-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extractor.py
181 lines (147 loc) · 5.89 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# coding: utf-8
__author__ = 'Sereni'
import os
import xml.etree.ElementTree as ET
import features as ft
import csv
import numpy
# this module extracts features for training
# uses disambiguated RNC format
# use the API to parse plain text with a trained model
# todo write that API towards the end
class Corpus():
def __init__(self):
self.raw_tokens = set([])
self.tokens = set([])
self.feature_array = None
def load_file(self, path):
"""
Open RNC XML and get all unique tokens
"""
words_pos = {}
tree = ET.parse(path)
for elem in tree.iter('w'):
# find node text. using this instead of elem.text, because the text is after nested elements
word = self.normalize(''.join(elem.itertext()))
# get POS tag
#for item in elem.iter('ana'):
tags = [item.get("gr").split('=')[0].split(',')[0] for item in elem.iter('ana')]
# break
if word:
self.raw_tokens.add((word, tags[0])) # todo а что делать с омонимией? писать, не писать?
def load_dir(self, path):
"""
Traverse a given directory and add all text files
:param path: path to corpus folder
"""
for root, dirs, files in os.walk(path):
for name in files:
if name.endswith('ml'): # todo open all files, but throw warnings if they are not corpus files
self.load_file(os.path.join(root, name))
def normalize(self, word):
"""
Replace all digits with 0's
Any other normalization will go here if we need it
"""
try:
for d in '123456789':
word = word.replace(d, '0')
word = word.replace('`', '') # remove stress
except AttributeError:
pass
return word
def get_features(self):
"""
Run all tokens through feature extraction
and store in a separate set
Token is a tuple of (word, POS)
"""
for item in self.raw_tokens:
self.tokens.add(Token(item))
def make_array(self):
for token in self.tokens:
# create row from token features
row = (
token.word, token.word_lower, str(int(token.capital)), str(int(token.digit)),
str(int(token.hyphen)),
token.prefix1, token.prefix2, token.prefix3, token.prefix4,
token.suffix1, token.suffix2, token.suffix3, token.suffix4,
token.shape1, token.shape2, token.pos
)
if self.feature_array is None:
self.feature_array = numpy.array(row)
else:
# add new row to array
self.feature_array = numpy.vstack([self.feature_array, row])
def to_array(self):
"""
Dump feature array to file (create array if needed)
"""
if self.feature_array is None:
self.make_array()
self.feature_array.dump('feature_array.dat')
def to_csv(self):
"""
Write featurized tokens to csv file
"""
HEADER = ('token', 'token_lower', 'capital', 'digit', 'hyphen',
'prefix1', 'prefix2', 'prefix3', 'prefix4',
'suffix1', 'suffix2', 'suffix3', 'suffix4',
'shape1', 'shape2', 'POS')
with open('feature_matrix.csv', 'w') as out:
writer = csv.writer(out, delimiter=';', quotechar='"')
writer.writerow(HEADER)
for token in self.tokens:
row = (
token.word, token.word_lower, str(int(token.capital)), str(int(token.digit)),
str(int(token.hyphen)),
token.prefix1, token.prefix2, token.prefix3, token.prefix4,
token.suffix1, token.suffix2, token.suffix3, token.suffix4,
token.shape1, token.shape2, token.pos
)
writer.writerow(row)
class Token():
def __init__(self, item):
"""
Initalize all the features for a given token
"""
word = item[0]
self.capital = ft.contains_capital(word)
self.digit = ft.contains_digit(word)
self.hyphen = ft.contains_hyphen(word)
self.prefix1 = ft.prefix(word, 1)
self.prefix2 = ft.prefix(word, 2)
self.prefix3 = ft.prefix(word, 3)
self.prefix4 = ft.prefix(word, 4)
self.suffix1 = ft.suffix(word, 1)
self.suffix2 = ft.suffix(word, 2)
self.suffix3 = ft.suffix(word, 3)
self.suffix4 = ft.suffix(word, 4)
self.shape1 = ft.shape1(word)
self.shape2 = ft.shape2(word)
self.word = word
self.word_lower = word.lower()
self.pos = item[1]
self.features = (self.word, self.word_lower, int(self.capital), int(self.digit), int(self.hyphen),
self.prefix1, self.prefix2, self.prefix3, self.prefix4,
self.suffix1, self.suffix2, self.suffix3, self.suffix4,
self.shape1, self.shape2, self.pos)
self.feature_names = ('token', 'token_lower', 'capital', 'digit', 'hyphen',
'prefix1', 'prefix2', 'prefix3', 'prefix4',
'suffix1', 'suffix2', 'suffix3', 'suffix4',
'shape1', 'shape2', 'POS')
self.features_dict = dict(zip(self.feature_names[:-1], self.features[:-1]))
def test():
corpus = Corpus()
corpus.load_dir(os.path.join(os.getcwd(), "test_corpus"))
corpus.get_features()
corpus.to_csv()
# corpus.to_array() # fixme this is taking VERY long
def run():
corpus = Corpus()
corpus.load_dir(os.path.join(os.getcwd(), "texts/post1950/baranov"))
#corpus.get_features()
#corpus.to_csv()
if __name__ == '__main__':
# test()
run()