 14, "test_holzman_funct": 14, "test_individu": 14, "test_insertion_mut": 14, "test_levy_funct": 14, "test_linear_5": 14, "test_linear_9": 14, "test_linear_crossov": 14, "test_matyas_funct": 14, "test_maxcut100": 14, "test_maxcut20_01": 14, "test_maxcut20_09": 14, "test_mmdp": 14, "test_one_max": 14, "test_one_point_crossov": 14, "test_optimizer_alpha_cga": 14, "test_optimizer_ccga": 14, "test_optimizer_cga": 14, "test_optimizer_mccga": 14, "test_optimizer_sync_cga": 14, "test_peak": 14, "test_pmx_crossov": 14, "test_popul": 14, "test_pow_funct": 14, "test_powell_funct": 14, "test_rastrigin": 14, "test_rosenbrock": 14, "test_rothellipsoid_funct": 14, "test_roulette_wheel_select": 14, "test_schaffer2_funct": 14, "test_schaffer_funct": 14, "test_schwefel": 14, "test_shuffle_mut": 14, "test_spher": 14, "test_styblinskitang_funct": 14, "test_sumofdifferentpowers_funct": 14, "test_swap_mut": 14, "test_threehumps_funct": 14, "test_tournament_select": 14, "test_tsp": 14, "test_two_opt_mut": 14, "test_two_point_crossov": 14, "test_unfair_average_crossov": 14, "test_uniform_crossov": 14, "test_zakharov_funct": 14, "test_zettle_funct": 14, "threehump": 8, "tournament_select": 13, "tsp": 11, "two_opt_mut": 4, "two_point_crossov": 12, "unfair_avarage_crossov": 12, "uniform_crossov": 12, "zakharov": 8, "zettl": 8}}) \ No newline at end of file +Search.setIndex({"alltitles": {"Assertions": [[14, "assertions"], [14, "id2"], [14, "id3"]], "Contents:": [[0, null]], "Module contents": [[2, "module-pycellga"], [3, "module-pycellga.example"], [4, "module-pycellga.mutation"], [5, "module-pycellga.neighborhoods"], [6, "module-pycellga.problems"], [7, "module-pycellga.problems.single_objective"], [8, "module-pycellga.problems.single_objective.continuous"], [9, "module-pycellga.problems.single_objective.discrete"], [10, "module-pycellga.problems.single_objective.discrete.binary"], [11, "module-pycellga.problems.single_objective.discrete.permutation"], [12, "module-pycellga.recombination"], [13, "module-pycellga.selection"], [14, "module-pycellga.tests"]], "PYCELLGA Documentation": [[0, null]], "Submodules": [[2, "submodules"], [3, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"], [8, "submodules"], [10, "submodules"], [11, "submodules"], [12, "submodules"], [13, "submodules"], [14, "submodules"]], "Subpackages": [[2, "subpackages"], [6, "subpackages"], [7, "subpackages"], [9, "subpackages"]], "pycellga": [[1, null]], "pycellga package": [[2, null]], "pycellga.byte_operators module": [[2, "module-pycellga.byte_operators"]], "pycellga.example package": [[3, null]], "pycellga.example.example_alpha_cga module": [[3, "module-pycellga.example.example_alpha_cga"]], "pycellga.example.example_ccga module": [[3, "module-pycellga.example.example_ccga"]], "pycellga.example.example_cga module": [[3, "module-pycellga.example.example_cga"]], "pycellga.example.example_mcccga module": [[3, "module-pycellga.example.example_mcccga"]], "pycellga.example.example_sync_cga module": [[3, "module-pycellga.example.example_sync_cga"]], "pycellga.grid module": [[2, "module-pycellga.grid"]], "pycellga.individual module": [[2, "pycellga-individual-module"]], "pycellga.mutation package": [[4, null]], "pycellga.mutation.bit_flip_mutation module": [[4, "module-pycellga.mutation.bit_flip_mutation"]], "pycellga.mutation.byte_mutation module": [[4, "module-pycellga.mutation.byte_mutation"]], "pycellga.mutation.byte_mutation_random module": [[4, "module-pycellga.mutation.byte_mutation_random"]], "pycellga.mutation.float_uniform_mutation module": [[4, "module-pycellga.mutation.float_uniform_mutation"]], "pycellga.mutation.insertion_mutation module": [[4, "module-pycellga.mutation.insertion_mutation"]], "pycellga.mutation.mutation_operator module": [[4, "module-pycellga.mutation.mutation_operator"]], "pycellga.mutation.shuffle_mutation module": [[4, "module-pycellga.mutation.shuffle_mutation"]], "pycellga.mutation.swap_mutation module": [[4, "module-pycellga.mutation.swap_mutation"]], "pycellga.mutation.two_opt_mutation module": [[4, "module-pycellga.mutation.two_opt_mutation"]], "pycellga.neighborhoods package": [[5, null]], "pycellga.neighborhoods.compact_13 module": [[5, "module-pycellga.neighborhoods.compact_13"]], "pycellga.neighborhoods.compact_21 module": [[5, "module-pycellga.neighborhoods.compact_21"]], "pycellga.neighborhoods.compact_25 module": [[5, "module-pycellga.neighborhoods.compact_25"]], "pycellga.neighborhoods.compact_9 module": [[5, "module-pycellga.neighborhoods.compact_9"]], "pycellga.neighborhoods.linear_5 module": [[5, "module-pycellga.neighborhoods.linear_5"]], "pycellga.neighborhoods.linear_9 module": [[5, "module-pycellga.neighborhoods.linear_9"]], "pycellga.optimizer module": [[2, "pycellga-optimizer-module"]], "pycellga.population module": [[2, "pycellga-population-module"]], "pycellga.problems package": [[6, null]], "pycellga.problems.abstract_problem module": [[6, "module-pycellga.problems.abstract_problem"]], "pycellga.problems.single_objective package": [[7, null]], "pycellga.problems.single_objective.continuous package": [[8, null]], "pycellga.problems.single_objective.continuous.ackley module": [[8, "module-pycellga.problems.single_objective.continuous.ackley"]], "pycellga.problems.single_objective.continuous.bentcigar module": [[8, "module-pycellga.problems.single_objective.continuous.bentcigar"]], "pycellga.problems.single_objective.continuous.bohachevsky module": [[8, "module-pycellga.problems.single_objective.continuous.bohachevsky"]], "pycellga.problems.single_objective.continuous.chichinadze module": [[8, "module-pycellga.problems.single_objective.continuous.chichinadze"]], "pycellga.problems.single_objective.continuous.dropwave module": [[8, "module-pycellga.problems.single_objective.continuous.dropwave"]], "pycellga.problems.single_objective.continuous.fms module": [[8, "module-pycellga.problems.single_objective.continuous.fms"]], "pycellga.problems.single_objective.continuous.griewank module": [[8, "module-pycellga.problems.single_objective.continuous.griewank"]], "pycellga.problems.single_objective.continuous.holzman module": [[8, "module-pycellga.problems.single_objective.continuous.holzman"]], "pycellga.problems.single_objective.continuous.levy module": [[8, "module-pycellga.problems.single_objective.continuous.levy"]], "pycellga.problems.single_objective.continuous.matyas module": [[8, "module-pycellga.problems.single_objective.continuous.matyas"]], "pycellga.problems.single_objective.continuous.pow module": [[8, "module-pycellga.problems.single_objective.continuous.pow"]], "pycellga.problems.single_objective.continuous.powell module": [[8, "module-pycellga.problems.single_objective.continuous.powell"]], "pycellga.problems.single_objective.continuous.rastrigin module": [[8, "module-pycellga.problems.single_objective.continuous.rastrigin"]], "pycellga.problems.single_objective.continuous.rosenbrock module": [[8, "module-pycellga.problems.single_objective.continuous.rosenbrock"]], "pycellga.problems.single_objective.continuous.rothellipsoid module": [[8, "module-pycellga.problems.single_objective.continuous.rothellipsoid"]], "pycellga.problems.single_objective.continuous.schaffer module": [[8, "module-pycellga.problems.single_objective.continuous.schaffer"]], "pycellga.problems.single_objective.continuous.schaffer2 module": [[8, "module-pycellga.problems.single_objective.continuous.schaffer2"]], "pycellga.problems.single_objective.continuous.schwefel module": [[8, "module-pycellga.problems.single_objective.continuous.schwefel"]], "pycellga.problems.single_objective.continuous.sphere module": [[8, "module-pycellga.problems.single_objective.continuous.sphere"]], "pycellga.problems.single_objective.continuous.styblinskitang module": [[8, "module-pycellga.problems.single_objective.continuous.styblinskitang"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers module": [[8, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers"]], "pycellga.problems.single_objective.continuous.threehumps module": [[8, "module-pycellga.problems.single_objective.continuous.threehumps"]], "pycellga.problems.single_objective.continuous.zakharov module": [[8, "module-pycellga.problems.single_objective.continuous.zakharov"]], "pycellga.problems.single_objective.continuous.zettle module": [[8, "module-pycellga.problems.single_objective.continuous.zettle"]], "pycellga.problems.single_objective.discrete package": [[9, null]], "pycellga.problems.single_objective.discrete.binary package": [[10, null]], "pycellga.problems.single_objective.discrete.binary.count_sat module": [[10, "module-pycellga.problems.single_objective.discrete.binary.count_sat"]], "pycellga.problems.single_objective.discrete.binary.ecc module": [[10, "module-pycellga.problems.single_objective.discrete.binary.ecc"]], "pycellga.problems.single_objective.discrete.binary.fms module": [[10, "module-pycellga.problems.single_objective.discrete.binary.fms"]], "pycellga.problems.single_objective.discrete.binary.maxcut100 module": [[10, "module-pycellga.problems.single_objective.discrete.binary.maxcut100"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01 module": [[10, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09 module": [[10, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09"]], "pycellga.problems.single_objective.discrete.binary.mmdp module": [[10, "module-pycellga.problems.single_objective.discrete.binary.mmdp"]], "pycellga.problems.single_objective.discrete.binary.one_max module": [[10, "module-pycellga.problems.single_objective.discrete.binary.one_max"]], "pycellga.problems.single_objective.discrete.binary.peak module": [[10, "module-pycellga.problems.single_objective.discrete.binary.peak"]], "pycellga.problems.single_objective.discrete.permutation package": [[11, null]], "pycellga.problems.single_objective.discrete.permutation.tsp module": [[11, "module-pycellga.problems.single_objective.discrete.permutation.tsp"]], "pycellga.recombination package": [[12, null]], "pycellga.recombination.arithmetic_crossover module": [[12, "module-pycellga.recombination.arithmetic_crossover"]], "pycellga.recombination.blxalpha_crossover module": [[12, "module-pycellga.recombination.blxalpha_crossover"]], "pycellga.recombination.byte_one_point_crossover module": [[12, "module-pycellga.recombination.byte_one_point_crossover"]], "pycellga.recombination.byte_uniform_crossover module": [[12, "module-pycellga.recombination.byte_uniform_crossover"]], "pycellga.recombination.flat_crossover module": [[12, "module-pycellga.recombination.flat_crossover"]], "pycellga.recombination.linear_crossover module": [[12, "module-pycellga.recombination.linear_crossover"]], "pycellga.recombination.one_point_crossover module": [[12, "module-pycellga.recombination.one_point_crossover"]], "pycellga.recombination.pmx_crossover module": [[12, "module-pycellga.recombination.pmx_crossover"]], "pycellga.recombination.recombination_operator module": [[12, "module-pycellga.recombination.recombination_operator"]], "pycellga.recombination.two_point_crossover module": [[12, "module-pycellga.recombination.two_point_crossover"]], "pycellga.recombination.unfair_avarage_crossover module": [[12, "module-pycellga.recombination.unfair_avarage_crossover"]], "pycellga.recombination.uniform_crossover module": [[12, "module-pycellga.recombination.uniform_crossover"]], "pycellga.selection package": [[13, null]], "pycellga.selection.roulette_wheel_selection module": [[13, "module-pycellga.selection.roulette_wheel_selection"]], "pycellga.selection.selection_operator module": [[13, "module-pycellga.selection.selection_operator"]], "pycellga.selection.tournament_selection module": [[13, "module-pycellga.selection.tournament_selection"]], "pycellga.tests package": [[14, null]], "pycellga.tests.conftest module": [[14, "module-pycellga.tests.conftest"]], "pycellga.tests.test_ackley module": [[14, "module-pycellga.tests.test_ackley"]], "pycellga.tests.test_arithmetic_crossover module": [[14, "module-pycellga.tests.test_arithmetic_crossover"]], "pycellga.tests.test_bentcigar_function module": [[14, "module-pycellga.tests.test_bentcigar_function"]], "pycellga.tests.test_bit_flip_mutation module": [[14, "module-pycellga.tests.test_bit_flip_mutation"]], "pycellga.tests.test_blxalpha_crossover module": [[14, "module-pycellga.tests.test_blxalpha_crossover"]], "pycellga.tests.test_bohachevsky module": [[14, "module-pycellga.tests.test_bohachevsky"]], "pycellga.tests.test_byte_mutation module": [[14, "module-pycellga.tests.test_byte_mutation"]], "pycellga.tests.test_byte_mutation_random module": [[14, "module-pycellga.tests.test_byte_mutation_random"]], "pycellga.tests.test_byte_one_point_crossover module": [[14, "module-pycellga.tests.test_byte_one_point_crossover"]], "pycellga.tests.test_byte_operators module": [[14, "module-pycellga.tests.test_byte_operators"]], "pycellga.tests.test_byte_uniform_crossover module": [[14, "module-pycellga.tests.test_byte_uniform_crossover"]], "pycellga.tests.test_chichinadze_function module": [[14, "module-pycellga.tests.test_chichinadze_function"]], "pycellga.tests.test_compact_13 module": [[14, "module-pycellga.tests.test_compact_13"]], "pycellga.tests.test_compact_21 module": [[14, "module-pycellga.tests.test_compact_21"]], "pycellga.tests.test_compact_25 module": [[14, "module-pycellga.tests.test_compact_25"]], "pycellga.tests.test_compact_9 module": [[14, "module-pycellga.tests.test_compact_9"]], "pycellga.tests.test_count_sat module": [[14, "module-pycellga.tests.test_count_sat"]], "pycellga.tests.test_dropwave_function module": [[14, "module-pycellga.tests.test_dropwave_function"]], "pycellga.tests.test_ecc module": [[14, "module-pycellga.tests.test_ecc"]], "pycellga.tests.test_flat_crossover module": [[14, "module-pycellga.tests.test_flat_crossover"]], "pycellga.tests.test_float_uniform_mutation module": [[14, "module-pycellga.tests.test_float_uniform_mutation"]], "pycellga.tests.test_fms module": [[14, "module-pycellga.tests.test_fms"]], "pycellga.tests.test_grid module": [[14, "module-pycellga.tests.test_grid"]], "pycellga.tests.test_griewank_function module": [[14, "module-pycellga.tests.test_griewank_function"]], "pycellga.tests.test_holzman_function module": [[14, "module-pycellga.tests.test_holzman_function"]], "pycellga.tests.test_individual module": [[14, "module-pycellga.tests.test_individual"]], "pycellga.tests.test_insertion_mutation module": [[14, "module-pycellga.tests.test_insertion_mutation"]], "pycellga.tests.test_levy_function module": [[14, "module-pycellga.tests.test_levy_function"]], "pycellga.tests.test_linear_5 module": [[14, "module-pycellga.tests.test_linear_5"]], "pycellga.tests.test_linear_9 module": [[14, "module-pycellga.tests.test_linear_9"]], "pycellga.tests.test_linear_crossover module": [[14, "module-pycellga.tests.test_linear_crossover"]], "pycellga.tests.test_matyas_function module": [[14, "module-pycellga.tests.test_matyas_function"]], "pycellga.tests.test_maxcut100 module": [[14, "module-pycellga.tests.test_maxcut100"]], "pycellga.tests.test_maxcut20_01 module": [[14, "module-pycellga.tests.test_maxcut20_01"]], "pycellga.tests.test_maxcut20_09 module": [[14, "module-pycellga.tests.test_maxcut20_09"]], "pycellga.tests.test_mmdp module": [[14, "module-pycellga.tests.test_mmdp"]], "pycellga.tests.test_one_max module": [[14, "module-pycellga.tests.test_one_max"]], "pycellga.tests.test_one_point_crossover module": [[14, "module-pycellga.tests.test_one_point_crossover"]], "pycellga.tests.test_optimizer_alpha_cga module": [[14, "module-pycellga.tests.test_optimizer_alpha_cga"]], "pycellga.tests.test_optimizer_ccga module": [[14, "module-pycellga.tests.test_optimizer_ccga"]], "pycellga.tests.test_optimizer_cga module": [[14, "module-pycellga.tests.test_optimizer_cga"]], "pycellga.tests.test_optimizer_mccga module": [[14, "module-pycellga.tests.test_optimizer_mccga"]], "pycellga.tests.test_optimizer_sync_cga module": [[14, "module-pycellga.tests.test_optimizer_sync_cga"]], "pycellga.tests.test_peak module": [[14, "module-pycellga.tests.test_peak"]], "pycellga.tests.test_pmx_crossover module": [[14, "module-pycellga.tests.test_pmx_crossover"]], "pycellga.tests.test_population module": [[14, "module-pycellga.tests.test_population"]], "pycellga.tests.test_pow_function module": [[14, "module-pycellga.tests.test_pow_function"]], "pycellga.tests.test_powell_function module": [[14, "module-pycellga.tests.test_powell_function"]], "pycellga.tests.test_rastrigin module": [[14, "module-pycellga.tests.test_rastrigin"]], "pycellga.tests.test_rosenbrock module": [[14, "module-pycellga.tests.test_rosenbrock"]], "pycellga.tests.test_rothellipsoid_function module": [[14, "module-pycellga.tests.test_rothellipsoid_function"]], "pycellga.tests.test_roulette_wheel_selection module": [[14, "module-pycellga.tests.test_roulette_wheel_selection"]], "pycellga.tests.test_schaffer2_function module": [[14, "module-pycellga.tests.test_schaffer2_function"]], "pycellga.tests.test_schaffer_function module": [[14, "module-pycellga.tests.test_schaffer_function"]], "pycellga.tests.test_schwefel module": [[14, "module-pycellga.tests.test_schwefel"]], "pycellga.tests.test_shuffle_mutation module": [[14, "module-pycellga.tests.test_shuffle_mutation"]], "pycellga.tests.test_sphere module": [[14, "module-pycellga.tests.test_sphere"]], "pycellga.tests.test_styblinskitang_function module": [[14, "module-pycellga.tests.test_styblinskitang_function"]], "pycellga.tests.test_sumofdifferentpowers_function module": [[14, "module-pycellga.tests.test_sumofdifferentpowers_function"]], "pycellga.tests.test_swap_mutation module": [[14, "module-pycellga.tests.test_swap_mutation"]], "pycellga.tests.test_threehumps_function module": [[14, "module-pycellga.tests.test_threehumps_function"]], "pycellga.tests.test_tournament_selection module": [[14, "module-pycellga.tests.test_tournament_selection"]], "pycellga.tests.test_tsp module": [[14, "module-pycellga.tests.test_tsp"]], "pycellga.tests.test_two_opt_mutation module": [[14, "module-pycellga.tests.test_two_opt_mutation"]], "pycellga.tests.test_two_point_crossover module": [[14, "module-pycellga.tests.test_two_point_crossover"]], "pycellga.tests.test_unfair_average_crossover module": [[14, "module-pycellga.tests.test_unfair_average_crossover"]], "pycellga.tests.test_uniform_crossover module": [[14, "module-pycellga.tests.test_uniform_crossover"]], "pycellga.tests.test_zakharov_function module": [[14, "module-pycellga.tests.test_zakharov_function"]], "pycellga.tests.test_zettle_function module": [[14, "module-pycellga.tests.test_zettle_function"]], "setup module": [[15, null]]}, "docnames": ["index", "modules", "pycellga", "pycellga.example", "pycellga.mutation", "pycellga.neighborhoods", "pycellga.problems", "pycellga.problems.single_objective", "pycellga.problems.single_objective.continuous", "pycellga.problems.single_objective.discrete", "pycellga.problems.single_objective.discrete.binary", "pycellga.problems.single_objective.discrete.permutation", "pycellga.recombination", "pycellga.selection", "pycellga.tests", "setup"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.rst", "modules.rst", "pycellga.rst", "pycellga.example.rst", "pycellga.mutation.rst", "pycellga.neighborhoods.rst", "pycellga.problems.rst", "pycellga.problems.single_objective.rst", "pycellga.problems.single_objective.continuous.rst", "pycellga.problems.single_objective.discrete.rst", "pycellga.problems.single_objective.discrete.binary.rst", "pycellga.problems.single_objective.discrete.permutation.rst", "pycellga.recombination.rst", "pycellga.selection.rst", "pycellga.tests.rst", "setup.rst"], "indexentries": {"__init__() (pycellga.example.example_alpha_cga.exampleproblem method)": [[3, "pycellga.example.example_alpha_cga.ExampleProblem.__init__", false]], "__init__() (pycellga.example.example_ccga.exampleproblem method)": [[3, "pycellga.example.example_ccga.ExampleProblem.__init__", false]], "__init__() (pycellga.example.example_cga.exampleproblem method)": [[3, "pycellga.example.example_cga.ExampleProblem.__init__", false]], "__init__() (pycellga.example.example_mcccga.realproblem method)": [[3, "pycellga.example.example_mcccga.RealProblem.__init__", false]], "__init__() (pycellga.example.example_sync_cga.exampleproblem method)": [[3, "pycellga.example.example_sync_cga.ExampleProblem.__init__", false]], "__init__() (pycellga.grid.grid method)": [[2, "pycellga.grid.Grid.__init__", false]], "__init__() (pycellga.mutation.bit_flip_mutation.bitflipmutation method)": [[4, "pycellga.mutation.bit_flip_mutation.BitFlipMutation.__init__", false]], "__init__() (pycellga.mutation.byte_mutation.bytemutation method)": [[4, "pycellga.mutation.byte_mutation.ByteMutation.__init__", false]], "__init__() (pycellga.mutation.byte_mutation_random.bytemutationrandom method)": [[4, "pycellga.mutation.byte_mutation_random.ByteMutationRandom.__init__", false]], "__init__() (pycellga.mutation.float_uniform_mutation.floatuniformmutation method)": [[4, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation.__init__", false]], "__init__() (pycellga.mutation.insertion_mutation.insertionmutation method)": [[4, "pycellga.mutation.insertion_mutation.InsertionMutation.__init__", false]], "__init__() (pycellga.mutation.shuffle_mutation.shufflemutation method)": [[4, "pycellga.mutation.shuffle_mutation.ShuffleMutation.__init__", false]], "__init__() (pycellga.mutation.swap_mutation.swapmutation method)": [[4, "pycellga.mutation.swap_mutation.SwapMutation.__init__", false]], "__init__() (pycellga.mutation.two_opt_mutation.twooptmutation method)": [[4, "pycellga.mutation.two_opt_mutation.TwoOptMutation.__init__", false]], "__init__() (pycellga.neighborhoods.compact_13.compact13 method)": [[5, "pycellga.neighborhoods.compact_13.Compact13.__init__", false]], "__init__() (pycellga.neighborhoods.compact_21.compact21 method)": [[5, "pycellga.neighborhoods.compact_21.Compact21.__init__", false]], "__init__() (pycellga.neighborhoods.compact_25.compact25 method)": [[5, "pycellga.neighborhoods.compact_25.Compact25.__init__", false]], "__init__() (pycellga.neighborhoods.compact_9.compact9 method)": [[5, "pycellga.neighborhoods.compact_9.Compact9.__init__", false]], "__init__() (pycellga.neighborhoods.linear_5.linear5 method)": [[5, "pycellga.neighborhoods.linear_5.Linear5.__init__", false]], "__init__() (pycellga.neighborhoods.linear_9.linear9 method)": [[5, "pycellga.neighborhoods.linear_9.Linear9.__init__", false]], "__init__() (pycellga.recombination.arithmetic_crossover.arithmeticcrossover method)": [[12, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover.__init__", false]], "__init__() (pycellga.recombination.blxalpha_crossover.blxalphacrossover method)": [[12, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.__init__", false]], "__init__() (pycellga.recombination.byte_one_point_crossover.byteonepointcrossover method)": [[12, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover.__init__", false]], "__init__() (pycellga.recombination.byte_uniform_crossover.byteuniformcrossover method)": [[12, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.__init__", false]], "__init__() (pycellga.recombination.flat_crossover.flatcrossover method)": [[12, "pycellga.recombination.flat_crossover.FlatCrossover.__init__", false]], "__init__() (pycellga.recombination.linear_crossover.linearcrossover method)": [[12, "pycellga.recombination.linear_crossover.LinearCrossover.__init__", false]], "__init__() (pycellga.recombination.one_point_crossover.onepointcrossover method)": [[12, "pycellga.recombination.one_point_crossover.OnePointCrossover.__init__", false]], "__init__() (pycellga.recombination.pmx_crossover.pmxcrossover method)": [[12, "pycellga.recombination.pmx_crossover.PMXCrossover.__init__", false]], "__init__() (pycellga.recombination.two_point_crossover.twopointcrossover method)": [[12, "pycellga.recombination.two_point_crossover.TwoPointCrossover.__init__", false]], "__init__() (pycellga.recombination.unfair_avarage_crossover.unfairavaragecrossover method)": [[12, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.__init__", false]], "__init__() (pycellga.recombination.uniform_crossover.uniformcrossover method)": [[12, "pycellga.recombination.uniform_crossover.UniformCrossover.__init__", false]], "__init__() (pycellga.selection.roulette_wheel_selection.roulettewheelselection method)": [[13, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection.__init__", false]], "__init__() (pycellga.selection.tournament_selection.tournamentselection method)": [[13, "pycellga.selection.tournament_selection.TournamentSelection.__init__", false]], "__init__() (pycellga.tests.test_optimizer_alpha_cga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.BinaryProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_alpha_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.PermutationProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_alpha_cga.realproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.RealProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_ccga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_ccga.BinaryProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_cga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_cga.BinaryProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_cga.PermutationProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_cga.realproblem method)": [[14, "pycellga.tests.test_optimizer_cga.RealProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_mccga.realproblem method)": [[14, "pycellga.tests.test_optimizer_mccga.RealProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_sync_cga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.BinaryProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_sync_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.PermutationProblem.__init__", false]], "__init__() (pycellga.tests.test_optimizer_sync_cga.realproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.RealProblem.__init__", false]], "abstractproblem (class in pycellga.problems.abstract_problem)": [[6, "pycellga.problems.abstract_problem.AbstractProblem", false]], "ackley (class in pycellga.problems.single_objective.continuous.ackley)": [[8, "pycellga.problems.single_objective.continuous.ackley.Ackley", false]], "arithmeticcrossover (class in pycellga.recombination.arithmetic_crossover)": [[12, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover", false]], "bentcigar (class in pycellga.problems.single_objective.continuous.bentcigar)": [[8, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar", false]], "binaryproblem (class in pycellga.tests.test_optimizer_alpha_cga)": [[14, "pycellga.tests.test_optimizer_alpha_cga.BinaryProblem", false]], "binaryproblem (class in pycellga.tests.test_optimizer_ccga)": [[14, "pycellga.tests.test_optimizer_ccga.BinaryProblem", false]], "binaryproblem (class in pycellga.tests.test_optimizer_cga)": [[14, "pycellga.tests.test_optimizer_cga.BinaryProblem", false]], "binaryproblem (class in pycellga.tests.test_optimizer_sync_cga)": [[14, "pycellga.tests.test_optimizer_sync_cga.BinaryProblem", false]], "bitflipmutation (class in pycellga.mutation.bit_flip_mutation)": [[4, "pycellga.mutation.bit_flip_mutation.BitFlipMutation", false]], "bits_to_float() (in module pycellga.byte_operators)": [[2, "pycellga.byte_operators.bits_to_float", false]], "bits_to_floats() (in module pycellga.byte_operators)": [[2, "pycellga.byte_operators.bits_to_floats", false]], "blxalphacrossover (class in pycellga.recombination.blxalpha_crossover)": [[12, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover", false]], "bohachevsky (class in pycellga.problems.single_objective.continuous.bohachevsky)": [[8, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky", false]], "bytemutation (class in pycellga.mutation.byte_mutation)": [[4, "pycellga.mutation.byte_mutation.ByteMutation", false]], "bytemutationrandom (class in pycellga.mutation.byte_mutation_random)": [[4, "pycellga.mutation.byte_mutation_random.ByteMutationRandom", false]], "byteonepointcrossover (class in pycellga.recombination.byte_one_point_crossover)": [[12, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover", false]], "byteuniformcrossover (class in pycellga.recombination.byte_uniform_crossover)": [[12, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover", false]], "calculate_neighbors_positions() (pycellga.neighborhoods.compact_13.compact13 method)": [[5, "pycellga.neighborhoods.compact_13.Compact13.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (pycellga.neighborhoods.compact_21.compact21 method)": [[5, "pycellga.neighborhoods.compact_21.Compact21.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (pycellga.neighborhoods.compact_25.compact25 method)": [[5, "pycellga.neighborhoods.compact_25.Compact25.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (pycellga.neighborhoods.compact_9.compact9 method)": [[5, "pycellga.neighborhoods.compact_9.Compact9.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (pycellga.neighborhoods.linear_5.linear5 method)": [[5, "pycellga.neighborhoods.linear_5.Linear5.