-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvectfit3.py
901 lines (849 loc) · 44.3 KB
/
vectfit3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
# vectfit3.py module.
"""
*** FastRelaxed Vector Fitting for Python v1.3***
vectfit3.py is the implementation of Fast Relaxed Vector Fitting algortihm on python. The original code was written
in Matlab eviroment. The pourpose of this algorithm is to compute a rational approximation from tabuled data in the
frequency domain for scalar or vectorized problems. The resulting model can be expressed in either state-space form
or pole-residue form.
- Original Matlab code autor: Bjorn Gustavsen (08/2008)
- Transcripted and adapted by: Sebastian Loaiza (03/2024)
- Last revision by: Sebastian Loaiza (01/2025)
* References:
[1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency
domain responses by Vector Fitting", IEEE Trans. Power Delivery,
vol. 14, no. 3, pp. 1052-1061, July 1999.
[2] B. Gustavsen, "Improving the pole relocating properties of vector
fitting", IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1587-1592,
July 2006.
[3] D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter,
"Macromodeling of Multiport Systems Using a Fast Implementation of
the Vector Fitting Method", IEEE Microwave and Wireless Components
Letters, vol. 18, no. 6, pp. 383-385, June 2008.
[4] B. Gustavsen, "User's Guide for vectfit3.m (Fast, Relaxed Vector
fitting)", SINTEF Energy Research, N-7465 Trondheim, Norway, 2008. Aviable
online: https://www.sintef.no/en/software/vector-fitting/downloads/#menu
accesed on: 2/2/2024
* Changes:
- All options for vectfit3 configuration are defined as boolean variables, except asymp which has 3 posible states
- A new option, "lowert_mat" is added for vectfit3 configuration. This indicates when F(s) samples belong to a
lower triangular matrix function, that reduces the number of elements to fit for a symmetric matrix function.
- A new option, "RMO_data" is added for vecfit3 configuration. This shows that matrix function elements are saved in
Row Major Order into F(s).
- New options mentioned before and "cmplx_ss" flag are also included in SER.
- A new method to sort the poles computed during the identification process is implemented.
- tri2full() function is renamed to flat2full(). It is modified to consider asymmetric matrix problems as well
depending on the status of "lower_mat" and "RMO_data" flags.
- ss2pr() function is replaced by to buildRES(). The new function just compute residues matrixes becouse vectfit returns
the poles already.
"""
# Scientific computing modules:
import numpy as np
from scipy.linalg import qr, eigvals, lstsq
from scipy.constants import pi
### ----------------------------------------------------------- Data structures -------------------------------------------------------------- ###
#opts{}: vectfit modifiers dictionary.
# Dictionary which contains the default settings fot vectfit.
# Any key can be modified to change som options included in vectfit3
opts={
"symm_mat" : False, # Indicates when F(s) samples belong to a lower triangular matrix (symmetric problems)
"RMO_data" : True, # Matrix elements are organized in RMO into F(s) (asymmetric problems)
"relax" : True, # Use vector fitting with relaxed non triviality
"stable" : True, # Enforce stable poles
"asymp" : 2, # Include only D in fitting (not E). See [4]
"skip_pole" : False, # Do NOT skip pole identification
"skip_res" : False, # Do NOT skip residues identification (C,D,E). See [4]
"cmplx_ss" : True, # Create complex state space model
"spy1" : False, # No plotting for first stage of vector fitting
"spy2" : True, # Create magnitude plot for fitting of f(s)
"logx" : True, # Use logarithmic axis for x
"logy" : True, # Use logarithmic axis for y
"errplot" : True, # Include deviation in magnitude plot
"phaseplot" : False, # Exclude plot of phase angle
"legend" : True # Do include legends in plots
}
### ----------------------------------------------------------------- Functions --------------------------------------------------------------- ###
# vectfit() subroutine.
def opts_errorCheck(opts):
"""Fucntion to check any configuration error into opts dictionary.
*Returns True if an error is found otherwise false"""
if opts["asymp"]!=1 and opts["asymp"]!=2 and opts["asymp"]!=3:
print("vectfit3::ERROR::Ilegal value for [asymp] option. It must be 1, 2 or 0")
return True
opitems=list(opts.items())
asymp=("asymp",opts["asymp"])
opitems.remove(asymp) #asymp already checked
for option in opitems:
if not(isinstance(option[1],bool)):
print("vectfit3::ERROR::Ilegal value for ["+option[0]+"] option. It must be boolean: True or False")
return True
return False
# vectfit() subroutine.
def dim_errorCheck(F,s,poles,weights):
"""Function to check dimentions compatibility among vectfit's arguments
*Returns True if an error is found otherwise false"""
if len(s.shape)>1 or len(poles.shape)>1:
print("vectfit3::ERROR::Arguments s and poles must be one-dimentional arrays")
return True
if len(F.shape)>1:
# Vectorized problem: Nc>1
if s.size!=F.shape[1]:
print("vectfit3::ERROR::The number of frequency samples in s and F does not coincide!")
return True
else:
# Scalar problem: Nc=1
if s.size!=F.size:
print("vectfit3::ERROR::The number of frequency samples in s and F does not coincide!")
return True
if len(weights.shape)>1:
# Individual weighting configuration: weights [Nc x N]
if s.size!=weights.shape[1]:
print("vectfit3::ERROR::The number of frequency samples in s and elements in weights does not coincide!")
return True
if weights.shape[0]!=F.shape[0]:
print("vectfit3::ERROR::The number of elements in F does not coincide to their weiths for individual weighting")
return True
else:
# Common wighting configuration: weights [1 x N]
if s.size!=weights.size:
print("vectfit3::ERROR::The number of frequency samples in s and elements in weights does not coincide!")
return True
return False
# vectfit() subroutine.
def identifyPoles(LAMBD):
"""Function to classify poles storaged into the LAMBD diagonal matrix.
