-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtraining_cli.py
760 lines (701 loc) · 30.6 KB
/
training_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
from collections import OrderedDict
import json
import os
import shutil
import traceback
from typing import Tuple
import numpy as np
from tqdm import tqdm
from .lib.audio import SR_MAP
from .lib.train import utils
import datetime
from random import shuffle, randint
import torch
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from .lib.infer_pack import commons
from time import sleep
from time import time as ttime
from .lib.train.data_utils import (
BucketSampler,
TextAudioLoaderMultiNSFsid,
TextAudioLoader,
TextAudioCollateMultiNSFsid,
TextAudioCollate,
DistributedBucketSampler,
)
from .lib.train.losses import LossBalancer, MultiScaleMelSpectrogramLoss, combined_aux_loss, generator_loss, discriminator_loss, feature_loss, gradient_norm_loss, kl_loss
from .lib.train.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
def save_checkpoint(ckpt, name, epoch, hps, model_path=None):
try:
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt.keys():
if "enc_q" in key:
continue
opt["weight"][key] = ckpt[key].half()
opt["config"] = [
hps.data.filter_length // 2 + 1,
32,
hps.model.inter_channels,
hps.model.hidden_channels,
hps.model.filter_channels,
hps.model.n_heads,
hps.model.n_layers,
hps.model.kernel_size,
hps.model.p_dropout,
hps.model.resblock,
hps.model.resblock_kernel_sizes,
hps.model.resblock_dilation_sizes,
hps.model.upsample_rates,
hps.model.upsample_initial_channel,
hps.model.upsample_kernel_sizes,
hps.model.spk_embed_dim,
hps.model.gin_channels,
hps.data.sampling_rate,
]
opt["info"] = "%sepoch" % epoch
opt["sr"] = hps.sample_rate
opt["f0"] = hps.if_f0
opt["version"] = hps.version
if model_path is None: model_path=os.path.join(hps.model_dir,name+".pth")
torch.save(opt, model_path)
return "Success."
except:
return traceback.format_exc()
class EpochRecorder:
def __init__(self):
self.last_time = ttime()
def record(self):
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
elapsed_time_str = str(datetime.timedelta(seconds=elapsed_time))
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return f"[{current_time}] | ({elapsed_time_str})"
def train_model(hps: "utils.HParams"):
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
os.environ["NCCL_P2P_DISABLE"] = "1"
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(8189, 8205+hps.train.num_workers**2))
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,garbage_collection_threshold:0.8"
n_gpus = len(hps.gpus.split("-")) if hps.gpus else torch.cuda.device_count()
if not torch.cuda.is_available() and torch.backends.mps.is_available():
n_gpus = 1
if n_gpus < 1:
# patch to unblock people without gpus. there is probably a better way.
print("NO GPU DETECTED: falling back to CPU - this may take a while")
n_gpus = 1
gpu_devices = hps.gpus.split("-") if hps.gpus else range(n_gpus)
children = {}
for i, device in enumerate(gpu_devices):
subproc = mp.Process(
target=run,
args=(
i,
n_gpus,
hps,
device
),
)
children[i]=subproc
subproc.start()
for i in children:
children[i].join()
def run(rank, n_gpus, hps, device):
print(f"{__name__=}")
global global_step, least_loss, loss_file, best_model_name, MultiscaleMelLoss
global_step = 0
loss_file = os.path.join(hps.model_dir,"losses.json")
if os.path.isfile(loss_file):
with open(loss_file,"r") as f:
data: dict = json.load(f)
least_loss = data.get("least_loss",hps.best_model_threshold)
best_model_name = data.get("best_model_name","")
else:
least_loss = hps.best_model_threshold
best_model_name = ""
if hps.version == "v1":
from .lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid as RVC_Model_f0,
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
MultiPeriodDiscriminator,
)
else:
from .lib.infer_pack.models import (
SynthesizerTrnMs768NSFsid as RVC_Model_f0,
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
)
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
writer = SummaryWriter(log_dir=hps.model_dir)
# writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
if n_gpus>1:
try:
dist.init_process_group(backend="gloo", init_method="env://", world_size=n_gpus, rank=rank)
distributed = True
except Exception as error:
print(f"Failed to initialize dist: {error=}")
distributed = False
else: distributed=False
torch.manual_seed(hps.train.seed)
if torch.cuda.is_available():
torch.cuda.set_device(f"cuda:{device}")
if hps.if_f0:
train_dataset = TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data)
else:
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
if distributed:
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size * n_gpus,
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
else:
train_sampler = BucketSampler(
train_dataset,
hps.train.batch_size,
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
shuffle=True,
)