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (pycellga.neighborhoods.linear_9.linear9 method)": [[5, "pycellga.neighborhoods.linear_9.Linear9.calculate_neighbors_positions", false]], "chichinadze (class in pycellga.problems.single_objective.continuous.chichinadze)": [[8, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze", false]], "combine() (pycellga.recombination.blxalpha_crossover.blxalphacrossover method)": [[12, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.combine", false]], "combine() (pycellga.recombination.byte_uniform_crossover.byteuniformcrossover method)": [[12, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.combine", false]], "combine() (pycellga.recombination.flat_crossover.flatcrossover method)": [[12, "pycellga.recombination.flat_crossover.FlatCrossover.combine", false]], "combine() (pycellga.recombination.linear_crossover.linearcrossover method)": [[12, "pycellga.recombination.linear_crossover.LinearCrossover.combine", false]], "combine() (pycellga.recombination.uniform_crossover.uniformcrossover method)": [[12, "pycellga.recombination.uniform_crossover.UniformCrossover.combine", false]], "compact13 (class in pycellga.neighborhoods.compact_13)": [[5, "pycellga.neighborhoods.compact_13.Compact13", false]], "compact21 (class in pycellga.neighborhoods.compact_21)": [[5, "pycellga.neighborhoods.compact_21.Compact21", false]], "compact25 (class in pycellga.neighborhoods.compact_25)": [[5, "pycellga.neighborhoods.compact_25.Compact25", false]], "compact9 (class in pycellga.neighborhoods.compact_9)": [[5, "pycellga.neighborhoods.compact_9.Compact9", false]], "countsat (class in pycellga.problems.single_objective.discrete.binary.count_sat)": [[10, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat", false]], "dropwave (class in pycellga.problems.single_objective.continuous.dropwave)": [[8, "pycellga.problems.single_objective.continuous.dropwave.Dropwave", false]], "ecc (class in pycellga.problems.single_objective.discrete.binary.ecc)": [[10, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc", false]], "ecc_instance() (in module pycellga.tests.test_ecc)": [[14, "pycellga.tests.test_ecc.ecc_instance", false]], "euclidean_dist() (pycellga.problems.single_objective.discrete.permutation.tsp.tsp method)": [[11, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.euclidean_dist", false]], "exampleproblem (class in pycellga.example.example_alpha_cga)": [[3, "pycellga.example.example_alpha_cga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_ccga)": [[3, "pycellga.example.example_ccga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_cga)": [[3, "pycellga.example.example_cga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_sync_cga)": [[3, "pycellga.example.example_sync_cga.ExampleProblem", false]], "f() (pycellga.example.example_alpha_cga.exampleproblem method)": [[3, "pycellga.example.example_alpha_cga.ExampleProblem.f", false]], "f() (pycellga.example.example_ccga.exampleproblem method)": [[3, "pycellga.example.example_ccga.ExampleProblem.f", false]], "f() (pycellga.example.example_cga.exampleproblem method)": [[3, "pycellga.example.example_cga.ExampleProblem.f", false]], "f() (pycellga.example.example_mcccga.realproblem method)": [[3, "pycellga.example.example_mcccga.RealProblem.f", false]], "f() (pycellga.example.example_sync_cga.exampleproblem method)": [[3, "pycellga.example.example_sync_cga.ExampleProblem.f", false]], "f() (pycellga.problems.abstract_problem.abstractproblem method)": [[6, "id0", false], [6, "pycellga.problems.abstract_problem.AbstractProblem.f", false]], "f() (pycellga.problems.single_objective.continuous.ackley.ackley method)": [[8, "id0", false], [8, "pycellga.problems.single_objective.continuous.ackley.Ackley.f", false]], "f() (pycellga.problems.single_objective.continuous.bentcigar.bentcigar method)": [[8, "id1", false], [8, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.f", false]], "f() (pycellga.problems.single_objective.continuous.bohachevsky.bohachevsky method)": [[8, "id2", false], [8, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.f", false]], "f() (pycellga.problems.single_objective.continuous.chichinadze.chichinadze method)": [[8, "id3", false], [8, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.f", false]], "f() (pycellga.problems.single_objective.continuous.dropwave.dropwave method)": [[8, "id4", false], [8, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.f", false]], "f() (pycellga.problems.single_objective.continuous.fms.fms method)": [[8, "id5", false], [8, "pycellga.problems.single_objective.continuous.fms.Fms.f", false]], "f() (pycellga.problems.single_objective.continuous.griewank.griewank method)": [[8, "id6", false], [8, "pycellga.problems.single_objective.continuous.griewank.Griewank.f", false]], "f() (pycellga.problems.single_objective.continuous.holzman.holzman method)": [[8, "id7", false], [8, "pycellga.problems.single_objective.continuous.holzman.Holzman.f", false]], "f() (pycellga.problems.single_objective.continuous.levy.levy method)": [[8, "id8", false], [8, "pycellga.problems.single_objective.continuous.levy.Levy.f", false]], "f() (pycellga.problems.single_objective.continuous.matyas.matyas method)": [[8, "id9", false], [8, "pycellga.problems.single_objective.continuous.matyas.Matyas.f", false]], "f() (pycellga.problems.single_objective.continuous.pow.pow method)": [[8, "id10", false], [8, "pycellga.problems.single_objective.continuous.pow.Pow.f", false]], "f() (pycellga.problems.single_objective.continuous.powell.powell method)": [[8, "id11", false], [8, "pycellga.problems.single_objective.continuous.powell.Powell.f", false]], "f() (pycellga.problems.single_objective.continuous.rastrigin.rastrigin method)": [[8, "id12", false], [8, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.f", false]], "f() (pycellga.problems.single_objective.continuous.rosenbrock.rosenbrock method)": [[8, "id13", false], [8, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.f", false]], "f() (pycellga.problems.single_objective.continuous.rothellipsoid.rothellipsoid method)": [[8, "id14", false], [8, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.f", false]], "f() (pycellga.problems.single_objective.continuous.schaffer.schaffer method)": [[8, "id15", false], [8, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.f", false]], "f() (pycellga.problems.single_objective.continuous.schaffer2.schaffer2 method)": [[8, "id16", false], [8, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.f", false]], "f() (pycellga.problems.single_objective.continuous.schwefel.schwefel method)": [[8, "id17", false], [8, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.f", false]], "f() (pycellga.problems.single_objective.continuous.sphere.sphere method)": [[8, "id18", false], [8, "pycellga.problems.single_objective.continuous.sphere.Sphere.f", false]], "f() (pycellga.problems.single_objective.continuous.styblinskitang.styblinskitang method)": [[8, "id19", false], [8, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.f", false]], "f() (pycellga.problems.single_objective.continuous.sumofdifferentpowers.sumofdifferentpowers method)": [[8, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.f", false]], "f() (pycellga.problems.single_objective.continuous.threehumps.threehumps method)": [[8, "id20", false], [8, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.f", false]], "f() (pycellga.problems.single_objective.continuous.zakharov.zakharov method)": [[8, "id21", false], [8, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.f", false]], "f() (pycellga.problems.single_objective.continuous.zettle.zettle method)": [[8, "id22", false], [8, "pycellga.problems.single_objective.continuous.zettle.Zettle.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.count_sat.countsat method)": [[10, "id0", false], [10, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.ecc.ecc method)": [[10, "id1", false], [10, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.fms.fms method)": [[10, "id2", false], [10, "pycellga.problems.single_objective.discrete.binary.fms.Fms.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.maxcut100.maxcut100 method)": [[10, "id3", false], [10, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.maxcut20_01.maxcut20_01 method)": [[10, "id4", false], [10, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.maxcut20_09.maxcut20_09 method)": [[10, "id5", false], [10, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.mmdp.mmdp method)": [[10, "id6", false], [10, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.one_max.onemax method)": [[10, "id7", false], [10, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.f", false]], "f() (pycellga.problems.single_objective.discrete.binary.peak.peak method)": [[10, "id8", false], [10, "pycellga.problems.single_objective.discrete.binary.peak.Peak.f", false]], "f() (pycellga.problems.single_objective.discrete.permutation.tsp.tsp method)": [[11, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.f", false]], "f() (pycellga.tests.test_arithmetic_crossover.mockproblem method)": [[14, "pycellga.tests.test_arithmetic_crossover.MockProblem.f", false]], "f() (pycellga.tests.test_blxalpha_crossover.mockproblem method)": [[14, "pycellga.tests.test_blxalpha_crossover.MockProblem.f", false]], "f() (pycellga.tests.test_byte_mutation.mockproblem method)": [[14, "pycellga.tests.test_byte_mutation.MockProblem.f", false]], "f() (pycellga.tests.test_byte_mutation_random.mockproblem method)": [[14, "pycellga.tests.test_byte_mutation_random.MockProblem.f", false]], "f() (pycellga.tests.test_byte_one_point_crossover.mockproblem method)": [[14, "pycellga.tests.test_byte_one_point_crossover.MockProblem.f", false]], "f() (pycellga.tests.test_byte_uniform_crossover.mockproblem method)": [[14, "pycellga.tests.test_byte_uniform_crossover.MockProblem.f", false]], "f() (pycellga.tests.test_flat_crossover.mockproblem method)": [[14, "pycellga.tests.test_flat_crossover.MockProblem.f", false]], "f() (pycellga.tests.test_float_uniform_mutation.mockproblem method)": [[14, "pycellga.tests.test_float_uniform_mutation.MockProblem.f", false]], "f() (pycellga.tests.test_linear_crossover.mockproblem method)": [[14, "pycellga.tests.test_linear_crossover.MockProblem.f", false]], "f() (pycellga.tests.test_optimizer_alpha_cga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.BinaryProblem.f", false]], "f() (pycellga.tests.test_optimizer_alpha_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.PermutationProblem.f", false]], "f() (pycellga.tests.test_optimizer_alpha_cga.realproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.RealProblem.f", false]], "f() (pycellga.tests.test_optimizer_ccga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_ccga.BinaryProblem.f", false]], "f() (pycellga.tests.test_optimizer_cga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_cga.BinaryProblem.f", false]], "f() (pycellga.tests.test_optimizer_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_cga.PermutationProblem.f", false]], "f() (pycellga.tests.test_optimizer_cga.realproblem method)": [[14, "pycellga.tests.test_optimizer_cga.RealProblem.f", false]], "f() (pycellga.tests.test_optimizer_mccga.realproblem method)": [[14, "pycellga.tests.test_optimizer_mccga.RealProblem.f", false]], "f() (pycellga.tests.test_optimizer_sync_cga.binaryproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.BinaryProblem.f", false]], "f() (pycellga.tests.test_optimizer_sync_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.PermutationProblem.f", false]], "f() (pycellga.tests.test_optimizer_sync_cga.realproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.RealProblem.f", false]], "f() (pycellga.tests.test_population.mockproblem method)": [[14, "id0", false], [14, "pycellga.tests.test_population.MockProblem.f", false]], "f() (pycellga.tests.test_pow_function.pow method)": [[14, "id1", false], [14, "pycellga.tests.test_pow_function.Pow.f", false]], "f() (pycellga.tests.test_unfair_average_crossover.mockproblem method)": [[14, "pycellga.tests.test_unfair_average_crossover.MockProblem.f", false]], "flatcrossover (class in pycellga.recombination.flat_crossover)": [[12, "pycellga.recombination.flat_crossover.FlatCrossover", false]], "float_to_bits() (in module pycellga.byte_operators)": [[2, "pycellga.byte_operators.float_to_bits", false]], "floats_to_bits() (in module pycellga.byte_operators)": [[2, "pycellga.byte_operators.floats_to_bits", false]], "floatuniformmutation (class in pycellga.mutation.float_uniform_mutation)": [[4, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation", false]], "fms (class in pycellga.problems.single_objective.continuous.fms)": [[8, "pycellga.problems.single_objective.continuous.fms.Fms", false]], "fms (class in pycellga.problems.single_objective.discrete.binary.fms)": [[10, "pycellga.problems.single_objective.discrete.binary.fms.Fms", false]], "fms_instance() (in module pycellga.tests.test_fms)": [[14, "pycellga.tests.test_fms.fms_instance", false]], "get_parents() (pycellga.selection.roulette_wheel_selection.roulettewheelselection method)": [[13, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection.get_parents", false]], "get_parents() (pycellga.selection.selection_operator.selectionoperator method)": [[13, "pycellga.selection.selection_operator.SelectionOperator.get_parents", false]], "get_parents() (pycellga.selection.tournament_selection.tournamentselection method)": [[13, "pycellga.selection.tournament_selection.TournamentSelection.get_parents", false]], "get_recombinations() (pycellga.recombination.arithmetic_crossover.arithmeticcrossover method)": [[12, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.blxalpha_crossover.blxalphacrossover method)": [[12, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.byte_one_point_crossover.byteonepointcrossover method)": [[12, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.byte_uniform_crossover.byteuniformcrossover method)": [[12, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.flat_crossover.flatcrossover method)": [[12, "pycellga.recombination.flat_crossover.FlatCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.linear_crossover.linearcrossover method)": [[12, "pycellga.recombination.linear_crossover.LinearCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.one_point_crossover.onepointcrossover method)": [[12, "pycellga.recombination.one_point_crossover.OnePointCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.pmx_crossover.pmxcrossover method)": [[12, "pycellga.recombination.pmx_crossover.PMXCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.recombination_operator.recombinationoperator method)": [[12, "pycellga.recombination.recombination_operator.RecombinationOperator.get_recombinations", false]], "get_recombinations() (pycellga.recombination.two_point_crossover.twopointcrossover method)": [[12, "pycellga.recombination.two_point_crossover.TwoPointCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.unfair_avarage_crossover.unfairavaragecrossover method)": [[12, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.get_recombinations", false]], "get_recombinations() (pycellga.recombination.uniform_crossover.uniformcrossover method)": [[12, "pycellga.recombination.uniform_crossover.UniformCrossover.get_recombinations", false]], "gographical_dist() (pycellga.problems.single_objective.discrete.permutation.tsp.tsp method)": [[11, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.gographical_dist", false]], "grid (class in pycellga.grid)": [[2, "pycellga.grid.Grid", false]], "griewank (class in pycellga.problems.single_objective.continuous.griewank)": [[8, "pycellga.problems.single_objective.continuous.griewank.Griewank", false]], "holzman (class in pycellga.problems.single_objective.continuous.holzman)": [[8, "pycellga.problems.single_objective.continuous.holzman.Holzman", false]], "insertionmutation (class in pycellga.mutation.insertion_mutation)": [[4, "pycellga.mutation.insertion_mutation.InsertionMutation", false]], "levy (class in pycellga.problems.single_objective.continuous.levy)": [[8, "pycellga.problems.single_objective.continuous.levy.Levy", false]], "linear5 (class in pycellga.neighborhoods.linear_5)": [[5, "pycellga.neighborhoods.linear_5.Linear5", false]], "linear9 (class in pycellga.neighborhoods.linear_9)": [[5, "pycellga.neighborhoods.linear_9.Linear9", false]], "linearcrossover (class in pycellga.recombination.linear_crossover)": [[12, "pycellga.recombination.linear_crossover.LinearCrossover", false]], "make_2d_grid() (pycellga.grid.grid method)": [[2, "pycellga.grid.Grid.make_2d_grid", false]], "matyas (class in pycellga.problems.single_objective.continuous.matyas)": [[8, "pycellga.problems.single_objective.continuous.matyas.Matyas", false]], "maxcut100 (class in pycellga.problems.single_objective.discrete.binary.maxcut100)": [[10, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100", false]], "maxcut20_01 (class in pycellga.problems.single_objective.discrete.binary.maxcut20_01)": [[10, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01", false]], "maxcut20_09 (class in pycellga.problems.single_objective.discrete.binary.maxcut20_09)": [[10, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09", false]], "maxcut_instance() (in module pycellga.tests.test_maxcut100)": [[14, "pycellga.tests.test_maxcut100.maxcut_instance", false]], "maxcut_instance() (in module pycellga.tests.test_maxcut20_01)": [[14, "pycellga.tests.test_maxcut20_01.maxcut_instance", false]], "maxcut_instance() (in module pycellga.tests.test_maxcut20_09)": [[14, "pycellga.tests.test_maxcut20_09.maxcut_instance", false]], "mmdp (class in pycellga.problems.single_objective.discrete.binary.mmdp)": [[10, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp", false]], "mmdp_instance() (in module pycellga.tests.test_mmdp)": [[14, "pycellga.tests.test_mmdp.mmdp_instance", false]], "mockproblem (class in pycellga.tests.test_arithmetic_crossover)": [[14, "pycellga.tests.test_arithmetic_crossover.MockProblem", false]], "mockproblem (class in pycellga.tests.test_blxalpha_crossover)": [[14, "pycellga.tests.test_blxalpha_crossover.MockProblem", false]], "mockproblem (class in pycellga.tests.test_byte_mutation)": [[14, "pycellga.tests.test_byte_mutation.MockProblem", false]], "mockproblem (class in pycellga.tests.test_byte_mutation_random)": [[14, "pycellga.tests.test_byte_mutation_random.MockProblem", false]], "mockproblem (class in pycellga.tests.test_byte_one_point_crossover)": [[14, "pycellga.tests.test_byte_one_point_crossover.MockProblem", false]], "mockproblem (class in pycellga.tests.test_byte_uniform_crossover)": [[14, "pycellga.tests.test_byte_uniform_crossover.MockProblem", false]], "mockproblem (class in pycellga.tests.test_flat_crossover)": [[14, "pycellga.tests.test_flat_crossover.MockProblem", false]], "mockproblem (class in pycellga.tests.test_float_uniform_mutation)": [[14, "pycellga.tests.test_float_uniform_mutation.MockProblem", false]], "mockproblem (class in pycellga.tests.test_linear_crossover)": [[14, "pycellga.tests.test_linear_crossover.MockProblem", false]], "mockproblem (class in pycellga.tests.test_population)": [[14, "pycellga.tests.test_population.MockProblem", false]], "mockproblem (class in pycellga.tests.test_unfair_average_crossover)": [[14, "pycellga.tests.test_unfair_average_crossover.MockProblem", false]], "module": [[2, "module-pycellga", false], [2, "module-pycellga.byte_operators", false], [2, "module-pycellga.grid", false], [3, "module-pycellga.example", false], [3, "module-pycellga.example.example_alpha_cga", false], [3, "module-pycellga.example.example_ccga", false], [3, "module-pycellga.example.example_cga", false], [3, "module-pycellga.example.example_mcccga", false], [3, "module-pycellga.example.example_sync_cga", false], [4, "module-pycellga.mutation", false], [4, "module-pycellga.mutation.bit_flip_mutation", false], [4, "module-pycellga.mutation.byte_mutation", false], [4, "module-pycellga.mutation.byte_mutation_random", false], [4, "module-pycellga.mutation.float_uniform_mutation", false], [4, "module-pycellga.mutation.insertion_mutation", false], [4, "module-pycellga.mutation.mutation_operator", false], [4, "module-pycellga.mutation.shuffle_mutation", false], [4, "module-pycellga.mutation.swap_mutation", false], [4, "module-pycellga.mutation.two_opt_mutation", false], [5, "module-pycellga.neighborhoods", false], [5, "module-pycellga.neighborhoods.compact_13", false], [5, "module-pycellga.neighborhoods.compact_21", false], [5, "module-pycellga.neighborhoods.compact_25", false], [5, "module-pycellga.neighborhoods.compact_9", false], [5, "module-pycellga.neighborhoods.linear_5", false], [5, "module-pycellga.neighborhoods.linear_9", false], [6, "module-pycellga.problems", false], [6, "module-pycellga.problems.abstract_problem", false], [7, "module-pycellga.problems.single_objective", false], [8, "module-pycellga.problems.single_objective.continuous", false], [8, "module-pycellga.problems.single_objective.continuous.ackley", false], [8, "module-pycellga.problems.single_objective.continuous.bentcigar", false], [8, "module-pycellga.problems.single_objective.continuous.bohachevsky", false], [8, "module-pycellga.problems.single_objective.continuous.chichinadze", false], [8, "module-pycellga.problems.single_objective.continuous.dropwave", false], [8, "module-pycellga.problems.single_objective.continuous.fms", false], [8, "module-pycellga.problems.single_objective.continuous.griewank", false], [8, "module-pycellga.problems.single_objective.continuous.holzman", false], [8, "module-pycellga.problems.single_objective.continuous.levy", false], [8, "module-pycellga.problems.single_objective.continuous.matyas", false], [8, "module-pycellga.problems.single_objective.continuous.pow", false], [8, "module-pycellga.problems.single_objective.continuous.powell", false], [8, "module-pycellga.problems.single_objective.continuous.rastrigin", false], [8, "module-pycellga.problems.single_objective.continuous.rosenbrock", false], [8, "module-pycellga.problems.single_objective.continuous.rothellipsoid", false], [8, "module-pycellga.problems.single_objective.continuous.schaffer", false], [8, "module-pycellga.problems.single_objective.continuous.schaffer2", false], [8, "module-pycellga.problems.single_objective.continuous.schwefel", false], [8, "module-pycellga.problems.single_objective.continuous.sphere", false], [8, "module-pycellga.problems.single_objective.continuous.styblinskitang", false], [8, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers", false], [8, "module-pycellga.problems.single_objective.continuous.threehumps", false], [8, "module-pycellga.problems.single_objective.continuous.zakharov", false], [8, "module-pycellga.problems.single_objective.continuous.zettle", false], [9, "module-pycellga.problems.single_objective.discrete", false], [10, "module-pycellga.problems.single_objective.discrete.binary", false], [10, "module-pycellga.problems.single_objective.discrete.binary.count_sat", false], [10, "module-pycellga.problems.single_objective.discrete.binary.ecc", false], [10, "module-pycellga.problems.single_objective.discrete.binary.fms", false], [10, "module-pycellga.problems.single_objective.discrete.binary.maxcut100", false], [10, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01", false], [10, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09", false], [10, "module-pycellga.problems.single_objective.discrete.binary.mmdp", false], [10, "module-pycellga.problems.single_objective.discrete.binary.one_max", false], [10, "module-pycellga.problems.single_objective.discrete.binary.peak", false], [11, "module-pycellga.problems.single_objective.discrete.permutation", false], [11, "module-pycellga.problems.single_objective.discrete.permutation.tsp", false], [12, "module-pycellga.recombination", false], [12, "module-pycellga.recombination.arithmetic_crossover", false], [12, "module-pycellga.recombination.blxalpha_crossover", false], [12, "module-pycellga.recombination.byte_one_point_crossover", false], [12, "module-pycellga.recombination.byte_uniform_crossover", false], [12, "module-pycellga.recombination.flat_crossover", false], [12, "module-pycellga.recombination.linear_crossover", false], [12, "module-pycellga.recombination.one_point_crossover", false], [12, "module-pycellga.recombination.pmx_crossover", false], [12, "module-pycellga.recombination.recombination_operator", false], [12, "module-pycellga.recombination.two_point_crossover", false], [12, "module-pycellga.recombination.unfair_avarage_crossover", false], [12, "module-pycellga.recombination.uniform_crossover", false], [13, "module-pycellga.selection", false], [13, "module-pycellga.selection.roulette_wheel_selection", false], [13, "module-pycellga.selection.selection_operator", false], [13, "module-pycellga.selection.tournament_selection", false], [14, "module-pycellga.tests", false], [14, "module-pycellga.tests.conftest", false], [14, "module-pycellga.tests.test_ackley", false], [14, "module-pycellga.tests.test_arithmetic_crossover", false], [14, "module-pycellga.tests.test_bentcigar_function", false], [14, "module-pycellga.tests.test_bit_flip_mutation", false], [14, "module-pycellga.tests.test_blxalpha_crossover", false], [14, "module-pycellga.tests.test_bohachevsky", false], [14, "module-pycellga.tests.test_byte_mutation", false], [14, "module-pycellga.tests.test_byte_mutation_random", false], [14, "module-pycellga.tests.test_byte_one_point_crossover", false], [14, "module-pycellga.tests.test_byte_operators", false], [14, "module-pycellga.tests.test_byte_uniform_crossover", false], [14, "module-pycellga.tests.test_chichinadze_function", false], [14, "module-pycellga.tests.test_compact_13", false], [14, "module-pycellga.tests.test_compact_21", false], [14, "module-pycellga.tests.test_compact_25", false], [14, "module-pycellga.tests.test_compact_9", false], [14, "module-pycellga.tests.test_count_sat", false], [14, "module-pycellga.tests.test_dropwave_function", false], [14, "module-pycellga.tests.test_ecc", false], [14, "module-pycellga.tests.test_flat_crossover", false], [14, "module-pycellga.tests.test_float_uniform_mutation", false], [14, "module-pycellga.tests.test_fms", false], [14, "module-pycellga.tests.test_grid", false], [14, "module-pycellga.tests.test_griewank_function", false], [14, "module-pycellga.tests.test_holzman_function", false], [14, "module-pycellga.tests.test_individual", false], [14, "module-pycellga.tests.test_insertion_mutation", false], [14, "module-pycellga.tests.test_levy_function", false], [14, "module-pycellga.tests.test_linear_5", false], [14, "module-pycellga.tests.test_linear_9", false], [14, "module-pycellga.tests.test_linear_crossover", false], [14, "module-pycellga.tests.test_matyas_function", false], [14, "module-pycellga.tests.test_maxcut100", false], [14, "module-pycellga.tests.test_maxcut20_01", false], [14, "module-pycellga.tests.test_maxcut20_09", false], [14, "module-pycellga.tests.test_mmdp", false], [14, "module-pycellga.tests.test_one_max", false], [14, "module-pycellga.tests.test_one_point_crossover", false], [14, "module-pycellga.tests.test_optimizer_alpha_cga", false], [14, "module-pycellga.tests.test_optimizer_ccga", false], [14, "module-pycellga.tests.test_optimizer_cga", false], [14, "module-pycellga.tests.test_optimizer_mccga", false], [14, "module-pycellga.tests.test_optimizer_sync_cga", false], [14, "module-pycellga.tests.test_peak", false], [14, "module-pycellga.tests.test_pmx_crossover", false], [14, "module-pycellga.tests.test_population", false], [14, "module-pycellga.tests.test_pow_function", false], [14, "module-pycellga.tests.test_powell_function", false], [14, "module-pycellga.tests.test_rastrigin", false], [14, "module-pycellga.tests.test_rosenbrock", false], [14, "module-pycellga.tests.test_rothellipsoid_function", false], [14, "module-pycellga.tests.test_roulette_wheel_selection", false], [14, "module-pycellga.tests.test_schaffer2_function", false], [14, "module-pycellga.tests.test_schaffer_function", false], [14, "module-pycellga.tests.test_schwefel", false], [14, "module-pycellga.tests.test_shuffle_mutation", false], [14, "module-pycellga.tests.test_sphere", false], [14, "module-pycellga.tests.test_styblinskitang_function", false], [14, "module-pycellga.tests.test_sumofdifferentpowers_function", false], [14, "module-pycellga.tests.test_swap_mutation", false], [14, "module-pycellga.tests.test_threehumps_function", false], [14, "module-pycellga.tests.test_tournament_selection", false], [14, "module-pycellga.tests.test_tsp", false], [14, "module-pycellga.tests.test_two_opt_mutation", false], [14, "module-pycellga.tests.test_two_point_crossover", false], [14, "module-pycellga.tests.test_unfair_average_crossover", false], [14, "module-pycellga.tests.test_uniform_crossover", false], [14, "module-pycellga.tests.test_zakharov_function", false], [14, "module-pycellga.tests.test_zettle_function", false]], "mutate() (pycellga.mutation.bit_flip_mutation.bitflipmutation method)": [[4, "pycellga.mutation.bit_flip_mutation.BitFlipMutation.mutate", false]], "mutate() (pycellga.mutation.byte_mutation.bytemutation method)": [[4, "pycellga.mutation.byte_mutation.ByteMutation.mutate", false]], "mutate() (pycellga.mutation.byte_mutation_random.bytemutationrandom method)": [[4, "pycellga.mutation.byte_mutation_random.ByteMutationRandom.mutate", false]], "mutate() (pycellga.mutation.float_uniform_mutation.floatuniformmutation method)": [[4, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation.mutate", false]], "mutate() (pycellga.mutation.insertion_mutation.insertionmutation method)": [[4, "pycellga.mutation.insertion_mutation.InsertionMutation.mutate", false]], "mutate() (pycellga.mutation.mutation_operator.mutationoperator method)": [[4, "pycellga.mutation.mutation_operator.MutationOperator.mutate", false]], "mutate() (pycellga.mutation.shuffle_mutation.shufflemutation method)": [[4, "pycellga.mutation.shuffle_mutation.ShuffleMutation.mutate", false]], "mutate() (pycellga.mutation.swap_mutation.swapmutation method)": [[4, "pycellga.mutation.swap_mutation.SwapMutation.mutate", false]], "mutate() (pycellga.mutation.two_opt_mutation.twooptmutation method)": [[4, "pycellga.mutation.two_opt_mutation.TwoOptMutation.mutate", false]], "mutationoperator (class in pycellga.mutation.mutation_operator)": [[4, "pycellga.mutation.mutation_operator.MutationOperator", false]], "n_cols (pycellga.grid.grid attribute)": [[2, "pycellga.grid.Grid.n_cols", false]], "n_rows (pycellga.grid.grid attribute)": [[2, "pycellga.grid.Grid.n_rows", false]], "none (pycellga.problems.single_objective.continuous.ackley.ackley attribute)": [[8, "pycellga.problems.single_objective.continuous.ackley.Ackley.None", false]], "none (pycellga.problems.single_objective.continuous.bentcigar.bentcigar attribute)": [[8, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.None", false]], "none (pycellga.problems.single_objective.continuous.bohachevsky.bohachevsky attribute)": [[8, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.None", false]], "none (pycellga.problems.single_objective.continuous.chichinadze.chichinadze attribute)": [[8, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.None", false]], "none (pycellga.problems.single_objective.continuous.fms.fms attribute)": [[8, "pycellga.problems.single_objective.continuous.fms.Fms.None", false]], "none (pycellga.problems.single_objective.continuous.holzman.holzman attribute)": [[8, "pycellga.problems.single_objective.continuous.holzman.Holzman.None", false]], "none (pycellga.problems.single_objective.continuous.levy.levy attribute)": [[8, "pycellga.problems.single_objective.continuous.levy.Levy.None", false]], "none (pycellga.problems.single_objective.continuous.matyas.matyas attribute)": [[8, "pycellga.problems.single_objective.continuous.matyas.Matyas.None", false]], "none (pycellga.problems.single_objective.continuous.pow.pow attribute)": [[8, "pycellga.problems.single_objective.continuous.pow.Pow.None", false]], "none (pycellga.problems.single_objective.continuous.powell.powell attribute)": [[8, "pycellga.problems.single_objective.continuous.powell.Powell.None", false]], "none (pycellga.problems.single_objective.continuous.rastrigin.rastrigin attribute)": [[8, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.None", false]], "none (pycellga.problems.single_objective.continuous.rosenbrock.rosenbrock attribute)": [[8, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.None", false]], "none (pycellga.problems.single_objective.continuous.rothellipsoid.rothellipsoid attribute)": [[8, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.None", false]], "none (pycellga.problems.single_objective.continuous.schaffer2.schaffer2 