-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain.py
377 lines (297 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import torch
from torch import nn
import apex
from apex import amp
import argparse
import os
import pathlib
import importlib
import ssl
import sys
from tqdm import tqdm
import functools
from src.utils import args as args_utils
from src.utils.logger import Logger
class Trainer(object):
def __init__(self, args):
super(Trainer, self).__init__()
# Initialize and apply general options
ssl._create_default_https_context = ssl._create_unverified_context
torch.manual_seed(args.random_seed)
if args.num_gpus > 0:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.cuda.manual_seed_all(args.random_seed)
if args.torch_home:
os.environ['TORCH_HOME'] = args.torch_home
self.args = args
# Set distributed training options
if args.num_gpus <= 1:
self.rank = 0
elif args.num_gpus > 1 and args.num_gpus <= 8:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
self.rank = torch.distributed.get_rank()
torch.cuda.set_device(self.rank)
elif args.num_gpus > 8:
raise
if args.debug:
torch.autograd.detect_anomaly()
# Prepare experiment directories and save options
self.project_dir = pathlib.Path(args.project_dir)
self.experiment_dir = self.project_dir / 'logs' / args.experiment_name
self.checkpoints_dir = self.experiment_dir / 'checkpoints'
os.makedirs(self.checkpoints_dir, exist_ok=True)
# Redirect stdout
if args.redirect_print_to_file:
logs_dir = self.experiment_dir / 'stdout'
os.makedirs(logs_dir, exist_ok=True)
sys.stdout = open(os.path.join(logs_dir, f'stdout_{self.rank}.txt'), 'w')
sys.stderr = open(os.path.join(logs_dir, f'stderr_{self.rank}.txt'), 'w')
if self.rank == 0:
print(args)
with open(self.experiment_dir / 'args.txt', 'wt') as args_file:
for k, v in sorted(vars(args).items()):
args_file.write('%s: %s\n' % (str(k), str(v)))
# Initialize model
self.model = importlib.import_module(f'src.rome_full').TrainableROME(args)
if args.num_gpus > 0:
self.model.cuda()
if self.rank == 0:
print(self.model)
# Load pre-trained weights
if args.model_checkpoint:
if self.rank == 0:
print(f'Loading model from {args.model_checkpoint}')
missing_keys, unexpected_keys = self.model.load_state_dict(
torch.load(args.model_checkpoint, map_location='cpu'), strict=False)
print('Missing keys', missing_keys)
print('Unexpected keys', unexpected_keys)
# Initialize optimizers and schedulers
self.opts = self.model.configure_optimizers()
# Initialize mixed precision
if args.use_amp:
self.model, self.opts = amp.initialize(self.model, self.opts, opt_level=args.amp_opt_level,
num_losses=len(self.opts))
self.lr_shds, self.lr_shd_max_iters, self.num_iters = self.model.configure_schedulers(self.opts)
self.use_same_batch_for_all_opts = (
self.num_iters == [] or
self.num_iters == [1] * len(self.num_iters)
)
if not self.use_same_batch_for_all_opts:
self.total_num_iters = sum(self.num_iters)
# Initialize logging
self.logger = Logger(args, self.experiment_dir, self.rank)
# Load pre-trained optimizers and schedulers
if args.trainer_checkpoint:
if self.rank == 0:
print(f'Loading trainer from {args.trainer_checkpoint}')
trainer_checkpoint = torch.load(args.trainer_checkpoint, map_location='cpu')
for i, opt in enumerate(self.opts):
opt.load_state_dict(trainer_checkpoint[f'opt_{i}'])
if len(self.lr_shds):
for i, shd in enumerate(self.lr_shds):
shd.load_state_dict(trainer_checkpoint[f'shd_{i}'])
if args.use_amp and 'amp' in trainer_checkpoint.keys():
amp.load_state_dict(trainer_checkpoint['amp'])
self.logger.load_state_dict(trainer_checkpoint['logger'])
