-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_utils.py
811 lines (705 loc) · 26.2 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
# cudnn.enabled = True
# cudnn.benchmark = True
import torch.distributed as dist
import torch.multiprocessing as mp
import os
import os.path as osp
import sys
import numpy as np
import pprint
import timeit
import time
import PIL
import copy
from easydict import EasyDict as edict
from lib import nputils
from lib import torchutils
from lib import loss as myloss
from configs.cfg_dataset import \
cfg_textseg, cfg_cocots, cfg_mlt, cfg_icdar13, cfg_totaltext
from configs.cfg_model import cfg_texrnet as cfg_mdel
from lib.cfg_helper import \
cfg_unique_holder as cfguh, \
get_experiment_id, set_debug_cfg, \
experiment_folder, hided_sig_to_str, \
common_argparse, common_initiates
from lib.data_factory import \
get_dataset, collate, \
get_loader, get_transform, \
get_formatter, DistributedSampler
from lib.model_zoo import \
get_model, save_state_dict
from lib.optimizer import \
get_optimizer, adjust_lr, lr_scheduler
from lib.log_service import print_log, torch_to_numpy, log_manager
cfguh().add_code(osp.basename(__file__))
class exec_container(object):
def __init__(self,
cfg,
**kwargs):
self.cfg = cfg
self.registered_stages = []
self.RANK = None
def register_stage(self, stage):
self.registered_stages.append(stage)
def __call__(self,
RANK,
**kwargs):
self.RANK = RANK
cfg = self.cfg
cfguh().save_cfg(cfg)
dist.init_process_group(
backend = cfg.DIST_BACKEND,
init_method = cfg.DIST_URL,
rank = RANK,
world_size = cfg.GPU_COUNT,
)
# need to set random seed again
if isinstance(cfg.RND_SEED, int):
np.random.seed(cfg.RND_SEED)
torch.manual_seed(cfg.RND_SEED)
time_start = timeit.default_timer()
para = {
'RANK':RANK,
'itern_total':0}
dl_para = self.prepare_dataloader()
if not isinstance(dl_para, dict):
raise ValueError
para.update(dl_para)
md_para = self.prepare_model()
if not isinstance(md_para, dict):
raise ValueError
para.update(md_para)
for stage in self.registered_stages:
stage_para = stage(**para)
if stage_para is not None:
para.update(stage_para)
# save the model
if RANK == 0:
if 'TRAIN' in cfg:
self.save(**para)
print_log(
'Total {:.2f} seconds'.format(timeit.default_timer() - time_start))
self.RANK = None
dist.destroy_process_group()
def prepare_dataloader(self):
return {'dataloader' : None}
def prepare_model(self):
cfg = cfguh().cfg
net = get_model()()
paras = {}
istrain = 'TRAIN' in cfg
if istrain:
if 'TEST' in cfg:
raise ValueError
# save the init model
if istrain:
if (cfg.TRAIN.SAVE_INIT_MODEL) and (self.RANK==0):
output_model_file = osp.join(
cfg.LOG_DIR, '{}_{}.pth.init'.format(
