Skip to content

Latest commit

 

History

History
64 lines (47 loc) · 2.16 KB

README.md

File metadata and controls

64 lines (47 loc) · 2.16 KB

PSO for N2/CO2 Adsorption on Graphyne (GY)

The Python code for executing global optimization of bare and adsorbed molecular cluster configurations using particle swarm optimization.

Prerequisites

  • Python 3.x
  • Required Python libraries: numpy, scipy, math, multiprocessing

Install the required libraries using:

pip install numpy scipy

Input File for Running GY_N2_CO2_PSO.py

  • GY.txt: This file should contain the atomic coordinates of the GY sheet in a comma-separated format. Each line should represent an atom with its corresponding x, y, z coordinates. The script reads the atomic coordinates from GY.txt using numpy.loadtxt() to process the atomic species and coordinates. Ensure that your GY.txt file is correctly formatted and available in the script's directory.

Example format:

C, 0.0000, 0.0000, 0.0000
C, 1.2300, 0.0000, 0.0000
C, 2.4600, 0.0000, 0.0000
  • GY-COORDS/: This folder contains the coordinates of γ-GY model sytems used in the study.

Variables to Specify

Before running the script, specify the following variables in the script:

  • Number of Molecules:

    • m: Number of CO2 molecules
    • n: Number of N2 molecules
    • Example values:
      m = 2  # Number of CO2 molecules
      n = 2  # Number of N2 molecules
  • PSO Algorithm Parameters:

    • pop: Population size
    • maxtrial: Number of trials
    • maxit: Maximum number of iterations
    • Example values:
      pop = 2000      # Population size
      maxtrial = 25   # Number of trials
      maxit = 1000    # Maximum number of iterations

How to Run the Scripts

Update the script with the appropriate values for the number of molecules and PSO parameters as outlined above.

To execute the script, simply run from the terminal:

python N2_CO2_bare_PSO.py

Citations

If you use this script for your research or work, please cite the following paper:

Rajeevan, M., John, C., Swathi, R. S. "On assessing the carbon capture performance of graphynes with particle swarm optimization," Phys. Chem. Chem. Phys., 2024, 26, 23152–23167. DOI: 10.1039/D4CP02843K