Argument.
- LAMBD: Diagonal matrix containing the poles of the aproximated model
*Returns cindex array which marks the poles with the following flags:
- 0 for real poles
- 1 and 2 for complex conjugated pairs
"""
n=LAMBD.shape[0]
cindex=np.zeros(n, dtype=np.uint16)
for m in range(n):
if np.imag(LAMBD[m,m])!=0:
if m==0:
cindex[m]=1
else:
if cindex[m-1]==0 or cindex[m-1]==2:
cindex[m]=1
cindex[m+1]=2
else:
cindex[m]=2
return cindex
# vectfit() subroutine.
def sortPoles(poles):
"""Function to sort the poles obtained in the poles identification process.
the poles array is sorted by magnitud in asending order, real poles go first and
for each pair of complex conjugated poles, the one with positive imaginary is placed first
*Returns a complex array with the required poles arrangement"""
poltype=np.abs(poles.imag)<1e-10 # Real poles are marked as True, complex as false
# *!{it is necesary to use a tolerance instead of np.isreal() due to the numeric error in eigenvalues computation}
# Real poles extraction
realpoles=poltype*poles.real
realpoles=np.take_along_axis(realpoles, np.nonzero(realpoles)[0], axis=None)
# Complex poles extraction
complexpoles=np.logical_not(poltype)*poles
complexpoles=np.take_along_axis(complexpoles, np.nonzero(complexpoles)[0], axis=None)
# Sorting real and complex poles separately: In the following procedure the function sorted() with the list of tuples (abs,pol)
#orders by considering first abs, if reapeted magnitudes are found complex poles are ordered considering their imaginary parts.
realpoles=-1*np.sort(np.abs(realpoles))
complexpoles=np.array([p for _,p in sorted(zip(np.abs(complexpoles),complexpoles))])
# Organization of the complex conjugated pairs
cpolesorder=np.array([], dtype=bool)
#desired order [True(+),False(-),...]
for _ in range(int(complexpoles.size/2)):
cpolesorder=np.append(cpolesorder,np.array([True,False]))
polswap=np.logical_xor(complexpoles.imag>0,cpolesorder) #marks the poles that must be swaped as True
complexpoles=complexpoles-2j*polswap*complexpoles.imag #change of sign for the imaginary parts of the marked poles
# Organized poles
return np.append(realpoles,complexpoles)
# vectfit() subroutine.
def vectfitPlot(F,fit,s,opts, initialState=False, titleLabel="Vector Fitting Resutls"):
"""Function to plot vector fitting results.
The number of graphs that are displayed varies in function of opts configuration
Arguments.
- F: F(s) frequency samples of the original function
- fit: fit(s) fited function that aproximates F(s)
- s: Complex frequency points of evaluation for F and fit
- opts: Dictionary with the modifiers to change the default configuration of Vector Fitting
Results.
- Displays the magnitude plot of F and fit samples with or without error
- May display the phase angle plot of F and fit samples if enabled
"""
# Importing plots and graphs module:
import matplotlib as mpl
import matplotlib.pyplot as plt
#matplotlib configuration:
plt.rcParams["font.family"]="serif" # font type
plt.rcParams["mathtext.fontset"]="dejavuserif" # font type in math expressions
mpl.rcParams["font.size"]=10 # font size in points
mpl.rcParams["figure.dpi"]=100 # canvas figure resolution
mpl.rcParams["savefig.dpi"]=300 # saved figure resolution
freq=np.real(s/(2*pi*1j))
# LogLog plots: Graphs with logarithmic x and y axis
if opts["errplot"]:
fig1,ax1=plt.subplots(2,1)
l1=ax1[0].plot(freq,np.abs(F.T),color='c',linewidth=1.2)
l2=ax1[0].plot(freq,np.abs(fit.T),color='k',linewidth=1.3,linestyle="dashed")
ax1[0].set(xlabel="Frequency (Hz)", ylabel="Magnitude",title=titleLabel)
if opts["legend"]:
l2[0].set(label="Fitted function")
l1[0].set(label="F(s) samples")
ax1[0].legend()
ax1[0].grid(True)
#logarithmic error computation
logError=np.zeros(F.shape,dtype=np.float64)
maxError=-1e10
for i in range(F.shape[0]):
logError[i]=np.log10(np.abs(F[i]-fit[i])/np.max(np.abs(F[i])))
error=logError[i].max()
if error>maxError: maxError=error
maxLabel=ax1[1].plot(freq,logError.T,color='r',linewidth=1.2)
maxError=(10**maxError)*100
maxLabel[0].set(label="Max fitting error = "+str(maxError)+"%")
print(" * max fitting error = "+str(maxError)+"% *")
