-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMask Testing using images.py
82 lines (47 loc) · 2.47 KB
/
Mask Testing using images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
# coding: utf-8
# In[2]:
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import numpy as np
import cv2
import os
prototxtPath=os.path.sep.join([r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\FaceDetection_Classifier','deploy.prototxt'])
weightsPath=os.path.sep.join([r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\FaceDetection_Classifier','res10_300x300_ssd_iter_140000.caffemodel'])
net=cv2.dnn.readNet(prototxtPath,weightsPath)
model=load_model(r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\Trained_model\mobilenet_v2.model')
image=cv2.imread(r'E:\Mask-Detection-and-Recognition-using-Deep-Learning-Keras\example_images\example_03.png')
(h,w)=image.shape[:2]
blob=cv2.dnn.blobFromImage(image,1.0,(300,300),(104.0,177.0,123.0))
net.setInput(blob)
detections=net.forward()
#loop over the detections
for i in range(0,detections.shape[2]):
confidence=detections[0,0,i,2]
if confidence>0.5:
#we need the X,Y coordinates
box=detections[0,0,i,3:7]*np.array([w,h,w,h])
(startX,startY,endX,endY)=box.astype('int')
#ensure the bounding boxes fall within the dimensions of the frame
(startX,startY)=(max(0,startX),max(0,startY))
(endX,endY)=(min(w-1,endX), min(h-1,endY))
#extract the face ROI, convert it from BGR to RGB channel, resize it to 224,224 and preprocess it
face=image[startY:endY, startX:endX]
face=cv2.cvtColor(face,cv2.COLOR_BGR2RGB)
face=cv2.resize(face,(224,224))
face=img_to_array(face)
face=preprocess_input(face)
face=np.expand_dims(face,axis=0)
(mask,withoutMask)=model.predict(face)[0]
#determine the class label and color we will use to draw the bounding box and text
label='Mask' if mask>withoutMask else 'No Mask'
color=(0,255,0) if label=='Mask' else (0,0,255)
#include the probability in the label
label="{}: {:.2f}%".format(label,max(mask,withoutMask)*100)
#display the label and bounding boxes
cv2.putText(image,label,(startX,startY-10),cv2.FONT_HERSHEY_SIMPLEX,0.45,color,2)
cv2.rectangle(image,(startX,startY),(endX,endY),color,2)
cv2.imshow("OutPut",image)
cv2.waitKey(0)
cv2.destroyAllWindows()