From 3f5e3b789fff1f72f954544c90192441849be44d Mon Sep 17 00:00:00 2001 From: SevgiAkten Date: Tue, 10 Dec 2024 09:05:48 +0000 Subject: [PATCH] deploy: 12e3761401ffd18b63d5cb9d3ca9a0dc76513711 --- .../pycellga/example/example_alpha_cga.html | 17 +- _modules/pycellga/example/example_ccga.html | 8 +- _modules/pycellga/example/example_cga.html | 17 +- _modules/pycellga/example/example_mcccga.html | 8 +- .../pycellga/example/example_sync_cga.html | 17 +- _modules/pycellga/optimizer.html | 81 ------ _sources/usage_examples.rst.txt | 244 ++++++++++-------- searchindex.js | 2 +- usage_examples.html | 244 ++++++++++-------- 9 files changed, 328 insertions(+), 310 deletions(-) diff --git a/_modules/pycellga/example/example_alpha_cga.html b/_modules/pycellga/example/example_alpha_cga.html index a0e30bd..ee16717 100644 --- a/_modules/pycellga/example/example_alpha_cga.html +++ b/_modules/pycellga/example/example_alpha_cga.html @@ -336,10 +336,15 @@

Source code for pycellga.example.example_alpha_cga

import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) -import optimizer -from individual import GeneType from numpy import power as pw +from optimizer import alpha_cga +from individual import GeneType +from recombination import BlxalphaCrossover +from mutation import FloatUniformMutation +from selection import TournamentSelection + +
[docs] class ExampleProblem: @@ -398,7 +403,7 @@

Source code for pycellga.example.example_alpha_cga

problem_instance = ExampleProblem() # Run the optimizer and get the result - result = optimizer.alpha_cga( + result = alpha_cga( n_cols=5, n_rows=5, n_gen=100, @@ -407,9 +412,9 @@

Source code for pycellga.example.example_alpha_cga

p_crossover=0.9, p_mutation=0.2, problem=problem_instance, # Pass the ExampleProblem instance - selection=optimizer.TournamentSelection, - recombination=optimizer.BlxalphaCrossover, - mutation=optimizer.FloatUniformMutation, + selection=TournamentSelection, + recombination=BlxalphaCrossover, + mutation=FloatUniformMutation, mins=[-32.768] * 10, # Minimum values for each gene maxs=[32.768] * 10, # Maximum values for each gene seed_par=100 diff --git a/_modules/pycellga/example/example_ccga.html b/_modules/pycellga/example/example_ccga.html index 5547bf6..02efc06 100644 --- a/_modules/pycellga/example/example_ccga.html +++ b/_modules/pycellga/example/example_ccga.html @@ -336,7 +336,9 @@

Source code for pycellga.example.example_ccga

import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) -import optimizer +from optimizer import ccga +from individual import GeneType +from selection import TournamentSelection from individual import GeneType
@@ -396,14 +398,14 @@

Source code for pycellga.example.example_ccga

problem_instance = ExampleProblem() # Run the optimizer and get the result - result = optimizer.ccga( + result = ccga( n_cols=5, n_rows=5, n_gen=100, ch_size=10, gen_type=GeneType.BINARY, problem=problem_instance, # Pass the ExampleProblem instance - selection=optimizer.TournamentSelection, + selection=TournamentSelection, mins=[0] * 10, # Minimum values for each gene (binary) maxs=[1] * 10 # Maximum values for each gene (binary) ) diff --git a/_modules/pycellga/example/example_cga.html b/_modules/pycellga/example/example_cga.html index 6208d06..7cc47cb 100644 --- a/_modules/pycellga/example/example_cga.html +++ b/_modules/pycellga/example/example_cga.html @@ -335,10 +335,15 @@

Source code for pycellga.example.example_cga

import sys
 import os
 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
-import optimizer
-from individual import GeneType
 from numpy import power as pw
 
+from optimizer import cga
+from individual import GeneType
+from recombination import ByteOnePointCrossover
+from mutation import ByteMutationRandom
+from selection import TournamentSelection
+
+
 
[docs] class ExampleProblem: @@ -396,7 +401,7 @@

Source code for pycellga.example.example_cga

# Create an instance of the problem
     problem_instance = ExampleProblem()
 
-    result = optimizer.cga(
+    result = cga(
         n_cols=5,
         n_rows=5,
         n_gen=100,
@@ -405,9 +410,9 @@ 

Source code for pycellga.example.example_cga

p_crossover=0.9,
         p_mutation=0.2,
         problem=problem_instance,  # Pass the ExampleProblem instance
-        selection=optimizer.TournamentSelection,
-        recombination=optimizer.ByteOnePointCrossover,
-        mutation=optimizer.ByteMutationRandom,
+        selection=TournamentSelection,
+        recombination=ByteOnePointCrossover,
+        mutation=ByteMutationRandom,
         mins=[-32.768] * 5,  # Minimum values for each gene
         maxs=[32.768] * 5,    # Maximum values for each gene
         seed_par=100
diff --git a/_modules/pycellga/example/example_mcccga.html b/_modules/pycellga/example/example_mcccga.html
index accee7a..832b4f9 100644
--- a/_modules/pycellga/example/example_mcccga.html
+++ b/_modules/pycellga/example/example_mcccga.html
@@ -336,9 +336,11 @@ 

Source code for pycellga.example.example_mcccga

< import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) -import optimizer import numpy as np + +from optimizer import mcccga from individual import GeneType +from selection import TournamentSelection
[docs] @@ -398,14 +400,14 @@

Source code for pycellga.example.example_mcccga

< # Create an instance of the problem problem_instance = RealProblem() - result = optimizer.mcccga( + result = mcccga( n_cols=5, n_rows=5, n_gen=500, ch_size=5, gen_type=GeneType.REAL, problem=problem_instance, # Pass the RealProblem instance - selection=optimizer.TournamentSelection, + selection=TournamentSelection, mins=[-3.768] * 5, maxs=[3.768] * 5 ) diff --git a/_modules/pycellga/example/example_sync_cga.html b/_modules/pycellga/example/example_sync_cga.html index 2483b02..1fd6ca9 100644 --- a/_modules/pycellga/example/example_sync_cga.html +++ b/_modules/pycellga/example/example_sync_cga.html @@ -336,10 +336,15 @@

Source code for pycellga.example.example_sync_cga

import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) -import optimizer -from individual import GeneType from numpy import power as pw +from optimizer import sync_cga +from individual import GeneType +from recombination import BlxalphaCrossover +from mutation import FloatUniformMutation +from selection import TournamentSelection + +
[docs] class ExampleProblem: @@ -397,7 +402,7 @@

Source code for pycellga.example.example_sync_cga

# Create an instance of the problem problem_instance = ExampleProblem() - result = optimizer.sync_cga( + result = sync_cga( n_cols=5, n_rows=5, n_gen=100, @@ -406,9 +411,9 @@

Source code for pycellga.example.example_sync_cga

p_crossover=0.9, p_mutation=0.2, problem=problem_instance, # Pass the ExampleProblem instance - selection=optimizer.TournamentSelection, - recombination=optimizer.BlxalphaCrossover, - mutation=optimizer.FloatUniformMutation, + selection=TournamentSelection, + recombination=BlxalphaCrossover, + mutation=FloatUniformMutation, mins=[-32.768] * 5, # Minimum values for each gene maxs=[32.768] * 5, # Maximum values for each gene seed_par=100 diff --git a/_modules/pycellga/optimizer.html b/_modules/pycellga/optimizer.html index ea51527..33790e7 100644 --- a/_modules/pycellga/optimizer.html +++ b/_modules/pycellga/optimizer.html @@ -333,87 +333,6 @@

Source code for pycellga.optimizer

 
-# ------------------------------ selection --------------------------------- #
-from selection.roulette_wheel_selection import RouletteWheelSelection
-from selection.tournament_selection import TournamentSelection
-from selection.selection_operator import SelectionOperator
-# -------------------------------------------------------------------------- #
-
-# ------------------------------ recombination ----------------------------- #
-from recombination.one_point_crossover import OnePointCrossover
-from recombination.pmx_crossover import PMXCrossover
-from recombination.two_point_crossover import TwoPointCrossover
-from recombination.uniform_crossover import UniformCrossover
-from recombination.byte_uniform_crossover import ByteUniformCrossover
-from recombination.byte_one_point_crossover import ByteOnePointCrossover
-from recombination.flat_crossover import FlatCrossover
-from recombination.arithmetic_crossover import ArithmeticCrossover
-from recombination.blxalpha_crossover import BlxalphaCrossover
-from recombination.linear_crossover import LinearCrossover
-from recombination.unfair_avarage_crossover import UnfairAvarageCrossover
-from recombination.recombination_operator import RecombinationOperator
-# -------------------------------------------------------------------------- #
-
-# -------------------------------- mutation -------------------------------- #
-from mutation.bit_flip_mutation import BitFlipMutation
-from mutation.byte_mutation import ByteMutation
-from mutation.byte_mutation_random import ByteMutationRandom
-from mutation.insertion_mutation import InsertionMutation
-from mutation.shuffle_mutation import ShuffleMutation
-from mutation.swap_mutation import SwapMutation
-from mutation.two_opt_mutation import TwoOptMutation
-from mutation.float_uniform_mutation import FloatUniformMutation
-from mutation.mutation_operator import MutationOperator
-# -------------------------------------------------------------------------- #
-
-
-# ------------------- problems.single_objective.continuous -------------------------------- #
-from problems.single_objective.continuous.ackley import *
-from problems.single_objective.continuous.bentcigar import Bentcigar
-from problems.single_objective.continuous.bohachevsky import Bohachevsky
-from problems.single_objective.continuous.chichinadze import Chichinadze
-from problems.single_objective.continuous.dropwave import Dropwave
-from problems.single_objective.continuous.fms import Fms
-from problems.single_objective.continuous.griewank import Griewank
-from problems.single_objective.continuous.holzman import Holzman
-from problems.single_objective.continuous.levy import Levy
-from problems.single_objective.continuous.matyas import Matyas
-from problems.single_objective.continuous.pow import Pow
-from problems.single_objective.continuous.powell import Powell
-from problems.single_objective.continuous.rastrigin import Rastrigin
-from problems.single_objective.continuous.rosenbrock import Rosenbrock
-from problems.single_objective.continuous.rothellipsoid import Rothellipsoid
-from problems.single_objective.continuous.schaffer import Schaffer
-from problems.single_objective.continuous.schaffer2 import Schaffer2
-from problems.single_objective.continuous.schwefel import Schwefel
-from problems.single_objective.continuous.sphere import Sphere
-from problems.single_objective.continuous.styblinskitang import StyblinskiTang
-from problems.single_objective.continuous.sumofdifferentpowers import Sumofdifferentpowers
-from problems.single_objective.continuous.threehumps import Threehumps
-from problems.single_objective.continuous.zakharov import Zakharov
-from problems.single_objective.continuous.zettle import Zettle
-# ----------------------------------------------------------------------------------------------- #
-
-
-# ------------------- problems.single_objective.discrete.binary -------------------------------- #
-from problems.single_objective.discrete.binary.count_sat import CountSat
-from problems.single_objective.discrete.binary.ecc import Ecc
-from problems.single_objective.discrete.binary.maxcut20_01 import Maxcut20_01
-from problems.single_objective.discrete.binary.maxcut20_09 import Maxcut20_09
-from problems.single_objective.discrete.binary.maxcut100 import Maxcut100
-from problems.single_objective.discrete.binary.mmdp import Mmdp
-from problems.single_objective.discrete.binary.one_max import OneMax
-from problems.single_objective.discrete.binary.peak import Peak
-# ----------------------------------------------------------------------------------------------- #
-
-
-# ------------------- problems.single_objective.discrete.permutation.tsp ------------------------ #
-from problems.single_objective.discrete.permutation.tsp import Tsp
-# ----------------------------------------------------------------------------------------------- #
-
-
-
-
 import random
 import numpy as np
 import byte_operators
diff --git a/_sources/usage_examples.rst.txt b/_sources/usage_examples.rst.txt
index 6149d26..0ee3348 100644
--- a/_sources/usage_examples.rst.txt
+++ b/_sources/usage_examples.rst.txt
@@ -17,7 +17,12 @@ Here’s how we can define this problem in Python using the `ExampleProblem` cla
 .. code-block:: python
 
     from mpmath import power as pw
-    import pycellga 
+
+    from pycellga.optimizer import cga
+    from pycellga.individual import GeneType
+    from pycellga.selection import TournamentSelection
+    from pycellga.recombination import ByteOnePointCrossover
+    from pycellga.mutation import ByteMutationRandom
 
     class ExampleProblem:
         
@@ -31,18 +36,18 @@ Here’s how we can define this problem in Python using the `ExampleProblem` cla
 
 .. code-block:: python
 
-    result = pycellga.optimizer.cga(
+    result = cga(
         n_cols = 5,
         n_rows = 5,
         n_gen = 100,
         ch_size = 5,
-        gen_type = pycellga.optimizer.GeneType.REAL,
+        gen_type = GeneType.REAL,
         p_crossover = 0.9,
         p_mutation = 0.2,
         problem = ExampleProblem(),  # Replace with a real problem instance as needed
-        selection = pycellga.optimizer.TournamentSelection,
-        recombination = pycellga.optimizer.ByteOnePointCrossover,
-        mutation = pycellga.optimizer.ByteMutationRandom,
+        selection = TournamentSelection,
+        recombination = ByteOnePointCrossover,
+        mutation = ByteMutationRandom,
         mins = [-32.768] * 5,  # Minimum values for each gene
         maxs = [32.768] * 5,    # Maximum values for each gene
         seed_par = 100 # Ensures the random number generation is repeatable
@@ -67,7 +72,12 @@ The Alpha Cellular Genetic Algorithm optimizes a real-valued problem using Blxal
 .. code-block:: python
 
     from mpmath import power as pw
-    import pycellga 
+
+    from pycellga.optimizer import alpha_cga
+    from pycellga.individual import GeneType
+    from pycellga.selection import TournamentSelection
+    from pycellga.recombination import BlxalphaCrossover
+    from pycellga.mutation import FloatUniformMutation
 
     class ExampleProblem:
         
@@ -78,18 +88,18 @@ The Alpha Cellular Genetic Algorithm optimizes a real-valued problem using Blxal
             return sum(pw(xi, 2) for xi in x)
 
 
-    result = pycellga.optimizer.alpha_cga(
+    result = alpha_cga(
         n_cols=5,
         n_rows=5,
         n_gen=100,
         ch_size=10,
-        gen_type=pycellga.optimizer.GeneType.REAL,
+        gen_type=GeneType.REAL,
         p_crossover=0.9,
         p_mutation=0.2,
         problem=ExampleProblem(),
-        selection=pycellga.optimizer.TournamentSelection,
-        recombination=pycellga.optimizer.BlxalphaCrossover,
-        mutation=pycellga.optimizer.FloatUniformMutation,
+        selection=TournamentSelection,
+        recombination=BlxalphaCrossover,
+        mutation=FloatUniformMutation,
         mins=[-15] * 10,
         maxs=[15] * 10,
         seed_par=100
@@ -105,7 +115,9 @@ The Compact Cellular Genetic Algorithm optimizes a binary problem where the goal
 
 .. code-block:: python
 
-    import pycellga 
+    from pycellga.optimizer import ccga
+    from pycellga.individual import GeneType
+    from pycellga.selection import TournamentSelection
 
     class ExampleProblem:
         def __init__(self):
@@ -114,14 +126,14 @@ The Compact Cellular Genetic Algorithm optimizes a binary problem where the goal
         def f(self, x):
             return sum(x)
 
-    result = pycellga.optimizer.ccga(
+    result = ccga(
         n_cols=5,
         n_rows=5,
         n_gen=100,
         ch_size=10,
-        gen_type=pycellga.optimizer.GeneType.BINARY,
+        gen_type=GeneType.BINARY,
         problem=ExampleProblem(),
-        selection=pycellga.optimizer.TournamentSelection,
+        selection=TournamentSelection,
         mins=[0] * 10,
         maxs=[1] * 10
     )
@@ -135,7 +147,10 @@ The Machine-Coded Compact Cellular Genetic Algorithm solves real-valued optimiza
 
 .. code-block:: python
 
-    import pycellga
+    from pycellga.optimizer import mcccga
+    from pycellga.individual import GeneType
+    from pycellga.selection import TournamentSelection
+    
 
     class RealProblem:
         def __init__(self):
@@ -144,14 +159,14 @@ The Machine-Coded Compact Cellular Genetic Algorithm solves real-valued optimiza
         def f(self, x):
             return sum(np.power(xi, 2) for xi in x)
 
-    result = pycellga.optimizer.mcccga(
+    result = mcccga(
         n_cols=5,
         n_rows=5,
         n_gen=500,
         ch_size=5,
-        gen_type=pycellga.optimizer.GeneType.REAL,
+        gen_type=GeneType.REAL,
         problem=RealProblem(),
-        selection=pycellga.optimizer.TournamentSelection,
+        selection=TournamentSelection,
         mins=[-3.55] * 5,
         maxs=[3.55] * 5
     )
@@ -165,7 +180,11 @@ The Synchronous Cellular Genetic Algorithm optimizes a real-valued problem in a
 
 .. code-block:: python
 
-    import pycellga
+    from pycellga.optimizer import sync_cga
+    from pycellga.individual import GeneType
+    from pycellga.selection import TournamentSelection
+    from pycellga.recombination import BlxalphaCrossover
+    from pycellga.mutation import FloatUniformMutation
 
     class ExampleProblem:
         def __init__(self):
@@ -174,18 +193,18 @@ The Synchronous Cellular Genetic Algorithm optimizes a real-valued problem in a
         def f(self, x):
             return sum(pw(xi, 2) for xi in x)
 
-    result = pycellga.optimizer.sync_cga(
+    result = sync_cga(
         n_cols=5,
         n_rows=5,
         n_gen=100,
         ch_size=5,
-        gen_type=pycellga.optimizer.GeneType.REAL,
+        gen_type=GeneType.REAL,
         p_crossover=0.9,
         p_mutation=0.2,
         problem=ExampleProblem(),
-        selection=pycellga.optimizer.TournamentSelection,
-        recombination=pycellga.optimizer.BlxalphaCrossover,
-        mutation=pycellga.optimizer.FloatUniformMutation,
+        selection=TournamentSelection,
+        recombination=BlxalphaCrossover,
+        mutation=FloatUniformMutation,
         mins=[-32.768] * 5,
         maxs=[32.768] * 5,
         seed_par=100
@@ -203,9 +222,9 @@ Customization Scenarios
 
 You can change the `gen_type` parameter based on the type of problem:
 
-- `pycellga.optimizer.GeneType.REAL` for real-valued problems.
-- `pycellga.optimizer.GeneType.BINARY` for binary problems.
-- `pycellga.optimizer.GeneType.PERMUTATION` for permutation-based problems.
+- `pycellga.individual.GeneType.REAL` for real-valued problems.
+- `pycellga.individual.GeneType.BINARY` for binary problems.
+- `pycellga.individual.GeneType.PERMUTATION` for permutation-based problems.
 
 
 **Problem Selection**
@@ -216,49 +235,49 @@ You can change the `gen_type` parameter based on the type of problem:
 
 For continuous optimization problems, the following functions are available:
 
-- `pycellga.optimizer.Ackley()`
-- `pycellga.optimizer.Bentcigar()`
-- `pycellga.optimizer.Bohachevsky()`
-- `pycellga.optimizer.Chichinadze()`
-- `pycellga.optimizer.Dropwave()`
-- `pycellga.optimizer.Fms()`
-- `pycellga.optimizer.Griewank()`
-- `pycellga.optimizer.Holzman()`
-- `pycellga.optimizer.Levy()`
-- `pycellga.optimizer.Matyas()`
-- `pycellga.optimizer.Pow()`
-- `pycellga.optimizer.Powell()`
-- `pycellga.optimizer.Rastrigin()`
-- `pycellga.optimizer.Rosenbrock()`
-- `pycellga.optimizer.Rothellipsoid()`
-- `pycellga.optimizer.Schaffer()`
-- `pycellga.optimizer.Schaffer2()`
-- `pycellga.optimizer.Schwefel()`
-- `pycellga.optimizer.Sphere()`
-- `pycellga.optimizer.StyblinskiTang()`
-- `pycellga.optimizer.Sumofdifferentpowers()`
-- `pycellga.optimizer.Threehumps()`
-- `pycellga.optimizer.Zakharov()`
-- `pycellga.optimizer.Zettle()`
+- `pycellga.problems.Ackley`
+- `pycellga.problems.Bentcigar`
+- `pycellga.problems.Bohachevsky`
+- `pycellga.problems.Chichinadze`
+- `pycellga.problems.Dropwave`
+- `pycellga.problems.Fms`
+- `pycellga.problems.Griewank`
+- `pycellga.problems.Holzman`
+- `pycellga.problems.Levy`
+- `pycellga.problems.Matyas`
+- `pycellga.problems.Pow`
+- `pycellga.problems.Powell`
+- `pycellga.problems.Rastrigin`
+- `pycellga.problems.Rosenbrock`
+- `pycellga.problems.Rothellipsoid`
+- `pycellga.problems.Schaffer`
+- `pycellga.problems.Schaffer2`
+- `pycellga.problems.Schwefel`
+- `pycellga.problems.Sphere`
+- `pycellga.problems.StyblinskiTang`
+- `pycellga.problems.Sumofdifferentpowers`
+- `pycellga.problems.Threehumps`
+- `pycellga.problems.Zakharov`
+- `pycellga.problems.Zettle`
 
 **Binary Problems**
 
 For binary optimization problems, use the following built-in options:
 
-- `pycellga.optimizer.CountSat()`
-- `pycellga.optimizer.Ecc()`
-- `pycellga.optimizer.Maxcut20_01()`
-- `pycellga.optimizer.Maxcut20_09()`
-- `pycellga.optimizer.Maxcut100()`
-- `pycellga.optimizer.Mmdp()`
-- `pycellga.optimizer.OneMax()`
-- `pycellga.optimizer.Peak()`
+- `pycellga.problems.CountSat`
+- `pycellga.problems.Ecc`
+- `pycellga.problems.Maxcut20_01`
+- `pycellga.problems.Maxcut20_09`
+- `pycellga.problems.Maxcut100`
+- `pycellga.problems.Mmdp`
+- `pycellga.problems.OneMax`
+- `pycellga.problems.Peak`
 
 **Permutation Problems**
 
 For permutation-based optimization problems, the following option is available:
 
-- `pycellga.optimizer.Tsp()`
+- `pycellga.problems.Tsp`
 
 These built-in problems provide a diverse set of test cases, allowing users to explore `pycellga`'s capabilities across a wide range of optimization challenges. Users can also define custom problems to suit their specific needs.
 
@@ -267,38 +286,38 @@ These built-in problems provide a diverse set of test cases, allowing users to e
 
 Choose from a variety of selection methods:
 
-- `pycellga.optimizer.TournamentSelection`
-- `pycellga.optimizer.RouletteWheelSelection`
+- `pycellga.selection.TournamentSelection`
+- `pycellga.selection.RouletteWheelSelection`
 
 **Recombination Operators**
 
 The package provides multiple crossover operators:
 
-- `pycellga.optimizer.OnePointCrossover`
-- `pycellga.optimizer.PMXCrossover`
-- `pycellga.optimizer.TwoPointCrossover`
-- `pycellga.optimizer.UniformCrossover`
-- `pycellga.optimizer.ByteUniformCrossover`
-- `pycellga.optimizer.ByteOnePointCrossover`
-- `pycellga.optimizer.FlatCrossover`
-- `pycellga.optimizer.ArithmeticCrossover`
-- `pycellga.optimizer.BlxalphaCrossover`
-- `pycellga.optimizer.LinearCrossover`
-- `pycellga.optimizer.UnfairAvarageCrossover`
+- `pycellga.recombination.OnePointCrossover`
+- `pycellga.recombination.PMXCrossover`
+- `pycellga.recombination.TwoPointCrossover`
+- `pycellga.recombination.UniformCrossover`
+- `pycellga.recombination.ByteUniformCrossover`
+- `pycellga.recombination.ByteOnePointCrossover`
+- `pycellga.recombination.FlatCrossover`
+- `pycellga.recombination.ArithmeticCrossover`
+- `pycellga.recombination.BlxalphaCrossover`
+- `pycellga.recombination.LinearCrossover`
+- `pycellga.recombination.UnfairAvarageCrossover`
 
 **Mutation Operators**
 
 You can customize mutation with these options:
 
-- `pycellga.optimizer.BitFlipMutation`
-- `pycellga.optimizer.ByteMutation`
-- `pycellga.optimizer.ByteMutationRandom`
-- `pycellga.optimizer.InsertionMutation`
-- `pycellga.optimizer.ShuffleMutation`
-- `pycellga.optimizer.SwapMutation`
-- `pycellga.optimizer.TwoOptMutation`
-- `pycellga.optimizer.FloatUniformMutation`
-- `pycellga.optimizer.MutationOperator`
+- `pycellga.mutation.BitFlipMutation`
+- `pycellga.mutation.ByteMutation`
+- `pycellga.mutation.ByteMutationRandom`
+- `pycellga.mutation.InsertionMutation`
+- `pycellga.mutation.ShuffleMutation`
+- `pycellga.mutation.SwapMutation`
+- `pycellga.mutation.TwoOptMutation`
+- `pycellga.mutation.FloatUniformMutation`
+- `pycellga.mutation.MutationOperator`
 
 
 **Example Scenarios**
@@ -309,18 +328,25 @@ Optimize a binary problem using tournament selection, one-point crossover, and b
 
 .. code-block:: python
 
-    result = pycellga.optimizer.cga(
+    from pycellga.optimizer import cga
+    from pycellga.individual import GeneType
+    from pycellga.problems import OneMax
+    from pycellga.selection import TournamentSelection
+    from pycellga.recombination import OnePointCrossover
+    from pycellga.mutation import BitFlipMutation
+
+    result = cga(
         n_cols=5,
         n_rows=5,
         n_gen=100,
         ch_size=10,
-        gen_type=pycellga.optimizer.GeneType.BINARY,
+        gen_type=GeneType.BINARY,
         p_crossover=0.8,
         p_mutation=0.1,
-        problem=pycellga.optimizer.OneMax(),  # Built-in binary optimization problem
-        selection=pycellga.optimizer.TournamentSelection,
-        recombination=pycellga.optimizer.OnePointCrossover,
-        mutation=pycellga.optimizer.BitFlipMutation,
+        problem=OneMax(),  # Built-in binary optimization problem
+        selection=TournamentSelection,
+        recombination=OnePointCrossover,
+        mutation=BitFlipMutation,
         mins=[0] * 10,
         maxs=[1] * 10,
         seed_par=100
@@ -335,18 +361,25 @@ Solve a real-valued optimization problem using Byte One Point Crossover and Byte
 
 .. code-block:: python
 
-    result = pycellga.optimizer.cga(
+    from pycellga.optimizer import cga
+    from pycellga.individual import GeneType
+    from pycellga.problems import Ackley
+    from pycellga.selection import RouletteWheelSelection
+    from pycellga.recombination import ByteOnePointCrossover
+    from pycellga.mutation import ByteMutation
+
+    result = cga(
         n_cols=5,
         n_rows=5,
         n_gen=100,
         ch_size=10,
-        gen_type=pycellga.optimizer.GeneType.REAL,
+        gen_type=GeneType.REAL,
         p_crossover=0.9,
         p_mutation=0.2,
-        problem=pycellga.optimizer.Ackley(10),  # Built-in real-valued optimization problem
-        selection=pycellga.optimizer.RouletteWheelSelection,
-        recombination=pycellga.optimizer.ByteOnePointCrossover,
-        mutation=pycellga.optimizer.ByteMutation,
+        problem=Ackley(10),  # Built-in real-valued optimization problem
+        selection=RouletteWheelSelection,
+        recombination=ByteOnePointCrossover,
+        mutation=ByteMutation,
         mins=[-32.768] * 10,
         maxs=[32.768] * 10,
         seed_par=100
@@ -360,18 +393,25 @@ Optimize a TSP using permutation encoding, PMX crossover, and swap mutation.
 