attribute)": [[8, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.None", false]], "none (pycellga.problems.single_objective.continuous.schwefel.schwefel attribute)": [[8, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.None", false]], "none (pycellga.problems.single_objective.continuous.sphere.sphere attribute)": [[8, "pycellga.problems.single_objective.continuous.sphere.Sphere.None", false]], "none (pycellga.problems.single_objective.continuous.styblinskitang.styblinskitang attribute)": [[8, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.None", false]], "none (pycellga.problems.single_objective.continuous.threehumps.threehumps attribute)": [[8, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.None", false]], "none (pycellga.problems.single_objective.continuous.zakharov.zakharov attribute)": [[8, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.None", false]], "none (pycellga.problems.single_objective.continuous.zettle.zettle attribute)": [[8, "pycellga.problems.single_objective.continuous.zettle.Zettle.None", false]], "none (pycellga.problems.single_objective.discrete.binary.count_sat.countsat attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.None", false]], "none (pycellga.problems.single_objective.discrete.binary.ecc.ecc attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.None", false]], "none (pycellga.problems.single_objective.discrete.binary.fms.fms attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.fms.Fms.None", false]], "none (pycellga.problems.single_objective.discrete.binary.maxcut100.maxcut100 attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.None", false]], "none (pycellga.problems.single_objective.discrete.binary.maxcut20_01.maxcut20_01 attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.None", false]], "none (pycellga.problems.single_objective.discrete.binary.maxcut20_09.maxcut20_09 attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.None", false]], "none (pycellga.problems.single_objective.discrete.binary.mmdp.mmdp attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.None", false]], "none (pycellga.problems.single_objective.discrete.binary.one_max.onemax attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.None", false]], "none (pycellga.problems.single_objective.discrete.binary.peak.peak attribute)": [[10, "pycellga.problems.single_objective.discrete.binary.peak.Peak.None", false]], "none (pycellga.tests.test_pow_function.pow attribute)": [[14, "pycellga.tests.test_pow_function.Pow.None", false]], "onemax (class in pycellga.problems.single_objective.discrete.binary.one_max)": [[10, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax", false]], "onepointcrossover (class in pycellga.recombination.one_point_crossover)": [[12, "pycellga.recombination.one_point_crossover.OnePointCrossover", false]], "peak (class in pycellga.problems.single_objective.discrete.binary.peak)": [[10, "pycellga.problems.single_objective.discrete.binary.peak.Peak", false]], "peak_instance() (in module pycellga.tests.test_peak)": [[14, "pycellga.tests.test_peak.peak_instance", false]], "permutationproblem (class in pycellga.tests.test_optimizer_alpha_cga)": [[14, "pycellga.tests.test_optimizer_alpha_cga.PermutationProblem", false]], "permutationproblem (class in pycellga.tests.test_optimizer_cga)": [[14, "pycellga.tests.test_optimizer_cga.PermutationProblem", false]], "permutationproblem (class in pycellga.tests.test_optimizer_sync_cga)": [[14, "pycellga.tests.test_optimizer_sync_cga.PermutationProblem", false]], "pmxcrossover (class in pycellga.recombination.pmx_crossover)": [[12, "pycellga.recombination.pmx_crossover.PMXCrossover", false]], "pow (class in pycellga.problems.single_objective.continuous.pow)": [[8, "pycellga.problems.single_objective.continuous.pow.Pow", false]], "pow (class in pycellga.tests.test_pow_function)": [[14, "pycellga.tests.test_pow_function.Pow", false]], "powell (class in pycellga.problems.single_objective.continuous.powell)": [[8, "pycellga.problems.single_objective.continuous.powell.Powell", false]], "pycellga": [[2, "module-pycellga", false]], "pycellga.byte_operators": [[2, "module-pycellga.byte_operators", false]], "pycellga.example": [[3, "module-pycellga.example", false]], "pycellga.example.example_alpha_cga": [[3, "module-pycellga.example.example_alpha_cga", false]], "pycellga.example.example_ccga": [[3, "module-pycellga.example.example_ccga", false]], "pycellga.example.example_cga": [[3, "module-pycellga.example.example_cga", false]], "pycellga.example.example_mcccga": [[3, "module-pycellga.example.example_mcccga", false]], "pycellga.example.example_sync_cga": [[3, "module-pycellga.example.example_sync_cga", false]], "pycellga.grid": [[2, "module-pycellga.grid", false]], "pycellga.mutation": [[4, "module-pycellga.mutation", false]], "pycellga.mutation.bit_flip_mutation": [[4, "module-pycellga.mutation.bit_flip_mutation", false]], "pycellga.mutation.byte_mutation": [[4, "module-pycellga.mutation.byte_mutation", false]], "pycellga.mutation.byte_mutation_random": [[4, "module-pycellga.mutation.byte_mutation_random", false]], "pycellga.mutation.float_uniform_mutation": [[4, "module-pycellga.mutation.float_uniform_mutation", false]], "pycellga.mutation.insertion_mutation": [[4, "module-pycellga.mutation.insertion_mutation", false]], "pycellga.mutation.mutation_operator": [[4, "module-pycellga.mutation.mutation_operator", false]], "pycellga.mutation.shuffle_mutation": [[4, "module-pycellga.mutation.shuffle_mutation", false]], "pycellga.mutation.swap_mutation": [[4, "module-pycellga.mutation.swap_mutation", false]], "pycellga.mutation.two_opt_mutation": [[4, "module-pycellga.mutation.two_opt_mutation", false]], "pycellga.neighborhoods": [[5, "module-pycellga.neighborhoods", false]], "pycellga.neighborhoods.compact_13": [[5, "module-pycellga.neighborhoods.compact_13", false]], "pycellga.neighborhoods.compact_21": [[5, "module-pycellga.neighborhoods.compact_21", false]], "pycellga.neighborhoods.compact_25": [[5, "module-pycellga.neighborhoods.compact_25", false]], "pycellga.neighborhoods.compact_9": [[5, "module-pycellga.neighborhoods.compact_9", false]], "pycellga.neighborhoods.linear_5": [[5, "module-pycellga.neighborhoods.linear_5", false]], "pycellga.neighborhoods.linear_9": [[5, "module-pycellga.neighborhoods.linear_9", false]], "pycellga.problems": [[6, "module-pycellga.problems", false]], "pycellga.problems.abstract_problem": [[6, "module-pycellga.problems.abstract_problem", false]], "pycellga.problems.single_objective": [[7, "module-pycellga.problems.single_objective", false]], "pycellga.problems.single_objective.continuous": [[8, "module-pycellga.problems.single_objective.continuous", false]], "pycellga.problems.single_objective.continuous.ackley": [[8, "module-pycellga.problems.single_objective.continuous.ackley", false]], "pycellga.problems.single_objective.continuous.bentcigar": [[8, "module-pycellga.problems.single_objective.continuous.bentcigar", false]], "pycellga.problems.single_objective.continuous.bohachevsky": [[8, "module-pycellga.problems.single_objective.continuous.bohachevsky", false]], "pycellga.problems.single_objective.continuous.chichinadze": [[8, "module-pycellga.problems.single_objective.continuous.chichinadze", false]], "pycellga.problems.single_objective.continuous.dropwave": [[8, "module-pycellga.problems.single_objective.continuous.dropwave", false]], "pycellga.problems.single_objective.continuous.fms": [[8, "module-pycellga.problems.single_objective.continuous.fms", false]], "pycellga.problems.single_objective.continuous.griewank": [[8, "module-pycellga.problems.single_objective.continuous.griewank", false]], "pycellga.problems.single_objective.continuous.holzman": [[8, "module-pycellga.problems.single_objective.continuous.holzman", false]], "pycellga.problems.single_objective.continuous.levy": [[8, "module-pycellga.problems.single_objective.continuous.levy", false]], "pycellga.problems.single_objective.continuous.matyas": [[8, "module-pycellga.problems.single_objective.continuous.matyas", false]], "pycellga.problems.single_objective.continuous.pow": [[8, "module-pycellga.problems.single_objective.continuous.pow", false]], "pycellga.problems.single_objective.continuous.powell": [[8, "module-pycellga.problems.single_objective.continuous.powell", false]], "pycellga.problems.single_objective.continuous.rastrigin": [[8, "module-pycellga.problems.single_objective.continuous.rastrigin", false]], "pycellga.problems.single_objective.continuous.rosenbrock": [[8, "module-pycellga.problems.single_objective.continuous.rosenbrock", false]], "pycellga.problems.single_objective.continuous.rothellipsoid": [[8, "module-pycellga.problems.single_objective.continuous.rothellipsoid", false]], "pycellga.problems.single_objective.continuous.schaffer": [[8, "module-pycellga.problems.single_objective.continuous.schaffer", false]], "pycellga.problems.single_objective.continuous.schaffer2": [[8, "module-pycellga.problems.single_objective.continuous.schaffer2", false]], "pycellga.problems.single_objective.continuous.schwefel": [[8, "module-pycellga.problems.single_objective.continuous.schwefel", false]], "pycellga.problems.single_objective.continuous.sphere": [[8, "module-pycellga.problems.single_objective.continuous.sphere", false]], "pycellga.problems.single_objective.continuous.styblinskitang": [[8, "module-pycellga.problems.single_objective.continuous.styblinskitang", false]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers": [[8, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers", false]], "pycellga.problems.single_objective.continuous.threehumps": [[8, "module-pycellga.problems.single_objective.continuous.threehumps", false]], "pycellga.problems.single_objective.continuous.zakharov": [[8, "module-pycellga.problems.single_objective.continuous.zakharov", false]], "pycellga.problems.single_objective.continuous.zettle": [[8, "module-pycellga.problems.single_objective.continuous.zettle", false]], "pycellga.problems.single_objective.discrete": [[9, "module-pycellga.problems.single_objective.discrete", false]], "pycellga.problems.single_objective.discrete.binary": [[10, "module-pycellga.problems.single_objective.discrete.binary", false]], "pycellga.problems.single_objective.discrete.binary.count_sat": [[10, "module-pycellga.problems.single_objective.discrete.binary.count_sat", false]], "pycellga.problems.single_objective.discrete.binary.ecc": [[10, "module-pycellga.problems.single_objective.discrete.binary.ecc", false]], "pycellga.problems.single_objective.discrete.binary.fms": [[10, "module-pycellga.problems.single_objective.discrete.binary.fms", false]], "pycellga.problems.single_objective.discrete.binary.maxcut100": [[10, "module-pycellga.problems.single_objective.discrete.binary.maxcut100", false]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01": [[10, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01", false]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09": [[10, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09", false]], "pycellga.problems.single_objective.discrete.binary.mmdp": [[10, "module-pycellga.problems.single_objective.discrete.binary.mmdp", false]], "pycellga.problems.single_objective.discrete.binary.one_max": [[10, "module-pycellga.problems.single_objective.discrete.binary.one_max", false]], "pycellga.problems.single_objective.discrete.binary.peak": [[10, "module-pycellga.problems.single_objective.discrete.binary.peak", false]], "pycellga.problems.single_objective.discrete.permutation": [[11, "module-pycellga.problems.single_objective.discrete.permutation", false]], "pycellga.problems.single_objective.discrete.permutation.tsp": [[11, "module-pycellga.problems.single_objective.discrete.permutation.tsp", false]], "pycellga.recombination": [[12, "module-pycellga.recombination", false]], "pycellga.recombination.arithmetic_crossover": [[12, "module-pycellga.recombination.arithmetic_crossover", false]], "pycellga.recombination.blxalpha_crossover": [[12, "module-pycellga.recombination.blxalpha_crossover", false]], "pycellga.recombination.byte_one_point_crossover": [[12, "module-pycellga.recombination.byte_one_point_crossover", false]], "pycellga.recombination.byte_uniform_crossover": [[12, "module-pycellga.recombination.byte_uniform_crossover", false]], "pycellga.recombination.flat_crossover": [[12, "module-pycellga.recombination.flat_crossover", false]], "pycellga.recombination.linear_crossover": [[12, "module-pycellga.recombination.linear_crossover", false]], "pycellga.recombination.one_point_crossover": [[12, "module-pycellga.recombination.one_point_crossover", false]], "pycellga.recombination.pmx_crossover": [[12, "module-pycellga.recombination.pmx_crossover", false]], "pycellga.recombination.recombination_operator": [[12, "module-pycellga.recombination.recombination_operator", false]], "pycellga.recombination.two_point_crossover": [[12, "module-pycellga.recombination.two_point_crossover", false]], "pycellga.recombination.unfair_avarage_crossover": [[12, "module-pycellga.recombination.unfair_avarage_crossover", false]], "pycellga.recombination.uniform_crossover": [[12, "module-pycellga.recombination.uniform_crossover", false]], "pycellga.selection": [[13, "module-pycellga.selection", false]], "pycellga.selection.roulette_wheel_selection": [[13, "module-pycellga.selection.roulette_wheel_selection", false]], "pycellga.selection.selection_operator": [[13, "module-pycellga.selection.selection_operator", false]], "pycellga.selection.tournament_selection": [[13, "module-pycellga.selection.tournament_selection", false]], "pycellga.tests": [[14, "module-pycellga.tests", false]], "pycellga.tests.conftest": [[14, "module-pycellga.tests.conftest", false]], "pycellga.tests.test_ackley": [[14, "module-pycellga.tests.test_ackley", false]], "pycellga.tests.test_arithmetic_crossover": [[14, "module-pycellga.tests.test_arithmetic_crossover", false]], "pycellga.tests.test_bentcigar_function": [[14, "module-pycellga.tests.test_bentcigar_function", false]], "pycellga.tests.test_bit_flip_mutation": [[14, "module-pycellga.tests.test_bit_flip_mutation", false]], "pycellga.tests.test_blxalpha_crossover": [[14, "module-pycellga.tests.test_blxalpha_crossover", false]], "pycellga.tests.test_bohachevsky": [[14, "module-pycellga.tests.test_bohachevsky", false]], "pycellga.tests.test_byte_mutation": [[14, "module-pycellga.tests.test_byte_mutation", false]], "pycellga.tests.test_byte_mutation_random": [[14, "module-pycellga.tests.test_byte_mutation_random", false]], "pycellga.tests.test_byte_one_point_crossover": [[14, "module-pycellga.tests.test_byte_one_point_crossover", false]], "pycellga.tests.test_byte_operators": [[14, "module-pycellga.tests.test_byte_operators", false]], "pycellga.tests.test_byte_uniform_crossover": [[14, "module-pycellga.tests.test_byte_uniform_crossover", false]], "pycellga.tests.test_chichinadze_function": [[14, "module-pycellga.tests.test_chichinadze_function", false]], "pycellga.tests.test_compact_13": [[14, "module-pycellga.tests.test_compact_13", false]], "pycellga.tests.test_compact_21": [[14, "module-pycellga.tests.test_compact_21", false]], "pycellga.tests.test_compact_25": [[14, "module-pycellga.tests.test_compact_25", false]], "pycellga.tests.test_compact_9": [[14, "module-pycellga.tests.test_compact_9", false]], "pycellga.tests.test_count_sat": [[14, "module-pycellga.tests.test_count_sat", false]], "pycellga.tests.test_dropwave_function": [[14, "module-pycellga.tests.test_dropwave_function", false]], "pycellga.tests.test_ecc": [[14, "module-pycellga.tests.test_ecc", false]], "pycellga.tests.test_flat_crossover": [[14, "module-pycellga.tests.test_flat_crossover", false]], "pycellga.tests.test_float_uniform_mutation": [[14, "module-pycellga.tests.test_float_uniform_mutation", false]], "pycellga.tests.test_fms": [[14, "module-pycellga.tests.test_fms", false]], "pycellga.tests.test_grid": [[14, "module-pycellga.tests.test_grid", false]], "pycellga.tests.test_griewank_function": [[14, "module-pycellga.tests.test_griewank_function", false]], "pycellga.tests.test_holzman_function": [[14, "module-pycellga.tests.test_holzman_function", false]], "pycellga.tests.test_individual": [[14, "module-pycellga.tests.test_individual", false]], "pycellga.tests.test_insertion_mutation": [[14, "module-pycellga.tests.test_insertion_mutation", false]], "pycellga.tests.test_levy_function": [[14, "module-pycellga.tests.test_levy_function", false]], "pycellga.tests.test_linear_5": [[14, "module-pycellga.tests.test_linear_5", false]], "pycellga.tests.test_linear_9": [[14, "module-pycellga.tests.test_linear_9", false]], "pycellga.tests.test_linear_crossover": [[14, "module-pycellga.tests.test_linear_crossover", false]], "pycellga.tests.test_matyas_function": [[14, "module-pycellga.tests.test_matyas_function", false]], "pycellga.tests.test_maxcut100": [[14, "module-pycellga.tests.test_maxcut100", false]], "pycellga.tests.test_maxcut20_01": [[14, "module-pycellga.tests.test_maxcut20_01", false]], "pycellga.tests.test_maxcut20_09": [[14, "module-pycellga.tests.test_maxcut20_09", false]], "pycellga.tests.test_mmdp": [[14, "module-pycellga.tests.test_mmdp", false]], "pycellga.tests.test_one_max": [[14, "module-pycellga.tests.test_one_max", false]], "pycellga.tests.test_one_point_crossover": [[14, "module-pycellga.tests.test_one_point_crossover", false]], "pycellga.tests.test_optimizer_alpha_cga": [[14, "module-pycellga.tests.test_optimizer_alpha_cga", false]], "pycellga.tests.test_optimizer_ccga": [[14, "module-pycellga.tests.test_optimizer_ccga", false]], "pycellga.tests.test_optimizer_cga": [[14, "module-pycellga.tests.test_optimizer_cga", false]], "pycellga.tests.test_optimizer_mccga": [[14, "module-pycellga.tests.test_optimizer_mccga", false]], "pycellga.tests.test_optimizer_sync_cga": [[14, "module-pycellga.tests.test_optimizer_sync_cga", false]], "pycellga.tests.test_peak": [[14, "module-pycellga.tests.test_peak", false]], "pycellga.tests.test_pmx_crossover": [[14, "module-pycellga.tests.test_pmx_crossover", false]], "pycellga.tests.test_population": [[14, "module-pycellga.tests.test_population", false]], "pycellga.tests.test_pow_function": [[14, "module-pycellga.tests.test_pow_function", false]], "pycellga.tests.test_powell_function": [[14, "module-pycellga.tests.test_powell_function", false]], "pycellga.tests.test_rastrigin": [[14, "module-pycellga.tests.test_rastrigin", false]], "pycellga.tests.test_rosenbrock": [[14, "module-pycellga.tests.test_rosenbrock", false]], "pycellga.tests.test_rothellipsoid_function": [[14, "module-pycellga.tests.test_rothellipsoid_function", false]], "pycellga.tests.test_roulette_wheel_selection": [[14, "module-pycellga.tests.test_roulette_wheel_selection", false]], "pycellga.tests.test_schaffer2_function": [[14, "module-pycellga.tests.test_schaffer2_function", false]], "pycellga.tests.test_schaffer_function": [[14, "module-pycellga.tests.test_schaffer_function", false]], "pycellga.tests.test_schwefel": [[14, "module-pycellga.tests.test_schwefel", false]], "pycellga.tests.test_shuffle_mutation": [[14, "module-pycellga.tests.test_shuffle_mutation", false]], "pycellga.tests.test_sphere": [[14, "module-pycellga.tests.test_sphere", false]], "pycellga.tests.test_styblinskitang_function": [[14, "module-pycellga.tests.test_styblinskitang_function", false]], "pycellga.tests.test_sumofdifferentpowers_function": [[14, "module-pycellga.tests.test_sumofdifferentpowers_function", false]], "pycellga.tests.test_swap_mutation": [[14, "module-pycellga.tests.test_swap_mutation", false]], "pycellga.tests.test_threehumps_function": [[14, "module-pycellga.tests.test_threehumps_function", false]], "pycellga.tests.test_tournament_selection": [[14, "module-pycellga.tests.test_tournament_selection", false]], "pycellga.tests.test_tsp": [[14, "module-pycellga.tests.test_tsp", false]], "pycellga.tests.test_two_opt_mutation": [[14, "module-pycellga.tests.test_two_opt_mutation", false]], "pycellga.tests.test_two_point_crossover": [[14, "module-pycellga.tests.test_two_point_crossover", false]], "pycellga.tests.test_unfair_average_crossover": [[14, "module-pycellga.tests.test_unfair_average_crossover", false]], "pycellga.tests.test_uniform_crossover": [[14, "module-pycellga.tests.test_uniform_crossover", false]], "pycellga.tests.test_zakharov_function": [[14, "module-pycellga.tests.test_zakharov_function", false]], "pycellga.tests.test_zettle_function": [[14, "module-pycellga.tests.test_zettle_function", false]], "rastrigin (class in pycellga.problems.single_objective.continuous.rastrigin)": [[8, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin", false]], "realproblem (class in pycellga.example.example_mcccga)": [[3, "pycellga.example.example_mcccga.RealProblem", false]], "realproblem (class in pycellga.tests.test_optimizer_alpha_cga)": [[14, "pycellga.tests.test_optimizer_alpha_cga.RealProblem", false]], "realproblem (class in pycellga.tests.test_optimizer_cga)": [[14, "pycellga.tests.test_optimizer_cga.RealProblem", false]], "realproblem (class in pycellga.tests.test_optimizer_mccga)": [[14, "pycellga.tests.test_optimizer_mccga.RealProblem", false]], "realproblem (class in pycellga.tests.test_optimizer_sync_cga)": [[14, "pycellga.tests.test_optimizer_sync_cga.RealProblem", false]], "recombinationoperator (class in pycellga.recombination.recombination_operator)": [[12, "pycellga.recombination.recombination_operator.RecombinationOperator", false]], "rosenbrock (class in pycellga.problems.single_objective.continuous.rosenbrock)": [[8, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock", false]], "rothellipsoid (class in pycellga.problems.single_objective.continuous.rothellipsoid)": [[8, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid", false]], "roulettewheelselection (class in pycellga.selection.roulette_wheel_selection)": [[13, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection", false]], "run_alpha_cga_example() (in module pycellga.example.example_alpha_cga)": [[3, "pycellga.example.example_alpha_cga.run_alpha_cga_example", false]], "run_ccga_example() (in module pycellga.example.example_ccga)": [[3, "pycellga.example.example_ccga.run_ccga_example", false]], "run_cga_example() (in module pycellga.example.example_cga)": [[3, "pycellga.example.example_cga.run_cga_example", false]], "run_mcccga_example() (in module pycellga.example.example_mcccga)": [[3, "pycellga.example.example_mcccga.run_mcccga_example", false]], "run_sync_cga_example() (in module pycellga.example.example_sync_cga)": [[3, "pycellga.example.example_sync_cga.run_sync_cga_example", false]], "schaffer (class in pycellga.problems.single_objective.continuous.schaffer)": [[8, "pycellga.problems.single_objective.continuous.schaffer.Schaffer", false]], "schaffer2 (class in pycellga.problems.single_objective.continuous.schaffer2)": [[8, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2", false]], "schwefel (class in pycellga.problems.single_objective.continuous.schwefel)": [[8, "pycellga.problems.single_objective.continuous.schwefel.Schwefel", false]], "selectionoperator (class in pycellga.selection.selection_operator)": [[13, "pycellga.selection.selection_operator.SelectionOperator", false]], "setup_bentcigar() (in module pycellga.tests.test_bentcigar_function)": [[14, "pycellga.tests.test_bentcigar_function.setup_bentcigar", false]], "setup_chichinadze() (in module pycellga.tests.test_chichinadze_function)": [[14, "pycellga.tests.test_chichinadze_function.setup_chichinadze", false]], "setup_dropwave() (in module pycellga.tests.test_dropwave_function)": [[14, "pycellga.tests.test_dropwave_function.setup_dropwave", false]], "setup_griewank() (in module pycellga.tests.test_griewank_function)": [[14, "pycellga.tests.test_griewank_function.setup_griewank", false]], "setup_holzman() (in module pycellga.tests.test_holzman_function)": [[14, "pycellga.tests.test_holzman_function.setup_holzman", false]], "setup_individual() (in module pycellga.tests.test_byte_mutation)": [[14, "pycellga.tests.test_byte_mutation.setup_individual", false]], "setup_individual() (in module pycellga.tests.test_byte_mutation_random)": [[14, "pycellga.tests.test_byte_mutation_random.setup_individual", false]], "setup_individual() (in module pycellga.tests.test_float_uniform_mutation)": [[14, "pycellga.tests.test_float_uniform_mutation.setup_individual", false]], "setup_individual() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.setup_individual", false]], "setup_levy() (in module pycellga.tests.test_levy_function)": [[14, "pycellga.tests.test_levy_function.setup_levy", false]], "setup_matyas() (in module pycellga.tests.test_matyas_function)": [[14, "pycellga.tests.test_matyas_function.setup_matyas", false]], "setup_parents() (in module pycellga.tests.test_arithmetic_crossover)": [[14, "pycellga.tests.test_arithmetic_crossover.setup_parents", false]], "setup_parents() (in module pycellga.tests.test_blxalpha_crossover)": [[14, "pycellga.tests.test_blxalpha_crossover.setup_parents", false]], "setup_parents() (in module pycellga.tests.test_byte_one_point_crossover)": [[14, "pycellga.tests.test_byte_one_point_crossover.setup_parents", false]], "setup_parents() (in module pycellga.tests.test_byte_uniform_crossover)": [[14, "pycellga.tests.test_byte_uniform_crossover.setup_parents", false]], "setup_parents() (in module pycellga.tests.test_flat_crossover)": [[14, "pycellga.tests.test_flat_crossover.setup_parents", false]], "setup_parents() (in module pycellga.tests.test_linear_crossover)": [[14, "pycellga.tests.test_linear_crossover.setup_parents", false]], "setup_parents() (in module pycellga.tests.test_unfair_average_crossover)": [[14, "pycellga.tests.test_unfair_average_crossover.setup_parents", false]], "setup_population() (in module pycellga.tests.test_population)": [[14, "pycellga.tests.test_population.setup_population", false]], "setup_powell() (in module pycellga.tests.test_powell_function)": [[14, "pycellga.tests.test_powell_function.setup_powell", false]], "setup_problem() (in module pycellga.tests.test_arithmetic_crossover)": [[14, "pycellga.tests.test_arithmetic_crossover.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_blxalpha_crossover)": [[14, "pycellga.tests.test_blxalpha_crossover.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_byte_mutation)": [[14, "pycellga.tests.test_byte_mutation.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_byte_mutation_random)": [[14, "pycellga.tests.test_byte_mutation_random.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_byte_one_point_crossover)": [[14, "pycellga.tests.test_byte_one_point_crossover.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_byte_uniform_crossover)": [[14, "pycellga.tests.test_byte_uniform_crossover.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_flat_crossover)": [[14, "pycellga.tests.test_flat_crossover.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_float_uniform_mutation)": [[14, "pycellga.tests.test_float_uniform_mutation.