cfg.EXPERIMENT_ID, cfg.MODEL.MODEL_NAME))
save_state_dict(net, output_model_file)
if cfg.CUDA:
net.to(self.RANK)
net = torch.nn.parallel.DistributedDataParallel(
net, device_ids=[self.RANK],
find_unused_parameters=True)
if istrain:
net.train()
if cfg.TRAIN.USE_OPTIM_MANAGER:
try:
opmgr = net.module.opmgr
except:
opmgr = net.opmgr
opmgr.set_lrscale(cfg.TRAIN.OPTIM_MANAGER_LRSCALE)
else:
opmgr = None
optimizer = get_optimizer(net, opmgr = opmgr)
compute_lr = lr_scheduler(cfg.TRAIN.LR_TYPE)
paras.update({
'net' : net,
'optimizer' : optimizer,
'compute_lr': compute_lr,
'opmgr' : opmgr,
})
else:
net.eval()
paras.update({'net': net})
return paras
def save(self, net, **kwargs):
cfg = cfguh().cfg
output_model_file = osp.join(
cfg.LOG_DIR,
'{}_{}_last.pth'.format(
cfg.EXPERIMENT_ID, cfg.MODEL.MODEL_NAME))
print_log('Saving model file {0}'.format(output_model_file))
save_state_dict(net, output_model_file)
class train(exec_container):
def prepare_dataloader(self):
cfg = cfguh().cfg
dataset = get_dataset()()
loader = get_loader()()
transforms = get_transform()()
formatter = get_formatter()()
trainset = dataset(
mode = cfg.DATA.DATASET_MODE,
loader = loader,
estimator = None,
transforms = transforms,
formatter = formatter,
)
sampler = DistributedSampler(
dataset=trainset)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size = cfg.TRAIN.BATCH_SIZE_PER_GPU,
sampler = sampler,
num_workers = cfg.DATA.NUM_WORKERS_PER_GPU,
drop_last = False, pin_memory = False,
collate_fn = collate(),
)
return {
'dataloader' : trainloader,
'sampler' : sampler}
##########
# config #
##########
def set_cfg(cfg, dsname):
cfg.CUDA = True
cfg.RND_SEED = 2
cfg.DATA.DATASET_MODE = '>>>>later<<<<'
cfg.DATA.LOADER_PIPELINE = [
'NumpyImageLoader',
'NumpySeglabelLoader']
cfg.DATA.ALIGN_CORNERS = True
cfg.DATA.IGNORE_LABEL = cfg.DATA.SEGLABEL_IGNORE_LABEL
cfg.DATA.RANDOM_SCALE_ONESIDE_DIM = 'shortside'
cfg.DATA.RANDOM_SCALE_ONESIDE_RANGE = [513, 1025]
cfg.DATA.RANDOM_SCALE_ONESIDE_ALIGN_CORNERS = \
cfg.DATA.ALIGN_CORNERS
cfg.DATA.RANDOM_CROP_SIZE = (513, 513)
cfg.DATA.RANDOM_CROP_PADDING_MODE = 'random'
cfg.DATA.RANDOM_CROP_FILL = {
'image' : [0, 0, 0],
'seglabel' : [cfg.DATA.IGNORE_LABEL]}
cfg.DATA.TRANS_PIPELINE = [
'UniformNumpyType',
'NormalizeUint8ToZeroOne',
'Normalize',
'RandomScaleOneSide',
'RandomCrop',
]
cfg.DATA.FORMATTER = 'SemanticFormatter'
cfg.DATA.EFFECTIVE_CLASS_NUM = cfg.DATA.CLASS_NUM
if dsname == 'textseg':
cfg.DATA.LOADER_DERIVED_CLS_MAP_TO = 'bg'
cfg.DATA.LOADER_PIPELINE = [
'NumpyImageLoader',
'TextSeg_SeglabelLoader']
elif dsname == 'cocots':
pass
elif dsname == 'mlt':
cfg.DATA.LOADER_PIPELINE = [
'NumpyImageLoader',