# It is possible that dataloader's workers are out of shared memory. Please try to raise your shared memory limit.
# num_workers=8 -> num_workers=4
if hps.if_f0:
collate_fn = TextAudioCollateMultiNSFsid()
else:
collate_fn = TextAudioCollate()
train_loader = DataLoader(
train_dataset,
num_workers=hps.train.num_workers,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=8,
)
hps.sync_log_interval(len(train_loader))
if hps.if_f0:
net_g = RVC_Model_f0(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
is_half=hps.train.fp16_run,
sr=hps.sample_rate,
)
else:
net_g = RVC_Model_nof0(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
is_half=hps.train.fp16_run,
)
if torch.cuda.is_available():
net_g = net_g.cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
if torch.cuda.is_available():
net_d = net_d.cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if distributed:
if torch.cuda.is_available():
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
else:
net_g = DDP(net_g)
net_d = DDP(net_d)
try: # resume training
_, _, _, epoch_str, d_kwargs = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
if rank == 0: logger.info("loaded D")
_, _, _, epoch_str, g_kwargs = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
if rank == 0: logger.info("loaded G")
global_step = (epoch_str - 1) * len(train_loader)
except Exception as e:
logger.error(f"Failed to load saved pretrains: {e}")
epoch_str = 1
global_step = 0
if hps.pretrainG != "":
if rank == 0:
logger.info("loaded pretrained %s" % (hps.pretrainG))
if hasattr(net_g,"module"): print(net_g.module.load_state_dict(torch.load(hps.pretrainG, map_location="cpu")["model"]))
else: print(net_g.load_state_dict(torch.load(hps.pretrainG, map_location="cpu")["model"]))
if hps.pretrainD != "":
if rank == 0:
logger.info("loaded pretrained %s" % (hps.pretrainD))
if hasattr(net_d,"module"): print(net_d.module.load_state_dict(torch.load(hps.pretrainD, map_location="cpu")["model"]))
else: print(net_d.load_state_dict(torch.load(hps.pretrainD, map_location="cpu")["model"]))
d_kwargs = g_kwargs = {}
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=hps.train.fp16_run)
if hps.train.get("use_multiscale"):
try:
msml_dict = g_kwargs["msml"]
MultiscaleMelLoss = MultiScaleMelSpectrogramLoss(**msml_dict)
except Exception as e:
logger.error(f"Failed to load MultiScaleMelSpectrogramLoss state: {e}")
MultiscaleMelLoss = MultiScaleMelSpectrogramLoss(
hps.data.sampling_rate,
adjustment_factor=min(1./len(train_loader),.05),
epsilon=hps.train.eps)
try:
balancer_state = g_kwargs["balancer"]
logger.info(f"Using existing balancer: {balancer_state}")
balancer_g = LossBalancer(net_g,**balancer_state)
except Exception as e:
logger.error(f"Failed to load balancer state: {e}")
balancer_g = LossBalancer(
net_g,
weights_decay=.5 / (1 + np.exp(-10 * (epoch_str / hps.total_epoch - 0.16)))+.5, #sigmoid scaled ema .8 at 20% epoch
loss_decay=.8,
epsilon=hps.train.eps,
active=hps.train.get("use_balancer",False),
use_pareto=hps.train.get("use_pareto",False),
use_norm=not hps.train.get("fast_mode",False),
initial_weights=dict(
loss_gen=hps.train.get("c_adv",1.),
loss_fm=hps.train.get("c_fm",2.),
loss_mel=hps.train.get("c_mel",45.),
loss_kl=hps.train.get("c_kl",1.),
harmonic_loss=hps.train.get("c_hd",0.),
tsi_loss=hps.train.get("c_tsi",0.),
tefs_loss=hps.train.get("c_tefs",0.),
))
try:
balancer_state = d_kwargs["balancer"]
logger.info(f"Using existing balancer: {balancer_state}")
balancer_d = LossBalancer(net_d,**balancer_state)
except Exception as e:
logger.error(f"Failed to load balancer state: {e}")
balancer_d = LossBalancer(
net_d,
weights_decay=commons.sigmoid_value(global_step,total_steps=10000,start_value=.5, end_value=.999, midpoint=.2),