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_linear_crossover)": [[14, "pycellga.tests.test_linear_crossover.setup_problem", false]], "setup_problem() (in module pycellga.tests.test_unfair_average_crossover)": [[14, "pycellga.tests.test_unfair_average_crossover.setup_problem", false]], "setup_rothellipsoid() (in module pycellga.tests.test_rothellipsoid_function)": [[14, "pycellga.tests.test_rothellipsoid_function.setup_rothellipsoid", false]], "setup_schaffer() (in module pycellga.tests.test_schaffer_function)": [[14, "pycellga.tests.test_schaffer_function.setup_schaffer", false]], "setup_schaffer2() (in module pycellga.tests.test_schaffer2_function)": [[14, "pycellga.tests.test_schaffer2_function.setup_schaffer2", false]], "setup_styblinski_tang() (in module pycellga.tests.test_styblinskitang_function)": [[14, "pycellga.tests.test_styblinskitang_function.setup_styblinski_tang", false]], "setup_sumofdifferentpowers() (in module pycellga.tests.test_sumofdifferentpowers_function)": [[14, "pycellga.tests.test_sumofdifferentpowers_function.setup_sumofdifferentpowers", false]], "setup_threehumps() (in module pycellga.tests.test_threehumps_function)": [[14, "pycellga.tests.test_threehumps_function.setup_threehumps", false]], "setup_zettle() (in module pycellga.tests.test_zettle_function)": [[14, "pycellga.tests.test_zettle_function.setup_zettle", false]], "shufflemutation (class in pycellga.mutation.shuffle_mutation)": [[4, "pycellga.mutation.shuffle_mutation.ShuffleMutation", false]], "sphere (class in pycellga.problems.single_objective.continuous.sphere)": [[8, "pycellga.problems.single_objective.continuous.sphere.Sphere", false]], "styblinskitang (class in pycellga.problems.single_objective.continuous.styblinskitang)": [[8, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang", false]], "sumofdifferentpowers (class in pycellga.problems.single_objective.continuous.sumofdifferentpowers)": [[8, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers", false]], "swapmutation (class in pycellga.mutation.swap_mutation)": [[4, "pycellga.mutation.swap_mutation.SwapMutation", false]], "test_ackley() (in module pycellga.tests.test_ackley)": [[14, "pycellga.tests.test_ackley.test_ackley", false]], "test_arithmetic_crossover() (in module pycellga.tests.test_arithmetic_crossover)": [[14, "pycellga.tests.test_arithmetic_crossover.test_arithmetic_crossover", false]], "test_bentcigar_function() (in module pycellga.tests.test_bentcigar_function)": [[14, "pycellga.tests.test_bentcigar_function.test_bentcigar_function", false]], "test_bit_flip_mutation() (in module pycellga.tests.test_bit_flip_mutation)": [[14, "pycellga.tests.test_bit_flip_mutation.test_bit_flip_mutation", false]], "test_bits_to_float() (in module pycellga.tests.test_byte_operators)": [[14, "pycellga.tests.test_byte_operators.test_bits_to_float", false]], "test_bits_to_floats() (in module pycellga.tests.test_byte_operators)": [[14, "pycellga.tests.test_byte_operators.test_bits_to_floats", false]], "test_blxalpha_crossover() (in module pycellga.tests.test_blxalpha_crossover)": [[14, "pycellga.tests.test_blxalpha_crossover.test_blxalpha_crossover", false]], "test_bohachevsky() (in module pycellga.tests.test_bohachevsky)": [[14, "pycellga.tests.test_bohachevsky.test_bohachevsky", false]], "test_byte_mutation() (in module pycellga.tests.test_byte_mutation)": [[14, "pycellga.tests.test_byte_mutation.test_byte_mutation", false]], "test_byte_mutation_random() (in module pycellga.tests.test_byte_mutation_random)": [[14, "pycellga.tests.test_byte_mutation_random.test_byte_mutation_random", false]], "test_byte_one_point_crossover() (in module pycellga.tests.test_byte_one_point_crossover)": [[14, "pycellga.tests.test_byte_one_point_crossover.test_byte_one_point_crossover", false]], "test_byte_uniform_crossover() (in module pycellga.tests.test_byte_uniform_crossover)": [[14, "pycellga.tests.test_byte_uniform_crossover.test_byte_uniform_crossover", false]], "test_chichinadze_function() (in module pycellga.tests.test_chichinadze_function)": [[14, "pycellga.tests.test_chichinadze_function.test_chichinadze_function", false]], "test_compact_13() (in module pycellga.tests.test_compact_13)": [[14, "pycellga.tests.test_compact_13.test_compact_13", false]], "test_compact_21() (in module pycellga.tests.test_compact_21)": [[14, "pycellga.tests.test_compact_21.test_compact_21", false]], "test_compact_25() (in module pycellga.tests.test_compact_25)": [[14, "pycellga.tests.test_compact_25.test_compact_25", false]], "test_compact_9() (in module pycellga.tests.test_compact_9)": [[14, "pycellga.tests.test_compact_9.test_compact_9", false]], "test_count_sat() (in module pycellga.tests.test_count_sat)": [[14, "pycellga.tests.test_count_sat.test_count_sat", false]], "test_dropwave_function() (in module pycellga.tests.test_dropwave_function)": [[14, "pycellga.tests.test_dropwave_function.test_dropwave_function", false]], "test_ecc() (in module pycellga.tests.test_ecc)": [[14, "pycellga.tests.test_ecc.test_ecc", false]], "test_fitness_evaluation() (in module pycellga.tests.test_population)": [[14, "pycellga.tests.test_population.test_fitness_evaluation", false]], "test_flat_crossover() (in module pycellga.tests.test_flat_crossover)": [[14, "pycellga.tests.test_flat_crossover.test_flat_crossover", false]], "test_float_to_bits() (in module pycellga.tests.test_byte_operators)": [[14, "pycellga.tests.test_byte_operators.test_float_to_bits", false]], "test_float_uniform_mutation() (in module pycellga.tests.test_float_uniform_mutation)": [[14, "pycellga.tests.test_float_uniform_mutation.test_float_uniform_mutation", false]], "test_floats_to_bits() (in module pycellga.tests.test_byte_operators)": [[14, "pycellga.tests.test_byte_operators.test_floats_to_bits", false]], "test_fms() (in module pycellga.tests.test_fms)": [[14, "pycellga.tests.test_fms.test_fms", false]], "test_get_set_neighbors() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_get_set_neighbors", false]], "test_get_set_neighbors_positions() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_get_set_neighbors_positions", false]], "test_grid() (in module pycellga.tests.test_grid)": [[14, "pycellga.tests.test_grid.test_grid", false]], "test_griewank_function() (in module pycellga.tests.test_griewank_function)": [[14, "pycellga.tests.test_griewank_function.test_griewank_function", false]], "test_holzman_function() (in module pycellga.tests.test_holzman_function)": [[14, "pycellga.tests.test_holzman_function.test_holzman_function", false]], "test_illegal_genome_type() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_illegal_genome_type", false]], "test_individual_init() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_individual_init", false]], "test_initial_population_size() (in module pycellga.tests.test_population)": [[14, "pycellga.tests.test_population.test_initial_population_size", false]], "test_insertion_mutation() (in module pycellga.tests.test_insertion_mutation)": [[14, "pycellga.tests.test_insertion_mutation.test_insertion_mutation", false]], "test_levy_function() (in module pycellga.tests.test_levy_function)": [[14, "pycellga.tests.test_levy_function.test_levy_function", false]], "test_linear_5() (in module pycellga.tests.test_linear_5)": [[14, "pycellga.tests.test_linear_5.test_linear_5", false]], "test_linear_9() (in module pycellga.tests.test_linear_9)": [[14, "pycellga.tests.test_linear_9.test_linear_9", false]], "test_linear_crossover() (in module pycellga.tests.test_linear_crossover)": [[14, "pycellga.tests.test_linear_crossover.test_linear_crossover", false]], "test_matyas_function() (in module pycellga.tests.test_matyas_function)": [[14, "pycellga.tests.test_matyas_function.test_matyas_function", false]], "test_maxcut100() (in module pycellga.tests.test_maxcut100)": [[14, "pycellga.tests.test_maxcut100.test_maxcut100", false]], "test_maxcut20_01() (in module pycellga.tests.test_maxcut20_01)": [[14, "pycellga.tests.test_maxcut20_01.test_maxcut20_01", false]], "test_maxcut20_09() (in module pycellga.tests.test_maxcut20_09)": [[14, "pycellga.tests.test_maxcut20_09.test_maxcut20_09", false]], "test_mmdp_function() (in module pycellga.tests.test_mmdp)": [[14, "pycellga.tests.test_mmdp.test_mmdp_function", false]], "test_neighborhood_assignment() (in module pycellga.tests.test_population)": [[14, "pycellga.tests.test_population.test_neighborhood_assignment", false]], "test_one_max() (in module pycellga.tests.test_one_max)": [[14, "pycellga.tests.test_one_max.test_one_max", false]], "test_one_point_crossover() (in module pycellga.tests.test_one_point_crossover)": [[14, "pycellga.tests.test_one_point_crossover.test_one_point_crossover", false]], "test_optimizer_alpha_cga_binary() (in module pycellga.tests.test_optimizer_alpha_cga)": [[14, "pycellga.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_binary", false]], "test_optimizer_alpha_cga_no_variation() (in module pycellga.tests.test_optimizer_alpha_cga)": [[14, "pycellga.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_no_variation", false]], "test_optimizer_alpha_cga_permutation() (pycellga.tests.test_optimizer_alpha_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_alpha_cga.PermutationProblem.test_optimizer_alpha_cga_permutation", false]], "test_optimizer_alpha_cga_real() (in module pycellga.tests.test_optimizer_alpha_cga)": [[14, "pycellga.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_real", false]], "test_optimizer_ccga_binary() (in module pycellga.tests.test_optimizer_ccga)": [[14, "pycellga.tests.test_optimizer_ccga.test_optimizer_ccga_binary", false]], "test_optimizer_cga_binary() (in module pycellga.tests.test_optimizer_cga)": [[14, "pycellga.tests.test_optimizer_cga.test_optimizer_cga_binary", false]], "test_optimizer_cga_no_variation() (in module pycellga.tests.test_optimizer_cga)": [[14, "pycellga.tests.test_optimizer_cga.test_optimizer_cga_no_variation", false]], "test_optimizer_cga_permutation() (pycellga.tests.test_optimizer_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_cga.PermutationProblem.test_optimizer_cga_permutation", false]], "test_optimizer_cga_real() (in module pycellga.tests.test_optimizer_cga)": [[14, "pycellga.tests.test_optimizer_cga.test_optimizer_cga_real", false]], "test_optimizer_mcccga_binary() (in module pycellga.tests.test_optimizer_mccga)": [[14, "pycellga.tests.test_optimizer_mccga.test_optimizer_mcccga_binary", false]], "test_optimizer_sync_cga_binary() (in module pycellga.tests.test_optimizer_sync_cga)": [[14, "pycellga.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_binary", false]], "test_optimizer_sync_cga_no_variation() (in module pycellga.tests.test_optimizer_sync_cga)": [[14, "pycellga.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_no_variation", false]], "test_optimizer_sync_cga_permutation() (pycellga.tests.test_optimizer_sync_cga.permutationproblem method)": [[14, "pycellga.tests.test_optimizer_sync_cga.PermutationProblem.test_optimizer_sync_cga_permutation", false]], "test_optimizer_sync_cga_real() (in module pycellga.tests.test_optimizer_sync_cga)": [[14, "pycellga.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_real", false]], "test_peak() (in module pycellga.tests.test_peak)": [[14, "pycellga.tests.test_peak.test_peak", false]], "test_pmx_crossover() (in module pycellga.tests.test_pmx_crossover)": [[14, "pycellga.tests.test_pmx_crossover.test_pmx_crossover", false]], "test_powell_function() (in module pycellga.tests.test_powell_function)": [[14, "pycellga.tests.test_powell_function.test_powell_function", false]], "test_randomize_binary() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_randomize_binary", false]], "test_randomize_permutation() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_randomize_permutation", false]], "test_randomize_real_valued() (in module pycellga.tests.test_individual)": [[14, "pycellga.tests.test_individual.test_randomize_real_valued", false]], "test_rastrigin() (in module pycellga.tests.test_rastrigin)": [[14, "pycellga.tests.test_rastrigin.test_rastrigin", false]], "test_rosenbrock() (in module pycellga.tests.test_rosenbrock)": [[14, "pycellga.tests.test_rosenbrock.test_rosenbrock", false]], "test_rothellipsoid_function() (in module pycellga.tests.test_rothellipsoid_function)": [[14, "pycellga.tests.test_rothellipsoid_function.test_rothellipsoid_function", false]], "test_roulette_wheel_selection() (in module pycellga.tests.test_roulette_wheel_selection)": [[14, "pycellga.tests.test_roulette_wheel_selection.test_roulette_wheel_selection", false]], "test_schaffer2_function() (in module pycellga.tests.test_schaffer2_function)": [[14, "pycellga.tests.test_schaffer2_function.test_schaffer2_function", false]], "test_schaffer_function() (in module pycellga.tests.test_schaffer_function)": [[14, "pycellga.tests.test_schaffer_function.test_schaffer_function", false]], "test_schwefel() (in module pycellga.tests.test_schwefel)": [[14, "pycellga.tests.test_schwefel.test_schwefel", false]], "test_shuffle_mutation() (in module pycellga.tests.test_shuffle_mutation)": [[14, "pycellga.tests.test_shuffle_mutation.test_shuffle_mutation", false]], "test_sphere() (in module pycellga.tests.test_sphere)": [[14, "pycellga.tests.test_sphere.test_sphere", false]], "test_styblinskitang_function() (in module pycellga.tests.test_styblinskitang_function)": [[14, "pycellga.tests.test_styblinskitang_function.test_styblinskitang_function", false]], "test_sumofdifferentpowers_function() (in module pycellga.tests.test_sumofdifferentpowers_function)": [[14, "pycellga.tests.test_sumofdifferentpowers_function.test_sumofdifferentpowers_function", false]], "test_swap_mutation() (in module pycellga.tests.test_swap_mutation)": [[14, "pycellga.tests.test_swap_mutation.test_swap_mutation", false]], "test_threehumps_function() (in module pycellga.tests.test_threehumps_function)": [[14, "pycellga.tests.test_threehumps_function.test_threehumps_function", false]], "test_tournament_selection() (in module pycellga.tests.test_tournament_selection)": [[14, "pycellga.tests.test_tournament_selection.test_tournament_selection", false]], "test_tsp() (in module pycellga.tests.test_tsp)": [[14, "pycellga.tests.test_tsp.test_tsp", false]], "test_two_opt_mutation() (in module pycellga.tests.test_two_opt_mutation)": [[14, "pycellga.tests.test_two_opt_mutation.test_two_opt_mutation", false]], "test_two_point_crossover() (in module pycellga.tests.test_two_point_crossover)": [[14, "pycellga.tests.test_two_point_crossover.test_two_point_crossover", false]], "test_unfair_average_crossover() (in module pycellga.tests.test_unfair_average_crossover)": [[14, "pycellga.tests.test_unfair_average_crossover.test_unfair_average_crossover", false]], "test_uniform_crossover() (in module pycellga.tests.test_uniform_crossover)": [[14, "pycellga.tests.test_uniform_crossover.test_uniform_crossover", false]], "test_zakharov_function() (in module pycellga.tests.test_zakharov_function)": [[14, "pycellga.tests.test_zakharov_function.test_zakharov_function", false]], "test_zettle_function() (in module pycellga.tests.test_zettle_function)": [[14, "pycellga.tests.test_zettle_function.test_zettle_function", false]], "threehumps (class in pycellga.problems.single_objective.continuous.threehumps)": [[8, "pycellga.problems.single_objective.continuous.threehumps.Threehumps", false]], "tournamentselection (class in pycellga.selection.tournament_selection)": [[13, "pycellga.selection.tournament_selection.TournamentSelection", false]], "tsp (class in pycellga.problems.single_objective.discrete.permutation.tsp)": [[11, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp", false]], "twooptmutation (class in pycellga.mutation.two_opt_mutation)": [[4, "pycellga.mutation.two_opt_mutation.TwoOptMutation", false]], "twopointcrossover (class in pycellga.recombination.two_point_crossover)": [[12, "pycellga.recombination.two_point_crossover.TwoPointCrossover", false]], "unfairavaragecrossover (class in pycellga.recombination.unfair_avarage_crossover)": [[12, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover", false]], "uniformcrossover (class in pycellga.recombination.uniform_crossover)": [[12, "pycellga.recombination.uniform_crossover.UniformCrossover", false]], "zakharov (class in pycellga.problems.single_objective.continuous.zakharov)": [[8, "pycellga.problems.single_objective.continuous.zakharov.Zakharov", false]], "zettle (class in pycellga.problems.single_objective.continuous.zettle)": [[8, "pycellga.problems.single_objective.continuous.zettle.Zettle", false]]}, "objects": {"": [[2, 0, 0, "-", "pycellga"]], "pycellga": [[2, 0, 0, "-", "byte_operators"], [3, 0, 0, "-", "example"], [2, 0, 0, "-", "grid"], [4, 0, 0, "-", "mutation"], [5, 0, 0, "-", "neighborhoods"], [6, 0, 0, "-", "problems"], [12, 0, 0, "-", "recombination"], [13, 0, 0, "-", "selection"], [14, 0, 0, "-", "tests"]], "pycellga.byte_operators": [[2, 1, 1, "", "bits_to_float"], [2, 1, 1, "", "bits_to_floats"], [2, 1, 1, "", "float_to_bits"], [2, 1, 1, "", "floats_to_bits"]], "pycellga.example": [[3, 0, 0, "-", "example_alpha_cga"], [3, 0, 0, "-", "example_ccga"], [3, 0, 0, "-", "example_cga"], [3, 0, 0, "-", "example_mcccga"], [3, 0, 0, "-", "example_sync_cga"]], "pycellga.example.example_alpha_cga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_alpha_cga_example"]], "pycellga.example.example_alpha_cga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "pycellga.example.example_ccga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_ccga_example"]], "pycellga.example.example_ccga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "pycellga.example.example_cga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_cga_example"]], "pycellga.example.example_cga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "pycellga.example.example_mcccga": [[3, 2, 1, "", "RealProblem"], [3, 1, 1, "", "run_mcccga_example"]], "pycellga.example.example_mcccga.RealProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "pycellga.example.example_sync_cga": [[3, 2, 1, "", "ExampleProblem"], [3, 1, 1, "", "run_sync_cga_example"]], "pycellga.example.example_sync_cga.ExampleProblem": [[3, 3, 1, "", "__init__"], [3, 3, 1, "", "f"]], "pycellga.grid": [[2, 2, 1, "", "Grid"]], "pycellga.grid.Grid": [[2, 3, 1, "", "__init__"], [2, 3, 1, "", "make_2d_grid"], [2, 4, 1, "", "n_cols"], [2, 4, 1, "", "n_rows"]], "pycellga.mutation": [[4, 0, 0, "-", "bit_flip_mutation"], [4, 0, 0, "-", "byte_mutation"], [4, 0, 0, "-", "byte_mutation_random"], [4, 0, 0, "-", "float_uniform_mutation"], [4, 0, 0, "-", "insertion_mutation"], [4, 0, 0, "-", "mutation_operator"], [4, 0, 0, "-", "shuffle_mutation"], [4, 0, 0, "-", "swap_mutation"], [4, 0, 0, "-", "two_opt_mutation"]], "pycellga.mutation.bit_flip_mutation": [[4, 2, 1, "", "BitFlipMutation"]], "pycellga.mutation.bit_flip_mutation.BitFlipMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.byte_mutation": [[4, 2, 1, "", "ByteMutation"]], "pycellga.mutation.byte_mutation.ByteMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.byte_mutation_random": [[4, 2, 1, "", "ByteMutationRandom"]], "pycellga.mutation.byte_mutation_random.ByteMutationRandom": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.float_uniform_mutation": [[4, 2, 1, "", "FloatUniformMutation"]], "pycellga.mutation.float_uniform_mutation.FloatUniformMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.insertion_mutation": [[4, 2, 1, "", "InsertionMutation"]], "pycellga.mutation.insertion_mutation.InsertionMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.mutation_operator": [[4, 2, 1, "", "MutationOperator"]], "pycellga.mutation.mutation_operator.MutationOperator": [[4, 3, 1, "", "mutate"]], "pycellga.mutation.shuffle_mutation": [[4, 2, 1, "", "ShuffleMutation"]], "pycellga.mutation.shuffle_mutation.ShuffleMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.swap_mutation": [[4, 2, 1, "", "SwapMutation"]], "pycellga.mutation.swap_mutation.SwapMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.mutation.two_opt_mutation": [[4, 2, 1, "", "TwoOptMutation"]], "pycellga.mutation.two_opt_mutation.TwoOptMutation": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "mutate"]], "pycellga.neighborhoods": [[5, 0, 0, "-", "compact_13"], [5, 0, 0, "-", "compact_21"], [5, 0, 0, "-", "compact_25"], [5, 0, 0, "-", "compact_9"], [5, 0, 0, "-", "linear_5"], [5, 0, 0, "-", "linear_9"]], "pycellga.neighborhoods.compact_13": [[5, 2, 1, "", "Compact13"]], "pycellga.neighborhoods.compact_13.Compact13": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_21": [[5, 2, 1, "", "Compact21"]], "pycellga.neighborhoods.compact_21.Compact21": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_25": [[5, 2, 1, "", "Compact25"]], "pycellga.neighborhoods.compact_25.Compact25": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_9": [[5, 2, 1, "", "Compact9"]], "pycellga.neighborhoods.compact_9.Compact9": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.linear_5": [[5, 2, 1, "", "Linear5"]], "pycellga.neighborhoods.linear_5.Linear5": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.linear_9": [[5, 2, 1, "", "Linear9"]], "pycellga.neighborhoods.linear_9.Linear9": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.problems": [[6, 0, 0, "-", "abstract_problem"], [7, 0, 0, "-", "single_objective"]], "pycellga.problems.abstract_problem": [[6, 2, 1, "", "AbstractProblem"]], "pycellga.problems.abstract_problem.AbstractProblem": [[6, 3, 1, "id0", "f"]], "pycellga.problems.single_objective": [[8, 0, 0, "-", "continuous"], [9, 0, 0, "-", "discrete"]], "pycellga.problems.single_objective.continuous": [[8, 0, 0, "-", "ackley"], [8, 0, 0, "-", "bentcigar"], [8, 0, 0, "-", "bohachevsky"], [8, 0, 0, "-", "chichinadze"], [8, 0, 0, "-", "dropwave"], [8, 0, 0, "-", "fms"], [8, 0, 0, "-", "griewank"], [8, 0, 0, "-", "holzman"], [8, 0, 0, "-", "levy"], [8, 0, 0, "-", "matyas"], [8, 0, 0, "-", "pow"], [8, 0, 0, "-", "powell"], [8, 0, 0, "-", "rastrigin"], [8, 0, 0, "-", "rosenbrock"], [8, 0, 0, "-", "rothellipsoid"], [8, 0, 0, "-", "schaffer"], [8, 0, 0, "-", "schaffer2"], [8, 0, 0, "-", "schwefel"], [8, 0, 0, "-", "sphere"], [8, 0, 0, "-", "styblinskitang"], [8, 0, 0, "-", "sumofdifferentpowers"], [8, 0, 0, "-", "threehumps"], [8, 0, 0, "-", "zakharov"], [8, 0, 0, "-", "zettle"]], "pycellga.problems.single_objective.continuous.ackley": [[8, 2, 1, "", "Ackley"]], "pycellga.problems.single_objective.continuous.ackley.Ackley": [[8, 4, 1, "", "None"], [8, 3, 1, "id0", "f"]], "pycellga.problems.single_objective.continuous.bentcigar": [[8, 2, 1, "", "Bentcigar"]], "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar": [[8, 4, 1, "", "None"], [8, 3, 1, "id1", "f"]], "pycellga.problems.single_objective.continuous.bohachevsky": [[8, 2, 1, "", "Bohachevsky"]], "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky": [[8, 4, 1, "", "None"], [8, 3, 1, "id2", "f"]], "pycellga.problems.single_objective.continuous.chichinadze": [[8, 2, 1, "", "Chichinadze"]], "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze": [[8, 4, 1, "", "None"], [8, 3, 1, "id3", "f"]], "pycellga.problems.single_objective.continuous.dropwave": [[8, 2, 1, "", "Dropwave"]], "pycellga.problems.single_objective.continuous.dropwave.Dropwave": [[8, 3, 1, "id4", "f"]], "pycellga.problems.single_objective.continuous.fms": [[8, 2, 1, "", "Fms"]], "pycellga.problems.single_objective.continuous.fms.Fms": [[8, 4, 1, "", "None"], [8, 3, 1, "id5", "f"]], "pycellga.problems.single_objective.continuous.griewank": [[8, 2, 1, "", "Griewank"]], "pycellga.problems.single_objective.continuous.griewank.Griewank": [[8, 3, 1, "id6", "f"]], "pycellga.problems.single_objective.continuous.holzman": [[8, 2, 1, "", "Holzman"]], "pycellga.problems.single_objective.continuous.holzman.Holzman": [[8, 4, 1, "", "None"], [8, 3, 1, "id7", "f"]], "pycellga.problems.single_objective.continuous.levy": [[8, 2, 1, "", "Levy"]], "pycellga.problems.single_objective.continuous.levy.Levy": [[8, 4, 1, "", "None"], [8, 3, 1, "id8", "f"]], "pycellga.problems.single_objective.continuous.matyas": [[8, 2, 1, "", "Matyas"]], "pycellga.problems.single_objective.continuous.matyas.Matyas": [[8, 4, 1, "", "None"], [8, 3, 1, "id9", "f"]], "pycellga.problems.single_objective.continuous.pow": [[8, 2, 1, "", "Pow"]], "pycellga.problems.single_objective.continuous.pow.Pow": [[8, 4, 1, "", "None"], [8, 3, 1, "id10", "f"]], "pycellga.problems.single_objective.continuous.powell": [[8, 2, 1, "", "Powell"]], "pycellga.problems.single_objective.continuous.powell.Powell": [[8, 4, 1, "", "None"], [8, 3, 1, "id11", "f"]], "pycellga.problems.single_objective.continuous.rastrigin": [[8, 2, 1, "", "Rastrigin"]], "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin": [[8, 4, 1, "", "None"], [8, 3, 1, "id12", "f"]], "pycellga.problems.single_objective.continuous.rosenbrock": [[8, 2, 1, "", "Rosenbrock"]], "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock": [[8, 4, 1, "", "None"], [8, 3, 1, "id13", "f"]], "pycellga.problems.single_objective.continuous.rothellipsoid": [[8, 2, 1, "", "Rothellipsoid"]], "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid": [[8, 4, 1, "", "None"], [8, 3, 1, "id14", "f"]], "pycellga.problems.single_objective.continuous.schaffer": [[8, 2, 1, "", "Schaffer"]], "pycellga.problems.single_objective.continuous.schaffer.Schaffer": [[8, 3, 1, "id15", "f"]], "pycellga.problems.single_objective.continuous.schaffer2": [[8, 2, 1, "", "Schaffer2"]], "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2": [[8, 4, 1, "", "None"], [8, 3, 1, "id16", "f"]], "pycellga.problems.single_objective.continuous.schwefel": [[8, 2, 1, "", "Schwefel"]], "pycellga.problems.single_objective.continuous.schwefel.Schwefel": [[8, 4, 1, "", "None"], [8, 3, 1, "id17", "f"]], "pycellga.problems.single_objective.continuous.sphere": [[8, 2, 1, "", "Sphere"]], "pycellga.problems.single_objective.continuous.sphere.Sphere": [[8, 4, 1, "", "None"], [8, 3, 1, "id18", "f"]], "pycellga.problems.single_objective.continuous.styblinskitang": [[8, 2, 1, "", "StyblinskiTang"]], "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang": [[8, 4, 1, "", "None"], [8, 3, 1, "id19", "f"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers": [[8, 2, 1, "", "Sumofdifferentpowers"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers": [[8, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous.threehumps": [[8, 2, 1, "", "Threehumps"]], "pycellga.problems.single_objective.continuous.threehumps.Threehumps": [[8, 4, 1, "", "None"], [8, 3, 1, "id20", "f"]], "pycellga.problems.single_objective.continuous.zakharov": [[8, 2, 1, "", "Zakharov"]], "pycellga.problems.single_objective.continuous.zakharov.Zakharov": [[8, 4, 1, "", "None"], [8, 3, 1, "id21", "f"]], "pycellga.problems.single_objective.continuous.zettle": [[8, 2, 1, "", "Zettle"]], "pycellga.problems.single_objective.continuous.zettle.Zettle": [[8, 4, 1, "", "None"], [8, 3, 1, "id22", "f"]], "pycellga.problems.single_objective.discrete": [[10, 0, 0, "-", "binary"], [11, 0, 0, "-", "permutation"]], "pycellga.problems.single_objective.discrete.binary": [[10, 0, 0, "-", "count_sat"], [10, 0, 0, "-", "ecc"], [10, 0, 0, "-", "fms"], [10, 0, 0, "-", "maxcut100"], [10, 0, 0, "-", "maxcut20_01"], [10, 0, 0, "-", "maxcut20_09"], [10, 0, 0, "-", "mmdp"], [10, 0, 0, "-", "one_max"], [10, 0, 0, "-", "peak"]], "pycellga.problems.single_objective.discrete.binary.count_sat": [[10, 2, 1, "", "CountSat"]], "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat": [[10, 4, 1, "", "None"], [10, 3, 1, "id0", "f"]], "pycellga.problems.single_objective.discrete.binary.ecc": [[10, 2, 1, "", "Ecc"]], "pycellga.problems.single_objective.discrete.binary.ecc.Ecc": [[10, 4, 1, "", "None"], [10, 3, 1, "id1", "f"]], "pycellga.problems.single_objective.discrete.binary.fms": [[10, 2, 1, "", "Fms"]], "pycellga.problems.single_objective.discrete.binary.fms.Fms": [[10, 4, 1, "", "None"], [10, 3, 1, "id2", "f"]], "pycellga.problems.single_objective.discrete.binary.maxcut100": [[10, 2, 1, "", "Maxcut100"]], "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100": [[10, 4, 1, "", "None"], [10, 3, 1, "id3", "f"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01": [[10, 2, 1, "", "Maxcut20_01"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01": [[10, 4, 1, "", "None"], [10, 3, 1, "id4", "f"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09": [[10, 2, 1, "", "Maxcut20_09"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09": [[10, 4, 1, "", "None"], [10, 3, 1, "id5", "f"]], "pycellga.problems.single_objective.discrete.binary.mmdp": [[10, 2, 1, "", "Mmdp"]], "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp": [[10, 4, 1, "", "None"], [10, 3, 1, "id6", "f"]], "pycellga.problems.single_objective.discrete.binary.one_max": [[10, 2, 1, "", "OneMax"]], "pycellga.problems.single_objective.discrete.binary.one_max.OneMax": [[10, 4, 1, "", "None"], [10, 3, 1, "id7", "f"]], "pycellga.problems.single_objective.discrete.binary.peak": [[10, 2, 1, "", "Peak"]], "pycellga.problems.single_objective.discrete.binary.peak.Peak": [[10, 4, 1, "", "None"], [10, 3, 1, "id8", "f"]], "pycellga.problems.single_objective.discrete.permutation": [[11, 0, 0, "-", "tsp"]], "pycellga.problems.single_objective.discrete.permutation.tsp": [[11, 2, 1, "", "Tsp"]], "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp": [[11, 3, 1, "", "euclidean_dist"], [11, 3, 1, "", "f"], [11, 3, 1, "", "gographical_dist"]], "pycellga.recombination": [[12, 0, 0, "-", "arithmetic_crossover"], [12, 0, 0, "-", "blxalpha_crossover"], [12, 0, 0, "-", "byte_one_point_crossover"], [12, 0, 0, "-", "byte_uniform_crossover"], [12, 0, 0, "-", "flat_crossover"], [12, 0, 0, "-", "linear_crossover"], [12, 0, 0, "-", "one_point_crossover"], [12, 0, 0, "-", "pmx_crossover"], [12, 0, 0, "-", "recombination_operator"], [12, 0, 0, "-", "two_point_crossover"], [12, 0, 0, "-", "unfair_avarage_crossover"], [12, 0, 0, "-", "uniform_crossover"]], "pycellga.recombination.arithmetic_crossover": [[12, 2, 1, "", "ArithmeticCrossover"]], "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.blxalpha_crossover": [[12, 2, 1, "", "BlxalphaCrossover"]], "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.byte_one_point_crossover": [[12, 2, 1, "", "ByteOnePointCrossover"]], "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.byte_uniform_crossover": [[12, 2, 1, "", "ByteUniformCrossover"]], "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.flat_crossover": [[12, 2, 1, "", "FlatCrossover"]], "pycellga.recombination.flat_crossover.FlatCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.linear_crossover": [[12, 2, 1, "", "LinearCrossover"]], "pycellga.recombination.linear_crossover.LinearCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.one_point_crossover": [[12, 2, 1, "", "OnePointCrossover"]], "pycellga.recombination.one_point_crossover.OnePointCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.pmx_crossover": [[12, 2, 1, "", "PMXCrossover"]], "pycellga.recombination.pmx_crossover.PMXCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.recombination_operator": [[12, 2, 1, "", "RecombinationOperator"]], "pycellga.recombination.recombination_operator.RecombinationOperator": [[12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.two_point_crossover": [[12, 2, 1, "", "TwoPointCrossover"]], "pycellga.recombination.two_point_crossover.TwoPointCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.unfair_avarage_crossover": [[12, 2, 1, "", "UnfairAvarageCrossover"]], "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "get_recombinations"]], "pycellga.recombination.uniform_crossover": [[12, 2, 1, "", "UniformCrossover"]], "pycellga.recombination.uniform_crossover.UniformCrossover": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "combine"], [12, 3, 1, "", "get_recombinations"]], "pycellga.selection": [[13, 0, 0, "-", "roulette_wheel_selection"], [13, 0, 0, "-", "selection_operator"], [13, 0, 0, "-", "tournament_selection"]], "pycellga.selection.roulette_wheel_selection": [[13, 2, 1, "", "RouletteWheelSelection"]], "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection": [[13, 3, 1, "", "__init__"], [13, 3, 1, "", "get_parents"]], "pycellga.selection.selection_operator": [[13, 2, 1, "", "SelectionOperator"]], "pycellga.selection.selection_operator.SelectionOperator": [[13, 3, 1, "", "get_parents"]], "pycellga.selection.tournament_selection": [[13, 2, 1, "", "TournamentSelection"]], "pycellga.selection.tournament_selection.TournamentSelection": [[13, 3, 1, "", "__init__"], [13, 3, 1, "", "get_parents"]], "pycellga.tests": [[14, 0, 0, "-", "conftest"], [14, 0, 0, "-", "test_ackley"], [14, 0, 0, "-", "test_arithmetic_crossover"], [14, 0, 0, "-", "test_bentcigar_function"], [14, 0, 0, "-", "test_bit_flip_mutation"], [14, 0, 0, "-", "test_blxalpha_crossover"], [14, 0, 0, "-", "test_bohachevsky"], [14, 0, 0, "-", "test_byte_mutation"], [14, 0, 0, "-", "test_byte_mutation_random"], [14, 0, 0, "-", "test_byte_one_point_crossover"], [14, 0, 0, "-", "test_byte_operators"], [14, 0, 0, "-", "test_byte_uniform_crossover"], [14, 0, 0, "-", "test_chichinadze_function"], [14, 0, 0, "-", "test_compact_13"], [14, 0, 0, "-", "test_compact_21"], [14, 0, 0, "-", "test_compact_25"], [14, 0, 0, "-", "test_compact_9"], [14, 0, 0, "-", "test_count_sat"], [14, 0, 0, "-", "test_dropwave_function"], [14, 0, 0, "-", "test_ecc"], [14, 0, 0, "-", "test_flat_crossover"], [14, 0, 0, "-", "test_float_uniform_mutation"], [14, 0, 0, "-", "test_fms"], [14, 0, 0, "-", "test_grid"], [14, 0, 0, "-", "test_griewank_function"], [14, 0, 0, "-", "test_holzman_function"], [14, 0, 0, "-", "test_individual"], [14, 0, 0, "-", "test_insertion_mutation"], [14, 0, 0, "-", "test_levy_function"], [14, 0, 0, "-", "test_linear_5"], [14, 0, 0, "-", "test_linear_9"], [14, 0, 0, "-", "test_linear_crossover"], [14, 0, 0, "-", "test_matyas_function"], [14, 0, 0, "-", "test_maxcut100"], [14, 0, 0, "-", "test_maxcut20_01"], [14, 0, 0, "-", "test_maxcut20_09"], [14, 0, 0, "-", "test_mmdp"], [14, 0, 0, "-", "test_one_max"], [14, 0, 0, "-", "test_one_point_crossover"], [14, 0, 0, "-", "test_optimizer_alpha_cga"], [14, 0, 0, "-", "test_optimizer_ccga"], [14, 0, 0, "-", "test_optimizer_cga"], [14, 0, 0, "-", "test_optimizer_mccga"], [14, 0, 0, "-", "test_optimizer_sync_cga"], [14, 0, 0, "-", "test_peak"], [14, 0, 0, "-", "test_pmx_crossover"], [14, 0, 0, "-", "test_population"], [14, 0, 0, "-", "test_pow_function"], [14, 0, 0, "-", "test_powell_function"], [14, 0, 0, "-", "test_rastrigin"], [14, 0, 0, "-", "test_rosenbrock"], [14, 0, 0, "-", "test_rothellipsoid_function"], [14, 0, 0, "-", "test_roulette_wheel_selection"], [14, 0, 0, "-", "test_schaffer2_function"], [14, 0, 0, "-", "test_schaffer_function"], [14, 0, 0, "-", "test_schwefel"], [14, 0, 0, "-", "test_shuffle_mutation"], [14, 0, 0, "-", "test_sphere"], [14, 0, 0, "-", "test_styblinskitang_function"], [14, 0, 0, "-", "test_sumofdifferentpowers_function"], [14, 0, 0, "-", "test_swap_mutation"], [14, 0, 0, "-", "test_threehumps_function"], [14, 0, 0, "-", "test_tournament_selection"], [14, 0, 0, "-", "test_tsp"], [14, 0, 0, "-", "test_two_opt_mutation"], [14, 0, 0, "-", "test_two_point_crossover"], [14, 0, 0, "-", "test_unfair_average_crossover"], [14, 0, 0, "-", "test_uniform_crossover"], [14, 0, 0, "-", "test_zakharov_function"], [14, 0, 0, "-", "test_zettle_function"]], "pycellga.tests.test_ackley": [[14, 1, 1, "", "test_ackley"]], "pycellga.tests.test_arithmetic_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_arithmetic_crossover"]], "pycellga.tests.test_arithmetic_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_bentcigar_function": [[14, 1, 1, "", "setup_bentcigar"], [14, 1, 1, "", "test_bentcigar_function"]], "pycellga.tests.test_bit_flip_mutation": [[14, 1, 1, "", "test_bit_flip_mutation"]], "pycellga.tests.test_blxalpha_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_blxalpha_crossover"]], "pycellga.tests.test_blxalpha_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_bohachevsky": [[14, 1, 1, "", "test_bohachevsky"]], "pycellga.tests.test_byte_mutation": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_mutation"]], "pycellga.tests.test_byte_mutation.