# Initialize dataloaders
data_module = importlib.import_module(f'src.dataset.{args.dataset_name}').DataModule(args)
if args.debug:
self.train_dataloader, self.train_sampler = data_module.test_dataloader(), None
else:
self.train_dataloader, self.train_sampler = data_module.train_dataloader()
self.test_dataloader = data_module.test_dataloader()
# Initialize distributed training
if args.num_gpus > 1:
self.model = apex.parallel.DistributedDataParallel(self.model)
@staticmethod
def get_lr(opt, use_gpu):
for param_group in opt.param_groups:
lr = param_group['lr']
lr = torch.FloatTensor([lr]).mean()
if use_gpu:
lr = lr.cuda()
return lr
def train(self):
cur_iter = 0
for n in range(self.logger.epoch, self.args.max_epochs):
if self.rank == 0:
print(f'epoch {n}')
train_data_iterator = tqdm(self.train_dataloader)
test_data_iterator = tqdm(self.test_dataloader)
else:
train_data_iterator = self.train_dataloader
test_data_iterator = self.test_dataloader
# Train
self.model.train(mode=True)
if self.train_sampler is not None:
self.train_sampler.set_epoch(n)
for data_dict in train_data_iterator:
losses_dict, histograms_dict, visuals = self.training_step(data_dict, cur_iter)
cur_iter += 1
self.logger.log('train', losses_dict, histograms_dict, visuals)
# Test
epoch = self.logger.epoch
if not self.args.skip_test:
self.model.eval()
for i, data_dict in enumerate(test_data_iterator):
with torch.no_grad():
first_batch = i == 0
_, losses_dict, histograms_dict, visuals_, _ = self.model(data_dict, visualize=first_batch)
if first_batch and epoch % self.args.test_visual_freq == 0:
visuals = visuals_ # store visuals from the first batch
else:
visuals = None
self.logger.log('test', losses_dict)
self.logger.log(
'test',
histograms_dict=histograms_dict,
visuals=visuals,
epoch_end=True
)
# Save checkpoints
if self.rank == 0 and (
not epoch % self.args.latest_checkpoint_freq or not epoch % self.args.checkpoint_freq):
# Model
if self.args.num_gpus > 1:
model = self.model.module
else:
model = self.model
torch.save(model.state_dict(), self.checkpoints_dir / f'{epoch:03d}_model.pth')
# Trainer
trainer_checkpoint = {}
for i, opt in enumerate(self.opts):
trainer_checkpoint[f'opt_{i}'] = opt.state_dict()
if len(self.lr_shds):
for i, shd in enumerate(self.lr_shds):
trainer_checkpoint[f'shd_{i}'] = shd.state_dict()
if args.use_amp:
trainer_checkpoint['amp'] = amp.state_dict()
trainer_checkpoint['logger'] = self.logger.state_dict()
torch.save(trainer_checkpoint, self.checkpoints_dir / f'{epoch:03d}_trainer.pth')
# Remove previous checkpoint
prev_epoch = epoch - 1
if epoch > 1 and prev_epoch % self.args.checkpoint_freq:
try:
os.remove(self.checkpoints_dir / f'{prev_epoch:03d}_model.pth')
os.remove(self.checkpoints_dir / f'{prev_epoch:03d}_trainer.pth')
except OSError:
pass
def get_optimizer_idx(self, cur_iter):
cur_iter_res = cur_iter % self.total_num_iters
for i in range(len(self.num_iters)):
cur_iter_res -= self.num_iters[i]
if cur_iter_res < 0:
break
return i
def forward_backward_step(
self,
data_dict,
losses_dict,
histograms_dict,
visuals,
optimizer_idx,
output_visuals
):
for i, opt in enumerate(self.opts):
if i != optimizer_idx:
# Set requires_grad to False for all other parameters
for group in opt.param_groups:
for p in group['params']:
p.requires_grad = False
else:
# Set requires_grad to False for all other parameters
for group in opt.param_groups:
for p in group['params']:
p.requires_grad = True
opt = self.opts[optimizer_idx]
if len(self.lr_shds):
shd = self.lr_shds[optimizer_idx]
max_iter = self.lr_shd_max_iters[optimizer_idx]
