diff --git a/Project.toml b/Project.toml index b7f7f9e7a..03bdf3137 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "NonlinearSolve" uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" authors = ["SciML"] -version = "3.8.3" +version = "3.9.0" [deps] ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b" @@ -35,8 +35,9 @@ FastLevenbergMarquardt = "7a0df574-e128-4d35-8cbd-3d84502bf7ce" FixedPointAcceleration = "817d07cb-a79a-5c30-9a31-890123675176" LeastSquaresOptim = "0fc2ff8b-aaa3-5acd-a817-1944a5e08891" MINPACK = "4854310b-de5a-5eb6-a2a5-c1dee2bd17f9" -NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" NLSolvers = "337daf1e-9722-11e9-073e-8b9effe078ba" +NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" +Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba" SIAMFANLEquations = "084e46ad-d928-497d-ad5e-07fa361a48c4" SpeedMapping = "f1835b91-879b-4a3f-a438-e4baacf14412" Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" @@ -48,8 +49,9 @@ NonlinearSolveFastLevenbergMarquardtExt = "FastLevenbergMarquardt" NonlinearSolveFixedPointAccelerationExt = "FixedPointAcceleration" NonlinearSolveLeastSquaresOptimExt = "LeastSquaresOptim" NonlinearSolveMINPACKExt = "MINPACK" -NonlinearSolveNLsolveExt = "NLsolve" NonlinearSolveNLSolversExt = "NLSolvers" +NonlinearSolveNLsolveExt = "NLsolve" +NonlinearSolveOptimizationExt = "Optimization" NonlinearSolveSIAMFANLEquationsExt = "SIAMFANLEquations" NonlinearSolveSpeedMappingExt = "SpeedMapping" NonlinearSolveSymbolicsExt = "Symbolics" @@ -61,8 +63,8 @@ Aqua = "0.8" ArrayInterface = "7.7" BandedMatrices = "1.4" BenchmarkTools = "1.4" -ConcreteStructs = "0.2.3" CUDA = "5.1" +ConcreteStructs = "0.2.3" DiffEqBase = "6.146.0" Enzyme = "0.11.15" FastBroadcast = "0.2.8" @@ -78,8 +80,8 @@ LinearAlgebra = "1.10" LinearSolve = "2.21" MINPACK = "1.2" MaybeInplace = "0.1.1" -NLsolve = "4.5" NLSolvers = "0.5" +NLsolve = "4.5" NaNMath = "1" NonlinearProblemLibrary = "0.1.2" OrdinaryDiffEq = "6.63" @@ -118,14 +120,17 @@ Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" FastLevenbergMarquardt = "7a0df574-e128-4d35-8cbd-3d84502bf7ce" FixedPointAcceleration = "817d07cb-a79a-5c30-9a31-890123675176" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" +Ipopt = "b6b21f68-93f8-5de0-b562-5493be1d77c9" LeastSquaresOptim = "0fc2ff8b-aaa3-5acd-a817-1944a5e08891" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" MINPACK = "4854310b-de5a-5eb6-a2a5-c1dee2bd17f9" -NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" NLSolvers = "337daf1e-9722-11e9-073e-8b9effe078ba" +NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" NonlinearProblemLibrary = "b7050fa9-e91f-4b37-bcee-a89a063da141" +Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba" +OptimizationMOI = "fd9f6733-72f4-499f-8506-86b2bdd0dea1" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" @@ -143,4 +148,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [targets] -test = ["Aqua", "Enzyme", "BenchmarkTools", "SafeTestsets", "Pkg", "Test", "ForwardDiff", "StaticArrays", "Symbolics", "LinearSolve", "Random", "LinearAlgebra", "Zygote", "SparseDiffTools", "NonlinearProblemLibrary", "LeastSquaresOptim", "FastLevenbergMarquardt", "NaNMath", "BandedMatrices", "DiffEqBase", "StableRNGs", "MINPACK", "NLsolve", "OrdinaryDiffEq", "SpeedMapping", "FixedPointAcceleration", "SIAMFANLEquations", "Sundials", "ReTestItems", "Reexport", "CUDA", "NLSolvers"] +test = ["Aqua", "BandedMatrices", "BenchmarkTools", "CUDA", "DiffEqBase", "Enzyme", "FastLevenbergMarquardt", "FixedPointAcceleration", "ForwardDiff", "Ipopt", "LeastSquaresOptim", "LinearAlgebra", "LinearSolve", "MINPACK", "NLSolvers", "NLsolve", "NaNMath", "NonlinearProblemLibrary", "Optimization", "OptimizationMOI", "OrdinaryDiffEq", "Pkg", "Random", "ReTestItems", "Reexport", "SIAMFANLEquations", "SafeTestsets", "SparseDiffTools", "SpeedMapping", "StableRNGs", "StaticArrays", "Sundials", "Symbolics", "Test", "Zygote"] diff --git a/docs/pages.jl b/docs/pages.jl index 0d548cd60..dc9a7212e 100644 --- a/docs/pages.jl +++ b/docs/pages.jl @@ -17,7 +17,8 @@ pages = ["index.md", "native/globalization.md", "native/diagnostics.md"], "Wrapped Solver APIs" => Any[ "api/fastlevenbergmarquardt.md", "api/fixedpointacceleration.md", - "api/leastsquaresoptim.md", "api/minpack.md", "api/nlsolve.md", "api/nlsolvers.md", + "api/leastsquaresoptim.md", "api/minpack.md", + "api/nlsolve.md", "api/nlsolvers.md", "api/optimization.jl.md", "api/siamfanlequations.md", "api/speedmapping.md", "api/sundials.md"], "Development Documentation" => [ "devdocs/internal_interfaces.md", "devdocs/linear_solve.md", diff --git a/docs/src/api/optimizationjl.md b/docs/src/api/optimizationjl.md new file mode 100644 index 000000000..77ef84252 --- /dev/null +++ b/docs/src/api/optimizationjl.md @@ -0,0 +1,17 @@ +# Optimization.jl + +This is a extension for importing solvers from Optimization.jl into the SciML Nonlinear +Problem interface. Note that these solvers do not come by default, and thus one needs to +install the package before using these solvers: + +```julia +using Pkg +Pkg.add("Optimization") +using Optimization, NonlinearSolve +``` + +## Solver API + +```@docs +OptimizationJL +``` diff --git a/docs/src/solvers/nonlinear_least_squares_solvers.md b/docs/src/solvers/nonlinear_least_squares_solvers.md index c037dd8f5..36cdc40e1 100644 --- a/docs/src/solvers/nonlinear_least_squares_solvers.md +++ b/docs/src/solvers/nonlinear_least_squares_solvers.md @@ -29,7 +29,7 @@ fails it falls back to a more robust algorithms ([`LevenbergMarquardt`](@ref), ### SimpleNonlinearSolve.jl These methods are included with NonlinearSolve.jl by default, though SimpleNonlinearSolve.jl -can be used directly to reduce dependencies and improve load times. +can be used directly to reduce dependencies and improve load times. SimpleNonlinearSolve.jl's methods excel at small problems and problems defined with static arrays. @@ -81,5 +81,8 @@ Submethod choices for this algorithm include: ### Optimization.jl -`NonlinearLeastSquaresProblem`s can be converted into an `OptimizationProblem` and used +`NonlinearLeastSquaresProblem`s can be converted into an `OptimizationProblem` and used with any solver of [Optimization.jl](https://github.com/SciML/Optimization.jl). + +Alternatively, [`OptimizationJL`](@ref) can be used directly. The only benefit of this is +that the solver returns [`NonlinearSolution`](@ref) instead of `OptimizationSolution`. diff --git a/docs/src/solvers/nonlinear_system_solvers.md