This repository has been archived by the owner on Jan 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathd2d.py
287 lines (239 loc) · 10.5 KB
/
d2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from __future__ import annotations
import argparse
import json
import os
import time
from pathlib import Path
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, TYPE_CHECKING
from ts import d2d, utils
# Energy modes
LINEAR = "linear"
NON_LINEAR = "non-linear"
ENDURANCE = "endurance"
# Propagation priority
NONE = "none"
MIN_DISTANCE = "min-distance"
MAX_DISTANCE = "max-distance"
IDEAL_DISTANCE = "ideal-distance"
MIN_DISTANCE_NO_NORMALIZE = "min-distance-no-normalize"
MAX_DISTANCE_NO_NORMALIZE = "max-distance-no-normalize"
IDEAL_DISTANCE_NO_NORMALIZE = "ideal-distance-no-normalize"
class Namespace(argparse.Namespace):
if TYPE_CHECKING:
problem: str
iterations: int
tabu_size: int
drone_config: int
energy_mode: Literal["linear", "non-linear", "endurance"]
propagation_priority: Literal[
"none",
"min-distance",
"max-distance",
"ideal-distance",
"min-distance-no-normalize",
"max-distance-no-normalize",
"ideal-distance-no-normalize",
]
max_propagation: int
verbose: bool
dump: Optional[str]
extra: Optional[str]
pool_size: int
def to_json(solution: d2d.D2DPathSolution) -> Dict[str, Any]:
return {
"cost": solution.cost(),
"drone_paths": solution.drone_paths,
"technician_paths": solution.technician_paths,
}
def normalization(value: float, minimum: float, maximum: float) -> float:
try:
return value / (maximum - minimum)
except ZeroDivisionError:
if not utils.isclose(value, 0.0):
message = f"Called with normalization({value}, {minimum}, {maximum})"
raise ValueError(message)
return 0.0
def _max_distance_key_no_normalize(
pareto_costs: Dict[Tuple[float, ...], int],
minimum: Tuple[float, ...],
maximum: Tuple[float, ...],
candidate: d2d.D2DPathSolution,
/
) -> float:
cost = candidate.cost()
result = 0.0
for pareto_cost, counter in pareto_costs.items():
result += counter * abs(pareto_cost[0] - cost[0]) + abs(pareto_cost[1] - cost[1])
return -result
def _max_distance_key(
pareto_costs: Dict[Tuple[float, ...], int],
minimum: Tuple[float, ...],
maximum: Tuple[float, ...],
candidate: d2d.D2DPathSolution,
/
) -> float:
cost = candidate.cost()
result = 0.0
for pareto_cost, counter in pareto_costs.items():
result += counter * (
normalization(abs(pareto_cost[0] - cost[0]), minimum[0], maximum[0])
+ normalization(abs(pareto_cost[1] - cost[1]), minimum[1], maximum[1])
)
return -result
def _min_distance_key_no_normalize(
pareto_costs: Dict[Tuple[float, ...], int],
minimum: Tuple[float, ...],
maximum: Tuple[float, ...],
candidate: d2d.D2DPathSolution,
/
) -> float:
cost = candidate.cost()
result = 0.0
for pareto_cost, counter in pareto_costs.items():
result += counter * abs(pareto_cost[0] - cost[0]) + abs(pareto_cost[1] - cost[1])
return result
def _min_distance_key(
pareto_costs: Dict[Tuple[float, ...], int],
minimum: Tuple[float, ...],
maximum: Tuple[float, ...],
candidate: d2d.D2DPathSolution,
/
) -> float:
cost = candidate.cost()
result = 0.0
for pareto_cost, counter in pareto_costs.items():
result += counter * (
normalization(abs(pareto_cost[0] - cost[0]), minimum[0], maximum[0])
+ normalization(abs(pareto_cost[1] - cost[1]), minimum[1], maximum[1])
)
return result
def _ideal_distance_key_no_normalize(
pareto_costs: Dict[Tuple[float, ...], int],
minimum: Tuple[float, ...],
maximum: Tuple[float, ...],
candidate: d2d.D2DPathSolution,
/
) -> float:
ideal = (min(cost[0] for cost in pareto_costs.keys()), min(cost[1] for cost in pareto_costs.keys()))
cost = candidate.cost()
return abs(ideal[0] - cost[0]) + abs(ideal[1] - cost[1])
def _ideal_distance_key(
pareto_costs: Dict[Tuple[float, ...], int],
minimum: Tuple[float, ...],
maximum: Tuple[float, ...],
candidate: d2d.D2DPathSolution,
/
) -> float:
ideal = (min(cost[0] for cost in pareto_costs.keys()), min(cost[1] for cost in pareto_costs.keys()))
cost = candidate.cost()
return (
normalization(abs(ideal[0] - cost[0]), minimum[0], maximum[0])
+ normalization(abs(ideal[1] - cost[1]), minimum[1], maximum[1])
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Tabu search algorithm for D2D problems")
parser.add_argument("problem", type=str, help="the problem name (e.g. \"6.5.1\", \"200.10.1\", ...)")
