-
Notifications
You must be signed in to change notification settings - Fork 64
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
2,366 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from stereo.image.segmentation.seg_utils.v1_pro.cell_seg_pipeline_v1_pro import CellSegPipeV1Pro # noqa |
159 changes: 159 additions & 0 deletions
159
stereo/image/segmentation/seg_utils/v1_pro/cell_infer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
import multiprocessing as mp | ||
import os | ||
import time | ||
|
||
import cv2 | ||
import glog | ||
import numpy as np | ||
# import tensorflow as tf | ||
import torch | ||
from albumentations import Compose | ||
from albumentations.pytorch import ToTensorV2 | ||
from skimage import filters | ||
from tqdm import tqdm | ||
|
||
from stereo import logger | ||
from .dataset import data_batch2 | ||
from .resnet_unet import EpsaResUnet | ||
from .utils import ( | ||
split_preproc | ||
) | ||
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | ||
|
||
|
||
def get_transforms(): | ||
list_transforms = [] | ||
|
||
list_transforms.extend([]) | ||
list_transforms.extend([ToTensorV2(), ]) | ||
list_trfms = Compose(list_transforms) | ||
return list_trfms | ||
|
||
|
||
def cellInfer(file, size, overlap=100): | ||
if isinstance(file, list): | ||
file_list = file | ||
else: | ||
file_list = [file] | ||
|
||
result = [] | ||
|
||
model_path = os.path.join(os.path.split(__file__)[0], 'model') | ||
model_dir = os.path.join(model_path, 'best_model.pth') | ||
logger.info(f'CellCut_model infer path {model_dir}...') | ||
model = EpsaResUnet(out_channels=6) | ||
glog.info('Load model from: {}'.format(model_dir)) | ||
model.load_state_dict(torch.load(model_dir, map_location=lambda storage, loc: storage), strict=True) | ||
model.eval() | ||
logger.info('Load model ok.') | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
if torch.cuda.is_available(): | ||
glog.info('GPU type is {}'.format(torch.cuda.get_device_name(0))) | ||
glog.info(f"using device: {device}") | ||
model.to(device) | ||
for idx, image in enumerate(file_list): | ||
logger.info(image.shape) | ||
|
||
t1 = time.time() | ||
logger.info('median filter using cpu') | ||
|
||
image_list, m_x_list, m_y_list = split_preproc(image, 1000, 100) | ||
images = np.zeros(image.shape, dtype=np.uint8) | ||
images.fill(0) | ||
median_filter_in_pool_parallel(image_list, images, m_x_list, m_y_list) | ||
|
||
t2 = time.time() | ||
logger.info('median filter: {}'.format(t2 - t1)) | ||
|
||
# accelerate data loader | ||
overlap = 100 | ||
dataset = data_batch2(images, 256, overlap) | ||
|
||
merge_label = image | ||
merge_label.fill(0) | ||
x_list, y_list, ori_size = dataset.get_list() | ||
test_dataloader = torch.utils.data.DataLoader(dataset, batch_size=20) | ||
img_idx = 0 | ||
for batch in tqdm(test_dataloader, ncols=80): | ||
img = batch | ||
img = img.type(torch.FloatTensor) | ||
img = img.to(device) | ||
|
||
pred_mask = model(img) | ||
bacth_size = len(pred_mask) | ||
pred_mask = torch.sigmoid(pred_mask).detach().cpu().numpy() | ||
pred = pred_mask[:, 0, :, :] | ||
pred[:] = (pred[:] < 0.55) * 255 | ||
pred1 = pred.astype(np.uint8) | ||
for i in range(bacth_size): | ||
temp_img = pred1[i][:ori_size[i + img_idx][0], :ori_size[i + img_idx][1]] | ||
info = [x_list[i + img_idx], y_list[i + img_idx]] | ||
h, w = temp_img.shape | ||
if int(info[0]) == 0 or int(info[1]) == 0: | ||
x_begin = int(info[0]) | ||
y_begin = int(info[1]) | ||
merge_label[int(x_begin): int(x_begin) + h - 2, int(y_begin): int(y_begin) + w - 2] = \ | ||
temp_img[1: - 1, 1: - 1] | ||
else: | ||
x_begin = int(info[0]) + overlap // 2 | ||
y_begin = int(info[1]) + overlap // 2 | ||
merge_label[int(x_begin): int(x_begin) + h - overlap, int(y_begin): int(y_begin) + w - overlap] = \ | ||
temp_img[overlap // 2: - overlap // 2, overlap // 2: - overlap // 2] | ||
img_idx += 20 | ||