'Mlt_SeglabelLoader']
elif dsname == 'icdar13':
pass
elif dsname == 'totaltext':
cfg.DATA.LOADER_PIPELINE = [
'NumpyImageLoader',
'TotalText_SeglabelLoader']
elif dsname == 'textssc':
pass
else:
raise ValueError
##########
# resnet #
##########
cfg.MODEL.RESNET.MODEL_TAGS = ['base', 'dilated', 'resnet101', 'os16']
cfg.MODEL.RESNET.PRETRAINED_PTH = osp.abspath(osp.join(
osp.dirname(__file__), 'pretrained', 'init',
'resnet101_imagenet.pth.base'))
cfg.MODEL.RESNET.CONV_TYPE = 'conv'
cfg.MODEL.RESNET.BN_TYPE = ['bn', 'syncbn'][0] # 'inplace_abn'
cfg.MODEL.RESNET.RELU_TYPE = 'relu' # 'lrelu|0.01'
cfg.MODEL.RESNET.USE_MAXPOOL = True
###########
# deeplab #
###########
cfg.MODEL.DEEPLAB.MODEL_TAGS = ['resnet', 'v3+', 'os16', 'base']
cfg.MODEL.DEEPLAB.PRETRAINED_PTH = None
cfg.MODEL.DEEPLAB.OUTPUT_CHANNEL_NUM = 256
cfg.MODEL.DEEPLAB.CONV_TYPE = cfg.MODEL.RESNET.CONV_TYPE
cfg.MODEL.DEEPLAB.BN_TYPE = cfg.MODEL.RESNET.BN_TYPE
cfg.MODEL.DEEPLAB.RELU_TYPE = cfg.MODEL.RESNET.RELU_TYPE
cfg.MODEL.DEEPLAB.ASPP_WITH_GAP = True
cfg.MODEL.DEEPLAB.FREEZE_BACKBONE_BN = False
cfg.MODEL.DEEPLAB.INTERPOLATE_ALIGN_CORNERS = \
cfg.DATA.ALIGN_CORNERS
###########
# texrnet #
###########
cfg.MODEL.TEXRNET.MODEL_TAGS = ['deeplab']
cfg.MODEL.TEXRNET.PRETRAINED_PTH = None
cfg.MODEL.TEXRNET.INPUT_CHANNEL_NUM = \
cfg.MODEL.DEEPLAB.OUTPUT_CHANNEL_NUM
cfg.MODEL.TEXRNET.SEMANTIC_CLASS_NUM = \
cfg.DATA.EFFECTIVE_CLASS_NUM
cfg.MODEL.TEXRNET.REFINEMENT_CHANNEL_NUM = [
3+cfg.MODEL.DEEPLAB.OUTPUT_CHANNEL_NUM
+cfg.DATA.EFFECTIVE_CLASS_NUM, 64, 64]
cfg.MODEL.TEXRNET.CONV_TYPE = cfg.MODEL.RESNET.CONV_TYPE
cfg.MODEL.TEXRNET.BN_TYPE = cfg.MODEL.RESNET.BN_TYPE
cfg.MODEL.TEXRNET.RELU_TYPE = cfg.MODEL.RESNET.RELU_TYPE
cfg.MODEL.TEXRNET.ALIGN_CORNERS = cfg.DATA.ALIGN_CORNERS
cfg.MODEL.TEXRNET.SEMANTIC_IGNORE_LABEL = \
cfg.DATA.IGNORE_LABEL
cfg.MODEL.TEXRNET.SEMANTIC_LOSS_TYPE = 'ce'
cfg.MODEL.TEXRNET.REFINEMENT_LOSS_TYPE = {
'lossrfn' : 'ce',
'lossrfntri' : 'trimapce',
}
cfg.MODEL.TEXRNET.INIT_BIAS_ATTENTION_WITH = None
cfg.MODEL.TEXRNET.BIAS_ATTENTION_TYPE = 'cossim'
# cfg.MODEL.TEXRNET.INTRAIN_GETPRED_FROM = 'sem'
cfg.MODEL.TEXRNET.INTRAIN_GETPRED_FROM = None
# cfg.MODEL.TEXRNET.INEVAL_OUTPUT_ARGMAX = False
###########
# general #
###########
cfg.DATA.NUM_WORKERS_PER_GPU = 4
cfg.TRAIN.BATCH_SIZE_PER_GPU = 8
cfg.TRAIN.MAX_STEP = 20500
cfg.TRAIN.MAX_STEP_TYPE = 'iter'
cfg.TRAIN.LR_ITER_BY = cfg.TRAIN.MAX_STEP_TYPE
cfg.TRAIN.LR_BASE = 0.01
cfg.TRAIN.LR_TYPE = [
('linear', 0, cfg.TRAIN.LR_BASE, 500),
('ploy', cfg.TRAIN.LR_BASE, 0, cfg.TRAIN.MAX_STEP-500, 0.9)
]
cfg.TRAIN.ACTIVATE_REFINEMENT_AT_ITER = 0
cfg.TRAIN.OPTIMIZER = 'sgd'
cfg.TRAIN.SGD_MOMENTUM = 0.9
