-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMask Training.py
113 lines (79 loc) · 3.36 KB
/
Mask Training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import os
import matplotlib.pyplot as plt
from imutils import paths
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import AveragePooling2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
dataset=r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\dataset'
imagePaths=list(paths.list_images(dataset))
data=[]
labels=[]
for i in imagePaths:
label=i.split(os.path.sep)[-2]
labels.append(label)
image=load_img(i,target_size=(224,224))
image=img_to_array(image)
image=preprocess_input(image)
data.append(image)
data=np.array(data,dtype='float32')
labels=np.array(labels)
lb=LabelBinarizer()
labels=lb.fit_transform(labels)
labels=to_categorical(labels)
train_X,test_X,train_Y,test_Y=train_test_split(data,labels,test_size=0.20,stratify=labels,random_state=10)
aug=ImageDataGenerator(rotation_range=20,zoom_range=0.15,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.15,horizontal_flip=True,vertical_flip=True,fill_mode='nearest')
baseModel=MobileNetV2(weights='imagenet',include_top=False,input_tensor=Input(shape=(224,224,3)))
print(baseModel.summary())
headModel=baseModel.output
headModel=AveragePooling2D(pool_size=(7,7))(headModel)
headModel=Flatten(name='Flatten')(headModel)
headModel=Dense(128,activation='relu')(headModel)
headModel=Dropout(0.5)(headModel)
headModel=Dense(2,activation='softmax')(headModel)
model=Model(inputs=baseModel.input,outputs=headModel)
for layer in baseModel.layers:
layer.trainable=False
print(model.summary())
learning_rate=0.001
Epochs=20
BS=12
opt=Adam(lr=learning_rate,decay=learning_rate/Epochs)
model.compile(loss='binary_crossentropy',optimizer=opt,metrics=['accuracy'])
H=model.fit(
aug.flow(train_X,train_Y,batch_size=BS),
steps_per_epoch=len(train_X)//BS,
validation_data=(test_X,test_Y),
validation_steps=len(test_X)//BS,
epochs=Epochs
)
model.save(r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\Trained_model\mobilenet_v2.model')
predict=model.predict(test_X,batch_size=BS)
predict=np.argmax(predict,axis=1)
print(classification_report(test_Y.argmax(axis=1),predict,target_names=lb.classes_))
# plot the training loss and accuracy
N = Epochs
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc")
plt.plot(np.arange(0, N), H.history["accuracy"], label="val_accuracy")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\plot_v2.png')