+
diff --git a/jnb-tools/1_cif_to_jcpds/Convert_CIF_to_JCPDS.ipynb b/jnb-tools/1_cif_to_jcpds/Convert_CIF_to_JCPDS.ipynb
new file mode 100644
index 0000000..c64bf24
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/Convert_CIF_to_JCPDS.ipynb
@@ -0,0 +1,837 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Convert CIF to JCPDS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "* This notebook shows how to calculate a theoretical diffraction pattern using `pymatgen`. \n",
+ "* This also aims to show how to read `CIF` files, convert them to `JCPDS`. \n",
+ "* Note that `ds_jcpds` is differernt from that in `PeakPo`, but it produces readable jcpds for PeakPo. \n",
+ "* Some `jcpds` files can be downloaded from: https://github.com/SHDShim/JCPDS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## What is CIF file\n",
+ "\n",
+ "https://en.wikipedia.org/wiki/Crystallographic_Information_File\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "./cif/MgSiO3_bm.cif\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ./cif/*.cif"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "data_global\n",
+ "_chemical_name_mineral 'Bridgmanite'\n",
+ "loop_\n",
+ "_publ_author_name\n",
+ "'Horiuchi H'\n",
+ "'Ito E'\n",
+ "'Weidner D J'\n",
+ "_journal_name_full 'American Mineralogist'\n",
+ "_journal_volume 72 \n",
+ "_journal_year 1987\n",
+ "_journal_page_first 357\n",
+ "_journal_page_last 360\n",
+ "_publ_section_title\n",
+ ";\n",
+ " Perovskite-type MgSiO3: Single-crystal X-ray diffraction study\n",
+ ";\n",
+ "_database_code_amcsd 0001071\n",
+ "_chemical_compound_source 'Synthetic'\n",
+ "_chemical_formula_sum 'Mg Si O3'\n",
+ "_cell_length_a 4.7754\n",
+ "_cell_length_b 4.9292\n",
+ "_cell_length_c 6.8969\n",
+ "_cell_angle_alpha 90\n",
+ "_cell_angle_beta 90\n",
+ "_cell_angle_gamma 90\n",
+ "_cell_volume 162.345\n",
+ "_exptl_crystal_density_diffrn 4.107\n",
+ "_symmetry_space_group_name_H-M 'P b n m'\n",
+ "loop_\n",
+ "_space_group_symop_operation_xyz\n",
+ " 'x,y,z'\n",
+ " 'x,y,1/2-z'\n",
+ " '-x,-y,1/2+z'\n",
+ " '1/2+x,1/2-y,1/2+z'\n",
+ " '1/2-x,1/2+y,1/2-z'\n",
+ " '1/2-x,1/2+y,z'\n",
+ " '1/2+x,1/2-y,-z'\n",
+ " '-x,-y,-z'\n",
+ "loop_\n",
+ "_atom_site_label\n",
+ "_atom_site_fract_x\n",
+ "_atom_site_fract_y\n",
+ "_atom_site_fract_z\n",
+ "Mg 0.51410 0.55600 0.25000\n",
+ "Si 0.50000 0.00000 0.50000\n",
+ "O1 0.10280 0.46600 0.25000\n",
+ "O2 0.19610 0.20140 0.55310\n",
+ "loop_\n",
+ "_atom_site_aniso_label\n",
+ "_atom_site_aniso_U_11\n",
+ "_atom_site_aniso_U_22\n",
+ "_atom_site_aniso_U_33\n",
+ "_atom_site_aniso_U_12\n",
+ "_atom_site_aniso_U_13\n",
+ "_atom_site_aniso_U_23\n",
+ "Mg 0.00555 0.00565 0.00619 0.00052 0.00000 0.00000\n",
+ "Si 0.00342 0.00367 0.00241 -0.00005 0.00003 -0.00016\n",
+ "O1 0.00434 0.00581 0.00217 0.00013 0.00000 0.00000\n",
+ "O2 0.00430 0.00449 0.00431 0.00083 0.00048 0.00083\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%cat ./cif/MgSiO3_bm.cif"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## What is a JCPDS file\n",
+ "\n",
+ "What is lacking in cif?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## What is `pymatgen`?\n",
+ "\n",
+ "https://pymatgen.org"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pymatgen as mg\n",
+ "from pymatgen import Lattice, Structure\n",
+ "from pymatgen.analysis.diffraction.xrd import XRDCalculator\n",
+ "from pymatgen.symmetry.analyzer import SpacegroupAnalyzer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'2019.4.11'"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mg.__version__"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This works with `pymatgen` version `2019.4.11`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "`ds_jcpds` is written by Dan Shim for making a jcpds file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "PeakPo.icns \u001b[1m\u001b[34mds_cake\u001b[m\u001b[m/ peakpo-mac.spec\n",
+ "\u001b[1m\u001b[32mPeakPo.ico\u001b[m\u001b[m* \u001b[1m\u001b[34mds_jcpds\u001b[m\u001b[m/ peakpo-win.spec\n",
+ "__init__.py \u001b[1m\u001b[34mds_powdiff\u001b[m\u001b[m/ peakpo.py\n",
+ "__main__.py \u001b[1m\u001b[34mds_section\u001b[m\u001b[m/ \u001b[1m\u001b[34mtemporary_pkpo\u001b[m\u001b[m/\n",
+ "\u001b[1m\u001b[34m__pycache__\u001b[m\u001b[m/ dum.ppss \u001b[1m\u001b[34mutils\u001b[m\u001b[m/\n",
+ "\u001b[1m\u001b[34mbuild\u001b[m\u001b[m/ error.log version.py\n",
+ "citation.py \u001b[1m\u001b[34mmodel\u001b[m\u001b[m/ \u001b[1m\u001b[34mview\u001b[m\u001b[m/\n",
+ "\u001b[1m\u001b[34mcontrol\u001b[m\u001b[m/ \u001b[1m\u001b[34mmplstyle\u001b[m\u001b[m/\n",
+ "\u001b[1m\u001b[34mdist\u001b[m\u001b[m/ peakpo-mac-app.spec\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ../../peakpo"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "sys.path.append('../../peakpo/')\n",
+ "sys.path.append('../local_modules/')\n",
+ "import ds_jcpds\n",
+ "import quick_plots as quick"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Input parameters"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MgSiO3_bm.cif\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ./cif/"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fn_cif = \"./cif/MgSiO3_bm.cif\"\n",
+ "fn_jcpds = './jcpds/MgSiO3-bm.jcpds'\n",
+ "comments_jcpds = \"Bridgmanite\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Parameters for the equation of state of bridgmanite."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "k0 = 260. # 200.\n",
+ "k0p = 4.00 # 4.\n",
+ "alpha = 3.16e-5 # 1.e-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wl_xray = 0.3344\n",
+ "xrange = (0,40)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read CIF"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The `cif` file below was downloaded from American mineralogist crystal structure database."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "run_control": {
+ "marked": true
+ }
+ },
+ "outputs": [],
+ "source": [
+ "material = mg.Structure.from_file(fn_cif)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Get some parameters in CIF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Unit-cell volume = 162.345450996792\n",
+ "Density = 4.107275060713392 g cm^-3\n",
+ "Chemical formula = Mg4 Si4 O12\n"
+ ]
+ }
+ ],
+ "source": [
+ "print('Unit-cell volume = ', material.volume)\n",
+ "print('Density = ', material.density)\n",
+ "print('Chemical formula = ', material.formula)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice parameters = 4.7754 4.9292 6.8969 90.0 90.0 90.0\n",
+ "orthorhombic\n"
+ ]
+ }
+ ],
+ "source": [
+ "lattice = material.lattice\n",
+ "print('Lattice parameters = ', lattice.a, lattice.b, lattice.c, \\\n",
+ " lattice.alpha, lattice.beta, lattice.gamma)\n",
+ "crystal_system = SpacegroupAnalyzer(material).get_crystal_system()\n",
+ "print(crystal_system)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Get diffraction pattern"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "c = XRDCalculator(wavelength=wl_xray)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pattern = c.get_pattern(material, two_theta_range = xrange)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Extract twotheta, d-sp, int, hkl"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1, 0, 1)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pattern.hkls[0][0]['hkl']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "722"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pattern.hkls.__len__()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "h = []; k = []; l = []\n",
+ "for i in range(pattern.hkls.__len__()):\n",
+ " h.append(pattern.hkls[i][0]['hkl'][0])\n",
+ " k.append(pattern.hkls[i][0]['hkl'][1])\n",
+ " l.append(pattern.hkls[i][0]['hkl'][2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[5.55821414 3.44845 8.23481259 0. 0. 2. ]\n"
+ ]
+ }
+ ],
+ "source": [
+ "d_lines = [pattern.x, pattern.d_hkls, pattern.y, h, k, l ]\n",
+ "diff_lines = np.transpose(np.asarray(d_lines))\n",
+ "print(diff_lines[1,:])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Table output"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can make a nice looking table using the `pandas` package. `pandas` is more than looking-good table producer. It is a powerful statistics package popular in data science."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Two Theta \n",
+ " d-spacing \n",
+ " intensity \n",
+ " h \n",
+ " k \n",
+ " l \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 4.881525 \n",
+ " 3.926131 \n",
+ " 0.815361 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 5.558214 \n",
+ " 3.448450 \n",
+ " 8.234813 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 2.0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 5.588459 \n",
+ " 3.429802 \n",
+ " 20.916571 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 6.241956 \n",
+ " 3.071022 \n",
+ " 8.938528 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 7.779938 \n",
+ " 2.464600 \n",
+ " 24.497625 \n",
+ " 0.0 \n",
+ " 2.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Two Theta d-spacing intensity h k l\n",
+ "0 4.881525 3.926131 0.815361 1.0 0.0 1.0\n",
+ "1 5.558214 3.448450 8.234813 0.0 0.0 2.0\n",
+ "2 5.588459 3.429802 20.916571 1.0 1.0 0.0\n",
+ "3 6.241956 3.071022 8.938528 1.0 1.0 1.0\n",
+ "4 7.779938 2.464600 24.497625 0.0 2.0 0.0"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "table = pd.DataFrame(data = diff_lines, # values\n",
+ " columns=['Two Theta', 'd-spacing', 'intensity', 'h', 'k', 'l']) # 1st row as the column names\n",
+ "table.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot peak positions generated from pymatgen"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "TypeError",
+ "evalue": "plot_diffpattern() takes 2 positional arguments but 3 were given",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m
\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mquick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_diffpattern\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvlines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdiff_lines\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdiff_lines\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'b'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mTypeError\u001b[0m: plot_diffpattern() takes 2 positional arguments but 3 were given"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8oAAAGECAYAAADuotkBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7BlVX0n8O8vDRJQCDaJhYkPTDDQE0DhxlcwgakUYnQc8yBqJRgcxoiR8THjH04SCxwIo6myrGSCDiZGDUYcZwzR+CBqMFDBJJrpRmPwiqEGGCsIiDxUaBnENX/sfXFVe0/fxz73dtN+PlW7Vp29ztr3d6tWnz7fu/deu1prAQAAAAbft6cLAAAAgL2JoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6Mw9KFfVy6qqVdWhaxhzTFW9v6q+UlV3VdUVVfXMedcGAAAAK6nW2vwOVrUlyaeTnJDk4a21O1cx5pgkVyU5MMkHk9yV5DlJfjDJ6a21S+ZWIAAAAKxgclCuqkpy/Li9KMnTx67VBuUrkvxMklNbax8f9x2e5DNJvj/JY1prX5tUJAAAAKzSPC69fmiS7Unelu+E5FWpqp9IclKSy5ZCcpK01m5O8o4kP5DktDnUCAAAAKsyj6C8M8kvd9vn1zD25LH9yDJ9V47tSeuuDAAAANZov6kHaK3dn+R9S6+r6j+sYfgTx/aaZfoWx/bx6ywNAAAA1mxyUJ7osLG9ZZm+O8Z26+4OUFXXJ3l0kntnvOUL6ysNAACATXT0jP0HJPlSa+1xm1XIng7Kh4ztciH37rFdqcZHJ9ly4IEHHrRc57Zt205YZ22wqRYXh4sotm3btocrgfUzj9lXmMvsC8xjHmyW5uyudu7cmQy5b9Ps6aB839geuEzfQ8b2nhWOce+BBx540D33rPQ22LstLCwkSbZv376HK4H1M4/ZV5jL7AvMY/YVBx10UHbu3DnrCuINMY/FvKa4dWwPXaZv6bLsmzapFgAAANjjQXnp/uFjl+k7cmz/aZNqAQAAgD0elC8f21OW6Tt1bD+2SbUAAADAng3KrbVPJ9mR5LlVdeLS/qraluRlGR4RdfmM4QAAADB3mxaUq2prVf1eVZ2zS9dLkvy/JJdX1SVV9a4kn06yf5KXjM9pBgAAgE1RrbX5HrDqiiQnJXl4a+3Obv8RSa5PcmNr7Yhdxhyf5IIkJyb5dpJPJTlnPOO80s/bfsIJJ5xgNT8AAIB9z8LCQnbs2LGjtbawWT9z7o+Haq2dPGP/DUlqRt/VSZ4171oAAABgrfb0Yl4AAACwVxGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoDOXoFxVB1XV+VV1XVXtrKovVtW5VbX/Ksc/o6quqKqvj+N3VNWL5lEbAAAArMXkoFxV+yW5NMlrk9yZ5OIkdyR5XZIPVFWtMP55Sf4yyXFJPjge6zFJ3lFV/2VqfQAAALAW+83hGKcnOTXJu5Kc0VprSVJV70xyRpIXZgjP36WqtiT5/SR3JzmhtXbDuP+RSXYk+a2qeltr7UtzqBMAAABWNI9Lr89Ocn+S1yyF5NHrx/bFuxl7bJLDk/zFUkhOktbal5O8PUOQf9ocagQAAIBVmRSUq+rgJMcnuXoMtw9orV2b5JYkT62qA2YdYunty/Qt3d9895QaAQAAYC2mnlE+LsmWJNfM6F/MEHgfu5v+W5M8p6oev7Szqn44w2Xb9yT5+4k1AgAAwKpNvUf5sLG9ZUb/HWO7dbnO1to3q+rMJO9J8pmq+mCS+5I8K8nBSV7aWvvqSkUsLi5mYWFh2b7t27evNBwAAIA9bFamW1xc3ORKpgflQ8b23hn9S5dN7+7n3JLk+gxnp5/f7b8t3wnaAAAAsCmmBuX7xvbAGf0PGdt7luscL7f+RIZ7lV+S5P1Jvp3kmUl+L8n7quoprbX/vbsitm3b5swxAADAg9isTLewsJAdO3Zsai1T71G+dWwPndG/dGn2TTP6z85wifVvt9b+qLX2ldbaV1tr705y1ljfKybWCAAAAKs2NSh/YWyPndF/ZJLbWms3z+g/amz/epm+y7tjAAAAwKaYFJTHR0ItJjm+qg7r+6rqqAyrXX98N4f4+tg+cpm+h4/t7VNqBAAAgLWYekY5SS7KcC/yBUs7qmr/JG8aX755N2M/Mravq6qlhcFSVVuSnDu+vHQONQIAAMCqTF3MK0nekmG16rOq6glJPpvkpCRHJ7mwtfbJJKmqrUnOSXJ7a+28cey7kpyW5NlJrq2qKzOslP30JD+e5KNJ/mQONQIAAMCqTD6j3Fr7VpJTMpxBflSSM5K0DItw9QtxHZLklUnO7Mben+TfJnlpkhuTPCfJr2ZYTfu3kjxnfA8AAABsinmcUU5r7Z4krx63We+5IcNjoHbd/+0kbx03AAAA2KPmcY8yAAAA7DMEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHTmEpSr6qCqOr+qrquqnVX1xao6t6r2X+X4h43jr62qb1bVTVX1x1X1iHnUBwAAAKs1OShX1X5JLk3y2iR3Jrk4yR1JXpfkA1VVK4w/IMmHx/G3JXlXkluTnJnkIyuNBwAAgHmaxxnl05OcmiHgPqm1dlZr7SlJ/iTJzyV54Qrj/2OSn0lybmvtxNbaryc5Icl7kiwk+cU51AgAAACrMo+gfHaS+5O8prXWuv2vH9sXzxpYVVuSvDLJ55Ocv7S/tfbtJBckuStDWAYAAIBNsd+UwVV1cJLjk1zdWvty39dau7aqbkny1Ko6oLV27zKHODbJ4Uku2iVkp7V2TZJDp9QHAAAAazUpKCc5LsmWJNfM6F9McnKSxyb54jL9Txvbz1TVDyX5pSSPy3CP8l+01v55Yn0AAACwJlOD8mFje8uM/jvGduuM/h8Z22OSvCPJw7u+362qc1trF6xUxOLiYhYWlr9Ce/v27SsNBwAAYA+blekWFxc3uZLp9ygfMrbLXVadJHeP7axAvhSMz0/yoSSPT/L9SX46yY1JfqeqTptYIwAAAKza1DPK943tgTP6HzK296zQ/3dJzujuU76qqs5OclmSlyZ53+6K2LZtmzPHAAAAD2KzMt3CwkJ27NixqbVMPaN869jOWnRr6dLsm2b0f2NsP7TrYl5JPppkZ5Jt6y8PAAAA1mZqUP7C2B47o//IJLe11m6e0X/D2H5j144xOO9MUlMKBAAAgLWYFJTHR0ItJjm+qg7r+6rqqAyrXX98N4f427F9yq4dVXVEhkXA/nFKjQAAALAWU88oJ8lFGe41fmB16qraP8mbxpdvnjWwtfYPST6T5AVV9bPd+P2SvHF8+YdzqBEAAABWZepiXknyliTPT3JWVT0hyWeTnJTk6CQXttY+mSRVtTXJOUlub62d140/I8kVST5aVX+V5F8yPF95W5JLWmuXzqFGAAAAWJXJZ5Rba99KckqGM8iPyhB8W5JXjNuSQ5K8MsmZu4z/xyQ/meS9SZ6U5FeT3J/kPyX5tan1AQAAwFrM44xyWmv3JHn1uM16zw2ZsTBXa+3/ZAjIAAAAsEfN4x5lAAAA2GcIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOjMJShX1UFVdX5VXVdVO6vqi1V1blXtv45jbamqT1VVq6pD51EfAAAArNbkoFxV+yW5NMlrk9yZ5OIkdyR5XZIPVFWt8ZCvSvLkqXUBAADAeszjjPLpSU5N8q4kT2qtndVae0qSP0nyc0leuNoDVdWRSc6fQ00AAACwLvMIymcnuT/Ja1prrdv/+rF98WoOMp55fluS25LsmENdAAAAsGaTgnJVHZzk+CRXt9a+3Pe11q5NckuSp1bVAas43G8kOWlsvz6lLgAAAFivqWeUj0uyJck1M/oXk+yf5LG7O0hVPSbJG5Jc0lr78MSaAAAAYN32mzj+sLG9ZUb/HWO7dYXjvDXJvRkW8lqzxcXFLCwsLNu3ffv29RwSAACATTQr0y0uLm5yJdOD8iFje++M/rtX+jlV9aIkz0xyemvtKxPrAQAAgEmmBuX7xvbAGf0PGdt7luusqsOTvCnJZa21d6+3iG3btjlzDAAA8CA2K9MtLCxkx47NXe956j3Kt47toTP6ly7NvmlG/x9kuIf5pRPrAAAAgLmYekb5C2N77Iz+I5Pc1lq7eUb/k5I8LMmNw9Ohvssd4/7HtdZumFAnAAAArMqkoNxa+3JVLSY5vqoOa619damvqo7KsNr1e3ZziLdn+YW+TkvyI0kuynD/89em1AkAAACrNfWMcjKE2d9PckHGS6irav8M9x4nyZtnDWytnbfc/qp6Yoag/JuttTvnUCMAAACsyjyC8luSPD/JWVX1hCSfTXJSkqOTXNha+2SSVNXWJOckuX1WQAYAAIA9bepiXmmtfSvJKRnOID8qyRlJWpJXjNuSQ5K8MsmZU38mAAAAbJR5nFFOa+2eJK8et1nvuSHJsit2LfPek+dRFwAAAKzV5DPKAAAAsC8RlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANCZS1CuqoOq6vyquq6qdlbVF6vq3Kraf5XjT6qqy6rqtqq6dzzOG6rqYfOoDwAAAFZrclCuqv2SXJrktUnuTHJxkjuSvC7JB6qqVhj/i0k+keSksb0kyX5JXpPkL8fjAwAAwKaYRwg9PcmpSd6V5IzWWkuSqnpnkjOSvDBDeP4uVfV9SS5Mcm+Sp7TWPjfuf2iSjyU5McmLk1w0hzoBAABgRfO49PrsJPcnec1SSB69fmxfvJuxT0vyyCTvXQrJSdJauzvJ+ePL582hRgAAAFiVSUG5qg5OcnySq1trX+77WmvXJrklyVOr6oAZh/jRsb16mb4vje2jptQIAAAAazH1jPJxSbYkuWZG/2KS/ZM8dkb/VUl+Icn7l+l78tjeMqVAAAAAWIup9ygfNrazwuwdY7t1uc7W2vVJrt91f1X9WJL/Or7885WKWFxczMLCwrJ927dvX2k4AAAAe9isTLe4uLjJlUw/o3zI2N47o//usV11IK+qFyT5dJLDx/bN664OAAAA1mjqGeX7xvbAGf0PGdt7VjpQVR2RIRQ/a9z1Z0nObK3NCuEP2LZtmzPHAAAAD2KzMt3CwkJ27NixqbVMPaN869geOqN/6dLsm3Z3kKr6lSSfyxCSb0rygtbaaa21r02sDwAAANZkalD+wtgeO6P/yCS3tdZunnWAqjojyZ8meWiGZyof3Vp778S6AAAAYF0mBeXxkVCLSY6vqsP6vqo6KsNq1x+fNX4cc2GSSvKi1trLW2tfn1ITAAAATDH1jHKSXJThXuQLlnZU1f5J3jS+3N1iXM9N8rAkb22tXTyHWgAAAGCSqYt5Jclbkjw/yVlV9YQkn01yUpKjk1zYWvtkklTV1iTnJLm9tXbeOPbEsX1EVf3ejONf11q7cA51AgAAwIomB+XW2req6pQk5yd5XpInZng28isyXFa95JAkr0xyY5KloHz42P7Cbn7ElbscBwAAADbMPM4op7V2T5JXj9us99yQ4V7kft+z5/HzAQAAYF7mcY8yAAAA7DMEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAICOoAwAAAAdQRkAAAA6gjIAAAB0BGUAAADoCMoAAADQEZQBAACgIygDAABAR1AGAACAjqAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOjMJShX1UFVdX5VXVdVO6vqi1V1blXtv8rxx1TV+6vqK1V1V1VdUVXPXOWPP3pxcXFC9bB3WFhYyMLCwp4uAyYxj9lXmMvsC8xj9hVj3jt6M3/m5KBcVfsluTTJa5PcmeTiJHckeV2SD1RVrTD+mCRXJfm5JFcmeV+Sf5XkI1X1K1PrAwAAgLXYbw7HOD3JqUneleSM1lpLkqp6Z5IzkrwwQ3ie5cIkhyQ5tbX28XHs4Uk+k+QtVfWh1trX5lAnAAAArGgel16fneT+JK9ZCsmj14/ti2cNrKqfSHJSksuWQnKStNZuTvKOJD+Q5LQ51AgAAACrMikoV9XBSY5PcnVr7ct9X2vt2iS3JHlqVR0w4xAnj+1Hlum7cmxPmlIjAAAArMXUM8rHJdmS5JoZ/YtJ9k/y2Bn9Txzb5cYvrdD1+HVXBwAAAGs09R7lw8b2lhn9d4zt1nWMX2nskgN27tyZgw46aNnObdu2rTAc9g5Lq7dbnZIHM/OYfYW5zL7APObBZtbTjHbu3Jkks65S3hBTg/IhY3vvjP67V/g5uxu/0tglX0ry6J07dy5bw44dO76wwnjYq+zYsWNPlwCTmcfsK8xl9gXmMQ8isx4BdUCG3Ldppgbl+8b2wBn9Dxnbe9YxfqWxSZLW2uN21w8AAABrMfUe5VvH9tAZ/UuXVt+0jvErjQUAAIC5mxqUly5rPnZG/5FJbhsf97TW8UeO7T+tszYAAABYs0lBeXwk1GKS46vqsL6vqo7KsNr1x5cbO7p8bE9Zpu/Usf3YlBoBAABgLaaeUU6SizLcT3zB0o6q2j/Jm8aXb541sLX26SQ7kjy3qk7sxm9L8rIMIfzyGcMBAABg7qq1Nu0AVfsluTLJTyX5+ySfTXJShhXLLmytvXx839Yk5yS5vbV2Xjd+IcnfZAjtlya5P8nPZ3g+8zNaa1dNKhAAAADWYPIZ5dbatzJcOv2mJI9KckaSluQV47bkkCSvTHLmLuO3JzkxySeSPDvJv0nyyQyXXp9aVddV1c6q+mJVnTuerV5RVR1TVe+vqq9U1V1VdUVVPXPSLwtrVFUHVdX5E+bxSVV1WVXdVlX3jsd5Q1U9bKNrh97UubzLsbZU1aeqqlXVrMUgYUPM4XP5YeP4a6vqm1V1U1X9cVU9YqNrhyVzmMfPGL8bf30cv6OqXrTBZcNuVdXL1vrdYCMz3+QzyhthPEv9oQxhefu4PTHJk5NcluTZbTeFV9UxSa7K8NipDya5K8lzkvxgktNba5ds6C8Amcs8/sUk/yvDc8Y/lOHZ4v86w73/n0xy8viHKthQU+fyMsd7dZI3ji8f3lq7c74Vw/Lm8Ll8QIa1U34myd8m+XySJyV5wnisJ63l3wKsxxzm8fOS/I8kdyb5ywwnuE7N8MSZ81pr527oLwDLqKotST6d5ISs8rvBhme+1tpetyV5UYZ/tBdnDPPj/neO+39thfFXJPl2klO6fYcnuTnDh8Ihe/p3tO3725R5nOFqj5syPEf82G7/QzOE5JbkpXv6d7R9b2xTP5N3OdaR47xu43bonv79bN872xy+X/zn8X3ndPu+L8kl4/5f2tO/o23f3yZ+v9iS5MtJvp7kiG7/I8f99yV59J7+HW3fG1uSyhCM/32GW3HX9N1gozPfPBbz2ghnZ7hX+TVt/I1Hrx/bF88aWFU/keEe6ctaaw+suN2GR1S9I8kPJDlt7hXDd1v3PE7ytAz/ab23tfa5pZ2ttbuTnD++fN4ca4XdmTKXH1BVleRtSW7LsJAjbLYp3y+2ZLiF7PP5zudwWmvfzrCg6V1JFuZdMCxjymfysRmCxF+01m5Y2tmGJ9m8Pcl+Gb6DwGZ4aIYrIt6W5OlrGbgZmW+vC8pVdXCS45NcPf6jfUBr7doktyR56nj503JOHtuPLNN35dieNIdSYaY5zOMfHdurl+n70tg+ah61wu7MYS73fiPD5+9vZDibAZtmDnN5KWD8z13CSVpr17TWDm2t/dYGlA4PmMM8rqW3L9O3dH/z3fOoFVZhZ5Jf7rbPr2HsyWO7YZlvrwvKSY7LcFnINTP6FzP8Q37sjP4nju1y4xfH9vHrrg5WZ+o8virJLyR5/zJ9Tx7bW6YUCKs0dS4nSarqMUnekOSS1tqH51ohrM7Uubx0lu0zVfVDVfXSqvrdqnp1VflewWaZOo8Xk9ya5Dn9vK2qH86wIO89GZ5iAxuutXZ/a+19S1uSr6xh+IZnvv2mDN4gh43trBBwx9huXcf4lcbCvEyax62165Ncv+v+qvqxJP91fPnnUwqEVZr6mbzkrRkWpnvVPIqCdZg6l39kbI/JcFnfw7u+362qc1trF0wrEVY09fvFN6vqzCTvyfBHnw9muC/5WUkOzrD+yVfnWC9slA3PfHvjGeVDxvbeGf1Ll4PMCvm7G7/SWJiXqfP4u1TVCzKsBnj42L553dXB6k2ey+MjR56Z5FWttbX8tRjmaepcXgrG52dYcfjxSb4/yU8nuTHJ71SVNVDYaPP4fnFLhj/GH5Tk+UlOzxAo7sp3Agbs7TY88+2NQfm+sT1wRv9DxvaedYxfaSzMy9R5/ICqOqKqPpzhr79bk/xZhtX9Zv0nCfM0aS5X1eFJ3pRhsY13z7k2WIupn8tL/X+X5IzW2nWttXtba1dlWFwpSV46vUzYramfyY9P8okMa6G8JMkjMj5KZ3zL+6rqJ+dTKmyoDc98e2NQvnVsZz1oeuk0+03rGL/SWJiXqfM4SVJVv5LkcxkuibopyQtaa6e11r42lyphZVPn8h9kuF9OgGBPmzqXvzG2H9p1Ma8kH82wKM229ZcHqzJ1Hp+d4RLr326t/VFr7Sutta+Of8g8K0M2eMXcqoWNs+GZb28Myl8Y22Nn9B+Z5LZx6e+1jj9ybP9pnbXBak2dx6mqM5L8aYal8y9McnRr7b1zrRJWNnUuPynJw5LcWFVtact3VqK8Y9x3xLwKhhmmzuUbxvYbu3aMwXlnvrOiMGyUqfP4qLH962X6Lu+OAXu7Dc98e11QHpe6X0xyfFUd1vdV1VEZVvH7+HJjR0v/yE9Zpu/Usf3Y1Dphd6bO43HMhRm+dL2otfby1prH6bDp5vCZ/PYkv7/M9i9j/0Xja1dJsKHmMJf/dmyfsmvH+IeerUn+cR61wixzmMdL3yUeuUzf0n34t0+tEzbBhme+vS4ojy7KcG35A6tHVtX+Ge5zS3aziFFr7dNJdiR5blWd2I3fluRlGT5cLp8xHOZp3fM4yXMznIV7a2vt4g2rEFZnymfyea21V+26JblufMtvjvt8MWMzTJnL/5DkM0leUFU/243fL8kbx5d/OO+CYRlTvl8sPXP2dVW1tBhSqmpLknPHl5fOr1TYGJuR+eq7b7PZ88b/dK5M8lMZnuX22QyX6R2d5MLW2svH921Nck6S21tr53XjF5L8TYY/BFya5P4kP5/huXPPGBfegA01ZR5X1R8nOTPDI6D+74wfcV1r7cIN/SUg0z+TZxzzivEYD2+t3blx1cN3zOH7xXFJrsiw2upfZbgy4mkZ7k2+pLX2q5v2y/A9a+L3iy1JPpDk2UluHo9zd5KnJ/nxDPfbP7u1dv9m/k6QzP5usKcy314ZlJOkqg7K8AiG52VYje/6JP89wwdAG99zxLj/xtbaEUsAXCoAAADpSURBVLuMPz7DX9pOTPLtJJ9Kcs741wfYFOudx+Mq189a4fBXttZO3oi6YVdTP5OXOd4VEZTZA+bw/eJHx/HPzLCGxD9nuMXgvwkXbJYp87iqvi/Jryf5dxnu79yS4Sqfdyd5Y2ttaTVh2FS7CcpHZA9kvr02KAMAAMCesLfeowwAAAB7hKAMAAAAHUEZAAAAOoIyAAAAdARlAAAA6AjKAAAA0BGUAQAAoCMoAwAAQEdQBgAAgI6gDAAAAB1BGQAAADqCMgAAAHQEZQAAAOgIygAAANARlAEAAKAjKAMAAEBHUAYAAIDO/wdDRIzImrQQhQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 194,
+ "width": 485
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(8,3))\n",
+ "quick.plot_diffpattern(ax, [0], [0])\n",
+ "ax.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b');"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Convert to JCPDS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Setup an `jcpds` object from a `cif` file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "material_jcpds = ds_jcpds.JCPDS()\n",
+ "material_jcpds.set_from_cif(fn_cif, k0, k0p, \\\n",
+ " thermal_expansion=alpha, \n",
+ " two_theta_range=xrange)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Calculate diffraction pattern at a pressure."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "material_jcpds.cal_dsp(pressure = 100.)\n",
+ "dl = material_jcpds.get_DiffractionLines()\n",
+ "tth, inten = material_jcpds.get_tthVSint(wl_xray)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "f, ax = plt.subplots(2, 1, figsize=(7,3), sharex=True)\n",
+ "ax[0].vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')\n",
+ "ax[1].vlines(tth, 0., inten, color = 'r')\n",
+ "ax[0].set_xlim(7.5,9)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Save to a JCPDS file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "material_jcpds.write_to_file(fn_jcpds, comments=comments_jcpds)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%cat {fn_jcpds}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Read back the written JCPDS for test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "material_test = ds_jcpds.JCPDS(filename = fn_jcpds)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Calculate a pattern at a pressure"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "material_test.cal_dsp(pressure = 100.)\n",
+ "material_test.get_DiffractionLines()\n",
+ "tth, inten = material_test.get_tthVSint(wl_xray)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "f = plt.figure(figsize=(8,3))\n",
+ "plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b', label='0 GPa')\n",
+ "plt.vlines(tth, 0., inten, color = 'r', label='100 GPa')\n",
+ "plt.legend();"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "latex_envs": {
+ "LaTeX_envs_menu_present": true,
+ "autocomplete": true,
+ "bibliofile": "biblio.bib",
+ "cite_by": "apalike",
+ "current_citInitial": 1,
+ "eqLabelWithNumbers": true,
+ "eqNumInitial": 0,
+ "hotkeys": {
+ "equation": "Ctrl-E",
+ "itemize": "Ctrl-I"
+ },
+ "labels_anchors": false,
+ "latex_user_defs": false,
+ "report_style_numbering": false,
+ "user_envs_cfg": false
+ },
+ "nav_menu": {},
+ "toc": {
+ "navigate_menu": true,
+ "number_sections": true,
+ "sideBar": true,
+ "threshold": 6,
+ "toc_cell": false,
+ "toc_section_display": "block",
+ "toc_window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/jnb-tools/1_cif_to_jcpds/Convert_CIF_to_JCPDS.py b/jnb-tools/1_cif_to_jcpds/Convert_CIF_to_JCPDS.py
new file mode 100644
index 0000000..826d6fc
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/Convert_CIF_to_JCPDS.py
@@ -0,0 +1,292 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# # Convert CIF to JCPDS
+
+# * This notebook shows how to calculate a theoretical diffraction pattern using `pymatgen`.
+# * This also aims to show how to read `CIF` files, convert them to `JCPDS`.
+# * Note that `ds_jcpds` is differernt from that in `PeakPo`, but it produces readable jcpds for PeakPo.
+# * Some `jcpds` files can be downloaded from: https://github.com/SHDShim/JCPDS
+
+# In[1]:
+
+
+get_ipython().run_line_magic('matplotlib', 'inline')
+
+
+# ## What is CIF file
+#
+# https://en.wikipedia.org/wiki/Crystallographic_Information_File
+#
+#
+
+# In[2]:
+
+
+get_ipython().run_line_magic('ls', './cif/*.cif')
+
+
+# In[3]:
+
+
+get_ipython().run_line_magic('cat', './cif/MgSiO3_bm.cif')
+
+
+# ## What is a JCPDS file
+#
+# What is lacking in cif?
+
+# In[4]:
+
+
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+
+
+# ## What is `pymatgen`?
+#
+# https://pymatgen.org
+
+# In[5]:
+
+
+import pymatgen as mg
+from pymatgen import Lattice, Structure
+from pymatgen.analysis.diffraction.xrd import XRDCalculator
+from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
+
+
+# In[6]:
+
+
+mg.__version__
+
+
+# This works with `pymatgen` version `2019.4.11`.
+
+# `ds_jcpds` is written by Dan Shim for making a jcpds file.
+
+# In[7]:
+
+
+get_ipython().run_line_magic('ls', '../../peakpo')
+
+
+# In[8]:
+
+
+import sys
+sys.path.append('../../peakpo/')
+sys.path.append('../local_modules/')
+import ds_jcpds
+import quick_plots as quick
+
+
+# ## Input parameters
+
+# In[9]:
+
+
+get_ipython().run_line_magic('ls', './cif/')
+
+
+# In[10]:
+
+
+fn_cif = "./cif/MgSiO3_bm.cif"
+fn_jcpds = './jcpds/MgSiO3-bm.jcpds'
+comments_jcpds = "Bridgmanite"
+
+
+# Parameters for the equation of state of bridgmanite.
+
+# In[11]:
+
+
+k0 = 260. # 200.
+k0p = 4.00 # 4.
+alpha = 3.16e-5 # 1.e-5
+
+
+# In[12]:
+
+
+wl_xray = 0.3344
+xrange = (0,40)
+
+
+# ## Read CIF
+
+# The `cif` file below was downloaded from American mineralogist crystal structure database.
+
+# In[13]:
+
+
+material = mg.Structure.from_file(fn_cif)
+
+
+# ## Get some parameters in CIF
+
+# In[14]:
+
+
+print('Unit-cell volume = ', material.volume)
+print('Density = ', material.density)
+print('Chemical formula = ', material.formula)
+
+
+# In[15]:
+
+
+lattice = material.lattice
+print('Lattice parameters = ', lattice.a, lattice.b, lattice.c, lattice.alpha, lattice.beta, lattice.gamma)
+crystal_system = SpacegroupAnalyzer(material).get_crystal_system()
+print(crystal_system)
+
+
+# ## Get diffraction pattern
+
+# In[16]:
+
+
+c = XRDCalculator(wavelength=wl_xray)
+
+
+# In[17]:
+
+
+pattern = c.get_pattern(material, two_theta_range = xrange)
+
+
+# ## Extract twotheta, d-sp, int, hkl
+
+# In[18]:
+
+
+pattern.hkls[0][0]['hkl']
+
+
+# In[19]:
+
+
+pattern.hkls.__len__()
+
+
+# In[20]:
+
+
+h = []; k = []; l = []
+for i in range(pattern.hkls.__len__()):
+ h.append(pattern.hkls[i][0]['hkl'][0])
+ k.append(pattern.hkls[i][0]['hkl'][1])
+ l.append(pattern.hkls[i][0]['hkl'][2])
+
+
+# In[21]:
+
+
+d_lines = [pattern.x, pattern.d_hkls, pattern.y, h, k, l ]
+diff_lines = np.transpose(np.asarray(d_lines))
+print(diff_lines[1,:])
+
+
+# ## Table output
+
+# We can make a nice looking table using the `pandas` package. `pandas` is more than looking-good table producer. It is a powerful statistics package popular in data science.
+
+# In[22]:
+
+
+table = pd.DataFrame(data = diff_lines, # values
+ columns=['Two Theta', 'd-spacing', 'intensity', 'h', 'k', 'l']) # 1st row as the column names
+table.head()
+
+
+# ## Plot peak positions generated from pymatgen
+
+# In[23]:
+
+
+f, ax = plt.subplots(figsize=(8,3))
+quick.plot_diffpattern(ax, [0], [0])
+ax.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b');
+
+
+# ## Convert to JCPDS
+
+# Setup an `jcpds` object from a `cif` file
+
+# In[ ]:
+
+
+material_jcpds = ds_jcpds.JCPDS()
+material_jcpds.set_from_cif(fn_cif, k0, k0p, thermal_expansion=alpha,
+ two_theta_range=xrange)
+
+
+# Calculate diffraction pattern at a pressure.
+
+# In[ ]:
+
+
+material_jcpds.cal_dsp(pressure = 100.)
+dl = material_jcpds.get_DiffractionLines()
+tth, inten = material_jcpds.get_tthVSint(wl_xray)
+
+
+# In[ ]:
+
+
+f, ax = plt.subplots(2, 1, figsize=(7,3), sharex=True)
+ax[0].vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')
+ax[1].vlines(tth, 0., inten, color = 'r')
+ax[0].set_xlim(7.5,9)
+
+
+# ## Save to a JCPDS file
+
+# In[ ]:
+
+
+material_jcpds.write_to_file(fn_jcpds, comments=comments_jcpds)
+
+
+# In[ ]:
+
+
+get_ipython().run_line_magic('cat', '{fn_jcpds}')
+
+
+# # Read back the written JCPDS for test
+
+# In[ ]:
+
+
+material_test = ds_jcpds.JCPDS(filename = fn_jcpds)
+
+
+# Calculate a pattern at a pressure
+
+# In[ ]:
+
+
+material_test.cal_dsp(pressure = 100.)
+material_test.get_DiffractionLines()
+tth, inten = material_test.get_tthVSint(wl_xray)
+
+
+# In[ ]:
+
+
+f = plt.figure(figsize=(8,3))
+plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b', label='0 GPa')
+plt.vlines(tth, 0., inten, color = 'r', label='100 GPa')
+plt.legend();
+
+
+# In[ ]:
+
+
+
+
diff --git a/jnb-tools/1_cif_to_jcpds/JCPDS_slider.html b/jnb-tools/1_cif_to_jcpds/JCPDS_slider.html
new file mode 100644
index 0000000..5b48945
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/JCPDS_slider.html
@@ -0,0 +1,13541 @@
+
+
+
+
+JCPDS_slider
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+This notebook shows how to make jupyter notebook interactive.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
0JCPDSformat.txt * alooh.jcpds
+Al2SiO5.jcpds ar-NoTh.jcpds *
+Ar-hcp-NoTh.jcpds au-Dewaele.jcpds *
+CF_75_Na.jcpds * au-Ye2017.jcpds *
+Ga2O3.jcpds au.jcpds *
+H-phase_Zhang2014.jcpds bm-test.jcpds
+LICENSE casio3-pv.jcpds *
+LiGaO2.jcpds casio_Linbo3.jcpds *
+Linbo3_Megaw (1968).jcpds diamond-NoTh.jcpds *
+Mg2FeAl2Si3O12-gt.jcpds * mg0.8fe0.2sio3-opv.jcpds *
+Mg3Al2Si3O12-pyrope.jcpds mg0.9fe0.1sio3-opv.jcpds *
+MgAl2O4 Liu 1978.jcpds mg2sio4-g.jcpds *
+MgAlSiO3-gt.jcpds * mgal2o4-CF.jcpds *
+MgAlSiO3-ilm.jcpds * mgo-Ye2017.jcpds *
+MgAlSiO3-opv.jcpds * mgo.jcpds *
+MgFe2SiO4-g.jcpds mgsio3-ilm.jcpds *
+MgFeAlSiO3-cgt.jcpds mgsio3-opv.jcpds *
+MgSiO3-bm.jcpds ne-NoTh.jcpds *
+Na0.4Mg0.6Al1.6Si0.4O4-CF.jcpds phaseD.jcpds *
+PhaseX.jcpds phaseH.jcpds
+README.md pt-Ye2017.jcpds *
+SiC.jcpds * pt.jcpds *
+TAPP_Harris1997.jcpds re-NoTh.jcpds *
+TiC-NoTh.jcpds * sio2-stv.jcpds *
+al2o3.jcpds * ver3 /
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Read back the written JCPDS for test¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Can we also change unit-cell parameters?¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Signature:
+bm_high_p. cal_dsp(
+ pressure= 0.0 ,
+ temperature= 300.0 ,
+ b_a= None ,
+ c_a= None ,
+ use_table_for_0GPa= True ,
+)
+Docstring:
+b_a and c_a are newly included for adjusting axial ratios.
+For cubic structure, these two inputs are ignored.
+For tetragonal and hexagonal, only c_a will be used.
+
+recalculate_zero = False: use the table d-spacing value for 0 GPa
+File: ~/Dropbox (ASU)/Python/PeakPo-v7/peakpo/ds_jcpds/jcpds.py
+Type: method
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/jnb-tools/1_cif_to_jcpds/JCPDS_slider.ipynb b/jnb-tools/1_cif_to_jcpds/JCPDS_slider.ipynb
new file mode 100644
index 0000000..af97972
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/JCPDS_slider.ipynb
@@ -0,0 +1,365 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Interactive JCPDS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "* This notebook shows how to make jupyter notebook interactive."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[1m\u001b[32m0JCPDSformat.txt\u001b[m\u001b[m* alooh.jcpds\n",
+ "Al2SiO5.jcpds \u001b[1m\u001b[32mar-NoTh.jcpds\u001b[m\u001b[m*\n",
+ "Ar-hcp-NoTh.jcpds \u001b[1m\u001b[32mau-Dewaele.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mCF_75_Na.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32mau-Ye2017.jcpds\u001b[m\u001b[m*\n",
+ "Ga2O3.jcpds \u001b[1m\u001b[32mau.jcpds\u001b[m\u001b[m*\n",
+ "H-phase_Zhang2014.jcpds bm-test.jcpds\n",
+ "LICENSE \u001b[1m\u001b[32mcasio3-pv.jcpds\u001b[m\u001b[m*\n",
+ "LiGaO2.jcpds \u001b[1m\u001b[32mcasio_Linbo3.jcpds\u001b[m\u001b[m*\n",
+ "Linbo3_Megaw (1968).jcpds \u001b[1m\u001b[32mdiamond-NoTh.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mMg2FeAl2Si3O12-gt.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32mmg0.8fe0.2sio3-opv.jcpds\u001b[m\u001b[m*\n",
+ "Mg3Al2Si3O12-pyrope.jcpds \u001b[1m\u001b[32mmg0.9fe0.1sio3-opv.jcpds\u001b[m\u001b[m*\n",
+ "MgAl2O4 Liu 1978.jcpds \u001b[1m\u001b[32mmg2sio4-g.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mMgAlSiO3-gt.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32mmgal2o4-CF.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mMgAlSiO3-ilm.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32mmgo-Ye2017.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mMgAlSiO3-opv.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32mmgo.jcpds\u001b[m\u001b[m*\n",
+ "MgFe2SiO4-g.jcpds \u001b[1m\u001b[32mmgsio3-ilm.jcpds\u001b[m\u001b[m*\n",
+ "MgFeAlSiO3-cgt.jcpds \u001b[1m\u001b[32mmgsio3-opv.jcpds\u001b[m\u001b[m*\n",
+ "MgSiO3-bm.jcpds \u001b[1m\u001b[32mne-NoTh.jcpds\u001b[m\u001b[m*\n",
+ "Na0.4Mg0.6Al1.6Si0.4O4-CF.jcpds \u001b[1m\u001b[32mphaseD.jcpds\u001b[m\u001b[m*\n",
+ "PhaseX.jcpds phaseH.jcpds\n",
+ "README.md \u001b[1m\u001b[32mpt-Ye2017.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mSiC.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32mpt.jcpds\u001b[m\u001b[m*\n",
+ "TAPP_Harris1997.jcpds \u001b[1m\u001b[32mre-NoTh.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mTiC-NoTh.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[32msio2-stv.jcpds\u001b[m\u001b[m*\n",
+ "\u001b[1m\u001b[32mal2o3.jcpds\u001b[m\u001b[m* \u001b[1m\u001b[34mver3\u001b[m\u001b[m/\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ./jcpds/"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from ipywidgets import interactive\n",
+ "import ipywidgets as widgets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pymatgen as mg\n",
+ "from pymatgen import Lattice, Structure\n",
+ "from pymatgen.analysis.diffraction.xrd import XRDCalculator\n",
+ "from pymatgen.symmetry.analyzer import SpacegroupAnalyzer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "sys.path.append('../../peakpo/')\n",
+ "sys.path.append('../local_modules')\n",
+ "import ds_jcpds"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fn_jcpds = './jcpds/MgSiO3-bm.jcpds'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wl_xray = 0.3344\n",
+ "xrange = (0,40)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read back the written JCPDS for test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bm_high_p = ds_jcpds.JCPDS(filename = fn_jcpds)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAGECAYAAADN1UqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de9Qsd1kn+u8Tdq6QnFxmQIHERMgGjTlAgkER4VVkHPTgZQYQxRnDxYACLobxIMxyzA5ONBxWwBnCmMmMAwxL1hzweCFnBM9R2AkXyWF2iJcEZ2cxJAHDJYRgNtm5kfzOH9Vv0mm73/3eqrrf9/181upV3VXVVU9X/95669t1q9ZaAAAA6Mdh8y4AAABgOxO6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANCjTQ9dVfWLVdWq6vgpw3ZV1euq6rqqOlhVN1TV26rq2BnTOreqPl1Vd1TV31bV71TVt252zQAAAH3Z1NBVVQ9L8rIVRrk0ycVJKsl7knw2yWuTXFlVR01M61eTvDPJSUl+N8nVSX4uyVVV9Q83s24AAIC+VGttYxOoqiRPGT3OTfKM0aATWmtfHxtvKclHknw4yXNba/eM+l+Q5NeSnN9ae9Oo3+OS/I8kf5Pk6a2120f9X5LkPyd5Z2vtpRsqHAAAYACbEboekeTAlEGToev9SZ6f5JzW2qcm3v+1JF9qrZ0y6veWJL+c5IWttfePjVtJvpBu79eJrbWDGyoeAACgZ5txeOGdSV4w9rhuxnjPTHLLeOBKktbaN9IdOnhyVZ026r2U5P4kH5oYtyX5aJIjkzxtE2oHAADo1YZDV2vtvtba7y0/ktwyOU5VPSbJIzM7kH1m1D191H1Sks+31qbtQZscFwAAYGHtGmg+J426X54x/LZR98SqOi7J4asZd6UZVtXnkpyc5O4Zo/zNSu8HAAC2jSfO6H9kup09p80YvimGCl3HjbqzAtAdo+6uNY674jyr6mFHHHHEMdMGnnLKKWcd4v0M6K677kqSHHXUUYcYk2VH3nrrA8/vPumkFcbcurQLZtE2mEXbYBrtgptuumlq/7vvvjvpdtT0aqjQde+oe/SM4UeMugfXOO5KbnjKU55y4r59+1ZXIXO1e/fuJMn+/fvnXMkWUvXg87EAtp1oF8yibTCLtsE02gWzHHXUUbl7lLz6tOk3R57hK6Pu37th8sjyz/Q3p7uS4X2rHBcAAGChDRW6bkq3Z+rMGcMfn+5qhde11u5Nd9Pk06rq4TPGTZK/3vQqAQAANtkgoau1dl+SK5I8qqoeEryq6vgk5yS5avkmyEn+LMnDkvzgxLgPS/LsdHu5ru27bgAAgI0aak9Xklw66l5UVYclD9zs+M3pzt+6ZGzcy5K0JBdU1fi5XW9I8tgk72gbvaszAADAAIa6kEZaax+oqvcleWGSa6rqE0nOTvLUJJe31t47Nu41VfWWJK9P8tdV9Wfp7su1lOS/J3nrUHUDAABsxGCha+TFSf4yyUuSnJvkb5Ocn+SiyRFba79SVTckeXWSf5bupsu/leT81tpdA9XLQC677LJ5l8AC0i6YRdtgFm2DabQLZjnllFNy/fXX937/3k0PXa21pRWGfTPJhaPHaqb120l+e3MqAwAAGN6Q53QBAADsOEIXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAjwYPXVX1rVX1n6rq5qq6p6o+X1WXVNUJE+PtqqrXVdV1VXWwqm6oqrdV1bFD1wwAALBeg4auqjopyZ8neVmSa5O8O8lXk7wqyUer6hFjo1+a5OIkleQ9ST6b5LVJrqyqo4asGwAAYL2G3tP1hiTfluSXW2vPaa39fJKzkrwzyRlJXp0kVbWULph9OMmTWmuvaK09O8mbkjw5yesHrhsAAGBdhg5dz0lyf5J3LPdorbUkvzl6+cxR91Wj7htaa/eMvf8tSe5N8vKe6wQAANgUQ4euStKm9D981L1j1H1mkltaa58aH6m19o0kVyc5uapO661KAACATTJ06LoiycOS/NJyj6o6LN1hh0ny4ap6TJJHJrluxjQ+M+qe3leRAAAAm6W6o/sGmlnViUn+JMlTk3wsXYD67nTnaX0wyU8keWKSv0jyvtbaT02ZxluT/IskP91a+68rzGvfkUceedYpp5wydfhll122sQ/Dpjpw4ECS5NhjXZxytZZ+4AceeL73Ix+ZYyX90S6YRdtgFm2DabQLzjvvvKn9b7zxxtxzzz1Xt9bO7nP+u/qc+BT3pDs88KlJnjF6LPtcusMPjxu9vnvGNJYPQRy6dgAAgDUbOrj8XpIfTvK76a5E+IUk35nkzUl+Mcl9o2FJcvSMaRwx6h481MzOOOOM7Nu3byP1MpC9e/cmSZaWluZax1a1XZebdsEs2gazaBtMo12wf//+qf13796d66+/vvf5D3ZOV1U9OV3g2pfkn7fW9rfWDrbW/nuSH0/yxSS/kOTro7ccP2NSJ426N/dZLwAAwGYY8kIaTxh1r2it3T8+YHRVwqvy4J63g0nOnDGdx6e77PysC20AAAAsjCFD14FR91tnDD9h1P1auqscPqqqHhK8qur4JOckuaq1dnsvVQIAAGyiIUPXx9IFr+dX1dPHB1TVc9JdVOOjrbVbklw6GnTR6JLyqapKd+7X0UkuGaxqAACADRjsQhqttdur6pVJ/kuSK6vqT5PcmOS0JD+U5O/SXUwjrbUPVNX7krwwyTVV9YkkZ6e76uHlrbX3DlU3AADARgx6c+RRWPqeJH+Q5KwkL0137tbvJvnu1tpfj43+4iS/muSYJOcmOTHJ+UmeP2DJAAAAGzL4va5GVyt8wSrG+2aSC0cPAACALWnQPV0AAAA7jdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB7tmncBAAtrz57pzwEA1kDoApjlggsefC50AQDr5PBCAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD2aS+iqqudV1cer6u+q6vaquqKqnj0xzq6qel1VXVdVB6vqhqp6W1UdO4+aAQAA1mPw0FVVr0zygSTfnuT9Sa5I8r1JPlhVZ4+NemmSi5NUkvck+WyS1ya5sqqOGrRoAACAdRo0dFXVyUn+XZJPJ/mO1trLW2vPS/LjSQ5Psmc03lKSlyX5cJIntdZe0Vp7dpI3JXlyktcPWTcAAMB6Db2n6zXpwtUvtNa+vtyztfbBJFcm+a5Rr1eNum9ord0z9v63JLk3ycsHqBUAAGDDhg5d/yjJDa21qyYHtNae1Vo7bfTymUluaa19amKcbyS5OsnJVXXa5DQAAAAWza6hZlRVD09yZpIPVNVhSX40yTmjwR9P8iettVZVj0nyyHTnek3zmSRPS3J6ks/1WzUAAMDGDBa6knxruj1rdyXZm+T7J4Z/vKp+IslJo9dfnjGd20bdEw81w2uvvTa7d++eOuyyyy471NsZ0IEDB5Ike/funW8hW8jS2PPtutzm3S6Wxp5v12W8Vc27bbC4tA2m0S4477zzpva/8cYbB5n/kIcXnjDq/lSSR6U71PARSb4tybuTfF+SdyU5bjTe3TOmc8eoO2RgBAAAWJchg8sRo+79SX6ytXbd6PUdVfXzSZ6d7pDDt4z6H32I6Rw81AzPOOOM7Nu3b53lMqTlX56WlpbmWsdWtV2X2yK1i0WogQctUttgsWgbTKNdsH///qn9d+/eneuvv773+Q+5p+sbo+5nxwJXkqS1dm+S/zZ6uXw84PEzprN8+OHNm1seAADA5hsydN0w6n5jxvDlwwZvSrcX68wZ4z0+3d6y62YMBwAAWBiDha7W2t+lC0pPrKrjpozy1FH3L9NdufBRVfWQ4FVVx6e74uFVrbXb+6wXAABgMwx9n67/mOSYJG+tqoct96yqn0x3b67LW2tfTHLpaNBFo8vLp6oqyZvTnet1yaBVAwAArNPQVwB8e5J/nORlSZ5eVZ9M8ugkz0nyxSSvSZLW2geq6n1JXpjkmqr6RJKz0+0Nu7y19t6B6wYAAFiXQfd0tdbuS/JjSd6YLvD9bJInpbtk/NNaa+MXyn9xkl9Nt2fs3HT35To/yfMHLBkAAGBDBr/XVWvtniQXjR4rjffNJBeOHgAAAFvS0Od0AQAA7ChCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPds27AAC2qD17pj8HAB5C6AJgfS644MHnQhcAzOTwQgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADo0dxDV1W9uqpaVb12ov+uqnpdVV1XVQer6oaqeltVHTuvWgEAANZqrqGrqr4tyW/OGHxpkouTVJL3JPlsktcmubKqjhqmQgAAgI2Z956uy5I8YrJnVS0leVmSDyd5UmvtFa21Zyd5U5InJ3n9kEUCAACs19xCV1W9NMk/SvJHUwa/atR9Q2vtnrH+b0lyb5KX91weAADApphL6KqqR6c7dPD9Sf5wyijPTHJLa+1T4z1ba99IcnWSk6vqtN4LBQAA2KB57en690laktdMDqiqxyR5ZJLrZrz3M6Pu6f2UBgAAsHl2DT3DqnpRkh9P8pLW2peranKUk0bdL8+YxG2j7omHmte1116b3bt3Tx122WWXHbpYBnPgwIEkyd69e+dbyBayNPZ8uy63ebeLpbHn23UZb8TS2POhl8+82waLS9tgGu2C8847b2r/G2+8cZD5D7qnq6r+QZJ/l+RPW2vvmjHacaPu3TOG3zHqDh4YAQAA1mro4PL2JA9PMj1qdu4ddY+eMfyIUffgoWZ2xhlnZN++fauvjrlZ/uVpaWlprnVsVdt1uS1Su1iEGhbZ0MtnkdoGi0XbYBrtgv3790/tv3v37lx//fW9z3+w0FVVP5LkRUn+ZWvtcyuM+pVR9/gZw5cPP7x5s2oDAADoy5CHF54z6l5cVW35keSdo/5vG71+abq9WGfOmM7jk9yf2RfaANi4PXvmXQEAsE0MeXjhJ5P82yn9vzPJc5JcmeTTST6e5Owkz62qM1trf7U8YlUdny68XdVau73/koEd64IL5l0BALBNDBa6WmsfSvKhyf5VdW660PUHrbXfGvU7Islzk1xUVc9rrd1f3WUO35zuXK9LhqobAABgIxbyCoCttQ9U1fuSvDDJNVX1iXR7v56a5PLW2nvnWiAAAMAqzevmyKvx4iS/muSYJOemuy/X+UmeP8eaAAAA1mTue7pG9+t615T+30xy4egBAACwJS3yni4AAIAtT+gCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPdo17wIAYGHs2TP9OQBsgNAFAMsuuODB50IXAJvE4YUAAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPdo17wKANdizZ94VAACwRkIXbCUXXDDvCgAAWCOhC9g843vi7JUDAEgidAGbaXxPnNAFAJDEhTQAAAB6ZU8XALM5ZBQANkzoAmC6PXscMgoAm2Dwwwur6qSqentVfa6q7q6qr1bVH1bVUybG21VVr6uq66rqYFXdUFVvq6pjh64ZYEdytUwA2BSDhq6qOiHJp5K8OskXk7wryV8n+fEkH6uqs8dGvzTJxUkqyXuSfDbJa5NcWVVHDVg2AADAug29p+sNSU5LcmFr7emttVe01paS/IskxyR5R5JU1VKSlyX5cJInjcZ7dpI3JXlyktcPXDcAAMC6DB26/kmSO5NcONH/3yb5UpKnVdUpSV416v+G1to9Y+O9Jcm9SV7ed6EAAACbYbALaVRVJTk1yV+11u4cH9Zaa1X1hSTfkuSxSZ6Z5JbW2qcmxvtGVV2dLpyd1lr73DDVs9BcXQ0AgAU25NULD0vygiRfnRxQVccleeLyyySPTHLFjOl8JsnTkpyeROjC1dUAAFhog4Wu1tp9Sf5wsn9VPSzdRTMekeSvkhwYDfryjEndNuqeeKh5Xnvttdm9e/fUYZdddtmh3s6ADhzovva9e/eu+b1LY8/X8/6tZGlG/0X53Etjzzejpo20i41amni9KMt4SEsTr/fu3ZtT3/WuB16fOjFsSH21jaWx5zvxO98O5rneYHFpF5x33nlT+994442DzH+u9+mqqselu4LhM5LcleQVSY4bDb57xtvuGHXdYwxgYKe++93zLgEAtpxqrQ0/06rDk/xykn+d5OgkNyV5UWvtz6vqaUk+meT3WmsvmPLeN6e7euE/ba39/grz2HfWWWedtW/fvl4+A5tr+ZenpaWltb+56sHnc2jPgxr/rOMW5XNv8nexoXaxUZPLelGW8ZCmLYMFaYO9tY2dtD7Zpua63mBhaRfMsnv37lx//fVXt9bOPvTY6zf43qKqOjXJ/5XkrCT3Jbkkyb9qrS0fVviVUff4GZM4adS9uacSgc3gAicAAEkGDl1V9egkH0vymCTXJHlJa+2aidFuSnIwyZkzJvP4JPcnua6vOoFN4AInAABJhr9P18XpAtcfJ/meKYFr+YIbVyR5VFU9JHhV1fFJzklyVWvt9gHqBQAA2JAh79N1TJKfSHJLuvO3Zl0oI+muZvjcJBdV1fNaa/eP7vP15nTngF3Se8Gw1TicDwBgIQ15eOHZSY5KcmOSX69ZJ2Mnb2qtfaCq3pfkhUmuqapPjN7/1CSXt9beO0TBsKU4nA8AYCENGbq+ZdR9wugxy28l+VqSFyf5yyQvSXJukr9Ncn6Si/orEQAAYHMNeXPk9yeZuXtryvjfTHLh6AEAALAlucEwwFblPD4A2BKELoCtynl8ALAlDH3JeAAAgB1F6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0aNe8CwBYyanveleyd2/3Ys+eOVYCALA+Qhew0E5997sffCF0AQBbkNAFDGs8OAlRAMAOIHQBw7rgggefC10AwA4gdAHAdmJvMsDCEboAYDuxNxlg4bhkPAAAQI+ELgAAgB4JXQAAAD0SugAAAHrkQhrA6rgiGgDAughdwOos8hXRBEIAYIEJXcDGzTvoLHIg3AhhEgC2BaEL2Ljx0MPm2a5hEgB2GBfSAAAA6JE9XQAAfXCIMDAidMEy/xwBWKuV/nc4RBgYEbpgmX+OrIewDjub/x3AKghdABthgwsAOAQX0gAAAOiRPV3A/DlEDwDYxoQuYP622iF686pROAWALUnoAlired0MequFU4BD8WMSO4TQBQDAfPgxiR3ChTQAYLvas8eGLMACsKcLgK1jFCBOveGG3HDuuXMtZUtY3osgeAHMldAFwNYxChGnJhsLXc4jAWBAQhcAO4/zSAAYkNAFAEOwd231LKvtw3cJSYQuYDvyT56+bKRt2bu2epbV9uG7hCRCF7Ad+SdPX7Sth/IDB2uxtNR19+6dZxVbg7+tbUfoAgDWRwh9qOVlYFlMd8UV865g6/C3te0IXQBbgX+6W4tfqQ9tLctoqyxPl+gHZhC6gOm2ykbOTjH+qyeLb6f+Sr2W9cZaltEiLE/rRGADhC5gukXYyNlpNnujzkYik5bPqUn6Oa9m0dYbm/k3sGifbSuwnOABQhfAPI1vlGz2Rp2NRCYNeU7NIpzf5G9gvuyhhwcIXQDzZKNk+xtqY3/RQoXzm7aWWd+T7w82hdAFAH0aKlgL8FvTohwGPKv97NmzODXCFiZ0AcA0kxub0IetcAjkVqiRnWEL/wBQrbV51zBTVR2T5I1JfjrJY5J8PsnvJvmN1tq9h3jvvrPOOuusffv29V8oG7Z79+4kyf79+9f+5qoHn2+kPW/WdPo0XuO41ja//snprTT9WXVNG3/adGZMe/fu3dl//fWz57ueWldr8jPN+gyzxlnvfMantdJyXc3n3OhymLYMNvOzJ2v/Bzo2/92nn76+dcbEdFb8bldq6yt95rX8TWyWQ7WXyXHWUsPk97T8enxjfFb7WO3f7UrDVlP3qKa3v/3teftJJ3VtYzPXi5PTmrYMJue1mvkP+b9npb+3Pv6/rGZ9MdDnf2A742d+5sGeq1nnzGsjfytsk8xDD8vlqKOOyt13332wtfbwTZngDAsbuqpqV5L/O8kPJ9k3ejw5yTlJPpjkR9sKxQtdW4vQtUpC18ZrXS2hq7/QNeviIauZhtC1vnmef37XnbW8D7VhudLf2Pg8Vgogh5rmaue3PO5kzdPaxlr+BjZjGUzOa9FC13rW40OGruV2mmx6wHlgO2M1/1PGDVTfivNd1G2S9dhoiO1huZy8a1e+cN99Ozp0nZvknUnek+TnlgNWVb0ryc+N+v2XFd4vdG0hQtcqCV0br3W1hK7+QtdGprETQtdaL+u+0h6X1daw1rZ0qM83az4rTXO185u13tho6NrMZTBU6NrAnuKFDF2zxtmz58G/haWldW2sb0romlXfZpq1F3lIfe3d27Nn+udansfevQ+u/ybn2+NyObsqVyc7OnR9KslTkpzcWvviWP8nJPmbJB9trT1zhfcLXVuI0LVKQtfGa10toWvrhq7VbDAsQuiaVedav7e1BKDJGlY7T6FrMUPX5HtnHQa6/Horha7xvUqTPygsD1tpI33C1NC1mj1XfYeulb6j8XkNeZjjodrVoZ6vZrrL057Wf3zYrPdOG2eddnToqqpjk9yW5NOtte+eMvxLSU5Mcmxr7e4Z0xC6FtnEH6rQtUpC18ZrXS2ha+uFrrX8EroIoWs1NSxi6Jp1GOFq5jNrmkOHrmkbi9PGHd/rOH6Ps0UNXWt9PWta4ya/78m9E5PPVzPN1axP1+oQy2737t15za235jVf+9r0Ec4//9CHla40v5WWx2rPpZvVrvr4H7+SQ7Wb5T2Pk38Ta5nu+HsOFagm95CtNM/VtMuJcXZ66Pq+JB9L8u7W2rlThn8kyVKSJ7TWpm6lC10LbuIPWOhapfWErvX+OiZ0PfS10LVyTWs516Gv0LWWX0LnHbpmbciuZR6rndcss+b5rGf9/UO4NrJhvCiha7mNztrjc6h+4zYaujZyXuO4jYSuyb/Z1X7Hyxvdk3VPOwRwEULX0lJyww35whe+kMfed9/qpjHr+xm30vKbnM5K3/FqftCY/O6W/0aThx6CPO1w5OXxbrghOffch9Y1aTUXyFkpGM6yXMPkzdmnnWu67FnP6mo+9dTZN3Vf7/+9iWV+9gUX7OjQ9WNJ/ijJ/9Fa+5Upw38/yU8m+d7W2idnTOPWqjrxiCOOmDqPU045ZRMrZq2OHduQPnD66bnrrruSdFeQ2ei0NqumRTRe47gDp58+s/71fq7J9600nVl1rbaeWdO+66678g8///mZ811Pras1+ZlmfYZZ46x3PuPTWmm5ruZzbnQ5TFsGh/quJ+d15K23/r3hR8z4pfnA6afnyFtvzcPuvDNJct/RR+fuk06aWdMdxx2Xw3ftemCcabUtT3PZtHFX+m5XausrLdPVLKdx95x44gP1rfV7W+u8pk171rLb6DySBz9bkod8n6tdp8xq6yuNc++RR+awww57oC2NW+30JvutNI1pw6dNc7ktzvobGF9Wh99+e3L//clhh+Xe4457yLKbNp1pn2v89T0nnrji395qv+P7jj767y3Xae9faX7jn3PWOGs1+be+nukv17XWmiaXyX1HH50kU9vf+N96srq/rZWW5WQdh917b+497rgH5jFt+vcdffQDNS7XceStt06dx+R3O+37X67x8NtvT5LUN7+ZtmtX7j/88Bx87GM3tP5YyfiyXP7fMV5b29XdGWv57+fO//k/kySPnAjfn0lyZ3Jfa63XW2ktauj62XQX0Pj11tqvTRn+niQ/m+T7W2sfmzGNzyU5OcnUww/TnRcGAABsf0+c0f/IJJ9vrZ3W58wX9ebIy/fgOnrG8OXdVwdnTaDvBQcAALAah1b8fHAAAAhHSURBVM27gBm+MuoeP2P48j72mweoBQAAYN0WNXQtH/p35ozhj0/y1dbalwaqBwAAYF0WMnSN7sv1mSRPqaqHnEU9uk/XtyX5f+dRGwAAwFosZOgauTTduVsXLveoqsOTvHX08h3zKAoAAGAtFvLqhUlSVbuSXJHk6Uk+meQvkjwr3ZVHLmmtvWaO5QEAAKzKwoauJKmqY5L8epIXJvkHST6X5LfTha7FLZxVq6rXJ3n0jMGXt9b+bMh6mK+q+sV0e7FPaK19fWLYriS/lOTlSU5Nd8GdP0jya621AwOXysAO0TZenuS7Zrz146219/ddH8MZnXawJ8n/lu7/x4EkH0tyQWvt02PjWWfsMGtoG9YZO0hVfUe6PPGsJP9Lki8m+ZMke1prN4+N1+s6Y6FDF9tfVd2a5MQZg9/YWrtoyHqYn6p6WJL/L8lZmb5h/Z+SvCzdhXauTHdBnR9Mck26G6XfNWzFDGUVbWPfaNg0/6G19sqeS2QgVXVCkn1JTkvy50n+KskT0m1MHUzyzNbavtG41hk7yBrbhnXGDlFVp6drFw9Pdz2IG5Ock+TJSf42yVmtta+Mxu13ndFa8/CYyyPdrw0tyf8+71o85tYGKt0/vpcl+eioPbQkx0+MtzTq/2dJjhjrf8Go/6/N+7N4zKdtjMa9Lck75l2zxyDt4s2jdvBvJvq/dtT/k6PX1hk77LHatjHqZ52xQx5J/uvo+//psX6V5N+P+v/6qF/v6wx7upibqjor3a8P/7S19vvzrofhVdUj0h3+MekhezOq6v1Jnp/knNbapybe/7UkX2qtndJ3vQxnDW3jxCS3JvmXrbW3ThmfbaSqrk/ymCQntdbuHOtf6e7d+S3prnB8cawzdpQ1tI1vxDpjRxh993ckubm19viJYacn2Z/kg621HxliO2ORr17I9ve4Ufezc62CebozyQvGHtfNGO+ZSW4ZXxEmSWvtG0muTnJyVZ3WZ6EMbrVtw3pkhxhtQJ2a5G/GN6qTpHW/IH9h9PKxsc7YUdbYNqwzdo4T0p2X9fEpw+4bdQ+Our2vM3Zt5M2wQd8+6t5eVb+QboV5W5IPtdaumVtVDKa1dl+S31t+XVWvnhynqh6T5JHprmY6zWeSPC3J6ekutsM2sJq2MbK8HvlKVb0k3TkcdyT5SGvtY/1WycAOSxfAvzo5oKqOS3d146Q7dMg6Y2dZbdv4cpKnjp5bZ2xzrbWvpdu2nGb5Kuh/OtR2htDFPD0uyf3pfkE4fqz/b45OZnzlaMOLnW35BulfnjH8tlF31gVZ2N6Wf7W+PA+2lSRJVV2e5GdGv1SyxY3+H/zhZP/RhVYuTfKIdBdPWD4s1Tpjh1ht22itfbaqfmo02Dpjh6mqn03yfekupHFWkv+Q5HeSfMdolF7XGQ4vZJ6+PV0b/J10x1k/IskPpTuM6OVJfnN+pbFAjht1754x/I5R149IO9Pynq4PpvvF+pgk35PucJLnJfnPc6qLAVTV45LsTfLTSe5K8opYZ5CZbSOxztjJfijJK/PglSt3p9vDNcg6Q+hini5M8oOttV9urd3UWrujdfflem66Bv5LVXXsfEtkAdw76h49Y/gRo+7BGcPZ3v5jkh9trf2z1tr+1tqdrbWrkvxIussBv6Cqds+3RDZbVR1eVW9Mt2frGUluSvf/5M9jnbGjHaJtJNYZO1Zr7dx0P/CfneT3k/xAkvdnoHWG0MXctNY+0lr7yJT+NyX5ZJIj8+AuX3aur4y6x88Yvnx4yM0zhrONtdauaq398ZT+tyf50Ojlk4etij5V1anp/kf8RrqNoUuSfNfYRrV1xg61irZhnbHDjX7gvzrJT6W7mMr35sFzAXtdZwhdLKrlY/K/OdcqWAQ3pft16cwZwx+f7tzAWVe3Y+eyHtlmqurRST6W7vCga5I8tbX2mtba+O0FrDN2oFW2jUOxzthGqurFVbW3ql40Oay19s107STpbifQ+zpD6GIuquofV1WrqndMGXZ4ku9Ock+6u4Kzg41OkL4iyaOq6iErxKo6Pt0JsVeNfqVkB6mqJ47WI/9txijfN+r+xVA10buL092L6Y+TfM+0K91aZ+xYh2wb1hk7TiV5VrrTVqZZvu/WjRlgnSF0MS8fT3fe1our6okTw96YbsX53taaY+5JuqtPJclFVXVY8sB9Wd6c7hjsS+ZVGHP1P5LckOSHq+r7xwdU1T9P9+PN3taa+/FsA1V1TJKfSHJLkhe11mad9J5YZ+woa2gb1hk7y4fSXUTln1TVE8YHVNVL033fn2itfSEDrDOqu2ccDK+qfj7JZelugvrH6Y7Df0q6qwh9Lt0vVV+ZPQW2m6ram+5XqRNaa1+fGPZ/JnlhupOjP5HuRNinJrm8tfZjA5fKwGa1jap6bpI/SveL5ofSHVr2hCTPTnJrkme01uwx3wZGG8lXpttw/tAKo76ptfY164ydYy1tI939lqwzdoiqel26vaB3pNvWvC3J/5puW/PWJN/fWvvMaNxe1xlCF3NVVd+b5F+l+7Xh+HR3jb88yW+01m6ZZ20M7xCha1eSX0nykiSPTXeVqXcnuai1ds/ApTKwQ7SN70zyr9NdqeyR6e618v8kubC15ua320RVvSDJ+1Yx6mmttRusM3aOdbQN64wdZHRO16vTha2j0q0LPpRuW/PzY+P1us4QugAAAHrknC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB79/+rqnl6unGPOAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 194,
+ "width": 430
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def f(pressure=0., temperature=300.):\n",
+ " plt.figure(figsize=(7,3))\n",
+ " bm_high_p.cal_dsp(pressure = pressure, temperature=temperature)\n",
+ " bm_high_p.get_DiffractionLines()\n",
+ " tth, inten = bm_high_p.get_tthVSint(wl_xray)\n",
+ " plt.vlines(tth, 0., inten, color = 'r')\n",
+ " plt.ylim(0, 100)\n",
+ " plt.xlim(1,30)\n",
+ " plt.grid(True)\n",
+ " plt.show()\n",
+ "\n",
+ "interactive_plot = interactive(f, \n",
+ " pressure=widgets.FloatSlider(min=0, max=100, step=1, readout_format='.0f'), \n",
+ " temperature=widgets.FloatSlider(min=300, max=3000, step=10, readout_format='.0f'))\n",
+ "output = interactive_plot.children[-1]\n",
+ "#output.layout.height = '300px'\n",
+ "interactive_plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Can we also change unit-cell parameters?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a_0 = bm_high_p.a0\n",
+ "b_0 = bm_high_p.b0\n",
+ "c_0 = bm_high_p.c0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "v_0 = bm_high_p.v0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "\u001b[0;31mSignature:\u001b[0m\n",
+ "\u001b[0mbm_high_p\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcal_dsp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
+ "\u001b[0;34m\u001b[0m \u001b[0mpressure\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
+ "\u001b[0;34m\u001b[0m \u001b[0mtemperature\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m300.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
+ "\u001b[0;34m\u001b[0m \u001b[0mb_a\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
+ "\u001b[0;34m\u001b[0m \u001b[0mc_a\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
+ "\u001b[0;34m\u001b[0m \u001b[0muse_table_for_0GPa\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
+ "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mDocstring:\u001b[0m\n",
+ "b_a and c_a are newly included for adjusting axial ratios.\n",
+ "For cubic structure, these two inputs are ignored.\n",
+ "For tetragonal and hexagonal, only c_a will be used.\n",
+ "\n",
+ "recalculate_zero = False: use the table d-spacing value for 0 GPa\n",
+ "\u001b[0;31mFile:\u001b[0m ~/Dropbox (ASU)/Python/PeakPo-v7/peakpo/ds_jcpds/jcpds.py\n",
+ "\u001b[0;31mType:\u001b[0m method\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "?bm_high_p.cal_dsp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAGECAYAAADN1UqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de9Qsd1kn+u8Tdq6QnFxmQIHERMgGjTlAgkER4VVkHPTgZQYQxRnDxYACLobxIMxyzA5ONBxWwBnCmMmMAwxL1hzweCFnBM9R2AkXyWF2iJcEZ2cxJAHDJYRgNtm5kfzOH9Vv0mm73/3eqrrf9/181upV3VXVVU9X/95669t1q9ZaAAAA6Mdh8y4AAABgOxO6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANCjTQ9dVfWLVdWq6vgpw3ZV1euq6rqqOlhVN1TV26rq2BnTOreqPl1Vd1TV31bV71TVt252zQAAAH3Z1NBVVQ9L8rIVRrk0ycVJKsl7knw2yWuTXFlVR01M61eTvDPJSUl+N8nVSX4uyVVV9Q83s24AAIC+VGttYxOoqiRPGT3OTfKM0aATWmtfHxtvKclHknw4yXNba/eM+l+Q5NeSnN9ae9Oo3+OS/I8kf5Pk6a2120f9X5LkPyd5Z2vtpRsqHAAAYACbEboekeTAlEGToev9SZ6f5JzW2qcm3v+1JF9qrZ0y6veWJL+c5IWttfePjVtJvpBu79eJrbWDGyoeAACgZ5txeOGdSV4w9rhuxnjPTHLLeOBKktbaN9IdOnhyVZ026r2U5P4kH5oYtyX5aJIjkzxtE2oHAADo1YZDV2vtvtba7y0/ktwyOU5VPSbJIzM7kH1m1D191H1Sks+31qbtQZscFwAAYGHtGmg+J426X54x/LZR98SqOi7J4asZd6UZVtXnkpyc5O4Zo/zNSu8HAAC2jSfO6H9kup09p80YvimGCl3HjbqzAtAdo+6uNY674jyr6mFHHHHEMdMGnnLKKWcd4v0M6K677kqSHHXUUYcYk2VH3nrrA8/vPumkFcbcurQLZtE2mEXbYBrtgptuumlq/7vvvjvpdtT0aqjQde+oe/SM4UeMugfXOO5KbnjKU55y4r59+1ZXIXO1e/fuJMn+/fvnXMkWUvXg87EAtp1oF8yibTCLtsE02gWzHHXUUbl7lLz6tOk3R57hK6Pu37th8sjyz/Q3p7uS4X2rHBcAAGChDRW6bkq3Z+rMGcMfn+5qhde11u5Nd9Pk06rq4TPGTZK/3vQqAQAANtkgoau1dl+SK5I8qqoeEryq6vgk5yS5avkmyEn+LMnDkvzgxLgPS/LsdHu5ru27bgAAgI0aak9Xklw66l5UVYclD9zs+M3pzt+6ZGzcy5K0JBdU1fi5XW9I8tgk72gbvaszAADAAIa6kEZaax+oqvcleWGSa6rqE0nOTvLUJJe31t47Nu41VfWWJK9P8tdV9Wfp7su1lOS/J3nrUHUDAABsxGCha+TFSf4yyUuSnJvkb5Ocn+SiyRFba79SVTckeXWSf5bupsu/leT81tpdA9XLQC677LJ5l8AC0i6YRdtgFm2DabQLZjnllFNy/fXX937/3k0PXa21pRWGfTPJhaPHaqb120l+e3MqAwAAGN6Q53QBAADsOEIXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAjwYPXVX1rVX1n6rq5qq6p6o+X1WXVNUJE+PtqqrXVdV1VXWwqm6oqrdV1bFD1wwAALBeg4auqjopyZ8neVmSa5O8O8lXk7wqyUer6hFjo1+a5OIkleQ9ST6b5LVJrqyqo4asGwAAYL2G3tP1hiTfluSXW2vPaa39fJKzkrwzyRlJXp0kVbWULph9OMmTWmuvaK09O8mbkjw5yesHrhsAAGBdhg5dz0lyf5J3LPdorbUkvzl6+cxR91Wj7htaa/eMvf8tSe5N8vKe6wQAANgUQ4euStKm9D981L1j1H1mkltaa58aH6m19o0kVyc5uapO661KAACATTJ06LoiycOS/NJyj6o6LN1hh0ny4ap6TJJHJrluxjQ+M+qe3leRAAAAm6W6o/sGmlnViUn+JMlTk3wsXYD67nTnaX0wyU8keWKSv0jyvtbaT02ZxluT/IskP91a+68rzGvfkUceedYpp5wydfhll122sQ/Dpjpw4ECS5NhjXZxytZZ+4AceeL73Ix+ZYyX90S6YRdtgFm2DabQLzjvvvKn9b7zxxtxzzz1Xt9bO7nP+u/qc+BT3pDs88KlJnjF6LPtcusMPjxu9vnvGNJYPQRy6dgAAgDUbOrj8XpIfTvK76a5E+IUk35nkzUl+Mcl9o2FJcvSMaRwx6h481MzOOOOM7Nu3byP1MpC9e/cmSZaWluZax1a1XZebdsEs2gazaBtMo12wf//+qf13796d66+/vvf5D3ZOV1U9OV3g2pfkn7fW9rfWDrbW/nuSH0/yxSS/kOTro7ccP2NSJ426N/dZLwAAwGYY8kIaTxh1r2it3T8+YHRVwqvy4J63g0nOnDGdx6e77PysC20AAAAsjCFD14FR91tnDD9h1P1auqscPqqqHhK8qur4JOckuaq1dnsvVQIAAGyiIUPXx9IFr+dX1dPHB1TVc9JdVOOjrbVbklw6GnTR6JLyqapKd+7X0UkuGaxqAACADRjsQhqttdur6pVJ/kuSK6vqT5PcmOS0JD+U5O/SXUwjrbUPVNX7krwwyTVV9YkkZ6e76uHlrbX3DlU3AADARgx6c+RRWPqeJH+Q5KwkL0137tbvJvnu1tpfj43+4iS/muSYJOcmOTHJ+UmeP2DJAAAAGzL4va5GVyt8wSrG+2aSC0cPAACALWnQPV0AAAA7jdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB7tmncBAAtrz57pzwEA1kDoApjlggsefC50AQDr5PBCAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD2aS+iqqudV1cer6u+q6vaquqKqnj0xzq6qel1VXVdVB6vqhqp6W1UdO4+aAQAA1mPw0FVVr0zygSTfnuT9Sa5I8r1JPlhVZ4+NemmSi5NUkvck+WyS1ya5sqqOGrRoAACAdRo0dFXVyUn+XZJPJ/mO1trLW2vPS/LjSQ5Psmc03lKSlyX5cJIntdZe0Vp7dpI3JXlyktcPWTcAAMB6Db2n6zXpwtUvtNa+vtyztfbBJFcm+a5Rr1eNum9ord0z9v63JLk3ycsHqBUAAGDDhg5d/yjJDa21qyYHtNae1Vo7bfTymUluaa19amKcbyS5OsnJVXXa5DQAAAAWza6hZlRVD09yZpIPVNVhSX40yTmjwR9P8iettVZVj0nyyHTnek3zmSRPS3J6ks/1WzUAAMDGDBa6knxruj1rdyXZm+T7J4Z/vKp+IslJo9dfnjGd20bdEw81w2uvvTa7d++eOuyyyy471NsZ0IEDB5Ike/funW8hW8jS2PPtutzm3S6Wxp5v12W8Vc27bbC4tA2m0S4477zzpva/8cYbB5n/kIcXnjDq/lSSR6U71PARSb4tybuTfF+SdyU5bjTe3TOmc8eoO2RgBAAAWJchg8sRo+79SX6ytXbd6PUdVfXzSZ6d7pDDt4z6H32I6Rw81AzPOOOM7Nu3b53lMqTlX56WlpbmWsdWtV2X2yK1i0WogQctUttgsWgbTKNdsH///qn9d+/eneuvv773+Q+5p+sbo+5nxwJXkqS1dm+S/zZ6uXw84PEzprN8+OHNm1seAADA5hsydN0w6n5jxvDlwwZvSrcX68wZ4z0+3d6y62YMBwAAWBiDha7W2t+lC0pPrKrjpozy1FH3L9NdufBRVfWQ4FVVx6e74uFVrbXb+6wXAABgMwx9n67/mOSYJG+tqoct96yqn0x3b67LW2tfTHLpaNBFo8vLp6oqyZvTnet1yaBVAwAArNPQVwB8e5J/nORlSZ5eVZ9M8ugkz0nyxSSvSZLW2geq6n1JXpjkmqr6RJKz0+0Nu7y19t6B6wYAAFiXQfd0tdbuS/JjSd6YLvD9bJInpbtk/NNaa+MXyn9xkl9Nt2fs3HT35To/yfMHLBkAAGBDBr/XVWvtniQXjR4rjffNJBeOHgAAAFvS0Od0AQAA7ChCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPds27AAC2qD17pj8HAB5C6AJgfS644MHnQhcAzOTwQgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADo0dxDV1W9uqpaVb12ov+uqnpdVV1XVQer6oaqeltVHTuvWgEAANZqrqGrqr4tyW/OGHxpkouTVJL3JPlsktcmubKqjhqmQgAAgI2Z956uy5I8YrJnVS0leVmSDyd5UmvtFa21Zyd5U5InJ3n9kEUCAACs19xCV1W9NMk/SvJHUwa/atR9Q2vtnrH+b0lyb5KX91weAADApphL6KqqR6c7dPD9Sf5wyijPTHJLa+1T4z1ba99IcnWSk6vqtN4LBQAA2KB57en690laktdMDqiqxyR5ZJLrZrz3M6Pu6f2UBgAAsHl2DT3DqnpRkh9P8pLW2peranKUk0bdL8+YxG2j7omHmte1116b3bt3Tx122WWXHbpYBnPgwIEkyd69e+dbyBayNPZ8uy63ebeLpbHn23UZb8TS2POhl8+82waLS9tgGu2C8847b2r/G2+8cZD5D7qnq6r+QZJ/l+RPW2vvmjHacaPu3TOG3zHqDh4YAQAA1mro4PL2JA9PMj1qdu4ddY+eMfyIUffgoWZ2xhlnZN++fauvjrlZ/uVpaWlprnVsVdt1uS1Su1iEGhbZ0MtnkdoGi0XbYBrtgv3790/tv3v37lx//fW9z3+w0FVVP5LkRUn+ZWvtcyuM+pVR9/gZw5cPP7x5s2oDAADoy5CHF54z6l5cVW35keSdo/5vG71+abq9WGfOmM7jk9yf2RfaANi4PXvmXQEAsE0MeXjhJ5P82yn9vzPJc5JcmeTTST6e5Owkz62qM1trf7U8YlUdny68XdVau73/koEd64IL5l0BALBNDBa6WmsfSvKhyf5VdW660PUHrbXfGvU7Islzk1xUVc9rrd1f3WUO35zuXK9LhqobAABgIxbyCoCttQ9U1fuSvDDJNVX1iXR7v56a5PLW2nvnWiAAAMAqzevmyKvx4iS/muSYJOemuy/X+UmeP8eaAAAA1mTue7pG9+t615T+30xy4egBAACwJS3yni4AAIAtT+gCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB4JXQAAAD0SugAAAHokdAEAAPRI6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPdo17wIAYGHs2TP9OQBsgNAFAMsuuODB50IXAJvE4YUAAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPdo17wKANdizZ94VAACwRkIXbCUXXDDvCgAAWCOhC9g843vi7JUDAEgidAGbaXxPnNAFAJDEhTQAAAB6ZU8XALM5ZBQANkzoAmC6PXscMgoAm2Dwwwur6qSqentVfa6q7q6qr1bVH1bVUybG21VVr6uq66rqYFXdUFVvq6pjh64ZYEdytUwA2BSDhq6qOiHJp5K8OskXk7wryV8n+fEkH6uqs8dGvzTJxUkqyXuSfDbJa5NcWVVHDVg2AADAug29p+sNSU5LcmFr7emttVe01paS/IskxyR5R5JU1VKSlyX5cJInjcZ7dpI3JXlyktcPXDcAAMC6DB26/kmSO5NcONH/3yb5UpKnVdUpSV416v+G1to9Y+O9Jcm9SV7ed6EAAACbYbALaVRVJTk1yV+11u4cH9Zaa1X1hSTfkuSxSZ6Z5JbW2qcmxvtGVV2dLpyd1lr73DDVs9BcXQ0AgAU25NULD0vygiRfnRxQVccleeLyyySPTHLFjOl8JsnTkpyeROjC1dUAAFhog4Wu1tp9Sf5wsn9VPSzdRTMekeSvkhwYDfryjEndNuqeeKh5Xnvttdm9e/fUYZdddtmh3s6ADhzovva9e/eu+b1LY8/X8/6tZGlG/0X53Etjzzejpo20i41amni9KMt4SEsTr/fu3ZtT3/WuB16fOjFsSH21jaWx5zvxO98O5rneYHFpF5x33nlT+994442DzH+u9+mqqselu4LhM5LcleQVSY4bDb57xtvuGHXdYwxgYKe++93zLgEAtpxqrQ0/06rDk/xykn+d5OgkNyV5UWvtz6vqaUk+meT3WmsvmPLeN6e7euE/ba39/grz2HfWWWedtW/fvl4+A5tr+ZenpaWltb+56sHnc2jPgxr/rOMW5XNv8nexoXaxUZPLelGW8ZCmLYMFaYO9tY2dtD7Zpua63mBhaRfMsnv37lx//fVXt9bOPvTY6zf43qKqOjXJ/5XkrCT3Jbkkyb9qrS0fVviVUff4GZM4adS9uacSgc3gAicAAEkGDl1V9egkH0vymCTXJHlJa+2aidFuSnIwyZkzJvP4JPcnua6vOoFN4AInAABJhr9P18XpAtcfJ/meKYFr+YIbVyR5VFU9JHhV1fFJzklyVWvt9gHqBQAA2JAh79N1TJKfSHJLuvO3Zl0oI+muZvjcJBdV1fNaa/eP7vP15nTngF3Se8Gw1TicDwBgIQ15eOHZSY5KcmOSX69ZJ2Mnb2qtfaCq3pfkhUmuqapPjN7/1CSXt9beO0TBsKU4nA8AYCENGbq+ZdR9wugxy28l+VqSFyf5yyQvSXJukr9Ncn6Si/orEQAAYHMNeXPk9yeZuXtryvjfTHLh6AEAALAlucEwwFblPD4A2BKELoCtynl8ALAlDH3JeAAAgB1F6AIAAOiR0AUAANAjoQsAAKBHQhcAAECPhC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0aNe8CwBYyanveleyd2/3Ys+eOVYCALA+Qhew0E5997sffCF0AQBbkNAFDGs8OAlRAMAOIHQBw7rgggefC10AwA4gdAHAdmJvMsDCEboAYDuxNxlg4bhkPAAAQI+ELgAAgB4JXQAAAD0SugAAAHrkQhrA6rgiGgDAughdwOos8hXRBEIAYIEJXcDGzTvoLHIg3AhhEgC2BaEL2Ljx0MPm2a5hEgB2GBfSAAAA6JE9XQAAfXCIMDAidMEy/xwBWKuV/nc4RBgYEbpgmX+OrIewDjub/x3AKghdABthgwsAOAQX0gAAAOiRPV3A/DlEDwDYxoQuYP622iF686pROAWALUnoAlired0MequFU4BD8WMSO4TQBQDAfPgxiR3ChTQAYLvas8eGLMACsKcLgK1jFCBOveGG3HDuuXMtZUtY3osgeAHMldAFwNYxChGnJhsLXc4jAWBAQhcAO4/zSAAYkNAFAEOwd231LKvtw3cJSYQuYDvyT56+bKRt2bu2epbV9uG7hCRCF7Ad+SdPX7Sth/IDB2uxtNR19+6dZxVbg7+tbUfoAgDWRwh9qOVlYFlMd8UV865g6/C3te0IXQBbgX+6W4tfqQ9tLctoqyxPl+gHZhC6gOm2ykbOTjH+qyeLb6f+Sr2W9cZaltEiLE/rRGADhC5gukXYyNlpNnujzkYik5bPqUn6Oa9m0dYbm/k3sGifbSuwnOABQhfAPI1vlGz2Rp2NRCYNeU7NIpzf5G9gvuyhhwcIXQDzZKNk+xtqY3/RQoXzm7aWWd+T7w82hdAFAH0aKlgL8FvTohwGPKv97NmzODXCFiZ0AcA0kxub0IetcAjkVqiRnWEL/wBQrbV51zBTVR2T5I1JfjrJY5J8PsnvJvmN1tq9h3jvvrPOOuusffv29V8oG7Z79+4kyf79+9f+5qoHn2+kPW/WdPo0XuO41ja//snprTT9WXVNG3/adGZMe/fu3dl//fWz57ueWldr8jPN+gyzxlnvfMantdJyXc3n3OhymLYMNvOzJ2v/Bzo2/92nn76+dcbEdFb8bldq6yt95rX8TWyWQ7WXyXHWUsPk97T8enxjfFb7WO3f7UrDVlP3qKa3v/3teftJJ3VtYzPXi5PTmrYMJue1mvkP+b9npb+3Pv6/rGZ9MdDnf2A742d+5sGeq1nnzGsjfytsk8xDD8vlqKOOyt13332wtfbwTZngDAsbuqpqV5L/O8kPJ9k3ejw5yTlJPpjkR9sKxQtdW4vQtUpC18ZrXS2hq7/QNeviIauZhtC1vnmef37XnbW8D7VhudLf2Pg8Vgogh5rmaue3PO5kzdPaxlr+BjZjGUzOa9FC13rW40OGruV2mmx6wHlgO2M1/1PGDVTfivNd1G2S9dhoiO1huZy8a1e+cN99Ozp0nZvknUnek+TnlgNWVb0ryc+N+v2XFd4vdG0hQtcqCV0br3W1hK7+QtdGprETQtdaL+u+0h6X1daw1rZ0qM83az4rTXO185u13tho6NrMZTBU6NrAnuKFDF2zxtmz58G/haWldW2sb0romlXfZpq1F3lIfe3d27Nn+udansfevQ+u/ybn2+NyObsqVyc7OnR9KslTkpzcWvviWP8nJPmbJB9trT1zhfcLXVuI0LVKQtfGa10toWvrhq7VbDAsQuiaVedav7e1BKDJGlY7T6FrMUPX5HtnHQa6/Horha7xvUqTPygsD1tpI33C1NC1mj1XfYeulb6j8XkNeZjjodrVoZ6vZrrL057Wf3zYrPdOG2eddnToqqpjk9yW5NOtte+eMvxLSU5Mcmxr7e4Z0xC6FtnEH6rQtUpC18ZrXS2ha+uFrrX8EroIoWs1NSxi6Jp1GOFq5jNrmkOHrmkbi9PGHd/rOH6Ps0UNXWt9PWta4ya/78m9E5PPVzPN1axP1+oQy2737t15za235jVf+9r0Ec4//9CHla40v5WWx2rPpZvVrvr4H7+SQ7Wb5T2Pk38Ta5nu+HsOFagm95CtNM/VtMuJcXZ66Pq+JB9L8u7W2rlThn8kyVKSJ7TWpm6lC10LbuIPWOhapfWErvX+OiZ0PfS10LVyTWs516Gv0LWWX0LnHbpmbciuZR6rndcss+b5rGf9/UO4NrJhvCiha7mNztrjc6h+4zYaujZyXuO4jYSuyb/Z1X7Hyxvdk3VPOwRwEULX0lJyww35whe+kMfed9/qpjHr+xm30vKbnM5K3/FqftCY/O6W/0aThx6CPO1w5OXxbrghOffch9Y1aTUXyFkpGM6yXMPkzdmnnWu67FnP6mo+9dTZN3Vf7/+9iWV+9gUX7OjQ9WNJ/ijJ/9Fa+5Upw38/yU8m+d7W2idnTOPWqjrxiCOOmDqPU045ZRMrZq2OHduQPnD66bnrrruSdFeQ2ei0NqumRTRe47gDp58+s/71fq7J9600nVl1rbaeWdO+66678g8///mZ811Pras1+ZlmfYZZ46x3PuPTWmm5ruZzbnQ5TFsGh/quJ+d15K23/r3hR8z4pfnA6afnyFtvzcPuvDNJct/RR+fuk06aWdMdxx2Xw3ftemCcabUtT3PZtHFX+m5XausrLdPVLKdx95x44gP1rfV7W+u8pk171rLb6DySBz9bkod8n6tdp8xq6yuNc++RR+awww57oC2NW+30JvutNI1pw6dNc7ktzvobGF9Wh99+e3L//clhh+Xe4457yLKbNp1pn2v89T0nnrji395qv+P7jj767y3Xae9faX7jn3PWOGs1+be+nukv17XWmiaXyX1HH50kU9vf+N96srq/rZWW5WQdh917b+497rgH5jFt+vcdffQDNS7XceStt06dx+R3O+37X67x8NtvT5LUN7+ZtmtX7j/88Bx87GM3tP5YyfiyXP7fMV5b29XdGWv57+fO//k/kySPnAjfn0lyZ3Jfa63XW2ktauj62XQX0Pj11tqvTRn+niQ/m+T7W2sfmzGNzyU5OcnUww/TnRcGAABsf0+c0f/IJJ9vrZ3W58wX9ebIy/fgOnrG8OXdVwdnTaDvBQcAALAah1b8fHAAAAhHSURBVM27gBm+MuoeP2P48j72mweoBQAAYN0WNXQtH/p35ozhj0/y1dbalwaqBwAAYF0WMnSN7sv1mSRPqaqHnEU9uk/XtyX5f+dRGwAAwFosZOgauTTduVsXLveoqsOTvHX08h3zKAoAAGAtFvLqhUlSVbuSXJHk6Uk+meQvkjwr3ZVHLmmtvWaO5QEAAKzKwoauJKmqY5L8epIXJvkHST6X5LfTha7FLZxVq6rXJ3n0jMGXt9b+bMh6mK+q+sV0e7FPaK19fWLYriS/lOTlSU5Nd8GdP0jya621AwOXysAO0TZenuS7Zrz146219/ddH8MZnXawJ8n/lu7/x4EkH0tyQWvt02PjWWfsMGtoG9YZO0hVfUe6PPGsJP9Lki8m+ZMke1prN4+N1+s6Y6FDF9tfVd2a5MQZg9/YWrtoyHqYn6p6WJL/L8lZmb5h/Z+SvCzdhXauTHdBnR9Mck26G6XfNWzFDGUVbWPfaNg0/6G19sqeS2QgVXVCkn1JTkvy50n+KskT0m1MHUzyzNbavtG41hk7yBrbhnXGDlFVp6drFw9Pdz2IG5Ock+TJSf42yVmtta+Mxu13ndFa8/CYyyPdrw0tyf8+71o85tYGKt0/vpcl+eioPbQkx0+MtzTq/2dJjhjrf8Go/6/N+7N4zKdtjMa9Lck75l2zxyDt4s2jdvBvJvq/dtT/k6PX1hk77LHatjHqZ52xQx5J/uvo+//psX6V5N+P+v/6qF/v6wx7upibqjor3a8P/7S19vvzrofhVdUj0h3+MekhezOq6v1Jnp/knNbapybe/7UkX2qtndJ3vQxnDW3jxCS3JvmXrbW3ThmfbaSqrk/ymCQntdbuHOtf6e7d+S3prnB8cawzdpQ1tI1vxDpjRxh993ckubm19viJYacn2Z/kg621HxliO2ORr17I9ve4Ufezc62CebozyQvGHtfNGO+ZSW4ZXxEmSWvtG0muTnJyVZ3WZ6EMbrVtw3pkhxhtQJ2a5G/GN6qTpHW/IH9h9PKxsc7YUdbYNqwzdo4T0p2X9fEpw+4bdQ+Our2vM3Zt5M2wQd8+6t5eVb+QboV5W5IPtdaumVtVDKa1dl+S31t+XVWvnhynqh6T5JHprmY6zWeSPC3J6ekutsM2sJq2MbK8HvlKVb0k3TkcdyT5SGvtY/1WycAOSxfAvzo5oKqOS3d146Q7dMg6Y2dZbdv4cpKnjp5bZ2xzrbWvpdu2nGb5Kuh/OtR2htDFPD0uyf3pfkE4fqz/b45OZnzlaMOLnW35BulfnjH8tlF31gVZ2N6Wf7W+PA+2lSRJVV2e5GdGv1SyxY3+H/zhZP/RhVYuTfKIdBdPWD4s1Tpjh1ht22itfbaqfmo02Dpjh6mqn03yfekupHFWkv+Q5HeSfMdolF7XGQ4vZJ6+PV0b/J10x1k/IskPpTuM6OVJfnN+pbFAjht1754x/I5R149IO9Pynq4PpvvF+pgk35PucJLnJfnPc6qLAVTV45LsTfLTSe5K8opYZ5CZbSOxztjJfijJK/PglSt3p9vDNcg6Q+hini5M8oOttV9urd3UWrujdfflem66Bv5LVXXsfEtkAdw76h49Y/gRo+7BGcPZ3v5jkh9trf2z1tr+1tqdrbWrkvxIussBv6Cqds+3RDZbVR1eVW9Mt2frGUluSvf/5M9jnbGjHaJtJNYZO1Zr7dx0P/CfneT3k/xAkvdnoHWG0MXctNY+0lr7yJT+NyX5ZJIj8+AuX3aur4y6x88Yvnx4yM0zhrONtdauaq398ZT+tyf50Ojlk4etij5V1anp/kf8RrqNoUuSfNfYRrV1xg61irZhnbHDjX7gvzrJT6W7mMr35sFzAXtdZwhdLKrlY/K/OdcqWAQ3pft16cwZwx+f7tzAWVe3Y+eyHtlmqurRST6W7vCga5I8tbX2mtba+O0FrDN2oFW2jUOxzthGqurFVbW3ql40Oay19s107STpbifQ+zpD6GIuquofV1WrqndMGXZ4ku9Ock+6u4Kzg41OkL4iyaOq6iErxKo6Pt0JsVeNfqVkB6mqJ47WI/9txijfN+r+xVA10buL092L6Y+TfM+0K91aZ+xYh2wb1hk7TiV5VrrTVqZZvu/WjRlgnSF0MS8fT3fe1our6okTw96YbsX53taaY+5JuqtPJclFVXVY8sB9Wd6c7hjsS+ZVGHP1P5LckOSHq+r7xwdU1T9P9+PN3taa+/FsA1V1TJKfSHJLkhe11mad9J5YZ+woa2gb1hk7y4fSXUTln1TVE8YHVNVL033fn2itfSEDrDOqu2ccDK+qfj7JZelugvrH6Y7Df0q6qwh9Lt0vVV+ZPQW2m6ram+5XqRNaa1+fGPZ/JnlhupOjP5HuRNinJrm8tfZjA5fKwGa1jap6bpI/SveL5ofSHVr2hCTPTnJrkme01uwx3wZGG8lXpttw/tAKo76ptfY164ydYy1tI939lqwzdoiqel26vaB3pNvWvC3J/5puW/PWJN/fWvvMaNxe1xlCF3NVVd+b5F+l+7Xh+HR3jb88yW+01m6ZZ20M7xCha1eSX0nykiSPTXeVqXcnuai1ds/ApTKwQ7SN70zyr9NdqeyR6e618v8kubC15ua320RVvSDJ+1Yx6mmttRusM3aOdbQN64wdZHRO16vTha2j0q0LPpRuW/PzY+P1us4QugAAAHrknC4AAIAeCV0AAAA9EroAAAB6JHQBAAD0SOgCAADokdAFAADQI6ELAACgR0IXAABAj4QuAACAHgldAAAAPRK6AAAAeiR0AQAA9EjoAgAA6JHQBQAA0COhCwAAoEdCFwAAQI+ELgAAgB79/+rqnl6unGPOAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 194,
+ "width": 430
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def f(pressure=0., temperature=300., a0=a_0, b0=b_0, c0=c_0):\n",
+ " plt.figure(figsize=(7,3))\n",
+ " bm_high_p.a0 = a0\n",
+ " bm_high_p.b0 = b0\n",
+ " bm_high_p.c0 = c0\n",
+ " bm_high_p.cal_dsp(pressure = pressure, temperature=temperature,\n",
+ " use_table_for_0GPa=False)\n",
+ " bm_high_p.get_DiffractionLines()\n",
+ " tth, inten = bm_high_p.get_tthVSint(wl_xray)\n",
+ " plt.vlines(tth, 0., inten, color = 'r')\n",
+ " plt.ylim(0, 100)\n",
+ " plt.xlim(1,30)\n",
+ " plt.grid(True)\n",
+ " plt.show()\n",
+ "\n",
+ "min_frac=0.9\n",
+ "max_frac=1.1\n",
+ "interactive_plot = interactive(f, \n",
+ " pressure=widgets.FloatSlider(min=0, max=100, step=1, readout_format='.0f'), \n",
+ " temperature=widgets.FloatSlider(min=300, max=3000, step=10, readout_format='.0f'),\n",
+ " a0=widgets.FloatSlider(value=a_0, min=a_0*min_frac, max=a_0*max_frac, step=0.001, readout_format='.3f'),\n",
+ " b0=widgets.FloatSlider(value=b_0, min=b_0*min_frac, max=b_0*max_frac, step=0.001, readout_format='.3f'),\n",
+ " c0=widgets.FloatSlider(value=c_0, min=c_0*min_frac, max=c_0*max_frac, step=0.001, readout_format='.3f'))\n",
+ "output = interactive_plot.children[-1]\n",
+ "#output.layout.height = '300px'\n",
+ "interactive_plot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ },
+ "latex_envs": {
+ "LaTeX_envs_menu_present": true,
+ "autocomplete": true,
+ "bibliofile": "biblio.bib",
+ "cite_by": "apalike",
+ "current_citInitial": 1,
+ "eqLabelWithNumbers": true,
+ "eqNumInitial": 0,
+ "hotkeys": {
+ "equation": "Ctrl-E",
+ "itemize": "Ctrl-I"
+ },
+ "labels_anchors": false,
+ "latex_user_defs": false,
+ "report_style_numbering": false,
+ "user_envs_cfg": false
+ },
+ "nav_menu": {},
+ "toc": {
+ "navigate_menu": true,
+ "number_sections": true,
+ "sideBar": true,
+ "threshold": 6,
+ "toc_cell": false,
+ "toc_section_display": "block",
+ "toc_window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/jnb-tools/1_cif_to_jcpds/JCPDS_slider.py b/jnb-tools/1_cif_to_jcpds/JCPDS_slider.py
new file mode 100644
index 0000000..5f946cf
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/JCPDS_slider.py
@@ -0,0 +1,159 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# # Interactive JCPDS
+
+# In[1]:
+
+
+get_ipython().run_line_magic('matplotlib', 'inline')
+
+
+# * This notebook shows how to make jupyter notebook interactive.
+
+# In[2]:
+
+
+get_ipython().run_line_magic('ls', './jcpds/')
+
+
+# In[3]:
+
+
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+
+
+# In[4]:
+
+
+from ipywidgets import interactive
+import ipywidgets as widgets
+
+
+# In[5]:
+
+
+import pymatgen as mg
+from pymatgen import Lattice, Structure
+from pymatgen.analysis.diffraction.xrd import XRDCalculator
+from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
+
+
+# In[7]:
+
+
+import sys
+sys.path.append('../../peakpo/')
+sys.path.append('../local_modules')
+import ds_jcpds
+
+
+# In[8]:
+
+
+fn_jcpds = './jcpds/MgSiO3-bm.jcpds'
+
+
+# In[9]:
+
+
+wl_xray = 0.3344
+xrange = (0,40)
+
+
+# ## Read back the written JCPDS for test
+
+# In[10]:
+
+
+bm_high_p = ds_jcpds.JCPDS(filename = fn_jcpds)
+
+
+# In[11]:
+
+
+def f(pressure=0., temperature=300.):
+ plt.figure(figsize=(7,3))
+ bm_high_p.cal_dsp(pressure = pressure, temperature=temperature)
+ bm_high_p.get_DiffractionLines()
+ tth, inten = bm_high_p.get_tthVSint(wl_xray)
+ plt.vlines(tth, 0., inten, color = 'r')
+ plt.ylim(0, 100)
+ plt.xlim(1,30)
+ plt.grid(True)
+ plt.show()
+
+interactive_plot = interactive(f,
+ pressure=widgets.FloatSlider(min=0, max=100, step=1, readout_format='.0f'),
+ temperature=widgets.FloatSlider(min=300, max=3000, step=10, readout_format='.0f'))
+output = interactive_plot.children[-1]
+#output.layout.height = '300px'
+interactive_plot
+
+
+# ## Can we also change unit-cell parameters?
+
+# In[12]:
+
+
+a_0 = bm_high_p.a0
+b_0 = bm_high_p.b0
+c_0 = bm_high_p.c0
+
+
+# In[13]:
+
+
+v_0 = bm_high_p.v0
+
+
+# In[14]:
+
+
+get_ipython().run_line_magic('pinfo', 'bm_high_p.cal_dsp')
+
+
+# In[15]:
+
+
+def f(pressure=0., temperature=300., a0=a_0, b0=b_0, c0=c_0):
+ plt.figure(figsize=(7,3))
+ bm_high_p.a0 = a0
+ bm_high_p.b0 = b0
+ bm_high_p.c0 = c0
+ bm_high_p.cal_dsp(pressure = pressure, temperature=temperature,
+ use_table_for_0GPa=False)
+ bm_high_p.get_DiffractionLines()
+ tth, inten = bm_high_p.get_tthVSint(wl_xray)
+ plt.vlines(tth, 0., inten, color = 'r')
+ plt.ylim(0, 100)
+ plt.xlim(1,30)
+ plt.grid(True)
+ plt.show()
+
+min_frac=0.9
+max_frac=1.1
+interactive_plot = interactive(f,
+ pressure=widgets.FloatSlider(min=0, max=100, step=1, readout_format='.0f'),
+ temperature=widgets.FloatSlider(min=300, max=3000, step=10, readout_format='.0f'),
+ a0=widgets.FloatSlider(value=a_0, min=a_0*min_frac, max=a_0*max_frac, step=0.001, readout_format='.3f'),
+ b0=widgets.FloatSlider(value=b_0, min=b_0*min_frac, max=b_0*max_frac, step=0.001, readout_format='.3f'),
+ c0=widgets.FloatSlider(value=c_0, min=c_0*min_frac, max=c_0*max_frac, step=0.001, readout_format='.3f'))
+output = interactive_plot.children[-1]
+#output.layout.height = '300px'
+interactive_plot
+
+
+# In[ ]:
+
+
+
+
+
+# In[ ]:
+
+
+
+
diff --git a/jnb-tools/MgSiO3-bm.jcpds b/jnb-tools/1_cif_to_jcpds/MgSiO3-bm.jcpds
similarity index 100%
rename from jnb-tools/MgSiO3-bm.jcpds
rename to jnb-tools/1_cif_to_jcpds/MgSiO3-bm.jcpds
diff --git a/jnb-tools/bm.jcpds b/jnb-tools/1_cif_to_jcpds/bm.jcpds
similarity index 100%
rename from jnb-tools/bm.jcpds
rename to jnb-tools/1_cif_to_jcpds/bm.jcpds
diff --git a/jnb-tools/1_cif_to_jcpds/cif/MgSiO3_bm.cif b/jnb-tools/1_cif_to_jcpds/cif/MgSiO3_bm.cif
new file mode 100644
index 0000000..650563f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/cif/MgSiO3_bm.cif
@@ -0,0 +1,60 @@
+data_global
+_chemical_name_mineral 'Bridgmanite'
+loop_
+_publ_author_name
+'Horiuchi H'
+'Ito E'
+'Weidner D J'
+_journal_name_full 'American Mineralogist'
+_journal_volume 72
+_journal_year 1987
+_journal_page_first 357
+_journal_page_last 360
+_publ_section_title
+;
+ Perovskite-type MgSiO3: Single-crystal X-ray diffraction study
+;
+_database_code_amcsd 0001071
+_chemical_compound_source 'Synthetic'
+_chemical_formula_sum 'Mg Si O3'
+_cell_length_a 4.7754
+_cell_length_b 4.9292
+_cell_length_c 6.8969
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 90
+_cell_volume 162.345
+_exptl_crystal_density_diffrn 4.107
+_symmetry_space_group_name_H-M 'P b n m'
+loop_
+_space_group_symop_operation_xyz
+ 'x,y,z'
+ 'x,y,1/2-z'
+ '-x,-y,1/2+z'
+ '1/2+x,1/2-y,1/2+z'
+ '1/2-x,1/2+y,1/2-z'
+ '1/2-x,1/2+y,z'
+ '1/2+x,1/2-y,-z'
+ '-x,-y,-z'
+loop_
+_atom_site_label
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+Mg 0.51410 0.55600 0.25000
+Si 0.50000 0.00000 0.50000
+O1 0.10280 0.46600 0.25000
+O2 0.19610 0.20140 0.55310
+loop_
+_atom_site_aniso_label
+_atom_site_aniso_U_11
+_atom_site_aniso_U_22
+_atom_site_aniso_U_33
+_atom_site_aniso_U_12
+_atom_site_aniso_U_13
+_atom_site_aniso_U_23
+Mg 0.00555 0.00565 0.00619 0.00052 0.00000 0.00000
+Si 0.00342 0.00367 0.00241 -0.00005 0.00003 -0.00016
+O1 0.00434 0.00581 0.00217 0.00013 0.00000 0.00000
+O2 0.00430 0.00449 0.00431 0.00083 0.00048 0.00083
+
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/0JCPDSformat.txt b/jnb-tools/1_cif_to_jcpds/jcpds/0JCPDSformat.txt
new file mode 100755
index 0000000..bf09fe9
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/0JCPDSformat.txt
@@ -0,0 +1,22 @@
+JCDPS file format
+
+----------------------------
+line 1: version_number (should be 3)
+line 2: header
+line 3: symmetry_code, K0, K0p
+line 4: a, b, c, alpha, beta, gamma (this line is different depending on symmetry, see examples)
+line 5: (blankline for future use)
+line 6: column description (d I/I0 h k l)
+line 7: d-spacing, I/I0, h, k, l
+.
+.
+.
+-----------------------------
+
+* symmetry code
+1 cubic
+2 hexagonal
+3 tetragonal
+4 orthorhombic
+5 monoclinic
+6 triclinic
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Al2SiO5.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Al2SiO5.jcpds
new file mode 100644
index 0000000..2d9d8e4
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Al2SiO5.jcpds
@@ -0,0 +1,31 @@
+3
+Al2SiO5 (Ahmed_Zaid 1991)
+ 5 185.000 4.00000
+ 8.478 4.471 6.782 90 104.25 90
+(blank for future use)
+d-spacing I/I0 h k l
+3.7231 5 0 1 1
+3.2903 8 0 0 2
+2.9402 14 2 0 -2
+2.6827 6 1 1 -2
+2.5779 5 2 1 1
+2.3382 32 3 1 0
+2.2379 100 0 2 0
+2.1366 7 3 1 -2
+2.0579 11 4 0 0
+2.0144 21 1 2 1
+1.915 64 2 2 -1
+1.9103 5 4 1 -1
+1.743 13 3 2 -1
+1.7217 6 3 2 0
+1.6695 5 2 0 -4
+1.5752 18 4 0 2
+1.4903 7 0 3 0
+1.465 7 1 3 0
+1.368 53 6 0 0
+1.3308 11 2 3 -2
+1.278 5 3 0 4
+1.2316 6 0 3 3
+1.2056 5 4 3 0
+1.1715 21 3 3 2
+1.124 8 7 1 -3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Ar-hcp-NoTh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Ar-hcp-NoTh.jcpds
new file mode 100644
index 0000000..a3616d1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Ar-hcp-NoTh.jcpds
@@ -0,0 +1,16 @@
+3
+ar HCP (based on cobalt hcp file, EOS same as fcc)
+ 2 6.5 5.1
+ 3.7067 6.0078
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1694 20. 1.00 0.00 0.00
+ 2.0300 60. 0.00 0.00 2.00
+ 1.9134 100. 1.00 0.00 1.00
+ 1.4822 12. 1.00 0.00 2.00
+ 1.2525 80. 1.00 1.00 0.00
+ 1.1482 80. 1.00 0.00 3.00
+ 1.0847 20. 2.00 0.00 0.00
+ 1.0660 80. 1.00 1.00 2.00
+ 1.0479 60. 2.00 0.00 1.00
+ 1.0150 20. 0.00 0.00 4.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/CF_75_Na.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/CF_75_Na.jcpds
new file mode 100755
index 0000000..6a04960
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/CF_75_Na.jcpds
@@ -0,0 +1,161 @@
+3
+CF phase (from original structure by Decker, EOS from Yamada1983)
+ 4 220.000 4.10000
+ 10.040 8.620 2.750
+(blank for future use)
+d-spacing I/I0 h k l
+6.54019 0.3 1 1 0
+5.02 24 2 0 0
+4.33799 21 2 1 0
+4.31 71.5 0 2 0
+3.96049 1.3 1 2 0
+3.2701 27.9 2 2 0
+3.11979 1.8 3 1 0
+2.76243 8.1 1 3 0
+2.65231 8.4 1 0 1
+2.64335 0.2 3 2 0
+2.53502 4.8 1 1 1
+2.51 68.8 4 0 0
+2.49373 100 2 3 0
+2.40991 3.8 4 1 0
+2.32262 30.9 2 1 1
+2.3183 14.1 0 2 1
+2.25886 0 1 2 1
+2.18006 9.3 3 3 0
+2.169 0 4 2 0
+2.155 2.7 0 4 0
+2.1247 25 3 0 1
+2.10701 28.7 1 4 0
+2.1047 1.8 2 2 1
+2.06296 87 3 1 1
+1.98025 17.4 2 4 0
+1.95564 24 5 1 0
+1.94892 64.9 1 3 1
+1.90572 2.5 3 2 1
+1.89033 7.2 4 3 0
+1.84731 12.9 2 3 1
+1.82015 0.6 5 2 0
+1.81245 24.4 4 1 1
+1.81186 1.6 3 4 0
+1.70837 6.5 3 3 1
+1.70303 45.6 4 2 1
+1.69913 5.3 1 5 0
+1.69623 32.4 0 4 1
+1.67333 0.1 6 0 0
+1.67253 23.4 1 4 1
+1.64591 1 5 3 0
+1.64267 7.8 6 1 0
+1.63505 4 4 4 0
+1.63053 4.2 2 5 0
+1.6217 4.2 5 0 1
+1.60697 13.7 2 4 1
+1.59374 1.1 5 1 1
+1.55989 23.2 6 2 0
+1.55779 0.1 4 3 1
+1.5326 0.2 3 5 0
+1.51781 0.8 5 2 1
+1.51299 2.3 3 4 1
+1.46909 1.7 5 4 0
+1.446 10.2 6 3 0
+1.44548 0.6 1 5 1
+1.43667 14.1 0 6 0
+1.42218 0.7 1 6 0
+1.42108 1.7 4 5 0
+1.41483 1.2 7 1 0
+1.41228 3.4 5 3 1
+1.41023 21.8 6 1 1
+1.4054 43.6 4 4 1
+1.40253 25.1 2 5 1
+1.38122 0.9 2 6 0
+1.375 41.7 0 0 2
+1.36091 0.5 7 2 0
+1.35681 18.3 6 2 1
+1.34558 0 1 1 2
+1.33874 0.6 3 5 1
+1.32615 0.6 2 0 2
+1.32167 1.2 6 4 0
+1.32016 1.6 3 6 0
+1.31073 0.7 2 1 2
+1.30995 2.9 0 2 2
+1.30804 1 5 5 0
+1.29894 0.1 1 2 2
+1.29578 1.7 5 4 1
+1.28329 0 7 3 0
+1.27985 10.9 6 3 1
+1.27337 5.6 0 6 1
+1.27171 1.3 7 0 1
+1.26751 2.6 2 2 2
+1.26325 0.3 1 6 1
+1.26248 0.1 4 5 1
+1.25822 0.2 3 1 2
+1.25809 7.4 7 1 1
+1.255 1 8 0 0
+1.24687 6 4 6 0
+1.24191 5.7 8 1 0
+1.23428 6.2 2 6 1
+1.23094 1.1 1 3 2
+1.22227 0.2 1 7 0
+1.21984 0 3 2 2
+1.21972 2.7 7 2 1
+1.20591 12.3 4 0 2
+1.20496 0 8 2 0
+1.20409 20.9 2 3 2
+1.20074 1.2 6 5 0
+1.19597 5 2 7 0
+1.19428 1.3 4 1 2
+1.19401 0.1 7 4 0
+1.19124 18 6 4 1
+1.19013 1.3 3 6 1
+1.18122 1.6 5 5 1
+1.16841 3 5 6 0
+1.163 1 3 3 2
+1.16131 0.2 4 2 2
+1.15915 0.5 0 4 2
+1.15568 0.9 3 7 0
+1.1515 4.6 1 4 2
+1.15008 2.8 8 3 0
+1.13559 1.9 4 6 1
+1.13184 3.7 8 1 1
+1.12943 3.4 2 4 2
+1.12481 4.6 5 1 2
+1.11692 2 1 7 1
+1.11195 0.9 4 3 2
+1.10633 0.6 9 1 0
+1.10554 0.9 4 7 0
+1.10366 0.2 8 2 1
+1.1026 1.3 7 5 0
+1.10042 3.1 6 5 1
+1.09713 0.1 5 2 2
+1.09674 1.6 2 7 1
+1.09531 1.1 3 4 2
+1.09003 0.3 6 6 0
+1.0845 0.9 8 4 0
+1.07997 1 9 2 0
+1.0775 2.6 0 8 0
+1.07537 2.5 5 6 1
+1.07135 0.2 1 8 0
+1.06886 1.8 1 5 2
+1.06542 6.7 3 7 1
+1.06235 0.2 6 0 2
+1.06103 0 8 3 1
+1.05523 0.5 5 3 2
+1.05437 3.1 6 1 2
+1.05351 0.3 2 8 0
+1.05235 1.3 4 4 2
+1.05114 2.7 2 5 2
+1.04975 0.2 5 7 0
+1.03993 0 9 3 0
+1.03374 1.6 9 0 1
+1.03148 11.1 6 2 2
+1.02638 1 9 1 1
+1.02576 2.4 4 7 1
+1.02565 1.2 3 8 0
+1.02347 7.7 3 5 2
+1.01503 1.4 7 6 0
+1.01463 6.5 8 5 0
+1.01333 1.2 6 6 1
+1.00888 5.2 8 4 1
+1.00523 0.6 9 2 1
+1.004 1.6 0 0 0
+1.00389 1 5 4 2
+1.00324 0.9 0 8 1
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Ga2O3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Ga2O3.jcpds
new file mode 100644
index 0000000..4c1b707
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Ga2O3.jcpds
@@ -0,0 +1,190 @@
+3
+Rh2O3(II) type Ga2O3_Yusa 2008
+ 4 240.000 4.00000
+ 4.732 4.855 6.942 90 90 90
+(blank for future use)
+d-spacing I/I0 h k l
+3.91002 0.1 1 0 1
+3.471 3.8 0 0 2
+3.04523 14.5 1 1 1
+2.4275 21.1 0 2 0
+2.42474 100 1 1 2
+2.366 28.4 2 0 0
+2.29144 1.2 0 2 1
+2.12688 1.9 2 1 0
+2.07876 2.4 1 0 3
+2.06236 1 1 2 1
+2.03358 1.2 2 1 1
+1.98928 0 0 2 2
+1.95501 0.1 2 0 2
+1.91096 4.6 1 1 3
+1.83382 1 1 2 2
+1.8135 0 2 1 2
+1.7355 13.1 0 0 4
+1.69434 21.2 2 2 0
+1.67493 2.7 0 2 3
+1.64602 3.8 2 2 1
+1.57894 0.3 1 2 3
+1.56591 0.1 2 1 3
+1.5447 4 1 1 4
+1.53813 0.4 3 0 1
+1.52262 1.4 2 2 2
+1.49531 11.2 1 3 1
+1.4663 1.3 3 1 1
+1.4118 10.6 0 2 4
+1.40099 15.1 1 3 2
+1.39939 13 2 0 4
+1.37704 23.7 3 1 2
+1.36705 3.7 2 2 3
+1.35287 0.1 1 2 4
+1.34465 0.1 2 1 4
+1.33576 0.1 2 3 0
+1.33224 0.1 1 0 5
+1.31169 0.1 2 3 1
+1.30334 0 3 0 3
+1.29927 0.1 3 2 1
+1.28475 1.2 1 1 5
+1.27698 3.2 1 3 3
+1.25877 0 3 1 3
+1.24663 0.1 2 3 2
+1.23595 0.3 3 2 2
+1.21375 0.7 0 4 0
+1.21237 8.4 2 2 4
+1.2052 0 0 2 5
+1.19561 2 0 4 1
+1.183 2.6 4 0 0
+1.16791 0.1 1 2 5
+1.16261 0.2 2 1 5
+1.15918 0.2 1 4 1
+1.157 0.2 0 0 6
+1.15685 0 2 3 3
+1.14937 0 4 1 0
+1.1483 0 3 2 3
+1.14822 0.4 1 3 4
+1.14572 0.2 0 4 2
+1.13492 0.8 3 1 4
+1.13393 0 4 1 1
+1.11975 0.3 4 0 2
+1.1149 2.1 3 3 1
+1.11355 0 1 4 2
+1.09494 7 1 1 6
+1.09111 0.1 4 1 2
+1.07994 1 2 4 0
+1.07486 2.6 0 4 3
+1.07411 4.3 3 3 2
+1.0739 0.3 2 2 5
+1.0671 3.1 2 4 1
+1.06344 3.4 4 2 0
+1.05853 0.2 2 3 4
+1.05197 0 3 2 4
+1.05118 1.8 4 2 1
+1.04816 0 1 4 3
+1.04443 1 0 2 6
+1.04218 0 3 0 5
+1.03938 1.1 2 0 6
+1.03118 0 2 4 2
+1.02938 0 4 1 3
+1.02855 3.6 1 3 5
+1.01989 0 1 2 6
+1.01896 0.3 3 1 5
+1.01679 0.1 4 2 2
+1.01635 0.1 2 1 6
+1.01508 1.2 3 3 3
+0.99464 0.4 0 4 4
+0.97861 4.5 2 4 3
+0.9775 2.7 4 0 4
+0.97337 0 1 4 4
+0.97063 0 1 0 7
+0.96628 1.8 4 2 3
+0.9626 0.1 2 3 5
+0.95827 0.1 4 1 4
+0.95765 0 3 2 5
+0.95548 0.9 2 2 6
+0.95504 0 4 3 0
+0.95282 0 3 4 1
+0.95179 0.1 1 1 7
+0.9467 0.5 3 3 4
+0.94613 0 4 3 1
+0.94238 3.7 1 5 1
+0.93773 0 5 0 1
+0.92699 0 3 4 2
+0.92312 4 1 3 6
+0.92082 0 4 3 2
+0.92071 0 5 1 1
+0.91806 1.1 0 2 7
+0.91736 1.2 1 5 2
+0.91691 2.5 2 4 4
+0.91617 7 3 1 6
+0.9138 0.4 0 4 5
+0.90675 6.3 4 2 4
+0.90125 0.1 1 2 7
+0.89881 0 2 1 7
+0.89829 0 2 5 0
+0.89734 9.4 5 1 2
+0.89722 0 1 4 5
+0.89087 0.1 2 5 1
+0.88824 0.2 3 4 3
+0.88536 0 4 1 5
+0.88281 0 4 3 3
+0.87976 1.9 1 5 3
+0.87621 4.2 3 3 5
+0.87597 0 5 0 3
+0.87473 0 5 2 1
+0.87454 0 2 3 6
+0.87083 0.1 3 2 6
+0.86964 0 2 5 2
+0.86775 2.1 0 0 8
+0.86205 0.1 5 1 3
+0.85588 2.2 2 2 7
+0.85461 0 5 2 2
+0.85243 1.1 2 4 5
+0.84717 2.4 4 4 0
+0.84425 1.1 4 2 5
+0.84133 0 3 4 4
+0.84093 3.2 4 4 1
+0.84063 4 1 1 8
+0.83956 0.1 3 0 7
+0.83747 0.4 0 4 6
+0.83741 0 2 5 3
+0.83672 0 4 3 4
+0.83412 0 1 5 4
+0.83239 0.8 1 3 7
+0.82728 0 3 1 7
+0.82716 1.5 4 0 6
+0.82465 0 1 4 6
+0.82396 0 5 2 3
+0.82301 0.1 4 4 2
+0.82108 7.6 3 5 1
+0.81898 0.7 5 1 4
+0.81711 2.5 0 2 8
+0.81541 0 4 1 6
+0.81469 3.5 2 0 8
+0.81136 3.7 5 3 1
+0.80917 0 0 6 0
+0.80825 4.9 3 3 6
+0.8052 0.1 1 2 8
+0.80437 0.7 3 5 2
+0.80373 4.1 0 6 1
+0.80345 0.1 2 1 8
+0.79776 0.2 2 5 4
+0.79625 0 2 3 7
+0.79553 8.3 4 4 3
+0.79523 6.3 5 3 2
+0.79345 0 3 2 7
+0.79238 0.1 1 6 1
+0.79069 0.1 3 4 5
+0.78947 1.7 2 4 6
+0.78867 4.1 6 0 0
+0.78804 0 0 6 2
+0.78686 0 4 3 5
+0.78611 0 5 2 4
+0.78469 16.4 1 5 5
+0.78296 4 4 2 6
+0.782 0 5 0 5
+0.77866 6.8 3 5 3
+0.77846 0 6 1 0
+0.77733 0.3 1 6 2
+0.77361 0.3 6 1 1
+0.77235 32.4 2 2 8
+0.77205 5.1 5 1 5
+0.77036 9.3 5 3 3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/H-phase_Zhang2014.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/H-phase_Zhang2014.jcpds
new file mode 100644
index 0000000..972d333
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/H-phase_Zhang2014.jcpds
@@ -0,0 +1,44 @@
+4
+Aluminous CaSiO3 pv in LiNbO3 structure (Takafuji 2002)
+ 2 255.000 4.00000
+ 5.148 13.863
+2.3e-5
+d-spacing I/I0 h k l
+3.74965 100 0 1 2
+2.73624 72.6 0 1 -4
+2.574 60.5 1 1 0
+2.3105 8.2 0 0 6
+2.24868 1.1 1 1 3
+2.12211 18 0 2 -2
+1.87483 25.9 0 2 4
+1.71941 30.4 1 1 6
+1.67277 0.1 1 2 -1
+1.63739 18.5 1 2 2
+1.61516 11.5 0 1 8
+1.51545 22.9 1 2 -4
+1.4861 14 0 3 0
+1.43999 0.1 1 2 5
+1.36812 6.9 0 2 -8
+1.32378 7 0 1 -10
+1.32175 0.2 1 1 9
+1.287 6.3 2 2 0
+1.28338 0 1 2 -7
+1.24988 7.4 0 3 6
+1.23981 0.1 2 2 3
+1.23162 0.1 1 3 1
+1.21729 8 1 3 -2
+1.20807 8.7 1 2 8
+1.17722 4.4 0 2 10
+1.16461 8.5 1 3 4
+1.15525 1.1 0 0 12
+1.12929 0 1 3 -5
+1.12434 7.4 2 2 6
+1.10044 3.1 0 4 2
+1.07057 7.3 1 2 -10
+1.06105 3.4 0 4 -4
+1.05396 5.3 1 1 12
+1.04886 0 1 3 7
+1.02003 0 2 3 -1
+1.01185 4.2 2 3 2
+1.00923 0 1 2 11
+1.00653 5.8 1 3 -8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/LICENSE b/jnb-tools/1_cif_to_jcpds/jcpds/LICENSE
new file mode 100644
index 0000000..0fc3afe
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/LICENSE
@@ -0,0 +1,698 @@
+<<<<<<< HEAD
+The MIT License (MIT)
+
+Copyright (c) 2016 S.-H. Dan Shim
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+=======
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ {one line to give the program's name and a brief idea of what it does.}
+ Copyright (C) {year} {name of author}
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ {project} Copyright (C) {year} {fullname}
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+ .
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
+>>>>>>> a2140bf4e80e20fb41e3ccf2a39300e125adb0a5
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/LiGaO2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/LiGaO2.jcpds
new file mode 100644
index 0000000..03625c5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/LiGaO2.jcpds
@@ -0,0 +1,29 @@
+4
+LiGaO2
+ 2 255.000 4.00000
+ 2.911 14.466
+1.86e-5
+d-spacing I/I0 h k l
+4.822 100 0 0 3
+2.48382 44.6 0 1 -1
+2.411 6.9 0 0 6
+2.38077 19 0 1 2
+2.06826 69.4 0 1 -4
+1.90079 16.5 0 1 5
+1.60733 2.7 0 0 9
+1.59828 15.4 0 1 -7
+1.4694 19.8 0 1 8
+1.45565 19.9 1 1 0
+1.39354 16.3 1 1 3
+1.25587 4.9 0 2 1
+1.25474 3.6 0 1 -10
+1.24614 6.5 1 1 6
+1.24191 3.1 0 2 -2
+1.2055 3 0 0 12
+1.19038 9.3 0 2 4
+1.16601 5.6 0 1 11
+1.15569 3.2 0 2 -5
+1.07895 4.6 1 1 9
+1.0762 4 0 2 7
+1.03413 6 0 2 -8
+1.01803 1.8 0 1 -13
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Linbo3_Megaw (1968).jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Linbo3_Megaw (1968).jcpds
new file mode 100644
index 0000000..972d333
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Linbo3_Megaw (1968).jcpds
@@ -0,0 +1,44 @@
+4
+Aluminous CaSiO3 pv in LiNbO3 structure (Takafuji 2002)
+ 2 255.000 4.00000
+ 5.148 13.863
+2.3e-5
+d-spacing I/I0 h k l
+3.74965 100 0 1 2
+2.73624 72.6 0 1 -4
+2.574 60.5 1 1 0
+2.3105 8.2 0 0 6
+2.24868 1.1 1 1 3
+2.12211 18 0 2 -2
+1.87483 25.9 0 2 4
+1.71941 30.4 1 1 6
+1.67277 0.1 1 2 -1
+1.63739 18.5 1 2 2
+1.61516 11.5 0 1 8
+1.51545 22.9 1 2 -4
+1.4861 14 0 3 0
+1.43999 0.1 1 2 5
+1.36812 6.9 0 2 -8
+1.32378 7 0 1 -10
+1.32175 0.2 1 1 9
+1.287 6.3 2 2 0
+1.28338 0 1 2 -7
+1.24988 7.4 0 3 6
+1.23981 0.1 2 2 3
+1.23162 0.1 1 3 1
+1.21729 8 1 3 -2
+1.20807 8.7 1 2 8
+1.17722 4.4 0 2 10
+1.16461 8.5 1 3 4
+1.15525 1.1 0 0 12
+1.12929 0 1 3 -5
+1.12434 7.4 2 2 6
+1.10044 3.1 0 4 2
+1.07057 7.3 1 2 -10
+1.06105 3.4 0 4 -4
+1.05396 5.3 1 1 12
+1.04886 0 1 3 7
+1.02003 0 2 3 -1
+1.01185 4.2 2 3 2
+1.00923 0 1 2 11
+1.00653 5.8 1 3 -8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Mg2FeAl2Si3O12-gt.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Mg2FeAl2Si3O12-gt.jcpds
new file mode 100755
index 0000000..5721f7c
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Mg2FeAl2Si3O12-gt.jcpds
@@ -0,0 +1,40 @@
+4
+pyrope (EOS from Wang 1998 PEPI)
+ 1 171.000 5.00000
+ 11.488
+3.16e-5
+d-spacing I/I0 h k l
+4.71445 7.1 1 1 2
+4.08283 1.7 0 2 2
+3.08633 5.8 1 2 3
+2.887 52.1 0 0 4
+2.58221 100 0 2 4
+2.46204 32.2 2 3 3
+2.35723 21.8 2 2 4
+2.26475 26.7 1 3 4
+2.10837 12.8 1 2 5
+2.04142 2.9 0 4 4
+1.87333 22.8 1 1 6
+1.8259 7.4 0 2 6
+1.7819 0.4 1 4 5
+1.70266 2.1 1 3 6
+1.66681 18.4 4 4 4
+1.63313 0.8 3 4 5
+1.60142 48.4 0 4 6
+1.57148 1.3 1 2 7
+1.54317 79.3 2 4 6
+1.4666 2.8 1 5 6
+1.4435 15.1 0 0 8
+1.42146 3.7 1 4 7
+1.4004 0.8 0 2 8
+1.38025 4.2 3 5 6
+1.36094 0.7 0 6 6
+1.34243 1.1 1 3 8
+1.30755 2 2 5 7
+1.29111 18.2 0 4 8
+1.25999 24.9 2 4 8
+1.24525 4.4 1 2 9
+1.23102 13.4 4 6 6
+1.21727 5.9 1 5 8
+1.19109 0.2 2 3 9
+1.17861 0.5 4 4 8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Mg3Al2Si3O12-pyrope.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Mg3Al2Si3O12-pyrope.jcpds
new file mode 100644
index 0000000..ec81fc7
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Mg3Al2Si3O12-pyrope.jcpds
@@ -0,0 +1,40 @@
+4
+pyrope (EOS from Wang 1998 PEPI)
+ 1 171.000 5.00000
+ 11.452
+3.16e-5
+d-spacing I/I0 h k l
+4.71445 7.1 1 1 2
+4.08283 1.7 0 2 2
+3.08633 5.8 1 2 3
+2.887 52.1 0 0 4
+2.58221 100 0 2 4
+2.46204 32.2 2 3 3
+2.35723 21.8 2 2 4
+2.26475 26.7 1 3 4
+2.10837 12.8 1 2 5
+2.04142 2.9 0 4 4
+1.87333 22.8 1 1 6
+1.8259 7.4 0 2 6
+1.7819 0.4 1 4 5
+1.70266 2.1 1 3 6
+1.66681 18.4 4 4 4
+1.63313 0.8 3 4 5
+1.60142 48.4 0 4 6
+1.57148 1.3 1 2 7
+1.54317 79.3 2 4 6
+1.4666 2.8 1 5 6
+1.4435 15.1 0 0 8
+1.42146 3.7 1 4 7
+1.4004 0.8 0 2 8
+1.38025 4.2 3 5 6
+1.36094 0.7 0 6 6
+1.34243 1.1 1 3 8
+1.30755 2 2 5 7
+1.29111 18.2 0 4 8
+1.25999 24.9 2 4 8
+1.24525 4.4 1 2 9
+1.23102 13.4 4 6 6
+1.21727 5.9 1 5 8
+1.19109 0.2 2 3 9
+1.17861 0.5 4 4 8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgAl2O4 Liu 1978.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgAl2O4 Liu 1978.jcpds
new file mode 100644
index 0000000..bf355b6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgAl2O4 Liu 1978.jcpds
@@ -0,0 +1,26 @@
+3
+ε-MgAl2O4 Liu 1978
+ 4 200.000 3.98000
+ 8.5070 2.7400 9.4070
+(blank for future use)
+d-spacing I/I0 h k l
+4.70000 10.0 0 0 2
+4.26000 5.0 2 0 0
+3.15300 80.0 2 0 2
+2.73700 20.0 0 1 0
+2.64000 5.0 0 1 1
+2.43300 20.0 3 0 2
+2.35500 50.0 0 0 4
+2.10400 100.0 3 0 3
+2.05800 30.0 2 0 4
+1.64000 5.0 4 0 2
+1.77000 5.0 4 0 3
+1.74200 10.0 1 1 4
+1.69800 5.0 5 0 0
+1.66600 30.0 3 1 3
+1.59800 40.0 5 0 2
+1.57700 15.0 4 0 4
+1.51300 5.0 3 1 4
+1.48600 30.0 4 1 3
+1.47100 5.0 2 0 6
+1.41800 10.0 6 0 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-gt.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-gt.jcpds
new file mode 100755
index 0000000..4efdcc6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-gt.jcpds
@@ -0,0 +1,40 @@
+4
+pyrope (EOS from Wang 1998 PEPI)
+ 1 171.000 5.00000
+ 11.503
+3.16e-5
+d-spacing I/I0 h k l
+4.71445 7.1 1 1 2
+4.08283 1.7 0 2 2
+3.08633 5.8 1 2 3
+2.887 52.1 0 0 4
+2.58221 100 0 2 4
+2.46204 32.2 2 3 3
+2.35723 21.8 2 2 4
+2.26475 26.7 1 3 4
+2.10837 12.8 1 2 5
+2.04142 2.9 0 4 4
+1.87333 22.8 1 1 6
+1.8259 7.4 0 2 6
+1.7819 0.4 1 4 5
+1.70266 2.1 1 3 6
+1.66681 18.4 4 4 4
+1.63313 0.8 3 4 5
+1.60142 48.4 0 4 6
+1.57148 1.3 1 2 7
+1.54317 79.3 2 4 6
+1.4666 2.8 1 5 6
+1.4435 15.1 0 0 8
+1.42146 3.7 1 4 7
+1.4004 0.8 0 2 8
+1.38025 4.2 3 5 6
+1.36094 0.7 0 6 6
+1.34243 1.1 1 3 8
+1.30755 2 2 5 7
+1.29111 18.2 0 4 8
+1.25999 24.9 2 4 8
+1.24525 4.4 1 2 9
+1.23102 13.4 4 6 6
+1.21727 5.9 1 5 8
+1.19109 0.2 2 3 9
+1.17861 0.5 4 4 8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-ilm.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-ilm.jcpds
new file mode 100755
index 0000000..6fb7f6f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-ilm.jcpds
@@ -0,0 +1,38 @@
+4
+MgSiO3 ilmenite (GSAS calculation, EOS from guess)
+ 2 212 7.5
+4.7066 13.4968
+2.44e-5
+d-spacing I/I0 h k l
+4.5197 26 0 0 3
+3.92005 6 1 0 1
+3.50514 92 1 0 -2
+2.61119 100 1 0 4
+2.3642 43 1 1 0
+2.26098 5 1 0 -5
+2.0949 38 1 1 -3
+2.0949 41 1 1 3
+2.02451 6 2 0 -1
+1.96002 1 2 0 2
+1.75257 32 2 0 -4
+1.751 2 1 0 7
+1.63403 5 2 0 5
+1.6336 44 1 1 -6
+1.6336 20 1 1 6
+1.56605 5 1 0 -8
+1.53775 1 2 1 1
+1.50891 4 2 1 -2
+1.40792 5 2 1 4
+1.40792 13 3 -1 4
+1.36497 23 3 0 0
+1.34421 2 2 1 -5
+1.28718 5 1 0 10
+1.27053 6 1 1 9
+1.1821 3 2 2 0
+1.18033 1 1 0 -11
+1.14363 1 2 2 -3
+1.13049 1 2 0 -10
+1.12012 1 3 1 2
+1.07689 1 4 -1 -4
+1.04745 1 2 2 6
+1.01989 1 2 1 10
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-opv.jcpds
new file mode 100755
index 0000000..82ccfe9
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgAlSiO3-opv.jcpds
@@ -0,0 +1,162 @@
+4
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.7852 4.9393 6.9112
+2.2e-5
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgFe2SiO4-g.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgFe2SiO4-g.jcpds
new file mode 100644
index 0000000..f1ac81b
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgFe2SiO4-g.jcpds
@@ -0,0 +1,22 @@
+4
+(Mg,Fe)2SiO4 spinel (GSAS calculation, EOS from Knittle and Jeanloz,1987, don't trust 0GPa peak positions)
+ 1 183. 5.38
+8.08
+1.89e-5
+d-spacing I/I0 h k l
+2.85349 30 2 2 0
+2.43347 100 3 1 1
+2.32987 1 2 2 2
+2.01773 39 4 0 0
+1.85159 2 3 3 1
+1.64747 6 4 2 2
+1.55325 6 3 3 3
+1.55325 9 5 1 1
+1.42675 31 4 4 0
+1.27612 1 6 2 0
+1.2308 3 5 3 3
+1.16493 2 4 4 4
+1.05074 2 7 3 1
+1.05074 1 5 5 3
+1.00886 1 8 0 0
+0.90235 1 8 4 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgFeAlSiO3-cgt.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgFeAlSiO3-cgt.jcpds
new file mode 100644
index 0000000..65cce81
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgFeAlSiO3-cgt.jcpds
@@ -0,0 +1,40 @@
+4
+pyrope (EOS from Wang 1998 PEPI)
+ 1 171.000 5.00000
+ 11.53
+3.16e-5
+d-spacing I/I0 h k l
+4.71445 7.1 1 1 2
+4.08283 1.7 0 2 2
+3.08633 5.8 1 2 3
+2.887 52.1 0 0 4
+2.58221 100 0 2 4
+2.46204 32.2 2 3 3
+2.35723 21.8 2 2 4
+2.26475 26.7 1 3 4
+2.10837 12.8 1 2 5
+2.04142 2.9 0 4 4
+1.87333 22.8 1 1 6
+1.8259 7.4 0 2 6
+1.7819 0.4 1 4 5
+1.70266 2.1 1 3 6
+1.66681 18.4 4 4 4
+1.63313 0.8 3 4 5
+1.60142 48.4 0 4 6
+1.57148 1.3 1 2 7
+1.54317 79.3 2 4 6
+1.4666 2.8 1 5 6
+1.4435 15.1 0 0 8
+1.42146 3.7 1 4 7
+1.4004 0.8 0 2 8
+1.38025 4.2 3 5 6
+1.36094 0.7 0 6 6
+1.34243 1.1 1 3 8
+1.30755 2 2 5 7
+1.29111 18.2 0 4 8
+1.25999 24.9 2 4 8
+1.24525 4.4 1 2 9
+1.23102 13.4 4 6 6
+1.21727 5.9 1 5 8
+1.19109 0.2 2 3 9
+1.17861 0.5 4 4 8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/MgSiO3-bm.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/MgSiO3-bm.jcpds
new file mode 100644
index 0000000..2be2653
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/MgSiO3-bm.jcpds
@@ -0,0 +1,728 @@
+4
+Bridgmanite
+4 260.00 4.00
+4.77540 4.92920 6.89690
+3.1600e-05
+d-spacing I/I0 h k l
+3.926131 0.82 1.0 0.0 1.0
+3.448450 8.23 0.0 0.0 2.0
+3.429802 20.92 1.0 1.0 0.0
+3.071022 8.94 1.0 1.0 1.0
+2.464600 24.50 0.0 2.0 0.0
+2.431802 100.00 1.0 1.0 2.0
+2.387700 18.57 2.0 0.0 0.0
+2.320866 0.47 0.0 2.0 1.0
+2.190117 3.77 1.0 2.0 0.0
+2.148865 10.92 2.0 1.0 0.0
+2.087399 10.37 1.0 2.0 1.0
+2.071424 23.71 1.0 0.0 3.0
+2.051591 19.61 2.0 1.0 1.0
+2.005137 13.51 0.0 2.0 2.0
+1.963065 8.00 2.0 0.0 2.0
+1.909655 14.02 1.0 1.0 3.0
+1.848773 10.74 1.0 2.0 2.0
+1.823757 5.02 2.0 1.0 2.0
+1.724225 38.99 0.0 0.0 4.0
+1.714901 65.71 2.0 2.0 0.0
+1.681123 7.67 0.0 2.0 3.0
+1.664226 8.88 2.0 2.0 1.0
+1.585732 3.16 1.0 2.0 3.0
+1.569861 3.41 2.0 1.0 3.0
+1.553674 10.26 1.0 3.0 0.0
+1.551026 1.15 3.0 0.0 1.0
+1.540515 4.15 1.0 1.0 4.0
+1.535511 7.41 2.0 2.0 2.0
+1.515691 17.39 1.0 3.0 1.0
+1.514774 0.53 3.0 1.0 0.0
+1.479510 3.70 3.0 1.0 1.0
+1.416541 22.43 1.0 3.0 2.0
+1.412808 22.91 0.0 2.0 4.0
+1.397856 20.35 2.0 0.0 4.0
+1.386872 54.06 3.0 1.0 2.0
+1.374592 0.37 2.0 2.0 3.0
+1.354762 0.03 1.0 2.0 4.0
+1.353553 0.26 2.0 3.0 0.0
+1.344825 0.27 2.0 1.0 4.0
+1.337155 1.79 3.0 2.0 0.0
+1.328215 0.75 2.0 3.0 1.0
+1.325203 2.04 1.0 0.0 5.0
+1.312711 0.05 3.0 2.0 1.0
+1.308710 0.22 3.0 0.0 3.0
+1.287274 6.27 1.0 3.0 3.0
+1.279760 0.10 1.0 1.0 5.0
+1.264888 0.89 3.0 1.0 3.0
+1.259970 1.14 2.0 3.0 2.0
+1.246712 0.10 3.0 2.0 2.0
+1.232300 5.96 0.0 4.0 0.0
+1.215901 27.85 2.0 2.0 4.0
+1.213088 2.46 0.0 4.0 1.0
+1.203683 0.02 0.0 2.0 5.0
+1.193850 5.01 4.0 0.0 0.0
+1.193212 3.55 1.0 4.0 0.0
+1.175746 0.03 1.0 4.0 1.0
+1.167176 4.19 1.0 2.0 5.0
+1.166403 3.56 2.0 3.0 3.0
+1.160804 3.01 2.0 1.0 5.0
+1.160433 2.29 0.0 4.0 2.0
+1.160303 2.18 4.0 1.0 0.0
+1.155861 1.41 3.0 2.0 3.0
+1.154214 5.35 1.0 3.0 4.0
+1.149483 0.53 0.0 0.0 6.0
+1.144223 1.06 4.0 1.0 1.0
+1.143267 0.01 3.0 3.0 0.0
+1.137994 0.15 3.0 1.0 4.0
+1.128156 1.45 4.0 0.0 2.0
+1.127876 1.48 3.0 3.0 1.0
+1.127617 0.54 1.0 4.0 2.0
+1.099721 1.49 4.0 1.0 2.0
+1.095059 2.83 2.0 4.0 0.0
+1.089902 12.69 1.0 1.0 6.0
+1.086108 0.02 0.0 4.0 3.0
+1.085184 6.64 3.0 3.0 2.0
+1.081511 1.57 2.0 4.0 1.0
+1.074830 3.59 2.0 2.0 5.0
+1.074433 3.58 4.0 2.0 0.0
+1.064682 0.00 2.0 3.0 4.0
+1.061627 1.84 4.0 2.0 1.0
+1.059062 0.60 1.0 4.0 3.0
+1.056646 0.58 3.0 2.0 4.0
+1.043700 1.99 2.0 4.0 2.0
+1.042441 0.68 3.0 0.0 5.0
+1.041750 0.21 0.0 2.0 6.0
+1.035849 1.95 4.0 1.0 3.0
+1.035712 0.28 2.0 0.0 6.0
+1.031510 4.93 1.0 3.0 5.0
+1.025796 1.67 4.0 2.0 2.0
+1.023674 3.84 3.0 3.0 3.0
+1.019883 3.16 3.0 1.0 5.0
+1.017813 0.00 1.0 2.0 6.0
+1.013579 0.20 2.0 1.0 6.0
+1.002568 4.28 0.0 4.0 4.0
+0.988633 5.28 2.0 4.0 3.0
+0.981533 4.14 4.0 0.0 4.0
+0.981178 0.59 1.0 4.0 4.0
+0.974427 0.02 3.0 4.0 0.0
+0.973376 1.76 4.0 2.0 3.0
+0.965819 0.18 4.0 3.0 0.0
+0.965481 1.96 1.0 5.0 0.0
+0.964947 0.78 1.0 0.0 7.0
+0.964845 0.20 3.0 4.0 1.0
+0.962633 0.16 4.0 1.0 4.0
+0.960092 0.09 3.0 2.0 5.0
+0.956486 0.80 4.0 3.0 1.0
+0.956158 3.66 1.0 5.0 1.0
+0.954828 0.05 2.0 2.0 6.0
+0.952838 0.55 3.0 3.0 4.0
+0.946973 0.84 1.0 1.0 7.0
+0.946052 0.19 5.0 0.0 1.0
+0.937710 1.81 3.0 4.0 2.0
+0.937641 0.10 5.0 1.0 0.0
+0.930031 0.67 4.0 3.0 2.0
+0.929730 0.83 1.0 5.0 2.0
+0.929095 0.01 5.0 1.0 1.0
+0.924387 3.98 2.0 4.0 4.0
+0.924070 3.43 1.0 3.0 6.0
+0.918984 2.06 0.0 4.0 5.0
+0.915683 8.98 3.0 1.0 6.0
+0.914874 0.62 0.0 2.0 7.0
+0.911879 4.40 4.0 2.0 4.0
+0.911226 0.06 2.0 5.0 0.0
+0.904792 9.43 5.0 1.0 2.0
+0.903375 0.24 2.0 5.0 1.0
+0.902426 0.03 1.0 4.0 5.0
+0.898533 0.19 1.0 2.0 7.0
+0.897165 0.02 3.0 4.0 3.0
+0.895616 0.37 2.0 1.0 7.0
+0.890550 0.08 5.0 2.0 0.0
+0.890433 0.10 4.0 3.0 3.0
+0.890168 2.71 1.0 5.0 3.0
+0.887935 0.13 4.0 1.0 5.0
+0.883218 0.23 5.0 2.0 1.0
+0.881996 0.24 5.0 0.0 3.0
+0.880988 0.07 2.0 5.0 2.0
+0.880230 0.08 3.0 3.0 5.0
+0.876168 0.00 2.0 3.0 6.0
+0.871673 0.32 3.0 2.0 6.0
+0.868207 1.32 5.0 1.0 3.0
+0.862262 0.06 5.0 2.0 2.0
+0.862112 1.23 0.0 0.0 8.0
+0.857653 0.03 2.0 4.0 5.0
+0.857450 1.03 4.0 4.0 0.0
+0.854309 0.09 2.0 2.0 7.0
+0.850900 2.11 4.0 4.0 1.0
+0.848328 0.29 3.0 4.0 4.0
+0.847635 0.53 4.0 2.0 5.0
+0.847110 0.13 2.0 5.0 3.0
+0.842406 3.09 1.0 5.0 4.0
+0.840562 0.28 0.0 4.0 6.0
+0.838122 2.93 3.0 5.0 0.0
+0.837772 0.02 3.0 0.0 7.0
+0.836104 0.84 1.0 1.0 8.0
+0.832113 2.51 4.0 4.0 2.0
+0.832067 1.02 1.0 3.0 7.0
+0.832001 0.72 3.0 5.0 1.0
+0.830423 0.09 5.0 2.0 3.0
+0.828048 0.28 4.0 0.0 6.0
+0.827835 0.50 1.0 4.0 6.0
+0.825928 0.09 3.0 1.0 7.0
+0.825715 0.86 5.0 3.0 0.0
+0.823722 0.01 5.0 1.0 4.0
+0.821533 0.38 0.0 6.0 0.0
+0.819860 0.49 5.0 3.0 1.0
+0.816606 0.21 4.0 1.0 6.0
+0.815766 0.00 0.0 6.0 1.0
+0.814413 3.63 3.0 5.0 2.0
+0.813763 5.36 0.0 2.0 8.0
+0.810875 4.86 2.0 0.0 8.0
+0.810601 4.88 3.0 3.0 6.0
+0.809640 0.15 1.0 6.0 0.0
+0.805639 0.06 2.0 5.0 4.0
+0.804118 0.00 1.0 6.0 1.0
+0.803390 1.09 4.0 4.0 3.0
+0.803016 7.36 5.0 3.0 2.0
+0.802199 0.42 1.0 2.0 8.0
+0.800121 0.23 2.0 1.0 8.0
+0.799168 1.66 0.0 6.0 2.0
+0.796581 0.64 2.0 3.0 7.0
+0.795900 1.15 6.0 0.0 0.0
+0.795872 0.18 3.0 4.0 5.0
+0.793199 0.27 3.0 2.0 7.0
+0.792866 1.26 2.0 4.0 6.0
+0.791244 0.07 5.0 2.0 4.0
+0.791162 1.20 4.0 3.0 5.0
+0.790976 1.51 1.0 5.0 5.0
+0.788207 1.04 1.0 6.0 2.0
+0.787426 0.48 3.0 5.0 3.0
+0.785723 0.16 6.0 1.0 0.0
+0.785226 0.05 5.0 0.0 5.0
+0.784931 1.00 4.0 2.0 6.0
+0.780674 0.04 6.0 1.0 1.0
+0.777111 0.00 5.0 3.0 3.0
+0.776837 0.18 2.0 6.0 0.0
+0.775513 0.59 6.0 0.0 2.0
+0.775449 0.46 5.0 1.0 5.0
+0.773622 0.56 0.0 6.0 3.0
+0.771955 0.71 2.0 6.0 1.0
+0.770257 2.04 2.0 2.0 8.0
+0.769541 0.00 0.0 4.0 7.0
+0.767756 1.13 4.0 4.0 4.0
+0.766089 0.66 6.0 1.0 2.0
+0.763666 0.09 1.0 6.0 3.0
+0.760306 0.53 2.0 5.0 5.0
+0.760165 0.01 4.0 5.0 0.0
+0.759740 0.13 1.0 4.0 7.0
+0.757846 1.91 2.0 6.0 2.0
+0.757387 0.57 6.0 2.0 0.0
+0.756642 0.00 1.0 0.0 9.0
+0.755589 0.05 4.0 5.0 1.0
+0.754896 0.02 5.0 4.0 0.0
+0.753836 0.61 1.0 3.0 8.0
+0.753787 1.86 3.0 5.0 4.0
+0.752861 0.27 6.0 2.0 1.0
+0.751032 0.45 4.0 1.0 7.0
+0.750414 0.00 5.0 4.0 1.0
+0.748171 0.15 5.0 2.0 5.0
+0.747882 0.10 1.0 1.0 9.0
+0.746352 0.82 3.0 3.0 7.0
+0.744723 0.30 5.0 3.0 4.0
+0.743499 0.01 6.0 1.0 3.0
+0.743294 0.11 3.0 4.0 6.0
+0.742343 0.00 4.0 5.0 2.0
+0.741651 0.35 0.0 6.0 4.0
+0.739755 0.35 6.0 2.0 2.0
+0.739452 0.01 4.0 3.0 6.0
+0.739301 0.77 1.0 5.0 6.0
+0.737433 0.14 5.0 4.0 2.0
+0.732865 0.01 1.0 6.0 4.0
+0.732440 1.21 2.0 4.0 7.0
+0.731765 0.04 0.0 2.0 9.0
+0.730039 0.45 3.0 6.0 0.0
+0.728221 1.28 4.0 4.0 5.0
+0.727146 0.15 2.0 3.0 8.0
+0.726575 4.69 5.0 1.0 6.0
+0.726171 0.45 4.0 2.0 7.0
+0.725983 0.06 3.0 6.0 1.0
+0.724570 0.00 3.0 2.0 8.0
+0.723322 0.06 1.0 2.0 9.0
+0.722628 1.05 6.0 0.0 4.0
+0.721798 0.27 2.0 1.0 9.0
+0.721734 0.50 4.0 5.0 3.0
+0.719355 0.50 6.0 2.0 3.0
+0.717219 0.01 5.0 4.0 3.0
+0.716288 0.42 6.0 3.0 0.0
+0.716268 0.36 3.0 5.0 5.0
+0.714210 0.04 3.0 6.0 2.0
+0.714074 0.05 2.0 5.0 6.0
+0.712456 0.04 6.0 3.0 1.0
+0.708478 0.64 5.0 3.0 5.0
+0.708270 0.36 2.0 6.0 4.0
+0.706404 0.60 0.0 4.0 8.0
+0.705831 0.12 0.0 6.0 5.0
+0.703993 0.04 5.0 2.0 6.0
+0.701319 0.02 6.0 3.0 2.0
+0.699645 0.20 2.0 2.0 9.0
+0.698928 0.64 4.0 0.0 8.0
+0.698800 0.13 1.0 4.0 8.0
+0.698245 0.01 1.0 6.0 5.0
+0.696638 1.44 1.0 7.0 0.0
+0.695800 0.01 3.0 6.0 3.0
+0.695566 0.00 4.0 5.0 4.0
+0.693436 1.12 6.0 2.0 4.0
+0.693112 0.46 1.0 7.0 1.0
+0.692826 0.01 3.0 4.0 7.0
+0.692006 0.33 4.0 1.0 8.0
+0.691522 0.06 5.0 4.0 4.0
+0.690475 0.02 3.0 0.0 9.0
+0.689712 0.02 4.0 3.0 7.0
+0.689690 0.18 0.0 0.0 10.0
+0.689589 0.85 1.0 5.0 7.0
+0.688340 0.85 3.0 3.0 8.0
+0.687296 0.97 4.0 4.0 6.0
+0.687270 0.60 1.0 3.0 9.0
+0.685960 0.01 5.0 5.0 0.0
+0.685769 0.07 5.0 0.0 7.0
+0.683864 0.16 6.0 3.0 3.0
+0.683798 0.07 3.0 1.0 9.0
+0.682844 0.27 1.0 7.0 2.0
+0.682730 0.07 6.0 1.0 5.0
+0.682593 0.07 5.0 5.0 1.0
+0.679227 0.38 5.0 1.0 7.0
+0.678887 0.40 7.0 0.0 1.0
+0.677381 1.47 2.0 4.0 8.0
+0.677221 0.32 3.0 5.0 6.0
+0.676876 0.96 2.0 6.0 5.0
+0.676776 0.13 4.0 6.0 0.0
+0.676155 1.61 1.0 1.0 10.0
+0.675759 0.11 7.0 1.0 0.0
+0.675412 0.13 2.0 7.0 0.0
+0.673541 0.56 4.0 6.0 1.0
+0.672779 0.14 5.0 5.0 2.0
+0.672538 0.10 7.0 1.0 1.0
+0.672413 1.34 4.0 2.0 8.0
+0.672264 0.29 3.0 6.0 4.0
+0.672196 0.03 2.0 7.0 1.0
+0.670625 1.41 5.0 3.0 6.0
+0.668981 0.03 2.0 5.0 7.0
+0.668578 0.38 6.0 4.0 0.0
+0.668379 0.50 0.0 6.0 6.0
+0.666863 0.07 2.0 3.0 9.0
+0.666701 0.59 1.0 7.0 3.0
+0.665761 0.38 4.0 5.0 5.0
+0.665458 0.66 6.0 4.0 1.0
+0.664875 0.02 3.0 2.0 9.0
+0.664174 0.18 0.0 2.0 10.0
+0.664108 1.56 4.0 6.0 2.0
+0.663893 0.08 6.0 2.0 5.0
+0.663146 2.20 7.0 1.0 2.0
+0.662818 0.01 2.0 7.0 2.0
+0.662602 0.21 2.0 0.0 10.0
+0.662213 0.00 5.0 4.0 5.0
+0.661480 0.24 6.0 3.0 4.0
+0.660670 0.03 5.0 2.0 7.0
+0.657842 0.06 1.0 2.0 10.0
+0.657478 0.02 7.0 2.0 0.0
+0.657324 0.07 5.0 5.0 3.0
+0.656695 0.18 2.0 1.0 10.0
+0.656356 0.95 6.0 4.0 2.0
+0.654510 0.19 7.0 2.0 1.0
+0.654355 0.09 6.0 0.0 6.0
+0.654013 0.04 7.0 0.0 3.0
+0.650756 0.09 0.0 4.0 9.0
+0.649229 0.73 4.0 6.0 3.0
+0.648664 0.01 6.0 1.0 6.0
+0.648331 0.05 7.0 1.0 3.0
+0.648024 0.05 2.0 7.0 3.0
+0.646812 0.43 4.0 4.0 7.0
+0.645911 1.69 1.0 7.0 4.0
+0.645844 0.09 7.0 2.0 2.0
+0.645680 0.44 3.0 4.0 8.0
+0.645242 0.06 3.0 6.0 5.0
+0.644796 0.01 1.0 4.0 9.0
+0.643974 0.28 3.0 7.0 0.0
+0.643637 1.22 2.0 6.0 6.0
+0.643157 0.17 4.0 3.0 8.0
+0.643057 1.44 1.0 5.0 8.0
+0.641981 0.20 6.0 4.0 3.0
+0.641185 0.11 3.0 7.0 1.0
+0.639880 0.02 2.0 2.0 10.0
+0.639447 0.11 4.0 1.0 9.0
+0.638393 0.18 3.0 5.0 7.0
+0.637373 0.32 5.0 5.0 4.0
+0.636552 0.13 3.0 3.0 9.0
+0.635690 0.22 6.0 3.0 5.0
+0.634630 0.02 5.0 1.0 8.0
+0.634059 0.00 4.0 5.0 6.0
+0.632444 0.48 6.0 2.0 6.0
+0.632135 0.70 7.0 2.0 3.0
+0.630991 0.03 5.0 4.0 6.0
+0.630970 0.19 0.0 6.0 7.0
+0.630372 0.43 1.0 3.0 10.0
+0.630051 0.01 7.0 3.0 0.0
+0.629985 0.17 4.0 6.0 4.0
+0.629164 0.09 7.0 1.0 4.0
+0.628884 0.08 2.0 7.0 4.0
+0.627855 0.17 2.0 4.0 9.0
+0.627690 1.41 3.0 1.0 10.0
+0.627438 0.07 7.0 3.0 1.0
+0.626249 0.02 2.0 5.0 8.0
+0.625533 0.03 1.0 6.0 7.0
+0.623892 0.18 4.0 2.0 9.0
+0.623356 0.46 6.0 4.0 4.0
+0.622821 0.03 5.0 6.0 0.0
+0.621834 0.22 1.0 7.0 5.0
+0.621656 0.01 1.0 0.0 11.0
+0.620297 0.01 5.0 6.0 1.0
+0.619791 0.51 7.0 3.0 2.0
+0.619415 0.01 5.0 2.0 8.0
+0.619272 0.09 6.0 5.0 0.0
+0.616770 0.02 1.0 1.0 11.0
+0.616258 0.26 3.0 6.0 6.0
+0.616150 0.02 0.0 8.0 0.0
+0.614515 0.02 2.0 3.0 10.0
+0.614305 0.00 6.0 1.0 7.0
+0.614204 0.03 5.0 5.0 5.0
+0.612958 0.14 3.0 2.0 10.0
+0.612905 0.01 5.0 6.0 2.0
+0.611501 0.51 7.0 0.0 5.0
+0.611084 0.15 1.0 8.0 0.0
+0.610030 0.00 2.0 6.0 7.0
+0.609522 0.20 6.0 5.0 2.0
+0.608700 0.02 1.0 8.0 1.0
+0.607951 0.32 4.0 4.0 8.0
+0.607919 0.23 6.0 3.0 6.0
+0.607644 0.29 7.0 3.0 3.0
+0.607585 0.28 4.0 6.0 5.0
+0.606849 0.27 7.0 1.0 5.0
+0.606597 0.13 2.0 7.0 5.0
+0.606544 0.37 0.0 8.0 2.0
+0.606526 0.03 4.0 7.0 0.0
+0.603271 0.91 3.0 7.0 4.0
+0.602776 0.12 1.0 2.0 11.0
+0.602363 0.03 3.0 4.0 9.0
+0.601893 0.16 2.0 1.0 11.0
+0.601856 0.20 4.0 5.0 7.0
+0.601842 0.02 0.0 4.0 10.0
+0.601710 0.01 1.0 8.0 2.0
+0.601632 0.68 6.0 4.0 5.0
+0.601151 0.01 5.0 6.0 3.0
+0.600944 0.08 3.0 5.0 8.0
+0.600474 0.22 6.0 2.0 7.0
+0.600313 0.07 4.0 3.0 9.0
+0.600231 0.47 1.0 5.0 9.0
+0.599231 0.00 5.0 4.0 7.0
+0.597958 0.32 6.0 5.0 3.0
+0.597707 0.03 5.0 0.0 9.0
+0.597356 0.07 4.0 7.0 2.0
+0.597198 0.05 4.0 0.0 10.0
+0.597118 0.44 1.0 4.0 10.0
+0.596925 0.11 8.0 0.0 0.0
+0.596845 0.10 7.0 4.0 0.0
+0.596606 0.14 2.0 8.0 0.0
+0.596321 0.03 5.0 3.0 8.0
+0.595768 0.04 1.0 7.0 6.0
+0.595146 0.09 0.0 8.0 3.0
+0.594740 0.06 0.0 6.0 8.0
+0.594623 0.07 7.0 4.0 1.0
+0.593505 0.02 7.0 2.0 5.0
+0.592863 0.29 4.0 1.0 10.0
+0.592596 0.07 8.0 1.0 0.0
+0.591780 0.12 7.0 3.0 4.0
+0.590577 0.10 1.0 8.0 3.0
+0.590553 1.74 3.0 3.0 10.0
+0.590181 0.41 1.0 6.0 8.0
+0.589048 0.85 5.0 5.0 6.0
+0.588867 0.16 2.0 2.0 11.0
+0.588178 0.03 8.0 0.0 2.0
+0.588102 0.05 7.0 4.0 2.0
+0.587873 1.83 2.0 8.0 2.0
+0.586569 0.01 3.0 6.0 7.0
+0.586494 0.02 2.0 5.0 9.0
+0.586459 0.25 4.0 7.0 3.0
+0.585777 0.03 5.0 6.0 4.0
+0.584795 0.19 6.0 0.0 8.0
+0.583588 0.42 2.0 4.0 10.0
+0.583516 0.19 3.0 7.0 5.0
+0.583368 0.04 3.0 0.0 11.0
+0.583201 0.83 4.0 6.0 6.0
+0.582822 0.15 6.0 5.0 4.0
+0.582550 0.98 7.0 1.0 6.0
+0.582327 0.08 2.0 7.0 6.0
+0.581431 0.35 1.0 3.0 11.0
+0.580869 0.03 5.0 2.0 9.0
+0.580722 0.28 6.0 1.0 8.0
+0.580402 0.35 4.0 2.0 10.0
+0.580216 0.00 0.0 8.0 4.0
+0.580151 0.97 8.0 2.0 0.0
+0.579365 0.06 6.0 3.0 7.0
+0.579325 0.12 3.0 1.0 11.0
+0.578110 0.07 8.0 2.0 1.0
+0.577930 0.42 6.0 4.0 6.0
+0.577694 0.01 7.0 4.0 3.0
+0.577477 0.09 2.0 8.0 3.0
+0.577107 0.25 2.0 6.0 8.0
+0.575981 0.06 1.0 8.0 4.0
+0.574742 0.24 0.0 0.0 12.0
+0.574606 0.01 3.0 8.0 0.0
+0.573838 0.01 8.0 1.0 3.0
+0.573097 0.01 7.0 3.0 5.0
+0.572112 0.29 8.0 2.0 2.0
+0.571634 0.08 6.0 6.0 0.0
+0.571383 0.36 4.0 4.0 9.0
+0.569680 0.20 6.0 6.0 1.0
+0.568997 0.78 6.0 2.0 8.0
+0.568918 0.01 2.0 3.0 11.0
+0.568817 0.31 1.0 7.0 7.0
+0.567938 0.05 5.0 4.0 8.0
+0.567640 0.01 5.0 6.0 5.0
+0.566838 0.17 1.0 1.0 12.0
+0.566791 0.17 3.0 8.0 2.0
+0.566776 0.86 5.0 7.0 0.0
+0.565555 0.12 3.0 5.0 9.0
+0.564950 0.11 6.0 5.0 5.0
+0.564872 0.01 5.0 7.0 1.0
+0.564078 0.42 8.0 0.0 4.0
+0.564011 0.02 7.0 4.0 4.0
+0.563938 0.77 6.0 6.0 2.0
+0.563809 0.06 2.0 8.0 4.0
+0.562960 0.03 5.0 5.0 7.0
+0.562948 0.00 3.0 4.0 10.0
+0.562576 0.02 0.0 8.0 5.0
+0.562517 0.00 8.0 2.0 3.0
+0.561816 0.17 3.0 7.0 6.0
+0.561696 0.05 5.0 3.0 9.0
+0.561274 0.06 4.0 3.0 10.0
+0.561207 0.32 1.0 5.0 10.0
+0.561047 0.03 8.0 3.0 0.0
+0.560981 0.47 7.0 5.0 0.0
+0.560876 0.03 7.0 0.0 7.0
+0.560420 0.04 8.0 1.0 4.0
+0.560374 0.00 0.0 6.0 9.0
+0.559724 0.98 0.0 2.0 12.0
+0.559272 0.38 5.0 7.0 2.0
+0.559134 0.10 7.0 5.0 1.0
+0.558817 0.11 0.0 4.0 11.0
+0.558781 0.87 2.0 0.0 12.0
+0.558712 0.14 1.0 8.0 5.0
+0.557850 0.39 4.0 6.0 7.0
+0.557457 0.06 3.0 8.0 3.0
+0.557280 0.02 7.0 1.0 7.0
+0.557124 0.01 3.0 6.0 8.0
+0.557085 0.02 2.0 7.0 7.0
+0.556556 0.00 1.0 6.0 9.0
+0.555918 0.07 1.0 2.0 12.0
+0.555579 1.73 5.0 1.0 10.0
+0.555225 0.03 2.0 1.0 12.0
+0.555222 0.09 4.0 7.0 5.0
+0.554742 0.45 6.0 6.0 3.0
+0.553766 0.22 8.0 3.0 2.0
+0.553702 0.62 7.0 5.0 2.0
+0.553232 0.12 6.0 4.0 7.0
+0.552499 0.77 7.0 3.0 6.0
+0.551608 0.04 4.0 1.0 11.0
+0.550940 0.00 6.0 3.0 8.0
+0.550299 0.05 5.0 7.0 3.0
+0.549930 0.02 2.0 5.0 10.0
+0.549860 0.95 8.0 2.0 4.0
+0.549746 0.03 3.0 3.0 11.0
+0.548602 0.00 6.0 1.0 9.0
+0.547767 0.10 7.0 4.0 5.0
+0.547605 0.02 5.0 6.0 6.0
+0.547582 0.03 2.0 8.0 5.0
+0.547529 0.01 4.0 8.0 0.0
+0.546893 0.37 7.0 2.0 7.0
+0.545812 0.12 4.0 8.0 1.0
+0.545551 0.11 2.0 6.0 9.0
+0.545286 0.02 5.0 2.0 10.0
+0.545188 0.11 6.0 5.0 6.0
+0.545132 0.05 3.0 8.0 4.0
+0.545051 0.03 8.0 3.0 3.0
+0.544990 0.08 7.0 5.0 3.0
+0.544951 0.50 2.0 2.0 12.0
+0.544122 0.33 1.0 9.0 0.0
+0.544114 0.03 2.0 4.0 11.0
+0.543054 0.61 0.0 8.0 6.0
+0.542592 0.10 6.0 6.0 4.0
+0.542436 0.05 1.0 9.0 1.0
+0.541846 0.55 1.0 7.0 8.0
+0.541529 0.09 4.0 2.0 11.0
+0.540756 0.64 4.0 8.0 2.0
+0.539576 0.07 1.0 8.0 6.0
+0.539042 0.16 1.0 3.0 12.0
+0.538685 0.08 6.0 2.0 9.0
+0.538432 0.78 5.0 7.0 4.0
+0.537786 0.00 5.0 4.0 9.0
+0.537472 0.02 1.0 9.0 2.0
+0.537415 0.31 4.0 4.0 10.0
+0.537216 0.12 8.0 4.0 0.0
+0.536776 0.80 5.0 5.0 8.0
+0.536430 0.00 4.0 7.0 6.0
+0.535594 0.01 8.0 4.0 1.0
+0.534777 0.15 8.0 2.0 5.0
+0.533825 0.00 2.0 9.0 0.0
+0.533513 0.10 8.0 3.0 4.0
+0.533456 0.40 7.0 5.0 4.0
+0.532632 0.07 4.0 8.0 3.0
+0.532557 0.01 3.0 5.0 10.0
+0.532341 0.06 4.0 6.0 8.0
+0.532233 0.01 2.0 9.0 1.0
+0.531845 0.01 7.0 1.0 8.0
+0.531676 0.00 2.0 7.0 8.0
+0.530814 0.08 8.0 4.0 2.0
+0.530802 0.15 7.0 3.0 7.0
+0.530424 0.01 3.0 8.0 5.0
+0.529754 0.04 8.0 0.0 6.0
+0.529698 0.03 7.0 4.0 6.0
+0.529531 0.58 2.0 8.0 6.0
+0.529493 0.00 1.0 9.0 3.0
+0.529332 0.26 5.0 3.0 10.0
+0.529037 0.03 9.0 0.0 1.0
+0.529025 0.04 2.0 3.0 12.0
+0.528577 0.01 3.0 6.0 9.0
+0.528323 0.15 6.0 4.0 8.0
+0.528225 0.13 0.0 6.0 10.0
+0.528083 0.06 6.0 6.0 5.0
+0.528031 0.00 3.0 2.0 12.0
+0.527552 0.10 9.0 1.0 0.0
+0.527542 0.17 2.0 9.0 2.0
+0.527387 0.00 6.0 7.0 0.0
+0.527287 0.13 1.0 0.0 13.0
+0.527270 0.03 3.0 4.0 11.0
+0.526721 0.04 8.0 1.0 6.0
+0.526457 0.00 5.0 6.0 7.0
+0.526016 0.01 9.0 1.0 1.0
+0.525893 0.12 4.0 3.0 11.0
+0.525852 0.07 6.0 7.0 1.0
+0.525839 0.28 1.0 5.0 11.0
+0.525023 0.06 1.0 6.0 10.0
+0.524837 0.06 7.0 6.0 0.0
+0.524309 0.16 6.0 5.0 7.0
+0.524296 0.09 1.0 1.0 13.0
+0.524246 0.06 5.0 7.0 5.0
+0.524139 0.01 5.0 0.0 11.0
+0.523287 0.01 6.0 3.0 9.0
+0.523124 0.28 8.0 4.0 3.0
+0.522794 0.05 7.0 2.0 8.0
+0.522409 0.05 0.0 8.0 7.0
+0.521850 0.03 4.0 8.0 4.0
+0.521485 0.28 9.0 1.0 2.0
+0.521326 0.19 6.0 7.0 2.0
+0.521220 0.01 6.0 0.0 10.0
+0.521201 0.02 5.0 1.0 11.0
+0.520875 0.18 0.0 4.0 12.0
+0.519991 0.05 2.0 9.0 3.0
+0.519703 0.01 8.0 3.0 5.0
+0.519650 0.07 7.0 5.0 5.0
+0.519311 0.05 1.0 8.0 7.0
+0.518897 0.60 1.0 9.0 4.0
+0.518862 0.05 7.0 6.0 2.0
+0.518715 0.07 9.0 2.0 0.0
+0.518650 0.07 0.0 2.0 13.0
+0.518331 0.08 6.0 1.0 10.0
+0.517925 0.00 8.0 2.0 6.0
+0.517891 0.51 3.0 9.0 0.0
+0.517856 0.16 4.0 0.0 12.0
+0.517804 0.02 1.0 4.0 12.0
+0.517254 0.17 9.0 2.0 1.0
+0.517009 0.27 9.0 0.0 3.0
+0.516528 0.05 2.0 5.0 11.0
+0.516505 0.12 4.0 7.0 7.0
+0.516437 0.04 3.0 9.0 1.0
+0.516304 0.02 5.0 8.0 1.0
+0.515928 1.05 3.0 7.0 8.0
+0.515755 0.53 2.0 6.0 10.0
+0.515618 0.05 1.0 2.0 13.0
+0.515477 0.15 1.0 7.0 9.0
+0.515065 0.04 2.0 1.0 13.0
+0.515021 0.06 4.0 1.0 12.0
+0.514188 0.03 9.0 1.0 3.0
+0.514035 0.02 6.0 7.0 3.0
+0.513967 0.03 3.0 8.0 6.0
+0.513505 0.18 3.0 3.0 12.0
+0.512945 0.01 9.0 2.0 2.0
+0.512898 0.30 8.0 4.0 4.0
+0.512674 0.02 5.0 2.0 11.0
+0.512148 0.04 3.0 9.0 2.0
+0.512017 0.00 5.0 8.0 2.0
+0.511837 0.42 6.0 6.0 6.0
+0.511673 0.01 7.0 6.0 3.0
+0.511105 0.02 5.0 5.0 9.0
+0.510787 0.00 4.0 5.0 10.0
+0.510616 0.08 8.0 5.0 0.0
+0.510487 0.01 7.0 4.0 7.0
+0.510337 0.04 2.0 8.0 7.0
+0.509944 0.02 2.0 9.0 4.0
+0.509942 0.28 6.0 2.0 10.0
+0.509544 0.11 7.0 0.0 9.0
+0.509222 0.04 8.0 5.0 1.0
+0.509179 0.01 5.0 4.0 10.0
+0.508906 0.40 2.0 4.0 12.0
+0.508904 0.12 4.0 8.0 5.0
+0.508685 0.25 7.0 3.0 8.0
+0.508341 0.01 5.0 7.0 6.0
+0.507820 0.00 8.0 1.0 7.0
+0.507272 0.20 4.0 6.0 9.0
+0.506843 0.02 7.0 1.0 9.0
+0.506790 0.35 4.0 2.0 12.0
+0.506697 0.00 2.0 7.0 9.0
+0.506164 0.08 1.0 9.0 5.0
+0.506117 0.25 4.0 4.0 11.0
+0.505230 0.04 3.0 9.0 3.0
+0.505109 0.15 8.0 5.0 2.0
+0.505105 0.03 5.0 8.0 3.0
+0.504925 0.13 9.0 3.0 0.0
+0.504857 0.00 5.0 6.0 8.0
+0.504468 0.17 9.0 1.0 4.0
+0.504323 0.04 6.0 7.0 4.0
+0.504195 0.07 8.0 3.0 6.0
+0.504147 0.09 7.0 5.0 6.0
+0.503792 0.19 6.0 4.0 9.0
+0.503577 0.11 9.0 3.0 1.0
+0.503312 0.01 3.0 0.0 13.0
+0.502961 0.10 6.0 5.0 8.0
+0.502092 0.01 7.0 6.0 4.0
+0.502067 0.10 1.0 3.0 13.0
+0.502053 0.07 3.0 5.0 11.0
+0.501342 0.23 3.0 6.0 10.0
+0.501284 0.07 0.0 8.0 8.0
+0.500709 0.05 3.0 1.0 13.0
+0.500591 0.03 8.0 4.0 5.0
+0.499598 0.19 9.0 3.0 2.0
+0.499347 0.07 5.0 3.0 11.0
+0.498991 0.09 7.0 2.0 9.0
+0.498545 0.01 1.0 8.0 8.0
+0.498418 0.01 0.0 6.0 11.0
+0.497804 0.12 4.0 9.0 0.0
+0.496822 0.21 6.0 3.0 10.0
+0.496724 0.03 9.0 2.0 4.0
+0.496513 0.04 4.0 9.0 1.0
+0.496362 0.03 3.0 8.0 7.0
+0.496060 0.05 4.0 7.0 8.0
+0.496000 0.66 3.0 9.0 4.0
+0.495225 0.00 9.0 0.0 5.0
+0.495045 0.13 3.0 4.0 12.0
+0.494443 0.27 6.0 6.0 7.0
+0.494317 0.53 4.0 8.0 6.0
+0.493944 0.14 2.0 3.0 13.0
+0.493905 0.04 4.0 3.0 12.0
+0.493860 0.43 1.0 5.0 12.0
+0.493170 0.08 9.0 3.0 3.0
+0.493134 0.08 3.0 2.0 13.0
+0.493010 0.02 3.0 7.0 9.0
+0.492920 0.04 0.0 10.0 0.0
+0.492744 0.01 9.0 1.0 5.0
+0.492697 0.03 4.0 9.0 2.0
+0.492636 0.00 0.0 0.0 14.0
+0.492610 0.20 6.0 7.0 5.0
+0.491805 0.03 1.0 9.0 6.0
+0.491666 0.05 0.0 10.0 1.0
+0.491289 0.02 5.0 7.0 7.0
+0.490766 0.59 8.0 0.0 8.0
+0.490722 0.04 7.0 4.0 8.0
+0.490589 0.01 2.0 8.0 8.0
+0.490530 0.00 7.0 6.0 5.0
+0.490315 0.00 1.0 10.0 0.0
+0.490123 0.00 1.0 7.0 10.0
+0.490080 0.01 6.0 1.0 11.0
+0.489972 0.07 7.0 7.0 0.0
+0.489598 0.14 8.0 5.0 4.0
+0.489081 0.03 1.0 10.0 1.0
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/Na0.4Mg0.6Al1.6Si0.4O4-CF.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/Na0.4Mg0.6Al1.6Si0.4O4-CF.jcpds
new file mode 100644
index 0000000..4ed7763
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/Na0.4Mg0.6Al1.6Si0.4O4-CF.jcpds
@@ -0,0 +1,304 @@
+3
+CF phase (from original structure by Decker, EOS from ?)
+ 4 169.000 6.3
+ 8.552 9.954 2.816
+(blank for future use)
+d-spacing I/I0 h k l
+6.58195 0.2 1 1 0
+5.064 2.5 0 2 0
+4.37146 4.7 1 2 0
+4.33 29 2 0 0
+3.9814 0.2 2 1 0
+3.29097 14.1 2 2 0
+3.14544 1.1 1 3 0
+2.77611 2.2 3 1 0
+2.68622 7.1 0 1 1
+2.6624 1 2 3 0
+2.56563 2.6 1 1 1
+2.532 60.5 0 4 0
+2.50783 84.3 3 2 0
+2.43025 0 1 4 0
+2.34943 43.3 1 2 1
+2.34293 25.2 2 0 1
+2.28264 0.9 2 1 1
+2.19398 11.5 3 3 0
+2.18573 1 2 4 0
+2.165 1.1 4 0 0
+2.1488 20.6 0 3 1
+2.12637 2.7 2 2 1
+2.11717 15 4 1 0
+2.08555 100 1 3 1
+1.9907 37.1 4 2 0
+1.97236 16.3 1 5 0
+1.96649 73.3 3 1 1
+1.92481 16.2 2 3 1
+1.90351 2.7 3 4 0
+1.86391 5.2 3 2 1
+1.83476 1.5 2 5 0
+1.83139 21.3 1 4 1
+1.82245 0.5 4 3 0
+1.72367 15.6 3 3 1
+1.71966 71.1 2 4 1
+1.70951 44.2 4 0 1
+1.70722 1.3 5 1 0
+1.688 0 0 6 0
+1.68567 30.4 4 1 1
+1.6581 2.5 3 5 0
+1.65682 3.2 1 6 0
+1.64549 1.2 4 4 0
+1.6388 2.9 5 2 0
+1.63834 6.9 0 5 1
+1.61971 5.3 4 2 1
+1.60978 0.1 1 5 1
+1.57272 34.7 2 6 0
+1.57169 0 3 4 1
+1.54103 0.1 5 3 0
+1.53232 2.7 2 5 1
+1.52512 3.8 4 3 1
+1.47914 0.1 4 5 0
+1.45715 26.1 3 6 0
+1.45565 0.9 5 1 1
+1.44333 23.4 6 0 0
+1.42954 2.6 5 4 0
+1.4289 1 6 1 0
+1.42708 0 1 7 0
+1.42485 1.6 3 5 1
+1.42403 29.2 1 6 1
+1.41682 50.4 4 4 1
+1.41254 31.6 5 2 1
+1.393 52.9 0 0 2
+1.38805 2.7 6 2 0
+1.37227 2.7 2 7 0
+1.36957 25.6 2 6 1
+1.36281 0 1 1 2
+1.34849 2.3 5 3 1
+1.34311 0.1 0 2 2
+1.3312 5.2 4 6 0
+1.32724 0.2 1 2 2
+1.32713 1.1 6 3 0
+1.32607 1.5 2 0 2
+1.31639 0 5 5 0
+1.31485 0 2 1 2
+1.30643 0.2 4 5 1
+1.29348 0.7 3 7 0
+1.29121 7.3 3 6 1
+1.28403 0.2 0 7 1
+1.28281 2 2 2 2
+1.28156 1.2 6 0 1
+1.27369 0.1 1 3 2
+1.27188 0.8 5 4 1
+1.27142 0.1 6 1 1
+1.27014 9.4 1 7 1
+1.266 2.1 0 8 0
+1.25392 21 6 4 0
+1.25269 5.7 1 8 0
+1.24505 0.4 3 1 2
+1.24239 5.9 6 2 1
+1.23427 0.2 2 3 2
+1.23104 0.6 2 7 1
+1.22802 1.4 7 1 0
+1.22049 15.3 0 4 2
+1.21775 25.7 3 2 2
+1.21513 1.1 2 8 0
+1.20885 0.6 5 6 0
+1.20854 0.3 1 4 2
+1.20295 0.2 4 7 0
+1.2018 3.8 7 2 0
+1.20113 8.1 4 6 1
+1.19814 0.3 6 3 1
+1.19021 1.3 5 5 1
+1.17599 1.6 3 3 2
+1.17546 3.7 6 5 0
+1.17471 0 2 4 2
+1.1732 2.4 3 7 1
+1.17146 0.3 4 0 2
+1.1637 2.7 4 1 2
+1.1616 0.1 7 3 0
+1.1594 2.6 3 8 0
+1.14344 0.9 6 4 1
+1.14251 1.1 1 8 1
+1.14132 8.8 4 2 2
+1.13783 3.5 1 5 2
+1.12414 0.4 3 4 2
+1.1237 0.7 7 1 1
+1.11595 0.9 1 9 0
+1.1138 2.3 2 8 1
+1.11156 0.8 7 4 0
+1.11039 2 5 7 0
+1.10947 0.4 2 5 2
+1.10896 2.2 5 6 1
+1.10673 0.1 4 3 2
+1.1044 0.2 4 7 1
+1.10351 4.5 7 2 1
+1.09699 0.5 6 6 0
+1.09287 0.3 4 8 0
+1.08915 1.9 2 9 0
+1.08301 7.7 6 5 1
+1.0825 0.4 8 0 0
+1.0793 0.5 5 1 2
+1.07637 0.3 8 1 0
+1.0744 0.1 0 6 2
+1.07215 9.1 7 3 1
+1.07041 0.4 3 8 1
+1.06657 0.9 3 5 2
+1.06622 1.3 1 6 2
+1.06319 0.4 4 4 2
+1.06137 1.6 5 2 2
+1.05858 0.5 8 2 0
+1.0558 0 7 5 0
+1.04848 0 3 9 0
+1.04343 0.3 0 9 1
+1.04278 15 2 6 2
+1.03594 3.5 1 9 1
+1.03338 0.1 5 3 2
+1.03242 1.2 7 4 1
+1.03149 5.7 5 7 1
+1.03081 1.4 8 3 0
+1.02207 4.7 5 8 0
+1.02183 0.2 6 7 0
+1.02072 0.3 6 6 1
+1.01739 2.5 4 8 1
+1.01439 0.5 2 9 1
+1.01409 0 4 5 2
+1.0128 0.5 0 10 0
+1.00901 2.9 8 0 1
+1.00692 14 3 6 2
+1.00594 0.2 1 10 0
+1.00404 2.4 8 1 1
+1.00232 12.5 6 0 2
+0.9985 0.3 4 9 0
+0.99784 0.2 7 6 0
+0.99767 1.6 5 4 2
+0.99745 0.6 6 1 2
+0.99683 0 1 7 2
+0.99535 3.2 8 4 0
+0.98956 0 8 2 1
+0.98728 0.3 7 5 1
+0.98618 7.5 2 10 0
+0.98325 1.3 6 2 2
+0.98129 2.1 3 9 1
+0.97759 1.3 2 7 2
+0.96676 0 8 3 1
+0.96241 3 4 6 2
+0.96087 0.7 6 3 2
+0.95954 0.1 5 8 1
+0.95934 0.8 6 7 1
+0.95791 1.1 9 1 0
+0.95677 0 5 5 2
+0.95568 1.8 3 10 0
+0.95472 0.2 8 5 0
+0.95175 1.5 6 8 0
+0.94786 0.4 3 7 2
+0.94616 4.3 1 10 1
+0.94531 5.2 9 2 0
+0.94364 0 5 9 0
+0.94028 0.2 7 7 0
+0.93996 0.7 4 9 1
+0.93941 4.2 7 6 1
+0.93733 1.9 8 4 1
+0.93689 1.5 0 8 2
+0.93196 13.5 6 4 2
+0.93145 3.7 1 8 2
+0.92966 3.9 2 10 1
+0.92537 0 9 3 0
+0.92479 0.3 0 1 3
+0.92117 0.8 7 1 2
+0.91956 0.2 1 1 3
+0.91738 1.8 4 10 0
+0.9157 0.8 2 8 2
+0.91557 0.2 1 11 0
+0.913 0.5 5 6 2
+0.91122 3.4 8 6 0
+0.91045 0.1 4 7 2
+0.90995 2.4 7 2 2
+0.90839 3.1 1 2 3
+0.90802 1.6 2 0 3
+0.90586 0.1 9 1 1
+0.90439 0 2 1 3
+0.90398 0.6 3 10 1
+0.90316 1.4 8 5 1
+0.90065 1.3 2 11 0
+0.89946 0 9 4 0
+0.89835 2.4 6 5 2
+0.89541 0.5 0 3 3
+0.89518 3.6 9 2 1
+0.89377 2.4 2 2 3
+0.89213 0.1 7 3 2
+0.89113 1.9 3 8 2
+0.89091 0.2 7 7 1
+0.89066 4 1 3 3
+0.88747 0 6 9 0
+0.88482 0.9 7 8 0
+0.8807 3 3 1 3
+0.87819 0 9 3 1
+0.87719 0 3 11 0
+0.87686 0.6 2 3 3
+0.87429 2 0 11 1
+0.87136 3 4 10 1
+0.87094 1 1 9 2
+0.8698 0.1 1 11 1
+0.86914 0.1 9 5 0
+0.86884 0.6 7 4 2
+0.86829 1.4 5 7 2
+0.86749 1.4 1 4 3
+0.86676 1 8 7 0
+0.86608 2.5 8 6 1
+0.86285 0.1 10 1 0
+0.86184 0.4 6 6 2
+0.85983 0.2 4 8 2
+0.85802 1.4 2 9 2
+0.85693 1.6 2 11 1
+0.85596 0.3 9 4 1
+0.85521 1.1 3 3 3
+0.85475 5.9 2 4 3
+0.85361 0.1 10 2 0
+0.85346 3.6 4 0 3
+0.85173 0.2 8 1 2
+0.85045 2.2 4 1 3
+0.84729 0.5 4 11 0
+0.8456 1.4 6 9 1
+0.84418 0.6 0 5 3
+0.844 0 0 12 0
+0.84331 6.3 7 8 1
+0.84283 0.3 8 2 2
+0.8416 0.5 4 2 3
+0.84143 0 7 5 2
+0.84019 0 1 5 3
+0.84002 1 1 12 0
+0.83884 0.7 10 3 0
+0.83771 0 3 9 2
+0.8367 0.1 3 11 1
+0.83594 3.1 9 6 0
+0.83463 0 3 4 3
+0.83418 2.5 5 10 1
+0.83246 0 7 9 0
+0.82971 0.1 9 5 1
+0.82905 0.2 6 10 0
+0.82861 1.4 2 5 3
+0.82841 1.3 2 12 0
+0.82763 0.3 8 7 1
+0.82743 0.4 4 3 3
+0.82697 5.2 10 0 1
+0.82423 2.8 10 1 1
+0.82405 3.7 5 8 2
+0.82393 0.2 6 7 2
+0.82274 0.3 8 8 0
+0.8194 0.4 10 4 0
+0.81917 0.5 0 10 2
+0.81616 0.4 10 2 1
+0.81578 0.1 5 1 3
+0.81553 0.2 1 10 2
+0.81299 0.1 5 11 0
+0.81155 0.2 4 9 2
+0.81119 0.2 7 6 2
+0.81063 0 4 11 1
+0.81024 0.2 3 5 3
+0.81009 4 1 6 3
+0.80985 2.8 8 4 2
+0.80876 5.8 4 4 3
+0.80796 3.6 5 2 3
+0.80489 6.3 2 10 2
+0.80426 6.9 1 12 1
+0.80322 1.8 10 3 1
+0.80122 0 9 7 0
+0.80068 1.6 9 6 1
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/PhaseX.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/PhaseX.jcpds
new file mode 100644
index 0000000..870cdef
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/PhaseX.jcpds
@@ -0,0 +1,56 @@
+3
+PHASE X (GSAS, EOS from Yang 1997)
+ 2 134.000 4.30000
+ 5.0756 6.5969
+(blank for future use)
+d-spacing I/I0 h k l
+6.5969 0 0 0 1
+4.3956 6 0 1 0
+3.65796 0.3 0 1 1
+3.29845 1.5 0 0 2
+2.63826 100 0 1 2
+2.5378 87.7 1 1 0
+2.36858 55.7 1 1 1
+2.19897 15.7 0 0 3
+2.1978 0.1 0 2 0
+2.08513 0.1 0 2 1
+2.01136 61.4 1 1 2
+1.96661 0.9 0 1 3
+1.82898 24.4 0 2 2
+1.66188 0.8 1 1 3
+1.66138 0 1 2 0
+1.64922 10.3 0 0 4
+1.61107 1 1 2 1
+1.55449 0 0 2 3
+1.54412 0 0 1 4
+1.48379 27.4 1 2 2
+1.4652 44.1 0 3 0
+1.43034 0 0 3 1
+1.38287 43.5 1 1 4
+1.33903 1 0 3 2
+1.32558 0.1 1 2 3
+1.31938 0.2 0 0 5
+1.31913 0.1 0 2 4
+1.2689 9.3 2 2 0
+1.26368 0.2 0 1 5
+1.24606 3.4 2 2 1
+1.21932 7.4 0 3 3
+1.21912 0.3 1 3 0
+1.19882 0.2 1 3 1
+1.18429 6.6 2 2 2
+1.17063 2.2 1 1 5
+1.17045 0.4 1 2 4
+1.14351 14.5 1 3 2
+1.1312 0 0 2 5
+1.09948 1.4 0 0 6
+1.09905 0.2 2 2 3
+1.0989 0.3 0 4 0
+1.09536 15.5 0 3 4
+1.08396 0.1 0 4 1
+1.06662 4.6 0 1 6
+1.06622 0.3 1 3 3
+1.04256 6.5 0 4 2
+1.03321 0.1 1 2 5
+1.00887 1.3 1 1 6
+1.00842 0 2 3 0
+1.00568 16.3 2 2 4
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/README.md b/jnb-tools/1_cif_to_jcpds/jcpds/README.md
new file mode 100644
index 0000000..6553a19
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/README.md
@@ -0,0 +1,3 @@
+This is JCPDS file repository by the Shim group. The files are all checked and confirmed to be used for synchrotron X-ray diffraction experiments.
+
+Plrease report any problems to Dan Shim, S.-H. Dan Shim
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/SiC.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/SiC.jcpds
new file mode 100755
index 0000000..80964d4
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/SiC.jcpds
@@ -0,0 +1,13 @@
+4
+SiC
+ 1 250 4.0
+ 4.3596
+4.00e-6
+d-spacing I/I0 h k l
+ 2.5170 100.0 1 1 1
+ 2.1798 18.1 0 0 2
+ 1.5413 46.1 0 2 2
+ 1.3145 34.9 1 1 3
+ 1.2585 5.0 2 2 2
+ 1.0899 7.5 0 0 4
+ 1.0002 17.2 1 3 3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/TAPP_Harris1997.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/TAPP_Harris1997.jcpds
new file mode 100644
index 0000000..6577967
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/TAPP_Harris1997.jcpds
@@ -0,0 +1,131 @@
+4
+H-phase (Harris1997)
+ 3 255.000 4.00000
+ 6.526 18.182
+2.3e-5
+6.14233 0 0 1 1
+4.5455 0.6 0 0 4
+4.44094 0.6 0 1 3
+4.11482 15 1 1 2
+3.263 7.7 0 2 0
+3.17654 21 0 1 5
+3.07117 2.3 0 2 2
+2.88163 14.9 1 2 1
+2.65073 100 0 2 4
+2.62952 9.2 1 2 3
+2.533 1.9 1 1 6
+2.4133 3 0 1 7
+2.30729 4.6 2 2 0
+2.27611 0.1 1 2 5
+2.27275 4.7 0 0 8
+2.22047 14 0 2 6
+2.15993 0.1 0 3 1
+2.0637 1.7 1 3 0
+2.05741 9.3 2 2 4
+2.04744 6.6 0 3 3
+2.0125 8.3 1 3 2
+1.94029 10.3 1 2 7
+1.92987 1.3 0 1 9
+1.8791 0.8 1 3 4
+1.86681 3.5 0 3 5
+1.86495 0.1 0 2 8
+1.80108 2.5 2 3 1
+1.7343 1.4 2 3 3
+1.70572 5.5 1 3 6
+1.69163 0.4 1 1 10
+1.66772 0.1 0 3 7
+1.66109 9.1 1 2 9
+1.6315 22.7 0 4 0
+1.62036 8 2 3 5
+1.61915 21.3 2 2 8
+1.60585 0.8 0 4 2
+1.60231 5.7 0 1 11
+1.58827 0 0 2 10
+1.57682 0.1 1 4 1
+1.53558 1.6 0 4 4
+1.53142 0.7 1 4 3
+1.52783 2.1 1 3 8
+1.51664 2.6 3 3 2
+1.51517 1.5 0 0 12
+1.485 10.8 2 3 7
+1.48031 4.9 0 3 9
+1.45926 5.9 2 4 0
+1.45127 4.8 1 4 5
+1.44081 1 2 4 2
+1.43826 3.6 1 2 11
+1.43653 0.4 0 4 6
+1.38942 17.6 2 4 4
+1.37424 4.3 0 2 12
+1.37161 4.7 3 3 6
+1.36756 3.2 0 1 13
+1.36424 1.8 1 3 10
+1.35161 1.3 1 4 7
+1.34807 3 2 3 9
+1.32537 3.6 0 4 8
+1.31608 2.1 0 3 11
+1.31476 3.8 2 4 6
+1.30185 0.8 0 5 1
+1.27985 2 1 5 0
+1.27595 1.6 0 5 3
+1.26736 2.3 1 5 2
+1.2665 0 2 2 12
+1.26127 1.2 1 2 13
+1.25015 1.7 1 1 14
+1.24593 1.8 1 4 9
+1.23195 1.1 1 5 4
+1.22847 2.3 0 5 5
+1.22794 1.3 2 4 8
+1.22133 0.1 1 3 12
+1.22054 1.2 2 3 11
+1.2143 0.5 0 4 10
+1.20917 1.1 2 5 1
+1.20665 2.1 0 2 14
+1.19175 1 0 1 15
+1.18833 0.7 2 5 3
+1.17901 0 1 5 6
+1.17644 0.8 0 3 13
+1.17433 1 3 3 10
+1.16624 0.2 0 5 7
+1.15364 3.5 4 4 0
+1.14969 0.5 2 5 5
+1.14319 2.3 1 4 11
+1.13805 0.8 2 4 10
+1.13637 0.3 0 0 16
+1.11942 1.3 1 2 15
+1.1192 0.9 3 5 0
+1.11819 2 4 4 4
+1.11519 0.3 1 5 8
+1.11081 2.6 3 5 2
+1.11024 0.2 0 4 12
+1.10671 1.3 2 3 13
+1.09917 2.7 1 3 14
+1.0982 2.4 2 5 7
+1.0963 2.9 0 5 9
+1.08767 0.4 0 6 0
+1.08674 0.4 3 5 4
+1.07996 0.2 0 6 2
+1.07316 1.2 0 2 16
+1.071 0.5 1 6 1
+1.05885 0.1 0 3 15
+1.0578 4.5 0 6 4
+1.05644 0.3 1 6 3
+1.05545 0 0 1 17
+1.05106 1 2 4 12
+1.04988 1 3 5 6
+1.04806 2.9 1 4 13
+1.04657 0.8 1 5 10
+1.03922 0.5 2 5 9
+1.03185 2.6 2 6 0
+1.02902 0.4 1 6 5
+1.02871 0.7 4 4 8
+1.02527 0.4 2 6 2
+1.02435 3.2 0 5 11
+1.02372 0.1 0 6 6
+1.01944 0.3 2 2 16
+1.01759 0.1 4 5 1
+1.01609 0.3 0 4 14
+1.00715 0.8 2 3 15
+1.00625 2.8 2 6 4
+1.00508 0.4 4 5 3
+1.00422 2 1 2 17
+1.00406 0 3 5 8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/TiC-NoTh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/TiC-NoTh.jcpds
new file mode 100755
index 0000000..cab89a3
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/TiC-NoTh.jcpds
@@ -0,0 +1,17 @@
+4
+TiC (EOS from Gu)
+ 1 268.0 4.00
+ 4.326
+0.0
+d-spacing I/I0 h k l
+ 3.2580 13. 1.00 1.00 1.00
+ 2.8201 100. 2.00 0.00 0.00
+ 1.9941 55. 2.00 2.00 0.00
+ 1.7006 2. 3.00 1.00 1.00
+ 1.6282 15. 2.00 2.00 2.00
+ 1.4100 6. 4.00 0.00 0.00
+ 1.2940 1. 3.00 3.00 1.00
+ 1.2612 11. 4.00 2.00 0.00
+ 1.1515 7. 4.00 2.00 2.00
+ 1.0855 1. 5.00 1.00 1.00
+ 0.9969 2. 4.00 4.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/al2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/al2o3.jcpds
new file mode 100755
index 0000000..8cc70a9
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/al2o3.jcpds
@@ -0,0 +1,18 @@
+4
+Al2O3 corundum (JCPDS 46-1212, EOS)
+ 2 254.000 4.30000
+ 4.7587 12.9929
+2.3e-5
+d-spacing I/I0 h k l
+ 3.4797 45. 0.00 1.00 2.00
+ 2.5508 100. 1.00 0.00 4.00
+ 2.3795 21. 1.00 1.00 0.00
+ 2.0853 66. 1.00 1.00 3.00
+ 1.7401 34. 0.00 2.00 4.00
+ 1.6016 89. 1.00 1.00 6.00
+ 1.5110 14. 0.00 1.00 8.00
+ 1.4045 23. 2.00 1.00 4.00
+ 1.3737 27. 3.00 0.00 0.00
+ 1.2392 29. 1.00 0.00 10.00
+ 1.2343 12. 1.00 1.00 9.00
+ 1.0990 9. 0.00 2.00 10.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/alooh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/alooh.jcpds
new file mode 100644
index 0000000..1cab2ea
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/alooh.jcpds
@@ -0,0 +1,47 @@
+4
+alooh
+ 4 252.000 4.00000
+ 4.698 4.206 2.833
+1.86e-5
+d-spacing I/I0 h k l
+4.2241 2.8 0 1 0
+3.1457 100 1 1 0
+2.42785 4.9 1 0 1
+2.3567 8.6 2 0 0
+2.35256 52.5 0 1 1
+2.11205 0.7 0 2 0
+2.10493 64 1 1 1
+2.05806 36.2 2 1 0
+1.9274 2.5 1 2 0
+1.69317 1.6 0 2 1
+1.66497 30.2 2 1 1
+1.59348 65.1 1 2 1
+1.57285 22.1 2 2 0
+1.47257 11.3 3 1 0
+1.41626 17.5 0 0 2
+1.40803 0.9 0 3 0
+1.37508 1.4 2 2 1
+1.37393 29.6 3 0 1
+1.34912 7.4 1 3 0
+1.3428 0.2 0 1 2
+1.30655 1.3 3 1 1
+1.29141 12.4 1 1 2
+1.26084 3.6 0 3 1
+1.26059 0.6 3 2 0
+1.21802 7.1 1 3 1
+1.21392 2.7 2 0 2
+1.20873 5.1 2 3 0
+1.17835 0.4 4 0 0
+1.17628 0 0 2 2
+1.1667 6.1 2 1 2
+1.15169 0.5 3 2 1
+1.14128 0.8 1 2 2
+1.13501 1.6 4 1 0
+1.11174 7.4 2 3 1
+1.05603 4.9 0 4 0
+1.05358 6.7 4 1 1
+1.05247 11 2 2 2
+1.04857 2.2 3 3 0
+1.03048 1.2 1 4 0
+1.02903 8.5 4 2 0
+1.02077 7.2 3 1 2
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ar-NoTh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ar-NoTh.jcpds
new file mode 100755
index 0000000..d40f812
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ar-NoTh.jcpds
@@ -0,0 +1,11 @@
+4
+Argon FCC (made by Shim, EOS from Errandonea and Boehler)
+ 1 6.5 5.1
+ 5.22932
+0.0
+d-spacing I/I0 h k l
+ 3.1828 100. 1.00 1.00 1.00
+ 2.7564 40. 2.00 0.00 0.00
+ 1.9491 25. 2.00 2.00 0.00
+ 1.6622 30. 3.00 1.00 1.00
+ 1.5914 12. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/au-Dewaele.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/au-Dewaele.jcpds
new file mode 100755
index 0000000..47c95da
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/au-Dewaele.jcpds
@@ -0,0 +1,19 @@
+4
+Gold (04-0784, Dewaele)
+ 1 166.70 5.32
+ 4.07860
+4.278e-5
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/au-Ye2017.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/au-Ye2017.jcpds
new file mode 100755
index 0000000..27f7bc5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/au-Ye2017.jcpds
@@ -0,0 +1,19 @@
+4
+Gold (Ye2017, JGR in Vinet EOS, for BM3 converted from Vinet EOS, fit to Pt)
+ 1 167.00 5.598
+ 4.07860
+4.278e-5
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/au.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/au.jcpds
new file mode 100755
index 0000000..4a38e92
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/au.jcpds
@@ -0,0 +1,19 @@
+4
+Gold (04-0784, Tsuchiya 2003, Note that Tsuchiya used Vinet EOS but XPEAKPO uses BM)
+ 1 166.70 6.12
+ 4.07860
+4.278e-5
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/bm-test.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/bm-test.jcpds
new file mode 100644
index 0000000..f2be0dd
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/bm-test.jcpds
@@ -0,0 +1,109 @@
+4
+test bridgmanite
+4 260.00 4.00
+4.77540 4.92920 6.89690
+1.0000e-05
+d-spacing I/I0 h k l
+3.92613 0.8 1.0 0.0 1.0
+3.44845 8.2 0.0 0.0 2.0
+3.42980 20.9 1.0 1.0 0.0
+3.07102 8.9 1.0 1.0 1.0
+2.46460 24.5 0.0 2.0 0.0
+2.43180 100.0 1.0 1.0 2.0
+2.38770 18.6 2.0 0.0 0.0
+2.32087 0.5 0.0 2.0 1.0
+2.19012 3.8 1.0 2.0 0.0
+2.14887 10.9 2.0 1.0 0.0
+2.08740 10.4 1.0 2.0 1.0
+2.07142 23.7 1.0 0.0 3.0
+2.05159 19.6 2.0 1.0 1.0
+2.00514 13.5 0.0 2.0 2.0
+1.96307 8.0 2.0 0.0 2.0
+1.90966 14.0 1.0 1.0 3.0
+1.84877 10.7 1.0 2.0 2.0
+1.82376 5.0 2.0 1.0 2.0
+1.72422 39.0 0.0 0.0 4.0
+1.71490 65.7 2.0 2.0 0.0
+1.68112 7.7 0.0 2.0 3.0
+1.66423 8.9 2.0 2.0 1.0
+1.58573 3.2 1.0 2.0 3.0
+1.56986 3.4 2.0 1.0 3.0
+1.55367 10.3 1.0 3.0 0.0
+1.55103 1.2 3.0 0.0 1.0
+1.54051 4.1 1.0 1.0 4.0
+1.53551 7.4 2.0 2.0 2.0
+1.51569 17.4 1.0 3.0 1.0
+1.51477 0.5 3.0 1.0 0.0
+1.47951 3.7 3.0 1.0 1.0
+1.41654 22.4 1.0 3.0 2.0
+1.41281 22.9 0.0 2.0 4.0
+1.39786 20.4 2.0 0.0 4.0
+1.38687 54.1 3.0 1.0 2.0
+1.37459 0.4 2.0 2.0 3.0
+1.35476 0.0 1.0 2.0 4.0
+1.35355 0.3 2.0 3.0 0.0
+1.34483 0.3 2.0 1.0 4.0
+1.33716 1.8 3.0 2.0 0.0
+1.32822 0.8 2.0 3.0 1.0
+1.32520 2.0 1.0 0.0 5.0
+1.31271 0.0 3.0 2.0 1.0
+1.30871 0.2 3.0 0.0 3.0
+1.28727 6.3 1.0 3.0 3.0
+1.27976 0.1 1.0 1.0 5.0
+1.26489 0.9 3.0 1.0 3.0
+1.25997 1.1 2.0 3.0 2.0
+1.24671 0.1 3.0 2.0 2.0
+1.23230 6.0 0.0 4.0 0.0
+1.21590 27.9 2.0 2.0 4.0
+1.21309 2.5 0.0 4.0 1.0
+1.20368 0.0 0.0 2.0 5.0
+1.19385 5.0 4.0 0.0 0.0
+1.19321 3.6 1.0 4.0 0.0
+1.17575 0.0 1.0 4.0 1.0
+1.16718 4.2 1.0 2.0 5.0
+1.16640 3.6 2.0 3.0 3.0
+1.16080 3.0 2.0 1.0 5.0
+1.16043 2.3 0.0 4.0 2.0
+1.16030 2.2 4.0 1.0 0.0
+1.15586 1.4 3.0 2.0 3.0
+1.15421 5.3 1.0 3.0 4.0
+1.14948 0.5 0.0 0.0 6.0
+1.14422 1.1 4.0 1.0 1.0
+1.14327 0.0 3.0 3.0 0.0
+1.13799 0.1 3.0 1.0 4.0
+1.12816 1.4 4.0 0.0 2.0
+1.12788 1.5 3.0 3.0 1.0
+1.12762 0.5 1.0 4.0 2.0
+1.09972 1.5 4.0 1.0 2.0
+1.09506 2.8 2.0 4.0 0.0
+1.08990 12.7 1.0 1.0 6.0
+1.08611 0.0 0.0 4.0 3.0
+1.08518 6.6 3.0 3.0 2.0
+1.08151 1.6 2.0 4.0 1.0
+1.07483 3.6 2.0 2.0 5.0
+1.07443 3.6 4.0 2.0 0.0
+1.06468 0.0 2.0 3.0 4.0
+1.06163 1.8 4.0 2.0 1.0
+1.05906 0.6 1.0 4.0 3.0
+1.05665 0.6 3.0 2.0 4.0
+1.04370 2.0 2.0 4.0 2.0
+1.04244 0.7 3.0 0.0 5.0
+1.04175 0.2 0.0 2.0 6.0
+1.03585 2.0 4.0 1.0 3.0
+1.03571 0.3 2.0 0.0 6.0
+1.03151 4.9 1.0 3.0 5.0
+1.02580 1.7 4.0 2.0 2.0
+1.02367 3.8 3.0 3.0 3.0
+1.01988 3.2 3.0 1.0 5.0
+1.01781 0.0 1.0 2.0 6.0
+1.01358 0.2 2.0 1.0 6.0
+1.00257 4.3 0.0 4.0 4.0
+0.98863 5.3 2.0 4.0 3.0
+0.98153 4.1 4.0 0.0 4.0
+0.98118 0.6 1.0 4.0 4.0
+0.97443 0.0 3.0 4.0 0.0
+0.97338 1.8 4.0 2.0 3.0
+0.96582 0.2 4.0 3.0 0.0
+0.96548 2.0 1.0 5.0 0.0
+0.96495 0.8 1.0 0.0 7.0
+0.96484 0.2 3.0 4.0 1.0
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/casio3-pv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/casio3-pv.jcpds
new file mode 100755
index 0000000..4108c8f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/casio3-pv.jcpds
@@ -0,0 +1,25 @@
+4
+Ca-perovskite (using aristotype, EOS by Shim et al 1999)
+ 1 236.000 3.90000
+ 3.56660
+2.2e-5
+d-spacing I/I0 h k l
+ 3.5666 4. 1.00 0.00 0.00
+ 2.5220 100. 1.00 1.00 0.00
+ 2.0592 31. 1.00 1.00 1.00
+ 1.7833 56. 2.00 0.00 0.00
+ 1.5950 1. 2.00 1.00 0.00
+ 1.4561 15. 2.00 1.00 1.00
+ 1.2610 9. 2.00 2.00 0.00
+ 1.1889 1. 2.00 2.00 1.00
+ 1.1889 1. 3.00 0.00 0.00
+ 1.1279 3. 3.00 1.00 0.00
+ 1.0754 1. 3.00 1.00 1.00
+ 1.0296 3. 2.00 2.00 2.00
+ 0.9892 1. 3.00 2.00 0.00
+ 0.9532 1. 3.00 2.00 1.00
+ 0.8917 1. 4.00 0.00 0.00
+ 0.8650 1. 3.00 2.00 2.00
+ 0.8650 1. 4.00 1.00 0.00
+ 0.8407 1. 4.00 1.00 1.00
+ 0.8407 1. 3.00 3.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/casio_Linbo3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/casio_Linbo3.jcpds
new file mode 100755
index 0000000..d9ae62f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/casio_Linbo3.jcpds
@@ -0,0 +1,14 @@
+4
+Aluminous CaSiO3 pv in LiNbO3 structure (Takafuji 2002)
+ 2 255.000 4.00000
+ 4.203 12.35
+2.3e-5
+d-spacing I/I0 h k l
+3.14 100 0 1 2
+2.35 47 1 0 4
+2.11 32 1 1 0
+2.05 10 0 0 6
+1.59 14 1 0 7
+1.57 7 0 2 4
+1.41 8 0 1 8
+1.37 10 0 0 9
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/diamond-NoTh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/diamond-NoTh.jcpds
new file mode 100755
index 0000000..0f3cb62
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/diamond-NoTh.jcpds
@@ -0,0 +1,11 @@
+4
+diamond (JCPDS 6-0675, dummy EOS)
+ 1 999. 1.000000
+ 3.56670
+0.0
+d-spacing I/I0 h k l
+ 2.0600 100. 1.00 1.00 1.00
+ 1.2610 27. 2.00 2.00 0.00
+ 1.0754 16. 3.00 1.00 1.00
+ 0.8916 7. 4.00 0.00 0.00
+ 0.8182 15. 3.00 3.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mg0.8fe0.2sio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mg0.8fe0.2sio3-opv.jcpds
new file mode 100755
index 0000000..e16bcd6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mg0.8fe0.2sio3-opv.jcpds
@@ -0,0 +1,162 @@
+4
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.7963 4.9346 6.9092
+2.2e-5
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mg0.9fe0.1sio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mg0.9fe0.1sio3-opv.jcpds
new file mode 100755
index 0000000..dd0d76e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mg0.9fe0.1sio3-opv.jcpds
@@ -0,0 +1,162 @@
+4
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.7859 4.9319 6.9032
+2.2e-5
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mg2sio4-g.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mg2sio4-g.jcpds
new file mode 100755
index 0000000..b36949e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mg2sio4-g.jcpds
@@ -0,0 +1,22 @@
+4
+Mg2SiO4 spinel (GSAS calculation, EOS from Knittle and Jeanloz,1987)
+ 1 183. 5.38
+8.0709
+1.89e-5
+d-spacing I/I0 h k l
+2.85349 30 2 2 0
+2.43347 100 3 1 1
+2.32987 1 2 2 2
+2.01773 39 4 0 0
+1.85159 2 3 3 1
+1.64747 6 4 2 2
+1.55325 6 3 3 3
+1.55325 9 5 1 1
+1.42675 31 4 4 0
+1.27612 1 6 2 0
+1.2308 3 5 3 3
+1.16493 2 4 4 4
+1.05074 2 7 3 1
+1.05074 1 5 5 3
+1.00886 1 8 0 0
+0.90235 1 8 4 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mgal2o4-CF.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mgal2o4-CF.jcpds
new file mode 100755
index 0000000..d61829d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mgal2o4-CF.jcpds
@@ -0,0 +1,304 @@
+3
+CF phase (from original structure by Decker, EOS from Ono2002)
+ 4 253.000 3.60000
+ 8.64 10.115 2.793
+(blank for future use)
+d-spacing I/I0 h k l
+6.58195 0.2 1 1 0
+5.064 2.5 0 2 0
+4.37146 4.7 1 2 0
+4.33 29 2 0 0
+3.9814 0.2 2 1 0
+3.29097 14.1 2 2 0
+3.14544 1.1 1 3 0
+2.77611 2.2 3 1 0
+2.68622 7.1 0 1 1
+2.6624 1 2 3 0
+2.56563 2.6 1 1 1
+2.532 60.5 0 4 0
+2.50783 84.3 3 2 0
+2.43025 0 1 4 0
+2.34943 43.3 1 2 1
+2.34293 25.2 2 0 1
+2.28264 0.9 2 1 1
+2.19398 11.5 3 3 0
+2.18573 1 2 4 0
+2.165 1.1 4 0 0
+2.1488 20.6 0 3 1
+2.12637 2.7 2 2 1
+2.11717 15 4 1 0
+2.08555 100 1 3 1
+1.9907 37.1 4 2 0
+1.97236 16.3 1 5 0
+1.96649 73.3 3 1 1
+1.92481 16.2 2 3 1
+1.90351 2.7 3 4 0
+1.86391 5.2 3 2 1
+1.83476 1.5 2 5 0
+1.83139 21.3 1 4 1
+1.82245 0.5 4 3 0
+1.72367 15.6 3 3 1
+1.71966 71.1 2 4 1
+1.70951 44.2 4 0 1
+1.70722 1.3 5 1 0
+1.688 0 0 6 0
+1.68567 30.4 4 1 1
+1.6581 2.5 3 5 0
+1.65682 3.2 1 6 0
+1.64549 1.2 4 4 0
+1.6388 2.9 5 2 0
+1.63834 6.9 0 5 1
+1.61971 5.3 4 2 1
+1.60978 0.1 1 5 1
+1.57272 34.7 2 6 0
+1.57169 0 3 4 1
+1.54103 0.1 5 3 0
+1.53232 2.7 2 5 1
+1.52512 3.8 4 3 1
+1.47914 0.1 4 5 0
+1.45715 26.1 3 6 0
+1.45565 0.9 5 1 1
+1.44333 23.4 6 0 0
+1.42954 2.6 5 4 0
+1.4289 1 6 1 0
+1.42708 0 1 7 0
+1.42485 1.6 3 5 1
+1.42403 29.2 1 6 1
+1.41682 50.4 4 4 1
+1.41254 31.6 5 2 1
+1.393 52.9 0 0 2
+1.38805 2.7 6 2 0
+1.37227 2.7 2 7 0
+1.36957 25.6 2 6 1
+1.36281 0 1 1 2
+1.34849 2.3 5 3 1
+1.34311 0.1 0 2 2
+1.3312 5.2 4 6 0
+1.32724 0.2 1 2 2
+1.32713 1.1 6 3 0
+1.32607 1.5 2 0 2
+1.31639 0 5 5 0
+1.31485 0 2 1 2
+1.30643 0.2 4 5 1
+1.29348 0.7 3 7 0
+1.29121 7.3 3 6 1
+1.28403 0.2 0 7 1
+1.28281 2 2 2 2
+1.28156 1.2 6 0 1
+1.27369 0.1 1 3 2
+1.27188 0.8 5 4 1
+1.27142 0.1 6 1 1
+1.27014 9.4 1 7 1
+1.266 2.1 0 8 0
+1.25392 21 6 4 0
+1.25269 5.7 1 8 0
+1.24505 0.4 3 1 2
+1.24239 5.9 6 2 1
+1.23427 0.2 2 3 2
+1.23104 0.6 2 7 1
+1.22802 1.4 7 1 0
+1.22049 15.3 0 4 2
+1.21775 25.7 3 2 2
+1.21513 1.1 2 8 0
+1.20885 0.6 5 6 0
+1.20854 0.3 1 4 2
+1.20295 0.2 4 7 0
+1.2018 3.8 7 2 0
+1.20113 8.1 4 6 1
+1.19814 0.3 6 3 1
+1.19021 1.3 5 5 1
+1.17599 1.6 3 3 2
+1.17546 3.7 6 5 0
+1.17471 0 2 4 2
+1.1732 2.4 3 7 1
+1.17146 0.3 4 0 2
+1.1637 2.7 4 1 2
+1.1616 0.1 7 3 0
+1.1594 2.6 3 8 0
+1.14344 0.9 6 4 1
+1.14251 1.1 1 8 1
+1.14132 8.8 4 2 2
+1.13783 3.5 1 5 2
+1.12414 0.4 3 4 2
+1.1237 0.7 7 1 1
+1.11595 0.9 1 9 0
+1.1138 2.3 2 8 1
+1.11156 0.8 7 4 0
+1.11039 2 5 7 0
+1.10947 0.4 2 5 2
+1.10896 2.2 5 6 1
+1.10673 0.1 4 3 2
+1.1044 0.2 4 7 1
+1.10351 4.5 7 2 1
+1.09699 0.5 6 6 0
+1.09287 0.3 4 8 0
+1.08915 1.9 2 9 0
+1.08301 7.7 6 5 1
+1.0825 0.4 8 0 0
+1.0793 0.5 5 1 2
+1.07637 0.3 8 1 0
+1.0744 0.1 0 6 2
+1.07215 9.1 7 3 1
+1.07041 0.4 3 8 1
+1.06657 0.9 3 5 2
+1.06622 1.3 1 6 2
+1.06319 0.4 4 4 2
+1.06137 1.6 5 2 2
+1.05858 0.5 8 2 0
+1.0558 0 7 5 0
+1.04848 0 3 9 0
+1.04343 0.3 0 9 1
+1.04278 15 2 6 2
+1.03594 3.5 1 9 1
+1.03338 0.1 5 3 2
+1.03242 1.2 7 4 1
+1.03149 5.7 5 7 1
+1.03081 1.4 8 3 0
+1.02207 4.7 5 8 0
+1.02183 0.2 6 7 0
+1.02072 0.3 6 6 1
+1.01739 2.5 4 8 1
+1.01439 0.5 2 9 1
+1.01409 0 4 5 2
+1.0128 0.5 0 10 0
+1.00901 2.9 8 0 1
+1.00692 14 3 6 2
+1.00594 0.2 1 10 0
+1.00404 2.4 8 1 1
+1.00232 12.5 6 0 2
+0.9985 0.3 4 9 0
+0.99784 0.2 7 6 0
+0.99767 1.6 5 4 2
+0.99745 0.6 6 1 2
+0.99683 0 1 7 2
+0.99535 3.2 8 4 0
+0.98956 0 8 2 1
+0.98728 0.3 7 5 1
+0.98618 7.5 2 10 0
+0.98325 1.3 6 2 2
+0.98129 2.1 3 9 1
+0.97759 1.3 2 7 2
+0.96676 0 8 3 1
+0.96241 3 4 6 2
+0.96087 0.7 6 3 2
+0.95954 0.1 5 8 1
+0.95934 0.8 6 7 1
+0.95791 1.1 9 1 0
+0.95677 0 5 5 2
+0.95568 1.8 3 10 0
+0.95472 0.2 8 5 0
+0.95175 1.5 6 8 0
+0.94786 0.4 3 7 2
+0.94616 4.3 1 10 1
+0.94531 5.2 9 2 0
+0.94364 0 5 9 0
+0.94028 0.2 7 7 0
+0.93996 0.7 4 9 1
+0.93941 4.2 7 6 1
+0.93733 1.9 8 4 1
+0.93689 1.5 0 8 2
+0.93196 13.5 6 4 2
+0.93145 3.7 1 8 2
+0.92966 3.9 2 10 1
+0.92537 0 9 3 0
+0.92479 0.3 0 1 3
+0.92117 0.8 7 1 2
+0.91956 0.2 1 1 3
+0.91738 1.8 4 10 0
+0.9157 0.8 2 8 2
+0.91557 0.2 1 11 0
+0.913 0.5 5 6 2
+0.91122 3.4 8 6 0
+0.91045 0.1 4 7 2
+0.90995 2.4 7 2 2
+0.90839 3.1 1 2 3
+0.90802 1.6 2 0 3
+0.90586 0.1 9 1 1
+0.90439 0 2 1 3
+0.90398 0.6 3 10 1
+0.90316 1.4 8 5 1
+0.90065 1.3 2 11 0
+0.89946 0 9 4 0
+0.89835 2.4 6 5 2
+0.89541 0.5 0 3 3
+0.89518 3.6 9 2 1
+0.89377 2.4 2 2 3
+0.89213 0.1 7 3 2
+0.89113 1.9 3 8 2
+0.89091 0.2 7 7 1
+0.89066 4 1 3 3
+0.88747 0 6 9 0
+0.88482 0.9 7 8 0
+0.8807 3 3 1 3
+0.87819 0 9 3 1
+0.87719 0 3 11 0
+0.87686 0.6 2 3 3
+0.87429 2 0 11 1
+0.87136 3 4 10 1
+0.87094 1 1 9 2
+0.8698 0.1 1 11 1
+0.86914 0.1 9 5 0
+0.86884 0.6 7 4 2
+0.86829 1.4 5 7 2
+0.86749 1.4 1 4 3
+0.86676 1 8 7 0
+0.86608 2.5 8 6 1
+0.86285 0.1 10 1 0
+0.86184 0.4 6 6 2
+0.85983 0.2 4 8 2
+0.85802 1.4 2 9 2
+0.85693 1.6 2 11 1
+0.85596 0.3 9 4 1
+0.85521 1.1 3 3 3
+0.85475 5.9 2 4 3
+0.85361 0.1 10 2 0
+0.85346 3.6 4 0 3
+0.85173 0.2 8 1 2
+0.85045 2.2 4 1 3
+0.84729 0.5 4 11 0
+0.8456 1.4 6 9 1
+0.84418 0.6 0 5 3
+0.844 0 0 12 0
+0.84331 6.3 7 8 1
+0.84283 0.3 8 2 2
+0.8416 0.5 4 2 3
+0.84143 0 7 5 2
+0.84019 0 1 5 3
+0.84002 1 1 12 0
+0.83884 0.7 10 3 0
+0.83771 0 3 9 2
+0.8367 0.1 3 11 1
+0.83594 3.1 9 6 0
+0.83463 0 3 4 3
+0.83418 2.5 5 10 1
+0.83246 0 7 9 0
+0.82971 0.1 9 5 1
+0.82905 0.2 6 10 0
+0.82861 1.4 2 5 3
+0.82841 1.3 2 12 0
+0.82763 0.3 8 7 1
+0.82743 0.4 4 3 3
+0.82697 5.2 10 0 1
+0.82423 2.8 10 1 1
+0.82405 3.7 5 8 2
+0.82393 0.2 6 7 2
+0.82274 0.3 8 8 0
+0.8194 0.4 10 4 0
+0.81917 0.5 0 10 2
+0.81616 0.4 10 2 1
+0.81578 0.1 5 1 3
+0.81553 0.2 1 10 2
+0.81299 0.1 5 11 0
+0.81155 0.2 4 9 2
+0.81119 0.2 7 6 2
+0.81063 0 4 11 1
+0.81024 0.2 3 5 3
+0.81009 4 1 6 3
+0.80985 2.8 8 4 2
+0.80876 5.8 4 4 3
+0.80796 3.6 5 2 3
+0.80489 6.3 2 10 2
+0.80426 6.9 1 12 1
+0.80322 1.8 10 3 1
+0.80122 0 9 7 0
+0.80068 1.6 9 6 1
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mgo-Ye2017.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mgo-Ye2017.jcpds
new file mode 100755
index 0000000..f1c12cf
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mgo-Ye2017.jcpds
@@ -0,0 +1,16 @@
+4
+MgO (Ye2017, JGR in Vinet EOS, for BM3 converted from Vinet EOS, fit to Pt)
+ 1 160.300 3.927
+ 4.21300
+3.16e-5
+d-spacing I/I0 h k l
+ 2.4324 10. 1.00 1.00 1.00
+ 2.1065 100. 2.00 0.00 0.00
+ 1.4895 52. 2.00 2.00 0.00
+ 1.2700 4. 3.00 1.00 1.00
+ 1.2160 12. 2.00 2.00 2.00
+ 1.0533 5. 4.00 0.00 0.00
+ 0.9665 2. 3.00 3.00 1.00
+ 0.9419 17. 4.00 2.00 0.00
+ 0.8600 15. 4.00 2.00 2.00
+ 0.8109 3. 5.00 1.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mgo.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mgo.jcpds
new file mode 100755
index 0000000..1ee169d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mgo.jcpds
@@ -0,0 +1,16 @@
+4
+MgO (JCPDS 4-0829, EOS from Jackson)
+ 1 160.000 4.00000
+ 4.21300
+3.16e-5
+d-spacing I/I0 h k l
+ 2.4324 10. 1.00 1.00 1.00
+ 2.1065 100. 2.00 0.00 0.00
+ 1.4895 52. 2.00 2.00 0.00
+ 1.2700 4. 3.00 1.00 1.00
+ 1.2160 12. 2.00 2.00 2.00
+ 1.0533 5. 4.00 0.00 0.00
+ 0.9665 2. 3.00 3.00 1.00
+ 0.9419 17. 4.00 2.00 0.00
+ 0.8600 15. 4.00 2.00 2.00
+ 0.8109 3. 5.00 1.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mgsio3-ilm.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mgsio3-ilm.jcpds
new file mode 100755
index 0000000..d83a163
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mgsio3-ilm.jcpds
@@ -0,0 +1,38 @@
+4
+MgSiO3 ilmenite (GSAS calculation, EOS from guess)
+ 2 212 7.5
+4.7284 13.5591
+2.44e-5
+d-spacing I/I0 h k l
+4.5197 26 0 0 3
+3.92005 6 1 0 1
+3.50514 92 1 0 -2
+2.61119 100 1 0 4
+2.3642 43 1 1 0
+2.26098 5 1 0 -5
+2.0949 38 1 1 -3
+2.0949 41 1 1 3
+2.02451 6 2 0 -1
+1.96002 1 2 0 2
+1.75257 32 2 0 -4
+1.751 2 1 0 7
+1.63403 5 2 0 5
+1.6336 44 1 1 -6
+1.6336 20 1 1 6
+1.56605 5 1 0 -8
+1.53775 1 2 1 1
+1.50891 4 2 1 -2
+1.40792 5 2 1 4
+1.40792 13 3 -1 4
+1.36497 23 3 0 0
+1.34421 2 2 1 -5
+1.28718 5 1 0 10
+1.27053 6 1 1 9
+1.1821 3 2 2 0
+1.18033 1 1 0 -11
+1.14363 1 2 2 -3
+1.13049 1 2 0 -10
+1.12012 1 3 1 2
+1.07689 1 4 -1 -4
+1.04745 1 2 2 6
+1.01989 1 2 1 10
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/mgsio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/mgsio3-opv.jcpds
new file mode 100755
index 0000000..fae20c7
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/mgsio3-opv.jcpds
@@ -0,0 +1,162 @@
+4
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.77540 4.92917 6.89711
+2.2e-5
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ne-NoTh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ne-NoTh.jcpds
new file mode 100755
index 0000000..92d26b5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ne-NoTh.jcpds
@@ -0,0 +1,11 @@
+4
+Neon FCC (made by Shim, EOS from Hemley et al 1989)
+ 1 7.23 5.21
+ 4.1225
+0.0
+d-spacing I/I0 h k l
+ 2.3802 100. 1.00 1.00 1.00
+ 2.0613 40. 2.00 0.00 0.00
+ 1.4575 25. 2.00 2.00 0.00
+ 1.2430 30. 3.00 1.00 1.00
+ 1.1901 12. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/phaseD.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/phaseD.jcpds
new file mode 100755
index 0000000..bb2e86e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/phaseD.jcpds
@@ -0,0 +1,24 @@
+3
+PHASE D (GSAS, EOS from Yang 1997)
+ 2 200.000 4.30000
+ 4.7453 4.3450
+(blank for future use)
+d-spacing I/I0 h k l
+4.3450 23 0 0 1
+4.1010 16 1 0 0
+2.9860 100 1 0 1
+2.3730 10 1 1 0
+2.1773 0 0 0 2
+2.0820 82 1 1 1
+2.0820 82 2 -1 1
+2.0550 5 2 0 0
+1.9210 0 1 0 2
+1.8580 26 2 0 1
+1.6020 76 1 1 2
+1.6020 76 2 -1 2
+1.5533 0 2 1 0
+1.4928 1 2 0 2
+1.4626 25 2 1 1
+1.4626 25 3 -1 1
+1.4483 0 0 0 3
+1.3699 29 3 0 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/phaseH.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/phaseH.jcpds
new file mode 100644
index 0000000..7f4329a
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/phaseH.jcpds
@@ -0,0 +1,16 @@
+3
+PHASE H (GRL, Ohtani 2014)
+ 4 160.000 4.00000
+ 4.4723 4.0652 2.6975
+(blank for future use)
+d-spacing I/I0 h k l
+3.0116 50 1 1 0
+2.3057 10 1 0 1
+2.247 30 0 1 1
+2.2328 80 2 0 0
+2.0073 80 1 1 1
+1.9599 100 2 1 0
+1.5838 10 2 1 1
+1.5276 10 1 2 1
+1.5057 10 2 2 0
+1.3025 10 3 0 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/pt-Ye2017.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/pt-Ye2017.jcpds
new file mode 100755
index 0000000..788ab3d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/pt-Ye2017.jcpds
@@ -0,0 +1,19 @@
+4
+Platinum (Ye2017, JGR, for BM3 converted from Vinet EOS)
+ 1 277.3 5.038
+ 3.92310
+2.61e-5
+d-spacing I/I0 h k l
+ 2.2650 100. 1.00 1.00 1.00
+ 1.9620 53. 2.00 0.00 0.00
+ 1.3870 31. 2.00 2.00 0.00
+ 1.1826 33. 3.00 1.00 1.00
+ 1.1325 12. 2.00 2.00 2.00
+ 0.9808 6. 4.00 0.00 0.00
+ 0.9000 22. 3.00 3.00 1.00
+ 0.8773 20. 4.00 2.00 0.00
+ 0.8008 29. 4.00 2.00 2.00
+ 0.7550 10. 3. 3. 3.
+ 0.66312 10. 5. 3. 1.
+ 0.65385 10. 4. 4. 2.
+ 0.62030 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/pt.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/pt.jcpds
new file mode 100755
index 0000000..66db0f3
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/pt.jcpds
@@ -0,0 +1,19 @@
+4
+Platinum (JCPDS 4-0802, EOS from Holmes)
+ 1 266. 5.81
+ 3.92310
+2.61e-5
+d-spacing I/I0 h k l
+ 2.2650 100. 1.00 1.00 1.00
+ 1.9620 53. 2.00 0.00 0.00
+ 1.3870 31. 2.00 2.00 0.00
+ 1.1826 33. 3.00 1.00 1.00
+ 1.1325 12. 2.00 2.00 2.00
+ 0.9808 6. 4.00 0.00 0.00
+ 0.9000 22. 3.00 3.00 1.00
+ 0.8773 20. 4.00 2.00 0.00
+ 0.8008 29. 4.00 2.00 2.00
+ 0.7550 10. 3. 3. 3.
+ 0.66312 10. 5. 3. 1.
+ 0.65385 10. 4. 4. 2.
+ 0.62030 10. 6. 2. 0.
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/re-NoTh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/re-NoTh.jcpds
new file mode 100755
index 0000000..5459c21
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/re-NoTh.jcpds
@@ -0,0 +1,26 @@
+4
+Rhenium (JCPDS 5-0702, EOS from dcal)
+ 2 433.800 3.46000
+ 2.76000 4.45740
+1.e5
+d-spacing I/I0 h k l
+ 2.3880 32. 1.00 0.00 0.00
+ 2.2260 34. 0.00 0.00 2.00
+ 2.1050 100. 1.00 0.00 1.00
+ 1.6290 11. 1.00 0.00 2.00
+ 1.3800 22. 1.00 1.00 0.00
+ 1.2620 16. 1.00 0.00 3.00
+ 1.1948 3. 2.00 0.00 0.00
+ 1.1730 20. 1.00 1.00 2.00
+ 1.1540 15. 2.00 0.00 1.00
+ 1.1142 2. 0.00 0.00 4.00
+ 1.0530 3. 2.00 0.00 2.00
+ 1.0099 2. 1.00 0.00 4.00
+ 0.9311 7. 2.00 0.00 3.00
+ 0.9033 3. 2.00 1.00 0.00
+ 0.8854 15. 2.00 1.00 1.00
+ 0.8671 8. 1.00 1.00 4.00
+ 0.8373 5. 2.00 1.00 2.00
+ 0.8354 8. 1.00 0.00 5.00
+ 0.8151 2. 2.00 0.00 4.00
+ 0.7968 5. 3.00 0.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/sio2-stv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/sio2-stv.jcpds
new file mode 100755
index 0000000..a7f7515
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/sio2-stv.jcpds
@@ -0,0 +1,36 @@
+4
+stishovite (by Sinclair and Ringwood, EOS from Heaney)
+ 3 298.000 3.98000
+ 4.17720 2.66505
+1.86e-5
+d-spacing I/I0 h k l
+ 2.9537 100. 1.00 1.00 0.00
+ 2.2468 19. 1.00 0.00 1.00
+ 2.0886 1. 2.00 0.00 0.00
+ 1.9787 29. 1.00 1.00 1.00
+ 1.8681 10. 2.00 1.00 0.00
+ 1.5297 34. 2.00 1.00 1.00
+ 1.4769 11. 2.00 2.00 0.00
+ 1.3326 4. 0.00 0.00 2.00
+ 1.3210 3. 3.00 1.00 0.00
+ 1.2918 1. 2.00 2.00 1.00
+ 1.2341 10. 3.00 0.00 1.00
+ 1.2147 4. 1.00 1.00 2.00
+ 1.1835 1. 3.00 1.00 1.00
+ 1.1586 1. 3.00 2.00 0.00
+ 1.1234 2. 2.00 0.00 2.00
+ 1.0848 1. 2.00 1.00 2.00
+ 1.0625 1. 3.00 2.00 1.00
+ 1.0443 1. 4.00 0.00 0.00
+ 1.0131 1. 4.00 1.00 0.00
+ 0.9894 1. 2.00 2.00 2.00
+ 0.9846 1. 3.00 3.00 0.00
+ 0.9470 1. 4.00 1.00 1.00
+ 0.9381 1. 3.00 1.00 2.00
+ 0.9341 1. 4.00 2.00 0.00
+ 0.9236 1. 3.00 3.00 1.00
+ 0.8815 1. 4.00 2.00 1.00
+ 0.8743 1. 3.00 2.00 2.00
+ 0.8689 1. 1.00 0.00 3.00
+ 0.8507 1. 1.00 1.00 3.00
+ 0.8354 1. 4.00 3.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Al2O3-rh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Al2O3-rh.jcpds
new file mode 100755
index 0000000..2b30bf8
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Al2O3-rh.jcpds
@@ -0,0 +1,101 @@
+3
+Al2O3 - orthorhombic rh2o3 structure (GSAS calculation, EOS from Handbook)
+ 4 260.000 4.00000
+ 4.7954 5.0402 6.8546
+(blank for future use)
+d-spacing I/I0 h k l
+4.08112 0 1 0 1
+3.5125 9 0 0 2
+3.21583 11 1 1 1
+2.6115 28 0 2 0
+2.51987 100 1 1 2
+2.507 24 2 0 0
+2.44783 0 0 2 1
+2.26012 4 2 1 0
+2.19969 2 1 2 1
+2.15152 2 2 1 1
+2.12169 6 1 0 3
+2.09573 0 0 2 2
+2.04056 1 2 0 2
+1.96569 4 1 1 3
+1.93362 3 1 2 2
+1.90065 0 2 1 2
+1.80853 23 2 2 0
+1.75625 9 0 0 4
+1.75142 3 2 2 1
+1.74343 1 0 2 3
+1.64672 0 1 2 3
+1.62621 0 2 1 3
+1.62595 0 3 0 1
+1.60791 3 2 2 2
+1.60137 9 1 3 1
+1.57987 8 1 1 4
+1.55246 1 3 1 1
+1.48948 14 1 3 2
+1.45735 8 0 2 4
+1.44988 22 3 1 2
+1.43841 8 2 0 4
+1.43134 3 2 2 3
+1.43 0 2 3 0
+1.40126 0 2 3 1
+1.39943 0 1 2 4
+1.38678 0 2 1 4
+1.38028 0 3 2 1
+1.36037 0 3 0 3
+1.35289 0 1 0 5
+1.34588 1 1 3 3
+1.32444 0 2 3 2
+1.31645 0 3 1 3
+1.30967 1 1 1 5
+1.30669 0 3 2 2
+1.30575 1 0 4 0
+1.28376 1 0 4 1
+1.25993 4 2 2 4
+1.2535 1 4 0 0
+1.24365 0 1 4 1
+1.2373 0 0 2 5
+1.22392 0 0 4 2
+1.22043 0 2 3 3
+1.21889 0 4 1 0
+1.20649 0 3 2 3
+1.20126 0 1 2 5
+1.20095 0 4 1 1
+1.20047 1 1 3 4
+1.19323 0 2 1 5
+1.18901 0 1 4 2
+1.18831 0 3 3 1
+1.18058 0 4 0 2
+1.17945 1 3 1 4
+1.17083 0 0 0 6
+1.15808 2 2 4 0
+1.15153 0 4 1 2
+1.14266 1 2 4 1
+1.14043 1 0 4 3
+1.14038 2 3 3 2
+1.13006 2 4 2 0
+1.11572 1 4 2 1
+1.11393 2 1 1 6
+1.11203 0 1 4 3
+1.10953 0 2 2 5
+1.1089 0 2 3 4
+1.09985 0 2 4 2
+1.09842 0 3 2 4
+1.08119 0 4 1 3
+1.07576 0 4 2 2
+1.07547 0 3 0 5
+1.07194 0 3 3 3
+1.06837 1 0 2 6
+1.06827 1 1 3 5
+1.06084 1 2 0 6
+1.05337 0 3 1 5
+1.04787 0 0 4 4
+1.04491 0 1 2 6
+1.03962 0 2 1 6
+1.03807 1 2 4 3
+1.02571 0 1 4 4
+1.02028 1 4 0 4
+1.01809 0 3 4 1
+1.01775 0 4 2 3
+1.01726 0 4 3 0
+1.01198 1 1 5 1
+1.00676 0 4 3 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CdOH2-SrOH2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CdOH2-SrOH2.jcpds
new file mode 100755
index 0000000..fe6cd35
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CdOH2-SrOH2.jcpds
@@ -0,0 +1,130 @@
+3
+CdOH2 Brucite (From FeOH2, EOS)
+ 4 37.6 10.6
+ 9.3247 3.7056 5.7626
+(blank for future use)
+d-spacing I/I0 h k l
+4.9021 43 1 0 1
+4.6624 43 2 0 0
+3.6246 2 2 0 1
+3.1168 4 0 1 1
+2.956 14 1 1 1
+2.9009 100 2 1 0
+2.8813 6 0 0 2
+2.7529 6 1 0 2
+2.7357 4 3 0 1
+2.5911 0 2 1 1
+2.451 1 2 0 2
+2.3312 12 4 0 0
+2.2098 32 1 1 2
+2.2009 9 3 1 1
+2.161 2 4 0 1
+2.1131 7 3 0 2
+2.0443 10 2 1 2
+1.9732 20 4 1 0
+1.8814 5 1 0 3
+1.8668 6 4 1 1
+1.8528 23 0 2 0
+1.8356 1 3 1 2
+1.8123 2 4 0 2
+1.776 4 2 0 3
+1.7743 0 5 0 1
+1.7331 5 1 2 1
+1.7218 5 2 2 0
+1.7054 3 0 1 3
+1.6775 2 1 1 3
+1.6498 1 2 2 1
+1.634 0 3 0 3
+1.628 1 4 1 2
+1.6016 3 2 1 3
+1.6003 1 5 1 1
+1.5656 0 5 0 2
+1.5584 1 0 2 2
+1.5541 1 6 0 0
+1.5371 1 1 2 2
+1.5341 1 3 2 1
+1.5005 1 6 0 1
+1.4951 4 3 1 3
+1.4824 1 4 0 3
+1.478 0 2 2 2
+1.4505 3 4 2 0
+1.4422 0 5 1 2
+1.4406 3 0 0 4
+1.4332 0 6 1 0
+1.4238 0 1 0 4
+1.4066 1 4 2 1
+1.3931 2 3 2 2
+1.3908 3 6 1 1
+1.3764 1 2 0 4
+1.3764 0 4 1 3
+1.3678 1 6 0 2
+1.338 0 5 0 3
+1.329 1 1 1 4
+1.3201 3 1 2 3
+1.3071 0 3 0 4
+1.2979 0 7 0 1
+1.2956 1 4 2 2
+1.2903 3 2 1 4
+1.2832 0 6 1 2
+1.2821 2 2 2 3
+1.2815 0 5 2 1
+1.2585 1 5 1 3
+1.2326 0 3 1 4
+1.2255 0 4 0 4
+1.2255 0 3 2 3
+1.2249 0 7 1 1
+1.2091 0 7 0 2
+1.2082 0 6 0 3
+1.2078 0 0 3 1
+1.1978 0 1 3 1
+1.1958 0 5 2 2
+1.194 3 2 3 0
+1.1907 1 6 2 0
+1.1692 0 2 3 1
+1.1661 0 6 2 1
+1.1656 0 8 0 0
+1.1635 1 4 1 4
+1.1575 1 4 2 3
+1.1495 0 7 1 2
+1.1487 0 6 1 3
+1.1438 0 1 0 5
+1.1425 1 8 0 1
+1.1401 0 5 0 4
+1.1373 2 0 2 4
+1.1289 0 1 2 4
+1.127 1 1 3 2
+1.1258 1 3 3 1
+1.1188 0 2 0 5
+1.1119 0 8 1 0
+1.1049 1 2 2 4
+1.103 1 2 3 2
+1.1005 0 0 1 5
+1.1004 0 6 2 2
+1.0946 0 7 0 3
+1.0929 0 1 1 5
+1.0917 0 8 1 1
+1.0915 1 4 3 0
+1.0897 0 5 1 4
+1.0848 0 5 2 3
+1.0806 0 3 0 5
+1.0805 0 8 0 2
+1.0724 0 4 3 1
+1.0711 0 2 1 5
+1.0681 0 3 2 4
+1.0664 0 3 3 2
+1.063 0 7 2 1
+1.0565 0 6 0 4
+1.0498 0 7 1 3
+1.0389 0 0 3 3
+1.0374 0 3 1 5
+1.0373 0 8 1 2
+1.0332 0 4 0 5
+1.0325 0 1 3 3
+1.0221 0 4 2 4
+1.0207 0 4 3 2
+1.0197 0 9 0 1
+1.016 0 6 1 4
+1.0141 0 2 3 3
+1.0137 0 5 3 1
+1.0126 0 7 2 2
+1.012 0 6 2 3
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CdOH2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CdOH2.jcpds
new file mode 100755
index 0000000..22ad9b5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CdOH2.jcpds
@@ -0,0 +1,22 @@
+3
+CdOH2 Brucite (From FeOH2, EOS)
+ 2 37.6 10.6
+ 3.495 4.706
+(blank for future use)
+d-spacing I/I0 h k l
+ 4.7015 86 0 0 1
+ 3.0273 30 0 1 0
+ 2.5453 100 0 1 1
+ 2.3529 5 0 0 2
+ 1.8567 50 0 1 2
+ 1.7478 28 1 1 0
+ 1.6383 12 1 1 1
+ 1.5686 12 0 0 3
+ 1.5134 24 0 2 0
+ 1.4408 15 0 2 1
+ 1.4029 18 1 1 2
+ 1.3927 15 0 1 3
+ 1.2728 10 0 2 2
+ 1.1765 2 0 0 4
+ 1.1118 4 2 1 1
+ 1.0887 4 2 0 3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CeO2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CeO2.jcpds
new file mode 100755
index 0000000..f957b43
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/CeO2.jcpds
@@ -0,0 +1,14 @@
+3
+CeO2 (43-1002, no data for high P)
+1 99. 4.
+ 5.411
+(blank for future use)
+d-spacing I/I0 h k l
+3.1240 100. 1.00 1.00 1.00
+2.7060 27. 2.00 0.00 0.00
+1.9132 46. 2.00 2.00 0.00
+1.6316 34. 3.00 1.00 1.00
+1.5621 6. 2.00 2.00 2.00
+1.3528 6. 4.00 0.00 0.00
+1.2414 12. 3.00 3.00 1.00
+1.2100 7. 4.00 2.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe3P.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe3P.jcpds
new file mode 100755
index 0000000..e3b1613
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe3P.jcpds
@@ -0,0 +1,49 @@
+3
+Fe3P (JCPDS24-0508, EOS from guess)
+ 3 170.000 4.00000
+9.1000 4.4592
+(blank for future use)
+d-spacing I/I0 h k l
+3.01 5 2 1 1
+2.51 5 3 0 1
+2.27 5 4 0 0
+2.23 5 0 0 2
+2.20 100 3 2 1
+2.14 45 3 3 0
+2.11 40 1 1 2
+2.03 80 4 2 0
+1.978 100 4 1 1
+1.832 20 2 2 2
+1.785 35 5 1 0
+1.762 55 3 1 2
+1.685 30 4 3 1
+1.592 5 4 0 2
+1.580 10 5 2 1
+1.561 5 5 3 0
+1.546 5 3 3 2
+1.503 5 4 2 2
+1.439 5 6 2 0
+1.418 15 6 1 1
+1.393 5 5 1 2
+1.354 5 5 4 1
+1.335 15 3 0 3
+1.305 5 4 4 2
+1.298 5 6 3 1
+1.287 30 5 5 0
+1.281 65 3 2 3
+1.262 15 6 4 0
+1.254 5 6 0 2
+1.248 20 7 0 1
+1.233 30 4 1 3
+1.209 20 6 2 2
+1.204 20 7 2 1
+1.151 30 4 3 3
+1.127 65 6 5 1
+1.115 80 7 1 2
+1.103 25 8 2 0
+1.098 55 6 4 2
+1.094 60 8 1 1
+1.058 20 7 5 0
+1.054 30 7 3 2
+1.005 60 1 9 0
+1.002 25 3 6 3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe3Si.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe3Si.jcpds
new file mode 100755
index 0000000..bb65859
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe3Si.jcpds
@@ -0,0 +1,13 @@
+3
+Fe3Si (11-616, JCPDS Ogwa and Matsuzaki 1951)
+ 1 100.600 5.50000
+ 5.64
+(blank for future use)
+d-spacing I/I0 h k l
+3.25 40. 1 1 1
+2.83 40. 2 0 0
+1.99 100. 2 2 0
+1.70 40. 3 1 1
+1.62 20. 2 2 2
+1.41 100 4 0 0
+1.145 100 4 2 2
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe5Si3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe5Si3.jcpds
new file mode 100755
index 0000000..95ff0c6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/Fe5Si3.jcpds
@@ -0,0 +1,20 @@
+3
+Fe3Si (11-615, JCPDS Ogwa and Matsuzaki 1951)
+ 2 100.600 5.50000
+ 6.757 9.440
+(blank for future use)
+d-spacing I/I0 h k l
+2.92 30 2 0 0
+2.74 20 1 1 2
+2.35 50 0 0 4
+2.18 60. 1 0 4
+2.00 100 2 1 2
+1.94 80 3 0 0
+1.92 90 1 1 4
+1.83 30 2 0 4
+1.68 20 2 2 0
+1.62 30 3 1 0
+1.58 40 2 0 5
+1.52 20 3 1 2
+1.46 30 4 0 0
+1.37 60 2 2 4
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/H2O-VII.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/H2O-VII.jcpds
new file mode 100755
index 0000000..7b2bb26
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/H2O-VII.jcpds
@@ -0,0 +1,14 @@
+3
+ice VII (using crystal maker, EOS by Wolanin)
+ 1 14.9 5.4
+ 3.451
+(blank for future use)
+d-spacing I/I0 h k l
+2.333 100. 0.00 1.00 1.00
+ 1.905 1. 1.00 1.00 1.00
+ 1.650 8. 0.00 0.00 2.00
+ 1.347 16. 1.00 1.00 2.00
+ 1.167 5. 0.00 2.00 2.00
+ 1.044 6. 0.00 1.00 3.00
+ 0.953 1. 2.00 2.00 2.00
+ 0.882 12. 1.00 2.00 3.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/KBr-B2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/KBr-B2.jcpds
new file mode 100755
index 0000000..d104ebc
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/KBr-B2.jcpds
@@ -0,0 +1,23 @@
+3
+KCl B2 (GSAS calculation, EOS from Walker 2002 AM)
+ 1 13.8 5.650000
+ 4.045
+1.2e-4
+d-spacing I/I0 h k l
+ 3.4669 6. 1.00 0.00 0.00
+ 2.4515 100. 1.00 1.00 0.00
+ 2.0016 1. 1.00 1.00 1.00
+ 1.7335 8. 2.00 0.00 0.00
+ 1.5504 1. 2.00 1.00 0.00
+ 1.4154 21. 2.00 1.00 1.00
+ 1.2257 4. 2.00 2.00 0.00
+ 1.1556 1. 2.00 2.00 1.00
+ 1.1556 1. 3.00 0.00 0.00
+ 1.0963 7. 3.00 1.00 0.00
+ 1.0453 1. 3.00 1.00 1.00
+ 1.0008 1. 2.00 2.00 2.00
+ 0.9615 1. 3.00 2.00 0.00
+ 0.9266 3. 3.00 2.00 1.00
+ 0.8667 1. 4.00 0.00 0.00
+ 0.8408 1. 4.00 1.00 0.00
+ 0.8408 1. 3.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/KCl-B2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/KCl-B2.jcpds
new file mode 100755
index 0000000..a602314
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/KCl-B2.jcpds
@@ -0,0 +1,23 @@
+3
+KCl B2 (GSAS calculation, EOS from Walker 2002 AM)
+ 1 17.2 5.890000
+ 3.7914
+1.2e-4
+d-spacing I/I0 h k l
+ 3.4669 6. 1.00 0.00 0.00
+ 2.4515 100. 1.00 1.00 0.00
+ 2.0016 1. 1.00 1.00 1.00
+ 1.7335 8. 2.00 0.00 0.00
+ 1.5504 1. 2.00 1.00 0.00
+ 1.4154 21. 2.00 1.00 1.00
+ 1.2257 4. 2.00 2.00 0.00
+ 1.1556 1. 2.00 2.00 1.00
+ 1.1556 1. 3.00 0.00 0.00
+ 1.0963 7. 3.00 1.00 0.00
+ 1.0453 1. 3.00 1.00 1.00
+ 1.0008 1. 2.00 2.00 2.00
+ 0.9615 1. 3.00 2.00 0.00
+ 0.9266 3. 3.00 2.00 1.00
+ 0.8667 1. 4.00 0.00 0.00
+ 0.8408 1. 4.00 1.00 0.00
+ 0.8408 1. 3.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/MgF2-cot.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/MgF2-cot.jcpds
new file mode 100755
index 0000000..a35f8d0
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/MgF2-cot.jcpds
@@ -0,0 +1,195 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 163.000 7.00000
+ 5.1637 6.2387 3.0810
+(blank for future use)
+d-spacing I/I0 h k l
+5.8182 1 1 1 0
+4.515 13 2 0 0
+4.0455 32 1 0 1
+3.8827 76 2 1 0
+3.804 41 0 2 0
+3.5719 100 1 1 1
+3.5056 1 1 2 0
+2.9467 4 2 1 1
+2.9118 8 0 2 1
+2.9091 12 2 2 0
+2.7989 2 3 1 0
+2.7713 53 1 2 1
+2.5062 50 3 0 1
+2.447 1 2 2 1
+2.4415 0 1 3 0
+2.3804 5 3 1 1
+2.3604 3 3 2 0
+2.2625 26 0 0 2
+2.2575 11 4 0 0
+2.2111 30 2 3 0
+2.1642 8 4 1 0
+2.1487 36 1 3 1
+2.1087 0 1 1 2
+2.0928 46 3 2 1
+2.0227 3 2 0 2
+1.9866 2 2 3 1
+1.9548 25 2 1 2
+1.9524 0 4 1 1
+1.9446 14 0 2 2
+1.9414 8 4 2 0
+1.9394 0 3 3 0
+1.902 8 0 4 0
+1.901 0 1 2 2
+1.8612 1 1 4 0
+1.786 5 2 2 2
+1.7841 1 4 2 1
+1.7826 1 3 3 1
+1.7595 1 3 1 2
+1.7572 0 5 1 0
+1.7534 1 0 4 1
+1.7528 1 2 4 0
+1.7213 3 1 4 1
+1.6862 5 4 3 0
+1.6773 2 5 0 1
+1.6595 0 1 3 2
+1.638 17 5 1 1
+1.6345 1 2 4 1
+1.6334 2 3 2 2
+1.6315 0 5 2 0
+1.6079 1 3 4 0
+1.5981 7 4 0 2
+1.5813 19 2 3 2
+1.5801 0 4 3 1
+1.5639 6 4 1 2
+1.5348 0 5 2 1
+1.5151 10 3 4 1
+1.505 3 6 0 0
+1.5004 1 1 5 0
+1.4877 2 1 0 3
+1.4764 2 6 1 0
+1.4733 6 4 2 2
+1.4725 0 3 3 2
+1.4711 0 5 3 0
+1.4601 7 1 1 3
+1.4559 6 0 4 2
+1.4546 4 4 4 0
+1.4419 5 2 5 0
+1.4373 1 1 4 2
+1.4242 11 1 5 1
+1.406 0 2 1 3
+1.4036 0 6 1 1
+1.4021 1 0 2 3
+1.3995 6 6 2 0
+1.399 13 5 3 1
+1.3878 0 5 1 2
+1.3856 0 2 4 2
+1.3855 5 1 2 3
+1.3848 0 4 4 1
+1.3739 1 2 5 1
+1.358 0 3 5 0
+1.352 5 4 3 2
+1.3485 6 3 0 3
+1.339 0 2 2 3
+1.337 0 6 2 1
+1.3278 1 3 1 3
+1.3233 0 5 2 2
+1.3106 1 3 4 2
+1.3097 0 5 4 0
+1.3006 1 3 5 1
+1.2942 1 6 3 0
+1.2832 6 1 3 3
+1.2718 0 7 1 0
+1.271 8 3 2 3
+1.268 1 0 6 0
+1.2617 3 4 5 0
+1.258 0 5 4 1
+1.2557 0 1 6 0
+1.2531 3 6 0 2
+1.2505 1 1 5 2
+1.246 0 2 3 3
+1.2444 0 6 3 1
+1.2406 4 7 0 1
+1.2375 0 4 1 3
+1.2364 2 6 1 2
+1.2333 0 5 3 2
+1.2244 1 7 1 1
+1.2235 4 4 4 2
+1.2217 0 7 2 0
+1.221 1 0 6 1
+1.2208 0 2 6 0
+1.216 5 2 5 2
+1.2154 1 4 5 1
+1.21 2 1 6 1
+1.1911 0 4 2 3
+1.1906 0 3 3 3
+1.1902 6 6 2 2
+1.1818 0 0 4 3
+1.1802 1 6 4 0
+1.1794 3 7 2 1
+1.1786 0 2 6 1
+1.1718 1 1 4 3
+1.1685 0 3 6 0
+1.1643 0 3 5 2
+1.1636 0 5 5 0
+1.1577 0 5 0 3
+1.1498 0 7 3 0
+1.1445 4 5 1 3
+1.1433 0 2 4 3
+1.142 1 6 4 1
+1.1335 0 5 4 2
+1.1314 3 3 6 1
+1.1313 2 0 0 4
+1.1287 0 8 0 0
+1.127 4 5 5 1
+1.1242 0 4 3 3
+1.1234 1 6 3 2
+1.1165 2 8 1 0
+1.1144 2 7 3 1
+1.1105 0 1 1 4
+1.1087 0 7 1 2
+1.1075 0 5 2 3
+1.1061 1 0 6 2
+1.1055 1 4 6 0
+1.102 3 4 5 2
+1.1001 3 3 4 3
+1.0979 0 1 6 2
+1.0973 0 2 0 4
+1.0861 3 2 1 4
+1.0843 1 0 2 4
+1.084 0 8 1 1
+1.0821 0 8 2 0
+1.0791 0 1 7 0
+1.0766 0 1 2 4
+1.075 0 7 2 2
+1.0744 0 2 6 2
+1.074 0 4 6 1
+1.07 0 6 5 0
+1.0676 0 7 4 0
+1.0638 3 1 5 3
+1.0567 1 2 7 0
+1.0551 0 6 1 3
+1.0543 1 2 2 4
+1.0531 4 5 3 3
+1.0524 0 8 2 1
+1.0496 1 1 7 1
+1.0488 0 3 1 4
+1.047 0 4 4 3
+1.0464 1 6 4 2
+1.0423 0 2 5 3
+1.0413 0 6 5 1
+1.0391 3 7 4 1
+1.0382 0 3 6 2
+1.0378 0 5 6 0
+1.0348 0 5 5 2
+1.0312 1 8 3 0
+1.029 1 2 7 1
+1.0264 0 1 3 4
+1.0259 0 6 2 3
+1.025 0 7 3 2
+1.0223 0 3 7 0
+1.0201 0 3 2 4
+1.0115 0 5 6 1
+1.0114 1 4 0 4
+1.01 0 8 0 2
+1.0092 0 3 5 3
+1.0071 3 2 3 4
+1.0054 0 8 3 1
+1.0026 1 4 1 4
+1.0012 2 8 1 2
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaAlSiO4_Ca-ferrite-type.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaAlSiO4_Ca-ferrite-type.jcpds
new file mode 100755
index 0000000..ce5d1d7
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaAlSiO4_Ca-ferrite-type.jcpds
@@ -0,0 +1,130 @@
+3
+NaAlSiO4 Ca-ferrite-type
+ 4 191. 4.
+ 10.137 8.643 2.749
+(blank for future use)
+d-spacing I/I0 h k l
+6.59108 0.3 1 1 0
+5.0773 22.9 2 0 0
+4.38055 21.4 2 1 0
+4.3321 68.4 0 2 0
+3.98465 1.3 1 2 0
+3.29554 26.2 2 2 0
+3.15281 1.7 3 1 0
+2.7779 7.9 1 3 0
+2.66723 0.2 3 2 0
+2.64404 7.8 1 0 1
+2.53865 69.8 4 0 0
+2.52891 4.5 1 1 1
+2.51036 100 2 3 0
+2.43623 3.7 4 1 0
+2.32209 31.7 2 1 1
+2.31478 14.3 0 2 1
+2.25689 0 1 2 1
+2.19703 9.8 3 3 0
+2.19028 0 4 2 0
+2.16605 2.7 0 4 0
+2.12899 25.9 3 0 1
+2.11839 29.9 1 4 0
+2.10622 1.9 2 2 1
+2.06748 89.5 3 1 1
+1.99232 18.5 2 4 0
+1.97732 26.4 5 1 0
+1.95019 68.1 1 3 1
+1.91072 2.6 3 2 1
+1.90673 7.6 4 3 0
+1.8505 14 2 3 1
+1.83887 0.7 5 2 0
+1.82447 1.8 3 4 0
+1.8202 27.1 4 1 1
+1.71369 6.9 3 3 1
+1.71048 51.9 4 2 1
+1.70815 6.1 1 5 0
+1.69886 37 0 4 1
+1.69243 0.1 6 0 0
+1.67558 26 1 4 1
+1.66128 1.2 5 3 0
+1.66104 9.3 6 1 0
+1.64777 4.6 4 4 0
+1.63996 5.2 2 5 0
+1.63128 4.6 5 0 1
+1.61107 15.9 2 4 1
+1.60311 1.4 5 1 1
+1.5764 27.5 6 2 0
+1.56479 0.1 4 3 1
+1.54246 0.2 3 5 0
+1.52663 0.9 5 2 1
+1.51836 2.8 3 4 1
+1.48155 2.1 5 4 0
+1.46018 12.6 6 3 0
+1.44932 0.8 1 5 1
+1.44403 17.1 0 6 0
+1.43121 2 4 5 0
+1.43074 1.5 7 1 0
+1.42965 0.8 1 6 0
+1.42036 4.1 5 3 1
+1.42021 27.2 6 1 1
+1.41189 54.2 4 4 1
+1.40696 30.6 2 5 1
+1.38895 1.2 2 6 0
+1.37558 0.7 7 2 0
+1.36925 49.7 0 0 2
+1.36621 23.2 6 2 1
+1.34394 0.7 3 5 1
+1.34063 0 1 1 2
+1.33362 1.4 6 4 0
+1.32822 2 3 6 0
+1.32202 0.7 2 0 2
+1.31822 1.2 5 5 0
+1.30689 1 2 1 2
+1.30559 3.8 0 2 2
+1.30307 2 5 4 1
+1.29632 0 7 3 0
+1.29493 0.1 1 2 2
+1.28847 13.8 6 3 1
+1.28191 1.5 7 0 1
+1.27733 6.9 0 6 1
+1.26933 1.3 8 0 0
+1.26843 0.1 4 5 1
+1.2681 9.2 7 1 1
+1.26734 0.3 1 6 1
+1.26445 3.1 2 2 2
+1.25592 7.4 3 1 2
+1.25518 7.6 4 6 0
+1.23873 7.9 2 6 1
+1.22922 3.3 7 2 1
+1.22865 0.2 1 7 0
+1.22816 1.3 1 3 2
+1.21812 0 3 2 2
+1.21076 1.6 6 5 0
+1.20532 0.1 7 4 0
+1.20513 15.1 4 0 2
+1.20253 6.2 2 7 0
+1.20207 25.4 2 3 2
+1.199 22.7 6 4 1
+1.19507 1.6 3 6 1
+1.19364 1.4 4 1 2
+1.18777 1.9 5 5 1
+1.17687 3.7 5 6 0
+1.17167 0 7 3 1
+1.16246 1 3 7 0
+1.16205 5 3 3 2
+1.16104 0.4 4 2 2
+1.15739 0.6 0 4 2
+1.14995 5.4 1 4 2
+1.14159 4.7 8 1 1
+1.14103 2.4 4 6 1
+1.12844 4 2 4 2
+1.1257 5.5 5 1 2
+1.12099 2.4 1 7 1
+1.11884 0.7 9 1 0
+1.11297 0.3 8 2 1
+1.11255 1 4 7 0
+1.11233 1.6 7 5 0
+1.11219 0.9 4 3 2
+1.10736 3.8 6 5 1
+1.10319 0.8 7 4 1
+1.10105 2.1 2 7 1
+1.09851 0.5 6 6 0
+1.09823 0.1 5 2 2
+1.09514 1.4 3 4 2
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaCl-B1.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaCl-B1.jcpds
new file mode 100644
index 0000000..0b0a7b4
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaCl-B1.jcpds
@@ -0,0 +1,17 @@
+3
+NaCl (JCPDS 5-0628, EOS from dcal)
+ 1 23.8800 5.20000
+ 5.64020
+4.4e-6
+d-spacing I/I0 h k l
+ 3.2580 13. 1.00 1.00 1.00
+ 2.8210 100. 2.00 0.00 0.00
+ 1.9940 55. 2.00 2.00 0.00
+ 1.7010 2. 3.00 1.00 1.00
+ 1.6280 15. 2.00 2.00 2.00
+ 1.4100 6. 4.00 0.00 0.00
+ 1.2940 1. 3.00 3.00 1.00
+ 1.2610 11. 4.00 2.00 0.00
+ 1.1515 7. 4.00 2.00 2.00
+ 1.0855 1. 5.00 1.00 1.00
+ 0.9969 2. 4.00 4.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaCl-B2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaCl-B2.jcpds
new file mode 100644
index 0000000..19e8110
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaCl-B2.jcpds
@@ -0,0 +1,23 @@
+3
+NaCl B2 (GSAS calculation, EOS from Heinz and Jeanloz, 84)
+ 1 36.2000 4.00000
+ 3.46690
+4.4e-6
+d-spacing I/I0 h k l
+ 3.4669 6. 1.00 0.00 0.00
+ 2.4515 100. 1.00 1.00 0.00
+ 2.0016 1. 1.00 1.00 1.00
+ 1.7335 8. 2.00 0.00 0.00
+ 1.5504 1. 2.00 1.00 0.00
+ 1.4154 21. 2.00 1.00 1.00
+ 1.2257 4. 2.00 2.00 0.00
+ 1.1556 1. 2.00 2.00 1.00
+ 1.1556 1. 3.00 0.00 0.00
+ 1.0963 7. 3.00 1.00 0.00
+ 1.0453 1. 3.00 1.00 1.00
+ 1.0008 1. 2.00 2.00 2.00
+ 0.9615 1. 3.00 2.00 0.00
+ 0.9266 3. 3.00 2.00 1.00
+ 0.8667 1. 4.00 0.00 0.00
+ 0.8408 1. 4.00 1.00 0.00
+ 0.8408 1. 3.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaF-b2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaF-b2.jcpds
new file mode 100755
index 0000000..9fae7fb
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaF-b2.jcpds
@@ -0,0 +1,23 @@
+3
+NaCl B2 (GSAS calculation, EOS from Heinz and Jeanloz, 84)
+ 1 103.0000 4.00000
+ 2.714
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.4669 6. 1.00 0.00 0.00
+ 2.4515 100. 1.00 1.00 0.00
+ 2.0016 1. 1.00 1.00 1.00
+ 1.7335 8. 2.00 0.00 0.00
+ 1.5504 1. 2.00 1.00 0.00
+ 1.4154 21. 2.00 1.00 1.00
+ 1.2257 4. 2.00 2.00 0.00
+ 1.1556 1. 2.00 2.00 1.00
+ 1.1556 1. 3.00 0.00 0.00
+ 1.0963 7. 3.00 1.00 0.00
+ 1.0453 1. 3.00 1.00 1.00
+ 1.0008 1. 2.00 2.00 2.00
+ 0.9615 1. 3.00 2.00 0.00
+ 0.9266 3. 3.00 2.00 1.00
+ 0.8667 1. 4.00 0.00 0.00
+ 0.8408 1. 4.00 1.00 0.00
+ 0.8408 1. 3.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaF.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaF.jcpds
new file mode 100755
index 0000000..74703a0
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaF.jcpds
@@ -0,0 +1,17 @@
+3
+NaF (JCPDS 5-0628, EOS from dcal)
+ 1 46.400 4.90000
+ 4.62
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.2580 13. 1.00 1.00 1.00
+ 2.8201 100. 2.00 0.00 0.00
+ 1.9941 55. 2.00 2.00 0.00
+ 1.7006 2. 3.00 1.00 1.00
+ 1.6282 15. 2.00 2.00 2.00
+ 1.4100 6. 4.00 0.00 0.00
+ 1.2940 1. 3.00 3.00 1.00
+ 1.2612 11. 4.00 2.00 0.00
+ 1.1515 7. 4.00 2.00 2.00
+ 1.0855 1. 5.00 1.00 1.00
+ 0.9969 2. 4.00 4.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaMgF3-Pv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaMgF3-Pv.jcpds
new file mode 100755
index 0000000..ad7bc24
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaMgF3-Pv.jcpds
@@ -0,0 +1,401 @@
+3
+NaMgF3-Perovskite
+ 4 76.000 4.00000
+ 5.3603 5.4884 7.666
+(blank for future use)
+d-spacing I/I0 h k l
+4.39292 2 1 0 1
+3.83479 29 1 1 0
+3.833 12 0 0 2
+3.42962 6 1 1 1
+2.7442 22 0 2 0
+2.71097 76 1 1 2
+2.68015 14 2 0 0
+2.4427 8 1 2 0
+2.40834 16 2 1 0
+2.3274 17 1 2 1
+2.30664 38 1 0 3
+2.29762 30 2 1 1
+2.2313 40 0 2 2
+2.19646 26 2 0 2
+2.12647 14 1 1 3
+2.05996 16 1 2 2
+2.03922 9 2 1 2
+1.9174 100 2 2 0
+1.9165 53 0 0 4
+1.8701 7 0 2 3
+1.8601 7 2 2 1
+1.76573 6 1 2 3
+1.75261 6 2 1 3
+1.74013 4 3 0 1
+1.7314 11 1 3 0
+1.71481 8 2 2 2
+1.71433 6 1 1 4
+1.699 1 3 1 0
+1.68886 16 1 3 1
+1.65875 4 3 1 1
+1.57789 20 1 3 2
+1.57125 22 0 2 4
+1.55894 18 2 0 4
+1.55325 48 3 1 2
+1.51101 1 2 3 0
+1.50781 1 1 2 4
+1.49962 1 2 1 4
+1.49735 3 3 2 0
+1.48248 2 2 3 1
+1.47409 4 1 0 5
+1.46958 1 3 2 1
+1.46431 1 3 0 3
+1.43336 4 1 3 3
+1.41482 2 3 1 3
+1.40572 2 2 3 2
+1.3721 10 0 4 0
+1.35549 35 2 2 4
+1.35064 2 0 4 1
+1.34008 6 4 0 0
+1.33846 1 0 2 5
+1.32924 5 1 4 0
+1.30183 3 4 1 0
+1.30063 6 2 3 3
+1.29859 8 1 2 5
+1.29335 4 2 1 5
+1.29189 5 3 2 3
+1.28475 5 1 3 4
+1.28346 3 4 1 1
+1.27826 1 3 3 0
+1.27767 1 0 0 6
+1.27135 1 3 1 4
+1.26499 2 4 0 2
+1.26086 1 3 3 1
+1.25587 2 1 4 2
+1.23267 3 4 1 2
+1.22135 3 2 4 0
+1.21261 4 3 3 2
+1.21216 8 1 1 6
+1.20885 1 0 4 3
+1.20614 2 2 4 1
+1.20417 2 4 2 0
+1.19745 3 2 2 5
+1.18958 1 4 2 1
+1.18657 1 2 3 4
+1.17992 1 3 2 4
+1.17924 1 1 4 3
+1.16355 2 3 0 5
+1.15997 4 4 1 3
+1.15828 1 0 2 6
+1.15332 1 2 0 6
+1.14881 1 4 2 2
+1.14784 4 1 3 5
+1.14321 4 3 3 3
+1.13825 4 3 1 5
+1.12867 1 2 1 6
+1.11565 6 0 4 4
+1.10195 5 2 4 3
+1.09823 4 4 0 4
+1.09224 1 1 4 4
+1.08928 1 4 2 3
+1.08825 1 3 4 0
+1.08108 1 4 3 0
+1.07744 1 3 4 1
+1.07688 1 4 1 4
+1.0762 1 2 3 5
+1.07536 1 1 5 0
+1.07298 2 1 0 7
+1.07123 1 3 2 5
+1.07048 2 4 3 1
+1.06494 3 1 5 1
+1.06343 1 3 3 4
+1.06324 1 2 2 6
+1.06173 1 5 0 1
+1.05304 1 1 1 7
+1.05218 1 5 1 0
+1.04687 3 3 4 2
+1.0424 1 5 1 1
+1.04048 1 4 3 2
+1.03539 1 1 5 2
+1.02998 4 2 4 4
+1.02806 2 1 3 6
+1.02245 2 0 4 5
+1.02115 6 3 1 6
+1.01961 3 4 2 4
+1.01714 1 0 2 7
+1.01579 1 2 5 0
+1.01464 8 5 1 2
+1.00699 1 2 5 1
+1.00434 1 1 4 5
+1.00123 1 3 4 3
+0.99931 1 1 2 7
+0.99857 1 5 2 0
+0.99691 1 2 1 7
+0.99564 1 4 3 3
+0.99236 1 4 1 5
+0.99117 3 1 5 3
+0.9902 1 5 2 1
+0.98858 1 5 0 3
+0.98189 1 2 5 2
+0.97563 1 2 3 6
+0.97293 2 5 1 3
+0.97193 1 3 2 6
+0.96631 1 5 2 2
+0.9587 1 4 4 0
+0.95825 1 0 0 8
+0.9553 1 2 4 5
+0.95129 2 4 4 1
+0.95096 1 2 2 7
+0.94701 1 4 2 5
+0.94633 1 3 4 4
+0.94394 1 2 5 3
+0.9416 1 4 3 4
+0.93782 2 1 5 4
+0.93528 2 3 5 0
+0.93505 1 0 4 6
+0.93371 1 3 0 7
+0.93007 2 5 2 3
+0.92966 1 1 1 8
+0.9284 1 3 5 1
+0.92554 1 1 3 7
+0.92495 1 5 3 0
+0.92472 1 4 0 6
+0.92232 1 5 1 4
+0.92114 1 1 4 6
+0.92049 1 3 1 7
+0.91829 1 5 3 1
+0.91473 1 0 6 0
+0.91187 1 4 1 6
+0.90863 4 3 5 2
+0.90829 1 0 6 1
+0.90468 5 0 2 8
+0.90366 3 3 3 6
+0.90231 4 2 0 8
+0.9017 1 1 6 0
+0.89914 8 5 3 2
+0.89761 1 4 4 3
+0.89552 1 1 6 1
+0.89338 1 6 0 0
+0.89206 1 1 2 8
+0.89036 1 2 1 8
+0.88975 1 0 6 2
+0.88743 1 3 4 5
+0.88673 1 2 3 7
+0.88557 1 5 2 4
+0.88395 1 3 2 7
+0.88353 2 4 3 5
+0.88286 1 2 4 6
+0.88178 1 6 1 0
+0.8804 1 1 5 5
+0.87858 1 5 0 5
+0.8783 1 3 5 3
+0.87774 2 1 6 2
+0.87631 1 4 2 6
+0.876 1 6 1 1
+0.87006 2 6 0 2
+0.86973 1 5 3 3
+0.86754 1 5 1 5
+0.8657 1 2 6 0
+0.86122 1 0 6 3
+0.86023 1 2 6 1
+0.85933 1 6 1 2
+0.85741 1 4 4 4
+0.85717 2 2 2 8
+0.85593 1 0 4 7
+0.85031 1 1 6 3
+0.8495 1 6 2 0
+0.84917 1 4 5 0
+0.8468 1 2 5 5
+0.84523 1 1 4 7
+0.84478 1 5 4 0
+0.84443 1 2 6 2
+0.84433 1 6 2 1
+0.84401 1 4 5 1
+0.84122 1 1 0 9
+0.84053 1 3 5 4
+0.83841 1 1 3 8
+0.83805 1 4 1 7
+0.83675 1 5 2 5
+0.83465 1 3 1 8
+0.83355 1 6 1 3
+0.83301 1 5 3 4
+0.83166 1 3 3 7
+0.83151 1 1 1 9
+0.82937 1 6 2 2
+0.82907 1 4 5 2
+0.82846 1 3 4 6
+0.82552 1 0 6 4
+0.82529 1 4 3 6
+0.82498 1 5 4 2
+0.82274 1 1 5 6
+0.81993 1 2 6 3
+0.8159 1 1 6 4
+0.81536 1 2 4 7
+0.81423 1 3 6 0
+0.81349 1 0 2 9
+0.81287 1 4 4 5
+0.81221 4 5 1 6
+0.81019 1 4 2 7
+0.80973 1 6 0 4
+0.80924 1 2 3 8
+0.80712 1 3 2 8
+0.80612 1 6 2 3
+0.80584 1 4 5 3
+0.80428 1 1 2 9
+0.80303 1 2 1 9
+0.80278 1 6 3 0
+0.80208 1 5 4 3
+0.80106 1 6 1 4
+0.79845 1 3 5 5
+0.79646 1 3 6 2
+0.79512 1 2 5 6
+0.79199 1 5 3 5
+0.78895 1 2 6 4
+0.78678 1 5 2 6
+0.78573 1 6 3 2
+0.78563 1 0 4 8
+0.77947 1 4 0 8
+0.77842 1 2 2 9
+0.77732 1 1 4 8
+0.77662 1 6 2 4
+0.77637 1 4 5 4
+0.7758 1 1 7 0
+0.77301 1 5 4 4
+0.77193 1 3 4 7
+0.77173 1 4 1 8
+0.76936 1 4 3 7
+0.76888 1 3 0 9
+0.76729 1 1 5 7
+0.76696 1 5 5 0
+0.76683 1 4 4 6
+0.76673 1 3 3 8
+0.7666 1 0 0 10
+0.76609 1 5 0 7
+0.76587 1 6 3 3
+0.76438 1 6 1 5
+0.76315 1 5 5 1
+0.76197 1 7 0 1
+0.76144 1 3 1 9
+0.76038 1 1 7 2
+0.75874 1 5 1 7
+0.75841 1 7 1 0
+0.7555 1 4 6 0
+0.75473 1 7 1 1
+0.7539 4 2 4 8
+0.75252 1 2 7 0
+0.75205 1 5 5 2
+0.75186 1 4 6 1
+0.75173 1 1 1 10
+0.74981 2 4 2 8
+0.7494 1 3 6 4
+0.74923 2 5 3 6
+0.74892 1 2 7 1
+0.74867 1 6 4 0
+0.74513 1 6 4 1
+0.74475 1 2 5 7
+0.74399 3 7 1 2
+0.74377 1 0 6 6
+0.74306 1 6 2 5
+0.74284 1 4 5 5
+0.74234 1 1 7 3
+0.742 1 2 3 9
+0.74124 1 4 6 2
+0.74044 1 6 3 4
+0.7399 1 5 4 5
+0.73842 1 2 7 2
+0.73788 1 5 2 7
+0.73758 1 7 2 0
+0.73704 1 2 0 10
+0.73671 1 1 6 6
+0.73479 1 6 4 2
+0.73458 1 5 5 3
+0.73419 1 7 2 1
+0.73353 1 7 0 3
+0.73215 1 6 0 6
+0.73143 1 1 2 10
+0.73049 1 2 1 10
+0.72706 1 7 1 3
+0.72572 1 6 1 6
+0.7245 1 4 6 3
+0.72429 1 7 2 2
+0.72367 1 0 4 9
+0.72187 1 2 7 3
+0.72135 1 4 4 7
+0.71918 2 3 4 8
+0.71847 1 6 4 3
+0.71797 1 3 7 0
+0.71717 1 1 4 9
+0.71668 1 2 6 6
+0.71542 1 1 5 8
+0.71484 1 3 7 1
+0.71277 1 4 1 9
+0.71206 1 5 5 4
+0.71182 1 2 2 10
+0.71121 1 3 5 7
+0.70882 1 3 3 9
+0.70865 1 7 2 3
+0.70847 1 5 1 8
+0.70741 1 6 2 6
+0.70664 1 5 3 7
+0.70637 1 7 3 0
+0.7057 1 3 7 2
+0.7052 1 7 1 4
+0.70467 1 5 4 6
+0.7034 1 7 3 1
+0.70286 1 4 6 4
+0.70205 1 0 6 7
+0.70096 1 1 3 10
+0.70046 1 2 7 4
+0.69876 1 3 1 10
+0.69865 1 2 4 9
+0.69735 1 6 4 4
+0.69704 1 2 5 8
+0.69611 1 1 6 7
+0.69585 1 5 6 0
+0.69539 1 4 2 9
+0.69468 1 7 3 2
+0.69301 1 5 6 1
+0.6929 1 6 5 0
+0.69223 1 1 7 5
+0.6914 1 5 2 8
+0.69121 1 3 7 3
+0.69109 1 1 0 11
+0.69008 1 6 5 1
+0.68836 1 7 2 4
+0.68682 1 6 1 7
+0.68665 1 3 6 6
+0.68605 1 0 8 0
+0.68592 1 5 5 5
+0.68568 1 1 1 11
+0.68506 1 7 0 5
+0.68466 1 5 6 2
+0.68365 1 2 3 10
+0.68332 1 0 8 1
+0.68237 1 3 2 10
+0.68185 1 6 5 2
+0.68084 1 7 3 3
+0.6805 1 1 8 0
+0.67979 1 7 1 5
+0.67914 1 2 6 7
+0.67783 1 1 8 1
+0.67769 1 4 6 5
+0.67674 1 4 7 0
+0.67554 1 2 7 5
+0.67532 1 0 8 2
+0.67411 1 4 7 1
+0.67275 1 6 4 5
+0.67234 1 3 7 4
+0.67141 1 5 6 3
+0.67123 1 6 2 7
+0.67107 1 4 5 7
+0.67075 1 3 4 9
+0.67017 1 1 2 11
+0.67004 1 8 0 0
+0.66944 1 2 1 11
+0.66932 1 3 5 8
+0.66906 1 4 3 9
+0.66889 1 5 4 7
+0.66875 1 6 5 3
+0.6677 1 1 5 9
+0.6669 1 5 0 9
+0.66643 1 4 7 2
+0.66614 1 7 4 1
+0.6655 1 5 3 8
+0.6651 1 8 1 0
+0.66467 1 7 2 5
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaMgF3-ppv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaMgF3-ppv.jcpds
new file mode 100755
index 0000000..5d11d52
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/NaMgF3-ppv.jcpds
@@ -0,0 +1,103 @@
+3
+NaMgF3 postpv orthorhombic (Xtal Diffract, Martin et al 2006, based on MgSiO3-ppv)
+ 4 137.000 4.00000
+ 2.951845 9.257341 7.31897
+(blank for future use)
+d-spacing I/I0 h k l
+4.3995 13.9 0 2 0
+3.6720 0.1 0 2 1
+3.3333 4.4 0 0 2
+2.6568 100.0 0 2 2
+2.5700 18.9 1 1 0
+2.3980 4.3 1 1 1
+2.1998 5.4 0 4 0
+2.0890 5.4 0 4 1
+2.0353 0.3 1 1 2
+1.9835 39.0 0 2 3
+1.9814 65.8 1 3 0
+1.8992 82.7 1 3 1
+1.8360 2.5 0 4 2
+1.7032 40.0 1 3 2
+1.6809 35.4 1 1 3
+1.6666 26.7 0 0 4
+1.5633 0.7 0 4 3
+1.5585 0.3 0 2 4
+1.4789 6.8 1 3 3
+1.4722 5.3 1 5 0
+1.4665 0.1 0 6 0
+1.4376 7.0 1 5 1
+1.4323 1.5 0 6 1
+1.3983 16.4 1 1 4
+1.3467 25.6 1 5 2
+1.3436 18.0 2 0 0
+1.3423 21.5 0 6 2
+1.3284 11.7 0 4 4
+1.2850 0.2 2 2 0
+1.2760 0.4 0 2 5
+1.2754 5.9 1 3 4
+1.2618 0.2 2 2 1
+1.2462 0.2 2 0 2
+1.2273 0.1 1 5 3
+1.2240 0.6 0 6 3
+1.1990 9.7 2 2 2
+1.1835 0.2 1 1 5
+1.1466 1.1 2 4 0
+1.1402 0.1 0 4 5
+1.1386 0.1 1 7 0
+1.1300 0.4 2 4 1
+1.1223 1.1 1 7 1
+1.1124 2.9 2 2 3
+1.1111 0.4 0 0 6
+1.1062 8.2 1 3 5
+1.1034 1.3 1 5 4
+1.1010 0.0 0 6 4
+1.0999 1.8 0 8 0
+1.0852 0.3 0 8 1
+1.0843 0.1 2 4 2
+1.0775 1.5 1 7 2
+1.0773 3.4 0 2 6
+1.0460 4.9 2 0 4
+1.0445 0.9 0 8 2
+1.0199 1.8 1 1 6
+1.0190 0.1 2 4 3
+1.0177 0.2 2 2 4
+1.0133 1.7 1 7 3
+0.9918 0.8 0 4 6
+0.9907 0.0 2 6 0
+0.9883 2.0 1 5 5
+0.9865 0.4 0 6 5
+0.9857 0.0 0 8 3
+0.9799 0.4 2 6 1
+0.9691 0.6 1 3 6
+0.9496 6.4 2 6 2
+0.9447 3.5 2 4 4
+0.9401 0.1 1 7 4
+0.9308 0.1 0 2 7
+0.9252 0.1 2 2 5
+0.9188 0.1 1 9 0
+0.9180 0.5 0 8 4
+0.9102 0.8 1 9 1
+0.9048 0.1 2 6 3
+0.8930 0.9 1 1 7
+0.8911 0.3 3 1 0
+0.8869 0.7 1 5 6
+0.8857 0.6 1 9 2
+0.8856 1.1 0 6 6
+0.8833 0.0 3 1 1
+0.8799 0.0 0 10 0
+0.8740 0.0 0 4 7
+0.8723 0.0 0 10 1
+0.8694 0.0 2 4 5
+0.8658 0.0 1 7 5
+0.8609 0.0 3 1 2
+0.8584 0.4 1 3 7
+0.8567 1.4 3 3 0
+0.8562 0.3 2 0 6
+0.8516 0.0 2 6 4
+0.8511 1.1 2 8 0
+0.8508 0.4 0 10 2
+0.8497 0.3 3 3 1
+0.8490 0.2 1 9 3
+0.8484 0.0 0 8 5
+0.8442 0.0 2 8 1
+0.8405 2.0 2 2 6
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/SiC-alpha.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/SiC-alpha.jcpds
new file mode 100644
index 0000000..f7c9ded
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/SiC-alpha.jcpds
@@ -0,0 +1,48 @@
+3
+hexagonal SiC (based on cobalt hcp file, EOS same as fcc)
+ 2 250. 4.
+ 3.073 10.053
+4.e-6
+d-spacing I/I0 h k l
+2.57268 63.1 0.0 1.0 1.0
+2.35198 100 0.0 1.0 2.0
+2.08403 53.4 0.0 1.0 3.0
+1.82723 20.3 0.0 1.0 4.0
+1.6755 24.8 0.0 0.0 6.0
+1.60424 6.7 0.0 1.0 5.0
+1.5365 88.4 1.0 1.0 0.0
+1.31914 8.2 0.0 2.0 1.0
+1.28634 16.7 0.0 2.0 2.0
+1.26386 7.2 0.0 1.0 7.0
+1.23671 12.7 0.0 2.0 3.0
+1.17599 6.3 0.0 2.0 4.0
+1.13632 16.9 0.0 1.0 8.0
+1.13243 44.5 1.0 1.0 6.0
+1.10964 2.2 0.0 2.0 5.0
+1.02996 14.5 0.0 1.0 9.0
+1.00088 6.6 1.0 2.0 1.0
+0.98632 13.8 1.0 2.0 2.0
+0.97608 3 0.0 2.0 7.0
+0.96341 10.8 1.0 2.0 3.0
+0.94044 5.8 0.0 1.0 10.0
+0.93386 5.5 1.0 2.0 4.0
+0.91362 7.9 0.0 2.0 8.0
+0.89958 2.1 1.0 2.0 5.0
+0.8871 14.1 0.0 3.0 0.0
+0.86436 0.9 0.0 1.0 11.0
+0.85553 7.4 0.0 2.0 9.0
+0.83775 1.2 0.0 0.0 12.0
+0.82389 3.2 1.0 2.0 7.0
+0.80212 3.1 0.0 2.0 10.0
+0.78528 8.8 1.0 2.0 8.0
+0.78399 11.2 0.0 3.0 6.0
+0.76825 8 2.0 2.0 0.0
+0.75334 0.5 0.0 2.0 11.0
+0.74747 8.5 1.0 2.0 9.0
+0.74259 0.4 0.0 1.0 13.0
+0.73613 2 1.0 3.0 1.0
+0.73553 3.7 1.0 1.0 12.0
+0.73028 4.1 1.0 3.0 2.0
+0.72083 3.1 1.0 3.0 3.0
+0.71106 3.7 1.0 2.0 10.0
+0.7082 1.5 1.0 3.0 4.0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/TiC.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/TiC.jcpds
new file mode 100755
index 0000000..721c97d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/TiC.jcpds
@@ -0,0 +1,17 @@
+3
+TiC (EOS from Gu)
+ 1 268.0 4.00
+ 4.326
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.2580 13. 1.00 1.00 1.00
+ 2.8201 100. 2.00 0.00 0.00
+ 1.9941 55. 2.00 2.00 0.00
+ 1.7006 2. 3.00 1.00 1.00
+ 1.6282 15. 2.00 2.00 2.00
+ 1.4100 6. 4.00 0.00 0.00
+ 1.2940 1. 3.00 3.00 1.00
+ 1.2612 11. 4.00 2.00 0.00
+ 1.1515 7. 4.00 2.00 2.00
+ 1.0855 1. 5.00 1.00 1.00
+ 0.9969 2. 4.00 4.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ag.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ag.jcpds
new file mode 100755
index 0000000..4272ae2
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ag.jcpds
@@ -0,0 +1,15 @@
+3
+Gold (04-0783, shock wave)
+ 1 120.8 4.84
+ 4.0862
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3590 100. 1.00 1.00 1.00
+ 2.0440 52. 2.00 0.00 0.00
+ 1.4450 32. 2.00 2.00 0.00
+ 1.2310 36. 3.00 1.00 1.00
+ 1.1760 12. 2.00 2.00 2.00
+ 1.0215 6. 4.00 0.00 0.00
+ 0.9375 23. 3.00 3.00 1.00
+ 0.9137 22. 4.00 2.00 0.00
+ 0.8341 23. 4.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/al2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/al2o3.jcpds
new file mode 100755
index 0000000..1638255
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/al2o3.jcpds
@@ -0,0 +1,18 @@
+3
+Al2O3 corundum (JCPDS 46-1212, EOS)
+ 2 254.000 4.30000
+ 4.7587 12.9929
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.4797 45. 0.00 1.00 2.00
+ 2.5508 100. 1.00 0.00 4.00
+ 2.3795 21. 1.00 1.00 0.00
+ 2.0853 66. 1.00 1.00 3.00
+ 1.7401 34. 0.00 2.00 4.00
+ 1.6016 89. 1.00 1.00 6.00
+ 1.5110 14. 0.00 1.00 8.00
+ 1.4045 23. 2.00 1.00 4.00
+ 1.3737 27. 3.00 0.00 0.00
+ 1.2392 29. 1.00 0.00 10.00
+ 1.2343 12. 1.00 1.00 9.00
+ 1.0990 9. 0.00 2.00 10.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar-Boehler.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar-Boehler.jcpds
new file mode 100755
index 0000000..d1cc14e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar-Boehler.jcpds
@@ -0,0 +1,11 @@
+3
+Argon FCC (made by Shim, EOS from Errandonea and Boehler)
+ 1 6.5 5.1
+ 5.22932
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.1828 100. 1.00 1.00 1.00
+ 2.7564 40. 2.00 0.00 0.00
+ 1.9491 25. 2.00 2.00 0.00
+ 1.6622 30. 3.00 1.00 1.00
+ 1.5914 12. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar-hcp.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar-hcp.jcpds
new file mode 100755
index 0000000..fd12ce1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar-hcp.jcpds
@@ -0,0 +1,16 @@
+3
+ar HCP (based on cobalt hcp file, EOS same as fcc)
+ 2 1.95 7.07
+ 3.8958 6.3143
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1694 20. 1.00 0.00 0.00
+ 2.0300 60. 0.00 0.00 2.00
+ 1.9134 100. 1.00 0.00 1.00
+ 1.4822 12. 1.00 0.00 2.00
+ 1.2525 80. 1.00 1.00 0.00
+ 1.1482 80. 1.00 0.00 3.00
+ 1.0847 20. 2.00 0.00 0.00
+ 1.0660 80. 1.00 1.00 2.00
+ 1.0479 60. 2.00 0.00 1.00
+ 1.0150 20. 0.00 0.00 4.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar.jcpds
new file mode 100755
index 0000000..8f07af1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ar.jcpds
@@ -0,0 +1,11 @@
+3
+Argon FCC (made by Shim, EOS from Finger et al and Ross et al)
+ 1 1.95 7.07
+ 5.5128
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.1828 100. 1.00 1.00 1.00
+ 2.7564 40. 2.00 0.00 0.00
+ 1.9491 25. 2.00 2.00 0.00
+ 1.6622 30. 3.00 1.00 1.00
+ 1.5914 12. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-dewaele.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-dewaele.jcpds
new file mode 100755
index 0000000..015406a
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-dewaele.jcpds
@@ -0,0 +1,19 @@
+3
+Gold (04-0784, Dewaele 2004, Note that Dewaele used Vinet EOS but XPEAKPO uses BM)
+ 1 167.00 6.0
+ 4.07860
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-heinz.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-heinz.jcpds
new file mode 100755
index 0000000..dd909a6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-heinz.jcpds
@@ -0,0 +1,19 @@
+3
+Gold (04-0784, Heinz and Jeanloz 1984)
+ 1 166.600 5.50000
+ 4.07860
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-shim.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-shim.jcpds
new file mode 100755
index 0000000..61d691e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-shim.jcpds
@@ -0,0 +1,19 @@
+3
+Gold (04-0784, Shim et al 2002)
+ 1 167. 5.00000
+ 4.07860
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-tsuchiya.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-tsuchiya.jcpds
new file mode 100755
index 0000000..910b7c0
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au-tsuchiya.jcpds
@@ -0,0 +1,19 @@
+3
+Gold (04-0784, Tsuchiya 2003, Note that Tsuchiya used Vinet EOS but XPEAKPO uses BM)
+ 1 166.70 6.12
+ 4.07860
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au.jcpds
new file mode 100755
index 0000000..dd909a6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/au.jcpds
@@ -0,0 +1,19 @@
+3
+Gold (04-0784, Heinz and Jeanloz 1984)
+ 1 166.600 5.50000
+ 4.07860
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
+ 0.78493 10. 3.00 3.00 3.00
+ 0.68941 10. 5. 3. 1.
+ 0.67977 10. 4.0 4.0 2.0
+ 0.64488 10. 6. 2. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-2B.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-2B.jcpds
new file mode 100755
index 0000000..2038062
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-2B.jcpds
@@ -0,0 +1,12 @@
+3
+calcium (10-348, JCPDS)
+ 1 17.4 3.7.