ax1[1].set(xlabel="Frequency (Hz)", ylabel=r"$\log_{10}$(relative error)")
ax1[1].legend()
ax1[1].grid(True)
else:
if initialState:
flabel="Sigma function"
tlabel="Vector Fitting initial state"
else:
flabel="Fitted function"
tlabel=titleLabel
fig1,ax1=plt.subplots()
l1=ax1.plot(freq,np.abs(F.T),color='c',linewidth=1.2,label="F(s) samples")
l2=ax1.plot(freq,np.abs(fit.T),color='k',linewidth=1.3,linestyle="dashed")
ax1.set(xlabel="Frequency (Hz)", ylabel="Magnitude",title=tlabel)
if opts["legend"]:
l2[0].set(label=flabel)
l1[0].set(label="F(s) samples")
ax1.legend()
ax1.grid(True)
if opts["phaseplot"]:
#fisrt function angles are computed in degrees, and then are unwrapped
F_angle=np.unwrap(np.angle(F,deg=True),period=360)
fit_angle=np.unwrap(np.angle(fit,deg=True),period=360)
fig2,ax2=plt.subplots()
l3=ax2.plot(freq,F_angle.T,color='c',linewidth=1.2)
l4=ax2.plot(freq,fit_angle.T,color='k',linewidth=1.3,linestyle="dashed")
ax2.set(xlabel="Frequency (Hz)", ylabel="Phase angle (deg)",title=titleLabel)
if opts["legend"]:
l3[0].set(label="F(s) samples")
l4[0].set(label="Fitted function")
ax2.legend()
ax2.grid(True)
if opts["logx"] and opts["logy"]:
#full logarithmic graphs. Logarithmic x and y axis
if opts["errplot"]:
# Magnitude plot:
ax1[0].set_xscale("log")
ax1[0].set_yscale("log")
# Error plot
ax1[1].set_xscale("log")
else:
# Magnitude plot:
ax1.set_xscale("log")
ax1.set_yscale("log")
if opts["phaseplot"]:
# Phase plot:
ax2.set_xscale("log")
elif opts["logx"]:
#semilogarithmic graphs. Logarithmic x and linear y axis
if opts["errplot"]:
ax1[0].set_xscale("log")
ax1[1].set_xscale("log")
else:
ax1.set_xscale("log")
if opts["phaseplot"]:
ax2.set_xscale("log")
elif opts["logy"]:
#semilogarithmic graphs. Linear x and logarithmic y axis
if opts["errplot"]:
ax1[0].set_yscale("log")
else:
ax1.set_yscale("log")
#else default linear axis configuration of plot() is used
plt.show()
# vectfit3() subroutine.
def buildSER(Ac,Bc,Cc,Dr,Er,complex_format,symmetric_data,RMO_matrixData):
"""Function to build the state-space model of the fitted function such as:
F(s) = C * (sI-A)^-1 * B + D + sE
Arguments. c subindex indicates complex system
- Ac: Diagonal matrix containing the poles of F(s). Shape [n x n] for n the number fo poles
- Bc: Input matrix for complex form. Must be a vector of ones. Shape [n x 1]
- Cc: Residues matrix. Complex and shaped [Nc x n] with Nc as the number of elements in F(s)
- D: Constant terms matrix. Real matrix of shape [Nc x 1]
- E: Proportional terms matrix. Real matrix of shape [Nc x 1]
- complex_format: Boolean option from opts{} which indicates if a complex system is needed
- symmetric_data: Boolean option from opts{} which indicates if data come from a symmetric matrix problem
- RMO_matrixData: Boolean option from opts{} which indicates if matrix elements are ordered in RMO
Results.
- SER: Dictionary that storages A,B,C,D,E system matrixes adapted as indicated by cmplx_ss and symm_mat
"""
SER=dict(A=Ac,B=Bc,C=Cc,D=Dr,E=Er, cmplx_ss=True, symm_mat=symmetric_data, RMO_data=RMO_matrixData) #complex state-space system
if not(complex_format):
# Real state-space system is required so the matrixes are modified
Ar=np.real(Ac) #importing real poles to Ar
Br=Bc #real poles remains realated with ones in B
Cr=np.real(Cc) #importing real values to Cr
cindex=identifyPoles(Ac) #poles identification
# Reorganization of A as a real and block diagonal matrix
k=0
for m in range(Ac.shape[0]):
if cindex[m]==1:
#complex pole to modify:
cpole=Ac[k,k]
re_cpole=np.real(cpole) #real part
im_cpole=np.imag(cpole) #imaginary part
# Real system adaptation
Ar[k:k+2,k:k+2]=np.array([[re_cpole,im_cpole],[-im_cpole,re_cpole]]) #complex pair block in Ar
# Input matrix modification to consider the complex pair block in Ar
Br[k,0]=2
Br[k+1,0]=0
# Real and imaginary part separation for data in output matrix
Cr[:,k]=np.real(Cc[:,k])
Cr[:,k+1]=np.imag(Cc[:,k])
k+=1
# Updating SER with new real matrixes:
SER["A"]=Ar
SER["B"]=Bc
SER["C"]=Cr
SER["cmplx_ss"]=False
return SER
# build_RES() subroutine.
def flat2full(SER):
"""Function to transform data arrays in SER from its default representation (flattened and element-wise) to a full matrix representation.