parser.add_argument("-i", "--iterations", default=1500, type=int, help="the number of iterations to run the tabu search for (default: 1500)")
parser.add_argument("-t", "--tabu-size", default=10, type=int, help="the tabu size for every neighborhood (default: 10)")
parser.add_argument("-c", "--drone-config", default=0, type=int, help="the energy configuration index for each drone (default: 0)")
parser.add_argument("-e", "--energy-mode", default=LINEAR, choices=[LINEAR, NON_LINEAR, ENDURANCE], help="the energy consumption mode to use (default: linear)")
parser.add_argument(
"-k",
"--propagation-priority",
default=MIN_DISTANCE,
choices=[NONE, MIN_DISTANCE, MAX_DISTANCE, IDEAL_DISTANCE, MIN_DISTANCE_NO_NORMALIZE, MAX_DISTANCE_NO_NORMALIZE, IDEAL_DISTANCE_NO_NORMALIZE],
help="set the solution propagation priority (default: none)",
)
parser.add_argument("-m", "--max-propagation", default=5, type=int, help="maximum number of propagating solutions at a time (default: 5)")
parser.add_argument("-v", "--verbose", action="store_true", help="whether to display the progress bar and plot the solution")
parser.add_argument("-d", "--dump", type=str, help="dump the solution to a file")
parser.add_argument("--extra", type=str, help="extra data dump to file specified by --dump")
default_pool_size = os.cpu_count() or 1
parser.add_argument("--pool-size", default=default_pool_size, type=int, help=f"the size of the process pool (default: {default_pool_size})")
utils.display_platform()
namespace = Namespace()
parser.parse_args(namespace=namespace)
print(namespace)
d2d.D2DPathSolution.import_problem(
namespace.problem,
drone_config=namespace.drone_config,
energy_mode=namespace.energy_mode,
)
d2d.Swap.reset_tabu(maxlen=namespace.tabu_size)
d2d.Insert.reset_tabu(maxlen=namespace.tabu_size)
propagation_priority_key: Optional[Callable[[Dict[Tuple[float, ...], int], Tuple[float, ...], Tuple[float, ...], d2d.D2DPathSolution], float]] = None
if namespace.propagation_priority == MIN_DISTANCE:
propagation_priority_key = _min_distance_key
elif namespace.propagation_priority == MAX_DISTANCE:
propagation_priority_key = _max_distance_key
elif namespace.propagation_priority == IDEAL_DISTANCE:
propagation_priority_key = _ideal_distance_key
elif namespace.propagation_priority == MIN_DISTANCE_NO_NORMALIZE:
propagation_priority_key = _min_distance_key_no_normalize
elif namespace.propagation_priority == MAX_DISTANCE_NO_NORMALIZE:
propagation_priority_key = _max_distance_key_no_normalize
elif namespace.propagation_priority == IDEAL_DISTANCE_NO_NORMALIZE:
propagation_priority_key = _ideal_distance_key_no_normalize
start = time.perf_counter()
solutions = sorted(
d2d.D2DPathSolution.tabu_search(
pool_size=namespace.pool_size,
iterations_count=namespace.iterations,
use_tqdm=namespace.verbose,
propagation_priority_key=propagation_priority_key,
max_propagation=namespace.max_propagation,
plot_pareto_front=namespace.verbose,
),
key=lambda s: s.cost(),
)
total = time.perf_counter() - start
costs = [s.cost() for s in solutions]
hv_ref = max(cost[0] for cost in costs), max(cost[1] for cost in costs)
print(f"Found {len(solutions)} " + utils.ngettext(len(solutions) == 1, "solution", "solutions"))
errors: List[str] = []
for index, solution in enumerate(solutions):
print(f"SOLUTION #{index + 1}: cost = {solution.cost()}")
print("\n".join(f"Drone #{drone_index + 1}: {paths}" for drone_index, paths in enumerate(solution.drone_paths)))
print("\n".join(f"Technician #{technician_index + 1}: {path}" for technician_index, path in enumerate(solution.technician_paths)))
errors_messages: List[str] = []
if not solution.feasible():
errors_messages.append("Solution is infeasible")
check = d2d.D2DPathSolution(
drone_paths=solution.drone_paths,
technician_paths=solution.technician_paths,
)
if not utils.isclose(check.cost(), solution.cost()):
errors_messages.append(f"Incorrect solution cost: Expected {check.cost()}, got {solution.cost()}")
for attr in (
"drone_timespans",
"technician_timespans",
"drone_waiting_times",
"technician_waiting_times",
):
check_attr = getattr(check, attr)
solution_attr = getattr(solution, attr)
if not utils.isclose(check_attr, solution_attr):
errors_messages.append(f"Incorrect {attr}: Expected {check_attr}, got {solution_attr}")
if len(errors_messages) > 0:
errors.append(f"At solution #{index + 1}:")
errors.extend(errors_messages)
if namespace.dump is not None:
dump_path = Path(namespace.dump)
dump_path.parent.mkdir(parents=True, exist_ok=True)
with dump_path.open("w", encoding="utf-8") as f:
data = {
"problem": namespace.problem,
"iterations": namespace.iterations,
"tabu_size": namespace.tabu_size,
"drone_config": namespace.drone_config,
"energy_mode": namespace.energy_mode,
"propagation_priority": namespace.propagation_priority,
"solutions": [to_json(s) for s in solutions],
"extra": namespace.extra,
"last_improved": d2d.D2DPathSolution.tabu_search_last_improved,
"time": total,
}
json.dump(data, f)
print(f"Saved solution to {namespace.dump!r}")
if len(errors) > 0:
raise ValueError("Some calculations were incorrect:\n" + "\n".join(errors))