-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathexport.py
executable file
·228 lines (206 loc) · 8.08 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python
'''
Author: J. Binas <jbinas@gmail.com>, 2017
This software is released under the
GNU LESSER GENERAL PUBLIC LICENSE Version 3.
'''
from __future__ import print_function
import os, sys, time, argparse
import Queue
import numpy as np
import h5py
from copy import deepcopy
from view import HDF5Stream, MergedStream
from datasets import HDF5
from interfaces.caer import DVS_SHAPE, unpack_data
export_data_vi = {
'steering_wheel_angle',
'brake_pedal_status',
'accelerator_pedal_position',
'engine_speed',
'vehicle_speed',
'windshield_wiper_status',
'headlamp_status',
'transmission_gear_position',
'torque_at_transmission',
'fuel_level',
'high_beam_status',
'ignition_status',
#'lateral_acceleration',
'latitude',
'longitude',
#'longitudinal_acceleration',
'odometer',
'parking_brake_status',
#'fine_odometer_since_restart',
'fuel_consumed_since_restart',
}
export_data_dvs = {
'dvs_frame',
'aps_frame',
}
export_data = export_data_vi.union(export_data_dvs)
def filter_frame(d):
'''
receives 16 bit frame,
needs to return unsigned 8 bit img
'''
# add custom filters here...
# d['data'] = my_filter(d['data'])
frame8 = (d['data'] / 256).astype(np.uint8)
return frame8
def get_progress_bar():
try:
from tqdm import tqdm
except ImportError:
print("\n\nNOTE: For an enhanced progress bar, try 'pip install tqdm'\n\n")
class pbar():
position=0
def close(self): pass
def update(self, increment):
self.position += increment
print('\r{}s done...'.format(self.position)),
def tqdm(*args, **kwargs):
return pbar()
return tqdm(total=(tstop-tstart)/1e6, unit_scale=True)
def raster_evts(data):
_histrange = [(0, v) for v in DVS_SHAPE]
pol_on = data[:,3] == 1
pol_off = np.logical_not(pol_on)
img_on, _, _ = np.histogram2d(
data[pol_on, 2], data[pol_on, 1],
bins=DVS_SHAPE, range=_histrange)
img_off, _, _ = np.histogram2d(
data[pol_off, 2], data[pol_off, 1],
bins=DVS_SHAPE, range=_histrange)
return (img_on - img_off).astype(np.int16)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filename')
parser.add_argument('--tstart', type=int, default=0)
parser.add_argument('--tstop', type=int)
parser.add_argument('--binsize', type=float, default=0.1)
parser.add_argument('--update_prog_every', type=float, default=0.01)
parser.add_argument('--export_aps', type=int, default=1)
parser.add_argument('--export_dvs', type=int, default=1)
parser.add_argument('--out_file', default='')
args = parser.parse_args()
f_in = HDF5Stream(args.filename, export_data_vi.union({'dvs'}))
m = MergedStream(f_in)
fixed_dt = args.binsize > 0
tstart = int(m.tmin + 1e6 * args.tstart)
tstop = (m.tmin + 1e6 * args.tstop) if args.tstop is not None else m.tmax
print('start/stop timestamp', tstart, tstop)
print('recording duration', (m.tmax - m.tmin) * 1e-6, 's')
# find start position
m.search(tstart)
#create output file
dtypes = {k: float for k in export_data.union({'timestamp'})}
if args.export_aps:
dtypes['aps_frame'] = (np.uint8, DVS_SHAPE)
if args.export_dvs:
dtypes['dvs_frame'] = (np.int16, DVS_SHAPE)
outfile = args.out_file or args.filename[:-5] + '_export.hdf5'
f_out = HDF5(outfile, dtypes, mode='w', chunksize=8, compression='gzip')