This function works with symmetric or asymmetric matrix functions. If "lower_mat" flag is true, this function considers that the matrix
problem need to be decompressed from lower triangular representation.
*vectfit() function works with flattened element-wise data, therefore if data comes from a matrix problem, this function returns
a new SER with modified shapes:
- A shape [n x n] => [Ny*n x Ny*n] for Ny as the original dimentions of the fitted matrix and n as the order of aproximation
- B shape [n x 1] => [Ny*n x Ny]
- C shape [Nc x n] => [Ny x Ny*n] for Nc as the number fitted elements into the matrix (organized element-wise)
- D shape [Nc x 1] => [Ny x Ny]
- E shape [Nc x 1] => [Ny x Ny]
Important!: lower trinagular compression of symmetric matrix data need to be applied prior vector fitting application
"""
A=SER["A"]
B=SER["B"]
C=SER["C"]
D=SER["D"]
E=SER["E"]
# Unzip process parameters:
n=B.shape[0] # Order of approximation
Nc=C.shape[0] # Number of different elements in the flattened problem
if SER["symm_mat"]:
# Case for a symmetric problem, data must be decompressed and organized in symmetric format
zum=0 # Sum counter
Ny=0 # Shape of the full unzipped matrix function
while zum<Nc:
Ny+=1
zum+=Ny
# Full versions of the space-state system
Af=np.zeros((Ny*n,Ny*n), dtype=A.dtype)
Bf=np.zeros((Ny*n,Ny), dtype=np.float64)
Cf=np.zeros((Ny,Ny*n), dtype=C.dtype)
Df=np.zeros((Ny,Ny), dtype=np.float64)
Ef=np.zeros((Ny,Ny), dtype=np.float64)
#filling data in full matrixes
coli=0; k=0 #column and element indicators
for ind in range(0,Ny*n,n):
endf=ind+n
Af[ind:endf,ind:endf]=A
Bf[ind:endf,coli]=np.ravel(B)
for rowi in range(coli,Ny):
Cf[rowi,(coli)*n:(coli+1)*n]=C[k,:]
Cf[coli,(rowi)*n:(rowi+1)*n]=C[k,:]
k+=1
coli+=1
# Generating an upper trinagular matrix from arrays D and E
Df[np.triu_indices(Ny)]=D
Ef[np.triu_indices(Ny)]=E
# Converting Df and Ef matrixes to full and symmetric matrixes of shape [Ny x Ny]
Df+=Df.T-np.diag(np.diag(Df))
Ef+=Ef.T-np.diag(np.diag(Ef))
SER["symm_mat"]=False
else:
# Case for an asymmetric problem. Flattened data must be in CMO or in RMO
Ny=int(np.sqrt(Nc))
# Full versions of the space-state system
Af=np.zeros((Ny*n,Ny*n), dtype=A.dtype)
Bf=np.zeros((Ny*n,Ny), dtype=np.float64)
Cf=np.zeros((Ny,Ny*n), dtype=C.dtype)
Df=np.zeros((Ny,Ny), dtype=np.float64)
Ef=np.zeros((Ny,Ny), dtype=np.float64)
# Saving new full matrixes in SER:
#filling data in full matrixes
coli=0; k=0 #column and element indicators
for ind in range(0,Ny*n,n):
endf=ind+n
Af[ind:endf,ind:endf]=A
Bf[ind:endf,coli]=np.ravel(B)
if SER["RMO_data"]: #data is organized in Row Major Order (default)
Df[coli,:]=D[coli*Ny:(coli+1)*Ny]
Ef[coli,:]=E[coli*Ny:(coli+1)*Ny]
for rowi in range(0,Ny):
Cf[coli,(rowi)*n:(rowi+1)*n]=C[k,:]
k+=1
else: #data is organized in Column Major Order (transpose filling to iterate colums faster)
Df[:,coli]=D[coli*Ny:(coli+1)*Ny]
Ef[:,coli]=E[coli*Ny:(coli+1)*Ny]
for rowi in range(0,Ny):
Cf[rowi,(coli)*n:(coli+1)*n]=C[k,:]
k+=1
coli+=1
SER["A"]=Af
SER["B"]=Bf
SER["C"]=Cf
SER["D"]=Df
SER["E"]=Ef
return SER
def buildRES(SERC, SERB):
"""Function to generate residues matrixes of the fitted function computed by vectfit().