 .. code-block:: python
 
-    result = pycellga.optimizer.cga(
+    from pycellga.optimizer import cga
+    from pycellga.individual import GeneType
+    from pycellga.problems import Tsp
+    from pycellga.selection import TournamentSelection
+    from pycellga.recombination import PMXCrossover
+    from pycellga.mutation import SwapMutation
+
+    result = cga(
         n_cols=5,
         n_rows=5,
         n_gen=300,
         ch_size=14,  # Number of cities
-        gen_type=pycellga.optimizer.GeneType.PERMUTATION,
+        gen_type=GeneType.PERMUTATION,
         p_crossover=0.85,
         p_mutation=0.15,
-        problem=pycellga.optimizer.Tsp(),  # Built-in TSP optimization problem
-        selection=pycellga.optimizer.TournamentSelection,
-        recombination=pycellga.optimizer.PMXCrossover,
-        mutation=pycellga.optimizer.SwapMutation,
+        problem=Tsp(),  # Built-in TSP optimization problem
+        selection=TournamentSelection,
+        recombination=PMXCrossover,
+        mutation=SwapMutation,
         mins=[1] * 14,
         maxs=[14] * 14,
         seed_par=100
diff --git a/searchindex.js b/searchindex.js
index f3a6de4..995c4fe 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"Abstract Problem Base": [[8, "abstract-problem-base"]], "Ackley Function": [[10, "ackley-function"]], "Advanced Usage Examples": [[17, "advanced-usage-examples"]], "Arithmetic Crossover": [[14, "arithmetic-crossover"]], "Available Example Modules": [[5, "available-example-modules"]], "BLX-Alpha Crossover": [[14, "blx-alpha-crossover"]], "Bent Cigar Function": [[10, "bent-cigar-function"]], "Binary Optimization Problems": [[12, null]], "Binary-Based Problems": [[11, "binary-based-problems"]], "Bit Flip Mutation": [[6, "bit-flip-mutation"]], "Bohachevsky Function": [[10, "bohachevsky-function"]], "Byte One-Point Crossover": [[14, "byte-one-point-crossover"]], "Byte Operators": [[4, "byte-operators"]], "Byte Uniform Crossover": [[14, "byte-uniform-crossover"]], "Byte-Level Mutation": [[6, "byte-level-mutation"]], "Chichinadze Function": [[10, "chichinadze-function"]], "Citing": [[0, null]], "Coding Standards": [[1, "coding-standards"]], "Compact 13": [[7, "compact-13"]], "Compact 21": [[7, "compact-21"]], "Compact 25": [[7, "compact-25"]], "Compact 9": [[7, "compact-9"]], "Continuous Optimization Problems": [[9, "continuous-optimization-problems"], [10, null]], "Contributing": [[1, null]], "Core Modules": [[4, "core-modules"]], "Count SAT": [[12, "count-sat"]], "Customization Scenarios": [[17, "customization-scenarios"]], "Development Setup": [[1, "development-setup"]], "Discrete Optimization Problems": [[9, "discrete-optimization-problems"], [11, null]], "Drop Wave Function": [[10, "drop-wave-function"]], "ECC Problem": [[12, "ecc-problem"]], "Example Implementations in pycellga": [[5, null]], "Flat Crossover": [[14, "flat-crossover"]], "Fletcher-Powell (FMS) Binary Problem": [[12, "fletcher-powell-fms-binary-problem"]], "Frequency Modulation Sound Function (FMS)": [[10, "frequency-modulation-sound-function-fms"]], "Grid Structure": [[4, "grid-structure"]], "Griewank Function": [[10, "griewank-function"]], "Holzman Function": [[10, "holzman-function"]], "Individual Representation": [[4, "individual-representation"]], "Insertion-Based Mutation": [[6, "insertion-based-mutation"]], "Installation": [[3, null]], "Installing from PyPI": [[3, "installing-from-pypi"]], "Installing from Source": [[3, "installing-from-source"]], "Levy Function": [[10, "levy-function"]], "Linear 5": [[7, "linear-5"]], "Linear 9": [[7, "linear-9"]], "Linear Crossover": [[14, "linear-crossover"]], "Matyas Function": [[10, "matyas-function"]], "Max-Cut (100 nodes)": [[12, "max-cut-100-nodes"]], "Max-Cut (20 nodes, Density 0.1)": [[12, "max-cut-20-nodes-density-0-1"]], "Max-Cut (20 nodes, Density 0.9)": [[12, "max-cut-20-nodes-density-0-9"]], "Multi-modal Deceptive Problem (MMDP)": [[12, "multi-modal-deceptive-problem-mmdp"]], "Mutation Operators": [[6, null]], "Neighborhood Operators": [[7, null]], "One-Max Problem": [[12, "one-max-problem"]], "One-Point Crossover": [[14, "one-point-crossover"]], "Optimizer": [[4, "optimizer"]], "Optional Dependencies": [[3, "optional-dependencies"]], "PYCELLGA Documentation": [[2, null]], "Partially Matched Crossover (PMX)": [[14, "partially-matched-crossover-pmx"]], "Peak Problem": [[12, "peak-problem"]], "Permutation-Based Optimization Problems": [[13, null]], "Permutation-Based Problems": [[11, "permutation-based-problems"]], "Population Management": [[4, "population-management"]], "Pow Function": [[10, "pow-function"]], "Powell Function": [[10, "powell-function"]], "Problem Definitions": [[8, null]], "Pull Request Guidelines": [[1, "pull-request-guidelines"]], "Randomized Byte Mutation": [[6, "randomized-byte-mutation"]], "Rastrigin Function": [[10, "rastrigin-function"]], "Recombination Operators": [[14, null]], "Requirements": [[3, "requirements"]], "Rosenbrock Function": [[10, "rosenbrock-function"]], "Rothellipsoid Function": [[10, "rothellipsoid-function"]], "Roulette Wheel Selection": [[15, "roulette-wheel-selection"]], "Running Tests": [[1, "running-tests"]], "Schaffer Function": [[10, "schaffer-function"]], "Schaffer2 Function": [[10, "schaffer2-function"]], "Schwefel Function": [[10, "schwefel-function"]], "Selection Operators": [[15, null]], "Shuffle Mutation": [[6, "shuffle-mutation"]], "Single-Objective Optimization Problems": [[9, null]], "Single-Objective Problems": [[8, "single-objective-problems"]], "Sphere Function": [[10, "sphere-function"]], "Styblinskitang Function": [[10, "styblinskitang-function"]], "Sumofdifferentpowers Function": [[10, "sumofdifferentpowers-function"]], "Swap Mutation": [[6, "swap-mutation"]], "Table of Contents :": [[2, null]], "Testing Guidelines": [[1, "testing-guidelines"]], "Threehumps Function": [[10, "threehumps-function"]], "Tournament Selection": [[15, "tournament-selection"]], "Traveling Salesman Problem (TSP)": [[13, "traveling-salesman-problem-tsp"]], "Troubleshooting": [[3, "troubleshooting"]], "Two-Opt Mutation": [[6, "two-opt-mutation"]], "Two-Point Crossover": [[14, "two-point-crossover"]], "Unfair Average Crossover": [[14, "unfair-average-crossover"]], "Uniform Crossover": [[14, "uniform-crossover"]], "Uniform Float Mutation": [[6, "uniform-float-mutation"]], "Uninstallation": [[3, "uninstallation"]], "Usage Examples": [[17, null]], "Verifying the Installation": [[3, "verifying-the-installation"]], "Ways to Contribute": [[1, "ways-to-contribute"]], "Zakharov Function": [[10, "zakharov-function"]], "Zettle Function": [[10, "zettle-function"]], "pycellga: API Reference": [[4, null]], "setup module": [[16, null]]}, "docnames": ["citing", "contributing", "index", "installation", "pycellga", "pycellga.example", "pycellga.mutation", "pycellga.neighborhoods", "pycellga.problems", "pycellga.problems.single_objective", "pycellga.problems.single_objective.continuous", "pycellga.problems.single_objective.discrete", "pycellga.problems.single_objective.discrete.binary", "pycellga.problems.single_objective.discrete.permutation", "pycellga.recombination", "pycellga.selection", "setup", "usage_examples"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["citing.rst", "contributing.rst", "index.rst", "installation.rst", "pycellga.rst", "pycellga.example.rst", "pycellga.mutation.rst", "pycellga.neighborhoods.rst", "pycellga.problems.rst", "pycellga.problems.single_objective.rst", "pycellga.problems.single_objective.continuous.rst", "pycellga.problems.single_objective.discrete.rst", "pycellga.problems.single_objective.discrete.binary.rst", "pycellga.problems.single_objective.discrete.permutation.rst", "pycellga.recombination.rst", "pycellga.selection.rst", "setup.rst", "usage_examples.rst"], "indexentries": {"__init__() (abstractproblem method)": [[8, "pycellga.problems.abstract_problem.AbstractProblem.__init__", false]], "__init__() (ackley method)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.__init__", false]], "__init__() (arithmeticcrossover method)": [[14, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover.__init__", false]], "__init__() (bentcigar method)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.__init__", false]], "__init__() (bitflipmutation method)": [[6, "pycellga.mutation.bit_flip_mutation.BitFlipMutation.__init__", false]], "__init__() (blxalphacrossover method)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.__init__", false]], "__init__() (bohachevsky method)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.__init__", false]], "__init__() (bytemutation method)": [[6, "pycellga.mutation.byte_mutation.ByteMutation.__init__", false]], "__init__() (bytemutationrandom method)": [[6, "pycellga.mutation.byte_mutation_random.ByteMutationRandom.__init__", false]], "__init__() (byteonepointcrossover method)": [[14, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover.__init__", false]], "__init__() (byteuniformcrossover method)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.__init__", false]], "__init__() (chichinadze method)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.__init__", false]], "__init__() (compact13 method)": [[7, "pycellga.neighborhoods.compact_13.Compact13.__init__", false]], "__init__() (compact21 method)": [[7, "pycellga.neighborhoods.compact_21.Compact21.__init__", false]], "__init__() (compact25 method)": [[7, "pycellga.neighborhoods.compact_25.Compact25.__init__", false]], "__init__() (compact9 method)": [[7, "pycellga.neighborhoods.compact_9.Compact9.__init__", false]], "__init__() (countsat method)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.__init__", false]], "__init__() (dropwave method)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.__init__", false]], "__init__() (ecc method)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.__init__", false]], "__init__() (exampleproblem method)": [[5, "pycellga.example.example_alpha_cga.ExampleProblem.__init__", false], [5, "pycellga.example.example_ccga.ExampleProblem.__init__", false], [5, "pycellga.example.example_cga.ExampleProblem.__init__", false], [5, "pycellga.example.example_sync_cga.ExampleProblem.__init__", false]], "__init__() (flatcrossover method)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover.__init__", false]], "__init__() (floatuniformmutation method)": [[6, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation.__init__", false]], "__init__() (fms method)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.__init__", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.__init__", false]], "__init__() (grid method)": [[4, "pycellga.grid.Grid.__init__", false]], "__init__() (griewank method)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.__init__", false]], "__init__() (holzman method)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.__init__", false]], "__init__() (individual method)": [[4, "pycellga.individual.Individual.__init__", false]], "__init__() (insertionmutation method)": [[6, "pycellga.mutation.insertion_mutation.InsertionMutation.__init__", false]], "__init__() (levy method)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.__init__", false]], "__init__() (linear5 method)": [[7, "pycellga.neighborhoods.linear_5.Linear5.__init__", false]], "__init__() (linear9 method)": [[7, "pycellga.neighborhoods.linear_9.Linear9.__init__", false]], "__init__() (linearcrossover method)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover.__init__", false]], "__init__() (matyas method)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.__init__", false]], "__init__() (maxcut100 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.__init__", false]], "__init__() (maxcut20_01 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.__init__", false]], "__init__() (maxcut20_09 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.__init__", false]], "__init__() (mmdp method)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.__init__", false]], "__init__() (onemax method)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.__init__", false]], "__init__() (onepointcrossover method)": [[14, "pycellga.recombination.one_point_crossover.OnePointCrossover.__init__", false]], "__init__() (peak method)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.__init__", false]], "__init__() (pmxcrossover method)": [[14, "pycellga.recombination.pmx_crossover.PMXCrossover.__init__", false]], "__init__() (population method)": [[4, "pycellga.population.Population.__init__", false]], "__init__() (pow method)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.__init__", false]], "__init__() (powell method)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.__init__", false]], "__init__() (rastrigin method)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.__init__", false]], "__init__() (realproblem method)": [[5, "pycellga.example.example_mcccga.RealProblem.__init__", false]], "__init__() (result method)": [[4, "pycellga.optimizer.Result.__init__", false]], "__init__() (rosenbrock method)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.__init__", false]], "__init__() (rothellipsoid method)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.__init__", false]], "__init__() (roulettewheelselection method)": [[15, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection.__init__", false]], "__init__() (schaffer method)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.__init__", false]], "__init__() (schaffer2 method)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.__init__", false]], "__init__() (schwefel method)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.__init__", false]], "__init__() (shufflemutation method)": [[6, "pycellga.mutation.shuffle_mutation.ShuffleMutation.__init__", false]], "__init__() (sphere method)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere.__init__", false]], "__init__() (styblinskitang method)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.__init__", false]], "__init__() (sumofdifferentpowers method)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.__init__", false]], "__init__() (swapmutation method)": [[6, "pycellga.mutation.swap_mutation.SwapMutation.__init__", false]], "__init__() (threehumps method)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.__init__", false]], "__init__() (tournamentselection method)": [[15, "pycellga.selection.tournament_selection.TournamentSelection.__init__", false]], "__init__() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.__init__", false]], "__init__() (twooptmutation method)": [[6, "pycellga.mutation.two_opt_mutation.TwoOptMutation.__init__", false]], "__init__() (twopointcrossover method)": [[14, "pycellga.recombination.two_point_crossover.TwoPointCrossover.__init__", false]], "__init__() (unfairavaragecrossover method)": [[14, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.__init__", false]], "__init__() (uniformcrossover method)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover.__init__", false]], "__init__() (zakharov method)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.__init__", false]], "__init__() (zettle method)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.__init__", false]], "abstractproblem (class in pycellga.problems.abstract_problem)": [[8, "pycellga.problems.abstract_problem.AbstractProblem", false]], "ackley (class in pycellga.problems.single_objective.continuous.ackley)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley", false]], "alpha_cga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.ALPHA_CGA", false]], "alpha_cga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.alpha_cga", false]], "arithmeticcrossover (class in pycellga.recombination.arithmetic_crossover)": [[14, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover", false]], "bentcigar (class in pycellga.problems.single_objective.continuous.bentcigar)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar", false]], "binary (genetype attribute)": [[4, "pycellga.individual.GeneType.BINARY", false]], "bitflipmutation (class in pycellga.mutation.bit_flip_mutation)": [[6, "pycellga.mutation.bit_flip_mutation.BitFlipMutation", false]], "bits_to_float() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.bits_to_float", false]], "bits_to_floats() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.bits_to_floats", false]], "blxalphacrossover (class in pycellga.recombination.blxalpha_crossover)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover", false]], "bohachevsky (class in pycellga.problems.single_objective.continuous.bohachevsky)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky", false]], "bounds (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.bounds", false]], "bounds (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.bounds", false]], "bounds (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.bounds", false]], "bounds (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.bounds", false]], "bounds (countsat attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.bounds", false]], "bounds (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.bounds", false]], "bounds (ecc attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.bounds", false]], "bounds (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.bounds", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.bounds", false]], "bounds (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.bounds", false]], "bounds (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.bounds", false]], "bounds (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.bounds", false]], "bounds (matyas attribute)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.bounds", false]], "bounds (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.bounds", false]], "bounds (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.bounds", false]], "bounds (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.bounds", false]], "bounds (pow attribute)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.bounds", false]], "bounds (powell attribute)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.bounds", false]], "bounds (rastrigin attribute)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.bounds", false]], "bounds (rosenbrock attribute)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.bounds", false]], "bounds (rothellipsoid attribute)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.bounds", false]], "bounds (schaffer attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.bounds", false]], "bounds (schaffer2 attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.bounds", false]], "bounds (schwefel attribute)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.bounds", false]], "bounds (sumofdifferentpowers attribute)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.bounds", false]], "bounds (threehumps attribute)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.bounds", false]], "bounds (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.bounds", false]], "bounds (zakharov attribute)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.bounds", false]], "bounds (zettle attribute)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.bounds", false]], "bytemutation (class in pycellga.mutation.byte_mutation)": [[6, "pycellga.mutation.byte_mutation.ByteMutation", false]], "bytemutationrandom (class in pycellga.mutation.byte_mutation_random)": [[6, "pycellga.mutation.byte_mutation_random.ByteMutationRandom", false]], "byteonepointcrossover (class in pycellga.recombination.byte_one_point_crossover)": [[14, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover", false]], "byteuniformcrossover (class in pycellga.recombination.byte_uniform_crossover)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover", false]], "calculate_neighbors_positions() (compact13 method)": [[7, "pycellga.neighborhoods.compact_13.Compact13.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (compact21 method)": [[7, "pycellga.neighborhoods.compact_21.Compact21.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (compact25 method)": [[7, "pycellga.neighborhoods.compact_25.Compact25.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (compact9 method)": [[7, "pycellga.neighborhoods.compact_9.Compact9.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (linear5 method)": [[7, "pycellga.neighborhoods.linear_5.Linear5.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (linear9 method)": [[7, "pycellga.neighborhoods.linear_9.Linear9.calculate_neighbors_positions", false]], "ccga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.CCGA", false]], "ccga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.ccga", false]], "cga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.CGA", false]], "cga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.cga", false]], "ch_size (individual attribute)": [[4, "pycellga.individual.Individual.ch_size", false]], "ch_size (population attribute)": [[4, "pycellga.population.Population.ch_size", false]], "chichinadze (class in pycellga.problems.single_objective.continuous.chichinadze)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze", false]], "chromosome (individual attribute)": [[4, "pycellga.individual.Individual.chromosome", false]], "chromosome (result attribute)": [[4, "pycellga.optimizer.Result.chromosome", false]], "combine() (blxalphacrossover method)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.combine", false]], "combine() (byteuniformcrossover method)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.combine", false]], "combine() (flatcrossover method)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover.combine", false]], "combine() (linearcrossover method)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover.combine", false]], "combine() (uniformcrossover method)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover.combine", false]], "compact13 (class in pycellga.neighborhoods.compact_13)": [[7, "pycellga.neighborhoods.compact_13.Compact13", false]], "compact21 (class in pycellga.neighborhoods.compact_21)": [[7, "pycellga.neighborhoods.compact_21.Compact21", false]], "compact25 (class in pycellga.neighborhoods.compact_25)": [[7, "pycellga.neighborhoods.compact_25.Compact25", false]], "compact9 (class in pycellga.neighborhoods.compact_9)": [[7, "pycellga.neighborhoods.compact_9.Compact9", false]], "compete() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.compete", false]], "constraints (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.constraints", false]], "constraints (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.constraints", false]], "constraints (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.constraints", false]], "constraints (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.constraints", false]], "constraints (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.constraints", false]], "constraints (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.constraints", false]], "constraints (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.constraints", false]], "constraints (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.constraints", false]], "constraints (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.constraints", false]], "constraints (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.constraints", false]], "constraints (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.constraints", false]], "constraints (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.constraints", false]], "countsat (class in pycellga.problems.single_objective.discrete.binary.count_sat)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat", false]], "design_variables (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.design_variables", false]], "design_variables (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.design_variables", false]], "design_variables (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.design_variables", false]], "design_variables (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.design_variables", false]], "design_variables (countsat attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.design_variables", false]], "design_variables (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.design_variables", false]], "design_variables (ecc attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.design_variables", false]], "design_variables (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.design_variables", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.design_variables", false]], "design_variables (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.design_variables", false]], "design_variables (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.design_variables", false]], "design_variables (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.design_variables", false]], "design_variables (matyas attribute)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.design_variables", false]], "design_variables (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.design_variables", false]], "design_variables (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.design_variables", false]], "design_variables (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.design_variables", false]], "design_variables (pow attribute)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.design_variables", false]], "design_variables (powell attribute)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.design_variables", false]], "design_variables (rastrigin attribute)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.design_variables", false]], "design_variables (rosenbrock attribute)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.design_variables", false]], "design_variables (rothellipsoid attribute)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.design_variables", false]], "design_variables (schaffer attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.design_variables", false]], "design_variables (schaffer2 attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.design_variables", false]], "design_variables (schwefel attribute)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.design_variables", false]], "design_variables (threehumps attribute)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.design_variables", false]], "design_variables (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.design_variables", false]], "design_variables (zakharov attribute)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.design_variables", false]], "design_variables (zettle attribute)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.design_variables", false]], "dropwave (class in pycellga.problems.single_objective.continuous.dropwave)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave", false]], "ecc (class in pycellga.problems.single_objective.discrete.binary.ecc)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc", false]], "euclidean_dist() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.euclidean_dist", false]], "evaluate() (abstractproblem method)": [[8, "pycellga.problems.abstract_problem.AbstractProblem.evaluate", false]], "evaluate() (ackley method)": [[10, "id0", false], [10, "pycellga.problems.single_objective.continuous.ackley.Ackley.evaluate", false]], "evaluate() (bentcigar method)": [[10, "id2", false], [10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.evaluate", false]], "evaluate() (bohachevsky method)": [[10, "id4", false], [10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.evaluate", false]], "evaluate() (chichinadze method)": [[10, "id6", false], [10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.evaluate", false]], "evaluate() (countsat method)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.evaluate", false]], "evaluate() (dropwave method)": [[10, "id8", false], [10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.evaluate", false]], "evaluate() (fms method)": [[10, "id10", false], [10, "pycellga.problems.single_objective.continuous.fms.Fms.evaluate", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.evaluate", false]], "evaluate() (griewank method)": [[10, "id12", false], [10, "pycellga.problems.single_objective.continuous.griewank.Griewank.evaluate", false]], "evaluate() (holzman method)": [[10, "id14", false], [10, "pycellga.problems.single_objective.continuous.holzman.Holzman.evaluate", false]], "evaluate() (levy method)": [[10, "id16", false], [10, "pycellga.problems.single_objective.continuous.levy.Levy.evaluate", false]], "evaluate() (matyas method)": [[10, "id18", false], [10, "pycellga.problems.single_objective.continuous.matyas.Matyas.evaluate", false]], "evaluate() (maxcut20_01 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.evaluate", false]], "evaluate() (maxcut20_09 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.evaluate", false]], "evaluate() (peak method)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.evaluate", false]], "evaluate() (pow method)": [[10, "id20", false], [10, "pycellga.problems.single_objective.continuous.pow.Pow.evaluate", false]], "evaluate() (powell method)": [[10, "id22", false], [10, "pycellga.problems.single_objective.continuous.powell.Powell.evaluate", false]], "evaluate() (rosenbrock method)": [[10, "id25", false], [10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.evaluate", false]], "evaluate() (rothellipsoid method)": [[10, "id27", false], [10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.evaluate", false]], "evaluate() (schaffer method)": [[10, "id29", false], [10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.evaluate", false]], "evaluate() (schaffer2 method)": [[10, "id31", false], [10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.evaluate", false]], "evaluate() (schwefel method)": [[10, "id33", false], [10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.evaluate", false]], "evaluate() (sphere method)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere.evaluate", false]], "evaluate() (styblinskitang method)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.evaluate", false]], "evaluate() (sumofdifferentpowers method)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.evaluate", false]], "evaluate() (threehumps method)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.evaluate", false]], "evaluate() (zakharov method)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.evaluate", false]], "exampleproblem (class in pycellga.example.example_alpha_cga)": [[5, "pycellga.example.example_alpha_cga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_ccga)": [[5, "pycellga.example.example_ccga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_cga)": [[5, "pycellga.example.example_cga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_sync_cga)": [[5, "pycellga.example.example_sync_cga.ExampleProblem", false]], "f() (abstractproblem method)": [[8, "pycellga.problems.abstract_problem.AbstractProblem.f", false]], "f() (ackley method)": [[10, "id1", false], [10, "pycellga.problems.single_objective.continuous.ackley.Ackley.f", false]], "f() (bentcigar method)": [[10, "id3", false], [10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.f", false]], "f() (bohachevsky method)": [[10, "id5", false], [10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.f", false]], "f() (chichinadze method)": [[10, "id7", false], [10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.f", false]], "f() (countsat method)": [[12, "id0", false], [12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.f", false]], "f() (dropwave method)": [[10, "id9", false], [10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.f", false]], "f() (ecc method)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.f", false]], "f() (exampleproblem method)": [[5, "pycellga.example.example_alpha_cga.ExampleProblem.f", false], [5, "pycellga.example.example_ccga.ExampleProblem.f", false], [5, "pycellga.example.example_cga.ExampleProblem.f", false], [5, "pycellga.example.example_sync_cga.ExampleProblem.f", false]], "f() (fms method)": [[10, "id11", false], [10, "pycellga.problems.single_objective.continuous.fms.Fms.f", false], [12, "id1", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.f", false]], "f() (griewank method)": [[10, "id13", false], [10, "pycellga.problems.single_objective.continuous.griewank.Griewank.f", false]], "f() (holzman method)": [[10, "id15", false], [10, "pycellga.problems.single_objective.continuous.holzman.Holzman.f", false]], "f() (levy method)": [[10, "id17", false], [10, "pycellga.problems.single_objective.continuous.levy.Levy.f", false]], "f() (matyas method)": [[10, "id19", false], [10, "pycellga.problems.single_objective.continuous.matyas.Matyas.f", false]], "f() (maxcut100 method)": [[12, "id2", false], [12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.f", false]], "f() (maxcut20_01 method)": [[12, "id3", false], [12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.f", false]], "f() (maxcut20_09 method)": [[12, "id4", false], [12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.f", false]], "f() (mmdp method)": [[12, "id5", false], [12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.f", false]], "f() (onemax method)": [[12, "id6", false], [12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.f", false]], "f() (peak method)": [[12, "id7", false], [12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.f", false]], "f() (pow method)": [[10, "id21", false], [10, "pycellga.problems.single_objective.continuous.pow.Pow.f", false]], "f() (powell method)": [[10, "id23", false], [10, "pycellga.problems.single_objective.continuous.powell.Powell.f", false]], "f() (rastrigin method)": [[10, "id24", false], [10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.f", false]], "f() (realproblem method)": [[5, "pycellga.example.example_mcccga.RealProblem.f", false]], "f() (rosenbrock method)": [[10, "id26", false], [10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.f", false]], "f() (rothellipsoid method)": [[10, "id28", false], [10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.f", false]], "f() (schaffer method)": [[10, "id30", false], [10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.f", false]], "f() (schaffer2 method)": [[10, "id32", false], [10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.f", false]], "f() (schwefel method)": [[10, "id34", false], [10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.f", false]], "f() (sphere method)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere.f", false]], "f() (styblinskitang method)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.f", false]], "f() (sumofdifferentpowers method)": [[10, "id35", false], [10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.f", false]], "f() (threehumps method)": [[10, "id36", false], [10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.f", false]], "f() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.f", false]], "f() (zakharov method)": [[10, "id37", false], [10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.f", false]], "f() (zettle