b/docs/src/solvers/nonlinear_system_solvers.md index 5b9e88e34..b8e338ef6 100644 --- a/docs/src/solvers/nonlinear_system_solvers.md +++ b/docs/src/solvers/nonlinear_system_solvers.md @@ -4,7 +4,7 @@ solve(prob::NonlinearProblem, alg; kwargs...) ``` -Solves for ``f(u) = 0`` in the problem defined by `prob` using the algorithm `alg`. If no +Solves for `f(u) = 0` in the problem defined by `prob` using the algorithm `alg`. If no algorithm is given, a default algorithm will be chosen. ## Recommended Methods @@ -22,7 +22,7 @@ fail to converge. Additionally, [`DynamicSS`](@ref) can be a good choice for hig if the root corresponds to a stable equilibrium. As a balance, [`NewtonRaphson`](@ref) is a good choice for most problems that aren't too -difficult yet need high performance, and [`TrustRegion`](@ref) is a bit less performant but +difficult yet need high performance, and [`TrustRegion`](@ref) is a bit less performant but more stable. If the problem is well-conditioned, [`Klement`](@ref) or [`Broyden`](@ref) may be faster, but highly dependent on the eigenvalues of the Jacobian being sufficiently small. @@ -177,3 +177,12 @@ This is a wrapper package for importing solvers from NLSolvers.jl into the SciML [NLSolvers.jl](https://github.com/JuliaNLSolvers/NLSolvers.jl) For a list of possible solvers see the [NLSolvers.jl documentation](https://julianlsolvers.github.io/NLSolvers.jl/) + +### Optimization.jl + +This is a wrapper package for importing solvers from Optimization.jl into the SciML +Nonlinear Problem interface. These exist mostly for benchmarking purposes and shouldn't +be used by most users. + + - [`OptimizationJL()`](@ref): A wrapper for + [Optimization.jl](https://github.com/SciML/Optimization.jl) diff --git a/ext/NonlinearSolveOptimizationExt.jl b/ext/NonlinearSolveOptimizationExt.jl new file mode 100644 index 000000000..a4169ee6e --- /dev/null +++ b/ext/NonlinearSolveOptimizationExt.jl @@ -0,0 +1,86 @@ +module NonlinearSolveOptimizationExt + +using FastClosures, LinearAlgebra, NonlinearSolve, Optimization + +function SciMLBase.__solve( + prob::NonlinearProblem, alg::OptimizationJL, args...; abstol = nothing, + maxiters = 1000, termination_condition = nothing, kwargs...) + NonlinearSolve.__test_termination_condition(termination_condition, :OptimizationJL) + + prob.u0 isa Number && + throw(ArgumentError("`OptimizationJL` doesn't support scalar `u0`")) + + _objective_function = if SciMLBase.isinplace(prob) + @closure (u, p) -> begin + du = similar(u) + prob.f(du, u, p) + return norm(du, 2) + end + else + @closure (u, p) -> norm(prob.f(u, p), 2) + end + + cons = if SciMLBase.isinplace(prob) + prob.f + else + @closure (du, u, p) -> copyto!(du, prob.f(u, p)) + end + + if alg.autodiff === nothing || alg.autodiff isa SciMLBase.NoAD + opt_func = OptimizationFunction(_objective_function; cons) + else + opt_func = OptimizationFunction(_objective_function, alg.autodiff; cons) + end + bounds = similar(prob.u0) + fill!(bounds, 0) + opt_prob = OptimizationProblem( + opt_func, prob.u0, prob.p; lcons = bounds, ucons = bounds) + sol = solve(opt_prob, alg.solver, args...; abstol, maxiters, kwargs...) + + fu = zero(prob.u0) + cons(fu, sol.u, prob.p) + + stats = SciMLBase.NLStats(sol.stats.fevals, sol.stats.gevals, -1, -1, -1) + + return SciMLBase.build_solution( + prob, alg, sol.u, fu; retcode = sol.retcode, original = sol, stats) +end + +function SciMLBase.__solve(prob::NonlinearLeastSquaresProblem, alg::OptimizationJL, args...; + abstol = nothing, maxiters = 1000, termination_condition = nothing, kwargs...) + NonlinearSolve.__test_termination_condition(termination_condition, :OptimizationJL) + + _objective_function = if SciMLBase.isinplace(prob) + @closure (θ, p) -> begin + resid = prob.f.resid_prototype === nothing ? similar(θ) : + similar(prob.f.resid_prototype, eltype(θ)) + prob.f(resid, θ, p) + return norm(resid, 2) + end + else + @closure (θ, p) -> norm(prob.f(θ, p), 2) + end + + if alg.autodiff === nothing || alg.autodiff isa SciMLBase.NoAD + opt_func = OptimizationFunction(_objective_function) + else + opt_func = OptimizationFunction(_objective_function, alg.autodiff) + end + opt_prob = OptimizationProblem(opt_func, prob.u0, prob.p) + sol = solve(opt_prob, alg.solver, args...; abstol, maxiters, kwargs...) + + if SciMLBase.isinplace(prob) + resid = prob.f.resid_prototype === nothing ? similar(prob.u0) : + prob.f.resid_prototype + prob.f(resid, sol.u, prob.p) + else + resid = prob.f(sol.u, prob.p) + end + + stats = SciMLBase.NLStats(sol.stats.fevals, sol.stats.gevals, -1, -1, -1) + + return SciMLBase.build_solution( + prob, alg, sol.u, resid; retcode = sol.retcode, original = sol, stats) +end + +end diff --git a/src/NonlinearSolve.jl b/src/NonlinearSolve.jl index 0cef448d2..d528fa73b 100644 --- a/src/NonlinearSolve.jl +++ b/src/NonlinearSolve.jl @@ -148,7 +148,7 @@ export NonlinearSolvePolyAlgorithm, RobustMultiNewton, FastShortcutNonlinearPoly # Extension Algorithms export LeastSquaresOptimJL, FastLevenbergMarquardtJL, CMINPACK, NLsolveJL, NLSolversJL, - FixedPointAccelerationJL, SpeedMappingJL, SIAMFANLEquationsJL + FixedPointAccelerationJL, SpeedMappingJL, SIAMFANLEquationsJL, OptimizationJL # Advanced Algorithms -- Without Bells and Whistles export GeneralizedFirstOrderAlgorithm, ApproximateJacobianSolveAlgorithm, GeneralizedDFSane diff --git a/src/algorithms/extension_algs.jl b/src/algorithms/extension_algs.jl index ea9ab79ab..822c51780 100644 --- a/src/algorithms/extension_algs.jl +++ b/src/algorithms/extension_algs.jl @@ -484,3 +484,40 @@ function SIAMFANLEquationsJL(; method = :newton, delta = 1e-3, linsolve = nothin end return SIAMFANLEquationsJL(method, delta, linsolve, m, beta, autodiff) end + +""" + OptimizationJL(solver, autodiff) + +Wrapper over [Optimization.jl](https://docs.sciml.ai/Optimization/stable/) to solve +Nonlinear Equations and Nonlinear Least Squares Problems. + +!!! danger "Using OptimizationJL for Nonlinear Systems" + + This is a absolutely terrible idea. We construct the objective function as the L2-norm + of the residual function and impose an equality constraint. This is very inefficient + and exists to convince people from HackerNews that this is a horrible idea. + +### Arguments + + - `solver`: The solver to use from Optimization.jl. In general for NLLS, all of the + solvers will work. However, for nonlinear systems, only the solvers that support + equality constraints will work. + - `autodiff`: Automatic Differentiation Backend that Optimization.jl should use. See + https://docs.sciml.ai/Optimization/stable/API/ad/ for more details. Defaults to + `SciMLBase.NoAD()`. + +!!! note + + This algorithm is only available if `Optimization.jl` is installed. +""" +struct OptimizationJL{S, AD} <: AbstractNonlinearSolveExtensionAlgorithm + solver::S + autodiff::AD + + function OptimizationJL(solver, autodiff = SciMLBase.NoAD()) + if Base.get_extension(@__MODULE__, :NonlinearSolveOptimizationExt) === nothing + error("OptimizationJL requires Optimization.jl to be loaded") + end + return new{typeof(solver), typeof(autodiff)}(solver, autodiff) + end +end diff --git a/test/wrappers/nlls_tests.jl b/test/wrappers/nlls_tests.jl index a65ab5ec9..c9856aea3 100644 --- a/test/wrappers/nlls_tests.jl +++ b/test/wrappers/nlls_tests.jl @@ -46,6 +46,24 @@ end end end +@testitem "Optimization.jl" setup=[WrapperNLLSSetup] begin + import Optimization, OptimizationMOI, Ipopt + + prob_oop = NonlinearLeastSquaresProblem{false}(loss_function, θ_init, x) + prob_iip = NonlinearLeastSquaresProblem( + NonlinearFunction(loss_function; resid_prototype = zero(y_target)), θ_init, x) + + nlls_problems = [prob_oop, prob_iip] + + solver = OptimizationJL(Ipopt.Optimizer(), AutoForwardDiff()) + + for prob in nlls_problems + sol = solve(prob, solver; maxiters = 10000, abstol = 1e-8) + # Ipopt fails currently + @test sol isa SciMLBase.NonlinearSolution + end +end + @testitem "FastLevenbergMarquardt.jl + CMINPACK: Jacobian Provided" setup=[WrapperNLLSSetup] begin function jac!(J, θ, p) resid = zeros(length(p)) diff --git a/test/wrappers/rootfind_tests.jl b/test/wrappers/rootfind_tests.jl index dcee9ceba..a3627d562 100644 --- a/test/wrappers/rootfind_tests.jl +++ b/test/wrappers/rootfind_tests.jl @@ -2,8 +2,9 @@ using Reexport @reexport using LinearAlgebra import NLSolvers, NLsolve, SIAMFANLEquations, MINPACK +import Optimization, OptimizationMOI, Ipopt -export NLSolvers +export NLSolvers, Ipopt end @testitem "Steady State Problems" setup=[WrapperRootfindImports] begin @@ -48,7 +49,8 @@ end for alg in [ NLSolversJL(NLSolvers.LineSearch(NLSolvers.Newton(), NLSolvers.Backtracking())), - NLsolveJL(), CMINPACK(), SIAMFANLEquationsJL()] + NLsolveJL(), CMINPACK(), SIAMFANLEquationsJL(), + OptimizationJL(Ipopt.Optimizer(), AutoForwardDiff())] local sol sol = solve(prob_iip, alg) @test SciMLBase.successful_retcode(sol.retcode) @@ -61,7 +63,8 @@ end prob_oop = NonlinearProblem{false}(f_oop, u0) for alg in [ NLSolversJL(NLSolvers.LineSearch(NLSolvers.Newton(), NLSolvers.Backtracking())), - NLsolveJL(), CMINPACK(), SIAMFANLEquationsJL()] + NLsolveJL(), CMINPACK(), SIAMFANLEquationsJL(), + OptimizationJL(Ipopt.Optimizer(), AutoForwardDiff())] local sol sol = solve(prob_oop, alg) @test SciMLBase.successful_retcode(sol.retcode) @@ -128,4 +131,8 @@ end @test maximum(abs, sol.resid) < 1e-6 sol = solve(ProbN, SIAMFANLEquationsJL(; method = :pseudotransient); abstol = 1e-8) @test maximum(abs, sol.resid) < 1e-6 + sol = solve(ProbN, OptimizationJL(Ipopt.Optimizer(), AutoForwardDiff()); abstol = 1e-8) + @test maximum(abs, sol.resid) < 1e-6 + sol = solve(ProbN, OptimizationJL(Ipopt.Optimizer(), AutoFiniteDiff()); abstol = 1e-8) + @test maximum(abs, sol.resid) < 1e-6 end