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_byte_mutation_random": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_mutation_random"]], "pycellga.tests.test_byte_mutation_random.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_byte_one_point_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_one_point_crossover"]], "pycellga.tests.test_byte_one_point_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_byte_operators": [[14, 1, 1, "", "test_bits_to_float"], [14, 1, 1, "", "test_bits_to_floats"], [14, 1, 1, "", "test_float_to_bits"], [14, 1, 1, "", "test_floats_to_bits"]], "pycellga.tests.test_byte_uniform_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_byte_uniform_crossover"]], "pycellga.tests.test_byte_uniform_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_chichinadze_function": [[14, 1, 1, "", "setup_chichinadze"], [14, 1, 1, "", "test_chichinadze_function"]], "pycellga.tests.test_compact_13": [[14, 1, 1, "", "test_compact_13"]], "pycellga.tests.test_compact_21": [[14, 1, 1, "", "test_compact_21"]], "pycellga.tests.test_compact_25": [[14, 1, 1, "", "test_compact_25"]], "pycellga.tests.test_compact_9": [[14, 1, 1, "", "test_compact_9"]], "pycellga.tests.test_count_sat": [[14, 1, 1, "", "test_count_sat"]], "pycellga.tests.test_dropwave_function": [[14, 1, 1, "", "setup_dropwave"], [14, 1, 1, "", "test_dropwave_function"]], "pycellga.tests.test_ecc": [[14, 1, 1, "", "ecc_instance"], [14, 1, 1, "", "test_ecc"]], "pycellga.tests.test_flat_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_flat_crossover"]], "pycellga.tests.test_flat_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_float_uniform_mutation": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_float_uniform_mutation"]], "pycellga.tests.test_float_uniform_mutation.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_fms": [[14, 1, 1, "", "fms_instance"], [14, 1, 1, "", "test_fms"]], "pycellga.tests.test_grid": [[14, 1, 1, "", "test_grid"]], "pycellga.tests.test_griewank_function": [[14, 1, 1, "", "setup_griewank"], [14, 1, 1, "", "test_griewank_function"]], "pycellga.tests.test_holzman_function": [[14, 1, 1, "", "setup_holzman"], [14, 1, 1, "", "test_holzman_function"]], "pycellga.tests.test_individual": [[14, 1, 1, "", "setup_individual"], [14, 1, 1, "", "test_get_set_neighbors"], [14, 1, 1, "", "test_get_set_neighbors_positions"], [14, 1, 1, "", "test_illegal_genome_type"], [14, 1, 1, "", "test_individual_init"], [14, 1, 1, "", "test_randomize_binary"], [14, 1, 1, "", "test_randomize_permutation"], [14, 1, 1, "", "test_randomize_real_valued"]], "pycellga.tests.test_insertion_mutation": [[14, 1, 1, "", "test_insertion_mutation"]], "pycellga.tests.test_levy_function": [[14, 1, 1, "", "setup_levy"], [14, 1, 1, "", "test_levy_function"]], "pycellga.tests.test_linear_5": [[14, 1, 1, "", "test_linear_5"]], "pycellga.tests.test_linear_9": [[14, 1, 1, "", "test_linear_9"]], "pycellga.tests.test_linear_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_linear_crossover"]], "pycellga.tests.test_linear_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_matyas_function": [[14, 1, 1, "", "setup_matyas"], [14, 1, 1, "", "test_matyas_function"]], "pycellga.tests.test_maxcut100": [[14, 1, 1, "", "maxcut_instance"], [14, 1, 1, "", "test_maxcut100"]], "pycellga.tests.test_maxcut20_01": [[14, 1, 1, "", "maxcut_instance"], [14, 1, 1, "", "test_maxcut20_01"]], "pycellga.tests.test_maxcut20_09": [[14, 1, 1, "", "maxcut_instance"], [14, 1, 1, "", "test_maxcut20_09"]], "pycellga.tests.test_mmdp": [[14, 1, 1, "", "mmdp_instance"], [14, 1, 1, "", "test_mmdp_function"]], "pycellga.tests.test_one_max": [[14, 1, 1, "", "test_one_max"]], "pycellga.tests.test_one_point_crossover": [[14, 1, 1, "", "test_one_point_crossover"]], "pycellga.tests.test_optimizer_alpha_cga": [[14, 2, 1, "", "BinaryProblem"], [14, 2, 1, "", "PermutationProblem"], [14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_alpha_cga_binary"], [14, 1, 1, "", "test_optimizer_alpha_cga_no_variation"], [14, 1, 1, "", "test_optimizer_alpha_cga_real"]], "pycellga.tests.test_optimizer_alpha_cga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_alpha_cga.PermutationProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"], [14, 3, 1, "", "test_optimizer_alpha_cga_permutation"]], "pycellga.tests.test_optimizer_alpha_cga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_ccga": [[14, 2, 1, "", "BinaryProblem"], [14, 1, 1, "", "test_optimizer_ccga_binary"]], "pycellga.tests.test_optimizer_ccga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_cga": [[14, 2, 1, "", "BinaryProblem"], [14, 2, 1, "", "PermutationProblem"], [14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_cga_binary"], [14, 1, 1, "", "test_optimizer_cga_no_variation"], [14, 1, 1, "", "test_optimizer_cga_real"]], "pycellga.tests.test_optimizer_cga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_cga.PermutationProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"], [14, 3, 1, "", "test_optimizer_cga_permutation"]], "pycellga.tests.test_optimizer_cga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_mccga": [[14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_mcccga_binary"]], "pycellga.tests.test_optimizer_mccga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_sync_cga": [[14, 2, 1, "", "BinaryProblem"], [14, 2, 1, "", "PermutationProblem"], [14, 2, 1, "", "RealProblem"], [14, 1, 1, "", "test_optimizer_sync_cga_binary"], [14, 1, 1, "", "test_optimizer_sync_cga_no_variation"], [14, 1, 1, "", "test_optimizer_sync_cga_real"]], "pycellga.tests.test_optimizer_sync_cga.BinaryProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_optimizer_sync_cga.PermutationProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"], [14, 3, 1, "", "test_optimizer_sync_cga_permutation"]], "pycellga.tests.test_optimizer_sync_cga.RealProblem": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "f"]], "pycellga.tests.test_peak": [[14, 1, 1, "", "peak_instance"], [14, 1, 1, "", "test_peak"]], "pycellga.tests.test_pmx_crossover": [[14, 1, 1, "", "test_pmx_crossover"]], "pycellga.tests.test_population": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_population"], [14, 1, 1, "", "test_fitness_evaluation"], [14, 1, 1, "", "test_initial_population_size"], [14, 1, 1, "", "test_neighborhood_assignment"]], "pycellga.tests.test_population.MockProblem": [[14, 3, 1, "id0", "f"]], "pycellga.tests.test_pow_function": [[14, 2, 1, "", "Pow"]], "pycellga.tests.test_pow_function.Pow": [[14, 4, 1, "", "None"], [14, 3, 1, "id1", "f"]], "pycellga.tests.test_powell_function": [[14, 1, 1, "", "setup_powell"], [14, 1, 1, "", "test_powell_function"]], "pycellga.tests.test_rastrigin": [[14, 1, 1, "", "test_rastrigin"]], "pycellga.tests.test_rosenbrock": [[14, 1, 1, "", "test_rosenbrock"]], "pycellga.tests.test_rothellipsoid_function": [[14, 1, 1, "", "setup_rothellipsoid"], [14, 1, 1, "", "test_rothellipsoid_function"]], "pycellga.tests.test_roulette_wheel_selection": [[14, 1, 1, "", "test_roulette_wheel_selection"]], "pycellga.tests.test_schaffer2_function": [[14, 1, 1, "", "setup_schaffer2"], [14, 1, 1, "", "test_schaffer2_function"]], "pycellga.tests.test_schaffer_function": [[14, 1, 1, "", "setup_schaffer"], [14, 1, 1, "", "test_schaffer_function"]], "pycellga.tests.test_schwefel": [[14, 1, 1, "", "test_schwefel"]], "pycellga.tests.test_shuffle_mutation": [[14, 1, 1, "", "test_shuffle_mutation"]], "pycellga.tests.test_sphere": [[14, 1, 1, "", "test_sphere"]], "pycellga.tests.test_styblinskitang_function": [[14, 1, 1, "", "setup_styblinski_tang"], [14, 1, 1, "", "test_styblinskitang_function"]], "pycellga.tests.test_sumofdifferentpowers_function": [[14, 1, 1, "", "setup_sumofdifferentpowers"], [14, 1, 1, "", "test_sumofdifferentpowers_function"]], "pycellga.tests.test_swap_mutation": [[14, 1, 1, "", "test_swap_mutation"]], "pycellga.tests.test_threehumps_function": [[14, 1, 1, "", "setup_threehumps"], [14, 1, 1, "", "test_threehumps_function"]], "pycellga.tests.test_tournament_selection": [[14, 1, 1, "", "test_tournament_selection"]], "pycellga.tests.test_tsp": [[14, 1, 1, "", "test_tsp"]], "pycellga.tests.test_two_opt_mutation": [[14, 1, 1, "", "test_two_opt_mutation"]], "pycellga.tests.test_two_point_crossover": [[14, 1, 1, "", "test_two_point_crossover"]], "pycellga.tests.test_unfair_average_crossover": [[14, 2, 1, "", "MockProblem"], [14, 1, 1, "", "setup_parents"], [14, 1, 1, "", "setup_problem"], [14, 1, 1, "", "test_unfair_average_crossover"]], "pycellga.tests.test_unfair_average_crossover.MockProblem": [[14, 3, 1, "", "f"]], "pycellga.tests.test_uniform_crossover": [[14, 1, 1, "", "test_uniform_crossover"]], "pycellga.tests.test_zakharov_function": [[14, 1, 1, "", "test_zakharov_function"]], "pycellga.tests.test_zettle_function": [[14, 1, 1, "", "setup_zettle"], [14, 1, 1, "", "test_zettle_function"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "terms": {"": [4, 8, 14], "0": [2, 3, 4, 8, 10, 13, 14], "001": 8, "003791": 8, "01": [8, 10], "028": 8, "0299": 8, "0674": 10, "1": [2, 3, 4, 8, 10, 14], "10": [3, 8, 10], "100": [3, 8, 10], "1077": 10, "119812": 10, "12": [5, 8, 14], "14": 11, "144": 10, "15": [8, 14], "192": [10, 14], "2": [4, 8, 10, 13, 14], "20": [5, 10, 14], "2013": [4, 12], "24": [5, 14], "240": 10, "25": 14, "2d": [2, 5, 14], "3": [8, 14], "30": 8, "3159": 8, "32": [2, 8], "332": 8, "3323": 11, "35": 8, "3x3": 14, "4": [5, 8, 14], "40": 10, "420": 8, "43": 8, "5": [3, 4, 8, 14], "500": 8, "554": 8, "56": 10, "5x5": [3, 14], "6": [8, 10, 14], "600": 8, "6860": 10, "7": [8, 14], "740064": 10, "768": 8, "78": 8, "8": [5, 14], "9": [8, 14], "90133": 8, "903534": 8, "9687": 8, "A": [0, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "At": 14, "If": [6, 14], "It": [8, 14], "The": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "__init__": [1, 2, 3, 4, 5, 12, 13, 14], "absolut": 14, "abstract": 6, "abstract_problem": [1, 2], "abstractproblem": [2, 4, 6, 8, 10, 11, 12, 14], "achiev": [3, 14], "acklei": [6, 7, 14], "ad": [4, 14], "addit": 14, "adjac": 14, "aim": 14, "algorithm": [0, 3, 4, 8, 10, 14], "align": 14, "all": [3, 8, 10, 14], "allow": 0, "alpha": [0, 3, 12, 14], "alpha_cga": [3, 14], "also": 14, "alwai": 14, "an": [3, 4, 6, 12, 14], "ani": 14, "appli": 14, "approach": 14, "ar": [3, 4, 5, 8, 14], "arithmet": [12, 14], "arithmetic_crossov": [1, 2], "arithmeticcrossov": [2, 12, 14], "around": [4, 14], "arrai": [3, 14], "assertionerror": 14, "assign": 14, "assum": 14, "attribut": 14, "automata": 0, "averag": [12, 14], "b": 11, "back": 2, "balanc": 0, "banana": 14, "base": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "behav": 14, "behavior": 14, "being": 3, "benchmark": [8, 10, 14], "bentcigar": [6, 7, 14], "besid": 0, "best": [3, 11], "between": [0, 10, 11, 14], "binari": [3, 7, 9, 14], "binaryproblem": [2, 14], "bit": [2, 4, 10, 14], "bit_flip_mut": [1, 2], "bit_list": 2, "bitflipmut": [2, 4, 14], "bits_to_float": [1, 2, 14], "blx": [12, 14], "blxalpha_crossov": [1, 2], "blxalphacrossov": [2, 12, 14], "bohachevski": [6, 7, 14], "both": 14, "bound": 8, "boundari": 14, "burma14": 11, "byte": [0, 4, 12, 14], "byte_mut": [1, 2], "byte_mutation_random": [1, 2], "byte_one_point_crossov": [1, 2], "byte_oper": 1, "byte_uniform_crossov": [1, 2], "bytemut": [2, 4, 14], "bytemutationrandom": [2, 4, 14], "byteonepointcrossov": [2, 12, 14], "byteuniformcrossov": [2, 12, 14], "c": 13, "calcul": [5, 8, 10, 11, 14], "calculate_neighbors_posit": [2, 5], "camel": [8, 14], "can": 14, "candid": [4, 6, 14], "case": 14, "ccga": [3, 14], "cdot": 8, "cell": [2, 14], "cellular": [0, 3], "center": [8, 14], "cga": [0, 3, 14], "chang": [4, 14], "character": 10, "check": 14, "chichinadz": [6, 7, 14], "chosen": 13, "chromosom": [3, 4, 8, 10, 11, 14], "chsize": 14, "citi": 14, "class": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "claus": 14, "co": 8, "code": [0, 3, 10], "column": [2, 5], "combin": [0, 2, 12], "common": [8, 14], "commonli": [8, 14], "compact": [0, 3], "compact13": [2, 5, 14], "compact21": [2, 5, 14], "compact25": [2, 5, 14], "compact9": [2, 5, 14], "compact_13": [1, 2], "compact_21": [1, 2], "compact_25": [1, 2], "compact_9": [1, 2], "compar": 14, "complex": 0, "compos": 14, "comput": [3, 8, 11, 14], "condit": 14, "configur": [3, 14], "conftest": [1, 2], "consid": [5, 14], "constrain": 3, "contain": [3, 12, 13, 14], "content": 1, "continu": [6, 7, 14], "convert": 2, "coordin": [8, 11], "copi": 12, "correct": [10, 14], "correctli": 14, "correspond": 3, "count": 14, "count_sat": [7, 9], "countsat": [9, 10, 14], "creat": [2, 14], "crossov": [12, 13, 14], "cut": 10, "d": 8, "deal": 8, "deceiv": 10, "decept": 10, "decim": [4, 8, 10, 11, 14], "decrement": 4, "default": 4, "defin": [4, 8, 12], "design": [10, 14], "determin": 5, "diagon": 14, "differ": [8, 14], "directli": 14, "discret": [6, 7], "distanc": [10, 11, 14], "divers": 0, "do": 14, "doe": 14, "down": 14, "dropwav": [6, 7, 14], "dure": 0, "e": 4, "each": [0, 2, 4, 10, 11, 14], "ecc": [7, 9, 14], "ecc_inst": [2, 14], "edg": [5, 14], "edge_weight_typ": 11, "either": 4, "element": [3, 8, 10, 11, 14], "ellipsoid": [8, 14], "ensur": 14, "equal": [3, 14], "error": [8, 10], "euclidean": 11, "euclidean_dist": [9, 11], "evalu": [6, 8, 10, 11, 14], "exampl": [1, 2, 8, 14], "example_alpha_cga": [1, 2], "example_ccga": [1, 2], "example_cga": [1, 2], "example_mcccga": [1, 2], "example_sync_cga": [1, 2], "exampleproblem": [2, 3], "except": 14, "exclud": 14, "expect": 14, "exploit": 0, "explor": 0, "f": [2, 3, 6, 7, 8, 9, 10, 11, 14], "fashion": 14, "find": 14, "first": [11, 12, 14], "fit": [4, 6, 8, 10, 11, 12, 14], "fix": 14, "fixtur": 14, "flat": [8, 12, 14], "flat_crossov": [1, 2], "flatcrossov": [2, 12, 14], "flip": [4, 14], "float": [2, 3, 4, 6, 8, 10, 11, 14], "float_list": 2, "float_numb": 2, "float_to_bit": [1, 2, 14], "float_uniform_mut": [1, 2], "floats_to_bit": [1, 2, 14], "floatuniformmut": [2, 4, 14], "fm": [6, 7, 9, 14], "fms_instanc": [2, 14], "follow": 14, "form": 2, "frequenc": [8, 10], "from": [2, 4, 12, 13, 14], "function": [3, 4, 8, 10, 11, 12, 14], "gene": [3, 4], "gener": [3, 10, 14], "genet": [0, 3, 4, 10], "genom": 14, "geo": 11, "geodes": 11, "geograph": 11, "get": [13, 14], "get_par": [2, 13], "get_recombin": [2, 12], "given": [3, 5, 6, 8, 10, 11, 14], "global": [3, 8, 14], "goal": [3, 14], "gographical_dist": [9, 11], "grid": [0, 1, 3, 5, 14], "griewank": [6, 7, 14], "ha": [0, 8, 14], "have": [10, 14], "hole": 8, "holzman": [6, 7, 14], "hump": [8, 14], "hyper": [8, 14], "hypercub": [8, 14], "i": [0, 2, 3, 4, 6, 8, 10, 11, 14], "ident": 14, "ight": 8, "illeg": 14, "implement": [0, 3, 6, 8, 10, 14], "improv": 0, "includ": 14, "increment": 4, "index": [11, 13], "individu": [0, 1, 4, 12, 13, 14], "inform": 12, "initi": [2, 4, 5, 12, 13, 14], "input": [3, 8, 14], "insert": [4, 14], "insertion_mut": [1, 2], "insertionmut": [2, 4, 14], "instanc": [3, 4, 12, 14], "int": [2, 3, 5, 13, 14], "integ": [2, 14], "integr": 14, "interact": 0, "involv": 10, "its": [0, 2, 3, 10], "itself": 14, "k": 13, "known": [11, 14], "larg": 8, "last": 14, "least": [8, 14], "left": [8, 14], "length": [8, 10, 11, 14], "level": [12, 14], "levi": [6, 7, 14], "like": 0, "linear": [12, 14], "linear5": [2, 5, 14], "linear9": [2, 5, 14], "linear_5": [1, 2], "linear_9": [1, 2], "linear_crossov": [1, 2], "linearcrossov": [2, 12, 14], "list": [2, 3, 5, 6, 8, 10, 11, 12, 13, 14], "local": [10, 14], "locationsourc": 12, "machin": [0, 3], "made": 14, "maintain": 0, "make_2d_grid": [1, 2, 14], "male": 0, "map": 12, "massiv": 10, "match": 14, "matya": [6, 7, 14], "max": 3, "maxcut": [10, 14], "maxcut100": [7, 9, 14], "maxcut20_01": [7, 9, 14], "maxcut20_09": [7, 9, 14], "maxcut_inst": [2, 14], "maxim": [3, 14], "maximum": [8, 10], "mcccga": [3, 14], "mean": 14, "measur": 14, "met": 14, "method": [3, 6, 8, 11, 14], "min": 3, "minim": [3, 14], "minima": 14, "minimum": [3, 8, 14], "minumum": 11, "mmdp": [7, 9, 14], "mmdp_instanc": [2, 14], "mock": 14, "mockproblem": [2, 14], "modifi": [8, 14], "modul": 1, "more": 14, "move": 4, "multidimension": 8, "multimod": [8, 10], "multipl": [10, 14], "mutat": [1, 2, 14], "mutation_cand": 4, "mutation_oper": [1, 2], "mutationoper": [2, 4], "n": 8, "n_col": [1, 2, 5], "n_row": [1, 2, 5], "ndarrai": [3, 14], "nearli": 8, "necessari": 4, "neg": 14, "neighbor": [0, 5, 13, 14], "neighborhood": [1, 2, 14], "neighbors_posit": 14, "new": 4, "node": [10, 11], "non": 14, "none": [2, 4, 7, 8, 9, 10, 14], "normal": 10, "note": [8, 10, 11, 14], "notimplementederror": [6, 14], "number": [2, 3, 4, 5, 8, 10, 13, 14], "numpi": [3, 14], "object": [2, 3, 4, 5, 6, 12, 13, 14], "offspr": [12, 14], "one": [4, 11, 12, 14], "one_max": [7, 9], "one_point_crossov": [1, 2], "onemax": [9, 10, 14], "onepointcrossov": [2, 12, 14], "ones": [10, 14], "onli": [0, 14], "oper": [0, 4, 12, 14], "operaor": 0, "opposit": 14, "opt": [4, 14], "optim": [0, 1, 3, 6, 8, 10, 14], "optima": 10, "option": 4, "organ": 0, "origin": 14, "outer": 8, "output": 14, "over": 8, "p1": 12, "p2": 12, "packag": [0, 1], "pair": [12, 14], "paramet": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "parent": [12, 13, 14], "partial": [12, 14], "particularli": 10, "pattern": 2, "peak": [7, 9, 14], "peak_inst": [2, 14], "perform": [4, 8, 12, 13, 14], "permut": [7, 9, 14], "permutationproblem": [2, 14], "place": [4, 8, 10, 11, 14], "pmx": [12, 14], "pmx_crossov": [1, 2], "pmxcrossov": [2, 12, 14], "point": [4, 5, 8, 12, 14], "pop_list": 13, "popul": [0, 1, 13, 14], "posit": [4, 5, 12, 14], "pow": [2, 6, 7, 14], "powel": [6, 7, 14], "power": [8, 14], "predefin": 14, "principl": 0, "problem": [0, 1, 2, 3, 4, 12, 14], "process": 0, "produc": [12, 14], "promot": 0, "proper": 14, "provid": [4, 12, 14], "purpos": 14, "python": 0, "rac": 8, "rais": [6, 14], "random": [4, 13, 14], "randomli": [4, 10, 14], "rang": 10, "rastrigin": [6, 7, 14], "real": [0, 3, 14], "realproblem": [2, 3, 14], "recombin": [1, 2, 14], "recombination_oper": [1, 2], "recombinationoper": [2, 12], "region": 8, "remain": 14, "repres": [2, 3, 5, 6, 8, 10, 11, 14], "represent": 2, "reproduc": 14, "result": [12, 14], "return": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "revers": 4, "right": 14, "rosenbrock": [6, 7, 14], "rotat": [8, 14], "rothellipsoid": [6, 7], "roulett": 13, "roulette_wheel_select": [1, 2], "roulettewheelselect": [2, 13, 14], "round": [4, 8, 10, 11, 14], "rout": 11, "row": [2, 5], "run": 3, "run_alpha_cga_exampl": [2, 3], "run_ccga_exampl": [2, 3], "run_cga_exampl": [2, 3], "run_mcccga_exampl": [2, 3], "run_sync_cga_exampl": [2, 3], "salesman": [11, 14], "same": 14, "sampl": [4, 14], "satisfact": 14, "satisfi": 10, "satman": [4, 12], "schaffer": [6, 7, 14], "schaffer2": [6, 7, 14], "schwefel": [6, 7, 14], "second": [11, 12], "seed": 14, "segment": 4, "select": [1, 2, 4, 14], "selection_oper": [1, 2], "selectionoper": [2, 13], "set": [10, 14], "setup_bentcigar": [2, 14], "setup_chichinadz": [2, 14], "setup_dropwav": [2, 14], "setup_griewank": [2, 14], "setup_holzman": [2, 14], "setup_individu": [2, 14], "setup_levi": [2, 14], "setup_matya": [2, 14], "setup_par": [2, 14], "setup_popul": [2, 14], "setup_powel": [2, 14], "setup_problem": [2, 14], "setup_rothellipsoid": [2, 14], "setup_schaff": [2, 14], "setup_schaffer2": [2, 14], "setup_styblinski_tang": [2, 14], "setup_sumofdifferentpow": [2, 14], "setup_threehump": [2, 14], "setup_zettl": [2, 14], "sever": 14, "should": [8, 14], "shuffl": [4, 14], "shuffle_mut": [1, 2], "shufflemut": [2, 4, 14], "simpl": [3, 10, 14], "simpli": 14, "sin": 8, "singl": [4, 12, 14], "single_object": [2, 6], "size": [3, 14], "solut": [3, 6, 14], "solv": [3, 11], "some": 14, "sound": [8, 10], "sourc": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "spatial": 0, "specif": [8, 14], "specifi": 3, "sphere": [6, 7, 14], "sqrt": 8, "squar": [3, 14], "start": [2, 13], "step": 14, "still": 14, "string": 14, "structur": 0, "styblinski": [8, 14], "styblinskitang": [6, 7, 14], "subclass": [6, 14], "submodul": [1, 7, 9], "subpackag": 1, "subproblem": 10, "subsequ": 4, "subtract": 4, "sum": [3, 8, 10, 14], "sum_": 8, "sumofdifferentpow": [6, 7, 14], "surround": 14, "swap": [4, 14], "swap_mut": [1, 2], "swapmut": [2, 4, 14], "sync_cga": [3, 14], "synchron": 3, "tang": [8, 14], "target": [10, 14], "techniqu": 14, "test": [1, 2, 8, 10], "test_acklei": [1, 2], "test_arithmetic_crossov": [1, 2], "test_bentcigar_funct": [1, 2], "test_bit_flip_mut": [1, 2], "test_bits_to_float": [2, 14], "test_blxalpha_crossov": [1, 2], "test_bohachevski": [1, 2], "test_byte_mut": [1, 2], "test_byte_mutation_random": [1, 2], "test_byte_one_point_crossov": [1, 2], "test_byte_oper": [1, 2], "test_byte_uniform_crossov": [1, 2], "test_chichinadze_funct": [1, 2], "test_compact_13": [1, 2], "test_compact_21": [1, 2], "test_compact_25": [1, 2], "test_compact_9": [1, 2], "test_count_sat": [1, 2], "test_dropwave_funct": [1, 2], "test_ecc": [1, 2], "test_fitness_evalu": [2, 14], "test_flat_crossov": [1, 2], "test_float_to_bit": [2, 14], "test_float_uniform_mut": [1, 2], "test_floats_to_bit": [2, 14], "test_fm": [1, 2], "test_get_set_neighbor": [2, 14], "test_get_set_neighbors_posit": [2, 14], "test_grid": [1, 2], "test_griewank_funct": [1, 2], "test_holzman_funct": [1, 2], "test_illegal_genome_typ": [2, 14], "test_individu": [1, 2], "test_individual_init": [2, 14], "test_initial_population_s": [2, 14], "test_insertion_mut": [1, 2], "test_levy_funct": [1, 2], "test_linear_5": [1, 2], "test_linear_9": [1, 2], "test_linear_crossov": [1, 2], "test_matyas_funct": [1, 2], "test_maxcut100": [1, 2], "test_maxcut20_01": [1, 2], "test_maxcut20_09": [1, 2], "test_mmdp": [1, 2], "test_mmdp_funct": [2, 14], "test_neighborhood_assign": [2, 14], "test_one_max": [1, 2], "test_one_point_crossov": [1, 2], "test_optimizer_alpha_cga": [1, 2], "test_optimizer_alpha_cga_binari": [2, 14], "test_optimizer_alpha_cga_no_vari": [2, 14], "test_optimizer_alpha_cga_permut": [2, 14], "test_optimizer_alpha_cga_r": [2, 14], "test_optimizer_ccga": [1, 2], "test_optimizer_ccga_binari": [2, 14], "test_optimizer_cga": [1, 2], "test_optimizer_cga_binari": [2, 14], "test_optimizer_cga_no_vari": [2, 14], "test_optimizer_cga_permut": [2, 14], "test_optimizer_cga_r": [2, 14], "test_optimizer_mcccga_binari": [2, 14], "test_optimizer_mccga": [1, 2], "test_optimizer_sync_cga": [1, 2], "test_optimizer_sync_cga_binari": [2, 14], "test_optimizer_sync_cga_no_vari": [2, 14], "test_optimizer_sync_cga_permut": [2, 14], "test_optimizer_sync_cga_r": [2, 14], "test_peak": [1, 2], "test_pmx_crossov": [1, 2], "test_popul": [1, 2], "test_pow_funct": [1, 2], "test_powell_funct": [1, 2], "test_randomize_binari": [2, 14], "test_randomize_permut": [2, 14], "test_randomize_real_valu": [2, 14], "test_rastrigin": [1, 2], "test_rosenbrock": [1, 2], "test_rothellipsoid_funct": [1, 2], "test_roulette_wheel_select": [1, 2], "test_schaffer2_funct": [1, 2], "test_schaffer_funct": [1, 2], "test_schwefel": [1, 2], "test_shuffle_mut": [1, 2], "test_spher": [1, 2], "test_styblinskitang_funct": [1, 2], "test_sumofdifferentpowers_funct": [1, 2], "test_swap_mut": [1, 2], "test_threehumps_funct": [1, 2], "test_tournament_select": [1, 2], "test_tsp": [1, 2], "test_two_opt_mut": [1, 2], "test_two_point_crossov": [1, 2], "test_unfair_average_crossov": [1, 2], "test_uniform_crossov": [1, 2], "test_zakharov_funct": [1, 2], "test_zettle_funct": [1, 2], "thi": [0, 3, 8, 11, 14], "thorough": 14, "those": [8, 10], "three": [8, 10, 14], "threehump": [6, 7, 14], "topologi": 0, "toroid": 14, "total": [11, 14], "tournament": 13, "tournament_select": [1, 2], "tournamentselect": [2, 13, 14], "tradit": 0, "travel": [11, 14], "true": 14, "tsp": [7, 9, 14], "tupl": [2, 3, 5, 14], "two": [4, 8, 11, 12, 14], "two_opt_mut": [1, 2], "two_point_crossov": [1, 2], "twooptmut": [2, 4, 14], "twopointcrossov": [2, 12, 14], "type": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "typic": 14, "unchang": 14, "unfair": [12, 14], "unfair_avarage_crossov": [1, 2], "unfairavaragecrossov": [2, 12, 14], "uniform": [4, 12, 14], "uniform_crossov": [1, 2], "uniformcrossov": [2, 12, 14], "uniformli": 4, "up": 14, "us": [3, 8, 10, 11, 12, 14], "usual": [8, 14], "util": 0, "valid": 14, "vallei": 14, "valu": [0, 2, 3, 4, 6, 8, 10, 11, 14], "variabl": [8, 10, 14], "variou": 14, "verifi": 14, "well": 14, "wheel": 13, "when": [3, 14], "where": [2, 3, 8, 10, 11, 14], "which": [8, 10, 12, 14], "whose": 5, "wide": [8, 14], "wise": [4, 14], "within": [8, 14], "wrap": [4, 5, 14], "x": [3, 5, 6, 8, 10, 11, 14], "x1": 8, "x2": 8, "x_": 8, "x_i": [8, 14], "xi": [8, 14], "y": [5, 8], "zakharov": [6, 7, 14], "zero": 14, "zettl": [6, 7, 14]}, "titles": ["PYCELLGA Documentation", "pycellga", "pycellga package", "pycellga.example package", "pycellga.mutation package", "pycellga.neighborhoods package", "pycellga.problems package", "pycellga.problems.single_objective package", "pycellga.problems.single_objective.continuous package", "pycellga.problems.single_objective.discrete package", "pycellga.problems.single_objective.discrete.binary package", "pycellga.problems.single_objective.discrete.permutation package", "pycellga.recombination package", "pycellga.selection package", "pycellga.tests package", "setup module"], "titleterms": {"abstract_problem": 6, "acklei": 8, "arithmetic_crossov": 12, "assert": 14, "bentcigar": 8, "binari": 10, "bit_flip_mut": 4, "blxalpha_crossov": 12, "bohachevski": 8, "byte_mut": 4, "byte_mutation_random": 4, "byte_one_point_crossov": 12, "byte_oper": 2, "byte_uniform_crossov": 12, "chichinadz": 8, "compact_13": 5, "compact_21": 5, "compact_25": 5, "compact_9": 5, "conftest": 14, "content": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "continu": 8, "count_sat": 10, "discret": [9, 10, 11], "document": 0, "dropwav": 8, "ecc": 10, "exampl": 3, "example_alpha_cga": 3, "example_ccga": 3, "example_cga": 3, "example_mcccga": 3, "example_sync_cga": 3, "flat_crossov": 12, "float_uniform_mut": 4, "fm": [8, 10], "grid": 2, "griewank": 8, "holzman": 8, "individu": 2, "insertion_mut": 4, "levi": 8, "linear_5": 5, "linear_9": 5, "linear_crossov": 12, "matya": 8, "maxcut100": 10, "maxcut20_01": 10, "maxcut20_09": 10, "mmdp": 10, "modul": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mutat": 4, "mutation_oper": 4, "neighborhood": 5, "one_max": 10, "one_point_crossov": 12, "optim": 2, "packag": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "peak": 10, "permut": 11, "pmx_crossov": 12, "popul": 2, "pow": 8, "powel": 8, "problem": [6, 7, 8, 9, 10, 11], "pycellga": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "rastrigin": 8, "recombin": 12, "recombination_oper": 12, "rosenbrock": 8, "rothellipsoid": 8, "roulette_wheel_select": 13, "schaffer": 8, "schaffer2": 8, "schwefel": 8, "select": 13, "selection_oper": 13, "setup": 15, "shuffle_mut": 4, "single_object": [7, 8, 9, 10, 11], "sphere": 8, "styblinskitang": 8, "submodul": [2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14], "subpackag": [2, 6, 7, 9], "sumofdifferentpow": 8, "swap_mut": 4, "test": 14, "test_acklei": 14, "test_arithmetic_crossov": 14, "test_bentcigar_funct": 14, "test_bit_flip_mut": 14, "test_blxalpha_crossov": 14, "test_bohachevski": 14, "test_byte_mut": 14, "test_byte_mutation_random": 14, "test_byte_one_point_crossov": 14, "test_byte_oper": 14, "test_byte_uniform_crossov": 14, "test_chichinadze_funct": 14, "test_compact_13": 14, "test_compact_21": 14, "test_compact_25": 14, "test_compact_9": 14, "test_count_sat": 14, "test_dropwave_funct": 14, "test_ecc": 14, "test_flat_crossov": 14, "test_float_uniform_mut": 14, "test_fm": 14, "test_grid": 14, "test_griewank_funct": 14, "test_holzman_funct": 14, "test_individu": 14, "test_insertion_mut": 14, "test_levy_funct": 14, "test_linear_5": 14, "test_linear_9": 14, "test_linear_crossov": 14, "test_matyas_funct": 14, "test_maxcut100": 14, "test_maxcut20_01": 14, "test_maxcut20_09": 14, "test_mmdp": 14, "test_one_max": 14, "test_one_point_crossov": 14, "test_optimizer_alpha_cga": 14, "test_optimizer_ccga": 14, "test_optimizer_cga": 14, "test_optimizer_mccga": 14, "test_optimizer_sync_cga": 14, "test_peak": 14, "test_pmx_crossov": 14, "test_popul": 14, "test_pow_funct": 14, "test_powell_funct": 14, "test_rastrigin": 14, "test_rosenbrock": 14, "test_rothellipsoid_funct": 14, "test_roulette_wheel_select": 14, "test_schaffer2_funct": 14, "test_schaffer_funct": 14, "test_schwefel": 14, "test_shuffle_mut": 14, "test_spher": 14, "test_styblinskitang_funct": 14, "test_sumofdifferentpowers_funct": 14, "test_swap_mut": 14, "test_threehumps_funct": 14, "test_tournament_select": 14, "test_tsp": 14, "test_two_opt_mut": 14, "test_two_point_crossov": 14, "test_unfair_average_crossov": 14, "test_uniform_crossov": 14, "test_zakharov_funct": 14, "test_zettle_funct": 14, "threehump": 8, "tournament_select": 13, "tsp": 11, "two_opt_mut": 4, "two_point_crossov": 12, "unfair_avarage_crossov": 12, "uniform_crossov": 12, "zakharov": 8, "zettl": 8}}) \ No newline at end of file diff --git a/setup.html b/setup.html new file mode 100644 index 0000000..a171365 --- /dev/null +++ b/setup.html @@ -0,0 +1,106 @@ + + + + + + + setup module — PYCELLGA Documentation 1.0.0 documentation + + + + + + + + + + + + + + + + + +
                                            + + +
                                            + +
                                            +
                                            +
                                            + +
                                            +
                                            +
                                            +
                                            + +
                                            +

