Skip to content

Latest commit

 

History

History
89 lines (63 loc) · 2.23 KB

README.md

File metadata and controls

89 lines (63 loc) · 2.23 KB

Run-Skeleton-Run

Reason8.ai PyTorch solution for 3rd place NIPS RL 2017 challenge.

Theano version

Additional thanks to Mikhail Pavlov for collaboration.

Agent policies

no-flip-state-action

alt text

flip-state-action

alt text

How to setup environment?

  1. sh setup_conda.sh
  2. source activate opensim-rl

Would like to test baselines? (Need MPI support)

  1. sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev 3+. sh setup_env_mpi.sh

OR like DDPG agents? 3. sh setup_env.sh

  1. Congrats! Now you are ready to check our agents.

Run DDPG agent

CUDA_VISIBLE_DEVICES="" PYTHONPATH=. python ddpg/train.py \
    --logdir ./logs_ddpg \
    --num-threads 4 \
    --ddpg-wrapper \
    --skip-frames 5 \
    --fail-reward -0.2 \
    --reward-scale 10 \
    --flip-state-action \
    --actor-layers 64-64 --actor-layer-norm --actor-parameters-noise \
    --actor-lr 0.001 --actor-lr-end 0.00001 \
    --critic-layers 64-32 --critic-layer-norm \
    --critic-lr 0.002 --critic-lr-end 0.00001 \
    --initial-epsilon 0.5 --final-epsilon 0.001 \
    --tau 0.0001

Evaluate DDPG agent

CUDA_VISIBLE_DEVICES="" PYTHONPATH=./ python ddpg/submit.py \
    --restore-actor-from ./logs_ddpg/actor_state_dict.pkl \
    --restore-critic-from ./logs_ddpg/critic_state_dict.pkl \
    --restore-args-from ./logs_ddpg/args.json \
    --num-episodes 10

Run TRPO/PPO agent

CUDA_VISIBLE_DEVICES="" PYTHONPATH=. python ddpg/train.py \
    --agent ppo \
    --logdir ./logs_baseline \
    --baseline-wrapper \
    --skip-frames 5 \
    --fail-reward -0.2 \
    --reward-scale 10

Citation

Please cite the following paper if you feel this repository useful.

@article{run_skeleton,
  title={Run, skeleton, run: skeletal model in a physics-based simulation},
  author = {Mikhail Pavlov, Sergey Kolesnikov and Sergey M.~Plis},
  journal={AAAI Spring Symposium Series},
  year={2018}
}