loss_decay=.8,
epsilon=hps.train.eps,
active=hps.train.get("use_balancer",False),
use_pareto=hps.train.get("use_pareto",False),
use_norm=not hps.train.get("fast_mode",False),
initial_weights=dict(
loss_disc=hps.train.get("c_adv",1.),
gradient_penalty=hps.train.get("c_gp",0.),
))
cache = []
for epoch in range(epoch_str, hps.train.epochs + 1):
train_loader.batch_sampler.set_epoch(epoch)
if rank == 0:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d],
[optim_g, optim_d],
[scheduler_g, scheduler_d],
scaler,
[train_loader, None],
logger,
[writer, None],
cache,
[balancer_g, balancer_d]
)
else:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d],
[optim_g, optim_d],
[scheduler_g, scheduler_d],
scaler,
[train_loader, None],
None,
None,
cache,
[balancer_g, balancer_d]
)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(
rank, epoch, hps, nets, optims, _, scaler, loaders, logger, writers, cache, balancer: Tuple["LossBalancer","LossBalancer"]
):
net_g, net_d = nets
optim_g, optim_d = optims
train_loader, _ = loaders
if writers is not None:
writer, _ = writers
global global_step, least_loss, loss_file, best_model_name, gradient_clip_value, MultiscaleMelLoss
net_g.train()
net_d.train()
balancer_g, balancer_d = balancer
gradient_clip_value = commons.sigmoid_value(global_step, total_steps=10000, start_value=1, end_value=500, midpoint=.2)
# Prepare data iterator
if hps.if_cache_data_in_gpu:
# Use Cache
data_iterator = cache
if cache == []:
# Make new cache
for batch_idx, info in enumerate(train_loader):
# Unpack
if hps.if_f0:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
else:
(
phone,
phone_lengths,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
# Load on CUDA
if torch.cuda.is_available():
phone = phone.cuda(rank, non_blocking=True)
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
if hps.if_f0:
pitch = pitch.cuda(rank, non_blocking=True)
pitchf = pitchf.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
spec = spec.cuda(rank, non_blocking=True)
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
wave = wave.cuda(rank, non_blocking=True)
wave_lengths = wave_lengths.cuda(rank, non_blocking=True)
# Cache on list
if hps.if_f0:
cache.append(
(
batch_idx,
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
),
)
)
else:
cache.append(
(
batch_idx,
(
phone,
phone_lengths,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
),
)
)
else:
# Load shuffled cache
shuffle(cache)
else:
# Loader
data_iterator = enumerate(train_loader)
# Run steps
epoch_recorder = EpochRecorder()
for batch_idx, info in tqdm(data_iterator,desc=f"[Epoch {epoch}]: "):
# Data
## Unpack
if hps.if_f0:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
else:
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
## Load on CUDA
if (not hps.if_cache_data_in_gpu) and torch.cuda.is_available():
phone = phone.cuda(rank, non_blocking=True)
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
if hps.if_f0:
pitch = pitch.cuda(rank, non_blocking=True)
pitchf = pitchf.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
spec = spec.cuda(rank, non_blocking=True)
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
wave = wave.cuda(rank, non_blocking=True)
# Calculate
with autocast(enabled=hps.train.fp16_run):
if hps.if_f0:
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
else:
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
with autocast(enabled=False):
y_hat_mel = mel_spectrogram_torch(
y_hat,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
# if hps.train.fp16_run: y_hat_mel = y_hat_mel.half()
wave_orig = wave.clone()
wave = commons.slice_segments(wave, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