                                            setup module

                                            +
                                            + + +
                                            +
                                            +
                                            + +
                                            + +
                                            +

                                            © Copyright 2024, SEVGİ AKTEN KARAKAYA, MEHMET HAKAN SATMAN.

                                            +
                                            + + Built with Sphinx using a + theme + provided by Read the Docs. + + +
                                            +
                                            +
                                            +
                                            +
                                            + + + + \ No newline at end of file diff --git a/src.html b/src.html deleted file mode 100644 index cbdbfd8..0000000 --- a/src.html +++ /dev/null @@ -1,1081 +0,0 @@ - - - - - - - src package — PYCELLGA Documentation 1.0.0 documentation - - - - - - - - - - - - - - - - - - - -
                                            - - -
                                            - -
                                            -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - -
                                            -

                                            src package

                                            -
                                            -

                                            Subpackages

                                            -
                                            - -
                                            -
                                            -
                                            -

                                            Submodules

                                            -
                                            -
                                            -

                                            src.byte_operators module

                                            -
                                            -
                                            -src.byte_operators.bits_to_float(bit_list: list[int]) float[source]
                                            -

                                            Convert a bit representation to its float value.

                                            -
                                            -
                                            Parameters:
                                            -

                                            bit_list (list of int) – A list of 32 integers (0 or 1) representing the bit pattern of the float.

                                            -
                                            -
                                            Returns:
                                            -

                                            The float value represented by the bit pattern.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.byte_operators.bits_to_floats(bit_list: list[int]) list[float][source]
                                            -

                                            Convert a combined bit representation back to a list of floats.

                                            -
                                            -
                                            Parameters:
                                            -

                                            bit_list (list of int) – A list of integers (0 or 1) representing the combined bit patterns of the floats.

                                            -
                                            -
                                            Returns:
                                            -

                                            The list of float values represented by the bit pattern.

                                            -
                                            -
                                            Return type:
                                            -

                                            list of float

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.byte_operators.float_to_bits(float_number: float) list[int][source]
                                            -

                                            Convert a float to its bit representation.

                                            -
                                            -
                                            Parameters:
                                            -

                                            float_number (float) – The float number to be converted.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list of 32 integers (0 or 1) representing the bit pattern of the float.

                                            -
                                            -
                                            Return type:
                                            -

                                            list of int

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.byte_operators.floats_to_bits(float_list: list[float]) list[int][source]
                                            -

                                            Convert a list of floats to their combined bit representation.

                                            -
                                            -
                                            Parameters:
                                            -

                                            float_list (list of float) – The list of float numbers to be converted.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list of integers (0 or 1) representing the combined bit patterns of the floats.

                                            -
                                            -
                                            Return type:
                                            -

                                            list of int

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.grid module

                                            -
                                            -
                                            -class src.grid.Grid(n_rows: int, n_cols: int)[source]
                                            -

                                            Bases: object

                                            -

                                            A class to represent a 2D grid.

                                            -
                                            -
                                            -n_rows
                                            -

                                            Number of rows in the grid.

                                            -
                                            -
                                            Type:
                                            -

                                            int

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -n_cols
                                            -

                                            Number of columns in the grid.

                                            -
                                            -
                                            Type:
                                            -

                                            int

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -__init__(n_rows: int, n_cols: int)[source]
                                            -

                                            Initialize the Grid with the number of rows and columns.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • n_rows (int) – Number of rows in the grid.

                                            • -
                                            • n_cols (int) – Number of columns in the grid.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -make_2d_grid() list[source]
                                            -

                                            Create a 2D grid where each cell is represented by a tuple (row, column).

