-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_nia_building_github.py
281 lines (237 loc) · 12.9 KB
/
test_nia_building_github.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import argparse
import numpy as np
import sys
import os
import os.path as osp
import matplotlib.pyplot as plt
import random
import json
from PIL import Image
import csv
import time
from scipy.special import softmax
from torchvision import models
from util.iouEval import iouEval, getColorEntry
from util.infer_stitch import InferDiv, InferStitch
""""=============================================================================="""
""" GPU device 설정 """
"""==============================================================================="""
gpu_device = '3' # GPU 번호
model_mode = 'DeepRes101' # DeepRes101 / DeepRes50 / DeepFCN101
"""=============================================================================="""
""" """
""" 주요 파라미터 셋팅 """
""" """
"""=============================================================================="""
"""------------------------ LOAD ---------------------------"""
DATA_DIR = '/mnt/datasets/RSI_OP_NIA_PUB4/building'
img_folder_name = 'asset'
label_folder_name = 'label_gray_contour_pub4' #'trainLabel' #'GT_rgbseg'
GT_FORMAT = '.png'
INPUT_SIZE = 1024 # 학습으로 들어가는 영상 크기
ORIGINAL_SIZE = 1024 # 데이터셋 영상 크기
x_window_step = 200
y_window_step = 200
BACKBONE_DIR = '/mnt/workspace/hyunguk/nia/snapshots_nia_building_resnet101_contour_1386_modi/'
BACKBONE_NAME = 'sn6_resunet50_148.pth'
csv_data = 'list_building_test_pub4_modi_list1.csv'
"""------------------------ SAVE ---------------------------"""
RESULTS_DIR = '/mnt/workspace/hyunguk/nia/RESULTS_nia_deepRes50_1386_ep149/' # 저장 경로
"""------------------------ function parameters ---------------------------"""
NUM_CLASSES = 7 # 0:배경, 1:소형, 2:아파트, 3:공장, 4:중형단독시설, 5:대형시설, 6:contour
trans_ratio = 0.5 # save 투영율 (1일수록 짙은 label)
"""=============================================================================="""
""" """
""" Parser """
""" """
"""=============================================================================="""
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description='BUILDING DETECTION')
parser.add_argument("--restore-from", type=str, default=BACKBONE_DIR,
help="DIR to load weight file")
parser.add_argument("--backbone-name", type=str, default=BACKBONE_NAME,
help="Momentum component of the optimiser.")
parser.add_argument("--list-file_name", type=str, default=csv_data,
help="Dataset list for test")
parser.add_argument("--img-folder-name", type=str, default=img_folder_name,
help="folder name including image data")
parser.add_argument("--label-folder-name", type=str, default=label_folder_name,
help="folder name including GT data")
parser.add_argument("--gt-format", type=str, default=GT_FORMAT,
help="Input ground truth format")
parser.add_argument("--input-size", type=int, default=INPUT_SIZE,
help="The size of input image for training")
parser.add_argument("--imgdata-size", type=int, default=ORIGINAL_SIZE,
help="The size of image in the dataset")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Path to the directory containing the source dataset.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--random-scale", default=False,
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--results-dir", type=str, default=RESULTS_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--model-mode", type=str, default=model_mode,
help="Models : DeepRes101 / DeepRes50 / DeepFCN101")
parser.add_argument("--gpu", type=str, default=gpu_device,
help="choose gpu device.")
return parser.parse_args()
args = get_arguments()
os.environ['CUDA_VISIBLE_DEVICES']= args.gpu
IMG_MEAN = np.array((128, 128, 128), dtype=np.float32) # 학습 속도를 위해 RGB 128을 영점으로 둔다. [-128~127], Load code에서 128로 나눔 [-1~0.999]
INPUT_SIZE_m = [args.input_size, args.input_size]
original_size = [args.imgdata_size, args.imgdata_size] # width, height
"""=============================================================================="""
""" """
""" MAIN """
""" """
"""=============================================================================="""
def main():
cudnn.enabled = True
"""-------------------------- 개발 MODEL ROAD --------------------------"""
if args.model_mode == 'DeepRes101':
model = models.segmentation.deeplabv3_resnet101(pretrained=False, num_classes=args.num_classes)
elif args.model_mode == 'DeepRes50':
model = models.segmentation.deeplabv3_resnet50(pretrained=False, num_classes=args.num_classes)
elif args.model_mode == 'DeepFCN101':
model = models.segmentation.fcn_resnet101(pretrained=False, num_classes=args.num_classes)
else:
raise Exception("Please select a model")
model.cuda(0)
# model=nn.DataParallel(model)
model.load_state_dict(torch.load(args.restore_from + args.backbone_name))
model.eval()
# 쉽게 true로 두면 비용(memory 등) 이 더 들지만 성능이 향상됨.
cudnn.benchmark = False # cudnn.benchmark = true -- uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms.