Arguments:
-SERC: Residue matrix C in SER. Generated by vectfit() and modified by flat2full()
-SERB: Input matrix B in SER. Generated by vectfit() and modified by flat2full()
Important! Arguments must be in full matrix representation instead of flattened and element-wise
representation (vectfit default output). Therefore flat2full(SER) must be applyed previously for matrix problems
*To save computational time it is recommended to generate a SER in complex format
*Returns residues matrixes stacked in Res:
- Res: a 3D array of shape [Ny x Ny x n]. where Ny is the matrix function size and n the aproximation order
"""
Ny=SERC.shape[0] #dimentions of the matrix function [Ny x Ny]
n=int(SERC.shape[1]/Ny) #order of aproximation
C=SERC #residues of Fit(s)
B=SERB #input values (for real SER it distinguish real from complex poles)
# Data needs to be in complex format. Transformatio is carried out if needed:
if C.dtype==np.float64:
# Real to complex transformation
Cc=np.zeros(C.shape, dtype=np.complex128) #complex version of C
ones=np.ones(n, dtype=np.float64) #array of ones to compare to values in B
#realIndex=np.arange(n)[ones==B[0:n,0]] #real residues' positions
cmplxIndex=np.arange(n)[ones*2==B[0:n,0]] #complex residues' positions
resk=np.zeros(n, dtype=np.complex128) #transformed residues of each element
for row in range(Ny):
for col in range(Ny):
resk[:]=C[row,col*n:(col+1)*n] #real residues are taken by default
#then conjugated pairs need to be computed from consecutive real and imaginary parts in real C
cmplxres=np.take_along_axis(resk, cmplxIndex, axis=None)+1j*np.take_along_axis(resk, cmplxIndex+1, axis=None)
np.put(resk, cmplxIndex, cmplxres)
np.put(resk, cmplxIndex+1, np.conj(cmplxres))
Cc[row,col*n:(col+1)*n]=resk
C=Cc
Res=np.zeros((Ny,Ny,n), dtype=np.complex128) #Residues matrixes
for row in range(Ny):
for col in range(Ny):
Res[row,col,:]=C[row,col*n:(col+1)*n]
return Res
# * ---------------------------------------------------------- main vectfit3 function ---------------------------------------------------------- *
def vectfit(F,s,poles,weights,opts=opts, graphsTitle="Vector Fitting Results"):
"""
vectfit(): Function to compute a rational aproximation in the frequency domain with the
Fast Relaxed Vector Fitting algorithm. Should be used recursively to achieve the best fit.
Arguments. must of the arrays should be dtype np.complex128.
- F: F(s) frequency domain function "1Dim or NDdim" to be fitted of dimentions [Nc x N].
Nc: number of elements for vector case, otherwise 1.
N: number of frequency samples
- s: array of frequency points of dimentions [1 x N] in [rad/s]
- poles: array of initial search poles [1 x n] for n as the aproximation order
- weights: priority of each frequency sample in the process [1 or Nc x N].
No wighting desired: weight=ones[1 x N]
Common weighting: weight=array[1 x N]
Individial elementwise weighting: weight=array[Nc x N]
- opts: dictionary with the modifiers to change the default configuration of the algorithm
To be used the opts dictionary should be imported and modified from main module taking
into account the following value options:
"lowert_mat" <- (bool): Indicates when F(s) samples belong to a lower triangular matrix (symmetric problem)
"RMO_data" <- (bool): Indicates when matrix function elements are arranged in RMO into F(s)
"realx" <- (bool): Enable vector fitting with relaxed nontriviality
"stable" <- (bool): Enable stable poles enforcement
"asymp" <- (1, 2 or 3): Produce [D=0; E=0], [D!=0; E=0] or [D!=0; E!=0] respectively [4]
"skip_pole" <- (bool): Disable pole identification omission
"skip_res" <- (bool): Disable residue identification omission
"cmplx_ss" <- (bool): Produce complex or real state space model [4]
"spy1" <- (bool): Exclude first stage of vector fitting plot in the results
"spy2" <- (bool): Enable magnitude plot for fitting of f(s) in the results
"logx" <- (bool): Enable logarithmic axis for x in the graphs
"logy" <- (bool): Enable logarithmic axis for y in the graphs
"errplot" <- (bool): Include logarithmic error graph in the results
"phaseplot" <- (bool): Exclude plot of phase angle
"legend" <- (bool): Include legends in plots
Output variables. linked as a tuple
- SER: dictionary containing the Space-State model that aproximates F(s) as:
F(s) = C * (sI-A)^-1 * B + D + sE
- poles: array of final poles [1 x n] for n as the aproximation order
- rmserr: root mean squared error achieved
- fit: evaluation of the fitted function that aproximates F(s)
"""
# Entry errors cheking
if opts_errorCheck(opts) or dim_errorCheck(F,s,poles,weights):
print("vecfit() not lunched due to and entry error!")