cfg.TRAIN.SGD_WEIGHT_DECAY = 5e-4
cfg.TRAIN.USE_OPTIM_MANAGER = True
cfg.TRAIN.OPTIM_MANAGER_LRSCALE = {
'resnet':1, 'deeplab':10, 'texrnet': 10}
cfg.TRAIN.OVERFIT_A_BATCH = False
cfg.TRAIN.LOSS_WEIGHT = {
'losssem' : 1,
'lossrfn' : 0.5,
'lossrfntri': 0.5,
}
cfg.TRAIN.LOSS_WEIGHT_NORMALIZED = False
cfg.TRAIN.CKPT_EVERY = np.inf
cfg.TRAIN.DISPLAY = 10
cfg.TRAIN.VISUAL = False
cfg.TRAIN.SAVE_INIT_MODEL = True
cfg.TRAIN.COMMENT = '>>>>later<<<<'
if cfg.DATA.DATASET_NAME not in [dsname]:
raise ValueError
if cfg.MODEL.MODEL_NAME not in ['texrnet']:
raise ValueError
return cfg
def set_cfg_hrnetw48(cfg):
try:
cfg.MODEL.pop('DEEPLAB')
except:
pass
try:
cfg.MODEL.pop('RESNET')
except:
pass
cfg.MODEL.HRNET = edict()
cfg.MODEL.HRNET.MODEL_TAGS = ['v0', 'base']
cfg.MODEL.HRNET.PRETRAINED_PTH = osp.abspath(osp.join(
osp.dirname(__file__), 'pretrained', 'init',
'hrnetv2_w48_imagenet_pretrained.pth.base'))
cfg.MODEL.HRNET.STAGE1_PARA = {
'NUM_MODULES' : 1,
'NUM_BRANCHES' : 1,
'BLOCK' : 'BOTTLENECK',
'NUM_BLOCKS' : [4],
'NUM_CHANNELS' : [64],
'FUSE_METHOD' : 'SUM',}
cfg.MODEL.HRNET.STAGE2_PARA = {
'NUM_MODULES' : 1,
'NUM_BRANCHES' : 2,
'BLOCK' : 'BASIC',
'NUM_BLOCKS' : [4, 4],
'NUM_CHANNELS' : [48, 96],
'FUSE_METHOD' : 'SUM',}
cfg.MODEL.HRNET.STAGE3_PARA = {
'NUM_MODULES' : 4,
'NUM_BRANCHES' : 3,
'BLOCK' : 'BASIC',
'NUM_BLOCKS' : [4, 4, 4],
'NUM_CHANNELS' : [48, 96, 192],
'FUSE_METHOD' : 'SUM',}
cfg.MODEL.HRNET.STAGE4_PARA = {
'NUM_MODULES' : 3,
'NUM_BRANCHES' : 4,
'BLOCK' : 'BASIC',
'NUM_BLOCKS' : [4, 4, 4, 4],
'NUM_CHANNELS' : [48, 96, 192, 384],
'FUSE_METHOD' : 'SUM',}
cfg.MODEL.HRNET.FINAL_CONV_KERNEL = 1
cfg.MODEL.HRNET.OUTPUT_CHANNEL_NUM = sum([48, 96, 192, 384])
cfg.MODEL.HRNET.ALIGN_CORNERS = \
cfg.DATA.ALIGN_CORNERS
cfg.MODEL.HRNET.IGNORE_LABEL = \
cfg.DATA.IGNORE_LABEL
cfg.MODEL.HRNET.BN_MOMENTUM = 'hardcoded to 0.1'
cfg.MODEL.HRNET.LOSS_TYPE = 'ce'
cfg.MODEL.HRNET.INTRAIN_GETPRED = False
###########
# texrnet #
###########
cfg.MODEL.TEXRNET.MODEL_TAGS = ['hrnet']
cfg.MODEL.TEXRNET.INPUT_CHANNEL_NUM = \
cfg.MODEL.HRNET.OUTPUT_CHANNEL_NUM
cfg.MODEL.TEXRNET.REFINEMENT_CHANNEL_NUM = [
3+cfg.MODEL.HRNET.OUTPUT_CHANNEL_NUM
+cfg.DATA.EFFECTIVE_CLASS_NUM, 64, 64]
cfg.MODEL.TEXRNET.CONV_TYPE = 'conv'
cfg.MODEL.TEXRNET.BN_TYPE = 'bn'
cfg.MODEL.TEXRNET.RELU_TYPE = 'relu'
###########
# general #
###########
if not cfg.DEBUG:
cfg.DATA.NUM_WORKERS_PER_GPU = 5
cfg.TRAIN.BATCH_SIZE_PER_GPU = 5
cfg.TRAIN.OPTIM_MANAGER_LRSCALE = {
'hrnet':1, 'texrnet': 10}
return cfg
###############
# train stage #
###############
class ts(object):
def __init__(self):
self.lossf = None
def main(self,
batch,
net,
lr,
optimizer,
opmgr,
RANK,
isinit,
itern,
**kwargs):
cfg = cfguh().cfg
im, gtsem, _ = batch
try:
if itern == cfg.TRAIN.ACTIVATE_REFINEMENT_AT_ITER:
try:
net.module.activate_refinement()
except:
net.activate_refinement()
except:
pass
if cfg.CUDA:
im = im.to(RANK)
gtsem = gtsem.to(RANK)
adjust_lr(optimizer, lr, opmgr=opmgr)
optimizer.zero_grad()
loss_item = net(im, gtsem)
if self.lossf is None:
self.lossf = myloss.finalize_loss(
weight=cfg.TRAIN.LOSS_WEIGHT,
normalize_weight=cfg.TRAIN.LOSS_WEIGHT_NORMALIZED)
loss, loss_item = self.lossf(loss_item)
loss.backward()
if isinit:
optimizer.zero_grad()
else:
optimizer.step()
return {'item': loss_item}
def __call__(self,
**paras):
cfg = cfguh().cfg
logm = log_manager()
epochn, itern = 0, 0
dataloader = paras['dataloader']
compute_lr = paras['compute_lr']
RANK = paras['RANK']
while cfg.MAINLOOP_EXECUTE:
for idx, batch in enumerate(dataloader):
if not isinstance(batch[0], list):
batch_n = batch[0].shape[0]
else:
batch_n = len(batch[0])
if cfg.TRAIN.SKIP_PARTIAL \
and (batch_n != cfg.TRAIN.BATCH_SIZE_PER_GPU):
continue
if cfg.TRAIN.LR_ITER_BY == 'epoch':
lr = compute_lr(epochn)
elif cfg.TRAIN.LR_ITER_BY == 'iter':
lr = compute_lr(itern)
else:
raise ValueError
if itern==0:
self.main(
batch=batch,
lr=lr,
isinit=True,
itern=itern,
**paras)
paras_new = self.main(
batch=batch,
lr=lr,
isinit=False,
itern=itern,
**paras)
paras.update(paras_new)
logm.accumulate(batch_n, paras['item'])
itern += 1
if itern % cfg.TRAIN.DISPLAY == 0:
print_log(logm.pop(
RANK, itern, epochn, (idx+1)*cfg.TRAIN.BATCH_SIZE, lr))
if not isinstance(cfg.TRAIN.VISUAL, bool):
if itern % cfg.TRAIN.VISUAL == 0:
self.visual_f(paras['plot_item'])
if cfg.TRAIN.MAX_STEP_TYPE == 'iter':
if itern >= cfg.TRAIN.MAX_STEP:
break
if itern % cfg.TRAIN.CKPT_EVERY == 0:
if RANK == 0:
print_log('Checkpoint... {}'.format(itern))
self.save(itern=itern, epochn=None, **paras)
# loop end
epochn += 1
if cfg.TRAIN.MAX_STEP_TYPE == 'iter':
if itern >= cfg.TRAIN.MAX_STEP:
break
elif cfg.TRAIN.MAX_STEP_TYPE == 'epoch':
if epochn >= cfg.TRAIN.MAX_STEP:
break
if epochn % cfg.TRAIN.CKPT_EVERY == 0:
if RANK == 0:
print_log('Checkpoint... {}'.format(epochn))
self.save(itern=None, epochn=epochn, **paras)
def visual_f(self, item):
raise ValueError
def save(self, itern, epochn, **paras):
cfg = cfguh().cfg
net = paras['net']
if itern is not None:
save_state_dict(
net,
osp.join(
cfg.LOG_DIR,
'{}_iter_{}.pth'.format(cfg.EXPERIMENT_ID, itern)))
elif epochn is not None:
save_state_dict(
net,
osp.join(
cfg.LOG_DIR,
'{}_epoch_{}.pth'.format(cfg.EXPERIMENT_ID, epochn)))
else:
save_state_dict(
net,
osp.join(
cfg.LOG_DIR,
'{}.pth'.format(cfg.EXPERIMENT_ID)))
class ts_with_classifier_base(ts):
def __init__(self):
super().__init__()
self.clsnet = None
self.clsoptim = None
# debug
self.map = {}
self.map.update({i:chr(48+i) for i in range(10)})
self.map.update({10+i:chr(97+i) for i in range(26)})
self.map.update({36:'#'})
def get_classifier(self, RANK):
from easydict import EasyDict as edict
from lib.model_zoo.get_model import get_model
from lib.optimizer.get_optimizer import get_optimizer
cfg = cfguh().cfg
cfgm = edict()
cfgm.RESNET = edict()
cfgm.RESNET.MODEL_TAGS = ['resnet50']
cfgm.RESNET.PRETRAINED_PTH = cfg.TRAIN.CLASSIFIER_PATH
cfgm.RESNET.INPUT_CHANNEL_NUM = 1
cfgm.RESNET.CONV_TYPE = 'conv'
cfgm.RESNET.BN_TYPE = 'bn'
cfgm.RESNET.RELU_TYPE = 'relu'
cfgm.RESNET.CLASS_NUM = 37
cfgm.RESNET.IGNORE_LABEL = cfg.DATA.IGNORE_LABEL
net = get_model()('resnet', cfgm)
if cfg.CUDA:
net.to(RANK)
net = torch.nn.parallel.DistributedDataParallel(
net, device_ids=[RANK],
find_unused_parameters=True)
net.train()
if not cfg.TRAIN.UPDATE_CLASSIFIER:
from lib.model_zoo.utils import eval_bn
# deactivate the running mean and var
net = eval_bn(net)
optimizer = get_optimizer(net, opmgr=None)
return net, optimizer
def main(self,
batch,
net,
lr,
optimizer,
opmgr,
RANK,
itern,
isinit = False,
**kwargs):
cfg = cfguh().cfg
roi_size = cfg.TRAIN.ROI_ALIGN_SIZE
update_cls = cfg.TRAIN.UPDATE_CLASSIFIER
act_after = cfg.TRAIN.ACTIVATE_CLASSIFIER_FOR_SEGMODEL_AFTER
im, sem, bbx, chins, chcls, _ = batch
# add batch index at front in bbx
bbx = [
torch.cat([torch.ones(ci.shape[0], 1).float()*idx, ci], dim=1) \
for idx, ci in enumerate(bbx)]
bbx = torch.cat(bbx, dim=0)
if cfg.CUDA:
im = im.to(RANK)
sem = sem.to(RANK)
bbx = bbx.to(RANK)
zero = torch.zeros([], dtype=torch.float32, device=im.device)
if self.clsnet is None:
self.clsnet, self.clsoptim = self.get_classifier(RANK)
if self.lossf is None:
self.lossf = myloss.finalize_loss(
weight=cfg.TRAIN.LOSS_WEIGHT,
normalize_weight=cfg.TRAIN.LOSS_WEIGHT_NORMALIZED)
adjust_lr(optimizer, lr, opmgr=opmgr)
optimizer.zero_grad()
if update_cls:
adjust_lr(self.clsoptim, lr, opmgr=None)
self.clsoptim.zero_grad()
loss_item = net(im, sem)
pred = loss_item.pop('pred')
h, w = pred.shape[-2:]
osh, osw = im.shape[-2]/h, im.shape[-1]/w
bbx[:, 1] /= osh
bbx[:, 3] /= osh
bbx[:, 2] /= osw
bbx[:, 4] /= osw
if cfg.TRAIN.ROI_BBOX_PADDING_TYPE == 'semcrop':
# the bbox have already been squared.
# no further action is needed.
bbx_reordered = torch.stack(
[bbx[:, i] for i in [0, 2, 1, 4, 3]], dim=-1)
# input bbx is <bs, w1, h1, w2, h2>
# pred[:, 1:2] means we only get the fg part
chpred = torchutils.roi_align(roi_size)(
pred[:, 1:2], bbx_reordered)
elif cfg.TRAIN.ROI_BBOX_PADDING_TYPE == 'inscrop':