method)": [[10, "id38", false], [10, "pycellga.problems.single_objective.continuous.zettle.Zettle.f", false]], "fitness_value (individual attribute)": [[4, "pycellga.individual.Individual.fitness_value", false]], "fitness_value (result attribute)": [[4, "pycellga.optimizer.Result.fitness_value", false]], "flatcrossover (class in pycellga.recombination.flat_crossover)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover", false]], "float_to_bits() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.float_to_bits", false]], "floats_to_bits() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.floats_to_bits", false]], "floatuniformmutation (class in pycellga.mutation.float_uniform_mutation)": [[6, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation", false]], "fms (class in pycellga.problems.single_objective.continuous.fms)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms", false]], "fms (class in pycellga.problems.single_objective.discrete.binary.fms)": [[12, "pycellga.problems.single_objective.discrete.binary.fms.Fms", false]], "gen_type (individual attribute)": [[4, "pycellga.individual.Individual.gen_type", false]], "gen_type (population attribute)": [[4, "pycellga.population.Population.gen_type", false]], "generate_candidate() (individual method)": [[4, "pycellga.individual.Individual.generate_candidate", false]], "generate_probability_vector() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.generate_probability_vector", false]], "generation_found (result attribute)": [[4, "pycellga.optimizer.Result.generation_found", false]], "genetype (class in pycellga.individual)": [[4, "pycellga.individual.GeneType", false]], "get_parents() (roulettewheelselection method)": [[15, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection.get_parents", false]], "get_parents() (tournamentselection method)": [[15, "pycellga.selection.tournament_selection.TournamentSelection.get_parents", false]], "get_recombinations() (arithmeticcrossover method)": [[14, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover.get_recombinations", false]], "get_recombinations() (blxalphacrossover method)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.get_recombinations", false]], "get_recombinations() (byteonepointcrossover method)": [[14, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover.get_recombinations", false]], "get_recombinations() (byteuniformcrossover method)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.get_recombinations", false]], "get_recombinations() (flatcrossover method)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover.get_recombinations", false]], "get_recombinations() (linearcrossover method)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover.get_recombinations", false]], "get_recombinations() (onepointcrossover method)": [[14, "pycellga.recombination.one_point_crossover.OnePointCrossover.get_recombinations", false]], "get_recombinations() (pmxcrossover method)": [[14, "pycellga.recombination.pmx_crossover.PMXCrossover.get_recombinations", false]], "get_recombinations() (twopointcrossover method)": [[14, "pycellga.recombination.two_point_crossover.TwoPointCrossover.get_recombinations", false]], "get_recombinations() (unfairavaragecrossover method)": [[14, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.get_recombinations", false]], "get_recombinations() (uniformcrossover method)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover.get_recombinations", false]], "getneighbors() (individual method)": [[4, "pycellga.individual.Individual.getneighbors", false]], "getneighbors_positions() (individual method)": [[4, "pycellga.individual.Individual.getneighbors_positions", false]], "gographical_dist() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.gographical_dist", false]], "grid (class in pycellga.grid)": [[4, "pycellga.grid.Grid", false]], "griewank (class in pycellga.problems.single_objective.continuous.griewank)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank", false]], "holzman (class in pycellga.problems.single_objective.continuous.holzman)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman", false]], "individual (class in pycellga.individual)": [[4, "pycellga.individual.Individual", false]], "initial_population() (population method)": [[4, "pycellga.population.Population.initial_population", false]], "insertionmutation (class in pycellga.mutation.insertion_mutation)": [[6, "pycellga.mutation.insertion_mutation.InsertionMutation", false]], "levy (class in pycellga.problems.single_objective.continuous.levy)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy", false]], "linear5 (class in pycellga.neighborhoods.linear_5)": [[7, "pycellga.neighborhoods.linear_5.Linear5", false]], "linear9 (class in pycellga.neighborhoods.linear_9)": [[7, "pycellga.neighborhoods.linear_9.Linear9", false]], "linearcrossover (class in pycellga.recombination.linear_crossover)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover", false]], "make_2d_grid() (grid method)": [[4, "pycellga.grid.Grid.make_2d_grid", false]], "matyas (class in pycellga.problems.single_objective.continuous.matyas)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas", false]], "maxcut100 (class in pycellga.problems.single_objective.discrete.binary.maxcut100)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100", false]], "maxcut20_01 (class in pycellga.problems.single_objective.discrete.binary.maxcut20_01)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01", false]], "maxcut20_09 (class in pycellga.problems.single_objective.discrete.binary.maxcut20_09)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09", false]], "mcccga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.MCCCGA", false]], "mcccga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.mcccga", false]], "method_name (population attribute)": [[4, "pycellga.population.Population.method_name", false]], "mmdp (class in pycellga.problems.single_objective.discrete.binary.mmdp)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp", false]], "module": [[4, "module-pycellga.byte_operators", false], [4, "module-pycellga.grid", false], [4, "module-pycellga.individual", false], [4, "module-pycellga.optimizer", false], [4, "module-pycellga.population", false], [5, "module-pycellga.example", false], [5, "module-pycellga.example.example_alpha_cga", false], [5, "module-pycellga.example.example_ccga", false], [5, "module-pycellga.example.example_cga", false], [5, "module-pycellga.example.example_mcccga", false], [5, "module-pycellga.example.example_sync_cga", false], [6, "module-pycellga.mutation.bit_flip_mutation", false], [6, "module-pycellga.mutation.byte_mutation", false], [6, "module-pycellga.mutation.byte_mutation_random", false], [6, "module-pycellga.mutation.float_uniform_mutation", false], [6, "module-pycellga.mutation.insertion_mutation", false], [6, "module-pycellga.mutation.shuffle_mutation", false], [6, "module-pycellga.mutation.swap_mutation", false], [6, "module-pycellga.mutation.two_opt_mutation", false], [7, "module-pycellga.neighborhoods.compact_13", false], [7, "module-pycellga.neighborhoods.compact_21", false], [7, "module-pycellga.neighborhoods.compact_25", false], [7, "module-pycellga.neighborhoods.compact_9", false], [7, "module-pycellga.neighborhoods.linear_5", false], [7, "module-pycellga.neighborhoods.linear_9", false], [8, "module-pycellga.problems.abstract_problem", false], [10, "module-pycellga.problems.single_objective.continuous.ackley", false], [10, "module-pycellga.problems.single_objective.continuous.bentcigar", false], [10, "module-pycellga.problems.single_objective.continuous.bohachevsky", false], [10, "module-pycellga.problems.single_objective.continuous.chichinadze", false], [10, "module-pycellga.problems.single_objective.continuous.dropwave", false], [10, "module-pycellga.problems.single_objective.continuous.fms", false], [10, "module-pycellga.problems.single_objective.continuous.griewank", false], [10, "module-pycellga.problems.single_objective.continuous.holzman", false], [10, "module-pycellga.problems.single_objective.continuous.levy", false], [10, "module-pycellga.problems.single_objective.continuous.matyas", false], [10, "module-pycellga.problems.single_objective.continuous.pow", false], [10, "module-pycellga.problems.single_objective.continuous.powell", false], [10, "module-pycellga.problems.single_objective.continuous.rastrigin", false], [10, "module-pycellga.problems.single_objective.continuous.rosenbrock", false], [10, "module-pycellga.problems.single_objective.continuous.rothellipsoid", false], [10, "module-pycellga.problems.single_objective.continuous.schaffer", false], [10, "module-pycellga.problems.single_objective.continuous.schaffer2", false], [10, "module-pycellga.problems.single_objective.continuous.schwefel", false], [10, "module-pycellga.problems.single_objective.continuous.sphere", false], [10, "module-pycellga.problems.single_objective.continuous.styblinskitang", false], [10, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers", false], [10, "module-pycellga.problems.single_objective.continuous.threehumps", false], [10, "module-pycellga.problems.single_objective.continuous.zakharov", false], [10, "module-pycellga.problems.single_objective.continuous.zettle", false], [12, "module-pycellga.problems.single_objective.discrete.binary.count_sat", false], [12, "module-pycellga.problems.single_objective.discrete.binary.ecc", false], [12, "module-pycellga.problems.single_objective.discrete.binary.fms", false], [12, "module-pycellga.problems.single_objective.discrete.binary.maxcut100", false], [12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01", false], [12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09", false], [12, "module-pycellga.problems.single_objective.discrete.binary.mmdp", false], [12, "module-pycellga.problems.single_objective.discrete.binary.one_max", false], [12, "module-pycellga.problems.single_objective.discrete.binary.peak", false], [13, "module-pycellga.problems.single_objective.discrete.permutation.tsp", false], [14, "module-pycellga.recombination.arithmetic_crossover", false], [14, "module-pycellga.recombination.blxalpha_crossover", false], [14, "module-pycellga.recombination.byte_one_point_crossover", false], [14, "module-pycellga.recombination.byte_uniform_crossover", false], [14, "module-pycellga.recombination.flat_crossover", false], [14, "module-pycellga.recombination.linear_crossover", false], [14, "module-pycellga.recombination.one_point_crossover", false], [14, "module-pycellga.recombination.pmx_crossover", false], [14, "module-pycellga.recombination.two_point_crossover", false], [14, "module-pycellga.recombination.unfair_avarage_crossover", false], [14, "module-pycellga.recombination.uniform_crossover", false], [15, "module-pycellga.selection.roulette_wheel_selection", false], [15, "module-pycellga.selection.tournament_selection", false]], "mutate() (bitflipmutation method)": [[6, "pycellga.mutation.bit_flip_mutation.BitFlipMutation.mutate", false]], "mutate() (bytemutation method)": [[6, "pycellga.mutation.byte_mutation.ByteMutation.mutate", false]], "mutate() (bytemutationrandom method)": [[6, "pycellga.mutation.byte_mutation_random.ByteMutationRandom.mutate", false]], "mutate() (floatuniformmutation method)": [[6, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation.mutate", false]], "mutate() (insertionmutation method)": [[6, "pycellga.mutation.insertion_mutation.InsertionMutation.mutate", false]], "mutate() (shufflemutation method)": [[6, "pycellga.mutation.shuffle_mutation.ShuffleMutation.mutate", false]], "mutate() (swapmutation method)": [[6, "pycellga.mutation.swap_mutation.SwapMutation.mutate", false]], "mutate() (twooptmutation method)": [[6, "pycellga.mutation.two_opt_mutation.TwoOptMutation.mutate", false]], "n_cols (grid attribute)": [[4, "pycellga.grid.Grid.n_cols", false]], "n_cols (population attribute)": [[4, "pycellga.population.Population.n_cols", false]], "n_rows (grid attribute)": [[4, "pycellga.grid.Grid.n_rows", false]], "n_rows (population attribute)": [[4, "pycellga.population.Population.n_rows", false]], "n_var (sumofdifferentpowers attribute)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.n_var", false]], "neighbors (individual attribute)": [[4, "pycellga.individual.Individual.neighbors", false]], "neighbors_positions (individual attribute)": [[4, "pycellga.individual.Individual.neighbors_positions", false]], "num_variables (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.num_variables", false]], "objectives (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.objectives", false]], "objectives (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.objectives", false]], "objectives (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.objectives", false]], "objectives (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.objectives", false]], "objectives (countsat attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.objectives", false]], "objectives (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.objectives", false]], "objectives (ecc attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.objectives", false]], "objectives (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.objectives", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.objectives", false]], "objectives (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.objectives", false]], "objectives (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.objectives", false]], "objectives (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.objectives", false]], "objectives (matyas attribute)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.objectives", false]], "objectives (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.objectives", false]], "objectives (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.objectives", false]], "objectives (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.objectives", false]], "objectives (pow attribute)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.objectives", false]], "objectives (powell attribute)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.objectives", false]], "objectives (rastrigin attribute)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.objectives", false]], "objectives (rosenbrock attribute)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.objectives", false]], "objectives (rothellipsoid attribute)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.objectives", false]], "objectives (schaffer attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.objectives", false]], "objectives (schaffer2 attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.objectives", false]], "objectives (schwefel attribute)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.objectives", false]], "objectives (sumofdifferentpowers attribute)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.objectives", false]], "objectives (threehumps attribute)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.objectives", false]], "objectives (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.objectives", false]], "objectives (zakharov attribute)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.objectives", false]], "objectives (zettle attribute)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.objectives", false]], "onemax (class in pycellga.problems.single_objective.discrete.binary.one_max)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax", false]], "onepointcrossover (class in pycellga.recombination.one_point_crossover)": [[14, "pycellga.recombination.one_point_crossover.OnePointCrossover", false]], "optimizationmethod (class in pycellga.population)": [[4, "pycellga.population.OptimizationMethod", false]], "peak (class in pycellga.problems.single_objective.discrete.binary.peak)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak", false]], "permutation (genetype attribute)": [[4, "pycellga.individual.GeneType.PERMUTATION", false]], "pmxcrossover (class in pycellga.recombination.pmx_crossover)": [[14, "pycellga.recombination.pmx_crossover.PMXCrossover", false]], "population (class in pycellga.population)": [[4, "pycellga.population.Population", false]], "position (individual attribute)": [[4, "pycellga.individual.Individual.position", false]], "pow (class in pycellga.problems.single_objective.continuous.pow)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow", false]], "powell (class in pycellga.problems.single_objective.continuous.powell)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell", false]], "problem (population attribute)": [[4, "pycellga.population.Population.problem", false]], "problema (maxcut100 attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.problema", false]], "problema (maxcut20_01 attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.problema", false]], "problema (maxcut20_09 attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.problema", false]], "pycellga.byte_operators": [[4, "module-pycellga.byte_operators", false]], "pycellga.example": [[5, "module-pycellga.example", false]], "pycellga.example.example_alpha_cga": [[5, "module-pycellga.example.example_alpha_cga", false]], "pycellga.example.example_ccga": [[5, "module-pycellga.example.example_ccga", false]], "pycellga.example.example_cga": [[5, "module-pycellga.example.example_cga", false]], "pycellga.example.example_mcccga": [[5, "module-pycellga.example.example_mcccga", false]], "pycellga.example.example_sync_cga": [[5, "module-pycellga.example.example_sync_cga", false]], "pycellga.grid": [[4, "module-pycellga.grid", false]], "pycellga.individual": [[4, "module-pycellga.individual", false]], "pycellga.mutation.bit_flip_mutation": [[6, "module-pycellga.mutation.bit_flip_mutation", false]], "pycellga.mutation.byte_mutation": [[6, "module-pycellga.mutation.byte_mutation", false]], "pycellga.mutation.byte_mutation_random": [[6, "module-pycellga.mutation.byte_mutation_random", false]], "pycellga.mutation.float_uniform_mutation": [[6, "module-pycellga.mutation.float_uniform_mutation", false]], "pycellga.mutation.insertion_mutation": [[6, "module-pycellga.mutation.insertion_mutation", false]], "pycellga.mutation.shuffle_mutation": [[6, "module-pycellga.mutation.shuffle_mutation", false]], "pycellga.mutation.swap_mutation": [[6, "module-pycellga.mutation.swap_mutation", false]], "pycellga.mutation.two_opt_mutation": [[6, "module-pycellga.mutation.two_opt_mutation", false]], "pycellga.neighborhoods.compact_13": [[7, "module-pycellga.neighborhoods.compact_13", false]], "pycellga.neighborhoods.compact_21": [[7, "module-pycellga.neighborhoods.compact_21", false]], "pycellga.neighborhoods.compact_25": [[7, "module-pycellga.neighborhoods.compact_25", false]], "pycellga.neighborhoods.compact_9": [[7, "module-pycellga.neighborhoods.compact_9", false]], "pycellga.neighborhoods.linear_5": [[7, "module-pycellga.neighborhoods.linear_5", false]], "pycellga.neighborhoods.linear_9": [[7, "module-pycellga.neighborhoods.linear_9", false]], "pycellga.optimizer": [[4, "module-pycellga.optimizer", false]], "pycellga.population": [[4, "module-pycellga.population", false]], "pycellga.problems.abstract_problem": [[8, "module-pycellga.problems.abstract_problem", false]], "pycellga.problems.single_objective.continuous.ackley": [[10, "module-pycellga.problems.single_objective.continuous.ackley", false]], "pycellga.problems.single_objective.continuous.bentcigar": [[10, "module-pycellga.problems.single_objective.continuous.bentcigar", false]], "pycellga.problems.single_objective.continuous.bohachevsky": [[10, "module-pycellga.problems.single_objective.continuous.bohachevsky", false]], "pycellga.problems.single_objective.continuous.chichinadze": [[10, "module-pycellga.problems.single_objective.continuous.chichinadze", false]], "pycellga.problems.single_objective.continuous.dropwave": [[10, "module-pycellga.problems.single_objective.continuous.dropwave", false]], "pycellga.problems.single_objective.continuous.fms": [[10, "module-pycellga.problems.single_objective.continuous.fms", false]], "pycellga.problems.single_objective.continuous.griewank": [[10, "module-pycellga.problems.single_objective.continuous.griewank", false]], "pycellga.problems.single_objective.continuous.holzman": [[10, "module-pycellga.problems.single_objective.continuous.holzman", false]], "pycellga.problems.single_objective.continuous.levy": [[10, "module-pycellga.problems.single_objective.continuous.levy", false]], "pycellga.problems.single_objective.continuous.matyas": [[10, "module-pycellga.problems.single_objective.continuous.matyas", false]], "pycellga.problems.single_objective.continuous.pow": [[10, "module-pycellga.problems.single_objective.continuous.pow", false]], "pycellga.problems.single_objective.continuous.powell": [[10, "module-pycellga.problems.single_objective.continuous.powell", false]], "pycellga.problems.single_objective.continuous.rastrigin": [[10, "module-pycellga.problems.single_objective.continuous.rastrigin", false]], "pycellga.problems.single_objective.continuous.rosenbrock": [[10, "module-pycellga.problems.single_objective.continuous.rosenbrock", false]], "pycellga.problems.single_objective.continuous.rothellipsoid": [[10, "module-pycellga.problems.single_objective.continuous.rothellipsoid", false]], "pycellga.problems.single_objective.continuous.schaffer": [[10, "module-pycellga.problems.single_objective.continuous.schaffer", false]], "pycellga.problems.single_objective.continuous.schaffer2": [[10, "module-pycellga.problems.single_objective.continuous.schaffer2", false]], "pycellga.problems.single_objective.continuous.schwefel": [[10, "module-pycellga.problems.single_objective.continuous.schwefel", false]], "pycellga.problems.single_objective.continuous.sphere": [[10, "module-pycellga.problems.single_objective.continuous.sphere", false]], "pycellga.problems.single_objective.continuous.styblinskitang": [[10, "module-pycellga.problems.single_objective.continuous.styblinskitang", false]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers": [[10, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers", false]], "pycellga.problems.single_objective.continuous.threehumps": [[10, "module-pycellga.problems.single_objective.continuous.threehumps", false]], "pycellga.problems.single_objective.continuous.zakharov": [[10, "module-pycellga.problems.single_objective.continuous.zakharov", false]], "pycellga.problems.single_objective.continuous.zettle": [[10, "module-pycellga.problems.single_objective.continuous.zettle", false]], "pycellga.problems.single_objective.discrete.binary.count_sat": [[12, "module-pycellga.problems.single_objective.discrete.binary.count_sat", false]], "pycellga.problems.single_objective.discrete.binary.ecc": [[12, "module-pycellga.problems.single_objective.discrete.binary.ecc", false]], "pycellga.problems.single_objective.discrete.binary.fms": [[12, "module-pycellga.problems.single_objective.discrete.binary.fms", false]], "pycellga.problems.single_objective.discrete.binary.maxcut100": [[12, "module-pycellga.problems.single_objective.discrete.binary.maxcut100", false]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01": [[12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01", false]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09": [[12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09", false]], "pycellga.problems.single_objective.discrete.binary.mmdp": [[12, "module-pycellga.problems.single_objective.discrete.binary.mmdp", false]], "pycellga.problems.single_objective.discrete.binary.one_max": [[12, "module-pycellga.problems.single_objective.discrete.binary.one_max", false]], "pycellga.problems.single_objective.discrete.binary.peak": [[12, "module-pycellga.problems.single_objective.discrete.binary.peak", false]], "pycellga.problems.single_objective.discrete.permutation.tsp": [[13, "module-pycellga.problems.single_objective.discrete.permutation.tsp", false]], "pycellga.recombination.arithmetic_crossover": [[14, "module-pycellga.recombination.arithmetic_crossover", false]], "pycellga.recombination.blxalpha_crossover": [[14, "module-pycellga.recombination.blxalpha_crossover", false]], "pycellga.recombination.byte_one_point_crossover": [[14, "module-pycellga.recombination.byte_one_point_crossover", false]], "pycellga.recombination.byte_uniform_crossover": [[14, "module-pycellga.recombination.byte_uniform_crossover", false]], "pycellga.recombination.flat_crossover": [[14, "module-pycellga.recombination.flat_crossover", false]], "pycellga.recombination.linear_crossover": [[14, "module-pycellga.recombination.linear_crossover", false]], "pycellga.recombination.one_point_crossover": [[14, "module-pycellga.recombination.one_point_crossover", false]], "pycellga.recombination.pmx_crossover": [[14, "module-pycellga.recombination.pmx_crossover", false]], "pycellga.recombination.two_point_crossover": [[14, "module-pycellga.recombination.two_point_crossover", false]], "pycellga.recombination.unfair_avarage_crossover": [[14, "module-pycellga.recombination.unfair_avarage_crossover", false]], "pycellga.recombination.uniform_crossover": [[14, "module-pycellga.recombination.uniform_crossover", false]], "pycellga.selection.roulette_wheel_selection": [[15, "module-pycellga.selection.roulette_wheel_selection", false]], "pycellga.selection.tournament_selection": [[15, "module-pycellga.selection.tournament_selection", false]], "random_vector_between() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.random_vector_between", false]], "randomize() (individual method)": [[4, "pycellga.individual.Individual.randomize", false]], "rastrigin (class in pycellga.problems.single_objective.continuous.rastrigin)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin", false]], "real (genetype attribute)": [[4, "pycellga.individual.GeneType.REAL", false]], "realproblem (class in pycellga.example.example_mcccga)": [[5, "pycellga.example.example_mcccga.RealProblem", false]], "result (class in pycellga.optimizer)": [[4, "pycellga.optimizer.Result", false]], "rosenbrock (class in pycellga.problems.single_objective.continuous.rosenbrock)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock", false]], "rothellipsoid (class in pycellga.problems.single_objective.continuous.rothellipsoid)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid", false]], "roulettewheelselection (class in pycellga.selection.roulette_wheel_selection)": [[15, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection", false]], "run_alpha_cga_example() (in module pycellga.example.example_alpha_cga)": [[5, "pycellga.example.example_alpha_cga.run_alpha_cga_example", false]], "run_ccga_example() (in module pycellga.example.example_ccga)": [[5, "pycellga.example.example_ccga.run_ccga_example", false]], "run_cga_example() (in module pycellga.example.example_cga)": [[5, "pycellga.example.example_cga.run_cga_example", false]], "run_mcccga_example() (in module pycellga.example.example_mcccga)": [[5, "pycellga.example.example_mcccga.run_mcccga_example", false]], "run_sync_cga_example() (in module pycellga.example.example_sync_cga)": [[5, "pycellga.example.example_sync_cga.run_sync_cga_example", false]], "sample() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.sample", false]], "schaffer (class in pycellga.problems.single_objective.continuous.schaffer)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer", false]], "schaffer2 (class in pycellga.problems.single_objective.continuous.schaffer2)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2", false]], "schwefel (class in pycellga.problems.single_objective.continuous.schwefel)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel", false]], "setneighbors() (individual method)": [[4, "pycellga.individual.Individual.setneighbors", false]], "setneighbors_positions() (individual method)": [[4, "pycellga.individual.Individual.setneighbors_positions", false]], "shufflemutation (class in pycellga.mutation.shuffle_mutation)": [[6, "pycellga.mutation.shuffle_mutation.ShuffleMutation", false]], "sphere (class in pycellga.problems.single_objective.continuous.sphere)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere", false]], "styblinskitang (class in pycellga.problems.single_objective.continuous.styblinskitang)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang", false]], "sumofdifferentpowers (class in pycellga.problems.single_objective.continuous.sumofdifferentpowers)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers", false]], "swapmutation (class in pycellga.mutation.swap_mutation)": [[6, "pycellga.mutation.swap_mutation.SwapMutation", false]], "sync_cga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.sync_cga", false]], "syncga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.SYNCGA", false]], "threehumps (class in pycellga.problems.single_objective.continuous.threehumps)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps", false]], "tournamentselection (class in pycellga.selection.tournament_selection)": [[15, "pycellga.selection.tournament_selection.TournamentSelection", false]], "tsp (class in pycellga.problems.single_objective.discrete.permutation.tsp)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp", false]], "twooptmutation (class in pycellga.mutation.two_opt_mutation)": [[6, "pycellga.mutation.two_opt_mutation.TwoOptMutation", false]], "twopointcrossover (class in pycellga.recombination.two_point_crossover)": [[14, "pycellga.recombination.two_point_crossover.TwoPointCrossover", false]], "unfairavaragecrossover (class in pycellga.recombination.unfair_avarage_crossover)": [[14, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover", false]], "uniformcrossover (class in pycellga.recombination.uniform_crossover)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover", false]], "update_vector() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.update_vector", false]], "vector (population attribute)": [[4, "pycellga.population.Population.vector", false]], "zakharov (class in pycellga.problems.single_objective.continuous.zakharov)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov", false]], "zettle (class in pycellga.problems.single_objective.continuous.zettle)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle", false]]}, "objects": {"pycellga": [[4, 0, 0, "-", "byte_operators"], [5, 0, 0, "-", "example"], [4, 0, 0, "-", "grid"], [4, 0, 0, "-", "individual"], [4, 0, 0, "-", "optimizer"], [4, 0, 0, "-", "population"]], "pycellga.byte_operators": [[4, 1, 1, "", "bits_to_float"], [4, 1, 1, "", "bits_to_floats"], [4, 1, 1, "", "float_to_bits"], [4, 1, 1, "", "floats_to_bits"]], "pycellga.example": [[5, 0, 0, "-", "example_alpha_cga"], [5, 0, 0, "-", "example_ccga"], [5, 0, 0, "-", "example_cga"], [5, 0, 0, "-", "example_mcccga"], [5, 0, 0, "-", "example_sync_cga"]], "pycellga.example.example_alpha_cga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_alpha_cga_example"]], "pycellga.example.example_alpha_cga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_ccga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_ccga_example"]], "pycellga.example.example_ccga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_cga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_cga_example"]], "pycellga.example.example_cga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_mcccga": [[5, 2, 1, "", "RealProblem"], [5, 1, 1, "", "run_mcccga_example"]], "pycellga.example.example_mcccga.RealProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_sync_cga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_sync_cga_example"]], "pycellga.example.example_sync_cga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.grid": [[4, 2, 1, "", "Grid"]], "pycellga.grid.Grid": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "make_2d_grid"], [4, 4, 1, "", "n_cols"], [4, 4, 1, "", "n_rows"]], "pycellga.individual": [[4, 2, 1, "", "GeneType"], [4, 2, 1, "", "Individual"]], "pycellga.individual.GeneType": [[4, 4, 1, "", "BINARY"], [4, 4, 1, "", "PERMUTATION"], [4, 4, 1, "", "REAL"]], "pycellga.individual.Individual": [[4, 3, 1, "", "__init__"], [4, 4, 1, "", "ch_size"], [4, 4, 1, "", "chromosome"], [4, 4, 1, "", "fitness_value"], [4, 4, 1, "", "gen_type"], [4, 3, 1, "", "generate_candidate"], [4, 3, 1, "", "getneighbors"], [4, 3, 1, "", "getneighbors_positions"], [4, 4, 1, "", "neighbors"], [4, 4, 1, "", "neighbors_positions"], [4, 4, 1, "", "position"], [4, 3, 1, "", "randomize"], [4, 3, 1, "", "setneighbors"], [4, 3, 1, "", "setneighbors_positions"]], "pycellga.mutation": [[6, 0, 0, "-", "bit_flip_mutation"], [6, 0, 0, "-", "byte_mutation"], [6, 0, 0, "-", "byte_mutation_random"], [6, 0, 0, "-", "float_uniform_mutation"], [6, 0, 0, "-", "insertion_mutation"], [6, 0, 0, "-", "shuffle_mutation"], [6, 0, 0, "-", "swap_mutation"], [6, 0, 0, "-", "two_opt_mutation"]], "pycellga.mutation.bit_flip_mutation": [[6, 2, 1, "", "BitFlipMutation"]], "pycellga.mutation.bit_flip_mutation.BitFlipMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.byte_mutation": [[6, 2, 1, "", "ByteMutation"]], "pycellga.mutation.byte_mutation.ByteMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.byte_mutation_random": [[6, 2, 1, "", "ByteMutationRandom"]], "pycellga.mutation.byte_mutation_random.ByteMutationRandom": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.float_uniform_mutation": [[6, 2, 1, "", "FloatUniformMutation"]], "pycellga.mutation.float_uniform_mutation.FloatUniformMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.insertion_mutation": [[6, 2, 1, "", "InsertionMutation"]], "pycellga.mutation.insertion_mutation.InsertionMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.shuffle_mutation": [[6, 2, 1, "", "ShuffleMutation"]], "pycellga.mutation.shuffle_mutation.ShuffleMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.swap_mutation": [[6, 2, 1, "", "SwapMutation"]], "pycellga.mutation.swap_mutation.SwapMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.two_opt_mutation": [[6, 2, 1, "", "TwoOptMutation"]], "pycellga.mutation.two_opt_mutation.TwoOptMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.neighborhoods": [[7, 0, 0, "-", "compact_13"], [7, 0, 0, "-", "compact_21"], [7, 0, 0, "-", "compact_25"], [7, 0, 0, "-", "compact_9"], [7, 0, 0, "-", "linear_5"], [7, 0, 0, "-", "linear_9"]], "pycellga.neighborhoods.compact_13": [[7, 2, 1, "", "Compact13"]], "pycellga.neighborhoods.compact_13.Compact13": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_21": [[7, 2, 1, "", "Compact21"]], "pycellga.neighborhoods.compact_21.Compact21": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_25": [[7, 2, 1, "", "Compact25"]], "pycellga.neighborhoods.compact_25.Compact25": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_9": [[7, 2, 1, "", "Compact9"]], "pycellga.neighborhoods.compact_9.Compact9": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.linear_5": [[7, 2, 1, "", "Linear5"]], "pycellga.neighborhoods.linear_5.Linear5": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.linear_9": [[7, 2, 1, "", "Linear9"]], "pycellga.neighborhoods.linear_9.Linear9": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.optimizer": [[4, 2, 