Skip to content

Latest commit

 

History

History
70 lines (55 loc) · 5.47 KB

02 杂化轨道理论.md

File metadata and controls

70 lines (55 loc) · 5.47 KB

分子空间结构与物质性质 · 二 · 「杂化理论体系」

甲烷分子中, $C$ 的价电子是 $2s^2 2p^2$ , $C$ 原子的 $4$ 个价层原子轨道是 $3$ 个相互垂直的 $2p$$1$ 个球形的 $2s$ ; $H$ 的价电子是 $1s^1$

按照我们已经学过的价键理论,甲烷的 $4$$C-H$ 单键都应该是 $σ$ 键,然而,碳原子的 $4$ 个价层原子轨道是 $3$ 个相互垂直的 $2p$ 轨道和 $1$ 个球形的 $2s$ 轨道,用它们跟 $4$ 个氢原子的 $1s$ 原子轨道重叠,不可能得到正四面体构型的甲烷分子

为了解决这一矛盾,鲍林提出了杂化轨道理论

  1. 杂化轨道:在外界条件的影响下,原子内部能量相近的原子轨道重新组合为一组新的原子轨道,称为杂化轨道
  2. 杂化目的:原子轨道的电子云一头大一头小,成键时利用大的一头可以使电子云重叠程度更大,从而形成稳定的化学键。即杂化轨道增强的成键能力
  3. 杂化轨道分类
    1. $sp^3$ 杂化:由$1$个$s$轨道和$1$个$p$轨道杂化而成,杂化轨道间夹角为 $180°$ ,呈直线形 ${\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}};{\frac {\uparrow ,}{sp^{3}}};{\frac {\uparrow ,}{sp^{3}}}{\frac {\uparrow ,}{sp^{3}}}{\frac {\uparrow ,}{sp^{3}}}}$
    2. $sp^2$杂化:由$1$个$s$轨道和$2$个$p$轨道杂化而成,杂化轨道间夹角为 $120°$,呈平面三角形 ${\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \,}{sp^{2}}}\;{\frac {\uparrow \,}{sp^{2}}}{\frac {\uparrow \,}{sp^{2}}}{\frac {\uparrow \,}{2p}}}$ 3. $sp$ 杂化:由$1$个$s$轨道和$3$个$p$轨道杂化而成,杂化轨道间夹角为 $109°28^′$,呈正四面体形 ${\displaystyle C^{*}\quad {\frac {\uparrow \downarrow }{1s}}\;{\frac {\uparrow \,}{sp}}\;{\frac {\uparrow \,}{sp}}{\frac {\uparrow \,}{p}}{\frac {\uparrow \,}{p}}}$

中心原子对对杂化的影响

当中心原子的杂化方式确定后,杂化轨道上的电子对就可以确定,从而分子的空间构型也就可以确定。但是,中心原子的孤电子对对杂化方式和分子构型也有影响。

孤电子对的排斥作用:孤电子对的排斥作用比成键电子对的排斥作用大,因此孤电子对的存在会使分子的空间构型发生改变 孤电子对的杂化:中心原子的孤电子对也可以参与杂化,从而影响分子的空间构型

中心原子杂化类型和分子构型的相互判断

分子组成 中心原子的孤电子对 中心原子的杂化方式 分子空间构型 实例
$AB_2$ $0$ $sp$ 直线形 $BeCl_2$
$AB_2$ $1$ $sp^2$ $V$ $SO_2$
$AB_2$ $2$ $sp^3$ $V$ $H_2O$
$AB_3$ $0$ $sp^2$ 平面三角形 $BF_3$
$AB_3$ $1$ $sp^3$ 三角锥形 $NH_3$
$AB_4$ $0$ $sp^3$ 四面体形 $CH_4$

$\pi$

  1. 定义 在多原子分子或离子中如有相互平行的 $p$ 轨道,它们连贯重叠在一起构成一个整体,$p$ 电子在多个原子间运动形成$π$型化学键,这种不局限在两个原子之间的$\pi$键称为离域$π$键,或共轭大$π$键,简称大$π$键
  2. 条件 所有原子在同一平面,中心原子采取$sp$杂化或$sp^2$杂化。
  3. 表示方法:$\prod^{m}_{n}$ 其中,$m$指参与形成大π键的原子数,$n$指参与形成大π键的电子数

苯的杂化方式

高中常见含有 大 $\pi$ 键 的分子

$1. \quad SO_3、CO^{2-}_3、NO_3^-$ ($\prod^{6}_4$) $ \qquad sp^2 \qquad 3\sigma+0 孤电子对$ $2. \quad SO_2、O_3、NO^{-}_2 $ ($\prod^{4}_3$) $ \qquad sp^2 \qquad 2\sigma+1 孤电子对$

等电子理论

  1. 等电子体与等电子原理 原子总数相等且价电子总数相等的微粒互为等电子体,等电子体中心原子的杂化轨道类型相同,具有相同的空可结构和相同的化学键类型等结构特征,物理性质相近,但化学性质差别较大
  2. 等电子体的确定方法
    1. 同族元素互换法:即将既定粒子中的某元素换成它的同族元素
    2. 价电子迁移法:即将既定粒子中的某元素原子的价电子逐一转移给粒子中的另一种元素的原子,相应原子的质子数也随之减少或增加,变换为具有相应质子数的元素
    3. 电子电荷互换法:即将既定粒子中的某元素原子的价电子转化为粒子所带的电荷,相应原子的质子数也随之减少或增加。这种方法可实现分子与离子的互换
  3. 等电子原理的应用
    1. 利用等电子原理可以判断一些陌生分子或离子的空间结构、成键情况,及其对应物质的某些性质,如$CO_2$与$CS2$互为等电子体,二者同为直线形分子;$CO$与$N_2$互为等电子体,二者分子结构中均存在共价三键等
    2. 利用等电子体可以制造新材料,如晶体硅、锗是良好的半导体材料,其等电子体$AIP、GaAs$也是良好的半导体材料