-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoga.py
411 lines (317 loc) · 16.5 KB
/
moga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from concurrent.futures import ProcessPoolExecutor
import random
import matplotlib.pyplot as plt
import numpy as np
import networkx as nx
import cdlib
import math
class UnionFind:
""" Estructura auxiliar para decodificar un individuo en modo locus a modo cluster """
def __init__(self, size):
self.parent = list(range(size))
def find(self, node):
if self.parent[node] != node:
self.parent[node] = self.find(self.parent[node])
return self.parent[node]
def union(self, node1, node2):
root1 = self.find(node1)
root2 = self.find(node2)
if root1 != root2:
self.parent[root2] = root1
class MOGA():
def __init__(self, graph, N=100, init=0.5, pcross=0.7, pmut=0.1, n_iter=500, fitness_metrics=1, n_tour = 4, crossover_op=2, sigma = 0.2, show_plot = False):
self.graph = graph # Grafo
self.N = N # Tamaño de la población
self.pop = [] # Población
self.init = init # Ponderación de la inicialización
self.pcross = pcross # Probabilidad de cruce
self.pmut = pmut # Probabilidad de mutación
self.n_iter = n_iter # Numero de iteraciones
self.fitness_metrics = fitness_metrics # Par de métricas utilizadas para el fitness
self.n_tour = n_tour # Número de participantes en el torneo
self.crossover_op = crossover_op # Operador de cruce
self.epsilon = 1e-10 # Epsilon para evitar división por 0
self.sigma = sigma # Sigma que controla la penalizacion por nichos para la función de sharing
self.show_plot = show_plot # Mostrar plot de la población
def __choose_with_prob(self, prob):
if random.random() <= prob:
return True
return False
def random_init(self) -> list[int]:
""" Inicializa individuo de forma aleatoria """
graph_label = [-1] * len(self.graph.nodes())
for node in list(self.graph.nodes()):
neighbors = list(self.graph.neighbors(node))
if len(neighbors) == 0:
graph_label[node] = node
else:
graph_label[node] = random.choice(neighbors)
return graph_label
def label_propagation_init(self) -> list[int]:
""" Inicializa un individuo mediante el algoritmo de propagación de etiquetas """
# Se obtienen las comunidades mediante el algoritmo de propagación de etiquetas
community_dict_values = nx.algorithms.community.asyn_lpa_communities(self.graph)
# Se crea un mapping de nodos a comunidades
node_community_map = {}
for community_id, nodes in enumerate(community_dict_values):
for node in nodes:
node_community_map[node] = community_id
locus_representation = [-1] * len(self.graph.nodes())
# Para cada nodo se asigna un nodo vecino de la misma comunidad
for node in self.graph.nodes():
community = node_community_map[node]
same_community_neighbors = [neighbor for neighbor in self.graph.neighbors(node) if node_community_map[neighbor] == community]
if same_community_neighbors:
locus_representation[node] = random.choice(same_community_neighbors)
else:
locus_representation[node] = node
return locus_representation
def create_pop(self):
""" Crea una población de N individuos codificados en modo locus """
random_pop = math.ceil(self.N*self.init)
label_propagation_pop = self.N - random_pop
# Se inicializa la población con individuos aleatorios
for _ in range(random_pop):
self.pop.append(self.random_init())
# Se inicializa el resto de la población mediante el algoritmo de propagación de etiquetas
for _ in range(label_propagation_pop):
self.pop.append(self.label_propagation_init())
def decode(self, locus_representation: list[int]) -> dict[int, int]:
""" Decodifica un individuo en modo locus a modo cluster """
uf = UnionFind(len(locus_representation))
for node, neighbor in enumerate(locus_representation):
uf.union(node, neighbor)
# Agrupar nodos por su raíz en la estructura Union-Find
communities = {}
for node in range(len(locus_representation)):
root = uf.find(node)
if root not in communities:
communities[root] = []
communities[root].append(node)
communities = list(communities.values())
return communities
def plot(self, node_community_map: list[list[int]]):
""" Pinta el grafo con un color por comunidad """
# Se crea un mapping de nodos a comunidades
node_color_map = {}
for idx, community in enumerate(node_community_map):
for node in community:
node_color_map[node] = idx
# Se obtiene la lista de colores
color_map = []
for node in self.graph.nodes():
color_map.append(node_color_map[node])
plt.figure(figsize=(30, 25))
nx.draw(self.graph, node_color=color_map, with_labels=True)
plt.show()
def plot_pareto_front(self, first_front, fitness_values):