1, "", "Result"], [4, 1, 1, "", "alpha_cga"], [4, 1, 1, "", "ccga"], [4, 1, 1, "", "cga"], [4, 1, 1, "", "compete"], [4, 1, 1, "", "generate_probability_vector"], [4, 1, 1, "", "mcccga"], [4, 1, 1, "", "random_vector_between"], [4, 1, 1, "", "sample"], [4, 1, 1, "", "sync_cga"], [4, 1, 1, "", "update_vector"]], "pycellga.optimizer.Result": [[4, 3, 1, "", "__init__"], [4, 4, 1, "", "chromosome"], [4, 4, 1, "", "fitness_value"], [4, 4, 1, "", "generation_found"]], "pycellga.population": [[4, 2, 1, "", "OptimizationMethod"], [4, 2, 1, "", "Population"]], "pycellga.population.OptimizationMethod": [[4, 4, 1, "", "ALPHA_CGA"], [4, 4, 1, "", "CCGA"], [4, 4, 1, "", "CGA"], [4, 4, 1, "", "MCCCGA"], [4, 4, 1, "", "SYNCGA"]], "pycellga.population.Population": [[4, 3, 1, "", "__init__"], [4, 4, 1, "", "ch_size"], [4, 4, 1, "", "gen_type"], [4, 3, 1, "", "initial_population"], [4, 4, 1, "", "method_name"], [4, 4, 1, "", "n_cols"], [4, 4, 1, "", "n_rows"], [4, 4, 1, "", "problem"], [4, 4, 1, "", "vector"]], "pycellga.problems": [[8, 0, 0, "-", "abstract_problem"]], "pycellga.problems.abstract_problem": [[8, 2, 1, "", "AbstractProblem"]], "pycellga.problems.abstract_problem.AbstractProblem": [[8, 3, 1, "", "__init__"], [8, 3, 1, "", "evaluate"], [8, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous": [[10, 0, 0, "-", "ackley"], [10, 0, 0, "-", "bentcigar"], [10, 0, 0, "-", "bohachevsky"], [10, 0, 0, "-", "chichinadze"], [10, 0, 0, "-", "dropwave"], [10, 0, 0, "-", "fms"], [10, 0, 0, "-", "griewank"], [10, 0, 0, "-", "holzman"], [10, 0, 0, "-", "levy"], [10, 0, 0, "-", "matyas"], [10, 0, 0, "-", "pow"], [10, 0, 0, "-", "powell"], [10, 0, 0, "-", "rastrigin"], [10, 0, 0, "-", "rosenbrock"], [10, 0, 0, "-", "rothellipsoid"], [10, 0, 0, "-", "schaffer"], [10, 0, 0, "-", "schaffer2"], [10, 0, 0, "-", "schwefel"], [10, 0, 0, "-", "sphere"], [10, 0, 0, "-", "styblinskitang"], [10, 0, 0, "-", "sumofdifferentpowers"], [10, 0, 0, "-", "threehumps"], [10, 0, 0, "-", "zakharov"], [10, 0, 0, "-", "zettle"]], "pycellga.problems.single_objective.continuous.ackley": [[10, 2, 1, "", "Ackley"]], "pycellga.problems.single_objective.continuous.ackley.Ackley": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id0", "evaluate"], [10, 3, 1, "id1", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.bentcigar": [[10, 2, 1, "", "Bentcigar"]], "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id2", "evaluate"], [10, 3, 1, "id3", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.bohachevsky": [[10, 2, 1, "", "Bohachevsky"]], "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id4", "evaluate"], [10, 3, 1, "id5", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.chichinadze": [[10, 2, 1, "", "Chichinadze"]], "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id6", "evaluate"], [10, 3, 1, "id7", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.dropwave": [[10, 2, 1, "", "Dropwave"]], "pycellga.problems.single_objective.continuous.dropwave.Dropwave": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id8", "evaluate"], [10, 3, 1, "id9", "f"], [10, 4, 1, "", "num_variables"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.fms": [[10, 2, 1, "", "Fms"]], "pycellga.problems.single_objective.continuous.fms.Fms": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id10", "evaluate"], [10, 3, 1, "id11", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.griewank": [[10, 2, 1, "", "Griewank"]], "pycellga.problems.single_objective.continuous.griewank.Griewank": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id12", "evaluate"], [10, 3, 1, "id13", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.holzman": [[10, 2, 1, "", "Holzman"]], "pycellga.problems.single_objective.continuous.holzman.Holzman": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id14", "evaluate"], [10, 3, 1, "id15", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.levy": [[10, 2, 1, "", "Levy"]], "pycellga.problems.single_objective.continuous.levy.Levy": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id16", "evaluate"], [10, 3, 1, "id17", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.matyas": [[10, 2, 1, "", "Matyas"]], "pycellga.problems.single_objective.continuous.matyas.Matyas": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id18", "evaluate"], [10, 3, 1, "id19", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.pow": [[10, 2, 1, "", "Pow"]], "pycellga.problems.single_objective.continuous.pow.Pow": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id20", "evaluate"], [10, 3, 1, "id21", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.powell": [[10, 2, 1, "", "Powell"]], "pycellga.problems.single_objective.continuous.powell.Powell": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id22", "evaluate"], [10, 3, 1, "id23", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.rastrigin": [[10, 2, 1, "", "Rastrigin"]], "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id24", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.rosenbrock": [[10, 2, 1, "", "Rosenbrock"]], "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id25", "evaluate"], [10, 3, 1, "id26", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.rothellipsoid": [[10, 2, 1, "", "Rothellipsoid"]], "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id27", "evaluate"], [10, 3, 1, "id28", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.schaffer": [[10, 2, 1, "", "Schaffer"]], "pycellga.problems.single_objective.continuous.schaffer.Schaffer": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id29", "evaluate"], [10, 3, 1, "id30", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.schaffer2": [[10, 2, 1, "", "Schaffer2"]], "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id31", "evaluate"], [10, 3, 1, "id32", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.schwefel": [[10, 2, 1, "", "Schwefel"]], "pycellga.problems.single_objective.continuous.schwefel.Schwefel": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id33", "evaluate"], [10, 3, 1, "id34", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.sphere": [[10, 2, 1, "", "Sphere"]], "pycellga.problems.single_objective.continuous.sphere.Sphere": [[10, 3, 1, "", "__init__"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous.styblinskitang": [[10, 2, 1, "", "StyblinskiTang"]], "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang": [[10, 3, 1, "", "__init__"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers": [[10, 2, 1, "", "Sumofdifferentpowers"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "id35", "f"], [10, 4, 1, "", "n_var"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.threehumps": [[10, 2, 1, "", "Threehumps"]], "pycellga.problems.single_objective.continuous.threehumps.Threehumps": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "id36", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.zakharov": [[10, 2, 1, "", "Zakharov"]], "pycellga.problems.single_objective.continuous.zakharov.Zakharov": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "id37", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.zettle": [[10, 2, 1, "", "Zettle"]], "pycellga.problems.single_objective.continuous.zettle.Zettle": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id38", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary": [[12, 0, 0, "-", "count_sat"], [12, 0, 0, "-", "ecc"], [12, 0, 0, "-", "fms"], [12, 0, 0, "-", "maxcut100"], [12, 0, 0, "-", "maxcut20_01"], [12, 0, 0, "-", "maxcut20_09"], [12, 0, 0, "-", "mmdp"], [12, 0, 0, "-", "one_max"], [12, 0, 0, "-", "peak"]], "pycellga.problems.single_objective.discrete.binary.count_sat": [[12, 2, 1, "", "CountSat"]], "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id0", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.ecc": [[12, 2, 1, "", "Ecc"]], "pycellga.problems.single_objective.discrete.binary.ecc.Ecc": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.fms": [[12, 2, 1, "", "Fms"]], "pycellga.problems.single_objective.discrete.binary.fms.Fms": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id1", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.maxcut100": [[12, 2, 1, "", "Maxcut100"]], "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100": [[12, 3, 1, "", "__init__"], [12, 3, 1, "id2", "f"], [12, 4, 1, "", "problema"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01": [[12, 2, 1, "", "Maxcut20_01"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id3", "f"], [12, 4, 1, "", "problema"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09": [[12, 2, 1, "", "Maxcut20_09"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id4", "f"], [12, 4, 1, "", "problema"]], "pycellga.problems.single_objective.discrete.binary.mmdp": [[12, 2, 1, "", "Mmdp"]], "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "constraints"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "id5", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.one_max": [[12, 2, 1, "", "OneMax"]], "pycellga.problems.single_objective.discrete.binary.one_max.OneMax": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "constraints"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "id6", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.peak": [[12, 2, 1, "", "Peak"]], "pycellga.problems.single_objective.discrete.binary.peak.Peak": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "constraints"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id7", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.permutation": [[13, 0, 0, "-", "tsp"]], "pycellga.problems.single_objective.discrete.permutation.tsp": [[13, 2, 1, "", "Tsp"]], "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp": [[13, 3, 1, "", "__init__"], [13, 4, 1, "", "bounds"], [13, 4, 1, "", "constraints"], [13, 4, 1, "", "design_variables"], [13, 3, 1, "", "euclidean_dist"], [13, 3, 1, "", "f"], [13, 3, 1, "", "gographical_dist"], [13, 4, 1, "", "objectives"]], "pycellga.recombination": [[14, 0, 0, "-", "arithmetic_crossover"], [14, 0, 0, "-", "blxalpha_crossover"], [14, 0, 0, "-", "byte_one_point_crossover"], [14, 0, 0, "-", "byte_uniform_crossover"], [14, 0, 0, "-", "flat_crossover"], [14, 0, 0, "-", "linear_crossover"], [14, 0, 0, "-", "one_point_crossover"], [14, 0, 0, "-", "pmx_crossover"], [14, 0, 0, "-", "two_point_crossover"], [14, 0, 0, "-", "unfair_avarage_crossover"], [14, 0, 0, "-", "uniform_crossover"]], "pycellga.recombination.arithmetic_crossover": [[14, 2, 1, "", "ArithmeticCrossover"]], "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.blxalpha_crossover": [[14, 2, 1, "", "BlxalphaCrossover"]], "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.byte_one_point_crossover": [[14, 2, 1, "", "ByteOnePointCrossover"]], "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.byte_uniform_crossover": [[14, 2, 1, "", "ByteUniformCrossover"]], "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.flat_crossover": [[14, 2, 1, "", "FlatCrossover"]], "pycellga.recombination.flat_crossover.FlatCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.linear_crossover": [[14, 2, 1, "", "LinearCrossover"]], "pycellga.recombination.linear_crossover.LinearCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.one_point_crossover": [[14, 2, 1, "", "OnePointCrossover"]], "pycellga.recombination.one_point_crossover.OnePointCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.pmx_crossover": [[14, 2, 1, "", "PMXCrossover"]], "pycellga.recombination.pmx_crossover.PMXCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.two_point_crossover": [[14, 2, 1, "", "TwoPointCrossover"]], "pycellga.recombination.two_point_crossover.TwoPointCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.unfair_avarage_crossover": [[14, 2, 1, "", "UnfairAvarageCrossover"]], "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.uniform_crossover": [[14, 2, 1, "", "UniformCrossover"]], "pycellga.recombination.uniform_crossover.UniformCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.selection": [[15, 0, 0, "-", "roulette_wheel_selection"], [15, 0, 0, "-", "tournament_selection"]], "pycellga.selection.roulette_wheel_selection": [[15, 2, 1, "", "RouletteWheelSelection"]], "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection": [[15, 3, 1, "", "__init__"], [15, 3, 1, "", "get_parents"]], "pycellga.selection.tournament_selection": [[15, 2, 1, "", "TournamentSelection"]], "pycellga.selection.tournament_selection.TournamentSelection": [[15, 3, 1, "", "__init__"], [15, 3, 1, "", "get_parents"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "terms": {"": [0, 1, 4, 5, 6, 8, 9, 10, 12, 15, 17], "0": [4, 5, 6, 10, 11, 15, 17], "003791": 10, "01": 12, "0299": 10, "1": [0, 1, 4, 5, 6, 10, 11, 17], "10": [5, 10, 12, 17], "100": [5, 10, 11, 17], "12": [7, 10], "13": 0, "14": [13, 17], "144": 12, "15": [10, 17], "192": 12, "2": [1, 4, 6, 10, 12, 15, 17], "20": [7, 11], "2013": [6, 14], "2024": 0, "24": 7, "240": 12, "2500": 0, "2514": 0, "2d": [4, 7], "3": [1, 3, 4, 10, 17], "30": 10, "300": 17, "3159": 10, "32": [4, 10, 17], "4": [1, 4, 7, 10, 17], "40": 12, "43": 10, "5": [4, 5, 6, 10, 17], "500": [10, 17], "55": 17, "5x5": [5, 17], "6": 12, "600": 10, "7": [3, 10], "768": [10, 17], "8": [1, 7, 17], "85": 17, "9": [10, 11, 17], "90133": 10, "A": [0, 2, 4, 5, 6, 7, 10, 12, 13, 14, 15], "Be": 1, "By": [1, 8], "For": [0, 1, 3, 5, 17], "If": [0, 1, 3, 4, 8, 10, 12], "In": [4, 17], "It": [4, 6, 10, 12], "One": [11, 17], "The": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "These": [4, 5, 7, 8, 9, 10, 11, 12, 13, 17], "To": [1, 3], "__init__": [4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "__version__": 3, "abc": 8, "abil": [10, 12], "abstractproblem": [4, 6, 8, 10, 12, 13, 14], "account": 1, "accuraci": [8, 9, 10], "achiev": 5, "acklei": [9, 17], "acknowledg": 0, "across": [6, 7, 8, 17], "act": 15, "ad": 6, "adapt": 17, "add": 1, "addit": [1, 3], "address": [9, 10], "adher": 1, "adjac": 12, "adjust": 6, "akten": 0, "algorithm": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "alia": 10, "align": 1, "all": [1, 5, 10, 12, 17], "allow": [2, 4, 6, 7, 14, 17], "along": 7, "alpha": [2, 4, 5, 17], "alpha_cga": [4, 5, 17], "also": [0, 17], "alter": 6, "altern": 5, "among": 7, "an": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17], "ani": [1, 3, 8, 10, 12], "annot": 1, "apa": 0, "api": 2, "appli": [0, 6, 8, 14], "applic": [5, 7], "approach": [6, 10], "ar": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17], "arg": [8, 10, 12], "argument": 1, "arithmeticcrossov": [14, 17], "around": [6, 14], "arrai": [5, 8, 10, 12], "arrang": 7, "articl": 0, "aspect": 10, "assess": [9, 12], "attribut": [4, 13], "author": 0, "automata": 2, "avail": [10, 17], "b": [1, 13], "back": 4, "balanc": [2, 10, 15], "base": [4, 5, 7, 9, 10, 12, 14, 15, 17], "basic": 5, "befor": [1, 3], "begin": 1, "behavior": 1, "being": [5, 15], "below": [5, 10, 17], "benchmark": [8, 9, 10, 11, 12, 13], "benefici": [7, 15], "bent": 9, "bentcigar": [10, 17], "besid": 2, "best": [4, 5, 15, 17], "better": [1, 4], "between": [2, 4, 10, 12, 13, 14], "bia": 14, "bibtex": 0, "binari": [4, 5, 6, 9, 14, 17], "bit": [4, 12, 17], "bit_list": 4, "bitflipmut": [6, 17], "bits_to_float": 4, "bitwis": 6, "block": 4, "blxalpha": 17, "blxalphacrossov": [14, 17], "bohachevski": [9, 17], "both": [4, 8, 10, 11, 14], "bound": [8, 10, 12, 13], "boundari": 4, "branch": 1, "bring": 1, "broader": [6, 7], "brows": 1, "bug": 1, "bugfix": 1, "build": 4, "built": 17, "burma14": 13, "button": 1, "byte": [2, 5, 17], "bytemut": [6, 17], "bytemutationrandom": [6, 17], "byteonepointcrossov": [14, 17], "byteuniformcrossov": [14, 17], "c": 15, "calcul": [7, 10, 12, 14], "calculate_neighbors_posit": 7, "callabl": 4, "camel": 10, "can": [1, 3, 7, 8, 17], "candid": [4, 6], "capabl": [10, 17], "case": [1, 4, 10, 12, 13, 17], "categor": 17, "ccga": [4, 5, 17], "cd": [1, 3], "cell": [4, 7], "cellular": [0, 2, 4, 5, 7, 17], "center": 10, "certain": 3, "cga": [2, 4, 5, 7, 17], "ch_size": [4, 17], "challeng": [9, 10, 12, 17], "chanc": 15, "chang": [1, 6, 17], "character": [10, 12], "check": 1, "checkout": 1, "chicago": 0, "chichinadz": [9, 17], "choic": 6, "choos": 17, "chosen": [14, 15], "chromosom": [4, 5, 6, 12, 13, 14, 17], "cigar": 9, "citat": 0, "cite": 2, "citi": [13, 17], "clarifi": 1, "class": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "classic": [6, 12, 13, 14], "clear": 1, "click": 1, "clone": [1, 3], "cluster": 7, "co": 10, "code": [0, 2, 4, 5, 12, 14, 17], "codebas": [1, 10], "coevolutionari": 4, "collect": [8, 9], "column": [4, 7], "com": [1, 3], "combin": [2, 4, 14], "combinatori": [6, 9, 11, 13], "command": 3, "commit": 1, "common": [8, 10], "commonli": [6, 8, 9, 10, 12, 14], "commun": [0, 1, 12], "compact": [2, 4, 5, 17], "compact13": 7, "compact21": 7, "compact25": 7, "compact9": 7, "compat": [8, 10, 12], "compet": [4, 15], "complex": [2, 10], "compon": 8, "comprehens": [5, 6], "comput": [5, 10, 13, 17], "configur": [5, 6, 17], "connect": 12, "consid": [1, 7], "consist": [1, 8], "constrain": 5, "constraint": [8, 10, 12, 13], "contain": [4, 5, 11, 14, 15], "continu": [0, 6, 8, 17], "contribut": [0, 2], "control": [4, 14], "convent": 1, "converg": [5, 7, 8, 9, 10, 15], "convert": 4, "convex": 10, "cooper": 4, "coordin": [10, 13], "copi": [1, 14], "core": 5, "corner": 1, "correct": 12, "correctli": 3, "correspond": 17, "count": 11, "countsat": [12, 17], "cov": 1, "cover": 1, "coverag": 1, "creat": [0, 1, 4, 6, 8, 14], "crossov": [4, 15, 17], "custom": 8, "cut": 11, "d": 10, "data": 4, "dataset": 13, "date": 3, "deal": 10, "deceiv": 12, "decept": 11, "decim": [6, 10, 12, 13], "decod": 4, "decrement": 6, "def": 17, "default": [4, 6, 8, 10, 12, 13], "defin": [4, 6, 7, 8, 10, 12, 14, 17], "definit": 4, "degre": 6, "demonstr": [5, 17], "dens": 7, "denser": 12, "densiti": 11, "depend": [1, 7], "depth": 4, "descript": [1, 4], "design": [6, 8, 9, 10, 11, 12, 13, 14, 17], "design_vari": [8, 10, 12, 13], "desir": [6, 7], "detail": [1, 3], "determin": [4, 7, 15], "develop": 0, "dict": [8, 10, 12], "dictionari": [8, 10, 12], "differ": [4, 5, 7, 9, 10, 11, 12, 14, 17], "differenti": [9, 10], "difficulti": 10, "dimens": 10, "directli": [3, 15, 17], "directori": [1, 3], "discret": [8, 12, 13], "distanc": [12, 13], "divers": [2, 4, 6, 7, 9, 14, 15, 17], "docstr": 1, "document": [1, 5], "drive": [1, 12], "drop": 9, "dropwav": [10, 17], "dure": [1, 2, 3, 4, 6, 15], "e": [4, 6, 8, 10, 12, 13], "each": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "easiest": 3, "ecc": [11, 17], "edg": [7, 12], "effect": [4, 6, 14, 15], "effici": [4, 5, 10, 12, 13], "either": 6, "element": [5, 6, 11, 12, 13, 17], "ellipsoid": 10, "empti": [4, 8, 10, 12], "enabl": 6, "encapsul": 4, "encod": [4, 5, 6, 11, 12, 14, 17], "encount": [1, 3, 12], "encourag": 7, "engin": 0, "enhanc": [1, 4, 5, 6, 7], "ensur": [1, 3, 4, 8, 17], "entri": 0, "enum": 4, "enumer": 4, "environ": 1, "equal": [5, 17], "error": [3, 12], "escap": [10, 12], "essenti": 7, "euclidean": 13, "euclidean_dist": 13, "evalu": [4, 8, 9, 10, 11, 12, 13], "even": 1, "evolutionari": 4, "evolv": 4, "exactli": 13, "exampl": [0, 1, 2, 3, 4, 8, 13], "example_alpha_cga": 5, "example_ccga": 5, "example_cga": 5, "example_mcccga": 5, "example_sync_cga": 5, "exampleproblem": [5, 17], "exchang": [4, 14], "excit": 1, "execut": 4, "exist": 1, "experiment": 10, "explain": 17, "exploit": [2, 10, 15], "explor": [2, 4, 5, 6, 7, 10, 14, 15, 17], "extend": 7, "f": [5, 8, 10, 12, 13, 17], "facilit": 7, "factor": 12, "familiar": 1, "featur": [1, 3, 12], "feature_nam": 1, "feedback": 1, "file": 1, "find": [12, 13, 17], "fine": [10, 14], "first": [4, 13, 14], "fit": [4, 5, 6, 8, 10, 12, 13, 14, 15, 17], "fitness_valu": [4, 17], "five": 4, "fix": 1, "flat": 10, "flatcrossov": [14, 17], "fletcher": 11, "flexibl": [8, 17], "flip": 17, "float": [4, 5, 8, 10, 12, 13, 17], "float_list": 4, "float_numb": 4, "float_to_bit": 4, "floats_to_bit": 4, "floatuniformmut": [6, 17], "flow": 7, "fm": [9, 11, 17], "focus": 11, "folder": 1, "follow": [0, 1, 3, 6, 17], "fork": 1, "form": [4, 11], "format": [0, 12], "found": [4, 5], "four": 12, "framework": [4, 5, 8, 10], "frequenc": [9, 12], "frequent": 6, "from": [1, 4, 6, 8, 14, 15, 17], "full": 5, "function": [1, 4, 5, 6, 8, 9, 12, 13, 14, 17], "fundament": 4, "g": [4, 8, 10, 12, 13], "gen_typ": [4, 17], "gene": [4, 5, 6, 12, 14, 17], "gener": [4, 5, 12, 14, 17], "generate_candid": 4, "generate_probability_vector": 4, "generation_found": 4, "genet": [0, 2, 4, 5, 6, 7, 8, 12, 14, 15, 17], "genetyp": [4, 17], "genom": 4, "geo": 13, "geodes": 13, "geograph": 13, "get": [4, 15], "get_par": 15, "get_recombin": 14, "getneighbor": 4, "getneighbors_posit": 4, "git": [1, 3], "github": [1, 3], "given": [4, 5, 7, 10, 12, 13], "global": [5, 10, 17], "goal": [5, 10, 13, 17], "gographical_dist": 13, "googl": 1, "graph": 12, "grid": [2, 5, 7, 17], "griewank": [9, 17], "guid": [1, 4], "h": 0, "ha": [2, 3, 10], "hakan": 0, "handl": [4, 9, 13], "harvard": 0, "have": [1, 3, 7, 12, 17], "help": [0, 1, 4, 17], "here": [1, 17], "high": 6, "higher": [3, 7, 14], "highlight": [5, 17], "hint": 1, "hole": 10, "holzman": [9, 17], "how": [5, 7, 15, 17], "http": [1, 3], "hump": 10, "hyper": 10, "hypercub": 10, "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "idea": 1, "ideal": [6, 7, 9, 10], "identifi": 0, "illustr": 5, "immedi": 7, "impact": [0, 15], "implement": [1, 2, 4, 10, 12, 13, 15, 17], "import": [3, 17], "improv": [0, 1, 2, 5], "includ": [1, 4, 5, 6, 7, 8, 9, 11, 14, 17], "incorpor": 5, "increment": 6, "index": [3, 13, 15], "individu": [2, 5, 6, 7, 14, 15], "inform": [7, 14], "inherit": 8, "initi": [4, 6, 7, 8, 10, 12, 13, 14, 15], "initial_popul": 4, "innov": 1, "input": [5, 8, 10, 12], "insertionmut": [6, 17], "insight": 5, "instal": [1, 2], "instanc": [4, 5, 6, 14, 17], "instruct": 3, "int": [4, 5, 7, 8, 10, 12, 13, 15], "integ": [4, 8, 10, 12], "interact": [2, 4, 7], "interfac": [4, 8], "intermedi": 14, "introduc": 6, "invalu": 1, "invari": 10, "involv": [1, 12, 13], "issu": [1, 3], "its": [1, 2, 3, 4, 5, 7, 10, 12, 15, 17], "journal": 0, "jupyt": 3, "k": 15, "karakaya": 0, "karakaya2024improv": 0, "kei": [1, 8, 10, 15], "known": [10, 13], "kwarg": [8, 10, 12], "landscap": [9, 10, 12, 15], "larg": 10, "larger": 7, "latex": 0, "layout": [4, 7], "lead": 14, "length": 12, "level": [4, 5, 7, 10, 14], "leverag": 6, "levi": [9, 17], "li": 10, "librari": 4, "like": [1, 2, 4], "limit": [7, 12], "line": 7, "linear5": 7, "linear9": 7, "linearcrossov": [14, 17], "linearli": 14, "list": [1, 4, 5, 7, 8, 10, 12, 13, 14, 15], "ll": [1, 17], "local": [1, 7, 10, 12], "locationsourc": 14, "look": 4, "lose": 4, "loser": 4, "low": 4, "lower": 10, "m": 0, "machin": [0, 1, 2, 4, 5, 14, 17], "mai": 3, "main": [1, 4, 9], "maintain": [1, 2, 4, 7, 10, 14, 15], "make": [1, 3, 10], "make_2d_grid": 4, "male": [2, 4, 5], "manag": [3, 7, 8, 12], "manipul": 6, "map": 14, "massiv": 12, "matplotlib": 3, "matrix": 12, "matya": [9, 17], "max": [4, 5, 8, 10, 11, 13, 17], "maxcut": 12, "maxcut100": [12, 17], "maxcut20_01": [12, 17], "maxcut20_09": [12, 17], "maxim": [5, 8, 10, 12, 13, 17], "maximum": [4, 12, 17], "mcc": 5, "mcccga": [4, 5, 17], "mccga": 4, "meaning": 1, "mechan": [4, 5, 15], "mehmet": 0, "memori": [4, 5], "merg": 1, "messag": 1, "method": [4, 5, 8, 10, 14, 15, 17], "method_nam": 4, "min": [4, 5, 8, 10, 12, 13, 17], "minim": [5, 8, 10, 12, 13, 17], "minima": 10, "minimum": [4, 5, 10, 13, 17], "mix": 14, "mla": 0, "mmdp": [11, 17], "modal": 11, "moder": 7, "modifi": 10, "modul": [6, 7, 8, 9, 12, 13], "more": [4, 7, 14], "move": 6, "mpmath": 17, "multi": [4, 8, 11], "multidimension": 10, "multimod": [10, 12, 15], "multipl": [12, 17], "must": 4, "mutat": [4, 17], "mutation_cand": 6, "mutationoper": [4, 6, 17], "n": 10, "n_col": [4, 7, 17], "n_gen": [4, 17], "n_row": [4, 7, 17], "n_var": 10, "name": [1, 4, 8, 10, 12, 13], "navig": [1, 3], "ndarrai": [5, 8, 10, 12], "nearli": 10, "necessari": 6, "need": [3, 8, 17], "neighbor": [2, 4, 7, 15], "neighborhood": 4, "neighbors_posit": 4, "new": [1, 6], "node": [11, 13], "none": [4, 6, 10, 12], "nonlinear": 10, "normal": 12, "note": [10, 12, 13], "notebook": 3, "notimplementederror": 4, "np": 17, "ntri": 4, "num_vari": 10, "number": [0, 4, 5, 6, 7, 8, 10, 12, 15, 17], "numer": [10, 12], "numpi": [5, 8, 10, 12], "object": [4, 5, 6, 7, 10, 11, 12, 13, 14, 15], "occur": 3, "offer": [4, 6, 7, 10], "offspr": [4, 14], "often": [10, 12, 14], "onc": 13, "one": [1, 4, 6, 8, 13, 14, 17], "onemax": [12, 17], "onepointcrossov": [14, 17], "ones": 12, "onli": [2, 8], "open": 1, "oper": [0, 2, 17], "optim": [2, 3, 5, 6, 8, 14, 15, 17], "optima": [10, 12], "optimis": 0, "optimizationmethod": 4, "optimum": 12, "option": [4, 6, 8, 10, 12, 17], "order": [6, 11, 13, 14], "organ": [2, 9], "origin": [10, 13], "other": [0, 17], "our": 1, "out": [8, 10, 12], "outer": 10, "output": [8, 10, 12], "over": [10, 14], "overview": 5, "own": [1, 17], "p1": [4, 14], "p2": [4, 14], "p_crossov": [4, 17], "p_mutat": [4, 17], "packag": [0, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17], "page": [0, 1], "pair": 14, "paramet": [4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "parent": [4, 14, 15], "particularli": [6, 9, 11, 12, 13], "partit": 12, "pass": [1, 17], "path": 6, "pattern": 4, "peak": [11, 17], "pep": 1, "perform": [4, 6, 9, 10, 11, 12, 14, 15], "permut": [4, 6, 9, 14, 17], "persist": 3, "pick": 1, "pip": [1, 3], "place": [1, 6, 10, 12, 13], "plai": 15, "plan": 3, "pleas": [0, 1], "pmx": 17, "pmxcrossov": [14, 17], "point": [6, 7, 10, 17], "pop_list": 15, "pop_siz": 4, "popul": [2, 5, 6, 7, 15], "posit": [4, 6, 7, 14], "possibl": 13, "pow": [9, 17], "powel": [9, 11, 17], "power": [10, 17], "pp": 0, "practic": 5, "precis": 6, "predefin": 12, "present": 12, "preserv": 6, "principl": [2, 5], "print": [3, 17], "probabl": 4, "problem": [0, 2, 4, 5, 6, 7, 14, 15, 17], "problema": 12, "probvector": 4, "process": [1, 2, 4, 6, 15], "produc": 14, "project": [0, 1], "promot": [2, 6, 7], "proport": 15, "proportion": 15, "provid": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17], "purpos": [6, 13, 14], "push": 1, "pw": 17, "py": 1, "pycellga": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "pymoo": [8, 10, 12], "pytest": 1, "python": [1, 2, 3, 4, 17], "qualiti": 1, "qualnam": 4, "quick": 17, "r": 1, "rais": 4, "random": [4, 14, 15, 17], "random_vector_between": 4, "randomli": [4, 6, 12, 14], "rang": [4, 6, 10, 12, 14, 17], "rapid": 7, "rastrigin": [9, 17], "re": 1, "reach": [10, 17], "readabl": 1, "readi": 1, "real": [0, 2, 4, 5, 6, 14, 17], "realproblem": [5, 17], "rearrang": 6, "recombin": [4, 17], "recombinationoper": [4, 14], "recommend": 1, "refer": [0, 2, 3, 5], "region": 10, "relat": 12, "relev": 4, "reliabl": 1, "repeat": [4, 17], "replac": [4, 17], "repo": 1, "report": 1, "reposit": 6, "repositori": [1, 3], "repres": [4, 5, 7, 9, 10, 11, 12, 13], "represent": [6, 14, 17], "requir": [1, 6, 7, 12], "research": 0, "respect": 4, "respond": 1, "respons": 1, "rest": [8, 10], "restrict": 4, "result": [3, 4, 5, 14, 17], "retain": 14, "return": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "revers": 6, "review": 1, "right": 1, "roadmap": 1, "robust": [8, 9, 10, 12], "role": 15, "rosenbrock": [9, 17], "rotat": 10, "rotation": 10, "rothellipsoid": [9, 17], "roulettewheelselect": [15, 17], "round": [6, 10, 12, 13], "rout": 13, "row": [4, 7], "rug": 12, "run": [3, 4, 5], "run_alpha_cga_exampl": 5, "run_ccga_exampl": 5, "run_cga_exampl": 5, "run_mcccga_exampl": 5, "run_sync_cga_exampl": 5, "salesman": [6, 11, 17], "same": 1, "sampl": [4, 6], "sat": 11, "satisfact": 12, "satisfi": 12, "satman": [0, 6, 14], "scenario": 8, "schaffer": [9, 17], "schaffer2": [9, 17], "schedul": 6, "schwefel": [9, 17], "scienc": 0, "scientif": 0, "search": [9, 10, 11, 12], "second": [4, 13, 14], "section": [3, 17], "see": 1, "seed_par": [4, 17], "segment": [6, 14], "select": [1, 4, 6, 7, 17], "selectionoper": [4, 15], "self": 17, "sequenc": [6, 11, 13, 14], "sequenti": 7, "serv": [4, 6, 8, 14], "set": [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 17], "setneighbor": 4, "setneighbors_posit": 4, "sever": 17, "sevgi": 0, "sevgiakten": 3, "share": 7, "shortest": 13, "should": [1, 4], "shufflemut": [6, 17], "signific": 6, "simpl": [5, 6, 10, 12, 17], "simplic": 15, "simultan": 5, "singl": [6, 10, 11, 12, 14], "single_object": [8, 9, 10, 11, 12, 13], "six": 10, "size": [4, 5, 7], "slight": 14, "small": 6, "smooth": [1, 9, 10], "smoothli": 1, "softwar": [0, 1], "solut": [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 17], "solv": [5, 12, 13, 17], "some": [1, 10, 17], "sound": [9, 12], "sourc": [4, 5, 6, 7, 8, 10, 12, 13, 14, 15], "space": [6, 9, 10, 11, 12], "spars": 12, "sparsiti": 12, "spatial": [2, 7], "specif": [4, 6, 7, 10, 11, 14, 17], "specifi": [4, 5, 8, 10, 12, 14, 17], "speed": [4, 8, 9, 10], "sphere": [9, 17], "sqrt": 10, "squar": [5, 17], "standard": [5, 8, 13], "start": [4, 15], "steep": 10, "step": [1, 3], "store": [8, 10, 12], "str": [4, 8, 10, 12], "strategi": 6, "string": [4, 8, 10, 11, 12], "structur": [1, 2, 5, 7, 8, 9, 10], "styblinski": 10, "styblinskitang": [9, 17], "style": [0, 1], "submit": [1, 3], "subpackag": [8, 9, 11], "subproblem": 12, "subsequ": 6, "subset": [6, 15], "subtl": 6, "subtract": 6, "success": 3, "suggest": 1, "suit": 17, "suitabl": [6, 7, 10, 12, 14], "sum": [5, 10, 12, 17], "sumofdifferentpow": [9, 17], "support": [0, 1, 4], "suppos": 17, "sure": 3, "swap": [14, 17], "swapmut": [6, 17], "sync": [4, 5], "sync_cga": [4, 5, 17], "syncga": 4, "synchron": [4, 5, 17], "system": 12, "tailor": [6, 11], "take": 4, "tang": 10, "target": 12, "task": [6, 8, 11, 13], "techniqu": 14, "term": [8, 9, 10], "test": [4, 8, 9, 10, 11, 12, 13, 17], "test_": 1, "thank": 1, "them": 10, "thi": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "those": [10, 12], "three": [4, 10, 12], "threehump": [9, 17], "thrill": 1, "tightli": 7, "tip": 3, "titl": 0, "topologi": 2, "total": [12, 13], "tournament": 17, "tournamentselect": [15, 17], "toward": 12, "tracker": 1, "tradit": 2, "trait": 14, "trap": 12, "travel": [6, 11, 17], "trial": 4, "try": 3, "tsp": [11, 17], "tune": 10, "tupl": [4, 7, 8, 10, 12, 13], "tutori": 3, "two": [4, 9, 10, 13], "twooptmut": [6, 17], "twopointcrossov": [14, 17], "txt": 1, "type": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "typic": [10, 11, 12], "typo": 1, "u": 1, "understand": [1, 4], "unfairavaragecrossov": [14, 17], "uniform": 17, "uniformcrossov": [14, 17], "uniformli": 6, "unimod": 10, "uniqu": [6, 10, 12, 14, 17], "up": [1, 3, 5], "updat": [4, 5], "update_vector": 4, "upgrad": 3, "upper": [1, 10], "us": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "usag": [2, 4, 5], "user": [0, 1, 4, 5, 7, 8, 17], "usernam": 1, "usual": 10, "util": [2, 4, 5], "v": 1, "valid": 1, "valu": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 17], "variabl": [8, 10, 12, 13], "variant": [4, 5], "variat": 6, "varieti": 17, "variou": [0, 5, 7, 8, 10, 14, 15], "vector": [4, 17], "verifi": 1, "version": [3, 5, 12], "via": 3, "visibl": 0, "visit": [1, 13], "visual": 3, "volum": 0, "wa": 5, "wai": 3, "want": 17, "wave": 9, "we": [1, 17], "weight": 12, "went": 0, "what": 1, "when": [1, 5, 6, 17], "where": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "whether": 1, "which": [4, 5, 8, 10, 12, 14], "while": [6, 7], "whose": 7, "why": 0, "wide": [10, 11, 13, 14, 15, 17], "win": 4, "winner": 4, "wise": 6, "within": [4, 6, 7, 10, 12, 14], "without": 6, "work": [0, 11], "world": 17, "wrap": [6, 7], "wrapper": 10, "write": 1, "x": [4, 5, 7, 8, 10, 12, 13, 17], "x1": 10, "x2": 10, "x_i": 10, "xi": [10, 17], "y": [4, 7, 10], "year": 0, "yet": 6, "you": [0, 1, 3, 17], "your": [0, 1, 17], "yourself": 1, "zakharov": [9, 17], "zettl": [9, 17]}, "titles": ["Citing", "Contributing", "PYCELLGA Documentation", "Installation", "pycellga: API Reference", "Example Implementations in pycellga", "Mutation Operators", "Neighborhood Operators", "Problem Definitions", "Single-Objective Optimization Problems", "Continuous Optimization Problems", "Discrete Optimization Problems", "Binary Optimization Problems", "Permutation-Based Optimization Problems", "Recombination Operators", "Selection Operators", "setup module", "Usage Examples"], "titleterms": {"0": 12, "1": 12, "100": 12, "13": 7, "20": 12, "21": 7, "25": 7, "5": 7, "9": [7, 12], "One": [12, 14], "abstract": 8, "acklei": 10, "advanc": 17, "alpha": 14, "api": 4, "arithmet": 14, "avail": 5, "averag": 14, "base": [6, 8, 11, 13], "bent": 10, "binari": [11, 12], "bit": 6, "blx": 14, "bohachevski": 10, "byte": [4, 6, 14], "chichinadz": 10, "cigar": 10, "cite": 0, "code": 1, "compact": 7, "content": 2, "continu": [9, 10], "contribut": 1, "core": 4, "count": 12, "crossov": 14, "custom": 17, "cut": 12, "decept": 12, "definit": 8, "densiti": 12, "depend": 3, "develop": 1, "discret": [9, 11], "document": 2, "drop": 10, "ecc": 12, "exampl": [5, 17], "flat": 14, "fletcher": 12, "flip": 6, "float": 6, "fm": [10, 12], "frequenc": 10, "from": 3, "function": 10, "grid": 4, "griewank": 10, "guidelin": 1, "holzman": 10, "implement": 5, "individu": 4, "insert": 6, "instal": 3, "level": 6, "levi": 10, "linear": [7, 14], "manag": 4, "match": 14, "matya": 10, "max": 12, "mmdp": 12, "modal": 12, "modul": [4, 5, 10, 16], "multi": 12, "mutat": 6, "neighborhood": 7, "node": 12, "object": [8, 9], "oper": [4, 6, 7, 14, 15], "opt": 6, "optim": [4, 9, 10, 11, 12, 13], "option": 3, "partial": 14, "peak": 12, "permut": [11, 13], "pmx": 14, "point": 14, "popul": 4, "pow": 10, "powel": [10, 12], "problem": [8, 9, 10, 11, 12, 13], "pull": 1, "pycellga": [2, 4, 5], "pypi": 3, "random": 6, "rastrigin": 10, "recombin": 14, "refer": 4, "represent": 4, "request": 1, "requir": 3, "rosenbrock": 10, "rothellipsoid": 10, "roulett": 15, "run": 1, "salesman": 13, "sat": 12, "scenario": 17, "schaffer": 10, "schaffer2": 10, "schwefel": 10, "select": 15, "setup": [1, 16], "shuffl": 6, "singl": [8, 9], "sound": 10, "sourc": 3, "sphere": 10, "standard": 1, "structur": 4, "styblinskitang": 10, "sumofdifferentpow": 10, "swap": 6, "tabl": 2, "test": 1, "threehump": 10, "tournament": 15, "travel": 13, "troubleshoot": 3, "tsp": 13, "two": [6, 14], "unfair": 14, "uniform": [6, 14], "uninstal": 3, "usag": 17, "verifi": 3, "wai": 1, "wave": 10, "wheel": 15, "zakharov": 10, "zettl": 10}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"Abstract Problem Base": [[8, "abstract-problem-base"]], "Ackley Function": [[10, "ackley-function"]], "Advanced Usage Examples": [[17, "advanced-usage-examples"]], "Arithmetic Crossover": [[14, "arithmetic-crossover"]], "Available Example Modules": [[5, "available-example-modules"]], "BLX-Alpha Crossover": [[14, "blx-alpha-crossover"]], "Bent Cigar Function": [[10, "bent-cigar-function"]], "Binary Optimization Problems": [[12, null]], "Binary-Based Problems": [[11, "binary-based-problems"]], "Bit Flip Mutation": [[6, "bit-flip-mutation"]], "Bohachevsky Function": [[10, "bohachevsky-function"]], "Byte One-Point Crossover": [[14, "byte-one-point-crossover"]], "Byte Operators": [[4, "byte-operators"]], "Byte Uniform Crossover": [[14, "byte-uniform-crossover"]], "Byte-Level