current_row = {k: 0 for k in dtypes}
if args.export_aps:
current_row['aps_frame'] = np.zeros(DVS_SHAPE, dtype=np.uint8)
if args.export_dvs:
current_row['dvs_frame'] = np.zeros(DVS_SHAPE, dtype=np.int16)
pbar = get_progress_bar()
sys_ts, t_pre, t_offset, ev_count, pbar_next = 0, 0, 0, 0, 0
while m.has_data and sys_ts <= tstop*1e-6:
try:
sys_ts, d = m.get()
except Queue.Empty:
# wait for queue to fill up
time.sleep(0.01)
continue
if not d:
# skip unused data
continue
if d['etype'] == 'special_event':
unpack_data(d)
if any(d['data'] == 0): # this is a timestamp reset
print('ts reset detected, setting offset', current_row['timestamp'])
t_offset += current_row['timestamp']
#NOTE the timestamp of this special event is not meaningful
continue
if d['etype'] in export_data_vi:
current_row[d['etype']] = d['data']
continue
if t_pre == 0 and d['etype'] in ['frame_event', 'polarity_event']:
print('resetting t_pre (first %s)' % d['etype'])
t_pre = d['timestamp'] + t_offset
if d['etype'] == 'frame_event' and args.export_aps:
if fixed_dt:
while t_pre + args.binsize < d['timestamp'] + t_offset:
# aps frame is not in current bin -> save and proceed
f_out.save(deepcopy(current_row))
current_row['dvs_frame'][:,:] = 0
current_row['timestamp'] = t_pre
t_pre += args.binsize
else:
current_row['timestamp'] = d['timestamp'] + t_offset
current_row['aps_frame'] = filter_frame(unpack_data(d))
#current_row['timestamp'] = t_pre
#JB: I don't see why the previous line should make sense
continue
if d['etype'] == 'polarity_event' and args.export_dvs:
unpack_data(d)
times = d['data'][:, 0] * 1e-6 + t_offset
num_evts = d['data'].shape[0]
offset = 0
if fixed_dt:
# fixed time interval bin mode
num_samples = int(np.ceil((times[-1] - t_pre) / args.binsize))
for _ in xrange(num_samples):
# take n events
n = (times[offset:] < t_pre + args.binsize).sum()
sel = slice(offset, offset + n)
current_row['dvs_frame'] += raster_evts(d['data'][sel])
offset += n
# save if we're in the middle of a packet, otherwise
# wait for more data
if sel.stop < num_evts:
current_row['timestamp'] = t_pre
f_out.save(deepcopy(current_row))
current_row['dvs_frame'][:,:] = 0
t_pre += args.binsize
else:
# fixed event count mode
num_samples = np.ceil(-float(num_evts + ev_count)/args.binsize)
for _ in xrange(int(num_samples)):
n = min(int(-args.binsize - ev_count), num_evts - offset)
sel = slice(offset, offset + n)
current_row['dvs_frame'] += raster_evts(d['data'][sel])
if sel.stop > sel.start:
current_row['timestamp'] = times[sel].mean()
offset += n
ev_count += n
if ev_count == -args.binsize:
f_out.save(deepcopy(current_row))
current_row['dvs_frame'][:,:] = 0
ev_count = 0
pbar_curr = int((sys_ts - tstart * 1e-6) / args.update_prog_every)
if pbar_curr > pbar_next:
pbar.update(args.update_prog_every)
pbar_next = pbar_curr
pbar.close()
print('[DEBUG] sys_ts/tstop', sys_ts, tstop*1e-6)
m.exit.set()
f_out.exit.set()
f_out.join()
print('[DEBUG] output done')
while not m.done.is_set():
print('[DEBUG] waiting for merger')
time.sleep(1)
print('[DEBUG] merger done')
f_in.join()
print('[DEBUG] stream joined')
m.join()
print('[DEBUG] merger joined')
filesize = os.path.getsize(outfile)
print('Finished. Wrote {:.1f}MiB to {}.'.format(filesize/1024**2, outfile))
time.sleep(1)
os._exit(0)