""" Pinta el frente de Pareto """
# Extraer los valores de fitness para los individuos en el primer frente
x_values = [fitness_values[i][0] for i in first_front]
y_values = [fitness_values[i][1] for i in first_front]
# Crear el plot
plt.figure(figsize=(10, 6))
plt.scatter(x_values, y_values, c='blue', marker='o')
plt.title("Frente de Pareto")
plt.xlabel("Objetivo 1")
plt.ylabel("Objetivo 2")
plt.grid(True)
plt.show()
def fitness(self, individual: list[int]) -> float:
""" Calcula el fitness de un individuo
0: {Community score+, Internal density}
1: {Q +, Internal density +}
2: {Community score+, Average-ODF}
3: {Community score+, Max-ODF}
"""
communities = self.decode(individual)
NodeClustering = cdlib.NodeClustering(communities, self.graph)
NodeClusteringCommunities = [cdlib.NodeClustering([community], self.graph) for community in communities]
if self.fitness_metrics == 0:
community_score = sum(cdlib.evaluation.average_internal_degree(self.graph, NodeClustering, summary=False))
internal_density = sum(1 - cdlib.evaluation.internal_edge_density(self.graph, community).score for community in NodeClusteringCommunities)
return (community_score, internal_density)
elif self.fitness_metrics == 1:
q = cdlib.evaluation.newman_girvan_modularity(self.graph, NodeClustering).score
internal_density = sum(1 - cdlib.evaluation.internal_edge_density(self.graph, community).score for community in NodeClusteringCommunities)
return (q, internal_density)
elif self.fitness_metrics == 2:
avg_odf = 1 / (sum(cdlib.evaluation.avg_odf(self.graph, community).score for community in NodeClusteringCommunities) + self.epsilon)
community_score = sum(cdlib.evaluation.average_internal_degree(self.graph, NodeClustering, summary=False))
return (community_score, avg_odf)
elif self.fitness_metrics == 3:
max_odf = 1 / (sum(cdlib.evaluation.max_odf(self.graph, community).score for community in NodeClusteringCommunities) + self.epsilon)
community_score = sum(cdlib.evaluation.average_internal_degree(self.graph, NodeClustering, summary=False))
return (community_score, max_odf)
def dominates(self, individual1:float, individual2:float) -> bool:
""" Devuelve True si individual1 domina a individual2 """
return all(x >= y for x, y in zip(individual1, individual2)) and any(x > y for x, y in zip(individual1, individual2))
def moga_fast_non_dominated_sort(self, fitness: list[float]) -> list[list[int]]:
""" Returns a list of Pareto fronts, including empty levels of dominance """
domination_counts = [0] * len(self.pop)
dominated_solutions = [set() for _ in self.pop]
max_dominance = 0
# Identifying the dominance relationships
for p in range(len(fitness)):
for q in range(len(fitness)):
if p != q:
if self.dominates(fitness[p], fitness[q]):
dominated_solutions[p].add(q)
elif self.dominates(fitness[q], fitness[p]):
domination_counts[p] += 1
max_dominance = max(max_dominance, domination_counts[p])
# Initializing the fronts list with empty lists
fronts = [[] for _ in range(max_dominance + 2)]
# Assigning solutions to the appropriate front
for idx, count in enumerate(domination_counts):
# fronts[count].append(self.pop[idx]) #Returns the graph of the individual "idx"
fronts[count].append(idx) #Returns the index of the individual "idx"
return fronts[:-1]
def sharing_function(self, distance):
""" Función de nicho que penaliza a los individuos cercanos """
if distance < self.sigma:
return 1 - (distance / self.sigma)
else:
return 0
def calculate_distance(self, individual1, individual2, fitness):
""" Calcula la distancia entre dos individuos """
distance_pow_2 = (fitness[individual1][0] - fitness[individual2][0])**2 + (fitness[individual1][1] - fitness[individual2][1])**2
distance = distance_pow_2**0.5
return distance
def adjusted_fitness(self, individual, population, F, fitness):
""" Calcula el fitness ajustado de un individuo """
shared_fitness = 0
for other_individual in population:
if individual != other_individual:
distance = self.calculate_distance(individual, other_individual, fitness)
shared_fitness += self.sharing_function(distance)
shared_fitness = max(shared_fitness, 1)
return F[individual] / shared_fitness
def tournament(self, old_fitness):
""" Selección de padres por torneo """
participants = random.sample(self.pop, self.n_tour)
best = None
for participant in participants:
if best is None:
best = participant
elif self.dominates(old_fitness[self.pop.index(participant)], old_fitness[self.pop.index(best)]):
best = participant
return best