Mutation": [[6, "byte-level-mutation"]], "Chichinadze Function": [[10, "chichinadze-function"]], "Citing": [[0, null]], "Coding Standards": [[1, "coding-standards"]], "Compact 13": [[7, "compact-13"]], "Compact 21": [[7, "compact-21"]], "Compact 25": [[7, "compact-25"]], "Compact 9": [[7, "compact-9"]], "Continuous Optimization Problems": [[9, "continuous-optimization-problems"], [10, null]], "Contributing": [[1, null]], "Core Modules": [[4, "core-modules"]], "Count SAT": [[12, "count-sat"]], "Customization Scenarios": [[17, "customization-scenarios"]], "Development Setup": [[1, "development-setup"]], "Discrete Optimization Problems": [[9, "discrete-optimization-problems"], [11, null]], "Drop Wave Function": [[10, "drop-wave-function"]], "ECC Problem": [[12, "ecc-problem"]], "Example Implementations in pycellga": [[5, null]], "Flat Crossover": [[14, "flat-crossover"]], "Fletcher-Powell (FMS) Binary Problem": [[12, "fletcher-powell-fms-binary-problem"]], "Frequency Modulation Sound Function (FMS)": [[10, "frequency-modulation-sound-function-fms"]], "Grid Structure": [[4, "grid-structure"]], "Griewank Function": [[10, "griewank-function"]], "Holzman Function": [[10, "holzman-function"]], "Individual Representation": [[4, "individual-representation"]], "Insertion-Based Mutation": [[6, "insertion-based-mutation"]], "Installation": [[3, null]], "Installing from PyPI": [[3, "installing-from-pypi"]], "Installing from Source": [[3, "installing-from-source"]], "Levy Function": [[10, "levy-function"]], "Linear 5": [[7, "linear-5"]], "Linear 9": [[7, "linear-9"]], "Linear Crossover": [[14, "linear-crossover"]], "Matyas Function": [[10, "matyas-function"]], "Max-Cut (100 nodes)": [[12, "max-cut-100-nodes"]], "Max-Cut (20 nodes, Density 0.1)": [[12, "max-cut-20-nodes-density-0-1"]], "Max-Cut (20 nodes, Density 0.9)": [[12, "max-cut-20-nodes-density-0-9"]], "Multi-modal Deceptive Problem (MMDP)": [[12, "multi-modal-deceptive-problem-mmdp"]], "Mutation Operators": [[6, null]], "Neighborhood Operators": [[7, null]], "One-Max Problem": [[12, "one-max-problem"]], "One-Point Crossover": [[14, "one-point-crossover"]], "Optimizer": [[4, "optimizer"]], "Optional Dependencies": [[3, "optional-dependencies"]], "PYCELLGA Documentation": [[2, null]], "Partially Matched Crossover (PMX)": [[14, "partially-matched-crossover-pmx"]], "Peak Problem": [[12, "peak-problem"]], "Permutation-Based Optimization Problems": [[13, null]], "Permutation-Based Problems": [[11, "permutation-based-problems"]], "Population Management": [[4, "population-management"]], "Pow Function": [[10, "pow-function"]], "Powell Function": [[10, "powell-function"]], "Problem Definitions": [[8, null]], "Pull Request Guidelines": [[1, "pull-request-guidelines"]], "Randomized Byte Mutation": [[6, "randomized-byte-mutation"]], "Rastrigin Function": [[10, "rastrigin-function"]], "Recombination Operators": [[14, null]], "Requirements": [[3, "requirements"]], "Rosenbrock Function": [[10, "rosenbrock-function"]], "Rothellipsoid Function": [[10, "rothellipsoid-function"]], "Roulette Wheel Selection": [[15, "roulette-wheel-selection"]], "Running Tests": [[1, "running-tests"]], "Schaffer Function": [[10, "schaffer-function"]], "Schaffer2 Function": [[10, "schaffer2-function"]], "Schwefel Function": [[10, "schwefel-function"]], "Selection Operators": [[15, null]], "Shuffle Mutation": [[6, "shuffle-mutation"]], "Single-Objective Optimization Problems": [[9, null]], "Single-Objective Problems": [[8, "single-objective-problems"]], "Sphere Function": [[10, "sphere-function"]], "Styblinskitang Function": [[10, "styblinskitang-function"]], "Sumofdifferentpowers Function": [[10, "sumofdifferentpowers-function"]], "Swap Mutation": [[6, "swap-mutation"]], "Table of Contents :": [[2, null]], "Testing Guidelines": [[1, "testing-guidelines"]], "Threehumps Function": [[10, "threehumps-function"]], "Tournament Selection": [[15, "tournament-selection"]], "Traveling Salesman Problem (TSP)": [[13, "traveling-salesman-problem-tsp"]], "Troubleshooting": [[3, "troubleshooting"]], "Two-Opt Mutation": [[6, "two-opt-mutation"]], "Two-Point Crossover": [[14, "two-point-crossover"]], "Unfair Average Crossover": [[14, "unfair-average-crossover"]], "Uniform Crossover": [[14, "uniform-crossover"]], "Uniform Float Mutation": [[6, "uniform-float-mutation"]], "Uninstallation": [[3, "uninstallation"]], "Usage Examples": [[17, null]], "Verifying the Installation": [[3, "verifying-the-installation"]], "Ways to Contribute": [[1, "ways-to-contribute"]], "Zakharov Function": [[10, "zakharov-function"]], "Zettle Function": [[10, "zettle-function"]], "pycellga: API Reference": [[4, null]], "setup module": [[16, null]]}, "docnames": ["citing", "contributing", "index", "installation", "pycellga", "pycellga.example", "pycellga.mutation", "pycellga.neighborhoods", "pycellga.problems", "pycellga.problems.single_objective", "pycellga.problems.single_objective.continuous", "pycellga.problems.single_objective.discrete", "pycellga.problems.single_objective.discrete.binary", "pycellga.problems.single_objective.discrete.permutation", "pycellga.recombination", "pycellga.selection", "setup", "usage_examples"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["citing.rst", "contributing.rst", "index.rst", "installation.rst", "pycellga.rst", "pycellga.example.rst", "pycellga.mutation.rst", "pycellga.neighborhoods.rst", "pycellga.problems.rst", "pycellga.problems.single_objective.rst", "pycellga.problems.single_objective.continuous.rst", "pycellga.problems.single_objective.discrete.rst", "pycellga.problems.single_objective.discrete.binary.rst", "pycellga.problems.single_objective.discrete.permutation.rst", "pycellga.recombination.rst", "pycellga.selection.rst", "setup.rst", "usage_examples.rst"], "indexentries": {"__init__() (abstractproblem method)": [[8, "pycellga.problems.abstract_problem.AbstractProblem.__init__", false]], "__init__() (ackley method)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.__init__", false]], "__init__() (arithmeticcrossover method)": [[14, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover.__init__", false]], "__init__() (bentcigar method)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.__init__", false]], "__init__() (bitflipmutation method)": [[6, "pycellga.mutation.bit_flip_mutation.BitFlipMutation.__init__", false]], "__init__() (blxalphacrossover method)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.__init__", false]], "__init__() (bohachevsky method)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.__init__", false]], "__init__() (bytemutation method)": [[6, "pycellga.mutation.byte_mutation.ByteMutation.__init__", false]], "__init__() (bytemutationrandom method)": [[6, "pycellga.mutation.byte_mutation_random.ByteMutationRandom.__init__", false]], "__init__() (byteonepointcrossover method)": [[14, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover.__init__", false]], "__init__() (byteuniformcrossover method)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.__init__", false]], "__init__() (chichinadze method)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.__init__", false]], "__init__() (compact13 method)": [[7, "pycellga.neighborhoods.compact_13.Compact13.__init__", false]], "__init__() (compact21 method)": [[7, "pycellga.neighborhoods.compact_21.Compact21.__init__", false]], "__init__() (compact25 method)": [[7, "pycellga.neighborhoods.compact_25.Compact25.__init__", false]], "__init__() (compact9 method)": [[7, "pycellga.neighborhoods.compact_9.Compact9.__init__", false]], "__init__() (countsat method)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.__init__", false]], "__init__() (dropwave method)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.__init__", false]], "__init__() (ecc method)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.__init__", false]], "__init__() (exampleproblem method)": [[5, "pycellga.example.example_alpha_cga.ExampleProblem.__init__", false], [5, "pycellga.example.example_ccga.ExampleProblem.__init__", false], [5, "pycellga.example.example_cga.ExampleProblem.__init__", false], [5, "pycellga.example.example_sync_cga.ExampleProblem.__init__", false]], "__init__() (flatcrossover method)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover.__init__", false]], "__init__() (floatuniformmutation method)": [[6, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation.__init__", false]], "__init__() (fms method)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.__init__", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.__init__", false]], "__init__() (grid method)": [[4, "pycellga.grid.Grid.__init__", false]], "__init__() (griewank method)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.__init__", false]], "__init__() (holzman method)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.__init__", false]], "__init__() (individual method)": [[4, "pycellga.individual.Individual.__init__", false]], "__init__() (insertionmutation method)": [[6, "pycellga.mutation.insertion_mutation.InsertionMutation.__init__", false]], "__init__() (levy method)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.__init__", false]], "__init__() (linear5 method)": [[7, "pycellga.neighborhoods.linear_5.Linear5.__init__", false]], "__init__() (linear9 method)": [[7, "pycellga.neighborhoods.linear_9.Linear9.__init__", false]], "__init__() (linearcrossover method)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover.__init__", false]], "__init__() (matyas method)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.__init__", false]], "__init__() (maxcut100 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.__init__", false]], "__init__() (maxcut20_01 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.__init__", false]], "__init__() (maxcut20_09 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.__init__", false]], "__init__() (mmdp method)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.__init__", false]], "__init__() (onemax method)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.__init__", false]], "__init__() (onepointcrossover method)": [[14, "pycellga.recombination.one_point_crossover.OnePointCrossover.__init__", false]], "__init__() (peak method)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.__init__", false]], "__init__() (pmxcrossover method)": [[14, "pycellga.recombination.pmx_crossover.PMXCrossover.__init__", false]], "__init__() (population method)": [[4, "pycellga.population.Population.__init__", false]], "__init__() (pow method)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.__init__", false]], "__init__() (powell method)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.__init__", false]], "__init__() (rastrigin method)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.__init__", false]], "__init__() (realproblem method)": [[5, "pycellga.example.example_mcccga.RealProblem.__init__", false]], "__init__() (result method)": [[4, "pycellga.optimizer.Result.__init__", false]], "__init__() (rosenbrock method)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.__init__", false]], "__init__() (rothellipsoid method)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.__init__", false]], "__init__() (roulettewheelselection method)": [[15, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection.__init__", false]], "__init__() (schaffer method)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.__init__", false]], "__init__() (schaffer2 method)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.__init__", false]], "__init__() (schwefel method)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.__init__", false]], "__init__() (shufflemutation method)": [[6, "pycellga.mutation.shuffle_mutation.ShuffleMutation.__init__", false]], "__init__() (sphere method)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere.__init__", false]], "__init__() (styblinskitang method)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.__init__", false]], "__init__() (sumofdifferentpowers method)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.__init__", false]], "__init__() (swapmutation method)": [[6, "pycellga.mutation.swap_mutation.SwapMutation.__init__", false]], "__init__() (threehumps method)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.__init__", false]], "__init__() (tournamentselection method)": [[15, "pycellga.selection.tournament_selection.TournamentSelection.__init__", false]], "__init__() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.__init__", false]], "__init__() (twooptmutation method)": [[6, "pycellga.mutation.two_opt_mutation.TwoOptMutation.__init__", false]], "__init__() (twopointcrossover method)": [[14, "pycellga.recombination.two_point_crossover.TwoPointCrossover.__init__", false]], "__init__() (unfairavaragecrossover method)": [[14, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.__init__", false]], "__init__() (uniformcrossover method)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover.__init__", false]], "__init__() (zakharov method)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.__init__", false]], "__init__() (zettle method)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.__init__", false]], "abstractproblem (class in pycellga.problems.abstract_problem)": [[8, "pycellga.problems.abstract_problem.AbstractProblem", false]], "ackley (class in pycellga.problems.single_objective.continuous.ackley)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley", false]], "alpha_cga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.ALPHA_CGA", false]], "alpha_cga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.alpha_cga", false]], "arithmeticcrossover (class in pycellga.recombination.arithmetic_crossover)": [[14, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover", false]], "bentcigar (class in pycellga.problems.single_objective.continuous.bentcigar)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar", false]], "binary (genetype attribute)": [[4, "pycellga.individual.GeneType.BINARY", false]], "bitflipmutation (class in pycellga.mutation.bit_flip_mutation)": [[6, "pycellga.mutation.bit_flip_mutation.BitFlipMutation", false]], "bits_to_float() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.bits_to_float", false]], "bits_to_floats() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.bits_to_floats", false]], "blxalphacrossover (class in pycellga.recombination.blxalpha_crossover)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover", false]], "bohachevsky (class in pycellga.problems.single_objective.continuous.bohachevsky)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky", false]], "bounds (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.bounds", false]], "bounds (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.bounds", false]], "bounds (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.bounds", false]], "bounds (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.bounds", false]], "bounds (countsat attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.bounds", false]], "bounds (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.bounds", false]], "bounds (ecc attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.bounds", false]], "bounds (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.bounds", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.bounds", false]], "bounds (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.bounds", false]], "bounds (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.bounds", false]], "bounds (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.bounds", false]], "bounds (matyas attribute)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.bounds", false]], "bounds (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.bounds", false]], "bounds (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.bounds", false]], "bounds (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.bounds", false]], "bounds (pow attribute)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.bounds", false]], "bounds (powell attribute)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.bounds", false]], "bounds (rastrigin attribute)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.bounds", false]], "bounds (rosenbrock attribute)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.bounds", false]], "bounds (rothellipsoid attribute)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.bounds", false]], "bounds (schaffer attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.bounds", false]], "bounds (schaffer2 attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.bounds", false]], "bounds (schwefel attribute)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.bounds", false]], "bounds (sumofdifferentpowers attribute)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.bounds", false]], "bounds (threehumps attribute)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.bounds", false]], "bounds (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.bounds", false]], "bounds (zakharov attribute)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.bounds", false]], "bounds (zettle attribute)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.bounds", false]], "bytemutation (class in pycellga.mutation.byte_mutation)": [[6, "pycellga.mutation.byte_mutation.ByteMutation", false]], "bytemutationrandom (class in pycellga.mutation.byte_mutation_random)": [[6, "pycellga.mutation.byte_mutation_random.ByteMutationRandom", false]], "byteonepointcrossover (class in pycellga.recombination.byte_one_point_crossover)": [[14, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover", false]], "byteuniformcrossover (class in pycellga.recombination.byte_uniform_crossover)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover", false]], "calculate_neighbors_positions() (compact13 method)": [[7, "pycellga.neighborhoods.compact_13.Compact13.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (compact21 method)": [[7, "pycellga.neighborhoods.compact_21.Compact21.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (compact25 method)": [[7, "pycellga.neighborhoods.compact_25.Compact25.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (compact9 method)": [[7, "pycellga.neighborhoods.compact_9.Compact9.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (linear5 method)": [[7, "pycellga.neighborhoods.linear_5.Linear5.calculate_neighbors_positions", false]], "calculate_neighbors_positions() (linear9 method)": [[7, "pycellga.neighborhoods.linear_9.Linear9.calculate_neighbors_positions", false]], "ccga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.CCGA", false]], "ccga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.ccga", false]], "cga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.CGA", false]], "cga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.cga", false]], "ch_size (individual attribute)": [[4, "pycellga.individual.Individual.ch_size", false]], "ch_size (population attribute)": [[4, "pycellga.population.Population.ch_size", false]], "chichinadze (class in pycellga.problems.single_objective.continuous.chichinadze)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze", false]], "chromosome (individual attribute)": [[4, "pycellga.individual.Individual.chromosome", false]], "chromosome (result attribute)": [[4, "pycellga.optimizer.Result.chromosome", false]], "combine() (blxalphacrossover method)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.combine", false]], "combine() (byteuniformcrossover method)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.combine", false]], "combine() (flatcrossover method)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover.combine", false]], "combine() (linearcrossover method)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover.combine", false]], "combine() (uniformcrossover method)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover.combine", false]], "compact13 (class in pycellga.neighborhoods.compact_13)": [[7, "pycellga.neighborhoods.compact_13.Compact13", false]], "compact21 (class in pycellga.neighborhoods.compact_21)": [[7, "pycellga.neighborhoods.compact_21.Compact21", false]], "compact25 (class in pycellga.neighborhoods.compact_25)": [[7, "pycellga.neighborhoods.compact_25.Compact25", false]], "compact9 (class in pycellga.neighborhoods.compact_9)": [[7, "pycellga.neighborhoods.compact_9.Compact9", false]], "compete() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.compete", false]], "constraints (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.constraints", false]], "constraints (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.constraints", false]], "constraints (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.constraints", false]], "constraints (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.constraints", false]], "constraints (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.constraints", false]], "constraints (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.constraints", false]], "constraints (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.constraints", false]], "constraints (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.constraints", false]], "constraints (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.constraints", false]], "constraints (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.constraints", false]], "constraints (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.constraints", false]], "constraints (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.constraints", false]], "countsat (class in pycellga.problems.single_objective.discrete.binary.count_sat)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat", false]], "design_variables (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.design_variables", false]], "design_variables (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.design_variables", false]], "design_variables (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.design_variables", false]], "design_variables (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.design_variables", false]], "design_variables (countsat attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.design_variables", false]], "design_variables (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.design_variables", false]], "design_variables (ecc attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.design_variables", false]], "design_variables (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.design_variables", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.design_variables", false]], "design_variables (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.design_variables", false]], "design_variables (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.design_variables", false]], "design_variables (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.design_variables", false]], "design_variables (matyas attribute)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.design_variables", false]], "design_variables (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.design_variables", false]], "design_variables (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.design_variables", false]], "design_variables (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.design_variables", false]], "design_variables (pow attribute)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.design_variables", false]], "design_variables (powell attribute)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.design_variables", false]], "design_variables (rastrigin attribute)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.design_variables", false]], "design_variables (rosenbrock attribute)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.design_variables", false]], "design_variables (rothellipsoid attribute)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.design_variables", false]], "design_variables (schaffer attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.design_variables", false]], "design_variables (schaffer2 attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.design_variables", false]], "design_variables (schwefel attribute)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.design_variables", false]], "design_variables (threehumps attribute)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.design_variables", false]], "design_variables (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.design_variables", false]], "design_variables (zakharov attribute)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.design_variables", false]], "design_variables (zettle attribute)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.design_variables", false]], "dropwave (class in pycellga.problems.single_objective.continuous.dropwave)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave", false]], "ecc (class in pycellga.problems.single_objective.discrete.binary.ecc)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc", false]], "euclidean_dist() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.euclidean_dist", false]], "evaluate() (abstractproblem method)": [[8, "pycellga.problems.abstract_problem.AbstractProblem.evaluate", false]], "evaluate() (ackley method)": [[10, "id0", false], [10, "pycellga.problems.single_objective.continuous.ackley.Ackley.evaluate", false]], "evaluate() (bentcigar method)": [[10, "id2", false], [10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.evaluate", false]], "evaluate() (bohachevsky method)": [[10, "id4", false], [10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.evaluate", false]], "evaluate() (chichinadze method)": [[10, "id6", false], [10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.evaluate", false]], "evaluate() (countsat method)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.evaluate", false]], "evaluate() (dropwave method)": [[10, "id8", false], [10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.evaluate", false]], "evaluate() (fms method)": [[10, "id10", false], [10, "pycellga.problems.single_objective.continuous.fms.Fms.evaluate", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.evaluate", false]], "evaluate() (griewank method)": [[10, "id12", false], [10, "pycellga.problems.single_objective.continuous.griewank.Griewank.evaluate", false]], "evaluate() (holzman method)": [[10, "id14", false], [10, "pycellga.problems.single_objective.continuous.holzman.Holzman.evaluate", false]], "evaluate() (levy method)": [[10, "id16", false], [10, "pycellga.problems.single_objective.continuous.levy.Levy.evaluate", false]], "evaluate() (matyas method)": [[10, "id18", false], [10, "pycellga.problems.single_objective.continuous.matyas.Matyas.evaluate", false]], "evaluate() (maxcut20_01 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.evaluate", false]], "evaluate() (maxcut20_09 method)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.evaluate", false]], "evaluate() (peak method)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.evaluate", false]], "evaluate() (pow method)": [[10, "id20", false], [10, "pycellga.problems.single_objective.continuous.pow.Pow.evaluate", false]], "evaluate() (powell method)": [[10, "id22", false], [10, "pycellga.problems.single_objective.continuous.powell.Powell.evaluate", false]], "evaluate() (rosenbrock method)": [[10, "id25", false], [10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.evaluate", false]], "evaluate() (rothellipsoid method)": [[10, "id27", false], [10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.evaluate", false]], "evaluate() (schaffer method)": [[10, "id29", false], [10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.evaluate", false]], "evaluate() (schaffer2 method)": [[10, "id31", false], [10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.evaluate", false]], "evaluate() (schwefel method)": [[10, "id33", false], [10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.evaluate", false]], "evaluate() (sphere method)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere.evaluate", false]], "evaluate() (styblinskitang method)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.evaluate", false]], "evaluate() (sumofdifferentpowers method)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.evaluate", false]], "evaluate() (threehumps method)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.evaluate", false]], "evaluate() (zakharov method)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.evaluate", false]], "exampleproblem (class in pycellga.example.example_alpha_cga)": [[5, "pycellga.example.example_alpha_cga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_ccga)": [[5, "pycellga.example.example_ccga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_cga)": [[5, "pycellga.example.example_cga.ExampleProblem", false]], "exampleproblem (class in pycellga.example.example_sync_cga)": [[5, "pycellga.example.example_sync_cga.ExampleProblem", false]], "f() (abstractproblem method)": [[8, "pycellga.problems.abstract_problem.AbstractProblem.f", false]], "f() (ackley method)": [[10, "id1", false], [10, "pycellga.problems.single_objective.continuous.ackley.Ackley.f", false]], "f() (bentcigar method)": [[10, "id3", false], [10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.f", false]], "f() (bohachevsky method)": [[10, "id5", false], [10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.f", false]], "f() (chichinadze method)": [[10, "id7", false], [10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.f", false]], "f() (countsat method)": [[12, "id0", false], [12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.f", false]], "f() (dropwave method)": [[10, "id9", false], [10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.f", false]], "f() (ecc method)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.f", false]], "f() (exampleproblem method)": [[5, "pycellga.example.example_alpha_cga.ExampleProblem.f", false], [5, "pycellga.example.example_ccga.ExampleProblem.f", false], [5, "pycellga.example.example_cga.ExampleProblem.f", false], [5, "pycellga.example.example_sync_cga.ExampleProblem.f", false]], "f() (fms method)": [[10, "id11", false], [10, "pycellga.problems.single_objective.continuous.fms.Fms.f", false], [12, "id1", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.f", false]], "f() (griewank method)": [[10, "id13", false], [10, "pycellga.problems.single_objective.continuous.griewank.Griewank.f", false]], "f() (holzman method)": [[10, "id15", false], [10, "pycellga.problems.single_objective.continuous.holzman.Holzman.f", false]], "f() (levy method)": [[10, "id17", false], [10, "pycellga.problems.single_objective.continuous.levy.Levy.f", false]], "f() (matyas method)": [[10, "id19", false], [10, "pycellga.problems.single_objective.continuous.matyas.Matyas.f", false]], "f() (maxcut100 method)": [[12, "id2", false], [12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.f", false]], "f() (maxcut20_01 method)": [[12, "id3", false], [12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.f", false]], "f() (maxcut20_09 method)": [[12, "id4", false], [12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.f", false]], "f() (mmdp method)": [[12, "id5", false], [12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.f", false]], "f() (onemax method)": [[12, "id6", false], [12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.f", false]], "f() (peak method)": [[12, "id7", false], [12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.f", false]], "f() (pow method)": [[10, "id21", false], [10, "pycellga.problems.single_objective.continuous.pow.Pow.f", false]], "f() (powell method)": [[10, "id23", false], [10, "pycellga.problems.single_objective.continuous.powell.Powell.f", false]], "f() (rastrigin method)": [[10, "id24", false], [10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.f", false]], "f() (realproblem method)": [[5, "pycellga.example.example_mcccga.RealProblem.f", false]], "f() (rosenbrock method)": [[10, "id26", false], [10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.f", false]], "f() (rothellipsoid method)": [[10, "id28", false], [10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.f", false]], "f() (schaffer method)": [[10, "id30", false], [10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.f", false]], "f() (schaffer2 method)": [[10, "id32", false], [10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.f", false]], "f() (schwefel method)": [[10, "id34", false], [10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.f", false]], "f() (sphere method)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere.f", false]], "f() (styblinskitang method)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang.f", false]], "f() (sumofdifferentpowers method)": [[10, "id35", false], [10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.f", false]], "f() (threehumps method)": [[10, "id36", false], [10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.f", false]], "f() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.f", false]], "f() (zakharov method)": [[10, "id37", false], [10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.f", false]], "f() (zettle method)": [[10, "id38", false], [10, "pycellga.problems.single_objective.continuous.zettle.Zettle.f", false]], "fitness_value (individual attribute)": [[4, "pycellga.individual.Individual.fitness_value", false]], "fitness_value (result attribute)": [[4, "pycellga.optimizer.Result.fitness_value", false]], "flatcrossover (class in pycellga.recombination.flat_crossover)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover", false]], "float_to_bits() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.float_to_bits", false]], "floats_to_bits() (in module pycellga.byte_operators)": [[4, "pycellga.byte_operators.floats_to_bits", false]], "floatuniformmutation (class in pycellga.mutation.float_uniform_mutation)": [[6, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation", false]], "fms (class in pycellga.problems.single_objective.continuous.fms)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms", false]], "fms (class in pycellga.problems.single_objective.discrete.binary.fms)": [[12, "pycellga.problems.single_objective.discrete.binary.fms.Fms", false]], "gen_type (individual attribute)": [[4, "pycellga.individual.Individual.gen_type", false]], "gen_type (population attribute)": [[4, "pycellga.population.Population.gen_type", false]], "generate_candidate() (individual method)": [[4, "pycellga.individual.Individual.generate_candidate", false]], "generate_probability_vector() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.generate_probability_vector", false]], "generation_found (result attribute)": [[4, "pycellga.optimizer.Result.generation_found", false]], "genetype (class in pycellga.individual)": [[4, "pycellga.individual.GeneType", false]], "get_parents() (roulettewheelselection method)": [[15, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection.get_parents", false]], "get_parents() (tournamentselection method)": [[15, "pycellga.selection.tournament_selection.TournamentSelection.get_parents", false]], "get_recombinations() (arithmeticcrossover