|
||
result.append(merge_label) | ||
|
||
return result | ||
|
||
|
||
def s_median_filter(image): | ||
from skimage.morphology import disk | ||
m_image = filters.median(image, disk(50)) | ||
m_image = cv2.subtract(image, m_image) | ||
return m_image | ||
|
||
|
||
def median_filter_in_pool(image_list, images): | ||
with mp.Pool(processes=20) as p: | ||
for i in image_list: | ||
median_image = p.apply_async(s_median_filter, (i,)) | ||
images.append(median_image) | ||
p.close() | ||
p.join() | ||
|
||
|
||
def median_filter_in_pool_parallel(image_list, images, x_list, y_list): | ||
import queue | ||
q = queue.Queue() | ||
|
||
def worker(): | ||
idx = 0 | ||
while True: | ||
item = q.get() | ||
if item == 'STOP': | ||
q.task_done() | ||
break | ||
item = item.get() | ||
|
||
x = x_list[idx] | ||
y = y_list[idx] | ||
h, w = item.shape | ||
images[x: x + h - 2, y: y + w - 2] = item[1:-1, 1:-1] | ||
idx += 1 | ||
|
||
q.task_done() | ||
|
||
import threading | ||
threading.Thread(target=worker, daemon=True).start() | ||
|
||
with mp.Pool(processes=20) as p: | ||
for i in image_list: | ||
median_image = p.apply_async(s_median_filter, (i,)) | ||
q.put(median_image) | ||
p.close() | ||
p.join() | ||
q.put('STOP') | ||
|
||
q.join() |
108 changes: 108 additions & 0 deletions
108
stereo/image/segmentation/seg_utils/v1_pro/cell_seg_pipeline_v1_pro.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# import image | ||
import os | ||
import time | ||
from os.path import join | ||
|
||
import numpy as np | ||
import tifffile | ||
from skimage import measure | ||
|
||
from stereo.image.segmentation.seg_utils.base_cell_seg_pipe.cell_seg_pipeline import CellSegPipe | ||
from stereo.image.segmentation.seg_utils.v1_pro import grade | ||
from stereo.log_manager import logger | ||
from .cell_infer import cellInfer | ||
|
||
|
||
class CellSegPipeV1Pro(CellSegPipe): | ||
|
||
def tissue_cell_infer(self): | ||
|
||
"""cell segmentation in tissue area by neural network""" | ||
self.tissue_cell_label = [] | ||
for idx, img in enumerate(self.img_filter): | ||
tissue_bbox = self.tissue_bbox[idx] | ||
tissue_img = [img[p[0]: p[2], p[1]: p[3]] for p in tissue_bbox] | ||
|
||
label_list = cellInfer(tissue_img, self.deep_crop_size, self.overlap) | ||
self.tissue_cell_label.append(label_list) | ||
return 0 | ||
|
||
def tissue_label_filter(self, tissue_cell_label): | ||
"""filter cell mask in tissue area""" | ||
tissue_cell_label_filter = [] | ||
for idx, label in enumerate(tissue_cell_label): | ||
tissue_bbox = self.tissue_bbox[idx] | ||
label_filter_list = [] | ||
for i in range(self.tissue_num[idx]): | ||
if len(self.tissue_mask) != 0: | ||
tiss_bbox_tep = tissue_bbox[i] | ||
label_filter = np.multiply( | ||
label[i], | ||
self.tissue_mask[idx][tiss_bbox_tep[0]: tiss_bbox_tep[2], tiss_bbox_tep[1]: tiss_bbox_tep[3]] | ||
).astype(np.uint8) | ||
label_filter_list.append(label_filter) | ||
else: | ||
label_filter_list.append(label[i]) | ||
tissue_cell_label_filter.append(label_filter_list) | ||
return tissue_cell_label_filter | ||
|
||
def run(self): | ||
logger.info('Start do cell mask, the method is v1_pro, this will take some minutes.') | ||
self.get_img_filter() | ||
|
||
t1 = time.time() | ||
|
||
self.tissue_cell_infer() | ||
t2 = time.time() | ||
logger.info('Cell inference : %.2f' % (t2 - t1)) | ||
|
||
# filter by tissue mask | ||
tissue_cell_label_filter = self.tissue_label_filter(self.tissue_cell_label) | ||
t3 = time.time() | ||
logger.info('Filter by tissue mask : %.2f' % (t3 - t2)) | ||
|
||
# mosaic tissue roi | ||
cell_mask = self.mosaic(tissue_cell_label_filter) | ||
del tissue_cell_label_filter | ||
t4 = time.time() | ||
logger.info('Mosaic tissue roi : %.2f' % (t4 - t3)) | ||
|
||
# post process | ||
self.watershed_score(cell_mask) | ||
t5 = time.time() | ||
logger.info('Post-processing : %.2f' % (t5 - t4)) | ||
|
||