return False
# If no error is found the algorithm computation proceeds
TOLlow=1e-18; TOLhigh=1e18; # vectfit3 tolerances
# Initial poles configuration
if s[0]==0:
if poles[0]==0 and poles[1]!=0:
poles[0]=-1
elif poles[0]!=0 and poles[1]==0:
poles[1]=-1
elif poles[0]==0 and poles[1]==0:
poles[0]=-1+10j
poles[1]=-1-10j
N=s.size # Number of samples in the frequency domain
n=poles.size # Order of aproximation
if len(F.shape)>1:
Nc=F.shape[0] # Number of elements to fit
else:
Nc=1
# Reshaping arrays to ensure a good vectorized computation
F=np.reshape(F,(1,N))
# Problem arrays declaration
LAMBD=np.diag(poles) # Diagonal matriz with searching poles
B=np.ones((n,1), np.float64) # Column vector of ones
SERA=poles # A Matrix in the space state model
SERB=np.ones((n,1), np.float64) # B Matrix in the space state model
SERC=np.zeros((Nc,n),dtype=np.complex128) # C Matrix in the space state model
SERD=np.zeros(Nc,dtype=np.float64) # D Matrix in the space state model
SERE=np.zeros(Nc,dtype=np.float64) # E Matrix in the space state model
fit=np.zeros((Nc,N),dtype=np.complex128) # Array to store fitted values
rmserr=-1 # Root mean squared error
# Weighting type identification
if len(weights.shape)==1:
commonWeighting=True
# Reshaping arrays to ensure a good vectorized computation
#weights=np.reshape(weights,(1,N))
else:
commonWeighting=False
# Space state selected structure
if opts["asymp"]==1:
offs=0 # for [D=0; E=0]
elif opts["asymp"]==2:
offs=1 # [D!=0; E=0]
else:
offs=2 # [D!=0; E!=0]
# *-- POLES IDENTIFICATION PROCESS
if not(opts["skip_pole"]):
Escale=np.zeros(Nc+1)
# Initial complex poles identification: cindex marks 0 for reals, 1 and 2 for complex conjugated pairs
cindex=identifyPoles(LAMBD)
# Building System Matrix
Dk=np.zeros((N,n),dtype=np.complex128)
for m in range(n):
if cindex[m]==0:
# real pole defined
Dk[:,m]=1/(s-LAMBD[m,m])
elif cindex[m]==1:
#complex pole first part defined
Dk[:,m]=1/(s-LAMBD[m,m])+1/(s-np.conj(LAMBD[m,m]))
Dk[:,m+1]=1j/(s-LAMBD[m,m])-1j/(s-np.conj(LAMBD[m,m]))
# Depending on the D and E option selected
if offs==0 or offs==1:
# for E=0
Dk=np.hstack((Dk,np.ones((N,1)))) #note that Dk.shape changed to (N,n+1)
else:
# for E!=0
Dk=np.hstack((Dk,np.ones((N,1))))
Dk=np.hstack((Dk,np.reshape(s,(N,1)))) #note that Dk.shape changed to (N,n+2)
# Scaling for last row of LS-Problem
scale=0
for m in range(Nc):
if commonWeighting:
scale+=np.linalg.norm(weights*F[m,:])**2
else:
scale+=np.linalg.norm(weights[m,:]*F[m,:])**2
scale=np.sqrt(scale)/N
# Applying relaxed version of the algorithm
if opts["relax"]:
AA=np.zeros((Nc*(n+1),n+1),dtype=np.float64)
bb=np.zeros(Nc*(n+1),dtype=np.float64)
Escale=np.zeros(n+1,dtype=np.float64)
offset=n+offs
for k in range(Nc):
Ac=np.zeros((N,offset+n+1),dtype=np.complex128)
if commonWeighting:
weig=weights
else:
weig=weights[k,:]
for m in range(offset): #left block
Ac[:,m]=weig*Dk[:,m]
for m in range(n+1): #right block
Ac[:,offset+m]=-weig*Dk[:,m]*F[k,:]
# Partitioned problem in real and imaginary part, a real array is obtained:
A=np.vstack((Ac.real,Ac.imag))
# Integral criterion for sigma
if k==Nc-1:
A=np.vstack((A,np.zeros((1,A.shape[1])))) # adding extra row
for m in range(n+1):
A[2*N,offset+m]=np.real(scale*np.sum(Dk[:,m]))
# Obtaining QR transformation of A
(Q,R)=qr(A,mode="economic") #routine imported from scipy module
R22=R[offset:offset+n+1,offset:offset+n+1]
AA[k*(n+1):(k+1)*(n+1),:]=R22
if k==Nc-1:
bb[k*(n+1):(k+1)*(n+1)]=Q[-1,offset:]*N*scale
for m in range(AA.shape[1]):
Escale[m]=1/np.linalg.norm(AA[:,m])
AA[:,m]=Escale[m]*AA[:,m]
# LS solution routine imported from scipy module:
# - check_finite option is disabled to improve performance. NaN should not appear into the arrays
# - gelsy lapack driver is chosen because is slightly faster than default ("gelsd")
# The routine returns a tuple (solution,residues,rank,svalues), however just the solution is taken:
x=lstsq(AA,bb, check_finite=False, lapack_driver="gelsy")[0] # solution <- result[0]