+ 4.486
+(blank for future use)
+d-spacing I/I0 h k l
+3.15 100 1 1 0
+2.23 20 2 0 0
+1.83 40 2 1 1
+1.58 18 2 2 0
+1.41 12 3 1 0
+1.19 14 3 2 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-bcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-bcc.jcpds
new file mode 100755
index 0000000..5df711b
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-bcc.jcpds
@@ -0,0 +1,12 @@
+3
+Ca (bcc) (from Fe, EOS from mp book)
+ 1 9.8 3.7
+ 4.53245
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.2050 100 1 1 0
+ 2.2663 19 2 0 0
+ 1.8504 30 2 1 1
+ 1.6025 9 2 2 0
+ 1.4333 12 3 1 0
+ 1.3084 6 2 2 2
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-fcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-fcc.jcpds
new file mode 100755
index 0000000..e619240
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ca-fcc.jcpds
@@ -0,0 +1,14 @@
+3
+calcium (23-430, JCPDS, Bernstein and Smith, Acta Cryst 12, 419, 1959)
+ 1 17.4 3.7
+ 5.5886
+(blank for future use)
+d-spacing I/I0 h k l
+3.2269 100. 1 1 1
+2.7945 46. 2 0 0
+1.9754 23. 2 2 0
+1.6851 23. 3 1 1
+1.6133 6. 2 2 2
+1.3871 2. 4 0 0
+1.2320 6. 3 3 1
+1.2498 5. 4 2 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cao.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cao.jcpds
new file mode 100755
index 0000000..8a3f2fc
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cao.jcpds
@@ -0,0 +1,19 @@
+3
+CaO (JCPDS 37-1497, EOS by Richet et al 1988)
+ 1 111.000 4.20000
+ 4.81059
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.7774 36. 1.00 1.00 1.00
+ 2.4059 100. 2.00 0.00 0.00
+ 1.7009 54. 2.00 2.00 0.00
+ 1.4505 16. 3.00 1.00 1.00
+ 1.3888 16. 2.00 2.00 2.00
+ 1.2026 6. 4.00 0.00 0.00
+ 1.1037 6. 3.00 3.00 1.00
+ 1.0758 16. 4.00 2.00 0.00
+ 0.9819 12. 4.00 2.00 2.00
+ 0.9257 6. 5.00 1.00 1.00
+ 0.8504 6. 4.00 4.00 0.00
+ 0.8131 10. 5.00 3.00 1.00
+ 0.8018 16. 6.00 0.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/caob2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/caob2.jcpds
new file mode 100755
index 0000000..40dc151
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/caob2.jcpds
@@ -0,0 +1,18 @@
+3
+CaO-b2 (GSAS, EOS by Richet et al 1988)
+ 1 130.000 3.50000
+ 2.90740
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.9074 29. 1.00 0.00 0.00
+ 2.0558 100. 1.00 1.00 0.00
+ 1.6786 8. 1.00 1.00 1.00
+ 1.4537 13. 2.00 0.00 0.00
+ 1.3002 9. 2.00 1.00 0.00
+ 1.1869 15. 2.00 1.00 1.00
+ 1.0279 2. 2.00 2.00 0.00
+ 0.9691 1. 2.00 2.00 1.00
+ 0.9691 1. 3.00 0.00 0.00
+ 0.9194 2. 3.00 1.00 0.00
+ 0.8766 1. 3.00 1.00 1.00
+ 0.8393 2. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/caoh2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/caoh2.jcpds
new file mode 100755
index 0000000..2ee5923
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/caoh2.jcpds
@@ -0,0 +1,49 @@
+3
+CaOH2 Brucite (From FeOH2, EOS)
+ 2 50.000 4.00000
+ 3.584 4.896
+(blank for future use)
+d-spacing I/I0 h k l
+4.8962 60.7 0 0 1
+3.10418 16.8 1 -1 0
+2.62168 100 1 0 -1
+2.4481 0.7 0 0 2
+1.92225 45.2 -1 1 2
+1.7922 30.4 2 -1 0
+1.683 16.7 2 -1 1
+1.63207 1.4 0 0 3
+1.55209 2.4 -2 2 0
+1.47953 12.5 -2 0 1
+1.4461 1.3 -2 1 2
+1.44457 13.2 1 0 -3
+1.31084 10.4 -2 0 2
+1.22405 1.9 0 0 4
+1.20669 2.9 -2 1 3
+1.17327 2 -2 3 0
+1.14097 9.4 -3 1 1
+1.13872 2.2 0 -1 4
+1.1247 5.2 2 0 -3
+1.05804 10.4 -3 1 2
+1.03473 3.9 3 -3 0
+1.01237 3.2 -3 3 1
+1.01079 6.8 1 -2 4
+0.97924 0.8 0 0 5
+0.96112 1.7 -2 2 4
+0.95309 0.6 3 0 -2
+0.95265 7.9 -3 1 3
+0.93388 2.6 0 -1 5
+0.8961 3.7 4 -2 0
+0.88146 3.4 -4 2 1
+0.87389 2.2 -3 3 3
+0.86095 1.8 -4 1 0
+0.85933 5.5 1 1 -5
+0.84794 8.4 -4 1 1
+0.84701 4.5 -3 1 4
+0.8415 0.9 4 -2 2
+0.82818 3.7 -2 2 5
+0.81603 0.3 0 0 6
+0.81218 15 -4 1 2
+0.79022 14.8 -3 3 4
+0.78922 10.8 0 -1 6
+0.78549 5.5 -4 2 3
+0.77605 3.5 -4 4 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-i4mmm.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-i4mmm.jcpds
new file mode 100755
index 0000000..a55aeb6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-i4mmm.jcpds
@@ -0,0 +1,108 @@
+3
+Ca-perovskite tetragonal (I4/mmm, EOS by Mao et al 1989)
+ 3 281.000 4.00000
+ 7.879 7.7582
+(blank for future use)
+d-spacing I/I0 h k l
+5.5713 2 1 1 0
+5.5281 3 0 1 1
+3.9395 0 0 2 0
+3.8791 0 0 0 2
+3.2082 2 1 2 1
+3.1835 2 1 1 2
+2.7856 40 2 2 0
+2.764 100 0 2 2
+2.4916 0 1 3 0
+2.4877 3 0 3 1
+2.4571 8 0 1 3
+2.2627 48 2 2 2
+2.1034 8 2 3 1
+2.0964 0 1 3 2
+2.0848 3 1 2 3
+1.9698 59 0 4 0
+1.9396 24 0 0 4
+1.8571 1 3 3 0
+1.8555 0 1 4 1
+1.8427 0 0 3 3
+1.8317 0 1 1 4
+1.7618 1 2 4 0
+1.7563 0 0 4 2
+1.7401 0 0 2 4
+1.675 1 3 3 2
+1.6691 0 2 3 3
+1.6041 42 2 4 2
+1.5917 22 2 2 4
+1.5452 0 1 5 0
+1.5443 1 0 5 1
+1.5443 0 3 4 1
+1.5369 2 1 4 3
+1.5305 0 1 3 4
+1.5224 0 0 1 5
+1.4378 0 2 5 1
+1.4355 1 1 5 2
+1.4201 1 1 2 5
+1.3928 13 4 4 0
+1.382 20 0 4 4
+1.3512 0 3 5 0
+1.3457 1 0 5 3
+1.3457 0 3 4 3
+1.3414 0 3 3 4
+1.3359 1 0 3 5
+1.3132 0 0 6 0
+1.3109 0 4 4 2
+1.3041 0 2 4 4
+1.293 0 0 0 6
+1.2776 0 1 6 1
+1.276 0 3 5 2
+1.2734 1 2 5 3
+1.2651 2 2 3 5
+1.2596 0 1 1 6
+1.2458 4 2 6 0
+1.2438 8 0 6 2
+1.2285 6 0 2 6
+1.2153 0 4 5 1
+1.2086 0 1 5 4
+1.2046 0 1 4 5
+1.1861 3 2 6 2
+1.1728 0 2 2 6
+1.1613 0 3 6 1
+1.1581 0 1 6 3
+1.1477 0 1 3 6
+1.1313 7 4 4 4
+1.1143 0 1 7 0
+1.1143 0 5 5 0
+1.1139 0 0 7 1
+1.1111 1 4 5 3
+1.1087 0 3 5 4
+1.1056 0 3 4 5
+1.1056 0 0 5 5
+1.0975 0 0 1 7
+1.0926 0 4 6 0
+1.0874 0 0 6 4
+1.0809 0 0 4 6
+1.0719 0 2 7 1
+1.071 0 1 7 2
+1.071 0 5 5 2
+1.0694 0 3 6 3
+1.0645 0 2 5 5
+1.0612 0 3 3 6
+1.0572 0 1 2 7
+1.0517 7 4 6 2
+1.0482 5 2 6 4
+1.0424 6 2 4 6
+1.0346 0 3 7 0
+1.0321 0 0 7 3
+1.0211 0 0 3 7
+1.0004 0 5 6 1
+0.9996 0 3 7 2
+0.9984 0 2 7 3
+0.9944 0 1 6 5
+0.9916 0 1 5 6
+0.9885 0 2 3 7
+0.9849 2 0 8 0
+0.9698 1 0 0 8
+0.9696 0 1 8 1
+0.9696 0 4 7 1
+0.9662 0 1 7 4
+0.9662 0 5 5 4
+0.9641 0 4 5 5
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-p4.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-p4.jcpds
new file mode 100755
index 0000000..df81e0b
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-p4.jcpds
@@ -0,0 +1,30 @@
+3
+Ca-perovskite tetragonal (P4/mmm, EOS by Shim 2002)
+ 3 255.000 4.00000
+ 3.582 3.567
+(blank for future use)
+d-spacing I/I0 h k l
+3.582 1 1 0 0
+3.567 0 0 0 1
+2.53286 49 1 1 0
+2.52754 100 1 0 1
+2.06517 59 1 1 1
+1.791 70 2 0 0
+1.7835 32 0 0 2
+1.60192 0 2 1 0
+1.60057 0 2 0 1
+1.59655 0 1 0 2
+1.46132 28 2 1 1
+1.45825 13 1 1 2
+1.26643 12 2 2 0
+1.26377 23 2 0 2
+1.194 0 3 0 0
+1.19344 0 2 2 1
+1.19177 0 2 1 2
+1.189 0 0 0 3
+1.13273 4 3 1 0
+1.13225 4 3 0 1
+1.12846 4 1 0 3
+1.0796 2 3 1 1
+1.07631 1 1 1 3
+1.03258 6 2 2 2
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pv.jcpds
new file mode 100755
index 0000000..03472c6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pv.jcpds
@@ -0,0 +1,25 @@
+3
+Ca-perovskite (using aristotype, EOS by Shim et al 1999)
+ 1 236.000 3.90000
+ 3.56660
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.5666 4. 1.00 0.00 0.00
+ 2.5220 100. 1.00 1.00 0.00
+ 2.0592 31. 1.00 1.00 1.00
+ 1.7833 56. 2.00 0.00 0.00
+ 1.5950 1. 2.00 1.00 0.00
+ 1.4561 15. 2.00 1.00 1.00
+ 1.2610 9. 2.00 2.00 0.00
+ 1.1889 1. 2.00 2.00 1.00
+ 1.1889 1. 3.00 0.00 0.00
+ 1.1279 3. 3.00 1.00 0.00
+ 1.0754 1. 3.00 1.00 1.00
+ 1.0296 3. 2.00 2.00 2.00
+ 0.9892 1. 3.00 2.00 0.00
+ 0.9532 1. 3.00 2.00 1.00
+ 0.8917 1. 4.00 0.00 0.00
+ 0.8650 1. 3.00 2.00 2.00
+ 0.8650 1. 4.00 1.00 0.00
+ 0.8407 1. 4.00 1.00 1.00
+ 0.8407 1. 3.00 3.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvi.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvi.jcpds
new file mode 100755
index 0000000..c38c015
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvi.jcpds
@@ -0,0 +1,11 @@
+3
+Ca-perovskite tetragonal (using aristotype (I), EOS by Mao et al 1989)
+ 3 281.000 4.00000
+ 5.056 7.0991
+(blank for future use)
+d-spacing I/I0 h k l
+2.5189 43 1 1 2
+2.1545 10 2 1 1
+2.0591 36 2 0 2
+1.7876 100 2 2 0
+1.7748 31 0 0 4
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvp.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvp.jcpds
new file mode 100755
index 0000000..cbc1b1a
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvp.jcpds
@@ -0,0 +1,12 @@
+3
+Ca-perovskite tetragonal (using aristotype (I), EOS by Mao et al 1989)
+ 3 281.000 4.00000
+ 5.0606 3.5431
+(blank for future use)
+d-spacing I/I0 h k l
+2.5177 44 1 1 1
+2.2632 19 2 1 0
+2.0591 37 2 0 1
+1.9073 6 2 1 1
+1.7892 100 2 2 0
+1.7716 33 0 0 2
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvti.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvti.jcpds
new file mode 100755
index 0000000..91c1a20
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/casio3-pvti.jcpds
@@ -0,0 +1,51 @@
+3
+Ca-perovskite tetragonal (using aristotype (I), EOS by Mao et al 1989)
+ 3 281.000 4.00000
+ 5.0064 7.1332
+(blank for future use)
+d-spacing I/I0 h k l
+3.5666 0.1627 0 0 2
+3.54006 0.155 1 1 0
+2.51253 72.3996 1 1 2
+2.5032 41.2529 2 0 0
+2.13618 5.8976 2 1 1
+2.04892 68.2413 2 0 2
+1.7833 54.6273 0 0 4
+1.77003 100 2 2 0
+1.63003 3.17 2 1 3
+1.59264 0.018 1 1 4
+1.58552 0.0441 2 2 2
+1.58316 0.3578 3 1 0
+1.45242 39.1022 2 0 4
+1.44701 79.8819 3 1 2
+1.36294 1.3395 3 2 1
+1.25627 88.5194 2 2 4
+1.2516 40.8244 4 0 0
+1.20315 1.1984 2 1 5
+1.19905 0.8599 3 2 3
+1.19701 4.0286 4 1 1
+1.18887 0.0093 0 0 6
+1.18393 0.3285 3 1 4
+1.18099 0.1482 4 0 2
+1.18002 0.0867 3 3 0
+1.12701 19.9994 1 1 6
+1.1203 15.6419 3 3 2
+1.11947 26.1494 4 2 0
+1.08139 2.749 4 1 3
+1.0739 9.6686 2 0 6
+1.06809 13.9693 4 2 2
+1.02446 43.3921 4 0 4
+0.99504 0.4145 3 2 5
+0.99156 1.403 4 3 1
+0.98691 0.0133 2 2 6
+0.98408 0.1149 3 3 4
+0.98184 0.0195 5 1 0
+0.95066 26.4228 3 1 6
+0.94813 30.7364 4 2 4
+0.94662 21.3498 5 1 2
+0.92748 0.4219 2 1 7
+0.92466 1.4351 4 1 5
+0.9228 1.0344 4 3 3
+0.92187 0.139 5 2 1
+0.89165 7.4399 0 0 8
+0.88501 0 4 4 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_bcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_bcc.jcpds
new file mode 100755
index 0000000..b6750f1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_bcc.jcpds
@@ -0,0 +1,12 @@
+3
+Co (bcc) (based on Fe, EOS from hcp)
+ 1 194.000 5.00000
+ 3.30980
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3404 100. 1.00 1.00 0.00
+ 1.6549 19. 2.00 0.00 0.00
+ 1.3512 30. 2.00 1.00 1.00
+ 1.1702 9. 2.00 2.00 0.00
+ 1.0467 12. 3.00 1.00 0.00
+ 0.9555 6. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dhcp.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dhcp.jcpds
new file mode 100755
index 0000000..cde5ae5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dhcp.jcpds
@@ -0,0 +1,22 @@
+3
+Cobalt DHCP (GSAS calculation, EOS from hcp)
+ 2 194.000 5.00000
+ 2.50500 8.12021
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1694 10. 1.00 0.00 0.00
+ 2.0959 46. 1.00 0.00 1.00
+ 2.0300 37. 0.00 0.00 4.00
+ 1.9134 100. 1.00 0.00 2.00
+ 1.6928 21. 1.00 0.00 3.00
+ 1.4823 4. 1.00 0.00 4.00
+ 1.3001 6. 1.00 0.00 5.00
+ 1.2525 12. 1.00 1.00 0.00
+ 1.1482 7. 1.00 0.00 6.00
+ 1.0752 2. 2.00 0.00 1.00
+ 1.0659 10. 1.00 1.00 4.00
+ 1.0479 5. 2.00 0.00 2.00
+ 1.0229 2. 1.00 0.00 7.00
+ 1.0150 2. 0.00 0.00 8.00
+ 1.0069 1. 2.00 0.00 3.00
+ 0.8464 1. 2.00 0.00 6.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dhcp_yoo.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dhcp_yoo.jcpds
new file mode 100755
index 0000000..f61b3d5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dhcp_yoo.jcpds
@@ -0,0 +1,22 @@
+3
+Cobalt DHCP (GSAS calculation, EOS from hcp)
+ 2 194.000 5.00000
+ 2.50500 7.99095
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1694 10. 1.00 0.00 0.00
+ 2.0959 46. 1.00 0.00 1.00
+ 2.0300 37. 0.00 0.00 4.00
+ 1.9134 100. 1.00 0.00 2.00
+ 1.6928 21. 1.00 0.00 3.00
+ 1.4823 4. 1.00 0.00 4.00
+ 1.3001 6. 1.00 0.00 5.00
+ 1.2525 12. 1.00 1.00 0.00
+ 1.1482 7. 1.00 0.00 6.00
+ 1.0752 2. 2.00 0.00 1.00
+ 1.0659 10. 1.00 1.00 4.00
+ 1.0479 5. 2.00 0.00 2.00
+ 1.0229 2. 1.00 0.00 7.00
+ 1.0150 2. 0.00 0.00 8.00
+ 1.0069 1. 2.00 0.00 3.00
+ 0.8464 1. 2.00 0.00 6.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dtfcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dtfcc.jcpds
new file mode 100755
index 0000000..693e86e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_dtfcc.jcpds
@@ -0,0 +1,78 @@
+3
+Cobalt dtfcc (GSAS calculation, EOS from hcp)
+ 2 194.000 5.00000
+ 5.01300 12.2793
+(blank for future use)
+d-spacing I/I0 h k l
+ 4.0931 1. 1.00 0.00 1.00
+ 4.0931 1. 0.00 0.00 3.00
+ 3.5447 1. 1.00 0.00 -2.00
+ 2.5065 1. 1.00 1.00 0.00
+ 2.5065 1. 1.00 0.00 4.00
+ 2.1376 1. 2.00 0.00 -1.00
+ 2.1376 4. 1.00 1.00 3.00
+ 2.1375 9. 1.00 0.00 -5.00
+ 2.0466 100. 2.00 0.00 2.00
+ 2.0465 28. 0.00 0.00 6.00
+ 1.7724 53. 2.00 0.00 -4.00
+ 1.6264 3. 2.00 1.00 1.00
+ 1.6264 1. 2.00 0.00 5.00
+ 1.6264 2. 1.00 0.00 7.00
+ 1.5853 1. 2.00 1.00 -2.00
+ 1.5852 1. 1.00 1.00 6.00
+ 1.4471 1. 3.00 0.00 0.00
+ 1.4471 1. 2.00 1.00 4.00
+ 1.4471 1. 1.00 0.00 -8.00
+ 1.3644 1. 3.00 0.00 3.00
+ 1.3644 2. 3.00 0.00 -3.00
+ 1.3644 1. 2.00 1.00 -5.00
+ 1.3644 1. 2.00 0.00 -7.00
+ 1.3644 1. 0.00 0.00 9.00
+ 1.2533 11. 2.00 2.00 0.00
+ 1.2532 8. 2.00 0.00 8.00
+ 1.1983 1. 3.00 1.00 -1.00
+ 1.1983 1. 2.00 2.00 3.00
+ 1.1983 3. 2.00 1.00 7.00
+ 1.1983 2. 1.00 1.00 9.00
+ 1.1816 1. 3.00 1.00 2.00
+ 1.1816 1. 3.00 0.00 6.00
+ 1.1816 1. 3.00 0.00 -6.00
+ 1.1816 1. 1.00 0.00 10.00
+ 1.1209 1. 3.00 1.00 -4.00
+ 1.1209 1. 2.00 1.00 -8.00
+ 1.0811 1. 4.00 0.00 1.00
+ 1.0811 1. 3.00 1.00 5.00
+ 1.0811 1. 1.00 0.00 -11.00
+ 1.0688 4. 4.00 0.00 -2.00
+ 1.0688 7. 2.00 2.00 6.00
+ 1.0688 2. 2.00 0.00 -10.00
+ 1.0233 3. 4.00 0.00 4.00
+ 1.0233 1. 0.00 0.00 12.00
+ 0.9927 1. 3.00 2.00 1.00
+ 0.9927 1. 4.00 0.00 -5.00
+ 0.9927 1. 3.00 1.00 -7.00
+ 0.9927 1. 3.00 0.00 9.00
+ 0.9927 1. 3.00 0.00 -9.00
+ 0.9927 1. 2.00 0.00 11.00
+ 0.9831 1. 3.00 2.00 -2.00
+ 0.9831 1. 2.00 1.00 10.00
+ 0.9474 1. 4.00 1.00 0.00
+ 0.9474 1. 3.00 2.00 4.00
+ 0.9474 1. 3.00 1.00 8.00
+ 0.9474 1. 1.00 1.00 12.00
+ 0.9230 1. 4.00 1.00 -3.00
+ 0.9230 1. 4.00 1.00 3.00
+ 0.9230 1. 3.00 2.00 -5.00
+ 0.9230 1. 4.00 0.00 7.00
+ 0.9230 1. 2.00 2.00 9.00
+ 0.9230 1. 2.00 1.00 -11.00
+ 0.9230 1. 1.00 0.00 13.00
+ 0.8862 1. 4.00 0.00 -8.00
+ 0.8661 1. 5.00 0.00 -1.00
+ 0.8661 1. 3.00 2.00 7.00
+ 0.8661 1. 2.00 0.00 -13.00
+ 0.8597 1. 5.00 0.00 2.00
+ 0.8597 1. 4.00 1.00 -6.00
+ 0.8597 1. 4.00 1.00 6.00
+ 0.8597 1. 3.00 1.00 -10.00
+ 0.8597 1. 1.00 0.00 -14.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_fcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_fcc.jcpds
new file mode 100755
index 0000000..2dc3441
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_fcc.jcpds
@@ -0,0 +1,11 @@
+3
+Cobalt FCC (JCPDS 15-806, EOS from ?)
+ 1 177.000 4.00000
+ 3.54470
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.0465 100. 1.00 1.00 1.00
+ 1.7724 40. 2.00 0.00 0.00
+ 1.2532 25. 2.00 2.00 0.00
+ 1.0688 30. 3.00 1.00 1.00
+ 1.0233 12. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_hcp.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_hcp.jcpds
new file mode 100755
index 0000000..c8e99fb
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_hcp.jcpds
@@ -0,0 +1,16 @@
+3
+Cobalt HCP (JCPDS 5-0727, EOS from Lazor and Shen)
+ 2 194.000 5.00000
+ 2.50500 4.06010
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1694 20. 1.00 0.00 0.00
+ 2.0300 60. 0.00 0.00 2.00
+ 1.9134 100. 1.00 0.00 1.00
+ 1.4822 12. 1.00 0.00 2.00
+ 1.2525 80. 1.00 1.00 0.00
+ 1.1482 80. 1.00 0.00 3.00
+ 1.0847 20. 2.00 0.00 0.00
+ 1.0660 80. 1.00 1.00 2.00
+ 1.0479 60. 2.00 0.00 1.00
+ 1.0150 20. 0.00 0.00 4.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_orth.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_orth.jcpds
new file mode 100755
index 0000000..5049db6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/co_orth.jcpds
@@ -0,0 +1,50 @@
+3
+Cobalt orthorhomic (GSAS calculation, EOS from HCP)
+ 4 194.000 5.00000
+ 2.50500 4.44638 4.06061
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.5050 2. 1.00 0.00 0.00
+ 2.2094 38. 0.00 2.00 0.00
+ 2.1792 4. 1.00 1.00 0.00
+ 2.0300 33. 0.00 0.00 2.00
+ 1.9407 11. 0.00 2.00 1.00
+ 1.9201 100. 1.00 1.00 1.00
+ 1.6570 1. 1.00 2.00 0.00
+ 1.5771 1. 1.00 0.00 2.00
+ 1.5341 1. 1.00 2.00 1.00
+ 1.4948 16. 0.00 2.00 2.00
+ 1.4854 2. 1.00 1.00 2.00
+ 1.2837 1. 1.00 2.00 2.00
+ 1.2697 3. 1.00 3.00 0.00
+ 1.2525 3. 2.00 0.00 0.00
+ 1.2118 7. 1.00 3.00 1.00
+ 1.2050 1. 2.00 1.00 0.00
+ 1.1552 1. 2.00 1.00 1.00
+ 1.1540 1. 0.00 2.00 3.00
+ 1.1497 8. 1.00 1.00 3.00
+ 1.1047 1. 0.00 4.00 0.00
+ 1.0896 2. 2.00 2.00 0.00
+ 1.0765 2. 1.00 3.00 2.00
+ 1.0660 1. 0.00 4.00 1.00
+ 1.0659 2. 2.00 0.00 2.00
+ 1.0524 1. 2.00 2.00 1.00
+ 1.0482 1. 1.00 2.00 3.00
+ 1.0362 1. 2.00 1.00 2.00
+ 1.0150 1. 0.00 0.00 4.00
+ 1.0108 1. 1.00 4.00 0.00
+ 0.9808 1. 1.00 4.00 1.00
+ 0.9703 1. 0.00 4.00 2.00
+ 0.9600 2. 2.00 2.00 2.00
+ 0.9542 1. 2.00 3.00 0.00
+ 0.9407 1. 1.00 0.00 4.00
+ 0.9289 1. 2.00 3.00 1.00
+ 0.9260 1. 1.00 3.00 3.00
+ 0.9223 1. 0.00 2.00 4.00
+ 0.9201 1. 1.00 1.00 4.00
+ 0.9048 1. 1.00 4.00 2.00
+ 0.9000 1. 2.00 1.00 3.00
+ 0.8655 1. 1.00 2.00 4.00
+ 0.8635 1. 2.00 3.00 2.00
+ 0.8558 1. 0.00 4.00 3.00
+ 0.8487 1. 2.00 2.00 3.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-i.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-i.jcpds
new file mode 100755
index 0000000..454e04f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-i.jcpds
@@ -0,0 +1,66 @@
+3
+Cr2O3 - orthorhombic structure (GSAS calculation, EOS from Handbook)
+ 4 222.000 4.00000
+ 5.014 5.223 7.025
+(blank for future use)
+d-spacing I/I0 h k l
+3.5125 9 0 0 2
+3.21583 10 1 1 1
+2.6115 27 0 2 0
+2.51987 100 1 1 2
+2.507 23 2 0 0
+2.26012 5 2 1 0
+2.19969 2 1 2 1
+2.15152 3 2 1 1
+2.12169 5 1 0 3
+2.04056 1 2 0 2
+1.96569 4 1 1 3
+1.93362 3 1 2 2
+1.80853 26 2 2 0
+1.75625 10 0 0 4
+1.75142 4 2 2 1
+1.74343 1 0 2 3
+1.60791 3 2 2 2
+1.60137 9 1 3 1
+1.57987 7 1 1 4
+1.55246 1 3 1 1
+1.48948 17 1 3 2
+1.45735 8 0 2 4
+1.44988 22 3 1 2
+1.43841 8 2 0 4
+1.43134 3 2 2 3
+1.34588 1 1 3 3
+1.30967 1 1 1 5
+1.30575 1 0 4 0
+1.28376 1 0 4 1
+1.25993 5 2 2 4
+1.2535 2 4 0 0
+1.24365 1 1 4 1
+1.22392 1 0 4 2
+1.20047 1 1 3 4
+1.17945 1 3 1 4
+1.15808 1 2 4 0
+1.14266 1 2 4 1
+1.14043 1 0 4 3
+1.14038 2 3 3 2
+1.13006 2 4 2 0
+1.11572 1 4 2 1
+1.11393 2 1 1 6
+1.06837 1 0 2 6
+1.06827 1 1 3 5
+1.06084 1 2 0 6
+1.03807 1 2 4 3
+1.02028 1 4 0 4
+1.01198 1 1 5 1
+0.994 1 3 3 4
+0.98285 1 2 2 6
+0.98187 1 1 5 2
+0.96681 1 2 4 4
+0.95382 1 1 3 6
+0.95033 1 4 2 4
+0.94825 1 5 1 2
+0.94318 1 3 1 6
+0.91498 1 3 3 5
+0.87886 1 3 5 1
+0.85334 1 1 1 8
+0.84353 1 5 3 2
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-ppv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-ppv.jcpds
new file mode 100755
index 0000000..fd50b4c
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-ppv.jcpds
@@ -0,0 +1,103 @@
+3
+cr2O3_postpv (GSAS calculation, EOS from Mao et al)
+ 4 222.000 4.00000
+ 2.883 9.363 7.014
+(blank for future use)
+d-spacing I/I0 h k l
+4.3995 13.9 0 2 0
+3.6720 0.1 0 2 1
+3.3333 4.4 0 0 2
+2.6568 100.0 0 2 2
+2.5700 18.9 1 1 0
+2.3980 4.3 1 1 1
+2.1998 5.4 0 4 0
+2.0890 5.4 0 4 1
+2.0353 0.3 1 1 2
+1.9835 39.0 0 2 3
+1.9814 65.8 1 3 0
+1.8992 82.7 1 3 1
+1.8360 2.5 0 4 2
+1.7032 40.0 1 3 2
+1.6809 35.4 1 1 3
+1.6666 26.7 0 0 4
+1.5633 0.7 0 4 3
+1.5585 0.3 0 2 4
+1.4789 6.8 1 3 3
+1.4722 5.3 1 5 0
+1.4665 0.1 0 6 0
+1.4376 7.0 1 5 1
+1.4323 1.5 0 6 1
+1.3983 16.4 1 1 4
+1.3467 25.6 1 5 2
+1.3436 18.0 2 0 0
+1.3423 21.5 0 6 2
+1.3284 11.7 0 4 4
+1.2850 0.2 2 2 0
+1.2760 0.4 0 2 5
+1.2754 5.9 1 3 4
+1.2618 0.2 2 2 1
+1.2462 0.2 2 0 2
+1.2273 0.1 1 5 3
+1.2240 0.6 0 6 3
+1.1990 9.7 2 2 2
+1.1835 0.2 1 1 5
+1.1466 1.1 2 4 0
+1.1402 0.1 0 4 5
+1.1386 0.1 1 7 0
+1.1300 0.4 2 4 1
+1.1223 1.1 1 7 1
+1.1124 2.9 2 2 3
+1.1111 0.4 0 0 6
+1.1062 8.2 1 3 5
+1.1034 1.3 1 5 4
+1.1010 0.0 0 6 4
+1.0999 1.8 0 8 0
+1.0852 0.3 0 8 1
+1.0843 0.1 2 4 2
+1.0775 1.5 1 7 2
+1.0773 3.4 0 2 6
+1.0460 4.9 2 0 4
+1.0445 0.9 0 8 2
+1.0199 1.8 1 1 6
+1.0190 0.1 2 4 3
+1.0177 0.2 2 2 4
+1.0133 1.7 1 7 3
+0.9918 0.8 0 4 6
+0.9907 0.0 2 6 0
+0.9883 2.0 1 5 5
+0.9865 0.4 0 6 5
+0.9857 0.0 0 8 3
+0.9799 0.4 2 6 1
+0.9691 0.6 1 3 6
+0.9496 6.4 2 6 2
+0.9447 3.5 2 4 4
+0.9401 0.1 1 7 4
+0.9308 0.1 0 2 7
+0.9252 0.1 2 2 5
+0.9188 0.1 1 9 0
+0.9180 0.5 0 8 4
+0.9102 0.8 1 9 1
+0.9048 0.1 2 6 3
+0.8930 0.9 1 1 7
+0.8911 0.3 3 1 0
+0.8869 0.7 1 5 6
+0.8857 0.6 1 9 2
+0.8856 1.1 0 6 6
+0.8833 0.0 3 1 1
+0.8799 0.0 0 10 0
+0.8740 0.0 0 4 7
+0.8723 0.0 0 10 1
+0.8694 0.0 2 4 5
+0.8658 0.0 1 7 5
+0.8609 0.0 3 1 2
+0.8584 0.4 1 3 7
+0.8567 1.4 3 3 0
+0.8562 0.3 2 0 6
+0.8516 0.0 2 6 4
+0.8511 1.1 2 8 0
+0.8508 0.4 0 10 2
+0.8497 0.3 3 3 1
+0.8490 0.2 1 9 3
+0.8484 0.0 0 8 5
+0.8442 0.0 2 8 1
+0.8405 2.0 2 2 6
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-pv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-pv.jcpds
new file mode 100755
index 0000000..495a192
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-pv.jcpds
@@ -0,0 +1,112 @@
+3
+Cr2O3 - orthorhombic pv structure (GSAS calculation, EOS from Handbook)
+ 4 222.000 4.00000
+ 5.014 5.270 7.167
+(blank for future use)
+d-spacing I/I0 h k l
+4.08112 3 1 0 1
+3.61706 7 1 1 0
+3.5125 1 0 0 2
+3.21583 10 1 1 1
+2.6115 20 0 2 0
+2.51987 100 1 1 2
+2.507 27 2 0 0
+2.44783 4 0 2 1
+2.31617 0 1 2 0
+2.26012 1 2 1 0
+2.19969 1 1 2 1
+2.15152 3 2 1 1
+2.12169 2 1 0 3
+2.09573 3 0 2 2
+2.04056 5 2 0 2
+1.96569 5 1 1 3
+1.93362 1 1 2 2
+1.90065 1 2 1 2
+1.80853 33 2 2 0
+1.75625 15 0 0 4
+1.75142 4 2 2 1
+1.74343 2 0 2 3
+1.64672 1 1 2 3
+1.64467 3 1 3 0
+1.62621 1 2 1 3
+1.62595 0 3 0 1
+1.60791 2 2 2 2
+1.60137 9 1 3 1
+1.59182 0 3 1 0
+1.57987 1 1 1 4
+1.55246 1 3 1 1
+1.48948 7 1 3 2
+1.45735 7 0 2 4
+1.44988 13 3 1 2
+1.43841 8 2 0 4
+1.43134 1 2 2 3
+1.43 0 2 3 0
+1.40772 0 3 2 0
+1.40126 0 2 3 1
+1.39943 0 1 2 4
+1.38678 0 2 1 4
+1.38028 0 3 2 1
+1.36037 0 3 0 3
+1.35289 0 1 0 5
+1.34588 2 1 3 3
+1.32444 0 2 3 2
+1.31645 0 3 1 3
+1.30967 0 1 1 5
+1.30669 0 3 2 2
+1.30575 2 0 4 0
+1.28376 1 0 4 1
+1.2636 0 1 4 0
+1.25993 8 2 2 4
+1.2535 2 4 0 0
+1.24365 0 1 4 1
+1.2373 0 0 2 5
+1.22392 1 0 4 2
+1.22043 0 2 3 3
+1.21889 0 4 1 0
+1.20649 0 3 2 3
+1.20569 0 3 3 0
+1.20126 0 1 2 5
+1.20095 1 4 1 1
+1.20047 1 1 3 4
+1.19323 0 2 1 5
+1.18901 0 1 4 2
+1.18831 1 3 3 1
+1.18058 0 4 0 2
+1.17945 0 3 1 4
+1.17083 0 0 0 6
+1.15808 1 2 4 0
+1.15153 0 4 1 2
+1.14266 1 2 4 1
+1.14043 0 0 4 3
+1.14038 2 3 3 2
+1.13006 1 4 2 0
+1.11572 0 4 2 1
+1.11393 3 1 1 6
+1.11203 0 1 4 3
+1.10953 1 2 2 5
+1.1089 0 2 3 4
+1.09985 0 2 4 2
+1.09842 0 3 2 4
+1.08119 1 4 1 3
+1.07576 0 4 2 2
+1.07547 0 3 0 5
+1.07194 1 3 3 3
+1.06837 0 0 2 6
+1.06827 1 1 3 5
+1.06084 0 2 0 6
+1.05337 0 3 1 5
+1.04787 1 0 4 4
+1.04491 0 1 2 6
+1.03962 0 2 1 6
+1.03807 1 2 4 3
+1.02896 0 3 4 0
+1.02571 0 1 4 4
+1.02264 1 1 5 0
+1.02028 1 4 0 4
+1.01809 0 3 4 1
+1.01775 0 4 2 3
+1.01726 0 4 3 0
+1.01198 1 1 5 1
+1.00676 0 4 3 1
+1.00221 0 2 3 5
+1.00135 0 4 1 4
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-rh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-rh.jcpds
new file mode 100755
index 0000000..0f5e8cc
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3-rh.jcpds
@@ -0,0 +1,101 @@
+3
+Cr2O3 - orthorhombic rh2o3 structure (GSAS calculation, EOS from Handbook)
+ 4 222.000 4.00000
+ 5.014 5.270 7.167
+(blank for future use)
+d-spacing I/I0 h k l
+4.08112 0 1 0 1
+3.5125 9 0 0 2
+3.21583 11 1 1 1
+2.6115 28 0 2 0
+2.51987 100 1 1 2
+2.507 24 2 0 0
+2.44783 0 0 2 1
+2.26012 4 2 1 0
+2.19969 2 1 2 1
+2.15152 2 2 1 1
+2.12169 6 1 0 3
+2.09573 0 0 2 2
+2.04056 1 2 0 2
+1.96569 4 1 1 3
+1.93362 3 1 2 2
+1.90065 0 2 1 2
+1.80853 23 2 2 0
+1.75625 9 0 0 4
+1.75142 3 2 2 1
+1.74343 1 0 2 3
+1.64672 0 1 2 3
+1.62621 0 2 1 3
+1.62595 0 3 0 1
+1.60791 3 2 2 2
+1.60137 9 1 3 1
+1.57987 8 1 1 4
+1.55246 1 3 1 1
+1.48948 14 1 3 2
+1.45735 8 0 2 4
+1.44988 22 3 1 2
+1.43841 8 2 0 4
+1.43134 3 2 2 3
+1.43 0 2 3 0
+1.40126 0 2 3 1
+1.39943 0 1 2 4
+1.38678 0 2 1 4
+1.38028 0 3 2 1
+1.36037 0 3 0 3
+1.35289 0 1 0 5
+1.34588 1 1 3 3
+1.32444 0 2 3 2
+1.31645 0 3 1 3
+1.30967 1 1 1 5
+1.30669 0 3 2 2
+1.30575 1 0 4 0
+1.28376 1 0 4 1
+1.25993 4 2 2 4
+1.2535 1 4 0 0
+1.24365 0 1 4 1
+1.2373 0 0 2 5
+1.22392 0 0 4 2
+1.22043 0 2 3 3
+1.21889 0 4 1 0
+1.20649 0 3 2 3
+1.20126 0 1 2 5
+1.20095 0 4 1 1
+1.20047 1 1 3 4
+1.19323 0 2 1 5
+1.18901 0 1 4 2
+1.18831 0 3 3 1
+1.18058 0 4 0 2
+1.17945 1 3 1 4
+1.17083 0 0 0 6
+1.15808 2 2 4 0
+1.15153 0 4 1 2
+1.14266 1 2 4 1
+1.14043 1 0 4 3
+1.14038 2 3 3 2
+1.13006 2 4 2 0
+1.11572 1 4 2 1
+1.11393 2 1 1 6
+1.11203 0 1 4 3
+1.10953 0 2 2 5
+1.1089 0 2 3 4
+1.09985 0 2 4 2
+1.09842 0 3 2 4
+1.08119 0 4 1 3
+1.07576 0 4 2 2
+1.07547 0 3 0 5
+1.07194 0 3 3 3
+1.06837 1 0 2 6
+1.06827 1 1 3 5
+1.06084 1 2 0 6
+1.05337 0 3 1 5
+1.04787 0 0 4 4
+1.04491 0 1 2 6
+1.03962 0 2 1 6
+1.03807 1 2 4 3
+1.02571 0 1 4 4
+1.02028 1 4 0 4
+1.01809 0 3 4 1
+1.01775 0 4 2 3
+1.01726 0 4 3 0
+1.01198 1 1 5 1
+1.00676 0 4 3 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3.jcpds
new file mode 100755
index 0000000..082609c
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cr2o3.jcpds
@@ -0,0 +1,45 @@
+3
+cr2o3 corundum (calculated from GSAS, from Reiki)
+ 2 240. 3.5
+ 4.95876 13.5942
+(blank for future use)
+d-spacing I/I0 h k l
+3.6305 79 1 0 -2
+2.6650 100 1 0 4
+2.4794 100 1 1 0
+2.2657 7 0 0 6
+2.1751 30 1 1 3
+2.0475 6 2 0 2
+1.8153 36 2 0 -4
+1.6725 86 1 1 6
+1.6117 1 2 1 1
+1.5801 1 1 0 -8
+1.5788 6 2 1 -2
+1.4647 26 2 1 4
+1.4315 33 3 0 0
+1.2960 12 1 0 10
+1.2899 2 1 1 9
+1.2397 6 2 2 0
+1.2102 2 3 0 6
+1.2102 2 3 0 -6
+1.1958 1 2 2 3
+1.1732 3 3 1 2
+1.1486 5 2 0 -10
+1.1329 1 0 0 12
+1.1240 5 3 1 -4
+1.0875 10 2 2 6
+1.0605 1 4 0 -2
+1.0422 5 2 1 10
+1.0304 1 1 1 12
+1.0237 1 4 0 4
+0.9471 1 1 0 -14
+0.9463 3 3 2 4
+0.9371 3 4 1 0
+0.8959 3 3 1 -10
+0.8883 1 3 0 12
+0.8883 1 3 0 -12
+0.8848 1 2 0 14
+0.8660 2 4 1 -6
+0.8660 2 4 1 6
+0.8425 1 4 0 10
+0.8335 1 1 0 16
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cscl.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cscl.jcpds
new file mode 100755
index 0000000..35addaa
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/cscl.jcpds
@@ -0,0 +1,23 @@
+3
+CsCl (Yagi 1978) 4.1221
+ 1 18.2 5.1
+ 4.11
+(blank for futre use)
+d-spacing I/I0 h k l
+4.1221 6 1 0 0
+2.9148 100 1 1 0
+2.3799 1 1 1 1
+2.0611 8 2 0 0
+1.8435 1 2 1 0
+1.6828 21 2 1 1
+1.4574 4 2 2 0
+1.3740 1 2 2 1
+1.3740 1 3 0 0
+1.3035 7 3 1 0
+1.2429 1 3 1 1
+1.1899 1 2 2 2
+1.1433 1 3 2 0
+1.1017 3 3 2 1
+1.0305 1 4 0 0
+0.9998 1 4 1 0
+0.9998 1 3 2 2
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/diamond.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/diamond.jcpds
new file mode 100755
index 0000000..a74fa74
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/diamond.jcpds
@@ -0,0 +1,11 @@
+3
+diamond (JCPDS 6-0675, dummy EOS)
+ 1 999. 1.000000
+ 3.56670
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.0600 100. 1.00 1.00 1.00
+ 1.2610 27. 2.00 2.00 0.00
+ 1.0754 16. 3.00 1.00 1.00
+ 0.8916 7. 4.00 0.00 0.00
+ 0.8182 15. 3.00 3.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-bcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-bcc.jcpds
new file mode 100755
index 0000000..93931dd
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-bcc.jcpds
@@ -0,0 +1,12 @@
+3
+Fe (bcc) (JCPDS 6-0696, EOS from ?)
+ 1 999.000 0.000000
+ 2.86640
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.0268 100. 1.00 1.00 0.00
+ 1.4320 19. 2.00 0.00 0.00
+ 1.1702 30. 2.00 1.00 1.00
+ 1.0134 9. 2.00 2.00 0.00
+ 0.9064 12. 3.00 1.00 0.00
+ 0.8275 6. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-fcc-dewaele.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-fcc-dewaele.jcpds
new file mode 100644
index 0000000..bac358d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-fcc-dewaele.jcpds
@@ -0,0 +1,15 @@
+3
+FCC iron (JCPDS 4-0829, EOS from Dewaele 2006)
+ 1 163.400 5.38000
+ 3.5531
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.0760 100. 1.00 1.00 1.00
+ 1.7950 100. 2.00 0.00 0.00
+ 1.2710 100. 2.00 2.00 0.00
+ 1.0840 100. 3.00 1.00 1.00
+ 1.0380 100. 2.00 2.00 2.00
+ 0.8990 100. 4.00 0.00 0.00
+ 0.8040 100. 4.00 2.00 0.00
+ 0.7340 100. 4.00 2.00 2.00
+ 0.6920 100. 5.00 1.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-fcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-fcc.jcpds
new file mode 100755
index 0000000..94dc23b
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-fcc.jcpds
@@ -0,0 +1,15 @@
+3
+FCC iron (JCPDS 4-0829, EOS from Mao et al 90)
+ 1 165.000 5.33000
+ 3.59500
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.0760 100. 1.00 1.00 1.00
+ 1.7950 100. 2.00 0.00 0.00
+ 1.2710 100. 2.00 2.00 0.00
+ 1.0840 100. 3.00 1.00 1.00
+ 1.0380 100. 2.00 2.00 2.00
+ 0.8990 100. 4.00 0.00 0.00
+ 0.8040 100. 4.00 2.00 0.00
+ 0.7340 100. 4.00 2.00 2.00
+ 0.6920 100. 5.00 1.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-hcp-dewaele.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-hcp-dewaele.jcpds
new file mode 100644
index 0000000..801da99
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-hcp-dewaele.jcpds
@@ -0,0 +1,12 @@
+3
+iron (hcp phase -- 19.2 GPa) (JCPDS 34-529, EOS from Mao et al 90)
+ 2 163.400 5.38000
+ 2.5296 4.0473
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1200 20. 1.00 0.00 0.00
+ 1.9700 80. 0.00 0.00 2.00
+ 1.8400 100. 1.00 0.00 1.00
+ 1.4400 10. 1.00 0.00 2.00
+ 1.2340 10. 1.00 1.00 0.00
+ 1.1130 10. 1.00 0.00 3.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-hcp.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-hcp.jcpds
new file mode 100755
index 0000000..b31c540
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe-hcp.jcpds
@@ -0,0 +1,12 @@
+3
+iron (hcp phase -- 19.2 GPa) (JCPDS 34-529, EOS from Mao et al 90)
+ 2 165.000 5.33000
+ 2.51600 4.02560
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.1200 20. 1.00 0.00 0.00
+ 1.9700 80. 0.00 0.00 2.00
+ 1.8400 100. 1.00 0.00 1.00
+ 1.4400 10. 1.00 0.00 2.00
+ 1.2340 10. 1.00 1.00 0.00
+ 1.1130 10. 1.00 0.00 3.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3-ppv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3-ppv.jcpds
new file mode 100755
index 0000000..1b8f2c1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3-ppv.jcpds
@@ -0,0 +1,103 @@
+3
+Fe2O3_postpv (fit to ono at 68)
+ 4 183.000 4.00000
+ 2.851416 9.231715 6.900015
+(blank for future use)
+d-spacing I/I0 h k l
+4.3995 13.9 0 2 0
+3.6720 0.1 0 2 1
+3.3333 4.4 0 0 2
+2.6568 100.0 0 2 2
+2.5700 18.9 1 1 0
+2.3980 4.3 1 1 1
+2.1998 5.4 0 4 0
+2.0890 5.4 0 4 1
+2.0353 0.3 1 1 2
+1.9835 39.0 0 2 3
+1.9814 65.8 1 3 0
+1.8992 82.7 1 3 1
+1.8360 2.5 0 4 2
+1.7032 40.0 1 3 2
+1.6809 35.4 1 1 3
+1.6666 26.7 0 0 4
+1.5633 0.7 0 4 3
+1.5585 0.3 0 2 4
+1.4789 6.8 1 3 3
+1.4722 5.3 1 5 0
+1.4665 0.1 0 6 0
+1.4376 7.0 1 5 1
+1.4323 1.5 0 6 1
+1.3983 16.4 1 1 4
+1.3467 25.6 1 5 2
+1.3436 18.0 2 0 0
+1.3423 21.5 0 6 2
+1.3284 11.7 0 4 4
+1.2850 0.2 2 2 0
+1.2760 0.4 0 2 5
+1.2754 5.9 1 3 4
+1.2618 0.2 2 2 1
+1.2462 0.2 2 0 2
+1.2273 0.1 1 5 3
+1.2240 0.6 0 6 3
+1.1990 9.7 2 2 2
+1.1835 0.2 1 1 5
+1.1466 1.1 2 4 0
+1.1402 0.1 0 4 5
+1.1386 0.1 1 7 0
+1.1300 0.4 2 4 1
+1.1223 1.1 1 7 1
+1.1124 2.9 2 2 3
+1.1111 0.4 0 0 6
+1.1062 8.2 1 3 5
+1.1034 1.3 1 5 4
+1.1010 0.0 0 6 4
+1.0999 1.8 0 8 0
+1.0852 0.3 0 8 1
+1.0843 0.1 2 4 2
+1.0775 1.5 1 7 2
+1.0773 3.4 0 2 6
+1.0460 4.9 2 0 4
+1.0445 0.9 0 8 2
+1.0199 1.8 1 1 6
+1.0190 0.1 2 4 3
+1.0177 0.2 2 2 4
+1.0133 1.7 1 7 3
+0.9918 0.8 0 4 6
+0.9907 0.0 2 6 0
+0.9883 2.0 1 5 5
+0.9865 0.4 0 6 5
+0.9857 0.0 0 8 3
+0.9799 0.4 2 6 1
+0.9691 0.6 1 3 6
+0.9496 6.4 2 6 2
+0.9447 3.5 2 4 4
+0.9401 0.1 1 7 4
+0.9308 0.1 0 2 7
+0.9252 0.1 2 2 5
+0.9188 0.1 1 9 0
+0.9180 0.5 0 8 4
+0.9102 0.8 1 9 1
+0.9048 0.1 2 6 3
+0.8930 0.9 1 1 7
+0.8911 0.3 3 1 0
+0.8869 0.7 1 5 6
+0.8857 0.6 1 9 2
+0.8856 1.1 0 6 6
+0.8833 0.0 3 1 1
+0.8799 0.0 0 10 0
+0.8740 0.0 0 4 7
+0.8723 0.0 0 10 1
+0.8694 0.0 2 4 5
+0.8658 0.0 1 7 5
+0.8609 0.0 3 1 2
+0.8584 0.4 1 3 7
+0.8567 1.4 3 3 0
+0.8562 0.3 2 0 6
+0.8516 0.0 2 6 4
+0.8511 1.1 2 8 0
+0.8508 0.4 0 10 2
+0.8497 0.3 3 3 1
+0.8490 0.2 1 9 3
+0.8484 0.0 0 8 5
+0.8442 0.0 2 8 1
+0.8405 2.0 2 2 6
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3-rh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3-rh.jcpds
new file mode 100755
index 0000000..bc82a3f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3-rh.jcpds
@@ -0,0 +1,101 @@
+3
+Fe2O3 - orthorhombic rh2o3 structure (GSAS calculation, EOS from Handbook)
+ 4 200.000 4.00000
+ 5.05937 5.221714 7.408399
+(blank for future use)
+d-spacing I/I0 h k l
+4.08112 0 1 0 1
+3.5125 9 0 0 2
+3.21583 11 1 1 1
+2.6115 28 0 2 0
+2.51987 100 1 1 2
+2.507 24 2 0 0
+2.44783 0 0 2 1
+2.26012 4 2 1 0
+2.19969 2 1 2 1
+2.15152 2 2 1 1
+2.12169 6 1 0 3
+2.09573 0 0 2 2
+2.04056 1 2 0 2
+1.96569 4 1 1 3
+1.93362 3 1 2 2
+1.90065 0 2 1 2
+1.80853 23 2 2 0
+1.75625 9 0 0 4
+1.75142 3 2 2 1
+1.74343 1 0 2 3
+1.64672 0 1 2 3
+1.62621 0 2 1 3
+1.62595 0 3 0 1
+1.60791 3 2 2 2
+1.60137 9 1 3 1
+1.57987 8 1 1 4
+1.55246 1 3 1 1
+1.48948 14 1 3 2
+1.45735 8 0 2 4
+1.44988 22 3 1 2
+1.43841 8 2 0 4
+1.43134 3 2 2 3
+1.43 0 2 3 0
+1.40126 0 2 3 1
+1.39943 0 1 2 4
+1.38678 0 2 1 4
+1.38028 0 3 2 1
+1.36037 0 3 0 3
+1.35289 0 1 0 5
+1.34588 1 1 3 3
+1.32444 0 2 3 2
+1.31645 0 3 1 3
+1.30967 1 1 1 5
+1.30669 0 3 2 2
+1.30575 1 0 4 0
+1.28376 1 0 4 1
+1.25993 4 2 2 4
+1.2535 1 4 0 0
+1.24365 0 1 4 1
+1.2373 0 0 2 5
+1.22392 0 0 4 2
+1.22043 0 2 3 3
+1.21889 0 4 1 0
+1.20649 0 3 2 3
+1.20126 0 1 2 5
+1.20095 0 4 1 1
+1.20047 1 1 3 4
+1.19323 0 2 1 5
+1.18901 0 1 4 2
+1.18831 0 3 3 1
+1.18058 0 4 0 2
+1.17945 1 3 1 4
+1.17083 0 0 0 6
+1.15808 2 2 4 0
+1.15153 0 4 1 2
+1.14266 1 2 4 1
+1.14043 1 0 4 3
+1.14038 2 3 3 2
+1.13006 2 4 2 0
+1.11572 1 4 2 1
+1.11393 2 1 1 6
+1.11203 0 1 4 3
+1.10953 0 2 2 5
+1.1089 0 2 3 4
+1.09985 0 2 4 2
+1.09842 0 3 2 4
+1.08119 0 4 1 3
+1.07576 0 4 2 2
+1.07547 0 3 0 5
+1.07194 0 3 3 3
+1.06837 1 0 2 6
+1.06827 1 1 3 5
+1.06084 1 2 0 6
+1.05337 0 3 1 5
+1.04787 0 0 4 4
+1.04491 0 1 2 6
+1.03962 0 2 1 6
+1.03807 1 2 4 3
+1.02571 0 1 4 4
+1.02028 1 4 0 4
+1.01809 0 3 4 1
+1.01775 0 4 2 3
+1.01726 0 4 3 0
+1.01198 1 1 5 1
+1.00676 0 4 3 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3.jcpds
new file mode 100755
index 0000000..cab5ffc
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe2o3.jcpds
@@ -0,0 +1,71 @@
+3
+Fe2O3 corundum (GSAS, EOS from Handbook)
+ 2 200. 4.
+ 5.038 13.772
+(blank for future use)
+d-spacing I/I0 h k l
+3.6855 31 1 0 -2
+2.7028 100 1 0 4
+2.5190 73 1 1 0
+2.2953 2 0 0 6
+2.2084 20 1 1 3
+2.0797 2 2 0 2
+1.8428 36 2 0 -4
+1.6966 43 1 1 6
+1.6374 1 2 1 1
+1.6037 2 2 1 -2
+1.6014 8 1 0 -8
+1.4873 26 2 1 4
+1.4544 26 3 0 0
+1.4149 0 2 1 -5
+1.3514 2 2 0 8
+1.3133 7 1 0 10
+1.3078 1 1 1 9
+1.2638 0 2 1 7
+1.2595 5 2 2 0
+1.2285 1 3 0 6
+1.2285 1 3 0 -6
+1.2146 1 2 2 3
+1.2054 0 3 1 -1
+1.1918 1 3 1 2
+1.1909 3 2 1 -8
+1.1646 3 2 0 -10
+1.1477 0 0 0 12
+1.1416 5 3 1 -4
+1.1079 0 3 1 5
+1.1042 5 2 2 6
+1.0773 0 4 0 -2
+1.0571 5 2 1 10
+1.0444 0 1 1 12
+1.0398 1 4 0 4
+1.0307 0 3 1 -7
+0.9983 0 3 2 1
+0.9972 0 2 1 -11
+0.9905 0 3 2 -2
+0.9900 1 3 1 8
+0.9725 0 2 2 9
+0.9612 2 3 2 4
+0.9596 1 1 0 -14
+0.9521 2 4 1 0
+0.9408 0 3 2 -5
+0.9323 0 4 1 3
+0.9323 0 4 1 -3
+0.9214 1 4 0 -8
+0.9090 2 3 1 -10
+0.9009 0 3 0 12
+0.9009 0 3 0 -12
+0.8968 1 2 0 14
+0.8921 0 3 2 7
+0.8913 0 2 1 13
+0.8794 1 4 1 -6
+0.8794 1 4 1 6
+0.8701 0 3 1 11
+0.8657 0 5 0 2
+0.8653 0 3 2 -8
+0.8626 0 1 1 15
+0.8551 1 4 0 10
+0.8483 0 2 2 12
+0.8459 1 5 0 -4
+0.8448 1 2 1 -14
+0.8445 0 1 0 16
+0.8397 1 3 3 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe3o4.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe3o4.jcpds
new file mode 100755
index 0000000..6e57944
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe3o4.jcpds
@@ -0,0 +1,45 @@
+3
+Fe3O4 (GSAS, EOS from Mao 1974)
+ 1 183. 4.
+ 8.3958
+(blank for future use)
+d-spacing I/I0 h k l
+ 4.8473 8 1 1 1
+ 2.9684 29 2 2 0
+ 2.5314 100 3 1 1
+ 2.4237 8 2 2 2
+ 2.0990 21 4 0 0
+ 1.9261 1 3 3 1
+ 1.7138 9 4 2 2
+ 1.6158 6 3 3 3
+ 1.6158 22 5 1 1
+ 1.4842 37 4 4 0
+ 1.4192 1 5 3 1
+ 1.3993 0 4 4 2
+ 1.3275 3 6 2 0
+ 1.2804 6 5 3 3
+ 1.2657 3 6 2 2
+ 1.2118 2 4 4 4
+ 1.1757 0 5 5 1
+ 1.1757 0 7 1 1
+ 1.1219 2 6 4 2
+ 1.0930 3 5 5 3
+ 1.0930 5 7 3 1
+ 1.0495 3 8 0 0
+ 1.0257 0 7 3 3
+ 1.0181 0 6 4 4
+ 0.9895 0 6 6 0
+ 0.9895 0 8 2 2
+ 0.9695 0 5 5 5
+ 0.9695 2 7 5 1
+ 0.9631 1 6 6 2
+ 0.9387 1 8 4 0
+ 0.9216 0 7 5 3
+ 0.9216 0 9 1 1
+ 0.9161 0 8 4 2
+ 0.8950 0 6 6 4
+ 0.8801 1 9 3 1
+ 0.8569 2 8 4 4
+ 0.8438 0 9 3 3
+ 0.8438 0 7 5 5
+ 0.8438 0 7 7 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feAl2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feAl2o3.jcpds
new file mode 100755
index 0000000..96741e7
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feAl2o3.jcpds
@@ -0,0 +1,394 @@
+3
+Fe,Al2O3 - orthorhombic structure
+ 4 120.000 4.00000
+4.9839 8.5544 9.2413
+(blank for future use)
+d-spacing I/I0 h k l
+6.27768 26.1 0 1 1
+4.62065 2.7 0 0 2
+4.30634 0.1 1 1 0
+4.2772 0.8 0 2 0
+3.90335 25.3 1 1 1
+3.24579 7.2 1 2 0
+3.1503 23.5 1 1 2
+3.13884 36 0 2 2
+3.06239 5.3 1 2 1
+2.89825 26.1 0 1 3
+2.72471 6.1 0 3 1
+2.65599 100 1 2 2
+2.50542 31.4 1 1 3
+2.49195 11.4 2 0 0
+2.47501 8 1 3 0
+2.40601 9.6 2 0 1
+2.3925 6.9 2 1 0
+2.39076 18.6 1 3 1
+2.31614 3 2 1 1
+2.31032 3 0 0 4
+2.23437 10.8 1 2 3
+2.19332 13.9 2 0 2
+2.18174 29.6 1 3 2
+2.15317 0.1 2 2 0
+2.1386 2 0 4 0
+2.12459 12.6 2 1 2
+2.097 3.2 2 2 1
+2.09256 1 0 3 3
+2.03584 1 1 1 4
+2.03274 2.4 0 2 4
+1.96531 9.4 1 4 0
+1.95167 6.2 2 2 2
+1.9408 13.5 0 4 2
+1.93739 10.2 2 0 3
+1.9294 18.5 1 3 3
+1.92232 1.7 1 4 1
+1.88954 6.7 2 1 3
+1.88221 0.3 1 2 4
+1.87639 3.7 2 3 0
+1.83887 1.5 2 3 1
+1.80852 1.4 1 4 2
+1.80657 7.2 0 1 5
+1.76479 7.3 2 2 3
+1.73851 0.3 2 3 2
+1.69844 0.7 1 1 5
+1.69422 15.7 2 0 4
+1.68887 12.8 1 3 4
+1.68229 4.7 0 5 1
+1.66194 1.5 2 1 4
+1.65683 0.5 1 4 3
+1.63083 0 3 1 0
+1.6229 1.6 2 4 0
+1.61819 0.2 1 5 0
+1.60612 0.1 1 2 5
+1.60602 0.1 3 1 1
+1.6025 0.2 2 3 3
+1.59843 0.3 2 4 1
+1.59394 0.6 1 5 1
+1.57515 0.4 2 2 4
+1.56942 0.8 0 4 4
+1.55095 2.8 0 3 5
+1.54859 0.1 3 2 0
+1.54022 2.5 0 0 6
+1.53786 14.3 3 1 2
+1.5312 4.5 2 4 2
+1.5273 3.1 1 1 5 2
+1.49695 3.8 1 4 4
+1.49568 18.3 0 5 3
+1.48451 22 2 0 5
+1.4809 47 1 3 5
+1.46832 1.7 3 2 2
+1.46265 1.4 2 1 5
+1.45652 1.7 2 3 4
+1.45025 0.6 1 1 6
+1.44912 1 0 2 6
+1.44131 0.6 3 1 3
+1.43582 4.5 2 4 3
+1.43545 39.3 3 3 0
+1.43256 0.4 1 5 3
+1.42573 14 0 6 0
+1.41844 1.6 3 3 1
+1.41045 0 2 5 0
+1.40244 0.8 2 2 5
+1.39431 2.9 2 5 1
+1.3915 6.2 1 2 6
+1.38359 15.8 3 2 3
+1.37082 4.8 1 1 6 0
+1.36235 0.2 0 6 2
+1.35591 0.9 1 6 1
+1.349 16.3 2 5 2
+1.3464 0.8 1 4 5
+1.33233 0.6 3 1 4
+1.328 0.4 2 4 4
+1.32541 0 1 5 4
+1.31675 1.2 2 3 5
+1.31414 0.1 1 6 2
+1.31196 0.1 3 4 0
+1.31016 0.8 2 0 6
+1.30768 2.2 1 3 6
+1.30474 2.4 0 1 7
+1.30112 0.1 3 3 3
+1.29894 1.4 3 4 1
+1.29506 0.8 2 1 6
+1.28635 0.1 3 2 4
+1.28242 6.7 2 5 3
+1.2622 7.7 1 1 7
+1.26207 0.3 3 4 2
+1.25554 0.5 0 5 5
+1.25271 0.5 2 2 6
+1.25235 0.1 1 6 3
+1.24982 0.3 0 4 6
+1.24598 0.2 4 0 0
+1.23751 1.4 2 6 0
+1.2348 2.9 4 0 1
+1.23297 1.5 4 1 0
+1.22656 0.5 2 6 1
+1.2229 2.5 1 1 2 7
+1.22214 0 4 1 1
+1.2195 0.9 2 4 5
+1.21927 2.1 3 3 4
+1.2175 0.2 1 5 5
+1.2133 0.1 0 6 4
+1.21228 0.5 1 4 6
+1.21151 0.8 0 7 1
+1.20705 0.3 3 4 3
+1.20384 0.4 2 5 4
+1.20301 1.4 4 0 2
+1.19801 0 0 3 7
+1.19625 0.1 4 2 0
+1.19538 2.3 2 6 2
+1.19186 0 3 5 0
+1.19128 3.9 4 1 2
+1.19051 0.4 2 3 6
+1.18701 1.3 3 2 5
+1.1869 0.8 1 7 0
+1.18635 1.1 4 2 1
+1.18207 0 3 5 1
+1.17887 3.1 1 6 4
+1.17723 1.2 1 7 1
+1.16659 0.1 2 0 7
+1.16483 0.1 1 3 7
+1.15807 0.4 4 2 2
+1.15589 1.9 2 1 7
+1.15516 4.6 0 0 8
+1.15408 0.6 3 5 2
+1.14958 0.4 1 7 2
+1.14831 1.7 2 6 3
+1.14468 0 4 1 3
+1.14174 0.9 4 3 0
+1.14085 0.1 3 4 4
+1.13593 0.1 0 7 3
+1.13369 0.5 3 3 5
+1.13312 0.1 4 3 1
+1.12548 2.3 2 2 7
+1.12126 0.1 2 5 5
+1.11976 1 3 1 6
+1.11718 0.3 2 4 6
+1.11572 0.4 1 1 1 8
+1.11521 2.1 1 0 2 8
+1.11156 0 3 5 3
+1.1084 0.1 4 3 2
+1.10753 0.9 1 7 3
+1.101 1.1 1 6 5
+1.09722 1 2 7 0
+1.09666 0.5 4 0 4
+1.09589 0.1 1 4 7
+1.09205 0.2 3 2 6
+1.09087 3.4 2 6 4
+1.08957 0.5 2 7 1
+1.08829 3.7 1 2 8
+1.08776 0.4 4 1 4
+1.08193 0.1 3 6 0
+1.07972 0 2 3 7
+1.07658 0 4 4 0
+1.07459 1.7 3 6 1
+1.07057 0 4 3 3
+1.06983 3.5 3 4 5
+1.06935 0.4 1 0 8 0
+1.06754 0.1 2 7 2
+1.0623 0.1 4 2 4
+1.05922 0.3 3 5 4
+1.05573 0.1 1 7 4
+1.05344 0 3 6 2
+1.0501 1.8 3 3 6
+1.0485 0.3 4 4 2
+1.04803 0.3 2 0 8
+1.04676 0.1 1 3 8
+1.04628 0.3 0 6 6
+1.04551 0 1 8 0
+1.04519 5 0 5 7
+1.04177 0.2 0 8 2
+1.04026 3.6 1 2 1 8
+1.03888 0.7 1 8 1
+1.03361 0.1 2 7 3
+1.03314 8 4 0 5
+1.0283 6.1 2 6 5
+1.02611 0 3 1 7
+1.02569 0.1 4 1 5
+1.02413 2.4 2 4 7
+1.02396 0.7 1 6 6
+1.02357 0.8 4 3 4
+1.02294 0.5 1 5 7
+1.0208 0.3 3 6 3
+1.01973 8.8 1 8 2
+1.01949 0.3 0 1 9
+1.01938 1.5 0 7 5
+1.01792 0.3 2 2 8
+1.01637 2.1 1 0 4 8
+1.00719 0 4 5 0
+1.00466 4.9 3 2 7
+1.00426 0 4 2 5
+1.00166 0 3 5 5
+1.00126 0.2 4 5 1
+0.99881 0.1 1 1 1 9
+0.9987 2.8 1 7 5
+0.99587 0.2 1 4 8
+0.99113 1 2 7 4
+0.99008 1.3 1 1 8 3
+0.98445 1.5 1 3 7 0
+0.98408 8.1 4 5 2
+0.9837 0.2 2 3 8
+0.98265 0 2 8 0
+0.97981 0.1 3 6 4
+0.97899 0.2 1 2 9
+0.97887 0.1 3 7 1
+0.97714 0.1 2 8 1
+0.97584 0.1 4 4 4
+0.97171 0 3 3 7
+0.97135 0.1 4 3 5
+0.97077 0 5 2 0
+0.9704 0 0 8 4
+0.96869 0.6 4 0 6
+0.96811 1.3 5 1 2
+0.96608 0.4 0 3 9
+0.96546 0.6 5 2 1
+0.9647 0.2 2 6 6
+0.96385 3.8 2 5 7
+0.9628 1.1 3 7 2
+0.96254 0.6 4 1 6
+0.96116 0.1 2 8 2
+0.95732 0.3 4 5 3
+0.95251 0.4 1 8 4
+0.95089 0 1 6 7
+0.95003 1.5 5 2 2
+0.94937 1.4 2 0 9
+0.94843 3.3 1 3 9
+0.9455 0.6 0 9 1
+0.94477 0.1 4 2 6
+0.94358 0.8 1 2 1 9
+0.94264 2.2 2 3 1 8
+0.9411 0.3 2 4 8
+0.94095 1.6 5 3 0
+0.94018 0.1 1 1 5 8
+0.93819 0 4 6 0
+0.93769 0.1 3 7 3
+0.93617 0.7 1 2 8 3
+0.93372 2.6 1 1 9 0
+0.9334 0.5 4 6 1
+0.93059 0.1 3 4 7
+0.93027 0.7 4 4 5
+0.92893 0 1 9 1
+0.92682 0.1 2 2 9
+0.92593 2.2 1 3 2 8
+0.92413 1.8 0 0 10
+0.92327 0.3 4 5 4
+0.92202 0.6 5 3 2
+0.91943 0.8 4 6 2
+0.91721 0.2 4 3 6
+0.91517 0.7 1 9 2
+0.91008 0.6 2 1 4 9
+0.90824 0.1 0 9 3
+0.90614 0 4 0 7
+0.90562 1.1 3 7 4
+0.90426 0 2 8 4
+0.90356 0.4 1 1 1 10
+0.90329 0.2 0 2 10
+0.90286 0.1 2 6 7
+0.9011 0 4 1 7
+0.90076 0.2 2 3 9
+0.89995 4.3 1 3 3 8
+0.89918 0.2 1 3 8 0
+0.89754 1.8 1 0 6 8
+0.89681 0 0 7 7
+0.89497 1.1 1 3 8 1
+0.89369 2.6 1 2 5 8
+0.89352 0.5 1 9 3
+0.88881 0.5 1 2 10
+0.88808 1.1 2 9 0
+0.88667 0 5 4 2
+0.88646 1.5 4 2 7
+0.88533 0 3 6 6
+0.88467 0 3 5 7
+0.8844 0 4 5 5
+0.88401 0.3 2 9 1
+0.88333 0.3 1 6 8
+0.88264 1.4 1 1 7 7
+0.88239 0 4 4 6
+0.88042 0.1 0 5 9
+0.87837 0.1 0 8 6
+0.87275 0.1 5 1 5
+0.87246 0.6 4 7 0
+0.87212 0 2 9 2
+0.87144 3.5 5 3 4
+0.86925 0.1 4 6 4
+0.86892 0.2 1 3 1 9
+0.8686 0.1 4 7 1
+0.86772 0.1 1 2 4 9
+0.867 0.3 2 1 5 9
+0.86647 1.8 2 0 10
+0.86575 2.1 1 3 10
+0.86565 0.2 1 9 4
+0.86504 2.1 1 8 6
+0.86358 0 4 3 7
+0.86313 5.1 3 8 3
+0.86206 0.5 2 1 10
+0.86127 0 5 5 0
+0.85943 0.2 5 2 5
+0.85755 0 5 5 1
+0.85731 0 4 7 2
+0.85578 0.1 3 2 9
+0.85544 0.9 0 10 0
+0.85333 0.1 2 9 3
+0.84922 0.1 2 2 10
+0.84832 0.2 0 4 10
+0.84711 0 4 0 8
+0.84668 0.1 5 5 2
+0.84527 1.2 0 9 5
+0.84443 0.2 2 6 8
+0.84383 0 2 7 7
+0.84311 0.2 1 10 0
+0.84299 2.4 1 4 1 8
+0.84142 0.4 5 4 4
+0.84115 0.1 0 10 2
+0.83962 0.1 1 10 1
+0.83944 0 4 7 3
+0.83853 2.9 5 3 5
+0.83792 0 3 8 4
+0.83682 0 3 6 7
+0.83658 3.7 4 6 5
+0.83629 0.9 1 4 10
+0.8361 0.4 0 1 11
+0.83514 0.3 3 3 9
+0.83433 1.7 4 4 7
+0.83337 1.4 1 9 5
+0.83285 0.2 5 1 6
+0.83097 0.1 4 2 8
+0.83065 2.2 6 0 0
+0.83013 0.1 2 5 9
+0.82949 0.3 3 1 10 2
+0.82904 1.0 1 2 3 10
+0.82841 0.1 2 8 6
+0.82782 0 1 7 8
+0.82731 0.4 6 0 1
+0.82676 0 6 1 0
+0.825 1.5 3 9 0
+0.82457 0.4 1 1 11
+0.82347 0 6 1 1
+0.82181 0.3 1 1 6 9
+0.82125 0.3 5 2 6
+0.81962 1 1 8 7
+0.81754 0 6 0 2
+0.81693 0.4 5 6 0
+0.8162 0.5 4 7 4
+0.81542 0 6 2 0
+0.81384 0.7 1 5 6 1
+0.81332 0.2 1 2 11
+0.8132 0 1 10 3
+0.81226 0.3 1 3 9 2
+0.81203 0.1 4 3 8
+0.81168 0.4 5 4 5
+0.81145 0 4 8 0
+0.80909 0.8 2 10 0
+0.8086 0.7 1 3 4 9
+0.80834 0 4 8 1
+0.80701 0 5 5 4
+0.80601 0.6 2 10 1
+0.80587 0 0 3 11
+0.80445 0.1 5 6 2
+0.80402 0.2 3 1 10
+0.80306 1.0 2 2 4 10
+0.80249 0 1 5 10
+0.80221 1 0 10 4
+0.802 0 6 0 3
+0.80125 0.5 4 6 6
+0.80076 0.2 4 5 7
+0.80047 0.8 2 9 5
+0.79922 0 4 8 2
+0.7985 0.8 1 1 9 6
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe_bcc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe_bcc.jcpds
new file mode 100755
index 0000000..93931dd
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/fe_bcc.jcpds
@@ -0,0 +1,12 @@
+3
+Fe (bcc) (JCPDS 6-0696, EOS from ?)
+ 1 999.000 0.000000
+ 2.86640
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.0268 100. 1.00 1.00 0.00
+ 1.4320 19. 2.00 0.00 0.00
+ 1.1702 30. 2.00 1.00 1.00
+ 1.0134 9. 2.00 2.00 0.00
+ 0.9064 12. 3.00 1.00 0.00
+ 0.8275 6. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feco3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feco3.jcpds
new file mode 100755
index 0000000..3497188
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feco3.jcpds
@@ -0,0 +1,70 @@
+3
+siderite (GSAS, EOS from MgCO3)
+ 2 117.000 2.30000
+ 4.6916 15.3796
+(blank for future use)
+d-spacing I/I0 h k l
+3.59242 35.7389 1 0 -2
+2.79269 100 1 0 4
+2.56327 0.6212 0 0 6
+2.3458 18.9949 1 1 0
+2.13309 18.8427 1 1 3
+1.96414 19.1478 2 0 2
+1.79621 10.0401 2 0 -4
+1.73775 18.5871 1 0 -8
+1.73051 27.5937 1 1 6
+1.52809 2.4179 2 1 1
+1.50595 10.8618 2 1 -2
+1.43836 2.4719 1 0 10
+1.42614 8.2057 2 1 4
+1.39635 3.1895 2 0 8
+1.38122 1.9361 1 1 9
+1.37397 1.2519 2 1 -5
+1.35435 7.2816 3 0 0
+1.28163 3.0595 0 0 12
+1.2587 0.4222 2 1 7
+1.22621 2.4976 2 0 -10
+1.19986 3.3583 2 1 -8
+1.19747 0.3611 3 0 6
+1.19747 0.3611 3 0 -6
+1.1729 1.155 2 2 0
+1.14336 0.2685 2 2 3
+1.12472 1.8294 1 1 12
+1.12387 0.0295 3 1 -1
+1.11498 0.7752 3 1 2
+1.0867 1.7149 2 1 10
+1.0814 3.1969 3 1 -4
+1.06655 1.9962 2 2 6
+1.06047 0.336 1 0 -14
+1.05811 0.0583 3 1 5
+1.03385 0.2383 2 1 -11
+1.00701 0.1756 4 0 -2
+1.00269 0.1157 3 1 -7
+0.98207 1.5889 4 0 4
+0.97218 1.2884 3 1 8
+0.96703 0.043 2 2 9
+0.96631 0.403 2 0 14
+0.93949 0.2313 1 1 15
+0.93719 0.0818 2 1 13
+0.9354 0.5261 1 0 16
+0.9309 0.7581 3 0 -12
+0.9309 0.7581 3 0 12
+0.93042 0.1136 3 2 1
+0.92535 0.9019 3 2 -2
+0.90899 0.2878 3 1 -10
+0.90589 0.4221 3 2 4
+0.8981 0.4989 4 0 -8
+0.89347 0.5955 2 1 -14
+0.89207 0.1257 3 2 -5
+0.88663 0.7565 4 1 0
+0.87738 0.0463 3 1 11
+0.87366 0.0291 4 1 3
+0.87366 0.0291 4 1 -3
+0.86887 0.1254 2 0 -16
+0.86526 0.2723 2 2 12
+0.85809 0.0757 3 2 7
+0.85442 0.0376 0 0 18
+0.84758 0.0853 4 0 10
+0.83874 0.2282 3 2 -8
+0.83792 0.1905 4 1 6
+0.83792 0.1905 4 1 -6
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feooh.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feooh.jcpds
new file mode 100755
index 0000000..e381e7c
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/feooh.jcpds
@@ -0,0 +1,27 @@
+3
+Perovskite_orthorhombic (29-713, EOS from mgpv)
+ 4 261.000 4.00000
+ 4.608 9.956 3.0215
+(blank for future use)
+d-spacing I/I0 h k l
+4.98 12 0 2 0
+4.183 100 1 1 0
+3.383 10 1 2 0
+2.693 35 1 3 0
+2.583 12 0 2 1
+2.527 4 1 0 1
+2.489 10 0 4 0
+2.450 50 1 1 1
+2.303 1 2 0 0
+2.253 14 1 2 1
+2.190 18 1 4 0
+2.089 1 2 2 0
+2.011 2 1 3 1
+1.920 5 0 4 1
+1.802 6 2 1 1
+1.7728 1 1 4 1
+1.7192 20 2 2 1
+1.6906 6 2 4 0
+1.6593 3 0 6 0
+1.6037 4 2 3 1
+1.5637 10 1 5 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/gold.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/gold.jcpds
new file mode 100755
index 0000000..992f600
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/gold.jcpds
@@ -0,0 +1,15 @@
+3
+Gold (04-0784, Heinz and Jeanloz 1984)
+ 1 166.600 5.50000
+ 4.07860
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3550 100. 1.00 1.00 1.00
+ 2.0390 52. 2.00 0.00 0.00
+ 1.4420 32. 2.00 2.00 0.00
+ 1.2300 36. 3.00 1.00 1.00
+ 1.1774 12. 2.00 2.00 2.00
+ 1.0196 6. 4.00 0.00 0.00
+ 0.9358 23. 3.00 3.00 1.00
+ 0.9120 22. 4.00 2.00 0.00
+ 0.8325 23. 4.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.85fe0.15sio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.85fe0.15sio3-opv.jcpds
new file mode 100755
index 0000000..30cd4f1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.85fe0.15sio3-opv.jcpds
@@ -0,0 +1,162 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Ar data)
+ 4 252.600 3.28
+4.7923 4.9339 6.9063
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.8fe0.2sio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.8fe0.2sio3-opv.jcpds
new file mode 100755
index 0000000..3508b6d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.8fe0.2sio3-opv.jcpds
@@ -0,0 +1,162 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.7963 4.9346 6.9092
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.92fe0.08sio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.92fe0.08sio3-opv.jcpds
new file mode 100755
index 0000000..101eaf8
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.92fe0.08sio3-opv.jcpds
@@ -0,0 +1,162 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Ar for 15%)
+ 4 252.600 3.28
+4.7809 4.9297 6.9028
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.9fe0.1sio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.9fe0.1sio3-opv.jcpds
new file mode 100755
index 0000000..3349d8a
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg0.9fe0.1sio3-opv.jcpds
@@ -0,0 +1,162 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.7859 4.9319 6.9032
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg2sio4-g.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg2sio4-g.jcpds
new file mode 100755
index 0000000..1747d20
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mg2sio4-g.jcpds
@@ -0,0 +1,22 @@
+3
+Mg2SiO4 spinel (GSAS calculation, EOS from Knittle and Jeanloz,1987)
+ 1 183. 5.38
+8.0709
+(blank for future use)
+d-spacing I/I0 h k l
+2.85349 30 2 2 0
+2.43347 100 3 1 1
+2.32987 1 2 2 2
+2.01773 39 4 0 0
+1.85159 2 3 3 1
+1.64747 6 4 2 2
+1.55325 6 3 3 3
+1.55325 9 5 1 1
+1.42675 31 4 4 0
+1.27612 1 6 2 0
+1.2308 3 5 3 3
+1.16493 2 4 4 4
+1.05074 2 7 3 1
+1.05074 1 5 5 3
+1.00886 1 8 0 0
+0.90235 1 8 4 0
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgal2o4-CF.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgal2o4-CF.jcpds
new file mode 100755
index 0000000..d61829d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgal2o4-CF.jcpds
@@ -0,0 +1,304 @@
+3
+CF phase (from original structure by Decker, EOS from Ono2002)
+ 4 253.000 3.60000
+ 8.64 10.115 2.793
+(blank for future use)
+d-spacing I/I0 h k l
+6.58195 0.2 1 1 0
+5.064 2.5 0 2 0
+4.37146 4.7 1 2 0
+4.33 29 2 0 0
+3.9814 0.2 2 1 0
+3.29097 14.1 2 2 0
+3.14544 1.1 1 3 0
+2.77611 2.2 3 1 0
+2.68622 7.1 0 1 1
+2.6624 1 2 3 0
+2.56563 2.6 1 1 1
+2.532 60.5 0 4 0
+2.50783 84.3 3 2 0
+2.43025 0 1 4 0
+2.34943 43.3 1 2 1
+2.34293 25.2 2 0 1
+2.28264 0.9 2 1 1
+2.19398 11.5 3 3 0
+2.18573 1 2 4 0
+2.165 1.1 4 0 0
+2.1488 20.6 0 3 1
+2.12637 2.7 2 2 1
+2.11717 15 4 1 0
+2.08555 100 1 3 1
+1.9907 37.1 4 2 0
+1.97236 16.3 1 5 0
+1.96649 73.3 3 1 1
+1.92481 16.2 2 3 1
+1.90351 2.7 3 4 0
+1.86391 5.2 3 2 1
+1.83476 1.5 2 5 0
+1.83139 21.3 1 4 1
+1.82245 0.5 4 3 0
+1.72367 15.6 3 3 1
+1.71966 71.1 2 4 1
+1.70951 44.2 4 0 1
+1.70722 1.3 5 1 0
+1.688 0 0 6 0
+1.68567 30.4 4 1 1
+1.6581 2.5 3 5 0
+1.65682 3.2 1 6 0
+1.64549 1.2 4 4 0
+1.6388 2.9 5 2 0
+1.63834 6.9 0 5 1
+1.61971 5.3 4 2 1
+1.60978 0.1 1 5 1
+1.57272 34.7 2 6 0
+1.57169 0 3 4 1
+1.54103 0.1 5 3 0
+1.53232 2.7 2 5 1
+1.52512 3.8 4 3 1
+1.47914 0.1 4 5 0
+1.45715 26.1 3 6 0
+1.45565 0.9 5 1 1
+1.44333 23.4 6 0 0
+1.42954 2.6 5 4 0
+1.4289 1 6 1 0
+1.42708 0 1 7 0
+1.42485 1.6 3 5 1
+1.42403 29.2 1 6 1
+1.41682 50.4 4 4 1
+1.41254 31.6 5 2 1
+1.393 52.9 0 0 2
+1.38805 2.7 6 2 0
+1.37227 2.7 2 7 0
+1.36957 25.6 2 6 1
+1.36281 0 1 1 2
+1.34849 2.3 5 3 1
+1.34311 0.1 0 2 2
+1.3312 5.2 4 6 0
+1.32724 0.2 1 2 2
+1.32713 1.1 6 3 0
+1.32607 1.5 2 0 2
+1.31639 0 5 5 0
+1.31485 0 2 1 2
+1.30643 0.2 4 5 1
+1.29348 0.7 3 7 0
+1.29121 7.3 3 6 1
+1.28403 0.2 0 7 1
+1.28281 2 2 2 2
+1.28156 1.2 6 0 1
+1.27369 0.1 1 3 2
+1.27188 0.8 5 4 1
+1.27142 0.1 6 1 1
+1.27014 9.4 1 7 1
+1.266 2.1 0 8 0
+1.25392 21 6 4 0
+1.25269 5.7 1 8 0
+1.24505 0.4 3 1 2
+1.24239 5.9 6 2 1
+1.23427 0.2 2 3 2
+1.23104 0.6 2 7 1
+1.22802 1.4 7 1 0
+1.22049 15.3 0 4 2
+1.21775 25.7 3 2 2
+1.21513 1.1 2 8 0
+1.20885 0.6 5 6 0
+1.20854 0.3 1 4 2
+1.20295 0.2 4 7 0
+1.2018 3.8 7 2 0
+1.20113 8.1 4 6 1
+1.19814 0.3 6 3 1
+1.19021 1.3 5 5 1
+1.17599 1.6 3 3 2
+1.17546 3.7 6 5 0
+1.17471 0 2 4 2
+1.1732 2.4 3 7 1
+1.17146 0.3 4 0 2
+1.1637 2.7 4 1 2
+1.1616 0.1 7 3 0
+1.1594 2.6 3 8 0
+1.14344 0.9 6 4 1
+1.14251 1.1 1 8 1
+1.14132 8.8 4 2 2
+1.13783 3.5 1 5 2
+1.12414 0.4 3 4 2
+1.1237 0.7 7 1 1
+1.11595 0.9 1 9 0
+1.1138 2.3 2 8 1
+1.11156 0.8 7 4 0
+1.11039 2 5 7 0
+1.10947 0.4 2 5 2
+1.10896 2.2 5 6 1
+1.10673 0.1 4 3 2
+1.1044 0.2 4 7 1
+1.10351 4.5 7 2 1
+1.09699 0.5 6 6 0
+1.09287 0.3 4 8 0
+1.08915 1.9 2 9 0
+1.08301 7.7 6 5 1
+1.0825 0.4 8 0 0
+1.0793 0.5 5 1 2
+1.07637 0.3 8 1 0
+1.0744 0.1 0 6 2
+1.07215 9.1 7 3 1
+1.07041 0.4 3 8 1
+1.06657 0.9 3 5 2
+1.06622 1.3 1 6 2
+1.06319 0.4 4 4 2
+1.06137 1.6 5 2 2
+1.05858 0.5 8 2 0
+1.0558 0 7 5 0
+1.04848 0 3 9 0
+1.04343 0.3 0 9 1
+1.04278 15 2 6 2
+1.03594 3.5 1 9 1
+1.03338 0.1 5 3 2
+1.03242 1.2 7 4 1
+1.03149 5.7 5 7 1
+1.03081 1.4 8 3 0
+1.02207 4.7 5 8 0
+1.02183 0.2 6 7 0
+1.02072 0.3 6 6 1
+1.01739 2.5 4 8 1
+1.01439 0.5 2 9 1
+1.01409 0 4 5 2
+1.0128 0.5 0 10 0
+1.00901 2.9 8 0 1
+1.00692 14 3 6 2
+1.00594 0.2 1 10 0
+1.00404 2.4 8 1 1
+1.00232 12.5 6 0 2
+0.9985 0.3 4 9 0
+0.99784 0.2 7 6 0
+0.99767 1.6 5 4 2
+0.99745 0.6 6 1 2
+0.99683 0 1 7 2
+0.99535 3.2 8 4 0
+0.98956 0 8 2 1
+0.98728 0.3 7 5 1
+0.98618 7.5 2 10 0
+0.98325 1.3 6 2 2
+0.98129 2.1 3 9 1
+0.97759 1.3 2 7 2
+0.96676 0 8 3 1
+0.96241 3 4 6 2
+0.96087 0.7 6 3 2
+0.95954 0.1 5 8 1
+0.95934 0.8 6 7 1
+0.95791 1.1 9 1 0
+0.95677 0 5 5 2
+0.95568 1.8 3 10 0
+0.95472 0.2 8 5 0
+0.95175 1.5 6 8 0
+0.94786 0.4 3 7 2
+0.94616 4.3 1 10 1
+0.94531 5.2 9 2 0
+0.94364 0 5 9 0
+0.94028 0.2 7 7 0
+0.93996 0.7 4 9 1
+0.93941 4.2 7 6 1
+0.93733 1.9 8 4 1
+0.93689 1.5 0 8 2
+0.93196 13.5 6 4 2
+0.93145 3.7 1 8 2
+0.92966 3.9 2 10 1
+0.92537 0 9 3 0
+0.92479 0.3 0 1 3
+0.92117 0.8 7 1 2
+0.91956 0.2 1 1 3
+0.91738 1.8 4 10 0
+0.9157 0.8 2 8 2
+0.91557 0.2 1 11 0
+0.913 0.5 5 6 2
+0.91122 3.4 8 6 0
+0.91045 0.1 4 7 2
+0.90995 2.4 7 2 2
+0.90839 3.1 1 2 3
+0.90802 1.6 2 0 3
+0.90586 0.1 9 1 1
+0.90439 0 2 1 3
+0.90398 0.6 3 10 1
+0.90316 1.4 8 5 1
+0.90065 1.3 2 11 0
+0.89946 0 9 4 0
+0.89835 2.4 6 5 2
+0.89541 0.5 0 3 3
+0.89518 3.6 9 2 1
+0.89377 2.4 2 2 3
+0.89213 0.1 7 3 2
+0.89113 1.9 3 8 2
+0.89091 0.2 7 7 1
+0.89066 4 1 3 3
+0.88747 0 6 9 0
+0.88482 0.9 7 8 0
+0.8807 3 3 1 3
+0.87819 0 9 3 1
+0.87719 0 3 11 0
+0.87686 0.6 2 3 3
+0.87429 2 0 11 1
+0.87136 3 4 10 1
+0.87094 1 1 9 2
+0.8698 0.1 1 11 1
+0.86914 0.1 9 5 0
+0.86884 0.6 7 4 2
+0.86829 1.4 5 7 2
+0.86749 1.4 1 4 3
+0.86676 1 8 7 0
+0.86608 2.5 8 6 1
+0.86285 0.1 10 1 0
+0.86184 0.4 6 6 2
+0.85983 0.2 4 8 2
+0.85802 1.4 2 9 2
+0.85693 1.6 2 11 1
+0.85596 0.3 9 4 1
+0.85521 1.1 3 3 3
+0.85475 5.9 2 4 3
+0.85361 0.1 10 2 0
+0.85346 3.6 4 0 3
+0.85173 0.2 8 1 2
+0.85045 2.2 4 1 3
+0.84729 0.5 4 11 0
+0.8456 1.4 6 9 1
+0.84418 0.6 0 5 3
+0.844 0 0 12 0
+0.84331 6.3 7 8 1
+0.84283 0.3 8 2 2
+0.8416 0.5 4 2 3
+0.84143 0 7 5 2
+0.84019 0 1 5 3
+0.84002 1 1 12 0
+0.83884 0.7 10 3 0
+0.83771 0 3 9 2
+0.8367 0.1 3 11 1
+0.83594 3.1 9 6 0
+0.83463 0 3 4 3
+0.83418 2.5 5 10 1
+0.83246 0 7 9 0
+0.82971 0.1 9 5 1
+0.82905 0.2 6 10 0
+0.82861 1.4 2 5 3
+0.82841 1.3 2 12 0
+0.82763 0.3 8 7 1
+0.82743 0.4 4 3 3
+0.82697 5.2 10 0 1
+0.82423 2.8 10 1 1
+0.82405 3.7 5 8 2
+0.82393 0.2 6 7 2
+0.82274 0.3 8 8 0
+0.8194 0.4 10 4 0
+0.81917 0.5 0 10 2
+0.81616 0.4 10 2 1
+0.81578 0.1 5 1 3
+0.81553 0.2 1 10 2
+0.81299 0.1 5 11 0
+0.81155 0.2 4 9 2
+0.81119 0.2 7 6 2
+0.81063 0 4 11 1
+0.81024 0.2 3 5 3
+0.81009 4 1 6 3
+0.80985 2.8 8 4 2
+0.80876 5.8 4 4 3
+0.80796 3.6 5 2 3
+0.80489 6.3 2 10 2
+0.80426 6.9 1 12 1
+0.80322 1.8 10 3 1
+0.80122 0 9 7 0
+0.80068 1.6 9 6 1
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgco3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgco3.jcpds
new file mode 100755
index 0000000..fa1779f
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgco3.jcpds
@@ -0,0 +1,67 @@
+3
+Magnesite (08-0479, EOS from Ross 1997)
+ 2 117.000 2.30000
+ 4.6339 15.0177
+(blank for future use)
+d-spacing I/I0 h k l
+3.53931 1 1 0 -2
+2.74166 100 1 0 4
+2.50295 13 0 0 6
+2.31695 5 1 1 0
+2.10265 54 1 1 3
+1.93852 14 2 0 2
+1.76966 5 2 0 -4
+1.70038 18 1 0 -8
+1.70029 24 1 1 6
+1.50912 5 2 1 1
+1.48677 8 2 1 -2
+1.40651 0 1 0 10
+1.40636 7 2 1 4
+1.37083 2 2 0 8
+1.35403 6 1 1 9
+1.35395 3 2 1 -5
+1.33769 11 3 0 0
+1.25148 3 0 0 12
+1.23852 1 2 1 7
+1.20232 1 2 0 -10
+1.1798 2 2 1 -8
+1.17977 0 3 0 6
+1.17977 0 3 0 -6
+1.15848 1 2 2 0
+1.12865 1 2 2 3
+1.10998 0 3 1 -1
+1.10112 1 1 1 12
+1.101 0 3 1 2
+1.06719 1 2 1 10
+1.06712 3 3 1 -4
+1.05133 1 2 2 6
+1.04367 0 3 1 5
+1.03631 0 1 0 -14
+1.01474 0 2 1 -11
+0.99443 0 4 0 -2
+0.98798 0 3 1 -7
+0.96926 2 4 0 4
+0.95739 2 3 1 8
+0.95162 0 2 2 9
+0.946 0 2 0 14
+0.91905 0 1 1 15
+0.91902 0 2 1 13
+0.91894 0 3 2 1
+0.91394 0 1 0 16
+0.91389 1 3 0 12
+0.91389 1 3 0 -12
+0.91382 0 3 2 -2
+0.89421 0 3 1 -10
+0.89417 0 3 2 4
+0.88483 1 4 0 -8
+0.88024 0 3 2 -5
+0.87581 0 2 1 -14
+0.87572 0 4 1 0
+0.86267 0 3 1 11
+0.86262 0 4 1 -3
+0.86262 0 4 1 3
+0.85019 0 2 0 -16
+0.85014 0 2 2 12
+0.84605 0 3 2 7
+0.83432 7 0 0 18
+0.83423 10 4 0 10
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgfrt.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgfrt.jcpds
new file mode 100755
index 0000000..3c2f66b
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgfrt.jcpds
@@ -0,0 +1,53 @@
+3
+Mg-ferrite (GSAS calculation, EOS from Knittle and Jeanloz,1987)
+ 4 266.000 3.90000
+ 10.4130 8.43453 2.81776
+(blank for future use)
+d-spacing I/I0 h k l
+ 6.5539 100. 1.00 1.00 0.00
+ 5.2065 15. 2.00 0.00 0.00
+ 4.4303 9. 2.00 1.00 0.00
+ 4.2170 13. 0.00 2.00 0.00
+ 3.9086 3. 1.00 2.00 0.00
+ 3.2770 33. 2.00 2.00 0.00
+ 3.2098 6. 3.00 1.00 0.00
+ 2.7201 14. 1.00 0.00 1.00
+ 2.6799 18. 3.00 2.00 0.00
+ 2.6033 39. 4.00 0.00 0.00
+ 2.4737 56. 2.00 3.00 0.00
+ 2.3777 34. 2.00 1.00 1.00
+ 2.3430 33. 0.00 2.00 1.00
+ 2.2859 7. 1.00 2.00 1.00
+ 2.1878 47. 3.00 0.00 1.00
+ 2.1366 4. 2.00 2.00 1.00
+ 2.1177 65. 3.00 1.00 1.00
+ 2.0666 13. 1.00 4.00 0.00
+ 2.0219 8. 5.00 1.00 0.00
+ 1.9549 25. 1.00 3.00 1.00
+ 1.9543 40. 2.00 4.00 0.00
+ 1.8673 9. 5.00 2.00 0.00
+ 1.8649 38. 4.00 1.00 1.00
+ 1.8591 12. 2.00 3.00 1.00
+ 1.7415 25. 4.00 2.00 1.00
+ 1.7266 30. 3.00 3.00 1.00
+ 1.6999 7. 6.00 1.00 0.00
+ 1.6882 6. 0.00 4.00 1.00
+ 1.6748 21. 5.00 0.00 1.00
+ 1.6665 17. 1.00 4.00 1.00
+ 1.6385 3. 4.00 4.00 0.00
+ 1.6059 8. 2.00 4.00 1.00
+ 1.6049 10. 6.00 2.00 0.00
+ 1.6047 14. 2.00 5.00 0.00
+ 1.5566 7. 5.00 2.00 1.00
+ 1.5182 6. 3.00 4.00 1.00
+ 1.4650 3. 7.00 1.00 0.00
+ 1.4556 4. 6.00 1.00 1.00
+ 1.4389 7. 5.00 3.00 1.00
+ 1.4165 8. 4.00 4.00 1.00
+ 1.4090 22. 0.00 0.00 2.00
+ 1.4057 6. 0.00 6.00 0.00
+ 1.3946 12. 6.00 2.00 1.00
+ 1.3944 9. 2.00 5.00 1.00
+ 1.3400 5. 6.00 4.00 0.00
+ 1.2243 4. 2.00 3.00 2.00
+ 1.2101 4. 6.00 4.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgfrt_full.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgfrt_full.jcpds
new file mode 100755
index 0000000..f2ba335
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgfrt_full.jcpds
@@ -0,0 +1,198 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Knittle and Jeanloz,1987)
+ 4 266.000 3.90000
+ 10.4130 8.43453 2.81776
+(blank for future use)
+d-spacing I/I0 h k l
+ 6.5539 100. 1.00 1.00 0.00
+ 5.2065 15. 2.00 0.00 0.00
+ 4.4303 9. 2.00 1.00 0.00
+ 4.2170 13. 0.00 2.00 0.00
+ 3.9086 3. 1.00 2.00 0.00
+ 3.2770 33. 2.00 2.00 0.00
+ 3.2098 6. 3.00 1.00 0.00
+ 2.7201 14. 1.00 0.00 1.00
+ 2.7141 1. 1.00 3.00 0.00
+ 2.6799 18. 3.00 2.00 0.00
+ 2.6033 39. 4.00 0.00 0.00
+ 2.5888 1. 1.00 1.00 1.00
+ 2.4874 1. 4.00 1.00 0.00
+ 2.4737 56. 2.00 3.00 0.00
+ 2.3777 34. 2.00 1.00 1.00
+ 2.3430 33. 0.00 2.00 1.00
+ 2.2859 7. 1.00 2.00 1.00
+ 2.2152 1. 4.00 2.00 0.00
+ 2.1878 47. 3.00 0.00 1.00
+ 2.1846 1. 3.00 3.00 0.00
+ 2.1366 4. 2.00 2.00 1.00
+ 2.1177 65. 3.00 1.00 1.00
+ 2.1085 1. 0.00 4.00 0.00
+ 2.0666 13. 1.00 4.00 0.00
+ 2.0219 8. 5.00 1.00 0.00
+ 1.9549 25. 1.00 3.00 1.00
+ 1.9543 40. 2.00 4.00 0.00
+ 1.9420 1. 3.00 2.00 1.00
+ 1.9101 2. 4.00 3.00 0.00
+ 1.8673 9. 5.00 2.00 0.00
+ 1.8649 38. 4.00 1.00 1.00
+ 1.8591 12. 2.00 3.00 1.00
+ 1.8021 2. 3.00 4.00 0.00
+ 1.7415 25. 4.00 2.00 1.00
+ 1.7355 1. 6.00 0.00 0.00
+ 1.7266 30. 3.00 3.00 1.00
+ 1.6999 7. 6.00 1.00 0.00
+ 1.6882 6. 0.00 4.00 1.00
+ 1.6748 21. 5.00 0.00 1.00
+ 1.6734 1. 5.00 3.00 0.00
+ 1.6665 17. 1.00 4.00 1.00
+ 1.6651 2. 1.00 5.00 0.00
+ 1.6428 1. 5.00 1.00 1.00
+ 1.6385 3. 4.00 4.00 0.00
+ 1.6059 8. 2.00 4.00 1.00
+ 1.6049 10. 6.00 2.00 0.00
+ 1.6047 14. 2.00 5.00 0.00
+ 1.5811 1. 4.00 3.00 1.00
+ 1.5566 7. 5.00 2.00 1.00
+ 1.5182 6. 3.00 4.00 1.00
+ 1.5171 1. 3.00 5.00 0.00
+ 1.4817 2. 5.00 4.00 0.00
+ 1.4768 1. 6.00 3.00 0.00
+ 1.4650 3. 7.00 1.00 0.00
+ 1.4556 4. 6.00 1.00 1.00
+ 1.4389 7. 5.00 3.00 1.00
+ 1.4335 2. 1.00 5.00 1.00
+ 1.4165 8. 4.00 4.00 1.00
+ 1.4156 2. 4.00 5.00 0.00
+ 1.4090 22. 0.00 0.00 2.00
+ 1.4057 6. 0.00 6.00 0.00
+ 1.4029 1. 7.00 2.00 0.00
+ 1.3946 12. 6.00 2.00 1.00
+ 1.3944 9. 2.00 5.00 1.00
+ 1.3930 2. 1.00 6.00 0.00
+ 1.3775 2. 1.00 1.00 2.00
+ 1.3601 1. 2.00 0.00 2.00
+ 1.3571 1. 2.00 6.00 0.00
+ 1.3427 1. 2.00 1.00 2.00
+ 1.3400 5. 6.00 4.00 0.00
+ 1.3364 1. 0.00 2.00 2.00
+ 1.3358 1. 3.00 5.00 1.00
+ 1.3255 1. 1.00 2.00 2.00
+ 1.3155 1. 7.00 0.00 1.00
+ 1.3148 1. 7.00 3.00 0.00
+ 1.3115 1. 5.00 4.00 1.00
+ 1.3108 1. 5.00 5.00 0.00
+ 1.3080 1. 6.00 3.00 1.00
+ 1.3029 1. 3.00 6.00 0.00
+ 1.3016 1. 8.00 0.00 0.00
+ 1.2998 1. 7.00 1.00 1.00
+ 1.2944 1. 2.00 2.00 2.00
+ 1.2902 1. 3.00 1.00 2.00
+ 1.2864 1. 8.00 1.00 0.00
+ 1.2650 1. 4.00 5.00 1.00
+ 1.2579 1. 0.00 6.00 1.00
+ 1.2558 1. 7.00 2.00 1.00
+ 1.2505 1. 1.00 3.00 2.00
+ 1.2488 1. 1.00 6.00 1.00
+ 1.2471 1. 3.00 2.00 2.00
+ 1.2437 1. 8.00 2.00 0.00
+ 1.2391 2. 4.00 0.00 2.00
+ 1.2369 1. 4.00 6.00 0.00
+ 1.2260 1. 4.00 1.00 2.00
+ 1.2243 4. 2.00 3.00 2.00
+ 1.2227 1. 2.00 6.00 1.00
+ 1.2155 1. 7.00 4.00 0.00
+ 1.2101 4. 6.00 4.00 1.00
+ 1.2096 1. 6.00 5.00 0.00
+ 1.1969 1. 1.00 7.00 0.00
+ 1.1915 2. 7.00 3.00 1.00
+ 1.1889 1. 4.00 2.00 2.00
+ 1.1885 1. 5.00 5.00 1.00
+ 1.1841 1. 3.00 3.00 2.00
+ 1.1826 2. 3.00 6.00 1.00
+ 1.1812 1. 8.00 3.00 0.00
+ 1.1738 1. 2.00 7.00 0.00
+ 1.1715 1. 0.00 4.00 2.00
+ 1.1702 1. 8.00 1.00 1.00
+ 1.1651 1. 5.00 6.00 0.00
+ 1.1642 1. 1.00 4.00 2.00
+ 1.1560 1. 5.00 1.00 2.00
+ 1.1463 1. 9.00 1.00 0.00
+ 1.1429 1. 2.00 4.00 2.00
+ 1.1382 1. 3.00 7.00 0.00
+ 1.1378 1. 8.00 2.00 1.00
+ 1.1339 1. 4.00 3.00 2.00
+ 1.1326 1. 4.00 6.00 1.00
+ 1.1247 1. 5.00 2.00 2.00
+ 1.1161 1. 7.00 4.00 1.00
+ 1.1158 2. 9.00 2.00 0.00
+ 1.1157 1. 7.00 5.00 0.00
+ 1.1115 1. 6.00 5.00 1.00
+ 1.1100 1. 3.00 4.00 2.00
+ 1.1076 1. 8.00 4.00 0.00
+ 1.1016 1. 1.00 7.00 1.00
+ 1.0939 1. 6.00 0.00 2.00
+ 1.0934 1. 4.00 7.00 0.00
+ 1.0923 1. 6.00 6.00 0.00
+ 1.0893 1. 8.00 3.00 1.00
+ 1.0848 1. 6.00 1.00 2.00
+ 1.0836 1. 2.00 7.00 1.00
+ 1.0778 1. 5.00 3.00 2.00
+ 1.0767 1. 5.00 6.00 1.00
+ 1.0756 1. 1.00 5.00 2.00
+ 1.0703 1. 9.00 0.00 1.00
+ 1.0699 1. 9.00 3.00 0.00
+ 1.0683 1. 4.00 4.00 2.00
+ 1.0618 1. 9.00 1.00 1.00
+ 1.0588 1. 6.00 2.00 2.00
+ 1.0588 1. 2.00 5.00 2.00
+ 1.0554 1. 3.00 7.00 1.00
+ 1.0543 1. 0.00 8.00 0.00
+ 1.0489 1. 1.00 8.00 0.00
+ 1.0429 1. 5.00 7.00 0.00
+ 1.0413 1. 10.00 0.00 0.00
+ 1.0374 1. 9.00 2.00 1.00
+ 1.0374 1. 7.00 5.00 1.00
+ 1.0335 1. 10.00 1.00 0.00
+ 1.0333 1. 2.00 8.00 0.00
+ 1.0324 1. 3.00 5.00 2.00
+ 1.0308 1. 8.00 4.00 1.00
+ 1.0305 1. 8.00 5.00 0.00
+ 1.0217 1. 7.00 6.00 0.00
+ 1.0210 1. 5.00 4.00 2.00
+ 1.0194 1. 6.00 3.00 2.00
+ 1.0194 2. 4.00 7.00 1.00
+ 1.0185 1. 6.00 6.00 1.00
+ 1.0155 1. 7.00 1.00 2.00
+ 1.0143 1. 9.00 4.00 0.00
+ 1.0109 1. 10.00 2.00 0.00
+ 1.0087 1. 3.00 8.00 0.00
+ 1.0003 1. 9.00 3.00 1.00
+ 0.9986 1. 4.00 5.00 2.00
+ 0.9951 1. 0.00 6.00 2.00
+ 0.9941 1. 7.00 2.00 2.00
+ 0.9906 1. 1.00 6.00 2.00
+ 0.9897 1. 6.00 7.00 0.00
+ 0.9874 1. 0.00 8.00 1.00
+ 0.9830 1. 1.00 8.00 1.00
+ 0.9781 1. 5.00 7.00 1.00
+ 0.9774 1. 2.00 6.00 2.00
+ 0.9772 1. 4.00 8.00 0.00
+ 0.9765 1. 10.00 3.00 0.00
+ 0.9710 1. 6.00 4.00 2.00
+ 0.9703 1. 10.00 1.00 1.00
+ 0.9701 1. 2.00 8.00 1.00
+ 0.9678 1. 8.00 5.00 1.00
+ 0.9613 1. 7.00 3.00 2.00
+ 0.9605 1. 7.00 6.00 1.00
+ 0.9597 1. 5.00 5.00 2.00
+ 0.9566 1. 3.00 6.00 2.00
+ 0.9561 1. 8.00 0.00 2.00
+ 0.9550 1. 8.00 6.00 0.00
+ 0.9544 1. 9.00 4.00 1.00
+ 0.9541 1. 9.00 5.00 0.00
+ 0.9516 1. 10.00 2.00 1.00
+ 0.9500 1. 8.00 1.00 2.00
+ 0.9497 1. 3.00 8.00 1.00
+ 0.9407 1. 11.00 1.00 0.00
+ 0.9406 1. 5.00 8.00 0.00
+ 0.9363 1. 7.00 7.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgo.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgo.jcpds
new file mode 100755
index 0000000..36418b2
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgo.jcpds
@@ -0,0 +1,16 @@
+3
+MgO (JCPDS 4-0829, EOS from Jackson)
+ 1 160.000 4.00000
+ 4.21300
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.4324 10. 1.00 1.00 1.00
+ 2.1065 100. 2.00 0.00 0.00
+ 1.4895 52. 2.00 2.00 0.00
+ 1.2700 4. 3.00 1.00 1.00
+ 1.2160 12. 2.00 2.00 2.00
+ 1.0533 5. 4.00 0.00 0.00
+ 0.9665 2. 3.00 3.00 1.00
+ 0.9419 17. 4.00 2.00 0.00
+ 0.8600 15. 4.00 2.00 2.00
+ 0.8109 3. 5.00 1.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgpv-erase.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgpv-erase.jcpds
new file mode 100755
index 0000000..70ecef9
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgpv-erase.jcpds
@@ -0,0 +1,162 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.77540 5.0062 6.9283
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-cmc.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-cmc.jcpds
new file mode 100755
index 0000000..f614bd3
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-cmc.jcpds
@@ -0,0 +1,22 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 2.7001 8.8396 6.6939
+(blank for future use)
+d-spacing I/I0 h k l
+4.042 10 0 2 0
+3.373 0.8 0 2 1
+3.061 7.2 0 0 2
+2.44 100 0 2 2
+2.361 25.1 1 1 0
+2.203 9.1 1 1 1
+2.021 7.6 0 4 0
+1.919 7.8 0 4 1
+1.87 0.1 1 1 2
+1.821 40.5 0 2 3
+1.82 88.5 1 3 0
+1.745 98.1 1 3 1
+1.686 3.9 0 4 2
+1.564 58.7 1 3 2
+1.544 47.5 1 1 3
+1.53 39 0 0 4
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-cpv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-cpv.jcpds
new file mode 100755
index 0000000..0af086d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-cpv.jcpds
@@ -0,0 +1,23 @@
+3
+Perovskite_cubic (GSAS calculation, EOS from Mao et al)
+ 1 261.000 4.00000
+ 3.43690
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.4369 57. 1.00 0.00 0.00
+ 2.4303 100. 1.00 1.00 0.00
+ 1.9843 38. 1.00 1.00 1.00
+ 1.7184 68. 2.00 0.00 0.00
+ 1.5370 13. 2.00 1.00 0.00
+ 1.4031 19. 2.00 1.00 1.00
+ 1.2151 11. 2.00 2.00 0.00
+ 1.1456 1. 3.00 0.00 0.00
+ 1.1456 2. 2.00 2.00 1.00
+ 1.0868 2. 3.00 1.00 0.00
+ 1.0363 1. 3.00 1.00 1.00
+ 0.9922 1. 2.00 2.00 2.00
+ 0.9532 1. 3.00 2.00 0.00
+ 0.9186 3. 3.00 2.00 1.00
+ 0.8592 1. 4.00 0.00 0.00
+ 0.8336 1. 4.00 1.00 0.00
+ 0.8336 1. 3.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-en.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-en.jcpds
new file mode 100755
index 0000000..f283765
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-en.jcpds
@@ -0,0 +1,140 @@
+3
+enstatite (JCPDS card,just guess)
+ 4 125. 5.
+ 18.214 8.818 5.177
+(blank for future use)
+d-spacing I/I0 h k l
+6.33497 10 2 1 0
+4.409 2 0 2 0
+4.3361 8 1 1 1
+4.04591 1 4 1 0
+3.59673 2 3 1 1
+3.35665 1 0 2 1
+3.30106 35 1 2 1
+3.18786 16 4 1 1
+3.16749 100 4 2 0
+3.14953 76 2 2 1
+2.93759 27 3 2 1
+2.87034 45 6 1 0
+2.82245 14 5 1 1
+2.79725 12 2 3 0
+2.70188 14 4 2 1
+2.5885 1 0 0 2
+2.53127 12 1 3 1
+2.51032 1 6 1 1
+2.48988 46 2 0 2
+2.46952 1 4 3 0
+2.46848 13 5 2 1
+2.46098 2 2 3 1
+2.46093 1 1 1 2
+2.39619 1 2 1 2
+2.38112 3 3 0 2
+2.35581 20 3 3 1
+2.27675 4 8 0 0
+2.24805 3 7 1 1
+2.22892 6 4 3 1
+2.21565 3 1 2 2
+2.2045 1 0 4 0
+2.18044 3 4 1 2
+2.11004 20 5 0 2
+2.09511 11 3 2 2
+2.09237 6 5 3 1
+2.05648 3 7 2 1
+2.05211 5 5 1 2
+2.02827 2 0 4 1
+2.02823 2 8 1 1
+2.02295 7 8 2 0
+2.01581 17 1 4 1
+2.00434 1 4 2 2
+1.9842 10 4 4 0
+1.97976 8 2 4 1
+1.96966 1 6 0 2
+1.95526 5 6 3 1
+1.90331 3 5 2 2
+1.88421 2 8 2 1
+1.85277 1 4 4 1
+1.8502 3 3 3 2
+1.8351 3 7 0 2
+1.82344 1 7 3 1
+1.79836 4 6 2 2
+1.7868 1 4 3 2
+1.78375 8 10 1 0
+1.7721 1 5 4 1
+1.70012 5 8 3 1
+1.69421 9 7 2 2
+1.67831 4 8 1 2
+1.67125 4 1 4 2
+1.665 1 2 1 3
+1.65053 2 2 4 2
+1.64203 2 2 5 1
+1.63127 2 3 1 3
+1.60965 1 3 5 1
+1.60696 8 0 2 3
+1.60075 5 1 2 3
+1.59433 3 9 0 2
+1.59393 1 8 2 2
+1.58667 1 9 3 1
+1.56738 1 4 5 1
+1.55248 1 11 1 1
+1.52432 1 5 4 2
+1.51783 3 12 0 0
+1.51762 1 5 5 1
+1.51537 1 4 2 3
+1.51446 4 8 4 1
+1.49932 5 9 2 2
+1.48333 4 10 3 1
+1.48321 8 1 3 3
+1.47896 1 6 1 3
+1.46967 7 0 6 0
+1.46879 1 6 4 2
+1.45283 2 1 5 2
+1.43261 1 9 4 1
+1.41938 1 7 1 3
+1.41453 1 4 3 3
+1.4138 1 0 6 1
+1.41122 1 10 2 2
+1.41039 2 7 4 2
+1.40956 1 1 6 1
+1.40507 1 7 5 1
+1.40145 1 9 3 2
+1.39862 1 4 6 0
+1.39485 5 11 0 2
+1.38971 8 11 3 1
+1.37772 2 11 1 2
+1.35885 1 0 4 3
+1.33623 1 6 3 3
+1.32604 2 3 4 3
+1.30508 5 12 3 1
+1.30211 2 4 4 3
+1.29514 4 12 1 2
+1.29099 2 1 0 4
+1.27738 1 1 1 4
+1.2749 1 1 6 2
+1.26699 3 10 5 0
+1.26581 1 3 0 4
+1.26564 5 2 6 2
+1.25848 1 9 2 3
+1.24494 1 4 0 4
+1.22861 1 13 3 1
+1.2275 1 8 5 2
+1.22226 1 2 5 3
+1.20873 1 3 5 3
+1.19891 1 9 3 3
+1.19809 1 4 2 4
+1.18967 1 14 3 0
+1.18669 1 13 2 2
+1.17543 1 5 2 4
+1.16025 1 5 7 1
+1.15241 1 10 3 3
+1.14893 1 7 1 4
+1.13838 1 16 0 0
+1.1352 1 6 7 1
+1.12814 1 9 4 3
+1.10223 1 16 2 0
+1.09022 1 8 2 4
+1.0806 1 9 6 2
+1.06148 1 3 8 1
+1.05128 1 12 5 2
+1.04695 1 14 5 0
+1.02618 1 14 5 1
+1.01971 1 11 0 4
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-frt.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-frt.jcpds
new file mode 100755
index 0000000..f2ba335
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-frt.jcpds
@@ -0,0 +1,198 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Knittle and Jeanloz,1987)
+ 4 266.000 3.90000
+ 10.4130 8.43453 2.81776
+(blank for future use)
+d-spacing I/I0 h k l
+ 6.5539 100. 1.00 1.00 0.00
+ 5.2065 15. 2.00 0.00 0.00
+ 4.4303 9. 2.00 1.00 0.00
+ 4.2170 13. 0.00 2.00 0.00
+ 3.9086 3. 1.00 2.00 0.00
+ 3.2770 33. 2.00 2.00 0.00
+ 3.2098 6. 3.00 1.00 0.00
+ 2.7201 14. 1.00 0.00 1.00
+ 2.7141 1. 1.00 3.00 0.00
+ 2.6799 18. 3.00 2.00 0.00
+ 2.6033 39. 4.00 0.00 0.00
+ 2.5888 1. 1.00 1.00 1.00
+ 2.4874 1. 4.00 1.00 0.00
+ 2.4737 56. 2.00 3.00 0.00
+ 2.3777 34. 2.00 1.00 1.00
+ 2.3430 33. 0.00 2.00 1.00
+ 2.2859 7. 1.00 2.00 1.00
+ 2.2152 1. 4.00 2.00 0.00
+ 2.1878 47. 3.00 0.00 1.00
+ 2.1846 1. 3.00 3.00 0.00
+ 2.1366 4. 2.00 2.00 1.00
+ 2.1177 65. 3.00 1.00 1.00
+ 2.1085 1. 0.00 4.00 0.00
+ 2.0666 13. 1.00 4.00 0.00
+ 2.0219 8. 5.00 1.00 0.00
+ 1.9549 25. 1.00 3.00 1.00
+ 1.9543 40. 2.00 4.00 0.00
+ 1.9420 1. 3.00 2.00 1.00
+ 1.9101 2. 4.00 3.00 0.00
+ 1.8673 9. 5.00 2.00 0.00
+ 1.8649 38. 4.00 1.00 1.00
+ 1.8591 12. 2.00 3.00 1.00
+ 1.8021 2. 3.00 4.00 0.00
+ 1.7415 25. 4.00 2.00 1.00
+ 1.7355 1. 6.00 0.00 0.00
+ 1.7266 30. 3.00 3.00 1.00
+ 1.6999 7. 6.00 1.00 0.00
+ 1.6882 6. 0.00 4.00 1.00
+ 1.6748 21. 5.00 0.00 1.00
+ 1.6734 1. 5.00 3.00 0.00
+ 1.6665 17. 1.00 4.00 1.00
+ 1.6651 2. 1.00 5.00 0.00
+ 1.6428 1. 5.00 1.00 1.00
+ 1.6385 3. 4.00 4.00 0.00
+ 1.6059 8. 2.00 4.00 1.00
+ 1.6049 10. 6.00 2.00 0.00
+ 1.6047 14. 2.00 5.00 0.00
+ 1.5811 1. 4.00 3.00 1.00
+ 1.5566 7. 5.00 2.00 1.00
+ 1.5182 6. 3.00 4.00 1.00
+ 1.5171 1. 3.00 5.00 0.00
+ 1.4817 2. 5.00 4.00 0.00
+ 1.4768 1. 6.00 3.00 0.00
+ 1.4650 3. 7.00 1.00 0.00
+ 1.4556 4. 6.00 1.00 1.00
+ 1.4389 7. 5.00 3.00 1.00
+ 1.4335 2. 1.00 5.00 1.00
+ 1.4165 8. 4.00 4.00 1.00
+ 1.4156 2. 4.00 5.00 0.00
+ 1.4090 22. 0.00 0.00 2.00
+ 1.4057 6. 0.00 6.00 0.00
+ 1.4029 1. 7.00 2.00 0.00
+ 1.3946 12. 6.00 2.00 1.00
+ 1.3944 9. 2.00 5.00 1.00
+ 1.3930 2. 1.00 6.00 0.00
+ 1.3775 2. 1.00 1.00 2.00
+ 1.3601 1. 2.00 0.00 2.00
+ 1.3571 1. 2.00 6.00 0.00
+ 1.3427 1. 2.00 1.00 2.00
+ 1.3400 5. 6.00 4.00 0.00
+ 1.3364 1. 0.00 2.00 2.00
+ 1.3358 1. 3.00 5.00 1.00
+ 1.3255 1. 1.00 2.00 2.00
+ 1.3155 1. 7.00 0.00 1.00
+ 1.3148 1. 7.00 3.00 0.00
+ 1.3115 1. 5.00 4.00 1.00
+ 1.3108 1. 5.00 5.00 0.00
+ 1.3080 1. 6.00 3.00 1.00
+ 1.3029 1. 3.00 6.00 0.00
+ 1.3016 1. 8.00 0.00 0.00
+ 1.2998 1. 7.00 1.00 1.00
+ 1.2944 1. 2.00 2.00 2.00
+ 1.2902 1. 3.00 1.00 2.00
+ 1.2864 1. 8.00 1.00 0.00
+ 1.2650 1. 4.00 5.00 1.00
+ 1.2579 1. 0.00 6.00 1.00
+ 1.2558 1. 7.00 2.00 1.00
+ 1.2505 1. 1.00 3.00 2.00
+ 1.2488 1. 1.00 6.00 1.00
+ 1.2471 1. 3.00 2.00 2.00
+ 1.2437 1. 8.00 2.00 0.00
+ 1.2391 2. 4.00 0.00 2.00
+ 1.2369 1. 4.00 6.00 0.00
+ 1.2260 1. 4.00 1.00 2.00
+ 1.2243 4. 2.00 3.00 2.00
+ 1.2227 1. 2.00 6.00 1.00
+ 1.2155 1. 7.00 4.00 0.00
+ 1.2101 4. 6.00 4.00 1.00
+ 1.2096 1. 6.00 5.00 0.00
+ 1.1969 1. 1.00 7.00 0.00
+ 1.1915 2. 7.00 3.00 1.00
+ 1.1889 1. 4.00 2.00 2.00
+ 1.1885 1. 5.00 5.00 1.00
+ 1.1841 1. 3.00 3.00 2.00
+ 1.1826 2. 3.00 6.00 1.00
+ 1.1812 1. 8.00 3.00 0.00
+ 1.1738 1. 2.00 7.00 0.00
+ 1.1715 1. 0.00 4.00 2.00
+ 1.1702 1. 8.00 1.00 1.00
+ 1.1651 1. 5.00 6.00 0.00
+ 1.1642 1. 1.00 4.00 2.00
+ 1.1560 1. 5.00 1.00 2.00
+ 1.1463 1. 9.00 1.00 0.00
+ 1.1429 1. 2.00 4.00 2.00
+ 1.1382 1. 3.00 7.00 0.00
+ 1.1378 1. 8.00 2.00 1.00
+ 1.1339 1. 4.00 3.00 2.00
+ 1.1326 1. 4.00 6.00 1.00
+ 1.1247 1. 5.00 2.00 2.00
+ 1.1161 1. 7.00 4.00 1.00
+ 1.1158 2. 9.00 2.00 0.00
+ 1.1157 1. 7.00 5.00 0.00
+ 1.1115 1. 6.00 5.00 1.00
+ 1.1100 1. 3.00 4.00 2.00
+ 1.1076 1. 8.00 4.00 0.00
+ 1.1016 1. 1.00 7.00 1.00
+ 1.0939 1. 6.00 0.00 2.00
+ 1.0934 1. 4.00 7.00 0.00
+ 1.0923 1. 6.00 6.00 0.00
+ 1.0893 1. 8.00 3.00 1.00
+ 1.0848 1. 6.00 1.00 2.00
+ 1.0836 1. 2.00 7.00 1.00
+ 1.0778 1. 5.00 3.00 2.00
+ 1.0767 1. 5.00 6.00 1.00
+ 1.0756 1. 1.00 5.00 2.00
+ 1.0703 1. 9.00 0.00 1.00
+ 1.0699 1. 9.00 3.00 0.00
+ 1.0683 1. 4.00 4.00 2.00
+ 1.0618 1. 9.00 1.00 1.00
+ 1.0588 1. 6.00 2.00 2.00
+ 1.0588 1. 2.00 5.00 2.00
+ 1.0554 1. 3.00 7.00 1.00
+ 1.0543 1. 0.00 8.00 0.00
+ 1.0489 1. 1.00 8.00 0.00
+ 1.0429 1. 5.00 7.00 0.00
+ 1.0413 1. 10.00 0.00 0.00
+ 1.0374 1. 9.00 2.00 1.00
+ 1.0374 1. 7.00 5.00 1.00
+ 1.0335 1. 10.00 1.00 0.00
+ 1.0333 1. 2.00 8.00 0.00
+ 1.0324 1. 3.00 5.00 2.00
+ 1.0308 1. 8.00 4.00 1.00
+ 1.0305 1. 8.00 5.00 0.00
+ 1.0217 1. 7.00 6.00 0.00
+ 1.0210 1. 5.00 4.00 2.00
+ 1.0194 1. 6.00 3.00 2.00
+ 1.0194 2. 4.00 7.00 1.00
+ 1.0185 1. 6.00 6.00 1.00
+ 1.0155 1. 7.00 1.00 2.00
+ 1.0143 1. 9.00 4.00 0.00
+ 1.0109 1. 10.00 2.00 0.00
+ 1.0087 1. 3.00 8.00 0.00
+ 1.0003 1. 9.00 3.00 1.00
+ 0.9986 1. 4.00 5.00 2.00
+ 0.9951 1. 0.00 6.00 2.00
+ 0.9941 1. 7.00 2.00 2.00
+ 0.9906 1. 1.00 6.00 2.00
+ 0.9897 1. 6.00 7.00 0.00
+ 0.9874 1. 0.00 8.00 1.00
+ 0.9830 1. 1.00 8.00 1.00
+ 0.9781 1. 5.00 7.00 1.00
+ 0.9774 1. 2.00 6.00 2.00
+ 0.9772 1. 4.00 8.00 0.00
+ 0.9765 1. 10.00 3.00 0.00
+ 0.9710 1. 6.00 4.00 2.00
+ 0.9703 1. 10.00 1.00 1.00
+ 0.9701 1. 2.00 8.00 1.00
+ 0.9678 1. 8.00 5.00 1.00
+ 0.9613 1. 7.00 3.00 2.00
+ 0.9605 1. 7.00 6.00 1.00
+ 0.9597 1. 5.00 5.00 2.00
+ 0.9566 1. 3.00 6.00 2.00
+ 0.9561 1. 8.00 0.00 2.00
+ 0.9550 1. 8.00 6.00 0.00
+ 0.9544 1. 9.00 4.00 1.00
+ 0.9541 1. 9.00 5.00 0.00
+ 0.9516 1. 10.00 2.00 1.00
+ 0.9500 1. 8.00 1.00 2.00
+ 0.9497 1. 3.00 8.00 1.00
+ 0.9407 1. 11.00 1.00 0.00
+ 0.9406 1. 5.00 8.00 0.00
+ 0.9363 1. 7.00 7.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-ilm.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-ilm.jcpds
new file mode 100755
index 0000000..c0cd12b
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-ilm.jcpds
@@ -0,0 +1,38 @@
+3
+MgSiO3 ilmenite (GSAS calculation, EOS from guess)
+ 2 212 7.5
+4.7284 13.5591
+(blank for future use)
+d-spacing I/I0 h k l
+4.5197 26 0 0 3
+3.92005 6 1 0 1
+3.50514 92 1 0 -2
+2.61119 100 1 0 4
+2.3642 43 1 1 0
+2.26098 5 1 0 -5
+2.0949 38 1 1 -3
+2.0949 41 1 1 3
+2.02451 6 2 0 -1
+1.96002 1 2 0 2
+1.75257 32 2 0 -4
+1.751 2 1 0 7
+1.63403 5 2 0 5
+1.6336 44 1 1 -6
+1.6336 20 1 1 6
+1.56605 5 1 0 -8
+1.53775 1 2 1 1
+1.50891 4 2 1 -2
+1.40792 5 2 1 4
+1.40792 13 3 -1 4
+1.36497 23 3 0 0
+1.34421 2 2 1 -5
+1.28718 5 1 0 10
+1.27053 6 1 1 9
+1.1821 3 2 2 0
+1.18033 1 1 0 -11
+1.14363 1 2 2 -3
+1.13049 1 2 0 -10
+1.12012 1 3 1 2
+1.07689 1 4 -1 -4
+1.04745 1 2 2 6
+1.01989 1 2 1 10
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-maj.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-maj.jcpds
new file mode 100755
index 0000000..4735bc6
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-maj.jcpds
@@ -0,0 +1,109 @@
+3
+MgSiO3 Majorite (GSAS calculation, EOS from Yagi et al, 1992)
+ 3 159.800 4.98000
+ 11.5010 11.4800
+2.5e-5
+d-spacing I/I0 h k l
+8.125 2 0 1 1
+4.69383 5 2 1 1
+4.69383 12 1 2 1
+4.68954 9 1 1 2
+4.06622 3 2 2 0
+4.0625 8 0 2 2
+3.63627 2 0 3 1
+3.63096 3 0 1 3
+3.31803 5 2 2 2
+3.07337 8 2 3 1
+3.07337 1 3 2 1
+3.07217 4 3 1 2
+3.07217 3 1 3 2
+3.07016 10 1 2 3
+2.87525 100 0 4 0
+2.87 52 0 0 4
+2.5717 44 4 2 0
+2.5717 25 2 4 0
+2.57076 70 0 4 2
+2.56794 67 0 2 4
+2.45121 23 3 3 2
+2.45019 25 3 2 3
+2.45019 24 2 3 3
+2.34692 29 2 4 2
+2.34692 24 4 2 2
+2.34477 25 2 2 4
+2.25537 6 3 4 1
+2.25537 8 4 3 1
+2.25537 0 0 5 1
+2.2541 6 1 4 3
+2.2541 7 4 1 3
+2.25299 6 3 1 4
+2.25299 8 1 3 4
+2.25157 2 0 1 5
+2.09966 1 2 5 1
+2.09966 4 5 2 1
+2.09927 2 1 5 2
+2.09927 1 5 1 2
+2.09659 4 1 2 5
+1.91528 1 4 2 4
+1.91528 1 2 4 4
+1.86562 4 6 1 1
+1.86562 2 1 6 1
+1.86535 1 3 5 2
+1.86535 1 5 3 2
+1.8649 1 5 2 3
+1.86347 2 3 2 5
+1.86248 3 1 1 6
+1.81847 5 6 2 0
+1.81847 2 2 6 0
+1.81814 6 0 6 2
+1.81548 6 0 2 6
+1.69566 1 3 6 1
+1.69512 1 6 1 3
+1.69331 1 3 1 6
+1.65901 8 4 4 4
+1.5949 4 4 6 0
+1.5949 7 6 4 0
+1.594 11 0 6 4
+1.59288 11 0 4 6
+1.56249 1 1 2 7
+1.53668 16 4 6 2
+1.53668 9 6 4 2
+1.53608 10 2 6 4
+1.53608 17 6 2 4
+1.53508 14 2 4 6
+1.53508 11 4 2 6
+1.46046 1 3 7 2
+1.46024 1 2 7 3
+1.45852 2 3 2 7
+1.43763 7 0 8 0
+1.435 3 0 0 8
+1.3947 1 2 8 0
+1.37431 1 5 6 3
+1.37373 1 3 6 5
+1.37334 1 3 5 6
+1.35527 2 2 8 2
+1.35321 1 2 2 8
+1.28585 2 4 8 0
+1.28585 2 8 4 0
+1.28538 4 0 8 4
+1.28397 3 0 4 8
+1.25475 1 8 4 2
+1.25475 1 4 8 2
+1.25442 1 8 2 4
+1.25442 2 2 8 4
+1.25312 1 4 2 8
+1.25312 1 2 4 8
+1.23889 1 6 1 7
+1.2256 2 6 6 4
+1.22509 2 6 4 6
+1.22509 3 4 6 6
+1.17346 1 4 8 4
+1.04983 1 4 10 2
+1.04983 1 10 4 2
+1.04964 1 2 10 4
+1.04964 1 10 2 4
+1.04829 1 4 2 10
+1.04829 1 2 4 10
+1.01655 1 8 8 0
+1.01563 1 0 8 8
+0.8343 1 9 10 3
+0.83357 2 9 3 10
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-opv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-opv.jcpds
new file mode 100755
index 0000000..64eda3d
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-opv.jcpds
@@ -0,0 +1,162 @@
+3
+Perovskite_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 4.77540 4.92917 6.89711
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.9261 3. 1.00 0.00 1.00
+ 3.4485 12. 0.00 0.00 2.00
+ 3.4298 30. 1.00 1.00 0.00
+ 3.0710 10. 1.00 1.00 1.00
+ 2.4646 23. 0.00 2.00 0.00
+ 2.4318 100. 1.00 1.00 2.00
+ 2.3877 20. 2.00 0.00 0.00
+ 2.3209 1. 0.00 2.00 1.00
+ 2.1901 4. 1.00 2.00 0.00
+ 2.1489 9. 2.00 1.00 0.00
+ 2.0874 9. 1.00 2.00 1.00
+ 2.0714 19. 1.00 0.00 3.00
+ 2.0516 15. 2.00 1.00 1.00
+ 2.0051 9. 0.00 2.00 2.00
+ 1.9631 5. 2.00 0.00 2.00
+ 1.9097 13. 1.00 1.00 3.00
+ 1.8488 8. 1.00 2.00 2.00
+ 1.8238 3. 2.00 1.00 2.00
+ 1.7242 25. 0.00 0.00 4.00
+ 1.7149 40. 2.00 2.00 0.00
+ 1.6811 4. 0.00 2.00 3.00
+ 1.6642 4. 2.00 2.00 1.00
+ 1.5857 3. 1.00 2.00 3.00
+ 1.5699 1. 2.00 1.00 3.00
+ 1.5537 6. 1.00 3.00 0.00
+ 1.5510 1. 3.00 0.00 1.00
+ 1.5405 3. 1.00 1.00 4.00
+ 1.5355 5. 2.00 2.00 2.00
+ 1.5157 8. 1.00 3.00 1.00
+ 1.5148 1. 3.00 1.00 0.00
+ 1.4795 3. 3.00 1.00 1.00
+ 1.4165 9. 1.00 3.00 2.00
+ 1.4128 8. 0.00 2.00 4.00
+ 1.3979 7. 2.00 0.00 4.00
+ 1.3869 19. 3.00 1.00 2.00
+ 1.3746 1. 2.00 2.00 3.00
+ 1.3548 1. 1.00 2.00 4.00
+ 1.3535 1. 2.00 3.00 0.00
+ 1.3448 1. 2.00 1.00 4.00
+ 1.3372 2. 3.00 2.00 0.00
+ 1.3282 1. 2.00 3.00 1.00
+ 1.3252 1. 1.00 0.00 5.00
+ 1.3127 1. 3.00 2.00 1.00
+ 1.3087 1. 3.00 0.00 3.00
+ 1.2873 2. 1.00 3.00 3.00
+ 1.2798 1. 1.00 1.00 5.00
+ 1.2649 1. 3.00 1.00 3.00
+ 1.2600 1. 2.00 3.00 2.00
+ 1.2467 1. 3.00 2.00 2.00
+ 1.2323 3. 0.00 4.00 0.00
+ 1.2159 7. 2.00 2.00 4.00
+ 1.2131 1. 0.00 4.00 1.00
+ 1.2037 1. 0.00 2.00 5.00
+ 1.1939 2. 4.00 0.00 0.00
+ 1.1932 2. 1.00 4.00 0.00
+ 1.1758 1. 1.00 4.00 1.00
+ 1.1672 2. 1.00 2.00 5.00
+ 1.1664 1. 2.00 3.00 3.00
+ 1.1608 1. 2.00 1.00 5.00
+ 1.1604 1. 0.00 4.00 2.00
+ 1.1603 1. 4.00 1.00 0.00
+ 1.1559 1. 3.00 2.00 3.00
+ 1.1542 2. 1.00 3.00 4.00
+ 1.1495 1. 0.00 0.00 6.00
+ 1.1442 1. 4.00 1.00 1.00
+ 1.1433 1. 3.00 3.00 0.00
+ 1.1380 1. 3.00 1.00 4.00
+ 1.1282 3. 4.00 0.00 2.00
+ 1.1279 1. 3.00 3.00 1.00
+ 1.1276 1. 1.00 4.00 2.00
+ 1.0997 1. 4.00 1.00 2.00
+ 1.0951 1. 2.00 4.00 0.00
+ 1.0899 2. 1.00 1.00 6.00
+ 1.0861 1. 0.00 4.00 3.00
+ 1.0852 2. 3.00 3.00 2.00
+ 1.0815 1. 2.00 4.00 1.00
+ 1.0748 1. 2.00 2.00 5.00
+ 1.0744 1. 4.00 2.00 0.00
+ 1.0647 1. 2.00 3.00 4.00
+ 1.0616 1. 4.00 2.00 1.00
+ 1.0591 1. 1.00 4.00 3.00
+ 1.0567 1. 3.00 2.00 4.00
+ 1.0437 1. 2.00 4.00 2.00
+ 1.0424 1. 3.00 0.00 5.00
+ 1.0417 1. 0.00 2.00 6.00
+ 1.0359 1. 4.00 1.00 3.00
+ 1.0357 1. 2.00 0.00 6.00
+ 1.0315 1. 1.00 3.00 5.00
+ 1.0258 1. 4.00 2.00 2.00
+ 1.0237 1. 3.00 3.00 3.00
+ 1.0199 1. 3.00 1.00 5.00
+ 1.0178 1. 1.00 2.00 6.00
+ 1.0136 1. 2.00 1.00 6.00
+ 1.0026 1. 0.00 4.00 4.00
+ 0.9886 1. 2.00 4.00 3.00
+ 0.9815 1. 4.00 0.00 4.00
+ 0.9812 1. 1.00 4.00 4.00
+ 0.9744 1. 3.00 4.00 0.00
+ 0.9734 1. 4.00 2.00 3.00
+ 0.9661 1. 2.00 3.00 5.00
+ 0.9658 1. 4.00 3.00 0.00
+ 0.9655 1. 1.00 5.00 0.00
+ 0.9650 1. 1.00 0.00 7.00
+ 0.9648 1. 3.00 4.00 1.00
+ 0.9626 1. 4.00 1.00 4.00
+ 0.9601 1. 3.00 2.00 5.00
+ 0.9565 1. 4.00 3.00 1.00
+ 0.9562 1. 1.00 5.00 1.00
+ 0.9548 1. 2.00 2.00 6.00
+ 0.9528 1. 3.00 3.00 4.00
+ 0.9470 1. 1.00 1.00 7.00
+ 0.9460 1. 5.00 0.00 1.00
+ 0.9377 1. 3.00 4.00 2.00
+ 0.9376 1. 5.00 1.00 0.00
+ 0.9300 1. 4.00 3.00 2.00
+ 0.9297 1. 1.00 5.00 2.00
+ 0.9291 1. 5.00 1.00 1.00
+ 0.9244 1. 2.00 4.00 4.00
+ 0.9241 1. 1.00 3.00 6.00
+ 0.9190 1. 0.00 4.00 5.00
+ 0.9157 2. 3.00 1.00 6.00
+ 0.9149 1. 0.00 2.00 7.00
+ 0.9119 1. 4.00 2.00 4.00
+ 0.9112 1. 2.00 5.00 0.00
+ 0.9048 2. 5.00 1.00 2.00
+ 0.9034 1. 2.00 5.00 1.00
+ 0.9024 1. 1.00 4.00 5.00
+ 0.8985 1. 1.00 2.00 7.00
+ 0.8972 1. 3.00 4.00 3.00
+ 0.8956 1. 2.00 1.00 7.00
+ 0.8906 1. 5.00 2.00 0.00
+ 0.8904 1. 4.00 3.00 3.00
+ 0.8902 1. 1.00 5.00 3.00
+ 0.8879 1. 4.00 1.00 5.00
+ 0.8832 1. 5.00 2.00 1.00
+ 0.8820 1. 5.00 0.00 3.00
+ 0.8810 1. 2.00 5.00 2.00
+ 0.8802 1. 3.00 3.00 5.00
+ 0.8762 1. 2.00 3.00 6.00
+ 0.8717 1. 3.00 2.00 6.00
+ 0.8682 1. 5.00 1.00 3.00
+ 0.8623 1. 5.00 2.00 2.00
+ 0.8621 1. 0.00 0.00 8.00
+ 0.8576 1. 2.00 4.00 5.00
+ 0.8575 1. 4.00 4.00 0.00
+ 0.8543 1. 2.00 2.00 7.00
+ 0.8509 1. 4.00 4.00 1.00
+ 0.8483 1. 3.00 4.00 4.00
+ 0.8476 1. 4.00 2.00 5.00
+ 0.8471 1. 2.00 5.00 3.00
+ 0.8426 1. 4.00 3.00 4.00
+ 0.8424 1. 1.00 5.00 4.00
+ 0.8406 1. 0.00 4.00 6.00
+ 0.8381 1. 3.00 5.00 0.00
+ 0.8378 1. 3.00 0.00 7.00
+ 0.8361 1. 1.00 1.00 8.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-ppv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-ppv.jcpds
new file mode 100755
index 0000000..976b13c
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-ppv.jcpds
@@ -0,0 +1,103 @@
+3
+postpv_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 261.000 4.00000
+ 2.6872 8.7990 6.6665
+(blank for future use)
+d-spacing I/I0 h k l
+4.3995 13.9 0 2 0
+3.6720 0.1 0 2 1
+3.3333 4.4 0 0 2
+2.6568 100.0 0 2 2
+2.5700 18.9 1 1 0
+2.3980 4.3 1 1 1
+2.1998 5.4 0 4 0
+2.0890 5.4 0 4 1
+2.0353 0.3 1 1 2
+1.9835 39.0 0 2 3
+1.9814 65.8 1 3 0
+1.8992 82.7 1 3 1
+1.8360 2.5 0 4 2
+1.7032 40.0 1 3 2
+1.6809 35.4 1 1 3
+1.6666 26.7 0 0 4
+1.5633 0.7 0 4 3
+1.5585 0.3 0 2 4
+1.4789 6.8 1 3 3
+1.4722 5.3 1 5 0
+1.4665 0.1 0 6 0
+1.4376 7.0 1 5 1
+1.4323 1.5 0 6 1
+1.3983 16.4 1 1 4
+1.3467 25.6 1 5 2
+1.3436 18.0 2 0 0
+1.3423 21.5 0 6 2
+1.3284 11.7 0 4 4
+1.2850 0.2 2 2 0
+1.2760 0.4 0 2 5
+1.2754 5.9 1 3 4
+1.2618 0.2 2 2 1
+1.2462 0.2 2 0 2
+1.2273 0.1 1 5 3
+1.2240 0.6 0 6 3
+1.1990 9.7 2 2 2
+1.1835 0.2 1 1 5
+1.1466 1.1 2 4 0
+1.1402 0.1 0 4 5
+1.1386 0.1 1 7 0
+1.1300 0.4 2 4 1
+1.1223 1.1 1 7 1
+1.1124 2.9 2 2 3
+1.1111 0.4 0 0 6
+1.1062 8.2 1 3 5
+1.1034 1.3 1 5 4
+1.1010 0.0 0 6 4
+1.0999 1.8 0 8 0
+1.0852 0.3 0 8 1
+1.0843 0.1 2 4 2
+1.0775 1.5 1 7 2
+1.0773 3.4 0 2 6
+1.0460 4.9 2 0 4
+1.0445 0.9 0 8 2
+1.0199 1.8 1 1 6
+1.0190 0.1 2 4 3
+1.0177 0.2 2 2 4
+1.0133 1.7 1 7 3
+0.9918 0.8 0 4 6
+0.9907 0.0 2 6 0
+0.9883 2.0 1 5 5
+0.9865 0.4 0 6 5
+0.9857 0.0 0 8 3
+0.9799 0.4 2 6 1
+0.9691 0.6 1 3 6
+0.9496 6.4 2 6 2
+0.9447 3.5 2 4 4
+0.9401 0.1 1 7 4
+0.9308 0.1 0 2 7
+0.9252 0.1 2 2 5
+0.9188 0.1 1 9 0
+0.9180 0.5 0 8 4
+0.9102 0.8 1 9 1
+0.9048 0.1 2 6 3
+0.8930 0.9 1 1 7
+0.8911 0.3 3 1 0
+0.8869 0.7 1 5 6
+0.8857 0.6 1 9 2
+0.8856 1.1 0 6 6
+0.8833 0.0 3 1 1
+0.8799 0.0 0 10 0
+0.8740 0.0 0 4 7
+0.8723 0.0 0 10 1
+0.8694 0.0 2 4 5
+0.8658 0.0 1 7 5
+0.8609 0.0 3 1 2
+0.8584 0.4 1 3 7
+0.8567 1.4 3 3 0
+0.8562 0.3 2 0 6
+0.8516 0.0 2 6 4
+0.8511 1.1 2 8 0
+0.8508 0.4 0 10 2
+0.8497 0.3 3 3 1
+0.8490 0.2 1 9 3
+0.8484 0.0 0 8 5
+0.8442 0.0 2 8 1
+0.8405 2.0 2 2 6
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-rpv1.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-rpv1.jcpds
new file mode 100755
index 0000000..08e3e4c
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-rpv1.jcpds
@@ -0,0 +1,32 @@
+3
+Perovskite_rhombohedral (ideal) (GSAS calculation, EOS from Mao et al)
+ 2 261.000 4.00000
+ 4.889877 11.86968
+(blank for future use)
+d-spacing I/I0 h k l
+3.44719 73 1 0 -2
+2.44495 69 1 1 0
+2.43018 74 1 0 4
+2.07988 7 1 1 3
+1.99427 32 2 0 2
+1.97828 10 0 0 6
+1.72359 100 2 0 -4
+1.58624 2 2 1 1
+1.54538 4 2 1 -2
+1.53791 5 1 1 6
+1.41159 8 3 0 0
+1.40873 14 2 1 4
+1.40026 6 1 0 -8
+1.22247 9 2 2 0
+1.21509 11 2 0 8
+1.16881 1 3 1 -1
+1.15217 2 3 1 2
+1.14292 1 1 0 10
+1.09208 2 3 1 -4
+1.08812 3 2 1 -8
+1.05272 1 3 1 5
+0.99713 3 4 0 4
+0.98914 1 0 0 12
+0.91694 1 1 1 12
+0.89473 1 2 1 -11
+0.8618 1 4 0 -8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-rpv2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-rpv2.jcpds
new file mode 100755
index 0000000..3750066
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mgsio3-rpv2.jcpds
@@ -0,0 +1,92 @@
+3
+Perovskite_rhombohedral (doubled) (GSAS calculation, EOS from Mao et al)
+ 2 261.000 4.00000
+9.754914 11.82239
+(blank for future use)
+d-spacing I/I0 h k l
+4.87745 1 1 1 0
+4.84329 30 1 0 -2
+3.43674 100 2 0 2
+3.08259 18 2 1 1
+3.0653 29 1 1 3
+2.816 2 3 0 0
+2.80938 7 2 1 -2
+2.78979 8 1 0 4
+2.43872 69 2 2 0
+2.42164 63 2 0 -4
+2.29835 21 3 1 -1
+2.17818 1 3 1 2
+2.16901 1 2 1 4
+2.07376 43 2 2 3
+1.98887 16 4 0 -2
+1.9704 23 0 0 6
+1.91257 6 3 2 1
+1.9002 2 2 1 -5
+1.8435 6 4 1 0
+1.84164 2 3 2 -2
+1.83609 4 3 1 -4
+1.82695 8 1 1 6
+1.71837 88 4 0 4
+1.66983 4 4 1 -3
+1.66983 4 4 1 3
+1.66431 8 3 1 5
+1.62582 4 3 3 0
+1.62454 3 5 0 2
+1.61443 1 3 0 -6
+1.58216 10 4 2 -1
+1.54129 26 4 2 2
+1.53265 39 2 2 6
+1.50496 3 5 1 1
+1.50294 5 3 3 3
+1.49891 2 3 2 -5
+1.49294 2 2 1 7
+1.46684 4 5 0 -4
+1.4557 2 1 0 -8
+1.408 15 6 0 0
+1.40469 22 4 2 -4
+1.3949 5 2 0 8
+1.37936 1 4 3 1
+1.37008 3 3 1 -7
+1.35203 2 4 3 -2
+1.34982 3 5 1 4
+1.34618 3 4 1 6
+1.34618 1 4 1 -6
+1.32314 2 4 2 5
+1.27699 2 5 1 -5
+1.27329 3 3 2 7
+1.2684 2 1 1 9
+1.25698 1 4 3 4
+1.25404 1 3 3 6
+1.21936 10 4 4 0
+1.21082 6 4 0 -8
+1.20062 1 5 3 -1
+1.18246 2 7 0 -2
+1.16582 3 6 2 1
+1.1602 2 4 2 -7
+1.1565 1 2 2 9
+1.14917 7 6 2 -2
+1.14558 2 6 0 6
+1.14558 3 6 0 -6
+1.13849 6 2 0 -10
+1.12871 1 5 1 7
+1.1173 1 7 0 4
+1.08909 3 6 2 4
+1.08451 2 4 2 8
+1.07272 1 4 3 7
+1.04974 1 6 2 -5
+1.03954 1 8 0 2
+1.03688 2 4 4 6
+1.03161 1 4 0 10
+1.02753 1 6 3 3
+1.02753 1 6 3 -3
+1.01861 1 2 1 -11
+0.99443 2 8 0 -4
+0.95629 2 6 4 2
+0.9501 1 4 2 -10
+0.93257 1 5 1 10
+0.92175 1 8 2 0
+0.92082 1 6 4 -4
+0.91805 1 6 2 -8
+0.91348 1 2 2 12
+0.85918 1 8 0 8
+0.83491 1 8 2 6
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3-ppv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3-ppv.jcpds
new file mode 100755
index 0000000..021b795
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3-ppv.jcpds
@@ -0,0 +1,85 @@
+3
+mn2o3 bixbyite (JCPDS24-0508, EOS from guess)
+ 4 200.000 4.00000
+2.93 9.61 7.28
+(blank for future use)
+d-spacing I/I0 h k l
+4.805 12.2 0 2 0
+4.01025 0.4 0 2 1
+3.64 5.1 0 0 2
+2.90146 96 0 2 2
+2.80263 19.3 1 1 0
+2.61551 5.4 1 1 1
+2.4025 4 0 4 0
+2.28147 6.2 0 4 1
+2.22066 0 1 1 2
+2.1661 44.9 0 2 3
+2.16201 75.2 1 3 0
+2.07254 100 1 3 1
+2.00512 3.3 0 4 2
+1.85884 52.3 1 3 2
+1.83454 45.5 1 1 3
+1.82 33.2 0 0 4
+1.7073 0.7 0 4 3
+1.702 1.4 0 2 4
+1.61426 11 1 3 3
+1.60709 9.8 1 5 0
+1.60167 0.1 0 6 0
+1.56931 11.9 1 5 1
+1.56426 2.5 0 6 1
+1.52639 28.3 1 1 4
+1.47017 39.9 1 5 2
+1.46602 37.9 0 6 2
+1.465 33 2 0 0
+1.45073 18.5 0 4 4
+1.40132 0.5 2 2 0
+1.39343 0.9 0 2 5
+1.39234 12.3 1 3 4
+1.37605 0 2 2 1
+1.35906 0.4 2 0 2
+1.3399 0.1 1 5 3
+1.33675 1.6 0 6 3
+1.30775 21.8 2 2 2
+1.29205 0.1 1 1 5
+1.2508 3 2 4 0
+1.24518 0.7 0 4 5
+1.24316 0 1 7 0
+1.23273 1 2 4 1
+1.22542 2.4 1 7 1
+1.21351 8.8 2 2 3
+1.21333 1.3 0 0 6
+1.20767 20 1 3 5
+1.20466 2.4 1 5 4
+1.20237 0.2 0 6 4
+1.20125 8.9 0 8 0
+1.18522 0.8 0 8 1
+1.18291 0.4 2 4 2
+1.17644 12.5 1 7 2
+1.14121 13.6 2 0 4
+1.14074 2.8 0 8 2
+1.11347 5.9 1 1 6
+1.1118 0.2 2 4 3
+1.11033 0.8 2 2 4
+1.10642 6 1 7 3
+1.08305 1.8 0 4 6
+1.081 0 2 6 0
+1.07902 6 1 5 5
+1.07737 1.7 0 6 5
+1.07657 0.1 0 8 3
+1.06928 1 2 6 1
+1.0581 0.9 1 3 6
+1.03627 21.1 2 6 2
+1.03083 11.4 2 4 4
+1.02654 2.3 1 7 4
+1.01646 0.6 0 2 7
+1.00966 0.4 2 2 5
+1.00323 0.3 1 9 0
+1.00256 3.9 0 8 4
+0.99384 2.7 1 9 1
+0.98746 0.8 2 6 3
+0.97503 2.1 1 1 7
+0.97166 1 3 1 0
+0.96834 3.4 1 5 6
+0.96717 9.8 1 9 2
+0.96312 0.5 3 1 1
+0.961 0 0 10 0
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3-syn.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3-syn.jcpds
new file mode 100755
index 0000000..782fe48
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3-syn.jcpds
@@ -0,0 +1,442 @@
+3
+mn2o3 bixbyite (JCPDS24-0508, EOS from guess)
+ 4 200.000 4.00000
+9.4161 9.4237 9.4051
+(blank for future use)
+d-spacing I/I0 h k l
+5.4355 0 1 1 1
+4.7116 0 0 2 0
+4.7078 0 2 0 0
+4.7024 0 0 0 2
+4.2135 0 1 2 0
+4.2098 0 2 0 1
+4.2076 0 0 1 2
+3.8453 5 1 2 1
+3.8437 5 2 1 1
+3.8415 5 1 1 2
+3.3303 0 2 2 0
+3.3283 0 0 2 2
+3.327 0 2 0 2
+3.1393 0 2 2 1
+3.1381 0 1 2 2
+3.1372 0 2 1 2
+2.8405 0 1 3 1
+2.8388 0 3 1 1
+2.8364 0 1 1 3
+2.7177 100 2 2 2
+2.6121 0 3 2 0
+2.612 0 0 3 2
+2.6093 0 2 0 3
+2.5175 0 2 3 1
+2.5169 0 1 3 2
+2.5168 0 3 2 1
+2.5158 0 3 1 2
+2.5151 0 1 2 3
+2.5147 0 2 1 3
+2.3558 6 0 4 0
+2.3539 6 4 0 0
+2.3512 6 0 0 4
+2.2854 0 1 4 0
+2.284 0 2 3 2
+2.2835 0 4 0 1
+2.2834 0 3 2 2
+2.2827 0 2 2 3
+2.2812 0 0 1 4
+2.2207 0 1 4 1
+2.2193 0 4 1 1
+2.2171 0 1 1 4
+2.1608 0 3 3 1
+2.1597 0 1 3 3
+2.159 0 3 1 3
+2.1068 0 2 4 0
+2.1063 0 0 4 2
+2.1058 0 4 2 0
+2.1049 0 4 0 2
+2.1038 0 0 2 4
+2.1034 0 2 0 4
+2.0558 0 2 4 1
+2.0555 0 1 4 2
+2.0549 0 4 2 1
+2.0543 0 4 1 2
+2.0532 0 1 2 4
+2.0529 0 2 1 4
+2.0077 3 3 3 2
+2.0071 3 2 3 3
+2.0068 3 3 2 3
+1.9226 0 2 4 2
+1.9219 0 4 2 2
+1.9207 0 2 2 4
+1.8841 0 3 4 0
+1.8823 0 4 0 3
+1.8823 0 0 3 4
+1.8474 2 3 4 1
+1.847 2 4 3 1
+1.8467 2 1 4 3
+1.8459 2 4 1 3
+1.8458 2 1 3 4
+1.8453 2 3 1 4
+1.8133 0 1 5 1
+1.812 0 5 1 1
+1.8118 0 3 3 3
+1.8101 0 1 1 5
+1.7494 0 0 5 2
+1.7489 0 3 4 2
+1.7486 0 5 2 0
+1.7486 0 4 3 2
+1.7486 0 2 4 3
+1.748 0 4 2 3
+1.7478 0 2 3 4
+1.7475 0 3 2 4
+1.7467 0 2 0 5
+1.7202 1 2 5 1
+1.72 0 1 5 2
+1.7192 0 5 2 1
+1.7188 1 5 1 2
+1.7176 1 1 2 5
+1.7174 0 2 1 5
+1.6651 12 4 4 0
+1.6642 12 0 4 4
+1.6635 12 4 0 4
+1.6398 0 2 5 2
+1.6396 0 4 4 1
+1.639 0 5 2 2
+1.6388 0 1 4 4
+1.6382 0 4 1 4
+1.6378 0 2 2 5
+1.6149 1 3 4 3
+1.6146 1 4 3 3
+1.6142 1 3 3 4
+1.5924 0 3 5 1
+1.592 0 1 5 3
+1.5918 0 5 3 1
+1.5911 0 5 1 3
+1.5905 0 1 3 5
+1.5903 0 3 1 5
+1.5705 0 0 6 0
+1.5696 0 4 4 2
+1.5693 0 6 0 0
+1.569 0 2 4 4
+1.5686 0 4 2 4
+1.5675 0 0 0 6
+1.5491 0 1 6 0
+1.5479 0 6 0 1
+1.5462 0 0 1 6
+1.5285 1 1 6 1
+1.5281 0 3 5 2
+1.5278 0 2 5 3
+1.5275 0 5 3 2
+1.5274 1 6 1 1
+1.5271 0 5 2 3
+1.5265 0 2 3 5
+1.5264 0 3 2 5
+1.5258 1 1 1 6
+1.4898 0 2 6 0
+1.4897 0 0 6 2
+1.4889 0 6 2 0
+1.4886 0 6 0 2
+1.4873 0 0 2 6
+1.4872 0 2 0 6
+1.4715 0 2 6 1
+1.4714 0 1 6 2
+1.4709 0 5 4 0
+1.4706 0 4 4 3
+1.4706 0 6 2 1
+1.4705 0 0 5 4
+1.4703 0 6 1 2
+1.4703 0 3 4 4
+1.4701 0 4 3 4
+1.4694 0 4 0 5
+1.4691 0 1 2 6
+1.469 0 2 1 6
+1.4535 1 4 5 1
+1.4533 1 5 4 1
+1.4529 1 1 5 4
+1.4523 1 1 4 5
+1.4523 1 5 1 4
+1.4519 1 4 1 5
+1.4362 0 3 5 3
+1.4358 0 5 3 3
+1.4351 0 3 3 5
+1.4203 7 2 6 2
+1.4194 6 6 2 2
+1.4182 6 2 2 6
+1.4045 0 3 6 0
+1.4041 0 4 5 2
+1.4039 0 5 4 2
+1.4037 0 2 5 4
+1.4033 0 6 0 3
+1.4031 0 5 2 4
+1.4031 0 2 4 5
+1.4028 0 4 2 5
+1.4025 0 0 3 6
+1.3891 1 3 6 1
+1.3888 1 1 6 3
+1.3885 1 6 3 1
+1.388 1 6 1 3
+1.3872 1 1 3 6
+1.387 1 3 1 6
+1.3589 3 4 4 4
+1.3458 0 3 6 2
+1.3456 0 2 6 3
+1.3452 0 6 3 2
+1.3449 0 6 2 3
+1.3441 0 2 3 6
+1.344 0 3 2 6
+1.3318 0 4 5 3
+1.3316 0 5 4 3
+1.3316 0 3 5 4
+1.3313 0 5 3 4
+1.3311 0 3 4 5
+1.331 0 4 3 5
+1.3195 0 1 7 1
+1.319 0 5 5 1
+1.3185 0 7 1 1
+1.3182 0 1 5 5
+1.3177 0 5 1 5
+1.317 0 1 1 7
+1.3065 0 4 6 0
+1.306 0 6 4 0
+1.306 0 0 6 4
+1.3053 0 6 0 4
+1.305 0 0 4 6
+1.3047 0 4 0 6
+1.2942 0 0 7 2
+1.294 0 4 6 1
+1.2936 0 6 4 1
+1.2936 0 1 6 4
+1.2934 0 7 2 0
+1.2929 0 6 1 4
+1.2926 0 1 4 6
+1.2923 0 4 1 6
+1.2919 0 2 0 7
+1.2822 0 2 7 1
+1.2821 1 1 7 2
+1.2818 0 3 6 3
+1.2817 0 5 5 2
+1.2814 1 7 2 1
+1.2812 0 6 3 3
+1.2812 0 7 1 2
+1.2811 0 2 5 5
+1.2807 0 5 2 5
+1.2805 0 3 3 6
+1.28 0 1 2 7
+1.28 1 2 1 7
+1.2588 0 4 6 2
+1.2585 0 2 6 4
+1.2584 0 6 4 2
+1.2579 0 6 2 4
+1.2576 0 2 4 6
+1.2574 0 4 2 6
+1.2479 0 2 7 2
+1.2472 0 4 5 4
+1.2471 0 7 2 2
+1.247 0 5 4 4
+1.2468 0 4 4 5
+1.246 0 2 2 7
+1.2266 0 3 7 1
+1.2264 0 1 7 3
+1.226 0 5 5 3
+1.2259 0 7 3 1
+1.2256 0 3 5 5
+1.2256 0 7 1 3
+1.2254 0 5 3 5
+1.2248 0 1 3 7
+1.2246 0 3 1 7
+1.2061 0 5 6 0
+1.2059 0 4 6 3
+1.2058 0 3 6 4
+1.2056 0 6 4 3
+1.2053 0 6 3 4
+1.2051 0 0 5 6
+1.205 0 3 4 6
+1.205 0 6 0 5
+1.2049 0 4 3 6
+1.1965 0 3 7 2
+1.1964 0 2 7 3
+1.1963 0 5 6 1
+1.1962 0 6 5 1
+1.1958 0 7 3 2
+1.1958 0 1 6 5
+1.1957 0 7 2 3
+1.1954 0 1 5 6
+1.1952 0 6 1 5
+1.195 0 5 1 6
+1.1948 0 2 3 7
+1.1948 0 3 2 7
+1.1779 1 0 8 0
+1.177 1 8 0 0
+1.1756 1 0 0 8
+1.1688 0 1 8 0
+1.1683 0 5 6 2
+1.1682 0 0 7 4
+1.1682 0 6 5 2
+1.1681 0 7 4 0
+1.1679 0 2 6 5
+1.1679 0 8 0 1
+1.1675 0 2 5 6
+1.1674 0 6 2 5
+1.1672 0 5 2 6
+1.1668 0 4 0 7
+1.1665 0 0 1 8
+1.1599 1 1 8 1
+1.1597 0 4 7 1
+1.1594 0 1 7 4
+1.1592 0 7 4 1
+1.159 0 5 5 4
+1.159 1 8 1 1
+1.1588 0 4 5 5
+1.1587 0 5 4 5
+1.1587 0 7 1 4
+1.1582 0 1 4 7
+1.158 0 4 1 7
+1.1577 1 1 1 8
+1.1508 0 3 7 3
+1.1503 0 7 3 3
+1.1495 0 3 3 7
+1.1427 0 2 8 0
+1.1426 0 0 8 2
+1.142 0 4 6 4
+1.1419 0 8 2 0
+1.1417 0 8 0 2
+1.1417 0 6 4 4
+1.1413 0 4 4 6
+1.1406 0 0 2 8
+1.1406 0 2 0 8
+1.1343 0 2 8 1
+1.1343 0 1 8 2
+1.1341 0 4 7 2
+1.1339 0 2 7 4
+1.1337 0 7 4 2
+1.1336 0 8 2 1
+1.1335 0 8 1 2
+1.1333 0 7 2 4
+1.1328 0 2 4 7
+1.1326 0 4 2 7
+1.1323 0 1 2 8
+1.1323 0 2 1 8
+1.1257 0 5 6 3
+1.1255 0 6 5 3
+1.1254 0 3 6 5
+1.125 0 3 5 6
+1.125 0 6 3 5
+1.1248 0 5 3 6
+1.1104 0 2 8 2
+1.1101 0 6 6 0
+1.1096 0 8 2 2
+1.1094 0 0 6 6
+1.109 0 6 0 6
+1.1085 0 2 2 8
+1.1028 0 3 8 0
+1.1024 0 6 6 1
+1.1019 0 8 0 3
+1.1018 0 1 6 6
+1.1014 0 6 1 6
+1.101 0 0 3 8
+1.0953 0 3 8 1
+1.0952 0 1 8 3
+1.095 0 4 7 3
+1.0949 0 3 7 4
+1.0946 0 8 3 1
+1.0946 0 7 4 3
+1.0944 0 8 1 3
+1.0944 0 7 3 4
+1.0939 0 3 4 7
+1.0938 0 4 3 7
+1.0936 0 1 3 8
+1.0935 0 3 1 8
+1.0878 0 5 7 1
+1.0875 0 7 5 1
+1.0874 0 1 7 5
+1.0871 0 5 5 5
+1.0868 0 7 1 5
+1.0867 0 1 5 7
+1.0864 0 5 1 7
+1.0804 1 6 6 2
+1.0799 1 2 6 6
+1.0795 1 6 2 6
+1.0737 0 3 8 2
+1.0736 0 2 8 3
+1.0732 0 5 6 4
+1.0731 0 8 3 2
+1.073 0 6 5 4
+1.073 0 4 6 5
+1.0729 0 8 2 3
+1.0728 0 6 4 5
+1.0727 0 4 5 6
+1.0726 0 5 4 6
+1.0721 0 2 3 8
+1.072 0 3 2 8
+1.0666 0 5 7 2
+1.0663 0 7 5 2
+1.0663 0 2 7 5
+1.0658 0 7 2 5
+1.0656 0 2 5 7
+1.0654 0 5 2 7
+1.0534 0 4 8 0
+1.0531 0 0 8 4
+1.0529 0 8 4 0
+1.0525 0 8 0 4
+1.0519 0 0 4 8
+1.0517 0 4 0 8
+1.0468 0 4 8 1
+1.0466 0 1 8 4
+1.0465 0 4 7 4
+1.0464 0 6 6 3
+1.0463 0 8 4 1
+1.0461 0 7 4 4
+1.046 0 3 6 6
+1.046 0 8 1 4
+1.0457 0 6 3 6
+1.0456 0 4 4 7
+1.0454 0 1 4 8
+1.0452 0 4 1 8
+1.0403 0 3 8 3
+1.0397 0 8 3 3
+1.0389 0 3 3 8
+1.0343 0 1 9 1
+1.0339 0 5 7 3
+1.0336 0 3 7 5
+1.0336 0 7 5 3
+1.0335 0 9 1 1
+1.0332 0 7 3 5
+1.033 0 3 5 7
+1.0329 0 5 3 7
+1.0323 0 1 1 9
+1.0279 0 4 8 2
+1.0277 0 2 8 4
+1.0274 0 8 4 2
+1.0271 0 8 2 4
+1.0266 0 2 4 8
+1.0265 0 4 2 8
+1.022 0 0 9 2
+1.0216 0 7 6 0
+1.0213 0 9 2 0
+1.0212 0 0 7 6
+1.0206 0 6 0 7
+1.0201 0 2 0 9
+1.0161 0 2 9 1
+1.016 0 1 9 2
+1.0158 0 6 7 1
+1.0157 0 7 6 1
+1.0153 0 9 2 1
+1.0153 0 5 6 5
+1.0153 0 1 7 6
+1.0153 0 9 1 2
+1.0152 0 6 5 5
+1.0151 0 5 5 6
+1.015 0 1 6 7
+1.0148 0 7 1 6
+1.0147 0 6 1 7
+1.0142 0 1 2 9
+1.0142 0 2 1 9
+1.0038 0 6 6 4
+1.0036 0 4 6 6
+1.0034 0 6 4 6
+0.9987 0 2 9 2
+0.9986 0 5 8 0
+0.9985 0 4 8 3
+0.9985 0 6 7 2
+0.9984 0 3 8 4
+0.9983 0 7 6 2
+0.9981 0 8 4 3
+0.998 0 9 2 2
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3.jcpds
new file mode 100755
index 0000000..acb62a4
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mn2o3.jcpds
@@ -0,0 +1,35 @@
+3
+mn2o3 bixbyite (JCPDS24-0508, EOS from guess)
+ 4 200.000 4.00000
+9.4161 9.4237 9.4051
+(blank for future use)
+d-spacing I/I0 h k l
+4.706 1 2 0 0
+3.844 18 2 1 1
+3.1379 1 1 2 2
+2.7185 100 2 2 2
+2.5157 2 3 1 2
+2.354 11 4 0 0
+2.2192 1 4 1 1
+2.1054 1 4 0 2
+2.0069 9 3 2 3
+1.921 1 2 2 4
+1.8462 10 4 1 3
+1.7191 2 5 2 1
+1.6643 27 0 4 4
+1.6143 2 3 3 4
+1.5686 1 4 2 4
+1.5272 2 5 2 3
+1.4887 1 6 0 2
+1.4524 4 1 4 5
+1.4196 11 6 2 2
+1.3883 3 6 3 1
+1.3589 3 4 4 4
+1.3314 1 5 3 4
+1.3052 1 6 0 4
+1.2814 1 7 2 1
+1.2802 1 1 2 7
+1.2585 1 2 6 4
+1.1986 1 7 2 3
+1.1772 1 8 0 0
+1.1755 1 0 0 8
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mo.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mo.jcpds
new file mode 100755
index 0000000..c7a36ad
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/mo.jcpds
@@ -0,0 +1,13 @@
+3
+Molibdenum (JCPDS 42-1120, EOS from Hixson and Fritz, 1992)
+ 1 267.000 3.86000
+ 3.14720
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.2247 100. 1.00 1.00 0.00
+ 1.5738 16. 2.00 0.00 0.00
+ 1.2847 31. 2.00 1.00 1.00
+ 1.1129 9. 2.00 2.00 0.00
+ 0.9953 14. 3.00 1.00 0.00
+ 0.9085 3. 2.00 2.00 2.00
+ 0.8411 24. 3.00 2.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/n2-epsilon.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/n2-epsilon.jcpds
new file mode 100755
index 0000000..077bda2
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/n2-epsilon.jcpds
@@ -0,0 +1,12 @@
+3
+N2 epsilon (based on Olijnyk, EOS is fitted for BM3)
+ 2 1.26 6.9
+10.0348 14.3498
+(blank for future use)
+d-spacing I/I0 h k l
+3.716743 30 2 0 2
+3.462094 90 1 1 3
+3.316019 60 1 0 4
+3.20185 100 2 1 1
+2.986573 94 1 2 2
+2.76643 48 0 2 4
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/n2-xi.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/n2-xi.jcpds
new file mode 100755
index 0000000..6ef40e5
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/n2-xi.jcpds
@@ -0,0 +1,15 @@
+3
+N2 Gregoryanz (2007)
+ 7 0 0
+ 0
+(blank for future use)
+I/I0 h k l Pr dsp Pr1 dsp1
+ 90. 0.00 1.00 1.00 62.95704 2.49866 116.24458 2.32077
+ 60. 0.00 0.00 3.00 63.35847 2.34087 116.16716 2.22152
+ 60. 1.00 1.00 1.00 63.19083 2.31320 116.62960 2.17600
+ 80. 1.00 0.00 3.00 63.49998 2.22862 116.75675 2.07513
+ 70. 3.00 0.00 1.00 64.00138 2.15219 116.44401 2.00189
+ 10. 1.00 1.00 2.00 63.56406 2.01712 116.56705 1.90428
+ 10. 2.00 1.00 1.00 63.58867 1.99759 116.39531 1.87987
+ 10. 2.00 0.00 3.00 63.86911 1.93579 116.40556 1.87173
+100. 3.00 0.00 2.00 63.34361 1.87067 117.12178 1.78556
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/na-hol.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/na-hol.jcpds
new file mode 100755
index 0000000..7639b69
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/na-hol.jcpds
@@ -0,0 +1,26 @@
+3
+NaAlSi3O8 hollandite (Zhang et al 1993, EOS from jd by Zhao et al 1997)
+ 3 125.000 5.00000
+ 9.30000 2.73048
+(blank for future use)
+d-spacing I/I0 h k l
+ 6.5761 100. 1.00 1.00 0.00
+ 4.6500 89. 0.00 2.00 0.00
+ 3.2880 12. 2.00 2.00 0.00
+ 2.9409 91. 1.00 3.00 0.00
+ 2.9409 30. 3.00 1.00 0.00
+ 2.3250 16. 0.00 4.00 0.00
+ 2.2823 18. 2.00 1.00 1.00
+ 2.2823 26. 1.00 2.00 1.00
+ 2.0795 16. 2.00 4.00 0.00
+ 2.0488 79. 0.00 3.00 1.00
+ 1.8749 5. 3.00 2.00 1.00
+ 1.8239 8. 5.00 1.00 0.00
+ 1.8239 6. 1.00 5.00 0.00
+ 1.7388 21. 4.00 1.00 1.00
+ 1.7388 16. 1.00 4.00 1.00
+ 1.5500 21. 0.00 6.00 0.00
+ 1.4595 8. 5.00 2.00 1.00
+ 1.4595 19. 2.00 5.00 1.00
+ 1.3650 10. 0.00 0.00 2.00
+ 1.2822 16. 5.00 4.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/na-hol_f.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/na-hol_f.jcpds
new file mode 100755
index 0000000..0f94b98
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/na-hol_f.jcpds
@@ -0,0 +1,101 @@
+3
+NaAlSi3O8 hollandite (Zhang et al 1993, EOS from jd by Zhao et al 1997)
+ 3 125.000 5.00000
+ 9.30000 2.73048
+(blank for future use)
+d-spacing I/I0 h k l
+ 6.5761 100. 1.00 1.00 0.00
+ 4.6500 89. 0.00 2.00 0.00
+ 3.2880 12. 2.00 2.00 0.00
+ 2.9409 91. 1.00 3.00 0.00
+ 2.9409 30. 3.00 1.00 0.00
+ 2.6195 3. 0.00 1.00 1.00
+ 2.3250 16. 0.00 4.00 0.00
+ 2.2823 18. 2.00 1.00 1.00
+ 2.2823 26. 1.00 2.00 1.00
+ 2.1920 1. 3.00 3.00 0.00
+ 2.0795 16. 2.00 4.00 0.00
+ 2.0795 1. 4.00 2.00 0.00
+ 2.0488 79. 0.00 3.00 1.00
+ 1.8749 1. 2.00 3.00 1.00
+ 1.8749 5. 3.00 2.00 1.00
+ 1.8239 8. 5.00 1.00 0.00
+ 1.8239 6. 1.00 5.00 0.00
+ 1.7388 21. 4.00 1.00 1.00
+ 1.7388 16. 1.00 4.00 1.00
+ 1.6440 2. 4.00 4.00 0.00
+ 1.5949 1. 5.00 3.00 0.00
+ 1.5949 1. 3.00 5.00 0.00
+ 1.5500 21. 0.00 6.00 0.00
+ 1.5371 1. 3.00 4.00 1.00
+ 1.5371 1. 0.00 5.00 1.00
+ 1.5371 1. 4.00 3.00 1.00
+ 1.4705 1. 6.00 2.00 0.00
+ 1.4705 1. 2.00 6.00 0.00
+ 1.4595 8. 5.00 2.00 1.00
+ 1.4595 19. 2.00 5.00 1.00
+ 1.3650 10. 0.00 0.00 2.00
+ 1.3365 1. 1.00 1.00 2.00
+ 1.3340 1. 1.00 6.00 1.00
+ 1.3340 1. 6.00 1.00 1.00
+ 1.3152 1. 5.00 5.00 0.00
+ 1.3152 1. 1.00 7.00 0.00
+ 1.3152 1. 7.00 1.00 0.00
+ 1.3097 1. 0.00 2.00 2.00
+ 1.2897 1. 6.00 4.00 0.00
+ 1.2897 1. 4.00 6.00 0.00
+ 1.2822 16. 5.00 4.00 1.00
+ 1.2822 3. 4.00 5.00 1.00
+ 1.2607 1. 2.00 2.00 2.00
+ 1.2381 4. 1.00 3.00 2.00
+ 1.2381 1. 3.00 1.00 2.00
+ 1.2361 1. 3.00 6.00 1.00
+ 1.2361 1. 6.00 3.00 1.00
+ 1.2212 1. 3.00 7.00 0.00
+ 1.2212 2. 7.00 3.00 0.00
+ 1.1946 1. 0.00 7.00 1.00
+ 1.1771 2. 0.00 4.00 2.00
+ 1.1625 1. 0.00 8.00 0.00
+ 1.1587 1. 3.00 3.00 2.00
+ 1.1571 1. 2.00 7.00 1.00
+ 1.1571 1. 7.00 2.00 1.00
+ 1.1411 1. 4.00 2.00 2.00
+ 1.1411 1. 2.00 4.00 2.00
+ 1.1278 1. 8.00 2.00 0.00
+ 1.1278 1. 2.00 8.00 0.00
+ 1.0960 1. 6.00 6.00 0.00
+ 1.0928 1. 1.00 5.00 2.00
+ 1.0928 1. 5.00 1.00 2.00
+ 1.0914 1. 5.00 6.00 1.00
+ 1.0914 1. 6.00 5.00 1.00
+ 1.0811 1. 5.00 7.00 0.00
+ 1.0811 1. 7.00 5.00 0.00
+ 1.0626 1. 7.00 4.00 1.00
+ 1.0626 1. 8.00 1.00 1.00
+ 1.0626 1. 4.00 7.00 1.00
+ 1.0626 1. 1.00 8.00 1.00
+ 1.0502 1. 4.00 4.00 2.00
+ 1.0398 1. 4.00 8.00 0.00
+ 1.0398 1. 8.00 4.00 0.00
+ 1.0371 1. 5.00 3.00 2.00
+ 1.0371 1. 3.00 5.00 2.00
+ 1.0270 1. 1.00 9.00 0.00
+ 1.0270 1. 9.00 1.00 0.00
+ 1.0244 2. 0.00 6.00 2.00
+ 1.0111 1. 8.00 3.00 1.00
+ 1.0111 1. 3.00 8.00 1.00
+ 1.0004 1. 2.00 6.00 2.00
+ 1.0004 1. 6.00 2.00 2.00
+ 0.9803 1. 3.00 9.00 0.00
+ 0.9803 1. 9.00 3.00 0.00
+ 0.9664 1. 0.00 9.00 1.00
+ 0.9471 1. 1.00 7.00 2.00
+ 0.9471 1. 5.00 5.00 2.00
+ 0.9471 1. 7.00 1.00 2.00
+ 0.9462 1. 9.00 2.00 1.00
+ 0.9462 1. 7.00 6.00 1.00
+ 0.9462 1. 2.00 9.00 1.00
+ 0.9462 1. 6.00 7.00 1.00
+ 0.9394 1. 7.00 7.00 0.00
+ 0.9374 1. 6.00 4.00 2.00
+ 0.9374 1. 4.00 6.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/nacl-b2-fei.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/nacl-b2-fei.jcpds
new file mode 100755
index 0000000..13fe4ae
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/nacl-b2-fei.jcpds
@@ -0,0 +1,23 @@
+3
+NaCl B2 (GSAS calculation, EOS from Fei)
+ 1 29.9 4.33
+ 3.458
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.4669 6. 1.00 0.00 0.00
+ 2.4515 100. 1.00 1.00 0.00
+ 2.0016 1. 1.00 1.00 1.00
+ 1.7335 8. 2.00 0.00 0.00
+ 1.5504 1. 2.00 1.00 0.00
+ 1.4154 21. 2.00 1.00 1.00
+ 1.2257 4. 2.00 2.00 0.00
+ 1.1556 1. 2.00 2.00 1.00
+ 1.1556 1. 3.00 0.00 0.00
+ 1.0963 7. 3.00 1.00 0.00
+ 1.0453 1. 3.00 1.00 1.00
+ 1.0008 1. 2.00 2.00 2.00
+ 0.9615 1. 3.00 2.00 0.00
+ 0.9266 3. 3.00 2.00 1.00
+ 0.8667 1. 4.00 0.00 0.00
+ 0.8408 1. 4.00 1.00 0.00
+ 0.8408 1. 3.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ne.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ne.jcpds
new file mode 100755
index 0000000..b9ec251
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ne.jcpds
@@ -0,0 +1,11 @@
+3
+Neon FCC (made by Shim, EOS from Hemley et al 1989)
+ 1 7.23 5.21
+ 4.1225
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.3802 100. 1.00 1.00 1.00
+ 2.0613 40. 2.00 0.00 0.00
+ 1.4575 25. 2.00 2.00 0.00
+ 1.2430 30. 3.00 1.00 1.00
+ 1.1901 12. 2.00 2.00 2.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/phaseD.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/phaseD.jcpds
new file mode 100755
index 0000000..f4bb21a
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/phaseD.jcpds
@@ -0,0 +1,71 @@
+3
+PHASE D (GSAS, EOS from Shieh 2000)
+ 2 134.000 4.30000
+ 4.7453 4.3450
+(blank for future use)
+d-spacing I/I0 h k l
+4.3450 33 0 0 1
+4.1096 13 1 0 0
+2.9857 100 1 0 1
+2.3727 11 1 1 0
+2.1725 0 0 0 2
+2.0824 13 1 1 1
+2.0824 52 1 1 -1
+2.0548 3 2 0 0
+1.9206 0 1 0 2
+1.8575 20 2 0 1
+1.6023 38 1 1 -2
+1.6023 21 1 1 2
+1.5533 0 2 1 0
+1.4928 1 2 0 2
+1.4626 3 2 1 1
+1.4626 16 2 1 -1
+1.4483 0 0 0 3
+1.3699 29 3 0 0
+1.3660 7 1 0 3
+1.3065 3 3 0 1
+1.2635 0 2 1 2
+1.2635 1 2 1 -2
+1.2362 5 1 1 3
+1.2362 0 1 1 -3
+1.1863 2 2 2 0
+1.1838 4 2 0 3
+1.1587 1 3 0 2
+1.1444 0 2 2 -1
+1.1444 2 2 2 1
+1.1398 1 3 1 0
+1.1025 4 3 1 1
+1.1025 1 3 1 -1
+1.0863 1 0 0 4
+1.0593 3 2 1 3
+1.0593 1 2 1 -3
+1.0502 0 1 0 4
+1.0412 3 2 2 -2
+1.0412 4 2 2 2
+1.0274 1 4 0 0
+1.0093 0 3 1 2
+1.0093 0 3 1 -2
+0.9998 1 4 0 1
+0.9952 0 3 0 3
+0.9877 0 1 1 -4
+0.9877 1 1 1 4
+0.9603 1 2 0 4
+0.9428 1 3 2 0
+0.9288 0 4 0 2
+0.9214 0 3 2 -1
+0.9214 1 3 2 1
+0.9178 0 2 2 3
+0.9178 1 2 2 -3
+0.8968 0 4 1 0
+0.8957 0 3 1 3
+0.8957 0 3 1 -3
+0.8902 0 2 1 -4
+0.8902 0 2 1 4
+0.8783 0 4 1 1
+0.8783 0 4 1 -1
+0.8690 0 0 0 5
+0.8649 0 3 2 -2
+0.8649 0 3 2 2
+0.8511 1 3 0 4
+0.8502 0 1 0 5
+0.8380 0 4 0 3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3-ii.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3-ii.jcpds
new file mode 100755
index 0000000..09c17b1
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3-ii.jcpds
@@ -0,0 +1,66 @@
+3
+Rh2o3 -II phase (GSAS, EOS from guess)
+ 4 40.000 4.00000
+ 5.168 5.381 7.242
+(blank for future use)
+d-spacing I/I0 h k l
+3.6213 6 0 0 2
+3.3145 7 1 1 1
+2.6907 27 0 2 0
+2.5975 100 1 1 2
+2.5843 25 2 0 0
+2.5223 1 0 2 1
+2.3296 1 2 1 0
+2.2668 1 1 2 1
+2.2177 1 2 1 1
+2.1874 1 1 0 3
+2.1598 1 0 2 2
+2.1036 1 2 0 2
+2.0264 2 1 1 3
+1.9928 1 1 2 2
+1.8639 20 2 2 0
+1.8107 8 0 0 4
+1.8050 3 2 2 1
+1.7969 2 0 2 3
+1.6572 2 2 2 2
+1.6501 7 1 3 1
+1.6287 6 1 1 4
+1.6003 1 3 1 1
+1.5349 14 1 3 2
+1.5022 7 0 2 4
+1.4946 19 3 1 2
+1.4829 7 2 0 4
+1.4753 2 2 2 3
+1.3870 1 1 3 3
+1.3502 1 1 1 5
+1.3454 1 0 4 0
+1.3227 1 0 4 1
+1.2987 5 2 2 4
+1.2922 2 4 0 0
+1.2373 1 1 3 4
+1.2247 1 3 3 1
+1.2159 1 3 1 4
+1.1933 1 2 4 0
+1.1775 1 2 4 1
+1.1753 3 3 3 2
+1.1752 1 0 4 3
+1.1648 2 4 2 0
+1.1484 2 1 1 6
+1.1014 1 0 2 6
+1.1011 1 1 3 5
+1.0937 1 2 0 6
+1.0698 1 2 4 3
+1.0518 1 4 0 4
+1.0427 1 1 5 1
+1.0132 1 2 2 6
+1.0117 1 1 5 2
+0.9964 1 2 4 4
+0.9832 1 1 3 6
+0.9796 1 4 2 4
+0.9775 2 5 1 2
+0.9723 1 3 1 6
+0.9431 1 3 3 5
+0.9056 1 3 5 1
+0.8798 1 1 1 8
+0.8695 1 5 3 2
+0.8521 1 1 5 5
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3-iii.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3-iii.jcpds
new file mode 100755
index 0000000..a1412a0
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3-iii.jcpds
@@ -0,0 +1,87 @@
+3
+Rh2o3 -III phase (GSAS, EOS from guess)
+ 4 20.000 4.00000
+ 5.1477 5.4425 14.6977
+(blank for future use)
+d-spacing I/I0 h k l
+7.3489 3 0 0 2
+3.6744 11 0 0 4
+3.6244 13 1 1 1
+3.3331 2 1 1 2
+2.9727 6 1 1 3
+2.7213 22 0 2 0
+2.6758 3 0 2 1
+2.6210 100 1 1 4
+2.5739 28 2 0 0
+2.3789 2 0 2 3
+2.3111 2 1 1 5
+2.2982 1 2 1 1
+2.2119 1 1 0 6
+2.1868 1 0 2 4
+2.1595 1 1 2 3
+2.1081 2 2 0 4
+2.0492 3 1 1 6
+1.9969 1 0 2 5
+1.8699 18 2 2 0
+1.8550 2 2 2 1
+1.8372 8 0 0 8
+1.8309 1 1 1 7
+1.8206 1 0 2 6
+1.7470 4 2 2 3
+1.6995 7 1 3 1
+1.6665 3 2 2 4
+1.6665 1 1 3 2
+1.6624 2 0 2 7
+1.6490 8 1 1 8
+1.6153 5 1 3 3
+1.5778 2 2 2 5
+1.5522 1 3 1 3
+1.5511 9 1 3 4
+1.5227 5 0 2 8
+1.4966 1 1 1 9
+1.4954 6 2 0 8
+1.4949 18 3 1 4
+1.4788 1 1 3 5
+1.4698 1 0 0 10
+1.3964 3 2 2 7
+1.3608 1 3 1 6
+1.3264 1 1 3 7
+1.3110 1 0 4 3
+1.3105 4 2 2 8
+1.2932 1 0 2 10
+1.2869 2 4 0 0
+1.2763 1 2 0 10
+1.2583 1 1 1 11
+1.2521 1 1 3 8
+1.2422 1 3 3 1
+1.2348 1 0 4 5
+1.2248 1 0 0 12
+1.2220 2 3 1 8
+1.2081 1 3 3 3
+1.2029 1 2 4 0
+1.1989 1 2 4 1
+1.1814 1 1 3 9
+1.1805 2 3 3 4
+1.1682 1 2 4 3
+1.1640 1 1 1 12
+1.1634 2 4 2 0
+1.1555 1 2 2 10
+1.1418 1 0 4 7
+1.1319 1 4 2 3
+1.1169 1 0 2 12
+1.1133 1 2 4 5
+1.1060 1 2 0 12
+1.0797 1 2 4 6
+1.0622 1 1 5 1
+1.0541 1 4 0 8
+1.0531 1 1 3 11
+1.0437 1 2 4 7
+1.0407 1 1 5 3
+1.0246 1 2 2 12
+1.0108 1 1 1 14
+0.9829 1 4 2 8
+0.9806 1 3 1 12
+0.9753 2 5 1 4
+0.9174 1 3 5 1
+0.9115 1 3 3 11
+0.8921 1 1 1 16
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3.jcpds
new file mode 100755
index 0000000..8695daf
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/rh2o3.jcpds
@@ -0,0 +1,44 @@
+3
+Rh2O3 corundum phase (GSAS, EOS?)
+ 2 20.000 4.00000
+ 5.127 13.84
+(blank for future use)
+d-spacing I/I0 h k l
+3.7370 50 1 0 -2
+2.7292 84 1 0 4
+2.5635 100 1 1 0
+2.3067 12 0 0 6
+2.2408 6 1 1 3
+2.1139 6 2 0 2
+1.8685 28 2 0 -4
+1.7147 59 1 1 6
+1.6309 6 2 1 -2
+1.6120 1 1 0 -8
+1.5100 23 2 1 4
+1.4800 23 3 0 0
+1.3213 10 1 0 10
+1.2818 8 2 2 0
+1.2457 4 3 0 6
+1.2457 4 3 0 -6
+1.2124 2 3 1 2
+1.1745 5 2 0 -10
+1.1602 5 3 1 -4
+1.1533 1 0 0 12
+1.1204 8 2 2 6
+1.0960 1 4 0 -2
+1.0677 6 2 1 10
+1.0570 2 4 0 4
+1.0518 1 1 1 12
+0.9772 2 3 2 4
+0.9689 3 4 1 0
+0.9649 1 1 0 -14
+0.9200 2 3 1 -10
+0.9097 1 3 0 12
+0.9097 1 3 0 -12
+0.8933 2 4 1 -6
+0.8933 2 4 1 6
+0.8659 1 4 0 10
+0.8601 1 5 0 -4
+0.8545 1 3 3 0
+0.8518 1 2 1 -14
+0.8490 1 1 0 16
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-cacl2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-cacl2.jcpds
new file mode 100755
index 0000000..d5a828a
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-cacl2.jcpds
@@ -0,0 +1,54 @@
+3
+cacl2-type silica (by see notebook, EOS from Stishovite)
+ 4 298.000 3.98000
+ 4.25700 4.05692 2.66488
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.9170 100. 1.00 1.00 0.00
+ 2.2589 18. 1.00 0.00 1.00
+ 2.2187 32. 0.00 1.00 1.00
+ 2.1285 1. 2.00 0.00 0.00
+ 2.0025 1. 0.00 2.00 0.00
+ 1.9675 39. 1.00 1.00 1.00
+ 1.8796 9. 2.00 1.00 0.00
+ 1.8120 1. 1.00 2.00 0.00
+ 1.5360 25. 2.00 1.00 1.00
+ 1.4985 20. 1.00 2.00 1.00
+ 1.4585 20. 2.00 2.00 0.00
+ 1.3375 4. 3.00 1.00 0.00
+ 1.3325 8. 0.00 0.00 2.00
+ 1.2794 0. 2.00 2.00 1.00
+ 1.2738 0. 1.00 3.00 0.00
+ 1.2525 5. 3.00 0.00 1.00
+ 1.2120 7. 1.00 1.00 2.00
+ 1.1954 1. 3.00 1.00 1.00
+ 1.1936 5. 0.00 3.00 1.00
+ 1.1578 0. 3.00 2.00 0.00
+ 1.1493 2. 1.00 3.00 1.00
+ 1.1310 0. 2.00 3.00 0.00
+ 1.1294 0. 2.00 0.00 2.00
+ 1.1094 1. 0.00 2.00 2.00
+ 1.0870 0. 2.00 1.00 2.00
+ 1.0735 0. 1.00 2.00 2.00
+ 1.0643 0. 4.00 0.00 0.00
+ 1.0619 1. 3.00 2.00 1.00
+ 1.0411 2. 2.00 3.00 1.00
+ 1.0286 0. 4.00 1.00 0.00
+ 1.0013 2. 0.00 4.00 0.00
+ 0.9838 2. 2.00 2.00 2.00
+ 0.9747 0. 1.00 4.00 0.00
+ 0.9723 1. 3.00 3.00 0.00
+ 0.9596 0. 4.00 1.00 1.00
+ 0.9440 0. 3.00 1.00 2.00
+ 0.9398 2. 4.00 2.00 0.00
+ 0.9208 0. 1.00 3.00 2.00
+ 0.9154 0. 1.00 4.00 1.00
+ 0.9134 0. 3.00 3.00 1.00
+ 0.9060 1. 2.00 4.00 0.00
+ 0.8863 0. 4.00 2.00 1.00
+ 0.8740 0. 3.00 2.00 2.00
+ 0.8696 0. 1.00 0.00 3.00
+ 0.8673 0. 0.00 1.00 3.00
+ 0.8623 0. 2.00 3.00 2.00
+ 0.8578 0. 2.00 4.00 1.00
+ 0.8498 3. 1.00 1.00 3.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-cacl2mono.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-cacl2mono.jcpds
new file mode 100755
index 0000000..2cf7802
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-cacl2mono.jcpds
@@ -0,0 +1,54 @@
+3
+cacl2-type mono cheating (by see notebook, EOS from Stishovite)
+ 5 298.000 3.98000
+ 4.25700 4.05692 2.66488 90.
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.9170 100. 1.00 1.00 0.00
+ 2.2589 18. 1.00 0.00 1.00
+ 2.2187 32. 0.00 1.00 1.00
+ 2.1285 1. 2.00 0.00 0.00
+ 2.0025 1. 0.00 2.00 0.00
+ 1.9675 39. 1.00 1.00 1.00
+ 1.8796 9. 2.00 1.00 0.00
+ 1.8120 1. 1.00 2.00 0.00
+ 1.5360 25. 2.00 1.00 1.00
+ 1.4985 20. 1.00 2.00 1.00
+ 1.4585 20. 2.00 2.00 0.00
+ 1.3375 4. 3.00 1.00 0.00
+ 1.3325 8. 0.00 0.00 2.00
+ 1.2794 0. 2.00 2.00 1.00
+ 1.2738 0. 1.00 3.00 0.00
+ 1.2525 5. 3.00 0.00 1.00
+ 1.2120 7. 1.00 1.00 2.00
+ 1.1954 1. 3.00 1.00 1.00
+ 1.1936 5. 0.00 3.00 1.00
+ 1.1578 0. 3.00 2.00 0.00
+ 1.1493 2. 1.00 3.00 1.00
+ 1.1310 0. 2.00 3.00 0.00
+ 1.1294 0. 2.00 0.00 2.00
+ 1.1094 1. 0.00 2.00 2.00
+ 1.0870 0. 2.00 1.00 2.00
+ 1.0735 0. 1.00 2.00 2.00
+ 1.0643 0. 4.00 0.00 0.00
+ 1.0619 1. 3.00 2.00 1.00
+ 1.0411 2. 2.00 3.00 1.00
+ 1.0286 0. 4.00 1.00 0.00
+ 1.0013 2. 0.00 4.00 0.00
+ 0.9838 2. 2.00 2.00 2.00
+ 0.9747 0. 1.00 4.00 0.00
+ 0.9723 1. 3.00 3.00 0.00
+ 0.9596 0. 4.00 1.00 1.00
+ 0.9440 0. 3.00 1.00 2.00
+ 0.9398 2. 4.00 2.00 0.00
+ 0.9208 0. 1.00 3.00 2.00
+ 0.9154 0. 1.00 4.00 1.00
+ 0.9134 0. 3.00 3.00 1.00
+ 0.9060 1. 2.00 4.00 0.00
+ 0.8863 0. 4.00 2.00 1.00
+ 0.8740 0. 3.00 2.00 2.00
+ 0.8696 0. 1.00 0.00 3.00
+ 0.8673 0. 0.00 1.00 3.00
+ 0.8623 0. 2.00 3.00 2.00
+ 0.8578 0. 2.00 4.00 1.00
+ 0.8498 3. 1.00 1.00 3.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-coe.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-coe.jcpds
new file mode 100755
index 0000000..cdfcf38
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-coe.jcpds
@@ -0,0 +1,410 @@
+3
+coesite (all data from Levien and Prewitt, 1981)
+ 5 96.0000 8.40000
+ 7.13560 12.3692 7.17363 120.340
+(blank for future use)
+d-spacing I/I0 h k l
+ 6.1846 7. 0.00 2.00 0.00
+ 5.5474 2. 1.00 1.00 -1.00
+ 5.5129 1. 1.00 1.00 0.00
+ 4.3755 8. 0.00 2.00 1.00
+ 3.4449 7. 1.00 1.00 -2.00
+ 3.4343 14. 1.00 3.00 -1.00
+ 3.4261 42. 1.00 3.00 0.00
+ 3.4201 72. 1.00 1.00 1.00
+ 3.1033 99. 2.00 0.00 -2.00
+ 3.0956 86. 0.00 0.00 2.00
+ 3.0923 100. 0.00 4.00 0.00
+ 3.0903 85. 2.00 2.00 -1.00
+ 3.0792 18. 2.00 0.00 0.00
+ 2.7737 2. 2.00 2.00 -2.00
+ 2.7682 7. 0.00 2.00 2.00
+ 2.7664 6. 0.00 4.00 1.00
+ 2.7564 14. 2.00 2.00 0.00
+ 2.7061 9. 1.00 3.00 -2.00
+ 2.6941 29. 1.00 3.00 1.00
+ 2.3367 6. 2.00 4.00 -1.00
+ 2.3050 4. 1.00 1.00 -3.00
+ 2.2989 0. 3.00 1.00 -2.00
+ 2.2980 0. 1.00 5.00 -1.00
+ 2.2956 1. 1.00 5.00 0.00
+ 2.2926 4. 1.00 1.00 2.00
+ 2.2915 3. 3.00 1.00 -1.00
+ 2.1956 1. 2.00 2.00 -3.00
+ 2.1905 4. 2.00 4.00 -2.00
+ 2.1877 3. 0.00 4.00 2.00
+ 2.1819 4. 2.00 4.00 0.00
+ 2.1786 0. 2.00 2.00 1.00
+ 2.0615 0. 0.00 6.00 0.00
+ 2.0405 0. 3.00 1.00 -3.00
+ 2.0391 1. 1.00 3.00 -3.00
+ 2.0364 0. 1.00 5.00 -2.00
+ 2.0349 3. 3.00 3.00 -2.00
+ 2.0313 7. 1.00 5.00 1.00
+ 2.0305 1. 1.00 3.00 2.00
+ 2.0297 0. 3.00 3.00 -1.00
+ 2.0251 3. 3.00 1.00 0.00
+ 1.9576 0. 0.00 2.00 3.00
+ 1.9560 0. 0.00 6.00 1.00
+ 1.8703 2. 2.00 4.00 -3.00
+ 1.8597 2. 2.00 4.00 1.00
+ 1.8491 5. 3.00 3.00 -3.00
+ 1.8376 8. 3.00 3.00 0.00
+ 1.7934 10. 2.00 0.00 -4.00
+ 1.7850 6. 2.00 6.00 -1.00
+ 1.7838 0. 4.00 0.00 -2.00
+ 1.7794 0. 2.00 0.00 2.00
+ 1.7224 0. 2.00 2.00 -4.00
+ 1.7172 1. 2.00 6.00 -2.00
+ 1.7166 2. 0.00 4.00 3.00
+ 1.7159 3. 0.00 6.00 2.00
+ 1.7140 2. 4.00 2.00 -2.00
+ 1.7131 7. 2.00 6.00 0.00
+ 1.7101 2. 2.00 2.00 2.00
+ 1.7067 0. 3.00 1.00 -4.00
+ 1.7041 0. 1.00 1.00 -4.00
+ 1.7023 1. 1.00 5.00 -3.00
+ 1.6998 0. 3.00 5.00 -2.00
+ 1.6995 1. 1.00 7.00 -1.00
+ 1.6985 4. 1.00 7.00 0.00
+ 1.6973 0. 1.00 5.00 2.00
+ 1.6971 7. 1.00 1.00 3.00
+ 1.6968 0. 3.00 5.00 -1.00
+ 1.6917 0. 3.00 1.00 1.00
+ 1.6555 10. 4.00 2.00 -3.00
+ 1.6482 1. 4.00 2.00 -1.00
+ 1.5899 0. 3.00 3.00 -4.00
+ 1.5878 1. 1.00 3.00 -4.00
+ 1.5870 0. 3.00 5.00 -3.00
+ 1.5851 2. 1.00 7.00 -2.00
+ 1.5827 2. 1.00 7.00 1.00
+ 1.5822 3. 1.00 3.00 3.00
+ 1.5797 2. 3.00 5.00 0.00
+ 1.5778 0. 3.00 3.00 1.00
+ 1.5516 2. 4.00 0.00 -4.00
+ 1.5514 2. 2.00 4.00 -4.00
+ 1.5493 0. 2.00 6.00 -3.00
+ 1.5478 1. 0.00 0.00 4.00
+ 1.5462 2. 0.00 8.00 0.00
+ 1.5452 1. 4.00 4.00 -2.00
+ 1.5433 0. 2.00 6.00 1.00
+ 1.5423 3. 2.00 4.00 2.00
+ 1.5396 1. 4.00 0.00 0.00
+ 1.5050 0. 4.00 2.00 -4.00
+ 1.5019 0. 4.00 4.00 -3.00
+ 1.5015 0. 0.00 2.00 4.00
+ 1.5001 1. 0.00 8.00 1.00
+ 1.4964 0. 4.00 4.00 -1.00
+ 1.4940 1. 4.00 2.00 0.00
+ 1.4585 1. 0.00 6.00 3.00
+ 1.4187 1. 2.00 8.00 -1.00
+ 1.4162 0. 3.00 1.00 -5.00
+ 1.4140 0. 3.00 5.00 -4.00
+ 1.4125 0. 1.00 5.00 -4.00
+ 1.4115 0. 1.00 7.00 -3.00
+ 1.4101 0. 3.00 7.00 -2.00
+ 1.4099 0. 5.00 1.00 -3.00
+ 1.4086 1. 1.00 7.00 2.00
+ 1.4085 1. 1.00 5.00 3.00
+ 1.4084 0. 3.00 7.00 -1.00
+ 1.4070 1. 5.00 1.00 -2.00
+ 1.4054 0. 3.00 5.00 1.00
+ 1.4042 2. 3.00 1.00 2.00
+ 1.3883 0. 2.00 2.00 -5.00
+ 1.3868 0. 4.00 4.00 -4.00
+ 1.3841 0. 0.00 4.00 4.00
+ 1.3839 0. 2.00 8.00 -2.00
+ 1.3832 0. 0.00 8.00 2.00
+ 1.3817 0. 2.00 8.00 0.00
+ 1.3796 0. 2.00 2.00 3.00
+ 1.3782 0. 4.00 4.00 0.00
+ 1.3531 0. 2.00 6.00 -4.00
+ 1.3489 2. 4.00 6.00 -2.00
+ 1.3473 0. 3.00 3.00 -5.00
+ 1.3470 2. 2.00 6.00 2.00
+ 1.3452 3. 1.00 1.00 -5.00
+ 1.3445 1. 5.00 1.00 -4.00
+ 1.3436 2. 3.00 7.00 -3.00
+ 1.3419 0. 5.00 3.00 -3.00
+ 1.3419 0. 1.00 9.00 -1.00
+ 1.3414 3. 1.00 9.00 0.00
+ 1.3407 1. 1.00 1.00 4.00
+ 1.3394 2. 5.00 3.00 -2.00
+ 1.3392 1. 3.00 7.00 0.00
+ 1.3371 0. 5.00 1.00 -1.00
+ 1.3369 2. 3.00 3.00 2.00
+ 1.3242 3. 4.00 2.00 -5.00
+ 1.3199 2. 4.00 6.00 -3.00
+ 1.3162 0. 4.00 6.00 -1.00
+ 1.3129 2. 4.00 2.00 1.00
+ 1.2939 0. 2.00 4.00 -5.00
+ 1.2914 0. 2.00 8.00 -3.00
+ 1.2879 0. 2.00 8.00 1.00
+ 1.2869 0. 2.00 4.00 3.00
+ 1.2857 1. 1.00 3.00 -5.00
+ 1.2851 1. 5.00 3.00 -4.00
+ 1.2834 3. 1.00 9.00 -2.00
+ 1.2821 0. 1.00 9.00 1.00
+ 1.2818 1. 1.00 3.00 4.00
+ 1.2787 0. 5.00 3.00 -1.00
+ 1.2415 0. 4.00 4.00 -5.00
+ 1.2397 0. 4.00 6.00 -4.00
+ 1.2378 0. 0.00 6.00 4.00
+ 1.2374 1. 0.00 8.00 3.00
+ 1.2369 0. 0.00 10.00 0.00
+ 1.2352 0. 3.00 5.00 -5.00
+ 1.2351 0. 5.00 1.00 -5.00
+ 1.2337 0. 3.00 7.00 -4.00
+ 1.2336 1. 4.00 6.00 0.00
+ 1.2327 0. 1.00 7.00 -4.00
+ 1.2323 0. 4.00 4.00 1.00
+ 1.2310 0. 5.00 5.00 -3.00
+ 1.2301 0. 1.00 7.00 3.00
+ 1.2291 0. 5.00 5.00 -2.00
+ 1.2280 0. 3.00 7.00 1.00
+ 1.2272 1. 3.00 5.00 2.00
+ 1.2256 0. 5.00 1.00 0.00
+ 1.2141 1. 0.00 2.00 5.00
+ 1.2130 0. 0.00 10.00 1.00
+ 1.1901 1. 3.00 1.00 -6.00
+ 1.1886 0. 5.00 3.00 -5.00
+ 1.1872 1. 1.00 5.00 -5.00
+ 1.1867 0. 5.00 5.00 -4.00
+ 1.1859 0. 1.00 9.00 -3.00
+ 1.1850 1. 3.00 9.00 -2.00
+ 1.1842 1. 1.00 9.00 2.00
+ 1.1841 1. 1.00 5.00 4.00
+ 1.1840 0. 3.00 9.00 -1.00
+ 1.1816 0. 5.00 5.00 -1.00
+ 1.1809 0. 3.00 1.00 3.00
+ 1.1801 1. 5.00 3.00 0.00
+ 1.1743 0. 4.00 0.00 -6.00
+ 1.1731 0. 2.00 0.00 -6.00
+ 1.1720 0. 2.00 6.00 -5.00
+ 1.1710 0. 2.00 8.00 -4.00
+ 1.1698 0. 6.00 0.00 -4.00
+ 1.1687 0. 2.00 10.00 -1.00
+ 1.1684 0. 4.00 8.00 -2.00
+ 1.1678 0. 6.00 2.00 -3.00
+ 1.1671 0. 2.00 8.00 2.00
+ 1.1668 0. 2.00 6.00 3.00
+ 1.1665 0. 2.00 0.00 4.00
+ 1.1659 0. 6.00 0.00 -2.00
+ 1.1639 0. 4.00 0.00 2.00
+ 1.1537 0. 4.00 2.00 -6.00
+ 1.1525 0. 2.00 2.00 -6.00
+ 1.1495 0. 0.00 4.00 5.00
+ 1.1494 0. 6.00 2.00 -4.00
+ 1.1493 0. 4.00 8.00 -3.00
+ 1.1490 0. 2.00 10.00 -2.00
+ 1.1486 0. 0.00 10.00 2.00
+ 1.1483 0. 3.00 3.00 -6.00
+ 1.1478 0. 2.00 10.00 0.00
+ 1.1469 0. 4.00 8.00 -1.00
+ 1.1463 0. 2.00 2.00 4.00
+ 1.1457 0. 6.00 2.00 -2.00
+ 1.1448 0. 3.00 9.00 -3.00
+ 1.1438 0. 4.00 2.00 2.00
+ 1.1420 0. 3.00 9.00 0.00
+ 1.1400 0. 3.00 3.00 3.00
+ 1.1327 1. 4.00 6.00 -5.00
+ 1.1256 0. 4.00 6.00 1.00
+ 1.1111 0. 5.00 1.00 -6.00
+ 1.1100 0. 6.00 4.00 -3.00
+ 1.1095 0. 3.00 7.00 -5.00
+ 1.1095 0. 5.00 5.00 -5.00
+ 1.1090 0. 1.00 1.00 -6.00
+ 1.1065 0. 5.00 7.00 -3.00
+ 1.1065 0. 1.00 11.00 -1.00
+ 1.1062 0. 1.00 11.00 0.00
+ 1.1059 0. 1.00 1.00 5.00
+ 1.1051 0. 5.00 7.00 -2.00
+ 1.1037 0. 3.00 7.00 2.00
+ 1.1026 0. 5.00 5.00 0.00
+ 1.1014 0. 5.00 1.00 1.00
+ 1.0978 0. 4.00 4.00 -6.00
+ 1.0968 0. 2.00 4.00 -6.00
+ 1.0959 0. 6.00 2.00 -5.00
+ 1.0952 0. 4.00 8.00 -4.00
+ 1.0944 0. 2.00 10.00 -3.00
+ 1.0942 0. 6.00 4.00 -4.00
+ 1.0939 0. 0.00 8.00 4.00
+ 1.0923 0. 2.00 10.00 1.00
+ 1.0914 0. 2.00 4.00 4.00
+ 1.0910 0. 4.00 8.00 0.00
+ 1.0910 0. 6.00 4.00 -2.00
+ 1.0895 1. 6.00 2.00 -1.00
+ 1.0893 0. 4.00 4.00 2.00
+ 1.0769 0. 5.00 3.00 -6.00
+ 1.0765 0. 3.00 5.00 -6.00
+ 1.0750 0. 1.00 3.00 -6.00
+ 1.0745 0. 3.00 9.00 -4.00
+ 1.0744 0. 1.00 7.00 -5.00
+ 1.0740 0. 5.00 7.00 -4.00
+ 1.0738 0. 1.00 9.00 -4.00
+ 1.0730 0. 1.00 11.00 -2.00
+ 1.0722 0. 1.00 11.00 1.00
+ 1.0722 0. 1.00 3.00 5.00
+ 1.0721 0. 1.00 7.00 4.00
+ 1.0721 0. 1.00 9.00 3.00
+ 1.0707 0. 3.00 9.00 1.00
+ 1.0702 0. 5.00 7.00 -1.00
+ 1.0697 0. 3.00 5.00 3.00
+ 1.0681 0. 5.00 3.00 1.00
+ 1.0615 0. 0.00 6.00 5.00
+ 1.0610 0. 0.00 10.00 3.00
+ 1.0477 0. 2.00 8.00 -5.00
+ 1.0476 0. 6.00 4.00 -5.00
+ 1.0440 0. 2.00 8.00 3.00
+ 1.0421 0. 6.00 4.00 -1.00
+ 1.0344 0. 6.00 0.00 -6.00
+ 1.0319 0. 0.00 0.00 6.00
+ 1.0308 0. 0.00 12.00 0.00
+ 1.0301 0. 6.00 6.00 -3.00
+ 1.0264 1. 6.00 0.00 0.00
+ 1.0204 0. 4.00 6.00 -6.00
+ 1.0203 0. 6.00 2.00 -6.00
+ 1.0196 0. 2.00 6.00 -6.00
+ 1.0193 0. 4.00 8.00 -5.00
+ 1.0182 0. 2.00 10.00 -4.00
+ 1.0178 0. 0.00 2.00 6.00
+ 1.0176 0. 3.00 1.00 -7.00
+ 1.0174 0. 6.00 6.00 -4.00
+ 1.0170 0. 5.00 5.00 -6.00
+ 1.0168 0. 0.00 12.00 1.00
+ 1.0165 0. 4.00 10.00 -2.00
+ 1.0157 0. 5.00 7.00 -5.00
+ 1.0157 0. 2.00 10.00 2.00
+ 1.0154 0. 1.00 5.00 -6.00
+ 1.0153 0. 2.00 6.00 4.00
+ 1.0149 0. 6.00 6.00 -2.00
+ 1.0142 0. 4.00 8.00 1.00
+ 1.0140 0. 1.00 11.00 -3.00
+ 1.0135 0. 4.00 6.00 2.00
+ 1.0135 0. 3.00 11.00 -2.00
+ 1.0132 0. 7.00 1.00 -4.00
+ 1.0130 0. 1.00 5.00 5.00
+ 1.0130 0. 1.00 11.00 2.00
+ 1.0129 0. 3.00 11.00 -1.00
+ 1.0125 0. 6.00 2.00 0.00
+ 1.0117 0. 7.00 1.00 -3.00
+ 1.0105 0. 3.00 1.00 4.00
+ 1.0104 0. 5.00 7.00 0.00
+ 1.0096 0. 5.00 5.00 1.00
+ 1.0079 0. 4.00 2.00 -7.00
+ 1.0039 0. 4.00 10.00 -3.00
+ 1.0022 0. 4.00 10.00 -1.00
+ 0.9996 1. 4.00 2.00 3.00
+ 0.9918 0. 5.00 1.00 -7.00
+ 0.9911 0. 3.00 3.00 -7.00
+ 0.9903 0. 2.00 12.00 -1.00
+ 0.9902 0. 3.00 7.00 -6.00
+ 0.9894 0. 3.00 9.00 -5.00
+ 0.9885 0. 7.00 1.00 -5.00
+ 0.9880 0. 3.00 11.00 -3.00
+ 0.9873 0. 5.00 9.00 -3.00
+ 0.9871 0. 7.00 3.00 -4.00
+ 0.9863 0. 5.00 9.00 -2.00
+ 0.9862 0. 3.00 11.00 0.00
+ 0.9857 0. 7.00 3.00 -3.00
+ 0.9853 0. 3.00 9.00 2.00
+ 0.9849 0. 3.00 7.00 3.00
+ 0.9846 0. 3.00 3.00 4.00
+ 0.9844 0. 7.00 1.00 -2.00
+ 0.9829 0. 5.00 1.00 2.00
+ 0.9810 0. 2.00 2.00 -7.00
+ 0.9810 0. 6.00 4.00 -6.00
+ 0.9797 0. 6.00 6.00 -5.00
+ 0.9788 0. 0.00 4.00 6.00
+ 0.9782 0. 2.00 12.00 -2.00
+ 0.9780 0. 0.00 12.00 2.00
+ 0.9775 0. 2.00 12.00 0.00
+ 0.9765 0. 2.00 2.00 5.00
+ 0.9751 0. 6.00 6.00 -1.00
+ 0.9741 0. 6.00 4.00 0.00
+ 0.9700 0. 4.00 4.00 -7.00
+ 0.9672 0. 4.00 10.00 -4.00
+ 0.9672 0. 5.00 3.00 -7.00
+ 0.9665 0. 0.00 8.00 5.00
+ 0.9663 0. 0.00 10.00 4.00
+ 0.9643 0. 4.00 10.00 0.00
+ 0.9643 0. 1.00 9.00 -5.00
+ 0.9642 0. 7.00 3.00 -5.00
+ 0.9640 0. 5.00 9.00 -4.00
+ 0.9626 0. 1.00 9.00 4.00
+ 0.9626 0. 4.00 4.00 3.00
+ 0.9613 0. 5.00 9.00 -1.00
+ 0.9604 0. 7.00 3.00 -2.00
+ 0.9590 0. 5.00 3.00 2.00
+ 0.9460 0. 2.00 4.00 -7.00
+ 0.9439 0. 2.00 12.00 -3.00
+ 0.9438 0. 3.00 5.00 -7.00
+ 0.9433 0. 5.00 7.00 -6.00
+ 0.9429 0. 7.00 1.00 -6.00
+ 0.9426 0. 6.00 8.00 -3.00
+ 0.9425 0. 2.00 12.00 1.00
+ 0.9425 0. 1.00 1.00 -7.00
+ 0.9420 0. 1.00 7.00 -6.00
+ 0.9419 0. 2.00 4.00 5.00
+ 0.9417 0. 3.00 11.00 -4.00
+ 0.9413 0. 1.00 11.00 -4.00
+ 0.9405 0. 1.00 13.00 -1.00
+ 0.9403 0. 7.00 5.00 -4.00
+ 0.9403 0. 1.00 13.00 0.00
+ 0.9403 0. 1.00 1.00 6.00
+ 0.9402 0. 1.00 7.00 5.00
+ 0.9401 0. 1.00 11.00 3.00
+ 0.9392 0. 3.00 11.00 1.00
+ 0.9392 0. 7.00 5.00 -3.00
+ 0.9382 0. 3.00 5.00 4.00
+ 0.9374 0. 5.00 7.00 1.00
+ 0.9369 0. 7.00 1.00 -1.00
+ 0.9362 0. 6.00 2.00 -7.00
+ 0.9352 0. 4.00 8.00 -6.00
+ 0.9345 0. 2.00 8.00 -6.00
+ 0.9340 0. 2.00 10.00 -5.00
+ 0.9329 0. 6.00 8.00 -4.00
+ 0.9314 0. 2.00 10.00 3.00
+ 0.9312 0. 2.00 8.00 4.00
+ 0.9309 0. 6.00 8.00 -2.00
+ 0.9299 0. 4.00 8.00 2.00
+ 0.9283 0. 6.00 2.00 1.00
+ 0.9246 0. 6.00 6.00 -6.00
+ 0.9231 0. 5.00 5.00 -7.00
+ 0.9227 0. 0.00 6.00 6.00
+ 0.9221 0. 0.00 12.00 3.00
+ 0.9217 0. 7.00 3.00 -6.00
+ 0.9213 0. 1.00 3.00 -7.00
+ 0.9212 0. 5.00 9.00 -5.00
+ 0.9205 0. 7.00 5.00 -5.00
+ 0.9197 0. 1.00 13.00 -2.00
+ 0.9193 0. 1.00 3.00 6.00
+ 0.9192 0. 1.00 13.00 1.00
+ 0.9188 0. 6.00 6.00 0.00
+ 0.9172 0. 5.00 9.00 0.00
+ 0.9172 0. 7.00 5.00 -2.00
+ 0.9161 0. 7.00 3.00 -1.00
+ 0.9160 0. 5.00 5.00 2.00
+ 0.9153 0. 4.00 6.00 -7.00
+ 0.9137 0. 4.00 10.00 -5.00
+ 0.9100 0. 4.00 10.00 1.00
+ 0.9091 0. 4.00 6.00 3.00
+ 0.9056 0. 6.00 4.00 -7.00
+ 0.9036 0. 6.00 8.00 -5.00
+ 0.9020 0. 3.00 9.00 -6.00
+ 0.9000 0. 6.00 8.00 -1.00
+ 0.8984 0. 6.00 4.00 1.00
+ 0.8980 0. 3.00 9.00 3.00
+ 0.8967 0. 4.00 0.00 -8.00
+ 0.8951 0. 2.00 6.00 -7.00
+ 0.8937 0. 2.00 12.00 -4.00
+ 0.8925 0. 4.00 12.00 -2.00
+ 0.8919 0. 2.00 12.00 2.00
+ 0.8919 0. 8.00 0.00 -4.00
+ 0.8916 0. 2.00 6.00 5.00
+ 0.8897 0. 4.00 0.00 4.00
+ 0.8874 0. 4.00 2.00 -8.00
+ 0.8854 0. 5.00 1.00 -8.00
+ 0.8847 0. 3.00 1.00 -8.00
+ 0.8844 0. 7.00 1.00 -7.00
+ 0.8841 0. 3.00 7.00 -7.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-pbo2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-pbo2.jcpds
new file mode 100755
index 0000000..61913f4
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-pbo2.jcpds
@@ -0,0 +1,98 @@
+3
+PbO2-type silica (by see notebook, EOS from Stishovite)
+ 4 298.000 3.98000
+ 4.257 4.0569 5.330
+(blank for future use)
+d-spacing I/I0 h k l
+4.257 2 1 0 0
+3.22817 47 0 1 1
+2.93685 0 1 1 0
+2.665 3 0 0 2
+2.57223 100 1 1 1
+2.25887 5 1 0 2
+2.1285 5 2 0 0
+2.02845 0 0 2 0
+1.97357 39 1 1 2
+1.88483 12 2 1 0
+1.83119 1 1 2 0
+1.777 11 2 1 1
+1.73183 0 1 2 1
+1.66314 3 2 0 2
+1.62744 12 0 1 3
+1.61408 6 0 2 2
+1.53885 0 2 1 2
+1.52015 1 1 1 3
+1.50924 36 1 2 2
+1.46843 16 2 2 0
+1.419 0 3 0 0
+1.41568 0 2 2 1
+1.33943 1 3 1 0
+1.3325 5 0 0 4
+1.31077 1 0 3 1
+1.29904 7 3 1 1
+1.29284 8 2 1 3
+1.28883 0 1 3 0
+1.28611 2 2 2 2
+1.27513 0 1 2 3
+1.27166 2 1 0 4
+1.25273 5 1 3 1
+1.25251 10 3 0 2
+1.21344 2 1 1 4
+1.19677 1 3 1 2
+1.16274 0 3 2 0
+1.16027 2 1 3 2
+1.14142 2 2 3 0
+1.13602 0 3 2 1
+1.13187 0 2 2 3
+1.12944 1 2 0 4
+1.11611 2 2 3 1
+1.1137 0 0 2 4
+1.08806 1 2 1 4
+1.07744 1 1 2 4
+1.07606 1 0 3 3
+1.06954 0 3 1 3
+1.06572 0 3 2 2
+1.06425 1 4 0 0
+1.04923 1 2 3 2
+1.04324 0 1 3 3
+1.031 0 0 1 5
+1.02942 1 4 1 0
+1.01423 2 0 4 0
+1.01074 1 4 1 1
+1.00203 1 1 1 5
+0.98835 0 4 0 2
+0.98678 1 2 2 4
+0.98661 0 1 4 0
+0.97895 0 3 3 0
+0.97291 0 3 2 3
+0.97136 1 3 0 4
+0.97013 0 1 4 1
+0.96285 1 3 3 1
+0.96031 0 2 3 3
+0.96027 0 4 1 2
+0.9479 1 0 4 2
+0.94466 0 3 1 4
+0.94242 0 4 2 0
+0.92802 0 4 2 1
+0.92788 0 2 1 5
+0.9264 0 1 3 4
+0.92524 1 1 4 2
+0.92127 0 1 2 5
+0.91892 0 3 3 2
+0.91559 1 2 4 0
+0.90238 2 2 4 1
+0.89071 2 4 1 3
+0.8885 0 4 2 2
+0.88833 0 0 0 6
+0.87609 0 3 2 4
+0.8696 0 1 0 6
+0.86686 1 2 3 4
+0.86592 1 2 4 2
+0.86266 0 2 2 5
+0.86254 0 1 4 3
+0.85741 0 3 3 3
+0.8514 0 5 0 0
+0.85029 2 1 1 6
+0.83717 0 0 3 5
+0.83632 0 4 3 0
+0.83409 0 3 1 5
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-pbo2ii.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-pbo2ii.jcpds
new file mode 100755
index 0000000..eaf4a59
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-pbo2ii.jcpds
@@ -0,0 +1,98 @@
+3
+PbO2-type silica (from sharp et al, EOS from Stishovite)
+ 4 298.000 3.98000
+ 4.55 4.16 5.11
+(blank for future use)
+d-spacing I/I0 h k l
+4.257 2 1 0 0
+3.22817 47 0 1 1
+2.93685 0 1 1 0
+2.665 3 0 0 2
+2.57223 100 1 1 1
+2.25887 5 1 0 2
+2.1285 5 2 0 0
+2.02845 0 0 2 0
+1.97357 39 1 1 2
+1.88483 12 2 1 0
+1.83119 1 1 2 0
+1.777 11 2 1 1
+1.73183 0 1 2 1
+1.66314 3 2 0 2
+1.62744 12 0 1 3
+1.61408 6 0 2 2
+1.53885 0 2 1 2
+1.52015 1 1 1 3
+1.50924 36 1 2 2
+1.46843 16 2 2 0
+1.419 0 3 0 0
+1.41568 0 2 2 1
+1.33943 1 3 1 0
+1.3325 5 0 0 4
+1.31077 1 0 3 1
+1.29904 7 3 1 1
+1.29284 8 2 1 3
+1.28883 0 1 3 0
+1.28611 2 2 2 2
+1.27513 0 1 2 3
+1.27166 2 1 0 4
+1.25273 5 1 3 1
+1.25251 10 3 0 2
+1.21344 2 1 1 4
+1.19677 1 3 1 2
+1.16274 0 3 2 0
+1.16027 2 1 3 2
+1.14142 2 2 3 0
+1.13602 0 3 2 1
+1.13187 0 2 2 3
+1.12944 1 2 0 4
+1.11611 2 2 3 1
+1.1137 0 0 2 4
+1.08806 1 2 1 4
+1.07744 1 1 2 4
+1.07606 1 0 3 3
+1.06954 0 3 1 3
+1.06572 0 3 2 2
+1.06425 1 4 0 0
+1.04923 1 2 3 2
+1.04324 0 1 3 3
+1.031 0 0 1 5
+1.02942 1 4 1 0
+1.01423 2 0 4 0
+1.01074 1 4 1 1
+1.00203 1 1 1 5
+0.98835 0 4 0 2
+0.98678 1 2 2 4
+0.98661 0 1 4 0
+0.97895 0 3 3 0
+0.97291 0 3 2 3
+0.97136 1 3 0 4
+0.97013 0 1 4 1
+0.96285 1 3 3 1
+0.96031 0 2 3 3
+0.96027 0 4 1 2
+0.9479 1 0 4 2
+0.94466 0 3 1 4
+0.94242 0 4 2 0
+0.92802 0 4 2 1
+0.92788 0 2 1 5
+0.9264 0 1 3 4
+0.92524 1 1 4 2
+0.92127 0 1 2 5
+0.91892 0 3 3 2
+0.91559 1 2 4 0
+0.90238 2 2 4 1
+0.89071 2 4 1 3
+0.8885 0 4 2 2
+0.88833 0 0 0 6
+0.87609 0 3 2 4
+0.8696 0 1 0 6
+0.86686 1 2 3 4
+0.86592 1 2 4 2
+0.86266 0 2 2 5
+0.86254 0 1 4 3
+0.85741 0 3 3 3
+0.8514 0 5 0 0
+0.85029 2 1 1 6
+0.83717 0 0 3 5
+0.83632 0 4 3 0
+0.83409 0 3 1 5
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-qtz.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-qtz.jcpds
new file mode 100755
index 0000000..0419788
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-qtz.jcpds
@@ -0,0 +1,16 @@
+3
+quartz (JCPDS 46-1045) EOS from
+ 2 38. 5.4
+ 4.91344 5.40524
+(blank for future use)
+d-spacing I/I0 h k l
+4.25499 16 1 0 0
+3.343471 100 1 0 1
+2.45687 9 1 1 0
+2.28149 8 1 0 2
+2.23613 4 1 1 1
+2.12771 6 2 0 0
+1.81796 13 1 1 2
+1.54153 9 2 1 1
+1.38210 6 2 1 2
+1.37496 7 2 0 3
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-stv.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-stv.jcpds
new file mode 100755
index 0000000..ff00f40
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/sio2-stv.jcpds
@@ -0,0 +1,36 @@
+3
+stishovite (by Sinclair and Ringwood, EOS from Heaney)
+ 3 298.000 3.98000
+ 4.17720 2.66505
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.9537 100. 1.00 1.00 0.00
+ 2.2468 19. 1.00 0.00 1.00
+ 2.0886 1. 2.00 0.00 0.00
+ 1.9787 29. 1.00 1.00 1.00
+ 1.8681 10. 2.00 1.00 0.00
+ 1.5297 34. 2.00 1.00 1.00
+ 1.4769 11. 2.00 2.00 0.00
+ 1.3326 4. 0.00 0.00 2.00
+ 1.3210 3. 3.00 1.00 0.00
+ 1.2918 1. 2.00 2.00 1.00
+ 1.2341 10. 3.00 0.00 1.00
+ 1.2147 4. 1.00 1.00 2.00
+ 1.1835 1. 3.00 1.00 1.00
+ 1.1586 1. 3.00 2.00 0.00
+ 1.1234 2. 2.00 0.00 2.00
+ 1.0848 1. 2.00 1.00 2.00
+ 1.0625 1. 3.00 2.00 1.00
+ 1.0443 1. 4.00 0.00 0.00
+ 1.0131 1. 4.00 1.00 0.00
+ 0.9894 1. 2.00 2.00 2.00
+ 0.9846 1. 3.00 3.00 0.00
+ 0.9470 1. 4.00 1.00 1.00
+ 0.9381 1. 3.00 1.00 2.00
+ 0.9341 1. 4.00 2.00 0.00
+ 0.9236 1. 3.00 3.00 1.00
+ 0.8815 1. 4.00 2.00 1.00
+ 0.8743 1. 3.00 2.00 2.00
+ 0.8689 1. 1.00 0.00 3.00
+ 0.8507 1. 1.00 1.00 3.00
+ 0.8354 1. 4.00 3.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ta.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ta.jcpds
new file mode 100755
index 0000000..78cbf90
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/ta.jcpds
@@ -0,0 +1,14 @@
+3
+Tantalum (4-0788 EOS from Cynn and Yoo)
+ 1 194.7 3.4
+ 3.3058
+(blank for future use)
+d-spacing I/I0 h k l
+2.338 100. 1. 1. 0.
+1.65300 21. 2. 0. 0.
+1.3500 38. 2. 1. 1.
+1.16870 13. 2. 2. 0.
+1.04530 19. 3. 1. 0.
+0.954300 7. 2. 2. 2.
+0.883500 29. 3. 2. 1.
+0.826500 4. 4. 0. 0.
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/tib2.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/tib2.jcpds
new file mode 100755
index 0000000..d9f1977
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/tib2.jcpds
@@ -0,0 +1,20 @@
+3
+TiB2 (JCPDS 35-0741, EOS from Abbate et al, 1991)
+ 2 236.000 2.00000
+ 3.03034 3.22943
+(blank for future use)
+d-spacing I/I0 h k l
+ 3.2295 22. 0.00 0.00 1.00
+ 2.6247 55. 1.00 0.00 0.00
+ 2.0370 100. 1.00 0.00 1.00
+ 1.6145 12. 0.00 0.00 2.00
+ 1.5153 27. 1.00 1.00 0.00
+ 1.3751 16. 1.00 0.00 2.00
+ 1.3717 18. 1.00 1.00 1.00
+ 1.3122 7. 2.00 0.00 0.00
+ 1.2156 16. 2.00 0.00 1.00
+ 1.1049 14. 1.00 1.00 2.00
+ 1.0766 1. 0.00 0.00 3.00
+ 1.0183 5. 2.00 0.00 2.00
+ 0.9959 8. 1.00 0.00 3.00
+ 0.9919 6. 2.00 1.00 0.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/tungsten.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/tungsten.jcpds
new file mode 100755
index 0000000..f568a26
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/tungsten.jcpds
@@ -0,0 +1,12 @@
+3
+Tungsten (4-0806 EOS from Hixson and Fritz)
+ 1 311.220 3.90000
+ 3.16480
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.2380 100. 1.00 1.00 0.00
+ 1.5820 15. 2.00 0.00 0.00
+ 1.2920 23. 2.00 1.00 1.00
+ 1.1188 8. 2.00 2.00 0.00
+ 1.0008 11. 3.00 1.00 0.00
+ 0.8459 18. 3.00 2.00 1.00
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2O3-Rh-new.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2O3-Rh-new.jcpds
new file mode 100755
index 0000000..915f289
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2O3-Rh-new.jcpds
@@ -0,0 +1,101 @@
+3
+V2O3 - orthorhombic rh2o3 structure (GSAS calculation, EOS from Handbook)
+ 4 195.000 4.00000
+ 5.0612 5.3196 7.2345
+(blank for future use)
+d-spacing I/I0 h k l
+4.08112 0 1 0 1
+3.5125 9 0 0 2
+3.21583 11 1 1 1
+2.6115 28 0 2 0
+2.51987 100 1 1 2
+2.507 24 2 0 0
+2.44783 0 0 2 1
+2.26012 4 2 1 0
+2.19969 2 1 2 1
+2.15152 2 2 1 1
+2.12169 6 1 0 3
+2.09573 0 0 2 2
+2.04056 1 2 0 2
+1.96569 4 1 1 3
+1.93362 3 1 2 2
+1.90065 0 2 1 2
+1.80853 23 2 2 0
+1.75625 9 0 0 4
+1.75142 3 2 2 1
+1.74343 1 0 2 3
+1.64672 0 1 2 3
+1.62621 0 2 1 3
+1.62595 0 3 0 1
+1.60791 3 2 2 2
+1.60137 9 1 3 1
+1.57987 8 1 1 4
+1.55246 1 3 1 1
+1.48948 14 1 3 2
+1.45735 8 0 2 4
+1.44988 22 3 1 2
+1.43841 8 2 0 4
+1.43134 3 2 2 3
+1.43 0 2 3 0
+1.40126 0 2 3 1
+1.39943 0 1 2 4
+1.38678 0 2 1 4
+1.38028 0 3 2 1
+1.36037 0 3 0 3
+1.35289 0 1 0 5
+1.34588 1 1 3 3
+1.32444 0 2 3 2
+1.31645 0 3 1 3
+1.30967 1 1 1 5
+1.30669 0 3 2 2
+1.30575 1 0 4 0
+1.28376 1 0 4 1
+1.25993 4 2 2 4
+1.2535 1 4 0 0
+1.24365 0 1 4 1
+1.2373 0 0 2 5
+1.22392 0 0 4 2
+1.22043 0 2 3 3
+1.21889 0 4 1 0
+1.20649 0 3 2 3
+1.20126 0 1 2 5
+1.20095 0 4 1 1
+1.20047 1 1 3 4
+1.19323 0 2 1 5
+1.18901 0 1 4 2
+1.18831 0 3 3 1
+1.18058 0 4 0 2
+1.17945 1 3 1 4
+1.17083 0 0 0 6
+1.15808 2 2 4 0
+1.15153 0 4 1 2
+1.14266 1 2 4 1
+1.14043 1 0 4 3
+1.14038 2 3 3 2
+1.13006 2 4 2 0
+1.11572 1 4 2 1
+1.11393 2 1 1 6
+1.11203 0 1 4 3
+1.10953 0 2 2 5
+1.1089 0 2 3 4
+1.09985 0 2 4 2
+1.09842 0 3 2 4
+1.08119 0 4 1 3
+1.07576 0 4 2 2
+1.07547 0 3 0 5
+1.07194 0 3 3 3
+1.06837 1 0 2 6
+1.06827 1 1 3 5
+1.06084 1 2 0 6
+1.05337 0 3 1 5
+1.04787 0 0 4 4
+1.04491 0 1 2 6
+1.03962 0 2 1 6
+1.03807 1 2 4 3
+1.02571 0 1 4 4
+1.02028 1 4 0 4
+1.01809 0 3 4 1
+1.01775 0 4 2 3
+1.01726 0 4 3 0
+1.01198 1 1 5 1
+1.00676 0 4 3 1
\ No newline at end of file
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2O3.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2O3.jcpds
new file mode 100755
index 0000000..0079a2e
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2O3.jcpds
@@ -0,0 +1,45 @@
+ 3
+V2O3(unit cell from Jade Software, K(GPa) from J. Solid State Chem 21:145, K' estimate)
+ 2 195 4
+4.952 14.0020
+(blank for future use)
+d-spacing I/I0 h k l
+3.7320 25. 0 1 2
+2.7120 50. 1 0 4
+2.5720 60. 1 1 0
+2.2770 8. 0 0 6
+2.2380 35. 1 1 3
+2.1160 12. 2 0 2
+1.8650 35. 0 2 4
+1.7040 100. 1 1 6
+1.6340 12 1 2 2
+1.5920 4. 0 1 8
+1.5100 30. 2 1 4
+1.4830 45. 3 0 0
+1.3060 25. 1 0 10
+1.2849 18. 2 2 0
+1.2432 12. 3 0 6
+1.2365 8. 2 2 3
+1.2146 8. 3 1 2
+1.1643 8. 0 2 10
+1.1613 18. 1 3 4
+1.1386 8. 0 0 12
+1.1192 25. 2 2 6
+1.0982 6. 0 4 2
+1.0603 12. 2 1 10
+1.0578 18. 4 0 4
+1.0407 12. 1 1 12
+1.0098 6. 2 3 2
+0.9805 8. 2 2 9
+0.9783 12. 3 2 4
+0.9713 12. 4 1 0
+0.9533 4. 0 1 14
+0.9502 4. 4 1 3
+0.9158 20. 1 3 10
+0.9030 18. 3 0 12
+0.8934 30. 4 1 6
+0.8626 14. 4 0 10
+0.8612 12. 0 5 4
+0.8566 18. 3 3 0
+0.8520 12. 2 2 12
+0.8439 8. 1 2 14
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2o3-ppv-new.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2o3-ppv-new.jcpds
new file mode 100755
index 0000000..e786bd8
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/v2o3-ppv-new.jcpds
@@ -0,0 +1,103 @@
+3
+V2_O2_postpv_orthorhombic (GSAS calculation, EOS from Mao et al)
+ 4 195.000 4.00000
+ 2.8420 9.3059 7.0505
+(blank for future use)
+d-spacing I/I0 h k l
+4.3995 13.9 0 2 0
+3.6720 0.1 0 2 1
+3.3333 4.4 0 0 2
+2.6568 100.0 0 2 2
+2.5700 18.9 1 1 0
+2.3980 4.3 1 1 1
+2.1998 5.4 0 4 0
+2.0890 5.4 0 4 1
+2.0353 0.3 1 1 2
+1.9835 39.0 0 2 3
+1.9814 65.8 1 3 0
+1.8992 82.7 1 3 1
+1.8360 2.5 0 4 2
+1.7032 40.0 1 3 2
+1.6809 35.4 1 1 3
+1.6666 26.7 0 0 4
+1.5633 0.7 0 4 3
+1.5585 0.3 0 2 4
+1.4789 6.8 1 3 3
+1.4722 5.3 1 5 0
+1.4665 0.1 0 6 0
+1.4376 7.0 1 5 1
+1.4323 1.5 0 6 1
+1.3983 16.4 1 1 4
+1.3467 25.6 1 5 2
+1.3436 18.0 2 0 0
+1.3423 21.5 0 6 2
+1.3284 11.7 0 4 4
+1.2850 0.2 2 2 0
+1.2760 0.4 0 2 5
+1.2754 5.9 1 3 4
+1.2618 0.2 2 2 1
+1.2462 0.2 2 0 2
+1.2273 0.1 1 5 3
+1.2240 0.6 0 6 3
+1.1990 9.7 2 2 2
+1.1835 0.2 1 1 5
+1.1466 1.1 2 4 0
+1.1402 0.1 0 4 5
+1.1386 0.1 1 7 0
+1.1300 0.4 2 4 1
+1.1223 1.1 1 7 1
+1.1124 2.9 2 2 3
+1.1111 0.4 0 0 6
+1.1062 8.2 1 3 5
+1.1034 1.3 1 5 4
+1.1010 0.0 0 6 4
+1.0999 1.8 0 8 0
+1.0852 0.3 0 8 1
+1.0843 0.1 2 4 2
+1.0775 1.5 1 7 2
+1.0773 3.4 0 2 6
+1.0460 4.9 2 0 4
+1.0445 0.9 0 8 2
+1.0199 1.8 1 1 6
+1.0190 0.1 2 4 3
+1.0177 0.2 2 2 4
+1.0133 1.7 1 7 3
+0.9918 0.8 0 4 6
+0.9907 0.0 2 6 0
+0.9883 2.0 1 5 5
+0.9865 0.4 0 6 5
+0.9857 0.0 0 8 3
+0.9799 0.4 2 6 1
+0.9691 0.6 1 3 6
+0.9496 6.4 2 6 2
+0.9447 3.5 2 4 4
+0.9401 0.1 1 7 4
+0.9308 0.1 0 2 7
+0.9252 0.1 2 2 5
+0.9188 0.1 1 9 0
+0.9180 0.5 0 8 4
+0.9102 0.8 1 9 1
+0.9048 0.1 2 6 3
+0.8930 0.9 1 1 7
+0.8911 0.3 3 1 0
+0.8869 0.7 1 5 6
+0.8857 0.6 1 9 2
+0.8856 1.1 0 6 6
+0.8833 0.0 3 1 1
+0.8799 0.0 0 10 0
+0.8740 0.0 0 4 7
+0.8723 0.0 0 10 1
+0.8694 0.0 2 4 5
+0.8658 0.0 1 7 5
+0.8609 0.0 3 1 2
+0.8584 0.4 1 3 7
+0.8567 1.4 3 3 0
+0.8562 0.3 2 0 6
+0.8516 0.0 2 6 4
+0.8511 1.1 2 8 0
+0.8508 0.4 0 10 2
+0.8497 0.3 3 3 1
+0.8490 0.2 1 9 3
+0.8484 0.0 0 8 5
+0.8442 0.0 2 8 1
+0.8405 2.0 2 2 6
diff --git a/jnb-tools/1_cif_to_jcpds/jcpds/ver3/w.jcpds b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/w.jcpds
new file mode 100755
index 0000000..f568a26
--- /dev/null
+++ b/jnb-tools/1_cif_to_jcpds/jcpds/ver3/w.jcpds
@@ -0,0 +1,12 @@
+3
+Tungsten (4-0806 EOS from Hixson and Fritz)
+ 1 311.220 3.90000
+ 3.16480
+(blank for future use)
+d-spacing I/I0 h k l
+ 2.2380 100. 1.00 1.00 0.00
+ 1.5820 15. 2.00 0.00 0.00
+ 1.2920 23. 2.00 1.00 1.00
+ 1.1188 8. 2.00 2.00 0.00
+ 1.0008 11. 3.00 1.00 0.00
+ 0.8459 18. 3.00 2.00 1.00
diff --git a/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.html b/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.html
new file mode 100644
index 0000000..b04bb69
--- /dev/null
+++ b/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.html
@@ -0,0 +1,13748 @@
+
+
+
+
+how_to_read_dpp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
How to read dpp from PeakPo¶
+
+
+
+
+
+
+
+Please check setup_for_notebooks file if you have problem using the notebooks in this folder.
+In this notebook, we will learn how to plot XRD patterns using the information saved in dpp
.
+dpp
is a project file saved in PeakPo
. You may plot, jcpds information and cake as well as many other information.
+
+
+
+
+
+
+
+
+
This notebook takes advantage of the PeakPo
modules and other local modules. They can be found in ../local_modules
folder.
+The cell below defined the search path for this local module folder.
+
+
+
+
+
+
+
+
+
Check the versio of pyFAI in your conda environment¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
+ from ._conv import register_converters as _register_converters
+WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl
+
+
+
+
+
+
+
Out[2]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Note that the example data files I provided are made with pyFAI
version 0.14
. If you see version higher than 0.15
here, you will get error when you read the example dpp
file. In that case, you either follow the instruction in setup_for_notebooks.ipynb or you may use your own dpp for this note book.
+
+
+
+
+
+
+
+
+
+
Change the following two cells for your own dpp file¶
+
+
+
+
+
+
+
Data files should be in the ../data
folder. You need: dpp
, chi
, tif
, and poni
files.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
../data/hStv/hSiO2_404_009.dpp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The cells below show how to look into the data structure of the model_dpp
and get values from it.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[7]:
+
+
+
+
+
+
{'base_ptn': <ds_powdiff.DiffractionPattern.PatternPeakPo at 0x10a4a9da0>,
+ 'waterfall_ptn': [],
+ 'jcpds_lst': [<ds_jcpds.jcpds.JCPDSplt at 0x1111f81d0>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x1111f8f98>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x111261518>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x1112618d0>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x111261ac8>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x1112696a0>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x111271128>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x111271978>],
+ 'ucfit_lst': [],
+ 'diff_img': <ds_cake.DiffractionImage.DiffImg at 0x11127e518>,
+ 'poni': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv/LaB6_37keV_p49_center.poni',
+ 'session': <ds_jcpds.jcpds.Session at 0x1112882e8>,
+ 'jcpds_path': '/Users/DanShim/Python/jcpds',
+ 'chi_path': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv',
+ 'current_section': None,
+ 'section_lst': [],
+ 'saved_pressure': 39.6,
+ 'saved_temperature': 300.0}
+
+
+
+
+
+
+
+
+
+
+
+
Setup a new PeakPo model and assign info from dpp¶
+
+
+
+
+
+
+
+
Make sure to reset the chi folder location using the new_chi_path
option.
+
+
+
+
+
+
+
+
+
Some basic model methods¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Type: PeakPoModel
+String form: <model.model.PeakPoModel object at 0x111288cf8>
+File: ~/Dropbox (ASU)/Python/PeakPo-v7/peakpo/model/model.py
+Docstring:
+session is only for reading/writing/referencing.
+components of the models are not part of session.
+session is a reference object
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[11]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[12]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
../data/hStv/hSiO2_404_009.chi
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
SiO2-hhstv
+ar-NoTh
+au
+ne-NoTh
+Dicvol_404_018Mono
+Dicvol_404_003Mono
+SiO2-NiAsBis
+sio2-cacl2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
SiO2-hhstv
+au
+ne-NoTh
+sio2-cacl2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
../data/hStv/LaB6_37keV_p49_center.poni
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.ipynb b/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.ipynb
new file mode 100644
index 0000000..c8c3a81
--- /dev/null
+++ b/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.ipynb
@@ -0,0 +1,443 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# How to read dpp from PeakPo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder. \n",
+ "- In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`. \n",
+ "- `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook takes advantage of the `PeakPo` modules and other local modules. They can be found in `../local_modules` folder. \n",
+ "The cell below defined the search path for this local module folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "sys.path.append('../../peakpo')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Check the versio of pyFAI in your conda environment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
+ " from ._conv import register_converters as _register_converters\n",
+ "WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'0.14.2'"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pyFAI\n",
+ "pyFAI.version"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import dill\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Change the following two cells for your own dpp file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Data files should be in the `../data` folder. You need: `dpp`, `chi`, `tif`, and `poni` files."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "../data/hStv/hSiO2_404_009.dpp\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ../data/hStv/*.dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "filen_dpp = '../data/hStv/hSiO2_404_009.dpp'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(filen_dpp, 'rb') as f:\n",
+ " model_dpp = dill.load(f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The cells below show how to look into the data structure of the `model_dpp` and get values from it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'base_ptn': ,\n",
+ " 'waterfall_ptn': [],\n",
+ " 'jcpds_lst': [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " 'ucfit_lst': [],\n",
+ " 'diff_img': ,\n",
+ " 'poni': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv/LaB6_37keV_p49_center.poni',\n",
+ " 'session': ,\n",
+ " 'jcpds_path': '/Users/DanShim/Python/jcpds',\n",
+ " 'chi_path': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv',\n",
+ " 'current_section': None,\n",
+ " 'section_lst': [],\n",
+ " 'saved_pressure': 39.6,\n",
+ " 'saved_temperature': 300.0}"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model_dpp.__dict__"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup a new PeakPo model and assign info from dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from model import PeakPoModel\n",
+ "model = PeakPoModel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make sure to reset the chi folder location using the `new_chi_path` option."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model.set_from(model_dpp, new_chi_path='../data/hStv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Some basic model methods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "\u001b[0;31mType:\u001b[0m PeakPoModel\n",
+ "\u001b[0;31mString form:\u001b[0m \n",
+ "\u001b[0;31mFile:\u001b[0m ~/Dropbox (ASU)/Python/PeakPo-v7/peakpo/model/model.py\n",
+ "\u001b[0;31mDocstring:\u001b[0m \n",
+ "session is only for reading/writing/referencing.\n",
+ "components of the models are not part of session.\n",
+ "session is a reference object\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "?model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "39.6"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.get_saved_pressure()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "300.0"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.get_saved_temperature()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "../data/hStv/hSiO2_404_009.chi\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(model.base_ptn.fname)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.3344\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(model.base_ptn.wavelength)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(model.waterfall_ptn)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SiO2-hhstv\n",
+ "ar-NoTh\n",
+ "au\n",
+ "ne-NoTh\n",
+ "Dicvol_404_018Mono\n",
+ "Dicvol_404_003Mono\n",
+ "SiO2-NiAsBis\n",
+ "sio2-cacl2\n"
+ ]
+ }
+ ],
+ "source": [
+ "for phase in model.jcpds_lst:\n",
+ " print(phase.name)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "SiO2-hhstv\n",
+ "au\n",
+ "ne-NoTh\n",
+ "sio2-cacl2\n"
+ ]
+ }
+ ],
+ "source": [
+ "for phase in model.jcpds_lst:\n",
+ " if phase.display:\n",
+ " print(phase.name)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "../data/hStv/LaB6_37keV_p49_center.poni\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(model.poni)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "peakpo7721",
+ "language": "python",
+ "name": "peakpo7721"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.py b/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.py
new file mode 100644
index 0000000..844f653
--- /dev/null
+++ b/jnb-tools/1_how_to_read_dpp/how_to_read_dpp.py
@@ -0,0 +1,151 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# # How to read dpp from PeakPo
+
+# - Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder.
+# - In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`.
+# - `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information.
+
+# This notebook takes advantage of the `PeakPo` modules and other local modules. They can be found in `../local_modules` folder.
+# The cell below defined the search path for this local module folder.
+
+# In[1]:
+
+
+import sys
+sys.path.append('../../peakpo')
+
+
+# ## Check the versio of pyFAI in your conda environment
+
+# In[2]:
+
+
+import pyFAI
+pyFAI.version
+
+
+# Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book.
+
+# ## Read dpp
+
+# In[3]:
+
+
+import dill
+import numpy as np
+
+
+# ### Change the following two cells for your own dpp file
+
+# Data files should be in the `../data` folder. You need: `dpp`, `chi`, `tif`, and `poni` files.
+
+# In[4]:
+
+
+get_ipython().run_line_magic('ls', '../data/hStv/*.dpp')
+
+
+# In[5]:
+
+
+filen_dpp = '../data/hStv/hSiO2_404_009.dpp'
+
+
+# In[6]:
+
+
+with open(filen_dpp, 'rb') as f:
+ model_dpp = dill.load(f)
+
+
+# The cells below show how to look into the data structure of the `model_dpp` and get values from it.
+
+# In[7]:
+
+
+model_dpp.__dict__
+
+
+# ## Setup a new PeakPo model and assign info from dpp
+
+# In[8]:
+
+
+from model import PeakPoModel
+model = PeakPoModel()
+
+
+# Make sure to reset the chi folder location using the `new_chi_path` option.
+
+# In[9]:
+
+
+model.set_from(model_dpp, new_chi_path='../data/hStv')
+
+
+# ## Some basic model methods
+
+# In[10]:
+
+
+get_ipython().run_line_magic('pinfo', 'model')
+
+
+# In[11]:
+
+
+model.get_saved_pressure()
+
+
+# In[12]:
+
+
+model.get_saved_temperature()
+
+
+# In[13]:
+
+
+print(model.base_ptn.fname)
+
+
+# In[14]:
+
+
+print(model.base_ptn.wavelength)
+
+
+# In[15]:
+
+
+print(model.waterfall_ptn)
+
+
+# In[16]:
+
+
+for phase in model.jcpds_lst:
+ print(phase.name)
+
+
+# In[17]:
+
+
+for phase in model.jcpds_lst:
+ if phase.display:
+ print(phase.name)
+
+
+# In[18]:
+
+
+print(model.poni)
+
+
+# In[ ]:
+
+
+
+
diff --git a/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.html b/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.html
new file mode 100644
index 0000000..76f149b
--- /dev/null
+++ b/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.html
@@ -0,0 +1,13659 @@
+
+
+
+
+1D_xrd_pattern
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Plot XRD patterns from dpp files from PeakPo¶
+
+
+
+
+
+
+
+Please check setup_for_notebooks file if you have problem using the notebooks in this folder.
+In this notebook, we will learn how to plot XRD patterns using the information saved in dpp
.
+dpp
is a project file saved in PeakPo
. You may plot, jcpds information and cake as well as many other information.
+
+
+
+
+
+
+
+
+
This notebook takes advantage of the PeakPo
modules and other local modules. They can be found in ../local_modules
folder.
+The cell below defined the search path for this local module folder.
+
+
+
+
+
+
+
+
+
Check the versio of pyFAI in your conda environment¶
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[12]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Note that the example data files I provided are made with pyFAI
version 0.14
. If you see version higher than 0.15
here, you will get error when you read the example dpp
file. In that case, you either follow the instruction in setup_for_notebooks.ipynb or you may use your own dpp for this note book.
+
+
+
+
+
+
+
+
+
+
Change the following two cells for your own dpp file¶
+
+
+
+
+
+
+
Data files should be in the ../data
folder. You need: dpp
, chi
, tif
, and poni
files.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
../data/hStv/hSiO2_404_009.dpp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The cells below show how to look into the data structure of the model_dpp
and get values from it.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[17]:
+
+
+
+
+
+
{'base_ptn': <ds_powdiff.DiffractionPattern.PatternPeakPo at 0x1101758d0>,
+ 'waterfall_ptn': [],
+ 'jcpds_lst': [<ds_jcpds.jcpds.JCPDSplt at 0x110175c50>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x11020da58>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x11020df98>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x110216390>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x110216588>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x110220160>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x110220ba8>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x110227438>],
+ 'ucfit_lst': [],
+ 'diff_img': <ds_cake.DiffractionImage.DiffImg at 0x10e94b320>,
+ 'poni': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv/LaB6_37keV_p49_center.poni',
+ 'session': <ds_jcpds.jcpds.Session at 0x110235c50>,
+ 'jcpds_path': '/Users/DanShim/Python/jcpds',
+ 'chi_path': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv',
+ 'current_section': None,
+ 'section_lst': [],
+ 'saved_pressure': 39.6,
+ 'saved_temperature': 300.0}
+
+
+
+
+
+
+
+
+
+
+
+
Setup a new PeakPo model and assign info from dpp¶
+
+
+
+
+
+
+
+
Make sure to reset the chi folder location using the new_chi_path
option.
+
+
+
+
+
+
+
+
+
+
The following three modules are all in the ../local_modules
folder.
