-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsquad_utils.py
114 lines (92 loc) · 3.54 KB
/
squad_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""python inline script for squad style evaluation"""
import string
from collections import Counter
import re
import torch
from matplotlib import pyplot as plt
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def evaluate(dataset, predictions):
total, f1, em = 0, 0, 0
for article in dataset:
for qa in article['qas']:
total += 1
qaid, answers = qa['id'], qa['a']
if qaid not in predictions:
continue
ground_truths = list(map(lambda x: x['text'], answers))
prediction = predictions[qa['id']]
em_score = metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths
)
em += em_score
f1 += metric_max_over_ground_truths(
f1_score, prediction, ground_truths
)
em = 100. * em / total
f1 = 100. * f1 / total
return em, f1
"""evaluate with negative examples"""
def evaluate_pr(dataset, predictions):
tps = []
scores = []
total = 0
for article in dataset:
for qa in article['qas']:
qaid, answers = qa['id'], qa['a']
if not qaid.startswith('ieneg'):
total += 1
if qaid not in predictions:
continue
if qaid.startswith('ieneg'):
tps.append(0)
scores.append(predictions[qaid][1])
else:
pred_text, score = predictions[qaid]
ground_truths = list(map(lambda x: x['text'], answers))
em_score = metric_max_over_ground_truths(
exact_match_score, pred_text, ground_truths
)
tps.append(em_score)
scores.append(score)
sorted_scores, sorted_indices = torch.tensor(scores).sort(descending=True)
sorted_tps = torch.tensor(tps)[sorted_indices]
tps = sorted_tps.cumsum(dim=0)
positive = torch.arange(len(tps)).to(tps) + 1
prec = tps / positive
rec = tps / total
plt.plot(rec, prec)
plt.savefig('pr.png')
f1s = 2 * prec * rec / (prec + rec)
f1s[f1s.isnan()] = 0.
maxf1, maxi = f1s.max(dim=0)
return maxf1, prec[maxi].float(), rec[maxi].float()