method)": [[14, "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover.get_recombinations", false]], "get_recombinations() (blxalphacrossover method)": [[14, "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover.get_recombinations", false]], "get_recombinations() (byteonepointcrossover method)": [[14, "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover.get_recombinations", false]], "get_recombinations() (byteuniformcrossover method)": [[14, "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover.get_recombinations", false]], "get_recombinations() (flatcrossover method)": [[14, "pycellga.recombination.flat_crossover.FlatCrossover.get_recombinations", false]], "get_recombinations() (linearcrossover method)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover.get_recombinations", false]], "get_recombinations() (onepointcrossover method)": [[14, "pycellga.recombination.one_point_crossover.OnePointCrossover.get_recombinations", false]], "get_recombinations() (pmxcrossover method)": [[14, "pycellga.recombination.pmx_crossover.PMXCrossover.get_recombinations", false]], "get_recombinations() (twopointcrossover method)": [[14, "pycellga.recombination.two_point_crossover.TwoPointCrossover.get_recombinations", false]], "get_recombinations() (unfairavaragecrossover method)": [[14, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover.get_recombinations", false]], "get_recombinations() (uniformcrossover method)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover.get_recombinations", false]], "getneighbors() (individual method)": [[4, "pycellga.individual.Individual.getneighbors", false]], "getneighbors_positions() (individual method)": [[4, "pycellga.individual.Individual.getneighbors_positions", false]], "gographical_dist() (tsp method)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.gographical_dist", false]], "grid (class in pycellga.grid)": [[4, "pycellga.grid.Grid", false]], "griewank (class in pycellga.problems.single_objective.continuous.griewank)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank", false]], "holzman (class in pycellga.problems.single_objective.continuous.holzman)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman", false]], "individual (class in pycellga.individual)": [[4, "pycellga.individual.Individual", false]], "initial_population() (population method)": [[4, "pycellga.population.Population.initial_population", false]], "insertionmutation (class in pycellga.mutation.insertion_mutation)": [[6, "pycellga.mutation.insertion_mutation.InsertionMutation", false]], "levy (class in pycellga.problems.single_objective.continuous.levy)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy", false]], "linear5 (class in pycellga.neighborhoods.linear_5)": [[7, "pycellga.neighborhoods.linear_5.Linear5", false]], "linear9 (class in pycellga.neighborhoods.linear_9)": [[7, "pycellga.neighborhoods.linear_9.Linear9", false]], "linearcrossover (class in pycellga.recombination.linear_crossover)": [[14, "pycellga.recombination.linear_crossover.LinearCrossover", false]], "make_2d_grid() (grid method)": [[4, "pycellga.grid.Grid.make_2d_grid", false]], "matyas (class in pycellga.problems.single_objective.continuous.matyas)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas", false]], "maxcut100 (class in pycellga.problems.single_objective.discrete.binary.maxcut100)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100", false]], "maxcut20_01 (class in pycellga.problems.single_objective.discrete.binary.maxcut20_01)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01", false]], "maxcut20_09 (class in pycellga.problems.single_objective.discrete.binary.maxcut20_09)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09", false]], "mcccga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.MCCCGA", false]], "mcccga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.mcccga", false]], "method_name (population attribute)": [[4, "pycellga.population.Population.method_name", false]], "mmdp (class in pycellga.problems.single_objective.discrete.binary.mmdp)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp", false]], "module": [[4, "module-pycellga.byte_operators", false], [4, "module-pycellga.grid", false], [4, "module-pycellga.individual", false], [4, "module-pycellga.optimizer", false], [4, "module-pycellga.population", false], [5, "module-pycellga.example", false], [5, "module-pycellga.example.example_alpha_cga", false], [5, "module-pycellga.example.example_ccga", false], [5, "module-pycellga.example.example_cga", false], [5, "module-pycellga.example.example_mcccga", false], [5, "module-pycellga.example.example_sync_cga", false], [6, "module-pycellga.mutation.bit_flip_mutation", false], [6, "module-pycellga.mutation.byte_mutation", false], [6, "module-pycellga.mutation.byte_mutation_random", false], [6, "module-pycellga.mutation.float_uniform_mutation", false], [6, "module-pycellga.mutation.insertion_mutation", false], [6, "module-pycellga.mutation.shuffle_mutation", false], [6, "module-pycellga.mutation.swap_mutation", false], [6, "module-pycellga.mutation.two_opt_mutation", false], [7, "module-pycellga.neighborhoods.compact_13", false], [7, "module-pycellga.neighborhoods.compact_21", false], [7, "module-pycellga.neighborhoods.compact_25", false], [7, "module-pycellga.neighborhoods.compact_9", false], [7, "module-pycellga.neighborhoods.linear_5", false], [7, "module-pycellga.neighborhoods.linear_9", false], [8, "module-pycellga.problems.abstract_problem", false], [10, "module-pycellga.problems.single_objective.continuous.ackley", false], [10, "module-pycellga.problems.single_objective.continuous.bentcigar", false], [10, "module-pycellga.problems.single_objective.continuous.bohachevsky", false], [10, "module-pycellga.problems.single_objective.continuous.chichinadze", false], [10, "module-pycellga.problems.single_objective.continuous.dropwave", false], [10, "module-pycellga.problems.single_objective.continuous.fms", false], [10, "module-pycellga.problems.single_objective.continuous.griewank", false], [10, "module-pycellga.problems.single_objective.continuous.holzman", false], [10, "module-pycellga.problems.single_objective.continuous.levy", false], [10, "module-pycellga.problems.single_objective.continuous.matyas", false], [10, "module-pycellga.problems.single_objective.continuous.pow", false], [10, "module-pycellga.problems.single_objective.continuous.powell", false], [10, "module-pycellga.problems.single_objective.continuous.rastrigin", false], [10, "module-pycellga.problems.single_objective.continuous.rosenbrock", false], [10, "module-pycellga.problems.single_objective.continuous.rothellipsoid", false], [10, "module-pycellga.problems.single_objective.continuous.schaffer", false], [10, "module-pycellga.problems.single_objective.continuous.schaffer2", false], [10, "module-pycellga.problems.single_objective.continuous.schwefel", false], [10, "module-pycellga.problems.single_objective.continuous.sphere", false], [10, "module-pycellga.problems.single_objective.continuous.styblinskitang", false], [10, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers", false], [10, "module-pycellga.problems.single_objective.continuous.threehumps", false], [10, "module-pycellga.problems.single_objective.continuous.zakharov", false], [10, "module-pycellga.problems.single_objective.continuous.zettle", false], [12, "module-pycellga.problems.single_objective.discrete.binary.count_sat", false], [12, "module-pycellga.problems.single_objective.discrete.binary.ecc", false], [12, "module-pycellga.problems.single_objective.discrete.binary.fms", false], [12, "module-pycellga.problems.single_objective.discrete.binary.maxcut100", false], [12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01", false], [12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09", false], [12, "module-pycellga.problems.single_objective.discrete.binary.mmdp", false], [12, "module-pycellga.problems.single_objective.discrete.binary.one_max", false], [12, "module-pycellga.problems.single_objective.discrete.binary.peak", false], [13, "module-pycellga.problems.single_objective.discrete.permutation.tsp", false], [14, "module-pycellga.recombination.arithmetic_crossover", false], [14, "module-pycellga.recombination.blxalpha_crossover", false], [14, "module-pycellga.recombination.byte_one_point_crossover", false], [14, "module-pycellga.recombination.byte_uniform_crossover", false], [14, "module-pycellga.recombination.flat_crossover", false], [14, "module-pycellga.recombination.linear_crossover", false], [14, "module-pycellga.recombination.one_point_crossover", false], [14, "module-pycellga.recombination.pmx_crossover", false], [14, "module-pycellga.recombination.two_point_crossover", false], [14, "module-pycellga.recombination.unfair_avarage_crossover", false], [14, "module-pycellga.recombination.uniform_crossover", false], [15, "module-pycellga.selection.roulette_wheel_selection", false], [15, "module-pycellga.selection.tournament_selection", false]], "mutate() (bitflipmutation method)": [[6, "pycellga.mutation.bit_flip_mutation.BitFlipMutation.mutate", false]], "mutate() (bytemutation method)": [[6, "pycellga.mutation.byte_mutation.ByteMutation.mutate", false]], "mutate() (bytemutationrandom method)": [[6, "pycellga.mutation.byte_mutation_random.ByteMutationRandom.mutate", false]], "mutate() (floatuniformmutation method)": [[6, "pycellga.mutation.float_uniform_mutation.FloatUniformMutation.mutate", false]], "mutate() (insertionmutation method)": [[6, "pycellga.mutation.insertion_mutation.InsertionMutation.mutate", false]], "mutate() (shufflemutation method)": [[6, "pycellga.mutation.shuffle_mutation.ShuffleMutation.mutate", false]], "mutate() (swapmutation method)": [[6, "pycellga.mutation.swap_mutation.SwapMutation.mutate", false]], "mutate() (twooptmutation method)": [[6, "pycellga.mutation.two_opt_mutation.TwoOptMutation.mutate", false]], "n_cols (grid attribute)": [[4, "pycellga.grid.Grid.n_cols", false]], "n_cols (population attribute)": [[4, "pycellga.population.Population.n_cols", false]], "n_rows (grid attribute)": [[4, "pycellga.grid.Grid.n_rows", false]], "n_rows (population attribute)": [[4, "pycellga.population.Population.n_rows", false]], "n_var (sumofdifferentpowers attribute)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.n_var", false]], "neighbors (individual attribute)": [[4, "pycellga.individual.Individual.neighbors", false]], "neighbors_positions (individual attribute)": [[4, "pycellga.individual.Individual.neighbors_positions", false]], "num_variables (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.num_variables", false]], "objectives (ackley attribute)": [[10, "pycellga.problems.single_objective.continuous.ackley.Ackley.objectives", false]], "objectives (bentcigar attribute)": [[10, "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar.objectives", false]], "objectives (bohachevsky attribute)": [[10, "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky.objectives", false]], "objectives (chichinadze attribute)": [[10, "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze.objectives", false]], "objectives (countsat attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat.objectives", false]], "objectives (dropwave attribute)": [[10, "pycellga.problems.single_objective.continuous.dropwave.Dropwave.objectives", false]], "objectives (ecc attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.ecc.Ecc.objectives", false]], "objectives (fms attribute)": [[10, "pycellga.problems.single_objective.continuous.fms.Fms.objectives", false], [12, "pycellga.problems.single_objective.discrete.binary.fms.Fms.objectives", false]], "objectives (griewank attribute)": [[10, "pycellga.problems.single_objective.continuous.griewank.Griewank.objectives", false]], "objectives (holzman attribute)": [[10, "pycellga.problems.single_objective.continuous.holzman.Holzman.objectives", false]], "objectives (levy attribute)": [[10, "pycellga.problems.single_objective.continuous.levy.Levy.objectives", false]], "objectives (matyas attribute)": [[10, "pycellga.problems.single_objective.continuous.matyas.Matyas.objectives", false]], "objectives (mmdp attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp.objectives", false]], "objectives (onemax attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax.objectives", false]], "objectives (peak attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak.objectives", false]], "objectives (pow attribute)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow.objectives", false]], "objectives (powell attribute)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell.objectives", false]], "objectives (rastrigin attribute)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin.objectives", false]], "objectives (rosenbrock attribute)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock.objectives", false]], "objectives (rothellipsoid attribute)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid.objectives", false]], "objectives (schaffer attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer.objectives", false]], "objectives (schaffer2 attribute)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2.objectives", false]], "objectives (schwefel attribute)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel.objectives", false]], "objectives (sumofdifferentpowers attribute)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers.objectives", false]], "objectives (threehumps attribute)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps.objectives", false]], "objectives (tsp attribute)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp.objectives", false]], "objectives (zakharov attribute)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov.objectives", false]], "objectives (zettle attribute)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle.objectives", false]], "onemax (class in pycellga.problems.single_objective.discrete.binary.one_max)": [[12, "pycellga.problems.single_objective.discrete.binary.one_max.OneMax", false]], "onepointcrossover (class in pycellga.recombination.one_point_crossover)": [[14, "pycellga.recombination.one_point_crossover.OnePointCrossover", false]], "optimizationmethod (class in pycellga.population)": [[4, "pycellga.population.OptimizationMethod", false]], "peak (class in pycellga.problems.single_objective.discrete.binary.peak)": [[12, "pycellga.problems.single_objective.discrete.binary.peak.Peak", false]], "permutation (genetype attribute)": [[4, "pycellga.individual.GeneType.PERMUTATION", false]], "pmxcrossover (class in pycellga.recombination.pmx_crossover)": [[14, "pycellga.recombination.pmx_crossover.PMXCrossover", false]], "population (class in pycellga.population)": [[4, "pycellga.population.Population", false]], "position (individual attribute)": [[4, "pycellga.individual.Individual.position", false]], "pow (class in pycellga.problems.single_objective.continuous.pow)": [[10, "pycellga.problems.single_objective.continuous.pow.Pow", false]], "powell (class in pycellga.problems.single_objective.continuous.powell)": [[10, "pycellga.problems.single_objective.continuous.powell.Powell", false]], "problem (population attribute)": [[4, "pycellga.population.Population.problem", false]], "problema (maxcut100 attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100.problema", false]], "problema (maxcut20_01 attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01.problema", false]], "problema (maxcut20_09 attribute)": [[12, "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09.problema", false]], "pycellga.byte_operators": [[4, "module-pycellga.byte_operators", false]], "pycellga.example": [[5, "module-pycellga.example", false]], "pycellga.example.example_alpha_cga": [[5, "module-pycellga.example.example_alpha_cga", false]], "pycellga.example.example_ccga": [[5, "module-pycellga.example.example_ccga", false]], "pycellga.example.example_cga": [[5, "module-pycellga.example.example_cga", false]], "pycellga.example.example_mcccga": [[5, "module-pycellga.example.example_mcccga", false]], "pycellga.example.example_sync_cga": [[5, "module-pycellga.example.example_sync_cga", false]], "pycellga.grid": [[4, "module-pycellga.grid", false]], "pycellga.individual": [[4, "module-pycellga.individual", false]], "pycellga.mutation.bit_flip_mutation": [[6, "module-pycellga.mutation.bit_flip_mutation", false]], "pycellga.mutation.byte_mutation": [[6, "module-pycellga.mutation.byte_mutation", false]], "pycellga.mutation.byte_mutation_random": [[6, "module-pycellga.mutation.byte_mutation_random", false]], "pycellga.mutation.float_uniform_mutation": [[6, "module-pycellga.mutation.float_uniform_mutation", false]], "pycellga.mutation.insertion_mutation": [[6, "module-pycellga.mutation.insertion_mutation", false]], "pycellga.mutation.shuffle_mutation": [[6, "module-pycellga.mutation.shuffle_mutation", false]], "pycellga.mutation.swap_mutation": [[6, "module-pycellga.mutation.swap_mutation", false]], "pycellga.mutation.two_opt_mutation": [[6, "module-pycellga.mutation.two_opt_mutation", false]], "pycellga.neighborhoods.compact_13": [[7, "module-pycellga.neighborhoods.compact_13", false]], "pycellga.neighborhoods.compact_21": [[7, "module-pycellga.neighborhoods.compact_21", false]], "pycellga.neighborhoods.compact_25": [[7, "module-pycellga.neighborhoods.compact_25", false]], "pycellga.neighborhoods.compact_9": [[7, "module-pycellga.neighborhoods.compact_9", false]], "pycellga.neighborhoods.linear_5": [[7, "module-pycellga.neighborhoods.linear_5", false]], "pycellga.neighborhoods.linear_9": [[7, "module-pycellga.neighborhoods.linear_9", false]], "pycellga.optimizer": [[4, "module-pycellga.optimizer", false]], "pycellga.population": [[4, "module-pycellga.population", false]], "pycellga.problems.abstract_problem": [[8, "module-pycellga.problems.abstract_problem", false]], "pycellga.problems.single_objective.continuous.ackley": [[10, "module-pycellga.problems.single_objective.continuous.ackley", false]], "pycellga.problems.single_objective.continuous.bentcigar": [[10, "module-pycellga.problems.single_objective.continuous.bentcigar", false]], "pycellga.problems.single_objective.continuous.bohachevsky": [[10, "module-pycellga.problems.single_objective.continuous.bohachevsky", false]], "pycellga.problems.single_objective.continuous.chichinadze": [[10, "module-pycellga.problems.single_objective.continuous.chichinadze", false]], "pycellga.problems.single_objective.continuous.dropwave": [[10, "module-pycellga.problems.single_objective.continuous.dropwave", false]], "pycellga.problems.single_objective.continuous.fms": [[10, "module-pycellga.problems.single_objective.continuous.fms", false]], "pycellga.problems.single_objective.continuous.griewank": [[10, "module-pycellga.problems.single_objective.continuous.griewank", false]], "pycellga.problems.single_objective.continuous.holzman": [[10, "module-pycellga.problems.single_objective.continuous.holzman", false]], "pycellga.problems.single_objective.continuous.levy": [[10, "module-pycellga.problems.single_objective.continuous.levy", false]], "pycellga.problems.single_objective.continuous.matyas": [[10, "module-pycellga.problems.single_objective.continuous.matyas", false]], "pycellga.problems.single_objective.continuous.pow": [[10, "module-pycellga.problems.single_objective.continuous.pow", false]], "pycellga.problems.single_objective.continuous.powell": [[10, "module-pycellga.problems.single_objective.continuous.powell", false]], "pycellga.problems.single_objective.continuous.rastrigin": [[10, "module-pycellga.problems.single_objective.continuous.rastrigin", false]], "pycellga.problems.single_objective.continuous.rosenbrock": [[10, "module-pycellga.problems.single_objective.continuous.rosenbrock", false]], "pycellga.problems.single_objective.continuous.rothellipsoid": [[10, "module-pycellga.problems.single_objective.continuous.rothellipsoid", false]], "pycellga.problems.single_objective.continuous.schaffer": [[10, "module-pycellga.problems.single_objective.continuous.schaffer", false]], "pycellga.problems.single_objective.continuous.schaffer2": [[10, "module-pycellga.problems.single_objective.continuous.schaffer2", false]], "pycellga.problems.single_objective.continuous.schwefel": [[10, "module-pycellga.problems.single_objective.continuous.schwefel", false]], "pycellga.problems.single_objective.continuous.sphere": [[10, "module-pycellga.problems.single_objective.continuous.sphere", false]], "pycellga.problems.single_objective.continuous.styblinskitang": [[10, "module-pycellga.problems.single_objective.continuous.styblinskitang", false]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers": [[10, "module-pycellga.problems.single_objective.continuous.sumofdifferentpowers", false]], "pycellga.problems.single_objective.continuous.threehumps": [[10, "module-pycellga.problems.single_objective.continuous.threehumps", false]], "pycellga.problems.single_objective.continuous.zakharov": [[10, "module-pycellga.problems.single_objective.continuous.zakharov", false]], "pycellga.problems.single_objective.continuous.zettle": [[10, "module-pycellga.problems.single_objective.continuous.zettle", false]], "pycellga.problems.single_objective.discrete.binary.count_sat": [[12, "module-pycellga.problems.single_objective.discrete.binary.count_sat", false]], "pycellga.problems.single_objective.discrete.binary.ecc": [[12, "module-pycellga.problems.single_objective.discrete.binary.ecc", false]], "pycellga.problems.single_objective.discrete.binary.fms": [[12, "module-pycellga.problems.single_objective.discrete.binary.fms", false]], "pycellga.problems.single_objective.discrete.binary.maxcut100": [[12, "module-pycellga.problems.single_objective.discrete.binary.maxcut100", false]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01": [[12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_01", false]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09": [[12, "module-pycellga.problems.single_objective.discrete.binary.maxcut20_09", false]], "pycellga.problems.single_objective.discrete.binary.mmdp": [[12, "module-pycellga.problems.single_objective.discrete.binary.mmdp", false]], "pycellga.problems.single_objective.discrete.binary.one_max": [[12, "module-pycellga.problems.single_objective.discrete.binary.one_max", false]], "pycellga.problems.single_objective.discrete.binary.peak": [[12, "module-pycellga.problems.single_objective.discrete.binary.peak", false]], "pycellga.problems.single_objective.discrete.permutation.tsp": [[13, "module-pycellga.problems.single_objective.discrete.permutation.tsp", false]], "pycellga.recombination.arithmetic_crossover": [[14, "module-pycellga.recombination.arithmetic_crossover", false]], "pycellga.recombination.blxalpha_crossover": [[14, "module-pycellga.recombination.blxalpha_crossover", false]], "pycellga.recombination.byte_one_point_crossover": [[14, "module-pycellga.recombination.byte_one_point_crossover", false]], "pycellga.recombination.byte_uniform_crossover": [[14, "module-pycellga.recombination.byte_uniform_crossover", false]], "pycellga.recombination.flat_crossover": [[14, "module-pycellga.recombination.flat_crossover", false]], "pycellga.recombination.linear_crossover": [[14, "module-pycellga.recombination.linear_crossover", false]], "pycellga.recombination.one_point_crossover": [[14, "module-pycellga.recombination.one_point_crossover", false]], "pycellga.recombination.pmx_crossover": [[14, "module-pycellga.recombination.pmx_crossover", false]], "pycellga.recombination.two_point_crossover": [[14, "module-pycellga.recombination.two_point_crossover", false]], "pycellga.recombination.unfair_avarage_crossover": [[14, "module-pycellga.recombination.unfair_avarage_crossover", false]], "pycellga.recombination.uniform_crossover": [[14, "module-pycellga.recombination.uniform_crossover", false]], "pycellga.selection.roulette_wheel_selection": [[15, "module-pycellga.selection.roulette_wheel_selection", false]], "pycellga.selection.tournament_selection": [[15, "module-pycellga.selection.tournament_selection", false]], "random_vector_between() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.random_vector_between", false]], "randomize() (individual method)": [[4, "pycellga.individual.Individual.randomize", false]], "rastrigin (class in pycellga.problems.single_objective.continuous.rastrigin)": [[10, "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin", false]], "real (genetype attribute)": [[4, "pycellga.individual.GeneType.REAL", false]], "realproblem (class in pycellga.example.example_mcccga)": [[5, "pycellga.example.example_mcccga.RealProblem", false]], "result (class in pycellga.optimizer)": [[4, "pycellga.optimizer.Result", false]], "rosenbrock (class in pycellga.problems.single_objective.continuous.rosenbrock)": [[10, "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock", false]], "rothellipsoid (class in pycellga.problems.single_objective.continuous.rothellipsoid)": [[10, "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid", false]], "roulettewheelselection (class in pycellga.selection.roulette_wheel_selection)": [[15, "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection", false]], "run_alpha_cga_example() (in module pycellga.example.example_alpha_cga)": [[5, "pycellga.example.example_alpha_cga.run_alpha_cga_example", false]], "run_ccga_example() (in module pycellga.example.example_ccga)": [[5, "pycellga.example.example_ccga.run_ccga_example", false]], "run_cga_example() (in module pycellga.example.example_cga)": [[5, "pycellga.example.example_cga.run_cga_example", false]], "run_mcccga_example() (in module pycellga.example.example_mcccga)": [[5, "pycellga.example.example_mcccga.run_mcccga_example", false]], "run_sync_cga_example() (in module pycellga.example.example_sync_cga)": [[5, "pycellga.example.example_sync_cga.run_sync_cga_example", false]], "sample() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.sample", false]], "schaffer (class in pycellga.problems.single_objective.continuous.schaffer)": [[10, "pycellga.problems.single_objective.continuous.schaffer.Schaffer", false]], "schaffer2 (class in pycellga.problems.single_objective.continuous.schaffer2)": [[10, "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2", false]], "schwefel (class in pycellga.problems.single_objective.continuous.schwefel)": [[10, "pycellga.problems.single_objective.continuous.schwefel.Schwefel", false]], "setneighbors() (individual method)": [[4, "pycellga.individual.Individual.setneighbors", false]], "setneighbors_positions() (individual method)": [[4, "pycellga.individual.Individual.setneighbors_positions", false]], "shufflemutation (class in pycellga.mutation.shuffle_mutation)": [[6, "pycellga.mutation.shuffle_mutation.ShuffleMutation", false]], "sphere (class in pycellga.problems.single_objective.continuous.sphere)": [[10, "pycellga.problems.single_objective.continuous.sphere.Sphere", false]], "styblinskitang (class in pycellga.problems.single_objective.continuous.styblinskitang)": [[10, "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang", false]], "sumofdifferentpowers (class in pycellga.problems.single_objective.continuous.sumofdifferentpowers)": [[10, "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers", false]], "swapmutation (class in pycellga.mutation.swap_mutation)": [[6, "pycellga.mutation.swap_mutation.SwapMutation", false]], "sync_cga() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.sync_cga", false]], "syncga (optimizationmethod attribute)": [[4, "pycellga.population.OptimizationMethod.SYNCGA", false]], "threehumps (class in pycellga.problems.single_objective.continuous.threehumps)": [[10, "pycellga.problems.single_objective.continuous.threehumps.Threehumps", false]], "tournamentselection (class in pycellga.selection.tournament_selection)": [[15, "pycellga.selection.tournament_selection.TournamentSelection", false]], "tsp (class in pycellga.problems.single_objective.discrete.permutation.tsp)": [[13, "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp", false]], "twooptmutation (class in pycellga.mutation.two_opt_mutation)": [[6, "pycellga.mutation.two_opt_mutation.TwoOptMutation", false]], "twopointcrossover (class in pycellga.recombination.two_point_crossover)": [[14, "pycellga.recombination.two_point_crossover.TwoPointCrossover", false]], "unfairavaragecrossover (class in pycellga.recombination.unfair_avarage_crossover)": [[14, "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover", false]], "uniformcrossover (class in pycellga.recombination.uniform_crossover)": [[14, "pycellga.recombination.uniform_crossover.UniformCrossover", false]], "update_vector() (in module pycellga.optimizer)": [[4, "pycellga.optimizer.update_vector", false]], "vector (population attribute)": [[4, "pycellga.population.Population.vector", false]], "zakharov (class in pycellga.problems.single_objective.continuous.zakharov)": [[10, "pycellga.problems.single_objective.continuous.zakharov.Zakharov", false]], "zettle (class in pycellga.problems.single_objective.continuous.zettle)": [[10, "pycellga.problems.single_objective.continuous.zettle.Zettle", false]]}, "objects": {"pycellga": [[4, 0, 0, "-", "byte_operators"], [5, 0, 0, "-", "example"], [4, 0, 0, "-", "grid"], [4, 0, 0, "-", "individual"], [4, 0, 0, "-", "optimizer"], [4, 0, 0, "-", "population"]], "pycellga.byte_operators": [[4, 1, 1, "", "bits_to_float"], [4, 1, 1, "", "bits_to_floats"], [4, 1, 1, "", "float_to_bits"], [4, 1, 1, "", "floats_to_bits"]], "pycellga.example": [[5, 0, 0, "-", "example_alpha_cga"], [5, 0, 0, "-", "example_ccga"], [5, 0, 0, "-", "example_cga"], [5, 0, 0, "-", "example_mcccga"], [5, 0, 0, "-", "example_sync_cga"]], "pycellga.example.example_alpha_cga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_alpha_cga_example"]], "pycellga.example.example_alpha_cga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_ccga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_ccga_example"]], "pycellga.example.example_ccga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_cga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_cga_example"]], "pycellga.example.example_cga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_mcccga": [[5, 2, 1, "", "RealProblem"], [5, 1, 1, "", "run_mcccga_example"]], "pycellga.example.example_mcccga.RealProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.example.example_sync_cga": [[5, 2, 1, "", "ExampleProblem"], [5, 1, 1, "", "run_sync_cga_example"]], "pycellga.example.example_sync_cga.ExampleProblem": [[5, 3, 1, "", "__init__"], [5, 3, 1, "", "f"]], "pycellga.grid": [[4, 2, 1, "", "Grid"]], "pycellga.grid.Grid": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "make_2d_grid"], [4, 4, 1, "", "n_cols"], [4, 4, 1, "", "n_rows"]], "pycellga.individual": [[4, 2, 1, "", "GeneType"], [4, 2, 1, "", "Individual"]], "pycellga.individual.GeneType": [[4, 4, 1, "", "BINARY"], [4, 4, 1, "", "PERMUTATION"], [4, 4, 1, "", "REAL"]], "pycellga.individual.Individual": [[4, 3, 1, "", "__init__"], [4, 4, 1, "", "ch_size"], [4, 4, 1, "", "chromosome"], [4, 4, 1, "", "fitness_value"], [4, 4, 1, "", "gen_type"], [4, 3, 1, "", "generate_candidate"], [4, 3, 1, "", "getneighbors"], [4, 3, 1, "", "getneighbors_positions"], [4, 4, 1, "", "neighbors"], [4, 4, 1, "", "neighbors_positions"], [4, 4, 1, "", "position"], [4, 3, 1, "", "randomize"], [4, 3, 1, "", "setneighbors"], [4, 3, 1, "", "setneighbors_positions"]], "pycellga.mutation": [[6, 0, 0, "-", "bit_flip_mutation"], [6, 0, 0, "-", "byte_mutation"], [6, 0, 0, "-", "byte_mutation_random"], [6, 0, 0, "-", "float_uniform_mutation"], [6, 0, 0, "-", "insertion_mutation"], [6, 0, 0, "-", "shuffle_mutation"], [6, 0, 0, "-", "swap_mutation"], [6, 0, 0, "-", "two_opt_mutation"]], "pycellga.mutation.bit_flip_mutation": [[6, 2, 1, "", "BitFlipMutation"]], "pycellga.mutation.bit_flip_mutation.BitFlipMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.byte_mutation": [[6, 2, 1, "", "ByteMutation"]], "pycellga.mutation.byte_mutation.ByteMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.byte_mutation_random": [[6, 2, 1, "", "ByteMutationRandom"]], "pycellga.mutation.byte_mutation_random.ByteMutationRandom": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.float_uniform_mutation": [[6, 2, 1, "", "FloatUniformMutation"]], "pycellga.mutation.float_uniform_mutation.FloatUniformMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.insertion_mutation": [[6, 2, 1, "", "InsertionMutation"]], "pycellga.mutation.insertion_mutation.InsertionMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.shuffle_mutation": [[6, 2, 1, "", "ShuffleMutation"]], "pycellga.mutation.shuffle_mutation.ShuffleMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.swap_mutation": [[6, 2, 1, "", "SwapMutation"]], "pycellga.mutation.swap_mutation.SwapMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.mutation.two_opt_mutation": [[6, 2, 1, "", "TwoOptMutation"]], "pycellga.mutation.two_opt_mutation.TwoOptMutation": [[6, 3, 1, "", "__init__"], [6, 3, 1, "", "mutate"]], "pycellga.neighborhoods": [[7, 0, 0, "-", "compact_13"], [7, 0, 0, "-", "compact_21"], [7, 0, 0, "-", "compact_25"], [7, 0, 0, "-", "compact_9"], [7, 0, 0, "-", "linear_5"], [7, 0, 0, "-", "linear_9"]], "pycellga.neighborhoods.compact_13": [[7, 2, 1, "", "Compact13"]], "pycellga.neighborhoods.compact_13.Compact13": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_21": [[7, 2, 1, "", "Compact21"]], "pycellga.neighborhoods.compact_21.Compact21": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_25": [[7, 2, 1, "", "Compact25"]], "pycellga.neighborhoods.compact_25.Compact25": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.compact_9": [[7, 2, 1, "", "Compact9"]], "pycellga.neighborhoods.compact_9.Compact9": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.linear_5": [[7, 2, 1, "", "Linear5"]], "pycellga.neighborhoods.linear_5.Linear5": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.neighborhoods.linear_9": [[7, 2, 1, "", "Linear9"]], "pycellga.neighborhoods.linear_9.Linear9": [[7, 3, 1, "", "__init__"], [7, 3, 1, "", "calculate_neighbors_positions"]], "pycellga.optimizer": [[4, 2, 1, "", "Result"], [4, 1, 1, "", "alpha_cga"], [4, 1, 1, "", "ccga"], [4, 1, 1, "", "cga"], [4, 1, 1, "", "compete"], [4, 1, 1, "", "generate_probability_vector"], [4, 1, 1, "", "mcccga"], [4, 1, 1, "", "random_vector_between"], [4, 1, 1, "", "sample"], [4, 1, 1, "", "sync_cga"], [4, 1, 1, "", "update_vector"]], "pycellga.optimizer.Result": [[4, 3, 1, "", "__init__"], [4, 4, 1, "", "chromosome"], [4, 4, 1, "", "fitness_value"], [4, 4, 1, "", "generation_found"]], "pycellga.population": [[4, 2, 1, "", "OptimizationMethod"], [4, 2, 1, "", "Population"]], "pycellga.population.OptimizationMethod": [[4, 4, 1, "", "ALPHA_CGA"], [4, 4, 1, "", "CCGA"], [4, 4, 1, "", "CGA"], [4, 4, 1, "", "MCCCGA"], [4, 4, 1, "", "SYNCGA"]], "pycellga.population.Population": [[4, 3, 1, "", "__init__"], [4, 4, 1, "", "ch_size"], [4, 4, 1, "", "gen_type"], [4, 3, 1, "", "initial_population"], [4, 4, 1, "", "method_name"], [4, 4, 1, "", "n_cols"], [4, 4, 1, "", "n_rows"], [4, 4, 1, "", "problem"], [4, 4, 