                                            -
                                            -
                                            Returns:
                                            -

                                            A list of tuples where each tuple represents a grid cell. -Each tuple is of the form (row, column), with rows and columns starting from 1.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.individual module

                                            -
                                            -
                                            -

                                            src.optimizer module

                                            -
                                            -
                                            -

                                            src.population module

                                            -
                                            -
                                            -

                                            Module contents

                                            -
                                            -
                                            - - -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - - - - \ No newline at end of file diff --git a/src.mutation.html b/src.mutation.html deleted file mode 100644 index 6fd82da..0000000 --- a/src.mutation.html +++ /dev/null @@ -1,537 +0,0 @@ - - - - - - - src.mutation package — PYCELLGA Documentation 1.0.0 documentation - - - - - - - - - - - - - - - - - - - -
                                            - - -
                                            - -
                                            -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - -
                                            -

                                            src.mutation package

                                            -
                                            -

                                            Submodules

                                            -
                                            -
                                            -

                                            src.mutation.bit_flip_mutation module

                                            -
                                            -
                                            -class src.mutation.bit_flip_mutation.BitFlipMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            BitFlipMutation performs a bit flip mutation on an individual in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the BitFlipMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a bit flip mutation on the candidate individual.

                                            -

                                            A single bit in the candidate’s chromosome is randomly selected and flipped -(i.e., a 0 is changed to a 1, or a 1 is changed to a 0).

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.byte_mutation module

                                            -
                                            -
                                            -class src.mutation.byte_mutation.ByteMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            ByteMutation operator defined in (Satman, 2013). ByteMutation performs a byte-wise mutation -on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the ByteMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a byte-wise mutation on the candidate individual.

                                            -

                                            A single byte in one of the candidate’s chromosome’s floating-point numbers is randomly selected -and either incremented or decremented by 1, wrapping around if necessary.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.byte_mutation_random module

                                            -
                                            -
                                            -class src.mutation.byte_mutation_random.ByteMutationRandom(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            ByteMutationRandom operator defined in (Satman, 2013). ByteMutationRandom performs -a random byte mutation on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the ByteMutationRandom object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a random byte mutation on the candidate individual.

                                            -

                                            A single byte in one of the candidate’s chromosome’s floating-point numbers is randomly selected -and mutated to a random value.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.float_uniform_mutation module

                                            -
                                            -
                                            -class src.mutation.float_uniform_mutation.FloatUniformMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            FloatUniformMutation performs a uniform mutation on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the FloatUniformMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a uniform mutation on the candidate individual.

                                            -

                                            Each gene in the candidate’s chromosome is mutated by adding or subtracting a random float uniformly -sampled from [0, 1]. The mutation is rounded to 5 decimal places.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.insertion_mutation module

                                            -
                                            -
                                            -class src.mutation.insertion_mutation.InsertionMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            InsertionMutation performs an insertion mutation on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the InsertionMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform an insertion mutation on the candidate individual.

                                            -

                                            A gene in the candidate’s chromosome is randomly selected and moved to a new position in the chromosome.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.mutation_operator module

                                            -
                                            -
                                            -class src.mutation.mutation_operator.MutationOperator[source]
                                            -

                                            Bases: object

                                            -
                                            -
                                            -mutate()[source]
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.shuffle_mutation module

                                            -
                                            -
                                            -class src.mutation.shuffle_mutation.ShuffleMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            ShuffleMutation performs a shuffle mutation on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the ShuffleMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a shuffle mutation on the candidate individual.

                                            -

                                            A subsequence of genes in the candidate’s chromosome is randomly selected and shuffled.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.swap_mutation module

                                            -
                                            -
                                            -class src.mutation.swap_mutation.SwapMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            SwapMutation performs a swap mutation on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the SwapMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a swap mutation on the candidate individual.

                                            -

                                            Two genes in the candidate’s chromosome are randomly selected and swapped.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.mutation.two_opt_mutation module

                                            -
                                            -
                                            -class src.mutation.two_opt_mutation.TwoOptMutation(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Bases: MutationOperator

                                            -

                                            TwoOptMutation performs a 2-opt mutation on an individual’s chromosome in a Genetic Algorithm.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            -
                                            -__init__(mutation_cand: Individual = None, problem: AbstractProblem = None)[source]
                                            -

                                            Initialize the TwoOptMutation object.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • mutation_cand (Individual, optional) – The candidate individual to be mutated (default is None).

                                            • -
                                            • problem (AbstractProblem, optional) – The problem instance that provides the fitness function (default is None).

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -mutate() Individual[source]
                                            -

                                            Perform a 2-opt mutation on the candidate individual.

                                            -

                                            A segment of the candidate’s chromosome is randomly selected and reversed.

                                            -
                                            -
                                            Returns:
                                            -

                                            A new individual with the mutated chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            Module contents

                                            -
                                            -
                                            - - -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - - - - \ No newline at end of file diff --git a/src.problems.html b/src.problems.html deleted file mode 100644 index e44badb..0000000 --- a/src.problems.html +++ /dev/null @@ -1,225 +0,0 @@ - - - - - - - src.problems package — PYCELLGA Documentation 1.0.0 documentation - - - - - - - - - - - - - - - - - - - -
                                            - - -
                                            - -
                                            -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - -
                                            -

                                            src.problems package

                                            -
                                            -

                                            Subpackages

                                            -
                                            - -
                                            -
                                            -
                                            -

                                            Submodules

                                            -
                                            -
                                            -

                                            src.problems.abstract_problem module

                                            -
                                            -
                                            -class src.problems.abstract_problem.AbstractProblem[source]
                                            -

                                            Bases: object

                                            -

                                            An abstract base class for optimization problems.

                                            -
                                            -
                                            -f(x)[source]
                                            -

                                            Evaluates the fitness of a given solution x.

                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Evaluate the fitness of a given solution x.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list representing a candidate solution.

                                            -
                                            -
                                            Returns:
                                            -

                                            The fitness value of the candidate solution.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            Raises:
                                            -

                                            NotImplementedError – If the method is not implemented by a subclass.

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            Module contents

                                            -
                                            -
                                            - - -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - - - - \ No newline at end of file diff --git a/src.problems.single_objective.discrete.html b/src.problems.single_objective.discrete.html deleted file mode 100644 index 0d8fe16..0000000 --- a/src.problems.single_objective.discrete.html +++ /dev/null @@ -1,247 +0,0 @@ - - - - - - - src.problems.single_objective.discrete package — PYCELLGA Documentation 1.0.0 documentation - - - - - - - - - - - - - - - - - - - -
                                            - - -
                                            - -
                                            -
                                            -
                                            - -
                                            -
                                            - - -
                                            -
                                            -
                                            -
                                            - - - - \ No newline at end of file diff --git a/src.problems.single_objective.html b/src.problems.single_objective.html deleted file mode 100644 index bd51792..0000000 --- a/src.problems.single_objective.html +++ /dev/null @@ -1,389 +0,0 @@ - - - - - - - src.problems.single_objective package — PYCELLGA Documentation 1.0.0 documentation - - - - - - - - - - - - - - - - - - - -
                                            - - -
                                            - -
                                            -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - -
                                            -

                                            src.problems.single_objective package

                                            -
                                            -

                                            Subpackages

                                            -
                                            - -
                                            -
                                            -
                                            -

                                            Module contents

                                            -
                                            -
                                            - - -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - - - - \ No newline at end of file diff --git a/src.tests.html b/src.tests.html deleted file mode 100644 index 3b5589a..0000000 --- a/src.tests.html +++ /dev/null @@ -1,2699 +0,0 @@ - - - - - - - src.tests package — PYCELLGA Documentation 1.0.0 documentation - - - - - - - - - - - - - - - - - - -
                                            - - -
                                            - -
                                            -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - -
                                            -

                                            src.tests package

                                            -
                                            -

                                            Submodules

                                            -
                                            -
                                            -

                                            src.tests.conftest module

                                            -
                                            -
                                            -

                                            src.tests.test_ackley module

                                            -
                                            -
                                            -src.tests.test_ackley.test_ackley()[source]
                                            -

                                            Test the Ackley function implementation.

                                            -

                                            This test verifies the correctness of the Ackley function by evaluating it at several points and -comparing the results to expected values.

                                            -

                                            The Ackley function is commonly used as a benchmark for optimization algorithms. It is a continuous -function with multiple local minima and a single global minimum.

                                            -

                                            The test performs the following checks: -1. Evaluates the Ackley function at a set of given points. -2. Compares the computed values to expected results.

                                            -
                                            -
                                            Parameters:
                                            -

                                            None

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the computed values do not match the expected values.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_arithmetic_crossover module

                                            -
                                            -
                                            -class src.tests.test_arithmetic_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_arithmetic_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_arithmetic_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_arithmetic_crossover.test_arithmetic_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the ArithmeticCrossover function implementation.

                                            -

                                            This test checks the arithmetic crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_bentcigar_function module

                                            -
                                            -
                                            -src.tests.test_bentcigar_function.setup_bentcigar()[source]
                                            -

                                            Fixture for creating an instance of the Bentcigar problem.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the Bentcigar problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            Bentcigar

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_bentcigar_function.test_bentcigar_function(setup_bentcigar)[source]
                                            -

                                            Test the Bentcigar function implementation.

                                            -

                                            This test checks the calculation of the Bentcigar function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_bentcigar (fixture) – The fixture providing the Bentcigar problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_bit_flip_mutation module

                                            -
                                            -
                                            -src.tests.test_bit_flip_mutation.test_bit_flip_mutation()[source]
                                            -

                                            Test the BitFlipMutation class for the Individual class on the OneMax problem.

                                            -

                                            This test verifies that the BitFlipMutation correctly mutates the chromosome of -an Individual by flipping some bits and ensures that the mutation is applied -correctly. The test checks that: -1. The chromosome is mutated. -2. The chromosome size remains unchanged. -3. The fitness value of the mutated individual is computed correctly.

                                            -

                                            The function uses a fixed random seed to ensure reproducibility of the results.

                                            -

                                            Notes

                                            -

                                            The test assumes that the BitFlipMutation class correctly implements bit flipping -mutation and that the OneMax problem correctly evaluates the fitness of an individual.

                                            -

                                            The following assertions are made: -- At least one bit in the chromosome is changed. -- The size of the mutated individual’s chromosome matches the original size. -- The fitness value of the mutated individual is calculated correctly.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for correctness are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_blxalpha_crossover module

                                            -
                                            -
                                            -class src.tests.test_blxalpha_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_blxalpha_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_blxalpha_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_blxalpha_crossover.test_blxalpha_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the BlxalphaCrossover function implementation.

                                            -

                                            This test checks the BLX-alpha crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_bohachevsky module

                                            -
                                            -
                                            -src.tests.test_bohachevsky.test_bohachevsky()[source]
                                            -

                                            Test the Bohachevsky function implementation.

                                            -

                                            This test verifies the correctness of the Bohachevsky function by evaluating it at several points and -comparing the results to expected values.

                                            -

                                            The Bohachevsky function is used as a benchmark for optimization algorithms. It has multiple local minima -and is designed to test the performance of optimization algorithms.

                                            -

                                            The test performs the following checks: -1. Evaluates the Bohachevsky function at specific points. -2. Compares the computed values to the expected rounded results.

                                            -
                                            -
                                            Parameters:
                                            -

                                            None

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the computed values do not match the expected rounded values.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_byte_mutation module

                                            -
                                            -
                                            -class src.tests.test_byte_mutation.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_byte_mutation.setup_individual()[source]
                                            -

                                            Fixture for creating a sample Individual instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An individual instance with a predefined chromosome and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_mutation.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_mutation.test_byte_mutation(setup_individual, setup_problem)[source]
                                            -

                                            Test the ByteMutation function implementation.

                                            -

                                            This test checks the byte-wise mutation on an individual’s chromosome by verifying the mutation -operation and the integrity of the chromosome.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_individual (fixture) – The fixture providing the sample individual.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_byte_mutation_random module

                                            -
                                            -
                                            -class src.tests.test_byte_mutation_random.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_byte_mutation_random.setup_individual()[source]
                                            -

                                            Fixture for creating a sample Individual instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An individual instance with a predefined chromosome and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_mutation_random.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_mutation_random.test_byte_mutation_random(setup_individual, setup_problem)[source]
                                            -

                                            Test the ByteMutationRandom function implementation.

                                            -

                                            This test checks the byte mutation on an individual’s chromosome by verifying the mutation -operation and the integrity of the chromosome.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_individual (fixture) – The fixture providing the sample individual.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_byte_one_point_crossover module

                                            -
                                            -
                                            -class src.tests.test_byte_one_point_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_byte_one_point_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_one_point_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_one_point_crossover.test_byte_one_point_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the ByteOnePointCrossover function implementation.

                                            -

                                            This test checks the byte-level one-point crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_byte_operators module

                                            -
                                            -
                                            -src.tests.test_byte_operators.test_bits_to_float()[source]
                                            -

                                            Test the bits_to_float function.

                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_operators.test_bits_to_floats()[source]
                                            -

                                            Test the bits_to_floats function.

                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_operators.test_float_to_bits()[source]
                                            -

                                            Test the float_to_bits function.

                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_operators.test_floats_to_bits()[source]
                                            -

                                            Test the floats_to_bits function.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_byte_uniform_crossover module

                                            -
                                            -
                                            -class src.tests.test_byte_uniform_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_byte_uniform_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_uniform_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_byte_uniform_crossover.test_byte_uniform_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the ByteUniformCrossover function implementation.

                                            -

                                            This test checks the byte-level uniform crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_chichinadze_function module

                                            -
                                            -
                                            -src.tests.test_chichinadze_function.setup_chichinadze()[source]
                                            -

                                            Fixture for creating an instance of the Chichinadze problem.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the Chichinadze problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            Chichinadze

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_chichinadze_function.test_chichinadze_function(setup_chichinadze)[source]
                                            -

                                            Test the Chichinadze function implementation.

                                            -

                                            This test checks the calculation of the Chichinadze function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_chichinadze (fixture) – The fixture providing the Chichinadze problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_compact_13 module

                                            -
                                            -
                                            -src.tests.test_compact_13.test_compact_13()[source]
                                            -

                                            Test the Compact13 class for calculating neighbor positions in a grid.

                                            -

                                            This test verifies that the Compact13 class correctly calculates the positions -of the 12 neighbors surrounding a given position in a grid. It ensures that: -1. The number of neighbors is always 12 for positions not on the boundary of the grid. -2. Positions on the boundary of the grid still correctly return 12 neighbors.

                                            -

                                            The test uses three different positions within the grid to validate the functionality -of the Compact13 neighborhood calculation.

                                            -

                                            Notes

                                            -

                                            The Compact13 neighborhood considers all 12 surrounding cells in a 5x5 grid centered -on a given position, excluding the cell itself. The grid is assumed to be toroidal, -meaning that positions on the edges wrap around to the opposite edge.

                                            -

                                            The following assertions are made: -- The number of calculated neighbor positions is 12 for various positions in the grid.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the number of calculated neighbor positions is not 12.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_compact_21 module

                                            -
                                            -
                                            -src.tests.test_compact_21.test_compact_21()[source]
                                            -

                                            Test the Compact21 class for calculating neighbor positions in a grid.

                                            -

                                            This test verifies that the Compact21 class correctly calculates the positions -of the 20 neighbors surrounding a given position in a grid. It ensures that: -1. The number of neighbors is always 20 for positions not on the boundary of the grid. -2. Positions on the boundary of the grid still correctly return 20 neighbors.

                                            -

                                            The test uses three different positions within the grid to validate the functionality -of the Compact21 neighborhood calculation.

                                            -

                                            Notes

                                            -

                                            The Compact21 neighborhood considers all 20 surrounding cells in a 5x5 grid centered -on a given position, excluding the cell itself. The grid is assumed to be toroidal, -meaning that positions on the edges wrap around to the opposite edge.

                                            -

                                            The following assertions are made: -- The number of calculated neighbor positions is 20 for various positions in the grid.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the number of calculated neighbor positions is not 20.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_compact_25 module

                                            -
                                            -
                                            -src.tests.test_compact_25.test_compact_25()[source]
                                            -

                                            Test the Compact25 class for calculating neighbor positions in a grid.

                                            -

                                            This test verifies that the Compact25 class correctly calculates the positions -of the 24 neighbors surrounding a given position in a grid. It ensures that: -1. The number of neighbors is always 24 for positions not on the boundary of the grid. -2. Positions on the boundary of the grid still correctly return 24 neighbors.

                                            -

                                            The test uses three different positions within the grid to validate the functionality -of the Compact25 neighborhood calculation.

                                            -

                                            Notes

                                            -

                                            The Compact25 neighborhood considers all 24 surrounding cells in a 5x5 grid centered -on a given position, excluding the cell itself. The grid is assumed to be toroidal, -meaning that positions on the edges wrap around to the opposite edge.

                                            -

                                            The following assertions are made: -- The number of calculated neighbor positions is 24 for various positions in the grid.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the number of calculated neighbor positions is not 24.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_compact_9 module

                                            -
                                            -
                                            -src.tests.test_compact_9.test_compact_9()[source]
                                            -

                                            Test the Compact9 class for calculating neighbor positions in a grid.

                                            -

                                            This test verifies that the Compact9 class correctly calculates the positions -of the 8 neighbors surrounding a given position in a grid. It ensures that: -1. The number of neighbors is always 8 for positions not on the boundary of the grid. -2. Positions on the boundary of the grid still correctly return 8 neighbors.

                                            -

                                            The test uses three different positions within the grid to validate the functionality -of the Compact9 neighborhood calculation.

                                            -

                                            Notes

                                            -

                                            The Compact9 neighborhood considers all 8 surrounding cells in a 3x3 grid centered -on a given position. The grid is assumed to be toroidal, meaning that positions on the -edges wrap around to the opposite edge.

                                            -

                                            The following assertions are made: -- The number of calculated neighbor positions is 8 for various positions in the grid.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the number of calculated neighbor positions is not 8.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_count_sat module

                                            -
                                            -
                                            -src.tests.test_count_sat.test_count_sat()[source]
                                            -

                                            Test the CountSat function implementation.

                                            -

                                            This test verifies the calculation of the CountSat function value for specific binary input values.

                                            -

                                            The CountSat function evaluates the satisfaction of a set of binary clauses. This test ensures the -function computes the correct results for specific test inputs, including cases where all variables -are set to 1.

                                            -

                                            Examples

                                            -
                                            >>> test_count_sat()
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_dropwave_function module

                                            -
                                            -
                                            -src.tests.test_dropwave_function.setup_dropwave()[source]
                                            -

                                            Fixture for creating an instance of the Dropwave problem.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the Dropwave problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            Dropwave

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_dropwave_function.test_dropwave_function(setup_dropwave)[source]
                                            -

                                            Test the Dropwave function implementation.

                                            -

                                            This test checks the calculation of the Dropwave function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_dropwave (fixture) – The fixture providing the Dropwave problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_ecc module

                                            -
                                            -
                                            -src.tests.test_ecc.ecc_instance()[source]
                                            -

                                            Fixture for creating an instance of the Ecc class.

                                            -

                                            This fixture returns an instance of the Ecc class to be used in tests.

                                            -
                                            - -
                                            -
                                            -src.tests.test_ecc.test_ecc(ecc_instance)[source]
                                            -

                                            Test the ECC function implementation.

                                            -

                                            This test checks the calculation of the ECC function value for a given list of binary variables. -It uses predefined inputs and compares the outputs to expected values.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_flat_crossover module

                                            -
                                            -
                                            -class src.tests.test_flat_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_flat_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_flat_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_flat_crossover.test_flat_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the FlatCrossover function implementation.

                                            -

                                            This test checks the flat crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_float_uniform_mutation module

                                            -
                                            -
                                            -class src.tests.test_float_uniform_mutation.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_float_uniform_mutation.setup_individual()[source]
                                            -

                                            Fixture for creating a sample Individual instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An individual instance with a predefined chromosome and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            Individual

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_float_uniform_mutation.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_float_uniform_mutation.test_float_uniform_mutation(setup_individual, setup_problem)[source]
                                            -

                                            Test the FloatUniformMutation function implementation.

                                            -

                                            This test checks the uniform mutation on an individual’s chromosome by verifying the mutation -operation and the integrity of the chromosome.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_individual (fixture) – The fixture providing the sample individual.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_fms module

                                            -
                                            -
                                            -src.tests.test_fms.fms_instance()[source]
                                            -

                                            Fixture for creating an instance of the Fms class.

                                            -

                                            This fixture returns an instance of the Fms class to be used in tests.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the Fms class.

                                            -
                                            -
                                            Return type:
                                            -

                                            Fms

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_fms.test_fms(fms_instance)[source]
                                            -

                                            Test the Fms function implementation.

                                            -

                                            This test checks the calculation of the FMS function value for a given list of binary variables. -It uses a predefined input and compares the output to the expected value.

                                            -
                                            -
                                            Parameters:
                                            -

                                            fms_instance (Fms) – An instance of the Fms class.

                                            -
                                            -
                                            -

                                            Notes

                                            -

                                            The test uses a randomly generated sample input chromosome of length 192 and checks if the function output is a float -and non-negative. Additional checks with known values can be added for more thorough testing.

                                            -
                                            -

                                            Assertions

                                            -
                                              -
                                            • The fitness value should be a float.

                                            • -
                                            • The fitness value should be non-negative, as it’s a sum of squares of differences.

                                            • -
                                            -

                                            Examples

                                            -
                                            >>> test_fms(fms_instance)
                                            -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_grid module

                                            -
                                            -
                                            -src.tests.test_grid.test_grid()[source]
                                            -

                                            Test the Grid class implementation.

                                            -

                                            This test checks the functionality of the Grid class for creating a 2D grid. -It verifies the type, length, and content of the generated grid.

                                            -

                                            The test performs the following steps: -1. Create an instance of the Grid class with a 5x5 grid. -2. Generate the 2D grid using the make_2d_grid method. -3. Verify that the result is a list. -4. Verify that the length of the list is 25 (5x5). -5. Verify that each element in the list is a tuple. -6. Verify the first and last elements of the list.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the result does not match the expected values.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_griewank_function module

                                            -
                                            -
                                            -src.tests.test_griewank_function.setup_griewank()[source]
                                            -

                                            Fixture for creating an instance of the Griewank problem.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the Griewank problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            Griewank

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_griewank_function.test_griewank_function(setup_griewank)[source]
                                            -

                                            Test the Griewank function implementation.

                                            -

                                            This test checks the calculation of the Griewank function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_griewank (fixture) – The fixture providing the Griewank problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_holzman_function module

                                            -
                                            -
                                            -src.tests.test_holzman_function.setup_holzman()[source]
                                            -

                                            Fixture for creating an instance of the Holzman problem.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the Holzman problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            Holzman

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_holzman_function.test_holzman_function(setup_holzman)[source]
                                            -

                                            Test the Holzman function implementation.

                                            -

                                            This test checks the calculation of the Holzman function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_holzman (fixture) – The fixture providing the Holzman problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_individual module

                                            -
                                            -
                                            -src.tests.test_individual.setup_individual()[source]
                                            -

                                            Fixture to provide an instance of the Individual class with different configurations.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_get_set_neighbors()[source]
                                            -

                                            Test getting and setting the list of neighbors for the individual.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_get_set_neighbors_positions()[source]
                                            -

                                            Test getting and setting the positions of the individual’s neighbors.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_illegal_genome_type()[source]
                                            -

                                            Test that an exception is raised when an illegal genome type is provided.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_individual_init()[source]
                                            -

                                            Test the initialization of the Individual class.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_randomize_binary()[source]
                                            -

                                            Test the randomization of the chromosome for a binary genome type.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_randomize_permutation()[source]
                                            -

                                            Test the randomization of the chromosome for a permutation genome type.

                                            -
                                            - -
                                            -
                                            -src.tests.test_individual.test_randomize_real_valued()[source]
                                            -

                                            Test the randomization of the chromosome for a real-valued genome type.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_insertion_mutation module

                                            -
                                            -
                                            -src.tests.test_insertion_mutation.test_insertion_mutation()[source]
                                            -

                                            Test the InsertionMutation class for the Individual class on the TSP problem.

                                            -

                                            This test verifies that the InsertionMutation correctly mutates the chromosome of -an Individual by inserting elements and ensures that the mutation is applied -correctly. The test checks that: -1. The chromosome is mutated. -2. The chromosome size remains unchanged.

                                            -

                                            The function uses random permutation for the chromosome initialization.

                                            -

                                            Notes

                                            -

                                            The test assumes that the InsertionMutation class correctly implements insertion -mutation and that the TSP problem correctly evaluates the fitness of an individual.

                                            -

                                            The following assertions are made: -- At least one element in the chromosome is changed. -- The size of the mutated individual’s chromosome matches the original size.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for correctness are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_levy_function module

                                            -
                                            -
                                            -src.tests.test_levy_function.setup_levy()[source]
                                            -

                                            Fixture to provide an instance of the Levy problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_levy_function.test_levy_function(setup_levy)[source]
                                            -

                                            Test the Levy function implementation.

                                            -

                                            This test checks the calculation of the Levy function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_levy (fixture) – The fixture providing the Levy problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_linear_5 module

                                            -
                                            -
                                            -src.tests.test_linear_5.test_linear_5()[source]
                                            -

                                            Test the Linear5 class for calculating neighbor positions in a grid.

                                            -

                                            This test verifies that the Linear5 class correctly calculates the positions -of the 4 neighbors surrounding a given position in a grid. It ensures that: -1. The number of neighbors is always 4, which should include the positions

                                            -
                                            -

                                            directly adjacent in the linear neighborhood.

                                            -
                                            -

                                            The test uses three different positions within the grid to validate the functionality -of the Linear5 neighborhood calculation.

                                            -

                                            Notes

                                            -

                                            The Linear5 neighborhood considers 4 neighboring cells aligned in a linear fashion -(left, right, up, and down) in a 5x5 grid centered on a given position.

                                            -

                                            The following assertions are made: -- The number of calculated neighbor positions is 4 for various positions in the grid.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the number of calculated neighbor positions is not 4.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_linear_9 module

                                            -
                                            -
                                            -src.tests.test_linear_9.test_linear_9()[source]
                                            -

                                            Test the Linear9 class for calculating neighbor positions in a grid.

                                            -

                                            This test verifies that the Linear9 class correctly calculates the positions -of the 8 neighbors surrounding a given position in a grid. It ensures that: -1. The number of neighbors is always 8, which should include the positions

                                            -
                                            -

                                            surrounding the given position in the linear neighborhood.

                                            -
                                            -

                                            The test uses three different positions within the grid to validate the functionality -of the Linear9 neighborhood calculation.

                                            -

                                            Notes

                                            -

                                            The Linear9 neighborhood considers 8 neighboring cells aligned in a linear fashion -(left, right, up, down, and the diagonals) in a 5x5 grid centered on a given position.

                                            -

                                            The following assertions are made: -- The number of calculated neighbor positions is 8 for various positions in the grid.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If the number of calculated neighbor positions is not 8.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_linear_crossover module

                                            -
                                            -
                                            -class src.tests.test_linear_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_linear_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_linear_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_linear_crossover.test_linear_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the LinearCrossover function implementation.

                                            -

                                            This test checks the linear crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_matyas_function module

                                            -
                                            -
                                            -src.tests.test_matyas_function.setup_matyas()[source]
                                            -

                                            Fixture to provide an instance of the Matyas problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_matyas_function.test_matyas_function(setup_matyas)[source]
                                            -

                                            Test the Matyas function implementation.

                                            -

                                            This test checks the calculation of the Matyas function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_matyas (fixture) – The fixture providing the Matyas problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_maxcut100 module

                                            -
                                            -
                                            -src.tests.test_maxcut100.maxcut_instance()[source]
                                            -

                                            Fixture for creating an instance of the Maxcut100 class.

                                            -

                                            This fixture returns an instance of the Maxcut100 class to be used in tests.

                                            -
                                            - -
                                            -
                                            -src.tests.test_maxcut100.test_maxcut100()[source]
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_maxcut20_01 module

                                            -
                                            -
                                            -src.tests.test_maxcut20_01.maxcut_instance()[source]
                                            -

                                            Fixture for creating an instance of the Maxcut20_01 class.