x=x*Escale
# ...end of opts["relax"]=True segment
# Case for non relaxion version of the algorithm.
# Also may be needed when D of sigma results extremely small and large. I needs to be solved again.
if not(opts["relax"]) or np.abs(x[-1])<TOLlow or np.abs(x[-1])>TOLhigh:
AA=np.zeros((Nc*n,n),dtype=np.float64)
bb=np.zeros(Nc*n,dtype=np.float64)
if opts["relax"]:
Dnew=1
else:
if x[-1]==0:
Dnew=1
elif np.abs(x[-1])<TOLlow:
Dnew=np.sign(x[-1])*TOLlow
elif np.abs(x[-1])>TOLhigh:
Dnew=np.sign(x[-1])*TOLhigh
offset=n+offs
for k in range(Nc):
Ac=np.zeros((N,offset+n),dtype=np.complex128)
Escale=np.zeros(n,dtype=np.float64)
if commonWeighting:
weig=weights
else:
weig=weights[k,:]
for m in range(offset): #left block
Ac[:,m]=weig*Dk[:,m]
for m in range(n): #right block
Ac[:,offset+m]=-weig*Dk[:,m]*F[k,:]
bc=Dnew*weig*F[k,:]
# Partitioned problem in real and imaginary part, real arrays are obtained:
A=np.vstack((Ac.real,Ac.imag))
b=np.append(bc.real,bc.imag)
# Obtaining QR transformation of A
(Q,R)=qr(A,mode="economic")
R22=R[offset:offset+n,offset:offset+n]
AA[k*n:(k+1)*n,:]=R22
# The following arrays must be reshaped in order to perform the matrix product
bb[k*n:(k+1)*n]=np.ravel(np.transpose(Q[:,offset:offset+n])@np.reshape(b,(b.size,1)))
for m in range(AA.shape[1]):
Escale[m]=1/np.linalg.norm(AA[:,m])
AA[:,m]=Escale[m]*AA[:,m]
# LS solution routine imported from scipy module:
# - check_finite option is disabled to improve performance. NaN should not appear into the arrays
# - gelsy lapack driver is chosen because is slightly faster than default ("gelsd")
# The routine returns a tuple (solution,residues,rank,svalues), however just the solution is taken:
x=lstsq(AA,bb, check_finite=False, lapack_driver="gelsy")[0] # solution <- result[0]
x=x*Escale
x=np.append(x,Dnew)
# ...end of opts["relax"]=False or out of tolerance segment
# Changing back to make C complex:
C=np.zeros(x.size-1,dtype=np.complex128)
C[0:C.size]=x[0:-1]
D=x[-1]
for m in range(n):
if cindex[m]==1:
r1=C[m] #real part of the complex number
r2=C[m+1] #imaginary part of the complex number
#building the conjugated complex pair
C[m]=r1+1j*r2
C[m+1]=r1-1j*r2
# Graphs of initial stage of vector fitting process
if opts["spy1"]:
print("\n...vectfit3::spy1_Enabled::Building and showing graph for initial fitting state...")
# First fitting state evaluation:
# As mentioned in [1] pole identification begins with the aproximation of sigma(s). sigma(s) is an unknown function whose
#approximation has the same poles of F(s). Furtheremore it is formulated that (sigma*f)_fit(s) = sigma_fit*f(s), whence can be
#demostrated that zeros of sigma are a better set of poles to fit f(s), therefore sigma(s) is called the initial fitting state.
Dk=np.zeros((N,n),dtype=np.complex128)
for m in range(n):
Dk[:,m]=1/(s-LAMBD[m,m])
sigma=D+Dk@C
#setting temporal options to plot initial vector fitting state
opts_temp=opts
opts_temp["errplot"]=False
opts_temp["phaseplot"]=False
vectfitPlot(F,sigma,s,opts_temp,initialState=True)
# Calculating the zeros for sigma
m=0 #auxiliar counter
for k in range(n):
if m<n:
if np.abs(LAMBD[m,m])>np.abs(np.real(LAMBD[m,m])):
# Complex poles clasification: diagonal blocks of the form:
# [ real, -imag ]
# [ imag, real ]
LAMBD[m+1,m]=-np.imag(LAMBD[m,m])
LAMBD[m,m+1]=np.imag(LAMBD[m,m])
LAMBD[m,m]=np.real(LAMBD[m,m])
LAMBD[m+1,m+1]=LAMBD[m,m]
# B vector modification for complex poles
B[m,0]=2
B[m+1,0]=0
ccval=C[m]
# Complex values clasification:
C[m]=np.real(ccval)
C[m+1]=np.imag(ccval)
m+=1
m+=1
#to perform the vectorized B*C and obtain a matrix C need to be reshaped
C=np.reshape(C,(1,C.size))
#also just the real parts of LAMBD and C are taken in order to obtain a real[float64] matrix for ZER
ZER=LAMBD.real-B@C.real/D
# Computation of ZER eigenvalues
poles=eigvals(ZER) #routine imported from scipy module
# Unstabla values identification
unstable=poles.real>0 #generates a logical array
if opts["stable"]:
if np.any(unstable):
#the product of roetter and unstable extracts the unstable poles
extracted=poles*unstable
poles=poles-2*extracted.real
poles=sortPoles(poles)
SERA=poles
#...end of poles identification process
# --* RESIDUES IDENTIFICATION PROCESS
if not(opts["skip_res"]):
# Now SER for f is calculated by using modified zeros of sigma as new poles:
LAMBD=np.diag(poles)
# Initial complex poles identification: cindex marks 0 for reals, 1 and 2 for complex conjugated pairs
cindex=identifyPoles(LAMBD)