1, "", "vector"]], "pycellga.problems": [[8, 0, 0, "-", "abstract_problem"]], "pycellga.problems.abstract_problem": [[8, 2, 1, "", "AbstractProblem"]], "pycellga.problems.abstract_problem.AbstractProblem": [[8, 3, 1, "", "__init__"], [8, 3, 1, "", "evaluate"], [8, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous": [[10, 0, 0, "-", "ackley"], [10, 0, 0, "-", "bentcigar"], [10, 0, 0, "-", "bohachevsky"], [10, 0, 0, "-", "chichinadze"], [10, 0, 0, "-", "dropwave"], [10, 0, 0, "-", "fms"], [10, 0, 0, "-", "griewank"], [10, 0, 0, "-", "holzman"], [10, 0, 0, "-", "levy"], [10, 0, 0, "-", "matyas"], [10, 0, 0, "-", "pow"], [10, 0, 0, "-", "powell"], [10, 0, 0, "-", "rastrigin"], [10, 0, 0, "-", "rosenbrock"], [10, 0, 0, "-", "rothellipsoid"], [10, 0, 0, "-", "schaffer"], [10, 0, 0, "-", "schaffer2"], [10, 0, 0, "-", "schwefel"], [10, 0, 0, "-", "sphere"], [10, 0, 0, "-", "styblinskitang"], [10, 0, 0, "-", "sumofdifferentpowers"], [10, 0, 0, "-", "threehumps"], [10, 0, 0, "-", "zakharov"], [10, 0, 0, "-", "zettle"]], "pycellga.problems.single_objective.continuous.ackley": [[10, 2, 1, "", "Ackley"]], "pycellga.problems.single_objective.continuous.ackley.Ackley": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id0", "evaluate"], [10, 3, 1, "id1", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.bentcigar": [[10, 2, 1, "", "Bentcigar"]], "pycellga.problems.single_objective.continuous.bentcigar.Bentcigar": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id2", "evaluate"], [10, 3, 1, "id3", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.bohachevsky": [[10, 2, 1, "", "Bohachevsky"]], "pycellga.problems.single_objective.continuous.bohachevsky.Bohachevsky": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id4", "evaluate"], [10, 3, 1, "id5", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.chichinadze": [[10, 2, 1, "", "Chichinadze"]], "pycellga.problems.single_objective.continuous.chichinadze.Chichinadze": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id6", "evaluate"], [10, 3, 1, "id7", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.dropwave": [[10, 2, 1, "", "Dropwave"]], "pycellga.problems.single_objective.continuous.dropwave.Dropwave": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id8", "evaluate"], [10, 3, 1, "id9", "f"], [10, 4, 1, "", "num_variables"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.fms": [[10, 2, 1, "", "Fms"]], "pycellga.problems.single_objective.continuous.fms.Fms": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id10", "evaluate"], [10, 3, 1, "id11", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.griewank": [[10, 2, 1, "", "Griewank"]], "pycellga.problems.single_objective.continuous.griewank.Griewank": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id12", "evaluate"], [10, 3, 1, "id13", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.holzman": [[10, 2, 1, "", "Holzman"]], "pycellga.problems.single_objective.continuous.holzman.Holzman": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id14", "evaluate"], [10, 3, 1, "id15", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.levy": [[10, 2, 1, "", "Levy"]], "pycellga.problems.single_objective.continuous.levy.Levy": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "constraints"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id16", "evaluate"], [10, 3, 1, "id17", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.matyas": [[10, 2, 1, "", "Matyas"]], "pycellga.problems.single_objective.continuous.matyas.Matyas": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id18", "evaluate"], [10, 3, 1, "id19", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.pow": [[10, 2, 1, "", "Pow"]], "pycellga.problems.single_objective.continuous.pow.Pow": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id20", "evaluate"], [10, 3, 1, "id21", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.powell": [[10, 2, 1, "", "Powell"]], "pycellga.problems.single_objective.continuous.powell.Powell": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id22", "evaluate"], [10, 3, 1, "id23", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.rastrigin": [[10, 2, 1, "", "Rastrigin"]], "pycellga.problems.single_objective.continuous.rastrigin.Rastrigin": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id24", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.rosenbrock": [[10, 2, 1, "", "Rosenbrock"]], "pycellga.problems.single_objective.continuous.rosenbrock.Rosenbrock": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id25", "evaluate"], [10, 3, 1, "id26", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.rothellipsoid": [[10, 2, 1, "", "Rothellipsoid"]], "pycellga.problems.single_objective.continuous.rothellipsoid.Rothellipsoid": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id27", "evaluate"], [10, 3, 1, "id28", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.schaffer": [[10, 2, 1, "", "Schaffer"]], "pycellga.problems.single_objective.continuous.schaffer.Schaffer": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id29", "evaluate"], [10, 3, 1, "id30", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.schaffer2": [[10, 2, 1, "", "Schaffer2"]], "pycellga.problems.single_objective.continuous.schaffer2.Schaffer2": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id31", "evaluate"], [10, 3, 1, "id32", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.schwefel": [[10, 2, 1, "", "Schwefel"]], "pycellga.problems.single_objective.continuous.schwefel.Schwefel": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id33", "evaluate"], [10, 3, 1, "id34", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.sphere": [[10, 2, 1, "", "Sphere"]], "pycellga.problems.single_objective.continuous.sphere.Sphere": [[10, 3, 1, "", "__init__"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous.styblinskitang": [[10, 2, 1, "", "StyblinskiTang"]], "pycellga.problems.single_objective.continuous.styblinskitang.StyblinskiTang": [[10, 3, 1, "", "__init__"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "", "f"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers": [[10, 2, 1, "", "Sumofdifferentpowers"]], "pycellga.problems.single_objective.continuous.sumofdifferentpowers.Sumofdifferentpowers": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "id35", "f"], [10, 4, 1, "", "n_var"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.threehumps": [[10, 2, 1, "", "Threehumps"]], "pycellga.problems.single_objective.continuous.threehumps.Threehumps": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "id36", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.zakharov": [[10, 2, 1, "", "Zakharov"]], "pycellga.problems.single_objective.continuous.zakharov.Zakharov": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "", "evaluate"], [10, 3, 1, "id37", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.continuous.zettle": [[10, 2, 1, "", "Zettle"]], "pycellga.problems.single_objective.continuous.zettle.Zettle": [[10, 3, 1, "", "__init__"], [10, 4, 1, "", "bounds"], [10, 4, 1, "", "design_variables"], [10, 3, 1, "id38", "f"], [10, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary": [[12, 0, 0, "-", "count_sat"], [12, 0, 0, "-", "ecc"], [12, 0, 0, "-", "fms"], [12, 0, 0, "-", "maxcut100"], [12, 0, 0, "-", "maxcut20_01"], [12, 0, 0, "-", "maxcut20_09"], [12, 0, 0, "-", "mmdp"], [12, 0, 0, "-", "one_max"], [12, 0, 0, "-", "peak"]], "pycellga.problems.single_objective.discrete.binary.count_sat": [[12, 2, 1, "", "CountSat"]], "pycellga.problems.single_objective.discrete.binary.count_sat.CountSat": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id0", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.ecc": [[12, 2, 1, "", "Ecc"]], "pycellga.problems.single_objective.discrete.binary.ecc.Ecc": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.fms": [[12, 2, 1, "", "Fms"]], "pycellga.problems.single_objective.discrete.binary.fms.Fms": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id1", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.maxcut100": [[12, 2, 1, "", "Maxcut100"]], "pycellga.problems.single_objective.discrete.binary.maxcut100.Maxcut100": [[12, 3, 1, "", "__init__"], [12, 3, 1, "id2", "f"], [12, 4, 1, "", "problema"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01": [[12, 2, 1, "", "Maxcut20_01"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_01.Maxcut20_01": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id3", "f"], [12, 4, 1, "", "problema"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09": [[12, 2, 1, "", "Maxcut20_09"]], "pycellga.problems.single_objective.discrete.binary.maxcut20_09.Maxcut20_09": [[12, 3, 1, "", "__init__"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id4", "f"], [12, 4, 1, "", "problema"]], "pycellga.problems.single_objective.discrete.binary.mmdp": [[12, 2, 1, "", "Mmdp"]], "pycellga.problems.single_objective.discrete.binary.mmdp.Mmdp": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "constraints"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "id5", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.one_max": [[12, 2, 1, "", "OneMax"]], "pycellga.problems.single_objective.discrete.binary.one_max.OneMax": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "constraints"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "id6", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.binary.peak": [[12, 2, 1, "", "Peak"]], "pycellga.problems.single_objective.discrete.binary.peak.Peak": [[12, 3, 1, "", "__init__"], [12, 4, 1, "", "bounds"], [12, 4, 1, "", "constraints"], [12, 4, 1, "", "design_variables"], [12, 3, 1, "", "evaluate"], [12, 3, 1, "id7", "f"], [12, 4, 1, "", "objectives"]], "pycellga.problems.single_objective.discrete.permutation": [[13, 0, 0, "-", "tsp"]], "pycellga.problems.single_objective.discrete.permutation.tsp": [[13, 2, 1, "", "Tsp"]], "pycellga.problems.single_objective.discrete.permutation.tsp.Tsp": [[13, 3, 1, "", "__init__"], [13, 4, 1, "", "bounds"], [13, 4, 1, "", "constraints"], [13, 4, 1, "", "design_variables"], [13, 3, 1, "", "euclidean_dist"], [13, 3, 1, "", "f"], [13, 3, 1, "", "gographical_dist"], [13, 4, 1, "", "objectives"]], "pycellga.recombination": [[14, 0, 0, "-", "arithmetic_crossover"], [14, 0, 0, "-", "blxalpha_crossover"], [14, 0, 0, "-", "byte_one_point_crossover"], [14, 0, 0, "-", "byte_uniform_crossover"], [14, 0, 0, "-", "flat_crossover"], [14, 0, 0, "-", "linear_crossover"], [14, 0, 0, "-", "one_point_crossover"], [14, 0, 0, "-", "pmx_crossover"], [14, 0, 0, "-", "two_point_crossover"], [14, 0, 0, "-", "unfair_avarage_crossover"], [14, 0, 0, "-", "uniform_crossover"]], "pycellga.recombination.arithmetic_crossover": [[14, 2, 1, "", "ArithmeticCrossover"]], "pycellga.recombination.arithmetic_crossover.ArithmeticCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.blxalpha_crossover": [[14, 2, 1, "", "BlxalphaCrossover"]], "pycellga.recombination.blxalpha_crossover.BlxalphaCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.byte_one_point_crossover": [[14, 2, 1, "", "ByteOnePointCrossover"]], "pycellga.recombination.byte_one_point_crossover.ByteOnePointCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.byte_uniform_crossover": [[14, 2, 1, "", "ByteUniformCrossover"]], "pycellga.recombination.byte_uniform_crossover.ByteUniformCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.flat_crossover": [[14, 2, 1, "", "FlatCrossover"]], "pycellga.recombination.flat_crossover.FlatCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.linear_crossover": [[14, 2, 1, "", "LinearCrossover"]], "pycellga.recombination.linear_crossover.LinearCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.one_point_crossover": [[14, 2, 1, "", "OnePointCrossover"]], "pycellga.recombination.one_point_crossover.OnePointCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.pmx_crossover": [[14, 2, 1, "", "PMXCrossover"]], "pycellga.recombination.pmx_crossover.PMXCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.two_point_crossover": [[14, 2, 1, "", "TwoPointCrossover"]], "pycellga.recombination.two_point_crossover.TwoPointCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.unfair_avarage_crossover": [[14, 2, 1, "", "UnfairAvarageCrossover"]], "pycellga.recombination.unfair_avarage_crossover.UnfairAvarageCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "get_recombinations"]], "pycellga.recombination.uniform_crossover": [[14, 2, 1, "", "UniformCrossover"]], "pycellga.recombination.uniform_crossover.UniformCrossover": [[14, 3, 1, "", "__init__"], [14, 3, 1, "", "combine"], [14, 3, 1, "", "get_recombinations"]], "pycellga.selection": [[15, 0, 0, "-", "roulette_wheel_selection"], [15, 0, 0, "-", "tournament_selection"]], "pycellga.selection.roulette_wheel_selection": [[15, 2, 1, "", "RouletteWheelSelection"]], "pycellga.selection.roulette_wheel_selection.RouletteWheelSelection": [[15, 3, 1, "", "__init__"], [15, 3, 1, "", "get_parents"]], "pycellga.selection.tournament_selection": [[15, 2, 1, "", "TournamentSelection"]], "pycellga.selection.tournament_selection.TournamentSelection": [[15, 3, 1, "", "__init__"], [15, 3, 1, "", "get_parents"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "terms": {"": [0, 1, 4, 5, 6, 8, 9, 10, 12, 15, 17], "0": [4, 5, 6, 10, 11, 15, 17], "003791": 10, "01": 12, "0299": 10, "1": [0, 1, 4, 5, 6, 10, 11, 17], "10": [5, 10, 12, 17], "100": [5, 10, 11, 17], "12": [7, 10], "13": 0, "14": [13, 17], "144": 12, "15": [10, 17], "192": 12, "2": [1, 4, 6, 10, 12, 15, 17], "20": [7, 11], "2013": [6, 14], "2024": 0, "24": 7, "240": 12, "2500": 0, "2514": 0, "2d": [4, 7], "3": [1, 3, 4, 10, 17], "30": 10, "300": 17, "3159": 10, "32": [4, 10, 17], "4": [1, 4, 7, 10, 17], "40": 12, "43": 10, "5": [4, 5, 6, 10, 17], "500": [10, 17], "55": 17, "5x5": [5, 17], "6": 12, "600": 10, "7": [3, 10], "768": [10, 17], "8": [1, 7, 17], "85": 17, "9": [10, 11, 17], "90133": 10, "A": [0, 2, 4, 5, 6, 7, 10, 12, 13, 14, 15], "Be": 1, "By": [1, 8], "For": [0, 1, 3, 5, 17], "If": [0, 1, 3, 4, 8, 10, 12], "In": [4, 17], "It": [4, 6, 10, 12], "One": [11, 17], "The": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "These": [4, 5, 7, 8, 9, 10, 11, 12, 13, 17], "To": [1, 3], "__init__": [4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "__version__": 3, "abc": 8, "abil": [10, 12], "abstractproblem": [4, 6, 8, 10, 12, 13, 14], "account": 1, "accuraci": [8, 9, 10], "achiev": 5, "acklei": [9, 17], "acknowledg": 0, "across": [6, 7, 8, 17], "act": 15, "ad": 6, "adapt": 17, "add": 1, "addit": [1, 3], "address": [9, 10], "adher": 1, "adjac": 12, "adjust": 6, "akten": 0, "algorithm": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "alia": 10, "align": 1, "all": [1, 5, 10, 12, 17], "allow": [2, 4, 6, 7, 14, 17], "along": 7, "alpha": [2, 4, 5, 17], "alpha_cga": [4, 5, 17], "also": [0, 17], "alter": 6, "altern": 5, "among": 7, "an": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17], "ani": [1, 3, 8, 10, 12], "annot": 1, "apa": 0, "api": 2, "appli": [0, 6, 8, 14], "applic": [5, 7], "approach": [6, 10], "ar": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17], "arg": [8, 10, 12], "argument": 1, "arithmeticcrossov": [14, 17], "around": [6, 14], "arrai": [5, 8, 10, 12], "arrang": 7, "articl": 0, "aspect": 10, "assess": [9, 12], "attribut": [4, 13], "author": 0, "automata": 2, "avail": [10, 17], "b": [1, 13], "back": 4, "balanc": [2, 10, 15], "base": [4, 5, 7, 9, 10, 12, 14, 15, 17], "basic": 5, "befor": [1, 3], "begin": 1, "behavior": 1, "being": [5, 15], "below": [5, 10, 17], "benchmark": [8, 9, 10, 11, 12, 13], "benefici": [7, 15], "bent": 9, "bentcigar": [10, 17], "besid": 2, "best": [4, 5, 15, 17], "better": [1, 4], "between": [2, 4, 10, 12, 13, 14], "bia": 14, "bibtex": 0, "binari": [4, 5, 6, 9, 14, 17], "bit": [4, 12, 17], "bit_list": 4, "bitflipmut": [6, 17], "bits_to_float": 4, "bitwis": 6, "block": 4, "blxalpha": 17, "blxalphacrossov": [14, 17], "bohachevski": [9, 17], "both": [4, 8, 10, 11, 14], "bound": [8, 10, 12, 13], "boundari": 4, "branch": 1, "bring": 1, "broader": [6, 7], "brows": 1, "bug": 1, "bugfix": 1, "build": 4, "built": 17, "burma14": 13, "button": 1, "byte": [2, 5, 17], "bytemut": [6, 17], "bytemutationrandom": [6, 17], "byteonepointcrossov": [14, 17], "byteuniformcrossov": [14, 17], "c": 15, "calcul": [7, 10, 12, 14], "calculate_neighbors_posit": 7, "callabl": 4, "camel": 10, "can": [1, 3, 7, 8, 17], "candid": [4, 6], "capabl": [10, 17], "case": [1, 4, 10, 12, 13, 17], "categor": 17, "ccga": [4, 5, 17], "cd": [1, 3], "cell": [4, 7], "cellular": [0, 2, 4, 5, 7, 17], "center": 10, "certain": 3, "cga": [2, 4, 5, 7, 17], "ch_size": [4, 17], "challeng": [9, 10, 12, 17], "chanc": 15, "chang": [1, 6, 17], "character": [10, 12], "check": 1, "checkout": 1, "chicago": 0, "chichinadz": [9, 17], "choic": 6, "choos": 17, "chosen": [14, 15], "chromosom": [4, 5, 6, 12, 13, 14, 17], "cigar": 9, "citat": 0, "cite": 2, "citi": [13, 17], "clarifi": 1, "class": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "classic": [6, 12, 13, 14], "clear": 1, "click": 1, "clone": [1, 3], "cluster": 7, "co": 10, "code": [0, 2, 4, 5, 12, 14, 17], "codebas": [1, 10], "coevolutionari": 4, "collect": [8, 9], "column": [4, 7], "com": [1, 3], "combin": [2, 4, 14], "combinatori": [6, 9, 11, 13], "command": 3, "commit": 1, "common": [8, 10], "commonli": [6, 8, 9, 10, 12, 14], "commun": [0, 1, 12], "compact": [2, 4, 5, 17], "compact13": 7, "compact21": 7, "compact25": 7, "compact9": 7, "compat": [8, 10, 12], "compet": [4, 15], "complex": [2, 10], "compon": 8, "comprehens": [5, 6], "comput": [5, 10, 13, 17], "configur": [5, 6, 17], "connect": 12, "consid": [1, 7], "consist": [1, 8], "constrain": 5, "constraint": [8, 10, 12, 13], "contain": [4, 5, 11, 14, 15], "continu": [0, 6, 8, 17], "contribut": [0, 2], "control": [4, 14], "convent": 1, "converg": [5, 7, 8, 9, 10, 15], "convert": 4, "convex": 10, "cooper": 4, "coordin": [10, 13], "copi": [1, 14], "core": 5, "corner": 1, "correct": 12, "correctli": 3, "correspond": 17, "count": 11, "countsat": [12, 17], "cov": 1, "cover": 1, "coverag": 1, "creat": [0, 1, 4, 6, 8, 14], "crossov": [4, 15, 17], "custom": 8, "cut": 11, "d": 10, "data": 4, "dataset": 13, "date": 3, "deal": 10, "deceiv": 12, "decept": 11, "decim": [6, 10, 12, 13], "decod": 4, "decrement": 6, "def": 17, "default": [4, 6, 8, 10, 12, 13], "defin": [4, 6, 7, 8, 10, 12, 14, 17], "definit": 4, "degre": 6, "demonstr": [5, 17], "dens": 7, "denser": 12, "densiti": 11, "depend": [1, 7], "depth": 4, "descript": [1, 4], "design": [6, 8, 9, 10, 11, 12, 13, 14, 17], "design_vari": [8, 10, 12, 13], "desir": [6, 7], "detail": [1, 3], "determin": [4, 7, 15], "develop": 0, "dict": [8, 10, 12], "dictionari": [8, 10, 12], "differ": [4, 5, 7, 9, 10, 11, 12, 14, 17], "differenti": [9, 10], "difficulti": 10, "dimens": 10, "directli": [3, 15, 17], "directori": [1, 3], "discret": [8, 12, 13], "distanc": [12, 13], "divers": [2, 4, 6, 7, 9, 14, 15, 17], "docstr": 1, "document": [1, 5], "drive": [1, 12], "drop": 9, "dropwav": [10, 17], "dure": [1, 2, 3, 4, 6, 15], "e": [4, 6, 8, 10, 12, 13], "each": [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "easiest": 3, "ecc": [11, 17], "edg": [7, 12], "effect": [4, 6, 14, 15], "effici": [4, 5, 10, 12, 13], "either": 6, "element": [5, 6, 11, 12, 13, 17], "ellipsoid": 10, "empti": [4, 8, 10, 12], "enabl": 6, "encapsul": 4, "encod": [4, 5, 6, 11, 12, 14, 17], "encount": [1, 3, 12], "encourag": 7, "engin": 0, "enhanc": [1, 4, 5, 6, 7], "ensur": [1, 3, 4, 8, 17], "entri": 0, "enum": 4, "enumer": 4, "environ": 1, "equal": [5, 17], "error": [3, 12], "escap": [10, 12], "essenti": 7, "euclidean": 13, "euclidean_dist": 13, "evalu": [4, 8, 9, 10, 11, 12, 13], "even": 1, "evolutionari": 4, "evolv": 4, "exactli": 13, "exampl": [0, 1, 2, 3, 4, 8, 13], "example_alpha_cga": 5, "example_ccga": 5, "example_cga": 5, "example_mcccga": 5, "example_sync_cga": 5, "exampleproblem": [5, 17], "exchang": [4, 14], "excit": 1, "execut": 4, "exist": 1, "experiment": 10, "explain": 17, "exploit": [2, 10, 15], "explor": [2, 4, 5, 6, 7, 10, 14, 15, 17], "extend": 7, "f": [5, 8, 10, 12, 13, 17], "facilit": 7, "factor": 12, "familiar": 1, "featur": [1, 3, 12], "feature_nam": 1, "feedback": 1, "file": 1, "find": [12, 13, 17], "fine": [10, 14], "first": [4, 13, 14], "fit": [4, 5, 6, 8, 10, 12, 13, 14, 15, 17], "fitness_valu": [4, 17], "five": 4, "fix": 1, "flat": 10, "flatcrossov": [14, 17], "fletcher": 11, "flexibl": [8, 17], "flip": 17, "float": [4, 5, 8, 10, 12, 13, 17], "float_list": 4, "float_numb": 4, "float_to_bit": 4, "floats_to_bit": 4, "floatuniformmut": [6, 17], "flow": 7, "fm": [9, 11, 17], "focus": 11, "folder": 1, "follow": [0, 1, 3, 6, 17], "fork": 1, "form": [4, 11], "format": [0, 12], "found": [4, 5], "four": 12, "framework": [4, 5, 8, 10], "frequenc": [9, 12], "frequent": 6, "from": [1, 4, 6, 8, 14, 15, 17], "full": 5, "function": [1, 4, 5, 6, 8, 9, 12, 13, 14, 17], "fundament": 4, "g": [4, 8, 10, 12, 13], "gen_typ": [4, 17], "gene": [4, 5, 6, 12, 14, 17], "gener": [4, 5, 12, 14, 17], "generate_candid": 4, "generate_probability_vector": 4, "generation_found": 4, "genet": [0, 2, 4, 5, 6, 7, 8, 12, 14, 15, 17], "genetyp": [4, 17], "genom": 4, "geo": 13, "geodes": 13, "geograph": 13, "get": [4, 15], "get_par": 15, "get_recombin": 14, "getneighbor": 4, "getneighbors_posit": 4, "git": [1, 3], "github": [1, 3], "given": [4, 5, 7, 10, 12, 13], "global": [5, 10, 17], "goal": [5, 10, 13, 17], "gographical_dist": 13, "googl": 1, "graph": 12, "grid": [2, 5, 7, 17], "griewank": [9, 17], "guid": [1, 4], "h": 0, "ha": [2, 3, 10], "hakan": 0, "handl": [4, 9, 13], "harvard": 0, "have": [1, 3, 7, 12, 17], "help": [0, 1, 4, 17], "here": [1, 17], "high": 6, "higher": [3, 7, 14], "highlight": [5, 17], "hint": 1, "hole": 10, "holzman": [9, 17], "how": [5, 7, 15, 17], "http": [1, 3], "hump": 10, "hyper": 10, "hypercub": 10, "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "idea": 1, "ideal": [6, 7, 9, 10], "identifi": 0, "illustr": 5, "immedi": 7, "impact": [0, 15], "implement": [1, 2, 4, 10, 12, 13, 15, 17], "import": [3, 17], "improv": [0, 1, 2, 5], "includ": [1, 4, 5, 6, 7, 8, 9, 11, 14, 17], "incorpor": 5, "increment": 6, "index": [3, 13, 15], "individu": [2, 5, 6, 7, 14, 15, 17], "inform": [7, 14], "inherit": 8, "initi": [4, 6, 7, 8, 10, 12, 13, 14, 15], "initial_popul": 4, "innov": 1, "input": [5, 8, 10, 12], "insertionmut": [6, 17], "insight": 5, "instal": [1, 2], "instanc": [4, 5, 6, 14, 17], "instruct": 3, "int": [4, 5, 7, 8, 10, 12, 13, 15], "integ": [4, 8, 10, 12], "interact": [2, 4, 7], "interfac": [4, 8], "intermedi": 14, "introduc": 6, "invalu": 1, "invari": 10, "involv": [1, 12, 13], "issu": [1, 3], "its": [1, 2, 3, 4, 5, 7, 10, 12, 15, 17], "journal": 0, "jupyt": 3, "k": 15, "karakaya": 0, "karakaya2024improv": 0, "kei": [1, 8, 10, 15], "known": [10, 13], "kwarg": [8, 10, 12], "landscap": [9, 10, 12, 15], "larg": 10, "larger": 7, "latex": 0, "layout": [4, 7], "lead": 14, "length": 12, "level": [4, 5, 7, 10, 14], "leverag": 6, "levi": [9, 17], "li": 10, "librari": 4, "like": [1, 2, 4], "limit": [7, 12], "line": 7, "linear5": 7, "linear9": 7, "linearcrossov": [14, 17], "linearli": 14, "list": [1, 4, 5, 7, 8, 10, 12, 13, 14, 15], "ll": [1, 17], "local": [1, 7, 10, 12], "locationsourc": 14, "look": 4, "lose": 4, "loser": 4, "low": 4, "lower": 10, "m": 0, "machin": [0, 1, 2, 4, 5, 14, 17], "mai": 3, "main": [1, 4, 9], "maintain": [1, 2, 4, 7, 10, 14, 15], "make": [1, 3, 10], "make_2d_grid": 4, "male": [2, 4, 5], "manag": [3, 7, 8, 12], "manipul": 6, "map": 14, "massiv": 12, "matplotlib": 3, "matrix": 12, "matya": [9, 17], "max": [4, 5, 8, 10, 11, 13, 17], "maxcut": 12, "maxcut100": [12, 17], "maxcut20_01": [12, 17], "maxcut20_09": [12, 17], "maxim": [5, 8, 10, 12, 13, 17], "maximum": [4, 12, 17], "mcc": 5, "mcccga": [4, 5, 17], "mccga": 4, "meaning": 1, "mechan": [4, 5, 15], "mehmet": 0, "memori": [4, 5], "merg": 1, "messag": 1, "method": [4, 5, 8, 10, 14, 15, 17], "method_nam": 4, "min": [4, 5, 8, 10, 12, 13, 17], "minim": [5, 8, 10, 12, 13, 17], "minima": 10, "minimum": [4, 5, 10, 13, 17], "mix": 14, "mla": 0, "mmdp": [11, 17], "modal": 11, "moder": 7, "modifi": 10, "modul": [6, 7, 8, 9, 12, 13], "more": [4, 7, 14], "move": 6, "mpmath": 17, "multi": [4, 8, 11], "multidimension": 10, "multimod": [10, 12, 15], "multipl": [12, 17], "must": 4, "mutat": [4, 17], "mutation_cand": 6, "mutationoper": [4, 6, 17], "n": 10, "n_col": [4, 7, 17], "n_gen": [4, 17], "n_row": [4, 7, 17], "n_var": 10, "name": [1, 4, 8, 10, 12, 13], "navig": [1, 3], "ndarrai": [5, 8, 10, 12], "nearli": 10, "necessari": 6, "need": [3, 8, 17], "neighbor": [2, 4, 7, 15], "neighborhood": 4, "neighbors_posit": 4, "new": [1, 6], "node": [11, 13], "none": [4, 6, 10, 12], "nonlinear": 10, "normal": 12, "note": [10, 12, 13], "notebook": 3, "notimplementederror": 4, "np": 17, "ntri": 4, "num_vari": 10, "number": [0, 4, 5, 6, 7, 8, 10, 12, 15, 17], "numer": [10, 12], "numpi": [5, 8, 10, 12], "object": [4, 5, 6, 7, 10, 11, 12, 13, 14, 15], "occur": 3, "offer": [4, 6, 7, 10], "offspr": [4, 14], "often": [10, 12, 14], "onc": 13, "one": [1, 4, 6, 8, 13, 14, 17], "onemax": [12, 17], "onepointcrossov": [14, 17], "ones": 12, "onli": [2, 8], "open": 1, "oper": [0, 2, 17], "optim": [2, 3, 5, 6, 8, 14, 15, 17], "optima": [10, 12], "optimis": 0, "optimizationmethod": 4, "optimum": 12, "option": [4, 6, 8, 10, 12, 17], "order": [6, 11, 13, 14], "organ": [2, 9], "origin": [10, 13], "other": [0, 17], "our": 1, "out": [8, 10, 12], "outer": 10, "output": [8, 10, 12], "over": [10, 14], "overview": 5, "own": [1, 17], "p1": [4, 14], "p2": [4, 14], "p_crossov": [4, 17], "p_mutat": [4, 17], "packag": [0, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17], "page": [0, 1], "pair": 14, "paramet": [4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "parent": [4, 14, 15], "particularli": [6, 9, 11, 12, 13], "partit": 12, "pass": [1, 17], "path": 6, "pattern": 4, "peak": [11, 17], "pep": 1, "perform": [4, 6, 9, 10, 11, 12, 14, 15], "permut": [4, 6, 9, 14, 17], "persist": 3, "pick": 1, "pip": [1, 3], "place": [1, 6, 10, 12, 13], "plai": 15, "plan": 3, "pleas": [0, 1], "pmx": 17, "pmxcrossov": [14, 17], "point": [6, 7, 10, 17], "pop_list": 15, "pop_siz": 4, "popul": [2, 5, 6, 7, 15], "posit": [4, 6, 7, 14], "possibl": 13, "pow": [9, 17], "powel": [9, 11, 17], "power": [10, 17], "pp": 0, "practic": 5, "precis": 6, "predefin": 12, "present": 12, "preserv": 6, "principl": [2, 5], "print": [3, 17], "probabl": 4, "problem": [0, 2, 4, 5, 6, 7, 14, 15, 17], "problema": 12, "probvector": 4, "process": [1, 2, 4, 6, 15], "produc": 14, "project": [0, 1], "promot": [2, 6, 7], "proport": 15, "proportion": 15, "provid": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17], "purpos": [6, 13, 14], "push": 1, "pw": 17, "py": 1, "pycellga": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "pymoo": [8, 10, 12], "pytest": 1, "python": [1, 2, 3, 4, 17], "qualiti": 1, "qualnam": 4, "quick": 17, "r": 1, "rais": 4, "random": [4, 14, 15, 17], "random_vector_between": 4, "randomli": [4, 6, 12, 14], "rang": [4, 6, 10, 12, 14, 17], "rapid": 7, "rastrigin": [9, 17], "re": 1, "reach": [10, 17], "readabl": 1, "readi": 1, "real": [0, 2, 4, 5, 6, 14, 17], "realproblem": [5, 17], "rearrang": 6, "recombin": [4, 17], "recombinationoper": [4, 14], "recommend": 1, "refer": [0, 2, 3, 5], "region": 10, "relat": 12, "relev": 4, "reliabl": 1, "repeat": [4, 17], "replac": [4, 17], "repo": 1, "report": 1, "reposit": 6, "repositori": [1, 3], "repres": [4, 5, 7, 9, 10, 11, 12, 13], "represent": [6, 14, 17], "requir": [1, 6, 7, 12], "research": 0, "respect": 4, "respond": 1, "respons": 1, "rest": [8, 10], "restrict": 4, "result": [3, 4, 5, 14, 17], "retain": 14, "return": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17], "revers": 6, "review": 1, "right": 1, "roadmap": 1, "robust": [8, 9, 10, 12], "role": 15, "rosenbrock": [9, 17], "rotat": 10, "rotation": 10, "rothellipsoid": [9, 17], "roulettewheelselect": [15, 17], "round": [6, 10, 12, 13], "rout": 13, "row": [4, 7], "rug": 12, "run": [3, 4, 5], "run_alpha_cga_exampl": 5, "run_ccga_exampl": 5, "run_cga_exampl": 5, "run_mcccga_exampl": 5, "run_sync_cga_exampl": 5, "salesman": [6, 11, 17], "same": 1, "sampl": [4, 6], "sat": 11, "satisfact": 12, "satisfi": 12, "satman": [0, 6, 14], "scenario": 8, "schaffer": [9, 17], "schaffer2": [9, 17], "schedul": 6, "schwefel": [9, 17], "scienc": 0, "scientif": 0, "search": [9, 10, 11, 12], "second": [4, 13, 14], "section": [3, 17], "see": 1, "seed_par": [4, 17], "segment": [6, 14], "select": [1, 4, 6, 7, 17], "selectionoper": [4, 15], "self": 17, "sequenc": [6, 11, 13, 14], "sequenti": 7, "serv": [4, 6, 8, 14], "set": [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 17], "setneighbor": 4, "setneighbors_posit": 4, "sever": 17, "sevgi": 0, "sevgiakten": 3, "share": 7, "shortest": 13, "should": [1, 4], "shufflemut": [6, 17], "signific": 6, "simpl": [5, 6, 10, 12, 17], "simplic": 15, "simultan": 5, "singl": [6, 10, 11, 12, 14], "single_object": [8, 9, 10, 11, 12, 13], "six": 10, "size": [4, 5, 7], "slight": 14, "small": 6, "smooth": [1, 9, 10], "smoothli": 1, "softwar": [0, 1], "solut": [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 17], "solv": [5, 12, 13, 17], "some": [1, 10, 17], "sound": [9, 12], "sourc": [4, 5, 6, 7, 8, 10, 12, 13, 14, 15], "space": [6, 9, 10, 11, 12], "spars": 12, "sparsiti": 12, "spatial": [2, 7], "specif": [4, 6, 7, 10, 11, 14, 17], "specifi": [4, 5, 8, 10, 12, 14, 17], "speed": [4, 8, 9, 10], "sphere": [9, 17], "sqrt": 10, "squar": [5, 17], "standard": [5, 8, 13], "start": [4, 15], "steep": 10, "step": [1, 3], "store": [8, 10, 12], "str": [4, 8, 10, 12], "strategi": 6, "string": [4, 8, 10, 11, 12], "structur": [1, 2, 5, 7, 8, 9, 10], "styblinski": 10, "styblinskitang": [9, 17], "style": [0, 1], "submit": [1, 3], "subpackag": [8, 9, 11], "subproblem": 12, "subsequ": 6, "subset": [6, 15], "subtl": 6, "subtract": 6, "success": 3, "suggest": 1, "suit": 17, "suitabl": [6, 7, 10, 12, 14], "sum": [5, 10, 12, 17], "sumofdifferentpow": [9, 17], "support": [0, 1, 4], "suppos": 17, "sure": 3, "swap": [14, 17], "swapmut": [6, 17], "sync": [4, 5], "sync_cga": [4, 5, 17], "syncga": 4, "synchron": [4, 5, 17], "system": 12, "tailor": [6, 11], "take": 4, "tang": 10, "target": 12, "task": [6, 8, 11, 13], "techniqu": 14, "term": [8, 9, 10], "test": [4, 8, 9, 10, 11, 12, 13, 17], "test_": 1, "thank": 1, "them": 10, "thi": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "those": [10, 12], "three": [4, 10, 12], "threehump": [9, 17], "thrill": 1, "tightli": 7, "tip": 3, "titl": 0, "topologi": 2, "total": [12, 13], "tournament": 17, "tournamentselect": [15, 17], "toward": 12, "tracker": 1, "tradit": 2, "trait": 14, "trap": 12, "travel": [6, 11, 17], "trial": 4, "try": 3, "tsp": [11, 17], "tune": 10, "tupl": [4, 7, 8, 10, 12, 13], "tutori": 3, "two": [4, 9, 10, 13], "twooptmut": [6, 17], "twopointcrossov": [14, 17], "txt": 1, "type": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "typic": [10, 11, 12], "typo": 1, "u": 1, "understand": [1, 4], "unfairavaragecrossov": [14, 17], "uniform": 17, "uniformcrossov": [14, 17], "uniformli": 6, "unimod": 10, "uniqu": [6, 10, 12, 14, 17], "up": [1, 3, 5], "updat": [4, 5], "update_vector": 4, "upgrad": 3, "upper": [1, 10], "us": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "usag": [2, 4, 5], "user": [0, 1, 4, 5, 7, 8, 17], "usernam": 1, "usual": 10, "util": [2, 4, 5], "v": 1, "valid": 1, "valu": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 17], "variabl": [8, 10, 12, 13], "variant": [4, 5], "variat": 6, "varieti": 17, "variou": [0, 5, 7, 8, 10, 14, 15], "vector": [4, 17], "verifi": 1, "version": [3, 5, 12], "via": 3, "visibl": 0, "visit": [1, 13], "visual": 3, "volum": 0, "wa": 5, "wai": 3, "want": 17, "wave": 9, "we": [1, 17], "weight": 12, "went": 0, "what": 1, "when": [1, 5, 6, 17], "where": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17], "whether": 1, "which": [4, 5, 8, 10, 12, 14], "while": [6, 7], "whose": 7, "why": 0, "wide": [10, 11, 13, 14, 15, 17], "win": 4, "winner": 4, "wise": 6, "within": [4, 6, 7, 10, 12, 14], "without": 6, "work": [0, 11], "world": 17, "wrap": [6, 7], "wrapper": 10, "write": 1, "x": [4, 5, 7, 8, 10, 12, 13, 17], "x1": 10, "x2": 10, "x_i": 10, "xi": [10, 17], "y": [4, 7, 10], "year": 0, "yet": 6, "you": [0, 1, 3, 17], "your": [0, 1, 17], "yourself": 1, "zakharov": [9, 17], "zettl": [9, 17]}, "titles": ["Citing", "Contributing", "PYCELLGA Documentation", "Installation", "pycellga: API Reference", "Example Implementations in pycellga", "Mutation Operators", "Neighborhood Operators", "Problem Definitions", "Single-Objective Optimization Problems", "Continuous Optimization Problems", "Discrete Optimization Problems", "Binary Optimization Problems", "Permutation-Based Optimization Problems", "Recombination Operators", "Selection Operators", "setup module", "Usage Examples"], "titleterms": {"0": 12, "1": 12, "100": 12, "13": 7, "20": 12, "21": 7, "25": 7, "5": 7, "9": [7, 12], "One": [12, 14], "abstract": 8, "acklei": 10, "advanc": 17, "alpha": 14, "api": 4, "arithmet": 14, "avail": 5, "averag": 14, "base": [6, 8, 11, 13], "bent": 10, "binari": [11, 12], "bit": 6, "blx": 14, "bohachevski": 10, "byte": [4, 6, 14], "chichinadz": 10, "cigar": 10, "cite": 0, "code": 1, "compact": 7, "content": 2, "continu": [9, 10], "contribut": 1, "core": 4, "count": 12, "crossov": 14, "custom": 17, "cut": 12, "decept": 12, "definit": 8, "densiti": 12, "depend": 3, "develop": 1, "discret": [9, 11], "document": 2, "drop": 10, "ecc": 12, "exampl": [5, 17], "flat": 14, "fletcher": 12, "flip": 6, "float": 6, "fm": [10, 12], "frequenc": 10, "from": 3, "function": 10, "grid": 4, "griewank": 10, "guidelin": 1, "holzman": 10, "implement": 5, "individu": 4, "insert": 6, "instal": 3, "level": 6, "levi": 10, "linear": [7, 14], "manag": 4, "match": 14, "matya": 10, "max": 12, "mmdp": 12, "modal": 12, "modul": [4, 5, 10, 16], "multi": 12, "mutat": 6, "neighborhood": 7, "node": 12, "object": [8, 9], "oper": [4, 6, 7, 14, 15], "opt": 6, "optim": [4, 9, 10, 11, 12, 13], "option": 3, "partial": 14, "peak": 12, "permut": [11, 13], "pmx": 14, "point": 14, "popul": 4, "pow": 10, "powel": [10, 12], "problem": [8, 9, 10, 11, 12, 13], "pull": 1, "pycellga": [2, 4, 5], "pypi": 3, "random": 6, "rastrigin": 10, "recombin": 14, "refer": 4, "represent": 4, "request": 1, "requir": 3, "rosenbrock": 10, "rothellipsoid": 10, "roulett": 15, "run": 1, "salesman": 13, "sat": 12, "scenario": 17, "schaffer": 10, "schaffer2": 10, "schwefel": 10, "select": 15, "setup": [1, 16], "shuffl": 6, "singl": [8, 9], "sound": 10, "sourc": 3, "sphere": 10, "standard": 1, "structur": 4, "styblinskitang": 10, "sumofdifferentpow": 10, "swap": 6, "tabl": 2, "test": 1, "threehump": 10, "tournament": 15, "travel": 13, "troubleshoot": 3, "tsp": 13, "two": [6, 14], "unfair": 14, "uniform": [6, 14], "uninstal": 3, "usag": 17, "verifi": 3, "wai": 1, "wave": 10, "wheel": 15, "zakharov": 10, "zettl": 10}})
\ No newline at end of file
diff --git a/usage_examples.html b/usage_examples.html
index 0abc8a7..2682251 100644
--- a/usage_examples.html
+++ b/usage_examples.html
@@ -343,7 +343,12 @@ 