def single_point_crossover(self, p1, p2):
""" Crossover de un punto """
c1, c2 = p1.copy(), p2.copy()
if np.random.uniform() < self.pcross:
# seleccionar punto de crossover
pt = random.randint(1, len(p1)-2)
c1 = p1[:pt] + p2[pt:]
c2 = p2[:pt] + p1[pt:]
return [c1, c2]
def multiple_point_crossover(self, p1, p2, k):
""" Crossover de k puntos """
if len(p1) != len(p2):
raise ValueError("Los padres deben tener el mismo tamaño")
# Generar k puntos de cruce únicos
crossover_points = sorted(random.sample(range(1, len(p1)), k))
offspring1, offspring2 = [], []
previous_point = 0
for i, point in enumerate(crossover_points):
if i % 2 == 0:
offspring1.extend(p1[previous_point:point])
offspring2.extend(p2[previous_point:point])
else:
offspring1.extend(p2[previous_point:point])
offspring2.extend(p1[previous_point:point])
previous_point = point
# Agregar el último segmento
if k % 2 == 0:
offspring1.extend(p1[previous_point:])
offspring2.extend(p2[previous_point:])
else:
offspring1.extend(p2[previous_point:])
offspring2.extend(p1[previous_point:])
return [offspring1, offspring2]
def uniform_crossover(self, p1,p2):
""" Crossover uniforme """
c1, c2 = p1.copy(), p2.copy()
if np.random.uniform() < self.pcross:
for i in range(len(p1)):
if random.randint(0,2) == 1:
c1[i] , c2[i] = c2[i] , c1[i]
return [c1,c2]
def crossover(self, i1, i2):
""" Cruce de dos individuos """
if self.crossover_op==0:
return self.single_point_crossover(i1,i2)
elif self.crossover_op==1:
return self.multiple_point_crossover(i1,i2,2)
elif self.crossover_op==2:
return self.uniform_crossover(i1,i2)
def mutate(self, individual: list) -> list[int]:
""" Mutación de un individuo """
size = len(individual)
# Se muta cada nodo con probabilidad pmut cambiando el vecino por uno aleatorio
for i in range(size):
if self.__choose_with_prob(self.pmut):
neighbors = list(self.graph.neighbors(i))
individual[i] = random.choice(neighbors)
return individual
def create_children(self, old_fitness):
""" Crea una población de hijos de tamaño N (tamaño de la población)"""
children = []
while len(children) < self.N:
parent1 = self.tournament(old_fitness)
parent2 = parent1
while parent1 == parent2:
parent2 = self.tournament(old_fitness)
child1, child2 = self.crossover(parent1, parent2)
self.mutate(child1)
self.mutate(child2)
children.append(child1)
children.append(child2)
return children
def evolve(self):
""" Evoluciona la población durante n_iter iteraciones """
self.create_pop()
with ProcessPoolExecutor() as executor:
old_fitness = list(executor.map(self.fitness, self.pop))
for _ in range(self.n_iter):
# Se añaden los hijos a la población
children = self.create_children(old_fitness)
self.pop.extend(children)
# Se calcula el fitness de la población y se calculan los frentes de Pareto
with ProcessPoolExecutor() as executor:
new_fitness = list(executor.map(self.fitness, children))
fitness_pop = old_fitness + new_fitness
#Devuelve los rangos de dominancia en una lista de listas.
# ej: paretos = [[A, B, C, D], [F], [E], [], [], [], [G]] donde paretos[0] (A, B, C, D) representan las soluciones no dominadas
# paretos[1] (F) representa las soluciones dominadas por una solución y así sucesivamente
paretos = self.moga_fast_non_dominated_sort(fitness_pop)
# Se seleccionan los individuos que pasan a la siguiente generación
# Calculamos el fitness de cada individuo en la población
# Fi = N - 0.5(μ(ri) - 1) - Σμ(k)
# N: tamaño de la población
# μ(ri): rango del individuo i
# Σμ(k): Nº de individuos con rangos inferiores al individuo i
pop_len = len(fitness_pop)
F = [0.0] * pop_len
Σμ_k = 0
for μ_ri, front in enumerate(paretos):
# Fi = N - 0.5(μ(ri) - 1) - Σμ(k)
for i_value in front:
# F[i_value] = self.N - 0.5 * ((μ_ri+1) - 1) - Σμ_k
F[i_value] = pop_len - 0.5 * ((μ_ri+1) - 1) - Σμ_k
# We apply a niching technique to keep diversity
F[i_value] = self.adjusted_fitness(i_value, front, F, fitness_pop)
Σμ_k += len(front)
#We sort the indexes of the population by their fitness
sorted_individuals_by_fitness = sorted(range(len(F)), key=F.__getitem__, reverse=False)
#We assign the individuals with the best fitness from the indexes to the next generation
n_sorted_individuals_idx = sorted_individuals_by_fitness[:self.N]
sorted_population = [self.pop[i] for i in n_sorted_individuals_idx]
old_pop = self.pop.copy()
self.pop = sorted_population.copy()
if self.show_plot != False:
if _ % self.show_plot == 0:
print(f"Generación {_}")
self.plot_pareto_front(paretos[0], fitness_pop)
return old_pop, fitness_pop, paretos[0]