# -- If this is set to false, uses some in-built heuristics that might not always be fastest.
"""-------------------------- FILE SAVE --------------------------"""
if not os.path.exists(args.results_dir + 'featuremap/'):
os.makedirs(args.results_dir + 'featuremap/')
"""-------------------------- FILE LOAD ----------------------------------"""
name_list = []
# f = open(args.data_dir + args.list_file_name, 'r')
f = open(args.list_file_name, 'r')
names = csv.reader(f)
for name in names:
name[0] = name[0] + args.gt_format # csv 파일 list 에 확장자가 빠진 이름들의 list 이므로
name_list.append(name[0])
f.close()
divided_img = InferDiv(size_sample=INPUT_SIZE_m, original_size=original_size, x_window_step=x_window_step, y_window_step=y_window_step)
stitching_img = InferStitch(size_sample=INPUT_SIZE_m, size_output=original_size)
if args.num_classes > 6:
fEval = iouEval(nClasses=6, ignoreIndex=-1) # iou 선언
else:
fEval = iouEval(nClasses=args.num_classes, ignoreIndex=-1) # iou 선언
"""-------------------------- TEST START ----------------------------------"""
start = time.time()
for cntList in range(name_list.__len__()):
# image open
img_file = args.data_dir + "/"+ args.img_folder_name +"/%s" % name_list[cntList]
img_rgb = Image.open(img_file).convert('RGB')
# # label open
label_file = args.data_dir + "/"+ args.label_folder_name +"/%s" % name_list[cntList]
label_building = Image.open(label_file).convert('RGB')
labels = np.zeros((original_size[0], original_size[1], args.num_classes), np.float32)
label_building = np.asarray(label_building, np.float32)
for i in range(args.num_classes):
[idx_i, idx_j] = np.where(label_building[:,:,2] == i)
labels[idx_i, idx_j, i] = 1.0 #building ID
''' 영상 crop 해서 계산 한 후 다시 붙여 주는 부분이 필요 (image 만 계산) '''
imgset, num_patches = divided_img.forward(img_rgb, IMG_MEAN) # 영상을 crop size 로 쪼개는 부분
for cnt_patches in range(num_patches):
onepatch = imgset[cnt_patches]['divided_img']
onepatch = onepatch.expand(1, 3, INPUT_SIZE_m[0], INPUT_SIZE_m[1])
if cnt_patches == 0:
sets = onepatch
else:
sets = torch.cat((sets, onepatch), 0)
image_input = Variable(sets).cuda(0)
''' 모델 연산 '''
with torch.no_grad():
pred_model = model(image_input)
pred_model = pred_model['out']
pred_model = pred_model.cpu().detach().numpy()
''' output 결과들을 병합 '''
results = stitching_img.forward(pred_model, imgset, num_classes=args.num_classes)
results = softmax(results, axis=0)
if results.shape[0] > 6: # conture 제거 작업
con_idx_i, con_idx_j = np.where(results[6,:,:] >= 0.5)
results[0,con_idx_i, con_idx_j] = 1 # conture 위치에 1을 주어서 배경으로 바꿈
results = results[0:-1,:,:]
labels = labels[:,:,0:-1]
results = np.expand_dims(results, axis=0)
results = torch.tensor(results)
results = Variable(results).cuda(0)
labels = np.asarray(labels)
labels = np.expand_dims(labels, axis=0)
labels = torch.tensor(labels)
labels = labels.transpose(1, 3)
labels = labels.transpose(2, 3)
labels = Variable(labels).cuda(0)
fEval.addBatch(results.data, labels)
"""-------------------------- RESULT SAVE ----------------------------------"""
results = results.cpu().detach().numpy()
# results = softmax(results, axis=1)
output_save = np.zeros((original_size[0], original_size[1], 3))
if args.num_classes > 6:
cc_range = 6
else:
cc_range = args.num_classes
for cc in range(cc_range):
temp_i, temp_j = np.where(np.array(results[0, cc, :, :]) >= 0.5)
output_save[temp_i, temp_j, 0] = np.float(np.uint8(70*cc)/255)
output_save[temp_i, temp_j, 1] = np.float(np.uint8(100*cc)/255)
output_save[temp_i, temp_j, 2] = np.float(np.uint8(150*cc)/255)
img_rgb = np.asarray(img_rgb, np.float32)
merged_results = trans_ratio*(img_rgb/255) + (1 - trans_ratio)*output_save
label_load = '/mnt/datasets/RSI_OP_NIADacon/building/label_seg_color_1386' +"/%s" % name_list[cntList]
label_save = Image.open(label_load)
label_save = np.asarray(label_save, np.float32)
# plt.imsave(args.results_dir + 'featuremap/' +'GT_' + name_list[cntList] , label_save/255)
# plt.imsave(args.results_dir + 'featuremap/' +'FM_' + name_list[cntList] , merged_results)
# # plt.imsave(args.results_dir + 'featuremap/' +'FM_' + name_list[cntList] , results[:, :, 0], cmap='jet')
print('progress: ', cntList, '/', name_list.__len__())
# if cntList == 10:
# break
# 각 image 에 대해서 계산 끝난 후 평가
iouVal, iou_classes = fEval.getIoU()
acc_class, acc_binary = fEval.getAcc()
iou_classes_str = []
for i in range(iou_classes.size(0)):
iouStr = getColorEntry(iou_classes[i])+'{:0.2f}'.format(iou_classes[i]*100) + '\033[0m'
iou_classes_str.append(iouStr)
print("---------------------------------------")
print("Took ", time.time()-start, "seconds")
print("=======================================")
#print("TOTAL IOU: ", iou * 100, "%")
print("Per-Class IoU:")
print(iou_classes_str[0], "배경")
print(iou_classes_str[1], "소형")
print(iou_classes_str[2], "아파트")
print(iou_classes_str[3], "공장")
print(iou_classes_str[4], "중형단독")
print(iou_classes_str[5], "대형")
iouStr = getColorEntry(iouVal)+'{:0.2f}'.format(iouVal*100) + '\033[0m'
print("MEAN IoU: ", iouStr, "%")
print("=======================================")
print("Per-Class ACC:")
print(acc_class[0], "배경")
print(acc_class[1], "소형")
print(acc_class[2], "아파트")
print(acc_class[3], "공장")
print(acc_class[4], "중형단독")
print(acc_class[5], "대형")
print ("ACC binary: ", acc_binary, "%")
print("=======================================")
if __name__ == '__main__':
main()