self.save_cell_mask() | ||
logger.info('Result saved : %s ' % (self.out_path)) | ||
|
||
def save_each_file_result(self, file_name, idx): | ||
mask_name = r'_watershed_mask.tif' if self.is_water else r'_mask.tif' | ||
tifffile.imsave(join(self.out_path, file_name + mask_name), self.post_mask_list[idx]) | ||
|
||
def save_cell_mask(self): | ||
"""save cell mask from network or watershed""" | ||
for idx, file in enumerate(self.file): | ||
file_name, _ = os.path.splitext(file) | ||
self.save_each_file_result(file_name, idx) | ||
|
||
def watershed_score(self, cell_mask): | ||
"""watershed and score on cell mask by neural network""" | ||
for idx, cell_mask in enumerate(cell_mask): | ||
post_mask = grade.edgeSmooth(cell_mask) | ||
self.post_mask_list.append(post_mask) | ||
|
||
def get_roi(self): | ||
for idx, tissue_mask in enumerate(self.tissue_mask): | ||
label_image = measure.label(tissue_mask, connectivity=2) | ||
props = measure.regionprops(label_image, intensity_image=self.img_list[idx]) | ||
|
||
# remove noise tissue mask | ||
filtered_props = props # self.__filter_roi(props) | ||
if len(props) != len(filtered_props): | ||
tissue_mask_filter = np.zeros((tissue_mask.shape), dtype=np.uint8) | ||
for tissue_tile in filtered_props: | ||
bbox = tissue_tile['bbox'] | ||
tissue_mask_filter[bbox[0]: bbox[2], bbox[1]: bbox[3]] += tissue_tile['image'] | ||
self.tissue_mask[idx] = np.uint8(tissue_mask_filter > 0) | ||
self.tissue_num.append(len(filtered_props)) | ||
self.tissue_bbox.append([p['bbox'] for p in filtered_props]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import math | ||
|
||
import cv2 | ||
import numpy as np | ||
import torch | ||
from albumentations import ( | ||
Compose | ||
) | ||
from albumentations.pytorch import ToTensorV2 | ||
from torch.utils.data import Dataset | ||
|
||
|
||
def get_transforms(): | ||
list_transforms = [] | ||
|
||
list_transforms.extend([]) | ||
|
||
list_transforms.extend([ToTensorV2(), ]) | ||
list_trfms = Compose(list_transforms) | ||
return list_trfms | ||
|
||
|
||
class data_batch(Dataset): | ||
|
||
def __init__(self, img_list): | ||
self.transforms = get_transforms() | ||
self.img_list = img_list | ||
|
||
def __len__(self): | ||
return len(self.img_list) | ||
|
||
def __getitem__(self, idx): | ||
img = self.img_list[idx] | ||
|
||
augmented = self.transforms(image=img) | ||
img = augmented['image'] | ||
|
||
image = torch.cat((img, img), 0) | ||
|
||
return image | ||
|
||
|
||
class data_batch2(Dataset): | ||
|
||
def __init__(self, raw_img, cut_size, overlap): | ||
self.transforms = get_transforms() | ||
|
||
shapes = raw_img.shape | ||
x_nums = math.ceil(shapes[0] / (cut_size - overlap)) | ||
y_nums = math.ceil(shapes[1] / (cut_size - overlap)) | ||
self.x_list = [] | ||
self.y_list = [] | ||
self.img_list = [] | ||
for x_temp in range(x_nums): | ||
for y_temp in range(y_nums): | ||
x_begin = max(0, x_temp * (cut_size - overlap)) | ||
y_begin = max(0, y_temp * (cut_size - overlap)) | ||
x_end = min(x_begin + cut_size, shapes[0]) | ||
y_end = min(y_begin + cut_size, shapes[1]) | ||
i = raw_img[x_begin: x_end, y_begin: y_end] | ||
self.x_list.append(x_begin) | ||
self.y_list.append(y_begin) | ||
self.img_list.append(i) | ||
|
||
self.ori_size = [] | ||
|
||
def __len__(self): | ||
return len(self.img_list) | ||
|
||
def __getitem__(self, idx): | ||
img = self.img_list[idx] | ||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) | ||
self.ori_size.append([img.shape[0], img.shape[1]]) | ||
|
||
pad_img = np.full((256, 256, 3), 0, dtype='uint8') | ||
pad_img[:img.shape[0], :img.shape[1], :] = img | ||
|
||
augmented = self.transforms(image=pad_img) | ||
pad_img = augmented['image'] | ||
|
||
image = torch.cat((pad_img, pad_img), 0) | ||
|
||
return image | ||
|
||
def get_list(self): | ||
return (self.x_list, self.y_list, self.ori_size) |
Oops, something went wrong.