gen_wave = y_hat.detach()
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, gen_wave)
with autocast(enabled=False):
gradient_penalty = gradient_norm_loss(wave,gen_wave, net_d, eps=hps.train.eps)*hps.train.c_gp if hps.train.get("c_gp",0.)>0 else 0
loss_disc, losses_disc = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = balancer_d.on_train_batch_start(dict(
loss_disc=loss_disc,
gradient_penalty=gradient_penalty
),input=y_hat)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), gradient_clip_value, batch_size=hps.train.batch_size)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(enabled=False):
if hps.train.get("use_multiscale"): loss_mel = MultiscaleMelLoss(y_hat, wave)
else: loss_mel = F.l1_loss(y_mel, y_hat_mel)
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask)
loss_fm = feature_loss(fmap_r, fmap_g)
harmonic_loss, tefs_loss, tsi_loss = combined_aux_loss(
wave, y_hat,n_mels=hps.data.n_mel_channels,sample_rate=hps.data.sampling_rate,
c_tefs=hps.train.get("c_tefs",0.),
c_hd=hps.train.get("c_hd",0.),
c_tsi=hps.train.get("c_tsi",0.),
n_fft=hps.data.filter_length,
hop_length=hps.data.hop_length,
win_length=hps.data.win_length,
eps=hps.train.eps,
fmin=hps.data.mel_fmin,
fmax=hps.data.mel_fmax,
)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
aux_loss = harmonic_loss + tefs_loss + tsi_loss
loss_gen_all = balancer_g.on_train_batch_start(dict(
loss_gen=loss_gen,
loss_fm=loss_fm,
loss_mel=loss_mel,
loss_kl=loss_kl,
harmonic_loss=harmonic_loss,
tsi_loss=tsi_loss,
tefs_loss=tefs_loss,
),input=y_hat)
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), gradient_clip_value, batch_size=hps.train.batch_size)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if hps.train.log_interval>0 and global_step % hps.train.log_interval == 0: #tensorboard logging
lr = optim_g.param_groups[0]["lr"]
logger.info(f"Train Epoch: {epoch} [{100.0 * (epoch-1) / hps.total_epoch:.2f}% complete]")
if hps.train.get("use_multiscale"): MultiscaleMelLoss.show_freqs()
# Amor For Tensorboard display
if loss_mel > 75:
loss_mel = 75
if loss_kl > 9:
loss_kl = 9
scalar_dict = {
"total/loss/all": loss_gen_all+loss_disc_all,
"total/loss/gen_all": loss_gen_all,
"total/loss/aux": aux_loss,
"total/loss/disc_all": loss_disc_all,
"total/loss/gen": loss_gen,
"total/loss/disc": loss_disc,
"total/loss/fm": loss_fm,
"total/loss/mel": loss_mel,
"total/loss/kl": loss_kl,
"aux/loss/harmonic": harmonic_loss,
"aux/loss/tefs": tefs_loss,
"aux/loss/tsi": tsi_loss,
"gradient/lr": lr,
"gradient/grad_norm_disc": grad_norm_d,
"gradient/grad_norm_gen": grad_norm_g,
"gradient/gradient_penalty": gradient_penalty,
**{f"loss/g/{i}": v for i, v in enumerate(losses_gen)},
**{f"loss/d/{i}": v for i, v in enumerate(losses_disc)},
**{f"balancer_g/weights/{k}": v for k, v in balancer_g.ema_weights.items()},
**{f"balancer_d/weights/{k}": v for k, v in balancer_d.ema_weights.items()},
}
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"slice/diff^2": utils.plot_spectrogram_to_numpy((y_mel[0]-y_hat_mel[0]).pow(2).data.cpu().numpy(), cmap="hot")
}
with torch.no_grad():
if hasattr(net_g, "module"): inference = net_g.module.infer
else: inference = net_g.infer
if hps.if_f0: wave_gen = inference(phone, phone_lengths, pitch, pitchf, sid)[0][0, 0].data
else: wave_gen = inference(phone, phone_lengths, sid)[0][0, 0].data
audio_dict = {
"slice/wave_org": wave_orig[0][0],
"slice/wave_gen": wave_gen
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
audios=audio_dict,
audio_sampling_rate=SR_MAP[hps.sample_rate]
)
global_step += 1
# /Run steps
if hps.save_every_epoch>0 and (epoch % hps.save_every_epoch == 0) and rank == 0:
