Skip to content

Privacy Risk Assesment Tool for Machine Learning Models

Notifications You must be signed in to change notification settings

SecAI-Lab/privacy-evaluator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Privacy Risk Assessment tool for Machine Learning Models

For Tensorflow (.h5) and Pytorch (.pt) Models

Must have Python version >= 3.9 and install -r requirements.txt

Arguments for running main.py for attacks:

--model_path  | MODEL_PATH  Absolute path where pretrained model is saved                            
--attack      | ATTACK      Attack type: "custom" | "lira" | "population" | "reference" | "shadow"
--n_class     | N_CLASS     Number of classes of target model dataset, default is 10 (for Cifar10). Pass 100    
                            for Cifar100 data and target model trained with this data.

Important! The pretrained model should be saved as a whole model object, not as state_dict format which requires model initialization.

If no target model exist then train it first with or without Differential Privacy:

$ python main.py --model_path /path/to/model --train True 

For lira attacks you can change the config file in attacks/config.py

aconf = {
    'lr': 0.02,
    'batch_size': 128,
    'epochs': 2,
    'n_shadows': 2,
    'shpath': './attacks/shadows'
}

For population and reference metric attacks same config file as above but:

priv_meter = {        
    'num_train_points': 10000,
    'num_test_points': 10000,
    'epochs': 10,
    'batch_size': 64,
    'num_population_points': 10000,
    'fpr_tolerance_list': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
    'input_shape': (224, 224, 3),
    'ref_models': './attacks/shadows/',
    'torch_loss': torch.nn.CrossEntropyLoss(reduction='none'),
    'tf_loss': tf.keras.losses.CategoricalCrossentropy()
}

parameters can be updated.

About

Privacy Risk Assesment Tool for Machine Learning Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •