Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Do not fall back to inplace interpolation method #394

Merged
merged 3 commits into from
Feb 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 17 additions & 25 deletions src/DataInterpolations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,37 +25,29 @@ include("online.jl")
include("show.jl")

(interp::AbstractInterpolation)(t::Number) = _interpolate(interp, t)

function (interp::AbstractInterpolation)(t::AbstractVector)
u = get_u(interp.u, t)
interp(u, t)
end

function get_u(u::AbstractVector, t)
return similar(t, promote_type(eltype(u), eltype(t)))
end

function get_u(u::AbstractVector{<:AbstractVector}, t)
type = promote_type(eltype(eltype(u)), eltype(t))
return [zeros(type, length(first(u))) for _ in eachindex(t)]
end

function get_u(u::AbstractMatrix, t)
type = promote_type(eltype(u), eltype(t))
return zeros(type, (size(u, 1), length(t)))
if interp.u isa AbstractVector
# Return a vector of interpolated values, on for each element in `t`
return map(interp, t)
elseif interp.u isa AbstractArray
# Stack interpolated values if `u` was stored in matrix/... form
return stack(interp, t)
end
end

function (interp::AbstractInterpolation)(u::AbstractMatrix, t::AbstractVector)
@inbounds for i in eachindex(t)
u[:, i] = interp(t[i])
function (interp::AbstractInterpolation)(out::AbstractVector, t::AbstractVector)
if length(out) != length(t)
throw(DimensionMismatch("number of evaluation points and length of the result vector must be equal"))
end
u
map!(interp, out, t)
return out
end
function (interp::AbstractInterpolation)(u::AbstractVector, t::AbstractVector)
@inbounds for i in eachindex(u, t)
u[i] = interp(t[i])
function (interp::AbstractInterpolation)(out::AbstractArray, t::AbstractVector)
if size(out, ndims(out)) != length(t)
throw(DimensionMismatch("number of evaluation points and last dimension of the result array must be equal"))
end
u
map!(interp, eachslice(out; dims = ndims(out)), t)
return out
end

const EXTRAPOLATION_ERROR = "Cannot extrapolate as `extrapolate` keyword passed was `false`"
Expand Down
24 changes: 18 additions & 6 deletions test/extrapolation_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,12 +52,16 @@ end
# Left extrapolation
A = ConstantInterpolation(u_un, t_un; extrapolation_left = extrapolation_type)
t_eval = 0.0u"s"
@test A(t_eval) == 1.0u"m"
@test @inferred(A(t_eval)) == 1.0u"m"
@test @inferred(A([t_eval])) == [1.0u"m"]
@test A([t_eval]) isa Vector{typeof(1.0u"m")}

# Right extrapolation
A = ConstantInterpolation(u_un, t_un; extrapolation_right = extrapolation_type)
t_eval = 3.0u"s"
@test A(t_eval) == 2.0u"m"
@test @inferred(A(t_eval)) == 2.0u"m"
@test @inferred(A([t_eval])) == [2.0u"m"]
@test A([t_eval]) isa Vector{typeof(2.0u"m")}
end
end

Expand All @@ -68,22 +72,30 @@ end
# Left constant extrapolation
A = LinearInterpolation(u_un, t_un; extrapolation_left = ExtrapolationType.Constant)
t_eval = 0.0u"s"
@test A(t_eval) == 1.0u"m"
@test @inferred(A(t_eval)) == 1.0u"m"
@test @inferred(A([t_eval])) == [1.0u"m"]
@test A([t_eval]) isa Vector{typeof(1.0u"m")}

# Right constant extrapolation
A = LinearInterpolation(u_un, t_un; extrapolation_right = ExtrapolationType.Constant)
t_eval = 3.0u"s"
@test A(t_eval) == 2.0u"m"
@test @inferred(A(t_eval)) == 2.0u"m"
@test @inferred(A([t_eval])) == [2.0u"m"]
@test A([t_eval]) isa Vector{typeof(2.0u"m")}

# Left linear extrapolation
A = LinearInterpolation(u_un, t_un; extrapolation_left = ExtrapolationType.Linear)
t_eval = 0.0u"s"
@test A(t_eval) == 0.0u"m"
@test @inferred(A(t_eval)) == 0.0u"m"
@test @inferred(A([t_eval])) == [0.0u"m"]
@test A([t_eval]) isa Vector{typeof(0.0u"m")}

# Right constant extrapolation
A = LinearInterpolation(u_un, t_un; extrapolation_right = ExtrapolationType.Linear)
t_eval = 3.0u"s"
@test A(t_eval) == 3.0u"m"
@test @inferred(A(t_eval)) == 3.0u"m"
@test @inferred(A([t_eval])) == [3.0u"m"]
@test A([t_eval]) isa Vector{typeof(3.0u"m")}
end

@testset "Linear Interpolation" begin
Expand Down
46 changes: 33 additions & 13 deletions test/interpolation_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -525,6 +525,13 @@ end
itp = ConstantInterpolation([2], [0.0]; extrapolation = ExtrapolationType.Constant)
@test itp(1.0) === 2
@test itp(-1.0) === 2

# Test output type of vector evaluation (issue #388)
u = [2, 3]
t = [0.0, 1.0]
itp = ConstantInterpolation(u, t)
@test @inferred(itp(t)) == itp.(t)
@test typeof(itp(t)) === typeof(itp.(t)) === Vector{Int}
end

@testset "QuadraticSpline Interpolation" begin
Expand Down Expand Up @@ -855,33 +862,46 @@ end

@testset "Type of vector returned" begin
# Issue https://github.com/SciML/DataInterpolations.jl/issues/253
t1 = Float32[0.1, 0.2, 0.3, 0.4, 0.5]
t2 = Float64[0.1, 0.2, 0.3, 0.4, 0.5]
interps_and_types = [
(LinearInterpolation(t1, t1), Float32),
(LinearInterpolation(t1, t2), Float32),
(LinearInterpolation(t2, t1), Float64),
(LinearInterpolation(t2, t2), Float64)
]
for i in eachindex(interps_and_types)
@test eltype(interps_and_types[i][1](t1)) == interps_and_types[i][2]
ut1 = Float32[0.1, 0.2, 0.3, 0.4, 0.5]
ut2 = Float64[0.1, 0.2, 0.3, 0.4, 0.5]
for u in (ut1, ut2), t in (ut1, ut2)
interp = LinearInterpolation(ut1, ut2)
for xs in (u, t)
ys = @inferred(interp(xs))
@test ys isa Vector{typeof(interp(first(xs)))}
@test all(y == interp(x) for (x, y) in zip(xs, ys))
end
end
end

@testset "Plugging vector timepoints" begin
# Issue https://github.com/SciML/DataInterpolations.jl/issues/267
t = Float64[1.0, 2.0, 3.0, 4.0, 5.0]
x = Float64[1.3, 2.2, 4.1]
@testset "utype - Vectors" begin
interp = LinearInterpolation(rand(5), t)
@test interp(t) isa Vector{Float64}
y = interp(x)
@test y isa Vector{Float64}
@test length(y) == 3
end
@testset "utype - Vector of Vectors" begin
interp = LinearInterpolation([rand(2) for _ in 1:5], t)
@test interp(t) isa Vector{Vector{Float64}}
y = interp(x)
@test y isa Vector{Vector{Float64}}
@test length(y) == 3
@test all(length(yi) == 2 for yi in y)
end
@testset "utype - Matrix" begin
interp = LinearInterpolation(rand(2, 5), t)
@test interp(t) isa Matrix{Float64}
y = interp(x)
@test y isa Matrix{Float64}
@test size(y) == (2, 3)
end
@testset "utype - Array" begin
interp = LinearInterpolation(rand(2, 3, 4, 5), t)
y = interp(x)
@test y isa Array{Float64, 4}
@test size(y) == (2, 3, 4, 3)
end
end

Expand Down
Loading