-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunionfind.py
396 lines (314 loc) · 18.8 KB
/
unionfind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
class UnionFind:
"""
Define a union-find data structure. Also known as disjoint-set.
The union-find structure groups n elements into a collection of disjoint sets.
The basic operations consist of
FIND the unique set that contains the given element
UNION of two sets
The data structure mantains a collection S={S_i} of disjoint sets where
each of them has an element that works as the representative.
This particular implementation can be thought as a disjoint-set forest,
where each element can be thought as a vertex and each disjoint set
as a tree.
"""
def __init__(self,mergeF=None):
"""
Constructor of the union-find data structure
Attributes:
`V` : A dictionary of vertices
`Vl`: A list containing the dictionary keys
`parent`: A list of the parent node of the vertex
`size`: List of numbers of vertices hanging from each vertex
`mergeF`: (Optional) merge function of the data when merging two trees
`data`: (Optional) Dictionary with additional information carried by each vertex
"""
self.V = dict()
self.Vl = []
self.parent = []
self.size = []
self.mergeF = mergeF
self.data = dict()
def add(self,v,data=None):
"""
Add a new element `v` to the union-find
Parameters:
`v`: Vertex to be inserted
`data`: (Optional) information associated to the vertex
"""
if v not in self.V:
i = len(self.V)
self.V[v] = i
self.Vl.append(v)
self.parent.append(i)
self.size.append(1)
self.data[v] = data
def find_parent(self,v):
"""
Find the root of the tree where v is located.
Update the parent information for each vertex
Parameters:
`v`: Vertex
"""
i = self.V[v]
p = i
while self.parent[p]!=p:
p = self.parent[p]
while i!=p:
i,j = self.parent[i],i
self.parent[j] = p
return self.Vl[p]
def find_size(self,v):
"""
Returns the number of vertices hanging below v
Parameters:
`v`: vertex
"""
return self.size[self.V[self.find_parent(v)]]
# returns (new root,merged root)
def merge(self,u,v):
"""
The tree containing vertex u is merged INTO the tree containing vertex v.
"""
su = self.find_size(u)
sv = self.find_size(v)
pu = self.parent[self.V[u]]
pv = self.parent[self.V[v]]
if pu==pv:
return (self.Vl[pu],None)
d = self.mergeF(self.data[self.Vl[pu]],self.data[self.Vl[pv]])
if sv<=su:
pu,pv,su,sv = pv,pu,sv,su
self.parent[pv] = pu
self.size[pu] = su+sv
self.data[self.Vl[pu]] = d
return (self.Vl[pu],self.Vl[pv])
def getData(self,v):
return self.data[self.find_parent(v)]
def mergeF(a,b):
m,ei,ej = max((a['max'],a['elderi'],a['elderj']),(b['max'],b['elderi'],b['elderj']))
return {'max':m,'elderi':ei, 'elderj':ej}
def persistence(f):
"""
Computes the 0D persistence of a given filtration. Filtration values are
passed in an array-like structure `f`. These values are later sorted from
high to low and we compute the persistence of connected components.
Whenever two connected components merge, we record the filter value difference
and store the merge point in a list `pairs`.
Parameters:
`f`: array-like with filtration values.
Returns:
`pairs`: list of tuples (persistence, death, birth). A connected-component
with infinite persistence is appended at the end.
"""
fi = []
for i in range(f.shape[0]):
for j in range(f.shape[1]):
fi.append((f[i,j],i,j))
fi = sorted(fi, reverse=True)
uf = UnionFind(mergeF)
pairs = []
for v, i, j in fi:
uf.add((i,j),{'max':v,'elderi':i, 'elderj':j})
top = (i-1, j)
bot = (i+1, j)
lef = (i, j-1)
rig = (i, j+1)
topb = top in uf.V
botb = bot in uf.V
lefb = lef in uf.V
rigb = rig in uf.V
if topb:
topp = uf.find_parent(top)
topd = uf.getData(top)
if lefb:
lefp = uf.find_parent(lef)
lefd = uf.getData(lef)
if botb:
botp = uf.find_parent(bot)
botd = uf.getData(bot)
if rigb:
rigp = uf.find_parent(rig)
rigd = uf.getData(rig)
if topb:
uf.merge(top, (i,j))
if lefb:
uf.merge(lef, (i,j))
if botb:
uf.merge((i,j), bot)
if rigb:
uf.merge((i,j), rig)
if lefb and rigb and ~topb and ~botb:
if lefp != rigp:
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif ~lefb and ~rigb and topb and botb:
if topp != botp:
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif ~lefb and rigb and topb and ~botb:
if rigp != topp:
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (topd['max'],topd['elderi'],topd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif lefb and ~rigb and topb and ~botb:
if lefp != topp:
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (topd['max'],topd['elderi'],topd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif lefb and ~rigb and ~topb and botb:
if lefp != botp:
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif ~lefb and rigb and ~topb and botb:
if rigp != botp:
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif lefb and rigb and topb and ~botb:
if (lefp != rigp) and (rigp != topp) and (topp != lefp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (topd['max'],topd['elderi'],topd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp != rigp) and (rigp != topp) and (topp == lefp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp != rigp) and (rigp == topp) and (topp != lefp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp == rigp) and (rigp != topp) and (topp != lefp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif lefb and ~rigb and topb and botb:
if (lefp != topp) and (topp != botp) and (botp != lefp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((botd['max'], botd['elderi'], botd['elderj']), (lefd['max'],lefd['elderi'],lefd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp != topp) and (topp != botp) and (botp == lefp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp != topp) and (topp == botp) and (botp != lefp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (lefd['max'],lefd['elderi'],lefd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp == topp) and (topp != botp) and (botp != lefp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif lefb and rigb and ~topb and botb:
if (lefp != rigp) and (rigp != botp) and (botp != lefp):
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((botd['max'], botd['elderi'], botd['elderj']), (lefd['max'],lefd['elderi'],lefd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp != rigp) and (rigp != botp) and (botp == lefp):
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp != rigp) and (rigp == botp) and (botp != lefp):
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (lefd['max'],lefd['elderi'],lefd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefp == rigp) and (rigp != botp) and (botp != lefp):
d,ki,kj = min((rigd['max'], rigd['elderi'], rigd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif ~lefb and rigb and topb and botb:
if (rigp != topp) and (topp != botp) and (botp != rigp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((botd['max'], botd['elderi'], botd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (rigp != topp) and (topp != botp) and (botp == rigp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (rigp != topp) and (topp == botp) and (botp != rigp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (rigp == topp) and (topp != botp) and (botp != rigp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif lefb and rigb and topb and botb:
if (lefb != rigb) and (rigp != topp) and (topp != botp) and (botp != lefp) and (left != topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((botd['max'], botd['elderi'], botd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp != topp) and (topp != botp) and (botp != lefp) and (left != topp) and (rigp == botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp != topp) and (topp != botp) and (botp == lefp) and (left != topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp != topp) and (topp == botp) and (botp != lefp) and (left != topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp != topp) and (topp != botp) and (botp != lefp) and (left == topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((botd['max'], botd['elderi'], botd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp == topp) and (topp != botp) and (botp != lefp) and (left != topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((botd['max'], botd['elderi'], botd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb == rigb) and (rigp != topp) and (topp != botp) and (botp != lefp) and (left != topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (topd['max'],topd['elderi'],topd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp == topp) and (topp != botp) and (botp == lefp) and (left != topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp != topp) and (topp != botp) and (botp != lefp) and (left == topp) and (rigp == botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp != topp) and (topp == botp) and (botp == lefp) and (left == topp) and (rigp != botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb != rigb) and (rigp == topp) and (topp == botp) and (botp != lefp) and (left != topp) and (rigp == botp):
d,ki,kj = min((lefd['max'], lefd['elderi'], lefd['elderj']), (rigd['max'],rigd['elderi'],rigd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb == rigb) and (rigp == topp) and (topp != botp) and (botp != lefp) and (left == topp) and (rigp != botp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
elif (lefb == rigb) and (rigp != topp) and (topp != botp) and (botp == lefp) and (left != topp) and (rigp == botp):
d,ki,kj = min((topd['max'], topd['elderi'], topd['elderj']), (botd['max'],botd['elderi'],botd['elderj']))
pairs.append((d-v, (i,j), (ki,kj)))
pairs.append((float('inf'),None,(fi[0][1], fi[0][2])))
return pairs
def rel_persistence(f,threshold=1e4):
"""
Same idea as `persistence`, except that instead of recording persistance
(death - birth), we record persistence relative to death, that is
(death - birth)/death.
We can also limit ourselves to only record those critical points where
persistence is larger than some set threshold in order to avoid noise such
as birth=0, death=3, which results in a relative persistence of 1.
Parameters:
`f`: array-like with filtration values.
`threshold`: scalar. Consider only critical points whose persistence is larger
than a fixed threshold.
Returns:
`pairs`: list of tuples (persistence/death, death, birth).
A connected-component with infinite persistence is appended at the end.
"""
fi = sorted(list(zip(f,range(len(f)))),reverse=True)
uf = UnionFind(mergeF)
pairs = []
for v,i in fi:
uf.add(i,{'max':v,'elder':i})
if i-1 in uf.V and i+1 in uf.V:
a = uf.getData(i-1)
b = uf.getData(i+1)
d,j = min((a['max'],a['elder']),(b['max'],b['elder']))
if d-v > threshold:
pairs.append(((d-v)/d,i,j))
if i-1 in uf.V:
uf.merge(i-1,i)
if i+1 in uf.V:
uf.merge(i,i+1)
pairs.append((float('inf'),None,fi[0][1]))
return pairs