opt.zero_grad()
(
loss,
losses_dict_,
histograms_dict_,
visuals_,
data_dict_
) = self.model(
data_dict,
'train',
optimizer_idx,
visualize=output_visuals)
losses_dict.update(losses_dict_)
histograms_dict.update(histograms_dict_)
if visuals_ is not None:
visuals.data = visuals_.data
data_dict.update(data_dict_)
if self.args.use_amp:
with amp.scale_loss(loss, opt, loss_id=optimizer_idx) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
nan_backward = False
for name, p in self.model.named_parameters():
if p.grad is not None:
if torch.isnan(p.grad).any().item():
nan_backward = True
break
if nan_backward:
print(f'NaN in Backward, skipping update')
else:
opt.step()
if len(self.lr_shds):
if shd.last_epoch < max_iter:
shd.step()
def training_step(self, data_dict, cur_iter):
output_visuals = self.logger.output_train_visuals and self.args.output_visuals
losses_dict = {}
histograms_dict = {}
visuals = torch.empty(0)
if self.use_same_batch_for_all_opts:
# Use the same batch for all optimizers
for i in range(len(self.opts)):
self.forward_backward_step(data_dict, losses_dict, histograms_dict, visuals, i,
output_visuals and i == 0)
else:
# Step using a single optimizer
i = self.get_optimizer_idx(cur_iter)
self.forward_backward_step(data_dict, losses_dict, histograms_dict, visuals, i, output_visuals)
if not len(visuals):
visuals = None
return losses_dict, histograms_dict, visuals
def main(args):
trainer = Trainer(args)
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(conflict_handler='resolve')
parser.add_argument('--project_dir', default='.', type=str)
parser.add_argument('--experiment_name', default='', type=str)
parser.add_argument('--dataset_name', default='', type=str)
parser.add_argument('--model_name', default='', type=str)
parser.add_argument('--model_checkpoint', default=None, type=str)
parser.add_argument('--trainer_checkpoint', default=None, type=str)
parser.add_argument('--torch_home', default='')
parser.add_argument('--random_seed', default=0, type=int)
parser.add_argument('--num_gpus', default=1, type=int)
parser.add_argument('--local_rank', type=int)
parser.add_argument('--max_epochs', default=200, type=int)
parser.add_argument('--checkpoint_freq', default=10, type=int)
parser.add_argument('--latest_checkpoint_freq', default=1, type=int,
help='frequency of latest checkpoints creation (in epochs)')
parser.add_argument('--test_freq', default=1, type=int, help='frequency of testing (in epochs')
parser.add_argument('--test_visual_freq', default=20, type=int, help='frequency of visuals (in epochs')
parser.add_argument('--output_visuals', default='True', type=args_utils.str2bool, choices=[True, False])
parser.add_argument('--logging_freq', default=50, type=int, help='frequency of train logging (in iterations)')
parser.add_argument('--visuals_freq', default=500, type=int,
help='frequency of train visualization (in iterations)')
parser.add_argument('--redirect_print_to_file', default='False', type=args_utils.str2bool, choices=[True, False])
parser.add_argument('--use_amp', default='True', type=args_utils.str2bool, choices=[True, False])
parser.add_argument('--amp_opt_level', default='O0', type=str)
parser.add_argument('--skip_test', default='False', type=args_utils.str2bool, choices=[True, False])
parser.add_argument('--debug', action='store_true')
args, _ = parser.parse_known_args()
parser = importlib.import_module(f'src.dataset.{args.dataset_name}').DataModule.add_argparse_args(parser)
parser = importlib.import_module(f'src.rome_full').TrainableROME.add_argparse_args(parser)
args = parser.parse_args()
main(args)