# Building System Matrix
Dk=np.zeros((N,n),dtype=np.complex128)
for m in range(n):
if cindex[m]==0:
# real pole defined
Dk[:,m]=1/(s-LAMBD[m,m])
elif cindex[m]==1:
#complex pole first part defined
Dk[:,m]=1/(s-LAMBD[m,m])+1/(s-np.conj(LAMBD[m,m]))
Dk[:,m+1]=1j/(s-LAMBD[m,m])-1j/(s-np.conj(LAMBD[m,m]))
if commonWeighting: #case for common wighting
C=np.zeros((Nc,n),dtype=np.complex128)
for m in range(n): #same weight for all frequency samples
Dk[:,m]=weights*Dk[:,m]
# The SER for the new fitting is calculated by using the calculated zeros as new poles
if opts["asymp"]==1:
A=np.zeros((2*N,n),dtype=np.float64)
A[0:N,:]=Dk.real
A[N:2*N,:]=Dk.imag
elif opts["asymp"]==2:
A=np.zeros((2*N,n+1),dtype=np.float64)
A[0:N,0:n]=Dk.real
A[N:2*N,0:n]=Dk.imag
A[0:N,n]=weights
else:
A=np.zeros((2*N,n+2),dtype=np.float64)
A[0:N,0:n]=Dk.real
A[N:2*N,0:n]=Dk.imag
A[0:N,n]=weights
A[N:2*N,n+1]=np.imag(weights*s)
BB=np.zeros((2*N,Nc),dtype=np.float64)
BBc=np.zeros((N,Nc),dtype=np.complex128)
for m in range(Nc):
BBc[:,m]=weights*F[m,:] #complex values for BB
BB[0:N,:]=BBc.real
BB[N:2*N,:]=BBc.imag
Escale=np.zeros(A.shape[1],dtype=np.float64)
for m in range(A.shape[1]):
Escale[m]=np.linalg.norm(A[:,m])
A[:,m]=A[:,m]/Escale[m]
# LS solution routine imported from scipy module:
# - check_finite option is disabled to improve performance. NaN should not appear into the arrays
# - gelsy lapack driver is chosen because is slightly faster than default ("gelsd")
# The routine returns a tuple (solution,residues,rank,svalues), however just the solution is taken:
x=lstsq(A,BB, check_finite=False, lapack_driver="gelsy")[0] # solution <- result[0]
for m in range(Nc):
x[:,m]=x[:,m]/Escale
x=np.transpose(x)
C[:,0:n]=x[:,0:n]
if opts["asymp"]==2:
SERD=x[:,n]
elif opts["asymp"]==3:
SERD=x[:,n]
SERE=x[:,n+1]
else: #no common wighting used
C=np.zeros((Nc,n),dtype=np.complex128)
for k in range(Nc):
# The SER for the new fitting is calculated by using the calculated zeros as new poles
if opts["asymp"]==1:
A=np.zeros((2*N,n),dtype=np.float64)
A[0:N,:]=Dk.real
A[N:2*N,:]=Dk.imag
elif opts["asymp"]==2:
A=np.zeros((2*N,n+1),dtype=np.float64)
A[0:N,0:n]=Dk.real
A[N:2*N,0:n]=Dk.imag
A[0:N,n]=1
else: #for asymp==3
A=np.zeros((2*N,n+2),dtype=np.float64)
A[0:N,0:n]=Dk.real
A[N:2*N,0:n]=Dk.imag
A[0:N,n]=1
A[N:2*N,n+1]=np.imag(s)
for m in range(A.shape[1]):
A[0:N,m]=weights[k,:]*A[0:N,m]
A[N:2*N,m]=weights[k,:]*A[N:2*N,m]
BB=np.zeros(2*N,dtype=np.float64)
BBc=np.zeros(N,dtype=np.complex128) #complex values for BB
BBc=weights[k,:]*F[k,:]
BB[0:N]=BBc.real
BB[N:2*N]=BBc.imag
Escale=np.zeros(A.shape[1],dtype=np.float64)
for m in range(A.shape[1]):
Escale[m]=np.linalg.norm(A[:,m])
A[:,m]=A[:,m]/Escale[m]
# LS solution routine imported from scipy module:
# - check_finite option is disabled to improve performance. NaN should not appear into the arrays
# - gelsy lapack driver is chosen because is slightly faster than default ("gelsd")
# The routine returns a tuple (solution,residues,rank,svalues), however just the solution is taken:
x=lstsq(A,BB, check_finite=False, lapack_driver="gelsy")[0] # solution <- result[0]
x/=Escale
C[k,:]=x[0:n]
if opts["asymp"]==2:
SERD[k]=x[n]
elif opts["asymp"]==3:
SERD[k]=x[n]
SERE[k]=x[n+1]
#...end of wighting options for residue computation
# Changing back to make C complex:
for m in range(n):
if cindex[m]==1:
for k in range(Nc):
r1=C[k,m] #real part of the complex number
r2=C[k,m+1] #imaginary part of the complex number
#bulding the conjugated complex pair:
C[k,m]=r1+1j*r2
C[k,m+1]=r1-1j*r2
# New fitting evaluation:
SERA=np.diag(LAMBD)
SERC=C
for m in range(n):
Dk[:,m]=1/(s-SERA[m])
for k in range(Nc):
fit[k,:]=Dk@SERC[k,:]
if opts["asymp"]==2:
fit[k,:]=fit[k,:]+SERD[k]
elif opts["asymp"]==3:
fit[k,:]=fit[k,:]+SERD[k]+s*SERE[k]
# Root mean squared error computation:
diff=fit-F #diferrences between samples and the fitted function
rmserr=np.sqrt(np.sum(np.sum(np.abs(diff**2))))/np.sqrt(Nc*N)
# - Graphs generation for vector fitting results:
if opts["spy2"]:
print("\n...vectfit3::spy2_Enabled::Building and showing graphs for the results...")
vectfitPlot(F,fit,s,opts,titleLabel=graphsTitle)
print(" * rms error = "+str(rmserr)+" *")
#...end of residue identification process
# - Building the state-space model
A=np.diag(SERA)
B=SERB
C=SERC
D=SERD
E=SERE
SER=buildSER(A,B,C,D,E,opts["cmplx_ss"],opts["symm_mat"], opts["RMO_data"])
# Vector fitting process finished.
return (SER,poles,rmserr,fit)