saved_epoch = 23333 if hps.if_latest else epoch
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, f"G_{saved_epoch}.pth"),
balancer=balancer_g.to_dict(),
msml=MultiscaleMelLoss.to_dict()
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, f"D_{saved_epoch}.pth"),
balancer=balancer_d.to_dict()
)
if hps.save_every_weights:
ckpt = net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()
save_name = f"{hps.name}_e{epoch}_s{global_step}"
status = save_checkpoint(ckpt,save_name,epoch,hps)
logger.info(f"saving ckpt {save_name}: {status}")
if rank == 0:
total_loss = balancer_g.weighted_ema_loss + balancer_d.weighted_ema_loss
logger.info(f"====> Epoch {epoch} ({total_loss=:.3f}): {global_step=} {lr=:.2E} {epoch_recorder.record()}")
logger.info(f"|| {loss_disc_all=:.3f}: {loss_disc=:.3f}, {gradient_penalty=:.3f}")
logger.info(f"|| {loss_gen_all=:.3f}: {loss_gen=:.3f}, {loss_fm=:.3f}, {loss_mel=:.3f}, {loss_kl=:.3f}")
logger.info(f"|| {aux_loss=:.3f}: {harmonic_loss=:.3f}, {tefs_loss=:.3f}, {tsi_loss=:.3f}")
#sigmoid scaling of ema
weights_decay = commons.sigmoid_value(global_step,total_steps=10000,start_value=.5, end_value=.999, midpoint=.2)
balancer_g.on_epoch_end(weights_decay)
balancer_d.on_epoch_end(weights_decay)
if loss_gen_all<least_loss:
least_loss = loss_gen_all
logger.info(f"\t>>>[lowest loss]: {least_loss:.3f}<<<")
if hps.save_best_model:
if hasattr(net_g, "module"): ckpt = net_g.module.state_dict()
else: ckpt = net_g.state_dict()
best_model_name = f"{hps.name}_e{epoch}_s{global_step}_loss{least_loss:.0f}" if hps.save_every_weights else f"{hps.name}_loss{least_loss:2.0f}"
status = save_checkpoint(ckpt,best_model_name,epoch,hps)
logger.info(f"=== saving best model {best_model_name}: {status=} ===")
with open(loss_file,"w") as f:
json.dump(dict(least_loss=least_loss.item(),best_model_name=best_model_name,epoch=epoch,steps=global_step,
loss_weights = dict(**balancer_g.ema_weights,**balancer_d.ema_weights),
scalar_dict={
"total/loss/all": commons.serialize_tensor(loss_gen_all+loss_disc_all),
"total/loss/gen_all": commons.serialize_tensor(loss_gen_all),
"total/loss/aux": commons.serialize_tensor(aux_loss),
"total/loss/disc_all": commons.serialize_tensor(loss_disc_all),
"total/loss/gen": commons.serialize_tensor(loss_gen),
"total/loss/disc": commons.serialize_tensor(loss_disc),
"total/loss/fm": commons.serialize_tensor(loss_fm),
"total/loss/mel": commons.serialize_tensor(loss_mel),
"total/loss/kl": commons.serialize_tensor(loss_kl),
"aux/loss/harmonic": commons.serialize_tensor(harmonic_loss),
"aux/loss/tefs": commons.serialize_tensor(tefs_loss),
"aux/loss/tsi": commons.serialize_tensor(tsi_loss),
"gradient/grad_norm_disc": commons.serialize_tensor(grad_norm_d),
"gradient/grad_norm_gen": commons.serialize_tensor(grad_norm_g),
"gradient/gradient_penalty": commons.serialize_tensor(gradient_penalty),
}),f,indent=2)
if epoch >= hps.total_epoch and rank == 0:
logger.info("Training is done. The program is closed.")
ckpt = net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()
if hps.save_best_model and os.path.isfile(loss_file):
with open(loss_file,"r") as f:
data = json.load(f)
best_model_name = data.get("best_model_name","")
best_model_path = os.path.join(hps.model_dir,f"{best_model_name}.pth")
if os.path.isfile(best_model_path):
shutil.copy(best_model_path,os.path.join(
os.path.dirname(hps.model_path),
f"{os.path.basename(hps.model_path).split('.')[0]}-lowest.pth"))
status = save_checkpoint(ckpt,hps.name,epoch,hps,model_path=hps.model_path)
logger.info(f"saving final ckpt {hps.model_path}: {status}")
sleep(1)
os._exit(0)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
hps = utils.get_hparams()
train_model(hps)