# the bbox haven't been squared yet.
# square the box before roi_align and pad out of box value to zero.
dh, dw = [bbx[:, i]-bbx[:, i-2] for i in (3, 4)]
bbx_sq = bbx.clone()
bbx_sq[dw>dh , 1] -= (dw-dh)[dw>dh]/2 # modify h1
bbx_sq[dw>dh , 3] += (dw-dh)[dw>dh]/2 # modify h2
bbx_sq[dw<=dh, 2] -= (dh-dw)[dw<=dh]/2 # modify w1
bbx_sq[dw<=dh, 4] += (dh-dw)[dw<=dh]/2 # modify w2
dhw = torch.max(dh, dw)
bbx_offset = bbx[:, 1:5] - bbx_sq[:, 1:5]
bbx_offset[:, 0] *= roi_size[0]/dhw
bbx_offset[:, 2] *= roi_size[0]/dhw
bbx_offset[:, 2] += roi_size[0]
bbx_offset[:, 1] *= roi_size[1]/dhw
bbx_offset[:, 3] *= roi_size[1]/dhw
bbx_offset[:, 3] += roi_size[1]
bbx_offset[:, 0:2] = torch.floor(bbx_offset[:, 0:2])
bbx_offset[:, 2:4] = torch.ceil( bbx_offset[:, 2:4])
bbx_offset = bbx_offset.long()
bbx_reordered = torch.stack(
[bbx_sq[:, i] for i in [0, 2, 1, 4, 3]], dim=-1)
chpred = torchutils.roi_align(roi_size)(
pred[:, 1:2], bbx_reordered)
chpred_zeropad = torch.zeros(
chpred.shape, device=chpred.device,
dtype=chpred.dtype)
for idxi in range(chpred.shape[0]):
h1, w1, h2, w2 = bbx_offset[idxi]
chpred_zeropad[idxi, :, h1:h2, w1:w2] = chpred[idxi, :, h1:h2, w1:w2]
chpred = chpred_zeropad
else:
raise ValueError
chpredcls = bbx[:, 5].long()
# compute the extra loss including the result from clsnet
# do not update clsnet weight however.
loss_item['losscls'] = zero
if update_cls:
loss_item['lossupdatecls'] = zero
if (chpred.shape[0] > 1) & (itern >= act_after):
lossclsp_item = self.clsnet(chpred, chpredcls)
loss_item['losscls'] = lossclsp_item['losscls']
else:
# we have to put a dummy forward and backward
# with loss * zero otherwise it will stuck in
# multiprocess run.
chpred_dummy = torch.zeros(
[2, 1]+list(roi_size), dtype=torch.float32,
device=im.device)
chpredcls_dummy = torch.zeros(
[2], dtype=torch.int64,
device=im.device)
lossclsp_item_dummy = self.clsnet(chpred_dummy, chpredcls_dummy)
loss_item['losscls'] = lossclsp_item_dummy['losscls'] * 0
loss, loss_display = self.lossf(loss_item)
loss.backward()
if isinit:
optimizer.zero_grad()
else:
optimizer.step()
self.clsoptim.zero_grad()
# update clsnet weight using the gt chins
# do not update net
if update_cls:
chins = torch.cat(chins, dim=0)
chcls = torch.cat(chcls, dim=0)
loss_item = {ni:zero for ni in loss_item.keys()}
if (chins.shape[0] > 1):
if cfg.CUDA:
chins = chins.to(RANK)
chcls = chcls.to(RANK)
cls_item = self.clsnet(chins.unsqueeze(1), chcls)
loss_item['lossupdatecls'] = cls_item['losscls']
# debug
# print(cls_item['accnum'])
loss, loss_display2 = self.lossf(loss_item)
loss.backward()
if isinit:
self.clsoptim.zero_grad()
else:
self.clsoptim.step()
optimizer.zero_grad()
loss_display['lossupdatecls'] = loss_display2['lossupdatecls']
return {'item': loss_display}
def __call__(self, **para):
rv = super().__call__(**para)
cfg = cfguh().cfg
if cfg.TRAIN.UPDATE_CLASSIFIER:
output_model_file = osp.join(
cfg.LOG_DIR,
'{}_resnet50_clsnet.pth'.format(cfg.EXPERIMENT_ID))
print_log('Saving model file {0}'.format(output_model_file))
save_state_dict(self.clsnet, output_model_file)
return rv
class ts_with_classifier(ts_with_classifier_base):
def main(self, **para):
cfg = cfguh().cfg
try:
if para['itern'] == cfg.TRAIN.ACTIVATE_REFINEMENT_AT_ITER:
try:
para['net'].module.activate_refinement()
except:
para['net'].activate_refinement()
except:
pass
return super().main(**para)