Usage Examples
from mpmath import power as pw
-import pycellga
+
+from pycellga.optimizer import cga
+from pycellga.individual import GeneType
+from pycellga.selection import TournamentSelection
+from pycellga.recombination import ByteOnePointCrossover
+from pycellga.mutation import ByteMutationRandom
 
 class ExampleProblem:
 
@@ -355,18 +360,18 @@ 

Usage Examples
result = pycellga.optimizer.cga(
+
result = cga(
     n_cols = 5,
     n_rows = 5,
     n_gen = 100,
     ch_size = 5,
-    gen_type = pycellga.optimizer.GeneType.REAL,
+    gen_type = GeneType.REAL,
     p_crossover = 0.9,
     p_mutation = 0.2,
     problem = ExampleProblem(),  # Replace with a real problem instance as needed
-    selection = pycellga.optimizer.TournamentSelection,
-    recombination = pycellga.optimizer.ByteOnePointCrossover,
-    mutation = pycellga.optimizer.ByteMutationRandom,
+    selection = TournamentSelection,
+    recombination = ByteOnePointCrossover,
+    mutation = ByteMutationRandom,
     mins = [-32.768] * 5,  # Minimum values for each gene
     maxs = [32.768] * 5,    # Maximum values for each gene
     seed_par = 100 # Ensures the random number generation is repeatable
@@ -385,7 +390,12 @@ 

Advanced Usage ExamplesExample 1: Alpha Cellular Genetic Algorithm (alpha_cga)

The Alpha Cellular Genetic Algorithm optimizes a real-valued problem using Blxalpha Crossover and Float Uniform Mutation operators.

from mpmath import power as pw
-import pycellga
+
+from pycellga.optimizer import alpha_cga
+from pycellga.individual import GeneType
+from pycellga.selection import TournamentSelection
+from pycellga.recombination import BlxalphaCrossover
+from pycellga.mutation import FloatUniformMutation
 
 class ExampleProblem:
 
@@ -396,18 +406,18 @@ 

Advanced Usage Examplesreturn sum(pw(xi, 2) for xi in x) -result = pycellga.optimizer.alpha_cga( +result = alpha_cga( n_cols=5, n_rows=5, n_gen=100, ch_size=10, - gen_type=pycellga.optimizer.GeneType.REAL, + gen_type=GeneType.REAL, p_crossover=0.9, p_mutation=0.2, problem=ExampleProblem(), - selection=pycellga.optimizer.TournamentSelection, - recombination=pycellga.optimizer.BlxalphaCrossover, - mutation=pycellga.optimizer.FloatUniformMutation, + selection=TournamentSelection, + recombination=BlxalphaCrossover, + mutation=FloatUniformMutation, mins=[-15] * 10, maxs=[15] * 10, seed_par=100 @@ -419,7 +429,9 @@

Advanced Usage Examples

Example 2: Compact Cellular Genetic Algorithm (ccga)

The Compact Cellular Genetic Algorithm optimizes a binary problem where the goal is to maximize the number of `1`s.

-
import pycellga
+
from pycellga.optimizer import ccga
+from pycellga.individual import GeneType
+from pycellga.selection import TournamentSelection
 
 class ExampleProblem:
     def __init__(self):
@@ -428,14 +440,14 @@ 

Advanced Usage Examplesdef f(self, x): return sum(x) -result = pycellga.optimizer.ccga( +result = ccga( n_cols=5, n_rows=5, n_gen=100, ch_size=10, - gen_type=pycellga.optimizer.GeneType.BINARY, + gen_type=GeneType.BINARY, problem=ExampleProblem(), - selection=pycellga.optimizer.TournamentSelection, + selection=TournamentSelection, mins=[0] * 10, maxs=[1] * 10 ) @@ -445,7 +457,10 @@

Advanced Usage Examples

Example 3: Machine-Coded Compact Cellular Genetic Algorithm (mcccga)

The Machine-Coded Compact Cellular Genetic Algorithm solves real-valued optimization problems with machine-coded representation.

-
import pycellga
+
from pycellga.optimizer import mcccga
+from pycellga.individual import GeneType
+from pycellga.selection import TournamentSelection
+
 
 class RealProblem:
     def __init__(self):
@@ -454,14 +469,14 @@ 

Advanced Usage Examplesdef f(self, x): return sum(np.power(xi, 2) for xi in x) -result = pycellga.optimizer.mcccga( +result = mcccga( n_cols=5, n_rows=5, n_gen=500, ch_size=5, - gen_type=pycellga.optimizer.GeneType.REAL, + gen_type=GeneType.REAL, problem=RealProblem(), - selection=pycellga.optimizer.TournamentSelection, + selection=TournamentSelection, mins=[-3.55] * 5, maxs=[3.55] * 5 ) @@ -471,7 +486,11 @@

Advanced Usage Examples

Example 4: Synchronous Cellular Genetic Algorithm (sync_cga)

The Synchronous Cellular Genetic Algorithm optimizes a real-valued problem in a 5x5 grid using the crossover and mutation operators.

-
import pycellga
+
from pycellga.optimizer import sync_cga
+from pycellga.individual import GeneType
+from pycellga.selection import TournamentSelection
+from pycellga.recombination import BlxalphaCrossover
+from pycellga.mutation import FloatUniformMutation
 
 class ExampleProblem:
     def __init__(self):
@@ -480,18 +499,18 @@ 

Advanced Usage Examplesdef f(self, x): return sum(pw(xi, 2) for xi in x) -result = pycellga.optimizer.sync_cga( +result = sync_cga( n_cols=5, n_rows=5, n_gen=100, ch_size=5, - gen_type=pycellga.optimizer.GeneType.REAL, + gen_type=GeneType.REAL, p_crossover=0.9, p_mutation=0.2, problem=ExampleProblem(), - selection=pycellga.optimizer.TournamentSelection, - recombination=pycellga.optimizer.BlxalphaCrossover, - mutation=pycellga.optimizer.FloatUniformMutation, + selection=TournamentSelection, + recombination=BlxalphaCrossover, + mutation=FloatUniformMutation, mins=[-32.768] * 5, maxs=[32.768] * 5, seed_par=100 @@ -507,107 +526,114 @@

Customization ScenariosSelecting Gene Types

You can change the gen_type parameter based on the type of problem:

    -
  • pycellga.optimizer.GeneType.REAL for real-valued problems.

  • -
  • pycellga.optimizer.GeneType.BINARY for binary problems.

  • -
  • pycellga.optimizer.GeneType.PERMUTATION for permutation-based problems.

  • +
  • pycellga.individual.GeneType.REAL for real-valued problems.

  • +
  • pycellga.individual.GeneType.BINARY for binary problems.

  • +
  • pycellga.individual.GeneType.PERMUTATION for permutation-based problems.

Problem Selection

pycellga includes several built-in problems for quick usage, categorized into continuous (real-valued), binary, and permutation problems. These problems allow users to directly specify the problem parameter for quick implementation.

Continuous Problems

For continuous optimization problems, the following functions are available:

    -
  • pycellga.optimizer.Ackley()

  • -
  • pycellga.optimizer.Bentcigar()

  • -
  • pycellga.optimizer.Bohachevsky()

  • -
  • pycellga.optimizer.Chichinadze()

  • -
  • pycellga.optimizer.Dropwave()

  • -
  • pycellga.optimizer.Fms()

  • -
  • pycellga.optimizer.Griewank()

  • -
  • pycellga.optimizer.Holzman()

  • -
  • pycellga.optimizer.Levy()

  • -
  • pycellga.optimizer.Matyas()

  • -
  • pycellga.optimizer.Pow()

  • -
  • pycellga.optimizer.Powell()

  • -
  • pycellga.optimizer.Rastrigin()

  • -
  • pycellga.optimizer.Rosenbrock()

  • -
  • pycellga.optimizer.Rothellipsoid()

  • -
  • pycellga.optimizer.Schaffer()

  • -
  • pycellga.optimizer.Schaffer2()

  • -
  • pycellga.optimizer.Schwefel()

  • -
  • pycellga.optimizer.Sphere()

  • -
  • pycellga.optimizer.StyblinskiTang()

  • -
  • pycellga.optimizer.Sumofdifferentpowers()

  • -
  • pycellga.optimizer.Threehumps()

  • -
  • pycellga.optimizer.Zakharov()

  • -
  • pycellga.optimizer.Zettle()

  • +
  • pycellga.problems.Ackley

  • +
  • pycellga.problems.Bentcigar

  • +
  • pycellga.problems.Bohachevsky

  • +
  • pycellga.problems.Chichinadze

  • +
  • pycellga.problems.Dropwave

  • +
  • pycellga.problems.Fms

  • +
  • pycellga.problems.Griewank

  • +
  • pycellga.problems.Holzman

  • +
  • pycellga.problems.Levy

  • +
  • pycellga.problems.Matyas

  • +
  • pycellga.problems.Pow

  • +
  • pycellga.problems.Powell

  • +
  • pycellga.problems.Rastrigin

  • +
  • pycellga.problems.Rosenbrock

  • +
  • pycellga.problems.Rothellipsoid

  • +
  • pycellga.problems.Schaffer

  • +
  • pycellga.problems.Schaffer2

  • +
  • pycellga.problems.Schwefel

  • +
  • pycellga.problems.Sphere

  • +
  • pycellga.problems.StyblinskiTang

  • +
  • pycellga.problems.Sumofdifferentpowers

  • +
  • pycellga.problems.Threehumps

  • +
  • pycellga.problems.Zakharov

  • +
  • pycellga.problems.Zettle

Binary Problems

For binary optimization problems, use the following built-in options:

    -
  • pycellga.optimizer.CountSat()

  • -
  • pycellga.optimizer.Ecc()

  • -
  • pycellga.optimizer.Maxcut20_01()

  • -
  • pycellga.optimizer.Maxcut20_09()

  • -
  • pycellga.optimizer.Maxcut100()

  • -
  • pycellga.optimizer.Mmdp()

  • -
  • pycellga.optimizer.OneMax()

  • -
  • pycellga.optimizer.Peak()

  • +
  • pycellga.problems.CountSat

  • +
  • pycellga.problems.Ecc

  • +
  • pycellga.problems.Maxcut20_01

  • +
  • pycellga.problems.Maxcut20_09

  • +
  • pycellga.problems.Maxcut100

  • +
  • pycellga.problems.Mmdp

  • +
  • pycellga.problems.OneMax

  • +
  • pycellga.problems.Peak

Permutation Problems

For permutation-based optimization problems, the following option is available:

    -
  • pycellga.optimizer.Tsp()

  • +
  • pycellga.problems.Tsp

These built-in problems provide a diverse set of test cases, allowing users to explore pycellga’s capabilities across a wide range of optimization challenges. Users can also define custom problems to suit their specific needs.

Selection Operators

Choose from a variety of selection methods:

    -
  • pycellga.optimizer.TournamentSelection

  • -
  • pycellga.optimizer.RouletteWheelSelection

  • +
  • pycellga.selection.TournamentSelection

  • +
  • pycellga.selection.RouletteWheelSelection

Recombination Operators

The package provides multiple crossover operators:

    -
  • pycellga.optimizer.OnePointCrossover

  • -
  • pycellga.optimizer.PMXCrossover

  • -
  • pycellga.optimizer.TwoPointCrossover

  • -
  • pycellga.optimizer.UniformCrossover

  • -
  • pycellga.optimizer.ByteUniformCrossover

  • -
  • pycellga.optimizer.ByteOnePointCrossover

  • -
  • pycellga.optimizer.FlatCrossover

  • -
  • pycellga.optimizer.ArithmeticCrossover

  • -
  • pycellga.optimizer.BlxalphaCrossover

  • -
  • pycellga.optimizer.LinearCrossover

  • -
  • pycellga.optimizer.UnfairAvarageCrossover

  • +
  • pycellga.recombination.OnePointCrossover

  • +
  • pycellga.recombination.PMXCrossover

  • +
  • pycellga.recombination.TwoPointCrossover

  • +
  • pycellga.recombination.UniformCrossover

  • +
  • pycellga.recombination.ByteUniformCrossover

  • +
  • pycellga.recombination.ByteOnePointCrossover

  • +
  • pycellga.recombination.FlatCrossover

  • +
  • pycellga.recombination.ArithmeticCrossover

  • +
  • pycellga.recombination.BlxalphaCrossover

  • +
  • pycellga.recombination.LinearCrossover

  • +
  • pycellga.recombination.UnfairAvarageCrossover

Mutation Operators

You can customize mutation with these options:

    -
  • pycellga.optimizer.BitFlipMutation

  • -
  • pycellga.optimizer.ByteMutation

  • -
  • pycellga.optimizer.ByteMutationRandom

  • -
  • pycellga.optimizer.InsertionMutation

  • -
  • pycellga.optimizer.ShuffleMutation

  • -
  • pycellga.optimizer.SwapMutation

  • -
  • pycellga.optimizer.TwoOptMutation

  • -
  • pycellga.optimizer.FloatUniformMutation

  • -
  • pycellga.optimizer.MutationOperator

  • +
  • pycellga.mutation.BitFlipMutation

  • +
  • pycellga.mutation.ByteMutation

  • +
  • pycellga.mutation.ByteMutationRandom

  • +
  • pycellga.mutation.InsertionMutation

  • +
  • pycellga.mutation.ShuffleMutation

  • +
  • pycellga.mutation.SwapMutation

  • +
  • pycellga.mutation.TwoOptMutation

  • +
  • pycellga.mutation.FloatUniformMutation

  • +
  • pycellga.mutation.MutationOperator

Example Scenarios

Scenario 1: Binary Optimization with Tournament Selection

Optimize a binary problem using tournament selection, one-point crossover, and bit-flip mutation.

-
result = pycellga.optimizer.cga(
+
from pycellga.optimizer import cga
+from pycellga.individual import GeneType
+from pycellga.problems import OneMax
+from pycellga.selection import TournamentSelection
+from pycellga.recombination import OnePointCrossover
+from pycellga.mutation import BitFlipMutation
+
+result = cga(
     n_cols=5,
     n_rows=5,
     n_gen=100,
     ch_size=10,
-    gen_type=pycellga.optimizer.GeneType.BINARY,
+    gen_type=GeneType.BINARY,
     p_crossover=0.8,
     p_mutation=0.1,
-    problem=pycellga.optimizer.OneMax(),  # Built-in binary optimization problem
-    selection=pycellga.optimizer.TournamentSelection,
-    recombination=pycellga.optimizer.OnePointCrossover,
-    mutation=pycellga.optimizer.BitFlipMutation,
+    problem=OneMax(),  # Built-in binary optimization problem
+    selection=TournamentSelection,
+    recombination=OnePointCrossover,
+    mutation=BitFlipMutation,
     mins=[0] * 10,
     maxs=[1] * 10,
     seed_par=100
@@ -618,18 +644,25 @@ 

Customization Scenarios

Scenario 2: Real-Valued Optimization with Byte One Point Crossover

Solve a real-valued optimization problem using Byte One Point Crossover and Byte Mutation.

-
result = pycellga.optimizer.cga(
+
from pycellga.optimizer import cga
+from pycellga.individual import GeneType
+from pycellga.problems import Ackley
+from pycellga.selection import RouletteWheelSelection
+from pycellga.recombination import ByteOnePointCrossover
+from pycellga.mutation import ByteMutation
+
+result = cga(
     n_cols=5,
     n_rows=5,
     n_gen=100,
     ch_size=10,
-    gen_type=pycellga.optimizer.GeneType.REAL,
+    gen_type=GeneType.REAL,
     p_crossover=0.9,
     p_mutation=0.2,
-    problem=pycellga.optimizer.Ackley(10),  # Built-in real-valued optimization problem
-    selection=pycellga.optimizer.RouletteWheelSelection,
-    recombination=pycellga.optimizer.ByteOnePointCrossover,
-    mutation=pycellga.optimizer.ByteMutation,
+    problem=Ackley(10),  # Built-in real-valued optimization problem
+    selection=RouletteWheelSelection,
+    recombination=ByteOnePointCrossover,
+    mutation=ByteMutation,
     mins=[-32.768] * 10,
     maxs=[32.768] * 10,
     seed_par=100
@@ -640,18 +673,25 @@ 

Customization Scenarios

Scenario 3: Permutation Optimization for Traveling Salesman Problem

Optimize a TSP using permutation encoding, PMX crossover, and swap mutation.

-
result = pycellga.optimizer.cga(
+
from pycellga.optimizer import cga
+from pycellga.individual import GeneType
+from pycellga.problems import Tsp
+from pycellga.selection import TournamentSelection
+from pycellga.recombination import PMXCrossover
+from pycellga.mutation import SwapMutation
+
+result = cga(
     n_cols=5,
     n_rows=5,
     n_gen=300,
     ch_size=14,  # Number of cities
-    gen_type=pycellga.optimizer.GeneType.PERMUTATION,
+    gen_type=GeneType.PERMUTATION,
     p_crossover=0.85,
     p_mutation=0.15,
-    problem=pycellga.optimizer.Tsp(),  # Built-in TSP optimization problem
-    selection=pycellga.optimizer.TournamentSelection,
-    recombination=pycellga.optimizer.PMXCrossover,
-    mutation=pycellga.optimizer.SwapMutation,
+    problem=Tsp(),  # Built-in TSP optimization problem
+    selection=TournamentSelection,
+    recombination=PMXCrossover,
+    mutation=SwapMutation,
     mins=[1] * 14,
     maxs=[14] * 14,
     seed_par=100