                                            -

                                            This fixture returns an instance of the Maxcut20_01 class to be used in tests.

                                            -
                                            - -
                                            -
                                            -src.tests.test_maxcut20_01.test_maxcut20_01(maxcut_instance)[source]
                                            -

                                            Test the MAXCUT function implementation.

                                            -

                                            This test checks the calculation of the MAXCUT function value for a given list of binary variables. -It uses predefined inputs and compares the outputs to expected values.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_maxcut20_09 module

                                            -
                                            -
                                            -src.tests.test_maxcut20_09.maxcut_instance()[source]
                                            -

                                            Fixture for creating an instance of the Maxcut20_09 class.

                                            -

                                            This fixture returns an instance of the Maxcut20_09 class to be used in tests.

                                            -
                                            - -
                                            -
                                            -src.tests.test_maxcut20_09.test_maxcut20_09(maxcut_instance)[source]
                                            -

                                            Test the MAXCUT function implementation.

                                            -

                                            This test checks the calculation of the MAXCUT function value for a given list of binary variables. -It uses predefined inputs and compares the outputs to expected values.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_mmdp module

                                            -
                                            -
                                            -src.tests.test_mmdp.mmdp_instance()[source]
                                            -

                                            Fixture for creating an instance of the Mmdp class.

                                            -

                                            This fixture returns an instance of the Mmdp class to be used in tests.

                                            -
                                            - -
                                            -
                                            -src.tests.test_mmdp.test_mmdp_function(mmdp_instance)[source]
                                            -

                                            Test the Mmdp function implementation.

                                            -

                                            This test checks the calculation of the MMDP fitness value for given lists of binary variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_one_max module

                                            -
                                            -
                                            -src.tests.test_one_max.test_one_max()[source]
                                            -

                                            Test the OneMax function implementation.

                                            -

                                            This test verifies the calculation of the OneMax function value for specific binary input values.

                                            -

                                            The OneMax function evaluates the number of 1s in a binary list. This test ensures that the function -computes the correct number of 1s for various test inputs.

                                            -

                                            Examples

                                            -
                                            >>> test_one_max()
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_one_point_crossover module

                                            -
                                            -
                                            -src.tests.test_one_point_crossover.test_one_point_crossover()[source]
                                            -

                                            Test the OnePointCrossover class for generating offspring from two parents.

                                            -

                                            This test verifies that the OnePointCrossover class correctly performs one-point crossover -between two parent individuals. It ensures that: -1. The offspring generated have the same chromosome size as the parents. -2. The chromosomes of the offspring contain only valid binary values (0 or 1).

                                            -

                                            The test performs the following checks: -- Both offspring have the same chromosome size. -- Each chromosome in the offspring is composed of binary values (0 or 1).

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_optimizer_alpha_cga module

                                            -
                                            -
                                            -class src.tests.test_optimizer_alpha_cga.BinaryProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be maximized for binary chromosomes.

                                            -

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method counts the number of 1s in the binary chromosome.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value, which is the count of 1s in the chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            int

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -class src.tests.test_optimizer_alpha_cga.PermutationProblem(target: List[int])[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized using a permutation-based approach.

                                            -

                                            This class implements a simple objective function that measures the sum of absolute differences -between the chromosome and a target permutation.

                                            -
                                            -
                                            -__init__(target: List[int])[source]
                                            -

                                            Initialize the PermutationProblem with a target permutation.

                                            -
                                            -
                                            Parameters:
                                            -

                                            target (list of int) – The target permutation that the algorithm aims to find.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -f(x: List[int]) float[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of absolute differences function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – The input chromosome represented as a list of integers (permutation).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -test_optimizer_alpha_cga_permutation()[source]
                                            -

                                            Test alpha_cga on a permutation-based problem where the target is the identity permutation.

                                            -
                                            - -
                                            - -
                                            -
                                            -class src.tests.test_optimizer_alpha_cga.RealProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized.

                                            -

                                            This class implements a simple sum of squares function with a global minimum value of 0, -achieved when all elements of the chromosome are equal to 0.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of squares function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_binary()[source]
                                            -

                                            Test alpha_cga on a binary OneMax problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_no_variation()[source]
                                            -

                                            Test alpha_cga with no crossover or mutation.

                                            -
                                            - -
                                            -
                                            -src.tests.test_optimizer_alpha_cga.test_optimizer_alpha_cga_real()[source]
                                            -

                                            Test alpha_cga on a real-valued sum of squares problem.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_optimizer_ccga module

                                            -
                                            -
                                            -class src.tests.test_optimizer_ccga.BinaryProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be maximized for binary chromosomes.

                                            -

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method counts the number of 1s in the binary chromosome.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value, which is the count of 1s in the chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            int

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_optimizer_ccga.test_optimizer_ccga_binary()[source]
                                            -

                                            Test ccga on a binary OneMax problem.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_optimizer_cga module

                                            -
                                            -
                                            -class src.tests.test_optimizer_cga.BinaryProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be maximized for binary chromosomes.

                                            -

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method counts the number of 1s in the binary chromosome.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value, which is the count of 1s in the chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            int

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -class src.tests.test_optimizer_cga.PermutationProblem(target: List[int])[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized using a permutation-based approach.

                                            -

                                            This class implements a simple objective function that measures the sum of absolute differences -between the chromosome and a target permutation.

                                            -
                                            -
                                            -__init__(target: List[int])[source]
                                            -

                                            Initialize the PermutationProblem with a target permutation.

                                            -
                                            -
                                            Parameters:
                                            -

                                            target (list of int) – The target permutation that the algorithm aims to find.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -f(x: List[int]) float[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of absolute differences function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – The input chromosome represented as a list of integers (permutation).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -test_optimizer_cga_permutation()[source]
                                            -

                                            Test CGA on a permutation-based problem where the target is the identity permutation.

                                            -
                                            - -
                                            - -
                                            -
                                            -class src.tests.test_optimizer_cga.RealProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized.

                                            -

                                            This class implements a simple sum of squares function with a global minimum value of 0, -achieved when all elements of the chromosome are equal to 0.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of squares function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_optimizer_cga.test_optimizer_cga_binary()[source]
                                            -

                                            Test CGA on a binary OneMax problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_optimizer_cga.test_optimizer_cga_no_variation()[source]
                                            -

                                            Test CGA with no crossover or mutation.

                                            -
                                            - -
                                            -
                                            -src.tests.test_optimizer_cga.test_optimizer_cga_real()[source]
                                            -

                                            Test CGA on a real-valued sum of squares problem.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_optimizer_mccga module

                                            -
                                            -
                                            -class src.tests.test_optimizer_mccga.RealProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized.

                                            -

                                            This class implements a simple sum of squares function with a global minimum value of 0, -achieved when all elements of the chromosome are equal to 0.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of squares function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_optimizer_mccga.test_optimizer_mcccga_binary()[source]
                                            -

                                            Test mcccga on a binary OneMax problem.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_optimizer_sync_cga module

                                            -
                                            -
                                            -class src.tests.test_optimizer_sync_cga.BinaryProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be maximized for binary chromosomes.

                                            -

                                            This class implements the OneMax problem where the goal is to maximize the number of 1s in a binary string.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method counts the number of 1s in the binary chromosome.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of binary values (0s and 1s).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value, which is the count of 1s in the chromosome.

                                            -
                                            -
                                            Return type:
                                            -

                                            int

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -class src.tests.test_optimizer_sync_cga.PermutationProblem(target: List[int])[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized using a permutation-based approach.

                                            -

                                            This class implements a simple objective function that measures the sum of absolute differences -between the chromosome and a target permutation.

                                            -
                                            -
                                            -__init__(target: List[int])[source]
                                            -

                                            Initialize the PermutationProblem with a target permutation.

                                            -
                                            -
                                            Parameters:
                                            -

                                            target (list of int) – The target permutation that the algorithm aims to find.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -f(x: List[int]) float[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of absolute differences function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – The input chromosome represented as a list of integers (permutation).

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -test_optimizer_sync_cga_permutation()[source]
                                            -

                                            Test sync_cga on a permutation-based problem where the target is the identity permutation.

                                            -
                                            - -
                                            - -
                                            -
                                            -class src.tests.test_optimizer_sync_cga.RealProblem[source]
                                            -

                                            Bases: object

                                            -

                                            Example problem class to be minimized.

                                            -

                                            This class implements a simple sum of squares function with a global minimum value of 0, -achieved when all elements of the chromosome are equal to 0.

                                            -
                                            -
                                            -__init__()[source]
                                            -
                                            - -
                                            -
                                            -f(x)[source]
                                            -

                                            Compute the objective function value.

                                            -

                                            This method implements the sum of squares function.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list or numpy.ndarray) – The input chromosome represented as a list or array of real values.

                                            -
                                            -
                                            Returns:
                                            -

                                            The computed value of the function given the input x.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_binary()[source]
                                            -

                                            Test sync_cga on a binary OneMax problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_no_variation()[source]
                                            -

                                            Test sync_cga with no crossover or mutation.

                                            -
                                            - -
                                            -
                                            -src.tests.test_optimizer_sync_cga.test_optimizer_sync_cga_real()[source]
                                            -

                                            Test sync_cga on a real-valued sum of squares problem.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_peak module

                                            -
                                            -
                                            -src.tests.test_peak.peak_instance()[source]
                                            -

                                            Fixture for creating an instance of the Peak class.

                                            -

                                            This fixture returns an instance of the Peak class to be used in tests.

                                            -
                                            - -
                                            -
                                            -src.tests.test_peak.test_peak(peak_instance)[source]
                                            -

                                            Test the Peak function implementation.

                                            -

                                            This test checks the calculation of the Peak fitness value for given lists of binary variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_pmx_crossover module

                                            -
                                            -
                                            -src.tests.test_pmx_crossover.test_pmx_crossover()[source]
                                            -

                                            Test the PMXCrossover class for generating offspring from two permutation parents.

                                            -

                                            This test verifies that the PMXCrossover class correctly performs partially matched crossover -(PMX) between two parent individuals. It ensures that: -1. The offspring generated have the same chromosome size as the parents.

                                            -

                                            The test performs the following checks: -- Both offspring have the same chromosome size as the parents.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_population module

                                            -
                                            -
                                            -class src.tests.test_population.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem for testing purposes.

                                            -
                                            -
                                            -f(chromosome: List[float]) float[source]
                                            -

                                            Returns the sum of the chromosome as the fitness value.

                                            -
                                            - -
                                            -
                                            -f(chromosome: List[float]) float[source]
                                            -

                                            Evaluate the fitness of a given solution x.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list representing a candidate solution.

                                            -
                                            -
                                            Returns:
                                            -

                                            The fitness value of the candidate solution.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            Raises:
                                            -

                                            NotImplementedError – If the method is not implemented by a subclass.

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_population.setup_population()[source]
                                            -

                                            Fixture for setting up a Population object.

                                            -
                                            -
                                            Returns:
                                            -

                                            A population instance with a mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            Population

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_population.test_fitness_evaluation(setup_population)[source]
                                            -

                                            Test the fitness evaluation of the individuals.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_population (Population) – The population fixture.

                                            • -
                                            • Asserts

                                            • -
                                            • -------

                                            • -
                                            • performed. (True if the fitness evaluation is correctly)

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_population.test_initial_population_size(setup_population)[source]
                                            -

                                            Test the size of the initial population.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_population (Population) – The population fixture.

                                            • -
                                            • Asserts

                                            • -
                                            • -------

                                            • -
                                            • correct. (True if the size of the population is)

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_population.test_neighborhood_assignment(setup_population)[source]
                                            -

                                            Test the neighborhood assignment for the individuals.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_population (Population) – The population fixture.

                                            • -
                                            • Asserts

                                            • -
                                            • -------

                                            • -
                                            • assigned. (True if neighborhood positions are correctly)

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_pow_function module

                                            -
                                            -
                                            -class src.tests.test_pow_function.Pow[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            Pow function implementation for optimization problems.

                                            -

                                            The Pow function is widely used for testing optimization algorithms. -The function is usually evaluated on the hypercube x_i ∈ [-5.0, 15.0].

                                            -
                                            -
                                            -None
                                            -
                                            - -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            Calculates the Pow function value for a given list of variables.

                                            -
                                            - -

                                            Notes

                                            -

                                            -5.0 ≤ xi ≤ 15.0 -Global minimum at f(5, 7, 9, 3, 2) = 0

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            Calculate the Pow function value for a given list of variables.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The Pow function value.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -

                                            src.tests.test_powell_function module

                                            -
                                            -
                                            -src.tests.test_powell_function.setup_powell()[source]
                                            -

                                            Fixture to provide an instance of the Powell problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_powell_function.test_powell_function(setup_powell)[source]
                                            -

                                            Test the Powell function implementation.

                                            -

                                            This test checks the calculation of the Powell function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_powell (fixture) – The fixture providing the Powell problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_rastrigin module

                                            -
                                            -
                                            -src.tests.test_rastrigin.test_rastrigin()[source]
                                            -

                                            Test the Rastrigin function implementation.

                                            -

                                            This test verifies the calculation of the Rastrigin function value for a given list of continuous variables. -It compares the function output with known expected values.

                                            -

                                            Notes

                                            -

                                            The Rastrigin function is a well-known benchmark function used in optimization problems. -It has a global minimum value of 0, which is achieved when all variables are 0.

                                            -
                                            -

                                            Assertions

                                            -
                                              -
                                            • The function should return the correct values for predefined inputs.

                                            • -
                                            • The function should return 0 for an input list of all zeros.

                                            • -
                                            -

                                            Examples

                                            -
                                            >>> test_rastrigin()
                                            -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_rosenbrock module

                                            -
                                            -
                                            -src.tests.test_rosenbrock.test_rosenbrock()[source]
                                            -

                                            Test the Rosenbrock function implementation.

                                            -

                                            This test verifies the calculation of the Rosenbrock function value for a given list of continuous variables. -It compares the function output with known expected values.

                                            -

                                            Notes

                                            -

                                            The Rosenbrock function, also known as the Rosenbrock’s valley or Rosenbrock’s banana function, -is a common test problem for optimization algorithms. The global minimum is at (1, …, 1), where the function value is 0.

                                            -
                                            -

                                            Assertions

                                            -
                                              -
                                            • The function should return the correct values for predefined inputs.

                                            • -
                                            • The function should return 0 for an input list of all ones.

                                            • -
                                            -

                                            Examples

                                            -
                                            >>> test_rosenbrock()
                                            -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_rothellipsoid_function module

                                            -
                                            -
                                            -src.tests.test_rothellipsoid_function.setup_rothellipsoid()[source]
                                            -

                                            Fixture to provide an instance of the Rotated Hyper-Ellipsoid problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_rothellipsoid_function.test_rothellipsoid_function(setup_rothellipsoid)[source]
                                            -

                                            Test the Rotated Hyper-Ellipsoid function implementation.

                                            -

                                            This test checks the calculation of the Rotated Hyper-Ellipsoid function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_rothellipsoid (fixture) – The fixture providing the Rotated Hyper-Ellipsoid problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_roulette_wheel_selection module

                                            -
                                            -
                                            -src.tests.test_roulette_wheel_selection.test_roulette_wheel_selection()[source]
                                            -

                                            Test the RouletteWheelSelection class implementation.

                                            -

                                            This test verifies the functionality of the RouletteWheelSelection for selecting parent individuals -from a population. It ensures that the selected parents have valid attributes and different chromosomes -and positions.

                                            -

                                            The test performs the following checks: -1. Each selected parent has the correct chromosome size and a non-None fitness value. -2. Each selected parent has valid types for neighbors_positions and position attributes. -3. The selected parents have different chromosomes and positions.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for the parent selection are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_schaffer2_function module

                                            -
                                            -
                                            -src.tests.test_schaffer2_function.setup_schaffer2()[source]
                                            -

                                            Fixture to provide an instance of the Schaffer2 problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_schaffer2_function.test_schaffer2_function(setup_schaffer2)[source]
                                            -

                                            Test the Modified Schaffer function #2 implementation.

                                            -

                                            This test checks the calculation of the Modified Schaffer function #2 value -for given lists of float variables. It uses predefined inputs and compares -the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_schaffer2 (fixture) – The fixture providing the Schaffer2 problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_schaffer_function module

                                            -
                                            -
                                            -src.tests.test_schaffer_function.setup_schaffer()[source]
                                            -

                                            Fixture to provide an instance of the Schaffer problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_schaffer_function.test_schaffer_function(setup_schaffer)[source]
                                            -

                                            Test the Modified Schaffer function #1 implementation.

                                            -

                                            This test checks the calculation of the Modified Schaffer function #1 value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_schaffer (fixture) – The fixture providing the Schaffer problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_schwefel module

                                            -
                                            -
                                            -src.tests.test_schwefel.test_schwefel()[source]
                                            -

                                            Test the Schwefel function implementation.

                                            -

                                            This test verifies the functionality of the Schwefel function on a set of predefined input values.

                                            -

                                            The Schwefel function is used as a benchmark in optimization problems, and this test ensures -that the function computes the expected results for given inputs.

                                            -

                                            It performs assertions to check: -- The correctness of the function’s output for specific input values. -- The proper rounding of the function’s output to three decimal places.

                                            -

                                            Notes

                                            -

                                            The Schwefel function is typically used to evaluate optimization algorithms, and the expected values -for the test cases are specific to the known behavior of the function.

                                            -

                                            Examples

                                            -
                                            >>> test_schwefel()
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_shuffle_mutation module

                                            -
                                            -
                                            -src.tests.test_shuffle_mutation.test_shuffle_mutation()[source]
                                            -

                                            Test the ShuffleMutation class for the Individual class on the TSP problem.

                                            -

                                            This test verifies that the ShuffleMutation correctly mutates the chromosome of -an Individual by shuffling the elements. It ensures that: -1. The chromosome is mutated. -2. The chromosome size remains unchanged.

                                            -

                                            The function initializes the chromosome with a random permutation of integers -from 1 to CHSIZE and applies the shuffle mutation.

                                            -

                                            Notes

                                            -

                                            The test assumes that the ShuffleMutation class correctly implements shuffle -mutation and that the TSP problem correctly evaluates the fitness of an individual.

                                            -

                                            The following assertions are made: -- At least one element in the chromosome is changed. -- The size of the mutated individual’s chromosome matches the original size.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for correctness are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_sphere module

                                            -
                                            -
                                            -src.tests.test_sphere.test_sphere()[source]
                                            -

                                            Test the Sphere function implementation.

                                            -

                                            This test checks the calculation of the Sphere function value for given input values.

                                            -

                                            The Sphere function is a common benchmark function in optimization, where the global minimum is -at f(0, 0, …, 0) = 0. This test ensures that the function computes the correct results for specific -input values and verifies that the function behaves as expected.

                                            -

                                            It performs assertions to validate: -- The correctness of the function’s output for specific test inputs. -- The rounding of the function’s output to three decimal places.

                                            -

                                            Examples

                                            -
                                            >>> test_sphere()
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_styblinskitang_function module

                                            -
                                            -
                                            -src.tests.test_styblinskitang_function.setup_styblinski_tang()[source]
                                            -

                                            Fixture to provide an instance of the StyblinskiTang problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_styblinskitang_function.test_styblinskitang_function(setup_styblinski_tang)[source]
                                            -

                                            Test the Styblinski-Tang function implementation.

                                            -

                                            This test checks the calculation of the Styblinski-Tang function value -for given lists of float variables. It uses predefined inputs and compares -the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_styblinski_tang (fixture) – The fixture providing the StyblinskiTang problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_sumofdifferentpowers_function module

                                            -
                                            -
                                            -src.tests.test_sumofdifferentpowers_function.setup_sumofdifferentpowers()[source]
                                            -

                                            Fixture to create an instance of the Sumofdifferentpowers problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_sumofdifferentpowers_function.test_sumofdifferentpowers_function(setup_sumofdifferentpowers)[source]
                                            -

                                            Test the Sum of Different Powers function implementation.

                                            -

                                            This test checks the calculation of the Sum of Different Powers function value -for given lists of float variables. It uses predefined inputs and compares -the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_sumofdifferentpowers (fixture) – The fixture providing the Sumofdifferentpowers problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_swap_mutation module

                                            -
                                            -
                                            -src.tests.test_swap_mutation.test_swap_mutation()[source]
                                            -

                                            Test the SwapMutation class for the Individual class on the TSP problem.

                                            -

                                            This test verifies that the SwapMutation correctly mutates the chromosome of -an Individual by swapping two elements. It ensures that: -1. The chromosome is mutated. -2. The chromosome size remains unchanged.

                                            -

                                            The function initializes the chromosome with a random permutation of integers -from 1 to CHSIZE and applies the swap mutation.

                                            -

                                            Notes

                                            -

                                            The test assumes that the SwapMutation class correctly implements swap mutation -and that the TSP problem correctly evaluates the fitness of an individual.

                                            -

                                            The following assertions are made: -- At least one element in the chromosome is changed. -- The size of the mutated individual’s chromosome matches the original size.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for correctness are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_threehumps_function module

                                            -
                                            -
                                            -src.tests.test_threehumps_function.setup_threehumps()[source]
                                            -

                                            Fixture to provide the Threehumps problem instance.

                                            -
                                            - -
                                            -
                                            -src.tests.test_threehumps_function.test_threehumps_function(setup_threehumps)[source]
                                            -

                                            Test the Three Hump Camel function implementation.

                                            -

                                            This test checks the calculation of the Three Hump Camel function value -for given lists of float variables. It uses predefined inputs and compares -the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_threehumps (fixture) – The fixture providing the Threehumps problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_tournament_selection module

                                            -
                                            -
                                            -src.tests.test_tournament_selection.test_tournament_selection()[source]
                                            -

                                            Test the TournamentSelection class implementation.

                                            -

                                            This test verifies the functionality of the TournamentSelection for selecting parent individuals -from a population. It ensures that the selected parents have valid attributes and different chromosomes -and positions.

                                            -

                                            The test performs the following checks: -1. Each selected parent has the correct chromosome size and a non-None fitness value. -2. Each selected parent has valid types for neighbors_positions and position attributes. -3. The selected parents have different chromosomes and positions.

                                            -
                                            -
                                            Parameters:
                                            -

                                            None

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for the parent selection are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_tsp module

                                            -
                                            -
                                            -src.tests.test_tsp.test_tsp()[source]
                                            -

                                            Test the Tsp function implementation.

                                            -

                                            This test verifies the calculation of the TSP (Traveling Salesman Problem) function value for -different permutations of cities.

                                            -

                                            The TSP function evaluates the total distance for a given permutation of cities. This test checks -if the function computes the correct distance for specific permutations generated using different -random seeds.

                                            -

                                            Examples

                                            -
                                            >>> test_tsp()
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_two_opt_mutation module

                                            -
                                            -
                                            -src.tests.test_two_opt_mutation.test_two_opt_mutation()[source]
                                            -

                                            Test the TwoOptMutation class for the Individual class on the TSP problem.

                                            -

                                            This test verifies that the TwoOptMutation correctly mutates the chromosome of -an Individual by applying the 2-opt mutation technique. It ensures that: -1. The chromosome is mutated by swapping two edges in the permutation. -2. The chromosome size remains unchanged.

                                            -

                                            The function initializes the chromosome with a random permutation of integers -from 1 to CHSIZE and applies the two-opt mutation.

                                            -

                                            Notes

                                            -

                                            The test assumes that the TwoOptMutation class correctly implements the 2-opt mutation -and that the TSP problem correctly evaluates the fitness of an individual.

                                            -

                                            The following assertions are made: -- At least one element in the chromosome is changed. -- The size of the mutated individual’s chromosome matches the original size.

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for correctness are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_two_point_crossover module

                                            -
                                            -
                                            -src.tests.test_two_point_crossover.test_two_point_crossover()[source]
                                            -

                                            Test the TwoPointCrossover class implementation.

                                            -

                                            This test verifies the functionality of the TwoPointCrossover class for binary chromosomes. -It ensures that the crossover operation produces valid offspring with the expected chromosome size.

                                            -

                                            The test performs the following checks: -1. Both offspring have the same chromosome size as the parents. -2. The chromosomes of the offspring contain only valid binary values (0 or 1).

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_unfair_average_crossover module

                                            -
                                            -
                                            -class src.tests.test_unfair_average_crossover.MockProblem[source]
                                            -

                                            Bases: AbstractProblem

                                            -

                                            A mock problem class for testing purposes.

                                            -
                                            -
                                            -f(x: list) float[source]
                                            -

                                            A mock fitness function that simply sums the chromosome values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            x (list) – A list of float variables.

                                            -
                                            -
                                            Returns:
                                            -

                                            The sum of the list values.

                                            -
                                            -
                                            Return type:
                                            -

                                            float

                                            -
                                            -
                                            -
                                            - -
                                            - -
                                            -
                                            -src.tests.test_unfair_average_crossover.setup_parents()[source]
                                            -

                                            Fixture for creating a pair of parent Individual instances.

                                            -
                                            -
                                            Returns:
                                            -

                                            A list containing two parent individuals with predefined chromosomes and size.

                                            -
                                            -
                                            Return type:
                                            -

                                            list

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_unfair_average_crossover.setup_problem()[source]
                                            -

                                            Fixture for creating a mock problem instance.

                                            -
                                            -
                                            Returns:
                                            -

                                            An instance of the mock problem.

                                            -
                                            -
                                            Return type:
                                            -

                                            MockProblem

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -src.tests.test_unfair_average_crossover.test_unfair_average_crossover(setup_parents, setup_problem)[source]
                                            -

                                            Test the UnfairAvarageCrossover function implementation.

                                            -

                                            This test checks the unfair average crossover on a pair of parent individuals by verifying the recombination -operation and the integrity of the offspring chromosomes.

                                            -
                                            -
                                            Parameters:
                                            -
                                              -
                                            • setup_parents (fixture) – The fixture providing the parent individuals.

                                            • -
                                            • setup_problem (fixture) – The fixture providing the mock problem instance.

                                            • -
                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_uniform_crossover module

                                            -
                                            -
                                            -src.tests.test_uniform_crossover.test_uniform_crossover()[source]
                                            -

                                            Test the UniformCrossover class implementation.

                                            -

                                            This test verifies the functionality of the UniformCrossover class for binary chromosomes. -It ensures that the crossover operation produces valid offspring with the expected chromosome size.

                                            -

                                            The test performs the following checks: -1. Both offspring have the same chromosome size as the parents. -2. The chromosomes of the offspring contain only valid binary values (0 or 1).

                                            -
                                            -
                                            Raises:
                                            -

                                            AssertionError – If any of the conditions for the crossover operation are not met.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_zakharov_function module

                                            -
                                            -
                                            -src.tests.test_zakharov_function.test_zakharov_function()[source]
                                            -

                                            Test the Zakharov function implementation.

                                            -

                                            This test checks the calculation of the Zakharov function value -for given lists of float variables. It uses predefined inputs and compares -the outputs to the expected values.

                                            -
                                            - -
                                            -
                                            -

                                            src.tests.test_zettle_function module

                                            -
                                            -
                                            -src.tests.test_zettle_function.setup_zettle()[source]
                                            -

                                            Fixture to provide an instance of the Zettle problem.

                                            -
                                            - -
                                            -
                                            -src.tests.test_zettle_function.test_zettle_function(setup_zettle)[source]
                                            -

                                            Test the Zettle function implementation.

                                            -

                                            This test checks the calculation of the Zettle function value for given lists of float variables. -It uses predefined inputs and compares the outputs to the expected values.

                                            -
                                            -
                                            Parameters:
                                            -

                                            setup_zettle (fixture) – The fixture providing the Zettle problem instance.

                                            -
                                            -
                                            -
                                            - -
                                            -
                                            -

                                            Module contents

                                            -
                                            -
                                            - - -
                                            -
                                            - -
                                            -
                                            -
                                            -
                                            - - - - \ No newline at end of file