This repository serves the sharpness group. TBC
Compute evaluations from different metrics and transformations on real or synthetic datasets.
From within the src
directory:
$ python benchmark.py -h
usage: benchmark.py [-h] [-s {sinusoidal,gaussian,bw,xor}] [-i INPUT] [-t {vflip,hflip,blur,noise,brightness,crop}] [-m {all,mse,mae,rmse,grad}] [--visualize] [-o OUTPUT]
Sharpness Benchmarks
optional arguments:
-h, --help show this help message and exit
-s {sinusoidal,gaussian,bw,xor}, --synthetic {sinusoidal,gaussian,bw,xor}
generate synthetic data
-i INPUT, --input INPUT
name of input file to load data from
-t {vflip,hflip,blur,noise,brightness,crop}, --transformation {vflip,hflip,blur,noise,brightness,crop}
transformation to perform on data
-m {all,mse,mae,rmse,grad}, --metric {all,mse,mae,rmse,grad}
evaluation metric to compute
--visualize visualize and save the operations
-o OUTPUT, --output OUTPUT
name of output file visualization
Generate synthetic data, apply a bluring transformation, compute all metrics, and visualize/save the output.
$ python benchmark.py -s xor -t blur -m all --visualize -o ../media/synthetic.png
=> mse: 151.15902709960938
=> mae: 7.190582275390625
=> rmse: 12.294674745580274
=> grad: (6.91624727961359e-19, 4.611219388020603e-19)
Load the default data example, apply a vertical transformation, compute only the root-mean-square error, and visualize/save the output to the default name.
$ python benchmark.py -t vflip -m rmse --visualize
Loading data from ../data/kh_ABI_C13.nc (sample 0)
=> rmse: 10.005649078875036