+
+
+
+
+
+
+
+
+
+
+
+
Let's make some plots¶
+
+
+
+
+
+
+
Let's plot in regular scale.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Let's do some fancy stuff¶ I wrote similar plot functions with more options in fancy_plots.py
in the same folder.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
In the plot below, we plot diffraction pattern in $2\theta$ scale to prevent any distortion in the diffraction pattern. We just plot tickmarks in d-spacing scale.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.ipynb b/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.ipynb
new file mode 100644
index 0000000..0dbdf10
--- /dev/null
+++ b/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.ipynb
@@ -0,0 +1,432 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Plot XRD patterns from dpp files from PeakPo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder. \n",
+ "- In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`. \n",
+ "- `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook takes advantage of the `PeakPo` modules and other local modules. They can be found in `../local_modules` folder. \n",
+ "The cell below defined the search path for this local module folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "sys.path.append('../../peakpo')\n",
+ "sys.path.append('../local_modules')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Check the versio of pyFAI in your conda environment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'0.14.2'"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pyFAI\n",
+ "pyFAI.version"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import dill\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Change the following two cells for your own dpp file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Data files should be in the `../data` folder. You need: `dpp`, `chi`, `tif`, and `poni` files."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "../data/hStv/hSiO2_404_009.dpp\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ../data/hStv/*.dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "filen_dpp = '../data/hStv/hSiO2_404_009.dpp'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(filen_dpp, 'rb') as f:\n",
+ " model_dpp = dill.load(f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The cells below show how to look into the data structure of the `model_dpp` and get values from it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'base_ptn': ,\n",
+ " 'waterfall_ptn': [],\n",
+ " 'jcpds_lst': [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " 'ucfit_lst': [],\n",
+ " 'diff_img': ,\n",
+ " 'poni': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv/LaB6_37keV_p49_center.poni',\n",
+ " 'session': ,\n",
+ " 'jcpds_path': '/Users/DanShim/Python/jcpds',\n",
+ " 'chi_path': '/Users/DanShim/Dropbox (ASU)/Desktop/PMatRes/github-dev/XRD-peakpo/data/hStv',\n",
+ " 'current_section': None,\n",
+ " 'section_lst': [],\n",
+ " 'saved_pressure': 39.6,\n",
+ " 'saved_temperature': 300.0}"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model_dpp.__dict__"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup a new PeakPo model and assign info from dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from model import PeakPoModel\n",
+ "model = PeakPoModel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make sure to reset the chi folder location using the `new_chi_path` option."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model.set_from(model_dpp, new_chi_path='../data/hStv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Make XRD plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following three modules are all in the `../local_modules` folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from xrd_unitconv import * # Make conversios between different x-axis units"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import quick_plots as quick # A function to plot XRD pattern\n",
+ "import fancy_plots as fancy # A function to plot XRD pattern"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Let's make some plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's plot in regular scale."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAEUAAAAeECAYAAACKzwj5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm0lXW9P/DPOYdBZgjnRAUxUUAFlZIlonRLKy+DEAqaeSu9Dgm/JocgjQYbdHUtr6mp9+ZN0pwnIHJAMDRTQRNEElRQEFPgwNn77H3G/fujpasMzrj3ftjweq3FWrCfz/f7fR84cJ4DPO9TlsvlAgAAAAAAAAAAAAAAAAAAAAAgCeVJBwAAAAAAAAAAAAAAAAAAAAAAdl0KUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEiMAhQAAAAAAAAAAAAAAAAAAAAAIDEKUAAAAAAAAAAAAAAAAAAAAACAxChAAQAAAAAAAAAAAAAAAAAAAAASowAFAAAAAAAAAAAAAAAAAAAAAEhMh6QDQFPKyso2RETvbVyqjYg3ixwHAAAAAAAAAAAAAAAAAAAAoFD6RUSnbbxemcvl9i52mGIqy+VySWeA7SorK8tGROekcwAAAAAAAAAAAAAAAAAAAAAkpCaXy+2WdIhCKk86AAAAAAAAAAAAAAAAAAAAAACw61KAwo6uIukAAAAAAAAAAAAAAAAAAAAAABSOAhR2dApQAAAAAAAAAAAAAAAAAAAAAHZiClAAAAAAAAAAAAAAAAAAAAAAgMR0SDoANCMXEWUffrGsrCwOPfTQBOJAEdTURqxeG7WdyuKt/hVNju5X8dHoFB2LFAyApqxevTpqamr+5fXOnTvHQQcdlEAidma5XG2sWLGqyZmKioo45JBDipQIgFLj3mXHVBcRbzU2NDmzX3mFvwkAYJfivgUAKBXuWwCAUuG+BQAoJe5dAIBS4b4FyKft/ZkSEbXFzlJsClDY0dVFROcPv9ipU6dYvnx5AnGgCJa/GjFkXKweUBFTntq9ydHbe/5PHFTRv0jBAGjK4MGD4+WXX/6X1w866CD3LeRd5ea/RJ+PHNHkTK9ePbzvAbBd7l12TK811McZVZubnJndo08MqPDXugDsOty3AAClwn0LAFAq3LcAAKXEvQsAUCrctwD5tL0/UyLizWJnKbbypAMAAADQOtnsNhs8/0lDQ0MRkgAAAAAAAAAAAAAAAABA+ylAAQAAKDEtK0BpLEISAAAAAAAAAAAAAAAAAGg/BSgAAAAlJpNpSQFKQxGSAAAAAAAAAAAAAAAAAED7KUABAAAoMdlsSwpQGouQBAAAAAAAAAAAAAAAAADaTwEKAABAiWlJAUp9fX0RkgAAAAAAAAAAAAAAAABA+ylAAQAAKDGZbLbZmcbGxiIkAQAAAAAAAAAAAAAAAID2U4ACAABQYrLZmqQjAAAAAAAAAAAAAAAAAEDeKEABAAAoMTUtLEBpbGwscBIAAAAAAAAAAAAAAAAAaD8FKAAAACUm28IClEwmU+AkAAAAAAAAAAAAAAAAANB+ClAAAABKTCaTbdFcOp0ucBIAAAAAAAAAAAAAAAAAaD8FKAAAACUmm61t0VwqlSpwEgAAAAAAAAAAAAAAAABoPwUoAAAAJSabrWnRXDqdLnASAAAAAAAAAAAAAAAAAGg/BSgAAAAlJpPNtmgulUoVOAkAAAAAAAAAAAAAAAAAtJ8CFAAAgBKTzda0aC6dThc4CQAAAAAAAAAAAAAAAAC0nwIUAACAEtPSApRUKlXgJAAAAAAAAAAAAAAAAADQfgpQAAAASkxNCwtQ0ul0gZMAAAAAAAAAAAAAAAAAQPspQAEAACgxmUy2RXOpVKrASQAAAAAAAAAAAAAAAACg/RSgAAAAlJhstqZFc+l0usBJAAAAAAAAAAAAAAAAAKD9FKAAAACUmGxNbYvmUqlUgZMAAAAAAAAAAAAAAAAAQPspQAEAACgx2WxNi+bS6XSBkwAAAAAAAAAAAAAAAABA+ylAAQAAKDGZTLZFc6lUqsBJAAAAAAAAAAAAAAAAAKD9FKAAAACUmGy2pkVz6XS6wEkAAAAAAAAAAAAAAAAAoP0UoAAAAJSYmhYWoKRSqQInAQAAAAAAAAAAAAAAAID2U4ACAABQYjLZbIvm0ul0gZMAAAAAAAAAAAAAAAAAQPt1SDoANGNTROzz4Rf79OmTQBQAgO274IIL4t133/2X1/fYY48E0rCzy2ZrWjSXSqUKnASAUuXeBQAoFe5bAIBS4b4FACgV7lsAgFLi3gUAKBXuWwDyoyyXyyWdAbarrKxseUQc9uHXDzvssFi+fHkCiaAIlr8aMWRcrB5UEVOe2r3J0dt7/k8cVNG/SMEAgB3FfvvtE+vWbWh2btiwYbFkyZIiJAIA8uG1hvo4o2pzkzOze/SJARV6rQEAAAAAAAAAAAAAdkaDBw+Ol19+eVuXXs7lcoOLnaeYypMOAAAAQOtkszUtmkulUgVOAgAAAAAAAAAAAAAAAADtpwAFAACgxGQy2RbNpdPpAicBAAAAAAAAAAAAAAAAgPZTgAIAAFBCcrlcZLM1LZpNpVIFTgMAAAAAAAAAAAAAAAAA7acABQAAoITU19dHY2Nji2bT6XTkcrkCJwIAAAAAAAAAAAAAAACA9lGAAgAAUEIymUyLZxsaGqKmpqaAaQAAAAAAAAAAAAAAAACg/RSgAAAAlJBsNtuq+XQ6XaAkAAAAAAAAAAAAAAAAAJAfHZIOAAAAQMu1tgAllUpF3759C5QGAAAAAAAAAAAAgJ1VLpeLhoaGaGxsjFwul3QcAAD4J2VlZVFeXh4VFRVRVlaWdBzyQAEKAABACWltAUo6nS5QEgAAAAAAAAAAAAB2FrlcLqqrqyOdTkdtbW3U1tZGXV1dNDY2Jh0NAACaVF5eHh07doxOnTpFp06dolu3btG1a1elKCVIAQoAAEAJyWQyrZpPpVIFSgIAAAAAAAAAAABAKcvlcpFKpWLr1q2RSqWUnQAAUJIaGxujpqYmampqIiJi48aNUV5eHt27d4+ePXtG9+7dlaGUCAUoAAAAJSSbzbZqPp1OFygJAAAAAAAAAAAAAKWquro63nnnnVb/31QAACgFjY2NsXXr1ti6dWvstttusddee0XXrl2TjkUzFKAAAACUkNb+I1MqlSpQEgAAAAAAAAAAAABKTX19fWzYsCGqqqqSjgIAAEWRzWZjzZo10aNHj9h7772jQwc1GzsqvzIAAAAlpLUFKOl0ukBJAAAAAAAAAAAAACgltbW1sXbt2qirq0s6CgAAFF1VVVVks9nYf//9o1OnTknHYRvKkw4AAABAy2UymVbNp1KpAiUBAAAAAAAAAAAAoFTU1NTEmjVrlJ8AALBLq6urizVr1kRNTU3SUdgGBSgAAAAlJJvNtmo+nU4XKAkAAAAAAAAAAAAApeD9hzzr6+uTjgIAAImrr69XDriDUoACAABQQlpbgJJKpQqUBAAAAAAAAAAAAIAdXS6Xiw0bNkRDQ0PSUQAAYIfR0NAQGzZsiFwul3QU/kGHpAMAAADQcplMplXz6XS6QEkAAAAAAAAAAAAA2NFVVVW1+gvqderUKbp27RqdOnWKjh07RocOHaK8vDzKysoKlBIAAFonl8tFY2Nj1NfXR11dXdTW1kZ1dXXU1ta2eI9UKhVVVVXRs2fPAialNRSgAAAAlJBsNtuq+db+gxUAAAAAAAAAAAAAO4f3v6p9S5SVlcVHPvKR6NWrV3Tu3LnAyQAAoDBqampiy5YtsWnTpsjlcs3Ob9iwIbp16xYVFRVFSEdzFKAAAACUkNYWoKTT6QIlAQAAAAAAAAAAAGBHVlVVFQ0NDc3Ode3aNfbdd9/o2LFjEVIBAEDhdO7cOfbcc8/o06dPrF+/Pqqrq5ucb2hoiKqqqujdu3eREtKU8qQDAAAA0HKtLUBJpVIFSgIAAAAAAAAAAADAjmzLli3NznTr1i369eun/AQAgJ1Kx44do1+/ftGtW7dmZ1ty30xxKEABAAAoIZlMplXz6XS6QEkAAAAAAAAAAAAA2FHV1dU1+9XuKyoqYt99943yco8ZAgCw8ykvL4999903Kioqmpyrrq6Ourq6IqWiKT4zAQAAKCHZbLZV86lUqkBJAAAAAAAAAAAAANhRVVVVNTuz++67R4cOHYqQBgAAktGhQ4fYfffdm51ryf0zhacABQAAoIS0tgAlnU4XKAkAAAAAAAAAAAAAO6qampomr5eVlUWvXr2KlAYAAJLTq1evKCsra3KmuftnikMBCgAAQAnJZDKtmk+lUgVKAgAAAAAAAAAAAMCOqrkHOLt16xYVFRVFSgMAAMmpqKiIbt26NTlTW1tbpDQ0RQEKAABACclms62aT6fTBUoCAAAAAAAAAAAAwI6quQc4O3fuXKQkAACQvObuf5srEKQ4FKAAAACUkNYWoKRSqQIlAQAAAAAAAAAAAGBH1NDQEA0NDU3OKEABAGBX0qlTpyavt+QemsJTgAIAAFBCWluAkk6nC5QEAAAAAAAAAAAAgB1RY2NjszMdO3YsQhIAANgxNFeAEtGy+2gKSwEKAABACclkMq2ar62tjbq6ugKlAQAAAAAAAAAAAGBH05IHN8vLPVoIAMCuoyX3vwpQkuezFAAAgBKSzWZbvSadThcgCQAAAAAAAAAAAAClqqysLOkIAABQNO5/S4MCFAAAgBLSlgKUVCpVgCQAAAAAAAAAAAAAAAAAkB8KUAAAAEpIJpNp9Zp0Ol2AJAAAAAAAAAAAAAAAAACQHx2SDgDAzm/9+vVx6KGHxtatW7d5vby8PJYtWxaHHnpokZPtnBobG+OII46IZcuWbfN6165dY/ny5XHggQcWNxhAMxobG2PFihXx6quvxqpVq2L16tWxatWqeO+99yKVSkU6nY5UKhXV1dVRXl4enTp1is6dO0ePHj2ib9++sfvuu8fee+8d/fv3jwEDBsTBBx8chx9+eHTr1i3pNy2vstlsq9ekUqkCJAEAAAAAAAAAAAAAAACA/FCAAkDBXXTRRdstP4mIOP3005Wf5FF5eXl873vfi1NPPXWb16urq+PCCy+MOXPmFDkZwD9raGiIZ599NhYtWhQLFy6MxYsXx5YtW1q8tq6uLtLpdGzatCnWrFmzzbny8vI4+OCD45hjjokTTzwxxowZU/IFUG0pQEmn0wVIAgAAAAAAAAAAAAAAAAD5oQAFgIJ6+OGH4957793u9YqKirjiiiuKmGjXMGHChDj66KPjueee2+b1uXPnxt133x2TJk0qcjKAiOeffz5uu+22uP322+Odd94p6FmNjY2xcuXKWLlyZdx2220REXHIIYfExIkTY+LEiTF8+PCCnl8IlZWVrV4zevToAiRpXnl5eXTp0iW6dOkS3bt3j/322y/69esXBx54YAwfPjyOOuqo6N+/fyLZAGBX9t3vfjdmzZrVqjUrVqyIQYMGFShRYdTW1sbnP//5ePDBB9u1T8+ePWPevHkxcuTIPCUDAAAAAAAAAAAAAODDFKAAUDDpdDouvPDCJmemTp0aH/vYx4qUaNfygx/8IE4++eTtXv9//+//xUknnRQ9evQoYipgV5XJZOKmm26K66+/Pl555ZVEs6xcuTKuvPLKuPLKK2PIkCHxn//5n3HmmWdG7969E83VErlcLhobG5OO0WKNjY2RTqcjnU7He++9F2+88ca/zOy7777x2c9+Nj73uc/FZz7zmejcuXPxgwIAO526urq8lJ/07t075s+fHyNGjMhTMgAAAAAAAAAAAAAAtqU86QAA7LyuuOKKWLt27XavV1RUxOWXX17ERLuWk046KY477rjtXl+3bl3MnDmziInItxtuuCHKysqa/XbggQcmHZVdWDqdjquvvjr69+8f06dPT7z85MOWLVsWF110UfTr1y8uvvji2LBhQ9KRmlRXV5d0hLxbv3593HzzzTFhwoTYb7/94lvf+la8/vrrSccCAEpYvspP+vbtG48//rjyEwAAAAAAAAAAAACAIuiQdAAAdk4vvfRS/PznP29y5swzz4yBAwcWKdGuadasWfHJT35yu9evu+66+OIXvxjDhw8vYiry4ZVXXolvfOMbSccouNdffz3+9Kc/xYsvvhgrVqyIdevWxfr16yOdTkcmk4mysrLo2bNn9OjRI3r27Bl9+/aNww47LIYMGRJDhgyJoUOHRs+ePZN+M3ZJuVwufvWrX8XMmTPjvffeSzpOs1KpVFx11VVx7bXXxje+8Y2YMWNGdOnSJelY/yKbzSYdoaDee++9uPrqq+Oaa66JL3/5y3H55ZfHvvvum3Qs4B8sX748li9fHitXroy//vWvsWrVqqisrIxUKvXBt4iI3XbbLTp37hzdunWLvfbaK/baa6/YZ5994mMf+1gcdthhMXjw4DjggAMSfmsK7+23346nnnoqXnzxxVi+fHm89dZbsX79+qiqqopMJhO5XO6D+5gePXpEnz59YtCgQR/cxwwdOjT69u2b9JtRcJs2bYrFixfHiy++GMuWLYs333wz1q1bF1u2bIlMJhP19fUf/Dz17NkzevXqFR/72Mc+uOc7/PDDY++99076zWAHUVdXF5MnT44HHnigXfvsueee8eijj8bQoUPzlAwAAAAAAAAAAAAAgKYoQAEg73K5XJx//vlRX1+/3ZmKioqYMWNGEVPtmsaMGROjR4+OhQsXbvN6Q0NDnHfeefGnP/0pysvLi5yOtqqtrY2pU6dGdXV10lEK4s9//nPMnj07Hn744XjttdeanX/vvff+qWDj8ccf/+D7HTp0iFGjRsX48eNj/Pjxsf/++xckM//slVdeiXPPPTeefPLJpKO0WjabjR/+8Icxe/bsuOaaa2LcuHFJR/onO3sByvvq6+vjxhtvjN/85jfxox/9KC666KIoKytLOhbskiorK2Pu3Lkxf/78+MMf/hAbNmxo0br3y1A2btwYa9eu3ebMPvvsE6NGjYoTTzwxxo8fv9MUWCxfvjxuu+22eOihh2L58uXNzm/atCk2bdr0wY8XLVr0wffLyspixIgRH9zLDBo0qCCZk/DGG2/E7Nmz47777oulS5dGY2Njk/OVlZVRWVn5wY8XL178T9eHDh36wc+TgsddV11dXZx22mlx//33t2ufffbZJx577LE49NBD85QMAAAAAAAAAAAAAIDmeNIZgLz79a9//S8Po33YlClT4uCDDy5Sol3brFmzmrz+7LPPxvXXX1+kNOTDt7/97Vi6dGnSMfKqrq4ubr311hg6dGh8/OMfj1/84hctKj9pTn19fSxYsCCmT58eBxxwQIwePTrmzZuXh8RsS2NjY/zwhz+MI488siTLT/7RG2+8EePHj4/Pf/7zUVVVlXScD2QymaQjFFV1dXVMnz49Ro8eHevXr086DuxSli1bFuedd1589KMfjTPOOCP+7//+r8XlJy319ttvx5133hnnn39+fPSjH40TTzwxbr311qitrc3rOcWQy+Xi/vvvj5EjR8aQIUPixz/+cYvKT1qy7zPPPBOXXXZZHHrooTFs2LC44447oqGhIQ+pk7FgwYI4+eSTY8CAATFz5sx4/vnnmy0/aYmXXnopvv/978dRRx0VAwcOjBtvvDFqamrykJhSUV9fH6effnrcd9997dqnX79+sWjRIuUnAAAAAAAAAAAAAABFpgAFgLzavHlzXHLJJU3OlJeXx4wZM4qUiNGjR8eYMWOanJkxY0beH2ilMB577LH42c9+lnSMvLr//vvj0EMPjbPPPjuWLVtW0LMWLVoUn/3sZ2PYsGFxzz33FPSsXU1lZWWccsopMXPmzJ3qYeO77747RowYEStWrEg6SkREZLPZpCMk4sknn4xjjjkmnn322aSjwE5v5cqV8ZnPfCaGDh0aN954Y1RXVxfl3MbGxnjiiSfi7LPPjgMOOCCuvPLKop3dXosWLYqjjjoqJkyYEE8//XRBz3rhhRdiypQpMWjQoLj55pvzUhxSLH/5y19izJgxMWbMmJg/f37kcrmCnbV69eo477zzon///nH11VfvVPcmbFt9fX2cdtppce+997ZrnwMPPDAWLlwYAwcOzFMyAAAAAAAAAAAAAABaSgEKAHk1Y8aMePfdd5ucmTx5cgwaNKhIiYiI+M53vtPk9S1btsTXv/71IqWhrTZu3BhnnXVWQR8WLaZ33nknxo4dGxMmTIjVq1cX9ewXXnghJk2aFOPGjYt33nmnqGfvjF5++eUYMWJEzJs3L+koBfHKK6/EiBEj4sEHH0w6yi5bgBIRsX79+jj++OPjkUceSToK7JQymUzMnDkzDj/88Pj973+faJYNGzbEjBkz4pBDDonZs2cnmqUpVVVV8eUvfzlGjx4dS5cuLerZq1atinPOOSeOP/74WLVqVVHPbq3a2tq47LLLYvjw4bFgwYKinv3222/Ht771rRg+fHg899xzRT2b4qmvr4/TTz+93eUnAwcOjEWLFkX//v3zlAwAAAAAAAAAAAAAgNZQgAJA3rzwwgvxq1/9qsmZsrKyuOyyy4qUiPedcMIJcdxxxzU5c/vtt8ejjz5apES0xVe+8pVYv3590jHyYsGCBTF06NB46KGHEs3x4IMPxuDBg+POO+9MNEcp+8Mf/hCf+MQn4tVXX006SkGlUqmYNGlSPPDAA4nmyGQyiZ6ftGw2G+PGjYsnnngi6SiwU3n99dfj6KOPjh/+8IdRW1ubdJwPvPXWW3HmmWfGuHHjYuPGjUnH+ScvvfRSHHnkkfE///M/ieZYvHhxHHHEEXHttdcmmmN71q5dG8cee2z8+Mc/joaGhsRyvPzyy3HsscfG5ZdfHvX19YnlIP/q6+tjypQpcc8997Rrn0GDBsXChQujX79+eUoGAAAAAAAAAAAAAEBrKUABIG8uuuiiZh9qO+WUU+Lwww8vUiL+0Xe+851mZy688MKoqakpQhpa61e/+lXcf//9ScfIi1tuuSVOOumkePfdd5OOEhERGzdujNNOOy2+973vJR2l5MyfPz/GjRsXVVVVed23Y8eOMWrUqPja174WN9xwQyxYsCBeffXVePvttyOVSkVDQ0NkMpnYvHlzvPnmm/Hcc8/F3Llz49prr42vfvWrccIJJ0T37t3zmikioq6uLiZPnhwPP/xw3vduqWw2m9jZO4pMJhNjx46Nv/71r0lHgZ3Ck08+GSNGjIiXX3456Sjb9eCDD8bhhx8eS5YsSTpKRETMmTMnRo4cGa+99lrSUSIiorq6OqZNmxbnnntuoiUjH/bnP/85RowYscP8utXX18f3v//9mDBhwi5fKLazqK+vj6lTp8bdd9/drn2GDBkSTzzxROy77755SgYAAAAAAAAAAAAAQFt0SDoAADuH2bNnxx//+Mdm52bMmFGENGzLpz/96RgxYkT8+c9/3u7MX//61/jJT34Sl19+eRGT0ZyVK1fG1772taRj5MUvfvGLmD59etIxtumKK66I9957L37+859HWVlZ0nF2ePPmzYsJEybkrTSpR48ecfrpp8eECRPi+OOPj27dujU5v9tuu8Vuu+0WvXv3jv322+9frjc0NMRf/vKXmDt3bjz00EPxzDPP5CVnbW1tTJo0KR555JEYNWpUXvZsDQUof1dVVRUTJ06MZ555Jrp27Zp0HChZ8+bNi/Hjx0dtbW3SUZq1fv36OOGEE+KBBx6IE088MbEc99xzT0yZMiXq6uoSy7A9N910U2zcuDF++9vfRufOnRPNsnjx4vjMZz6T95K0fHj44YfjU5+UE5KdAAAgAElEQVT6VDz88MPRu3fvpOPQRvX19XHGGWfEXXfd1a59jjzyyHjkkUdi9913z1MyAAAAAAAAAAAAAADaSgEKAO1WXV0dl1xySbNzY8aMiY9//ONFSMT2XHrppXHqqac2OfOjH/0ozjzzzBgwYECRUtGUurq6mDp1alRXVycdpd1uvPHGHbb85H3XXnttbN26NX79618nHWWHNn/+/LyVnwwePDi+9a1vxec///m8FllUVFTEsGHDYtiwYTFjxoxYtWpV3HLLLXHzzTfHe++91669a2pq4vTTT48lS5bEXnvtlafELdPWApQvfvGLRXm/rq+vj0wmE5lMJtLpdKxbty7WrFkTa9asieeeey6efvrp2LBhQ17OWrZsWVx66aXxi1/8Ii/7wa5m6dKlMXny5JIoP3lfVVVVfO5zn4sFCxYk8nnFnDlz4vTTT4/6+vqin91S9957b5xyyikxd+7c6NixYyIZnn/++Tj55JMjlUolcn5LLF68OEaPHh1PPvlk9OzZM+k4tFJDQ0OcccYZceedd7Zrn6OPPjr+8Ic/RJ8+ffKUDAAAAAAAAAAAgA+rqqqKP/7xj7F06dJ46aWXYu3atbFu3bqorKyMbDYbdXV10blz5+jSpUvssccesc8++8TAgQNj8ODBccwxx8QxxxwTnTp1SvrNKLrXX389nnrqqVi5cmWsXLkyVq1aFZs3b45UKhWpVCpqa2uja9eu0a1bt+jWrVvsvvvuMWDAgBgwYEAMHDgwPvGJT8SgQYOSfjMAoNUUoADQbj/5yU9i3bp1zc5dfPHFRUhDU8aPHx+HHnporFixYrsz2Ww2LrroopgzZ04Rk7E9M2bMiCVLliQdo91+//vfx4UXXph0jBa59dZbY9CgQXHppZcmHWWHtGLFipg8eXK7y08OOuigmDVrVkyZMiXKy8vzlG77Bg4cGD/60Y9i5syZccMNN8SPf/zjdhWhrF+/PqZOnRqPPPJIUfK/L5PJtGldQ0NDnpNsW4cOHaJHjx7Ro0ePiIjo379/HHfccf80s3LlyrjtttviN7/5TaxZs6Zd5/3yl7+ML3/5y3HEEUe0ax/Y1axduzY+97nP7dAFFduTyWRi7Nix8cwzz8SBBx5YtHNfeOGFHb785H2PPvpoTJs2La6//vqin/3mm2/Gv//7v5fE+9Zf/vKXmDJlSjz00ENF/VhO++Sr/OTYY4+NefPmRa9evfKUDAAAAAAAAAAAgPelUqn43e9+F7fddlssXrw46urqmpx//4twbtq0KVauXBlPPPHEB9e6dOkSY8aMiUmTJsXEiRM/+L/q+fLGG29E//79t3v9f//3f+Pss8/O65nbksvlYsGCBXHXXXfFI488EqtXr252TVVVVVRVVUVExOrVq+OZZ575p+t77LFHHHfccTF27NiC/NzRdt/97ndj1qxZ27x2wAEHxBtvvFHcQC3U3O+XBQsWxAknnFC8QMBOSQEKAO3y1ltvxdVXX93s3BFHHBEnnXRSERLRlLKysrjkkkua/cR77ty58cADD8S4ceOKE4xteuyxx1r0+2tH9/rrr8fpp5/e7gKGXr16xahRo2L48OExePDg6NOnT/Tu3Ttqa2ujsrIyNm7cGC+++GIsWbIknn766XYVdMyYMSOGDBkSp5xySrsy72w2b94cY8eOja1bt7Z5j4qKirj44ovju9/9biItzN26dYtvfOMb8aUvfemDMpTGxsY27fX444/HlVdeGTNnzsxzyu3LZrNtWlesApSWOOSQQ+L73/9+zJo1K2655ZaYOXNm/O1vf2vTXg0NDfH1r389HnvssTynhJ1XLpeLs846K95+++1277XbbrvFscceG0OGDImBAwfGAQccEN27d4/u3btHRMTGjRtj48aN8dZbb8XixYtj8eLFUVlZ2e5z//a3v8VZZ50VCxcujLKysnbv15zKysoYP358u0s9unTpEscdd1wcddRRMXTo0Ojbt2/06dMnGhoaorKyMjZv3hwvvfRSLFmyJJ566ql2nXfDDTfE0KFD44ILLmhX5taora2NU089td3vWx06dIiRI0fG0UcfHUcccUTsscce0bt37ygvL4/KysqorKyMFStWxPPPPx9PP/10bNy4sc1nzZ07Ny699NL46U9/2q7MFEdDQ0OceeaZ8bvf/a5d+xx//PExZ86cD/6sAgAAAAAAAAAAID+2bNkSP/vZz+Kaa65p13MH/yiTycScOXNizpw5MW3atDjrrLPi4osvjv333z8v+ydt69atcdNNN8WNN94Yr776al73fvfdd+O+++6L++67Ly644IIYN25cTJ8+PT7xiU/k9Zx82LRpU6xatSo2b94cqVQqqquro1OnTtG1a9fo27dv9OvXL/bdd9+oqKhIOioABaYABYB2ueyyy6K6urrZuYsvvrgIaWiJqVOnxowZM2LdunVNzk2fPj0+/elPR5cuXYqUjH+0cePG+OIXvxi5XC7pKO1SX18fU6ZMiS1btrR5j9GjR8cFF1wQY8eOjd12261FayorK+Ouu+6K6667Ll588cVWn9nY2BhnnHFGLF26NAYMGNDq9Tuj+vr6mDx5cqxatarNexxyyCFx2223xdFHH53HZG3Tp0+fuO6662LChAlx5plnxjvvvNOmfa688sr4whe+EAcccECeE27bzlCA8r7y8vI455xzYuLEiTF16tSYP39+m/Z5/PHH47nnntsh3q+gFNx4442xcOHCNq/v3LlzTJw4Mc4+++wYNWpUiz82R/z94+uf/vSnuO666+Kuu+5qts2/KU8++WRce+21MW3atDbv0VJf+cpXYs2aNW1ef+SRR8a0adNi0qRJLW7Or66ujvvvvz9uuOGGePLJJ9t07vTp02PYsGFx7LHHtml9a1122WXx3HPPtXn9gAED4mtf+1qcdtppsccee7RoTV1dXcybNy9uvvnmeOihh9p07lVXXRUjRoyISZMmtWk9xdHQ0BBf+MIX4o477mjXPp/85CfjwQcfjK5du+YpGQAAAAAAAAAAABER9957b1xwwQVt/r/5LVFVVRXXXXdd3HzzzXH++efHrFmzomfPngU7r5AaGhri5ptvjssvv7zNX1C0NTKZTNxxxx1xxx13xGc/+9n43ve+F0cddVTBz92eFStWxNy5c+PRRx+NZ599tkVfEK9Lly4xbNiwGDlyZIwdOzZGjhypEAVgJ1SedAAAStfSpUtj9uzZzc7tv//+MXny5CIkoiU6duzYogdF16xZE1deeWURErEt55xzTrMlNaXgpz/9aTzzzDNtWnvQQQfFQw89FE888URMnjy5VQ9Y9+7dO84555xYsmRJ3HLLLbHnnnu2+vytW7fGBRdc0Op1O6uZM2fGo48+2ub1J598cjzzzDM7XEnFv/3bv8XSpUtj6NChbVqfyWTim9/8Zp5TNX1eW+yIBSjv+8hHPhJz586Nc889t817XHXVVXlMBDuvdevWxSWXXNKmtRUVFXHhhRfGW2+9FbNnz45PfepTrfrYHPH34qORI0fG7NmzY+3atXH++edHWVlZm/JERFxxxRXtKllrid/+9rdxzz33tGntnnvuGbfeemssWbIk/uM//qPF5ScREV27do2pU6fGokWL4r777mtTIVt9fX2ce+657SqaaanFixfHf/3Xf7Vpbffu3eOaa66JV155Jb761a+2uPwk4u+f24wdOzYefPDBWLhwYRx55JFtyvDVr341Kisr27SWwnu//OT2229v1z4nn3xyPPzww8pPAAAAAAAAAAAA8qihoSGmTZsWEydOLGj5yT+qqamJa665Jg477LCYN29eUc7Mp2XLlsWwYcPivPPOK0r5yYfNnTs3jjnmmJg2bVqbn1Foi1wuF3feeWeMGjUqDjvssPjmN78Zv//971tUfhLx9+cpnnrqqbj66qvj+OOPjwEDBsTVV18d6XS6wMkBKCYFKAC02SWXXBK5XK7ZuYsuuig6dOhQhES01Lnnnhvdu3dvdu6qq66K1157rQiJ+Ec33XRT3HfffUnHaLfVq1fHD37wgzatnTBhQjz//PNxyimntCtDeXl5fOlLX4rnnnsuhg8f3ur18+fPb/dXmd8ZPPvss3H11Ve3ef306dPj4Ycfjl69euUxVf7ss88+sWjRovj4xz/epvV33313LFiwIM+pti2bzbZp3Y5cgBLx99+r119/fZx66qltWv/AAw9EVVVVnlPBzufb3/52bN26tdXrDj744FiyZEn893//d+y+++55ybL33nvHL3/5y1i4cGEccsghbdqjsrIyfv7zn+clz7Zs3rw5vv71r7dp7XHHHRdLly6Ns846q10lLxH/n737jorqWtsA/tCb2FGs2AAbttgixihWYouoGEXBgl1ji0aNUeM1sWK5ltgbdtBYorErlljAniD2SlBEKYogbb4/srxfijNz9plzZgZ8fmuxVlb2u/d+OCochtnvAT7//HNcvHgRrVq1Ep7722+/ISQkxKD99cnMzMTAgQMl/Wz4T1WrVkVkZCRGjBgBGxsbg3I0adIE586dQ69evYTnPnv2DOPHjzdof1JHdnY2AgMDDW5+0qFDB+zevVu4cRMRERERERERERERERERERERERFpl5mZiU6dOmHRokUm2T82Nhbt2rWTfXbFFNatW4cGDRrg+vXrJs2h0WiwaNEi1K5dGxcvXlR9v4sXL+Ljjz9Gt27dcPr0aUXWfPToEcaOHQtPT0+Eh4crsiaROVi3bh2mTp363o9du3aZOh6R6tgAhYiIZDl8+DAOHz6sty5fvnzo37+/ERKRiIIFC6Jv3756696+fYuvvvrKCInonVu3bmHUqFGmjqGIMWPGyOoEO2jQIOzcuVPRZhllypTBqVOn8MknnwjPHTVqFJKTkxXLkttkZGSgT58+shtojB8/HgsWLICVlZXCyZRVsGBB/Pzzz6hUqZKs+dOmTVM40fvJbYCSlZWlcBLlWVpaYs2aNShZsqTw3Ldv32Lv3r0qpCLKO27cuIGNGzcKz2vRogUiIyNRo0YNFVIBn3zyCS5duoQOHTrImr948WLVvsZ99913sp5E0L59exw7dkzW1zNtChYsiP3796Nbt27Cc6dNm4b79+8rluWflixZgt9//114Xv369XH27FlUrlxZsSx2dnbYsGEDxowZIzx3xYoVOHv2rGJZyHDZ2dkICgrC5s2bDVqnS5cuCA8Ph62trULJiIiIiIiIiIiIiIiIiIiIiIiISKPRoEePHiZ/H3dOTg6+/fZbTJw40aQ5pBg1ahT69OmDN2/emDrK/9y8eRNNmjTB/v37Vdtj6dKlaNiwIc6fP6/K+rGxsejatSu+/PJLs394LJEU69atw3fffffeDzZAoQ8BG6AQEZEsEyZMkFTXt29fRZsYkHKGDh0q6Wn0P/30Ew8CGklmZia6d++O1NRUU0cx2K+//ordu3cLz+vVqxeWLl2qQiLA0dERu3btgqenp9C8p0+fYu7cuapkyg3+85//yDrUDABjx47FjBkzFE6knqJFi2Lfvn1wcnISnnvixAlcuXJFhVR/J7cBSm55Ea9AgQJYuHChrLl79uxROA1R3jJ37lzk5OQIzWnUqBF2796t+v28o6Mjdu7ciY4dOwrPff78OQ4dOqR4pgcPHuDHH38Unte8eXOEhYXBxsZG8UxWVlZYv349GjduLDQvLS0NkydPVjwPAKSkpOD7778Xnufl5YUDBw4gf/78KqQC5syZA39/f6E5Go0G48aNUyUPicvJyUFQUBA2bdpk0Drdu3fH1q1bVfk3SURERERERERERERERERERERE9CGbPn06wsPDJdUWLlwY3bp1w+zZs3H06FHExMQgLi4OqampyMrKwqtXrxAbG4vz589j06ZNGDVqFGrXri2UZ8aMGVi2bJmcT0V1Go0GQ4cOxYIFC4Tnuru7Izg4GKtXr0ZERAQePXqEpKQkZGVlIS0tDQkJCbhx4wb27t2L2bNno127dsLv/X3z5g06duyIDRs2COfT56uvvsLQoUON8lDXRYsWITAwUPg900REZF7YAIWIiITt2rULFy9e1FtnYWGBoUOHGiERyeHh4YFWrVpJqs0NXVDzgkmTJuHSpUumjqGISZMmCc+pWbMmVq5cKakxj1yFCxdGWFgYrK2theYtWrQIycnJKqUyXzdv3sSsWbNkzQ0MDMTs2bMVTqQ+Dw8PWS8qApA9T0RaWpqsebmlAQoA+Pn5wd3dXXjemTNnVEhDlDe8ePECmzdvFppTokQJ7NmzB46Ojiql+jsrKyts2bIFVatWFZ67bds2xfNMmzYNGRkZQnNKlSqFbdu2wc7OTvE879jZ2SEsLEz4F1NbtmzB3bt3Fc+zYMECJCQkCM3Jly8fduzYgUKFCime5x0LCwusXbsW5cqVE5p3+vRpREREqBOKJFOq+UlQUBA2btwIKysrhZIRERERERERERERERERERERERERAFy8eBHfffed3jovLy+sX78esbGx2Lp1K8aOHQsfHx94enrC1dUVjo6OsLKyQr58+VCyZEnUr18fPXr0wLx583Dp0iXcv38fY8eOhbOzs6Rco0ePRkxMjKGfnuJGjBgh9LDg/PnzY8yYMbhy5Qpu3bqFlStXom/fvmjSpAnKlCmDAgUKwMrKCvb29ihSpAgqV66Mdu3aYezYsdi7dy/i4+OxY8cO+Pr6St4zKysLffv2xf79++V8iu81c+ZMhISEKLaeFJs3b+YD8YiIcjk2QCEiIiEajQZTp06VVNuiRQt4eHioG4gMMmzYMEl1J06cwOnTp1VO82E7duwY5s6dK6m2fPnyKqcxTFRUFI4fPy40x8HBAVu2bFH1wPA7Xl5eGD16tNCc5ORkLF68WKVE5mvy5MnIzMwUnvfRRx9h+fLlKiQyjuDgYPj4+AjP27p1K+Lj41VI9P/S09NlzctNDVAsLS0xePBg4XlPnjxBbGysComIcr9t27YJf/1YsWIFihQpolKi93NwcMC6deuEm6GJ3nfo88cffwg3XrCwsEBoaKhRrpmrqytmzJghNCc7OxszZ85UNEdaWpqs+6PFixfLanQlytHRUeiXhe9Mnz5dhTQkVU5ODnr37o2NGzcatE7//v2xdu1aWFry5W8iIiIiIiIiIiIiIiIiIiIiIiKlDRo0SOd71C0sLDBixAhERUUhMDAQ9vb2svYpV64cZs+ejZs3b6Jz585669PS0jBmzBjhPTQajdaP3r17y8r+zpo1a7Bo0SJJtba2tvjmm2/w4MEDzJ07FzVr1pS1p62tLfz8/LB//35cuHABTZo0kTQvOzsb3bp1w9WrV2Xt+1dHjhyR/EDuKlWqYOLEidi/fz/u3buHlJQUZGZm4vnz54iJicH27dsxcOBAFC9eXNJ6ISEh2LlzpyHxiYjIhPgOcCIiErJz507JP8QMHTpU5TRkKF9fX5QuXVpSrdIHJun/vXz5EoGBgcjJydFba2lpidDQUCOkkm/OnDnCc0aNGoUqVaqokOb9Jk+ejEKFCgnNWbJkSa5qImGoq1evIiwsTHhekSJFsHPnTtkvUJqLkJAQ4QOzb9++xU8//aRSoj99CA1QAKB9+/ay5l25ckXhJER5w5YtW4TqW7dujXbt2qmURrd69erBz89PaM7jx4/x8OFDxTIsXLgQGRkZQnO6d++OZs2aKZZBn4EDB6Jy5cpCc0JDQ/Hy5UvFMqxbtw7Pnz8XmuPt7Y2goCDFMujj6+uLVq1aCc05cuQIoqOjVUpEuuTk5KBPnz4G/7wzbNgwLF++XLiZEhEREREREREREREREREREREREem3Z88eREVF6ayZM2cOFixYAFtbW0X2LFGiBMLDwzFt2jS9tfv378e5c+cU2ddQkZGRGDJkiKTa+vXr48qVK5g+fbrweRdd6tWrhxMnTmDJkiWSznm8fv0aHTt2xKtXr2Tv+fr1awQHB0Oj0eisq1atGg4ePIjo6Gh8//338PX1Rfny5eHs7Axra2sULVoUnp6e6Nq1K5YtW4b79+9j4cKFKFy4sN4MgwYNQkJCguzPgYiITIcNUIiISIjUJ42XLFnSZIcmSTorKyv06dNHUu3+/ft5EFAl/fv3R2xsrKTa8ePHw9vbW+VE8sXHxws3gChWrBjGjx+vUqL3c3JywqBBg4TmxMXFYf/+/SolMj/ffvut3heb3mfevHkoW7asComMq1atWujSpYvwPDZAUUalSpVQvnx54XkPHjxQPgxRLpeYmIizZ88KzRk3bpxKaaQZPHiw8BylGiBlZGRgzZo1QnPs7Ozwww8/KLK/VJaWlhg1apTQnLdv32LTpk2KZVi2bJnwnLlz5yq2v1SiT3IAgNWrV6uQhHTJyclB3759sWHDBoPWGTNmDBYtWsTmJ0RERERERERERERERERERERERCpZuHChzvH+/fvLeu+eFN9++62k97muWrVKlf1FpKWloXv37nj79q3e2n79+uHkyZOqPVjYwsICQ4YMwfHjx1G8eHG99Q8fPsTo0aNl7xcSEqL34Yb9+vXDpUuXhB505+DggC+//BJRUVGoWbOmztrnz59j8uTJktcmIiLzwQYoREQk2aFDh3Dx4kVJtb1794aVlZXKidSl0Wjw4sULPHjwADExMbh27RpiYmJw7949xMXFCT8V3lz17dtX0uEwjUaDJUuWGCHRh2XVqlXYuXOnpNqPPvoIU6dOVTeQgdatW4fMzEyhOaNHj4azs7NKibQbPnw4rK2theZ8KIdho6KisHfvXuF5TZs2RWBgoAqJTEPOC3bHjh1DcnKyCmn+lJaWJmteVlaWwknUV61aNeE55twAJT09HbGxsbhz5w5+++03/P7777h9+zYePnyIpKQkU8ejPOzYsWNCTZCqV68OHx8fFRPp16xZMxQsWFBozr179xTZe9euXcLd3vv06QM3NzdF9hcRGBiIIkWKCM1R6l7mwoULuHbtmtCcNm3aoGHDhorsL6JVq1bC31NCQ0OF72lJvpycHPTr1w/r1683aJ2JEyeapMkOERERERERERERERERERERERHRh+KPP/7AiRMntI4XK1YMc+bMUTXD999/j1q1aumsCQsLM/l76KdMmYK7d+/qrZswYQJWrVoFOzs71TM1bNgQERERKFasmN7aVatWISIiQniPN2/eYPHixTpr+vfvj1WrVsHW1lZ4fQAoX748IiIiULlyZZ11K1euxP3792XtQUREpsMGKEREJJnID6B9+vRRMYmyNBoNbty4gZUrV2LYsGHw8fFBmTJlYGdnh6JFi6J8+fKoUqUKatasiSpVqqBixYooWbIk7OzskD9/fnh4eMDX1xfDhg3DsmXLEBkZKak7p7koV64cvL29JdWGhobi1atXKif6cNy6dQsjR46UVOvg4ICNGzfCxsZG5VSGET206ODggODgYJXS6FaiRAnhA9779u3Dy5cvVUpkPvS92PQ+NjY2WLZsmQppTKdBgwaoV6+e0JzMzEzs27dPpUR/NtGQQ6T5gbnQ92Lk+zx9+lSFJGJSUlJw8OBBTJs2Dd26dUONGjVQqFAhODg4oHTp0nB3d4eXlxeqV68ODw8PlCtXDoUKFYKNjQ1KlCiBhg0bIiAgAFOnTsWePXsQGxtr6k+JcrkzZ84I1Xfs2FGlJNJZWlqicePGQnOU+uWEnAYMw4YNU2RvUfb29ujcubPQnKtXr+L69esG7y3nOg0fPtzgfeUKCAgQqn/+/DkOHDigUhr6q5ycHAQHB2PdunUGrTN16lR8//33yoQiIiIiIiIiIiIiIiIiIiIiIiKi9zp06BBycnK0jo8ZMwYFChRQNYO1tTVCQkJ01qSkpCAqKkrVHLpER0dj/vz5euvGjBmDH374wQiJ/p+npycOHToEJycnvbVfffUVNBqN0PobNmzQ+TDC2rVryzqz8k8FChTAnj17dH4eWVlZWLRokcF7ERGRcbEBChERSXLjxg0cOXJEUu3HH3+MSpUqqZzIMBkZGdi7dy/69u2L4sWLo2rVqhgwYACWLFmC48eP48mTJ5Ke+P3q1Svcvn0bBw4cwJIlSzB48GDUr18fBQsWRMuWLTF37lxJ3TpNrVevXpLqXr16hY0bN6qc5sOQmZmJgIAApKamSqqfO3eurGYAxvT7778jOjpaaE737t1RpEgRlRLp161bN6H6rKws/PLLLyqlMQ/JyckICwsTntezZ094enqqkMi0unfvLjzn+PHjKiT504fUAKVo0aLCc968eaNCEv3u3buHOXPmoFGjRihUqBDatGmDKVOmYPv27bh+/TqSkpL0rpGVlYWnT5/i/Pnz2Lx5M7777jt07NgRpUuXRoUKFTBo0CDs2bMHGRkZRviMKC+JjIwUqm/btq1KScSI3vckJiYavGdSUhIOHz4sNMfHxwfVqlUzeG+5RO9lAGDPnj0G7ZmTk4MdO3YIzalYsSJ8fX0N2tcQprhOpJ9Go0FwcDDWrl1r0DozZszAlClTFEpFRERERERERERERERERERERERE2pw+fVrneNeuXY2Sw8fHB15eXjpr9GVV06RJk5CVlaWzxtfXF7NnzzZSor+rWbMmVqxYobcuKipK+D2j4eHhOseXLFkCW1tboTW1cXd3x9ChQ3XWbNq0KVeepyAi+pCxAQoREUki0llRzmFxY3n48CG+/vprlClTBh06dMDatWvx/PlzxfdJT0/HkSNHMHbsWFSqVAkff/wxVq5cKfvguto6deoES0tptwWrV69WOc2H4dtvv5XcTdbX1xdDhgxROZHh9L1I8T4BAQEqJJHu888/l/x3/529e/eqlMY8bNq0SbiJhKWlJb7++muVEpmWv78/LCwshOacO3dOpTRAWlqarHm58QU7Z2dn4TnGbICSk5OD8PBwtGjRApUqVcK4ceNw9uxZnR3N5bp//z6WL1+Ojh07wtXVFYMGDcL169cV34fyJpG/K/ny5et3VUcAACAASURBVEODBg1UTCNd6dKlheqlNpXTZffu3ZKaIP6Vqe9lPv30U+Fmcobey5w6dQrPnj0TmtOjRw/h76dKqlChAmrVqiU05+effxZ+agFJp1Tzk/nz52P8+PEKpSIiIiIiIiIiIiIiIiIiIiIiIiJdbty4oXWsRIkSKF++vNGy+Pv76xy/deuWkZL83cWLF/HTTz/prClWrBg2btwofJ5FST169EDPnj311s2bN0/ymq9fv8apU6e0jnt7e+Pjjz+WvJ4UY8eOhY2Njdbx+Ph4Vc94EBGR8tgAhYiI9EpPT8fmzZsl1VpYWBitW6eI+/fvIzg4GO7u7pg9ezbi4+ONuv+5c+cwYMAAuLm5YcaMGbIPsKvFxcUFjRo1klR78eJFXLlyReVEedvx48cxZ84cSbVFixbFmjVrVE6kjF27dgnVFytWDJ9++qlKaaQpXLgw6tWrJzTnwIEDwoejc5OVK1cKz/Hz84Onp6cKaUyvVKlSejtD/1N0dDRevXqlSp6MjAxZ83JjAxQ7OzvhOcb4t5mTk4PQ0FBUqVIFXbt2xdGjR416QD4xMRHLly9HjRo10KZNG0RGRhptb8p9nj9/juTkZMn1VatWNekvUv7KyclJqF6JBkii9zI2Njbo1KmTwfsawsrKCi1atBCac+HCBeEGJn8lep0A/b9kNIbWrVsL1T99+lRyw0ISo9Fo0L9/f4N+zrGwsMCSJUswcuRIBZMRERERERERERERERERERERERGRLvfv39c6VrJkSSMmAdq0aaNzXFdWNc2fP19STeHChY2QRreQkBAUKlRIZ83Zs2clv2f9xIkTOs889OnTRyifFEWLFtX7AEhdTVlyo6dPn2L58uXo378/6tevj9KlSyN//vywtrZG/vz5Ubp0aTRu3BjBwcHYsGEDnj59aurIAP48D7Nv3z6MGzcObdq0QYUKFVCkSBHY2NjAwcEBLi4uqFGjBrp06YIZM2bg0qVLJnuYYVxcHC5fvoxjx44hPDwcGzduxM6dO3H48GHcuHHDqA/vJfoQWZs6ABERmb/du3cjKSlJUm3dunXh6uqqciLp3rx5gxkzZmDu3LlIT083dRzEx8dj4sSJWLp0KUJCQsziIOA7HTt2xOnTpyXVrl27FgsXLlQ5Ud6UmJiIwMBA5OTkSKpfuXKlWf2b0iY+Ph5Xr14VmtOpUydYWVmplEi61q1b4/z585Lrk5OTcfnyZdSvX1/FVKZx/fp1WQ2Ohg4dqkIa89G8eXNcu3ZNcn1OTg4iIyPh4+OjeBa5jUxyYwMUOc3CHBwcVEjy/86ePYvhw4fj4sWLqu4j1cGDB3Ho0CH06NED8+fPh4uLi6kjkZl58OCBUH316tXVCSKDaEMjXZ3bpcjKysKxY8eE5vj4+Oj9pY8xtG7dGtu2bZNcr9FoEBERIftnkYMHDwrVe3p6msXfrdatW2PWrFlCc44fPy7cLI9002g0GDBgAFavXi17DUtLSyxfvhzBwcEKJiMiIiIiIiIiIiIiIiIiIiIiIiJ9dD2Yz9iNCmrVqgVbW1utDTdevnwpaZ0HDx6gfPnyWsfXrl2L3r17S1rr2bNnCAsL01lTt25d9OjRQ9J6aitWrBjGjRuHCRMm6KwLDQ2V9H5KfecumjdvLpRPqubNm+s8Eyd63slcnT59GtOmTcPRo0e1nkt79eoVXr16hdjYWJw5cwarV6+GlZUV2rdvj6+//hoNGzY0cuo/H+o5Y8YMrFu3DomJie+tycrKQnp6OhISEnD9+nXs2LEDEydOROXKlTFixAgEBwfD2lq9lgiJiYnYvHkzTp48iV9//RVPnjzRWW9hYQFPT094e3ujQ4cOaN26tayHAJ8+fRp37tz51//X1bTmzp07WLdu3XvHKlWqhMaNGwMAli5divj4eK3rVK9eHV26dBELLGDTpk24ffu21vGAgAC4u7urtj/lbmyAQkREem3YsEFybbt27VRMIubq1avw9/fHrVu3TB3lX548eYJu3bph7969WLp0KZydnU0dCR07dsTYsWMl1W7btg3z5s0zi+YVuc2AAQP0/hD0Tr9+/fD555+rnEgZhw8fFn6xqmXLliqlEePj44Np06YJzTlz5kyebICyb98+4TmlS5dGkyZNVEhjPkaOHCn8OVaoUEGVLHIbmWRlZSmcRH2vX78WnuPo6KhCkj+v3+TJkzFz5kyTdRDWRqPRYNOmTThy5AjWr1+P1q1bmzoSmZFnz54J1VetWlWlJOJSUlKE6g1tgHT+/HnhPc3pXkbUmTNnZDVAiY2NxY0bN4TmmMt18vb2hp2dHd6+fSt5zpkzZ1RM9OHRaDQYOHAgVq1aJXsNKysrrFmzBoGBgQomIyIiIiIiIiIiIiIiIiIiIiIiIil0PZz68ePHRkwCWFtbo3LlylqbbqSmpho1DwBs3LhRa0OWdyZNmmSkNNIMHToUs2fP1tqYAgDCw8OxYMECWFpa6lzr5s2bWsdKlCiBcuXKyY2pk5ubm85x0YdKmpsXL15gwIAB2Llzp6z52dnZ2LVrF3bv3o0BAwZg/vz5qj989p3FixdjwoQJss6HAEBMTAwGDx6MZcuWYf369ahZs6ai+WJiYjBv3jxs2rQJb968kTxPo9EgJiYGMTExWL16NQoVKoThw4dj5MiRQg/YXLVqFdavXy+U+cyZM1rf4xwUFPS/Bih37tzB/Pnzta5TokQJdO7cGRYWFkL7S/H27VsMHTpUa9MsR0dHjBkzRvF9Ke9gAxQiItIpPj5e6Anf5tIAZdu2bejdu7fOH6zNwcaNG3Hjxg388ssvcHFxMWkWd3d3lC9fHvfv39db++zZMxw5coSHrAWtXr0a4eHhkmorVqyIBQsWqJxIOceOHROqt7CwQNOmTdUJI6hevXqwsrISaixx5swZjBo1SsVUprF//37hOd27d9f7IlZuV7ZsWZQtW9bUMQDIb2Qit3GKKcl5Abxo0aKK53j16hXatWuHkydPKr62kp49e4a2bdti2bJlCA4ONnUcMhMJCQlC9SVKlFApibi4uDih+uLFixu0n+i9DCCv8Yga3NzcUKJECaFrJrexR26+Tra2tqhduzbOnTsnec6vv/6qYqIPi0ajwaBBg7By5UrZa1hbW2Pjxo3o1q2bgsmIiIiIiIiIiIiIiIiIiIiIiIhIKnt7e61NAp4/f46bN2/C09PTaHn27duntbGCra2t0XK8ExYWpnO8XLly6NChg5HSSOPs7IzAwEAsXLhQa01cXBwuXLiAhg0b6lxLVwOUSpUqyc6oj75zBElJSartrbaYmBj4+voq0sRFo9Fg+fLluHr1Kvbt24fChQsbHlCLzMxM9OvXD6GhoYqsd/XqVTRu3Bjh4eGKnGfMycnBvHnzMGnSJKGHK2qTmJiIadOmYdmyZViyZAm6dOli8JqGCgoK0tkAJS4uDmfOnPlfwxQl/fLLL1qbnwBA586d4ezsrPi+lHfk7ZOKRERksN27d0s+NO3i4oLatWurnEi/bdu2ISAgwOybn7xz8eJFNG3aVOdNnbG0aNFCcu2mTZtUTJL33L59GyNGjJBUa2VlhdDQUOTLl0/lVMo5e/asUH3NmjVRpEgRldKIcXR0hJeXl9CcvHgYNjk5WfjPEfizAQoZj9xGJrmxAYqUhlz/pHRH6FevXqF169Zm3/zknezsbPTv39+gw+WUt4h2ylajiZBcv//+u1B9mTJlDNpP9HtgoUKFFO8gbogGDRoI1V+9elWoS/k7otfJnJreAdD7i7d/SkhIwK1bt1RK8+F41/xkxYoVstewsbHB9u3b2fyEiIiIiIiIiIiIiIiIiIiIiIjIhPSdAzHkfWJylC5dGpUrV37vR4UKFYyaJTY2FhcuXNBZ07NnT1hYWBgpkXR9+vTRW3PixAm9NfHx8VrHlH6v/19ZWVnpHM/MzFRtbzVFR0ejSZMmijQ/+atz587Bz89PteuSlZWFrl27Ktb85J3Xr1/Dz88Ply9fNmidly9fwsfHB2PHjlWk+clfxcfHo2vXrpgwYQI0Go2ia4uqWbMmatSoobNG6oPeRW3dulXnuJSvOfRhYwMUIiLSaffu3ZJrmzRpYvIfws6fP49evXrluoPe0dHR6N69O3Jyckyao3nz5pJrf/rpJ8Vv8vOqzMxMBAQEIDU1VVL9xIkT8fHHH6ucSjlJSUmIiYkRmlO/fn2V0shTr149ofq4uDgkJCSolMY0Dh48iKysLKE5Li4uqFWrlkqJ6H1E/4zeyW3fFwEgKipKeI7SL4r27NlTVmMgUxs6dGiuadpC6hK9VzOXBijZ2dm4ePGi0Jxq1arJ3k+j0eD8+fNCc+rVqwdLS/N5WU30XiYrKwvR0dHC+4h+TXR3d0ehQoWE91GL6HUCgGvXrqmQ5MOh0WgwePBgg36pbWdnh507d6JTp04KJiMiIiIiIiIiIiIiIiIiIiIiIiJRHh4eOscXLVqUK99/rYSjR4/qbXhgrg8Bq1mzpt6GMREREXrX0fXwRjXfTxoXF6dz3MnJSbW91fLo0SO0aNECz58/V2X9iIgIfPfdd6qs3bt3b6EzqSLevHmDrl27Ij09Xdb8pKQkNG3aVNLfZ0PMnDkTY8aMUXUPKYKCgnSO79ixQ/FGLW/evMHPP/+sdbxcuXJm9YBNMk/Wpg5ARETmKzU1FUePHpVc/+mnn6qYRr+kpCR88cUXubYr4y+//ILly5dj8ODBJsvg4+MDCwsLSTeur1+/xvHjx9GmTRsjJMvdJk+ejMjISEm19erVw+TJk1VOpKzIyEjhH3Zq166tUhp5qlevLjzn999/N/nXPSUdO3ZMeE7Tpk1N3vjqQyO3kUlua4ASExMj64U6Jb+2LFiwAHv27FFsPWPKzMxEUFAQoqOj4eDgYOo4ZELNmzfHjz/+KLm+UqVKKqaR7tSpU0hMTBSaU6dOHdn73blzBy9fvhSak1fuZerWrSu5Pi0tDdevXxfaI69cpy5duqiQJu/TaDQYMmQIli9fLnsNBwcH7Nq1C61atVIwGREREREREREREREREREREREREcnRoEEDnWfNMjMz4efnh7CwMDRu3NiIyUzvxIkTOsddXV1lvY/RWFq1aoVly5ZpHb906ZLeNXQ9OFrN97XfuHFD53iJEiVU21sNaWlpaNu2rc7GLmXLlkWLFi3g5uaGYsWKIT09Hc+ePcOdO3dw4MABnc1o3pkzZw769OmDihUrKpb9P//5j87zSY6OjmjWrBm8vLxQvHhx2NvbIz4+HnFxcTh8+DDu3r2rd4+7d+9i7ty5mDRpklA2jUYDf39/4fdDyzV//nxUq1YN/fr1M8p+7xMQEIBx48ZpPVP05MkTnD9/Hg0bNlRszz179uj8WtC7d2+eRSO92ACFiIi0OnTokFA3PFN3Xps6dSoePHhg0BoeHh5o1qwZ6tWrBw8PD5QpUwaFChWCg4MDLC0t8erVK7x+/Rqpqal49OgRbt68iZs3b+LChQuIiooyuOPdxIkT4e/vjyJFihi0jlwuLi7w9PRETEyMpPq9e/eyAYoeERERmD17tqRaR0dHbNy4EdbWuesW7dq1a8JzzO0wbLVq1YTn5LUGKBcvXhSe4+Pjo0IS0iUrK0vWvNzWACUsLEx4TpEiRRRr3vDHH3/gm2++MWgNe3t7+Pj4oGHDhqhVqxbc3NxQsmRJODo6wt7eHmlpaf+7p0hMTMStW7cQExODGzdu4NixY3jx4oVB+z948AAzZszAtGnTDFqHcrdatWqhVq1apo4hbN26dUL1VatWNegXEx/yvYyI6Oho4e8n5nadKleuDGtra6Hvp6LXif6k0WgwdOhQnb8M1cfJyQl79+5Fs2bNFExGREREREREREREREREREREREREcn322Wf44YcfdNY8ffoUTZs2xVdffYXRo0ejWLFiRkpnWufOndM5bu7nLz799FOd7/mLj49HQkICihYtqrVmzpw5yMnJee9Y/fr1Dc6ojb4Hn7q7u6u2txri4+MRHx//r/9vaWmJrl27Yvz48TrfI56eno7t27dj9OjROs8lZGRkYMmSJZg3b54iuQHtD2euWrUqJk2aBD8/P9jZ2Wmdf/nyZYwcORInT57Uuc/ixYvx9ddfw8bGRnK2pUuX4vDhwzprihcvDn9/fzRv3hzVqlWDi4sL8uXLh9TUVCQlJSEhIQFRUVE4d+4cdu/erfchnGPGjIGvry9KliwpOaeSihcvjtatW2P//v1aa8LDwxVtgLJ161atYxYWFggKClJsL8q7ctfpWiIiMipdHTn/KV++fLIO3Snl/v37Qk+3/ysHBwcEBgZi2LBhejtpFipUCIUKFQLw5+G5vz6F+unTp9i3bx9+/PFHWY0EACApKQkrVqzAhAkTZM1XQoMGDYQaoCxZskTlRLlXYmIievXqpfWH93+aN28ePDw8VE6lvN9++014jrl1rZXz9Ss6OlqFJKaRlZUl68+xSZMmKqQhXeQ2MslNDVCysrKEmx8AULRD+JQpU/DmzRtZc2vUqIExY8agc+fOcHJy0lrn5OT0t/GPPvrof/+dnZ2NX3/9FeHh4Vi1apXsLIsXL8b48ePh6Ogoaz6RKTx69AibN28WmtO+fXuD9pTzPdDLy8ugPZVWoUIFODg4IC0tTfIc0XuZvHCdbG1tUbFiRdy8eVPynLx0z2dMw4YNk/0zOgA4Oztj//79H9wTQIiIiIiIiIiIiIiIiIiIiIiIiMyZt7c3qlWrpvfhYtnZ2Zg1axbmz5+Pzz77DF27dsVnn32GggULGimpcWVkZOD27ds6a/76fnFzVLNmTb010dHROs+RDBkyRMlIkpw+fVrvtVeyuYOpVKlSBVu2bJH052Rvb4/AwEC0bNkSrVq10vke4A0bNmDWrFlCjURE2NvbY+7cuRg8eDAsLS311teuXRvHjx/H+PHjMWfOHK11z549w969e+Hn5ycpx+vXrzF16lSdNePHj8e333773vMX+fPnR/78+VG2bFnUqVMHAwYMQGpqKlauXIlvv/0Wr1+/fu+aycnJmDBhAtavX//e8XXr1r33/EzTpk0RERHx3jlBQUFCZ24CAwN1NkDZsWMH5s6dK3k9XVJSUnDgwAGt402bNkW5cuUU2YvyNv1fLYiI6IN1/PhxybW1a9eWdBOqlpCQEGRkZAjP++yzz3Djxg0sW7bM4IYMrq6u6NevH6KiorBnzx7Zh/2WLl0KjUZjUBZDNGjQQHLt48ePcf36dRXT5G4DBw7E48ePJdW2a9cOAwcOVDmROvS9cPVPJUqU0NkUwBRcXV3h4OAgNOfBgwfqhDGB6OhopKenC82xs7ODp6enSolIm6ysLFnzclMDlNDQUNy7d094nqENEN55+vSprAYsBQsWxMqVK3HlyhUEBgYa9HXOysoKn3zyCRYuXIh79+5h9OjRsLYW71+amJgo3EiCyNSGDBmCzMxMoTm9e/c2aE/RexkLCwtUqFDBoD2VZmFhgbJlywrNEb2XEb1OAFCpUiXhOWoTfdE8L93zGcvQoUOxdOlS2fMLFCiAw4cPs/kJERERERERERERERERERERERGRGZo8ebLk2oyMDOzatQsBAQFwcXHBp59+iu+//x7nz5+X/d54cxQTE6P38zG3Bwn/k4eHB+zs7HTWxMbGGimNdGPHjtU5bmlpiebNmxspjToCAgIQFRUlqfnJX5UoUQLh4eFwdnbWWvPixQtERkYaGvG93NzccP78eQwdOlTo3KmlpSVmzZqFNm3a6KzT1WjjnzZv3oyEhASt4wsWLMCMGTOEHj7r5OSEkSNH4tdff9X5Pu4tW7YgLi5O8rpK69ixo87mUw8ePEBUVJQie/300094+/at1vE+ffoosg/lfWyAQkRE7xUfHy/0pOu6deuqmEa39PR0WYd7J0+ejJ9//hlubm6KZ2rfvj0iIyNlHcZ88uQJLl++rHgmqUS7Woo0yvmQrFmzBmFhYZJqXVxcsHr1apUTqUdfp9R/MseDsACEDw1LbW6TG8j5mlO5cmVYWVmpkIZ0kdvIJLc0QHn27BnGjRsnPM/Kygrt2rVTJMP69euFX0yvVKkSzp8/j+DgYFhYWCiS453ixYsjJCQEERERKFKkiPD8PXv2KJqHSE0LFizAvn37hOa0bt0alStXNmhf0XuZ0qVLw97e3qA91SDa2EP0Xkb0OllZWaF8+fJCc4xB9DqlpqYiMTFRnTB50LBhwwxqflK4cGEcPXpUqDEnERERERERERERERERERERERERGY+/vz98fX2F52VlZeHkyZOYNGkSGjZsiEKFCqFNmzaYPn06Tpw4gTdv3qiQ1jju37+vt6ZKlSpGSCKflZUVSpYsqbPm6dOnRkojTUhICM6dO6ezplmzZnB1dTVSIuV17twZGzZsEGrM8Veenp748ssvddacPHlS1tq6FC5cGMePH0eNGjVkzbewsMB///tfneczRHKHh4drHfv4448xYsQIoXx/5eXlhe3bt2tt8pKZmYnQ0FDZ6xvK3t4e/v7+OmuknoHUZ+vWrVrHnJ2d0blzZ0X2obxP/BHSRET0QYiIiBCqN2UDlL179wofSPv222/x3XffqZToT3Z2dlizZg0yMzOxadMmobkHDx5EnTp1VEqmm5eXF2xtbZGRkSGpPiIiQu8PQh+aO3fuCP3gs3r1ahQrVkzFROpJSkpCUlKS0BxzbYBSvnx53Lx5U3J9XmqAcu3aNeE51apVUyEJ6SO3y3VuaICSlpYGf39/nV11tWnbti2KFy+uSI4NGzYI1ZcqVQpHjx4VbqIkqlGjRjhy5Ai8vb2FXtw/duwYMjMzYWNjo2I6IsOtX78eo0ePFp43depUg/eW8kunvzLnexkRKSkpSElJQf78+SXV37t3T2j9smXLmuXXHjlNWR4/foxChQqpkCZvGT58OJYsWSJ7vqWlJY4cOYLatWsrmIqIiIiIiIiIiIiIiIiIiIiIzM7vYg9jIjKKau6mTpCrbNy4EQ0aNMCdO3dkr/H69WscPHgQBw8eBABYW1ujdu3a8Pb2RqNGjeDt7a23IYe5iIuL0zluYWGBEiVKGCmNfKVKldL5vtr4+HgjptFt3759kh6+akhjC1MrXrw4Vq1apbWxhlSBgYH4/vvvtY6r8SD3xYsXG/wgRXd3dzRs2BBnz5597/jNmzeRlpYGBwcHnevk5OTgzJkzWscDAgIMygkADRo0QNeuXbFt27b3jh8/flzWw4KVEhgYiBUrVmgd37FjB2bNmmXQHi9evMCRI0e0jvv7+8tu5EMfHjZAISKi9zp//rxQffXq1VVKot+7H3Slatq0KaZNm6ZSmr+zsLDAihUrcOrUKTx69EjyvKtXr6qYSjdra2t4enri+vXrkupPnjwJjUajs6PihyQrKws9evTA69evJdUPGDAA7du3VzmVekQPwgJQvUmAXKIdXRMTE5GamgonJyeVEhnPgwcPhOdUrVpV+SCkl9xGJubeACUxMRH+/v6yOwcPHjxYkRyxsbGIjo4WmhMaGmq0r2u1atXCrFmzMHz4cMlzUlNTcffuXVSuXFnFZETyZWdnY+LEiZg9e7bw3L59+6Jhw4YG7f/y5UskJycLzckr9zIA8OTJE8nf00UbxeS16yS3A/2H4ssvv8TixYsNWiMnJwf79u1jAxQiIiIiIiIiIiIiIiIiIiKivK56R1MnIPo3jdh7iD90hQsXxokTJ9CyZUvcuHFDkTWzsrIQGRmJyMhILFiwAABQrlw5eHt7w9vbGz4+PvD09FRkL6U9ffpU57iLiwusrc3/OLe+h8WlpaUZKYluu3fvxhdffIGcnByddfXq1UO7du2MlEp548ePR8GCBQ1ex8PDA66urlr/nso5U6RLrVq18MUXXyiy1qeffqq1AQrwZ/YqVaroXOPRo0c6H0JbsWJF2fn+ql+/floboERFRSmyh1ze3t6oVKmS1qZVd+/exeXLlw16D294eLjOhz736dNH9tr04TGs7RMREeVZIjdVlpaW8PDwUDGNbseOHZNca2lpiWXLlqmY5t8cHR0xZcoUoTlK/fAvl5eXl+TahIQEk+c1J5MnT0ZkZKSkWnd3d8ybN0/lROoSaezzTvHixVVIYrhixYoJz3n27JkKSYzvyZMnwnPKlCmjQhLSRaPR5MkGKHv27MFHH32ks9OrLl5eXmjdurUiWY4ePSpUHxAQgGbNmimyt1SDBw9GuXLlhObw+zSZqyNHjqBWrVqymp9UqFABISEhBmf40O9l9P3C7Z2kpCS8evVKaO0P8Tp9qEaMGIFFixYpstZ3330n3JCViIiIiIiIiIiIiIiIiIiIiIiIjK9UqVI4f/48AgICVNvjwYMH2LRpE4YMGYLKlSujTJkyCA4OxuHDh83qPfIpKSk6x4sWLWqkJIZxcHDQOZ6enm6kJO+n0Wjwww8/oHPnznqzWFlZYcmSJbn2gd92dnbo3bu3YuvpemDiw4cPFdsHAAYOHKjYddf3oEcp2ePj43WOiz5MU5tPPvkElpbvb9vw4sULnc1BjKFXr146x8PDww1af+vWrVrH3N3d4e3tbdD69GFhAxQiIvoXjUaDy5cvS64vV64c7O3tVUyk3fPnz4WeRN6uXTuTdPv84osv9P4Q+Fembqog0gAFAC5duqRSktzl5MmTmDVrlqRaa2trbNy4EU5OTiqnUpecw6Curq4qJDGcnMOwSUlJKiQxPjkNUMz1zzEv09edWBdTv1DyPhcuXMCnn36Kjh07Cn0v/6fp06cr9uKY6IHrMWPGKLKvCCsrKwQFBQnNMfV9BdFfvXz5EsuXL0ft2rXRsmVL/Pbbb8Jr5M+fHzt37lSkoznvZaTdy/A65Y17PjWMHDkS//3vfxVbLysrCwEBAXj9+rViaxIREREREREREREREREREREREZE6nJ2dsXHjRhw8eBD16tVTfb8nT55g9erVaNWqFUqVKoUpnf2BvQAAIABJREFUU6bgxYsXqu+rj75mHKY6dyfKzs5O53hmZqaRkvxbbGwsfH198c0330hqfjN16lSj/J1US/PmzRV5r/Q7ZcuW1TqWmJio2D4WFhbw8/NTbD1duQFp2TMyMnSOnzhxQiSSVvb29ti1axfCwsL+9bF9+3ZoNBpF9pErMDBQ59kbQxqgxMXF4eTJk1rHlWzmQx8GNkAhIqJ/uX37tt7Ok39VpUoVFdPoFhMTI1Tfv39/lZLo5ujoKNSlTvTp6kqrVq2aUD0boPx5KLJnz56SGxRMmjQJ9evXVzmV+vR1wXyf4sWLq5DEcC4uLsJzlPwh31Sys7NlNUcw10PNeZkhTUw0Go1BDVSU8vDhQ8yePRu1a9dGgwYNdL7AIUXjxo3RoUMHhdKJ3Vd89NFHqF27tmJ7i2jZsqVQvanvKyhvev78OaKjo5GcnPy3ry8ajQapqal4/vw57t69i6NHj2LFihUYNWoU6tSpAxcXFwwaNAhXrlyRta+zszMOHDiAmjVrKvJ58F5G2r0Mr1Puv+dTw6hRo7Bw4ULF17179y6GDx+u+LpERERERERERERERERERERERESkjlatWuHChQuIiIhAjx494OjoqPqez549w7Rp01C2bFlMmTIFb9++VX1PbfTtnVsaoOhrFKGvQYpa1q5di+rVq+PgwYOS6v39/TFx4kSVU6mrWbNmiq6nq5lKRkaGYudNqlatKuthhdroawKTlpamd438+fPrHN+wYQNu3rwplEub9u3bo0uXLu/9sLGxUWQPucqVK4dPPvlE6/itW7dw/fp1WWuHhYVp/TtkaWmJwMBAWevSh8va1AGIiMj8iD6FvUKFCiol0U/k5tLOzg4+Pj4qptGtevXqOHLkiKTaN2/eqJxGt/LlywvVswEKMHDgQDx+/FhSbcOGDTFp0iSVExmHnMYZRYsWVSGJ4fLlyyc8JykpSYUkxvXHH39I6n77T2yAYnxy/pz+Od/SUt0emBkZGUhJSUFKSgqSk5MRFxeHa9eu4cqVK7h69Spu3rypWNdaW1tbrFixQpG13hG5r/jss88U3VuEaKMyU99XUN509OhRdO/e3ah7urm5YefOnahTp45ia/JeRtq9DK9T7r/nU9ro0aOxYMEC1dZft24dfH194e/vr9oeREREREREREREREREREREREREpKwmTZqgSZMmSE1Nxc8//4zdu3fj0KFDePHihWp7vnnzBtOmTcOWLVsQFham2EP2RFhZWRk0bi7S09N1jjs4OBgpyZ+uX7+OIUOG4PTp05LntG3bFqGhoaqfnVBbrVq1FF1P35/dmzdvZL3H9p9MkVsfd3d3WFlZaT2T8+bNG7Rr1w4///wzPD09ZeXMLYKCgnQ+yDg8PBxeXl7C627dulXrWMuWLVG6dGnhNenDlru/ghMRkSpEO9a5ubmplES/J0+eSK5t1KiRUTqIamOuT0B/H9GmNlevXlUpSe6wdu1abN++XVKtk5MTQkNDc82LF/okJiYKz3F2dlYhieHk5EpOTlYhiXHJfSHRXA8152WGNkCxtbWFhYWFqh92dnZwcXFBxYoVUadOHbRt2xYTJkzAtm3bEBMTo1jzEwCYPHkyqlSpoth6OTk5+OOPPyTXt2jRQrG9RRUsWFCoe7aS153IVD7//HNERUUp2vwE4L2M1HsZXqfcf8+npDFjxmD+/Pmq7yPSZJKIiIiIiIiIiIiIiIiIiIiIiIjMh5OTE7p164bNmzcjPj4ekZGRmD17Ntq3b48iRYqosuft27fh7e2NAwcOqLK+LvqaNLx9+9ZISQyj7/2SxmqAkpSUhJEjR6JOnTpCzU/69euHn376Cba2tpLnPHjwQPFzFSdOnJDxWf+d0o049F2TrKwsRfYxx9wODg5o3Lixzpo7d+7go48+wpw5c/L0A2i7du2q899xeHi48JqPHj3CuXPntI736dNHeE0iNkAhIqJ/yU0NUEQO4indQVCUsbtcGsLR0VGoYUtSUhKeP3+uYiLzdffuXXz55ZeS6xcsWIBKlSqpmMi4Xr16JTzHXA/DyulUqq+7bW6QlpYmPMfGxsbk3XCtra1Vb+Zh6Ie1tbWin7NSLyjlBa1atcKECRMUXTM5OVmoUQjvK4iMw93dHbt378ZPP/2kSvMt3stIu5fJS9fJxsZG6BdbQN6451PKV199hXnz5hllr6SkJPTq1Qs5OTlG2Y+IiIiIiIiIiIiIiIiIiIiIiIiUZ2lpibp162Ls2LHYs2cPEhIScOPGDaxZswbBwcGoWrUqLCwsFNkrNTUVfn5+OHXqlCLrSWVvb69zXM65DVOIi4vTOV6sWDFV98/JycHy5cvh7u6OhQsXSj5DYW9vj2XLlmHVqlWwsbFRNaMxWFhYwNXV1dQxZClZsqSpI7zXoEGD9NakpqZi3LhxKFmyJAYMGIADBw7kuWYozs7O6NSpk9bx6OhoREdHC625detWrWdxChYsiI4dOwqtRwSwAQoREb1HbmqAkpSUJLm2atWqKibRL7d063ynfPnyQvW3bt1SKYn5ysrKQo8ePfD69WtJ9R06dEBwcLDKqYxL9DCshYUFnJycVEpjGEdHR+E5mZmZKiQxLjkvpOl7cY7UkZ2dbeoIZsHNzQ2bNm1SvAmPyD1FqVKlkD9/fkX3F5Xb7iuIRNna2uLHH3/EjRs30KFDB9X2yUuNPdS8l8lL1wkQv1Z54Z5PCRMmTEBISIhR94yIiMDMmTONuicRERERERERERERERERERERERGpq3LlyujTpw9WrlyJ33//HS9fvsT+/fsxadIkNG3aFHZ2drLXTktLg7+/v1Ef9Fy4cGGd4wkJCUZKYhh9DVDUbG4RERGBOnXqYNCgQULXq2bNmoiMjMTAgQNVy2ZsBQoUyLWNXNR44KUS/P390bhxY0m1ycnJWLlyJXx9fVGoUCE0adIE3377LY4cOZInGqIEBgbqHA8PDxdab+vWrVrHunfvzjNoJIuyjyQnIqI84c6dO0L1puzMN23aNIwaNUpSbYUKFVROo5u+HwLNjeif6+3bt+Ht7a1SGvM0ZcoUXLhwQVJt8eLFsWrVKpUTGZ/oYVgnJyfFOvMqzdpa/NY4LxyGldMAxZAXE0k+qd2L8zJXV1ccOXJElRfFSpYsicuXL0uqldNkQEkpKSm5pgs4kVwZGRkYNWoUjh49ip49e+Kzzz5T5YV8OY098uXLp3gOJah5L5OXrhMgfq3ywj2fEnbt2iV7ro2NjezrOHXqVLRs2RL16tWTvT8RERERERERERERERERERERmZHfdps6ARGZmYIFC8LX1xe+vr4A/jzncObMGfzyyy/YuXMnHjx4ILTe06dPMXr0aISGhqqQ9t9KlSqlczw+Ph7Z2dmwsrIySh45/vjjD6SkpOisUeMM4cOHDzF27FiEhYUJzbOzs8PEiRMxYcKEXNssRBsHBwdTR5DNXLNbWlpi8+bN+PjjjxEbGyt5XkZGBk6dOoVTp05h+vTpsLGxQd26ddG0aVM0a9YMn3zySa5r8NGyZUuULFkSf/zxx3vHw8PDMXnyZElr3b59W+c5nD59+sjKSMQGKERE9Ddv374V7irp4uKiUhr93Nzc4ObmZrL9RVy/ft3UEYS4uroK1d+9e1elJObp5MmTQk8iX716tUn/rajl7du3QvXm/KLCh9oAJT09XXgOG6CYRnZ2tqkjmNS75ieVKlVSZX07OzvUqlVLlbWVdu3aNVNHIDKK9PR0hIeHIzw8HOXLl8fMmTPh7++v6B6i9zKA+d7PqHkvk5euE8AGKMbm4+ODhQsXolGjRrKa6WRmZqJHjx64cuUKnJycVEhIREREREREREREREREREREREZVzd3UCYjIzDk4OKBFixZo0aIFQkJCEBUVhRUrVmDTpk148+aNpDU2bdqEcePGwcvLS+W0+huDZGdn49GjRyhfvrzqWeSKjo7WW+Pp6anYfmlpaZg5cybmzJkj/HBQHx8fLF26VNE85sTW1tbUEWQz5+xlypTByZMn4evri1u3bslaIzMzE2fPnsXZs2cxY8YM2Nvbo0mTJmjfvj0+//xzlC5dWuHUyrO0tERAQADmzJnz3vHr16/j1q1b8PDw0LvWli1btI5Vq1aNDz8k2SxNHYCIiMyLts5t2uTPn9+sb0zNxYsXL3D69GlTxxBSvHhxofrHjx+rlMT8JCUloVevXsjJyZFUP3jwYLRt21blVKaRlZUlVC/nYK6xfKgNUERfKAL+/GGXjE/031te0qBBA0RFRaFatWqmjmIWdu/mkw/ow3P//n1069YNjRo10tklWpScr63mej+j5r1MXrpOABugGJOvry/27duH6tWrY8GCBbLXuXPnDr788ksFkxEREREREREREREREREREREREVFuUbduXaxYsQKxsbEYP3487O3t9c7RaDRYtmyZEdIBFStW1Fvz22+/GSGJfBcuXNA5XrJkSRQpUkSRvQ4ePIjq1atj2rRpQmda3NzcsG3bNhw9ejTPNj8hdVWoUAGXLl3C0KFDYWVlZfB66enpOHToEIYPH46yZcuicePGWL16teRGTaYSFBSkczw8PFzSOtu2bdM61rt3b5FIRH/Dk4tERPQ3sbGxQvXFihVTKUneMnHiRFlPTTclV1dXoXrRvzu52aBBg/Do0SNJtZ6enpg7d67KiUwnLzVAkdPUQ4kfdk3NwsJCeE5u+3qWV2RnZ5s6gtFZW1tjzJgxiIiIQKlSpUwdxyzcvXsXS5cuNXUMIpM5e/YsvL29sXXrVkXWy0uNPdS8l8lL1wkQv1Z54Z7PFPz8/LBr167//aK5b9+++Pzzz2Wvt2bNGsm/UCEiIiIiIiIiIiIiIiIiIiIiIqK8p2DBgpgxYwZ+++03uLu7663fvn07NBqN6rnc3NxQoEABnTVKPgBQDWfOnNE5XrNmTYP3eP36NQYMGIA2bdrg3r17kuc5Oztj+vTpiImJgb+/v8E56MPm5OSExYsX47fffkNQUJCkhkpSaDQanDlzBsHBwShTpgxmzpxptuevqlWrhjp16mgdl/J+3evXryM6Ovq9Y9bW1ujZs6fsfERsgEJERH8j2sRCqc6Nedl///tfrFy50tQxhLm4uAjVP3nyRKUk5mXdunU6uxP+lbW1NTZu3AhHR0eVU5mOaEMGcz4Im5mZKTzHxsZGhSTG5eDgIDzHXH8Az+vkHD7PzZo0aYJLly5h7ty5sLOzM3UcsxAbGws/Pz+z7wZMpLa0tDR0794d33zzjcG/lJLTXMpc72fUvJfJS9cJEL9WeeGez9gCAgKwbds22Nra/u3/r1ixAsWLF5e97oABAz6Ynz2JiIiIiIiIiIiIiIiIiIiIiIjo/SpWrIjTp0+jbNmyOusSEhJw9epVo2SqUaOGzvHjx48bJYccb9++xcmTJ3XWNG7c2KA9bty4gbp16wqdsbOyssKAAQNw+/ZtfPPNN4o1qiACgMqVK2PdunV48uQJfvzxRzRr1kyxhya+fPkSEyZMQMOGDXH//n1F1lRaUFCQ1rHLly/j7t27OufreqCpr68vXF1dZWcjYgMUIiL6m4SEBKF6Z2dnlZLkbhqNBmfPnkXHjh0xYsQIo3QLVZron+3Tp09VSmI+7t69iy+//FJy/ZQpU1C3bl0VE5me6MFWS0vzvf2U01wiLxyGZQOU3EPO4fPcxsrKCp06dcKvv/6KiIgIeHl5mTqSWUhKSkJISAjq1KmDa9eumToOkdn44YcfMGXKFIPWkNOkw1zvZ9S8l8lL1wkQv1Z54Z7PmPr164cNGza89++Ni4sLVq1aJXvtxMRE9OrVCzk5OYZEJCIiIiIiIiIiIiIiIiIiIiIiolyuWLFiWLBggd46Y73/ukGDBjrHz549i9TUVKNkEXX06FG8fv1aZ42Pj4/s9X/55RfUr18fN2/elDzH19cX165dw/Llyw168Jo+5cqVg0ajUfSjadOmquUl5RUpUgSDBg3CsWPH8OLFC+zYsQODBg2Ch4eHwWtfuXIFn3zyCR4+fKhAUmX16NFD53ukw8PDdc7X9YD5Pn36yM5FBADm+yhWIiIyieTkZKH6fPnyqZQkd3j58iXu37+PBw8e/O/jzp07uHDhAl6+fGnqeAbJnz+/UH1ycjJycnLM+qCjIbKyshAQEIBXr15Jqm/UqBEmTJigcirTEz0MKudgrrGwAYp0b9++RXZ2tmKdTUkac/73YwhHR0c0btwYnTt3xueff45ixYqZOpJJZGZm4vHjx/+6r7h69Sp+//13HvQms9OmTRtcvnz5b/9Po9EgIyMDGRkZeP36NRISEvD8+XPcu3cPd+7cwdWrVxVvmvef//wHHh4e6Nmzp6z5cr6XZ2VlyWoIojY172XkXidzxQYo6hk+fDgWLlwICwsLrTXt2rVDcHCw7EYoJ06cwOzZszF+/Hi5MYmIiIiIiIiIiIiIiIiIiIiIiEii9PR0dOnSRet4w4YNMWnSJCMm+n+dOnVChQoVcO/ePa01d+7cMUqWli1bYu7cuVrH3759i59//hndunUzSh4R27dv1zleoEAB2Q+I3rx5M4KCgiS/d7N69eqYP38+WrRoIWs/IkMUKFAAfn5+8PPzAwDExcXhxIkT//u4deuW8JqxsbHo2rUrzp07Z1bnLosWLQpfX1/s2bPnvePh4eH4+uuv3zsWGRmJu3fval23Xbt2iuWkD5P5ndYgIiKTSkpKEqp3dnZWKYl5ePny5d8OIf/zQ2ozjNxItAGKRqNBSkoKChYsqFIi05o6dSrOnz8vqdbZ2RmhoaEfRHMI0cOg2dnZKiUxnJxDuvb29iokMS45DVA0Gg2eP38OV1dXFRKRNub870cbCwsLODg4wMHBAY6OjihevDjKli2LsmXLokqVKqhXrx68vLzMspGA0t41ONF2TxEbG8smJ5SrFCxYELVq1RKeFxsbi2PHjuHAgQPYu3evIvfTwcHB8PDwQP369YXnymlskZ2dbZZft9S8l5F7ncyV6LXKC/d8xjBu3DjMmjVLUu38+fNx/Phxrb/80Gfy5Mlo0aKF7F+oEhERERERERERERERERERERERkTQ2NjbYt2+f1vEXL16YrAEKALRt2xaLFi3SOp6YmGiUHE2aNIG9vT3S09O11mzevNnsGqCkpKQgLCxMZ42fn5+s986GhYUhMDBQ0ntKCxQogOnTp2Pw4MEfxHksyh1KlCiB7t27o3v37gD+bIhy5MgRHDlyBL/88gueP38uaZ3IyEisW7cOffv2VTOusKCgIK0NUKKiovDw4UO4ubn9a2zr1q1a1wwICODDJ8lg5ndag4iITCo5OVmoPl++fColMY6srCzcvXsXMTExuHfv3r8OI6ekpJg6osmINkAB/nxRIC82QDl16hRmzpwpuX7hwoWoUKGCionMh62trVC9nIO5xpKZmSk8p0CBAiokMS5HR0dZ8549e2bSBigXL16ERqMx6p5PnjxB+/btjbrnXxn67+fcuXNo0KCBQmnofV68eIGYmBjcunXrvQ1OzLkZAJGxlCpVCr169UKvXr2QlpaGnTt3IiQkBJcvX5a95tu3b9GnTx9cvnxZ+N5EtB748+uxnZ2d8Dy1qXkvI/c6mSvRa5UX7vnUNnXqVEyZMkVyfb58+bBhwwY0adJE1vfHzMxMBAQE4NKlS3BychKeT0RERERERERERERERERERERERNL8H3v3GRbVtbYB+Blm6KAIqIgo1QaiBBVFFMWS2LElKhp7idHP2HNiotHE4zFqNLZEjSWWRKOiEnvXxBorRWxYURRrUOkMfD/OlZwYKbP27D0zwHNflz/Cft+1Hoa2IbPeUavVsLa2Rnp6er7X7927Z+BEr/P39y/0ekG55WZlZYW2bdti69atBdbs2LEDt27dgqenp0Ey6WLNmjVIS0srtCYiIkJ43d9//x3vv/++Ts8RDA8Px7fffgtXV1fhfYgMqVKlSn89Fz43NxfHjx/HunXrsG7duiK/jhYtWmRyA1A6dOgAR0dHPHv2LN/rmzdvxrhx4157W15eXqFDk/r37y9nRCqlOACFiIheIzrwwxQP/hUmNTUVBw4cwKFDh3Dq1ClcvHgRWVlZxo5lkqR8bFNTUxVIYlwpKSk6/8INAF26dMGAAQMUTmU6RA/DGuoPR1K8fPlSuKckHIatUKGCpL5Hjx7JnERM3bp1Db6nsSeQ6js8w5QPohdXly9fxu7du3H8+HGcOnUKSUlJxo5EVKxYW1ujd+/e6N27N6KiojB27FjcvHlT0lrx8fFYsGABxo8fL9QnZbBHenq6SQ5cUPJeRurjZIpycnIKfXWF/JSEez4lzZ49W/hrDwAaN26Mjz/+GDNmzJC077Vr1zB69Gh8//33kvqJiIiIiIiIiIiIiIiIiIiIiIhIN1WqVMG1a9fyvXbv3j08efIEzs7OBk71X+XLly/0upWVlYGSAO+//36hA1Byc3Mxd+5cLFy40GCZCpOdnY05c+YUWlO1alW0aNFCaN2UlBR0794dmZmZhdZZW1tj/vz5GDJkiND6RKbAzMwMTZs2RdOmTTF9+nT0798fu3btKrD+woULuH//PipXrmzAlIWzsLBAz5498e233+Z7Pb8BKMePH0diYmK+9QEBAQgICJA9J5U+ZsYOQEREpkV0GIhGY/qztLKyshAZGYlOnTrByckJnTt3xoIFC/D7779z+EkhpBz0L4mP5wcffIA7d+7oVOvi4oJly5YpnMi0iB4GTUtLQ15enkJp9FOaB6BIOdR8//59BdKYNmMf5NZ3gAkHoMgjISEBkydPhre3N3x9fTFu3Dhs2bKFw0+I9BQeHo5Lly5h8ODBktf4z3/+I/zzXMrPclMd+qfkvQwfp+J/z6cElUqFxYsXSxp+8qepU6ciMDBQcv/y5cuxZcsWyf1ERERERERERERERERERERERERUNG9v70Kvnzp1ykBJ3mRjY1PodTs7OwMlAdq3bw8nJ6dCa5YtWyb5BQPltmrVqiLPTI0ZMwZmZmJH0ceNG1fggIQ/VapUCb/99huHn1CJUL58eWzfvh1vv/12oXVnz541UCLd9e3bt8Brp0+fxr17915724YNGwqsL00vKk/K4gAUIiJ6TXZ2tlC9KQ9AefHiBWbOnAl3d3d0794d27dvL3JyJP0PB6AAa9asKfSm/J9WrVpltIm1xlKuXDmh+ry8PKMPkSiIlMOwDg4OCiQxLJVKJWl6aEHTm0uyjIwMo+6v1Wr16ucAFP0cP34cHTt2RPXq1TF9+nST+aMzUUliZWWF77//Hl999ZWk/mfPnmHVqlVCPaL3MkDJGuyh670MH6fif88nNzMzM6xYsQIffvihXuuYm5tj3bp1er3CxpAhQ0rlcD4iIiIiIiIiIiIiIiIiIiIiIiJDqVevXqHXd+zYYaAkb3r27Fmh193c3AyUBLCwsMDIkSMLrcnKytLrhcfk8vLlS0yZMqXQGgcHB+EXN4yNjS3y+byurq44cuRIkZ9XRPo6d+4c5syZk++/Xbt2ybqXmZkZFixYUGiNri/SbkgNGzZEjRo18r2Wl5eHyMjIv/5bq9Vi8+bN+dZaWFigd+/eimSk0ocDUIiI6DUlYQBKbm4ulixZgmrVquGTTz7Bw4cPjR2pWJLysRX9/DFlN2/eLPKPDn83cuRItGnTRsFEpknKYdiUlBQFkuhPymFYFxcXBZIYXpUqVYR7rl69qkAS02bsg9wcgGIc169fR+fOndGkSRPs2LEDeXl5xo5EVOJNnDhR8v/YWbJkiVA972V0u5fh41Qy7vnkotFo8OOPP8o2pb1WrVqYOXOm5P5nz56hb9++yM3NlSUPERERERERERERERERERERERERva5p06aFXt+4caPRXrT64sWLhV4v6GC/UkaNGgU7O7tCa7Zu3Yqff/7ZQIny99lnnyE5ObnQmk8++aTI9+WfZs+eXejz+ZydnXHkyBFUr15daF0iKa5cuYIJEybk+2/u3Lmy71ejRg14e3sXeF3K85gNoW/fvgVe+/vAk8OHDxf4faNjx45wcnKSPRuVThyAQkRErxEdYKFWqxVKIs3169fRtGlTDB8+HI8ePTJ2nL907doVfn5+xo4hRMoAFDOzknFrkZOTg969e+v8S0XNmjUxa9YshVOZJkdHR+Gep0+fKpBEf6KHdG1tbVG2bFmF0hiWlAEoV65cUSCJaUtKSjLq/voOMClJQ6oMITc3F/PmzUOdOnUQFRVl7Dh/cXFxwdChQ40dg0hxM2bMkDTV/fLly4iNjdW5vjTfywBA5cqVdarj46Tb41QaWFhYYNOmTejZs6es644aNQotW7aU3H/o0CHMmTNHxkRERERERERERERERERERERERET0p2bNmsHBwaHA68+fP8fSpUsNmOh/9uzZU+A1lUqFgIAAA6b573MuP/rooyLrPvzwQyQkJBgg0Zv27t2LhQsXFlrj7e2t0/vxd0+fPsWmTZsKvK5SqbBu3TpUq1ZNaF0iqapWrVrgtbi4OEX2LF++fIHXzM3NFdlTX++//36B50KPHz+OBw8eAAA2bNhQ4Br9+/dXIhqVUiXjlDIREckmLy9PqF7fw9hy2rJlCwIDA3HixAljRwEAlC1bFkOGDEF0dDQiIyPh7Oxs7EhCpHxsTfUmXNTMmTNx6tQpnWrNzc3x448/wtraWuFUpknK57WpHoZ9+PChUH1JOgjr5eUl3HP9+nWkp6crkMZ0GXsAilar1avflH5mm7qUlBR06NABY8eORUZGhrHjAADq16+PpUuX4tatW+jVq5ex4xApztzcHN98842k3p07d+pcW5rvZSwtLXWesl2aHyegZN336cPa2hpRUVHo3Lmz7GurVCr88MMPhf4P8qJ89tlnOH/+vIypiIiIiIiIiIiIiIiIiIiIiIiICPjvcw67d+9eaM0XX3xh8OcOHj58GNHR0QVer1evXqHDCJSeUX6jAAAgAElEQVQyadKkIl+o9tmzZ+jQoYPBH7PLly+jT58+RZ4hnD9/PiwtLYXWXrlyZaHPvx8/fjzeeecdoTWJ9OHp6VngteTkZFy6dEn2PQt7rrIxvh/pokqVKmjevHm+1/Ly8hAZGYns7Gxs3bo13xoXFxe0adNGwYRU2nAAChERvcbKykqo3lQOU8+ZMwfdu3fHq1evjJZBo9Ggfv36+Oijj7Br1y4kJydj2bJlqFOnjtEy6aM0D0A5e/aszrXTpk1DYGCggmlMW1F/kMlPcnKyAkn0J3oY1tXVVaEkhvfWW28J92RnZwt9rZQE9+/fN+r++v7MNZWf2aYuKSkJjRo1wu7du42ao2LFiujSpQvmz5+PGzdu4MyZMxg6dKjwvRpRcdakSRO0aNFCuO/o0aM615bme5lKlSpBpVLpVFuaHye1Wo2KFSsqlKZ4Wb9+vaL/c8LNzQ2LFy+W3J+dnY2IiAikpaXJmIqIiIiIiIiIiIiIiIiIiIiIiIgAYNSoUYU+7/Dp06fo3bs3cnNzDZInPT0dw4cPL7Sma9euBsnyTzY2Njq9EODVq1fRtGlT3L171wCpgISEBLRu3RpPnjwptG7o0KFo37698PqbN28u8JqzszM+++wz4TWJ9OHm5gZvb+8Cr69du1bW/R48eIDExMQCr9eqVUvW/eTUr1+/Aq9t3rwZe/fuxbNnz/K9/v7770Oj0SgVjUohDkAhIqLXiB6qzc7OViiJ7ubMmYMJEyYUOXlSLhqNBh4eHmjVqhVGjhyJRYsW4ejRo0hJScGZM2fwzTffoG3btsJTLk2NlIPyFhYWCiQxbZMmTYJKpTL4PxF37tyRtEf//v2LXNvd3V34Mbt3755wjyGIHob18vJSKInhSR3ic/z4cZmTmLY7d+4YdX+tVqtXPwegFO3Bgwdo1qwZrly5YrA9HRwc8NZbb6Fnz56YOnUqfv75ZyQkJODhw4fYsmULRo0aVaK+3xCJ0uV+5J/Onz+vcy3vZXRTrlw52NvbC61fUh4nd3d3mJnxT6gAUKNGDcX3iIiIQM+ePSX3X716FWPGjJExEREREREREREREREREREREREREQGAv78/unTpUmjN3r17MXDgQL2f+16UzMxMdO3aFVevXi2wxtLSEoMHD1Y0R2G6du2q0/NgL1++jKCgIGzfvl3RPHv27EFQUFCRLwxbo0YNzJ07V3j9x48fF/oiuxMmTECZMmWE1yXSV2HDfJYsWYIHDx7IttfSpUsL/P5na2uLevXq6bROYWcHMzIyJGUrSrdu3WBra5vvtd9++w0LFiwosFfKc/6JCsNxOkRE9Bpra2uhemMfpt6+fTsmTpwo+7qOjo6oVasWfHx84OHhAQ8PD3h6esLDwwNubm5Qq9Wy72lqOACFdFG1alXhnsImWRqT6GFYQxwANRR3d3c4OzsXOcX3n0rbAJSLFy8adX99f+Ya+2e2qcvKykK3bt2QkJAg67oajQZeXl6oVavWX/cUf95XeHp68o+4REXo3Lkz1Gq10P8Ie/ToEZ48eQJnZ+ciax0dHWFnZ4dXr17pvH5pvZepWrUqLl26pHN9aX2cSH/ffvstfvvttyL/J2tBli1bhrZt26Jz584yJyMiIiIiIiIiIiIiIiIiIiIiIird5s6di7179yI1NbXAmtWrVyM5ORk//PADKlasKHuGmzdvokePHoUO2wCAkSNHonz58rLvL2LRokU4efJkoYNaACA5ORmdOnX660U15Xzu4qNHj/DJJ59g1apVRb74uLOzM3bu3FngEITC7NmzB7m5ufleU6lU6N27t/CaRHLo0qVLgcM7UlJS0K1bN+zatQsODg567XPixAnMmDGjwOvh4eEwNzfXaS07O7sCr8XGxgpn04WtrS26deuGNWvWvHEtNzcX+/fvz7cvKCgIvr6+imSi0osDUIiI6DWiA1CUmhiniwcPHuD9998v8pevoqjVaoSEhKBp06YICQlBYGCgIr9gFzdZWVnCPTzEXfo4OzvD1ta20D9e/dPt27eVCyRRbm4u7t69K9RT0g7DBgYGYt++fUI9hw8fRkZGBqysrBRKZTqePHmCpKQko2bQdwo2B6AUbvLkyTh58qTe61SuXBktW7ZESEgIgoODUaNGDQ4II9KDvb096tSpgwsXLgj1JSYm6jQABfjvYI/4+Hid1zbFexkAuHXrllC96L2Mu7u70ACU0vo4kf7KlSuHVatW4Z133pH8+/7gwYMRFBQEV1dXmdMRERERERERERERERERERERERGVXu7u7pgzZw6GDx9eaN2ePXvg7++PKVOmYMiQIbC0tNR774cPH+Kbb77BN998g8zMzEJr3dzc8Pnnn+u9p75sbW2xe/duhIaG4t69e0XWb9iwARs3bkTnzp3x/vvvo127dpKfix4XF4fvvvsOa9as0emFAq2srBAVFQVvb29J+x07dqzAa5UrVy5weIIh1KhRA8HBwUbbn4yrefPmaNiwIU6fPp3v9ZMnTyIsLAybNm2Cj4+PpD1WrVqFkSNHIjs7u8CakSNH6rxeuXLlCrwWHx+PFStWYNCgQUIZddG3b998B6AUZsCAAbLnIOIAFCIieo3ohMYXL14olKRoY8aMQUpKiuT+unXrYsSIEejSpYvOhyNLk5cvXwr36DvpkIqnGjVq4Pz58zrXFzW51hju3r1b5B/A/qmkHYZt0KCB8ACU1NRUHDx4EO3bt1colemIjo42dgS9B5gU9oeU0i4uLg5z586V3G9lZYX+/fujT58+aNy4MVQqlYzpiKhBgwbCA1AePnyoc23NmjWFBqBcu3YNeXl5JvW1npOTIzxwRPRepmbNmti1a5fO9X/88QcePXqEChUqCO2jtOvXrwvVl7R7vuKidevWGDFiBBYtWiSp/+nTp+jXrx/27dtnUl+rRERERERERERERERERERERERExd0HH3yAs2fPYsWKFYXWPX78GP/3f/+H6dOnIyIiAu+99x7q1asHc3NznfdKTk7G3r17ERUVhe3bt+v0nHgrKyts2bIF9vb2Ou+jJE9PTxw6dAihoaE6Pb81NzcXW7ZswZYtW2BnZ4dGjRqhcePG8PX1hYeHB9zc3GBnZwcbGxuoVCq8evUKL1++xO3bt3H16lWcO3cO+/btw82bN3XOaGtriy1btqBx48aS38/Czlzcu3fPqEMShg0bxgEopdznn3+Odu3aFXj94sWLqFWrFvr27YtRo0ahTp06RT7/9OXLl/jll1/w9ddfF/lc906dOgl9Dvr6+hZ6ffDgwdi8eTNCQ0NRvnx5aDQaZGZmws3NTa8zXmFhYahSpQoSExN1qreyskLPnj0l70dUEA5AISKi15QvX16oXsqQDDlER0fj559/ltTr6emJBQsWoEOHDjKnKll0me75d5aWlrJMZKXix9/fX2gAyo0bN6DVaqFWqxVMJebatWtC9dbW1pKnepqqNm3a4N///rdwX1RUVKkYgHL48GFjR4BWq9WrX98BKiXZ5MmTJT0+KpUKw4YNw7Rp00zugD+Vbk+fPhUaelSmTBnY2NgomEg/Xl5ewj0i97L+/v7YsmWLzvVpaWm4d+8eqlSpIpxLKTdv3hT+PlanTh2hen9/f6F64L+D70zp+2NGRobOf5D/k+jjRPKZNWsWDhw4gCtXrkjqP3DgAL7++muMHz9e5mRERERERERERERERERERERERESl25IlS5CSkoLNmzcXWZucnIx58+Zh3rx5sLa2Rr169eDt7Q0PDw84ODjAxsYGGo0GGRkZePnyJe7fv4/bt28jOjoad+/eFcplZWWFDRs2oEGDBlLfNUVUq1YNx48fR6dOnXDp0iWd+169eoUDBw7gwIEDimVzcnLCrl27EBQUJHmN3NxcxMbGypiKSF5t27ZFhw4dsGPHjgJrcnJysHLlSqxcuRJOTk4IDQ2Fl5cXHB0dUa5cOajVarx48QJ37txBTEwMTp8+rdOLcZcrVw6LFy8WyqvLsJQ9e/Zgz549r72tX79+ep3xMjMzQ58+ffCf//xHp/ouXbrAwcFB8n5EBeEAFCIiek2lSpWE6l+8eKFQksLNmjVLUl/37t2xevVqkz7gaSpEB6DwZrX0Ej0UmpWVhWvXrqFWrVoKJRJ3/fp1ofrAwEBoNCXrVjo4OBhOTk54+vSpUN/WrVuxaNEiWFhYKJTMNOzevdvYEfQeYMIBKPm7du0aoqKihPscHBzw888/4+2331YgFZF+2rRpg7Nnz+pcP23aNEyZMkXBRPqRMmgkIyND51opAy7i4uJMagCK6L1M5cqV4erqKtQj9XFq2rSpcJ9Sbty4gdzcXJ3rNRoN3nrrLQUTUWGsra2xbt06BAcHCw11+rtPP/0ULVu25MeRiIiIiIiIiIiIiIiIiIiIiIhIRhqNBuvXr0eZMmWwcuVKnfvS09Nx7NgxHDt2TPZMFStWxMaNGxEaGir72nLw8vLCyZMn0adPH/zyyy/GjgMACAoKwk8//QRvb2+91rl9+zbS0tJkSkWkjNWrVyMwMBB37twpsvbp06fYunWr3nuq1Wr89NNPcHNzE+pr2rQpXF1dkZSUpHcGUf369dN5AEr//v2VDUOllpmxAxARkWkpDgNQXr16JfQK7X/q3bs3Nm7caLThJ3l5eUbZVyrRASjOzs4KJSFT5+/vL9wjcijbEC5evChUb2rTgOWgVqvRpk0b4b4nT55I+p5cnDx69AgXLlwwdgxotVq9+jkAJX9r1qwR/hltZ2eHgwcPGm34SXG7pyDDs7a2Fqo3xh9GRdjZ2Qn3WFpa6lzLexnd+Pr6Qq1WC/UU98epdu3awl9PJK969eph8uTJkvuzsrIQERGB9PR0GVMRERERERERERERERERERERERGRRqPBihUrsHjxYlhZWRk1y3vvvYe4uDiTHX7yJ3t7e0RFRWHFihUoV66c0XKo1Wp8+umnOH78uN7DTwDTfy4yEQA4Ojpi06ZNkp6bLoVarcbq1aslndUyMzPDhAkTFEhVtBo1aiAoKKjIOjc3N7Rq1coAiag04gAUIiJ6jegAlMePHyuUpGDbt28XekV34L+HGleuXAmVSqVQqqIZY1iMPp48eSJUX7lyZYWSkKmrV6+e8NeWqR2G/f3334XqS+IAFADo2LGjpL6lS5fKnMS0REZGmsTACX0HmHAASv42bdok3PP9998jMDBQgTS6KW73FGR4ogP/EhMTFUoiD1tbW0V7fHx8hP8nUmm8l7GyskLt2rWFekrj40TymzRpEho1aiS5/8qVKxg7dqyMiYiIiIiIiIiIiIiIiIiIiIiIiOhPH374IWJjY41yEL5p06Y4duwYfv7552L1ws4DBw5EfHw8Bg4cCHNzc4PuHR4ejpiYGEyfPh0ajUaWNR8+fCjLOkRKa9CgAfbv3w8XFxdF93FwcMCOHTvQu3dvyWuMGDECwcHBMqbSXb9+/XSqMTPjmApSBj+ziIjoNaI3b48ePTL4ofAjR44I9yxevBgWFhbyhxGQkpJi1P1FiQ634QCU0svR0RF+fn5CPb/99ptCacSlpaXh0qVLQj3NmjVTKI1xtWnTBpaWlsJ9R44cQVxcnAKJTIOpDHjRarV69XMAypsePnyIa9euCfW0aNECPXv2VCiRborbPQUZnugwjxs3biiURB5ZWVnCPSIDUFQqFUJCQoTWP378uEkMx/rTmTNnhOqbN28uaZ+mTZsK1cfFxeH58+eS9lKC6AAUqY8TyUutVmPt2rWShiH9acmSJYiKipIxFREREREREREREREREREREREREf3Jx8cH+/fvx8GDBxEWFqboXlZWVujZsydOnjyJX3/9Vfg5oKbCxcUFK1aswPXr1zF8+HDY29srtpelpSV69OiBkydPYtu2bfD19ZV1fQ5AoeKkUaNGiI2NRZ8+fWQf4KFSqdCjRw/Ex8ejTZs2eq1lbm6OPXv2IDw8XKZ0uuvZs2eRZ3H79+9vmDBUKnEAChERvaZChQqwtrbWuT4nJwdPnz5VMNGbTp06JVTfsGFD4YN6ctNqtcXulznRAShubm4KJaHiIDQ0VKg+OjraZA7DnjlzRmiwRK1atUrswJ+yZcvi3XffldQ7bdo0mdOYhlOnTiE6OtrYMQDoPwAlOztbpiQlx8mTJ4V7JkyYoEASMffv3zd2BDJxVapUEaq/deuWSQ9JevXqlXBPhQoVhOpF72WePn2KmJgYoR6l3LlzBw8ePNC5vkyZMggKCpK0l+jjlJubi19//VXSXnLLzMzExYsXda5XqVRo2bKlgolIhI+PD+bMmaPXGoMHDxb6WiEiIiIiIiIiIiIiIiIiIiIiIiIxLVq0wKFDh3D9+nVMnjwZdevWhUql0nvdMmXKoEuXLlixYgUePnyI9evXo1GjRjIkBjw8PJCXl1fgP6UP+bu7u+Pbb79FcnIyNmzYgM6dO8PBwUHvdW1sbNC6dWssWLAASUlJ2LBhg2yP2T+NHDmy0MfQ2P+WLFmiyPutj6lTpxaY9/bt2wbdLy8vT+fPuaK+XuR+8cGi9hs9erSkdZ2dnbF27VrExMRgxIgRcHJy0iunk5MThg8fjpiYGGzYsAGVKlXSa70/lSlTBtu2bcOpU6cwfvx4NGzYEK6urrCysoK5uTkcHR3h4eGBsLAwjB8/HoMHD5ZlX0dHR2RmZhb62Pv4+MiyF1F+NMYOQEREpsXMzAzVqlUTOsyXnJwMZ2dnBVP9T15eHq5duybU0717d4XS6O7q1atIT083dgwhogNQStJAiHnz5mHq1KnGjlGodu3a6Xx4r1KlSti1a5fwHo6OjjrXhoaG4ttvv9W5Pjc3F/v378d7770nnEtuoo9N69atFUpiGj744AOsW7dOuC8yMhIxMTGoU6eOAqmMZ9asWcaO8Bd9hxOY8nADY7ly5YpQvYODA1q1aqVQGt1duHDB2BHIxFWtWlWoPisrC9euXZN9mrtcEhMThepVKhU8PT2FekQHewDA3r17UbduXeE+uYneyzRv3hwajbQ/CUp9nIwxefyfDh06hIyMDJ3r/f39UbFiRQUTkagPPvgA27dvl/S7DQA8efIE/fr1w969e2X5H+pERERERERERERERERERERERESUPx8fH3zxxRf44osv8OjRI5w8eRLR0dGIj4/HvXv3kJSUhOfPnyMjIwOZmZnQaDSwtLRE2bJlUaFCBVSuXBnVq1dHrVq1EBQUhNq1a8PMzMzY75airK2t0aNHD/To0QO5ubmIi4vDiRMncPXqVdy4cQO3bt3C8+fPkZqaitTUVOTl5cHW1ha2trYoU6YM3N3dUa1aNVSrVg2BgYFo2LAhzM3Njf1uEZk0Pz8/LFq0CAsWLMC5c+dw7NgxxMbGIiEhAQ8ePMDjx4+RkZGBrKwsaDQaWFlZwcnJCZUqVUK1atXg7++Ppk2bon79+lCr1YrlbNiwIRo2bKjY+kSmhgNQiIjoDTVr1hQagJKUlAQ/Pz8FE/3Pw4cPhQ6tAUBwcLBCaXR39uxZY0cQlpSUJFRfrVo1hZIYnuiBWWOwsLAQqg0ICFAwDdCqVSuo1WpotVqde7Zt22YSA1B27twpVP/OO+8olMQ0hISEwN/fH7GxsUJ9eXl5+OSTT4QfT1N28uRJbN261dgx/iLy9ZUfDkB5k+hk5Pr160seGiCn4nhfQYYl5b7s3LlzJjsARXQAoouLC6ytrYV66tevD2dnZzx58kTnnm3btmHixIlC+yjBkPcyFStWREBAAC5evKhzT1RUFBYvXmz0gRO85ysZVqxYAX9/f6Gv1b/bv38/5s2bh7Fjx8qcjIiIiIiIiIiIiIiIiIiIiIiIiPJToUIFhIeHm8SLqRUXZmZmqFOnTol7gVoiU2VmZoYGDRqgQYMGxo5CRABK9sgzIiKSpGbNmkL1N2/eVCjJmx4/fizcU716dQWSiImMjDR2BGF37twRqjeFx5mMx8nJCaGhoUI9O3fuRHp6ukKJdHPr1i1cunRJ53oHBwe0atVKwUSm4YMPPpDUt2vXrmL5/S4/eXl5mDBhgrFjvEbfASYcgPIm0fsKU/hZd+HCBdy6dcvYMcjEBQYGCvecOHFCgSTyOHbsmFB97dq1hfdQq9Xo2LGjUM+pU6eQmJgovJecUlNTcejQIZ3rzczM0LVrV7327NKli1B9UlKS0T+/8vLysGPHDqGe7t27K5SG9OHi4oKlS5fqtcakSZMQHR0tUyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIikgsHoBAR0RtMeQBKWlqacI+Dg4MCSXT3/Plz7Nmzx6gZpBA5zGlra4vKlSsrmIaKA9HDsC9evMCGDRsUSqObFStWCNWHh4fDwsJCoTSmo1+/fqhYsaKk3lGjRuHFixcyJzK8b775BsePHzd2jNdotVq9+jkA5U2i9xXGvqcAgPXr1xs7AhUD5cuXh5ubm1DPwYMHFUqjn6SkJMTHxwv1hISESNpL9F4mLy8Py5cvl7SXXNavXy80UK5p06ZwcXHRa0/RxwkAli1bptee+jp48KDQgEcPDw8EBQUpmIj00bVrV/Tr109yf2ZmJiIiIow+jJGIiIiIiIiIiIiIiIiIiIiIiIiIiIiIXscBKERE9AY/Pz+hekMOQMnOzhbuyczMVCCJ7ubMmYOsrCyjZhD1xx9/CA0wqF69OlQqlYKJqDjo0qWL8OeBvq/ero+cnBysXLlSqKdHjx4KpTEttra2mDx5sqTepKQkjBgxQuZEhnXhwgX861//MnaMN+g7wIQDUN4kel9h7HuKp0+fGvX7JhUvTZo0Eaq/fv06EhISFEoj3Y8//oi8vDyhHtH3/U+tW7eGvb29UM+KFSv0HlClD9HvCXLcy/j7+6NatWpCPRs3bsTz58/13lsq0cfpvffeUygJyWXBggVwd3eX3B8fH49x48bJmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI9MUBKERE9AZfX1/Y2NjoXH/jxg0F07xOJNefHjx4oEAS3Tx8+BDz58832v5SiQ61qV27tkJJqDhxc3NDq1athHpOnz6Ns2fPKpSocBs3bhT6/lC5cmW8/fbbCiYyLUOHDoWPj4+k3nXr1mHBggUyJzKMpKQkdOvWzSQHV+l7wF7KELGSTvS+wpj3FAAwY8YMoQFlVLq1b99euGf9+vUKJJEuJycHS5YsEeqxt7dHSEiIpP2srKzQs2dPoZ779+9j27ZtkvbT14kTJ4Tuo6ytrYXfv4L0799fqD4jI0N48Jxcbt++jaioKKGeAQMGKJSG5FKmTBmsWbMGZmbS/7z93XffYfv27TKmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJ9cAAKERG9QaPRIDAwUOf6K1euIDc3V8FE/1O2bFnhnuvXryuQpGi5ubno27cvUlNTjbK/Pi5fvixUX79+fYWSUHEzbNgw4Z5JkyYpkKRwmZmZ+PTTT4V6hg4dCrVarVAi02Nubo7p06dL7h83bhwOHTokYyLlPX78GK1atcKtW7eMHSVfOTk5Ru0viUTvK4x1TwEAR48eLZZD1ch42rRpIzwYYPny5Sb1vWLVqlXCg/k6deoEKysryXt+8MEHwj2TJ0/We0iVFOPHjxeq79mzJ8qVKyfL3gMHDoS5ublQz8yZM40yxOmTTz4RGgIWFhaGmjVrKpiI5BIaGoqxY8fqtcagQYPw8OFDmRIRERERERERERERERERERERERERERERkT44AIWIiPLVqFEjnWvT09OFDyZKVbVqVeGDnMZ6RfapU6di//79RtlbX1euXBGq5wAU+lN4eDgqVaok1LN//36Df63MnTsXt2/f1rne3NwcQ4YMUS6QiXrvvfcQEhIiqTcnJwcdO3YsNt8H79y5gxYtWggPgDIkfQ/Xm9JQA1Ph4eEhVH/27Fncu3dPmTCFuH//Pnr16mWUAQtUfDk7O6NVq1ZCPXfv3sW6desUSiQmOTkZ//rXv4T7evToode+gYGBwve2ly9fxsqVK/XaV9T69etx8uRJoZ4PP/xQtv1dXFwQHh4u1PPkyRN89dVXsmXQxYkTJ/Dzzz8L9cj5OJHypk+fDn9/f8n9jx8/Rv/+/ZGXlydjKiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSggNQiIgoXw0bNhSqj4uLUyjJ6ywsLODu7i7Us2XLFrx8+VKhRPmbMWMGvvzyS4PuKSeRAQBqtRoBAQEKpqHiRKPRYMSIEcJ9o0ePRkZGhgKJ3nTu3DlMnTpVqKdnz57Cg11KApVKhR9++AG2traS+tPS0tCxY0ds3bpV5mTy+u2339CgQQOD/SyTSt8BJhyA8qbq1asL1efl5WHt2rUKpclfYmIimjVrhgcPHhh0XyoZBg8eLNzz6aef4tmzZwqk0Z1Wq0W/fv2Ec3h6eqJdu3Z67z969GjhnsmTJ+Px48d6762Lu3fvCt9vNW3aVPahhVIep3nz5uHq1auy5ijIixcv8P777wsNtvD09ETnzp0VTEVys7S0xLp162BpaSl5jb1792L+/PkypiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKTgAhYiI8tWoUSOh+tjYWIWSvCk4OFio/unTp/jss88USvO6rKwsjB49Gp9++qlB9lOKyBAAf39/2NjYKJiGiptRo0bByclJqCc+Ph5jxoxRKNH/PH/+HD179kRWVpbOPWZmZsX+a1ofPj4+mD17tuT+zMxMdO/eHR9//DGys7NlTKa/nJwcfPnll2jZsqXBDq3rQ6vV6tXPAShvEr2nAP475CwxMVGBNG/6/fff0aRJE9y4ccMg+4ny8PCASqUS/keGEx4ejgoVKgj1JCUlYdiwYQol0s2YMWOwd+9e4b7x48dDrVbrvX+vXr1Qs2ZNoZ7k5GT069dPaNiGFJmZmejVqxeeP38u1DdlyhTZs4SEhKB169ZCPenp6ejRowcyMzNlz/N3eXl5GDRoEG7evLtg5sEAACAASURBVCnUN2nSJGg0GoVSkVLq1Kmj9wDSf/3rX4iJiZEpERERERERERERERERERERERERERERERFJwQEoRESULzc3N/j4+Ohcf/78eQXTvK5FixbCPYsXL8bOnTsVSPM/V65cQePGjYv9K0e/fPkS165d07k+LCxMwTRUHNnb22PcuHHCfUuWLMH69esVSPRfaWlpaN++PRISEoT6+vTpgxo1aiiUqngYPnw43nnnHcn9ubm5mDVrFoKDgxEfHy9jMunOnz+PRo0aYcqUKSY3mKUg+g4w4QCUN1WrVg1ubm5CPa9evUK/fv2Qnp6uUKr/fqxmz56NJk2a4O7du4rtQyWfhYWFpJ/JmzdvxhdffKFAosLl5eVhzJgxWLhwoXCvq6srBgwYIEsOMzMzSQNDdu/ejZkzZ8qSIT9arRa9evXCiRMnhPpCQ0PRqlUrRTJNmzZNuCc6OhofffSRAmn+Z/To0di8ebNQj4+PD/r166dQIlLauHHjEBoaKrk/MzMTERERyMjIkDEVEREREREREREREREREREREREREREREYngABQiIiqQyGH3U6dOKZjkdV26dIG5ublQj1arRdeuXbFt2zbZ8zx58gQjR46Ev78/zp07J9u6f/zxh2xriTh//rzQK9dzAArl5//+7//g6uoq3Ne3b1/hw6q6+OOPP9C+fXucPHlSqM/GxgYzZsyQPU9xtGrVKlSuXFmvNc6dO4c6depg4MCBuHPnjkzJxNy8eRMRERGoX7++8PdsjUaDQYMGKZSsaFqtVq/+4jLoxdDee+894Z7Dhw+jQ4cOSE1NlT3P9u3b4e/vj4kTJ8r2MTPWPQWZhhEjRqB8+fLCfZ9//rlBh6C8evUK3bt3xzfffCOpf86cObC2tpYtT48ePRAQECDcN2nSJMnvQ2EyMzPRu3dvbN26VahPpVJh7ty5suf5U3BwMDp16iTct3TpUowZM0b2PLm5uRg7diwWLFgg3Dtr1izh3zPJdJiZmWHNmjUoU6aM5DUuXbqE8ePHy5iKiIiIiIiIiIiIiIiIiIiIiIiIiIiIiERwAAoRERXo7bff1rn24cOHBjvM7ujoKOmQXVZWFrp164ZRo0bJcmA5NjYWw4YNg7u7OxYvXoycnBy91/y7GzduyLqerkQGAqjVar1eZZtKLjs7OyxatEi4LycnB7169cKyZctky3LlyhUEBwfjyJEjwr2TJk3Se+hHSVGpUiXs2LEDdnZ2eq2j1WqxatUqVK9eHQMHDsSvv/4qNHRJqkOHDqF79+6oUaMG1q9fL7ynSqXCDz/8gJkzZ0KlUimUsnD6/pyR++dUSdG/f39JfYcOHUJAQACOHj2qd4b09HSsXLkSb731Fjp16oQrV67ovebfGeuegkyDra0tpkyZIqn3888/R3h4OJ49eyZzqtcdOnQIdevWxZYtWyT1h4WFoVevXrJmMjMzw/fffw+1Wi3cO2bMGEybNg25ubmyZLl//z5atGiBn3/+Wbh30KBBqFevniw5CrJo0SJJ9wfffPMNhg0bhoyMDFly/PHHH+jWrRvmzZsn3NuqVSt06dJFlhxkPO7u7pg/f75eayxevBg7d+6UKRERERERERERERERERERERERERERERERieAAFCIiKlCLFi2EXgH71KlTCqZ53ccffyypLzc3FwsXLkStWrUwZ84cPH/+XKg/Pj4es2bNQkhICOrUqYNly5YhLS1Np157e3uhvVavXi1ULxeRj2O9evVQtmxZBdNQcdalSxdJB0lzcnIwbNgwdO7cGY8fP5a8f2ZmJmbOnImAgABJwwTq1q2LiRMnSt6/JAoICMDGjRslHQb/p6ysLKxatQrNmjWDt7c3Pv30Uxw4cECWAVUAkJ2djSNHjmDMmDHw8vJCy5YtERkZKWkIiEqlwrJly9C7d284Ozujdu3asmQUpdVq9ernAJT8+fv7o127dpJ6ExISEBYWhnfffRe//fabUG9qaiq2bduGwYMHw83NDYMGDcLFixd17he5r9i3bx8ePnwolI9Klg8//FDyEIxffvkF1apVw9dffy3boIo/XbhwAeHh4WjZsiVu3rwpaQ0HBwesWLFC1lx/ql+/PkaNGiWpd+rUqWjWrBlu3boleX+tVovvv/8efn5+OHHihHC/q6srZs+eLXl/XVWpUgX//ve/JfUuW7YM9evXF/r+l5+tW7fCz88P27ZtE+61tbWVdfgeGVf//v3RtWtXvdYYOHAgkpOTZUpERERERERERERERERERERERERERERERLpSGeLV1omkUqlUlwD4/vPtvr6+uHTpkhESERnApetA7XDcqKlGrxPOhZauL7MS3mpPReM0b94cR48e1al25MiRWLhwoaJ5/q5z586IiorSaw1ra2s0btwYTZs2ha+vL5ycnFCmTBmkpaUhJSUFz58/x5UrVxAbG4uLFy/i3r17kvZxcHDA/v37ERwcrPMBdLVajc8//xy9e/dGlSpVoNVqkZKSgtu3byMnJwchISGSshSlYsWKePTokU61//73vzFp0iRFclDhPDw8cOfOHZ1q3d3dcfv2bWUDFSApKQl+fn74448/JPXb2dlh4MCBGDNmDDw8PHTqefDgAX788UfMnTsXDx48kLSvlZUVTp06hbp160rqL+mWLFmC4cOHK7K2RqNBYGAg6tatCy8vr7/+lStXDra2trCxsYGtrS20Wi3S09ORlpaGJ0+e4O7du7hz5w6uXLmC33//HRcvXkRmZqbeeVQqFZYsWYKhQ4f+9baPPvoICxYsKLJXrVbLOnSkb9++WLt2reT+li1b4sCBA7LlKUnOnTuHoKAg5Obm6rWOt7c3mjVrhuDgYFSqVAlOTk5QqVR48eIFUlJScO/ePcTFxSE2NhbR0dGSP0cHDRqESpUqYfr06Tr31KtXD//5z38QFBQEOzs7vHr1Co8ePcL169fRqFEjODo6CucQ+Vn0d/w7hHGcO3cOjRo10uv7kqOjIyIiIhAREYEGDRpAo9EIr5GYmIidO3di9erVeg9QVKlU2LZtGzp16qTXOoVJTU2Fv7+/5EEmFhYWiIiIwLhx43QeoPX8+XNs2rQJs2fPRkJCgqR9VSoVdu3ahTZt2kjqF5Wbm4uQkBDJH1MzMzN07twZ48aNQ+PGjXXqSU1NxS+//ILZs2fjwoULkvYFgKVLl772c97Ybmpz0Ptl4YM6f7QvBy+1+Nff302dOhXTpk0T6rl8+TJq1qyp176G8OTJE/j7++s1/Ktt27bYuXMnVCqVjMmIiIiIiIiIiIiIiIiIiIiIDCczM7PIF6by8vKCpaWlgRIRERERERlXcbpH9vPzQ3x8fH6X4vPy8vwMnceQOACFTBoHoFCpZGIDUObPn4/Ro0frVFurVq2CfqAq4u7du/D19UVqaqrB9pTCysoKe/fuRWhoKOrUqYPY2Fi91wwPD5f06uZFiY+Ph5+f7vc+cXFxQvUkn+IyAAUAdu/ejQ4dOug1WEClUsHPzw/NmzdHvXr1UL58+b8GC6SkpODBgweIjo7GqVOncOrUKb0P15vaQVhTtGrVKnzwwQfIysoydhTFqNVqrFy5En379n3t7Vu3bkXXrl116pdzAEpERATWr18vub9Zs2Y4cuSIbHlKmlGjRhl0kJtUHTt2xNatWxEVFYVu3brJsuaFCxcQEBAg3McBKMXPnDlzMGHCBFnWsrOzQ3BwMPz8/ODl5YWqVavC3t4eNjY2sLCwQEZGBlJTU/HgwQMkJiYiLi4O58+fx7Vr12TZHwCmTJkiPMBBiosXLyIkJARpaWl6rePj44PmzZujYcOGqFChApydnaHRaPDixQs8evQIMTExOHPmDH799Ve9f3588sknmDFjhl5riEpMTESDBg2QnJys1zpVqlRBs2bN0Lhx47+GSVlbW+PFixd48uQJ4uLicO7cORw6dAgZGRl67dWzZ0+9frYqgQNQ5LFr1y60b99erzXmz5+PUaNGyZSIiIiIiIiIiIiIiIiIiIiIyLCK0+FOIiIiIiJDKE73yKV5AIp+z5QnIqIS791338XYsWN1Glxw+fJlJCUlwdXV1QDJgKpVq2Lx4sXo37+/QfaTwsnJCdu2bUOTJk0AAGFhYbIMQFHK0aNHda718fHh8BPSSdu2bTFr1iyMHz9e8hp5eXmIi4tDXFycjMnyN3z4cA4/0cGAAQNQvXp1dO3aFY8ePTJ2HNlZW1tjw4YN6NSp0xvXmjVrBpVKZfAhDlqtVq9+OYexlEQzZ87E4cOHDfJ9Rqo+ffpgxYoVUKvVaNasGczMzPQaLkWlz7hx4/Drr79i+/bteq/16tUr7N+/H/v375chmbiRI0caZPgJAAQEBGD16tV477339Pren5CQgISEBCxfvlzGdG/q0KEDvvzyS0X3yE+VKlWwdetWhIWFITMzU/I6iYmJWLduHdatWydjujfVr18fK1asUHQPMp527dph2LBhWLp0qeQ1Pv74Y4SFhcHf31/GZERERERERERERERERERERERERERERERUEDNjByAiItPm6uqKpk2b6lx/8OBBBdO8qV+/fhgxYoRB99SVt7c3Tp48+dfwEwAIDw83YqKi7dmzR+farl27KpiESppx48Zh4MCBxo5RpE6dOmHhwoXGjlFshISE4Pfff0eDBg2MHUVWLi4uOHz4cL7DTwDA0dERderUMXAq/QeYZGdny5SkZLKxsUFkZCTKlStn7Cj5mjx5MtauXQsLCwsA/x2yFhISYuRUVNyoVCr8+OOPxf779qBBg7BgwQKD7tm9e3eDDVzRR1BQEDZs2AC1Wm2U/YODg7Fs2TKoVCqj7K8rb29vbN++HTY2NsaOQgr6+uuv4ePjI7k/IyMDERERyMjIkDEVERERERERERERERERERERERERERERERWEA1CIiKhIPXv21LlWZICGXBYsWIBevXoZfN/C9OnTB+fOnUO1atVee3tYWJheB7CUlJmZKTTApm/fvgqmoZLo+++/x9ChQ40do0AdOnTApk2bjHZguLhyd3fHiRMn8MUXX8Dc3NzYcfQWFBSEM2fOoGHDhoXWhYWFGSjR/2i1Wr369R2gUhpUr14de/bsgb29vbGj/MXFxQU7duzAF1988ca1IUOGGCERFXf29vbYs2cPateubewowlQqFb788kssX77cKAM2Jk+ejC+//NLg++oqKCgI+/btg62trVFz9O3bFytXrjTZeypvb28cOXIELi4uxo5CCrO1tcXatWv1+lyMi4vDxIkTZUxFRERERERERERERERERERERERERERERAXhABQiIipSt27doNFodKrdtWsXsrOzFU70OjMzM6xZswaDBg0y6L75cXZ2xqZNm7B27VqULVv2jet/Hto0RYcOHUJqaqpOtfXq1YOfn5/CiaikMTMzw9KlS/HJJ58YO8obBgwYgC1btsDCwsLYUYoljUaDyZMn4/Tp06hTp46x40hiZmaGcePG4dixY3Bzcyuy3hgDUPQdYMIBKLoJCgrCgQMHUKFCBWNHQbdu3RAbG4v27dvnez0iIgK+vr4GTkUlgaOjIw4fPozmzZsbO4rOypQpg/Xr1+Ozzz4zao7PPvsM3377LczMTOtPam3btsWBAwfy/R3EGPr374/IyEhYWVkZO8prGjRooPPPeioZGjVqpPfvHwsXLsTu3btlSkREREREREREREREREREREREREREREREBTGt0xpERGSSypcvj3bt2ulU+8cff+Do0aMKJ3qTRqPB8uXL8dVXX+k8rEVOFhYWGDt2LK5fv47u3bsXWtuzZ0+8++67Bkqmu+3bt+tc269fPwWTUEk3Y8YMLFu2DLa2tsaOAgsLC8ydOxcrV66Eubm5seMUe2+99RbOnz+PZcuWwcXFxdhxdObn54ejR49izpw5On8ehIaGGvzwu1ar1aufA1B0FxQUhJMnTyIgIMAo+9epUwf79u3D5s2b4ezsXGCdWq3G2rVrYWlpacB0VFI4Oztj//79GD16tLGjFKl169aIi4tDjx49jB0FADB8+HBs3bq10K9PQ1GpVJgwYQK2b98Oe3t7Y8d5TXh4OA4ePAgPDw9jRwEA9O3bF0ePHi1W9ygkj88//xz169fXa40BAwbg0aNHMiUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiovxwAAoREelk0KBBOtdu27ZNwSSFmzhxIk6ePAk/Pz+D7KfRaBAREYHLly/j66+/hoODg059a9asQfv27RVOpzutVovNmzfrVGtlZYWIiAiFE1FJN2TIEERHRyMkJMRoGWrXro0TJ05gzJgxRstQEqnVagwZMgQJCQmYOnUqypUrZ+xIBapSpQqWLFmCixcvokmTJkK9Dg4OBh+Ooe8AEw5AEePl5YXTp0/j448/NtiAJC8vLyxfvhwXLlxA69atdeoJDAzEtm3bTGKoFBU/Go0G8+bNw6FDh+Dr62vsOG/w8PDA6tWrsW/fPlSpUsXYcV7TqVMnxMXFoVOnTkbL4O7ujr1792LWrFlQq9VGy1GYxo0bIyYmRuj3Sbk5Ozvjxx9/xOrVq2FtbW20HGQ8Go0Ga9eu1evjn5ycjIEDB8qYioiIiIiIiIiIiIiIiIiIiIiIiIiIiIj+iQNQiIhIJ+3bt0elSpV0qt2yZQtyc3MVTlSw+vXrIzo6Gt99951iByXLly+PSZMm4fbt2/jxxx/h5eUl1G9lZYVffvkFs2fPRtmyZYX3l3ugwMGDB/H48WOdanv06AEnJydZ96fSydvbG7/++isWLVoEV1dXg+3r6OiIOXPm4MKFC6hXr57B9i1tbG1t8fnnn+PevXv47rvvUKtWLWNH+ou/vz+WLFmC69evY9iwYdBoNJLWad68ubzBiqDVavXq5wAUcRYWFpg5cyYuXbqE7t27w8xMmV+hW7ZsiaioKFy/fh2DBg0S3qdNmzY4e/YswsLChPe2srKClZWVcJ9UhhomQ2LCwsJw8eJFzJ07F25ubsaOA3d3dyxcuBBXr15F3759jR2nQBUrVkRUVBR++uknVK9e3WD72tjYYNKkSYiPj9d5WJIx2dvbY/ny5dizZ49B773Mzc0xbNgwXLlyhQMcCTVr1sRXX32l1xo7d+7EokWLZEpERERERERERERERERERERERERERERERP+kysvLM3YGogKpVKpLAN54GWpfX19cunTJCImIDODSdaB2OG7UVKPXCedCS9eXWQlvtaeBggGTJ0/G9OnTdao9cOAAWrZsqXCiouXk5GDbtm1YvXo19u/fj8zMTMlreXp6om3btmjXrh1atWoFS0tLWTK+fPkSGzduxL59+xAdHY379+8jNTUVAGBpaYmyZcvC1dUV/v7+aNy4MVq0aIFq1arJsvefevfujZ9++kmn2jNnzqB+/fqy7k+UmZmJFStW4KuvvsLdu3cV2aNKlSoYPnw4Ro4cCXt7e0X2oMIdPnwYGzduxLZt2/Dw4UOD7u3i4oKuXbsiIiICISEhsqwZExODLVu2FHjdzMwMU6ZMkWUvAAgNDcVvv/0mub9q1aq4c+eObHlKo9u3b2Pp0qXYvHkzEhISJK9jaWmJ0NBQtGvXDh07doS3t7dsGc+ePYtNmzbhxIkTuH79Op4/f46srCxoNBrY2trCyckJ3t7eaNCgAUJDQxEaGgpra2vZ9v9Tu3btsHv37jfe7ujoiKdPn8q+H8knJycHGzduxOLFi3Hy5EkY6u9GFhYW6NChA4YMGYK3335bsYFDStFqtdiwYQNmzJiB+Ph4RfZwdnbGoEGDMHbsWFSoUEGRPQxh586dmD59Ok6dOqXI+vb29ujTpw8mTJgAT0/D/b4sl5vaHPR++bzQmh/ty8FLLW2AGxERERERERERERERERERERGVDpmZmbh582ahNV5eXrKdiyAiIiIiMnXF6R7Zz8+voLMJ8Xl5eX6GzmNIHIBCJo0DUKhUMuEBKPfu3YOnpydycnKKrO3fvz9WrVplgFS6e/XqFY4dO4bTp08jJiYGt2/fxv379/Hq1StkZGTAwsIC9vb2sLe3h4ODA7y8vODn5wc/Pz/UrVtX9qEjpiIlJQWVKlVCenp6kbXNmjXDkSNHlA9FpVZubi6OHTuGyMhIbN26FYmJiXqtV6FCBXTo0AHdu3fH22+/DbVaLVNS0kdubi6OHz+O3bt348SJEzhz5gzS0tJk3cPBwQENGjRAWFgYWrRogQYNGhS7w/T/FBISghMnTkjur1SpEpKSkmRMVLrFx8f/9fmbkJCAO3fu4OnTp0hLS4NWq4WdnR3KlCkDe3t7VKxYEb6+vvDz84Ovry/q168PW1tbY78LihowYAB++OGHN97u4eGBW7duGT4QSfLgwQNs27YN27dvx6lTp/D8eeFDGUSoVCr4+PigRYsWaNu2LVq1alVivi7Onj2LLVu2IDIyEteuXdNrLQcHB7Rp0wbdunVDx44dTeIPqXK5fPkyIiMjERkZiYsXL+q1lo2NDVq2bIlu3bqhW7dusLOzkyml4XEAChERERERERERERERERERERHJoTgd7iQiIiIiMoTidI/MAShEJooDUKhUMuEBKADQvXt3REZGFllna2uLBw8ewN7e3gCpSB/fffcdPvzwQ51qd+3ahbZt2yqciOi/8vLycPXqVURHRyMmJgaxsbFITEzEixcv/vqn1WphaWkJOzs7uLi4oHLlyqhRowZq166Nxo0bo1atWsZ+N0gHOTk5f32Mb9269de/R48eITU1FampqUhLS0NWVhbMzc1hYWEBa2trlCtXDk5OTnB2doa7uzs8PT3h7e2NunXrwsPDw9jvluwaNmyI33//vcDrFhYqZGUV/Ptd+fLl8ejRIyWiEb2hc+fOiIqKeuPt/v7+iImJMUIikkNCQgLOnj2LK1euIDExEXfv3sX9+/fx4sULpKenIz09HZmZmdBoNLCysoK1tTVsbW3/+hnt5uYGLy8v1K1bFwEBAaXid4Vbt27h4sWLiImJQUxMDO7cuYOUlBS8ePECKSkpyM7OhqWlJWxtbVGxYkW4urqievXq8PPzQ6NGjVC3bt1iP8BLF0lJSbhw4QJiYmIQHR2NmzdvIiUl5a/HKjMzExYWFrCxsUGFChVQqVIlVKtWDX5+fmjQoAHq168Pc3NzY78bsuAAFCIiIiIiIiIiIiIiIiIiIiKSQ3E63ElEREREZAjF6R65NA9A4TPliYhIyOjRo3UagJKamor169dj6NChBkhF+liyZIlOdXXr1uXwEzIolUqFmjVrombNmujRo4ex45CCNBoNAgMDERgYaOwoJk2r1RZ63dLCDFlZBdfk5OTIHYmoQAUN2ymJw4lKEx8fH/j4+Bg7RrHi6ekJT09PdOnSxdhRTJqrqytcXV3Rvn17Y0chIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjKfkvIUtERLJq0qQJgoODdapdtmyZwmlIX8eOHUNMTIxOtVOmTFE4DRERFaaoASYWFiq9+onkdO/evXzf7udXoofMEhEREREREREREREREREREREREREREREREZFEHIBCRETCJk6cqFPduXPncPr0aYXTkD4WL16sU11AQABftZ6IyMi0Wm2h162sCv/1jgNQyFDu3LmDxMTEfK/5+voaOA0RERERERERERERERERERERERERERERERERFQccgEJERMLCw8MREBCgU+3ChQsVTkNSJSUlITIyUqfaadOmQaVSKZyIiIgKU9QAFEtLDkAh03D48OECr7311lsGTEJERERERERERERERERERERERERERERERERExQUHoBARkTCVSoUvv/xSp9pNmzYhOTlZ4UQkxeLFi5GdnV1kXXBwMDp16mSAREREVJiiBphYFTEAJTs7G3l5eXJGIsrX/7N391FW13UCxz/3/n7MoDCippmGHjVZEl1TNtuTihIVu1rms7buHqXS0F03bd30bMsRSTgr9qCoHCM2T5mkaQ+2asZZBCqydVeOz5sPgaypKcoCK8rD3Htn/0AKppnf787M5d7f4Ot1Dme4fj98fx+qE945M2/mz5/f4z/fb7/94tBDD23yNgAAAAAAAAAAAAAAAMBgIIACQL98/OMfj2OPPTZ3btOmTTF79uwmbERfrF+/PubMmVPX7MyZM7fzNgDUo1qtZp63tZVy76jVao1aB3r0v//7v3HXXXf1ePaxj32sydsAAAAAAAAAAAAAAAAAg4UACgD9NmvWrCiX8/8ouemmm2L9+vVN2Ih63XLLLbFq1arcuY9//OMxbty4JmwEQJ5KpZJ5PnRo/p/JeXfAQH3ta1+LDRs29Hh20kknNXkbAAAAAAAAAAAAAAAAYLAQQAGg3w4//PC44IILcudee+21+Pa3v92EjahHrVaLr371q7lzSZLE1Vdf3YSNAKhHtVrNPG9rE0ChtZ5++ule/x1j1KhR8dGPfrTJGwEAAAAAAAAAAAAAAACDhQAKAAMyffr02HPPPXPnvvKVr+R+4zbN8cMf/jCeffbZ3LnPfvazccghhzRhIwDqkRcvGdougELrvPrqq3HSSSfFhg0bejz//Oc/H+WyT0EAAAAAAAAAAAAAAAAAPfPdRwAMyG677RYzZ87MnVu2bFl8//vfb8JG5Pnyl7+cOzNixIiYNm1aE7YBoF55IbH2oQIotMYDDzwQH/zgB+Ppp5/u8XzPPfeMc889t8lbAQAAAAAAAAAAAAAAAIOJAAoAAzZp0qQYN25c7lw9oRS2r8WLF8d//ud/5s5NmTIl9txzzyZsBEC98uIlQ9tLuXd0dnY2ah2IuXPnxoQJE+Loo4+OZcuW9To3c+bM2HnnnZu4GQAAAAAAAAAAAAAAADDYCKAAMGClUiluuummGDJkSObcww8/HD/96U+btBU9mTFjRu7MqFGj4nOf+1wTtgGgL6rVauZ5W1v+27u8iAr0xYwZM2LRokWZMyeffHJMmjSpOQsBXhEfZwAAIABJREFUAAAAAAAAAAAAAAAAg5YACgANccghh8Sll16aOzd9+vQmbENPHnrooViwYEHu3KxZs6Ktra0JGwHQF3nxkqHtAigUy5FHHhm33HJLlEqlVq8CAAAAAAAAAAAAAAAAFJwACgANc8UVV8QBBxyQOfPLX/4yFi1a1KSN2NqMGTNyZ0488cQ4/vjjm7ANAH1VrVYzz9va8yMTAig0y8SJE2PBggXR0dHR6lUAAAAAAAAAAAAAAACAQUAABYCG2WmnnWL27Nm5c1dddVUTtmFrTz75ZPz4xz/OnGlvb49rr722SRsB0Fd58ZKh7flv7wRQ2N6GDx8e11xzTdx3332xyy67tHodAAAAAAAAAAAAAAAAYJAQQAGgoY4//vg466yzMmcWLVoUS5YsadJGRGyOznR1dWXOXHbZZfGe97ynSRsB0BddXV1Rq9UyZ9raBFBond133z0uu+yyeOaZZ+ILX/hClMs+3QAAAAAAAAAAAAAAAADUz3ckAdBw1113Xey6666ZM1OnTm3SNjz11FNx5513Zs4ceOCB8cUvfrFJGwHQV9VqNXdm6ND8t3ednZ2NWAciIuLII4+Mz3/+83HffffFyy+/HDNnzoy999671WsBAAAAAAAAAAAAAAAAg1Da6gUA2PG8613vipkzZ8bkyZN7nVm4cGH8/Oc/j2OPPbaJm709TZ8+PWq1WubMjTfeGEOHDm3SRgD0VT0BlPb2/ABKpVJpxDoQEZEbWAMAAAAAAAAAAAAAAACoV/53yAFAP5x//vlx9NFHZ85MnTq1Sdu8fT377LNx++23Z86cdtppcfzxxzdpIwD6o64ASlspd0YABQAAAAAAAAAAAAAAAIAiEkABYLsolUrxjW98I9ra2nqdWbx4cSxatKiJW739TJ8+PfOb5js6OuK6665r4kYA9Ec94ZL29vy3dwIoAAAAAAAAAAAAAAAAABSRAAoA282YMWPi8ssvz5yZMmVKk7Z5+3nmmWdi3rx5mTPTp0+PkSNHNmkjAPorK2a1hQAKAAAAAAAAAAAAAAAAAIOVAAoA29U///M/x+jRo3s9f+CBB+InP/lJEzd6+5g2bVrmN8y///3vj4suuqiJGwHQX/WESwRQAAAAAAAAAAAAAAAAABisBFAA2K7a29tj7ty5USqVep2ZMmVKdHV1NXGrHd9TTz0Vt99+e6/nSZLE3Llzo1z2rwIAg0FW0GqLoe29/1m7RWdnZyPWAQAAAAAAAAAAAAAAAICG8l3PAGx348aNi/PPP7/X84cffji+//3vN3GjHd+0adOiVqv1en7JJZfE4Ycf3sSNABiISqWSO9M+NP/tXT33AAAAAAAAAAAAAAAAAECzpa1eAIC3hzlz5sScOXNavcbbxm233Ra33XZbq9cAoEGq1WruTHubAAoAAAAAAAAAAAAAAAAAg1P+d8gBAADQUvWES9rbSg25BwAAAAAAAAAAAAAAAACaTQAFAACg4KrVau5MkpYiSbJnBFAAAAAAAAAAAAAAAAAAKCIBFAAAgIKrJ1ySJqVI09KA7wEAAAAAAAAAAAAAAACAZhNAAQAAKLhqtZo7kySlSJPsAEpnZ2ejVgIAAAAAAAAAAAAAAACAhhFAAQAAKLhKpZI7k6alSNLsAEo99wAAAAAAAAAAAAAAAABAswmgAAAAFFy1Ws2dSZJSDBFAAQAAAAAAAAAAAAAAAGAQEkABAAAouHrCJeVyRCqAAgAAAAAAAAAAAAAAAMAgJIACAABQcNVqNXcmTUsCKAAAAAAAAAAAAAAAAAAMSgIoAAAABVdPACVJSpEkAigAAAAAAAAAAAAAAAAADD4CKAAAAAVXT7gkTUqRptkBlM7OzkatBAAAAAAAAAAAAAAAAAANI4ACAABQcNVqNXcmqSOAUk9IBQAAAAAAAAAAAAAAAACaTQAFAACg4OoJlyRpCKAAAAAAAAAAAAAAAAAAMCgJoAAAABRctVrNnUnKJQEUAAAAAAAAAAAAAAAAAAYlARQAAICCqydckqalSBMBFAAAAAAAAAAAAAAAAAAGHwEUAACAgqtWq7kzSVKKNBVAAQAAAAAAAAAAAAAAAGDwEUABAAAouHrCJeVyRJITQOns7GzUSgAAAAAAAAAAAAAAAADQMAIoAAAABVetVjPPkySiVCpFmmQHUOoJqQAAAAAAAAAAAAAAAABAswmgAAAAFFxeuCRNN4dPhgwRQAEAAAAAAAAAAAAAAABg8BFAAQAAKLhqtZp5npQ3h0/SRAAFAAAAAAAAAAAAAAAAgMFHAAUAAKDg8sIlabo5fJKkAigAAAAAAAAAAAAAAAAADD4CKAAAAAVXrVYzz8vJ5vBJKoACAAAAAAAAAAAAAAAAwCCUtnoBAAAAsuUFUJK30pZpkn2PAAoAAAAAAAAAAAAAANvbm2++Gc8++2ysXr061qxZE+vWrYthw4ZFR0dHdHR0xN577x377bdfq9cEAApGAAUAAKDg8sIlaVra5mNvOjs7G7YTAAAAAAAAAAAAAABERGzcuDHuueee+Ld/+7dYunRpPPXUU7l/EWhHR0eMGTMmxo4dG5/4xCdiwoQJ0dbW1qSNAYAiKrd6AQAAALLlfeI3SUrbfOxNXkgFAAAAAAAAAAAAAADq9dxzz8XkyZNjr732itNPPz1uueWWePLJJ3O/Bj4i4vXXX48HH3wwbrrppjj++OPjne98Z5x33nmxfPnyAe/1rW99K0qlUq8/VqxYMeBnbG3SpEm9Pmv8+PENfRYA7MgEUAAAAAouL1yyJXwyZIgACgAAAAAAAAAAAAAA29eqVavikksuife+973xjW98I9auXTvgO9euXRvf/OY3Y/To0XHeeefFypUrG7ApADCYCKAAAAAUXF79eksAJU0FUAAAAAAAAAAAAAAA2H6WLFkShx12WMyaNSs2bdrU8PsrlUp885vfjMMOOyx++ctfNvx+AKC4BFAAAAAKLi9ckqZvfUwEUAAAAAAAAAAAAAAA2D4WL14cEydOjJdeemm7P+uVV16Jj370o/HAAw9s92cBAMUggAIAAFBw1Wo18zwpbw6fJKkACgAAAAAAAAAAAAAAjfe73/0uzjzzzFi/fn3Tnrl+/fo47bTTYvXq1U17JgDQOgIoAAAABZcXLtkSPkmT7ABKZ2dnw3YCAAAAAAAAAAAAAODt4/LLL49XX301d+6oo46KadOmxc9+9rNYtmxZrFmzJjo7O2PNmjXx29/+NhYvXhw33XRTnHLKKTFs2LDc+15++eW48sorG/A7AACKLm31AgAAAGSrVquZ58lb4ZM0zQ6g5IVUAAAAAAAAAAAAAACgu+eeey7mzZuXOfO+970vrr322vjQhz7U4/mIESNixIgRMXLkyDjuuOPiggsuiLVr18a1114bV199dWzcuLHXu2+++eaYPn16dHR0DOj3AQAUW7nVCwAAAJAtL1ySbgmgDBFAAQAAAAAAAAAAAACgsW699dao1Wq9nh933HGxZMmSXuMnvRkxYkRceeWVsXDhwhgxYkSvc+vWrYsFCxb06W4AYPARQAEAACi4arWaeZ4kmz9uCaH0RgAFAAAAAAAAAAAAAIC++ulPf9rr2X777Rf33HNPDB8+vN/3H3XUUXHDDTdkzjz44IP9vh8AGBwEUAAAAAouL1ySpqVtPvb3HgAAAAAAAAAAAAAA2FqlUomHHnqo1/OpU6cOKH6yxd/8zd/Evvvu2+v5smXLBvwMAKDY0lYvAAAAQLZqtZp5Xi6/FUBJBFAAAAAAAAAAAAAAKK5qZXmrV4A/kqQHtnqFQnv++edj06ZNPZ7ttNNO8Vd/9VcNeU6pVIoTTjgh5syZ0+P52rVrG/IcAKC4BFAAAAAKLi9ckqabwydJmh1A6ezsbNhOAAAAAAAAAAAAANBX61ad0+oV4I+M2GtJq1cotBdffLHXs6OPPjp22mmnhj1r5MiRvZ71FmEBAHYc5VYvAAAAQLZqtZp5niSbwydpTgAlL6QCAAAAAAAAAAAAAABbW7duXa9nhx9+eEOf1ciYCgAw+KStXgAAAIBsuQGUt9KWaSKAAgAAAAAAAAAAAABA43zgAx+IRYsW9Xh20EEHNfRZr776akPvAwAGFwEUAACAgssLlyTp5vDJkCECKAAAAAAAAAAAAAAANM473vGOGD9+fFOe9fOf/7wpzwEAiqnc6gUAAADIVq1WM8+TpLTNx94IoAAAAAAAAAAAAAAAUET33HNP/OpXv2r1GgBACwmgAAAAFFxeuCR9K3ySpgIoAAAAAAAAAAAAAAAMHi+88EJcddVVcfrpp7d6FQCgxdJWLwAAAEC2arWaeZ4kmz/mBVA6OzsbtRIAAAAAAAAAAAAAAOTasGFD/M///E+sWLEiVqxYEc8999w2P1+5cmWrVwQACkIABQAAoOAqlUrm+ZbwSZpkB1BqtVrUarUol8sN2w0AAAAAAAAAAAAAgLe3SqUSTz31VDzyyCPx61//epvIycsvvxxdXV2tXhEAGAQEUAAAAAquWq1mnpfLm8MnSZodQNlylwAKAAAAAAAAAAAAAK0w/B23tHoFoEHWrl0bP/7xj+POO++MBQsWxIYNG1q9EgAwyAmgAAAAFFylUsk8T98KnwwZkh9AqVQqMWTIkIbsBQAAAAAAAAAAAAB9kaQHtnoFYIBWr14dX/nKV+L666+PdevWtXodAGAHIoACAABQcNVqNfM8STaHT9KkvgAKAAAAAAAAAAAAAAD01fe+972YPHlyrF27tuF3H3TQQbHzzjvHY4891vC7AYDBodzqBQAAAMiWFy3ZEj5JUwEUAAAAAAAAAAAAAAAaq1qtxoUXXhif/OQnGxo/6ejoiDPOOCN+8IMfxK9//es44ogjGnZ3M23YsKHVKwDADiFt9QIAAABkq1armedJsu3HLJ2dnQ3YCAAAAAAAAAAAAACAt4sLL7ww5s6d2+9f397eHvvtt18ccMABMXr06BgzZkwceeSRcfjhh0dSzxfCF9zGjRtbvQIA7BAEUAAAAAquUqlknidpKSIi0rc+DuQuAAAAAAAAAAAAAADY4stf/nLd8ZM0TWPs2LFx1FFHxSGHHBIHH3xw7L///rHPPvtEqZT/9e6D1fr161u9AgDsEARQAAAACq5arWaeJ2UBFAAAAAAAAAAAAAAAGuuVV16JL33pS7lzBx54YFx66aVx1llnxTve8Y4mbFYsr7zySqtXAIAdggAKAABAweVFS7aET9JEAAUAAAAAAAAAAAAAgMaYMWNGrFu3LnPms5/9bMyaNSuGDh3apK2K58UXX2z1CgCwQyi3egEAAACyVavVzPPkrfBJOkQABQAAAAAAAAAAAACAgevq6oo77rgjc+aSSy6JOXPmNCx+kve180X0xhtvxGuvvdbqNQBghyCAAgAAUHB5n8QtJ5s/pokACgAAAAAAAAAAAAAAA/fwww/HK6+80uv5wQcfHNdcc01Dn/l///d/Db2vGR555JHo6upq9RoAsEMQQAEAACi4vGjJlvBJmuYHUDo7OxuyEwAAAAAAAAAAAAAAO64HH3ww8/y8886LIUOGNPSZzz//fEPuKZWyv7Y+7y8p7YulS5c27C4AeLsTQAEAACi4vE+uJn0IoOTFVAAAAAAAAAAAAAAAYOXKlZnnEydObOjz1q9fH//93//dkLva29szz994442GPCci4t57723YXQDwdieAAgAAUHB50ZIt4ZMtIZSB3AUAAAAAAAAAAAAAAK+++mrm+ciRIxv6vHvvvTc2bdrUkLuGDRuWef7iiy825DmrVq2KRYsWNeQuAEAABQAAoPCq1WrmefLWO7stIZQsAigAAAAAAAAAAAAAAOSp1WqZ521tbQ193qxZsxp214gRIzLPn3jiiYY8Z/bs2dHZ2dmQuwAAARQAAIDCy4uWJG+FT4YMyQ+g+OQqAAAAAAAAAAAAAAB59tprr8zzF154oWHPuv3222PJkiUNu+/AAw/MPF+wYMGAn7Fq1aq4/vrrB3wPAPAHAigAAAAFV61WM8+TZHP4JCnnB1Dy7gIAAAAAAAAAAAAAgL333jvzfP78+Q15zmOPPRYXXHBBQ+7a4t3vfnfsvPPOvZ4vWLAgli9fPqBnXHTRRbFq1aoB3QEAbEsABQAAoOAqlUrmebolgJIIoAAAAAAAAAAAAAAAMHDHHHNM5vl1110X69evH9AzHnjggfjwhz8ca9euHdA93ZVKpfjgBz/Y63mtVovzzz8/urq6+nX/VVddFbfffnt/1wMAeiGAAgAAUHB50ZIt4ZNyMvC7AAAAAAAAAAAAAABgzJgxceCBB/Z6vnz58jjvvPOiVqv1+e4333wzpk6dGscdd1y89tprdf2avL9YtLuJEydmni9cuDD+6Z/+qU/7b9q0KS666KK44oor+rQLAFAfARQAAICCy/tEbZJuDqAk5VLuXQIoAAAAAAAAAAAAAADU4zOf+Uzm+Xe/+9044YQT4oUXXqjrvlWrVsXVV18dBx10UHzpS1/qU9Rk2bJlfYqVnH322ZGmaebMzJkz44QTTognn3wyc279+vUxb968GDNmTMyePfuPzvfee++69wIAepf9JzcAAAAtlxctSd5KWyaJAAoAAAAAAAAAAAAAAI1xySWXxI033hi/+93vep2ZP39+jBo1Ks4+++w45ZRTYuzYsbHHHntEpVKJNWvWxNNPPx2PPPJI3HfffbF48eLo7Ozs8Z40TePqq6+Of/zHf+zx/OWXX47p06fH5z73uRg6dGgsX748Vq9eHUcffXSP8yNHjowzzzwzvvvd72b+HufPnx/z58+PI444Io455pjYZ599Yo899og333wzXn755Xj00UfjF7/4Rbz++us9/vphw4bF7Nmz49RTT818DgCQTwAFAACg4PKq1mm6OXySJPl3CaAAAAAAAAAAAAAAAFCPnXfeOWbNmhVnnnlm5tyGDRvi5ptvjptvvrlfz2lra4vvfOc7ceqpp8bUqVPjjTfe6HFu6tSpMXXq1N+/Pvfcc3sNoEREzJw5M+6+++5e4yVbe/jhh+Phhx/u8+6zZs2KUaNG9fnXAQB/rNzqBQAAAMiWFy1JktI2HwdyFwAAAAAAAAAAAAAAbHHGGWfEtGnTttv9e+21VyxYsCDOPPPMSNM0xo8f37C7R44cGV//+tejVMr/Wvv++OpXvxqf+cxntsvdAPB2JIACAABQYF1dXVGr1TJn0rfCJ+WyAAoAAAAAAAAAAAAAAI11xRVXxGWXXdbwe08//fR44oknYty4cb//Z5/61Kca+oyzzz47rr322iiXG/ct1W1tbfH1r389/uEf/qFhdwIAAigAAACFVk+wpJz8IXySJAO/DwAAAAAAAAAAAAAAtjZz5sy44447oqOjY8B3jR07NhYuXBh33nln7LHHHtucnXrqqfEXf/EXA37G1i6++OK466674l3veteA7/qzP/uzWLp0aUyePLkBmwEAWxNAAQAAKLB6giVbR0+SrWIo/b0PAAAAAAAAAAAAAAC6O+OMM+I3v/lNfOELX4jhw4f36de2tbXFySefHAsWLIilS5fGhz70oR7nSqVS3HbbbXHsscc2YuXfO/HEE+OZZ56JK664ol8hlA984AMxb968+I//+I849NBDG7obALBZ2uoFAAAA6F2lUsmdSbeKnmwOoHT1OiuAAgAAAAAAAAAAAABAf73zne+Ma665JqZMmRL3339/LFiwIP7rv/4rVq5cGa+99lps2rQphg8fHrvttlv8yZ/8SRxyyCFxzDHHxEc+8pG6oym77bZbLFq0KG699daYN29ePP744/Hqq69GqVSKXXbZJUaPHh1HH310nHXWWX3avaOjI6ZNmxZTpkyJX/ziF7Fw4cJ45JFH4je/+U2sXLky3njjjSiVSrH77rvH7rvvHgcffHCMGzcuxo8fH4cddliv9x566KHR1dX71/EDAPURQAEAACiweoIlyVYBlHIpY7DO+wAAAAAAAAAAAAAAIMsuu+wSp5xySpxyyinb5f5yuRznnHNOnHPOOQ2/e8iQITFhwoSYMGFCw+8GAPqv3OoFAAAA6F2lUsmdSdM/VE+2jqH0RAAFAAAAAAAAAAAAAAAAgKIRQAEAACiweoIl5a3e2ZUFUAAAAAAAAAAAAAAAAAAYZARQAAAACqxSqeTOpOkfoidJzrs8ARQAAAAAAAAAAAAAAAAAikYABQAAoMDqCZYkSanHn/f3PgAAAAAAAAAAAAAAAABoJgEUAACAAqtUKrkzqQAKAAAAAAAAAAAAAAAAAIOYAAoAAECB1RMsSbYJoAz8PgAAAAAAAAAAAAAAAABoJgEUAACAAqtUKrkzSfqHAEq5XMqYFEABAAAAAAAAAAAAAAAAoHgEUAAAAAqsnmBJstU7uyQRQAEAAAAAAAAAAAAAAABgcBFAAQAAKLBKpZI7k6Z/iJ4kSfasAAoAAAAAAAAAAAAAAAAARSOAAgAAUGD1BEuSZKsASrmUMSmAAgAAAAAAAAAAAAAAAEDxCKAAAAAUWKVSyZ3ZJoCSCKAAAAAAAAAAAAAAAAAAMLgIoAAAABRYPcGSraMnZQEUAAAAAAAAAAAAAAAAAAYZARQAAIACqy+A0vPP+3sfAAAAAAAAAAAAAAAAADSTAAoAAECBVSqV3Jk0Lf3+50m5lDEpgAIAAAAAAAAAAAAAAABA8QigAAAAFFg9wZKtoydJIoACAAAAAAAAAAAAAAAAwOAigAIAAFBglUoldyZJtw6gZM8KoAAAAAAAAAAAAAAAAABQNAIoAAAABVZPsGTr6Em5XOp9sM77AAAAAAAAAAAAAAAAAKCZBFAAAAAKrFKp5M6kyR+iJ0kigAIAAAAAAAAAAAAAAADA4CKAAgAAUGD1BEuSbQIoA78PAAAAAAAAAAAAAAAAAJpJAAUAAKDAKpVK7kyabh1AKWVMCqAAAAAAAAAAAAAAAAAAUDwCKAAAAAVWT7CkXN4qgFLODqDUarUB7wQAAAAAAAAAAAAAAAAAjSSAAgAAUGCVSiXzPE23DZ6Uk+z76gmqAAAAAAAAAAAAAAAAAEAzCaAAAAAUWF6wJEm6vy71PFjnfQAAAAAAAAAAAAAAAADQbAIoAAAABVapVDLP027Bk6QsgAIAAAAAAAAAAAAAAADA4CKAAgAAUGB5wZKkewAlGdh9AAAAAAAAAAAAAAAAANBsAigAAAAFlhtASbsHUEq9TNZ3HwAAAAAAAAAAAAAAAAA0mwAKAABAgVUqlczzpLxt8KQsgAIAAAAAAAAAAAAAAADAICOAAgAAUGB5wZI03fZ19yBKX+8DAAAAAAAAAAAAAAAAgGYTQAEAACiwSqWSeZ4kpW6vs+8TQAEAAAAAAAAAAAAAAACgaARQAAAACiwvWFIudw+glHqZrO8+AAAAAAAAAAAAAAAAAGg2ARQAAIACq1Qqmedp2i2AUhZAAQAAAAAAAAAAAAAAAGBwEUABAAAosLxgSZJkv+7rfQAAAAAAAAAAAAAAAADQbAIoAAAABVapVDLP06S0zetyt9fdCaAAAAAAAAAAAAAAAAAAUDQCKAAAAAWWFyzpHjxJBFAAAAAAAAAAAAAAAAAAGGQEUAAAAAqsUqlknqdptwBKzrs8ARQAAAAAAAAAAAAAAAAAikYABQAAoMDygiVJuVsAJSn1MlnffQAAAAAAAAAAAAAAAADQbAIoAAAABVapVDLP01QABQAAAAAAAAAAAAAAAIDBTQAFAACgwPKCJUmy7etyzrs8ARQAAAAAAAAAAAAAAAAAikYABQAAoMAqlUrmeZKUMl93J4ACAAAAAAAAAAAAAAAAQNEIoAAAABRYXrBEAAUAAAAAAAAAAAAAAACAwU4ABQAAoMDygiVpKoACAAAAAAAAAAAAAAAAwOAmgAIAAFBglUol8zwpdwug5LzLE0ABAAAAAAAAAAAAAAAAoGgEUAAAAAosL1iSpNu+LielngfrvA8AAAAAAAAAAAAAAAAAmk0ABQAAoMAqlUrmedIteNL9dXcCKAAAAAAAAAAAAAAAAAAUjQAKAABAgeUFS5JytwBKzrs8ARQAAAAAAAAAAAAAAAAAikYABQAAoMAqlUrmeZp2C6AkpV4mNxNAAQAAAAAAAAAAAAAAAKBoBFAAAAAKLC9YkiTdXwugAAAAAAAAAAAAAAAAADC4CKAAAAAUWKVSyTzvHjzpHkTpTgAFAAAAAAAAAAAAAAAAgKIRQAEAACiwvGBJ9wBKuVzqZbK++wAAAAAAAAAAAAAAAACg2QRQAAAACqyvAZTur/t6HwAAAAAAAAAAAAAAAAA0mwAKAABAgeUHULJf9/U+AAAAAAAAAAAAAAAAAGg2ARQAAIACyw2glEvbvk5KvUzWdx8AAAAAAAAAAAAAAAAANJsACgAAQIHlBUvK3YIn3YMoPanVagPaCQAAAAAAAAAAAAAAAAAaSQAFAACgwPJiJeVu7+q6B1F6khdVAQAAAAAAAAAAAAAAAIBmEkABAAAosLxYSVLeNniSJAO/EwAAAAAAAAAAAAAAAACaSQAFAACgwHIDKEm3AEq3IEp/7gQAAAAAAAAAAAAAAACAZhJAAQAAKLD8AEr31wIoAAAAAAAAAAAAAABAvsWLF0epVMr9cc4557RkvyuvvDJzr8WLF7dkr+1t0qRJdf33UtQf+++/f6+/t/Hjx/f66yZNmtS0/4yBYhJAAQAAKLBarZZ5Xi5vGzzpHkTpiQAKAAAAAAAAAAAAAABQr+985zuxcOHCVq8BwA5OAAUAAKDA8mIl5W7v6pKk1PNgH+4EAAAAAAAAAAAAAADY2oUXXhgbN25s9RoA7MAEUAAAAAosL1bSPXhSLgugAAAAAAAAAAAAAAAAjfXMM8/E1Vdf3eo1ANiBCaAAAAAUWF6spHvwJEkGficAAAAAAAAAAAAAAEB3//Iv/xLPPPNMq9cAYAclgAIAAFBgtVot87x78CRJSj0PbkUABQB/K3qwAAAgAElEQVQAAAAAAAAAAAAA6KuNGzfG3/7t37Z6DQB2UAIoAAAABZYXK0nK2wZPBFAAAAAAAAAAAAAAAIDt5f77749bb7211WsAsAMSQAEAACiw3ABKt+BJUse7PAEUAAAAAAAAAAAAAACgvy699NJYvXp1q9fYYX3rW9+Krq6uhv2YOnVq5vOOO+64hj5vxYoVzfkPCtjhCKAAAAAUWK1Wyzwvlbu/LvU8uBUBFAAAAAAAAAAAAAAAoL9WrlwZl19+eavXAGAHI4ACAABQYHmxkiQpZb7uz50AAAAAAAAAAAAAAABZ/vVf/zUeeOCBVq8BwA5EAAUAAKDAcgMo5W4BlDre5QmgAAAAAAAAAAAAAAAAA9HV1RWTJ0+OSqXS6lUA2EEIoAAAABRYbgAl6f661PNgH+4EAAAAAAAAAAAAAADYe++9M8+feOKJ+NrXvtakbQDY0QmgAAAAFFitVss8L5e3DZ4IoAAAAAAAAAAAAAAAAI3w6U9/Ot73vvdlzkybNi1WrFjRnIUA2KEJoAAAABRYXqwkSbJf9+dOAAAAAAAAAAAAAACANE1j7ty5US73/i3pb775Zlx00UVN3AqAHZUACgAAQIHlxUrK5VLm6/7cCQAAAAAAAAAAAAAAEBFx5JFHxt/93d9lztx7773xgx/8oEkbAbCjSlu9AAAAAL3Li5UkSSnzdX/uBAAAAAAAAAAAAACARunq6ooXX3wxnn322VizZk288cYb0d7eHh0dHbHvvvvGQQcdFO3t7a1eM7q6uuKll16KZcuWxerVq2PdunXR1tYWu+66a7z73e+O0aNHR5IkrV6zJWbMmBE/+tGP4oUXXuh15uKLL46JEydGR0dHEzfb/jZu3BjLly+P3/72t/H666/H+vXrt/nf7wEHHBA777xzq9d8W3jyySfjnnvuiUceeSSeeOKJeO2112Lt2rXR2dkZw4cPj1133TVGjRoVY8aMiQ9/+MMxYcKEGDZsWKvXBvpAAAUAAKDAarVa5nm5vO3rej6XKoACAAAAAAAAAAAAAEA9Jk2aFN/+9rd7PJs7d26cd955PZ69+eabcccdd8Tdd98dCxcujDVr1vT6jHK5HGPHjo2//Mu/jE9/+tNxwAEHNGT3erz00ktx++23x4IFC2LJkiXx+uuv9zo7dOjQOOKII+LEE0+MU089NUaPHt20PVuto6Mjbrzxxjj55JN7nXnxxRdjypQpMWvWrCZu1nhdXV2xePHiuOuuu+JnP/tZPP7445nf21Eul+NP//RP49hjj43TTjstxo0bF+Xu3+xBv9VqtZg3b17MnDkznnzyyV7n1qxZE2vWrIkVK1bEv//7v8esWbNi+PDhce6558bll18e++67bxO3BvrL/3sCAAAUWF6sJElKma/7cycAAAAAAAAAAAAAAPTH66+/HlOmTIl99tknPvWpT8UPf/jDzPhJxObAwUMPPRTTp0+Pgw46KD75yU/GSy+9tF33XLp0aXziE5+I/fbbLy699NK47777MuMnEREbNmyIX/3qV/HFL34x3vve98ZHPvKR+MlPfrJd9yySk046KU499dTMmdmzZ8fSpUubtFFjbdiwIWbNmhX7779/TJgwIa6//vp49NFHc/9i21qtFo8++mjccMMNMX78+HjPe94T119/faxfv75Jm++4HnvssTj88MPjnHPOyYyf9GbdunUxe/bsGDNmTNx4443bYUOg0QRQAAAACqqrqyv3E2VJuZT5uicCKAAAAAAAAAAAAAAANNq9994bo0aNihkzZsTatWv7dUetVovvfe97cfDBB8f8+fMbvGHEqlWr4q//+q/j/e9/f9x9990D+vr6+++/Pz72sY/FcccdF48++mgDtyyuG264IXbZZZdez6vVakyePHnQfd/CPffcE6NGjYpLLrkknn/++QHdtWLFirj44otj9OjRcccddzRow7efH/3oR/Hnf/7n8fjjjw/4rnXr1sXf//3fxwUXXBBdXV0N2A74f/buO06uuvof/7kzm7KEVEILkCIgLQnhQ4RQhY8YAWn+DC2A0qQrKk0+34ABP1QBQaXDhwCCAgKCgNIJSAcpUjREEyFESICQTtrc3x8QDcncmd3s7Mzs5vl8POaxcM97zjm7hpi7j9zXthYBKAAAAHWqXPhJREQu//l/z+cFoAAAAAAAAAAAAAAAUD1pmsbJJ58cu+22W7z//vsV6TljxozYbbfd4q677qpIv4iIsWPHxiabbBI333xzxXpGRDz++OOx+eabx1lnndXuwxX69OkTZ599dskzL774Ylx66aVV2qhlFixYEEcccUTsvvvuMWnSpIr2fuedd2LfffeNAw44IGbMmFHR3u3db37zmxgxYkR88sknFe175ZVXxv/7f/+voj2ByhKAAgAAUKeaFICS+3zgydKBKMUIQAEAAAAAAAAAAAAAoBIWLFgQBx54YPz0pz+teO+FCxfGAQccEG+++WaLe11//fXx1a9+tWIBLUtbtGhRjBo1KnbbbbeYO3duq8yoF0cffXQMGzas5JnTTjstJk+eXKWNls+MGTNip512iquvvrpV59x8882xzTbbxDvvvNOqc9qL++67Lw466KAmPVOzPM4555x48MEHW6U30HINtV4AAACA4poSVJJfKvAkv1QgyvL2BQAAAAAAAAAAAACAUtI0jUMPPTRuvvnmVpsxe/bsOProo+Oxxx5b7h433HBDHHLIIZGmaeUWy3DffffFHnvsEXfffXc0Nja2+rxayOVycdVVV8Xmm28eCxYsKHpmxowZcfzxx8dtt91W5e2aZvbs2bHrrrvGk08+WZV5r732Wmy11Vbxpz/9Kfr371+VmW3Rm2++Gfvtt18sXLgw88ymm24a22+/ffTp0yd69eoVH3/8cbz//vvx8ssvx9ixY5v0zMx3v/vdeP311yO/9EM5QM0JQAEAAKhTTQpAWSrwJJ8XgAIAAAAAAAAAAAAAQOs7//zzY/z48UVrDQ0Nseuuu8bOO+8cW2yxRay11lrRrVu36NChQ3z00Ufxl7/8Je6666647rrrYvbs2SXnjB07Nh566KHYaaedmr3jAw88EIceemjZ8JOuXbvGLrvsEnvuuWcMGjQo1lxzzejRo0fMnj07Jk+eHK+//no89NBDcccdd8TUqVNL9nrooYfiyCOPjBtuuKHZ+7YVgwYNihNPPDHOOeeczDO//e1v47777otdd921ipuVl6ZpjBw5sknhJwMGDIgRI0bEjjvuGBtttFH07t07GhsbY9asWTFlypR444034tFHH40777wz3n777ZK93n333Rg+fHg89dRT0bt370p9Ou3Kc889V/T6yiuvHMcee2x873vfiz59+mS+/4MPPohLLrkkzj333JIhKn/729/i3nvvjT322KPFOwOVlav1AgAAABTXpACU/NIBKJXpCwAAAAAAAAAAAAAApWSFn4wcOTL+8Y9/xF133RVHH310bL755rHGGmvESiutFB06dIjVV189dtppp/jFL34R48aNi+23377srKuuuqrZ+/3zn/+MkSNHlvw79A0NDXHcccfFhAkT4pZbbomRI0fGoEGDonfv3tHQ0BDdu3ePjTbaKEaMGBFXXHFFvPPOO3HppZdGjx49Ss6+8cYbY8yYMc3euS05/fTTY7311it55thjj405c+ZUaaOmOe+88+Luu+8ueaZPnz7x61//OsaPHx/nn39+7LLLLtG/f/9YeeWVI5/PR/fu3WP99dePPffcMy6++OL4xz/+ETfffHOsvfbaJfu+9dZbcfDBB1fws2n/9txzz5gwYUKce+65JcNPIiJ69+4dP/nJT+KJJ56ILl26lDx7zTXXVHJNoEIEoAAAANSpQqFQ9kxuqbu6pQNRihGAAgAAAAAAAAAAAABApTU2NsbNN98cN910U6yzzjpNek+fPn3i/vvvj2HDhpU8d88998T8+fObtc8hhxwSH374YWa9d+/e8fjjj8cvfvGLWGWVVZrUs1OnTnHMMcfEq6++GoMHDy559qSTTorp06c3a+e2pHPnznHFFVeUPDNx4sQ488wzq7RReW+++WacfvrpJc/ssMMO8Ze//CX222+/yC390EaGfD4f+++/f7z22mux2267lTx77733Ct9ogiRJ4mc/+1n87ne/i969ezfrvcOGDSsbmvTwww/HggULWrIi0AoEoAAAANSppgSVLB14kssJQAEAAAAAAAAAAAAAoLo6deoUd999d+y///7Nfm/nzp3jxhtvjI4dO2aemTt3brz44otN7jlmzJh49NFHM+t9+/aNp556Krbaaqtm7brYOuusE2PHjo2NNtoo88wHH3wQ55577nL1byu+8pWvxEEHHVTyzIUXXhivvfZalTYq7ZhjjikZerHNNtvEfffdF7169Vqu/t27d48777wz9tprr5LnRo0aFbNmzVquGSuKiy++OL7//e8v9/tHjhwZ22yzTWZ9zpw5zfo9BaiOhlovAAAAQHFNCSopFniSz0eUeqsAFAAAAAAAAAAAAABq4R+LFtZ6BVjGF/Ieta2Ea665Jnbaaaflfv96660X++23X9xwww2ZZ5599tkmBZbMmzcvTjvttMx6p06d4vbbb4/1119/uXZdrEePHnHnnXfGkCFD4pNPPil65sorr4zTTjstVlpppRbNqmcXXXRR3HffffHhhx8WrS9cuDCOOuqoeOKJJyJJyv/Q19by0EMPxWOPPZZZ79WrV9x2223R2NjYojkNDQ1x4403xpe+9KX461//WvTM+++/H5dddlmcfPLJLZrVXg0fPjy+973vtbjPt771rXjyyScz6y+99FIMGzasxXOAyvGnMgAAgDrVlKCSfL7YtSQWLUpb1BcAAAAAAAAAAAAAKu2AmdNqvQIs4+keq9Z6hTZv//33jwMPPLDFfQ466KCSASgTJkxoUp//+7//i0mTJmXWf/rTn8bQoUObvV8xG2ywQfzoRz+K0aNHF61PmzYtbrvttvj2t79dkXn1qHfv3nHhhRfGwQcfnHnmySefjGuuuSa+853vVG+xpZx11lkl6z/5yU9izTXXrMislVdeOS677LL47//+78wzl19+eZx44omRy+UqMrM9Oe+88yrS58tf/nLJ+sSJEysyB6gcvyMCAADUqUKhUPZMLrds+nE+XzoRWQAKAAAAAAAAAAAAAACV0LFjx7jgggsq0mubbbaJDh06ZNabGlZw2WWXZdYGDBgQRx99dHNXK+n444+Prl27ZtbvuOOOis6rR9/+9rdLhn1ERJxyyikxZcqUKm30eePHj4/HHnsss7722mvHYYcdVtGZO+64Y+ywww6Z9YkTJ5bcaUW15ZZbxpAhQyrSa/311y/5e8o///nPiswBKkcACgAAQJ1qSlBJsbCTfJk7vaYEqwAAAAAAAAAAAAAAQDl777139OnTpyK9GhsbY911182sT506tWyP559/Pl577bXM+o9+9KNoaGhYrv2y9OjRI0aMGJFZf/DBB2PBggUVnVmPrrzyyujcuXNmfdq0aXHCCSdUcaP/uOGGG0rWTznllOjUqVPF5x5zzDEl6/fcc0/FZ7Z13/zmNyvWK5fLxVprrZVZnzZtWsVmAZUhAAUAAKBONSkApchdXa5IKEpz+wIAAAAAAAAAAAAAQDl77bVXRfv169cvszZnzpyy77/jjjsya7lcLvbee+/l2qucUgEoc+fOLRnK0l6st956MWrUqJJnfvWrX8UjjzxSpY3+4/e//31mrUOHDnHAAQe0ytw999wzVlpppcz6Aw880Cpz27Idd9yxov169OiRWZs7d25FZwEtJwAFAACgTjUlqCSXWzbsJC8ABQAAAAAAAAAAAACAKvjSl75U0X5du3bNrDUlrOAPf/hDZm2zzTaLnj17Ltde5Wy33XaRy2U/tv3CCy+0ytx6c/LJJ8cmm2xS8szRRx8d8+bNq9JGEVOnTo1XXnkls77jjju22q+Ljh07xnbbbZdZf/PNN2P27NmtMrstyufzMWjQoIr2bGxszKw1JVQJqC4BKAAAAHWqUCiUPZPLL3stXyQUZUkCUAAAAAAAAAAAAAAAaKmOHTtG3759K9pzpZVWyqzNnz+/5HtnzpwZr776amZ92LBhy71XOV27do2NN944s/7GG2+UfH///v0jSZKKvUaPHl3hz7BpOnToEFdddVUkSfZzDePGjYtzzz23ajs9/fTTkaZpZv0b3/hGq84vFYBSKBRK/ppd0fTr1y86depU0Z4dO3bMrC1cuLCis4CWE4ACAABQp5oSVJLPL/tNwXyRUJTm9gUAAAAAAAAAAAAAgFLWWGONkkEXy6NUv1IhFhERL7/8cskzq6222nLv1RQbbrhhZu2tt95q1dn1ZOutt46jjjqq5Jlzzjknxo0bV5V9XnnllZL11gzGiYj44he/WLI+YcKEVp3flvTp06fWKwA1JgAFAACgTjUpACVXLACl9DeQBaAAAAAAAAAAAAAAANBSPXr0qPUKn/P666+XrPfu3btV53/hC1/IrP3rX/9q1dn15pxzzok111wzsz5v3rw45phjqrJLqV8XDQ0NsdFGG7Xq/PXWW69kfdKkSa06vy1p7f9GgfrXUOsFAAAAKK5QKJQ9kysSa5krEoqyJAEoAAAAAAAAAAAAANTCTV171noFoIK6dOlS6xU+5+233y5ZP/bYY+PYY4+t0jafN2XKlJrMrZXu3bvHz3/+89h7770zzzz88MPxq1/9Kg488MBW3aVUwMgGG2wQnTp1atX5q6++esn61KlTW3V+W9LY2FjrFYAaE4ACAABQp5oSVJLPLxt2ks+3vC8AAAAAAAAAAAAAVNoX8h5phPakoaG+/psuFXRRazNnzqz1ClU3YsSI2H333eP3v/995pkTTjghvv71r0fPnq0XkDV58uTM2tprr91qcxcrFxQ0d+7cVt+hrejYsWOtVwBqrMjPCgcAAKAeLH8AyrLXmtsXAAAAAAAAAAAAAABKyeXq6zHlGTNm1HqFTLNmzar1CjVx6aWXxsorr5xZnzJlSpxyyimtusO0adMya926dWvV2RECUACao77+ZAEAAMC/NSWopNj3iwWgAAAAAAAAAAAAAACwoqnnIIlFixbFggULar1G1a2zzjrxv//7vyXPXHPNNfHUU0+12g6ffPJJZq0aASgLFy4sWW9oaGj1HQDaCgEoAAAAdapQKJQ9k8stG3aSL3OnJwAFAAAAAAAAAAAAAID2plzQRK3V+36t5bvf/W4MHTo0s56maRx55JGt9vWZP39+Zq2xsbFVZi5pxowZJeudO3du9R0A2goBKAAAAHWqKUEl+fyy13L5ZUNRmtsXAAAAAAAAAAAAAADako4dO9Z6hZJK/V3+iRMnRpqmFXuNHj26ep9YGblcLq6++upoaGjIPPPaa6/FRRdd1CrzS82dNWtWq8xc0syZM0vWV1555VbfAaCtyP4dGwAAgJpqWgDKsmEnxa41ty8AAAAAAAAAAAAAALQljY2NJevnnXderLbaalXaZlmdOnWq2exaGzJkSHz/+9+PCy64IPPMGWecEfvss0/079+/orMbGxtj/vz5RWszZsyo6KxipkyZUrK+xhprtPoOAG2FABQAAIA61aQAlFyRAJRcy/sCAAAAAAAAAAAAAEBb0qtXr5L14cOHx5AhQ6q0DUs744wz4re//W1MnDixaH3OnDlx3HHHxT333FPRuT169Ijp06cXrX388ccVnVXMm2++WbK+5pprtvoOAG1FmcfiAAAAqJVCoVD2TK7IXV0+v2woypIEoAAAAAAAAAAAAAAA0N6svfbaJevVCLsg20orrRSXX355yTP33ntv3H777RWd26dPn8zauHHjKjqrmHIBKF/84hdbfQeAtkIACgAAQJ1qSlBJrkjYiQAUAAAAAAAAAAAAAABWNP379y9Znzp1anUWIdPOO+8c++23X8kzxx9/fMycObNiM/v27ZtZmzRpUnzwwQcVm1XMyy+/nFlraGiIDTfcsFXnA7QlAlAAAADqVFOCSoqFnQhAAQAAAAAAAAAAAABgRTN48OCS9VJBFFTPJZdcEj179sysv/vuuzFq1KiKzRs4cGDJ+ksvvVSxWUubM2dO/OlPf8qsDxo0KDp27Nhq8wHaGgEoAAAAdapJAShF7upyZe70BKAAAAAAAAAAAAAAANDeDBw4sGSYxAsvvFDFbciy2mqrxfnnn1/yzKWXXhovvvhiReYNGTKkZP3ee++tyJxiHn300fjkk08y6zvssEOrzQZoiwSgAAAA1KlCoVD2TC6XLHMtn1/22pIEoAAAAAAAAAAAAAAA0N507Ngxtt1228z6M888E3Pnzm2V2QsXLozVV189kiQp+rrppptaZW5bddhhh8X222+fWV+0aFEceeSRFXn+YbvttouGhobM+q233tqk5zeWx5133lmy/tWvfrVV5gK0VQJQAAAA6lRTvlFXLOxEAAoAAAAAAAAAAAAAACuiXXfdNbM2Y8aMuOOOO1pl7j333BNTpkzJrA8bNqxV5rZVSZLElVdeGZ06dco88+KLL8b111/f4lndu3ePLbfcMrP+r3/9Kx588MEWz1naxx9/HL/+9a8z6z179oyddtqp4nMB2jIBKAAAAHWqaQEoRa6VudMTgAIAAAAAAAAAAAAAQHu07777Rr7YX7T/zNVXX13xmWmaxllnnZVZHzhwYKy77roVn9vWbbjhhnHqqaeWPPPOO+9UZNa+++5bsn766adXZM6SxowZE3PmzMms77PPPtGhQ4eKzwVoywSgAAAA1KlyQSVJ8mnq8dLy+WWvNacvAAAAAAAAAAAAAAC0RWuvvXbsvPPOmfWxY8fGnXfeWdGZl19+ebzwwguZ9SOOOKKi89qTU089NTbccMNWnzNy5Mjo2LFjZv25556LW2+9tWLz5s6dGxdffHHJM8cdd1zF5gG0FwJQAAAA6lShUChZz2Xc0eUEoAAAAAAAAAAAAAAAsIL60Y9+VLJ+/PHHx/Tp0ysy6/nnn48TTjghs77aaqvFYYcdVpFZ7VHHjh3jqquuKvrDYStplVVWiUMOOaTkmR/84AcxZcqUisw788wz45///Gdmfeedd46BAwdWZBZAeyIABQAAoE6VCyrJZwSd5PMt6wsAAAAAAAAAAAAAAG3VtttuG7vuumtm/Z133olddtklZs6c2aI5Y8eOja997WvxySefZJ4ZNWpUrLTSSi2a095tt912VQmJOfXUU6NTp06Z9cmTJ8cee+wRM2bMaNGc3/zmN3Heeedl1nO5XJx77rktmgHQXglAAQAAqFPLHYCSK518LAAFAAAAAAAAAAAAAID27Je//GV06dIls/7000/H8OHDY9y4cc3uvWjRorj00ktj+PDhMW3atMxzQ4YMiWOOOabZ/VdE559/fqy++uqtOqNfv35x6qmnljzz7LPPxtZbbx1vvPFGs/sXCoW48MIL44ADDog0TTPPHX744bHppps2uz/AikAACgAAQJ0qG4CScUeXFYzS1L4AAAAAAAAAAAAAANCWDRgwIC6++OKSZ5555pkYOHBgnHjiiU0KQpk5c2bcfPPNsckmm8Rxxx0X8+fPzzzbqVOnuOGGGyKfzzd79xVRz549y/7vVQmnnnpqbLbZZiXPvP766zFkyJA49thj469//WvZngsXLozf/e53MWzYsDjxxBOjUChknu3Xr19ccMEFzd4bYEXRUOsFAAAAKK7UN70iInK54kEn5b4/KgAFAAAAAAAAAAAAAID27vDDD4/XXnstLrnkkswzCxYsiAsvvDAuvPDCWG+99eLLX/5yrLHGGrHqqqtGY2NjfPDBBzF16tR46aWX4qmnnooFCxY0afYVV1wRgwYNqtSnskLYb7/94oYbbog//OEPrTajY8eOcfvtt8fmm28e06ZNyzy3YMGCuOyyy+Kyyy6LL37xi7H11lvH+uuvH7169YoOHTrE7Nmz47333ovXX389xo4dG9OnTy87u3PnzvHrX/86unbtWslPCaBdEYACAABQp8oFleTyxQNQsoJRmtoXAAAAAAAAAAAAAADag4suuihmzJgR1113Xdmz48ePj/Hjx7d45tlnnx0HH3xwi/usiC677LLYZJNNYs6cOa02Y8CAAXHvvffG8OHDY9asWWXPjxs3LsaNG9eimblcLsaMGRNbbbVVi/oAtHe5Wi8AAABAceWCSvIZd3T5jGCUpvYFAAAAAAAAAAAAAID2IJfLxbXXXhsnnHBCq89qaGiIyy+/PE499dRWn9Ve9e/fP84444xWn7PVVlvFH//4x+jdu3erz+rUqVPceuutse+++7b6LIC2TgAKAABAnSoXVJLLFQ86yedb1hcAAAAAAAAAAAAAANqLJEniggsuiJtvvjm6d+/eKjP69u0bDzzwQBx11FGt0n9F8oMf/CA222yzVp+zzTbbxHPPPRdDhw5ttRkbbLBBPP744/HNb36z1WYAtCcCUAAAAOpUoVAoWc8KOsnniwejLCYABQAAAAAAAAAAAACAFc3+++8fb7zxRuyzzz6RJKX/3n1TrbTSSnHSSSfFG2+8ETvuuGNFeq7o8vl8XHXVVZEv99NhK2DAgAHxzDPPxAUXXBA9evSoWN9u3brFj3/843jppZdiiy22qFhfgPauodYLAAAAUFy5oJKsoJN8TgAKAAAAAAAAAAAAAAAtN2bMmBgzZky7mdenT5+45ZZbYtSoUXHBBRfE7bffHrNnz252n4033jgOPPDAOPLII6NXr16tsGl17LDDDpGmaa3XWMbQoUNj4cKFVZmVz+fjhBNOiO985ztx+eWXx3XXXRd/+9vflqvXpptuGgcddFAceuih0bNnzwpvuvxGjx4do0ePrvUaERHx2GOPtet5QMsIQKmy5NNIuG4R0SUiVv7sY2NEzIuI2RExZ/HHNE3n1mpPAACg9soFleQygk5yGcEoTe0LAAAAADZbGKoAACAASURBVAAAAAAAAADt2aBBg+L666+PSy+9NB5++OEYO3ZsvPrqqzF+/Pj46KOPYs6cOdGxY8fo2rVrdOvWLfr16xcDBw6MQYMGxU477RT9+vWr9adAhXXr1i1OOeWUOOWUU+LVV1+NsWPHxrPPPhtvvfVWvP322zFz5syYO3dudOzYMbp06RK9evWKAQMGxHrrrRdbbrllbL/99tG/f/9afxoAbZoAlFaSJMk6EfFfEbFhRAyIiC989rFvNPHrniTJwoh4OyImfPb6x2cfX0nTdPmiwwAAgDajUCiUrOdyxa/n86X7CkABAAAAAAAAAAAAAICIlVdeOfbcc8/Yc889a70KdWTw4MExePDg+O53v1vrVQBWKAJQKiRJki9GxPCI2CEitouI3sWONbNth4hYNz4NT1l63kcR8VREPPnZ67k0TRc0sz8AAFDHygWV5PPFbzHyudK3HgJQAAAAAAAAAAAAAAAAAKgnAlBaIEmSTSNi/4jYKyLWX7KU8ZZ0eUcVubZKROz22SsiYkaSJHdFxG8i4sE0TT3RCAAAbdxyB6BkXG9qXwAAAAAAAAAAAAAAAACoJgEozZQkyWoR8e3PXhstvrzUsXJBJ6WfRly2T1a/Jft0j4iDPnt9lCTJbyNiTJqmzzZxFgAAUGfKBqDkMq7nW9YXAAAAAAAAAAAAAAAAAKop43E5lpYkyfZJktwaEe9ExLkRsXF8GkCSxKcBJUu+YolasVeTx5bpsfTcxbVVIuKIiHgqSZLnkyT5ZvM/YwAAoNYKhULJei5X/PYiny992yEABQAAAAAAAAAAAAAAAIB6IgCljCRJ9kiS5NmIeDQivhkRHWLZAJKI0iEnSweVLO/rc6sVmVcsDGXziLg1SZI3kyTZdzm/DAAAQA2UCyrJZQSdZAWjNLUvAAAAAAAAAAAAAAAAAFSTAJQMSZJ8KUmSpyLizogYGv8JFCkWMlIsgKRYcMnSoSVNfS1WKhwla5fFczeIiJuTJHk5SZKdl/sLAwAAVE25oJJ8vnnXm9oXAAAAAAAAAAAAAAAAAKqpodYL1JskSXpFxHkRcUgsGyjy72NFri1dW1IhIt6PiHc++zh3qdecz97XuchrtYjoExFrRkRjkd7pUh9L7ZhExOCIuDdJkkcj4gdpmv6lSE8AAKAOlA1AyRW7/YjI54tfb2pfAAAAAAAAAAAAAAAAAKgmAShLSJLk8Ig4JyJ6xbIBIkkUDxtZ8snCGRHxckT8+bPXhPg09OTdNE1b/IRhkiTd49MglHUjYtP4NMxkcESsHxFL/oz3tMiOi68tDnX574j4c5Ik10bEqDRNP2jpfgAAQGUVCoWS9Vyu+HUBKAAAAAAAAAAAAAAAAAC0JQJQIiJJkoERcUVEbBXZwSdL/vti/4qIP0bEAxHxYpqm41tzzzRNp0fE9Ij4a0Tcu/h6kiSdImLLiBgeEV+NiM0jYvGjkEvvvuQ/5yPiOxGxd5Ikp0XE5WmaLhmcAgAA1FC5oJKsoJN8RjBKU/sCAAAAAAAAAAAAAAAAQDWt0AEoSZJ0jojREfGD+PRrsWRAyGJLh4c8FRH3RcR9aZq+XJ1NS0vTdF5EPP7Za1SSJD3j0yCUfSLi6xHRKT4fhBLx+c+rZ0T8IiIOS5LkqDRNn6/W7gAAQLZyQSW5jACUJFf8elP7AgAAAAAAAAAAAAAAAEA1rbABKEmS7BIRl0ZEv/g0BCRi2fCTxdcnRsS1EXFjmqZvV2XBFkjTdFpE3BoRtyZJ0iMiDoqIIyJik8VHljz+2cckIjaLiKeTJLkyIv4nTdPpVVoZAAAoolxQST6XcT0jGKWpfQEAAAAAAAAAAAAAAACgmjIel2u/kiRZPUmSWyLinojoH58Gf6Tx+VCQxU8L/jEidouIddM0PasthJ8sLU3Tj9M0/UWapoMiYseI+F18+rku/UTk4s8/FxFHRcSbSZKMqN6mAADA0gqFQsl6Llc86CQrGGUxASgAAAAAAAAAAAAAAAAA1JMVKgAlSZKjI+KvETEisoNP5kXE1RGxcZqmu6Zpel+apukyzdqgNE3Hpmn6/0XE+hHxy4iYG58PQln89UgiYo2IuCVJkrurvigAABAR5YNK8vmMAJSM603tCwAAAAAAAAAAAAAAAADVtEIFoETEpRHRLf4TfrJYEhGzIuL8iBiQpumRaZr+rQb7VUWaphPSNP1eRPSNiDMiYlpkB6F8vfobAgAAEU0IQMm4oxOAAgAAAAAAAAAAAAAAAEBbsqIFoCy2OPwkiYjpEXFmRPRL0/RHaZq+X7u1qitN04/SND0jIvpFxMkR8X58PggFAACoobIBKBlBJ/l8y/oCAAAAAAAAAAAAAAAAQDWtqAEoSUTMiIgzIqJ/mqaj0zT9uMY71UyaprPTNL0gIr4QET+IiH+FIBQAAKi5QqFQsp5k3NHlcqX/OC8ABQAAAAAAAAAAAAAAAIB6siIGoMyOiLMiYkCapmekaTqj1gvVizRNP0nT9JL4NAjl+Pg0CAUAAKiRckEl+XzxoJOs603tCwAAAAAAAAAAAAAAAADVtKIFoPwsIr6QpulpaZp+XOtl6lWapvPTNP1FfBqE8oNa7wMAACuqsgEouawAlJb1BQAAAAAAAAAAAAAAAIBqaqj1AtWUpukJtd6hLUnTdF5E/LzWewAAwIqqbABKRtBJPl88GGWxQqEQaZpGkpQ+BwAAAAAAAAAAAAAAAADVkKv1AgAAABRXKBRK1nO54gEm+YzrzekNAAAAAAAAAAAAAAAAANUiAAUAAKBOLVq0qGQ9ny8edJLLuN6c3gAAAAAAAAAAAAAAAABQLQJQAAAA6lS5kJJcxh1dPt/y3gAAAAAAAAAAAAAAAABQLQ21XqCtSZJk3YjYplgtTdMbqrzOvyVJMjAi/qtIaWyapv+s9j4AAEDLlQ9ASYpez2dcb05vAAAAAAAAAAAAAAAAAKgWASjNt21E/F9GrWYBKBHx5Yj4eZHrP46I/63yLgAAQAUUCoWS9Xw+67oAFAAAAAAAAAAAAAAAAADaDgEoy6fY04Rp1bf4vFlRfK+h1V4EAACojHIhJVlBJ1nBKM3pDQAAAAAAAAAAAAAAAADVIgBl+S0ZeFL+x6u3vsU7LL3XhjXYBQAAqICyASi5rACU8rcoAlAAAAAAAAAAAAAAAAAAqBe5Wi/QxtVD8MliPTKud6/qFgAAQMUUCoWS9VzGHV0uIxhlSQJQAAAAAAAAAAAAAAAAAKgXAlDajyEZ17tVdQsAAKBiyoWU5PLFg07y+Zb3BgAAAAAAAAAAAAAAAIBqEYDSDiRJMjgi9omItEi5CY8+AgAA9ahcSEk+MwCl+PXm9AYAAAAAAAAAAAAAAACAammo9QK19ll4yJBmvGXbEr2+1fKNmqVzRAyKiG9/9s9pRCTx+SCUj6u8EwAAUCFlA1AyIi0FoAAAAAAAAAAAAAAAAADQlqzwASgR8Y2IOH053pcU+XhdRTZavl0Wh58seS0i4v3qrwMAAFRCoVAoWc/ligedZAWjNKc3AAAAAAAAAAAAAAAAAFSLAJRPlf/x6NXt01xpievPVHMRAACgchYtWlSyns8XvwXJZVxvTm8AAAAAAAAAAAAAAAAAqBYBKP+RFSJSTNbThM3pUWlZO/2hqlsAAAAVUy6kJJcvfj0rGKU5vQEAAAAAAAAAAAAAAACgWgSgfF75pwRb9/2VkC7x8S9pmv6ulssAAADLr1xIST5X/BYk63pzegMAAAAAAAAAAAAAAABAtQhAafvSIteSiJgSESOrvAsAAFBBhUKhZD2XK349ny/fWwAKAAAAAAAAAAAAAAAAAPUi43G5FVbaxFdL31/J12LJEq+7ImJYmqZvLOfXAQAAqAPlQkry+aRZ15vTGwAAAAAAAAAAAAAAAACqpaHWC9SR8k8IVqdHc82KiGkR8UZEPB0Rv0nTdFwN9gAAACpMAAoAAAAAAAAAAAAAAAAAK4IVPgAlTdMzIuKMpp5PkuTgiPi/iEjj08CTf39M0zTfGjsCAAArprIBKLni13MZ15vTGwAAAAAAAAAAAAAAAACqpQmPxbGUtNYLAAAAK4ZCoVCynuSSotfz+eLXlyQABQAAAAAAAAAAAAAAAIB6IQAFAACgTpULKckKOhGAAgAAAAAAAAAAAAAAAEBbIgClZdJaLwAAALRfZQNQMu7osq43pzcAAAAAAAAAAAAAAAAAVIsAFAAAgDpVNgAlnzTrenN6AwAAAAAAAAAAAAAAAEC1NNR6gTZoVkT8s9ZLAAAA7V+hUChZz2VEWuYEoAAAAAAAAAAAAAAAAADQhghAaaY0TW+PiNtrvQcAAND+lQspyWcEneTzLe8NAAAAAAAAAAAAAAAAANWS8fPCAQAAqLVyISW5XEYASsb15vQGAAAAAAAAAAAAAAAAgGoRgAIAAFCnyoWU5PMZASgZ15vTGwAAAAAAAAAAAAAAAACqRQAKAABAnSoUCiXruYw7OgEoAAAAAAAAAAAAAAAAALQlAlAAAADqVLmQkqygk3y+5b0BAAAAAAAAAAAAAAAAoFoEoAAAANSpsgEoGXd0SZJEkhQPR2lqbwAAAAAAAAAAAAAAAAColoZaL1BtSZKcXqqepumZLXl/vSn3+QAAAPUpTdOyZ3K57JCTfD4fCxcuzKwLQAEAAAAAAAAAAAAAAACgXqxwASgRMToiSj1JWC4wpNz7640AFAAAaIOaElCSy5cKQMlFifwTASgAAAAAAAAAAAAAAAAA1I0VMQBlsWJPCjYn2CT7ScP60ZaCWgAAgCU0JaAkny9VK1FsYn8AAAAAAAAAAAAAAAAAqIYVOQBl6XCQ5gaa1Hu4SFsIaAEAADI0KQAll/3HfgEoAAAAAAAAAAAAAAAAALQVK3IAypJPCi5PmEk9B4zUezgLAABQRqFQKHsml8uu5fMliiEABQAAAAAAAAAAAAAAAID6UfqJOAAAAGqiKQEl+Xx2LmM+n29xfwAAAAAAAAAAAAAAAACohoZaL1BDaY3fDwAAkKnlASil8y4FoAAAAAAAAAAAAAAAAABQL0o/Edd+JUVeLX1/vb0AAIA2rCkBJbkSd3T5fL7F/QEAAAAAAAAAAAAAoC1IkiTzNXr06FqvB9SZgw8+OPP3jB122KHW68EKq6HWC1RbmqYtCn1p6fsBAACaolAolD2Ty2VnH+bzpW9dBKAAAAAAAAAAAAAAAMCKLU3TmDx5ckyYMCFmzJgRs2bNivnz50fnzp2jsbEx1lhjjVhnnXVitdVWq/Wq0K4sXLgwJkyYEJMmTYpZs2bFrFmzolAoRGNjY3Tp0iXWWmut6Nu3b3Tr1q3Wq0JVrXABKAAAAG1BUwJK8vlSASj5FvcHAAAAAAAAAAAAAADajzRN44knnogHHnggHnroofjLX/4Sc+bMKfu+VVZZJYYOHRo77LBD7LnnnrHRRhtVYVtoP+bOnRv3339/PPjgg/Hoo4/G+PHjY8GCBWXf179///jSl74Uw4cPj9133z1WX331KmwLtSMABQAAoA41LQClVE0ACgAAAAAAAAAAAAAAEDF79uy44oor4vLLL4+///3vzX7/hx9+GPfff3/cf//9ceqpp8YWW2wRP/zhD2OfffaJJMn+4a6wonv77bfj4osvjjFjxsS0adOa/f6JEyfGxIkT47bbbotcLhd77bVXnHzyybHlllu2wrZQe7laLwAAAMCymhSAksv+JmE+X/p2TwAKAAAAAAAAAAAAAAC0f7fccktssMEGceKJJy5X+Ekxzz33XOy3336x1VZbxSuvvFKRntCezJs3L37yk5/EhhtuGD/72c+WK/xkaYVCIe64444YNmxYHHjggfHBBx9UYFOoLwJQAAAA6lChUCh7Jlfiji6fz5d8rwAUAAAAAAAAAAAAAABov+bPnx+HHnpo7LfffvHuu++2yoxnn302hg0bFtdff32r9Ie2aPLkybHddtvF6aefHnPnzm2VGTfddFP813/9V7zwwgut0h9qRQAKAABAHWpKQEkun2TW8vnSt3sCUAAAAAAAAAAAAAAAoH2aM2dO7LTTTnHddde1+qxPPvkkDj744LjiiitafRbUu3HjxsXQoUPj+eefb/VZ77zzTnzlK1+J5557rtVnQbUIQAEAAKhDTQkoyZcKQMnlW9wfAAAAAAAAAAAAAABoWxYtWhT77LNPPPHEE1Wde8wxx8Tdd99d1ZlQT95777342te+Fv/617+qNnPGjBmx6667xsSJE6s2E1pTQ60XAAAAYFlNCkDJlQhAyQtAAQAAAAAAAAAAAABgxZCmaa1XqBs//vGP49577y17LkmS2H777WP33XePoUOHxvrrrx89evSIhoaG+PDDD2Pq1KnxzDPPxCOPPBJ33XVXfPLJJyX7pWka3/rWt+Lll1+O/v37V+izgbYhTdPYd999mxRE0tjYGLvuumvssssuMXjw4BgwYEB07do1CoVCTJ06NSZPnhxjx46NBx54IB555JGy/T788MMYMWJEPP3009GhQ4cKfDZQOwJQAAAA6lChUCh7JpfLruXzJYohAAUAAAAAAAAAAAAAANqbl156Kc4777yy5/bYY48455xzYuONNy5aX3PNNWPNNdeMwYMHxxFHHBHvvfdenHfeefHzn/+85PMO06dPj8MOOyweeuihSJLsH/oK7c0vf/nLePzxx0ueyefz8cMf/jBOOumkWHXVVYue6du3b/Tt2zeGDRsWp5xySrz88ssxatSosqFGL774Ypxzzjlx+umnL/fnAPWg9BNxAAAA1ERTAkry+exvBuby+Rb3BwAAAAAAAAAAAAAA2o4f/vCHsXDhwsx6Pp+PK664Iu66667M8JNi1lhjjfjZz34Wf/zjH2OVVVYpefaRRx6J2267rcm9oa2bMWNGnHbaaSXPrLrqqvGnP/0pzj///Mzwk2KGDBkS99xzT5x//vmRL/Os0Nlnnx1vv/12k3tDPWqo9QIrgiRJGiJipYhojIiOEVG1yLI0Tf0uBQAAbVDTAlBK1UrnXQpAAQAAAAAAAAAAAACA9uP555+Pxx57rOSZMWPGxIEHHrjcM7761a/Ggw8+GNtuu23MmTMn89yoUaNixIgRkcuVfrYB2oMrrrgipk+fnlnv1q1bPPbYY80KHVraSSedFN26dYujjjoq88y8efPizDPPjGuuuWa550CtCUCpoCRJchExLCK2i4gtI2JARPSPiG41WikN/xsDAECb1JSAklwuO1uxXKqrABQAAAAAAAAAAAAAAGg/LrzwwpL1Y489tkXhJ4ttttlmcfXVV8cBBxyQeeatt96Ke+65J/bYY48Wz4N6tmjRorjkkktKnrn22mtbFH6y2JFHHhkvvvhiXH311ZlnfvWrX8XZZ58dq622WovnQS2IzaqAJEl6JklyZkS8HRFPRMTZEbFnRGwaEd0jIqnhCwAAaIMKhULZM6UDUErf7glAAQAAAAAAAAAAAACA9mHevHlxzz33ZNZXXXXVOOussyo2b+TIkbHFFluUPHPDDTdUbB7Uq6effjomT56cWR8+fHiMGDGiYvPOOuus6NKlS2Z93rx5ceutt1ZsHlRbQ60XaOuSJDkwIn4WEb2ieOBIWt2N/k34CQAAtGFNCSjJ50vVShSb2B8AAAAAAAAAAAAAAKh/Y8eOjdmzZ2fWjzjiiOjevXtFZ/7P//xP7LXXXpn1P/zhDzF//vzo2LFjReeSbfLkyTFp0qT4+OOP4+OPP45FixZF165do2vXrtGtW7f4whe+UPFfByu6++67r2T9pJNOqui8VVddNb7zne/ExRdfnHnmrrvuiuOOO66ic6FaBKC0QJIk50XEifGfsJGssJNqh5HUKnQFAACokKYFoGTfaghAAQAAAAAAAAAAAACg2j744IN49913Y9q0aTFt2rSYPXt2NDY2RpcuXWKttdaKfv36Rbdu3Wq9ZsV99NFHMX78+JgyZUrMnj07Fi5cGF26dImePXvGgAEDYu21145cLtdq8x944IGS9UMOOaTiM4cPHx6dOnWKefPmFa3PmTMn/vznP8ewYcMqPrsaFi1aFM8++2w8/PDD8ec//zneeuuteO+992LWrFkREdGjR4/o0aNH9O7dOzbddNPYYostYsstt4wNN9ywajtOmjQpfvOb38Rjjz0WL774Yrz33ntl37P22mvHwIEDY9ttt41vfOMbsfHGG1dh0+JeeumlePjhh+O5556LcePGxbvvvhuzZs2KRYsW/fvr26tXrxg4cGBsscUWscUWW8Smm24aSVLtR/ezlfpvr2/fvvGVr3yl4jN32223kgEoTz/9dCxcuDAaGkRJ0Pb4VbuckiQ5NSIWRy4tGThSP79jAgAAbVaTAlBypQJQSn9jVAAKAAAAAAAAAAAAAAAtNWfOnLjlllvi0Ucfjaeeeir+/ve/l33PgAEDYuutt46vf/3rsfvuu8fKK6/c4j1KBSL8+Mc/jtGjR7d4xpKmT58ev/3tb+OBBx6Ixx9/vGzwRNeuXWPYsGExfPjw2HvvvaNfv34V3efVV1/NrPXr1y/WXXfdis6LiGhsbIxhw4bF2LFjM8+88sorbS4A5f3334+f//znMWbMmJg8eXLJc++//3787W9/iyeffDIuu+yyiIgYPHhwHH744XHggQdGz549W2XH3//+93HRRRfF2LFjI03T8m9YwqRJk2LSpEnxxz/+MUaNGhUbbLBBHH300XHkkUdG586dW2XfJU2fPj0uv/zyuPbaa2P8+PGZ56ZOnRpTp06NiIhnn302rr322oiIWHfddeOwww6Lgw8+ONZcc81W37eUQqEQr7/+emZ9xx13bJWwlm233bZk+NDs2bPj73//e2ywwQYVnw2trfWiwtqxJEm+FBE/iU+DTxb/v0ISy4afpDV6AQAAbVyhUCh7plT4cz6fL/leASgAAAAAAAAAAAAAACyvSZMmxYknnhhrrbVWHHrooXHjjTc2KfwkImLChAlx0003xciRI2P11VeP448/Pt59991W3rgy/vGPf8Shhx4aa6yxRhx++OFx6623lg0/iYiYOXNmPPjgg3HSSSdF//79/3/27ju6qjp7//hz7iEBQgKEGppIF5RexIQiKCDCMCKgYgN/Oo7CUPQrIiIg4IgFpNhAh6KOwhIFHQSkiZRBpEiRQXoV0FBDCpCEe35/IDOIOefcm1tSeL/WYiHZ+3z25pKbyc3kPFHHjh21fPnyoO21c+dO21p8fHzQ5lzNLcjlwIEDIZsdbOfPn9cLL7ygqlWr6uWXX3YMP3GydetW9e/fX9dff73efPNNn+4P8dV3332nFi1aqEuXLvr222/9Dj/Jys6dOzVw4EBVq1ZNU6ZMCcqZWfF6vRo/fryqVq2qIUOGOIafONm7d6+ef/55XX/99RoxYoRtCEg4HDx4UOfPn7eth+q5V7BgQZUtW9axJy8994ArEYCSPW/qf4+dU/DJlfVw/wIAAACQh/kSUOIx7T/19zilo/h4PgAAAAAAAAAAAAAAAAAAAAAAV/vwww914403aty4cTpz5kxAZ6WlpWnSpEm64YYb9M477wRpw+A7d+6cBg0apFq1amn69OmOoQe++Prrr9W2bVt17tzZ5+AYp90OHz5sW69evXpA5zspVaqUYz3Q949w2bx5sxo2bKi///3vSktLC8qZZ8+eVf/+/dW8eXPt3r07oLMsy9KwYcPUokUL/fvf/w7Kflc7evSonnjiCXXq1EnJyclBPXv//v1KSEjQ008/rVOnTgXlzPT0dI0aNUr16tXTunXrgnKmv5yChySee0B2FMjpBfIawzBukdRMlwJOsrrb8Mrgk3RJ6yX9KOmgpGRJaVf0AAAAAECWfAkoMU2nGgEoAAAAAAAAAAAAAAAAAAAAAIDgOX/+vB5++GHNnj076GenpKSob9++Wrt2raZOnaqIiIigz8iuHTt26K677nINO8iO+fPna8WKFXrrrbfUq1evbJ1x/PhxWZb9rcvXX399NrdzZzrd2CApIyMjZLOD5YsvvtCDDz6o1NTUkJy/fv16xcfHa/HixWrYsGG2zujbt6/efffdIG+WtYULF6p9+/Zavny5ChUqFPB5a9as0V133aXjx48HYbs/2rVrl9q0aaM5c+aoQ4cOIZlhJzEx0bHOcw/wHwEo/nvQ5u1XBp/slPSqpE8tywpOzBcAAACAa4rX63Xt8RhZZTJe4vaFDAJQAAAAAAAAAAAAAAAAAAAAAAC+Sk9PV+fOnbVs2bKQzvnoo4+Ulpam2bNny3D4nvlw+fbbb9W1a1edOXMmZDNSUlLUu3dvbd68WePGjZPH4/wDUbO63klsbGwg6zk6duyYY71IkSIhmx0Mn376qe6///6Q32Nx4sQJ3XnnnVq/fr0qVqzo17VTp04NW/jJZWvXrtWAAQM0ZcqUgM5ZtWqV7rjjDqWlhfZ2+7S0NHXv3l2rV69W/fr1QzrrSjz3gOAjAMV/7fW/sJPLLF0KPpGkiZIGWZaVGdatAAAAAOQrvnzxzDSdAlCcv+BJAAoAAAAAAAAAAAAAAAAAAAAAwFd9+vQJefjJZZ9//rmGDx+u0aNHh2WenTVr1qhz585KTU0Ny7wJEyboxIkT+vDDD/0Kf3Hbr3DhwoGuZuunn35yrJcrVy5kswO1ePFiPfDAAz7dX1G6dGm1atVK9evXV8mSJWWapk6ePKlff/1Va9as0aZNm1zP+eWXX/Too49q0aJFPu94+vRp/d///Z9rX1RUlLp06aK2bduqWbNmKlWqlEqWLCnDMJSSkqKTJ09qx44d2rx5s+bNm6eNGzfKsq6+Xf733n//ff31r39Vo0aNfN73Slu3blWnTp18Cj8pWrSoWrdurYYNG6p06dKKjIzUqVOndOLECX3//fdat26d0tPTHc9ISUnRgw8+qI0bNyoyMjJbO/srp557SUlJrgEoufm5BzghAMUPhmEUlVRNvw88ufzfIOqi6QAAIABJREFUlqS3Lct6KofWAwAAAJCP+BaA4lDzOBR9PB8AAAAAAAAAAAAAAAAAAAAAgPnz52vq1KmOPcWKFVO3bt10xx136KabblJcXJxiYmJ0/vx5nTlzRqdOndKmTZv03Xff6auvvtKRI0ccz3vllVfUvXt31a9fP5h/FZ/t3btXnTp1cg04MAxDbdu2VZcuXdS0aVNVr15dRYsWlWEYOnv2rPbv36+tW7dqwYIFWrBggc6fP+943j//+U+VKlVK48eP93nXihUr6s0337St161b1+ez/HHkyBH98MMPjj01atQIyexAHTx4UPfff78yMzMd++rUqaPRo0erS5cuKlDA/rb8EydOaNy4cXrzzTcd32cWL16suXPnqmvXrj7t+eabbyopKcmx5/HHH9eLL75oG3hRsGBBlSxZUjVr1lSXLl00fPhwbd68Wc8995xjGItlWZo0aZJmzJjh065XOnPmjO6++24lJyc79lWqVEmjRo3Svffe6xgWkpKSorfffluvv/66Tp48adu3bds2vf3223rqqfDc7t+mTRvH516hQoVCMverr75yvS+oevXqIZkNhBoBKP6pedWfr4y2OizJPUILAAAAAHzgWwCKfaKzaXoCPh8AAAAAAAAAAAAAAAAAAAAAcG3zer169tlnHXseeeQRjR07ViVKlPhDLTo6WtHR0apYsaLq1aunXr16KT09XR9//LGef/55/fLLL1memZmZqf79+2vFihVB+Xv44/z58+revbvOnDnj2HfHHXfojTfeUO3atbOslypVSqVKlVLTpk316KOPKjExUa+99pomTJjg+D39EyZMUEJCgrp37+7TvuXKldPf/vY3n3qDafr06bIsy7GnefPmYdrGP7169XIM0pCkgQMH6vXXX3cMPrmsVKlSGjNmjO677z516tTJMeBn5MiRPgegfPDBB7Y1wzA0ceJE9evXz6ezrtSgQQMtXLhQQ4YM0auvvmrb969//UsXL16U6fQTfLPQv39/7d2717Hn3nvv1bRp0xQVFeV6XnR0tAYPHqz77rtPd955p7Zv327b+8orr6hv376KjIz0a+fsaNKkiZo0aRLyOVdzC6WpXr26SpUqFZ5lgCBzviMOVyubxdsMXQpCec+yrIww7wMAAAAgn/J6va49hn3+iesXlwhAAQAAAAAAAAAAAAAAAAAAAAC4Wbp0qWPYwMCBAzVt2rQsw0/sREZG6pFHHtG6detUr149276VK1dq48aNfu0bDC+99JI2b95sW/d4PHr99de1cOFC2/CTrJQpU0Zjx47V6tWrVbp0acfexx9/XMePH/f57HC7HObipE6dOqpQoUKYNvLdjBkzXIN1XnrpJY0fP96n8JMr1a9fX0uWLFGRIkVse7Zs2aLvv//e9azdu3dr3759tvWnnnoqW+EnlxmGoTFjxui2226z7Tl9+rR2797t17nffvutPvroI8eexx57TLNmzfIp/ORKlStX1jfffKO4uDjbnsTERM2dO9evc/OShQsXaunSpY497du3D9M2QPARgOKfaIfa4rBtAQAAACDfcwso8XgufbHJDgEoAAAAAAAAAAAAAAAAAAAAAIBAffbZZ7a1ypUr69VXX8322ZUqVdKXX37pGBYxderUbJ+fHbt27dLrr7/u2DNhwgQ988wz2Z7RvHlzrV69WiVLlrTtOX36tEaOHJntGaFkWZYef/xxJScnO/b17NkzTBv5Lj09XcOGDXPsuf/++zV06NBsz6hdu7bGjRvn2DNr1izXc7777jvbWnR0tEaMGOH3blczDEPPPfecY8/evXv9OnPw4MGO9ZYtW2ry5Ml+nXmlsmXLasaMGY49vjy+edGJEyfUt29f177c+NwDfOVf7BSc7iD0L74KAAAAABy4BZSYpn34yaW6c94lASgAAAAAAAAAAAAAAAAAAAAIt70X9+f0CsAfVDOr5PQKudqqVatsaz169FBkZGRA519//fX629/+Zhuksnz58oDO99eoUaOUnp5uW+/Zs6f69esX8JyaNWtq5syZ6tChgyzLyrJnypQpGjJkiCpUqBDwvGAaMmSIvvzyS8eewoUL6/HHHw/TRr778MMP9fPPP9vWy5Ytq7feeivgOY899pgmTZqk7du3Z1n/6quvNH78eMcz9uzZY1vr1q2bihYtGtCOl7Vp00ZRUVFKS0vLsp6UlOTzWUuXLtW6dets64UKFdKMGTNcf+ivmw4dOqh9+/ZavHhxlvUlS5YoPT094I9PuUl6erq6deum/fudP5dq1KiRWrRoEaatgOAjAMU/TlFkzjFlAAAAAOCHwANQnL8YRAAKAAAAAAAAAAAAAAAAAAAAwq3n2f+X0ysAf7AuNrwBG3lJZmamYwhDtWrVgjLn0UcftQ1A2bFjh1JSUhQdHR2UWU727dunWbNm2daLFCmiiRMnBm1eu3bt9NBDD+nDDz/Msp6ZmakpU6Zo1KhRQZsZqKFDh9r+W12pb9++KlOmTBg28s+7777rWB8yZIhiY2MDnmOapp566in95S9/ybK+Z88e/frrrypbtqztGUeOHLGttWvXLuAdLzNNU+XKldPevXuzrDsFAl3N7fF94oknVLVqVb/2szNo0CDbAJTU1FRt2rRJN998c1Bm5bSUlBTdfffdWrlypWtvbvp4AWSH848Ex9WOO9SiwrYFAAAAgHzP6/U61j3O+ScyTeeXewSgAAAAAAAAAAAAAAAAAAAAAACcnDp1SpmZmbb1pKSkoMypUaOGypcvb1tPTEwMyhw306ZNc/xe+z59+qh06dJBnfniiy/K47H//v8ZM2YEdV52JScn65577tHLL7/s2luhQgUNHz48DFv5Z/v27frhhx9s68WLF9df//rXoM3r3r27ChYsaFvfsGGD4/UpKSm2tQYNGmR7r6wULlw44DNOnz6t+fPn29Y9Ho+eeeaZgOdc1rZtW5UrV8627vb45hW7du1SfHy8lixZ4trbpUsXderUKQxbAaFTIKcXyGN2OtSKSrL/XxIAAAAA8INbQIlpOiegmKYZ0PkAAAAAAAAAAAAAAAAAAAAAgGtbenq6Y/3bb7/V4MGDgzLro48+0qlTp7KslSxZMigznFiWpY8++si2Xrhw4aCGN1xWpUoV3XHHHVqwYEGW9cOHD2vr1q2qV69e0Gf7au3atXr44Ye1e/du117TNPXxxx8rJiYmDJv5Z+7cuY71Hj16qFChQkGbV7x4cTVu3Fhr1qzJsr5jxw7HsIrhw4frySefzLJWq1atoOx42fHjxwM+Y8GCBbpw4YJt/bbbblOFChUCnnOZx+NRmzZt9Mknn2RZ37FjR9Bm5ZQZM2aof//+Sk5Odu0tV66c3n///TBsBYQWASh+sCzrtGEYhyRVkmRdVa4h6Wj4twIAAACQH7kFlHic803kIQAFAAAAAAAAAAAAAAAAAAAAABCAokWLOtYXLVqklStXqlWrVgHPatu2bcBnBGLr1q06dOiQbb1Tp04qU6ZMSGbff//9tgEokrR48eIcCUBJS0vTiy++qHHjxsnr9fp0zcSJE9W6desQb5Y9S5Yscazff//9QZ/5wAMP2IbBREVFOV574403Bn2frOzevVu//vprwOfkxON799136+TJk1nWwhGcFCqHDx/WE0884fhx4UpFihTRF198EbKPUUA4EYDivyWSHtUfA1CaSVoR/nUAAAAA5EduASWmabjUPQGdDwAAAAAAAAAAAAAAAAAAAAC4thUtWlTlypXTsWPHsqxblqXu3bvrX//6l5o3bx7m7YLLLbzh7rvvDtlst/CXDRs2hGy2nS+//FIDBgzQwYMHfb5m9OjR6tu3bwi3yr6MjAytXbvWtl6wYEHdcsstQZ/bp08f9enTJ+jnBotlWRo6dGhQzlq5cqVj/dZbbw3KnCt169ZN3bp1C/q5OSUjI0Pjx4/XqFGjlJqa6tM1hQsX1ty5c9WsWbMQbweEh/MdccjK7CzeZkjKPx8dAQAAAOQ4t3Rkj+EWgGI61glAAQAAAAAAAAAAAAAAAAAAAAC4ad++vWP9+PHjatmypZ5//nmdOnUqTFsF35o1a2xrERER6tSpU8hmlytXTtWrV7etb9q0KWSzr7Zz507deeeduuuuu3wOP4mIiNDkyZP1wgsv+DVrxowZMgwjqL/s7NixQxcuXLCtN2nSRAULFvRr/7zs4sWLWrt2rTp37qzZs7O6dd4/ycnJOnDggG29QoUKuv766wOek58tWrRI9evX1+DBg30OPylTpoyWLVumdu3ahXg7IHwK5PQCedASSfslXf/bny1dCkBpahhGU8uy1ufUYgAAAADyD7eAEpd8E5mmc94lASgAAAAAAAAAAAAAAAAAAAAAADdPPPGEPvjgA8eezMxMjRkzRhMmTFDXrl3VrVs33XbbbSpWrFiYtgzcli1bbGt16tRR0aJFQzq/Zs2a2rNnT5a1AwcOyLIsx4CPQCUlJWnUqFF68803lZGR4fN1FStW1KxZs5SQkBCy3YJh27ZtjvXGjRuHaZPwOXnypA4cOPDfX/v37//vf+/bt0/nzp0L2qxt27bJsizben58fINlz549evrppzVv3jy/rmvRooVmzZqlChUqhGgzIGcQgOIny7IswzBGS5qmS+EnlxmSJhqGkWA5fYQGAAAAAB+4B6A4f+HSdElIIQAFAAAAAAAAAAAAAAAAAAAAAOCmefPm6tmzp2bOnOnae+7cOX3yySf65JNPZJqmGjVqpNatW6t169Zq0aKFihcvHoaN/Xfu3Dnt37/ftl6vXr2Q71C9enXbWnp6uo4fP64yZcoEfa7X69W0adM0dOhQJSYm+nVtjx49NHnyZJUoUSLoewXbgQMHHOtVqlQJzyJBlpSUpC1btmjLli3avXv37wJPkpOTw7ZHfn18Qyk5OVkvvfSSJkyYoPT0dJ+vi4iI0AsvvKChQ4e63jsE5EUEoGTPB5L+Jqnhb3+2dCkA5WZJr0ganEN7AQAAAMgn3AJKPB4CUAAAAAAAAAAAAAAAAAAAAJC3zCw6LadXAJAN7777rrZt26Yff/zR52suXryo9evXa/369Ro7dqw8Ho/q16+vW2+9VW3atNGtt96qmJiYEG7tuyNHjsiyLNt6OAJQypYt61gPRQDK6tWrNWDAAP3www9+XRcXF6dJkyapR48eQd0nlI4ePepYz0sBHT/99JNmz56tzz77TNu2bXN83w2X/PT4hpplWfrggw80ZMgQ/fLLL35d27hxY/3jH/9QgwYNQrQdkPMIQMkGy7IswzAekLRRUuHLb9alEJRnDMM4Y1nWmBxbEAAAAECe5/V6Hesej/P1puncQAAKAAAAAAAAAAAAAAAAAAAAwq2ayQ3QQF5UrFgxLVu2TF26dNHatWuzdYbX69WmTZu0adMmjR8/XgUKFNAtt9yizp0766677lLNmjWDvLXv3MIbKlasGPIdihQp4lg/d+5c0GYdOXJEgwYN0syZM/26zuPx6PHHH9eYMWNUvHjxoO0TDomJiY710qVLh2mT7NuwYYOGDx+uhQsX5vQqf5AfHt9w+P7779WvXz+tX7/er+uKFi2qkSNHql+/fq4/MBnI61xumYMdy7J2Svp/V79Zl0JQXjIMY7JhGAXDvxkAAACA/MAtoMQ0DZe68xc0CEABAAAAAAAAAAAAAAAAAAAAAPiqdOnSWrlypUaMGKHChQsHfF5mZqZWrVqlwYMHq1atWmrYsKEmTJig06dPB2Fb/7jNLFq0aMh3CEcAitfr1cSJE1W7dm2/w08SEhK0bt06vfvuu3ku/ESS0tLSHOtRUVFh2sR/aWlpevTRR9W0adOQhJ907do14DPy8uMbDklJSXryyScVHx/vV/iJYRjq1auXdu7cqYEDBxJ+gmsCASgBsCzrU0kDdCn0RL/9fjkE5S+SthmGEfhHfQAAAADXHPcAFOfrTdP55Z7X6/V3JQAAAAAAAAAAAAAAAAAAAADANSwiIkIvvviidu3apX79+gU1GGTz5s166qmnVKlSJQ0ePFhnz54N2tluzp8/71gPRwBKZmamY71AgQIBnb9//361bt1aAwcOVHJyss/XValSRbNmzdLq1avVuHHjgHbISW7/xrk1oGP37t1q2rSppk2bFtRzq1WrpkGDBmnr1q2aM2dOwOfl1cc3HJYtW6a6detq8uTJft3L07JlS61bt04zZsxQXFxcCDcEcpfA/tcOsizrLcMwzkt6V/8LlLkcglJN0meGYRySNE/Sekl7JB2VdEZSqmVZzp+RAAAAALgmuQageAyXunNCitv5AAAAAAAAAAAAAAAAAAAAAABkpWLFipo0aZJefvllzZkzR7Nnz9aSJUt04cKFgM9OTU3Va6+9pk8//VRz5sxRw4YNg7Cxs/T0dMd64cKFQ76DW+BLoUKFsn32F198oV69evkVKlOsWDENHTpU/fv3V8GCBbM9O7dwC54wDOd7NHLCsWPH1K5dOx08eDDbZ8TGxur6669XtWrVdMMNN6hu3bqKj49XxYoVg7hp3nx8Q83r9WrkyJEaPXq0LMvy+boaNWro1VdfVdeuXUO4HZB7EYDiJ8MwPrQpHZJURf8LP7n8kciQVFlSX5vzgr3ilSzLsvg3BgAAAPIgty/+eNwCUEyPY50AFAAAAAAAAAAAAAAAAAAAAABAIKKjo/Xwww/r4YcfVlpamlasWKElS5Zo2bJl+vHHH/266f9qBw4cUJs2bfTNN9+oUaNGQdz6jwoUcL4VNyUlJaTzJSk5OdmxHh0dna1zR48erREjRvj8bxEREaEnnnhCI0aMUMmSJbM101e9e/dW7969QzrjMrcAGX/CYcIhIyNDHTt29Dn8JDY2VgkJCWrWrJnq1Kmj6tWrq0qVKipatGiIN70krz2+oZaWlqb77rtP8+bN8/maEiVKaPjw4erTp48iIiJCuB2QuxGO4b8H9b9wk6wYV/xu6fdBKAAAAADgE7eAEo/pfL1pOjcQgAIAAAAAAAAAAAAAAAAAAAAACJaoqCh17NhRHTt2lCSdOnVKK1as0Lfffqtvv/02W4EoSUlJuvvuu7Vt27ZsB4D4onDhwo71cIQ3JCYmOtbj4uL8Os+yLP3tb3/TO++84/M1f/rTnzR27FjVrFnTr1l5gdv7T24L6Hjvvfe0ZcsW174//elP6tevn9q2bet6H0ko5bXHN5SSkpJ0xx13aO3atT71R0REqF+/fho2bJiKFy8e4u2A3I8AlOzzJdDkcs+VQSjhQuAKAAAAkIe5BZSYpvOn/ASgAAAAAAAAAAAAAAAAAAAAAABySokSJdS1a1d17dpV0qVAlG+++UZLly7V/Pnz9fPPP/t0zsGDB/Xaa69p1KhRIdvVLXTgzJkzIZt92U8//WRbK1KkiGJiYvw6b+DAgT6Hn9SsWVNvvvmm2rdv79eMvKRcuXKO9ePHj4dpE3fnzp1zfX8vVqyYpk+f/t/nV07LS49vKKWmpurOO+/0Ofykffv2mjRpkmrVqhXizYC8w5PTC+RhVha/7Bhh/gUAAAAgj3MNQPG4BaA4v9wjAAUAAAAAAAAAAAAAAAAAAAAAEC4lSpRQ9+7dNXnyZB0+fFgbNmzQ008/rdjYWNdrp0yZoszMzJDtVr58ecf6rl27Qjb7MqcAlJo1a/p11sSJEzVp0iTXPtM0NWTIEG3ZsiVfh59IUqVKlRzrP/74Y5g2cbd8+XIlJiba1iMjI7VkyZKghZ8E4/6SvPT4hoplWXr44Ye1Zs0a194SJUroo48+0qJFiwg/Aa5SIKcXyMMIGgEAAAAQMl6v17HucYmzNE3TsU4ACgAAAAAAAAAAAAAAAAAAAAAgpzRu3FiNGzfWyJEj1b9/f02fPt22NzExUd9//70SEhJCskvFihVlGIYsy8qyvnnz5pDMvezIkSM6ceKEbf2mm27y+ax169bpmWeece277rrrNHPmTMXHx/t8dl7m9hhu2bIlJHPHjBmjL7/8Mstaz549NWDAgD+8/euvv3Y8c9iwYWratGlQ9pOks2fPBnxGTj2+M2bM0OTJk7Os3XrrrXrllVdCMjcr48eP15w5c1z7WrdurX/+85+qWLFiGLYC8h4CULIv689iAAAAACAI3AJKTNM5k9E0nRNSCEABAAAAAAAAAAAAAAAAAAAAAOS06OhoTZs2TR6PR1OnTrXt27BhQ8gCUKKiolS1alXt3bs3y/oPP/wQkrmXLVq0yLHepEkTn87JyMhQ7969lZmZ6diXkJCguXPnqnTp0j7vmNc1bNjQsb527VpdvHjR9YfR+uuDDz7Qzp07s6w98sgjWb79+++/tz2vQIECevzxx4Oy22WHDh0K+IwaNWooOjpaKSkpWdZ/+uknnT59WrGxsQHPutKsWbNsH682bdoEdZaTPXv2aOjQoa59ffr00cSJE1WgABEPgB2eHdnjfKchAAAAAAQo8AAU5y+6EYACAAAAAAAAAAAAAAAAAAAAALCzZ88effHFF1nWKlasqPvuuy+o88aOHatPPvlE586dy7J+8ODBoM67WoMGDWwDUI4eParNmzerQYMGIZm9cOFCx/qtt97q0znvvfeefvrpJ8ee1q1ba/78+SpSpIiv6+ULZcqUUe3atW0fn+PHj2vlypVBDc04cOCAbfiJJNv3p8TERNtr6tevrzJlygS825U2bNgQ8Bkej0ctW7a0fV/OzMzUF198YRv6kh1paWlatWqVbT1Uz9esDBkyROfPn3fsGTRokF577bUwbQTkXQSg+C94H1kBAAAAwIbX63WsGy6xjASgAAAAAAAAAAAAAAAAAAAAAACy69dff9WgQYOyrFWrVi3oASjFixdXfHy8li1blmU9OTk5qPOu1qZNG33++ee29ZkzZ4YkUCEtLU2LFy+2rcfFxalu3bqu53i9Xo0dO9axJz4+XgsWLFBUVJTfe+YHHTt2dAyImT17dlADUKZOnWpbK1KkiBo1apRl7fjx47bXVaxYMeC9rjZ37tygnNOxY0fHMJ/Zs2cHNQBl5syZSktLs623bNkyaLOc7N271/FjhyQNGDCA8BPARwSg+MmyrA9yegcAAAAA+Z9bQIlpOiegmKbHse71emVZlgy3JBUAAAAAAAAAAAAAAAAAAAAAwDXnuuuus60dOHBAKSkpio6ODurM0qVL29YiIiKCOutqHTp0cKzPnDlTf//731WgQHBvzf7444919uxZ23r37t19+r7/BQsW6MCBA7b10qVL69NPP71mw08kqWfPnnrjjTds6x9++KFGjhzp+H7oq/Pnz2vatGm29datW9u+Tzv9QN3IyMiAd7vSzp079fXXXwflrB49eujpp59WZmZmlvVFixZp27ZtuummmwKeZVmW3n33Xdt6nTp1VL58+YDn+OLdd9+VZVm29VatWmncuHFh2QXID5zviAMAAAAA5Aj3ABTn6023Bjl/UQwAAAAAAAAAAAAAAAAAAAAAcO0qX768bdjCxYsXtWLFiqDP/OWXX2xrwQilcFK9enU1atTItn748GG99957QZ/7zjvvONYfeOABn85xCoOQpBkzZqhChQo+75UfNWnSRHXr1rWtp6am6pVXXgnKrLFjx+ro0aO29bvvvtu2VrZsWdvazz//HNBeV7IsSwMHDnS9f8VXcXFx6tixo23d6/VqxIgRQZn18ccfa+PGjbZ1p8c3mC5cuKDp06fb1osVK6ZZs2b5dI8PgEsIQAEAAACAXMg9AMU5wdk03V/uBeuLVAAAAAAAAAAAAAAAAAAAAACA/MU0TbVs2dK2/tFHHwV13oULF7Rlyxbbeu3atYM6Lyu9e/d2rI8cOVIpKSlBm7dgwQJt3rzZtt6kSRM1b97c9ZyzZ89qyZIltvV27drpzjvvzNaO+c2zzz7rWH/nnXe0ffv2gGbs2LHDMUglKipK3bp1s62XK1fOtrZ+/XqdOnUqoP0uGzVqlL7++uugnHWZ2+M7d+5cLVu2LKAZiYmJGjx4sG3dMAw9+OCDAc3w1TfffOP47/Hss886/nsC+CMCUAAAAAAgF/J6vY51j+EWgOKeDksACgAAAAAAAAAAAAAAAAAAAADATqdOnWxrn3/+uWNgib9mzpyp06dP29ZbtWoVtFl2HnnkEZUsWdK2npiYqIEDBwZlVkpKiutZzzzzjE9nLVmyRBkZGbb1l156ya/d8rOePXvqhhtusK2fP39ePXr0yHbIyJkzZ/TnP/9Zqamptj0PPfSQihcvbltv0aKFbS0zM1Njx47N1m6Xeb1eDRs2TC+++GJA52SlRYsWuv32223rlmXpoYce0oEDB7J1fnp6urp166ajR4/a9rRv3161atXK1vn+WrBggW2tZMmSQft4AVxLCEABAAAAgFzILZzE45Jv4iEABQAAAAAAAAAAAAAAAAAAAAAQgD//+c8ybH54Z2Zmpu655x4dPnw44Dl79uzRU089ZVuPj49X+fLlA57jJjo6WoMGDXLsmTp1ql599dWA5mRkZOiBBx7Q7t27bXuaNGmie+65x6fznEIYatasqWbNmvm9Y35lmqbeeustx57t27erTZs2fod07Nu3TwkJCdq1a5dtT8GCBfX88887ntO5c2fH+tixYzVv3jy/drvsp59+0u233+5XKE5mZqZfMyZNmqSIiAjb+rFjx9S6dWtt3rzZr3NPnDih2267TatXr3bsGzlypF/nBsLpudetWzdFRUWFbRcgvyiQ0wsAAAAAAP7ILZzENLP+IvL/6u55lwSgAAAAAAAAAAAAAAAAAAAAAADsVK1aVT169NCnn36aZX3Xrl1q0aKF5syZo8aNG2drxldffaVHHnlEZ86cse3p169fts7OjqeeekrTp0/Xzp07bXuee+45HTp0SOPGjVOhQoX8Ov/XX3/VQw89pCVLltj2eDweTZgwwTZ85mpOgRDXXXedZsyY4deOwdS6dWtVqVIlx+Zn5bbbbtNjjz2mf/zjH7Y4lN4tAAAgAElEQVQ9W7duVd26dTV48GD16dNHJUqUsO09e/asJkyYoDfeeENJSUmOswcNGqTrrrvOsSchIUE33HCDduzYkWU9IyND3bt316hRo/TMM8/I9OEH6G7cuFETJ07UzJkz/Q40cQrqyUrt2rU1YsQIvfDCC7Y9hw4dUrNmzdSvXz89/fTTqlChgm3v+fPn9f777+vll1/WL7/84jj7wQcf1M033+zXvtl17Ngx7du3z7YeGRmZo8+9e++9V4ULF86x+UB2EYACAAAAALlQ4AEo7l/AIgAFAAAAAAAAAAAAAAAAAAAAAOBk+PDh+uyzz+T1erOsHzp0SE2bNlXXrl31zDPPqFmzZq7fz37+/HktWrRI48eP14oVKxx7GzZsqHvuuSfb+/srMjJS06ZNU+vWrR2DIt555x199dVXGjJkiB544AHFxMQ4nnv8+HFNmTJFb7zxhk6fPu3YO2DAACUkJPi0b1pamvbs2WNbX7p0qZYuXerTWaEwc+bMXBeAIkmTJk3S2rVrtW3bNtuelJQUDRs2TKNHj1ZCQoIaN26s6667TlFRUUpKSlJiYqK+//57rVmzRunp6a4zGzZsqGHDhrn2maapMWPGqGvXrrY96enpeu655zRlyhT95S9/0e23367q1asrJiZGqampSkxM1I8//qi1a9dq3rx5tmEqknTjjTfqlltusQ2EmTZtmjp16qTmzZsrLS1NmzZtUq1atVS+fHnbM4cMGaIVK1Y4Bv1kZGTojTfe0MSJE9WsWTM1a9ZMVapUUXR0tFJSUnT8+HFt3LhRK1euVFpamu05l1WqVEmTJk1y7QuWLVu2ONbfeuutMG2StTvuuIMAFORJBKAAAAAAQC5k98XhyzwuQc6m6XGdQQAKAAAAAAAAAAAAAAAAAAAAAMDJjTfeqD59+jjezG9ZlubMmaM5c+YoJiZGLVq00A033KASJUooNjZWkZGROnv2rI4ePaqtW7dq7dq1SklJcZ0dGRmpf/zjH/J43L8/Ppji4+M1duxYDRw40LHv0KFDevLJJzVw4EA1b95cDRo0UOXKlRUTEyOv16vk5GTt3btXP/zwg9avX+96n4Ak3XzzzXr55Zd93nXr1q0+nYvfK1y4sBYsWKD4+Hj9/PPPjr3p6elavny5li9fnu155cuX17/+9S9FRkb61H/XXXepU6dOmj9/vmPf/v379fzzz+v555/P1l433nijFi1apJUrV9oGoJw4cUKtW7f+3duWL1/uGIDi8Xg0e/ZstWzZUj/++KPjDhcvXtR3332n7777zv+/wG+io6M1b948xcbGZvsMf23evDlss4BrCQEoAAAAAJALuYWTmKZzAopbYrYvMwAAAAAAAAAAAAAAAAAAAAAAGDt2rL777jtt3LjRtTc5OVkLFy7UwoULA5779ttvq1GjRgGfkx0DBgzQ4cOHNW7cONfeCxcuaMWKFVqxYkVAM6tUqaIvv/xShQoV8vma7du3BzTzWlapUiUtXbpUHTp00MGDB0M2p3LlylqyZIkqVqzo13UzZ85UixYttHXr1pDs1bFjR82cOVPFihVT27Zt5fF4ghqmU6xYMS1evFgdO3YMaVhIiRIltGDBAtWvXz9kM7LCcw8IjfBGngEAAAAAfOIegOJ8vekhAAUAAAAAAAAAAAAAAAAAAAAAELiCBQtq9uzZKlu2bNhmjhkzRo899ljY5mVl7Nixeu6558Iyq169elq9erXfj/HRo0dDtNG1oVatWlq7dq0SEhJCcv69996rjRs3qkaNGn5fGxMTowULFqhhw4ZB3Sk6OlpvvfWW5s+fr2LFikmSypYtqzvvvDOocyQpLi5OK1eu1F133RX0syXp9ttv16ZNm3TzzTeH5HwnPPeA0CAAxU+GYVyXl37l9OMFAAAAIHvcwkk8HsOxbpruL/cIQAEAAAAAAAAAAAAAAAAAAAAA+KJKlSpatWpVtoIc/FGoUCHNmDEjbMEjbsaMGaOPP/5YRYsWDdmMhx9+WKtWrVL58uX9vvaXX34JwUbXlsshHa+++qpiYmKCcmalSpU0e/ZszZo1SyVLlsz2ORUqVNCaNWvUu3fvgHcyTVOPPfaYdu/erb59+8owfn9fyuuvvx60v/+VYmJiNHfuXE2bNk1lypQJypklS5bU22+/rcWLF+u663Lmdnqee0BoEIDivwOS9ueRX/tC8xAAAAAACDWv1+tYdw9AMV1nEIACAAAAAAAAAAAAAAAAAAAAAPBVjRo1tGnTJg0YMECRkZFBP79du3basmWLevXqFfSzA3H//ffrP//5j7p37/6H0IhA1K9fX/Pnz9cHH3yQ7YAVQhiCw+Px6Nlnn9X+/fs1dOjQbIXRSFKrVq00e/Zs7du3T927dw/KboUKFdL06dP173//W+3bt/f7+ri4OD333HPav3+/3n//fcXFxWXZd8MNN+izzz5TiRIlAl05S4888oj27dunV199VdWrV8/WGQ0bNtTUqVP1888/q0+fPkF9PvqL5x4QGoZlWTm9Q55iGIbzXYi5i2VZlvtdj7mYYRj/kVTn6rfXqVNH//nPf3JgIyAM/rNbuunP2nuDqZ5rSjm2ziw6TdXMKmFaDAAAhFOHDh20ePFi2/qDPcvorfH2ydk7DwzSzc3vcpyxe/fubH/RCAAABN++i5l6IPm0Y8/HMbGqahYI00YAAAAAAAAAAAAAAADIiy5cuKB9+5x/tnbVqlVVsGDBMG0EID86ePCgJk+erH/+85/6+eefs31OdHS0unbtqieffFK33HJLEDcMja1bt2rChAn6/PPPdfbsWb+vL1iwoDp16qTevXurc+fOORrgAHsXL17Uv//9b33zzTfauHGjdu/erV9//VWpqakyTVOxsbEqUaKESpUqpUaNGikhIUEJCQm24SLBtHv3bi1evFjffPONdu3apRMnTujkyZMqUKCAYmJiFBcXpzp16qhevXpq166dGjdu7Nf72bFjx/TOO+9o3rx5OnjwoJKSklSwYEGVKVNGDRo0UJs2bdSrVy/FxsZm++9gWZY2bNigZcuWaf369dq5c6eOHTumlJQUSVJsbKxiY2NVqlQp1atX77+Pb+XKlbM9E8hLnyPfeOON2r59e1al7ZZl3RjufcKJ75TPnryQGsNnPAAAAEAedvHiRce6aTp/ym+a7lmIbjMAAAAAAAAAAAAAAAAAAAAAAMhK5cqVNWbMGI0ZM0bbtm3TypUrtXXrVu3atUtHjx5VYmKizp07p/T0dHk8HhUqVEixsbEqV66cqlatqrp16yo+Pl7x8fGKjIzM6b+Oz+rVq6dp06bp7bff1sqVK7Vq1Spt2bJFe/fu/W9ARmZmpgoXLqwiRYqofPnyqlq1qmrXrq0WLVooPj5eMTExOf3XgAvTNNWqVSu1atUqp1f5gxo1aqhGjRrq27dvSM4vV66cRo8erdGjR4fkfEkyDENNmzZV06ZNQzYDQN5EAEr25eaAkbwQ0AIAAADAgWsAiocAFAAAAAAAAAAAAAAAAAAAAABAzrvpppt000035fQaYVW4cGF16NBBHTp0yOlVAADINwhAyR8IPAEAAADyGa/X61j3eJyvN02XBhGAAgAAAAAAAAAAAAAAAAAAAAAAAADIHQhAyb5wh444/Xj3q2sEogAAAAB5nFs4icd0eokgmaYZ8AwAAAAAAAAAAAAAAAAAAAAAAAAAAMKBAJTscb7TMLisq36/PN+64vcTkg6FcScAAAAAIeYWTuKWb2KanoBnAAAAAAAAAAAAAAAAAAAAAAAAAAAQDgSg+K9NiM4tJKmgpMKSykqqIKmypEaSqul/oSuWfh+KYkgqJulzy7JeCdFuAAAAAMLMNQDF45zLaLolpPgwAwAAAAAAAAAAAAAAAAAAAAAAAACAcCAAxU+WZa0I90zDMIpKulNSd0lddOnf7coQlEhJfzcMo52kP1uWlRLuHQEAAAAEl9frdax7CEABAAAAAAAAAAAAAAAAAAAAAAAAAOQTnpxeAO4syzprWdYsy7K6S6op6UNJV97taP3251slfWUYRuHwbwkAAAAgmNzCSdzyTUzT/eUeASgAAAAAAAAAAAAAAAAAAAAAAAAAgNyAAJQ8xrKsA5Zl9ZZ0p6SkK0u6FILSUtKsHFgNAAAAQBC5B6AYLnWXhBQfZgAAAAAAAAAAAAAAAAAAAAAAAAAAEA4EoORRlmV9Lam1sg5B6WwYxqM5shgAAACAoHALJ/F43AJQ3F/uEYACAAAAAAAAAAAAAAAAAAAAAAAAAMgNCEDJwyzL+lHSg7oUevLfN//253GGYZTJkcUAAAAABMzr9TrWPS6v5kzTdJ1BAAoAAAAAAAAAAAAAAAAAAAAAAAAAIDcgACWPsyxrgaQ5+n0IiiTFSOob/o0AAAAABINbOIlpXv0S4Oo6ASgAAAAAAAAAAAAAAAAAAAAAAAAAgLyBAJT84ZWr/mzpUiDKE4ZhRObAPgAAAAACFHgAivvLPQJQAAAAAAAAAAAAAAAAAAAAAAAAAAC5AQEo+YBlWRsk7c2iVErSreHdBgAAAEAweL1ex7rHOf9Epmm6ziAABQAAAAAAAAAAAAAAAAAAAAAAAACQGxCAkn98JymrWyBbhnsRAAAAAIFzCycxTecEFNN0f7lHAAoAAAAAAAAAAAAAAAAAAAAAAAAAIDcgACX/+Mnm7fFh3QIAAABAULiFk3hM5+tN06XBhxkAAAAAAAAAAAAAAAAAAAAAAAAAAIQDASj5x+mr/mxJMiRVzIFdAAAAAATILZzENA3Husfj/nKPABQAAAAAAAAAAAAAAAAAAAAAAAAAQG5AAEr+VyKnFwAAAADgP6/X61j3GM4BKIZhuIagEIACAAAAAAAAAAAAAAAAAAAAAAAAAMgNCEDJP8rZvL1YWLcAAAAAEBRu4SSm6X6G6dJEAAoAAAAAAAAAAAAAAAAAAAAAAAAAIDcgACX/qGzz9gth3QIAAABAULgHoBiuZxCAAgAAAAAAAAAAAAAAAAAAAAAAAADICwhAyQcMwyggqZMkK4tySpjXAQAAABAEbuEkHgJQAAAAAAAAAAAAAAAAAAAAAAAAAAD5BAEo+cNdkkr+9t/GVb8fCv86AAAAAALl9Xod6x73/BMCUAAAAAAAAAAAAAAAAAAAAAAAAAAAeQIBKHmcYRjlJL0lycqibEnaFd6NAAAAAASDWziJabonoHg8zi/5CEABAAAAAAAAAAAAAAAAAAAAAAAAAOQGBKDkYYZh1JQ0X1KZy2/Kou278G0EAAAAIFjcA1DczzBdmghAAQAAAAAAAAAAAAAAAAAAAAAAAADkBgSg5EGGYcQZhjFM0g+S6kuylHX4iSQtDttiAAAAAILGPQDF7iXAlT0EoAAAAAAAAAAAAAAAAAAAAAAAAAAAcr8COb1AXmMYxvAcGGtKKiKpgqSbJNW5vM5vv1tX9F4OQ7EkrbEsa0+4lgQAAAAQHJZlybIsxx6PQQAKAAAAAAAAAAAAAAAAAAAAAAAAACB/IADFfy/q94Ej4XblXY5WFm+70tgQ7wIAAAAgBLxer2uPxznbRBIBKAAAAAAAAAAAAAAAAAAAAAAAAACAvIEAlOxz/3HroXNlAMvVgSjGb78vtSzry7BuBQAAACAofAkmMU33lyQEoAAAAAAAAAAAAAAAAAAAAAAAAAAA8gICULLPcm8JmazudLxyn58lPRSmXQAAAAAEGQEoAAAAAAAAAAAAAAAAAAAAAAAAAIBrCQEo2ed+t2F4XBl8Ykg6JOkOy7ISc2gfAAAAAAHyer2uPR4fXpEQgAIAAAAAAAAAAAAAAAAAAAAAAAAAyAs8Ob0AfGbZ/JIuBZ8Ykr6UdLNlWTtyZEMAAAAAQeFLMIlpuiegEIACAAAAAAAAAAAAAAAAAAAAAAAAAMgLCuT0AnmY5d4SMlfe6WhJWiRpnGVZS3NoHwAAAABBRAAKAAAAAAAAAAAAAAAAAAAAAAAAAOBaQgBK9rjfaRh8FySlSkqStE/SLklrJC2xLCsxB/YBAAAAECK+BJN4nLNNJBGAAgAAAAAAAAAAAAAAAAAAAAAAAADIGwhA8ZNlWZ6c3gEAAABA/ub1el17PIZ7LiMBKAAAAAAAAAAAAAAAAAAAAMiKZVk5vQIAAAAQNnz+mzcQ5gEAAAAAuYwvwSQu2Sa/9RCAAgAAAAAAAAAAAAAAAAAAcK3xeNxvG/TlB/YBAAAA+YVPP7Dah8+jEVr8CwAAAABALuNbAIrhQw8BKAAAAAAAAAAAAAAAAAAAANcaX27czMjICMMmAAAAQO6Qnp7u2kMASs7jXwAAAAAAchlfgkk8HgJQAAAAAAAAAAAAAAAAAAAA8Eemabp+H+mFCxfCtA0AAACQ89wCUHz5HBqhRwAKAAAAAOQyXq/Xtcf04dUcASgAAAAAAAAAAAAAAAAAAADXpsjISMc6ASgAAAC4lrh9/luwYMEwbQInBKAAAAAAQC7jSzCJxzRcewhAAQAAAAAAAAAAAAAAAAAAuDa53cCZmprK95ICAADgmnDx4kWlpqY69rgFCCI8CEABAAAAgFzGl/8zySQABQAAAAAAAAAAAAAAAAAAADbcAlAsy1JSUlKYtgEAAAByTlJSkizLcuxx+/wZ4UEACgAAAADkMl6v17XH48OrOQJQAAAAAAAAAAAAAAAAAAAArk0xMTGuPSdOnFBmZmYYtgEAAAByRmZmpk6cOOHa58vnzwg9AlAAAAAAIJfxJZjE9BjuPQSgAAAAAAAAAAAAAAAAAAAAXJMiIiIUFRXl2HPx4kUdPXrUpx/eBwAAAOQ1Xq9XR48edb2HKioqShEREWHaCk4IQAEAAACAXManABTnbJPfepyb+D+rAAAAAAAAAAAAAAAAAAAA8q9ixYq59qSmpurw4cPKyMgIw0YAAABAeGRkZOjw4cNKTU117fXl82aEBwEoAAAAAJDL+BaAYvjQ4xyA4sscAAAAAAAAAAAAAAAAAAAA5E0xMTGu308qSWlpadq7d68SExN14cKFMGwGAAAAhMaFCxeUmJiovXv3Ki0tzbXfNE3FxMSEYTP4okBOLwAAAAAA+D2v1+va4/EQgAIAAAAAAAAAAAAAAAAAAAB7pmkqLi5OR44cce21LEsnT57UyZMnFRkZqaioKEVGRioiIkIFChSQx+ORYbh//yoAAAAQDpZlyev1KjMzUxkZGUpPT1daWprS09P9OicuLs6n0ECEBwEoAAAAAJDL+BJM4vG4n0MACgAAAAAAAAAAAAAAAAAAwLUtJiZG0dHRSklJ8fma9PR0v28cBQAAAPKa6OhoxcTE5PQauIIPt8wBAAAAAMLJl2AS03RP0CcABQAAAAAAAAAAAAAAAAAA4NpmGAY/1R4AAAC4immaiouLk2G436OF8CEABQAAAAByGQJQAAAAAAAAAAAAAAAAAAAAECwRERGqXLmyChQokNOrAAAAADmuQIECqly5siIiInJ6FVyFABQAAAAAyGW8Xq9rj8eHV3MEoAAAAAAAAAAAAAAAAAAAAECSChYsyE2eAAAAuOb9f/buNci2tK7v+O+/+jDADDPcLzqIg4hoVEiMQiQjF4EooqCARbxVxEssBEm8xDKWKFYkioWlGBAtDUZlMDoKiop4AWQgmphECRENCjiAwHC/DJdhhllPXnRvzj493b3W2uecvXbv/nyqunr38zz72f995g27qP72BRdckMsuuyw3v/nN5x6FAwigAAAAbJgxYZKdrobPCKAAAAAAAAAAAAAAsGfxy56XXHLJ3KMAAMDaXXLJJaKAG+7U3AMAAABwplEBlB0BFAAAAAAAAAAAAACmOXXqVC699NLc9ra3zTve8Y5cd911c48EAADn1S1ucYvc+c53zoUXXjj3KAwQQAEAANgwY8Ik3dFtkyQCKAAAAAAAAAAAAAAc7MILL8xll12WD33oQ7n22mtz7bXXpu/7uccCAIBzouu6XHzxxbn44otzq1vdKlXDf4ya+QmgAAAAbJgx/+dR1w1/6BZAAQAAAAAAAAAAAOAwVfWJXwptreUjH/lIPvzhD+f666/P9ddfnxtuuEEUBQCAjdd1XW52s5vlggsuyAUXXJCLLrooF154oejJMSSAAgAAsGHGhEl2uuF7BFAAAAAAAAAAAAAAGKOqctFFF+Wiiy76xFprLTfeeGP6vk9rbcbpAADgpqoqXddlZ2dH7GRLCKAAAABsmFEBlJ3hD+UCKAAAAAAAAAAAAACsqqpy6pRfQQQAANZjxN8MBwAAYJ0EUAAAAAAAAAAAAAAAAAA4SQRQAAAANkzf94NnuhGf5gRQAAAAAAAAAAAAAAAAADgOBFAAAAA2zFCYpKpSVYP3CKAAAAAAAAAAAAAAAAAAcBwIoAAAAGyYoTDJUNhk7DkBFAAAAAAAAAAAAAAAAAA2gQAKAADAhhkOoIz7KCeAAgAAAAAAAAAAAAAAAMBxIIACAACwYfq+P3K/6wRQAAAAAAAAAAAAAAAAANgeAigAAAAbZihMMhQ2GXtOAAUAAAAAAAAAAAAAAACATSCAMkFVPbSqHjL3HAAAwHYbDqCM+ygngAIAAAAAAAAAAAAAAADAcSCAMs0/T/KHVfWWqvqxqvrcuQcCAAC2z1CYpOsEUAAAAAAAAAAAAAAAAADYHgIo01WSS5P8uySvrqr/U1XfU1WXzjwXAACwJfq+P3J/KGwy9pwACgAAAAAAAAAAAAAAAACbQABlNS27IZRK8rlJnp7kTVX10qp6fFVdMut0AADAsTYUJtnZGfdRTgAFAAAAAAAAAAAAAAAAgONAAGV1be8r2Q2hdEkelOQXklxTVb9eVY+sqlMzzQcAABxTwwGUo8MmY88JoAAAAAAAAAAAAAAAAACwCQRQVld7X23pa7F2iySPSfLC7MZQnlNVl881KAAAcLz0fX/kftfVqHsEUAAAAAAAAAAAAAAAAAA4DgRQzt4iepIcHEO5XZJ/neQVVXV1VT2tqj57lkkBAIBjYShMMhQ2GXtOAAUAAAAAAAAAAAAAAACATSCAsrrl2ElyOnhyVAzlbkm+L8lrquovq+q7q+rStU4NAABsPAEUAAAAAAAAAAAAAAAAAE4SAZRpXpXkf+49Pix2srx3VAzlPkl+PMmbquqlVfX4qrrkvL8DAABg4w0HUMZ9lBNAAQAAAAAAAAAAAAAAAOA4EECZoLX20tba/ZJcluS7k/z3va1VYiiLvS7Jg5L8QpJrqurKqnpUVZ06f+8EAADYZH3fH7nfdQIoAAAAAAAAAAAAAAAAAGwPAZQVtNbe0lr7ydba/ZPcLcl3JvnTve2xMZTlvcXaLZI8OskLshtDeVZVfeH5f0cAAMAmGQqTDIVNxp4TQAEAAAAAAAAAAAAAAABgEwignKXW2ltba89srV2e5FOS/Jskr8qZYZPk8BjK/r3F+u2SPCHJq6rq76rqKVV19zW8JQAAYGaDAZRu3Ee5oQBKay2ttSPPAAAAAAAAAAAAAAAAAMD5JoByDrXW3tZa+0+ttQckuWuS70hyVY6OodSIvXskeWqS11fVK6rq8VV1q7W8KQAAYO0GAygDYZMp54ZeCwAAAAAAAAAAAAAAAADONwGU86S1dk1r7dmttQcluTTJE5P8SZI+ZxdDuTzJLyS5pqp+uaq+eB3vBwAAWJ++74/c77o6cn9BAAUAAAAAAAAAAAAAAACA40AAZQ1aa+9orT2ntfbFST45yROSvCyrxVAWaxcm+bokf1RVf19VT6mqu63pLQEAAOfRUJSkGxE2SQRQAAAAAAAAAAAAAAAAADgeBFDWrLX2rtbaz7XWHprkLkm+LckfJ7kx42IoB61/apKnJnljVf1BVT22qk6t7U0BAADn1FCUZEzYZOw5ARQAAAAAAAAAAAAAAAAA5iaAMqPW2ntaaz/fWvsX2Y2hfGuSP0zy8QzHUA5a75I8NMmvJXlrVT29qj5jTW8HAAA4R4YDKOM+ygmgAAAAAAAAAAAAAAAAAHAcCKBsiNbae1tr/7m19qXZjaF8c5KX5PAYSg5ZX6zdMcn3JPmbqvrjqnp0VY37M/EAAMCs+r4/cr/rBFAAAAAAAAAAAAAAAAAA2B4CKBuotfa+1tovtta+LMmdkjw+yYuT3JAzoycLB4VQlmMoD05yZZI3V9VTqupO5/9dAAAAqxqKkuzsCKAAAAAAAAAAAAAAAAAAsD0EUDZca+0DrbVfaq19eXZjKN+Y5HeTXJ/ToZOFysExlMXaJyV5anZDKL9UVfdex3sAAACmGQ6gDIdNxp4TQAEAAAAAAAAAAAAAAABgbgIox0hr7YNJfiXJTyX5zZwOnRxkOYbScmYM5YIkX5/kL6vqJVX1gPM5NwAAMI0ACgAAAAAAAAAAAAAAAAAniQDKMVBVO1X1sKr6uSTXJPmjJF+z2B5zxdK55RBKJXlYkpdX1Suq6v7ndnIAAGAVfd8fud91Yz4GCKAAAAAAAAAAAAAAAAAAcDycmnsADlZVp7IbJ3lskkclue1ia+QV7aBrl/bavrUvSvLKqroyyZNba++cPDQAAHBODEVJdsMmw+ESARQAAAAAAAAAAAAAAAAAjgMBlA1SVRck+ZLsRk++IsmtF1tLx5bDJvtjKEN7+6Mn2bdWSb46yRdU1Re31t406Q0AAADnxLgAyjABFAAAAAAAAAAAAAAAAACOAwGUmVXVLZI8PLvRk0ckuXixtXSs7X/aiL0/T/K8JC9P8pgk35Lkrgc8p/atVZK7J7mqqu7TWnv/6DcDAACcE8MBlG7UPV03fE4ABQAAAAAAAAAAAAAAAIC5CaDMoKouzG7s5LFJvizJhYutpWOrRE9en+SKJFe01l6/tP/aqvqRJI9M8sQkD1m6p+09fzmEUtmNpTw1yb8d+74AAIBzo+/7I/fHhE2SZGdnZ/CMAAoAAAAAAAAAAAAAAAAAcxNAWZOqulWSr8hu9ORLk9xisbV0bJXoybuS/Fp2o9twBmQAACAASURBVCf/47DXb631SX4ryW9V1WckeVKSf5Xk4pyOniy/ViV5QlU9vbX29qPfHQAAcC4NRUl2dgRQAAAAAAAAAAAAAAAAANge435rjpVU1SVV9Q1V9dtJ3pnkeUm+MsktsxsYqezGRhZfWVpfBEkO2vtokv+a5MuTfHJr7clHxU/2a639bWvtyUnumuSnluZYvMbCqSQPH/2GAQCAc2I4gDIcNhl7TgAFAAAAAAAAAAAAAAAAgLmdmnuAbVNVt81u5OSxSR6S5GaLraVjbf/T9v3cDti7McnLshtReUFr7cNnO2tr7dok31VV70jyo3uvu3+WL0ny3LN9LQAAYLyhKElX41qWAigAAAAAAAAAAAAAAAAAHAcCKOdAVd0hyVdlN3ryoJz+d101erK8/xfZjZ78amvtHWc97AFaa0+vqkcn+YLcNL7ymefjNQEAgMP1fX/k/s6OAAoAAAAAAAAAAAAAAAAA20MAZUVVdeckj85u9OSLkix+s/BcRE/+Psnzkzyvtfa6s592lN/LbgBloe3Nc/s1vT4AALBnKEoyJmwy9pwACgAAAAAAAAAAAAAAAABzE0CZoKrulORx2Y2e3D/J4s+un4voyXuSXJnkitbafzv7aSd76yHrAigAALBmwwGU7sj90+cEUAAAAAAAAAAAAAAAAADYfAIo0zwhyQ/uPZ4SPdl/ZrF/XZLfSXJFkhe31j5+LoZc0QWHrI/70/IAAMA50/f9kftdJ4ACAAAAAAAAAAAAAAAAwPYQQJmushszWTV60if5kyTPS/IbrbVrz/WAK/qkQ9Y/tNYpAACAwSjJmLDJ2HMCKAAAAAAAAAAAAAAAAADMTQDl7AxFT5bPvCa70ZPnt9bedl6nWs0/yU1nb0neNMMsAABwog0HULpR9wigAAAAAAAAAAAAAAAAAHAcCKCsbjl+clj05C1Jnp/kea21165lqhVUVZfk8hwcdPlfax4HAABOvOEAynDYZOw5ARQAAAAAAAAAAAAAAAAA5iaAsrrDoifvT/IbSa5orb1ivSOt7FSSrzxk743rHAQAAEj6vj9yv7pu1D0CKAAAAAAAAAAAAAAAAAAcBwIoZ2cRPflYkhcnuSLJ77bWrp9vpOn25j0usRYAANh6Q1GSnR0BFAAAAAAAAAAAAAAAAAC2hwDKaipJS/LKJM9LcmVr7f3zjgQAAGyL4QDKcNhk7DkBFAAAAAAAAAAAAAAAAADmJoAy3WuTXJHkitbaW+YeBgAA2D7DAZRu1D0CKAAAAAAAAAAAAAAAAAAcBwIo0zyjtfbDcw8BAABst77vj9zvunEBlDHnBFAAAAAAAAAAAAAAAAAAmJsAykRVdckR29e21trahgEAALbSUJRkZ2dn1D1Vla7rjgyqCKAAAAAAAAAAAAAAAAAAMDcBlGn+NsldDtlrSe6R5E3rGwcAANhGwwGUbvRdOzs7AigAAAAAAAAAAAAAAAAAbLTxvzVHktw5SR3x9fb5RgMAALbFcABlZ/RdQ2cFUAAAAAAAAAAAAAAAAACYmwDKNB9P0g74Wjj8z6oDAACM1PdHf7TouvEf5YYCKEOvBQAAAAAAAAAAAAAAAADnmwDKNG9felx7X8vuuMZZAACALXXjjTceub+zc+4CKEOvBQAAAAAAAAAAAAAAAADnmwDKNG/ITaMny+60rkEAAIDtNRhA6Y6OmpxxVgAFAAAAAAAAAAAAAAAAgA0ngDLNiwf2v2AtUwAAAFttMICyM/6jnAAKAAAAAAAAAAAAAAAAAJtOAGWaK5Ncv/e4HbD/iDXOAgAAbKm+74/c7zoBFAAAAAAAAAAAAAAAAAC2hwDKBK21tyR5TpLav7W39rCq+uS1DwYAAGyVoSjJUNRkylkBFAAAAAAAAAAAAAAAAADmJoAy3VOTvHHv8SJ8snDLJD+67oEAAIDtMhxAGf9RTgAFAAAAAAAAAAAAAAAAgE0ngDJRa+0DSR6Z5NrF0tL3SvJ1VfW4OWYDAAC2w3AA5eioyZSzAigAAAAAAAAAAAAAAAAAzE0AZQWttb9O8vAkH9y/ld1/01+uqketfTAAAGAr9H1/5H7Xjf8oJ4ACAAAAAAAAAAAAAAAAwKYTQFlRa+3PkjwkyTVJankryc2S/GZVPaOqLphjPgAA4PgaipLs7AigAAAAAAAAAAAAAAAAALA9BFDOQmvtL5LcN8mfZzeCsgihtOz+235nkr+uqm+rqpvPMyUAAHDcDAdQjo6aTDkrgAIAAAAAAAAAAAAAAADA3E7NPcBx11p7a1XdP8l3Jfm+JLddbGU3iPJpSX4myY9X1SuSXJXkH5K8O8n1a5jvqvP9GgAAwLk1FCXpuvEtSwEUAAAAAAAAAAAAAAAAADadAMpEVfXmoSPZjZ9k6XsluTjJI/a+1qXFf2MAADh2+r4/cn9nRwAFAAAAAAAAAAAAAAAAgO0hjjHdXbMbFqkD9paDJ8trB60DAADcxFD8JBmOmkw5K4ACAAAAAAAAAAAAAAAAwNwEUFbX9v1cOThwslhbDqGsg9gKAAAcQ2OCJDs73ej7BFAAAAAAAAAAAAAAAAAA2HQCKOfOIm5yWHhknUGSdYZWAACAc6jv+8EzXSeAAgAAAAAAAAAAAAAAAMD2EEBZ3TqDJgAAwAkxJkjSDURNlgmgAAAAAAAAAAAAAAAAALDpBFBW1+YeAAAA2D5jgiQ7O93o+wRQAAAAAAAAAAAAAAAAANh0AiirqbkHAAAAttO4AMrRUZMpZwVQAAAAAAAAAAAAAAAAAJibAMp0d597AAAAYHv1fT94puu60fcJoAAAAAAAAAAAAAAAAACw6QRQJmqtvWnuGQAAgO01JkiysyOAAgAAAAAAAAAAAAAAAMD2GP9bcwAAAJx34wIoR0dNppwVQAEAAAAAAAAAAAAAAABgbgIoAAAAG2RUAKUb/1FOAAUAAAAAAAAAAAAAAACATSeAAgAAsEH6vh880wmgAAAAAAAAAAAAAAAAALBFBFAAAAA2yJggyVDUZMpZARQAAAAAAAAAAAAAAAAA5iaAAgAAsEHGBVDGf5QTQAEAAAAAAAAAAAAAAABg052aewDOjar6x0keecDW81trr1/3PAAAwGrGBVCOjppMOSuAAgAAAAAAAAAAAAAAAMDcBFC2y1OTtH1rleSH1z8KAACwir7vB890XTf6PgEUAAAAAAAAAAAAAAAAADadAMr2eN3S41p6/IB1DwIAAKxuTJBkZ0cABQAAAAAAAAAAAAAAAIDtMf635th0y/8t295XknzWDLMAAAArGhdAOTpqMuWsAAoAAAAAAAAAAAAAAAAAcxNA2R6PO2T9tmudAgAAOCvjAijjP8oJoAAAAAAAAAAAAAAAAACw6U7NPcA2qar7JLlfknskuXWSC9bwsqeS3DPJfZO0JLX3fXkfAAA4Jvq+HzzTdQIoAAAAAAAAAAAAAAAAAGwPcYyzVFU7SZ6U5MlJLptzlEPW373WKQAAgLMyJkgyFDWZclYABQAAAAAAAAAAAAAAAIC5CaCchaq6R5IXJPmcHB4gWZe2b4baW3vdPOMAAACrGBdA6UbfJ4ACAAAAAAAAAAAAAAAAwKYTQFlRVd0ryVVJ7pDTsZE5HRZg+fW1TgEAAJyVcQGUo6MmU84KoAAAAAAAAAAAAAAAAAAwNwGUFVTVRUl+J8kdsxs+WcRPDouQrNNyiOWvkvz8XIMAAADT9X0/eKbrutH3CaAAAAAAAAAAAAAAAAAAsOkEUFbzQ0k+PYeHT1oOdlgg5bDzY567/47FudckeVRr7YYRdwMAABtiTJBkZ0cABQAAAAAAAAAAAAAAAIDtIYAyUVXdOckTc3D8ZDlkclAU5bBgypi4ydDdi7XXJvnFJD/TWrtu4F4AAGDDjAug7IzLKEYABQAAAAAAAAAAAAAAAIDNJ4Ay3fcmuWXOjI4kZ8ZNrkvyiiT/kOSjSe6Y5PIkly6dWzy/Jbk6yZsPeK2dJJckuVuS2yw976AYyg8keW5r7ZrV3hYAALAJ+r4fPNN1XTKyWyKAAgAAAAAAAAAAAAAAAMCmE0CZoKoqydfnzADJcvjkhiT/IclPttY+fMDzn5jkp3PTgMl7W2sPHnjtT0vy6CRPSHL33DSk8r1JrkoigAIAAMfYmCDJzo4ACgAAAAAAAAAAAAAAAADbo5t7gGPm8iR33HtcOTN+0id5bGvtRw6KnyRJa+3Z2Q2g1GJp7/vnVdVDjnrh1tobW2vPSHKvJN+fM3/dsSW5JMmLquozp70lAABgk4wLoBwdNZlyVgAFAAAAAAAAAAAAAAAAgLkJoEzzlQesLUIoz2qt/c6IO551yPrXjhmgtfbx1tqPJXl4kuuWt5LcJslvVdUtx9wFAABsnnEBlPEf5QRQAAAAAAAAAAAAAAAAANh0AijTfP7S47b0+GNJ/uOYC1prb0jyvn33VJKvmDJIa+2l2Y2m1L6teyb58Sl3AQAAm6Pv+8EzXSeAAgAAAAAAAAAAAAAAAMD2EECZ5rNzZvik9n5+eWvtnRPueWNuGi65fVV91pRhWmu/neQ5S3ctYipPqKp7T7kLAADYDGOCJENRkylnBVAAAAAAAAAAAAAAAAAAmJsAykhVdZckt1v8uG/7JROvu/qQ9X828Z4k+YEk79+31iV5xgp3AQAAMxsTJOm68R/lBFAAAAAAAAAAAAAAAAAA2HQCKOPd9Yi910686+pD1v/RxHvSWntfkp/N6ShL2/v+kKr6vKn3AQAA8xoKkgwFTfYbiqUIoAAAAAAAAAAAAAAAAAAwNwGU8S4+Yu/vJt7194es32viPQvPTtIfsP4dK94HAADMpO8P+p/2pw0FTfYbCqYIoAAAAAAAAAAAAAAAAAAwNwGU8S45Yu8DE++6+oC1SvJpE+9JkrTW3prkz/buSJK29/gxVXWzVe4EAADmMRQkGQqaTD0vgAIAAAAAAAAAAAAAAADA3ARQxrvoiL0PTbzr6n0/t73vnzrxnmW/d8DaRUkedBZ3AgAAayaAAgAAAAAAAAAAAAAAAMBJI4Ay3keP2LvlxLuuXnpcS48vrKo7Trxr4S8OWX/givcBAAAzEEABAAAAAAAAAAAAAAAA4KQRQBnv/Ufs3X7KRa21jyR51+LHfduXTblryd8csv45K94HAADMoO/7I/e7btrHOAEUAAAAAAAAAAAAAAAAADadAMp4RwVQ7rLCfVcnqQPW77XCXUny3n0/t737V70PAACYwVCQZChoMvW8AAoAAAAAAAAAAAAAAAAAcxNAGe8N2Y2KZOn7wgNWuO/qQ9Y/e4W7kuS6Q9Zvv+J9AADADARQAAAAAAAAAAAAAAAAADhpBFBGaq19MMnrD9l+6ApXXn3I+heucFeS3O6Q9YtXvA8AAJjBugMoSdL3/aQ7AQAAAAAAAAAAAAAAAOBcEkCZ5n8nqaWf297PD62q+0y86//t+3lx132r6qIVZjvs9f05dwAAOEaGYiRdN+1j3JgAylB0BQAAAAAAAAAAAAAAAADOJwGUaX5/6XHte/wTVTXl3/PVh9x18ySPWmG2Rxyy/u4V7gIAAGYyFCMZEzSZel4ABQAAAAAAAAAAAAAAAIA5CaBM88IkH9173LIbLll8f3CSX6mqOuS5+702yceX7lqoJN8zZaiquk2SbzzgniR515S7AACAeQmgAAAAAAAAAAAAAAAAAHDSCKBM0Fr7UJIX5XRcJDkzgvIvk/xpVT1wxF3XJ3nl0l2Le5LkPlX1gxNG++kkt1665xMvk+TVE+4BAABmJoACAAAAAAAAAAAAAAAAwEkjgDLd05L0e48XwZLlCMr9krysqt5QVT9XVU+oqtsdcteVB6wt7nlKVT1paJiqelqSr1963n4vHboDAADYHH3fH7nfddM+xgmgAAAAAAAAAAAAAAAAALDpBFAmaq39VZIrctPYyCKCsnh89yTfkuRZST7nkOtekOT6xdV7z1vcs5PkmVX1kqp6VFVd+IkXqrqgqh5RVa9M8n37R1x6fH2SP5rw9gAAgJkNxUjGBE2mnhdAAQAAAAAAAAAAAAAAAGBOAiir+YEkH9h7vBwcWcRLFl/7IylnaK29M8lzDzi3uKeSPCy7oZRrq+q9VXVNkg8neVGS++87u//5/6W19p6pbw4AAJiPAAoAAAAAAAAAAAAAAAAAJ40Aygpaa29J8k05HT/ZH0E5Mnyyz48kue6AexY/19LXbZLcKcnO0tpy/GT5+Tck+dEJcwAAABtAAAUAAAAAAAAAAAAAAACAk0YAZUWttRcm+YYkH1ssLX1NuedtSf59bhpNWQ6cHPV10PNaku9urb15yiwAAMD8+r4/cr/rpn2ME0ABAAAAAAAAAAAAAAAAYNMJoJyF1tqvJrlvklfldLAkmR5BeWaSF+XM4MlC5cy7969/4pqlx1e01p49ZQYAAGAzDMVIxgRNpp4XQAEAAAAAAAAAAAAAAABgTgIoZ6m19lettQcmeWCS5yZ5ew4Olgz52iS/nzMjKvtDKgfFUJbPVZJfTPJNE18bAADYEHMEUPq+n3QnAAAAAAAAAAAAAAAAAJxLp+YeYFu01l6Z5JVJUlWfkuTTk1ya5FZJ/m7E8z9SVY9M8tNJvi27cZqDIigHqSQfSfJDrbWfWOkNAAAAG2EoRtJ10zqWYwIoQ9EVAAAAAAAAAAAAAAAAADifBFDOg9baW5K8ZYXn3ZjkiVX1s0meluRLM/zf6CNJrkjy1Nba26e+JgAAsFmGYiRjgiZTzwugAAAAAAAAAAAAAAAAADAnAZQN1Fr7v0keWVUXJ3lokvsluVOSOybpkrwjyduTvCrJy1prH5trVgAA4NwSQAEAAAAAAAAAAAAAAADgpBFA2WCttWuTvHDvCwAAOAEEUAAAAAAAAAAAAAAAAAA4abq5BwAAAOC0vu+P3O+6aR/jBFAAAAAAAAAAAAAAAAAA2HQCKAAAABtkKEYyJmgy9bwACgAAAAAAAAAAAAAAAABzEkABAADYIAIoAAAAAAAAAAAAAAAAAJw0p+Ye4Dipqtckuesh2y3JP22tXb2+iQAAgG0jgAIAAAAAAAAAAAAAAADASSOAMs1n5vB/s5bkmjXOAgAAbKG+74/c77pu0n0CKAAAAAAAAAAAAAAAAABsOgGU6doBa7X3/fp1DgIAAGyfoRjJmKDJ1PMCKAAAAAAAAAAAAAAAAADMadqfDucdA/t3WMsUAADA1hJAAQAAAAAAAAAAAAAAAOCkEUCZ5uoktfe4lh4v3Gmt0wAAAFtHAAUAAAAAAAAAAAAAAACAk0YAZZo/GNi/91qmAAAAtlbf90fud920j3ECKAAAAAAAAAAAAAAAAABsOgGUaa5MsvhtxHbA/iPWOAsAALCFhmIkY4ImU88LoAAAAAAAAAAAAAAAAAAwJwGUCVprr0vyvCS1f2tv7eFVdeu1DwYAAGwNARQAAAAAAAAAAAAAAAAAThoBlOm+P8m79h4vwicLt07y1HUPBAAAbA8BFAAAAAAAAAAAAAAAAABOGgGUiVprb0vymCQ3LJaWvleSb6+qB84xGwAAcPz1fX/kftdN+xgngAIAAAAAAAAAAAAAAADAphNAWUFr7VVJvianIyif2EpysyQvqqr7rn0wAADg2BuKkYwJmiwbE0wRQAEAAAAAAAAAAAAAAABgTgIoK2qtvTDJVyX58P6tJBcneXlVPWntgwEAAMfauQ6gjHmOAAoAAAAAAAAAAAAAAAAAcxJAOQuttd9PcnmSNyWp5a0kt0zyzKq6qqq+ZI75AACA40cABQAAAAAAAAAAAAAAAICT5tTcAxx3rbXXVNW9k/xYkm/N6X/Tlt0oyuVJXlxVr0/yB0muSvIPSd6d5Po1zPfm8/0aAADAudP3/ZH7XTe9YymAAgAAAAAAAAAAAAAAAMAmE0CZqKquOmL7rUkuy278JDkdQakk90zy6UmeeD7n26fFf2MAADhWhmIkQzGTVZ4jgAIAAAAAAAAAAAAAAADAnMQxprs8pwMnC7VvrZYeH7YOAABwEwIoAAAAAAAAAAAAAAAAAJw0Aiir2x8zOSxuslhvuWk45XwSWwEAgGNIAAUAAAAAAAAAAAAAAACAk0YAZXWHxUyGQijrsM7QCgAAcA71fX/kftd1k+8UQAEAAAAAAAAAAAAAAABgkwmgrG6dQRMAAOCEGIqRDMVMVnmOAAoAAAAAAAAAAAAAAAAAcxJAWV2bewAAAGD7CKAAAAAAAAAAAAAAAAAAcNIIoKym5h4AAADYTn3fH7nfdd3kOwVQAAAAAAAAAAAAAAAAANhkAijTPXjuAQAAgO01FCMZipms8hwBFAAAAAAAAAAAAAAAAADmJIAyUWvtFXPPAAAAbC8BFAAAAAAAAAAAAAAAAABOmm7uAQAAADhNAAUAAAAAAAAAAAAAAACAk0YABQAAYIP0fX/kftdN/xgngAIAAAAAAAAAAAAAAADAJhNAAQAA2CBDMZKhmMkqzxFAAQAAAAAAAAAAAAAAAGBOAigAAAAbRAAFAAAAAAAAAAAAAAAAgJNGAAUAAGCDCKAAAAAAAAAAAAAAAAAAcNKcmnuA46aqLkxyh4P2WmtvXvM4n1BVFye57QFb72ytXbfueQAAgNX0fX/kftdN71gKoAAAAAAAAAAAAAAAAACwyQRQpvvqJM89YL1l3n/Pb07yEwesf1eSZ655FgAAYEVDMZKhmMkqzxFAAQAAAAAAAAAAAAAAAGBOAiirqbkHOMD7cvBcn7/uQQAAgNUJoAAAAAAAAAAAAAAAAABw0gigrK4tPd6EIMpihv1z3XuGWQAAgBUJoAAAAAAAAAAAAAAAAABw0nRzD3DMbUL4ZOHCQ9Zvv9YpAACAs9L3/ZH7XTf9Y5wACgAAAAAAAAAAAAAAAACbTABle9zzkPWL1zoFAABwVoZiJEMxk1WeI4ACAAAAAAAAAAAAAAAAwJwEULZAVd06yeOStAO2b7nmcQAAgBW11tLaQf+z/jQBFAAAAAAAAAAAAAAAAAC2zam5B5hbVV2S5DYTnnKHI+76lCR11kONd4skn5vkKUnukt0ASuXMEMoH1zgPAABwFsaESARQAAAAAAAAAAAAAAAAANg2Jz6AkuQ7k/zgCs+rA75ffS4GWsH+WZa9Z52DAAAAq+v7fvBM13WT7xVAAQAAAAAAAAAAAAAAAGCTCaDsOigcMuc9q2j7Xr/21l49zzgAAMBUY0IkQzGTgwxFUwRQAAAAAAAAAAAAAAAAAJiTAMppbcLZw0InU+441w6b6aVrnQIAAFjZ+QqgDD1HAAUAAAAAAAAAAAAAAACAOQmgnOmwiMi6nn8uLEdY3pXkeXMNAgAATCOAAgAAAAAAAAAAAAAAAMBJJICyPZbDJ5XkxiTf3lr7yEzzAPx/9u41WLq0LA/w/XQvBxxEPCCIKCiOJ8BEUaMiIlIeoyZoqYmkPJRaHkodEzVYaqmJZdQoBit4SNRSo5hgBCse4gFRQfAQjQWiqASVQQSRgygMDsLqfvNj7830t7+9e3Wv3qt7z7evq2rV7l7P+z7v09/8mfWj7wYAtrRcLgfXzGazrfsKQAEAAAAAAAAAAAAAAADgMhOAcq02vCTJUcDILvuncjLXy3IUfvIzhxwGAADYziZBJENhJmP2CEABAAAAAAAAAAAAAAAA4JAEoNzpvFCTffcY6/VJfjfJk5M8qbX29wecBQAAGEEACgAAAAAAAAAAAAAAAABXkQCU5EeSPGOL9R+X5KuTtBwFnqz+ffQFzzakJbk9yWuS3NZaa3s+HwAAuEACUAAAAAAAAAAAAAAAAAC4iq58AEpr7cVJXrzp+qp61zW9nnkBIwEAAFfUcrkcXDObzbbuKwAFAAAAAAAAAAAAAAAAgMts+2/OAQAAMIlNgkiGwkzG7BGAAgAAAAAAAAAAAAAAAMAhCUABAAC4JASgAAAAAAAAAAAAAAAAAHAVCUDZTTv0AAAAwI1juVwOrpnNtn+ME4ACAAAAAAAAAAAAAAAAwGXWHXqAu7A69AAAAMCNZZMgkqEwkzF7BKAAAAAAAAAAAAAAAAAAcEgCULb3lCTPOPQQAADAjUcACgAAAAAAAAAAAAAAAABXkQCULbXWXp/k9YeeAwAAuPEIQAEAAAAAAAAAAAAAAADgKpodegAAAACOLJfLwTWz2faPcQJQAAAAAAAAAAAAAAAAALjMBKAAAABcEpsEkQyFmYzZIwAFAAAAAAAAAAAAAAAAgEMSgAIAAHBJCEABAAAAAAAAAAAAAAAA4CoSgAIAAHBJCEABAAAAAAAAAAAAAAAA4CrqDj3AvlXVI9fVW2u/vsv+y2bo8wAAAJfHcrkcXDObbZ9jKQAFAAAAAAAAAAAAAAAAgMvsygWgJHlGknZOrWX432Td/stmk88DAABcEpsEkQyFmYzZIwAFAAAAAAAAAAAAAAAAgEO6yuEYdeD9AAAA1zhUAMpyudy6JwAAAAAAAAAAAAAAAABclKscgNJOvd820OT0/stGQAsAANzFHCoAZZNzAQAAAAAAAAAAAAAAAGAqVzkAZTUgZEyYyWUOGLns4SwAAMAZlsvl4JrZbLZ1XwEoAAAAAAAAAAAAAAAAAFxm239zDgAAgElsEkQyFGYyZo8AFAAAAAAAAAAAAAAAAAAOqTv0AAfUDrwfAADgGgJQAAAAAAAAAAAAAAAAALiKrmoASh14PwAAwHUEoAAAAAAAAAAAAAAAAABwFV3FAJSPPPB+AACAMy2Xy8E1s9ls674CUAAAAAAAAAAAAAAAAAC4zK5cAEpr7ZmH3A8AAHCeTYJI5vN50rbrKwAFAAAAAAAAAAAAAAAAgMts+58OBwAAYBKbBJHMZts/xglAAQAAAAAAAAAAAAAAAOAyE4ACAABwSQwFkcxms1TV1n0FoAAAAAAAAAAAAAAAAABwmQlAAQAAuCSWy+Xa+mw27hFuKABlk7MBAAAAAAAAAAAAAAAAYCoCUAAAAC6JIr4YoAAAIABJREFUxWKxtr5JkMnYfUNnAwAAAAAAAAAAAAAAAMBUBKAAAABcEgJQAAAAAAAAAAAAAAAAALiKBKAAAABcEkMhJLPZuEc4ASgAAAAAAAAAAAAAAAAAXGbdoQe4iqrqXknuk+QeSe6eZJ7kDUnuSPKqJK9srbXDTQgAABzCcrlcW98kyGTsPgEoAAAAAAAAAAAAAAAAAByKAJQJVVUl+YAkH5nkYUkemuTdk9xtYOuiql6a5PlJ/iDJs5M8q7X22gnHBQAADmwohEQACgAAAAAAAAAAAAAAAAA3IgEoE6iqhyX53CSfnuTtV0sbtuiSPDDJA5J8fJLH5SgU5ZlJnpzkJ1prt1/cxAAAwGVwyACUvu9H9QYAAAAAAAAAAAAAAACAXc0OPcCNpKo+uKp+OcnvJvniJPfOUejJyZUkbYtrdW+X5NFJvj/JX1bVE6rqfvv5ZAAAwD4sl8u19dls3CNc1w1nXw6FrwAAAAAAAAAAAAAAAADAVASgXICqesuq+r4kv5GjkJKT0JKzQk2Sa4NNzrpOnBeI8tZJbk3ywqr6pqq625SfDwAA2I+hEJL5fD6q7yb7BKAAAAAAAAAAAAAAAAAAcCgCUHZUVe+a5LeSfEGO/j1Xg0+S9QEn57Y9Z8/pMJSbk3xdkt+vqg/Z+cMAAAAHNVUAStd1g2v6vh/VGwAAAAAAAAAAAAAAAAB2JQBlB1X1HkmeleR9c23wyXlhJ23klTN6rp71nkmeWVVfdNGfEQAA2J+pAlA22Td0NgAAAAAAAAAAAAAAAABMZfhnwDlTVd0nydOT3D/XB5Wsaqfen64PWe19sv90CEqSvEWS76mq+7fWvn7LMwAAgEtguVyurc9m4zIsu2740a/v+1G9Adjeov/z3P7qz1q75q3e/kcz7x60p4kAAAAAAAAAAAAAAAAOSwDKCFVVSZ6S5F2yWfDJSe1vkjzv+Hphktcm+bsktyd5yyT3PL7uneTBx9d7Jbl5pefqeaeDUCrJ11bV61pr377ThwQAAPZusVisrc/n81F9N9k3dDYAAAAAAAAAAAAAAAAATEUAyji3JnlEzg4/OR188pIkP5nkJ1prv7vtQVU1T/LIJI9J8s+TPCBnB6GshqD8h6r6v621X932PAAA4HCmCkDpuuFHv77vR/UGAAAAAAAAAAAAAAAAgF3NDj3AXU1VvW2Sb8r68JNK8rIkX5jkQa21rxoTfpIkrbVFa+3XWmtfnuTdknxmkhesnHt6jpZknuRHqurmMWcCAACHMVUAyib7hs4GAAAAAAAAAAAAAAAAgKkIQNnelye55/Hr1dCRtrLm8Uluaa39QGvtwr5F2I78eJKHJPnSJHesnL86T5LcP8lXX9TZAADA9JbL5dr6bDbuEa7rusE1fd+P6g0AAAAAAAAAAAAAAAAAuxKAsoWqqiSfm2vDTlbDR/okn9lae1xr7R+mmuM4COV7kzwiyStOzXHyupJ8aVW95VRzAAAAF2uxWJ+fOJ/PR/XdZN/Q2QAAAAAAAAAAAAAAAAAwFQEo2/nQJO98/LpW7leOQke+orX23/c1TGvtuUn+aZI7Tm6dmuttkvyLfc0DAADsZqoAlK7rBtf0fT+qNwAAAAAAAAAAAAAAAADsSgDKdj7y1PuTwJGW5Fdaa9+z74Faa89J8g25Nvhk1SftcRwAAGAHUwWgbLJv6GwAAAAAAAAAAAAAAAAAmIoAlO180JraN+5tius9McnLjl+3lb+V60NbAACAS2q5XK6tz2bjHuG6rhtc0/f9qN4AAAAAAAAAAAAAAAAAsCsBKNu5JdcGjJz489babx1gnqNBWntTkh/LUeBJVv4myb2q6v77nwoAANjWYrFYW5/P56P6brJv6GwAAAAAAAAAAAAAAAAAmIoAlO3c79T7ylEQyjP2P8p1nr6m9h57mwIAABhtqgCUrusG1/R9P6o3AAAAAAAAAAAAAAAAAOxKAMp27nHO/RfsdYqz/dGa2tvsbQoAAGC0qQJQNtk3dDYAAAAAAAAAAAAAAAAATEUAysV4zaEHSPLqNbWb9zYFAAAw2nK5XFufzcY9wnVdN7im7/tRvQEAAAAAAAAAAAAAAABgVwJQtvPac+7fY69TnK2tqd2xtykAAIDRFovF2vp8Ph/Vd5N9Q2cDAAAAAAAAAAAAAAAAwFQEoGznJUnqjPv32/cgZ7jXmtrf7m0KAABgtEMGoPR9P6o3AAAAAAAAAAAAAAAAAOxKAMp2nn/O/ffc6xRne9Ca2p/tbQoAAGC0qQJQqiqz2frHv6GzAQAAAAAAAAAAAAAAAGAqAlC288xT71uSSvLRVXXTAeZZ9YErr9vK61e31v5i38MAAADbWy6Xa+tDISbrdF23tt73/ejeAAAAAAAAAAAAAAAAALALASjb+YUkZ30j8R5JPm7Ps5z2KafeV46CUH7tALMAAAAjLBaLtfX5fD6699DeobMBAAAAAAAAAAAAAAAAYCoCULbQWntZkl/MUbjIqkry76vq9P29qKr3SvKoHAWenPZj+50GAAAYa8oAlK7r1tb7vh/dGwAAAAAAAAAAAAAAAAB2IQBle9+58rpyZ+jIP0ry+fsfJ0nyn3L2f8v/l+Tn9zwLAAAw0lAAymw2/hFuKDxl6GwAAAAAAAAAAAAAAAAAmIoAlC211n4tR6Eiq+En7fj9d1XVB+5znqr6qiQfvzJDVmb7ytbacp/zAAAA4y2X6//3fSjEZJ2u69bW+74f3RsAAAAAAAAAAAAAAAAAdiEAZZwvTvK3p+61JG+Z5Ker6oH7GKKqbk3ybbk+iKUl+ZHW2s/vYw4AAOBiLBaLtfVdAlCG9g6dDQAAAAAAAAAAAAAAAABTEYAyQmvtJUk+J3cGj7y5lOR+SX67qj5iqvOr6u2q6klJnpCz/xs+PckXTXU+AAAwjSkDULquW1vv+350bwAAAAAAAAAAAAAAAADYhQCUkVprP5Pki88qJblvkl+pqh+uqlsu6syquk9VfVOSFyb5jCSVO0NY6vj630ke01p700WdCwAA7MdyuVxbn83GP8INhacMha8AAAAAAAAAAAAAAAAAwFTW/wQ4a7XWfqCqXpvkvyV5i9VSjsJlPivJZ1bVs5P8VJJnJPnD1tr6bzUeq6qbk7x/kn+S5JOSfPhx31o5J7kzCOWJSb5i0/4AAMDlMhRCMhRisk7XrX/86/t+dG8AAAAAAAAAAAAAAAAA2MWVC0Cpqql+1rxWXrfjq46vDz++kuRNVfVnSV6W5JVJ7kjyxiQ3Jbl7kpuTvFOSd05y31N9TwefnNxrSV6e5O2S/EjVm7e01tpnX8BnAwAA9mDKAJShvUNnAwAAAAAAAAAAAAAAAMBUrlwASq4NFJnyjJMQlNNn3pTkfZK898D+s5wOPll9/Y5J/tUZMwhAAQCAu4gpA1C6bv3jX9/3o3sDAAAAAAAAAAAAAAAAwC6uYgBKcm2QyEU5HVpy8n41CGW1NhTEct6M5+3bR7ALAAAwoeVyubY+m81G9x4KTxkKXwEAAAAAAAAAAAAAAACAqVzVAJRkf4Ehp885KxBlm/3nOStkBQAAuAsZCiEZCjFZp+vWP/71fT+6NwAAAAAAAAAAAAAAAADs4ioHoBzKVMEkq323CVgBAAAuiSkDUIb2Dp0NAAAAAAAAAAAAAAAAAFO5ygEoQkIAAIBLZcoAlK5b//jX9/3o3gAAAAAAAAAAAAAAAACwi6sagFKHHgAAAOC05XK5tj6bzUb3HgpPGQpfAQAAAAAAAAAAAAAAAICpXMUAlHc79AAAAABnGQohGQoxWafr1j/+9X0/ujcAAAAAAAAAAAAAAAAA7OLKBaC01l586BkAAADOMmUAytDeobMBAAAAAAAAAAAAAAAAYCqzQw8AAADAkSkDULpuff5l3/ejewMAAAAAAAAAAAAAAADALgSgAAAAXBLL5XJtfTYb/wg3FJ4yFL4CAAAAAAAAAAAAAAAAAFMRgAIAAHBJDIWQDIWYrNN13dp63/ejewMAAAAAAAAAAAAAAADALtZ/A45rVNV7Jrn7miUvaK39w77mAQAAbixTBqAM7R06GwAAAAAAAAAAAAAAAACmIgBlO89Kcu9zai3JA5O8dH/jAAAAN5IpA1C6bv3jX9/3o3sDAAAAAAAAAAAAAAAAwC4EoGzn3klqTf2V+xoEAAC48SyXy7X12Ww2uvdQeMpQ+AoAAAAAAAAAAAAAAAAATGX8t+eupjckaWdcJ9pZmwAAADYxFEIyFGKyTtetz7/s+350bwAAAAAAAAAAAAAAAADYhQCU7fzVyus6vlbdZ4+zAAAAN5gpA1CG9g6dDQAAAAAAAAAAAAAAAABTEYCynRfk+tCTVffd1yAAAMCNZ8oAlK7r1tb7vh/dGwAAAAAAAAAAAAAAAAB2IQBlOz87UP+wvUwBAADckJbL5dr6bDb+EW4oPGUofAUAAAAAAAAAAAAAAAAApiIAZTtPSXL78et2Rv0T9jgLAABwgxkKIRkKMVmn67q19b7vR/cGAAAAAAAAAAAAAAAAgF0IQNlCa+1VSb4jSZ0uHd/7yKp6j70PBgAA3BCmDEAZ2jt0NgAAAAAAAAAAAAAAAABMRQDK9r49ye8dvz4JPjnRJXnC3icCAABuCEMhJLPZ+Ee4ruvW1vu+H90bAAAAAAAAAAAAAAAAAHYhAGVLrbV/SPKYJC8/uZWjEJSTvx9fVV95oPEAAIC7sOVyubY+n89H9x7aOxS+AgAAAAAAAAAAAAAAAABTEYAyQmvtpUkeleSlJ7dybQjKt1fVlx1mOgAA4K5qKIRklwCUruvW1vu+H90bAAAAAAAAAAAAAAAAAHYhAGWk1toLk3x4kj/OneEnyZ0hKN9VVU+pqrc/0IgAAMBdSGsty+Vy7ZpdAlCG9g6FrwAAAAAAAAAAAAAAAADAVASg7KC19uIkH5Lkp3IUenJynYSgfHKSP62qb62q+x9sUAAA4NJrrQ2umc3GP8J1Xbe23vf96N4AAAAAAAAAAAAAAAAAsIv134DjOlV1+huHf5/k04+vf5/kPY7vn4Sg3CvJ45I8rqqen+TXk/xlklcleePU87bWfnTqMwAAgN0tFovBNfP5fHT/ob2bnA8AAAAAAAAAAAAAAAAAUxCAsr03bbCmjv+2U+8fmuQhFz7RegJQAADgLmDqAJSuW//41/f96N4AAAAAAAAAAAAAAAAAsAsBKNur4SXXrG25Nghlm/27asNLAACAy2DqAJShvZucDwAAAAAAAAAAAAAAAABTEIAyzrpgkdMBJ6vv9xlIss+gFQAAYEfL5XJwzWw2G92/69Y//vV9P7o3AAAAAAAAAAAAAAAAAOxCAMp4YwJG9hVKss+gFQAA4AIsFovBNfP5fHT/ob2bnA8AAAAAAAAAAAAAAAAAUxj/8+EAAABcmKkDULpuff5l3/ejewMAAAAAAAAAAAAAAADALtZ/A4512qEHAAAAbhxTB6AM7d3kfAAAAAAAAAAAAAAAAACYggCUcerQAwAAADeW5XI5uGY2m43u33XrH//6vh/dGwAAAAAAAAAAAAAAAAB2IQBlS6218d84BAAAOMdisRhcM5/PR/cf2rvJ+QAAAAAAAAAAAAAAAAAwBWEeAAAAl8DUAShdtz7/su/70b0BAAAAAAAAAAAAAAAAYBcCUAAAAC6BqQNQhvZucj4AAAAAAAAAAAAAAAAATEEACgAAwCWwXC4H18xm4x/huq5bW+/7fnRvAAAAAAAAAAAAAAAAANiFABQAAIBLYLFYDK6Zz+ej+2+yd5MQFgAAAAAAAAAAAAAAAAC4aAJQAAAALoGpA1C6rhtc0/f96P4AAAAAAAAAAAAAAAAAMJYAFAAAgEtg6gCUTfZuMgMAAAAAAAAAAAAAAAAAXLThnwDnLqGqHp7k888oPbG19px9zwMAAGxnuVwOrpnNxmdYdt3w41/f96P7AwAAAAAAAAAAAAAAAMBYAlBuHK9J8jlJ2qn7r0giAAUAAC65xWIxuGY+n4/uv8neTWYAAAAAAAAAAAAAAAAAgIsmAOXG8ecrr2vl9YftexAAAGB7UwegdN3w41/f96P7AwAAAAAAAAAAAAAAAMBYs0MPwIW5+8rrdnwlyXsdYBYAAGBLlyEAZZMZAAAAAAAAAAAAAAAAAOCiCUC5cdx6zv233usUAADAKMvlcnDNbDb+EW6T8JS+70f3BwAAAAAAAAAAAAAAAICxhn8CnI1U1T2SfFSSD07y7knuleSmPRzdHZ/3jklakjr+++bR9jADAACwo8ViMbhmkxCT83Td8OPfJjMAAAAAAAAAAAAAAAAAwEUTgLKjqrpXkn+X5HOTvNWhxlhTe+XepgAAAEabOgBlk71934/uDwAAAAAAAAAAAAAAAABjCUDZQVV9SJKnJnnHrA8hmVo7/rs6Qx3f/4P9jwMAAGxrkwCU2Ww2un/XDT/+bTIDAAAAAAAAAAAAAAAAAFw0ASgjVdXDkzwtyc3Ht9qa5ftwXgDLj+91CgAAYJTlcjm4Zj6fj+6/yd6+70f3BwAAAAAAAAAAAAAAAICxBKCMUFXvkOSpOQo/WQ0+OS+EZF9Oh7D8emvtSQeZBAAA2MpisRhcs0sAStcNP/5tMgMAAAAAAAAAAAAAAAAAXDQBKON8S5L75s7AkdPBJ6eDSE6cF5By3vpN96/2OFnzS0k+Y8O+AADAgU0dgLLJ3r7vR/cHAAAAAAAAAAAAAAAAgLEEoGypqt4tyWfn7PCT1SCTs8JKzgtMWRdssrp33ZmV5PVJnpHkh1trP7VBTwAA4JJYLpeDa2az2ej+XTf8+LdJCAsAAAAAAAAAAAAAAAAAXDQBKNv72hz9u7WcH0TykiQ/n+Qvk9yR5B2SPDLJh66sO9nfkjwvyXPPOGue5K2TPCDJg5PcdOqsk/Nakq9M8p9ba76xCAAAd0GbhI/M5/PR/TfZ2/f96P4AAAAAAAAAAAAAAAAAMJYAlC1U1Vsk+dRcG0CyGnzyd0m+rLX2pHP2f2KSn8y1QSaV5OYkn9daO/cn36vq7kk+McmtSR6R64NUvi3JXyR56tYfDAAAOLipA1C6bvjxb5MZAAAAAAAAAAAAAAAAAOCizQ49wF3Mo5Pc6/h15drwkzck+fjzwk+SpLX2c0m+5Xj9qluSfNK6g1trb2itPaW19sgkj03y2tVykrdI8qSqeviGnwUAALhEpg5A2WRv3/ej+wMAAAAAAAAAAAAAAADAWAJQtvPPzrh3EoTyba21396gxw+dc/8zNh2itfbkJB+R5NWrt5PcLclPVtXbbdoLAAC4HJbL5eCaqtNZipvrum5wzSYhLAAAAAAAAAAAAAAAAABw0QSgbOdhK6/byuvXJ3nCJg1aay9N8opTfSrJx9UW32ZsrT0vyWOSnP6G4jsm+d5N+wAAAJfDUPjIfD7fqf8m+/u+3+kMAAAAAAAAAAAAAAAAABhDAMp2Hpxrg0/q+P3TWmuv26LPi473rrpnkvfbZpjW2m8m+daVXidhKp9WVY/cphcAAHBYUwegdF238wwAAAAAAAAAAAAAAAAAMAUBKBuqqnfJUUhJcn14ydO2bHfbOfc/aMs+SfJtSf7q1L1K8vgRvQAAgAOZOgBlk/193+90BgAAAAAAAAAAAAAAAACMIQBlc/dbU/vjLXvdds79B2/ZJ621O5I8MXeGsrTjvx9QVY/ath8AAHAYy+VybX022+3xreu6wTVDISwAAAAAAAAAAAAAAAAAMAUBKJu755ran23Z60Xn3H+vLfuc+P4kbzrj/peO7AcAAOzZUPjIfD7fqf8m+/u+3+kMAAAAAAAAAAAAAAAAABhDAMrm1gWgvG7LXredet+SVJJ327LP0ebW/ibJM457rPb7hKq6eUxPAABgvy5DAMrQDAAAAAAAAAAAAAAAAAAwBQEom7vHmtrrt+x12zn3H7Bln1W/cMa9m5J81A49AQCAPZk6AKWqMputfwTs+36nMwAAAAAAAAAAAAAAAABgDAEom7t9TW1dOMpZXpyknXH/blV1vy17nXjuOfcfMbIfAACwR8vlcm19KLxkE13Xra0PhbAAAAAAAAAAAAAAAAAAwBQEoGzub9fU3n6bRq21f0jy8nPK77pNrxUvOOf+Q0b2AwAA9mgofGQ+n+98xlCPvu93PgMAAAAAAAAAAAAAAAAAtiUAZXOvWVN75xH9bktSZ9x/nxG9kusDWtpx//cc2Q8AANijfQSgdF230wwAAAAAAAAAAAAAAAAAMAUBKJt7YZKTbwO2U7VHjeh32zn3HzKiV5Kc91PtbzuyHwAAsEf7CEAZ6iEABQAAAAAAAAAAAAAAAIBDEICyodbaHUn+5Jzyx45o+aJz7j98RK8kufc5999qZD8AAGCPlsvl2vpstvvjW9d1a+t9f16uIgAAAAAAAAAAAAAAAABMRwDKdn4vSR2/riTt+O/Dq+qRW/b641PvT3o9rKredsRsDzvn/htH9AIAAPZssVisrc/n853PGOoxNAMAAAAAAAAAAAAAAAAATEEAynZ+5pz7leQJVXXzFr2ee2r/iS7Jp287WJJPPuf+q0b0AgAA9mwfAShd162t932/8xkAAAAAAAAAAAAAAAAAsC0BKNv5uSR/d/y65Si4pB2/f78kP7tFCMqfJHnDSq/Vnl9VVTdtOlRV3T/JY1f6JHeGqrxi0z4AAMDh7CMAZajH0AwAAAAAAAAAAAAAAAAAMAUBKFtorb0xyf/MneEiyZ0hKJXkUUmeX1WfXVV3G+i1SPL0lV6rPR+U5Ls2mamqKskPJrn7GX1akt/dpA8AAHBYy+VybX022/3xreu6tfW+73c+AwAAAAAAAAAAAAAAAAC2JQBle9+a5I3Hr9vx39UQlAcm+aEkr66qX6qq/1hV73ROr5889X61zxdW1eOr6tyfaD8OWfnRJB+7su+0pw9/JAAA4NAWi8Xa+nx+7qPBxoZ6DM0AAAAAAAAAAAAAAAAAAFMQgLKl1tptSf5Lrg8bOQkvOQkiuTnJRyf5qiS3nNPup5PcftL6VJ9K8m+S/H5V/euqenBVvXVV3b2qbqmqL0nyh0kee3rElde3J/mV7T4hAABwCPsIQOm6bm297/udzwAAAAAAAAAAAAAAAACAba3/9hvn+aYkn5rkfrkzrCS5NgQluT4k5RqttddW1ROTfE2uDS5ZDUF5cJLvPKfFSf/VGVb3f19r7fbrdgEAAJfOUADKbLZ7fuVQiMrQDAAAAAAAAAAAAAAAAAAwhd2/QXcFtdb+Jsm/TPKGk1u5NvRkbfDJKd+R5O9W+pyoXN/z9HVybp2x/3VJHr/FHAAAwAENhY903e75lUM9+r7f+QwAAAAAAAAAAAAAAAAA2JYAlJFaa89O8glJXpVrA0hWw1A26fO3Sb4oZ4emrIacnHXljH0nez6vtfaqTecAAAAOaygAZT6f73zGUI+hGQAAAAAAAAAAAAAAAABgCgJQdtBae0aSf5zkSTkKHamcHWQy1OcnkvzXXBt4cqIGrje3WXn97a21p247BwAAcDh936+td1238xlDPYZmAAAAAAAAAAAAAAAAAIApCEDZUWvt5a21z0pyS5JvSPKbSd6U7YNQviTJD67sOx2Ecu4IuTZ85Rtba1+z5dkAAMCBLRaLtfX5fL7zGUM9hmYAAAAAAAAAAAAAAAAAgCns/hPiJElaa7cl+eYk31xV8yQPSHL/JG+V5A822L9M8gVV9cIkX3+8b9MQlEryV0m+vLX2lFEfAAAAOKi+79fWu273x7ehHkMzAAAAAAAAAAAAAAAAAMAUZoce4EbUWlu01l7UWnt2a+0XW2uv2WLvdyS5Jcl3J3lFjsJN1l0vSvJ1SW4RfgIAAHddi8VibX0+n+98xlCPoRkAAAAAAAAAAAAAAAAAYAq7/4Q4F6619ooktya5tareP8kHJ7lPknfIUWjNXyf5qyTPbq398cEGBQAALkzf92vrXbf749tQj6EZAAAAAAAAAAAAAAAAAGAKAlAuudbac5I859BzAAAA01osFmvr8/l85zOGegzNAAAAAAAAAAAAAAAAAABTmB16AAAAAJK+79fWu273/MqhHkMzAAAAAAAAAAAAAAAAAMAUBKAAAABcAovFYm19Pp/vfMZQj6EZAAAAAAAAAAAAAAAAAGAKAlAAAAAugb7v19a7rtv5jKEeQzMAAAAAAAAAAAAAAAAAwBQEoAAAAFwCi8VibX0+n+98xlCPoRkAAAAAAAAAAAAAAAAAYAoCUAAAAC6Bvu/X1ruu2/mMoR5DMwAAAAAAAAAAAAAAAADAFK5UAEpVPaWqHnLoOe4qqupjqur/HHoOAAC4ChaLxdr6fD7f+YyhHkMzAAAAAAAAAAAAAAAAAMAUrlQASpJPSfL7VfU/qurBhx7msqqqR1TVryX5hSQfeOh5AADgKhgKH+m6buczhnr0fb/zGQAAAAAAAAAAAAAAAACwrasWgJIkleTTkzyvqp5cVQ899ECXRVU9vKp+OckzkzwyR/9WAADAHgyFj8zn853PGOoxFMICAAAAAAAAAAAAAAAAAFO4igEoyVGwxyzJpyV5blU9tao+4MAzHUxVfURV/UqSZyV5dASfAADA3g2Fj3Rdt/MZQz2GQlgAAAAAAAAAAAAAAAAAYApXNQClHV8nQSiPSfI7VfWLVfXog062R1X1SVX1G0l+NcmjcvTvUTn6tznhJ+ABAGAPhsJH5vP5zmcM9RgKYQEAAAAAAAAAAAAAAACAKVy1AJSvTnJHjkI+kmuDUCrJRyf55ar6var6jKra/RuGl0xV3VRVn1dVz0/yv5J8SK4NPjkJP6kkz0nywQcZFAAArpih8JGu63Y+Y6jHUAgLAAAAAAAAAAAAAAAAAEzhSgWgtNa+I8n7Jnla7gxBSa4PQnn/JE9KcltVfU1VvcO+Z71oVfXAqvqWJH+Z5PuTvE/ODz55Q5LHJfmg1tpzDjAuAABcOUOuVpAWAAAgAElEQVThI/P57vmMQz2GQlgAAAAAAAAAAAAAAAAAYApXKgAlSVprL2qtfVySxyZ5ec4OQsnx/fsn+eYkL6mqJ1fVx1RV5S6iqm6uqsdW1S8m+bMkX53k3rnzM69+3hzf/+UkD22tPb61ttzrwAAAcIUNhY9cRABK13Vr60MhLAAAAAAAAAAAAAAAAAAwhSsXgHKitfbkJO+d5LuTLHN2EEo7vn9Tkk9L8gtJXlZV31tVj6mqe+536mFVdUtV3XocevKqJD+W5KNz9N+6cu1ne/O2JK9O8tmttY9trb1oz2MDAMCVNxQ+MhResomhEJWhEBYAAAAAAAAAAAAAAAAAmMLu36C7C2utvS7JrVX1g0m+J8mH5dpgkKy8PwlIuW+SLzy+FlX1O0meluS3kjyvtfbXkw9+MlBVl+ShSd4/yQfmKOjk3VeXrLw+/blO6i3JDyf5t621v5loVAAAYMBQ+MhQeMkmhkJUhkJYAAAAAAAAAAAAAAAAAGAKVzoA5URr7XlJPryqHpvkW5O8S84PQknuDBbpknzo8XVUqHplkucdX3+a5GUr18tba8ttZququyV55+OZTv4+KEehJw9JctMZc50183Wtk/xRki9urT1rm5kAAICLNxQ+MhResomhEJWhEBYAAAAAAAAAAAAAAP4/e3ceJPta13f885xfN5ssXkBBCCAKKotCLES2K4sIoiSIkhiCCxGxAhWMMZaFSiHBEIxaKkQMwYAlxeKGikCxXamLIBKLGAOiLBFZvay5BC5bdf/Okz9mmtNn7kw/v+75Tfece16vqq4z83uefp5vc/+a0nkPAAAnQQBlSa31RaWUP0jyk0l+Isn1c/XwST3k2bIvT/Kt+6+DzpZSrkzy+f3X55a+Lkmue+B1vSQ3OGLcg/cmhwdPSq4+71VJfi7Jr9Ra/Yl3AAA4BVrxkVa8ZIhWRKUVYQEAAAAAAAAAAAAAAACAkyCAckCt9fNJnlpKeXaSpyR5TJJpzg+fLOIjB2MoObB+UJfkpodd23jfkeM27j448yzJc5M8tdb64TXvAgAATlArPtKKlwzRiqi0IiwAAAAAAAAAAAAAAAAAcBLO7HqA06rW+tFa6+OTfG2S30rS5/DwSTnwWl5vvXLgjGzw/oP3H7Z+VZJfTfLVtdbHi58AAMDp04qPtOIlQ7QiKq0ICwAAAAAAAAAAAAAAAACcBAGUhlrre2ut/yrJ7ZM8K8lncnTsJLl6kORgHOW84494LVt1XmuGtyd5QpJb1lp/vNb6wbX/BwAAALaiFR9pxUuGaEVUWhEWAAAAAAAAAAAAAAAAADgJAigD1VrfV2t9QpJbJnlsksuSnM3RIZKDIZOkHTPZNJqyfPbHkvx6knvUWr+h1vqsWutVG39wAABgK1rxkVa8ZIhWRKUVYQEAAAAAAAAAAAAAAACAk3D8PyF+kam1fjrJc5M8t5Ry0ySPSPK9Se6VZLq8NYdHUMZwMIzyd0leleSlSV5Xaz17QvcCAAAnpBUfacVLhmhFVFoRFgAAAAAAAAAAAAAAAAA4CQIox1Br/XiSZyd5dinlOknunr0Qyr2S3DPJTVa9vXH8wcjJwtkkb0/y5v3X5bXW96wzNwAAcPq04iOteMkQrYhKK8ICAAAAAAAAAAAAAAAAACdBAGUktdbPJ/nT/VeSpJRyyyS3PfC6TZIbJbnegdd1knwhyef2Xx9PckWSf0jygSTv2H+9s9b6ua18KAAAYGta8ZFWvGSIVkSlFWEBAAAAAAAAAAAAAAAAgJMggHKCaq0fSvKhJG/c9SwAAMDp1oqPtOIlQ7QiKq0ICwAAAAAAAAAAAAAAAACchDO7HgAAAOBid/bs2dRaV+5pxUuGaEVUWhEWAAAAAAAAAAAAAAAAADgJAigAAAA7NiQ80oqXDNGKqMzn82PfAQAAAAAAAAAAAAAAAADrEkABAADYsSHhkVa8ZIhWRKXWmrNnzx77HgAAAAAAAAAAAAAAAABYhwAKAADAjvV939zTipcMMSSiMmQWAAAAAAAAAAAAAAAAABiTAAoAAMCOzefz5p4h8ZKWIREVARQAAAAAAAAAAAAAAAAAtk0ABQAAYMeGREeGxEtahkRUhsRYAAAAAAAAAAAAAAAAAGBMAigAAAA7NiSAMiRe0jIkojJkFgAAAAAAAAAAAAAAAAAYkwAKAADAjs3n8+aeIfGSliERlSGzAAAAAAAAAAAAAAAAAMCYBFAAAAB2rO/75p4h8ZKWIRGVIbMAAAAAAAAAAAAAAAAAwJgEUAAAAHZsPp839wyJl7QMiagMmQUAAAAAAAAAAAAAAAAAxiSAAgAAsGN93zf3jBFAGXLGkFkAAAAAAAAAAAAAAAAAYEwCKAAAADs2n8+beyaTybHvGXLGkFkAAAAAAAAAAAAAAAAAYEwCKAAAADvW931zT9d1x75nyBlDZgEAAAAAAAAAAAAAAACAMQmgAAAA7Nh8Pm/umUwmx75nyBlDZgEAAAAAAAAAAAAAAACAMQmgAAAA7Fjf9809Xdcd+54hZwyZBQAAAAAAAAAAAAAAAADGJIACAACwY/P5vLlnMpkc+54hZwyZBQAAAAAAAAAAAAAAAADGJIACAACwY33fN/d0XXfse4acMWQWAAAAAAAAAAAAAAAAABiTAAoAAMCOzefz5p7JZHLse4acMWQWAAAAAAAAAAAAAAAAABiTAAoAAMCO9X3f3NN13bHvGXLGkFkAAAAAAAAAAAAAAAAAYEwCKAAAADs2n8+beyaTybHvGXLGkFkAAAAAAAAAAAAAAAAAYEwCKAAAADvW931zT9d1x75nyBlDZgEAAAAAAAAAAAAAAACAMQmgAAAA7Nh8Pm/umUwmx75nyBlDZgEAAAAAAAAAAAAAAACAMQmgAAAA7Fjf9809Xdcd+54hZwyZBQAAAAAAAAAAAAAAAADGJIACAACwY/P5vLlnMpkc+54hZwyZBQAAAAAAAAAAAAAAAADGJIACAACwY33fN/d0XXfse4acMWQWAAAAAAAAAAAAAAAAABiTAAoAAMCOzefzletnzpxJKeXY90wmk2PPAgAAAAAAAAAAAAAAAABjE0ABAADYsb7vV653XTfKPUPOac0CAAAAAAAAAAAAAAAAAGMTQAEAANix+Xy+cn0ymYxyTyklZ86s/jGwNQsAAAAAAAAAAAAAAAAAjE0AZQ2llHF+6xAAAGBJ3/cr17uuG+2u1lmtWQAAAAAAAAAAAAAAAABgbAIo6/npUsobSimPLaV86a6HAQAArhla0ZHJZLwWY+us+Xw+2l0AAAAAAAAAAAAAAAAAMIQAynpKknsneXaSK0opLymlPLyUMt3xXAAAwAWsFR3pum60u1pntWIsAAAAAAAAAAAAAAAAADA2AZTNlCTXTvJdSX4/yYdLKc8upVy627EAAIALUSs6MplMRrurdVYrxgIAAAAAAAAAAAAAAAAAYxNA2Uzdf5X91yVJHpvk8lLKe0spTyul3HGXAwIAABeOVnSk67rR7mqd1YqxAAAAAAAAAAAAAAAAAMDYBFCOp+bqMZRbJ3likreVUv6ylPLjpZRb7HBGAADglGtFRyaTyWh3tc5qxVgAAAAAAAAAAAAAAAAAYGwCKJsrS6/k8BjKXZP8YpL3lVIuK6U8upRyw10MCwAAnF6t6EjXdaPd1TqrFWMBAAAAAAAAAAAAAAAAgLEJoGyuLn19VAxlsdYluX+S5yb5cCnld0spDyulTLc1LAAAcHq1oiNjBlAmk8nK9VaMBQAAAAAAAAAAAAAAAADGJoCynuWoyeL75djJYm3xWl5fPLtOku9J8gfZi6E8u5Ry6cmPDgAAnFat6EgrWrKOVkylFWMBAAAAAAAAAAAAAAAAgLEJoKznPyX5jiTPS3JlzkVNktUxlIPri+eXJHlskstLKe8tpTytlHKnk/4QAADA6dKKjrSiJetoxVRaMRYAAAAAAAAAAAAAAAAAGJsAyhpqrfNa66tqrT+c5GZJvj3Jf0/yiayOoZQV64vnt07yxCRvLaX8r1LKvyul3PzkPxUAALBrrehIK1qyjlZMpRVjAQAAAAAAAAAAAAAAAICxCaBsqNba11pfU2v9kSRfkeRBSZ6T5OM5fgzlLkl+KckHSimvLqU8qpRy3ZP/VAAAwC60oiOtaMk6WjGVVowFAAAAAAAAAAAAAAAAAMYmgDKC/RjKZbXWf529GMoDkzw7yceyWQxlsdbtn/X8JB8ppTyvlHL/E/44AADAlrWiI61oyTpaMZVWjAUAAAAAAAAAAAAAAAAAxiaAMrJa69la6+tqrY9PcoskD0jy60k+kuExlOW1xbPrJ/nBJJeVUt5bSnlqKeV22/lUAADASWpFR1rRknW0YiqtGAsAAAAAAAAAAAAAAAAAjE0A5QTtx1Aur7X+myS3THK/JL+W5IoMi6EcXFs8v3WSn0nyzlLKn5ZSHl1Kud7JfyIAAOAktKIjrWjJOloxlVaMBQAAAAAAAAAAAAAAAADGJoCyJXXPn9ZafzTJrZJ8S5JnJvmHtIMnq9buneS5ST5cSvmNUso9t/OJAACAsbSiI61oyTpaMZVWjAUAAAAAAAAAAAAAAAAAxiaAsgP7MZQ31lp/rNZ6qyT3SfKrST6Y9WMoi2fXT/JDSd5YSnl7KeXfllIu2dZnAgAANteKjrSiJetoxVRaMRYAAAAAAAAAAAAAAAAAGJsAyilQa31TrfXHa623SXKvJL+c5AMZFkM57Pkd9s/4h1LKC0op99nixwEAANbUio60oiXraMVUWjEWAAAAAAAAAAAAAAAAABibAMopU2t9c631J2qtX5nkHkl+Kcn7cngMJY3n107yyCSvL6W8rZTyuFLKl5z8pwAAANbRio60oiXraMVUWjEWAAAAAAAAAAAAAAAAABibAMopVmv9i1rrT9ZavyrJ3ZP8QpK/z/nRk4Wy9KpLr8WzOyX5tSQfKqX8Sinldtv5FAAAQEsrOtKKlqyjFVNpxVgAAAAAAAAAAAAAAAAAYGwCKBeIWutbaq1PrLXeLsndkvzWYumQ7cuBlLq0pyS5YZIfTfKOUspLSin3OMGxAQCAAVrRkVa0ZB2tmEorxgIAAAAAAAAAAAAAAAAAYxNAuYCUUm5RSnlCkl9J8n05PH5y3luWXnXpVbL33/67kvxZKeV1pZT7n9jgAADASq3oSCtaso5WTKUVYwEAAAAAAAAAAAAAAACAsY33Z8Q5EaWUWyV5xP7rm7MXL8nSv6ssB1LK0rN64Nn9kty3lPInSf59rfVtx5kZAABYTys60oqWrKMVU2nFWAAAAAAAAAAAAAAAAABgbAIop1Ap5bY5Fz252/LS0tc1h0dQ6oHvSw6Pnhx8VpI8MMlbSilPqrX+4sYfAAAAWEsrOtKKlqyjFVNpxVgAAAAAAAAAAAAAAAAAYGwCKKdEKeX2ORc9uevi8YFtB+MmRz1fvO+jSd6Q5EFJbnDI3nLgWUkyTfLzpZQb1VqfNPgDAAAAG2tFR1rRknW0YiqtGAsAAAAAAAAAAAAAAAAAjE0AZYdKKXfIuejJnRePD2w7Km5ycG3x/DNJXprkBUleU2s9W0r5kiSPSvK4JHdZem898N7l73+qlPKGWuur1/pQAADA2lrRkVa0ZB2tmEorxgIAAABje08/z6M+feXKPS+8wSX5qs7/aRMAAAAAAAAAAACuqfx/CW5ZKeXrcy568nWLxwe2HRY2WbXWJ7kse9GTP6y1fva8N9T6mSTPSfKcUsq9kjwhyXcnmeZcCKXsv5a//6VSymtrrWfX/JgAAMAaWgGUVrRkHa2YSmsWAAAAAAAAAAAAAAAAABibAMoWlFL+cc5FT263eHxg29DoyfL6W7IXPfntWutHh8xSa31TkjeVUm6W5HHZi6F8aa4eQUmSOya5NMnrh5wNAABsZj6fr1xvRUvW0YqptGYBAAAAAAAAAAAAAAAAgLEJoJyQUso3ZS948j1Jbrt4fGDbJtGT9yR5YZIX1lrftel8tdaPJHlKKeU3k7wqydfkXARl2YMjgAIAACeq7/uV661oyTpaMZXWLAAAAAAAAAAAAAAAAAAwNgGUEZVS7plz0ZNbLR4vbTkqatJa/3iS381e9OTPRxj13IW1vq+U8pAkb03yJYfMcOmY9wEAAFc3n89XrreiJetoxVRaswAAAAAAAAAAAAAAAADA2ARQjqmUcmn2oiffneQWi8dLW1rRk4N7FuufS/KyJC9I8qpa64n9FmKt9b2llN9J8pilWer+LDc/qXsBAIA9fd+vXB8zgNI6qzULAAAAAAAAAAAAAAAAAIxNAGVNpZSS5H7Zi548PMnNFktL2zaNnpxN8rrsRU9eUmu96rjzruGtRzy/yRZnAACAi9J8vrp3OJmM96Nb66zWLAAAAAAAAAAAAAAAAAAwNgGUNZRSvjfJM5PcdPFoaXnd6Mnynr/KXvTkxbXWK44754Y+c8TzG2x1CgAAuAj1fb9yveu60e5qndWaBQAAAAAAAAAAAAAAAADGJoCynq9L8mVL3x8nevK+JC9K8oJa69+OM96x3PiI57OtTgEAABeh+Xy+cn0yGe9Ht9ZZrVkAAAAAAAAAAAAAAAAAYGwCKJtZjpqsEz25MsnvJXlhrfUNJzHYMXz1Ec8/ttUpAADgItT3/cr1rutGu6t1VmsWAAAAAAAAAAAAAAAAABibAMrmWuGTxfoXkrw8yQuTvKLWOjvpwTZ07/1/D36uv9n2IAAAcLGZz+cr1yeT8X50a53VmgUAAAAAAAAAAAAAAAAAxiaAcnz1wPdl/9nrk7wgye/VWj+19anWUEq5XpKPZW/mg35/y+MAAMBFp+/7letd1412V+us1iwAAAAAAAAAAAAAAAAAMDYBlM0th0/K/r9vS/LCJC+qtX5w+yNtptb62STfuus5AADgYjWfz1euTybj/ejWOqs1CwAAAAAAAAAAAAAAAACMTQBlc4voyQeTvDjJC2qtb9vhPAAAwAWq7/uV613XjXZX66zWLAAAAAAAAAAAAAAAAAAwNgGUzXwqyUuSvDDJ5bXWuuN5AACAC9h8Pl+5PpmM96Nb66zWLAAAAAAAAAAAAAAAAAAwNgGU9bwlyT9P8rJa6xd2PQwAAHDN0Pf9yvWu60a7q3VWaxYAOCl/1/99HvmpH1q558U3fF6+urvtliYCAAAAAAAAAAAAAAC2RQBlDbXWV+x6BgAA4JpnPp+vXJ9MxvvRrXVWaxYAAAAAAAAAAAAAAAAAGNuZXQ8AAABwsev7fuV613Wj3dU6qzULAAAAAAAAAAAAAAAAAIxtvD8jfpEopdwlycMOW6u1PnXL43xRKeU+SR5wyNIf1Fr/etvzAAAAw83n85Xrk8l4P7q1zmrNAgAAAAAAAAAAAAAAAABjE0BZ312TPCVJPWRtZwGUJHfO4XNNkgigAADAKdb3/cr1rutGu6t1VmsWAAAAAAAAAAAAAAAAABibAMrxlKWvDwuibNPnlr5enutu2x4EAAAYrtbajI5MJuP96NY6az6fj3YXAAAAAAAAAAAAAAAAAAxxZtcDXOBqdh8+WVj+b7k81+12MAsAADDQ2bNnm3u6rhvtPgEUAAAAAAAAAAAAAAAAAE4bAZTjKbseYMlNjnh+o61OAQAArGVIcKQVLVlH66xa66AoCwAAAAAAAAAAAAAAAACMRQDlmuPuRzy/wVanAAAA1tL3fXNP13Wj3TckpjIkygIAAAAAAAAAAAAAAAAAYxFAuQYopXxbkocnqbueBQAAWM+Q2MiQaMlQ0+m0uUcABQAAAAAAAAAAAAAAAIBtGu+36C5QpZT7JrnvGm+564qznnz8idZynSRfn+TBSbrsBVBKzg+hXLnlmQAAgDX0fd/c03XdaPcNianMZrPR7gMAAAAAAAAAAAAAAACAlos+gJLkfkl+NudHQ4Yoh/z7syPNtK5F9KQceJYkV2x/HAAAYKghAZQh0ZKhhpw1n89Huw8AAAAAAAAAAAAAAAAAWgRQzintLVs5YxNHxVtqkj/b5iAAAMB6hsRGuq4b7b7pdNrcI4ACAAAAAAAAAAAAAAAAwDYJoJxzVETkMEeFTtY5Y2xHzfTHW50CAABYS9/3zT1jBlAmk/aPgbPZbLT7AAAAAAAAAAAAAAAAAKBFAOV8R0VEtvX+MdSlf99Ya/2TXQ4DAACsNp/Pm3uGREuGGnLWkJkAAAAAAAAAAAAAAAAAYCwCKOer7S1Jjg6dDH3/SStJ3p3kX+x6EAAAYLW+75t7uq4b7T4BFAAAAAAAAAAAAAAAAABOmzO7HoBjKwdeX0jyjCTfXGu9YpeDAQAAbUNiI0OiJUNNp9PmntlsNtp9AAAAAAAAAAAAAAAAANAy3m/RXbg+meR9a+y/fpKbJKnZC44s//v+0adbrSa5KsmVSf4myZ8n+aNa66e2PAcAALChvu+be7quG+2+ITGVIVEWAAAAAAAAAAAAAAAAABjLRR9AqbU+I8kzhu4vpfxgkt884qzbjjUXAABwcRgSGxkSLRlKAAUAAAAAAAAAAAAAAACA0+bMrgcAAAC4mPV939zTdd1o902n0+ae2Ww22n0AAAAAAAAAAAAAAAAA0CKAAgAAsEPz+by5ZzKZjHbfkLOGzAQAAAAAAAAAAAAAAAAAYxFAOZ666wEAAIALW9/3zT1d1412nwAKAAAAAAAAAAAAAAAAAKfNeH9G/OJUdj0AAABwYRsSGxkSLRlqOp0298xms9HuAwAAAAAAAAAAAAAAAIAWAZT1fTjJ63c9BAAAcM3Q931zT9d1o903JKYyJMoCAAAAAAAAAAAAAAAAAGMRQFlTrfXVSV696zkAAIBrhiGxkSHRkqEEUAAAAAAAAAAAAAAAAAA4bc7segAAAICLWd/3zT1d141233Q6be6ZzWaj3QcAAAAAAAAAAAAAAAAALQIoAAAAOzSfz5t7JpPJaPcNOWvITAAAAAAAAAAAAAAAAAAwFgEUAACAHer7vrmn67rR7jtz5kxKKSv3CKAAAAAAAAAAAAAAAAAAsE0CKAAAADs0JDYymUxGvXM6na5cF0ABAAAAAAAAAAAAAAAAYJsEUAAAAHao7/vmnq7rRr2zFVSZzWaj3gcAAAAAAAAAAAAAAAAAq4z7Z8QvAKWU561YrrXWxxzj/adN8/MAAAC7NZ/Pm3vOnBm3XdkKoAyZCQAAAAAAAAAAAAAAAADGctEFUJI8Okk95HnZf94Khhz1/tNm6OcBAAB2qO/7letd16WUMuqd0+l05boACgAAAAAAAAAAAAAAAADbdDEGUBaO+xuE4/4GIgAAcFFqxUYmk/F/bGudOZvNRr8TAAAAAAAAAAAAAAAAAI5yMQdQ6oHv1w2aHHz/aSPQAgAAF4C+71eud103+p2tAEorygIAAAAAAAAAAAAAAAAAY7qYAyjLgZBNYianOTBy2uMsAADAvlZspBUr2YQACgAAAAAAAAAAAAAAAACnycUcQDluJERkBAAAOLa+71eud103+p3T6XTl+mw2G/1OAAAAAAAAAAAAAAAAADjKmV0PAAAAcDFrBVAmk/G7la0z5/P56HcCAAAAAAAAAAAAAAAAwFHG/0260+/9SeoO3w8AAPBFrdhI13Wj3ymAAgAAAAAAAAAAAAAAAMBpctEFUGqtX7nL9wMAACzr+37l+kkEUKbT6cr12Ww2+p0AAAAAAAAAAAAAAAAAcJQzux4AAADgYjafz1euTybjdytbZ7ZmAgAAAAAAAAAAAAAAAIAxCaAAAADsUN/3K9e7rhv9TgEUAAAAAAAAAAAAAAAAAE4TARQAAIAdasVGWrGSTUyn05Xrs9ls9DsBAAAAAAAAAAAAAAAA4CgCKAAAADvU9/3K9a7rRr+zFVVpRVkAAAAAAAAAAAAAAAAAYEwCKAAAADvUio20YiWbEEABAAAAAAAAAAAAAAAA4DQRQAEAANihvu9XrnddN/qd0+l05fpsNhv9TgAAAAAAAAAAAAAAAAA4igAKAADADs3n85Xrk8lk9DtbZ7ZmAgAAAAAAAAAAAAAAAIAxjf+bdIymlHLjJA9Ocrckt0lygySzJB9L8rdJXl9r/R+7mxAAADiuvu9XrnddN/qdAigAAAAAAAAAAAAAAAAAnCYCKCeklHImydcmuVmSd9RaP7zGe2+Z5GlJvjfJtRp7P5DkWUmeVWv97OYTAwAAu9CKjbRiJZuYTqcr1wVQAAAAAAAAAAAuTP38PbnqEz+wcs/1b/L8dJOv2tJEAAAAAADDnNn1ANckZc/DSykvT3Jlkr9O8idJ7rXGGQ9O8tYk35/k2klK43XrJD+f5B2llIeM92kAAIBt6Pt+5XrXdaPf2YqqzGaz0e8EAAAAAAAAAAAAAAAAgKMIoIyklPLtSd6V5PeTPCTJDbIXKFnnjAcmeWmSS/bfWwe+SpJ/lOTlpZT/MMLHAQAAtmQ+n69cb8VKNtE6szUTAAAAAAAAAAAAAAAAAIxp/N+ku8iUUq6V5DeSfF/OD57UrBFAKaV8eZIXJbnW/nu/uNR46yKCstj7pFLKjWutTxh6NwAAsDt9369c77pu9Dun0+nKdQEUAAAAAAAAAAAAAAAAALZJAOUYSinXT/LKJPfKXnykrn7HSj+X5KY5P2ay7LCzy9K+RQilJHl8KeWDtdb/fIx5AACALWjFRiaT8X9sa505m81GvxMAAAAAAAAAAAAAAAAAjnJm1wNcqEopXZKXJLl3zo+fLEdJhp518ySPzuHxk5qrn30wepIDz0qSnyulfOM6cwAAANvX9/3K9a7rRr+zFUBpRVkAAAAAAAAAAAAAAAAAYEzj/ynxi8fPJPm2HB0tWcdjkkxzLl5y8JyS5INJXp3kY0lunuTuSe6YcxGURRhl8f0kybOS3HPNWQAAgC1qxUZasZJNCKAAAAAAAAAAAAAAAAAAcJoIoGyglHL77AVQVsVPSpIvJPmf2YuXrPIDOT+asnzG2SRPTpH4hRYAACAASURBVPL0WuvZA3PcL8lvJrl1rh5BSZK7l1IeVGt9zaAPBgAAbF3f9yvXu64b/c7pdLpyfTabjX4nAAAAAAAAAAAAAAAAABzlzK4HuED9dJLFbwwu4ic15yIkVyR5XJKb1lrvU2v9i6MOKqXcJcntD5y1+Lom+fla69MOxk+SpNZ6eZJvSvL+pRkO+uEhHwgAANiN+Xy+cn0yGb9b2TqzNRMAAAAAAAAAAAAAAAAAjEkAZU2llEuS/MucHxtZhE+S5HVJ7lhr/W+11s8MOPK7Dny/fO6Hkjxl1ZtrrR9P8shD3r+Y6aGllOsMmAMAANiBvu9XrnddN/qdAigAAAAAAAAAAAAAAAAAnCYCKOv77iTT/a9Lzo+fvDvJ99RaP7XGed95yLPFuc+rtTZ/87DW+uYkL1uaoywtXzvJpWvMAwAAbFErNtKKlWxiOp2uXJ/NZqPfCQAAAAAAAAAAAAAAAABHEUBZ34OPeF6TPLHW+v+GHlRKuXGSb9x/72FetMZcz1yxds81zgEAALao7/uV613XjX5nK6rSirIAAAAAAAAAAAAAAAAAwJgEUNZ3r5wLliyHS/5PrfWP1jzrATn336AcOO9dtdZ3rXHW65P830PmSpI7rTkXAACwJa0ASitWsgkBFAAAAAAAAAAAAAAAAABOEwGUNZRSLklyi8W3S//WJK/Y4Mj7H3bN/nmvXOegWmuf5M1Lcy2fd9sNZgMAALagFRvpum70O6fT6cr12Ww2+p0AAAAAAAAAAAAAAAAAcBQBlPXcZsXamzc4737Zi50c5rINznvbge8XZ3/FBmcBAABb0Pf9yvWTCKBMJpOV660oCwAAAAAAAAAAAAAAAACMSQBlPatCIgfjIyuVUr4syR0W3+b8EMo8yeVrTbbnI0c8v9EGZwEAAFvQio20YiWbEEABAAAAAAAAAAAAAAAA4DQRQFnP9VasXbnmWd9yyLNFCOUva62fXfO8JPn0Ec+vs8FZAADAFvR9v3K967rR75xOpyvXZ7PZ6HcCAAAAAAAAAAAAAAAAwFEEUNazKiTyyTXPOiyAsnD5mmctXPeI52XD8wAAgBM2n89Xrk8mk9HvbJ3ZmgkAAAAAAAAAAAAAAAAAxiSAsp5Pr1hb90+k32/F2uVrnrVw4yOef2HD8wAAgBPW9/3K9a7rRr9TAAUAAAAAAAAAAAAAAACA00QAZT1Xrli74dBDSik3TXLnJHX/UV1anid5w/qjJTk6gPLZDc8DAABOWCs20oqVbGI6na5c7/s+tdaVewAAAAAAAAAAAAAAAABgLAIo61kVQLnlGuc8KEnZ/3r535rkL2utmwZLvv7A94uzP7LheQAAwAnr+37letd1o985JKrSCrMAAAAAAAAAAAAAAAAAwFgEUNbz/uxFSrL078I3rHHOP1uxdtlaE+0rpVwryT1y9blqkg9tciYAAHDyWqGRIbGSdQmgAAAAAAAAAAAAAAAAAHCaCKCsodb6qSR/c8TyQ4ecUUq5RZLvzNVDJQuv3WC0JLk0yXUX1xxYe+eGZwIAACes7/uV613XjX7ndDpt7hFAAQAAAAAAAAAAAAAAAGBbBFDW9+c5PzBS97//p6WUWw54/5OTLP7cesn5IZSrkrxpw7l+asXa/97wTAAA4IS1QiOTyWTl+iaGnDmbzUa/FwAAAAAAAAAAAAAAAAAOI4Cyvtcufb0cQrlukl8vpZQcoZTy0CSPzfnRk8U5Nckraq1r/5n1UsoDkzwg52IsB12+7pkAAMB29H2/cr3rutHvHBJAaYVZAAAAAAAAAAAAAAAAAGAsAijr+8MkV+x/vQiOLP59aJLfLqV86cE3lVIeleS3lx8dcvbvrjtMKeXOSX4n50dVlr9+V631PeueCwAAbEcrNDIkVrIuARQAAAAAAAAAAAAAAAAATpPxf5PuGq7WOi+lPCfJz+ZcaGQ5gvKIJA8ppbwyyd8luVGS+ya5w4F9yfmhko8mefk6s5RSvj3J85JccuDc5Zmev86ZAADAdvV9v3K967rR75xOp809s9ls9HsBAAAAAAAAAAAAAAAA4DACKJt5ZpIfSXLznAuPLMdNrp+9EMrCYcGT5bWa5Ddqrc0/sV5K+Zok35rk+5N8c1ZHVa5K8pxBnwgAANiJ+Xz1jwGTyfg/tg05szUXAAAAAAAAAAAAAAAAAIxFAGUDtdYrSyk/nOQVOT84Upa+LwffduD58vs+meSXV91ZSvmRJM9Icq0j7sshz3+h1vqJVecCAAC71ff9yvWu60a/UwAFAAAAAAAAAAAAAAAAgNPkzK4HuFDVWl+Z5L/kXGzksMDJ8qvk6lGUxXufVGv9ZOPKGyS59tI5h8VW6tK/f5Hk6Wt9KAAAYOtaoZEhsZJ1TafT5p7ZbDb6vQAAAAAAAAAAAAAAAABwGAGU4/mxJC/I1QMk5ZDXsuVQyR/XWv/rGnceFVVZvvudSf5JrfXsGucCAAA70Pf9yvWu60a/c0hUpRVmAQAAAAAAAAAAAAAAAICxjP+nxC8itdaa5AdKKe9K8uTs/e9ZV7/ri0qSy5I8coOrl4Mq9cDzlyX5wVrrJzc4FwAA2LJWaGRIrGRdAigAAAAAnFpvf3dy54et3vPXL03udPvtzAMAAAAAAAAAAGzFmV0PcE1Qa/2PSe6e5NXZi5AsXgctns+SPD3Jd9RaP7/JlUuvxbmfTfITtdaHiZ8AAMCF4ezZs9nrKh6t67rR751Op809s9ls9HsBAAAAAAAAAAAAAAAA4DDj/ynxi1St9a+SPKSUcvskj0hyaZI7JPnyJNdK8qkk70jymiTPq7V+4JhXLgIrn0nyrCS/WGv9xDHPBAAAtqjv++aeyWT8H9uGnDmfz0e/FwAAAAAAAAAAAAAAAAAOI4Ayslrru5M8ff91EuZJ3p/k8iSvSPLaWutnTuguAADgBA0JoHRdN/q9AigAAAAAAAAAAAAAAAAAnCYCKBeO5yd5cZIraq1118MAAADHNyQyMiRWsq7pdNrcM5vNRr8XAAAAAAAAAAAAAAAAAA4jgHKBqLV+bNczAAAA4+r7vrmn67rR7x0SVRkSZwEAAAAAAAAAAAAAAACAMZzZ9QAAAAAXqyEBlCGxknUJoPD/2bv3GNv6ur7jn9/MXnPkrj5eQLDyIEgFESsIaWqFIioWqhUrFVERbLSxbVojNV6qIKbRGGtKE7xHUhQxtFbx8lBskUsqGmoL6iPEcHug3OXyPFw9Z619fv1jznD2mTOz1t4ze609c/brlezM3uv32+v3nfMkJJtkvwcAAAAAAAAAAAAAAADgLBFAAQAA2JBlIiO7u7trP7dpmsE9bduu/VwAAAAAAAAAAAAAAAAAOIoACgAAwIbM5/PBPWMEUHZ2hj8KLhNnAQAAAAAAAAAAAAAAAIB1EEABAADYkGUiI7PZbO3nllIG7yuAAgAAAAAAAAAAAAAAAMBUBFAAAAA2ZD6fD+7Z3d0d5WwBFAAAAAAAAAAAAAAAAADOCgEUAACADVkmMjIUKjmppml619u2HeVcAAAAAAAAAAAAAAAAADhsnG/SbblSyk6SL0pyc5L7JvnMJHdOcqcke0nKRKPUWut3TnQWAACwovl8Prhnd3d3lLOHwirLxFkAAAAAAAAAAAAAAAAAYB0EUNaklHLXJN+a5IlJ/m72gyebVJLUJAIoAABwRi0TGRkKlZyUAAoAAAAAAAAAAAAAAAAAZ4UAyimVUvaS/GCSZ+Rq9KRsbiIAAOC8mM/ng3t2d3dHObtpmt71tm1HORcAAAAAAAAAAAAAAAAADhNAOYVSyn2T/G6SB+Xa6EndxDyHiLAAAMAZ13Xd4J7ZbJyPbUP3XWY2AAAAAAAAAAAAAAAAAFgHAZQTKqXcnOTVST4r+7GRw9GTTQZIzkKABQAAGDCfzwf37O7ujnK2AAoAAAAAAAAAAAAAAAAAZ4UAygmUUi4k+b0kn5392MhBcKQveiJKAgAAXGOZyMhQqOSkmqbpXW/bdpRzAQAAAAAAAAAAAAAAAOAwAZST+eEkX5j+8IngCQAA0Gs+nw/u2d3dHeXsobDKMnEWAAAAAAAAAAAAAAAAAFgHAZQVlVLunuR7c3z8ZDF8srj2N0k+muTjEUcBAACyXGRkKFRyUgIoAAAAAAAAAAAAAAAAAJwVAiir+/Ykd8l+xOS4+ElJcluSFyR5RZK/qLW+b6L5AACAc2I+nw/u2d3dHeXspml619u2HeVcAAAAAAAAAAAAAAAAADhMAGV1Tzji2mL45INJ/k2t9demGwkAADiPuq4b3DObjfOxbei+y8wGAAAAAAAAAAAAAAAAAOsggLKCUspOkr+fq8GT5Nr4yf9L8uha61unng0AADh/5vP54J7d3d1RzhZAAQAAAAAAAAAAAAAAAOCs2Nn0AOfM5yW505XnJdfGT+ZJvkn8BAAAWNYykZGhUMlJNU3Tu9627SjnAgAAAAAAAAAAAAAAAMBhAiirufmIawchlN+utb5m4nkAAIBzbD6fD+7Z3d0d5eyhsMoycRYAAAAAAAAAAAAAAAAAWAcBlNXco2ftNyabAgAAuCEsExkRQAEAAAAAAAAAAAAAAADgRieAspo796z978mmAAAAbgjz+bx3vZSSnZ1xPrY1TdO73rbtKOcCAAAAAAAAAAAAAAAAwGECKKu52LP2nsmmAAAAbghd1/Wuz2az0c4euvfQbAAAAAAAAAAAAAAAAACwLgIoq/lwz9rlyaYAAABuCPP5vHd9d3d3tLMFUAAAAAAAAAAAAAAAAAA4KwRQVvPWnrV7TDYFAABwQxiKjAxFSk5DAAUAAAAAAAAAAAAAAACAs0IAZTVvSXLpyvN6aO0zJp4FAAA45+bzee/67u7uaGc3TdO73rbtaGcDAAAAAAAAAAAAAAAAwKLx/pz4DajWOi+lvDrJo3N9AOVhSf5q8qEAAIBza5MBlNms/+Ng13Wjnc3JvHn+1jz5w0/v3fPCu/9KPn/35okmAgAAAADgwLx7Sz76gW/v3XPXm56f3dn9JpoIAAAAAAAAAM6XnU0PcA695Jjrj5p0CgAA4NwbiowMRUpOQwAFAAAAAAAAAAAAAAAAgLNCAGV1v5pk8ZuANUlJ8qRSyp02MxIAAHAezefz3vXd3d3Rzm6apne9bdvRzgYAAAAAAAAAAAAAAACARQIoK6q1vifJf8l+9GTR3ZM8Y/qJAACA86rrut71MQMos9msd31oNgAAAAAAAAAAAAAAAABYFwGUk/nhJJcWXtfsB1F+oJTykM2MBAAAnDdDkZGmaUY7WwAFAAAAAAAAAAAAAAAAgLNCAOUEaq23Jfmx7EdPPnk5yZ2S/FYp5XM2MRcAAHC+tG3buz5mAGXo3kOzAQAAAAAAAAAAAAAAAMC6CKCc3E8m+cNcH0G5X5JXlVIesJGpAACAc2OTAZTZbNa73nXdaGcDAAAAAAAAAAAAAAAAwCIBlBOqtdYkT0zyFzk6gvKnpZTv3MRsAADA+TAUQBmKlJyGAAoAAAAAAAAAAAAAAAAAZ4UAyinUWj+c5GuS/GWuj6DcLckvllJeV0p5Winlpk3MCAAAnF1DkZGmaUY7e+jeQ3EWAAAAAAAAAAAAAAAAAFiX8f6c+A2qlHK/Iy4/LcmvJ7l/9uMnufKzJPniJL985b23JXlTkncluT3Jx5J0SS6PNW+t9dlj3RsAADidocjImAGU2az/4+BQnAUAAAAAAAAAAAAAAAAA1kUAZXVvytXIyVHKlZ81VyMoB9duTnLf0SY7mgAKAACcUQIoAAAAAAAAAAAAAAAAACCAclJleMs1IZRV37sufaEWAABgw4YCKEORktMYiqsMzQYAAAAAAAAAAAAAAAAA6yKAcjLHhUWOipssXqs97123KUMrAADACXRd17s+FCk5jaG4ytBsAAAAAAAAAAAAAAAAALAuAignd5LAyFRRkqkiKwAAwCm0bdu7LoACAAAAAAAAAAAAAAAAwDYQQDk5kREAAOBUNhlAGbr30GwAAAAAAAAAAAAAAAAAsC47mx4AAABgWw1FRmaz8ZqVQ/fuum60swEAAAAAAAAAAAAAAABg0XjfprtxvT1J3fQQAADA+TcUGWmaZrSzlwmg1FpTShltBgAAAAAAAAAAAAAAAABIBFBWVmu976ZnAAAAbgxt2/aubzKAkiSXL1/O7u7uaDMAAAAAAAAAAAAAAAAAQJLsbHoAAACAbbXJAMoy9x6aDwAAAAAAAAAAAAAAAADWQQAFAABgQ4YCI7PZbLSzl7l313WjnQ8AAAAAAAAAAAAAAAAABwRQAAAANmQoMNI0zWhnC6AAAAAAAAAAAAAAAAAAcFYIoAAAAGxI27a962MGUJa599B8AAAAAAAAAAAAAAAAALAOAigAAAAbMhQYmc1mo529zL27rhvtfAAAAAAAAAAAAAAAAAA4IIACAACwIUMBlKZpRjtbAAUAAAAAAAAAAAAAAACAs0IABQAAYEOGAiNjBlCWufdQoAUAAAAAAAAAAAAAAAAA1mH4T34zmlLKTpK7XnncKfv/PXaTvLPWescmZwMAAMY3FBgZM4Aymw1/HBwKtAAAAAAAAAAAAAAAAADAOgigTKCUcq8kj0jy8CQPSvKAJPdK8unHvOVpSZ5/xH1+MMmfJHlVrXU+zrQAAMBUhgIoy0RKTkoABQAAAAAAAAAAAAAAAICzQgBlJKWUz0nynUmemOSLDy/3vLX2rP37K+sfLKU8L8l/rLW+61SDAgAAGzMUQGmaZrSzl7n30HwAAAAAAAAAAAAAAAAAsA47mx7gRlNKuW8p5QVJ3prkWUkemv3gyeIj2Q+ZHH4s66Yk35fkTaWUnyql3GU90wMAAFPquq53fcwAymw23MMcmg8AAAAAAAAAAAAAAAAA1kEAZU3Kvh9N8vok35ykyXDs5HAUZVn1yns+JfshlDeUUh57ql8AAACYXNu2vesCKAAAAAAAAAAAAAAAAABsAwGUNSilfHqS/5nkmdmPkpRcGzspxzxOY/He90ny30spP3LKewIAABMaCqAsEyk5qWXiKkPzAQAAAAAAAAAAAAAAAMA6CKCc0pX4ycuSPDrXhk+S60Mn9dDjxMcu3PfgXjtJnlVKee4p7gsAAExoKDCyTKTkpJaJq3RdN9r5AAAAAAAAAAAAAAAAAHBgvD8nvgVKKU2SlyR5aK4Pnxw4HDopOb2aoyMoJck/L6W8v9b6zDWcAwAAjGgoMCKAAgAAAAAAAAAAAAAAsF5vmXd5ykc+1LvnBXf7tNxv11fxAaa0s+kBzrmfSfJluTZ8cjhKsnj9/Ul+L8lPJ/mehX3Let3CvY4KrhxEUP5dKeUbV/lFAACAaV2+fDmXL1/u3TNmAGWZe7dtO9r5AAAAAAAAAAAAAAAAAHBAAOWESilfkeRf5PoISQ5duy3JM5M8uNb62bXWr6u1fn+t9edXPbPW+qVJvjTJb+Xa6ElyfQTl50opn77qGQAAwDSWiYvMZuOVgpe5d9d1o50PAAAAAAAAAAAAAAAAAAcEUE6glLKT5DmLl678rLkaIHl/ku9I8gW11h+vtb5hHWfXWl9Xa/3GJE9I8oGFcxfnSJKbkvzEOs4EAADWb5kAStM0o50vgAIAAAAAAAAAAAAAAADAWSGAcjJPSvLQXI2dZOF5SfLKJA+qtT6/1jofY4Ba6y1JHpnkHQvnZ+F5SfLUUsq9xjgfAAA4nWXiIpsOoCwTaQEAAAAAAAAAAAAAAACA0xJAOZnvPfT6IDhSk7wsyVfXWj8w9hC11rcmeXySjxya40CT5HvGngMAAFjdMnGRMQMopZTs7u727lkm0gIAAAAAAAAAAAAAAAAApyWAsqJSyt9J8mW5Nnpy4F1J/kmtdbI/k15rvTXJd+Xa8Elydb5vnmoWAABgecsEUGaz2agzDN1fAAUAAAAAAAAAAAAAAACAKQigrO4bjrh2EEJ5Rq31jonnSa31RUn+dGGOxRjK/UopD5x6JgAAoN8yAZSmaUadQQAFAAAAAAAAAAAAAAAAgLNAAGV1T1h4Xheevz3JiyaeZdGP96w9eqohAACA5SwTFxk7gDJ0/2UiLQAAAAAAAAAAAAAAAABwWgIoKyilNEkenGvDJ+XK69+stdYj3ziNP0jyiSvPD8/xkIlnAQAABiwTFxk7gDKbzXrXl4m0AAAAAAAAAAAAAAAAAMBpCaCs5guTHHwDsRxae/nEs1yj1noxyStz/VzJfrQFAAA4Q5YJoAwFSk5LAAUAAAAAAAAAAAAAAACAs0AAZTX37Fl7w2RTHO/1h17X7AdR7rOBWQAAgB7LBFCaphnccxpD919mRgAAAAAAAAAAAAAAAAA4LQGU1Xxqz9r7JpvieMfNcLdJpwAAAAZ1XTe4Z+wAymw2611fZkYAAAAAAAAAAAAAAAAAOC0BlNXs9qx9fLIpjvfBY64LoAAAwBnTtu3gHgEUAAAAAAAAAAAAAAAAALaBAMpqPtqzdtNkUxzvrsdcH/dbkwAAwMqWCaAMBUpOayiwssyMAAAAAAAAAAAAAAAAAHBa436b7sbzgZ61eyb566kGOcZnHXP9Y5NOAQAADFomLjIUKDmtocBK13Wjng/ACP7yjckXfX3/nltfnDz4AdPMAwAAAAAAAAAAAAAAsISdTQ9wzrypZ+3LJpviePc+5vqmwywAAMAhy8RFBFAAAAAAAAAAAAAAAAAA2AYCKCuotb4vyQcPXh5aHvjTupN4TK6dq1x5/cbNjAMAABynbdvBPWMHUIbuv8yMAAAAAAAAAAAAAAAAAHBaAiire2X2wyIH6pXXX1VKufdmRkpKKQ9NcnB+ObT82onHAQAABiwTF5nNZqPOMHT/rutGPR8AAAAAAAAAAAAAAAAAEgGUk/iDheeLoZELSX5i4lkW/auetVdMNQQAALCcZQIou7u7o84ggAIAAAAAAAAAAAAAAADAWSCAsroXJbl45Xld+FmSfEsp5QlTD1RKeViSpx2a58CHkrxy6pkAAIB+Q3GRpmlSSundc1pN0/SuLxNpAQAAAAAAAAAAAAAAAIDTEkBZUa31Q0n+a/aDJ1n4WbP/7/nCUsrDp5qnlHLPJC84Yp5yZaZfr7X61iIAAJwxQ3GRoTjJOsxms971oUgLAAAAAAAAAAAAAAAAAKyDAMrJPDvJ/MrzmmsjKHdJ8tJSyuPHHqKU8rlJXpHkCxbmqAtbuiT/Yew5AACA1Q0FUIbiJOsggAIAAAAAAAAAAAAAAADAWSCAcgK11jcm+dlcDZ8k10ZQPi3Ji0spP1VKuce6zy/7/nWSW5M8INdGTw5mqUl+qdb6tnWfDwAAnN5QAKVpmtFnGAqgDM0IAAAAAAAAAAAAAAAAAOsggHJyP5DkzVeeHwRIFiMoO0m+L8ltpZQfL6U85LQHllLuXUr5wSR/leRnktxt4cyD6MmBdyf5odOeCQAAjKPrut71KQIoQ2cMzQgAAAAAAAAAAAAAAAAA69D/5745Vq31E6WUb0jyR0numv34SMnVEMnB63tkP0TyQ6WUv07ymiTvS/L+nts/qJTydUk+NclnJvmSJA9P8oCFM5JrwyuLz7sk31Zr/fDpf1MAAGAMbdv2rk8RQJnN+j8SCqAAAAAAAAAAAAAAAAAAMAUBlFOotd5aSnlSkt9OspejIyjJ1WDJZyV5/KHblCN+/tsjjisLz+sx1w/OfUat9eXL/yYAAMDUhgIoQ3GSdRBAAQAAAAAAAAAAAAAAAOAs2Nn0AOddrfWlSZ6Q5OMHl678PAihHFw7eJRDa0cpRzwW73HU/Q/8WK31P53w1wEAACYyFEBpmmb0GYbOGJoRAAAAAAAAAAAAAAAAANZBAGUNaq0vS/L3krw118ZKkuuDJ4dDJkfe8ojHgaPudXDm99Zan33KXwcAAJhA13W961MEUGazWe/60IwAAAAAAAAAAAAAAAAAsA4CKGtSa/3zJA9L8vwcHzspuT6IcpTD+46LqBzsfVeSr621PmcdvwsAADC+tm171wVQAAAAAAAAAAAAAAAAANgWAihrVGu9o9b6HUm+Msn/ydHRknr0u4dvn+vDJ12Sn03y4Frr/zjhfQEAgA0YCqAMxUnWYSiyMjQjAAAAAAAAAAAAAAAAAKyDAMoIaq0vr7U+Isnjk9yS5HKOj6Es+8jCPe5I8twkD6y1/sta6x0T/FoAAMAaDcVFhuIk6zAUWem6bvQZAAAAAAAAAAAAAAAAAGD8Pym+xWqtL0nyklLKPZN8XZKvTfLlSW46we3eluRl2Q+q3FJr/Zu1DQoAAExuKC4igAIAAAAAAAAAAAAAAADAthBAmUCt9T1JfvHKI6WU+yR5cJK/leQ+Se6e5E7Z/+9xKcknknwwyTuS3Jbkz2utH5p8cAAAYDRt2/auTxFAGTpjaEYAAAAAAAAAAAAAAAAAWAcBlA2otb4j+3ETAABgSw3FRWaz8T+uDZ3Rdd3oMwAAAAAAAAAAAAAAAADAzqYHAAAA2EZDcZGmaUafQQAFAAAAAAAAAAAAAAAAgLNAAAUAAGAD2rbtXZ8igDJ0xtCMAAAAAAAAAAAAAAAAALAOAigAAAAbMBQXmc1mo88wdIYACgAAAAAAAAAAAAAAAABTGP8bdTeYUspDk3z9UWu11mdPPM4nlVK+PMljjlj6b7XWW6eeBwAA6DcUF2maZvQZhs4QQAEAAAAAAAAAAAAAAABgCgIoq/uSJM9KUo9Y21gAJckX5ei5ZkkEUAAA4Izpuq53fYoAyoULF3rXL126NPoMAAAAAAAAAAAAAAAAACCAcjpl4flRQZQpfWLh+eJcD596EAAAYFjbtr3rUwRQ9vb2etcFUAAAAAAAAAAAAAAAAACYws6mBzjnajYfPjmw+N9yca77b2AWAABgwFAAZTYbv1cpgAIAAAAAAAAAAAAAAADAWSCAcjpl0wMsuOmY6/eYdAoAAGApQwGUpmlGn2EogDKfzzOfz0efAwAAAAAAAAAARG6RKAAAIABJREFUAAAAAIDtJoBy43jEMdfvNukUAADAUrqu610/CwGUZDjUAgAAAAAAAAAAAAAAAACnJYByAyilfFWSb0hSNz0LAACwnKGwyFkJoFy6dGn0OQAAAAAAAAAAAAAAAADYbrNND7BppZRHJXnUCm/5kp57/ejpJ1rJpyR5SJKvSbKb/QBKybUhlA9NPBMAALCEoQDKbDb+xzUBFAAAAAAAAAAAAAAAAADOgq0PoCR5dJJn5tpoyDLKET+fuaaZVnUQPSmHriXJu6cfBwAAGDIUQGmaZvQZBFAAAAAAAAAAAAAAAAAAOAsEUK4qw1smucdJHBdvqUn+aMpBAACA5XRd17sugAIAAAAAAAAAAAAAAADAthBAueq4iMhRjgudrHKPdTtupt+ZdAoAAGApbdv2rgugAAAAAAAAAAAAAAAAALAtBFCudVxEZKr3r0Nd+Pm/aq0v2+QwAADA0YYCKLPZ+B/XlgmgXLx4cfQ5AAAAAAAAAAAAAAAAANhuAijXqsNbkhwfOln2/WMrSd6Y5Js3PQgAAHC0oQBK0zSjz3DhwoXBPZcuXRp9DgAAAAAAAAAAAAAAAAC2286mB+DUyqHHxSTPSfLIWuu7NzkYAABwvK7retenCKDs7e0N7hFAAQAAAAAAAAAAAAAAAGBss00PcAbcnuRtK+y/a5KbktTsB0cWf7597dP1q0k+muRDSV6f5I+T/Hat9cMTzwEAAKyobdvedQEUAAAAAAAAAAAAAAAAALbF1gdQaq3PSfKcZfeXUp6a5HnH3Ovmdc0FAADc2IYCKLPZ+B/XBFAAAAAAAAAAAAAAAAAAOAt2Nj0AAADANhoKoDRNM/oMAigAAAAAAAAAAAAAAAAAnAUCKAAAABO7fPlyaq29ewRQAAAAAAAAAAAAAAAAANgWAiin0/+NRQAAgCO0bTu4Z4oAymw2G9wjgAIAAAAAAAAAAAAAAADA2ARQTqdceQAAACxtmQDKMnGS0yqlZG9vr3ePAAoAAAAAAAAAAAAAAAAAYxv/G3U3nvckeeWmhwAAAM6vZQIoTdNMMEmyt7fXGzkRQAEAAAAAAAAAAAAAAABgbAIoK6q1vjTJSzc9BwAAcH51XTe4Z8oASh8BFAAAAAAAAAAAAAAAAADGtrPpAQAAALZN27aDewRQAAAAAAAAAAAAAAAAANgWAigAAAATWyaAMpvNJphEAAUAAAAAAAAAAAAAAACAzRNAAQAAmNgyAZSmaSaYJLlw4ULv+sWLFyeZAwAAAAAAAAAAAAAAAIDtJYACAAAwsa7rBvdMFUDZ29vrXb906dIkcwAAAAAAAAAAAAAAAACwvQRQAAAAJta27eAeARQAAAAAAAAAAAAAAAAAtsVs0wPcaEopsyQPS/LIJDcnuW+Sz0xy5yR3SrKXpEw0Tq21fv5EZwEAAEtaJoAym03zcU0ABQAAAAAAAAAAAAAAAIBNE0BZk1LKY5J8V5InZD90ct2WaSdKktQNnAkAAAxYJoDSNM0EkwigAAAAAAAAAAAAAAAAALB5AiinVEp5YJKfS/Kog0s926cMkmwiuAIAACyh67rBPQIoAAAAAAAAAAAAAAAAAGwLAZRTKKX8oyQvSHKXXA2OTBk5AQAAzqG2bQf3CKAAAAAAAAAAAAAAAAAAsC0EUE6olPLVSX4zV/8NF8Mn5fp3TEqEBQAAzrBlAiiz2TQf1wRQAAAAAAAAAAAAAAAAANg0AZQTKKXcK8mLsv/vdxAbOS56IkYCAABcY5kAStM0E0wigAIAAAAAAAAAAAAAAADA5gmgnMzPJLl7jo+fHBU9OS6QAgAAbJmu6wb3CKAAAAAAAAAAAAAAAAAAsC0EUFZUSrlvkm/KcPzk4Hqb5M1J3pbkI0k+nqMDKQAAwJZo23ZwjwAKAAAAAAAAAAAAAAAAANtCAGV1T0+yk/2IyWL8ZDF8cinJbyT51SR/VGv9m0knBAAAzrRlAig7OzsTTCKAAgAAAAAAAAAAAAAAAMDmCaCs7nFHXFuMofxJkm+rtb55upEAAIDzZCiA0jRNSim9e9blwoULvesXL16cZA4AAAAAAAAAAAAAAAAAtpcAygpKKXtJvjT7wZMDB/GTmuRVSR5Xa/UNQQAA4Fhd1/WuN00z0STJ3t5e7/qlS5cmmgQAAAAAAAAAAAAAAACAbbWz6QHOmfvn6r/ZQfTkwMeSPFn8BAAAGNK2be+6AAoAAAAAAAAAAAAAAAAA20QAZTWfe8S1gxDK82qt75l4HgAA4BwaCqDMZrOJJhFAAQAAAAAAAAAAAAAAAGDzpvtW3Y3hbj1rL55sCgAA4FwbCqA0TTPRJAIoAAAAAJwPb/7bu3nyqz/jyqvvSj50/Z4X3v1X8vm7N086FwAAAMC2eMu8y1M+csT/KbPgBXf7tNxv19dUAAAAADiZnU0PcM5c6Fn7i8mmAAAAzrWu63rXBVAAAAAAAAAAAAAAAAAA2CYCKKv5WM/aByebAgAAONfatu1dF0ABAAAAAAAAAAAAAAAAYJsIoKzm9p616b6hCAAAnGtDAZTZbDbRJAIoAAAAAAAAAAAAAAAAAGyeAMpq3tizdvfJpgAAAM61oQBK00zXVxRAAQAAAAAAAAAAAAAAAGDTBFBWUGt9Z5LbD14eWr73xOMAAADnVNd1vesCKAAAAAAAAAAAAAAAAABsEwGU1f1hknLE9UdMPQgAAHA+tW3buz6bzSaaZDiA0nVdLl++PNE0AAAAAAAAAAAAAAAAAGwjAZTV/e4x1x836RQAAMC5NRRAaZpmokmSCxcuDO4ZmhcAAAAAAAAAAAAAAAAATkMAZXUvSnLHwuuapCT5h6WUe29mJAAA4Dw5SwGUvb29wT0XL16cYBIAAAAAAAAAAAAAAAAAtpUAyopqrZ9I8tzsR08WzZL8xPQTAQAA503Xdb3rZy2AcunSpQkmAQAAAAAAAAAAAAAAAGBbCaCczE8mee/C65r9IMpTSilP2sxIAADAedG2be/6bDabaBIBFAAAAAAAAAAAAAAAAAA2TwDlBGqtH03yz7IfPfnk5Suvf6WU8g82MhgAAHAuDAVQmqaZaBIBFAAAAAAAAAAAAAAAAAA2TwDlhGqtv5/kp3N9BOXOSX6/lPLkjQwGAACceQIoAAAAAAAAAAAAAAAAAHCVAMop1Fq/P8kLczWCUrIfQfmUJL9WSvnVUso9NzUfAABwNnVd17sugAIAAAAAAAAAAAAAAADANhFAOb2nJnlBrsZPcuVnSfItSd5aSnl+KeWJpZTP3dCMAADAGdK2be/6bDabaBIBFAAAAAAAAAAAAAAAAAA2b7pv1d0gSilPP+LyK5M8Msn9c30E5UKSp1x5pJRyKcl7ktye5GNJuiSXRxq31lq/cqR7AwAAJzQUQGmaZqJJBFAAAAAAAAAAAAAAAAAA2DwBlNX9cq5GTo5SFp7XI65dSPJ5Vx599zmtMvL9AQCAExJAAQAAAAAAAAAAAAAAAICrBFBOrgxv+WSE5KgQSVnyHichfAIAAGdY13W96wIoAAAAAAAAAAAAAAAAAGwTAZSTOy5qMnStHvoJAABsmbZte9dns+k+qgmgAAAAAAAAAAAAAAAAALBpAignd1TsZMz3rUJcBQAAzrChAErTNBNNkly4cGFwjwAKAAAAAAAAAAAAAAAAAGMSQDk5kREAAOBEzlIAZTYb/lgogAIAAAAAAAAAAAAAAADAmARQTqZsegAAAOD86rqud33KAEopJXt7e72Rk4sXL042DwAAAAAAAAAAAAAAAADbRwBldf950wMAAADnW9u2veuz2bQf1YYCKH1rAAAAAAAAAAAAAAAAAHBaAigrqrU+bdMzAAAA59tQAKVpmokm2be3t9e7LoACAAAAAAAAAAAAAAAAwJh2Nj0AAADAthFAAQAAAAAAAAAAAAAAAICrBFAAAAAm1nVd77oACgAAAAAAAAAAAAAAAADbRAAFAABgYm3b9q7PZrOJJtkngAIAAAAAAAAAAAAAAADAJgmgAAAATGwogNI0zUST7BNAAQAAAAAAAAAAAAAAAGCTBFAAAAAmJoACAAAAAAAAAAAAAAAAAFcJoAAAAEys67redQEUAAAAAAAAAAAAAAAAALaJAAoAAMDE2rbtXZ/NZhNNsk8ABQAAAAAAAAAAAAAAAIBNmvZbdQAAAFtuPp+n1tq7p2maiabZd+HChd51ARSAcdzx4S4//0vvymv/7KO5sLeTxzz6U/OtT/7s7O6WTY8GAAAAAAAAAAAAAAAwKQEUAACACXVdN7hn6gDK3t5e77oACsD6ve7PPppvffob8o53Xv3f2Bf/3gfyW7/z/vza874wd71pg8MBAAAAAAAAAAAAAABMbGfTAwAAAGyTtm0H95y1AMrFixcnmgRgO7zuda/PP/6nf3lN/OTAK151R372F961gakAAAAAAAAAAAAAAAA2Z7bpAaZWSvmKTc8wpVrrqzY9AwAAcNUyAZTZbNqPakMBlEuXrv+CPgAnc+utt+ZxX/vU3H57d+ye5/7CO/Mjz2qzu3X/zx0AAAAAAAAAAAAAALCttvFrFK9IUjc9xERqtvO/MQAAnFnLBFCapplgkqsEUACm8fa3vz2Pfexj8/73f7B33x13zPPqP/6/ecxjHjjRZAAAAAAAAAAAAAAAAJu1s+kBNqhsyQMAADhDuq4b3COAAnBj+u7v/u68973vXWrvLbe8fORpAAAAAAAAAAAAAAAAzo5tDqDUG/wBAACcQW3bDu4RQAG48bz73e/OS1/60qX3v+QlrxhvGAAAAAAAAAAAAAAAgDNmmwMo5QZ+AAAAZ9QyAZTZbDbBJFcJoACM7zWveU1qXb5Z+/rXvzG33XbbeAMBAAAAAAAAAAAAAACcIdscQAEAAJjcMgGUpmkmmOQqARSA8b32ta9d+T233HLLCJMAAAAAAAAAAADw/9m7n9847zzB79+iSNZTEmmJZFWRRVvytjtB9wza3vNcEgQ55NBAdjC3ve5fESDXIKdksUCQAYIAe93jnHoGGAxmsHtKLjbGstcz/UuUW1Lxd6lNUlX8UawcnG21Ien7LZJV33oe6vUCGhj78+HzfDwHdsmDeg8AAFA+73MAZXSL/wMAAJTUxcVFckcABeD2+fzzz6/8M7/4xS+mcAkAAAAAAAAAAAAAAED5vM8BFAAAgOzOz8+TOwIoALfPF198ceWf+fu///vw6tWrKVwDAAAAAAAAAAAAAABQLvOzPmAGvg0hjGZ9BAAA8H4aJ4AyP5/3j2r1ej06F0ABuJm9vb3w7NmzK//cYDAI//AP/xB+/vOfT+EqAAAAAAAAAAAAAACA8njvAiij0ehfzPoGAADg/TVOAGVhYSHDJa8tLi5G5wIoADfzxRdfXPtn//qv/1oABQAAAAAAAAAAAAAAuPXmZn0AAADA++Ti4iK5I4ACcLvcJIDyd3/3dxO8BAAAAAAAAAAAAAAAoJwEUAAAADI6Pz9P7gigANwun3/++bV/9je/+c1Y8SwAAAAAAAAAAAAAAIAqE0ABAADIaJwAyvz8fIZLXksFUE5PTzNdAnA7ffHFF9f+2eFwGJ4/fz7BawAAAAAAAAAAAAAAAMpHAAUAACCjcQIoCwsLGS55LRVAOTs7y3QJwO3z3XffhV/96lc3esbTp08ndA0AAAAAAAAAAAAAAEA5CaAAAABkdHFxkdwpWwDl4uIiXF5eZroG4Hb5x3/8xxs/QwAFAAAAAAAAAAAAAAC47QRQAAAAMjo/P4/Oa7VauHPnTqZrvpcKoISQvhuAt/v888+TO4uLteh8a2trQtcAAAAAAAAAAAAAAACUkwAKAABARqmQyPz8fKZLXhsngHJ2dpbhEoDb54svvojO/8XHRfjZn96L7jx9+nSSJwEAAAAAAAAAAAAAAJSOAAoAAEBGp6en0fk4MZJJE0ABmJ5UAOWzn90LDz+qR3cEUAAAAAAAAAAAAAAAgNsu//9rcQAAgPdYKoBSFEWmS14TQAGYjsFgEL7++uvozmef3gu///1FdGdra2uCVwEAAAAAAAAAAAAAAJTP3KwPAAAAeJ+kAij1ej3TJa8JoABMx7fffhuGw2F0519+uhQefhSPX3377bfh8vJykqcBAAAAAAAAAAAAAACUigAKAABARmUMoIzzTgEUgKt7/vx5cue//q8a4eHD+O/hs7OzsLOzM6mzAAAAAAAAAAAAAAAASkcABQAAIKMyBlAWFxeTOwIoAFc3TgCls7EYHn6U/t3/9OnTSZwEAAAAAAAAAAAAAABQSgIoAAAAGQmgALw/UgGUtdX5UK/PjRVA2dramtBVAAAAAAAAAAAAAAAA5SOAAgAAkNFgMIjOBVAAbo9UAKXT+f53/v0P5sP9+3eiu0+fPp3YXQAAAAAAAAAAAAAAAGUjgAIAAJDR6elpdF4URaZLXhsngJK6G4A3PXv2LDrf3Hj9+/fhR/Hf/wIoAAAAAAAAAAAAAADAbSaAAgAAkFEqJFKv1zNd8to4AZSzs7MMlwDcLs+fP4/OO53Xv38fPYz//t/a2prESQAAAAAAAAAAAAAAAKUkgAIAAJCRAArA+yMVQNn8owDKw4/iv/+fPn06kZsAAAAAAAAAAAAAAADKSAAFAAAgIwEUgPfDcDgM29vb0Z1O5/Xv/HECKKPRaCK3AQAAAAAAAAAAAAAAlI0ACgAAQEZlDKAsLCwkdwRQAK5mZ2cnDIfD6M7mxusAVSqAcnJyEg4PDydyGwAAAAAAAAAAAAAAQNkIoAAAAGQ0GAyi81kEUGq1WjKCIoACcDXPnz9P7nQ6rwMoHz8skvtbW1s3OQkAAAAAAAAAAAAAAKC0BFAAAAAyOj09jc6LIv0F+GlYXFyMzgVQAK5mnADK5sbr370PP0oHsJ4+fXqjmwAAAAAAAAAAAAAAAMpKAAUAACCjVAClXk9/AX4aBFAAJuvZs2fReVHMhQcP5v/w16ur8+FuI/6v6gRQAAAAAAAAAAAAAACA20oABQAAIKOyBlBS7xVAAbia58+fR+edjcVQq9X+8Ne1Wi08ehj/Xby1tTWJ0wAAAAAAAAAAAAAAAEpHAAUAACCjsgZQFhcXo3MBFICrSQVQNjtv/t59+FER/ZmnT5/e6CYAAAAAAAAAAAAAAICyEkABAADISAAF4P1wvQBK/L8DBFAAgPfRxcuX4eTLx+HX33wTRqPRrM8BAAAAAAAAAAAApkQABQAAIKPBYBCdC6AA3A6pAEpn483f9w8fxv874MWLFze6CQCgSi6+Owpb/9P/HD7/038ZHv+3/334Hz79LHz22Wfhr/7qr4RQAAAAAAAAAAAA4BYSQAEAAMjo9PQ0Oi+KItMlP5QKoKTuBuC10WgUnj17Ft3pdN78vbuxHv9dvLe3Fy4uLm50GwBAFRz9P/9vePzf/Hdh+//6v8Nlv/+Hv//VV1+Fv/iLvwg///nPw69//esZXggAAAAAAAAAAABMmgAKAABARqmQSL1ez3TJD6UCKGdnZ5kuAai+7777LpycnER3NjeuHkAZjUZhZ2fnRrcBAJTZaDQKz//3fxe+/vm/CqdPv33n3t/8zd+ETz/9NPziF7/IeB0AAAAAAAAAAAAwTQIoAAAAGQmgANx+z58/T+50Om/+3m23F5I/1+12r3UTAEAVdP+P/zP87n/5X0O4vEzuDgaD8Od//ufhyy+/zHAZAAAAAAAAAAAAMG0CKAAAAJlcXl6G8/Pz6I4ACkD1jRVA2Xjz9/1GO/67OIQQtre3r3UTAEDZDU9OwvP/7d9e6WcuLi7CX/7lX07pIgAAAAAAAAAAACAnARQAAIBMxomICKAAVF8qgFKr1cLG+sIbf39lZT4sLNSiP9vtdm90GwBAWf3+P/6nMDw6vvLP/e3f/u0UrgEAAAAAAAAAAAByE0ABAADIZDAYJHcEUACqLxVAWV9vhoWFN/+13NxcLbRbb4ZR/pgACgBwW736z99c6+eePHkSjo6OJnwNAAAAAAAAAAAAkJsACgAAQCanp6fJnaIoMlzyJgEUgMlJBVA+3Fx/52y9Hf99vL29fa2bAADKrv+f/+naP/vVV19N8BIAAAAAAAAAAABgFuZnfQAAAMD7YpwASr1ez3DJ1d8rgAIwvlQAZfPDjRBC/62z9fV4AKXb7V73LACAUnv1zfUDKI8fPw5/9md/NsFrAMrnN8Mn4V9/92+iO//hg38ffnznR5kumi3/+wAAAAAAAAAAuH3mZn0AAADA+6LMAZTFxfgX7gVQAMb37Nmz6PzDzfV3zjbWF6I/K4ACANxGZ2dnYfDrX1/75x8/fjzBawAAAAAAAAAAAIBZEEABAADIRAAF4P3w/Pnz6Hzzw3cHUNqt+O9jARQA4DZ68stfhtHFxbV//ssvv5zgNQAAAAAAAAAAAMAsCKAAAABkIoACcPtdXFyE3d3d6M6Hm+8OoGysx38fb29vh9FodK3bAADK6pdff32jn3/8+LHPSAAAAAAAAAAAAFBxAigAAACZDAaD5I4ACkC17e/vJ79824kEUNbXF6I/e3Z2Fnq93rVuAwAoq19+dbMASq/XC8+fP5/QNQAAAAAAAAAAAMAsCKAAAABkcnp6mtwpiiLDJW9KBVDGibcAEMLu7m5yZ73dfPesFf99HEII3W73SjcBAJTdL7+OB1Dmlu4ln/H48eNJnQMAAAAAAAAAAADMgAAKAABAJuMEUOr1eoZL3tRoNKJzARSA8YwTQGm31945W18XQAEA3j+pAMrav/ofw/z8fHRHAAUAAAAAAAAAAACqTQAFAAAgkzIHUIqiiM77/X6mSwCqbZwASrO58s5Zu7WQ/Pnt7e0r3QQAUGYnJyfhd7/9bXTn3mefhR/95CfRnS+//HKSZwEAAAAAAAAAAACZCaAAAABkMk4AZXFxMcMlb2o0GtG5AArAeFIBlNXV1bCw8O7IyeLiXFhbnY8+o9vtXus2AIAy+uabb8JoNIruNP70p+Gnn34a3Xn8+PEkzwIAAAAAAAAAAAAyE0ABAADIJBVAWVxcDLVaLdM1P1QURXQ+GAwyXQJQbakASrvdTj5jvR2PYQmgAAC3yVdffZXcufvTn4Sf/Oxn0Z1vvvkmnJ+fT+osAAAAAAAAAAAAIDMBFAAAgExSEZF6vZ7pkjc1Go3ovN/vZ7oEoNomEkBZjwdQtre3r3QTAECZpQIoC+1WWGg2kwGU8/Pz8M///M+TPA0AAAAAAAAAAADISAAFAAAgk9PT0+i8KIpMl7wpFUAZDofh4uIi0zUA1TWRAEp7ITrvdrtXugkAoMxSAZTGn/w0hBDCTz/7NPmsx48fT+QmAAAAAAAAAAAAID8BFAAAgExSAZR6vZ7pkjeNE1/p9/sZLgGotskEUBajcwEUAOA2SQVQ7v7Jn4QQQug8fBju378f3RVAAQAAAAAAAAAAgOoSQAEAAMikzAGURqOR3BkMBhkuAai2iQRQ1gVQAID3Q6/XC8+fP4/u3P2Tn4YQQqjVauHTTz+N7qZiKgAAAAAAAAAAAEB5CaAAAABkUuYASlEUyZ1+v5/hEoBqm0QAZaO9EJ1/99134dWrV1e6CwCgjP7pn/4pudP4/wMoIYTws5/9LLqbiqkAAAAAAAAAAAAA5SWAAgAAkEmZAyiNRiO5MxgMMlwCUF0nJyfh5OQkujNOAKXdXkzubG9vj30XAEBZPXnyJLnT+MlP/vA/P3z4MLr74sWLG98EAAAAAAAAAAAAzIYACgAAQCapgMgsAyhFUSR3+v1+hkv+yNe/CqH2p/H/fP2rvDcBROzt7SV3xgmgbKynAyjdbnesmwAAyiwVQJlfXQ3zHyz/4a87nU50f3d3NwyHw4ncBgAAAAAAAAAAAOQlgAIAAJDJ6elpdD5OhGRaGo1GcicVcAF43+3u7iZ3xgmgrK8vJHcEUACA22Brays6r3/86Ad/vbm5Gd2/vLwc6zMZAAAAAAAAAAAAUD4CKAAAAJmkAij1ej3TJW8aJ77S7/czXAJQXZMKoCwvzYd79+5Gd7a3t8e+CwCgrJ48eRKd1x89/MFfdzqd5DNfvHhxo5sAAAAAAAAAAACA2RBAAQAAyKTMAZRGo5HcEUABiEsFUObn58ODBw/GetbGRjM673a7Y98FAFBWW1tb0Xn90aMf/PU4ARSfkwAAAAAAAAAAAKCaBFAAAAAyKXMApSiK5M5gMMhwCUB1pQIorVYr1Gq1sZ61sdGOzn2xFwCouuFwGL799tvoTv3Rwx/89draWlhYWIj+jM9JAAAAAAAAAAAAUE0CKAAAAJmUOYCysLAQ5ubif0Ts9/uZrgGoplQApd2OR03+WKcjgAIA3G4vXrwI5+fn0Z36xx//4K/n5ubCxsZG8rkAAAAAAAAAAABA9QigAAAAZFLmAEqtVgtFUUR3BoNBpmsAqmmSAZSN9WZ0vrOzM/azAADK6MmTJ8md4tHDN/5ep9OJ/oxQHAAAAAAAAAAAAFSTAAoAAEAmqYBIKkAybY1GIzrv9/uZLgGopkkGUNY3WtG5AAoAUHXjBFDqbwmgbG5uRn9GAAUAAAAAAAAAAACqSQAFAAAgk9PT0+i8Xq9nuuTtUgGUVMAF4H23t7cXnV8lgNJurUXnu7u74fLycuznAQCUzdbWVnS+0G6Fubf8ObXT6UR/7sWLFzc5CwAAAAAAAAAAAJgRARQAAIBMyh5AKYoiOu/3+5kuAaim3d3d6PxKAZT1ZnR+cXERer3e2M8DACibJ0+eROf1jx+99e+nAijdbvfaNwEAAAAAAAAAAACzI4ACAACQSdkDKI23/H/W/mODwSDTJQDVMxqNJhpAWW/HAyghhLCzszP28wAAymZrays6rz+8XgBle3s7XF5eXvcsAAAAAAAAAAAAYEYEUAAAADIpewClKIrovN/vZ7oEoHpevnwZLi4uojtXCqCspwMoqeAKAECZPXnyJDqvf/z2AMrm5mb054bDYdjb27v2XQAAAAAAAAAAAMC/p4ZJAAAgAElEQVRsCKAAAABkUvYASqPRiM4Hg0GmSwCqZ5wYyaQDKDs7O2M/DwCgTM7Pz8OzZ8+iO/VHD9/69zudTvL53W73WncBAAAAAAAAAAAAsyOAAgAAkEkqIFIURaZLrvf+fr+f6RKA6pl0AKUo6uGDDz6I7gigAABV9bvf/S5cXl5Gd+ofP3rr3xdAAQAAAAAAAAAAgNtJAAUAACCT09PT6Lxer2e65O0ajUZ0LoAC8G7jBFBardaVnrm+vh6dC6AAAFW1tbWV3Kk/ensApdVqhTt37kR/9sWLF9c5CwAAAAAAAAAAAJghARQAAIBMyh5AKYoiOh8MBpkuAaieVADl3r174d69e1d6Zrvdjs4FUACAqnry5El8oVYL9Y8+fOvozp07yVBct9u97mkAAAAAAAAAAADAjMzP+gAAAID3wXA4DMPhMLoz6wBKo9GIzvv9fqZLyu03wyfhX3/3b6I7/+GDfx9+fOdHmS4CyiAVQEnFTN4m9cVeARQAoKq2trai88XORpiL/Bm50+mEFy9evHMugAIAAAAAAAAAAADVMzfrAwAAAN4Hp6enyZ1ZB1CKoojOB4NBpksAqkcABQBgfE+ePInO648eReebm5vReSyOAgAAAAAAAAAAAJSTAAoAAEAGVQigNBqN6Lzf72e6BKB6ZhFASb0TAKCstra2ovP6o4fReafTic673e5VTwIAAAAAAAAAAABmTAAFAAAgg8FgkNwpiiLDJdd//zj/DADvq1kEUHZ2dsJoNLrycwEAZu3JkyfRef3jR9G5AAoAAAAAAAAAAADcPgIoAAAAGZyeniZ36vV6hkverdFoROf9fj/TJQDVM4sAymAwCEdHR1d+LgDALJ2enoYXL15Ed+qP4gGUzc3N6Lzb7QrFAQAAAAAAAAAAQMUIoAAAAGRQhQBKURTR+WAwyHQJQPXMIoASQgg7OztXfi4AwCw9e/YsuVP/OB5A6XQ60fn5+Xk4ODi40l0AAAAAAAAAAADAbAmgAAAAZFCFAEqj0YjO+/1+pksAqmU4HIZerxfdaTabV37uONEUARQAoGrG+fyyuLkZnacCKCGE0O12x74JAAAAAAAAAAAAmD0BFAAAgAxuQwBlMBhkugSgWnq9XhiNRtGdVqt15eeur68ndwRQAICq2d3dTe4sJD47bSYCKSGE8OLFi7FvAgAAAAAAAAAAAGZPAAUAACCDKgRQiqKIzvv9fqZLAKplf38/ubO2tnbl5y4tLSXjVON8gRgAoExSn19qRRHuLC9Fd9rtdqjVatGdbrd75dsAAAAAAAAAAACA2RFAAQAAyGAwGCR3UgGSaUt9yX44HIbz8/NM1wBUx8HBQXKn2Wxe+bm1Wi2sr69Hd3Z2dq78XACAWUoFUBaazWTcZH5+PrTb7eiOAAoAAAAAAAAAAABUiwAKAABABqenp8mder2e4ZJ3GyfAMk7IBeB9s7+/n9y5TgAlhCCAAgDcOskASmu8z02dTic6f/Hixdg3AQAAAAAAAAAAALMngAIAAJBBFQIojUYjudPv9zNcAlAtqQDK4uJiuHfv3rWeLYACANw2yQDKmOG4zc3NG70HAAAAAAAAAAAAKBcBFAAAgAxSAZRarRbm5+czXfN2RVEkdwaDQYZLAKrl4OAgOm82m6FWq13r2e12OzoXQAEAqiYZQGmNF0BpJkIpvV5v7JsAAAAAAAAAAACA2RNAAQAAyCAVQKnX69f+cvykNBqN5E6/389wCUC17O/vR+dra2vXfvb6+np0LoACAFRNKoAynwib/BcrKyvR+eHh4dg3AQAAAAAAAAAAALMngAIAAJDBOAGUWSuKIrkzGAwyXAJQLakASnPML/G+jQAKAHDbpD6/LLQmE0Dp9Xpj3wQAAAAAAAAAAADMngAKAABABqlwyDjxkWlrNBrJnX6/n+ESgGo5ODiIzqcZQDk+Pg6vXr269vMBAHK6uLhIfnZaGPOzkwAKAAAAAAAAAAAA3C4CKAAAABmcnp5G5/V6PdMl7zZOhCUVcgF4H+3v70fna2tr1352KoASQgi7u7vXfj4AQE4HBwdhNBpFdxZa4wVQVldXo/OXL1+Gy8vLsW8DAAAAAAAAAAAAZksABQAAIIMqBFAajUZyp9/vZ7gEoFpSAZRmc7wv8b7NOAGUnZ2daz8fACCnccJtC63WWM9aWVmJzkejUfjuu+/GehYAAAAAAAAAAAAwewIoAAAAGVQhgFIURXJnMBhkuASgWg4ODqJzARQAgO+NFUAZ87NTKoASQgiHh4djPQsAAAAAAAAAAACYPQEUAACADKoQQFlYWAhzc/E/Jvb7/UzXAFTDcDhMfrF2bW3t2s9/8OBBWFhYiO4IoAAAVTFOAGW+Od5np3ECKL1eb6xnAQAAAAAAAAAAALMngAIAAJBBFQIotVotFEUR3RFAAfihly9fhtFoFN1pNpvXfn6tVgvtdju6I4ACAFRFKoBy5/79MLe4ONazBFAAAAAAAAAAAADgdhFAAQAAyGAwGETnqfBILo1GIzpP/XMAvG/29/eTOzcJoIQQwvr6enQugAIAVEUqgLLQGv9zkwAKAAAAAAAAAAAA3C4CKAAAABmcnp5G5/V6PdMlcakASr/fz3QJQDWME0BZW1u70TsEUACA2yIdQGmN/ax6vR7u3r0b3RFAAQAAAAAAAAAAgOoQQAEAAMigKgGUoiii88FgkOkSgGo4ODhI7jSbzRu9Y2NjIzrf3t6+0fMBAHJJB1Cu9rlpZWUlOj88PLzS8wAAAAAAAAAAAIDZEUABAADIoCoBlEajEZ33+/1MlwBUw/7+fnS+uLgYlpaWbvQOARQA4LZIBlCuGI5LBVB6vd6VngcAAAAAAAAAAADMjgAKAABABlUJoBRFEZ0PBoNMlwBUQyqAsra2Fmq12o3eIYACANwWqQDKfOtqAZTV1dXoXAAFAAAAAAAAAAAAqkMABQAAIIOqBFAajUZ03u/3M10CUA0HBwfRebN5tS/xvk2n04nOj46OwsnJyY3fAwAwbakAysIVPzutrKxE5wIoAAAAAAAAAAAAUB0CKAAAABkMBoPovCiKTJfEpe5I/XMAvG/29/ej80kEUDY2NpI729vbN34PAMA0vXr1KhwfH0d3FlqtKz0zFUA5PDy80vMAAAAAAAAAAACA2RFAAQAAyOD09DQ6r9frmS6JazQa0Xm/3890CUA1pAIoa2trN35Hp9NJ7nS73Ru/BwBgmvb29pI7C1eMx6UCKL1e70rPAwAAAAAAAAAAAGZHAAUAACCDqgRQiqKIzgeDQaZLAKrh4OAgOm9e8Uu8b7OxsZHc2d7evvF7AACmaWdnJ7mz0BJAAQAAAAAAAAAAgPeVAAoAAEAGVQmgNBqN6Lzf72e6BKAa9vf3o/O1tbUbv2NpaSksLS1FdwRQAICy293dTe5cNYCyuroanQugAAAAAAAAAAAAQHUIoAAAAGRQlQBKURTRuQAKwA8dHBxE583m1b7E+y4bGxvRebfbnch7AACmJRVAqc3Phzv371/pmSsrK9H573//+zAcDq/0TAAAAAAAAAAAAGA2BFAAAAAyqEoApdFoROeDwSDTJQDlNxwOw+HhYXQnVwBle3t7Iu8BAJiWVABlvrkWanNX+z9dpgIoIYTw8uXLKz0TAAAAAAAAAAAAmA0BFAAAgAxS4ZCiKDJdEpe6o9/vZ7oEoPxevnwZLi8voztra2sTeVen04nOu93uRN4DADAtqQDKwjXCceMEUHq93pWfCwAAAAAAAAAAAOQngAIAAJDB6elpdF6v1zNdEtdoNKLzVMgF4H1ycHCQ3Gle44u8b7OxsRGdb29vT+Q9AADTkgygtK7+uWl1dTW5I4ACAAAAAAAAAAAA1SCAAgAAMGWj0ejWBFD6/X6mSwDKb39/P7kzqQBKp9OJzgVQAICySwZQrvG5aWVlJbkjgAIAAAAAAAAAAADVIIACAAAwZRcXF2E0GkV3yhJAKYoiOh8MBpkuASi/cQIoa2trE3nXxsZGdL6zsxOGw+FE3gUAMA3JAEq7deVnPnjwILlzeHh45ecCAAAAAAAAAAAA+QmgAAAATNnp6WlypywBlEajEZ33+/1MlwCU38HBQXS+sLAQlpeXJ/KuTqcTnV9eXo4VZAEAmJVUAGW+2bzyMxcWFsLS0lJ0p9frXfm5AAAAAAAAAAAAQH4CKAAAAFNWpQBKURTR+WAwyHQJQPmlgiPNZjPUarWJvGtjYyO50+12J/IuAIBJu7y8DHt7e9GdhVbrWs9eXV2NzgVQAAAAAAAAAAAAoBoEUAAAAKZsnABKKjySS6PRiM6Hw2E4Pz/PdA1AuaUCKGtraxN71zgBlO3t7Ym9DwBgkl6+fBkuLi6iOwvN5rWevbKyEp0LoAAAAAAAAAAAAEA1CKAAAABM2WAwSO7U6/UMl6SNE2IZ558H4H1wcHAQnTev+SXet2m1WmFuLv6v8gRQAICy2t3dTe4stARQAAAAAAAAAAAA4H0mgAIAADBlp6enyZ2yBFAajUZyp9/vZ7gEoPz29/ej80kGUO7cuRPa7XZ0p9vtTux9AACTNFYA5ZqfnVIBlMPDw2s9FwAAAAAAAAAAAMhLAAUAAGDKqhRAKYoiuSOAAvC9VABlbW1tou/rdDrR+fb29kTfBwAwKeMEUOab1/vslAqg9Hq9az0XAAAAAAAAAAAAyEsABQAAYMqqFEBpNBrJncFgkOESgPI7ODiIzpvN5kTft7GxEZ13u92Jvg8AYFJ2dnai83tLS+HO3bvXevbq6mp0LoACAAAAAAAAAAAA1SCAAgAAMGVVCqAURZHc6ff7GS4BKL+9vb3ofNIBlE6nE51vb29P9H0AAJOyu7sbna+129d+9srKSnQugAIAAAAAAAAAAADVIIACAAAwZVUKoDQajeTOYDDIcAlAuQ2Hw3B4eBjdabVaE33nxsZGdC6AAgCUVTKAcoPPTQIoAAAAAAAAAAAAcDsIoAAAAEzZyclJcufu3bsZLkkriiK50+/3M1wCUG4HBwdhNBpFd5rN5kTf2el0ovNutzvR9wEATEoygNJuX/vZqQDK0dFROD8/v/bzAQAAAAAAAAAAgDwEUAAAAKYsFUCZm5sL9Xo90zVxjUYjuTMYDDJcAlBue3t7yZ1WqzXRd25sbETnx8fH4fhVOroFAJBbKoCy2r7+56bV1dXkzsuXL6/9fAAAAAAAAAAAACAPARQAAIApSwVQ7t27F2q1WqZr4oqiSO70+/0MlwCUWxkDKCGEsL2/P9F3AgBMQiqAstZqX/vZKysryZ1er3ft5wMAAAAAAAAAAAB5CKAAAABM2TgBlLJYWFgIc3PxPyoOBoNM1wCU1ywCKJ1OJ7mzvZ++CwAgt2QApX39z00CKAAAAAAAAAAAAHA7CKAAAABMWZUCKLVaLTQajehOv9/PdA1AeaUCKEtLS6Eoiom+c2NjI7mzvb8/0XcCANzU2dlZePnyZXSnub5+7eePE0A5PDy89vMBAAAAAAAAAACAPARQAAAApqxKAZQQQvIL+4PBINMlAOW1nwiNtFqtib/z3r17YXl5ObrT3dud+HsBAG4iFY4LIYS1Vvvaz3/w4EFyp9frXfv5AAAAAAAAAAAAQB4CKAAAAFNWtQBKo9GIzvv9fqZLAMor9UXeaQRQQghhY2MjOu+O8QVjAICcdnfTgba19vU/O925cyfcv38/uiOAAgAAAAAAAAAAAOUngAIAADBlVQugFEURnQugAKQDKM1mcyrv7XQ60fmLvfQXjAEAchovgNK+0TtWVlaicwEUAAAAAAAAAAAAKD8BFAAAgCmrWgCl0WhE54PBINMlAOWVCqC0Wq2pvPejjz6Kzr/tdqfyXgCA60oFUGq1WlhZW7vROwRQAAAAAAAAAAAAoPoEUAAAAKasagGUoiii836/n+kSgPKaVQDl0aNH0fnTF8+n8l4AgOtKBVCazWa4c+fOjd6RCqAcHh7e6PkAAAAAAAAAAADA9AmgAAAATFnVAiiNRiM6HwwGmS4BKK+yBlB+t70dLsNoKu8GALiOVACl3W7f+B2rq6vRea/Xu/E7AAAAAAAAAAAAgOkSQAEAAJiyqgVQiqKIzvv9fqZLAMppNBqF/f396M6sAijnF+dhJ1xM5d0AANeRI4CysrISnQugAAAAAAAAAAAAQPkJoAAAAExZ1QIojUYjOh8MBpkuASinly9fhouLeGRkVgGUEEL4VgAFACiRnZ2d6FwABQAAAAAAAAAAAAhBAAUAAGDqqhZAKYoiOu/3+5kuASin/f395M5sAyjnU3k3AMB17O7uRuc5AiiHh4c3fgcAAAAAAAAAAAAwXQIoAAAAU1a1AEqj0YjOX716lekSgHLa29tL7jSbzam8+/79++GDDz6I7gigAABlkiOAsrq6Gp33er0bvwMAAAAAAAAAAACYLgEUAACAKataAGVpaSk6Pz4+znQJQDmNE0BptVpTe/+jR4+icwEUAKAsRqNRlgDKyspKdP7q1atwdnZ24/cAAAAAAAAAAAAA0yOAAgAAMEWXl5fh1atX0Z27d+9mumY8y8vL0fnR0VGmSwDKKRVAWVxcTP4uvQkBFACgKo6OjsLp6Wl0J0cAJYQQer3ejd8DAAAAAAAAAAAATI8ACgAAwBT1+/3kzr179zJcMj4BFIC4VACl1WqFWq02tfenAygXU3s3AMBV7O7uJncEUAAAAAAAAAAAAIAQBFAAAACm6uTkJLlTtgDK0tJSdH58fJzpEoByGieAMk3pAMr5VN8PADCucQIo6+vrN37POAGUw8PDG78HAAAAAAAAAAAAmB4BFAAAgCmqYgBleXk5Oj86Osp0CUA5lT2Ash+G4VW4nOoNAADjGCeA0m63b/ye1dXV5E6v17vxewAAAAAAAAAAAIDpEUABAACYoioGUJaWlqLzs7OzcHZ2lukagPKZdQDl448/Tu78LpxP9QYAgHGkAihFUST/DDqODz74INRqteiOAAoAAAAAAAAAAACUmwAKAADAFFUxgLK8vJzcOT4+znAJQDnt7+9H581mc6rvf/ToUXLnqQAKAFACqQBKu91OhkvGMTc3Fx48eBDdEUABAAAAAAAAAACAchNAAQAAmKLbGkA5OjrKcAlAOe3t7UXnrVZrqu/f3NwMc3Pxf633rQAKAFAC4wRQJmVlZSU6F0ABAAAAAAAAAACAchNAAQAAmKIqBlCWlpaSO8fHxxkuASinWQdQ5ufnw4cffhjd+TZcTPUGAIBx5AygrK6uRueHh4cTexcAAAAAAAAAAAAweQIoAAAAUzROAOXu3bsZLhnf8vJycufo6CjDJQDlc3JyEvr9fnRn2gGUEEJ49OhRdP5tOJ/6DQAAKTkDKCsrK9F5r9eb2LsAAAAAAAAAAACAyRNAAQAAmKJUAKXRaIS5uXL90WxpaSm5c3x8nOESgPLZ29tL7gigAAB8TwAFAAAAAAAAAAAAGFe5vmUHAABwy6QCKPfu3ct0yfiWl5eTO0dHRxkuASgfARQAgPHt7OxE5wIoAAAAAAAAAAAAwH8hgAIAADBFVQyg1Ov1MD8/H90RQAHeV1UJoPwuXITLMJr6HQAA7zIcDsPBwUF0Z5Kfm1ZXV6Pzw8PDib0LAAAAAAAAAAAAmDwBFAAAgCmqYgClVquFpaWl6M7x8XGmawDKJRVAmZubCysrK1O/IxVAOQujsBuGU78DAOBdDg8Pw2gUD7K12+2JvS/1GazX603sXQAAAAAAAAAAAMDkCaAAAABMURUDKCGEsLy8HJ0fHR1lugSgXPb396PztbW1MDc3/X/llgqghBDCt+F86ncAALxLKhwXQgjNZnNi7xNAAQAAAAAAAAAAgGoTQAEAAJgiARSA2yX1Rd5Wq5XlDgEUAKDsUuG4ECb72SkVQBkMBmEwGEzsfQAAAAAAAAAAAMBkCaAAAABM0atXr6LzsgZQlpaWovPj4+NMlwCUS1kCKPfv30/Gqp4KoAAAM5T63BRC3gBKCCH0er2JvQ8AAAAAAAAAAACYLAEUAACAKTo5OYnOyxpASX2p/ujoKNMlAOVSlgBKrVYLjx49iu48EUABAGYo9bnp7t274e7duxN73+rqanLn8PBwYu8DAAAAAAAAAAAAJksABQAAYIqqGkBZWlqKzo+PjzNdAlAuZQmghBDCJ598Ep3/NpxlugQA4E37+/vRebPZnOj7VlZWkju9Xm+i7wQAAAAAAAAAAAAmRwAFAABgiqoaQFleXo7Oj46OMl0CUC67u7vRebkCKOeZLgEAeFPucJwACgAAAAAAAAAAAFSbAAoAAMAUCaAA3C6pL/K22+1Ml6QDKE/CeRiGUaZrAAB+KHcAZXl5Ody5cye6I4ACAAAAAAAAAAAA5SWAAgAAMEVVDaAsLS1F58fHx5kuASiPfr+fDECVKYByFkbhRbjIdA0AwA+lAijNZnOi76vVamFlZSW6c3h4ONF3AgAAAAAAAAAAAJMjgAIAADBFVQ2gLC8vR+epAADAbZT6Em8IIbRarQyXfC8VQAkhhN+GswyXAAC8aX9/PzqfxuemVACl1+tN/J0AAAAAAAAAAADAZAigAAAATFFVAyhLS0vR+fHxcaZLAMpjnABKu93OcMn3fvSjHyV3fhvOM1wCAPCm1GcnARQAAAAAAAAAAADgjwmgAAAATMloNKpsAGV5eTk6Pzo6ynQJQHns7u4md3IGUBqNRtjc3Izu/CacZboGAOC10WiUDKA0m82Jv1cABQAAAAAAAAAAAKpLAAUAAGBKzs7OwnA4jO5UNYDy6tWr5D8bwG2TCqDMzc2F1dXVTNd875NPPonOfxvOM10CAPDa8fFxODuLh9hardbE3yuAAgAAAAAAAAAAANUlgAIAADAlJycnyZ2yBlCWlpaSO+P88wHcJnt7e9F5s9kMc3N5/3VbOoAS/+IxAMA0pD43hTCdAEoqRnd4eDjxdwIAAAAAAAAAAACTIYACAAAwJVUOoCwvLyd3jo6OMlwCUB67u7vRebvdznTJa+kAynmmSwAAXptVAGVlZSU67/V6E38nAAAAAAAAAAAAMBkCKAAAAFMigAJwu6QCKNP4Em/Kj3/84+h8LwzDURhmugYA4Hv7+/vJnWazOfH3CqAAAAAAAAAAAABAdQmgAAAATMk4AZS7d+9muOTqlpaWkjvHx8cZLgEoj729vei83W5nuuS1Tz75JLnz23Ce4RIAgNdSn5vu3LkTHjx4MPH3jhNAGY1GE38vAAAAAAAAAAAAcHMCKAAAAFMyTgDl3r17GS65uuXl5eTO0dFRhksAymN3dzc6L28A5SzDJQAAr6UCKM1mM8zNTf7/TLm6uhqdn52dhX6/P/H3AgAAAAAAAAAAADcngAIAADAlVQ6gLC0tJXeOj48zXAJQHmUMoKyvr4dGoxHd+W04z3QNAMD3xgmgTMPKysr/x96dR9lZn3eCf65KhbaSVIuWKlVpB8lIAmLEZjAGYwMxkMSOe5JO3E46naQz457umczppJNMluMzJ+0+nT6ZnjNJH3eOjyfeIeN4xg5gg7whgw0YIQESoK20V5WWqpIoraWquvOHx+1g0O9Xy71vbZ/POfyhep77/r7IWLoq3ff7Znd6enqqcjYAAAAAAAAAAAAwNjPHOwAAAMBUNZkLUObNmxelUinK5fIVd/r6+gpMBDC+yuVy9kbexYsXF5TmJ0qlUqxZsyZ27dp1xZ390V9gIgCAiFOnTiXn1XrfNJwClN7e3mhra6vK+QAAAAAATD6DA+1xtvvXkjt1TZ+NmplrCkoEAAAAVEr74EB8pK83ufOF+Q2xpkbtxkQxY7wDAAAATFW5ApTa2tqora0tKM3IlEqlqKurS+4oQAGmk3PnzsWFCxeSO0uWLCkozZutXbs2OW+PywUlAQD4kfEqjhtuAQoAAAAAAAAAAAAw8ShAAQAAqJJcAcq8efMKSjI6uQKUs2fPFpQEYPydOHEiuzNeBShr1qSfMqUABQAoWq4AZdGiRVU5t7GxMbujAAUAAAAAAAAAAAAmJgUoAAAAVTLZC1Dmz5+fnPf19RWUBGD85W7ijYhYvHhxAUneKleAcjD6YzDKBaUBAIg4depUcl6t901z586N2tra5E5PT09VzgYAAAAAAAAAAADGRgEKAABAlUz2ApS6urrk/OzZswUlARh/J06cyO4sWbKkgCRvlStAuRwRR2OgmDAAAJEvj6tWAUqpVIqGhobkjgIUAAAAAAAAAAAAmJgUoAAAAFTJZC9AmT9/fnLe19dXUBKA8ZcrQKmtrY2FCxcWlObNcgUoERHt0V9AEgCAiEuXLsUbb7yR3Fm0aFHVzm9sbEzOT506VbWzAQAAAAAAAAAAgNFTgAIAAFAlClAApo6TJ08m54sXL45SqVRQmjdbvXp1dmefAhQAoCDDKRhZvHhx1c5fsmRJcp4rtgMAAAAAAAAAAADGhwIUAACAKpnsBSh1dXXJ+dmzZwtKAjD+cjfK5m60rabZs2dHa2trcmevAhQAoCDjXYCydOnS5FwBCgAAAAAAAAAAAExMClAAAACqZLIXoMyfPz857+vrKygJwPibyAUoERHr1q1LzncrQAEACnLy5MnsTjULUHLvyxSgAAAAAAAAAAAAwMSkAAUAAKBKFKAATB25G3mreRPvcKxfvz4536MABQAoyHAKUJqamqp2vgIUAAAAAAAAAAAAmJwUoAAAAFTJZC9AqaurS87Pnj1bUBKA8Ze7UTZ3o221rVu3LjnfH/0xEOWC0gAA09mpU6eS84ULF8ZVV11VtfMVoAAAAAAAAAAAAMDkpAAFAACgSiZ7Acr8+fOT876+voKSAIy/iV6Asn79+uT8ckQcjMvFhAEAprWTJ08m54sXL67q+bn3ZefPn8/+eR0AAAAAAAAAAAAongIUAACAKpnsBSh1dXXJ+dmzZwtKAjC+yuXyuN/Im7Nu3brszu64VEASAGC6y71vWrRoUVXPH2O0i74AACAASURBVE4xXa7cDgAAAAAAAAAAACieAhQAAIAqmewFKPPnz0/Oz549G+VyuaA0AOPnzJkzcfny5eTOcG60raZVq1ZFbW1tcmdP9BeUBgCYzk6dOpWcV7s4TgEKAAAAAAAAAAAATE4KUAAAAKpkqhegDA0Nxfnz5wtKAzB+hnOD7HgXoMycOTPWrl2b3NmtAAUAKMDJkyeTcwUoAAAAAAAAAAAAwNtRgAIAAFAlk70Apa6uLrtz9uzZApIAjK/cTbwR1b+RdzjWr1+fnO9RgAIAFCD33mnRokVVPX/hwoVRW1ub3FGAAgAAAAAAAAAAABOPAhQAAIAqGBgYiP7+9I3mE70AZf78+dmdvr6+ApIAjK/h3CC7ZMmSApKkrVu3LjnfrQAFAChA7r1TtYvjSqVS9r2ZAhSASWjX3ojShp/8s+nnxzsRAAAAAAAAAAAVpgAFAACgCs6dO5fdmegFKHV1ddmds2fPFpAEYHzlbpCdM2fOhPg1ff369cl5RwzE2RgqKA0AMB0NDAxEd3d3cmfp0qVVz6EABQAAAAAAAAAAACYfBSgAAABVMBUKUObPn5/d6evrKyAJwPg6efJkcr548eIolUoFpbmyXAFKRMSeuFRAEgBgujp58mSUy+XkjgIUAAAAAAAAAAAA4O0oQAEAAKgCBSgAU0fuBtncDbZFWbduXXZnT/QXkAQAmK66urqyOwpQAAAAAAAAAAAAgLejAAUAAKAKpkIBynDynT17toAkAONrshSgLF68OOoXLEju7FaAAgBU0fHjx7M7zc3NVc+hAAUAAAAAAAAAAAAmHwUoAAAAVdDb25vdWZC5SX28zZw5M+bMmZPc6evrKygNwPjp7OxMzidKAUqpVIp1K1cld/YoQAEAqihXgDJjxoxYtGhR1XMoQAEAAAAAAAAAAIDJRwEKAABAFZw+fTq709DQUECSsZk/f35yrgAFmA5yBSgtLS0FJclbv2p1cr5bAQoAUEW5ApRFixZFTU1N1XPkClBOnjwZQ0NDVc8BAAAAAAAAAAAADN/M8Q4AAAAwFfX29ibnV111VcyZM6egNKNXV1eXfDL22bNnC0wDMD46OjqS82XLlhWUJG9dpgBlT/RHuVyOUkF5AIDpJVeAsnTp0kJy5ApQBgcHo7e3N5qamgrJAwBMP994sif+n6+din37L8SGa+fGR391adxy04LxjgUAAAAAAAAAE9qM8Q4AAAAwFeUKUBoaGqJUmvi3n8+fPz857+vrKygJwPjo6+uLc+fOJXdaWloKSpO3PlOA0hdD0XXqZEFpAIDppqurKzmfKAUoEZEs+wQAGK1yuRz/4T8djn/6a6/FI18+Gdu2n43PffFEPPDBnfFfP5Uu2QUAAAAAAACA6U4BCgAAQBXkClDq6+sLSjI2dXV1yfnZs2cLSgIwPjo7O7M7k6kAJSJi94EDBSQBAKaj48ePJ+fNzc2F5BhO0YoCFACgGh7+v0/Gf/hPR97y9YGBcvy7Pz4QDz/8tXFIBQAAAAAAAACTgwIUAACAKjh9+nRy3tDQUFCSsZk/f35ynvv3BJjsJlsBytUrVmZ39h85XEASAGA6yhWgDKeYpBIWL16c3VGAAgBU2uHDHfHv/tf25M5v/fYfxPPPP19QIgAAAAAAAACYXBSgAAAAVEFvb29yPlkKUBobG5Pz3L8nwGTX0dGR3ZlIBShz58yJtpiZ3Nl3+FBBaQCA6WaiFKDMnj07FixYkNxRgAIAVNLQ0FD85m/9frzRN5jcu3jxUnzwgx+MY8eOFZQMAAAAAAAAACYPBSgAAABVMF0KULq7uwtKAjA+Ojs7k/P6+vqYPXt2QWmG5+q4Kjnfd+RwQUkAgOlkYGAgTp06ldwpqgAlImLJkiXJea6sBQBgJP7qr/4qvvOdHwxrt7OzMz760Y9GuVyucioAAAAAAAAAmFwUoAAAAFRBrgClvr6+oCRj09TUlJz39PQUlARgfOQKUJYtW1ZQkuFbG7XJ+X4FKABAFZw8eTJ7E+9EKkA5ceJEQUkAgKnu+PHj8Qd/8Acjes13vvOd+MY3vlGlRAAAAAAAAAAwOc0c7wAAAABT0enTp5PzhoaGgpKMTWNjY3Le3d1dUBKA8ZErQGlpaSkoyfBdHVcl5/sOH4pyuRylUqmgRFRC3wvbouu//Nf48LGOqBkcjBUrVsTKlSvj7rvvjg984ANx1VXp/90BoNqOHz+e3Wlubi4gyY8oQAEAivLJT34yLly4MOLX/e3f/m184AMfqEIiAAAAAAAAAJicFKAAAABUQW9vb3I+WQpQmpqakvPTp0/H4OBg1NTUFJQIoFhTsQCl79y5OHnyZPamYCaOY3/5f8SRP/9ExNBQ/Lh6bNu2bRER8Z//83+O5ubm+OY3vxkbN24cv5AjtWtvxKZfSO/s/GrExmuKyQPAmA2nAGXp0qUFJPkRBSgAQFG++tWvjup1X/va1+LMmTOxcOHCCicCAKgA38cHAAAAAGAczBjvAAAAAFNNuVyeMgUojY2NyXm5XI7Tp08XlAageB0dHcn5RCxAWZspQImI2L9/fwFJqITOT/5NHPnf/jxiaOiKO11dXfH+978/+98rAFRTrgClVCrFokWLCkqjAAUAKMaxY8di+/bto3rtxYsX4ytf+UqFEwEAAAAAAADA5KUABQAAoMIuXLgQ/f39yZ36+vqC0oxNU1NTdqenp6eAJADjo7OzMzmfmAUotdmdffv2FZCEsTr1lf83Dv3Rnwxrt6urK37/93+/yokA4MpyBSiLFi2KmTNnFpRGAQoAUIzHHntsTK//3Oc+V6EkAAAAAAAAADD5KUABAACosN7e3uxOQ0NDAUnGrrGxMbvT3d1dQBKA4l24cCHOnDmT3JmIBSgLoiaWRE1yRwHKxHfm6Wdi/3//ryLK5WG/5gtf+EJs3bq1iqkA4Mq6urqS86VLlxaU5EdyBShnzpyJS5cuFZQGAJiqHn300TG9/rvf/W4cOXKkQmkAAAAAAAAAYHJTgAIAAFBhp0+fzu5MlgKUpqam7E5PT08BSQCK19nZmd1ZtmxZAUlGbm1clZzv37+/oCSMxuC5c7H/Y/8mypcvj/i1//pf/+sYGBioQioASDt+/Hhy3tzcXFCSH8kVoEREnDx5soAkAMBUdeHChfjmN785pmuUy+X40pe+VKFEAADw9sojKNwHAAAAABhPClAAAAAqrLe3N7szWQpQFi5cGDNmpP/o2N3dXVAagGINpwClpaWlgCQjd3WmAGXfvn0FJWE0Tn7h4egf5dOfX3755fjkJz9Z4UQAkJcrQFm6dGlBSX5kOAUoJ06cKCAJADBVfec734kLFy4kd/70j1bGVVeVkjuf//znKxkLAADiwoWL8cSWnviff29f3PiubbF05Q/iljtfjP/9/zwaAwPKUAAAAACAiUsBCgAAQIVNpQKUGTNmZLP29PQUlAagWB0dHdmdiVuAUpuc79+/v6AkjMaJz39hTK//kz/5k3jjjTcqlAYAhkcBCgAw3Tz66KPZnV/68OK4/97G5M4rr7wSr7zySqViAQAwjV2+fDn+/M//PNqW3xa//NHX4m8/dzzaD1yM/v5y7Nl7IT7+54fin/zqrjh/fnC8owIAAAAAvC0FKAAAABWWK0CZMWNG1NXVFZRm7Bob0x/O7u7uLigJQLE6OzuT87q6ugn76/nauCo5P3XqVJw+fbqgNIzEuZdejvOv7BzTNU6fPh1f+tKXKpQIAIZnohWgNDY2xowZ6b8K7erqKigNADDVlMvlbAHKdZvmRVvrrPilDy/OXu+b3/xmpaIBADBNlcvl+NjHPhZ//Md/HGfO9F1x77tbz8Sv/vPX4sKFiwWmAwAAAAAYHgUoAAAAFZa7oby+vj57E9ZE0tTUlJwrQAGmqlwBSktLS0FJRu7qTAFKRMT+/fsLSMJInfjs57M7pVIpu/P1r3+9EnEAYFgGBgbi5MmTyZ2iC1BqampiyZIlyZ2Ojo6C0gAAU80rr7wSR44cSe7cf29DRETc976GqK+fmdx9+umnK5YNAIDp6atf/Wp86lOfGtbud7eeiV/88H8fFy8qQQEAAAAAJpbJc8cdAADAJNHb25ucNzQ0FJSkMhobG5Pznp6egpIAFCtXgLJs2bKCkozc2qjN7ihAmXguXrgQp778leTO/IULo7u7O1avXp3c+/a3vx2XL1+uZDwAuKJTp05FuVxO7jQ3NxeU5idaW1uT86NHjxaUBACYap588snszs/e+6Pvrc+aNSPe/9765O7TTz+dfT8FAABXcuHChfjd3/3dEb1my5bvxW//9m9XKREAAAAAwOgoQAEAAKiwqVaA0tTUlJx3d3cXlASgWLkClJaWloKSjFxT1MTCzLf+9u3bV1AahusbX/lKDL7xRnLnF371V6KhoSF+7/d+L7nX19cXzz//fCXjAcAVHT9+PLuzdOnSApK8WVtbW3KuAAUAGK0XXnghOV/UVBs3/kzdf/vxbbcsSO6fOHFCWS0AAKP2F3/xF3Hw4MERv+7zn/98PP7445UPBAAAAAAwSgpQAAAAKixXgFJfn37S40TT2NiYnPf09BSUBKBYHR0dyflELkApRSmujquSOwpQJp6/+/T/ld35737jNyIi4v7778/uDudp1ABQCZO1AOXYsWMFJQEApprt27cn5++9a2HMmFH6bz++NVOAEhHx9NNPjzkXAADTz6FDh+ITn/jEqF//7//9v69gGgAAAACAsVGAAgAAUGGnT59OzhsaGgpKUhlNTU3JeXd3d0FJAIrV2dmZnE/kApSIiLVRm5x7qvDEsnfv3njuqaeSO3Ov2xSbbrwxIiLWrFkTa9euTe4rQAGgKLkClFKpFIsXLy4ozU+0trYm50ePHi0oCQAwlfT19cXevXuTOzdcX/emH294x9xYML8m+RoFKAAAjMa//bf/Ni5evDjq1z/zzDPxzDPPVDARAAAAAMDoKUABAACosN7e3uR8shWgNDY2Juc9PT0FJQEoTn9/f7bgaaIXoFwdVyXn+/btKygJw/HJT34yu7Pkn33kTT++9957k/vPP/98tpgNACqhq6srOW9qaoqZM2cWlOYn2trakvMTJ05Ef39/QWkAgKnipZdeinK5nNy5ftO8N/24pqYUt9w0P/kaBSgAAIzUyy+/HF/+8pfHfJ3/+B//YwXSAAAAAACMnQIUAACACptqBShNTU3J+RtvvBGXL18uKA1AMXI38UZM/gKUjo6OOH/+fEFpSDl//nx8+tOfTu6UZs2KRb/04Td97b777ku+ZmhoKL797W+POR8A5Bw/fjw5b25uLijJm7W2tmZ3Ojo6CkgCAEwl27dvz+5cv6nuLV+79ZYFydfs3r07Tp48OepcAABMP7m/X4qIKJXy1/na174Wr776agUSAQAAAACMjQIUAACACptuBSgR+X9ngMmms7Mzu7Ns2bICkoze2kwBSkREe3t7AUnI+dKXvhSnT59O7jT+3IMxs77+TV9773vfGzU1NcnXPfnkk2POBwA5uQKUpUuXFpTkzdra2rI7x44dKyAJADCV5ApQVq6YFfX1M9/y9dsyBSgREd///vdHnQsAgOnl8uXL8cUvfjG79+hXNsW//M38gx3+4i/+ohKxAAAAAADGRAEKAABAheVuYK7/qZuXJ7rGxsbsTnd3dwFJAIrT0dGR3WlpyX9QcDxdHbXZnYMHD1Y/CEnlcjn++q//OrvX/Ju/8Zav1dfXxy233JJ83ZYtW2L/4IG4pfe9yX/2Dx4Y9b8DAEzUApTW1tbsztGjRwtIAgBMJS+++GJyfv11dW/79c3vrIuZM99ajPKPPf3006POBQDA9PL1r389Tp48mdz5xV9YFHe8a2H8q99ZFplO/fjCF76gLBgAAAAAGHcKUAAAACro8uXLce7cueROQ0NDQWkqo6mpKbvT09NTQBKA4nR2dibns2fPjoULFxaUZnSaY2ZcFaXkjgKU8ffcc89lnxw9d9PGqLv17YtO7rvvvuRr29vb49D+Q6POBwDDkSsRGa8ClHnz5mVLSBWgAAAjcenSpdi1a1dy5/pN897263Pn1sSNN25KvlYBCgAAw/WZz3wmu/M//MtlERGxcsXs+PAHFyd3L1++HF/4whcqkg0AAAAAYLQUoAAAAFRQb29vdmeyFaA0NjZmd7q7uwtIAlCcXAFKS0tLlErpcpHxNiNKsSLSTxU+dEgxxnj767/+6+zO0t/6F1f87+3ee+/Nvv6pbzw14lwAMFzlcjn7nmL58uUFpXmrtra25NxTbQGAkdi1a1cMDAwkd65UgBIRcfvtm5Ov3bZtW1y4cGFU2QAAmD66u7vjH/7hH5I7V6+dHTfdWPfffvxv/lVr9rqPPPLImLMBAAAAAIyFAhQAAIAKmooFKPPnz4+ZM9M30Pf09BSUBqAYuRthW1paCkoyNqviquT84MGDxQThbZ06dSr+7u/+LrlTs2BBLPonv3jF+S233BILFixIXuM7j317VPkAYDi6u7vj/PnzyZ2VK1cWlOatWlvTN3YcPXq0oCQAwFTw4osvZnduuL7uirN335EuQLl8+XL88Ic/HHEuAACml4cffjguX76c3PmVX1rypoL9TRvmxb33pD+v8uKLL8a+ffsqkhEAAAAAYDQUoAAAAFTQcApQ6uvrC0hSOaVSKRobG5M73d3dBaUBKMaRI0eS87a2toKSjM3KSBdYHTp0qKAkvJ0vfelL0d/fn9xZ/Kv/NGrmXfnJ0bW1tXHPPfckr/Hsd5+NwbPpp1MDwGgNp1Bt1apVVc9xJbn3bbniOwCAf2z79u3J+ZLFtdG89MqFtLffni5AiYh44YUXRpwLAIDp5TOf+UxyXiqV4pf/yZK3fP2jH1mavfYjjzwy6lwAAAAAAGOlAAUAAKCCTp8+nd1paEg/UWciampqSs57enoKSgJQjFwByvLlywtKMjar4so33EQoQBlvuQ+nRkQs/c3fyO489NBDyfnl/v5446l8SRsAjMZw3k+sXLmygCRvL1eAcvTo0YKSAABTQa4A5fpNVy4xjYhYsmRRrF27Nrmzbdu2EecCAGD62LNnT/zwhz9M7rz3ve+KttZZb/n6vffUR9289O0DClAAAAAAgPGkAAUAAKCCenvzNxfX19cXkKSyGhsbk/Pu7u6CkgBUX7lcjsOHDyd3JksBysqoTc5PnDgR58+fLygN/9jOnTuzNzQtuOvOmHN1+qaoiIgHH3wwu3P6G36vBqA6Dh48mJzPmzcv+2fKamptbU3OOzo6YmhoqKA0AMBkNjg4GC+99FJy5/rr6rLX2bx5c3KuAAUAgJTHHnssu/NrH/3Ft/36nDk18cDPph+A88orr8Rrr702qmwAAAAAAGOlAAUAAKCCcgUoCxYsiJqamoLSVE5TU/oDMD09PQUlAai+np6euHDhQnJnqhSgRES27IXq+MxnPpPdWfKRXx3WtZqbm+Pmm29O7pze0h3lofKwrgcAI3Ho0KHkfNWqVVEqlQpK81ZtbW3J+cDAQJw4caKgNADAZLZnz55skewN183LXidXgLJnz57o6+sbUTYAAKaPJ554Ijmvq6uLD33o/ivOP/QLi7JnPPLIIyPOBQAAAABQCQpQAAAAKihXgFJfX19QksrKPa27u7u7oCQA1XfkyJHszmQpQFk1jAKU3E3LVN7AwEB87nOfS+7UzK+Lhgc/MOxr/tzP/Vz6zBOX49wON08BUHm59xIrV64sKMnba21tze4cPXq0gCQAwGS3ffv27M71FShAKZfLwzoLAIDp58KFC/HUU08ldx544IGYN2/uFef33FUfCxakH9zzyCOPRLmsWB8AAAAAKJ4CFAAAgAo6ffp0ct7Q0FBQkspqampKznt6egpKAlB9U6kAZVnMjPTHFyMOHjxYRBT+kSeffDKOHz+e3Gn60AejZu6VP5z60x566KHszplvKCwDoPJy7yVWrVpVSI4raWtry+4cO3asgCQAwGT3yiuvJOcLFtTFyhWzs9e58cYbszvbtm0bdi4AAKaP733ve3Hx4sXkzv3335+cz5o1Ix76QPozIK+//nr2/S8AAAAAQDUoQAEAAKig3t7e5HyyFqA0NjYm593dbqgGpo5cAcpVV10VS5YsKSjN2MyMUrRFbXLn0KFDBaXhx/72b/82u7Pon/7SiK75Mz/zM9Ha2prcOf2k368BqLzce4mVK1cWlOTtNTQ0xJw5c5I7R48eLSgNADCZ7dq1Kzm/7rp3xIwZpex1GhoaYs2aNckdBSgAALydJ554Irtz3333ZXd+8RcWZXf+4R/+YViZAAAAAAAqSQEKAABABU3VApSmpvTTf3p6egpKAlB9uQKUtra2mDFj8nxbbVWmAOXgwYPFBCEiIs6cORNf/epXkzuzVq+K+bfdOqLrlkqleOihh5I7518+G/3H0k8FBICROH36dJw5cya5s2rVqmLCXEGpVMqWhClAAQCGY+fOncn5po3rhn2tzZs3J+cKUAAAeDu5ApSNGzdGW1tb9jp33bkwmprSn195/PHHR5QNAAAAAKASJs+dGgAAAJPAVC1AaWxsTM7PnTsXly5dKigNQHXlClCWL19eUJLKWJkpQDl06FBBSYiIePTRR6O/vz+5s/hXfjlKpfwTo39argAlIqLv2fRN6gAwEsN5H7Fy5coCkqTlbvo4duxYQUkAgMnq3LlzceDAgeTOhg3XDPt6N910U3K+e/fu6OvrG/b1AACY+o4ePRq7du1K7tx///3DulZt7Yz4uYfel9x59tlno7u7e9j5AAAAAAAqQQEKAABABZ0+fTo5r6+vLyhJZTU1NWV3enp6CkgCUH0KUKimv//7v8/uLP7lXxrVte+5556YPXt2cuf8zrOjujYAvJ3JUoDS2tqanB89erSgJADAZPXaa69ldzZsHH4ByubNm5Pzcrkc27dvH/b1AACY+p588snsznALUCIiPvCBu5PzoaGheOKJJ4Z9PQAAAACASlCAAgAAUEG9vb3JeUNDQ0FJKquxsTG748k/wFQx1QpQVmUKUDo6OqK/v7+gNNPbuXPn4hvf+EZyZ/67botZK0b339jcuXOzT5C+sPPcqK4NAG/n4MGDyfns2bNj6dKlxYRJaGtrS86PHTtWUBIAYLLatWtXdmfjhuEXoNx4443ZnW3btg37egAATH25ApTZs2fHnXfeOezrvf/9746ZM2cmdx577LFhXw8AAAAAoBLS37UEAABgRKZqAUpTU1N2p6enp4AkANU1NDQUR48eTe5MtgKUlZkClHK5HEeOHIm1a9cWlGj6+vrXvx4XLlxI7jT+/ENjOuOGG26Ip59++orz87vOjun6APCPHTp0KDlfsWJFlEqlgtJcWa4A5ejRo1EulydEVgBgYsoVoCxevDiWLFkUZ4fZE97Q0BBr1qyJ9vb2K+4oQAF4s/2DB+JX3vgXyZ0vLfh0rK1ZXVAigOIMDg7Gli1bkjt33XVXzJkzZ9jXXLhwfrz73e+O7373u1fc+cY3vhGDg4NRU1Mz7OsCAAAAAIzFjPEOAAAAMFUMDg7GmTNnkjuTtQClsbExu9PdPcxPdgNMYCdOnIjLly8nd6ZaAUpE/uZlKuMrX/lKdqfxwQfGdMYNN9yQnF/u6o/Lp/rHdAYA/NjBgweT81WrVhWSI6e1tTU5P3/+fJw+fbqgNADAZLRz587kfOPGjSO+5ubNm5NzBSgAAPzYjh07sg+luf/++0d83QcffDA57+npieeee27E1wUAAAAAGC0FKAAAABWSKz+JiKivry8gSeXNnTs3Zs2aldzJfdgGYDI4cuRIdmeyFaAsj5lRyuzkbl5m7C5duhSPPvpocuf6m26KWcvbxnROrgAlIuL8zrNjOgMAfixXorZy5cqCkqS1teV/fz127FgBSQCAyWrXrl3JeTUKUHbv3h19fX0jvi4AAFPP1q1bszujKUB54IF8Mf/jjz8+4usCAAAAAIyWAhQAAIAKOXHiRHansbGxgCSVVyqVoqmpKbnT3d1dUBqA6jl8+HB2Z7IVoMyKGdESM5M7uZuXGbstW7Zkb1r62V/8xTGfs2nTppgxI/1t3ws7z435HACImDwFKK2trdmd4bwPBACmp76+vux7hWoUoJTL5dixY8eIrwsAwNSTK0BZtmxZXHvttSO+7rXXXhurVq1K7jz22GMjvi4AAAAAwGgpQAEAAKiQzs7O7E5zc3MBSaojV95y8uTJgpIAVM+RI0eS87lz50ZDQ0NBaSpnZdQm5wcPHiwmyDT293//99md+z70wTGfM3fu3LjmmmuSO+dfPTvmcwDg3LlzcerUqeRO7uaJoixdujRqa9Pvh/bv319QGgBgsnn11VezO6MpQLnxxhuzO9u2bRvxdQEAmFqGhobie9/7XnLnrrvuilKpNOJrl0qleOCBB5I7O3bsiGPHjo342gAAAAAAo6EABQAAoEK6urqyO5O5AGXJkiXJ+XAKYAAmulwByooVK0b14cHxtipTgHLo0KGCkkxP/f398dWvfjW5c91118XqTHHJcN1www3J+fmdClAAGLvhvH9YuXJlAUnyampqsmUsClAAgCvZtWtXdmc0BSiNjY2xevXq5I4CFAAAXn/99eju7k7u3HnnnaO+/oMPPpjdeeKJJ0Z9fQAAAACAkVCAAgAAUCG5ApCGhoaYPXt2QWkqr7W1NTn3xB9gKsgVoCxfvrygJJW1UgHKuHr88cejt7c3ufPhD3+4YuflClAu7j4fQ/1DFTsPgOlpOO8fcqUjRVq7dm1yrgAFALiSnTt3JufNzc3R1NQ0qmvfdNNNybkCFAAAtm7dmt15z3veM+rr33333dnPsihAAQAAAACKogAFAACgQrq6upLz5ubmgpJUhwIUYDqYrgUoR44ciYGBgYLSTD+f/exnszuVLEC5/vrrk/Py5XJc3Hu+YucBMD0dPHgwOZ85c2a0tLQUE2YYFKAAAKO1a9eu9IWPqwAAIABJREFU5Hzjxo2jvvbmzZuT89dffz3Onj076usDADD55QpQGhsb49prrx319efOnRt33313cmfLli0xODg46jMAAAAAAIZLAQoAAECFdHZ2JucT6cav0Vi2bFly3tHREeVyuaA0ANUxVQtQVmUKUAYHBxVZVUl3d3c8+uijyZ1rr712TDdL/bQbbrghu3N+p5unABibQ4cOJefLly+PmpqagtLk5QpQ2tvbY2hoqKA0AMBkMp4FKOVyOXbs2DHq6wMAMLmVy+VsAcqdd94ZM2aM7ZaA+++/Pznv7e2NF154YUxnAAAAAAAMhwIUAACACpnqBSitra3J+blz5+KNN94oKA1A5Q0MDGR/LZ+sBSgrMwUoEREHDhwoIMn088gjj8Tly5eTO7/+678epVKpYme2tbVFQ0NDckcBCgBjdfDgweR81apVheQYrlwByqVLl6Kjo6OgNADAZHH69OlsaeymTZtGff0bb7wxu+NGUwCA6evgwYPZ96Pvec97xnxOrgAlIuKJJ54Y8zkAAAAAADkKUAAAACqkq6srOW9ubi4oSXXkClAiIvvBG4CJrKOjI4aGhpI7k7UAZdUwClDa29sLSDL9fPazn03OS6VSfOQjH6nomaVSKW644YbkzoWd5yp6JgDTz969e5PzlStXFpRkeHIFKBER+/fvLyAJADCZvPrqq9mdjRs3jvr6jY2NsXr16uTOtm3bRn19AAAmt61bt2Z37rzzzjGf8453vCP796AKUAAAAACAIihAAQAAqJDOzs7kvKWlpaAk1bFs2bLsjgIUYDI7cuRIdmeyFqDMiRmxLGYmdw4cOFBQmulj9+7d8dxzzyV33ve+90VbW1vFz84VoJzfdTbK5XLFzwVgeiiXy7Fnz57kzjXXXFNQmuFZs2ZNdkcBCgDw03bu3Jnd2bBhw5jO2Lx5c3KuAAUAYPr63ve+l5zPmzcv3vnOd475nFKpFPfff39y57nnnovTp0+P+SwAAAAAgBQFKAAAABVw6dKl6OnpSe5M9gKU5ubmKJVKyZ2Ojo6C0gBU3lQuQImIWB21yXl7e3tBSaaPz33uc9mdX/u1X6vK2bkClIFTl+Py8f6qnA3A1Hf8+PE4e/ZscmfdunUFpRmeOXPmZIs9FaAAAD9t165dyXlra2vU19eP6YxcAcrrr7+efe8FAMDUtHXr1uT8jjvuiJkz0w9BGK5cAcrg4GB861vfqshZAAAAAABXogAFAACgAo4fP57daW5uLiBJ9dTW1sbSpUuTO8eOHSsoDUDl5QpQ6uvro66urqA0lbcmrkrOFaBUVrlcji9+8YvJnXnz5sWHPvShqpyfK0CJiDj/ipunABidPXv2ZHcmWgFKRMTatWuTcwUoAMBPyxWgbNy4ccxn5ApQyuVy7NixY8znAAAwuRw/fjz27t2b3Lnzzjsrdt773ve+mDEjfWvBE088UbHzAAAAAADejgIUAACACujs7MzutLS0FJCkunJPy1aAAkxmBw4cSM6XL19eUJLqWBO1yXnu35+ROXDgQPbn9MMf/nDVSnU2bNgQNTU1yZ1z2/uqcjYAU99wClCuvvrqApKMjAIUAGCkcgUomzZtGvMZN954Y3Zn27ZtYz4HAIDJ5dlnn83uvOc976nYeQ0NDXHrrbcmd5544okol8sVOxMAAAAA4KcpQAEAAKiArq6u7E5zc3MBSaqrtbU1Oe/o6CgoCUDl5coqVq9eXVCS6sgVoBw/fjzOnTtXUJqpb+vWrdmdj370o1U7f/bs2dmbsBSgADBauQKU5cuXx9y5cwtKM3wKUACAkeju7s5+73/jxo1jPqepqSn7fScFKAAA00+uAKW2tjZuvvnmip55//33J+eHDx+O3bt3V/RMAAAAAIB/TAEKAABABXR2dibns2bNivr6+oLSVE+uAOXYsWMFJQGovKlegLI6rsru5H4OGL6nnnoqOa+rq4u77767qhlyH3o9t/0NT+kDYFRyBSjXXHNNQUlGJleA0tvbG729vQWlAQAmul27dmV3KlGAEhGxefPm5FwBCgDA9JMrQHnnO98Zc+bMqeiZuQKUiIgtW7ZU9Mxq2D94IG7pfW/yn/2D/l4UAAAAACYiBSgAAAAVkHsKZEtLS5RKpYLSVM+yZcuScwUowGRVLpfj0KFDyZ3JXoCyJmqzO+3t7QUkmR5yBSh33HFHzJw5s6oZcgUoAycux+WOS1XNAMDUlCtAWbduXUFJRiZXgBIRsX///gKSAACTwXAKUDZs2FCRs3IFKK+//nqcO3euImcBADDxDQwMxA9/+MPkzm233Vbxc2+++eZoaGhI7kyGAhQAAAAAYPJSgAIAAFABnZ2dyXlzc3NBSaqrtbU1Oe/q6orBwcGC0gBUTldXV1y8eDG5M9kLUFpiZsyKdBnXgQOedFYJR44cyf5c3nXXXVXPcdNNN2V3zm3vq3oOAKaWwcHBbEmIAhQAYCrIFaCsWLEi5s+fX5GzcgUoQ0NDsWPHjoqcBQDAxLdr165sAV41ClBqamrinnvuSe5897vfjcuXL1f8bAAAAACACAUoAAAAFZErQGlpaSkoSXXlClCGhobi+PHjBaUBqJzhFH+sWrWq+kGqaEaUYnXUJnfa29sLSjO1bd26NbtTRAHKddddF7NmzUruKEABYKQOHz4c/f39yZ2JWoDS2NgYCxcuTO4oQAEAfixXgLJp06aKnXXjjTdmd7Zt21ax8wAAmNieffbZ7E41ClAiIu69997kvK+vL5577rmqnA0AAAAAoAAFAACgArq6upLz6VKAEhFx7NixApIAVNZwClBWr15dQJLqUoBSjKeeeio5nzNnTtx0001Vz1FbWxs/8zM/k9w596ICFABGZs+ePdmdiVqAUiqVYu3atckdBSgAwI/t3LkzOd+4cWPFzmpqasqW777wwgsVOw8AgIntBz/4QXK+ZMmSqj284b777svuPPnkk1U5GwAAAABAAQoAAEAFdHZ2JufNzc0FJamuZcuWZXcUoACT0cGDB5PzpqammD9/fjFhqmhNXJWcD6cIhrxcAcrtt98eV12V/t+iUnJFK+d29EW5XC4kCwBTQ64AZebMmVW7+aISFKAAAMNx4sSJOHXqVHKnkgUoERGbN29Ozrdt21bR8wAAmLieffbZ5Py2226LUqlUlbNXr16d/R7ali1bqnI2AAAAAIACFAAAgDEaGhqK48ePJ3daWloKSlNdDQ0NMXv27OROR0dHQWkAKidX/LF69eqCklTXmqhNztvb25VhjFFnZ2f2xvD3vOc9BaWJuPnmm5PzwTMDcenAhYLSADAV5H6fW7NmTdTWpt9zjCcFKADAcOzatSu7U3QByuuvvx7nzp2r6JkAAEw8PT09sXv37uTObbfdVtUM9957b3L+/PPPx+nTp6uaAQAAAACYnhSgAAAAjFFPT09cvnw5udPc3FxQmuoqlUrR2tqa3Dl27FhBaQAqJ1eAsmrVqmKCVNmauCo5v3DhQrbUi7Tvfe972Z277rqrgCQ/kitAiYg4t72vgCQATBW5ApRrrrmmoCSjkytAOXbsWFy8eLGgNADARDWcApRrr722omfmClCGhoZix44dFT0TAICJ5/nnn8/ujHcBytDQUHznO9+pagYAAAAAYHpSgAIAADBGnZ2d2Z2WlpYCkhRj2bJlybkCFGAyyhWgrF69uqAk1bU6arM77e3tBSSZup566qnkfNasWXHrrbcWlCZi/fr1MXfe3OSOAhQARiJXgLJu3bqCkoxOrgClXC7H/v37C0oDAExUuQKUNWvWxLx58yp6Zq4AJSJi27ZtFT0TAICJ59lnn03OZ8yYETfddFNVM9xzzz0xY0b6NoMtW7ZUNQMAAAAAMD0pQAEAABijrq6u7M5UKkBpbW1Nzjs6OgpKAlAZAwMDceTIkeTOdCpAyZXBkLZ169bk/NZbb43Zs2cXlCaipqYmNt64KbmjAAWA4bp48WIcOnQouTPRC1Cuvvrq7M5rr71WQBIAYCLbuXNncr5x48aKn9nU1BSrVq1K7ihAAQCY+nIFKJs2bYr58+dXNUN9fX3ccsstyR0FKAAAAABANShAAQAAGKPOzs7kvFQqxZIlSwpKU325ApRjx44VlASgMo4dOxYDAwPJnalSgLIgamJRQ0Nyp729vaA0U09/f3/2hum77rqroDQ/cf1N1yfn51/uy/5/AAAifvQ+oVwuJ3cmegFKW1tb1NXVJXd27dpVUBoAYCIql8vZ9wPVKECJiNi8eXNyrgAFAGBqGxoaiueeey65c9tttxWS5d57703O9+3b58EKAAAAAEDFKUABAAAYo66uruR88eLFMXPmzILSVN+yZcuScwUowGQznA/m5Z6+O5msaVuenCtAGb329vYYHBxM7tx+++0FpfmJ6266LjkfOjcU33tia0FpAJjM9uzZk92Z6AUopVIpNmzYkNxRgAIA01tXV1f09vYmd8arAOW1116Lc+fOVeVsAADG3+uvvx6nT59O7rzrXe8qJEuuACUiYsuWLQUkAQAAAACmEwUoAAAAY9TZ2Zmct7S0FJSkGK2trcn5mTNnfAAbmFSmWwHK6ta25FwByugN56bwa6+9toAkb3bdTddndx7+1MMFJAFgssv9Xjd37txsaeZEoAAFAEjZuXNndme8ClCGhobipZdeqsrZAACMv2eeeSa7c+uttxaQJOK2226Lurq65I4CFAAAAACg0hSgAAAAjFGuAKW5ubmgJMXIFaBERHR0dBSQBKAyDh48mJy3tLTE7NmziwlTgDVty5Pz4RTC8PZyN4XPnj07li9P//xXw4o1K2LWqvR/w9957Ntx7NixghIBMFm9/PLLyfk111wTM2ZM/L9+zN2wvGfPnujv7y8oDQAw0eTe88yYMSPe8Y53VOXsXAFKRMS2bduqcjYAAOMvV4DS2NgY69evLyRLbW1t3H333cmdb33rWzE4OFhIHgAAAABgepj4n0AEAACY4Lq6upLzlpaWgpIUYzhP83YDNTCZ5Ao/Vq9eXVCSYuQKUI4ePRoXL14sKM3Usnv37uR8vG4KL5VKsegj6fcjQ0ND8elPf7qgRABMVs8991xyXtTNF2OVK0AZGBiIvXv3FpQGAJhocgUo69atizlz5lTl7Kampli5cmVy54UXXqjK2QAAjL9cAcrtt99e6N813Xvvvcl5b29vvPjiiwWlAQAAAACmAwUoAAAAY9TZ2ZmcK0ABmNhyBSirVq0qJkhB1ixPF6CUy+Vob28vKM3UsmfPnuR83bp1BSV5q0W/2hxRk9751Kc+5Sl9AFxRd3d37Nu3L7lz0003FZRmbHIFKBERu3btKiAJADAR5QpQrr/++qqev3nz5uR827ZtVT0fAIDxcfz48ez33+64446C0vzIfffdl93ZsmVLAUkAAAAAgOlCAQoAAMAY5QpQmpubC0pSjNmzZ0dTU1Ny5+DBg8WEAaiAXAHK6tWrC0pSjGtWrMru5Io8eHsTuQDlqpZZUX9/+vfvw4cPx5NPPllQIgAmmx/+8IfZnVtvvbWAJGO3fPnymD9/fnJHAQoATE+XL1+OV199Nbkz3gUor732Wpw9e7aqGQAAKN4PfvCD7M7tt99eQJKfWL9+fbS1tSV3FKAwFR05eik+/ZnO+OSnOuLZ59+Icrk83pEAAGBaGxxojzPH3538Z3DAg/8ApgoFKAAAAGPQ29sbfX19yZ2WlpaC0hRn5cqVyfnevXsLSgIwNpcuXYqOjo7kzlQrQGldujTmzJmT3PHr+Mi98cYb0dXVldwZzwKUiIjFv74su/M3f/M3BSQBYDJ67rnnkvOamprszboTRalUig0bNiR3FKAAwPS0Z8+e6O/vT+5UuwDlpptuSs6HhobihRdeqGoGAACK98wzzyTntbW1cfPNNxeU5kdKpVLce++9yZ1nnnlGQR9Txp695+Nf/M7uuP7mF+J/+Xft8Qd/fCB+9udfiQ/8wivx6qv+Dh0AAACgCApQAAAAxqC9Pd8UnCsLmYxyN3Dv2bOnoCQAY3P48OHs05qmWgHKjBkz4uqrr07u+HV85Ibzc7Z+/foCklzZwnsa46rWWcmdr3/963Hx4sWCEgEwmeQKUDZt2hTz5s0rKM3Y5QpQXn311YKSAAATycsvv5zdGe8ClIiIZ599tqoZAAAoXq4A5cYbb8w+5KAacgUoly9fjq1btxaUBqqjt/dMfOx/2hu33bU9vvLVU/HTHyF49vm+uOnmn49PfOITMTAwMD4hAQAAAKYJBSgAAABjMJwClLVr1xaQpFi5ApS9ez31BJgcDhw4kN1ZtWpV9YMUTJFV5Q3n5yz3815tpZpSLPpoS3Ln0qVLbvgG4C3K5XI8//zzyZ1bb721oDSVsXHjxuR879690d/fX1AaAGCiyBWgLFiwIFasWFHVDI2NjdkSVQUoAABTy8WLF2Pbtm3JnTvuuKOgNG/2vve9L7uzZcuWApJAdbzxxhtxx7s/HF985EQMDV15r7+/P/7oj/4o3vve90Zvb29xAQEAAACmGQUoAAAAY7B///7kfMGCBdHY2FhQmuLkbuA+depU9PT0FJQGYPT27duXnM+YMSOWL19eUJriKECpvN27dyfnjY2N0dTUVFCaK1v0K83ZneE87RqA6WX//v3R3d2d3LnlllsKSlMZuQKUgYEB74kAYBrK/Zn4+uuvj1KpVPUct912W3L+gx/8IMo//UhyAAAmrRdeeCFbxjteBShLliyJd77znckdBShMZn/4h38Ye/bkH5zyY08//XR87GMfq2IiAAAAgOlNAQoAAMAYtLe3J+dr1qwp5MPQRcvdOB/xo6dlA0x0r732WnK+YsWKqK2tLShNcXK/jnd1dUVfX19Bad5s6MJgnPxMRxz+433R8RcH4/yrZ8clx0jlbpDOPbm5KFe1zYqZi9L/TStAAeCnPffcc9mdW2+9tYAklZMrQImI2LVrVwFJAICJZDgFKEXIFaCcOHEiDh48WEgWAACq7/vf/3525/bbby8gydu79957k/Ndu3bF4cOHC0oDldPe3h5/8zd/M+LXPfzww/HCCy9UIREAAAAAClAAAADGYP/+/cn52rVrC0pSrGuuuSa740nZwGSQK0C59tprC0pSrOH8Oj4eRVZnX3wjdr77h3Hwd/fE8f9yNI594mDsuvOF6PqrIxP+qca53/eGUx5WhFKpFHM3zkvuKEAB4KflClDq6uom3fumtra2mD9/fnJHAQoATC89PT1x9OjR5E5RBSjvete7sjvPPvtsAUkAACjCM888k5yvWbMmmpubC0rzVrkClIiIxx9/vIAkUFkf//jHY2BgYFSv/bM/+7MKpwEAAAAgQgEKAADAmLS3tyfna9asKShJserr62PJkiXJHQUowGQwXQtQhlPGUfSv4y88/cPY/cGX4tKBi28elCOO/On+OPmZzkLzjES5XJ40BSgREXM21CXnL7300oQvnAGgWLkClJtvvjlqamoKSlMZpVIpNmzYkNxRgAIA08srr7yS3SmqAGXjxo0xb166wFQBCgDA1FAul+P73/9+cueOO+4oKM3be/e73x1z585N7jz22GMFpYHKeO211+Lzn//8qF//+OOPZ793DgAAAMDIKUABAAAYpf7+/jh8+HByZ+3atQWlKd4111yTnCtAASa6M2fOREdHR3JnqhagLFq0KOrr65M7e/fuLShNxLe+9a34jQf+eQydHbzizuE/3Buv7ni1sEwj0dnZGWfPnk3urF+/vqA0eXM3pm+gOnXqVBw/frygNABMdJcuXYodO3Ykd2699daC0lTWxo0bk3MFKAAwvbz88svZnU2bNhWQJGLmzJlx8803J3d+8IMfFJIFAIDq2rNnT5w6dSq5M94FKLNnz473v//9yZ1vfetbceHChYISwdj96Z/+aQwNDY3pGn/2Z39WoTQAAAAA/JgCFAAAgFE6fPhw9i/C16xZU1Ca4q1bty45V4ACTHSvv/56dmeqFqCUSqUJU2S1bdu2eOihh+LC+fQHIsuXyvFvfuV/jDfeeKOQXCOxe/fu7E7u980izdlYl90Zzk1fAEwPL730UvT39yd3pmoByr59++LixYsFpQEAxlvuz8Jr166N+fPnF5Qm4rbbbkvOt2/f7gZTAIAp4JlnnsnujHcBSkTEgw8+mJxfuHAhvvvd7xYTBsboxRdfjC9/+ctjvs4TTzwR3//+9yuQCAAAAIAfU4ACAAAwSvv378/urF27toAk4yN3I/fevXujXC4XlAZg5F577bXszlQtQImYGEVWAwMD8Vu/9VvDvrH44N6D8Tu/8zsT7veX3M9VqVSKq6++uqA0eXPWz81+Z1gBCgA/9uyzz2Z3pmoByuDgYLz00ksFpQEAxlvuz8LXX399QUl+5F3veldyPjAwENu3by8oDQAA1ZIrT1i4cGFs2LChoDRX9sADD2R3Hn300QKSwNj95V/+ZXbngZ9tjH/2K0uyex//+McrEQkAAACA/58CFAAAgFFqb29PzmtqamL58uUFpSle7sb5c+fORWdnZ0FpAEYuV4CyZMmSaGxsLChN8YZTgFLtopFHH300duzYMaLXPPzww/Htb3+7SolGJ1eAsmLFipgzZ05BafJmzK6J2VfPTe4oQAHgx3JPoG1ra4uWlpaC0lTWcG5ifv755wtIAgCMt8HBwdi5c2dyp+gClOGUzA2nrA4A4P9j777Dorzyt4Hfw9CrXWxBsaASBQtYiChKjBFLVCKJGo1R08wvxd2Ujdloym5iejVNYzQae0OsIPaGXWOhCHZFBVGRzsz7R97dTdFznmlnZuD+XJfXtfHcc+aOawaYeZ7vIccme/+tW7ducHGx/yX/jRs3RlhYmDCzevVqhzvIgOjPbt68iWXLlgkzOh0w+dV78PJLTeDqqhNmN2zYgNOnT1uxIRERERERERFR9Wb/d0OJiIiIiIic1KlTp4TrQUFBcHNzU9RGPdmN84D8hnAiIns6efKkcL1NmzaKmtiH7HW8oKAAeXl5Nu2wYMECsx6n5UQuldLT04XrWr5mquYd6iNc5wAUIiICAKPRiO3btwszXbt2VdTG+ho0aIDGjRsLMxyAQkREVD1kZWWhqKhImFE9AKV+/fpo1qyZMMMBKERERETOLS8vT/qZZVRUlKI2cnFxccL1M2fO4Pjx44raEJln8eLFKC4uFmaGPVQHoW18EHSPJ0Y9Wk+657x586xVj4iIiIiIiIio2uMAFCIiIiIiIjNlZ2cL14ODgxU1sY/mzZtDpxOfcsIBKETkyE6cOCFcr+oDUFq2bCnN2PJ1vLCwEImJiWY9duPGjSgsLLRyI/OUl5dLbzZyxAEoXqG+wvXjx4+jvLxcURsiInJUZ86cwcWLF4WZ++67T1Eb2+jSpYtwnQNQiIiIqoe9e/dKM+3atVPQ5I9kw+Z27twJo9GoqA0RERERWdvOnTulGWcagAIAq1evVtCEyHyzZ8+WZl6Z1OS///tvLzSBm5v4+qiff/6ZP5sREREREREREVkJB6AQERERERGZ6dSpU8L15s2bK2piH15eXrjnnnuEGQ5AISJHVVpaKn0d5wAU276OJyYmSk/WupvS0lIkJydbuZF5UlNTkZeXJ8yEhIQoaqOdd6iPcL28vBzp6emK2hARkaPavn27NOPsA1AiIyOF6xkZGbh+/bqiNkRERGQvsgEo/v7+dnnPXzYA5cKFC9L3uIiIiIjIce3YsUO4rtfrpe9fqdSlSxfUrl1bmElKSlLUhsh0p06dwrZt24SZbl380aql93//uUljDwx4sJbwMenp6di3b59VOhIRERERERERVXccgEJERERERGQGo9GI7OxsYSY4OFhRG/tp1aqVcJ0DUIjIUWVmZsJgMAgzVX0Air+/PwIDA4UZW76Oz58/36LHJyYmWqmJZRYuXCjN9OzZU0ET03iF+kozR44cUdCEiIgcmewGDB8fH4SFhSlqYxtabiCR3RBNREREzi8tLU243rlzZ7i4qL/Mqnv37tLM5s2bbV+EiIiIzHaqMgeR12OEv05V5ti7JtnJzp07hesdOnSAj494qP1//P7vWrdb43C/u9tffp3WWdZXr9ejX79+wsyOHTuQm5tr2RMR2cicOXOkmUeH1/3L7yXE15M+bu7cuWZ1IiIiIiIiIiKiP+IAFCIiIiIiIjNcvXoVhYWFwow9ToNUrWXLlsJ1DkAhIkd14sQJaaaqD0AB5IOsMjMzbfK8+fn5WL9+vUV7JCUlobKy0kqNzFNWVobly5cLM61atUK7du0UNdLOvZEH9AGuwgwHoBAR0fbt24XrXbt2haur+OuJo9NyM7PshmgiIiJybuXl5Th06JAwo2Vomi2Eh4fD399fmOEAFCIiIiLnVFZWJh28q2UgnmpxcXHCdYPBgBUrVihqQ6SdwWCQDkDx9HTB4IF1/vL7fWJqoE6dWsLHzp8/H+Xl5RZ1JCIiIiIiIiIiDkAhIiIiIiIyS3Z2tjQTHBysoIl9yW6cz87ORkVFhaI2RETayQag+Pn5oVGjRora2I+9BlktW7ZMevGXa2034fq1a9ewe/dua9YyWXJyMgoKCoSZhIQE6HQWHqdnAzqdDt6h4hMDOQCFiKh6u379Oo4dOybMREVFKWpjO76+vmjbtq0wwwEoREREVduvv/6KkpISYSYiIkJRmz9ydXVFdHS0MLN582YYjUZFjYiIiIjIWg4cOCD9PtQR33/r16+fdCjy0qVLFbUh0m7r1q04ffq0MDOwfy0E+P/177ebmwsShouH/1y9ehXJycmWVCQiIiIiIiIiInAAChERERERkVlOnTolzXAAym8nZ545c0ZRGyIi7WQDUFq3bu2QQyusTfY6np6ebpNTqubPny8OuADB37aR7pOYmGilRuZZuHChNJOQkKCgiXm8Qn2F6wcPHuQNVERE1diuXbukXwfuu+8+RW1sKzIyUrielpbGr4lERERVmJZhZ/ZNqUQSAAAgAElEQVQagAIAvXr1Eq5fuHBB02cWRERERORYduzYIc044gCUmjVrIjY2VphJTU1FXl6eokZE2vz888/SzKPD6911beTIIVZ5DiIiIiIiIiIiEuMAFCIiIiIiIjNkZ2cL12vXro2AgABFbexHduM8AJw8eVJBEyIi08gGoLRpIx++URWEhIQI10tLS63+On7lyhVs3rxZmPG7rwb8e9eEexMPYc6eA1BKSkqwYsUKYSY0NBShoaGKGpnOu62PcP3y5cv8Ok5EVI1t375duO7i4oKuXbsqamNbsgEoubm5OHfunKI2REREpNrevXuF64GBgWjcuLGiNn8lG4ACQPpeCxERERE5HtkAlKCgIDRq1EhRG9PEx8cL1ysrK7Fy5UpFbYjkSktLsXTpUmGmYQN39OxR467rERHt0bJlS+EeiYmJKC4uNqsjERERERERERH9hgNQiIiIiIiIzCA7TbF58+aKmthXUFAQ3NzchJnDhw8rakNEpE1lZSXS09OFmeoyACU8PFyaOXjwoFWfMyUlBQaDQZipPaQedDodajxYR5g7efIkMjIyrFlPs3Xr1uHWrVvCzPDhwxW1MY93mJ80s379egVNiIjIEcluwAgLC4Ofn/xriTPo0qWLNLNnzx4FTYiIiMge0tLShOsRERHQ6XSK2vxVeHg4/P39hZlNmzYpakNERERE1lBZWYktW7YIM1FRUYramG7w4MHQ6/XCzJIlSxS1IZJbt24dbty4IcwMH1YXev3df/bT6XR47LHHhHsUFRXx5zMiIiIiIiIiIgtxAAoREREREZEZZANQgoODFTWxL1dXV+mQgAMHDihqQ0SkzZkzZ1BSUiLMVJcBKPfccw9q1qwpzNhiAIqIzlWHmoPqAgBq9Kst3W/VqlVW6WUq2QlhAJCQkKCgifm82/lCX9NVmFm3bp2iNkRE5EhKS0ulNwLfd999itrYXmhoKLy8vIQZ2Z8HEREROafbt2/j2LFjwkxkZKSiNnem1+sRHR0tzGzevBlGo1FRIyIiIiKy1L59+5Cfny/MOPIAlDp16qBXr17CTEpKCgoKCtQUIpKYP3++NJMQX0+aGTlypDSTmJioqRMREREREREREd0ZB6AQERERERGZISMjQ7jevHlzRU3sr0OHDsJ1a984T0RkKdlNLUD1GYCi0+mUvo4bjUbpABTfbgFwrekGAPDrXgN6P/HpcfY4QctgMGDDhg3CTFhYGEJCQhQ1Mo9Or0NAL/EAnC1btqC4uFhRIyIichQHDhyQDoxz5BswTOXm5oaOHTsKMxyAQkREVDUdOHAABoNBmImIiFDU5u5iYmKE6xcvXkRWVpaiNkRERERkqfXr10szsgEj9hYfHy9cLy8vt9tBBkS/V1hYKB1K0u7eELRp7S3dKzg4GO3btxdmkpKSOKCSiIiIiIiIiMgCHIBCRERERERkosuXL+PKlSvCTHUagCK7SSw7O5un+hCRQzl06JBw3d3dHcHBwYra2J9sAMqhQ4esdoFWZmYmzp07J8z49/zfQA4XdxcExNYS5nfv3q38ArIjR45IvxcYPny4ojaW8e8t/vMtKSnBtm3bFLUhIiJHkZycLM1UpQEoABAZGSlc37t3r3QoDBERETmfvXv3SjOdO3dW0ERMy82vmzdvtnkPIiIiIrKOdevWCdebNGni8Ac2DBkyBDqdTphZsmSJojZEd5eYmCg98CHhkYGa9xs0aJBw/cKFCzwsioiIiIiIiIjIAhyAQkREREREZCLZjfMApKd9VCWyG+cBbX9mRESqyC42Cg0Nhaurq6I29id7Hb9x4wZycnKs8lwpKSnSzO8HoNzpn/8sLy8PmZmZFvUylZabwgcMGKCgieUCJANQAPlFuEREVPWsWbNGuB4UFITGjRsraqNGly5dhOvFxcXYvn27ojZERESkSlpamnC9efPmqF27tqI2dxcWFoaAgABhZtOmTYraEBEREZElrl+/jj179ggz/fr1kw4Xsbf69eujR48ewsz69etx69YtRY2I7mz+/PnSTMJw7Z/tDhwoH5ayatUqzfsREREREREREdEfcQAKERERERGRiWTDPPR6PUJDQxW1sb+wsDBphiebEJEjkb2OaxnsVJVo+fe11uu4bACK3l8Pn3C/P/yeb4T45h4A2LVrl0W9TLVhwwbhev369dGuXTtFbSzj3sADXm19hJn169crakNERI7g2rVr0huBY2NjFbVRJyoqSprhUDAiIqKqZ+/evcL1iIgIRU3E9Ho9oqOjhZnU1FQYDAZFjYiIiIjIXCkpKdLv2/r166eojWXi4+OF66WlpVi9erWiNkR/lZ+fL/2ss2vXrmjWrInmPTt37ozAwEBhJjExUfN+RERERERERET0RxyAQkREREREZCLZjfNt2rSBp6enojb25+/vj5YtWwozBw4cUNSGiEisoKAAOTk5wkx4eLiiNo4hJCQEXl5ewow1BqBUVlYiNTVVmPGLrgmd/o+n2XmGeEPvrxc+TuUAlOLiYmzbtk2Y6du3r8Ofyvd7Ab1rCdePHz+Oc+fOKWpDRET2tn79ehiNRmGmf//+itqo07hxY+kwUw5AISIiqlpyc3ORnZ0tzDjKABQAiImJEa7n5ubi6NGjitoQERERkblk7zHp9Xr06dNHURvLDB06VJpZsmSJgiZEd7Zo0SKUl5cLM48++qhJe7q4uGDAgAHCzIEDB3DhwgWT9iUiIiIiIiIiot9wAAoREREREZGJZANQqtuN8wDQoUMH4bo1bpwnIrKGw4cPSzPV7XVcr9ejffv2wow1Xsf379+PGzduCDMBPWv+5fd0Ljr4dPIXPk7lAJRt27ahtLRUmLn//vsVtbEO/95//XP/M9nJaEREVHWsWbNGuO7q6orY2FhFbdSSnax77NgxnD9/XlEbIiIisrVNmzZJM5GRkQqaaKPlJtgNGzYoaEJERERE5jIajdIBKN26dUNAQICiRpZp1KgRunfvLsysWbMGt2/fVtSI6H+MRiOmT58uzLi4uGD48OEm7z1w4EBpJikpyeR9iYiIiIiIiIiIA1CIiIiIiIhMcvv2bWRkZAgz1e3GeQDo2LGjcP3EiRMoKipS1IaI6O5kQ6wAICwsTEETx6JikFVKSoo043+HASgA4NtZPADl119/xa1bt8zqZSotNxI5203hfl0D4OXtJczILsYlIqKqobKyUvqa36NHD/j7i782O6sHHnhAmuFQMCIioqpDNgDF3d0dnTp1UtRGrl27dqhfv74ww+9ViIiIiBzbsWPHcPHiRWFGNqTX0QwbNky4XlxcjLVr1ypqQ/Q/27dvx9GjR4WZmJgYBAYGmrx3bGwsPD09hZnExEST9yUiIiIiIiIiIg5AISIiIiIiMsnRo0dhNBqFmeo4AEV247zBYJBeVEBEpIJskEfz5s2r7A29IrLX8UuXLiE3N9ei55ANQGnQpAE8mt95CIdvhPj/E4PBgLS0NLO7meKbb74Rrrdr1w4NGjRQ0sVaXDz16NKzizCzc+dORW2IiMie0tLSkJ+fL8z0799fURv1evToAS8v8VAw3lRMRERUdcgGoHTr1k36vYFKOp0Offv2FWa2bdvGYeREREREDkzLwPmqNgAFAJYuXaqgCdEfffXVV9LMqFGjzNrb29tbeihGSkqKskM8iIiIiIiIiIiqEg5AISIiIiIiMsGhQ4ekGQ5AuTPZ0AEiIhVkr+PV8TUcsP3reFFREXbs2CHMRPWJgk6nu+OaT2f5UJrdu3eb1U0Lo9GIuXPnom7dutKbiGQ3IjmqHn2jheuXLl3CzZs3FbUhIiJ7WbNmjTRTlQegeHp6olevXsJMcnIyKioq1BQiIiIimzl//jwyMzOFmZiYGEVttJO971BWVoatW7cqakNEREREplq9erVwvW7dupo+t3MkQUFBiIiIEGaSkpJQXFysqBERcPHiRSxbtkyYqVWrFhISEsx+joEDBwrXy8rKNL3nTkREREREREREf8QBKERERERERCaQ3TjfpEkT1K5dW1Ebx1G3bl00btxYmDlw4ICiNkREd1ZWVobjx48LM852QaG1tGvXDnq9XpixZADK9u3bUVZWJsx07xN11zXXGm7wbOUtfPyuXbvM6qbFa6+9hsceewzXrl2TZp11AMq9He+VZjIyMhQ0ISIie5JdjB0UFIQ2bdooamMfshN2CwoKsHfvXkVtiIiIyFY2bdokzfTu3VtBE9PIThgHgA0bNihoQmS+U5U5iLweI/x1qjJH+4bHMgFdW/GvY+KBR0RERP9lw68r165dkw6r69u3L1xcnO/y/mHDhgnXCwsL+X0qKfX9999LB1mPGzcOXl5eZj/HwIED73rAx3/IhrAQEREREREREdFfOd87pERERERERHYkG4ASHh6uqInjkQ0NsOTGeSIiazh27BjKy8uFmer6Ou7p6Sm9mdmS1/GUlBRppnvv7sJ13wh/4fru3bthNBpN6qXF4cOH8cEHH2jKenh4oEePHlbvoEKzkGBpJj09XUETIiKyl0uXLkkHV/bv3196Qbeze+CBB6SZdevWKWhCREREtiQbgOLl5YXIyEhFbbQLDAxEWFiYMLN+/XpFbYiIiIjIFKtWrYLBYBBmZMN5HZVsAAoALFq0SEETqiqMRiOuXLmCnJwc6X83f1ZWVobvvvtOmNHpdHjmmWcsqYgGDRqgW7duwsyaNWtQUlJi0fMQERERERERkfUZyspsct05WQcHoBAREREREWlUWVmJI0eOCDPV9cZ5QD4A5ciRI9LBA0REtiQbYgXIX8uqMtm/+86dO81+ozc5OVm43r59e9SpX1eYkQ1AycvLQ2am9U9ynTNnjuZsjx49LDolzJ5q1amFWrVqCTMZGRmK2hARkT0sXrxYmunfv7+CJvbVqlUrNG3aVJhZu3atmjJERERkM6mpqcL1qKgoeHh4KGpjGtnAtuPHj+P8+fOK2hARERGRVsuWLROuu7q6Ii4uTlEb62rRooX0epkVK1agsLBQUSNyRgaDAdu2bcOkSZPQvHlz1K9fH8HBwahduzaeeOIJJCcno6KiQrrP+++/j8uXLwszcXFxaNasmcWdhw4dKlwvLCzUdFgIEREREREREdle2aXLOPev93G4WzTSGgbhQNv2yH5hEopPZdu7Gv0JB6AQERERERFplJmZieLiYmGmOg9A6dixo3C9rKwMR48eVdSGiOivZANQ6tatiwYNGihq43hkA1AuXLiAkydPmrzv1atXpX/2sbGx0n18IwKkmV27dmnupdX27ds1ZwcOHGj151epVatWwvX09HRFTYiIyB7mz58vXPfw8EBMTIyiNvaj0+mkNxXv3bsXly5dUtSIiIiIrC0nJwdnzpwRZnr37q2ojen69u0rzciG0RIRERGRWrdu3ZJ+j9arVy/UrFlTUSPri4+PF64XFRVhxYoVitqQs9mxYwciIiIQHR2NTz/9FDk5Of9dKygowKxZs9C3b180adIEr7/++h/Wf+/IkSN45513pM83ceJEq/QeMmSINCMbfkREREREREREtnX+9Glkjn8aB9t3xIWPPkHxyZNAZSXKL+fiypy5ONL1Pkx94QVcuXLF3lXp/+MAFCIiIiIiIo1kN28D1XsAiuzGeQDYtGmTgiZERHd28OBB4Xp4eDh0Op2iNo6nR48e0syGDRtM3ld2ojKgbQCKZ4g3fP19hZndu3dr7qVFSUmJ9O/Nf9SvXx9jx4616vOrFhISIlznABQioqorOztb+nU0NjYWPj4+ihrZV79+/aSZpKQkBU2IiIjIFrS8T+3Ig9+ioqLg5eUlzKxbt05RGyIiIiLSYu3atSgtLRVmhg4dqqiNbQwfPlyamTdvnoIm5Gy+//579OrVCwcOHJBmL1++jPfeew/NmzdHXFwcDh8+/N+18vJyjBkzBhUVFcI9WrRooWmwpBbBwcEICwsTZlauXCntRERERERERES2sWXLFjwYFo68pctgvMvP58aKCvz89XS0bdsWmzdvVluQ7ogDUIiIiIiIiDSS3QDt7++Ppk2bqinjgJo0aYLAwEBhJiUlRVEbIqI/MhgM0kFWWgY5VWUdOnRArVq1hBlzTg+Wvfa7ublpGr6ic9EhLFI8aCwtLc2kbjL79+9HeXm5NBcUFIQNGzbAz8/Pqs+vmmwASkZGBgwGg6I2RESk0vz586WZESNGKGjiGGJjY+Hu7i7MJCYmKmpDRERE1iYb1urr64tOnTopamM6T09P9OzZU5hZv369pvc0iIiIiEiN5cuXSzODBw9W0MR2WrZsiS5duggzGzZsQG5urqJG5OgqKirw4osv4qmnnjJ5QIjRaMSaNWvQqVMnTJw4ERcuXEBcXJymw62ef/55uLhY7zYa2fCi/Px8bN261WrPR0RERERERETaFBYWYuTIkSi6fVtTPi8vD3Fxcbhw4YKNm5EMB6AQERERERFpJBuAEhYWZtUPyJ2NTqdDnz59hJmtW7dKTzUiIrKFrKws3Lp1S5gJDxcP16jq9Ho9YmNjhZnNmzejrKxM855Go1E6NKVbt27w9fXVtF+HLuIhNUeOHEFxcbHmfjK7du2SZj799FNkZGSgffv2Vntee5ENQCkqKuKb+kREVZDRaJSevOrt7Y1BgwYpamR/vr6+0p9vU1JScFvjh+NERETkOAwGAzZu3CjMREdHw83NTVEj88hOK79x4wa2b9+uqA0RERERiZSWlmL16tXCTNeuXdGwYUNFjWxn1KhRwnWDwYAFCxYoakOOzGg0YuzYsfj8888t2qeyshLTp09H48aNNR3mERoaiieffNKi5/wz2QAUAFi6dKlVn5OIiIiIiIiI5L799luTr3suKirCe++9Z6NGpFX1vTOPiIiIiIjIBBUVFdKboKv7jfMApDfOFxUVYffu3YraEBH9j+xkX4Cv4wBw//33C9dv376taSjIf2RnZ+PMmTPCjOxrx++1jxAPGamoqNB0qpdWO3fuFK4HBwfjxRdfhLu7u9We055kA1AAICMjQ0ETIiJS6ciRIzhx4oQwM3jwYM0Dy6oK2cCXkpISpKSkKGpDRERE1rJz505cvnxZmImJiVHUxnxxcXHSTFJSkoImRERERCSzceNG6UENWgYoOIOEhATo9XphZu7cuYrakCP77rvvlP9dcHFxwaxZs+Dh4WHVfUNDQ9GyZUthZtWqVTAajVZ9XiIiIiIiIiK6u+LiYnz00UdmPXbRokWoqKiwciMyBQegEBERERERaXDw4EEUFhYKM506dVLUxnHJTsgGwBvEiMguZCf7+vv7o1WrVoraOC7ZABQAmk7O+g8tr/mmDEAJiwyTZvbs2aN5PxGj0Sgd9tKtWzerPJejaNGiBXQ6nTCTnp6uqA0REakyf/58aebRRx9V0MSxDBgwQJpZtWqVgiZERH9UdrEUV+dewrk3TyHjkSM4HrsfmSOP4tr8yygtLbV3PSKHt2TJEmmmd+/eCppYplWrVtL3svi9ChEREZFjWLx4sTQzZMgQBU1sr27duujXr58ws2/fPn7eVM3l5+dj8uTJyp/35ZdfRkREhNX31el00iFG586dw5EjR6z+3ERERERERER0ZzNnzkRubq5Zj7169So2bdpk5UZkCg5AISJyEuV5ZShYfw1XfrqI2wdvwmjgJHAiIiKVtmzZIs1ER0craOLYmjRpIr3oWjaEgIjI2iorK5GamirMxMTESE8jqw6CgoKkp1Nt2LBB836yASh+fn4mXWRWu14dNG3aVJhJS0vTvJ/ImTNnpCdCd+/e3SrP5Sg8PDykf768IJWIqGoxGAzSASg1a9bEAw88oKiR42jcuLF00OmqVatgMBgUNSKi6u7yhcvIGnsMh8N24fTz6bj81Tnc2JCP2wduoWBtHnImnkSv5tH497//jYKCAnvXJXJIBoMBS5cuFWbuuecedOjQQVEjy8gGtmVmZiIjI0NRGyIiIiK6k6KiIukQvnvvvRctWrRQ1Mj2Ro0aJc3Mnj1bQRNyVFOnTkV+fr7S52zdujWmTp1qs/0feughaYZDKomIiIiIiIjUKCsrw7Rp0yzaY+HChVZqQ+bgABQiIgdmKDXg2oLLyHj4CA613onMR3/FmUkZON7nANKHHEbuRfMmkBEREZHptm7dKlxv3Lix9Ibh6iI2Nla4npaWhhs3bihqQ0QEHDp0SHoBley1qzrp27evcH3fvn2aLkgrLy+XDr2KiYmBq6urSf0iIyOF69YagLJr1y5pplu3blZ5LkcSEhIiXOcAFCKiqmX16tU4e/asMPPwww/D3d1dUSPHMmjQIOH6lStXrPa9BxGRyNKlSzGgQ39cX3kVqLx77urlq5g8eTJat26NzZs3K+tH5Cz27NmD8+fPCzPx8fHQ6XSKGllm4MCB0gxvsCMiIiKyr+XLl6OwsFCYGTJkiKI2agwaNAi+vr7CzKxZs1BeXq6oETmSY8eOYfr06ZqyISEh6NmzJ4KCgix6Tk9PT8yePRuenp4W7SMSGRmJevXqCTP8+YyIiIiIiIhIjdmzZ0s/F5ZZtmwZysrKrNSITMUBKEREDupAcRGORe9FzrMncWNj/l8uZry1rQAvjniep0sSEREpUFlZiW3btgkzPXv2dJqLom1NNkSgsrISW7ZsUdSGiAjSIRwA0KdPHwVNnMP9998vXDcajUhNTZXuk5qaiuvXrwsz5gyekQ1AOXXqFPLy8kze989kA1B8fHzQrl07i5/H0XAAChFR9fL5559LMyNGjFDQxDHJBqAAwMqVKxU0IaLqymAwYOLEiYiPj0dBfoHmx+Xm5uKhhx7C6dOnbVeOyAktWbJEmomPj1fQxDqioqIQEBAgzCQlJSlqQ0RERER3MmfOHGnm0UcfVdBEHW9vbwwbNkyYuXz5MhITExU1IkdhNBrx0ksvobJSMN0VgE6nw6pVq3Dy5Els3rwZ2dnZ2LhxIxISEqDX6016Tj8/P6xYsUL6GbOlXFxcEBcXJ8ykpaUhN5cHXxIRERERERHZksFgwLRp06Q5t8D6wvXr168jJSXFWrXIRByAQkTkgPJQgafPn0FJZrEwt3f7Xn4IREREpMDRo0dRUCC+waBnz56K2ji+Xr16wcVF/OMm3wggIpVkrzkNGzZE69atFbVxfL169ZJeOKbldKqFCxdKM7YYgAIAe/fuNXnfP9u5c6dwPSIiAq6urhY/j6ORDUA5c+YMSkpKFLUhIiJbOnr0qHRQXKNGjdCjRw9FjRxPWFgYmjRpIszMmzdPesE+EZG5Xn/9dc2nIv/ZjRs38MILL1i5EZHzMhqN0gEojRo1QpcuXRQ1spybmxsefPBBYWbbtm3SAbVEREREZBsXLlyQfk4ZERGBNm3aKGqkzujRo6WZb7/9VkETciRr1qxBcnKyNDdr1iwMGDDgv//s4uKC3r17Y8GCBdi/fz86d+6s6fmioqJw+PBhPPDAA2Z3NsXvO9/N6tWrFTQhIiIiIiIiqr727duHU6dOCTPujRuj9YJ50r20XAtPtsEBKEREDuhd5CFf4wXTM2bMsHEbIiIi2rp1qzTDASj/U7NmTXTq1EmYkd1kR0RkLSUlJdi+fbswExsbC51Op6iR4wsICEDXrl2FmUWLFglvnikrK8Py5cuFe7Rq1cqswTMdO3aUDmjZs2ePyfv+XlFREQ4fPizMdOvWzaLncFSyAShGoxFZWVmK2hARkS198cUX0szTTz8tHXBZlel0OgwaNEiYOXfuHId8EpFN7NmzR9OpRCKJiYlISkqyUiMi57Zv3z6cPXtWmBk2bJjTfe8ju8GusrIS69evV9SGiIiIiH7vl19+gcFgEGa0DApxRjExMWjZsqUwk5KSws+cqpHKykq8+uqr0lxMTIzwv4uwsDDs3r0bX375Je699947Znx8fPDuu+9i8+bNaNasmdmdTdW3b1+4u7sLM1oOGiEiIiIiIiIi88kOwASAhi88B+/27eAV0kqYW7FiBQ+NtBPn+tSeiKgaKC8vx1zc0Jxfu3YtLl68aMNGREREtGXLFuF6/fr1pRduVDexsbHC9ePHjyMzM1NRGyKqznbt2oXi4mJhpk+fPoraOI/7779fuF5SUoKffvrpruvJyckoKCgQ7pGQkGDW4BkfH5+7Xsz2H2lpaSbv+3v79u1DRUWFMNO9e3eLnsNRyQagAEB6erqCJkREZEvXrl3D3LlzhRkPDw889dRTiho5roceekiamTlzpoImRFSdGI1G/P3vf7fKXs8//7z052Ki6mDx4sXSzMMPP6ygiXU9+OCD0qEtS5YsUdSGiIiIiP7DaDRi9uzZwoyrqyseeeQRRY3U0ul0ePLJJ6W5H374QUEbcgRz5szBsWPHhBkXFxd89tln0s+Q9Xo9nnvuORw9ehRZWVnYuHEj5s2bh6+++grz58/H2bNnMXnyZLi6ulrzX0HK19cXMTExwkxycjJvnCIiIiIiIiKyIdkhmq516qDeqBHQ6XSoPWSwMHvz5k0eNmEnHIBCRORgknftwDVUas4bDAbpB2VERERkPqPRiK1btwozPXv2NOsG7qpMNgAFgPRmOyIia0hJSZFmOADlr7Tc8PPNN9/c9dS6RYsWSR8/fPhwk3v9R2RkpHA9LS0NRqPR7P13794tzXTt2tXs/R1Zw4YN4ePjI8xwAAoRkfP7/vvvpRdZjxw5EnXr1lXUyHHFxMSgSZMmwsyKFStw9epVRY2IqDpYuXIltm/fbpW9cnJy8P7771tlLyJnVVxcjFmzZgkzDRo0cMphp7Vq1UJUVJQwk5SUhBs3tB/CQkR2dCwT0LUV/zrGAwaIiJzBwYMHpcMe4uLiUKdOHUWN1Hv88cfh7u4uzMyaNQtlZWWKGpG9FBcX480335TmnnzySbRv396kvZs3b47evXtjxIgRmDhxIh555BHUqlXL3KoWGzBggHD99u3b2Lx5s5oyRERERERERNWQ7BBN/x5RcPH0BADUHkoBPGEAACAASURBVCI/GIsDUOyDA1CIiBzM3KREkx/z448/WnRjFxEREd3d8ePHce3aNWGmZ8+eito4j+7du0tvnp47dy6/hyEim9u4caNwvU2bNmjUqJGiNs6jbdu20q9vmZmZd/zzLSkpwYoVK6T733vvvWb3kw1AuXbtGk6fPm32/rI3v1u2bFllL0jV6XRo1aqVMMMBKEREzq2oqAhffvmlNPfCCy8oaOP49Ho9nnjiCWGmvLycQz6JyGrKy8vx6quvWnXPadOm4cyZM1bdk8iZ/Pzzz9L3+YcOHQoXF+e8jGrQoEHC9dLSUixbtkxRGyIiIiICfvs5TGb06NEKmthPnTp1MGzYMGHm6tWrmD9/vqJGZC9ffvklzp8/L8z4+/vj7bffVtTIdgYOHCjNrFy5UkETIiIiIiIyh9FgwO1fj6EgdRNuHz0KQ3GxvSsRkQmuXr2K7OxsYcavU8f//m+vVi3hHdpWmD9x4oRVupFpnPOTeyKiKurWrVtYkSo/nfzPsrKysG3bNhs0IiIioq1bt0oz0dHRCpo4F09PTwwZMkSYyc7Oxq5duxQ1IqLqKC8vD3v37hVmYmNjFbVxPs8++6w0M3369L/83vr163Hz5k3h4xISEszuBQBdunSRZvbs2WP2/rK/N1qe35mFhIQI148ePaqoCRER2cL06dNx+fJlYSYmJsbkkzarsrFjx0Kn0wkzM2bM4JBPIrKKH374ARkZGdLcPR+0RER+L4Qd6ybNlpaW4pNPPrFGPSKnYzAYNP39j4+PV9DGNoYPHy7NzJs3T0ETIiIiIgKAI0eOYNGiRcJMzZo1ERcXp6iR/Tz11FPSzNtvv43y8nIFbcge8vPz8d5770lzr732GurWraugkW0FBQWhXbt2wsyiRYtQVlamqBEREREREWlRduUKLnzyOQ51iMTRHjE4OSwBR6P7IK1RU8SEtMbzzz+P48eP27smEUnIrv8GAJ+OHf7wzwG9Y4T5rKwsizqReTgAhYjIgSxfvhzFJSVmPfbHH3+0chsiIiICgLVr1wrXa9eujbZtxRM/q6vHHntMmvn5558VNCGi6mrNmjUwGAzCTJ8+fRS1cT4PPfQQAgMDhZnExETk5OT84fdmzpwp3VvLjTkibdu2hY+PjzCzfft2s/bOzc3F2bNnhZnIyEiz9nYWrVu3Fq4fOnQIeXl5itoQEZE13bp1S9Ppsy+88IKCNs4jKChIOjjv+PHjFg1gIyICgKKiIrz11lvSXL0JjVB/fCMAgHsDD9zzfgvpY2bMmMHv46laWr16NdLT04WZNm3aOPWg83vuuQc9evQQZlJTU3Hp0iVFjYiIiIiqtylTpkgzCQkJ8PDwUNDGvqKjo6WfO2VnZ2P27NmKGpFqX331FQoKCoSZBg0aVKn3pAcMGCBcz8/Px5o1axS1ISIiIiIikZLiYpz55xQcDA3HuXf+hdI/XztqNOLsqVP48ssv0a5dO7z++uscaEjkwKTXbun18An746FgXi2aCx9y/vx5FBUVWVqNTMQBKEREDmTu3LlmP3bx4sXSE7aJiIjINPn5+Vi3bp0wEx0dDRcX/mh1J3369JHeOL9w4UKUlpYqakRE1c2qVauE63q9Hr169VJTxgm5u7tj/PjxwozBYMCYMWNQUVEBAFi5cqX0z719+/bSCx1l9Ho9OnXqJMxs2bLFrL21TP+OiIgwa29n0blzZ+G60WhEamqqojZERGRNX375Ja5duybMBAcHSy/Qro5k3xcB2gbBERGJzJgxA1euXBFm9AGuaPRa0z/8Xr0nGsK7na/wcUVFRfjmm28srUjkdD7++GNpZtKkSU7/Pv/IkSOF60ajEQsWLFDUhoiIiKj62r9/P1asWCHM6HQ6TJw4UVEj+9LpdHjmmWekuXfeeYfXjlRBJSUl+Prrr6W5t956C97e3goaqREfHy/NzJkzR0ETIiIiIiISuX79Oob37IlLX30D4/+/BlbEYDDgvffeQ9euXXH8+HEFDYnIVGlpacJ177ZtoP/TexCezYOl+2ZnZ1vUi0zn3J/eExFVIRcvXsTGjRvNfnxRUZH0JjMiIiIyzdKlS1FeXi7M9O7dW1Eb56PX6zFixAhh5vr16zzVhIhsorS0VDrEqmfPnggICFDUyDk9+eST0huAtm3bhnfeeQc3btzAs88+K90zISHBKt1kJxv/+uuv0hu870Q2AMXV1RXh4eEm7+tMoqOj4erqKsykpKQoakNERNZSUFCADz/8UJp74403oNfrFTRyLoMHD0bt2rWFmQULFqCwsFBRIyKqakpLS/HBBx9Icw0m3QPXmm5/+D2dqwvueb+F9LFffPEFiouLze5I5Gz2798vHZBar149jBo1SlEj24mPj5f+LD9v3jxFbYiIiIiqrzfffFOaGT58OO69914FbRzDuHHjUK9ePWHm7Nmz+PHHHxU1IlXmzp0rHfTaunVrjB07VlEjNTp06IDQ0FBhJikpCXl5eYoaERERERHRn928eRP9+vXDsQMHTX7swYMHERERgfXr19ugGRGZy2g0Sgeg+Hbq+Jff82zWTLp3Zmam2b3IPByAQkTkIBYtWgSDwWDRHsuXL7dSGyIiIgLkFwO7uLhg2LBhito4p8cee0ya+fbbb2E0GhW0IaLqZMuWLbh165YwM2jQIEVtnFeTJk00/Tm9/fbbqFGjBi5evCjM6XQ6qw1A6dmzpzSzbds2k/eVvfndvn17eHp6mryvM/Hz80O3bt2EmeTkZEVtiIjIWj7++GMUFBQIMy1bttT0c1x15OHhIb05urCwEIsWLVLUiIiqmtmzZ+PChQvCjHsTD9Sf0OiOa37daqBjt07Cx1+9epUnDFO18s4770gzEydOrBI/59euXRsPPvigMLN//36kp6crakRERERU/WzYsEF6AIyLiwumTp2qppCD8PHxwWuvvSbNvfvuuygqKlLQiFQwGAz4+OOPpbl//etf0mGOzkan02H06NHCTHl5ORYuXKioERERERER/V5hYSH69+8vvVZUpKioCIMHD+Z1lEQO5NSpU8jPzxdm7jQAxa1BIFy8vYWPy8rKsqgbmY4DUIiIHERSUpJwXeeqg2dLL2Fm7dq1/ACIiIjISs6dO4etW7cKM71790aDBg0UNXJOYWFh0pOLNmzYwA/1icjqEhMTpZmBAwcqaOL8XnrpJavtlZCQgObNm1tlr+7du0svhpOd8vxnRqMRe/fuFWYiIiJM2tNZxcbGCtdzcnKQnZ2tqA0REVkqKysLH374oTQ3derUKnexuTWNGzdOmpk5c6aCJkRU1ZSXl+O9996T5hq+3BQunvq7rk94+UnpHh999BEqKytN6kfkjNLS0rBy5UphxtPTE88884yiRrY3cuRIaeaHH35Q0ISIiIio+iksLMSTT8p/Jhs5ciRat26toJFjefrpp9GwYUNh5uLFi/jggw8UNSJbW7t2LU6ePCnMhISE4KGHHlLUSK2RI0dCp9MJMxxSS0RERESkXkVFBYYNG4YdO3ZYvFdpaSkGDRqEjRs3WqEZEVlqz5490sydBqDodDp4NmsqfFxmZqaZrchcHIBCROQACgsLpadSB9xfC3UfF38AVFRUhA0bNlizGhERUbW1cOFCGI1GYWbEiBGK2jgvnU6n6fTw5557DleuXFHQiIiqA6PRKB2AEhoaiuDgYEWNnFt0dDRGjRpl8T41atTAp59+aoVGv/Hx8UHnzp2FGVMHoOTk5CAvL0+YiYyMNGlPZyUbgAIAKSkpCpoQEZGljEYjJk6ciNLSUmGubdu2SEhIUNTKObVr1076vcDOnTtx4sQJRY2IqKqYP38+Tp8+Lcw0vKchaifUF2b6DOiDkJAQYSYrKwtr1641tSKR03njjTekmTFjxqBu3boK2qgxcOBA+Pr6CjM//PADbt26pagRERERUfXxz3/+E2fOnBFm9Ho93nzzTUWNHIuXlxdef/11aW7atGnIyclR0Ihs7eOPP5ZmJk2aBBeXqnk7S6NGjaSft+7Zswfp6emKGhEREREREQC8+OKLVr33sqSkBAMHDpTeF0pEtpeWliZcd/H1gVerlndc8wxuJnxsVlaW2b3IPFXzHSMiIieTmpqKsrIyYabmoLqoOUB+8dXy5cutVYuIiKha++WXX4TrHh4eGDp0qKI2zm3EiBHSCxby8vIwbtw46dAZIiItDh8+jHPnzgkzgwYNUtSmapg+fTpatGhh0R4fffQRAgMDrdToNz179hSuHz58GNevX9e83969e6WZiIgIzfs5s4iICPj5+QkzycnJitoQEZElFi9erOnijbfffht6vV5BI+c2btw4aWbmzJkKmhBRVWE0GvHee+9Jc0+98jRc3MTvsbm4uODvf/+7dK/Zs2dr7kfkjLZs2SL9mVWn0+Gll15S1EgNb29vDBkyRJi5efMmZs2apagRERERUfWwZ88efP7559Lc448/bvHnbc5s/PjxaNKkiTBTUlKCSZMmKWpEtvLrgQPYtGmTMFO3bl1NByo5s9GjR0szP/30k+2LEBERERERgN+ug/3666+tvm9xcTEGDx7Mw3KI7GzPnj3Cdd8OHaC7y7VxnpJDVTMzM83uRebhABQiIgeg5ZS1gN614NHEE97h4hObEhMTUV5ebq1qREREShQVFWH16tX429/+hscffxwJCQmIj4/HSy+9hOXLl+PmzZtK+5w4cQIHDx4UZuLi4hAQEKCokXNr3LixposWkpKSMGbMGOmp5EREMomJidIMB6CYxs/PDwsXLoS7u7tZj4+JicETTzxh5VbyAShGoxHbt2/XvJ9sAIq3tzfatGmjeT9n5ubmhpiYGGEmNTUVlZWVihoREZE5bt68iRdffFGa69Chg/RmWfrNI488Am9vb2Fm9uzZ0qHnRET/sW3bNpw8eVKYadiwIeIff1jTfqNGjUL9+vWFmcTERJOGRRI5E6PRiMmTJ0tzo0aNQkhIiIJGao0fP16a+eKLL/jzPBEREZGVlJaWYvz48dLDXnx9fTF16lQ1pRyUh4cH3nzzTWluxYoVWL9+vYJGZCvfvD9Nmnn22Wfh5eWloI39DBkyBD4+PsLMTz/9xGu+iYiIiIgUSElJwfPPP68p6+LlhaB/v4OmH02Dxz33aHrM9evX0a9fP1y8eNGSmkRkprKyMuk9YL4dO9x1zTO4mfCx58+fR1FRkVndyDwcgEJEZGdGo1E6AMW7gx/c6v52k1nNuLrCbEFBATZv3mytekRERDZVUVGBb7/9FkFBQRgwYAA++eQTzJ49G4sWLcLSpUvx2WefYejQoahduzbuv/9+7Ny5U0mv7777TpoZMWKEgiZVx4cffog6depIcz///DMCAwPxySefID0nG0aILxIichS3b9/GihUrMHXqVCQkJKBTp05o3749JkyYIB2oQNa3fPly4Xq9evUQGRmpqE3V0bFjR3z44YcmP87T0xPfffcddDqd1TtFRUXBxUX8FueWLVs075eWliZc79SpE1xdXTXv5+xiY2OF6/n5+Th06JCiNkREZCqDwYAnnngCly5dkma//vpr6ddU+o2/vz+GDx8uzFy7dg2LFi1S1IiInN0PP/wgzbz88svw8PTQtJ+npycmTpwozJSVlWHhwoWa9iNyNsuXL8eOHTuEGVdX1yp782mPHj3QocPdL94DgFOnTiEpKUlRIyIiIqKqbcqUKfj111+luffffx+NGzdW0MixjR07FuHh4dLc//3f/6G4uFhBI7K24vQMrJd8Xu/p6Ylnn31WUSP78fHxQXx8vDBz+fJlrF69WlEjIiIiIqLq6ejRoxg2bJim4fCewc0Qvn8PGjzzFALHjUVY2g489uwzmp7n7NmziIuLw40bNyytTEQmOnz4sPSwKt/OHe+65tk8WPoc2dnZJvci8/FKRiIiOzt58iTOnDkjzNToU+u//7vmAPmNw7Kb/YiIiBzBxo0b0aFDBzzzzDO4du2aMFtRUYGUlBRERUVh4sSJNj2ZMC8vT3rTgb+/P+Li4mzWoSqqW7cuvvrqK03ZgoIC/O1vf0Prgf3QFFkYj4tYhJvIQ4WNWxKZ7sqVK3jttdcQGBiIIUOG4K233sKiRYtw4MABHD16FDNmzEBkZCQefPBB7Nq1y951q4UDBw5IBzIMGDCAN/ia6f/+7//w0ksvmfSY6dOno2XLljbp4+/vj44d7/6GNADNQ0IrKiqwf/9+YSYiIkJrtSpBNgAFAJKTkxU0ISIic7z77rtYunSpNDdhwgR069ZNQaOqY/z48dLM5MmTeZMGkQ2UXy3DlZkXkPPcSWSNPYbsiSdw5uUM5M64gLKLpfauZ7Lr169jyZIlwkydOnUwYcIEk/YdPXq0NDNnzhyT9iRyBnl5eZpuohs/fjyCg+UXsTkjnU6n6b2bTz/9VEEbIiIioqpt586dmg4P6NatG555RtvNUlWdXq/XdO1IZmYmJk+erKARWduFz76A0Sg+7Gj06NGoV6+eokb29fjjj0szM2bMsH0RIiIiIqJq6vz58+jfvz9u3rwpzbo3aYI2K5bCvUHgf3/PxcMDUz7/HJMmTdL0fIcOHUJsbCzy8/PN7kxEppMdgAkAvoLrzT2bNZM+PjMz06ROZBne6UFEZGdr166VZgJi/zcAxSvEB54tvYT55cuXw2AwWNyNiIjIFjIzMzF48GDExsZqOgXnz6ZPn46RI0dKp3Oa66uvvkJRUZEwM3ToUHh6etrk+auy4cOH46GHHjLpMWdRgZm4gQRcQF1kohNy8CauIpfDUMjOiouL8dprr6Fp06aYNm0aCgsLhfl169ahe/fuePTRR3H9+nVFLaun7777TpoZNGiQgiZVk06nwyeffIIff/xRelFa27ZtkZycjLFjx9q0U8+ePYXrBw8e1DRR/8SJE9LvAarbAJTWrVujUaNGwsyWLVsUtSEiIlMsW7YMU6ZMkebq1KmD9957T0GjqqV79+4ICQkRZs6ePYvPPvtMUSOi6uHXkmIc770fZ17OxLVfLuP6yqvIm5+LKzMv4uwrmTjaNQ2Lflxo75om+eWXX1BSUiLMjBs3Dj4+PibtGxQUhJiYGGFm165dyMjIMGlfIkf34osvIjc3V5jx9PTEG2+8oaiRfSQkJKBBgwbCzJYtW7B7925FjYiIiIiqntu3b2P06NHS6zTd3NwwY8YMHs7wO1FRURg1apQ099lnn2Hbtm0KGpG1lJw5g2uLxUO5XVxc8Pe//11RI/vr2bMnWrRoIcysXbsW58+fV9SIiIiIiKj6uHnzJuLi4jR9v63380PrRb/Ao0njv6zpdDp89NFHeP755zU97759+9CnTx/pIcFEZD179uwRrgc2agT3hnf//NStQSC8vL2Fe2RlZZnVjczDd1OJiOxMNgBFX9MVPp38//B7NQfUFT7m8uXL0i/aREREqlVWVmLKlCkIDQ1FYmKiRXstXLgQQ4YMkd6kbKrbt2/jyy+/lOZMPXGVfqPT6fDNN9+gZs2aZj3eCOAASvAOrqEZsvA18qWnxhDZQm5uLqKiojBt2jSTT3RfsGABwsPDsWPHDhu1q95u3bqFX375RZjx8/PD/fffr6hR1TV27FhkZWXhzTffhPef3vBt2rQpZs+ejSNHjiA2NtbmXWQDUAwGg6aLI7X8HB0ZGam5V1Wg0+mk/x/u37+fX4+JiBzM2rVrNd1AAAAffPABateubeNGVY9Op9P03sC///1v6U3YRKTNaZRh9NkclF0ovWvGUFiJ15/8ByZPnuwU36MajUb88MMP0ty4cePM2n/MmDHSzJw5c8zam8gRJSUlYe7cudLcs88+Kx326ezc3d0xceJEae7VV191itdLIiIiIkf0t7/9DadOnZLmJk+ejLZt2ypo5Fw++OAD+Pr6CjNGoxGPP/649DASchwXP/8KqKwUZoYPH46WLVsqamR/Op0O48ePF2YMBgN+/PFHRY2IiIiIiKqHsrIyDBs2DEeOHJGHXVzQYub38G5994NwdDodPvvsMzzxxBOanv/QoUPo1asXrl69qrUyEVkgLS1NuN5ecgCmTqdDUIvmwkxmZqbJvch8HIBCRGRHhYWF2Lp1qzATEFMLOr3uD79Xc0Ad6d6rVq2yqBsREZE1FRcX4+GHH8bbb7+N8vJyq+y5Zs0aDBs2zGr7AcCPP/6IvLw8YSYqKgrdu3e32nNWN4GBgZg/fz5cXV0t2qcYRjyHXIx4ZRJu3bplpXZEcjk5Objvvvtw8OBBs/c4e/YsoqOj8eGHH/IGAyubN2+e9AK4xx577C8DO8g8fn5+eOutt3Dx4kXMnTsXn3/+OZKTk5GZmYnRo0dDr9cr6dGjRw/odDphZs2aNdJ9ZENSateujWbNmpnUrSro0aOHcP3q1as8kYyIyIEsXLgQgwYN0jSoLzo6WtPN8XRnEyZMQN264mHlhYWFePPNNxU1Iqq6SmHAcFzATcmp2v/x73//G6NHj0ZZWZmNm1lm//79OHz4sDDTq1cvs28KGjp0qPTn359//ll6WjmRM8jMzNQ0LKhGjRp47bXXFDSyv6eeegqenp7CzNatW7F69WpFjYiIiIiqjrmrVuK7776T5sLCwvCPf/xDQSPn06BBA0yZMkWay87OxquvvqqgEVmq9Nx5XJ03X5qrjv9NjBkzRnqd1MyZM1EpGR5DRERERETaGI1GTJgwASkpKZryQe++hZr395HmdDodvv32W/Tr10/TvseOHUP//v15rwORjV2/fh3p6enCTLiGAzCDmrcQrmdlZZnUiyzDAShERHa0adMm6cWXAbG1/vJ73uF+cG/kIXxcYmKiRd2IiIisJS8vD7GxsVi+fLnV9163bh2eeeYZqwwQKCsrw0cffSTN8cIKyz3wwANYu3YtatasafFeC9auRmRkJE6fPm15MSKJo0ePIioqyipvXhkMBrzyyiuYNm2aFZoR8NsHFlouNHzqqacUtKleAgICMHLkSDz//POIjY21eMiVqWrUqIHw8HBhJikpSfr9gmwASpcuXaSDVqqizp07SzP79u1T0ISIiGRmzJiBRx99FBUVFdJsYGAgfvnlF7i48KNCc/n7++Ptt9+W5mbMmIEdO3YoaERUdb2MK9iLEpMeM3fuXDz99NM2amQdM2bMkGZkJwSL+Pn5YdiwYcLM2bNnkZqaavZzEDmCnJwc9O7dG1euXJFmP//8c+kAs6qiTp06eOyxx6S51157jTfZEREREZngKErw5Fv/lObc3NwwZ84cuLu7K2jlnF588UVESE7fBYDp06fz/TUncPatd2GUXA89cOBAtG/fXvOepypzEHk9RvjrVGWOpdVtLjAwEAMHDhRmzp49y4MvbeVYJqBrK/51jKd4ExHZQ1X5Wk+OhX+vCACmTJmCOXPmaMqOeOpJBD79pOa93dzcsHjxYnTs2FFTft++fXjooYdQUmLa5930P3l5eUhNTcX06dPxxRdfYOHChcjJyRFeE8zXgupFyzXMYRoGoDRtIR6Akpmp7mfH//wdzq48rew5HQ2vaiQisqP169dLMwG9/zoARafTocaDtYWPO3bsGE6dOmV2NyIiImvIzc1Fjx49sHPnTps9x8yZM/Gvf/3L4n2mTp2Ks2fPCjNt27ZFXFycxc9FQGxsLNLS0tC2bVuL9zp58iT69OmDa9euWaEZ0Z39+uuviImJwaVLl6y67z/+8Q8sXbrUqntWV3v37sWhQ4eEma5du5p0QRU5jwcffFC4fu7cORw5cuSu6xcuXEBOjvjDjB49epjVzdm1bdsWHh7iIawcgEJEZH+zZ8/GhAkTNA0IdXd3x/Lly9GoUSMFzaq28ePHIzQ0VJgxGAwYPXo0CgsLFbUiqlqW4Ca+xHWzHjtr1iybDGW2hvz8fMydO1eYqVGjBoYOHWrR84wZM0aa+f777y16DiJ7On78OHr37o3z589Lsw8++KCmgSBVyT/+8Q+4ubkJM8eOHcPs2bMVNSIiIiJybjdQiaE4j2INNy29/fbb/FxSwtXVFbNnz5Z+DgUATz75pPSwQbKfW2l7kbd0mTT3+uuvK2jjmCZMmCDNvP7665oGnBMRERER0d198803eOeddzRlBwwYgCmff27ywXi+vr5YvXo1WrZsqSmfmpqKRx55hENQTFBUVISvv/4arVu3Rp06ddCnTx9MnDgRL7zwAh555BEEBwejXr16GDlyJH799Vd71yU727Nnj3Bdp9Ph3k7yoUVBLZoL18+fP4/i4mKTupH5OACFiMiOkpOTheve4b5wq3fnEwBq9Ksj3Z/TwImIyJ7KysowdOhQnDhxwuTHRkZGIiQkRHP+n//8p+YpvXeyfft2TJs2TZp75ZVXeDq2FbVo0QK7du3CxIkTpRdhy2RnZyM+Pp4XvJBNnDhxAn369EFeXp5N9n/sscc4PMAKvv76a2nmqaeeUtCE7EF2YhYg/hl527Zt0sdX1wEobm5uCA8PF2b4GkZEZF+LFy/GE088oTn//fffo2vXrjZsVH24urri448/luays7MxadIkBY2IqpbrqMTTuGzRHlOmTIHBYLBSI+v57rvvcPv2bWFm1KhR8PLysuh5evXqhcaNGwszy5cvR25urkXPQ6RaaWkppk6divDwcJw+fVqa9/f3x/fff2/yBazOrlmzZnj22WeluVdeeQUZGRkKGhERERE5rxIYMATnkYVyabZbt254+eWXFbRyfm3atMG7774rzR0/fhwffvihgkZkKqPBgDOT35TmevfuXa3fl+7bty+aNGkizJw4cQI//vijokZERERERFXPTz8t0fS5CABERERgwYIFcHV1Neu5AgMDsWXLFs2Hwa5cuRJ9+vTB1atXzXq+6uTkyZOIiIjAc889h/T09Lvmrl27hl9++QUdO3bETz/9pK4gOZy0tDThemhoKHz9/KT7NG0hH2p06tQpzb3IMrxzj4jITs6cOSO9iCigd627rvlF1YCPn6/w8YmJ0jzgEAAAIABJREFUiWZ1IyIisoYXX3wRO3fu1Jz38fHBu+++i6KiIuzZswcnT55ESkoKAgICND1+3Lhx2Lhxo8k9b926hdGjR0tvhGjcuDEeffRRk/cnMX9/f3z11Vc4ffo0vv/+e8THx6NGjRpm7bVlyxY899xzmk48J9IqIyMDvXv3xpUrVzQ/xtvb26TnKC4uxsCBA3mTgQUyMjKkJ2cHBARg+PDhihqRapGRkahXr54wY8kAFA8PD3Tu3NmsblWB7N993759/PpLRGQnSUlJGDFihOab+19++WWMGTPGxq2qlwceeAD9+vWT5n744Qe+Z09kondwDXmotGiPo0ePYsWKFVZqZB2lpaX44osvpDktJwPL6PV6PP7448JMRUUFLwgjp2E0GpGYmIj27dvjrbfeQnm5/OZTAPjoo4+kw4CqqjfeeAP+/v7CTF5eHvr168dhSERERER3UQ4jHsYFbEKRNOv3/9i787iatv9/4K/TaVQZGqSUkmQuMifJUKIBJVPm6ZojdJFrvCKZLzJcYzIlkVAZrzIlU8otISpDUdE8nNP+/eF3fT93cPY+dc5pej8fDw9u573Wel/qnL3XXuu91NVx5MgR8Pl8GWRWOyxYsAC9evVijVu7di2Sk5NlkBERR1ZwCPJjH7LGrVq1SvrJVGN8Ph9TpkxhjVuxYgXy8/NlkBEhhBBCCCG1y5mQT5g2fQmn2ObNm+PChQtQVVWt1Ji6urq4ceMGzMzMOMXfuXMH3bt3r9ABw3VFUFAQunbtiufPn3NuU1ZWhkmTJuHnn3+uloejEOliGAb3798XGdOtWzdOfRmatGCNefnyJae+SOVRARRCCKkiV65cYY0RVQBFTkkO1gOtRba/desWcnJyxM6NEEIIqayDBw/C39+fUyyPx8OkSZOQnJwMb2/vv51q2r9/f9y7dw9NmzZl7UcgEMDFxQXx8fGc8ywvL8dPP/2ElJQU1thFixZBUVGRc99EPHp6epg2bRqCgoLw+fNn3L9/H2vnzkdvqECcusr79+/Hpk2bpJYnqVs+f/6MgQMH4uNHbqdNGxoa4vLly8jPzwfDMEhJSYGdnR2nth8/fkTv3r3x9OnTyqRcZ61evZp10nr8+PFiF6chNYecnBwcHBxExsTExPzw55mtAEr37t2hpKRU4fxqOrYCKNnZ2ZxO3CaEECJZwcHBcHFxgUAg4BS/ePFi+Pr6Sjmrumnz5s2c5gxGjhyJ8PBwGWRESM33EqXYiWyJ9LVmzZpqVbDv+PHjrHMNPXv25LxQjs2UKVPA4/FExuzfv58Wg5EKKy4uRkREBJYtW4YZM2bA3d0dY8aMwfLlyznNvXORlpaGAwcOoG/fvhgyZIhYhYRdXV0xdepUieRRE2lpaeHnn39mjUtJSYGDgwPy8vJkkBUhhBBCSM0hBIPxeI8wcCtIcPjwYbRsyX5aLPk/fD4fhw4dYn0WV1JSgsmTJ3OeDyXSJ/j6FW9XrmaNGz58OHr37i2DjKq3OXPmsB4ElpGRgc2bN8soI0IIIYQQQmqH0ItZ+GnOC07PhDU0NHD58mXo6OhIZOzGjRvj+vXr6NChA6f4lJQUWFlZIS4uTiLj1ybr1q3DiBEjKlwUcuPGjXB1dUVRUZGEMyPVWWpqKutBt927d+fUl46eHuteAyrOKztUAIUQQqpIZGSkyNfr8eSg2kX0SUz9nQaIfF0oFOLy5cti50YIIYRURmxsLGbOnMkpVldXF3fv3sXBgwehq6v7nzGtW7fGlStX0LBhQ9b+cnNzMWjQIKSlpbHGMgyDOXPm4MSJE6yxHTp0wIwZM1jjiGTw+Xx069YNy3+ahVswQjZMsRU6aMTxFtbLywtbt26VcpakthMIBBg9ejTnDf19+vTB06dPYW9v/31TkZGRES5fvgw/Pz/Iy7OX8snMzISNjQ3u3r1bmdTrnISEBE7v5T/99JMMsiFVydHRkTXm0qVL//paTk4OawG1ur4gj60ACgA8fMh+shshhBDJCQgIwIgRI1BWVsYp3sfHB76+vqwb4EnFtG3bFmvXrmWNKy4uhrOzM0JCQmSQFSE12xJkgu0dTk6ND6Otpqx9PX36FKGhoZJJrJIYhuFUvHfx4sUSG9PIyAgDBw4UGfPq1SvcuHFDYmOSukEgEMDf3x8GBgawt7fH+vXrsXfvXhw/fhwnTpzAunXrYGpqCh8fH7EK7DAMg8ePH8PPzw8jR46EsbExmjVrhqlTp+KPP/4QK0c7OzscO3aszl8DzZ8/H3p6eqxxDx8+xIABA/D582cZZEUIIYQQUv2VgYE73uMkcjnFL168GC4uLlLOqnZq2bIlli9fzhoXHR3NaR6OyMbbZb+g7IPoIq+KiopUmPv/09TUxNKlS1njNm7cSIdPEEIIIYQQwlHk1WxMmZEEoZA9VklJCaGhoWjVqpVEc9DU1ERERASaN2/OKT47Oxv9+/cX6+Df2m7fvn2c5gXYnDt3DkOGDEFxUbEEsiI1wf3791ljunXrxqkvHo8HExMTkTGyvl8vyyiV6XjVCRVAIYSQKiAUCnH16lWRMd3rqUJOUfTbtM0gG/D5fJEx1WVBJyGEkLohLy8Po0aNQmkp+01W69atcffuXU7VNNu0aYPz589zOk05PT0dPXv2xLNnz34YwzAMvLy84O/vz9qfoqIijh07xnrSDJEedfAxHxqIhzF6QoVTG09PTyqCQirF29ub9Zr9L0OHDkV4ePh/ntQjJyeHRYsWYf/+/Zz6+vLlC+zs7PDkyROx8q3LVq1axVq13dHREe3atZNRRqSq2NnZsV4rXLhw4V9fu337Nuv3kLW1daVyq+lat27NWtU8NjZWRtkQQkjdxjAMduzYgQkTJnDeSLxr1y4sXbq0zm/8lbaFCxdyKppWVlYGNzc37Nu3TwZZEVIzRT18gGDkscYZbmoJ7Ql60F1oyBq7evVqTid+SVt4eDieP38uMsbExATOzs4SHZdLUdC9e/dKdExSu/3xxx/o2LEjZs2aJbJYhkAggLe3N7p164aoqCgIf7D6tLS0FI8ePcLatWvRpk0bWFhYwMvLC6dPn0ZKSkqFcrSxsUFISAiUlZUr1L42qVevHtavX88pNiYmBlZWVkhNTZVyVoQQQiqDYRjk5+cjLS0Nb968wZs3b5CamvrDz1pCiPhKUA43pOMUx+InNjY28PHxkXJWtZuXlxfatm3LGrd27Voq4lkN5IRH4tPxk6xxCxYsgLGxsQwyqhnmzZsHAwMDkTGFhYWYPn16tZjLIoQQQgghpDq7eesLxk1JRFkZ+7Uzj8dDYGAgevXqJZVcdHV1ceXKFejo6HCK//z5M/r378/67LguiIyMxKxZsyTW35UrV/DT0GkQFtJcaV0QExMj8nUVFRW0b9+ec3+GhqLXn3z48IFzX5UlLBBC+EUgs/GqGyqAQgghVeDRo0fIyckRGWOlqsbaT0ONhrCyshIZc/nyZZSUlIiVHyGEEFJRs2fPxqtXr1jj2rRpg+joaNabw/9lbW2Nw4cPc4p99+4devXqhcOHD/9rQ1hycjJsbW05nbQKAL/++ivMzMw450mkRw8KuAgDmIK9EA7wrQjKtm3bpJwVqY2CgoKwceNGTrHDhg3D6dOnWTdSTJw4EUuWLOHUZ35+PpycnGQ6QVZTPXnyBGfOnGGNW7NmjQyyIVVNTU0Nffv2FRkTGRmJ4uK/V3aPiooS2UZOTg49e/asdH41mby8PDp16iQyhgqgEEKI9AkEAsyZMwceHh6cFz5v3bpVoosEyI/x+XwcPXoU6urqrLFCoRA//fQTFi1aRJvTCPkHhmGwaBP7qcBqPRtA0+3b4rEmc/TBVxd9YMDjx49x7tw5ieRYUQzDcNoM5+npyXoAgrgcHBygq6srMiYkJATp6ekSHZfUTlu3bkXfvn2RkJDAuc3Dhw9hbW2N+vXrw9raGh4eHliyZAlmzpyJbt26QV1dHZ07d8aKFSuQlJRU6RytrKxw4cIF1mKedcm4ceMwbtw4TrFJSUkwMzODj48PCgoKpJwZIYQQNjk5OQgLC8PKlSsxaNAgNGvWDCoqKlBXV0ezZs3QvHlzNG/eHIaGhlBXV4e9vT3Onj0LgaDuLowmpLK+QggnpOM88jnFN2/eHCdPnoS8vLyUM6vdFBUVORXnZBgGY8eOxadPn2SQFfkvgi9f8HrBQta4xo0bY9myZTLIqOZQUVHBunXrWOOuXLmCQ4cOySAjQgghhBBCaqbQi1kYPeFPlJRwWz+zd+9euLq6SjWnFi1aIDIyEtra2pziMzMz0aNHD5w4cUKqeVVn8fHxGD58uMTXzty+dhvJY55REZQ64P79+yJf79y5s1hzdmzrKmS5vyP//leZjVUdUQEUQgipApGRkawxXAqgAGA9AS43NxehoaGc+iKEEEIqIzAwEAEBAaxx9evXx7lz56CpqSn2GKNHj8aGDRs4xebl5WHSpEnQ0NCAnZ0dhg0bhtatW8PU1BTXrl3j1Ie1tTU8PT3FzpNITyPwcQH6aMjxdnbBggVUBIWI5enTp5g4cSKnWCcnJ5w8eRIKCgqc4tetWwcXFxdOsenp6RgyZAiKioo4xddVS5cuZY1xdXVlLdxAag8nJyeRrxcWFiIoKOhvX2MrgNKpUydOG5lru86dO4t8PTY2lk4hI4QQKUpLS8PgwYOxe/duzm1+/fVXzJ8/X4pZkX8yMjLCjh07OMdv3rwZrq6uKCwslGJWhNQsV69eRcyzONY4g7UtwOPxAADyDRSg85M+a5tly5ZV6SbQiIgIREdHi4zR1NTEhAkTJD62goICJk+eLDJGIBDAz89P4mOT2oNhGKxatQqenp4Vvv8rLCxEVFQUduzYAV9fX+zZswcPHjxAaWmpRHLk8XiYP38+rly5AjU1bs/b6woej4fff/8dAwYM4BT/9etXeHt7o0WLFti/fz8VbSOEEBlLTk7GunXrYGVlBS0tLTg5OWHNmjUIDw9HWlraDw/DKioqQkREBFxdXWFoaAhfX1961kSImF6npcISb3AF3ArB6enp4erVq5xPeCaiWVlZYfr06axx79+/x7Rp0+jZVBVgGAYpi5ag7GMGa+y6detQv359GWRVs7i7u6Njx46scZ6ennj37p0MMiKEEEIIIaTmYBgGW3akY/yURBQVlbM3ALBjxw5MmzZNypl9Y2Zmhvv376NNmzac4vPy8jBmzBhMmTKlzq0dycnJgZOTE/Ly8qTSf96tL0ge/QzCAnrGVVsJBAI8fPhQZEz37t3F6rM6FUDJu/1FZmNVR1QAhRBCqsCVK1dEvq4PeRgrKnLqi21zFwAcPnyYU1+EEEJIRb169QozZ87kFBsYGAhTU9MKj+Xl5YUZM2Zwjv/69SuuXLmCc+fOiXVypIaGBo4cOSLx01ZJ5ZlCCUHQB9d/GSqCQrjKzMyEs7MzpwnkAQMGICgoCIocr9sBQE5ODseOHcPAgQM5xT948AATJ05EeTm3Cfq65urVqwgPDxcZw+PxsHr1ahllRKoDR0dH1pjt27d/XwxZVFSE2NhYkfG9e/eWSG41XZcuXUS+/vXrV7x69UpG2RBCSN1RUlICHx8ftG7dmnVe+X8tXbqUTtasIhMmTICHhwfn+PPnz8PW1hY5OTlSzIqQmsPX15c1RsOtMdQs/r55RmemPuTURM8WJSYmVtnJueXl5Zzel2fPno169epJJYepU6d+LxrzI/v27UNGBvsGJlL3CAQCeHp6Vut5lg4dOuDu3bvYunUrlJWVqzqdaklRURHBwcEwNzfn3CYjIwPTp09H9+7dcffuXSlmRwghBABSU1Ph7u4OU1NTLF++HLdv367wc6L3799jyZIlaNeuHUJDQ6lIACEcREVFodvo4XgObgX6tLS0cPXqVRgbG0s5s7pl06ZNMDExYY07f/48jhw5IoOMyP8KPnoUWcFnWeMGDBiAKVOmyCCjmkdOTg6bN29mjfv69SsmTJggsaKhhBBCCCGE1HTv3pdg/NQkrPF5y7nNxo0bMXfuXClm9W/NmzfHnTt3YGtry7nNwYMH0b9//zqzdoRhGEyePBlv3rzhFD9ixAhkZ2ejrKwMvr6+nNfv50VREZTaLCkpibUAeLdu3cTqk0sBFFnNtedGUwEUQgghMpSfn487d+6IjLGDKusCxL+0bNkSHTp0EBkTHh4u0+pihBBC6paioiIMHz6cU+XVlStXctqYLAqPx8Nvv/0GBweHSvUjipqaGi5dugQjIyOpjUEqZwBUcQR6kJPjdlu7YMECuLu748uXuj0JQH6stLQUw4cPR2pqKmussbExTp06BSUlJbHHUVFRwfnz5+Hq6sop/vTp09V6Y0lVKS8vx+LFi1njRo0ahXbt2skgI1JdGBoasm7iefjw4fcNO1FRUSgrKxMZTwVQvmErgAKAtZgMIYQQ7srKyrB//36YmprC29tbrFNe1qxZg3Xr1nGeYyaSxePxsHXrVk7Xq3+5c+cOrK2t6TRPUuc9fPgQ165dExnDU5aD/i//3lgm30gBOj81ZR1j5cqVVXJy1tmzZ/H48WORMUpKSpg9e7bUcjAyMoK9vb3ImOLiYmzZskVqOZCa6dGjR+jWrVu1LTLdoEED+Pn5ITY2VuwTvOqi+vXr49KlS2jevLlY7R4+fAhLS0uMHz+e1h4QQogUFBQUwNvbG61atcLx48cl2ndKSgqGDBkCR0dHuu8kRIQLFy7A1tYWWRzXFDRo0AARERGcT3Qm3Kmrq+PUqVOcNjPNmzcPb99y3/hGKicpKQmr57EXf1ZTV8fvv/9Oc9Qi9OvXD5MmTWKNu3btGqZOnUqFzAghhBBCSJ2Wl5cHv0170c3qES5czOLcbvXq1WKt3ZCkhg0b4uLFi5zXiwPAvXv30K9fP3z69EmKmVUPO3fuxLlz51jjeDwejh49ilOnTqFRo0aQl5eHl5cX7t69y1qo4i950V+QOPgx8mNzK5s2qWbi4uJYY7p27SpWn2zfV6WlpcjOzharz4ooyC9A4WP2PXq1GRVAIYQQGbt48SLr5ipbqIrV58SJE0W+Xl5ejoCAALH6JIQQQriaO3cunjx5whrXp08f/PLLLxIZU15eHidPnkSPHj0k0t//UlZWRlhYGC2UrgHc0QBH1vlyLoJy/PhxmJmZISgoCEIhVfEl/4dhGMyZMwdRUVGssSoqKjh79iw0NDQqPJ6SkhJOnjzJaTEL8G0Dq6QXu9Z0x44dY/3skZOTw8qVK2WUEalOpk6dyhqzfft2AEBQUBBrrJWVVaVzqg1MTU2hpqYmMoZOgiaEkMphGAZxcXFYsWIFWrZsienTp3Mq0Pe/Nm/ejF9++YUWllcxHo8HX19fsYoZxsfHo2fPnvR5Suo0X19f1hidaU2hpK/8n681mW2A+g3ri2z/4cOH7/cDsiIQCDjNi86aNQuNGzeWai5Llixhjdm9ezeysrgvHCS116dPn+Dh4YFu3bqxFvCpCvLy8pg3bx5evXqFRYsWcT7pjQB6enqIjo5G+/btxW4bEBAAU1NTbNy4EQUFBVLIjhBC6p6YmBh06tQJPj4+KC4ulto4ly5dgrm5OS5cuCC1MQipqU6fPg0XFxeUlJRwitds2BA3btyAhYWFlDOruywsLODn58cal5eXh4kTJ6K8vFwGWdVtJSUlGD16NAo53Acs2+QHQ0NDGWRVs23ZsoXThr2AgAB4e3vLICNCCCGEEEKql8TERMydOxdNmzbF0qUbUVDI/d5vyZIlEtu7UlEKCgo4fvw4hgwZwrnNkydPYG1tjfj4eClmVrUePnyIRYsWcYrdvHkzxo0b96+vW1hY4NatW9DX1+fUT+GzfPxp9wgpsxNR9IKeb9UWT58+Ffl6gwYNxD4Um8t9uiwOi3h05xEYQd0uhkoFUAghRIYYhmFdvMnj8TBAzAIo7u7u4PP5ImMOHz5MFcAJIYRI3MGDB3HgwAHWuEaNGiEgIID180ocampquHr1KhwdHSXWp4KCAkJCQtCnTx+J9Umka6zTEBw5coRzEZS0tDSMGDECbdu2xa5du5Ceni7lDElNsHv3buzfv59T7IEDB2Bubl7pMeXl5bF//344Oztzip88eTJthPz/ioqKsHz5cta4qVOnolWrVjLIiFQ3EyZMQP36ojc9BgcHIyUlBWfPnhUZ17ZtW6lvQKwp+Hw+60LesLAwmnsghBAxMQyDx48fw9vbG61bt4a5uTnWrl0r9qmlfD4f+/btg6enp5QyJeLi8XhYsWIFtm3bxrkgTVpaGnr37o0NGzbQpg1S57x8+RLBwcEiYxR4POjM/PECJvmGCpi5ZBbrWBs2bJBpgY/ff/8diYmJImPU1NSwdOlSqedibW2N3r17i4zJz8+XeZEYUn1kZWXh8uXL+Pnnn2FsbIwdO3ZUq2LS9erVg4ODA7Zt24bU1FRs374dmpqaVZ1WjaSnp4dbt26hV69eYrfNz8/Hzz//jGbNmuGXX37Bx48fpZAhIYTUfgKBAGvXroWlpSWSk5NlMmZWVhacnZ0xZ84cqRZbIaQmOXLkCEaPHg2BQMApvgn4+ONwIDp16iTlzMjcuXM5PU+/efMmFi5cSM+opMzT05NTccwG/ftixOTJMsio5mvYsCH27NnDKXb9+vU0X0MIIYQQQuoEgUCAc+fOYcCAAWjTpg127tyJvLw8sfrw8PCAj49PtTg8SFFREadPnxZrz0tiYiLMzc0xa9YsfPr0SYrZyd779+/h6uqK0tJS1tjZs2dj/vz5P3zdxMQEN2/ehIGBAefxP5/4iPgeD5Dk+hTnj59DRkYG57ak+mErgGJmZib2+0B1KYBy/497Uh+juqMCKIQQIkMRERGsDwA6tWkLLciL1a+Ojg4cHBxExvz555+IiYkRq19CCCFElNjYWMyePZtT7IEDB8SaWOBKVVUVISEhmDlzZqX70tXVRWRkJOzt7SWQGZGlsWPH4siRI2JNTrx48QJz5syBgYEBzMzM4ObmhoULF2L37t14/Pjx90X9ubm5SE5ORkpKCjIyMvDmzRtcu3ANH7a9ReovL/HOJwUfd6bhU8AHfLmShcLn+Sh9X4JXia9w//593LhxA1evXkVERASuXbuGx48fIzU1lRYUViPXrl2Dh4cHp9iFCxdi9OjREhubz+cjMDAQZmZmrLElJSUYOnQo3rx5I7Hxa6qlS5ciLS1NZIyqqipWr14to4xIdaOuro7JLIvqhEIhXFxckJ2dLTLOxcVFkqnVeD169BD5+uvXr5GQkCCjbAghpGbLysrC5s2b0bp1a1hYWMDHxwcvXryoUF/169fHxYsXMW3aNAlnSSTBw8MD586dg6oqt8LnQqEQS5cuRffu3XHt2jUpZ0dI9bFp0ybWwj8u9RtCsYmSyJhxs8eznvKUm5sLHx8fsXOsiJcvX3I6vWrBggXQ1taWQUbgVFTUz88PSUlJMsiGVCWGYZCQkIDt27fD3d0dJiYm0NLSwuDBg7Fx40bk5+dz7ovP52Pt2rUoLCxEVlaWxAqXa2lpwd3dHdu2bUN0dDSys7MRFhYGDw8PTovPiGiNGjVCZGQk3NzcKtQ+Ozsbv/76K/T19eHk5ITAwEDExsbi48ePVMyNEEJYvH79GtbW1lixYkWVFBvbtWsXevXqhdevX8t8bEKqk927d2PixImcr10MoYBbMEI7k5ZSzowA3woM//7775wOK9i2bRuWLVtGRVCk5MCBA9i9ezdrnLyGBlrs4F4QmgDOzs4YM2YMp9j58+fj4MGDUs6IEEIIIYSQqlFSUoK9e/fC1NQUw4YNq/B6iaVLl2Lr1q3V6r5EUVERwcHBYu15KS8vh7+/P1q1aoXAwMBacb/75csX2NvbczoUytbWltOBQy1atMDNmzfRrFkzsXLJvZGDheM90aRJE3Tq1AleXl4ICwtDQkIC4uLi8OjRI7x//75W/L3XZnFxcSJf57JH4590dHRYv+9kUwDlvtTHqO7E22FPCCGkUrgsphxpPxh4HiZ23xMnTkRoaKjImEOHDqF79+5i900IIYT8U3p6OpydnTkVcfjpp58wbNgwqeUiLy+PXbt2oW3btliyZAkKCgrE7mPKlCnYtGkTGjZsKIUMiSyMHTsWADB+/HixJ5qePXuGZ8+e/evrysrKFS5UMhC2Il/n8Xho164devXqBSsrKwwaNIhOKq0CycnJcHNz47SwdNCgQfD19ZV4Dmpqarhw4QK6devGWkU6MzMTTk5OuH37NurXry/xXGqC8PBwTqcaLV68GE2aNJFBRqS6mjNnDrZv3y7yM+HJkyes/VR0A1Bt5eDggI0bN4qMOX/+PNq3by+jjAghpGZhGAZ37tzBnj17EBQUhJKSkkr32bx5c4SFhaFt27YSyJBIi7OzM6KiouDk5IR3795xahMbG4sBAwagV69ecHV1haOjI0xMTKrVIh1CJOXPP//EgQMHRMbwAEzV1MIylr6UVZSxZs0a1qKIO3fuxLx582BoaChesmIQCAQYO3Ys63xlo0aNsHDhQqnl8U+2trbo2rUrHjx48MOY4uJijB8/Hrdv34a8PC0rqU2EQiFu3bqFkJAQhIWFISUlpdJ9Kioq4uTJk9+fA6ioqCA0NBRXr17Fjh07EBUVha9fv3LuT0dHB/3798eYMWNgZ2cHBQWFSudIfqxevXo4deoUxowZA29vbzx//lzsPoRCIcLCwhAW9n/rHNTU1NClSxd0794dPXv2xIABAzgXhPunsrIyxMTE4Pr160hOTkZJSQm0tLSgra0NfX19mJubo0OHDlBWVq5Q/4QQIksMw+DIkSOYO3euWMXGpOHRo0ewsLDAoUOHpPo8n5DqatOmTVi8eDHneEuoIAT6aExL72VKW1sb+/fvx5AhQ1hjN2zYAGVlZaxcuVIGmdUd9+7dw6xZszjFtti5HYp6VKxSXL/99hvu3LnD6UCcqVOnQlVVFSNHjpR+YoQQQggopvOsAAAgAElEQVQhhMiAQCDAnj17sH79erx//77C/Sgo8LB3jy8mTeZ+ry9LioqK2L17N/r3748pU6ZwfnaWk5ODsWPHIigoCDt37mQ9DKS6ys7OhouLy3/u2finJk2a4NixY5yfUxsbG+PmzZvo27cvp+Iq//TkyRM8efIEfn5+/3pNXV0dpqam0NXVhaamJrS0tNCqVStYWFigffv2UFISfYALkZ7Pnz+zvmeYm5uL3a+CggK0tbWRmZn5wxhpF0DJz8/Hs1jRxV3qApqFJYQQGYmKikJUVJTImPr162P68JHAFvELoDg4OEBLSwufP3/+YcyRI0ewZMkSGBkZid0/IYQQ8peCggI4OztzummzsLDAtm3bpJ4Tj8fDnDlz4OrqCn9/f+zZswefPn1ibWdjYwNvb28MGDBA6jkS6Rs7diwYhsGECRMkUm23osVPuGAYBvHx8YiPj8fevXuhqKiIMWPGwMPDAx07dpTauLXJK2EKRueK3sx0ov5BtOA3/8/Xnj17Bjs7O+Tk5LCO1apVK5w4cQJ8Pr9CubJp1qwZzp07BxsbG9ZNsPHx8RjZQA8XYAB58ID480C72nHCGNu/admnUqRPfMHaT5MmTWS6cYxUTy1atICjoyMuXLhQ4T5atWqFDh06SDCrms/S0hKamprIysr6Ycz58+fh7e0tw6ykp7KfNYQQAny79k9MTMTFixdx9OhRTg/yuRo1ahR+++03aGlpSaxPIj2dOnXCnTt3MHDgQCQmJnJud/v2bdy+fRuenp5o1KgR2rdvj44dO2Lw4MHo378/bQonNR7DMFiwYAEEAoHIOBeoo7kit8VD48ePx+bNm5GQkPDDmNLSUqxYsQJHjhwRK19x+Pj44P599lN5lixZggYNGkgtj3/i8Xj45Zdf4OzsLDIuJiYGvr6+teb6vq6LjY3F0aNHERQUhI8fP0qsXxUVFZw7dw52dnZ/+zqPx4OtrS1sbW3BMAxSUlLw4MED3LlzB9HR0YiLi4NAIICmpia6dOmCrl27okuXLujSpQv09PSo4JeM8Xg8DB06FE5OTggMDIS3tzfS09Mr1Wd+fj5u3ryJmzdvAvhWcHzgwIEYPHgwOnbsCH19fWRlZSEtLQ2ZmZnIyclBdnb2v37Pzs7G+/fvUVhYKHI8Pp//veh479690aNHDzRr1kxqc7qEkFoiIRloz7KhXoLPYYqLizF9+nQEBARUqD2fz4e5uTm6du2Kjh07QkdHBxoaGqhXrx6ys7MRHR2N48eP4/Xr15z7/Pr1K1xcXODp6YkNGzbQPSapExiGwerVq7F69WrObcahAfahCZQhJ8XMyA+fy/QGtNyb4HMg+73MqlWroKSkBLfFEigOIePPierow4cPcHV1RWlpKWtsk+lT0WjQQBlk9Q/tnYFEEYfe1IB/Iw0NDYSHh8PS0hLZ2dkiYxmGgbu7Oz59+oTZs2fT/TMhElDt1wXQ51GNw+l7yvIzWtTwz68aiX6eSHVC348Avq3lnjx5MmJjYyvVj4aGPAIOtMZAR1cJZSYh//Hv7AqgM7QwCEVIBPu91l/Onz+PsLAwODk5Ydq0aRg4cGDlnoH8R26vWvMx+o7oNUjiXheVlZVh7969WLlyJev9DgDIycnh+PHjaNy4MecxgG8HSN28eRM2NjYVKoLyI3l5eXj48OF/viYvLw9tbW1oampCT08PvXr1wtixY2FsbCyx8cmPPX36lDWmIgVQAEBXV1d6BVA4vP/f2buYdQ1NXUAFUAghRAZKS0sxY8YM1rjZs2ejYQVPcldUVIS7u7vI09CLi4vh5eWF06dPV2gMQgghJDs7G6NHj8bjx49ZYxs2bIgzZ87I9MQ9XV1drFmzBsuWLUNoaCju3buHt2/fgsfjgcfjQV1dHa1bt0a7du1gbm5eYyvgkh8bN24cGjRogIkTJ3IqbFFdlJaW4vDhwzh8+DD69esHPz8/WFhYVHVatdb9+/cxaNAgTt8jDRs2RGhoqNQ3IvXo0QOHDh3CmDFjWGPDUYAFyMBvaCLVnKoTRsggZU4ivmawT36vXr0aampqMsiKVHceHh6VKoDi5uZGC8b+QV5eHo6OjiI3iT548ADv37+Hnp6eDDMjhJDqJyEhAUeOHMGZM2eQkpIi0b7btWuHnTt3wsbGRqL9Eulr1qwZoqKi4ODggJiYGLHb5+TkfC+2/ttvv6FRo0YYOnQoxo8fjz59+tC1C6mRwsLCEBERwRr3MzQ598nn87F+/XrWAh8BAQFYuHAhzMzMOPfNVXBwMNasWcMa17RpU8yZM0fi47NxdHSEubk566Kg1atXw97eHp07d5ZRZkSSCgoKcPLkSfj7+/9wYV5lmJqaIjAwEF26dBEZx+PxYGxsDGNj47+dUP1XEWv6/Ko++Hw+xo8fD1dXV2zYsAF+fn6sBZu5Ki4uxvnz53H+/HmJ9PdPQqEQcXFxiIuLg7+/P4BvayiMjY1hZmYGe3t7ODg4iL1glhBCJOXDhw8YNmwYpwJ5/zR06FC4u7tjwIABaNiw4Q/jBg4ciJUrV2Lv3r1Yvnw5vnz5wnmMLVu24O7duzh16hQMDAzEzpGQmoJhGHh5eWHTpk2c2yyDJn6FNnig69aq1GydCXJv5aA0jf36dOnSpchXLAAmySCxWiw/Px+Ojo6cTmCv174dmq1eIYOsaq9WrVohLCwM/fr1Yz2wSSgUYu7cuYiJicGePXtQr149GWVJCCGEEEKIZBQUFGDjxo1Yv349ysrKKtXXMGdN+KxpDt0m3A7TqA6MoIg/YAg7pOIpuD+HEQqFOHfuHM6dOwcDAwNMmTIFw4YNg4mJSbW8L4iIiMCCBQvw559/cm6zYsUK9O3bt0LjGRkZ4Y8//oCDg4PIw1IkRSAQ4MOHD/jw4QPi4+MRGRmJVatWwdbWFtOnT4eDg4NM91LVNXFxcSJf5/F4aNeuXYX61tXVFbmWolIFUDi4EXNPqv3XFFSKmhBCpKysrAyjRo3C8+fPRcYpKytj/vz5lRpr0iT2JzZBQUH4448/KjUOIYSQuun27dvo2LEjIiMjOcUfO3YMzZtXTdV7ZWVljBgxAlu2bEFwcDDOnDmDoKAgHDx4EF5eXnBwcKDiJ7WYs7Mznj17Bltb26pOpUKuX7+OLl26YNasWZwqHRPxXLlyBQMGDOBU/EROTg6nTp2CqampDDIDRo8ejZUrV3KK3YkcHAb3has1GcMweOuVjK9X2H8eOnfujMmTRZ+gQeqOfv36VWoj44gRIySYTe0xZAjLyRMAQkNDZZAJIYRUP/n5+dizZw+6du2K9u3bw8/PT6LFT/T09LBr1y48fvyYip/UYFpaWrh27RoGDx5c6b5ycnJw6NAh9O3bF23btsXWrVvx8OFDiW1UJkTaSkpKsGDBAta4/qiHrlARq29HR0f07t1bZAzDMBgzZoxET4ACvl0Pjxo1CkKhiNMb/7/9+/dXyWI0Ho+Hbdu2scaVlZXByclJ4n9HRHqEQiEiIiIwbtw46OjoYOrUqRIvfiIvLw9vb288ffqUtfiJKH8VLifVj6qqKtauXYvnz59j6NChVZ1OhZWWliIxMRGnT5/G5MmT0aRJE1haWmL9+vWIj4//XoSHEEKkqby8HCdPnkTXrl3FLn7SuXNnREVFISQkBMOHDxdZ/OQv8vLymD17NpKSkjBq1Cixxrt79y7Mzc1x8OBBeo8k35WDwSMUwRefMQBvoY9kNEISWuIleuENJizzQmBgIOtm/eqgvLwcs2fPFqv4yTpoYx0aU/GTaoBfXx4tDrSDsgq3jUPrFv6KD7+l0vtZBQkEAowaNQqPHj1ijeWrq6Plwf2Qo01dldazZ0+cOnUKcnLctvgEBATAysqKU5EaQgghhFQdhmHoupSQ/08gEGDv3r0wMTHBmjVrKlX8xKSFMs6dbodD+1rXqOInf2kMedyAIbqbmVeofVpaGlatWgVzc3OoqqrCwMAAbm5u2L9/f5U/23369CkcHBxgb28vVvETe3t7LF++vFJjGxoaIiYmBrOWzgZPUfbzOQzDIDIyEsOHD4eOjg4mT56MW7du0eeAFLAd9tKyZUuoqqpWqG9dXV2Rr0u7AMrNWPEP1aqNqAAKIaRaYhgGJSUl+PLlC96/f4+0tLQauWD38+fPcHR0REhICGvstGnTKn3akLm5OXr27Mka5+HhwWnRJSGEEAIAGRkZmDlzJvr06YO0tDRObZYvXw4HBwcpZ0bIjzVt2hTh4eH47bff0KBBg6pOR2wMw8Df3x/Gxsbw8vJCampqVadUKwQGBmLw4MHIz8/nFL9582bY2dlJOau/W7ly5d9OwhVlBj7i0XPpV6iuau83vsWnQ+wLdlRUVBAYGAh5eXkZZEVqAh6Ph507d1ZoM1WrVq3Qvn17KWRV89nZ2bFWpZfWac6EEFLdlJWVITExEUFBQZg7dy6aNm2KmTNnIjY2VqLj6OnpYceOHXj16hVmzZoFBQUFifZPZE9NTQ0XLlzAhg0bwOfzJdJnYmIiPD090aVLF6ipqaFz587w8vJCZGQkCgsLJTIGIZLm4+ODV69eiYzhAfCDjth983g8+Pr6ssYlJCSgW7duuHdPMifonD9/Hm5ubhAIBKyxs2bNwqBBgyQybkXY2Nhg3rx5rHEfPnyAvb09Feqt5hiGQUhICNq2bQt7e3scO3YMBQUFEh+nT58+ePjwIX799Vc6sawOMDY2RkhICCIiItC6deuqTqfSGIbB3bt3sWzZMnTo0AGNGzeGlZUVJk+ejG3btiEqKorz3DEhhLBhGAahoaHo1KkTRo8ejXfv3nFuKy8vj19//RX37t2DlZVVhcZv3Lgxjh8/jsOHD4u1yDsnJwdTpkxB//79cfPmTZSXl1dofFLzlZWVYV/QSbTEK3TGGyzBJ1xDId5BgC8ox0uU4Q6KcDT0HMaOHQtDQ0OsWbMGnz59qurU/9P79+/h5OQEf39/zm22QQfLoCXFrIi41LrUx96QfVBS4raxLX3laySPfIayjJq39rgqCYVCzJkzBxcvXuQUb7J3N1Ramkg5q7rD2dkZBw4c4Bz/+PFj9OzZk/WQTkIIIYTIBsMwSEhIgL+/P8aPH4+WLVtCWVkZSkpKMDQ0hKWlJSZMmICjR49W2/snQqShsLAQu3btgqmpKWbMmIGPHz9WuK/OndTgv6Ml7t7sBBtr9oLB1Vkj8HHjYADmzp3LuRDij6Snp+PMmTOYPn06jIyM0KpVK8ydOxcXLlxAXl6ehDL+MYZhcOvWLQwePBgdO3bEpUuXxGrfpUsXBAUFSWQNTb169eC5diHa3+mKBnYale6vonJzc3Ho0CH06dMHffr0QVRUVJXlUhvFxcWJfN3cvGLFhYCqLYCSj3I8iH8mtf5rEtoRQgiRqfLychQUFODLly94/fo1Xr58+bdf7969Q2FhIQoLC/9V2YzH46FZs2YwMTFBu3bt0LlzZ1hYWMDU1BSKiopV9H/0d0lJSYiOjsa7d+9w584dXLlyhdODYHl5eSxatEgiOWzcuJH1RLunT59i27ZtWLhwoUTGJIQQUjtlZ2djx44d2Lx5s1gLPl1cXLB69WopZkYIN3JycpgzZw7GjRsHf39/bN26FZmZmVWdlli+fv0KPz8/bNmyBY6jnFDqXQLFGlilujrYsmWLWNe/kyZNgoeHhxQz+m88Hg+HDh3C27dvWTdflYCBy/w5eNivNzQ1NWWUoWxlHnqH975vOMVu27YNrVq1km5CpMbp3bs3tm7divnz54vVbsSIEXQK9Q+oqqpiwIABCAsL+2HM9evXkZubi/r168swM0IIkazS0lLk5OQgPT0daWlpSE1NRWpq6vc/p6Wl4f3791I7oUNTUxPDhg3D8OHD0a9fPyp6UgvJycnh559/hrW1NUaNGiXRwpcCgQCPHj3Co0eP4OfnB2VlZTg7O8Pd3R329vbV5pkKqdtCQ0OxZs0a1rhpaIhOqFiRhZ49e2LYsGGsBxVkZmbCxsYGhw8fxqhRoyo0VllZGZYvX46NGzdyim/VqhX8/PwqNJYkrV+/HuHh4Xjx4oXIuMTERAwaNAjBwcHQ19eXUXZElNzcXDx69AjPnz9HcnIyQkJCpHqam7m5OTZs2ICBAwfS/XIdZGdnh7i4OJw4cQJ+fn6Ij4+v6pQk4vPnz/j8+TNu3779/Ws8Hg8GBgZo0aIFWrVqBQcHBwwcOJCuxwkhnDEMg2vXrmH58uW4f/++2O1NTU1x7NgxdO3atdK58Hg8TJgwAZaWlhg5ciQeP37Mue2NGzdw48YNGBgYwN3dHTNmzIChoWGlcyLVX3l5OU6ePIkVK1awFqz8X5mZmVi5ciV8fX2xZMkSLF68uFoUzGMYBidOnMCcOXOQk5PDqQ2Px8M+RgdT0UjK2ZGK6DXACsHBwRg2bBink8K/Xs1GfK8HMNrWCo0ctWWQYc2WnZ0Nd3d3hIeHc4rXX+qFRoMGSjmrumfixInIz8/H3LlzOcWnpqaiV69eOHv2LPr27Svl7AghhBDyT0KhEBEREQgODkZkZCTS09P/M+6vNQd3797F0aNHwePx0L17d0ydOhUTJkygg99IrfTq1Sv8/vvvOHDgQKWK/igpKWHkCAdMHPMSFp3UJZhh1VNRVsaOHTswffp0LFiwAFevXpVIvy9evMCLFy+wc+dOyMvLw9LSEnZ2drC2tkaXLl2gIpFRvs0lhYWFYcOGDbh7926F+jAxMcHFixehpqYmoay+UTauB9OTZsh/lIvM/e+QfTYTTJl01nmxiYqKgrW1Nezs7ODl5YV+/frRM9dKKCsrQ0KC6ENkzczMKtx/VRZAuY1CCIVCqfVfk9CVEamR6AdYsvLz8/HgwQPExMQgNTUV5eXlUFBQgLy8/H/+zuPxUFJSgpKSEvD5fBgZGaF169bQ1tZGRkYG3r17h8TExO+LrXJyclBQUID8/PxKnTLIMAzevn2Lt2/f4tq1a9+/LicnB0NDQ7Ro0QL6+vrQ1dXFly9fkJCQgLdv34JhGBgaGqJly5Zo06YN7O3tJXqKc0pKCoKDgxEYGIgnT55UqI8JEyagWbNmEsnHysoKo0aNwsmTJ0XGeXl5wczMDLa2thIZlxBpSklJQXR0ND58+AAVFRXo6elBW1sbJSUlKCgogLKyMlq3bg0jI6OqTpWQWiEjIwN+fn7Ys2eP2CdEWlhY4OjRo5WuQEuIJDVo0ABLliyBh4cHTpw4gbNnz+LatWsoLi6u6tQ4EwqFOB94DvwLfOivagHt8brgydGkFxfl5eXw8vLC5s2bObextbWFv79/lU0sqqio4Ny5c+hu0Rlv34s+EfDt+3dwc3PDpUuXqsUiQknKDv2Et4uSOcUOGTIE06ZNk3JGpKby8PDA27dvsXXrVs5t3NzcpJhRzTdkyBCRBVBKS0uxdu3aarGhkxBC2JSXlyMuLg7Xrl3D9evX8eTJE2RlZaGkRPangmppacHFxQVubm7o06cPbbKsI3r27Ilnz55hw4YN2L59e6Weo/xIcXExTp8+jdOnT0NDQwNubm4YM2YMrKysaA6HVInnz59j7NixrHENIIdfUbnNST4+Pjh//jzrgQUlJSUYPXo0kpKSsGLFCs5zAgzDIDIyEitXruS8wVVeXh7Hjh1DvXr1OMVLU7169XD06FFYWlqy/h3FxMTAzMwM+/fvh6urq4wy5EaYJ0BpegkEuQLI15eHoqEy+PUqfzpYdVFcXIzY2Ni//UpKSpLqmHw+H+3bt0f37t0xbNgw2NnZ0WdGHaegoIDx48dj3LhxCA8Px86dOxEREVHr1u8wDPN9I8KNGzewZ88emJqawsfHBy4uLrQYtQZgwKAYDL5AiC8o//674OZ16Jfmo3379jX+XothGJSWlEBOTq7G/7/UJgUFBTh58iT27t2LBw8eVKiPGTNmYNOmTVBVVZVobi1btsSdO3cwf/587N27V6y2aWlp2LBhA/z8/ODq6op58+bB0tKS3g9rqXv37sHDwwMxMTEV7qOwsBArVqzAoUOHsHnzZgwdOrTKvl/+/PNPzJs3T6yNQ3w+H0d9NmLMz79LMTNSWQ4ODjh16hTc3Nw4XY8KsgV4OT4BWmOboJmPCfhqtH3iv9y9exdjxozBmzdvOMU3chiEpos8pZtUHTZnzhzk5eVh2bJlnOK/fPmC/v37Y+HChVi7dm2tWz9Cqpf8/HycPXsW9+/fx4cPH8AwDMrLy6Gqqgp9fX0YGBjAxMQEvXr1okNTCCG1GsMwiIiIgJeXF549e1ah9vfu3cO9e/fg5+cHX19fODs70z03qbE+f/6M8PBw3Lt3D2/fvsWbN28qXVBdV1cX8+bNw5QpU6DRKA/5WeMllG310759e0RGRuLMmTOYNWsWPn/+LLG+BQIBbt26hVu3bgH49synXQsT6CEVupBHffChDB4KP/PxYUch5JTlIKckB56SHHiKcpBT5IGnJAc5RTnckLuOax+FePv2LZ48eYKHDx8iIyOjwrnp6uoiIiICjRs3ltT/7r+oWdSHmn99GKwyxufTGfh6LRv5976CKZV9MZTIyEhERkbCzMwMc+fOxciRI6GuXruK+shCUlISSktLRcaYm5tXuH+2AigFBQXIy8uTyr/dDUh+3VhNRTN4pEZ68+YNMjIyoKOjU9Wp1Fj5+fk4evQojhw5gtjYWNYFbdVZeXk5UlJSkJKS8sOY1NRUREVFAQAWL16M7t27Y/r06Rg5cqTYD42FQiH++OMPnDt3DhEREawnorHR19fnfBocV76+vjh//jyKiop+GFNeXo6RI0fi/v37aNmypUTHJzUTwzBISEjAzZs38fLlSxQUFKC4uPiHv/h8PoyNjWFpaQlLS0tYWFhU+qEJwzBISUlBQkICUlNT8fr1a1y5coXzhFDLli3RoUMHNGrUCLm5uVBVVUWbNm1gY2MDCwsLqopLCAfBwcGYMmUKvn79KnZbXV1dhIaGSnxBFiGSoqKigsmTJ2Py5MkoKirCzZs38eDBg++nt8fFxeHjx4+c+uIp8KBkrAKUA8JcAQRZZWAE0p8EE+YK8dbzBbKDM2C8pw0Um9KCBVFKS0sxftp4BAYGcm4zZMgQnDx5EkpKSlLMjJ2Ojg7Cdu2F5TBn5EH0/dqNGzcwcuRInDlzptYsds6NzsHr6c8BDj9Wenp6+P333+nBHxFp06ZNSE1NRXBwMGtsp06dJFo4tTZycnICj8cDw/z4h3TTpk3o378/7O3t//Z1oVCI1NRUFL16iQYoQyPwoQIeeKCfYUKI5OTn5yM9PR1fv35Fbm4uysrK0KhRIzRu3Bj5+flISEjA06dP8eDBA8TGxiIvL69K8+3fvz9mzJiBIUOG1JrrOSKe+vXrw8fHB3PnzsWvv/6KAwcOSK0IT3Z2Nvbu3Yu9e/dCSUkJzZo1Q4sWLdCnTx+4u7vDwMBAKuMS8pfo6Gi4u7tzeu9dDW1oV3JJQ+vWrTF16lTs27ePU/yqVasQGxuLLVu2iHx+Vl5ejjNnzsDHxwdPnz4VK6ctW7agS5cuYrWRpu7du8Pb2xtr165ljc3JycHw4cMxYsQIbNq0qUreMzIhwC0U4nJGMf60T0VRUiGEXwX/ilNooohpnadi/PBxcHNzq3Hz1qWlpbhy5QqOHz+O8+fPi12sXFwaGhro168funfvju7du8PCwqLG/Z0R2eDxeBg0aBAGDRqEjx8/4sSJEwgKCsLjx49rVNFxcbx48QLDhw9Hjx49sHHjRvTu3buqUyL/IBQKcRxfcRJfcROFKPyvieU5MwB8e1bUtWtX9O7dGw4ODujWrRv4/OpZNOsdyhCJAjxFMeJQghcoxVeUo9C8zfd1Xnw+HyoqKmjatCl69OiBvn37om/fvhI7hIn8n6KiIjx58gSxsbFITExEQUEBhEIhCgsLkZiYiBcvXkAg+Pc1CReampo4fPgwHB0dJZz1/1FWVsaePXtgZWWFn376Sezim0Kh8HthTSMjI4waNQq2trawsLBAw4YNpZQ1kZXMzEwsWrQIAQEBEuszJSUFLi4u6NGjB3x8fNC3b1+J9c3mw4cP2LhxI3bu3CnWz6WCggJOnTqFYabtASqAUu0NGzYMgYGBGDNmDOf1z5+PfURe1Bfor26BRk5aUs6w5sjJycHSpUuxb98+kc/+/le9Du1h4r8LPCqUKVVLly6FkpISFi9ezOn7nGEYbNq0CRcvXoS/vz/69OkjgyxJXZKUlITdu3fj8OHDyM3NZY1XVFTEwIED4erqCgcHB2hp0XsvIaT2ePbsGebPn4/r169LpL+kpCQMHToUFhYWmDZtGsaMGUNFpEiN8OnTJwQEBCA4OBh3797lfE/BxtDQEEuXLsXEiRO/r+cWCqp2bY8s8Hg8uLm5wcbGBrNnz0ZQUJBUxikrK8OTxD/x5J8vfAawKlNk22mYKrE8+vbti4CAADRt2lRifYqioKME3bnNoDu3GYQFQsx+Mgnx158hMjISCQkJMsnhL3FxcZg2bRrmz58PNzc32Nraolu3bmjRogWth+cgLi6ONUaaBVCAb3OQ0iiAchH5Eu+zpqJdwKRGKikpgY2NDa5fv87pzYR8k5eXh+joaFy+fBlHjhzhNPFUW92/fx/379/H3Llz4ejoCBcXF7Rq1QoGBgbQ0ND414VCUVER7ty5g7CwMJw6dQofPnyQSB6NGzfGlStXoKGhIZH+/tKsWTP8/PPPWLVqlci4nJwc2NnZ4fjx4+jZs6dEcyB/V15ejnfv3uHly5d4+fIlkpOT8fLlS7x//x7y8vJo0qQJdHR0oKCgAIFAgPLycjRs2BBNmjSBtrY25OXlv1fI/uv3goICZGRk4OPHj99/z8zMhEAggJaWFnR0dL7/aty4MVRVVVFSUoLS0tLvv4qKipCRkYEPHz7g0aNHYlddfPr0KUJCQgB8m6ju3LkzLC0tYW5ujjZt2qBp06YoLCxEQUEBCgoKkIQDReQAACAASURBVJ+f//3P//zvN2/e4NatW5X6+UpOTkZycvJ/vqasrIxGjRqhfv360NDQgIGBwfefeXl5ecjLy6Np06awtLSkRf6kThIKhfD29oavr2+F2uvp6SEiIkJmkw+EVJaKisr3Rdp/YRgGycnJiIqK+v55ZGxsDCMjI/D5fBQWFkIoFKJMW4BfdNdDTuH/FnIwQgZln0pR+r4E5UXl8NVZg/YabaGmpgZ5eXnw+XwUFRUhKysL6enpuHfvHm7cuPG9krK48m5/xXPbR2h5ogNUzanq738RfC3DNLcpuH3tNuc248aNw8GDB6tN0bT2LU0RCD04I501NjQ0FBMmTEBAQEC1XazNVcHjXLx0j+dUWVtdXR1hYWG0SIKwkpOTw7Fjx6CkpITjx4//MI7H48HPz48eILDQ0dFBjx49cPfuXZFxgwYNgqOjI8zNzZGRkYG4uDg8e/bsXwVbVcFDayihHZTQFopo9///bFheDlo2SQhhwzAM3r59i9u3b+P27duIjo5GfHy8xBZVSIuGhgYmTZqE6dOnw9TUtKrTIdWErq4udu3ahbVr1+LSpUsIDQ1FeHi41Ir0lJSUfJ9TDQ8Ph7e3N+zt7TF69GhYW1vTpkkiUYWFhfD29sb27ds5vUe3gSJmoZFExt60aRNu377NedFSWFgYwsPDMXv2bPzyyy/Q1NT82+tXr17FkiVL8PDhQ7FzWbt2LebOnSt2O2lbuXIl4uPjvz/zYXP69GlcuHAB48ePh6urK3r16oV69epJLb+CggKEXDiPI0jFNRR829aeA0DEwfRlH0tx4+J13Lh4HR4eHnB0dESLFi2+Px8yMDCAvr4+1NXVIVcNNmwJhULcuHEDERERuHfvHmJjY6VeTMLIyAhubm4YMmQIevToUePnlIjsNWnSBAsWLMCCBQvAMAyys7ORlpaG58+fIyYmBtHR0RV6rxTlr5/fvwqsSmrtBhf37t2DtbU1nJycsGHDBrRt21ZmY5Mfu3XrFjx+moEneM8pvqio6PtJl+vWrYO2tjYGDx4MR0dH2NnZVYuNJQ9QBF9k4Szy/rtG+P/sfRUKhcjPz0dSUhKSkpJw5MgRAECLFi3Qt29f9OvXDwMHDpT4uqSaQij8dhLpu3fv/nbgT0lJCYqLi5H/MgXZ+IQsCJH9P79KwUAZPChDDvkjhuFDTjYyMjKkcsBYhw4dEBoaCiMjI4n3/V/Gjh0LCwsLuLm54fnz5xXq482bN9iwYQM2bNgA4Nv3m6mpKVq2bIl69eqhqKgIZWVlaNy4MTp27IjOnTujadOmNO9eTYWFhWHKlCnIzBS9uaWi7t27h379+qFnz56YOHEiRowY8a+iOcXFxYiJicHTp09RUFAAbW1ttGvXDq1bt0aDBg1Efu+Ul5dDIBDgy5cviImJweXLl3Hw4EGxr6WVlZUREhLyrah7wn+vPSPVz8iRI1FSUoKJEydyng8ueVuMVxMToNqlPmI3PUCLPs2lnGX1VF5ejujoaAQEBCAoKEisg7Ka6OtD72Qg+OpqUsyQ/MXT0xNmZmYYNWoUsrKyOLX5888/YWNjg2HDhmH58uXo2LFjtZj7IDWTUCjEpUuXsHPnTkRGRorVtrS0FBcuXMCFCxfA4/HQtWtX2NnZoUuXLujUqRO0tbUBfCvsqKCgUKevFxMSEhAaGor4+HikpqYiPT0dcnJy0NfXR+/W7dAH+eiFeqhHKygIqXIlJSVYt24d1q9fX+FCqKI8evQIM2fOhKenJ+zt7dGxY0c0btwYWVlZePfuHdLT078fBvPXPIecnBwaNWoEDQ0NaGlpQV9fHwYGBtDW1oaKigpUVFQgFApRXFyMgoICfPr0CZmZmcjKyoJAIIBQKASPx4Oenh7MzMxgZmaGtm3bSm2erLy8HK9evUJKSgpycnLw5csXZGZm4s2bN3jz5g3y8/OhqakJU1NTmJiYQF1dHUpKSlBWVoaWlha0tbXRuHFjNGzYsE5/dlQlhmFw69Yt+Pv74+zZsygrK5NY33JycvD09MTq1aul+uyxutPW1sbp06dx7do1bN++HRcvXpTK3GRVMTY2xqZNmzB06NAq+znmq/LRZ5ANJjtOAvCtmM/bt2/B4/GgoqKC0tJSvHz5EklJSXj37h2ysrLw6dMnPH/+XOy9l6IUFBTg8OHDOHz4MIBv68m6deuGbt26wdLSEjY2NlV+qGt1xHZITcOGDSu1N5RrARRJr/l7hVLEQzoHZtVE1WNHDyEVkJiYiL59+yIkJARt2rSp6nSqnFAoRFxcHP744w88evQInz59Qm5uLvLy8pCXl4fc3Fx8+fKlVl3sSML/Y++8w6Oqtv/9TiaTySSZ9F5IJQmhhQChBQLCpSgoXKUKAl5FELDCVbmK3isqWK8FFRERpSlouBg6GMBA6AklBZKQhPRO6iSZ9vuDX85XpKRNGpz3efYzk5mz914zmTmzz9prfVZ1dbVQnaIehUKBh4cHbm5uaDQaKioqSExMNHi1RTs7Ow4dOkRgYKBBx61n6dKlfPfdd1y7du2ux6WnpxMWFsZrr73G8uXLMTExaRV77jXUajUlJSXC90sikeDh4YGdnR0ajYaEhATOnj3LmTNnOHv2LBcuXGjTildpaWltNlc9dXV1xMTENJgA117U1NSQm5srBMHdzU4/Pz9CQ0NxdHTE1tYWIyMj4fxpZWWFnZ0djo6O9OzZE2dn5zaxX6TjU11dTWVlJSYmJsjlcuRyeafZOCwuLmbGjBlN3qCqZ9y4cWzYsEHYkBIR6axIJBL8/f0bdESkatMwKr/5+y2RSjBxlmPifMPB1MOyB77SmwNlrK2tcXFxoUePHowdO5a33nqLhIQEPv30U7777rsmb4ao8+pIeigWn7VB2IwTxR/+TE1KNckzLlKTomr44P/Pc889xyeffNLhzt0TUPI6dqyg4UCWLVu2YGdnx+eff94GlrUOpbuLuDovAV11w9euJiYm/O9//6NPnz5tYJnIvYCpqSmbNm3i+eefZ9u2bfz+++/ExsYKAZGurq588803jBw5sp0t7Rw8+eSTjbr+i4yMJDIy8q7HVKHnLDWc5ebrZqsh/Rn/8MMsWLCAwYMHi5vWIiIiAGg0Gi5cuEB0dLQgepKdnd3eZjUKGxsbxo4dy4QJE5g4cSIKhaK9TRLpoNja2jJz5kxmzpyJWq0mMTGRixcvcv78eSIjI0lMTGyVeXU6Hbt372b37t0AuLm54eXlhaur6x2bUqkUf6NFGiQ6Opq5c+eSkpLSqONNZDK+V7siwzCfLaVSycGDB3nkkUc4deouihl/QqPRCD6bCRMm8Oijj3Lp0iW2b9/OxYsXm2XHG2+8weuvv96svq2NVCpl06ZN/O1vf+PYscaJyapUKtasWcOaNWswNjYmMDCQ4OBgQkJCGDJkCH369EEmkzXbJp1Ox9GjR/nhhx/Ytm0blZXNr3RUXl5+RzFMiUSCUqnEzs6O3r17M2zYMAYPHoyzszNWVlaYmpoikUhQq9Wkp6dz5cqVm1p2djY6nQ5jY2PkcjnBwcGMGzeOqVOnNrjvqlarOX36NBEREWzatKlNhBwsLS2ZNWsWs2bNIjQ0VDyHixgMiUSCnZ0ddnZ2BAcHM2PGDACysrLYsWMHu3fvJjY2lry8vFv6SqVSbG1tsbW1FQL1/3rr4uLCgAED8PT0vKlvfn4+586dIyYmhqNHj3Ly5MlW35f/7bff2LVrFzNmzGD58uV07dq1VecTuT2nT59mxYoV7Ny5s0XjFBYWsmHDBjZs2IBMJmPkyJEsXLiQBx98sE33C6qqqoiIiGDdZ19wmPQWj5eamkpqairffvstUqmUYcOG8be//Q0/Pz+8vLywtbVFqVQKSQR6vZ7MzEzi4+O5fPkyVVVVmJmZYW5uflOrFxmoT075aysvL0cul2NpaXlL8/LyIjg4mJ49e7YoeUFTrqEmuRptmQZtlRZdtRZdlfbG/Qotr5W8SmVuBenp6aSmplJXV9eyNzOh9Sp/PvLII/z444+tUiXybgQFBXHq1CkWLFjAjz/+2OLx6j9ve/bsueMxcrkca2trrK2t8fPzY/Dgwfj7+2NqakpBQQEVFRUYGRkhlUrR6XSoVCpUKhVSqRQHBwecnZ2xt7dHqVRiYWEh3BdpPnl5eSxfvpy1a9e2yXz1MWULFy6ke/fueHp6IpFIyM7O5sKFC3f8rhoZGWFhYYGNjQ1ubm54eHhQVVVFcnIy6enpBonptLCwIDIykvDw8BaPJdL2PPHEE6jVaubNm9ek+OiqM+VMGz6VfXP38sEHH9wifnovotVqSUxMZOvWrWzcuJGMjIwmj6FUKlm383+87SoWL21LRo0axdmzZ5k0aRKxsbGN7hcREUFERAQ2NjYMHTqU8PBwwsPDCQ4OFkVQOwA1NTWcO3eO06dPC/4liUQiNLhxvWxiYnJLs7a2pkePHnTr1q3V/pepqanCtVJDuQiNQa/Xc+rUqTv6Z+tfl5mZGdXV1VRUVKBWq4VrEaVSiaOjI05OTlhZWaHVatFoNCgUCjw9PfH19UUul1NYWEhpaSkmJiY4OjoKceBKpRKlUomlpSVmZmYdwidWXV3Nb7/9xpdffnnHImpXr169IeDJjcIyM7HiOWwJQkyCFRFpa/Lz89m6dStfffUVly9fbvX5VCqV8FveGIqKigxug52dHT4+PtjZ2Ql+JJ1Oh1arRSaT4ejoiLOzM+bm5jcVSa4voFxbW4tarb6pXb9+nUuXLlFVVdXg/HfzMwAYGxvj4OCAk5MTfn5+BAQE4Ovri85eT6VZOSaucmROJh3inH+voNfriYyM5J133uHkyZMGH79Xr16sXbuW0NBQg4/dWRk5ciQjR44kKyuL9evX8+233xpkbdZeKJVKXn/9dZ5//vkOJ+rh4OBwSz5UcHDwbY/NyckhLi6O3Nxc8vLyiImJYf/+/QYRAyopKWHv3r3s3bsXuLG3O2HCBCZPnsxDDz3UYYq8tjcNCaD06tWrRef/xgqgGJr/0ToFsjor4qddpFNz+fJlQkJCWLlyJYsXL+5wiWqthV6vp6CggKtXrxIdHc2RI0eIjo5ukgK3yJ1RqVRCwFprYWtry4EDB+jRo0erzWFmZsaGDRsYNWoUWq32rsfqdDreeecd9uzZw8aNG+8LUaG6ujoKCwspLi5GpVJRW1tLXV0dZmZm2NjYCE0ul1NUVMS+ffs4dOgQly9fJiMjg5ycnNtWDZBKpQ2+3yIdn5SUlEYHYvft25eJEycyevRoevbsedvElbq6OhISEoiLiyM5OVn4rJmZmWFlZYWTkxNOTk54e3s3apEs0r7U1tYSGxtLTEwMJ0+eJCUlhfT09FsqLMhkMrp168aAAQMYOHAgf/vb31qkINlaxMXFMWnSJNLT05vc19jYmHfffZeXX375vlmHiYgYmqCgINasWcMLL7zA4sWLOXToUJP666p1pMy8hOsST1yXejbc4T6g7GAxqU8noi1rvKDMypUr+ec//9lhNzrewoHT1LCPhjd9vvjiCwYPHsz06dPbwDLDodfrWffJt6T88xK3L2l5MxKJhE2bNjFixIjWN07knqNeHR2gtLRUCO7r1auXuKZpArNnz+azzz5rdvJnYyirqGDTpk1s2rSJPn36sGjRIqZPny4KBoiIdGA0Gg2///47hw4dIjU1VQhw0ev1ODk54e7uTpcuXejfvz8DBw68a1J0WVkZly9fJikpiaSkJOF+cnKyQavHtDZKpZIpU6Ywa9YshgwZIm5EizQZmUwmVNp6/PHHef/994mPj2fjxo2sW7eOwsLCVps7Ozu7QYEhe3t7QkNDGTRoECEhIUJCpSi2LgKQnJzMp59+ypdfftnoSswAXy//D6Fv/GBQW5ydnTl8+DBz5sy5qTBCQ1RUVLB58+Y7imc0ltdee41///vfLRqjtVEoFPzvf/8jLCyMpKSkJvXVaDRcunSJS5cusXHjRmG8AQMGEBYWxpAhQwgJCcHBwaFB/0tKSgo//PADP/74Y7P81k1Fr9dTXl5OeXk5aWlp7Nixo0XjJSYmsmXLFpYtW8YLL7zAuHHjCAgIEJJRysrK2Lx5MxERERw7dozq6mpDvIwGGTBgAE899RTTp0/H3Ny8TeYUEQFwd3dn0aJFLFq0CLgRiJ+QkEBFRQV2dnZ06dIFJyenZidsOTk5MW7cOMaNGwfc2Je9evUqKSkpJCUlsX//fg4fPmzwawidTsfGjRvZsmULM2fOZMmSJa0a/yHyfxw9epQVK1Zw4MABg4+tVquFwOJu3brx8ssvM2XKlFYTWaitreXAgQNs27aNX3/9tUViX3dDq9USFRVFVFRUq4zfVIyMjPD39yc4OJjevXvj5uYmxOhYW1tjY2NDWVmZ4AMoKSmhsrKS4uJiTsWe4urlq3cdfxtNT+Zua+zs7Hjrrbd49tln280nbW5uzg8//MCkSZNYuHBhqwux1dbWkp+fT35+PpcvX2bXrl0tHtPX11fw9w8YMIDg4GDRd9wAdXV1nDlzhh9//JH169cbvCBcY9BoNJw/f77BJIV6dDqdsF5vjlhDQ7i4uLBjxw4xuaqT849//AMvLy9mz57dZLHs9evXExkZyYcffsjMmTPvmb1CvV5PUlISx44dIzo6mri4OJKSklr0vTc1NSUiIgLvXr2gotSA1oo0Bk9PT44ePcrkyZOFRLjGUlpays6dOwXxQEtLS8LCwggPD2f48OGEhISIexetjFarJSMjg7NnzwqiYOfOnWuxWJ9SqaRfv3506dIFFxeX27bGig/W1dVx+vRp9u7dy549ezh79myLbGsqdXV1FBQU3PJ4WVmZkCNjKMGBeoE1S0tLlEolJhYmpJllYKQ0xlhpjGlXBRYDrTEPUWJkYrjfhfLyck6fPs2JEyc4dOgQx44da9JnoAo9a7jOGq4zHDPGYE4YZlhgBEkJ5GddJSMjg+zsbGpqatBoNHds9Xu3PXr0EJroMxS519HpdGTl5nCNakrQUoqWcnSYIkGJ0f9vUpSJCdRVlpCUlERiYqJwm5KSct8VJC8uLr4lP6IjodFohALJcXFxtz1G5mKCcrA1FqGWyL0UyN1NkTmZoDXXgqgH12i0Wi3btm3jvffe48KFCwYf38PDgxUrVvD444+LQn13wN3dnTfeeINly5Zx4MAB1q1bx/79+ykvL29v0xqFRCLhH//4BytWrMDJyam9zWkx9QWD/kxBQQEbNmxg06ZNjfZ7NYby8nIhhtbX15eVK1fy6KOPdtich7aioXNR7969WzS+qakp1tbWXL9+/Y7HtI4ASuvsE3VWRE+FSKenpqaGF154gV9//ZUvv/yS7t27t7dJBker1RIdHU1ERAQHDx4kJSWlXTafRAzDAw88wLp16/Dy8mr1uYYPH84nn3zCc88916jjz507R/fu3Zk2bRpTp06lf//+uLi4dMhFUUlJCQkJCcTHx5OQkEBaWhrp6elcu3aN2tpaQe3ZwsJCaNXV1RQUFFBYWNhqgkGi+Mn9x9mzZzl79ixvvPEGRkZG+Pn5oVQqkcvlVFdXk5+fT0FBQaM/Gx4eHoSFhREaGoqPjw/e3t74+fmJQRrtTHFxMb/99hu//vorBw4caFTlOLVazYULF7hw4QJr165FIpEwbtw4Fi1axJgxYzrEhvmmTZt4+umnUalUTe47evRoPvzwQ3r27NkKlomI3H9069aNAwcOEBERwdtvv31HZ/xt0UPOBxmUHy0l44cMfP29W8/QDoxOpSXz31cp+KbxAU1SqZR169Yxe/bsVrSs5UiRsBk3+pPGVRoO1J83bx59+/bF39+/DaxrOWq1msWLF7NmzZpG91m9ejWPPfZYK1olcr9QH1gv0nRkMhlbt26lX79+zVpPNpXY2Fj+8Y9/sHTpUv7xj3+wYMECvL3vz988EZGOyJkzZ1i3bh3bt29vdGUhKysrxowZw5AhQ3B0dKSmpoaLFy8SGxtLUlJSqyfetDZ9+/Zl4cKFTJkyRQwYFDE43bt357333uOtt97i119/5aeffuLEiRPk5+e3uS1FRUXs3r2b3bt3C48ZGRkREBDA8OHDeeCBBwRBFI1GQ0FBgdDy8/MpKirCxsaGwMBAHn74YZydndv8NYgYlpSUFHbv3s22bduIjo5ucv/Fixczd9KjYGABFLghyLFlyxYCAwP5z3/+Y/Dx7zTn6tWrmTt3bpvM11Ls7OzYt28fo0ePbnFCgUql4vDhwxw+fFh4zNzcXNj7qK8aWFxcTH5+PteuXSMjI4OsrKwWvoqOQVZWFkuWLGHJkiVYWFjg4+NDQUEBeXl5bWaDjY0NixcvZtasWfj5+bXZvCIid8Pe3p5hw4a12vgmJiYEBgYSGBjI+PHjWbJkCeXl5ezfv5+dO3eye/dugwbta7VaoSL26NGjWbp0KSNHjuyQMRadGb1ez759+3jnnXeatb5oDomJiTz11FMsXryYhx9+mMcff5wxY8a0WOhPr9dz8uRJvv32W7Zt29ZpAtQNiU6nE8ROt27d2t7mtCmWlpa8/PLLvPDCC1haWra3OQBMmjSJESNG8Oqrr/LNN980SbiwvUlNTSU1NZUtW7YANwq4+Pv74+joiL29Pe7u7gQFBREUFES3bt2wtbVt1jy1tbVkZWXdVOzIzMwMhULRrLgPdVEdVbEV1GXVoClWoynRoC3TsFi9CEk1VFZWCqLCRkZGODk54erqioeHB3369GHIkCG4ubk1OI9eryctLU2Iazpz5gwxMTEtEuBzQMoozPFCRjk6dlNJWiP2Ljsq06dP5/PPP8fOzq69TRExACNHjuTChQssWLCgScKnAIWFhcyePZvPP/+cjz76qFXXq61Jfn4++/btY9++fRw4cMCgwsmenp5s376dfv36cVXb+GI0IobFwsKCnTt3smDBAtatW9fsccrLy2/y6VpYWDBkyBB69uyJs7OzUNDPyckJpVIpCFHp9XocHBxwcnLCxsbmnrju0aMnBTWJUYe4emAX6enplJWVYW5ujpWVFTY2Nnh7e+Pv70/Xrl0xNTW9ZYy6ujqys7NJS0sTBIJTU1NRqVRotVoqKytJTU1tldyPioqKBoUO60U+pFIpxsbGghhp/XpCpVKRlJTE6dOnGxUXey/wZ4G1u2GkMMLE3RSptTFPOz5FN89AvLy8cHBwQKVSUVVVRWlpKYWFhRQVFd1WfFWr1VJYWEheXh7Z2dkGW28fpprD/Gld99jEFo0nlUoJCQlh6NChODg4CDHvpqamQlMoFJiammJubo6Liwtubm7Y2to2+Vyg1WqFtW7951IqlXaImGqRewO9Xk9cXBynTp0iOTmZlJQUkpOTG38untyy75NIx0KdW0fJLwWU/HKzyFYAXVEqlYIInLGxMV27dmX06NFMnTqVwMDA9jC3w5GSkkJkZCRffvklycnJBh/f1dWVl19+mWefffa26yyRW5FKpYwdO5axY8ei1+vJzc0lJSWFuLg4Dhw4QFRUFFVVDRfbbCtkMhmzZs1i6dKl9/z3ytHRkaVLl7J06VLi4+P55ptv+Prrr1ssevhnUlNTmTx5MoMHD+ajjz5i4MCBBhu7M1FcXNxgXGGvXr1aPI+Li0ubCqAUoSGatime0lkQBVBE7hmOHj1K7969ef7553njjTewtrZub5OaTHl5uVBNLzs7m8TEROLi4jh9+jQlJSXtbZ5IC+natSsffvghEyZMaFOn76JFi7hw4QLffvtto47X6/Vs2bJF2By2sbEhKCgILy8vnJyccHFxoXfv3gwbNgy5XN7gePWBC3FxcWRnZ5OTk0NRURHm5uZ07dqVwMBAHB0dkUgkSCQSjIyMkEgk1NXVkZOTQ2ZmJgUFBVRUVFBRUUFGRgbx8fENBgfW1NR0aLVRkXsTnU7HlStXWjRGZmbmTd9BuJEwEBQURN++fXF0dMTY2BiFQkHXrl0ZMmQIHh4eLTVd5E+oVCpiYmI4fPgw586d4+LFi1y7dq3F4+r1emHj0NfXlwULFjB37txmB9m0lPfee49ly5Y1uV+vXr344IMPGD16dCtYJSJyfyORSPj73//OpEmT+OOPP/jggw+IjIxsdP/Kk+WMCnyAMWPG8PTTTzNhwgRkMlkrWtwx0Gt0lEYWkb0ynZorjXf6mJmZsX37dqEyaEfHFin76MJQ0snj7sJqlZWVTJkyhZiYmA4volZWVsbkyZObVK3zzTffZMGCBa1olYiISGMJCgriv//9L88880ybzVlSUsIHH3zAhx9+yEMPPcSiRYv429/+JgbDiIi0IRqNhuzsbAoLCzl58iQ///wzR48ebfI4ZWVl/Pzzz00ORu+omJub06NHDwYMGMCMGTMIDQ29J4J/RTo2crmc6dOnM336dADy8vI4c+YMUVFRHDx4sFWqLzUGnU5HYmIiiYmJfPXVV43uN3/+fIYNG8ZDDz1EWFgYISEhjdqHEGl/UlNT+eGHH9iyZUuLgt9GjBjBRx99BFfSDWfcXzAyMuLf//43AQEBPPnkk61adCIgIIBt27Z1OhHpLl26cOrUKRYtWsSPP/5o0LGrqqq4ePEiFy9eNOi4HZ3Kyso2PSebmJiwePFi/vWvf4minyIi3Ej2euyxx3jsscfQarXExsaSkJDAlStXSEpKIjY2lqtXr7Z4nv3797N//34GDRrEW2+9xahRo0R/xV/Q6/VkZWVxKuUUZUXFaKt1oNcjc5Jj4i7HxEWORPp/11EajYbt27fz4Ycftnn18XpUKhU//fQTP/30E7a2tkyePJmpU6cydOhQIUGiISoqKjh27BhHjx5l586dxMfHt7LVIh0NhULBc889x9KlSzuk0IK1tTVff/01L774It999x2bN2/ulKJ0Go2GhIQEEhISbvu8k5OTIIhSL4ri5uYm/E+uXr1KamrqTbdXr14lMzPzjomqCoUCCwsLrKyssLS0xN7eXqgAq1Qq4FubQQAAIABJREFUkclk6HQ64jMTSE69iCq+itqM2ycW72H3bR+/3evx8PDA29sbNzc3oTk7O1NYWEhKSgqXLl3i3Llzdw3Qbwr2SFmGHQuwwZT/+23ToWf3Fy+ybM0XnWqNb2dnx1dffcXkyZPb2xQRA2Nra8vWrVuZMGECCxYuoLK8aVVzz5w5Q3h4OBMnTmTVqlX407H8uzU1NWi1WszMzJBIJGi1WtLS0ti/f7/gp28NIasxY8awadOmDvkbdj8ik8lYu3YtQUFBvPbaawZJpqusrBTEc5pih6OjI05OTri7u9O3b1+GDBnCgAEDsLCwaLFNrUkVOqKoYheV7KaSa2hgccMxKBKJBE9PT/z9/VEqlWRmZpKZmUleXl6HFpH7q9DH1atXOX36dDta1HnQqXTUJN+IRYvid6L4vZ0taj20Wi2nT59u8mdDoVAQFBREcHAwfn5+GBkZUVdXx5UrV4iPjyctLQ2NRoNMJkMqlVJdXX3HpGyJRHKTIIpcLsfZ2RkPDw88PDzo0qULHh4e2NraUlVVRWVlJXq9Hmtra6ytrTEyMqKqqgqVSoWdnR19+vTB3t7eEG+PSCegqqqKQ4cOERkZya5du8jJyWlvk4Ab69Nhw4bRu3dvrK2tKSkpISYmhiNHjtxWNEmkbamoqLjp78LCQo4fP85bb72FmZkZ9vb2KBQKoRkbGwuCpcbGxnh7e9O9e3eCgoJwdnbGzs4OR0dHXF1dkUqlBrVVr9dTXV2NTqdDp9Oh1WqF+/VNo9GQm5tLWlraTS0zM5PKykpUKhU1NTXo9XpBeMra2loQwDM1NcXY2Bi1Wk1eXh7Xrl0zSA7N7QgMDGTp0qU8/vjjYjxAC5BIJIIfatiwYTz33HPU1dURExMj7FecPXu2Xdaq5ubmPPPMM7z44ou4u7u3+fztTffu3fn0009ZsmQJb7/9NuvXr0ejMZyY6PHjxxk0aBBTpkxh5cqV910hwcbssRhKACUxMfGOzxtaACWSSnQGHbHzIwqgiNxTaLVaPv74Y9auXcvChQuZP38+Xbp0adcgY61WS05ODunp6eTm5iKRSLCysqKmpobLly9z4sQJEhISyM7OvmXxfL/g7u6On58fvr6++Pr64ujoiEKhEColmJmZUVtby9WrV7ly5Qrnz5/n7NmzlJaWtrfpd0SpVOLv74+NjQ0+Pj6MHz/eIJVgmoNEImH16tUkJiZy7NixJvcvLS3l2LFjt/RVKpWMGjWKoKAgLCwsMDExQS6XY2JiQllZGZmZmaSkpBATE9Oh/1ciIp0BnU4nKMPfji5dujBmzBieffZZgoOD29i6zktubq5Q8SI+Pp7Kykrq6uooKCho1aB3uJEQsGTJEt544w0efvhhxowZw+jRoxtVpael6PV63nzzTd5+++0m9QsNDeVf//oX48ePF4M1RURaGYlEwrBhwxg2bBi//fYbzz77bKODDPV6PXv37mXv3r04OjoyZ84cHnnkEWGdfS8lYGo0Ggq+yybv88w7BgreCTs7O3bt2sWAAQNaybrWwQ8TDuJJOBkUNyCCcv78eRYsWMD69es75P9dr9eza9cuXnzxRVJSUhrdb/q86bz55putaJmIiEhTefrpp9m/fz+//PJLm86r1+uJjIwkMjJSFOkT6bTo9XqKi4u5cuUKV69epaysTKgWVlhYSH5+PkVFRUilUpRKJRYWFjg6OuLj44O3tzfe3t54eXkZVPCsuLhYSBRJSEggIyMDvV4vVIaLj4/n0qVLrX7d3BFRKBRCcF19gF39fV9fXzw9PcXrZZF2x9nZmfHjxzN+/HgA0tLS2LJlC5s2bbpjAlhHQq/Xc+TIEY4cOQLcEHgJDQ3Fx8cHY2Nj0tLSyMnJwdjYGC8vL7y9vXF0dMTMzAxzc3M8PT3p27cvDg4O7fxK7g8qKirYvn0733//fbOEsP7KiBEjiIiIaDMx1xkzZuDt7c3EiRMpKChouEMTMDExYf78+axYsQKlUmnQsdsKS0tLfvjhB8aNG8f8+fMbrIYq0r78eW3Yv39/Jk2ahJOTU3ubJSLSIZFKpfTr149+/frd9HhpaSlxcXGkpKTwxx9/EBERQWVl0xJm64mJiWHMmDFYWloSHByMk5MTxsbGGBsbCxWT/9wsLS3p1q0b/fr1w9zc3BAvs0Oh1WqJiYlhx44d7Nixg9TU1DsfLLlRYdvI1IgQXTDl1zvW709JSQlr1qxhzZo12NnZMX78eLp16yYkY3l4eODq6kplZSU5OTlERUWxY8cOjh49atDgZpHOg1KpZO7cubz22ms4Ozu3tzkNEhAQwKpVq3jvvfc4cuQIn332Gf/73/86dEJvU8jPzyc/P5+oqCiDjalSqVCpVBQWFhpszMZQn3Dd2pjIZLystuQ17FBya/KWERLGDx/B2GeeZM2aNbzxxhsdOk5QIpEI12rtVaxIpPWRSCTMnDkTj0GejJ81gcqYsiaPsWPHDiIjI5k/ZRr/QoNzG6ZbVFVVERMTw5UrV0hPTyctLY309HTS09MpKioCwNTUFHt7e4qKiqipaVqsRFOQy+UsX76cV155xeAJnCItQyKR8NJLLzF69Ghmz57NuXPn2twGtVotFHw9d+4cO3fuBG6ID3ft2pUePXoIrWfPntjb26PT3UjlsrGxua2YYE1NDampqVy5coXk5GRSUlJQqVQ4ODjg7u6Ou7s7Hh4euLu74+LickdBQr1eT35+PgUFBRQVFVEUe5FCSihEywlUHKaaWpq+vtHr9cL3UURE5AYqlYqzZ88aRLRUr9ej0WiE6+eqqipKSkpatL/Vp08fhg0bhqurKw4ODiiVSiHnxc3NjcDAwEaLm4p0PNLT09m1axeRkZFERUV1mBgGCwsLnnvuOSZOnEhISMht11EVFRV8/fXXvPPOO5SVNX29KtL6VFdXNyj+ER8ff9silzKZDC8vL8zNzSktLaWsrAy1Wo1Op0Ov1wuCJXq9HiV67JFihxR3ZPhhgjcyatBTipa0Zf/kUtY1EhMTUalUBn+d5eXlrSZy8ldMTEx49NFHmTdvHuHh4R0yrvlewMTEhPDwcMLDw3nnnXcoKiri0KFD7N+/n6NHjzYpXrs5ODk58eyzz7Jw4UJRRJMbIsbffPMNb775Jl988QVr1qwxqO/s559/ZseOHTz99NMsXboUT09Pg43dkWnM+jAoKKjF87i4uNz1eUMLoPyP+1Nb4G6IK3WRe5KKigpWrlzJypUrsbe3JyQkhLFjx/L444/j6OhosHny8/PJzc0VFERzcnLIyMggPT1duM3KyupUm9gBAQG4uLigVqvRaDQ33dbf1+l0yOVy5HI5RUVF5OXl3TKOhYUFgYGBdO/eHV9fX6ysrDA3N8fCwgILCwvMzc1xdHTE29u7WQH6er2ea9euCQ7OlJQUsrOzycnJIS8vD2NjY3x8fPDx8UEqlXLt2jX27dvX7ACVxmBhYcHo0aOZMWMGDz74YIeqtG5iYkJkZCSTJk3i8OHDBhmzoqKCiIgIIiIiDDKeiIhI87l27Rpr165l7dq1jBs3jscee4wePXpgb2+Pp6dnh9iArKuro6Ki4qZWVVWFqakpTk5OODs7o1QqW82RUVdXx759+zhy5IhQfTYtLa1V5moKf64YBjB48GCeeeYZJk+e3Cq/I3q9nn/+8598+OGHje6jUChYs2YNM2fOFB1NIiLtwIQJEwgPD2fOnDlNXncVFBTw/vvv8/777wM31qthYWE8+uijTJw4sVNXOIiOjuapZ58i42LTq0p7eXmxb98+/P39W8Gy1qc7cvbhwQiuUdGAzu+GDRvw8PBosuhVa5OUlMTzzz/P/v37m9TP9u+OvPX5f8TfIxGRDoZEImHt2rVcuXKl3So8XrhwgTFjxjBmzBg+/PBDevTo0S52iIg0hszMTHbv3s3u3buJjo6mpKSkxWO6uLgISa8+Pj74+voKgtMKhULwC9TU1FBbW0thYSGZmZlkZWWRlZVFZmYmGRkZJCUlGTwBvLPh6OjIyJEjCQsLw8nJCUtLS+zs7OjSpQt2dnbiOkSk0+Ht7c2yZct47bXXOH/+PJs2bWLLli1kZ2e3t2mNora2lj/++IM//vjjlufuJBYNN153//79CQ0NJTQ0lJCQkHsymbg9qKmp4cCBA2zbto1ffvmF6urqFo8pl8t5++23eemll9rclz1o0CDOnz/P0qVL2bhxY4vHs7a25tlnn2Xx4sWdIsG1MUyfPp2hQ4eyZMkSwY8t0r74+PgI4g39+vUjJCQEKyur9jZLRKTTY2Njw4gRIxgxYgRPP/00paWlrFy5kk8//bTZyRPl5eVNEgmTSqX07NkTFxcX4VokICBASBo0ZLxTa1NXV8f+/fvZsWMHO3fubLwwgB501Tp01TrK6VjiJ3+luLiYDRs2tLcZIh2U/v37M2/ePKZNm4aFhUV7m9NkjIyMhHNiSkoKX375JVu2bLltjKDIvcuECRP477PP4zNucYPHGhsbs3DhQqZNm8b777/PZ5991qqiDM0hLCyMTz/9lJCQkPY2RaSNcPdyJ3BnMPlrs8l5Px3t9abFcWs0Gr7YvJFvkDADSxZhQwimSGi6j7iyspKSkhJkMhkKhQJTU1OhQntVVRV5eXmkpKTw66+/snPnzgb9LTU1NY0uotNcRo4cyVdffUXXrl1bdR6RltGjRw9OnDjBqlWrePfdd1slKbap6HQ6Ll++zOXLl+9YQMPY2Bhvb298fX3R6XRUVFSQm5sriPI3BplMRv/+/Rk5ciQeHh5IpVKuXLnC2bNnOXPmDNevXzfkyxK5C66urvTv3x+FQkFBQQHXrl0jNTX1nhHRE+ncxMbGEhsbe8fnFQoFISEh9OnTh8DAQAICAggICMDd3V3cF+4g6PV6yq+XE58XT1ZWFomJiVy6dIkTJ04QHx/f3ubdhJGREfPnz+fNN99s0I+nVCpZunQpTz75JCtXruSbb74RhejvIdRqNcnJjYttvg5cR0cKak5ym+vonTsMa1wbYWxsTFhYGD169KBLly507dqV8PBwbGxs2tu0+w57e3umTp3K1KlTgRu5BTExMcTHx5MXn0Te5h0UoKUGHTXoKTfRk+0oQVerQ1+jQ1enQ19767rO2NgYNzc33N3d6dGjByEhIfTt25fg4OAOkb/W0XBzc+O9997j9ddfZ/Pmzaxfv56YmBiDjF1XV8fq1auFnK9XXnmFwMBAg4zdUWloDeDp6WkQv3xbCqBUo2MfVQYb715BFEARuecpKipi//797N+/n3/+859MmDCBGTNmMGbMmCZV3NJqtSQlJXHy5EmOHDnC4cOH20zlrrXp27cvixcv5uGHH27WYvL69eukpqZSW1uLg4ODkMTemkgkEjw9PfH09GTUqFGN6lNRUcGWLVtYt24dp06dMogdnp6eTJ06lQcffJBBgwZhYmJikHFbA2traw4ePMgHH3zA8uXLUavV7W2SSAfG3t6eXr16YWZmhqmp6U2tXgDp2rVrHDt2rNVEJExMTOjSpQuenp50796dsWPHMmLECORyOeXl5VRUVKBQKDAxMeHMmTPs3r2b2NhYCgsLsbKyQqfTkZ6e3mmC+Q3Fnj172LNnj/C3lZUV4eHhjBgxgj59+hAUFNRqFVD1ej0JCQkcPnyYkydPkpGRQU5ODjk5OY0KhFcoFDg7O+Po6Iharaa8vJzq6mrMzc2xsbHB2toamUyGkZERMpkMd3d3AgICBLErrVZLYWEhGRkZZGZmUlNTg4mJCenp6Z1mU+v48eMcP36cF198kTlz5vDMM88YLEFfpVLx5JNPsnXr1kb38fLyIiIiguDgYIPYICIi0jwsLS3Zvn07zyydz7cfr232OJWVlezdu5e9e/cyf/58HnjgASZPnszEiRM7RXXs+krgX331FT///HOzxhg2bBjbt2/vFK/3bvRFwXpceIyG1zkrVqzAzc2N+fPnt4Fld6euro5Vq1axYsUK6urqmtTX+XkP3N/wER3jIiIdFBsbG6Kioli+fDnr169vt+C6ffv2ceDAAZ588kn+85//NLgBISJSj06no7i4GCMjI2xtbe8azKTX60lLS6O0tBSFQoGfn98dfYI6nY64uDiOHDnCyZMnOXXqVKv4UXJzc8nNzeX48eMGH/textramu7duxMSEkJoaCj9+/fH399fDGYTuSeRSCQEBwcTHBzMqlWrhAqa6enpREVFsXPnTrRabXubaTDS0tJIS0sTrh2NjY0JDQ1lxIgRhIaG4u/vj4+PT4fb06mtraW6uhoTExNkMhkymazdz0m1tbWcOXOG48ePc+zYMQ4ePEhVleGCLgYMGMD333/frgE4zs7O/Pjjj7zwwgu8/PLLHDlypMljmJmZ8dJLL7FkyZJ7UojC3d2drVu38swzz/Dcc8/dVYCoLZEhQT5AiUV/K8x6W2DiborMQYY6r47qS5UUbc2jOq71imO0Jd26dWPGjBlMmzYNPz+/9jZHROS+wMbGhlWrVrFo0SLefPNNNmzYIFQrby20Wi1xcXHExcXd9nlPT08GDRpE//79cXFxESoXy2Qy5HI5Hh4eWFpaNmtunU5Hfn4+JSUlQhGo7OxsMjIyuHbtGqWlpZSXl1NeXo5EIsHc3FzYw3V2dsbFxQV7e3sqKys5c+YMO3fuJD8/vyVvR7MxRcIklDyOJa7IsMYIK6SU7f2Kk6UFHD16lMjISDIzM9vFvuZgBAzHjGBM8ccE5aqlKLp6o9PpqKmp4dq1axw+fJjo6GiDCNSJNEyXLl0IDAxEJpMhlUqxs7OjW7dudO/eneDgYFxdXdvbRIPh5+fHxx9/zAcffMAff/zBTz/9RFRUFFeuXBGTWu9RLCws+Oyzz5gzZw6ShKZVBbazs2PVqlU8//zzvPvuu3z33XftnowfHh7O8uXLGTFiRLtfY4u0PRKpBOf57thPcyL3v9fIX5N128Stu1GHnu8p43vKcELKCMzxQoYtUqwwQrFzB/J4T8rKysjLy7ul5efnG9SX0toEBwfz6quvMmXKFPE700mQyWS8/vrrzJ49m2XLlhlE5Le10Wg0JCcnNzox+Hao1Woh1lKk7TExMWHKlCksWrSI0NDQW84XOTk5RERE8Msvv/DHH390qmLCIvcXKpWKY8eOcezYsZseNzMzE8RQAgICBHEUf39/UXD/DqjVasrKyqioqMDExARHR0dkMlmTxtBcV6NKqKI6oQpVYhWqhEpUiVWElHf8GPZevXqxbt06+vXr16R+dnZ2fPDBB7z11lts376dtWvX3vJ5FBHpTIwePZq5c+cybty4e3LP9F7A0dGRRx55hEceeQTik2HzmZueT/WRMv34zQVW9Xo9+jo9+tobgihrlJ/SzzEEIyOjtjT9nsDc3Jynn36ap59+msTERDZv3kx0dDRnzpyhsrJl+9oajYbvv/+eDRs28Oijj7Js2TL69OljIMs7Fg0JoHTv3t0g87SlAMpBqlAh+tv/iiiAItLRMai0m0ajISIigoiICExMTBg2bBghISF069YNnU5HQUEBBQUF5OfnU1BQQGlpKRqNBrVaTUZGRqdyQt+N+kDX4cOHM3nyZAYOHNgiR7W1tTV9+/Y1oIWtg1KpZN68ecybN08IfI2IiCAuLq5JFXuCgoIYNWoU06ZNa/F719ZIpVJeffVVxo4dy8yZMzuc6un9gkQiwcPDAz8/P/z8/IRgouLiYuDG/0mn01FYWEh+fj5lZWU39ZVIJBgZGWFsbIyDgwNOTk44OzsLtzKZ7KZzWf2tVqtFLpdjYmKCiYmJcN/KygoXFxdcXFzw8fEhPDycXr16NfpiJC8vj5iYGI4fP87JkydJSEgQXsudMDIywsLCQgiMqr/v7u7OoEGDGDp0KL169cLY+PZLFSsrq5suiOsrz/yV+qSk2NhYioqKqKiooKysjOzsbDIzM8nOzqaurg6NRkNBQUG7b7q3BmVlZezcuZOdO3cKjzk4OBAeHs6ECRN48MEHsbe/+QJVp9MJlZ+zsrIoLy+nsrKSiooK4bampkYIwq+uriYzM5OrV682+L+/GyqVSkhOuN8pKSnh448/5uOPP+aBBx5gxowZPPTQQ82uGpqbm8vEiRObJAA2evRoNm/ejJ2dXbPmFBERMSxGRka8+v5rHHA/wrVXktGrW+bg0Gq1HDhwgAMHDrBgwQKGDh3K2LFjCQgIQC6XU11dja2tLUFBQTg5OVFcXExcXBwZGRlcv36d69evU1ZWJtyHG8HXAwcOZNCgQXh5ebV4nazX67l8+bKwzvj999+5evVqs8d76qmnWL16dYdLcGsuj2LJYqr5nNIGj124cCF6vZ4FCxa0gWW3otfrOXjwIC+99FKTk6QkxhI8P+yKwxP3TrBwR2H16tW3rbzq4ODAwoUL28Eikc6OnZ0dq1evZtWqVfz2229s3bqV2NhYcnNzsba2xtPTky5dutCjRw+Cg4Px1Egon/oCRWhJopZ46kiglsvUUdcCR75Op+Pbb79l8+bNPPDAAwQGBqJQKCgpKaG8vJyqqiqqq6uF2+rqaiQSCRYWFiiVShwdHQkKCqJXr16YByjRWmiRmoniS/caWVlZHDlyhOPHjxMbG8uFCxcE36+NjQ19+vTB29sbrVaLWq0WfMQlJSXExsbe5KsxNjbGz88PGxsbjIyMhAZw6dKlFl0nizQdMzMzBg4cyJAhQxgyZAi+vr5YWVkhlUopKiqisLAQiUSCl5cXLi4uncq3KwJfrv4Si5IS4W9x3dI8jIyMCAwMFAQnFi9eTF5eHj/++CN79uzhxIkT95yfVKPR3BIML5VK6dOnDxMmTODhhx+md+/erX5O0Ol0JCUlcebMGfLy8qiurqayspIrV65w4cIFMjIybuljbGyMTCbDzc2NwYMHM3HiRMaMGYOZmVmr2VlWVkZ0dDRbt25lx44dLQ60uR1yuZy3336bl156qcMIXfbt25eoqCgiIyNZunQply9fbrCPtbU1TzzxBK+99lqzfbediREjRnD+/HkOHjzIrl27+P3339tFDKU/pszGigFdbXh2z63vu6mPGcrB1jjNc+eNq0uI232OhIQErl27RmZmJjk5OR1e9Mnb25tHHnmEwYMHM3DgQDw8PNrbJJFGsmXLViaMbm8rRAyJh4cH3333HS+99BLLly8nIiKi3WzJyMggIyPjrsUOQkJCmDBhAhMmTCAkJOS265vS0lJOnTrFyZMnOX36NCkpKaSnp1NTc5sKo50IKTADK1bgQBduTbCxdffAe8wDTJs2jdWrV3Px4kUiIyOJjIzkxIkTHVLIwQQJc7FiCXb48ae9jYcmQPeuNx372muvUVdXx6lTp4iKiuLQoUNER0d3+N+89qJeOEhhYoJNSSW2SLFDii1SbDHCDCNq0KNCh/GM8bh074aLiwvu7u4EBwd3eqH95iCVShk+fDjDhw8HoLy8XPCrpaSkkJycTFZWFhKJBDMzM2pra4mPj2+yIL5I++Lp6cncuXOZO3dui8ZxdXXliy++4N133+WXX35hw4YNzRKbbA7Gxsb07t2bwYMHM23aNAYPHtwm84p0bIytZXi85YvjXFfSX75C+e8N77Hfjny0bKX85geX/dMAFrYvbm5uPP7448yaNYsePXq0tzkizcTDw0MQ+f3iiy/Ys2dPu4kSity7uLu7M3/+fJ566imcnJzueJyrqysLFy5k4cKFlJeXExUVxb59+zh16hQXL14U14h3wdTUlAkTJuDq6kppaSnnzp3rMILU9xPV1dXExsYSGxt7y3MeHh4MGTKEyZMnM27cOBQKRTtYaFg0Gg25ubkUFRVRV1d3SystLSU7O5usrCyKi4spKyu7pf1VkFUikeDo6Iirqyuurq5CAnF9ToJWq0Wn01FWW87FvIuoC+vQlnY+sSRra2teeeUVXn755SYLvvwZc3NzZs+ezezZs0lPT2fHjh1ERERw4sQJ4Zzp5OSEu7u70JydnYVix/XxLMXFxeTk5Ah5MlVVVahUKqF4dn0xZBsbGxwdHXFwcMDMzAypVEpZWRkXLlxol+LDFhYWWFlZ4ebmhpeXF7a2tqSnp5OcnExhYSF1dXXU1tZ2SP+dyI3P7zPPPMPChQvx8fFpb3M6BH+OzXUoKKOzR7VIJBIkcgnIjZACdpZ2oviJAejWrRtvv/02cCOvIzExkVOnTnHq1Cn++OMPEhISmjWuXq9n+/btbN++nXHjxrFs2TLCwsIMaXq701A+dFBQkEHmaUgApbS0lJqaGkxNTVs817a/+ptEAJCIP/4iHRmJRFIDyNvbjs6Gi4sLQ4YMwcnJCaVSiVKpxNLSEqVSibOzM/3798fW1ra9zeww1AtNZGZm3tSKi4sxNTUVEmD8/f0JDw+/ZwIYa2pq+Ne//sXHH3/c3qbc09jb29OvXz/69etHSEgIAQEB+Pj4NGlxo9PpBOGTzkJRUREpKSmoVKrbCp3I5fIO93rqg4EOHz5MYmIiRUVFFBUVUVZWJojOaDQaSkpKhETvewVXV1d8fX3RarUUFBSQlZXV6QPc7lVCQ0OFoMVevXo16nu0f/9+5syZ0yR1yVdffZUVK1Z0mOQDERGRmzl37hzTp0/nypUr7W3KHfH09GTGjBk88cQTTarinJqayi+//MKRI0c4ceIEJX9KbmwuCoWCTz75hHnz5nW49UdLqa2tJSwsjDNnzjR8MDB16lTWrFnTZsrqOp2Offv28fbbbxMTE9Pk/lZWVvzyyy+MHDmyFawT6d69+20d5EFBQaJYpohB0ev1TTr/ajQaEhMT+f777/nuu+86xPVXvQinXC7H2NiYiooKSktLqa2txcnJiT59+tC3b1/8/f1xcnLCyckJb2/vdqn8o9PpOHr0KBs3biQ6Opr09HThmlYqlQrN3NwcX19funXrJiTBBwYG4u7u3il+L0tLS4mPj+fSpUvEx8ej0WiwtbUlLCyMYcOG3fYgGyAdAAAgAElEQVS9T09P58svvyQiIoKUlKZVLhXpuLi4uBAWFiYInvTu3btFgUUiHRNx3dK21NXVce7cOc6fP092djY5OTk3tduJ6N0LODk5MXToUMLCwvD19cXNzQ0rKys0Gg1arRaNRiM0lUpFVVXVTa2mpga5XI65uTlarZarV6+SkpJCUVGR0C8xMZHS0uYl2PwZhULBmDFjmDRpEuPHj2/Unl9lZSXFxcVIJBKkUqmwNtBoNMTExHDw4EFOnDhBWlraTUJfrcGQIUNYu3Yt3bp1a9V5WoJarebbb7/lo48+IjU19abn7O3tCQ8P5/HHH+fBBx9ELr+/t7ILCgo4e/Ys58+fJy4ujpiYGK5du2bwedzc3Jg5cyZPPPFEiwOWtFotubm5wn5weXk5hYWFnDx5kqNHjzYquNfMzAx/f3/8/f3p2rUrSqWSS5cucfDgQfLy8ppll7e3N6NHj2bmzJkMGTKkU6zLRW5FXLfc+5w7d44333yTyMjI9jalQdzc3Bg5ciR+fn4YGRmRnJzMiRMnGiXy1ZmQyWTMnTuXV155pdkB9nl5eXz99dd88cUXHULItH///syePZtp06a1qFhFcXExu3btYu/evcTHx5OWlkZFRUWD/SwsLPD09KS2tlZY71ZWVqLT6YAbSQ3W1ta3bZaWltTV1VFeXi60srIyMjIyWi2BxtjYWIhJMTc3x97eHjc3N9zc3PD09CQgIICuXbtiZ2cnJPqI++BtQ11dHQkJCaSlpXH9+nVKS0u5dOkS0dHRJCcnC8dJpVJsbW2RSCSCaI9CoUChUFBTU0NeXp6QrCXS+rTWuqWwsJDTp09z9uxZ4uLiKCkpQalUCgmR3bt3JywsDCcnJ0pLS0lKSqKwsJCKigrKy8vJzc0lKyuL3NxcpFIpXl5edO3aFVdXV2QyGVKpFEdHR3r27NmqoqEinR+9Xs9PP/3ECy+8cF+LQ1hZWTFx4kRmzZrF8OHDxd/Ge5D6okNHjhwRWk5OTnubJXIHPD09cXBwEBK79Xo9er0erVZ7ixBB/Rq9rTA1NeXvf/87c+bM4YEHHmjx+UKtVpOUlERmZqaw9lOr1ZSXl3P9+nVUKpUQb15foLGiooKVK1fe9nrN1NQUhUIh+N7lcjn29vaoVCqDxJ21FcHBwcyaNYu5c+diY3NzDenY2Fg+/fRTtmzZIorHdDCUSiUPPvggo0aNYvjw4Xh4eDS4Z6DX66mtrUWtVqPVaoVWf81tZ2dn0P3u2tpacnJyyMrKumPLy8sT5hdpGKlUKhSkfvjhh1v1+kOv13P9+nXMzc1bVPhPq9ViZGTUqH2H4uJikpOTSU1NJTU1lfz8fCoqKoQCuvVxR5WVleTl5ZGfn49arRb8MmZmZsJ9U1NToeDun5uzszM9e/YkODgYb2/vOxZN/iuVlZUUFhZSWFhIQUGBUCw6NTWVy5cvk5KSQkFBgfh5biOsra1ZvHgxzz//vFhw9y+Ie0UihuDKlSv89NNP/Pe//23xunbo0KEsW7aMMWPGdPo96KKiogYFytevX8+cOXNaPNfhw4cZMWLEXY9JS0vDy8urRfNUV1fj6OjYnOu8BL1e371Fk3dwRAEUkQ7NnQRQTExMeOaZZ1i9erW4MOWGimh4eLjQ/Pz8Ov2PkUjbERUVxbx588TEj0Ygk8kYOnQogwcPxsvLC3d3d2xtbVEqlVRVVZGamkp6ejpSqRRvb2/69euHh4eH+H28B6murubAgQNERERw4MCBJm0M2dvb4+HhQU1NjeCEEcVGOi+enp4MGjSInj178uWXX7ap6rGHh4cghjJo0CAsLS0ByM3NJTk5mfj4eNatW8e5c+caPaaxsTE//PAD06dPby2zRUREDERlZSXPPfcc69evb29TGiQ0NJTFixczZcqU227CpKen8/PPP/Pzzz9z9uxZg87dr18/Nm7cSEBAgEHH7UhcvXqVfv36NSmJ7sEHH+TRRx9l6tSpBk/OV6vVXL58mT179rBmzZpbEsUai4+PD7t27WqSgI5I0xA3WUQ6A1VVVWzevJnPP/+cixcvtrc5TcbT05Nu3brh6uqKg4MD9vb2ODg44ODggI2NDXK5HLlcjlqtprKyksrKSioqKqisrKSqqgpzc3O8vLzw8fHB3d39tsFkRUVFREdHc/78eS5dusSJEyfIyspqts3m5uYEBAQIYihyuRyZTIaJiYnQrK2tcXBwwNLSkpycHDIyMigsLBT8tH/eczAyMsLMzEwQGLazs8Pe3l5otra2jQqSu3TpEtu2bROqgt3t2ksmkxEaGkrfvn3p0qULtbW1REVF8fvvv4u+5DbGy8uL/v37Y29vj1qtJjs7m6SkJNLS0po8lqOjo/DZrG9BQUF4enqKvrf7AHHd0rGoq6sjLy+P7OxsEhISiImJERJpNZrOV5mtsyORSIQ1h7Ozs5DQqdPp0Gq15OTkEBcX16xzryFRKBQ89thjPPnkk4SHh3eac7der6ekpITq6mohAdPMzKzT2N9eZGZmcuzYMaKjo4mOjubChQvNqsqnUCj4+9//zuzZsw2SXNEY9Ho9BQUFFBYWCpUr689ter0ea2tr/Pz8cHV1ve3nQK1Ws23bNjZt2sTx48cbFHQcOnQoc+bMYdSoUXTp0qVVXpNI2yKuW+4fLly4wCeffMKmTZvEpPx2QqFQMG/ePJYsWYK7u7tBxqyurubHH3/khx9+4Pjx4wYZs7H07NmTxx57jMmTJ7eaUJxer6e0tPSmxBWVSiUU5JHL5fj5+eHh4XFLBc/6BC2pVNrsRKzCwkJBNC0uLk4QXbx+/fod1woKhQJfX1+srKywsLDAzs6O3r17079/f3r27ImlpWWLEoBE2o/r169TXFyMpaUldnZ3rxpbn/BVXym8sLCQs2fPcurUKU6ePElGRkYbWn7vIJPJbvsbJq5bRO4XKioqeP/99/noo49QqVTtbU6rYmNjw5AhQxg4cCA9e/YkKCgIb29vUfTkPkOv15OamiqIoRw+fJjMzMz2Nuu+xNTUlH79+jFo0CChNaU4q16vJyUlhRMnThAXF0d2dja5ublCq6ysbLGN3t7ejB07lnHjxjFixAgsLCxaPGZLacjnUp8s+Gf/rVqtFgSQ60XV6q+Fbne/rKyM2NjYNvGnd+vWjYEDBzJq1ChGjhyJk5NTg32Ki4vZvXs3v//+O4cOHbrtd1gqleLu7i6IaBgbGyOVSjE2Nr6pVVVV8f/Yu/Poqqt77+OfnXlOIDMJJCSBAAnIIENABURRLCjgbWnVVltb7cNQ22qpj/a29va2Tyct1VZrpZPW2usIAtKCQ0FQQUEEEcKQAAkZSEJCAiHj2c8fB87VSk6mk3OS8H6t9VsH8ttn729cy8P3/Pbe3/3RRx916mBFdMzHC/ic/+8dGBgoPz8/1dTUqLKyUo2NjW2+3xij5ORkpaSkyN/f33WQblRUlKKiohQcHKz6+nrV19fLWus6LDskJEQOh0MOh8N1GGpxcbFOnDjhxd++bwkICFB0dLQaGhra3HCcmJioESNGuA4XGjlypCZOnPipQkXoPRwOh6qrq1VQUKAtW7Zo8+bN2rVrl4qLi5nL9pD4+Hh9+9vf1uLFi137V/BJzBXBk2pqavSTn/xEv/71r7tdDG/8+PG67777tGDBArfPY3uzzZs3a/r06W7bbN++XRMnTuz2WPn5+e3uY3jrrbeUl5fXrXGeffZZLVq0qCtvpQAK4EttFUAJDg5WQ0ODdu3apaVLl2rr1q0+iM43MjIytGDBAl1++eVKS0vT4MGDqZSHbmttbdX69eu1YcMG1wPRvrRIZ/DgwRo1apSysrKUnp6ugQMHqr6+/hMbh06fPq3AwEDXRqOEhATXn88/DAoMDHSd4vzxy+FwKC0tTdOmTVNkZKSvf130QuXl5a7NZidPnlRjY6MaGxsVEBCghIQEJSYmKjk5WaNHj/7Uolhrrerq6rR//37XguC9e/fqyJEjbh9wwjf8/f01Y8YMLVy4UPPmzdPgwYNd99p6UDFs2DDdfPPNevzxx3t0suD8xE1Xq/sHBQXp2Wef1Q033ODhyAD0pK1bt2rFihVatWpVr384n5KSoltvvVXDhw+Xn5+fCgoK9Morr2j79u0eHysiIkLLly/Xvffe69ETEXqrLVu26Oqrr+50UbWYmBh99atf1Re+8AXl5uZ2eZHwoUOH9PTTT2vdunX64IMPuv2A9bLLLtOLL77YboVmdA+TLOhLrLXasmWLfvOb3+iFF15wnQR1MQkICNCQIUM0dOhQRUREyOFw6MiRI32yMMzHGWM0YMCATxREiYqKUnR0tPz8/FRdXa0dO3b0u9Op+7OQkBDddtttuuOOOzR27NgLbgw+ePCg1q1bp82bN2v37t0qKChwbXQKDg7WhAkTNGXKFOXm5mrEiBHKzs7WwIEDvf2roBchb+kbWlpaVFRUpIMHD2rr1q167bXXtG3btgt+V/Xz83N99tfU1HDyaD8VFRWla665Rtddd50WLlzIAriLWF1dnQ4fPqyCggIVFBSosLDQ9Xr27FnFxsYqISFBCQkJSk9PV3p6ujIzMzVx4sQ+fXL7+Y1FO3bsUGFhocrKylRWVqaIiAgNHz5c119/PYVf+yHylotPaWmpHnzwQT366KP9fuNsbxEZGaklS5boW9/6lhISEnpsnMLCQj3zzDN6+umnL/j/tSfExsbqS1/6km6//Xbl5PTrNapuORwO11qdmpoaVVdXy8/PT0OHDlVqamqfXYgN7ykvL9f27du1f/9+VVZWqrKyUkVFRdq3b1+3ikX3tI9vTj1/ANf5U7LPX+dPay8oKNDOnTu7fMBSWFiYxo4dqwkTJujSSy/VjBkzNGfOHPIWQFJxcbHuv/9+PfXUU10q3tkbBQYGavr06brmmms0e/Zs5ebm8u8pPsVaqyNHjmjTpk3aunWrDh8+rPLycpWXl6uqqsrX4flEcHCwhg4dqkGDBuns2bOqqanRsWPHOrUe0xijjIwMjR49WkOGDHEVQIiLi1N2drays7M1dOjQHl3LdPr06U8URDlx4oSam5vV0tKis2fPqri4WEVFRaqsrFRgYKBCQ0MVHh6ujIwMTZ06VdOmTfNYkUlP8uYzl6KiIr3zzjsqKipSdXW1qqqqdPz4cRUWFuro0aNqaGhQWFiYq9DF+cNQwsPDLzg3GhUVpeTkZCUlJbkOWI2Oju5WjNZaVVVVqbq6WtZaWWsVHh6upKQkBQQEdLifyspKvf3229q8ebPefvtt10Ek/v7+rkKYDQ0Namho0NmzZzlwBH1OQkKCxowZo6ysLA0bNsz1mpqaqoiICNf/sw6H4xMHF7W0tCg5OZl1Cv1Ia2urysrKVFxc7HoGderUKVfR1V27dmn9+vWqra31dai9UlRUlGbPnq3rr79eN954Y5+ev/MG5orQEwoLC3Xffffp73//e7f7GjFihO69917ddNNNfW6fxWOPPabFixe7bVNXV+eRIo61tbXt5u0vvPCCFi5c2K1x5s+fr9WrV3flrRRAAXypvQIokvPL+0svvaQf//jH2rlzp7dD7FEJCQnKysrSuHHjNG7cOE2ZMkWjRo3iVDH0uIaGBuXn52vv3r3au3evjh49qvLych07dkwHDhzocr/R0dFKS0tTQkKCSktLdfDgwXY3R4aGhio1NVUDBgxwVahNT09XTk6OcnJyNGrUKBbNol9yOBwqLS3Vhx9+qB07dmjnzp0qKSlRU1OTmpqadOjQIRbRecHIkSN1xRVX6JJLLlFubq4uueSSNj9z2ntQ0dzcrFWrVuk3v/mNNm/e3NOhd0pISIhWrVqla665xtehAOiiEydO6C9/+YueeOIJHTx40Nfh+MygQYN011136Y477lBMTIyvw/Gql156Sf/xH//R5YnmoKAgpaenuxY+nf/eaYxRdHS0Bg0apOTkZIWHhyswMNC1uXHfvn0e+y4eHR2tH/zgB1q2bFmnJuPRNUyyoK86fvy4HnvsMa1YsaLLxf8AeJYxRpdcconmz5+vxYsXd7qI2enTp1VcXKyAgAANHjxYwcGfmhLARY68pe9qbm5WeXm5mpqa1NjYKGut4uLiFBsb+4kTZmtqavTyyy9r48aN2rp1q1dOV0TPCAkJ0cKFC3Xrrbdq5syZfW6xDAB0F3nLxau8vFy//OUv9eSTT3Kybg9JSkrS4sWLtXTpUq+esmut1e7du/W3v/1NL7zwgg4fPtzlvowxGjNmjKZPn64rr7xS1157Ld+BgR5WW1urffv2ad++ffroo49cl7vvndHR0crMzFRmZqYyMjJcr3FxcTp79qzq6+t15swZ12tdXZ1OnTql6upqlZaWqqSkxPVduLm5Wa2trYqNjXUddjdixAhNmjRJY8eO7dSGoaamJu3cuVPvv/++ioqKdPz48U9cdXV1CggIUEZGhrKysjR8+HCNHz9eEyZMUHZ29ie+h0vkLcC/27lzp+655x698cYbvg6lS0JDQzVjxgwtWrRIN9xww0W3XgKe1dzcrIqKCpWXl6uxsVGRkZGKjo5Wa2urysvLdeLECVexlMLCQr311ls9VjSwp40fP17XXXedPvOZz2jixImf+vfSWquSkhLl5+crPz9fBw4cUEFBgVpbW5WcnKzBgwd/6mJDcM8gd/E9a62am5tdBWGOHTumPXv26IMPPtD+/ftVX18vyfndNyYmRiNGjFBOTo4SExNdRXhCQ0MVFRXlKjzR2tqqlpYW1+vH/3zq1CkVFRV94iorK5O1VsYY18ExrBvBv7v00ks1d+5czZ07V+PGjaMQHDqssbFR27Zt04EDB1RfX6+zZ89+4mppaVF4eLjCwsJUUVGhvXv3at++faqoqPB16J8SExOjoUOHuq6kpCSFhYUpJCREfn5+am1tVVNTkyvnq6ysdH0GW2sVGxvrWjM8evRo5eXlMe/bCeQt6Enbtm3Tvffeq3/961/d7islJUW33XabvvKVrygjI6P7wXnB0qVL9dvf/rbN+2lpaTpy5IhHxrLWKiIiwpXnXsgjjzyipUuXdnmM6upqJSUlud1fHRIS0lZhbAqgAL7UkQIo51lrtWHDBj388MN69dVXu33itLdkZmYqLy9P48ePV2pqqlJSUpSSkqLk5OQun74N9KRDhw7pxRdf1Jtvvqljx465Fi6fL8rQ2NiogIAApaSkKDU1VUOGDNGll16qadOmKTs7+xMPEFpaWlRWVqbm5mZX9WFrrWvTZlxcnAYMGEDRH+ACmpubtWPHDj388MP6+9//3m9OoPCF4OBgzZgxQ3l5eQoLC1NQUJAGDx6sqVOnKikpqcP9dOZBRX5+vtatW6cNGzZo06ZNXT6lxxPi4+O1atUqTZ061WcxAPAca602b96sP/7xj9qwYYPKysp8HZJXhISE6L777tN3vvMdhYSE+Docn+lIVePeyBijO+64Qz/60Y86vWEaXcckC/q6srIyPfDAA3riiSc4ZQj9RkxMjCIiIhQaGqro6GglJSUpISFBxhjV1tbq5MmTOnLkiI4ePaqWlpYej2fIkCEaNWqUoqOjVVdXp7Nnz2rgwIEaM2aMxo4dq6ysLMXHx2vAgAEUL0OPIm+5+JSUlGjr1q3asmWLtm7dqtLSUllrNWLECGVkZCggIEBFRUUqLi5WfX296uvrVV5ertbWVl+HftGaOnWqbrvtNn3uc5/r9smVANCXkbegtbVVBw8edG1QLy4udm3yaW5u/tSi+dOnT6ukpMTXYXtNenq6brjhBs2fP19jx45VeHi4GhsbdezYMR09elQ1NTWuzQWSNGDAAA0YMEBpaWm94sAoa60+/PBDrV69Wu+++66OHj2qoqIinTx5ss33RERE6Oqrr9YNN9ygz3zmM4qLi/NixADaUl9fr5KSEp08eVJVVVWu070zMzO9WmTJk5qamhQQENDhzX3kLcCnWWu1ceNGPfjgg9qwYYOvw1FGRoaGDh2q9PR01+v5zZYVFRUKDg5WVlaWcnJyNHToUJ7Tw6eqqqq0c+dOffjhh5+43G0Ucyc0NFTDhw9XXFycSktLVVxcrNra2i7HFxUVpbi4OMXFxWnYsGGaNWuWrr32WiUnJ3e5T3gXuQsk59r5pqYmhYaGuvLe5uZmnTp1StZahYeHq7W1VW+++aZeffVV7d69W+Xl5aqoqFBlZSXzSP1UeHi4Zs+erblz52rOnDl8tsPrWlpaVF1drRMnTujo0aMqKChQUVGRrLWKiYlRdHS063PLGCM/Pz/5+fnJ4XCopqZGlZWVKikp0aFDh3Tw4EGdPHlSYWFhGjBggAYOHKihQ4dq9OjRGjFihMLDw13vv9AVHh6utLQ0CiL6GHkLvOGtt97ST37yE61bt84j/c2cOVNf/epXtWDBAoWGhnqkz54wc+ZMt8VfrrvuOo/9N5GkrKwst4Xx77jjDj3++ONd7v8Pf/iDvvrVr7ptk5iYqPLy8gvdogAK4EudKYDycU1NTfroo4+0c+dOPffcc/rnP//plY3hxhglJycrLS1N6enpn3hNS0vTkCFDFBgYqFOnTun06dMaOHAgiwABAN22Z88erVixQhs2bFBxcbGvw+n1Ro0apSuvvFIjR47UqFGjNGnSJI9U3e/qg4ra2lo9/fTTeuyxx7Rnz55ux9EZo0eP1po1a5SWlubVcQF4T21trQoLC7Vt2zY9//zzev311/vdRN6CBQv04IMPaujQob4OpVdYsWKFvv3tb/eZ4mg5OTlauXKlpkyZ4utQLjpMsqC/2Lt3r5YvX65XXnnF16EAnRIWFqZZs2Zpzpw5mjRpkoYNG6aoqKgOvbe1tVXHjx9XYWGh6yooKFBhYaEOHz7c4SJ4QUFBSk1NdV1DhgxxfVceMWKEIiIiuvMrAh5D3oKOqK+v165du7R9+3Zt375d7777rg4dOuTrsPq1sWPHasGCBVq0aJGys7N9HQ4A9ArkLeiKyspKvfPOO9qxY4dOnDih2tpaVVdX68CBAzp06FCfedbblmHDhunmm2/W/PnzNWbMGJ8XMekJZ86cUXFxsYqKilRZWamwsDAlJycrKSlJgwYN+tQp8gDQG5C3AO7t3btXjzzyiF566SWdOHHCK2MGBATokksu0cKFC/X5z3++z5y+DLTF4XCosLBQx44dU2trq/z9/dXQ0KBDhw7pwIEDqqioUEhIiCIjIxUZGakhQ4Zo+PDhGj58uAYNGvSpol61tbU6fvy49uzZo7Vr1+qVV15RVVWVpP/dw5GRkaHx48fr0ksvVW5urhITExUbG6vg4E9tR0EfQ+4CT2htbVVzc7NKS0v13nvv6d1339XevXuVn5+vwsJCDt/pA/z8/JSVlaXc3Fzl5uZq2rRpmj59Op/zAHoV8hZ4065du/TTn/5Uzz77rEfmk2JiYnTHHXdo+fLlio2N9UCEnpWQkKCKioo273/nO9/Rz3/+c4+NN3fuXLcFVcaNG6edO3d2uf9Zs2bp9ddfb/O+MUbDhg3TgQMHLnSbAiiAL3W1AMq/Kyoq0l//+letXr1a27dv7/aH+YABAzR58mTNmDFDV1xxhVJTUxUREaGIiAgFBgZ2q28AALrKWquGhgbV1dWpoqJCW7du1euvv6533nlHR48e9WossbGxmj59ukaMGKFBgwYpMTFRUVFRrsmqyMhIhYeHq66uTmVlZSovL1dZWZnKyspUVVWl4OBgRUVFKSwsTHV1daqurlZtba0cDoccDoeqqqp04MABHTly5FMPnOPj45Wenq6BAweqvr5ep0+fVkJCgsaMGaMvfOELGjt2bI8srOvugwprrd5++2397ne/07PPPqvGxkaPx/hx119/vf76178qMjKyR8cB0LtUVlZq1apVeu655/Taa6/12WIoSUlJ+vKXv6yvfOUrysrK8nU4vc769ev1hS98QadOnfJ1KG0KDQ3Vvffeq3vvvVdBQUG+DueixCQL+ptXX31V3/ve97Rt2zZfhwJcUFJSkqZPn67Jkydr0qRJmjBhgkJCQnpkrLq6Oh0+fFiVlZVqaWlx5XwhISEKDg5WeHi4UlJSFBcX1+ETYQFfIm9BV1VWVmrTpk164403tGXLFu3fv7/Hn7n1Z5mZmcrLy1NeXp7mzJlDIVIAuADyFnhafX29du/erbfffltvvfWW9uzZo7KyMq89+z0/75qSkqKYmBjXvOKZM2dUV1fnmuMtLy9XbW2taz1WfHy8pk+frq9//eu68sor+2XREwDo68hbgI5xOBzas2ePNm7cqHfffde1tq2qqkr19fU6e/asmpubFRQUpKSkJCUmJiopKcl1nf97QkKCrLWqr69XQ0ODAgICFBAQoKCgIMXHxyspKUmxsbE8swc6wVqrmpoa1dbWKikpic3v/Ry5C3paY2OjDh06pPz8fNe1f/9+5efnq6amxtfhXXTS0tI0evRo15WRkaGUlBQlJSUpICDA1+EBgFvkLfCFAwcO6Gc/+5mefPJJtbS0dLu/qKgoffe739Vdd92l8PBwD0TYfRUVFUpISHDb5s9//rNuvfVWj435wAMP6Ic//GGb9/39/VVXV6fQ0NBO911aWqqUlBS3tQ5mzpyp8vLyC36miAIogG95qgDKx5WXl2v9+vWuap179+5VZWWlAgIClJCQ8IkrLi5OoaGhCggIUHBwsDIzM3XppZcqMzOTyXkAQJ9y+vRp7d+/X1u2bNHatWu1adOmDn2pCQgIUHx8vCIiIhQZGel6DQ0NVUtLi5qbmyVJycnJGjJkiIYMGaJx48YpNzfXKxOyTU1Nqq2tlb+/v/z9/RUcHOyziSxPPqiorKzUs88+q5dffllvvPGGmpqaPBWmQkND9dBDD+nOO+8knwEuclVVVfrHP/6htWvXav369R1aMG2MUUJCgmJiYhQTE6Po6GhFR0eroqJC27dvV319fY/EGhMToylTpigvL0+XXXaZLr/8copPtuPAgRF2+8cAACAASURBVAOaP3++9u3b5+tQPiE0NFSLFy/WPffco6SkJF+Hc1FjkgX91YEDB7Rp0yZt3rxZO3bs0MmTJxUZGanY2FgNGDBAERERCg8PV1hYmOvV4XCorq5OVVVVrueFnszB0XuFhIQoLy9PU6ZM0ZAhQ+RwOHTw4EEdOHBATU1NCggIUGBg4Cdek5OTNXbsWCUmJqqpqUn5+fkqKSlRS0uLrLWuwp0Oh0NBQUHKzs7WzJkzNWLECL6DAV1E3gJPcTgcKioq0vvvv6+1a9dqzZo1XjvB99/FxMQoMTFRYWFhio6OVnZ2tmsBp8PhUFNTk5qbm9Xc3KyCggKtXr1aO3bs8HqcOTk5+vznP69FixZp2LBhXh8fAPoa8hZ4S1NTk6qqqtTY2Kjm5mbt379fa9as0dq1a1VaWtqhPvz8/JSTk6PJkycrNzdXQ4cO1ZAhQxQVFaXw8HBFRUV1asGmw+HQ6dOn1dLSooEDB3b1VwMAeAl5C+A5DodDxhjmAACgB5G7wFestaqoqND+/fv19ttv63/+53/0/vvv+zosrzLGKDExUSkpKRo0aJAGDBjgWjf671dUVJTOnDmjkpKST1wnTpxQYGCg6xDVwMBA+fn5yRijAQMGKDExUYmJicrMzFROTo6ioqJ8/WsDQJeRt8CXjh07pgcffFBPPPGEzp492+3+YmNjtWzZMi1ZskRxcXEeiLDrNm3apBkzZrhts337dk2cONFjY65bt05z58512+att95SXl5ep/v+xS9+oeXLl7tt8/vf/14rVqygAArQG/VEAZQLaW1tdX15AgDgYlBbW6tdu3bp0KFDOnTokEpLSxUYGKjExEQlJCRo8ODBGjlypDIyMthg3kE99aCirq5OGzdu1Nq1a7Vu3bpubcqYPHmynnzySQ0fPrzLfQDon85P1J09e1bR0dEKCAhQfn6+9uzZo5qaGoWFhWnMmDEaPXp0m1V8W1patHnzZj311FN6/vnndfr06S7HEx4ernnz5umqq65SXl6eRowYwUlHXdDU1KSVK1dq5cqVPp94TU5O1u23365ly5a1W30Z3sEkC9C25uZmHT16VCUlJSotLVV5ebkaGhrU2NiopqYmRUREKCYmRg6HQ++//7527typwsJCnTx50tehf0Jqaqrmzp2r3NxchYaGyuFwqLW1Vc3NzTp27Jj279+v/fv36/Dhw3I4HL4Ot8tiY2PV2NjY4dzDz89P8+fP1+LFi3XZZZdxGhzQB5C3oKc4HA7t3r1bb775pt5880299957Ki4udhV97oigoCCFh4crJCRETU1NOnPmjJqbm5WQkKCsrCxlZGQoLCxMAQEBCg0N1bBhwzRt2jRlZ2d3+nvusWPHtGrVKr300kvavHmzR//99vf31+TJk3XVVVcpJydHaWlpyszM9PkCFgDoa8hb4GsOh0M7duzQmjVr9Nprr6mwsFDGGIWGhio8PFwZGRmaPHmyJk+erEsvvVSRkZG+DhkA4CPkLQAAoC8hd0Fvkp+fr1deeUWvvfaaNm3a1K11kt42cOBApaamXvAaNGiQIiIiFBQU5LoCAwMVFBTE2k0A6ATyFvQGJ06c0IoVK/Tb3/5WtbW13e4vNDRUd955p7773e/67ADURx99VEuWLHHbpq6uThERER4b88SJE0pMTHTb5te//rW+8Y1vdKpfh8Oh7OxsHTp0qM02gYGBKisr0+WXX04BFKA38lYBFAAAgO7yxoMKh8Oh7du3a82aNVqzZo327Nnjtv3gwYM1bNgwjRw5UjfddJPy8vIo+AbAK+rq6vSnP/1JK1asUGFhYYfeExoaqrlz52rRokWaM2eOwsLCejjKi8vx48f18ssv6/HHH9cHH3zglTFjYmJ0xRVX6NZbb9W8efMoqtbLMMkCeF5TU5NOnDihw4cPa9++fdq3b59KSkpUWVmpiooKVVRUqLKyst3NyiEhIQoNDVV1dXWHxw4ICNDYsWM1ZswY5ebmatKkSZoyZYr8/f3bfW9jY6Mr5vNFUQoKClRfX6/m5mY1NTW5XhsaGlRdXa2PzyuEhYUpLS3tgqdCt7S06MyZMzpz5oyqq6vV2NjY4d/pQqKionTjjTcqLy9Pubm5nzj5p6KiQps2bdJ7772nHTt2aPfu3aqurlZ0dLQSExM1aNAgXXbZZbrllluUkZHRrTgAeBd5C7zJ4XCosrJSpaWlam5uVkBAgOvy9/eXv7+/awPx+cImvlBTU6Ndu3a5co6ioiKdPXvWVbTNz89P/v7+CgoKUlpamsaOHfupomgOh0MOh0Ph4eEaMWIEp+kBgAeQtwAAgL6CvAUAAPQl5C7orZqbm3Xw4EGVlZWpqqpKJ0+eVGNjo5qbm9XS0qKWlhbXn8PDwxUXF6fY2FiFhIS45p3OXw0NDSouLlZRUZFqampkjJExRs3Nzaqrq9OpU6fU0tKisLAwhYeHy+FwqK6uTrW1tWppaXG1Dw8Pv2CBk5SUFNZkAoAXkLegN6mpqdGjjz6qX/3qV6qsrOx2f6GhoVqyZImWL1+u+Ph4D0TYcUuWLNGjjz7a5v309PQO71vpjPT0dB09erTN+7fccoueeuqpTvX56quv6uqrr3bbZt68eXr55Zfb/EwRBVAA36IACgAA6Ct88aCioqJChw8fVmlpqUpKStTS0qLU1FQNHz5cmZmZPKgG4HOtra1av3691q1bp/fee08ffPCB6yTtwMBA5ebmavz48br66qs1d+5chYeH+zji/s9aqy1btujxxx/Xxo0bdeLECY/1HRYWpgULFujGG2/UhAkTNHjwYApv9WJMsgC+4XA4VF1drTNnzqixsVFNTU3y8/NTZGSkIiIiFBER4dpI3dDQoKNHj6qgoECFhYUqKChQaWmprLXy8/NTQECA0tLSdNlll2nq1Kle+3e0paVFVVVVqq2tVUxMjOLi4jr0eW+tVX19vSorK9u8Tp06pdraWtepA+dPE8rIyND06dM1b968CxZaAdC/kbcAAIC+grwFAAD0FeQtAACgLyF3AQAAfQV5C3qjM2fOaOXKlVqxYoWOHDnS7f7Cw8O1bNky3XPPPYqNje1+gB0wc+ZM/etf/2rz/mc+8xmtXbvW4+N+9rOf1fPPP9/m/ezsbO3fv9+jfUrSCy+8oIULF17UBVB8cyQVAAAAgG6Lj4/3etVMAOgMf39/zZ07V3PnzpUkNTY2qqSkRNZapaamKigoyMcRXnyMMbr88st1+eWXy1qr48ePa8eOHcrPz3cVGv14sdzm5maVl5ertLRUFRUVampqUnNzsxwOh+Lj45WWlqa0tDSNGzdOs2fPVkREhK9+NQDoE/z8/BQbG9uhSZ+QkBBlZ2crOzvbC5F1XEBAgBITE5WYmNip950/aSg8PFxpaWk9FB0AAAAAAAAAAAAAAAAAAAAkZ8GSu+66S8uWLdMbb7yhP/zhD3rxxRfV2NjYpf7OnDmjn/70p/rtb3+re++9V/fcc0+P7gs5ffq0tm/f7rbNqFGjemTsiRMnui1Wkp+fr1OnTik6OrpD/ZWVlWnVqlVu2yQlJWnevHmdirM/ogAKAAAAAADwiuDgYA0dOtTXYeAcY4xSU1OVmprq61AAAAAAAAAAAAAAAAAAAAAAAEAP8PPz06xZszRr1iydPHlSTz/9tFauXKndu3d3qb+6ujrdf//9euaZZ7Ry5UpNnjzZwxE7rVq1SvX19W7b5OTk9MjYkyZNarfNe++9p1mzZnWovz/+8Y9qaWlx2+b2229XYGBgh/rrz/x8HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6zsCBA7Vs2TLt2rVLL7/8snJzc7vc14cffqi8vDwtXrxYlZWVHozS6emnn263zfTp0z0+riRNmDBBxhi3bd59990O9eVwOPTEE0+4bWOM0de+9rUOx9efUQAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgImCM0bx587Rr1y49+eSTGjVqVJf6sdbqscceU1ZWlh566CE1NTV5JL4TJ05o48aNbttMmTJF6enpHhnv30VGRmrEiBFu23S0AMqLL76oI0eOuG0zZ84cpaWldTS8fo0CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcRf39/ffGLX9SePXu0Zs0aTZs2rUv9nDp1SnfffbdycnK0evVqWWu7Fdezzz6r1tZWt21uvvnmbo3RnokTJ7q935ECKK2trfrBD37Qbrs777yzw3H1dxRAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuAj5+flp7ty5evPNN/Xqq68qLy+vS/0cOnRI8+fP11VXXaXdu3d3OZ6nn37a7X1/f3997nOf63L/HdFeAZSioiKVlZW5bfPcc8/po48+ctsmJSVF1113Xafj668ogAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHARM8Zo1qxZ2rp1q9avX99uEZC2vP766xo3bpzuuOMOlZeXd+q9BQUFeuedd9y2mT17thISEroUW0dNmjSp3TYvvfRSm/daW1v1wAMPtNvHnXfeqYCAgM6E1q9RAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyxujaa6/Vtm3btGbNGo0cObLTfTgcDj3xxBPKysrSXXfdpcOHD7f7nqamJi1durTddjfddFOn4+msSy65RIGBgW7bPPjgg2ptbb3gvWeeeUb5+flu3x8TE6Nly5Z1Ocb+iAIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcDHGaO7cuXr//ff1wx/+UEFBQZ3u4/Tp03r44Yc1bNgwTZkyRXfffbdefPFF1dbWfqrd1KlTtX79erf9hYWFaf78+Z2Oo7OCg4M1efJkt20OHz6sF1544VM/P336tL7//e+3O8bdd9+tmJiYLsfYH1EABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ8SHBys73//+9q1a5dmzZrVpT6stdq2bZseeugh3XjjjYqPj9e0adN00003af78+YqMjNSOHTva7eeGG25QREREl2LorNtuu63dNj//+c9lrf3Ez77xjW+osLDQ7fsGDhyou+66qzvh9UsUQAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbRo4cqY0bN+rll1/W8OHDu9VXU1OT3nrrLT3zzDNavXp1h9/3pS99qVvjdsYtt9yi5ORkt2127NihDRs2uP7+3HPP6U9/+lO7fS9fvlyRkZHdjrG/oQAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3DLGaN68edqzZ49+9atfKSYmxmtjX3XVVbrmmmu8Nl5wcLC++c1vttvui1/8oiorK7Vx40YtWrSo3fbx8fFasmSJJ0LsdyiAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA4JCgrSN7/5TR06dEhLly6Vv79/j46XmpqqP/zhDzLG9Og4/+7OO+9UVFSU2zYVFRWKj4/X7NmzZa1tt8/7779fERERngqxX6EACgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADolNjZWjzzyiHbv3q05c+b02BgbNmzQkCFDeqR/d6Kjo/X1r3/dY/1dfvnlWrp0qcf6629MRyrIAL5ijGnVBQr1GGM0cuRIH0QEAABwYYcPH1ZjY+Onfh4cHKzMzEwfRAQAANA2chcAANBXkLcAAIC+grwFAAD0FeQtAACgLyF3AQAAfQV5C/C/Tp8+rYqKCp09e9Yj/fn5+SktLU2hoaEe6a8rWlpadPDgQXW3Noefn58yMzMVGBjotl1bnymS6qy1Ud0KopejAAp6NWOMQ5LxdRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+0mitDfF1ED3Jz9cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALh4UQAFvV2rrwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAz6EACno7CqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0YxRAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAzAb4OAGhHjaSYC/y8SVKRl2MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoKYMlBV3g5zXeDsTbjLXW1zEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuEj5+ToAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcvCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAZCqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BkKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCZAF8HAAAAAAAAAAAAAADeYowJkDRUUqqkiHOXn6Szks5IOi7pmLW21mdBAgAAdIIxZpqkTZL8L3D7y9baP3s3IgAAAAAAAAAAgN7FGBMpaZikOEnh564WOdeLVEsqklRsrW32WZAAAAqgoHcyxuRImiZpqqQcSbGSBsq5ALVRzoSiXM4FqB9Jek/S69baEp8EDAAALjrnNspcJme+Ml7OTTODJEVKCpXULGfOckJSsaQP5cxZNlpry3wRMwAA6LuMMd+R9PML3PqhtfYBL4fjYozxlzMfmiopT1KmnM9wBkoykmolnZJ0UM58aJukf1prT/skYAAA0ON6Y95ijAmVdI2kqyXNlJQlKbAD7zsi6V1JGyStsdaW92CYAADAB3pj7tJZxphoSU/rwsVPAABAP9Hb8xZjTJz+dx3NJEmJcs4XDZDkkNQg50ai45IKJO2UtFXSe9Za64uYAQBAz+iteYsxJkvSLEkTJI2Qs1B+rJxrfs8Xyq+RM185KOl9Sf+S9D75CgAAfZMxJl3SdXKuF5kiKakDb2syxuyR9LaktZLesNY29VSMbTHGTJRzj3WenLnL+bW5AZLq5FybWyhpj6Qdkl6x1p70dpwA0BMogIJewxgTIekWSYsljXbTNOzcFStplJzJhyRZY8y7kh6T9DdfJBUAAKD/M8ZcImmJpM9JinbTNPjcFSNpuKQrz/3cGmPekfR7kbMAAICOu7L9Jt5jjEmU9DVJd0ga7KZp/LkrS9Kccz9rNMb8Q9JD1trNPRooAADwhV6Ttxhjhkj6pqTb5Nxs01np567PSnIYY1ZJ+rm1dpuHQgQAAL7Xa3KXbvidpDRfBwEAAHpcr8xbjDEz5Fz3u0Du16UHy7nOJl3OzTtfPPfzUmPMXyU9Yq0t6rlIAQCAF/WavMUYEyPp9nPXyHaaR5y7UiVNlnN/k+TMV/4i6TFr7bGeihUAAHiOMeYaSXfJeViOXyffHiRnwbQJkpZKqjTGPCbpYWttpUcD/Tfnit7fJunrchY9aUvsuStDzgJvktRijNkk6deS1lLADUBf1tkPbqBHGGNukXREzuIl7oqfuO1Gzqrxf5K0zxgzp532AAAAHWaMGWyM+R85K7p/Te6Ln7jtSs4KrH+SdMAY83kPhQgAAPopY0ykpJm+jkOSjDF+xpglkg5I+pHcFz9pS7CkGyRtMsa8aYzJ8WSMAADAd3pL3mKMCTbG/Kek/ZK+pa4VP/l3fpIWSnrHGPPXc6caAwCAPqy35C7dYYy5VRJzTQAA9HO9MW8xxmQbYzZLekPO4rFdPZQzWdJ3JB0yxvy3MSbEUzECAADv6y15izHG3xhzt6QCSb9U+8VP3EmWdK+kg8aYX5/7HQEAQC9kjMkyxrwi6R9yHtrniT30cZL+U879P//HA/1dkDFmkaR8SSvkvvhJWwLkLIbysqQPjDHTPBgeAHgVBVDgU8aYxHMn/j4lZ8UxT8mQ9Iox5kce7BMAAFykjDE3Stot6XNyFjDxlDRJzxhjnjfGRHiwXwAA0L8slLNoiE+d2+S7WdJvJEV5qNvLJO04t+gEAAD0fT7PW4wxgyS9Kem/JIX20DA3S9ppjLm0h/oHAADe4fPcpTuMMZmSHvF1HAAAwCt6Vd5ijFku6QNJl3uw2yBJ98tZQD/Jg/0CAADv8nneYowZLOdc0S/lmSL55wVJ+oakD40xkz3YLwAA8ABjzAJJu+QsfNITBkh61BjznDEm3FOdGmPCjDEvSvq7pEQPdTta0mZjzC+MMf4e6hMAvIYCKPAZY0yanA8VrunBYb5njPlxD/YPAAD6OWPMNyU9JymmB4e5UdJbxhhPPawAAAD9S49VjO+oc89xtkrqiYrwwZJ+aYx51BjD80oAAPo2n+Ytxpjhkt6TNNELww2W9JoxZpIXxgIAAD3D589cusoYEyDpb5I4cRgAgItDr8hbjDF+xpjfSfqZem5j8yRJrxpjPLlZGQAAeI+v54pGSXpbUl4PDjNE0r+MMQt7cAwAANAJxphvSHpBkscKk7jxH5LWGGO6fSiPMWagpFclLeh2VJ/mJ+keSS8YY0J6oH8A6DFsKIBPGGOGyblpZpgXhrvPGHODF8YBAAD9jDHmTkm/kmS8MNxoSa+zgAMAAHycMeYaST49NcYYkyBnEdvhPTzU/5G0sofHAAAAPcTXecu5k4H/KSnZi8NGSXrFGJPuxTEBAIAH+Dp38YD/knNzMAAA6Od6S95yroj93yTd6YXhciT90QvjAAAAD/J13mKMGSrnBuIULwwXIunvxpi5XhgLAAC4YYz5gqQV8s6+n/NmSnqqOx0YY8LkzF16snCbJN0gafW54voA0CfwgQWvM8ZESFqljj1UaJWz+up7ko5Iqpc0UFKipPGSLpPk34F+fmeMedNae7IrMQMAgIuPMeYKSb/tYPNSSZskHZR0UtIZSTFy5i2XSJoqKboD/YyS9JwxZra11tHpoAEAQL9ijAmX9LCPYwiQ9KykwR1o3iJnoZR3JZXImRNFnXvvRDknadoryPxlY8yH1tqHuhw0AADwOl/nLcYYI+l/JKV3oPlZSa9IWi9pt6RCSXVy5inxkgZJmi5ptqQrO9BfrKTnjTF51trmTgcPAAC8zte5S3cZY2ZI+q6v4wAAAD2vl+UtD0ha1MG2hZI2S9onqVrODcKJkjIkXSOpI4cDzTfG3GSt/VvnQwUAAN7m67zFGBMq5z6ljhTKb5D0jpzrW6rkXPcbKuea3zRJV8iZt7QnUNIzxpgp1tq9XYkbAAB0jzEmR9Kf1LHiJ0clvSTpDTmfWZyQc51rpKQ4SdmSZslZMGRoB/q70RjzLWvtr7oQuiQ9IWlcB9pZSdvkzF+OybnGJULO9S0TJF0uZ17izmxJD0n6RhdjBQCvogAKfGGlnJt73Tkt6deSHrHWlrfVyBgTJ+kOSfdLCnPTX5Kc/0Df1qlIAQDARelcwban1X6htVclPWCt3dpOf35yPgS5X84HDO7MkvRtSb/sWLQAAKA/MsYEypmPDPdxKP8t5wZgd85K+pWkFdbairYaGWNSJH1L0jJJQW76+/m5QrbvdjZYAADgfb0kb1kq52JUd1rlnCv6hZuc5di56x1JPzPGjJUzH/pMO31PkPR/Jf1XhyMGAAA+0Utyly4zxgyQ80TB9orMAgCAPq435S3GmOskfa8DTddJ+rG19m03fQVIulrOdTHtrSV+xBjzT2ttVYeDBQAAXtdL8pb/J2lMO22OS/qJpD9aaxvcNTTGZMtZgPaLcr/3LkLSX40xkyiUDwCAdxlj/CX9UVJwO02LJN0j6QVrbesF7lefuw5KWmuM+Y6km+RcL9Le4YE/Mca8Yq3N72TsXz83hjstchZJ+am19pibvmIlfV3O3CXSTX/LjDH/sta+2JlYAcAXmAyHVxljblb7FeDfljTaWvs9d8VPJMlaW2mt/YmkHDlP6XPnFmNMVsejBQAAF7H/lJTq5r6VtNxae3V7xU8kyVrrsNa+JGminJMs7XnAGJPUsVABAEB/Y4y5RNImOQuo+TKOEXIWZnNnv6QJ1tr73RU/kSRr7XFr7T2S8iQVu2nqL+n35yanAABAL9Yb8hZjTJSkH7XTrELSZdba5e3lLB9nrd1lrZ0rabmcBVTcuc8YM6SjfQMAAO/rDbmLB6yU+zksAADQD/SmvMUYEyPpL3J/knKdpM9aa+e6K34iSdbaFmvtekljJT3YzvADxcnEAAD0ar0hbzHGjJazWL47b8q5T+nR9oqfSJK1Nt9a+xVJV8o5z+TOWEl3dihYAADgSbdImtROm1ck5Vhrn22j+MmnnHt28aSk8ZJeb6d5iJwHCHaYjIvPgQAAIABJREFUMSZO7e8rKpU0w1q72F3xE0my1lZZa38sZ06yt51+Hzm3zgYAejUKoMBrjDFhkn7aTrOXJV1prT3Smb7PtZ8tZ5W1tvhL+k5n+gUAABefc9VPl7TT7HvW2l90tm/rdJ+ke9tpGq72NxsDAIB+xBiTYoz5mjHmdUnvy1kkxNd+JSnQzf18SdOttfs606m1dqecC0TcndbH4hAAAHqpXpi3fF1StJv7tXIuCnmnqwOcew7U3vOiYEnf7+oYAACgZ/TC3KXLjDFfk7TQ13EAAICe0Yvzlu9LinNz/3zh2ec706m1tvlc4fxft9N0qTEmojN9AwCAntUL85b75dwv1JY9kmZba6s727G19k1Jl0s61U7T+4wxAZ3tHwAAdI0xxqj9vcLrJd1gra3ryhjW2kpJ10ra3E7TOcaYyzrR9X9LinFzv1zOdS7tHtb8cdbaAkkzJR1202yQpO91pl8A8AVjrfV1DLhIGGN+IOkBN022SrqqI9VU3YwxWtJOSW09ODgraWB3xgAAAP2bMeabcl+B9W05F244ujnOi5IWuGlSISmpu+MAAIDexRgTIildUpakUZIukTRZUmYXu/yhtfYBjwT3McaYK+Q8oact9ZIu7Wzxk38b4wZJq9w0KZKUaa1t7uoYAACg6/pC3mKM8Zd0TM4FGm35bGc34LgZ7/eSvuamSaOkIdbaE54YDwAAdFxfyF26wxiTLed6mLAL3D4uKcXN279srf1zT8QFAAA6ry/lLcaYLEkfqe2C+Q2SrrDWvtuNMYyc64fdbZy+zVr7l66OAQAAuqYv5C3GmHhJJWp7D1GrpHHW2j3dHOd6SavbaXa9tXZNd8YBAAAdY4y5Vs4CJ20pljTaWlvjgbHiJe2S+7UpL1lr2y1ib4wZKumg2i7e5pBzj/UbnQ70f8cYL2m7mzHOSEqz1ro7xBAAfIrqkvAKY0ykpLvdNDkp6fPdLUxird1jjPmLpNvbaBIq6QpJG7ozDgAA6Nc+2879BzxUlORbkq6T83TgC4mXNFHSNg+MBQAAfOzcs5ECuT8hrzf5Rjv3H+hO8RNJstauNsb8Q84K+RcyWNIiSX/tzjgAAKBz+ljekif3C0w2eKr4yTn3S7pJUngb94MlfU7Sbzw4JgAAcKOP5S5dYowJkvQ3Xbj4SYOkOyWt9WpQAACg0/po3nL//2fvzqNsu4u6cX8qJIGQhIQAMgvIKFMQMLxBX0AgCDKKILw/BgOKgkyir/wUAZlEAQdEE1DAgCgokyQIiggBwhgGQZTITMKUhCQQyDzV+8fpKMbbe5/ue/Y5t/s+z1q9lqurzq66WTF3c3bt+mb95SdJ8qs7s/wkSbq7q+qpSY4bSPvJJBagAMCSbLH7lgdk+N241+/s8pMk6e5jquodmd2XrOenkliAAgDL8aCR+FMXsfwkSbr7W1X1vCRHDqTdp6qu3N3fHrnc47P+YpIkednOLD9Jku7+RFW9PMlj10nZN8njkjxvZ+oATGmPVTfAbuMRSfYfiD+1u7+2oFp/MhK/x4LqAADbTFXtk9nSkfWc2N0LWaTW3ScmedNI2u0XUQsA2CVcLltjMCRVdd3MBkTW89UkL1lQuReOxNdbcgsATGfL3LdkNkg65EWLLNbd30ry8pG0+y+yJgAwaivdu2zW85Pcdp3YbyT59yX2AgBs3pa6b6mqg5I8dCDluO5+6SJqdff7k/zLQMphi6gDAMxtK9233HkkPvZcZyP+YCRu5hcAludeA7GTkvztguu9MskpA/G9MjLDUlVXTPLogZSzkzxrw53t2O8nGTr4+dFVVQuqBbBwFqCwLI8biH0qyVGLKtTdn0ry+YGUGy2qFgCw7dwswyfXvHvB9cY2vf/QgusBAMzjURneMH9Ed5+/iEJrm+qHluLeeW0hCwDAjgwtvT8pybsmqPn3I/FDq2ropEEAgLlV1WFJfnWd8D9lcUtqAQAu69FJrjAQf8qC671xIHbVqjpwwfUAgO3hVgOx85J8cIG13pPkrIG4mV8AWIKqumWSaw2k/GV3Dy3/2LDuviDJO0fS/vdI/EFJrjwQf83awTw7rbu/mORDAyk3SPJji6gFMAULUJhcVR2a5JYDKb+36BuKDL+cfPUF1wIAto8fHIl/bsH1vjASv9KC6wEAzON+A7GLkvzFgusdMxCrJPddcD0AYBuoqj2S3GIg5dju7glKvz/J0DK4fZPccIK6AMBupqqumuTVmX0/clmnJzl8ovsdAIAkecxA7B3d/fEF1xs7lMjsLwCwI0Nzvycu6oCfJOnuC5OcOJBi5hcAluPWI/EpDsuZ57oHj8SHZnOT5M820Ms8jh6Jj/UDsDJOH2MZ7j8QOyXDW9s3648yG0DdkTMnqAcAbA/7jcRPX3C9743Ez11wPQCAQVV1rSS3HUg5dlEb5r/P0Ul+eSB+7yRHLrgmALD1XS/DpxAv8kS//9Td51fVKRkeqL1+ks9OUR8A2K38RZJrrhP7xe7+5jKbAQB2H1V1syQ3GUj50wnKfjzJIwbip01QEwDY+obmfhc985sMz/2a+QWA5bjpQOySJB+ZqO7QIrRkNiuyQ1W1d5J7DHz28939yc00NeDoJC8ciN87yVMXXBNgISxAYRl+aiD22u6+aNEFu/uzMVgKAGzc2Kb3RW9nHzud5jsLrgcArM5FSd67ic9dI8MPaxbtPtnxqcKX+vsJar4nyXlZ/wXmH6+qPbr7kglqAwD/01a5bxmr9YUJa5+W4QUoB05YGwD477bKvcuGVNXjk9x3nfBR3f3mZfYDACzEVrpvGZr7/VaSf1x0we6+MMlfLfq6AMCmbKX7lvOz/rtxi575TYbnfs38AsByDN1vfL27p1pKNracdWhW5C5J9h+IL3w2t7s/V1VfSvJD66TcvKqu2t2WzgK7HAtQmFRVXSfJrQZS3rKsXgAA5vCtkfi1F1zvliNxJ/cBwDbR3Wdl9gBjQ6rq8CRHLbqfAXceib970QW7+4Kq+tckh6yTcqXM7pv+ddG1AYD/aQvdt/zASPwrE9a+eCS+14S1AYDvs4XuXeZWVbdI8qJ1wl9M8qQltgMALMgWu28ZWoDy91McfAgA7Dq22H3Lt5Lsu07sWossVFVXSnKdgRQzvwCwHEPzIl+ZsO7OzIosfTZ3zcey/gKUJLljkmMmqg2waXusugG2vXsMxL6b5IPLagQAYA4njcSH7m024z4j8eMXXA8AYMztBmLfTfLvE9X9xEj8RyaqCwBsXfuNxL89Ye1rjsTPnrA2ALCNVdXlk7w2yT47CF+c5BFrLyEBAEyiqvZJ8r8HUv5hWb0AAMxhaO73oKq6/QJr3TPDLzab+QWA5RiaF9lVZ0WGZnOT5EMb7GVeZnOBLckCFKY29GXBh2yBBwB2Jd395QxvfL3Foh6GVNWtkvzkQMpZST61iFoAAPOoqv2S3Hgg5ZPd3ROVH3vIcouJ6gIAW9d6p/ld6twpilbVARkfanHCHwCwWS9Kcut1Yr/T3VMNwAIAXOpWSfYeiL9/WY0AAMzh3SPxwxdY69dG4h9YYC0AYH1D8yKTzIqs+eGR+NCsyNCikZO6+/RN9DMPs7nAlrTnqhtg27vNQOzDS+sCAGB+b0/yywPxI6rq0O6+ZLMFqupySV6c4YWEr7MsDgBYsttk+P7k0xPWHrv2zSasDQBsTccmeeJ6we4+b6K690lyuZGcL0xUGwDYxqrqXln//ub4JM9dYjsAwO5raO73xO62+BUA2JW8PcmzBuK/VFWv6O5P7kyRqnpUkkMGUs5McszO1AAA5vZ7SQ5YJ/YfE9a9/0j88zv6ZVVdJ8kPDHzObC7AZViAwmSqqjLbBL+edf/yrKp9k9w5yU+sXeNGSa6SZL8klyQ5K8nXMhsgPT6zIdePTngKMQCw+/jDJL+Y9e+VD0nyyqr6+Z1YgvLCJHcdyTlyk9cGANisse30U77I+7WR+A9OWBsA2IK6+2NJPraC0oePxL/Q3actoxEAYPuoqqsnedU64bOTPMzifABgSYYWoAy+NFNVP5LZPMwdktw4ybWT7J9kryTnJDktyZeT/EuSDyR5Z3eftYCeAYDdVHd/tKrek+Qu66TsmeQtVXXX7v7SZmpU1SEZn+k9qrvP2cz1AYCN6e7XLLtmVd0gs/edh3x4nd+vcjb3lCQXZvbdzI6YzQV2SRagMKUbZbawZD0nXPYXVXWLJP83yYNGPnvQ2s+tkzxw7Xdfq6pXJHlZd5+yqY4BgN1ed3+xql6Z5JcG0g5PctWqekx3nzzvtatq7yRHJPmFkdQ/39lt8wAAm3DdkfimBkHmdHJmS2/3WCc+1hsAwOSq6l5J7j6S9k/L6AUA2D7WDhh6VdY//e9XunvK4VcAgO938EBsR3O/+yZ5QpKfz2zpyXr2X/u5QWZLUn4tyXlVdXSSl3T3BzfdMQCwu/utJMdl/ZmT6yU5rqoe1d0beo5TVfdP8pokVxhIOznJczdyXQBgy/m9rL9E5FLr3WesbDa3u7uqTh7o4YCq2r+7vzdVDwCbsd7/uINFuOFI/MuX/h9VdWBVvTzJpzJ7oXho+cl6rpPkWUm+WFXPq6p9NnENAIAkeUqST4zk3CfJZ6rqGWun8q2rqvasqodldq8ztvzki5kthAMAWLbrjMS/OVXhtROMTx1IOWhtmRwAwEpU1VUzW2w75nVT9wIAbDtPTnLPdWJHd/crltkMALDbG5r9/W8v5FTV4ZmdUvx7GV5+sp4rJHlIkg9U1T+sHaIIALAha4vUnjaSdq0k76iq11fVoWPXrKpbV9Xrk/xdZkvc1nNJksd09xlzNwwAbClV9aAkPzuS9oXu/ug6sZXN5q75+kj8GhPXB9iwPVfdANvatQZiZ3T3uUlSVYck+dsk119Q3X0z2+D6kKp6ZHd/aEHXBQB2E9197trW9ndneEDjykmek+SZVfXxJB9M8o0k38lsodtVk9wmyZ0y/ADkUicmOcz2VABgRa49Ej954vrfyPCDlAMzvCQFAGASa4vY3pTZCcVDPtHd719CSwDANlFVB2f2wvCOnJzxxfoAAAtTVXsmudpAytfX8vZP8oqMv/yzEfdMcteqelaS3+vuXuC1AYBtrrtfUFXXT/LYkdQHJ3lwVX0lyfuSfC7J6UkqyVUye6/pJ5L80BxlL0ny2O7++001DQDs8qrqtklePUfqSwZiu8Js7pArT1wfYMMsQGFKQ38xfzNJquqwJG9JcsUJ6t8oyXur6knd/bIJrg8AbGPd/bWqumOSVyW590j6nknusPazWccleXB3n7IT1wAA2BlDy2yT2cDHlM4aiVuAAgAsXVXtl+TNmS24HfPMidsBALaRqtonyWuTXH6dlEd392lLbAkA4JpJ9hiIf7OqrpzkH5McMkH9vZM8P8mPVdX/cYAQALAR3f24qvqPJC/I+t+3XOr62blDnM9I8nOWnwDA9lVV/yvJ2zL+7vNXM1sUu56tMJsLsEsZ+pIadtbQX8zfWXuh+K2ZZvnJpfZK8tKq+s0JawAA21R3n9bd90ny0CRfmqjMOUl+I8ldLD8BAFZsv4HYxd19zsT1zxuJ7ztxfQCA/6aqbpLkg0kOmyP9mO5+28QtAQDbyx8mufk6sSO6+x+W2QwAQMZfyDk/yTsyzfKT73fvJO+sKi/gAAAb0t1/nORWSY6esMzbkhxs+QkAbF9V9agk705y0BzpT+7ucwfiQ7O5SfLduRvbHLO5wJaz56obYFu75kBs3yRvyvBW1YuTHJ/kw0lOzmxD6uWTXCXJDZMcmuTGc/by/Kr6Rne/es58AID/1N1/W1Xvyeyhxe0WfPlXJPmT7r5kwdcFANiofQZiyzhhb+why95L6AEAIElSVYcneUmS/edI/2aSx0zaEACwrVTV/ZM8dp3wCUl+fYntAABcamjuN0lekORHR3JOTPKuJCclOSVJZ/b9yvWS3Gbt80Ozw5e6Q5I3VNU9u/viOfIBAJIk3f35qnpgkmcm+e0FX/4zSX61u7+24OsCALuAtWWsL0nyiDk/8sru/ruRnKHZ3GT6+VyzucCWYwEKUxoaCL3NQOzUJC9K8oru/s5Qgaq6WZLHJ/nFjP9F+7KqOr67TxjJAwD4T1W1f2YPQR6XaTabPinJQ6rqaUmO6u6eoAYAwDyuMBC7YAn1hzbgJ8leS+gBANjNVdV1k7wsyU/N+ZGzkzygu0+drisAYDupqmsleeU64QuTPGzkpEAAgKmMLYK91zq/vyTJ65K8oLs/PXSBqrpSkocmeVpmS1GG3D3TvLgMAGxjVfXgJM9JcrMJLn/zJJ+pqqOS/GZ3nzZBDQBgBarqvpnNi1xrzo8cl+QJc+QNzeYm08/nms0Ftpw9Vt0A29rYX8w78udJbtDdvz+2/CRJuvs/uvuJmW2E//wc/Ry5iZ4AgN1UVf1kkn9P8n8zzfKTS109s0HXY6vq2hPWAQAYMrRl/sIl1D9/JF5L6AEA2E1V1V5V9dQkJ2T+5SfnJvnp7j5+us4AgO2kqirJXya5yjopz+juf1liSwAA328zc78nJLlNdz98bPlJknT3d7v7z5P8cJKj5rj+b1TVTTbRFwCwm6mqa1bVW5K8PtMsP7nU5ZL8QpLPVtX9J6wDACxBVV1v7R7imMy//ORjSe7X3efNkTs0m5tMP59rNhfYcixAYUobeRBycZJHdvcvdfc5Gy3U3f+a5M5JvjKSepequvtGrw8A7H6q6slJ/iHJdZdY9s5J/qWqbr/EmgAAlxra4n7REurvORJfxhIWAGA3tLYE91NJXpD5l+CemuRu3f3OyRoDALajX09yt3Vi703yoiX2AgBwWRtdgPLmJD86z+KTy+ruc7v70ZmdrDxk7yTP3Oj1AYDdS1XdPMnxSZa5kOSgJG+pqt9eYk0AYEGqap+qemaSz2Rj9xBvS3LX7v7OnPlDs7np7qnnc83mAluOBShMaSMPQp7Q3a/ZmWLd/c0kD0vSI6m/tjN1AIDtr6qenuTFmW+T6ZeS/EmSn8lsY/zVMhu+uEqSmyS5Z5LfSfLhOctfLcm7q+qHN9g2AMDOGnqIMvYAZBE8ZAEAlqqqblRVxyT5x8xOHZ7X+5Pctrs/NE1nAMB2VFW3S/K8dcJnZnZw0CVLbAkA4LI2Mvf7viT/p7vP3smaT04ytkDlIVV17Z2sAwBsU1V1q8ye3VxnjvRzk7w+yeOT3C6zQxL3SbJfkuslOSTJk9Zy5j3c+VlV9VsbbBsAWKGqenCSE5I8O8kV5/zYxUmeleR+3f29DZQbXHBSVVPP55rNBbYcC1CY0uXnzHtFd49tcJ9Ld38wyRtH0g6rqqssoh4AsP1U1U8nec4cqSckeUiSG3f3k7r7zd392e4+rbsv7O4zuvvz3f2O7n56dx+a5PZJ3jDHtfdP8uaq2n/zfxIAgA0beogx7/c8O2PsIcu8gyUAAIOqav+qekGSf09y3w189MIkv53kLt399UmaAwC2paraN8lrs/4pf7/c3SctsSUAgB2Z93nQqUke0N0X7GzBtWv8xkjankketLO1AIDtp6oOSnJ0kiuPpJ6b2WLa63X3Q7r7yO7+RHd/rbvP6+6zu/uk7v5od/9Jdz8ks+UoT0vy3TlaeU5V3XOn/jAAwOSq6uCqek9my86ut4GPfjnJT3T3szexzH5swcjU87lmc4EtxwIUVu28zAZFF+npSXogfrkk915wTQBgG6iqqyd5VZIaSX15ktt19+s38uVFd3+8u382yc8kOX0k/WZJXjzvtQEAFuC8gdgyFqDsOxI/cwk9AADbWM0cnuRzSZ6aZO8NfPzjSQ7p7ud098VT9AcAbGsvSXKTdWKv6+7XLrMZAICd9ILu/vaiLtbdb0/ygZG0+y+qHgCwrRyZ5AYjOSckuUN3P6O7vzXvhdcOQvzdJLdK8t6R9D2S/HVVHTjv9QGA5amqq1bVS5N8IsmdN/DRS5L8aZJbd/dxmyw/NJubTD+fazYX2HIsQGFK82x2P6q7v7HIot39uSTHjqTdcZE1AYBt47lJrjSW092/2N3nbrZId785yZ2SnDGS+nNVdcPN1gEA2KChhxjLWICy/0jcQxYAYNOq6g5JPpLkqCTX2MBHv5vkKZkNxn5yit4AgO2tqh6U5NHrhL+a5JeX2A4AwJB55n5PT/LSCWr/2Uj8kKq63AR1AYAtqqp+LMlDRtL+Lcmh3f3pzdbp7pOS3D3J34+kHpTkVzZbBwBYvKq6XFU9Kcnnkzw2G3un/hOZ3Uc8sbvP2ok2xmZfp57PNZsLbDkWoDCl8+fIeetEtf9yJH7bieoCAFtUVV076w+fXup13f3MRdTr7s8k+akkFw2kXS7J0xZRDwBgDkMn9e1dVftMXH/oIcvZ3X32xPUBgG2oqg5YO8Xng0l+dAMf7SSvTnLT7n5xd188SYMAwLZWVddN8ufrhC9J8sju/s4SWwIAGDLP3O+7dubQoAFvSjL0LGjfJDedoC4AsHU9fSR+apKf6u6dfqm3uy9K8rNJjh9JfXJVjb1kDAAsQVUdkuSjSf44yYEb+OhpmS2v/9HuHvu7fx5Ds7nJxnrbjLF7k1Mmrg+wYRagMKWxBxwXJTluotr/PBK/wUR1AYCt6+GZLRxZz1lZ8Gb27v5IkpePpP2ME2wAgCU5fSR+jYnrX20g9vWJawMA21BV3S3Jp7PxU3yOS3JIdx/e3SdP0hwAsLt4UpIrrxP7g+5+zxJ7AQAYM89ik2OnKNzd5yT58Eia2V8AIElSVddMcthI2rO7+6uLqrm2BO6JI2kHJrnHomoCABtXVXtV1XMzOyjnRzbw0QuS/GGSG3f3S7v7kgW1tCvP5p7f3adNXB9gwyxAYUpjf/F9trvPmqJwd389wy/GXLWqrjBFbQBgy3rgSPxPuvvUCeo+K7MvStZzQJLbTVAXAOCyvjYSn+whS1XtkeGHLAsbSAEAtr+q2qOqnp3knUmuu4GPfj7JA7v7Tt39sWm6AwB2M3sNxH69qnpnf5J8eaSHo0au8Z0F/nkBgK1tnhdepvzOZGwBynUmrA0AbC0PyPChhydl/IDCDevu45McPZJ2t0XXBQDmU1XXTvLeJE/P8L3CZb0xyQ93969196Kfm6xsNneO64/1BrASFqAwpbEXhKfeDPaFkfi+E9cHALaIqto7yW1G0t40Re21pSrvH0m7yxS1AQAu48SR+JQPWa6W4YdNn5uwNgCwjVTVFZO8Jckzk9ScHzsjya8kuUV3/91UvQEAAADs4uY5GGjK2d+xud/9JqwNAGwtdxiJH9PdF05Ue2ye+C4T1QUABlTV7ZN8PMmhG/jYh5Pcsbsf3N1fmqazlc7mJsnVB2Jmc4FdkgUoTOmUkfjpE9c/YyS+z8T1AYCt4+ZJ9h6In5bkExPWf8dIfCMnFQMAbNbYw5sbT1j7hiNxD1kAgFFVdUCSdyW575wfuTDJHya5YXf/8YSDsAAAAABbwdjcbzLt7K+5XwBgXmOHHv7ThLX/KUkPxM38AsCSVdVdkxyb4WUf3+/EJA/t7kO7+0PTdZZkhbO5VXWtDH+fYjYX2CXtueoG2NbG/mI+b+L6547EDbECAJca+5Lj89099LBiZ31mJH7VCWsDAFzq0yPxW01Y+yYj8X+dsDYAsA1U1b5J3p7kf835kX9K8qTu/ux0XQEAAABsKScmuTjJ5QZyppz9NfcLAMxrbO53suc/3X1KVZ2R5CrrpOxXVZfv7vOn6gEA+C9V9eNJ3prkinOkn5/kd5O8sLvHvodYFLO5ABu0x6obYFv7j5H4QRPXv/JI/KyJ6wMAW8eBI/FvTVx/7PrrPSQBAFikzyS5aCA+5UOWmw/EOsnHJqwNAGxxVVVJ/jLJHedIPyPJI7r7Jy0/AQAAAPgv3X1Bki+PpE05+2vuFwCYl7lfACBVdYMkb8l8y0/en+TW3f3sJS4/SXd/J8lJAymrms1NkuMnrA2waRagMKVVL0AZuv6Z3X32xPUBgK1jz5H41AMUZ4zEh15EBgBYiLWh1k8OpPxwVc3zkGgz7jAQO6G7vztRXQBge3hKkgfOkffeJAd3919N3A8AAADAVrXK2d+xa399wtoAwNZi7hcAdnNVtWeSN2R88djFSZ6R5M7d/bnJG9uxoUUjB1TVjSaqOzSb+90kJ0xUF2CnjP0PPti07j69qr6Y5IbrpNy0qvbo7ksWXXvtpL+bDaR8cdE1AYAt7ZyR+NSb2K80Ev/exPUBAC51XJLbrxPbO8ldk/z9IgtW1d5JbjeQ8s+LrAcAbC9rQyC/M0fqkUme3N0GTgGAZXpthhfOLspRA7FXZnaq4XouWHAvAMDW9pEk9xmI3zzTvRwzdiqx2V8A4FLnZHj29ipJTp6wvrlfAFi938jw7Gky+zv5wd39jiX0M+S4JA8aiN8zyZ9OUPeOA7H3dPfFE9QE2GkWoDC147L+ApQDktwmyScmqHvzteuv52MT1AQAtq7TRuLXmrj+1UbiJ05cHwDgUu9O8pSB+D2z4AUoSe6cZN+B+D8tuB4AsL38bpIrjOS8qLufuoxmAAC+X3cfn+FT/RaiqoYWoLy/u181dQ8AwLZx3Ej8zkneNFHtQwdi58SpxADAfzktw0tIrpVpF6AMzf1+q7vPnbA2AOz2qurqSf7/kbTvJrlnd39oCS2NefdIfOELUNYOFLrRQIrZXGCXtceqG2DbO3Ykfo+J6t5tJD50sg0AsPv50kj8FlV1lQnr33gk/tkJawMAfL9/TnL2QPz+VXW5Bdd8wEDsu5n1BADwP1TVDZP8zEjaH1t+AgAAADC3jyQZemF3krnftbmcgwdSPtzdF01RGwDYksbmfu80VeGqOjDDC1DM/ALA9B6fZL+B+HnZdZafpLv/LckXB1LuunaPsUg/PdRSkrcsuB7AwliAwtTemuTCgfjjJnhpJkl+YSB2cZK3T1ATANi6vpHk9IH4HpltVJ3K2LU/OGFtAID/1N0c/ErqAAAgAElEQVTnZfh7k+skufei6lXVFZM8bCDl6O4+f1H1AIBt53FJaiD+viS/tqReAAAAALa8OZ4V3bSqDpug9M8l2WsgfswENQGAretfR+ILm23ZgcMy/D6emV8AmFBV7ZXh94eT5Em7yvKT7/Pmgdg+SR65qEJVVUkeM5Dy/u7++qLqASyaBShMqru/neFTen8wyc8usmZV/XiSWw2kvLO7h15wBgB2M93dSY4bSfvVKWqvnWBzl4GUk7r7hClqAwCs46iR+CJfIn5ckgMG4q9cYC0AYBupqssnedRAyplJHtrdFy+pJQAAAIDt4vUj8f+7yGJrByn+0kDKRUneuMiaAMCW976R+N2q6uCJaj9oJP6PE9UFAGYekOSaA/E3dPfLl9XMBozN5j5pbbnLIjwwyY0H4mZzgV2aBSgsw5+NxP9g7cXfnVZVeyR58UjaEYuoBQBsO2Mnxdy2qsYeWmzGbye54kD8byaoCQAw5B1JvjwQv1NV3Xdni1TVNZI8fSDlM9393p2tAwBsW3dNctBA/IXd/c1lNQMAAACwjRyd5OSB+D2q6v9bYL0nJLnJUD9OJQYALuNdSc4eiFeS31l00aq6XZIHD6ScnMSsCwBMa+i9nguSPHVZjWzE2sHIQ/cJN0zy2J2tU1VXTPKCgZQzkvztztYBmJIFKCzDMUlOGIhfM8mfV1UtoNYTk9xuIP6pJG9bQB0AYPt5Q5KzRnL+rKqut6iCVfXjGf6C4uIkL11UPQCAeXT3JUl+fyTtyKoaeuF40NpJfn+V5MCBtOdu9voAwG7hpwZip2d8YT4AAAAAO9Dd5yf545G0IxYxQ1NVP5jkOUPtJPndna0DAGwv3X1WkjeOpN27qp64qJpVtW+Sl2W2XGU9R6zN3QAAE1ibPb3HQMoru/srS2pnM144Ev+dqrrhTtY4MrNlKut5UXeft5M1ACZlAQqT6+5O8syRtAcmeWVVbfrfyaq6f5I/GEn7zbV+AAD+m7WHIUeMpB2U5OiquubO1quq22e2mG2vgbS/2sW/fAEAtq9XJDlpIH6dJH9TVZff6IXXvv95RZK7DaR9MjbMAwDDhhagvKm7z1laJwAAAADbzxFJvjkQPzDJe6rqhzZboKqumuQdSa40kPaG7v74ZmsAANvaC5OMLRv5/ap6wM4Wqqp9khyd5PYDad/O7IVjAGA6d8zwwXuvWVYjm9Hdb0/ykYGU/ZO8qaquvJnrV9VzkvzcQMo3k7xkM9cGWKY9V90Au4fufmNV/UOSew2kPSrJlavqcd198kauX1U/l9km1csNpL2hu/9hI9cFAHY7L8zsnuQHBnIOTnJ8VT24uz+80QJrL/w+JcnzklxhIPV7SX5zo9cHAFiE7r6gqp6S5E0DaYcleWtVPbS7z5jnumsPZV6V5H4jqb9uiS0AsJ615bRDL9dcUFWHL6mdHfnb7j53hfUBAAAAdkp3f2/tWdHfDKRdP8lxVfXI7n7XRq5fVTdL8tokNxtIOzOzGRsAgP+huz9TVX+R5BcG0vZO8uaq+q0kL+ruizZap6oOSfLqDN+3JMkz5p2fAQA27ccHYucmuVlV3XRZzVzG17v7nXPkPTHJh5PssU784CTvqqoHdPfQQYb/aW1Z24uT/OJI6jMcKARsBRagsEy/mOSjSa4xkPOAJHerqhckeXV3f229xLWXh38sybOS3HWk9jeTPGFD3QIAu53uPqOqHpPZlvYh10nyoap6W5IXJfnA2EORqto3ycOSPCnJLeZo5/HdPXSSDgDApLr7zVX1lsy+r1nPYUn+raqeluS13X3BjpKq6gpJDk/y2xn+bihJjujuf95EywDA7uPgkfiqnwn9Y2aDNQAAAABbVnf/bVXdJ8nDB9KuleSf154pvSDJR4aW3FfV9ZI8JsmvZ/ZC8pAndPc3Ntg2ALB7+bUkd89sMdt6Ksnzkzxm7V2l13f3t4cuWlWV2QvWT0ry0xk+rDlJ/jnJS+fsGQDYvKF5kX2S/MWyGtmBdyQZXYDS3R+tqpck+ZWBtB9J8q9V9awkr+jus3aUVFV7JnlwkuckudFI6bd19yvH+gPYFViAwtJ099eq6gFJjs3sZmI9+yd5XpLnVdUnknwoySlJTk1y+cxekrluknsk+YE5Sl+Y5Ge7+9SdaB8A2E109zFV9czMvgAYc++1n7Oq6oNJ/i3JGWs/lyQ5KMnVk9whye2S7DVnG3/W3a/ZaO8AABN4TJLbZHhQ5JpJjkryoqo6Nsknk5ye2Xb6q699/m5J9puj3mcyG3gFABhym1U3AAAAALCb+IUkN0xy6EjeA9Z+Tqmqdyb5amazv+dlNut79bVr3HbOui/r7r/aVMcAwG6ju79bVfdN8v4kB4yk3yDJy5K8tKo+neTDmd2vnJHkrLXPH5Tklpkd1nyVOds4McnDu/uSjf8JAIAN2i7zIk/LbNna7QdyDkjyR0meXVXvTfLRJN9K0kmumuRWmR1ieNAc9U5J8vM70zDAMlmAwlJ190eq6t5Jjsl8L73cNvM/7NiRS5I8srvfvxPXAAB2M9393Kq6fJLfmvMj+2W2nO0eCyh/dJLHL+A6AAA7rbtPq6r7JflAZktrh1w1s03yD95kua8muWd3n7vJzwMAu4+br7oBAAAAgN1Bd59fVfdK8vYkd5zjI1dP8vCdLHtMkifu5DUAgN1Ed/9bVd0zyVszm10ZU0luvfazs07LbNbllAVcCwAYUFV7JbnxqvtYhO4+t6run+T4JNceSb9Skvuu/WzGmXG/Amwxe6y6AXY/3X1skrsm+frEpc5P8oju/puJ6wAA21B3Pz3Jo5Kcs8Syf53kQd198RJrAgAM6u5PJ7l7ktMnLPP1JId191cnrAEAbB/XWnUDAAAAALuL7j4zs0OB3ryEcm9M8rPdfdESagEA20R3fzjJoUk+tcSyJyX58e7+jyXWBIDd2dWzjd6J7+5vJLlLkq9MWObMJPfu7k9OWANg4bbNf+zZWrr7o0lum+QfJyrxlSQ/0d2vnej6AMBuoLtfldk9y3ETlzo/yZO7++EGOACAXVF3H5/kfyf5zASXf2+S23X3Zye4NgCwPV1j1Q0AAAAA7E66++zu/pkkT81szmXRLkzyzMyWn0xxfQBgm+vuLyS5Q5IXZHZvMaW3xqwLACzbtpsVWbt/+bEkH5jg8v+W5PbdPcW1ASZlAQor092ndve9kjwiyaJO9z0vyR8muWV3f2hB1wQAdmPd/dnuvlOSh2T2BcCivSXJrbr7JRNcGwBgYbr7hMyWw70oyQULuOR3kvx6krt39ykLuB4AsPvYdkMtAAAAAFtBd78oycFJ3rHAy74vsxdyntvdvcDrAgC7me4+v7t/I8ktk/xNkosXXOJLmS1su193n7bgawMAw7blrEh3fyPJnTJbOnvWAi55XpLfS/K/1hasAGw55XtidgVVtXeSw5P8UmYv0mzUV5L8dZI/7e6TF9cZAMB/qapKcliSn0tyvyT7bfJSpyZ5U5IjuvvfF9QeAMDSVNV1MnvY8vAkV97gx09M8pokL+7u0xfdGwAAAAAAANOrqkOT/EqS+ye5/AY/fm6SY5Ic2d3vW3RvAABJUlU3SPKoJP8nyY02eZkLkxyb5OVJ/q67F71UBQAgSVJVV0nylCSPTnLNDX781CSvS/IH3f3VRfcGsEwWoLDLqaqbJbl7kjsmuVmS6ybZP8memT3w+F6Sk5J8IclHkxyX5F9sfQcAlqmq9kpyaGb3LAcn+aEk105yYJIrJOnM7l2+k+RrSb6Y5F+SfDDJ8d19yQraBgBYqKraM8lPJLlLZvdEN81sIcr+SS5JcmaSM5KckORjmX2P8wHf4wAAAAAAAGwPVXVgZnO/d05yy8xeLr5ykn2SXJDk7CQnJ/lSkk8n+UCS93X3Ik41BgCYS1XdOLP7lR9J8sOZvat0tczuWfZMcl5m9y3fzOxwn09n9s7Ssd195ip6BgB2T2uHN98xs+9bDk5y8yRXSXKltZQzk3w7yeeSfDyz95Te3d0XLb9bgMWzAAUAAAAAAAAAAAAAAAAAAAAAWJk9Vt0AAAAAAAAAAAAAAAAAAAAAALD7sgAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAAAAAAAAAAABYGQtQAAAAAAAAAAAAAAAAAAAAAICVsQAFAAAAAAAAAAAAAAAAAAAAAFgZC1AAAAAAAAAAAAAAAAAAAAAAgJWxAAUAAAAAAAAAAAAAAAAAAAAAWBkLUAAAAAAAAAAAAAAAAAAAAACAlbEABQAAAAAAAAAAtrGqun5VnV1V/X0/51TVNVbdG8DOqqo3X+a/b11V9151XwAAAAAAAMDGWIACAAAAAAAAMKKqXrWDlyq30s9XVv3PkF3H2iKEVf87ubM/h6/zZ7vLyOeuv9R/2LDrODLJFS/7u+4+eRXNDKmq9wz8//BdVt0fsEt6RpJLLvO7I6rqsv/dAwAAAAAAAHZhFqAAAAAAAAAAAMA2VVUPTXKvy/z67CQvWEE7AAvX3f+e5HWX+fX1kjx7Be0AAAAAAAAAm2QBCgAAAAAAAAAAbENVdUCSP9pB6Iju/tay+wGY0LOTXHyZ3/1KVR28imYAAAAAAACAjbMABQAAAAAAAAAAtqfnJ7nGZX53TpLfX0EvAJPp7s8n+avL/HrPJH9eVeYkAQAAAAAAYAvYc9UNAAAAAAAAAACwdVXV9ZMcPpDy4u7+zlKa4T9V1e2TPHYHoZd297eW3Q/AEjwnycPy3+ciD8nsv4VHrqQjAAAAAAAAYG4WoAAAAAAAAAAAsDOun+S3B+KvSmIByhJVVSU5Iskelwmdl+T3l98RwPS6+0tV9dokj7xM6PlV9Xfd/c1V9AUAAAAAAADM57JDDgAAAAAAAAAAwNb280kO2cHv/6K7T152MwBL9DtJLrnM7w5I8kcr6AUAAAAAAADYAAtQAAAAAAAAAEZ09+HdXYv6SfLskZLvXWS97r7+Ev4xsUV091cW/O9XzVH2JxZc81VT/3OCraqqDkjy/B2ELkrywiW3A7BU3f25JG/cQeghVXWPZfcDAAAAAAAAzM8CFAAAAAAAAAAA2D6emeRqO/j967v7xGU3A7ACv7vO7/+0qi6/1E4AAAAAAACAuVmAAgAAAAAAAAAA20BV3SjJE9YJv3CZvQCsSnd/Msk7dxC6cZKnLrkdAAAAAAAAYE4WoAAAAAAAAAAAwPbwu0n23sHv39Xdn1p2MwAr9Afr/P43q+p6S+0EAAAAAAAAmIsFKAAAAAAAAAAAsMVV1R2SPGid8B8tsxeAVevudyQ5YQehfZK8cMntAAAAAAAAAHOwAAUAAAAAAAAAALa+56/z+y8kefsyGwHYRRyxzu8fXFU/stROAAAAAAAAgFEWoAAAAAAAAAAAwBZWVXdOctd1wkd2dy+zH4BdxF8mOXsHv68kv7XkXgAAAAAAAIARe666AQAAAAAAAAAAWISqunySGyc5KMmBSfZPcl6S7639nJrky919ycqanMYz1vn9+UlevcxGAHYV3f29qvqbJD+/g/BPV9UPdfeXlt0XAAAAAAAAsGMWoADA/2PvvqMlK6u8j393d5MlSZIoSUVAiRIFmqwoRjCPiop5FBzGMOjoqKivDqOOATGPCQMqjgRBmiBIUFAQEBUkB8mZJnXv949TzTSXOs+pcKruvfD9rHUXTT3P2Xt3VZ1TtRb3/JAkSZIkSZIkSSqIiABWA9YFlgeeACRwD1WYwmWZeePkTag2RMSSwPOA7YFnUr3ey1K93g8AdwPXAn8FzgaOz8yLJ2fa/xMRy1AFfjyJataZwB3ALcCfM/POSRxv5CJiJrAb8BLgWcDGwCINh82NiIuB84GjgV9l5r0jHXSEImILYNea5aMy89YxzjKL6txZhyp8ZnGqc+cO4O+ZedW4ZhnUdDmnImJdYC9gR2BDqs+ppalCb24Hrgf+APwO+EVm3jxJozaKiJWAfYC9gacBq1K9d24GdszMv7TYaxbV+3NtqudrSarP89upPs+vbKtXmxb6LrIe//dd5AGqua8F/pqZ8yZvwv/TmXUdYEWqWZcHZlA9z3cAVwLXZOaDYxrpO3QPQJkBvB04aExzSJIkSZIkSZIkSWpgAIokSZIkSZIkSZIkPU5ExAbAKwpbLs7MHw3ZYw9gu8KW6zLzq8P06PQ5AFiuZvlXmXnWkPWfTPVc7UL193lCw/7rgd9ShSkclZl3DNNf4xMRawP/Dryc6kb4bmZ11lYGNqNzHkXE74H/yswfjnzQjohYFHh+52dnqpv462REXA6cABwFzMnMh4bo/QSqkIKJNmg4dJ+IqAtfODIz7x5glpWB9wL/RPW69GMJYPPOz35UgShHA4dk5vn9zjIFvLuw9v1RN4+INYHXAM8BtgEWLey9HTgFOBL4WWbOHfV8TSbznBpEROwF/AvV51M3s4ClgNWBLYE3A4dFxHHAxzLznC41L6yp9fvM3K+P2bKwvMjE5yoiFgf+lepc7vY5uxJVEMpQImIT4GVUr++WFEKSOu/RM6he36My86Zh+w8qIlaj+rzZDXg2VWBLnfsi4o/AL6nOrb+OYcSHRcT6wCupQsS2pv472gIPdOY9DfgZcFZmlt4/wziNKiRm9S5rr4+IgzPz/hH1liRJkiRJkiRJktSHGN1/N5QkSZIkSZIkSZIkdRMRHwE+XNhyambOHkHf1ahuAK1zeWauO2SPE4FdC1vuBZbPzAeG6LEicCMQNVu2y8wzB6y9I/Ahqr9DXf0m9wPfAT6TmZcMWGNaabjpHWDnzDxlDHPMBk4ubFknM6/o7J1FdR6+l0JgQ49OBV6XmVcOWadWRCxPFXrwVmCFActcDXwBODwz7xxghrWBywfsXefh16THGZYCDur8FIOJBpBUN+K/NzMva7n2SHRCaW6ie0jEXcCKw1xvG3qvB3wCeCkwc4AS1wOHAIdl5vyF6p4C7FRzTGvXkqlwTvUjItYFvkr5M7ZJAj8C3pmZtyxUu+4a3tf3kX4CUCJidaqQkS0bym6Wmef1OsNC9QN4CfBvVGFHg3gAOAI4NDMvGLBG3yJiC6rPp70Y7NwCmEMV0HVsa4N1ERG7AQcCz2Xw700AlwCfAr4zilChiPga8Kaa5VcMGwAoSZIkSZIkSZIkqR0zJnsASZIkSZIkSZIkSdJ4ZOZ1wPmFLetExBqD1o+IRYBtG7YtCWw1aI+OXai/yfYW4Ox+C0bEGhHxS6ogi90K9XuxGLA/cFFEfDYilhmilkYgIpYGjgU+yPDhJ1CFNZwdEYPeZF8UEW+mCh45mMGDGgDWBD4NXBoRb4qIafV7IxGxIXAO8BHaDz+B6rx/KXBeRLx4BPVH4YV0Dz8BOGUU4SdR+QBwEfAyBg9oWBX4InByJ9hqbKbbORURLwfOY7jwE6je468A/hgRGw892KBDRDwF+B3N4SeD1n8G1XeBIxk8/ASqz4fXUV0Tvh4RK7cxX52IWCEivk91ndubwc8tqN4rx0TEqRGxSSsDLiQilomIbwO/pgpqGeZ7E8BTgG8AvxvFvFSf+XVeN4J+kiRJkiRJkiRJkgYwrX6RRZIkSZIkSZIkSZI0tNINoFAFOQxqK6qAkyazh+gB5RvAf5WZ8/spFhEvBC4Enj/UVI+2CHAA1Y3mw4a+qCWd8JNfA7u3XHoV4NiIWKutghGxXEQcBxwOLNtWXWAl4GvASRGxaot1RyYiNqIKKNpgDO2WBn4SEfuModewXl5YO6HtZhGxJPC/wCeowp7asCNw5jABXL2ajudURLwPOILqfdmWNYHTImKLFmv2JCKeDMwBVhtR/XdRBYg8q8WyM4A3AhdHRNvfFQCIiJ2oQoVe1XLpHYFzI+LgiBg2pASAiNgMuIDRBIdsRnU9aDuE6kTgwZq13SNipZb7SZIkSZIkSZIkSRqAASiSJEmSJEmSJEmS9PjSFICy4xC1Z7e8r04pAOWYfgpFxIHAz2j3RviJ1gV+ExGvGGEP9WZRqvCGrUdUfxXg+23cZB4R6wBnAc8Zeqp6OwHnRUSbQQGti4ilgJ8CK46x7UzgfyJi/TH27EtELAfsWdjSagBKRCwB/JL2w6IA1qcKD1l5BLWB6XlOdcJPPgW0ElwxwXLA8RHx1BHU7qoTQHUMVQBL27VnRMRhwOeprvWj8ETgfyPiw20WjYjXUQVzrdJm3YXMBD4OHN05jwcWEZsDJwOthX11sQRwZES8qK2CmXkXcHrN8ixg37Z6SZIkSZIkSZIkSRrcrMkeQJIkSZIkSZIkSZI0VmcCtwHL16zvNETtXo/dLiIWzcwH+m0QEWsB69UszwOO76PWu4H/6neGAS0G/CAils7Mr42ppx7tMMoBPLcDc4C/ADdQvadWAdagCppYvYcezwZeDXxv0CEjYg3gJGDtQWv0YWXghIjYIzN/P4Z+g3gf8LQe9v2JKlzhJOAK4BbgTmBJ4AnAOsAGwC7AXtRfBxdYEjgUeOEgQ4/Bi6gPergyM//Wcr9vUz13o/IUqoCi1sM+puM5FRGvpgo/6cWVVJ/vF1F9xs8HVqMKGtkDWLXmuBXoMzhsSN8CNmq7aCd06ivA/m3X7tYO+Ejne8zBQxeLeC3V8zKKkJuJ9qIKcHlBZs7t9+BOQNHRjDY0boEZVN+bts7MC1qqeQKwc83ai4Avt9RHkiRJkiRJkiRJ0oAMQJEkSZIkSZIkSZKkx5HMnBcRJwAvr9nytIhYJTNv6KduRCwCbNfj9iWArYHT+unRsWth7azMvLWXIhHxUuCzPWy9D/g58CvgfKqbzO+mCh1YFngqsCXwAmAHyjcwB/CViLglM3/Wy5xqXV14w1nAx4HjM/Ohbhs6N9jvAHwReEZDn/cwYABKRCxNdZP22j1sPxP4BXAKcD3wD6rfBXki1XtzO6rwji0b6iwHHB0Rm2bm9YPMPSoR8QTggIZtlwP/mpk/rVm/q/NzPXAG8M2IWBx4C/AflG/m3zsi1s3My/qbfCx2L6yd2WajiDgQeFmP288Afgr8FrgUuIPqOV4deGanzp50D2/ZeuhhJ5iO51REbAR8tYetxwGHZOZvC7VmANtTvde7hT+s3+98A9oXeOmIan+U3sJPrqV6fY8GLqN6jecCy1C9PzYBnkP1mb5YQ61/i4i/Z+Y3B5yZiNgD+CbN4Sd3Ub3WvwAu6Mx9O7AUVdDNRsBuwEuAlRpq7QYcDrx2gJG/RH2YzgJ/Bn5IdS79pTPnfVTP8XKdebehCgvbC1ikUGsJ4GsRsV1mzh9g3onOLaztFBHLZOadLfSRJEmSJEmSJEmSNKDIzMmeQZIkSZIkSZIkSZIeVyLiI8CHC1tOzczZI+z/WuB/Cltelpk/6bPmtlQ3vffq3zPzY/306PT5HvDqmuWDM/MTPdR4CnAO1c24deZRBV18PDNv7nG2jYFPAHs3bL0L2HSKBioMJCKafvlg58w8ZQxzzAZO7uOQ24G3ZOaP++ixGNUN669q2LpFZv6hj1kW1D+S5pCAs4EDM7OnkIvO+fk5YKuGracAu2Sfv0zSw/O+TmZe0U/NhWr/E/CdwpaLgN0y8x8D1t+AKhxjzcK292RmL4FJYxURl1Mf6vFvmfnJlvqsD/yJKoyg5CzggMw8u4eaa1FdY5uulxP1fS2ZbudUJ7DkzIba9wCvz8wje63bqf1PwFeAJXs8pK/vIw2fBZcAT+ny+ENU149jqEJzbgBupAoFWQm4OTPnFnq+ADiKcojIbVQBMF/OzAdLf4dOzZWAg4F3AjMLW+dSXesvbqrZpceTqQI5Vihse4jq9fpIZt7SQ83FgDcCh1CFjZTsl5nf7m1aiIitqc7xOncB7wC+1+v7PSLWAN7XOa70+r0hM7/V66yFfisApe90L8zM/x22jyRJkiRJknf1o9MAACAASURBVCRJkqTBzZjsASRJkiRJkiRJkiRJY3ccULo5dacBas4e8f4FdimsHdN0cEQE8A3K4Se3AXtm5gG9hp8AZOaFmfkC4C1UASp1lqYcQKPxOI8qiKbn8BOAzLwfeBNwfsPW5/Q7UES8nuaghkOAbXsNagDo7N0WOLRh62yag13GrfQ83kl1rg4UfgKQmX8B/onyNXHrQeuPSkQ8ifrwE2h+f/bjSzSHn3waeHYv4ScAmXlV53q5PzB/yPlqTdNzan+aw0927jf8BCAzv0t1Tt3V77Et6BZ+8ivgGZm5R2Z+PjPPycyrM/P+zLyv8+dS+MkKVJ/ppfCMc4ENO/Ubw08AMvOmzDwA2A24tbB1CeC/e6nZxbcoh5/cDOyYmf/cS/gJVJ9Pmfll4JlUoUUln4mIZXsbFYB3F9YeoAqi+m4/YT+ZeU1m/jPwSuD+wtb39Fqzod8twFWFLbPb6CNJkiRJkiRJkiRpcAagSJIkSZIkSZIkSdLjTGbeBJxT2LLjAGVn97l/24hYtJ8DImJDYNWa5Wszs5cb/l8H7FBYvxfYKzPn9DPbwjLzq8ArKAcqPDsi9hm0h4Z2KbBrZl45yMGdG/IPatjW13nUuZH/Pxu2vTUzP9jPDeYLZOb8zDwI+FTD1k9GxKx+64/QtoW1z2fmtcM2yMxTgTMKW9YbtscIbN+w3hR+0JOI2BXYo2Hb+zPzfZlZCn7qKjO/DrwGeGiQ+Uqm4zkVEYsABzdse01m/r6Xet1k5mnAXozgOe/T+zLzuZ0QokEdCqxYWD8R2GnQkKTMPIXq/X9PYdtuEbFnP3U7wTw7F7ZcBWzXTyjPwjLzaqowu4sL21YE3t9Lvc778gWFLYdm5u96n/CRMvNHwAcLWzaOiFIoUD/+UFgrfT+UJEmSJEmSJEmSNAYGoEiSJEmSJEmSJEnS49OxhbWNI+KJvRbq3Ni9Xc3y1TWPLwFs3WuPjl0La6W/D/DwnB9u2HZgZp7V11RdZOaRwCEN2z46bB8N7HWZeeuQNeYA1xXWN+uz3vuBFQrr/5WZh/dZs5t/A04qrK8JTIlwns5N92sVtnyzxXZHF9aWbbFPW+quuQC3ZuY1LfX5j4b172Xm/xumQWYeAXxgmBo1puM59arO/jpHZOZRvQ5WJzNPBz42bJ0hHJiZnx6mQERsDLy2sOUyYN/MLIWXNMrMc4F3NGw7sNd6EbEY5ef+fuClmXlJrzW7yczbgRcD9xW2vSUiluyh3ObAUoX17/czW43PU/+dEcqBMf0oBaA8s/O5I0mSJEmSJEmSJGmSGIAiSZIkSZIkSZIkSY9PpcCQAHboo9aWwBO6PJ7AxwvH9Xsz61ABKMCrgbUL67/LzK/2NVHZx4DSDcxPj4hdWuyn3vwiM88YtkhmJvCbwpaVI2KJXmpFxIrA2wpbfge8r4/xanXmfgvwUGHbW9ro1YInATNr1i7NzCta7FUKDFm0xT5t2aSw9vc2GkTEFsD2hS03Awe00Qs4FBg6fGqBaXxO7VdYm0cVttKWT1N+34/KUZn5uRbqfIjq+0o384B9OiEgQ8vM/wFOKWzZIyLW6bHcG4A1Cuv/mpnn9DpbSWb+FfhUYcvywL49lHp6w/rQ15zMfBD4bmHLlsP26Li8sLYosHFLfSRJkiRJkiRJkiQNwAAUSZIkSZIkSZIkSXp8+j1wY2F9pz5q1e29APgxML9mfXavDSJiZqHPA8CJPZTZv2H9P3qdpxeZ+QBwSMO217fZUz35Sou1/tyw/uQe67weWKqw/oHMLIUr9CUzLwWOKGzZoRMgMdm6BSstcF7Lvea2XG/USmEL17XU480N6+/NzFvaaNQJEXl/G7U6Xs80O6ciYg1gx8KWI9sM/cnM+4AvtFWvR3fS/L5qFBGrAC8pbPlBZv5x2D4TfKw0EvCiHuu8vbB2OXBYzxP15vPAXYX10vO4wMoN68v2Pk7RKYW1VVrqcXXD+gYt9ZEkSZIkSZIkSZI0AANQJEmSJEmSJEmSJOlxqHOz+fGFLaWbsCeaXfP4yZl5O3Buzfq2EbFYjz22AJarWftNZt5dOjgi1gW2L2w5NzOP7XGWfvwIKAUE7BUR/rf78bkT+HWL9a5qWF++xzr7FdbOysyTeqzTj68X1mYCe46gZ7+uAnau+flAy71WarneyHQCodYsbBk6ACUiZlEORrgN+MGwfRaWmacCf2qp3HQ8p/akCtKoUwpYGdT3gBxB3TqHZ+ZNLdR5LTCrZi2BT7TQ45FFq/fM5YUtezXViIhnARsXtnyqzWAegM73sCMLW3aPiEUayizasD67r6HqnQ3sW/Pz0ZZ6XNOwXgqXkiRJkiRJkiRJkjRi/hKVJEmSJEmSJEmSJD1+lQI/No2IZZoKdG7ErwsWObnzzzk164sDWzf16Ni1sHZMD8fv3bD+rR7n6Etm3gf8vLBlBWDzUfRWV6dl5rwW693esL5EU4GIeBqwYWHLD/uaqHenA/8orG81or49y8x7MvOUmp9LW27XT+jTZFsDKAUWDB2AAmwHrFhYPyIz72+hz0RDv9+n8TlV+pybC5zQ90QNMvM66kPKRuELLdUphfOcn5l/aanPRKUgkWdFRCnABspzzwd+0v9IPSnNvQTlUBaowsNKPhgRS/Y30qNl5p2ZeWTNz4nD1u+4hnLoz7ot9ZEkSZIkSZIkSZI0AANQJEmSJEmSJEmSJOnx63igLgyiFGyysC2Apbs8Ph/4TefPpZtWZ/fQA8o3hpeCXBbYvbCWlENKhlUXALPAliPsrUc6r+V6cxvWe7kh/LkN603vn4Fk5nyqwIY6j5v3ZURsBrx0sufowzoN620EoOzSsH5ECz26Ob6FGtP1nCoFpPwhM5uuN4MqzdymizLz6mGLRMQTKT9XI3l9O04trC0LrN9wfOm9+cfMvK3/kXpyGtX3sjpN782mQJmNgR9HxLJ9TTUJOsFNNxW2NF1fJUmSJEmSJEmSJI2QASiSJEmSJEmSJEmS9DjVudH2rMKWnXooM7vm8fMWupH3t8B9Nft2bmoQEYtRH8by98z8W1MNYLvC2u8ys43AgDqnNaxvNsLeeqS/tlzvgYb1WT3U2KGwdndmXtjHPP0qnf8bjrDvlBARK0XEO4GTgUUne54+PLlh/cYWepQCsOYB57bQo5vzgXuHrDHtzqmIWApYt3DsHwaeqNn5I6y9sN80b+nJ9pR/5630GgyrqXbpNV4aeOYQtQeWmXcBfy5sabren07zefk84I8R8dKImOq/k3hDYc0AFEmSJEmSJEmSJGkSTfX/2ChJkiRJkiRJkiRJGq1jC2s79nB8XUjKSQv+kJn3UYWgdLNNJ+CkZDtg8Zq1YxqOJSLWBJYvbBnlzdJk5rXAPYUt3mw7PqMMuhnUpoW1m0bc+y+FteUiYsUR9x+piFgkItaLiF0j4o0R8fGI+F5EnB4R11AFhXwBWHaSR+1X07x1gVP9KAU1/DUz57bQ41Eycx7QS6hVyXQ8p54CROHYiwYfqdGwz3evrmmpTun1hXYCgLrKzFuAmwtbnlJY25TyazyyuTtK783S3GTmvcB3e+ixDnAkcGnnertVRMzsY8ZxKV2/VhjbFJIkSZIkSZIkSZIepZf/05AkSZIkSZIkSZIk6bHrWOCQmrUtI2LJzo2vj9K5qfXZNceePOHf5wC7dtm3OLANcGphxm7HLVAKcFlgo4b1P/VQY1h/pz5QYI0x9FeldOP62EXEEpQDcEY972UN66uOYYahRMQMYH2qcIGNqJ7PtTs/q/PY/J8DLdmwPlQASkSsAKxc2HLeMPV7cCnNIRddTeNzarWG464dbJye/GOEtRfW1nPf9Jk+jte4Lshm1cJxU2HuOqW5F/gIsC/wxB72rgMc3Pm5PSJOo/qedyrwx07Q0WQqBaAsNbYpJEmSJEmSJEmSJD2KASiSJEmSJEmSJEmS9DiWmedFxHV0v/l6EWA74MSawzcHluny+DzgtAmPnQh8oqbObAYLQLkHOKVw3AJNASPjCEC5obC20hj6q1K66XkyrAlEYf1ZEZHjGqaLUgjGpOmEXOwFvAx4LrD05E40dk0BKMO+z5uumdcPWb/JjUMcO13PqaYAilEGoIwr5OiBluqs1bB+UUTpLTBSpWtm09xfiogvtTlMHxqv9Zn5j4h4JXA01ffDXi0H7N35AbgrIk6nCso7GfhDZs7vc95hla6RMyNi8cwcKkhKkiRJkiRJkiRJ0mAei/+XG0mSJEmSJEmSJElSf44rrO1YWNup5vFzMvOuCY+dC9xWs3/nugYRsQywZc3ySZl5f2G+BbqFuyzsmh5qDOuewtoSY+ivSls34LelKWhisk2pYJGIWDIi/hW4CjiSKgBlSs04Jk0BKMPeuP+khvU7h6zfpO6zohfT9ZzqFia2sDvaHmQh0y3oYSq/xqXr0XSd+2GZeQLwQmDid7x+ez0X+DTwe+DGiPhBRLwyIsZ1PW8KiVpqLFNIkiRJkiRJkiRJehQDUCRJkiRJkiRJkiRJxxbW6kJOAGbXPH7yxAcycz5wSs3+bSJi8UL/WTVrxxRmW9jyDeujvpkfDEBRd02hB5PtCZM9wAIRsQtwCdVN8yu2XP564MyWa47SqANQmkIIRhnGAdBLsFWd6XpO1X0GLjDKkJKHRlh7FKbya1y6Zk7XuR8hM48DNgF+3VLvFYBXAj8AboqIIyPiuRERLdXv5t6Gdb+XSZIkSZIkSZIkSZPEABRJkiRJkiRJkiRJ0q+BB2vWtoqIxSY+GBEzgGfXHHNSzeNzah5fDNimZm3XmsehHNyysNKN5fMys+lG2DbUhbjA9Lv5XO2Z6jdZT4n5IuJDVNep1VosO5cqROl1wHrACS3WHrWmsIxhgwOa6t89ZP1RmhLv2YK6+RZpOG6UAShNgTpTzVR+jUuzTeW5Z0ZE03vwYZl5eWbuAewJnAhkS3MsBryU6vvdnyNin5bqTtR0jRwmhEmSJEmSJEmSJEnSEAxAkSRJkiRJkiRJkqTHucy8Czi9ZnlxYOsuj28GLNvl8QeB39bUOrEwxuyax+sCUC7IzKsL9Ra2aGFtbo81hrVMYW2UN7ZraisF40wFkz5fRBwMfJTBf8flQeByqmCmw4F3A9sDy2Xm8zPzO5k5rutAW5puzh910MKo65eul00m/T3boG6+uhCyBUqfY8NaaoS1R2Eqv8al2aby3DDAfJl5QmbuDjwN+DBwQYvzbAD8JCKOiIi2rzlNIU/3tNxPkiRJkiRJkiRJUo+m+n9YlSRJkiRJkiRJkiSNx7HAzjVrOwK/mfDYTjV7z87Me7stZOZfI+JaYPUuy7MnPhARqwAb1/Q5tubxbh4qrC0ZEZGZ2Ue9QSxdWLt7xL01dT0w2QM0mDmZzSNiX+DjPW5PqpvvTwcuBC6mCj65JjPnjWbCSdMU2DJsWEBTKNMwASW9GKb+dD2nmp7zpYF/tDzLAk8aUd1ReYDmAIvJUrpmTtf3ZqPMvIQqqOqjEbEWsDuwG9X3ylWGnOsVwMoR8ZzMbAoK6lXp/ZOMLxxPkiRJkiRJkiRJ0gQGoEiSJEmSJEmSJEmSoAoU+UzN2k48OoRgds3ekxv6zAFe2+XxbSJi8cxc+CbwXQp1jmnos7DSjawzgCcAd/VRbxArF9ZGdVO7pr6mm6x/CfxsHIPUOHuyGkfE4sChPWy9Afgs8L3MvHa0U00Zow5AaQplGnUASikwqsl0PafuaThulM/5eiOsPQpzqQ+wuA14zxhnmeiWwlrTe/N9wI0tztKv+9sokplXAd/o/BART6f6zjib6vvkIIEouwCfBA5qY0bKAShzxxCKJ0mSJEmSJEmSJKmGASiSJEmSJEmSJEmSJDLzzxFxBbB2l+VtI2KRzHwQICJmADvUlDqpodWJdA9AWQzYlkcGqOxaU+N24IyGPhP3lyzHCANQImJRYN3ClutH1VtT3q0N65dl5rfHMcgU9HZgzYY9vwBen5lN5/hjzc0N68MGoDSFMj15yPpN1h7i2Ol6TjU95yuNsPfTRlh7FG4Flq9ZmzFFX19ofm+ekJnnjWWSMcrMi4GLgcPg4UCU3Ts/u9L79erdEfHVzPxbC2OVAlDubaG+JEmSJEmSJEmSpAHNmOwBJEmSJEmSJEmSJElTxnE1jy8FbLHQv29CFRoy0X3AWQ095hTWZk/4911q9h2fmfMa+izsuob1p/ZRaxBPofw/KGnjZl5NT9c0rHc7zx4vXtGw/vPMfFGL4SczW6ozDk2hSUsOWb/pfbnJkPVrRUQAGw9RYrqeU02v6TNG2PvZI6w9CqXXeJlOSNtUNF3fm63KzIsz878zc29gRWAf4GggGw6dBby1pTFKASh3tNRDkiRJkiRJkiRJ0gCm6n/wlSRJkiRJkiRJkiSN37GFtR0X+vPsmj1nZuZ9pQaZeR1wcc3yw3UjYh1gnZp9pTm7uaphfdM+6/Wrqf6FI+6vqeta4KHC+krjGmQqiYgVeGTo0kS3APu13HaZluuNUlOo08rDFM/Mm4GbC1ueGhGlAIFhrAssPcTx0/Wc+nvD+khCZyJiFtMvAOWKwloAK4xpjn5d0bA+Vd+bI5OZ92bmTzthKJvTHAi3d0utS9fIK1vqIUmSJEmSJEmSJGkABqBIkiRJkiRJkiRJkhY4CagLMNmp5s8LO7nHPnNqHt96oZvqd63ZMx84rsc+CzQFjGzeZ71+7dmwfs6I+2uKyswHqQ8EgtGH80xVW1H+nZYfZOYdLfdcq+V6o3R1w/qaLfQ4v7A2k0eGYrVpm2EOnq7nVGbeCvyjsGWo56XgOUyv8B+APzWsT8nXmOk791hk5nlU15VrC9vWj4hlh+kTEQGsUthy+TD1JUmSJEmSJEmSJA3HABRJkiRJkiRJkiRJEgCZeS9was3y9hExo3Pj6A41e3oNQDmx5vHFgO06f64LQDknM2/qsQ8AmXkNcHNhyx4RMaufmr3qPF+lAJRbgAtG0VvTxh8Ka6tFxKpjm2TqWLlh/YQR9NxyBDVH5UpgbmG9jQCUMxrW922hRzevbKHGdD2nSnOvFxGjeI++bgQ1R630PMHUPZcvBB4orE/JuSPiRRFxUM3PM9rslZk3AB9r2PbkIdusBCxSWDcARZIkSZIkSZIkSZpEBqBIkiRJkiRJkiRJkhZ2bM3jywKbApsAT+yyfi9wdo89TgHm1azN7oSG7FKzfkyPPbr1rLMisPuAdZtsTznMYU5m5oh6a3qY07Bedy4MLSL+KyKy5ufXo+rbg5Ua1q9ps1knWGKNNmuOUmbOBy4pbGnj73J8w/qLI6IUItC3iFgR2KOFUtP1nDqpYf01bc0JEBFPA17cZs0xOZPqO0edUb6+zyi8vhkRq9cdm5kPAKcXym8TEUu0PzVExKyIuKEw96sLhz8P+EzNzwtHMG7T97ylh6y/WsP6ZUPWlyRJkiRJkiRJkjQEA1AkSZIkSZIkSZIkSQsr3Xi6U+enm9Mz88FeGmTmHcA5NcuzgY2pDw2pC2hp0nQz/2sHrNvkbQ3rPx5RX00fvwLmF9ZfP4qmEbEY8KrClrNG0bdHTb/P8kDL/Q5oud44/LmwtmYL9c8Cri+srwC8oYU+C3sr0EaoynQ9p5o+p94QEU3hDf34JDCzxXpjkZn3Uw6L2SUi2jgHunljYe3qzLy24fjSd5hlgJf0P1JPnk85jK303ryqsLbxYOMU3dSw3tN3zYJVG9YvH7K+JEmSJEmSJEmSpCEYgCJJkiRJkiRJkiRJelhm/h24pGZ5R6qAkm5O7rPVnJrHt6a6UbebG4Bz++yzwM8phya8LCKeMWDtriJiZWCfwpbbGTzQRY8RmXkTcGJhyy4Rse4IWr8ZWKWwftQIevbqhob1NdpqFBHbAa9sq94Y1YVIAawVEbOGKZ6Z84DvNmz7UEQsPkyfBTqBFR9oo9Z0Pacy80Lg/MKWpYH/GmCuR4mI1wAvbqPWJPlBYW0G5aCSgUTEk4D9C1t+0UOZHwHzCuul+gOJiAAOLmy5sPPdr04pEGTnTv02PalhvSkgpcl6hbV5wEVD1pckSZIkSZIkSZI0BANQJEmSJEmSJEmSJEkT1YVy7ND56abfAJS6m9MXBQ6sWTsuM7PPPgBk5i3A0YUtM4D/N0jtgoOo/j51vp6Zc1vuqenpa4W1GcBn22wWEasBHyts+UNmDho21IbrG9b3bKNJRKwB/JDp+fszZxXWFgU2bKHHV4CHCuurA+9roQ/A54ElW6oF0/ec+kbD+ssjYqiQjIjYHjh8mBpTwM+AWwrrB3VCddr035Tfo19tKpCZ1wC/KmzZKSLaDqZ5G7BlYb1p7lMKayvT0vV4IVsX1u4Frhyy/iaFtT9l5l1D1pckSZIkSZIkSZI0hOn4CxySJEmSJEmSJEmSpNGqC0BZofMz0V3AOX32OAOoC/9YqebxY/rsMdFnGtafGxGvGbIHABHxTODdhS0PAF9oo5ceE34O/LWw/oKIeEkbjSJiUeAnwLKFbZ/ss2xTMNHifdY7C3iwsP6GiFilz5qPEBFPp7qxv+2QhHH5A+XnaPNhG2Tm5cB3G7Z9KCJ2H6ZPRHwAaDv0YbqeU1+nOQDoKxHx2h7rPUJEvJDqM77NsJmxy8z7gc8VtiwFfLGtfhHxz8C+hS3HZOYFPZb7VMP65yOi9F7qWUQ8Czi0sOVGGkJ3OqEtfyps+UhEtPk7iG8rrJ2emfOHrP/Mwtpvh6wtSZIkSZIkSZIkaUgGoEiSJEmSJEmSJEmSJjoVuKeP/b/JzHn9NOjcvHx6H4c8BPy6nx5dep4F/Kph2+ERsfMwfSJiVaqb7xctbPtiZl41TB89dnTOnw81bPtuROw4TJ+IWA44DtiusO0c4Kd9lr67Yf0Z/RTLzDspXx+WA46IiCX6qQsQEbMi4l3A74H1ejxsVr99Ri0z5wJnF7YMHYDS8SHgzsL6TOCoiNh7kOIR8W/AJwY5tmS6nlOd17Vp7hnA/0TEdyNixR7nXCMivgkcBSzTyzHTwOeoAjzqvCAihg4ai4gDKIetzAM+2Gu9zDyd+qA5qEKZjouIpXut2U1E7AQcTzmA6uOZeW8P5X5eWNsa+EJERD/zdRMRBwGzC1uOHLL+DGCjwhYDUCRJkiRJkiRJkqRJZgCKJEmSJEmSJEmSJOkROuEkJ/VxyMkDtprTx97TM/OOAfss7N3A/YX1JYFjI2L/QYpHxBbAGcC6hW03AB8fpL4euzLzJ5Rvil8SOCYiXjlI/YjYnOq9uUth23zgHZmZfZa/rWH9Q52giH58vWF9Z+A3EbFhL8UiYqmIeDtwMfB5YKk+Zlll2DCCETm+sLZZGw0y81rg/Q3blgR+ERGHRcTKvdSNiCdHxP8Ch3RZfqjPMbuarudUZn6D8twLvAa4PCK+FxEviogNImKZiFgkIlaMiC0j4s0RcTRwGbBfTZ0rep1tKsnMu4F/btj2zoj4xgDXHyJiuYj4CvBZyr9jd1hmntdn+XdSDprbFjghIp7aZ10iYmZEvAM4AVi+sPU84Ms9lv0S5XnfThUotGyP9R4hIhaLiM8BnylsuwU4YpD6C1mX8rXfABRJkiRJkiRJkiRpkhmAIkmSJEmSJEmSJEnqppebrxcYNADlxD729jNPrcz8G/Chhm2LA1+NiDMi4gURMbOpbkRsGBGHA2cDazdsf3NmNgVG6PFpf+DGwvoTgB9ExG8iYreIWKRULCJmRMRWEfEj4Bzg6Q39P5WZv+tvZKAKUCjdHP8M4OKI+FxEvCMi9ouI10fEgYUb5o8A/tjQd0vg/Ij4cUTsExFrdW6kXzwinhQR20fE2yPiKKrn9UvA+jW1DgTqQipmAZ+JiJUjYtGIWC8idm2YbRx+VVjbtJdrVy8y8zDgxw3bAngrcHVE/KjzGm/aCZGY1XlN1um8Tt8HLgH27lLnQbqHogxqup5TrwEu6mHfE4BXAz+nCve5A3gAuAn4PXA48Dyg7u91Pc0BN1NWZv4Y+H7DtjcAf4uId/YS0BMRq0XE+6hCY97SsP1SBnj+MvNy4ICGbdsAF0bEf/YShBIRS0fEq6jeN18EFi1svx94bWbO63Hem6iunyWvpgrk+WBErNlL3YhYPSL+FbicKqCu5JBO6M0wti+s/S0zrx6yviRJkiRJkiRJkqQhRf//0x5JkiRJkiRJkiRJ0jAi4iPAhwtbTs3M2eOZprvOzatX9bD1NmDFzJw/QI8ZVDdpP7GH7Rtl5p/77VHTN4CfAi/u8ZDbgdOobiq+jiroYTFgeeCpwLadf/bi85nZdNPztBMRTb98sHNmnjKGOWZTDuRZJzOvGGO/F2fmUX3W3KZTc/Eett8FzAH+TnUu3QosDawErAPsCqzYY+s5wHMy86F+5l0gIk4GZg9waO1rEhHbUT0XpRv5h5XAv2TmZyPir/R+Lk+F63QAVwOr12zZMTNPa6nXUsBJwFZt1Cs4CPgr8Mua9b6vJdP4nFoNOB7YeJDjezCX6u+zDPVhOqdk5s69Fmz4LNgvM7/d+3g991yc6vXdpoft86mCYc6hen1vpArvWQl4ElVAxjN6bH03sF1mXtDvzAtExOdoDv5Y4FLgVOAfVLPPpXovrgRsBmxHfdDNRH2/FhGxPHA+0FO4CVWoyelU35tupfq+uAiwLPAUqpk3oXr+m5wNbN9rYEudTvjSq2qWP5aZ/z5MfUmSJEmSJEmSJEnDmzXZA0iSJEmSJEmSJEmSpp7MvDoiLgI2ath66iDhJ50e8zuhCS9t2HplW+Ennb4ZEa+huuF7hx4OWQ7Yu/MzjF8C/zJkDT3GZeZZEfFi4Oc0BzYsDbyohba/B146aFBDxw8ZLAClVmaeERH7A//TZt2F3EUVBPDTzr//mt4DUCZd51r2I+A9NVueSxXe1EaveyLiOVQhKJu2UbOLL2bmoRHx/DaLTtdzKjOvi4hnA0dQvZZtug94WWaeGRGlv++DLfdtXWbeFxHPNsi7swAAD59JREFUozp/N2/YPgPYuvMzjLnAi4YJP+l4D1UAzX497F2/8zOsfxskiCYzb4uIlwG/obeglXU6P8P6B7BPC+EnAexW2PLDYepLkiRJkiRJkiRJaseMyR5AkiRJkiRJkiRJkjRlHdvDnpOH7DGnhz3HDNnjUTLzXmDBDdPjcAQt3MCrx4fM/BVV4MGtY2h3HLBbZt4xZJ3vAde1MM8jZOZ3gHcBw4SzdHMy8MyFwk8AvtVyj3Eo3bS/V5uNMvM2YEfg+DbrdnyB6nUeiWl6TtGp8TzgAODuYet1XA/skplHd/59ycLee1vqOVKZeSuwC1VAz6jdSPX69vL9pagTIPdG4NChp2r2EPC2zPzkoAUy8yzg3e2N1OhmYPfMvKaFWpsAK9esXdBm0J4kSZIkSZIkSZKkwRmAIkmSJEmSJEmSJEmqM44AlBNbmqNvmXkX1Q3xnwHmj6IHcD/wXuDVmfnAiHroMSgzTwG2AH43ohYPAZ8Anp+Zdw5bLDPvAd4OtB7yk5lfAHYDbmih3KXAvpm5S2ZeMaHPucDXWugxNpn5e+AvNcubRMRqLfe7iyqQ44O0E0pzN7B/Zr4rM7OFerWm2zm1QFY+D2wAHA7cN2CpB4GvAxtl5pkLPb5c4ZhpEYACD4fF7AF8mtF9pv8W2Cozz2irYOf1PQh4FTB0aE6Nq4A9MvMrwxbKzMOAtwCj/k5zEbB1Zl7YUr09C2ulIClJkiRJkiRJkiRJY2QAiiRJkiRJkiRJkiSpzumUb8a9GRjqxtTMvITqxtw69wEnDdOjof+8zHwv8GzgDy2X/yWweWZ+ZtQ39uuxqRPQsR1wIHBbi6VPpnpvHpyZrQUFZOYvgFcAN7VVc6HapwJPAQ6muvb0Yx4wB3gx8LTMPLKw953ATwcacvJ8o7D2vLabda6bhwDPBP4XGOT69iDwXWCDzPx6m/OVTLdzamGZeW1mvhVYC3gX1Wfj3IbDHqQK7fggsE5m7p+ZE//eKxSOnzYBKPDwe/N9wLbAOS2Wvh7YH9ghM69sse7DMvMIYEPgxwx2TnVzL1XI24aZOWxg3cMy86vAVkBrQTALuRf4OLBFZl7WYt2X1Tw+j+paJEmSJEmSJEmSJGkKCH/HSpIkSZIkSZIkSZKkSkQ8H3g7sDswa4ASt1DdvPy1zPxjm7Pp8S0ilqF6b74JWG+AErdShVV8ITPbDvt5hIh4AvAaYFdgU6qAhWWowhruojpP/kQVUHB4ZvYVshARSwCzO/W3BZ4ErAgsCdxNFdz0d+Aiqhv0T8jMW/vs8SLgdcAWnfozgDuByzo1f5aZp/RTc1QiYkXgGmCxLstzMnO3Efd/GvBG4PnA0wtbHwDOBI4FvpuZ149yribT6ZyqExGLUM2+NrAc1efWvVTn2ZXAZZn5UEONw4C31iwfkpkfbG3gMet8pv8zsBv9/4/CHqI6178O/DAzH2x5vFoR8QzgIOClwFIDlPgz8D2q62tf175+RcSeVOEwzwMWH6LUJVRBJF/JzFZDtCJiQ6rPg25+mpn7tNlPkiRJkiRJkiRJ0uAMQJEkSZIkSZIkSZIkaYKIWAnYGXg2sCGwLvBE/u9G5HuobjC/mipo4XzgdODccd4krceniHgWsAuwFfA0YFVg6c7y3VTvzRupboK/kOom/rMyc974p9U4RMS3qQJbJpoPrJ2ZV49pjuWprpmrUAXS3E8VHHMFcOlUfQ8+ns+piPgVsGfN8psy8xvjnGcUImI1qmCzHahCetalCmVajCow5m7gdqoQjguBPwInZubtkzJwRydMaldgJ+CZwPpU30WWpAoUuovq/LqSau4LqOa+chJmXYLq+d0a2AhYhyo8anmqYJRZnZnnUp1L1wJ/Ac4DTsnMv41wtkOB99Qsb52ZvxtVb0mSJEmSJEmSJEn9MQBFkiRJkiRJkiRJkiRJmsYiYhOqIIFuPpKZ/zHOeTR9RMSVwFo1y7tk5snjnEdqU0QsDlwDrNBleU5m7jbmkSRJkiRJkiRJkiQVzJjsASRJkiRJkiRJkiRJkiQNLjPPB46vWd4/ImaNcx5NDxGxEvXhJwB/G9cs0oi8nO7hJwD/Ps5BJEmSJEmSJEmSJDUzAEWSJEmSJEmSJEmSJEma/j5c8/jqwIvGOYimjV0La5dl5rVjm0QajXfVPH5cZp4x1kkkSZIkSZIkSZIkNTIARZIkSZIkSZIkSZIkSZrmMvNs4Kc1yweOcxb1LyJWiYiHCj+jeA1fWVg7dQT9pLGJiJ2AzbsszQfeP+ZxJEmSJEmSJEmSJPXAABRJkiRJkiRJkiRJkiTpseEgYG6Xx7eLiG3HPYx6l5k3APcBM2t+9mqzX0RsBuxd2HJCm/2kSfAvNY9/JzP/NNZJJEmSJEmSJEmSJPXEABRJkiRJkiRJkiRJkiTpMSAzrwAOqVl+7xhH0WDOLaztGhEbtNEkIhYFvgJEzZZbgaPa6CVNhoh4OvD8Lkv3AAePeRxJkiRJkiRJkiRJPTIARZIkSZIkSZIkSZIkSXrs+Azwly6Pv7CtAA2NzAmFtQC+HBEzh2kQEbOAbwBbFbZ9OzPvG6aPNMneS/eAn09m5nXjHkaSJEmSJEmSJElSbyIzJ3sGSZIkSZIkSZIkSZIkSS2JiJ2AU7osfSczXzfmcdSjiFgPuITuwQ0L/AR4U2beOUD9NajCT/YobLsH2CAzr+m3vjQVRMRawKXAIhOWLgM2MtxHkiRJkiRJkiRJmrpmTPYAkiRJkiRJkiRJkiRJktqTmacC3+qy9KpOyIamoMz8O/Czhm37AudHxFsjYule6kbEUyLiP4E/Uw4/AfgPw080zb2XR4efABxg+IkkSZIkSZIkSZI0tUVmTvYMkiRJkiRJkiRJkiRJkloUESsAFwMrTVj6Rma+aRJGUg86ATUXAEv0sH0u8EfgXOB64A7gfmApYAXgqcBWwLo9tv8NsGtmPtTn2NKUEBGrApcBi09YOiYznz8JI0mSJEmSJEmSJEnqgwEokiRJkiRJkiRJkiRJ0mNQRLwa+N6Ehx8CnpaZl03CSOpBROwHfHPMbf8ObJ2Zt4y5r9SaiPgscMCEh+8FNsrMK8Y/kSRJkiRJkiRJkqR+zJjsASRJkiRJkiRJkiRJkiS1LzO/Dxw/4eFZwAcnYRz1KDO/Bbx3jC3/BOxs+Imms4hYGXhzl6WPGX4iSZIkSZIkSZIkTQ+RmZM9gyRJkiRJkiRJkiRJkqQRiIi1gQuBpRZ6+CFgw8y8ZDJmUm8iYh/ga8ByI2xzJPCGzLxrhD2kkYuIQ4H3THj4QmDzzHxwEkaSJEmSJEmSJEmS1KcZkz2AJEmSJEmSJEmSJEmSpNHIzCuAf5/w8Czgo+OfRv3IzCOB9YHPAve3XP4S4PmZua/hJ5ruImIV4G0THp4PvNnwE0mSJEmSJEmSJGn6iMyc7BkkSZIkSZIkSZIkSZIkjUhEzATOBJ610MMJbJqZf5qcqdSPiFgT2A94BfD0AcvcD8wBDgOOzcz5LY0nTaqI+CxwwISHv5yZ75iMeSRJkiRJkiRJkiQNxgAUSZIkSZIkSZIkSZIkSZomImIjYBtgM2ATYBVg2c7PTOAe4G7gRuBvwF+Bs4BTM/PeyZhZkiRJkiRJkiRJkqQmBqBIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJmjQzJnsASZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSY9fBqBIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJmjQGoEiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmaNAagSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZo0BqBIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJmjQGoEiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmaNAagSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZo0BqBIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJmjQGoEiSJEmSJEmSJEmSJEmSJEmSJEmSJEn6/+3csQAAAADAIH/rYewpkAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgIUAAAAAAAAAAAAAAAAAAAAAGAjQAEAAAAAAAAAAAAAAAAAAAAANgH00iAaNaC3yQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 962,
+ "width": 2208
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,3.5), dpi=300)\n",
+ "quick.plot_diffpattern(ax, model)\n",
+ "quick.plot_jcpds(ax, model)\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "ax.text(0.05,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = ax.transAxes, fontsize=16)\n",
+ "plt.savefig('test-1.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Let's do some fancy stuff\n",
+ "\n",
+ "I wrote similar plot functions with more options in `fancy_plots.py` in the same folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAEV4AAAeECAYAAACzqLmiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeQleW9B/DfLiiCoBBL1MQoBpWuopKrI6JoLImhKEHAGqNGReWqiQ1i7CVy79XYNc0ELMECiCgWEAhWioVi16igyKK7S9mz9dw/MjqJAXb3VA7n85lhRs77/J7nuwi7Lzvn/VKSTCYDAAAAAAAAAAAAAAAAAAAAAKCYlOY7AAAAAAAAAAAAAAAAAAAAAABArileAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKjuIVAAAAAAAAAAAAAAAAAAAAAKDoKF4BAAAAAAAAAAAAAAAAAAAAAIqO4hUAAAAAAAAAAAAAAAAAAAAAoOgoXgEAAAAAAAAAAAAAAAAAAAAAio7iFQAAAAAAAAAAAAAAAAAAAACg6CheAQAAAAAAAAAAAAAAAAAAAACKTst8B4D1KSkp+Swi2q/lUk1EfJzjOAAAAAAAAAAAAAAAAAAAAADZsmNEbLqW18uTyeR2uQ5TDEqSyWS+M8A6lZSUJCKiVb5zAAAAAAAAAAAAAAAAAAAAAORJdTKZ3CzfITZGpfkOAAAAAAAAAAAAAAAAAAAAAACQa4pX2NC1yHcAAAAAAAAAAAAAAAAAAAAAADY+ilfY0CleAQAAAAAAAAAAAAAAAAAAACDjFK8AAAAAAAAAAAAAAAAAAAAAAEWnZb4DQCOSEVHyzRdLSkqiS5cueYgDALB27733XlRXV//H661atYrvf//7eUjExqy2tjbeeeed9a5xzwzA+rh3AQAKhfsWAKBQuG8BAAqF+xYAoJC4dwEACoX7FiCT1vU5JSJqcp2lWJQkk8l8Z4B1KikpSUREq2++3qpVq0gkEnlIBACwdt26dYtFixb9x+tdu3aNhQsX5iERG7M33ngjevbsud41LVq0iLq6uhwlAqDQuHcBAAqF+xYAoFC4bwEACoX7FgCgkLh3AQAKhfsWIJPW9TklIhYlk8luuc5TDErzHQAAAIDmqaioaHRNfX19DpIAAAAAAAAAAAAAAAAAQOFSvAIAAFBgmlK8EhGRTCaznAQAAAAAAAAAAAAAAAAACpfiFQAAgALT1OKVVatWZTkJAAAAAAAAAAAAAAAAABQuxSsAAAAFpqnFK8uXL89yEgAAAAAAAAAAAAAAAAAoXIpXAAAACkxlZWWT1ileAQAAAAAAAAAAAAAAAIB1U7wCAABQYCoqKpq0rqysLMtJAAAAAAAAAAAAAAAAAKBwKV4BAAAoME0tXlm+fHmWkwAAAAAAAAAAAAAAAABA4VK8AgAAUGAUrwAAAAAAAAAAAAAAAABA+hSvAAAAFBjFKwAAAAAAAAAAAAAAAACQPsUrAAAABaapxStlZWVZTgIAAAAAAAAAAAAAAAAAhUvxCgAAQIFpavHK8uXLs5wEAAAAAAAAAAAAAAAAAAqX4hUAAIACo3gFAAAAAAAAAAAAAAAAANKneAUAAKDANLV4paysLMtJAAAAAAAAAAAAAAAAAKBwKV4BAAAoIMlkMiorK5u0dvny5VlOAwAAAAAAAAAAAAAAAACFS/EKAABAAVm9enU0NDQ0aW1lZWVUV1dnOREAAAAAAAAAAAAAAAAAFCbFKwAAAAWkoqKiWevLysqylAQAAAAAAAAAAAAAAAAACpviFQAAgAKieAUAAAAAAAAAAAAAAAAAMkPxCgAAQAFpbvHK8uXLs5QEAAAAAAAAAAAAAAAAAAqb4hUAAIACongFAAAAAAAAAAAAAAAAADJD8QoAAEABaW7xSllZWZaSAAAAAAAAAAAAAAAAAEBhU7wCAABQQJpbvLJ8+fIsJQEAAAAAAAAAAAAAAACAwqZ4BQAAoIAoXgEAAAAAAAAAAAAAAACAzFC8AgAAUEAUrwAAAAAAAAAAAAAAAABAZiheAQAAKCCVlZXNWl9WVpalJAAAAAAAAAAAAAAAAABQ2FrmOwA04ouI2P6bL3bo0CEPUQAA1u2ss86K5cuX/8fr22yzTR7SsDGrqKho1vq1/b4EAPcuAEChcN8CABQK9y0AQKFw3wIAFBL3LgBAoXDfAlDYSpLJZL4zwDqVlJQsjIiu33y9a9eusXDhwjwkAgCA/Bo4cGBMnDixyeu32Wab+Pzzz7OYCAAAAAAAAAAAAAAAAIBM6NatWyxatGhtlxYlk8luuc5TDErzHQAAAICmq6ioaNb6FStWRENDQ5bSAAAAAAAAAAAAAAAAAEDhUrwCAABQQJpbvNLQ0BBffvllltIAAAAAAAAAAAAAAAAAQOFSvAIAAFBAmlu8EhGxfPnyLCQBAAAAAAAAAAAAAAAAgMKmeAUAAKCAKF4BAAAAAAAAAAAAAAAAgMxQvAIAAFAgkslkSsUrZWVlWUgDAAAAAAAAAAAAAAAAAIVN8QoAAECBqKqqirq6umbPrV69OgtpAAAAAAAAAAAAAAAAAKCwKV4BAAAoEJWVlSnNVVdXZzgJAAAAAAAAAAAAAAAAABQ+xSsAAAAFoqKiIqW5RCKR4SQAAAAAAAAAAAAAAAAAUPgUrwAAABSIVItXqqurM5wEAAAAAAAAAAAAAAAAAAqf4hUAAIACkWrxSiKRyHASAAAAAAAAAAAAAAAAACh8ilcAAAAKRKrFK9XV1RlOAgAAAAAAAAAAAAAAAACFT/EKAABAgUi1eCWRSGQ4CQAAAAAAAAAAAAAAAAAUPsUrAAAABSLV4pXq6uoMJwEAAAAAAAAAAAAAAACAwqd4BQAAoECkWrySSCQynAQAAAAAAAAAAAAAAAAACp/iFQAAgAKRavFKdXV1hpMAAAAAAAAAAAAAAAAAQOFTvAIAAFAgKisrU5pLJBIZTgIAAAAAAAAAAAAAAAAAhU/xCgAAQIGoqKhIaa66ujrDSQAAAAAAAAAAAAAAAACg8CleAQAAKBCpFq8kEokMJwEAAAAAAAAAAAAAAACAwqd4BQAAoECkWrxSXV2d4SQAAAAAAAAAAAAAAAAAUPgUrwAAABSIqqqqlOYSiUSGkwAAAAAAAAAAAAAAAABA4VO8AgAAUCBqampSmquurs5wEgAAAAAAAAAAAAAAAAAofIpXAAAACkSqxSuJRCLDSQAAAAAAAAAAAAAAAACg8CleAQAAKBDV1dU5nQMAAAAAAAAAAAAAAACAjZniFQAAgAJRU1OT0lwikchwEgAAAAAAAAAAAAAAAAAofIpXAAAACkSqxSvV1dUZTgIAAAAAAAAAAAAAAAAAhU/xCgAAQIFItXglkUhkOAkAAAAAAAAAAAAAAAAAFD7FKwAAAAUgmUymXLxSXV2d4TQAAAAAAAAAAAAAAAAAUPgUrwAAABSA2tralGdramqioaEhg2kAAAAAAAAAAAAAAAAAoPApXgEAACgANTU1eZ0HAAAAAAAAAAAAAAAAgI2N4hUAAIACkG5xSiKRyFASAAAAAAAAAAAAAAAAANg4tMx3AAAAABpXXV2d13kAAAAAAAAAAMilpUuXRpcuXaKysnKt10tLS2PBggXRpUuXHCfbODU0NMQee+wRCxYsWOv1Nm3axMKFC2PnnXfObTCARjQ0NMTixYvjnXfeiXfffTfee++9ePfdd6OsrCxWrVoVq1evjlWrVsWaNWuitLQ0Nt1002jVqlW0a9cuttpqq9h6661ju+22i44dO8Yuu+wSu+66a/Ts2TM233zzfH9oAAAA5IjiFQAAgAJQU1OT1rziFQAAAAAAAAAACsk555yzztKViIihQ4cqXcmg0tLSuPLKK+Poo49e6/U1a9bEiBEj4vHHH89xMoB/V19fH6+88krMnDkzZsyYEbNnz46Kioomz9bW1sbq1avjiy++iH/84x9rXVdaWhq77rpr7LvvvnHwwQdHv379FE8BAABsxEqSyWS+M8A6lZSULIyIrt98vWvXrrFw4cI8JAIAgPx45513Yrfddkt5/q233kprHgAAAAAAAAAAcmXy5Mnxk5/8ZJ3XW7RoEYsWLfJ+mCzYd999Y86cOeu8Pn78+Bg8eHAOEwH809y5c2Ps2LFx//33x7Jly3J+/u677x7HHHNMHHPMMdGrV6+cn5+ugw46KGbMmJHvGE1SWloarVu3jtatW0fbtm3ju9/9buy4446x8847R69evWLvvfeOjh075jsmABSdyy+/PK644opmzSxevDg6d+6cpUTZUVNTEz/96U9j0qRJae2zxRZbxBNPPBH7779/hpJRTLp16xaLFi1a26VFyWSyW67zFIOW+Q4AAABA42pqatKar66uzlASAAAAAAAAAADIntWrV8eIESPWu2b48OFKV7Lk6quvjiOOOGKd1//7v/87Dj/88GjXrl0OUwHFqqqqKu65556444474s0338xrlrfeeiuuvfbauPbaa6N79+7xi1/8Io4//vho3759XnNtjBoaGmL16tWxevXqKCsriw8//PA/1uywww7xox/9KH784x/HkUceGa1atcp9UABgo1NbW5uR0pX27dvH1KlTo3fv3hlKBmRbab4DAAAA0Lh0i1MSiUSGkgAAAAAAAAAAQPb85je/iY8++mid11u0aBGXXXZZDhMVl8MPPzwOOOCAdV5fsmRJjB49OoeJyLQ777wzSkpKGv2x88475zsqRWz16tUxZsyY6NixY4wcOTLvpSvftGDBgjjnnHNixx13jAsvvDA+++yzfEcqOkuXLo3f//73MWjQoPjud78bv/rVr+KDDz7IdywAoIBlqnRlq622imnTpildgQLTMt8BAAAAaFxNTU1a8+kWtwAAAAAAAAAAQLa98cYbcfPNN693zfHHHx+dOnXKUaLidMUVV8Qhhxyyzuu33XZbnHTSSdGrV68cpiIT3nzzzbjgggvyHSPrPvjgg3jxxRfjtddei8WLF8eSJUti6dKlsXr16qiqqoqSkpLYYostol27drHFFlvEVlttFV27do3u3btH9+7do0ePHrHFFlvk+8MoSslkMu6+++4YPXp0lJWV5TtOo1atWhU33nhj3HLLLXHBBRfEqFGjonXr1vmOVXTKyspizJgxcdNNN8XPf/7zuOyyy2KHHXbIdyzgXyxcuDAWLlwYb731Vrz99tvx7rvvRnl5eaxaterrHxERm222WbRq1So233zz+Pa3vx3f/va3Y/vtt4/ddtstunbtGt26dYuddtopzx9N9n366afx/PPPx2uvvRYLFy6MTz75JJYuXRorV66MqqqqSCaTX9/HtGvXLjp06BCdO3f++j6mR48esdVWW+X7w8i6L774ImbPnh2vvfZaLFiwID7++ONYsmRJVFRURFVVVdTV1X3967TFFlvElltuGbvtttvX93w9e/aM7bbbLt8fBhuI2traGDJkSEycODGtfbbddtt45plnokePHhlKBuSK4hUAAIACkG7xSiKRyFASAAAAAAAAAADIvGQyGWeeeWbU1dWtc02LFi1i1KhROUxVnPr16xd9+/aNGTNmrPV6fX19nHHGGfHiiy9GaWlpjtORqpqamhg+fHisWbMm31Gy4uWXX45x48bF5MmT4/333290fVlZ2b8Ve0ybNu3r/27ZsmX06dMnBg4cGAMHDozvfe97WcnMv3vzzTfj9NNPj1mzZuU7SrMlEom45pprYty4cXHTTTfFgAED8h2pKNXV1cVdd90Vf/3rX+O6666Lc845J0pKSvIdC4pSeXl5TJkyJaZOnRpPPfVUfPbZZ02a+6qEZcWKFfHRRx+tdc32228fffr0iYMPPjgGDhy40RRnLFy4MMaOHRuPPfZYLFy4sNH1X3zxRXzxxRdf/3zmzJlf/3dJSUn07t3763uZzp07ZyVzPnz44Ycxbty4ePTRR2P+/PnR0NCw3vXl5eVRXl7+9c9nz579b9d79Ojx9a+TYsniVVtbG8cee2xMmDAhrX223377ePbZZ6NLly4ZSgbkku9wAQAAFIB0i1eqq6szlAQAAAAAAAAAADLvz3/+8388BPdNw4YNi1133TVHiYrbFVdcsd7rr7zyStxxxx05SkMmXHrppTF//vx8x8io2trauPfee6NHjx7xgx/8IH73u981qXSlMXV1dTF9+vQYOXJk7LTTTtG3b9944oknMpCYtWloaIhrrrkm9txzz4IsXflXH374YQwcODB++tOfxsqVK/Mdp2itWbMmRo4cGX379o2lS5fmOw4UlQULFsQZZ5wR3/nOd+K4446Lv/zlL00uXWmqTz/9NP72t7/FmWeeGd/5znfi4IMPjnvvvTft99vnQzKZjAkTJsT+++8f3bt3j+uvv75JpStN2fell16KSy65JLp06RJ77bVXPPDAA1FfX5+B1Pkxffr0OOKII2KXXXaJ0aNHx9y5cxstXWmKN954I6666qrYe++9o1OnTnHXXXd59qLI1NXVxdChQ+PRRx9Na58dd9wxZs6cqXQFCpjiFQAAgAKQ7jfvEolEhpIAAAAAAAAAAEBmffnll3HRRRetd01paWmMGjUqR4no27dv9OvXb71rRo0alfEHacmOZ599Nv73f/833zEyasKECdGlS5c4+eSTY8GCBVk9a+bMmfGjH/0o9tprr3j44YezelaxKS8vj6OOOipGjx69UT3k/NBDD0Xv3r1j8eLF+Y5S1GbNmhX77rtvvPLKK/mOAhu9t956K4488sjo0aNH3HXXXbFmzZqcnNvQ0BDPPfdcnHzyybHTTjvFtddem7Oz0zVz5szYe++9Y9CgQfHCCy9k9axXX301hg0bFp07d47f//73GSksyZXXX389+vXrF/369YupU6dGMpnM2lnvvfdenHHGGdGxY8cYM2bMRnVvwtrV1dXFscceG4888kha++y8884xY8aM6NSpU4aSAfmgeAUAAKAApNvA7Zt+AAAAAAAAAABsqEaNGhXLly9f75ohQ4ZE586dc5SIiIhf//rX671eUVER559/fo7SkKoVK1bEiSeemNWHVHNp2bJl0b9//xg0aFC89957OT371VdfjcGDB8eAAQNi2bJlOT17Y7Ro0aLo3bt3PPHEE/mOkhVvvvlm9O7dOyZNmpTvKEVt6dKlceCBB8bTTz+d7yiwUaqqqorRo0dHz54948knn8xrls8++yxGjRoVu+++e4wbNy6vWdZn5cqV8fOf/zz69u0b8+fPz+nZ7777bpx22mlx4IEHxrvvvpvTs5urpqYmLrnkkujVq1dMnz49p2d/+umn8atf/Sp69eoVc+bMyenZ5E5dXV0MHTo07dKVTp06xcyZM6Njx44ZSgbki+IVAACAApBu8UoikchQEgAAAAAAAAAAyJxXX3017r777vWuKSkpiUsuuSRHifjKQQcdFAcccMB619x///3xzDPP5CgRqTj11FNj6dKl+Y6REdOnT48ePXrEY489ltcckyZNim7dusXf/va3vOYoZE899VT813/9V7zzzjv5jpJVq1atisGDB8fEiRPzHaWoJRKJGDBgQDz33HP5jgIblQ8++CD22WefuOaaa9J+r3smffLJJ3H88cfHgAEDYsWKFfmO82/eeOON2HPPPeOPf/xjXnPMnj079thjj7jlllvymmNdPvroo9hvv/3i+uuvj/r6+rzlWLRoUey3335x2WWXRV1dXd5ykHl1dXUxbNiwePjhh9Pap3PnzjFjxozYcccdM5QMyCfFKwAAAAUg3W9GV1dXZygJAAAAAAAAAABkzjnnnNPow3RHHXVU9OzZM0eJ+Fe//vWvG10zYsQI70/aQN19990xYcKEfMfIiD/84Q9x+OGHx/Lly/MdJSIiVqxYEccee2xceeWV+Y5ScKZOnRoDBgyIlStXZnTfTTbZJPr06RPnnXde3HnnnTF9+vR455134tNPP41Vq1ZFfX19VFVVxZdffhkff/xxzJkzJ6ZMmRK33HJLnH322XHQQQdF27ZtM5opIqK2tjaGDBkSkydPzvjeNF1VVVX0798/3n777XxHgY3CrFmzonfv3rFo0aJ8R1mnSZMmRc+ePWPevHn5jhIREY8//njsv//+8f777+c7SkRErFmzJs4999w4/fTT81pu8k0vv/xy9O7de4P5/1ZXVxdXXXVVDBo0KKqqqvIdhwyoq6uL4cOHx0MPPZTWPt27d4/nnnsudthhhwwlA/KtZb4DAAAA0Lh035iQSCQylAQAAAAAAAAAADJj3Lhx8fe//73RdaNGjcpBGtbmsMMOi969e8fLL7+8zjVvv/123HDDDXHZZZflMBmNeeutt+K8887Ld4yM+N3vfhcjR47Md4y1+s1vfhNlZWVx8803R0lJSb7jbPCeeOKJGDRoUMbKmtq1axdDhw6NQYMGxYEHHhibb775etdvttlmsdlmm0X79u3ju9/97n9cr6+vj9dffz2mTJkSjz32WLz00ksZyVlTUxODBw+Op59+Ovr06ZORPWm+lStXxjHHHBMvvfRStGnTJt9xoGA98cQTMXDgwLT/YdFcWLp0aRx00EExceLEOPjgg/OW4+GHH45hw4ZFbW1t3jKsyz333BMrVqyI++67L1q1apXXLLNnz44jjzwy4+VsmTB58uT44Q9/GJMnT4727dvnOw4pqquri+OOOy7Gjx+f1j577rlnPP3007H11ltnKBmwISjNdwAAAAAal+43pv2LMgAAAAAAAAAAbEjWrFkTF110UaPr+vXrFz/4wQ9ykIh1ufjiixtdc91118X777+fgzQ0RW1tbQwfPjzWrFmT7yhpu+uuuzbY0pWv3HLLLfGzn/0s3zE2eFOnTs1Y6Uq3bt3iz3/+c3z22Wdx9913x5FHHtlo6UpTtGjRIvbaa68YNWpUvPjii/HOO+/ExRdfnJGHaqurq2Po0KGxbNmytPfKlenTp0cymcz6j9ra2qisrIxly5bF+++/H7NmzYqxY8fGNddcE4MGDYrtttsuYx/TggULmvR1DVi7+fPnx5AhQwqidOUrK1eujB//+McZK9NqrscffzyGDh26QZaufOWRRx6Jo446Kq8Z586dG0ccccQGWbryldmzZ0ffvn2jsrIy31FIQX19fRx33HHxt7/9La199tlnn5g2bZrSFdgIKV4BAAAoAOl+czqRSGQoCQAAAAAAAAAApO+GG26IJUuWNLruwgsvzEEa1mfgwIHRpUuX9a5JJBJxzjnn5CgRjRk1alTMmzcv3zHS9uSTT8aIESPyHaNJ7r333rj++uvzHWODtXjx4hgyZEjapSvf//73Y+zYsfH666/HSSedFG3atMlQwrXr1KlTXHfddfHhhx/GmDFj0n7AdunSpTF8+PBoaGjIUMKNQ8uWLaNdu3ax7bbbRseOHeOAAw6I4447Li699NJ45JFH4tNPP40333wzRo8eHTvttFPa591+++3x2muvZSA5FJePPvoofvzjH8eqVavyHaXZqqqqon///vHhhx/m9NxXX301hg4dGnV1dTk9NxXPPPNMnHvuuXk5++OPP46f/OQnBfF76/XXX49hw4b5Wl5gMlW6st9++8UzzzwTHTp0yFAyYEPSMt8BAAAAaFy6xSuZ+BciAAAAAAAAAAAgEz755JMYM2ZMo+v22GOPOPzww3OQiPUpKSmJiy66KE4++eT1rpsyZUpMnDgxBgwYkJtgrNWzzz7bpD9fG7oPPvgghg4dGvX19Wnts+WWW0afPn2iV69e0a1bt+jQoUO0b98+ampqory8PFasWBGvvfZazJs3L1544YW03ms3atSo6N6ac6GMAAAgAElEQVS9exx11FFpZd7YfPnll9G/f/+orKxMeY8WLVrEhRdeGJdffnlsuummGUzXNJtvvnlccMEFccopp8To0aPjzjvvTPmB62nTpsW1114bo0ePznDKjdvuu+8eV111VVxxxRXxhz/8IUaPHh2ff/55SnvV19fH+eefH88++2yGU8LGK5lMxoknnhiffvpp2nttttlmsd9++0X37t2jU6dOsdNOO0Xbtm2jbdu2ERGxYsWKWLFiRXzyyScxe/bsmD17dpSXl6d97ueffx4nnnhizJgxI0pKStLerzHl5eUxcODAtMtEWrduHQcccEDsvffe0aNHj9hqq62iQ4cOUV9fH+Xl5fHll1/GG2+8EfPmzYvnn38+rfPuvPPO6NGjR5x11llpZW6OmpqaOProo9P+vdWyZcvYf//9Y5999ok99tgjttlmm2jfvn2UlpZGeXl5lJeXx+LFi2Pu3LnxwgsvxIoVK1I+a8qUKXHxxRfHb3/727Qykxv19fVx/PHHx4MPPpjWPgceeGA8/vjjX3+uAjY+ilcAAAAKQLrFKYlEIkNJAAAAAAAAAAAgPZdcckmsWbOm0XUXXnhhDtLQFMOHD49Ro0bFkiVL1rtu5MiRcdhhh0Xr1q1zlIx/tWLFijjppJMimUzmO0pa6urqYtiwYVFRUZHyHn379o2zzjor+vfvH5tttlmTZsrLy2P8+PFx2223xWuvvdbsMxsaGuK4446L+fPnxy677NLs+Y1RXV1dDBkyJN59992U99h9991j7Nixsc8++2QwWWo6dOgQt912WwwaNCiOP/74WLZsWUr7XHvttXHCCSfETjvtlOGEG7/S0tI47bTT4phjjonhw4fH1KlTU9pn2rRpMWfOnA3i9xUUgrvuuitmzJiR8nyrVq3imGOOiZNPPjn69OnT5K/NEf/8+vriiy/GbbfdFuPHj4/a2tqUc8yaNStuueWWOPfcc1Peo6lOPfXU+Mc//pHy/J577hnnnntuDB48ONq1a9ekmTVr1sSECRPizjvvjFmzZqV07siRI2OvvfaK/fbbL6X55rrkkktizpw5Kc/vsssucd5558Wxxx4b22yzTZNmamtr44knnojf//738dhjj6V07o033hi9e/eOwYMHpzRPbtTX18cJJ5wQDzzwQFr7HHLIITFp0qRo06ZNhpIBG6LSfAcAAACgcTU1NWnNp1vcAgAAAAAAAAAAmTB//vwYN25co+u+973vxZAhQ3KQiKbYZJNNmvSA6j/+8Y+49tprc5CItTnttNMaLccpBL/97W/jpZdeSmn2+9//fjz22GPx3HPPxZAhQ5r1YHf79u3jtNNOi3nz5sUf/vCH2HbbbZt9fmVlZZx11lnNnttYjR49Op555pmU54844oh46aWXNrhyjEMPPTTmz58fPXr0SGm+qqoqfvnLX2Y4VXH51re+FVOmTInTTz895T1uvPHGDCaCjdeSJUvioosuSmm2RYsWMWLEiPjkk09i3Lhx8cMf/rBZX5sj/lm4tP/++8e4cePio48+ijPPPDNKSkpSyhMR8Zvf/CatcremuO++++Lhhx9OaXbbbbeNe++9N+bNmxc/+9nPmly6EhHRpk2bGD58eMycOTMeffTRlIrg6urq4vTTT0+r4KapZs+eHf/3f/+X0mzbtm3jpptuijfffDPOPvvsJpeuRPzz7zb9+/ePSZMmxYwZM2LPPfdMKcPZZ58d5eXlKc2SfV+Vrtx///1p7XPEEUfE5MmTla5AEVC8AgAAUADSLV5JJBIZSgIAAAAAAAAAAKm76KKLIplMNrrunHPOiZYtW+YgEU11+umnR9u2bRtdd+ONN8b777+fg0T8q3vuuSceffTRfMdI23vvvRdXX311SrODBg2KuXPnxlFHHZVWhtLS0jjllFNizpw50atXr2bPT506NR544IG0MmwMXnnllRgzZkzK8yNHjozJkyfHlltumcFUmbP99tvHzJkz4wc/+EFK8w899FBMnz49w6mKS2lpadxxxx1x9NFHpzQ/ceLEWLlyZYZTwcbn0ksvjcrKymbP7brrrjFv3ry49dZbY+utt85Ilu222y5uv/32mDFjRuy+++4p7VFeXh4333xzRvKszZdffhnnn39+SrMHHHBAzJ8/P0488cS0ymUiIgYOHBhz586Nww47rNmzCxYsiP/5n/9J6/zG1NbWxi9+8Ysm/d3wm7p27RqvvPJKjBw5MjbZZJO0chx44IHx4osvxgknnNDs2WXLlsXFF1+c1vlkR319fZx44olpl670798/Jk6c2OzCKKAwKV4BAAAoAOkWr1RXV2coCQAAAAAAAAAApObpp5+Op59+utF1bdu2jdNOOy0HiWiO9u3bxymnnNLouurq6vjlL3+Zg0R85e23347zzjsv3zEy4oILLoiqqqpmz51xxhnxyCOPZLSkY8cdd4xZs2ZFnz59mj173nnnRUVFRcayFJqampr42c9+FvX19SnNX3zxxXHTTTdFixYtMpwss9q3bx+TJ0+OTp06pTR/5ZVXZjhR8SktLY0//vGPscMOOzR7trq6Oh577LEspIKNx+LFi2Ps2LHNnjv00EPjlVdeiZ49e2YhVUSfPn1i3rx50b9//5Tmb7311qirq8twqn+64oorYtmyZc2e+8lPfhLTpk1L6fPZurRv3z6mTJkSxx57bLNnr7zyyvjggw8yluWbbrvttli4cGGz53r37h0vvPBCdO7cOWNZWrVqFX/5y1/iggsuaPbs3XffHS+88ELGspC++vr6OOmkk+K+++5La5/BgwfHQw89FJtuummGkgEbOsUrAAAABSDd4pREIpGhJAAAAAAAAAAAkJpLLrmkSetOOeWUjJYnkDkjRoyIkpKSRtc9+uijHkDMkdra2hg2bFisXr0631HS9vzzz8fEiRObPXfCCSfE7bffnoVEEW3atIkJEybE7rvv3qy5zz77LMaMGZOVTIXgqquuSulh6oiIX/3qV3HddddlOFH2bL311vH444/H5ptv3uzZ5557Ll599dUspCouW265Zdx8880pzU6aNCnDaWDjMmbMmGhoaGjWzP777x8TJ07M+v18mzZt4pFHHokBAwY0e3b58uXx1FNPZTzThx9+GHfccUez5w455JAYP358bLLJJhnP1KJFi7j33nvjgAMOaNZcVVVVXHbZZRnPExFRWVkZ11xzTbPnevToEU8++WRsscUWWUgVceONN8aQIUOaNZNMJuPCCy/MSh6ar6GhIU466aQYN25cWvsMGzYsHnjggaz8mQQ2XIpXAAAACkBNTU1a8+kWtwAAAAAAAAAAQDomTJgQc+fObXRdSUlJjBgxIgeJSMVuu+0Whx12WJPWXnrppVlOQ0TE6NGjY968efmOkRGjR49u9swee+wR99xzT5MKgVL1rW99K8aPHx8tW7Zs1twtt9wSFRUVWUq14XrrrbfihhtuSGn2xBNPjN/+9rcZTpR9u+22W9x0000pzaY6x787+uijY9ddd2323OzZs7OQBjYOK1asiPvuu69ZM9tvv31MmjQp2rRpk6VU/65FixZx//33R9euXZs9++CDD2Y8z5VXXtns9/1/5zvfiQcffDBatWqV8TxfadWqVYwfP77ZZTj3339/vPfeexnPc9NNN0VZWVmzZtq2bRsPP/xwdOjQIeN5vlJSUhJ/+tOfYuedd27W3N///veYMWNGdkLRZJkqXTnppJNi7Nix0aJFiwwlAwqF4hUAAIACkG7xSiKRyFASAAAAAAAAAABonmQyGZdffnmT1h566KGx2267ZTcQaTn77LObtO65556Lv//971lOU9ymTZsWY8aMadLajh07ZjlNeubMmRPTp09v1kzr1q3j/vvvz+qDyl/p0aNHnH/++c2aqaioiFtvvTVLiTZcl112WdTW1jZ7bu+994677rorC4ly49RTT41+/fo1e+6BBx6Izz//PAuJiktpaWmceeaZzZ775JNPYsmSJVlIBIXvwQcfbPZ70O++++7YaqutspRo7Vq3bh1//vOfm13C1tz7jsYsXbq02YUPJSUl8de//jUnv2bbbbddXHfddc2aqa+vj+uvvz6jOaqqqlK6P7r11ltTKthqrjZt2sTtt9/e7Lmrr746C2loqoaGhjj55JNj7Nixae1z2mmnxZ/+9KcoLVW/AMXIn3wAAIACkG7xSnV1dYaSAAAA/D979x1dVZX+f/y56YUgnVBDCZ0gvQUREAQUBJShCohSxUKxIAqi41JEUHBE6SLla0OKiIpSBpUOQigh9BJKIIEUSnru7w9/zKijuWefe/a9Nzfv11ouZ02e5+yPB5JsyNnPAQAAAAAAAABAzapVqyQmJsZQ7ZgxYzSngbO6du0qFStWNFRr9UFN/Nf169dl8ODBkpeX57DWx8dHli1b5oJU5r3zzjvKPePGjZM6depoSPPXpkyZIsWLF1fqmTNnjuTm5mpK5HliYmLkyy+/VO4rWbKkrFq1SoKCgjSkcp2ZM2cqH9TNzMyU1atXa0pUuHTv3t1U34EDByxOAniHTz/9VKm+c+fO0q1bN01p8tesWTN5+OGHlXri4+Pl3LlzlmWYPXu28jP//fv3l/bt21uWwZGRI0dK7dq1lXqWLVsm169ftyzDkiVLJDExUaknOjpahgwZYlkGR7p27Sr333+/Us/GjRslNjZWUyLkJy8vT4YOHer0n3eeeuopmTdvnvIQJwDeg8ErAAAAAFAAODs4RXXaOAAAAAAAAAAAAAAAAGAVo29WL1++vNsOa8I4X19fGTp0qKHab7/9lgOImgwfPlwuXrxoqHbixIkSHR2tOZF5V69eVR48UaZMGZk4caKmRH8tNDRURo0apdRz+fJl+fbbbzUl8jyTJ08Wu92u3Pfuu+9K5cqVNSRyrYYNG0rv3r2V+xi8Yo3IyEipWrWqct/Zs2etDwMUcMnJybJjxw6lnhdeeEFTGmNGjx6t3GPV4KWsrCxZvHixUk9gYKC8+eablqxvlI+Pj4wbN06pJzMzU1asWGFZhrlz5yr3zJgxw7L1jZowYYJyz6JFizQkQX7y8vLk8ccfl6VLlzp1nQkTJsi//vUvhq4AhRyDVwAAAACgAFCdfv1nzg5uAQAAAAAAAAAAAAAAAMz44YcfZN++fYZqH3vsMfH19dWcSC+73S7Xrl2Ts2fPSlxcnBw8eFDi4uLk9OnTcvnyZaefA/IUjz/+uKFDaXa7XebMmeOCRIXLwoULZdWqVYZqmzRpIlOnTtUbyElLliyR7OxspZ7x48dLWFiYpkR/7+mnnxY/Pz+lnsJyCHfv3r2ybt065b527drJ4MGDNSRyj/Hjxyv3bN68WVJTUzWkKXzq1aun3OPJg1cyMjLk4sWLcvLkSTl8+LAcOXJETpw4IefOnZOUlBR3x4MX27x5s+Tm5hqur1+/vnTo0EFjIsfat28vxYoVU+o5ffq0JWuvWbNGkpKSlHqGDh0qERERlqyvYvDgwVKyZEmlHqv2Mrt375aDBw8q9XTp0kVatmxpyfoq7r//fuXvKcuWLVPe08K8vLw8eeKJJ+STTz5x6jqTJk1yy3AfAJ5H7U/6AAAAAAC3cPaBi4yMDIuSAAAAAAAAAAAAAAAAAMa98847hmuHDh2qMYm17Ha7xMXFyS+//CIxMTESGxsrJ06ckCtXrjg8bBcWFibh4eFSvXp1qV69utSvX1+aNGkiDRo0kMDAQBf9FzinSpUqEh0dLb/88ovD2mXLlsm0adPcMiTDGx0/flzGjh1rqDY4OFiWL18u/v7+mlM5R/WwZHBwsAwbNkxTmvyVK1dOOnToID/88IPhnvXr18v169elRIkSGpO53wcffKDc4+/vL3PnztWQxn1atGghzZo1kz179hjuyc7OlvXr18uAAQM0JiscateuLd98841ST0JCgqY0xqWlpcmOHTtk165dcuTIETl69KjEx8c7HK7i5+cnpUqVkoiICKlevbrUqFFDGjduLE2aNJEKFSq4KD280bZt25Tqe/TooSmJcT4+PtKmTRulrwFnzpyxZG0zgx+eeuopS9ZWFRQUJI888ojMnz/fcE9MTIwcOnRIoqKinFrbzH16+umnnVrTGQMHDpRJkyYZrk9MTJTvv/9eunfvrjEVRH4bujJs2DBZsmSJU9eZOnWqvPrqq9aEAlDgMXgFAAAAAAoAZwevZGZmWpQEAAAAAAAAAAAAAAAAMObo0aOyceNGQ7WtWrWSyMhIzYmck5WVJRs2bJDVq1fLN998I4mJiaauc+PGDblx44acOHHiD/9/UFCQtGnTRjp37iy9evWS6tWrWxFbm0GDBhkavHLjxg1Zvny5jB492gWpvFt2drYMHDhQbt26Zah+xowZUrt2bc2pnHPkyBGJjY1V6unfv7+ULFlSUyLH+vbtqzR4JScnR7777jsZOHCgxlTulZqaKl9++aVy36OPPiq1atXSkMi9+vfvrzR4RURky5YtDF6xQKlSpZR7bt++rSGJY6dPn5avvvpKVq9eLbt27ZK8vDzla+Tk5EhCQoIkJCTIrl27/vCxqlWryv333y8PPPCAdOnSRQICAqyKjkJA9WvYgw8+qCmJGtXhS8nJyU6vmZKSIj/++KNST4cOHaRevXpOr21W3759lQaviIh8/fXXTg1eycvLk6+++kqpp3r16tK1a1fTazqrb9++SoNXRH67Twxe0ctut8uwYcPk448/duo6b731lkycONGiVAC8gY+7AwAAAAAAHHM0OMXX1zffj2dkZFgZBwAAAAAAAAAAAAAAAHDogw8+MFzbv39/jUmcc+7cOXnxxRelUqVK8tBDD8nHH39seuhKfjIyMmTjxo3y/PPPS2RkpLRq1UoWLFjgsc/+9OrVS3x8jB1LWbRokeY0hcPkyZNl7969hmq7du0qTz75pOZEzlu5cqVyj7sHmPTs2dPw7/071q1bpymNZ1ixYoXy8AofHx958cUXNSVyrz59+ojNZlPq2blzp6Y0hUtYWJhyjysHr+Tl5cnKlSulY8eOEhkZKS+88ILs2LHD1NAVR86cOSPz5s2THj16SHh4uIwaNUoOHTpk+TrwTiq/V4oUKSItWrTQmMa4ihUrKtUbHWaXn7Vr10p2drZSj7v3Mvfee6/yEDtn9zI///yzXLlyRalnwIAByt9PrVStWjVp2LChUs8333wjdrtdUyJYNXTlvffeY+gKgP/B4BUAAAAAKACysrLy/XjRokXz/bijwS0AAAAAAAAAAAAAAACAlTIyMuT//u//DNXabDb5xz/+oTmRujNnzsiwYcOkRo0aMn36dLl69apL19+5c6eMGDFCIiIi5K233pL09HSXru9I6dKlpXXr1oZq9+3bJwcOHNCcyLtt2bJF3nnnHUO1pUqVksWLF2tOZI01a9Yo1ZcpU0buvfdeTWmMKVGihDRr1kyp5/vvv1c+lF2QLFiwQLnn4Ycfllq1amlI434VKlSQqKgopZ7Y2Fi5ceOGpkSFR2BgoHKPKz438/LyZNmyZVKnTh35xz/+IZs2bXLpwfzk5GSZN2+eNGjQQLp06SJ79uxx2dooeBITEyU1NdVwfd26dZUHkukSGhqqVG/F4CXVvYy/v7/06tXL6XWd4evrKx07dlTq2b17t/LglN9TvU8ivw0yc7fOnTsr1SckJBgelAg1drtdhg8f7tSfc2w2m8yZM0fGjh1rYTIA3sIzdjMAAAAAgHw5O3jFU996AwAAAAAAAAAAAAAAAO+0du1aSUlJMVTbtGlTCQ8P15zIuNu3b8vkyZOlbt26smjRIrcPS7h69apMmjRJatasKV988YVbs/xZjx49DNc6+1bywiw5OVkGDx4seXl5huoXLFjgUZ9Tf+fq1asSExOj1NOrVy/x9fXVlMg41UO4qampsn//fk1p3OvQoUOmBiuNGTNGQxrPcd999ynV5+XlMQzDAmaGlAUHB2tI8l87duyQ5s2by+DBg+X48eNa1zJiw4YN0qJFC3n00UclMTHR3XHggc6ePatUX79+fT1BTFDdt/v7+zu1Xk5OjmzevFmpp0OHDlK8eHGn1rWC6l7GbrfL1q1bTa+3YcMGpfpatWp5xO8t1fsk8tvARFjLbrfLiBEjZNGiRaav4ePjI/Pnz5cnn3zSwmQAvImfuwMAAAAAABxzNHglLCws349nZmaK3W4Xm81mZSwAAAAAAAAAAAAAAADgLy1dutRwbbdu3TQmURMTEyN9+vTxiIPRf3bhwgXp27evrFu3Tj788EOHzwy5Qo8ePeT55583VPv555/Lu+++6xFDMwqaESNGyIULFwzVPvHEE9KzZ0/Niazx448/it1uV+rp1KmTpjRqOnToIK+//rpSz7Zt26R58+aaErnP+vXrlXsqVqwobdu21ZDGc4wdO1b5v7FatWqa0hQeN2/eVO4JCQnRkOS3gQxTpkyRadOmKX+t081ut8uKFStk48aN8sknn5gaLADvdeXKFaX6unXrakqiLi0tTane2cFLu3btUl7Tk/YyqrZt2yZ9+vRR7rt48aIcPXpUqcdT7lN0dLQEBgZKZmam4Z5t27ZpTFT42O12GTlypCxcuND0NXx9fWXx4sUyePBgC5MB8DYMXgEAAACAAsDRX9QVLVrU4TWysrIkMDDQqkgAAAAAAAAAAAAAAADAX7p69arSG809ZfDK559/Lo899phkZGS4O0q+li9fLkePHpXvvvtOSpcu7dYsNWrUkKpVq8qZM2cc1l65ckU2btzI4W5FixYtkpUrVxqqrV69usyaNUtzIuts3rxZqd5ms0m7du30hFHUrFkz8fX1ldzcXMM927Ztk3HjxmlM5R7ffvutck///v3Fx8dHQxrPUblyZalcubK7YxQ68fHxyj2lSpWyPMeNGzekW7du8tNPP1l+bStduXJFHnzwQZk7d64MGzbM3XHgIZKSkpTqy5UrpymJusuXLyvVly1b1qn1VPcyIuYGnugQEREh5cqVU7pnZgeKFOT7FBAQII0aNZKdO3ca7tm+fbvGRIWL3W6XUaNGyYIFC0xfw8/PT5YvXy59+/a1MBkAb+Tdf0IFAAAAAC+RlZWV78eNDF5RmbIMAAAAAAAAAAAAAAAAmLV27VrDwwhKly4tjRo10pzIsc8//1wGDhzo8UNX7ti3b5+0a9dOUlNT3R1FOnbsaLh2xYoVGpN4nxMnTsizzz5rqNbX11eWLVsmRYoU0ZzKOjt27FCqv/vuu6VkyZKa0qgJCQmRqKgopR5vPISbmpqq/Oso8tvgFUAHI4PA/qxKlSqWZrhx44Z07tzZ44eu3JGbmyvDhw936lA7vMvNmzeV6nUMLzLryJEjSvWVKlVyaj3V74HFixeXu+++26k1rdSiRQul+piYGLl9+7byOqr3yZOG7YmItGzZUqk+KSlJjh8/rilN4XFn6Mr8+fNNX8Pf31+++OILhq4AMITBKwAAAABQAFgxeKWgPBQCAAAAAAAAAAAAAACAgm3t2rWGa9u2bSs2m01jGsd27dolgwYNMjwsxlPExsZK//79JS8vz6057rvvPsO1q1ev5gVSBmVnZ8vAgQPl1q1bhuonTZokrVq10pzKOikpKRIXF6fU07x5c01pzGnWrJlS/eXLlyUpKUlTGvfYsGGD5OTkKPWULl1aGjZsqCkRCru9e/cq91g9eOXRRx81NZDI3caMGVNghsVAL9W9mqcMXsnNzZV9+/Yp9dSrV8/0ena7XXbt2qXU06xZM/Hx8Zxj3ap7mZycHImNjVVeR/VrYo0aNaR48eLK6+iiep9ERA4ePKghSeFht9tl9OjRTg1dCQwMlFWrVkmvXr0sTAbAm/m5OwAAAAAAwDFHg1fCwsIcXoMHFgAAAAAAAAAAAAAAAKDbrVu3ZNOmTYbr7733Xo1pHEtJSZF+/fpJdna2W3OY9d1338m8efNk9OjRbsvQoUMHsdlsYrfbHdbevHlTtmzZIl26dHFBsoJtypQpsmfPHkO1zZo1kylTpmhOZK09e/YY+j3ze40aNdKUxpz69esr9xw5csTtX/estHnzZuWedu3auX3gFrxTXFycJCYmKvdZ+bVl1qxZ8vXXX1t2PVfKzs6WIUOGSGxsrAQHB7s7Dtzovvvuk48++shwfWRkpMY0xv3888+SnJys1NO4cWPT6508eVKuX7+u1OMte5mmTZsark9PT5dDhw4preEt96l3794a0ng/u90uTz75pMybN8/0NYKDg2XNmjVy//33W5gMgLdj8AoAAAAAFACOhqYULVrU4TUyMjKsigMAAAAAAAAAAAAAAAD8pR9++EHpOZV27drpC2PA1KlT5ezZs05do2bNmtK+fXtp1qyZ1KxZUypVqiTFixeX4OBg8fHxkRs3bsjNmzfl1q1bcv78eTl27JgcO3ZMdu/eLXv37lUePvFnkyZNkj59+kjJkiWduo5ZpUuXllq1aklcXJyh+nXr1jF4xYGtW7fK9OnTDdWGhITI8uXLxc+vYB0ROnjwoHKPpx3CrVevnnKPtw1e2bdvn3JPhw4dNCQBRL788kvlnpIlS1o2NOLSpUvy8ssvO3WNoKAg6dChg7Rs2VIaNmwoERERUr58eQkJCZGgoCBJT0//z54iOTlZjh8/LnFxcXL06FHZvHmzXLt2zan1z549K2+99Za8/vrrTl0HBVvDhg2lYcOG7o6hbMmSJUr1devWlXLlyplerzDvZVTExsZKbm6uUo+n3afatWuLn5+f5OTkGO5RvU/4jd1ulzFjxsjcuXNNXyM0NFTWrVsn7du3tzAZgMKgYP2tCgAAAAAUQna73eEbdYwMXnE0vAUAAAAAAAAAAAAAAABw1qZNmwzXFilSxNRhP6ucOXNGPvroI1O9wcHBMnjwYHnqqaccvgG9ePHiUrx4cRH57dDe79+6nZCQIOvXr5ePPvrI1AADEZGUlBSZP3++vPTSS6b6rdCiRQulwStz5qpVQw8AACAASURBVMzRnKjgSk5OlkGDBkleXp6h+nfffVdq1qypOZX1Dh8+rNzj6HPN1cx8/YqNjdWQxD1ycnJM/Tq2bdtWQxoUdjk5OcpDF0RE2rRpY1mGV199VW7fvm2qt0GDBjJhwgR55JFHJDQ09G/rQkND//DxJk2a/Od/5+bmyvbt22XlypWycOFC01k++OADmThxooSEhJjqB9zh/Pnz8n//939KPd27d3dqTTPfA6Oiopxa02rVqlWT4OBgSU9PN9yjupfxhvsUEBAg1atXl2PHjhnu8aY9nys99dRTpv+MLiISFhYm3377raXf3wEUHj7uDgAAAAAAyJ+joSsixgavqLxJCAAAAAAAAAAAAAAAADBjy5YthmsbNWokPj7uO9Ywc+ZMycrKUu574IEH5OjRozJ37lynB0GEh4fLE088IXv37pWvv/7a9CHDDz/8UOx2u1NZnNGiRQvDtfHx8XLo0CGNaQq2kSNHSnx8vKHabt26yciRIzUn0uPIkSNK9eXKlct3GIE7hIeHS3BwsFLP2bNn9YRxg9jYWOXnEgMDA6VWrVqaEqEwW7ZsmZw+fVq5z9nBC3ckJCSYGvxSrFgxWbBggRw4cEAGDx7s1Nc5X19fueeee2T27Nly+vRpGT9+vPj5+SlfJzk5WXmABeBuTz75pKFn7n/vsccec2pN1b2MzWaTatWqObWm1Ww2m1SuXFmpR3Uvo3qfREQiIyOVe3SrUqWKUr037flcZcyYMfLhhx+a7r/rrrvkxx9/ZOgKANMYvAIAAAAAHs7Iwx1hYWEOazIzM62IAwAAAAAAAAAAAAAAAPylq1evKr3Zu2nTphrT5C8jI8PUoeIpU6bIN998IxEREZZn6t69u+zZs8fUIdALFy7I/v37Lc9kVMuWLZXqVQb0FCaLFy+WL7/80lBt6dKlZdGiRZoT6XPixAmlek88gCsiyoeVjQ7VKQjMfM2pXbu2+Pr6akiDwuzKlSvywgsvKPf5+vpKt27dLMnwySefSE5OjlJPZGSk7Nq1S4YNGyY2m82SHHeULVtWZs6cKVu3bpWSJUsq93/99deW5gF0mjVrlqxfv16pp3PnzlK7dm2n1lXdy1SsWFGCgoKcWlMH1YEiqnsZ1fvk6+srVatWVepxBdX7dOvWLUlOTtYTxgs99dRTTg1dKVGihGzatElpICgA/BmDVwAAAADAwxkZmFK0aFGHNapvlgAAAAAAAAAAAAAAAABUbN26VanenYNX1q1bp3wQbvLkyfLaa69Zfjj69wIDA2Xx4sUycOBA5d4NGzZoSGRMVFSUBAQEGK5X/b1SGJw8eVKeffZZw/WLFi2SMmXKaEykT0pKiqSkpCj1eOrgFdWDwd40eOXgwYPKPfXq1dOQBIVZenq69OnTR5KSkpR7H3zwQSlbtqwlOZYuXapUX6FCBdm0aZPUrFnTkvX/TuvWrWXjxo0SEhKi1Ld582bJzs7WlAqwzieffCLjx49X7ps6darTa585c0ap3lv2MmlpaZKWlma4/vTp00rXr1y5svj7+yv1uIKZYTDetO/T6emnn5Y5c+aY7vfx8ZGNGzdKkyZNLEwFoDBi8AoAAAAAeLisrCyHNUYGrxgZ4AIAAAAAAAAAAAAAAACYtWvXLqX6+vXra0rimOqQknbt2snrr7+uKc0f2Ww2mT9/vlSuXFmpLyYmRlMix/z8/KRWrVqG63/66Sex2+0aExUsOTk5MmDAALl586ah+hEjRkj37t01p9JH9QCuiCh/PrhKeHi4Un1ycrLcunVLUxrXOnv2rHJP3bp1rQ+CQis5OVkeeugh+emnn0z1jx492pIcFy9elNjYWKWeZcuWuezrWsOGDeXtt99W6rl165acOnVKUyLAebm5ufLiiy/KY489prynfPzxx6Vly5ZOrX/9+nVJTU1V6vGWvYyIyIULFwzXqg6oKaz3qbB65pln5IMPPnDqGnl5ebJ+/XqLEgEozBi8AgAAAAAezqrBKxkZGVbEAQAAAAAAAAAAAAAAAP7S3r17Ddf6+PhIzZo1NabJ3+bNmw3X+vj4yNy5czWm+V8hISHy6quvKvUcPXpUUxpjoqKiDNcmJSW5Pa8nmTJliuzZs8dQbY0aNeTdd9/VnEiv8+fPK/eULVtWQxLnlSlTRrnnypUrGpK4npnDxJUqVdKQBIXR119/LU2aNJGNGzea6o+KipLOnTtbkmXTpk1K9QMHDpT27dtbsrZRo0ePlipVqij18H0anmrjxo3SsGFDmT59unJvtWrVZObMmU5nKOx7mYSEBEN1KSkpcuPGDaVrF8b7VFg9++yz8q9//cuSa7322mvKg2AB4M8YvAIAAAAAHs7I4JWQkBDx8cn/j3iZmZlWRQIAAAAAAAAAAAAAAAD+wG63y/79+w3XV6lSRYKCgjQm+nuJiYlKb17v1q2b1KpVS2Oiv9avXz8JDg42XO/uYQ4qg1dERH799VdNSQqWn376Sd5++21DtX5+frJ8+XIJDQ3VnEovM4dQw8PDNSRxnplDuCkpKRqSuJ6ZwSue+uuIgmP37t1y7733So8ePZS+l//ZG2+8ITabzZJMqge9J0yYYMm6Knx9fWXIkCFKPe7eVwC/d/36dZk3b540atRIOnXqJIcPH1a+RtGiRWXVqlVSrFgxp/OwlzG2l+E+eceeT4exY8fK+++/b9n1cnJyZODAgXLz5k3Lrgmg8GHwCgAAAAB4OCMDUwICAhw+iJKRkWFVJAAAAAAAAAAAAAAAAOAPTpw4IWlpaYbr69SpozFN/uLi4pTqhw8frilJ/kJCQiQ6Otpwverb5K1Wr149pXoGr/x2GPPRRx+VvLw8Q/WvvPKKNG/eXHMq/a5evarcU7ZsWQ1JnFe6dGnlnuTkZA1JXCs3N9fUUAZPPUwNz3bu3DmZPn26NGrUSFq0aCE//fSTU9dr06aNPPTQQxalU9tXNGnSRBo1amTZ2io6deqkVO/ufQW8U2JiosTGxkpqauof9j92u11u3boliYmJcurUKdm0aZPMnz9fxo0bJ40bN5bSpUvLqFGj5MCBA6bWDQsLk++//17uvvtuS/472MsY28twnwr+nk+HcePGyezZsy2/7qlTp+Tpp5+2/LoACg8/dwcAAAAAAOQvKyvLYU1AQIAEBgbK7du3/7bGyAAXAAAAAAAAAAAAAAAAwAzVt85Xq1ZNUxLHjh07Zrg2MDBQOnTooDFN/urXry8bN240VJvfs0OuULVqVaV6Bq+IjBw5UuLj4w3VtmzZUl555RXNiVzDzMCOUqVKaUjivCJFiij3pKSkaEjiWpcuXZLc3FzlPgav4K9kZWVJWlqapKWlSWpqqly+fFkOHjwoBw4ckJiYGDl27JjY7XZL1goICJD58+dbcq07VPYVDzzwgKVrq1AdkObufQW806ZNm6R///4uXTMiIkJWrVoljRs3tuya7GWM7WW4TwV/z2e18ePHy6xZs7Rdf8mSJdK1a1fp06ePtjUAeC8GrwAAAACAhzMyeCUwMFCCgoLyrcnIyLAqEgAAAAAAAAAAAAAAAPAHKoeORX47AOkuFy5cMFzbunVrCQkJ0Zgmf576xve/ojpMJyYmRlOSguHjjz+WL774wlBtaGioLFu2THx9fTWnco3k5GTlnrCwMA1JnGcmV2pqqoYkrnXt2jVTfZ56mBp/rX379u6OYLkpU6ZInTp1LLteXl6eXLp0yXB9x44dLVtbVbFixSQwMNDwixytGnYDuFPPnj1lwYIFln//YS9jbC/DfSr4ez4rTZgwQd577z3t64wcOVJatWollSpV0r4WAO/i4+4AAAAAAID8GRm8EhAQIIGBgfnWGP1BCQAAAAAAAAAAAAAAAKCqIA1eUTkA2LBhQ41JHAsODnbr+ipCQkKUBsWkpKRIYmKixkSe69SpU/LMM88Yrp81a5ZERkZqTORaN27cUO7x1EO4RYoUUe7xhpeopaenK/f4+/uLj497j7L5+fmJzWbz6H/8/HjPui7333+/vPTSS5ZeMzU1VWlACfsKwDVq1Kgha9euldWrV2sZ+sVexthexpvuk7+/vwQEBCj1eMOezyrPPfecvPvuuy5ZKyUlRQYNGiR5eXkuWQ+A92DwCgAAAAB4OCMDUwICAiQoKCjfGv7iDgAAAAAAAAAAAAAAALoUpMErKSkphmvr1q2rMYljBe1lS1WrVlWqP378uKYknisnJ0cGDBggN2/eNFT/0EMPybBhwzSnci3VQ7g2m01CQ0M1pXFOSEiIck92draGJK5lZvCKo2ccAZ0iIiJkxYoVlg//UdlTVKhQQYoWLWrp+qoK2r4CUBUQECAfffSRHD16VB566CFt63jTQBGdexlvuk8i6vfKG/Z8VnjppZdk5syZLl1z69atMm3aNJeuCaDgYwQmAAAAAHi4rKwshzWBgYESGBiYbw0/LAEAAAAAAAAAAAAAAIAuJ0+eVKovX768piSOvf766zJu3DhDtdWqVdOcJn+XL1926/qqVH9dT5w4IdHR0ZrSeKZXX31Vdu/ebai2bNmysnDhQs2JXE/1EG5oaKjYbDZNaZzj56d+NMsbDuGaGbzi6BlHQJfw8HDZuHGjlCpVyvJrly9fXvbv32+o1sxwAyulpaWZ+twFCpKsrCwZN26cbNq0SR599FF54IEHxN/f3/J1zAwUKVKkiOU5rKBzL+NN90lE/V55w57PCmvWrDHd6+/vb/o+Tp06VTp16iTNmjUzvT6AwoXBKwAAAADg4YwMXgkICHD4NoiMjAyrIgEAAAAAAAAAAAAAAAD/kZmZKUlJSUo9pUuX1pTGsYiICImIiHDb+ioOHTrk7ghKwsPDlepPnTqlKYln+umnn5TevL5o0SK3fq7oovoSMR0Hpq1SWAevmHkekcErcIc7Q1ciIyO1XD8wMFAaNmyo5dpWO3jwoLsjAC6RkZEhK1eulJUrV0rVqlVl2rRp0qdPH0vXMPNCVE/dz+jcy3jTfRJh8IqrdejQQWbPni2tW7c2NcQnOztbBgwYIAcOHJDQ0FANCQF4Gx93BwAAAAAA5M/I4BU/Pz+HP5Q08xeXAAAAAAAAAAAAAAAAgCOXLl1Sqi9atKgEBARoSuM9rl27Jr/88ou7YygpW7asUn18fLymJJ4nJSVFBg0aJHl5eYbqR48eLQ8++KDmVO6Rk5OjVG/mQLCrFNbBK+np6co9Pj4cY4NrtWjRQvbu3Sv16tVzdxSPsHbtWndHAFzuzJkz0rdvX2ndurXs37/fsuuq7mVEPHc/o3Mv4033SYTBK67UtWtXWb9+vdSvX19mzZpl+jonT56UZ555xsJkALwZf2IFAAAAAA/naGBKQECA2Gw2CQoKyrfOzBsmAAAAAAAAAAAAAAAAAEcuXryoVF+mTBlNSbzLpEmTCtzLlsLDw5XqVX/vFGSjRo2S8+fPG6qtVauWzJgxQ3Mi9/GmwStmhon4+vpqSOJaNptNuaegfT1DweXn5ycTJkyQrVu3SoUKFdwdxyOcOnVKPvzwQ3fHANxmx44dEh0dLZ999pkl1/OmgSI69zLedJ9E1O+VN+z53OHhhx+WNWvW/Od8zOOPPy49e/Y0fb3FixfLypUrrYoHwIsxeAUAAAAAPFxWVla+Hw8MDPzDv/8OP7QEAAAAAAAAAAAAAACADqrDM0qWLKkpifd4//33ZcGCBe6Ooax06dJK9RcuXNCUxLMsWbJEPv/8c0O1fn5+snz5cgkJCdGcyn1yc3OV6j35AG52drZyj7+/v4YkrhUcHKzcwzOMcIW2bdvKr7/+KjNmzHD4XG1hcfHiRXn44Yfl9u3b7o4CuFV6err0799fXn75ZbHb7U5dS3UvI+K5+xmdexlvuk8i6vfKG/Z8rjZw4ED5/PPPJSAg4A////z586Vs2bKmrztixIhC82dPAOYxeAUAAAAAPJyjwSt3/lLpzkTfv5ORkWFZJgAAAAAAAAAAAAAAAOCOpKQkpfqwsDBNSQo2u90uO3bskB49esizzz7r9IFQd1D9tU1ISNCUxHOcOnVKnnnmGcP1r776qjRt2lRjIvdTPVDr4+O5x59ycnKUe7zhEC6DV+BJfH19pVevXrJ9+3bZunWrREVFuTuSR0hJSZGZM2dK48aN5eDBg+6OA3iMN998U1599VWnrmFmOIin7md07mW86T6JqN8rb9jzudITTzwhS5cu/cvfN6VLl5aFCxeavnZycrIMGjRI8vLynIkIwMt57ugvAAAAAICIGB+84mgyPz+0BAAAAAAAAAAAAAAAgA6pqalK9UWKFNGUpGC4fv26nDlzRs6ePfuff06ePCm7d++W69evuzueU4oWLapUn5qaKnl5eR59wNIZOTk5MnDgQLlx44ah+tatW8tLL72kOZX7qR5CNXMg2FUYvGJcZmam5Obmiq+vr4ZEKGxCQkKkTZs28sgjj0jPnj2lTJky7o7kFtnZ2RIfH/8/+4qYmBg5cuQIB8zhcbp06SL79+//w/9nt9slKytLsrKy5ObNm5KUlCSJiYly+vRpOXnypMTExFg+rO+f//yn1KxZUx599FFT/Wa+l+fk5JgaRKKbzr2M2fvkqRi8os/TTz8ts2fPFpvN9rc13bp1k2HDhpkewPLvf/9bpk+fLhMnTjQbE4CX87zv0gAAAACAP3A0MOXO4JWgoKB86zIyMizLBAAAAAAAAAAAAAAAANyRkpKiVB8WFqYpiWe4fv36Hw4///kfo0M4CiLVwSt2u13S0tKkWLFimhK519SpU2XXrl2GasPCwmTZsmWFYiiF6iHU3NxcTUmcZ+ZwsKNn/QoCM4NX7Ha7JCYmSnh4uIZE8CY2m02Cg4MlODhYQkJCpGzZslK5cmWpXLmy1KlTR5o1ayZRUVEeOcDAancGq/zdnuLixYsMV0GBUqxYMWnYsKFy38WLF2Xz5s3y/fffy7p16yzZTw8bNkxq1qwpzZs3V+41M1AjNzfXI79u6dzLmL1Pnkr1XnnDns8VXnjhBXn77bcN1b733nuyZcsWOXXqlKm1pkyZIh07dpSmTZua6gfg3TzvuzQAAAAA4A+ysrLy/XhgYOAf/v13HA1wAQAAAAAAAAAAAAAAAMxITU1Vqi9SpIimJK6Rk5Mjp06dkri4ODl9+vT/HIJOS0tzd0S3UR28IiKSnJzslYNXfv75Z5k2bZrh+tmzZ0u1atU0JvIcd142ZpSZA8Gukp2drdxz1113aUjiWiEhIab6rly54tbBK/v27RO73e7SNS9cuCDdu3d36ZpW2bJli7Rr187dMbzetWvXJC4uTo4fP/6Xg1U8eQgB4CoVKlSQQYMGyaBBgyQ9PV1WrVolM2fOlP3795u+ZmZmpgwdOlT279+vvDdRrRf5bT/j6Hl/d9C5lzF7nzyV6r3yhj2fblOnTpVXX33VcH2RIkVk6dKl0rZtW1PfH7Ozs2XgwIHy66+/SmhoqHI/AO/G4BUAAAAA8HCOBq/c+QtJRxORMzIyLMsEAAAAAAAAAAAAAAAA3KE6aMQTDxzm59atW7Jx40bZvHmz7Ny5Uw4cOODwmZ7Cysyv7a1btzQkca/U1FQZNGiQ4cOAvXr1kqFDh2pO5TlUD+Gmp6drSuK8GzduKPd4wyHcMmXKmOq7evWqxUnU3H333S5f09/f3+VrwrMdPXpUvvvuO9m2bZvs3LlTLl265O5IQIESHBwsAwcOlIEDB8ratWtl/Pjxcvr0aVPXio2Nlffff1+ee+45pT4zA0XS09M9ctCDzr2M2fvkiXJycpTPY3jDnk+nd955R/lzT0SkdevW8uKLL8qbb75pat3jx4/L2LFjZcGCBab6AXgvH3cHAAAAAADkz+jgFUcPLWRmZlqWCQAAAAAAAAAAAAAAALhDdQiJn5/nv0M2KytLvvrqK3nooYekZMmS0rNnT3n//fdl9+7dDF3Jh5kBA954P0eNGiXnzp0zVBseHi7z58/XnMizqB5CvX37ttjtdk1pnFOYB6+YOUx98eJFDWk8m6ceIIdrnTx5UiZPnizVq1eXunXryoQJE2TVqlUMXQGc1KNHDzly5IgMGzbM9DXeeust5e/nZr6Xe+qwQZ17Ge5Twd/z6WCz2WTOnDmmhq7cMXXqVGncuLHp/oULF8qqVatM9wPwTgxeAQAAAAAP52hgyp0fXgYFBeVbpzphGQAAAAAAAAAAAAAAADAiOztbqd6TB6+kpaXJtGnTJCIiQnr37i3r1q3jhUcKGLwisnTpUvnss88M13/88cdSqlQpjYk8T/HixZXq7Xa7xw6vMHMIt1ixYhqSuJbNZpMKFSoo9x0/flxDGs/Gs5uF27Zt26R79+5Ss2ZNeeONN+T06dPujgR4naCgIFmwYIG8/fbbpvqvX78uH3/8sVKP6l5GxLsGihjdy3CfCv6ez2o+Pj6yaNEiefLJJ526jr+/vyxfvtzhGZr8DB8+vFAOBQTw9xi8AgAAAAAeztGDBYGBgX/499/hARAAAAAAAAAAAAAAAADo4A2DV/Ly8mTu3LlSo0YNeemllyQhIcHdkQokM7+2qr9/PNnp06flqaeeMlz/1FNPSZcuXTQm8kxmDuGmpqZqSOI8M4dww8PDNSRxvUqVKin3HDt2TEMSz+apB8ih14kTJ6Rnz57Spk0b+eabb8Rut7s7EuD1XnjhBXnuuedM9c6dO1epnr2Msb0M98k79nxW8fPzkxUrVsjQoUMtuV6dOnVk2rRppvuvX78ugwcPlry8PEvyACj4GLwCAAAAAB7O0eCVgIAAERGH03p5awIAAAAAAAAAAAAAAAB0UB2c4evrqymJOSdOnJB77rlHRo8eLVevXnV3nP94+OGHpV69eu6OocTM4BUfH+842pKTkyMDBw40fCizdu3aMn36dM2pPFOJEiWUe65du6YhifNUDweHhobKXXfdpSmNa5kZvBIXF6chiWe7dOmSuyPAhfLy8uS9996TBg0ayNq1a90d5z/Cw8NlxIgR7o4BaPfmm29KkyZNlPuOHj0qhw4dMlxfmPcyIiIVKlQwVMd9MnafCoOAgAD58ssvpV+/fpZe95lnnpH77rvPdP/mzZtlxowZFiYCUJB5x99OAQAAAIAXMzp4JTAwMN+6zMxMyzIBAAAAAAAAAAAAAAAAd9jtdqX6nJwcTUnUrVq1Sho3bizbt293dxQREbnrrrtk+PDhEhMTI1999ZWUKlXK3ZGUmPm19ff315DE9aZNmyY7d+40VOvv7y8rVqyQ4OBgzak8k5nf1556CDchIUGp3psO4FarVk2558SJE5Kenq4hjedi8ErhkZqaKt26dZPx48d7zMsSmzZtKvPmzZMzZ85I//793R0H0M7f319mzZplqnf9+vWGawvzXiYwMFBKlixpqLYw3ycR79r3OSM4OFjWrl0rPXv2tPzaNptNlixZIsWKFTN9jVdeeUV+/fVXC1MBKKgYvAIAAAAAHs7RwJQ7g1eCgoLyrfOUH+IAAAAAAAAAAAAAAADAuzh6buXPPGXwyowZM6R3795y8+ZNt2Xw8/OTpk2byrPPPivffvutXLlyRebPny8NGjRwWyZnFObBK3v37jVc+9prr0njxo01pvFslSpVUu65cuWKhiTOUz2EW758eU1JXK9Ro0bKPdnZ2UqfK97g4sWL7o4AF7h06ZK0bNlSvvvuO7fmKFu2rPTq1Utmz54tp06dkj179siIESOU92pAQdamTRvp0KGDct/WrVsN1xbmvUy5cuXEZrMZqi3M98nX11fKli2rKU3B8umnn0qXLl20Xb9ixYoyZ84c0/3Z2dkyYMAAuX37toWpABREfu4OAAAAAADIX1ZWVr4fDwwM/MO//05mZqbY7XbDf9EJAAAAAAAAAAAAAAAAGKF6mDc7O1tTEuNmzJghzz//vMvW8/Pzk4oVK0pkZKTUrl1bateuLVFRUdK0aVMJCQlxWQ7dzAxeufPiqcJk0qRJMmnSJHfHyNe5c+dMPWs2ZMgQWbJkSb41ERERyte9cOGCco8rqB7CrVatmqYkrmd2eNC2bdvknnvusTiN5zp37py7I0Czy5cvy7333isnT5502ZrFihWTqlWrSq1ataR27dpSp04dadKkiVSvXt1lGQBP9thjj8nmzZuVen799VfDtexljClevLiEhYXJjRs3DPd4y32KiIgQHx8fTWkKllq1amlfY8CAAbJu3Tr57LPPTPUfO3ZMxo0bJ/PmzbM4GYCChMErAAAAAODhHA1eufPggaMHWOx2u2RnZxfKBxUAAAAAAAAAAAAAAACgT3BwsFK9meEcVlq3bp288MILll+3RIkSUqdOHYmMjJQqVapIlSpVpGrVqlKlShWpWLGi+Pr6Wr6mp2HwCoyoXLmyck98fLyGJM5TPYTrioOnrhIRESGlSpWSpKQkpb5t27ZpSuSZDhw44O4I0CgrK0seeeQRy4eu+Pn5SbVq1aROnTr/2VPc2VdUrVpVihYtaul6gLfp2bOn+Pr6Sm5uruGeq1evSlJSkpQqVcphbYkSJaRIkSJy8+ZNw9cvrHuZypUry5EjRwzXF9b7BOd9+OGH8vPPP8vFixdN9c+fP1+6du0qPXv2tDgZgIKCwSsAAAAA4OGMDl4JDAx0eK3MzEweVAAAAAAAAAAAAAAAAIClVAevZGRkaEri2OXLl2XQoEFit9uduo6vr69ER0fLPffcI9HR0dK4cWMpW7asRSkLLkfPOv0VDo8XPqVKlZLQ0FC5deuW4Z6zZ8/qC2RSXl6enD9/XqnH2w7hNm7cWH744Qelni1btkhGRobDl815g6SkJLl06ZK7Y0CjyZMny44dO5y+ToUKFeS+++6T6OhoadWqldSqVYvnfQEnhIWFSYMGDWT//v1KffHx8YYGr4j8NlAkNjbW8LU9cS8jInLmzBmletW9TEREhNLglcJ6n+C84sWLy8cffyydO3c2/ef9YcOGSfPmzaV8+fIWpwNQEPi4OwAAJwz8kwAAIABJREFUAAAAIH+ZmZn5fvzOD1aM/BDSnQ+tAAAAAAAAAAAAAAAAwDuFhoYq1aelpWlK4ti4ceMkNTXVdP/dd98t8+fPl4SEBNm6dau88cYb0rVrV4au/H83btxQ7ilWrJiGJPB0qodRjx07pimJeefPn3f4fN+fedsh3GbNmin33Lp1SzZt2qQhjeeJiYlxdwRodPjwYXn33XdN9wcFBcmoUaPkl19+kfj4ePnkk09kxIgREhUVxdAVwAJmvkclJCQYrq1du7bStY8fP+708Eer5eTkKA86Ud3LqN6nlJQUuXr1qlKPK5w4cUKp3tv2fAVFp06dZMyYMab7r127JkOGDPG4z1UArsHgFQAAAADwcI7eAhMYGPiHf+dH9Ye8AAAAAAAAAAAAAAAAgCOlS5dWqjcznMMKMTEx8vnnn5vqrVq1qqxbt04OHDggw4cPl1KlSlmczjvcvHlTqT4wMNDQc0/wPlFRUUr1p06dktzcXE1pzDl+/LhSfXBwsERGRmpK4x5dunQx1bd27VqLk3imLVu2uDsCNJo8ebLk5OQo99lsNhk1apScO3dOPvroI4mOjhabzaYhIaDm2rVrkpCQYPif27dvuztyvqpVq6bco7KXVd3L3L59Wy5cuKAaSavTp08rfx1r0KCBUr3qfRLxvIF7GRkZEh8fr9Sjep9gnenTpysP/Pm9jRs3ysyZMy1MBKCgYPAKAAAAAHg4R4NX7ky1DwoKcnitjIwMSzIBAAAAAAAAAAAAAAAAd5QrV06pPi0tTVOS/E2fPt1UX+/eveXw4cPSrVs3ixN5H9XBK8WKFdOUBJ5O9TBqVlaW8qAT3U6cOKFU37hxY/Hz89OUxj1atWolJUuWVO5bvXq1w2cjvcF3333n7gjQ5Pjx46YGCBUrVky+//57+eijj6RMmTIakgHmdenSRcqVK2f4nxkzZrg7cr4qVaqk3KPyrL2ZwRqHDx9W7tFJdS9ToUIFKV++vFKPN9ynU6dOSV5enuF6Pz8/adSokcZEyE9wcLAsX75c/P39TV/j5Zdflv3791uYCkBBwOAVAAAAAPBwRgevGHnzS2ZmpiWZAAAAAAAAAAAAAAAAgDsKwuCVmzdvyqpVq5T7Bg4cKF988YWEhIRoSOWY3W53y7pmqQ5eKVWqlKYk8HRRUVHKPXv37tWQxLwDBw4o1Tdr1kxTEvfx9fWVLl26KPclJSWZ+ppckFy9epUDu15s6dKlyt+jixQpIps2bZL7779fU6r8FbQ9BVwvODhYqf7SpUuaklijSJEiyj1Gnse/g72MMXXr1hVfX1+lnoJ+n+rXr6/8+QRrNWnSRCZPnmy6PysrSwYMGCDp6ekWpgLg6Ri8AgAAAAAeztGwlDuDV4KCghxeS2UKNwAAAAAAAAAAAAAAAGCE6uCVxMRETUn+3rp165SfnYmKipLFixeLzWbTlMoxdwypcUZSUpJSfYUKFTQlgadr0qSJ8ueWpx3C3b17t1K9Nw5eERHp3r27qb558+ZZnMSzfPXVVwy68GJffvmlcs+CBQukcePGGtIYU9D2FHA91UGD8fHxmpJYIzQ0VGtPZGSkFC9eXOn6hXEvExQUJPXr11fqKYz3CdabNGmStGzZ0nR/XFycjB8/3sJEADwdg1cAAAAAwMNlZWXl+/E7k7WNTNh2NMQFAAAAAAAAAAAAAAAAUBUeHq5Uf/XqVZcfRv/3v/+t3DNnzpz/vBTJXVJTU926virVoToMXim8SpQoIfXq1VPq+fnnnzWlUXf79m05cuSIUs+9996rKY17denSxdDzi3/273//Ww4fPqwhkWfw9sEyhVlCQoIcP35cqadDhw7Sr18/TYmMKWh7Crie6hCRU6dOaUpiDUfP4P8VlcErNptNoqOjla6/bds2jxrKtWfPHqX6du3amVrnnnvuUao/fPiwJCcnm1pLB9XBK2bvE6zl6+sry5YtMzWE6Y65c+fK2rVrLUwFwJMxeAUAAAAAPJyjv/S983CHkR9cqr61BwAAAAAAAAAAAAAAAHCkTJkyEhwcbLg+JydHrl27pjHR/9q5c6dSfYsWLZQPCFotNzdXEhIS3JpBlerglYoVK2pKgoKgbdu2SvUxMTEecwh3z549kpuba7i+Tp06Xjto6K677pJ//OMfpnpfe+01i9N4hp07d0pMTIy7Y0CTHTt2KPc8//zzGpKouXjxorsjwMNVqlRJqf7MmTOSk5OjKY3zbt68qdxTpkwZpXrVvcy1a9fk4MGDSj26nDt3Ti5fvmy4vmjRotK8eXNTa6nep7y8PPnpp59MrWW1zMxMOXDggOF6m80m9913n8ZEUBEZGSkzZsxw6hrDhg1T+lwBUHD5uTsAAAAAACB/RgevGHm7TnZ2tiWZAAAAAAAAAAAAAAAAgDt8fHykRo0aSocIr1y5IqVKldKY6r/sdrscP35cqad3796a0hh37NgxSU9Pd3cMJaqDV7xpEMV7770nU6dOdXeMfD3wwAOGDw2WK1dOvv32W+U1SpQoYbi2bdu28uGHHxquz8vLkx9//FH69OmjnMtqqvemU6dOmpJ4hlGjRsny5cuV+7766is5ePCgNGjQQEMq95k+fbq7I0CjuLg4pfpixYpJx44dNaUxbv/+/e6OAA9XuXJlpfqsrCw5fvy41K1bV1Mi58THxyvV22w2qVq1qlKP6kAREZENGzbI3XffrdxnNdW9TLt27cTPz9yRdLP3qUePHqbWs9LmzZuVXn4bFRUlZcuW1ZgIqkaNGiXr1q0z9WcbEZGkpCQZMmSIbNiwQWw2m8XpAHgSBq8AAAAAgIfLzMzM9+N3Bq74+/s7vBaDVwAAAAAAAAAAAAAAAKBD7dq1lQavXLp0SerVq6cx0X8lJCQoHZYTEWnVqpWmNMbt3bvX3RGUXbp0Sam+Ro0ampK4nupBXXcw8nKv39c2bNhQYxqRjh07iq+vr+Tm5hruWbNmjUcMXlm/fr1SfefOnTUl8QzR0dESFRUlhw4dUuqz2+3y0ksvKd9PT7Zjxw5ZvXq1u2NAo7NnzyrVN23a1PSwAisVxH0FXMvMvmzfvn0eO3hFdfBieHi4BAcHK/U0bdpUSpUqJUlJSYZ71qxZIy+88ILSOjq4ci9TtmxZadiwoRw4cMBwz9q1a2XOnDluH3TBns87LFq0SKKiopQ+V3/vxx9/lPfee0/Gjx9vcTIAnsTH3QEAAAAAAPnLysrK9+OBgYEiYuyH4gxeAQAAAAAAAAAAAAAAgA61a9dWqj99+rSmJP8rMTFRuadmzZoakqj56quv3B1B2blz55TqPeE+w31Kliwpbdu2VepZv369pKena0pkzJkzZ+TIkSOG64sVKyYdO3bUmMgzjBo1ylTft99+WyC/3v0Vu90uzz//vLtjQDPVfYUnfK/bv3+/nDlzxt0x4OEaN26s3LN9+3YNSazxyy+/KNXXr19feQ1fX1/p3r27Us/OnTslPj5eeS0r3bp1SzZv3my43sfHRx5++GGn1uzVq5dS/aVLl9z++8tut8s333yj1NO7d29NaeCM8PBwmTdvnlPXmDRpksTExFiUCIAnYvAKAAAAAHgwu93ucFjKnYErvr6+Dq/naIgLAAAAAAAAAAAAAAAAYIYnD165ffu2ck+xYsU0JDEuOTlZvv/+e7dmMEPlEGloaKhUqFBBYxoUBKqHcNPS0uSzzz7TlMaYRYsWKdX36NHD0IvVCrohQ4ZI2bJlTfU+88wzkpaWZnEi15s1a5Zs27bN3TGgmeq+wt17ChGRTz/91N0RUACULl1aKlasqNSzadMmTWmcc+nSJYmNjVXqiY6ONrWW6l7GbrfLwoULTa1llU8//VRpkN0999wj4eHhTq2pep9ERObPn+/Ums7atGmT0mDJKlWqSPPmzTUmgjMefvhhGTJkiOn+zMxMGTBggNuHQALQh8ErAAAAAODBHA1dEfnv4BWbzSb+/v5OXw8AAAAAAAAAAAAAAABQVa9ePaV6Vw5eMfPMTGZmpoYkxs2YMaPAvWQpJSVFaXBCzZo1xWazaUyEgqBXr17Kvw+cfVu9M3JycmTx4sVKPX379tWUxrOEhobK5MmTTfVeunRJxowZY3Ei19q/f79MnDjR3THgAqr7CnfvKa5du+bWr5soWNq0aaNUf+LECTl58qSmNOatWLFC7Ha7Uo/qf/sdnTp1krCwMKWeRYsWSW5urqn1rKD6NcGKvUxUVJTUqFFDqeeLL76Q5ORkp9c2S/U+9enTR1MSWOX999+XiIgI0/2xsbEyYcIECxMB8CQMXgEAAAAAD2bkhy2/fxOGo7diMHgFAAAAAAAAAAAAAAAAOtStW1dCQkIM1586dUpjmj9SyXXH5cuXNSQxJiEhQWbPnu229c1SHaZTv359TUlQkFSsWFE6duyo1LNr1y7Zu3evpkT5++KLL5S+PlSoUEHuv/9+jYk8y4gRIyQyMtJU7/Lly+X999+3OJFrXLp0SR555JECNzAL5qjuK9y5pxARefPNN5UGo6Fwe/DBB5V7Pv30Uw1JzMvJyZG5c+cq9YSFhUl0dLSp9YKCgqRfv35KPRcvXpQ1a9aYWs9Z27dvV9pHBQcHK//3/Z3HHntMqT4jI0N54J1Vzp49K2vXrlXqGTp0qKY0sErRokVl6dKl4uNjfrzCRx99JOvWrbMwFQBPweAVAAAAAPBgRn4IFxgY+J//7e/v7/T1AAAAAAAAAAAAAAAAAFV+fn7SuHFjw/VxcXGSl5enMdF/3XXXXco9J06c0JDEsby8PBk8eLDcunXLLes74+jRo0r1TZs21ZQEBc3IkSOVeyZNmqQhSf4yMzPl5ZdfVuoZMWKE+Pr6akrkefz9/eWNN94w3T9hwgTZvHmzhYn0S0xMlI4dO8qZM2fcHQUuorqvcNeeQkRk69atBXKYG9ynS5cuygMJFi5cKDk5OZoSqfv444+VBwI+9NBDEhQUZHrNUaNGKfdMnjxZcnNzTa9p1nPPPadU369fPylevLglaz/++OMOzzv82bRp09wyPOqll15Seult+/btpXbt2hoTwSpt27aV8ePHO3WNJ554QhISEixKBMBTMHgFAAAAADyYkUEpAQEB//nfjv4iUuUv/wAAAAAAAAAAAAAAAAAVLVu2NFybnp6ufCDSrMqVKysfIHXXG+inTp0qP/74o1vWdlZcXJxSPYNXcEePHj2kXLlySj0//vijyz9X3n33XTl79qzhen9/fxk+fLi+QB6qT58+Eh0dbao3JydHunfvXmC+Dp47d046dOigPHgKBVuVKlWU6vfu3SsXLlzQEyYfFy9elP79+7tlsAMKrlKlSknHjh2Ves6fPy/Lly/XlEjNlStXZOLEicp9ffv2dWrdxo0bK+9tjx49KosXL3ZqXVWffvqp7NixQ6nnySeftGz98PBw6dGjh1JPUlKSvP3225ZlMGL79u3y+eefK/VYeZ+g3xtvvCFRUVGm+xMTE+Wxxx4Tu91uYSoA7sbgFQAAAADwYKqDV37/v81eDwAAAAAAAAAAAAAAADCjRYsWSvWHDx/WlOSPAgICJCIiQqln1apVcuPGDU2J/tqbb74p//znP126ppVUBg/4+vpKw4YNNaZBQeLn5ydjxoxR7hs7dqxkZGRoSPS/9u3bJ1OnTlXq6devn/JAGW9gs9lkyZIlEhoaaqr/9u3b0r17d1m9erXFyaz1888/S7NmzVz2vQyeo2bNmkr1drtdli1bpinNX4uPj5d7771XLl++7NJ14R2GDRum3PPyyy/L9evXNaQxLjc3V4YMGaKco2rVqvLAAw84vf7YsWOVeyZPniyJiYlOr23E+fPnlfdb99xzj+XDEs3cp/fee0+OHTtmaY6/k5aWJoMGDVIaqFG1alXp2bOnxlSwWmBgoCxfvlwCAwNNX2PDhg0ye/ZsC1MBcDcGrwAAAACAB8vMzHRY8/thK/7+/vnWZmdnO50JAAAAAAAAAAAAAAAA+CstW7ZUqj906JCmJP+rVatWSvXXrl2TV155RVOaP8rKypKxY8fKyy+/7JL1dFEZPhAVFSUhISEa06CgeeaZZ6RkyZJKPbGxsTJu3DhNif4rOTlZ+vXrp/TiMx8fnwL/Oe2MyMhIeeedd0z3Z2ZmSu/eveXFF1/0uOcec3Jy5J///Kfcd999LjssD8+iuqcQ+W24Wnx8vIY0/2v37t3Spk0bOXXqlEvWU1WlShWx2WzK/8B1evToIWXKlFHquXTpkowcOVJTImPGjRsnGzZsUO577rnnxNfX1+n1+/fvL7Vr11bquXLligwZMkRpyIcZmZmZ0r9/f0lOTlbqmzJliuVZoqOjpVOnTko96enp0rdvX0NnK5xht9vliSeekNOnTyv1TZo0Sfz8/DSlgi4NGjRwevDpxIkT5eDBgxYlAuBuDF4BAAAAAA9m5Ae1v5+y+/shLH/F034ACQAAAAAAAAAAAAAAAO9RsWJFiYyMNFz/66+/akzzRx06dFDumTNnjqxfv15Dmv+Ki4uT1q1bF/g3Zd+4cUOOHz9uuL59+/Ya06AgCgsLkwkTJij3zZ07Vz799FMNiX5z+/ZtefDBB+XkyZNKfY8++qjUqlVLU6qCYfTo0dK5c2fT/Xl5eTJ9+nRp1aqVxMbGWpjMvF9//VVatmwpU6ZM4XnMQqxGjRpSsWJFpZ6bN2/KkCFDJD09XVOq34YCvfPOO9KmTRs5f/68tnXg/QICAkx9T165cqW8/vrrGhLlz263y7hx4+Rf//qXcm/58uVl6NChluTw8fExNajku+++k2nTplmS4a/k5uZK//79Zfv27Up9bdu2lY4dO2rJ9Nprryn3xMTEyLPPPqshzX+NHTtWVq5cqdQTGRkpQ4YM0ZQIuk2YMEHatm1ruj8zM1MGDBggGRkZFqYC4C4MXgEAAAAAD2Zk8Mrvh634+/s7fT0AAPD/2Lv7eK/n+3/gz885p08Xp0MqV42hMDpSo0wiYnNbSqE2W3az6Euzma+LyW2+aCa+cn3Vl3K1mPFFZOZiWOFryWglIbS5yPVs5CvVp9Pp98f3xo90zuf6os+532+3bred9+v1fr4erXTOqc/78QEAAAAAAABylc1D9nPnzi1iki879NBD0762Zl1r1qyJww47LGbOnFnwPB988EEcf/zx0adPn5g3b17B5n700UcFm5WNv/71r7F27dqM9yteYX1+/vOfR48ePbK+78gjj8z6IdlMfPTRRzFs2LB48skns7qvU6dOcd555xU8z4boxhtvjK997Wt5zZg3b17suuuucfTRR8frr79eoGTZ+fvf/x5jxoyJ/v37Z/1ndl1dXYwbN65IySiX73//+1nfM3v27Bg+fHgsX7684Hnuvffe6NOnT0yYMKFgpUDl+pqCyvCzn/0sNt1006zvmzhxYknLVz755JMYPXp0XHbZZTndf9FFF0XHjh0Llufwww+Pfv36ZX3f6aefnvPPoTWrVq2KI444Iu6+++6s7kskEnHJJZcUPM9nBg4cGCNGjMj6vqlTp8ZJJ51U8DzNzc1x8sknxxVXXJH1vRdccEHW32dSOWpqauKmm26KjTbaKOcZzz//fPziF78oYCqgXBSvAAAAVLBCF694hwUAAAAAAAAAAIrpwAMPzHjvu+++W7KH6Lt27ZrTw32pVCpGjRoVJ5xwQkEelH7uuedi/Pjxsc0228SUKVOiqakp75lf9Le//a2g8zKVTRFBbW1tXu8qTvXq3LlzXHXVVVnf19TUFD/84Q9j2rRpBcuyePHiGDhwYDz66KNZ33v66afnXTZSLbbccsv4wx/+EJ07d85rzpo1a+LGG2+MHXfcMY4++uh4/PHHsyp7ytWsWbNi9OjR8Y1vfCNuvfXWrM9MJBLxm9/8Js4///xIJBJFSkk5jB07Nqf7Zs2aFf369YvHHnss7wwrVqyIG264Ib75zW/GiBEjYvHixXnP/KJyfU1BZaivr4+zzjorp3snTpwYI0eOjH/9618FTvVls2bNir59+8Zdd92V0/1DhgyJH/7whwXNVFNTE9dee23U1tZmfe9JJ50UZ599djQ3Nxcky1tvvRX7779//Pd//3fW944bNy523333guRoyVVXXZXT1weXXXZZjB8/PlauXFmQHB999FGMGjUqLr300qzv/fa3vx2HHnpoQXJQPttss01cfvnlec2YMmVK3HfffQVKBJSL4hUAAIAKtmrVqrR7vli88sX/vT6KVwAAAAAAAAAAKKb9998/q3f8njt3bhHTfNlpp52W033Nzc1x5ZVXxs477xwXXXRRfPjhh1nd/8ILL8QFF1wQgwYNil133TWmTZsWn376aUb3NjQ0ZHXW9OnTs9pfKNn8Ou6+++6x8cYbFzENG7JDDz00pwdYm5qaYvz48XHIIYfEP/7xj5zPX7VqVZx//vnRr1+/nEoM+vbtGxMmTMj5/GrUr1+/uP3223N6CH1dqVQqbrzxxth3332jV69e8R//8R/xyCOPFKQYK+L/XmP56KOPxkknnRQ9e/aMAw44IGbMmJFTSVYikYhp06bFEUccEd27d49ddtmlIBmpDH369ImDDjoop3uXLFkSQ4YMie9973vxP//zP1ndu3z58pg5c2b827/9W2y11VYxbty4WLBgQcb3Z/N1xUMPPRTvvvtuVvmoLj/96U9zLt/4/e9/HzvssENcfPHFBSvI+Mz8+fNj5MiRccABB8Tf//73nGZ06dIlrr/++oLm+kz//v3jhBNOyOneX/3qV7HvvvvGq6++mvP5a9asiWuvvTYaGxtjzpw5Wd/fo0ePuPDCC3M+P1Nbb711nHvuuTndO23atOjfv39Wf/6tz9133x2NjY0xc+bMrO+tr68vaOkf5TV27Ng47LDD8ppx9NFHx3vvvVegREA5JErR7gm5SiQSz0dE73Wv9+7dO55//vkyJAIAgNJ6+OGH074L0L/+9a/YZJNNIiJi7733jj//+c8t7v35z38eV1xxRUEzAgAAAAAAAADAF+23337x2GOPZbT3+OOPjyuvvLLIif6/Qw45JO655568ZnTs2DH22muv2GeffaJ3797RrVu32GijjeLTTz+NZcuWxYcffhiLFy+O5557LhYsWBBvvvlmTud06dIlHn744Rg4cGDGD/3X1tbGxIkT44gjjoitt9461qxZE8uWLYvXXnstmpqaYtCgQTllSWfzzTeP999/P6O95557bpx++ulFyUHrtt1223j99dcz2rvNNtvEa6+9VtxALXj77bejsbExPvroo5zu79y5cxx99NFx0kknxbbbbpvRPe+8807ccsstcckll8Q777yT07kdOnSIuXPnRt++fXO6v9pdc801cdxxxxVldl1dXey2227Rt2/f6Nmz5+c/Ntlkk6ivr49OnTpFfX19rFmzJlasWBGffvppfPDBB/HGG2/E66+/HosXL46//OUvsWDBgozeMC+dRCIR11xzTRx77LGfX/v3f//3jF6/WVtbm1PRSzrZfG7+zOzZs2O//fYreJZqMW/evNhjjz2iubk5rzm9evWKfffdNwYOHBhbbrlldOvWLRKJRHz88cexbNmyePPNN2PRokXx3HPPxbPPPpvz79Fx48bFlltuGZMmTcr4nt133z3+8z//M/bYY4/o3LlzfPLJJ/H+++/HK6+8EnvuuWd07do16xzZfC76Is/Blse8efNizz33zOvPpa5du8aYMWNizJgxMWDAgKirq8t6xtKlS+O+++6L6dOn513cmEgkYubMmTFixIi85rRm+fLl0adPn5wLVJLJZIwZMyZOOeWUjIu7Pvzww7jjjjviwgsvjCVLluR0biKRiPvvvz+++93v5nR/tpqbm2PQoEE5/5rW1NTEIYccEqecckrstddeGd2zfPny+P3vfx8XXnhhzJ8/P6dzIyKmTp36pc/zbcWvfvWrOPvss7O658UXX4yddtqpSIkK54MPPog+ffrkVTo2dOjQuO+++yKRSBQwGW1VY2NjvPDCC+tbemHt2rWNpc7TFiheoaIpXgEAoK277777Yvjw4a3u+eSTT6K+vj4i/u8dg2bPnt3i3p/85Cdx9dVXFzQjAAAAAAAAAAB80eWXXx4nnnhiRnt33nnnlh4kKYo33ngjevfuHcuXLy/Zmbno0KFD/PGPf4zBgwfHrrvuGs8991zeM0eOHJnTu7mn88ILL0RjY+bP/CxatCir/RTOhlK8EhHxwAMPxPDhw/MqNEgkEtHY2Bj77bdf7L777rHpppt+XmiwbNmyeOedd+LZZ5+NuXPnxty5c/N+qL+tPoCbjRtvvDF+8pOfRCqVKneUoqmtrY0bbrghjjzyyC9dv/vuu+Owww7L6H7FKxuOE044oaQFcrk6+OCD4+6774577rknRo0aVZCZ8+fPj379+mV9n+KVDc9FF10Up556akFmde7cOQYOHBiNjY3Rs2fP+PrXvx4NDQ3RqVOnSCaTsXLlyli+fHm88847sXTp0li0aFH89a9/jZdffrkg50dEnHXWWVkXR+RiwYIFMWjQoPj000/zmrP99tvHfvvtF9/61rdis802i+7du0ddXV18/PHH8f7778fChQvj6aefjscffzzvzx+//OUv47zzzstrRraWLl0aAwYMiPfeey+vOVtvvXXsu+++sddee31eYtWxY8f4+OOP44MPPohFixbFvHnzYtasWbFy5cq8zvrBD34Qt956a14zNlTVXLwSEXH//ffHsGHD8ppx+eWXxwknnFCgRLRlildKL/tqOAAAAEomk39cTCaTn//vdu3a5T0PAAAAAAAAAADy8b3vfS9OPvnkjAoTXnzxxXj77bejR48eJUgW8fWvfz2mTJkSY8eOLcl5uejWrVvMnDkz9t5774iIGDJkSEGKV4olmwf5t99+e6UrZGTo0KFxwQUXxC9+8YucZ6xduzYWLVoUixYtKmCy9TvuuOOUrmTgqKOOih133DEOO+xZJnWJAAAgAElEQVSweP/998sdp+A6duwYt912W4wYMeIra/vuu28kEgnlEVXm/PPPj9mzZ5fkz5lc/ehHP4rrr78+amtrY999942ampq8Sq1oe0455ZR4/PHH495778171ieffBIPP/xwPPzwwwVIlr3jjz++JKUrERH9+vWL6dOnx/e///28/uxfsmRJLFmyJK677roCpvuq4cOHxznnnFPUM9Zn6623jrvvvjuGDBkSq1atynnO0qVL47e//W389re/LWC6r+rfv39cf/31RT2D8jnooINi/PjxMXXq1JxnnHbaaTFkyJDo06dPAZMBpVBT7gAAAAC0LJO/PKyr+/+dmumKV1avXp13JgAAAAAAAAAAaE2PHj1in332yXj/n/70pyKm+aof//jH8bOf/aykZ2aqV69e8eSTT35euhIRMXLkyDImSu/BBx/MeO9hhx1WxCRUm1NOOSWOPvrocsdIa8SIEXHllVeWO8YGY9CgQfGXv/wlBgwYUO4oBbXFFlvE7Nmz11u6EhHRtWvX2HXXXUucimLr1KlTzJgxIzbZZJNyR1mvM888M26++ebP3+SxW7duMWjQoDKnYkOTSCTilltu2eD/3B43blxcccUVJT1z9OjRJSt6yccee+wRt912W9TW1pbl/IEDB8a0adMikUiU5fxM9erVK+69997o1KlTuaNQRBdffHFsv/32Od+/cuXKGDNmTKxcubKAqYBSULwCAABQwVKpVKvr7du3/9JfMH72DyMtUbwCAAAAAAAAAEAp/OAHP8h4bzbFHYVyxRVXxA9/+MOSn9uaH/3oRzFv3rzYYYcdvnR9yJAheT34VUyrVq3KqjjnyCOPLGIaqtG1114bxx57bLljtGj48OFxxx13lO1B5Q3VNttsE3PmzIlf//rXad9wbkOwxx57xNNPPx3f+ta3Wt03ZMiQEiWilHbcccd48MEHo6GhodxRPrfFFlvEH/7wh/j1r3/9lbVjjjmmDInY0DU0NMSDDz4Yu+yyS7mjZC2RSMQ555wT1113XVmKPc4888w455xzSn5upvbYY4946KGHor6+vqw5jjzyyLjhhhsq9muqXr16xaOPPhpbbLFFuaNQZPX19XHzzTfn9Xtx0aJFMWHChAKmAkpB8QoAAEAFS1e8sm7RSrp/gEw3DwAAAAAAAAAACmHUqFFRV1eX0d7777+/5G8oVFNTEzfddFOMGzeupOeuT/fu3eOOO+6Im2++OTbeeOOvrH/2sGglmjVrVixfvjyjvbvvvns0NjYWORHVpqamJqZOnRq//OUvyx3lK4466qi466670r5hGutXV1cXZ555Zjz11FOx6667ljtOTmpqauKUU06JJ554Irbaaqu0+xWvVK899tgjHnnkkdhss83KHSVGjRoVzz33XAwbNmy962PGjInevXuXOBXVoGvXrjF79uzYb7/9yh0lYxtttFHceuutccYZZ5Q1xxlnnBH/9V//FTU1lfVI99ChQ+ORRx5Z7/cg5TB27NiYMWNGdOjQodxRvmTAgAEZf66nOuy55555f/9x5ZVXxgMPPFCgREApVNZnaQAAAL6k0MUrpX6BCgAAAAAAAAAAbdOmm24aBx10UEZ7P/roo3jssceKnOir6urq4rrrrovJkydnXBJTSMlkMk4++eR45ZVXYvTo0a3u/cEPfhDf+973SpQsc/fee2/Ge3/84x8XMQnV7rzzzotp06ZFfX19uaNEMpmMSy65JG644Ya0r9kjvW9+85vx17/+NaZNmxZbbLFFueNkrLGxMR577LG46KKLMv59MHjw4Ip76J7C2WOPPeLJJ5+Mfv36leX8XXfdNR566KG48847o3v37i3uq62tjZtvvjnat29fwnRUi+7du8fDDz8cJ554YrmjpPWd73wnFi1aFIcffni5o0RExHHHHRd33313q/99lkoikYhTTz017r333mhoaCh3nC8ZOXJk/OlPf4ptt9223FEiIuLII4+Mxx57bIP6GoXCmDhxYvTv3z+vGUcddVS8//77BUoEFJvv1AAAACrYqlWrWl1ft3gl3TtnpCtyAQAAAAAAAACAQhk3blzGe2fOnFnEJK2bMGFCPPnkk9HY2FiS8+rq6mLMmDHx4osvxsUXXxxdunTJ6L6bbrophg0bVuR0mVuzZk3ceeedGe3t0KFDjBkzpsiJqHbHHHNMPPvsszFo0KCyZdhll11izpw5cdJJJ5UtQzWqra2NY445JpYsWRK/+tWvYpNNNil3pBZtvfXWcc0118SCBQti7733zureLl26lK2Ug9Lo2bNnPPXUU3HaaaeVrJipZ8+ecd1118X8+fPjO9/5Tkb37LbbbjFz5syKKLNiw1NXVxeXXnppzJo1K3r37l3uOF+x7bbbxvTp0+Ohhx6KrbfeutxxvmTEiBGxaNGiGDFiRNkybLPNNvHHP/4xLrjggqitrS1bjtbstddesXDhwqy+nyy07t27xy233BLTp0+Pjh07li0H5VNXVxc333xzXr/+7733Xhx99NEFTAUUk+IVAACACpauKGXdtvl0/0izevXqvDMBAAAAAAAAAEAmhg0bFltuuWVGe++6665obm4ucqKW9e/fP5599tm4+uqri/aA5qabbhqnn356vPbaa3HLLbdEz549s7q/Q4cO8fvf/z4uvPDC2HjjjbM+v9BFBn/605/iH//4R0Z7Dz/88OjWrVtBz6dt6tWrVzz++ONx1VVXRY8ePUp2bteuXeOiiy6K+fPnx+67716yc9ua+vr6mDhxYrz55ptx9dVXx84771zuSJ/r06dPXHPNNfHKK6/E+PHjo66uLqc5++23X2GDZWjs2LExceLErH5su+22Zcm6oUsmk3H++efH888/H6NHj46amuI8wnnAAQfEPffcE6+88kqMGzcu63O++93vxjPPPBNDhgzJ+uwOHTpEhw4dsr4vV6UqsSE7Q4YMiQULFsQll1wSW221VbnjxDbbbBNXXnllvPTSS3HkkUeWO06LNt9887jnnnvid7/7Xey4444lO7dTp05x+umnxwsvvJBxSVM5NTQ0xHXXXRcPPvhgSb/2ateuXYwfPz4WL16sOJLYaaedYvLkyXnNuO++++Kqq64qUCKgmBJr164tdwZoUSKReD4ivlJ72Lt373j++efLkAgAAErrnHPOibPOOqvF9R133DFeeumlzz/++c9/3upfyuyzzz7x+OOPFzQjAAAAAAAAAAC05Mwzz4xJkyZltPeRRx6JAw44oMiJ0mtqaoqZM2fG9OnT4+GHH45Vq1blPGu77baLoUOHxkEHHRTf/va3v/JGS7n63//937j99tvjoYceimeffTbeeuutWL58eUT835s5bbzxxtGjR4/o06dP7LXXXrH//vvHDjvsUJCzP3PEEUfE7373u4z2Pv3009G/f/+Cng+rVq2K66+/PiZPnhxvvPFGUc7Yeuut47jjjovjjz8+GhoainIGrZs9e3bcfvvtMXPmzHj33XdLevYWW2wRhx12WIwZMyYGDRpUkJkLFy6Mu+66q8X1mpqaVl83yobntddei6lTp8add94ZS5YsyXlO+/btY/DgwXHQQQfFwQcfHL169SpYxmeeeSbuuOOOmDNnTrzyyivx4YcfRiqVirq6uqivr49u3bpFr169YsCAATF48OAYPHhwdOzYsWDnf+aggw6KBx544CvXu3btGv/85z8Lfh6F09TUFLfffntMmTIlnnzyySjVc8vJZDKGDx8exxxzTBx44IFFKzoqljVr1sRtt90W5513XrzwwgtFOaN79+4xbty4OPnkk2OzzTYryhmlcN9998WkSZNi7ty5RZnf0NAQP/rRj+LUU0+N7bbbrihnAGSjsbGxpc8NL6xdu7ax1HnaAsUrVDTFKwAAtHXpXniyyy67xHPPPff5xyeffHJceumlLe7/1re+VbS/bAQAAAAAAAAAgHW9+eabsd1220VTU1PavWPHjo0bb7yxBKky98knn8QTTzwRTz31VCxcuDBee+21eOutt+KTTz6JlStXRjKZjIaGhmhoaIguXbpEz549o7GxMRobG6Nv374FLzupFMuWLYstt9wyVqxYkXbvvvvuG48++mjxQ9FmNTc3xxNPPBEzZsyIu+++O5YuXZrXvM022yyGDx8eo0ePjgMPPDBqa2sLlJR8NDc3x5///Od44IEHYs6cOfH000/Hp59+WtAzunTpEgMGDIghQ4bE/vvvHwMGDNjgHuKnsr3wwguf//5dsmRJvP766/HPf/4zPv3001izZk107tw5Ntpoo2hoaIjNN988evfuHY2NjdG7d+/o379/1NfXl/unUFRHHXVU/OY3v/nK9W233TZeffXV0gciJ++8807MnDkz7r333pg7d258+OGHBZudSCRi++23j/333z+GDh0a3/72t6vmv4tnnnkm7rrrrpgxY0a8/PLLec3q0qVLfPe7341Ro0bFwQcfXLDyx0rw4osvxowZM2LGjBmxYMGCvGZ16tQpDjjggBg1alSMGjUqOnfuXKCUAPlTvFJ6ileoaIpXAABo6yZMmBAXXnhhi+u77bZbzJs37/OPTzvttLjgggsy3g8AAAAAAAAAAMU2evTomDFjRtp99fX18c4770RDQ0MJUpGPq6++On76059mtPf++++PoUOHFjkR/J+1a9fGSy+9FM8++2wsXLgwnnvuuVi6dGl8/PHHn/9Ys2ZNtG/fPjp37hxbbLFFfO1rX4tvfOMbscsuu8Ree+0VO++8c7l/GmSgqanp81/jV1999fMf77//fixfvjyWL18en376aaRSqWjXrl0kk8no2LFjbLLJJtGtW7fo3r17bLPNNrHddttFr169om/fvrHtttuW+6cFbdohhxwS99xzz1eu9+nTJxYuXFiGRBTCkiVL4plnnonFixfH0qVL44033oi33norPv7441ixYkWsWLEiVq1aFXV1ddGhQ4fo2LFj1NfXf/45equttoqePXtG3759o1+/fm3ie4VXX301FixYEAsXLoyFCxfG66+/HsuWLYuPP/44li1bFqtXr4727dtHfX19bL755tGjR4/Ycccdo7GxMfbcc8/o27dvmygOe/vtt2P+/PmxcOHCePbZZ+Pvf/97LFu27PP/r1atWhXJZDI6deoUm222WWy55Zaxww47RGNjYwwYMCD69+8f7dq1K/dPA2C9FK+UXl25AwAAANCyVCrV6vq67dPJZLLV/atXr847EwAAAAAAAAAAZOPEE0/MqHhl+fLlceutt8axxx5bglTk45prrsloX9++fZWuUFKJRCJ22mmn2GmnneLwww8vdxyKqK6uLnbbbbfYbbfdyh0FKJD3339/vdeVIm3Ytt9++9h+++3LHWODst1228V2220Xhx56aLmjVLQePXpEjx49YtiwYeWOAkAVqP7KMgAAgA1YuuKVdYtW0jUup5sHAAAAAAAAAACFtvfee8fAgQMz2jtt2rQipyFfTzzxRCxcuDCjvWeddVaR0wAA1eLNN99c7/XGxsYSJwEAoK1RvAIAAFDBCl28snr16rwzAQAAAAAAAABAtiZMmJDRvnnz5sVTTz1V5DTkY8qUKRnt69evXxx66KFFTgMAVIPXX389li5dut613r17lzgNAABtjeIVAACACrZq1apW19ctXln343WlK3IBAAAAAAAAAIBiGDlyZPTr1y+jvVdeeWWR05Crt99+O2bMmJHR3rPPPjsSiUSREwEA1WD27Nktrn3zm98sYRIAANoixSsAAAAVLF1RSvv27b/0cbt27Vrdv3r16rwzAQAAAAAAAABAthKJRJxzzjkZ7b3jjjvivffeK3IicjFlypSMXoM0cODAGDFiRAkSAQDV4I9//ON6r3/961+PXXbZpcRpAABoaxSvAAAAVLB0xSvJZLLVj9eleAUAAAAAAAAAgHIZPnx4DB48OO2+VCoVU6ZMKUEisrFixYqYOnVqRnsnT55c5DQAQLX417/+FTNnzlzv2rBhw0qcBgCAtkjxCgAAQAXLtnilXbt2ec0DAAAAAAAAAIBiuvzyy6OmJv2jDFdffXWsWLGiBInI1E033RT//Oc/0+4bPnx47LPPPiVIBABUg0suuSRWrly53rWRI0eWOA0AAG2R4hUAAIAKlq4oZd2ilXTFK6tXr847EwAAAAAAAAAA5Kpfv37xk5/8JO2+Dz74IKZPn16CRGSiubk5Lr744rT7amtr4/zzzy9BIgCgGrz00kstfo2xww47xHe+850SJwIAoC1SvAIAAFDB0hWvJJPJVj9el+IVAAAAAAAAAADKbdKkSbHpppum3XfRRRfFmjVrSpCIdO6666545ZVX0u479thjo7GxsQSJAIAN3T/+8Y8YOXJkrFy5cr3rJ510UtTUeAQWAIDi81UnAABABWtqamp1vV27dq1+vK7m5mYvRgEAAAAAAAAAoKw22WSTmDx5ctp9f/vb3+LOO+8sQSLSufDCC9Pu2XjjjePss88uQRoAYEM3Z86cGDhwYLz00kvrXd90003jxz/+cYlTAQDQVileAQAAqGCrV69udT3b4pVMZgIAAAAAAAAAQLGNHTs29tlnn7T7MiloobgeffTR+Mtf/pJ23xlnnBGbbrppCRIBABuqa6+9Nvbff/8YNGhQ/O1vf2tx3+TJk6NTp04lTAYAQFumeAUAAKCCpStJqaur+9LHyWQy7cxUKpVXJgAAAAAAAAAAyFcikYirr7467RsNzZ8/Px588MESpWJ9zj333LR7dthhhzjhhBNKkAYA2JCde+65MXv27Fb3HHLIITF27NjSBAIAgFC8AgAAUNHSFa+s+8KTdC9EyWQmAAAAAAAAAACUQmNjY5xyyilp902aNKkEaVifZ555Jh555JG0+y6//PKM3jQKAKA1AwYMiJtuuikSiUS5owAA0IYoXgEAAKhg2RavZPLiBcUrAAAAAAAAAABUirPOOiu22267Vvf8+c9/jtmzZ5coEV907rnnpt1z8MEHx9ChQ0uQBgCoZgceeGA88sgj0dDQUO4oAAC0MYpXAAAAKli2xSvrfrw+qVQqr0wAAAAAAAAAAFAoHTt2jClTpqTdd84555QgDV/0/PPPxz333NPqnvbt28ell15aokQAQDXq3LlzXHDBBfHAAw/ERhttVO44AAC0QYpXAAAAKlgxilfSzQQAAAAAAAAAgFIaOnRoHH744a3umT17djzxxBMlSkTE/5XdrF27ttU9EyZMiF69epUoEQBQTbp27RoTJkyIl19+OU499dSoqfG4KwAA5eErUQAAgAqWbfFKMpnMeyYAAAAAAAAAAJTaZZddFl26dGl1z8SJE0uUhsWLF8cdd9zR6p6ePXvG6aefXqJEAEA1GDBgQJx00knxwAMPxLvvvhuTJ0+OLbfcstyxAABo4+rKHQAAAICWZVu8su7H65NKpfLKBAAAAAAAAAAAhbbFFlvE5MmTY/z48S3umTVrVjz++OMxePDgEiZrmyZNmhTNzc2t7rnqqquiQ4cOJUoEAFSDdMVuAABQDjXlDgAAAEDLilG8km4mAAAAAAAAAACUwzHHHBODBg1qdc/EiRNLlKbteuWVV+K2225rdc+oUaNi6NChJUoEAAAAAMWjeAUAAKCCZVu8kkwm085MpVJ5ZQIAAAAAAAAAgGJIJBIxbdq0Vl8D8+ijj8bs2bNLmKrtmTRpUqxZs6bF9YaGhrjssstKmAgAAAAAikfxCgAAQAXLtnhl3Y9zmQkAAAAAAAAAAOXSu3fvOO2001rdc8YZZ5QoTdvz8ssvxy233NLqnkmTJsVWW21VokQAAAAAUFyKVwAAACrU2rVrW33nmIivFq209m4/n1G8AgAAAAAAAABAJfuP//iP+MY3vtHi+pw5c+L+++8vYaK24+yzz271NUv9+/eP448/voSJAAAAAKC4FK8AAABUqEwKUtYtXln34/VJpVI5ZwIAAAAAAAAAgGJr3759XHvttZFIJFrcc8YZZ8TatWtLmKr6LV68OG677bYW12tra+Paa6+NmhqPogAAAABQPfxtFwAAQIUqVvFKJnMBAAAAAAAAAKCc9tlnnzjmmGNaXJ8/f37ceeedJUxU/c4+++xobm5ucf3EE0+Mfv36lTARAAAAABRfXbkDAAAAsH6KVwAAAAAAAAAAaMumTp0aU6dOLXeMNuPWW2+NW2+9tdwxAAAAAKCkasodAAAAgPVrampKu2fdopXa2tqoqWn9W71UKpVXLgAAAAAAAAAAAAAAAACoBopXAAAAKtTq1avT7lm3eCUiIplM5j0XAAAAAAAAAAAAAAAAAKqd4hUAAIAKlWvxyvqufVEqlco5EwAAAAAAAAAAAAAAAABUC8UrAAAAFSqT4pW6urqvXEtXvJLJXAAAAAAAAAAAAAAAAACodopXAAAAKlQmBSnrK1lJJpN5zwUAAAAAAAAAAAAAAACAaqd4BQAAoELlWryyvmtflEqlcs4EAAAAAAAAAAAAAAAAANVC8QoAAECFKlbxSiZzAQAAAAAAAAAAAAAAAKDaKV4BAACoULkWrySTybznAgAAAAAAAAAAAAAAAEC1U7wCAABQoXItXlnftS9KpVI5ZwIAAAAAAAAAAAAAAACAaqF4BQAAoELlWrySTCbzngsAAAAAAAAAAAAAAAAA1U7xCgAAQIXKtXhlfde+KJVK5ZwJAAAAAAAAAAAAAAAAAKqF4hUAAIAKVazilUzmAgAAAAAAAAAAAAAAAEC1U7wCAABQoXItXkkmk3nPBQAAAAAAAAAAAAAAAIBqp3gFAACgQuVavLK+a1+USqVyzgQAAAAAAAAAAAAAAAAA1ULxCgAAQIVKV7xSU1MTNTVf/bYuXfFKJoUuAAAAAAAAAAAAAAAAAFDtFK8AAABUqHQFKS0VrCSTyVbvS6VSOWcCAAAAAAAAAAAAAAAAgGqheAUAAKBCNTU1tbreUvFKS9c/k67QBQAAAAAAAAAAAAAAAADaAsUrAAAAFSpdQUpLBSvJZDKvuQAAAAAAAAAAAAAAAADQFiheAQAAqFC5Fq+0dP0zqVQq50wAAAAAAAAAAAAAAAAAUC0UrwAAAFSodMUrdXV1672erngl3VwAAAAAAAAAAAAAAAAAaAsUrwAAAFSodAUpLRWsJJPJvOYCAAAAAAAAAAAAAAAAQFugeAUAAKBC5Vq80tL1z6RSqZwzAQAAAAAAAAAAAAAAAEC1ULwCAABQoYpVvJJuLgAAAAAAAAAAAAAAAAC0BYpXAAAAKlSuxSvJZLLV+1KpVM6ZAAAAAAAAAAAAAAAAAKBaKF4BAACoULkWr7R0PdO5AAAAAAAAAAAAAAAAANAWKF4BAACoULkWrySTybzmAgAAAAAAAAAAAAAAAEBboHgFAACgQuVavNLS9c+kUqmcMwEAAAAAAAAAAAAAAABAtVC8AgAAUKGKVbySbi4AAAAAAAAAAAAAAAAAtAWKVwAAACpUrsUryWQyr7kAAAAAAAAAAAAAAAAA0BYoXgEAAKhQuRavtHT9M6lUKudMAAAAAAAAAAAAAAAAAFAtFK8AAABUqGIVr6SbCwAAAAAAAAAAAAAAAABtgeIVAACACpVr8UoymUw7d+3atTnnAgAAAAAAAAAAAAAAAIBqoHgFAACgQuVavNLS9S9qamrKKRMAAAAAAAAAAAAAAAAAVAvFKwAAABUqXTlKSwUryWQy7ex0pS4AAAAAAAAAAAAAAAAAUO0UrwAAAFSodOUoLRWvtHT9i1KpVE6ZAAAAAAAAAAAAAAAAAKBaKF4BAACoUOmKV+rq6tZ7PZPilXSzAQAAAAAAAAAAAAAAAKDaKV4BAACoUOnKUVoqWEkmk3nPBgAAAAAAAAAAAAAAAIBqp3gFAACgQuVavNLS9S9KpVI5ZQIAAAAAAAAAAAAAAACAaqF4BQAAoEIVs3gl3WwAAAAAAAAAAAAAAAAAqHaKVwAAACpUrsUryWQy7exUKpVTJgAAAAAAAAAAAAAAAACoFopXAAAAKlSuxSstXc9mNgAAAAAAAAAAAAAAAABUO8UrAAAAFSrX4pVkMpn3bAAAAAAAAAAAAAAAAACodopXAAAAKlSuxSstXf+iVCqVUyYAAAAAAAAAAAAAAAAAqBaKVwAAACpUMYtX0s0GAAAAAAAAAAAAAAAAgGqneAUAAKBC5Vq8kkwm854NAAAAAAAAAAAAAAAAANVO8QoAAECFyrV4paXrX5RKpXLKBAAAAAAAAAAAAAAAAADVQvEKAABAhcq1eCWZTOY9GwAAAAAAAAAAAAAAAACqneIVAACACpVr8UpdXV3a2alUKqdMAAAAAAAAAAAAAAAAAFAtFK8AAABUoObm5mhubm51T0vFK4lEIm35SrpSFwAAAAAAAAAAAAAAAACodopXAAAAKlBTU1PaPS0Vr0REJJPJVu9VvAIAAAAAAAAAAAAAAABAW6d4BQAAoAJlUozSWvFKa2sREalUKutMAAAAAAAAAAAAAAAAAFBNFK8AAABUoEyKV+rq6lpcS1e8ksl8AAAAAAAAAAAAAAAAAKhmilcAAAAqUCbFKK2VqySTybznAwAAAAAAAAAAAAAAAEA1U7wCAABQgfItXmltLSIilUplnQkAAAAAAAAAAAAAAAAAqoniFQAAgAqUb/FKMpnMez4AAAAAAAAAAAAAAAAAVDPFKwAAABUo3+KV1tYiIlKpVNaZAAAAAAAAAAAAAAAAAKCaKF4BAACoQMUuXslkPgAAAAAAAAAAAAAAAABUM8UrAAAAFSjf4pVkMpn3fAAAAAAAAAAAAAAAAACoZopXAAAAKlC+xSutrUVEpFKprDMBAAAAAAAAAAAAAAAAQDVRvAIAAFCBil28ksl8AAAAAAAAAAAAAAAAAKhmilcAAAAqUL7FK8lkMu/5AAAAAAAAAAAAAAAAAFDNFK8AAABUoHyLV1pbi4hIpVJZZwIAAAAAAAAAAAAAAACAaqJ4BX1EYK0AACAASURBVAAAoALlW7ySTCbzng8AAAAAAAAAAAAAAAAA1UzxCgAAQAXKt3iltbWIiFQqlXUmAAAAAAAAAAAAAAAAAKgmilcAAAAqULGLVzKZDwAAAAAAAAAAAAAAAADVTPEKAABABWpqakq7p7VylWQy2eq9ilcAAAAAAAAAAAAAAAAAaOsUrwAAAFSgdMUotbW1kUgkWlxvrZQlIiKVSuWUCwAAAAAAAAAAAAAAAACqheIVAACACpSueCVdsUq69XTzAQAAAAAAAAAAAAAAAKDaKV4BAACoQOmKUerq6lpdTyaTra6nUqmsMwEAAAAAAAAAAAAAAABANVG8AgAAUIHSFa+0a9cur/V08wEAAAAAAAAAAAAAAACg2ileAQAAqED5Fq8kk8m85gMAAAAAAAAAAAAAAABAtVO8AgAAUIHyLV5Jt55KpbLOBAAAAAAAAAAAAAAAAADVRPEKAABABSp28Uq6+QAAAAAAAAAAAAAAAABQ7RSvAAAAVKB8i1eSyWRe8wEAAAAAAAAAAAAAAACg2ileAQAAqED5Fq+kW0+lUllnAgAAAAAAAAAAAAAAAIBqongFAACgAhW7eCXdfAAAAAAAAAAAAAAAAACodopXAAAAKlC+xSvJZLLV9VQqlXUmAAAAAAAAAAAAAAAAAKgmilcAAAAqUL7FK+nW080HAAAAAAAAAAAAAAAAgGqneAUAAKAC5Vu8kkwm85oPAAAAAAAAAAAAAAAAANVO8QoAAEAFyrd4Jd36mjVrorm5OetcAAAAAAAAAAAAAAAAAFAtFK8AAABUoGIXr2RyBgAAAAAAAAAAAAAAAABUM8UrAAAAFaipqanV9XTFKslkMu0ZilcAAAAAAAAAAAAAAAAAaMsUrwAAAFSgdKUo6YpX0q1HRKRSqawyAQAAAAAAAAAAAAAAAEA1UbwCAABQgfItXkkmk3mfAQAAAAAAAAAAAAAAAADVTPEKAABABUpXilJXV9fqerpiloiIVCqVVSYAAAAAAAAAAAAAAAAAqCaKVwAAACpQuuKVdMUqmRSvpDsDAAAAAAAAAAAAAAAAAKqZ4hUAAIAKlG/xSjKZzPsMAAAAAAAAAAAAAAAAAKhmilcAAAAqUL7FK+nWIyJSqVRWmQAAAAAAAAAAAAAAAACgmiheAQAAqEClKF5JdwYAAAAAAAAAAAAAAAAAVDPFKwAAABUo3+KVZDKZ9xkAAAAAAAAAAAAAAAAAUM0UrwAAAFSgfItX0q1HRKRSqawyAQAAAAAAAAAAAAAAAEA1UbwCAABQgfItXkkmk3mfAQAAAAAAAAAAAAAAAADVTPEKAABABcq3eCXdekREKpXKKhMAAAAAAAAAAAAAAAAAVBPFKwAAABWoFMUr6c4AAAAAAAAAAAAAAAAAgGqmeAUAAKAC5Vu8kkwm8z4DAAAAAAAAAAAAAAAAAKqZ4hUAAIAKlG/xSm1tbSQSiVb3pFKprHMBAAAAAAAAAAAAAAAAQLVQvAIAAFCB8i1eyWRPujMAAAAAAAAAAAAAAAAAoJopXgEA/h979xpr63bXdfw39p5rzBZpS4sBMZHeUkSEgkApRPCW2KgQIxYxahFFQYyJpAGMGMCWS6TGhJRCQA2omBioEEGlEvqCYGIRG5uaGqBKrG2jpMH0Rm9z7LXP8MXaq2ftfdaezzMva85nPuvzSWbmWc8Yzxj/vc6r/eJ8DwATtI/wSq11pzsAAAAAAAAAAAAAAAAAYM6EVwAAACbo/Px87fqY8MrQntbaRjMBAAAAAAAAAAAAAAAAwJwIrwAAAEzQvXv31q6PCa/UWne6AwAAAAAAAAAAAAAAAADmTHgFAABgYp544ok88cQTa/csFovBc4biLK21jeYCAAAAAAAAAAAAAAAAgDkRXgEAAJiYe/fuDe4ZiqqM2TPmHgAAAAAAAAAAAAAAAACYK+EVAACAidlXeKXWuvM9AAAAAAAAAAAAAAAAADBXwisAAAATs6/wytCe1tromQAAAAAAAAAAAAAAAABgboRXAAAAJuZQ4ZUx9wAAAAAAAAAAAAAAAADAXAmvAAAATMy+wiu11p3vAQAAAAAAAAAAAAAAAIC5El4BAACYmH2FV4b2tNZGzwQAAAAAAAAAAAAAAAAAcyO8AgAAMDH7Cq/UWne+BwAAAAAAAAAAAAAAAADmSngFAABgYvYVXhna01obPRMAAAAAAAAAAAAAAAAAzI3wCgAAwMQcKrwy5h4AAAAAAAAAAAAAAAAAmCvhFQAAgInZV3il1rrzPQAAAAAAAAAAAAAAAAAwV8IrAAAAE7Ov8MrQntba6JkAAAAAAAAAAAAAAAAAYG6EVwAAACbmUOGVMfcAAAAAAAAAAAAAAAAAwFwJrwAAAEzMvsIrtda166210TMBAAAAAAAAAAAAAAAAwNwIrwAAAEzM+fn54J4x4ZWhPWMCLwAAAAAAAAAAAAAAAAAwV8IrAAAAEzMmiDImvFJr3fkeAAAAAAAAAAAAAAAAAJgr4RUAAICJGRNEWSwWg3uG4iyttdEzAQAAAAAAAAAAAAAAAMDcCK8AAABMzJjwylBUZcyeMfcAAAAAAAAAAAAAAAAAwFwJrwAAAEzMUBDl7t27KaUMnlNr3ekeAAAAAAAAAAAAAAAAAJgz4RUAAICJGQqinJ2djTpnaF9rbfRMAAAAAAAAAAAAAAAAADA3wisAAAATc6jwytA9AAAAAAAAAAAAAAAAADBnwisAAAATs6/wSq117XprbfRMAAAAAAAAAAAAAAAAADA3wisAAAATs6/wytC+oXsAAAAAAAAAAAAAAAAAYM6EVwAAACZmX+GVWutO9wAAAAAAAAAAAAAAAADAnAmvAAAATMy+witD+1pro2cCAAAAAAAAAAAAAAAAgLkRXgEAAJiYQ4VXhu4BAAAAAAAAAAAAAAAAgDkTXgEAAJiYfYVXaq2D9/TeR88FAAAAAAAAAAAAAAAAAHMivAIAADAx+wqvDO3rvef+/fuj5wIAAAAAAAAAAAAAAACAORFeAQAAmJh9hVdqrTvfBQAAAAAAAAAAAAAAAABzJbwCAAAwMfsKr4zZ11obdRYAAAAAAAAAAAAAAAAAzI3wCgAAwMScn5+vXd9neGUo8gIAAAAAAAAAAAAAAAAAcyW8AgAAMDFDMZSx4ZVa6853AQAAAAAAAAAAAAAAAMBcCa8AAABMzL7CK2P2tdZGnQUAAAAAAAAAAAAAAAAAcyO8AgAAMDFD4ZXFYjHqnDHhlaG7AAAAAAAAAAAAAAAAAGCuhFcAAAAmZiiGMiaokiS11p3vAgAAAAAAAAAAAAAAAIC5El4BAACYmH2FV8bsa62NOgsAAAAAAAAAAAAAAAAA5kZ4BQAAYGL2FV6pte58FwAAAAAAAAAAAAAAAADMlfAKAADAxOwrvDJmX2tt1FkAAAAAAAAAAAAAAAAAMDfCKwAAABNzyPDK0F0AAAAAAAAAAAAAAAAAMFfCKwAAABOzr/BKrXXnuwAAAAAAAAAAAAAAAABgroRXAAAAJmZf4ZUx+1pro84CAAAAAAAAAAAAAAAAgLkRXgEAAJiYQ4ZXhu4CAAAAAAAAAAAAAAAAgLkSXgEAAJgY4RUAAAAAAAAAAAAAAAAAuHnCKwAAABOzr/DKnTt3cvfu3bV7Wmuj5wIAAAAAAAAAAAAAAACAORFeAQAAmJh9hVeSpNa6010AAAAAAAAAAAAAAAAAMFfCKwAAABOzz/DK0N7W2uizAAAAAAAAAAAAAAAAAGBOhFcAAAAm5vz8fO36PsMrQ5EXAAAAAAAAAAAAAAAAAJgr4RUAAICJGYqhbBJeqbXudBcAAAAAAAAAAAAAAAAAzJXwCgAAwMTsM7wytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAICJGQqvLBaL0WcNhVeG7gIAAAAAAAAAAAAAAACAuRJeAQAAmJihGMpQTOWqWutOdwEAAAAAAAAAAAAAAADAXAmvAAAATMw+wytDe1tro88CAAAAAAAAAAAAAAAAgDkRXgEAAJiQ+/fvp/e+ds8m4ZVa69r1ocgLAAAAAAAAAAAAAAAAAMyV8AoAAMCEjAmhbBJeGdrbWht9FgAAAAAAAAAAAAAAAADMifAKAADAhBw6vDLmPgAAAAAAAAAAAAAAAACYI+EVAACACdl3eKXWuvN9AAAAAAAAAAAAAAAAADBHwisAAAATsu/wytDe1troswAAAAAAAAAAAAAAAABgToRXAAAAJuTQ4ZUx9wEAAAAAAAAAAAAAAADAHAmvAAAATMi+wyu11rXrrbXRZwEAAAAAAAAAAAAAAADAnAivAAAATMi+wytDe8fcBwAAAAAAAAAAAAAAAABzJLwCAAAwIfsOr9Rad74PAAAAAAAAAAAAAAAAAOZIeAUAAGBC9h1eGdrbWht9FgAAAAAAAAAAAAAAAADMifAKAADAhJyfnw/u2Wd4ZUzoBQAAAAAAAAAAAAAAAADmSHgFAABgQsaEUDYJr9Rad74PAAAAAAAAAAAAAAAAAOZIeAUAAGBC9h1eGdrbWht9FgAAAAAAAAAAAAAAAADMifAKAADAhIwJrywWi9Hn1Vp3vg8AAAAAAAAAAAAAAAAA5kh4BQAAYELGhFDOzs5Gnze0t7U2+iwAAAAAAAAAAAAAAAAAmBPhFQAAgAk5dHhlzH0AAAAAAAAAAAAAAAAAMEfCKwAAABOy7/BKrXXn+wAAAAAAAAAAAAAAAABgjoRXAAAAJmRMCGWxWIw+byjS0lobfRYAAAAAAAAAAAAAAAAAzInwCgAAwIQMhVcWi0VKKaPPGwqvjAm9AAAAAAAAAAAAAAAAAMAcCa8AAABMyFAIZSik8qha6073AQAAAAAAAAAAAAAAAMBcCa8AAABMyL7DK0P7W2sbnQcAAAAAAAAAAAAAAAAAcyG8AgAAMCH7Dq/UWne6DwAAAAAAAAAAAAAAAADmSngFAABgQvYdXhnaf35+nt77RmcCAAAAAAAAAAAAAAAAwBwIrwAAAEzIocMrY+4EAAAAAAAAAAAAAAAAgDkSXgEAAJiQfYdXaq073wkAAAAAAAAAAAAAAAAAcyS8AgAAMCH7Dq+M2d9a2+hMAAAAAAAAAAAAAAAAAJgD4RUAAIAJOUZ4ZehOAAAAAAAAAAAAAAAAAJgj4RUAAIAJOT8/X7u+aXil1jq4R3gFAAAAAAAAAAAAAAAAgNtIeAUAAGBChiIom4ZXxuxvrW10JgAAAAAAAAAAAAAAAADMgfAKAADAhAyFVxaLxUbn1Vp3vhMAAAAAAAAAAAAAAAAA5kh4BQAAYEKGIihnZ2cbnTdmf2ttozMBAAAAAAAAAAAAAAAAYA6EVwAAACbkGOGVoTsBAAAAAAAAAAAAAAAAYI6EVwAAACZk3+GVWuvOdwIAAAAAAAAAAAAAAADAHAmvAAAATMi+wytj9rfWNjoTAAAAAAAAAAAAAAAAAOZgcewBbptSSknyzCS/I8knPvh+epJVkg8n+cjld+/9o8eaEwAAOI5jhFeG7gQAAAAAAAAAAAAAAACAORJeuSGllN+T5POTfGaS5yd5wYPvT8/I33sp5TzJu5K848Hnfz34/m+997ffwNgAAMCR7Tu8Umvd+U4AAAAAAAAAAAAAAAAAmCPhlT0ppXxGkpcl+SNJvizJ77xu24bHniV5YS6iLY/e994kb0rynx58/kvv3X8tCQAAJ27f4ZUx+1trG50JAAAAAAAAAAAAAAAAAHMgvLKDUsrnJvkLSf5MkhddXXrMK33bq6559slJvuLBJ0k+WEr52SQ/keSNvff7W94FAAAc0b7DK7XWne8EAAAAAAAAAAAAAAAAgDkSXtlQKeVTknztg8/vu3z8yLahwMrjwiyP6o98rzvnWUm+5sHnvaWUn0ryz3vvvzLyLgAAYAL2HV65e/fu4J7W2kZnAgAAAAAAAAAAAAAAAMAc3Dn2AKeilPKHSimvT/LuJN+X5LNyET4puQijXP3kytp1n9HXDpzx6L2Xa5+c5BuSvKmU8uZSyss3/xMDAADHsO/wSill8J2hOwEAAAAAAAAAAAAAAABgjoRXBpRS/nQp5VeS/GKSlyc5y1PDJ8n6uMqjgZRtPw+Nds1910VYviDJ60spv1ZK+fNb/hoAAIAD2Xd4JUlqrTvdCQAAAAAAAAAAAAAAAABzJLzyGKWUl5RS3pTk3yT5wjwZMrkubnJd+OS6YMqjsZSxn0vroiyPm+Xy3t+b5F+VUt5aSvkTW/9iAACAG3UT4ZWhd1prG58JAAAAAAAAAAAAAAAAAKducewBpqaU8pwkr0nyV/PUkMnHt13z7NG1q55I8p4k737w/dFHPh958N7Trvl8SpLfneTTkjz9mrP7I9/rZixJXpzk50opv5jklb33t11zJgAAcCTHCK8M3QkAAAAAAAAAAAAAAAAAcyS8ckUp5a8n+QdJnpOnhktKro+cXA2tfDDJW5O85cHnHbmIrfyf3vv9Pcz3rFwEWF6Y5HNzEVF5cZIXJbl7ZWu/ZsbLZ5cxmT+W5C2llB9N8u299/+363wAAMDuzs/P165vE16pta5dF14BAAAAAAAAAAAAAAAA4DYSXklSSvnsJD+S5Evy+ODK1Z8v/WaSn0/yC0n+a+/9N25yzt77B5J8IMmvJ/m5y+ellGWSlyZ5WZI/nuQLkty5fC3Xx2NKLmItX5/kz5VSviPJD/ferwZbAACAAxuKoGwTXhl6p7W28ZkAAAAAAAAAAAAAAAAAcOpudXillPK0JK9K8spc/C6uhkkuPRoteVOSNyR5Q+/9rYeZdL3e+yrJf3zw+fZSyrNzEWD56iRfnmSZhwMsycN/rmcneV2Sv1ZK+cbe+5sPNTsAAPCwofDKYrH5X+NqrTvdCQAAAAAAAAAAAAAAAABzdGvDK6WUP5nkh5I8NxfxkeSp0ZXL5/87yY8m+Ze993cdZMAd9N7fl+T1SV5fSvmkJF+T5BuS/P7LLVe3P/guSf5Akl8upfzjJH+v9/6BA40MAAA8MBRBOTs72/jMoXdaaxufCQAAAAAAAAAAAAAAAACn7s6xBzi0UsqnllJ+Msm/T/K8XARHeh6OkVwGV34+yVckeWHv/XtPIbryqN77+3vvr+u9f06SP5rkZ3LxZy2Pbn3wfSfJNyb5tVLKVx1uUgAAIDlOeGXoTgAAAAAAAAAAAAAAAACYo1sVXiml/M0kv57kq/L44MoqyT9N8lm99z/Ve39D770/5bAT1Hv/pd77n03yoiQ/mOSjeTjAcvn7KEl+V5KfLKX824MPCgAAt9hNhFdqrTvdCQAAAAAAAAAAAAAAAABzdKvCK0l+KMkz82R05VJJ8qEk/zDJ83vvf6P3/vYjzHcQvfd39N7/dpJPT/LqJO/L4wMsX374CQEA4Pa6ifDK0DuttY3PBAAAAAAAAAAAAAAAAIBTd9vCK5cuoyslyQeSfFeS5/be/27v/T3HG+uweu/v7b2/Oslzk/ydJO/JwwEWAADgwI4RXhm6EwAAAAAAAAAAAAAAAADm6LaGV0qSDyZ5dZLn9d5f1Xt//5FnOpre+4d77/8oyQuSvDLJb0aABQAADq73fiPhlVrr2vXW2sZnAgAAAAAAAAAAAAAAAMCpu43hlQ8n+d4kz++9v7r3/sFjDzQVvfeP9d5fm4sAyzflIsACAAAcyP379wf3bBNeGXpnKPYCAAAAAAAAAAAAAAAAAHN028Ir35/kBb337+i9v//Yw0xV77313l+XiwDLK489DwAA3BZjAijbhFdqrTvfCwAAAAAAAAAAAAAAAABzszj2AIfUe//mY89wSnrvqyQ/cOw5AADgtrip8MrQO621jc8EAAAAAAAAAAAAAAAAgFN359gDAAAAcOFY4ZUx9wIAAAAAAAAAAAAAAADA3AivAAAATMRNhVdqrTvfCwAAAAAAAAAAAAAAAABzI7wCAAAwETcVXhl6p7W28ZkAAAAAAAAAAAAAAAAAcOoWxx7g1JRSXpjkD1631nv/8QOP83GllM9O8vnXLP1S7/2dh54HAADY3E2FV2qtO98LAAAAAAAAAAAAAAAAAHMjvLK5L03yY49ZO1p4JckfTvID1zz/+0m+58CzAAAAWzg/Px/cs014Zeid1trGZwIAAAAAAAAAAAAAAADAqRNe2U655lk/+BQP+1Cun+sLDz0IAACwnXv37g3uuYnwyph7AQAAAAAAAAAAAAAAAGBuhFe2dzW0cl3w5NAuZ3h0rs88wiwAAMAWbiq8Umvd+V4AAAAAAAAAAAAAAAAAmJs7xx7gxE0huHLpkx7z/FkHnQIAANjamADKYrF5P3Mo1tJa2/hMAAAAAAAAAAAAAAAAADh1wivz8XmPef7Mg04BAABsbUx4ZSiiss07Y+4FAAAAAAAAAAAAAAAAgLkRXpmBUsqLk3x1kn7N8t0DjwMAAGzppsIrtdad7wUAAAAAAAAAAAAAAACAuVkce4BjexAt+bwNXvnSNWf95d0n2sjTknxOkq998M89ScnDAZb3H3gmAABgSzcVXhl6p7W28ZkAAAAAAAAAAAAAAAAAcOpufXglyVcm+c4t3ivXfP+zvUy03SyX0ZWrz5LkPYcfBwAA2MZNhVdqrTvfCwAAAAAAAAAAAAAAAABzI7xyoQxvOeg5m+prnv/nQw4CAABs76bCK0PvtNY2PhMAAAAAAAAAAAAAAAAATp3wypMeFy+5zuMCK5ucsW+Pm+k/HHQKAABga8cKr4y5FwAAAAAAAAAAAAAAAADmRnjlYY+Llxzq/X3oV77f1nv/mWMOAwAAjDcmgHL37t2Nz6217nwvAAAAAAAAAAAAAAAAAMzNnWMPwM76I5/kIgDzW0n+4rGGAgAANjcUQDk7O0spm/cez87O1q4/8cQTuX///sbnAgAAAAAAAAAAAAAAAMApE1552KMRk8d9dn1/n59L5crnZ5N8ce/9V7f8PQAAAEcwJryyjTHvDd0NAAAAAAAAAAAAAAAAAHOzOPYAE7L5/zb+Zs7Y1IeSvC/Jryb55SQ/0Xv/H0eYAwAA2NFNhVdqraPuftrTnrbV+QAAAAAAAAAAAAAAAABwim59eKX3/uokrx67v5TyV5L8WJKei9DKx79773dvYkYAAOB2OGZ4ZbVa5RnPeMZW5wMAAAAAAAAAAAAAAADAKbpz7AFOUD/2AAAAwDwdM7wydDcAAAAAAAAAAAAAAAAAzI3wCgAAwEScn5+vXb/J8EprbauzAQAAAAAAAAAAAAAAAOBUCa/sph97AAAAYD7u3bu3dv0mwyur1WqrswEAAAAAAAAAAAAAAADgVAmvAAAATMRNhVeWy+XgntbaVmcDAAAAAAAAAAAAAAAAwKlaHHuAE/ShJO889hAAAMD8DIVXFovt/gpXax3cI7wCAAAAAAAAAAAAAAAAwG0jvLKh3vtPJ/npY88BAADMz1B45ezsbKtzx4RXVqvVVmcDAAAAAAAAAAAAAAAAwKm6c+wBAAAAuHDM8EprbauzAQAAAAAAAAAAAAAAAOBUCa8AAABMxE2FV5bL5eAe4RUAAAAAAAAAAAAAAAAAbhvhFQAAgIm4qfBKrXVwz2q12upsAAAAAAAAAAAAAAAAADhVwisAAAATcczwSmttq7MBAAAAAAAAAAAAAAAA4FQJrwAAAEzETYVXFotF7txZ/9c/4RUAAAAAAAAAAAAAAAAAbpvFsQc4tFLKd65b771/1y7vT83QnwcAAJiOmwqvJEmtNR/72Mceuy68AgAAAAAAAAAAAAAAAMBtc+vCK0lelaSvWR8KlQy9PzXCKwAAcCKOGV5ZrVZbnw0AAAAAAAAAAAAAAAAAp+g2hlculWuebRJUue79qTmlQAwAANx6NxleWS6Xa9dba1ufDQAAAAAAAAAAAAAAAACn6DaHVx6NkmwaUpl61OQUwjAAAMAVNxleqbWuXRdeAQAAAAAAAAAAAAAAAOC2uc3hlathkm0iKlMOm0w9CgMAAFzjmOGV1Wq19dkAAAAAAAAAAAAAAAAAcIruHHsAAAAALhwzvNJa2/psAAAAAAAAAAAAAAAAADhFi2MPcET9yO8DAAA85CbDK8vlcu268AoAAAAAAAAAAAAAAAAAt81tDa+UI78PAADwFOfn52vXdwmv1FrXrq9Wq63PBgAAAAAAAAAAAAAAAIBTdOvCK733O8d8HwAA4HHu3bu3dv0mwyutta3PBgAAAAAAAAAAAAAAAIBTJCICAAAwEUPhlcVi+3bmcrlcuy68AgAAAAAAAAAAAAAAAMBtI7wCAAAwEUPhlbOzs63PrrWuXV+tVlufDQAAAAAAAAAAAAAAAACnSHgFAABgIo4ZXmmtbX02AAAAAAAAAAAAAAAAAJwi4RUAAICJuMnwynK5XLsuvAIAAAAAAAAAAAAAAADAbSO8AgAAMBE3GV6pta5dF14BAAAAAAAAAAAAAAAA4LYRXgEAAJiIY4ZXVqvV1mcDAAAAAAAAAAAAAAAAwCkSXgEAAJiIY4ZXWmtbnw0AAAAAAAAAAAAAAAAAp0h4BQAAYCJuMryyXC7XrguvAAAAAAAAAAAAAAAAAHDbCK8AAABMxE2GV2qta9dXq9XWZwMAAAAAAAAAAAAAAADAKVoce4DboJSySPIJSZ6epCYph7q79/6uQ90FAABsr/ee8/PztXtuMrzSWtv6bAAAAAAAAAAAAAAAAAA4RcIre1RKuZPki5N8WZKXJnl+kucleeaRRurx7xgAAE7CUHQl2S28slwu164LrwAAAAAAAAAAAAAAAABw24hy7EEp5dlJXpnk65J82tWl40wEAACcmnv37g3u2SW8Umtdu75arbY+GwAAAAAAAAAAAAAAAABOkfDKjkopr0jy/Umek+tDK/2wE32c6AsAAJyQY4dXWmtbnw0AAAAAAAAAAAAAAAAAp0h4ZQellNck+ZY8GTl5XGTl0BGUY8VeAACALd10eGW5XK5dF14BAAAAAAAAAAAASPlviQAAIABJREFUAAAA4LYRXtlSKeXbknzrgx+vhk4OHVkBAABm4Pz8fHDPLuGVWuvadeEVAAAAAAAAAAAAAAAAAG4b4ZUtlFJekuS7Mxxc6dc8AwAAeIp79+4N7rnJ8Mpqtdr6bAAAAAAAAAAAAAAAAAA4RcIr23ldkju5CKsMBVeuWwcAAHjImPDKYrH9X+GWy+Xa9dba1mcDAAAAAAAAAAAAAAAAwCkSXtlQKeVLknxRhqMrJUlL8uYkb0vyziS/neQjeTjMAgAAMCq8cnZ2tvX5tda16/fv38/9+/dz9+7dre8AAAAAAAAAAAAAAAAAgFMivLK5Vzzm+dXgytuTvCbJ63vvHznIVAAAwEk7dnglSVprefrTn771HQAAAAAAAAAAAAAAAABwSoRXNveyPBlZudRzEVxJktcm+dbe+/lBpwIAAE6a8AoAAAAAAAAAAAAAAAAAHJbwygZKKc9M8sI8HFq5/Oee5Id676880ngAAMAJu+nwynK5HNzTWtv6fAAAAAAAAAAAAAAAAAA4NXeOPcCJ+YxHfu5X/vndSb75gLMAAAAzctPhlVrr4J7VarX1+QAAAAAAAAAAAAAAAABwaoRXNvOp1zwruQiw/JPe+/B/KQkAAHCNKYRXWmtbnw8AAAAAAAAAAAAAAAAAp0Z4ZTOfuGbtFw42BQAAMDs3HV5ZLpeDe4RXAAAAAAAAAAAAAAAAALhNhFc2c3fN2v882BQAAMDs3HR4pdY6uGe1Wm19PgAAAAAAAAAAAAAAAACcGuGVzfz2lmsAAABrTSG80lrb+nwAAAAAAAAAAAAAAAAAODXCK5v5rTVrn3CwKQAAgNm56fDKcrkc3CO8AgAAAAAAAAAAAAAAAMBtIryymbevWXvmwaYAAABmZyi8UkrJ3bt3tz6/1jq4R3gFAAAAAAAAAAAAAAAAgNtEeGUDvff3JXnX5Y+PLL/owOMAAAAzMhReOTs72+n8MeGV1Wq10x0AAAAAAAAAAAAAAAAAcEqEVzb3xiTlmudfdOhBAACA+ZhCeKW1ttMdAAAAAAAAAAAAAAAAAHBKhFc296+veVaSvPzQgwAAAPNxfn6+dl14BQAAAAAAAAAAAAAAAAD2S3hlc29M8o4rP/cH3y8ppbzkCPMAAAAzcO/evbXru4ZX7ty5k8VisXbParXa6Q4AAAAAAAAAAAAAAAAAOCXCKxvqvfck352kPLJUkry2lPLocwAAgEE3HV5Jklrr2vXW2s53AAAAAAAAAAAAAAAAAMCpEF7Zzr9I8pYrP/cH3y9N8n2HHwcAADh1Q+GVxWKx8x3L5XLtuvAKAAAAAAAAAAAAAAAAALeJ8MoWeu89yV9K8tGrj5OUJN9SSvm2owwGAACcrKHwytnZ2c531FrXrq9Wq53vAAAAAAAAAAAAAAAAAIBTIbyypd7725N83aOPcxFf+Z5Syo+UUtb/7+QBAAAemEJ4pbW28x0AAAAAAAAAAAAAAAAAcCqEV3bQe399km/KRWwlD74v4ytfn+S/l1K+8kjjAQAAJ+QQ4ZXlcn0bUngFAAAAAAAAAAAAAAAAgNtkcewBTl3v/QdLKR9L8sN5MmRzGV95YZKfKqW8K8m/S/LmJL+R5P8meX+SD/fezw8/NQAAMDWHCK/UWteuC68AAAAAAAAAAAAAAAAAcJsIr2yolPLjj1l6V5Ln58noSr98Jclzk/ytx5y37xGv6r13/44BAOAETCG8slqtdr4DAAAAAAAAAAAAAAAAAE6FKMfmXpEnoyrXKVe+ex4OsAAAAFxrKHqyXC53vmMovNJa2/kOAAAAAAAAAAAAAAAAADgVwivbGxNSudxzNcByKEIvAABwQoaiJ/sIrwydIbwCAAAAAAAAAAAAAADA/2fv/oNkS+v6jn+eu7N9ulkBAfnlEhSJ+FsSK2pCwKBIFFAguCkrUStSJjEUSuKPWFZKzFrRCBaWJkGJpdHSsERFiUSlUEFdNJoYSxMTNCIiLKIr/gDEpfv03rtP/piZbO/dmT7dPd19unter6qpmXu+zz3Pt/f+s/vHfS/AZSK8srqzQirnxU62HUHZduQFAAC4oK7oyWAwuPAdXe9o2/bCdwAAAAAAAAAAAAAAAADAvhBeWd22YyoAAMAB64qebCO80hV/AQAAAAAAAAAAAAAAAIBDIryyutr3AgAAwOHoip6sI7zSNM2FdgAAAAAAAAAAAAAAAACAQyK8sprS9wIAAMBh6YqedEVTFtEVb2nb9sJ3AAAAAAAAAAAAAAAAAMC+EF5Z3vP7XgAAADg8XeGVrmjKIrre0bUDAAAAAAAAAAAAAAAAABwS4ZUl1Vq/v+8dAACAw9O27dz5OsIrTdPMnQuvAAAAAAAAAAAAAAAAAHCZXOl7AQAAALqjJ+sIr3S9Q3gFAAAAAAAAAAAAAAAAgMtEeAUAAGAHdEVPmqa58B1d4ZW2bS98BwAAAAAAAAAAAAAAAADsC+EVAACAHdAVXumKpiyi6x1dOwAAAAAAAAAAAAAAAADAIRFeAQAA2AFt286dryO80jTN3LnwCgAAAAAAAAAAAAAAAACXifAKAADADuiKnnRFUxbRFW/pir8AAAAAAAAAAAAAAAAAwCERXgEAANgBXeGVrmjKIrre0bUDAAAAAAAAAAAAAAAAABwS4RUAAIAd0Lbt3Pk6witN08ydC68AAAAAAAAAAAAAAAAAcJkIrwAAAOyArujJOsIrXe/oir8AAAAAAAAAAAAAAAAAwCERXgEAANgBXeGVpmkufEdXeKVrBwAAAAAAAAAAAAAAAAA4JEd9L7BvSimP7XuHZdRa7+h7BwAAYL5aa+6+++65Z7qiKYvoircIrwAAAAAAAAAAAAAAAABwmQivLO/tSWrfSyyoxp8xAADsvEWCJ+sIr3S9o23b1FpTSrnwXQAAAAAAAAAAAAAAAACw60Q5VuNvIQIAAGuzK+GVJLl69WpuvPHGC98FAAAAAAAAAAAAAAAAALtOeGU1te8FFiAOAwAAe2KR8ErTNBe+Z5HwynQ6FV4BAAAAAAAAAAAAAAAA4FIQXlndLodN9iEMAwAAnFgkvLJINKXLIvGW6XSam2666cJ3AQAAAAAAAAAAAAAAAMCuE145DEIrAACwx9q27TyzjvDKIu9YZBcAAAAAAAAAAAAAAAAAOATCK6vbduykLDETYgEAgD0ynU47z2wrvLLILgAAAAAAAAAAAAAAAABwCIRXVjMvgrJu9brvp/fXme9/kuSOLe4EAACs0SKxk6ZpLnzPIu8QXgEAAAAAAAAAAAAAAADgshBeWd6nb+i9wyRNklGSRya5OcmHJfmkJI/PvbGXmvvGWEqSByf50VrrSza0GwAAsEFt23aeGQwGF75nkXcssgsAAAAAAAAAAAAAAAAAHALhlSXVWm/f9p2llAcleWaSW5I8O8d/brPxlUGSbyqlPD3Jc2qtf7HtHQEAgNVNp9POM9sKryyyCwAAAAAAAAAAAAAAAAAcgit9L0C3Wuuf11p/sNZ6S5InJPmBJGX2yMmvn5rkJ0opo+1vCQAArGqR2EnTNBe+Z5F3CK8AAAAAAAAAAAAAAAAAcFkIr+yZWuvba61fnOSZSd43O8pxfOUpSX6wh9UAAIAVLRI7GQwGF75nkXe0bXvhewAAAAAAAAAAAAAAAABgHwiv7Kla6+uT/K2cHV/5nFLKl/SyGAAAsLRFYifbCq8sEoEBAAAAAAAAAAAAAAAAgEMgvLLHaq3/O8kX5ji28v8fn/z6W0spj+hlMQAAYCmLxE6EVwAAAAAAAAAAAAAAAABgvYRX9lyt9XVJXpP7xleS5IFJXrj9jQAAgGV1xU5KKTk6OrrwPU3TXHgXAAAAAAAAAAAAAAAAADgUwiuH4SXX/brmOMTyT0op3f9LewAAoFddsZPBYJBSrm8tLm+ReEvbthe+BwAAAAAAAAAAAAAAAAD2gfDKAai1/mqS3z1j9CFJnrrdbQAAgGV1xU4Gg/X0FEspne/qisAAAAAAAAAAAAAAAAAAwKEQXjkcv5yknPH8KdteBAAAWE5X7GRd4ZUkaZrmQrsAAAAAAAAAAAAAAAAAwKEQXjkcv3XO8ydtdQsAAGBpXbGTrljKMroiLm3bru0uAAAAAAAAAAAAAAAAANhlwiuH4z3X/bomKUke08MuAADAErrCK12xlGV0vatrFwAAAAAAAAAAAAAAAAA4FMIrh++hfS8AAADM17bt3Pk6wytN08ydC68AAAAAAAAAAAAAAAAAcFkIrxyOR5/z/MFb3QIAAFhaV+xkneGVrnd1RWAAAAAAAAAAAAAAAAAA4FAIrxyODzvnub81CQAAO64rvNI0zdru6gqvdO0CAAAAAAAAAAAAAAAAAIdCeOUAlFKOkjwrST1j/BdbXgcAAFhS287vJXbFUpYhvAIAAAAAAAAAAAAAAAAAx4RXDsNzkzzs5Ody3fc7tr8OAACwjK7YyTrDK03TzJ13RWAAAAAAAAAAAAAAAAAA4FAIr+y5Usqjk7w8ST1jXJO8ZbsbAQAAy+oKr3TFUpbRFXHp2gUAAAAAAAAAAAAAAAAADoXwyh4rpTwhyU8mecTpozOO/fL2NgIAAFbRFTvpiqUsQ3gFAAAAAAAAAAAAAAAAAI4Jr+yhUsqjSikvTvJrSZ6YpObs6EqS/PTWFgMAAFbStu3c+TrDK03TzJ0LrwAAAAAAAAAAAAAAAABwWRz1vcC+KaV8fQ/X3pDkpiQ3J/n4JB97us7J9zpz9jTCUpP8Uq31rdtaEgAAWE1X7GSd4ZWud3VFYAAAAAAAAAAAAAAAAADgUAivLO/W3Dd0sm1l5ud6xrNZL9vwLgAAwBp0hVeaplnbXV3hla5dAAAAAAAAAAAAAAAAAOBQCK+s7rzYyTbMhl+uD7GUk+9vqLW+dqtbAQAAK+mKnXTFUpbRFXERXgEAAAAAAAAAAAAAAADgshBeWV3tPrIxZ0VfZvf5/SRftKVdAACAC2rbdu58neGVrnd17QIAAAAAAAAAAAAAAAAAh0J4ZXVnxU/6MBtcKUnuSPLZtdZ397QPAACwpOl0One+zfBK1y4AAAAAAAAAAAAAAAAAcCiu9L0AC6vnfCXHwZWS5LVJPrXW+n972RAAAFhJV+ykaZq13dX1LuEVAAAAAAAAAAAAAAAAAC6Lo74X2GO1+8jGlJmfa5KfSvKttdY39LQPAABwAW3bzp0PBoO13dX1rq5dAAAAAAAAAAAAAAAAAOBQCK+spnQfWbs2yV1J3pfkbUnekuSXkvxMrfXdPewDAACsyXQ6nTvfZnilaxcAAAAAAAAAAAAAAAAAOBTCK0uqtV7pewcAAOCwdMVOmqZZ213CKwAAAAAAAAAAAAAAAABwTEQEAACgZ12xk65YyjK6Ii7CKwAAAAAAAAAAAAAAAABcFsIrAAAAPWvbdu58neGVrnd17QIAAAAAAAAAAAAAAAAAh0J4BQAAoGfT6XTufJvhla5dAAAAAAAAAAAAAAAAAOBQCK8AAAD0rCt20jTN2u7qepfwCgAAAAAAAAAAAAAAAACXhfAKAABAj+65555cvXp17pnBYLC2+7re1bbt2u4CAAAAAAAAAAAAAAAAgF0mvAIAANCj6XTaeWad4ZWmaebOr169mmvXrq3tPgAAAAAAAAAAAAAAAADYVcIrAAAAPdp2eGU4HHaeadt2bfcBAAAAAAAAAAAAAAAAwK4SXgEAAOjRIuGVpmnWdt8i4ZXJZLK2+wAAAAAAAAAAAAAAAABgVwmvAAAA9Kht284zg8FgbfcJrwAAAAAAAAAAAAAAAADAMeEVAACAHk2n084z6wyvNE3TeUZ4BQAAAAAAAAAAAAAAAIDLQHgFAACgR9sOrwyHw84zbduu7T4AAAAAAAAAAAAAAAAA2FXCKwAAAD1aJLzSNM3a7lskvDKZTNZ2HwAAAAAAAAAAAAAAAADsKuEVAACAHrVt23lmMBis7T7hFQAAAAAAAAAAAAAAAAA4JrwCAADQo+l02nlGeAUAAAAAAAAAAAAAAAAA1k94BQAAoEeLhFeaplnbfYu8q23btd0HAAAAAAAAAAAAAAAAALtKeAUAAKBHi4RXBoPB2u4bDoedZyaTydruAwAAAAAAAAAAAAAAAIBdJbwCAADQo7ZtO8+sM7xy4403ppQy94zwCgAAAAAAAAAAAAAAAACXgfAKAABAj6bTaeeZdYZXSikZDodzzwivAAAAAAAAAAAAAAAAAHAZCK8AAAD0qCu8cuXKlRwdHa31zqZp5s6FVwAAAAAAAAAAAAAAAAC4DIRXAAAAetS27dz5YDBY+53D4XDuvGsnAAAAAAAAAAAAAAAAADgEwisAAAA9mk6nc+d9hFcmk8na7wQAAAAAAAAAAAAAAACAXSO8AgAA0CPhFQAAAAAAAAAAAAAAAADoh/AKAABAj7rCK03TrP1O4RUAAAAAAAAAAAAAAAAAEF4BAADoVdu2c+eDwWDtd3bFXLp2AgAAAAAAAAAAAAAAAIBDILwCAADQo+l0One+ifDKcDicO59MJmu/EwAAAAAAAAAAAAAAAAB2jfAKAABAj4RXAAAAAAAAAAAAAAAAAKAfwisAAAA96gqvNE2z9juFVwAAAAAAAAAAAAAAAABAeAUAAKBXbdvOnQ8Gg7Xf2RVzEV4BAAAAAAAAAAAAAAAA4DIQXllCKeUzSylP63sPAADgcEyn07nzTYRXhsPh3HlXDAYAAAAAAAAAAAAAAAAADoHwynL+ZpKfLqW8s5TyklLKJ/S9EAAAsN+6witN06z9zq7wymQyWfudAAAAAAAAAAAAAAAAALBrhFeWV5LcnOSfJ/mfpZT/VUr56lLKzT3vBQAA7KGu8MpgMFj7ncIrAAAAAAAAAAAAAAAAACC8sqqa4wBLSfIJSV6a5B2llDeWUp5fSnlQr9sBAAB7o23buXPhFQAAAAAAAAAAAAAAAADYDOGV1dWTr+Q4wHIlyVOTfE+SO0spP1xKeXYp5ain/QAAgD0wnU7nzjcRXmmaZu68KwYDAAAAAAAAAAAAAAAAAIdAeGV15eSrznydPhsm+bwk/znHEZZXlFKe3NeiAADA7uoKr3RFUlYxHA7nzieTydrvBAAAAAAAAAAAAAAAAIBdI7xycaexleTsCMtDk/zjJLeXUt5eSvmmUsrH9bIpAACwc9q2nTsfDAZrv1N4BQAAAAAAAAAAAAAAAACEVy5iNrKS3BtamRdheWySr03yG6WUXy+lfFUp5eatbg0AAOyU6XQ6dy68AgAAAAAAAAAAAAAAAACbIbyynF9M8j9Ofj4vsjI7mxdheWKSb0nyjlLKG0spzy+lPGjjnwAAANgpfYRXmqaZOxdeAQAAAAAAAAAAAAAAAOAyEF5ZQq31jbXWT03y4Um+Ksl/OxmtEmE5nV1J8tQk35PkzlLKq0spzymlHG3ukwAAALuiK7zSFUlZxXA4nDtv23btdwIAAAAAAAAAAAAAAADArhFeWUGt9Z211m+rtT4pyWOTfEWSXzoZLxphmZ2dPhsmeV6S1+Q4wvLyUsrf2PwnAgAA+tIVORkMBmu/syu8cvXq1Vy9enXt9wIAAAAAAAAAAAAAAADALhFeuaBa67tqrf+m1vrkJH8pyT9N8ou5b1AlOT/Ccv3s9PlDk7wgyS+WUn6nlPLiUsrjtvCRAACALZpOp3PnfYRXku4gDAAAAAAAAAAAAAAAAADsO+GVNaq1/kGt9d/VWj8tyWOSfHmSN2V+hKUsMHt8kluTvLWUcnsp5fmllA/ayocCAAA2alfDK5PJZO33AgAAAAAAAAAAAAAAAMAuEV7ZkFrrnbXW76i1PjXJzUlemOTnk9yTi0VYnpzke5LcWUr5gVLKZ2zj8wAAAJvRFV5pmmbtdy7yTuEVAAAAAAAAAAAAAAAAAA6d8MoW1Fr/qNb6ilrrZyT50CQvSPKzWS3CcvrsAUm+IMnPlFJ+r5Ty4lLKY7f0kQAAgDVp23bufDAYrP3O4XDYeaZrLwAAAAAAAAAAAAAAAADYd8IrW1Zr/eNa63fVWj8zyaOSfGmSNyS5lsUiLGc9/7AktyZ5Wynlp0opt5RSjrb2oQAAgJVNp9O5877CK5PJZO33AgAAAAAAAAAAAAAAAMAuEV7pUa31T2ut311r/ds5jrD8oyQ/neRquiMsZz2/kuQzk/xQkneVUl5aSnnClj4OAACwgq7wStM0a79TeAUAAAAAAAAAAAAAAAAAhFd2Rq31z2qt/6HW+tk5jrB8SZLX5/wIS855fvrs4Um+OslvlVLeUEp5Xinlhq18GAAAYCHXrl3LtWvX5p4ZDAZrv3eRmIvwCgAAAAAAAAAAAAAAAACHTnhlB9Va31Nr/b5a6zOTPCLJ85O8LsnduW9s5dRZAZbZCMunJ3l1kjtKKS8upTxi858CAADoMp1OO89sIrwyHA47z7Rtu/Z7AQAAAAAAAAAAAAAAAGCXCK/suFrr+2qt319r/ZwcR1i+OMlPJJnm3sDKqZKzIyynzx6d5NYcB1i+v5Tyidv4DAAAwNl2ObwymUzWfi8AAAAAAAAAAAAAAAAA7BLhlT1Sa/3zJP8xybcn+dHcG1g5y2yEpea+EZZBki9M8uullNeXUj5tk3sDAABnWyS80jTN2u8VXgEAAAAAAAAAAAAAAAAA4ZW9UEq5oZTy9FLKdyW5M8nPJPl7p+NFXjFzbjbAUpI8PcnPlVJuL6U8ab2bAwAA87Rt23lmMBis/d6jo6OUMv8/JYRXAAAAAAAAAAAAAAAAADh0R30vwNlKKUc5jqLckuQ5SR5yOlrwFfWs187M6nXPnpLkF0opr07yolrru5deGgAAWMp0Ou08s4nwSiklw+Ew4/H43DPCKwAAAAAAAAAAAAAAAAAcOuGVHVJKGST5rBzHVj43yYNPRzPHZoMq10dYumbXx1Zy3bOS5O8m+eRSymfUWt+x1AcAAACW0ld4JUlneKVt243cCwAAAAAAAAAAAAAAAAC7QnilZ6WUYZJn5Di28qwkDzwdzRyr1/+2BWa/kuSVSX4uyecl+YdJHnPG7ynXPStJHpfkTaWUJ9Za37vwhwEAAJaySHilaZqN3D0cDufOJ5PJRu4FAAAAAAAAAAAAAAAAgF0hvNKDUsoDchxZuSXJM5M84HQ0c2yV2Mpbk9yW5LZa61tn5m8upXxjkmcneWGSp828p578/tkAS8lxpOXWJP9s0c8FAAAsp23bzjODwWAjdwuvAAAAAAAAAAAAAAAAAHDZCa9sSSnlg5J8bo5jK5+d5PRvOV40tvLHSX4ox7GV/37e/bXWe5L8WJIfK6U8IcmXJfkHSR6Ye2Mrs3eVJC8opby01vqH8z8dAACwiul02nlmU+GVpmnmzoVXAAAAAAAAAAAAAAAAADh0V/pe4JCVUh5USvmiUsprk7w7ySuTPDfJKMdhk5LjyMnpV2aen4ZQzpqNk/xgks9J8qG11hfNi65cr9b6llrri5I8Jsm3z+xxesepoyTPWPgDAwAAS1kkvNIVSFnVcDicO2/bdiP3AgAAAAAAAAAAAAAAAMCuOOp7gUNTSnlIjuMqtyR5WpIbT0czx+r1v+26X9czZteS/GyO4y2vqbXeddFda63vT/KVpZQ/SvLNJ/dev8tnJfnei94FAADc3yJxk8FgsJG7u8Irk8lkI/cCAAAAAAAAAAAAAAAAwK4QXlmDUsqHJPk7OY6tPDX3/nNdNbYyO/+1HMdW/lOt9Y8uvOwZaq0vLaU8L8kn5/7Rl4/exJ0AAEAynU47zwivAAAAAAAAAAAAAAAAAMBmCK+sqJTyyCTPy3Fs5SlJbjgdzRxbNbbye0leleSVtdbfvvi2C/nJHIdXTtWTfR62pfsBAODS6TO80jTN3LnwCgAAAAAAAAAAAAAAAACHTnhlCaWURyT5/BzHVp6U5MrpaObYqrGVP03y6iS31Vr/68W3Xdq7znkuvAIAABvSFV654YYbcsMNN8w9s6rhcDh3LrwCAAAAAAAAAAAAAAAAwKETXlnOC5J8/cnPy8RWrj9zOp8k+fEktyV5Xa316jqWXNHgnOeb+VueAABA2radOx8MzvvX9IvrCq907QYAAAAAAAAAAAAAAAAA+054ZXklxxGVVWMr9yT5+SSvTPIjtdb3r3vBFT36nOd/sdUtAADgEplOp3PnfYZXJpPJxu4GAAAAAAAAAAAAAAAAgF0gvHIxXbGV2TO/kePYyqtqrX+w0a1W81dz/91rknf0sAsAAFwKwisAAAAAAAAAAAAAAAAA0B/hldXNRlfOi628M8mrkryy1vrmrWy1glLKlSRPztkhmV/d8joAAHBptG07d77J8ErTNHPnwisAAAAAAAAAAAAAAAAAHDrhldWdF1t5b5IfSXJbrfX27a60sqMkzz1n9rZtLgIAAJdJV9xkOBxu7O6ud3dFYQAAAAAAAAAAAAAAAABg3wmvXMxpbKVN8roktyX5iVrrtL+Vlney775EYgAA4GB0hVdGo9HG7u4Kr3TtBgAAAAAAAAAAAAAAAAD7TnhlNSVJTfILSV6Z5NW11vf2uxIAALBvxuPx3HlXHOUihFcAAAAAAAAAAAAAAAAAuOyEV5b35iS3Jbmt1vrOvpcBAAD2V1fcZDQabezupmnmzoVXAAAAAAAAAAAAAAAAADh0wivLeVmt9Rv6XgIAADgM4/F47nw4HG7s7q53C68AAAAAAAAAAAAAAAAAcOiEV5ZUSnnQnPH7a611a8sAAAB7rStuMhqNNnZ3V3ilbduN3Q0AAAAAAAAAAAAAAAAAu0B4ZTlvSfKoc2Y1yeOTvGN76wAAAPtsPB7PnXfFUS6i691dURgAAAAAAAAAAAAAAAAA2HdX+l5gzzwySZnz9Yf9rQYAAOybrrjJaDTa2N1d4ZVr167l6tWrG7sfAAAAAAAAAAAAAAAAAPomvLKcq0nqGV+n7uljKQAAYD+Nx+O5802GV5qm6TzTFYYBAAAAAACJ9yNUAAAgAElEQVQAAAAAAAAAgH0mvLKcP5z5uZx8zXr4FncBAAD2XFd4ZTgcbuzuRd7dtu3G7gcAAAAAAAAAAAAAAACAvgmvLOd3c//YyqxHbGsRAABg/00mk7nz0Wi0sbsXCa907QcAAAAAAAAAAAAAAAAA+0x4ZTmv65h/8la2AAAADsJ4PJ47XySOsirhFQAAAAAAAAAAAAAAAAAuO+GV5bw6yfTk53rG/Flb3AUAANhzXWGT0Wi0sbubpuk8I7wCAAAAAAAAAAAAAAAAwCETXllCrfWdSV6RpFw/Onn29FLKh259MQAAYC+Nx+O58+FwuLG7F3m38AoAAAAAAAAAAAAAAAAAh0x4ZXm3Jnnbyc+nwZVToyTfvO2FAACA/dQVNhmNRhu7e5HwStu2G7sfAAAAAAAAAAAAAAAAAPomvLKkWuv7kjw7yftPH818L0m+oJTy+X3sBgAA7JfxeDx3vkgcZVWLvLsrDAMAAAAAAAAAAAAAAAAA+0x4ZQW11t9M8owkf379KMf/TH+glPKcrS8GAADsjatXr+batWtzz4xGo43d3zRN5xnhFQAAAAAAAAAAAAAAAAAOmfDKimqtv5zkaUnuTFJmR0luTPKjpZSXlVIGfewHAADstvF43Hlmk+GV4XDYeUZ4BQAAAAAAAAAAAAAAAIBDJrxyAbXWX0vyKUl+JcfxldMAS83xP9uvSPKbpZQvLaV0/+/kAQCAS2ORqMkicZRVHR0d5cqV+f9JKLwCAAAAAAAAAAAAAAAAwCE76nuBfVdrfVcp5UlJvjLJ1yZ5yOkoxyGWj0jynUm+pZRye5I3Jfn9JH+SZLqF/d606TsAAIDljcfjzjOj0Whj95dSMhwO84EPfODcM23bbux+AAAAAAAAAAAAAAAAAOib8MqSSil3dB3JcXQlM99LkgcmedbJ17bU+DMGAICdtEh4ZTgcbnSHrvDKZDLZ6P0AAAAAAAAAAAAAAAAA0CdRjuU9JsdBk3LGbDa0MvvsrOcAAMAltkjUZDQabXSHpmnmzoVXAAAAAAAAAAAAAAAAADhkwiurq9f9uuTssMrps9kAyzaIvAAAwA4bj8edZ4bD4UZ36Hq/8AoAAAAAAAAAAAAAAAAAh0x4ZX1OoyrnBU+2GULZZuAFAABYwSJRk9FotNEdusIrbdtu9H4AAAAAAAAAAAAAAAAA6JPwyuq2GVIBAAAOzHg87jzTFUa5qK73LxKHAQAAAAAAAAAAAAAAAIB9Jbyyutr3AgAAwP5aJGoyGo02ukPTNHPnwisAAAAAAAAAAAAAAAAAHDLhldWUvhcAAAD223g8nju/cuVKbrzxxo3uMBwO586FVwAAAAAAAAAAAAAAAAA4ZMIry3tc3wsAAAD7rytqMhwOU8pmm4/CKwAAAAAAAAAAAAAAAABcZsIrS6q1vqPvHQAAgP03Ho/nzkej0cZ36AqvtG278R0AAAAAAAAAAAAAAAAAoC9X+l4AAADgMppMJnPnXVGUdei6o2tHAAAAAAAAAAAAAAAAANhnwisAAAA9GI/Hc+ej0WjjOzRNM3cuvAIAAAAAAAAAAAAAAADAIRNeAQAA6EFXeGU4HG58h647hFcAAAAAAAAAAAAAAAAAOGTCKwAAAD3oipqMRqON79AVXmnbduM7AAAAAAAAAAAAAAAAAEBfhFcAAAB6MB6P5867oijr0HVHVxwGAAAAAAAAAAAAAAAAAPbZUd8LsB6llL+S5NlnjF5Va33rtvcBAADm64qajEajje/QNM3cufAKAAAAAAAAAAAAAAAAAIdMeOWw3JqkXvesJPmG7a8CAADMMx6P5863EV4ZDodz58IrAAAAAAAAAAAAAAAAABwy4ZXD8dszP5eZnz9t24sAAADduqImXVGUdei6oysOAwAAAAAAAAAAAAAAAAD77ErfC7A2s3+W9eQrST6mh10AAIAOXVGT0Wi08R0e8IAHzJ3fddddG98BAAAAAAAAAAAAAAAAAPoivHI4Pv+c5w/Z6hYAAMBCJpPJ3PlwONz4DjfddNPc+V133ZVa69wzAAAAAAAAAAAAAAAAALCvjvpe4JCUUp6Y5FOTPD7Jg5MMtnDtUZKPTPIpSWqScvJ9dg4AAOyY8Xg8dz4ajTa+Q1d45Z577knbtluJwAAAAAAAAAAAAAAAAADAtolyXFAp5YYkX5bkRUk+vM9Vznn+J1vdAgAAWMhkMpk730bspCu8kiR33XWX8AoAAAAAAAAAAAAAAAAAB0l45QJKKY9P8pokH5/zwyfbUq/boZw8++1+1gEAAOYZj8dz56PRaOM7LBpeedjDHrbxXQAAAAAAAAAAAAAAAABg24RXVlRK+agkb0ryIbk3ctKn88IvP7zVLQAAgIV0hVeGw+HGd1g0vAIAAAAAAAAAAAAAAAAAh0h4ZQWllJuS/HiSh+c4uHIaXTkvfrJNswGY/5Pku/taBAAAON9kMpk7H41GG99hkfDKBz7wgY3vAQAAAAAAAAAAAAAAAAB9EF5Zzb9M8pdzfnCl5mznhVnOO7/I773+HafnfiPJc2qtdy/wbgAAYMvG4/Hc+a6EV+66666N7wEAAAAAAAAAAAAAAAAAfRBeWVIp5ZFJXpizoyuzAZWzYiznhVoWiap0vfv02ZuTfF+S76y1TjreCwAA9GQymf+v68PhcOM7CK8AAAAAAAAAAAAAAAAAcJkJryzva5KMct/YSXLfqMokye1Jfj/JOMnDkzw5yc0z505/f03y9iR3nHHXDUkelOSxST545vedFWH5uiTfW2u9c7WPBQAAbMvdd9+da9euzT0zGo02vofwCgAAAAAAAAAAAAAAAACXmfDKEkopJckX5r7hk9ngyt1J/lWSb6u13u9vJ5ZSXpjk3+b+4ZQ/q7V+esfdH5HkeUlekORxuX/A5WuSvCmJ8AoAAOy4yWTSeWY4HG58j6OjowwGg0yn03PPCK8AAAAAAAAAAAAAAAAAcKiu9L3Annlykoef/Fxy3+jKPUluqbV+41nRlSSptX5HjsMr5fTRyfdPKqU8bd7Ftda31VpfluSjkvyLJNdmx0kelOS/lFI+ermPBAAAbNt4PO48MxqNtrBJctNNN82dC68AAAAAAAAAAAAAAAAAcKiEV5bz3DOenQZYXl5r/fEF3vHyc57//UUWqLVerbW+JMkzkkxmR0k+OMmPlVK28zc0AQCAlUwmk84zw+FwC5sIrwAAAAAAAAAAAAAAAABweQmvLOevzfxcZ35uk/zrRV5Qa/3dJO+57j0lyecus0it9Y05jrWU60YfmeRblnkXAACwXePxuPPMaLSdnqLwCgAAAAAAAAAAAAAAAACXlfDKcj4u9w2ulJNf/1yt9d1LvOdtuX8w5WGllI9ZZpla62uTvGLmXacRlxeUUj5xmXcBAADbM5lMOs8IrwAAAAAAAAAAAAAAAADAZgmvLKiU8qgkDz395XXj1y/5uref8/yvL/meJPm6JO+97tmVJC9b4V0AAMAWjMfjzjPD4XALmwivAAAAAAAAAAAAAAAAAHB5Ca8s7jFzZm9e8l1vP+f5xy75ntRa35Pk3+feGEw9+f60UsonLfs+AABg8xYJr4xGoy1sIrwCAAAAAAAAAAAAAAAAwOUlvLK4B86Z/c6S7/q9c55/1JLvOfUdSe454/mXr/g+AABggyaTSeeZ4XC4hU2EVwAAgP/H3t1H93XfdYL/fCXHkWzLUmxHbuImcmLrIYltUmgeaEIKLYG2HB4W2GU7BxZOd1gKw+mcYYBhhx2YnV3ODrDsUHZh6Q5nyuNm5zClbWDaTpOmD2meDDTFdmw9WKmd1E2t2LEUy5HsSLr7h61YVqR79fvp97v6yXq9zrnH0u/zud/7lnJO4jj5vQUAAAAAAAAAAAAAa5filaXbnDMbq/CsYwu8liLi1grPiYiILMtORMRTl86IiMguffwjKaVrqjkTAACon4mJicKd1tbWEpIoXgEAAAAAAAAAAAAAAABg7VK8snR570Ycr/CsY/M+zy792lXhOXP95wVe2xgR37mMMwEAgDqYnJzMnTc1NcW6detKyaJ4BQAAAAAAAAAAAAAAAIC1SvHK0uX9SPpKfxT9sTkfpzkfb0gpXV/hWbO+ssjr76zyPAAAoE4mJvL+9SKitbU1Ukq5O7WieAUAAAAAAAAAAAAAAACAtUrxytKN5sy2VnJQlmWvRcTLs5/OG++s5Kw5jizy+p4qzwMAAOpkcnIyd97S0lJSEsUrAAAAAAAAAAAAAAAAAKxdileWLq945S1VnHcsIhb6Efa9VZwVEfHKvM+zS+dXex4AAFAnExMTufPW1taSkiheAQAAAAAAAAAAAAAAAGDtUryydMNxscwk5vw664Eqzju2yOt3VHFWRMTkIq9vrfI8AACgTiYnF/vt+0WKVwAAAAAAAAAAAAAAAACg/hSvLFGWZa9GxNFFxt9dxZHHFnn926s4KyJiyyKvt1V5HgAAUCcTExO585aWlpKSKF4BAAAAAAAAAAAAAAAAYO1SvFKZv4+INOfz7NLn351S+pYKz+qf9/nsWXenlPLf+biwxZ4/XcVZAABAHU1OTubOW1tbS0pSXLxy4cKFmJqaKikNAAAAAAAAAAAAAAAAAJRH8UplPj3n4zTv499JKVXy/fzqImddGxE/WEW271vk9VNVnAUAANTRxMRE7rylpaWkJMXFKxER586dKyEJAAAAAAAAAAAAAAAAAJRL8UplPh4Rs++QzOJiYcrsr98VEX+WUkqL3DvfcxEx+2Pjszmvp4j4xUpCpZQ6IuKnFjgnIuLlSs4CAADqr6h4pbW1taQkilcAAAAAAAAAAAAAAAAAWLsUr1Qgy7LxiHg4LpeaRFxZvvLfRsSTKaV3LuGsCxHx+JyzZs+JiPiWlNKvVRDt9yKifc45bzwmIr5awTkAAEAJJicnc+ctLS0lJVG8AgAAAAAAAAAAAAAAAMDapXilcr8RETOXPp4tSplbvnJPRDyWUhpOKX0kpfSzKaUti5z1lwu8NnvOv0op/XxRmJTSb0TEj8+5b77PFZ0BAACUa2JiInfe2tpaUhLFKwAAAAAAAAAAAAAAAACsXYpXKpRl2aGI+It4c8nJbPnK7Me3RMQ/joj/KyL2LHLcX0XEhdmjL903e05zRHw4pfSZlNIPppQ2vPGglNanlL4vpfR4RPzK/IhzPr4QEY9U8OUBAAAlmJyczJ23tLSUlETxCgAAAAAAAAAAAAAAAABrl+KV6vxPETF26eO5RSezpSmz1/xylitkWTYSEf9hgb3Zc1JEPBgXC1rOppReSSl9MyLORcTDEfGOebvz7//jLMtOV/rFAQAA9TUxMZE7b21tLSmJ4hUAAAAAAAAAAAAAAAAA1i7FK1XIsuzFiPhAXC5dmV++klu4Ms//GhGzP+4+mzebLVSZvToiojMimue8Nrd0Ze79r0fE/1ZBDgAAoCSTk5O5c8UrAAAAAAAAAAAAAAAAAFB/ileqlGXZxyPiJyLi/OxLc65KzvlGRPyP8eaylrnFKnnXQvdlEfHPsyx7oZIsAABAOSYmJnLnLS0tJSWJWL9+fTQ3N+fuvPbaayWlAQAAAAAAAAAAAAAAAIDyKF5ZhizLHoqIuyPiy3G5KCWi8vKVD0fEw3Fl0cqsFFeePf/1N46Z8/FfZFn2+5VkAAAAyjM5OZk7b21tLSlJREopNmzYkLtz7ty5ktIAAAAAAAAAAAAAAAAAQHkUryxTlmWHsix7Z0S8MyL+Q0S8FAsXpRT5RxHx6biyvGV+gctCJSxz91JEfDQiPlDhswEAgBJNTEzkzltaWkpKctHGjRtz54pXAAAAAAAAAAAAAAAAALgarVvpAFeLLMsej4jHIyJSSjdFxO6I2BERmyJiaAn3v5ZS+oGI+L2I+Jm4WIqzUPnKQlJEvBYRv55l2e9U9QUAAAClmZyczJ23traWlOQixSsAAAAAAAAAAAAAAAAArEWKV+ogy7IXI+LFKu6bjoh/klL6w4j4jYh4TxT/NXotIv4iIv51lmUvVfpMAACgfBMTE7nzlpaWkpJcpHgFYGWcOHEi/vRP/zS+8IUvRFtbW7z3ve+Nn/zJn4x16/yRHQAAAAAAAAAAAAAAQBm8i6MBZVl2MCJ+IKXUFhHfHRH3RERnRFwfEU0RcTIiXoqIL0fEY1mWnV+prAAAQGWyLCssXmltbS0pzUWKVwDKde7cufjt3/7t+K3f+q0r/pnwsY99LP7kT/4kHnnkkbj22mtXMCEAAAAAAAAAAAAAAMDaoHilgWVZdjYiPn7pAgAArgJTU1MxMzOTu9PS0lJSmosUrwCU59FHH42f+qmfihMnTiw4f/zxx+OXf/mX48Mf/nDJyQAAAAAAAAAAAAAAANaeppUOAAAAsJZMTEwU7rS2tpaQ5DLFKwDl+NSnPhXvec97Fi1dmfUHf/AHcfTo0ZJSAQAAAAAAAAAAAAAArF2KVwAAAEo0OTlZuKN4BeDqMz09HR/60Idienq6cHdqaip+/dd/vYRUAAAAAAAAAAAAAAAAa5viFQAAgBJNTEwU7rS0tJSQ5DLFKwD19/nPfz6Gh4eXvP/QQw/FgQMH6pgIAAAAAAAAAAAAAAAAxSsVSCkdSCm9ssh1OqW0c6UzAgAAjW1ycrJwp7W1tYQklyleAai/hx56qKL9LMviV3/1V+uUBgAAAAAAAAAAAAAAgAjFK5Xqi4iOnOubKxcNAABYDSYmJgp3WlpaSkhymeIVgPo6f/58fOxjH6v4vr/5m7+JJ598sg6JAAAAAAAAAAAAAAAAiFC8Uo1sgWvWhRVJBAAArBqTk5OFO62trSUkuUzxCkB9feYzn4mxsbGq7v3d3/3dGqcBAAAAAAAAAAAAAABgluKVypwsmG8rJQUAALBqTUxMFO60tLSUkOQyxSsA9fXQQw9Vfe+nP/3pmJ6ermEaAAAAAAAAAAAAAAAAZileqcyxiEiXPk5zPp7VWWoaAABg1ZmcnCzcaW1tLSHJZYpXAOpnfHw8Hn744WXd/9xzz9UwEQAAAAAAAAAAAAAAALMUr1TmvxTM95WSAgAAWLUmJiYKd1paWkpIcllR8cprr70WMzMzJaUBuLo8/PDDS/p7f56nn366RmkAAAAAAAAAAAAAAACYS/FKZf4yImbfbZgtMP++ErMAAACrUNGb75ubm+Oaa64pKc1FRcUrEUsrjAHgzR566KFln6F4BQAAAAAAAAAAAAAAoD4Ur1Qgy7KBiPjziEjzR5dee29Kqb30YAAAwKoxPj6eO9+wYUNJSS5bSvHKuXPnSkgCcHWZmJiIz372s7k79957b/zAD/xA7s5TTz1Vy1gAAAAAAAAAAAAAAABconilcv8yIl6+9PFs4cqs9oj412UHAgAAVo+i4pW2traSklymeAWgPg4ePBgXLlzI3Xn/+98f9957b+5Of39/nDlzppbRAAAAAAAAAAAAAAAACMUrFcuy7BsR8SMR8frsS3N+TRHxcymld65ENgAAoPGdPXs2d654BeDq8eyzzxbu/OiP/mhh8UpExP79+2sRCQAAAAAAAAAAAAAAgDkUr1Qhy7IvR8T743L5yhujiLgmIh5OKd1dejAAAKDhKV4BWDuKild27NgRN954Y9x1113R1JT/x3RPPfVULaMBAAAAAAAAAAAAAAAQileqlmXZxyPiv4qI+e8+zCKiLSI+n1L6+dKDAQAADU3xCsDaUVS8cuedd0ZExKZNm2Lv3r25u08//XTNcgEAAAAAAAAAAAAAAHCR4pVlyLLs0xFxf0Qcj4g0dxQRrRHx4ZTSl1JK37sS+QAAgMajeAVgbZiamooDBw7k7rztbW974+N77703d/eZZ56JmZmZmmQDAAAAAAAAAAAAAADgonUrHWC1y7LsQEppX0T824j46bj8Pc3iYhnL/RHxqZTS0Yj4LxHxpYj4ekSciogLJeR7od7PAAAAlq4Ri1daW1sLdxSvAFRmYGAgJicnc3fmFq98+7d/e3zkIx9ZdHd0dDQGBgbitttuq1lGAAAAAAAAAAAAAACAtU7xSoVSSl/KGZ+IiJ1xsXQl4nL5SoqI7ojYHRH/pJ755snCX2MAAGgojVi80tTUFBs2bIjXXntt0R3FKwCVefbZZwt35hav3HvvvYX7Tz/9tOIVAAAAAAAAAAAAAACAGmpa6QCr0P0Rcd+8a/a1rks7ac6VzbnSClwAAEADKSpe2bRpU0lJrrRx48bcueIVgMp89atfzZ13dHTEzp073/i8u7s7rrvuutx7nn766VpEAwBYFV599dX4yEc+Eu9+97tj69at0dvbGx/4wAfi05/+dFy4cGGl4wEAAAAAAAAAAABXCcUr1ZtfbrJY0cnc17MSLwAAoAEVFa+0tbWVlORKilcAauvZZ5/Nnd95552R0uU/Smpqaop77703955nnnmmJtkAABrZyy+/HD/90z8dN9xwQ3zwgx+Mxx57LF555ZUYHByMj370o/G+970v3vKWt8Rv/uZvxuuvv77ScQEAAAAAAAAAAIBVTvFK9SotPEklXgAAQINSvAJw9cuyrLB45W1ve9ubXisqXjly5EhMTU0tKxsAQCP7+7//+7jjjjvij/7oj+K1115bdO/MmTPxK7/yK/Hggw/GzMxMiQkBAAAAAAAAAACAq43ileopPQEAACq2WotX8t7wBsCVXnjhhThz5kzuzkLFK9/6rd+ae8+FCxdiaGhoWdkAABrVzMxMfPCDH4yXX355yfd88YtfjI9+9KN1TAUAAAAAAAAAAABc7RSvVC9r4AsAAGhA09PThQUmjVq8cu7cuZKSAKx+zz77bOHOQsUre/bsKbzv0KFDVWUCAGh0jz32WPzd3/1dxfd9+MMfrkMaAAAAAAAAAAAAYK1QvFKdtAouAACgwYyPjxfuKF4BWP2KildaWlqir6/vTa93dXXFpk2bcu89ePDgsrIBADSqT3ziE1Xdd/DgwTh69GiN0wAAAAAAAAAAAABrxbqVDrAKfddKBwAAAFYnxSsAa0NR8crevXtj3bo3/7FcSin27NkTTz/99KL3Hjp0aNn5AAAaTZZl8clPfrLq+z/+8Y/HL/3SL9UwEQAAAAAAAAAAALBWKF6pUJZlX1zpDAAAwOp09uzZwh3FKwCrX1Hxytve9rZFZ3v37s0tXjl48GDVuQAAGtVXvvKV+PrXv171/X/1V3+leAUAAAAAAAAAAACoStNKBwAAAFgrFK8AXP3GxsYK3zScV7yyZ8+e3HuHh4fjtddeqyobAECj+uQnP7ms+59++uk4ceJEjdIAAAAAAAAAAAAAa4niFQAAgJI0cvHKpk2bcudLyQ5AxMDAQOHOvn37Fp3t3bs3994sy+Lw4cMV5wIAaGTLLV6JiPjEJz5RgyQAAAAAAAAAAADAWqN4BQAAoCSNXLyyefPm3PnY2FhJSQBWt/7+/sKdvr6+RWd79uwpvP/gwYMVZQIAaGRf+9rX4sCBA7k773//++Paa6/N3fn4xz9ey1gAAAAAAAAAAADAGqF4BQAAoCRFxSvNzc3R0tJSUportbe3585HR0dLSgKwug0MDOTOr7/++tiyZUvufPv27blnHDp0qKpsAACN6JOf/GThzo//+I/H937v9+bufOELX4jTp0/XKhYAAAAAAAAAAACwRiheAQAAKElR8cqmTZsipVRSmit1dHTkzs+ePRszMzMlpQFYvfr7+3PnfX19hWfs2bMnd37w4MGKMgEANLKi4pWNGzfGu971rvjhH/7h3L3p6en467/+61pGAwAAAAAAAAAAANYAxSsVSiltSCndvNC1wrnaFsnVspK5AACAy4qKV9ra2kpK8mbt7e258yzLCvMDEDEwMJA7X0rxyt69e3Pnhw4dqigTAECjOnPmTDz++OO5O+95z3uipaUlvv/7vz+am5tzdz/zmc/UMh4AAAAAAAAAAACwBiheqdx/HRFfW+B6fiVDRcR/Hwvn+pmVDAUAAFzWyMUrHR0dhTujo6MlJAFYvaanp2NoaCh3p7e3t/CcPXv25M5feumlOH36dEXZAAAa0RNPPBHT09O5Oz/0Qz8UERFbtmyJ7/zO78zd/Yd/+IdaRQMAAAAAAAAAAADWCMUr1UmLXCvpTCyc6e0rGQoAALiskYtX2tvbC3fGxsZKSAKweh07diwuXLiQu9PX11d4zt69ewt3Dh06tORcAACN6oknnsidNzc3x/ve9743Pn/ve9+buz84OBgTExM1yQYAAAAAAAAAAACsDYpXqpfNuRrBbPHL/Fz7ViYOAAAw32ovXhkdHS0hCcDq1d/fX7jT29tbuHP77bcX7hw8eHBJmQAAGtmTTz6ZO7/zzjtjy5Ytb3z+Ld/yLbn7MzMzcfjw4ZpkAwAAAAAAAAAAANYGxSvLk4pXSrNhkde3lpoCAABYVCMXr3R0dBTujI2NlZAEYPUaGBjIna9fvz527txZeM6mTZvi1ltvzd05dOhQJdEAABrOhQsXYv/+/bk799133xWf7927t/BcBXUAAAAAAAAAAABAJRSvXD26F3l95d65CQAAXKGRi1c2btwYzc3NuTuKVwDy9ff35853794d69atW9JZe/bsyZ0rXgEAVruvfvWrMTk5mbvzjne844rPt2/fHp2dnbn3HDhwYNnZAAAAAAAAAAAAgLVD8cpVIKXUHhE/FhHZAuPWkuMAAACLGB8fz52vZPFKSik2b96cuzM6OlpSGoDVqah4pa+vb8lnFRWvHDlyJLJsoT8KAgBYHZ544onCnfvuu+9Nr+3bty/3HsUrAAAAAAAAAAAAQCWW9iN2r2Ippc0R0VHBLdtyzropItKyQy1dS0TsjYh/FRFviYvFKymuLGB5tcQ8AABAjrNnz+bOV7J4JSKio6Mjzpw5s+h8bGysxDQAq8/AwEDuvLe3d8ln3X777bnzV155JV5++eXo7Oxc8pkAAI3kySefzJ3fdNNN8da3vvVNr+/duzcefeYgZXMAACAASURBVPTRRe87ePDgsrMBAAAAAAAAAAAAa8eaL16JiH8WEb9WxX1pgV+P1SJQFeZnmet0mUEAAIDFNXrxSnt7e+58dHS0pCQAq8+ZM2diZGQkd6evr2/J5912222FO0eOHFG8AgCsSlmWxRNPPJG7c9999y34+r59+3LvGxkZiZMnT8b27durzgcAAAAAAAAAAACsHU0rHaBBpAqvWp1TqysiIlsgSxYRX63oOwEAANRNoxevdHR05M7HxsZKSgKw+gwMDBTu9Pb2Lvm8pewePnx4yecBADSS48ePx0svvZS78453vGPB1/fu3Vt4/oEDB6rKBQAAAAAAAAAAAKw9ilcuyyq4anFGra/FCmE+V8H3AAAAqKNGL15pb2/PnSteAVhcf39/4U4lxSsbN26Mrq6u3J0jR44s+TwAgEbyxBNPFO7cd999C75+++23R1NT/n/iPHjwYFW5AAAAAAAAAAAAgLVH8cqV0hKv5d5fj2vW3GKYlyPizyv8HgAAAHUwNTUVk5OTuTubNm0qKc3CiopXRkdHS0oCsPoMDAzkzrdv3x4dHR0VnXnbbbflzhWvAACr1ZNPPpk737hxY+zbt2/BWWtra/T09OTef+DAgaqzAQAAAAAAAAAAAGuL4pWrRxaXS1dSRExHxM9lWfbaykUCAABmnT17tnCnra2thCSLKyoEGBsbKykJwOrT39+fO+/r66v4zNtvvz13rngFAFitnnjiidz5PffcE+vWrVt0vnfv3tz7Fa8AAAAAAAAAAAAAS6V45UrZEq/l3l+PK+Ji4UqKiG9ExI9kWfZX1X8rAACAWloNxSvt7e2589HR0ZKSAKw+RcUrvb29FZ9522235c5PnDihFAsAWHXGx8fj4MGDuTv33Xdf7nzfvn2588OHD8fU1FTF2QAAAAAAAAAAAIC1R/HKZamCqxZn1Pp6LSK+EBEfjIieLMseXs43AwAAqK2roXjFm/sBFjY9PR3PP/987k5fX1/F5xYVr0QUF74AADSaI0eOxMzMTO7OO97xjtz53r17c+fnz5+PoaGhirMBAAAAAAAAAAAAa8+6lQ7QAP44LhaWLNV7IuJfREQWFwtP5v76rhpnK5JFxHhEnImIY1mWZSU/HwAAWKLVULzS0dGRO1e8ArCwr3/963HhwoXcne7u7orPXUrxypEjR+Kee+6p+GwAgJWylOK4u+66K3e+b9++wjMOHDiwpN9PAQAAAAAAAAAAAGvbmi9eybLseEQcX+p+SmlnzllfrEEkAADgKrQailfa29tz5xMTE3HhwoVYv359SYkAVofh4eHCnd27d1d87pYtW6KzszNGRkYW3Tly5EjF5wIArKSi4pXrr78+tm7dmrvT1dUVbW1tuf+ufeDAgfixH/uxqjICAAAAAAAAAAAAa0fTSgcAAABYC1ZD8UpHR0fhztjYWAlJAFaXo0eP5s5TSnHLLbdUdfbtt9+eO1e8AgCsNgMDA7nzvr6+wjOamppiz549uTuDg4MV5QIAAAAAAAAAAADWJsUrAAAAJSgqXrnmmmvi2muvLSnNwtrb2wt3RkdHS0gCsLoMDw/nzm+66aaq/x5/22235c4PHz5c1bkAACulv78/d97b27ukc4oK6o4fP77kTAAAAAAAAAAAAMDapXhlebKVDgAAAKwO4+PjufO2traSkixuKcUrY2NjJSQBWF2OHj2aO9+1a1fVZxcVr3zta1+LycnJqs8HACjT1NRUDA0N5e709fUt6ayurq7cueIVAAAAAAAAAAAAYCkUr1QvzbkAAABynT17NnfeCMUrHR0dhTuKVwDebHh4OHe+e/fuqs8uKl6ZmZmJwcHBqs8HACjTsWPH4sKFC7k7tSpeGRkZiYmJiSVnAwAAAAAAAAAAANYmxSuV+08RccsC160rGQoAAGhsq6F4pb29vXBndHS0hCQAq0eWZYXFK7t27ar6/KLilYiII0eOVH0+AECZ+vv7C3dqVbwSEfHCCy8s6SwAAAAAAAAAAABg7Vq30gFWmyzLzkXEuZXOAQAArC6roXjl2muvjZaWlpicnFx0Z2xsrMREAI1vZGQkxsfHc3eWU7xy4403xubNm+PVV19ddOfw4cNVnw8AUKaBgYHc+fr162Pnzp1LOmspxSvHjx+P3t7eJZ0HAAAAAAAAAAAArE1NKx0AAABgLSgqXtm0aVNJSfK1t7fnzkdHR0tKArA6DA8PF+7s3r276vNTSnHbbbfl7iheAQBWi/7+/tx5d3d3NDc3L+msHTt2RFNT/n/qPH78+JKzAQAAAAAAAAAAAGuT4hUAAIASFBWvtLW1lZQkX1HxytjYWElJAFaHo0ePFu7s2rVrWc8oKl557rnnlnU+AEBZiopX+vr6lnzWNddcEzt27MjdUbwCAAAAAAAAAAAAFFG8AgAAUILVUrzS0dGRO1e8AnCl4eHh3HlnZ+ey/x6/Z8+e3Png4GCcP39+Wc8AAChDLYtXIiK6urpy54pXAAAAAAAAAAAAgCKKVwAAAEqwWopX2tvbc+ejo6MlJQFYHY4ePZo737Vr17KfUVS8Mj09HQMDA8t+DgBAPZ0+fTpOnTqVu9Pb21vRmYpXAAAAAAAAAAAAgOVat9IBypZSeiBvnmXZl5Zzf6Mp+noAAIByXC3FK2NjYyUlAVgdhoeHc+e7d+9e9jOKilciIg4dOhT79u1b9rMAAOplKUVxfX19FZ2peAUAAAAAAAAAAABYrjVXvBIRX4iIbJFZFsXfk7z7G81Svh4AAKAEq6V4paOjI3c+OjpaUhKA1aGoeGXXrl3LfsaNN94YHR0duX8PPnTo0LKfAwBQT/39/YU7vb29FZ1ZVLxy4sSJmJqainXr/OcyAAAAAAAAAAAAYGFNKx1gBaVFruXe32gXAADQAFZL8Up7e3vufGxsrKQkAI1vbGwsTp06lbtTi+KVlFLs2bMnd0fxCgDQ6IqKV2688cbYvHlzRWcWFa9MT0/HiRMnKjoTAAAAAAAAAAAAWFvWcvFKNu9a7v2NdgEAAA1ktRSvdHR05M4VrwBcNjw8XLize/fumjxL8QoAsNoVFa/09vZWfGZR8UpExPHjxys+FwAAAAAAAAAAAFg71q10gBWU5nxcTVFJKl5ZMYpXAACggZw/fz5ef/313J1GKV5pb2/PnY+OjpaUBKDxHT16tHBn165dNXlWUfHK1772tRgfH49NmzbV5HkAALU2MDCQO+/r66v4zJtvvrlwR/EKAAAAAAAAAAAAkKdppQMAAABc7cbHxwt3VkvxytjYWGSZrkeAiIjh4eHc+ebNm2Pbtm01eVZR8UpExOHDh2vyLACAWrtw4ULh752qKV7ZsGFDXH/99bk7ilcAAAAAAAAAAACAPGu5eCWbcy33/ka7AACABnL27NnCnUYpXuno6MidT09Px7lz50pKA9DYit48vGvXrkgp1eRZd9xxR+HOoUOHavIsAIBaGx4ejunp6dydaopXIiK6urpy54pXAAAAAAAAAAAAgDxrtXglLXAt9/5GuwAAgAaxmopX2tvbC3fGxsZKSALQ+I4ePZo737VrV82etW3btnjLW96Su6N4BQBoVP39/YU7vb29VZ2teAUAAAAAAAAAAABYjnUrHWAFfNcK3w8AAKwxSyle2bRpUwlJii21eGXHjh0lpAFobEXFK7t3767p8/bs2RPf/OY3F50rXgEAGtXAwEDuvLW1NW666aaqzla8AgAAAAAAAAAAACzHmiteybLsiyt5PwAAsPaMjY0V7rS1tZWQpFhHR0fhzujoaAlJABrb+Ph4nDhxInenHsUrjz766KJzxSsAQKPq7+/Pnff29kZTU1NVZxcVr7zwwguRZVmklKo6HwAAAAAAAAAAALi6Vfd/MAIAALBkp0+fzp2nlKK9vb2kNPmWkmMpRTIAV7ujR48W7vT09NT0mXv27Mmdv/TSS4X/zAEAWAlFxSt9fX1Vn11UvDI5ORkjIyNVnw8AAAAAAAAAAABc3RSvAAAA1FnRm+C3bNkSzc3NJaXJt3nz5sKd0dHREpIANLahoaHCne7u7po+s6h4JSLiueeeq+kzAQCWK8uyuhav7Ny5s3Dn+PHjVZ8PAAAAAAAAAAAAXN0UrwAAANTZqVOncudbt24tKUmx5ubmaGtry90ZGxsrKQ1A4xocHMydt7W1xfbt22v6zDvuuKNw59ChQzV9JgDAcp08ebLw3yN7e3urPr+rq6twR/EKAAAAAAAAAAAAsBjFKwAAAHVWVLyybdu2kpIsTXt7e+5c8QpAxNDQUO68p6cnUko1feamTZvilltuyd159tlna/pMAIDlGhgYKNzp6+ur+vyOjo7YvHlz7o7iFQAAAAAAAAAAAGAxilcAAADqbLUVr3R0dOTOR0dHS0oC0LgGBwdz593d3XV57p49e3Lnf/u3f1uX5wIAVKu/v79wp6enZ1nP6Orqyp0rXgEAAAAAAAAAAAAWo3gFAACgzk6fPp07b7Tilfb29tz52NhYSUkAGldR8cpy3zy8mLe//e2580OHDsW5c+fq8mwAgGoUFa90dXXFhg0blvUMxSsAAAAAAAAAAABAtdatdIC1KKXUHhGdEbExIloiojkiJiNiIiJORcTLWZZlK5cQAACopVOnTuXOV1vxyujoaElJABrTK6+8Uliq1d3dXZdn33333bnz6enpePbZZ+P++++vy/MBACpVVLzS29u77GcUFa8cO3Zs2c8AAAAAAAAAAAAArk6KV+oopZQi4tsi4rsi4lsjYk9E7IqIawtunU4pnYiI5yLiYER8OSIez7Ls1TrGBQAA6qSoeGXr1q0lJVmajo6O3PmZM2dKSgLQmIaGhgp3enp66vLsu+66q3DnmWeeUbwCADSMouKVvr6+ZT+jqHjl+PHjy34GAAAAAAAAAAAAcHVSvFIHKaVvjYgPRMR/ExFz30GZlnjEuojoioibI+K9EfHLcbGM5YsR8f9FxH/Msmy8dokBAIB6ybKssHhl27ZtJaVZmqIimJdffrmkJACNaSnFK93d3XV59tatW2P37t1x9OjRRXf2799fl2cDAFRqYmKisPSkjOKVV199NUZHRwuLRgEAAAAAAAAAAIC1p2mlA1xNUkr3pJQeiYi/jYifjYhtcbFsZfaKiMgquObeuy4i3hUR/09EfD2l9O9SSjeU85UBAADVGh8fj9dffz13p9GKVzo7O3PnJ0+eLCkJQGMaHBzMnW/bti2uu+66uj3/7rvvzp0rXgEAGsXQ0FBkWZa7U0bxSkQUFsAAAAAAAAAAAAAAa5PilRpIKbWmlP7viHgiLpajzJalLFSmEnFlocpC16zFilg2R8SHImIopfRvUkrX1vPrAwAAqnfq1KnCnUYrXtm+fXvufGRkpPCNcwBXs6LilZ6enro+v6h45dixYzEyMlLXDAAAS9Hf31+409vbu+znKF4BAAAAAAAAAAAAqqV4ZZlSSjsj4qmI+B/i4vdzbuFKRH6xyqLHLnLP/BKWDRHxqxHxDymle5f9xQAAADW3lOKVrVu3lpBk6YqKVy5cuBCjo6MlpQFoPENDQ7nz7u7uuj6/qHglImL//v11zQAAsBRFxSttbW1xww03LPs5nZ2dce21+T+nQPEKAAAAAAAAAAAAsBDFK8uQUuqOiMcjYm9cWbiyWMlKVuUVC5w591k9EfHFlNIHa/01AgAAy7OU4pVt27aVkGTpiopXIiJGRkZKSALQeLIsi8HBwdydnp6euma48847Y926dbk7ilcAgEYwMDCQO+/r64uUlvIzC/I1NTXFzTffnLujeAUAAAAAAAAAAABYiOKVKqWUOiPi0YjYcemluQUpc+UVqCzlyjtj7uyaiPj9lNL/svyvDgAAqJXTp0/nzpuamqKjo6OkNEvT2dlZuHPy5MkSkgA0npMnT8b4+HjuTr2LV1pbW2Pfvn25O4pXAIBG0N/fnzvv6+ur2bO6urpy54pXAAAAAAAAAAAAgIXk/2hcFpQu/ui9/xQRN0V+4UrMm70SEQcuXUMR8WpEjEXEeES0RkTbpWtbRNx+6eqNiA1zzswrX0kR8S9TSmezLPutZX2RAABATZw6dSp3vmXLlmhubi4pzdJs3769cEfxCrBWDQ4OFu50d3fXPcfdd98dX/nKVxad79+/P7Isi4t/jAUAUL4sy2JgYCB3p7e3t2bPU7wCAAAAAAAAAAAAVEPxSnU+FBH3x8KlK/MLV16MiL+MiP+YZdnfVvqglFJzRDwQET8UET8YETfHwgUsc8tXfiOl9HdZlj1W6fMAAIDaKipe2bp1a0lJlm7Dhg2xadOmGB8fX3RH8QqwVi2leGX37t11z3HPPffEH/7hHy46P3PmTAwPD5eSBQBgIS+99FKcO3cud0fxCgAAAAAAAAAAALDSmlY6wGqTUrouIv5N5JeupIj4RkT8TETcmmXZL1ZTuhIRkWXZdJZln8+y7J9GxC0R8RMRMTDnufNzZBHRHBF/nFLaUM0zAQCA2ikqXtm2bVtJSSqzffv23PnIyEhJSQAay9DQUO58x44dsXHjxrrnuPvuuwt3nnnmmbrnAABYTNHvmyIienp6ava8ouKVkZGRmJiYqNnzAAAAAAAAAAAAgKuD4pXK/dOIaLv08dyyk2zOzv8eEbuzLPv3WZZN1+rB2UV/ERF3RMTPR8Ts/x26UAnMjoj4F7V6NgAAUJ3Tp0/nzhu1eKWzszN3fvLkyZKSADSWwcHB3Hkt3zycp7e3N9ra2nJ3vvzlL5eSBQBgIUW/b4qI2L17d82eV1S8EhHxwgsv1Ox5AAAAAAAAAAAAwNVB8UoFUkopIj4QV5aszC09mYqIn8iy7JezLDtfrxyXClj+ICLuj4jZHzM/P1OKiJ9PKbXWKwcAAFDs1KlTufNGLV7Zvn177lzxCrBWDQwM5M67u7tLydHc3Bx33XVX7s7jjz9eShYAgIUMDQ3lzt/61rfGhg0bava8pRSvHD9+vGbPAwAAAAAAAAAAAK4Oilcq8+0R8dZLH6c5r6e4WHbyC1mW/b9lhcmy7KsR8b6ImJh9aV6ujoj4sbLyAAAAb1ZUvLJ169aSklRG8QrAm01NTcXRo0dzd3p7e0tKE3H//ffnzp977rnCfw4BANRLUfFKrQvrduzYEU1N+f/pU/EKAAAAAAAAAAAAMJ/ilcp817zPZ4tOsoj4XJZlv192oCzLno2IX4srC1fm+v4S4wAAAPMUveF927ZtJSWpTFHxysjISElJABrHsWPH4vXXX8/dKbN45YEHHijc+fKXv1xCEgCANysqXunp6anp86655prYsWNH7o7iFQAAAAAAAAAAAGA+xSuVuStn9uulpXiz/zMivnHp42zOryneXBYDAACUJMuyOH36dO5OoxavdHZ25s5PnjxZUhKAxjEwMFC4U2bxyr333hvr1q3L3Xn88cdLSgMAcNnMzEwcPXo0d6e7u7vmz+3q6sqdK14BAAAAAAAAAAAA5lO8UpndcWWxyaznsyx7agXyXAySZa9HxJ/FxaKVmPNrRER7Sin/x/sBAAB1cfbs2Xj99ddzdxq1eGX79u2583PnzsW5c+dKSgPQGIqKV6655prYuXNnOWEiYuPGjfFt3/ZtuTtf+tKXSkoDAHDZiy++GOfPn8/dUbwCAAAAAAAAAAAANALFK5W5Yd7nKS4WsHyh/Chv8mjOrPb/5yoAAFDo1KlThTtbt24tIUnliopXIiJGRkZKSALQOIqKV3bv3h3r1q0rKc1FDzzwQO78K1/5Spw9e7akNAAAFw0NDRXu9PT01Py5ilcAAAAAAAAAAACASileqczGRV7Pf9dNOQ7nzDpKSwEAALxhKcUr27ZtKyFJ5ZZSvHLy5MkSkgA0jqLild7e3pKSXFZUvDIzMxNPPfVUSWkAAC4aHBzMnTc1NcWtt95a8+fu3Lkzd37ixImYmpqq+XMBAAAAAAAAAACA1UvxSm2cWekAEXE6Z7ahtBQAAMAbTp/O+236RY1avNLZ2Vm4o3gFWGsasXjlvvvui5RS7s6XvvSlktIAAFw0NDSUO+/q6or169fX/LldXV258+np6Thx4kTNnwsAAAAAAAAAAACsXopXKvPqIq9vLDXFwrKc2URpKQAAgDecOnUqd97U1BQdHR0lpalMe3t74ZvgFK8Aa8mrr74a3/zmN3N3VqJ45brrrou9e/fm7iheAQDKVlS80tPTU5fnFhWvREQcP368Ls8GAAAAAAAAAAAAVifFK5V5MSIW+hHCN5QdZAHtObPR0lIAAABvKCpe2bJlSzQ1Nea/lqWUYvv27bk7IyMjJaUBWHkDAwOFOytRvBIR8cADD+TO9+/fH5OTkyWlAQAoLl7p7u6uy3Nvvvnmwh3FKwAAAAAAAAAAAMBcjfkOv8b13CKv1+fH8lXm1pzZcGkpAACANxQVr2zbtq2kJNUpKl45efJkSUkAVl4jF698x3d8R+78/PnzsX///pLSAABr3dTUVDz//PO5O/UqXmltbY3Ozs7cneFh/9kMAAAAAAAAAAAAuEzxSmW+OO/zLCJSRDyYUlq/Annmevucj7M5H5/OsuyFssMAAAARp0+fzp03evFK0ZvVFK8Aa0lR8crWrVtj69atJaW5UlHxSkTE5z73uRKSAABEHDt2LKampnJ3enrq9zMNbr0172cVLK1QDwAAAAAAAAAAAFg7FK9U5tMRMbPA6xsj4j0lZ5nvh+d9nuJiAcvnVyALAAAQEadOncqdN3rxyvbt23PnileAtaToDbq9vb0lJXmzG264Ibq7u3N3PvvZz5aUBgBY64aGhgp3in7vshx9fX258/7+/ro9GwAAAAAAAAAAAFh9FK9UIMuyb0TEZ+JiqclcKSL+55TS/NdLkVLqjYjvjItFK/P9WblpAACAWVd78crIyEhJSQBWXiMXr0REvPvd786d79+/P0ZHR0tKAwCsZUXFK+vWrYuurq66Pb/o92UDAwMxM7PQz1kAAAAAAAAAAAAA1iLFK5X7nTkfp7hcdrIvIv5x+XEiIuL/iIX/Wg5GxKdKzgIAAFxSVLyydevWkpJUp6h45eTJkyUlAVhZMzMzhW8gXunilQcffDB3PjMzE4899lhJaQCAtWxwcDB3fuutt8a6devq9vy+vr7c+cTERLz44ot1ez4AAAAAAAAAAACwuiheqVCWZZ+Pi2Umc0tXskuf/25K6e1l5kkp/WJEvHdOhpiT7Z9nWeZH9gEAwAo5ffp07nzbtm0lJalOZ2dn7vzMmTNx4cKFktIArJwXX3wxJiYmcndWunjlXe96VzQ15f9R3yOPPFJSGgBgLSsqrOvp6anr84uKVyIiBgYG6poBAAAAAAAAAAAAWD0Ur1TnZyNidN5rWUS0RsQnU0pdZYRIKX0oIv5tvLkAJouIP86y7FNl5AAAAN4sy7I4depU7k6jF69s3769cGdkZKSEJAAraylvzF3p4pWOjo64++67c3c++9nPlpQGAFjLBgcHc+fd3d11ff6tt94azc3NuTv9/f11zQAAAAAAAAAAAACsHopXqpBl2YsR8VNxufDkjVFE3BART6eU3lmv56eUtqSU/jwi/l0s/Nfw0Yj4YL2eDwAAFHv11Vdjamoqd0fxCsDqUFS80tzcHLt27SopzeK+53u+J3f+/PPPx/DwcElpAIC16Ny5c3Hs2LHcnZ6enrpmWL9+feHvzRSvAAAAAAAAAAAAALMUr1Qpy7KHI+JnFxpFxPaI+FxK6aMppd21emZKqTOl9G8iYigi3h8RKS6Xv6RL13+OiB/Ksuz1Wj0XAACo3KlTpwp3tm7dWkKS6i2leOXkyZMlJAFYWUXFK7fcckusX7++pDSLe/DBBwt3HnnkkRKSAABr1VIKTW677ba65+jr68udF/3+DgCgFiYnJ+Pll1+O8+fPr3QUAAAAAAAAACCH4pVlyLLs30fEP4qI+SUnWVz83v53EdGfUvpCSulDKaV9KaUlf89TShtSSvellP5ZSumxiDgREb8aEdfFm0tXsoj4vYj4wSzLJpb1hQEAAMv20ksvFe5s27athCTV27JlSzQ15f8rjOIVYC04dOhQ7ry3t7ekJPnuueeeaGtry91RvAIA1NPhw4cLd26//fa65ygqXllKQQwAQLVOnjwZP/dzPxebN2+Ozs7OuOGGG+IXfuEX4syZMysdDQAAAAAAAABYwLqVDlC2lNJ0vY6e83F26UqXru+4dEVEvJ5SGv7/2bvzOBvr/o/j72vMMPZ9y96KUET3FFmKiuxKuRuRCqm0KJVUJEt7d91lK8XPvtWtRUKYURKyxk0ykTVlyTZjzFy/P+ROlu/3zMw53zPL6/l4nEfjfN/ne71VzMyZ6/pcknZK2ivpmKTjknJLipaUT9IFkspLKn3Gvqc+9s94zpe0W1IxSR963v9e4vu+3yUIvzcAAAAAabR161Zrply5cg6apF+uXLlUsmRJ43AVBq8AyO5839fatWuNGRcXDwciKipKTZo00axZs86b+eqrr3TixAlFRua4twUBAIADGzZsMK6XKFFCJUuWDHkP22C8nTt36o8//lChQoVC3gUAAOQsy5YtU7t27bRjx47/Pbd//3698cYbmjJlikaNGqVbbrkljA0BAAAAAAAAAAAAAMCZzLcuz568ED3OPIZ09gAWTycHrFSTdL2k2yV1ldT9z3/eIam1pHqSyurkf5/TX3tqv9N/H6c+LiPpztMesX8+AAAAAITBtm3bjOslSpRQvnz5HLVJv9KlSxvXf/31V0dNACA8du7cqX379hkztWrVctTGrlmzZsb1AwcOaMWKFY7aAACAnGb9+vXGdVcD66pWrWrNbNy40UETAACQk4wdO1bXXXfd34aunG7nzp1q2bKl7r33Xp04ccJxOwAAAAAAAAAAAAAAcD45cfCK9NcAk2A+znT6YJRzZW1DXM53jHMNejnXfgAAAADCyDZ4pWLFio6aZIxt8Mr27dsdNQGAVfzdpgAAIABJREFU8Fi7dq01U7NmTQdNAnPjjTdaMwsXLgx9EYTE1q1btWDBAi1atEhr167Vjh075PvnemsSAIDwyCyDVy677DJrhsErAAAgmN5991117dpVSUlJ1uz777+vu+66i+/pAQAAAAAAAAAAAADIJHLq4BXJPPgkPY9AjyOlbZBLoMexDYIBAAAA4JBt8EqlSpUcNcmY8uXLG9cTEhIcNQGA8FizZo1xPVeuXKpataqjNnaXXHKJKlSoYMwsWLDAURsEy4YNG9S8eXNVrlxZ119/vRo3bqxatWqpfPnyKlOmjPr37x/QhV0AAIRSYmKifvrpJ2OmWrVqTroUL15cJUuWNGb++9//OukCAACyv2XLlql3795pes2kSZM0duzYEDUCAAAAAAAAAAAAAABpkZMHr4RLsAa6mPYFAAAAEGZbt241rlesWNFRk4y58MILjesMXgGQ3a1du9a4XrVqVeXJk8dRGzvP89SkSRNjZvHixUpOTnbUCBlx9OhRPfPMM7riiiv0xRdfnDPz66+/avDgwWrSpIkOHDjguCEAAH/ZtGmTUlNTjZnq1as7aiNddtllxnUGrwAAgGDwfV99+/ZVSkpKml/76KOPavfu3SFoBQAAAAAAAAAAAAAA0iInD17xs/EDAAAAQBj5vp9tBq9UqVLFuP7bb7/p0KFDjtoAgHtr1qwxrtesWdNRk8DZBq8cOXJEK1ascNQG6bVjxw7Vq1dPQ4YMCWhQzpIlS9S4cWPt2bPHQTsAAM62fv16a8bl4JWqVasa1zdu3OioCQAAyM7mzJmjhQsXpuu1Bw4c0IMPPhjcQgAAAAAAAAAAAAAAIM1y6uAVLwc8AAAAAITJwYMHdfjwYWMmuwxekaSEhAQHTQDAveTkZG3YsMGYqVWrlqM2gWvcuLE1k94LguDGH3/8ocaNGwd0AfvpVq9ereuuu07bt28PUTMAAM7P9nVT4cKFVbZsWUdt7INXNm3apJSUFEdtAABAdpSamqqnnnoqQ3vMmDFDM2bMCFIjAAAAQDp06JDGjx+vHj16qEGDBipWrJhy5cqlChUqqF+/ftq3b1+4KwIAAAAAAABAphMZ7gJhYL9qEAAAAAAyYNu2bdZMpUqVHDTJuEAHr2TGwQMAkFGbNm1ScnKyMVOzZk1HbQJXuXJlVapUSVu3bj1vZuHChRm+MAih88gjj2jz5s3peu2PP/6ojh07atGiRYqKigpyMwAAzs82MKx69eryPHf3DrANXjl+/Lh+/vlnXXTRRY4aAQCA7Gby5MlavXp1hvfp3bu3WrRoobx58wahFQAAAHKy7777Trfddts5z1vZvn27hg4dqpEjR+q5557T/fffr9y5c4ehJQAAAAAAAABkPjlu8Irv++e/4gQAAAAAgiCQwSsVK1Z00CTjypQpo+joaCUmJp43s2XLFoeNAMCdNWvWWDOZcfCKJDVu3Fhjx4497/rixYuVnJzMYI5MaObMmfrggw8ytMeSJUv04Ycf6r777gtSKwAA7GyDV6pVq+aoyUmXXXaZNbNhwwYGrwAAgHQ5fvy4nn322aDstXPnTk2aNEndunULyn4AAADImebPn682bdroyJEjxty+ffv0yCOPaMyYMZo1a1aWuXEQAAAAAAAAAIRSRLgLAAAAAEB2s3Wred5jnjx5VLJkSUdtMsbzPFWpUsWYSUhIcNQGANxau3atcb1QoUKZdpBWkyZNjOtHjhzR8uXLHbVBoHbv3q3u3bsHZa+hQ4cqOTk5KHsBAGCTnJysTZs2GTPVq1d31OakypUrW+/Yu3r1akdtAABAdvPRRx9Zh5IXKFBAe/bs0a233mrd7+2335bv+8GqBwAAgBzmP//5j1q0aGEdunK6NWvWqH79+tq5c2cImwEAAAAAAABA1sDgFQAAAAAIsm3bthnXK1SooIiIrPPtGINXAORUa9asMa7XrFlTnuc5apM2jRo1smYWLlwY+iIIWGpqqu6++279/vvvQdkvISFBEyZMCMpeAADYbN68WSdOnDBmXA9eiYyMVLVq1YyZ77//3lEbAACQ3QTyPXefPn1UqlQpvf322ypatKgxu2rVKi1ZsiRY9QAAAJCDzJo1Sx06dNDx48fT/NodO3aoTZs2Onr0aAiaAQAAAAAAAEDWkXWu9AMAAACALMI2eKVixYqOmgTHhRdeaFy33dUTALKqtWvXGtdr1arlqEnaVa5cWZUrVzZmGLySubz88sv64osvrDnP8zR69GhFRUVZs0OGDFFKSkow6gEAYLRhwwZrxvXgFUmqU6eOcX3lypWOmgAAgOxk37591u/hS5YsqT59+kiSypQpo8GDB1v3feedd4LSDwAAADnHtm3bFBsbm6GfBy1fvlx33323fN8PYjMAAAAAAAAAyFoYvJIGnudd6nleLcMjT7g7AgAAAAg/2+CVSpUqOWoSHFWqVDGu//zzz5yAAyDbOXDggPXv85o1azpqkz6NGzc2ri9evFjJycluysAoPj5e/fv3t+YKFiyon376Sffee6+2b9+uvHnzGvM//vijpkyZEqyaAACc1/r1643r+fPnV4UKFRy1+Uvt2rWN6wkJCdq/f7+jNgAAILuYOXOm9T2VJ554QgULFvzfr++66y4VKVLE+Jpp06Zp9+7dQekIAACA7M/3fd177706dOhQhveaOnWqXnzxxSC0AgAAAAAAAICsicEraRMvaeV5Ht9LKhG+agAAAAAyC9uF+hUrVnTUJDhsg1eOHj2qX3/91VEbAHBj3bp11kxmH7zSpEkT4/rRo0f1/fffO2qD89m7d686deoU0J0I33333f99Xi5VqlRAd8t+8cUXM3SXQwAAAmEbvFK1alVFRLj/sWSdOnWsmZUrVzpoAgAAspNJkyYZ1yMiIhQbG/u35/Lnz6+7777b+Lrk5GSNHj06w/0AAACQM4wePVpz584N2n4DBgzgvTIAAAAAAAAAORaDV9KmhCTP8NgbvmoAAAAAMoPk5GTt3LnTmMlqg1cuvPBCa2bLli0OmgCAO2vXrrVmMvvglcaNG1sz3377beiL4Lx831e3bt20Y8cOa7Zjx4668847//Zcjx49VKpUKePrNmzYoIkTJ2aoJwAANitWrDCuV69e3VGTv7viiivkeZ4xwyA6AACQFrt27dKCBQuMmcaNG6ts2bJnPd+rVy/r/iNGjFBycnK6+wEAACBn+Pnnn9WnT5+g7pmamqr7779fqampQd0XAAAAAAAAALICBq+kTaIk/xyPU/xzvQgAAABAzrFjxw7rSShZbfBKlSpVrJmEhAQHTQDAHdvd3CpWrKjChQs7apM+FStWVIUKFYyZJUuWOGqDcxk7dqw+/fRTa65ChQoaPnz4WReO58uXL6CTavv376/ExMR09wQAwOT333/Xpk2bjJnLL7/cUZu/K1CggC677DJjhsErAAAgLaZOnSrfN58edMcdd5zz+YsvvljNmzc3vnbnzp2aO3duuvsBAAAg+/N9Xz179tThw4et2WeffVapqanat29fQMORly5dqtGjRwejJgAAAAAAAABkKQxeSZtdp33s/fk4nfn2sgAAAACyvW3btlkzlSpVctAkeAoVKqRixYoZMwxeAZDdLF++3Lheq1YtR00y5pprrjGuf/vtt46a4Ezbt2/Xww8/bM1FRkZqypQp5/1c3KtXLxUvXty4x7Zt2zR8+PB09QQAwGbp0qXWzD/+8Q8HTc6tdu3axnXbwD0AAIDTTZ482bgeFRWlDh06nHf9wQcftB5j/Pjxae4FAACAnGPhwoWaM2eONdelSxe98MIL8jxPRYsW1ezZs1W6dGnr655++mn9+uuvwagKAAAAAAAAAFkGg1fSZqPOHrZyOvu70QAAAACytUAGr5QvX95Bk+C68MILjetbtmxx1AQAQi8xMVFr1641Zq666ipHbTImJibGuL5161bt2rXLmEHw+b6ve+65R3/88Yc1O2zYMOMAnQIFCuixxx6z7jN48GAdPHgwTT0BAAjEkiVLjOu5cuVSvXr1HLU5W506dYzrGzduDOjuwAAAAAkJCdYhtjfddJNxkPnNN99sfb/9448/1qFDh9LVEQAAANmb7/saMGCANVeuXDm9+eabf3uuYsWK+vjjjxUZGWl87f79+9W3b9+M1AQAAAAAAACALIfBK2nziWW9vpMWAAAAADKtrVu3GtdLlSqlvHnzOmoTPFWqVDGuJyQkOGoCAKG3evVqnThxwpgJ58XDaWEa2HGK7YIhBN97772nL7/80ppr1apVQENVevfubb1D4e+//65XXnkl4I4AAATK9rVErVq1lD9/fkdtzmYbvOL7vlavXu2oDQAAyMo++ugja6ZTp07G9YiICHXt2tWYOXbsWEDHAgAAQM6zcOFCxcXFWXOjR49WkSJFzno+JiZGffr0sb5+7Nix+v7779PVEQAAAAAAAACyIgavpM10SadueeefY/0Wh10AAAAAZELbtm0zrlesWNFRk+Bi8AqAnGTZsmXWTN26dR00ybjatWsrd+7cxgyDV9z67bffArpLYOnSpfXBBx/I8zxrtkCBAnr++eetuTfeeEMHDhwIqCcAAIFISUnR0qVLjZmYmBhHbc6tdu3a1gwXkQAAgEDMmjXLuJ43b161bt3aus+dd95pzYwfPz7gXgAAAMgZfN/XgAEDrLm7775bzZs3P+/6s88+G9C5K/37909LPQAAAAAAAADI0hi8kga+7/8m6RVJZ17t4P/5XBPP8y5xXgwAAABAppFTB69s27ZNycnJjtoAQGgtX77cuF6hQgWVLl3aUZuMyZMnj+rUqWPMLFmyxFEbSCdPZg1k+MnIkSNVvHjxgPe99957dfHFFxszR48e1cyZMwPeEwAAmw0bNujQoUPGzDXXXOOozbkVLVpUlStXNmYYvAIAAGx+//13LV682Jhp2bKlChQoYN3rwgsv1LXXXmvMzJ8/Xzt37kxTRwAAAGRvCxcuVFxcnDETHR2twYMHGzP58+fXW2+9ZT3e7NmzFR8fn6aOAAAAAAAAAJBVMXgl7V6WtOLPj08NXDklUtIbzhsBAAAAyDRsg1cqVarkqElwXXjhhcb11NRU/fLLL47aAEBo2Qav1K1b11GT4IiJiTGuL1++nOFZjqxevVqjRo2y5jp37qw2bdqkae+oqCjribSSNH369DTtCwCASSAD3Gxfi7hgG0S3cuVKR00AAEBWNXv2bKWkpBgzbdu2DXi/2NhY43pqaqomT54c8H4AAADI/gYMGGDN9OjRQ2XLlrXmWrdurZYtW1pz/fr1k+/7gdQDAAAAAAAAgCyNwStp5Pt+kqS2knafekonh6+c+mdzz/P6hKkeAAAAgDDyfd86eKVixYqO2gRXlSpVrJmEhAQHTQAgtA4fPqwNGzYYM/Xq1XPUJjiuueYa4/qxY8e0Zs0aR21yLt/31bt3b6WmphpzZcuW1b/+9a90HePWW2/VVVddZczMmzdP+/fvT9f+AACcyTZ4pXjx4rr44osdtTk/2+CVH374QYmJiY7aAACArOiTTz4xrufKlUvNmzcPeL+OHTsqMjLSmBk/fnzA+wEAACB7W7ZsmeLi4oyZ6OhoPfnkkwHt53meXn/9deXKlcuYW7x4sWbPnh1wTwAAAAAAAADIqhi8kg6+7++Q1FjSjlNP6e/DV172PO+h8LQDAAAAEC6//fabDh8+bMxk1cErFStWlOd5xsyWLVsctQGA0Fm5cqV1MEbdunUdtQkO2+AVSfr2228dNMnZpk2bZj0hVpLeeecdFS1aNF3HiIiI0L333mvMJCcna9asWenaHwCAM9m+hoiJibF+L+mCbfDKiRMntHr1akdtAABAVnP8+HHrxabXXXddmr6fL168uFq0aGHMrFy5Uj/88EPAewIAACD7CmRof48ePVS2bNmA97zkkkvUrVs3a+6ZZ56x/vwUAAAAAAAAALI6Bq+kk+/7P0q6TtIG/TV0Rfpr+MqbnudN9zyveJgqAgAAAHAskBOgK1Wq5KBJ8OXJk0fly5c3ZjZt2uSoDQCEzvLly62ZrDZ4pXz58rrggguMmSVLljhqkzPt27dPDz/8sDXXtGlTtW3bNkPHateunSIizG/7Tps2LUPHAABAkvbv368NGzYYM4EMgHOhdu3a1kx8fLyDJgAAICtatGiRDh06ZMy0bt06zft27tzZmhk/fnya9wUAAED2smvXLk2dOtWYiY6O1pNPPpnmvZ977jnlyZPHmFm1apU++eSTNO8NAAAAAAAAAFkJg1cywPf9rZJiJM3UyWErpx6nhq+0k7TZ87yhnueVC1tRAAAAAE6sW7fOuO55nqpWreqoTfBddNFFxnXuDg4gO1i2bJlx/aKLLkrT3YszA8/zrBc9f/vtt47a5EyPPPKIdu/ebczkypVL//rXv+R5XoaOVbp0aTVs2NCY+fLLL3Xw4MEMHQcAgKVLl1ozMTExDprYlSlTRhUqVDBmFi1a5KgNAADIambNmmXNpGfwSsuWLVWoUCFjZsKECUpNTU3z3gAAAMg+hg8fruTkZGOmW7duKlu2bJr3Ll++vB544AFrbtCgQfJ935oDAAAAAAAAgKwqMtwFshrP884cVnNUUsc/HwMlXfLn86eGrxSW1FdSX8/zfpAUJ2m7pN8kHQ91X9/3x4X6GAAAAABOWrt2rXH9wgsvVP78+R21Cb5atWpp4cKF511ftWqVfN/P8AXjABBOy5cvN67Xq1fPUZPgiomJ0YwZM867/tNPP2nPnj0qXbq0w1Y5w6effqr/+7//s+YeeOABVa9ePSjHvPXWW42fs5OTk/XJJ58oNjY2KMcDAORMtsFtERERuvrqqx21sWvYsKEmTJhw3vX4+HilpKQoV65cDlsBAIDMzvd96+CV6tWrWweXn0t0dLRuu+02vf/+++fN/PLLL4qPj1ejRo3SvD8AAACyvsTERI0YMcKa6927d7qP8dRTT2nUqFE6fPjweTMrVqzQ7Nmz1aJFi3QfBwAAAAAAAAAyMwavpJ15ZPhJp64y9M/4dQ1Jlwe9kRmDVwAAAABH1q1bZ1yvUaOGoyahceWVVxrX9+7dq507d6pcuXKOGgFAcB04cEA//vijMVO3bl1HbYLrmmuusWYWL16sDh06OGiTc+zfv189evSw5kqUKKEBAwYE7bjt27fXQw89ZLzz4LRp0xi8AgDIENOQL+nk98AFCxZ0UyYAjRo1Mg5eOXjwoNasWaPatWs7bAUAADK7NWvWaNu2bcZM69at071/bGyscfCKJI0fP57BKwAAADnUpEmTtHfvXmOmefPmuuyyy9J9jJIlS+rRRx/VoEGDjLkXXnhBzZs352Y8AAAAAAAAALKliHAXyII8y+PMrHRyAIsf4OuD+QAAAADgiO/71sErNWvWdNQmNAK5+GzVqlUOmgBAaKxYscKaqVevnoMmwXfVVVcpd+7cxkx8fLyjNjnHc889p507d1pzL7/8sooWLRq045YtW1YNGjQwZubMmaODBw8G7ZgAgJzlyJEj+uabb4yZmJgYR20CE8jFyosWLXLQBAAAZCWffPKJNdOqVat079+wYUOVL1/emJk2bZoSExPTfQwAAABkTb7v66233rLmHn744Qwf65FHHlGBAgWMmaVLl2revHkZPhYAAAAAAAAAZEYMXkkf3/A40+mDUEyvC/YDAAAAgEO//PKL/vjjD2OmRo0ajtqERvXq1RUVFWXMMHgFQFa2dOlS47rneQENocqMoqOjVbduXWNm8eLFjtrkDHv37tXo0aOtuZtvvlldu3YN+vFvu+0243pSUpKmTZsW9OMCAHKG+Ph4JScnGzONGzd2UyZAl1xyicqUKWPMMHgFAACcadasWcb1kiVL6h//+Ee694+IiNCdd95pzBw8eFCfffZZuo8BAACArGnZsmXWczCqVq2qG2+8McPHKlasmB566CFrbtCgQRk+FgAAAAAAAABkRgxeST/vPI/0vCbYDwAAAACOrVu3zpqpWbOmgyahkzt3blWvXt2YYfAKgKzs66+/Nq5XrVpVBQsWdNQm+K677jrj+sqVK3Xo0CFHbbK/ESNGKCkpyZgpVKiQRo0aJc8L/lt67du3t2bGjRsX9OMCAHKGQO5se8MNNzhoEjjP89SoUSNjJi4uTqmpqY4aAQCAzG7nzp1atmyZMdOyZUvlypUrQ8eJjY21ZsaPH5+hYwAAACDrCWTAf+/evYP2c6ZHH31U+fLlM2bi4+MZXgwAAAAAAAAgW2LwCgAAAAAEgW3wSlRUlC655BJHbULnyiuvNK4zeAVAVpWamqpvvvnGmLnmmmsctQkN2+CV1NRULVmyxFGb7C0pKUnvvPOONff666+rQoUKIelQrlw563/z+Ph4bdmyJSTHBwBkb7bBK1dccYVKlSrlqE3gbINX9u3bF9BgVQAAkDN8+umn1kzr1q0zfJwaNWroiiuuMGY+++wz7du3L8PHAgAAQNZw6NAhTZo0yZgpXLiw7rrrrqAds2TJkrr//vutuRdeeCFoxwQAAAAAAACAzILBK+nnZ+IHAAAAAMfWrl1rXK9ataqioqIctQkd2+CVzZs369ChQ47aAEDwbNiwQQcOHDBm6tev76hNaNSvX996x7v4+HhHbbK3yZMna8+ePcZMgwYN1K1bt5D2CORk23HjxoW0AwAg+9mzZ49Wr15tzDRt2tRRm7SxDV6RxB17AQDA/8yaNcu4nidPHjVr1iwox4qNjTWuJycna9q0aUE5FgAAADK/yZMn68iRI8bMXXfdpfz58wf1uI8//riio6ONma+++sp6QwsAAAAAAAAAyGoYvJI+XhZ4AAAAAHDIdkfsmjVrOmoSWrbBK5K0Zs0aB00AILi+/vprayarD14pUqSI9fMRg1cyzvd9vfHGG9Zc3759rYNwMuq2226znhw7btw4paamhrQHACB7+eqrr6yZzDp4pVq1aipZsqQxw+AVAAAgSUeOHNG8efOMmRtuuCFoF7p26tTJ+j7B+PHjg3IsAAAAZH6jR4+2Zu67776gH7dMmTLq3r27NTdo0KCgHxsAAAAAAAAAwonBK2nk+35EFnrkCve/LwAAACAnOHHihDZs2GDM1KhRw1Gb0LriiiusmVWrVjloAgDBZRu8UqJECV166aWO2oROgwYNjOtLly7V8ePHHbXJnhYuXKjVq1cbM5dccoluueWWkHcpXLiw2rVrZ8wkJCRo8eLFIe8CAMg+bBcg586dW9ddd52jNmnjeZ4aNmxozMTFxcn3fUeNAABAZjVv3jwlJSUZM61btw7a8cqVK6frr7/emFm8eLESEhKCdkwAAABkTqtXr9ayZcuMmX/84x8huwFQ3759lTt3bmPmiy++0HfffReS4wMAAAAAAABAODB4BQAAAAAyaPPmzdYTsLPL4JWiRYuqUqVKxgyDVwBkRbbBK9dee631rsNZge0i6MTERK1YscJRm+zpnXfesWYefvhhRUS4eWu2S5cu1syHH34Y+iIAgGzB933NnTvXmLn22muVP39+R43SrlGjRsb1vXv3WoeoAQCA7G/WrFnWTMuWLYN6zNjYWGtmwoQJQT0mAAAAMp/Ro0dbM/fdd1/Ijl+uXDndc8891tygQYNC1gEAAAAAAAAAXGPwCgAAAABk0Lp166yZUN1pKBxq165tXF+5cqWjJgAQHLt379ZPP/1kzNSvX99Rm9CyDV6RpPj4eAdNsqekpCR9/vnnxkyRIkUCGoYSLE2bNtUFF1xgzIwdO9Y6fAgAAOnk4NFffvnFmGnatKmjNuljG7wiSZ988omDJgAAILNKSUmxfj1Qt25dlStXLqjHbd++vaKjo42Z8ePHy/f9oB4XAAAAmceRI0c0fvx4Y6ZAgQK6/fbbQ9rjySefVGRkpDHz6aefcn4IAAAAAAAAgGyDwSsAAAAAkEFr1641rhcoUEAVK1Z01Cb0rrzySuP6unXrlJyc7KgNAGRcIAMnssvglXLlyqlKlSrGDINX0u+bb77RsWPHjJkePXqoQIECjhpJuXLlst4xOzU1VXfeeacOHjzoqBUAIKv64osvrJnMPnilRo0aKlWqlDHD4BUAAHK2JUuWaO/evcZM69atg37cQoUKqU2bNsbMxo0btWLFiqAfGwAAAJnDpEmTrD+v+ec//xnynzVVqlQpoBsJvPDCCyHtAQAAAAAAAACuMHgFAAAAADJo3bp1xvXLL79cERHZ59sv2+CVpKQkbdy40VEbAMg42+CV3Llz66qrrnLUJvQaNGhgXF+8eLFSUlIctclevvzyS2umZ8+eDpr8XSAnxm7dulU9e/bkrtkAAKMPP/zQuF64cOFM/3VTRESEbrnlFmNm2bJl2rlzp6NGAAAgs5kxY4Y106pVq5Acu3PnztbM+PHjQ3JsAAAAhJfv+3rnnXesue7duztoIz399NPKlSuXMfPxxx9r9erVTvoAriQlJWnevHkaOnSo+vXrp+nTp+vIkSPhrgUAAAAAAIAQyz5X/gEAAABAmNgGr9SsWdNREzdsg1ckafny5Q6aAEBw2Aav1K1bV9HR0Y7ahN51111nXD9w4IBWrVrlqE32MnfuXON61apVVblyZTdlTlO9enU1atTImps8ebKmTZvmoBEAICtatWqVvv/+e2OmSZMmioyMdNQo/QK5UPqzzz5z0AQAAGQ2vu9r5syZxkyFChV0xRVXhOT4N954o0qUKGHMTJw4UcePHw/J8QEAABA+S5cutf6Mrk6dOs4GH1900UWKjY215l588UUHbYDQOvW9YKtWrVSsWDE1a9ZM/fr109ChQ3XbbbepTJky6tKli7755ptwVwUAAAAAAECIMHgFAAAAADJg37592rRpkzFTo0YNR23cqFixoooUKWLMfPXVV47aAEDGHD161HoBcf369R21caNhw4bWzLx58xw0yV5+//136/9LzZo1c9TmbG+88YaioqKsueeee06+7ztoBACLMQqHAAAgAElEQVTIat5//31rpn379g6aZFyzZs2UO3duY+aTTz5x1AYAAGQmy5cv17Zt24yZDh06yPO8kBw/KipKd9xxhzGzd+9e/ec//wnJ8QEAABA+7777rjXzwAMPOGjyl379+ikiwny5wfTp0603LAIys+TkZHXq1EkdOnTQp59+qqNHj56VOXz4sMaNG6f69eurZ8+eOnLkSBiaAgAAAAAAIJQYvJJNeJ53red5Y87xqB3ubgAAAEB2tnjxYmumZs2aDpq443me6tWrZ8zMmzePi7YBZAnfffedTpw4Ycxce+21jtq4cemll6pcuXLGTDgHr8THx6tbt2664oor1KRJE40ePTpL3MV5/vz51s99N954o6M2Z6tdu7YGDx5szW3cuNE6QAYAkPMkJiZqwoQJxkyhQoXUoUMHR40ypkCBArrhhhuMmXnz5unYsWOOGgEAgMxi5syZ1kyov+aJjY21ZkaPHh3SDgAAAHDrt99+05QpU4yZIkWKWIf0Bdull16qTp06WXMvvPCCgzZA8KWkpKhz587WP3+nGzlypNq2baukpKQQNgMAAAAAAIBrDF7JPvZL6iqpyxmP28PYCQAAAMj2Fi1aZFyPjIzUP/7xD0dt3GnatKlxfdeuXVq/fr2jNgCQfnPmzLFmstvgFc/zrH+Px8fHO7/QePXq1WrRooUaNmyoDz74QGvWrNHChQvVvXt3xcTE6Mcff3TaJ63mzp1rXI+MjFSjRo0ctTm3Pn36WC8yl6QZM2Y4aAMAyEo+/vhj7d+/35jp1KmT8uXL56hRxrVq1cq4fuzYMc2fP99RGwAAkBn4vm/9nrhMmTIhf6/o6quvVtWqVY2ZuXPnKiEhIaQ9AAAA4M6YMWOsNyK4++67w/L+W//+/eV5njEzbdo0Bvsjy/F9X7169UrT0JVT5s2bpy5duig1NTUEzQAAAAAAABAODF7JPrac9rF32qN+eOoAAAAAOUNcXJxx/aqrrlL+/PkdtXHHdsG+dPIkAwDI7D7//HPj+qWXXqpSpUo5auOO7e/xpKQkffPNN066HD9+XL1791bt2rU1e/bsc2ZWrlypOnXqaOLEiU46pZXv+9bBK9dcc40KFizoqNG5RUREaNy4cSpatKgxN2PGDPm+76gVACAreP/9962Ze+65x0GT4GnZsqU1M2vWLAdNAABAZrFu3Trr4Nd27dopIiK0p1t5nqf77rvPmnvvvfdC2gMAAABupKSkaMSIEdZcz549HbQ5W9WqVXX77fb7gPbr189BGyB4+vXrp1GjRqX79VOmTNHDDz/Mz1UBAAAAAACyCQavZB/Rp33s//mQpMvC0AUAAADIEQ4dOmS9Y0/Dhg0dtXHryiuvVPHixY0ZBq8AyOy2b9+uNWvWGDM33XSTozZu3XDDDdaMq7/He/furbffftt6Qtrhw4d155136pVXXnHSKy02b96srVu3GjPNmjVz1MbsggsusJ4cu2nTJq1fv95RIwBAZvfzzz9bvy6oWbOm6tat66hRcFSoUEFXXnmlMfPJJ58oJSXFUSMAABBuM2bMsGY6dOjgoIl01113KXfu3MbMBx98oOTkZCd9AAAAEDpz5sxRQkKCMdOsWTNdeumljhqdrX///vI8z5iZM2eOFi1a5KgRkDEfffSRhg0bluF9/v3vf2v48OFBaAQAAAAAAIBwY/BK9tH7PM8XctoCAAAAyEG++eYbpaamGjPZdfBKRESE9aL9hQsXctI3gEztiy++sGZatGjhoIl7ZcuW1eWXX27MuBi8Mn/+fI0cOTJNr+nbt69mz54dokbpM3fuXGsmswxekaT27dtbM4FcbAYAyBkC+Vx9zz33WC+8yIxatWplXN+9e7e+/PJLR20AAEC42b4XLl68uBo1auSkS4kSJdSuXTtjZteuXfrss8+c9AEAAEDovPvuu9ZMr169HDQ5v8svv1wdO3a05p5++mnrzRaAcNu7d6969OgRtP2eeOIJ6/AkAAAAAAAAZH4MXgkSz/Pye57XxvO8IZ7nTfE87wvP875y8IjzPG+HpAGSfElnntWa9c5yBQAAALKIuLg447rneapfv76jNu41bdrUuH748GEtXbrUURsASLvPP//cuJ43b15nF9OEg+3v8RUrVmjfvn0hO35iYqJ69uyZrtc++uijmWa4V0pKit5//31jpnDhwqpbt66jRnaNGzdW0aJFjRkGrwAApJOfr0ePHm3M5M6dW7GxsY4aBVfr1q2tmTFjxjhoAgAAwm3NmjVat26dMdOmTRtFRkY6aiR1797dmhkxYoSDJgAAAAiVhIQE688sy5cvr5YtWzpqdH6DBg1Srly5jJklS5Zo1qxZjhoB6fPggw9q7969Qdvv6NGj6t69O0OHAAAAAAAAsjgGr2SQ53mFPc97Q9JOSTMlPSnpVknNJDVy8KgvqaxODlg515CV4L0rCAAAAOBvFi1aZFyvVauW9aLmrKxZs2bWzLx58xw0AYC0O378uObOnWvMNGnSRHnz5nXUyD3b4BXf97VgwYKQHX/IkCHavHlzul67ceNG67ATV4YPH67vv//emLn++uudXphlExUVpTZt2hgza9asSfd/HwBA9jF16lT9/vvvxkzbtm1VvHhxR42Cq06dOqpSpYox85///Ee//fabo0YAACBcPvzwQ2umQ4cOoS9ymsaNG+uiiy4yZubMmWMdGAMAAIDMa+TIkdZhDT169MgUP2e65JJLdM8991hzTzzxhJKSkhw0AtJu2rRpmjp1akDZjz76SJ9//nlAf/7mzZunDz74IKP1AAAAAAAAEEYMXskAz/NiJK2X1FtSQf01/MT1w//z8bd6fz63Nti/bwAAAADSsWPH9N133xkzjRo1ctQmPCpXrmw96ZvBKwAyq8WLF+vw4cPGTIsWLRy1CY9GjRpZ70oXqr/HN2zYoGHDhmVoj+eff16HDh0KUqP02b17t5555hlrLpBhZa4FcrHYjBkzHDQBAGRm77zzjjXTs2dPB01CIyIiQl27djVmkpOTNWHCBDeFAABAWCQnJ2v8+PHGTOHChXXDDTc4anRSRESE7rvvPmvu9ddfd9AGAAAAwZaYmGi90UBkZKTuvfdeR43snnvuOUVHRxszP/74o958801HjYDA7d27V7169bLmoqOjtWjRIrVt21bNmzfXt99+qwIFClhf99hjj2nnzp3BqAoAAAAAAIAwYPBKOnmed62keZLK6u/DT8Lx0J8dzoUzQQEAAIAQWLp0qZKTk42Zhg0bOmoTPk2bNjWuf/vtt/rjjz8ctQGAwH3++efWTPPmzR00CZ+CBQsqJibGmPn888+td9lLj4ceesj6edTm119/1auvvhqkRunTp08f6+e56Oho3XbbbY4aBa5Zs2YqWLCgMTNu3DilpqY6agQAyGyWLVtmHThavXp1NW7c2E2hEOnSpYs873w/ZjtpzJgxIfmaCAAAZA6zZ8/W3r17jZnbb79defLkcdToL127dlVUVJQxM378eO3atctRIwAAAATL9OnT9dtvvxkzHTp0UJkyZRw1sitXrpweeugha27QoEHasWOHg0ZA4Pr06WP9MydJI0eO/Ns5X1dddZWmTp1qfd3BgwfVp0+fDHUEAAAAAABA+DB4JR08zyspaYakfDp7+Em4HjqjiyTF+b5vviUPAAAAgHSJi4uzZq677joHTcKrWbNmxvWUlBTNnj3bURsACJxt8ErVqlV14YUXOmoTPrYBWtu2bdOSJUuCesz4+HjNnz8/KHu9+uqrYbuwKC4uThMnTrTm+vTpoxIlSjholDZ58uRRy5YtjZn169drxowZjhoBADKbd955x5p54IEHrENLMrtKlSpZvyZas2aNVq5c6agRAABw7cMPP7RmunbtGvIe51K6dGn985//NGaSk5P19ttvO2oEAACAYEhNTdVLL71kzfXq1ctBm7R58sknVahQIWPmyJEjevLJJx01Auzmz5+v//u//7PmWrdurc6dO5/1fPPmzXXPPfdYXz958mQtX748XR0BAAAAAAAQXgxeSZ8hkkrr7IErp/jneZzP+fKBvl46u8scSe0C+t0AAAAASLMFCxYY16tWrapSpUo5ahM+TZo0sV5kN2nSJEdtACAwW7Zs0YYNG4yZFi1aOGoTXrYBWtLJk8OCaciQIdbMlVdeqcOHD6tSpUrG3NGjR8N2YdFzzz1nzVSpUkXPPPOMgzbp0759e2tm4MCBSk1NddAGAJCZ7Nmzx/o1QMGCBc95AnpW1K1bN2vmvffec9AEAAC4tnfvXn3yySfGzGWXXaaYmBhHjc4WyB3TR4wYocOHDztoAwAAgGCYMWOG1q1bZ8xcfvnlmfKGP8WLF9fzzz9vzU2YMEGLFy920AgwO3bsmHr27GnNFStWTCNHjjzveVCvvvqqLrjgAus+ffv2le/bLv0AAAAAAABAZsPglTTyPK+KpC76+6CTU3ydPQDl9Mf5BqicK3vm48z9zzymJ+mopM8k3er7fnPf9w+k6zcJAAAAwGjv3r2Ki4szZho2bOioTXgVK1ZMV199tTEze/ZsHTjAtycAMo9p06ZZMzll8EpMTIz15LCpU6cqJSUlKMdbsWKFvvjiC2PG8zyNGjVK+fPn1+DBg617jhkzRsnJyUHpF6i4uDgtWrTImnv77beVN29eB43Sp0WLFipatKgx88MPP2j69OmOGgEAMoshQ4YoKSnJmLnrrrtUsGBBR41Cq23btipSpIgx8+GHH2r37t2OGgEAAFcmTZqkEydOGDNdu3a1DiAPpZo1a+qmm24yZvbv368xY8Y4agQAAICMSElJ0YABA6y5Xr16hfXrUJOHHnpI1apVCygXrJ8zAuk1ZMgQbd682Zr797//rTJlypx3vUiRIho+fLh1nwULFlh/Jg4AAAAAAIDMh8EraddPUuSfH585dOXUc9sljZT0rKTHJb0kacl58r6k1ZLGnuMxXtIsSaskJevsAS7+aXv2kVTE9/1Wvu/PDMLvEwAAAMB5zJgxQ6mpqcZMThm8IkkdO3Y0rh8/flwzZ/JtCoDMY8qUKcb1/Pnzq0GDBo7ahFeuXLmsf4/v2bNHCxcuDMrxhgwZYs306NFD9erVkyR16tRJderUMeb37NmjWbNmBaVfoAYNGmTNtGvXTrfccouDNumXL18+Pfroo9bcwIEDrV/7AACyj23btmnEiBHWXK9evRy0cSM6Olr//Oc/jZljx47p5ZdfdtQIAAC44Pu+3nvvPWMmIiJCnTt3dtTo/Pr06WPNvPLKK9bheQAAAAi/adOmaf369cZMkSJFFBsb66hR2kVFRemtt96y5latWqVRo0Y5aASc29KlS/XSSy9Zc61atdIdd9xhzbVu3Vq33nqrNde3b1+GDgEAAAAAAGQxDF5JA8/zoiTdqr+Gpkh/H4Dyh6S7fN+v5Pv+/b7vD/Z9/3Xf95/2fb++pNaSjuvvQ1c8Sfkk3eP7/t1nPO7yfb+t7/t1JBWR1FHSYp09wMWTNExS21D93gEAAAD8ZerUqcb1XLly6eabb3bUJvxuv/12612WJk2a5KgNAJht2rRJK1euNGZuueUW5cmTx1Gj8OvUqZM1M3ny5AwfZ/369dZBXFFRUerXr9//fh0REaGhQ4da9x45cmSG+wXiyJEjeu211zRv3jxjLk+ePHrzzTeddMqo3r17q2jRosbM+vXrNX36dEeNAADhNmjQIB0/ftyYuf7661W9enVHjdzo1q2bNTN8+HDt2rXLQRsAAODC3LlztXbtWmOmWbNmKleunKNG59e0aVPVqlXLmNm+fbs++OADR40AAACQHikpKRo4cKA199hjj6lQoUIOGqVf06ZN1b59e2uuf//++v333x00Av5u37596tixo5KTk425/Pnz69///rf13KdThg0bpqioKGNm3bp1GjduXMBdAQAAAAAAEH4MXkmb6yUV/vNjT38NUPEkJUpq7vv++PO92Pf9TyUN0d8Hp0jSxZJamQ7s+36i7/vTfd9vKOmfOjnk5X/LkqIkjfc879oAfy8AAAAA0mH37t1atGiRMdO0aVMVL17cUaPwK1eunBo2bGjMfPXVV9q9e7ejRgBwflOmTLFmbr/9dgdNMo969eqpSpUqxsyMGTOsF2DbDBs2zJq56667VKFChb8916xZM1166aXG182dO1dbtmzJUD+TY8eO6YEHHlCpUqX0+OOPW/Pdu3dXxYoVQ9YnmAoXLqzHHnvMmhs+fLiDNgCAcPvxxx8Dulj3ySefdNDGrTp16qh+/frGTGJiYkB3RwUAAFnDK6+8Ys107do19EUC4Hme+vTpY80NHTo0w+/hAAAAIHQmTpyo//73v8ZM0aJF9fDDDztqlDGvvfaaoqOjjZl9+/bp2WefddQIOCk1NVVdunTRtm3brNlBgwal6We7F110kXr27GnNPfPMMzp06FDA+wIAAAAAACC8GLySNq3P8dypASzDfN//NoA9xpznefuthf/k+/5kSY0knT7+25eUR9I0z/OKBboXAAAAgLSZPn26UlNTjZmcdsG+JHXqZP6WJjU1VdOnT3fUBgDOzzZ4pUCBAmrevLmjNpmD53m64447jJn9+/fryy+/TPcxtmzZookTJxozERER57yI2/M8de/e3XqM0aNHp7ufie/7atu2rd59910dPXrUms+dO7f69u0bki6h0rt3bxUtWtSYiY+P1x9//GHMAACyvueff14pKSnGTMOGDdWsWTNHjdzxPE8DBgyw5kaMGKGdO3eGvhAAAAip77//XvPmzTNmihQpojZt2jhqZHfHHXdYLwbctm2bxo4d66gRAAAA0uLIkSN6+umnrbk+ffqoUKFCDhplXOXKlfXUU09ZcyNHjtT333/voBGyuoMHDyo+Pl7vvvuuHn30UT366KN67bXXFBcXp8OHDwe0h+/76t+/vz799FNrtk6dOnrooYfS3PPZZ59VwYIFjZldu3Zp6NChad4bAAAAAACERmpqqtasWaPhw4friSee0EsvvaSlS5darxFDzsHglbSpc9rH/mkfH5H0RiAb+L6/Q9KvZ+zjSbrZ8zwv0CK+76+R1FbSmWe/lpH0bqD7AAAAAEibqVOnGtejoqLUtm1bR20yj1tvvVWRkZHGzKRJkxy1AYBz++GHH/TDDz8YM23atFHevHkdNco8bAO0JOn9999P9/6vvPKK9SLujh076pJLLjnnWpcuXZQ7d27j68eMGROSOzp/9NFHaRo6061bN5UvXz7oPUKpUKFC1rtmp6SkaMGCBY4aAQDCYcGCBQF93zZ48GCl4UdaWcoNN9yg+vXrGzNJSUkaPHiwo0YAACBUXnnlFWumV69emep9oty5cwd0oe6QIUOUnJzsoBEAAADS4pVXXtGOHTuMmWLFiqVrCEQ49e3bV5UqVTJmUlNTdc899/B1Ks7J933Nnj1bzZo1U7FixdSwYUM98MADevPNN/Xmm2/q8ccfV6NGjVS4cGHVqFFD3bp10/Dhw/XTTz+dtVdiYqLuvPPOgAaeREREaOTIkdbznc6lZMmS57ypyJlef/11bdmyJc37AwAAAACA4Fm1apViY2NVokQJXXHFFerVq5deffVVPfXUU4qJidEFF1yg++67z3qdAbI/Bq+kTXX9feCK9+evv/R9/1Aa9kn487WnKyjpyrSU8X3/G0lDT9vr1BCX2zzPa5iWvQAAAADY7dixQ4sXLzZmbrzxRhUtWtRRo8yjePHiuummm4yZb775RqtXr3bUCADONmXKFGvm9ttvd9Ak86lRo4aqV69uzHz88cdat25dmvfeuXOnxowZY82ZLhwqUaKE2rdvb3z9r7/+qlmzZqW5n83bb78dcDYyMjKgu/plRj179rReRJ+WATQAgKwlMTFRPXr0sOaaN2+uBg0aOGgUHp7naeDAgdbcqFGjtGnTJgeNAABAKCQkJFiHrOfOnTtTXvB69913Wwe+/vzzzxo7dqyjRgAAAAjEL7/8opdfftmae/zxx1WoUCEHjYInb968ev311625VatW6bXXXnPQCFnJxx9/rNq1a6tFixaaN2+e8Q7Tqamp+uGHH/TBBx+oV69euvjii3X11Vdr4MCBev/99/XYY4+pQoUKAd8YauDAgapbt266uz/66KO64IILjJmkpCQ98cQT6T4GAAAAAADImI8++kgxMTGaMGGC9u/ff87Mnj179N5776lmzZr697//7bghMhMGrwTI87wKOjkcRTp7aEparzj4+TzP10vjPpI0TNKuM57zJL2ajr0AAAAAGEybNk2+7xszHTt2dNQm8+nUqZM1E8gdZQAgFHzf1+TJk42ZwoUL68Ybb3TUKHPxPE933HGHNTd48OA07/3666/r+PHjxkyrVq1Uq1YtYyaQi8EDGfCSFhs3btTChQsDznfp0sV6R7/Mqnjx4qpXz/z2JINXACD7Gjx4sH788Udr7sUXX3TQJryuv/56XXfddcbMiRMnjEPjAMCVpKQk7d+/33hREoCzvfTSS9Y/N126dFGZMmUcNQpcnjx5Ahr6OmDAAB09etRBIwAAAATiqaee0rFjx4yZUqVK6cEHH3TUKLjatWunpk2bWnMDBgxgoDEkScnJybr77rvVrl27DN3EadmyZRowYIDuvfdevfHGG/rtt98Cet1NN92kfv36pfu4kpQvX76AzoOaOXOmFixYkKFjAQAAAACAtIuPj9cdd9yhpKSkgPK+76t3796aP39+iJshs2LwSuDKGtY2pHGvn8/zvPm2wufg+/4xSW/rr2Ewp64CvcrzvMZp3Q9A5rVv3z7FxcVp3rx52rp1a7jrAACQ46SmpmrkyJHGTO7cudWmTRtHjTKfNm3aKG/evMbM1KlTOYkGQFh89tln1ouJ27dvrzx58jhqlPnExsYqIsL8duGUKVO0cePGgPf8/fffNWLECGsukJPaGjVqpEsvvdSYmTNnjnbs2BFwP5tRo0YFnC1WrJieffbZoB07HGyDhzZv3qwtW7Y4agMAcGXdunUaNmyYNdehQwfVqVPHQaPw8jxPAwcOtOZmzpypb775xkEjADjpxIkT+vTTT9W5c2dVq1ZNRYoUUXR0tIoVK6bo6Gg1aNBAzz77rBYtWsQgFsBg1apVGj16tDHjeZ769OnjqFHa3XPPPSpb1nQak7Rjxw69/fbbjhoBAADAJC4uThMnTrTmhgwZooIFC1pzmZHneXrrrbcUGRlpzCUlJem+++7j+9YcLikpSR07dtSHH34YluOXK1dO48ePt/5sPBCxsbG6+uqrrbknnniC/+8BAAAAAHBo48aNatOmjfXmoWfyfV/333+/EhMTQ9QMmRmDVwJneif7pzTulXCe5y9L4z6njJKUfI7ns+bYcwD/ExcXp9jYWFWuXFnFixdXo0aN1KxZM1WpUkUdO3bkDlUAADg0Z84c/fe//zVmbr75ZhUuXNhRo8ynQIECuuOOO4wZ3/f18ssvO2oEACf5vq8hQ4ZYc7fffruDNplXlSpVrP8OAv13ecqbb76pI0eOGDPXX3+9YmJirHt5nqf77rvPmElNTdW4ceMC7meSmJgY8Ml+0dHRmj59uipVqhSUY4eLbfCKJM2dO9dBEwCAK0ePHlXnzp114sQJYy5fvnx65ZVXHLUKv8aNG+uGG26w5h5//HH5vm/NAUBGHDlyRAMHDlTlypXVqlUrjR8/Xv/973918ODB/2WSk5P19ddf68UXX1Tjxo1Vs2ZNrVmzJoytgczJ9309+OCD1ovd2rRpo8suS+8pPKEXHR2tJ5980pobOnSo9u3b56ARAAAAzufo0aPq1q2bNXfllVeqa9euoS8UQtWqVQvo69S4uDi99tprDhohMzp69Kjatm2rjz/+OCzHj4yM1JQpU1SiRImg7BcREaF//etf1tyKFSs0ffr0oBwTAAAAAACY/frrr2revLn279+frtf/+OOPOepcOfyFwSuBMw1eOZTGvX4+49e+JE9SlTTuc/LFvr9P0sI/9zh9v1s8z8uXnj0BhN+QIUPUqFEjTZgwQVu3bv3bmu/7mjZtmlq1aqWUlJQwNQQAIGd54403rJmcfsG+JPXt21ee5xkz48aN0y+//OKoEQCcPHlvyZIlxkyJEiV0/fXXO2qUefXr18+amTBhgjZu3GjNJSQk6NVXX7XmnnnmmYC6SVLnzp2td8obM2ZMUC6AnjFjRkAXJ7300kvavn27mjRpkuFjhltMTIwKFChgzHz55ZeO2gAAQu3U3TlWrVplzQ4cOFBVqqTrx1hZkud5AQ0NXbJkiSZMmOCgEYCcasWKFapZs6YGDBigHTt2BPy69evXq0GDBlq4cGHoygFZ0IQJE/T1119bc3379nXQJmO6d++ucuXKGTMHDx7UsGHDHDUCAADAufTv318//WS/v+ebb76pXLlyOWgUWv3791fVqlWtuX79+um7775z0AiZybFjx9SqVSt98cUXYTl+7ty5NXHiRNWvXz+o+8bExCg2Ntaa69evX5rvsg0AAAAAANKud+/eSkhIyNAegwcPDuh9PWQvDF4JXH7Dmvm2vWf7+TzPV0zjPqebfY7ncktqmoE9AYTJ9OnTA7rw7Kuvvgro5G8AAJAx69at09y5c42ZkiVLql27do4aZV5Vq1ZVhw4djJnk5GS+hgHg1JAhQ6yZnj17KioqykGbzK1GjRpq3769MZOSkqI777xTSUlJ5834vq+HHnpIiYmJxr1iYmLSNLCkdOnSatmypTGzefNmLV68OOA9z2fkyJHWzOLFi9W3b18VL148w8fLDKKioqwDiObPn68TJ044agQACKXhw4dr3Lhx1tyVV16pRx55xEGjzKVOnToBnSz/4IMPatu2bQ4aAchpVqxYoaZNm6b7ZKBDhw7p5ptv1n/+858gNwOypj/++ENPPPGENde0aVNdc801DhplTN68eTVw4EBr7q233tLPP/8c+kIAAAA4y9dff6033wqPdvIAACAASURBVHzTmuvQoYMaNWrkoFHoRUdH67333rPesOfEiRPq1KmT/vjjD0fNEG6JiYlq27atvvrqq7Acv2TJkvrqq6902223hWT/YcOGKV8+8/1yf/rpJ40ePTokxwcAAAAAACetXbtWU6ZMyfA+SUlJevDBB4NyM1BkHQxeCdxhw5ppKMu5bJV0rj9peTzPK5vGvU453+0IG6RzPwBhsm/fPj3wwAMB55977jmtXLkyhI0AAEAgJ8Lcf//9yps3r4M2mV+/fv2smXfffVfLli1z0AZATrd8+XJ9+eWXxky+fPn08MMPO2qU+fXv39+aWbFihfHuz7NmzdJnn31m3adfv37WEy/P1K1bN2tmzJgxadrzTBs2bFB8fLwxc/nll+vaa6/N0HEyoxtvvNG4fvDgQT6HA0A2EBcXF9AwlYiICI0ePVqRkZEOWmU+L774ovLkyWPMHDx4UF27dlVqaqqjVgBygu+//17NmjXTgQMHMrRPUlKS2rdvr4kTJwapGZA1paamqmvXrtq9e7cxFxkZqX/961+OWmVcly5dVK1aNWMmKSlJvXr14oRAAP/P3p3HxbT/fwB/Tdr3pE20J4qkpCS3uNZIXLJf1072PWTLvly7cO+1XHJlX3JRtpJsRdZkSymJ0p6Wqeb8/rjf+tmaOTPNTNv7+XjMozTvz/u8RdOZcz6f94cQQoiUpaen47fffhN4HqagoIANGzZIqSrp6NChAyZNmiQw7s2bNxg3bhxdV6sHuFwuBgwYIPC+/be0tbWhqalZ5ePb2NggKioKHTp0qHKuyhgaGmLWrFkC4/z9/ZGXlyexOgghhBBCCCFVk5mZiStXruDIkSM4d+4coqKikJycTPdZCKlF9u7dK7ZcISEhAueTk7qFGq+wx29Gk1Bb2jIMUwygstkcJsLk+sKLSr5uI2I+Qkg1mTVrFtLS0ljHl5aWYvjw4QJ3ESeEEEKIaNLT03Ho0CG+MfLy8qwmjdQXbdq0Qc+ePfnG8Hg8jBkzBlwuV0pVEULqq1WrVgmMmTBhAho1aiSFamqHNm3aoHfv3gLjtm3bhr///vu7r3/8+BHjx48XON7Ozo7Vcb7Vs2dP6Onp8Y05fvx4lSas7d+/X2DMhAkThG4aUxsIarwCAKGhoVKohBBCiKQ8fPgQnp6eKCkpERg7ffp0tG3bVgpV1UzGxsaYNm2awLiwsDBs3rxZChURQuqDJ0+eoEuXLsjKyhJLvvKGExEREWLJR0httHLlSpw+fVpg3LRp02BtbS2FisRDVlYWa9asERh38eJFHDlyRAoVEUIIIYQQAMjNzUXPnj0RHx8vMHblypUwNTWVQlXStWbNGhgbGwuMO3bsGGbPnk0L2OowHo+HX3/9ldWmHeUWLFiA1NRUfPr0CVlZWcjIyEBoaChWrlyJPn36QEWF3Z652traWLZsGaKjo2FiYiLi34C9uXPnQlub/7KS9PR0VhuhEEIIIYQQQqTn3r17mDRpEqytraGtrY2uXbtiyJAh6NOnD5ycnGBkZAQDAwNMnToVDx8+rO5yCSF8FBcXC1z/BQDu7u4oLi6GjIzgNhsHDhwQR2mkluDQhUp2OByOLYCHABgAnG8+ujEMEylkvpsA2v9vPL7INY5hGKG35OVwOEoAPn+RrzxnPMMwlsLmqyk4HE4sgO9mtVhbWyM2NrYaKiJEskJDQ9GjRw+Rxs6cORObNm0Sc0WEEEII8fHxwe7du/nGjBw5ktUC7fokMjISHTt2FBi3bNkyLF26VAoVEULqo1u3bgnctUpOTg4JCQkwNDSUUlW1Q3R0NNq1a8cq1t/fH35+fmjQoAESExPRo0cPvHhRWY/g/xcREcHqd8WPzJs3T+DufwEBASI1RistLUXTpk357oKtpKSE9+/fi2WHtZqGYRiYmZkhMTGx0pgmTZogPj4e8vLy0iuMEEKIWLx69Qqurq6smn87ODggMjISioqKUqis5srKykKzZs3w6dMnvnHy8vKIjo6Gra2tlCojhNRFKSkpcHJyQkpKithzN2rUSGoLjQipSc6ePYu+ffsKjNPT08PLly+hrq4uharEh2EYuLq64tatW3zjdHR0EBcXJ3ARICGEEEIIqZqioiJ4eHggLCxMYKyTkxNu3ryJBg0aSKEy6bt16xZ++uknlJWVCYxdtWoVFi5cKIWqiLQtX76c9bwgPT09XLp0SeA11s+fP+PcuXM4duwYoqKikJ6eXrHxk6amJpydnTFq1Ch4eXlBQUGhyn8HYWzduhUzZszgG8PhcBAREQFXV1cpVUUIIYQQQgj5kcTERPj6+uLYsWNCjXNwcMDChQvRr1+/Orl5HyG12YkTJ+Dt7c03pnPnzggJCYGcnByrtQYmJiZISEgQZ5ms2djY4NmzZz966hnDMDbSrqc+ENyKh5R7BaD8yu+33WrcRciXWMnXRf2PXlrJ17VEzEcIkbLPnz9jwoQJIo/funUrHj9+LMaKCCGEEBIZGSmw6QoAgTfM6yNXV1e4ubkJjFu2bBnOnj0rhYoIIfUNwzCYO3euwLjffvuNmq78gKOjI3x8fFjFLl26FLKystDW1oapqSmrpisjR44UuekKAIwaNUpgzJYtW8Dj8YTOfenSJb5NVwBg0KBBdbLpCvDfRL9u3brxjXn37h0OHjwopYoIIYSIy+vXr9G1a1dWTVe0tbVx8uTJet90BQC0tLRYXRvgcrkYPnw4ioqKpFAVIaQuys3NRa9evSTSdAUAPn36hD59+iAvL08i+QmpiaKiojBs2DBWsRs2bKh1TVeA/97Hr1u3TmBceno6Zs+eLYWKCCGEEELqr+zsbPTu3ZtV0xUFBQXs37+/zjZdAQAXFxf4+/uzivXz88P27dslXBGRtjNnzrBuutKkSRNERESwamytoqKCwYMH49SpU3j37h2Ki4tRVFSE7OxsZGZm4uLFixg4cKDUm64AwMSJEwU2vWUYBqNHj0ZBQYF0iiKEEEIIIYR8paioCEuWLEHz5s2FbroCAPfv30f//v3x008/ITo6WgIVEkJEtXfvXoExq1evhpycHID/rl+NGTOGb3xiYmK1NV4h0keNV1hiGKYQwPNKnu4uQsrKfspcRMgFAI0q+bqqiPkIIVK2bds2vH37VuTxPB4PM2fOBMN82xuKEEIIIaIoLi7G+PHjBcZ17twZrVu3lkJFtc+2bdsgKysrMO6XX37Bjh07pFARIaQ+OX36tMCdfmVkZDBv3jwpVVT7bNy4kdXEtnKZmZms4rS0tLB+/XpRywIAtGjRAu3bt+cb8+rVK1y4cEHo3Pv37xcYM3r0aKHz1iYeHh4CY9auXYvS0sp6QRNCCKlpYmJi0KFDB1bXoGVkZBAUFARjY2MpVFY79O/fH7/99pvAuCdPnmDRokVSqIgQUteUlJTA29sbjx49YhWvrKyM2bNnIzAwEDt27ICRkRGrcU+ePMGoUaPofiKpF54+fYoePXrg8+fPAmPd3NwwfPhwKVQlGa6urhgxYoTAuAMHDiAwMFAKFRFCCCGE1D9v376Fq6srrl69yire398fLVq0kHBV1W/+/Plwd3dnFTtt2jSsXr2a3rPWEU+fPsWvv/7KKtbQ0BDXr19Hs2bNRD6egoICNDQ0qn23eQUFBaxcuVJg3KtXr7B48WIpVEQIIYQQQgj5UlRUFBwcHLBixQoUFxdXKVdkZCTatWuH0aNHIyMjQ0wVEkJElZycjNDQUL4x1tbWaNeu3VdfGzt2rMDc165dq1JtpPagxivCuQ+g/GocBwDzv48uHA7nJyFzxX3z5/Jc9hwOR0uE2uwr+TpXhFyEECnLycnBhg0bqpzn2rVrOHv2rBgqIoQQQqQrIyMDQUFBWLRoEWbMmIHJkyfDx8cHS5YsweHDhxETE1PlC1vCWrduHeLivj1t/96sWbOkUE3tZGtrCz8/P4FxPB4PU6dOhbu7O86fPy/1f2tCxK2kpATv379HZmYmTQqrJiUlJZg/f77AuKFDh8LS0lIKFdVOSkpKOHbsGFRUVMSad82aNdDR0alyHjYN0jZt2iRUzoyMDAQHB/ONMTc3h6urq1B5axsPDw80bdqUb0x8fLxIuz0QQgiRvpCQELi5uSEtLY1V/MqVK9G1a1cJV1X7bNu2TeBOpcB/zevoZjshRFjz58/HpUuXWMX27t0b2dnZ+P333zF8+HBMnjwZiYmJrBfrnDx5Ev/8809VyiWkxouPj0fXrl2RlZUlMNbAwACHDx+u9sV5VbVp0yZW11vGjx+PmJgYKVRECCGEEFJ/3L17F87OzoiNjWUV7+bmhtmzZ0u4qpqhQYMGOHToEBo1qmx/0a/5+flh/vz5dJ+9lktLS0OfPn2Qn58vMNbAwABhYWEwMzOTQmXSMWTIEIGbiADA5s2bERERIYWKCCGEEEIIIYWFhZg/fz7at2+PZ8+eiTX3/v370bx5cxw8eJDezxJSjdj8DI4ePfq7+8Jt27aFmpoa33E0F6z+4NALOXscDucXACfw/01Syj8CwAMAHRmGKWCZywbAkx/kYgBMYhjmDyFr2wNg9P/GV3wZQCLDMLX2SiSHw4kFYP3t162trVnfoCCkNli2bBn8/f35xigoKEBdXR3p6el848zNzREbGwsFBQVxlkgIIYSIXXJyMs6cOYPTp08jIiICZWVlfONVVVXh7e0NPz8/mJubS7S2iIgIdOnSBSUlJXzjOnXqhKtXr9b6CdmSxOVy4eDggKdPn7IeIyMjA1NTUzRr1gxWVlZffTQ0NKTvN6lR8vPzcf36dVy+fBk3btxAYmIiMjMzK57X0tJCly5d0K1bN3h4eKBx48bVWG39sXnzZoGNsRQUFPDixQsYGxtLqara659//hHbrs8uLi6IiIhAgwYNqpyruLgYxsbG+PjxI9+4Bw8ewM7OjlXOgIAATJkyhW/MihUrsGjRItZ11lY7duzA1KlT+cbY2Njg8ePHkJGh/t6EEFIT5efnY968edi1axfrMePHj8fu3bvpfVclbty4ATc3N4E36XV1dREWFgZr6+9ucRFCqojH4+HKlSt48uQJuFwu5OXloaioiDZt2qBt27aQl5ev7hKFdvnyZXTr1o1V7ODBgxEYGAhZWdkfPr9q1SpW71e0tLQQGxsLAwMDoWolpDaIioqCl5cXPnz4IDBWXl4eERERcHJykkJlknf48GEMGzZMYJyxsTHu3bvHevErIYQQQgip3P79+zFx4kRwuez2yWzVqhWuX78OLS1R9uisve7cuYOff/4ZBQWsptlj8ODB2Lt3L5SVlSVcGRG3wsJCdOrUCXfv3hUYq6Ojg+vXr6NFixZSqEy6nj9/Djs7O4GbTxkZGeHRo0fQ1NSUUmWEEEIIIYTUP1euXMHEiRMRHx8v8WO1b98e69evr/Ob+xFS0/B4PFhaWuLNmzeVxsjKyiIlJQW6urrfPde7d2+cP3++0rH6+vp4//691OfU2djYVNYs6hnDMDZSLaaeoMYrQuBwOPIAPgJQL/8Svm6YEg7Ak03zFQ6H0wBAHoBvOyNwAMQDsGEYhtVVeA6HYwjg1Te5yn96oxiGcWaTpyaixiukPsjIyICZmRlyc3P5xm3fvh3u7u6ws7MTuDB93bp1mDdvnjjLJIQQQsQiMzMTe/bswfHjx3Hv3j2RcsjKymLMmDFYvHgxDA0NxVzhfzthtmvX7qvGCT+ioKCAJ0+ewNLSUuw11DXR0dFwdnYGj8erci5lZWW0bdsWgwYNwogRI6CqqiqGCgkRXmxsLFauXIlTp06xnkQnIyMDDw8PTJgwAT179hRL4wnyvcePH6Ndu3YCJzDNnTsX69evl1JVtd+8efOwYcOGKuUwNzfHjRs3xLqwb8WKFViyZAnfmBEjRuDAgQOs8jk6OvI9R+FwOEhMTISRkZFQddZGhYWFMDU1FdjY5syZM/Dy8pJSVYQQQtjg8Xg4efIk5s+fz/dm8re8vb0RFBRE56kCLFiwAGvXrhUYp6uri6tXr6Jly5ZSqIqQ+uHBgwcYOXIkHj9+/MPntbW1MWvWLEyZMgXq6uo/jKlpMjIyYGtri/fv3wuM9fT0xKlTpyptugIADMNgxIgROHTokMB8ffr0wZkzZ6jZFqlTjh49ipEjR6KoqIhV/P79+zFy5EjJFiVFDMPAw8MDISEhAmM7dOiAkJAQusZOCCGEECIiLpeLuXPnYtu2bazHmJmZITIyst42wQwNDYWnp6fATZDKOTg44MyZM2jSpImEKyPiwuPxMHDgQJw8eVJgbF1rhPkj69evh6+vr8C4oUOH4p9//pFCRYQQQgghhNQv6enpmD17NgIDA6V+bE9PT2zYsAFWVlZSPzYh9VF4eDg6derEN6Zfv344derUD5/btGkTZs+ezXd8XFwcmjdvLnKNoqDGK9JHW5EK4X+NUI7h/5uaAF83X3EHEMvhcH7jcDjfNlT5NlcZgCtf5PoypxmALWxq4vw3C2oPAMUf5GEARLPJQwipPr///rvApivW1tbw8fFBy5YtMXHiRIE5V65cifT0dHGVSAghhFTZp0+fsHDhQhgbG8PX11fkpisAUFpaij/++ANWVlbYsmWLwIZkwsjOzkbv3r0FNl0BgKVLl1LTFZYcHR1Z7bTLRkFBASIiIjB58mQYGhpi+vTpSEpKEktuQth48eIFhg4dilatWuHIkSOsm64A/00y+vfff+Hp6QkLCwscOXIE1BBXvAoKCjB48GCBTVe0tLSwYMECKVVVN6xbtw5bt26FnJycSOPbt2+P27dvi30i6cSJE6GgwPcyHIKCglj9rnj8+LHAc5TOnTvXi6YrAKCkpCTwJgIA/PXXX1KohhBCCBsMw+D8+fOwt7fHwIEDhWq60rVrVwQGBlLTFRb8/f3Rpk0bgXFpaWno1KkT7t+/L4WqCKnbGIbB1q1b4ezsXGnTFeC/JiZ+fn4wNjbGli1bavx7boZhMH78eFZNV9q2bYugoCC+TVeA/5pF/vXXX2jXrp3AnMHBwbSoh9QZSUlJGDx4MAYPHsy66cqMGTPqVNMV4L/XgN27d0NNTU1g7M2bN+Hp6YmCAoF7SxFCCCGEkG88f/4czs7OQjVd0dfXx+XLl+tt0xUA6N69OwIDA1k3AL1//z7atm2L6GiaCl8bMAyDadOmsWq6AgB//vlnnW66AgCzZs1idY3m8OHDrJroEkIIIYQQQthhGAYHDhxAixYtqqXpCgCcO3cOrVq1wsKFC/H58+dqqaEuKSkpQXJyMuLj45GXl1fd5ZAaaN++fQJjRo8eXelznTt3Fjj+2rVrQtVEaidqvCK8NQDKV1WVz9T6svmKMYB9ADI4HE4oh8NZx+FwGleS6/g3f/4yzwQOh/M7h8OpdIbr/5q7HATQ/Ytx37oi+K9ECKkuaWlprG6++fv7V0x49/f3h5aWFt/4vLw8LF++XCw1EkIIIVVRVlaGDRs2wMTEBGvWrEF+fr7Ycn/+/BkzZ86Es7MzHj58WOV8CQkJcHd3x/PnzwXGtmrVCnPmzKnyMeuTpUuXYvLkyWLNmZubi23btsHKygqbN28WaxMeQr716dMnTJkyBTY2NggKCqry4q3ExEQMGTIEffv2ZbXAirAzc+ZMxMXFCYxbtGiRwPdV5GscDgfTpk1DZGQkTExMhBrr7e2Nq1evQkdHR+x16ejoYMSIEXxjSkpKsGTJEoG5duzYITBm1KhRrGurCyZOnCjwZyUkJARpaWlSqogQQkhlnj17hu7du6N379549OiRUGM7d+6MU6dOCWxmRv4jLy+PQ4cOQVFRUWDsp0+f4OrqWm0TeQipC/Ly8tCvXz/MmDGDdfPT7OxszJw5E4MGDUJpaamEKxTdn3/+WeluSl8yMTHBv//+CxUVFVZ5FRUVcebMGVbvwaZOnUpNjUmtxTAMbt68iUmTJsHKygpHjx5lPXb48OHYuHGjBKurPsbGxjhw4ACr2PDwcPTp0wcZGRkSrooQQgghpG4oKyvDjh07YG9vjwcPHrAeZ2ZmhuvXr8PMzEyC1dUOgwYNwp49e1g3X/n48SPc3d1x/vx5CVdGqoLH48HHxwcBAQGs4mfMmIHffvtNwlVVP1lZWezfvx/y8vICY8eNG4crV2jZByGEEEIIIVX18OFDuLu7Y+TIkSLd//Dy8sKFCxeQm5uLzMxM3Lp1CxMnToS6urrQuUpKSrBmzRq0aNECu3btYr15APnvnv+WLVvQuXNn6OnpQUFBAUZGRrCwsIC6ujo0NTVhZ2eHGTNm4MmTJ9VdLqlmOTk5OHHiBN8YAwMD9OjRo9LnbW1t0bBhQ745qPFK/UCNV4TEMEwigN34vslJedOU8gYoygC6ApgDwKKSdGcBlK88/VETl5kAHnE4nBkcDseaw+GoczgcRQ6HY8HhcCYDeApg6LclfvF5PoCrwv0NCSHStHHjRoE7SLVu3Rq//PJLxZ+1tbWxbNkygbl3796Nly9fVrVEQgghRGSJiYno1KkT5s2bJ9Euvffu3UPbtm3h6+sr8s6Mly9fRtu2bVktTpORkcFff/0FOTk5kY5VX8nIyGDHjh3Yvn07ZGTE+1a0qKgIs2bNgru7O53/ELErKyvD1q1bYWlpiYCAALE3+AkODoa1tTU2bdqEwsJCseaub3bt2oU///xTYJypqanYG0HVJ+3atUNMTAxmz54NZWVlvrGGhobYu3cvjhw5AiUlJYnVNGPGDIExBw8e5HtzJSMjQ+AuYmpqaujXr5/Q9dVmampqmD59Ot+YsrIyBAUFSakiQggh30pPT8f06dNha2uLy5cvCz1+4MCBuHDhAlRVVSVQXd1lbW2N9evXs4otKirCiBEjMGnSJGRmZkq4MkLqltzcXHTv3h1nz54Vafzx48cxadKkKjdPlYQbN25gypQpAuMUFRXx77//Qk9PT6j8BgYG2LVrl8C47OxsDBs2jBoaE7FhGAZcLpd1oyRhcblchIeHY+bMmTAzM4Orq6vQE1W9vLywf/9+sV+nrkn69euHhQsXsoq9evUqWrRogUOHDtXI10tCCCGEkJoiIiICDg4OmDp1qlD3ddu3b487d+6gWbNmEqyudhk9ejSOHDnCet5NQUEB+vTpgz/++EPClRFRlJWVYfz48az/fbp27YoNGzZIuKqaw9raGmvWrBEYV1RUBE9PT1y9Sks/CCGEEEIIEUVaWhrGjx8Pe3t7RERECD2+devWiIyMxJkzZ9CzZ0+oqalBS0sL7du3x65du5CYmIhZs2aJtIYkOTkZkyZNgomJCdavX0/zxfl49eoVJk2aBENDQ8ycORNhYWFIS0v77h5WTk4OHj16hK1bt8LW1ha9evUS6d+d1A1Hjx4V+HP122+/QVZWttLnZWRk4O7uzjdHWFgYeDyeKCWSWoRDN82Fx+FwGgJ4DMCg/EtfPP3lN7S8iUonhmF++KrN4XBWAViA/2+28mUezhef/3B4JbHlx93AMMx8QX+fmozD4cQCsP7269bW1oiNja2GiggRn4yMDBgbGwtciB4cHAxPT8+vvlZSUoLWrVsL3Mm9f//+Aru1EUIIIZIQGBiIyZMnIy8vT6rHNTMzw+bNm+Hp6clqd5z379/D19dX4ELrL61Zswbz59fq0+xqFxISgiFDhiA7O1vsueXk5DB16lQsWrQIWlpaYs9P6pfExESMGDECN27ckMrxGjdujCVLlmDMmDF8L+yR7x09ehRDhgwRuDiEw+HgypUr6Ny5s5Qqq9sKCgpw9epVBAcHIzw8HGlpabCwsEC3bt3Qq1cvODs7S+3/cs+ePRESEsI3xsPDo9Ld8NavXw9fX1++48eNG8equU9d8+HDBxgaGvK9WeDg4IB79+5JsSpCCCG5ubnYtGkTNm7ciPz8fMEDfmDKlCnYunVrnV50LEk8Hg/e3t44deoU6zEaGhrw9fXF1KlTqdkNIQLk5OSgR48euHPnTpVzLV++HIsXLxZDVeLx9u1bODo6Ij09XWBsQEAAJk2aJPKxBg8ejKNHjwqM8/f3x5IlS0Q+DqmfGIbBw4cPcfr0aVy8eBHPnz/H58+fwTAMZGRk0KxZM3Tv3h2TJk0SapFpWVkZXr58iUePHuHNmzdfPZKTk6s0ma1z5844f/48FBUVRc5RW5SVlaF3794Cr5d8ycXFBStWrECnTp1Y3WMhhBBCCKkP4uLisGjRIqGuAZXz9vbGgQMHJLpBQW128eJF9O/fX6gFZ2PGjMH27dvpe1pD5OTkYOjQobhw4QKr+JYtWyIyMhIaGhoSrqxm4fF46N69O65cuSIwVklJCadOneK7CzchhBBCCCHk/3G5XGzbtg0rVqxAbm6u0OPl5OSwePFizJ8/n1VTldevX2PatGm4ePGiKOUCAJo2bYq1a9diyJAhdD/mf4qKirB8+XJs2LABpaWlIufp2rUr1q9fDzs7OzFWR2o6JycnREVF8Y158eKFwHvWAQEBAjfQefDggVT/f9nY2ODZs2c/euoZwzA2UiukHqHGKyLicDiuAEIBfDkb40eNUwQ1XtEEkABAnU+OypT/433boIUDIBeABcMwn/j/TWo2arxC6rLFixdj5cqVfGPatWuHO3fu/PAk+sKFC+jVq5fA49y8eRMuLi4i10kIIYQIo6ioCNOmTcNff/1VrXXY2dlh3rx56NatG7S1tb96jsfj4e7duwgMDMTBgwcFNkH70ogRI/D333/TBS4xSE1Nhb+/Pw4cOCDUbqRsaWlpYcmSJZg0aRLk5eXFnp/UbQzDIDAwEFOmTJF6AykAcHR0xL59+9CyZUupH7s2Cg0NhaenJ0pKSgTGLliwAKtXr5ZCVUTabt26hQ4dOgiMCwsL+64jeWlpKczNzZGUlMR37KNHj2Bra1uVMmstDw8PgTcKY2NjYW393WU8QgghYpaeno5t27Zhx44dIjezVFZWxsaNGzFhwgR6f1tFxcXFGDBgAP7991+hxjVs2BCTJ0/G1KlTjIICHAAAIABJREFUoaOjI6HqCKm9cnJy0K1bN4ETY4Tx119/YezYsWLLJ6r8/Hx07NgRDx8+FBjbq1cvnDt3rkqv1enp6bCxsRHY5EVGRgbXr1+Hq6uryMci9UdRURF2796N7du3482bN6zGuLq6wsrKCsbGxjAyMoKxsTHU1NSQkpKC5OTkikdiYiIePXok1HV7tgYMGIADBw5AWVlZ7LlrqqysLDg5OeHVq1dCjXN1dcWQIUPg6emJpk2bSqg6QgghbJWWliIhIQFJSUlISkpCSkoKcnNzUVBQgIKCgoqmZBwOB3p6enB0dISLiwsMDAwEZCaE8PP69WusWbMGf//9t0jN/5YvXw4/Pz9qeizArVu30K9fP6SlpbEeY2tri+PHjwvV4JGI3+vXr9GnTx+BG0iW09fXx927d2FkZCThymqm9+/fo1WrVsjMzBQY26BBA2zduhWTJ0+WQmWEEEIIIYTUTiUlJThy5AiWL1+O169fi5TDwcEB+/btE3peKMMwOH78OKZNm4aPHz+KdGwAsLe3x5QpUzBo0KB6df/qWzdu3MDYsWPx8uVLseTjcDj49ddfsXLlSrrPVQ88ffoUrVq14hvj6urKaiPeuLg4gfOgN23ahJkzZwpVY1VQ4xXpo8YrVcDhcNwBHAWgg/9vevJVCAQ0XvlfnkEAgvDjRiuC/oEqa/YykGGYkwLG1njUeIXUVdnZ2TA2NhbYSfHixYuVdi1nGAZdunTBtWvX+OZwcHDA7du3WXVdJIQQQqrizZs3GDBgAB48eCByDhkZGVhaWkJXVxdcLhfPnj2rctMDS0tLKCkpgWEYZGVl4ePHj6wW53+rQ4cOuHr1KhQUFKpUD/laWloadu7cif379wtc8C4Kc3NzrF27Fr/88gtNaCKsfPz4ERMmTMDZs2ertQ45OTksWbIEvr6+dC7PR3h4ODw8PFjtgubk5IQbN27Q97MO69u3r8CfXVtbW9y5c+erXfBOnTqF/v378x3n7u6OsLAwsdRZGwUFBWHo0KF8Y+bPn481a9ZIqSJCCKlfPn/+jIsXL+L48eMIDg6uUvPKDh064O+//4aFhYUYK6zfuFwuBg4cKNJ7CEVFRYwePRqzZ8+GmZmZBKojpPYpLS2Fh4cHLl++LNa8HA4HgYGBGDZsmFjzCqOoqAi9evUSeG8PAHR0dPDkyRPo6elV+bgnT57EgAEDBMbp6uri9u3b9HpEKlVUVIRDhw7B398f7969q+5yhLJo0SL4+/vXy2vESUlJcHNzQ2Jiokjj27Rpgz59+sDLywt2dnbUuI8QQqTg3bt3OHv2LK5fv47Y2Fi8evVKpPvbZmZm6N27N7y9veHi4lIvfw8SIor79+9j3bp1OHnypEgNV1RVVXHo0CF4eXlJoLq6KSkpCX379hVqvpGamhr++ecfeHp6SrAyUpl///0XI0aMQFZWFqt4ZWVlREREwMHBQcKV1WynT5/GL7/8wjrex8cHGzZsgIqKigSrIoQQQgghpHZJSUnB0aNHsXXrVpHXHqioqGDVqlWYMmUKGjRoIHIt2dnZWL16NbZt24bi4mKR82hqamL8+PGYN2/ed5sO12WlpaVYsmSJxOadKioqYsaMGZg/fz40NDQkcgxS/WbPno1Nmzbxjdm3bx9GjRolMBfDMGjcuDE+fPhQacyvv/6KgwcPCl2nqKjxivRR45Uq4nA4+gDWAxgKoPzOVPk3lVXjlf/l2QVgwjdjhfHluHUMwywQcnyNRI1XSF21fPlyLF26lG+Mo6Mj7t69y3fiUkxMDKsbEcuXL8fixYuFrpMQQghh6/Dhw5g4caJITVIUFRXRvXt39OvXD7179/7qYhHDMIiMjMTKlStx6dIlcZYsFHNzc9y+fZt2oZYghmGQnJyMFy9e4OXLl3j58mXF54mJiajqe1dTU1OMGjUKw4cPh6mpqZiqJnXN8ePH4ePjg4yMDJHGt2nTBl27doWtrS0aNGiA5ORkhIWF4fLlyygtLRU55/79+9G6dWuRxtdl169fh4eHBwoKCgTGqqmp4eHDh7R4rI6Li4tDy5YtBU6CHT16NPbu3VvxZzc3N0RE8L10h5MnTwo1Ca6uKSgogL6+Pt9zvSZNmuDt27c0eZ8QQsSAy+UiNjYW4eHhCA0NxfXr16vUbAUAGjZsiCVLllR50gj5MS6Xi2HDhuHEiRMijZeRkYG3tzfmzZsHe3t7MVdHSO0yefJk7Ny5UyK5ZWRkcOTIEXh7e0skPz8lJSXo378/zp07JzCWw+Hg/Pnz6Nmzp9iOP3r0aOzfv19gnJWVFW7evFmvJvQR/rhcLiIiIhAUFISTJ08iJyenuksSirKyMv78889qbbpUEyQmJsLNza3Kzc+NjY0xYMAADBw4EI6OjtSEhRBCxOjjx484ePAgjh07hnv37ok9v4GBAX799VeMGzeOmrESUolnz57Bz88PZ86cETmHra0tjhw5ghYtWoixsvqhoKAAI0eOxPHjx4Uat3z5cvj5+dH9KSkpLS3FokWLsG7dOtZjlJWVce7cOXTu3FmCldUeCxYswNq1a1nHGxkZYcuWLejbty+9ByOEEEIIIfVSYWEhoqKiEBkZiZCQEERGRlYpX+/evREQEAAjIyMxVQgkJydjyZIlOHDgQJXWPKirq2POnDmYOnUqNDU1xVZfTfTu3TsMGTKkyv+ebGhoaMDLywve3t7o3LkzlJWVJX5MIh2lpaVo3Lgx0tPTK41RVVVFamoqVFVVWeUcNGgQjh07VunzdnZ2VdqsXFjUeEX6qPGKmHA4HBMAwwH0ANAWgPz/nmLbeEUGwG4AY/H/TVQAwQ1Yvm3UspRhmBWsC6/hqPEKqYvi4uLg7OyM3NxcvnHBwcGsuvEPHz4c//zzD98YWVlZREdHw87OTqhaCSGEEEFyc3MxZcoUBAYGCj3WwcEB8+bNQ69evVjtzHH58mVMnDgRb968EaVUkTk6OuL06dMwNDSU6nHJ/ysqKkJ8fDzu3r2LXbt2VXmyobm5OX7++WfY29ujRYsWsLCwQMOGDaGoqCimiklt8+nTJ0yZMgVHjx4VafyAAQOwdOlStGzZ8ofPp6amYv/+/di8eTM+ffokdH5ZWVn4+flh4cKFkJeXFzygHggLC0Pv3r1ZNV3hcDg4ceJEvW6aUZ+MGzcOe/bsERi3e/duTJgwAefOnUOfPn34xhoZGSE+Ph6ysrLiKrNWYrNQMyQkBN27d5dSRYQQUjeUlJQgNjYW0dHRiIqKwv379/H06VORdrL+ETU1NcyaNQszZ86k3VskrKysDMuWLcPKlSurlKdLly6YMWMGfv75Z3qfSuqdgIAATJkyhVVs48aNcejQIfz000/Ys2cPJk6cyGqcrKwsTpw4IdWdxwsKCjBixAicPHmSVfzatWvh6+sr1hry8/Nhb2+PV69eCYx1dXXFxYsXWU88InVDSUkJUlJSkJSUhLdv3yIpKQkPHjzApUuXRGq4XhMMHDgQ69evh7GxcXWXUiPEx8fD3d0d7969E0s+HR0duLu7w93dHU5OTmjVqhVduySEECGVlZUhNDQUe/fuRXBwsMhN/IX1888/Y/z48ejbty+9dhMC4O3bt1i2bBkOHjwosLk/PzNmzMCaNWvoek4V8Hg8+Pr64vfffxdqXOfOnbFlyxa0atVKQpURAEhISMCIESOEWhSnqqqKCxcuoGPHjhKsrHZhGAazZs3Cli1bhBrXs2dPbNu2jRqoEUIIIYSQOu/z58+4ffs2rl+/jvDwcERFRYHL5VY5r76+PrZv347+/ftLrKlhdHQ0Jk2aVOW1DrKysujcuTN++eUXDBgwoE5tmsHj8fD3339j7ty5yMzMlPrx5eTk4ODgABcXF7Ro0QJWVlawsrKCjo4ONbusha5du4aff/6Zb8yYMWNYzSsvt3r1avj5+VX6vIKCAvLz86U2p5war0gfNV6RAA6H0wCAEQBDAKoA7jIMk8Vy7FwAi/83ju0/DgdAKoDpDMOItpVeDUWNV0hdk5aWBmdnZyQkJPCNs7OzQ0xMDKsTtrdv38LKygrFxcV841q1aoXo6GgoKCgIVTMhhBBSmdDQUIwbNw7JyclCjTM3N8fWrVvh4eEh9MWJgoICrFixAhs2bEBZWZlQY0UxcuRI7Nq1iybG1DBXr17FuHHjBJ5TCUtBQQG6urowNzeHmZkZeDweMjMzkZOTAxkZGcjLy4PH4+HDhw9ITU1FTk4OlJSUoKamBlVV1YqHoqIiSkpKUFJSAi6XW/G5jIwMlJWVoaysDE1NTZiYmMDU1BQWFhZwdHREw4YNxfr3IYLxeDwcP34c06dPx8ePH4Ue37lzZ2zcuJF1g8P09HRMnz4dQUFBQh8L+O+cfu/evXB0dBRpfF3AMAy2bt2KOXPmsP49UN5gg9QPKSkpsLS0RGFhocDYRYsW4cCBAwLPZdatW4d58+aJq8RaKzw8HJ06deIb07ZtW9y9e5d2FSSEkEowDIPXr19XNFmJjo5GTEwMioqKxH4sGRkZjB8/HsuXL4eOjo7Y85PKnTp1Cr/99hvy8/OrlEdZWRldunSBo6MjbGxsYGVlBQMDA2hqatJkD1InnTx5EoMGDWL1Xs/CwgJhYWFo0qRJxdfCw8PRvXt3VpPu5OTkcObMGXh4eFSpZjYSEhLQr18/PHr0iFX80KFDcejQIYn8nN+/fx/t27dn1dyrVatWOHv2LExNTcVeB6leDMPg/fv3iImJqXg8fPgQ7969q9Ii05qkXbt2+P3332lh3w+kpqZi1KhRCA0NFXtueXl5mJmZQVNTExoaGtDX14eRkRGMjIxgaWmJVq1aCX0NnGEYFBcXIy8vDwkJCXj58iWSk5PB4/GgoqICVVVVNGzYEIaGhjA0NIS+vn69b5xLCKkdkpKSsGfPHuzfv19sDbFEoaOjg1GjRmHcuHG0iJvUS2lpaVi9ejV27dpVpQVcJiYm2L17NzWmF6Pt27dj+vTpQu0STtdDJYdhGOzfvx/Tp08X6pqnuro6QkJC0L59ewlWVzsxDIMZM2Zg27ZtQo2Tl5eHr68v5s2bRw1zCSGEEEJIncEwDB49eoQTJ04gLCwMUVFRYm1QLCsri8mTJ2PZsmXQ1NQUW97KlJWVYd++fVi2bBnev39f5XxycnLo3bs3hg0bho4dO0JXV1cMVUpfcXExrl27htWrVwvV0FNaNDU10axZMygpKYHL5YLH40FLSws6OjrQ0dGBmpoalJWVoaqqCgMDAzRp0gQGBgZQU1ODiooK3Z+qJpMmTcKuXbv4xty8eRMuLi6sc7LZ0PPZs2do0aIF65yiKC0tRYMGDdCyZUtqvCJl1HilBuJwOLoAFgHwBqAnIPwNgL0AtjAMI3hFSS1DjVdIXZKcnIxu3brh+fPnAmNPnDiB/v37s869YMECrF27VmCcl5cXjh49Ss1XCCGEVMmzZ8+wfv16HDhwQOix48aNw6ZNm6p88/fRo0cYN24coqOjq5SnMgoKCti0aRN8fHxoMVMNlZ+fj/nz5yMgIKC6SxELDoeDVq1a4aeffkKvXr3QuXNn2mFOghiGQXBwMJYsWYLHjx8LPd7MzAybN2+Gp6enSK8R586dw+zZs1ntMv0tGRkZzJ49G8uXL693TaGysrLg4+ODo0ePsh6zatUqLFy4UIJVkZpo0aJFWLVqlVhyKSkp4d27d9QcC/81qzI1NUVSUhLfuEOHDmHYsGFSqooQQmquoqIixMTE4O7du4iNjUVcXByePXuG7OxsiR/bzc0NW7ZsYd0gkIhfXFwcxowZg9u3b4s9t6KiIoyMjGBraws7Ozu0adMGzs7OdL5CarXAwECMHDmSVdMHS0tLhIWFwdDQ8Lvnjh07hsGDB7NamKWgoIBz586ha9euItUsCI/HQ2BgIGbNmsV6py4HBwfcuHEDSkpKEqkJADZs2MC6sWTDhg1x+PBhWjxYizEMg8TExK+arMTExCAtLa26SxM7AwMDDBkyBEOHDoW9vT1d1+eDYRgcPXoU06dPl/r/hcaNG8PMzAyNGzdGw4YNUVBQgLy8POTn51d8zM/PR0FBQcVDmIZAMjIy0NPTq2jEUv4wNzeHjY0NmjVrRtfdCSHV6sGDB9iwYQOOHTsmlU1GhPHzzz9j/Pjx6Nu3L71WkjovNzcXmzZtwsaNG6vUOFdJSQkLFizAnDlzJPo+rr46d+4cRowYIfT1VA0NDSxZsgRTpkyh1zMxSEpKgo+PDy5cuCDUOCMjIwQHB6N169YSqqz2YxgGs2bNwpYtW4Qeq6GhgbFjx2LKlCkwMTERf3GEEEIIIYRIwatXr3D69GkEBgbi6dOnEjlGz549sWnTJjRv3lwi+fkpLi5GYGAg1q1bh9evX4str6mpKdq3bw9nZ2c4OTnByMgI2trakJOTE9sxxCU/Px8XL17EqVOncP78eeTl5YmUx8XFBf369YOdnR2UlJTw+vVrnD9/HqdPnxZrk56qUFVVha2tLVxdXdGxY0e4uLjQPB4JKysrg6GhId/Nd83MzPD69Wuh7h0nJiYK3KDmyJEjGDRoEOucoliwYAHu3buHN2/e4M2bNz8KocYrEkKNV2o4DofTBoATAF0AOgBkAHwEkAogkmGYuGosT+Ko8QqpC9LS0rB3716sWrUKnz9/FhhvY2ODx48fC7U7dGFhIezt7Vk1denevTtOnToFZWVl1vkJIYSQDx8+4N9//8WhQ4dw/fp1ocdraGjg77//Rt++fcVWU1lZGQICArBo0SKRL8L8SL9+/fD777/DzMxMbDmJ5Ny9exdz5sypkZ2Pq0JLSwteXl7o2rUr3NzcfriYiAiPYRiEhoZi8eLFuHfvnkg5xo4di82bN1e5gVRpaSkOHDgAf39/JCcnCz2+ZcuWOHz4MFq1alWlOmoDhmFw8OBBzJ07F+np6azHzZw5Exs3bqSFNvVQUVERXFxc8ODBgyrn8vHxwc6dO8VQVd3g5+eH1atX840xMjLC8+fPaZIxIaTeYBgG2dnZSE1NxaNHj3Dnzh3cvn0bDx8+RElJiVRrsbOzw+rVq9GjRw86B6oBGIbB2bNn4efnV9nOI2LVvHlz2NnZoUmTJjA0NISpqSmaNWsGMzMzasZOaiyGYRAQEIBp06axapZiamqKyMhING7cuNKYnTt3YvLkyayOLyMjA29vb/j6+qJNmzas6+aHYRiEh4dj7ty5uH//PutxpqamuHHjhsSvAfF4PAwbNgxHjhxhPebXX3/Fxo0bacfwWqC0tBS3bt3ChQsXEB0djZiYGKk0fasuFhYW8PLygpeXF1xcXNCgQYPqLqlWycrKwsqVK7Fz504UFRVVdzlSISsrC0tLS9jY2MDGxgZNmzaFnp7eVw86byKEiFNpaSnu3r2LCxcu4OLFi2K5Zi1pOjo6GDVqFIYNGwZra2vaqbWeKy4uRnh4OG7cuIG4uDi8fPkSCQkJKC0thaqqKlRVVaGvrw9HR0e4ubnhp59+qtG7LqekpODAgQPYvHkzPn36JHIeDoeDYcOGYeXKlTA2NhZjheRbCQkJGDRokEibMpmYmGDcuHEYOXIk3+sI5MeKi4uxe/du+Pn5sZr3/CVXV1ecPHmyRr8e1BQMw2DHjh2YMWOGUE0ny8nIyGDYsGHw8/ODlZWVBCokhBBCiKhycnLw+vVrvH79Gu/fv4eMjAzU1dWhoaGBxo0bo0WLFtDQ0KjuMgmRqoyMDERGRiIiIgLnz5/HixcvJHYsKysrbN68GT179pTYMdgqKyvDvn37sGjRIok2xNfS0oKFhQWsrKy+elhaWkptLiePx8OjR49w7do1XL16FdeuXUNxcbHI+ezt7bFz5044OTn98PmkpCSsWbMGf/31V41rdA38t0a4Y8eOcHV1haurK11HErOIiAi4ubnxjfH19cXatWuFysswDDQ0NPiuUfPz88PKlSuFyiuMt2/fwsrKStDPDzVekRBqvEJqNGq8Il1FRUVIT08Hj8cDh8P57gHgu6/JyclBU1Pzu0nc+fn5+PjxIz5+/IiCggIUFxeDy+WiuLi44pGbm4vs7Gzk5OT88GNeXh5KS0srOs9paWlBR0cHjRo1go6Ozleff/uRYRh8+PCh4oRUW1sbOjo6EpsoU1paiufPn+P+/ft4+vQpMjMzUVhYiKSkJNy+fVuoC+JnzpyBl5eX0DVERUWhffv2rI7l5OSEwMBAWFpaCn0cQqoLj8dDfn4+lJSUamQnTkLqmuLiYty+fRtXr17FpUuXEBUVJXIuOzs7nDhxAubm5mKs8P9lZGRgy5Yt2LZtG3Jzc0XO4+DggLVr16JLly5irI5IA8MwOH36NHx9fcXaEbomMTc3R79+/TBs2DC0bt2aFlEKiWEYXLp0CStWrMDNmzdFytGoUSPs2bNHpHN1fgoLC7FkyRJs2rRJ6Ik08vLyWLNmDaZNm1ZnJ77GxsbCx8cHN27cEGrc5MmTsX37dvpZqccSEhLg4OCArKwskXNoaGjgxYsX0NPTE2NltVtKSgosLCwELsiaMGECdu/eLaWqCCFEPEpKSpCQkICEhATk5OQgPz8f+fn5+Pz5M/Lz85GXl4fs7GxkZWUhKyur4vOMjIwqTRIQB1tbWyxcuBDe3t5CNfQm0lFWVoagoCCsW7dOYrs08SMjIwNLS0vY29vDwcEB9vb2sLe3p4l8pNp9/PgR48ePR3BwMKt4dXV13L59G9bW3906/s6mTZswe/Zsoerp3r07fH194e7uLtJ7ydTUVAQHByMgIABPnjwRaqyBgQEiIyOl1gi6uLgY3bp1Q0REBOsxmpqaGDNmDMaNG0cLeapRSUkJ3r9/j+Tk5IrH+/fvkZmZiczMTNy5cwcZGRnVUpuuri68vLzw008/ITU1Fbdv38b58+fB5XKrlFdNTa2ikdiXj2bNmqFp06Z07UcMUlNTsXbtWvzxxx/Vfl5bE2hoaFQ0YWnSpAmcnJzQq1cvWFhYVHdphJBagGEYvH79Gjdv3kRoaChCQ0OrdI26uikpKcHOzg7Ozs5wc3NDx44daZfWeiAzMxMXLlxAcHAwQkJChN4Ex8HBoaI5XqtWrar9fC07Oxtnz55FUFAQLl++LFJjgy/17t0bq1atgq2trZgqJIIUFxdj9uzZCAgIEGm8jIwMevXqhbFjx8LDw6PO3lcXl9TUVPzxxx/YvXs33x2jKzNmzBgEBARQQ0MhXbx4EYMGDRJ54zEOhwNvb2+MGzcOnTp1osakRCp4PB5SU1ORk5NT0VRbQUEBmpqa0NDQoHnehJB6JTk5Gf/++y9u3bqFV69eIT4+nlWzx8aNG6N169bo3r07+vTpA1NTUylUS4hkMQyDtLQ0fPr0CVlZWXj79i0iIyNx48YNqawF1tbWxqJFizB58uQadz6Sm5uLtWvXYvv27cjPz5facTkcDoyMjGBlZYVmzZrB1NQUJiYm0NXVhbKyMlRUVKCsrFzxkJWVRYMGDfjOP+LxeMjNzUVqairevXuHly9fIjw8HGFhYWK5V6mgoIDly5dj1qxZrN7HP3/+HPPnz8fZs2erfGxJatq0KVxcXNChQwd06NABtra2dJ2iCqZNm4bt27fzjYmOjkbbtm2Fzu3i4oLbt29X+nyfPn0k+v9t2LBhOHz4sKAwarwiIdR4hdRolTVesbCwwKtXr6qhorqBYRi8efMGN27cQGRkJJ4+fYrExESRLpID/+0KpKOjA2VlZeTl5SE3N7fG7ogkIyMDa2trODo6om3btnB0dIStrS3ri/wMwyApKQkxMTF4+PAh4uLi8Pz5c7x8+VIsk5CqujBp0aJFWLVqFatYJSUlrF69GuPHj4eysrLIxySiYRgGBQUFyMzMhKysLNTU1KCiolJxs5lhGNY3nhmGwefPn5GXl4e8vDzweDyoqqpW5BR0El5aWoq8vDykp6fj1atXePXqFVJSUsDlclFSUoLS0tLvPpY3RNLT00PTpk2/ejRp0kSkbphcLhdv375FfHw83r17h8zMTGRnZyMpKQlPnz7F8+fPK37OlJSUoKKigtLSUnC5XDRo0ADGxsawtraGsbExuFwuCgoKIC8vD2NjY5ibm6Np06ZQVlaGkpISlJSUoKioCCUlJSgoKFT7TX5CapK4uDhs2bIFhw8fFssFnfHjx2PLli1S6ZKbnZ2NP//8EydPnsT9+/dZda3V09PD0KFD8euvv8LOzo5eD2o5LpeL3bt3w9/fH5mZmdVdjsRYW1tj4sSJGDNmDJ3HCcDj8XD69GmsXr0aMTExIufp378/du7cKdEdme7evYtRo0YhLi5O6LG2trbYtm2bwK7NtUl+fj6WL1+OzZs3V5x7suXj44OAgAB6TSe4ePEievXqBVGvf27fvh1TpkwRc1W1H9trD4MGDUJAQAC0tbXBMAzy8/ORlpaGtLQ0pKeno6SkpOL9mbq6OvT19aGrq1vjbngSQmqX8kmeiYmJSEtLQ1FREYqKilBWVgZlZWWoqqqCy+UiJSXlq8e7d++QmJhYI3c/4cfNzQ2+vr7o0aMHnfvUAgzD4OLFi1i/fj2uX79e3eXAzMwMBgYG0NLSgq6uLlq3bg1nZ2fY2dlBXl6+ussjdVhsbCwOHDiAffv2sZ50JSMjg/Pnz6NHjx6sj7NmzRosXLhQ6Prs7e3h7e0NLy8vNG/evNLX18LCQoSFheH8+fO4evWqyDuyaWtrIyIiglVDGXHKzMyEi4uLSHW7uLhgwIAB6NevH4yNjaX6O6iwsBAPHz5EbGws3r59i8TERKSkpFQ0RcvPz4eKigoaNWqERo0awcLCAu3atYOzszNMTU1rxfsNhmGQkZFRcc/swYMHiImJQWxsLN6/fy/ye1xJMTQ0xNKlSzFy5Mjvvr9paWkICQnB48ePkZSUhLdv3yIpKQkfPnz4Kk5BQQFNmjSpuNdoZGQEW1tbODg4wNTUlBrLSUlGRgbOnj2L4OBgXLp0CYWFhdXzX/E0AAAgAElEQVRdUo3SrFkz9O7dG7169YKrqyudL9UwmZmZuHLlCq5cuYLnz58jPz8fhYWFXz3Kysqgq6sLY2NjmJiYoFmzZrC2toaNjQ3MzMxq3OLUsrIyPHjwAHfv3kVycjJSU1MrNr8qn8tRvmGWnJwcGjZsCFNT04oGVeWT5+k+kmAMw6CkpKTiGkL5/5fy721JSQlycnKQk5ODlJSUisZnxcXF4PF4KC0txadPn/Dhwwe8fPlS4k3QOBwO9PX1oaenV7Eoovx3cFZWFu7fv1/lxmf8WFpaok2bNrC1tYWhoSEMDAygr68PAwMDNGrUqOL3tjDznkj1y87ORlBQEI4dO4YbN26I7RqZiYkJvLy84OnpiXbt2kFNTU0seflhGAYvXrzA5cuXcfHiRVy5cgUlJSVVysnhcNC/f3/MmzcPjo6OYqqUCGvfvn3w8fGp0mucvr4++vfvD09PT7i7u1NzEPx3Tf3Vq1eIiIjAkSNHEB4eLlKDIkVFRezcuROjRo2SQJX1Q1xcHEaMGIF79+5VKU/Tpk0xePBg9OvXD05OTvSemohNQUEB7t27h1u3buHmzZu4desW3/l52traaNGiBWxsbNCyZcuKjzo6OlKsuvYpLi6uuNZZWlqKxo0bU/NDQmqo+Ph4/PPPPzh9+jQePnwolpzW1tZwdXWFs7Mz2rZtCysrq6+uQ/J4vIoNYwoLCyvW9sjIyHzVNEFFRQVycnIC35czDIOysjJwuVyUlZVBRUWl2s4dGIZBYWEhcnNzUVxcDE1NTairq9O1hRqutLQUT58+xe3bt3Hv3j08e/YMz549q9JGuqJq0qQJ5syZg7Fjx0JFRUXqxxdGXl4egoKCsGvXLrG9fkgCh8NBgwYNKh7lDVnK1yBKSrNmzXD8+HGRmt5GRERgzpw5iI6OlkBl4qeiogInJyc4OjrCxMQERkZGMDY2hpGRkVSuo9VmPB4PTZs2xfv37yuNMTY2RkJCgki/SyZMmIA///yz0udNTU3x5s0bofOyERUVBScnJzah1HhFQqjxCqnRKmu8AgAdO3bEmDFjMGDAgBp/QiQN2dnZiI+PR3x8PBITEyuanxQXF6O4uBhFRUX4/PkzEhMT8fr162o5ia2p5OTkYG5uDi0tLWhqalY81NXVK95Efvr0qaIhRXZ2tkTq6Nq1K86fP1+lCX9cLheOjo54/Pgx6zEaGhoYMmQIxowZAwcHB3pjKgDDMOByuRU73pbvdsvj8dCwYUM0atQIZWVlFbvMvXv3DsnJyUhJSUF6ejrS09Px6dMnfPr06bsGRRwOBxwOp+LGlaKiItTU1KCqqgoOhwOGYSomU5ZP/MjLy0N+fj7fSZZKSkpQVVWFnJwcSktLUVZW9tVHSTRKatSoEZo2bQptbW1wudzvHsXFxT/8WnVRVFSEoqIidHV1YWFhAUtLy68mqZR//4H/vp/lC3XKJyzRzan6raysDDk5OcjKykJhYSFkZWUhKysLZWVl6Onp1bhJej/CMAwuXbqEzZs3IzQ0VCw5tbS0sGfPHvzyyy9iySes/Px83LlzBw8ePEBWVlbFa6ySkhL09fWhr68PExMTtGjRgn6G66Ds7Gxs2bIFe/bsQUpKSnWXIzE6OjqYOXMmJk6cCC0treoup0YpKSnB4cOHsXbtWjx//lzkPFpaWggICMDgwYOlcp5cVFSE5cuXY/369SJNaBwyZAh27NhRq2+4Z2dnIyAgAFu3bkV6errQ4318fLBjxw56bScV/P39sWzZMqHH2dnZITo6mrrJ/0BeXh4sLCyQlpbGKl5PTw85OTms33tqa2tXnK8ZGxvDyckJrq6uaN68Of1sE1KLiWuxTUlJCdLT0/H+/XskJCR893j79m21XmOSBkdHR3h7e6N///4wMzOr7nKIiO7evYv169fj9OnTNW4Bvby8PExNTWFqaoqmTZtCQ0MDGhoaUFdXh7q6esXn5R/19PSgoaFR3WWTGi49PR1BQUE4ePAg7t+/L/T4bdu2YerUqUKPW7ZsGfz9/YUeV87S0hJ9+vSBg4MDGjVqhJycHDx8+BD3799HREQECgoKRM4N/HcvJTQ0FPb29lXKI6qEhAS4ubkhOTlZ5BwaGhqwsLCAubl5xSSwLx9aWloinwOUlJTgyZMnuHfvHqKjoxEdHY2nT59WaRGoqqoqNDU1K+4L8/tY/rmSklLF/busrKyK+33lj6ysLDAMAxkZGcjJycHIyAgdO3aEo6Mj3/u+5Q1W4uPj8eLFC8TExOD+/ft4+PChVHe5E1Xr1q0xZswYjB07VujG60VFRXj37h2Kioqgq6sLHR0dukddwxQWFuLq1asIDg5GcHCwyJv41FXq6uro1q0bevXqBQ8PD4k27CY/VlZWhnv37iEkJAQhISGIiooSaYFwOQUFBTRv3rxiI6dOnTrB1tZWqteicnNzcf/+fURFReH27dsIDw9HTk5OlfPq6+t/1YzFzMysoiHLl5PmGzRogMLCQnz48AEfPnxAUVER5OXloaCgAHl5+YrPy8rKvmtq8+WjqKgIcnJyUFRUhIKCQsVcDEVFRejo6MDQ0BCNGzeGgYGBSA2MvmymWlBQ8N3ck+Li4opNw8o/fvt5fn7+/7H33uFxlWfe/+fMaIqmSRr1Zkm25CK5Sq64AO5gCCUxgSW81IQfIYQA2U3YDcmGsAm7EMi7LwklhIBT2IDpMWUpjrFxwUWWZUku6m3UpZFmJM2MZs7vD/kcRlaxJI80KudzXc91ppx5zj2jo3Oe537u+3vLMXWS2MpEm5dJhIaGsmXLFtasWcO8efOYM2cOycnJQ/52LpeLL7/8krfeeoudO3de1FhvpEgJGB6PB5/Ph8VikQs4hYWFyfE28fHxpKWlkZSUhMvlkpOqVCpVnySO85tGo0Gn06HT6QgLCyMxMVERTbgI2tra2LNnD2+88QY7d+4cc9E1QRDk5Ovk5GRiY2Pp6urCbrdjs9koLS2lvLyczs5OIiMjiY2NJSYmRi48ZjKZMBqNGI1GXC4XjY2NNDc343a78fl8uN1uqqurqaioCFhsrCAI3HLLLfzkJz8hIyMjIH0qXBwHDx7k61//+pBJNcPFZDJx9dVXs337drZu3TouBaWCiSiK2O12qqqqKCgo4MiRIxw9epSjR49edMJcRkYGO3fuHFVSnEJfvF4vL774Ig8//DCtra0X3V90dDSZmZnMmjWrX1PijIKLKIq0tLRQWlpKaWkpjY2NfdbSpFhH/8cqlUoem5tMJpKSkkhJScFqtQbcr+L1eikvL+fQoUMcOHCAAwcOkJeXN+LCSQMRHh4uzwsMBgMqlUoeB0qP/Zv0ekhIiFyUVKfTIYoiPp8PrVaL1WolMjISlUqF0+nE6XSiVqvlQjD+RTvPL+Cp0+mGJU4QaHw+HzU1NZSUlHD48GG++OILDh48OKAPJjw8nPT0dJYsWcLatWtZt24dM2bMUPxpCgrjiMvloq6ujhMnTnD06FE++ugjDh48OObHDQkJIS0tDZfLhd1up729fdg+DLVa3UeMRcqDOj+fx78/tVpNdHS0PB+LjY0lKipKLnbs7yPyfywIgtyvx+Pps5UeS767np4e6urqqK2tpb6+vo/v5nz/nkajITIyUr5eS8eVfE5S7l9YWFifXEDpeVRUFGlpaVN+rD+e+Hw+8vPzZRHsvXv34nQ6g2aPVqvliiuu4MYbb+T666+fdILpoiiya9cu/vVf/5X8/PxgmzMhuPnmm3nuuecwmUyj7sPn8/Haa6/x+OOPk5eXF0Drxpfw8HAyMjJYuHAhixYtYvny5SxdunRS5KeNB/v372f16tVD7vPQQw/x5JNPjqr/Z5555oIxKu3t7QEXyBFFkXXr1rFv377h7K4Ir4wRivCKwoRmKOEVCZPJxA033MCNN97I5ZdfPiUTYkRRlCdpUiWrtrY2WltbqayspKSkJCAOVoXgkZWVxRdffBGQ4OQzZ85wySWXjKqCysKFC/nWt77F3LlzSUxMJCkpqU81komAKIo4nU5aWlpobW2lpaWl3+Oenh55Qu3fPB5PH8EUh8OB0+nE4/Hg8Xjwer1otdo+jlWDwYDL5eLUqVOcOnWKurq6i66CoTC1MBgMZGVlkZqaSkJCAjExMWi1WjmYRArgqauro6amhvr6erxebz8HfmhoKNHR0aSmpjJz5kxZpdxqtRITEzMl72+TCZfLxdmzZ8nPz+fEiROy0FlFRYW86DUQarWapKQkUlNTyc7OZs2aNaxevZrY2Nhx/gYD093dzZ/+9Cd+85vfUFhYGLB+L7/8cnbs2EFSUlLA+lRQGA1er5ePPvqIl156iQ8//DCozt2xRK/Xc8MNN3DHHXewcuXKaR1gWF5ezksvvcRLL7100aI7V111FS+88ALx8fEBsm74HDlyhNtvv52TJ0+O+LMzZszg1Vdf5ZJLLhkDy8aOuro6nn76aZ599tlRBXap1Woef/xxHnroISWwQKEPoijyk5/8hF/+8pcj+tz+/ftZtWrVGFk1+Xnuuee45557xvWYVquV1atXs2bNGtasWUNOTs60vucpKEw0HA4H+/fv5+jRo+Tm5nLixAnq6urkgB1RFGXxBqvVSkZGBvPmzWPu3LkkJSURHx9Pd3c35eXlVFZWUl9fT0NDQ782Hf3g0dHRrF+/nq1bt7J582YSEhKCbZJCADl9+jRPPvkkO3bsGNOK5GNNWFgYqampxMXFERUVRVRUFDNmzJDFGIxGIyEhIfh8vn6i5g6HA61WK18XlPv75Ke9vZ1Tp05RWFjIkSNH+PLLL8nNzR11UP6jjz7KI488MqrPiqLIww8/zH/+53+O6vNjydKlS3njjTeYMWNGUO2ora3luuuu48svvxyT/k0mE2lpaaSmphIbG0tkZKScCCEFy7a3t2O327Hb7bS1tdHU1ERubi55eXmTWlDNaDSSk5PDjBkzSEpKwmq1YjabsdlsHDx4kMOHD0+6sc3cuXO57rrruPnmm8nKUmK4pgs+n48vvviC1157jTfeeAObzRZskyYUgiCwePFiNmzYwIYNG1i7dq1SPGqMsNlsfPTRR3z44Yd8/PHHQ1ZWDwRWq5WVK1eSnZ1NdnY2OTk5JCcnX7T/uaenR153ltae8/PzKSsrC5Dlk4fo6Gji4+Mxm8394ic8Ho/sG3A4HLjdbrq7u2lubp6wIimBQqVSsXXrVm6//XauvPJKDAbDqPsSRZG9e/fywgsvsHPnzkk9thqMuLi4PsJ/0dHRskiH1WolNjZWbqP9LXt6emhtbcXj8fRLMBvNNaGzs5Oqqiq5aNf5QkD+rwGyEKrVaiUlJYXU1NRhJZ+IokhbWxs1NTWUl5dTVlYmb0tKSjh58uRFiVZNda655hoee+wx5s+fH2xTFM6jpaWFn/70pzz33HMXJczpj8lk4qqrrmL79u1cccUVkzYx0+fzUVZWRkFBASdPnuTs2bNy4cDq6uoxiZn59re/zVNPPXVRSXEK/WlqauLHP/4xf/jDH8bsGBEREf3EWCIjIzGbzX2aVquV71OiKMrCF0ajccrEZrS2tlJTU0NzczMtLS10dnbKCd0Gg4GoqCiio6OJiooaUGS3p6dHLtxXV1eHzWajoaFBFgeTxra1tbXYbDZqa2upra0NmOiZXq/vI55uNpvlx1KTxi0qlQqz2SwnpUtFQFtaWiguLpaL1JaWlk67WHkp1yA0NJTExERmzZpFamqqLPTin/TvLzTp9XpxOp04HI4B70s+nw+n00lHRwdNTU2y2E5ZWdlFrQuFhYWRkZFBcnIyKpUKQRBwOBy0trbS1tYmixx4vV58Pl+/Jooi4eHhxMfHy2Nqf6HOgURwpKKUOp1OFugfzbWgp6dH/u7nH8NfdEhB4WJobm7m7NmzNDc3y7l3UvN/3tHRIZ/X/v/foijS0NAg+yYCIY6rEDzi4+NJTEzsN84xm82ygIFKpSIxMZFFixaxcOHCgCfST1Y6OjooKioiLy+Pzz77jE8//XRUBRUDSUZGBmvXrmX9+vVcddVVU6JIjNfr5bXXXuO5555j375909Jfk5CQwP/9v/+Xr3/96wEdCxQVFfH666+zc+fOKSFuExMTw9VXX80111zDxo0bJ63/IhA8+OCDPP3000Puc+DAAVauXDmq/vfs2cNll102Zv0PxptvvsnXv/714e6uCK+MEYrwisKEZjjCK/5ERUVx1VVXsWnTJtavX09cXNwYWjcyXC4XbW1tCIKAwWBAo9FQW1tLeXk5NTU1tLW1yQFlUmtubpardARKhV9h4jFjxgw+//xzUlJSAtbnyZMn2bhxY0AqT2k0GhISEoiIiJCdsTNnzmTBggVkZWVhMpnkSiOSQ0063yVxoLKyMiorK2ltbZXVSPV6vayCKg30/J1lPp+Ptra2fsIq0kK2gsJ0QqVSERcXR2JiInq9XlauT0hIkKtT5eTkMHfuXMXhPEJaWlo4deoUFRUVdHd3y4sgpaWlFBcXU15ejs1mC3jwc0ZGBqtXr+aSSy4hKyuLOXPmEBkZGdBjDIXX62XHjh387Gc/C2iFK6PRyBNPPMHdd989oUS7FBSgt0Lul19+ySeffMLBgwcpKiqioqIi2GYFHK1Wy5IlS1i5ciUrV65kxYoVJCUlDVlddzLT1dXFZ599xj/+8Q92797NsWPHLjrg1mq18uSTT3LbbbcF9b7qdrv51a9+xWOPPTbi5DS1Ws3Pf/5z/uVf/mVC/+1FUeTQoUO8/PLLvPzyy6MO+I2JieFvf/vbBR2cCtObzz77jLvvvpvi4uIL7nvXXXfx+9//fhysmrz09PSwcOFCioqKgmaDTqdj+fLlrF27lquuuooVK1YoY1CFSYvH46G5uZnu7m56enr6NK/X2+exwWCQq/OEhYWNSbWWnp4eGhoa5MBQ6P2fCwkJoaGhgZqaGjnxyel0UlBQwOHDhwMW5D6diYmJYdmyZSxbtkxO7ktISFD8PdMAm83G888/z5tvvjklgj1GS0hICHPnziU9PZ20tDRZrCEtLQ2Px0NNTQ2NjY1otVpZvMFgMMgJb1KCncL40d7eztGjRzl8+LDcAulv+fWvf82DDz54UX2IosiDDz7Ib37zmwBZdfHcfvvt/O53v0Ov1wfbFKBXoPvuu+9mx44dwTZFYQIRHR1NSkoKaWlprF69mm3btpGenh5ssxSCjM/no7CwkN27d7N7924OHDhAXV1dsM2aUGg0GlatWsXq1auZMWMGiYmJGAwGOZZioKbX64mPj5901ThHQk9PD8XFxeTn51NQUEB9fb1c8VZK9oqIiJATAjUaDaIo0tnZSX19PR9//DEnTpwI9tcgMjKS7OxsFi5cyIIFC5g9ezZWq1WupusvIiiKIvX19bKwirQtLCyckuIXChdPSkoKd955J7fddhvJyckB77+5uZkdO3bwwgsvcOrUqYD3Pxkwm82yCEtcXBwxMTGYzWYMBgOCINDc3DxgGyrBTqPR9Km4bTQa5SRUrVYrJ3BJydgNDQ00NTVd9Hfxr+ItNbPZLBeGqq+vl6+1CiNj3bp1PP7444o4/ySgoKCABx54gI8//jig/RoMBjZt2sTXvvY1rrjiiqAUaunq6qK+vr5fQcKWlhZ8Ph8mkwmTyYTT6aS+vp7q6moKCwspLCyks7NzXGyMjY3lxRdf5KqrrhqX401XDh48yHe/+11yc3ODbUo/BEHAaDRiNpuxWq2yHzclJUUWcpC2ERERw17nkITDGhsbaWxsxOVyyffWka6N+Xw+urq6cDqdsjBGY2MjRUVFFBYWUlRURFFR0YjmtREREXJxRil53+FwDPvzCgpTDY1GQ3x8PAkJCYSHhyMIAj6fj+bmZurq6mhsbMTr9crCKlKh3KGQRILUarX8vx8RESGPgUNDQ3G5XPLcWhLyFARB9jWYzWZmzZrF7NmzmTFjRp9x80SOpVMYGU6nk9raWqqqquSCAAUFBRQWFspxDgoKo0Wv16PRaPo06TrmdrtRqVRER0fL/oXz5+hhYWGEhITI1yX/plar5fVt/xYREUFUVBTh4eF4PB66urpoa2ujrq6Ouro62tvbEUVRFtA6v0lFUFpaWmRBOalJglz+Alw+n4/Q0FDMZjMmk0n+jj6fTy4+PREKCGRmZnLZZZdx6aWXsm7dugmVKzwWNDQ08N577/E///M/fPrpp9NChPr73/8+P//5z7FYLGN6rMbGRvbt28fevXvJy8vj9OnTF13kNZgYDAY2b94s59IHu+DLeCKKIqmpqVRWVg66T1JSEhUVFaOOKW5pablgjt8LL7zAt7/97VH1PxBut5usrKxhxbmfQxFeGSMU4RWFCc1IhVfOx2w2k5iYSEpKCtnZ2axYsYJly5YRHx8/6kBlr9dLbW0tJSUllJaW0traKg9+pUGlv0CEtB0vZ7bC5GLbtm289NJLxMTEBLzvM2fOsGHDBqqrqwPet4KCwsQkOTmZrVu3kpSUhE6nw2w2k5aWRnp6OqmpqePmLO7p6aG6uprW1lacTiednZ39WldXF93d3Wg0mj6qwRaLBZPJhNfrlSv4aDQa9Hp9H5X4gbYqlQpRFOno6OhTbSgkJIRTp05x9OhRTp48ic1mkysIBCKgJVBER0ezcuVKLrnkElatWsWyZcsuqnrVQPT09PDGG2/w6KOPUlhYGNC+t27dyrPPPktqampA+1VQGEscDgclJSW0tLTIi/alpaWUlJRgs9nQ6XRERkbKAQButxuv10tkZCQJCQlERUXhcrn6Vet2u939HO4ajQafz0dnZycdHR1UV1dTVlZGWVnZuCSoms1mYmJiyMzMZNGiRSxatIjFixczc+bMSZek3tTUxN69e3n99dd57733AhbAYLFYePDBB/nBD34woRTQ8/Pzue222zh27NiIP7tgwQKef/75CRUYKIoiR44c4bXXXuO1114b0uk5HDZt2sQf//hHEhMTA2ShwlSmq6uLX/7yl/z2t78ddFHwsssu44MPPpgwCZATmf/93/9ly5YtwTZDRlHzV5jIeDweKioqKC4ulqvFFRcXU1JSQn19PW1tbaPuOzQ0VA7akAI5BtoajUZZwMXpdA4odiy9Zrfbp/zC/UTAbDaTk5PD8uXLZbGVGTNmKCIrClRUVPD+++9z4MABCgoKKCoqCljly+lAZGQkycnJfSqeSz7SWbNmKdXJRonL5aKyspKzZ8+Sn59Pfn4+x44d49SpU2NyzxAEgeeee47vfOc7AelPFEUeffRRHn300aBWCIuLi+OJJ57g5ptvnnDXe1EU+d3vfse//Mu/KOva0witVsuCBQvIzs5myZIlpKenk5KSQnJysjKnUhg2tbW1HD58mOLiYlpbW7Hb7TQ1NVFVVUVFRUXA4xUiIyMJCwvD6XRit9vp7u4OaP/BQhAEEhISSEpKwmg0otPpMJlMxMTEyAVtYmNj+zwejwrzbrebjo4Oef3D4XCgUqkwGAwYDAY5uUkqQAW9gl7Hjh1j//795OXlkZ+fT1FR0bRI/tfr9VgsFlwuFx0dHdOyMqnCyPna177G9773PTZs2DAua3aiKLJv3z6ef/55du7cqQgBKSicY8mSJfzyl79ky5YtE26+pjA4oiiya9cuHnzwQc6ePTsmx5g9ezaXXnopS5YsYfbs2aSmpmIwGPrErKnVarxeLw6HQy5MKDXpudPpBL5KJpe2/kmNZ86cITc3lzNnzkxoH/0tt9zCU089RVRUVLBNmRZ4vV7++te/8vTTT09IAZbhIAmUSed1WFgY0dHRWK1WfD6fHHvV2NhIU1PTBYsThYaGEhUVxZw5c8jKyiIqKorW1laam5uprq6mqqqK2tpaRRBFQUFhQEJDQ2VBJ6lFRUURHR0t+2GkJr1msViUMeI44na7sdls1NbW9mk1NTV9ng8lkqmgoDB5CQ8PZ/v27WzZsoV169YRHR0dbJOCRlVVFX/+85955513OHbs2JQqYp+VlcV1113H7bffzsyZM4Nmh8Ph4MyZM5w5c4bTp09js9lQqVSyOHxTUxONjY1ybpzT6aSpqWlCxvBkZGSwceNGNm7cyOWXX05ERESwTRoz8vLyWLx48ZD73H///RddnCcxMZHa2tpB37/vvvv47//+74s6hj+/+c1veOCBB0byEUV4ZYyYVsIrgiDsBH4mimJBsG2ZDAiCsBn4hSiKK4Jow0UJrwyG1WolKyuLjIwMWV3Q4/HQ3t4+ZLPb7YoTTiEgZGZm8tRTT415glJ5eTlXXnllUCtQKygoTAwEQSAyMpK4uDgSEhKYN2+efC+Mjo4mMjJSXgC22+00NDTQ0NBAS0uLLIDicrlwu93y44Ge19bWUlZWdsHFr7FAEjWYKhW2Q0JCWLx4MStWrCArK0tuF1LNHIj29nZ27NjBU089RVlZWcBs1Ov13HTTTdxzzz0sW7YsYP0qKEwnOjo6OHDgAP/4xz946623xr3CnMlkYsGCBWRlZZGZmUlUVBTd3d243W5MJhPx8fFER0fT0tIiVxaXxLP8tz6fj7i4OFJTU0lJSWH+/PkkJSWNesGxo6ODiooKysvL5VZWVkZeXh4lJSUB/Q2MRiP3338/Dz30EFarNaB9Bwq3282///u/8/jjj484wEoQBG644QZ++MMfsnTp0jGycGi6urrYu3cvH330EW+//TalpaUX3Wd8fDxPP/00N9xwg7KwrTBiXC4Xu3fvpqioiLNnz2Kz2TCZTFx55ZVs376dkJCQYJs4afj1r3/ND3/4w2Cb0Q+DwcCqVauYNWsWycnJ9PT0yHMWaX7jP88B0Ol06HQ6LBYLCQkJ8j3QYrFgsVjQ6/Wo1WrUarV8//N4PFitVpKTkzGZTEH+1n3x+XyUlpbKYpP+QbyCIKDT6YiJicFqtcpVVycrUkCmXq+/4D1BFEWqqqooLS2loqJCHm9UVFRQW1uLSqUiPj6exMRELBaLPMeUKr5I8xCsz3QAACAASURBVN7q6mpaWlowGo3ExcURGxuLVqtFEIQ+ra2tjbNnz1JeXj5l5qoKoyMtLY0lS5aQmZnJvHnzWLJkCXPmzJl0IogKwcHr9VJTU4PNZsNms1FaWkpeXh7Hjx+noKBAub6MEKPRKAfMStUO58yZw+zZs5k9e3ZA7umiKOLxePq15uZmysrKKC8vp62tTa6I1tLSQm1tLXV1dXR3dxMSEiKPO6RmtVrJzMxk/vz5LFiwgHnz5qHT6QLwi/QinWdS0FBDQwN5eXnk5uZSUFAwZDBJoImJieGll15i27ZtAe/72LFj/Md//AdvvfXWuCYw6fV6fvjDH/KjH/1owo0bz6eiooJ7772XXbt2BdsUhQATGhrK4sWLyc7OlltmZuawq0QrKIwWh8PByZMnyc/Pp6KiQk6acDqdcnV0k8kkb00mE0ajURbzkFpERATp6el9AkVFUcRut1NTU9OvVVdXU1NTQ3FxMR0dHUH8BcYOg8GAyWRCpVIREhJCTEyMvAYstbS0NHne4fF4qKmpkefDFRUVVFZWUl9fLwtxOhwOeQ24s7NzRGIparUavV6P2+2eUgHggUSPwGy0zEBDEiFYUROOmlAENAgIQBcinfjoPLe10UMZHspwU48y9p8qGAwG/umf/omHHnqIuXPnBs2O5uZm/vSnP/H888+P+xqlgsJEIT09nccee4zt27crvrpJjNvt5ne/+x1PPPHEuPowJCThlalOWloazz33HJs3bx77g3V1w5lyqLRBdT20tEFbB3S5wOMBEQjVgUEPhtDebXw0pCVBWiLETb3kTFEU2bt3L7/+9a959913g22OgoKCwrRCq9X2EceV1nuXLFlCRkbGpPOxiqKIw+Ggra0Nu90ubzs6Oujp6cHr9eL1euXHkjDv+eK8/q9JRQ19Ph9arVYWt/HfiqLYJ+fg/NbR0UFtbS2NjY0j/k6Kz0VhImJBNcxzsve8lM7JOsY/DyfYWCwWtm7dyje/+U22bdsW0HXwqYIkeH7w4EEOHDjAwYMHBxW+n6jXxJUrV3Lddddx3XXXkZGRMSbHGA9EUaS1tZXq6mra2tpwOp20trZy+PBh9u3bR25ubtB9BIIgkJOTIwuxrF69ekoVo3zsscd45JFHhtzn888/Z+3atRd1nK1bt/LRRx8N+v5ll13G7t27L+oYEs3NzWRkZAxaVHQQFOGVMWK6Ca/4AB/wOr2CIoVBNmlCIgjCGuAXwDoAURSDFnk/VsIrCgrBQKPRsH79em6++WZuuummcUvkcjqd/PjHP+aZZ54Zl+MpKCgoKIwtsbGxZGZmygGTmZmZxMbGYrFYUKlUNDY2yq22tpYDBw7w97//PWBVSrVaLRs2bOCaa65h+/btE1akQEFhslJQUMCbb77J7t27OXDgwKSu1hkbG8vSpUtZtWoVl156KcuWLevnDPf5fJSVlXH8+PE+LdBVUAdCr9dz77338qMf/Wj8FdF9PjhbAadK/QKF7NDWfi5QqAdE8Vyg0LkgIYOesm4nv3nndQ411lCGh4YROrcXLFjAwoULyczMZMWKFaxcuRKj0Riwr+X1eqmvr6e2tpbKykoOHz7M/v37+fLLLwN2LqtUKu677z4effRRLBZLQPpUUFC4OP7617/yne98R67UBxN38W4ssVgsWK1WTCYTFouFiIgIrFZrnxYeHi4LvEiV3aTqbucHlLjdbvR6PVarlcjISHlrMBhkcZGenh4qKiooKSmhqqqKuro6amtrOXnyJLm5ucNKLFOpVH0qN0nVs2NiYggLC0Or1cpNsltqKpUKu91OS0sLHR0dsrDLYC0kJEROmPNPovN/PFBAks/n48yZMxw5coQzZ87IwgN1dXXU1dVRX19PT08PBoOB1NRU0tLS5JaQkEB3dzetra18+eWX7NmzB5vNFvC/v4KCPwaDgeXLl7Ny5Uq5xcbGBtsshSmKw+Hg8OHDHDhwgNOnT8vV3srLyydkhZ3JQExMDBEREYSHh6PRaOTA0oHaQOIqHo9nXIJo1Gq1LBYj3b91Ol0/sbXu7m658l97e3s/kTBBELDZbBQXF0+ISvfXX389zz333JjP00+fPs0TTzzBjh07xjQx3Gq1cuedd3LfffeRnJw8ZscJNKIo8vbbb/PII49QUDA+NW2m4xxirElLS2Pbtm0sX76c7Oxs5syZowiNKkxLRFGkurqagoICuRUWFlJVVUVDQ0NQikmMJ3q9ntDQUDweD52dnfh8vmCbNCjhqNiEkQ0YmYGGGNToUdFAD/X0cIRuduHgFMMXgxkJZlQ8R1yf10TgW4w+eXsGIVyBibUYWEEoqWi4GBlxFyIncLGXTvbSyT46aWXi/k0V+pKamsq2bdu48sorueyyyzAYDME2SUYURfbt28fvf/97du3aRUtLS7BNUpiAZGVlsWrVKubMmUNUVBQOh4Pq6mr27t3L4cOHJ5XoVkhICFdddRW33XYb27ZtU8bJU4ienh4+/PBDXnzxRf7+978HPdFpqjB79mzuu+8+7rzzTkJDQ8fmIBU18MFe2HsUDp2A8tremInRotPCwtmwNqe3rckGa3jg7A0yx48f57HHHuONN94ItinjyjL0Q84X/hcnHWM0PjYg8G9E9Xv93xi5OIDC9CUGNev7nMMCDXjlc/goYxcnqEPg/xDW7/Xf0zZmx5wuqFQqUlJSSElJITQ0FJ1Oh16vl7f+hXAkQX6puVwuPB6PXAgGemNPwsPD5ZhwQI4ROX+rUqlQq9WyoL+07ezs7COocv7WbrdPaB/RcJhsPheLxYJOp8Nut49I6Fhh8qBF4HIM8jmZhY4YRpeO60KkAg95dLOXLvbSST7BX8cNJGq1mpycHNauXcsVV1zB2rVrJ76IVX0TfHaoN+a7oRm63RBjhdhIWDq/t40V3S7Y8U5/k665FJvNhqPgDNpPDxJ6pIjoMhtRDjcCo59PBeqaGBcXx4YNG1i/fj1btmwhMTFx1DZNJjo6Ojh06BD79u1j7969HDx4MGC5XKNFr9ezZs0aNmzYwMaNG1myZMmkLta3YsUKvvzyy0Hfj46OxmazXfR3/Od//meefPLJQd+PjIyksbExIAVk77jjDv74xz+O9GOK8MoYMR2FV6QvLAI7gcdEUTwZPKsmDoIgXAL8HFgvvQSIivCKQqCRkjRMJhPh4eGEh4cTFhbWZys5C7RaLSEhIfT09NDU1ERTU5OcTC49bmpqwuFwBPtryVitVubPn094eDgGg4GYmBhWrlzJFVdcQXh48Bz3n376KXfeeScVFRVBs0FBQUFBYXIye/ZsNm7cyIYNG9i0aRNmsznYJikoTAtcLhcHDhzg1Vdf5fXXXx+pgu2EQ6/Xk5aWJicaSZU1x3ssb7FYuPfee/nBD35ATEzM+BzU54N9x+D9z3sDhY4Vgnt0wYcivQGwouijEa/s2P6cTvJGuLiiVqtZvHgxs2bNIikpifDw8H4LtNBbEd5isWA2m9FoNKjVakRRpK2tjdbWVk6fPs3Ro0c5ceLEmIoFrVixgmeffZYlS5aM2TEUFBRGx9lP9vDXW+4hvc4+KQIaJjOSrwx6xwpTLWjYX5xFpVLh9Xrp6OgI+uKjwvQkNDQUk8mE0WiUt2FhYURERMgtPDyciIgIYmJiiI+PJy4ujsTExEm9OK0wNfD5fNTU1HDq1Cny8vI4evQox44d48yZM8E2TUFhQNLT0/nFL37BN7/5zYAEpQyXmpoann76aZ5//vmA+Sd0Oh1r1qzh5ptv5sYbbxy7hKRxQBRF9u/fzwsvvMBrr70W0Dn/ZAuKnqhERESQnJxMXFwcVquViIgIMjIy2LRpE1lZWeP6/6SgMBnx+Xy0trZSX1/fr505c4aPP/6Y9vb2YJs55VmIjp8QxbWYUfm9Ll3Bzo9sPI2bn9LIG1xYcHYkxKDGRoZ8POHcsUM4NaJ+jAjcSjh3EMZivqogGcgrsn/w42c4eRk7b9KB6yKC6RUCj8ViYeXKlWzZsoUrr7ySOXPmTIp7syiKlJeXc+zYMQ4dOsSePXs4evTolPNDKlwYtVrN2rVrueaaa7j66quZNWvWoPs6nU4+/vhj3nnnHf7+97/T1NQ0jpYOD0EQWLduHd/4xje44YYbxm+dWCFo2Gw2XnnlFV588UVKSkqCbc6kQ6PRsGXLFr773e+yZcsWOfE7oDic8Mo78NKbcNxvzBXI3Bbp3isIsH4F3HYtXL8J9LqhPzdJKCkp4ZVXXuGVV16hsrIy2OaMCdGo+WciuZ0wIi6QvNyDyCd08jMaAy5gcf58QWKk8wWF6YcG+DYR3EU4Cxn62tOAlzdp51c0U0NghWKVc1hhKjAZfC6hoaFs3LiRnJwcZs2aRXp6Ounp6URGRso+gba2NoqKijh58iQfffQRH374YZ9iVwqTiysxcQdhbMFEqN/ZGIjz0v+ss+PjddrZgZ39TL4CLEajkeXLl7N27VrWrl3LypUrMZlMwTbrwrjd8Pud8OJOOHGBWIsYa+9c4+FvQ1Lc0PuOlPomiL/0q/kN9M6b/t+/DTqf6nvVEs+bZg3vmjaSa6IgCCQkJLBs2TJZbGXevHmTwh861ng8HnJzc/niiy/kVldXF1SbIiIiuPzyy7nkkktYsWIFOTk5kyauoa6ujvj4+CH3ue2220YjYtKPHTt2cOuttw65T21t7QXtuRC7d+9m/fr1F96xP4rwyhgxXYVX/NdmReAd4JeiKB4Nlm3BRBCES4GfApdJL/HV76QIr0xxzGazfJOcOXMmM2bMkG+Uvcl8gzforabY0NBAQ0MDHo8Hs9mM2WwmPDycuLg4YmNjsVqtsthKSEjImAyaurq6ZGEWaeEuNjaW2NhYBEGgqamJyspKjh49yuHDhzly5Ag1NTUXdUydTsfChQtZsGABc+fOZc6cOSxatIgZM2ZM2IFhV1cXf/zjH3nxxRfJzc0NtjkKExSNRsPMmTOJjIwkJCQEjUbTb6vRaOjs7KS6upqqqirq6+sDaoNarSY2NlZOYElNTSUrK4s5c+bg8/mw2+10dXXJtjQ1NVFUVMSZM2dwOBwYDAZCQ0Npbm6muLhYSdBSUBgFGo2Gm266ifvvv5/s7Oxgm6OgMO1xuVy8+uqr/OpXv1IS5UZJVFQUDzzwAN/97nfHTxCxvAZ++1f407vQ6CecEwBfjCzA4ufALsHNy9j5E3aqA7wAH0zmzJnDv/7rv/Ktb31rbAK6FBQURsd5wZDSdan3GhcYn7OSRKKgoHCxCIKAXq9HpVLR2dkp+7VNJhOJiYl9WlJSEunp6WRkZDBjxgyl0q3ClKS9vZ3jx49z/Phx6urq5ETjI0eOUFVVFWzzFKYZZrOZ7du3c+utt7JmzZqgzvccDgcffPAB7777Lrt27Rqx+O2iRYvYtm0bGzduZNWqVej1+gt/aJLR0dHBrl27eP311/nggw/o6hp5UOfYBEX7BbEKIJ57LgLHI7T8rsvGX7oaJvUcwmQysWjRIrKzs1m4cCGpqakkJyeTlJSE0WgMtnkKClMaj8fDvn372LVrF3//+985ffp0sE2aUphR8TviuAkLMLL7gQgcpZsbqaGMr0TO1Wo1q1atYsWKFRiNRkJDQ+Xm8/morKykrKyM06dPU1RU1EdUzD8JzT+wcLhJaBrgR0TxAFbCUPX7Phd/JxJ64+rP7+jcgTrVAq+avfzEUUGDZ+wE0hV6BVWSkpKwWq2o1WoEQcBisRAXF0dcXBwpKSmsWLGCefPmTZk1jY6ODo4cOUJubi65ubkUFBRQW1tLQ0MD0yn+eLqwbt067rjjDq6++mqsVuuIP+/1ejlw4IAswnLqVPCSeSMiItiwYQObN2/m6quvJi4uwIlPCpMCURQ5ePAg7733Hu+++y4FBQXBNmnCYjabWbVqFdu3b+f6668f1TVgWLjd8J9/gKdfAbujf/xEoOKvB+vXbIS7b4Af3wURYYE5VpDx+Xx8/vnnvPnmm7z99ttTwterAn5ONA9gRY8w7PmC9Fd/kw7uxhYwYd6LnS9MNdLT01m9ejWrV68mJycHna5XUKSzs5O2tjbq6+spLCykoKCAkydPUlZWNi3HjXcSzs+JIo6QEZ3DLkR+Sys/oRF3gPyayjmsMJkZe59LL4P124GP52nlcZppG+C+YjAYuO6667jxxhvZsGHDiBPXu7u72bt3LwcOHODgwYMcOnSIlpaW0X0JhXHjW1j4CVGkowUGP38uhsH6LMHN07Twe9qYSDK5UtH6xYsXk5mZyezZs4mMjCQ8PByz2Txh8ywH5cWd8LNnoK5p+DHfggA6Ldx7Ezx2f+/jQOAvvOLzuw6pVKOaT/X/NgN8P7Hv69IarEevoXDtAkq+cTnGpHjCw8NJTEwkPj4ejUYznG8z7ZGEr7/44gv2799PQUEBVVVVVFVV0dMTnNj/kJAQFi5cyIoVK1i1ahWbN28mNjY2KLZciD/84Q/cddddQ+7zxhtvcP3111/0sXJzcy+YS/fhhx+yZcuWUR+ju7ubhQsXcvbs2dF8XBFeGSOmq/CK/NK5rfTax8B/iaL42bgaFiQEQbga+DGwUnrp3Na/eEePKIoBusuPnMGEV0JDQ0cVzDVdkBZ4DQYDOp0OvV6PTqdDp9MRGRnJrFmzmDVrFnPmzCEzM3PaBpDbbDYOHz5McXExra2tcrX2trY22tra6OjoQKPRyL+hf+B9ZmYm8+bNm9SDwtzcXF566SX+8pe/jDiAVGH4hIaGysGPCQkJREdHEx0dTVRUFFFRUURGRuLz+XA4HHI1RZVKhSiKOJ3OPlWdBUGQG/QGDZlMJlnwSGpqtZqOjg4cDgcdHR1yE0URtVpNSEgIISEhqNVq1Go1RqNR/mx8fPyoEktcLhc1NTXyYL+qqorq6mq6u7tl4SWtVjvoY+l5VFQUM2fOJDk5OWDXJlEUaWhooKOjg+7ubrq6uuSt/2O73U5JSQnFxcVUVVXhcDhwOp10dXXJv7vP56OzsxOfb+pXSVSYvkRFRXHPPfdwzz33XLTypoKCQuDxer289dZbPPPMM+zZsyfY5kwKUlNTeeCBB7jrrrswGAzjc9CmVvjRr3sFV7y+MQsU6vVr+/oEJ0hyB2/QwSM0chZ3QI4VDHJycnj44Ye59tprUauDpgmroKBwPsMIhpTqJvi/9dWlb6Br4LlPiH7P+y3e9XKhgAYFBYXphcViIS0tTW6pqal9HhuNRtmXJooinZ2dCIIwfuNCBYVJRE1NDbm5uZSWllJaWkp5eTltbW3Y7Xba29tpb2/Hbrfj8Xgu3JmCwiAIgsCmTZu49dZbufbaayfk9VhKspeSBM+viq3X61m4cCE5OTnk5OSwefNmkpOTg2RtcOju7qagoIDi4mKKi4spKSmhqqqKyspKKisr+ySxQyCDoqV1snOPz397kLmJz6incutKjm9dRmOPi9bW1n5rw/7b1tZWvN6hQ1VVKhVRUVHyup9Wq8Xn88nX0NEQGRnJokWLWLp0KdnZ2aSnp5OSktKnEqaCgkJwKS4uZteuXezatYs9e/bgdk9e32uwWUkofyGBFDT9gtWGg/SZVrzcF+3BdO0mtm7dyoYNGwgLG17yrNfrpby8nIKCAgoLCyk7eJhn3ynsEzQ33CS0SwjlJeJJR9vn/jTQdxru9+299n8VHyKI4sBrC+c54ESLkbYf3kr+2vmUlpZSVlbWZ2uz2S74fUJCQrBYLHg8HtxuNy6Xq98+er2+j7CN1HQ6HV6vl+7ubrq7u3G5XHR3d2O328e0erMgCHIMitFoxGKxyM1sNvd5bjKZ+sTUSU2n0xEaGoper0etVtPT04PH40GlUhEWFobFYiEiIgKLxTJm32Oy0dPTQ2NjI3V1ddhsNhobGxEEQY73sdlsVFdXU19fL8fotLS0UFZWJhdWkwgJCcHn8ynxOEFApVKxbNkyNm3axC233MLs2bMD2n9raytHjx7lyJEjnDlzRo4vs9vtff5fZ8yYIRcKa2pqoq6uDrvdLsdv+W9DQkLk8bjRaJRFkMLDw0lJSSElJYWMjAwWLlyorDEq9KO4uJidO3fy+uuvc+zYsWCbEzRMJhPZ2dksXbqUnJwcli5dSnp6+tiLhn1xDO74CRRX9hvH9EN6f6Rz4mGOm7CY4D/uh+/eNLL+JziiKJKXl8eRI0coKSnp0+x2e7DNGxYz0fBXElmKfsTzBf/9y/FwDdUU0H88O1L8RSuk4wRStMJisaDX6/sVyPV/LI1P3W73uI6ZjEYjy5cvZ9WqVbLQZXR09Ij66OzspKioiOLiYmpqaqipqaGxsRGv1yuPAf0fD/S8u7tbjovv6elBpVIhCAJOp5Pm5uY+SaqS+OZAc5nxIBwVfyCeazBfcI7ojyBIPk8BBHDOS+OTe68hr6FWTswd7bxqrM9hBYWxYix8LgN9bqj+pD7b8fFvNPKixsGCBQvIycnhsssu42tf+xomk2mERx0cURSpqakhPz+fgoICWltbMZlMhIWFERYWRnh4OGFhYZhMJrRaLRqNBq/XS2dnp9ycTmef552dnahUqkHzeLTa3rTRxsZGGhoaqK+vl7dtbW243W65uVyufltRFPv0pdFo+m2luZk0d5OEGiIjI2XfjbTVarU0NzfT1NQkH9//eC6XC6fTKa9lSzmA0uMLrfFcDLPQ8AfiWYNh2OfkUPsMtP9g+51/vFI83E8dHzB2PrehiImJYePGjWzatIl169aRlpY2NdazWu1w5yPwzmcXnrOcj/8cZtl8eOv/QfzIxk0DIgmv+B/D3yZlPjUl8Hq91NXVUVlZSUVFBadOnSIvL4/Dhw9TU1Mz7vYsX76cbdu2sWXLFpYuXTphfGzXXnst77zzzqDvS/eQQNybu7u7MZlMQ95XfvCDH/D000+P+hiPPPIIjz322Gg/rgivjBHTTXjln4GfAQaGFmA5DjwJvCaK4kQSf7toBEHQArcADwJzpZfPbc//TXKBu0RRzB0/C/symPBKZmYmf/vb3/if//kfXn/99WlV8V2tVpORkUF8fK8qXEREBKmpqbKYyqxZs5Tgq8lGVzecKYdKG1TXQ0sbtHVAlws8nt7/zFAdGPRgCO3dxkdDWhKkJULcxQ3Cu7u7efvtt+WFpNra2kkZIKTX67FarVitVvR6/YCT65CQEEwmk9yMRiNGoxG9Xk9ISAgqlQq3201nZyddXV3ytqenh/j4eObNm8ecOXOIiYmR+zCbzZhMJkRRlCf3APHx8SQnJxMREaH8P04xRFHE7XZTUVFBfn4+J0+epLKyktraWmpqanA4HPT09MiOfUnURnIQJSQkYDAY5KASqdntdioqKigrK1PEkCY4FouFBQsWMGfOHFJTU0lJSSEmJoaIiAhMJhM+nw+Px0NjYyMVFRWcOXOG/fv3c+TIkQmdmBIfH89Pf/pTbr311hGrbSsoKASHU6dO8cILL/DWW29RXl4ebHMmFFqtluuuu4677rqL9evXj29Fwdc+gO/+Alrbh3Zcj9ap7f95KYkYUQ6q8J/ge4Hf0MK/0UBwNLBHx+WXX87DDz/Mxo0blbG0gsJEY5yDIUX5JfFcf6L8uhTQ8CzK/ElBYSIhCAJZWVlkZ2ezaNEiIiMj0Wq1eL1e2tvbaWlpoaSkhKKiIoqKimhvb+/Xh0ajISkpidjYWGJiYgZtiYmJiu9NQWGcEUURl8sli7E0NTVRWVlJeXk5NTU1so+8urqakpKSYQU1C4IwLStdThdiYmJYsGABK1asYPny5VxyySUjDsoPNlJin0ajQaPRYDKZlHvPEIiiSFNTExUVFVRUVOD67CAb/voZUW1dfgGh4hABqMJXwf/CV0nnX70/4EEDGgAoFUeQhFj8/fqhoaHyesBg/qby8nL27NnDqVOn5GIFUoGAjo4OBEEgLS2NlStXsmLFChYsWMCsWbMIDw8f0i4FBYWJhcPh4PPPP+fTTz/l008/JS8vL9gmTRquxMTrJKI7J6J1frDahRILxHPP5IS0EDXCzt/A19ZfnGH1TYjnqoZKvigRMOpKhxzX3kk4zxCLZoTfx38vAelWdt49bzR+NelzW1bDX/4LIvoK0XR1dclJiV6vV25SfENsbCxWq7XPfU4URXp6enC5XKjVanQ63ajWXdrb2+W4ipqaGmpra2lubu4XOyGJpkZHRxMTE4PVapULjpnNZpKTk0lOTiY6OlpOFJquRccmMx0dHbS3t2MwGDCZTHLxM1EU5UTb889RKdG4q6sLm81GRUWFLP5XWVkpx+w4nU7a29snXfybSqXqIwSk1+vxer10dHRgt9svOsFaq9WSmprapy1YsIC1a9cOW7RqSlDfBJ8d6o3VbGiGbjfEWCE2EpbO721jRbcLdgyQGPKdG8bumApDUlJSIouwHD16NNjmBBSdTifHu0r3zqSkJLnFxcWNbxwF9FaM/95j4OnpP5cfbG5/PoP5Ecdg3DTVEEVRXqMZqNXV1U0IAbQc9HxIMhGohz2+HiwRBsCBj01U8iXdDBeVStXvtxipaIUUN6xSqVCpVISHh5OQkEBCQgLx8fFyS0lJYebMmURERAzbPn//W2VlJW1tbbJ4+kCto6NDFjHp6enBbrf383npdDoSExPJyMiQi9RK25kzZ0748bYoijgcDrn4gnR9k0Qh/XMC/Lfn5xm4XC4aGxtlceWmpqY+70nikpLIgD8GgwGtVssMr5p3nFaSfQOdw1Jy9Lln0jxQFM+9dN51ESAhBv7xMqSn4PF4KCgo4PTp05w9e5bS0lKcTqdsi1arJSIigoiICPl3kJrJ2c23f/ZnRD8vrAjcfedqKisrZUF+fwEbBYVgc/E+l4HWFYSh3uzlXK0o/wJTvSsXAggCvk2rUL/65JQfO4wEURQnzNqZVJCnubmZ8vJy+fom3RP9m8PhkK+hLS0tVFZWDtn3Zoy8SqJcZOD8c3C452Ug8B//vEAb91PHWGepxMTEsHTpUjZujXmEywAAIABJREFU3MjGjRuZP3/+hPm7B4yyathwB1TUDjxngf5zj4FeH+A+flHUN0Hcuv6vS3M6ZT41pRFFkePHj/Puu+/yzjvvkJs7/qn+ERERrF+/ns2bN7Np0ybS0tLG3QbozYGOjIyks7Nz0H22bNnChx9+GLBjZmZmUlRUNOj7UVFR1NTUyCJmI+Hw4cNccsklFxyDm0wmHA7HQG8pwitjxLQSXgEQBCENeBbYzMBjHAkRqAV+B7woimLj+Fg4NgiCkALcDdwFRNL/u8q7Al30CtQ8JYpiUD1oQwmvFBQUAL03jxMnTvD+++/zySefsG/fvkm3aAa9NyB/9UmpxcbGkpiYKDuz5s2bh06nC7a5ChdDRQ18sBf2HoVDJ6C8dvDB63DQaWHhbFib09vWZIN19IF5Pp+PpqYmOdChpqZGDgZsb2+nrKyM/Pz8YVXBgd6AyKSkJNLS0khMTCQ8PFy+4Tc0NNDU1ITX6+2n0A294gZWq5WIiIgBt9LjiIgIRSRAYUrhdDppaWmhpaWF+vp6udpLc3OzvADS2tpKWVkZp0+fpq2tLdgmTwkMBgNqtRq1Wk10dDTp6elyRcn4+HgSEhKYOXMmycnJo3ISdXV1ceTIEb744gv27dvHsWPHhn0tHUvCw8P50Y9+xPe///0JWWFWQUFheNTW1nLo0CEOHjzIwYMHOXz4MF1dXcE2a1xZtGgRGzdu5LLLLmPdunXBqTj4yH/DL18Y3JE+1P1juHOCQfoQkSrd9BdgycfF16iiagLLr8THx7N9+3ZuueUWli5dGmxzFBQUBmKCBEOK5/oRRRERkY9wcjM1tBH8QEAFhemCyWQiISEBq9UqJ8fMmjWLtWvXcumll2K1Wofdl8PhwGaz0dDQgFqtJjk5mbi4uAlTJUNBQWH0eL1eampqaGpqkoWqgX6i5nq9HpvNRl5eHvn5+ZSVlcmtvLy835qfWq0e0yplCqNnzpw5LFu2jOXLl7NkyRIyMzNHdE9QmIIMMYcQz3s+pKjKQCgBgAoKChOMhoYGdu/ezWeffUZhYaEcazEZ45fGkgXo2E8qBlT9Ehb9w9f6V4MVvhLkEumbkCaKEKrvDWBftmD0xklVQ/37FQQ83bmcOnWKY8eOkZubS35+PidOnKCpqYk7CecF4s6zvj/+dzw5sU6tgphIBJOhtxiT/lzzeqHHCy43dDih3Qkt9t7X+3U8yP1Qus9mpcP//v6iCzopKExGRFGkvb2duro66uvr5eb/vKWlRa783dPTQ0REBJGRkYO20NDQISt8d3d343A4ZLFSSeDI5/NhNpuJiIiQk65nzJhBcnIyFotFFlkZKqHZ5/Nhs9koKyujoqKC1tZW7HZ7n9bR0UFoaChxcXHExsb22UqVxMddZGGi4HbD73f2zlFOXKDIY4wVrt8ED38bkuICa8f59xoJ78nAHkdhVFRWVvLee+/x3nvvsXv37gk3jjMajVitVkJCQnA6nXR0dKDVaomNjZXjzDMzM5k/fz5ZWVnMmjVrYvnZX9wJ3/lZ7+ORxk2o1b3/m8q4aUwRRZGurq5+ychutxu9Xk9oaCg+nw+Hw9HnfbvdLotzl5eXY7PZaG5uHpUNyYRwlDQi6T13+88ZvmIgsZWBXheAFryspJySc+nIkihuZmYm8+bNk1tSUhJWq5XQ0FBZsKO9vZ3GxkbaThez7sZHzolWfJWR//tnv094eLjcIiMjiY+Px2g0juo3GC9EUcTj8cjxsgojQ/r9XC5XX7GXljZYegOU1/TueN78cpid9/0c9Bbr3f8XiI0avdGDzHn9xyFer1cW/Du/SYKIHo9HLjba1tZGQ0MDtbW12Gy2PqKlRqNRHo8aDAZ5XKzVatHr9Wi1WgRBGPBYUuvu7paPI7XW1lbcbrcswgnIIp7QKz6jUqmoqqri7Nmz0y5+cioxcp/LV6+IKgGXxYhgMaGxmFAbDQjK2EFhGLS2tnLixAnZr+vxeOSWfKKUr73yKepz4mz+Y4K+56g46JqXB+gWwCWIdCOiEiFEFNEiYEbFYHfkwf8HvhIlOmyE+1PV+EL1REZGYrVa5a0U2+MvyKVSqWSRGmlcJ11/oXdN32KxYLFYSE1NJTMzk8jIyJH8nJOPiXwff+pleOi/+r9+vp9HmU9NCyorK3n33Xd5//33+fzzz3E6neNuQ3p6Ops3b2bLli2sX78ek8k0Lsd9//332bZt25D7PPPMM9x7770BO+b3vvc9fvvb3w65z9tvv80111wzon7b29vJzs6mpKRkyP1CQ0NJSkri7NmzA72tCK+MEdNOeEVCEIQbgV8D8VxYgMUDvA28BHwsTpIfTRAEA3At8H+AjfR+r8EEVzj33sfA/yeKYtm4GHkBhiO8cj6dnZ3k5+fLVQyKi4s5fPgwx48fHxNHeGxsLEajEa1WS2hoaD9xiPMfC4JAV1cXLpdLHoAmJycrYipTHYcTXnkHXnoTjvupWwfyciINZAUB1q+A267tXQTUj8251draKoumSEHT0oKxSqWSF4vDwsLkqiQKCgqBx+v1cuTIEd5//30OHDhAXV0dLpdLrvAzkdTHBUHAaDQSGhoqN7fbLSsIj/WCtSAIzJ49m8WLF5OYmEhMTAwJCQnMnTuXOXPmBCVBv729nTNnzpCbm8v+/fvZv38/Z85cIMgjQCQkJPDAAw/wne98JzjiBAoKCmNKT08Pp06doq6ujubmZhoaGigoKCAvL48TJ04MqfQ7WVCr1WRnZ3Pdddexfft20tPTg2vQvz8Djz7b+3gkgUJaDcRH9yqbX9Cx7YCGFqhv7q2I5s+5Y4pwbvFDqvvZSw09bKKS00ycALGYmBi+8Y1v8M1vfpM1a9ZM32BPBYXJwAQNhuxN1oSGKAs3R3fxaYFSXVph4hMSEkJaWpos9jlz5kxiY2OJjo7GYrGg0WhQq9WEhIT0aWq1GpVKhcPhoK2tTQ4yG+62q6sLjUaDRqNBp9P1EzY+X+xYCgyNj49Hp9PJSSRms1mZQyooKIwbUmJZbW0tGo2GhIQEoqKiEEWR1tZWOcDW4/HQ3t5OdXU1lZWVVFVVUVlZSUVFBWVlZYNVflEYJSEhIcydO5cFCxawcOFCli1bRk5ODuHhoy8KoDAFmaBzCCUAUEFBYTyRkv794ynObx6Ph+bmZioqKigvL6etrU1e621paaGhoUEWCPBPYJoszJw5k+XLl7Nw4ULmZ2ay+eEX0J4q/6rIxUCB6BEWWDgHos9VfK9pgGOFvdf/8/f1f56aCLlvQJh5dMYOIwlNQhRFHO//A9O13wevzy+7U+xTPRwERE0ILM1ClZMF2ZkwP6N3PSAuqn9g/GCIIjS29Ab9n63ojTv6Mh8O5vUKnPn/Fv6fAVgwGw6+2itOo6CgoDAdeXEn/OwZqGsaWSEMnRbuvQkeu7/3cSDwv9f438sU4ZUJR3d3N4cOHWLPnj0cOHCA06dPU15ezmjTB0JCQjCbzXJyo8/n61Oo0Gg0YrFYCAsLIz09nSVLlsjxbZLvfjSVkycMew7Dxjt75+9DjQO1Glg2H5bMU8ZNkxy32019fT02m426ujoaGxvx+XyoVCq8Xi/Nzc00NjZit9vldSu9Xs/3Xv+SpPJ6v3ODfueJKAg4Iky0hfTmY4Q5XcR4QR6Bn8s+7tVsFOTnnRnJVPztcQzh4cTGxo682OcI5gsK05iv3w9vfTL03BV6r2nWc6LQzW2D7+c/Zrh8OXzy0sgFqSWm4Tns8/loaGiQ18wlgUR/8cL29nZaWlpobGykoaGBxsbGSeuDmUqsw8AnzEDN+SJcQp/rvC9EjWNeGiyeR+jqbLTZWcrYQWFsOHEaVv0TdHUPPZ4FSIyFJfMQl8yD+ekIibGQGNN7bg6RV+d2u2mpsWE/W4qrsgZTUzsmWzPGs1WEnixGVV3fu+NA9wHJlkuXwSd/GP75r9CXiXof33MYNt7Ru0Z6PiqVMp+a5rjdbg4dOsQnn3zCJ598wqFDh8a9kJFOp+OKK67ghhtu4KqrrsJsHuUazTC4/fbbefnll4fcp7y8nJSUlIAd89ChQ6xcuXLIfa699lreeuutEfV7yy238Oc///mC+z3xxBP88Y9/pLCwcKC3FeGVMWLaCq8ACIJgBv4DuAf6jMn77HZuK73XALwF/C/wqSiKHWNt50gQBCEduPJcWwdIiguDCftK7zUBD4mi+KcxN3IEjEZ4ZTBcLheFhYUUFhZSUFDA2bNn5SoGLS0t6PV6WY3vQi0sLIyUlBTS0tJG7nhTmF643fCff4CnXwG7o//i3WidX+czWL9mI9x9A/z4LqVqm4LCNKSnp4fKykpKS0ux2WzU19dTXV3NqVOnKCgooLq6esjPq9VqoqOjMZlM6HQ6WSFcejzQc4PBQGpqKunp6aSkpGCxWDAYDBgMBnS6/5+9+46Pqtj7OP45CSmE3kKv0gy9KeUiIopixQIiWOGKXsWGYsPexfvYsWK9drErKr0oIoqIEHrvoYRAqGnn+WM4ydZkk2x2N8n37Wtf2T3Jzszi2Zk5c2Z+E5c3ic6HjIyM3Ii5FSpUyI1q7kSGP3r0aIE/AapXr06NGjVyA7scO3aMSpUqhS24SmHt2bOHBQsWMH/+fJYsWUJycjKbNm0KWvp9+vTh2muvZdiwYQr8JlJOZWdns27dutwgLM510oYNG8jJycndUS0tLc1r4lDt2rWpVq0aFStWzN3RpmLFihw7dix3cVuwg37FxsbStGlTmjVrRrNmzWjTpg0nn3wyXbt2JSEhIah5Fdnkn2Ho2PwX9YAZxO5/kvvAdu0aRctz1173ge1p882EQQDLTCix7Zzc/4cWsJlMurGRVMK3O3yHDh0YOHAgZ599Nv369dPOOSKlQSmaDLn5s6eZOm8uK1euZP369axfv54DBw7kXq/Ex8f7fA7kLmravXs327dvZ+fOnREVyFJKRt26dXP7GU2bNsW2bbZt25YbyDQqKip3pzfneY0aNWjUqBF169blwIEDpKSksHfv3txJ0q6P6OhoGjdunBtkpVWrVjRp0iTf3WtFRCS4bNtm165drF27lu3bt+dOnl2/fj2rV69m1apVpKWlhbRMsbGxNGrUiISEhNyNHerVq0eDBg2oVq2a2+6R2dnZHD58mJUrV7J06VJSU1NDVs5q1arRoUMHunTpQqdOnWjRogXNmjWjUaNGCrgv+StF1xCaACgipYVt26Snp5OSkpIbjGX37t1kZGSQnZ1Neno6K1asIDk5mZUrVwa04UXdunVp0qQJTZo0oU6dOtSqVYtq1arl3qONj4+nSpUqVK5c2e2nbdscOXKEw4cP5z4OHTqUO7aSlZVF/fr16dGjB/Xr18/L8K0v4NoH/I+jX3Q6jBsJPTp4/83BQ/D5z/DwK7B5h/eCdaedGXImfPJ/RftHLswitEOHocNg0/74amfiYuHiM+CC02BQX6hcQrvdHzwE386C1z+DeYu8y+78HHEuvP9UyZRBRCRS7dsPo+6Hb2a6z60MZL6maxvToz189ZLZSKO4yuGC57Lk6NGjbNy4kQMHDvicsxYTE5MbuLxKlSpuj4LmzJVp6jdJoL6YCkNu8z+W1L093HE1nNHbez782k3wv2/huffh4GH/1ws3DIOX7ita+VSHS0FmLjBjov7O4YZ14aYRcGYfE2zU+V1GBsz5Ez74Dj78Pu/c9XUOPzwG7ru+aOXTORww27Y5ePAgu3btyg3G4jzfsWMHy5Yt4++//w75vaVQcTaFcX5GR0cTExPjNT7kOWZUsWLF3HkVR44cyQ1y4/ozOjrabc2B5yM+Pp6G1Wvw7xd/oPKe/bnna24PQn0HCYesLOg+BP5Z7fs8AOjdBS7oDxcMgNbNSqYcqzaY/tJbX8KGrf7PybFXwTPjSqYMZVmktuOu11O+YgDEx6lOFDcHDhxgzpw5TJ8+nRkzZhR6/X1xxcfHc8455zB06FDOOeccKlUK3jm5YMECevfunW9Q3I4dO7JkSXA3b7Rtm6SkJFauXOn3bypUqMD27dupUyew8cP33nuPq6++usC/69y5M3/88QedOnVS4JUQK9eBVxyWZXUEJgJ98B2YBFz66i5/kw0sxARh+Q34x7btlJIqp1eBLKsC0B7oAnQHzgBOcP0Tl+f+Aq7YwLvAONu2QzdTL0DBDLwiEnK//gUj74O1mwu+eecZ4TBQrp15X+k5aVatDI/fAjdcVrj0RaRMO3LkCHv27GHPnj2kpqYSGxtL5cqVqVy5MrVq1aJ69epEKeJtRDh48GDuZMnk5OTcQHIFBWSpUqUKderUoVGjRvzrX//iiiuuoG3btiEqtYiUdllZWaSkpLBv3z6qVKlC/fr1C9xFKTMzk2XLlvHnn3+yYMEC5syZw7p16wLKLyEhgY4dO9K5c2c6d+5M+/btad68OfXq1Yvs9mhvGpx4LuzZ5z6ADOZ53Vow6mIzsN2jQ8mW5be/4dVP4OMpkJNzvAj28at/G9uGXyvBKYdWlGw5jouPj6dDhw707t2bXr160bdvXxo0aBCSvEUkSMrxZEhnEdGBAwe8dqeOi4ujYsWKREVFsX37drZu3cquXbtyA0mmpaWxb98+UlNTcx979+7l4MGDAQdzqVChQqECv0RFRVG/fn3q169PvXr1aNOmDd27d6dz584kJCTk7p6Yk5NDTk6O22ItZ8GW6/Pdu3dz9OhRMjIycgNa5pe3c/3opO/rEciir4JUrVqVdu3a0aBBA+rVq5f7eatWrcrWrVvZsGEDGzZsYP369WzcuJHDhw8TFxdH5cqVqVGjBu3ataNfv37069ePpKQk4uO1yFZEpLyzbZvdu3ezevVq1q5dy969e3N3OszJyaFChQp+H85k00AfcXFxNGrUqMjXubZts2PHDpYuXcrSpUtZu3Ztbhu+d+/e3DbXdedky7JITEykQYMGJCYmEh0d7fU3cXFxtGjRgtatW9OiRQtq165N9erVFbRZiqYcX0OIiESKrKws1q1bx/Lly9mxYwdRUVHExMQQGxtLvXr1aNq0KY0bNw79RlMdLoDkte7tg21DtSrw0QQYdErBaRzLMMFbPvjO/2LKyc/DhacXvnyFWYT237fhzv/zfU9g5EXwxK2QWKvwZSiOn+bBdQ/Blp3u5XJ+znkP/tUttGUSEQmXDVthwEjYtN17fqW/eZq+jrturjH7XWhZzN1yteBZyiP1myRQvYebQLqe9XBMBXjxXrju0oLTSNkDl42D2Qt9n3NRUTDrHejbvfDlUx0uBTlrNEz91bteAbhrlFlsXcC8O5auhmG3w4r1vs/h2Bj483MTwLqwdA4HlW3bbNmyhdWrV7NmzRrWrVtHenq6z01Fc1zm8DnjM86mp7GxscTExBAdHY1lWWRnZ7N//37S0tI4ePCgW36+nrsG8c/KyiI7O5vMzEzi4uKoXr061apV8/vT17EqVaqEf56m+g4Sad783Pz/93UNOaAn/HccdArh2oycHHjjM7jrWRNwzrNM0dGw+IuitRXlWaS246514vH2xE3KPNWJkq/t27czc+ZMpk+fzvTp09m2bVvI8o6Pj2fgwIEMHjyY8847j9q1axc5rYyMDLp27VpgPIHx48fz2GOPFTkff55++mnuvvvufP/m+eef55ZbbikwrRkzZnD22WcXOJc2Ojqa3377jR49etCuXTsFXgkxBV5xYVnWcOBJoDH+A7BA/gFNdgP/HH+sBba7PHbatu2jlcu3THFAo+Nlcn62wARbaQe4ttqe0RcK+gzLgf/Ytj2vMGUKJQVekVJr0mQY85jZSc3XzbvC7JzgqSjBWZz3ndkHPpzgHe1bRERKpYMHD5KSkpIbETwrK4tatWpRp04dateurUWEIhIRtm7dysKFC9m0aRNbtmxh+/btWJZF/fr1adiwIU2aNKFjx460bNmS6OjocBe38O5/ER5/3ffkj/v/A3eOLHjAPdiS18AVd5tdnn0MbB949zFmV4vir7/+YvPmzWzdupXt27eTmZl5vPjuN2gPHTrE/v37OXr0qFs2UVFR1KhRg5o1a3LCCSfQrVs3unXrRqtWrWjQoAE1atQovzt3iZQVmtAQdE4AkmPHjuU+LMty28UnNjYWy7I4duxYbtAW52daWlruIuro6GgSExNp2bIlTZs2JSYmpsTKbds2WVlZuYFYMjIyyMzMzN3JKJDJN7Ztc/ToUQ4dOuS2I7brT9fntm3n7qCUmJhIly5dOOGEEwo10Sc7O7t09i9ERERESitdQ4iIiC/L10L7C7zH0ePjYO77Zvf6wrjnWXj6Ld/tTb3asPIHs0FRYQS6CC0nBxqfBjv3uH+W6Gh461G48oLC5RtMe9PgnOth4VL3zwHQtxvMeT98ZRMRCZXUNOg+1ASDBN+7VRfEs20BaN4I5n8IdYu+SEQLnqXcUb9JArVxG7QY6H29EB0NX78E5/QLPK3sbLj6Xvjwe9/XC62awj9fm+DAhaE6XPKTsgcanOp+zDlHXn0ARg8NPK30Q3DhTTDzd9+Lv7u3h98/Kfx6Ep3DUhqo7yCRqPUgWLcl77VTfz50o5kfHC5rN5lgIRtcgig4ZTv7FPjulfCVrbSJ1Hbcs070DLwSFRW+dlx1Yqlk2zarVq1ixowZ/PrrryxYsIANGzaEJO+oqCj69u3L4MGDOfPMM2nbtm3A6wts2+aKK67gww8/LPBvFy1aRNeuXYtbXC/btm2jSZMmuQH1fOnQoQOLFy/Od67qn3/+Sf/+/d0C7Pnz6KOPct999wEo8EoYKPCKB8uy4oE7gTuAyrgHL7E8XjvHPPn7R80B9gFHjz+OuDy3gIoejwSgir+iBpivZ5kt4CDwKPCcbduBb5saBgq8IqXSpMkw+kHzPL9OgK/6NzoaEmtC5QSoGGcmmcTHmYHgrGyze0/6IThwCFL3m+Oe/OXpdNjbtYSpb0K9OoX/bCIiIiIikiczE+r2hf0uA2C2DRXj4buJcFrP8JXtWAYMvQ2+m+09sN2pDSz+stBJOjtjZGdnY9s2CQkJCqwiUpZpQoOIiIiIiBSGriFERMSf59+HsU97L/B64R4YM6JoaV55N3zwne+gWjeNgOfvKVx6gS5Cm/snnHqV9989djPcM7ponyWYDhyEk4fB6o15x5wyrp4CJzQJW9FEpAREFzJwVaSwLMhaWjJpX3wLfDXdu9/v+ToqCmoe37xub5r/v3NdINX/JJj+duEXOju04Dn4WgwMdwmKxrJg3c/hLkXJU79JAvXqJ3Djo97nyn3XwcM3FT697Gw4+3qYNt/39UJRFkqrDpf8vPMljLrf+/wYPQRefbDw6R0+AqdcCYtXuKfn/HxpPNxwWeHS1DlcOOpjhIf6DhJp/lwGJ13qfU4WZeyxJGzdCT0vgx2784459+U2z4D6WjMYkEhtxz3rRCfgg/M63O246sQyYdeuXSxcuJDff/+d+fPn88svv5CRkVHi+dapU4fevXvTsmVLmjdvTsuWLenYsSP16tXLXZewZ88eZs2axUsvvcS8efMKTLN///7MnDmz+IU77Rqfh/9e8jepqan5vrVx48a0atnK5+8OpB9gyZIluZvk5qd69ep06dwl99/i999/59DhQ15/F491qDcJC4+/tLGXDygwcQmIAq/4YVlWIvAQMAqIwTt4CR7H8PH7QDnpFPV9/vL2LHMm8BbwiG3bOwuZV1go8IqUOnP+gNNHmUFbX7slOHVubAz0aA9dToSuSdC+FTRINDvvBLprr23D7lQT6XvNJrOb/cKlsGAJZB6PqeR5k8/Jv0NrWPCxWRAqIiIiIiJF89M8M1nDs+//5sMw8uLwlg0gIwP6XQW//+Ndxr8mQ6e24S2fiEQ2TWgQEREREX806Vh80TWEiIj4M2IcfDzFvY1oUh/W/gQVKhQtzSNHocdQWLHe/bhtQ4Vo+PtLSGoZeHqBLkK7+1mY8Jb737VoBKummEUNkeCPpWbRhcP5LE/eBneOCl+5ikL9TpH8RZXSDU1LanHQzAVm7qa/eZsN65oFcmf2gY5t8n6XkQFz/jQBvT78Pm+OpWfwFcuCh8fAfdcXrXxa8Bx8Ue3cg+OUFuXl/7v6TRKoa+6F975xP1dq14CN0yChYtHSTE2DLhfD1hT347YNCfGw4ntoXD/w9FSHS36ufwje+Nz9/KicYM7hmtWLlubGbdDtEkhLdz9u21CjKqz5sXBp6xwuHPUxwkN9B4k0D70Mj7zqfk7Wq23GfCJlLd7Pv8Cg67zr9+fvhpsuD2/ZSotIbcc968RIC7wCqhPLoPT0dKZPn86UKVOYOnUqmzdvDmn+tWvXJi4ujv3793Pw4MGC33BcbGwsS5YsoW3bIKyLcPqBHnJsG9vOKfDtlhVFlMv7bcAO8L25RYiKdgsSkZ2Tg79QFtFYOZjYETb28gjpMJV+RbxzWfbZtr0LuMGyrAnAg8AIzL+Xje8gLLlvxd9Z7M3y+OmaRqAKeq8FpGMCrjxr2/bWQqQtIoVx6DBcM9496ArkDbrExcLFZ8AFp8GgvlC5UvHysyxIrGUeJ3WEEeeZ4wcPwbez4PXPYN4i7wso24Zla+C6h+D9p4pXBhERERGR8uznX/OeOzda27eKjKArALGx8N6T0P58yPYYsPtmpgKviEj+psz1Pta8YeTcFKtaGd5/0v3mneOLaZFTThEREZGyaOO20jvpWEqOriFERMSfNS6Tc525K0POLHrQFTCLG95/CnpdBlnZ7r/LyoZbn4Kpk4qevj9LVuY9dz7LlRdEzgIggB4dzLykKXPd+z8Ll4avTEWlfqdIwUrb+VaS3+cJb7vn41p/3DXKBE2JjfV+X2wsnNHbPO64BobdbgJ7ub7fef7YazB4gLknLJGjNH0PSlubVhzqN0mgVm7Ie+6cK5eeVfSgK2AWsr79GAy81vt3R47BHc/Ap88WPX0RV8lr85475/DQs4q+WBugWUOYeD8MH+ceBA7MIu5iYhDSAAAgAElEQVT7XoRXHiheuaVg6mOElvoOEmkWr8h77pyTV5wfOUFXAM78F/Tt5r52EOC3JQq8EqhIbcc960QwaUTSWKnqxDKnSpUqXHjhhVx44YXYts2aNWuYOnUq06ZNY+bMmYUKhlIUe/bsKdL77rvvvuAEXXHl8T0LuFdo55BjW27LucEO+P2WFYVV1LwlaKLCXYBIZ9v2Rtu2rwFaAROBQ5hz1TlfbZcHLr/z9fBK3s/DVX7pFVSGZOAmoKFt22MVdEWkhL36ie8b/rYNIy+CTdPhgwkw5KziB13JT+VKMPxcmPM+THkNGtV1v5Ho/Pzwe/hlUcmVQ0RERESkrFu62v21ZcHl54anLP60bgYXD/QeaP+jFO9uISKhUZomNHjWcbp5JyIiIhIazuSu0vCQkqdrCBER8WfrTu/2uP9JxU+3axKMG5lXr7tOYJ+xAL6fXfw8PK3a6P1Z+nYLfj7FNeTMvOfOPCHPexqlSbj7kup3Smlh25H9KEkpe2Da/LzvoetcydcehCfH+g664qlDa1jwCZx2snfwFoCMTBh5X+QschKJZOo3SaC2+LheOK1n8dMd0AuuvcT7esG2YfJUmL+4+HmIgO9z+PRexU932Nlw4enu17rOOTxpMixfm//7RUob9R0k0ixfVzJjmsE2/Bz317btfs9O8hep7bivOjESqU4ssyzLonXr1owZM4ZvvvmG1NRU5s6dy/jx4+nevXu4i5erXbt23HXXXcFP2GPc3zr+019ACPeHTY5tHua/QN4DWFG5+bg+8n2PlAgFXgmQbdubbNu+CWgIXAtMB3LAbwAUX+etVYSHV1H85OP8/W7gFaCnbdsdbdueaNt2yYaSEhHIyYHn3vfuDEdFwbtPwKRHIbFW6Mt1Vl/46ws4qYN7Zx3M6/EvhL5MIiIiIiJlxZpN3gPbvbuEpyz5GTwg77lzrbJ8XfjKIyKlgyY0iIiIiIhIYegaQkRE/DngY+pakwbBSfu+66FFI/Pcc87Onf+F7Ozg5OPYd8D7WNMgfZZg6prkfWxvWujLISIlq3cXiI7KC2wSSACgshqYaMpc783yLAtGD4HRQwuXVpVK8O3EvLrUNYgLwKJks0mfhF/Dur4D+4QrAJC4U79JArU/3fuY08cvrqdvh8Sa5rnnHPqxTwcnD5HU/d7HWjcLTtovjTd9E0/ZOXD7hODkId7UxwgP9R0k0viq31s2CX05CtKjQ95zp7+ze194ylIaRWo77qtOjESqE8uNmJgY+vbty2OPPcYff/zBli1beO655+jVKwiBiorIsiwmTZpEbCDBlgMVU8FvP9DCCigARFFYTnAXiQgVwl2A0sa27XTgLeAty7JqA5cAlwK9gRjXP6XkggZ5foPWAT8B3wAzbdvOKaF8RcSfX/6CHbvzLlKcG22PjDE7uYVTreowdRKcPAxWbzTHnJuBv/wF6zbDCRF48SciIiKlU3T7cJegaCwLsrSzrRRSmo/JHw0SQ1+OgnRo5X1sn4+bBRIeLQaGuwRFY1mw7udwl0JKkiY0iIiIiIg/DevCthTz3HPBgj+aJFL26RpCRET8OZrhfaxmteCkHR8HL9wL593gvTB+1UazMH7MiODkBXDosPexuCBO6g0WX/++vgLgRDr1O0Xy98sH5rs9Za6p7+Ytygty4u97UlYXhf7+j/exShXh8VuKll5CRZj8PHS7xNwT9gzudf+LMGwQ1Kxe9DJL8W2ZCclr4LvZ8OZk2LC1/H4HIpH6TRIoX9cLtWsEJ+1qVWDCHXD1ve7XC7YNfyyDj76H4ecGJy8pv44c8z5WJ0jncINEeOhGszjb8xyeOh9+mmc26pXgUh8jPNR3kEiTfsj7WELF0JejIHV9bBKvczJwkdqO+6oTI5HqxHKrUaNG3Hrrrdx6661s3ryZyZMn8+mnn7Jw4cKQleGFF16gZ8+ewU103wKYtRC+nw0ffg8HD+f2Ay3bBisKz/ANxb8jYUK6WH76kwWF2S529uJFgVeKwbbtPcBrwGuWZcUDJ2ECsPQGegE+ei55by8geX8nfA6QDCw4/pht2/b6wpRbRErAlLnex5o3hDtHhb4svlStDO8/CT0v8/7dF9Mip5wiIiJS+ukGkpQnh496H4uJwKGWalW8jx0sJYPy5cHGbfnfmI9Umrxe9mlCg4iIiIj4o0nH4ouuIURExJ/4WO8J7Ed9TGgvqnP6wVn/gp9+8V4Y//ArcMX5vsfJi6JSgne7kbrfBAiJJIePeB+Ljwt9OYpL/U6RglWtDMPONo8FS2DkeFi5wf174rq4Z/AAuPny8Ja5JCSvzXvufNahZxUvMEqzhjDxfhg+zju4V1o63PcivPJA8cotxdeulXnc9W/49Ee49UnYler/OzCgJ4xQkIWQUL9JAhUb4319kJkVvPSvvMAEKFu41Pt64Z7n4OKBkTmGJaVHhWjI8Ng7OyeIe2nffDm8+bkJLuoZkHLcf2FgH4iKCl5+YqiPEXrqO0ikqRjvPc92f3rkbc7oa5y1QnToy1FaRWo77qtOjESqEwVo0qQJY8eOZezYsWzdupVvv/2Wr776itmzZ5OVFcRru+OqV6/Oiy++yBVXXBH0tEmoaO45ndPPBPGc+BE8+pqpa12Cr+TYOViYIBF/cJQfKdr3tW3btgwZMoQK0f7r7VcmTmT37j1exysTtXsctSYWKWPJVwSuBiqdbNs+Csw9/gDAsqyGQHOPR1OgGpDg8YgHjgFHjj/2ADuA7cAWYOXxxyrbtn20SCISVktW5j13Bk+uvADyafRCrkcHGNTXBIlx7awvXBq+MomIiEjZVNoW42sCphRV1UpmUp2r3anQqF54yuOPr8j7FeNDXw7JX2mqO1Vvlg+a0CAiIiIi+dGkY/GkawgREfGnSiXvwCs7dkOLxsHL4/l7oMMFkJXtfjx1PzzwErxwb3DyqVnNu71bshI6tA5O+sGyaqP3sepBCj4Taup3igSuZydY/CWcNRrm/OE7SFHDROjXIzzlK0lbdnrfazu9V/HTHXY2fP4zfDXde7H+pMkwZjgktSx+PlJ8lmX+fw3oCQNGmmA8vr4DbZvDVYPDU8byRv0mCVTlBO8Fwyl7TACsYHnxXt+bl25NgacnwQM3BC8vKX8qJ5hrT1d70qBpkM7h6GhzzXvWaPdrH9uG5evglY9hzIjg5CXe1McIHfUdJNLUrOYdeGXZGjjxhPCUx5/1W72PBSsIdXkQqe24rzoxEqlOFA+NGjXihhtu4IYbbmDfvn1MmTKFr7/+mpkzZ5Kamlrs9EeOHMlTTz1FnTp1glDaAlSpBHdfawJZn3mtuX48HnzFsqLANkGaFnKER/AOjJIfy7J44IEHGHr//UQXsP781c9eYbmPwCvA7nF2ysOFylgCosArJci27W3ANuCXcJdFREqYZ+RBgL7dwlKUfA050wRegbyO+tLV4S2TiIiIlG2Rvji/NAU6kMhTs5p34JVFy6FLUnjK48+yNd7HfO3uLCLiShMaRERERCQQmnQsDl1DiIiIPw0SIWWv+z2ZxSugT9fg5dG6mdk99P/e9V4Y/+onMPIi6NS2+Pm0bAIbtrp/li+mweXnFz/tYPp+dt5zZzJ/62bhKk1wqN8pEpi4WPjieWg1yNzHLC/3wz0XSUHw6r2XxsP037wX3GXnwO0T4Mc3gpOPBEedmvDdRGh3vgn8Vl6+A5FI/SYJVL3aZpMj13Nl6Ro4uVPw8ujRAa4eDO985X29MOEts9lqMAO9SPmSWNO7L7J8HXRrF7w8BvaB8/vDt7O8z+EHX4ZLB5k2UEqO+hglT30HiTRNG8Cm7e7n5LezYMhZ4SuTL1N/zXvunJMnBDHgdVkXqe24rzrR+f8bSVQnSj5q1KjBiBEjGDFiBDk5OSQnJzN37lyWLFnChg0b2LhxIxs2bCA7O9tvGpZl0aZNG/r378/o0aPp3LlzCD/BcW1bwLcTocdQMx5oWZhvooVdhLVSNWrU4MMPP2TQoEHBLqkESVS4CyAiUibsO+B9rGmD0JejIF19LADdmxb6coiIiEjZ1bsLREeZwTNnAK2gQT7nb8LxECmOE0/wntD7yZTwlCU/X8/Ie+58L9s2D195xF3Dunl1pivnmK+HSCi0bOJ9vn0xLTxlyY9u3omIiIhEBmfSccU481rjLuWPriFERMQfX/Xsd7ODn88DN0DdWt7Hs7Jh1P2Qz+TdgPVyWfzpTI7/bjb8s6r4aQfLthT44Dvv/liXE8NTnmBTv1OkYDWrw3VDy9c9pSPHvI/VqRGctBskwkM35v17uu5OPXU+/DQvOPlI8DRtCFdfWL6+A5FI/SYJVOum3secTUaD6cnboGpl7+OHj8K1DwQ/Pyk/WjX1bnNcF8EHy7N3mSB7ntLS4eYngp+feFMfo2Sp7yCRxtc5+fnPsHFb+MrkaX86vP2l9znZOQgBqMuLSG3HPc8/RyS1QaoTpRCioqLo0KEDN954I2+88QbTpk1jzZo1HDx4kL/++ot33nmHxx9/nAkTJvD666/z8ccfM3/+fNLT01mxYgWvvPJKeIKuODq1NUGSjn8HLcDCIioqiubNAluTER8fz6hRo1i6dKmCrkQ4BV4REQmGQ4e9j/nqEIebr13tPXeeExERESmOXz6APfPho2egb7e8Ab78Jj3mF1wgFA+RovJ1Y2XWQpi9MHxl8rRyPXz2k/d3sHv78JRHvG2ZCUu/hiduNTsoqd6USKEJDSIiIiJSWJp0XL7pGkJERPzp7rI7qNNGzFgAK9YFN58qlcxiSs+F8QCLV8D4F4qfx8A+3sdycmD4uMiYf5OZCVfcbRaPejr31JAXp8So3ylSsBHnhrsEoVUh2vtYTk7w0r/58ryNLTwXPI37b3DzkuC4enC4SyDqN0mgOrksDHauF36YA1t2BDefxFpw//W+rxdm/g7Pvx/c/KT86NA677lzDn81Pfib47ZoDGOv8h0M7rOf4OMfgpuf+KY+RslR30EizWk9vY9lZMKVd0NWVujL48voB31vJD+ob+jLUlpFajvuq0503hcJY6KqEyVI4uPj6dKlC1dffTX33nsv48aNY/To0QwbNoxevXpRqVKlcBcxz7VDvA5ZWJx33rnMnTuXQYMGERvrvp68evXqDBw4kHfeeYeUlBQmTZpEw4YNQ1ViKaIK4S6AiEiZUCnB+2I+db/ZuTySHD7ifSw+LvTlEBERkbKtamUYdrZ5LFgCI8fDyg15A4SQ99yyYPAAM1FJpLQ5+xT3idrOeX3F3fD7J2b3s3A6cBCG3W528/RcUHR+//CUSXxr18o87vo3fPoj3Pok7Er1X28O6Fn+JsxK6A3sA4+86n7MmdAw/yPfu4GFkuvNO886TjfvRERERMLn6sHwysfhLoWEg64hRETEnzN6ex/LyTELA2a/B9E+FssX1dUXwmufwh/L3MdUbRueeRu6JcGQs4qefu8u0K4lLD8eNMZJe8V6GDASvnk5fPcG0g/BiDtNcHjPtq5xPTile3jKVVLU7xTJX7tW5ru/NSXcJQmNyglmvqarPWkmUFMwREfD8/fAWaO925fl60x9NGZEcPKS4OjeHhJrwu594S5J+aV+kwTqjF7wwEvux7Ky4abH4euXg5vXLVfApC9g9ca8//fOuXnX/0HXJP3/l8Ib0BMef9392JFjcPez8OYjwc1r/HXw/rewfZf3OXz9w9CpDSS1DG6e4k59jJKjvoNEmtN7mY30Nm03r51z8tfFMPgm+OS/UDlMAQFycuDGR+Hzn73PyVrVTdklMJHajnvWiZ7CGXxFdaKUV326QLUqPgPC9e3bl759+5KTk8ORI0eIiooiKiqK2NhYrPw2YpWIpMArIiLBULOad6O5ZKV75MNIsGqj97HqVUJeDBERESlHenaCxV+aCUhz/nAPIuBomAj9eoSnfCLF0aktnNTBTOB2WJbZPbnvFfDlC+4784TS1p1w8S3wz+q8gW3nu9e2OfToEJ5ySf4sywStGtDT3DBOXuu73mzbHK7SDipSwjShQURERESKQpOOyy9dQ4iIiD8d20Cb5mZxI+S1EfP/NjvEvvckVAjiNMbXH4LuQ80CBM8J7FfcDXGxcP5pRU//jmvgmvHeC+8XJUOHC+CRm2D0EIiJCcrHCcg3M2DsBNi4zf24U747R3m3gaWd+p0iBevV2eyaXNa+/74k1vQOvLJ8HXRrF7w8BvYxm1t8O8u7fXnwZbh0ENSpGbz8pPh6d4GvZ5SP70CkUr9JAtGjg3uwMOc8+W423PlfmHBH8PKqUAFefQBOu8b9vLQsyMyC82+En9+AkzsFL08p+/p0MYvcnb6Ic269/SV0bgs3Dg9eXgkV4fm7Ycht3udw+iEzR3PWu3BCk+DlKd7Uxyg56jtIJLEss6no2Ke9z8kf50Hni+CFe+GcfqEt198r4D+PwMKl7sed8t12ZWi/I6VdJLfjrnWiJ9uGiR+pThQJpehoU2dMmev3PI+KiqJSpTAF5ZKgiQp3AUREyoSWTbwXwn0xLTxlyc/3s/OeO53a1s3CVRoREREpL+Ji4YvnoUZV81oDalKWjL8u71rA+WlZsGErnDwMxj0Du1NDV56sLHjhf9DpQvgz2fv3lgX3XR+68kjR1KkJ302EinHmtepNCZc7rnGv4zwnNEz8yOwaH0rfzDA3rn+Y435cN+9EREREIkfvLuHdZUvCR9cQIiLiz38u9d1GfPIj/Otys2AgWDq1hXuu9T12n5EJQ8fCq58UPf2rBpsNBVw/h9OW7DsANz8BTQbAfS+YTZtKyu5UeOMz6HYJXHSLuS/hWhbneee2cN3QkitHOKnfKZK/LieGuwSh06qpd30w9dfg5/PsXWb+g6e0dFP/S2QpT9+BSKV+kwQiKgquHeL7euH/3jWbDm3fFbz8Tj3JLFB1zQfM8wMH4czRMGVO/mmIuIqJgZEX+T6Hb37CLNg/cjR4+V08EAYP8H0Ob02BflcF9xpbvKmPUXLUd5BIc9MI6Hh8Q3bP4Cvrt5qgbV0vhkmTITWt5MqRk2OucS+62QScXrjU/Zx0yte8IdxyRcmVoyyK5HbctU70RXWiSOipH1guWLZuPEkEsywrGUjyPJ6UlERyso8FZCLh8tDL8Mir7p3GqCj4a7LZuScSbEuBNmfDkWPmtdOxHXsVPDMuvGUTERGR8uHe5+CpSd4DbTdeBi+OD2/ZRIrjklvhy2neN/uc57ExcNHpMPQsOL0XVEoIfhkWJcMXU+Gdr2BXqvtgvGtZ+p8E098Ofv5SMsY8Bq98rHpTwqv/1TDnD++bx2CeJ9aEURfDkDPNopaSsDsVvpoOr38Gf6/0X8d1bgsLPzWR5UVEREQkfB591ez27dqH1HVM+aFrCBER8SUjA5LOgw3Hd8L01Uac2sO0D//qBm2aFW+nzuxs6HsFLFjinY+T9wWnwX/HQYvGkLIH6vfzbiuyl/lOf/N26DUcdu5x/3vnuZMXQL3acEp36HoitG9lNndqXB/i4wL/PPv2m3+7ZWvgn1Uw509YvMLk5Zmfw7ahSiX47SNIahl4XqWJ+p0i+fthDpx3Q/n4jtz/Ijz+untdnBAPm2aYnauDafzz8OSb3tc8lgUfPA2XneP7fYVta6T4vpkBF95cPr4DkUz9JgnEgYNmjvuu4xsbedavFeNg2NlwyUATfK9q5eLld/gIdBsCqze65+c8j4qCmy+HB2+AalVUh0vBUvZAm3Mg/ZB57XkO168D119qzuG2LYqf39406DjYf90aFwtPj4UxI8z5rHM4uNTHKFnqO0ikWbISTrkSDh42r/2dk9FR0L099OsOXZPMOXlCY4j1EbyzIKlpsGzt8XPyD5i+wPSXPPN02LaZpzzjbejTtWifszyL5HZ8606zCajzt66c96hOFAmdyT+b4P4h7Ae2a9eO5cuX+/rVctu225VYxuWYAq9IRFPgFSk15i82O/B4XjwlnQDzPyr+AG9xZWaaCNyzF3oPmM18x0RAFBERESlpyWugw2AFEJCyJzXNXA+s2mhe53ezr0K0uani3Fhp2QSa1Ie6taB61fzzycmBlL2wc7fLwPZqmLcI9uzznZ/Dts3g/8JPoWHdYn9kCZE/l8FJl6relPDShAYRERERKSxNOi7fdA0hIiL+zPgNzrrOjHWD7+ArDssy4+ZVKsHA3kXrR2zfBT2G+m+TLMuM2V8yEPqfDKMfLNwitKWrTcCxfQd8/951XqZnWwTms9WqDlUSIKGiKUt0NGRmwbEMyMiEtAPmvkBmlv+0faXvTNCf8pr5bGWV+p0i+fO8Pw9l9zsyeyGcdo13PT7yInjzkeDmdfiIWZC1fZf78YKuM7TgOfSWrIQuF5eP70CkU79JAvHpj3DZHb4DJzrPnZ/1akPTBubc6NsVxl9f+PxWroeel3kvsHV9Xr2KWWR7SncYdJ3qcMnfSx/ALU8WfA7XrAZtmkPT+uYc7tYOrh1S+PzmLzb9H6fe83UOt2wCd1wDvTv7nrepc7ho1Mcoeeo7SKSZ9Tucfb05d8D3vS/wPl8sC+rUMOOctaqbczP3nIzyOCfTzTjmzj15QV4c+eXhlOXDCSZQnRRNJLfjtavDRbd4pxEVlff3DtWJIiXrr+XQfUhI+4EKvBJ6CrwiEU2BV6RU6XABLF+X99rp6HZNgm9ehgaJ4SlX+iEYcSd8P9s7omWT+rBhmu+OtYiIiEhJaDoAtqaY55oAKWXJlh3Q7yrYuM13/7qggW3neOUEs/uar4HtQ0e8B7EDSdu2zWD/7PfMIiYpXer1hd0ugXVUb0o4aEKDiIiIiBSGJh2LriFERMSfZ9+FO57xnkTuPPdkWXBOP/h2YtHyW7oaTr3KLFzwl5+v14EuQlu32QT+WLYm/7k3Bc3R9NVeFcRzDpDr56hbC756CXp2Kjid0kz9TpH8HTwEVU9yPzZmeNn8jmRmQoNTIXV/3jGnbnzxXrhxeHDz+2IqDLnNvc1w8mxUF2a9Cyc0cX+PAq+E3v50qNHT/VhZ/Q6UBuo3SSBufxqeez901wuBLKIuzvWClD/Dx8EnUwo+h13rpeKcwx//AJfflffa3zlsWSYIqvohwaE+Rmio7yCRZsESuORWE4TTVz3vvPYnkHV7/t7v7722beYbv/ckXDyw4PQlf5Hcjmdne7/fCbziSnWiSMnamwZ1+rgfK+F+oAKvhF6FcBdARKTMuOMauGa8+4CqbcOiZBOU5ZGbYPQQiIkJXZm+mQFjJ5jFn66c8t05SkFXREREJLR6dYbPflIfRMqexvVh0edw6e0w/Tffkesd/gaqbRsOHDSPwijoxmLb5vDdK96T+6R06N0Fvp6helPCq0Nr+P0T/xMaCqrjXOs23bwTERERKfuaNTQ/tQlM+aVrCBER8Wfs1SaY1tinzWt/ixScY8XVoTXMeNvsTp+yN/AFnIE6oYlp8+5/EV760AQE89UOFTSOX9hFFb7+zklj8AB45X6oVyew95Zm6neK5K9yJVjylVlk66hTM3zlKUkxMTDyInjmbe/5mzc/Aeu2wOO3QMX44OR38UBT3zr38Fzr+60pZsOO71+BzicGJz8pmmpVzKaJrt+BFo3DV57yTv0mCcT/3QU5NrzwP+/zoSSuF/qfbOqJi26GI8d856e+phTGu4+bQD5fTsv/HPYM7FNUl51jAlVf+2BeYBXP+tS17vR17S2Fpz5GaKjvIJGmZyf4azLc8Kjveh7yD5BS2PtbBbFt6N4e3n5MGzIGSyS34651kS+qE0VCo1Z1eOEec93q6Nw2fOWREmHZGgiQCGZZVjKQ5Hk8KSmJ5OTkMJRIpAD9r4Y5f3jfvAPzPLEmjLoYhpwJnUqoUd2dCl9Nh9c/g79X+o64bVmmUV/4qZnQIiIiIhIqT0+Ce55z7y9p5zkpS2wbJn4ED000O6qF6ma1r8j5UVFw8+Xw2M1md2gpnR59FR58WfWmRIYjRwue0JCf4u7q4ZmObt6JiIiIRK7vZnlPOu7QOnzlkfDQNYSIiPgzcwGMuh82bc9/QUJxd7B3bNkBQ8fC7//knx8UfQf7NRvhwYnwxVTT7jlp5ZdPoPJ7j/O7rknw6E0w6JTA0y0L1O8UEUfKHmhzDqQfMq9d529aFtSvA9dfCpcMhLYtip/f3jToOBh27nHPz3keFwtPj4UxI8x925Q9UL+f9zzOwrQ1ImWF+k1SkHe/gtuehv3poble+HsFXHwrbNhactcLUn7YNjw8EZ5803tM1PPvgnUO/zgXRtwJaQV8Z0DnsJRO6jtIpJm9EO59HhYsMa/9nT9FnT/s77x0jjdIhPHXwXVDzfWmBE9paMedsdDYGNWJIuVAu3btWL58ua9fLbdtu12oy1MeKPCKRDQFXpFSZ/N26DXc/800yHtdrzac0h26nmiiS7ZsAo3rQ3xc4Pnt2w8btpmd4v5ZBXP+hMUr3KMQ+rrQqlIJfvsIkloW/bOKiIiIFMUPc+C8GxRAQMq+ffvNjmqTvoA9+8yx/Aai/f3e398XNJg/eAA8PEaR7MuCb2aYHcJVb0ok0YQGEREREREpDF1DiIiIL0eOwpufw/P/g43b8o571unBmLwOZkL6yx/CY6/nP24PxVuEtnM3vPE5fDENlq7OOx6sQO2u9xUqJ8D5/eHaIdCvR3DSFxEpzV76AG550nvDPM/rhprVoE1zaFrfzKXs1s7UpYU1fzGcdk3edY7nfFHLMvNC77gGeneGDoMVeEXElfpNkp+du2HC2zBpMhw8bI75OjeCdb1w6DDc/xK88jFkZOa/gFp1uARi6Wqz0dK3LsEiS/Ic3r4LxjwGX8/wnZcCr0hZoL6DRJpFyWajxm9mwr4DeceDuWGja/3dqzNcewkMO9sE+5SSUxra8W2zVCeKlAMKvBJ6CrwiEU2BV6RUWroa+l/tftHkqqCFlVUqQa3qUCXB7EpfIRqio83NuWMZZjA37QCk7M27YecrbV/pOzspTMF1iRsAACAASURBVHkN+p9c6I8mIiIiUmzJa9wnE4ECCEjZdiwDPvsJJv8M0xeYieSOYAxuu14DtGwCQ8+Cf18CzRoWP22JDEtWQpeLVW9KZNKEBhERERERKQxdQ4iIiC85OfDb3/DjPJi3CFaszwuMAnDuqcGZvO44egw+/gFe/wwWLs077toeBWsR2ubt8MNc8/n+Wg6rNkJ2dtHTq5wAHdtAny5wag84racWWYiIeBo+Dj6Z4h3gxHnucK33i7NQ6uMf4PK78l7726zP2ZVagVdEfFO/Sfw5cBC+m5V3vbA1xb0+D/b1wvZd8Pqn8NaX5rmjJK4XpHxYuwk+/RF+/AUW/gNZHnVbsM/hP5fBSx/C5z+b61/wvaZE57CUduo7SCTJzoZfF5vNSX/7G5asgvRDxU+3QeLxc/Ikc8+rYd3ipymFU1racdWJImWWAq+EngKvSERT4BUptdZtNjuSL1uT/0TBgupgfxEKA32P5028urXgq5egZ6eC0xEREREpCQcPQdWT3I+NGa4AAlI+HD0Gs36H35aYge2/lsPOPUVLq0I0tG4GndtCn65mYPvEE4JaXIkQ+9OhRk/3Y6o3JRLp5p2IiIiIiBSGriFERCQ/aQdgV6rZdT4+ruTGv7fuhClzYcYCWLwC1m1xXyQf7EVoR46aPLalmAWjO3abz3jkmLmHkJllxv9jY8zGTTWqQmItaFwPWjRW0HURkUBkZMDwO+HLaYHN3bSs4u9Q/e5XcO2Debtgu87bdM3L4bpDtRY8i/imfpP4c/gIrN54/HrhCNSsVjJBd3NyYP7ivOuFpWvyFr+C6nApmsxMWLPJ/RxumAhDBwU/r337TQCAKfPMObw71f33OoelrFHfQSLN6o3m4XZOHjHn6tEM0yZUqOBxTtbMOyc7tDabukvkKE3tuOpEkTJDgVdCT4FXJKIp8IqUakeOwv0vmkiDmVn+A6L4k1/9XJhd35x0Bg+AV+6HenUCf6+IiIhISVi6Om/CEUCdmiYqt0h5dOiwGdTeutPlxkoAA9tN6pubLlI+fDfLvd50bqyJRDLdvBMRERERkcLQNYSIiESCQ4dNe7RjtwmcftXgcJdIRESKwrbh4Ynw5Jveczc9/y4YgVcAfpwLI+6EtPT88wMFXhERKY1ycmDleli7Oe964cEbw10qkcBt3wV/r3A/h995ItylEhERkUCoHRcptxR4JfQUeEUimgKvSJmwZiM8OBG+mGpu4oHvG2uuN9UCld97nN91TYJHb4JBpwSeroiIiIiIiIiIiIiIiIiIiIiIiIhIabV0NTz4MnzrssmBr7mWwQi8AmYh1JjH4OsZvvNS4BUREREREREREREJkAKvhF5UuAsgIlLmtWoGHz0Dm6bDQzeaXcltO+/hsKzCBV3xfI9rmpUqwvBzYNa78OfnCroiIiIiIiIiIiIiIiIiIiIiIiIiIuVHh9bw5Yuw8nuzeV3vLhAd5T7XMpgbmDZINPkt/BSuOB/iYt3zKMocUREREREREREREREJCcsO5oCxSJBZlpUMJHkeT0pKIjk5OQwlEgmSzdvhh7nw29/w13JYtRGys4ueXuUE6NgG+nSBU3vAaT3NTTsREREREREREREREREREREREREREYHMTFizCVZvhF2pcOgINEyEoYOCn9e+/fDDHJgyD2YsgN2p7r+3LMheFvx8RUREREREREREpNRr164dy5cv9/Wr5bZttwt1ecoDBV6RiKbAK1JuHDkK67bAthTYmgI7dsOhw3DkGBw9BplZUCEaYmOgSiWoURUSa0HjetCiMTRrGO5PICIiIiIiIiIiIiIiIiIiIiIiIiKlwf502LwDtu6E1P2Qlm7mMWZmgW1DxXhIiIeEiuZn/TrQvJH5KUWzfRf8vQLWbjZzRHfugXeeCHepRMIrOxsWLjX10a69Zs50Yi2oWwu6tYM6NUsu78xMmLXQ+/jAPiWXp4iIlB1qwyJP+qEArm+OX+PUrwMNEsNdYhGRyLJyvWnX9h0AC6haGZo2gFZNoUKFcJdOpFxS4JXQU20nIhIJKsZD+1bmISIiIiIi5YMmM4qIiIiIiIhIeaPJ6CIiUhhHjsLqjcfH0lMgNe34WPoxU6/bQMU432PpzRtCPY2nlwvqX4gU7FgGzPod5i2C3/+B5LWwK7VoacXFmkU3ndpA327m0bFNcMtbVjVI1OJOEccPc2DSZJj5Oxw87PtvLAu6JcElA+HG4aa/F0yp++Gs0SYf1zyzlgY3HylZmnsjIqGmNiwyrFzvfn2zcgMcOFi4NGJjzLVN84bQqa25tunTBapXLZkyi0jpVZbHH2cugDcnw5S5/tu1+Djo2REuORNGnGsCsoiIlFGWbdvhLoOIX5ZlJQNJnseTkpJITk4OQ4lEREREREREikCTGUVERERERESkPIuEyegpe6B+v/I9GV1EJNJt2gY/zssbS9+43SyWLKq4WOjYOm8s/V9doWb14JVXwkv9C5H82bZZNPP2l/DzLyZolevvisv1vK9WGYacCVdeAH26Fj9tESm7ps2Hu5+Fv1ea14HUR5YFdWrA/f8x7XmwOO24Z17Zy4KXhwSX5t6ISDipDQu/5DXm+uarGbBpu/vvinON43lN374lXDoILj8PGtcveroiUvpF6vgjwK8fwpYdpj+cfgiqV4GGdaFXZ6hdo+B0N22D/zwCP/9qXhdUjzr5V6kEt18Nd42C2NhCfxwRKZx27dqxfPlyX79abtt2u1CXpzxQ4BWJaAq8IiIiIiIiIqWWJjOKiIiIiIiISHmnyegiIlKQg4fgvW/MWLrTXkBwxtEdzni6ZcFpJ8PVg+GiM8xOnVL6qH8hUrD/fQuPvQZrN5vXnt8Tz8U6ReEvzRMaw21XwbWXQIUKxc9HRMqGzEy48//gxQ/Ma6cOKag+cq1rLAvO7w//ewoqVyp+mTwXMNq22vFIpLk3IhJuasPCb+6f8MgrMGuhee2r/i/ONY6/9JxxpNuuhEGnFD19ESl9InX80bUcUVH+33NSB1N3DR3k+/e/L4Hzx8CefUVv19o0g8nPQ1LLAj+CiBSdAq+EngKvSERT4BUREREREREplTSZUURERERERETKM01GFxGRgmRkwNNvwXPvwf6DJTOODv7TrVIJrhsKd/8balQLTl5SstS/ECnY2k0w6n745S/vc99TYevdgr5znvm1aAQv3ANn9/P99yJSfqSmwVnXwaJk33WJv/UsnvWN084mnQAz3obEWsUrl9rxyKe5NyISbmrDwmtvGtz2FHz4vXldmGuSQAR6bQPwr67w4r3QqW3h8hCR0iVSxx/r+Qj+VFCZLAvO6A3vP+ne7qzZCCcPg7R073QK064BVE6AbyfCqSflXxYRKTIFXgk9BV6RiKbAKyIiIiIi5cz+dNi8A7buhNT9ZlDvyFHIzDKDdBXjISEeEiqan/XrQPNG5qdIJNBkRhEREREREREp7zQZXURECvLrXzDyPrOAMtCx9MIuqnTqeX/pOWlWrQyP3wI3XFa49CW01L8QKdjPv8Bld+QFs/J3/oeC6/d09BBzzzI2NjR5i0hkOXoM+oyAxSvMa882syCe7b7zumsSzH63eAsZ1Y5HLs29EZFIoDYsvJashAvGwJad/scBQnF949ouxMbAw2Pgrn+XfL4iEnqROv64Yh0kned9PCrK/3tcy9++Fcx9H6pVMce7XQJ/r/RunwJt2zz/TRLiYfZ70L19YJ9HRApFgVdCT4FXJKIp8IqIiIiISBl2LANm/Q7zFsHv/0DyWtiVWrS04mKhaQPo1Ab6djOPjm2CW16Rgmgyo4iIiIiIiIiUd5qMLiIiBZk0GcY8lhd0vyiLZgKd5B5oOpYFZ/aBDydAjWqFS0NKnvoXIgX7YQ5cdLOpWyH/74m/OjSmgtkIJT4W4uMgOweyssx9/fTDkJ3t+335fQ+d/E/tYXZArpRQuM8lIqXf9Q/BG5/7X9RX0FoWX+9z6pahZ8HH/y162dSORybNvRGRSKE2LHz+WAoDRsKhI+71fmGub4qqoMBclgXDz4F3n4Do6ODmLSLhE6njj8cyoOvFsHyd9+/8BV7xVW8O6AlTJ8H738DV9/r/fIVp21yfN0iEpV9rbF2kBCjwSuhVCHcBREREREREpByxbZgyF97+0twoP3LM/XdFdfQYrNoAqzfC5z+bY9Uqw5Az4coLoE/XYhVbpECBTGYs6KZrMCczuub1xufmu6HJjCIiIiIiIiJS0m590kxKDPZk9MUr4NoHizcZXUREwm/SZBj9oHluWd7j2/m1F9HRkFgTKidAxTgzjh4fZ8bOs7KPj6UfggOHIHW/7zH1/PL7+VfodxVMfRPq1Sne55TgUv9CJH//rIKhY819Ss97lM757mhYF7qcCF1PNDseN0iEhonmZ0xM/vkcOQq79kLKXti4DdZsMjskL1xqdqEH3/WsbcPsP+C8G2H6W/nvyCwiZcuiZHhzsv/FeQnxZk7PmX2gc1uoU9P8bluKqTc+/B7m/ulenzlp2DZ89hP0PwlGDw3P55Pg09wbEYkUasPCZ9M2OPt6OHjY/d/PdRzJaQMqREPbFiawQfuWx69v6kKDOibIQb7jRwfNRpEpe2Dj9rzrm39WebdDrs9tGz76waSl8QSRsiNSxx8fnggr1vv/va9yebZdtg0zFsDX0+GVj93f6/q3LRrBZeeYtq1pA0isZerMnXtMm/bpjyYdz7oZYMduuH0CvP140T6niEgEsexgR/YTCSLLspKBJM/jSUlJJCcnh6FEIiIiIiJSZP/7Fh57DdZuNq89r0eDsRuJvzRPaAy3XQXXXgIVFINUguyfVdBruJls6O9mqyPUkxldy9KvhyYzioiIiIiIiEjJWZQMJ12a97o4k9Gd94D75L1XHyj6ZPSyvguoiEikm/MHnD7KLHTJbyw9NgZ6tD8+lp6UN5Zer3bg49u2DbtTvcfSFyzxvXjGNf8OrWHBx2axpoSf+hci+cvKgu5D4J/VvhfWAPTuAhf0hwsGQOtmJVOOVRvgi6nw1pewYavvslgWjL0KnhlXMmUQkcgz5Fb4Ypp7PeDUTcPOhhfuyWu7/ZkyB/79gJknAd59gcoJsOwbaNKg8OVTOx5ZNPdGRCKJ2rDwOe0amL3Q//VNo7pwXn+44DRTJ8fFBjf/Yxkm/y+nwcdT8gLAuHLKNOF2uP2a4OYvIqEXqeOPK9ZBpwtNIMGcHO/fR0VB93YmAFW1yiZAyoZt5vM4+bt+ngaJsH2XexrO7x68Ae7+N8QWUKdOmw//vh+2pninEx0Nf38B7VoV7nOKSL7atWvH8uXLff1quW3b7UJdnvJAgVckoinwioiIiIhIGbB2E4y6H375y/0muL+b1K4KCsbiGVE6v/Qsy0RjfuEeOLtfweUWCYQmM4qIiIiIiIiIGJqMLiIi/hw6DB0Gm4WNvharxMXCxWeYRTOD+ppdiUvCwUPw7Sx4/TOYt8j/WPqIc+H9p0qmDFI46l+I5O/Nz+G6h3zXrQN6wn/HQae2oStPTg688Rnc9axZoOhZpuhoWPyFWSQvImVb2gFI/JdZJOhw2sl7R8OjNwee1tadcM5/YOlq332CgX3gpzcKX0a145FDc29EJJKoDQufz36EYXf4vr5p2xyevA3OPy04mzwG4sBBeOINePZd9/PBKVNcLKz4Hpo1DE15RKRkROr4482Pw8sfmXR8BV7ZNN13euu3wIS34I3PfX8mcD/+zB0w9urAy7VlB5zxbxPA0OGk9e+L4fWHA09LRAqkwCuhpzCrIiIiIiIiUnJ+/sVEgXaCrlhW3gN8B1rx/Jv8FPR3rmnZNqzbAufdCP95GDIyiv65RBzvfOU+8QPyzrcBPc3EwV8+gHGjSm7iB0Cb5nDvdbDmR3jlfjNI75TFtUzP/w+WrSm5coiIiIiIiIhI+ZR2AL6Z6T0WYVkw/jr46JmCJyWCCZi88FOzENPXRMCDh2H0QyXyEUREpAS9+kle0BXXet22YeRFZpL4BxNgyFklF3QFTNrDz4U578OU18wuyZ6LKG3b7FL6y6KSK4cERv0LkYI987b7fUrn3H54DEx7K7RBV8Dstnz9MFj0OTT3sfgwJwfueS60ZRKR8PhxHmRl57122uALTy/cgnWARvVg2iRo3si8du0TgNl1/dMfg1NuCQ/NvRGRSKI2LHyemuT+2rm+GXkRLPnKBN8KVdAVgKqV4amxMOtdqFXd+/cZmXDfC6Erj4gEX6SOPx7LMGPU/uq8qCj/QVxaNIbXHoJ3n8j7TM5P1zUVlgV9uxUu6ApA4/rwzcuQEJ93zEnzkx8hM7Nw6YmIRBjL9lzkJn5ZllXBtu2scJejPLEsKxlI8jyelJREcnJyGEokIiIiIiIB+2EOXHQzZB6/jPKMru/K37VpTAWoGA/xsRAfZ6LGZ2WZAcX0w5Cd7ft9+d1ccfI/tQd8OxEqJRTuc4m4aj3IBPRxOOfXQzfC/f8JX7nWboKzRsOGbd5lO/sU+O6V8JVNRERERERERMqej3+AEXd6jwFeeDpMfr7w6e3aC72Gm0X6ruk5Pz96Bi4dVLg0y+ouoCIikS4nBxqfBjv35B2zbYiOhrcehSsvCF/Z9qbBOdfDwqXemwb07WYCtLg67ZrQli9YLGDGO+EuReGpfyGSvz+XmU1QPM+/m0bA8/eEt2wAW3dCz8tgx+68Y079v3kG1K8TvrJJ2aB2ObLd8gS89KF7HRUbYwJaNK5ftDT/XgG9R5g5Q65s2wTUW/kDJFQMPD2145FDc29EJJKoDQuP5Wuh/QXen2noWfDxf8NbNjABt/51OaQfyjvmnBs75kCNauErm5SMkePDXYKisSx467Fwl6L0iNTxx59/gUHX5ZUrJyfvd07wlEDq/FufhBc/8P58zs9Z78Ip3Qv1EXM99x7cPsE77Z/fgNN7Fy1NkXCLwLr/y6++Ii0tzet4JaLSLqXqV8df2tjLR4W2ZGVXhXAXoJS517KsM4D3gc9t2/Y+W0VERERERAT+WQVDx5qgK54Dap5RnBvWhS4nQtcTTaTnBonQMNH8jInJP58jR80gZcpeM0i5ZhP8vdJMkN2y0/yNZxAWJ//Zf8B5N8L0t0zkZ5HC+nMZrN3sezJjOCd+ALRsCrPfc5/M6Jz7P/1ijmkyo4jkR5NVRURERMQf9RXFlwVLvI/FVIDn7ipaeom14Ivn8yaje+40N+4ZOO/Uwk1GFxGR8PjlLzMm7TmW/siY8AZdAbNb8dRJcPIwWL3RHHPaml/+gnWb4YQmeX8/e2Fod1YOBl8bIpQW6l+I5O/72d7H6taCJ28LeVF8alTPBNhyXSgEZrHQ5J/hpsvDVzYpG9QuR7Z/Vuc9dz73RWcUfcE6QOcT4emxcMuT7osFgf9n777D5Cbux4+/5V7B4IDBYHoxNsQU04vBtAAJEFroJCSEEDqBQCiBhIQeAiQQILTkS+8Qeu+9g43pptl0DMa96PeH0G+bdm/vbu+k3X2/nkfP7c7uamZvpZnRaPQRH38GJ10Ifzm4feVW53Pujeqd4+WNxzYsHbc+WJo2bz8499jOL0uSFZeNyrLHUYX9uVmz4fp7YJ8d0yubOsZlN9df3z2uWwy8Ur2sjj8+PyY5vbXb5MmHwpW3RwHIiz+/6KC2B10B2Hcn+Mv5MGlyYfpjLxh4RfUrg3X/NnMBEgO8DQD2IurZh4CBV2rEwCutEwDrAusA5wRBcAdwOXBbGIazUi2ZJEmSJGXF7Nmw51FRUJSkCMkA66wC22wE22wMyy3R9rx694LFF4mWNX5Y+Nob78EN98DFN8J7HyWX5eFn4ci/welHtL0Mal5OZpTUyJysKkmSpHLsKyqJk9ElSeXc8Uhp2pKLwO8zMgd0nn7w35OjiymL3XBvcjnzbzCQZfXe/7F/IVX24uu5x/G2vMfW0Tn0rNh8PVh/NXj0+cI66cmXPVep2rFdzqYPJpZ+503Xbv96D9w96qM98lzpRYxn/gd+vSMsNrj9+ajzOPdG9c7x8sZjG5aO5/KCDMTb6K4/hvkHpFemYrv9BM64FF5+o3AbeeJFA680sno53lDbZHX88fmxheWKFd/8tiW9e8EuW8I/rii9jmKrUdWvJ0mf3rDtxnDpTYV14stvtG+9UhZkqO5voddup74DeEvvtgmAnsC2wPXAJ0EQnB8EwfrpFkuSJEmSMuDSm6KByPxBtHigb+O14MUb4LHL4Yhfti/oSkuWXxKO3hfeuhPOOw769cmVJb9MZ/0fvPZWx5VDjaueJjMWDwA+mRClXZKShGF9LJIkSep8afcB7StmS0dORt9gZOGkxPzJ6B9MaH8ekqSO9fK43OO4Pt9zG+jaNb0yFVt9Jdhi/dK+wzOvJr8/COpjqXf2L6TKxr5Tuo9stEY6Zalk160Kn4dhYdsgtVfa7W2ztMut9cXXpWk/XL426z7/eOjRvTR9xkw46u+1yUOdx7k3ahRpj4M7Xl47tmHpGPt2aZ9ps3XSKUsle21b+DwMC9syNZ60jyM85uhYWR1/fPuD0rS2/saj10xO/+FybVtfvg1GFj4PQ3j3o/avV0pb2vV53hJC2SX3R7Vk4JW2ibfL4PtlPmAf4KEgCMYHQfDXIAiGpVlASZIkSUrN6ZcUDu7FJ+z+dADcezGMGNq55enSBX6zMzx/HSy5SOnrc+fCH5r8pJXaxsmMkppBBk4ceOJYkiQpo9LuA9pXzBYno0uSynljfGmbvP5qqRSloh03zz2OJ8G/+mbhe7p3S75YzYvaOob9C6myr74pTVtmsc4vR0tWXyn3OG4PPk/Yv6XWsl3OtmnTS9N+MKA26x66FBz+i9xvGl/MGIZwzZ3wzCu1yUedw7k3ahRpj4M7Xl47tmHpSDpGWH7Jzi9HS9YekXsc71OffJFOWdTxPN5ofFkdf5z0be3a7eHLJKcPK5PeGisslXscl3fi5+1fr5Qm6/6m1y3tAtS5/L0ibskWA44CjgqC4GXgcuDqMAy9DYLUyEb/Iu0StE0A3H9p2qWQJEmN5LnXoijL8eBZfGLowN3guP3SLdsyi8ND/4G1dskN6sUnre56LEpbeIF0y6j6Uq+TGcPQyYxZ4vGksqp7N5g1O3qcfxKv0okCJ+lIkiQ1B/uKStIZk9FPujA3tpE/Gf2QPWCNH9YmL0lS7X39bWna4oM7vxwtWTXhPmtfTip8/vVT8OAzcNtDcMVt8N3U3MVr5fpCTrxtO/sXUmWTp5Sm9end+eVoyaCBpWnfflfbPDzf1pxsl7OtSxeYM7c0rVaO2Rf+ewt8/Fnp+NRhp8Fjl9cuL3Us596o3jle3nhsw9KRdIzQv2/nl6MlgxcsTfumxsc3yoa374I7H42ON+59MrrJp8cbjSer44+1rFeS6i2AgfO2f93zJ6zju6ntX6+UlgzW/S0cOXhg0QEMvNJ2+RtkSHIQlpWBEcCpQRA8TBSE5cYwDBPOJkuqaw89U38DYHGHXZIkqZZue6g0bdBAOPnQTi9KokUXgotPhC32LewLzZ0L198NB+6eXtlUf5zMqFrweFJZ5WRVSZIklWNfUUmcjC5JKmdKwkTrnj06vxwtSZokXjyW3qc3bDUqWk47HM69Ek48H6bPKOwL5U+kX31F2GL9ji9/I7J/IVXWu1fpxSzfTC5/QU1aps8oTevWtbZ5eL6tOdkuZ1u/PqUB+L76BoYsXJv19+4V/e67HlF6EeOTL8HVd8DOW9YmL3Us596o3jle3nhsw9LRozvMnlOYlsWL94vHKcB+faNaagjsv2u0vPshnHYx/Pv66LVyxxvLLwFrGsi3rmR1/HHKtNqVoXev5PRaBLdKGuefOav965XSksG6/5abbmbSN6UBS/vSZdJOzHNzh2XcxAy80nYhuQAr5YKwBN8vXYGNvl/OC4LgNuAK4I4wDG1JpEZSL4NgHthLkqSO8uLrucfxYMIeW5cftEvD5uvB+qvBo88X9ouefNnAK2odJzOqljyeVNY4WVWSJEnl2FdUEiejS5LK6dun9ILEr76BRQalU55ypiZMZu/Vs/z7+/eFo/aBbTeGzfeBjz5NvrBujZXg+P1rW9ZmYf9Cqmz+eUvPVb72FqywdDrlKefdj0rT5u3fMXl5vq152S5nz8ABpe34uPdgxNDa5bHzlnDeVfDYC7n9Kv7djzgDfrJh1BdVtjn3RvXO8fLGYxuWjvnmganTC9PGvQvLLZFKccr6YGJp2rz9Or8c6lxLDYHzT4j23e0Ogm++Sz7e2GRtOOeYVIqoNsrq+GPvnrULvlJuDKLS2He1Pv+6NC2LQdeltshI3X/sM7cw9puE/gdM2Cn86BcdlnETM/BK6+QHVMkPsBKn5f+lzOu9gO2/XyYFQXAdcEUYho/WvriSOp0nxCRJUrMb+05pn2ijNdIpSyW7bhUFXomFIbw8Lr3yqD45mVG15PGksszJqpIkSSrHvqJiTkaXJJUz/7ylgVdeHgcrLZdOecp5Y3xp2oAqxtKHLgW3ngur7xTdHdWx3tqxfyFVtvhgeH9CYb1z64Ow44/SK1OSex7PPY4vMFp6SMfkZR0s2+XsWGYxeOv9wt/ggafgZ1vUNp9zjoaRO5WORU34DP7wdy98rQfOvVEjcby8MdiGpWPRhXL7TOyOR2Dr0emVKckDT+Uex7/d4oPTKYs634ZrwHV/h832iZ57vFH/sjr+OE+/2gVemTUr+tsRwWo/+7I0rW/v2ucjpcm6v+l0SbsAdeYkYEvgEuBromAq8V4SkhyMJen1OH0+YB/goSAIxgdB8NcgCIZ39JeQ1AG6d4s6oMWd0DgtaZEkSWpEX31TmrbMYp1fjpasvlLucTz4kRR1Wapk8cGlfftbH0ynLJV05mRGtZ7Hk6on8WTVrt8PK3sCQZIkSTH7ilpmsdJj1vwJyLVyztHQJWGqSzwZXZKUPUltxA33plOWSm57KPc4Hkuv9q7KI4ZGF2A5fltb9i+kyXHJDgAAIABJREFUytYekXscX7Bz3d0w/uP0ylTsm8lwyY2lx4gr1/ACJvB8mwrZLmfD8GVyj+M66vp7YMrU8p9pi5VXgF9tX/h7x/mddzXc/2Rt81PtOfdGjcjx8vpmG5aOtRKOb666Az7/Kr0yFZsxE/59feE+HQQwYvn0yqTOt/Ha8ONRHm80iqyOPy61aPIYR1vMmAm/+3nhcthetQmQ8vyY0vINXqD965Wyxrq/qRh4pRXCMJwdhuFdYRj+ChgE/Ai4CPiSykFYggqvx+mLAUcBrwRB8GIQBIcGQbBQx38rSTXx9VPwv/Ng352ijmfciFYaJKt0Uq8zFkmSpI4weUppWp8MRi4eNLA0rfhui1JLnMyoWvB4UvXGyaqSJEkqx75ic3MyuiSpnKSx9P89BK+8kVqRSnz8KVz+v9Jx2VVWqH4d++xY2zLJ/oXUktFrlabNnAV7HgWzZ3d+eZL8+vjSO0cDbLF+bfPxfJuK2S6nb/SapWmTJsNfL6h9Xn89BOabpzAtCGDuXNj9yKivp+xy7o0alePl9cs2LB0brFaa9t1U2PeETi9KWb8/AyZ+Xpq+6TqdXxala7+d0y6BaiWr448rLFX4vlhb+hX9+sLpR5Quffu0fl3Fbnmw8HkQwJKLtn+9UhZZ9zeNbmkXoF6FYTgHuAe4JwiC/YCNgB2AnwJxWK784CtQGHyl3OsAI4AzgNOCIHgA+C9wYxiG02r9PSTVSJ/esNWoaDntcDj3SjjxfJg+I9cRhtzjIIDVV6z9CURJkqS09e4VnezI981kGLxgOuUpZ/qM0rRuXTu/HKpvo9eCUy8uTIsnMz5wKXTLwLBLPJmxePKHxyLZ4fGk6tE+O8IVt6VdCkmSJGWRfcXmNXpNOOPSwrR4MvpJh9Y2r78eEl2AM2lyLi1/Mvpz18Eig2qbpySp7TZbF/78r8K0uXNh1yPgiSthnn7plCs2axbscRRMnV46lv7jDatfz7qrwLz9DfRfS/YvpMo2WRuWWATenxA9j88lPf4ibHsgXH1GdHFNGubOhf1PjPar4rp14ICo7LXk+TYVs11O36jVoV8fmPL95Q/x/nf6pbDmD2GbjWuX18ABcNIhsN+fC/fzIIBPv4Qt9o3mcPxgvtrlqdpx7o0amePl9ck2LB1bjYIF54fPv46ex/+PWx6AfY+Hfx0PXbqkV76TLoB/XFHaFvTtDVtukE6ZlJ6N1oQ+vWBawlx01Zesjj9uuAb8+/rSdcTtRBa8OBaeH1NanlWHpVMeqaNZ9zeNDIxC1L/vg7DcB9wXBMFvgQ2JgrBsB8RXF7YmCEv8Wldgk++XfwVBcD3wf2EYFoUCk5Qp/fvCUfvAthvD5vvAR58WnryLrbESHL9/OmWUJEnqKPPPWxp45bW3YIWl0ylPOe9+VJo2b//OL4fqm5MZVWseT6peOFlVkiRJ5dhXbF5ORpcklbPOKtGdQ8e+Ez2P6+7X34WN94Zb/pleAP/JU2C338NDz5SOpQ9ZCDYYWf26unaN+kJ3PJKdye/1zv6FVFkQwEG7w2GnFm63YQh3PgorbwdnHx1dwNiZXno92peeebUwPS7foXtC9+4dl7/n2wS2y1nQuxfs9mO44NrcbxAEMGcO7HQYnH44HLRH7fLb92dRcIPHXiisEyGatzT6F3DnBQZSyyLn3qiROV5en2zD0tG9O+y7UxRAsfj45qIb4LW34fzjYaXlOrdcEz+HA/8KN91XmB6Xb7+do0CQai49e8DaK8P9T3m8Ue+yOv642brQozvMml26niwEX5kzB371x+SybLh6OmWSOpp1f9NIMdRfYwrDcG4Yhg+EYfhbYDAwGjgP+JTCYCshycFWgqLX4rR+wF5EwV3GB0Hw5yAIlumcbyWpTYYuBbeeC12/r2ptUCVJUjNYfHDphKVbMxg78p7Hc4/jQb+lh6RXHtWneDJjvM0nTWa8/eHOL9dLr8O6u8GF1xWmd9ZkRrWfx5PKuniyanGbL0mSJNlXbF7xZPT83z5/Mvo5/1fb/Pb9Gay3auF4TCyejP7xp7XNU5LUdof/Inks/fkxsNI2cO6VMGtW55bplvuTx/Hj8v3+l60fm11lhdqVT/YvpGocuBv88PsLD4svTnz3I9h6f1h1e7joevhqUseVY+7c6Bz8dgfByJ2ioCvFF98EASy5CBxcw4tUK/F8m2yX03f4L6ILk2JxvTBrNhx6alQ/XX4rfDelNvn99xSYp1/0uPhCxtfeivp+tz5Qm7xUO869USNzvLx+2Yal46h9omBcUHp88+RLsMr2sP3BcO8T0TFIR3pzfBTkcrktoqArScEFFpgPjvxlx5ZD2bXqsLRLoFrI6vjjwAGww2bl+xBp9i1mzIQ9joIXXy+tFxecH9ZbLZ1ySZ3Bur8pGHilA30fhOWhMAwPABYBNgT+CUykuiAsxa/F6YsBxwBvBEHwSBAEPw+CoE/HfyNJrTZiKPxsCwfLJElS81h7RO5xPCB43d0w/uP0ylTsm8lwyY2lg30rD02nPKpvTmZUR/F4UlnnZFVJkiSVY1+xeTkZXZJUzl7bRncPzR9Dj8evv/4WDjoJFtsYjj0bXh7XceX4/Cu48FpYbQfY7mB476PCssSPVx4a3WW5tUYsX9vyyv6F1JKuXeE/J0d3Z4bS7TYM4aVxsO8JsNAGsM6u8Icz4bq74PV3YObMtuX71SR45Dn45xWw4yEwcJ3ozsy3PBCdtyw+TxmG0L1bVNbOvBu859uam+1y+pZerDAAXyy/ftrraJh/bRi5I+z+ezjmLDjl321rb5dYBP5zUmk+8eMvJ8FPD4KNfxFdsD17Ttu/m2rLuTdqZI6X1yfbsHT07gWX/AW6dY2eF48hzZ0LN98PP/p1dHyz6xFwwTXw7KswdVr78v5gAtz2EBxxehQkeIUfw9n/B1OmlQZIiJ9fcALMP6B9+ap+Oee8cWR1/PGYfaOxlCRhCGvvApfdBBM+q025qvHca7DBHnDNnaXjPkEAv97RwLdqbNb9TSEIHUzudEEQBMC6wA7A9kRBWSAXeOX/vzXvcbnX4vQpwDXAJWEYPlm70qYrCIIxQEkYqGHDhjFmzJgUSiS1wSPPwYZ7lU7S2H8XOOeYdMsmSZJUa/c+AZvvU9j3gSg68wOXQrcyA4Cd6WeHRcFgivtnt50HW2yQbtlUn14eBxvsCd9NjZ4XT9KG6HnXLjByRRg1Mop4vOKysPQQ6NEjeb2VfDUJXnsbXnkDHn4W7nsKvv2uNM9YGEKP7nD/JbDuqm37nup8Hk8qy66/O7qrQ/7JP7dNSZIkgX3FZnfcOfDXC0onRBePkfxweRi6JCw+GPr3hWFLw9ajW5/fLfdHF87Hki6e33D16E6Zw5aGIaNLX5/zWtu/rySpeh9MgLV3hU++iJ6XaycAFvoBbDASVl0hGktfZjEYsjD06ll9fl9/A+99HE1Wf+UNePi56C6cYZg8jh6Xo39fePJKGLZM67/jC2OjC67y12s/qP3sX0gte/Bp2PI3MHNW9DxpX4HSei8Ioru0DxoY3U25f98oMEq3rtF+NWt2dCfjmbNg0uSoDv/ki9x50VilPOKyXHEa7Lxlbb5va3i+rXnZLmfDnDmw2a/gwWfKt+Wx/N9qq1Fw67lty/OMS+D3fyvd74sf9+8bzbOwHc8G596oUTleXr9sw9Jz1e2w+5G559Ue3yz0A1hs4aLjm17RvOVKxzfjPy48xknKo7gMpx4GR/yydt9Z9eeZV2CtXTzeaBRZHX8cNBCuvjM5oGyXLrnH8/SL6r/+feHSv8CyS7S+TEm++Drqpz/1Mtz6IDw3prS88fP554U37zAglRpbCnX/8OHDGTt2bNJLY8MwHN5hGTexDFzx1nzCKNrNY98vhwRBsA65ICxD4rdRGGylOAhLWJTeD9gb2DsIgnHAhcB/wzD8ukO+hKTqrbsKzNs/NxArSZLUyDZZO4q+//6E6Hk8APn4i7DtgXD1GdCvbzplmzsX9j+xMOhKbOCAqOxSW4wYCjf/IzeZMelOcmEY3Wni6VeiJdaZkxkvO8mJH/XG40ll2VJDco+9S4EkSZLy2VdsbifsD0+8WDoZvXiM5IWx0cXvsa1GtW1i4jYbRxOc48noSXk+9Gy09E9pXFKSFFlsMNx1IWz0c/j629K7xkNurHvi53DtXdGSr3/f78fS++SNpXctGkv/Fj79MkrLV+miqPj1nj2i8f62BF2BaMJ9Ul5qH/sXUss2WhMevAx2OCS603HSxYHx83xhGNWZn35Z3fFbufqt3GfDMLrQ8T8nw/abtbz+juD5tuZlu5wNXbvCDWfDVvvBky9Vrp9q9VsdvjdMmQZ/Oq98Ww6FATYcw0qfc2/UqBwvr1+2YenZZaso0NUvjon+H0ljSFD6f5/4eS7gb7WqPcaJ//9dusAZR8Che7UuHzUejzcaS1bHH8Mw6s/OnlO6jvxt75vJ8Ork6LOTp5a+t7VOvjAKRDNtRnJ++eWN//79KIOuqPFZ9zcFA69kQBiGTwBPAIcFQbAWURCWHYDF4rdQOQhLcfoKwJnAKUEQ3ACcH4bhYx1RdklV6No1Onl3xyONOaghSZKULwjgoN3hsFNLB9XufBRW3g7OPjoaaOxML70O+/0Znnm1MD0u36F7QvfunVsmNRYnM6ojeDypLPMEgiRJksqxr9jcnIwuSapkpeXg6avhpwfBa28lX8QSS2onvv0uV58nXQjZkuL157dTgwbCTf+AtUa0vJ5yBg6As/8Ac/PKsvLQtq9PEfsXUnXWGgEvXA+/PRFuvDe3veardE6xtfVoS8IQRq4Il/wFVly2+s/VmufbmpftcnYMmAfuvwR+8yf47y2V66datanH7w8LLwAH/jW6SLHaORxKl3Nv1IgcL69vtmHp2X4zGLY07HU0PPda8v82Ka0t/5dy6yn+fw9ZCC4+ETZZp/V5qPEM+kE09zz/eGP91dIrj9ony+OPSUFXoG3j49X66huYOr18nsX/l4P3gD22rl3+UlZZ9zcFA69kTBiGTwFPAYcHQbAGuSAsS8RvIRdsJSAXbCUpvSewC7BLEARjgfOA/4ZhOKWDv4akYqusEJ24kyRJagYH7gaX3QSvvlUafOXdj2Dr/WHE8vDbXWC7TTouuvHcuXDfk3D+NXDrg7nBzuLo90suEg34Se3lZEZ1BI8nlVVOVpUkSVI59hXlZHRJUiVLLxYFXznuHPjHFdHd55MColRqHyqNqVfbruRPXt92YzjvOFhogeo+W8mBu7d/HSpl/0KqzoID4fqz4KFn4Oiz4KmXo/SWLiRs7T4Tb/flLvIZvCAcsy/su1N0R/i0eb6tedkuZ0evnnDZSfCzH8ExZ8NL46L0audUtMWvd4I1VoJfHpe7K70BmLLPuTdqNI6X1z/bsPSssDQ8cw1ceiOccC58+EmUXu44pKXxpEqS5hbH6b17wQG7wh/3g7592rZ+Naa/HZl2CVRLWR1/DILomog0JNW3xUFijv41/OXgdMonpcG6v+EFoSd96kIQBCPJBWFZqoW35/+oQVH6ZOBS4NwwDN+uaSE7QBAEY4BhxenDhg1jzJgxKZRIaqPr74adDivsWO6/C5xzTNolkyRJ6hgvj4MN9oTvpkbPi+8aCNHzrl2ik9OjRsKqw6IT1EsPgR49Wp/nV5PgtbfhlTfg4WfhvqcK7zIX5xkLQ+jRPRokXXfVtn1PqZzWTmZsrXqbzKi283hSkiRJklTP7nyk8mT02Faj4NZz25/fS69XnoyeP6YSH2fPea39+UqS2uat8XD8uXDDPVEAFqh8t+LWXiDZ0vpWHQYnHghbbFD9epU++xdS9Z4fA+deCbc8AF9/m0uv5UWb+fvA2ivDPjvAzltCzzac8+8onm+TsufBp+HK2+Gux+DjT0tf//GGtWnHY9fdBedeBY88l0srdxGh7Xh2OPdGUhbZhqVjzhy46T7419Xw8HO5IAS1DkiTf53tooPgl9vDfjtHQS4lNY+sjj/mPy4OFhW3Bc9eG417t8cRp8PfLitcb3F5Fh8cBSYbtXr78pJU0fDhwxk7dmzSS2PDMBze2eVpBgZeqUNBEKwKHAjsRRRMpdxRQqUALCFwC3B6GIZPdUQ5a8HAK2oYL4yFkTsWdjQ9cSdJkhrdg0/Dlr+BmbOi50nBVyA5GvQC88GggdEdH/r3hT69oVvXKFDLrNkwY2a03kmT4ZMvoiUO8hKrlEdclitOiyZ9SR3FyYxqL48nJUmSJEmNwMnokqRKPvkcLrwObrgXXn0zl16rsfT8c0b9+sDWG8E+OzopvN7Zv5CqN2cOPP4i3P4wPPkSvPwGTJ7S/vUOXhDWXQU2XCOqWxcZ1P51dgTPt0nZ9t5H8Po78Ob78NmXMGUaLLs4HLBb7fN6/Z2oz3nHI/DMq6V3jrcdzybn3kjKKtuwdHw5KTq2iY9vPkoYE8hXKYBBvm5dYZUVcsc366xS+8AukupLVscfAW48G+58NAoOM/adqA0CeO662gZeKc538IJwwK7R0q9v+/KR1CIDr3Q+A6/UkSAIBgPbAzsA6wBx2NxqevFJQVjitIeBE8MwfLAW5awlA6+oYXw5CRZYtzDtgF09cSdJkhrfUy/DDofAhM8Kg64kDcQlqeakRbnPl/tsGEKfXvCfk2H7zVpev1QLzT6ZUW3n8aQkSZIkqdE4GV2SVMkHE+D2R6Kx9BfGwhvjozH2turXB364/Pdj6avD6LW8eLIR2b+QWu/N8dHy8afRhYoTP4/2nWnTYfpMmDULunWDHt2jm6XMNw8sOD8MWQiWGgIrLRfdSKUeeL5NUpLvpsArb0YXKr79QVQPfvIFPHhZ2iVTOc69kaSIbVihLydFQboqHt/MjgKrlBzfLAxLLQorLhstvXqm/W0kZVXWxx+nz4Bvv4vqt+7d25d/HHgltsxisMFI2Hxd+Okm0XiRpE5h4JXOZ+CVjAuCYAhRoJUdgDXJBU1pb7CV4nWEwP3A78IwfLVtpa09A6+oofzjcpibtwuuPNQ750iSpObw2Zfw2xPhxntbF/292uPV1q5z5IpwyV+ikyRSmpppMqPax+NJSZIkSZLaz8noklSfpk2Hdz4sGkufCtNmRJPJEy+cGZgbS19ikbS/gRqZ/Qupfni+TZIak3NvJEmS1MjSGH8c924U1GrgABg0EOabt+PyklSRgVc6n4FXMigIgiXJBVsZmf9S3uOQ5OArxT9oQOsCsMwCjg3D8PTWlLmjGHhFkiRJaiAPPQNHnwVPvRw9TwqYEoatC6RS/Nmk9cbpgxeEY/aFfXeCLl3alockSZIkSZIkSZIkSZIkSZIkSZIkdRADr3S+bmkXQJEgCJYlF2xl5Ti56G3louQkBVsB+Ax4FNgM6J/w3uIgLAHQHTglCIJ5wzA8tuovIEmSJEkt2XANeOJKeH4MnHsl3PIAfP1t7vUgaHvQlfjzsfwgLOusAvvsADtvCT17tH39kiRJkiRJkiRJkiRJkiRJkiRJkqSGYuCVFAVBsAK5YCsrxslFbysXVKX4tTh9CnALcDlwTxiGc4Mg6AvsBuwHjMj7bFj02fznfwiC4NEwDO9u1ZeSJEmSpJasNhwu+SvMmQOPvwi3PwxPvgQvvwGTp7R//YMXhHVXiQK9bL0RLDKo/euUJEmSJEmSJEmS0jBlKnz8GXz9TXTTgXn6weKDoXevtEsmqRlZJ6nZuQ9km7+PJKle2YalY9XtC58HAdx3Mcw3bzrlkdwmlSbbIikd1v2ZYuCVThYEwUrkgq0MjZOL3pYUUKXSa3OA+4iCrdwUhuHUgg+E4RTgQuDCIAjWAQ4EtgO6kwvAEny/5D8/IwiCe8MwnNvKrylJkiRJLevaFTYYGS2xN8dHy8efwkefwsTPYco0mDYdps+EWbOgWzfo0R3694X55oEF54chC8FSQ2Cl5WDggLS+kVTexM/hgwnw2VcwfQYsOBAGDYRlF4/2hY4ydy68/UFp+nJLdFyekpqPdZwkSZLKsa+oJG4XkqTWmjwFPvoEvvoGJk2OzhvNmg1hGE367hMvvWHhBaIg/fXu7ffh4hvgtodh3HtRO1ZsqUWj82zbbwpbbBBNxm1W9i+kjmWdpGbnPpBt/j7Nwz6f6p3bsIrZhqXvpXG5/2kYRo9nzU63TGpubpPZ1ajtuG2RlD7r/kwJwjBs+V1qlyAIViEXbGWZOLnobdUGW8l//TmiYCtXh2H4WSvLNAjYjygIS3xVYrzeOPBKCIwOw/Dh1qy7loIgGAMMK04fNmwYY8aMSaFEkiRJkiRV6bW3osHoux+DN8Ynv2eefrDZOtFg9E5b1L4Mn34BC48qHOQOApj9au3zktRcrOMkSZJUjn1FJXG7kCRVa9y78Ojz8PQrMObtaLL3t9+1bh09ukd34lxyERgxFNZfDdZdBQbM0zFlzvfJ5/DhJ9EE/MlTYEB/WGQQrLhsdRPSv5kMR50JF90QTXJvaX5nvM4lF4Hj94c9tm7/d6gX9i+kllknqdm5D2Sbv4+qYZ9P9c5tuDHZhjWOLsNLL3Se+HAUUEFKg9tktmS5Hf/oAdsiqVFUqPuHDx/O2LFjkz41NgzD4Z1ZzGZh4JUOEgTB6kSBVrYHloyTi97WlmAr7wJXAFeEYfhmDcq5OHAXsFxePvmBV04Nw/Do9ubTVgZekSRJkiTVnTFvwXH/gFsfjAa/qh2MXnFZOOkQ2GpU7coSD7gX5zfntdrlIam5WMdJkiSpHPuKSuJ2IUmqxpi34JIb4ab74f0Jha+1Z35j8WT0FZeBn20Bu/8Ehizc9vUW+3AinHdVdFfQse8kv6d/X9hyAzh4d1hzRPJ73vkAttoP3nq/8HtXmihf/L4NV4crToOFFmj996gX9i+kyqyT1OzcB7LN30fVss+neuc23HhswxqTQS6UNW6T2ZDVdjy/HF26JL/ftkiqPwZeyRQDr9RQEARrkwu2MiROzntLuWAqLb3+BXAtUbCVJ2tQ1MJMgmAJ4BWgb1HeIfBEGIbr1zrPahl4RZIkSZJUV87+vygC+MxZuUHmliKHFw9GH7Ar/P2o8oPirVEc6TwejPPEuaS2sI6TJElSOfYVlcTtQpLUkkeegz+fBw8+Ez1PmstYzd05yym3viCA0WvCoXvCFhu0ff2zZsFJF8Lpl8C0GdVPwP/V9lH71qd37rVPv4DVd4KPPi18b0vfJek9gxeEe/4Nw5ap/rvUC/sXUnnWSWp27gPZ5u+j1rDPp3rnNtxYbMMam0EulDVuk+nLYju+0AbReqsNkmJbJNUXA69kioFX2ikIgvWJgq1sBwyOk/Pe0lKwleL3xK9PA/4HXA7cFYbh7PaXtrwgCP4N/DKhLO+EYbhsR+ZdiYFXJEmSJEl1YcZM+Nlh8L+Hkgfay42/JA1GBwFstAbcem7hYHdbeOJcUi1Yx0mSJKkc+4pK4nYhSWrJl5Pg0FPgitui5y1NYG/tHMdq1hO/Z71V4ZyjYcTQ1uUxYyZsewDc80Tr7woa3xH0rguhe/cobZO94YGnS9vMagLP5L8vzmOB+eHJK2GpIeU/V0/sX0iVWSep2bkPZJu/j6pln0/1zm248diGNT6DXChr3CbTk9V2/IMJsPgmpemVgrrYFkn1xcArmVKDkFnNJYhsFATBuUEQTAAeAg4AFiEKVBIQBS+JF/LSiwOyxEv+5+4HfgEMCsNw5zAMb+vooCvfe6VMur0ySZIkSZIqmTsXtjkAbn0wN9hVPAAdpxUvEH0mf5A7DKO7e253MMzujCEBSarAOk6SJEnl2FdUErcLSVJLXh4Hq+0QBV2J6/3itqBYubajUpuSJP89cd6PPg9r7gynXlT9d5g7F7b6Ddz9eGH54/W2lH8YwkPPwt7HRun/e7Bwsnv+/yX/edISrzd+X5zH51/BT34L02dU/72yyv6FVJl1kpqd+0C2+fuoWvb5VO/chhuPbVjzqjS2JKXBbbLjZbUdnzsXdj8y+TXbIqmxWfenplvaBagnQRD8DDgH+EGclPdycUuVtFWXe89LwOXAVWEYTmxvOdtoSpn0/p1aCkmSJEmS6s3x/4R7Hi8c4EqK6p0kaTJ5PNh97xPwu9Pg7KM7ptySVA3rOEmSJJVjX1FJ3C4kSZU8+ypsvDdMmVbaPsSPq2kz2iJponycz8xZcPRZ8NpbcNlJ0LVr5XWd9d/ydwVNKn/S+8IQrrwd9tkRzv6/0tfjx/P2hx+Pgs3XhcUHR3e3nTETPvkCHnkOrr8H3hxfOJk+/vy49+C4c+D0I6r+N2WS/QupMuskNTv3gWzz91G17POp3rkNNx7bsM7VdcX08s7/HcMQFtqg+s8GAcx+tfZlUvrcJptLVtvxs/4Lj71QPt/istkWSe2Twbr/lbkhMDTpE8MIhs2JP0E41nghNRKEtT5B2cCCIDgeOD4vqT3BVt4HrgQuD8Pw9dqUsO2CIDgcOI3C8gbA9DAM+6RTKgiCYAwwrDh92LBhjBkzJoUSSZIkSZKU583xsNI2MPv7caukieKbrwubrwcrD4UF5ote+/gzeOgZuPYueOfD8oPuQQA3ng3bbNy28n36BSw8qrRMc15r2/okNRfrOEmSJJVjX1FJ3C4kSZW8/zGM3Am+nJQccCV+DtCtKwxdClYdBisuA4MXhEUGweAFoF9f6N0Ten2/zJkTtT0zZsLkKfDtd/DZV1G9P34CvPU+vDQOXnkDZn1/d9HiICz5ZdnpR3DVGeW/xwcTYNhPYNqMwjLH7RXAoIGw3BLRZPVPvoDxH8MXXxfmHec3dEl4Y3zppFqAn28bTVYfOKB8ecIQ/n0dHHlm9N2LX+vZA964HRYbXH4dWWb/QqrMOknNzn0g2/x9VC37fKp3bsONxzas83UZnnYJ2sZ9qXG5TTaPrLbj+W3R3LmlrweBbZFUaxms++eGIaVhKiJdCOIXQsKxLdxRQNUy8Eor5AVeKQ5OUqxcsJWvgeuAK8Jxl+p8AAAgAElEQVQwfLT2JWy7IAj+BexL6Xf7MAzDxdMplYFXJEmSJEkZ96vj4JIbS6N3hyGstyqc90dYcdnyn58zBy64Fo78G0ydnvts/noWmB/G/q/ygHY5njiX1B7WcZIkSSrHvqKSuF1IkioZ/YtoInpxPRzPX1x0EPxkI9hmNIxaPZqoXUszZkb533gvXHUHfDe1NABLXKbTfge/+0Xyeo7+O5xyUXJ7t8ZKcPrhsP7I0s/d/ySccSnc/XjyZ6Ew/aDd4e9HVf/9Xh4HW+wLn35Z+n0O3RPO+H3168oS+xdSZdZJanbuA9nm76Nq2edTvXMbbjy2YZ2vy/DScZrOkHRdbbXlcF9qbG6TzSOr7Xh+W5QUeOWR/9oWSbWWwbp/zty5lAu80pVgLlEcCAOv1JCBV1qhKPBKSwFX4tdnALcBVwC3h2E4q0ML2UZBELwCrJjw0t1hGG7R2eWJGXhFkiRJkpRZU6fBD9aNJmvH4sHjPbeGf/8ZunWrbl0vj4Ot94ePPi1cT/x35y3gitNbX0ZPnEtqK+s4SZIklWNfUUncLiRJlVx7J+x8eHKgk6FLwsmHwtajO29C67ffwUkXwpmXwZyiSevx3Tlfvw2WWKTwtTlzYLGNo7uH5r8/CGD3n8BlJ7X8Hf58HpxwbmHQmeKJ7yOWhxdvbP33evplWH+Pwu8UhvCD+eDTR9OZMNwe9i+kyqyT1OzcB7LN30fVss+neuc23Hhsw9IRX+ichetcDXIhcJtsFlltx4vbouLAK0EAc1u4ttq2SGq9DNb9Bl7pfF3SLkADCPMWyAVceRjYBxgUhuGOYRjenOGgK32Az4nKXLxcn2LRJEmSJEnKrnseh+kzcs/jwfH1V4OLTqx+sB1gxFC47+Jo0BkKB9vDEK6+E+57orbll6RKrOMkSZJUjn1FJXG7kCRVcspFhc/jSat7bwcv3wTbbNy5k7Hn6QenHAYPXpZ8l9GZs+DYs0vTH3sBJn6eex63T2uNqO7CK4A//hZ23jL32eLPBAGceFCrvs7/t+YIOPJXpZOCv5wET7zYtnWmyf6FVJl1kpqd+0C2+fuoWvb5VO/chhuPbVi6Kv1/4/9lLRepJW6TjS2r7XhxW1TMtkjqWNb9Tc3AK21XHGwlAF4DjgIWD8NwozAMLw7D8Nu0ClitMAynhmG48fdlLl4uTrt8kiRJkiRl0uMJg8NBAP/6I3RtQ9DgZZeAq06HLl1y64r/hiEcfHIUxVySOoN1nCRJksqxr6gkbheSpHLGvg0vjcvV5fFE751+FE1e7949vbKtuyo8cCn075tLi9ua6++Br78pfP+zr5auIwjgghNaNzn23GOhX5/k1wYOgK1GVb+uYofuCX16laY//Gzb15kW+xdSZdZJanbuA9nm76Nq2edTvXMbbjy2Yem44WwY0L98gACIXqv1Esvf1xZZEBZbuOVl8cHRXzUmt8nmkNV2PKktitdjWyR1nAzW/RO7wwfMKlkmMnsW8AHw/vd/VSMGXmm7ONjKx8DpwIgwDEeEYXhaGIYfpVs0SZIkSZLU4V5+I/c4HmDbagNYYem2r3P0WnDkL3ODaPmDaePeg3Mub/u6Jak1rOMkSZJUjn1FJXG7kCSVc+uDpWnz9osmfWfBistGZSm+O+es2VHwlXzPj809jtu7TdaO1tEa880LP9uiMM94fT8e1b47HM4/ALYZXfp9XhrX9nWmxf6FVJl1kpqd+0C2+fuoWvb5VO/chhuPbVg6froJvHQjrLdq7nvlX/AcBLD9pvDVkzB3TO2WeN35nrsO3ru3+kWNyW2yOWS1HS9ui2KtbTtsi6TWyWDdv/myAUvxTskyhLffIhy75P9fVDMGXmmbb4FLgI2BxcMwPDIMwzJhxCRJkiRJUkN6f0LpINeP1m//ek/YH1ZaLnpcHO38z/+CLye1Pw9Jaol1nCRJksqxr6gkbheSpHKeG5N7HE/q3vXH0cTsrNjtJzBi+dJJ4k8U3fF03Luln916o7bluenayemrrNC29eXbYGTh8zCEdz5s/3o7m/0LqTLrJDU794Fs8/dRtezzqd65DTce27D0DFkYHvoP/HE/6JJ3yWu8D9x4H4z4KTz8bDrlU/Nxm2x8WW3Hk9qitgZJsS2SWse6v+kZeKV1ngN2AhYKw/BXYRg+GIbFZ1slSZIkSVJT+Oyr0rRVazAQ3a0bXHhC8iD5t9/B8f9sfx6S1BLrOEmSJJVjX1FJ3C4kSeWMfbu0Ht9snXTKUsle2xY+D0N48fXCtEmTS7/L6iu2Lb944n2xYe24m2rsh8vnHsflnfBZ+9fb2exfSJVZJ6nZuQ9km7+PqmWfT/XObbjx2Ialq0sXOOEAePBSWGTBwiC5YQgffgIb7w1/OBNmz06vnGoebpONLavteFJb1Fa2RVLrWfc3tW5pF6CehGF4e9plkJRRex+TdgnaJgjg4r+kXQpJktRI7BepmUydVpq2wPy1WfeaI2CfHeCCa0ujnV94LRy4Gyy/ZG3yUrqsN5VV1nGSJEkqx76ikrhdSJLK+fzr0rQs1ttrj8g9jtuZT74ofM83k0s/t2Ab27shCyWnLziwbevLN3BAadq3U9q/3s5m/0KqzDopx/Ntzcl9INv8fVQt+3yqd27Djcc2LBvWWw1euRl+eRzcdF+07cf7wdy5cNolcP/TcOVpsMzi6ZZVzcFtsjFltR1PaovayrZIajvr/qZk4BVJqoXLbq5dJMHOEoaeuJMkSbVnv0jNrmeP2q3rrwfDdXfD198Wps+ZC787DW77V+3yUnqsN1VPrOMkSZJUjn1FJXG7kCRBdAfPYv37dn45WjJ4wdK0b4rKPnlq6XvmzG1bfn16J6fX4n/Tp1dp2sxZ7V9vFti/kHKsk3I839ac3Aeyzd9H7WGfT/XObbi+2YZlx4B54Iaz4fyr4Xenw/QZUXocuOC512CV7eHvR8Gvdki3rGoObpPNIQvteFJb1Fa2RVL7WPc3nS5pF6DeBEEwIgiCPyYtKZdrvTLlWjHNcklNJwzrZ5EkSepIafd17BepM/RNGIye9G1pWlvNPwD+dEBuO40n34Uh3Pko3PtE7fJS+tKuC603Vcw6TpIkSeXYV1QStwtJUjk9upemfVfDieO1knQRVfFF/L0SJt1/+mXb8utSZupm0mT11vpyUmla9zq8R5/9C6ky66RSaZ9D83xb53IfyDZ/H1XLPp/qndtw47ENy57f7AzPXgPDl8ntC0EQLVOmwb4nwPYHw1cJ/xOpI7hNNo6stuNJbVFb2RZJtWHd3zQMvNJ6KwMnAMcnLGlakeRy7ZRimdRowhCmTI06Rd9M9uRPkrixrIdFkiSpI6Xd17FfpM4w37ylaW++X9s89tsZVlw2ehxvr/Gg+8EnwezZtc1P6Um7LrTeVDHrOEmSJJVjX1FJ3C4kSeXMN09p2rh3O78cLflgYmnavP0KnyfdBXTCZ23Lb86c3ONaz8H67KvStFpMpO9s9i+kyqyTSqV9Ds3zbZ3LfSDb/H1ULft8qnduw43HNiybhi0Dz14Lv/lZ4f8y3hduvh9++FN44Kn0yqjm4jbZGLLajie1RW1lWyTVjnV/UzDwSvsEeUvapuU9zi/XyHSKo7o3fQbc8zj84Uz40a9hyU2h18rQbyT8YB0YsCZ0WwnmWwuW2Ry2Owj+ej7c9ShMm5526dORdCcC71ggSZKakf0iNYulh5Ruww8/W9s8unSBs/9QGO089sZ4OOnC2uandFhvKous4yRJklSOfUUlcbuQJJWz6EKlbcQdj6RTlkryJ8LG5V18cOF7Fh9c+l3aenfxqdNh+01hu02iv/HjXj3btr58r76ZexyXd6EftH+9nc3+hVSZdVIhz7c1H/eBbPP3UbXs86neuQ03Htuw7OrZA877I9x4dhToN/7e8cXOEz6DzfaBI06HWbPSLauag9tk/ctqO57UFrV1LMO2SKot6/6GZ+CV9gm/X7Ig/7fML9cyKZRF+TbcC4Jhpcv4j9MuWbJ3PoDf/hkW2gA23wdOuQjufiwq78yiin7uXJj0LbzzIdx0Hxx7DmyxLwxaH/Y+Bh58Op3vkIa374J/HAObr5trJKHynQkqndTrjEWSJKkj2C9SM1lhqdzjeHu/7u7aD5JttGY00B2GpdHOT7oQXhxb2/zUuaw3lVXWcZIkSSrHvqKSuF1IkspZa0TucVxnX3UHfJ5wN8y0zJgJ/76+cFw2CGDE8oXvG7pk4ethGN3BsC3jpv37wnVnlS7z9Gvbd8h364OFz4MAllik/evtbPYvpMqsk3I839ac3Aeyzd9H1bLPp3rnNtx4bMOyb9tN4KUbYYORhX3/IIiuczvzP7DWLvDGe+mWU83DbbJ+ZbUdL26LYrZFUnZY9zesbmkXoM4FkJnAKwPLpM/bqaVQ/fpuChx9FvzrGpg9u33rmjwFLr0pWtYaAWceCWuvXJtyZtVSQ2D/XaPl3Q/htIujCRlQeiIv7iQvvwSs+cPUiixJktQh7BepmWy4BvzjisK0T76I0g77eW3z+tvv4Y5HYfqMXFoQRAEydz4cnrkG5u1f2zzVOaw3lVXWcZIkSSrHvqKSuF1IksrZYDU467+Fad9NhX1PgBvPSaVIJX5/Bkz8vPQC/U3XKXy+wUj4zy2FaZ9/DedcDgfv0bFlrNa7H8LjL5Z+l1VWSKc87WH/QqrMOinH823NyX0g2/x9VC37fKp3bsONxzasPiy6EDx4GZz4Lzjx/OgCZ8j1+V98HVbbAc44An6zc6pFVZNwm6xPWW3Hk9qirLEtkqz7G1QQGjW7VYIg2Au4lCjgSpD/NwzDrimW61pgBwoDwQTA9DAM+6RTqvYLgmAMMKw4fdiwYYwZMyaFErXBhnvBw8+Wpr93b3YiuI17F7beH956v+Py2GUrOO84GDBPx+WRNQ89A9sdBN98Fz2PT9jFf/ffBc45Jt0ySpIkdQb7RWpU30yGhTaIBr1jYQi9e8H9lxTexbMW/no+HPePwv0n/jtqdbj9X1He+T79AhYelRvYjt8/57Xalk21Zb2pLLCOkyRJUjn2FZXE7UKSVM6sWTBkdHSRUiyug3+1PfzreOjSJb3ynXQBHHtO6Z1D+/WBTx6BPr1z6RM+g8U2LryzaNzePXctrLB055W7nE32hgeeLm3v7rwANls33bK1lv0LqTLrpMo839b43Aeyzd9H1bLPp3rnNtx4bMPqz+MvwK5HwIeflI7vBAH8eBRc/Bf4wXyln+0yvPT/OPFhWHBg55Rdjcltsn5ktR0vboviYA6xLl3Sb8dti6RCHVT3Dx8+nLFjxyblODYMw+Ed8VWaXYpnLFUrQRBsCvyUwqArUnVeHgfr7taxQVcArrodRu4YRbNrixP+WboU3w0nazZcA677e+55cQQ/SZKkZmG/SI1q3v6w/aaFJ1mDAKZNhx/9Gm59oLb5HfkrGL5MLp/8QfeHn4Wt9oPJU2qbp9JhvakssI6TJElSOfYVlcTtQpJUTvfusO9OuTYiv86+6AZYfw949c3OL9fEz2GHQ6KJ7vni8u23c2HQFYDBC8KWGyS3d+vtDnc+0vHlruTIvxVOdo/N2w9Gr5lOmdrD/oVUmXVSZZ5va3zuA9nm76Nq2edTvXMbbjy2YfVn3VXhlZuT98UwhNsehh9uC/c8nl4Z1VzcJutHVtvxpLYoX7n0zmJbJJWy7m8YQZh2JZuyIAhGAaNa8ZGVgW2JgpwERX//VPMCVtYLWAnYHOhWVBa+fzwxDMNFOrlcNRMEwRhgWHH6sGHDGDNmTAolaoMN94o6PsXeuxeWSPmn+fhTWG0H+PTL5NeDIOrsbLoOrDYMllkc5ukL8/SD2XPgu6nROsa9B0++BP97qOXAKostDE9fDQst0LqyBiWbASw+GMbf17r1pGGb/aP/TXHUMe+YIEmSmo39IjWil16HkWUmjAcBbL0R/O7nsN5qtcnv5XGw5s4wa3ZyfksPgWv+Bqt8fwzlHUvqm/Wm0mYdJ0mSpHLsKyqJ24UkqZxp02H41vD+hOh5fp0N0R06txkNv/kZbLxW9LyjvDkezr8G/n0dTJ2eK0ssDGHB+WHs/2D+AaWff/Kl6EKrYmEYlXunH8Gvd4T1VoVu3TrsaxT4+FPY/8RoPLm4TEEAB+0Ofz+qc8pSa/YvpMqsk1rm+bbG5j6Qbf4+qpZ9PtU7t+HGYxtWvy68Fg47FabNyKXF+2YQwMF7wCmHQo8eUVqX4aX7xsSHYcGBnVtuNS63yezLajs+fWauLZo7t3Q9u2xlWyRlVQ3r/uHDhzN27NikXMaGYTi8I79GszLwShAcDxxPLlhJVR8rk57WPzM/AAxFj18Iw3BkKqWqAQOvdKAwhFF7wqPPJ7++zWg444go2Epr3P0YHH0WvJBYmUdGrwn3XdK6OwjUc+CVux6FLX/jiTtJkiT7RWpU+/0JLri2cOAbCh8vOH8UyXjoktGxTP++0THhWiNan98F18B+fy6clJ7/uGtX2HNrOOpXUeBMT5zXL+tNZYF1nCRJksqxr6gkbheSpHIeegY23ye62ROUBl+J6+eBA2CTtWHUSFh1WHQH0D69257vBxPglTej+Vt3PQZj38nlH+dbPLn9xrNhm43Lr3OfP8LFN1Ru73r3hGUXj25S1a8PnHwoLDa47d+j2DsfwFMvw60PRsvMWclBZPr0gnG3w6IL1S7vzmb/QqrMOqkyz7c1PveBbPP3UbXs86neuQ03Htuw+vX6O7Dz4fDqm6X/qyCAlZaFK0+HYcsY5EKdw20y+7Lajk+eAtffk0vPFwcvty2SsqlGdb+BVzqfgVdygVfqWfwjFgdeCYF/hmF4cCqlqgEDr3SgS26AXx6X/NpJh8Afft32dc+ZA8eeDadcVP49V50BO29Z/TrrOfDKjJkwcO1chDJP3EmSpGZlv0iNauo0WGfXaOJ20qB7rDj45Faj4NZz25bnwSfBP65InpSen/+yi0d37/TEeX2y3lQWWMdJkiSpHPuKSuJ2IUmq5KrbYfcjc8+rbScW+kE0cXzQwCgwS/++0UTubt2ga5fo7qAzZkaTvidNhk++iJbxH8N3UwvzK86juAynHgZH/LLy95g+A9bfA54fU1rWpPmYQQDPXhsFkmmP86+O2rwPJsLU6aV5JgWROfUwOHzv9uWbNvsXUmXWSZV5vq3xuQ9km7+PqmWfT/XObbjx2IbVtxkz4XenwXlXlV7sDNCrZ/R/O/hkg1yoc7hNZltW2/EwhJ7dYfrM0s8XlyVOsy2SsqMGdb+BVzpfl7QLkCFhK5ZarKOWC+SCrhS7tdp/gJrInDnwlwuSXztwt/YFXYEoqt7Jh8Gxvyn/npMubF8e9aRnD1h75eTBFUmSpGZiv0iNqk/vaOB8mcVKB9uDILeEYeHSHmcfDb/4aWEexQPaYRidNI/LovpjvakssI6TJElSOfYVlcTtQpJUyS5bwbVnQt/e0fP8iaaV2omJn8Mzr8L/HoLLbo4mfZ96Mfz1Avjzv+Dkf8OZ/4F/XgmX/w/uezK6i+DkKaXtTZxHfr5xG/K337ccdAWiybB3XRjdzbS4Xcn/HkmT39vjnQ/h9XdhyrTC75X/f8vPc/tNG2Oyu/0LqTLrpMo839b43Aeyzd9H1bLPp3rnNtx4bMPqW88e8M9j4eZ/wPzzFu4bEAXWOeSU6LH7hjqD22S2ZbUdh+SgK/F7bIukbLPur0sGXikUVLm09/MdscTCvL+PhWF4fxv+D2p09z4B731Umr7oQnDKYbXL508HwOorJb/26pvwQmKkrcbU3kiBkiRJjcJ+kRrVYoPhyatgwzVKB8Vi+YPbtRjkvvgvcNSvkvPriIF0pcN6U1lgHSdJkqRy7CsqiduFJKmS7TeDp6+G1YaXn0haPGk8aVJ7S0ul9eQLQxiyENx1ARy6V/XfY+AAeOBSOGj35PV2pHKT6vMvCNh1K7jy9M4rU0ezfyFVZp1UmefbGp/7QLb5+6ha9vlU79yGG49tWP3bejS8dCOMWr10vMgLnJUGt8nsymo7nmZbblsk1YZ1f10x8EqhsMqlvZ/vyAWiQCxvAzu3+T+hxnZzmXg8++8SReirlS5d4E/7l3/9nsdrl1fWrTw07RJIkiRlg/0iNbL4ROu5x8GggeUjmtdyEPykQ+F/58HgBTs+L6XDelNZYR0nSZKkcuwrKonbhSSpkhWWhmeugYtPhEUHlW8nWgqi0tISryNffnqvnnDE3jD2f7DJOq3/Hr16wll/gGevgW03Li1zRyr3/5qnH/znZLj8NOjWrePL0ZnsX0iVWSeV5/m25uA+kG3+PqqWfT7VO7fhxmMbVv8WGRTtl386ALrmXUrrvqG0uE1mV1bb8aTgJ7ZFUn2x7q8bBl6pf0HRMgM4G1gzDMOJaRZMGfb4i8npW42qfV4/Wj+6K0ySp1+pfX5ZtfSQ3GMbQ0mS1MzsF6kZ7LczjL8XLvozbLwWdO9WeqfNWg52bzUK3rwDTj0MllikdP1pRzxX+1hvKmus4yRJklSOfUUlcbuQJFXyi+3g3Xvg2jNhozVyd/crDrbSHvmBVuJlkQXh+N/Ce/fAqb+Dvn3al8cqw+DGc+Cdu+HMI2HTdeAH83XsxPfi79WrJ/x6R3j1Zthj647LNwvsX0iVWSeV8nxbc3EfyDZ/H1XLPp/qndtw47ENq29BAMftBw/9J7rGrZZjT1JbuE1mW1bb8fzFtkiqP9b9dSEIOyOqVYYFQXAwcEgrPtIPGAiERIFO8v9+UPMCVhYC3wFfA2OBJ4GbwzD8tpPL0WGCIBgDDCtOHzZsGGPGjEmhRG2w4V7w8LOl6e/dG3WEOtvcudBnVZgxs/S1b5+F/n1rn+c+f4SLri9NX3FZePWW6tYRlGwGsPhgGH9f+8rWWT79AhYuCmxzwK5wzjHplEeSJCkt9ovUjKZOiwJPvv4uvDkePvsKpkyFEUPhzwfWNq8whLsfg+vvgbsegwmflb4nCGDOa7XNVx3HelNZZx0nSZKkcuwrKonbhSSpki8nwe0PR8uTL8FHn1Z+f/FE1HJzIbt1hVVWgA3XgK03gnVW6ZxJrF9Ogs+/gm+/i+ZJ9endvvUdcTr87bLc8z69YK0RsPm68MvtYf4B7Vt/vbJ/IVWnmeskz7cJmnsfqAf+PmqJfT7VO7fhxmUbVn++mRxd53b9PaWvBQFMfBgWHNj55VLzcpvMvqy347ZFUv2psu4fPnw4Y8eOTVrD2DAMh3d0MZtR0wdeaa0gCPYCLiUh8EoYhl3TLFsjarrAK5OnwK0PwL1PwsvjoskD334Xvda/bxRoZMVlYZO1YduN2xYk5YuvYYF1k1/rqMArF10fNQLFBg2ETx6tbh31HngF4Henwty8Onf91WC7TUvfN+YtWHGbyut67RYYvmxtyydJktRZ7BdJ1anFPvD6O/Di6/DSOHj7A5j4OXzyRXRMqvpRbb0J1p2qH9ZxkiRJKse+opK4XUhSc/pyEjw/JprM/vGn0VyqiZ/DlGkwbTpMnxk9/uiTyut5/jpYtQ7mn1bT3p1yaDShf9BAWGk56Natc8rWiOxfSJU1Wp3kPAW1VqPtA42omt/o/ONhjZX8fZqZfT7VO7fhxmMfIz3V/O/PORp+8zPo3r1zyqTmVe32uNjCsOUGbpP1KsvtuMdTUjpa2R8x8Erns7aTsmDyFDj1Ijjrv9FkgCRfToqWF8bCf2+JAqTsvwsct1/rotBNm17+tfEfRx2hWltjJVh31dL0Pr2S318uWE2x9yckB2Q5/rdwwgFw3V2w02HJnz3zSDh0r5bzqMbQreCN90rTD9kT/n5U7vnfjqxNfpIkSfXOfpHUeVZYOlp2/XHaJVF7WG9KyazjJEmSVI59RSVxu5Ck+jNwAGy2brSUU80k1Z49aluuNP14Qy/2zxL7F2p29VQneb5NHaGe9oFmtd6q/kZqP/t8qnduw/XHPkZ6Rq9pgAtlx+g1rQuUbjvu8ZSUDvsjqTLwipS2196CbQ6Adz9s3ecmT4FTLoKbH4A7zoclF63uc716ln/t+rs7JvDKD5eHxy6v/XpbsvVoGDAPTPq29LXr76lN4JWXxyUHXQH4+bbtX78kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSeoQXdIuQJ0L0y6A6tyzr8J6u7c+6Eq+ce/ChnvBp19U9/7554UeZaJd/fNKGP9x28uSNT17wE6bJ7/25Esw4bP253H1HcnpKw+FEUPbv35JkiRJkiRJkiRJkiRJkiRJkiRJkiRJktQhDLzSPsH3i9R6b7wHP/o1fDO5/ev6YCLsfWx17+3aFVZYKvm1r76BrX4TBXNpFHtuk5wehnDjve1f/7V3J6f//KftX7ckSZIkSZIkSZIkSZIkSZIkSZIkSZIkSeow3dIuQB36BHg47UKoAez2+yjQSb6ePWC7TWGL9WHY0rDAfDB5Ckz4HO59Aq66Az76JHl9dzwC9z3x/9i78zDJzrpe4N+3qnqdLTNJIAEkGwkkhIAgEREIcNnCkrArAjEawCuClyu4oiAiArK4gMqDEJWLSjDsQQghEAibRFBAwEhYZDEBkpnM0ntVnftHdzO9VPdM93R3dU9/Ps9znq7znnN+76+SZ2aq6rz9reQh9z303I+4f/KF6zsf+8rXk3s9KXnuU5NnPjE57Y5Le17rzU/fMzntx5Kvf2f+scs/lDznqcuv/dkvJt/oULenkTz10cuvCwAAAAAAAAAAAAAAAAAAAKw6wStLVFXVlUmu7HYfHAVuuXX2/i88Lnnprya3v+38c+96evLQ+yYv+uXkOS9L/u7dnWv+5dsOL3jlkscnr7o0abc7Hx8eSV75psntnmclj3ngZBjMT5yd1OuHrn+k3vlnyfjE7LETz5t/3h1OSK67bP741sHZ+0+/IPn9v5h/3rWfS35wS3KbY5fX52Uf6Dz+6Acmx+1cXk0AAAAAAAAAAAAAAAAAAABgTWRIolIAACAASURBVNS63QBsegP9ydtfm1z6ss6hKzNt3ZJc+ofJw+/X+fgHrk3Gxw895+knJ7/4+MPr7/NfSV7yl8l9npIce9/kgl9JXvM3yb98IZmYOPT1y7HrmOSE42dvndRr88874fjJ/04zXXRhUsr869vt5F0fXl6PVZW8fYEMposfu7yaAAAAAAAAAAAAAAAAAAAAwJoRvALdVEryT3+SPOkRh39NrZa87nc6B4mMjiWf/dLh1XnNbyR3OfXw502SvfuT9300ecGrJoNYdvxk8oCnJ7/92snxW25dWr21csodkp/+8c7HLv/Q8mp+8vPJd2+aP36bY5NHPmB5NQEAAAAAAAAAAAAAAAAAAIA1I3gFuumiC5NHnbf0604/OTnnjM7HvnzD4dXYvjW56k3JnU9Z+vzTRkaTaz+XvOJNyQW/khx33+Quj0qe+aLkbf+c/HD38muvtIsu7Dx+zXXJ7mUExlz2gc7jT3t00mgsvR4AAAAAAAAAAAAAAAAAAACwpgSvQDf95iXLv/bed+s8/q3vHX6NO5yQXPf25Bcel5Sy/F5muv6byZsuT57yguSEByQP+cXkb9+VjI2vTP3levIjkv6++ePNZvLuq5dWq91OLv9Q52MXP27pvQEAAAAAAAAAAAAAAAAAAABrTvAKdMs5d07OPG351590u87jP9yztDrbtiSXviz5/OXJzz4y6e1Zfk9ztdvJ1Z9JfuGFySkPTV7/95Nj3bBjW3LBgzofWyhEZSHXfDa56eb54/c8K7nbGUvvDQAAAAAAAAAAAAAAAAAAAFhzjW43sNZKKZcucriqquqSI7h+vTnk86GLHnTukV2/c3vn8eHR5dW7x5nJP746uXlP8k9XJu++ejJgZHxi+T3OdOMPk+e+LHnLe5PL/yS54wLBMavpoguTt39w/vjVn0n27p8MZzkcb/tA5/GLH7v83gAAAAAAAAAAAAAAAAAAAIA1temCV5JcnKTqMF6mxg8VVLLQ9evN4T4fuuWcM47s+oG+zuOjY0dW97idyS//7OR2YCj5xOeTa65LPnZd8vmvHHkQy3VfSs79meSjf5ucedqR1Vqqh/90cttjk+/fMnt8fCJ570eTp19w6BrNZvLOq+aP9/YkP/folekTAAAAAAAAAAAAAAAAAAAAWHW1bjfQRWXOdqTXr7eN9e7k2x/Z9bUF/vi220dWd6atW5JH3D95xa8ln/7HZO9nk2v/X/LK5ycXPji5zbHLq/v9W5KHPTO55daV6/VwNBrJUx7V+djlVx5ejas+1bnvxzwoOfaY5fcGAAAAAAAAAAAAAAAAAAAArKlGtxvoomrO/lLDSuZev94IX1nvjt/V7Q6Wrr8vud+9JrdpN/x3cs11yUf+Jfnwp5Mf7j68Wt+9KXn2HySXvXZ1el3IRRckf/qW+eMf+lRyYGgybGYxl32w8/jFjz3y3gAAAAAAAAAAAAAAAAAAAIA1U+t2A11UZmxHev1629gIBvq63cHKuNNJyTOemPzDq5KbPp5c83fJL/9ssu0QASZJ8vYPJv/6H6vf40w/flZytzPmj4+OJVd8bPFrx8aTd189f/y2xyaPuN/K9AcAAAAAAAAAAAAAAAAAAACsic0cvFLN2I70+vW2sRE0Gt3uYOXVasl5907+8kXJ965JXvn8ZMe2xa95w2Vr0tosT39M5/HLP7T4dR+8Ntm7f/740x5zdP7/BAAAAAAAAAAAAAAAAAAAgKPYZg5eAVbTti3Jb1yS/Md7krNOW/i8912TVGucF/S0C5J6ff74B65NhkcWvu6yD3Yev/hxK9MXAAAAAAAAAAAAAAAAAAAAsGYa3W6gC76d5EhSHo70ethc7nBC8s9vSM66oHOoyQ9uSb7xneS0O65dTycenzzkp5IrPzF7fHhkMnzlCQ+bf83IaPK+j84f/4mzk7NPX50+AQAAAAAAAAAAAAAAAAAAgFWz6YJXqqo6uZvXQ1f9/uuTb/3P/PFnPCG5371Wb96Tbp/80pOTP/m7zse/vsbBK0ly0QXzg1eS5B1XdQ5eueKa5MDw/PGLH7virQEAAAAAAAAAAAAAAAAAAACrb9MFr8Cm9uHPJJ/8/Pzxu562usErSXLhgxcOXtmzb3Xn7uRxD0m2bUn2D80ev+KaZGw86eudPf62D8yv0debPOWRq9YiAAAAAAAAAAAAAAAAAAAAsHpq3W4AWEO7dnQe/8Z3V3/uO5+88LFmc/Xnn2ugP3niw+aP7x9KrvzE/LF//vj8cy94ULLrmNXpDwAAAAAAAAAAAAAAAAAAAFhVgldgMzn5dp3H/+WLqz/3sYsElGwdXP35O7nows7j77hq9v57rk5Gx+afd/FjV74nAAAAAAAAAAAAAAAAAAAAYE0IXoHN5B536Tz+xf9Kvn/z6s59YHjhYycct7pzL+S8eycndQijee9Hk4mJg/uXfXD+OScenzz8fqvXGwAAAAAAAAAAAAAAAAAAALCqBK/AZnLevTuPt1rJ31+xunP/x9cWPnbGyas790JKSZ72mPnjt+5LPvzpg48/9Mn55zztMUm9vrr9AQAAAAAAAAAAAAAAAAAAAKtG8ApsJqfdMbn7nTsfe9WlydDw6s39jqs6j595arJzx+rNeygXXdh5fLrfd16VjE/MP37xY1evJwAAAAAAAAAAAAAAAAAAAGDVCV6BzeaZT+o8ftPNyQtetTpzfvO7yZsu73zsUeetzpyH64yTk588Z/74u69Oms3ksg/OP3bu3ZKz7rTqrQEAAAAAAAAAAAAAAAAAAACrR/DKOlZK2VVKeUop5TWllMtLKVeWUq4opfxNKeU3Sik/2e0e2YAueUJy4vGdj73hsuTVl67sfHv2Jo97bjI0Mv9YKcmzFgiCWUsXXTh/7JZbk8s/lHzkX+Yfu/hxq98TAAAAAAAAAAAAAAAAAAAAsKoEr6ySUkqtlHJmKeWBpZQTlnjt7Uspf5vke0nemuR5SR6X5CFJzk9yUZKXJ/lUKeVbpZRfL6UMruwz4KjV35f86W8tfPzXX508+w+SkdEjn+szX0ju/eTkC9d3Pv60xySnn3x4tWod/roaGVt2a7P87PlJb8/88V/9o6TZnD3W1zt5PgAAAAAAAAAAAAAAAAAAALChCV5ZQWXS40opVyTZk+Q/klyd5L5LqPHwJF9M8vQkfUnKIbY7JnlFkv8spUiD4PA8+fzk5x+78PG/eltyl0dN/tw/tLTa7Xby0X9Jnvi85L4/l3z9O53PO/H45NW/fvh1t22ZP/aDW5Ivf21p/XWy65jkUefNH//h7vljFz442bnjyOcEAAAAAAAAAAAAAAAAAAAAuqrR7QaOFqWURyR5XZJTp4emflZLqPGQJO9J0rvEa0uSOyS5opTyh1VVvfhw52QTe8OLk2/fOBmS0sm3b0ye/QfJ8/84+V/3Se57j+Ss05KTbpds35r09yUTE8n+4eQ7NybXfyu57kvJVZ/uHFgy07Ytybtfl9zm2MPv9+TbJV+4fv74Y5+bvPRXkx8/c7KvVivp602O33X4tZPkoguSd3340Of9wuOWVhcAAAAAAAAAAAAAAAAAAABYlwSvHKFSSm+Sv07ytBwMW0kmQ1NKx4s617lNkn/IZOjKzMCVQ9WoZpxfkvxuKWVXVVXPPdy52aT6+5L3/1Xy5F9Lrrhm4fNGRiePL3bOUtzhhOQ9r0/uedbSrvvJczoHr9zw7eQpL5g99uJnJ7//nKXVf9R5yXE7k5v3LHzO7W6TPPS+S6sLAAAAAAAAAAAAAAAAAAAArEu1bjewkZVStia5OgdDV6rMDkJZipcmOS6zQ1TmBrnM3eaeNx328uxSym8uowc2m4H+yRCU3/+VpGeVc5jq9eSSJyRfevfSQ1eS5GfOX/meZurpOfQcT79g8nkAAAAAAAAAAAAAAAAAAAAAG57glWUqpdSTvCPJT+dg6EoyPzDlcGqdkOTiOTWmdQpZKQscmx4rSV5aSrnnUvpgk6rVkhf/SvK5y5OH/fTK16/Xk4suTP7ziuRNL02O2b68Og++T/LAc1e2t7kuumDx4xc/dnXnBwAAAAAAAAAAAAAAAAAAANaM4JXle2GSh+Zg+MncQJSluCRJz9TjuaEr02PfS/LmJK9I8rdJvtphvpn7jSR/scQ+2MzudkZy5V8n1709eeaTkp3LDEhJklKS+/548trfTL51VfJ3L0/udNKR9/iPr0rOOu3I6yzk3HOSM0/tfOwnz0nussAxAAAAAAAAAAAAAAAAAAAAYMNpdLuBjaiUcnomg1fmBp5kzthYks8l+e4hSl6U2WEtM2u0k7woycurqmrP6eOBSf4myR0zO/xl+vpzSykPq6rqQ4f1xFgd1/zd6tS9+HGT20r7ibMnt796UfLZLyWf+rfkC9cnN3w7+d73kz37kpGxyXO3b0l2bEt2bE1O/bHk7ndO7nGX5Ny7JSccv/K9nXB88u/vTP7mXcl7PjLZ1y23Ju12sm1LctzO5J5nJQ++z/Ln+MoVK9cvAAAAAAAAAAAAAAAAAAAAsG4JXlme30nSk4NhJ8nssJT/SfLSJG+tqmposUKllLsnOX1Orek6VZJXVFX1sk7XVlV1TSnl3kmuy+zwlZmekUTwCktXryc/dY/JbT3p6Ume9eTJDQAAAAAAAAAAAAAAAAAAAGCZSlVVhz6LHyml7ExyUw6G1kwHpEz//GiSx1dVte8w6704yYvn1Jiu+90kp1ZV1TxEjfsk+WSnQ0lGk+yqqmr0cPpZb0opX05y1tzxs846K1/+8pe70BEAAAAAAAAAAAAAAAAAAADAyrvrXe+ar3zlK50OfaWqqruudT+bQa3bDWxAj0/SM/V4ZuhKknwtyRMON3RlyqM6jE3XvfRQoStJUlXVZ5K8b0YfZcbhviT3X0I/AAAAAAAAAAAAAAAAAAAAAHDUE7yydA9fYLxK8ltVVe093EKllF1J7jl1bSf/sIS+/nyRYz+1hDoAAAAAAAAAAAAAAAAAAAAAcNQTvLJ0983BoJSZgSk3VFX17iXWenAO/j8oc+r9V1VV/7WEWh9LsrtDX0ly1yX2BQAAAAAAAAAAAAAAAAAAAABHNcErS1BK2ZnkdtO7M35WSd6/jJIP6jTNVL0PLKVQVVWtJJ+Z0dfMeqcsozcAAAAAAAAAAAAAAAAAAAAAOGoJXlmakxY59pll1HtgJkNWOvnwMup9ac7+dO0Tl1ELAAAAAAAAAAAAAAAAAAAAAI5agleWZrEAk7mhJ4sqpRyf5Mzp3cwOYGkmuWZJnU36/gLjO5ZRCwAAAAAAAAAAAAAAAAAAAACOWoJXlmZwkWN7lljrAR3GpgNYPl9V1fAS6yXJ/gXG+5dRCwAAAAAAAAAAAAAAAAAAAACOWoJXlmaxAJNbl1irU/DKtGuWWGvawALjZZn1AAAAAAAAAAAAAAAAAAAAAOCoJHhlafYvcmxiibUeuMixa5ZYa9quBcbHllkPAAAAAAAAAAAAAAAAAAAAAI5KgleWZs8ix7YfbpFSynFJzk5STQ1VMw43k1y79NaSLBy8MrzMegAAAAAAAAAAAAAAAAAAAABwVBK8sjSLBa/cfgl1HpakTD2e+bNK8vmqqpYblHK3OfvTtb+/zHoAAAAAAAAAAAAAAAAAAAAAcFQSvLI0385kOEpm/Jx2zhLqPGmRYx9eUkdTSim9Se6T+X1VSb63nJoAAAAAAAAAAAAAAAAAAAAAcLQSvLIEVVXtS/KVBQ4/+nBqlFJul+RRmR+QMu2qZbSWJPdPMjA9zZxj1y+zJgAAAAAAAAAAAAAAAAAAAAAclQSvLN2nMzvYpJrav6CUcvvDuP5FSRpTj0tmB7AcSPKpZfb124sc+8IyawIAAAAAAAAAAAAAAAAAAADAUUnwytJdNePxzACWgSR/WUopWUAp5dFJnpnZYSvTdaok76+qqrnUhkopD0ny4BwMgZnrmqXWBAAAAAAAAAAAAAAAAAAAAICjmeCVpXtXkhunHk8HnUz/fHSSt5VSjpl7USnlqUneNnOoQ+23L7WZUsrZSS7L7DCXmY//q6qqbyy1LgAAAAAAAAAAAAAAAAAAAAAczRrdbmCjqaqqWUp5Y5IX52DAyczwlScmOb+U8oEkX0+yI8l5Sc6cc14yOyDlB0muWEovpZRHJLk0yc45dWf29Jal1AQAAAAAAAAAAAAAAAAAAACAzUDwyvL8eZJnJTkhBwNPZoaqbM1kAMu0TkErM49VSf66qqrmoSYupZyR5H8leXqSn8ziYS4HkrzxsJ4RAAAAAAAAAAAAAAAAAAAAAGwigleWoaqqPaWUZyR5f2YHnZQZ+2XuZXPGZ153a5LXLjZnKeVZSf4sSe8C86XD+B9XVXXLYnUBAAAAAAAAAAAAAAAAAAAAYDOqdbuBjaqqqg8keV0Ohpx0ClaZuZXMD2OZvvZ3q6q69RBTbkvSN6NOp5CXasbPzyZ5+ZKeFAAAAAAAAAAAAAAAAAAAAABsEoJXjszzkrw184NPSodtppkBKe+tquqvljDnQmEuM+e+PsljqqpqL6EuAAAAAAAAAAAAAAAAAAAAAGwagleOQDXpoiQvStLKZOhJdRhbps69OslTljH13MCVmTXfl+S+VVXdvIy6AAAAAAAAAAAAAAAAAAAAALApCF5ZAVVV/WGSc5NcmYOhKKXDqdPjE0lenuSRVVWNLmfKzA9cGU7ygqqqLqyq6tZl1AQAAAAAAAAAAAAAAAAAAACATaPR7QaOFlVV/XuS80sppyd5YpL7JzkzyW2S9CbZl+Q/k3woyaVVVX3nCKecDnYZSvIXSV5VVdUtR1gTAAAAAAAAAAAAAAAAAAAAADYFwSsrrKqqryV5+dS2GppJvp3kmiTvT3JVVVVDqzQXAAAAAAAAAAAAAAAAAAAAAByVBK9sHG9J8o9Jbqyqqup2MwAAAAAAAAAAAAAAAAAAAACwkQle2SCqqvpht3sAAAAAAAAAAAAAAAAAAAAAgKNFrdsNAAAAAAAAAAAAAAAAAAAAAACsNcErAAAAAAAAAAAAAAAAAAAAAMCmI3gFAAAAAAAAAAAAAAAAAAAAANh0BK8AAAAAAAAAAAAAAAAAAAAAAJuO4BUAAAAAAAAAAAAAAAAAAAAAYNMRvAIAAAAAAAAAAAAAAAAAAAAAbDqNbjdwNCql1JKcneSUJCcnOT7JYJKBJL1Jyhq1UlVVdckazQUAAAAAAAAAAAAAAAAAAAAAG4bglRVSStma5GlJHp/kpzIZtNJNJUmVRPAKAAAAAAAAAAAAAAAAAAAAAMwheOUIlVJ6k/x2khfkYNhK6V5HAAAAAAAAAAAAAAAAAAAAAMChCF45AqWUk5O8L8lZmR22UnWjnzmEvwAAAAAAAAAAAAAAAAAAAADAAgSvLFMp5ZQkn0pym0yGnMwNW+lm8Ml6CH4BAAAAAAAAAAAAAAAAAAAAgHVL8MoylFL6klyR5LaZDDmZDjpZLGxFGAoAAAAAAAAAAAAAAAAAAAAArBOCV5bnhUnOzOKBK4JWAAAAAAAAAAAAAAAAAAAAAGCdEryyRKWU7Un+bxYOXZkZuDLz2GiSA0mGI5QFAAAAAAAAAAAAAAAAAAAAALpK8MrSXZRkSybDUxYKXSlJvpXk75Nck+RLVVX9YI36AwAAAAAAAAAAAAAAAAAAAAAOQfDK0j26w9jMwJXdSZ5XVdVb164lAAAAAAAAAAAAAAAAAAAAAGApBK8sQSmlluT+ORi0kswOXflOkgdWVfXNte4NAAAAAAAAAAAAAAAAAAAAADh8tW43sMGclGRg6nHJ7NCVVpInCV0BAAAAAAAAAAAAAAAAAAAAgPVP8MrSnNJhbDqA5d1VVX12jfsBAAAAAAAAAAAAAAAAAAAAAJZB8MrS7Fjk2NvWrAsAAAAAAAAAAAAAAAAAAAAA4IgIXlmawUWOXbdmXQAAAAAAAAAAAAAAAAAAAAAAR6TR7QY2mLFFjt20Zl0AAAAAAAAAAAAAAAAAAABsQFU1lnbz22m3v59264ep2vtSVQeSaixJM1WqlPSllP6k9KeUvpTasanVb5da/cTU6sd2+ykAcBQRvLI0+xY51l6zLgAAAABYd6qqnXbru2k3/3vqJtAPUlX7U7X3J9V4kmaSKil9KembugnUn1I/NrXaiVM3gW6XWn1Xt58KAAAAADNY+AsAALD+tVu70xz/XKr299Nu70mq8ZTazpTartR77pJGz11Wbe6qGsvEyAfnjfcOXrhqcwIAwEbTbt2UibHPpDXxhbQmvpJ266Yk1RFU7Em957TUe+6eRs/dU+89J7Xa9pVqF4BNRvDK0nxzkWM7ktyyVo0AAAAA0F1V1U5r4otpjn06zYkvpjVxfSbDVY5MqR2Tes85afTePY2ee6Tec/qRNwsAAADAYbPwFwAAYGOoqomMj7w34yNXpN38+qLnltrO9PQ9IH1bnp5a/TYr20d7KCP7X52kzBoXvAIAwGZXtYczPvqBjI+8P+3mDTOPrED18bQmvprWxH9mPJclKWn03jM9/eenp/+8lNK3AnMAsFkIXlmabyQZT9KT+f+qHxfBKwAAAABHvXbrxowNvzMTo1emat8648hK3ARKqvaeNMc+nubYx5Mktfrt0jPwyPT2Pzy1+m1XZA4AAAAAZrPwFwAAYGMZH35fRofenKq9O4fz3q1q7874yHsyPvLP6R18fPq3PjOl9K5CZ9O9lEXPAgCAo1lVTWRs6O8zPnxZqmoo81+zr9Tr5WpG7SrN8c+lOf65jOx/bXoHLkj/lqelCMMH4DAIXlmCqqpapZRPJXlg5v8rf68k1695UwAAAACsiXb71ozu/6tMjF6ZpJ3VuwmUWbXbre9l7MCbMnbgzenpOy99W5+ReuOOKzgXAAAAwOZl4S8AAMDGUrX3ZXjfK9Ic+0Rmv4c7nPdvVZLxjA9fltbEFzK4449Sqx+3wh2WrNQXtwAAwEbUHP9iRva9PO3W93Lo1+zLDS6spq6Ze91UvWoo48Nvy/jIe9O/9VnpG3z8EusDsNnUut3ABvSBBcbPW9MuAAAAAFgz46NX58DNT83E6AeStDL7hs3MGzczf4FmOWbeQJq5VUnamRi7JgduuSgj+/8yVdU8gnkAAAAAaI5/MQduuShjQ5emqg6k82cz05b7uc9in/dUP1r4u+/mJ2ds+J3Leh4AAACbRbv1P9m/+5IZoSsd3mfNM3P84Lmtia/mwO5nptX87hp0DgAAm8P48PsytOd5M0JX5r5mn2uh8JRO29zrOpkzXzWU0f1/mqE9L0jV3recpwTAJiF4Zen+X5KZv9Uy/S//k0spA91pCQAAAIDVMnrgrzOy9yWpqn2Zn5Df6UZOp1/IOdQ28/pOZt50amV8+G05sPsZabduWvbzAgAAANjMLPwFAADYWNrtfTmw5/+kat2Ug+/jkvmhKnN1usc/uV+1b87wrb+Wdmv36jQNAACbyPjw+zKy/4+TTEyNzH19PvdLDmduJaW2K7X67VNrnJZ6z5mp99w99Z67pd5zVmqN01Or3y6ltiOzgxcXuj8zPd/kuc3xz+bAnuem3bplJZ8yAEeRRrcb2GiqqrqplPJPSZ6S2f8Sb0/ygiQv7UpjAAAAAKy40QNvztjQW6b2Flqglcy/YdOTUjs2tfpxKWUgKX0p6U1Kb5J2UjVTZSKphlO1h9Ju35qqvTvJ+AL158/Xbn49B3Y/O1t2/knqjZOW/RwBAAAANpuDC3+Tzr+Yt9BnPklSS6ntPPiZT+lNMvWZT1qpqqnPfKqhqQCVdocaC883vfB3yzGvTa1+7NKfHAAAwFFqZN8rp0JXOoeoHNyvpZRtkyM/+oKV6fPKnP0q7daNGd73kmw55k9TykLhmQAAwGKa4/+Wkf2vntqb+Rp97uv1ntR77pJ644zUe85IrXFqarXjUmq7UkrtsOaqqipVdWvarRvTbn43rebX0pr4aloTX07SnNPD9OMq7eY3MnTrr2XrrjemlL7lP1kAjkqCV5bnhUmekKRnan/6X//fKqW8u6qqL3WtMwAAAABWxMToRzM29LdZ+FuJJ28CldpxafTeM/XG6TNuAh2zrDnb7T1pN7/zo5tAzfHrpgJZkvk3gZKq/cMM7Xl+th775tRqO5Y1JwAAAMBmYuEvAADAxtMc/1yaYx/PQu/jSu349A0+IY3ec1Nr3OlHASpVNZHm+L9nYvTKTIxeNeO6atbj1vi/ZWzo79K/9eK1fFoAAHBUqKqRDO/7o0yG0c+/75H0pKf/genpu18avfdJqQ0e0XyllJSyM7XazqTnrCQPm+yjPZyJsU9kfOS9aU18IfPfP1RpN7+ZkX1/nMEdv3dEPQBw9BG8sgxVVX2rlPKSJC/LwdUWVZKBJO8qpTygqqr/6VqDAAAAAByRdntvRva9ZsbI3EVbu9I78Kg0+u6fRs+ZKzZvrbYztd6dafSe86Ox5vh/ZHzkXZkY/XBmfxQ1Hb7y/Yzs/YNs2fmaefUAAAAAOMjCXwAAgI1pbOjvZ+zNDE9J+gafmr6tl6SUnnnXldKTnr57p6fv3mkNPiXDe1+cduu/Z10//Xhs6C3p6X9A6o1TV/W5AADA0WZ8+F2pWjfl4Ovsg/c9evoflf5tvzR5r2SVldpgegcelt6Bh2Vi7DMZ2feqVO0fzOmrysToVWkOXJBG791XvScANo7D+/oVOnlFko9k9iqMKsmpST5eSjm9K10BAAAAcMTGh9+eqtqbgx/9TN90qadvyyXZdtzl6d/6rBUNXVlIo/fsDO74vWw99m9Sa9wpsxeRTfbXHL8uE6PXrnovAAAAABvZ/IW/0yYX/m47/h0Z3PGi9PQ/+IhDVxYzvfB3667XZ/CYV6XUjs/8z3ymFv6Of2HV+gAAANgI2q3daY7/a+bfvy8Z2PaC9G/73x1DV+aq95yWrbvemHrvPTM3vGXSREb2vjxVVXUuAAAAzFNV7YwNvz0dX69v/50M7vitS/XQsQAAIABJREFUNQldmaun7z7ZeuylqfecmdlhMElSZfTAX695TwCsb41uN7BRVVVVlVIen+TaJHfL7K8bPjXJv5ZSfq2qqjd3q0cAAAAAlq6qmhkffmfm5+32ZcvOV6bRe6+u9FVvnJqtu96Q4b0vSnPsk/P6Gx26ND399+9KbwAAAADr3cILf2sZ2P7b6R04vyt99fTdJ/VjL83wrb+e1sRX02nh79Zdr+9KbwAArLx9Nz+p2y0sS0nJtuPe3u022KSa45/O7F+UnHzcO3BBegcvXFKtUhvMlmNemaHdv5JW82uZG4DZal6f8ZF3pW/w8Sv4DAAA4OjVmvhiqvYtmft6vW/rM7p272VarbYjW475kxzY/ay0W9+ZGp167T/xxbSa30u9cftutgjAOiJ45QhUVbWvlPLwJFcluWtmh69sS/LGUspzk/xZkvdWVXVLdzoFAAAA4HA1x/81VXUgc28CDWx/XtdCV6aV0pvBHS/N0J7npDXxlUz2OHkTqN38eloTX0u95/Su9ggAAACwHln4CwDAelC1bsrBoIeNo5oVEAhra/Le+BylP31bn7WseqX0Z/CYP8yBWy6ZszZg8s/m2IE3paf/IanVti+3ZQAA2DSaY5+eN1arn5i+wZ/rQjfzldqWDOz43Qzt/qV5x5pj16TeeGoXugJgPRK8skSllFM7DP9Ckn9IcqfMDl8pSc5J8qapa7+V5IYk/5Pk1iRDSZpJ2qvVb1VVf7BatQEAAACORs3xz87Ym/yop9Y4Jb0Dj+5OQ3OU0pOB7S/MgVsuytyPlSbGPiF4BQAAAKADC38BAFhfNlKQycYKieHo02p+c8be5K9p9PQ9+IiCUWr1E9O//dcysvclORiGNPnnsqoOZOzAGzOw/QVH0DUAAGwOreYNM/amXq/3PyKl1LvV0jyNnjPT6L1PmuOfzsz3482Jr6ave20BsM4IXlm6G7L4p8czvxZn+tO36bFTkpy8ap11JngFAAAAYAlaza/PGSnp7X94V3pZSL1xx/T0nZeJsY9k5k2g1sRXu9cUAAAAwDpm4S8AAMDG1G79IHPDihp9P3HEdXv7H5KJ0Y+mOfbxGfUnQ1jGR65I7+ATUm+ccsTzAADA0azV+nbmvV7vvXt3mllET/+Dpu6/JNOv+9vz1gsDsJnVut3ABlUW2DqdU83ZFrp2NTYAAAAAlqjd/G7mfrRS7zm7O80sotH/gBl7UzeBWt/qUjcAAAAA69tGWvh7kIW/AABHm1I7PgeXlc80d8l5tcB5sPlU1b55Y/X6j61I7YFt/zcpgx2OtDO6//UrMgcAABzNqvb+eWO12m270Mni6o0z5o1V7fnvNQDYvBrdbmCDWugT7E5hJzPH1vLTb8ErAACwTuy7+UndbmFZSkq2Hff2brcBsOaq6sC8sVr9uC50srh649R5Y51uYAEAAABg4S8AAOvD9uPfmVbzG5kY+2QmRt6XduvGzP6+z06Er7DJVWPzhkrtmBUpXasfl/4tv5jRA6/PwT+Hkz+b49dlYuwz6em7z4rMBQAAR6VqdP5Y6V37Pg6h1LbPG6uqoS50AsB6JXhl+ZYTbLJWYSg+XQcAgHWkat2UxRfIrE+VPEdgs+p0E2gdfoxWytZ5Y1U10oVOAAAAADYAC38BAFgn6o1TU2+cmr7Bp2Vi7OqM7v/zVO09mb225GAARKP3Xunpf1jX+oXuqydpzhlbuXVYvYNPzPjI+9JufTtzv3d39MBfptF7bkqprdh8AABwVCn9STU8a6hq70vqx3epoc6qDXKfCIDuWX+/MbJxbKzfmAQAANaBjRRk4i0PsHmVsiVVdWDWWNW+NanfpksddVbNuVGVJCl9a98IAAAAwEZg4S8AAOtMKSW9/Q9Jo/deGdrzvLSb30ynL/ap1U9K78D5XekR1oNSBlNV+2aNTd7DP2GF6tfTv+1XM3zr8zMz9Cip0m5+K+Mj70rf4BNWZC4AADja1Grb027Nvv/Sat6Qes9pXeqos8mgxdk6fQEiAJuX2F0AAAAAmKHTtwq3Jq7vQieLaze/MW+slPm9AwAAADC58HeuVvOGLnSyOAt/AQA2n1ptZ7Yc88oZX7Kwkb7YB1ZfqR0zb6zV/NaKztHTd24afffLwdCVZDp8ZezAm9Nu71nR+QAA4GhRq98hcwNEJ8au6Uovi2mOfWrG3uTr/lrjx7rVDgDrUKPbDWxA346vfgcAAJag1I5P1f7h9N6MI4u9tbCIBqBbavWT0m59LzP/Lh4f+3B6Bx/TvaY6mBi7dsbe5E2geuOO3WoHAAAAYF2r1e+QduvGzPzMZ2LsmvQOPLx7TXVg4S8AwOZUq5+Q3v7zMz7yrlgzArPVGj+Wduu/M/PPRnP8uvQOPGJF5xnY+pzsH/uXJM1Z41V1IKP7/jSDx7xkRecDAICjQb3nrmmOXze1Nxle2Bz7VFoTN6Tec6dutvYj7dYPMz76ocx9v11vnNGdhgBYlwSvLFFVVSd3uwcAAGBj2X78O9NqfiMTY5/MxMj7ZizsnvxgsTN5jwDdUu89O83x6V9wmfy7ujX+b2mOfz6N3nt2s7UfaTX/OxOjH8m8m0A9d+lOQwAAAADrnIW/AACsdz0Dj5wKXgFmqjdOTXPsE1N7k+/nJsY+nnZ7b2q1HSs2T61x+/Rt+ZmMDb01B9d1Tc/30YyP3C+9Aw9dsfkAAOBo0Og9N2NDfztntJ3hvS/J1l1vSKlt6UZbP1JVzQzvfWlSjWbu/Zeevvt2pykA1iXBKwAAAGug3jg19cap6Rt8WibGrs7o/j9P1d6T2eErB2/YN3rvlZ7+h3WtX4DNrKf3PhnLG2eMTP79PLz3D7N11xtTqx/XrdaSJFV7KMN7X5yklbk3gRp99+tKTwAAAADrnYW/AACsd42eu6TUdqZq39rtVmBdafTeK2NDb5k9WI1l9MAbMrj9N1d0rr4tP5/xkStTtW/Owfdmk2sGRva/OvWeO6XeOGVF5wQAgI2s0Xu31BqnpN381tTI5Ovnduu/M7Tn/2TwmFd0bd1t1R7O8N6XpDXxb5l776XUbpN6zz260hcA65PgFQAAgDVUSklv/0PS6L1XhvY8L+3mNzM7fGVSrX5SegfO70qPAJtdvef01HvOTGviP2eMllTtH2Zoz7MzuONlqfec3pXe2q0fZPjWF6bd/HoO3gSa/DekVr9jGj1ndqUvAAAAgPXOwl8AADaCes/ZaY5dm7mvC2Ezq/eck1J2pKr2TY1Mvp+bGHl/xhp3St/gE1ZsrlL6M7DtVzO89/cy80u0kpJUwxna8/xs2fm61Bu3X7E5AQBgo+sbfEpG9v1RZr+GrtJqXp8Dt1yUvq2XpHfgwpSydr/SPjF6bUYPvC7t1k1zjkz217fl51KK994AHFTrdgMAAACbUa22M1uOeWVS+qZGfGgHsJ70bbkoB0Oxpn+WtFs35sDuX8rI/r9Iu71nzfqpqmbGht+eA7dcnFbz+g5nlPRt+fk16wcAAABgI+obfEpmf+Yze+Hv2PA7UlXNNe1pYvTaHNh9cZrjn55zxMJfAIDNqN44o9stwLpTSiM9A49Mp/dzo/v/LCP7X5eqGlux+Xr6H5hG3/1nzTPVydQXtjwnrYmvrdh8AACw0fUOnD8VIj/zNfTkvY2q2p/R/X+W/Tc/IaMH3riqr6Xb7T0ZH35P9t/yixne+8K0WzfO6mX6ca1xp/QOXLhqfQCwMa1dPBgAAACz1OonpLf//IyPvCuCVwDWl56++6XRd16aYx/LvG+xykTGhy/L+PA70tN/Xnr6HpxG30+klIEV76M18Z+ZGP1Yxkf/OVV7T2Yu6Jo02Ve998fTO/DQFZ8fAAAA4GjSO3B+xkf+Oa2Jf8/cb12cXvg7NvSW9A48Kj19D0q95/RV6aPd3pPm6MczNvKetJs3ZKHPfCz8BQDYfOqN07rdAqxLfYM/m/GR9ybVcOa+nxsf/qdMjH4kvQMXpqf/Qak3Tjri+Qa2/2YO3PKVVO3dmbtmoGrfnAO7fyn92345vQNPSCm+DxkAAAZ3vDAHdv/vDq+hk6RK1d6dsaG3ZmzorSm1XWn03D31njun1jgltfodUqvfJuVHX2p7aFV7X9qtG9NqfiOt5tfTGv/3tJpfm5p37n2XGcpABnf8XkqpH8nTBeAoJHgFAACgi3oGHjkVvALAejOw/TcytPtbabe+nfnhK1WSiUyMXp2J0auT1FPvOSP1xhmpNU6dugl029RqO1Nq2xadp6raqdq7U7V3z74JNPGFVO2902dN/Zx/E6jUdmVw+++u0LMGAAAAOLpZ+AsAwHpWq58wY8+X+MC0Wn1X+rc+I6P7/yxzQysn38vdnLGhSzM2dGlK2Z5a48dSq5+QUgZTb9w5vYMXLG2+2o4M7nhphvb8nyTNdPrCltH9r8v48DvTN/iU1HvPXrHnCgAAG1GtfkK2HPOaDO351VTV/sx+TzvzNXxStW/JxNhHMzH20dlFymBqte1JGUwp/UnqSWpJmkk1kSoTqdoHpr7IsDmng2rO/tz31FWSnmw55uWpN05Z7tME4CgmeAUAAKCLGj13SantTNW+tdutADBHrbY9W3a+Jgf2PCdV66YsdhMoaaY18dW0Jr7aoVJJysDUL+TUp7aDN4FSjWb+DZ/MGeu0qLJKKduzZedrU6sfv7QnBwAAALBJWfgLAMB6VqufOPWo0/1D2Nz6Bp+Y1sR/TH05ytzwlenHSVXtTWtiX1oTX06SNHpvXnLwyuR1d8vA9t/OyL6XTo3M/8KWduu7Gdn/6ghKAgCApN5zWrbsemOG9/5O2s1vZP7r5Jn7Hd73VkNpt4Y6nLvA+fPMrX/wvUKp7crgjpelITQRgAUIXgEAAOiyes/ZaY5dGzfgAdafWv222bbrzRne++I0x/81S74JND1eDaWqhhY4vpDF/l2oUquflMFjXpl64/ZLrAsAAACwuVn4CwDAelVqWzN4zMuT6uDrylr9dl3sCNaXge0vTFU10xz7WA4GoEzr9F7uyNZj9Q48NMlERva9Mgffv80MX5meq5rx2BowAAA2r3rj9tm6640ZPfDXGR9+RyYD6jvdF1l8jezC91sO9/X29Gv3pNF3/wxse35q9WMP81oANiPBK11USqkl2Tq1DWTy/0c9yfeqqtrbzd4AAIC1U2+cMRW8AsB6VGrbM3jMazM+8s6MHbg0VbUvnW/crMbiqbmLsqoktfQOPin9W5859Y3KAAAAACyVhb8AAKxXPX3363YLsG6V0pPBHS/N2NClGRt6a+a/l/vRmTm8YMxD6x14ZEptZ0b2/kGq6kCH+WYGsAAAAKX0ZWDbc9I7cGHGht6cidGPZfK1e9L59fvc4MTDuceyWNji5LF644z0bX1Gevp+6jA7B2AzE7yyBkopJyY5N8lPJDkryelJTkyya4FLfuH/s3ffcZJVdd7Hv+eGuhW6e6ZnBhgEkTSGGQEFBEGCyppWEVld05rAgIqBB+ER4XHNcR99xIC6GHFXdxVd08oaSEowkFSSjiISFBymp3u6u9IN5/mjuulK3dOhum511+f9etWrqs69dc6vZl6vrnPOPfd3JF3Upp63Sfq5pJ9aa+PliRYAAABAt7neAWmHAADYBWOMgvxzlck+RZXJr6la+p5m8ubOdRFotuOznT/XAi0jLzhO2YFXyvX2n3/wAAAAAAAAaIuFvwAAAACw8hhjlB14pfzgiSpPfl5R5WpJyfTR+jM71qYfHCV3/VdUGv9o3QZby7E5CwAAALB6uN5DlV/zTiUD21UtfVdh5Qol0R11Zyzkekuz5mT608U5+cExyuROlJd57CLqBQD0KxKvLBNjzEMkvVLSP0g6uPnwHB+dK83x+6aOjxhjvijpY9bavywpUAAAAACpc9yNde+4IA8Avcw4Q8oOnqZg4BSF5csUVq5QVLlOUqX+LC3873nz+TNTRI67l/zsk5XJnSjH3XNxgQMAAAAAAGBWLPwFAAAAgJXH9Q9QYe37FUf3KCxfqqj6c8XhbZKWZ49bx92gwtr3KwpvV7V4scLy5ZKqU0cXs04AAAAA6A+Ou17ZgVOUHThFSXyfwsq1isObFYe/VxLfpZlEiotgcnK9A+T6B8nLPFZe5jAZk+lY7ACA/mGsnSvPBxbKGLOvaglSnqdaYpvZZs/a/cObqfJTrLUXtak70fT2xrXniqRPSnqXtXZyqbH3ImPMLZI2N5dv3rxZt9xySwoRAQAAAJ1nkwnt3PaMhrJM7rnKDZ2RUkQAgIWwtqKoeoPi8BbF4e8VR7+TTUYWWZsrx32oXH/TgxeBXG/fToYLAAAAAACAeWDhLwAAAACsPNZGSuK7lUR3yyY7ZG1Zxt2gTPaEzreV7FRYuVZR9VpF1etlk9GmM4zW7PHTjrcLAAAArCbWVpTE9yqJt8km25TED0i2LKuKZKuyNpIxriRfxuRlnEEZZ1iOu7sc9yFsaAhg1dqyZYtuvfXWdodutdZu6XY8/cBLO4DVwhhjJL1d0jmSAs26XU3jx+ZxTjvTyVeykt4i6YXGmFOttT9ZQB0AAAAAeoRxBpRf+wGpLjGm4z4kxYgAAAthTCA/OEp+cNSDZdaWaheB4r8pSbbL2lLtApAqko0l48rIa7wI5Owu4+4hY5iyAwAAAAAASJvjblSQP1nSyZJY+AsAAAAAK4ExnlxvP7nefsvfljOkTO5pyuSeJklK4gcUR1uVxPfIxtuVLHrDFgAAAKB/GBPI9faX6+2fdigAgD7HXRwdYIxZJ+kbkp6omWQq9YlUTPNnOmC6fiNpb0n/Y4x5l7X2PcvQFgAAAIBl5gfHpB0CAKCDjMnJ9faRvH3SDgUAAAAAAAAdwMJfAAAAAMBcHHeDHHdD2mEAAAAAAABgEZy0A1jpppKuXKqZpCtWjUlR6pOu2KbHoptVY4IXq9r/5TuNMZ9aQr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAXyDxyhIYY3xJl0g6ZKqoXcKV5kQrRq0JWRZqtnaMpNcaY961hLoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAVc9LO4AV7qOSHqfGRCjTbN3r6fJtkn4h6XZJd0i6QDMJU+bjJkmPaap/OvnKdHIXI+n/GGN+Y6395ry/CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0iU2KSpK/ySY7Ze2EZCuyNpJkZUwgmayMycqYQMbZIMfdkHbIAIBViMQri2SMOU7S6Zo76YqR9CdJX5J0sbX2tqY6LlhIm9baQ40xj5H0dkknqzHZSnPylU8bYy631o4spA0AAAAAAAAsjU0mlMT3T10EGpe147WLQIolWRkFkgmmLgJlZZz1ctw9uRAEAAAAAADQA6yNFYe3KUnul012SLYq4wzLOMNy/UfIcYaXse1IUfWGlnI/OGLZ2gQAAACA1YLxHAAAAND74ujPiqu/VhTeqiT+k+Loz5ItLrAWT467UY67p1zvQLmZQ+T5B8k4g8sSMwCgP5B4ZRGMMY6k8+uLpp7rE65sk3S2pH+31sadattae5Ok5xpj/l61hC7r1Zp8RVPlH5B0WqfaBgAAAAAAQCNrq4qqNygOpy4CRXfWFnAtii/H3Th1Eehgef4hcv0DOxovAAAAAAAA2gsr16ha+l7tRjlbmuUsI9d7uPzsk5TJ/4OMyXY0BpvsVHH0LWrc/8lozR5XdrQdAAAAAFhNGM8BAAAAvS2O7lC19N8KKz+Vje9vOmrbfmZuoZL4biXxPYqqv5KKX5Nk5Hj7yc+eoEz2qXLcPToQOQCgn5B4ZXGeL+kQzSQ8UdPrKyU9z1q7fbkCsNb+wBhzpKQrJO09SywvN8a801r71+WKAwAAAAAAoN9YaxVVr1W19N+Kqr+UbKX+6BJqriqJ71IS362wcrkkyZiC/OyT5GefLi9z8JLiBgAAAAAAQKuw8iuVJz6tJPrDVMlc8ztWcXS74onfqVL8DwWFlyvIP3cZolrKHBMAAAAA9AfGcwAAAEBvi6o3qTz5RcXVG6dK2vWXTZuy+bINr5Poj6pM3KHKxOfkZQ5VJv98+cFRS6gfANBPSLyyOP+r6f10ohMr6TJJf2+tDZc7CGvtn4wxz5R0laTBpjgkyZf0eklvX+5YAAAAAAAA+kG19D+qTH5ZSXzvVEnzRaClXACaNlOntROqlr6vaun7ctyHKJN/gTK5E2UM03oAAAAAAABLYW2k8sQFqhYvni6Zet7V/I6VZGWTHSqPn6+oep3yQ2+XcfIdjK5+7yUAAAAAQD3GcwAAAEBvS5Ixlcc/rrD846mSXfXZF9p/Nk3P9fXUHlH1ekXV6+X6Bys3+Ga5/qYFtgEA6DdO2gGsNMaYx0p6nFqTnEjSXyQ9rxtJV6ZZa2+W9Bq17yEYSS/sViwAAAAAAACrVRzdo4mRN6i08/1K4ns0c3HGND2k+gs387sY1Hxec52140l8r8rj/08T21+isHJtJ74WAAAAAABAX0qSnZoced3UTXrN8zxS6/xO/fxN47xNVLlaEzteqyTZ0c2vAAAAAAB9ifEcAAAA0NvicKsmtr9yKunKbH32Zs3rZnf1mE3r2ts4/LUmRk5TZfLflvrVAACrHIlXFu7kNmXTv8JnWWvHuhyPrLVfl3RdXRz1PYf9jTGP6HZMAAAAAAAAq0VY+YUmR16tOPyNWpOtSK0XgeZ7gaf5/F0dr039JPG9Ko6+VaWd/1ddzP8LAAAAAACwKlhb0eSOMxRHt6txrmeuxLjtbuLTg59Loj+puOMs2aTYja8AAAAAAH2J8RwAAADQ26LwNk3sOF02+Zvm7rNLsydNXOyjWf1YIFR54l9VHHuPrI0782UBAKuOl3YAK9Cz6l7X/xrfJenrXY6l3nskfWeWY0+U9LvuhQIAAAAAALA6hJVrVBw9T1I0VVJ/wce0KWvHk0wgYzKSMpISSbFkq7K2OPW+nXbJWGbaqpa+qzi+W4W1H5Qxufl+JQAAAAAAgL5WHv+4kmirWud0djXHM63d56ziaKtKOz+k/Np3dS5YAAAAAMCDGM8BAAAAvSuJ71Nxx9mSLakx4Uq7jQ5dOd7D5HoPl+vtJ+NskOPuJuNskDE5GRNIJiNjgqlEKbFkQ1lblLWTsskOJcmIbHyf4vgeJeFWxdEf1brWVw1th+UfSzai7w8AaIvEKwtgjPElbVFrejUr6ZvW2l3N1C2nH0kqScqqdcbwoO6HAwAAAAAAsLLF4R9UHP1n1S7ENCdcaczAb5zd5Hqb5PoPl+vt33QRaO4pOGsrD14ESuK/KonuURxtVRzeNpX1X2pNwjK1AKx6oyZ3vFWF4Y/JGKcD3xoAAAAAAGD1isPbVS19T+2T61rJZJXJPk1e5ki5/iYZZ60kKYm3Ka7eqGr5R4rDX6txfsg++DqsXK5q8VBl8id19XsBAAAAwGrHeA4AAADobcWx98vaMbX22WtrbY2zm/zgCfKCY+VlHjO1meGuGeNKcmuJWFSQtJukfVvOs7aqqHqjosqVqpZ/UpcA5sGaNN33r0w+UkHhRYv7ogCAVYvEKwvzKEm+mn/xay5PJaIp1tqKMeZKSU9Xa+KVLSmEBAAAAAAAsGJZG6m4872SKprtIpDrP1p+cKy84Bi53j6LbsuYQMbdKMfdKPmbG47F0V0KK1coLH1fSfzXtrHE4U0qT3xaucHTFx0DAAAAAABAPyhP/psa53hm5nr87AnKDr5ZjjPc8jnXe6hc76HK5J+tsHKtSjs/KJvsUOPyodrr0sSn5AVH1uZ6AAAAAAAdwXgOAAAA6F3V8qWKwxvVLtGJ4z5M2YHT5AXHyJjmTQg7x5iM/OBI+cGRyg6crsrkRaoU/1NS0hJTeeJC+dknynH3XLZ4AAArD9vgLsxcM2i3dS2K2d3a9H56RnHvFGIBAAAAAABYscLSD5REf1S7i0Be5jANrPuCBtZ9WkHhxUtKurIrrrePsoWXaWD9fyg7+BbJ5OpimYmpWvy64uiOZYsDAAAAAABgpbPJuKLKVWqeV5GMgsLLlF/zzrY36TXzg6M0sO5COd5+art3ky2ptPPDnQ4fAAAAAPoW4zkAAACgt1Um/72pZDpJ4jM1sP5L8rPHLmvSlWbGKSg7+DoVhj8uY4banBGpPHFh1+IBAKwMXtoBrDBr5zj2t65FMbvZYhjsahQAAAAAAAArXKX4VTUmXZletPVKZQde0fV4jHEU5J8jL3O4iqNvURL/tekMq/L4Z1QYZhEYAAAAAABAO2Hl55Jizcz51OZ7vOA4ZQdevaC6HHd3FYY/psmR05TE96l5x/Woep2q5UuVyZ7QwW8AAACA1WBi5E1ph7A4xmhg+Py0o0CfYjwHAAAA9K44+pOSaKua++t+8CTl15yTYmSSlzlYhXUf18TI6yVbnCqt9f3D8hWyg2fIOO0SswAA+hGJVxbGneNYcY5j3TIySzmJVwAAAAAAAOYpCm9XEt+r5otAmfxzU0m6Us/19lZh+BOaGDlNNtk+VTq9AOwXSuIH5Lgb0gwRAAAAAACgJ8XhLW1KPeUG37io+hxnWPk179PEyGslhWreeb08/in5wRNkTHZxAQMAAGBVisMb1bgBxEownZQCSAfjOQAAAKB3hZWrWsqMKSg79JYUomnlevsrN3imSjvfo8axbaSwfIUy+WenFRoAoMc4aQewwkzMcWx916KY3cAs5X5XowAAAAAAAFjBosrVLWXGGVZ24LUpRNPKcXdXbugc1RY41rMKK1ekEBEAAAAAAEDvi6M/1r2b2m0xe5wcd49F1+n6m5QdfJ1m5mlm5mts8oAqkxctum4AAACsdnaFPID0MZ4DAAAAelcc/q7u3XR//SlynKG0QmqRyT1Vjnegmse5UXhzOgEBAHoSiVcWZvscxzZ2LYrZ7T5L+WRXowAAAAAAAFjB4mhr3bvpi0BPkzFBWiG18IMj5fqHqPkiUMxFIAAAAAAAgLZscr8adzKUvMzjllywy1J4AAAgAElEQVRvkH9e3TxN4y7plcn/VBLft+Q2AAAAsBqZFfIA0sd4DgAAAOhdSXSnWvvrR6QSy1wy2Wc0lVjF0e9TiQUA0JtIvLIwf5jj2NJn7pZur1nKt3U1CgAAAAAAgBWs/UWgQ1OJZS5+9u+aSqzicK7pKwAAAAAAgP6VJGMtZa53QEfqzg2dLclvcyRUeeIzHWkDAAAAq4WnWpIH21Ru53gA/Y3xHAAAANC7bDLaUuZ4+6QQydzczJa6d7U1wjYZSScYAEBP8tIOYCWx1v7NGDMiaVits9gnSfpC96Nq8GQ1xmWm3m9tfzoAAACAbpgYeVPaISyOMRoYPj/tKACg62yys6XMcfdOIZK5ef6j6t7VpoHaXcACAAAAAACAJFtpKTLO2o5U7XoPU1B4oSqTX9HMcp3ac1i+TFH++fL8zR1pCwAAACvb0O6XKKreoKhyjarlH0m2pFrfcbof2Q7JV9DnGM8BAAAAPcvayZYyY/IpRDI3x9nQUmaTiRQiAQD0KhKvLNyVkk7WzAz29MzaU4wxe1lr700jKGPMIZL2Uv1M34wb04gJAAAAQE0c3qjprMgrx/TQAgD6j7XFljJjsilEMjfjrGspaxc7AAAAAAAAJMmRlDSVdW4ePCi8XNXS/8gmDzTVa1Ue/4QG1n26Y20BAABg5TImKz84Wn5wtLIDr1el9E1VJr4sqarGJeAzCSBc/5HyMo9PK2SgBzCeAwAAAHqW8SQbNxT15lrW5jGFxP0SAIB6JF5ZuB+plnhFapzdDiR9QNLL0ghK0hvnOHZFt4IAAAAAMJeVsgMRE4gA+pwJpnaWm2HthKTWbPdpsrbaWmjc7gcCAAAAAACwAhiTk7XjDWU22Sm5e3So/kDZwderNPYuNe+SHoe3qFr+iTLZv+tIWwAAAFgdjJNXtvBS+cFxmtxxpmyyTa37b0qut1nZgVNTiRHoBYznAAAAgN5lzKCsrTSUJdFdcr19UoqovSS+v6XMOAMpRAIA6FVO2gGsQF+XNN0LsHXPRtKLjTHP6nZAxpjDJJ3SFM+0HZKu7HZMAAAAANoxK+QBAP3NmKGWsiS6I4VI5pbEf2kpM6aQQiQAAAAAAAC9zzitcz5xfFdH28hk/06uf7BmlhJJ0zfrlccvkG1K9gsAAABIkus9TIW1H9TM0n7WbgD1GM8BAAAAvctxd1dzAtGoem06wcwhql5f964Wr9OhZI4AgNWBxCsLZK3dIeliNc6mSbVfWkfS14wxh3crHmPMRkn/3iae6VTLX7XWht2KBwAAAEA7nmrdc9tUbud4AADSUruQ0vi3OKxcnU4wc4iqv6x7V1v85bh7pRUOAAAAAABAT3PcvdU85xM3LLLtjNzgGWq3JMsmD6g8/tmOtwcAAIDVwfU3yc+eINaMAK0YzwEAAAC9y/W31L2r3dZcLf9ESbIjrZBaWFtVtfQ9NSY6NXK9A9MKCQDQg0i8sjjvlhRPva5PaWwlFST90BjzzOUOwhjzUElXSHp4XRz1M4qRpI8sdxwAAAAA5ja0+yXKr/2QMrmTJJPVTLd9rh2K5krK0o0HAPQvz3903bvadEtYvlxJ/Ne0QmphkwmFpf9W82+J621KJyAAAAAAAIAe53j71b2bnvO5ouO7lrv+JmVyz1LjXPvUQuPSfymqXNfR9gAAALB6ZHInph0C0JMYzwEAAAC9y/MPaS20JZV2/kv3g5lFefwC2WR7S7mXeVwK0QAAepWXdgArkbV2qzHmAklvVOMdk9N3KA5L+o4x5qOS3metHetk+8YYI+lNqiWAGVDrXZHTsVxorf1zJ9sGAAAAsHDGZOUHR8sPjlZ24PWqlL6pysSXJVXVmD9x+rWR6z9SXubxaYUMAH3NzRwmFf+9qTRUcey9KgyfL2PSn1Ir7fywrB1Xc+IVLzgynYAAAAAAAAB6nJc5VNXi1xrKrJ1QZeIiZQdP62hbwcBrFJYvl7UTdaVGUqLizvdoYN3n5Li7dbRNAAAArHyuf5BkCpItph0K0FMYzwEAAAC9ywuOlnGGZZPRqZLaPRFR5SqVdn5Y2cGzZIyTWnzlyYtULX1TLZvmmqy84KhUYgIA9Kb07xJZuc6R9PeS9tf0nZGNyVccSW+R9GpjzCclfd1a+9ulNGiM2UvSyySdIukAzfzST7dfn4Dlr5LOXUp7AAAAADrPOHllCy+VHxynyR1nyibb1Nqdl1xvs7IDp6YSIwD0Oy9zuIy7UTa+f6qk9nc6Dn+r4ui5yq95p4yTTyU2axOVxz+qsHK5mi8CGTNE9n0AAAAAAIBZeJnHSiYn2fJUSW3Op1L8qlx/s/zssR1ry3HWKBh4jcrjH1F90nXJyCYjmhw9S4Xh8+U4azvWJgAAAFY+Y1x5/sGKqteq5YYwoI8xngMAAAB6lzGeMrmTVJn8khr70FbV0vcVR39SbvAsuf4BXY0riR9Qafxjiio/bTpSiy+Te46MyXY1JgBAb0svTdgKZ60tSTpZ0nQq4/ot6qffG0lrVEuAcpMx5j5jzHeNMZ8zxnxwjuo3G2OebYx5mTHmLcaYrxhjbpP0Z0nvlXSgGpO81N+laSRFkl5qrd3ZkS8LAAAAoONc72EqrP2gZoZlLJgBgF5hjFGQ+0fNTLfMTL9E1Z9rYuQUhZVruh5XHG7V5I7XqVr6btORqYtAhRfIGPIsAwAAAAAAtGNMoEz2qWpMhD61a/nYP6tS/EZH2wvyz5HrH6x2+ykl0R2a3PFmJfG2jrYJAACAlc/1N6UdAtBzGM8BAAAAvS0ovETG3Tj1rjH5ShzerImRUzU5ep7Cyq9kbbKsscTRXSqNf0Lj2180lXRlOpYZxlmroPCSZY0DALDycCfGElhrbzbGPF/StyVlVJ/OeCYpijTzq7y7pGc2VWPaPJ/dprn6X/bmGcP611bSWdbay+f/TQAAAACkwfU3yc+eoLD8I5F4BQB6Syb/XFXLP1AS3aHmi0BJ/BcVR8+R4x2oIHeyvOzxcpyhZYnD2kRR9TpVS99WVLlajXl4pxk57p4K8v+4LDEAAAAAAACsFpn8i1Qt/UC1PY2kmXmWSOXxT6haukRB/gXyg2NlnPyS28uv+T8a336KZItqnGOq3aw3sf0U5YbOkZ89ZsltAQAAYHVwvQPTDgHoSYznAAAAgN5lTKD80Ns0ueMtkmI1r7uVEkWVnymq/EzGDMkLDpfrP0au/wi53n4yJrvotpP4PsXRHxVVb1JU/YWS6M6pI/W3d9uG59zg2cu27hcAsHKReGWJrLU/NMY8S7XkK3k1Jl+RGhOwSPO7m7LdOXaOc+qPvcta+/F5tAEAAACgB2RyJ04lXgEA9BJjXOWHztPEjjdItqTmhVSSVRJtVWn8X6Txj8j1HynPf4xc/+FyvP3luHvJGH/B7SbJTiXRHVMXgW5UVL1uaiGX1Jrjd7rMV27ovCVdeAIAAAAAAOgHrreXgsKLVJm8SO32OkqirSrtfJ9KcuR6B8jxHibH3UMyebnufgu+oc5x91R+6DwVx85raGd6aZG1YyqOnSu39FgF+ZfI9fbtwLcEAADASua4D6l7xyY+wDTGcwAAAEBv8zKHKjd0rko73zNV0rruVpKsHVNYvkxh+bIHP2ucdXLcPWScdTJmSMbJyygrGVeSIymStaFkQ1k7IZuMKEm2K4nvm1rjq4Y2ZtqfLpsZQ2QHXis/e2wHvzkAYLUg8UoHWGsvNcY8QdK3JO2vxrtgmu+EmU8SluYkK/XaJVwxkhJJZ1prz59v3AAAAADS5/oHSaZQd1M9AKBXuP4mFdZ+QJM7zlJt16zGhVQzUz2x4vBWxeGtdZ82Ms5aGWdYxlkjY/IyJpDkTj0iWVutPScTssl2JclI0wUgae6ppKnM+2vOlZc5uGPfGwAAAAAAYDULCqcqCm9WXL1Bc873RL9XHG198HNe5qhF7WTuZ49VNn6tyhOfbmpn5nVcvVHF6o2SWfqu7AAAAFjZjLtx6tVcy8mB/sR4DgAAAOhtmdxTZIyv4s73S7as1qSJ0xrHvDbZrjgZWWBrs42bm9faTvfjHWUHTldQeMEC2wEA9AsSr3SItfY3xpjDJJ0v6WVqn2RlvmnHd3Vec71/kXSKtfbH86wfAAAAQI8wxpXnH6yoeq3YqQgAeo+XOVSF4Y+rOPZ22eQBzZYBv/UCjpVNRmSTEc3v7/t8LwDVnW+yyg+dJz/7xHnUDwAAAAAAAKk2L19Y815Njv5vxeHNmnu+pzM3uwaFF8vasiqTX9RsN+vVmpycJRYAAAD0C8dZo+zgm1Xbk7PG9TalFxDQQxjPAQAAAL3Pzz5RA96+Ko29T3F0u9r3j9uVLaYPP1s9jeMD4+yu/NA58oLHLaINAEC/cNIOYDWx1o5Za18h6QRJ16sx2YrV0mbwmj9vVNtq+QJJW0i6AgAAAKxcrs8CGQDoZV7m0RpY/wV5wfFqnJqpZ2Z5SI3TOrM95vp8MyvXe6QG1n2WpCsAAAAAAACLYJxBFYY/Jj/7dO16vqfdsYXLDpyq3OBZktymOpvnhgAAANDvgvzzFOSf/+DDyzw27ZCAnsF4DgAAAOh9rrevBtZfqNzQOTLObpr91urmW6YX+pBa660vzyiTf5EGN/wbSVcAALtE4pVlYK293Fp7hKRnSvqBainHF3q3TfNDdXWMSfqUpEdYa99grR3rwtcCAAAAsExc78C0QwAA7ILjDKuw9r0qDJ8v19+sufPr1pcv5OLP9Gdnv7hknPXKDp6pwrrPyvX2X9J3AgAAAAAA6GfGBMqvOU/5tR+W4x2o2edlOnfzXCZ/kgbW/WtTe9ycBwAAAAALwXgOAAAAWBkyuWdqcMPXlV/zbrmZQ1XrQ7e7ZXopWm/bNs4GBYVTNLjbN5QbfL2MyS2xDQBAP/DSDmA1s9ZeIukSY8xGSc+W9AxJx0hav4jq/izpUtUSufzAWlvuWKAAAAAAUuW4D6l7xwV5AOhlXuZQDaz7jOLwdlWK31JUuUrWjtedsdSLQM1JWGplrv9oZXLPlp89QcZkllA/AAAAAAAA6vnBUfKDoxRVb1C1/GNFlV/IJtuWrT3X36TB9V9QWL5MleK3FIe/rjvKLukAAAAAMF+M5wAAAIDeZ4wrP/sk+dknKUnGFFWuUVS5VlF48zz678197Nk2THTlepvkZh4rPzhGrn+QjKF/DgBYGBKvdIG19j5J/zr1kDFmb0lbJO0jaW9JQ5Jyqv1/VCWVJI1IukfSnZJ+Y63d0fXAAQAAAHSFcTdOvZptIhAA0Gtc/5HKrzlX1saKw98qrFyjOLxFcfQHyRaXXL9xNsjzD3rwIpDj7taBqAEAAAAAADAbL3OovMyhkqQk/ovi6M9Kortlkx2ytiTHe2hH2/OzT5affbLi6E6F5SsUVX+uOLxNUtLRdgAAAABgtWM8BwAAAKwMjrNGmdwzlMk9Q5KUJGOKw98pie+WjbcpSbYpSR6QbFnWViRblRRJciXjy5i8jBmUcYbluLvLcR8ix9tfrrefjAlS/W4AgJXPWMuNfehdxphbJG1uLt+8ebNuueWWFCICAAAAlkeleLHqL7673iZ5mcemFxAAYNHi6C4l8d1K4m2yyTYl8XbJlmRVlWxFVrGMXEmejNPuItABcpw1aX8NAAAAAAAAdJlNioqjPyqOtiqJ75WNH1CSjGhg3SfSDg0AAAAAMAfGcwAAAAAAoJO2bNmiW2+9td2hW621W7odTz/w0g4AAAAAACAF+eelHQIAoENcbx+53j5phwEAAAAAAIAVxjh5eZmD5GUOSjsUAAAAAMACMJ4DAAAAAABY2Zy0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbvPSDgAAAAAAAAAAAAAAAAAAAAAAACwPa0tK4m2ydlySkTEFOe5GGROkHRoAAAAAAAs2vv3UlrKB4Y/JOEMpRAMAWA1IvLJAxphDJJ3U7pi19t1dDudBxphjJD25zaFvWWtv7nY8AAAAAAAA/SCJH1CS3C+b7JBsVcYZlnHWyXH3ljHusrVrbaIkvqel3PX2WbY2AQAAAAAA+gVzPgAAAFgN4ugehaXvK6xeoyT6syTbco7jPkSuf4j87BPlZR4vY0z3AwU6iPEcAAAA0B+SaKuk6TGslWRkFYtRLQBgsUi8snCPkfROtZt5llJLvCLp0WoflyeJxCsAAAAAAAAdEkd3qFr6vqLKL5XEd7U/yeTlZ46Qlz1emewJHY/BJqOa2P5PUsMlIqM1e1zZ8bYAAAAAAAD6AXM+AAAA6BVJvF1J8jfZZIesLcqYATnObnK8/eeVGMUmEypPfEbV0vdUW1rebtn7dFv3Kon/orB8iRx3TwWFU5TJPb1zXwboAsZzAAAAAAAAWCoSryxN/azY7DPS3VGqe10f1+HdDgQAAAAAAGA1iqM7VJ74nKLK1drVAkXZSYWVKxRWrlBl8iJlB06THxy9DFGlPSUFAAAAAACwsjHnAwAAgF6QxPerWvwvhdVrlER3tj/J5OUHj1cm/4/y/C1tT4mje1UcPVtJfI8a+5VzJWyxUzH8RaWd71e1fInyQ/8sx12/mK8CdA3jOQAAAAAAAHSKk3YAK9wuZue6qv7/sj6uA1OIBQAAAAAAYFWpFL+uie2vUlS5SlKi2tSL2cWjNkWTRHeoOHqOSjs/JmuTDkc23RYAAAAAAAAWijkfAAAApM3aSOWJL2h8+0tUKX5VSfQnzSwFb3rYSYXlyzQ58jqVdn5Y1pYb6kriEU3ueKOS+G619m01S71Sc383rt6giZFXKY7+tJxfHVgSxnMAAAAAAADoJBKvLE0vzYjNllJ8TVejAAAAAAAAWEWsrWpy9G0qj39SUqjGxVrSrIseJTUv4KqWvqXJ0f/VsgASAAAAAAAA3cWcDwAAAHqBtVUVR9+qyuSXJFtW+z5n+8QR1dL3NTn6VlkbPVhfcee7ZJNtau3bao561XRercwmD2hyx5uURPd26NsCncF4DgAAAAAAAMuBxCurxxGzlA92NQoAAAAAAIBVwtpExdFzpnbIal6sNW22BY9S6wIuq7h6o4qj5zYsgAQAAAAAAED3MOcDAACAXmBtosnRsxVVf6nGful0cpXZzJwTV29UaecHJElh5SrF1RvU2m/dVTKKxoQr9bHYZHQquUtlqV8X6AjGcwAAAAAAAFguXtoBYOmMMU+RdLLmnmUHAAAAAADAAlQmP6+o+iu17vTWbne4Zu12kast3Iqq16k8/knlhs7oaLwAAAAAAADYNeZ8AAAA0Auqxa83JUqRWhNJ1PdN251nFZZ/rCh3oirFb7Q5PvXaFOQHT5CXOUKOu1HGGZZsVUkyoji8SWH5CiXx3XVtz3w+ie9SeeJzyg2e3qFvDiwe4zkAAACg94zdf1yKrduG1+PbTlrAZ43W7HFlpwMCAKxgfZ94xRhzvKTjF/CRx8xR1z8vPaIFyUo6SNLTJLmqn0WfsaPLMQEAAAAAAKx4cXSXKpNfVbud3aZfe5kj5QVHyPU2yThrJUlJ/IDi8AaF5cuVxPc2fWZm6qZa+pa8zGHys8d2+ZsBAAAAAAD0L+Z8AAAA0AuS+D6VJz+v2ZJASJJx1slxHypjCrLJiJL4r7J2rO68GaWd/7cucUpjPX72GcoOni7HWdMShyvJD45QUHi1wtJ3VZr4tGSLLfVUi99UkH+uHHfj0r88sEiM5wAAAIBeNVcCxG7rpVgAACtN3ydekfRESe/Qwn9RTZvnd3QopoVqTC0+UyZJf+1+OAAAAAAAACtbbcFWpNZpFyvXP1i5obfI9fZv+Zzr7Sc/eJyCwqtULX1H5YlPS7ai+sWN069L4x+Wmzm47SJHAAAAAAAAdB5zPgAAAOgF1eJ3JFtW+37po5QdOF1e5pCWz0WV61Qpfk1R9ZeqXzaexHepNXmLUSb/POUG37TLeIwxyuRPkutv1uToWbJJ876fkSrFi5UbfMMCvynQOYznAAAAgF5mdn1Kx7W7JXy+cZCgBQDQykk7gB5iFvDoRB2dfMz2K28lXb2AfwMAAAAAAIC+Z21ZYfnHmm1HuMLw+W0XbNUzxlWQ/wcNDF8g4+zWUo8k2WRM5fGPdTp8AAAAAAAAtMGcDwAAAHqBtbGq5UvUvl/6NBWGP9s26YokecHhKgx/REHhVM0knrB1r2fqcrwD5pV0pZ7rb1J+7fvVeItBrc6w9D+ylhvTkA7GcwAAAMBKYLv8AACgs0i8MqMTv8jd7hnUxzNbQpjvzvcfAAAAAAAAAFJU+aWkal1JbaFibZest8oYb951uf4mFYY/JvPgjlj1u29ZheVLFVV+1anQAQAAAAAAMAvmfAAAANAL4vA3ssn2upLpfukW5YbOkzG73p07O3CK/OwJmumDNn/GKDvwqkXF5/lbFBT+Sc1L5q3dqTj87aLqBJaK8RwAAACwEsw1njXL8AAAoLNIvNJoqb/Iy/Hrv9CYbN3zVdbaSxfx7wAAAAAAANC3orYLBo1yQ2fJGHfB9bneQ5Vf80417r41/WxVGj9f1saLihUAAAAAAADzw5wPAAAAekEc3tam1Cg3dPa8kq5Myw2eKZlc22PGDMnLHL3ICKVM/gWSybaUR+FNi64TWArGcwAAAEDvyq95r4wZ0OzJQTV1rNOPaTP9eeNskHH2mMdjo4yzRyf/GQAAq8D8U/v2B7vrUyTNnnxlvp9fbkbSVkkvTDsQAAAAAACAlSaJ/lD3rnYhyAuOkuvtu+g6vcxhCgr/pMrkV9S4Y5aUxHepWrxYQeEFiw8aAAAAAAAAc2LOBwAAAL0gDn9X926qX5o5TK63/4LqMc6Q/OwJCkvf18zS9ul+7tELSuLSzHGG5AfHKCz/RPXL5pNw66LrBJaC8RwAAADQu/zs8XL9R6o49m7F4W/UmHxluv9+nPJDb5VxBjvW7tj9x6r5Vu+B9Z+X4wx3rA0AQH9x0g4AS2aaHhVJ50s60lr71zQDAwAAAAAAWImS+D41X4zxMkcuud6gcKqcBxdMNu6YVZ78opJkbMltAAAAAAAAoD3mfAAAANAL4viuljIvOGZRdXmZw9uWu/7DF1VfYx2HNJVYxfG9S64XWAzGcwAAAEBvc9w9VBj+hILCK9TYd6+9jio/1fj2Vyiq3phGeAAAzIuXdgA9YFTSnxdw/oCk9ZpJaVz/3DoTvryspAlJOyTdKulaSd+21u7schwAAAAAAACrRpLsaCnrxOJEYzzlhv63Jkder9q0Th1bVGXi88oNnbnkdgAAAAAAANCKOR8AAAD0AptMqDmBhOs/alF1ud4B7cvdfRdVX2PdB9a9qy2Vt8n2JdcLLAbjOQAAAKD3GeMoO/BKeZnDVRx7l2yyTTPjXyub/E2TO85QkH+RgoFXyRhubwcA9Ja+/2Wy1p4v6fz5nm+MebmkL85S136digsAAADA6lEce3/aISySUX7N29IOAgC6z1ZaihyztiNVe/4WZXInqlr6jpp3zKqWvqtM/nlyvX060hYAAAAAAADqMOcDAACAXmAnWoocZ3hRVTnO7m3LzSLra6xjqKXMJpNLrhdYFMZzAAAAwIrhZQ7R4Povq7jzg4oqP1Wtfz3d105UKX5VUfV65da8Q663d4qRAgDQqO8TrwAAAADAcgvLl6h5t6LeZyUZicQrAFBjMh2rKhh4jcLy5bJ2vOlIovL4J1UY/nDH2gIAAAAAAMAcmPMBAABAl1lbbFMYL64yk21f7OQXV199HW3rDpdcL9AxjOcAAACAnmWcQRXWvk+V4rdVHv+kpOr0EUlWcXS7JkZOUW7gTcrkT0wxUgAAZjhpBwAAAAAA/cOuoAcA9K92iwhbF1gtnuMMKRg4VTN/b6eSXckqqv5cYeVXHWsLAAAAAAAANcz5AAAAoCe0SRaRJDsWV5WZ5VaAWRKyLIRNxtqUsucr0sF4DgAAAFiZgvxzNLD+Qjnefprpb5vaw5ZVGv8XTY6epyTZmWKUAADUkHhlabgbEQAAAMACmBX0AID+ZZzBlrIkurujbWRyJ8vx9p9use7Zqjx+vqyNOtoeAAAAAABAv2POBwAAAL3AmHxLmU0eWFRd1sb17xYZUXtJMtpS1i75BdANjOcAAACAlcv19tPAuguVyZ2kxrHrVLLDys80sf3liqrXpxQhAAA1JF5ZGu5IBAAAADBPVq2LXOwcDwBAWhx3LzX/LY7CmzrahjGOcoNvVuOOWTVJfJcqk1/paHsAAAAAAAD9jjkfAAAA9ALH3aiWfmn1V4urzFbkBcfLC46beq69NsosOc4k+mN9Q5Ik46xbcr3AYjCeAwAAAFY2YzLKDZ2l/Jr3yZhBzfS3a8lXbPKAJnecqdL4p0h6CABIjZd2ACvQfZKuTDsI9IcovE2TI6+e9XgwcJqyhZd2MSIAAAAsxuD6/1BY/bmiyjWKqtdJSjSTx3G2JCskXwGAtDjuwyRdN/Wu9rc6LF+u7MDpMqZz02le5lB5wfGKKleqecesyuRX5AdPkOs/vGPtAQAAAAAA9DPmfAAAANALHPdhisNbp95N9UsrP1PWniVjFrYfqHHyKqx9b8djlKSwclVza3LcPZelLWBXGM8BAAAAq4OfPU6u/0gVx96tOPy1Zu6pkKRE1eJ/Kqper/yad8r19kkxUgBAPyLxygJZa38o6Ydpx4H+EJZ+sIvjPyTxCgAAwArgeHsp8J6rIP9cJdG9qhS/qmrpe1NH65OvTL82ctx95PqbU4kXAPqdl3msqqVvNpTZZETV4sUKCi/saFu5wTdovPJzSdW6UiMpVHHsHRpYd6GMM9DRNgEAAAAAAPoRcz4AAADoBV7mEIXlSxrKbDKqaukbCvLPTymqRkl0r+Lwt5q5+a3G9TelExD6HuM5AAAAYPVw3N1VGP6EKpNfUmXyS2q+lyKJtmpi5JXKDpyuIP+c9AIFAPQdEq8APcraUGH50jnPSeI7FYe3y/Uf2aWoAAAAsFSOt5dyQ2fLz56g4uh5smEOVGEAACAASURBVHZSjclXarzM4coNnZFKjADQ77zMYZJ8SdFUSe3vdHnic3L9R8vLPLpjbTnuRgWFl6oy+TnVJ+CSpCS+V5Oj56ow/C8yJuhYmwAAAAAAAP2IOR8AAAD0Ai9zpCRHzTeWlcf/VV7mCLnevqnFNq04/mFJiVoTrxySSjwA4zkAAABgdTHGKDtwirzMYSqOvUs2+Ztq/e6pcagtqzz+UUXVnys3dI4cZ22a4QIA+oSTdgAA2osqP5O1O3d5XrX8oy5EAwAAgE7zMocqv+Y9dSVm1nMBAN1lnAH52SeqMSmWkVTR5OhZCstXdbS9oPBPcrz96tqxDz7H4U2a3HG2bFLsaJsAAAAAAAD9hjkfAAAA9ALH3SAv83i17ZeOvF5h5dqUIqspjV+guHqDmtexGFOQlzk0naDQ9xjPAQAAAKuTlzlYg+u/LC84Xq39fauoco0mtr9cYeWXKUUIAOgnJF4BelS1dMm8zgvLP5G18TJHAwAAgOXgBYfLC45W4yQhAKAXBPkXqXHqbGohlZ1UcexcTY6+TVH11x1pyxhP+aG3S/KmS9S8cGti5FTF4e870h4AAAAAAEC/Ys4HAAAAvSAovFStG/QYWTuu4ug5Ko69U1H1BlkbdS2mJN6mydG3qVr8j6bYan1YP/cMGePN8mlg+TGeAwAAAFYn4wyosPa9yg2eJZmg/ogkK5uMqDh6lkrjn5C1YVphAgD6ALOfQA9K4u2KqvPLwmeTEUXVX8kPHr/MUQEAAGA5ZHLPUVS5Ou0wAABNXH+TMrkTVS19R40LC6ez6F+tqHK1jDMs1z9IrrePHGej5OTlOBvlZR694Payg29Sefwjde3NLNxK4ns1MfJq+dmnKyi8RMYUOvE1AQAAAAAA+gpzPgAAAOgFXubR8nPPVFj6vhoTOhhJicLyZQrLl0kmkOPuLcfdQ8bklB04TY67sWNxxNG9isNbFFWuUli5SlJUF0sdEyjIv7Bj7QKLwXgOAAAAWN0y+ZPkZg5RcewdSqI7NDNOliSravEbiqrXK7/mHXK9/VKMFACwWpF4BehBYfmHkuIFnU/iFQAAgJXJyxwqmaxkK2mHAgBokh18g6LwZiXRH9W64NFKmkqIWvmporo/417mKHmZDy24vSD/HCXRnaqWvlnXRv3CxkRh+RKF5UvkuHsv/osBAAAAAAD0MeZ8AAAA0Atyg2coCbcqjn6ndkkkJEm2rCT6g5LoD5JMLfnJEhOvVIrfVrV4sZLk/qa1Krap/ZnnbOEUOe7uS2oX6ATGcwAAAMDq5nr7amDdhSqPf1LV0n9ppu89lQAx+qMmtr9K2cHXpRglAGC1IvFKhxljPEmHSTpS0n6S9pW0m6S8pJykjFrSgC8ba609oEttoYOqpUvalnvB8YoqV7aUh+WfyQ4WZZz8cocGAACADjMmI8/foqh6vbo3VAAAzIcxWRXWflCTO85QEt+r1l2sVPe+M3JDZ8jaksLyD9q0N7NYLInvniUWAAAAAAAAzIU5HwAAAPQCYwLlhz+i4uhbFYe3qDX5Sr3O9U2T+F4l8Z/bRVTX1kz7fnC8gsKLO9Y+sBSM5wAAAIDVz5iMckNnysscodLOD8raMTX2v6sqj3986mz63wCAziHxSocYY54s6TWSnqVagpWWU7obkaROzhiia6LwNiXxn1rKHW9/ZQder4k2iVekssLKlcrknrH8AQIAAKDjHO/hUvX6tMMAALThuBtVWPdZFUffrji8UTMXb+rNtphrcfJr3qays06V4r+1aa++LQAAAAAAACwGcz4AAADoBY6zRoXh81We+IyqxW9JStS9JeeztTPTN/WzT1Fu6NwuxQPMD+M5AAAAoD/42WPk+l9UcezdisOb1NgXp/8NAOg8J+0AVjpjzCOMMZdJ+rGkf5SU18wveP1Dqv2ad+uBFSos/aBteSb7dLneXnK9R7X/XPmHyxkWAAAAlpHrbUo7BADAHBxnjQbWfVzZwTNlnGHNPv3SuUWQ2cHTlF/7IRlnw7K3BQAAAAAA0I+Y8wEAAEAvMCZQbvDNGlh3obzg2KnSbi0Hb9eGlUxeuaHzlF/zzzKGfV7RexjPAQAAAP3BcXdTYfjjCgqvVOPt8PS/AQCdR+KVJTDGnCjpV5KO10yCFZKhYNGsDRWWL21zxJWffaokyc+e0PazUfUGJfEDyxgdAAAAlovj7VX3jklAAOhVQf5kDW64WLmht8rLHCbJ03JOAfnB0Rrc8DVlB14nx93Ypv52O3cBAAAAAABgIZjzAQAAQC9w/YersPb9Gtzwn8oOvFFe5nEyzhot7xL05r1FM8rknq3B9Rcpk3v6MrYLdAbjOQAAAGD1M8YoO/AKFYY/IePsrpk+OP1vAEBnkYJ6kYwxT5X0Tc38GzbPmKWJJC8rVFT5mazd2VLuZQ6T426QVEu8Up64QFLSdFaisPwjBYUXL3+gAAAA6CjH2Tj1iq48APQ6Y3xlcs9SJvcsWVtWHN6qOLpTSXy3bLJD1pblegd2sL1AQeHFyuRfpKj6C4XlKxRVfyGbkHwVAAAAAACgU5jzAQAAQK9w3D0VFJ6voPB8SVKSjMkmo7J2Uo73sA62NLVGxWTl+pvlZ46Un3uWHGeog20Ay4/xHAAAANAfvMxBGlz/JZV2fkhh5Yq0wwEArEIkXlkEY8yekr6umZTI0uzJVrhzEvNWLV3SttzPzmSNd9zd5PoHKw5vav08iVcAAABWJMddp0z++aofPnj+IbOeH0d3aGL7y+asc2D9RXK9/TsVIgCgDWOy8jKHysscuqDPLebvuDFGfvB4+cHjp+q4U3H4e8XRH5TE98gm25XEIwv/EgAAAAAAAGjAnA8AAAB6ieOskZw1C/rMfPqm2cGz5Pmb5Xj7yxhuKcDqwHgOAAAAWJ3mN859k4wZ7FJEAIDViFnSxfmopCHNnnSlXbKV2RKzAJKkJN6u6P+zd+9Rlp51nei/77uv1dWXdEKAyC1CAgICiiiDZ8I1IqCjnBE8orAEER1YB0ecUY/LURzXQUFUUHE8KkcF9cjgHYUYIHITVGBQRAICMUCQcEv6Urd9fd/zR1d1qqt2d7qqq2p3VX0+a+3Vu953v+/z20kne9Xvefb3Gbx3/YniQFrdx5xxqNW9dmLwSjX6RMbDm9Jo3W/TdQyW3pSlkz+z7nizc01mL/nZTd+3Gt+auS89fd3xRuurcvDSV236vgAAe8XMoRdOuwQAdpFG88o0mlcmeeK0SwEAAABgi+j5AACwU5rth9rQB7aQ3+cAAGC6mu2vESwKwAXxKbJBRVFcmeTpufPQlZXjwyQ3JflUkrkki5kczMI+N+xdn2S87nir89gURefMY93HpTf3iomvH/Suz0zrBdtUJQAAAAAAAAAAAAAAAAAAAMDeIHhl474nSZlT4SmrQ1dWB64Mkrwuye8meXdd170drZBdabB03cTj7ZknrTtWlkfSbH9tRoO/W3du2HtLugf/U4qi3PIaAQAAAAAAAAAAAAAAAAAAAPYKyQwbtz4F444QliLJ3yV5cF3Xz67r+gahK5yP0fAjqcY3rztelHdPo/XVE69pda+deLyuvpjx4ANbWh8AAAAAAAAAAAAAAAAAAADAXiN4ZQOKomgneXhOBa2sWAldqZO8I8nj6rq+aQrlsYsNl9408Xh75okpimLiuVbn0Uk6E88Nem/eqtIAAAAAAAAAAAAAAAAAAAAA9iTBKxtzVe74Z7YStrJiIckz6rru73hV7Gp1Pcywd8PEc63uk856XVEeSLPzqInnhv23x19FAAAAAAAAAAAAAAAAAAAAgLMTvLIx95pwbCWA5bfruv7cDtfDHjDqvyt1fXLd8UbrwWk0733Oa9vdayefqBcz7L1zK8oDAAAAAAAAAAAAAAAAAAAA2JMEr2zMoXOc+/Mdq4I9ZbB03cTjre6T7vTaZudRSTE78dyw9+YLqgsAAAAAAAAAAAAAAAAAAABgLxO8sjGdc5z70I5VwZ5RjW/LaPDeCWdaaXWfcKfXF0Unrc41E8+NBu9NVR27wAoBAAAAAAAAAAAAAAAAAAAA9ibBKxuzcI5zt+9YFewZw971Scbrjjc7X5+yPHxe92h1rz3LmXGGvbduvjgAAAAAAAAAAAAAAAAAAACAPUzwysYcP8e51o5VwZ4xWLpu4vF290nnfY9m+xEpiksmnhsuXb+pugAAAAAAAAAAAAAAAAAAAAD2OsErG/Pxc5w7vGNVsCeMhh9JNb553fGiuCTNzqPO+z5F0Uyr+9iJ58ajj2Y8+tRmSwQAAAAAAAAAAAAAAAAAAADYswSvbEBd1/+W5PjKj2tO32OHy2GXGy69aeLxVvcJKYrmhu7V6l579nF612/oXgAAAAAAAAAAAAAAAAAAAAD7geCVjfvrJMWE41+304Wwe9X1MMPeDRPPtWaetOH7NVoPS1HedeK5wdJbUtdrc4IAAAAAAAAAAAAAAAAAAAAA9jfBKxv3F2c5vvG0DPatUf9dqeuT646XjSvTbD1ww/criiKt7uMnnqurWzMe/tOG7wkAAAAAAAAAAAAAAAAAAACwlzWnXcAu9Pokr0xyePnnOkmR5ClFUdyjrut/m1pl7BqDpesmHq/Gn8yJz//7rR+v91dpth+25fcFAAAAAAAAAAAAAAAAAAAA2K3KaRew29R1vZTkV3MqbGW1ZpKf3fmK2G2q8W0ZDd67o2MOe29LXQ92dEwAAAAAAAAAAAAAAAAAAACAi5nglc15aZLPr/q5zqkglu8qiuLbp1MSu8Wwd32S8c4OWs9n1H/Pzo65roZquuMDAAAAAAAAAAAAAAAAAAAArCJ4ZRPqup5P8r05FbZy+vDyz79VFMXjplIYu8Jg6brpjNu7firjrqgzmOr4AAAAAAAAAAAAAAAAAAAAAKsJXtmkuq7fmOTnsz585UCSNxZF8YypFMZFbTT8SKrxzdMZu/93qaqTUxk7SVL3pzc2AAAAAAAAAAAAAAAAAAAAwBrNaRewm9V1/SNFUdwjyTNyKnSlWP6zm+T3iqJ4SpIfruv6c1Msk4vIcOlNE483O4/NzKEXbckY1fizWTj2/EmjZ9i7IZ0D//uWjLNRVXVsKuMCAAAAAAAAAAAAAAAAAAAATCJ45cJ9d5IqyXflVOhKckcIy3cmeVpRFH+Y5M+SvK+u61umUiVTV9engk8maXeflLJx2ZaMUzYuS9m4MtX4k+vODXtvnlrwSl3dNpVxAQAAAAAAAAAAAAAAAAAAACYRvLJBRVF8z4TD70jyyCRXZX34SienQlm+a/n6QZLPJTmeZCHJKKeCW7ZDXdf1E7bp3mzQqP+u1PXJ9SeKg2l2HrmlY7W6j0l/4ZPrjo+HH0o1+reUzXts6XjnYzy6ecfHBAAAAAAAAAAAAAAAAAAAADgbwSsb9+rcEa4ySbHqeT3hWCfJfZYf57rPhSq2+f5s0GDpuonHW53HpChaWzpWq/PY9BdeM7mO3pvTPficc1xdTD5cjy+opvHwXy7oegAAAAAAAAAAAAAAAAAAAICtVE67gF2smPCY9JrkVADK2sfZ7rEVDy4y1fi2jAbvnXiu3b12y8drtK5O2bjHxHPD3vV3cvXkPKa6OrbpeupqLuPhP2/6egAAAAAAAAAAAAAAAAAAAICtJnhl884WprLW2UJRJl2/VQ8uMqfCTsbrjhflpWm0H74tYzY7j5l4vBp/JqPB2UNQimJm8nUXELwy7L09yWjT1wMAAAAAAAAAAAAAAAAAAABsNcErm7c2UKU498vPed1WP7jIDJaum3i81Xl8iqKxLWO2uo8967lh781nPVc0Lpt4vK4+l2p864brqOtR+ot/sOHrAAAAAAAAAAAAAAAAAAAAALaT4JXNqy/iBxeR0fAjqcY3TzzX6l67beM2Ww9KUd5t4rlh769T16OJ5xqNe531nsPe2zZcR3/h91ONP73h6wAAAAAAAAAAAAAAAAAAAAC2k+CVzSl2wYOLxHDpTROPF+UVabQevK1jt7qPmXi8ro9nNPi7ieeK8mDKxpUTz/UWXptq/IXzHn/Ye3v6C7913q8HAAAAAAAAAAAAAAAAAAAA2CnNaRewC71m2gWwe9T1MMPeDRPPtbuPT1Fsb0ZOq/PYDBZfP/HccOn6tDr/fuK5ZufrM1j85PoT9XwWjv9wDhx5SRrNe5513Lrup7/wu+kvvDZJtYnKAQAAAAAAAAAAAAAAAAAAALaX4JUNquv6OdOugd1j1H9X6vrkxHOt7rXbPn6j9ZAU5V1SV19ad27Yf3fqaj5FeXDduc7Mt2aw+LpMCk2pRjdl/vbnpNV5fFrdR6cs756iPJS6Xkw1uiWj4T9m2HtL6ur2M64rG1cmRTvV6GNb9fYAAAAAAAAAAAAAAAAAAAAANk3wCmyjwdJ1E4+XjSvTaF297eMXRZFW59EZLP3JhLODDPtvT3vmm9fX17xH2jPfmsHSn06+cb2UYe+NGfbeeJ6VtHPgyIuzNPeL5107AAAAAAAAAAAAAAAAAAAAwHYqp10A7FXV+LaMBu+deK7VvXbH6mh1H3vWc4Olvzrrue7B56dsbkU4TDezl7xsR4JmAAAAAAAAAAAAAAAAAAAAAM6X4BXYJsPe9UnGE8+1uk/YsToarYelKC6ZeG48/GCq8ecmnivKA5k9+otptB686bHLxj0ye/SVaXa+dtP3AAAAAAAAAAAAAAAAAAAAANgOgldgmwyWrpt4vNF8QBrNe+1YHUXRSLN7zVnO1hn03nLWa8vyaGaPvirdg89PURzewJiH0jnwrBy87DVptr9ygxUDAAAAAAAAAAAAAAAAAAAAbL/mtAuAverQXX532iWcduDwjyaHf3RT1xZFK53Z70r7wNMy7P9NRoP3pxp+ItX41tT1YpIqRXkoRXlpGs0Hptn+6rS6j0lRdNfd6+Clv3aB7wQAAAAAAAAAAAAAAAAAAABgawheAc5LUXTS7j4h7e4Tpl0KAAAAAAAAAAAAAAAAAAAAwAUr6rqedg1wVkVRfDjJg9Yef9CDHpQPf/jDU6gIAAAAAAAAAAAAAAAAAAAAYOs9+MEPzo033jjp1I11XT94p+vZD8ppFwAAAAAAAAAAAAAAAAAAAAAAsNMErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg32lOu4CdVhTFo6ddw06q6/qd064BAAAAAAAAAAAAAAAAAAAAAC42+y54Jcnbk9TTLmKH1Nmf/44BAAAAAAAAAAAAAAAAAAAA4Jz2cyhHMe0CAAAAAAAAAAAAAAAAAAAAAIDp2M/BK/W0C9hmgmUAAAAAAAAAAAAAAAAAAAAA4Cz2c/DKXg4m2euhMgAAAAAAAAAAAAAAAAAAAABwQcppFwAAAAAAAAAAAAAAAAAAAAAAsNOa0y5giuppFwAAAAAAAAAAAAAAAAAAAAAATEc57QIAAAAAAAAAAAAAAAAAAAAAAHZac9oFTMGnk9TTLgIAAAAAAAAAAAAAAAAAAAAAmJ59F7xS1/WV064BAAAAAAAAAAAAAAAAAAAAAJiuctoFAAAAAAAAAAAAAAAAAAAAAADsNMErAAAAAAAAAAAAAAAAAAAAAMC+I3gFAAAAAAAAAAAAAAAAAAAAANh3BK8AAAAAAAAAAAAAAAAAAAAAAPuO4BUAAAAAAAAAAAAAAAAAAAAAYN8RvAIAAAAAAAAAAAAAAAAAAAAA7DuCVwAAAAAAAAAAAAAAAAAAAACAfUfwCgAAAAAAAAAAAAAAAAAAAACw7wheAQAAAAAAAAAAAAAAAAAAAAD2HcErAAAAAAAAAAAAAAAAAAAAAMC+I3gFAAAAAAAAAAAAAAAAAAAAANh3BK8AAAAAAAAAAAAAAAAAAAAAAPuO4BUAAAAAAAAAAAAAAAAAAAAAYN8RvAIAAAAAAAAAAAAAAAAAAAAA7DuCVwAAAAAAAAAAAAAAAAAAAACAfUfwCgAAAAAAAAAAAAAAAAAAAACw7wheAQAAAAAAAAAAAAAAAAAAAAD2HcErAAAAAAAAAAAAAAAAAAAAAMC+I3gFAAAAAAAAAAAAAAAAAAAAANh3BK8AAAAAAAAAAAAAAAAAAAAAAPuO4BUAAAAAAAAAAAAAAAAAAAAAYN8RvAIAAAAAAAAAAAAAAAAAAAAA7DuCVwAAAAAAAAAAAAAAAAAAAACAfUfwCgAAAAAAAAAAAAAAAAAAAACw7wheAQAAAAAAAAAAAAAAAAAAAAD2HcErAAAAAAAAAAAAAAAAAAAAAMC+I3gFAAAAAAAAAAAAAAAAAAAAANh3BK8AAAAAAAAAAAAAAAAAAAAAAPuO4BUAAAAAAAAAAAAAAAAAAAAAYN8RvAIAAAAAAAAAAAAAAAAAAAAA7DuCVwAAAAAAAAAAAAAAAAAAAACAfUfwCgAAAAAAAAAAAAAAAAAAAACw7wheAQAAAAAAAAAAAAAAAAAAAAD2HcErAAAAAAAAAAAAAAAAAAAAAMC+I3gFAAAAAAAAAAAAAAAAAAAAANh3BK8AAAAAAAAAAAAAAAAAAAAAAPtOc9oFAAAAAAAAAHtTVde5pRrnU9U4n6+qfKEa52RdZ66u0q+TcerUSTop0i2KdIoi3SSXlWW+rGycflxa2k8CAAAAAGC79JZ7uZ+rxvliVeVkXWWurtOv64yWX9NJkU6RdIsi3RRn9HEv08MFAAAAttHtVZX3jwb5fFXlWF2lX9e5tCxztCjzwEYzD2y2tm3sfl3nukFv3fGndma2bUx2nuAVAAAAAAAAYEtUdZ0Pjof52+Eg/zga5l/Go9OL8i/EJUWRhzVb+apmK1/VaOf+TdOcAAAAAACbdWs1zt8OB/ngaJgPj4f5XFWlvoD7tZJc1Wie7uM+tNHKEWEsAAAAwAUY1nX+fNDLGwa93DQ+9yq0o0WZx7Ta+e7ugdy1bGxpHQt1nZ9bmk+x5rjglb3FikQAAAAAAADggtw6HuePBkv5q0Evx+s7ludfyEL91Y7Vdd4xHOQdw0GShdyjbOQp7U6e3O7mbls8UQ4AAAAAsBct1nXeNOjlLwe9fHzVl5W2oo87SHLjeJSPjEd5XX8pRZKvabbylHY3j2110inWfjUJAAAA4Oze0F/Kb/YWc3t9fmGxt9dV/mzQyxsHvXxbZybf351Nexv6ESu16HTsPYJXAAAAAAAAgE05XlX51d5C/mrQS5X1C/S3coJ59b0/U43zm73FvLq3mMe2Ovm+7oHcu2HqEwAAAABgrWFd53f7i3ldfykLdb1tfdw6d/Rx6yTvHw3z/tEwP5/5PLXTzbM6B3K4LLdoNAAAAGAvOllV+ZmlubxrODijh3E+/Ys6p8JhX9dfygdHw7x09nDussWbehXZus3IuLjoWgEAAAAAAAAb9tZBL98xd3veNOhlnFMTysWaR3LmYvvNWL1LyOpHnaRK8rZhP981dyyvWprPqDatDQAAAACw4oOjYZ45dyz/b28x86tCV9b2cZPN93LP1cOtkyykzv/XX8rT5m7PH/eXNvU+AAAAgL3vs+NxnjN/7HToyqQ+w1qrj69+7Y3jUb5n7nhuGY93oHL2AsErAAAAAAAAwIb8+tJCXrw4l5PLC/XXBq2sdrbF+3f2WH39JKsnysdJ/qC/lO+ZO5bPVSbLAQAAAADe0F/KD8wfz2eq8cQvK621tpeb3Hn/NhOuWXu/lfHm6zq/uDSfH5o/kZNVtZm3BAAAAOxRJ6oqL1w4nlur6nQfI1kfqrLWpHVrKz9/qa7yooXjuV0fgvPQnHYBAAAAAAAAwO7x6qWFvKa/mOTsk9nJ+sX3rSSXlWXuUpQ5UBTppEi7KNJOUuVUeMogdRbrOgt1nWN1ldurKoOz3H/SeJ+oxvn+ueP5pYNHcmXDVCgAAAAAsD+9ob+Uly7NJ5n8xaSz9XGTU7v7Hj3dx81yH7dIlXq5j5vlPm6Vk3WdSV9dOtd4fz8a5AXzx/NLBy/JZaW9hAEAAIDkpUtzubWqzhqisvJzmeRwceroieVNw1ZeV6y5rk7y2arKTy6ezK/MHklRnC0+FgSvAAAAAAAAAOfprwf9/FZ/8aw7mK5MXN+lKPM1zVbu32jmAY1m7tto5pJNLqC/vapySzXOx8ej3Dga5n2jYW6rTy3lX13HyvMv1lVeNH8iv3PoaI5YtA8AAAAA7DMfGA3yc6tCV5JM3Cm6leSBjWbu32gt93EbuUtZ5rKiTHmeX0Sq6zrH6jq3VuN8phrnY+NRbhyN8uHxMKPl16zt49ZJ/rUa5wfnj+c3Dx1N15eeAAAAYF97/3CQdwwHZ+1jXF6UeXpnJo9stXNV2TgdoDKs6/zDaJi/GvTy5mH/9HX1qnvUSf5hNMzv9BfznO7sjr4vdhfBKwAAAAAAAMCdOlFV+fmludM/r53gvrQo8x/a3VzTaudBzdaWjXtpWebSsszDmq2kM5Mk+dBomD/pL+UtyxPma+v5fF3lpxZP5hUHL9myOgAAAAAALnZLdZ2XLM6lyuTAk1aSx7U6uabVyaNa7Ry4wNCToihyaVHk0rLMg9PKNy4fX6zrvGvYz5/1e/ngeLjui1Mr4SsvW5zLi2cPX1ANAAAAwO72e/3F089X9w6S5JmdmTyvO5vWhB5Gqyjyda12vq7VzneOR/nJhZP5ZDU+4/qV57/TW8yjW53cryFeg8ls8QYAAAAAAADcqdf1l3K8rk8vkF+ZlG4keV73QP708KX5/pnZLQ1dOZuHNFt58ezhvPbQ0VzVaJ4x4b5S33tHw7xz2N/2WgAAAAAALhZ/0l/KrVV1xheMsvz8m9vd/Onhy/JTs4fzhHbngkNXzuVAUeQb29382qFL8guzR3LXolzXx62TvHnYzwdHw22rAwAAALi43V5Ved9ouG5NWpHkR2YO5gUzByeGrqx1VaOZ3zx0Sb6m2VoX3pIkwyQvWZxLXdeTb8C+J5IHAAAAAAAAOKdRXeePB0tn7JBaJ+kkk0nRXQAAIABJREFUefnskTyi1Z5KXfdtNPObBy/Jf1s4mb8ZDdbV9+rlnUoAAAAAAPa6qq7zuv7Sui8qlUl+/MChPKXdnUpdj2q18zuHjua/LJzIjePRuj7u/7O0kF87dMlUagMAAC5e33bytmmXsClFkj86fNm0y4Bd4z3DwRmbba08/9Z2N0/tzGzoXrNFmZfPHsnz54/nY8s9iNUhLP8yHuVPBr182wbvy/4geAUAAAAAAAA4p/eNhpmv63UT3D80c3BqoSsr2kWRl8wezgvmj+fDyxPmK5PlN41H+fh4lKsbpkUBAAAAgL3tg+NhbqurdX3c53Vnpxa6suJIWeaXDh7Jc+eO55ZqnOSOPu4/jYf5zHicezYaU60RAAC4uNxaVad/b9hNijt/CbDKh8fDdce6KfL93dlN3a9bFPmZA4fz7PljZ6x3W/n/yW/0FnJtq5MjZbnpmtmb/I0AAAAAAAAAzunvR4PTz1cWtNy3bOQ/XCS7f7SKIj9x4FAmLct/57C/4/UAAAAAAOy0vx0O1h27oizzzIukjztblPnJA4cmnnu7Pi4AAHAWxS56ABt383h0+vlKiOwT2hcWjHJFo5H/OnPw9Dq31QFO83Wd3+gtbPre7F2CVwAAAAAAAIBzumnVBHdyaoL7G6e8Q+pa924087hWZ91ORx8ZjSa+HgAAAABgL/n4hC8qPbndTaO4eL7+96BmK/+u2V7Xx71xwu7WAAAAwN73+apaF1z0tc3WBd/3G9rdPKbVPt0jyfKfdZI3DHpnBL5AIngFAAAAAAAAuBOfGY/XTXA/ZAsmuLfao1vt089XJso/WZkkBwAAAAD2vk9X6/u4X9W4+Pq4j293Tj9f6ePeNB5PrR4AAODidHlRpk7WBTfW53gAu8/Jev1/vfcuG1ty7x+aOZgD67olSZXkl5fmt2QM9o7mtAsAAAAAANiNvu3kbdMuYVOKJH90+LJplwHALjM3YYL78uLi2+Phfo3105+TJucBAAAAAPaaSX3cu2/RF5W20gMm9HFP1NUUKgEAAC5mf37ksvzreJS/GQ7yhsFSPltVKXJHgOMkVojA7tOf8F/uJeXWrEu7vGzkud0D+ZXewun/d6z8+d7RMH87HORRqzb6Yn8TvAIAAAAAsAm3Lk/i7baJuvW57QBw53oTPvGaF+GHymyxvqglwSsAAAAAwD4wqRfaugj7uIcn9HEX9HEBAIAJ7tto5r6NZp7Vmclbh/28cmk+x+r6jLWbq8MUHtFs5Ynt7tTqBTaukWS05thWxrN+e2cmbxj08ulqfMYa6jrJq5bm88jm0ZQTehXsP4JXAAAAAAAuwG5qtVuuCMBmzRZF5tcsfD9WVbnrRbZb6uKExfmdXfVpDQAAAACwOTNFsS7A5GRd565Tquds+hP6uG19XAAA4ByKosg3tLt5RLOdF84fz83LAQprf7u4T9nMNwlegV3lQFHk5JpewYmqyhVbtC6tURT5wZmDedHCiTOCmuokn6zG+eNBL0/vzGzJWOxu5bQLAAAAAAAAAC5uh4v104r/Ml6718j0/et4vO7Y4dKCfQAAAABg7zs8YXfmT1yEfdxPVev7uIfsLA0AAJyHo2WZlx88ks7yz36TgN3v6IR1aTdP6B1ciEe22rmm2T4dupLcEb7y6t5CjlXVlo7H7iR4BQAAAABgEy4vytRZv2NCfY4HAOxWV5aNdZ9lbxn2p1LLubxzVU0rE+X32aLdTwAAAAAALmb3nNDHfdtF2Md993Bw+vlKH/deDX1cAADg/FxRNvKUdteaTNgj7jWhn/HeVb2DrfIDMwfTmnB8vq7ziqX5LR+P3UfwCgAAAADAJvz5kcvye4eO5j91Z3NFWZ5u+p9rB4VzhbLsxAMANusrm3dMO6/s9vGB0TAf2IZJ7s365HiUG4b9dZ/FX9GYNGUOAAAAALC3fGVjfR/33cNBPjEeTa2mtb5QjXP9oLeuj3v/RnMq9QAAALvTN7W70y4B2CL3XdUTWOlnvGPYz4mq2tJx7tFo5BmdA6fXU6+EwdZJbhj28+ZBb0vHY/fRnQIAAAAA2KT7Npq5b6OZZ3Vm8tZhP69cms+xuj7diE/uaMoXSR7RbOWJJvwA2IW+vtXOr/cWTv+88vn23xfn8upDl+Tycrq7kS7UVX5y4WTGWR+Cdk2rPY2SAAAAAAB21Ne12vmt/uIZx6okL144md84dElmi+nu2zuq6/z04lx6Wd/H/d/0cQEAgA14YLOVo0WR47Ut6WC3+9pmK6/pn3msn+R/9BbyYwcObelYz+4eyHWDXr5UV6d7Eyvr4H5ucT5XN5r5cuGw+5Z/8wAAAAAAF6goinxDu5tHNNt54fzx3FyNzwhfWXGfsmmnBQB2pasbzTyo0cxHVu2MWiT5Yl3l+fPH87OzR3L1lCadv1CN82MLJ/OJ5c/f5I7P4PuUjTyo2TrbpQAAAAAAe8ZDm618ednIJ6txkju+OPTJapwXzp/Iy2YPTy1Ee6Gu8lMLc/nAaLgudOWuRZmvbujjAgAAG/OQZivvHA7W/Y4B7C4PbbZypChycjlIaaWf8ZeDXq5uNPO0zsyWjdUtivzgzMH8+OLJMzbWLJIsps6L5k/kVQcvyT0b092EjOmYbmQxAAAAAMAecrQs8/KDR9JZ/tmEHgB7yXd3D5wONFn5s0jy2arK984dy68szedYVe1YPaO6zv/sL+ZZc8fy0VWBMCuKnNqlBAAAAABgv/jONX3clS8RfXQ8yjPnjuWP+ksZ7fCO8O8c9vPdc8fyntHgjOMr9T2zeyBFYWYVAADYmPtPaYMgYGs1iyLf3O5O7Ge8Ymk+v7Q0n94W9jIe1+7k0a32GeNk+fkX6iovmD+ej43Wr0Vj7xO8AgAAAACwha4oG3nKqgkAANgrrml18tizTDoPk7yuv5SnnrwtL144mXcO+1napsX7Hx0N82tL83nqydvzy0sLmavr0zUld0y+P7zZyhPb3W2pAQAAAADgYvRN7W6+utk6o4+70judq+u8Yrm3+utLC/n4hEDrrXKsqvJn/aU8e+5YfmzhZD5bVRP7uFc3mnmqPi4AALAJVwlegT3jGZ0DmV3uGqzuZ9RJXt9fyrefvD2/3VvIJ7eol/FjM4dyWVGeMd7K8y/VVZ43fyyv7y+m2uHwWqbLpwoAAAAAwBb7pnY3fzLoTbsMANhyPzpzKDePj+fT1fiMSe6V58Mkbx3289ZhP40kD2g0c/9GM/drNHPPspG7lWUuLcocKs+9P0RV17m9rnJbVeXWqspN1Sg3jUf5x9EwJ5YntFdPeK91aVHmJw4c2qJ3DQAAAACwe/zEgUN53tzx3F5X68JX6iS311Ve21/Ma/uLubQo89XN1nIft5F7lo3ctWykU0zqvE52sqpyazXOTdU4n1ju435sPEqdc/dxZ1LkxQcOpbGBsQAAAFZcUTZOP/dbBexul5Zlvm9mNq9Yml8X2lrnVBjKq3uLeXVvMYeLIvcuG7l72ciBoshXNJr51s7MhsY7UpZ5yezhvHD+eEbJunVwwyS/tLSQP+738p2dmTyk2dqy98rFS/AKAAAAAMAWe2CzlaNFkeOSzgHYY46UZV558EheMH88t1bVGQtXVk96J8koyY3jUW6csNNIkVOL6rtFkUaSskhGdTJMnWGd9FJn0qdoveYek84fLoq88uCR3HXVAhsAAAAAgP3i7mUjrzh4JP/n/PHM1fU5+7i31VVuGPZzw7B/xj0OpMiRssiBFOkURZoplvu4dYZJhnWd+eUA7bUd4LW93bW93DpJK8nLZg/ny+1QDwAAbNIVy5v+WKUJe8PTOzP50GiYtw7768JXVp4nyYm6zj+PR/nn5TVpX2q2Nxy8kiQPbbby4wcO5b8vziVZH75SJ7mlGufnVoXBsLfpUgEAAAAAbIOHNFt553Cg2Q7AnnO3spHfPng0P7F4Mu8bDdd91q3++WyLW+okC6mzsBJSdp6rYM71uVonuU/ZyMtnj+SeDaErAAAAAMD+dVWjmVcfPJr/a+FE/rUab7iPu5A6C1W97rVne/1aa++/+ktSlxZlXjp7OF9pt2gAAOACHCzKvGz28Bm/o3yZTXpgV/uJA4cyWqzz9uX115PCZJM7ehMXukb7ie1uhnXys0tzp/sXq8NXVsaqVz23LnzvKqddAAAAAADAXnR/u7MBsIcdLsu8cvZIXjRzMIeK4qwL7YstfiTrF/WvTGj/H52Z/Paho0JXAAAAAACS3LPRyKsPHc13dGbSyOTeanJ+PdnVj5zndatft3Lto1vtvObQUaErAADAlrim1cmjVz2usm4TdrVWUeQlBw7nezoHJvYyVmxl+Mk3dbp5+ezhzC6vgZvU1xC2sj8IXgEAAAAA2AYm8ADY64qiyNM7M3n9oUvzrM5MjixPPp9twnvSwvxzOdtr1wawPGZ5of5/njmYbmGaGwAAAABgRbco8gMzB/P7h47m2lbn9JeWzrZD82bCVc6nL/yARjO/MHs4L509kstKX2MBAAAAJiuKIt87M5vfOnQ0j261zwh0PeN1Wzjmo1qd/P7yeBtZ38beYuU/AAAAAMA2uKJsnH7uK+AA7GWHyzLPnzmY53Znc8Own7cN+nnfaJD+qtdsZuePta9fPaF9z7KRJ7Q6+ZZ2N1c0GgEAAAAA4Ozu1Wjmp2cP57aqyp8NlvL2QT83VePT54s1f27E2hCWFTMpck2rnW/pdPPwZnsTdwYAAAD2q6sazbx09khuGY9zw7CXvx0OcuN4lPGdX7opl5eNvHT2SD4yGuYP+0v562E/g+Vzm1n7xu4jeAUAAAAAYBtcsbxTm9RzAPaLdlHkye1untzupl/X+cBokA+NRvmX8SgfG49yW11t6r6NJPcuG7m60cxDm608vNnKlQ3TnAAAAAAAG3VZWea53dk8tzubz1XjvGc4yIdGw3xsPMqnqnE218U9ZSZFrmo0Tvdxv6bZTrvwtSQAAABg8+7VaOTZjdk8uzubUV3nlmqcT4/HOVZXWarrXL68XnurPLDZyk82W/nBqsp7RoO8ZzjI+0eDHK+tCN/rrEgEAAAAANgGB4syL5s9fEbwypeVjanVAwA7qVMUeVSrk0e1OqePLdV1vlCN84Wqym3LE9/9us4gySh1GinSSnKgKHKoKHO0LHK3opG7lWWaFucDAAAAAGypu5eN/MfOTP5jZyZJ0qvr/Fs1zherKl+oxqv6uMkgdUY5FZR9Zh+3zN2KMvcoG7miYS4UAAAA2D7NosiXN5r58h3YtOtwWeZJ7W6e1O4mSb5YjfPx8Sifqcb5UlXl9k1uQsbFS/AKAAAAAMA2uWbVl80BYL+bKYrcp9HMfay9BwAAAAC46HSLIvdrNHM/PVwAAACAM1xeNnK5DTj3tHLaBQAAAAAAAAAAAAAAAAAAAAAA7DTBKwAAAAAAAAAAAAAAAAAAAADAviN4BQAAAAAAAAAAAAAAAAAAAADYd5rTLgAAAAAAAADY2+brKp+rqnyxGudkXWeurtOv64yS1KnTSZFusfxIkcvKMl9WlrlL2Zh26QAAAAAAe8q4rnPjeJTPV+McW+7VHi3LXFqU+YpGM0fL7dvfd1TX+V+j4brjj2y1t21MAAAAYPfTz2C7CV4BAAAAAAAAtsxgeaL5g6NhPjwe5ubxOMfqalP3aiW5e9nI1Y1mHtZs5auarVzVMMUJAAAAALBR7x7284ZBL/9rOMxS6omvKZI8oNHM41qdPK0zk25RbGkNJ+s6L1o4kdV3LZL8zSWXb+k4AAAAwN6gn8FOsSoRAAAAAAAAuCB1Xec9o0H+ctDL3w8H6a8+dwH3HST5dDXOLdU4fz08ddfZosjjW508ud3Nw5qtCykbAAAAAGDPe+9wkP/RW8jHx6Mk5+7Z1kk+Mh7lo+NR/qC/mOd0Z/O0zsyW13QhfWMAAABg79PPYKcJXgEAAAAAAAA27bpBL7/TW8xnqnGS9RPMW7F/yOp7ztd1/mLQy18MerlH2ch3dGbyLe1umlu8UwkAAAAAwG42quu8qreQP+wvJbmjz3pnndR6+XGsrvOKpfm8bzTIiw8czoEt7MGu3MkXlgAAAIDV9DOYlnLaBQAAAAAAAAC7zy3jcZ4/dzz/9+JcbqnGpyevizWP5I6J7ZXHnVn7urX3XDn/mWqcX1iazzPmjuU9w/5WvC0AAAAAgF3vRFXl++aP5w/7S+t6t8n6nu3qnuzaXuzfDAd53tyx3F5VO/kWAAAAgH1GP4NpErwCAAAAAAAAbMjfDQd57vyx/NN4uC5sJVkfrjIpjOVc7ux1ayfK/60a54cXTubnFucyrO0pAgAAAADsX/26zn9eOJGPjkdn9G/PFXY96UtMWXXdzdU4/2XhRBb1XwEAAIBtoJ/BtAleAQAAAAAAAM7bu4f9/MjCiczX9elJ7mT9JPfKsUmPRpIDKXJJUeSuRZm7FGWOFmVmi+L0xPfZdidZa/Uk+58PennRwoksmSwHAAAAAPapVy7N52Pj0Rm907W93HM9znbdx8ajvHRxbqfeBgAAALCP6Gcwbc1pFwAAAAAAAADsDp8Yj/LfFk5mlDMntSftMHJ5Ueb+jWYe0Gjmvo1m7lKWubwsc3lRplkUa299hl5d51hd5faqyq3VOJ+pxvnYeJSPjEb5fF0lq8ZfsTL+P4yG+eGFE/nl2SMp72QcAAAAAIC95KOjYd4w6K3r36487yZ5crubR7baubrRzNHi1F6+X6zG+cBomOsH/fzjeDjxy0p1khuG/Ty8v5SndmZ28m0BAAAAe5h+BhcDwSsAAAAAAADAnRrVdX564WT6WR+6shK48pBGM9e0Onl0q517NzY/FdktilxRNHJF2ciD0zrj3KfGo7xt2M9fDnr5bFVNrOUfRsP8am8hL5w5uOkaAAAAAAB2m9f2F8/ola7u317b6uRFMwdztCzXXXevRjP3ajTzrZ2ZvGfYz88uzuf2ujrj+pXnv7K0kH/XaufuZWP73xAAAACw5+lncDFY/zcMAAAAAAAAYI03Dnr5RDU+HXSS3DEx/YhmK685dDS/fuhontk9cEGhK3fmPo1mnt2dzesPXZr/OnMwM8sVrdS1UtP/7C/lpvFo2+oAAAAAALiYzFVV3jUcrOuVFkm+u/P/s3fvYZZedZ3ov+++77p0dQfIJCZIJAQVkPstBBEfYRDmwIhjDgwqHIwiCIoRDHEUb6MeJM7BQUCPiIgjeFC84mEUBzlzuIOCoKAIYsAEEUj6Utd9feePdHVXde3qdFftrsuuz+d59tO73nfvtdZ+0l0767fe97um8tPTh0bepHSmR9Wbed3s4dyzUt1ws1OSLKfMy5bmxz18AAAA4ABSz2CvuHBXPAIAAAAAAAAT442d5XWhK6sL1N/dmsp3taZ3fDyVosi3Ntt5WK2R6xeP5V+Gw3XnyyS/vLyYX5iZ2/GxAQAAAADstPf1uxnkdEj1ag33G+qNfG/7/Gq4F1eq+a8zh/OchaP5l+Fww47TH+r38j+6K3lcozXGTwAAAHDaCxaO7fYQtuxVM4d3ewiwb6hnsFcIXgEAAAAAAADO6u/6vdwyHGxY4P62RntXQlfWunu1mtfMHM53zx/LbeUd4Suri+Xv73fz5eEgd61Ud3WMAAAAAAAX2sf7/Q3Hakle2J7ZUnsXVSr5uam5PGfhaHrJhp2nX7W8mEfXm2kVxeaNAAAAbNGH+73st9nG6vU0wLlTz2CvqOz2AAAAAAAAAIC97T297oZjFxWVPO88dxW5UC6uVPOfpmZTnnG8TPLOEWMHAAAAAJg0nx6evlHp9O7QzfybbQRT37tWy/PbM6dqr2trsF8qh3nDytKW2wYAADgX5T55AFujnsFeIXgFAAAAAAAAOKt/GGxc4P7mxt7a+eOR9UYeUK1vuJjlb/q9XRkPAAAAAMBO+tfhYMPO6g+vNbbd7rXNdh54svZ65i7Rv91ZyheGg233AQAAsJlinzyArVHPYK8QvAIAAAAAAACc1T+NWOB+8BgWuMft3zaa634uk3x6TWgMAAAAAMCkOjbcuMf6vapb3x16rRumZlIfcbyX5DXLi2PpAwAAYK1a7rju48yZTnmWB7D/qGewV9R2ewAAAAAAAPvRCxaO7fYQtuxVM4d3ewgA7DMnyuGGY5dXxrPAPU73qZ5e/lzdoeTYiLEDAAAAAEyazojbDOcq49mr94pqLc9oTuUNnaVTtdfVP9/R6+Rp/V7uWxt1KxMAAMDWvH3urvmrfjfv6XXzZ91OllOmyOm5yCjCV2D/Uc9grxC8AgAAAACwBR/u91Ls9iDO0+qCAQCcr6Vy4wJ3aw9+qRwZsei+OGLsAAAAAACTppLkzBjq8dymdIdntaby37sr+VI5XLfmWCZ55fJC/u/ZI2PsDQAAOOhaRZFr6s1cU2/m+e3p/F5nJa9fWUw368NX1oYpfG21lqvrjd0aMrAF6hnsFYJXAAAAAAC2Yb/cyr0H740HYB9ppsjyGd96i2WZu+3SeDbTHfHFXN35YQAAAAAA7Lh2UWT+jCDqE2WZfzOm9ltFkee3p/MTS/Mbdon+20E/f95dyeMbrTH1BgAAcNp0UckzW1N5TL2R6xeO54snAxTOvEzkPtV6rmtN78YQgS1Sz2CvGGfgDwAAAADAgVPskwcAbMehysZvk38cDHZhJGf3+eHGMU0XlkQBAAAAgMk3N6IW+tlBf6x9PL7RygOq9VM3KSWnb1Z61fJilsv9sm0FAACwH11RreXlM3Onbo53bSTsf+oZ7BWuMgQAAAAA2IJa7ii4n1lqL8/yAID96pKiuuG77N29zq6M5Ww+0O+eer66UH55pbpr4wEAAAAA2CmXVzbWcf+y3xt7P9e3Z0beiPLlcphfXl4ce38AAABrXVWt5XH1pmsyYUKoZ7BXCF4BAAAAANiCt8/dNTdNH8q3NFpppThV9D/bDgpnC2XZiQcAbNX9arVTz1d3+/iLXif/Mhjs2pjOtFAO8yfdlQ3fxVdVayNfDwAAAAAwSb6qejqEerWO+85eZ+y7Nt+7VsuTG61164+r/f1+dzkf6nU3eScAAMB4PKXZ2u0hAGOinsFe4SpDAAAAAIAtaBVFrqk3c029mee3p/N7nZW8fmUx3ZwuxGfN8yLJ11Zrubre2K0hA8CWPbTWyG91ltcd6yX56aX5/NLMXGrF2aLHdsbLlhYyX5Ybgleurtd3ZTwAAAAAADvpIbVG3nRGHXehLPMbK4t5XntmrH09tzWdv+h1srDmJqgiyTDJTy3N59dnD+fiSnXT9wMAAGzH/av1zBRFFscczADsPPUM9grBKwAAAAAA2zRdVPLM1lQeU2/k+oXj+WI5XBe+suo+1Xqua03vxhABYFseVqvn0kolXxgOk5wOFvvYoJeXLJ7If54+lKldCl8ZlmV+YXkhf9HrbAhdmSuKPKwm9AwAAAAAmHwPqtXTTpGVk6uUq3XcN3aWc99aPY+pN8fW11ylkue2pnPT8sK6jSiKJLeXw/zQwvG8auZwDlcqY+sTAABgVbUo8nXVet7X7264VgTYX9Qz2Cv8VwcAAAAAGJMrqrW8fGbuVOHVgh4Ak6IoilzbaJ8KFVtddC6TvL/fzTPnb897ep0dH9c/9Pv53oVj+aPuyrrjq+N7WnMqtV0KhAEAAAAA2EmtosgTGs11m0Os7tr8Y4sn8judpbH299RmOw+o1tfVi1d9ZjjICxaO5YvDwVj7BAAAWHXvam23hwCMgXoGe4XgFQAAAACAMbqqWsvj6usXAABgElzbbOdelWqSrNvxo0zy+eEwNyyeyLPmj+aPO8s5PhxesHEMyzIf6HVz4+LxfNfC0Xxi0D81llVFkksrlTyt2b5g4wAAAAAA2Gue0ZxKfc3Pq7XTfpL/uryYZ80fzZ92V7JUjmc188enZjN9sjp75k7RnxkO8qz5o3nXLoR2AwAAk+8qwSswMdQz2At8qwAAAAAAjNlTmq38mYI7ABOmWhR56fShPG/+WJZTrlt0zsnnnxr08/PLC7lpeSFfU63lQbV6vrpaz5XVai6rVFMvis072MTx4TCfGfbz6cEgH+l385f9XhZPLqKvLqWvbbVMUk/y0qlDaW2hPwAAAACA/eryajXPaE7lDZ2lDWHVqzXc/7w0n0rmc69qLfeoVHNJpZqposhXVav5+nrzvPq7tFrNS6dn8yOLJ9b1s3qz0vGyzI2LJ/KgWj3PbE7limp1LJ8TAADgskrl1HNXh8D+pp7BXiB4BQAAAABgzO5frWemKE7dFA4Ak+Kqai0/P30oP7R4PP1sXHQuTz4GST4x6OcTg36S5eTk+cNFJRcVRQ5VKplOkWZRpJqkWiT9MummTL9M5ssyt5fD3DYcZjnrv0/X/nTmhTOrY/mxqdk8oFYPAAAAAMBB892tqfzNoJcP93tnreF+ctDPPwz6p973qFrjvG9USpLH1Jv5vtZ0Xr2yuK6ftc8/0u/lI/3jmXI7JAAAMCaXVO4IQnCVJkwG9Qx2m+AVAAAAAIAxqxZFvq5az/v6XaV2ACbOQ+qNvHrmcP7T4ol8uRye+q5bXXjOmp9zxs+3l8PcXibFcHCn/Wx2Ycxm361lklaSl04dyjc2zn8xHQAAAABgElSLIv/n1KG8aPF4/nbQP2sNd1w3KH57ayorKfO6laVNb1ZKksWTz84cCwAAwPmaq1RyfXsmwzUzm6uqbpuH/Uo9g91W2e0BAAAAAABMontbwANggt2vVs9vzB7JY+uNUwvMZy4qF5s8ktML4Gd7nO39ZyqTfE21ltfOHhG6AgAAAAAceLOVSn5p5nCeWG/eaQ131LmtuK41nRvaM6me0eaZ9V4AAIBxubbZztOaU6ceD641dntIwDaoZ7CbBK8AAAAAAFwAdk4AYNJdVKnk56bn8qrpudynWjvrbiJrj28WqLJZwMpm7a4ev0tRyYvbM/m1mcO50vcvAAAAAECSpFkUeen0ofyX6UO511lquOM/S86VAAAgAElEQVS8eehbmu382syRXLWmPzcnAQAAAOdKPYPd4spDAAAAAIAL4LLK6dxrxXcAJtmD6428tt7I3/d7eUt3Je/qdTJfnl7u3u6uH2eGsKwe+7pqLU9ptvP4ejONwrctAAAAAMAoV9ebubrezF/1unl7r5P397r5Ujm8YP3du1bLb8weyTu6nfxeZzl/PeidOmeXaAAAAOBcqGew0wSvAAAAAABcAJdUqklGp6wDwCT6mlo9P1arZ1DO5GODXt7b6+Zv+/18atDP0hi+Ee9aVHL/Wj0PrtXz6HojF5/8rgUAAAAA4M49pN7IQ+qNJMnnB4PcPOznc4NBjpbDrJTJ5dXx1ly/qdHMNzWauXnQzzt7nby3183fDfq5cLdIAQAAAJNGPYOdIngFAAAAAOACmKtUcn17JsM1N5pfVVWSBWDyVYsiD6o18qBa49Sxzw36+dxwkC8Nh/nicJjbymFWyjKdskwnZfq5Y+GyliJTRZHZoshFlUouLiq5rFLNldVa5iqVXftMAAAAAACT5Cuq1XxFtZpH1S98X1dUa3l2tZZnt6azVJb59OCOwO5bhoPcdrJeDAAAAHBn1DO4kFzlDwAAAABwgVzbbO/2EABgT/jKai1fKYAMAAAAAOBAmyqK3L9Wz/1rO3CHFAAAAMAYqGccDLaFAwAAAAAAAAAAAAAAAAAAAAAOHNvKAQAAAAAAAAAAAAAAAAAAcKAtl2W+NBxkviyTJNNFkUsq1bSKYpdHBsCFJHgFAAAAAAAAGJsvDwf51+Ewt5fDdMvkSKXIRUUld69UU72AF6EMyzK3DAcbjn9l1ZIoAAAAAMBa6rgAAACn/fNgkLd2l/OeXjefHQ5SjnjNV1SqeWCtnm+sN3J1rZFCEAvsOPUMLiT/NQEAAAAAAIBt+cdBP2/truQDvW4+N2KRObljB6CH1xp5bL2RxzVaYx/DsbLM0+ePZu0SepHk3YfvNva+AAAAAAD2G3VcAABg0tw2HOZfh4McLYdZKsvMFJXcrVLJlZXqOQWjLJTDvGZ5MX/cXUmZjAxcWXXrcJDPdwd5W3cll1Yqua41nSdegHkTsJ56BjtF8AoAAAAAAACwJZ8Z9POrK4t5d697pxegLJRl3tnr5J29Tt6wspTntqdzTb059jGdbQwAAAAAAAeNOi4AADBJ/nU4yO91lvOeXjc3bxLCMJUiV9cbeVqznfvW6iNfc8tgkBctHs8tw8G6OcrZ4lpWX/f54TA/szSf/7e7kp+aOpS7VCpb+izA5tQz2Gl+kwMAAAAAAADn7c2dpTx7/mje1etmmDsWlos7eawugv/jcJAbFk/kFUsLGZbjXZJe7QsAAAAA4KBTxwUAACZFvyzzupXF/McTt+eNneX808nAlFGPxZR5R6+T5ywcy8uW5rNyxpzm9uEwL1g4ln8+2cbaOVE2aTPZOHf6cL+XZ88fzT8N+hfyo8OBo57BbhC8AgAAAAAAAJyzblnmJQvH88rlxfSyfmE7GX3xyWYXoLylu5wXLh7fcIELAAAAAABbp44LAABMkm5Z5ocXj+fXV5ayktHzl81CGN7aXcmLF4+nv2ZO8xNLJ/LFcrhhnpSztJszXrd67MvlMM9fOJZbB4PxfFg4wNQz2E2CVwAAAAAAAIBzMizL3LB4PO/qdzcsbK/a7IKWZONi9+ruPzeecYELAAAAAABbo44LAABMkmFZ5kWLx/OBfm/dHGd1vrKZta/5SL+Xn12aT5K8q9fJX/V7G+ZAdxbscGbgytqxHDsZDNMxZ4ItU89gtwleAQAAAAAAAM7Ja1eW8sGTF5+M2vHnXC4+Wbur0OrzD/V7+aXlxQv/AQAAAAAAJpw6LgAAMEne3Fk+FZRy5hxnVFjKWmvnNG/vdfKRfje/01necH71NdNFkSfUm/nxqdm8ZmYuvz17JL85eySvmJ7Ls5pTubxS3RDssOqzw0F+dcWcCbZKPYPdVtvtAQAAAAAAAAB73+cG/byxszRy557V54+sNfKIej1XVWs5UtyxB8SXhsN8uN/LO3qd3DocbLrI/Zbuch5Sr+cx9eYOfzIAAAAAgMmgjgsAAEySLwwHee3K4sjAldXnFxWV3L1SzUxR5LZymC8MBzlWlqdet9ZNSwv53Mk5z5ntPKnRyve3pjNXqWwYx72qySPqjTynNZU/6q7kNSuLWSzLDe28pbOca5vtXFKpbvuzw0GinsFeIHgFAAAAAAAAuFO/1VlOP+sXtHPy+QOq9bx4aiZXVjcuP35VNXl4vZHvaU3lD7srec3yYlZSrrt4ZfX5y5bm84DZ+siLWAAAAAAAODt1XAAAYJL8QWc5Kxk9x7lPtZYXtKfzwFpjw/s+1OvmTZ2lfKDfWxe+8tnhYMMcp0hybbOdH2zP3Ol4iqLItzTbuW+tnh9aOJ7by+G68/0kv9NZzg+cQ1vAaeoZ7AX+ZgAAAAAAAABntVKWeXt3ZZMdf5r5pZm5kYvba1WLIv+h2c6vzB7OxSd3HVnbTpIcL8v8X8sLYx49AAAAAMDkU8cFAAAmyaAs87ZuZ+Qc55vrzbx25vDI0JUkeVi9kVfMHM51ralTIQ5lTgc6rG3rymrtnEJX1rqqWsvLpg+tu0l/tc0/7a6kLMtN3gmcST2DvULwCgAAAAAAAHBWH+h1013z8+qFKA+o1vMj7dnUimKTd250VbWWV87MZe7ke9buVFIm+R+9Tj7Y656lBQAAAAAAzqSOCwAATJKPDnq5rRye+nl1TnLfai0vnZpNcQ5znOta03lcvbkucGWtIslzWlNbGt99a/V8R3MqZ0asHC/LfGzQ31KbcBCpZ7BXCF4BAAAAAAAAzupjg96GY0WSG6ZmUj2Pxe1Vd6/W8tNTh9btVLL6Z5nkF5cXMrD7DwAAAADAOVPHBQAAJsnf9TeGlxRJXnKOoSurXtyeSXtD5Mod5ooi19QaWx1int5spzXi+Ef6gh3gXKlnsFcIXgEAAAAAAADO6tNrduJZ3QXkUbVGrqjWttzmQ+uNfOeanX/WLmd/djjI73SWt9w2AAAAAMBBo44LAABMkk+OmOM8tFbPlec5xzlUqeRxjea6+cypOVO9eV4hLmeaq1Ty9fX1bSfJpwaDLbcJB416BnuF4BUAAAAAAADgrL4wHG7Y++eR9a3v+LPqutZUrqxUk2zcXeT1naUcHw633QcAAAAAwEGgjgsAAEySm4cbw0u+vt7cUlsPq9VHHv/qbQQ7rHrgGW2XSW4dMXZgNPUM9grBKwAAAAAAAMBZHS03LjSP4+KTWlHkxqnZDYvnSbJYlnntyuK2+wAAAAAAOAjUcQEAgEmyUG4MY/jaLc5x7rXJ+644GcqwHWvbXh3vlwU6wDlTz2Cv2P7fOgAAAACAA+hnluZ3ewhbUiT50anZ3R4GAPvMSlluOHa4GM8eD/et1fOURit/2F3ZsLvIH3VXcm2znXuMYTEdAAAAAGCSqeMCAACTZGHEHOdIZWtznIs3CVjZantrzRUbYx0WRwRJAKOpZ7BX+JsAAAAAALAFb1tThN8vygheAWB86mP8Ivze1nT+otfJ/BkL6cMkr1xezH+ZmRtfZwAAAAAAB4Q6LgAAsF8tjQhjGG48dE5amxyfHsNVoK0RwSu9bbcKB5t6BrthPHE/AAAAAAAHVLmPHgCwVaMuEhm1s9BWzVUq+e7W9Knvq9WwsDLJ+/vdfLDXHVtfAAAAAACTSB0XAACYJM0RoSi3l8MttVUZMV9KkuYmx8/H8RHzrtq2W4WDQz2DvULwCgAAAADANhT76AEAW3VoxAL35waDsfbxrY1W7lmpJjn9vbW6yP2K5YX0x7igDgAAAAAwadRxAQCASTI1Yo7z5eHWglcGa+Yq4561HB0xplFBEsBo6hnsFYJXAAAAAAC2qMzGRbjyLA8A2K8uq1Q3fJd9pN8bax+Vosj17Zl1u4us+txwkDd0lsbaHwAAAADAJFHHBQAAJskllcqGOc4H+90ttbWSMo+tN/IN9UYee/LxDfVGmmPIR/nHQf/U89Xx3qVw+z6cK/UM9orabg8ADoKnHr8tXyhHJ+nNFkX+n9mLclHlwv2P1NXHvjTy+O/PXpRLq9UL1i8AAADAJPvd2Yvyvn437+l18qF+L8PckX6+moA+ivAVAParKyq1fCh3LGivftf9Ra+T7y+nUxvjLj0POXlxy//X627YXeQ3V5by6FojX12rj60/AAAAAIBJoY4LAABMkntUq/n4yVCT1TnH/9/r5IZyJsV5znGmi0p+bnpu/INM8q7e+jCYIsklFfftwrlSz2CvELwCu2y+LPOLywv56elDuz0UAAAAAM7DZdVqvq3azrc127l1MMhvdZbyx92VJOvDV1afF0m+slLNfWvKsgDsPw+q1fO73eV1x24vh/ndznL+Y2tqrH39QHsm7+vdnrWXpRRJekl+fGk+r5s9nBk7AwEAAAAArKOOCwAATJIHVht5Wzrrjh0ry/xOdzlPa453jrNVtw4G+diglzOjIe5ddZ0onCv1DPYKv7lhD/jzXidP6nXzyHpjt4cCAAAAwBZcVq3mJVOzeXy9mRuXTmSxLNeFr6x6WK2RH5qa2Y0hAsC2PLReTz1J/+TPq99zv7qymK+r1XO/Me72cUmlmme1pvKrK0vrAsyS5JbhIDcunsgvTM+lNcYdTQAAAAAA9jt1XAAAYJI8ol5PZXnjJni/sryYR9QauWIPhJu8bHk+w2RD8MoDxzj/gkmnnsFeIXIH9ohfWJ7PSnnmrTgAAAAA7CcPrjfys1OHTv2s7A7ApJgpKvnGenNdqFiRpJPk+oXjeVevs8k7t+Y7mlP5qkr1VD/lmj8/0u/lxYvHs1gOx9onAAAAAMB+po4LAABMkrtVqrm61hg5x/nehWN535jnOOfr1csL+at+b8N1otNFkYcIXoFzpp7BXiF4BfaIW4fD/PrK4m4PAwAAAIBteli9kWvOWOwDgEnwjObUusXF1UXnxZS5cfFEXrJ4PB/t98bSV60o8pPTh7K6N9GoRe5nzx/LJ8fUHwAAAADAJFDHBQAAJskzW1Mbgk2KJPNlmR9ePJEfXzyRD/e66Zc7d8XmF4eDvGTheN7UWV43ttX50JMardQK2/bB+VDPYC+o3flLgJ3y253lfHOjlXtW/dMEAAAA2M+e2mzn3f3ubg8DAMbq3rVantJo5Q+7K+suHFlddH53r5t397o5UlRy/1ot96jUckmlkqmiyKWVau53nrv5XFWt5QfbM7lpeeFUf2sXuW8ZDnLdwrE8sdHKM5vtTBf2nAAAAAAADjZ1XAAAYJJ8Xa2e/63RyltPznFW5xtFkmGSd/Q6eUevk2aSy6u1XFJU0i6KPK89nUsq1bGN45bBIB8f9PKuXjfv6nXSXzOWtZpJntFsj61fOCjUM9gLpDvAHtJP8vNL8/mVmcMpJNoBAAAA7FsPqdXTStLZ7YEAwJj9QHsmf9vv5dPDwYYLWlb3Drq9HOZ/9rpJToeQParWyE0zc+fd31Ob7dw8GOR3u8un+lh74cowydu6K3lbdyWXj/GCGQAAAACA/UodFwAAmCQ/1J7Jpwb9/P2gPzKQIUlWknx60M+nTx5/RrO97eCV3+8s5y2d5fzrcJiVUz2d7nPtfGv1z+ta07nYvAe2RD2D3SZeB/aYjw36+aPuym4PAwAAAIBtaBRF7lerr1lqA4DJ0CqKvHxmLpdXqusWmtcudK9diF59bMf1UzP5d43WyMX0tX3983BwaiwAAAAAAAeVOi4AADBJmkWRV0zP5b7V2oa5RHHGY5xuHQ5y83CQ5ZTr5k5r5zxr+3xsvZlvb02NeRRwcKhnsNsEr8Ae9JqVxdw+HO72MAAAAADYhq+u1nZ7CABwQVxSqea1M4fz4DUhY2devLL2gpZxXNjyo1Oz+c5me2R/F+LiGQAAAACA/UwdFwAAmCRzlUpeNXM41zba64IRdsJm4S5rQyH+bb2Zn5qa3cFRwWRSz2A3CV6BXXS/TW6+mS/L/OLywg6PBgAAAIBxukrwCgATbPWClhe3Z3JRUdl0B5FxLjw/rz2Tm6YP5a4n+7uQfQEAAAAA7HfquAAAwCRpFkWun5rJ62YO5zH1RpJsOs8Zt1F9lEmmiyIvnZrNT04fSq0w44FxUM9gtwhegV30Xa2pXFYZ/c/wz3udfKDX3eERAQAAADAul1Wqp54ruAMwqb612c7vH7ooP9KeyUNr9dRy+qKWtY9xuabezJsPXZTva03n0srGhXW7jAAAAAAArKeOCwAATJKvrtXzsum5vGX2ovxAazoPr9UzVxQXNIBldQ6zOr9pJPn3jVZ+a/ZInthoXcCe4eBSz2Cn2XIVdlEzRW5oz+aFi8dHnr9peT5vrF2UpqQ7AAAAgH3n0pPBKzuxmwIA7KZ6UeTJzXae3GxnpSzz8X4vNw8H+dxgkKPlMCtlmXtVx7cs2SqKfEdrKt/ebOf9/V7e2evk/b1uvlwOx9YHAAAAAMAkUccFAAAmzaXVap5encrTM5UkOT4c5mg5zGJZ5h5jnN+sXgPaSnLfWj2PqDXy5EYrc5XK2PoARlPPYCcJXoFd9vB6I0+sN/Pfe50N524dDvP6laU8tz29CyM7N18eDvLeXjcfOfll9YXhIEtlmTLJTFHk0ko1V1VreVitkUfW65ku/M8kAAAAcDBcVKnk6c121pbaH1itb/r6zwz6+fb5o2dt842zR3LPMS4QAMC4tYoiD6k38pDzeM9WvwOLosjV9UaurjeSJDcP+vnkoJ9PDfq5ZTjIbcNhbrPoDQAAAACwzlbquMnWarnquAAAwE6Zq1Qyl3O/f/Vc5jjf15rKvar1XFQUubJaS60otjtMYIvUM7jQXKEPe8AL2zN5X7+bY+XG/Y/f2FnKExrNfNUeu6HmE/1eXr+ylPf1uxls8pqjZZmjg34+Mejnj7oraSX55kYrz2i2c/c99nkAAAAALoQfaM/s9hAA4MC4olrLFdVanrDbAwEAAAAAYCR1XAAAYD+5pt60WR6gnnFAnHt0F3DBzFUqm96E00/y80vzKUeEsuyGhXKYn12az3ULx/Lus4SujLKS5A+7K3nG/NH84vJClvfIZwIAAAAAAAAAAAAAAAAAAAAOHsErsEc8sdHKI2r1kec+Oujnj7srOzyijT476OfZ88fyJ9scSz/JmzvLefb80Xxm0B/P4AAAAAAAAAAAAAAAAAAAAADOg+AV2ENuaM+mtcm5V68s5vbhcEfHs9ZnBv08d+FYbhkOxtbmZ4eDfN/CsXyy3xtbmwAAAAAAAAAAAAAAAAAAAADnorbbAwBO+4pqNde1pvPqlcUN5+bLMq9cXshPTh/a8XF9aTjICxeO51hZjjw/lSKPqTfyqHojd69Uc7hSSb9Mbi+H+fSgn/f2unl/v5tRkS3HyzIvWjyRN8weyV0qsqAAAAAAAAAAAAAAAAAAAACAnSF4BfaYpzfbeXuvk08N+hvO/Vmvkyf1unl4vbFj4xmUZX508US+XA5Hnn9qo5Xvbk3nohGhKZenmvvX6vnWZju3Dga5aXk+H+j3NrzutnKYn1k6kVfMHB77+AEAAAAAAAAAAAAAAAAAAABG2ZiUAOyqWlHkR9ozqW5y/qblhXTKcsfG8+bOcv5mRAhMPcmPT83mhqnZkaErZ7qsWs0rpudybaM98vz7+728u9fZ7nABAAAAAAAAAAAAAAAAAAAAzongFdiDvrZWz7XN0QEltwwH+Y2VpR0Zx/HhMK/bpK8fbs/kiY3WebVXFEWub0/nUbXGyPO/uUOfCwAAAAAAAAAAAAAAAAAAAEDwCuxRz2lN55Ji9D/RN3aW8k+D/gUfw293lrOUcsPxb6438+RNgmHuTFEUecnUTEZFr/zNoL8jnwsAAAAAAAAAAAAAAAAAAABA8ArsUe2iyA1TMyPP9ZK8fGkhZbkxFGVc+mWZt3aXNxyvJXlOe3pbbV9cqeYJjdbIc/+z19lW2wAAAAAAAAAAAAAAAAAAAADnQvAK7GFX15t5fL058txfD3p5a3flgvX9wX43t48Idrm61silleq223/CZp+r39t22wAAAAAAAAAAAAAAAAAAAAB3RvAK7HE/2J7JbFGMPPfqlcUcHQ4vSL/v7XVHHn94vTGW9u9fq2dUS58Y9MfSPgAAAAAAAAAAAAAAAAAAAMDZCF6BPe6iSiXf35oeee5EWeaVywsXpN+/7vdGHr9ntTqW9utFkSurtQ3H58syt12gMBkAAAAAAAAAAAAAAAAAAACAVYJXYB94crOdB9fqI8/9aa+TD/W6Y+2vW5a5eTgYee5IMb5fG5dXRoe4fGGTvgEAAAAAAAAAAAAAAAAAAADGpbbbAwDOzY3tmXzH/NGMili5aXkh/612JM2iGEtfnx8Osln0yTPmj46lj7M5Wg4veB8AAAAAAAAAAAAAAAAAAADAwVbZ7QEA5+bu1Vqe3Zoaee6fh4P8xsrS2Pr60nB3g0+WynJX+wcAAAAAAAAAAAAAAAAAAAAmn+AV2Ee+ozmVe1aqI8+9sbOUmwf9sfQzv8vBJyuCVwAAAAAAAAAAAAAAAAAAAIALTPAK7CO1osiPTM2O/IfbS/LzSwspxxBa0s3uBp+MJz4GAAAAAAAAAAAAAAAAAAAAYHOCV2CfuV+tnqc2WiPP/fWglz/prmy7j2LbLWzPYJf7BwAAAAAAAAAAAAAAAAAAACZfbbcHAJy/57Wn865eN18shxvOvWplMY+uN3OksvVcpcZZolf+8NBFqV3gaJbpYrejXwAAAAAAAAAAAAAAAAAAAIBJJ3gF9qHpopIXTc3kJYsnNpw7UZZ55fJCfmL60JbbP3SW4JNmihzeRqgLAAAAAAAAAAAAAAAAAAAAwF4gPQH2qcfUm3lsvTHy3J/2OvnLXnfLbV98lmCV+XK45XYBAAAAAAAAAAAAAAAAAAAA9grBK7CPvag9k5kUI8+9fHkh3bLcUruXVqqpb3Lun4aDLbUJAAAAAAAAAAAAAAAAAAAAsJcIXoF97K6Vap7Xnh557p+Hg7xhZWlL7daKIves1kae+2S/v6U2R/n7fi8fPePx8X5vbO0DAAAAAAAAAAAAAAAAAAAAbGZ0sgKwbzy10crbuyv56GBjIMp/6yzl8Y3mltp9cK2eT45o8739br4no8NezscXhoNct3AswzOOX1Wt5Tdnj2y7fQAAAAAAAAAAAAAAAAAAAICzqez2AIDtKYoiN07Npj7iXC/Jy5cWttTuo2uNkcf/ftDPzSMCWc7XWzsrG0JXkuRhtVGfBAAAAAAAAAAAAAAAAAAAAGC8BK/ABLiiWst3NqdGnvvIoLelNh9Uq+eyyuhfEb++srSlNlf9y2CQN3eWR557UqO1rbYBAAAAAAAAAAAAAAAAAAAAzoXgFZgQz2pN5R6V6tjaK4oi/3uzPfLcn/c6+VCvu6V2+2WZn1o6kcWUG849slbPldXaltoFAAAAAAAAAAAAAAAAAAAAOB+CV2BCNIoiN07NpBhjm9/SaOcrKqN/Tfzo0on8Q79/Xu2tlGVuXDyRjw42vq+a5Pntma0MEwAAAAAAAAAAAAAAAAAAAOC8CV6BCfLAWiNPabTG1l6jKHJje3ZkmMt8WeYFi8fy+53lDMvyTtv6y1433zN/NO/pd0eef0aznXtVa9scMQAAAAAAAAAAAAAAAAAAAMC5kXIAE+b5rem8u9fNbeVwLO09rN7Ida2p/NrK0oZz82WZm5YX8qbOUr6h3sxDa/XcpahmrlJksSxz+3CYvx308u5eNx8f9Dft4z7VWr6rNT2W8QIAAAAAAAAAAAAAAAAAAACcC8ErMGFmK5Vc357Jjy2dGFub17Wmc9twmD/orow8f+twmDd1lvOmzvJ5t31ZpZJfmJ5Lqyi2O0wAAAAAAAAAAAAAAAAAAACAc1bZ7QEA4/dNjWYeXWuMtc0bpmbzfzSnMs54lK+p1vLLM4dzpOJXEQAAAAAAAAAAAAAAAAAAALCzpB3AhPrhqZmMNyYl+d72dG6aPpS7Fdv71VFN8vRmO788czh3q1THMzgAAAAAAAAAAAAAAAAAAACA8yB4BSbUxZVqntueHnu719Sb+e1DR/Kc1lSOFOcX7NJI8u8azfzm7JG8sD2T1nm+HwAAAAAAAAAAAAAAAAAAAGBcars9ADgI/mDuLrvS77XNdq5ttsfe7nRRybNb0/nO5lQ+0O/mg71e/m7Qy63DQRbKMoMkU0WR6RS5vFrNldVaHlit5+H1RqaErQAAAAAAAAAAAAAAAAAAAAB7gOAVYMtqRZFr6s1cU2/u9lAAAAAAAAAAAAAAAAAAAAAAzovgFQAAAACAPeCe1Vred/huuz0MANhxvgMBAAAAAPY+tVwAAGCSmOPAweDfOueqstsDAAAAAAAAAAAAAAAAAAAAAADYaYJXAAAAAAAAAAAAAAAAAAAAAIADR/AKAAAAAAAAAAAAAAAAAAAAAHDgCF4BAAAAAAAAAAAAAAAAAAAAAA4cwSsAAAAAAAAAAAAAAAAAAAAAwIEjeAUAAAAAAAAAAAAAAAAAAAAAOHAErwAAAAAAAAAAAAAAAAAAAAAAB47gFQAAAAAAAAAAAAAAAAAAAADgwBG8AgAAAAAAAAAAAAAAAAAAAAAcOIJXAAAAAAAAAAAAAAAAAAAAAIADR/AKAAAAAAAAAAAAAAAAAAAAAHDgCF4BAAAAAAAAAAAAAAAAAAAAAA4cwSsAAAAAAAAAAAAAAAAAAAAAwIEjeAUAAAAAAAAAAAAAAAAAAAAAOHAErwAAAAAAAAAAAAAAAAAAAAAAB47gFQAAAAAAAAAAAAAAAAAAAADgwBG8AgAAAAAAAAAAAAAAAAAAAAAcOIJXAAAAAAAAAAAAAAAAAAAAAIADR/AKAAAAAAAAAAAAAAAAAAAAAHDgCF4BAAAAAAAAAAAAAAAAAAAAAA4cwSsAAAAAAAAAAAAAAAAAAAAAwIEjeAUAAAAAAAAAAOFCjxsAACAASURBVAAAAAAAAAAAOHAErwAAAAAAAAAAAAAAAAAAAAAAB47gFQAAAAAAAAAAAAAAAAAAAADgwBG8AgAAAAAAAAAAAAAAAAAAAAAcOIJXAAAAAAAAAAAAAAAAAAAAAIADR/AKAAAAAAAAAAAAAAAAAAAAAHDgCF4BAAAAAAAAAAAAAAAAAAAAAA4cwSsAAAAAAAAAAAAAAAAAAAAAwIEjeAUAAAAAAAAAAAAAAAAAAAAAOHAErwAAAAAAAAAAAAAAAAAAAAAAB47gFQAAAAAAAAAAAAAAAAAAAADgwBG8AgAAAAAAAAAAAAAAAAAAAAAcOIJXAAAAAAAAAAAAAAAAAAAAAIADR/AKAAAAAAAAAAAAAAAAAAAAAHDgCF4BAAAAAAAAAAAAAAAAAAAAAA4cwSsAAAAAAAAAAAAAAAAAAAAAwIEjeAUAAAAAAAAAAAAAAAAAAAAAOHAErwAAAAAAAAAAAAAAAAAAAAAAB47gFQAAAAAAAAAAAAAAAAAAAADgwBG8AgAAAAD/i707D3CivPsA/n1mJseesMDKrQJyCIKASr0V73pVrUdtq1apJ9a7HtVqrWdVvG+rVmu1fav1vmoVUQRFRZRDuZVDbhY22d0cM/O8f8CEJJNks8lkM0m+H/4gO5vM88zOZJ7f85t5niEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqKKw4lXiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqOJw4hUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKqOJx4hYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCoOJ14hIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKiisOJV4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKjicOIVIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiqjiceIWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqjlbsChARERERERERERERERERERERERFRaQvJMJYZy7HGXIs1ch2azQCCMogwwtClDgkJn/DBL/zwY8v/3ZVu6KP0Rh+lN3oo3Yq9CUREREQVhzEcERFVKraBVOqCMojV5lqsNdeh2WxGQAYRRiTp+PXBDz/8woceSvetx273YlediDoR2zsi98m2DdcO96NhUA9E10QQ/iGE6JpIsate9jjxChERERERERG5hilNLDdX4Htj2bZkkgxsTSZtSfACgE944Yc/lujtIbqhj9p7a5K3F7ozyesa3KdEhcWLYkREREREVG7YzyEiKh2rjNWYps/ALP0bzNW/xSpzNWQe6/PAg8HqQIzWRmG0NhK7aiPRRal3rL7kDs1mAJ/pX+CL6EysNteiSTYhLCPopjSgm2jAztpQ7OPZEwPUHQpSflC24PaWuxOWCSFwU811BSmPiIjIbRjDFQbzGeQGUkrMM77D53GxdkRG0BAXa//EsztqRU1Bym+TbXg69Jxt+QVVZxekPEulbncl2WBuxBf6V1v2r9mECCJoEA3opjRgZ3UohmtDs1pPrm2gTPEuAcE2kDpVREbwpT4LX209fpcY36NJbsppXR540FvpicHqIIzWRmK0NgqDtUEO19h5jLeIslNOfT6nYoBchGUEb0XetS0/3ndMwcqk8pRPG+79Qx0GYUTsZzNsIrIihNDitn7jmsZPBPDxjIbJ3xSo6hVJSJnPKZOosIQQcwEMT14+fPhwzJ07twg1IiIiIiIiIieZ0sQsfTamRT/DLP0bzDcWIgo97/V2FV0wWhuFMdpIjNF2xRBtJwdqS9ngPiUqrHK6KEZERERERASwn0NEVGpaZRveDL+D1yNvY4GxOLY81SCkXAmIrf8Du2tjcZTvcIz37A+f8DpWBnW+BfoiPBV6DlOiUxOOF+u1td8tOyj9cU7VmTjYe4Cj9dhgbsSRm0+MlSchISDwacP7jpZDRETkJozhnMd8BrnJRrMJz4X+hdcjbyMggxnfq0LFOG0szq460/GBqsmxtqVQsXalbneliMooXgm/gVcjb2GRsSTjextEV4z37ocz/L9CT6Ux4XdOtIHpJl5Jfl0pbSB1HiklPtE/xevht/Fp9HOEEdn2OwfiuPjjuFbU4GDPATjSdxh21UbmvW4nMN4iyl459fmcigHyxRiP8uFUG26aZpoCAKEK65ebAfwbwLMzGiZ/knOlCQAnXiGX48QrRERERERE5elHYzVeDL+CtyL/xSa5Oba8EAleAOir9MHR3sNxpO8w9FS2c6wM2ob7lKhwyumiGBEREREREcB+DhFRKYrKKJ4NvYAXwi8iKFts5+zkm49zlW691aIKx3uPwRn+X6JeqXOkLOocQdmCO1rvxX8jHwDoWHsvIDBMHYJbav6IvmofR+oTf8N8/KQvvGGeiIjKEWM4ZzGfQW5jSAOPh/6GF0IvIoJI1seidZwd6NkP11Rf5tig886KtSt1uyvJK+E38UTb37BBbuzQ/vXAg5N8x+G8qrMgIBxrA03YB7wqUABUThtIne+t8H/xVOg5rDBXAkh/rOUj3Tr7Kn1wqv9EHOc9GppQ8y6nIxhvEXVMufX5nIgBvA59lxnjUa6cbMMNw0j9CwEIRcSv2Hq9GMA9AJ6Y0TA5/yfnViBOvEKuxolXiIiIiIiIyssmczMeaHsMb0fegwmzYAleIHWSSgAY79kf51adhR3U/o6VVcm4T4kKp9wuihEREREREbGfQ0RUmr7WZ+OmljuxwlyZcI5Ndd6OvwG5IyRkxvVZ66wR1TjfPwEn+o/r0PqpOL7R5+L6lluw2lyT07FhfaZO1OHWmusxzrNb3nVKflKpdezxhnkiIio3jOGcw3wGudEKYyX+2HIzvjUWdPg7HP/+3kov3FV7MwapA/KuU2fE2pW63ZWi2Qzg5tY78VH0k3bbrmTx+3cHpT8iiGKVudqRNjDVxCsiduda6vVZ7yn1NpA633JjJW5uvQNf63OyPn4zvSfV+9O9L7m8vkpvXFZ9Ifbx7Jl1/XPFeIuo48qpz+dUDDBcHYo7am9CD6V7TvWIxxiPOqoQbXhs4hXr13EfE6qID1LjVyABLAFw8YyGyW9lvQEEgBOvkMtx4hWqFCEZxjJjOdaYa7FGrkOzGUBQBhFGGLrUISHhEz74hR9+bPm/u9INfZTe6KP0Rg+lW7E3gYiIiIioXe9FJuOO1nsRkMGMCdxck7vxn29vvQoU/ML3c1xQ9VtoQsupHOI+JSqkcrooViqYnyEiIiIiKiz2c4iIStMr4TdxV+t90GHYzrPpzrvJ0j2ZMpfzvPW5PbU98OeaazkQwsWmRqfjmuCNiCLaoWMnVRwgIaFCxU3V16K/2i+vHB5vmCciKm0bzI34Qv8Kq821aDKbEEEEDaIB3ZQG7KwOxXBtaMHKDssI3oq8a1t+vO+YgpWZK8ZwzmE+g9xonj4fFwevjN2vk813PF2cDQDVqMIDdXdiF802dKdDCh1rV+p2V4qVxipMDF4em7gz1T5L3seplsdPkpI8OUqubWCqNlGBkvV6rDbwkuoLMN9YyDiG0poenYE/ttwcm3gk1THv5IPwMok/fo/zHo3Lqy+ER3gKUhbjLSoFQRnEanMt1prr0Gw2IyCDCCOSlJP0wQ8//MKHHkr3rfnI/CcASaWc+nxOxQDWskbRHY/U3Yv+at8ObUcyxnjUEYVqw2MTr6SQNPFKwq9ixQKPY8sELJEOF16hOPEKuRonXqFytcpYjWn6DMzSv8Fc/dutM+nmzgMPBqsDMVobhdHaSOyqjUQXpd6x+hIRERER5evRtqfwt9A/0iY6MyWS0iV2k+Xy9JJB6gBMqr0FvZSeWX2WtuE+JSqccroo5mbMzxARERERdR72c4iIStMr4TdxW+skAJnPt+kGIHUTDagSVfAJL3zwwiu8MGDCkAaiiKJVtqJFtmKzbE779Oh05QkIDFR3xP21d3JCXBdaqC/GbwMXIoSw7cb0eJme6ii3/hMQtkEwuQ4y8sCDHdXtMd9YmLAO3jBPRORuURnFK+E38GrkLSwylmR8b4PoivHe/XCG/1foqTQ6Wo/kQVcWt7UhjOGcw3wGudFqcw1Obz4Xm2UzAGQVb7e3XEKiXtThqbqH8xqgWsjBqZW63ZVis9mMMwLnYZW5GkDm/ZuOtX+Tz7upJkjpSBsYlhHMNb61vT9VvdLVNdNkMPEYx1S2qdHpuCp4A3ToALI7zyXToMEnvPDCC5/wwpAmDGyJ4Vpka8rYLb6sVKzyx2q7YlLtLagSVblsXlqMt8iNIjKCL/VZ+GrrfYVLjO/RJDfltC4PPOit9MRgdRBGayMxWhuFwdqgvOpXTn0+p2KA+M8BQB+lN/5a9wC659HvZIxH2SpkG75+83rIKkCoKWJPRUgg423PYuvvPwRw7IyGyS0d3rgKxIlXyNU48QqVk1bZhjfD7+D1yNtYYCyOLc92wGE2rIZYANhdG4ujfIdjvGd/+ITXsTKIiIiIiDrq8ba/4cnQswA6luD1QEN3pTsaRfetCV5fLMFrbk3wRmIJ3hZslJuwceuTIOK198TERtEDD9bdhR3V7fPZzIrCfUpUOOV0UcyNmJ8hIiIiIup87OcQEZWmmdFZmBi8AibMlDeJWudtDzTsrA3DUHUnDFOHYKA6AI1Kd3QX3aCI9p/+DABSSjTJTVhlrsZyYwUWGIsx1/gWc/RvbTeqxj6ztfxB6gA8Vfcw/MLnyHZT/kxp4rTAOVhkLMl47NSJOgxWB6Kr6AIAWGeux3xjIcKIIHmylWT5Pt051YQvH3V9hzk8IiIXeiX8Jp5o+xs2yI1ZX88REPDAg5N8x+G8qrPgdej8Hj/oKn5QppsGXTGGcw7zGeRW5wYuxix9dsbvuAKB7ZTt0CC6AtgSa6+XGwDA9t74nwerg/B03cPwCE9OdSvk4NRK3e5KcVXwenwYnZpxPwFb9nG92PIAnM2yOeF91uSdqShQcm4DU+1fAHi7y0vttoGZ6pTuPF/JcUwlW6gvxoTAhQinmcA2/jhqFD0wVBuMoepgDNp6/DaKHmhUekATWsZyQjKMJrMJG2UTfjRXY7mxEguMRZhnfIc15loAqY9Nqy5jtF3xUO1dWceL7WG8RW4ipcQn+qd4Pfw2Po1+jnDcfctO3FsYf7zVihoc7DkAR/oOw67ayA6tp9z6fE7EAMmfs17vpo3GQ7WTIERuuWTGeJSNQrfhI0aMwLx58yD8Cjw9PPBs54V3ez+qR9au7XPpDh8BGAeg/9a3pzpZWZOvTAFwyIyGyalnYaMYTrxCrsaJV6gcRGUUz4ZewAvhFxGULSkv3Dsh3XqrRRWO9x6DM/y/5EybRERERNTp3o9MwR9absx4gQIAGkV37OYZgyFbE7yD1AHoqnTJqcyNZhOWmyuwQF+EucZ3mBH9EhvkRgDpLwr1UrbDM3WP5VxmJeE+JSqccrso5ibMzxARERERFQf7OUREpalNtuHU5glYZa5Oee70woPx3v2xv2cf7O35CaodftKtpVW24aPoJ3g5/HrKAXbW/4d7D8aNNX8oSB2o414Nv4lbWyelzbkd6NkPp/lPwXB1WMJN71EZxZOhZ/F86EWEEGq3nFRPLc9GuoFvtaKGOTwiIhdpNgO4ufVOfBT9JOG83ZEn3gsIDFeH4o7am9BD6Z53ndw+6IoxnHOYzyC3+iAyBdfE3bOTfFzurA7Fr/wn4yfa7raYdrmxEm9H/osXQi+iFW22yResdf3c9zP8vvqinOpXqPNkpW53pfg8OhMXBq9Iu38bRQ+c7D8ee2p7YLA6KNaPjMooZupf4+3Ie3gn8h7MDIPiVag41Ds+pzawI/vXagNfDL2Cb4zMY97S9WkrNY6pZLo0cEbg3JQT2FrHwyh1BPb37oP9PftgB7V/ptXl7AdjGT6IfITXIm/jR3NV2hjul76TcFH1eXmXx3iL3OSt8H/xVOg5rDBXAkh/D2A+0q2zr9IHp/pPxHHeo6EJNeM6yq3P50QM8G7kf7G/bKoY72z/bzCh6rSctpNtJ7WnM9pwa+KVFOZJKUcAwLim8UMB/BzABAADsG0CFmvSFev/u2c0TP59hytRYTjxCrkaJ16hUve1Phs3tdyJFebKdi/8JM+0l634oDLV+qx11ohqnO+fgBP9x3Vo/UREREREudpkbsYpzb/BJrk5IYkJbIlXu4kGHOs7Egd49sFwbVhB6/KNPhcvhV/FfyMfxGLl5MTWntoeuK/uLwWtR6njPiUqnHK7KOYmzM8QERERERUH+zlERKXrudC/8EDbYynzwMd4f4oLqn6LbkpDp9ZpenQGbmu9G2vMtQn1sv5/tO5ejO7g00GpME7dfBaWmN8ntP8SErWiBjfVXIe9PT+xfSZVDq+9J8mKrf+yFX8sp3vKMXN4RETusNJYhYnBy7HaXGO7BpPuWk6q5fEPDXmk7l70V/vmVS+3D7piDOcM5jPIzSY0X4g5xjzbuU6DhsurL8QJvmPbXccGcyOua7kZM/VZKc8XCgQerr0HYzyjOly/Qp0nK3W7K8VFgSvxmf6FrZ0AgNP9p+Ic/2/gEZ6M67i39WE8H/532t97oOHZ+scxSB3Q4fp1dP9accwqc3XGfm18n5ZxTGV7JfwGbmu9O2XcsYc2FhdVnYch2k6dVh9Tmng58gYebH0cbWiz1UmBgufqn8jp+2RhvEVusdxYiZtb78DX+pys7yvM9J5U70/3vuTy+iq9cVn1hdjHs2fadZZbn8+JGGCRsQTXBv+M781lKf8uHmh4pv6xTokBqPJ0RhuezcQrlnFN4xUA5wD4C4DapPcLAAaAMTMaJs/Jq1JlLrcp/4mIqF2vhN/ExMDlsRsCRNy/VAmUVDcDyDT/kj+XSnJ5QdmCu9oewCWBq9FsBpzbUCIiIiKiNP4Zfik2QQewbQZpFSrO8Z+J17r8E+dXTSj4BB0AMEobgRtr/oDn6p/AYHWQLbELAJ/pX2BKZGrB61LKuE+JCuel8Guxi8nxfX/rotirXf6JP9dci0O8BxbsYjIAVIsqHOE9BI/V3Yd7a2/Hdkqj7fslIfFu5H3M0mcXrB5OYX6GiIiIiKh42M8hIipNpjTxQuhFWx5YQOD66qtwXc3vO/3mbQDYyzMOz9Y9hhHqsIQ8MLClbXmk7a+dXieyW2J8n3LSFS+8eKD2rpSTrqTL4aV7+nf8euNf55rDi/89c3hERMW32WxOGKycakByqnN6psHL6+QGXBS8EhvMjZ2xCUXBGM45zGeQW/1orE45+YgCBX+pvTGryUcAoLvSDQ/W3okjvIckHEvAlnOHCYlbWu9CREYKsh0dVanbXSk2mBsxQ/8yZft1dfWlmFh1drsDrk1p4r3I5JR9SCs+0GHgppY7UOiH18fHMVb56SQPuK/kOKbS/T30L9s5DgDO8f8GD9bd1amTrgCAIhT83Hcsnq1/DH2UXrbfS0g81PZEXmUw3iI3mB6dgTMD58cmXYm/zw9IPdFK8nsyae99yfcVrjB/xOXBa3F7yz2Iyqjt/eXW53MiBgCAndSBeKr+YeyujbHFeAAQhd4pMQBVJre14TMaJpszGiY/CmA3AEtTvEUBcFunVqoEacWuABFROXol/CZua50EIHWgnC4IBwAFCrqJBlSJKviEFz544RVeGDBhSANRRNEqW9EiW7FZNqd9Aku68j7VP8d5wUtwf+2d6KF0c2R7iYiIiIiS6VLHi+FXbMkkH3yYVHsL9vCMLUq9BqkD8GTdg/hDy434ODrdVr8nQs/gAO++Ramb23GfEhVOuotiChT8sfpKHOU7vCj1si6KXRa8BnON71JeFHus7r6i1C0bzM8QERERERUP+zlERKVrlj4b6+WGhFyGgMC5/jOLdv62dFW64P66O3FW8wVYZq4AsK2N+VqfgxXGSvTL8wnQlJ/Pol8k/GwdP7+rOhfDtaG297eXw1OgpMy9WXzwolFpzDmHl4w5vMqzZ9PBxa5CTgSA6Xy6LnWy4zb/slPK2Wg2IYRQ7OfkgZjxrAHWqc7xyYOZfzRX4Y8tN+Oh2kkQov1BcqWGMZwzmM8gN5umf5bws/U9P9P/K+zr2atD61KFiuurr8JGsyk24DV+oOwKcyX+HvonJlSd7lj9c1Wp210ppkU/S9gH1uvjvEfjeN8xWa0jvg2M70Mmn8u/MxbgsM3HoUbUdKiOpjSQPLmnhEwZGyXHMe1JNWmotTzeSvPHso5jKtk8fT5WmCtt34GTfccX/VzUX+2LR+ruxYTmC7Bebpn4x/o+TY/OwHpzA3oo3Tu8XsZb5AZTo9NxVfAG6NABwPYdTF6WigYNPuGFF174hBeGNGFgS06yRbamzUWmm0jUKuuVyBtYZi7HpNpbUBU38VC59fmciAEsNaIak2pvwTmBi7HAWJQQ41kxwEvhV3Gi/zhnNrgEnR+4rNhVyIkA8HDd3cWuRkpubsNnNExeNK5p/IEAPgXQe+tiiS1/0iPGNY3vPaNh8qpi1c/tOPEKEZHDZkZn4S+t9wBIHXhbAbcHGnbWhmGouhOGqUMwUB2ARqU7uotuUETmJ7ZYpJRokpuwylyN5cYKLDAWY67xLebo39qCf+u1hMRiYykuCv4eT9U9DL/wObbtRERERJWON+Zt87k+EwEZtMXEV1T/rmgTdFi8wovbav6EcwOXYK7xbexGXgmJRcYSLNAXdfoMw6WA+5SocMrtopgbMD9DRERE1Pk6awCW0wQEXu7yj2JXo+ywn0NEVLqmRT+zLeuj9MJp/l8UoTZ2taIGf6q5BmcFJtp+90H0I5yunlqEWpFlnvGdbVlPpTHlU+izzeF54YECBSGEbYNeotBxR+2fMVDdMWO94nN48/T5uLMt80CZ+GsMx24+BY2iR0kNbmOMm710g2fcr3SOR0pUyvcUmLA/OboQsll/clvR3oA4q94z9a/xVOg5TKg6zaHaugdjOGcwn0FuNk+3x9pdRD1O9+f2/VGFiptr/ojTAudgrbnONgD+2dALONp3BHoq2+VV73xV6nZXijn6t7ZlVfDj/KoJWa8juQ1Mvj/D+l9CYrNsRkAGHYlnVpmrbcs6ut5UfeB0ihHH8LpP4U2NTrct6yYacEHV2UWojV1PpRHX1vwelwSvtuVk3o9MwSn+Ezq8TsZbVGwL9cX4Q/DP0KHbjsPkPm+j6IGh2mAMVQdj0Nb7ChtFDzQqPaCJzEPzQzKMJrMJG2UTfjRXY7mxEguMRZhnfIc15loAqR/sZvVdLwtei4dq74rdw1hufT4nYoB4fuHH7TU34vTAuQjG3etu/U0fDT2NQ70HoYtSn9P6S91MfZbteHO7+DjJjdzehs9omLxiXNP4CQDeBhICTQXAiQAeKErFSgAnXiEiclCbbMOfW++ACTPlgBovPBjv3R/7e/bB3p6foDpu5sFcCCHQTTSgm9KAEdrOOAKHAgBaZRs+in6Cl8OvY5Y+29YRkJBYYnyP21on4caaP+RVByIiIiLahjfmbTM9+nnstfV3GajuiGN9RzpeVi48woMbaq7Gqc1n2WYV/yj6CSfpSIH7lKhwyu2iWLExP0NERERUHKvM1Z0yAMtpbr5Zp5Sxn0NEVLoWGotjr608xpHew6AKtYi1SjRcG4a9POMwLfpZQlueakAeda7lxsrYa+v4OdhzILSk46ejObxlxnJMCFwIA0bCegwYuKf1ITxQd2fGesXn8HopPXFX2/2xsqz4NdUTViUkdOhYJVdDyNKJGxnjdkyp/b1Krc9FiUp3/9kHMBdCuieCW+W2V3byuT3V754O/R0HevfFIHVA3vV1E8ZwzmA+g9zse2NZ7LX1PT/EOx5+4c95nV2UelxX/XtcFLzS9rswIriv9RHcWntDzut3QqVud6VYYn4fex3rQ3oP7NCg6FRt4IGe/TA5+lHCMosJEwqyexBP/HqTJccl7cUxmSaIi39PuvcVI47hdZ/CW2AsjL22jtWfeg911QOc9vKMw2htZMK9TwAwW5+LU9DxiVcYb1Ex6dLAn1pvQzhuguf4PCAAjFJHYH/vPtjfsw92UPvnXJZf+NBb7YXe6IUR2Dnhdz8Yy/BB5CO8FnkbP5qrUtblK/1rPNj2OC6qPg9A+fX5nIgBkvVRe+HK6ovxx5abY39Hqx5BGcSjoSdxVfWlOa+/HJRKm14KbXkptOEzGia/O65p/McA9kPi5Ct7gROvpNWxngIREWX0Uvi1lMkFCYljvD/Fq13+iT/XXItDvAfmPagnk2pRhSO8h+Cxuvtwb+3t2E5pTAi+rf/fjbyPWfrsgtWDiIiIqBKJEvtXKIuNJba/y0+9hxasvFzsoPbHQZ79bUnEecb8ItXI3bhPiQqnlC6K2b5fLroR0sL8DBEREVFxFTvX4Ya8CLGfQ0RUyn4wl9vaydHaqCLVJr2DPQfEXlt5lkXG0iLWiAAkPDHesptntO19Hc3hDdOG4Nf+U1JOkvK5PhMfR+xPl8yGFRcqUFLm8NK9383/KD/S5f+oPBT7PFGK55WO1EVA2AZTx39/otBxU8sdkLK8vlOM4ZzBfAa52Vpzre17vrs2Ju/1jvPshp95j7LF2hISH0Q/wjf6nLzLyEelbnelSLV/x3l269A6UrWBJ/p+hgM9+yb0HePf05mxdUfiqlRxTLxixTHFjkdLLXbtiKXGD/ZznCf/c5zTDvcenPCzhEyImzqC8RYV0xuRt7HIWJLwvbPa/z20sfh73eN4ov4BnOb/RV6TrrRnB3V7nFn1a7xU/3dcWX0JqlAVq0t8nV4Iv4jFW/tL5dbncyIGSOUw70EpYwAJiVfDb2GJ8X3eZZSyYrfT5dSel0obDuD5pJ8FgF2LUZFSwYlXiIgcYkoTL4RetAVlAgLXV1+F62p+j25KQ6fXay/PODxb9xhGqMMSVuwmoAAAIABJREFUgkZgSyf1kba/dnqdiIiIiCpFsW+8K+aNecvNlbZk0ihtREHLzMUB3n1ir60YfqnxQxFr5F7cp0SFU24XxYqJ+RkiIiIiIndgP4eIqHQFZMC2rLfSswg1yWyYNsS2bLPcXISaULwW2WJb1ivp+Mk1h3eW/zT0VXrHPhP/2QfbHoMhjbzqnimHB5TO00CpY0apI6BAiV0/zebmfg46ICcV+56BjtxT0Ch6pFzu1D0Jmd6fy/EfP2g5vq0BgO+MBXgp/GqH1+lmjOGcwXwGuVkwRaxtxcf5+l31OWgQXQHYJ6e4t/VhR8rIVaVud6VoNu3t1/ZKvw6tI10beEX1RahGdcrPOB3PFDKOSV5POcYxlWxziuO3n9K3CDXJbLg6LPbaOhY35RjDMd6iYvp76F+2Nh8AzvH/Bg/W3YUh2k6dWh9FKPi571g8W/8Y+ii9bL+XkHio7QkA5dfncyIGSCddDGDCxH2tjzhSRqnRoBU0p1OJSqUNB/B53GtrxzYWoyKlQit2BYiIysUsfTbWyw2xANy6SHOu/0wc5Tu8qHXrqnTB/XV34qzmC7DMXAFgW8fva30OVhgr0U91ZcNORERElLc9mw5u/00OcTrRlOnpBW4XMIO2ZT1EjyLUJLNB6kDbslTJaeI+JbvjNv+y2FXIiYDAy13+UexqJCi3i2LFxPwMERERUfE0ih5YJ9cDyP7JkeU+cLCS+03s5xARla42GbIt8whPEWqSWb2osy1rka1FqAnFiyBiW5a8r3LN4fmEF5dVX4jLg9faBtD/YC7HS+HXcLL/+LzqnyqHF88qs5Jj3HLzRP0DCMoWTIt+hpfCr2KWPjs2yUm6/cyBB5SPUeoIzDW+g4Etk0XFnwvTcct55Y2u/4fFxlJMjU7HK+E38aO5ytHvS7r3tnfezST+s8mTdj0aehqHeg9CF6U+p3W7jVtiuPZyIYY0bPfWbJbNRc+hWLkQ5jPIzcIpYu2uShdH1l0ravG7qnPx59a/JMTaEhLzjPl4J/I/HOE9xJGyOqpSt7tShBC2LWtQunZoHenawEalB86uOgP3tT0S268KFJgwISDQILpio2zKOZ6JX55PHNORz3Z2HMPrPoXXmiKX5Re+ItQks1QT5KaafDcbjLeoWObp87Ei7gGUVrt/su94TKg6vah166/2xSN192JC8wVYLzcC2HbOnx6dgfXmBtf0+dqTbd7eiRggnVQxgPX/Z/oXmB6dgb084xwpq1S83/U1fKF/hamRT/Fu5H9oRRtzoHkqlTYcwJoUy8ojGVYgnHiFiMgh06Kf2Zb1UXrhNP8vilAbu1pRgz/VXIOzAhNtv/sg+hFOV08tQq2IiIiICq8zkz753PCTSiknrEKwJ3g14b40RK2osS1rlW1FqIn7cZ9SslXmasfPe53BjRf4y+2iWDExP0NERERUPIUegFWKKrnfxH4OEVHpqhJ+27mwWQawncsegBeS9huzffAWoSYUzwuvbWBkRCb+nE8Ob1/PXthLG4fp+gzbAPq/hp7Bkb5DUStq89iCxByeAiVhcLh1k34lx7jlqFbU4DDvQTjMexBm6/Nwc8sd+N5cZpuwwdr/B3j2wSm+E4pcaypVpT7ZzyB1AAapA3C671S8F52Mu1sfRJPclPb7soc2Fod7s3tYztOhf2C5uSLh87uqI3Gs76d51XmO/i1ejrxum7QrKIN4NPQkrqq+NK/1u4VbYrhccyGrzNUFqlF2rOOC+QxyMw88tokOdWk4tv6jfIfjpfBrmGd8Z4u1H277Kw7y7A+v6Pw+V6Vud6XQoCIKPWGZKc0OrSNTG3iK7wS8Gn4TP5jLE/YvAHRBPS6pPh/3tD2cMZ7ZVRuJr/SvbQP1/1h9Zay8bOKYjWYTHgw9nrAeL7y4OkMsMkf/Fv+JvFa0OIbXfQrPBx/akHhvY1C2oBHueiBecm4HAFSoOa2L8RYVy9TodNuybqIBF1SdXYTa2PVUGnFtze9xSfBq22RX70emuKbP155s8/ZOxACZpIoBgC1/z/tbH8VP6neHIkr3Abkd5Rd+7OvZC/t69sLvqs/Fi+FX8GTb3xFBJG0MNFwdir08Pylyzd2rVNpwAP4Uy/QUy2gr942OISIqUQuNxbHXVoBxpPcwqCK3zmQhDNeGYS/POEyLfpYQNM7TvytirYiIiIgKrzMH2Scn57K5kJRcPyuefKT2bsfr11lqRA2CMpiwbJO5CT0VdyV4U03I4YMrZxsuOu5TSseNE5mk49aL++V2UayYmJ8hIiIiKq5CDsAqZZXYb2I/h4iodNWLets5fKG+GDupA4tUo9R+MJbbluU74Qblr1pUI5w0GGe93IC+6BP7Od8c3qXVE/F580wYSBxs2SwDeKztaVxe/bs8tmCLVDk8AYGd1SFYZa5hjFvGRmrD8ff6x3Fx8CrM3Dq4MjlGblR6YKxndJFqSOWgHCb7EULgMO9B2EMbi4nBy7HE+D7l92UHtT+O9h2R1TqfCP0NCrYNehIQONH/MxzmPSivuh7tOwJNsgkfRqfaBtS/Gn4LJ/mOx0B1x7zKcAO3xXDpciHp8g7FzJ3E14n5DHKzalFlG/i+UW5EH/RyrIwrqn+X8iEia811eDb0An5bdYZjZWWrUre7UlSJKkRlIGHZJrkZvTuwfzO1gapQcWn1RFwcvCohvpKQ+F4uw2YZwAv1T2WMZ/orfTEL3yS0VQIiIcbJJo75ODI9NmmJpUF0zRgruSGO4XWfwqpX6tBmJt7vuNhYigHqDkWqUWorzVW2Zbnm4RhvUbEsMBbGXlvnrJ96D4VfuOf+4r084zBaGxmbpNUyW5/ruj5fOtnm7Z2IATLJFAMsNX/Ai+FXcbL/eEfKKjU1ohpn+H+JAzz74qLglVhrrksZAw3XhuFsxsFplUobDiDVSWJzp9eihHDiFSIihyTPgAcAo7VRRapNegd7Dog9OcYKihYZS4tcKyIiIqLO49ZB95b4C2SlfMNeF1Fnm6TjW2MBhmqDi1Sj1BaniIXrFftM9cR9SlRI5XZRrJiYnyEiIiJyh0IMwKLSwn4OEVHp6qf0iT3B2PJB9CP81HdoEWtlF/+EUuum6e3VfkWsEQFAo9IdG42mhONnvr4Iu2ojYz/nm8PbQe2PU3wn4B/h/7MNPHsp/BqO8f4UQ7Sd8tyS1Dm8gGxpd1AeY9zS5xVe3F5zI37efBqCMlhSEylS6Sn1yX4alK6YVHMLftF8JsJbn5Kcq2YzYFu2veJM235F9UWYsXmm7UnEJkzc1/oI7qv7iyPlFFOpxHBuv2eH+Qxys25KA5qMTQnf80XGUuyiDXesjOHaMBzlPRxvRN6xxdp/D/0TR3oPRx/VuQlPslGp210pGkRXNCcNul5q/ICdtaFZr6O9NnBPzx7Yz7M3Po5Os+3fx0N/w6He8XnHM9nEMbnmMdwSx/C6T2H0Vnpitbkm4bj7ODoNh3gPLF6lUvgs+kXstXX89lX7ZPhEeoy3qFiWGj/YzvG7e8YUqTbpHe49GLP02bGfJSQWGotLps+XbXvnRAzQnmxigAalq2PllZod1e1xV83N+E3gfJgwmQPtoFJpwwEcFvdaAJAAFqd5LwFx0ykSEVFeAtKeLOmt9CxCTTIbpg2xLdssOUkZERERla9R6ggoUCC3/kt+akAqwsF/CpQOlVcudlR3sF1Uey/yQZFqk96U6NTYa+v42FHZvog1ci/uU0rWKHrEzq3xZIZ/lFo/pY/t7/NB9KMi1Sa9UhjMwvwMERERkbtYA7CsJ8CVU+4jG5Xcb2I/h4iodI3URsReWzchT41Ow0LdPfdhrjXX4Z3Ie7bYYqjqronCK9H2Sn/bso+j0xJ+diKHN6HqdHQTDbblBgzc3HonDGl0aH2ppMvhVXqMWym6KPU4wXd0WcXo5F7WZD91YsvDJErtvNJb7YWjfUfk/X0Jwf5EeacGQDUqPXB21RmxOsY/6foz/QtMj85wpJxicksM114uJBU3HfPMZ5CbpYq1rYkCnTSx6mzUiGrb8hDCuLX1LsfLa0+lbnel6K/2s513P9O/SPPu1LJpAy+tugBeeGyfDcogJrU+kHc8014ck08ew21xDPvEzkp1/L4f+RA/GquLWKtEQRnEa5G3bft6iDoop/Ux3qJi2ZwiJ9lP6VuEmmQ2XB0We2197zbJza7p82XSkfbOiRggG+3FAJVuiLYTDvWOZw40B6XQho9rGt8FwFmAbQfPKkJ1SgYnXiEickibDNmWeYQ9MCu2emF/0nvybKFERERE5eSJ+gfw366v4Kaa6zBaGxlLDGW64JNp8Esu/9pTjgNsRqrbnipiJZO+1Gfhy6h78jTfG8vwv8iHtmPBydmyywn3KSV7o+v/4fn6J3FB1W/RW+lVlPOr0+fjYim3i2LFxPwMERERkfs4NQCrFFVyv4n9HCKi0rWnZ3fbMhMSf2y5GUHZUoQaJdKljhtabks5qGlfz55FqBHFi8/HWzHAF/pMLDV+iC13IodXI6oxsersWPwiIWNt+gJjER5pezKX6ifIlMOr5Bi3khzuPaTYVaAKUuqT/RzlPSLvdWhQbctMaea9XsspvhNiD+yI7wdKSNzf+qijZRWDW2K4TLmQTMe3W3IhzGeQmw2OG+BuHZ+fRD/FGnOto+V0UxowwX96ylj7C/0rvBB60dHy2lOp210pdlIHxl5b+/fDyMfYZGb/4Jps2sC+ah+c6j/Jtn8lJP4X/RDvRt7PK57JFMc4kcdwWxzDPrFzdtfG2JZFoeNPrbdBd2BSWSfc2jIp5SS6e3t+ktP6GG9RsbSmuDfPL3xFqElm3RT7ZNMtssU1fb50OtreOREDZCObGKDS/cx7VLGrUJJKoQ0H8DgA+0kFeLuzK1JKtGJXgIioXFQJv22ATLMMYDs0FqlGqYWkPYC1ZpslIiIiKle1ogaHeQ/CYd6DMFufh5tb7sD35rKEGzus1wICB3j2wSm+Exytw4/GKtzUdqdt+YGefR0vyw329vwEj4S23dRq/X1vaLkVT9c/jEalRxFrBwRlC65t+TMMGLaLI/t79i5SrdyN+5RSGaQOwCB1AE73nYr3opNxd+uDaJKb0p5f99DG4nDvwUWutfvs6dkdT4aeTVhmXRT7a/2DqBU1RarZFvEXxZK/X24bzML8DBEREZE7HeU9Ai+GXy12NYqiUvtN7OcQEZWuUdouGKjsiKXmlokyrHbqe3MZJgYux121NxctH9wiW3F9yy2Yqc+ynb97Ko0Yo+1alHrRNuO03WzLTEjc2joJj9beA1WojuXwjvYdgf+EX8M8Y35CPCUh8Vz4XximDcEh3gNz3pb2cniVHONWikHqAPRUtsNac12xq0IV4nDvIXgm9EKxq5GT4dpQNIiu2CRzHyBVJaoQTRrQuUluRm/0yrd6AABVqLi0eiIuDl5lazeWmj/gxfCrONl/vCNlFYObYrjkXMik1gfQJDelff8e2lgc4ZLJrpjPIDf7iWc3PB56OmGZAQN3tt6Pu2pvdrSsU3w/x6vhN7HMXBE71qzzyoNtj2OoOhhjPZ3T/6rU7a4Ue2hj8TSeS1gWRgQPtT2Ba2uuyGod2baBZ/l/jbfC/8V6ucG2f29vuQdP1j+YczyTLo6pl/WO5DHcGMewT+yMcdpu6K30wmpzDYBtx+Q3+hz8vuU63FJzPapFVVHqZkoTd7Teh/ejU2zHbxdRnzIHlA3GW1QsPvjQhraEZUHZgkYU997nZBEZsS1Tobqqz5csl7y9EzFAttqLAQargzBQ3dHRMkvJrtouqBU1fHBgB7m5DR/XNF4B8BCAkwDbTHkbAPyv0ytVQjjxChGRQ+pFvS3AWKgvTpiBzw1+MJbbltWK2iLUhIiIiKg4RmrD8ff6x3Fx8CrM1L9O+VSdRqUHxnpGO1ruWM9oPB5+JnZjnnXxqxBlucEQbSeMUIdhnjE/tkxAYJ1cj3MCF+MvNTdiiLZTUeq2xlyHq4PXY5GxJJZAtY6BHZT+GK4NK0q93I77lDIRQuAw70HYQxuLicHLscT4PuX5dQe1P4725f/Eu3JTbhfFion5GSIiIiJ3cmIAVqmrtH4T+zlERKXtV/6TcVPrHbbBPN8ZC3Bq8wSc6/8NjvcdA0103u2HUyJTcW/bI1hlrk5YbtXvNN8vIIRI82nqLIO1QdhB6Y9l5goA22KA2fpc/Kn1NtxQfY2jObyrqy/DGYHzEp5Gb5X5p5Zb4YUH+3v3yWlb2svhMcatDCPV4fif+aEtbiQqhFKf7GeUtgumRKfm/H1pEF3RnDRgeanxA3bWhjpRPQDAnp49sJ9nb3wcnWZrNx4P/Q2HesejQenqWHmdzW0xnBACPnjhQ/qnyAsI7Khu75pcCPMZ5GbD1WEJ7YR1fE6NTsf9rY/iourzHCtLEyquqr4UFwQvSzinCAjo0HFFy7W4v/YO7KINd6zMdCp1uyvFrtou6CLqYzGA9Xd/PfI2hqiDcFKWk4lk2wZeVj0R17TcaNu/rWjFxYGrMFgdhBn6lx2OZ1LFMW+H38PH+nTH8hhui2PYJ3aGEAKn+E7AvW0P247f6dEZ+HXzb3FZ9YXY17NXp9Zrgb4It7feg3nGdwnLrfqd6jsx55iS8RYVS71ShzYzceKVxcZSDFB3KFKNUltprrIts3KSbuvzAbnn7Z2KAbLhF/52Y4BH6u5GP7WvY2WWElVsmdhnWvQz5kA7wK1t+Lim8aMBPAJgXHKVsWUSlntmNEyOdmqlSoxS7AoQEZWLfkof242RH0Q/KlJt0psanR57bTXo26v9ilgjIiIios7nFV7cXnMj6kQdAHRakmikOtwWM5azM/2/jm1v/BOcfzRX4azABbi/9VE0memfauQ0XRr4Z+hF/Kr5t/jWWGD7vYDAWVWndVp9ShH3KbWnQemKSTW3xJ76ySR89n7lPznh+5V8UezfoZehS71T6zQlMhW/bj4bn0Q/TVju5sEszM8QERERudcobZeKyoukU0n9JvZziIhK19G+IzBW2zXh/G21WQEZwKS2B3HM5lPwSNuTWKAvKlg9msxNeDn8Ok5vPgdXtdyAH81VCXWxXg9RB+F43zEFqwd1zM99x6aMAd6LTMY5gd+hm+jqWA5viLYTfuP/ZcprF1Ho+EPLjTk/gTubHB5j3PI3RBtc7CpQhSnlewqGqvk9pKO/2s+27Z/pX+S1zlQurboAXnhsy4MyiEmtDzheXmdyawy3Rq5N+1435kWYzyC3UoSCn3mPSnl8Ph/+N64KXo915nrHytvNMxrHeY9OKAfY8r1tka24KHil7ZgshErd7kqhCQ3HeH+acv9OansQ97Q+hJAMt7uebNvA+cYi7KaNTrl/18p1mKPPy2k7rDjG+mfCxD8jLzmex3BbHMM+sTNO9h0fm4w2eeD2SnMVrgheh9Oaz8Er4Tex2WwuWD1MaeLT6Oe4Mng9zgici3nGdwnHr1W/Pkov/ML/87zKYrxFxdBb6Wk7Z30cnVak2qT3WXRbP9g6/vqqfQC4t8+XS3vnVAyQrYO8B+AAz75pY4DzApcU9G/mdkNV5kBz4ZY2fFzTeGVc0/jDxjWN/w+AL7Bl0hVrohWLBLAUwH0Fq0iZ6Lypq4iIytxIbQRm6F8CiJ9JeRoW6osxWBtU5NptsdZch3ci79kuVDA4IiIiokrURanHCb6j8UzohU67kWOINhj/i37YKWW5wX7evTE+sh8mRz+2zRAdhY7nw//Gv8Mv40DvfjjEcyDGeXZDlahyvB7f6vMxOfoRXg+/gya5KSFZCmxL1u6mjcbh3oMdL7+ccJ9SNnqrvXC07wi8GH7VlTfKudXRviPwZuRdzNS/tiXgrYtiT4Wew7G+I3Gw5wAM0fK7eTWdJnMTPox+jJfDr2OBsTjt98utg1mYnyEiIiJyr6HqTpgSnVrsarhCpfSb2M8hIiptN9RcjQnNF2KD3Gi7iVtCYqNswjOh5/FM6Hl0F90wRhuFodpgDFIHoJ/SFz2V7eAT3qzLazYD+NFchcXGUiwylmCm/jUWGAshAdu5O14VqvCnmj9AFaoj2035O8F3LP4V/g9+NFfbYoC5WwftxMs3h/db/xmYEZ2JOcY8203zUei4q/V+zIh+iYurzosNUmhPtjk8xrjlb5C6Y7GrQBWmlO8psAaa5PN5a9CbdT7/MPIxNlVtRlelixNVBAD0VfvgVP9JeCb0vK2d+l/0Q+wX2bukrzG7NYYTEDBhJnzWrTkR5jPIzU7xn4AXw6+gSW6yHZ9Top/g082f41DvQTjYewBGaiNQK2ryKu/S6gvwlf41lpkrbPcJtchWXBG8Fif7TsDZVWegVtQ6tJV2lbrdleKX/pPwcuR1tMo22/79V/g/eD/yIY73HYuDvQdgR3X7tOvJtg0EEGuX4v8HgBa0Zl3v+DZwo9lk6+ta5STLJ4/htjiGfWJnqELFDdVX49zAJWhDW8rjd4GxCLe33o07cC92VodirGdXDFWtGK4PPMI+IU97NpvNCTHc5/qXaJGtsTKBxGNYQsIDDTfUXA2/8Oe1zYy3qBhGaiPwlf4NgG19zvcjH+Jc/1noo/Yqcu22CMogXou8bWs/hqjbcqZu7fMly6a9cyoGyNYfqi/H3OZvbX87AYF1cgMmBCbiwqpzcJLveChCybu8UjJYdce9taWmWG242lVDzdi66nFN4y8EcACAQwDUb/219YWMD04FgAiAM2Y0TM4+4K1QQkrOLEjuJYSYC2B48vLhw4dj7ty5RagRUXrf6HNwduCihIYRAAYoO+Cv9Q/mncDLly51/C54JWbqs2ydwIdrJ2GsZ3RR60dERERUDIuNpfhl8wRbfHSi72e4ovoix8ubGp2Oy4PXJiRVClWWW2w2m3FO4CL8YC4HAFsyCdiWcFWhYqg6GMO0wRioDkB/pS96Kduhm+iGOiXzRWpTmtgom7DB3JiQ4J2lz8YmuTlleRYJiR6iO56ufxjbKY3ObXyZ4j6lbMzT5+PMwPmddn4tF6vNNbGLYkDm71exLopJSFSjGk/WP4iBLrzhnPkZIiIiIveaEpmKK1uur6i8SCaV0m9iP4eIqLQtMpbg/MClCMhgyt/HDypKdXN1tahCF9EF1aIKfvihChUqFOhSRwRRRBFFULZgo7kROoy06061fgkJLzy4p/Z27O4Zk+smUoHMiH6Ji4NXxfZj/E3z6Z6G7YGGo71H4Jqayztc3jpzPX7TfH7amENAQIWKg7z7YzdtDG5rnWT7/acN7wPoWA6PMW75S76eDID7mAqqlO8pWKAvwmmBc3L+vnwZnYULgpfZzr3HeH+Ka2uucLSuIRnCiZtPx3q5IWF5e/3DDeZGHLn5xLRtiFu4NYaLjwOs5W49xpnPIDd7L/IBrmu5OdZWALC93vL/luOzl9IT1aIao7VROKvq1x0u73tjGc4KXIBW2QYgdaxdK2pxgu8YjNFG4ZLg1QU5T1bqdleKf4X+g7vbHmx3/9aLOuyg9EcvtSeqUY2dtSE4znd0bD0daQPT9U2TdRMN2CibbMsVbBuQnamva73PqTyGm+IY9omd9UX0K1wavBpR6ABSxx+APSYQALqKruimNKCLqEe1qIYfvq0xnAodOiIyCh1RBGQQG8wt92S2oS1hPZnKsOry55prcZj3IEe2l/EWdbbPol/gouCVtuNsV20kHq69G5oLJvb+Q/BGvB+dYjtX3117K/b2/CT2Prf2+azfd6S9cyoGyNY3+hxcELgstl2pYrx+Sl/82n8yRmojUo4zKccY7zt9Ac4InMccaI4K2Ya/8e4bCLQFoXbR4NnOC09PL9SaLecroQozblWW5KBUbF32qxkNk//p2EaXMa3YFSAiKhejtF0wUNkRS80fAGwL8r43l2Fi4HLcVXszGpUeRalbi2zF9S23JNwQYOmpNGKMtmtR6kVERERUbIPUAeipbIe15rpOKa+3sm1G7FSJzHLURanH/XV34NzAJVi19cmGluSEkg4d84zvMM/4zrYeAaDKSvBChSIUGFaCV+oIoS3lpcv2kscSEvWiDvfX3cEJOrLEfUrZGK4NRYPoGpskh7LTS+mJ++r+Ersolun7tV5uwP+iH9qeetgZF8XurL3JtReTmZ8hIiIicq9KzItkUin9JvZziIhK207qQDxd9zCubLkei42lKW4KTRxIm6xFtsaelJvqHNye5PXHtx3dRAPuqL0JIzXbM73IBcZ5dsOFVefg/rZHYT01NP4JoiZM22ei0PFedDJ+a57R4Rxeo9ID99X9BecFLkVwa8wRX56EhA4d70Um473IZACJx5Slozk8xrjlz9rH2Q7KJMpXKZ9XrCeE5/p92VXbBV1EPZplAMC2azyvR97GEHUQTvIf71hd/cKPy6on4pqWG21tRitacXHgKjxSdzf6qX0dK7MzuTWGi/9d/EA6N2I+g9zsUO9BmKt/hxfCL9oGgVqvt/wPrJMbsM7YAAGR05PUAWBHdXvcUXNTbCBhqlg7IAN4NvQCnsULtvo4pVK3u1Kc4j8Bs/W5eC86OeP+3SybMduYh9nGPABbzsHxg6470gZmG7WkmnQl+09ve59TeQw3xTGlHLu60e6eMXi47h5cE7wB6+SGlN8F6+d4EluO041GU1b7Id2xm+6zEhJ++HBDzdU4yHtAllvTPsZb1NnGabuht9ILq801ALb1Sb7R5+D3LdfhlprrUS2qilI3U5q4o/W+hElXLF1EPcZpuyUsc2ufL5e8vVMxQLZGabvgjzVX4YaWW2PbkhzjLTdX4PbWeyqqZeul9ATAHGiuCtmGq/v70BW+LT/Y32ItSbfjBIBWAGfMaJj8UvZbVNnUP/3pT8WuA1FaN95440QAtlFSjY2NmDhxYhFqRJSZX/gwJfpJQtAlIbFebsDrkXdQBT+GqoOhCKX9lTnEmkXWGuiY3HCf75+AEZ6dO60+RERERG4zR5+HJeb3CTd3DNeGJcwM7RS/8ONVe9qHAAAgAElEQVSZ0PMJy0YUqCw3qRU1ONJ7GOYbC7HS/DFlgjc+YZmKBBBFFG1oQwtaEZQtaEUbwggjimiGbNG2f/Z1SuyobI+H6+7Gjur2eW5lZeE+pWx8o8/F9+ayTjm/lpNuSgMO8uyPL/SvsFHak+ntfb+iW59OslE2YZ1cjzXmWqw212CtXIf1cgOa5Ca0yJaUAxtSrT/5oti9dX/BGM8o5zfcQczPEBEREbmTT3jxbOiFhGWVkBfJpFL6TeznEBGVtnqlHkd5j0BERvCtMR8mzJQ3Vmf6l0m2n4tvJw7w7ItJtbdiAPPArjZKG4E6UYNP9S8A2HNiqUQQxRuRd3PK4XVTGrCntgc+jE5FG9ps5aWKNeLjsMHqoA7n8Bjjlj+P8GC8dz8c7z0aJ/iOwQm+Y7CnZw/UiOpiV43KVCnfU+AVXgxTB+MQ74E41Dseh3rHY5xnN3RTGrL6vCIUbDI34xtjju0az3T9cwRkEGO0XaEJZ547O0DdEQuNxbF+eXx70YIWTI58hN21seiudIt9pk224R/h/0toxwQEflt1hiN1cpJbY7g+Si+sMFeWRC6E+Qxysz09eyAgg5hjzLN991J9JwUEtlf74XDvwTmV10ftjeHaMEyOfAQDRsryMsXaTp0nK3W7K8V+nr2x1PgBS80fMu5f62+ebv92pA3MhwIl63azn9IHj9bdi520gXmVaXFLHMM+sfN6Ko04wnsofjRXpfwuAOnjsGx15PMSEjurQ3F33a3YzTM6r21LhfEWdSYhtuznT/XPE/a5hMQK80e8F/kAfdU+2F7t36n1WqAvwpUt1+NjfdqWeiIxJ3mm/1cYm+L759Y+Xy55e6digGztpA5EL6UnPo5OT9iG5LLizzrlHuP5hR/1og57enbHXp49sJdnD+yujUFvtVf7HyYAhWvDJeSW6VMEbNOrCEVkmilHAPgCwDEzGiZPyWGTKpaQkjMQkXsJIeYCsE1vNnz4cMydO7cINSJq3/mBSzFT/9oWhANbGscG0RXH+o7EwZ4DMETbqSB1aDI34cPox3g5/DoWGIsTyge2Bc9D1EF4uu4RqEItSD2IiIiISsEzoRfwcNsTCfHbib6f4YrqiwpS3iJjCUy5LYnfoHTt8FP7SpWUEv8Ov4InQn9Dswy0myhyrNwUswUrEDjZdwLOr5oAv/B3Sj3KEfcpZfJk27N4PPS3Tju/lpuQDOOxtqfwf+GXoW99epIlm6ckZZp5viPf1fiLYldWX4IecTdluBnzM0RERETu9HFkWsLNjX3VPthJdeZG41JUaf0m9nOIiErfMmMFHm97GpOjH0OHDiD1OTg5D5KNTJ+xfjdUHYzzqs7iAJ4S83l0Jm5uvROrzTUJ+7e9QS+55vDWmGtxTfBGzDW+TXsMxscV1msFSk45PMa4ROS0Sr6nYIO5ESc1n45W2QYACdd4BAR6iG443ncsDvYe4MiDODaZm/Gr5t9ig9yYUJ712gsPLqw6Byf5jociFGwwN+LIzSfa2olPG97Puy6F5KYYrhRzIcxnkJu9EX4H97Q9hKBsyRj7Cgjs49kTk2pvyau8BfoiXNVyA340V7Uba8d/z50+T1bqdlcCKSWeCD2DZ0LP2865Ce/Lcv9m0wZK29Dq7MQPwLak6+cqUMo2jmGfuHC+jM7Cw21/xRxjHoD08Vau92ymi+Os5Y2iO35T9Wuc4D2m4A+3YrxFncWQBk4PnIvFxlIAiX1OYNvkzD/3/QzjPfuhi1JfkHqY0sQM/Uv8J/w6Po5+AonUx3ofpReer3+y3Xui3dTny5XTMUA2pkU/w/UttyAgg4zxyFFOtuGGYdgXbv2YUERy8Gmt8EcAtwB4bEbD5NQBKqXFiVfI1TjxCpWi1eYaTGi+MG0CA9jWWHYX3TBGG4Wh2mAMUgegn9IXPZXt4BPerMtrNgP40VyFxcZSLDKWYKb+NRYYC2NBd3x5FgmJalTjyfoHMVDdMc8tJiIiIiptU6PTcXnw2pK6qaPUNZsBPBf+J14Nv4VNcjOAzAnZdL9P9/72kq0HePbBOVVnYpA6IJfqUwrcp5TKlMhUXNlyPc+veSqHi2LFwPwMEREREZWCSu03sZ9DRFT61psb8Ur4dXwQ/Sh2kzrQsXN2JvG55GpUYT/v3jjOe1TKJ3tSaQjJMF4Nv4EXwi9hlbkaQPpBMakmQOloDs+UJv4dfhlPhZ6LXbeIl6rsVE+XZA6PiKjz/Sv0H9zd9qBt8Fty21Av6rCD0h+91J6oRjV21obgON/RHS7vG30OLghcBh1bBrIkX1MSEOin9MWv/SdjpDYCv2ye4PiA5c7ihhiulHMhzGeQW603N+LvoRfwWvgttGLLxFWpjiUnBqcCQJtsw6NtT+Gl8KuIphkUmzxxViHOk5W63ZVikbEEj7f9DR9HP4GZ4RyZ7f5tvw2UsXKypWDbRBTWuTq5r2n1MxnHUD6+1efjxfArmBKdhoAMxJY7FcMBibHISHU4fuY7Cod5D4K3A/dOOYHxFnWGBfoinBu4BG1InPDTeg1sOU4UKNhZHYqxnl0xVLVykn3gEZ4Ol7nZbE64r/Bz/Uu0yFZbmRYJCQ80PFQ3CbtqI7Muxw19vnw5HQO0Z525Hne23o8p0akpy+LEK5QPJ9rwlBOvWOtRhYltk61IANMBPAHgnzMaJodzqTNx4hVyOU68QqVqkbEE5wcuRUAGU/6+vcGG1aIKXUQXVIsq+OGHKlSoUKBLHRFEEUUUQdmCjebGWJIk1bpTrd+avfae2tuxu2dMrptIREREVDYWG0sTLigBKJmbOkpdREbwv8iH+CA6BTOiMxHGtvyOE0ne+Ni4n9IXh3gPxM+8R6GP2ivvdVNq3KcUb4G+CKcFzuH51SHlcFGsszE/Q0RERERuV+n9JvZziIjKw2pzDaZGP8VsfS7m6wvxg7k87ROes1GNKuykDsQobRfs5hmN3bUxnT7IgwrHlCZmG3MxLToDs/RvsFhfimYEEt6TavAakFsOLyIjWC83oFkG0k70kqpcq2zm8IiIiuO64E14LzrZNjDYem2JbxvyGXT1buR93NBya+zndAPvBAAzxYDmUhx0VawYrhxyIcxnkFsFZQumRqZhmj4Ds/TZWGuuSzie9vXs5cjgVMs6cz1eDr+O18JvYZ3cEFuePGi40OfJSt3uSrHcWIn3IpMxPfoZ5hrfwUi6NyOX/dteG9he39Fi7fPkNvCN0Dt4X5/COIYcZ0gDX+tz8En0U8w25mGhvhitaM17vY2iO0Zpu2CsZzT29+yN7ZRGB2qbH8ZbVGhfRL/CpcGrEd06wU825+otPwNdRVd0UxrQRdSjWlTDD9/WnKQKHToiMgodUQRkEBvMJmwwN8YmebFkKsOqy59rrsVh3oNy3sZSz9sXIgbIZJ4+H/8X/g/ej0xBBBEA6fcN207qqHzacNNM/70VilgJ4BMAHwJ4bUbD5JVO1LfSceIVcjVOvEKlbIWxEle2XI/FxtKMnbv2EjPpZsrL9jPJwX830YA7am/CSM321SIiIiKqSK2yDeM3HZWw7CTfcSV1U0c5CMsIvtS/wmx9Lr4zFmK+vhAb5Mac1qVCxfZKPwzRdtqS4NVGY4C6g8M1pvZwn1JQBnHwpmMTlvH86oxSvyjWmZifISIiIiI3Y79pG/ZziIjKR0iGsdL8EWvNdVhrrsN6cyNCCCEswwjLCHTo0KBCEx7UiCrUiTo0iK7oqWyHvkofTrRdgeZHF+L/2bvv+CiK/g/gn929fklIgNCLFAFBBJFq4wGFx8fyKD6WH4qiIqIoqKiABUEFK2DDiuWxl8cCil0Uld4RqdJ7D8n12zK/P8Jebm/3kstlL5fcfd+8eOWydzszl9vbmZ2Z7+yD/sewW9kDIH4QjRl9eOWlod6JXH0d9eERQkj6iEzEBN9k/Cr+kdD4Dgeuyne7nhP6HlP8UyNpRo/tROelyrS7XVdXGy7T+kKoP4PUZEEWxC55D46xIgRYEHW43JQElCtMwZ/yOiwUF2OZuBJb5O2RYFUA1X6ezNb3nQ0kJmGXsge75D0oOvH5FvL1McDWr0rpGtWBxawYO+Rd2KPsxSHliOazBUo/3xk5Uw3rQGrHkOq0U96NXfIeHGaHcUg5giPKUQRZEEGEED7RhhMgwMpZ4YITeXwuCrgCNOQL0ZRvgjZCK+TzddL9NspF7S2SKmul9bjfOxGH2VHDxbLU3+NJZCGgePuX1//pgB0T3ePR39a3wvQrozb326eqDWCkRPFggbgYC8TFWC6tQhE7rnme6k5ilkTr8AW/LUDx/uOQjkuQjoQR3htCaEcQgU2+TeLhcId0v49MRAuvkBqNFl4htV2QhfBa4C18GvoSEqS4ATfxVLWBHptOX+vZGOu6C/X5ugnvSwghhBCSDbbI26Cwso74Aj4fhXz9NJaIAECABXBIOYyDyuHIit8hFkYYYUgsakDoRAdv3RMdvA35hrBwQrqLTwzQZ5p9/ggv1Ax0NhWaoK3QOo0lyky1eVCsOlD/DCGEEEIIqcnouskYXecQQggh2SVdfXixd5elPjxCCKk5GGOYGXwH7wQ/1NUNmtedqCeqGrAMAAvFJXjYNwUe5q1wITAKWE5eJveFUH8GIaULkuxQdmGPvBdH2FEcVYow3Dk03cVKuWx939nisHIEm+UtJz7fYziqHMPD7nFxX0/tGEJSh9pbxEzHlCI87X+uwsWyYiVy0zag8nMLTxHaY4J7LNoIrRLej6RWZdsAhJitU6dOWL9+vdFT6xljnaq7PNmAFl4hNRotvEIyxS55D14PvI1fxT8gQQJg3HiO7shIVHn7qM+1F07Grc6bcKa1V6XLTgghhBBCCCGEEJIJqH+GEEIIIYQQQgghhJCajfrwCCGExNoib8Prgf/iD3EBlHLO5WYELAOlQVXP+F/Ab+J8w7woYJkQQgghiaJ2DCGE1A4rxNV4OfAG/pJLFzeI139Ymb7I2H2N0lW3F3L1cINzCC63XQKe45PKgxCSmWjhlepHC6+QGo0WXiGZ5ohyDLNCX+MX8XdslbdHtifb8I4VvWKiC06cYzsTl9kuQjdrV1PSJ4QQQgghhBBCCKntqH+GEEIIIYQQQgghhJCajfrwCCGExNot78VP4V+xSFyCdfJGyJA1z59t7WNKwLJqvbQJn4a+wNzwbwgjDMA4SI4ClgkhhBBSEWrHEEJI7bBB2oTPQrPwm7gQHuaJbDerTxLQLsLSWeiIS+0XYaCtP2yczbQ8CCGZgxZeqX608Aqp0WjhFZLJDigHMV9cjLXSOmyS/sZOZTcUKEmn54ITbYXWOM1yKs6wdkV3y+nU6CaEEEIIIYQQQggpB/XPEEIIIYQQQgghhBBSs1EfHiGEkFgSk7BL2YNd8h4UsSIEWBCFfH0MsPUzPa8SxYMF4mIsEBdjubQKRey45nkKWCaEEEJIZVA7hhBCaj6ZyVgj/YUF4mKsldfjb2kr/PBXOd1Crh5Os5yKbtauONd6JhrwhSaUlhCSyWjhlepHC6+QGo0WXiHZJMhC2KvswyHlMA4ph3FEOYYgggixEEIsDAkSLBBg4axwc07kcrko4PLRkG+ApnwTNBEapfstEEIIIYQQQgghhNRq1D9DCCGEEEIIIYQQQkjNRn14pCbxMi8OKIdwSDmMEqUEHuZFCGFITAIDg52zw8HZ4YADDs6O+nw9NOEboz5fL91FJ4Qk6bByBJvlLdgj78URdgxHlWN42D0u3cVKmMxkrJM34qByEMeU4wgjjAIuH/X4uuggtEMBn5+yvCUmYbm0Sre9t7VHyvIkhBBCEuFj/tI2PStt0weUIHYou3CcFSPEQgCAulwB6vF1cYalC9pa2qSsLKmsL2t7O4aQqvAyn25bDudOQ0lIbbVT3o1d8h4cZodxSDmCI8pRBFkQQYQQPtEnKUCAlbPCBSfy+FwUcAVoyBeiKd8EbYRWyOfrpPttVNoOeRcOKAfhYR4AHHI4NxrxDdGcbwYLJ6S7eITUCkeUozigHESRchwhhFGXy0ddvi6a800hVPA9qsrCKz2L+vEA2sZuX1rw6+bKlD/bWNJdAEIIIaUcnB1thFZoI7RKd1EIIYQQQghJO5qkWHsdVY5hubQKB5RDKFKKTkzUKkBdvgCnCO3R0dI+ZXmHWBjfhn/QbR9kvyRleRJCMgv1zxBCCCGEEFK9KOCLEEIIIaogC2GXvBsHlUM4yA6jRPHAy7wIIRQzPuSAA6U/6/F10cPa7cQYUd20lZ3aNNkhzMJYIa3GKulPrJM2YJu8Q3fH+ERZYUVjviFOFtqgq6UzulpOw8kpDN4k2e24UowN8iYcUA6ihHnBAXBzbjTmG6Kt0JrusF1JhXx9FPL1AWu6S1I588VFmB36FsvFVQggYPgaDkAHoR362/riSvtlcHAOU8tQzEpwp3ccOHCaPBcVzDU1n9qIghlJdcj0uVg0X4kkaoe8C6ulP/HXiTb9TmUXfMwPAGAn/lWEA4c6XB7a8W3RwdIOXa2d0UXojFw+p8rlS2V9WVvaMVQvklQ47/gluu/VN3U+Q12+IH2FIrVKS6E5WgrN012MarFMXInZoW+wQFwS9/rRBhtOtZyC/ra+uMB2fsoWMqJ+V1JbbZW3Y3boWywRl2GnstvwNW7OhV6W7uhnOxcDbP1SUYxCABsBTQOXgdYWKRfHWMUXBISkC8dx6wB0jN3esWNHrFu3Lg0lIoQQQgghhBBiNpqkWPuJTMSs0BzMDn+LLfK2cl9bwOWjn+0cDHVci4YmT+I7qhzDhcVXaAbIAGAxTdQihBBCCCGEEEJqlJoQ8GXUj0ABX4QQQkj12S8fwEJpKVafGB/arxxIILwtPiusOFloja6W09DV0hldLJ1Rh88zrbxGqE2T+RhjWCAtxteh77BYXIYQwmXPVemILRX9ueVwbpxn7YsL7QPRxdK5ymmT7KYwBXPC32NW6BuslzeW+9pGfEOcZ+2LQfaL0UxoWk0lJNVlibgcLwVex2Z5K4DEzl0cOORzdTDMcR2udAwyrSxqnRWbV7aO59ekYEaSebJlLhbNVyKJ2ipvx9eh7zBPnI8DykHNc4kuthIPF/kHtBZaYYC1H/5lH4CGfIOk0svW+pLqRZJqvYr6a37nwOFbWniFZBCFKScWKCldhM6PAHK4HDTg6qOzpRPy+ToVprFfPoCn/M9hsbQMQMXXj2rbx8U5ca39KlzvGAwrZ87qXtTvSmqrrfJ2vBZ4G3+IC8CQ+PeotXASRjpvxtnWPprnO3XqhPXr1xvtup4x1qm8tHsW9WsIYH/MZra04Fdaya4ctPAKqdFo4RVCCCGEEEIIyUw0STFzzAp9g5mB/+IoO5bwZ8eBgxVWXGm/DLc6b4KNs5lSluhObrUs2TDwTAghhBBCCCGE1BYU8EUIIYRkNz8L4JvQ9/g6/F2kPQCYMzakUseIOADdLd1wkf2f6Gc9F3aTxiIAatNki29DP+Kt4PvYo+wFoP+cYwNrkxEvzaZ8Ewx2XIHLbBfTHd2zzHGlGEulFScCpY7Dx/zI5XJQyJcGSnUQTgbP8eWmsUHahMf8T2ObvANA4ucoDhwutA3EKOeIhAKySM0mMQkvBF7Dp6EvAEAzfl6e6OOFA4dzrGfiEfcDcHHOKpcpNmiNgdW6OivTghlJZsm2uVg0X4kkYqW4Bm8G38UKaTUA/XfBzGtRQLsIS3dLNwx2XIEzrb0qlUZtqi+pXiS1Sa+i/rrvFS28QjLBemkjPgz+D4ulZfAyX9zXdRQ6YLDjCgyw9TN8/i9pPe71PoTjrDjp68eWfHM8kTMJrYWTKv9GTqB+V1KbfRz8DC8FZkKElPT36Er7ZbjbeXuk/8+khVfUTDjQwisVooVXSI1GC68QQgghhBBCSOahSYqZoUTxYLL/GfwuLtB1+lUkujOxo9AeT+c8hvp8vSqXqTYNPBNCCCGEEEIIIdmEAr4IIYSQ7CYyEe8GP8JHoc/gZb6UjA0B8ceHXJwTg2yXYKjjGuTxuUmnT22a7LBb3ovJ/qexRvqrwjGwyh7LFR0zsfk15RtjjOsOnGXtnXD5Se00N/wbPgh+ig3yxnJDiupz9XCVYxAG268wDDCdF56Pib4pCCGc8DkK0B6b+VwdPOZ+CD2s3ZJ6LyT9ipUS3Okdh43yZsPjIF7gWuyxotYprfiWeCl3WpWDUmtznZVpwYwk82TTXCyar0QScVwpxrOBl/BDuPQziFcfmr3wSnQe6s8ullNxj3MU2lnaJrR/bTieqF4ktREtvEIyjZd5Md3/Er4L/wiGxBco6Wk5A5Pc92uO/V3yHtzkGQkP80Zep6rM9SMAuODE1JwpOMPatVLvh/pdSW0WZmE84HsU88VFpvTDnGHpimk5U+DgHLTwShrQwiukRqOFVwghhBBCCCHp5mVeHFAO4ZByGCVKCTzMixDCkFjpSrR2zg4HZ4cDDjg4O+rz9dCEb2zKoGymoUmKmWOvvB+3e+/BAeVgpJNPFe+zKK8jsZCrh1dyn0NzoWmVykWd3ISQRMlMPnHXnYM4phxHGGEUcPmox9dFB6EdCvj8lOUtMQnLpVW67b2tPVKWJyGEEEIIqdkyvX1KAV+EEEJIdlsjrcVjvmewR9mb8PhQZQNDY8cqYtNTOWDH+dZ+6G3rgRzOjUZ8QzTnmyUUIEptmuywSFyKCb7JkQWC4n1+1SH6OLvMdjHucd1Bd3LPQAeVQ5jkexKrpDUAEg+Uai2chCfck9BSaB7Zvk7agFs9dyEMMfK62DQrGtdVtwkQ8LB7HC6wnZ/sWyNpEmJhDPfcgU3yFgDQ1Q8ViT0u1N/bCyfj1dznqhS8lso6a4e8CweUg/AwDwCu0vV8PJkWzEgyT7bNxaL5SiQRm6UtuM/3EA4qh8v9/FOx6IqaFwdOk74VFgx33ogh9qsqHAtI1fFkxlgA1YukNqOFV0i6nH/83zFbOHyW9y7y+TpJp3lcKcZo733YLG+t9AIlap/C67nPI4fLAWMM13tGYLO8RXcdmOg1ZOw53AE7Xsl9Dh0t7RN6P9TvSmozhSm4yzseS6TlAJIb24jeTz3OelrOwPScJ9Dl1NNo4ZVqRguvkBqNFl4hhBBCCCGEVKcwC2OFtBqrpD+xTtqAbfIOFLHjSaVlhRWN+YY4WWiDrpbO6Go5DSdb2phc4tqDJilmjmKlBEM9t2K/cgBA5Sdqxb5W/Tya8I3xRu6LqMfXTbps1MlNCKnIfHERZoe+xXJxFQIIGL6GA9BBaIf+tr640n4ZHJzD1DLEnqvUPBfRuYoQQgghJOtkQ/s0WwO+CCGEEFJqVugbTPU/Dwmy4ST8yrQHYiW6b7z9efAAABtsONVyCvrb+uIC2/nI4dy611KbJjvMFxdhnHciJEgAyv+c4x1XFlhg52ywwQY7Z4PMFMiQIUKEj/mhQDHcr7zjSM2/m6ULpuVMgdOEO/aSmmGvvA8jvffgoHKo0kFNANCQb4A3cl9EA74QEpNwZclQ7FP2JxUoZZQHDx7TcqbgTGuvSu9P0ucJ33TMCs+JexxUFCBttJ96Hjrf+g9MzpmQdNnMrrOWiSsxO/QNFohL4varJFLPx5NpwYwk82TbXCyar0QSsV7aiNs99yCAoO7zjj5O4rXLzaJeb6p5qz8FCFCgGB6z6lhAb2sPvBV83/TjqapjAVQvktqOFl4h6aIee9Hnuaoce2EWxg2e27BV3h5JryJGdWIPSze8mPsMvgn9gEf9T8WtMytzDRn9uJCrhw/z3kIen1vu/tTvSmq7VwNv4e2othtgfN1hJN5Ckur+V9ovw1s9XqWFV6qZJd0FIIQQQgghhBBC0okxhgXSYnwd+g6LxWUIIVz2XAWdheUJI4ydym7sUvZgrvgbACCHc+M8a19caB+ILpbOVS57bZHIJMWKOpfMnKQYndes8BzsUnbTJMVKeNw/FfuVAxVO1OLBIY/LAwAUsxLN62IHERgY9in7McE3GS/lTAPHVc/ED0JI9lgiLsdLgdexWd4KoPw6ngFYL2/ChsBmfBD8FMMc1+FKxyDTy6QtA533CCGEEEKySTa1T6f7Z2BTOZOnkw342ixvweO+qVUK+CKEEEJIas0KfYMn/NMAlI0NRIvXHlCD/XPghsAJ4MHDDhscnANOzgkOHESI8DM/fMyPYlaiGydKZIxPDXYLIYSV0hqslNbg5cBMXGu/Ctc7BmsCRalNk/n+lrbiAe+jkCDpxjKjx7UAoJCrj/aWk9FeOBlthFYo5OuhkKuPQr4+LFz507KDLIQipQjHWBH2KQewW96LzfIWrJc34qByCIB+fFPNf6W0BmO8D+KlnKngOd4oeVKLeJkXt3ruxiF2GEDlFkdRj4mDyiHc630Q7+S+hs9Ds3WLrhido3jwyOfqQIQID/Nq0ozejwMHBQom+Cbjw7y30JAvrPJ7Jqm3QdqE2eFv4h4HDthxoX0gelt6oJ3QFgV8PgDgkHIEK6XV+D78M1ZJf2rOfWoaDAw/i/NwRqgrBtkvSbqM0cej+vjz0FdowNVHZ0unhO76vl8+gKf8z2GxtEyXZqxE6nkjYRbGSO+YKgUzbpN34H7vI3gx9xl8G/5RF1xelWBGDhyCCGGs96GEghlJ5snGuVg0X4lUZL98AHd5x8OPgObzjr4ejbc4Z/RxbYcdA2390NvaE52EDsjjciFDxj7lAJZKK/BL+DdskDdHXm+UXnT9Gf28DDlu+dWxgPXyJt3xbaZkxgKoXiRmWimuSXcRItZK65DLJX68dLN2SWFpSKaL7V9K1hvBd7BV3q47b5bX9os9bzIwLJNWYl54Pj4PzY6bTlO+MQbazkNvaw805huigMtHGCKOKsewSvoTP4d/xTJppa7eBYAj7BieD7yMCe5x5b4f6ncltdlOeTfeC34ctz+ZA4c+lp7obe2OdkJb5J/ohzmsHMEKaTXmhudhj7Ivbj/M/0KzIJxtAwzXXSGpQguvEPLFRHgAACAASURBVEIIIYQQQgjJWt+GfsRbwfexR9kLQN85Z8bAVXSaHubF7PC3mB3+Fk35JhjsuAKX2S6GhcvcRWNpkmJmWSauxDxxftyJWoVcfVzlGITelh44WWgTmZAgMhErpTX4LvwTfgj/DAYYdhCulNbgreD7GOa8Ll1vkRCSYSQm4YXAa/g09AWAxO+Qo56fithxTAvMwFJpJR5xP1ClOyDESnRwkBBCCCGEZI5sa5/WhoAvQgghhKTGSnE1nvI/CyD+XU8BwAoLTrF0QHuhLXKRi7/k9Vgnb4CfBeCFD5qmyYnHHYUOuN4xGANs/Uo3s9J20n7lAHbLe7BQXIqfxXmRINTyqIu8qOXxMT9mBt/Bj+Ff8ETOJLQWTqI2TRaQmIxJ/icQQsgwEAUAThM64VzbWTjXehZaCs2TzsvB2dFYaITGaIROOEXz3E55F34J/46vwt8ZLqDBwLBKWoMZgdcx2nVr0mUgNcPz/ldxiB2uVLBp9PNlgURb8XX4O8wKfaPZNzrdLpbOuMg2EL2tPTULqIRZGKultfgx/Au+Df8YWZAqen8f8+MZ/3OYmjPF3D8ASYl3gh9pzhnR57EB1n64xzUqUk9FayE0QwuhGS6zX4wF4mJM8U3FMVak2V99/IL/VfSx9kQjvmGlyrZe2oi3g+8D0C++8oz/+cjvHYUOGOy4IlLPx/pLWo97vQ/hOCuuVL8KYFzPx5NpwYwks2TjXCyar0QS8aj/aRSzkrht+gZcIc6x9cEWaRvWyH9Vur7M4/PQwdIO1zsGG9aX0cdWvAVeohnVX9H7RR+nZkpmLIDqRWKm27x3m35cJyq2HTrONzHhfTkAiwrmpqBUhCRuu7wT7wc/jdsG5MCho9AeLYUWyOHcOKocwz7lADaeWDAs9rs31f8CjrCjke3R6Qx3DMVQxzW6RSttsCFHcKOl0ByX2S/CEnE5pvin4pByWJfOt+GfcI3jKrQRWhm+H+p3JbXde8GPI9dlRv1x41x3GR7/rYWT0MvaHSMcN+LL0NeYEXgdwRN907H9MPaxeRD+Z4FcVPF4BzEHxxhN6iY1F8dx6wB0jN3esWNHrFu3Lg0lIoQQQgghhGSC3fJeTPY/jTXSX5qO9HiDWdESnbAR73Wx+TXlG2OM6w6cZe2dcPlrC4nJGOoZgS3ytrgDmmZNUixPIpMUOXC4xn4lTVKswGjPWCyRlhsOPF/vGIxbHDdUeGeoLfI2POh9FDuUXYYdjVZY8E7ea3E72stzVDmGC4uv0H3Gi2nAi5CsVKyU4E7vOGyUNxvWz/EmkcTW4eq5pBXfEi/lTkNdvqBK5aJzFSGEEEJIdsrG9ul47yT8Kv5e6Qns0aInsEeXT33sghMf1Xmr0gFfALXNCSGEkFQJsAAGlwzT3I1excBggxX9bOfiXOtZONPaCwpkTPe/hO/CP4IhseAvDhx6Ws7AJPf9mvbQLnkPbvKMhId5NXlWhEdZMKj6ehecmJozBf8LzaI2TYabFZqDJ/zTDY/XHpZuGO28Fe0sbautPApT8GV4Dmb4X0cAAV2ZePB4P29mUmNppGZYJ23ATZ7b4wYWueBEH2tPnCS0gDsqUGqRuCQShBG9Xw7nhpf5NHmo4673u+7BRfZ/Vlim7fJOPOR7LDK2HzuW/nruCzjN0snkvwQxk0fx4p/Fg6BAiWxTP78bHNfiVudNCad1UDmMu73jIwHWsfVfL0t3vJD7dEJpeZlXU89Hl09ltHBDIvV8sv0qQFk9f4a1q26f7fJOXFtyc6Sssd9RDhxOEdpVGMyovrY+Vw9H2FFdOThwuNlxvWEwY6zoYMbYdKheyC7ZOheL5iuRivwU/hUP+R4zPO+fxLfASOfNONd6FrzMVy31ZaKLmkSXN/r4id2fB1/l4ynZ45TqRWK2XkX9Nefx2oLO6yRZ6jEPlJ3vvq3zWVJjvFP9L+B/oVmGbaL+1nNxp+s2w/7FvfI+vBv8GLPCcwz3BbSLroxyjsC1jqsSLtdB5RDu8NyL3SduhBv9Xi+1XYj73fcY7kdjyaQ2C7IgBhy/DCLEyDb1GLnQNhAPuO5N+ObMm6UtuNf3UKRtE/19UGQFx744hG0jNsTutp4xVm5nXc+ifg0B7EfZEvccALa04NfMvWu0Ceg2zoQQQgghhBBCssoicSlu9NwWWXSFi/oHGC+0Evua8lT0uui0GBj2KPtwj/dBPOl7FiIT4+5XG80Jf6cZ6AfKOmZ7WLrhvdzXMTPvRVzn+L+UDfQDQEuhBW50DsHnee9hrOsuOOGMlCW6TB+FPsNWeXvKylHbHVWOYam0Qvd348BhvOtu3O4cXuGgJwC0FVrjrbyX0d1yumHnvQgJj/meBi0WTAipihALY5T3XmyQN2nq+9jBQqN/gHYii7rfNmUH7vKOh58FDPMkhBBCCCEknmxsn3oUL34XFxj2I9zoGILJORMqnCgHAGdZe+PtvFfQWjjJsB/BjwAe901L2fsghBBCSOV9HvoqsuhKdL3NwHCJ7V+YXedjPOp+EOfb/oEwC2OkZwy+Df8IBQyxY3fltY+WSitwh/deeE8EXzPG8KDvUXiYV/PaRMb4YttbHDj4EcDd3vvxmzif2jQZ7r3gJ5pjRP1sbnHcgBm5U6t10RUA4Dke/7H/G+/mvYYmfCPd8wwMLwVmVmuZiLk+D32l+T36nHCt/Sp8l/85Hs+ZiFucN+Jax1UY7boVT+ZMwnf5X2Ck8+bIYlHqcethXs15TD3PTHSPT2jRFQBoJbTEa7nPo7PQUROkpPo0+EWV3jNJvYXSEsiQI7+rn+M/rGdXKogcABryhZiRMxVN+MYAtPUfACyVVuCn8C8VpnNcKdbV80aSreeN6u94c3yM6vkx3vuxXtqkK8/nodmRv2VsEH1/67mYVedDvJ33Cia578e9rtF4ImcS3sl7FV/kvY/LbBfr3udhdsTwOzrKOQI3O4cmNM+il7U7Zua+gOZ8U91zDIy+o1kkG+di0Xwlkoh3gx9pflc/20ts/8IHeW+gr+1scBxXLfVlZRaTKG8sIJoCJW1jAVQvklSpqP/H7H9VKQMhNUGYhfF9eK5hm+gGx7V4ImdS3MVFmgpNcL97DB52jYvsq/6Mvr7iwKGrpXOlFl0BgIZ8A0zNmQwH7JFtapo/hn+FxCTdPjSWTGq7xeJyhBGO/B79HXqwEouuAEA7S1vMyJmKfK4OgJh+GA6oe3kD5PWt2g15SOIs6S4AIYQQQgghhBBSXeaLizDOOxESSjvwogesojvu1G1GLLDAztlggw12zgaZKZAhQ4QIH/Mb3p0nOl2jbQwMs8JzsEvZjWk5U+DknFV7ozWE0SRFDhxucdyAYc7rq7086iTFnpYzcKd3LPYpBzTPq5MUp+c8Xu1lqw0Wiks03xX18WW2izHIfkml0nJzLkzLmYJbPHdis7xF00HIwLBR3ozPQ7NxheOyVLwVQkgWmO6fgU0nzi+AdjJl9O/xGO3HwLBZ3oLHfVMxOWdCqopOCCGEEEIyUDa2T9UJ7LH9CFWZwD7Mc4cmiFv9qQZ8DbD1T8VbIYSQrHObZ0y6i5AUDsDLudPTXYyspzAFHwU/002Y58FjgmusZgGAMAtjpHdMJBAzkUCW2HGKbfIO3O99BC/mPoNvwz9GxhxiXxu9f7x01YUMohd/CSEIhrIgBGrTZJ710ibsUfbqjpur7IPSMp4ZrbnQFK/kPodhJSNxhB0DUPadWiQuxRHlKOrz9dJaRlJ5PubH3PA8w3H0sa47cbn933H3dXFODHVcg45CB9ztHQ/pRACsUVrnWM+s9Pkkh3PjyZxHMKRkOI6z4kjaDAy/iQswouQu8Fztu+drtrQR/pLW67ZZIOBu1+1JpVeXL8BT7kcwzHMHRIi6uv0F/2s4x3omHJzDcP949Xx5fSBVqecr07ei1utBhDDW+xA+zHsLeXxupNzxghmHOq7Bbc5hcfNQgxlPs3TCY/6ndfOQovOvSjDj0JJbEURIU74fw7/iPtedsHAUHpTpsnEuFs1XIhXZJu8wrCPOt/4DD7nv07w21fVlZRZdAUoXVIn+TpdXX6ZjLIDqxdR7zPdUuouQJA4T3GOrlEJ53xda7ISkwgHlYLqLEHFIOaxZsKEijfiGWCGthod5dPXdmdZe5Z6Po11k/yc2yX/jk9AXca+tbnHcWIl3Uqal0AK3OG/E84FXNOkFEMBKaQ16Ws/QvJ7GkqtXNtc3qfKn9JduGwdgnOtuCJVYdEXVQmiGx9wPYbR3rPZ7WTpAgRZPtMVfZy9DnFAlYqKa34IkhBBCCCGEEEJM8Le0FQ94H4UEyXBCRXQnfiFXH+0tJ6O9cDLaCK1QyNdDIVcfhXz9cgdjLiu+BgwMClOgQIZ04r/IRIgQNXdLiMXAsFxahQHHL6v2CXIcOHxZ5wNT06RJipnnL2mDbpsTjoQ77GM5OAeedD+C6z0j4D1xVyqg7LN4Nfg2Btj6ow6fV6VyE1IbUDCLuTZImzA7/I3h4CADgwN2XGgfiN6WHmgntI3cGeGQcgQrpdX4PvwzVkl/atoI0QNxP4vzcEaoa6UncRFCCCGEZDpq1xrL1vZpTQv4IoQQkriV0upaF9xgtMAGSY/V0locYUd1bZ8Rjhs1i64AwBvBd7BV3m4YdKU+jhWbLgPDMmkl5oXn4/PQ7LjpNOUbY6DtPHSxnIpnfM9jL9uveW30PtqJ+fr0qE2TWeaLi3Tb6nIFGOkcnobS6DXkC/Gg+z7c5R2v+67MDf+Gqx2Xp7F0JBkrxdUIIqQ7n11oG1juoivReli7YZjjerwafCtuoNRwx9Ckylefr4c7nLdogmMBQISIVfKayCJVtUU2tRG2yNsij8sC1s5BQ75B0mm2s7TFHc5bMD0wQ1M/AsBhdgRvBz+IO18gXj1vxGiB2mTq+d7WHmjMN0QBl48wRBxVjmGV9Cd+Dv+KZdJKXT0PAEfYMTwfeBkT3KV3fs+0YEaSWbJ1LhbNV8psZowrHFAORPrNVTx4HFQO69LfJP+te62by8Ek35OVyjN6XCG6vkxs37Jj7h7nHehl7aEZC4gnHWMBVC+m3pzwD7Wuvap+fskGwrs5F/wsUG7/T2UXMUpWdeVDaoZLiwen7fsWfawxMNzguS3hfTkAiwrmYqO0WfccDx73OUdXqiwjncPxQ3guilnJifTL/iYN+EJ0s3apVHrRLrdfgreC78PLvJrtq6W1unMyjSVXr2ysb1Ltb3lr5LFa1rOsvdFKaJl0mj2s3XC9YzD+G/wgcuyqHCe70HBEMxx8ZU+Vyk0qRguvEEIIIYQQQgjJeBKTMcn/BEIGE5jUDonThE4413YWzrWehZZC86TyiV4l2Uh5z6nCCGOfsr9aO7dSkRdNUsw825Qdkcfq9+c82z+qNNGgidAIY113YoJvsm6Ck5d58WrwTYxz3V3VohNS41Ewi7neCX6kqeej698B1n64xzUqEswarYXQDC2EZrjMfjEWiIsxxTcVx1iRZv+ygbhX0cfaE434htX63gghhBBCajJq1xrL1vZpTQv4IoQQUnm1JfCgtrU/Mt1CcYluWxO+Ea5z/J9m23Z5J94Pfqobt4uu4zsK7dFSaIEczo2jyjHsUw5go1waYBD7uU/1v6BZ8CU6neGOoRjquAZWzgoAmJwzATd5tBP4OXC42HYBlkorcEg5bHhcKVDAg6c2TYbZLP8deax+Fv+yDYCDs6exVFp9rD3R1dIZq6W1mmNzrbQOV4PGNGubDfIm3TYbbBjtvLVS6VzvGIwvQl/jMDsCQHtebM43RTtL26TLeIHtfLwaeDMSOB+L2gg10wHlkO4997J2r3K6Vzsux6/i75FFYYGyevbD4P8wyH6xrj+iono+Vn/ruabV8yobbMgR3GgpNMdl9ouwRFyOKf6pmnpeTefb8E+4xnEV2gitMi6YkWSWbJ2LRfOVMpsZ4woKFN02GTLWyusSeu1xdhyrpDUJ52c0rnC143K8GXwXx1mx4T7nWM7EPmU/tik7NPXhBnkzrnQM0owFPOZ9GsdQZJhvdY8FUL1YfWpLG9sM7+e+gYd8j2GdvEHXF6T+bCe0hZtzmZrvSmmNrn16nrUv7DXo+p+kXk35rlWuHKXHrXq9pO7PgcO51jPRWGhUqbwdnB0Dbf3xaehL3XfiLGuvSqWlT9uBvtazMCf8veZcH71AhYrGktOjpnwHMsF+5aCuTdjb2rPK6Q533IA/xIXYJu8oS58B4IAm97XEkY8PQC6SqpwPiY8WXiGEEEIIIYQQkvHmhL/DFnmbpnND7VDrYemG0c5bqzTxKFZ5g4HRnZQVdV5Vx0SgVHWg0STFzHPIYKKWGYOTA239MTc8D/PE+boJTrND3+JK+yC0Fk6qcj6E1Aa1ZVCjJk9U9She/C4uMJx4eYPjWtzqvCmhdM6y9sbbea/gbu/4yN34ogfi/Ajgcd80vJD7dMreCyGEEEJIbUXt2jLZ3D6tSQFfhBBCklOT+4BIzWV0l8cLbQMhcILmdZ+HZkOGrAuuAUqDr+903WZYp++V9+Hd4MeYFZ6jOUbVhQcAbZtrlHMErnVcpUmjo6UD+lh7YqG4RJOGl3kxM/cF3OG5F7uVvXHfI7VpMst2eafufNfdenqaShPfP23nYbW0NvI7AzMMWiE13waDQKnzbH2Rz9epVDoCJ+AC+/l4N/iRLlCqTxUDpSycBefazsLnoa8M2wPURqiZjiv6QO+2QmtT0h7vGoMhJTdDgqzZLkLEDP/rmJwzQbO9vHoegC7A9omcSQDMqefj6WXtHreeZ2D4NPgF7nffk3HBjCSzZOtcLJqvlB1SMa6QaJqVyTteO8ijeOGJWfgjeh8n58C/7RfiucDLmnw3RX2vgdKxgOdyn8L1nlsM06rusQCqF6tPbWpjV/X72kRohJm5L+C14Ft4L/jxiVhy7YJdXubFfa470dnSsYqlLdOrqL9u2z2uUajLF5iWB6n50vFdM/rOJFqO6H2N+ivPTPIc2t1yOj4Nfanb3lZok1R60U63nIY54e8jvzMw7FX26V5HY8npkU31TaoVMf1CeR2Ek6ucroUT8IDrHgz3jNL9BYRcC5qOb4Vd4/423JeYg093AQghhBBCCCGEkFR7L/iJrmMeAG5x3IAZuVNNXXQlURw48OV0XtX0zqKK1KZJitFokmJ8JYpHt60F38yUtO91jYYL+jsUKFDwvP8VU/IgpDbgasm/mmyhtARy1KTPsrshnJ1wUKuqIV+IGTlT0YRvDEA7kRMAlkor8FP4F/MKTwghhBCSIdLdXq1J7dpsbp+mOuDLanCfITXgixBCSNVYYDFcPJ6V848Q1U5lt66t1dVymub3MAvj+/DcyOui2zU3OK7FEzmT4k5+byo0wf3uMXjYNS6yr/pT/aem1dXSOW4w9nnWvpHH6j5b5O1oyDfA1JzJcMA4eJWBUZsmwxQz/fhXM75pGkpSvo5Ch8hj9bg/zvRtblLzHZD1d8PtZUkueLybpYvh9rZCq6TSixZ77lbre2oj1FwhhHTb8rnKLegTz0lCC1zruFpzHKj158/iPKyTNkReW149f7X98nL7Zcyq5+MxqufVNH8M/wqJSaYHMxoxK5gxWrxgRpJZsnUuFs1Xyg5m9/Wb8drKjCsslJZAgRL3+Z/FeXBzZceamtZR5ZjutYV8PcO80jEWQPVi9cjGNrbACRjpHI4Xc6aiPlc38r7U79o+5QBGeO7Em4F3wVhmvGdSc9TW75eX+XT1Q/skF3loHaffoBXfMqn0NGkIZWmUV9/RWHL1y8b6JpWCTN8PU8Dlm5L2qZaOuNR2sfZzKF2pDIVDG8PR1mlKPsSY/uxBCCEkKbd5xqS7CEnhALycOz3dxSCEEEIISZn10ibsUfZGOu/USRhX2QdhmPN6U/Mq5OpH7rQT3blZXucTDw5KBnZO1dZJigyMJinGETSYqFXAm9NBWMjXx3DnUDwfeEUzWYqBYYm0HIvEpehj7WlKXsQ8dB1sHgsskCABSLz+qK5A0drmL2m9bpsFAu523Z5UenX5AjzlfgTDPHdAhKibJPqC/zWcYz0TDs5RpXITQgghhGQCatfqZXP7tDoCvv4b/EDXj/CzOA+DpSvQyXKKKXkRQkg2mpv/FZZLqzA/vBg/hH+GHwFNoKsRmoRLVB6D8aHGMYuorJBWw8M8urG7M629cJtzWEL5XGT/JzbJf+OT0Be6dFS3OG6Mu38HSzvdtuIT40MthRa4xXkjng8YB1pSmyaz+Jlft83BGS+8k05Gd+D2MV8aSkKqysO8um1tLckFm7bkWxhuP0kw3l4Z0WP76rmpDpeHie7xKWsjpKo9wcBSOq5ZU8YeS+eexGzjzLtH742OIfg29CMOsyO6fp/n/C9jZt6LAMqv54c6rsEnoS8qzKuq9Xx5ouv56PQCCGCltKbWBjMyMMNgRpJZsnUuFs1XymyZMq6gjgXEtot4cGAofT+fh77S7Vdem96ojVXdYwFUL6beF3nvY6G4BPPFxVgqLYdy4jyULf1w3a2n4/28N/CY/2nMFxdp2n4yZMwMvoPF0nI84noATYRGaS4tqe0ECFCgVPj9qo56JpnvsdegPyGfT66fspCvZ7i9Dp+XVHrR8jh9Gn4W0G2jseTqle31TXWxclbT0rrNOQxzxXk4Du21FCdwaP5YW/w9eK1peREtWniFEEJMslJaXSM7ccpTXRcEhBBCCCHpNF9cpNtWlyvASOdw0/Oak/8ptsrbMV9chFmhb7BP2Z9Ap5TxIBmASAdvbUSTFDOPBQLEEwPdKoXFv1NHZV1tvxyzQ9/o7oZZOlj8KnrldTd1YhipOroONg8Fs5hni7wt8lj9vP9hPQcN+QZJp9nO0hZ3OG/B9MAMzUAcABxmR/B28IOEA0IIIYQQQjIZtWv1srl9WlMCvgghhFSeg3PgbGsfnG3tg1GuEfgsNAtvBt5DGGFNvR5dD3UU2qNPknc8JpklwIK6bbGTjTdKm3Wv4cHjPufoSuU10jkcP4TnopiVANAG3zXgC9HN2iXuvnlcrm6bL2ps63L7JXgr+D5KTqStYmDUpskwdtgRgDb4w8t8KET9NJXIWJiFddsECGkoCakqo7HoXINzUiKMxroBIIfLSSq9aHUMAqWCLJjSNsLM4H9TNo63SlqTknRr0tijk3PqFvYpVkqq1AcRzcHZMco1AhN8k3WBa2vl9fgx/AsG2vrXiHq+Imo9Hxu4uFpam3HBjCSzZOtcLJqvlNlSNa5Q3Yu/qWMBseWOnhu6Sd5s0HaI346IXoBC/VndYwFUL6ZeU6EJrhQG4UrHIOyV9+Hd4MeYHf4GgPZ4im5/teSbZ9SCAfl8HUzLmYJPgp9jRuB1iJA0x/+f0l8Y4rkZY1134QLb+WkuLanNZua+gId8kyNz+wForms4cKjP1YPAmdvfckA5qMvvVOGUSi/QYNTvGjLoL0qEHcZtSDfnSiq9aDaD9yVB1G2jseTqRfWN+ZycA96Y6xwP86IBCk1Jvw6fh1scN+Bp3/NqozLys875dZH/r3puUzIiOrTwCiGEmKy2TBCtKYM9hBBCCCGptln+O/JY7Qj6l21Aygae2wit0EZohevtg/GT+Cum+2egiB2P2ynVw9IN/7Sdh/8GP8AuZU/MJKQO+I/93ykpZ6rRJMXM4+ScEGPunnOcFaMxzLmTgMCV3vH7Tu843USt7cpOfBaajascg0zJi5iLroOrjoJZzHNAOaT7rHtZu1c53asdl+NX8Xeskv6MpK9+Hh8G/4dB9ovRKObOvYQQQggh2YbatXrZ3D6tKQFfhBBCqsbNuTDUcQ36Ws/GaO9YHFIOGwY/dbR0wHDn0DSVktQkTs6hWcAEAEqYRzPZeKNcFpCt1uHnWs9E40reudjB2THQ1h+fhr7UBS+cVUEbM8j0d1S1wxaVtgN9rWfh6/B3utdRmyaz5PG5CCjaMc2t8nbNHdNrgr3Kft02MxbXINUvaHBH50CSQaHx5jyYESjFG4yrSZA1eZjdRngj+E65QdZVkYo0a9rYYx2uju46fKeyC+3Q1rQ8Btr647PQbKyR1ur6I17wv4pzrH3KreePKscSzqsq9XzFaZfW83PC32s+x7/lrRkXzEgyS7bOxaL5SpnNjHGFD4P/gx+l16HqawZY+6Gl0EKX36ehL1By4nhSX9vPei7aCK2q9D6ixwJiyx27LXoBlRyu/HjZ8tKqjrEAqherV1OhCe53j8FAW3+M8z0ML/MZto97WLvhXlflFrWrDa52/AenW7pggm8ydii7EL0Ik4/5Mcn3BBaKSzDWdVeF3x1CjHSynIL382biSf90/Bj+JXKMRWvIN8Cj7gfRVGhsWr69ivR9e0/nPBZ3MdV4HLAjAO15+RgrQgs0q3SZOM74etYW1T+arCLluG6b1SBdGktOn2yvb8ySy+XqFl7ZJe+pcrsy2n/sl+KptdPBtRIQ+XhOLL7S/LG2jXoW9bMsLfhVKi8NUnm08AohhJispg2mEEIIIYRku+3yTl0brbv19JTny3EcBtr6o4elG2733oNt8g7DTqmWQnNcbL8AYYTxlP85TVn9zI+L7RekvKypQJMUM08Blx8ZeFZtl3fiFEt70/Lobe2Bc6xn4g9xoW6w+PXgfzHA1g8FfL5p+RFz0HWwuSiYpWqOK8W6bW2F1qakPd41BkNKbtZMLAYAESJm+F/H5JwJpuRDCCGEEJIJqF1bKpvbpzUl4MvJOU3LjxBCstlJQgtMdU/GDZ7boEChPkESVx6Xp1t45W9pq6YNtFvZq9vvzCQDqLtbTsenoS9129sKbcrdb6e8W7ctdnzodMtphguvUJsmszTmG2ruPAwAf4gLcb7tH+krlIEl4vLIYzVQpKnQJI0lIslycg74YxZaOaYcw0kGgcHJsqJyd802UsT0gVI2g3RT0UagdkZymvNNsPvEzX5Uy8VVGGByINm9zlEY6hmhW8rmb+4eLgAAIABJREFUCDuKlwIza0Q9n4jTLadhTvj7yO8MDHuVfRkXzEgyS7bOxaL5Stkj2XGFxeIy/CWv13x2bs5tOPawXtqAhdJSzWvrcLlVHqeIHQswCuaPXnhF1TiBRVPiLUxXHWMBVC+mxxnWrnjcPRGjvWMBZFf7uJ2lLd7Jew1T/S/g6/B3mu8SA8OP4V/wp7QOj7ofwGmWU9NcWlIbuTkXHnM/hF6W7pjmfzFyjlOPs3XyBlznGY57naNxoX1gOouq4+ZcugWxDiqHkkpLYqXrNKRikVKj/gQn59Bto7Hk9Mvm+sYMzfgm2Kfs1/zdVklr0M92jml58ByP0PMeOJ7Pjyy4on5t7S0ddgAPAHjUtAwJAIBPdwEIISRTWGABO/EvGivnHyGEEEIISb3imIFXAGjGN622/Av4fExzT4ncJS9ep1RHoUPksfqa40wfnFNbNOYb6tq8f4gL01Sa+GiSYuKaC810n+kSaXmcVyfvbudIw0l7XubFNP+LpudHkkfXwamlTlTlT3Th0qBGYkIGd4rM5+qYkvZJQgtc67hadxciBoafxXlYJ20wJR9CCCGEkEyS7e3abG6fNueb6K4Dl4urTM/nXucowzuxqwFfhBBCzNPO0hYDbP2on4+Uq5lBG+AX8XfN7+odNKO1F05OKr/Wce4e2YovP/h0vrgo8lhtR7UQtIFj8QJYqU2TWTpbOkUeq+3pueF52CcfSGOptLzMi69OBJxFa2fCwgOk+hkFnu9TkjvewiwMACkZhzvGinTbXJzL8LVmtRFo7LFqWgknRR5Hzmfi7wjELPRTVe0sbfFv20Wav7+a3+eh2TiqHEt7PZ+I6HpeLe9R5RjcBse5GcGMZh+viQYzksySrXOxaL5S9qnsuMKpllMij9U66cfwL4aLcaSqvowdC+DAYYA1fvtI/W6cnGCbPnrxleocC6B6MX16Ws/A2dbeWdnmdXB2POS+D1PcDyOHc0f+Bupxv185gBGeu/B64G0oTElzaUltdbH9AryT9xraCW003zMGBh/z41H/U3jI+xi8MQuDpFMTQd/vulBcklRaYYi41n6V5v819itNOXdukDZHHqvlrc/X072OxpJrhmyub6oqehHlsn7l3yJtHrMoq0QUfX1Ys+gK1EVYgAd6FvVL/R2pswwtvEIIISaZm/8VpuVMwSDbJXDCobm4i6e8AaHq+EcIIYQQkg38MXfVA0o75qtTY6ERLrZfUG4brC5foNvmY75UFiulaJJi5om+G6X6mc4L/2F49+6qaCo0wWDHlXEHi38IzzU1P5I8ug5OPQpmqTyjQTKeM68b/EbHEDTgCgFoj3UGhuf8L5uWDyGEEEJIJsnmdm02t09rSsDXUnGFqfkRQki2u9R2UbqLQGo4o/Gh+eJC/C1tjWw3CljI55NbnK7QYNI+ANTh8+Luc0g5jO/DP1UYFJ7HGadBbZrM0t2in5cuQsIk/xOQmJyGEuk97psGj8HNRs609kpDaUhVGS1QlWzQvAKGe52jNP/vcd4BN+eucjn/lNZFHqvlLeTrx329GW0EGnusmh7WbrptXubF28H3Tc/rNucw5HK5mm0cOChgJ24wpP3bVGc9nyijet7PAhkXzEgyS7bOxaL5StmpMuMKp1u66LYFEMAT/um67amqL43GAq53DI7Ulwz6xSEYGHpauyeUPgcuLWMBVC+m13/sl6a7CGl1vu0feC/3dXQWOmquDUrbnQreCr6P4Z7R2CvvT3NJSW3VQmiGt3Jfxv/Z/xPZph5jav1/bclwrJbWprGUZVrx+kUe5ouLIDKx0mm5OCdGu27V/XdyziqX83dxgeZ3Dhya8I11r6Ox5Joj2+ubZHWzdNVtO8qO4ZPQF6bntfuhrVACMe3J0kPaBuDjnkX9zLn7DwEAWNJdAEIIyRQOzoGzrX1wtrUPRrlG4LPQLLwZeA9hhDUrzKqPOXDoKLRHHxoAJYQQQghJKTvsCEDbCedlPhQi/qSgVLjIdgE+C82O+7x6N6poAoRUFimlultOx7v4SLNNnaT4cs50WLj0vzd1kmLsYD9NUjTWw9INb0M7yBxCGC8FZuJB972m5nWTYwi+Df2II+xo5PNRr6We9D2Lk4U2aB3V6U7Sg66Dq8eltovwffjndBej1nByTnhiAjeKlRI05BuYkr6Ds2OUawQm+CZrjm0GhrXyevwY/gUDbf1NyYsQQgghJJNka7s2m9unPazd8EHoU802dQL7SOdwU/O6zTkMc8XfNEHcasDXRN/jeCfvVTTgC03NkxBCslUXy6nI4dzwGSx6TwgA9LZ2x5vBdzXbFDBM8E3GG3kzkMO5EWBB3X4hg3GyRNhhfLMFo7tyA6V32J7oewJBhHTjQ2dbe2t+t3FWTV+3ito0maWn5Qw05hvhgHIQQNmYxp/SX7jP9xCmuB+Gy4Sgk2QoTMHT/ucxV/xNd7zW4fLQ03JGWspFqqa1cBJWSKsBlB1vi8Vl8DF/3HNXPA7Ojisdg1JRTPweXqA57jhwaMY3ift6M9oINPZYNadbusAFJwIorWfVv9N7wU/QSTgFfW1nm5ZXPl8HI53D8JT/Oc3noQbBMmgD0Kurnq8MG2fVbZMgohXfAmtQGlgZG8xoNdinPGowYyokGsxIMku2zsWi+UrZK9FxhbOtvVHA5Z9Y/KvsM/tdXIAnfNMwznV3ZEH0VNWXRmMBDAwjncPwpP/ZuPt1EjoknEc6xgKoXkyvMyxd4YAdISTXlsoEjYVGeC33ebwe/C/eDX4Y6aFRj8e/5PUYUjIc97pG4SL7P9NaVlI7WTgL7nbdjt7WHnjE9ySK2HHN4isHlIO4zXM3rncMxi2OGyCksb3VzdoVs8LfaLb5mB8zg+9gpPPmNJVKa5P0NzbKm3VtwQ4xC14DNJZck1B9k5we1tNhgxUiJABlddNrgbdxmuVUdLZ0NC2v8N4Q9j+7E00faFW64AqH6DVv2wL4smdRv4uWFvxq7spFWYoWXiGEkBRwcy4MdVyDvtazMdo7FoeUw4YD8R0tHTDcOTRNpSSEEEIIyQ55fC4CirYPYau8Ha2EltVajo6W9poBvlh7Ff2q6zlcTqqLlTI0STHzdLGcijpcHkpO3FFP/Uy/Dn+HdkIbUyf1OTgHxrhux/2+R3QTtfzw407POLySOx3NhKam5Umqhq6DU4eCWSqnDldHN5llp7IL7dDWtDwG2vrjs9BsrJHW6iZbveB/FedY+5hy9wdCCCGEkEySre3abG6f1pSAr2OsCHd5x+PlnOlJ32GbEEJIGYETcJrlVCwUl+j61wkBgNMsp6I1fxK2KzsBlLUBdii7cLvnHkzNmQwH7JE2guoYK0ILNKt0fhxnfBzaYNNt8zE/HvZNwUppte74bcgX6u6SXqQcN0yb2jSZheM4XG2/HM8FXtYFMC4Sl2JIyc0Y47oDZ1v7VGu5Nktb8KT/WayXN2q2q+UbbL8CFo6mgNdG3S3d8L/QLM22EMJ4zv+y6cHjyVoqrsB2ZafuXHmKpX3cfcxuI9DYY+U5ODv+aTsfX4a/1vQPKFDwgO9RjFZG4GrHfypIJXGX2/+N78NzI/0R6vlJpUCJ/F4d9XxlGdXzVtgyLpiRZJZsnYtF85WyV6LjChbOgsvtl+DN4Hu6Nv3s8LfYKm/HePcYtBVap6y+NBoLWCutwzJpZdx9GBjG+B7AczlPJhTsnY6xAKoX08vG2dDZ0gnLpJVZ3Q8ncAJucw5DT8sZmOh7HIfZEc3CGH748Zj/aSwUl+B+95haPe+apE8fa098mPcmJvoex1JpReQYA0qvbd4Jfohl4go86n4wbe2AXpbusMICCTKAsjrg/eAn6G3pgW7WLhWkkFoykzHF/4zu2hAAulm66l5PY8k1B9U3ycnhctDPdi5+CM/VtM1CCOFO71hMct2Pc21nmZbf/ud3o+7lDeBs7y5bfKXsUV8A3/Qs6nfp0oJfPaZlmqX4dBeAEEIy2UlCC0x1TwZ/4nRLjQ9CCCGEkOrXmG+om3zzh7gwLWU5zXKqriyqJeLyyGO1Q6+pEP+OUTWdOklRfb9GkxTni4uqvVybpS242TMKs8JzNNtpkmLFLJwFl9j+ZfiZTgvMwLP+lxBkIdPy62/ri77WszX5AKXXVYfYYdzquQubpS2m5UfMQdfB5lMnqsarP4hWc76J7m+1XFxlej73Okdp7tSnOsKO4qXATNPzI4QQQgip7bK1XZvN7VN1Anv0+4+ewP5J8HNT87vc/m90sXTW9SMApYswj/SOwSHlsKl5EkJItmqfAYErJLWudVxlOJawUd6MwSXDDPuNDyqHkspLYlIkn/Lamr+F52NIyXAsEBdrtqvlu87+f7rg7iJmvPAKtWkyz1X2QWgrtAZQFuSh/tyr7Me93odwXcktmBX6BsVKScrKoTAFi8VlGOt9GEM9I7Be3qgLVim9c3sj/J+JiyeQ6tXTegaccER+jw4e/yE8N40lKxVkITzpn254ru5uOb3cfVPRRqCxx8oZ4rgKNlgjv6vnEAkSng28jOtKbsF3oZ/gZ+bcAHmS6364ORcA6OotNX8GlvJ6PhlG9byTc0SCGVXRwYwrxTWmliEZ0cGMsYyCGUlmyda5WDRfKXtVZlzhesc1aMw3AqBv06+V1+O6kuEY530YS8TluMZ+pen1ZfRYAAODAgXTAi9injg/7j48eGyVt2NIyXD8Hl6QUD7VPRZA9WL6UT9cmTOsXfFB3hs4x9pHc25Wj8u54m+4tuRmrBL/THNJSW1Vly/Ai7nP4HbncAgQItvVY2ydvBHXldyCr0PfpaV8+Xwd9Lf11Y29ypAx2nsfvgh9lZZyAUCYhTHR9zg2yVt01+0FXD66Wjrr9qGx5JqF6pvkDLFfrWmbqceXj/kx1vcw7vNOwGpprTmZyQzbRmwAE5maGVC66Er04isrehb1K78Dj1SIFl4hhJAUa2dpiwG2flk3kZQQQgghpKbobOkUeRzpYA/Pwz75QLWXpb1gfDdjL/Piq/B3us7GdkKb6ihWytAkxcxzjeNK3cQp9ecnoS9wRfEQvBl4DzvkXabk94DrHtTn6mnyUx8fZkcxzHM7Pgl+DoUppuRHzEHXweajQY3EtRJOijwuG1j/HQGTJpCq2lna4t+2i3QDfwwMn4dmY6m4wtT8CCGEEEIyQTa2a7O9fVoTAr7USbeVncBOCCEkvpNr+dgFSb2L7Regm6WLZgxBHZPxMA+88EGBomm7LBSXJJVXGCKutV+l+X+N/Uo4OQeKlOP4MvQ1ri+5BeN8E7FP2a8pi/q4ndAGg+yX6NLeIG0GAF1QG7VpMo/ACZjoGg8nSu8OH/t3Z2DYLG/Bk/7p+FfxfzCs5A68FJiJn8PzsF3eCZGJSeVbrJRgpbgGnwa/xHjvJAwovhR3ecfjd3HBiW+IdjyTgcECARPd4+HgHOWkTGoyF+fEv+wDDIPHJ/oex0uBmZCZnJayFSsluMs7DnuV/brnGvONcIqlfbn7p6qNQGOPiWsmNMW1jqt1f6voc9kj/idx/vF/4/qSEXjYNwUvB97AO8EPk6pbmgiNMNE1XpNPLAaGZ/0vYYm4HDIqd2yXV89XlVrPq2UEgPp8vYwLZiSZJ1vnYtF8peyV6LiCg7NjgmtsJFA+9lpUAcNv4gLc6R2H4d5RaMo30V2XJltfHlAOwgpbZMEVlQQZDCyygFw0tVwcOBSzEoz1PYyRnjEV1pfVPRZA9WL6tbMYzznOVnX4PEzNmYJ7nKNgjRp/Ur8HB5RDGOkdg5cDb6TtuorUftc7BmNm7gtowjfStAEAwI8ApvinYrx3EjyKt9rLdqNjCCxRC2KpdZ0ICU/7n8dNJbdjTuh7HFaOVFuZ1kubMMJzJ34W5+n6sThwGGS/WLfgtYrGkmsOqm+S087SFpfaLo7bD/OHuBC3eu7Cv47/B+O9E/FK4E3MCs3Bj+FfsFZaX+n8Aut82HX/34hp+kQvvtIWwNKeRf3e7FnUL/sm6JiEbuFMCCHV4FLbRfg+/HO6i0EIIYQQkpW6W07Hu/hIs02EhEn+J/ByznRYOCHOnuZTB75jPe6bBg/z6AaAzrT2qo5ipYw6SXGE5y4EENANaEZPUnwaz+EUoT26WbugvXAy2git0IxvAitnrSAXvWKlBFvl7dgib8NKaQ2WSSvgY/5IngB0nbtWWGiSYgLq8XUxwnETpgdm6CYmMzAcZkcxM/hfzAz+F3lcLlryzdFIaAgXXDjF0g6X2S+uVH75fB08kTMRIz1jIEHWdXSHIeLZwMv4X2g2hjiu0iy0RNKLroPNRcEsieth7YYPQp9qtnmZF28H38dI53BT87rNOQxzxd/gZWWDqKV3XSidHP1O3qtowBeamichhBBCSG2Wje3abG+fqgFfbwff1wVdRE9g5/082gqtcZLQAo34hnBzLrTiW+Jc21mVyk8N+Brnm6jJR+1HUCewdwt1wVDHNWgltDT1/RJCSLZoyjeOPDYKriUEACa6x2NYyR04yo4Zjg/F/vwp/Cta8S3RztIWzfimaMg3gJ2zVZiPi3NitOtWlCge7FP2R8aHbvXcjc3y32AwHhtSOeHEJPcDEAzGC38X1Un26rxlLWrTZJZ2lrZ4Jucx3O0dDxGS4eIrDAwyZKyTN2CdvCGyLwcgn8tHXb4Adbg8uDgXHLBD4AQIECBBQpiJkCDCw7w4qhThqHIMAWiDRmKDGWOf48DhYfd4dMmQAMJsdoNjCL4L/YQgQrrg8feCH+OH8FxcbLsAva3d0Vo4CTlcTsrLNDf8G2YEXsd+5YCuTBw4XGG/tMI0UtlGoLHHxA13DMWf0l9YIa0u91y2Sf4bm+Utkf3OsvaudJ0FAH1tZ+MO5Ra8GHgt7ud+jBVhtHdsJMAtUWo9nwpl9Xyp0gUiSo/hGx1DMDf8WyTwPTaYcU7oB1xuvwS9rN1RyNdPSflirZc24Rn/c9ggb650MCPJLNk6F4vmK2WvyowrnGHtiofd4zDR9zgA/eIr6rF6nBXjOCvWbIsNllUXUdkob8Ym+e/I9sZ8Q/wi/o6jyjEcZcewXz6IAAK6/WPT4sFH6uHoejn68UppDVZ618DFOct9n9U9FkD1Yno145tEHlM/XJmrHIPw/+zdd5wURf438E91T9rZxJKDiWAClRxEFDHe4ZlRzPqYzqwY0RM5009FxQzmnM/s6Z16RgQBBUUFBEEkGYBl2TS5u58/lhkm7qSe6e6Zz3te6GxPT1dNT3V9q6u6awbb9sL1rTfjV3VN5FgCABUqnvW9hK+DC3Bz5fXYTu5lcG7JivrbdsPzNY/jDs89+G/gfzFlTIOGz4KzsLhpKf5ZeS2G2gcVLV+95R1xsut4PON7MenY6xLlJyzx/AQAqBRudJO6ohJuTKm8BjvI2+mShy1qI5YrK/BjaClmBWdjqdI2qWX8JHwAUC2qMNGZehI+jiWbB+NN7i5zn48flMVYofyStI0HtPWLfBb8Eoiav3sf+yjcXXVr1ultfOZ3VOxWia7n9AK2TbgSPYghAzhj67+fk2yC0uDEK0RERTDQtgeqRGWkg5GIiIiIimeEbSh6SN3xh/ongG2dZN+HfsRVrdfj1sob0g5W6aWH1D3yPNwptSD4HX5Rf03opKoVNRhhG1qUfBUSL1IsPRNdx+CH0GJ8FPw04WKG8HMAaNSa8IOyBD8obTMyb9Lqs76QAQD2su2BKSkGxcPP16rrcLvnHnb1mgjPg/XFm1kyN9g2EG5UwAsfgG11xnO+VzBA3h1jHWN0S6uDVIsLKs7CHZ57E+qmzVoDLmuZjBlV09FBqtUtTSIiIiIrK8d2Ldunxt/wlc8F7ERElFx3qRuAxJuSiKJ1l7rhvuo7cH7zJDRrLUkvnI8WQggzfI/H/BK4W1SgVtTCLSrggmvr+JCEkBZCAEEEEUSL1orN6maE4n4RPNkvTMa/7oAdd1bdjD7yTgn5Xxb6GT9F3cAVnWe2aUrXMPtgzKi+B9e2TMVGrT7pOFj472ga2i6e36w0ZHSuk6r+TPVeDRpccGJq5WQc4Bib4achM+smdcH5FWdhuvehhHKmQcOf6gY86XsOT/qeA9A2SVSlqMB91dPQV+6dd/oN6hb8rv6Jn7feKPVl8Cs0aFti6rno8thV6oJjM5h4pZBtBI49Zk4WMu6ovAmTWibjB2VJu3WZXt/VKa6J8Go+PO57JmmcD6cXPUmDkX1D8XE+bDe57cegS+1mRio95XotFq9XKk/Zjisc6jgQdthwc+s0eOFLqMfDsomB0ev+pv6BPwIbMt5GdBtPgsBw2zDMC30TyU+yG3PTxctijwUwLhqL/XCp7Wzri2drHsXdnvvxduD9hD6cJcoynNJ0Di53X4QjnOMNzi1ZkVtU4MbK6zDCNhR3ee5PGO/doG3ERS1X4GTnRJxXcVbRfgj2PNeZWB5aga9C89vtc23RWtGirIKAgEeHc+mnvS/gKd/z8CMQWRbfJoyfxHVSxYWolWra3S7Hks2B8SZ3LuHC3VW34sLmK7FOXZ9xn3I+1ly7ArYu9i2djulWi20TroQnXwlPxgIAu8S9RhngxCtEREUgCxl72fbAnOA8QwcLiIiIiMqREAITncfgXu+MhE69r4LzcUrT2bjcfRHG2PcueF56ym0Tr0T/UsJKdVVCp4qAwInOCbCJ0jht50WKpWdq5WSEWkP4NDgr4cK7ZN9pvudBhzoORFAL4lbPXQkd89HlKVwCjL5Qi3gerDcOamTOJZw41HEQ3gy8GzOgrkLFda034RL175jo0u8Ci2OcR+C/gY+xKPRDTN0EACuVVbig5XLcW3W7rr8mRERERGRV5diuZfvUHDd85XoBOxERJddBqsXlFRdBgxpZtovcz8AckVn1k/vgqeoZuLr1BqxUVmUUb1WokfVaNU8kXie7mTOdZONv4ecdRR2mVd2MPW39E96naApu9dyZ0EaQIKG3tAN+UVezTVPC9rT1x7M1j2Ka596k42BA+2OP2ZbNdDRo2F3eFVMqr9Zlwg0yj4muY7FcWYl/B/6btE6JLkseeODVvAhqwaTbysYDnkfwgv/VmGWpxnTDNwhf674cLuFMu+1CthE49pidaqkKD1VPx+2e6Xg/8GG7dZle8eOcitPRWeqIOz33I4RQ3tsrlFRxHgCG2Lb9Un2p3cxIpadcr8Xi9UrlJ5dxhQMcY9Fb3gk3tt6OpcqypN9J/A3d2Ug18VCq7WjQUC2qcVvlVIywD8Wb/ndxl+cBKFAyPnbjFXssgHHROJ2kjjjROQFq1OcezB8YjHAKB66rvBIj7cNxm+fuyOS/4TLhhQ//57kbs4Nzjc4qWdhhzkOxl20PXN96c2QCx3BdqELD8/5X8HVoIW6uvF63CafaIwkJd1TdhBtab8FnwS9TtocAfcflm7Rm+OBPWJ4qlk10HoPxzkPSbpdjyebAeJOf7lI3PFH9IK5tvRELt04iVOh+mF/OXvpbp2O6zQQwGdsmXAmLnoyFsiSlX4WIiPSw69aZ0ImIiIio+I53Ho1+ch8AiYMt69XfcWXL9Ti16Vy85X8PjWpTwfLhhhtnu07HAHl3CGzrQInv9OwpdccJOt50YwbhixTH2fdNObgtUjyAbR2m7T3ae3+88EWKT9bM4KQrObALO26r/CfOcp0GGXLWF1rk4m/Ov+DuqltRJSqTdjq2932TMXgerJ/whaqTKi6I/DvAvp/R2TKtU1zHwwF75O9wnRFCCPd4Z+DUpnPxH/9H8GjedraSuX+6r0WlcANI/EWilcoqnNJ0Dr4IzNYlLSIiIiIrK9d2Ldun2274Gu84JG2/ULLXcnFOxemY7J4EGXLMNuP7kIiIKDcTXcfgBNeEyL8h9kHp30RlaTu5F56snoGTnMdFxhMyicHpxomSrdfe+FD0DXVj7WPwXM1jSSddCWgBTG39PyxTViRso050wFPVD7NNUwY6SnW4vepGzKiajgHy7u3e2JFpeUz2faXabnh5Z9ERV7kvxZPVD3HSlRJ1vfsqTHQek7ROKdQx3t44e/j16P9fXHEe9raPyHj7hWwjcOwxO07hwNTKybin6jbsLPdNWefoWcaOdh6Op6tnokZUJ31dzxvlcpEuzg+KuqksfDPj/vYxCXnO5JqUXIVvZoxv94TTyvVmRipN5XgtFq9XKj+5jiv0lnfE0zUzcb37KnSVurQbg7L9DpMdSwAgtbONFq0FD3gfwX/8H+FQx0F4qnoGdomKz7mUoWKOBTAuGusy9wW43H1h5N84R+mPrWXrQMdYPFf9KPaSByQtJ58H244FI9uiZG3by73wRPVDOMl5XMzycBn7SVmO05rOxVv+fxclP07hwO2VN+KyigvggrOoZTu+3o8+5sLPz3CdjEnuCzPeJseSzYHxJj8dpFrMrJ6Oq9yXoqOoK0o/zPy6T68DcDiA35B8khUGvhyUxk9nExFZwM5yX6OzQERERFS2ZCFjqnsy/t58GbzwJgy6aNCwXFmB2z3TMQ33Ynd5VwyxD8Su8s7oK/fGdlJP2IU9TSqJGtUmrFRWYYXyCxaGFuHr0IKo2Y/bSFFzomrQYIcNUysnwyVceX9uswlfpLgg+B1meB/Hj8oSAMk7kKK/n2w7mFJ1uoaXdxGdcEbFKTjGcTgkwTlpcyWEwLkVZ+AAx3541Ps0ZgVnR2a6jr8oUC+j7SPxUs2TuNNzPz4Pfqn79klfPA/W10TXMUZnwTK2k3vhZNdEPOV7PqE+Csf8Gz23Q/JI6Cf3wU7yDugudUOlcKO3tCP2c+yTVXo95e6Y6p6Ma1qnxqQTHnxr1JpwdesNGOIfiNNdJ6G3vKOun5eIiIjISsqxXcv2aZvwDV8HO8ZhpvcJLFdWRPIXTe8bvgbIu+MWzzQsS5EeERERFZ5LOHGp+3wc7Twcj3qfwqfBWVChplw//sazTOJ3qrGh6Nd2lXfGeRVnYrR9ZNJtLAktw52ee7F06y/XRr9Zgl0SAAAgAElEQVRfQOBo59/gkpxs05SRofZBeML+IJaGluE1/1v4PDgHzVpz5PV8b8CIL2fhZXvJA3Ck8zAc4jgADuHI/QOQ6QkhcLn7IgyxDcJdnvuwUasv2vGdbCw9+qYpJ5y43H0RjnIeVpT8ZIJjj7kZbR+J0faR+Cb4LT4IfIyvgvOxUdtUsPR2sfXDY9UP4KSms6BASbpO9AQ/xSrzmcR5IWLzEr6Z8WX/63jE+yS88JnmGBUQOMN1Ms6vOKso+SHzKsdrsXi9UvnJZ1zhcOdfMd5xCD4LfonX/W/j29CimPKSrM8+25vXt12Dmvy11GMBO6K71A3LlZX4Xf0j4T3pFHssgHGRzK6H3B2PVN+HR31P4xnfC5FjMnoyCKJ82ISMS93nY4R9KG5qvQObtYaYOtsLH2733IM5wfn4h/tK1Eo1Bc2PEAInuibgYMc4POd7GW/734MXvm2vF7COTtau1KChu9QNU93X5DQJK8eSqVRMcB6JIx3j8Z/AR/gw8Am+C32PIEIFS29+3afvjWgYtwuAiwCcByA8g7cW93/KECdeISIqkl5Sj8hzNsKIiIiIim8XWz/cWXUzJrVMRhChhIGm8KCZAgWLlaVYrCyNvFcA6CA6oKNUh1pRA7dwwwUnZCFDhowQQghoQYQQRLPWgnq1AfXqZngR+0vF8b94Fv+agMANlZMxMOpXdEoRL1IsLf3kPphWdRPWKuvxUeBTfBWch8XKTykvospXF6kzplXdhCWhZXjV/wY+DnyOAAIA+CsyZsPzYDLSOa7T8X3oRywIfdduzF+m/BwZpAOAfeyjsr6xFQDGOsbgIvVcPOB9JOHijvDzhaFFWNiyCG5RoedHJSIiIiILYPt0GyNu+Hq25lH8L/AZXvO/hW9D30deYz8CERFRce0gb4dbqqZgk7oZb/nfxb/8b6FB25Jy/eibssNSxe9kY0MA4EYF9nWMxlGOwxIu+N+iNmK5sgI/hpZiVnA2lirLI++PT6NaVGGi89jI32zTlJfdbbtiiu0aXKcpWBT6EbODc/GDsgQ/h1bCA0/e2+8iOmEv2x4YYh+E/eyj0VXqokOuyUr2d4zB3vYReMv/Ll72v4Hf1N8jrxXzZtZw/TlA3g1TK6/FjvL2RUk7Uxx7zM8w+2AMsw8GAKxXfsev6mqsUdahQWuAV/Nhe2k73dLqLe+IU10n4BnfiwBiY3NYeJkKFSc1nYVKuDGl8hrsIOuTj3zifLRSu5mRSlc5XovF65UoU7KQcaBjLA50jMUWtRGzg3Pb2vShJdigbUxYP7rOjX4eliyuyZCxq9wPg20D8XVoIZYpP0OCFHO8tDcWMMQ2EMNsQzAnOA9LlKWRyWHSKfZYAOMimZ0kJJxXcSZG2IZgautt2KBtjDkeiPSwt30EXqh5HP9svQ3zQt/E1E0aNHwRnI3FTUsxtXIyRtiHFjw/naVOmOS+EOdXnI25wa/xVXAelisrsEpZDS98BSn78fGxi+iE41xH4zjn0XnHG/a7UimwCzuOcI7HEc7x8Gk+/Bhail+V1VijrsNmtQE++HSdYHh+3adeAHeOaBh3F4BDAUwA8BcAPXVLpIwITWOjgcxLCLEYQP/45f3798fixYsNyBFR7raojTi08eiYZcc5j8KV7ksMyhERERFRefohtATXtkyN+bWo+Asr2utkzKQDLdX7U71XgwYX2n4h7wDH2LTbLzUKL1IsOSEthDXqupgLtbpInXGwY5zuaTWpzZEB8W9C3yZcpC0gMLfuY93TpfR4HkxGa1ZbMKllMn5QlmQc88fY98bdVbfmnOZj3mfwuO+ZtBfihEVf9MK6ioiIiKi0sX2aWqobvo53HZ3+zVlapazGJ4EvUl7AzrY5ERFR8aiaigtbrsCC0HdZva+9sTo3KtBP7oO9bHtgqH0QhtkGJ9wA+rT3BTzlex7+rTdJAomTu4TbRJEfTnBfg/HOQ9rNF9s05Wm1shZrlHXYqG3EBnUTNqn18Gk++OBHQAsghBBkyLALO9yoQI1UjTpRh25SF/SSeqKv3BsdpFqjPwaZzPLQCsyJulGqQduCVs2Dx6sfwK62nfPa9v2eh/GC/9Wk54b95V1xous4HGTfH5KQ8kqnEDj2aC2qpuLyluvwVWh+Qt9HfJ9E+Ga2p6tnYjfbLnmlW6g4H+bT/ElvZgSAZ6ofzjv/8cdodP71vJmRSl+5XovF65UoW1vURvykLN/apt+EDepGbFLr4dV88Efa9Epbmx42uIUbNaIKddK2Nn0fuTf6yr3h3Hrume9YgEfzYoWyEstDK7BWXY96dTPqtc2YWX1Pys9h1FgA4yKZWZPajJs8d2BWcE5CX1K4/L9f+xo6SnUG5ZBKwfO+VzDT+0TMxG/hekqCwETnsXjJ/1pC/VyssufXAmjVWlEjqmETtry2Fa6Tw7aTemGwbS+Msg/H/vZ9YRNyvtlNif2uVM4GDBiAJUuWJHtpiaZpA9p774iGcbsDGAxgEIB+AHoA6D6/7tPeume0hHDiFTI1TrxCpeYV3xvQoEb+3kXux5lViYiIiAywWW3ANM+9+DQ4K6uZiDOd9Tnbbe4u74oplVejr8w+jDBepEi52qhuwnJlBdYp67FJ24x6dTNuqLzG6GyVLZ4Hk9H8WgC3e6bj/cCH7cbn8KDmPvZRed3YCgBv+t/FXZ4HEgZUU/0KGCdeISIiIiofbJ+aSy4XsBMREZG+/FoAN7Tegs+CX7Z7U1h42b620egsdYRN2FEpKlAtqlEnOqCb1BW9pJ7oKXdPm2b8TQJhqW5QO8F5LCa5L8z5MxYa2zRElI3oOtANN/aw7Y5Btr2wt304+tt2Mzh36XHs0VqSxflkwrFXj4lXjIjzpXIzI5U+XotVWLxeiaKV81gA4yKZzb98b+J+7yMIRE3MB4ATr5BuloSWYUrrzVin/pZQ54brWyC27rVi2ftVWYNGrRG1ohYdRR1qpGqjs1Rw7HclM8hn4hXKDSdeIVPjxCtERERERFRIC4LfYYb3cfyotHVGJBvkih98ykZ0Z2my5V1EJ5xRcQqOcRxuyl+MIiIiKhVzgvMw0/sElisrAKSeJE2Pi1mAtl+jvMUzDctSpFeuN7YSERERURu2T4mIiIi20TQNL/tfxyPeJ+GFr93xOj1vyE71a8fRz093nYTzK87KKz0iIjPZrDYghBBqRS2cwmF0dqgMMM5npxxvZiQiKmUcC8gP4yLpxaf5EUIwYXmVqDIgN1SKvJoXt3vuwX8D/0s64RVg/YlXiMgYnHil+PKbOpCIiIiIiIjIwobaB+EJ+4NYGlqG1/xv4fPgHDRrzZHXxdZHrlL9WsBe8gAc6TwMhzgOgIMXMxERERXcaPtIjLaPxDfBb/FB4GN8FZyPjdqmgqW3i60fnq15FP8LfIbX/G/h29D3kdfybV8QERERkfWxfUpERES0jRACJ7om4GDHODznexlv+9+DF75trxewrRJ9E3b0zdjdpW6Y6r4GQ+yDCpY2EZEReGMXFRvjfHZ2kncwOgtERKQjjgXkh3GR9OISTgBOo7NBJaxCVODGyuswyjYc0zz3wQsvgG2TrRARkXVw4hUiIiIiIiIqe7vbdsUU2zW4TlOwKPQjZgfn4gdlCX4OrYQHnry330V0wl62PTDEPgj72Uejq9RFh1wTERFRtobZB2OYfTAAYL3yO35VV2ONsg4NWgO8mg/bS9vpmt5Bjv1xkGN/rFJW45PAF5gTnIclylKoHFAlIiIiIrB9SkREFM2rebFB3YRmrRkCApWiEt2lbltvjKBy0FnqhEnuC3F+xdmYG/waXwXnYbmyAquU1fDCV5CbFKJvwgbaxvSOcx2N45xHwy0qdE+PKIx1HlHmeLyYW6bfD+M8ERGVmlObzo35WwB4sOpu1EjVCesOsO2GLlJnHOkcj41qPRq0BrSqHjSjmWMBZIhsyi8RZe6vzoOxp60/rm+9BUuVZZac9Coez8kpH4w3+uv/6VAAgOSU+oxoGLcQgAbgoPl1nzYYmrESwolXiIiIiIiIiLaShYwh9oEYYh8YWbZaWYs1yjps1DZig7oJm9R6+DQffPAjoAUQQggyZNiFHW5UoEaqRp2oQzepC3pJPdFX7o0OUm3GeWjVPNigbkST1oRmrQX+rWlo0OCEEy7hhAsuuIQTnaVO6CJ1LsSuKKpNaj3+UP9Eg7oFfgTQUXRAR6kjtpd6QRZywdJVNRVr1fUJy3eUty9YmuWuHMs3kd5YZ+qnl9wDveQe2Mde+LR6yzvirIpTcVbFqfBoXqxQVmJ5aAXWqutRr25Gvba58JkgIiIiMhG2axOVc/uU5YGIqHytVdbjncD7+DLwFX5V1yS94baX1AODbHvhAMd+GG0bCSGsfaE6padAwY7y9qiTarGvNhp+LQCv5oMPPqxTfkODtkWXsYRwedtO6oXBtr0wyj4c+9v3hS3H9gfbNJQO6zzSSzmMufJ4Mbd8vh+XcGJ/xxjs7xgTWdevBdCqtaJG6Hfjld5xPhnGfjIzls9Y5RA7y4HZyvVyZUXMJF8CAiGEIq9nEy97yT2gaZru7ZlijgWY7fsxut4xu3Tl1+xYr5OZbSf3wuPVD2KG9zG86P9XQSaZLDSznZMzxliX1eONGbn3rMLWQ9IFYBDa/irCVSblQ2ia9SpuKh9CiMUA+scv79+/PxYvXmxAjoiIiIiIiPTzq7IG34W+x4+hpfhF+RWr1TVo1TxZbcMOG7pL3dBT6oGd5b4YZN8TA+U9US1VFSjX+liprMLb/vcxL/g1Vqtrk65TKdwYaRuGcY79cLBjnO55qFc3Y3zjhJjZxAWAr+o+1j2tclTO5ZtIb6wziYiIiKgUsF1L0VgeiIisbZO6GRvUDdisNcCjeVEtqtBF6oy+Uu+MLrBu0VrwoOcxvB14D9rWR3vCdXVPqTvOdp2O8c5DdPkcZDwjxhJ+VdagUWtErahFR1GX169rsk1THljnkZGsNubK48XcyuH70TPOJ8PYT2bG8tnGarGT2mdEuY6Pl5qmYYrnFoitD6CtXKtbbx4Gtt1I/H7ta3AIu+njpV5Y71jXyIYDkpbfjlKdwTlLxHqdrGy98lvS8tpP7gNJSLqnV0rnfIwxpcFK8casBgwYgCVLlkT+HrZpbHjiFQhZaGj7q8f8uk83GJLBEsSJV8jUOPEKERERERGVmpXKKrzr/w8+C36JP9Q/Y17LZ1br+E69PnJvHGwfh786D0Y3qWvO29XbSmUVHvE+hVnB2Wjr6cmsU7aPvBMuqDgbY+x765aXcIdofHpz2SGas3Iv30R6Y51JRERERKWA7VqKxvJARGRdf6ob8Jr/bXwZ+Aqr1NVJ13GLCoy2jcQJrmOxhy3hki8AwDplPSa1XIu16vqYOBDdDxwvfr0htoG4qfJ6dJY65vhpyEilMJbANk3pY51HRrJaPcnjxdz4/eiDsZ/MjOXTerGT0it2uU4XL1WoMX9LkCI3DwPbbiR+vOpB3Oi5reTjJesd6zP7jfCs14kyV2rnfIwxpcXs8cYKOPFK8XHiFTI1TrxCRERERESlYmFwEZ7wPYsFoe8AJO8IbK9zMp1U2xMAhtmG4ETXBIy2j8x5+3p42fcaHvI+hiBCkfym+8zxnbLHOY/CpIoLdZnpO34m6nCHHjtEs8fyTaQ/1plEREREVArYrqVoLA9ERNYU0kJ4yvcCnve9DD8CGV/ofKRjPCa5L4RLuCKv1aubcUbT+digbYxZNyyTvuXwOl1EJ9xffSf6yDtl/ZnIGKUylsA2TWljnUdGslo9yePF3Pj96Iexn8ys3Mun1WInZaaY5TrTeJlquQQp5vXOohM2afVJ81wq8bLc651SYdYb4VmvE2WuFM/5GGNKj1njjZVw4pXisxmdASIiIiIiIqJStkVtxD3eh/BBoK2TLV1HYLazsYe3k6wDU9u6ta9DC/F1y0IMtO2BKyouxi62fll+ivwEtACua70JXwa/Svr5U31mERnS2Lbev/xv4RflV9xddWtMpy8Zg+WbSH+sM4mIiIioFLBdS9FYHoiIrCugBXBVyxTMC32TcAFzKuH13g68j7XqetxfNQ020XaZ4g2tt2KDtjGhfk/VFxy/3XBs0KBho1aPC5ovxxPVD6KX3DOvz0mFVSpjCWzTlD7WeWQUK9aTPF7Mjd+PPhj7yczKvXxaMXZSesUu19nEy/YmZIm+mXiTVl+y8bLc6x0qLNbrRNkptXM+xhgiMpP8p20iIiIiIiIioqSWh1bg9Oa/44PAx5Hu+ehOvtSzp2f+SCV6nXDa34V+wJnNF+AZ30sF+8zxVE3FlS3XY1ZwTsLnT5bX+M+2bVgDkc+yIPQdrm65ASFNKdrnoEQs30T6Y51JRERERKWA7VqKxvJARGRdqqZiUsu1mBv6OqYOD9fHqUSvszC0CDd7pgEAZgXm4JvQtwl1fPzfyR7h7YbXC6fRoG3B5S3Xwa8FCrkrKA+lMpbANk3pY51HRrFiPcnjxdz4/eiDsZ/MrNzLpxVjJ6VX7HKda7yMF143WdwrpXhZ7vVOuWiv/isk1utE2Sm1cz7GmPJjVLwpcdnNSEbtshmdASIiIiIiIqJStCT0Ey5svgJe+BI6IMPP2xsYyEeyDsdwOkGEMNP7OH5RVuEG9zWQhaxr2vEe9T2NeaFvYvIUvz9SSTZ4Eu4UnR9agPu8M3CF++IC5p5SYfkmKgzWmURERERUCtiupWgsD0RE1vWS/7WYC66B2Iunw3+HJVtPg4YPAh/jSMdheNn/esLr4edVohJj7HtjlG04ukvd0FHqgIAWRL22Gd+Gvscngc+xRl0Xc3F4+P2r1bV4xPskLnGfV9D9QdkrpbEEtmlKH+s8MoJV60keL+bG70cfjP1kZuVcPq0aOym9fMp19Gvxz+eGvsY+Ww6CiPvd+uibtJNtP5vyo0JN+jx+O4llCDjddbIl4mU51zuFNqrhQMPSjj8G/tp4bMbvFQC+qvs47zywXifKXqmd8zHGFEe5x5tCKNY+dX/eBcMwNnZhYrPyjxEN4zLdpDa/7lPOLdIO7hwiIiIiIiIinf2u/IHLWibDA29CZ2J8B58MGTvJO2BXeWf0lXujs9QJXUVndJY6wy0q4IQTDuGAUzigaAoUKAggCI/mQavmQYPagHqtAb+rf2Ctsh7LlRVYofyCEEIAYjtMo9P+IPAxFE3BLVVTCrYfVitr8Zzv5YTBkOj9sbdtBEbZh2EXuR86SB0AABvVTVgQ+g4fBz7DOvW3mPdEd/r+y/8WhtkGY6xjTME+AyVi+SYqDNaZRERERFQK2K6laCwPRETW9Yf6Jx71PpXyomUA6CjqsIO8HapEFerVzfhd/QNbtMbIetHu8NyDNeramBsmwtv5m+NQXFxxHjpItQn52Bl9Mco+HOe5zsRbgX/jQe+jaNU8Cdv5l/9NHO86Gt2lbgXYG5SLUhpLYJum9LHOIyNYtZ7k8WJu/H70wdhPZlbO5dOqsZPSy7dcP+17od3ta1H/DW+/2OJjbHjp+RVnmT5elnO9UwxGlMdUsstLsjKdHdbrRNkrtXM+xpjiKed4UyhF26eZ7QLz7igL4sQrRERERERERDq7yTMNjVpTQkdguIOlq+iCfR17Yz/7PhhiGwiHcGS0XVnIkCHDAQeqRCUAoLe8Y8J6AS2ABaHv8FlgFj4MfBIZmAgL5+V/wc+wu29XnOw6Pt+PnNRzvpcRQiimAxRo2x8DbXviGvdl6Cv3TnhfH3knjLQPw99d/w9v+t/Fg95H4YM/Zh+Gn9/mmY6Btj2TduxSYbB8ExUG60wiIiIiKgVs11I0lgciIut6w/9OTN0bXYcPkHfDxRXnYbB9r4T3zQ8uwAu+VzE39HVMv+1qdW1CHS4gcLzzGFzuvjBtfoQQONp5OAbIu+OylsnYrDXEvB5ECK/43sCl7vPz+diko1IaS2CbpvSxziMjWLWe5PFibvx+9MHYT2ZWzuXTqrGT0su3XD/jezGyfioaNEiQ0q4HtH2X8Temq1Cz+kxh4TST5SeSnsnjZTnXO8WSfGKewkp2HGSaD71uNGe9TpS9UjvnY4wprnKNN4VUlH0avxuSJ5npzuIELRlI3oInIiIiIiIiopx8FPgUC0PfJe2A30naAdMqb8I7tS/javdlGGUfnvFgQDYcwoG97SNwbeUVeLfDqzjVeULCIF44Tw97n8Bvyh+658Gn+fBB4OPIfojuzDzMcShmVE1P2hkaTRYyJriOwqPV96Or1CVhOwCwRWvE3d4HdM8/JcfyTVQYrDOJiIiIqBSwXUvRWB6IiKxL0RS85/8waR3+V8fBeKL6oaQXbwPACPtQ3Fd9B85xnR5zs0T8L1UCQD+5T0YXb0fbxdYP06puiukTDm/z/cCH0DTzX4hbDkppLIFtmtLHOo+MYNV6kseLufH70QdjP5lZOZdPq8ZOSk+Pch1+X7obX9Wtj0xocY9cpJp0JRUzxstyrneKLb7MFfphNNbrRNkrtXM+xhhjlFu8KYaC70OB2H9UcJx4hYiIiIiIiEhHz/peivk73Gl0uOOveKHmcYx1jIEQxev1qBKVuMh9LmZWT0etqEl4PYgQHvY9oXu6c4PfIIBA5O9w5+wg2574h/tK2ISc8bZ2sfXDg1V3oYNom206emZrDRo+CnyK+cEFun8GSsTyTVQYrDOJiIiIqBSwXUvRWB6IiKxrUegHbNLqI3+H69w95N0x1T05oz7gsytOx8H2cZH3xt/8JCDwd9eZOeVvD1t/nOY6MeGi3UatCd8rP+a0TdJXKY0lsE1T+ljnkRGsWk/yeDE3fj/6YOwnMyvn8mnV2Enp6VmuM5l8Jd37JUiR7UQ/ctlWLswWL8u53im29spMsjKZ78NorNeJsldq53yMMcYot3hTDIXep9AQ+48KjhOvEBEREREREenkF+VXLFdWRDpQwp12B9n3x/WVV8EmbIblbaBtT8yong63qIgsC3cofhL4HE1qs67pfR9K7CQVAK5xT4KcRWdo2A7ydri58vrIvo3+vwYNd3segKIpeeWZ2sfyTVQ4rDOJiIiIqBSwXUvRWB6IiKxribIsYZkAcG3lFVnd8HC1+zK4UZH0tVpRgzH2UblmESc6J8AFZ8LyhcFFOW+T9FFqYwls05Q+1nlUbFauJxeGvk94D48X82B9pg/GfjKzci2fVo6dvF4pPT3K9e2VN6JKVKW8iTwbWopHNiRI6Ca6opuU+l93qRu6SV2Tvt9M8bJc651iyqT8piqX+TzCor+DLqJzu+U2k/KbCdbrRLkptXM+xpjiKsd4U2jF2qcQiP23bePRz9YDWJPBv9Vb/0/tMK4lQkRERERERFRiZgXnJCyrEpW4yn2pAblJ1FfujasrLsVUz20xnTshKPgk+DmOcv5Nt7R+VlZGnoc7lPaxj0JvecectzncPgSnuU7E074XIh2h4c+xWl2LV/xv4CTXcXnnnZJj+SYqHNaZRERERFQK2K6laCwPRETW9VNoeeR5uK4dbhuKvnLvrLZTI1XjIMc4vBN4P+FGijH2UXn9am2tVIP9HPvgw8AnMf3By5UVOW+T9FFqYwls05Q+1nlUbFauJ7+MyjuPF/NhfaYPxn4ys3Itn1aOnbxeKT09yvU4x77ob9sVU1pvxaLQDzHxKxUJUiS9EbahuL96Wsp169XNGN84ISEuqlCTbvcwxyGYUnlNxvmPZ6Z4Wa71TjElK7/xZW1/+774h/tKVEtVuqU7suGAhBvEn6l5GB2lOt3SSIX1OlFuSu2cjzGmuMox3hRasfbpgAEDsGTJksjfwzaNRZJm7rD5dZ9uyDkRiiEZnQEiIiIiIiKiUrE0tG026XCHyaGOA1Er1RiYq1h/cR6MneW+CQOL34cW65rO7+qfCR1lo+wj8t7uOa4zIp3E8bNRP+F7FlvUxrzToORYvokKh3UmEREREZUCtmspGssDEZF1/aom/tjdfvbROW1rhH1o0uW7yDvntL1og217xfytQcN69be8t0v5KbWxBLZpSh/rPCo2K9eT65KUOR4v5sH6TB+M/WRm5Vo+rRw7eb1SenqV625SVzxcdQ/Ocp0Wc9NrJnKNl6mUUrws13qn2OLLb1j4+WfBWTi5+WwsDH5nVBZ1xXqdKDelds7HGFN85RZvioH7tDRx4hUiIiIiIiIinaxSVid0Ao60DTMoN6kd5jg05m8NGpYpP+uaRoPWkLBsNx06ZG1CxnXuK5IOjbZqHjzmezrvNCg5lm+iwmGdSURERESlgO1aisbyQERkXc1aS0JfcH/bbjltq5/cJ+nyfH61ctu2+0aeh/O7Ua3Pe7uUn1IbS2CbpvSxzqNis3I96dG8PF5MjPWZPhj7yczKtXxaOXbyeqX09CzXkpBwbsUZmFl9D7qIzu1OvqJCjTzPNV6mUkrxslzrHSPEl9/oCT80aPhT3YALW67AQ97HENIUA3OaP9brRLkptXM+xhhjlFO8KRbu09JjMzoDRESl4ubWO4zOQo4EplRebXQmiIiIiAqmmO209epvMYNyGjS8F/gvPg9+mcPWCtdO29PWPyqVtlmc69XNuqbh0/wJy+pEB122vYetP450/A1vBt5NmI36Tf+/cbzzaOwo76BLWrRNg7YlYdmO8vYG5KR9xSjf1IbnwfphnakflksiIiIi47Bdm6ic26csD0RE1tWqtSYsy7UO7yZ1Tbq8o1SX0/ai1YrEX8Ft1Tx5b5fyk8lYghnaSA3qFmhbH2GrlbUJeWvRWmPWERBs05QY1nlUbFYec1WgJNzkpefxokLFv3xv4oPA/3LaZli47o6uv7dojQWMP+YY4zFLfZZuPxf/+8lU2/fI/gwys3Itn1aOnbxeKb1ClOtBtj3xYs0TuMUzDZ8GZ6VdX6/jCLBie6b9dky51jtGii6/nwW/hNj6AAAVGp7zvYyvgwtxc+X12F7uZXBuc8N6nYxi/DlHrtrqarOc86WTaR8WY63IQCgAACAASURBVIyxyiHeFBv3aengxCtERDr5d+CDdmfFNSMNGoRJBn2IiIiICqWY7bToSVfCPgvOzjr9QrfTukidE5Yl65DVm13YddvW+RVn4ePgZ2jWWmKWq1Bxr3cm7qm6Tbe0qE2yjm+3cBuQk/YZVb7LEc+DC4t1Zm5YLomIiIjMpdzbtWyfxir38kBEZBXJ+oKTjX9kwgVn0uVu5N+37BKuhGVBBPPeLuUnk7EEc7SRtIQlAQTwXuDDuLUS12ObprSwzqNis/KYa/h8MZrex8sXoTl5x4hkdbcCJaGO14OZxnjMUp+lj/PF+34yle57ZOwnMyuH8mnl2MnrlXKjR7mulqpwR9VNeN77Cu73PZx0nXCbIdd4mYpV2jO5tmPKod4xWrj8vu5/B/d5ZiKAAIBtkwYsVZbh1KZzcJn7QhzlPMzg3GaP9ToZxRx9ktmJrqvNcs6Xdtt59GExxhRXqccbI3CflgbJ6AwQEZUazUIPIiIionJiVPvKjO00RUvW0apvZ3JFko7T+M7LfNRKNTjXdUZkf2nQIp1SXwXnY17wG93Sojb2JPP3ejSvATlpXzHKN8Uq1jlsoeppM2CdqT+jy1oplEsiIiKibLFdm5rRbU4j2qcsD0RE1uWEI2FZvdaQ07YkkfzyRJdIfmF3NhrVxoRlNv4OneGyGUswY6snk7XYpiktrPOo2Kw95ppI7+MF0Cc+FGq7mUUTY5itPss3BhfzEY39GWRm5Vo+rR07eb1SOoUu16dUTMT/c56c8nUNGm5unYZGtSnrbae6eb+Q7YxCxb9UyrXeMYtjnUfg6ZqZ6CPvFNlHYuvDCx9u90zHNS035FR+jcR6nYxWyHMLvR/RzHbOl0qmfViMMeZRqvHGSNyn1saJV4goZyFNQYvWgi1qIzyaF2qGAy2lTljoQURERFROjGpfmbGd9of6Z8KyKlGpaxrVojph2Rplna5pHOs8En3l3gC2DWQKtHWKTvc8iJCm6JpeuUv2na5W1hiQk/YVo3xTrOKdxRamnjYD1pn6M7qslUK5JCIiIsoW27WpGd3mNKJ9yvJARGRdyX5hdpO6KadtKVF1caY39WSqQduSsEyPC8MpP9mMJZixzZPJemzTlBbWeVRsVh5zTVYvFuJ4KVQ9X8x4YgSz1Wf5xuBiPqKxP4PMrFzLp5VjJ69XSq8Y5frvFWeir9Q75evfKt/j5Kaz8HVwYVbbTRUjC9nOKFT8S6Vc6x0z6SPvhKerZ+IY5+ExZS68jz4Pzs6p/BqJ9ToZrRjnGIWoq812zpdKpn1YjDHmUorxxmjcp9bFiVeIKK2QpuCH0BI843sRV7fcgJOazsLYhr9i9JaDcMCWw3FI41HYf8t4jN5yMMZvmYAzmy7Ara134Q3/O1iv/G509osq2YyCmc48SERERESFY2Q7zYztvm9C30aeh/PXQ+qmaxrbST0TPvu3oUW6piEJCZdXXBQzG3XYanUtnvY9r2t65a6r1CXhO50dnGdQblIrRvmmbXgerA/WmfpiuSQiIiIyBtu1yZVr+5TlgYjIurpL3RLq8HnBBTltywc/xtn3w/72fTHOvl/kuUMk/jpntlYov0Seh/PbSXTMe7uUn0zHEqzcRmKbprSwzqNis/KYqwuugh4v4bSsGh+MZqb6LN33aGbszyAzK9fyaeXYyeuV0itWub7CfXHKyUY0aNio1eOSlqtwv+dhhLSQbmlbvR1TrvWO2TiEA9e4J+GOyptQLaoi+yh843ahym+hsF4nI1n5nNNM53ztybQPizHGfEot3pgB96k1ceIVogI7r/kyjGgYl/DvN+UPo7OW1i/Kr5jueQh/azwOZzVfiIe8j+Gz4CysUH6BF76E9VWo2KTV40dlKd4OvIfbPffg6KaTcFLTWXjZ9xpaNY8Bn6J43qh5HldWXIxRtuEQQEwgTKW9xnkxHkRERETloJjttFRUqKZppwW0AN72vxfz+QUEdpb76prOTvIOMdvXoOHjwOe6dwoNsw/GOPt+0KAlzEb9tO8FLAv9rGt65WwP2+6R5+F9/GHgEzSoibOTG6VY5Zva8DxYP6wz9cNySURERGQctmsTlXP7lOWBiMi6ktXhnwe/hKZlHycqhRu3V/0z4Z8evw47Kzgn5m8BgR5y97y3S/nJZCzBLG2kTNJJ9jrbNKWFdR4Vm5XHXLtInWL+1vt4ebPmBVxVcYku8SGbdc1wDq0Hs9RnucR5wNj+kHT7kbGfzKJcy6eVYyevV0qv2OU6FQ0aVGh40f8vnNl8AVYra9JuU0BA2voQWx/D5MGQtn6O8DrtpZltO6PY7ZhyrXfMan/HGDxf8zgG2/aKKWMCIuvyayTW62QUs/RJ5lpXm+WcL51M+7AYY8yrVOKNmXCfWovN6AwQkfmsVdbjEe+T+Cj4acYn1O1ZofyC6d6H8ITvOZzhOhknOI+FLGQdcmouveSeOE4+Gse5jsZ65Tc863sZbwfeA7CtQRb9XEBgR2l7DIg6aSQiIiIi/RWznfaH+mfMLOdh3UU3DLMPzu+D6OQB7yPYpNUndBSPsA/TNZ0htkF41f9mzLJ6bTNe8b+Bk13H65rWZe7zMadxHgIIRJYJCAQRwj9ab8bTNTNQJap0TbMcDbYNxMv+12OWeeHFbZ7pmFZ1k0G5ilWs8k1teB6sH9aZ+mG5JCIiIjIO27WJyrl9yvJARGRdg2174b3ABzHLtmiNeMX/Ok5wTTAoV7HWK79hUejHhL7gXeWdDcoRhWUylmB0G+nH0BL8qiZewDzUNgg9pNibAH5X/8SCuLE/tmlKC+s8KjYrj7kOtw3F2sD6mGV6Hi96xIdWzYPPgrMSrn3eWeqLXW2lfcyYpT5r/3tE0qvSO4hajLHvXbQ8tof9GWRm5Vo+rRw7eb1SesUu1180zkYIyW/oDrcxlikrcFrT33GJ+3wc6zwi4+0LCNxSNQVezZvXea6Z2jPlWu+YWTepC2ZW3YMnfM/iCd9zCWUr1/JbTKzXyShG90nmyyznfO3Jpg+LMcbcSiHemA33qXWIXGa0IioWIcRiAP3jl/fv3x+LFy82IEfZO6/5MiwMLUpY/lbNS+hpsl8cUDUVL/tfx0zvE/DDX7B0+su74dbKG9BL7lGwNMxiQfA7XNN6A1q0VgCINLzD/5/gPBJXui8xOJdERERE5adQ7bSQFsLfGo/HFq0xsiy8zSMd43GNexIkIen2ObL1lPd5POx7MqZDU4MGNyrwnw6vwyVcuqXVorXgr1uORTBqoFKDBieceKj6buxpSzjVy8uT3ufxyNbPFv99DrYNxD1Vt8ElnDHvqVc3Y3zjhMj+CK8/t+5jXfNWKli+KRM8D84N68zCYrkkIiIiKg62azNTLu1TlgciIuvaqG7CEY0TY27vCdfhz9Q8jN7yjoblLezC5ivwTejbhDr83qrbMco+3ODclbdcxxKK1UbKdiyBbZrSxzqPis3KY67P1jyK45tOK+rxkm18KOfjxcz1Wfh7bNKak76+n30f3FV1S5FzlRxjP5lZuZZPK8dOXq+UXrHL9QOeR/Cc/+WUr0uQInkQEBhjH4ULXOfgxOYzE8p1+P/Ry96vfQ0dpToAuZ/nmqk9U671jlUsCv2AKa234k91Q0IdFC6/17uvRgepNuG9IxsOaLf8FhLrdTITK43bmvmcLyybGMYYYx1WjTdmls0+HTBgAJYsWRJZZ9imsZFZbYUsNLT91WN+3acbivspSpdxrRAiMhWP5sUVrf/Avd4ZBZ10BQCWKD/h/zWfj+9DP+b0/uWhFXjU+3TCvwXB73TOaf6G2gfh/yqnRv6On7GPiIiIiIxRqHaaTdhwjPNwhGegje6YezvwPs5tvgQrlF90SSsbm9R6TG6Zikd8T8UsD+fvGOcRug8GVIkqjHPsF9kXQNt+9sOPS1uuxheB2bqmd5rrRPSRdoqkE73vvw0twqSWa9GqeXRNs9ywfFMmeB6cG9aZhcVySURERFQcbNdmplzapywPRETW1UXqjNH2UUnr8HOaL8Gc4DwDc9d2k1T0xdthVaISw2xDDMoVheU6llDoNlKuYwls05Q+1nlUbFYec91e7lX04yWb+FDux4uZ67Oh9kEYYRua8vWuoksRc9M+xn4ys3Itn1aOnbxeKb1il+vzK86GG+6Ur6tQI3nQoOHL4Fxc0HJ5TP4ylct5rtnaM+Va71jFQNueeLHmcYyzJ35H4fJ7UtNZmBv82sBcJmK9TmZipXFbM5/zAdnHMMYY67BqvDEz7lNz48QrRIQtaiP+3nwpZgfntrueEw7sb98XV1Vcgseq78f7ta/hiw7/wZwOH+GD2jfxWs1zuLfqdpztOh1DbAPbT1NrxKXN1+D70OKs87tcWYHHfc8k/FsQMt/EKwAwwj4UY+IatkRERERkvEK1005znYQeUncAiR1zPyhLcGrTObim5QbMC34DVVN1TTveamUt7vE8hAmNp+Kz4JeRvETrIGpxmuvEgqR/inMiJCTOwtuqeXB16w24qmUKvgv9oEtaNiHjxsrrYIMMIHmn6GlNf8ey0M+6pFeuWL4pEzwPzg3rzMJiuSQiIiIqDrZrM1Mu7VOWByIi6zrddVJCf6uAQLPWjCtarsP1LTdjQfA7hDSlaHnaoG7ElS3X4wX/qzF5C9f34x2HwibkouWHUst1LKEQbSQ9xhLYpil9rPOo2Kw85mrE8ZIuPvB42cbM9dknwS+Svi4ASMJcNzcy9pOZlWv5tHLspPSKXa6vcl/S7jrq1kc4Lw3alsjybM9XMz3PNXN7plzrHauoElW4veqfmOyeBCcckeXhfVavbcZlLZNxj+chBLWggTmNxXqdzMRK47ZmPufLJYYxxliHVeONmWW6Tx0XVUHYzdVvUuqEppk/IFD5EkIsBtA/fnn//v2xeHH2E3YY4bzmy7AwtChh+Vs1L6Gn3N2AHMXyaF5c0Hw5lig/pVynVtTgVNcJONpxOKqlqoy3vVpZgxd8r+LtwPspG5+1ogZPVc/AdnKvjLf7b/9/cZPnjoTlZ7tOx7kVZ2S8nWL6Kjgfl7VMjjQgww2zCc4jcWWajhsiIiIiKpxCtdMWBL/DJS1XQ4ESs91wuzicXq2owXDbEAyxD8Ru8i7oI++U14zof6h/4ufQL/g2tAhfBedjlbo6kn443ei8CAjcUXkjxjrG5JxmOre33oM3A+/GpBnOU/h5neiAgbY9sKO8A3pI3eAWbvSQumNPW8LpYFpv+N/BHZ57E/Z3+LkECeMdh+B010moFG6Mb5yQkKe5dR/r8dFLFss3ZYLnwblhnVlYLJdERERExcF2bWbKpX3K8kBEZF23tt6FdwLvt1uHO+HA9vJ26C51RYWowIUV56C71E23PKxT1uPH0BJ8EZyDWcE5CCKUcPODBg0uOPFq7bPoJnXRLW3KT65jCRvVTbi69Yac20iFGktgm6b0sc6jYrPymKsRx0v8ObQKFQIC20k9sUHdyOMlipnrs3A+okkQmOA8ynR9IYz9ZGblWj6tHDspvWKX63OaLsYi5cec8ytBSprP92tfQ0epLmbdVGMBf3EciFG24ZZo/5drvWM1q5TV+EfrTViprEooRwICfeXeuLnyevSRd8LIhgMyKr+FxHqdzMRK47ZmPufLJYYxxliP1eKNFbS3T1VFhXdJK1aeuwS+ZR4M2zQW4a4VIQsNbX/1mF/36QZDMl+COPEKmRonXiksTdNweet1mB2cm3KdQ+wH4Cr3paiVanJO5+vgQtzYehs2aJuSvt5P7oOnq2fCIRxJX49nxYlXAloAB285En4EAJi7AU5ERERUTgrZTvsg8DGmtv5f5O/4zsCw6M4RAOgkOqKb1BUdpTrUihpUCjdcwgkZMiTICCGEoBZEEEE0ay2oVzejXtuM35U/4YU3Jr34NOLzcFHFuTjVdUJenzMdn+bDWc0XYYXyS9JO0fg8hu1jH4W7q27NKc27PQ/gVf+bSQdhotPfXuqFNeo6dojmgOWb0uF5cG5YZxYWyyURERFRcbBdm5lyaZ+yPBARWZdfC+Dc5kvwk7I8oZ6Ov2EWaKtrn66eid1su+SV7uv+d/Cq7w38qW6AD/6ENJPd/HBRxbk4xTUxr3RJf7mMJWhbH9EEgN3kXTDaPtKwsQS2aUof6zwyglXHXI04XgJaAOO2HIYgQnHbjv4vjxfA3PWZCjXhfRIkU/aFMPaTmZVz+bRq7KT0il2u/VoARzRORIO2Jaf8hvORyY3E0WMB0ee8AoCAFHl/eHtmbM+Uc71jNQEtgPu8M/Ga/+2Y7yO8Dx1w4KKKczHd+2BG5bfQWK+TWVhp3NbM53y5xDDGGGuyWryxglT7VFHbJihTfSrW3fgLdritHydeKTCb0RkgIuM843sx5aQrEiRcUnEeTnIdl3c6w+1D8HD1vTiv+bKkk6+sUH7BY75ncGHFOXmnZVYO4cCetgH4OrQwoaFHRERERMYpZDvtUMeBsMOGm1unwQtfzPaTdTCFbdLqUa9sxtZJ3DOSrKM0Pp3w3xo0SBC4pOJ8Xdr76biEC3dX3YoLm6/EOnV90o7J8N96ucJ9MTyaF/8O/DchvehO0jXquqR5ofRYvikdngfnhnVmYbFcEhERERUH27WZKZf2KcsDEZF1OYUD91XdgSta/oEflSUp+4EBfevx9cpv+FVdk7A8VQwZZ9/X8BuQKLlcxxLiaQCWKsuxTFnRzjqFHUtgm6b0sc4jI1h1zNWI48UhHOgkOuEP7c+47QMSj5cYZq7PJEgxk6+YOW4x9pOZlXP5tGrspPSKXa6dwoFXap7GxKYzcpp8Jf7G8vZEjwVE51+L+q/Z2//lXO9YjUM4cJX7Uoy0DcMtnjvRqDXF7LMAArjH+xAAc+wz1utkFlYatzXzOV8uMYwxxpqsFm+sINU+hQZAAJJLwg7/169tZQHoeEhQHMnoDBCRMVYqq/CI76mUr092T9L15GA7uRfur74TTjiTvv6i719Yp6zXLT0z2lXe2egsEBEREVEShWynHeAYiydrZmA3eZd2O+3jH1qWj/a2E02Dhm5SV9xXNa2ogwHdpW54ovpBDLENislvtHCek72WiymVV+N014lJ04tOi3LH8k3p8Dw4N6wzC4vlkoiIiKg42K7NTLm0T1keiIisq4NUixnV0zHReczW6ziLdyVnfJ9w9HJszcuhjgNxc+WUouWJspfLWEIqRo8lsE1T+ljnkRGsOuZqxPGS7NeQRcxzHi9hZq7PwiQL3MbC2E9mVs7l06qxk9IrdrnuINXindpXsLu8a17byUSysQCBxGPHzO2Zcq53rGg/xz54vuYxDLENTKjTitk2zATrdTILK43bmvmcL5cYxhhjXVaKN1aRbJ9CQ2QCFio88/dYEVFB3O65B0qKqR3PcJ2Eo5x/0z3NPvJOuKji3KSvBRHEc75XdE/TTHax9TM6C0RERESURKHbab3lHfF0zUxc774KXaUuMZ340dJ17qd7hLcRLXq5Aw6c4pyIV2qewgj70IJ+5mQ6SLWYWT0dV7kvRUdRl3I/6NlReUHFObi76lZ0Fp0Knla5Yvmm9vA8OHesMwuH5ZKIiIioeNiuTa+c2qcsD0RE1uUUDlzuvghPVz+MsfYxAJCyHtdbqv7mSuHGVPdk3FT5D9iEXPB8UH6yHUtIFaPNMJbANk3pY51HRrDqmGuxj5c6qUO7r/N4iWXW+uxYxxGWil2M/WRm5Vw+rRo7Kb1il2uncOCZmodxecVFcMKhyzaTSTYWkCwim709U871jhV1lbpgRtV0nOs6I2bSOzPuM9brZAZWG7c16zlfrjGMMca6rBRvrCJ6n0KNeoFz2RSFzegMEFHxzQp8hUWhH5K+toe8O/7uOrNgaR/vPBpv+N/BKnV1wmv/DXyESe4L4BKugqVvpO2knpHnbDgQERERmUex2mmHO/+K8Y5D8FnwS7zufxvfhhZBjRsAyFeygYGuoguOcI7Hsc4jkv4CVLFNcB6JIx3j8Z/AR/gw8Am+C32PIEIFS2+MfW+8VjsE//K/iTf87+I39XcA2/YV2+b6YPmmZHgenD/WmfpjuSQiIiIqPrZrUyvH9inLAxGRde1q2xnTqm7Cb8of+Dz4JeYE5+FnZSUatC0FSzO+X9gJJ/7qOBhnVpyKblKXgqVLhZHpWEI+NwcUayyBbZrSxzqPjGDVMddiHS/VqEpYpm39L4+X1MxWn21SN+GNwLsx61kBYz+ZWTmXT6vGTkqv2OX6BNexOMr5NzzhfRZvBf6NRq0p7XuyKV/RYwHb3t/Giu3/cq53rEYIgbMqTsNw+xBMab0Ff6gbdKsfC4H1OhnJquO2ZjvnyzeGMcZYk9XijRWE9+m9Z9wN6To3HNs52zrCOPlKwXHiFaIy9JTvuaTLBQSudF8CuYCzogohcKrrBNzkuSPhNS98mBOchwMcYwuWvpG6S90A5HdxABERERHpr5jtNFnIONAxFgc6xmKL2ojZwbmYHZyLH0JLsEHb2O574zueUuVXhoxd5X4YYhuE/RyjsZe8B4QwV6eVXdhxhHM8jnCOh0/z4cfQUvyqrMYadR02qw3wwYed5b66pecSTpzqOgGnOCdibuhrfBz4HHOD87FRq9ctDWL5pkQ8D9YH60x9sVwSERERGYPt2uTKtX3K8kBEZG095e44UZ6AE10TAABb1EZs0RrRqrViJ3kH3dIJx0cXnNjD1h+j7MNxhGM8aqUa3dKg4stkLCHTtpHRYwls05QH1nlUbFYecy308VIp3AnLuooumOg6hsdLBsxSn9kgx6xnJYz9ZGblXD6tHDupfUaU6wvd5+CCirMj5XpOYC42YXPS9bOJZeGxgNj3Ay44LNv+L+d6x4r2su2BF2oex62td+GT4BdGZ6ddrNfJKFYftzXLOZ8eGGOsy0rxxirUH0NYuu/X2Om+XVF3hLkn5ysVQtOsGQioPAghFgPoH7+8f//+WLx4sQE5yt55zZdhYWhRwvK3al5CT7l7zLJWzYNZgdmYF1qAn5WV2KBuRKvmAQC4RQV6SN3QR+6NEbahGOsYk3QQIZ2loWU4vfm8pK/tax+Nu6tuzXqb2fJrARy85Uj44Et47Tjn0bjKfUm77/+3/79JJ24523U6zq04Q69sFsS9nhmR2TYBYLBtT4xz7Jd03ZXKKpzYdGa723up5kn0lXvrmkciIiKicmSGdtoWtRE/KcuxRlmHjdombFA3YpNaD6/mgx9+tGqt+E39o91t3FI5BWPtY+AUjqzStiI9vodVymosU37G8tAKrFN/wya1HvXaZrxd+5Le2S176cp3QAvAq/nSDow9U/0IdrftUqRckx7MUL8S68x4mZZLlkkiIiIicynVdi3bp7kp1fJARFQOMqnDL6w4B7vI/dBR1KGv3Ae2Av6IFJlH9FjC+4EP4dE88Go+hBCCQ9ghINKOlaVi1nYS2zTlIZPv+Rr3JOwh7846j9pV6tcUZHKsDJT3RAepFi44UStqMdQ+kOfQRaJnG66c+0IY+8nMSrF88nol0qNcfxGYjStbr293G1dUXIzuUlfsYx+F1eratGkOsw3GaNtInOCakBAvSzH+pVKK9Y7ZZLKPo8uvTdiKlLPcsF6nQivncxWgtPqwGGOKq9TijRmE9+kPe8+Hb1nbHAPV+3SAXNN23ElueW3fx/pfvHX19+fXfRo0KKslh6WTyARaNQ+e9b2El32vwZtkMhIAaNSCaFSa8JPyM94PfIhKjxsTXEfhLNepcAlXxmm9F/gg5WsTncdknfdcOIUDw+1DMCs4J+G1lcovMX//pvyBo5pOzGi7j/ueweO+ZxKWJ5vkxiiXuS8wOgtERERElIQZ2mkdpFqMkoZjlH140tcz6ZDqK/c25QVSZtVb3hG95R3xF8dBRmel5KUr30BmZdwh7HpnjQrMDPUr6aOU6kyWSyIiIqLyZcZ2LdunxjFjeSAiojZj7Htb7qJ0yl/0WMLxrqMTXs9kHKEcsU1TGgbZ9mS9R2nxmgJgcuUkHismlmkbjn0h+WHsJzMzW/nk9Uqkh15yz7TrDLMPzqqNcoX7YrZpdGK2eseKsi2/RmK9ToXGc5X0yqkPizFGX1aKN2bVPHtLzJ/1r/35tlF5KWWceIXIYCuVVbiy5XqsV3/L6n2t8OAZ34v4PPAl7qm6Hb3kHhm977PAl0mXdxIdMcw2OKs85OOKiotxkvO4hOUVWUwiQ0RERERERERERERERERERERERERERERERERERERERESUK068QmSgJaGfcFHLlWjRWnPexq/qGpzfMglPVc9AJ6lju+uuVFZhg7Yx6Wv72feBJKSc85GtnnJ39JS7Fy09IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqJoxZtlgYhirFbX4JKWa/KadCXsD/VP3NI6Le1634a+T/naEPvAvPNBRERERERERERERERERERERERERERERERERERERERERGQVNqMzQFSubmi9FU1aU8wyB+zY374vRttHore8I+qkDmjVPNik1mNe8Bt8GPgEG7SNSbc3OzQP84MLMMI+NGWay0M/p3xtL3lAbh+EiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMiCOPEKkUEa4yZdOdzxF/y94kx0lbokrNtX7o2R9mE4u+J03Om5D+8FPki6zdf8b7c78cpK5dekyyvgQnepW+aZL6JuUhe8X/t6zLL/BT7BdO9DCeue7DweJ7smJiyvE7UFyx8RERERERERERERERERERERERERERERERERERERERERWRMnXiEymBNOTK2cjIMc+6dd1y0qMMV9NerVzZgb+jrh9a+C8xDUgrALe9L3/6n+mXT5DvL2EEJkle9ikYWMzqJjzLIqUZV03QpRgc5Sx6SvERERERERERERERERERERERERERERERERERERERERERFFk4zOANH/Z+++w6w9q3rxf9fb0t6E5RyMogAAIABJREFUEBISEkKAhG4EKeEEkSpVFEQRPYoH8FCUZoOfUiPFI8JBaYEDaEQ4cESpIohIlw6hEyDUUENCQEhP3nf9/tgTjWHm2Xtm9t7TPp/rmusie937XmvmbTf7Wc96trJK5X/tftJEQ1cus6225Q/3f2QqPz4o5aJcnM/s+dyi79vbe/O9PmfR2GHbDp04PwAAAAAAAAAAAAAAAAAAAMBmYPAKrKG777pzbr3zxGW/7xrbr57jtl970diX93xl0dfPz/nZk72Lxq5cBy+7BgAAAAAAAAAAAAAAAAAAAICNbMdaFwBjXHmxF88555x51zETv7nvr634vTfcfv2cvudLP/b6t/eeuej6C/viJfc6sHavuA4AYOT5z39+zjrrrB97/bDDDsvDHvawNagIAGBpzi4AwEbh3AIAbBTOLQDARuHcAgBsJM4uAMBGc/LzT86B5xzwH//t3AKwMRi8wnp3yGIvfv/73593HVN33PZr51rbj1nx+4/Ydviir39/7w8Wff3SXLLkXjtr54rrAABGTj755Hz2s5/9sddveMMb+oAEAFh3nF0AgI3CuQUA2CicWwCAjcK5BQDYSJxdAICN5uQXnJwLP3f+f/y3cwvAxrBtrQuArermO35qVe8/qHYv+vqFfeGir+/M0sNVdmT7qmoBAAAAAAAAAAAAAAAAAAAA2GgMXoE1ctz2a6/q/fvUPou+fnEuWWL9riX3urAvWlUtAAAAAAAAAAAAAAAAAAAAABuNwSuwRq627YhVvX/bEn9892bvoq/vk8UHtSTJj/rcVdUCAAAAAAAAAAAAAAAAAAAAsNEYvAJr5MrbDp5rvp21M7vrgEVj5/Z5c60FAAAAAAAAAAAAAAAAAAAAYK0ZvAJrZJ/sM/ech9dVF339R/2jOVcCAAAAAAAAAAAAAAAAAAAAsLYMXoE1sj3b557z8G2LD1756p4z5lwJAAAAAAAAAAAAAAAAAAAAwNrasdYFAPNzzPaj875LP/hjr5/VZ+fsvd/LoduuMrdaLuqL89cXvmzR2C/suluO2n7k3GoBAAAAAAAAAAAAAAAAAAAAth6DV2ALucH26y4ZO+3SL+Rndp04t1o+c+lnc8qFL180dq9dPze3OgAAAAAAAAAAAAAAAAAAAICtadtaFwDMzw12XG/J2Cf3fHqOlSQfu/STi75+UB2Yq20/Yq61AAAAAAAAAAAAAAAAAAAAAFuPwSuwhRyz/Rq5ah22aOwtF78t3T23Wt59yfsWff0624+dWw0AAAAAAAAAAAAAAAAAAADA1mXwCmwxt9l1q0Vf/87eM/ORSz82lxq+tec7OW3P5xeN3XzHTedSAwAAAAAAAAAAAAAAAAAAALC1GbwCW8ztdv7MkrE3XPymudTwuov/ccnYXXfdcS41AAAAAAAAAAAAAAAAAAAAAFubwSuwxdxix01zjW1HLxp768XvyGmXfn6m+S/oC/Lai964aOwntt8wR20/cqb5AQAAAAAAAAAAAAAAAAAAABKDV2DLqarcZ597LRrbm715xvnPSXfPLP8pF748/94/XDR2731+fmZ5AQAAAAAAAAAAAAAAAAAAAC7P4BXYgu65z91zeF110din93w2r734H2eS94t7vpxXXPj3i8aO237t3H3XnWeSFwAAAAAAAAAAAAAAAAAAAOCKDF6BLWjf2jcP3//BS8afdf7z8slLPz3VnD/ae27++NyTcnEuWTT+iP0ekm3lryQAAAAAAAAAAAAAAAAAAABgPkw5gC3qLrvumFvtuOWisYtzSR71oz/KqZd8fCq5zu1z86hzH5Ov7f36ovGf3Xm7nLjzhKnkAgAAAAAAAAAAAAAAAAAAAJiEwSuwhZ10wB/nqnXYorHzcl4efu6j89ILX5k9vWfFOb6458u5/w9/J5/ec9qi8eO2XztPOOAxy9pz2xJ/dV3UFy27PgAAAAAAAAAAAAAAAAAAAGBrMngFtrCDt10pz9z91OyuAxaNX5pL8/wLXpRf/eED8uaL3pqL+uKJ9z5z71l51vnPz/1++OCcsffri645qA7MMw54Svar/ZZV9/61/6Kvf/TSj6e7l7UXAAAAAAAAAAAAAAAAAAAAsDXtWOsCgLV1/R3XzXN3PyOPOPfRObfPW3TN1/Z+PU86/0/zzAuek1vsuFl+asfxucb2o3P4tqtm/9ovlW05v8/Pd/aemdP3fCkfvOQjOfXST2RP9iyZ96A6KM/Z/ec5avuRy675yG1HLPr6Z/d8Lk88/2n5xV0/nyO2HZ5dtSsX9YU5fNtVs6P8dQcAAAAAAAAAAAAAAAAAAAD8J5MIgNxoxw3y4gOfmz889/H55t5vLbnuR31u3n7Ju/L2S961qnxX33ZknrH7qTl2+7VW9P5rb79m9s9+OT8X/FjsLRe/LW+5+G3/5bXXHfTKHLl98WEtAAAAAAAAAAAAAAAAAAAAwNa0ba0LANaHY7dfKy898IW52647zTTPnXfeIX970P9Z8dCVJNlRO3LbXbeeYlUAAAAAAAAAAAAAAAAAAADAVmPwCvAfDtp2YP7kgMfmebufmetvv+5U977u9uPyvN3PzFN3PyG7a/eq93vgvvfLzuycQmUAAAAAAAAAAAAAAAAAAADAVrRjrQsA1p8Tdt4sL93xwnz40lPzmovekPde8sFclIuWvc9+2Te32nnL3Gufe+SWO28+1RqP2X50nnzA4/Kk856Wi3PJVPcGAAAAAAAAAAAAAAAAAAAANr/q7rWuAZZUVXuSbFvk9dzgBjdYg4q2qH2S7TfdlW0/sTPbjtuRbVfbnrrKtmTfGo1vujjJBZ29Z+1Jf3tP9n7p0uz99KXZ88mLs4J5LctSh2/Ljnvvl+0325VtR2xPdldySdLn7U1/Z2/2nnZJLn7xecn5G+/vuotzSb6x55uDa66+/ajsys45VQTAkC996Uu56KIf/4dvn332ybHHHrsGFQGzslbnNOfD/8rPY/Pxazpf6/Hs4vfA7PjZroyfG8D6sB7PLcDa2Orns63+/V+RnwfrkXMLTMbf4azUJL93lrJef0/587A1rMdfZ+eWzWk9/l5bjmnWv9F/FuvRWvxMN+Ov42b8ntg81vPvz1meXdbz983qTePXd7l7rDbnVvo9uZW+17WyFX/GW/F7Zv4m+X120VcuSF/8n/ezboTPXDbTn5/N9L1sBH7e03fZz/SKf5dczo+6+6B517UVGLzCulZVe5PUWtcBAAAAAAAAAAAAAAAAAAAAsEYu6u5917qIzWjbWhcAAAAAAAAAAAAAAAAAAAAAADBvBq+w3u1Z6wIAAAAAAAAAAAAAAAAAAAAA2HwMXmG9M3gFAAAAAAAAAAAAAAAAAAAAgKkzeAUAAAAAAAAAAAAAAAAAAAAA2HJ2rHUBMMYPkhy8yOsXJ/n6nGsBAAAAAAAAAAAAAAAAAAAAmJWjk+xa5PUfzLuQraK6e61rAAAAAAAAAAAAAAAAAAAAAACYq21rXQAAAAAAAAAAAAAAAAAAAAAAwLwZvAIAAAAAAAAAAAAAAAAAAAAAbDkGrwAAAAAAAAAAAAAAAAAAAAAAW47BKwAAAAAAAAAAAAAAAAAAAADAlmPwCgAAAAAAAAAAAAAAAAAAAACw5Ri8AgAAAAAAAAAAAAAAAAAAAABsOQavAAAAAAAAAAAAAAAAAAAAAABbjsErAAAAAAAAAAAAAAAAAAAAAMCWY/AKAAAAAAAAAAAAAAAAAAAAALDlGLwCAAAAAAAAAAAAAAAAAAAAAGw5Bq8AAAAAAAAAAAAAAAAAAAAAAFuOwSsAAAAAAAAAAAAAAAAAAAAAwJZj8AoAAAAAAAAAAAAAAAAAAAAAsOUYvAIAAAAAAAAAAAAAAAAAAAAAbDkGrwAAAAAAAAAAAAAAAAAAAAAAW47BKwAAAAAAAAAAAAAAAAAAAADAlmPwCgAAAAAAAAAAAAAAAAAAAACw5Ri8AgAAAAAAAAAAAAAAAAAAAABsOQavAAAAAAAAAAAAAAAAAAAAAABbjsErAAAAAAAAAAAAAAAAAAAAAMCWY/AKAAAAAAAAAAAAAAAAAAAAALDlGLwCAAAAAAAAAAAAAAAAAAAAAGw5Bq8AAAAAAAAAAAAAAAAAAAAAAFuOwSsAAAAAAAAAAAAAAAAAAAAAwJZj8AoAAAAAAAAAAAAAAAAAAAAAsOXsWOsCAAAAAAAAAOalqnYkuVaSqyfZvfC1LckFSc5L8s0kZ3T3D9esSACAZaiqn07yriTbFwk/oLv/Zr4VAQAAAAAArC9VdWCS6yQ5NMkBC1+XZtQv8v0kX0/yje6+ZM2KBGDNGLzCulRVN0ry00luleRGSa6S5JCMGl8vyuggc2ZGja+fTfKRJG/v7m+tScEAwJazcIPOrTM6r9w0o5t1jkxyYJL9klyS0Znlu0m+keTTGZ1Z3trd31mLmgGAjauqHp3kzxcJ/Ul3nzTncv5DVW3P6Dx0qyQnJjk2o89wDklSSX6Y5N+TnJ7ReeiDSd7S3eeuScEAwMytx3NLVe2X5C5J7pTk9kmOS7Jzgvd9NcmHk/xLkn/s7jNnWCYAsAbW49lluarqSkn+bxYfugIAbBLr/dxSVYfmP/toTkhyeEbXi66cZG+SCzO6gembSb6c5NQk703yke7utagZAJiN9Xpuqarjktwxyc2SXD+jAf1Xyajn97IB/T/I6LxyepKPJXlnko85rwDAxlRV10xy94z6Rf5bkiMmeNvFVfWpJO9P8sYk7+jui2dV41Kq6hYZ3WN9YkZnl8t6c3ck+VFGvblfSfKpJB9N8qbuPmfedQJsJgavsG5U1e4kv5Hkd5IcP7B0/4WvqyS5YUaHniTpqvpwkhckecVaHGYAgM2vqm6c5GFJfiXJlQaW7rPwdXCS6ya5w8LrXVUfSPKiOLMAAJO7w/gl81NVhyd5UJIHJzl6YOlhC1/HJbnbwmsXVdU/J3lWd797poUCAGth3ZxbquoaSX43yf0zuslnua658HWfJHur6nVJ/ry7PzilEgGAtbduzi6r8MIkx6x1EQDAzK3Lc0tV3S6jvt9fzHBf+j4Z9dlcM6Obhu638Pq3q+rlSZ7b3V+fXaUAwBytm3NLVR2c5LcWvm4wZvnuha+rJ7llRvc3JaPzykuTvKC7z5hVrQDA9FTVXZI8KqOH9Gxb5tt3ZTSo7WZJHp7k7Kp6QZLndPfZUy30ChaG7d8/yUMzGraylKssfF07o8FySXJpVb0rybOTvNHgOIDlW+4/GDATVfUbSb6a0dCUoaErg9tkNCX/lCSnVdXdxqwHAJhYVR1dVX+X0QT7B2V46MrgVhlNnD0lyReq6lenVCIAsElV1YFJbr/WdSRJVW2rqocl+UKSp2R46MpS9klyzyTvqqr3VNWNplkjALB21su5par2qaonJPlckt/LyoauXNG2JPdO8oGqevnCU5wBgA1svZxdVqOq/kcS15oAYJNbj+eWqrpeVb07yTsyGlq70oeBXi3Jo5N8saqeWlX7TqtGAGD+1su5paq2V9UfJPlykmdm/NCVIVdL8kdJTq+qZy98jwDAOlRVx1XVm5L8c0YPC5zGPfSHJnlCRvf//PYU9ltUVd03yeeT/GWGh64sZUdGQ1jekOQTVfXTUywPYEsweIU1VVWHLzzh+GUZTViblmsneVNVPWWKewIAW1RV/VKSTyb5lYwGp0zLMUleWVX/UFW7p7gvALC53DujYSVrauHm4ncneV6Sg6a07a2TfHSh2QUA2PjW/NxSVUcmeU+SJyfZb0Zpfj3JqVV18xntDwDMx5qfXVajqo5N8ty1rgMAmIt1dW6pqsck+USSn5nitruSPC6jwf1HTHFfAGC+1vzcUlVHZ3St6JmZznD+y+xK8sgkn66qW05xXwBgCqrqF5N8PKOBK7Nw5SQnV9XfV9UB09q0qvavqtck+X9JDp/StscneXdVPaOqtk9pT4BNz+AV1kxVHZPRhxl3mWGax1fV02a4PwCwyVXV7yb5+yQHzzDNLyV5X1VN60MSAGBzmdmE/EktfI7z3iSzmIC/T5JnVtXJVeXzSgDY2Nb03FJV103ykSS3mEO6o5O8rapOmEMuAGA21vwzl5Wqqh1JXpHEE5YBYGtYF+eWqtpWVS9M8vTM7obqE5L8a1VN8yZpAGB+1vpa0Q2TvD/JiTNMc40k76yqe88wBwCwDFX1yCSvTjK1gSgDfjnJP1bVqh8GVFWHJPnXJL+46qp+3LYkf5jk1VW17wz2B9h03MjAmqiq62R0s8515pDusVV1zznkAQA2map6SJK/SFJzSHd8krdrHAEALq+q7pJkTZ+SU1VXzWh47nVnnOq3k7xkxjkAgBlZ63PLwpOQ35LkanNMe1CSN1XVNeeYEwCYgrU+u0zBkzO6KRkA2OTWy7llYXj+K5I8ZA7pbpTkr+eQBwCYorU+t1TVtTK6cfmoOaTbN8n/q6p7zCEXADCgqn4tyV9mPvf9XOb2SV62mg2qav+Mzi6zHBiXJPdM8vqFof4ADPAXJXNXVbuTvC6TfZixJ6Npsx9J8tUk5yc5JMnhSW6a5NZJtk+wzwur6j3dfc5KagYAtp6quk2S50+4/NtJ3pXk9CTnJDkvycEZnVtunORWSa40wT43TPL3VXXn7t677KIBgE2lqg5I8pw1rmFHklclOXqC5ZdmNKDlw0m+ldGZ6KCF994io4tD4wZBP6CqPt3dz1px0QDA3K31uaWqKsnfJbnmBMsvSPKmJG9O8skkX0nyo4zOKYclOTLJbZPcOckdJtjvKkn+oapO7O5Lll08ADB3a312Wa2qul2S/2+t6wAAZm+dnVtOSnLfCdd+Jcm7k5yW5PsZ3Zh8eJJrJ7lLkkkeSnSvqvrv3f2K5ZcKAMzbWp9bqmq/jO5TmmRA/4VJPpBRf8v3Mur73S+jnt9jktwmo3PLODuTvLKq/lt3f2YldQMAq1NVN0pySiYbuvK1JK9N8o6MPrP4bkZ9rgcmOTTJ9ZLcMaNBJdeaYL9fqqrf6+6/WEHpSfLiJD81wbpO8sGMzi9nZNTjsjuj/pabJfmZjM4lQ+6c5FlJHrnCWgG2BINXWAsvyeim4iHnJnl2kud295lLLaqqQ5M8OMnjkuw/sN8RGR0M7r+sSgGALWlhUNz/zfgBb/+a5KTufu+Y/bZl9OHL4zL6YGPIHZP8fpJnTlYtALAZVdXOjM4j113jUp6a0Y3HQy5I8hdJ/rK7z1pqUVUdleT3kjwiya6B/f58YYDuh5dbLAAwf+vk3PLwjJpgh+zJ6FrRMwbOLGcsfH0gydOr6iYZnYd+bszeN0vyx0mePHHFAMCaWCdnlxWrqitn9ATFccNtAYANbj2dW6rq7kkeP8HSf0rytO5+/8BeO5LcKaO+mHG9xM+tqrd09/cmLhYAmLt1cm75X0l+csyabyb50yR/3d0XDi2squtlNPj2fhm+9253kpdX1QkG9APAfFXV9iR/nWSfMUu/nuQPk7y6u/csEv/+wtfpSd5YVY9O8t8z6hcZ99DCP62qN3X355dZ+0MXcgy5NKPhLH/W3WcM7HWVJA/N6Oxy4MB+j6iqd3b3a5ZTK8BW4iI8c1VVv57xE+/fn+T47n780NCVJOnus7v7T5PcKKOnEg75jao6bvJqAYAt7AlJrj4Q7ySP6e47jRu6kiTdvbe7X5vkFhld3BnnpKo6YrJSAYDNpqpunORdGQ1uW8s6rp/RQLghn0tys+5+3NDQlSTp7m929x8mOTHJNwaWbk/yooWLYgDAOrYezi1VdVCSp4xZdlaSW3f3Y8adWS6vuz/e3fdI8piMBrcMeWxVXWPSvQGA+VsPZ5cpeEmGr2EBAJvAejq3VNXBSV6a4SdH/yjJfbr7HkNDV5Kkuy/t7jcnuUmS/z0m/SHxJGYAWNfWw7mlqo7PaEj/kPdkdJ/SyeOGriRJd3++ux+Y5A4ZXWcacpMkD5moWABgmn4jyQlj1rwpyY26+1VLDF35MQufXfxtkpsmefuY5ftm9ODCiVXVoRl/X9G3k9yuu39naOhKknT397r7aRmdST4zZt/nLvTZALAIg1eYm6raP8mfjVn2hiR36O6vLmfvhfV3zmiq3FK2J3n0cvYFALaehWmvDxuz7PHd/Yzl7t0jj03yR2OWHpDxNzkDAJtIVR1VVQ+qqrcn+VhGw0nW2l8k2TkQ/3yS23b3acvZtLtPzagxZejphJpSAGCdWofnlocmudJA/IcZNaN8YKUJFj4HGvd50T5JnrjSHADAbKzDs8uKVdWDktx7resAAGZjHZ9bnpjk0IH4ZQNv/2E5m3b3JQsD+589ZunDq2r3cvYGAGZrHZ5bHpfR/UJL+VSSO3f395e7cXe/J8nPJPn3MUsfW1U7lrs/ALAyVVUZf6/wm5Pcs7t/tJIc3X12krsmefeYpXerqlsvY+unJjl4IH5mRn0uYx8SfXnd/eUkt0/ypYFlRyZ5/HL2BdhKqrvXuga2iKp6UpKTBpa8N8nPTjI9diDH8UlOTbLUBxYXJDlkNTkAgM2tqn43wxNn359Rw8jeVeZ5TZJfHFhyVpIjVpsHAFhfqmrfJNdMclySGya5cZJbJjl2hVv+SXefNJXiLqeqbpPRE4mWcn6Smy936MoVctwzyesGlnw9ybHdfclKcwAAK7cRzi1VtT3JGRk1hizlPsu98Wcg34uSPGhgyUVJrtHd351GPgBgchvh7LIaVXW9jPph9l8k/M0kRw28/QHd/TezqAsAWL6NdG6pquOSfDZLD+q/MMltuvvDq8hRGfUPD92wff/ufulKcwAAK7MRzi1VdViSb2Xpe4j2JPmp7v7UKvP8QpLXj1n2C939j6vJAwBMpqrumtFglaV8I8nx3f2DKeQ6LMnHM9yb8truHjs8v6quleT0LD00bm9G91i/Y9mF/meOmyb50ECO85Ic091DD08E2JJM02QuqurAJH8wsOScJL+62oEo3f2pqnppkt9aYsl+SW6T5F9WkwcA2NTuMyZ+0pSGofxekrtn9DTkxRyW5BZJPjiFXADAGlv4bOTLGX4i4HryyDHxk1YzdCVJuvv1VfXPGT0RYDFHJ7lvkpevJg8AsDwb7NxyYoYbW/5lWkNXFjwuyX9PcsAS8X2S/EqS500xJwAwYIOdXVakqnYleUUWH7pyYZKHJHnjXIsCAJZtg55bHpelh64kye+vZuhKknR3V9VjkrxnYNldkhi8AgBzssHOLffK8L1xr1rt0JUk6e43VNVbMjqXLOXuSQxeAYD5+OUx8cdMY+hKknT3WVX11CQnDyy7R1Vdubu/P2a7h2XpgShJ8sLVDF1Jku4+tapenOShSyw5IMlvJ3nqavIAbEbb1roAtoz7JTlwIP6Y7v7GlHI9d0z8zlPKAwBsMlW1X0bDTpbyte6eygC37v5aklePWXbzaeQCANaF7dkYDSmpqqMzakxZyteTPGdK6f58THyp4boAwOxsmHNLRg2sQ54xzWTdfVaSF49Zds9p5gQAxtpIZ5eV+tMkN10i9kdJPjPHWgCAldtQ55aqOiTJrw4seU93v2Aaubr735J8bGDJnaaRBwCY2EY6t9x2THzcdZ3l+N9j4np+AWB+7jYQOyPJ3005318lOXMgvjNjeliqav8kDxxYcl6Sk5Zd2eKemWTogdMPrKqaUi6ATcPgFebltwdin0hyyrQSdfcnkpw+sOS4aeUCADad62f4ST1vn3K+cZPtrz3lfAAAk3hAhifqP7+7L5pGooXJ/EPDeG+7MAgGAGAxQ8P2z0jythnkfOOY+IlVNfRkRQCAiVXVnZL8/hLhf8n0huMCAFzRA5PsOxD/vSnn+4eB2KFVdfCU8wEAm8PxA7ELk7xvirnemeTcgbieXwCYg6r6iSRHDiz52+4eGjqybN19cZK3jln2M2Piv5zkygPxly08EGjVuvtLSd4/sORaSX56GrkANhODV5i5qjoxyU8MLPmzaR9kMnxT9OFTzgUAbB7XGBP/wpTzfXFM/KAp5wMAmMQvDMQuTfLXU873hoFYJfn5KecDADaBqtqW5EYDS97R3T2D1P+WZGgI3QFJjp1BXgBgi6mqQ5O8NKPPR67oe0nuP6PzDgBAkjxoIPaW7v7olPONexiS3l8AYDFDfb9fm9aDhZKkuy9J8rWBJXp+AWA+fnJMfBYP6Zlk3xuPiQ/15ibJ/1lGLZN4/Zj4uHoAthxPW2Me7jkQOzPDU+pX6i8yanxdzL/PIB8AsDnsHhP/3pTz/WhM/IIp5wMAGFRVRya56cCSd0xrov7lvD7J7wzEfy7JyVPOCQBsfMdk+KnL03yC4X/o7ouq6swMN/JeM8nnZ5EfANhS/jrJ1ZaIPbi7vz3PYgCAraOqrp/kugNLnjeDtB9Ncr+B+NkzyAkAbHxDfb/T7vlNhvt+9fwCwHxcbyC2N8kHZ5R3aABbMuoVWVRV7Upy54H3nt7dH19JUQNen+TPB+I/l+QxU84JsKEZvMI83H0g9oruvnTaCbv789HQCgAs37jJ9tOeRj/uaTw/mHI+AGDtXJrkXSt43xEZvkg0bffI4k9RvswbZ5DznUkuzNI3Tt+6qrZ1994Z5AYAftxGObeMy/XFGeY+O8ODVw6eYW4A4L/aKGeXZamqhyX5+SXCp3T3a+ZZDwAwFRvp3DLU93tWkn+edsLuviTJy6e9LwCwIhvp3HJRlr43bto9v8lw36+eXwCYj6Hzxje7e1bD0MYNhR3qFbldkgMH4lPvze3uL1TVl5Nce4klN6yqQ7vbsFuABQavMFNVdfUkxw8sed28agEAmMBZY+JHTTnfT4yJe1IhAGwS3X1uRhdOlqWq7p/klGnXM+C2Y+Jvn3bC7r64qj6Z5IQllhyU0bnpk9PODQD8uA10brnqmPhXZ5h7z5j4zhnmBgAuZwOdXSZWVTdK8owlwl9K8sg5lgMATMkGO7cMDV554yweuAgArB8b7NxyVpIDlogdOc1Lq6foAAAgAElEQVREVXVQkqsPLNHzCwDzMdQv8tUZ5l1Nr8jce3MXfCRLD15JklslecOMcgNsONvWugA2vTsPxH6Y5H3zKgQAYAJnjIkPnW1W4h5j4h+acj4AgHFuNhD7YZLPzCjvqWPiPzWjvADAxrV7TPz7M8x9tTHx82aYGwDYxKpqnySvSLLfIuE9Se63cPMTAMBMVNV+SX5mYMmb51ULAMAEhvp+D6mqm08x110zfEO1nl8AmI+hfpH12isy1JubJO9fZi2T0psLsAwGrzBrQx9SvN/UewBgPenur2R4wu2NpnURpqqOT3KXgSXnJvnENHIBAEyiqnYnuc7Ako93d88o/biLOzeaUV4AYONa6umFl7lgFkmr6koZ30zjiYYAwEo9I8lPLhF7WnfPqvEWAOAyxyfZNRD/t3kVAgAwgbePid9/irn+YEz8vVPMBQAsbahfZCa9IgtuMCY+1CsyNODkjO7+3grqmYTeXIBl2LHWBbDp3WQg9oG5VQEAMLk3Jfmdgfjzq+rE7t670gRVtT3JX2Z4EOIrDakDAObsJhk+n3xqhrnH7X39GeYGADamdyR5xFLB7r5wRnnvkWT7mDVfnFFuAGATq6q7ZenzzYeSPGWO5QAAW9dQ3+/XutvAWQBgPXlTkpMG4g+pqpd098dXk6SqHpDkhIEl/57kDavJAQBM7M+SXGmJ2OdmmPeeY+KnL/ZiVV09yVUH3qc3F2CdMHiFmamqymjy/VKW/Ee7qg5Ictskt1/Y47gkV0myO8neJOcm+UZGjasfyqi59sMzfOoyALB1PCvJg7P0WfmEJH9VVb+1iuErf57kDmPWnLzCvQEAVmrcNP5Z3kD8jTHxa8wwNwCwAXX3R5J8ZA1S339M/IvdffY8CgEANo+qOjzJ3ywRPi/JrxvYDwDMydDglcGbdarqpzLqh7llkuskOSrJgUl2Jjk/ydlJvpLkY0nem+St3X3uFGoGALao7v5wVb0zye2WWLIjyeuq6g7d/eWV5KiqEzK+p/eU7j5/JfsDAMvT3S+bd86qulZG9zsP+cASr69lb+6ZSS7J6LOZxejNBbgcg1eYpeMyGpSylNOu+EJV3SjJHyb55THvPWTh6yeT3HvhtW9U1UuSvLC7z1xRxQDAltfdX6qqv0rykIFl909yaFU9qLu/M+neVbUryfOT/M8xS1+02un6AAArcPSY+IoaUCb0nYyG7W5bIj6uNgCAmauquyX52THL/mUetQAAm8fCg43+Jks/7fB3u3uWTbcAAJd344HYYn2/ByR5eJLfymjYylIOXPi6VkbDWf4gyYVV9fokz+nu9624YgBgq3tckvdk6Z6TY5K8p6oe0N3Luo5TVfdM8rIk+w4s+06SpyxnXwBgw/mzLD285DJLnTPWrDe3u7uqvjNQw5Wq6sDu/tGsagDYSJb6P5UwDceOiX/lsv9RVQdX1YuTfCKjG5mHhq4s5epJTkrypap6alXtt4I9AACS5PeSnDpmzT2SfLaqnrDwFMIlVdWOqvr1jM4644aufCmjQXQAAPN29THxb88q8cITm787sOSQhSF2AABroqoOzWig7jivnHUtAMCm86gkd10i9vrufsk8iwEAtryh3t//ciNQVd0/o6cy/1mGh64sZd8k903y3qp688LDGwEAlmVhgNtjxyw7MslbqupVVXXiuD2r6ier6lVJXpvR8Lil7E3yoO4+Z+KCAYANpap+OcmvjFn2xe7+8BKxNevNXfDNMfEjZpwfYMPYsdYFsKkdORA7p7svSJKqOiHJ3yW55pTyHpDRxNr7VtVvdvf7p7QvALBFdPcFC1Pq357hxpArJ3lykidW1UeTvC/Jt5L8IKNBcocmuUmS22T4wstlvpbkTqbFAgBr5Kgx8e/MOP+3MnwB5+AMD2cBAJiJhQFwr87oicxDTu3uf5tDSQDAJlFVN87oRuXFfCfjB/oDAExNVe1IctjAkm8urDswyUsy/qaj5bhrkjtU1UlJ/qy7e4p7AwCbXHc/vaqumeShY5beJ8l9quqrSd6d5AtJvpekklwlo/uabp/k2hOk3Zvkod39xhUVDQCse1V10yQvnWDpcwZi66E3d8iVZ5wfYMMweIVZGjoQfDtJqupOSV6XZP8Z5D8uybuq6pHd/cIZ7A8AbGLd/Y2qulWSv0nyc2OW70hyy4WvlXpPkvt095mr2AMAYDWGhugmo0aTWTp3TNzgFQBg7qpqd5LXZDRYd5wnzrgcAGATqar9krwiyT5LLHlgd589x5IAAK6WZNtA/NtVdeUk/5zkhBnk35XkT5P8dFX9mgcXAQDL0d2/XVWfS/L0LP15y2WumdU9PPqcJP/D0BUA2Lyq6r8l+aeMv/f56xkNqF3KRujNBSDDH47Dag0dCH6wcCPzP2Y2Q1cuszPJC6rqj2eYAwDYpLr77O6+R5JfTfLlGaU5P8kfJbmdoSsAwBrbPRDb093nzzj/hWPiB8w4PwDAf1FV103yviR3mmD5G7r7n2ZcEgCwuTwryQ2XiD2/u988z2IAADL+RqCLkrwlsxm6cnk/l+StVeXGHwBgWbr72UmOT/L6Gab5pyQ3NnQFADavqnpAkrcnOWSC5Y/q7gsG4kO9uUnyw4kLWxm9uQAT2rHWBbCpXW0gdkCSV2d4iuyeJB9K8oEk38loIuw+Sa6S5NgkJya5zoS1/GlVfau7XzrhegCA/9Ddf1dV78zoYsnNprz9S5I8t7v3TnlfAIDl2m8gNo8nCo67uLNrDjUAACRJqur+SZ6T5MAJln87yYNmWhAAsKlU1T2TPHSJ8GlJHj3HcgAALjPU95skT09yizFrvpbkbUnOSHJmks7o85Vjktxk4f1DvcOXuWWSv6+qu3b3ngnWAwAkSbr79Kq6d5InJnnSlLf/bJLf7+5vTHlfAGAdWBgC+5wk95vwLX/V3a8ds2aoNzeZfX+u3lyACRm8wiwNNaLeZCD23STPSPKS7v7BUIKqun6ShyV5cMb/A//CqvpQd582Zh0AwH+oqgMzuvjy25nNJNdHJrlvVT02ySnd3TPIAQAwiX0HYhfPIf/QxP8k2TmHGgCALa6qjk7ywiR3n/At5yW5V3d/d3ZVAQCbSVUdmeSvlghfkuTXxzwZEQBgVsYNoL3bEq/vTfLKJE/v7k8NbVBVByX51SSPzWgYy5CfzWxumAYANrGquk+SJye5/gy2v2GSz1bVKUn+uLvPnkEOAGANVNXPZ9QvcuSEb3lPkodPsG6oNzeZfX+u3lyACW1b6wLY1MYdCBbzoiTX6u5njhu6kiTd/bnufkRGE/BPn6Cek1dQEwCwRVXVXZJ8JskfZjZDVy5zeEYNtu+oqqNmmAcAYMjQVP1L5pD/ojHxmkMNAMAWVVU7q+oxSU7L5ENXLkjyi939odlVBgBsJlVVSf42yVWWWPKE7v7YHEsCALi8lfT9npbkJt39G+OGriRJd/+wu1+U5AZJTplg/z+qquuuoC4AYIupqqtV1euSvCqzGbpyme1J/meSz1fVPWeYBwCYg6o6ZuEM8YZMPnTlI0l+obsvnGDtUG9uMvv+XL25ABMyeIVZWs4FmD1JfrO7H9Ld5y83UXd/Msltk3x1zNLbVdXPLnd/AGDrqapHJXlzkqPnmPa2ST5WVTefY04AgMsMTa2/dA75d4yJz2P4CwCwBS0M3/1Ekqdn8uG7301yx+5+68wKAwA2o0cnueMSsXclecYcawEAuKLlDl55TZJbTDJw5Yq6+4LufmBGT5IesivJE5e7PwCwtVTVDZN8KMk8B6EckuR1VfWkOeYEAKakqvarqicm+WyWd4b4pyR36O4fTLh+qDc33T3r/ly9uQATMniFWVrOBZiHd/fLVpOsu7+d5NeT9Jilf7CaPADA5ldVj0/yl5lscuuXkzw3yS9lNCH/sIyaPq6S5LpJ7prkaUk+MGH6w5K8vapusMyyAQBWa+jizbgLL9Pg4g4AMFdVdVxVvSHJP2f0lOVJ/VuSm3b3+2dTGQCwGVXVzZI8dYnwv2f0wKK9cywJAOCKltP3++4kv9bd560y56OSjBvcct+qOmqVeQCATaqqjs/o2s3VJ1h+QZJXJXlYkptl9HDG/ZLsTnJMkhOSPHJhzaQPlT6pqh63zLIBgDVUVfdJclqSP0my/4Rv25PkpCS/0N0/Wka6wcEqVTXr/ly9uQATMniFWdpnwnUv6e5xE+sn0t3vS/IPY5bdqaquMo18AMDmU1W/mOTJEyw9Lcl9k1ynux/Z3a/p7s9399ndfUl3n9Pdp3f3W7r78d19YpKbJ/n7CfY+MMlrqurAlX8nAADLNnTxZNLPeVZj3MWdSRtaAAAGVdWBVfX0JJ9J8vPLeOslSZ6U5Hbd/c2ZFAcAbEpVdUCSV2Tppxr+TnefMceSAAAWM+n1oO8muVd3X7zahAt7/NGYZTuS/PJqcwEAm09VHZLk9UmuPGbpBRkNxD2mu+/b3Sd396nd/Y3uvrC7z+vuM7r7w9393O6+b0ZDWR6b5IcTlPLkqrrrqr4ZAGDmqurGVfXOjIasHbOMt34lye27+09WMER/3GCTWffn6s0FmJDBK6y1CzNqUJ2mxyfpgfj2JD835ZwAwCZQVYcn+ZskNWbpi5PcrLtftZwPTbr7o939K0l+Kcn3xiy/fpK/nHRvAIApuHAgNo/BKweMif/7HGoAADaxGrl/ki8keUySXct4+0eTnNDdT+7uPbOoDwDY1J6T5LpLxF7Z3a+YZzEAAKv09O7+/rQ26+43JXnvmGX3nFY+AGBTOTnJtcasOS3JLbv7Cd191qQbLzyA8X8lOT7Ju8Ys35bk/1bVwZPuDwDMT1UdWlUvSHJqktsu4617kzwvyU9293tWmH6oNzeZfX+u3lyACRm8wixNMsn+lO7+1jSTdvcXkrxjzLJbTTMnALBpPCXJQePWdPeDu/uClSbp7tckuU2Sc8Ys/R9VdexK8wAALNPQxZN5DF45cEzcxR0AYMWq6pZJPpjklCRHLOOtP0zyexk15H58FrUBAJtbVf1ykgcuEf56kt+ZYzkAAEMm6fv9XpIXzCD3/xkTP6Gqts8gLwCwQVXVTye575hln05yYnd/aqV5uvuMJD+b5I1jlh6S5HdXmgcAmL6q2l5Vj0xyepKHZnn31J+a0TniEd197irKGNf7Ouv+XL25ABMyeIVZumiCNf84o9x/OyZ+0xnlBQA2qKo6Kks3vV7mld39xGnk6+7PJrl7kksHlm1P8thp5AMAmMDQkwl3VdV+M84/dHHnvO4+b8b5AYBNqKqutPDUovclucUy3tpJXprket39l929ZyYFAgCbWlUdneRFS4T3JvnN7v7BHEsCABgySd/v21bzsKIBr04ydC3ogCTXm0FeAGDjevyY+HeT3L27V30zcXdfmuRXknxozNJHVdW4m5sBgDmoqhOSfDjJs5McvIy3np3R0PxbdPe4f/snMdSbmyyvtpUYdzY5c8b5ATYMg1eYpXEXVi5N8p4Z5f7XMfFrzSgvALBx/UZGg06Wcm6mPIm+uz+Y5MVjlv2SJ/YAAHPyvTHxI2ac/7CB2DdnnBsA2ISq6o5JPpXlP7XoPUlO6O77d/d3ZlIcALBVPDLJlZeI/e/ufuccawEAGGeSgSrvmEXi7j4/yQfGLNP7CwAkSarqaknuNGbZn3T316eVc2H43CPGLDs4yZ2nlRMAWL6q2llVT8noAT0/tYy3XpzkWUmu090v6O69UyppPffmXtTdZ884P8CGYfAKszTuH9zPd/e5s0jc3d/M8A05h1bVvrPIDQBsWPceE39ud393BnlPyugDmqVcKcnNZpAXAOCKvjEmPrOLO1W1LcMXd6bWCAMAbH5Vta2q/iTJW5McvYy3np7k3t19m+7+yGyqAwC2mJ0DsUdXVa/2K8lXxtRwypg9fjDF7xcA2NgmudFmlp+ZjBu8cvUZ5gYANpZ7Zfhhi2dk/IMRl627P5Tk9WOW3XHaeQGAyVTVUUneleTxGT4rXNE/JLlBd/9Bd0/7usma9eZOsP+42gC2FINXmKVxNybPehLaF8fED5hxfgBgg6iqXUluMmbZq2eRe2GYy7+NWXa7WeQGALiCr42Jz/LizmEZvsj1hRnmBgA2karaP8nrkjwxSU34tnOS/G6SG3X3a2dVGwAAAMA6N8kDiWbZ+zuu73f3DHMDABvLLcfE39Ddl8wo97h+4tvNKC8AMKCqbp7ko0lOXMbbPpDkVt19n+7+8mwqW9Pe3CQ5fCCmNxfgcgxeYZbOHBP/3ozznzMmvt+M8wMAG8cNk+waiJ+d5NQZ5n/LmPhynswMALBS4y4aXWeGuY8dE3dxBwAYq6qulORtSX5+wrdckuRZSY7t7mfPsAEXAAAAYCMY1/ebzLb3V98vADCpcQ9b/JcZ5v6XJD0Q1/MLAHNWVXdI8o4MDxm5vK8l+dXuPrG73z+7ypKsYW9uVR2Z4c9T9OYCXM6OtS6ATW3cgeDCGee/YExc8ywAcJlxH66c3t1DF0lW67Nj4ofOMDf8/+zdebz0dVk38M/FKigCIuKCCyppiuJCkqiAgrjlkluW+1NmPVlpT2lm5q6lWVnhVi6luSSae+IGiAvihita7hu4gCwii8D1/DFD0u2Z38w5Z+ac+9zn/X695hXN9zvXdd1zZvOc3+8zAHCZz05Zv9kCe//ClPXPLLA3ALANqKorJnlnkl+e8SbvTvIH3f2lxU0FAAAAsKF8I8klSbYf2LPIY38d9wsAzGracb8L+/tPd3+vqs5MsteELVeqqp27+8JFzQAA/ExV3T7J25LsOsP2C5M8J8lzu3va7yHmxbG5ABvEdus9ANu0L05Zv8qC++85Zf3HC+4PAGwce0xZ/8GC+0+rP+mPMwAA8/SFJBcPrC/yjzs3GVjrJB9fYG8AYIOrqkryr0kOmWH7mUke2t13EboCAAAA8DPdfVGSr03Ztshjfx33CwDMynG/AECqar8kb85soSsfTHLz7n7aGoaupLvPSvLNgS3rdWxukpy8wN4AG47gFRZpvYNXhuqf3d3nLbg/ALBx7DBlfdEHbpw5ZX3oBGgAgLkYH0x7ysCWX6yqWf44tRIHD6yd2t3nLKgvALBteFyS+86w74QkB3b3qxc8DwAAAMBGtZ7H/k6r/Z0F9gYANhbH/QLAJldVOyR5Q6YHnl2S5MlJDuvu/1r4YEsbCjjZvapuuKC+Q8fmnpPk1AX1BdiQpv0PTVix7j6jqr6S5AYTttyoqrbr7kvn3Xv8zYY3HtjylXn3BAA2tJ9MWV908vyVp6yfu+D+AACXOTHJQRPWdkpypyRvn2fDqtopya0Htrx3nv0AgG3L+OCTZ82w9YVJ/rC7HegKAKyl12Q46HZeXjGw9rKMvsVxkovmPAsAsLF9NMmvDKzfJIs7KWfatzA79hcAuMxPMnzs7V5JTl9gf8f9AsD6+9MMH3uajN6TH9Ddx67BPENOTHL/gfW7JvnHBfQ9ZGDt+O6+ZAE9ATYswSss2omZHLyye5JbJPnkAvreZFx/ko8voCcAsHH9cMr6NRfcf+8p699YcH8AgMu8P8njBtbvmjkHryQ5LMkVB9bfPed+AMC25TlJrjBlz/O6+/FrMQwAwOV198kZ/hbDuaiqoeCVD3b3Kxc9AwCwzThxyvphSd64oN63HVj7SXwLMwDwMz/McPjJNbPY4JWh435/0N3nL7A3AGx6VbVPkidM2XZOkrt290fWYKRp3j9lfe7BK+MvMrrhwBbH5gJsYbv1HoBt3nFT1o9aUN8jpqwPfZMPALD5fHXK+k2raq8F9t9/yvqXFtgbAODy3pvkvIH1e1fV9nPueZ+BtXMymgkA4OdU1Q2S3G/KthcIXQEAAACY2UeTDJ0ovJDjfsfH5Rw4sOWk7r54Eb0BgA1p2nG/hy6qcVXtkeHgFcf8AsDi/V6SKw2sX5CtJ3Ql3f25JF8Z2HKn8WeMefrVoZGSvHnO/QA2PMErLNrbkvx0YP13F3CyTpL81sDaJUneuYCeAMDG9d0kZwysb5dRguyiTKv94QX2BgD4H919QYZ/b7JvknvMq19V7ZrkwQNb3tLdF86rHwCwzfndJDWw/oEk/2+NZgEAAADY8Gb4W9GNqurOC2j98CQ7Dqy/dQE9AYCN6zNT1ud2bMsS7pzh8/Ec8wsAC1RVO2b4/OEk+YOtJXTlct40sLZLkofNq1FVVZJHDWz5YHd/Z179ALYVgldYqO7+UYa/lfg6SR44z55VdfskNxvY8p7uHjqxGgDYZLq7k5w4ZdsfLaL3+Bt7Dh/Y8s3uPnURvQEAJnjFlPV5nrz8u0l2H1h/2Rx7AQDbkKraOckjB7acneRB3X3JGo0EAAAAsK349ynrfzzPZuMvcHz0wJaLkxwzz54AwIb3gSnrR1TVgQvqff8p6+9aUF8AYOQ+Sa4xsP6G7v6ntRpmGaYdm/sH41CZebhvkv0H1h2bC7AEwSushZdMWX/++ITjVauq7ZL83ZRtR8+jFwCwzZn2zTi3qqppfyxZiack2XVg/XUL6AkAMOTYJF8bWD+0qu652iZVdfUkfz6w5QvdfcJq+wAA26w7JbnKwPpzu/u0tRoGAAAAYBvyliSnD6wfVVW/Mcd+j0nyC0Pz+BZmAGAL70ty3sB6JXnWvJtW1a2TPGBgy+lJHOsCAIs1dF7PRUkev1aDLMf4C5mHPifcIMnvrLZPVe2a5K8GtpyZ5PWr7QOwLRK8wlp4a5JTB9avkeSlVVVz6PX7SW49sP7pJO+YQx8AYNvzhiQ/nrLnJVV13Xk1rKrbZ/gXI5ckedG8+gEAzKK7L03y11O2vbCqhk50HjT+5sJXJ9ljYNszVlofANgU7j6wdkamB/UDAAAAsITuvjDJC6ZsO3oex9BU1XWSPH1onCTPWW0fAGDb0t0/TnLMlG33qKrfn1fPqrpikhdnFOoyydHj424AgAUYH3t61MCWl3X319donJV47pT1Z1XVDVbZ44UZhbhM8rzuvmCVPQC2SYJXWLju7iR/MWXbfZO8rKpW/Jisqnsnef6UbU8czwMA8L+M/whz9JRtV0nylqq6xmr7VdVBGQXC7Tiw7dVb+S99AIBt1z8n+ebA+r5JXldVOy+38Pj3P/+c5IiBbadEoj4AMGwoeOWN3f2TNZsEAAAAYNtzdJLTBtb3SHJ8VV1/pQ2q6qpJjk1y5YFtb+juT6y0BwCwTXtukmkhJ39dVfdZbaOq2iXJW5IcNLDtRxmd6AwALM4hGf7Cv1et1SAr0d3vTPLRgS27JXljVe25kvpV9fQkDx/YclqSv19JbYDNYIf1HoDNobuPqar/THK3gW2PTLJnVf1ud5++nPpV9fCMkmO3H9j2hu7+z+XUBQA2nedm9JnkagN7DkxyclU9oLtPWm6D8YnGj0vyzCRXGNh6bpInLrc+AMA8dPdFVfW4JG8c2HbnJG+rqgd195mz1B3/MeiVSe41ZeufCM8FACYZh+IOndRzUVU9Yo3GWcrru/v8dewPAAAAsCrdfe74b0WvG9h2vSQnVtXDuvt9y6lfVTdO8pokNx7YdnZGx9gAAPyc7v5CVb08yW8NbNspyZuq6klJntfdFy+3T1XdJsm/ZPhzS5I8edbjZwCAFbv9wNr5SW5cVTdaq2G28J3ufs8M+34/yUlJtpuwfmCS91XVfbp76AsU/8c4JO7vkvz2lK1P9kVGAJMJXmEt/XaSjyW5+sCe+yQ5oqr+Ksm/dPe3J20cn7R8uyRPTXKnKb1PS/KYZU0LAGw63X1mVT0qo1T6Ifsm+UhVvSPJ85J8aNofY6rqikkenOQPktx0hnF+r7uHvjkIAGChuvtNVfXmjH5fM8mdk3yuqv4syWu6+6KlNlXVFZI8IslTMvy7oSQ5urvfu4KRAYDN48Ap6+v9N6F3ZXRADwAAAMCG1d2vr6pfSfKQgW3XTPLe8d+U/irJR4fC9avqukkeleRPMjoReshjuvu7yxwbANhc/l+SIzMKhJukkjw7yaPG5yr9e3f/aKhoVVVGJ3b/QZJfzfCXRCfJe5O8aMaZAYCVGzpeZJckL1+rQZZwbJKpwSvd/bGq+vskjx3Ydsskn6mqpyb55+7+8VKbqmqHJA9I8vQkN5zS+h3d/bJp8wFsZoJXWDPd/e2quk+S4zL6EDPJbkmemeSZVfXJJB9J8r0k30+yc0Yn51w7yVFJrjZD658meWB3f38V4wMAm0R3v7Wq/iKjXzxMc4/x5cdV9eEkn0ty5vhyaZKrJNknycFJbp1kxxnHeEl3v2q5swMALMCjktwiwweoXCPJK5I8r6qOS3JKkjMySuPfZ3z7I5JcaYZ+X8joQFsAgCG3WO8BAAAAADaJ30pygyS3nbLvPuPL96rqPUm+ldGxvxdkdKzvPuMat5qx74u7+9UrmhgA2DS6+5yqumeSDybZfcr2/ZK8OMmLquqzSU7K6PPKmUl+PL79VZIckNGXRO814xjfSPKQ7r50+f8CAGCZtpXjRf4so5C3gwb27J7kb5M8rapOSPKxJD9I0kmumuRmGX154lVm6Pe9JL+5moEBNgPBK6yp7v5oVd0jyVsz28k2t8rsf2RZyqVJHtbdH1xFDQBgk+nuZ1TVzkmeNONNrpRRKNxRc2j/liS/N4c6AACr1t0/rKp7JflQRmG5Q66aUXL+A1bY7ltJ7trd56/w9gDA5nGT9R4AAAAAYDPo7gur6m5J3pnkkBlusk+Sh6yy7VuT/P4qawAAm0R3f66q7prkbRkduzJNJbn5+LJaP8zoWJfvzaEWADCgqnZMsv96zzEP3X1+Vd07yclJrjVl+5WT3HN8WYmz4/MKwEy2W+8B2Hy6+7gkd0rynQW3ujDJQ7v7dQvuAwBsg7r7z5M8MslP1rDtvyW5f3dfsoY9AQAGdfdnkxyZ5IwFtvlOkjt397cW2AMA2HZcc70HAAAAANgsuvvsjL6M6E1r0O6YJA/s7ovXoFyfvREAACAASURBVBcAsI3o7pOS3DbJp9ew7TeT3L67v7iGPQFgM9sn29A58d393SSHJ/n6AtucneQe3X3KAnsAbDO2mTcZNpbu/liSWyV514JafD3JHbv7NQuqDwBsAt39yow+s5y44FYXJvnD7n6IA0cAgK1Rd5+c5A5JvrCA8ickuXV3f2kBtQGAbdPV13sAAAAAgM2ku8/r7vsleXxGx7nM20+T/EVGoSuLqA8AbOO6+8tJDk7yVxl9tlikt8WxLgCw1ra5Y0XGn19ul+RDCyj/uSQHdfciagNskwSvsG66+/vdfbckD00yr28zviDJ3yQ5oLs/MqeaAMAm1t1f6u5Dk/xaRr94mLc3J7lZd//9AmoDAMxNd5+aUSjd85JcNIeSZyX5kyRHdvf35lAPANg8trmDaQAAAAA2gu5+XpIDkxw7x7IfyOhEoGd0d8+xLgCwyXT3hd39p0kOSPK6JJfMucVXMwqKu1d3/3DOtQGAYdvksSLd/d0kh2YUdvvjOZS8IMlfJvnlcbALADMqv59ma1BVOyV5RJJHZ3QCz3J9Pcm/JfnH7j59fpMBAPxMVVWSOyd5eJJ7JbnSCkt9P8kbkxzd3Z+f03gAAGumqvbN6I88D0my5zJv/o0kr0ryd919xrxnAwAAAAAAYPGq6rZJHpvk3kl2XubNz0/y1iQv7O4PzHs2AIAkqar9kjwyya8nueEKy/w0yXFJ/inJf3T3vMNcAACSJFW1V5LHJfk/Sa6xzJt/P8lrkzy/u78179kANgPBK2x1qurGSY5MckiSGye5dpLdkuyQ0R9azk3yzSRfTvKxJCcm+ZSUewBgLVXVjklum9FnlgOTXD/JtZLskeQKSTqjzy5nJfl2kq8k+VSSDyc5ubsvXYexAQDmqqp2SHLHJIdn9JnoRhkFseyW5NIkZyc5M8mpST6e0e9xPuT3OAAAAAAAANuGqtojo+N+D0tyQEYnNe+ZZJckFyU5L8npSb6a5LNJPpTkA909j29xBgCYSVXtn9HnlVsm+cWMzlXaO6PPLDskuSCjzy2nZfSlQp/N6Jyl47r77PWYGQDYnMZfGn1IRr9vOTDJTZLsleTK4y1nJ/lRkv9K8omMzlN6f3dfvPbTAmw7BK8AAAAAAAAAAAAAAAAAAAAAAJvOdus9AAAAAAAAAAAAAAAAAAAAAADAWhO8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAwDasqq5XVedVVV/u8pOquvp6zwawWlX1pi1e37qq7rHecwEAAAAAAAAbg+AVAAAAAAAAgCmq6pVLnMy5kS5fX+/7kK3HOIBhvR+Tq708YsK/7fApt7vemt7ZsPV4YZJdt7yuu09fj2GGVNXxA8/hw9d7PmCr9OQkl25x3dFVteXrHgAAAAAAAMDPEbwCAAAAAAAAAADbqKp6UJK7bXH1eUn+ah3GAZi77v58ktducfV1kzxtHcYBAAAAAAAANhjBKwAAAAAAAAAAsA2qqt2T/O0SS0d39w/Weh6ABXpakku2uO6xVXXgegwDAAAAAAAAbByCVwAAAAAAAAAAYNv07CRX3+K6nyT563WYBWBhuvu/k7x6i6t3SPLSqnKcJAAAAAAAADDRDus9AAAAAAAAAAAAG1dVXS/JIwa2/F13n7Umw/A/quqgJL+zxNKLuvsHaz0PwBp4epIH538fF3mbjF4LX7guEwEAAAAAAABbPcErAAAAAAAAAACsxvWSPGVg/ZVJBK+soaqqJEcn2W6LpQuS/PXaTwSweN391ap6TZKHbbH07Kr6j+4+bT3mAgAAAAAAALZuWx5cAQAAAAAAAAAAbGy/meQ2S1z/8u4+fa2HAVhDz0py6RbX7Z7kb9dhFgAAAAAAAGADELwCAAAAAAAAMEV3P6K7a16XJE+b0vKEefbr7uutwd3EBtHdX5/z46tmaHvHOfd85aLvJ9ioqmr3JM9eYuniJM9d43EA1lR3/1eSY5ZY+rWqOmqt5wEAAAAAAAC2foJXAAAAAAAAAABg2/EXSfZe4vp/7+5vrPUwAOvgOROu/8eq2nlNJwEAAAAAAAC2eoJXAAAAAAAAAABgG1BVN0zymAnLz13LWQDWS3efkuQ9Syztn+TxazwOAAAAAAAAsJUTvAIAAAAAAAAAANuG5yTZaYnr39fdn17rYQDW0fMnXP/Eqrrumk4CAAAAAAAAbNUErwAAAAAAAAAAwAZXVQcnuf+E5b9dy1kA1lt3H5vk1CWWdkny3DUeBwAAAAAAANiKCV4BAAAAAAAAAICN79kTrv9ykneu5SAAW4mjJ1z/gKq65ZpOAgAAAAAAAGy1BK8AAAAAAAAAAMAGVlWHJbnThOUXdnev5TwAW4l/TXLeEtdXkiet8SwAAAAAAADAVmqH9R4AAAAAAAAAAADmoap2TrJ/kqsk2SPJbkkuSHLu+PL9JF/r7kvXbcjFePKE6y9M8i9rOQjA1qK7z62q1yX5zSWWf7Wqrt/dX13ruQAAAAAAAICti+AVAAAAAAAAABhQVZXkmkmun2TPJFdK0knOyyjE4avd/f31m5B5qKpdk9wjye2S3Dyjn/fuGf28L0ry4yTfSfKlJB9Ncmx3n7o+0/5MVV05o6CRq2c06/ZJzk5yRpIvdPc56zjewlXV9kmOTHLfJL+U5IAkO0652flVdWqSTyd5e5J3dfdPFjroAlXVrZMcMWH5zd195hrOskNGz539Mgq9uUJGz52zk3ylu7+5VrOs1EZ5TlXV9ZPcPcmhSW6S0fvUbhmF7ZyV5LQkn0xycpK3dPcP12nUqapq7yT3T3LPJDdKco2MHjs/THJod39xjr12yOjxeb2M7q9dM3o/Pyuj9/NvzKvXPF3us8gN8rPPIhdlNPd3knypuy9Zvwl/ZjzrfkmumtGseybZLqP7+ewk30jy7e7+6RqN9K9ZOnhluyT/N8kfr9EcAAAAAAAAwFZK8AoAAAAAAADAJlFVN07yoIEtp3b361fZ46gkhwxs+W53v3Q1PcZ9HptkjwnL7+ruk1ZZ/7oZ3Vd3yujfc6Up+09L8qGMQhze3N1nr6Y/a6eqrpfkL5L8WkYn4C9lh/Ha1ZLcMuPnUVV9LMnfdPfrFj7oWFXtlORXxpc7ZhQeMElX1deSvDvJm5O8r7svXkXvK2UUjrClG0+56f2ralLowzHd/eMVzHK1JI9P8tCMfi7LsUuSW40vj8woiOXtSZ7V3Z9e7ixbgT8cWPu3RTevqmsneUiSuyb55SQ7Dew9K8nxSY5J8qbuPn/R802zns+plaiquyf5fxm9Py1lhyRXTHKtJAcl+e0kL6qq/0zyjO7++BI1Pzeh1se6+5HLmK0Hlnfc8r6qqisk+ZOMnstLvc/unVEAy6pU1YFJHpjRz/egDIQzjR+jH87o5/vm7v7BavuvVFVdM6P3myOT3D6joJhJLqiqTyV5W0bPrS+twYj/o6pumOTXMwovOziTP6Nd5qLxvCcmeVOSk7p76PGzGidmFE5zrSXWHlFVT+ruCxfUGwAAAAAAANgAanF/rwQAAAAAAABgKVX11CRPGdhyQncfvoC+18zoxNNJvtbd119lj/cmOWJgy0+S7NndF62ix1WTfD9JTdhySHd/ZIW1D03y5Iz+DZPqT3Nhkn9N8rzu/u8V1thQppxsnyR37O7j12COw5McN7Blv+7++njvDhk9Dx+fgaCIGZ2Q5OHd/Y1V1pmoqvbMKGzhd5LstcIy30ryD0le0t3nrGCG6yX52gp7T/I/P5MZZ7hikj8eXwYDkVagMwoAeHx3f3XOtRdiHIbzgywdTnFukquu5vV2Su8bJHl2kvsl2X4FJU5L8qwkL+ruSy9X9/gkh024zdxeS7aG59RyVNX1k7w0w++x03SS1yd5THefcbnak17Dl/V5ZDnBK1V1rYzCTQ6aUvaW3X3KrDNcrn4luW+SP8soZGklLkry2iTP7+7PrrDGslXVrTN6f7p7VvbcSpL3ZRQM9s65DbaEqjoyyeOS3C0r/9yUJP+d5C+T/Osiwoyq6p+S/NaE5QetNngQAAAAAAAA2Ni2W+8BAAAAAAAAAFgb3f3dJJ8e2LJfVe270vpVtWOS207ZtmuS26y0x9idMvnk3jOSfHS5Batq36p6W0YBGkcO1J/FzkkeleTzVfW3VXXlVdRiAapqtyTvTPLnWX3oSjIKifhoVa305P5BVfXbGQWePCkrD4hIkmsneW6SL1fVb1XVhjpupKpukuTjSZ6a+YeuJKPn/f2SnFJVv7qA+otw7ywdupIkxy8idKVGnpjk80kemJUHQ1wjyT8mOW4cqLVmNtpzqqp+LckpWV3oSjJ6jD8oyaeq6oBVD7bSIar2T3JypoeurLT+zTL6LHBMVh66kozeHx6e0WvCP1fV1eYx3yRVtVdV/VtGr3P3zMqfW8nosfKOqjqhqg6cy4CXU1VXrqpXJnlPRgExq/nclCT7J3lZkpMXMW9G7/mTPHwB/QAAAAAAAIANZEMdQAMAAAAAAADAqg2deJqMAiRW6jYZBatMc/gqeiTDJ56/q7svXU6xqrp3ks8l+ZVVTfXzdkzy2IxOcF9t2AxzMg5deU+SO8+59D5J3llV15lXwarao6r+M8lLkuw+r7pJ9k7yT0neX1XXmGPdhamqm2YUjHTjNWi3W5I3VNX916DXav3awNq7592sqnZN8tYkz84oZGoeDk3ykdUEf81qIz6nquoJSV6b0eNyXq6d5MSquvUca86kqq6b5H1Jrrmg+n+QUXDJL82x7HZJfjPJqVU1788KSZKqOiyjMKPfmHPpQ5N8oqqeVFWrDUdJklTVLZN8NosJLLllRq8H8w6/em+Sn05Yu3NV7T3nfgAAAAAAAMAGIngFAAAAAAAAYHOZFrxy6CpqHz7nfZMMBa+8YzmFqupxSd6U+Z6Av6XrJ/lAVT1ogT2YzU4ZhUYcvKD6+yT5t3mc3F5V+yU5KcldVz3VZIclOaWq5hlQMHdVdcUkb0xy1TVsu32Sf6mqG65hz2Wpqj2S3GVgy1yDV6pqlyRvy/xDqpLkhhmFllxtAbWTbMzn1Dh05S+TzCUwYwt7JDm2qn5hAbWXNA6+ekdGwS/zrr1dVb0oyQsyeq1fhKskeWtVPWWeRavq4RkFgu0zz7qXs32SZyZ5+/h5vGJVdaskxyWZW8jYEnZJckxV3WdeBbv73CQfnLC8Q5IHzKsXAAAAAAAAsPHssN4DAAAAAAAAALCmPpLkR0n2nLB+2Cpqz3rbQ6pqp+6+aLkNquo6SW4wYfmSJMcuo9YfJvmb5c6wQjsneU1V7dbd/7RGPfl5L8pw8M9ZSd6X5ItJvpfRY2qfJPtmFHBxrRl63D7Jg5O8eqVDVtW+Sd6f5HorrbEMV0vy7qo6qrs/tgb9VuIJSW40w77PZBTq8P4kX09yRpJzkuya5EpJ9kty4yR3SnL3TH4dvMyuSZ6f5N4rGXoN3CeTAya+0d3/Ned+r8zovluU/TMKRpp7yMhGfE5V1YMzCl2ZxTcyen//fEbv8ZcmuWZGASdHJbnGhNvtlWUGlq3SK5LcdN5Fx2FXL07yqHnXXqpdkqeOP8c8adXFqh6W0f2yiHCdLd09o+CYe3X3+cu98TgY6e1ZbFjdZbbL6HPTwd392TnVfHeSO05Yu0+SF86pDwAAAAAAALDBCF4BAAAAAAAA2ES6+5KqeneSX5uw5UZVtU93f285datqxySHzLh9lyQHJzlxOT3GjhhYO6m7z5ylSFXdL8nfzrD1giT/keRdST6d0cntP84o7GD3JL+Q5KAk90pyhwyfOF1JXlxVZ3T3m2aZk7mbFBpxUpJnJjm2uy9easP4xP47JPnHJDeb0uePssLglaraLaOTw683w/aPJHlLkuOTnJbk9IyOBblKRo/NQzIKDTloSp09kry9qm7R3aetZO5FqaorJXnslG1fS/In3f3GCevnji+nJflwkpdX1RWSPDrJ0zIcInDPqrp+d391eZOviTsPrH1kno2q6nFJHjjj9g8neWOSDyX5cpKzM7qPr5Xk5uM6d8nSoTEHr3rYLWzE51RV3TTJS2fY+p9JntXdHxqotV2S22X0WF8qdOKGy51vhR6Q5H4Lqv30zBa68p2Mfr5vT/LVjH7G5ye5ckaPjwOT3DWj9/Sdp9T6s6r6Sne/fIUzp6qOSvLyTA9dOTejn/Vbknx2PPdZSa6YUcDOTZMcmeS+SfaeUuvIJC9J8rAVjHx0Jof4XOYLSV6X0XPpi+M5L8joPt5jPO8vZxRSdvckOw7U2iXJP1XVId196Qrm3dInBtYOq6ord/c5c+gDAAAAAAAAbDDV3es9AwAAAAAAAMCmUlVPTfKUgS0ndPfhC+z/sCT/MrDlgd39hmXWvG1GJ9vP6i+6+xnL6THu8+okD56w/KTufvYMNfZP8vGMTgKe5JKMAjae2d0/nHG2A5I8O8k9p2w9N8ktttIghxWpqmkHH9yxu49fgzkOT3LcMm5yVpJHd/e/L6PHzhmdKP8bU7beurs/uYxZLqt/TKaHE3w0yeO6e6ZwjfHz8++S3GbK1uOT3KmXeTDJDPf7ft399eXUvFzthyb514Etn09yZHefvsL6N84olOPaA9v+qLtnCWpaU1X1tUwOE/mz7n7OnPrcMMlnMgpBGHJSksd290dnqHmdjF5jp71ebmnZryUb7Tk1Dkr5yJTa5yV5RHcfM2vdce2HJnlxkl1nvMmyPo9MeS/47yT7L3H9xRm9frwjo7Ce7yX5fkZhJHsn+WF3nz/Q815J3pzh8JIfZRQ888Lu/unQv2Fcc+8kT0rymCTbD2w9P6PX+lOn1Vyix3UzCgLZa2DbxRn9vJ7a3WfMUHPnJL+Z5FkZhZwMeWR3v3K2aZOqOjij5/gk5yb5vSSvnvXxXlX7JnnC+HZDP7//092vmHXWgX57JRn6THfv7n7ravsAAAAAAAAAG8926z0AAAAAAAAAAGvuP5MMnRR72ApqHr7g/Ze508DaO6bduKoqycsyHLryoyR36e7Hzhq6kiTd/bnuvleSR2cU3DLJbhkOvmFtnJJRAM7MoStJ0t0XJvmtJJ+esvWuyx2oqh6R6QERz0py21kDIpJkvPe2SZ4/ZevhmR4os9aG7sdzMnqurih0JUm6+4tJHprh18SDV1p/Uarq6pkcupJMf3wux9GZHrry3CS3nyV0JUm6+5vj18tHJbl0lfNNtEGfU4/K9NCVOy43dCVJuvtVGT2nzl3ubedgqdCVdyW5WXcf1d0v6O6Pd/e3uvvC7r5g/N9DoSt7ZfSePhTa8YkkNxnXnxq6kiTd/YPufmySI5OcObB1lyR/P0vNJbwiw6ErP0xyaHf//iyhK8no/am7X5jk5hmFJQ15XlXtPtuoSZI/HFi7KKMArFctJ2Sou7/d3b+f5NeTXDiw9Y9mrTml3xlJvjmw5fB59AEAAAAAAAA2HsErAAAAAAAAAJtMd/8gyccHthy6grKHL3P/batqp+XcoKpukuQaE5a/092zBA08PMkdBtZ/kuTu3f2+5cx2ed390iQPynCQw+2r6v4r7cGqfTnJEd39jZXceBwE8MdTti3reTQOEPjrKdt+p7v/fDkntl+muy/t7j9O8pdTtj6nqnZYbv0Fuu3A2gu6+zurbdDdJyT58MCWG6y2xwLcbsr6tNCFmVTVEUmOmrLtT7v7Cd09FDi1pO7+5yQPSXLxSuYbshGfU1W1Y5InTdn2kO7+2Cz1ltLdJya5exZwny/TE7r7buPwo5V6fpKrDqy/N8lhKw1n6u7jM3r8nzew7ciqusty6o4Dge44sOWbSQ5ZThjQ5XX3tzIK0Tt1YNtVk/zpLPXGj8t7DWx5fnefPPuE/1t3vz7Jnw9sOaCqhsKIluOTA2tDnw8BAAAAAACAbZjgFQAAAAAAAIDN6Z0DawdU1VVmLTQ+ofyQCcvfmnD9LkkOnrXH2BEDa0P/niT/M+dTpmx7XHeftKypltDdxyR51pRtT19tH1bs4d195iprvC/JdwfWb7nMen+aZK+B9b/p7pcss+ZS/izJ+wfWr51kqwgFGp/sf52BLS+fY7u3D6ztPsc+8zLpNTdJzuzub8+pz9OmrL+6u/9qNQ26+7VJnriaGhNsxOfUb4z3T/La7n7zrINN0t0fTPKM1dZZhcd193NXU6CqDkjysIEtX03ygO4eCk2Zqrs/keT3pmx73Kz1qmrnDN/3Fya5X3f/96w1l9LdZyX51SQXDGx7dFXtOkO5WyW54sD6vy1ntglekMmfGZPhoJrlGApeufn4fQcAAAAAAADYZASvAAAAAAAAAGxOQ0ElleQOy6h1UJIrLXF9J3nmwO2WexLtqoJXkjw4yfUG1k/u7pcua6Jhz0gydOL0L1bVnebYj9m8pbs/vNoi3d1JPjCw5WpVtcsstarqqkl+d2DLyUmesIzxJhrP/egkFw9se/Q8es3B1ZNsP2Hty9399Tn2Ggoq2WmOfeblwIG1r8yjQVXdOsntBrb8MMlj59EryfOTrDr06jIb+Dn1yIG1SzIKeZmX52b4cb8ob+7uv5tDnSdn9HllKZckuf84fGTVuvtfkhw/sOWoqtpvxnL/J8m+A+t/0t0fn3W2Id39pSR/ObBlzyQPmKHUL05ZX/VrTnf/NMmrBrYctNoeY18bWNspyQFz6gMAAAAAAABsIIJXAAAAAAAAADanjyX5/sD6YcuoNWnvZ5P8e5JLJ6wfPmuDqtp+oM9FSd47Q5lHTVl/2qzzzKK7L0ryrCnbHjHPnszkxXOs9YUp69edsc4jklxxYP2J3T0U6rAs3f3lJK8d2HKHcXDFelsq0Okyp8y51/lzrrdoQyEP351Tj9+esv747j5jHo3G4SV/Oo9aY4/IBntOVdW+SQ4d2HLMPMOGuvuCJP8wr3ozOifTH1dTVdU+Se47sOU13f2p1fbZwjOGRkpynxnr/N+Bta8ledHME83mBUnOHVgfuh8vc7Up67vPPs6g4wfW9plTj29NWb/xnPoAAAAAAAAAG4jgFQAAAAAAAIBNaHyS+7EDW4ZO/t7S4ROuP667z0ryiQnrt62qnWfsceske0xY+0B3/3joxlV1/SS3G9jyie5+54yzLMfrkwwFE9y9qvztfu2ck+Q9c6z3zSnre85Y55EDayd19/tnrLMc/zywtn2Suyyg53J9M8kdJ1yeOOdee8+53sKMg6iuPbBl1cErVbVDhgMZfpTkNavtc3ndfUKSz8yp3EZ8Tt0lowCPSYaCXVbq1Ul6AXUneUl3/2AOdR6WZIcJa53k2XPo8b+Ljh4zXxvYcvdpNarql5IcMLDlL+cZCJQk489hxwxsuXNV7TilzE5T1g9f1lCTfTTJAyZcnj6nHt+esj4UagUAAAAAAABsoxy8BQAAAAAAALB5DQWN3KKqrjytwDgAYFKgyXHj//u+CetXSHLwtB5jRwysvWOG299zyvorZpxjWbr7giT/MbBlryS3WkRvlnRid18yx3pnTVnfZVqBqrpRkpsMbHndsiaa3QeTnD6wfpsF9Z1Zd5/X3cdPuHx5zu2WEza13vZNMhSUsOrglSSHJLnqwPpru/vCOfTZ0qof7xv4OTX0Pnd+kncve6Ipuvu7mRyOtgj/MKc6Q6FAn+7uL86pz5aGAkx+qaqGgnOS4bkvTfKG5Y80k6G5d8lwGEwyCi0b8udVtevyRvp53X1Odx8z4fLe1dYf+3aGw4auP6c+AAAAAAAAxPsSvAAAIABJREFUwAYieAUAAAAAAABg8zo2yaQQiqFAlcu7dZLdlrj+0iQfGP/30Mmyh8/QIxk+IX0oQOYydx5Y6wyHo6zWpOCZyxy0wN78b6fMud75U9ZnORH9blPWpz1+VqS7L80oKGKSTfO4rKpbJrnfes+xDPtNWZ9H8Mqdpqy/dg49lnLsHGps1OfUUDDLJ7t72uvNSg3NPE+f7+5vrbZIVV0lw/fVQn6+YycMrO2e5IZTbj/02PxUd/9o+SPN5MSMPpdNMu2xOS3I5oAk/15Vuy9rqnUwDoz6wcCWaa+vAAAAAAAAwDZI8AoAAAAAAADAJjU+wfekgS2HzVDm8AnXn3K5E4g/lOSCCfvuOK1BVe2cySEwX+nu/5pWI8khA2snd/c8ggomOXHK+i0X2Jv/7UtzrnfRlPUdZqhxh4G1H3f355Yxz3INPf9vssC+W4Wq2ruqHpPkuCQ7rfc8y3DdKevfn0OPoeCtS5J8Yg49lvLpJD9ZZY0N95yqqismuf7AbT+54omm+/QCa1/eB6ZvmcntMnzM29DPYLWm1R76Ge+W5OarqL1i3X1uki8MbJn2ev/BTH9e3iPJp6rqflW1tR+T+L2BNcErAAAAAAAAsAlt7X/kBAAAAAAAAGCx3jmwdugMt58UzvL+y/6juy/IKHxlKb88DlYZckiSK0xYe8eU26aqrp1kz4EtizxJO939nSTnDWxxku/aWWTAzkrdYmDtBwvu/cWBtT2q6qoL7r9QVbVjVd2gqo6oqt+sqmdW1aur6oNV9e2MAkr+Icnu6zzqck2bd1LQ1XIMBUR8qbvPn0OPn9PdlySZJUxryEZ8Tu2fpAZu+/mVjzTVau/vWX17TnWGfr7JfIKHltTdZyT54cCW/QfWbpHhn/HC5h4bemwOzZ3u/kmSV83QY78kxyT58vj19jZVtf0yZlwrQ69fe63ZFAAAAAAAAMBWY5ZvVgIAAAAAAABg2/XOJM+asHZQVe06PuH254xPpr39hNset8X//74kRyyx7wpJfjnJCQMzLnW7ywwFx1zmplPWPzNDjdX6SiYHGey7Bv0ZGTphfs1V1S4ZDt5Z9LxfnbJ+jTWYYVWqarskN8wo1OCmGd2f1xtfrpVt80uJdp2yvqrglaraK8nVBracspr6M/hypodrLGkDP6euOeV231nZODM5fYG1L29e9/209/S1+BlPCtC5xsDttoa5Jxma+zJPTfKAJFeZYe9+SZ40vpxVVSdm9DnvhCSfGgcsraeh4JUrrtkUAAAAAAAAwFZD8AoAAAAAAADAJtbdp1TVd7P0Sd87JjkkyXsn3PxWSa68xPWXJDlxi+vem+TZE+ocnpUFr5yX5PiB211mWrDJWgSvfG9gbe816M/I0MnW6+HaSWpg/ZeqqtdqmCUMhW+sm3G4xt2TPDDJ3ZLstr4TrblpwSurfZxPe808bZX1p/n+Km67UZ9T04IvFhm8slbhShfNqc51pqx/vmroIbBQQ6+Z0+Y+uqqOnucwyzD1tb67T6+qX0/y9ow+H85qjyT3HF+S5Nyq+mBGAX3HJflkd1+6zHlXa+g1cvuqukJ3ryrACgAAgP/f3p1HSX9XdeJ/3yeBhISEYDZ22WSHsJmENRuLDkFhBEeWo4LCACqbGZwZQB2VYX7DMMDgCCiMjiAoguAoCQRCEiZCkKAsAYRASEhCZAtLNrLe+aM6+T157PpWdVdVd1f69TqnD0ndT917n676Vvc5PN93AAAAYLncGP+rPgAAAAAAAACszQkDtUcO1I4Y8/gZ3X3xLo99Msl3x5w/atyAqto3yYPHlD/c3VcM7Hed1UJldnb+FD1mdelA7WYbMJ+Red34Py+TAi4225YKNKmqvarq3yX5WpJ3ZRS8sqV23CCTgldmDQy41YT6D2bsP8m4nxXTWNZrarUQs519f96L7GTZAia28ms89Hm0rHtfr7tPTPLTSXb9HW+ts34yyX9N8okk36yqt1fVU6pqoz7PJ4VT7b0hWwAAAAAAAABbhuAVAAAAAAAAAI4fqI0LV0mSI8c8fvKuD3T3tUlOGXP+8Krac2D+7mNq7xvYbWe3nFBfdIhAIniF1U0KW9hsN9/sBa5TVUcnOSujm/UPmHP7C5N8bM49F2nRwSuTwg8WGQKSJNMEao2zrNfUuJ+B11lkOMrVC+y9CFv5NR76zFzWvW+gu09IckiSD85p9v5JnpLk7Um+VVXvqqqfrKqaU//VXDah7vcyAAAAAAAA2GYErwAAAAAAAADwwSRXjakdWlV77PpgVe1I8vAxz/nwmMdPGvP4HkkOH1M7ZszjyXBgzM6Gbmi/prsn3YA7D+PCY5Llu+md+dnqN3dvif2q6uUZfU7dZo5tL88ovOkXktwlyYlz7L1ok0I6Zg0smNT/khn7L9KWeM8OGLffTSY8b5HBK5OCfLaarfwaD+22lfferaomvQev191f7e7HJHlskg8l6TntsUeSn8no97vPV9WT5tR3V5M+I2cJfwIAAAAAAACWkOAVAAAAAAAAgG2uuy9OctqY8p5JDlvl8QckucUqj1+V5O/G9PrQwBpHjnl8XPDKZ7v7vIF+O7vpQO3yKXvMat+B2iJvqGdrGwrk2Qo2fb+qemmS38n6/47LVUm+mlEg1JuSvCDJw5Ls193HdvefdvdGfQ7My6RQgEUHPCy6/9Dn5SSb/p6dYNx+48LPrjP0c2xWey+w9yJs5dd4aLetvHeyjv26+8TufnSSuyf5rSSfneM+90jyl1X1jqqa92fOpHCpS+c8DwAAAAAAANjitvr/oQsAAAAAAADAxjg+yVFjao9M8pFdHjtizNmPd/dlqxW6+4tVdUGS265SPnLXB6rq4CT3GTPn+DGPr+bqgdpeVVXd3Wvotx77DNQuWfBstq4rN3uBCXbbzOFV9eQkvzfl8c7opv/TkpyZ5AsZBa6c393XLGbDTTMpKGbWkIJJYVCzBKNMY5b+y3pNTfqe75Pkn+e8y3VutaC+i3JlJgdnbJahz8xlfW9O1N1nZRSQ9TtVdYckj07yqIx+rzx4xr1+LslBVfUT3T0poGhaQ++fzsaF8gEAAAAAAABbhOAVAAAAAAAAAJJRkMmrxtSOyL8MPzhyzNmTJ8w5KcnPr/L44VW1Z3fvfPP50QN93jdhzs6GbqDdkeTmSS5eQ7/1OGigtqib6dn6Jt3c/TdJ/mojFhnj45s1uKr2TPLqKY5+I8lrkrytuy9Y7FZbxqKDVyaFQS06eGUoqGqSZb2mLp3wvEV+z++ywN6LcHnGB2d8N8mLN3CXXX1noDbpvfkbSb45x13W6op5NOnuryV5y8pXquqeGf3OeGRGv0+uJ4jl6CSvTHLcPHbMcPDK5RsQxgcAAAAAAABsMYJXAAAAAAAAAEh3f76qzklyx1XKD6mqm3T3VUlSVTuSPGJMqw9PGPWhrB68skeSh+SGwS3HjOnxvSQfnTBn1/ND9ssCg1eq6qZJ7jxw5MJFzWbLu2hC/ezu/pONWGQLel6S208489dJfrG7J13jNzbfnlCfNXhlUhjUj87Yf5I7zvDcZb2mJn3PD1zg7LsvsPciXJTklmNqO7bo65tMfm+e2N2f2pBNNlB3fyHJF5K8Ibk+iOXRK1/HZPrPqxdU1R9295fmsNZQ8Mplc+gPAAAAAAAALJkdm70AAAAAAAAAAFvGCWMe3zvJg3b690MyCivZ1Q+TnD5hxkkDtSN3+fejx5z7QHdfM2HOzr4+oX63NfRajx/L8H8YZR43EbOczp9QX+062y5+bkL9Pd39hDmGruw2pz4bYVJY014z9p/0vjxkxv5jVVUluc8MLZb1mpr0mt53gbMfvsDeizD0Gu+7Eg63FS3re3OuuvsL3f0/uvvxSQ5I8qQkf5ukJzx19yTPmdMaQ8Er35/TDAAAAAAAAGCJbNX/oxkAAAAAAACAjXf8QO2RO/3zkWPOfKy7fzg0oLu/nuQLY8rX962qOyW505hzQ3uu5msT6vdfY7+1mtT/zAXPZ+u6IMnVA/UDN2qRraSq9s8Nw5529Z0kz5jz2H3n3G+RJoVJHTRL8+7+dpJvDxy5W1UNBRfM4s5J9pnh+ct6TX1lQn0hYTdVtXuWL3jlnIFaJdl/g/ZYq3Mm1Lfqe3Nhuvuy7n73SgjLAzM5iO7xcxo99Bl57pxmAAAAAAAAAEtE8AoAAAAAAAAA1/lwknHBKUeM+eednTzlnJPGPH7YTjfzHzPmzLVJTphyznUmBZs8cI391uqxE+pnLHg+W1R3X5XxQUTJ4kOBtqpDM/x3Wt7e3d+f88w7zLnfIp03oX77Ocz49EBtt9wwjGueDp/lyct6TXX3RUn+eeDITN+XAT+R5QodSpLPTKhvydc4y7v3hujuT2X0uXLBwLG7VtUtZplTVZXk4IEjX52lPwAAAAAAALCcBK8AAAAAAAAAkCTp7suSnDqm/LCq2rFyw+ojxpyZNnjlQ2Me3yPJQ1f+eVzwyhnd/a0p5yRJuvv8JN8eOPKYqtp9LT2ntfL9Ggpe+U6Szy5iNkvjHwZqt6mqW2/YJlvHQRPqJy5g5oMX0HNRzk1y+UB9HsErH51Qf/IcZqzmKXPosazX1NDed6mqRbxHf2EBPRdt6PuUbN1r+cwkVw7Ut+TeVfWEqjpuzNd95zmru7+R5HcnHPvRGcccmOQmA3XBKwAAAAAAALANCV4BAAAAAAAAYGfHj3n8Fknun+SQJD+ySv2yJB+fcsYpSa4ZUztyJazk6DH19005Y7WZ4xyQ5NHr7DvJwzIcInFSd/eCZrMcTppQH3ctzKyq/ntV9ZivDy5q7hQOnFA/f57DVgItbjfPnovU3dcmOWvgyDz+LB+YUH9iVQ2FF6xZVR2Q5DFzaLWs19SHJ9SfPq89k6Sq7p7kifPsuUE+ltHvHOMs8vW978Dr21V123HP7e4rk5w20P7wqrrZ/LdOqmr3qvrGwN5PG3j645K8aszXTy9g3Um/5+0zY//bTKifPWN/AAAAAAAAYAkJXgEAAAAAAABgZ0M3vB6x8rWa07r7qmkGdPf3k5wxpnxkkvtkfFjJuGCYSSaFCPz8OvtO8twJ9XcuaC7L4/1Jrh2o/+IihlbVHkmeOnDk9EXMndKkv89y5ZznvXDO/TbC5wdqt59D/9OTXDhQ3z/JM+cwZ2fPSTKPMJdlvaYm/Zx6ZlVNCo1Yi1cm2W2O/TZEd1+R4ZCao6tqHtfAan5poHZed18w4flDv8Psm+Rfr32lqRyb4RC4offm1wZq91nfOoO+NaE+1e+aA249of7VGfsDAAAAAAAAS0jwCgAAAAAAAADX6+6vJDlrTPmRGQWjrObkNY46aczjh2V0g/BqvpHkk2ucc533ZDis4Wer6r7r7L2qqjooyZMGjnwv6w+S4Uaiu7+V5EMDR46uqjsvYPSzkxw8UH/vAmZO6xsT6reb16CqemiSp8yr3wYaF16VJHeoqt1nad7d1yR564RjL6+qPWeZc52VoIz/MI9ey3pNdfeZST49cGSfJP99HXv9C1X19CRPnEevTfL2gdqODAekrEtV3SrJswaO/PUUbf4iyTUD9aH+61JVleSlA0fOXPndb5yhIJKjVvrP060m1CcFs0xyl4HaNUk+N2N/AAAAAAAAYAkJXgEAAAAAAABgV+PCQB6x8rWatQavjLsp/qZJXjSmdkJ39xrnJEm6+ztJ/nbgyI4k/996eg84LqM/zzhv7u7L5zyT5fRHA7UdSV4zz2FVdZskvztw5B+6e70hR/Nw4YT6Y+cxpKpul+TPs5x/f+b0gdpNk9xrDjPemOTqgfptk/zGHOYkyeuS7DWnXsnyXlNvmVD/N1U1UzhHVT0syZtm6bEF/FWS7wzUj1sJ85mn/5Hh9+gfTmrQ3ecnef/AkSOqat6BOM9N8uCB+qS9TxmoHZQ5fR7v5LCB2mVJzp2x/yEDtc9098Uz9gcAAAAAAACW0DL+xREAAAAAAAAAFmtc8Mr+K1+7ujjJGWuc8dEk40JHDhzz+PvWOGNXr5pQ/8mqevqMM5IkVXW/JC8YOHJlktfPYxY3Cu9J8sWB+k9V1b+ex6CqummSv0xyi4Fjr1xj20mBSHuusd/pSa4aqD+zqg5eY88bqKp7ZhQoMO9who3yDxn+Hj1w1gHd/dUkb51w7OVV9ehZ5lTVf0gy77CJZb2m3pzJwUNvrKqfn7LfDVTVT2f0M36eITcbrruvSPLagSN7J/n9ec2rql9L8uSBI+/r7s9O2e6/TKi/rqqG3ktTq6ofT/LqgSPfzISwn5WwmM8MHPntqprn30F87kDttO6+dsb+9xuo/d2MvQEAAAAAAIAlJXgFAAAAAAAAgF2dmuTSNZz/SHdfs5YBKzdNn7aGp1yd5INrmbHKzNOTvH/CsTdV1VGzzKmqW2d00/9NB479fnd/bZY53HisXD8vn3DsrVX1yFnmVNV+SU5I8tCBY2ckefcaW18yoX7ftTTr7h9k+PNhvyTvqKqbraVvklTV7lX1/CSfSHKXKZ+2+1rnLFp3X57k4wNHZg5eWfHyJD8YqO+W5L1V9fj1NK+q/5jkP6/nuUOW9ZpaeV0n7b0jyf+uqrdW1QFT7nm7qvpfSd6bZN9pnrMEXptRcMg4P1VVMwecVdULMxzyck2Sl03br7tPy/iAu2QUBnVCVe0zbc/VVNURST6Q4eCr3+vuy6Zo956B2mFJXl9VtZb9VlNVxyU5cuDIu2bsvyPJvQeOCF4BAAAAAACAbUrwCgAAAAAAAAA3sBKK8uE1POXkdY46aQ1nT+vu769zzs5ekOSKgfpeSY6vqmetp3lVPSjJR5PceeDYN5L83nr6c+PV3X+Z4Zvx90ryvqp6ynr6V9UDM3pvHj1w7Nokv9Ldvcb2351Qf/lKQMVavHlC/agkH6mqe03TrKr2rqrnJflCktcl2XsNuxw8awjCgnxgoPaAeQzo7guS/PsJx/ZK8tdV9YaqOmiavlX1o1X1f5K8YpXy1Wtcc1XLek1191syvPd1np7kq1X1tqp6QlXdo6r2raqbVNUBVfXgqnp2Vf1tkrOTPGNMn3Om3W0r6e5LkvzahGO/WlVvWcfnT6pqv6p6Y5LXZPjv2L2huz+1xva/muGAu4ckObGq7rbGvqmq3arqV5KcmOSWA0c/leQPpmz7PzO87/MyCjK6xZT9bqCq9qiq1yZ51cCx7yR5x3r67+TOGf7sF7wCAAAAAAAA25TgFQAAAAAAAABWM81N39dZb/DKh9Zwdi37jNXdX0ry8gnH9kzyh1X10ar6qarabVLfqrpXVb0pyceT3HHC8Wd396SgCranZyX55kD95kneXlUfqapHVdVNhppV1Y6qOrSq/iLJGUnuOWH+f+nuv1/byklGwQ1DN+XfN8kXquq1VfUrVfWMqvrFqnrRwI3670jyjxPmPjjJp6vqnVX1pKq6w8oN/HtW1a2q6mFV9byqem9G39f/meSuY3q9KMm4cIzdk7yqqg6qqptW1V2q6pgJu22E9w/U7j/NZ9c0uvsNSd454VgleU6S86rqL1Ze4/uvhFfsvvKa3GnldfqzJGclefwqfa7K6mEs67Ws19TTk3xuinM3T/K0JO/JKFTo+0muTPKtJJ9I8qYkj0sy7s91YSYH62xZ3f3OJH824dgzk3ypqn51mmCgqrpNVf1GRmE1/3bC8S9nHd+/7v5qkhdOOHZ4kjOr6r9NE8BSVftU1VMzet/8fpKbDhy/IsnPd/c1U+77rYw+P4c8LaMgoJdV1e2n6VtVt62qf5fkqxkF4w15xUrYziweNlD7UnefN2N/AAAAAAAAYEnV2v8jRQAAAAAAAADMoqp+O8lvDRw5tbuP3JhtVrdy0+zXpjj63SQHdPe165ixI6Obw39kiuP37u7Pr3XGmLmV5N1JnjjlU76X5P9mdDPz1zMKmNgjyS2T3C3JQ1b+dxqv6+5JN1svnaqa9JcPjuruUzZgjyMzHAR0p+4+ZwPnPbG737vGnoev9NxziuMXJzkpyVcyupYuSrJPkgOT3CnJMUkOmHL0SUl+oruvXsu+16mqk5McuY6njn1NquqhGX0vhgIEZtVJfr27X1NVX8z01/JW+JyuJOclue2YI4/s7v87p1l7J/lwkkPn0W/AcUm+mORvxtTX/FmyxNfUbZJ8IMl91vP8KVye0Z9n34wP8Tmlu4+atuGEnwXP6O4/mX69qWfumdHre/gUx6/NKJDmjIxe329mFBp0YJJbZRTMcd8pR1+S5KHd/dm17nydqnptJgeOXOfLSU5N8s8Z7X55Ru/FA5M8IMlDMz5gZ1drfi2q6pZJPp1kqlCVjMJUTsvo96aLMvp98SZJbpHkxzLa+ZCMvv+TfDzJw6YNihlnJfTpqWPKv9vdvzlLfwAAAAAAAGB57b7ZCwAAAAAAAACw9XT3eVX1uST3nnD01PWErqzMuHYlrOFnJhw9d16hKytzu6qentGN5o+Y4in7JXn8ytcs/ibJr8/Ygxu57j69qp6Y5D2ZHBSxT5InzGHsJ5L8zHoDIlb8edYXvDJWd3+0qp6V5H/Ps+9OLs4ogODdK//+wUwfvLLpVj7L/iLJi8cc+cmMQqPmMevSqvqJjMJX7j+Pnqv4/e5+dVUdO8+my3pNdffXq+rhSd6R0Ws5Tz9M8rPd/bGqGvrzXjXnuXPX3T+sqsdldP0+cMLxHUkOW/maxeVJnjBL6MqKF2cUfPOMKc7edeVrVv9xPQE43f3dqvrZJB/JdAEvd1r5mtU/J3nSHEJXKsmjBo78+Sz9AQAAAAAAgOW2Y7MXAAAAAAAAAGDLOn6KMyfPOOOkKc68b8YZ/0J3X5bkuhu1N8I7Mocbh9keuvv9GQUtXLQB405I8qju/v6Mfd6W5Otz2OcGuvtPkzw/ySyhMKs5Ocn9dgpdSZI/nvOMjTAUFvCv5jmou7+b5JFJPjDPviten9HrvBBLek1lpcfjkrwwySWz9ltxYZKju/tvV/59r4Gzl81p5kJ190VJjs4oGGjRvpnR6zvN7y+DVoLrfinJq2fearKrkzy3u1+53gbdfXqSF8xvpYm+neTR3X3+HHodkuSgMbXPzjPgDwAAAAAAAFg+glcAAAAAAAAAGGcjglc+NKc91qy7L87oRvxXJbl2ETOSXJHkJUme1t1XLmgGN0LdfUqSByX5+wWNuDrJf05ybHf/YNZm3X1pkuclmXu4UHe/PsmjknxjDu2+nOTJ3X10d5+zy5xPJvmjOczYMN39iST/NKZ8SFXdZs7zLs4oCORlmU8YziVJntXdz+/unkO/sZbtmrpOj7wuyT2SvCnJD9fZ6qokb05y7+7+2E6P7zfwnKUIXkmuD6l5TJL/msX9TP+7JId290fn1XDl9T0uyVOTzBzWM8bXkjymu984a6PufkOSf5tk0b/TfC7JYd195pz6PXagNhRgBQAAAAAAAGwDglcAAAAAAAAAGOe0DN8E/O0kM90Q291nZXRD8Dg/TPLhWWZMmH9Nd78kycOT/MOc2/9Nkgd296sWHSjAjdNKMMhDk7woyXfn2PrkjN6bL+3uuQUUdPdfJ/m5JN+aV8+dep+a5MeSvDSjz561uCbJSUmemOTu3f2ugbO/muTd61py87xloPa4eQ9b+dx8RZL7Jfk/Sdbz+XZVkrcmuUd3v3me+w1ZtmtqZ919QXc/J8kdkjw/o5+Nl0942lUZhYW8LMmduvtZ3b3rn3v/gecvTfBKcv178zeSPCTJGXNsfWGSZyV5RHefO8e+1+vudyS5V5J3Zn3X1Gouyyhc7l7dPWtQ3vW6+w+THJpkbgE0O7ksye8leVB3nz3Hvj875vFrMvosAgAAAAAAALax8ne7AAAAAAAAAGCkqo5N8rwkj06y+zpafCejm6b/qLv/cZ67sb1V1b4ZvTd/Ocld1tHiooxCMl7f3fMOGbqBqrp5kqcnOSbJ/TMKdtg3o5CIizO6Tj6TUTDCm7p7TeEOVXWzJEeu9H9IklslOSDJXkkuySgw6itJPpdRMMCJ3X3RGmc8IckvJHnQSv8dSX6Q5OyVnn/V3aespeeiVNUBSc5Psscq5ZO6+1ELnn/3JL+U5Ngk9xw4emWSjyU5Pslbu/vCRe41yTJdU+NU1U0y2v2OSfbL6OfWZRldZ+cmObu7r57Q4w1JnjOm/IruftncFt5gKz/Tfy3Jo7L2/0DZ1Rld629O8ufdfdWc1xurqu6b5LgkP5Nk73W0+HySt2X0+bqmz761qqrHZhRK87gke87Q6qyMAlDe2N1zDe+qqntl9PNgNe/u7ifNcx4AAAAAAACwfASvAAAAAAAAAMAuqurAJEcleXiSeyW5c5Ifyf9/A/SlGd3Yfl5GAQ+fTnJakk9u5M3ZbE9V9eNJjk5yaJK7J7l1kn1Wypdk9N78ZkY335+ZUXjA6d19zcZvy0aoqj/JKChmV9cmuWN3n7dBe9wyo8/MgzMKwrkio8Cac5J8eau+B7fzNVVV70/y2DHlX+7ut2zkPotQVbfJKFDtERmFA905ozCoPTIKqrkkyfcyCv84M8k/JvlQd39vUxZesRJidUySI5LcL8ldM/pdZK+Mgowuzuj6OjejvT+b0d7nbsKuN8vo+3tYknsnuVNGoVW3zCiQZfeVnS/P6Fq6IMk/JflUklO6+0sL3O3VSV48pnxYd//9omYDAAAAAAAAy0HwCgAAAAAAAAAALLGqOiSjAIPV/HZ3/6eN3IflUVXnJrnDmPLR3X3yRu4D81RVeyY5P8n+q5RP6u5HbfBKAAAAAAAAwBa0Y7MXAAAAAAAAAAAA1q+7P53kA2PKz6qq3TdyH5ZDVR2Y8aErSfKljdoFFuTfZPXQlST5zY1cBAAAAAAAANi6BK8AAAAAAAAAAMDy+60xj982yRM2chGWxjEDtbO7+4IN2wQW4/ljHj+huz+6oZsAAAAAAAAAW5bgFQAAAAAAAAAAWHLd/fEk7x5TftFG7sLaVdXBVXXNc8ZMAAAIx0lEQVT1wNciXsOnDNROXcA82DBVdUSSB65SujbJv9/gdQAAAAAAAIAtTPAKAAAAAAAAAADcOByX5PJVHn9oVT1ko5dhet39jSQ/TLLbmK9/Nc95VfWAJI8fOHLiPOfBJvj1MY//aXd/ZkM3AQAAAAAAALY0wSsAAAAAAAAAAHAj0N3nJHnFmPJLNnAV1ueTA7Vjquoe8xhSVTdN8sYkNebIRUneO49ZsBmq6p5Jjl2ldGmSl27wOgAAAAAAAMAWJ3gFAAAAAAAAAABuPF6V5J9Wefyn5xXcwcKcOFCrJH9QVbvNMqCqdk/yliSHDhz7k+7+4SxzYJO9JKsHC72yu7++0csAAAAAAAAAW1t192bvAAAAAAAAAAAAzElVHZHklFVKf9rdv7DB6zClqrpLkrOyemDEdf4yyS939w/W0f92GYWuPGbg2KVJ7tHd56+1P2wFVXWHJF9OcpNdSmcnubdQIQAAAAAAAGBXOzZ7AQAAAAAAAAAAYH66+9Qkf7xK6akr4R5sQd39lSR/NeHYk5N8uqqeU1X7TNO3qn6sqv5bks9nOHQlSf6T0BWW3EvyL0NXkuSFQlcAAAAAAACA1VR3b/YOAAAAAAAAAADAHFXV/km+kOTAXUpv6e5f3oSVmMJKMM5nk9xsiuOXJ/nHJJ9McmGS7ye5IsneSfZPcrckhya585TjP5LkmO6+eo1rw5ZQVbdOcnaSPXcpva+7j92ElQAAAAAAAIAlIHgFAAAAAAAAAABuhKrqaUnetsvDVye5e3efvQkrMYWqekaS/7XBY7+S5LDu/s4Gz4W5qarXJHnhLg9fluTe3X3Oxm8EAAAAAAAALIMdm70AAAAAAAAAAAAwf939Z0k+sMvDuyd52Sasw5S6+4+TvGQDR34myVFCV1hmVXVQkmevUvpdoSsAAAAAAADAkOruzd4BAAAAAAAAAABYgKq6Y5Izk+y908NXJ7lXd5+1GTsxnap6UpI/SrLfAse8K8kzu/viBc6AhauqVyd58S4Pn5nkgd191SasBAAAAAAAACyJHZu9AAAAAAAAAAAAsBjdfU6S39zl4d2T/M7Gb8NadPe7ktw1yWuSXDHn9mclOba7nyx0hWVXVQcnee4uD1+b5NlCVwAAAAAAAIBJqrs3ewcAAAAAAAAAAGBBqmq3JB9L8uM7PdxJ7t/dn9mcrViLqrp9kmck+bkk91xnmyuSnJTkDUmO7+5r57QebKqqek2SF+7y8B90969sxj4AAAAAAADAchG8AgAAAAAAAAAAsCSq6t5JDk/ygCSHJDk4yS1WvnZLcmmSS5J8M8mXknwxyelJTu3uyzZjZwAAAAAAAADYqgSvAAAAAAAAAAAAAAAAAAAAAADbzo7NXgAAAAAAAAAAAAAAAAAAAAAAYKMJXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtiN4BQAAAAAAAAAAAAAAAAAAAADYdgSvAAAAAAAAAAAAAAAAAAAAAADbjuAVAAAAAAAAAAAAAAAAAAAAAGDbEbwCAAAAAAAAAAAAAAAAAAAAAGw7glcAAAAAAAAAAAAAAAAAAAAAgG1H8AoAAAAAAAAAAAAAAAAAAAAAsO0IXgEAAAAAAAAAAAAAAAAAAAAAth3BKwAAAAAAAAAAAAAAAAAAAADAtvP/AP1nWYW1ctrwAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 962,
+ "width": 2223
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,3.5), dpi=300)\n",
+ "fancy.plot_diffpattern(ax, model)\n",
+ "fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5, \n",
+ " show_index=True, \n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "ax.text(0.70,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = ax.transAxes, fontsize=16)\n",
+ "plt.savefig('test-2.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the plot below, we plot diffraction pattern in $2\\theta$ scale to prevent any distortion in the diffraction pattern. We just plot tickmarks in d-spacing scale."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAEV4AAAeaCAYAAACKdNpJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeUlPW5B/BnFxRBUIwl1iiKSldR8eoRUWIsiaEoQcBu1KioXDVWiDWWKPdejb0lMQFLsAAiigUExEoRpdg7KLLo7lJ2tt8/cvSkALs7lWE+n3M4B+b9Pb/3O7CzMztn3i9F9fX1AQAAAAAAAAAAAAAAAAAAAABQSIpzHQAAAAAAAAAAAAAAAAAAAAAAINsUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABad5rgPA2hQVFX0dEW1Xc6gqIr7IchwAAAAAAAAAAAAAAAAAAACATNkhIjZcze2l9fX1W2c7TCEoqq+vz3UGWKOioqJERLTIdQ4AAAAAAAAAAAAAAAAAAACAHKmsr6/fKNch1kfFuQ4AAAAAAAAAAAAAAAAAAAAAAJBtilcAAAAAAAAAAAAAAAAAAAAAgIKjeAUAAAAAAAAAAAAAAAAAAAAAKDiKVwAAAAAAAAAAAAAAAAAAAACAgtM81wGgAVUR0eLfb2zRokXssssuOYiTvI8++igqKyv/4/Z8vC+wJr7OYd3iMQnrr+rq6vjggw/WuqaoqCg6duyYpUQN8z0JoHB5DgAAkuV1BAAA8M/8jAAAAAAAmeP9NwBYd6zpeTn+0b1ABiheYV33RUR0+vcbd9lll5g/f34O4iSvc+fOsWDBgv+4PR/vC6yJr3NYt3hMwvrrnXfeiW7duq11TXFx8Tr1WPc9CaBweQ4AAJLldQQAAPDP/IwAAAAAAJnj/TcAWHes6Xk5/tG9QAYU5zoAAAAATVNWVtbgmtra2iwkAQAAAAAAAAAAAAAAAID8pXgFAAAgzzSmeCUior6+PsNJAAAAAAAAAAAAAAAAACB/KV4BAADIM40tXlmxYkWGkwAAAAAAAAAAAAAAAABA/lK8AgAAkGcaW7yydOnSDCcBAAAAAAAAAAAAAAAAgPyleAUAACDPlJeXN2qd4hUAAAAAAAAAAAAAAAAAWDPFKwAAAHmmrKysUetKSkoynAQAAAAAAAAAAAAAAAAA8pfiFQAAgDzT2OKVpUuXZjgJAAAAAAAAAAAAAAAAAOQvxSsAAAB5RvEKAAAAAAAAAAAAAAAAAKRO8QoAAECeUbwCAAAAAAAAAAAAAAAAAKlTvAIAAJBnGlu8UlJSkuEkAAAAAAAAAAAAAAAAAJC/FK8AAADkmcYWryxdujTDSQAAAAAAAAAAAAAAAAAgfyleAQAAyDOKVwAAAAAAAAAAAAAAAAAgdYpXAAAA8kxji1dKSkoynAQAAAAAAAAAAAAAAAAA8pfiFQAAgDxSX18f5eXljVq7dOnSDKcBAAAAAAAAAAAAAAAAgPyleAUAACCPrFy5Murq6hq1try8PCorKzOcCAAAAAAAAAAAAAAAAADyk+IVAACAPFJWVtak9SUlJRlKAgAAAAAAAAAAAAAAAAD5TfEKAABAHlG8AgAAAAAAAAAAAAAAAADpoXgFAAAgjzS1eGXp0qUZSgIAAAAAAAAAAAAAAAAA+U3xCgAAQB5RvAIAAAAAAAAAAAAAAAAA6aF4BQAAII80tXilpKQkQ0kAAAAAAAAAAAAAAAAAIL8pXgEAAMgjTS1eWbp0aYaSAAAAAAAAAAAAAAAAAEB+U7wCAACQRxSvAAAAAAAAAAAAAAAAAEB6KF4BAADII4pXAAAAAAAAAAAAAAAAACA9FK8AAADkkfLy8iatLykpyVASAAAAAAAAAAAAAAAAAMhvzXMdAArF2WefHUuXLv2P27fccsscpIHM8HUO6xaPSVg/lZWVNWn96r4P5ILvSQCFy3MAAJAsryMAAIB/5mcEAAAAAMgc778BAIWsqL6+PtcZYI2KiormR0Snf7+9U6dOMX/+/BwkAgCA3OrXr1+MGzeu0eu33HLL+OabbzKYCAAAAAAAAAAAAAAAAIB06Ny5cyxYsGB1hxbU19d3znaeQlCc6wAAAAA0XllZWZPWL1u2LOrq6jKUBgAAAAAAAAAAAAAAAADyl+IVAACAPNLU4pW6urr47rvvMpQGAAAAAAAAAAAAAAAAAPKX4hUAAIA80tTilYiIpUuXZiAJAAAAAAAAAAAAAAAAAOQ3xSsAAAB5RPEKAAAAAAAAAAAAAAAAAKSH4hUAAIA8UV9fn1TxSklJSQbSAAAAAAAAAAAAAAAAAEB+U7wCAACQJyoqKqKmpqbJcytXrsxAGgAAAAAAAAAAAAAAAADIb4pXAAAA8kR5eXlSc5WVlWlOAgAAAAAAAAAAAAAAAAD5T/EKAABAnigrK0tqLpFIpDkJAAAAAAAAAAAAAAAAAOQ/xSsAAAB5ItnilcrKyjQnAQAAAAAAAAAAAAAAAID8p3gFAAAgTyRbvJJIJNKcBAAAAAAAAAAAAAAAAADyn+IVAACAPJFs8UplZWWakwAAAAAAAAAAAAAAAABA/lO8AgAAkCeSLV5JJBJpTgIAAAAAAAAAAAAAAAAA+U/xCgAAQJ5ItnilsrIyzUkAAAAAAAAAAAAAAAAAIP8pXgEAAMgTyRavJBKJNCcBAAAAAAAAAAAAAAAAgPyneAUAACBPJFu8UllZmeYkAAAAAAAAAAAAAAAAAJD/FK8AAADkifLy8qTmEolEmpMAAAAAAAAAAAAAAAAAQP5TvAIAAJAnysrKkpqrrKxMcxIAAAAAAAAAAAAAAAAAyH+KVwAAAPJEssUriUQizUkAAAAAAAAAAAAAAAAAIP8pXgEAAMgTyRavVFZWpjkJAAAAAAAAAAAAAAAAAOQ/xSsAAAB5oqKiIqm5RCKR5iQAAAAAAAAAAAAAAAAAkP8UrwAAAOSJqqqqpOYqKyvTnAQAAAAAAAAAAAAAAAAA8p/iFQAAgDyRbPFKIpFIcxIAAAAAAAAAAAAAAAAAyH+KVwAAAPJEZWVlVucAAAAAAAAAAAAAAAAAYH2meAUAACBPVFVVJTWXSCTSnAQAAAAAAAAAAAAAAAAA8p/iFQAAgDyRbPFKZWVlmpMAAAAAAAAAAAAAAAAAQP5TvAIAAJAnki1eSSQSaU4CAAAAAAAAAAAAAAAAAPlP8QoAAEAeqK+vT7p4pbKyMs1pAAAAAAAAAAAAAAAAACD/KV4BAADIA9XV1UnPVlVVRV1dXRrTAAAAAAAAAAAAAAAAAED+U7wCAACQB6qqqnI6DwAAAAAAAAAAAAAAAADrG8UrAAAAeSDV4pREIpGmJAAAAAAAAAAAAAAAAACwfmie6wAAAAA0rLKyMqfzAAAAAAAAAACQTYsXL46OHTtGeXn5ao8XFxfHvHnzomPHjllOtn6qq6uLPfbYI+bNm7fa461atYr58+fHTjvtlN1gAA2oq6uLhQsXxgcffBAffvhhfPTRR/Hhhx9GSUlJrFixIlauXBkrVqyIVatWRXFxcWy44YbRokWLaNOmTWy++eaxxRZbxNZbbx3t2rWLnXfeOXbdddfo1q1bbLzxxrm+awAAAGSJ4hUAAIA8UFVVldK84hUAAAAAAAAAAPLJueeeu8bSlYiIQYMGKV1Jo+Li4rjmmmvi6KOPXu3xVatWxdChQ+Ppp5/OcjKAf1VbWxtvvvlmTJs2LaZOnRozZsyIsrKyRs9WV1fHypUr49tvv43PPvtsteuKi4tj1113jX333TcOOeSQ6N27t+IpAACA9VhRfX19rjPAGhUVFc2PiE7/fnunTp1i/vz5OUgEAAC58cEHH8Ruu+2W9Px7772X0jwAAAAAAAAAAGTLhAkT4pe//OUajzdr1iwWLFjg8zAZsO+++8bMmTPXeHzMmDExYMCALCYC+IdZs2bFqFGj4uGHH44lS5Zk/fy77757HHPMMXHMMcdE9+7ds37+VB188MExderUXMdolOLi4mjZsmW0bNkyWrduHdtvv33ssMMOsdNOO0X37t1j7733jnbt2uU6JgAUnKuuuiquvvrqJs0sXLgwOnTokKFEmVFVVRW/+tWvYvz48Snts8kmm8QzzzwTBxxwQJqSUUg6d+4cCxYsWN2hBfX19Z2znacQNM91AAAAABpWVVWV0nxlZWWakgAAAAAAAAAAQOasXLkyhg4dutY1Q4YMUbqSIb///e/jiCOOWOPx//7v/47DDz882rRpk8VUQKGqqKiI++67L+6666549913c5rlvffei+uvvz6uv/766NKlS/zmN7+J448/Ptq2bZvTXOujurq6WLlyZaxcuTJKSkri008//Y812267bfz85z+PX/ziF3HkkUdGixYtsh8UAFjvVFdXp6V0pW3btjFp0qTo0aNHmpIBmVac6wAAAAA0LNXilEQikaYkAAAAAAAAAACQOVdeeWV8/vnnazzerFmzuOKKK7KYqLAcfvjhceCBB67x+KJFi2LEiBFZTES63X333VFUVNTgr5122inXUSlgK1eujJEjR0a7du1i2LBhOS9d+Xfz5s2Lc889N3bYYYe4+OKL4+uvv851pIKzePHiuP/++6N///6x/fbbx0UXXRSffPJJrmMBAHksXaUrm2++eUyePFnpCuSZ5rkOAAAAQMOqqqpSmk+1uAUAAAAAAAAAADLtnXfeiVtvvXWta44//vho3759lhIVpquvvjp++tOfrvH4HXfcESeddFJ07949i6lIh3fffTcuvPDCXMfIuE8++SRee+21mDt3bixcuDAWLVoUixcvjpUrV0ZFRUUUFRXFJptsEm3atIlNNtkkNt988+jUqVN06dIlunTpEl27do1NNtkk13ejINXX18e9994bI0aMiJKSklzHadCKFSvi5ptvjttuuy0uvPDCGD58eLRs2TLXsQpOSUlJjBw5Mm655Zb49a9/HVdccUVsu+22uY4F/JP58+fH/Pnz47333ov3338/PvzwwygtLY0VK1b88CsiYqONNooWLVrExhtvHD/+8Y/jxz/+cWyzzTax2267RadOnaJz586x44475vjeZN5XX30Vr7zySsydOzfmz58fX375ZSxevDiWL18eFRUVUV9f/8PrmDZt2sRmm20WHTp0+OF1TNeuXWPzzTfP9d3IuG+//TZmzJgRc+fOjXnz5sUXX3wRixYtirKysqioqIiampof/p422WST2HTTTWO33Xb74TVft27dYuutt8713WAdUV1dHQMHDoxx48altM9WW20VL7zwQnTt2jVNyYBsUbwCAACQB1ItXkkkEmlKAgAAAAAAAAAA6VdfXx9nnXVW1NTUrHFNs2bNYvjw4VlMVZh69+4dvXr1iqlTp672eG1tbZx55pnx2muvRXFxcZbTkayqqqoYMmRIrFq1KtdRMuKNN96I0aNHx4QJE+Ljjz9ucH1JScm/FHtMnjz5h983b948evbsGf369Yt+/frFT37yk4xk5l+9++67ccYZZ8T06dNzHaXJEolEXHfddTF69Oi45ZZbom/fvrmOVJBqamrinnvuib/97W9xww03xLnnnhtFRUW5jgUFqbS0NCZOnBiTJk2K5557Lr7++utGzX1fwrJs2bL4/PPPV7tmm222iZ49e8YhhxwS/fr1W2+KM+bPnx+jRo2Kp556KubPn9/g+m+//Ta+/fbbH/48bdq0H35fVFQUPXr0+OG1TIcOHTKSORc+/fTTGD16dDz55JMxZ86cqKurW+v60tLSKC0t/eHPM2bM+JfjXbt2/eHvSbFk4aquro5jjz02xo4dm9I+22yzTbz44ovRsWPHNCUDssk7XAAAAHkg1eKVysrKNCUBAAAAAAAAAID0+8tf/vIfF8H9u8GDB8euu+6apUSF7eqrr17r8TfffDPuuuuuLKUhHS6//PKYM2dOrmOkVXV1dTz44IPRtWvX2G+//eKPf/xjo0pXGlJTUxNTpkyJYcOGxY477hi9evWKZ555Jg2JWZ26urq47rrrYs8998zL0pV/9umnn0a/fv3iV7/6VSxfvjzXcQrWqlWrYtiwYdGrV69YvHhxruNAQZk3b16ceeaZsd1228Vxxx0Xf/3rXxtdutJYX331Vfz973+Ps846K7bbbrs45JBD4sEHH0z58/a5UF9fH2PHjo0DDjggunTpEjfeeGOjSlcas+/rr78el112WXTs2DH22muveOSRR6K2tjYNqXNjypQpccQRR8TOO+8cI0aMiFmzZjVYutIY77zzTlx77bWx9957R/v27eOee+5x7UWBqampiUGDBsWTTz6Z0j477LBDTJs2TekK5DHFKwAAAHkg1TfvEolEmpIAAAAAAAAAAEB6fffdd3HJJZesdU1xcXEMHz48S4no1atX9O7de61rhg8fnvYLacmMF198Mf73f/831zHSauzYsdGxY8c4+eSTY968eRk917Rp0+LnP/957LXXXvH4449n9FyFprS0NI466qgYMWLEenWR82OPPRY9evSIhQsX5jpKQZs+fXrsu+++8eabb+Y6Cqz33nvvvTjyyCOja9eucc8998SqVauyct66urp46aWX4uSTT44dd9wxrr/++qydO1XTpk2LvffeO/r37x+vvvpqRs/11ltvxeDBg6NDhw5x//33p6WwJFvefvvt6N27d/Tu3TsmTZoU9fX1GTvXRx99FGeeeWa0a9cuRo4cuV69NmH1ampq4thjj40nnngipX122mmnmDp1arRv3z5NyYBcULwCAACQB1Jt4PamHwAAAAAAAAAA66rhw4fH0qVL17pm4MCB0aFDhywlIiLid7/73VqPl5WVxQUXXJClNCRr2bJlceKJJ2b0ItVsWrJkSfTp0yf69+8fH330UVbP/dZbb8WAAQOib9++sWTJkqyee320YMGC6NGjRzzzzDO5jpIR7777bvTo0SPGjx+f6ygFbfHixXHQQQfF888/n+sosF6qqKiIESNGRLdu3eLZZ5/NaZavv/46hg8fHrvvvnuMHj06p1nWZvny5fHrX/86evXqFXPmzMnquT/88MM4/fTT46CDDooPP/wwq+duqqqqqrjsssuie/fuMWXKlKye+6uvvoqLLroounfvHjNnzszqucmempqaGDRoUMqlK+3bt49p06ZFu3bt0pQMyBXFKwAAAHkg1eKVRCKRpiQAAAAAAAAAAJA+b731Vtx7771rXVNUVBSXXXZZlhLxvYMPPjgOPPDAta55+OGH44UXXshSIpJx2mmnxeLFi3MdIy2mTJkSXbt2jaeeeiqnOcaPHx+dO3eOv//97znNkc+ee+65+K//+q/44IMPch0lo1asWBEDBgyIcePG5TpKQUskEtG3b9946aWXch0F1iuffPJJ7LPPPnHdddel/Fn3dPryyy/j+OOPj759+8ayZctyHedfvPPOO7HnnnvGn/70p5zmmDFjRuyxxx5x22235TTHmnz++eex//77x4033hi1tbU5y7FgwYLYf//944orroiampqc5SD9ampqYvDgwfH444+ntE+HDh1i6tSpscMOO6QpGZBLilcAAADyQKpvRldWVqYpCQAAAAAAAAAApM+5557b4MV0Rx11VHTr1i1Lifhnv/vd7xpcM3ToUJ9PWkfde++9MXbs2FzHSIsHHnggDj/88Fi6dGmuo0RExLJly+LYY4+Na665JtdR8s6kSZOib9++sXz58rTuu8EGG0TPnj3j/PPPj7vvvjumTJkSH3zwQXz11VexYsWKqK2tjYqKivjuu+/iiy++iJkzZ8bEiRPjtttui3POOScOPvjgaN26dVozRURUV1fHwIEDY8KECWnfm8arqKiIPn36xPvvv5/rKLBemD59evTo0SMWLFiQ6yhrNH78+OjWrVvMnj0711EiIuLpp5+OAw44ID7++ONcR4mIiFWrVsV5550XZ5xxRk7LTf7dG2+8ET169Fhn/t1qamri2muvjf79+0dFRUWu45AGNTU1MWTIkHjsscdS2qdLly7x0ksvxbbbbpumZECuNc91AAAAABqW6gcTEolEmpIAAAAAAAAAAEB6jB49Ol5++eUG1w0fPjwLaVidww47LHr06BFvvPHGGte8//778Yc//CGuuOKKLCajIe+9916cf/75uY6RFn/84x9j2LBhuY6xWldeeWWUlJTErbfeGkVFRbmOs8575plnon///mkra2rTpk0MGjQo+vfvHwcddFBsvPHGa12/0UYbxUYbbRRt27aN7bff/j+O19bWxttvvx0TJ06Mp556Kl5//fW05KyqqooBAwbE888/Hz179kzLnjTd8uXL45hjjonXX389WrVqles4kLeeeeaZ6NevX8r/sWg2LF68OA4++OAYN25cHHLIITnL8fjjj8fgwYOjuro6ZxnW5L777otly5bFQw89FC1atMhplhkzZsSRRx6Z9nK2dJgwYUL87Gc/iwkTJkTbtm1zHYck1dTUxHHHHRdjxoxJaZ8999wznn/++dhiiy3SlAxYFxTnOgAAAAANS/WNaf+jDAAAAAAAAAAA65JVq1bFJZdc0uC63r17x3777ZeFRKzJpZde2uCaG264IT7++OMspKExqqurY8iQIbFq1apcR0nZPffcs86Wrnzvtttui1NOOSXXMdZ5kyZNSlvpSufOneMvf/lLfP3113HvvffGkUce2WDpSmM0a9Ys9tprrxg+fHi89tpr8cEHH8Sll16alotqKysrY9CgQbFkyZKU98qWKVOmRH19fcZ/VVdXR3l5eSxZsiQ+/vjjmD59eowaNSquu+666N+/f2y99dZpu0/z5s1r1PMasHpz5syJgQMH5kXpyveWL18ev/jFL9JWptVUTz/9dAwaNGidLF353hNPPBFHHXVUTjPOmjUrjjjiiHWydOV7M2bMiF69ekV5eXmuo5CE2traOO644+Lvf/97Svvss88+MXnyZKUrsB5SvAIAAJAHUn1zOpFIpCkJAAAAAAAAAACk7g9/+EMsWrSowXUXX3xxFtKwNv369YuOHTuudU0ikYhzzz03S4loyPDhw2P27Nm5jpGyZ599NoYOHZrrGI3y4IMPxo033pjrGOushQsXxsCBA1MuXdlll11i1KhR8fbbb8dJJ50UrVq1SlPC1Wvfvn3ccMMN8emnn8bIkSNTvsB28eLFMWTIkKirq0tTwvVD8+bNo02bNrHVVltFu3bt4sADD4zjjjsuLr/88njiiSfiq6++infffTdGjBgRO+64Y8rnu/POO2Pu3LlpSA6F5fPPP49f/OIXsWLFilxHabKKioro06dPfPrpp1k971tvvRWDBg2KmpqarJ43GS+88EKcd955OTn3F198Eb/85S/z4mvr7bffjsGDB3suzzPpKl3Zf//944UXXojNNtssTcmAdUnzXAcAAACgYakWr6Tjf4gAAAAAAAAAAIB0+PLLL2PkyJENrttjjz3i8MMPz0Ii1qaoqCguueSSOPnkk9e6buLEiTFu3Ljo27dvdoKxWi+++GKjHl/ruk8++SQGDRoUtbW1Ke2z6aabRs+ePaN79+7RuXPn2GyzzaJt27ZRVVUVpaWlsWzZspg7d27Mnj07Xn311ZQ+azd8+PDo0qVLHHXUUSllXt9899130adPnygvL096j2bNmsXFF1++GPBEAAAgAElEQVQcV111VWy44YZpTNc4G2+8cVx44YVx6qmnxogRI+Luu+9O+oLryZMnx/XXXx8jRoxIc8r12+677x7XXnttXH311fHAAw/EiBEj4ptvvklqr9ra2rjgggvixRdfTHNKWH/V19fHiSeeGF999VXKe2200Uax//77R5cuXaJ9+/ax4447RuvWraN169YREbFs2bJYtmxZfPnllzFjxoyYMWNGlJaWpnzeb775Jk488cSYOnVqFBUVpbxfQ0pLS6Nfv34pl4m0bNkyDjzwwNh7772ja9eusfnmm8dmm20WtbW1UVpaGt9991288847MXv27HjllVdSOt/dd98dXbt2jbPPPjulzE1RVVUVRx99dMpfW82bN48DDjgg9tlnn9hjjz1iyy23jLZt20ZxcXGUlpZGaWlpLFy4MGbNmhWvvvpqLFu2LOlzTZw4MS699NK46aabUspMdtTW1sbxxx8fjz76aEr7HHTQQfH000//8L0KWP8oXgEAAMgDqRanJBKJNCUBAAAAAAAAAIDUXHbZZbFq1aoG11188cVZSENjDBkyJIYPHx6LFi1a67phw4bFYYcdFi1btsxSMv7ZsmXL4qSTTor6+vpcR0lJTU1NDB48OMrKypLeo1evXnH22WdHnz59YqONNmrUTGlpaYwZMybuuOOOmDt3bpPPWVdXF8cdd1zMmTMndt555ybPr49qampi4MCB8eGHHya9x+677x6jRo2KffbZJ43JkrPZZpvFHXfcEf3794/jjz8+lixZktQ+119/fZxwwgmx4447pjnh+q+4uDhOP/30OOaYY2LIkCExadKkpPaZPHlyzJw5c534uoJ8cM8998TUqVOTnm/RokUcc8wxcfLJJ0fPnj0b/dwc8Y/n19deey3uuOOOGDNmTFRXVyedY/r06XHbbbfFeeedl/QejXXaaafFZ599lvT8nnvuGeedd14MGDAg2rRp06iZVatWxdixY+Puu++O6dOnJ3XeYcOGxV577RX7779/UvNNddlll8XMmTOTnt95553j/PPPj2OPPTa23HLLRs1UV1fHM888E/fff3889dRTSZ335ptvjh49esSAAQOSmic7amtr44QTTohHHnkkpX1++tOfxvjx46NVq1ZpSgasi4pzHQAAAICGVVVVpTSfanELAAAAAAAAAACkw5w5c2L06NENrvvJT34SAwcOzEIiGmODDTZo1AWqn332WVx//fVZSMTqnH766Q2W4+SDm266KV5//fWkZnfZZZd46qmn4qWXXoqBAwc26cLutm3bxumnnx6zZ8+OBx54ILbaaqsmn7+8vDzOPvvsJs+tr0aMGBEvvPBC0vNHHHFEvP766+tcOcahhx4ac+bMia5duyY1X1FREb/97W/TnKqw/OhHP4qJEyfGGWeckfQeN998cxoTwfpr0aJFcckllyQ126xZsxg6dGh8+eWXMXr06PjZz37WpOfmiH8ULh1wwAExevTo+Pzzz+Oss86KoqKipPJERFx55ZUplbs1xkMPPRSPP/54UrNbbbVVPPjggzF79uw45ZRTGl26EhHRqlWrGDJkSEybNi2efPLJpIrgampq4owzzkip4KaxZsyYEf/3f/+X1Gzr1q3jlltuiXfffTfOOeecRpeuRPzjZ5s+ffrE+PHjY+rUqbHnnnsmleGcc86J0tLSpGbJvO9LVx5++OGU9jniiCNiwoQJSlegACheAQAAyAOpFq8kEok0JQEAAAAAAAAAgORdcsklUV9f3+C6c889N5o3b56FRDTWGWecEa1bt25w3c033xwff/xxFhLxz+6777548skncx0jZR999FH8/ve/T2q2f//+MWvWrDjqqKNSylBcXBynnnpqzJw5M7p3797k+UmTJsUjjzySUob1wZtvvhkjR45Men7YsGExYcKE2HTTTdOYKn222WabmDZtWuy3335JzT/22GMxZcqUNKcqLMXFxXHXXXfF0UcfndT8uHHjYvny5WlOBeufyy+/PMrLy5s8t+uuu8bs2bPj9ttvjy222CItWbbeeuu48847Y+rUqbH77rsntUdpaWnceuutacmzOt99911ccMEFSc0eeOCBMWfOnDjxxBNTKpeJiOjXr1/MmjUrDjvssCbPzps3L/7nf/4npfM3pLq6On7zm9806mfDf9epU6d48803Y9iwYbHBBhuklOOggw6K1157LU444YQmzy5ZsiQuvfTSlM5PZtTW1saJJ56YculKnz59Yty4cU0ujALyk+IVAACAPJBq8UplZWWakgAAAAAAAAAAQHKef/75eP755xtc17p16zj99NOzkIimaNu2bZx66qkNrqusrIzf/va3WUjE995///04//zzcx0jLS688MKoqKho8tyZZ54ZTzzxRFpLOnbYYYeYPn169OzZs8mz559/fpSVlaUtS76pqqqKU045JWpra5Oav/TSS+OWW26JZs2apTlZerVt2zYmTJgQ7du3T2r+mmuuSXOiwlNcXBx/+tOfYtttt23ybGVlZTz11FMZSAXrj4ULF8aoUaOaPHfooYfGm2++Gd26dctAqoiePXvG7Nmzo0+fPknN33777VFTU5PmVP9w9dVXx5IlS5o898tf/jImT56c1PezNWnbtm1MnDgxjj322CbPXnPNNfHJJ5+kLcu/u+OOO2L+/PlNnuvRo0e8+uqr0aFDh7RladGiRfz1r3+NCy+8sMmz9957b7z66qtpy0Lqamtr46STToqHHnoopX0GDBgQjz32WGy44YZpSgas6xSvAAAA5IFUi1MSiUSakgAAAAAAAAAAQHIuu+yyRq079dRT01qeQPoMHTo0ioqKGlz35JNPugAxS6qrq2Pw4MGxcuXKXEdJ2SuvvBLjxo1r8twJJ5wQd955ZwYSRbRq1SrGjh0bu+++e5Pmvv766xg5cmRGMuWDa6+9NqmLqSMiLrroorjhhhvSnChztthii3j66adj4403bvLsSy+9FG+99VYGUhWWTTfdNG699dakZsePH5/mNLB+GTlyZNTV1TVp5oADDohx48Zl/PV8q1at4oknnoi+ffs2eXbp0qXx3HPPpT3Tp59+GnfddVeT537605/GmDFjYoMNNkh7pmbNmsWDDz4YBx54YJPmKioq4oorrkh7noiI8vLyuO6665o817Vr13j22Wdjk002yUCqiJtvvjkGDhzYpJn6+vq4+OKLM5KHpqurq4uTTjopRo8endI+gwcPjkceeSQjj0lg3aV4BQAAIA9UVVWlNJ9qcQsAAAAAAAAAAKRi7NixMWvWrAbXFRUVxdChQ7OQiGTstttucdhhhzVq7eWXX57hNEREjBgxImbPnp3rGGkxYsSIJs/ssccecd999zWqEChZP/rRj2LMmDHRvHnzJs3ddtttUVZWlqFU66733nsv/vCHPyQ1e+KJJ8ZNN92U5kSZt9tuu8Utt9yS1Gyyc/yro48+Onbdddcmz82YMSMDaWD9sGzZsnjooYeaNLPNNtvE+PHjo1WrVhlK9a+aNWsWDz/8cHTq1KnJs48++mja81xzzTVN/tz/dtttF48++mi0aNEi7Xm+16JFixgzZkyTy3Aefvjh+Oijj9Ke55ZbbomSkpImzbRu3Toef/zx2GyzzdKe53tFRUXx5z//OXbaaacmzb388ssxderUzISi0dJVunLSSSfFqFGjolmzZmlKBuQLxSsAAAB5INXilUQikaYkAAAAAAAAAADQNPX19XHVVVc1au2hhx4au+22W2YDkZJzzjmnUeteeumlePnllzOcprBNnjw5Ro4c2ai17dq1y3Ca1MycOTOmTJnSpJmWLVvGww8/nNELlb/XtWvXuOCCC5o0U1ZWFrfffnuGEq27rrjiiqiurm7y3N577x333HNPBhJlx2mnnRa9e/du8twjjzwS33zzTQYSFZbi4uI466yzmjz35ZdfxqJFizKQCPLfo48+2uTPoN97772x+eabZyjR6rVs2TL+8pe/NLmEramvOxqyePHiJhc+FBUVxd/+9res/J1tvfXWccMNNzRppra2Nm688ca05qioqEjq9dHtt9+eVMFWU7Vq1SruvPPOJs/9/ve/z0AaGquuri5OPvnkGDVqVEr7nH766fHnP/85iovVL0Ah8sgHAADIA6kWr1RWVqYpCQAAAAAAAAAANM0TTzwRc+fObdTaoUOHZjgN/8/efUdXVaX/H39ueiFICRBqKKETpLcgAoKAgoAyVAFRqpViRUF0XIoICo4oXaR8bUgRUVHKoNJBCCX0GgiBBFIo6bm/P/wxo47mnn3u2ffe3Lxfa7mcNXmesz8eSLIhZz/HWd26dZNKlSoZqrX6oCb+69q1azJkyBDJz893WOvj4yNLly51QSrz3nnnHeWecePGSd26dTWk+WuTJ0+WkiVLKvXMnj1b8vLyNCXyPLGxsfLll18q95UuXVpWrlwpQUFBGlK5zowZM5QP6mZlZcmqVas0JSpaevToYapv//79FicBvMOnn36qVN+lSxfp3r27pjQFa968uTz44INKPfHx8XLu3DnLMsyaNUv5mf8BAwZIhw4dLMvgyKhRo6ROnTpKPUuXLpVr165ZlmHx4sWSlJSk1BMTEyNDhw61LIMj3bp1k3vvvVepZ8OGDRIXF6cpEQqSn58vw4YNc/rPO08++aTMnTtXeYgTAO/B4BUAAAAAKAScHZyiOm0cAAAAAAAAAAAAAAAAsIrRN6tXqFDBbYc1YZyvr68MGzbMUO23337LAURNRowYIRcvXjRU++KLL0pMTIzmROZduXJFefBE2bJl5cUXX9SU6K+FhobK6NGjlXouXbok3377raZEnmfSpElit9uV+959912pUqWKhkSu1ahRI+nTp49yH4NXrBEVFSXVqlVT7jt79qz1YYBCLiUlRbZv367U8/zzz2tKY8yYMWOUe6wavJSdnS2LFi1S6gkMDJQ333zTkvWN8vHxkXHjxin1ZGVlyfLlyy3LMGfOHOWe6dOnW7a+URMmTFDuWbhwoYYkKEh+fr48+uijsmTJEqeuM2HCBPnXv/7F0BWgiGPwCgAAAAAUAqrTr//M2cEtAAAAAAAAAAAAAAAAgBk//PCD7N2711DtI488Ir6+vpoT6WW32+Xq1aty9uxZOXr0qBw4cECOHj0qp0+flkuXLjn9HJCnePTRRw0dSrPb7TJ79mwXJCpaFixYICtXrjRU27RpU5kyZYreQE5avHix5OTkKPWMHz9ewsLCNCX6e0899ZT4+fkp9RSVQ7h79uyRtWvXKve1b99ehgwZoiGRe4wfP165Z9OmTZKWlqYhTdFTv3595R5PHrySmZkpFy9elJMnT8qhQ4fk8OHDcuLECTl37pykpqa6Ox682KZNmyQvL89wfYMGDaRjx44aEznWoUMHKVGihFLP6dOnLVl79erVkpycrNQzbNgwiYyMtGR9FUOGDJHSpUsr9Vi1l9m1a5ccOHBAqadr167SqlUrS9ZXce+99yp/T1m6dKnynhbm5efny2OPPSaffPKJU9eZOHGiW4b7APA8an/SBwAAAAC4hbMPXGRmZlqUBAAAAAAAAAAAAAAAADDunXfeMVw7bNgwjUmsZbfb5ejRo/LLL79IbGysxMXFyYkTJ+Ty5csOD9uFhYVJRESE1KhRQ2rUqCENGjSQpk2bSsOGDSUwMNBF/wXOqVq1qsTExMgvv/zisHbp0qUydepUtwzJ8EbHjx+XsWPHGqoNDg6WZcuWib+/v+ZUzlE9LBkcHCzDhw/XlKZg5cuXl44dO8oPP/xguGfdunVy7do1KVWqlMZk7vfBBx8o9/j7+8ucOXM0pHGfli1bSvPmzWX37t2Ge3JycmTdunUycOBAjcmKhjp16sg333yj1JOYmKgpjXHp6emyfft22blzpxw+fFiOHDki8fHxDoer+Pn5SXh4uERGRkqNGjWkZs2a0qRJE2natKlUrFjRRenhjbZu3apU37NnT01JjPPx8ZG2bdsqfQ04c+aMJWubGfzw5JNPWrK2qqCgIHnooYdk3rx5hntiY2Pl4MGDEh0d7dTaZu7TU0895dSazhg0aJBMnDjRcH1SUpJ8//330qNHD42pIPLb0JXhw4fL4sWLnbrOlClT5NVXX7UmFIBCj8ErAAAAAFAIODt4JSsry6IkAAAAAAAAAAAAAAAAgDFHjhyRDRs2GKpt3bq1REVFaU7knOzsbFm/fr2sWrVKvvnmG0lKSjJ1nevXr8v169flxIkTf/j/g4KCpG3bttKlSxfp3bu31KhRw4rY2gwePNjQ4JXr16/LsmXLZMyYMS5I5d1ycnJk0KBBcvPmTUP106dPlzp16mhO5ZzDhw9LXFycUs+AAQOkdOnSmhI51q9fP6XBK7m5ufLdd9/JoEGDNKZyr7S0NPnyyy+V+x5++GGpXbu2hkTuNWDAAKXBKyIimzdvZvCKBcLDw5V7bt26pSGJY6dPn5avvvpKVq1aJTt37pT8/Hzla+Tm5kpiYqIkJibKzp07//CxatWqyb333iv33XefdO3aVQICAqyKjiJA9WvY/fffrymJGtXhSykpKU6vmZqaKj/++KNST8eOHaV+/fpOr21Wv379lAaviIh8/fXXTg1eyc/Pl6+++kqpp0aNGtKtWzfTazqrX79+SoNXRH67Twxe0ctut8vw4cPl448/duo6b731lrz44osWpQLgDXzcHQAAAAAA4JijwSm+vr4FfjwzM9PKOAAAAAAAAAAAAAAAAIBDH3zwgeHaAQMGaEzinHPnzskLL7wglStXlgceeEA+/vhj00NXCpKZmSkbNmyQ5557TqKioqR169Yyf/58j332p3fv3uLjY+xYysKFCzWnKRomTZoke/bsMVTbrVs3efzxxzUnct6KFSuUe9w9wKRXr16Gf+/ftnbtWk1pPMPy5cuVh1f4+PjICy+8oCmRe/Xt21dsNptSz44dOzSlKVrCwsKUe1w5eCU/P19WrFghnTp1kqioKHn++edl+/btpoauOHLmzBmZO3eu9OzZUyIiImT06NFy8OBBy9eBd1L5vVKsWDFp2bKlxjTGVapUSane6DC7gqxZs0ZycnKUety9l7n77ruVh9g5u5f5+eef5fLly0o9AwcOVP5+aqXq1atLo0aNlHq++eYbsdvtmhLBqqEr7733HkNXAPwPBq8AAAAAQCGQnZ1d4MeLFy9e4McdDW4BAAAAAAAAAAAAAAAArJSZmSn/93//Z6jWZrPJP/7xD82J1J05c0aGDx8uNWvWlGnTpsmVK1dcuv6OHTtk5MiREhkZKW+99ZZkZGS4dH1HypQpI23atDFUu3fvXtm/f7/mRN5t8+bN8s477xiqDQ8Pl0WLFmlOZI3Vq1cr1ZctW1buvvtuTWmMKVWqlDRv3lyp5/vvv1c+lF2YzJ8/X7nnwQcflNq1a2tI434VK1aU6OhopZ64uDi5fv26pkRFR2BgoHKPKz438/PzZenSpVK3bl35xz/+IRs3bnTpwfyUlBSZO3euNGzYULp27Sq7d+922doofJKSkiQtLc1wfb169ZQHkukSGhqqVG/F4CXVvYy/v7/07t3b6XWd4evrK506dVLq2bVrl/LglN9TvU8ivw0yc7cuXboo1ScmJhoelAg1drtdRowY4dSfc2w2m8yePVvGjh1rYTIA3sIzdjMAAAAAgAI5O3jFU996AwAAAAAAAAAAAAAAAO+0Zs0aSU1NNVTbrFkziYiI0JzIuFu3bsmkSZOkXr16snDhQrcPS7hy5YpMnDhRatWqJV988YVbs/xZz549Ddc6+1byoiwlJUWGDBki+fn5hurnz5/vUZ9Tf+fKlSsSGxur1NO7d2/x9fXVlMg41UO4aWlpsm/fPk1p3OvgwYOmBis98cQTGtJ4jnvuuUepPj8/n2EYFjAzpCw4OFhDkv/avn27tGjRQoYMGSLHjx/XupYR69evl5YtW8rDDz8sSUlJ7o4DD3T27Fml+gYNGugJYoLqvt3f39+p9XJzc2XTpk1KPR07dpSSJUs6ta4VVPcydrtdtmzZYnq99evXK9XXrl3bI35vqd4nkd8GJsJadrtdRo4cKQsXLjR9DR8fH5k3b548/vjjFiYD4E383B0AAAAAAOCYo8ErYWFhBX48KytL7Ha72Gw2K2MBAAAAAAAAAAAAAAAAf2nJkiWGa7t3764xiZrY2Fjp27evRxyM/rMLFy5Iv379ZO3atfLhhx86fGbIFXr27CnPPfecodrPP/9c3n33XY8YmlHYjBw5Ui5cuGCo9rHHHpNevXppTmSNH3/8Uex2u1JP586dNaVR07FjR3n99deVerZu3SotWrTQlMh91q1bp9xTqVIladeunYY0nmPs2LHK/43Vq1fXlKbouHHjhnJPSEiIhiS/DWSYPHmyTJ06VflrnW52u12WL18uGzZskE8++cTUYAF4r8uXLyvV16tXT1MSdenp6Ur1zg5e2rlzp/KanrSXUbV161bp27evct/FixflyJEjSj2ecp9iYmIkMDBQsrKyDPds3bpVY6Kix263y6hRo2TBggWmr+Hr6yuLFi2SIUOGWJgMgLdh8AoAAAAAFAKO/qKuePHiDq+RnZ0tgYGBVkUCAAAAAAAAAAAAAAAA/tKVK1eU3mjuKYNXPv/8c3nkkUckMzPT3VEKtGzZMjly5Ih89913UqZMGbdmqVmzplSrVk3OnDnjsPby5cuyYcMGDncrWrhwoaxYscJQbY0aNWTmzJmaE1ln06ZNSvU2m03at2+vJ4yi5s2bi6+vr+Tl5Rnu2bp1q4wbN05jKvf49ttvlXsGDBggPj4+GtJ4jipVqkiVKlXcHaPIiY+PV+4JDw+3PMf169ele/fu8tNPP1l+bStdvnxZ7r//fpkzZ44MHz7c3XHgIZKTk5Xqy5cvrymJukuXLinVlytXzqn1VPcyIuYGnugQGRkp5cuXV7pnZgeKFOb7FBAQII0bN5YdO3YY7tm2bZvGREWL3W6X0aNHy/z5801fw8/PT5YtWyb9+vWzMBkAb+Tdf0IFAAAAAC+RnZ1d4MeNDF5RmbIMAAAAAAAAAAAAAAAAmLVmzRrDwwjKlCkjjRs31pzIsc8//1wGDRrk8UNXbtu7d6+0b99e0tLS3B1FOnXqZLh2+fLlGpN4nxMnTsgzzzxjqNbX11eWLl0qxYoV05zKOtu3b1eqv/POO6V06dKa0qgJCQmR6OhopR5vPISblpam/Oso8tvgFUAHI4PA/qxq1aqWZrh+/bp06dLF44eu3JaXlycjRoxw6lA7vMuNGzeU6nUMLzLr8OHDSvWVK1d2aj3V74ElS5aUO++806k1rdSyZUul+tjYWLl165byOqr3yZOG7YmItGrVSqk+OTlZjh8/rilN0XF76Mq8efNMX8Pf31+++OILhq4AMITBKwAAAABQCFgxeKWwPBQCAAAAAAAAAAAAAACAwm3NmjWGa9u1ayc2m01jGsd27twpgwcPNjwsxlPExcXJgAEDJD8/36057rnnHsO1q1at4gVSBuXk5MigQYPk5s2bhuonTpworVu31pzKOqmpqXL06FGlnhYtWmhKY07z5s2V6i9duiTJycma0rjH+vXrJTc3V6mnTJky0qhRI02JUNTt2bNHucfqwSsPP/ywqYFE7vbEE08UmmEx0Et1r+Ypg1fy8vJk7969Sj3169c3vZ7dbpedO3cq9TRv3lx8fDznWLfqXiY3N1fi4uKU11H9mlizZk0pWbKk8jq6qN4nEZEDBw5oSFJ02O12GTNmjFNDVwIDA2XlypXSu3dvC5MB8GZ+7g4AAAAAAHDM0eCVsLAwh9fggQUAAAAAAAAAAAAAAADodvPmTdm4caPh+rvvvltjGsdSU1Olf//+kpOT49YcZn333Xcyd+5cGTNmjNsydOzYUWw2m9jtdoe1N27ckM2bN0vXrl1dkKxwmzx5suzevdtQbfPmzWXy5MmaE1lr9+7dhn7P/F7jxo01pTGnQYMGyj2HDx92+9c9K23atEm5p3379m4fuAXvdPToUUlKSlLus/Jry8yZM+Xrr7+27HqulJOTI0OHDpW4uDgJDg52dxy40T333CMfffSR4fqoqCiNaYz7+eefJSUlRamnSZMmptc7efKkXLt2TanHW/YyzZo1M1yfkZEhBw8eVFrDW+5Tnz59NKTxfna7XR5//HGZO3eu6WsEBwfL6tWr5d5777UwGQBvx+AVAAAAACgEHA1NKV68uMNrZGZmWhUHAAAAAAAAAAAAAAAA+Es//PCD0nMq7du31xfGgClTpsjZs2edukatWrWkQ4cO0rx5c6lVq5ZUrlxZSpYsKcHBweLj4yPXr1+XGzduyM2bN+X8+fNy7NgxOXbsmOzatUv27NmjPHzizyZOnCh9+/aV0qVLO3Uds8qUKSO1a9eWo0ePGqpfu3Ytg1cc2LJli0ybNs1QbUhIiCxbtkz8/ArXEaEDBw4o93jaIdz69esr93jb4JW9e/cq93Ts2FFDEkDkyy+/VO4pXbq0ZUMjEhIS5OWXX3bqGkFBQdKxY0dp1aqVNGrUSCIjI6VChQoSEhIiQUFBkpGR8Z89RUpKihw/flyOHj0qR44ckU2bNsnVq1edWv/s2bPy1ltvyeuvv+7UdVC4NWrUSBo1auTuGMoWL16sVF+vXj0pX7686fWK8l5GRVxcnOTl5Sn1eNp9qlOnjvj5+Ulubq7hHtX7hN/Y7XZ54oknZM6cOaavERoaKmvXrpUOHTpYmAxAUVC4/lYFAAAAAIogu93u8I06RgavOBreAgAAAAAAAAAAAAAAADhr48aNhmuLFStm6rCfVc6cOSMfffSRqd7g4GAZMmSIPPnkkw7fgF6yZEkpWbKkiPx2aO/3b91OTEyUdevWyUcffWRqgIGISGpqqsybN09eeuklU/1WaNmypdLgldmzZ2tOVHilpKTI4MGDJT8/31D9u+++K7Vq1dKcynqHDgkg7xUAACAASURBVB1S7nH0ueZqZr5+xcXFaUjiHrm5uaZ+Hdu1a6chDYq63Nxc5aELIiJt27a1LMOrr74qt27dMtXbsGFDmTBhgjz00EMSGhr6t3WhoaF/+HjTpk3/87/z8vJk27ZtsmLFClmwYIHpLB988IG8+OKLEhISYqofcIfz58/L//3f/yn19OjRw6k1zXwPjI6OdmpNq1WvXl2Cg4MlIyPDcI/qXsYb7lNAQIDUqFFDjh07ZrjHm/Z8rvTkk0+a/jO6iEhYWJh8++23ln5/B1B0+Lg7AAAAAACgYI6GrogYG7yi8iYhAAAAAAAAAAAAAAAAwIzNmzcbrm3cuLH4+LjvWMOMGTMkOztbue++++6TI0eOyJw5c5weBBERESGPPfaY7NmzR77++mvThww//PBDsdvtTmVxRsuWLQ3XxsfHy8GDBzWmKdxGjRol8fHxhmq7d+8uo0aN0pxIj8OHDyvVly9fvsBhBO4QEREhwcHBSj1nz57VE8YN4uLilJ9LDAwMlNq1a2tKhKJs6dKlcvr0aeU+Zwcv3JaYmGhq8EuJEiVk/vz5sn//fhkyZIhTX+d8fX3lrrvuklmzZsnp06dl/Pjx4ufnp3ydlJQU5QEWgLs9/vjjhp65/71HHnnEqTVV9zI2m02qV6/u1JpWs9lsUqVKFaUe1b2M6n0SEYmKilLu0a1q1apK9d6053OVJ554Qj788EPT/XfccYf8+OOPDF0BYBqDVwAAAADAwxl5uCMsLMxhTVZWlhVxAAAAAAAAAAAAAAAAgL905coVpTd7N2vWTGOagmVmZpo6VDx58mT55ptvJDIy0vJMPXr0kN27d5s6BHrhwgXZt2+f5ZmMatWqlVK9yoCeomTRokXy5ZdfGqotU6aMLFy4UHMifU6cOKFU74kHcEVE+bCy0aE6hYGZrzl16tQRX19fDWlQlF2+fFmef/555T5fX1/p3r27JRk++eQTyc3NVeqJioqSnTt3yvDhw8Vms1mS47Zy5crJjBkzZMuWLVK6dGnl/q+//trSPIBOM2fOlHXr1in1dOnSRerUqePUuqp7mUqVKklQUJBTa+qgOlBEdS+jep98fX2lWrVqSj2uoHqfbt68KSkpKXrCeKEnn3zSqaErpUqVko0bNyoNBAWAP2PwCgAAAAB4OCMDU4oXL+6wRvXNEgAAAAAAAAAAAAAAAICKLVu2KNW7c/DK2rVrlQ/CTZo0SV577TXLD0f/XmBgoCxatEgGDRqk3Lt+/XoNiYyJjo6WgIAAw/Wqv1eKgpMnT8ozzzxjuH7hwoVStmxZjYn0SU1NldTUVKUeTx28onow2JsGrxw4cEC5p379+hqSoCjLyMiQvn37SnJysnLv/fffL+XKlbMkx5IlS5TqK1asKBs3bpRatWpZsv7fadOmjWzYsEFCQkKU+jZt2iQ5OTmaUgHW+eSTT2T8+PHKfVOmTHF67TNnzijVe8teJj09XdLT0w3Xnz59Wun6VapUEX9/f6UeVzAzDMab9n06PfXUUzJ79mzT/T4+PrJhwwZp2rSphakAFEUMXgEAAAAAD5edne2wxsjgFSMDXAAAAAAAAAAAAAAAAACzdu7cqVTfoEEDTUkcUx1S0r59e3n99dc1pfkjm80m8+bNkypVqij1xcbGakrkmJ+fn9SuXdtw/U8//SR2u11josIlNzdXBg4cKDdu3DBUP3LkSOnRo4fmVPqoHsAVEeXPB1eJiIhQqk9JSZGbN29qSuNaZ8+eVe6pV6+e9UFQZKWkpMgDDzwgP/30k6n+MWPGWJLj4sWLEhcXp9SzdOlSl31da9Sokbz99ttKPTdv3pRTp05pSgQ4Ly8vT1544QV55JFHlPeUjz76qLRq1cqp9a9duyZpaWlKPd6ylxERuXDhguFa1QE1RfU+FVVPP/20fPDBB05dIz8/X9atW2dRIgBFGYNXAAAAAMDDWTV4JTMz04o4AAAAAAAAAAAAAAAAwF/as2eP4VofHx+pVauWxjQF27Rpk+FaHx8fmTNnjsY0/yskJEReffVVpZ4jR45oSmNMdHS04drk5GS35/UkkydPlt27dxuqrVmzprz77ruaE+l1/vx55Z5y5cppSOK8smXLKvdcvnxZQxLXM3OYuHLlyhqSoCj6+uuvpWnTprJhwwZT/dHR0dKlSxdLsmzcuFGpftCgQdKhQwdL1jZqzJgxUrVqVaUevk/DU23YsEEaNWok06ZNU+6tXr26zJgxw+kMRX0vk5iYaKguNTVVrl+/rnTtonifiqpnnnlG/vWvf1lyrddee015ECwA/BmDVwAAAADAwxkZvBISEiI+PgX/ES8rK8uqSAAAAAAAAAAAAAAAAMAf2O122bdvn+H6qlWrSlBQkMZEfy8pKUnpzevdu3eX2rVra0z01/r37y/BwcGG6909zEFl8IqIyK+//qopSeHy008/ydtvv22o1s/PT5YtWyahoaGaU+ll5hBqRESEhiTOM3MINzU1VUMS1zMzeMVTfx1ReOzatUvuvvtu6dmzp9L38j974403xGazWZJJ9aD3hAkTLFlXha+vrwwdOlSpx937CuD3rl27JnPnzpXGjRtL586d5dChQ8rXKF68uKxcuVJKlCjhdB72Msb2Mtwn79jz6TB27Fh5//33Lbtebm6uDBo0SG7cuGHZNQEUPQxeAQAAAAAPZ2RgSkBAgMMHUTIzM62KBAAAAAAAAAAAAAAAAPzBiRMnJD093XB93bp1NaYp2NGjR5XqR4wYoSlJwUJCQiQmJsZwverb5K1Wv359pXoGr/x2GPPhhx+W/Px8Q/WvvPKKtGjRQnMq/a5cuaLcU65cOQ1JnFemTBnlnpSUFA1JXCsvL8/UUAZPPUwNz3bu3DmZNm2aNG7cWFq2bCk//fSTU9dr27atPPDAAxalU9tXNG3aVBo3bmzZ2io6d+6sVO/ufQW8U1JSksTFxUlaWtof9j92u11u3rwpSUlJcurUKdm4caPMmzdPxo0bJ02aNJEyZcrI6NGjZf/+/abWDQsLk++//17uvPNOS/472MsY28twnwr/nk+HcePGyaxZsyy/7qlTp+Spp56y/LoAig4/dwcAAAAAABQsOzvbYU1AQIAEBgbKrVu3/rbGyAAXAAAAAAAAAAAAAAAAwAzVt85Xr15dUxLHjh07Zrg2MDBQOnbsqDFNwRo0aCAbNmwwVFvQs0OuUK1aNaV6Bq+IjBo1SuLj4w3VtmrVSl555RXNiVzDzMCO8PBwDUmcV6xYMeWe1NRUDUlcKyEhQfLy8pT7GLyCv5KdnS3p6emSnp4uaWlpcunSJTlw4IDs379fYmNj5dixY2K32y1ZKyAgQObNm2fJtW5T2Vfcd999lq6tQnVAmrv3FfBOGzdulAEDBrh0zcjISFm5cqU0adLEsmuylzG2l+E+Ff49n9XGjx8vM2fO1Hb9xYsXS7du3aRv377a1gDgvRi8AgAAAAAezsjglcDAQAkKCiqwJjMz06pIAAAAAAAAAAAAAAAAwB+oHDoW+e0ApLtcuHDBcG2bNm0kJCREY5qCeeob3/+K6jCd2NhYTUkKh48//li++OILQ7WhoaGydOlS8fX11ZzKNVJSUpR7wsLCNCRxnplcaWlpGpK41tWrV031eephavy1Dh06uDuC5SZPnix169a17Hr5+fmSkJBguL5Tp06Wra2qRIkSEhgYaPhFjlYNuwHcqVevXjJ//nzLv/+wlzG2l+E+Ff49n5UmTJgg7733nvZ1Ro0aJa1bt5bKlStrXwuAd/FxdwAAAAAAQMGMDF4JCAiQwMDAAmuM/qAEAAAAAAAAAAAAAAAAUFWYBq+oHABs1KiRxiSOBQcHu3V9FSEhIUqDYlJTUyUpKUljIs916tQpefrppw3Xz5w5U6KiojQmcq3r168r93jqIdxixYop93jDS9QyMjKUe/z9/cXHx71H2fz8/MRms3n0P35+vGddl3vvvVdeeuklS6+ZlpamNKCEfQXgGjVr1pQ1a9bIqlWrtAz9Yi9jbC/jTffJ399fAgIClHq8Yc9nlWeffVbeffddl6yVmpoqgwcPlvz8fJesB8B7MHgFAAAAADyckYEpAQEBEhQUVGANf3EHAAAAAAAAAAAAAAAAXQrT4JXU1FTDtfXq1dOYxLHC9rKlatWqKdUfP35cUxLPlZubKwMHDpQbN24Yqn/ggQdk+PDhmlO5luohXJvNJqGhoZrSOCckJES5JycnR0MS1zIzeMXRM46ATpGRkbJ8+XLLh/+o7CkqVqwoxYsXt3R9VYVtXwGoCggIkI8++kiOHDkiDzzwgLZ1vGmgiM69jDfdJxH1e+UNez4rvPTSSzJjxgyXrrllyxaZOnWqS9cEUPgxAhMAAAAAPFx2drbDmsDAQAkMDCywhh+WAAAAAAAAAAAAAAAAQJeTJ08q1VeoUEFTEsdef/11GTdunKHa6tWra05TsEuXLrl1fVWqv64nTpyQmJgYTWk806uvviq7du0yVFuuXDlZsGCB5kSup3oINzQ0VGw2m6Y0zvHzUz+a5Q2HcM0MXnH0jCOgS0REhGzYsEHCw8Mtv3aFChVk3759hmrNDDewUnp6uqnPXaAwyc7OlnHjxsnGjRvl4Ycflvvuu0/8/f0tX8fMQJFixYpZnsMKOvcy3nSfRNTvlTfs+aywevVq073+/v6m7+OUKVOkc+fO0rx5c9PrAyhaGLwCAAAAAB7OyOCVgIAAh2+DyMzMtCoSAAAAAAAAAAAAAAAA8B9ZWVmSnJys1FOmTBlNaRyLjIyUyMhIt62v4uDBg+6OoCQiIkKp/tSpU5qSeKaffvpJ6c3rCxcudOvnii6qLxHTcWDaKkV18IqZ5xEZvAJ3uD10JSoqSsv1AwMDpVGjRlqubbUDBw64OwLgEpmZmbJixQpZsWKFVKtWTaZOnSp9+/a1dA0zL0T11P2Mzr2MN90nEQavuFrHjh1l1qxZ0qZNG1NDfHJycmTgwIGyf/9+CQ0N1ZAQgLfxcXcAAAAAAEDBjAxe8fPzc/hDSTN/cQkAAAAAAAAAAAAAAAA4kpCQoFRfvHhxCQgI0JTGe1y9elV++eUXd8dQUq5cOaX6+Ph4TUk8T2pqqgwePFjy8/MN1Y8ZM0buv/9+zancIzc3V6nezIFgVymqg1cyMjKUe3x8OMYG12rZsqXs2bNH6tev7+4oHmHNmjXujgC43JkzZ6Rfv37Spk0b2bdvn2XXVd3LiHjufkbnXsab7pMIg1dcqVu3brJu3Tpp0KCBzJw50/R1Tp48KU8//bSFyQB4M/7ECgAAAAAeztHAlICAALHZbBIUFFRgnZk3TAAAAAAAAAAAAAAAAACOXLx4Uam+bNmympJ4l4kTJxa6ly1FREQo1av+3inMRo8eLefPnzdUW7t2bZk+fbrmRO7jTYNXzAwT8fX11ZDEtWw2m3JPYft6hsLLz89PJkyYIFu2bJGKFSu6O45HOHXqlHz44YfujgG4zfbt2yUmJkY+++wzS67nTQNFdO5lvOk+iajfK2/Y87nDgw8+KKtXr/7P+ZhHH31UevXqZfp6ixYtkhUrVlgVD4AXY/AKAAAAAHi47OzsAj8eGBj4h3//HX5oCQAAAAAAAAAAAAAAAB1Uh2eULl1aUxLv8f7778v8+fPdHUNZmTJllOovXLigKYlnWbx4sXz++eeGav38/GTZsmUSEhKiOZX75OXlKdV78gHcnJwc5R5/f38NSVwrODhYuYdnGOEK7dq1k19//VWmT5/u8LnaouLixYvy4IMPyq1bt9wdBXCrjIwMGTBggLz88stit9udupbqXkbEc/czOvcy3nSfRNTvlTfs+Vxt0KBB8vnnn0tAQMAf/v958+ZJuXLlTF935MiRRebPngDMY/AKAAAAAHg4R4NXbv+l0u2Jvn8nMzPTskwAAAAAAAAAAAAAAADAbcnJyUr1YWFhmpIUbna7XbZv3y49e/aUZ555xukDoe6g+mubmJioKYnnOHXqlDz99NOG61999VVp1qyZxkTup3qg1sfHc48/5ebmKvd4wyFcBq/Ak/j6+krv3r1l27ZtsmXLFomOjnZ3JI+QmpoqM2bMkCZNmsiBAwfcHQfwGG+++aa8+uqrTl3DzHAQT93P6NzLeNN9ElG/V96w53Olxx57TJYsWfKXv2/KlCkjCxYsMH3tlJQUGTx4sOTn5zsTEYCX89zRXwAAAAAAETE+eMXRZH5+aAkAAAAAAAAAAAAAAAAd0tLSlOqLFSumKUnhcO3aNTlz5oycPXv2P/+cPHlSdu3aJdeuXXN3PKcUL15cqT4tLU3y8/M9+oClM3Jzc2XQoEFy/fp1Q/Vt2rSRl156SXMq91M9hGrmQLCrMHjFuKysLMnLyxNfX18NiVDUhISESNu2beWhhx6SXr16SdmyZd0dyS1ycnIkPj7+f/YVsbGxcvjwYQ6Yw+N07dpV9u3b94f/z263S3Z2tmRnZ8uNGzckOTlZkpKS5PTp03Ly5EmJjY21fFjfP//5T6lVq5Y8/PDDpvrNfC/Pzc01NYhEN517GbP3yVMxeEWfp556SmbNmiU2m+1va7p37y7Dhw83PYDl3//+t0ybNk1efPFFszEBeDnP+y4NAAAAAPgDRwNTbg9eCQoKKrAuMzPTskwAAAAAAAAAAAAAAADAbampqUr1YWFhmpJ4hmvXrv3h8POf/zE6hKMwUh28YrfbJT09XUqUKKEpkXtNmTJFdu7caag2LCxMli5dWiSGUqgeQs3Ly9OUxHlmDgc7etavMDAzeMVut0tSUpJERERoSARvYrPZJDg4WIKDgyUkJETKlSsnVapUkSpVqkjdunWlefPmEh0d7ZEDDKx2e7DK3+0pLl68yHAVFColSpSQRo0aKfddvHhRNm3aJN9//72sXbvWkv308OHDpVatWtKiRQvlXjMDNfLy8jzy65bOvYzZ++SpVO+VN+z5XOH555+Xt99+21Dte++9J5s3b5ZTp06ZWmvy5MnSqVMnadasmal+AN7N875LAwAAAAD+IDs7u8CPBwYG/uHff8fRABcAAAAAAAAAAAAAAADAjLS0NKX6YsWKaUriGrm5uXLq1Ck5evSonD59+n8OQaenp7s7otuoDl4REUlJSfHKwSs///yzTJ061XD9rFmzpHr16hoTeY7bLxszysyBYFfJyclR7rnjjjs0JHGtkJAQU32XL1926+CVvXv3it1ud+maFy5ckB49erh0Tats3rxZ2rdv7+4YXu/q1aty9OhROX78+F8OVvHkIQSAq1SsWFEGDx4sgwcPloyMDFm5cqXMmDFD9u3bZ/qaWVlZMmzYMNm3b5/y3kS1XuS3/Yyj5/3dQedexux98lSq98ob9ny6TZkyRV599VXD9cWKFZMlS5ZIu3btTH1/zMnJkUGDBsmvv/4qoaGhyv0AvBuDVwAAAADAwzkavHL7LyQdTUTOzMy0LBMAAAAAAAAAAAAAAABwm+qgEU88cFiQmzdvyoYNG2TTpk2yY8cO2b9/v8NneooqM7+2N2/e1JDEvdLS0mTw4MGGDwP27t1bhg0bpjmV51A9hJuRkaEpifOuX7+u3OMNh3DLli1rqu/KlSsWJ1Fz5513unxNf39/l68Jz3bkyBH57rvvZOvWrbJjxw5JSEhwdySgUAkODpZBgwbJoEGDZM2aNTJ+/Hg5ffq0qWvFxcXJ+++/L88++6xSn5mBIhkZGR456EHnXsbsffJEubm5yucxvGHPp9M777yj/LknItKmTRt54YUX5M033zS17vHjx2Xs2LEyf/58U/0AvJePuwMAAAAAAApmdPCKo4cWsrKyLMsEAAAAAAAAAAAAAAAA3KY6hMTPz/PfIZudnS1fffWVPPDAA1K6dGnp1auXvP/++7Jr1y6GrhTAzIABb7yfo0ePlnPnzhmqjYiIkHnz5mlO5FlUD6HeunVL7Ha7pjTOKcqDV8wcpr548aKGNJ7NUw+Qw7VOnjwpkyZNkho1aki9evVkwoQJsnLlSoauAE7q2bOnHD58WIYPH276Gm+99Zby93Mz38s9ddigzr0M96nw7/l0sNlsMnv2bFNDV26bMmWKNGnSxHT/ggULZOXKlab7AXgnBq8AAAAAgIdzNDDl9g8vg4KCCqxTnbAMAAAAAAAAAAAAAAAAGJGTk6NU78mDV9LT02Xq1KkSGRkpffr0kbVr1/LCIwUMXhFZsmSJfPbZZ4brP/74YwkPD9eYyPOULFlSqd5ut3vs8Aozh3BLlCihIYlr2Ww2qVixonLf8ePHNaTxbDy7WbRt3bpVevToIbVq1ZI33nhDTp8+7e5IgNcJCgqS+fPny9tvv22q/9q1a/Lxxx8r9ajuZUS8a6CI0b0M96nw7/ms5uPjIwsXLpTHH3/cqev4+/vLsmXLHJ6hKciIESOK5FBAAH+PwSsAAAAA4OEcPVgQGBj4h3//HR4AAQAAAAAAAAAAAAAAgA7eMHglPz9f5syZIzVr1pSXXnpJEhMT3R2pUDLza6v6+8eTnT59Wp588knD9U8++aR07dpVYyLPZOYQblpamoYkzjNzCDciIkJDEterXLmycs+xY8c0JPFsnnqAHHqdOHFCevXqJW3btpVvvvlG7Ha7uyMBXu/555+XZ5991lTvnDlzlOrZyxjby3CfvGPPZxU/Pz9Zvny5DBs2zJLr1a1bV6ZOnWq6/9q1azJkyBDJz8+3JA+Awo/BKwAAAADg4RwNXgkICBARcTitl7cmAAAAAAAAAAAAAAAAQAfVwRm+vr6akphz4sQJueuuu2TMmDFy5coVd8f5jwcffFDq16/v7hhKzAxe8fHxjqMtubm5MmjQIMOHMuvUqSPTpk3TnMozlSpVSrnn6tWrGpI4T/VwcGhoqNxxxx2a0riWmcErR48e1ZDEsyUkJLg7AlwoPz9f3nvvPWnYsKGsWbPG3XH+IyIiQkaOHOnuGIB2b775pjRt2lS578iRI3Lw4EHD9UV5LyMiUrFiRUN13Cdj96koCAgIkC+//FL69+9v6XWffvppueeee0z3b9q0SaZPn25hIgCFmXf87RQAAAAAeDGjg1cCAwMLrMvKyrIsEwAAAAAAAAAAAAAAAHCb3W5Xqs/NzdWURN3KlSulSZMmsm3bNndHERGRO+64Q0aMGCGxsbHy1VdfSXh4uLsjKTHza+vv768hietNnTpVduzYYajW399fli9fLsHBwZpTeSYzv6899RBuYmKiUr03HcCtXr26cs+JEyckIyNDQxrPxeCVoiMtLU26d+8u48eP95iXJTZr1kzmzp0rZ86ckQEDBrg7DqCdv7+/zJw501TvunXrDNcW5b1MYGCglC5d2lBtUb5PIt6173NGcHCwrFmzRnr16mX5tW02myxevFhKlChh+hqvvPKK/PrrrxamAlBYMXgFAAAAADyco4EptwevBAUFFVjnKT/EAQAAAAAAAAAAAAAAgHdx9NzKn3nK4JXp06dLnz595MaNG27L4OfnJ82aNZNnnnlGvv32W7l8+bLMmzdPGjZs6LZMzijKg1f27NljuPa1116TJk2aaEzj2SpXrqzcc/nyZQ1JnKd6CLdChQqakrhe48aNlXtycnKUPle8wcWLF90dAS6QkJAgrVq1ku+++86tOcqVKye9e/eWWbNmyalTp2T37t0ycuRI5b0aUJi1bdtWOnbsqNy3ZcsWw7VFeS9Tvnx5sdlshmqL8n3y9fWVcuXKaUpTuHz66afStWtXbdevVKmSzJ4923R/Tk6ODBw4UG7dumVhKgCFkZ+7AwAAAAAACpadnV3gxwMDA//w77+TlZUldrvd8F90AgAAAAAAAAAAAAAAAEaoHubNycnRlMS46dOny3PPPeey9fz8/KRSpUoSFRUlderUkTp16kh0dLQ0a9ZMQkJCXJZDNzODV26/eKoomThxokycONHdMQp07tw5U8+aDR06VBYvXlxgTWRkpPJ1L1y4oNzjCqqHcKtXr64pieuZHR60detWueuuuyxO47nOnTvn7gjQ7NKlS3L33XfLyZMnXbZmiRIlpFq1alK7dm2pU6eO1K1bV5o2bSo1atRwWQbAkz3yyCOyadMmpZ5ff/3VcC17GWNKliwpYWFhcv36dcM93nKfIiMjxcfHR1OawqV27dra1xg4cKCsXbtWPvvsM1P9x44dk3HjxsncuXMtTgagMGHwCgAAAAB4OEeDV24/eODoARa73S45OTlF8kEFAAAAAAAAAAAAAAAA6BMcHKxUb2Y4h5XWrl0rzz//vOXXLVWqlNStW1eioqKkatWqUrVqValWrZpUrVpVKlWqJL6+vpav6WkYvAIjqlSpotwTHx+vIYnzVA/huuLgqatERkZKeHi4JCcnK/Vt3bpVUyLPtH//fndHgEbZ2dny0EMPWT50xc/PT6pXry5169b9z57i9r6iWrVqUrx4cUvXA7xNr169xNfXV/Ly8gz3XLlyRZKTkyU8PNxhbalSpaRYsWJy48YNw9cvqnuZKlWqyOHDhw3XF9X7BOd9+OGH8vPPP8vFixdN9c+bN0+6desmvXr1sjgZgMKCwSsAAAAA4OGMDl4JDAx0eK2srCweVAAAAAAAAAAAAAAAAIClVAevZGZmakri2KVLl2Tw4MFit9uduo6vr6/ExMTIXXfdJTExMdKkSRMpV66cRSkLL0fPOv0VDo8XPeHh4RIaGio3b9403HP27Fl9gUzKz8+X8+fPK/V42yHcJk2ayA8//KDUs3nzZsnMzHT4sjlvkJycLAkJCe6OAY0mTZok27dvd/o6FStWlHvuuUdiYmKkdevWUrt2bZ73BZwQFhYmDRs2lH379in1xcfHGxq8IvLbQJG4uDjD1/bEvYyIyJkzZ5TqVfcykZGRSoNXiup9gvNKliwpH3/8sXTp0sX0n/eHDx8uLVq0kAoVKlicDkBh4OPuAAAAAACAgmVlZRX48ds/WDHyQ0h3PrQCAAAAAAAAAAAAAAAAVt9X5wAAIABJREFU7xQaGqpUn56erimJY+PGjZO0tDTT/XfeeafMmzdPEhMTZcuWLfLGG29It27dGLry/12/fl25p0SJEhqSwNOpHkY9duyYpiTmnT9/3uHzfX/mbYdwmzdvrtxz8+ZN2bhxo4Y0nic2NtbdEaDRoUOH5N133zXdHxQUJKNHj5ZffvlF4uPj5ZNPPpGRI0dKdHQ0Q1cAC5j5HpWYmGi4tk6dOkrXPn78uNPDH62Wm5urPOhEdS+jep9SU1PlypUrSj2ucOLECaV6b9vzFRadO3eWJ554wnT/1atXZejQoR73uQrANRi8AgAAAAAeztFbYAIDA//w74Ko/pAXAAAAAAAAAAAAAAAAcKRMmTJK9WaGc1ghNjZWPv/8c1O91apVk7Vr18r+/ftlxIgREh4ebnE673Djxg2l+sDAQEPPPcH7REdHK9WfOnVK8vLyNKUx5/jx40r1wcHBEhUVpSmNe3Tt2tVU35o1ayxO4pk2b97s7gjQaNKkSZKbm6vcZ7PZZPTo0XLu3Dn56KOPJCYmRmw2m4aEgJqrV69KYmKi4X9u3brl7sgFql69unKPyl5WdS9z69YtuXDhgmokrU6fPq38daxhw4ZK9ar3ScTzBu5lZmZKfHy8Uo/qfYJ1pk2bpjzw5/c2bNggM2bMsDARgMKCwSsAAAAA4OEcDV65PdU+KCjI4bUyMzMtyQQAAAAAAAAAAAAAAADcVr58eaX69PR0TUkKNm3aNFN9ffr0kUOHDkn37t0tTuR9VAevlChRQlMSeDrVw6jZ2dnKg050O3HihFJ9kyZNxM/PT1Ma92jdurWULl1auW/VqlUOn430Bt999527I0CT48ePmxogVKJECfn+++/lo48+krJly2pIBpjXtWtXKV++vOF/pk+f7u7IBapcubJyj8qz9mYGaxw6dEi5RyfVvUzFihWlQoUKSj3ecJ9OnTol+fn5huv9/PykcePGGhOhIMHBwbJs2TLx9/c3fY2XX35Z9u3bZ2EqAIUBg1cAAAAAwMMZHbxi5M0vWVlZlmQCAAAAAAAAAAAAAAAAbisMg1du3LghK1euVO4bNGiQfPHFFxISEqIhlWN2u90t65qlOnglPDxcUxJ4uujoaOWePXv2aEhi3v79+5XqmzdvrimJ+/j6+krXrl2V+5KTk019TS5Mrly5woFdL7ZkyRLl79HFihWTjRs3yr333qspVcEK254CrhccHKxUn5CQoCmJNYoVK6bcY+R5/NvYyxhTr1498fX1Veop7PepQYMGyp9PsFbTpk1l0qRJpvuzs7Nl4MCBkpGRYWEqAJ6OwSsAAAAA4OEcDUu5PXglKCjI4bVUpnADAAAAAAAAAAAAAAAARqgOXklKStKU5O+tXbtW+dmZ6OhoWbRokdhsNk2pHHPHkBpnJCcnK9VXrFhRUxJ4uqZNmyp/bnnaIdxdu3Yp1Xvj4BURkR49epjqmzt3rsVJPMtXX33FoAsv9uWXXyr3zJ8/X5o0aaIhjTGFbU8B11MdNBgfH68piTVCQ0O19kRFRUnJkiWVrl8U9zJBQUHSoEEDpZ6ieJ9gvYkTJ0qrVq1M9x89elTGjx9vYSIAno7BKwAAAADg4bKzswv8+O3J2kYmbDsa4gIAAAAAAAAAAAAAAACoioiIUKq/cuWKyw+j//vf/1bumT179n9eiuQuaWlpbl1flepQHQavFF2lSpWS+vXrK/X8/PPPmtKou3Xrlhw+fFip5+6779aUxr26du1q6PnFP/v3v/8thw4d0pDIM3j7YJmiLDExUY4fP67U07FjR+nfv7+mRMYUtj0FXE91iMipU6c0JbGGo2fw/4rK4BWbzSYxMTFK19+6datHDeXavXu3Un379u1NrXPXXXcp1R86dEhSUlJMraWD6uAVs/cJ1vL19ZWlS5eaGsJ025w5c2TNmjUWpgLgyRi8AgAAAAAeztFf+t5+uMPIDy5V39oDAAAAAAAAAAAAAAAAOFK2bFkJDg42XJ+bmytXr17VmOh/7dixQ6m+ZcuWygcErZaXlyeJiYluzaBKdfBKpUqVNCVBYdCuXTul+tjYWI85hLt7927Jy8szXF+3bl2vHTR0xx13yD/+8Q9Tva+99prFaTzDjh07JDY21t0xoMn27duVe5577jkNSdRcvHjR3RHg4SpXrqxUf+bMGcnNzdWUxnk3btxQ7ilbtqxSvepe5urVq3LgwAGlHl3OnTsnly5dMlxfvHhxadGiham1VO9Tfn6+/PTTT6bWslpWVpbs37/fcL3NZpN77rlHYyKoiIqKkunTpzt1jeHDhyt9rgAovPzcHQAAAAAAUDCjg1eMvF0nJyfHkkwAAAAAAAAAAAAAAADAbT4+PlKzZk2lQ4SXL1+W8PBwjan+y263y/Hjx5V6+vTpoymNcceOHZOMjAx3x1CiOnjFmwZRvPfeezJlyhR3xyjQfffdZ/jQYPny5eXbb79VXqNUqVKGa9u1aycffvih4fr8/Hz58ccfpW/fvsq5rKZ6bzp37qwpiWcYPXq0LFu2TLnvq6++kgMHDkjDhg01pHKfadOmuTsCNDp69KhSfYkSJaRTp06a0hi3b98+d0eAh6tSpYpSfXZ2thw/flzq1aunKZFz4uPjleptNptUq1ZNqUd1oIiIyPr16+XOO+9U7rOa6l6mffv24udn7ki62fvUs2dPU+tZadOmTUovv42OjpZy5cppTARVo0ePlrVr15r6s42ISHJysgwdOlTWr18vNpvN4nQAPAmDVwAAAADAw2VlZRX48dsDV/z9/R1ei8ErAAAAAAAAAAAAAAAA0KFOnTpKg1cSEhKkfv36GhP9V2JiotJhORGR1q1ba0pj3J49e9wdQVlCQoJSfc2aNTUlcT3Vg7ruYOTlXr+vbdSokcY0Ip06dRJfX1/Jy8sz3LN69WqPGLyybt06pfouXbpoSuIZYmJiJDo6Wg4ePKjUZ7fb5aWXXlK+n55s+/btsmrVKnfHgEZnz55Vqm/WrJnpYQVWKoz7CriWmX3Z3r17PXbwiurgxYiICAkODlbqadasmYSHh0tycrLhntWrV8vzzz+vtI4OrtzLlCtXTho1aiT79+833LNmzRqZPXu22wddsOfzDgsXLpTo6Gilz9Xf+/HHH+W9996T8ePHW5wMgCfxcXcAAAAAAEDBsrOzC/x4YGCgiBj7oTiDVwAAAAAAAAAAAAAAAKBDnTp1lOpPnz6tKcn/SkpKUu6pVauWhiRqvvrqK3dHUHbu3Dmlek+4z3Cf0qVLS7t27ZR61q1bJxkZGZoSGXPmzBk5fPiw4foSJUpIp06dNCbyDKNHjzbV9+233xbKr3d/xW63y3PPPefuGNBMdV/hCd/r9u3bJ2fOnHF3DHi4Jk2aKPds27ZNQxJr/PLLL0r1DRo0UF7D19dXevToodSzY8cOiY+PV17LSjdv3pRNmzYZrvfx8ZEHH3zQqTV79+6tVJ+QkOD23192u12++eYbpZ4+ffpoSgNnREREyNy5c526xsSJEyU2NtaiRAA8EYNXAAAAAMCD2e12h8NSbg9c8fX1dXg9R0NcAAAAAAAAAAAAAAAAADM8efDKrVu3lHtKlCihIYlxKSkp8v3337s1gxkqh0hDQ0OlYsWKGtOgMFA9hJueni6fffaZpjTGLFy4UKm+Z8+ehl6sVtgNHTpUypUrZ6r36aeflvT0dIsTud7MmTNl69at7o4BzVT3Fe7eU4iIfPrpp+6OgEKgTJkyUqlSJaWejRs3akrjnISEBImLi1PqiYmJMbWW6l7GbrfLggULTK1llU8//VRpkN1dd90lERERTq2pep9ERObNm+fUms7auHGj0mDJqlWrSosWLTQmgjMefPBBGTp0qOn+rKwsGThwoNuHQALQh8ErAAAAAODBHA1dEfnv4BWbzSb+/v5OXw8AAAAAAAAAAAAAAABQVb9+faV6Vw5eMfPMTFZWloYkxk2fPr3QvWQpNTVVaXBCrVq1xGazaUyEwqB3797Kvw+cfVu9M3Jzc2XRokVKPf369dOUxrOEhobKpEmTTPUmJCTIE088YXEi19q3b5+8+OKL7o4BF1DdV7h7T3H16lW3ft1E4dK2bVul+hMnTsjJkyc1pTFv+fLlYrfblXpU/9tv69y5s4SFhSn1LFy4UPLy8kytZwXVrwlW7GWio6OlZs2aSj1ffPGFpKSkOL22War3qW/fvpqSwCrvv/++REZGmu6Pi4uTCRMmWJgIgCdh8AoAAAAAeDAjP2z5/ZswHL0Vg8ErAAAAAAAAAAAAAAAA0KFevXoSEhJiuP7UqVMa0/yRSq7bLl26pCGJMYmJiTJr1iy3rW+W6jCdBg0aaEqCwqRSpUrSqVMnpZ6dO3fKnj17NCUq2BdffKH09aFixYpy7733akzkWUaOHClRUVGmepctWybvv/++xYlcIyEhQR566KFCNzAL5qjuK9y5pxARefPNN5UGo6Fou//++5V7Pv30Uw1JzMvNzZU5c+Yo9YSFhUlMTIyp9YKCgqR///5KPRcvXpTVq1ebWs9Z27ZtU9pHBQcHK//3/Z1HHnlEqT4zM1N54J1Vzp49K2vWrFHqGTZsmKY0sErx4sVlyZIl4uNjfrzCRx99JGvXrrUwFQBPweAVAAAAAPBgRn4IFxgY+J//7e/v7/T1AAAAAAAAAAAAAAAAAFV+fn7SpEkTw/VHjx6V/Px8jYn+64477lDuOXHihIYkjuXn58uQIUPk5s2bblnfGUeOHFGqb9asmaYkKGxGjRql3DNx4kQNSQqWlZUlL7/8slLPyJEjxdfXV1Miz+Pv7y9vvPGG6f4JEybIpk2bLEykX1JSknTq1EnOnDnj7ihwEdV9hbv2FCIiW7ZsKZTD3OA+Xbt2VR5IsGDBAsnNzdWUSN3HH3+sPBDwgQcekKCgINNrjh49Wrln0qRJkpeXZ3pNs5599lml+v79+0vJkiUtWfvRRx91eN7hz6ZOneqW4VEvvfSS0ktvO3ToIHXq1NGYCFZp166djB8/3qlrPPbYY5KYmGhRIgCegsErAAAAAODBjAxKCQgI+M//dvQXkSp/+QcAAAAAAAAAAAAAAACoaNWqleHajIwM5QORZlWpUkX5AKm73kA/ZcoU+fHHH92ytrOOHj2qVM/gFdzWs2dPKV++vFLPjz/+6PLPlXfffVfOnj1ruN7f319GjBihL5CH6tu3r8TExJjqzc3NlR49ehSar4Pnzp2Tjh07Kg+eQuFWtWpVpfo9e/bIhQsX9IQpwMWLF2XAgAFuGeyAwis8PFw6deqk1HP+/HlZtmyZpkRqLl++LC+++KJyX79+/Zxat0mTJsp72yNHjsiiRYucWlfVp59+Ktu3b1fqefzxxy1bPyIiQnr27KnUk5ycLG+//bZlGYzYtm2bfP7550o9Vt4n6PfGG29IdHS06f6kpCR55JFHxG63W5gKgLsxeAUAAAAAPJjq4JXf/2+z1wMAAAAAAAAAAAAAAADMaNmypVL9oUOHNCX5o4CAAImMjFTqWblypVy/fl1Tor/25ptvyj//+U+XrmkllcEDvr6+0qhRI41pUJj4+fnJE088odw3duxYyczM1JDof+3du1emTJmi1NO/f3/lgTLewGazyeLFiyU0NNRU/61bt6RHjx6yatUqi5NZ6+eff5bmzZu77HsZPEetWrWU6u12uyxdulRTmr8WHx8vd999t1y6dMml68I7DB8+XLnn5ZdflmvXrmlIY1xeXp4MHTpUOUe1atXkvvvuc3r9sWPHKvdMmjRJkpKSnF7biPPnzyvvt+666y7LhyWauU/vvfeeHDt2zNIcfyc9PV0GDx6sNFCjWrVq0qtXL42pYLXAwEBZtmyZBAYGmr7G+vXrZdasWRamAuBuDF4BAAAAAA+WlZXlsOb3w1b8/f0LrM3JyXE6EwAAAAAAAAAAAAAAAPBXWrVqpVR/8OBBTUn+V+vWrZXqr169Kq+88oqmNH+UnZ0tY8eOlZdfftkl6+miMnwgOjpaQkJCNKZBYfP0009L6dKllXri4uJk3LhxmhL9V0pKivTv31/pxWc+Pj6F/nPaGVFRUfLOO++Y7s/KypI+ffrICy+84HHPPebm5so///lPueeee1x2WB6eRXVPIfLbcLX4+HgNaf7Xrl27pG3btnLq1CmXrKeqatWqYrPZlP+B6/Ts2VPKli2r1JOQkCCjRo3SlMiYcePGyfr165X7nn32WfH19XV6/QEDBkidOnWUei5fvixDhw5VGvJhRlZWlgwYMEBSUlKU+iZPnmx5lpiYGOncubNST0ZGhvTr18/Q2Qpn2O12eeyxx+T06dNKfRMnThQ/Pz9NqaBLw4YNnR58+uKLL8qBAwcsSgTA3Ri8AgAAAAAezMgPan8/Zff3Q1j+iqf9ABIAAAAAAAAAAAAAAADeo1KlShIVFWW4/tdff9WY5o86duyo3DN79mxZt26dhjT/dfToUWnTpk2hf1P29evX5fjx44brO3TooDENCqOwsDCZMGGCct+cOXPk008/1ZDoN7du3ZL7779fTp48qdT38MMPS+3atTWlKhzGjBkjXbp0Md2fn58v06ZNk9atW0tcXJyFycz79ddfpVWrVjJ58mSexyzCatasKZUqVVLquXHjhgwdOlQyMjI0pfptKNA777wjbdu2lfPnz2tbB94vICDA1PfkFStWyOuvv64hUcHsdruMGzdO/vWvfyn3VqhQQYYNG2ZJDh8fH1ODSr777juZOnWqJRn+Sl5engwYMEC2bdum1NeuXTvp1KmTlkyvvfaack9sbKw888wzGtL819ixY2XFihVKPVFRUTJ06FBNiaDbhAkTpF27dqb7s7KyZODAgZKZmWlhKgDuwuAVAAAAAPBgRgav/H7Yir+/v9PXAwAAAAAAAAAAAAAAAMxSOWS/Y8cOjUn+qHfv/8fenQdZWZ55A75Pd3PYFQEXiIZNjdIiRMGIuKGJFQRBhcQEUwZllJgYRzRixVGJER1x3xgFt6AxOiqCMS5RI+oYlygBARWVxAVXYqI4gnBomu+PKf0U6T77wunrqqIq/T7Pez8/AtLdcN7fOSzta2s2tG7dujj88MNjzpw5Bc/zwQcfxAknnBD9+vWLefPmFWzuRx99VLBZ2fjrX/8a69evz3i/4hU25uc//3l079496/uOOuqorB+SzcRHH30Uw4cPj6eeeiqr+9q1axfnnXdewfNsim688cb42te+lteMefPmxa677hrHHHNMvPHGGwVKlp2///3vMXbs2Bg4cGDWf2bX1dXF+PHji5SMcvn+97+f9T1z586NESNGxMqVKwue55577ol+/frFpEmTClYKVK6vKagMP/vZz2LLLbfM+r7JkyeXtHzlk08+iTFjxsRll12W0/0XXXRRtG3btmB5jjjiiBgwYEDW951++uk5/xyas2bNmjjyyCNj9uzZWd2XSCTikksuKXiezwwePDhGjhyZ9X3Tp0+PiRMnFjxPY2NjnHzyyXHFFVdkfe8FF1yQ9feZVI6ampq46aabYrPNNst5xgsvvBC/+MUvCpgKKBfFKwAAABWs0MUr3mEBAAAAAAAAAIBiOuiggzLe+95775XsIfrOnTvn9HBfKpWK0aNHx4knnliQB6UXLVoUEyZMiB49esS0adOioaEh75lf9Le//a2g8zKVTRFBbW1tXu8qTvXq0KFDXHXVVVnf19DQED/84Q9jxowZBcuyZMmSGDx4cDz66KNZ33v66afnXTZSLbp16xZ/+MMfokOHDnnNWbduXdx4442x4447xjHHHBOPP/54VmVPuXrkkUdizJgx8Y1vfCNuvfXWrM9MJBLxm9/8Js4///xIJBJFSkk5jBs3Lqf7HnnkkRgwYEA89thjeWf49NNP44YbbohvfvObMXLkyFiyZEneM7+oXF9TUBnat28fZ511Vk73Tp48OUaNGhX/+te/Cpzqyx555JHo379/3HXXXTndP3To0PjhD39Y0Ew1NTVx7bXXRm1tbdb3Tpw4Mc4+++xobGwsSJa33347DjjggPjv//7vrO8dP3587L777gXJ0ZSrrroqp68PLrvsspgwYUKsXr26IDk++uijGD16dFx66aVZ3/vtb387DjvssILkoHx69OgRl19+eV4zpk2bFvfee2+BEgHlongFAACggq1Zsybtni8Wr3zxf2+M4hUAAAAAAAAAAIrpgAMOyOodv59++ukipvmy0047Laf7Ghsb48orr4ydd945Lrroovjwww+zuv/FF1+MCy64IIYMGRK77rprzJgxI1atWpXRvR07dszqrJkzZ2a1v1Cy+XXcfffdY/PNNy9iGjZlhx12WE4PsDY0NMSECRPi0EMPjX/84x85n79mzZo4//zzY8CAATmVGPTv3z8mTZqU8/nVaMCAAXH77bfn9BD6hlKpVNx4442x3377RZ8+feI//uM/4uGHHy5IMVbE/73G8tFHH42JEydG796948ADD4xZs2blVJKVSCRixowZceSRR0bXrl1jl112KUhGKkO/fv3i4IMPzunepUuXxtChQ+N73/te/M///E9W965cuTLmzJkT//Zv/xbbbrttjB8/PhYsWJDx/dl8XfHggw/Ge++9l1U+qstPf/rTnMs3fv/738cOO+wQF198ccEKMj4zf/78GDVqVBx44IHx97//PacZnTp1iuuvv76guT4zcODAOPHEE3O691e/+lXst99+8dprr+V8/rp16+Laa6+N+vr6ePLJJ7O+v3v37nHhhRfmfH6mtttuuzj33HNzunfGjBkxcODArP7825jZs2dHfX19zJkzJ+t727dvX9DSP8pr3Lhxcfjhh+c145hjjon333+/QImAckiUot0TcpVIJF6IiL4bXu/bt2+88MILZUgEAACl9dBDD6V9F6B//etfscUWW0RExN577x1//vOfm9z785//PK644oqCZgQAAAAAAAAAgC/af//947HHHsto7wknnBBXXnllkRP9f4ceemjcfffdec1o27Zt7LXXXrHPPvtE3759o0uXLrHZZpvFqlWrYsWKFfHhhx/GkiVLYtGiRbFgwYJ46623cjqnU6dO8dBDD8XgwYMzfui/trY2Jk+eHEceeWRst912sW7dulixYkW8/vrr0dDQEEOGDMkpSzpbb711LF++PKO95557bpx++ulFyUHzevbsGW+88UZGe3v06BGvv/56cQM14Z133on6+vr46KOPcrq/Q4cOccwxx8TEiROjZ8+eGd3z7rvvxi233BKXXHJJvPvuuzmd26ZNm3j66aejf//+Od1f7a655po4/vjjizK7rq4udtttt+jfv3/07t378x9bbLFFtG/fPtq1axft27ePdevWxaeffhqrVq2KDz74IN5888144403YsmSJfGXv/wlFixYkNEb5qWTSCTimmuuieOOO+7za//+7/+e0es3a2trcyp6SSebz82fmTt3buy///4Fz1It5s2bF3vssUc0NjbmNadPnz6x3377xeDBg6Nbt27RpUuXSCQS8fHHH8eKFSvirbfeisWLF8eiRYvi+eefz/n36Pjx46Nbt24xZcqUjO/Zfffd4z//8z9jjz32iA4dOsQnn3wSy5cvj1dffTX23HPP6Ny5c9Y5svlc9EWegy2PefPmxZ577pnXn0udO3eOsWPHxtixY2PQoEFRV1eX9Yxly5bFvffeGzNnzsy7uDGRSMScOXNi5MiRec1pzsqVK6Nfv345F6gkk8kYO3ZsnHLKKRkXd3344Ydxxx13xIUXXhhLly7N6dxEIhH33XdffPe7383p/mw1NjbGkCFDcv41rampiUMPPTROOeWU2GuvvTK6Z+XKlfH73/8+Lrzwwpg/f35O50ZETJ8+/Uuf51uKX/3qV3H22Wdndc9LL70UO+20U5ESFc4HH3wQ/fr1y6t0bNiwYXHvvfdGIpEoYDJaqvr6+njxxRc3tvTi+vXr60udpyVQvEJFU7wCAEBLd++998aIESOa3fPJJ59E+/btI+L/3jFo7ty5Te79yU9+EldffXVBMwIAAAAAAAAAwBddfvnlcdJJJ2W0d+edd27qQZKiePPNN6Nv376xcuXKkp2ZizZt2sQf//jH2HfffWPXXXeNRYsW5T1z1KhROb2bezovvvhi1Ndn/szP4sWLs9pP4WwqxSsREffff3+MGDEir0KDRCIR9fX1sf/++8fuu+8eW2655eeFBitWrIh33303nn/++Xj66afj6aefzvuh/pb6AG42brzxxvjJT34SqVSq3FGKpra2Nm644YY46qijvnR99uzZcfjhh2d0v+KVTceJJ55Y0gK5XB1yyCExe/bsuPvuu2P06NEFmTl//vwYMGBA1vcpXtn0XHTRRXHqqacWZFaHDh1i8ODBUV9fH717946vf/3r0bFjx2jXrl0kk8lYvXp1rFy5Mt59991YtmxZLF68OP7617/GK6+8UpDzIyLOOuusrIsjcrFgwYIYMmRIrFq1Kq8522+/fey///7xrW99K7baaqvo2rVr1NXVxccffxzLly+PhQsXxrPPPhuPP/543p8/fvnLX8Z5552X14xsLVu2LAYNGhTvv/9+XnO222672G+//WKvvfb6vMSqbdu28fHHH8cHH3wQixcvjnnz5sUjjzwSq1evzuusH/zgB3HrrbfmNWNTVc3FKxER9913XwwfPjyvGZdffnmceOKJBUpES6Z4pfSyr4YDAACgZDL5x8VkMvn5/27VqlXe8wAAAAAAAAAAIB/f+9734uSTT86oMOGll16Kd955J7p3716CZBFf//rXY9q0aTFu3LiSnJeLLl26xJw5c2LvvfeOiIihQ4cWpHilWLJ5kH/77bdXukJGhg0bFhdccEH84he/yHnG+vXrY/HixbF48eICJtu4448/XulKBo4++ujYcccd4/DDD4/ly5eXO07BtW3bNm677bYYOXLkV9b222+/SCQSyiOqzPnnnx8Y3pdQAAAgAElEQVRz584tyZ8zufrRj34U119/fdTW1sZ+++0XNTU1eZVa0fKccsop8fjjj8c999yT96xPPvkkHnrooXjooYcKkCx7J5xwQklKVyIiBgwYEDNnzozvf//7ef3Zv3Tp0li6dGlcd911BUz3VSNGjIhzzjmnqGdszHbbbRezZ8+OoUOHxpo1a3Kes2zZsvjtb38bv/3tbwuY7qsGDhwY119/fVHPoHwOPvjgmDBhQkyfPj3nGaeddloMHTo0+vXrV8BkQCnUlDsAAAAATcvkLw/r6v5/p2a64pW1a9fmnQkAAAAAAAAAAJrTvXv32GeffTLe/6c//amIab7qxz/+cfzsZz8r6ZmZ6tOnTzz11FOfl65ERIwaNaqMidJ74IEHMt57+OGHFzEJ1eaUU06JY445ptwx0ho5cmRceeWV5Y6xyRgyZEj85S9/iUGDBpU7SkFts802MXfu3I2WrkREdO7cOXbdddcSp6LY2rVrF7NmzYotttii3FE26swzz4ybb7758zd57NKlSwwZMqTMqdjUJBKJuOWWWzb5P7fHjx8fV1xxRUnPHDNmTMmKXvKxxx57xG233Ra1tbVlOX/w4MExY8aMSCQSZTk/U3369Il77rkn2rVrV+4oFNHFF18c22+/fc73r169OsaOHRurV68uYCqgFBSvAAAAVLBUKtXseuvWrb/0F4yf/cNIUxSvAAAAAAAAAABQCj/4wQ8y3ptNcUehXHHFFfHDH/6w5Oc250c/+lHMmzcvdthhhy9dHzp0aF4PfhXTmjVrsirOOeqoo4qYhmp07bXXxnHHHVfuGE0aMWJE3HHHHWV7UHlT1aNHj3jyySfj17/+ddo3nNsU7LHHHvHss8/Gt771rWb3DR06tESJKKUdd9wxHnjggejYsWO5o3xum222iT/84Q/x61//+itrxx57bBkSsanr2LFjPPDAA7HLLruUO0rWEolEnHPOOXHdddeVpdjjzDPPjHPOOafk52Zqjz32iAcffDDat29f1hxHHXVU3HDDDRX7NVWfPn3i0UcfjW222abcUSiy9u3bx80335zX78XFixfHpEmTCpgKKAXFKwAAABUsXfHKhkUr6f4BMt08AAAAAAAAAAAohNGjR0ddXV1Ge++7776Sv6FQTU1N3HTTTTF+/PiSnrsxXbt2jTvuuCNuvvnm2Hzzzb+y/tnDopXokUceiZUrV2a0d/fdd4/6+voiJ6La1NTUxPTp0+OXv/xluaN8xdFHHx133XVX2jdMY+Pq6urizDPPjGeeeSZ23XXXcsfJSU1NTZxyyinxxBNPxLbbbpt2v+KV6rXHHnvEww8/HFtttVW5o8To0aNj0aJFMXz48I2ujx07Nvr27VviVFSDzp07x9y5c2P//fcvd5SMbbbZZnHrrbfGGWecUdYcZ5xxRvzXf/1X1NRU1iPdw4YNi4cffnij34OUw7hx42LWrFnRpk2bckf5kkGDBmX8uZ7qsOeee+b9/ceVV14Z999/f4ESAaVQWZ+lAQAA+JJCF6+U+gUqAAAAAAAAAAC0TFtuuWUcfPDBGe396KOP4rHHHityoq+qq6uL6667LqZOnZpxSUwhJZPJOPnkk+PVV1+NMWPGNLv3Bz/4QXzve98rUbLM3XPPPRnv/fGPf1zEJFS78847L2bMmBHt27cvd5RIJpNxySWXxA033JD2NXuk981vfjP++te/xowZM2KbbbYpd5yM1dfXx2OPPRYXXXRRxr8P9t1334p76J7C2WOPPeKpp56KAQMGlOX8XXfdNR588MG48847o2vXrk3uq62tjZtvvjlat25dwnRUi65du8ZDDz0UJ510UrmjpPWd73wnFi9eHEcccUS5o0RExPHHHx+zZ89u9r/PUkkkEnHqqafGPffcEx07dix3nC8ZNWpU/OlPf4qePXuWO0pERBx11FHx2GOPbVJfo1AYkydPjoEDB+Y14+ijj47ly5cXKBFQbL5TAwAAqGBr1qxpdn3D4pV075yRrsgFAAAAAAAAAAAKZfz48RnvnTNnThGTNG/SpEnx1FNPRX19fUnOq6uri7Fjx8ZLL70UF198cXTq1Cmj+2666aYYPnx4kdNlbt26dXHnnXdmtLdNmzYxduzYIiei2h177LHx/PPPx5AhQ8qWYZdddoknn3wyJk6cWLYM1ai2tjaOPfbYWLp0afzqV7+KLbbYotyRmrTddtvFNddcEwsWLIi99947q3s7depUtlIOSqN3797xzDPPxGmnnVayYqbevXvHddddF/Pnz4/vfOc7Gd2z2267xZw5cyqizIpNT11dXVx66aXxyCOPRN++fcsd5yt69uwZM2fOjAcffDC22267csf5kpEjR8bixYtj5MiRZcvQo0eP+OMf/xgXXHBB1NbWli1Hc/baa69YuHBhVt9PFlrXrl3jlltuiZkzZ0bbtm3LloPyqauri5tvvjmvX//3338/jjnmmAKmAopJ8QoAAEAFS1eUsmHbfLp/pFm7dm3emQAAAAAAAAAAIBPDhw+Pbt26ZbT3rrvuisbGxiInatrAgQPj+eefj6uvvrpoD2huueWWcfrpp8frr78et9xyS/Tu3Tur+9u0aRO///3v48ILL4zNN9886/MLXWTwpz/9Kf7xj39ktPeII46ILl26FPR8WqY+ffrE448/HldddVV07969ZOd27tw5Lrroopg/f37svvvuJTu3pWnfvn1Mnjw53nrrrbj66qtj5513Lnekz/Xr1y+uueaaePXVV2PChAlRV1eX05z999+/sMEyNG7cuJg8eXJWP3r27FmWrJu6ZDIZ559/frzwwgsxZsyYqKkpziOcBx54YNx9993x6quvxvjx47M+57vf/W4899xzMXTo0KzPbtOmTbRp0ybr+3JVqhIbsjN06NBYsGBBXHLJJbHtttuWO0706NEjrrzyynj55ZfjqKOOKnecJm299dZx9913x+9+97vYcccdS3Zuu3bt4vTTT48XX3wx45KmcurYsWNcd9118cADD5T0a69WrVrFhAkTYsmSJYojiZ122immTp2a14x77703rrrqqgIlAoopsX79+nJngCYlEokXIuIrtYd9+/aNF154oQyJAACgtM4555w466yzmlzfcccd4+WXX/7845///OfN/qXMPvvsE48//nhBMwIAAAAAAAAAQFPOPPPMmDJlSkZ7H3744TjwwAOLnCi9hoaGmDNnTsycOTMeeuihWLNmTc6zevXqFcOGDYuDDz44vv3tb3/ljZZy9b//+79x++23x4MPPhjPP/98vP3227Fy5cqI+L83c9p8882je/fu0a9fv9hrr73igAMOiB122KEgZ3/myCOPjN/97ncZ7X322Wdj4MCBBT0f1qxZE9dff31MnTo13nzzzaKcsd1228Xxxx8fJ5xwQnTs2LEoZ9C8uXPnxu233x5z5syJ9957r6Rnb7PNNnH44YfH2LFjY8iQIQWZuXDhwrjrrruaXK+pqWn2daNsel5//fWYPn163HnnnbF06dKc57Ru3Tr23XffOPjgg+OQQw6JPn36FCzjc889F3fccUc8+eST8eqrr8aHH34YqVQq6urqon379tGlS5fo06dPDBo0KPbdd9/Yd999o23btgU7/zMHH3xw3H///V+53rlz5/jnP/9Z8PMonIaGhrj99ttj2rRp8dRTT0WpnltOJpMxYsSIOPbYY+Oggw4qWtFRsaxbty5uu+22OO+88+LFF18syhldu3aN8ePHx8knnxxbbbVVUc4ohXvvvTemTJkSTz/9dFHmd+zYMX70ox/FqaeeGr169SrKGQDZqK+vb+pzw4vr16+vL3WelkDxChVN8QoAAC1duhee7LLLLrFo0aLPPz755JPj0ksvbXL/t771raL9ZSMAAAAAAAAAAGzorbfeil69ekVDQ0PavePGjYsbb7yxBKky98knn8QTTzwRzzzzTCxcuDBef/31ePvtt+OTTz6J1atXRzKZjI4dO0bHjh2jU6dO0bt376ivr4/6+vro379/wctOKsWKFSuiW7du8emnn6bdu99++8Wjjz5a/FC0WI2NjfHEE0/ErFmzYvbs2bFs2bK85m211VYxYsSIGDNmTBx00EFRW1tboKTko7GxMf785z/H/fffH08++WQ8++yzsWrVqoKe0alTpxg0aFAMHTo0DjjggBg0aNAm9xA/le3FF1/8/Pfv0qVL44033oh//vOfsWrVqli3bl106NAhNttss+jYsWNsvfXW0bdv36ivr4++ffvGwIEDo3379uX+KRTV0UcfHb/5zW++cr1nz57x2muvlT4QOXn33Xdjzpw5cc8998TTTz8dH374YcFmJxKJ2H777eOAAw6IYcOGxbe//e2q+e/iueeei7vuuitmzZoVr7zySl6zOnXqFN/97ndj9OjRccghhxSs/LESvPTSSzFr1qyYNWtWLFiwIK9Z7dq1iwMPPDBGjx4do0ePjg4dOhQoJUD+FK+UnuIVKpriFQAAWrpJkybFhRde2OT6brvtFvPmzfv849NOOy0uuOCCjPcDAAAAAAAAAECxjRkzJmbNmpV2X/v27ePdd9+Njh07liAV+bj66qvjpz/9aUZ777vvvhg2bFiRE8H/Wb9+fbz88svx/PPPx8KFC2PRokWxbNmy+Pjjjz//sW7dumjdunV06NAhttlmm/ja174W3/jGN2KXXXaJvfbaK3beeedy/zTIQENDw+e/xq+99trnP5YvXx4rV66MlStXxqpVqyKVSkWrVq0imUxG27ZtY4sttoguXbpE165do0ePHtGrV6/o06dP9O/fP3r27Fnunxa0aIceemjcfffdX7ner1+/WLhwYRkSUQhLly6N5557LpYsWRLLli2LN998M95+++34+OOP49NPP41PP/001qxZE3V1ddGmTZto27ZttG/f/vPP0dtuu2307t07+vfvHwMGDGgR3yu89tprsWDBgli4cGEsXLgw3njjjVixYkV8/PHHsWLFili7dm20bt062rdvH1tvvXV07949dtxxx6ivr48999wz+vfv3yKKw955552YP39+LFy4MJ5//vn4+9//HitWrPj8/6s1a9ZEMpmMdu3axVZbbRXdunWLHXbYIerr62PQoEExcODAaNWqVbl/GgAbpXil9OrKHQAAAICmpVKpZtc3bJ9OJpPN7l+7dm3emQAAAAAAAAAAIBsnnXRSRsUrK1eujFtvvTWOO+64EqQiH9dcc01G+/r37690hZJKJBKx0047xU477RRHHHFEueNQRHV1dbHbbrvFbrvtVu4oQIEsX758o9eVIm3att9++9h+++3LHWOT0qtXr+jVq1ccdthh5Y5S0bp37x7du3eP4cOHlzsKAFWg+ivLAAAANmHpilc2LFpJ17icbh4AAAAAAAAAABTa3nvvHYMHD85o74wZM4qchnw98cQTsXDhwoz2nnXWWUVOAwBUi7feemuj1+vr60ucBACAlkbxCgAAQAUrdPHK2rVr884EAAAAAAAAAADZmjRpUkb75s2bF88880yR05CPadOmZbRvwIABcdhhhxU5DQBQDd54441YtmzZRtf69u1b4jQAALQ0ilcAAAAq2Jo1a5pd37B4ZcOPN5SuyAUAAAAAAAAAAIph1KhRMWDAgIz2XnnllUVOQ67eeeedmDVrVkZ7zz777EgkEkVOBABUg7lz5za59s1vfrOESQAAaIkUrwAAAFSwdEUprVu3/tLHrVq1anb/2rVr884EAAAAAAAAAADZSiQScc4552S094477oj333+/yInIxbRp0zJ6DdLgwYNj5MiRJUgEAFSDP/7xjxu9/vWvfz122WWXEqcBAKClUbwCAABQwdIVrySTyWY/3pDiFQAAAAAAAAAAymXEiBGx7777pt2XSqVi2rRpJUhENj799NOYPn16RnunTp1a5DQAQLX417/+FXPmzNno2vDhw0ucBgCAlkjxCgAAQAXLtnilVatWec0DAAAAAAAAAIBiuvzyy6OmJv2jDFdffXV8+umnJUhEpm666ab45z//mXbfiBEjYp999ilBIgCgGlxyySWxevXqja6NGjWqxGkAAGiJFK8AAABUsHRFKRsWraQrXlm7dm3emQAAAAAAAAAAIFcDBgyIn/zkJ2n3ffDBBzFz5swSJCITjY2NcfHFF6fdV1tbG+eff34JEgEA1eDll19u8muMHXbYIb7zne+UOBEAAC2R4hUAAIAKlq54JZlMNvvxhhSvAAAAAAAAAABQblOmTIktt9wy7b6LLroo1q1bV4JEpHPXXXfFq6++mnbfcccdF/X19SVIBABs6v7xj3/EqFGjYvXq1RtdnzhxYtTUeAQWAIDi81UnAABABWtoaGh2vVWrVs1+vKHGxkYvRgEAAAAAAAAAoKy22GKLmDp1atp9f/vb3+LOO+8sQSLSufDCC9Pu2XzzzePss88uQRoAYFP35JNPxuDBg+Pll1/e6PqWW24ZP/7xj0ucCgCAlkrxCgAAQAVbu3Zts+vZFq9kMhMAAAAAAAAAAIpt3Lhxsc8++6Tdl0lBC8X16KOPxl/+8pe0+84444zYcsstS5AIANhUXXvttXHAAQfEkCFD4m9/+1uT+6ZOnRrt2rUrYTIAAFoyxSsAAAAVLF1JSl1d3Zc+TiaTaWemUqm8MgEAAAAAAAAAQL4SiURcffXVad9oaP78+fHAAw+UKBUbc+6556bds8MOO8SJJ55YgjQAwKbs3HPPjblz5za759BDD41x48aVJhAAAITiFQAAgIqWrnhlwxeepHshSiYzAQAAAAAAAACgFOrr6+OUU05Ju2/KlCklSMPGPPfcc/Hwww+n3Xf55Zdn9KZRAADNGTRoUNx0002RSCTKHQUAgBZE8QoAAEAFy7Z4JZMXLyheAQAAAAAAAACgUpx11lnRq1evZvf8+c9/jrlz55YoEV907rnnpt1zyCGHxLBhw0qQBgCoZgcddFA8/PDD0bFjx3JHAQCghVG8AgAAUMGyLV7Z8OONSaVSeWUCAAAAAAAAAIBCadu2bUybNi3tvnPOOacEafiiF154Ie6+++5m97Ru3TouvfTSEiUCAKpRhw4d4oILLoj7778/Nttss3LHAQCgBVK8AgAAUMGKUbySbiYAAAAAAAAAAJTSsGHD4ogjjmh2z9y5c+OJJ54oUSIi/q/sZv369c3umTRpUvTp06dEiQCAatK5c+eYNGlSvPLKK3HqqadGTY3HXQEAKA9fiQIAAFSwbItXkslk3jMBAAAAAAAAAKDULrvssujUqVOzeyZPnlyiNCxZsiTuuOOOZvf07t07Tj/99BIlAgCqwaBBg2LixIlx//33x3vvvRdTp06Nbt26lTsWAAAtXF25AwAAANC0bItXNvx4Y1KpVF6ZAAAAAAAAAACg0LbZZpuYOnVqTJgwock9jzzySDz++OOx7777ljBZyzRlypRobGxsds9VV10Vbdq0KVEiAKAapCt2AwCAcqgpdwAAAACaVozilXQzAQAAAAAAAACgHI499tgYMmRIs3smT55cojQt16uvvhq33XZbs3tGjx4dw4YNK1EiAAAAACgexSsAAAAVLNvilWQymXZmKpXKKxMAAAAAAAAAABRDIpGIGTNmNPsamEcffTTmzp1bwlQtz5QpU2LdunVNrnfs2DEuu+yyEiYCAAAAgOJRvAIAAFDBsi1e2fDjXGYCAAAAAAAAAEC59O3bN0477bRm95xxxhklStPyvPLKK3HLLbc0u2fKlCmx7bbbligRAAAAABSX4hUAAIAKtX79+mbfOSbiq0Urzb3bz2cUrwAAAAAAAAAAUMn+4z/+I77xjW80uf7kk0/GfffdV8JELcfZZ5/d7GuWBg4cGCeccEIJEwEAAABAcSleAQAAqFCZFKRsWLyy4ccbk0qlcs4EAAAAAAAAAADF1rp167j22msjkUg0ueeMM86I9evXlzBV9VuyZEncdtttTa7X1tbGtddeGzU1HkUBAAAAoHr42y4AAIAKVazilUzmAgAAAAAAAABAOe2zzz5x7LHHNrk+f/78uPPOO0uYqPqdffbZ0djY2OT6SSedFAMGDChhIgAAAAAovrpyBwAAAGDjFK8AAAAAAAAAANCSTZ8+PaZPn17uGC3GrbfeGrfeemu5YwAAAABASdWUOwAAAAAb19DQkHbPhkUrtbW1UVPT/Ld6qVQqr1wAAAAAAAAAAAAAAAAAUA0UrwAAAFSotWvXpt2zYfFKREQymcx7LgAAAAAAAAAAAAAAAABUO8UrAAAAFSrX4pWNXfuiVCqVcyYAAAAAAAAAAAAAAAAAqBaKVwAAACpUJsUrdXV1X7mWrnglk7kAAAAAAAAAAAAAAAAAUO0UrwAAAFSoTApSNlaykkwm854LAAAAAAAAAAAAAAAAANVO8QoAAECFyrV4ZWPXviiVSuWcCQAAAAAAAAAAAAAAAACqheIVAACAClWs4pVM5gIAAAAAAAAAAAAAAABAtVO8AgAAUKFyLV5JJpN5zwUAAAAAAAAAAAAAAACAaqd4BQAAoELlWryysWtflEqlcs4EAAAAAAAAAAAAAAAAANVC8QoAAECFyrV4JZlM5j0XAAAAAAAAAAAAAAAAAKqd4hUAAIAKlWvxysaufVEqlco5EwAAAAAAAAAAAAAAAABUC8UrAAAAFapYxSuZzAUAAAAAAAAAAAAAAACAaqd4BQAAoELlWrySTCbzngsAAAAAAAAAAAAAAAAA1U7xCgAAQIXKtXhlY9e+KJVK5ZwJAAAAAAAAAAAAAAAAAKqF4hUAAIAKla54paamJmpqvvptXbrilUwKXQAAAAAAAAAAAAAAAACg2ileAQAAqFDpClKaKlhJJpPN3pdKpXLOBAAAAAAAAAAAAAAAAADVQvEKAABAhWpoaGh2vanilaaufyZdoQsAAAAAAAAAAAAAAAAAtASKVwAAACpUuoKUpgpWkslkXnMBAAAAAAAAAAAAAAAAoCVQvAIAAFChci1eaer6Z1KpVM6ZAAAAAAAAAAAAAAAAAKBaKF4BAACoUOmKV+rq6jZ6PV3xSrq5AAAAAAAAAAAAAAAAANASKF4BAACoUOkKUpoqWEkmk3nNBQAAAAAAAAAAAAAAAICWQPEKAABAhcq1eKWp659JpVI5ZwIAAAAAAAAAAAAAAACAaqF4BQAAoEIVq3gl3VwAAAAAAAAAAAAAAAAAaAkUrwAAAFSoXItXkslks/elUqmcMwEAAAAAAAAAAAAAAABAtVC8AgAAUKFyLV5p6nqmcwEAAAAAAAAAAAAAAACgJVC8AgAAUKFyLV5JJpN5zQUAAAAAAAAAAAAAAACAlkDxCgAAQIXKtXilqeufSaVSOWcCAAAAAAAAAAAAAAAAgGqheAUAAKBCFat4Jd1cAAAAAAAAAAAAAAAAAGgJFK8AAABUqFyLV5LJZF5zAQAAAAAAAAAAAAAAAKAlULwCAABQoXItXmnq+mdSqVTOmQAAAAAAAAAAAAAAAACgWiheAQAAqFDFKl5JNxcAAAAAAAAAAAAAAAAAWgLFKwAAABUq1+KVZDKZdu769etzzgUAAAAAAAAAAAAAAAAA1UDxCgAAQIXKtXilqetf1NDQkFMmAAAAAAAAAAAAAAAAAKgWilcAAAAqVLpylKYKVpLJZNrZ6UpdAAAAAAAAAAAAAAAAAKDaKV4BAACoUOnKUZoqXmnq+helUqmcMgEAAAAAAAAAAAAAAABAtVC8AgAAUKHSFa/U1dVt9HomxSvpZgMAAAAAAAAAAAAAAABAtVO8AgAAUKHSlaM0VbCSTCbzng0AAAAAAAAAAAAAAAAA1U7xCgAAQIXKtXilqetflEqlcsoEAAAAAAAAAAAAAAAAANVC8QoAAECFKmbxSrrZAAAAAAAAAAAAAAAAAFDtFK8AAABUqFyLV5LJZNrZqVQqp0wAAAAAAAAAAAAAAAAAUC0UrwAAAFSoXItXmrqezWwAAAAAAAAAAAAAAAAAqHaKVwAAACpUrsUryWQy79kAAAAAAAAAAAAAAAAAUO0UrwAAAFSoXItXmrr+RalUKqdMAAAAAAAAAAAAAAAAAFAtFK8AAABUqGIWr6SbDQAAAAAAAAAAAAAAAADVTvEKAABAhcq1eCWZTOY9GwAAAAAAAAAAAAAAAACqneIVAACACpVr8UpT178olUrllAkAAAAAAAAAAAAAAAAAqoXiFQAAgAqVa/FKMpnMezYAAAAAAAAAAAAAAAAAVDvFKwAAABUq1+KVurq6tLNTqVROmQAAAAAAAAAAAAAAAACgWiheAQAAqECNjY3R2NjY7J6milcSiUTa8pV0pS4AAAAAAAAAAAAAAAAAUO0UrwAAAFSghoaGtHuaKl6JiEgmk83eq3gFAAAAAAAAAAAAAAAAgJZO8QoAAEAFyqQYpbnilebWIiJSqVTWmQAAAAAAAAAAAAAAAACgmiheAQAAqECZFK/U1dU1uZaueCWT+QAAAAAAAAAAAAAAAABQzRSvAAAAVKBMilGaK1dJJpN5zwcAAAAAAAAAAAAAAACAaqZ4BQAAoALlW7zS3FpERCqVyjoTAAAAAAAAAAAAAAAAAFQTxSsAAAAVKN/ilWQymfd8AAAAAAAAAAAAAAAAAKhmilcAAAAqUL7FK82tRUSkUqmsMwEAAAAAAAAAAAAAAABANVG8AgAAUIGKXbySyXwAAAAAAAAAAAAAAAAAqGaKVwAAACpQvsUryWQy7/kAAAAAAAAAAAAAAAAAUM0UrwAAAFSgfItXmluLiEilUllnAgAAAAAAAAAAAAAAAIBqongFAACgAhW7eCWT+QAAAAAAAAAAAAAAAABQzRSvAAAAVKB8i1eSyWTe8wEAAAAAAAAAAAAAAACgmileAQAAqED5Fq80txYRkUqlss4EAAAAAAAAAAAAAAAAANVE8QoAAEAFyrd4JZlM5j0fAAAAAAAAAAAAAAAAAKqZ4hUAAIAKlNjpqH0AACAASURBVG/xSnNrERGpVCrrTAAAAAAAAAAAAAAAAABQTRSvAAAAVKBiF69kMh8AAAAAAAAAAAAAAAAAqpniFQAAgArU0NCQdk9z5SrJZLLZexWvAAAAAAAAAAAAAAAAANDSKV4BAACoQOmKUWprayORSDS53lwpS0REKpXKKRcAAAAAAAAAAAAAAAAAVAvFKwAAABUoXfFKumKVdOvp5gMAAAAAAAAAAAAAAABAtVO8AgAAUIHSFaPU1dU1u55MJptdT6VSWWcCAAAAAAAAAAAAAAAAgGqieAUAAKACpSteadWqVV7r6eYDAAAAAAAAAAAAAAAAQLVTvAIAAFCB8i1eSSaTec0HAAAAAAAAAAAAAAAAgGqneAUAAKAC5Vu8km49lUplnQkAAAAAAAAAAAAAAAAAqoniFQAAgApU7OKVdPMBAAAAAAAAAAAAAAAAoNopXgEAAKhA+RavJJPJvOYDAAAAAAAAAAAAAAAAQLVTvAIAAFCB8i1eSbeeSqWyzgQAAAAAAAAAAAAAAAAA1UTxCgAAQAUqdvFKuvkAAAAAAAAAAAAAAAAAUO0UrwAAAFSgfItXkslks+upVCrrTAAAAAAAAAAAAAAAAABQTRSvAAAAVKB8i1fSraebDwAAAAAAAAAAAAAAAADVTvEKAABABcq3eCWZTOY1HwAAAAAAAAAAAAAAAACqneIVAACACpRv8Uq69XXr1kVjY2PWuQAAAAAAAAAAAAAAAACgWiheAQAAqEDFLl7J5AwAAAAAAAAAAAAAAAAAqGaKVwAAACpQQ0NDs+vpilWSyWTaMxSvAAAAAAAAAAAAAAAAANCSKV4BAACoQOlKUdIVr6Rbj4hIpVJZZQIAAAAAAAAAAAAAAACAaqJ4BQAAoALlW7ySTCbzPgMAAAAAAAAAAAAAAAAAqpniFQAAgAqUrhSlrq6u2fV0xSwREalUKqtMAAAAAAAAAAAAAAAAAFBNFK8AAABUoHTFK+mKVTIpXkl3BgAAAAAAAAAAAAAAAABUM8UrAAAAFSjf4pVkMpn3GQAAAAAAAAAAAAAAAABQzRSvAAAAVKB8i1fSrUdEpFKprDIBAAAAAAAAAAAAAAAAQDVRvAIAAFCBSlG8ku4MAAAAAAAAAAAAAAAAAKhmilcAAAAqUL7FK8lkMu8zAAAAAAAAAAAAAAAAAKCaKV4BAACoQPkWr6Rbj4hIpVJZZQIAAAAAAAAAAAAAAACAaqJ4BQAAoALlW7ySTCbzPgMAAAAAAAAAAAAAAAAAqpniFQAAgAqUb/FKuvWIiFQqlVUmAAAAAAAAAAAAAAAAAKgmilcAAAAqUCmKV9KdAQAAAAAAAAAAAAAAAADVTPEKAABABcq3eCWZTOZ9BgAAAAAAAAAAAAAAAABUM8UrAAAAFSjf4pXa2tpIJBLN7kmlUlnnAgAAAAAAAAAAAAAAAIBqoXgFAACgAuVbvJLJnnRnAAAAAAAAAAAAAAAAAEA1U7wCAABQgQpRvJJMJvM6AwAAAAAAgP/H3r3G2rrddR3/jb3nGrNF2tJiQEyktxQRoSBQChG8JTYqxIhFjFpEURBjImkAIwaw5RKpMSGlEFADKiYGKkRQqYS+IJhYxMampgaoEmvbKGkwvdHbHHvtM3yx9upZe5+15/PMy5rzmc/6fJKZedYzxjPGf6/zar843wMAAAAAAADAnAmvAAAATND5+fna9THhlaE9rbWNZgIAAAAAAAAAAAAAAACAORFeAQAAmKB79+6tXR8TXqm17nQHAAAAAAAAAAAAAAAAAMyZ8AoAAMDEPPHEE3niiSfW7lksFoPnDMVZWmsbzQUAAAAAAAAAAAAAAAAAcyK8AgAAMDH37t0b3DMUVRmzZ8w9AAAAAAAAAAAAAAAAADBXwisAAAATs6/wSq1153sAAAAAAAAAAAAAAAAAYK6EVwAAACZmX+GVoT2ttdEzAQAAAAAAAAAAAAAAAMDcCK8AAABMzKHCK2PuAQAAAAAAAAAAAAAAAIC5El4BAACYmH2FV2qtO98DAAAAAAAAAAAAAAAAAHMlvAIAADAx+wqvDO1prY2eCQAAAAAAAAAAAAAAAADmRngFAABgYvYVXqm17nwPAAAAAAAAAAAAAAAAAMyV8AoAAMDE7Cu8MrSntTZ6JgAAAAAAAAAAAAAAAACYG+EVAACAiTlUeGXMPQAAAAAAAAAAAAAAAAAwV8IrAAAAE7Ov8Eqtded7AAAAAAAAAAAAAAAAAGCuhFcAAAAmZl/hlaE9rbXRMwEAAAAAAAAAAAAAAADA3AivAAAATMyhwitj7gEAAAAAAAAAAAAAAACAuRJeAQAAmJh9hVdqrWvXW2ujZwIAAAAAAAAAAAAAAACAuRFeAQAAmJjz8/PBPWPCK0N7xgReAAAAAAAAAAAAAAAAAGCuhFcAAAAmZkwQZUx4pda68z0AAAAAAAAAAAAAAAAAMFfCKwAAABMzJoiyWCwG9wzFWVpro2cCAAAAAAAAAAAAAAAAgLkRXgEAAJiYMeGVoajKmD1j7gEAAAAAAAAAAAAAAACAuRJeAQAAmJihIMrdu3dTShk8p9a60z0AAAAAAAAAAAAAAAAAMGfCKwAAABMzFEQ5Ozsbdc7Qvtba6JkAAAAAAAAAAAAAAAAAYG6EVwAAACbmUOGVoXsAAAAAAAAAAAAAAAAAYM6EVwAAACZmX+GVWuva9dba6JkAAAAAAAAAAAAAAAAAYG6EVwAAACZmX+GVoX1D9wAAAAAAAAAAAAAAAADAnAmvAAAATMy+wiu11p3uAQAAAAAAAAAAAAAAAIA5E14BAACYmH2FV4b2tdZGzwQAAAAAAAAAAAAAAAAAcyO8AgAAMDGHCq8M3QMAAAAAAAAAAAAAAAAAcya8AgAAMDH7Cq/UWgfv6b2PngsAAAAAAAAAAAAAAAAA5kR4BQAAYGL2FV4Z2td7z/3790fPBQAAAAAAAAAAAAAAAABzIrwCAAAwMfsKr9Rad74LAAAAAAAAAAAAAAAAAOZKeAUAAGBi9hVeGbOvtTbqLAAAAAAAAAAAAAAAAACYG+EVAACAiTk/P1+7vs/wylDkBQAAAAAAAAAAAAAAAADmSngFAABgYoZiKGPDK7XWne8CAAAAAAAAAAAAAAAAgLkSXgEAAJiYfYVXxuxrrY06CwAAAAAAAAAAAAAAAADmRngFAABgYobCK4vFYtQ5Y8IrQ3cBAAAAAAAAAAAAAAAAwFwJrwAAAEzMUAxlTFAlSWqtO98FAAAAAAAAAAAAAAAAAHMlvAIAADAx+wqvjNnXWht1FgAAAAAAAAAAAAAAAADMjfAKAADAxOwrvFJr3fkuAAAAAAAAAAAAAAAAAJgr4RUAAICJ2Vd4Zcy+1tqoswAAAAAAAAAAAAAAAABgboRXAAAAJuaQ4ZWhuwAAAAAAAAAAAAAAAABgroRXAAAAJmZf4ZVa6853AQAAAAAAAAAAAAAAAMBcCa8AAABMzL7CK2P2tdZGnQUAAAAAAAAAAAAAAAAAcyO8AgAAMDGHDK8M3QUAAAAAAAAAAAAAAAAAcyW8AgAAMDHCKwAAAAAAAAAAAAAAAABw84RXAAAAJmZf4ZU7d+7k7t27a/e01kbPBQAAAAAAAAAAAAAAAABzIrwCAAAwMfsKryRJrXWnuwAAAAAAAAAAAAAAAABgroRXAAAAJmaf4ZWhva210WcBAAAAAAAAAAAAAAAAwJwIrwAAAEzM+fn52vV9hleGIi8AAAAAAAAAAAAAAAAAMFfCKwAAABMzFEPZJLxSa93pLgAAAAAAAAAAAAAAAACYK+EVAACAidlneGVob2tt9FkAAAAAAAAAAAAAAAAAMCfCKwAAABMzFF5ZLBajzxoKrwzdBQAAAAAAAAAAAAAAAABzJbwCAAAwMUMxlKGYylW11p3uAgAAAAAAAAAAAAAAAIC5El4BAACYmH2GV4b2ttZGnwUAAAAAAAAAAAAAAAAAcyK8AgAAMCH3799P733tnk3CK7XWtetDkRcAAAAAAAAAAAAAAAAAmCvhFQAAgAkZE0LZJLwytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAIAJOXR4Zcx9AAAAAAAAAAAAAAAAADBHwisAAAATsu/wSq115/sAAAAAAAAAAAAAAAAAYI6EVwAAACZk3+GVob2ttdFnAQAAAAAAAAAAAAAAAMCcCK8AAABMyKHDK2PuAwAAAAAAAAAAAAAAAIA5El4BAACYkH2HV2qta9dba6PPAgAAAAAAAAAAAAAAAIA5EV4BAACYkH2HV4b2jrkPAAAAAAAAAAAAAAAAAOZIeAUAAGBC9h1eqbXufB8AAAAAAAAAAAAAAAAAzJHwCgAAwITsO7wytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAIAJOT8/H9yzz/DKmNALAAAAAAAAAAAAAAAAAMyR8AoAAMCEjAmhbBJeqbXufB8AAAAAAAAAAAAAAAAAzJHwCgAAwITsO7wytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAIAJGRNeWSwWo8+rte58HwAAAAAAAAAAAAAAAADMkfAKAADAhIwJoZydnY0+b2hva230WQAAAAAAAAAAAAAAAAAwJ8IrAAAAE3Lo8MqY+wAAAAAAAAAAAAAAAABgjoRXAAAAJmTf4ZVa6873AQAAAAAAAAAAAAAAAMAcCa8AAABMyJgQymKxGH3eUKSltTb6LAAAAAAAAAAAAAAAAACYE+EVAACACRkKrywWi5RSRp83FF4ZE3oBAAAAAAAAAAAAAAAAgDkSXgEAAJiQoRDKUEjlUbXWne4DAAAAAAAAAAAAAAAAgLkSXgEAAJiQfYdXhva31jY6DwAAAAAAAAAAAAAAAADmQngFAABgQvYdXqm17nQfAAAAAAAAAAAAAAAAAMyV8AoAAMCE7Du8MrT//Pw8vfeNzgQAAAAAAAAAAAAAAACAORBeAQAAmJBDh1fG3AkAAAAAAAAAAAAAAAAAcyS8AgAAMCH7Dq/UWne+EwAAAAAAAAAAAAAAAADmSHgFAABgQvYdXhmzv7W20ZkAAAAAAAAAAAAAAAAAMAfCKwAAABNyjPDK0J0AAAAAAAAAAAAAAAAAMEfCKwAAABNyfn6+dn3T8EqtdXCP8AoAAAAAAAAAAAAAAAAAt5HwCgAAwIQMRVA2Da+M2d9a2+hMAAAAAAAAAAAAAAAAAJgD4RUAAIAJGQqvLBaLjc6rte58JwAAAAAAAAAAAAAAAADMkfAKAADAhAxFUM7OzjY6b8z+1tpGZwIAAAAAAAAAAAAAAADAHAivAAAATMgxwitDdwIAAAAAAAAAAAAAAADAHAmvAAAATMi+wyu11p3vBAAAAAAAAAAAAAAAAIA5El4BAACYkH2HV8bsb61tdCYAAAAAAAAAAAAAAAAAzMHi2APcNqWUkuSZSX5Hkk988P30JKskH07ykcvv3vtHjzUnAABwHMcIrwzdCQAAAAAAAAAAAAAAAABzJLxyQ0opvyfJ5yf5zCTPT/KCB9+fnpG/91LKeZJ3JXnHg8//evD933rvb7+BsQEAgCPbd3il1rrznQAAAAAAAAAAAAAAAAAwR8Ire1JK+YwkL0vyR5J8WZLfed22DY89S/LCXERbHr3vvUnelOQ/Pfj8l967/1oSAABO3L7DK2P2t9Y2OhMAAAAAAAAAAAAAAAAA5kB4ZQellM9N8heS/JkkL7q69JhX+rZXXfPsk5N8xYNPknywlPKzSX4iyRt77/e3vAsAADiifYdXaq073wkAAAAAAAAAAAAAAAAAcyS8sqFSyqck+doHn993+fiRbUOBlceFWR7VH/led86zknzNg897Syk/leSf995/ZeRdAADABOw7vHL37t3BPa21jc4EAAAAAAAAAAAAAAAAgDm4c+wBTkUp5Q+VUl6f5N1Jvi/JZ+UifFJyEUa5+smVtes+o68dOOPRey/XPjnJNyR5UynlzaWUl2/+JwYAAI5h3+GVUsrgO0N3AgAAAAAAAAAAAAAAAMAcCa8MKKX86VLKryT5xSQvT3KWp4ZPkvVxlUcDKdt+Hhrtmvuui7B8QZLXl1J+rZTy57f8NQAAAAey7/BKktRad7oTAAAAAAAAAAAAAAAAAOZIeOUxSikvKaW8Kcm/SfKFeTJkcl3c5LrwyXXBlEdjKWM/l9ZFWR43y+W9vzfJvyqlvLWU8ie2/sUAAAA36ibCK0PvtNY2PhMAAAAAAAAAAAAAAAAATt3i2ANMTSnlOUlek+Sv5qkhk49vu+bZo2tXPZHkPUne/eD7o498PvLgvadd8/mUJL87yaclefo1Z/dHvtfNWJK8OMnPlVJ+Mckre+9vu+ZMAADgSI4RXhm6EwAAAAAAAAAAAAAAAADmSHjlilLKX0/yD5I8J08Nl5RcHzm5Glr5YJK3JnnLg887chFb+T+99/t7mO9ZuQiwvDDJ5+YiovLiJC9KcvfK1n7NjJfPLmMyfyzJW0opP5rk23vv/2/X+QAAgN2dn5+vXd8mvFJrXbsuvAIAAAAAAAAAAAAAAADAbSS8kqSU8tlJfiTJl+TxwZWrP1/6zSQ/n+QXkvzX3vtv3OScvfcPJPlAkl9P8nOXz0spyyQvTfKyJH88yRckuXP5Wq6Px5RcxFq+PsmfK6V8R5If7r1fDbYAAAAHNhRB2Sa8MvROa23jMwEAAAAAAAAAAAAAAADg1N3q8Eop5WlJXpXklbn4XVwNk1x6NFrypiRvSPKG3vtbDzPper33VZL/+ODz7aWUZ+ciwPLVSb48yTIPB1iSh/9cz07yuiR/rZTyjb33Nx9qdgAA4GFD4ZXFYvO/xtVad7oTAAAAAAAAAAAAAAAAAObo1oZXSil/MskPJXluLuIjyVOjK5fP/3eSH03yL3vv7zrIgDvovb8vyeuTvL6U8klJvibJNyT5/Zdbrm5/8F2S/IEkv1xK+cdJ/l7v/QMHGhkAAHhgKIJydna28ZlD77TWNj4TAAAAAAAAAAAAAAAAAE7dnWMPcGillE8tpfxkkn+f5Hm5CI70PBwjuQyu/HySr0jywt77955CdOVRvff3995f13v/nCR/NMnP5OLPWh7d+uD7TpJvTPJrpZSvOtykAABAcpzwytCdAAAAAAAAAAAAAAAAADBHtyq8Ukr5m0l+PclX5fHBlVWSf5rks3rvf6r3/obee3/KYSeo9/5Lvfc/m+RFSX4wyUfzcIDl8vdRkvyuJD9ZSvm3Bx8UAABusZsIr9Rad7oTAAAAAAAAAAAAAAAAAOboVoVXkvxQkmfmyejKpZLkQ0n+YZLn997/Ru/97UeY7yB67+/ovf/tJJ+e5NVJ3pfHB1i+/PATAgDA7XUT4ZWhd1prG58JAAAAAAAAAAAAAAAAAKfutoVXLl1GV0qSDyT5riTP7b3/3d77e4431mH13t/be391kucm+TtJ3pOHAywAAMCBHSO8MnQnAAAAAAAAAAAAAAAAAMzRbQ2vlCQfTPLqJM/rvb+q9/7+I890NL33D/fe/1GSFyR5ZZLfjAALAAAcXO/9RsIrtda16621jc8EAAAAAAAAAAAAAAAAgFN3G8MrH07yvUme33t/de/9g8ceaCp67x/rvb82FwGWb8pFgAUAADiQ+/fvD+7ZJrwy9M5Q7AUAAAAAAAAAAAAAAAAA5ui2hVe+P8kLeu/f0Xt//7GHmaree+u9vy4XAZZXHnseAAC4LcYEULYJr9Rad74XAAAAAAAAAAAAAAAAAOZmcewBDqn3/s3HnuGU9N5XSX7g2HMAAMBtcVPhlaF3WmsbnwkAAAAAAAAAAAAAAAAAp+7OsQcAAADgwrHCK2PuBQAAAAAAAAAAAAAAAIC5EV4BAACYiJsKr9Rad74XAAAAAAAAAAAAAAAAAOZGeAUAAGAibiq8MvROa23jMwEAAAAAAAAAAAAAAADg1C2OPcCpKaW8MMkfvG6t9/7jBx7n40opn53k869Z+qXe+zsPPQ8AALC5mwqv1Fp3vhcAAAAAAAAAAAAAAAAA5kZ4ZXNfmuTHHrN2tPBKkj+c5Aeuef73k3zPgWcBAAC2cH5+Prhnm/DK0DuttY3PBAAAAAAAAAAAAAAAAIBTJ7yynXLNs37wKR72oVw/1xceehAAAGA79+7dG9xzE+GVMfcCAAAAAAAAAAAAAAAAwNwIr2zvamjluuDJoV3O8Ohcn3mEWQAAgC3cVHil1rrzvQAAAAAAAAAAAAAAAAAwN3eOPcCJm0Jw5dInPeb5sw46BQAAsLUxAZTFYvN+5lCspbW28ZkAAAAAAAAAAAAAAAAAcOqEV+bj8x7z/JkHnQIAANjamPDKUERlm3fG3AsAAAAAAAAAAAAAAAAAcyO8MgOllBcn+eok/ZrluwceBwAA2NJNhVdqrTvfCwAAAAAAAAAAAAAAAABzszj2AMf2IFryeRu88qVrzvrLu0+0kacl+ZwkX/vgn3uSkocDLO8/8EwAAMCWbiq8MvROa23jMwEAAAAAAAAAAAAAAADg1N368EqSr0zynVu8V675/md7mWi7WS6jK1efJcl7Dj8OAACwjZsKr9Rad74XAAAAAAAAAAAAAAAAAOZGeOVCGd5y0HM21dc8/8+HHAQAANjeTYVXht5prW18JgAAAAAAAAAAAAAAAACcOuGVJz0uXnKdxwVWNjlj3x4303846BQAAMDWjhVeGXMvAAAAAAAAAAAAAAAAAMyN8MrDHhcvOdT7+9CvfL+t9/4zxxwGAAAYb0wA5e7duxufW2vd+V4AAAAAAAAAAAAAAAAAmJs7xx6AnfVHPslFAOa3kvzFYw0FAABsbiiAcnZ2llI27z2enZ2tXX/iiSdy//79jc8FAAAAAAAAAAAAAAAAgFMmvPKwRyMmj/vs+v4+P5fKlc/PJvni3vuvbvl7AAAAjmBMeGUbY94buhsAAAAAAAAAAAAAAAAA5mZx7AEmZPP/bfzNnLGpDyV5X5JfTfLLSX6i9/4/jjAHAACwo5sKr9RaR939tKc9bavzAQAAAAAAAAAAAAAAAOAU3frwSu/91UlePXZ/KeWvJPmxJD0XoZWPf/fe797EjAAAwO1wzPDKarXKM57xjK3OBwAAAAAAAAAAAAAAAIBTdOfYA5ygfuwBAACAeTpmeGXobgAAAAAAAAAAAAAAAACYG+EVAACAiTg/P1+7fpPhldbaVmcDAAAAAAAAAAAAAAAAwKkSXtlNP/YAAADAfNy7d2/t+k2GV1ar1VZnAwAAAAAAAAAAAAAAAMCpEl4BAACYiJsKryyXy8E9rbWtzgYAAAAAAAAAAAAAAACAU7U49gAn6ENJ3nnsIQAAgPkZCq8sFtv9Fa7WOrhHeAUAAAAAAAAAAAAAAACA20Z4ZUO9959O8tPHngMAAJifofDK2dnZVueOCa+sVqutzgYAAAAAAAAAAAAAAACAU3Xn2AMAAABw4ZjhldbaVmcDAAAAAAAAAAAAAAAAwKkSXgEAAJiImwqvLJfLwT3CKwAAAAAAAAAAAAAAAADcNsIrAAAAE3FT4ZVa6+Ce1Wq11dkAAAAAAAAAAAAAAAAAcKqEVwAAACbimOGV1tpWZwMAAAAAAAAAAAAAAADAqRJeAQAAmIibCq8sFovcubP+r3/CKwAAAAAAAAAAAAAAAADcNotjD3BopZTvXLfee/+uXd6fmqE/DwAAMB03FV5JklprPvaxjz12XXgFAAAAAAAAAAAAAAAAgNvm1oVXkrwqSV+zPhQqGXp/aoRXAADgRBwzvLJarbY+GwAAAAAAAAAAAAAAAABO0W0Mr1wq1zzbJKhy3ftTc0qBGAAAuPVuMryyXC7XrrfWtj4bAAAAAAAAAAAAAAAAAE7RbQ6vPBol2TSkMvWoySmEYQAAgCtuMrxSa127LrwCAAAAAAAAAAAAAAAAwG1zm8MrV8Mk20RUphw2mXoUBgAAuMYxwyur1WrrswEAAAAAAAAAAAAAAADgFN059gAAAABcOGZ4pbW29dkAAAAAAAAAAAAAAAAAcIoWxx7giPqR3wcAAHjITYZXlsvl2nXhFQAAAAAAAAAAAAAAAABum9saXilHfh8AAOApzs/P167vEl6pta5dX61WW58NAAAAAAAAAAAAAAAAAKfo1oVXeu93jvk+AADA49y7d2/t+k2GV1prW58NAAAAAAAAAAAAAAAAAKdIRAQAAGAihsIri8X27czlcrl2XXgFAAAAAAAAAAAAAAAAgNtGeAUAAGAihsIrZ2dnW59da127vlqttj4bAAAAAAAAAAAAAAAAAE6R8AoAAMBEHDO80lrb+mwAAAAAAAAAAAAAAAAAOEXCKwAAABNxk+GV5XK5dl14BQAAAAAAAAAAAAAAAIDbRngFAABgIm4yvFJrXbsuvAIAAAAAAAAAAAAAAADAbSO8AgAAMBHHDK+sVqutzwYAAAAAAAAAAAAAAACAUyS8AgAAMBHHDK+01rY+GwAAAAAAAAAAAAAAAABOkfAKAADARNxkeGW5XK5dF14BAAAAAAAAAAAAAAAA4LYRXgEAAJiImwyv1FrXrq9Wq63PBgAAAAAAAAAAAAAAAIBTtDj2ALdBKWWR5BOSPD1JTVIOdXfv/V2HugsAANhe7z3n5+dr99xkeKW1tvXZAAAAAAAAAAAAAAAAAHCKhFf2qJRyJ8kXJ/myJC9N8vwkz0vyzCON1OPfMQAAnISh6EqyW3hluVyuXRdeAQAAAAAAAAAAAAAAAOC2EeXYg1LKs5O8MsnXJfm0q0vHmQgAADg19+7dG9yzS3il1rp2fbVabX02AAAAAAAAAAAAAAAAAJwi4ZUdlVJekeT7kzwn14dW+mEn+jjRFwAAOCHHDq+01rY+GwAAAAAAAAAAAAAAAABOkfDKDkopr0nyLXkycvK4yMqhIyjHir0AAABbuunwynK5XLsuvAIAAAAAAAAAAAAAAADAbSO8sqVSyrcl+dYHP14NnRw6sgIAAMzA+fn54J5dO7BDIwAAIABJREFUwiu11rXrwisAAAAAAAAAAAAAAAAA3DbCK1sopbwkyXdnOLjSr3kGAADwFPfu3Rvcc5PhldVqtfXZAAAAAAAAAAAAAAAAAHCKhFe287okd3IRVhkKrly3DgAA8JAx4ZXFYvu/wi2Xy7XrrbWtzwYAAAAAAAAAAAAAAACAUyS8sqFSypck+aIMR1dKkpbkzUneluSdSX47yUfycJgFAABgVHjl7Oxs6/NrrWvX79+/n/v37+fu3btb3wEAAAAAAAAAAAAAAAAAp0R4ZXOveMzzq8GVtyd5TZLX994/cpCpAACAk3bs8EqStNby9Kc/fes7AAAAAAAAAAAAAAAAAOCUCK9s7mV5MrJyqeciuJIkr03yrb3384NOBQAAnDThFQAAAAAAAAAAAAAAAAA4LOGVDZRSnpnkhXk4tHL5zz3JD/XeX3mk8QAAgBN20+GV5XI5uKe1tvX5AAAAAAAAAAAAAAAAAHBq7hx7gBPzGY/83K/887uTfPMBZwEAAGbkpsMrtdbBPavVauvzAQAAAAAAAAAAAAAAAODUCK9s5lOveVZyEWD5J7334f9SEgAA4BpTCK+01rY+HwAAAAAAAAAAAAAAAABOjfDKZj5xzdovHGwKAABgdm46vLJcLgf3CK8AAAAAAAAAAAAAAAAAcJsIr2zm7pq1/3mwKQAAgNm56fBKrXVwz2q12vp8AAAAAAAAAAAAAAAAADg1wiub+e0t1wAAANaaQniltbb1+QAAAAAAAAAAAAAAAABwaoRXNvNba9Y+4WBTAAAAs3PT4ZXlcjm4R3gFAAAAAAAAAAAAAAAAgNtEeGUzb1+z9syDTQEAAMzOUHillJK7d+9ufX6tdXCP8AoAAAAAAAAAAAAAAAAAt4nwygZ67+9L8q7LHx9ZftGBxwEAAGZkKLxydna20/ljwiur1WqnOwAAAAAAAAAAAAAAAADglAivbO6NSco1z7/o0IMAAADzMYXwSmttpzsAAAAAAAAAAAAAAAAA4JQIr2zuX1/zrCR5+aEHAQAA5uP8/HztuvAKAAAAAAAAAAAAAAAAAOyX8Mrm3pjkHVd+7g++X1JKeckR5gEAAGbg3r17a9d3Da/cuXMni8Vi7Z7VarXTHQAAAAAAAAAAAAAAAABwSoRXNtR770m+O0l5ZKkkeW0p5dHnAAAAg246vJIktda16621ne8AAAAAAAAAAAAAAAAAgFMhvLKdf5HkLVd+7g++X5rk+w4/DgAAcOqGwiuLxWLnO5bL5dp14RUAAAAAAAAAAAAAAAAAbhPhlS303nuSv5Tko1cfJylJvqWU8m1HGQwAADhZQ+GVs7Ozne+ota5dX61WO98BAAAAAAAAAAAAAAAAAKdCeGVLvfe3J/m6Rx/nIr7yPaWUHymlrP/fyQMAADwwhfBKa23nOwAAAAAAAAAAAAAAAADgVAiv7KD3/vok35SL2EoefF/GV74+yX8vpXzlkcYDAABOyCHCK8vl+jak8AoAAAAAAAAAAAAAAAAAt8ni2AOcut77D5ZSPpbkh/NkyOYyvvLCJD9VSnlXkn+X5M1JfiPJ/03y/iQf7r2fH35qAABgag4RXqm1rl0XXgEAAAAAAAAAAAAAAADgNhFe2VAp5ccfs/SuJM/Pk9GVfvlKkucm+VuPOW/fI17Ve+/+HQMAwAmYQnhltVrtfAcAAAAAAAAAAAAAAAAAnApRjs29Ik9GVa5Trnz3PBxgAQAAuNZQ9GS5XO58x1B4pbW28x0AAAAAAAAAAAAAAAAAcCqEV7Y3JqRyuedqgOVQhF4AAOCEDEVP9hFeGTpDeAUAAAAAAAAAAAAAAACA20R4ZXvXhVQeFzs5dATl0JEXAABgR0PRk1rrzncMnbFarXa+A/j/7N1/kGxpXd/xz3N3tk83KyAgv1yCIhF/S2JFTQgYFIkCCgQ3ZSVqRcokhkJJ/BHLSolZKxrBwtIkKLE0WhqWqCiRqBQqqItGE2NpYoJGRIRFdMUfgLh0n95798kfM5PtvTvTp7unu093z+tVNTVzz/e55/n23n92/7jvBQAAAAAAAAAAAAAAAPaF8Mrqth1TAQAADlhX9GQb4ZWu+AsAAAAAAAAAAAAAAAAAHBLhldXVvhcAAAAOR1f0ZB3hlaZpLrQDAAAAAAAAAAAAAAAAABwS4ZXVlL4XAAAADktX9KQrmrKIrnhL27YXvgMAAAAAAAAAAAAAAAAA9oXwyvKe3/cCAADA4ekKr3RFUxbR9Y6uHQAAAAAAAAAAAAAAAADgkAivLKnW+v197wAAAByetm3nztcRXmmaZu5ceAUAAAAAAAAAAAAAAACAy+RK3wsAAADQHT1ZR3il6x3CKwAAAAAAAAAAAAAAAABcJsIrAAAAO6AretI0zYXv6AqvtG174TsAAAAAAAAAAAAAAAAAYF8IrwAAAOyArvBKVzRlEV3v6NoBAAAAAAAAAAAAAAAAAA6J8AoAAMAOaNt27nwd4ZWmaebOhVcAAAAAAAAAAAAAAAAAuEyEVwAAAHZAV/SkK5qyiK54S1f8BQAAAAAAAAAAAAAAAAAOifAKAADADugKr3RFUxbR9Y6uHQAAAAAAAAAAAAAAAADgkAivAAAA7IC2befO1xFeaZpm7lx4BQAAAAAAAAAAAAAAAIDLRHgFAABgB3RFT9YRXul6R1f8BQAAAAAAAAAAAAAAAAAOifAKAADADugKrzRNc+E7usIrXTsAAAAAAAAAAAAAAAAAwCE56nuBfVNKeWzfOyyj1npH3zsAAADz1Vpz9913zz3TFU1ZRFe8RXgFAAAAAAAAAAAAAAAAgMtEeGV5b09S+15iQTX+jAEAYOctEjxZR3il6x1t26bWmlLKhe8CAAAAAAAAAAAAAAAAgF0nyrEafwsRAABYm10JryTJ1atXc+ONN174LgAAAAAAAAAAAAAAAADYdcIrq6l9L7AAcRgAANgTi4RXmqa58D2LhFem06nwCgAAAAAAAAAAAAAAAACXgvDK6nY5bLIPYRgAAODEIuGVRaIpXRaJt0yn09x0000XvgsAAAAAAAAAAAAAAAAAdp3wymEQWgEAgD3Wtm3nmXWEVxZ5xyK7AAAAAAAAAAAAAAAAAMAhEF5Z3bZjJ2WJmRALAADskel02nlmW+GVRXYBAAAAAAAAAAAAAAAAgEMgvLKaeRGUdavXfT+9v858/5Mkd2xxJwAAYI0WiZ00TXPhexZ5h/AKAAAAAAAAAAAAAAAAAJeF8MryPn1D7x0maZKMkjwyyc1JPizJJyV5fO6NvdTcN8ZSkjw4yY/WWl+yod0AAIANatu288xgMLjwPYu8Y5FdAAAAAAAAAAAAAAAAAOAQCK8sqdZ6+7bvLKU8KMkzk9yS5Nk5/nObja8MknxTKeXpSZ5Ta/2Lbe8IAACsbjqddp7ZVnhlkV0AAAAAAAAAAAAAAAAA4BBc6XsButVa/7zW+oO11luSPCHJDyQps0dOfv3UJD9RShltf0sAAGBVi8ROmqa58D2LvEN4BQAAAAAAAAAAAAAAAIDLQnhlz9Ra315r/eIkz0zyvtlRjuMrT0nygz2sBgAArGiR2MlgMLjwPYu8o23bC98DAAAAAAAAAAAAAAAAAPtAeGVP1Vpfn+Rv5ez4yueUUr6kl8UAAIClLRI72VZ4ZZEIDAAAAAAAAAAAAAAAAAAcAuGVPVZr/d9JvjDHsZX///jk199aSnlEL4sBAABLWSR2IrwCAAAAAAAAAAAAAAAAAOslvLLnaq2vS/Ka3De+kiQPTPLC7W8EAAAsqyt2UkrJ0dHRhe9pmubCuwAAAAAAAAAAAAAAAADAoRBeOQwvue7XNcchln9SSun+X9oDAAC96oqdDAaDlHJ9a3F5i8Rb2ra98D0AAAAAAAAAAAAAAAAAsA+EVw5ArfVXk/zuGaMPSfLU7W4DAAAsqyt2Mhisp6dYSul8V1cEBgAAAAAAAAAAAAAAAAAOhfDK4fjlJOWM50/Z9iIAAMByumIn6wqvJEnTNBfaBQAAAAAAAAAAAAAAAAAOhfDK4fitc54/aatbAAAAS+uKnXTFUpbRFXFp23ZtdwEAAAAAAAAAAAAAAADALhNeORzvue7XNUlJ8pgedgEAAJbQFV7piqUso+tdXbsAAAAAAAAAAAAAAAAAwKEQXjl8D+17AQAAYL62befO1xleaZpm7lx4BQAAAAAAAAAAAAAAAIDLQnjlcDz6nOcP3uoWAADA0rpiJ+sMr3S9qysCAwAAAAAAAAAAAAAAAACHQnjlcHzYOc/9rUkAANhxXeGVpmnWdldXeKVrFwAAAAAAAAAAAAAAAAA4FMIrB6CUcpTkWUnqGeO/2PI6AADAktp2fi+xK5ayDOEVAAAAAAAAAAAAAAAAADgmvHIYnpvkYSc/l+u+37H9dQAAgGV0xU7WGV5pmmbuvCsCAwAAAAAAAAAAAAAAAACHQnhlz5VSHp3k5UnqGeOa5C3b3QgAAFhWV3ilK5ayjK6IS9cuAAAAAAAAAAAAAAAAAHAohFf2WCnlCUl+MskjTh+dceyXt7cRAACwiq7YSVcsZRnCKwAAAAAAAAAAAAAAAABwTHhlD5VSHlVKeXGSX0vyxCQ1Z0dXkuSnt7YYAACwkrZt587XGV5pmmbuXHgFAAAAAAAAAAAAAAAAgMviqO8F9k0p5et7uPaGJDcluTnJxyf52NN1Tr7XmbOnEZaa5JdqrW/d1pIAAMBqumIn6wyvdL2rKwIDAAAAAAAAAAAAAAAAAIdCeGV5t+a+oZNtKzM/1zOezXrZhncBAADWoCu80jTN2u7qCq907QIAAAAAAAAAAAAAAAAAh0J4ZXXnxU62YTb8cn2IpZx8f0Ot9bVb3QoAAFhJV+ykK5ayjK6Ii/AKAAAAAAAAAAAAAAAAAJeF8MrqaveRjTkr+jK7z+8n+aIt7QIAAFxQ27Zz5+sMr3S9q2sXAAAAAAAAAAAAAAAAADgUwiurOyt+0ofZ4EpJckeSz661vrunfQAAgCVNp9O5822GV7p2AQAAAAAAAAAAAAAAAIBDcaXvBVhYPecrOQ6ulCSvTfKptdb/28uGAADASrpiJ03TrO2urncJrwAAAAAAAAAAAAAAAABwWRz1vcAeq91HNqbM/FyT/FSSb621vqGnfQAAgAto23bufDAYrO2urnd17QIAAAAAAAAAAAAAAAAAh0J4ZTWl+8jatUnuSvK+JG9L8pYkv5TkZ2qt7+5hHwAAYE2m0+nc+TbDK127AAAAAAAAAAAAAAAAAMChEF5ZUq31St87AAAAh6UrdtI0zdruEl4BAAAAAAAAAAAAAAAAgGMiIgAAAD3rip10xVKW0RVxEV4BAAAAAAAAAAAAAAAA4LIQXgEAAOhZ27Zz5+sMr3S9q2sXAAAAAAAAAAAAAAAAADgUwisAAAA9m06nc+fbDK907QIAAAAAAAAAAAAAAAAAh0J4BQAAoGddsZOmadZ2V9e7hFcAAAAAAAAAAAAAAAAAuCyEVwAAAHp0zz335OrVq3PPDAaDtd3X9a62bdd2FwAAAAAAAAAAAAAAAADsMuEVAACAHk2n084z6wyvNE0zd3716tVcu3ZtbfcBAAAAAAAAAAAAAAAAwK4SXgEAAOjRtsMrw+Gw80zbtmu7DwAAAAAAAAAAAAAAAAB2lfAKAABAjxYJrzRNs7b7FgmvTCaTtd0HAAAAAAAAAAAAAAAAALtKeAUAAKBHbdt2nhkMBmu7T3gFAAAAAAAAAAAAAAAAAI4JrwAAAPRoOp12nllneKVpms4zwisAAAAAAAAAAAAAAAAAXAbCKwAAAD3adnhlOBx2nmnbdm33AQAAAAAAAAAAAAAAAMCuEl4BAADo0SLhlaZp1nbfIuGVyWSytvsAAAAAAAAAAAAAAAAAYFcJrwAAAPSobdvOM4PBYG33Ca8AAAAAAAAAAAAAAAAAwDHhFQAAgB5Np9POM8IrAAAAAAAAAAAAAAAAALB+wisAAAA9WiS80jTN2u5b5F1t267tPgAAAAAAAAAAAAAAAADYVcIrAAAAPVokvDIYDNZ233A47DwzmUzWdh8AAAAAAAAAAAAAAAAA7CrhFQAAgB61bdt5Zp3hlRtvvDGllLlnhFcAAAAAAAAAAAAAAAAAuAyEVwAAAHo0nU47z6wzvFJKyXA4nHtGeAUAAAAAAAAAAAAAAACAy0B4BQAAoEdd4ZUrV67k6OhorXc2TTN3LrwCAAAAAAAAAAAAAAAAwGUgvAIAANCjtm3nzgeDwdrvHA6Hc+ddOwEAAAAAAAAAAAAAAADAIRBeAQAA6NF0Op077yO8MplM1n4nAAAAAAAAAAAAAAAAAOwa4RUAAIAeCa8AAAAAAAAAAAAAAAAAQD+EVwAAAHrUFV5pmmbtdwqvAAAAAAAAAAAAAAAAAIDwCgAAQK/atp07HwwGa7+zK+bStRMAAAAAAAAAAAAAAAAAHALhFQAAgB5Np9O5802EV4bD4dz5ZDJZ+50AAAAAAAAAAAAAAAAAsGuEVwAAAHokvAIAAAAAAAAAAAAAAAAA/RBeAQAA6FFXeKVpmrXfKbwCAAAAAAAAAAAAAAAAAMIrAAAAvWrbdu58MBis/c6umIvwCgAAAAAAAAAAAAAAAACXgfDKEkopn1lKeVrfewAAAIdjOp3OnW8ivDIcDufOu2IwAAAAAAAAAAAAAAAAAHAIhFeW8zeT/HQp5Z2llJeUUj6h74UAAID91hVeaZpm7Xd2hVcmk8na7wQAAAAAAAAAAAAAAACAXSO8sryS5OYk/zzJ/yyl/K9SyleXUm7ueS8AAGAPdYVXBoPB2u8UXgEAAAAAAAAAAAAAAAAA4ZVV1RwHWEqST0jy0iTvKKW8sZTy/FLKg3rdDgAA2Btt286dC68AAAAAAAAAAAAAAAAAwGYIr6yunnwlxwGWK0memuR7ktxZSvnhUsqzSylHPe0HAADsgel0One+ifBK0zRz510xGAAAAAAAAAAAAAAAAAA4BMIrqysnX3Xm6/TZMMnnJfnPOY6wvKKU8uS+FgUAAHZXV3ilK5KyiuFwOHc+mUzWficAAAAAAAAAAAAAAAAA7BrhlYs7ja0kZ0dYHprkHye5vZTy9lLKN5VSPq6XTQEAgJ3Ttu3c+WAwWPudwisAAAAAAAAAAAAAAAAAILxyEbORleTe0Mq8CMtjk3xtkt8opfx6KeWrSik3b3VrAABgp0yn07lz4RUAAAAAAAAAAAAAAAAA2AzhleX8YpL/cfLzeZGV2dm8CMsTk3xLkneUUt5YSnl+KeVBG/8EAADATukjvNI0zdy58AoAAAAAAAAAAAAAAAAAl4HwyhJqrW+stX5qkg9P8lVJ/tvJaJUIy+nsSpKnJvmeJHeWUl5dSnlOKeVoc58EAADYFV3hla5IyiqGw+Hcedu2a78TAAAAAAAAAAAAAAAAAHaN8MoKaq3vrLV+W631SUkem+QrkvzSyXjRCMvs7PTZMMnzkrwmxxGWl5dS/sbmPxEAANCXrsjJYDBY+51d4ZWrV6/m6tWra78XAAAAAAAAAAAAAAAAAHaJ8MoF1VrfVWv9N7XWJyf5S0n+aZJfzH2DKsn5EZbrZ6fPH5rkBUl+sZTyO6WUF5dSHreFjwQAAGzRdDqdO+8jvJJ0B2EAAAAAAAAAAAAAAAAAYN8Jr6xRrfUPaq3/rtb6aUkek+TLk7wp8yMsZYHZ45PcmuStpZTbSynPL6V80FY+FAAAsFG7Gl6ZTCZrvxcAAAAAAAAAAAAAAAAAdonwyobUWu+stX5HrfWpSW5O8sIkP5/knlwswvLkJN+T5M5Syg+UUj5jG58HAADYjK7wStM0a79zkXcKrwAAAAAAAAAAAAAAAABw6IRXtqDW+ke11lfUWj8jyYcmeUGSn81qEZbTZw9I8gVJfqaU8nullBeXUh67pY8EAACsSdu2c+eDwWDtdw6Hw84zXXsBAAAAAAAAAAAAAAAAwL4TXtmyWusf11q/q9b6mUkeleRLk7whybUsFmE56/mHJbk1ydtKKT9VSrmllHK0tQ8FAACsbDqdzp33FV6ZTCZrvxcAAAAAAAAAAAAAAAAAdonwSo9qrX9aa/3uWuvfznGE5R8l+ekkV9MdYTnr+ZUkn5nkh5K8q5Ty0lLKE7b0cQAAgBV0hVeapln7ncIrAAAAAAAAAAAAAAAAACC8sjNqrX9Wa/0PtdbPznGE5UuSvD7nR1hyzvPTZw9P8tVJfquU8oZSyvNKKTds5cMAAAALuXbtWq5duzb3zGAwWPu9i8RchFcAAAAAAAAAAAAAAAAAOHTCKzuo1vqeWuv31VqfmeQRSZ6f5HVJ7s59YyunzgqwzEZYPj3Jq5PcUUp5cSnlEZv/FAAAQJfpdNp5ZhPhleFw2Hmmbdu13wsAAAAAAAAAAAAAAAAAu0R4ZcfVWt9Xa/3+Wuvn5DjC8sVJfiLJNPcGVk6VnB1hOX326CS35jjA8v2llE/cxmcAAADOtsvhlclksvZ7AQAAAAAAAAAAAAAAAGCXCK/skVrrnyf5j0m+PcmP5t7AyllmIyw1942wDJJ8YZJfL6W8vpTyaZvcGwAAONsi4ZWmadZ+r/AKAAAAAAAAAAAAAAAAAAiv7IVSyg2llKeXUr4ryZ1JfibJ3zsdL/KKmXOzAZaS5OlJfq6Ucnsp5Unr3RwAAJinbdvOM4PBYO33Hh0dpZT5/ykhvAIAAAAAAAAAAAAAAADAoTvqewHOVko5ynEU5ZYkz0nykNPRgq+oZ712Zlave/aUJL9QSnl1khfVWt+99NIAAMBSptNp55lNhFdKKRkOhxmPx+eeEV4BAAAAAAAAAAAAAAAA4NAJr+yQUsogyWflOLbyuUkefDqaOTYbVLk+wtI1uz62kuuelSR/N8knl1I+o9b6jqU+AAAAsJS+witJOsMrbdtu5F4AAAAAAAAAAAAAAAAA2BXCKz0rpQyTPCPHsZVnJXng6WjmWL3+ty0w+5Ukr0zyc0k+L8k/TPKYM35Pue5ZSfK4JG8qpTyx1vrehT8MAACwlEXCK03TbOTu4XA4dz6ZTDZyLwAAAAAAAAAAAAAAAADsCuGVHpRSHpDjyMotSZ6Z5AGno5ljq8RW3prktiS31VrfOjN/cynlG5M8O8kLkzxt5j315PfPBlhKjiMttyb5Z4t+LgAAYDlt23aeGQwGG7lbeAUAAAAAAAAAAAAAAACAy054ZUtKKR+U5HNzHFv57CSnf8vxorGVP07yQzmOrfz38+6vtd6T5MeS/Fgp5QlJvizJP0jywNwbW5m9qyR5QSnlpbXWP5z/6QAAgFVMp9POM5sKrzRNM3cuvAIAAAAAAAAAAAAAAADAobvS9wKHrJTyoFLKF5VSXpvk3UlemeS5SUY5DpuUHEdOTr8y8/w0hHLWbJzkB5N8TpIPrbW+aF505Xq11rfUWl+U5DFJvn1mj9M7Th0lecbCHxgAAFjKIuGVrkDKqobD4dx527YbuRcAAAAAAAAAAAAAAAAAdsVR3wscmlLKQ3IcV7klydOS3Hg6mjlWr/9t1/26njG7luRncxxveU2t9a6L7lprfX+Sryyl/FGSbz659/pdPivJ9170LgAA4P4WiZsMBoON3N0VXplMJhu5FwAAAAAAAAAAAAAAAAB2hfDKGpRSPiTJ38lxbOWpufef66qxldn5r+U4tvKfaq1/dOFlz1BrfWkp5XlJPjn3j7589CbuBAAAkul02nlGeAUAAAAAAAAAAAAAAAAANkN4ZUWllEcmeV6OYytPSXLD6Wjm2Kqxld9L8qokr6y1/vbFt13IT+Y4vHKqnuzzsC3dDwAAl06f4ZWmaebOhVcAAAAAAAAAAAAAAAAAOHTCK0sopTwiyefnOLbypCRXTkczx1aNrfxpklcnua3W+l8vvu3S3nXOc+EVAADYkK7wyg033JAbbrhh7plVDYfDuXPhFQAAAAAAAAAAAAAAAAAOnfDKcl6Q5OtPfl4mtnL9mdP5JMmPJ7ktyetqrVfXseSKBuc838zf8gQAANK27dz5YHDev6ZfXFd4pWs3AAAAAAAAAAAAAAAAANh3wivLKzmOqKwaW7knyc8neWWSH6m1vn/dC67o0ec8/4utbgEAAJfIdDqdO+8zvDKZTDZ2NwAAAAAAAAAAAAAAAADsAuGVi+mKrcye+Y0cx1ZeVWv9g41utZq/mvvvXpO8o4ddAADgUhBeAQAAAAAAAAAAAAAAAID+CK+sbja6cl5s5Z1JXpXklbXWN29lqxWUUq4keXLODsn86pbXAQCAS6Nt27nzTYZXmqaZOxdeAQAAAAAAAAAAAAAAAODQCa+s7rzYynuT/EiS22qtt293pZUdJXnuObO3bXMRAAC4TLriJsPhcGN3d727KwoDAAAAAAAAAAAAAAAAAPtOeOViTmMrbZLXJbktyU/UWqf9rbS8k333JRIDAAAHoyu8MhqNNnZ3V3ilazcAAAAAAAAAAAAAAAAA2HfCK6spSWqSX0jyyiSvrrW+t9+VAACAfTMej+fOu+IoFyG8AgAAAAAAAAAAAAAAAMBlJ7yyvDcnuS3JbbXWd/a9DAAAsL+64iaj0WhjdzdNM3cuvAIAAAAAAAAAAAAAAADAoRNeWc7Laq3f0PcSAADAYRiPx3Pnw+FwY3d3vVt4BQAAAAAAAAAAAAAAAIBDJ7yypFLKg+aM319rrVtbBgAA2GtdcZPRaLSxu7vCK23bbuxuAAAAAAAAAAAAAAAAANgFwivLeUuSR50zq0ken+Qd21sHAADYZ+PxeO68K45yEV3v7orCAAAAAAAAAAAAAAAAAMC+u9L3AnvmkUnKnK8/7G81AABg33TFTUaj0cbu7gqvXLt2LVevXt3Y/QAAAAAAAAAAAAAAAADQN+GV5VxNUs/4OnVPH0sBAAD7aTwez51vMrzSNE3nma4wDAAAAAAAAAAAAAAAAADsM+GV5fzhzM/l5GvWw7e4CwAAsOe6wivD4XDDRFsbAAAgAElEQVRjdy/y7rZtN3Y/AAAAAAAAAAAAAAAAAPRNeGU5v5v7x1ZmPWJbiwAAAPtvMpnMnY9Go43dvUh4pWs/AAAAAAAAAAAAAAAAANhnwivLeV3H/JO3sgUAAHAQxuPx3PkicZRVCa8AAAAAAAAAAAAAAAAAcNkJryzn1UmmJz/XM+bP2uIuAADAnusKm4xGo43d3TRN5xnhFQAAAAAAAAAAAAAAAAAOmfDKEmqt70zyiiTl+tHJs6eXUj5064sBAAB7aTwez50Ph8ON3b3Iu4VXAAAAAAAAAAAAAAAAADhkwivLuzXJ205+Pg2unBol+eZtLwQAAOynrrDJaDTa2N2LhFfatt3Y/QAAAAAAAAAAAAAAAADQN+GVJdVa35fk2Unef/po5ntJ8gWllM/vYzcAAGC/jMfjufNF4iirWuTdXWEYAAAAAAAAAAAAAAAAANhnwisrqLX+ZpJnJPnz60c5/mf6A6WU52x9MQAAYG9cvXo1165dm3tmNBpt7P6maTrPCK8AAAAAAAAAAAAAAAAAcMiEV1ZUa/3lJE9LcmeSMjtKcmOSHy2lvKyUMuhjPwAAYLeNx+POM5sMrwyHw84zwisAAAAAAAAAAAAAAAAAHDLhlQuotf5akk9J8is5jq+cBlhqjv/ZfkWS3yylfGkppft/Jw8AAFwai0RNFomjrOro6ChXrsz/T0LhFQAAAAAAAAAAAAAAAAAO2VHfC+y7Wuu7SilPSvKVSb42yUNORzkOsXxEku9M8i2llNuTvCnJ7yf5kyTTLez3pk3fAQAALG88HneeGY1GG7u/lJLhcJgPfOAD555p23Zj9wMAAAAAAAAAAAAAAABA34RXllRKuaPrSI6jK5n5XpI8MMmzTr62pcafMQAA7KRFwivD4XCjO3SFVyaTyUbvBwAAAAAAAAAAAAAAAIA+iXIs7zE5DpqUM2azoZXZZ2c9BwAALrFFoiaj0WijOzRNM3cuvAIAAAAAAAAAAAAAAADAIRNeWV297tclZ4dVTp/NBli2QeQFAAB22Hg87jwzHA43ukPX+4VXAAAAAAAAAAAAAAAAADhkwivrcxpVOS94ss0QyjYDLwAAwAoWiZqMRqON7tAVXmnbdqP3AwAAAAAAAAAAAAAAAECfhFdWt82QCgAAcGDG43Hnma4wykV1vX+ROAwAAAAAAAAAAAAAAAAA7CvhldXVvhcAAAD21yJRk9FotNEdmqaZOxdeAQAAAAAAAAAAAAAAAOCQCa+spvS9AAAAsN/G4/Hc+ZUrV3LjjTdudIfhcDh3LrwCAAAAAAAAAAAAAAAAwCETXlne4/peAAAA2H9dUZPhcJhSNtt8FF4BAAAAAAAAAAAAAAAA4DITXllSrfUdfe8AAADsv/F4PHc+Go02vkNXeKVt243vAAAAAAAAAAAAAAAAAAB9udL3AgAAAJfRZDKZO++KoqxD1x1dOwIAAAAAAAAAAAAAAADAPhNeAQAA6MF4PJ47H41GG9+haZq5c+EVAAAAAAAAAAAAAAAAAA6Z8AoAAEAPusIrw+Fw4zt03SG8AgAAAAAAAAAAAAAAAMAhE14BAADoQVfUZDQabXyHrvBK27Yb3wEAAAAAAAAAAAAAAAAA+iK8AgAA0IPxeDx33hVFWYeuO7riMAAAAAAAAAAAAAAAAACwz476XoD1KKX8lSTPPmP0qlrrW7e9DwAAMF9X1GQ0Gm18h6Zp5s6FVwAAAAAAAAAAAAAAAAA4ZMIrh+XWJPW6ZyXJN2x/FQAAYJ7xeDx3vo3wynA4nDsXXgEAAAAAAAAAAAAAAADgkAmvHI7fnvm5zPz8adteBAAA6NYVNemKoqxD1x1dcRgAAAAAAAAAAAAAAAAA2GdX+l6AtZn9s6wnX0nyMT3sAgAAdOiKmoxGo43v8IAHPGDu/K677tr4DgAAAAAAAAAAAAAAAADQF+GVw/H55zx/yFa3AAAAFjKZTObOh8Phxne46aab5s7vuuuu1FrnngEAAAAAAAAAAAAAAACAfXXU9wKHpJTyxCSfmuTxSR6cZLCFa4+SfGSST0lSk5ST77NzAABgx4zH47nz0Wi08R26wiv33HNP2rbdSgQGAAAAAAAAAAAAAAAAALZNlOOCSik3JPmyJC9K8uF9rnLO8z/Z6hYAAMBCJpPJ3Pk2Yidd4ZUkueuuu4RXAAAAAAAAAAAAAAAAADhIwisXUEp5fJLXJPn4nB8+2ZZ63Q7l5Nlv97MOAAAwz3g8njsfjUYb32HR8MrDHvawje8CAAAAAAAAAAAAAAAAANsmvLKiUspHJXlTkg/JvZGTPp0XfvnhrW4BAAAspCu8MhwON77DouEVAAAAAAAAAAAAAAAAADhEwisrKKXclOTHkzw8x8GV0+jKefGTbZoNwPyfJN/d1yIAAMD5JpPJ3PloNNr4DouEVz7wgQ9sfA8AAAAAAAAAAAAAAAAA6IPwymr+ZZK/nPODKzVnOy/Mct75RX7v9e84PfcbSZ5Ta717gXcDAABbNh6P5853Jbxy1113bXwPAAAAAAAAAAAAAAAAAOiD8MqSSimPTPLCnB1dmQ2onBVjOS/UskhUpevdp8/enOT7knxnrXXS8V4AAKAnk8n8f10fDocb30F4BQAAAAAAAAAAAAAAAIDLTHhleV+TZJT7xk6S+0ZVJkluT/L7ScZJHp7kyUlunjl3+vtrkrcnueOMu25I8qAkj03ywTO/76wIy9cl+d5a652rfSwAAGBb7r777ly7dm3umdFotPE9hFcAAAAAAAAAAAAAAAAAuMyEV5ZQSilJvjD3DZ/MBlfuTvKvknxbrfV+fzuxlPLCJP829w+n/Fmt9dM77v6IJM9L8oIkj8v9Ay5fk+RNSYRXAABgx00mk84zw+Fw43scHR1lMBhkOp2ee0Z4BQAAAAAAAAAAAAAAAIBDdaXvBfbMk5M8/OTnkvtGV+5Jckut9RvPiq4kSa31O3IcXimnj06+f1Ip5WnzLq61vq3W+rIkH5XkXyS5NjtO8qAk/6WU8tHLfSQAAGDbxuNx55nRaLSFTZKbbrpp7lx4BQAAAAAAAAAAAAAAAIBDJbyynOee8ew0wPLyWuuPL/COl5/z/O8vskCt9Wqt9SVJnpFkMjtK8sFJfqyUsp2/oQkAAKxkMpl0nhkOh1vYRHgFAAAAAAAAAAAAAAAAgMtLeGU5f23m5zrzc5vkXy/yglrr7yZ5z3XvKUk+d5lFaq1vzHGspVw3+sgk37LMuwAAgO0aj8edZ0aj7fQUhVcAAAAAAAAAAAAAAAAAuKyEV5bzcblvcKWc/Prnaq3vXuI9b8v9gykPK6V8zDLL1Fpfm+QVM+86jbi8oJTyicu8CwAA2J7JZNJ5RngFAAAAAAAAAAAAAAAAADZLeGVBpZRHJXno6S+vG79+yde9/Zznf33J9yTJ1yV573XPriR52QrvAgAAtmA8HneeGQ6HW9hEeAUAAAAAAAAAAAAAAACAy0t4ZXGPmTN785Lvevs5zz92yfek1vqeJP8+98Zg6sn3p5VSPmnZ9wEAAJu3SHhlNBptYRPhFQAAAAAAAAAAAAAAAAAuL+GVxT1wzux3lnzX753z/KOWfM+p70hyzxnPv3zF9wEAABs0mUw6zwyHwy1sIrwCAAAAAAAAAAAAAAD8P/buPrqv+64T/OcrOY5kW5ZiO3ITN5ETWw9JbJNC80ATUmgJtOXwsMAu2zmwcLrDUhhO5wwDDDvswOzscnaAZYeyC0t3OFMeNzuHKW0D03aaNH1I82SgKbZj68FK7aRuasWOpViOZEfS3T9sxbIi3avfT7/f1U/W63XOPZZ+n8/93reUcxLHye8tAFi7FK8s3eac2ViFZx1b4LUUEbdWeE5ERGRZdiIinrp0RkREdunjH0kpXVPNmQAAQP1MTEwU7rS2tpaQRPEKAAAAAAAAAAAAAAAAAGuX4pWly3s34niFZx2b93l26deuCs+Z6z8v8NrGiPjOZZwJAADUweTkZO68qakp1q1bV0oWxSsAAAAAAAAAAAAAAAAArFWKV5Yu70fSV/qj6I/N+TjN+XhDSun6Cs+a9ZVFXn9nlecBAAB1MjGR968XEa2trZFSyt2pFcUrAAAAAAAAAAAAAAAAAKxVileWbjRntrWSg7Isey0iXp79dN54ZyVnzXFkkdf3VHkeAABQJ5OTk7nzlpaWkpIoXgEAAAAAAAAAAAAAAABg7VK8snR5xStvqeK8YxGx0I+w763irIiIV+Z9nl06v9rzAACAOpmYmMidt7a2lpRE8QoAAAAAAAAAAAAAAAAAa5filaUbjotlJjHn11kPVHHesUVev6OKsyIiJhd5fWuV5wEAAHUyObnYb98vUrwCAAAAAAAAAAAAAAAAAPWneGWJsix7NSKOLjL+7iqOPLbI699exVkREVsWeb2tyvMAAIA6mZiYyJ23tLSUlETxCgAAAAAAAAAAAAAAAABrl+KVyvx9RKQ5n2eXPv/ulNK3VHhW/7zPZ8+6O6WU/87HhS32/OkqzgIAAOpocnIyd97a2lpSkuLilQsXLsTU1FRJaQAAAAAAAAAAAAAAAACgPIpXKvPpOR+neR//Tkqpku/nVxc569qI+MEqsn3fIq+fquIsAACgjiYmJnLnLS0tJSUpLl6JiDh37lwJSQAAAAAAAAAAAAAAAACgXIpXKvPxiJh9h2QWFwtTZn/9roj4s5RSWuTe+Z6LiNkfG5/NeT1FxC9WEiql1BERP7XAORERL1dyFgAAUH9FxSutra0lJVG8AgAAAAAAAAAAAAAAAMDapXilAlmWjUfEw3G51CTiyvKV/zYinkwpvXMJZ12IiMfnnDV7TkTEt6SUfq2CaL8XEe1zznnjMRHx1QrOAQAASjA5OZk7b2lpKSmJ4hUAAAAAAAAAAAAAAAAA1i7FK5X7jYiYufTxbFHK3PKVeyLisZTScErpIymln00pbVnkrL9c4LXZc/5VSunni8KklH4jIn58zn3zfa7oDAAAoFwTExO589bW1pKSKF4BAAAAAAAAAAAAAAAAYO1SvFKhLMsORcRfxJtLTmbLV2Y/viUi/nFE/F8RsWeR4/4qIi7MHn3pvtlzmiPiwymlz6SUfjCltOGNB6W0PqX0fSmlxyPiV+ZHnPPxhYh4pIIvDwAAKMHk5GTuvKWlpaQkilcAAAAAAAAAAAAAAAAAWLsUr1Tnf4qIsUsfzy06mS1Nmb3ml7NcIcuykYj4DwvszZ6TIuLBuFjQcjal9EpK6ZsRcS4iHo6Id8zbnX//H2dZdrrSLw4AAKiviYmJ3Hlra2tJSRSvAAAAAAAAAAAAAAAAALB2KV6pQpZlL0bEB+Jy6cr88pXcwpV5/teImP1x99m82WyhyuzVERGdEdE857W5pStz7389Iv63CnIAAAAlmZyczJ0rXgEAAAAAAAAAAAAAAACA+lO8UqUsyz4eET8REednX5pzVXLONyLif4w3l7XMLVbJuxa6L4uIf55l2QuVZAEAAMoxMTGRO29paSkpScT69eujubk5d+e1114rKQ0AAAAAAAAAAAAAAAAAlEfxyjJkWfZQRNwdEV+Oy0UpEZWXr3w4Ih6OK4tWZqW48uz5r79xzJyP/yLLst+vJAMAAFCeycnJ3Hlra2tJSSJSSrFhw4bcnXPnzpWUBgAAAAAAAAAAAAAAAADKo3hlmbIsO5Rl2Tsj4p0R8R8i4qVYuCilyD+KiE/HleUt8wtcFiphmbuXIuKjEfGBCp8NAACUaGJiInfe0tJSUpKLNm7cmDtXvAIAAAAAAAAAAAAAAADA1WjdSge4WmRZ9nhEPB4RkVK6KSJ2R8SOiNgUEUNLuP+1lNIPRMTvRcTPxMVSnIXKVxaSIuK1iPj1LMt+p6ovAAAAKM3k5GTuvLW1taQkFyleAQAAAAAAAAAAAAAAAGAtUrxSB1mWvRgRL1Zx33RE/JOU0h9GxG9ExHui+K/RaxHxFxHxr7Mse6nSZwIAAOWbmJjInbe0tJSU5CLFKwAr48SJE/Gnf/qn8YUvfCHa2trive99b/zkT/5krFvnj+wAAAAAAAAAAAAAAADK4F0cDSjLsoMR8QMppbaI+O6IuCciOiPi+ohoioiTEfFSRHw5Ih7Lsuz8SmUFAAAqk2VZYfFKa2trSWkuUrwCUK5z587Fb//2b8dv/dZvXfHPhI997GPxJ3/yJ/HII4/Etddeu4IJAQAAAAAAAAAAAAAA1gbFKw0sy7KzEfHxSxcAAHAVmJqaipmZmdydlpaWktJcpHgFoDyPPvpo/NRP/VScOHFiwfnjjz8ev/zLvxwf/vCHS04GAAAAAAAAAAAAAACw9jStdAAAAIC1ZGJionCntbW1hCSXKV4BKMenPvWpeM973rNo6cqsP/iDP4ijR4+WlAoAAAAAAAAAAAAAAGDtUrwCAABQosnJycIdxSsAV5/p6en40Ic+FNPT04W7U1NT8eu//uslpAIAAAAAAAAAAAAAAFjbFK8AAACUaGJionCnpaWlhCSXKV4BqL/Pf/7zMTw8vOT9hx56KA4cOFDHRAAAAAAAAAAAAAAAACheqUBK6UBK6ZVFrtMppZ0rnREAAGhsk5OThTutra0lJLlM8QpA/T300EMV7WdZFr/6q79apzQAAAAAAAAAAAAAAABEKF6pVF9EdORc31y5aAAAwGowMTFRuNPS0lJCkssUrwDU1/nz5+NjH/tYxff9zd/8TTz55JN1SAQAAAAAAAAAAAAAAECE4pVqZAtcsy6sSCIAAGDVmJycLNxpbW0tIcllilcA6uszn/lMjI2NVXXv7/7u79Y4DQAAAAAAAAAAAAAAALMUr1TmZMF8WykpAACAVWtiYqJwp6WlpYQklyleAaivhx56qOp7P/3pT8f09HQN0wAAAAAAAAAAAAAAADBL8UpljkVEuvRxmvPxrM5S0wAAAKvO5ORk4U5ra2sJSS5TvAJQP+Pj4/Hwww8v6/7nnnuuhokAAAAAAAAAAAAAAACYpXilMv+lYL6vlBQAAMCqNTExUbjT0tJSQpLLiopXXnvttZiZmSkpDcDV5eGHH17S3/vzPP300zVKAwAAAAAAAAAAAAAAwFyKVyrzlxEx+27DbIH595WYBQAAWIWK3nzf3Nwc11xzTUlpLioqXolYWmEMAG/20EMPLfsMxSsAAAAAAAAAAAAAAAD1oXilAlmWDUTEn0dEmj+69Np7U0rtpQcDAABWjfHx8dz5hg0bSkpy2VKKV86dO1dCEoCry8TERHz2s5/N3bn33nvjB37gB3J3nnrqqVrGAgAAAAAAAAAAAAAA4BLFK5X7lxHx8qWPZwtXZrVHxL8uOxAAALB6FBWvtLW1lZTkMsUrAPVx8ODBuHDhQu7O+9///rj33ntzd/r7++PMmTO1jAYAAAAAAAAAAAAAAEAoXqlYlmXfiIgfiYjXZ1+a82uKiJ9LKb1zJbIBAACN7+zZs7lzxSsAV49nn322cOdHf/RHC4tXIiL2799fi0gAAAAAAAAAAAAAAADMoXilClmWfTki3h+Xy1feGEXENRHxcErp7tKDAQAADU/xCsDaUVS8smPHjrjxxhvjrrvuiqam/D+me+qpp2oZDQAAAAAAAAAAAAAAgFC8UrUsyz4eEf9VRMx/92EWEW0R8fmU0s+XHgwAAGhoilcA1o6i4pU777wzIiI2bdoUe/fuzd19+umna5YLAAAAAAAAAAAAAACAixSvLEOWZZ+OiPsj4nhEpLmjiGiNiA+nlL6UUvrelcgHAAA0HsUrAGvD1NRUHDhwIHfnbW972xsf33vvvbm7zzzzTMzMzNQkGwAAAAAAAAAAAAAAABetW+kAq12WZQdSSvsi4t9GxE/H5e9pFhfLWO6PiE+llI5GxH+JiC9FxNcj4lREXCgh3wv1fgYAALB0jVi80traWrijeAWgMgMDAzE5OZm7M7d45du//dvjIx/5yKK7o6OjMTAwELfddlvNMgIAAAAAAAAAAAAAAKx1ilcqlFL6Us74RETsjIulKxGXy1dSRHRHxO6I+Cf1zDdPFv4aAwBAQ2nE4pWmpqbYsGFDvPbaa4vuKF4BqMyzzz5buDO3eOXee+8t3H/66acVrwAAAAAAAAAAAAAAANRQ00oHWIXuj4j75l2zr3Vd2klzrmzOlVbgAgAAGkhR8cqmTZtKSnKljRs35s4VrwBU5qtf/WruvKOjI3bu3PnG593d3XHdddfl3vP000/XIhoAwKrw6quvxkc+8pF497vfHVu3bo3e3t74wAc+EJ/+9KfjwoULKx0PAAAAAAAAAAAAuEooXqne/HKTxYpO5r6elXgBAAANqKh4pa2traQkV1K8AlBbzz77bO78zjvvjJQu/1FSU1NT3Hvvvbn3PPPMMzXJBgDQyF5++eX46Z/+6bjhhhvigx/8YDz22GPxyiuvxODgYHz0ox+N973vffGWt7wlfvM3fzNef/31lY4LAAAAAAAAAAAArHKKV6pXaeFJKvECAAAalOIVgKtflmWFxStve9vb3vRaUfHKkSNHYmpqalnZAAAa2d///d/HHXfcEX/0R38Ur7322qJ7Z86ciV/5lV+JBx98MGZmZkpMCAAAAAAAAAAAAFxtFK9UT+kJAABQsdVavJL3hjcArvTCCy/EmTNncncWKl751m/91tx7Lly4EENDQ8vKBgDQqGZmZuKDH/xgvPzyy0u+54tf/GJ89KMfrWMqAAAAAAAAAAAA4GqneKV6WQNfAABAA5qeni4sMGnU4pVz586VlARg9Xv22WcLdxYqXtmzZ0/hfYcOHaoqEwBAo3vsscfi7/7u7yq+78Mf/nAd0gAAAAAAAAAAAABrheKV6qRVcAEAAA1mfHy8cEfxCsDqV1S80tLSEn19fW96vaurKzZt2pR778GDB5eVDQCgUX3iE5+o6r6DBw/G0aNHa5wGAAAAAAAAAAAAWCvWrXSAVei7VjoAAACwOileAVgbiopX9u7dG+vWvfmP5VJKsWfPnnj66acXvffQoUPLzgcA0GiyLItPfvKTVd//8Y9/PH7pl36phokAAAAAAAAAAACAtULxSoWyLPviSmcAAABWp7NnzxbuKF4BWP2Kilfe9ra3LTrbu3dvbvHKwYMHq84FANCovvKVr8TXv/71qu//q7/6K8UrAAAAAAAAAAAAQFWaVjoAAADAWqF4BeDqNzY2Vvim4bzilT179uTeOzw8HK+99lpV2QAAGtUnP/nJZd3/9NNPx4kTJ2qUBgAAAAAAAAAAAFhLFK8AAACUpJGLVzZt2pQ7X0p2ACIGBgYKd/bt27fobO/evbn3ZlkWhw8frjgXAEAjW27xSkTEJz7xiRokAQAAAAAAAAAAANYaxSsAAAAlaeTilc2bN+fOx8bGSkoCsLr19/cX7vT19S0627NnT+H9Bw8erCgTAEAj+9rXvhYHDhzI3Xn/+98f1157be7Oxz/+8VrGAgAAAAAAAAAAANYIxSsAAAAlKSpeaW5ujpaWlpLSXKm9vT13Pjo6WlISgNVtYGAgd3799dfHli1bcufbt2/PPePQoUNVZQMAaESf/OQnC3d+/Md/PL73e783d+cLX/hCnD59ulaxAAAAAAAAAAAAgDVC8QoAAEBJiopXNm3aFCmlktJcqaOjI3d+9uzZmJmZKSkNwOrV39+fO+/r6ys8Y8+ePbnzgwcPVpQJAKCRFRWvbNy4Md71rnfFD//wD+fuTU9Px1//9V/XMhoAAAAAAAAAAACwBiheqVBKaUNK6eaFrhXO1bZIrpaVzAUAAFxWVLzS1tZWUpI3a29vz51nWVaYH4CIgYGB3PlSilf27t2bOz906FBFmQAAGtWZM2fi8ccfz915z3veEy0tLfH93//90dzcnLv7mc98ppbxAAAAAAAAAAAAgDVA8Url/uuI+NoC1/MrGSoi/vtYONfPrGQoAADgskYuXuno6CjcGR0dLSEJwOo1PT0dQ0NDuTu9vb2F5+zZsyd3/tJLL8Xp06crygYA0IieeOKJmJ6ezt35oR/6oYiI2LJlS3znd35n7u4//MM/1CoaAAAAAAAAAAAAsEYoXqlOWuRaSWdi4UxvX8lQAADAZY1cvNLe3l64MzY2VkISgNXr2LFjceHChdydvr6+wnP27t1buHPo0KEl5wIAaFRPPPFE7ry5uTne9773vfH5e9/73tz9wcHBmJiYqEk2AAAAAAAAAAAAYG1QvFK9bM7VCGaLX+bn2rcycQAAgPlWe/HK6OhoCUkAVq/+/v7Cnd7e3sKd22+/vXDn4MGDS8oEANDInnzyydz5nXfeGVu2bHnj82/5lm/J3Z+ZmYnDhw/XJBsAAAAAAAAAAACwNiheWZ5UvFKaDYu8vrXUFAAAwKIauXilo6OjcGdsbKyEJACr18DAQO58/fr1sXPnzsJzNm3aFLfeemvuzqFDhyqJBgDQcC5cuBD79+/P3bnvvvuu+Hzv3r2F5yqoAwAAAAAAAAAAACqheOXq0b3I6yv3zk0AAOAKjVy8snHjxmhubs7dUbwCkK+/vz93vnv37li3bt2SztqzZ0/uXPEKALDaffWrX43JycncnXe84x1XfL59+/bo7OzMvefAgQPLzgYAAAAAAAAAAACsHYpXrgIppfaI+LGIyBYYt5YcBwAAWMT4+HjufCWLV1JKsXnz5tyd0dHRktIArE5FxSt9fX1LPquoeOXIkSORZQv9URAAwOrwxBNPFO7cd999b3pt3759ufcoXgEAAAAAAAAAAAAqsbQfsXsVSyltjoiOCm7ZlnPWTRGRlh1q6VoiYm9E/KuIeEtcLF5JcWUBy6sl5gEAAHKcPXs2d76SxSsRER0dHXHmzJlF52NjYyWmAVh9BgYGcue9vb1LPuv222/Pnb/yyivx8ssvR2dn55LPBABoJE8++WTu/Kabboq3vvWtb3p979698eijjy5638GDB5edDQAAAAAAAAAAAFg71nzxSkT8s4j4tSruS4cp4iYAACAASURBVAv8eqwWgaowP8tcp8sMAgAALK7Ri1fa29tz56OjoyUlAVh9zpw5EyMjI7k7fX19Sz7vtttuK9w5cuSI4hUAYFXKsiyeeOKJ3J377rtvwdf37duXe9/IyEicPHkytm/fXnU+AAAAAAAAAAAAYO1oWukADSJVeNXqnFpdERHZAlmyiPhqRd8JAACgbhq9eKWjoyN3PjY2VlISgNVnYGCgcKe3t3fJ5y1l9/Dhw0s+DwCgkRw/fjxeeuml3J13vOMdC76+d+/ewvMPHDhQVS4AAAAAAAAAAABg7VG8cllWwVWLM2p9LVYI87kKvgcAAEAdNXrxSnt7e+5c8QrA4vr7+wt3Kile2bhxY3R1deXuHDlyZMnnAQA0kieeeKJw57777lvw9dtvvz2amvL/E+fBgwerygUAAAAAAAAAAACsPYpXrpSWeC33/npcs+YWw7wcEX9e4fcAAACog6mpqZicnMzd2bRpU0lpFlZUvDI6OlpSEoDVZ2BgIHe+ffv26OjoqOjM2267LXeueAUAWK2efPLJ3PnGjRtj3759C85aW1ujp6cn9/4DBw5UnQ0AAAAAAAAAAABYWxSvXD2yuFy6kiJiOiJ+Lsuy11YuEgAAMOvs2bOFO21tbSUkWVxRIcDY2FhJSQBWn/7+/tx5X19fxWfefvvtuXPFKwDAavXEE0/kzu+5555Yt27dovO9e/fm3q94BQAAAAAAAAAAAFgqxStXypZ4Lff+elwRFwtXUkR8IyJ+JMuyv6r+WwEAANTSaiheaW9vz52Pjo6WlARg9SkqXunt7a34zNtuuy13fuLECaVYAMCqMz4+HgcPHszdue+++3Ln+/bty50fPnw4pqamKs4GAAAAAAAAAAAArD2KVy5LFVy1OKPW12sR8YWI+GBE9GRZ9vByvhkAAEBtXQ3FK97cD7Cw6enpeP7553N3+vr6Kj63qHglorjwBQCg0Rw5ciRmZmZyd97xjnfkzvfu3Zs7P3/+fAwNDVWcDQAAAAAAAAAAAFh71q10gAbwx3GxsGSp3hMR/yIisrhYeDL313fVOFuRLCLGI+JMRBzLsiwr+fkAAMASrYbilY6Ojty54hWAhX3961+PCxcu5O50d3dXfO5SileOHDkS99xzT8VnAwCslKUUx911112583379hWeceDAgSX9fgoAAAAAAAAAAABY29Z88UqWZccj4vhS91NKO3PO+mINIgEAAFeh1VC80t7enjufmJiICxcuxPr160tKBLA6DA8PF+7s3r274nO3bNkSnZ2dMTIysujOkSNHKj4XAGAlFRWvXH/99bF169bcna6urmhra8v9d+0DBw7Ej/3Yj1WVEQAAAAAAAAAAAFg7mlY6AAAAwFqwGopXOjo6CnfGxsZKSAKwuhw9ejR3nlKKW265paqzb7/99ty54hUAYLUZGBjInff19RWe0dTUFHv27MndGRwcrCgXAAAAAAAAAAAAsDYpXgEAAChBUfHKNddcE9dee21JaRbW3t5euDM6OlpCEoDVZXh4OHd+0003Vf33+Ntuuy13fvjw4arOBQBYKf39/bnz3t7eJZ1TVFB3/PjxJWcCAAAAAAAAAAAA1i7FK8uTrXQAAABgdRgfH8+dt7W1lZRkcUspXhkbGyshCcDqcvTo0dz5rl27qj67qHjla1/7WkxOTlZ9PgBAmaampmJoaCh3p6+vb0lndXV15c4VrwAAAAAAAAAAAABLoXilemnOBQAAkOvs2bO580YoXuno6CjcUbwC8GbDw8O58927d1d9dlHxyszMTAwODlZ9PgBAmY4dOxYXLlzI3alV8crIyEhMTEwsORsAAAAAAAAAAACwNileqdx/iohbFrhuXclQAABAY1sNxSvt7e2FO6OjoyUkAVg9siwrLF7ZtWtX1ecXFa9ERBw5cqTq8wEAytTf31+4U6vilYiIF154YUlnAQAAAAAAAAAAAGvXupUOsNpkWXYuIs6tdA4AAGB1WQ3FK9dee220tLTE5OTkojtjY2MlJgJofCMjIzE+Pp67s5zilRtvvDE2b94cr7766qI7hw8frvp8AIAyDQwM5M7Xr18fO3fuXNJZSyleOX78ePT29i7pPAAAAAAAAAAAAGBtalrpAAAAAGtBUfHKpk2bSkqSr729PXc+OjpaUhKA1WF4eLhwZ/fu3VWfn1KK2267LXdH8QoAsFr09/fnzru7u6O5uXlJZ+3YsSOamvL/U+fx48eXnA0AAAAAAAAAAABYmxSvAAAAlKCoeKWtra2kJPmKilfGxsZKSgKwOhw9erRwZ9euXct6RlHxynPPPbes8wEAylJUvNLX17fks6655prYsWNH7o7iFQAAAAAAAAAAAKCI4hUAAIASrJbilY6Ojty54hWAKw0PD+fOOzs7l/33+D179uTOBwcH4/z588t6BgBAGWpZvBIR0dXVlTtXvAIAAAAAAAAAAAAUUbwCAABQgtVSvNLe3p47Hx0dLSkJwOpw9OjR3PmuXbuW/Yyi4pXp6ekYGBhY9nMAAOrp9OnTcerUqdyd3t7eis5UvAIAAAAAAAAAAAAs17qVDlC2lNIDefMsy760nPsbTdHXAwAAlONqKV4ZGxsrKQnA6jA8PJw7371797KfUVS8EhFx6NCh2Ldv37KfBQBQL0spiuvr66voTMUrAAAAAAAAAAAAwHKtueKViPhCRGSLzLIo/p7k3d9olvL1AAAAJVgtxSsdHR2589HR0ZKSAKwORcUru3btWvYzbrzxxujo6Mj9e/ChQ4eW/RwAgHrq7+8v3Ont7a3ozKLilRMnTsTU1FSsW+c/lwEAAAAAAAAAAAALa1rpACsoLXIt9/5GuwAAgAawWopX2tvbc+djY2MlJQFofGNjY3Hq1KncnVoUr6SUYs+ePbk7ilcAgEZXVLxy4403xubNmys6s6h4ZXp6Ok6cOFHRmQAAAAAAAAAAAMDaspaLV7J513Lvb7QLAABoIKuleKWjoyN3rngF4LLh4eHCnd27d9fkWYpXAIDVrqh4pbe3t+Izi4pXIiKOHz9e8bkAAAAAAAAAAADA2rFupQOsoDTn42qKSlLxyopRvAIAAA3k/Pnz8frrr+fuNErxSnt7e+58dHS0pCQAje/o0aOFO7t27arJs4qKV772ta/F+Ph4bNq0qSbPAwCotYGBgdx5X19fxWfefPPNhTuKVwAAAAAAAAAAAIA8TSsdAAAA4Go3Pj5euLNailfGxsYiy3Q9AkREDA8P5843b94c27Ztq8mziopXIiIOHz5ck2cBANTahQsXCn/vVE3xyoYNG+L666/P3VG8AgAAAAAAAAAAAORZy8Ur2Zxrufc32gUAADSQs2fPFu40SvFKR0dH7nx6ejrOnTtXUhqAxlb05uFdu3ZFSqkmz7rjjjsKdw4dOlSTZwEA1Nrw8HBMT0/n7lRTvBIR0dXVlTtXvAIAAAAAAAAAAADkWavFK2mBa7n3N9oFAAA0iNVUvNLe3l64MzY2VkISgMZ39OjR3PmuXbtq9qxt27bFW97yltwdxSsAQKPq7+8v3Ont7a3qbMUrAAAAAAAAAAAAwHKsW+kAK+C7Vvh+AABgjVlK8cqmTZtKSFJsqcUrO3bsKCENQGMrKl7ZvXt3TZ+3Z8+e+OY3v7noXPEKANCoBgYGcuetra1x0003VXW24hUAAAAAAAAAAABgOdZc8UqWZV9cyfsBAIC1Z2xsrHCnra2thCTFOjo6CndGR0dLSALQ2MbHx+PEiRO5O/UoXnn00UcXnSteAQAaVX9/f+68t7c3mpqaqjq7qHjlhRdeiCzLIqVU1fkAAAAAAAAAAADA1a26/4MRAACAJTt9+nTuPKUU7e3tJaXJt5QcSymSAbjaHT16tHCnp6enps/cs2dP7vyll14q/GcOAMBKKCpe6evrq/rsouKVycnJGBkZqfp8AAAAAAAAAAAA4OqmeAUAAKDOit4Ev2XLlmhubi4pTb7NmzcX7oyOjpaQBKCxDQ0NFe50d3fX9JlFxSsREc8991xNnwkAsFxZltW1eGXnzp2FO8ePH6/6fAAAAAAAAAAAAODqpngFAACgzk6dOpU737p1a0lJijU3N0dbW1vuztjYWElpABrX4OBg7rytrS22b99e02fecccdhTuHDh2q6TMBAJbr5MmThf8e2dvbW/X5XV1dhTuKVwAAAAAAAAAAAIDFKF4BAACos6LilW3btpWUZGna29tz54pXACKGhoZy5z09PZFSqukzN23aFLfcckvuzrPPPlvTZwIALNfAwEDhTl9fX9Xnd3R0xObNm3N3FK8AAAAAAAAAAAAAi1G8AgAAUGerrXilo6Mjdz46OlpSEoDGNTg4mDvv7u6uy3P37NmTO//bv/3bujwXAKBa/f39hTs9PT3LekZXV1fuXPEKAAAAAAAAAAAAsBjFKwAAAHV2+vTp3HmjFa+0t7fnzsfGxkpKAtC4iopXlvvm4cW8/e1vz50fOnQozp07V5dnAwBUo6h4paurKzZs2LCsZyheAQAAAAAAAAAAAKq1bqUDrEUppfaI6IyIjRHREhHNETEZERMRcSoiXs6yLFu5hAAAQC2dOnUqd77aildGR0dLSgLQmF555ZXCUq3u7u66PPvuu+/OnU9PT8ezzz4b999/f12eDwBQqaLild7e3mU/o6h45dixY8t+BgAAAAAAAAAAAHB1UrxSRymlFBHfFhHfFRHfGhF7ImJXRFxbcOt0SulERDwXEQcj4ssR8XiWZa/WMS4AAFAnRcUrW7duLSnJ0nR0dOTOz5w5U1ISgMY0NDRUuNPT01OXZ991112FO88884ziFQCgYRQVr/T19S37GUXFK8ePH1/2MwAAAAAAAAAAAICrk+KVOkgpfWtEfCAi/puImPsOyrTEI9ZFRFdE3BwR742IX46LZSxfjIj/LyL+Y5Zl47VLDAAA1EuWZYXFK9u2bSspzdIUFcG8/PLLJSUBaExLKV7p7u6uy7O3bt0au3fvjqNHjy66s3///ro8GwCgUhMTE4WlJ2UUr7z66qsxOjpaWDQKAAAAAAAAAAAArD1NKx3gapJSuiel9EhE/G1E/GxEbIuLZSuzV0REVsE19951EfGuiPh/IuLrKaV/l1K6oZyvDAAAqNb4+Hi8/vrruTuNVrzS2dmZOz958mRJSQAa0+DgYO5827Ztcd1119Xt+XfffXfuXPEKANAohoaGIsuy3J0yilciorAABgAAAAAAAAAAAFibFK/UQEqpNaX0f0fEE3GxHGW2LGWhMpWIKwtVFrpmLVbEsjkiPhQRQymlf5NSuraeXx8AAFC9U6dOFe40WvHK9u3bc+cjIyOFb5wDuJoVFa/09PTU9flFxSvHjh2LkZGRumYAAFiK/v7+wp3e3t5lP0fxCgAAAAAAAAAAAFAtxSvLlFLaGRFPRcT/EBe/n3MLVyLyi1UWPXaRe+aXsGyIiF+NiH9IKd277C8GAACouaUUr2zdurWEJEtXVLxy4cKFGB0dLSkNQOMZGhrKnXd3d9f1+UXFKxER+/fvr2sGAIClKCpeaWtrixtuuGHZz+ns7Ixrr83/OQWKVwAAAAAAAAAAAICFKF5ZhpRSd0Q8HhF748rClcVKVrIqr1jgzLnP6omIL6aUPljrrxEAAFiepRSvbNu2rYQkS1dUvBIRMTIyUkISgMaTZVkMDg7m7vT09NQ1w5133hnr1q3L3VG8AgA0goGBgdx5X19fpLSUn1mQr6mpKW6++ebcHcUrAAAAAAAAAAAAwEIUr1QppdQZEY9GxI5LL80tSJkrr0BlKVfeGXNn10TE76eU/pflf3UAAECtnD59Onfe1NQUHR0dJaVZms7OzsKdkydPlpAEoPGcPHkyxsfHc3fqXbzS2toa+/bty91RvAIANIL+/v7ceV9fX82e1dXVlTtXvAIAAAAAAAAAAAAsJP9H47KgdPFH7/2niLgp8gtXYt7slYg4cOkaiohXI2IsIsYjojUi2i5d2yLi9ktXb0RsmHNmXvlKioh/mVI6m2XZby3riwQAAGri1KlTufMtW7ZEc3NzSWmWZvv27YU7ileAtWpwcLBwp7u7u+457r777vjKV76y6Hz//v2RZVlc/GMsAIDyZVkWAwMDuTu9vb01e57iFQAAAAAAAAAAAKAaileq86GIuD8WLl2ZX7jyYkT8ZUT8xyzL/rbSB6WUmiPigYj4oYj4wYi4ORYuYJlbvvIbKaW/y7LssUqfBwAA1FZR8crWrVtLSrJ0GzZsiE2bNsX4+PiiO4pXgLVqKcUru3fvrnuOe+65J/7wD/9w0fmZM2dieHi4lCwAAAt56aWX4ty5c7k7ilcAAAAAAAAAAACAlda00gFWm5TSdRHxbyK/dCVFxDci4mci4tYsy36xmtKViIgsy6azLPt8lmX/NCJuiYifiIiBOc+dnyOLiOaI+OOU0oZqngkAANROUfHKtm3bSkpSme3bt+fOR0ZGSkoC0FiGhoZy5zt27IiNGzfWPcfdd99duPPMM8/UPQcAwGKKft8UEdHT01Oz5xUVr4yMjMTExETNngcAAAAAAAAAAABcHRSvVO6fRkTbpY/nlp1kc3b+94jYnWXZv8+ybLpWD84u+ouIuCMifj4iZv/v0IVKYHZExL+o1bMBAIDqnD59OnfeqMUrnZ2dufOTJ0+WlASgsQwODubOa/nm4Ty9vb3R1taWu/PlL3+5lCwAAAsp+n1TRMTu3btr9ryi4pWIiBdeeKFmzwMAAAAAAAAAAACuDopXKpBSShHxgbiyZGVu6clURPxElmW/nGXZ+XrluFTA8gcRcX9EzP6Y+fmZUkT8fEqptV45AACAYqdOncqdN2rxyvbt23PnileAtWpgYCB33t3dXUqO5ubmuOuuu3J3Hn/88VKyAAAsZGhoKHf+1re+NTZs2FCz5y2leOX48eM1ex4AAAAAAAAAAABwdVC8Uplvj4i3Xvo4zXk9xcWyk1/Isuz/LStMlmVfjYj3RcTE7EvzcnVExI+VlQcAAHizouKVrVu3lpSkMopXAN5samoqjh49mrvT29tbUpqI+++/P3f+3HPPFf5zCACgXoqKV2pdWLdjx45oasr/T5+KVwAAAAAAAAAAAID5FK9U5rvmfT5bdJJFxOeyLPv9sgNlWfZsRPxaXFm4Mtf3lxgHAACYp+gN79u2bSspSWWKildGRkZKSgLQOI4dOxavv/567k6ZxSsPPPBA4c6Xv/zlEpIAALxZUfFKT09PTZ93zTXXxI4dO3J3FK8AAAAAAAAAAAAA8yleqcxdObNfLy3Fm/2fEfGNSx9nc35N8eayGAAAoCRZlsXp06dzdxq1eKWzszN3fvLkyZKSADSOgYGBwp0yi1fuvffeWLduXe7O448/XlIaAIDLZmZm4ujRo7k73d3dNX9uV1dX7lzxCgAAAAAAAAAAADCf4pXK7I4ri01mPZ9l2VMrkOdikCx7PSL+LC4WrcScXyMi2lNK+T/eDwAAqIuzZ8/G66+/nrvTqMUr27dvz52fO3cuzp07V1IagMZQVLxyzTXXxM6dO8sJExEbN26Mb/u2b8vd+dKXvlRSGgCAy1588cU4f/587o7iFQAAAAAAAAAAAKARKF6pzA3zPk9xsYDlC+VHeZNHc2a1/z9XAQCAQqdOnSrc2bp1awlJKldUvBIRMTIyUkISgMZRVLyye/fuWLduXUlpLnrggQdy51/5ylfi7NmzJaUBALhoaGiocKenp6fmz1W8AgAAAAAAAAAAAFRK8UplNi7yev67bspxOGfWUVoKAADgDUspXtm2bVsJSSq3lOKVkydPlpAEoHEUFa/09vaWlOSyouKVmZmZeOqpp0pKAwBw0eDgYO68qakpbr311po/d+fOnbnzEydOxNTUVM2fCwAAAAAAAAAAAKxeildq48xKB4iI0zmzDaWlAAAA3nD6dN5v0y9q1OKVzs7Owh3FK8Ba04jFK/fdd1+klHJ3vvSlL5WUBgDgoqGhodx5V1dXrF+/vubP7erqyp1PT0/HiRMnav5cAAAAAAAAAAAAYPVSvFKZVxd5fWOpKRaW5cwmSksBAAC84dSpU7nzpqam6OjoKClNZdrb2wvfBKd4BVhLXn311fjmN7+Zu7MSxSvXXXdd7N27N3dH8QoAULai4pWenp66PLeoeCUi4vjx43V5NgAAAAAAAAAAALA6KV6pzIsRsdCPEL6h7CALaM+ZjZaWAgAAeENR8cqWLVuiqakx/7UspRTbt2/P3RkZGSkpDcDKGxgYKNxZieKViIgHHnggd75///6YnJwsKQ0AQHHxSnd3d12ee/PNNxfuKF4BAAAAAAAAAAAA5mrMd/g1rucWeb0+P5avMrfmzIZLSwEAALyhqHhl27ZtJSWpTlHxysmTJ0tKArDyGrl45Tu+4zty5+fPn4/9+/eXlAYAWOumpqbi+eefz92pV/FKa2trdHZ25u4MD/vPZgAAAAAAAAAAAMBlilcq88V5n2cRkSLiwZTS+hXIM9fb53yczfn4dJZlL5QdBgAAiDh9+nTuvNGLV4rerKZ4BVhLiopXtm7dGlu3bi0pzZWKilciIj73uc+VkAQAIOLYsWMxNTWVu9PTU7+faXDrrXk/q2BphXoAAAAAAAAAAADA2qF4pTKfjoiZBV7fGBHvKTnLfD887/MUFwtYPr8CWQAAgIg4depU7rzRi1e2b9+eO1e8AqwlRW/Q7e3tLSnJm91www3R3d2du/PZz362pDQAwFo3NDRUuFP0e5fl6Ovry5339/fX7dkAAAAAAAAAAADA6qN4pQJZln0jIj4TF0tN5koR8T+nlOa/XoqUUm9EfGdcLFqZ78/KTQMAAMy62otXRkZGSkoCsPIauXglIuLd73537nz//v0xOjpaUhoAYC0rKl5Zt25ddHV11e35Rb8vGxgYiJmZhX7OAgAAAAAAAAAAALAWKV6p3O/M+TjF5bKTfRHxj8uPExER/0cs/NdyMCI+VXIWAADgkqLila1bt5aUpDpFxSsnT54sKQnAypqZmSl8A/FKF688+OCDufOZmZl47LHHSkoDAKxlg4ODufNbb7011q1bV7fn9/X15c4nJibixRdfrNvzAQAAAAAAAAAAgNVF8UqFsiz7fFwsM5lbupJd+vx3U0pvLzNPSukXI+K9czLEnGz/PMsyP7IPAABWyOnTp3Pn27ZtKylJdTo7O3PnZ86ciQsXLpSUBmDlvPjiizExMZG7s9LFK+9617uiqSn/j/oeeeSRktIAAGtZUWFdT09PXZ9fVLwSETEwMFDXDAAAAAAAAAAAAMDqoXilOj8bEaPzXssiojUiPplS6iojRErpQxHxb+PNBTBZRPxxlmWfKiMHAADwZlmWxalTp3J3Gr14Zfv27YU7IyMjJSQBWFlLeWPuShevdHR0xN13352789nPfrakNADAWjY4OJg77+7uruvzb7311mhubs7d6e/vr2sGAAAAAAAAAAAAYPVQvFKFLMtejIifisuFJ2+MIuKGiHg6pfTOej0/pbQlpfTnEfHvYuG/ho9GxAfr9XwAAKDYq6++GlNTU7k7ilcAVoei4pXm5ubYtWtXSWkW9z3f8z258+effz6Gh4dLSgMArEXnzp2LY8eO5e709PTUNcP69esLf2+meAUAAAAAAAAAAACYpXilSlmWPRwRP7vQKCK2R8TnUkofTSntrtUzU0qdKaV/ExFDEfH+iEhxufwlXbr+c0T8UJZlr9fquQAAQOVOnTpVuLN169YSklRvKcUrJ0+eLCEJwMoqKl655ZZbYv369SWlWdyDDz5YuPPII4+UkAQAWKuWUmhy22231T1HX19f7rzo93cAALUwOTkZL7/8cpw/f36lowAAAAAAAAAAORSvLEOWZf8+Iv5RRMwvOcni4vf2v4uI/pTSF1JKH0op7UspLfl7nlLakFK6L6X0z1JKj0XEiYj41Yi4Lt5cupJFxO9FxA9mWTaxrC8MAABYtpdeeqlwZ9u2bSUkqd6WLVuiqSn/X2EUrwBrwaFDh3Lnvb29JSXJd88990RbW1vujuIVAKCeDh8+XLhz++231z1HUfHKUgpiAACqdfLkyfi5n/u52Lx5c3R2dsYNN9wQv/ALvxBnzpxZ6WgAAAAAAAAAwALWrXSAsqWUput19JyPs0tXunR9x6UrIuL1lNJwRHwjIl6OiImIuBAR6yOiJSI2RMSNEfHW/5+9O4+zse7/OP6+xgxj37fsrRKK6J4iS1GRXSl3I1IhlRalkopkKS3uustWKj/7VrcWCWFGScgaN8lE1pQl24wxc/3+kDtZvt8zM+d8zyyv5+NxHo3zfZ/v9VYxM2eu63NJKn3Gvqc+9s94zpe0W1IxSR943v9e4vu+3zkIvzcAAAAAabR161Zrply5cg6apF+uXLlUsmRJ43AVBq8AyO5839fatWuNGRcXDwciKipKjRs31qxZs86b+eqrr3TixAlFRua4twUBAIADGzZsMK6XKFFCJUuWDHkP22C8nTt36o8//lChQoVC3gUAAOQsy5YtU9u2bbVjx47/Pbd//3698cYbmjJlikaPHq1bb701jA0BAAAAAAAAAAAAAMCZzLcuz568ED3OPIZ09gAWTycHrFwu6QZJd0jqIqnbn/+8U1IrSXUlldXJ/z6nv/bUfqf/Pk59XEbSXac9Yv98AAAAAAiDbdu2GddLlCihfPnyOWqTfqVLlzau//rrr46aAEB47Ny5U/v27TNmatas6aiNXdOmTY3rBw4c0IoVKxy1AQAAOc369euN664G1lWtWtWa2bhxo4MmAAAgJ/nwww91/fXX/23oyul27typFi1a6L777tOJEycctwMAAAAAAAAAAAAAAOeTEwevSH8NMAnm40ynD0Y5V9Y2xOV8xzjXoJdz7QcAAAAgjGyDVypWrOioScbYBq9s377dURMACI+1a9daMzVq1HDQJDA33XSTNbNw4cLQF0FIbN26+9XWDgAAIABJREFUVQsWLNCiRYu0du1a7dixQ75/rrcmAQAIj8wyeOWyyy6zZhi8AgAAgumdd95Rly5dlJSUZM2+9957uvvuu/meHgAAAAAAAAAAAACATCKnDl6RzINP0vMI9DhS2ga5BHoc2yAYAAAAAA7ZBq9UqlTJUZOMKV++vHE9ISHBURMACI81a9YY13PlyqWqVas6amN3ySWXqEKFCsbMggULHLVBsGzYsEHNmjVT5cqVdcMNN6hRo0aqWbOmypcvrzJlyqhfv34BXdgFAEAoJSYm6qeffjJmLr/8ciddihcvrpIlSxoz//3vf510AQAA2d+yZcvUq1evNL1m0qRJ+vDDD0PUCAAAAAAAAAAAAAAApEVOHrwSLsEa6GLaFwAAAECYbd261bhesWJFR00y5sILLzSuM3gFQHa3du1a43rVqlWVJ08eR23sPM9T48aNjZnFixcrOTnZUSNkxNGjR/Xss8/qyiuv1BdffHHOzK+//qpBgwapcePGOnDggOOGAAD8ZdOmTUpNTTVmqlWr5qiNdNlllxnXGbwCAACCwfd99enTRykpKWl+7WOPPabdu3eHoBUAAAAAAAAAAAAAAEiLnDx4xc/GDwAAAABh5Pt+thm8UqVKFeP6b7/9pkOHDjlqAwDurVmzxrheo0YNR00CZxu8cuTIEa1YscJRG6TXjh07VLduXQ0ePDigQTlLlixRo0aNtGfPHgftAAA42/r1660Zl4NXqlatalzfuHGjoyYAACA7mzNnjhYuXJiu1x44cEAPPfRQcAsBAAAAAAAAAAAAAIA0y6mDV7wc8AAAAAAQJgcPHtThw4eNmewyeEWSEhISHDQBAPeSk5O1YcMGY6ZmzZqO2gSuUaNG1kx6LwiCG3/88YcaNWoU0AXsp1u9erWuv/56bd++PUTNAAA4P9vXTYULF1bZsmUdtbEPXtm0aZNSUlIctQEAANlRamqqnn766QztMWPGDM2YMSNIjQAAAADp0KFDGj9+vLp376769eurWLFiypUrlypUqKC+fftq37594a4IAAAAAAAAAJlOZLgLhIH9qkEAAAAAyIBt27ZZM5UqVXLQJOMCHbySGQcPAEBGbdq0ScnJycZMjRo1HLUJXOXKlVWpUiVt3br1vJmFCxdm+MIghM6jjz6qzZs3p+u1P/74ozp06KBFixYpKioqyM0AADg/28CwatWqyfPc3TvANnjl+PHj+vnnn3XRRRc5agQAALKbyZMna/Xq1Rnep1evXmrevLny5s0bhFYAAADIyb777jvdfvvt5zxvZfv27RoyZIhGjRql559/Xg888IBy584dhpYAAAAAAAAAkPnkuMErvu+f/4oTAAAAAAiCQAavVKxY0UGTjCtTpoyio6OVmJh43syWLVscNgIAd9asWWPNZMbBK5LUqFEjffjhh+ddX7x4sZKTkxnMkQnNnDlT77//fob2WLJkiT744APdf//9QWoFAICdbfDK5Zdf7qjJSZdddpk1s2HDBgavAACAdDl+/Liee+65oOy1c+dOTZo0SV27dg3KfgAAAMiZ5s+fr9atW+vIkSPG3L59+/Too49q7NixmjVrVpa5cRAAAAAAAAAAhFJEuAsAAAAAQHazdat53mOePHlUsmRJR20yxvM8ValSxZhJSEhw1AYA3Fq7dq1xvVChQpl2kFbjxo2N60eOHNHy5csdtUGgdu/erW7dugVlryFDhig5OTkoewEAYJOcnKxNmzYZM9WqVXPU5qTKlStb79i7evVqR20AAEB289FHH1mHkhcoUEB79uzRbbfdZt3vrbfeku/7waoHAACAHOY///mPmjdvbh26cro1a9aoXr162rlzZwibAQAAAAAAAEDWwOAVAAAAAAiybdu2GdcrVKigiIis8+0Yg1cA5FRr1qwxrteoUUOe5zlqkzYNGza0ZhYuXBj6IghYamqq7rnnHv3+++9B2S8hIUETJkwIyl4AANhs3rxZJ06cMGZcD16JjIzU5Zdfbsx8//33jtoAAIDsJpDvuXv37q1SpUrprbfeUtGiRY3ZVatWacmSJcGqBwAAgBxk1qxZat++vY4fP57m1+7YsUOtW7fW0aNHQ9AMAAAAAAAAALKOrHOlHwAAAABkEbbBKxUrVnTUJDguvPBC47rtrp4AkFWtXbvWuF6zZk1HTdKucuXKqly5sjHD4JXM5ZVXXtEXX3xhzXmepzFjxigqKsqaHTx4sFJSUoJRDwAAow0bNlgzrgevSFLt2rWN6ytXrnTUBAAAZCf79u2zfg9fsmRJ9e7dW5JUpkwZDRo0yLrv22+/HZR+AAAAyDm2bdum2NjYDP08aPny5brnnnvk+34QmwEAAAAAAABA1sLglTTwPO9Sz/NqGh55wt0RAAAAQPjZBq9UqlTJUZPgqFKlinH9559/5gQcANnOgQMHrH+f16hRw1Gb9GnUqJFxffHixUpOTnZTBkbx8fHq16+fNVewYEH99NNPuu+++7R9+3blzZvXmP/xxx81ZcqUYNUEAOC81q9fb1zPnz+/KlSo4KjNX2rVqmVcT0hI0P79+x21AQAA2cXMmTOt76k8+eSTKliw4P9+fffdd6tIkSLG10ybNk27d+8OSkcAAABkf77v67777tOhQ4cyvNfUqVP10ksvBaEVAAAAAAAAAGRNDF5Jm3hJK8/z+F5SifBVAwAAAJBZ2C7Ur1ixoqMmwWEbvHL06FH9+uuvjtoAgBvr1q2zZjL74JXGjRsb148eParvv//eURucz969e9WxY8eA7kT4zjvv/O/zcqlSpQK6W/ZLL72UobscAgAQCNvglapVqyoiwv2PJWvXrm3NrFy50kETAACQnUyaNMm4HhERodjY2L89lz9/ft1zzz3G1yUnJ2vMmDEZ7gcAAICcYcyYMZo7d27Q9uvfvz/vlQEAAAAAAADIsRi8kjYlJHmGx97wVQMAAACQGSQnJ2vnzp3GTFYbvHLhhRdaM1u2bHHQBADcWbt2rTWT2QevNGrUyJr59ttvQ18E5+X7vrp27aodO3ZYsx06dNBdd931t+e6d++uUqVKGV+3YcMGTZw4MUM9AQCwWbFihXG9WrVqjpr83ZVXXinP84wZBtEBAIC02LVrlxYsWGDMNGrUSGXLlj3r+Z49e1r3HzlypJKTk9PdDwAAADnDzz//rN69ewd1z9TUVD3wwANKTU0N6r4AAAAAAAAAkBUweCVtEiX553ic4p/rRQAAAAByjh07dlhPQslqg1eqVKlizSQkJDhoAgDu2O7mVrFiRRUuXNhRm/SpWLGiKlSoYMwsWbLEURucy4cffqhPP/3UmqtQoYJGjBhx1oXj+fLlC+ik2n79+ikxMTHdPQEAMPn999+1adMmY+aKK65w1ObvChQooMsuu8yYYfAKAABIi6lTp8r3zacH3Xnnned8/uKLL1azZs2Mr925c6fmzp2b7n4AAADI/nzfV48ePXT48GFr9rnnnlNqaqr27dsX0HDkpUuXasyYMcGoCQAAAAAAAABZCoNX0mbXaR97fz5OZ769LAAAAIBsb9u2bdZMpUqVHDQJnkKFCqlYsWLGDINXAGQ3y5cvN67XrFnTUZOMufbaa43r3377raMmONP27dv1yCOPWHORkZGaMmXKeT8X9+zZU8WLFzfusW3bNo0YMSJdPQEAsFm6dKk1849//MNBk3OrVauWcd02cA8AAOB0kydPNq5HRUWpffv2511/6KGHrMcYP358mnsBAAAg51i4cKHmzJljzXXu3FkvvviiPM9T0aJFNXv2bJUuXdr6umeeeUa//vprMKoCAAAAAAAAQJbB4JW02aizh62czv5uNAAAAIBsLZDBK+XLl3fQJLguvPBC4/qWLVscNQGA0EtMTNTatWuNmauvvtpRm4yJiYkxrm/dulW7du0yZhB8vu/r3nvv1R9//GHNDh061DhAp0CBAnr88cet+wwaNEgHDx5MU08AAAKxZMkS43quXLlUt25dR23OVrt2beP6xo0bA7o7MAAAQEJCgnWI7c0332wcZH7LLbdY32//+OOPdejQoXR1BAAAQPbm+7769+9vzZUrV07Dhw//23MVK1bUxx9/rMjISONr9+/frz59+mSkJgAAAAAAAABkOQxeSZtPLOv1nLQAAAAAkGlt3brVuF6qVCnlzZvXUZvgqVKlinE9ISHBURMACL3Vq1frxIkTxkw4Lx5OC9PAjlNsFwwh+N599119+eWX1lzLli0DGqrSq1cv6x0Kf//9dw0bNizgjgAABMr2tUTNmjWVP39+R23OZhu84vu+Vq9e7agNAADIyj766CNrpmPHjsb1iIgIdenSxZg5duxYQMcCAABAzrNw4ULFxcVZc2PGjFGRIkXOej4mJka9e/e2vv7DDz/U999/n66OAAAAAAAAAJAVMXglbaZLOnXLO/8c67c67AIAAAAgE9q2bZtxvWLFio6aBBeDVwDkJMuWLbNm6tSp46BJxtWqVUu5c+c2Zhi84tZvv/0W0F0CS5curffff1+e51mzBQoU0AsvvGDNvfHGGzpw4EBAPQEACERKSoqWLl1qzMTExDhqc261atWyZriIBAAABGLWrFnG9bx586pVq1bWfe666y5rZvz48QH3AgAAQM7g+7769+9vzd1zzz1q1qzZedefe+65gM5d6devX1rqAQAAAAAAAECWxuCVNPB9/zdJwySdebWD/+dzjT3Pu8R5MQAAAACZRk4dvLJt2zYlJyc7agMAobV8+XLjeoUKFVS6dGlHbTImT548ql27tjGzZMkSR20gnTyZNZDhJ6NGjVLx4sUD3ve+++7TxRdfbMwcPXpUM2fODHhPAABsNmzYoEOHDhkz1157raM251a0aFFVrlzZmGHwCgAAsPn999+1ePFiY6ZFixYqUKCAda8LL7xQ1113nTEzf/587dy5M00dAQAAkL0tXLhQcXFxxkx0dLQGDRpkzOTPn19vvvmm9XizZ89WfHx8mjoCAAAAAAAAQFbF4JW0e0XSij8/PjVw5ZRISW84bwQAAAAg07ANXqlUqZKjJsF14YUXGtdTU1P1yy+/OGoDAKFlG7xSp04dR02CIyYmxri+fPlyhmc5snr1ao0ePdqa69Spk1q3bp2mvaOioqwn0krS9OnT07QvAAAmgQxws30t4oJtEN3KlSsdNQEAAFnV7NmzlZKSYsy0adMm4P1iY2ON66mpqZo8eXLA+wEAACD769+/vzXTvXt3lS1b1ppr1aqVWrRoYc317dtXvu8HUg8AAAAAAAAAsjQGr6SR7/tJktpI2n3qKZ0cvnLqn808z+sdpnoAAAAAwsj3fevglYoVKzpqE1xVqlSxZhISEhw0AYDQOnz4sDZs2GDM1K1b11Gb4Lj22muN68eOHdOaNWsctcm5fN9Xr169lJqaasyVLVtW//rXv9J1jNtuu01XX321MTNv3jzt378/XfsDAHAm2+CV4sWL6+KLL3bU5vxsg1d++OEHJSYmOmoDAACyok8++cS4nitXLjVr1izg/Tp06KDIyEhjZvz48QHvBwAAgOxt2bJliouLM2aio6P11FNPBbSf53l6/fXXlStXLmNu8eLFmj17dsA9AQAAAAAAACCrYvBKOvi+v0NSI0k7Tj2lvw9fecXzvIfD0w4AAABAuPz22286fPiwMZNVB69UrFhRnucZM1u2bHHUBgBCZ+XKldbBGHXq1HHUJjhsg1ck6dtvv3XQJGebNm2a9YRYSXr77bdVtGjRdB0jIiJC9913nzGTnJysWbNmpWt/AADOZPsaIiYmxvq9pAu2wSsnTpzQ6tWrHbUBAABZzfHjx60Xm15//fVp+n6+ePHiat68uTGzcuVK/fDDDwHvCQAAgOwrkKH93bt3V9myZQPe85JLLlHXrl2tuWeffdb681MAAAAAAAAAyOoYvJJOvu//KOl6SRv019AV6a/hK8M9z5vueV7xMFUEAAAA4FggJ0BXqlTJQZPgy5Mnj8qXL2/MbNq0yVEbAAid5cuXWzNZbfBK+fLldcEFFxgzS5YscdQmZ9q3b58eeeQRa65JkyZq06ZNho7Vtm1bRUSY3/adNm1aho4BAIAk7d+/Xxs2bDBmAhkA50KtWrWsmfj4eAdNAABAVrRo0SIdOnTImGnVqlWa9+3UqZM1M378+DTvCwAAgOxl165dmjp1qjETHR2tp556Ks17P//888qTJ48xs2rVKn3yySdp3hsAAAAAAAAAshIGr2SA7/tbJcVImqmTw1ZOPU4NX2krabPneUM8zysXtqIAAAAAnFi3bp1x3fM8Va1a1VGb4LvooouM69wdHEB2sGzZMuP6RRddlKa7F2cGnudZL3r+9ttvHbXJmR599FHt3r3bmMmVK5f+9a9/yfO8DB2rdOnSatCggTHz5Zdf6uDBgxk6DgAAS5cutWZiYmIcNLErU6aMKlSoYMwsWrTIURsAAJDVzJo1y5pJz+CVFi1aqFChQsbMhAkTlJqamua9AQAAkH2MGDFCycnJxkzXrl1VtmzZNO9dvnx5Pfjgg9bcwIED5fu+NQcAAAAAAAAAWVVkuAtkNZ7nnTms5qikDn8+Bki65M/nTw1fKSypj6Q+nuf9IClO0nZJv0k6Huq+vu+PC/UxAAAAAJy0du1a4/qFF16o/PnzO2oTfDVr1tTChQvPu75q1Sr5vp/hC8YBIJyWL19uXK9bt66jJsEVExOjGTNmnHf9p59+0p49e1S6dGmHrXKGTz/9VP/3f/9nzT344IOqVq1aUI552223GT9nJycn65NPPlFsbGxQjgcAyJlsg9siIiJ0zTXXOGpj16BBA02YMOG86/Hx8UpJSVGuXLkctgIAAJmd7/vWwSvVqlWzDi4/l+joaN1+++167733zpv55ZdfFB8fr4YNG6Z5fwAAAGR9iYmJGjlypDXXq1evdB/j6aef1ujRo3X48OHzZlasWKHZs2erefPm6T4OAAAAAAAAAGRmDF5JO/PI8JNOXWXon/Hr6pKuCHojMwavAAAAAI6sW7fOuF69enVHTULjqquuMq7v3btXO3fuVLly5Rw1AoDgOnDggH788Udjpk6dOo7aBNe1115rzSxevFjt27d30Cbn2L9/v7p3727NlShRQv379w/acdu1a6eHH37YeOfBadOmMXgFAJAhpiFf0snvgQsWLOimTAAaNmxoHLxy8OBBrVmzRrVq1XLYCgAAZHZr1qzRtm3bjJlWrVqle//Y2Fjj4BVJGj9+PINXAAAAcqhJkyZp7969xkyzZs102WWXpfsYJUuW1GOPPaaBAwcacy+++KKaNWvGzXgAAAAAAAAAZEsR4S6QBXmWx5lZ6eQAFj/A1wfzAQAAAMAR3/etg1dq1KjhqE1oBHLx2apVqxw0AYDQWLFihTVTt25dB02C7+qrr1bu3LmNmfj4eEdtco7nn39eO3futOZeeeUVFS1aNGjHLVu2rOrXr2/MzJkzRwcPHgzaMQEAOcuRI0f0zTffGDMxMTGO2gQmkIuVFy1a5KAJAADISj755BNrpmXLlunev0GDBipfvrwxM23aNCUmJqb7GAAAAMiafN/Xm2++ac098sgjGT7Wo48+qgIFChgzS5cu1bx58zJ8LAAAAAAAAADIjBi8kj6+4XGm0wehmF4X7AcAAAAAh3755Rf98ccfxkz16tUdtQmNatWqKSoqyphh8AqArGzp0qXGdc/zAhpClRlFR0erTp06xszixYsdtckZ9u7dqzFjxlhzt9xyi7p06RL0499+++3G9aSkJE2bNi3oxwUA5Azx8fFKTk42Zho1auSmTIAuueQSlSlTxphh8AoAADjTrFmzjOslS5bUP/7xj3TvHxERobvuusuYOXjwoD777LN0HwMAAABZ07Jly6znYFStWlU33XRTho9VrFgxPfzww9bcwIEDM3wsAAAAAAAAAMiMGLySft55Hul5TbAfAAAAABxbt26dNVOjRg0HTUInd+7cqlatmjHD4BUAWdnXX39tXK9ataoKFizoqE3wXX/99cb1lStX6tChQ47aZH8jR45UUlKSMVOoUCGNHj1anhf8t/TatWtnzYwbNy7oxwUA5AyB3Nn2xhtvdNAkcJ7nqWHDhsZMXFycUlNTHTUCAACZ3c6dO7Vs2TJjpkWLFsqVK1eGjhMbG2vNjB8/PkPHAAAAQNYTyID/Xr16Be3nTI899pjy5ctnzMTHxzO8GAAAAAAAAEC2xOAVAAAAAAgC2+CVqKgoXXLJJY7ahM5VV11lXGfwCoCsKjU1Vd98840xc+211zpqExq2wSupqalasmSJozbZW1JSkt5++21r7vXXX1eFChVC0qFcuXLW/+bx8fHasmVLSI4PAMjebINXrrzySpUqVcpRm8DZBq/s27cvoMGqAAAgZ/j000+tmVatWmX4ONWrV9eVV15pzHz22Wfat29fho8FAACArOHQoUOaNGmSMVO4cGHdfffdQTtmyZIl9cADD1hzL774YtCOCQAAAAAAAACZBYNX0s/PxA8AAAAAjq1du9a4XrVqVUVFRTlqEzq2wSubN2/WoUOHHLUBgODZsGGDDhw4YMzUq1fPUZvQqFevnvWOd/Hx8Y7aZG+TJ0/Wnj17jJn69eura9euIe0RyMm248aNC2kHAED2s2fPHq1evdqYadKkiaM2aWMbvCKJO/YCAID/mTVrlnE9T548atq0aVCOFRsba1xPTk7WtGnTgnIsAAAAZH6TJ0/WkSNHjJm7775b+fPnD+pxn3jiCUVHRxszX331lfWGFgAAAAAAAACQ1TB4JX28LPAAAAAA4JDtjtg1atRw1CS0bINXJGnNmjUOmgBAcH399dfWTFYfvFKkSBHr5yMGr2Sc7/t64403rLk+ffpYB+Fk1O233249OXbcuHFKTU0NaQ8AQPby1VdfWTOZdfDK5ZdfrpIlSxozDF4BAACSdOTIEc2bN8+YufHGG4N2oWvHjh2t7xOMHz8+KMcCAABA5jdmzBhr5v777w/6ccuUKaNu3bpZcwMHDgz6sQEAAAAAAAAgnBi8kka+70dkoUeucP/7AgAAAHKCEydOaMOGDcZM9erVHbUJrSuvvNKaWbVqlYMmABBctsErJUqU0KWXXuqoTejUr1/fuL506VIdP37cUZvsaeHChVq9erUxc8kll+jWW28NeZfChQurbdu2xkxCQoIWL14c8i4AgOzDdgFy7ty5df311ztqkzae56lBgwbGTFxcnHzfd9QIAABkVvPmzVNSUpIx06pVq6Adr1y5crrhhhuMmcWLFyshISFoxwQAAEDmtHr1ai1btsyY+cc//hGyGwD16dNHuXPnNma++OILfffddyE5PgAAAAAAAACEA4NXAAAAACCDNm/ebD0BO7sMXilatKgqVapkzDB4BUBWZBu8ct1111nvOpwV2C6CTkxM1IoVKxy1yZ7efvtta+aRRx5RRISbt2Y7d+5szXzwwQehLwIAyBZ839fcuXONmeuuu0758+d31CjtGjZsaFzfu3evdYgaAADI/mbNmmXNtGjRIqjHjI2NtWYmTJgQ1GMCAAAg8xkzZow1c//994fs+OXKldO9995rzQ0cODBkHQAAAAAAAADANQavAAAAAEAGrVu3zpoJ1Z2GwqFWrVrG9ZUrVzpqAgDBsXv3bv3000/GTL169Ry1CS3b4BVJio+Pd9Ake0pKStLnn39uzBQpUiSgYSjB0qRJE11wwQXGzIcffmgdPgQAgHRy8Ogvv/xizDRp0sRRm/SxDV6RpE8++cRBEwAAkFmlpKRYvx6oU6eOypUrF9TjtmvXTtHR0cbM+PHj5ft+UI8LAACAzOPIkSMaP368MVOgQAHdcccdIe3x1FNPKTIy0pj59NNPOT8EAAAAAAAAQLbB4BUAAAAAyKC1a9ca1wsUKKCKFSs6ahN6V111lXF93bp1Sk5OdtQGADIukIET2WXwSrly5VSlShVjhsEr6ffNN9/o2LFjxkz37t1VoEABR42kXLlyWe+YnZqaqrvuuksHDx501AoAkFV98cUX1kxmH7xSvXp1lSpVyphh8AoAADnbkiVLtHfvXmOmVatWQT9uoUKF1Lp1a2Nm48aNWrFiRdCPDQAAgMxh0qRJ1p/X/POf/wz5z5oqVaoU0I0EXnzxxZD2AAAAAAAAAABXGLwCAAAAABm0bt064/oVV1yhiIjs8+2XbfBKUlKSNm7c6KgNAGScbfBK7ty5dfXVVztqE3r169c3ri9evFgpKSmO2mQvX375pTXTo0cPB03+LpATY7du3aoePXpw12wAgNEHH3xgXC9cuHCm/7opIiJCt956qzGzbNky7dy501EjAACQ2cyYMcOaadmyZUiO3alTJ2tm/PjxITk2AAAAwsv3fb399tvWXLdu3Ry0kZ555hnlypXLmPn444+1evVqJ30AV5KSkjRv3jwNGTJEffv21fTp03XkyJFw1wIAAAAAAECIZZ8r/wAAAAAgTGyDV2rUqOGoiRu2wSuStHz5cgdNACA4bINX6tSpo+joaEdtQu/66683rh84cECrVq1y1CZ7mTt3rnG9atWqqly5spsyp6lWrZoaNmxozU2ePFnTpk1z0AgAkBWtWrVK33//vTHTuHFjRUZGOmqUfoFcKP3ZZ585aAIAADIb3/c1c+ZMY6ZChQq68sorQ3L8m266SSVKlDBmJk6cqOPHj4fk+AAAAAifpUuXWn9GV7t2bWeDjy+66CLFxsZacy+99JKDNkBonfpesGXLlipWrJiaNm2qvn37asiQIbr99ttVpkwZde7cWd988024qwIAAAAAACBEGLwCAAAAABmwb98+bdq0yZipXr26ozZuVKxYUUWKFDFmvvrqK0dtACBjjh49ar2AuF69eo7auNGgQQNrZt68eQ6aZC+///679f+lpk2bOmpztjfeeENRUVHW3PPPPy/f9x00AgBkNe+99541065dOwdNMq5p06bKnTu3MfPJJ5+LpdNmAAAgAElEQVQ4agMAADKT5cuXa9u2bcZM+/bt5XleSI4fFRWlO++805jZu3ev/vOf/4Tk+AAAAAifd955x5p58MEHHTT5S9++fRURYb7cYPr06dYbFgGZWXJysjp27Kj27dvr008/1dGjR8/KHD58WOPGjVO9evXUo0cPHTlyJAxNAQAAAAAAEEoMXskmPM+7zvO8sed41Ap3NwAAACA7W7x4sTVTo0YNB03c8TxPdevWNWbmzZvHRdsAsoTvvvtOJ06cMGauu+46R23cuPTSS1WuXDljJpyDV+Lj49W1a1ddeeWVaty4scaMGZMl7uI8f/586+e+m266yVGbs9WqVUuDBg2y5jZu3GgdIAMAyHkSExM1YcIEY6ZQoUJq3769o0YZU6BAAd14443GzLx583Ts2DFHjQAAQGYxc+ZMaybUX/PExsZaM2PGjAlpBwAAALj122+/acqUKcZMkSJFrEP6gu3SSy9Vx44drbkXX3zRQRsg+FJSUtSpUyfrn7/TjRo1Sm3atFFSUlIImwEAAAAAAMA1Bq9kH/sldZHU+YzHHWHsBAAAAGR7ixYtMq5HRkbqH//4h6M27jRp0sS4vmvXLq1fv95RGwBIvzlz5lgz2W3wiud51r/H4+PjnV9ovHr1ajVv3lwNGjTQ+++/rzVr1mjhwoXq1q2bYmJi9OOPPzrtk1Zz5841rkdGRqphw4aO2pxb7969rReZS9KMGTMctAEAZCUff/yx9u/fb8x07NhR+fLlc9Qo41q2bGlcP3bsmObPn++oDQAAyAx837d+T1ymTJmQv1d0zTXXqGrVqsbM3LlzlZCQENIeAAAAcGfs2LHWGxHcc889YXn/rV+/fvI8z5iZNm0ag/2R5fi+r549e6Zp6Mop8+bNU+fOnZWamhqCZgAAAAAAAAgHBq9kH1tO+9g77VEvPHUAAACAnCEuLs64fvXVVyt//vyO2rhju2BfOnmSAQBkdp9//rlx/dJLL1WpUqUctXHH9vd4UlKSvvnmGyddjh8/rl69eqlWrVqaPXv2OTMrV65U7dq1NXHiRCed0sr3fevglWuvvVYFCxZ01OjcIiIiNG7cOBUtWtSYmzFjhnzfd9QKAJAVvPfee9bMvffe66BJ8LRo0cKamTVrloMmAAAgs1i3bp118Gvbtm0VERHa0608z9P9999vzb377rsh7QEAAAA3UlJSNHLkSGuuR48eDtqcrWrVqrrjDvt9QPv27eugDRA8ffv21ejRo9P9+ilTpuiRRx7h56oAAAAAAADZBINXso/o0z72/3xI0mVh6AIAAADkCIcOHbLesadBgwaO2rh11VVXqXjx4sYMg1cAZHbbt2/XmjVrjJmbb77ZURu3brzxRmvG1d/jvXr10ltvvWU9Ie3w4cO66667NGzYMCe90mLz5s3aunWrMdO0aVNHbcwuuOAC68mxmzZt0vr16x01AgBkdj///LP164IaNWqoTp06jhoFR4UKFXTVVVcZM5988olSUlIcNQIAAOE2Y8YMa6Z9+/YOmkh33323cufObcy8//77Sk5OdtIHAAAAoTNnzhwlJCQYM02bNtWll17qqNHZ+vXrJ8/zjJk5c+Zo0aJFjhoBGfPRRx9p6NChGd7n3//+t0aMGBGERgAAAAAAAAg3Bq9kH73O83whpy0AAACAHOSbb75RamqqMZNdB69ERERYL9pfuHAhJ30DyNS++OILa6Z58+YOmrhXtmxZXXHFFcaMi8Er8+fP16hRo9L0mj59+mj27NkhapQ+c+fOtWYyy+AVSWrXrp01E8jFZgCAnCGQz9X33nuv9cKLzKhly5bG9d27d+vLL7901AYAAISb7Xvh4sWLq2HDhk66lChRQm3btjVmdu3apc8++8xJHwAAAITOO++8Y8307NnTQZPzu+KKK9ShQwdr7plnnrHebAEIt71796p79+5B2+/JJ5+0Dk8CAAAAAABA5sfglSDxPC+/53mtPc8b7HneFM/zvvA87ysHjzjP83ZI6i/Jl3TmWa1Z7yxXAAAAIIuIi4szrnuep3r16jlq416TJk2M64cPH9bSpUsdtQGAtPv888+N63nz5nV2MU042P4eX7Fihfbt2xey4ycmJqpHjx7peu1jjz2WaYZ7paSk6L333jNmChcurDp16jhqZNeoUSMVLVrUmGHwCgBAOvn5esyYMcZM7ty5FRsb66hRcLVq1cqaGTt2rIMmAAAg3NasWaN169YZM61bt1ZkZKSjRlK3bt2smZEjRzpoAgAAgFBJSEiw/syyfPnyatGihaNG5zdw4EDlypXLmFmyZIlmzZrlqBGQPg899JD27t0btP2OHj2qbt26MXQIAAAAAAAgi2PwSgZ5nlfY87w3JO2UNFPSU5Juk9RUUkMHj3qSyurkgJVzDVkJ3ruCAAAAAP5m0aJFxvWaNWtaL2rOypo2bWrNzJs3z0ETAEi748ePa+7cucZM48aNlTdvXkeN3LMNXvF9XwsWLAjZ8QcPHqzNmzen67UbN260DjtxZcSIEfr++++NmRtuuMHphVk2UVFRat26tTGzZs2adP/3AQBkH1OnTtXvv/9uzLRp00bFixd31Ci4ateurSpVqhgz//nPf/Tbb785agQAAMLlgw8+sGbat28f+iKnadSokS666CJjZs6cOdaBMQAAAMi8Ro0aZR3W0L1790zxc6ZLLrlE9957rzX35JNPKikpyUEjIO2mTZumqVOnBpT96KOP9Pnnnwf052/evHl6//33M1oPAAAAAAAAYcTglQzwPC9G0npJvSQV1F/DT1w//D8ff6v353Nrg/37BgAAACAdO3ZM3333nTHTsGFDR23Co3LlytaTvhm8AiCzWrx4sQ4fPmzMNG/e3FGb8GjYsKH1rnSh+nt8w4YNGjp0aIb2eOGFF3To0KEgNUqf3bt369lnn7XmAhlW5logF4vNmDHDQRMAQGb29ttvWzM9evRw0CQ0IiIi1KVLF2MmOTlZEyZMcFMIAACERXJyssaPH2/MFC5cWDfeeKOjRidFRETo/vvvt+Zef/11B20AAAAQbImJidYbDURGRuq+++5z1Mju+eefV3R0tDHz448/avjw4Y4aAYHbu3evevbsac1FR0dr0aJFatOmjZo1a6Zvv/1WBQoUsL7u8ccf186dO4NRFQAAAAAAAGHA4JV08jzvOknzJJXV34efhOOhPzucC2eCAgAAACGwdOlSJScnGzMNGjRw1CZ8mjRpYlz/9ttv9ccffzhqAwCB+/zzz62ZZs2aOWgSPgULFlRMTIwx8/nnn1vvspceDz/8sPXzqM2vv/6qV199NUiN0qd3797Wz3PR0dG6/fbbHTUKXNOmTVWwYEFjZty4cUpNTXXUCACQ2Sxbtsw6cLRatWpq1KiRm0Ih0rlzZ3ne+X7MdtLYsWND8jURAADIHGbPnq29e/caM3fccYfy5MnjqNFfunTpoqioKGNm/Pjx2rVrl6NGAAAACJbp06frt99+M2bat2+vMmXKOGpkV65cOT388MPW3MCBA7Vjxw4HjYDA9e7d2/pnTpJGjRr1t3O+rr76ak2dOtX6uoMHD6p3794Z6ggAAAAAAIDwYfBKOnieV1LSDEn5dPbwk3A9dEYXSYrzfd98Sx4AAAAA6RIXF2fNXH/99Q6ahFfTpk2N6ykpKZo9e7ajNgAQONvglapVq+rCCy901CZ8bAO0tm3bpiVLlgT1mPHx8Zo/f35Q9nr11VfDdmFRXFycJk6caM317t1bJUqUcNAobfLkyaMWLVoYM+vXr9eMGTMcNQIAZDZvv/22NfPggw9ah5ZkdpUqVbJ+TbRmzRqtXLnSUSMAAODaBx98YM106dIl5D3OpXTp0vrnP/9pzCQnJ+utt95y1AgAAADBkJqaqpdfftma69mzp4M2afPUU0+pUKFCxsyRI0f01FNPOWoE2M2fP1//93//Z821atVKnTp1Ouv5Zs2a6d5777W+fvLkyVq+fHm6OgIAAAAAACC8GLySPoMlldbZA1dO8c/zOJ/z5QN9vXR2lzmS2gb0uwEAAACQZgsWLDCuV61aVaVKlXLUJnwaN25svchu0qRJjtoAQGC2bNmiDRs2GDPNmzd31Ca8bAO0pJMnhwXT4MGDrZmrrrpKhw8fVqVKlYy5o0ePhu3Coueff96aqVKlip599lkHbdKnXbt21syAAQOUmprqoA0AIDPZs2eP9WuAggULnvME9Kyoa9eu1sy7777roAkAAHBt7969+uSTT4yZyy67TDExMY4anS2QO6aPHDlShw8fdtAGAAAAwTBjxgytW7fOmLniiisy5Q1/ihcvrhdeeMGamzBhghYvXuygEWB27Ngx9ejRw5orVqyYRo0add7zoF599VVdcMEF1n369Okj37dd+gEAAAAAAIDMhsEraeR5XhVJnfX3QSen+Dp7AMrpj/MNUDlX9szHmfufeUxP0lFJn0m6zff9Zr7vH0jXbxIAAACA0d69exUXF2fMNGjQwFGb8CpWrJiuueYaY2b27Nk6cIBvTwBkHtOmTbNmcsrglZiYGOvJYVOnTlVKSkpQjrdixQp98cUXxozneRo9erTy58+vQYMGWfccO3askpOTg9IvUHFxcVq0aJE199Zbbylv3rwOGqVP8+bNVbRoUWPmhx9+0PTp0x01AgBkFoMHD1ZSUpIxc/fdd6tgwYKOGoVWmzZtVKRIEWPmgw8+0O7dux01AgAArkyaNEknTpwwZrp06WIdQB5KNWrU0M0332zM7N+/X2PHjnXUCAAAABmRkpKi/v37W3M9e/YM69ehJg8//LAuv/zygHLB+jkjkF6DBw/W5s2brbl///vfKlOmzHnXixQpohEjRlj3WbBggfVn4gAAAAAAAMh8GLySdn0lRf758ZlDV049t13SKEnPSXpC0suSlpwn70taLenDczzGS5olaZWkZJ09wMU/bc/ekor4vt/S9/2ZQfh9AgAAADiPGTNmKDU11ZjJKYNXJKlDhw7G9ePHj2vmTL5NAZB5TJkyxbieP39+1a9f31Gb8MqVK5f17/E9e/Zo4cKFQTne4MGDrZnu3burbt26kqSOHTuqdu3axvyePXs0a9asoPQL1MCBA62Ztm3b6tZbb3XQJv3y5cunxx57zJobMGCA9WsfAED2sW3bNo0cOdKa69mzp4M2bkRHR+uf//ynMXPs2DG98sorjhoBAAAXfN/Xu+++a8xERESoU6dOjhqdX+/eva2ZYcOGWYfnAQAAIPymTZum9evXGzNFihRRbGyso0ZpFxUVpTfffNOaW7VqlUaPHu2gEXBuS5cu1csvv2zNtWzZUnfeeac116pVK912223WXJ8+fRg6BAAAAAAAkMUweCUNPM+LknSb/hqaIv19AMofku72fb+S7/sP+L4/yPf9133ff8b3/XqSWkk6rr8PXfEk5ZN0r+/795zxuNv3/Ta+79eWVERSB0mLdfYAF0/SUEltQvV7BwAAAPCXqVOnGtdz5cqlW265xVGb8Lvjjjusd1maNGmSozYAYLZp0yatXLnSmLn11luVJ08eR43Cr2PHjtbM5MmTM3yc9evXWwdxRUVFqW/fvv/7dUREhIYMGWLde9SoURnuF4gjR47otdde07x584y5PHnyaPjw4U46ZVSvXr1UtGhRY2b9+vWaPn26o0YAgHAbOHCgjh8/bszccMMNqlatmqNGbnTt2tWaGTFihHbt2uWgDQAAcGHu3Llau3atMdO0aVOVK1fOUaPza9KkiWrWrGnMbN++Xe+//76jRgAAAEiPlJQUDRgwwJp7/PHHVahQIQeN0q9JkyZq166dNdevXz/9/vvvDhoBf7dv3z516NBBycnJxlz+/Pn173//23ru0ylDhw5VVFSUMbNu3TqNGzcu4K4AAAAAAAAIPwavpM0Nkgr/+bGnvwaoeJISJTXzfX/8+V7s+/6nkgbr74NTJOliSS1NB/Z9P9H3/em+7zeQ9E+dHPLyv2VJUZLGe553XYC/FwAAAADpsHv3bi1atMiYadKkiYoXL+6oUfiVK1dODRo0MGa++uor7d6921EjADi/KVOmWDN33HGHgyaZR926dVWlShVjZsaMGdYLsG2GDh1qzdx9992qUKHC355r2rSpLr30UuPr5s6dqy1btmSon8mxY8f04IMPqlSpUnriiSes+W7duqlixYoh6xNMhQsX1uOPP27NjRgxwkEbAEC4/fjjjwFdrPvUU085aONW7dq1Va9ePWMmMTExoLujAgCArGHYsGHWTJcuXUJfJACe56l3797W3JAhQzL8Hg4AAABCZ+LEifrvf/9rzBQtWlSPPPKIo0YZ89prryk6OtqY2bdvn5577jlHjYCTUlNT1blzZ23bts2aHThwYJp+tnvRRRepR48e1tyzzz6rQ4cOBbwvAAAAAAAAwovBK2nT6hzPnRrAMtT3/W8D2GPseZ6331r4T77vT5bUUNLp4799SXkkTfM8r1igewEAAABIm+nTpys1NdWYyWkX7EtSx47mb2lSU1M1ffp0R20A4Pxsg1cKFCigZs2aOWqTOXiepzvvvNOY2b9/v7788st0H2PLli2aOHGiMRMREXHOi7g9z1O3bt2sxxgzZky6+5n4vq82bdronXfe0dGjR6353Llzq0+fPiHpEiq9evVS0aJFjZn4+Hj98ccfxgwAIOt74YUXlJKSYsw0aNBATZs2ddTIHc/z1L9/f2tu5MiR2rlzZ+gLAQCAkPr+++81b948Y6ZIkSJq3bq1o0Z2d955p/ViwG3btunDDz901AgAAABpceTIET3zzDPWXO/evVWoUCEHjTKucuXKevrpp625UaNG6fvvv3fQCFndwYMHFR8fr3feeUePPfaYHnvsMb322muKi4vT4cOHA9rD933169dPn376qTVbu3ZtPfzww2nu+dxzz6lgwYLGzK5duzRkyJA07w0AAAAAAEIjNTVVa9as0YgRI/Tkk0/q5Zdf1tKlS63XiCHnYPBK2tQ+7WP/tI+PSHojkA18398h6dcz9vEk3eJ5nhdoEd/310hqI+nMs1/LSHon0H0AAAAApM3UqVON61FRUWrTpo2jNpnHbbfdpsjISGNm0qRJjtoAwLn98MMP+uGHH4yZ1q1bK2/evI4aZR62AVqS9N5776V7/2HDhlkv4u7QoYMuueSSc6517txZuXPnNr5+7NixIbmj80cffZSmoTNdu3ZV+fLlg94jlAoVKmS9a3ZKSooWLFjgqBEAIBwWLFgQ0PdtgwYNUhp+pJWl3HjjjapXr54xk5SUpEGDBjlqBAAAQmXYsGHWTM+ePTPV+0S5c+cO6ELdwYMHKzk52UEjAAAApMWwYcO0Y8cOY6ZYsWLpGgIRTn369FGlSpWMmdTUVN177718nYpz8n1fs2fPVtOmTVWsWDE1aNBADz74oIYPH67hw4friSeeUMOGDVW4cGFVr15dXbt21YgRI/TTTz+dtVdiYqLuuuuugAaeREREaNSoUdbznc6lZMmS57ypyJlef/11bdmyJc37AwAAAACA4Fm1apViY2NVokQJXXnllerZs6deffVVPf3004qJidEFF1yg+++/33qdAbI/Bq+kTTX9feCK9+evv/R9/1Aa9kn487WnKyjpqrSU8X3/G0lDTtvr1BCX2z3Pa5CWvQAAAADY7dixQ4sXLzZmbrrpJhUtWtRRo8yjePHiuvnmm42Zb775RqtXr3bUCADONmXKFGvmjjvucNAk86levbqqVatmzHz88cdat25dmvfeuXOnxo4da82ZLhwqUaKE2rVrZ3z9r7/+qlmzZqW5n81bb70VcDYyMjKgu/plRj169LBeRJ+WATQAgKwlMTFR3bt3t+aaNWum+vXrO2gUHp7nacCAAdbc6NGjtWnTJgeNAABAKCQkJFiHrOfOnTtTXvB6zz33WAe+/vzzz/rwww8dNQIAAEAgfvnlF73yyivW3BNPPKFChQo5aBQ8efPm1euvv27NrVq1Sq+99pqDRshKPv74Y9WqVUvNmzfXvHnzjHeYTk1N1Q8//KD3339fPXv21MUXX6xrrrlGAwYM0HvvvafHH39cFSpUCPjGUAMGDFCdOnXS3f2xxx7TBRdcYMwkJSXpySefTPcxAAAAAABAxnz00UeKiYnRhAkTtH///nNm9uzZo3fffVc1atTQv//9b8cNkZkweCVAnudV0MnhKNLZQ1PSesXBz+d5vm4a95GkoZJ2nfGcJ+nVdOwFAAAAwGDatGnyfd+Y6dChg6M2mU/Hjh2tmUDuKAMAoeD7viZPnmzMFC5cWDfddJOjRpmL53m68847rblBgwalee/XX39dx48fN2ZatmypmjVrGjOBXAweyICXtNi4caMWLlwYcL5z587WO/plVsWLF1fduua3Jxm8AgDZ16BBg/Tjjz9acy+99JKDNuF1ww036PrrrzdmTpw4YRwaBwCuJCUlaf/+/caLkgCc7eWXX7b+uencubPKlCnjqFHg8uTJE9DQ1/79++vo0aMOGgEAACAQTz/9tI4dO2bMlCpVSg899JCjRsHVtm1bNWnSxJrr378/A40hSUpOTtY999yjtm3bZugmTsuWLVP//v1133336Y033tBvv/0W0Otuvvlm9e3bN93HlaR8+fIFdB7UzJkztWDBggwdCwAAAAAApF18fLzuvPNOJSUlBZT3fV+9evXS/PnzQ9wMmRWDVwJX1rC2IY17/Xye5823FT4H3/ePSXpLfw2DOXUV6NWe5zVK634AMq99+/YpLi5O8+bN09atW8NdBwCAHCc1NVWjRo0yZnLnzq3WrVs7apT5tG7dWnnz5jVmpk6dykk0AMLis88+s15M3K5dO+XJk8dRo8wnNjZWERHmtwunTJmijRs3Brzn77//rpEjR1pzgZzU1rBhQ1166aXGzJw5c7Rjx46A+9mMHj064GyxYsX03HPPBe3Y4WAbPLR582Zt2bLFURsAgCvr1q3T0KFDrbn27durdu3aDhqFl+d5GjBggDU3c+ZMffPNNw4aAcBJJ06c0KeffqpOnTrp8ssvV5EiRRQdHa1ixYopOjpa9evX13PPPadFixYxiAUwWLVqlcaMGWPMeJ6n3r17O2qUdvfee6/KljWdxiTt2LFDb731lqNGAAAAMImLi9PEiROtucGDB6tgwYLWXGbkeZ7efPNNRUZGGnNJSUm6//77+b41h0tKSlKHDh30wQcfhOX45cqV0/jx460/Gw9EbGysrrnmGmvuySef5P97AAAAAAAc2rhxo1q3bm29eeiZfN/XAw88oMTExBA1Q2bG4JXAmd7J/imNeyWc5/nL0rjPKaMlJZ/j+aw59hzA/8TFxSk2NlaVK1dW8eLF1bBhQzVt2lRVqlRRhw4duEMVAAAOzZkzR//973+NmVtuuUWFCxd21CjzKVCggO68805jxvd9vfLKK44aAcBJvu9r8ODB1twdd9zhoE3mVaVKFeu/g0D/XZ4yfPhwHTlyxJi54YYbFBMTY93L8zzdf//9xkxqaqrGjRsXcD+TxMTEgE/2i46O1vTp01WpUqWgHDtcbINXJGnu3LkOmgAAXDl69Kg6deqkEydOGHP58uXTsGHDHLUKv0aNGunGG2+05p544gn5vm/NAUBGHDlyRAMGDFDlypXVsmVLjR8/Xv/973918ODB/2WSk5P19ddf66WXXlKjRo1Uo0YNrVmzJoytgczJ93099NBD1ovdWrdurcsuS+8pPKEXHR2tp556ypobMmSI9u3b56ARAAAAzufo0aPq2rWrNXfVVVepS5cuoS8UQpdffnlAX6fGxcXptddec9AImdHRo0fVpk0bffzxx2E5fmRkpKZMmaISJUoEZb+IiAj961//suZWrFih6dOnB+WYAAAAAADA7Ndff1WzZs20f//+dL3+xx9/zFHnyuEvDF4JnGnwyqE07vXzGb/2JXmSqqRxn5Mv9v19khb+ucfp+93qeV6+9OwJIPwGDx6shg0basKECdq6devf1nzf17Rp09SyZUulpKSEqSEAADnLG2+8Yc3k9Av2JalPnz7yPM+YGTdunH755RdHjQDg5Ml7S5YsMWZKlCihG264wVGjzKtv377WzIQJE7Rx40ZrLiEhQa+++qo19+yzzwbUTZI6depkvVPe2LFjg3IB9IwZMwK6OOnll1/W9u3b1bhx4wwfM9xiYmJUoEABY+bLL7901AYAEGqn7s6xatUqa3bAgAGqUiVdP8bKkjzPC2ho6JIlSzRhwgQHjQDkVCtWrFCNGjXUv39/7dixI+DXrV+/XvXr19fChQtDVw7IgiZMmKCvv/7amuvTp4+DNhnTrVs3lStXzpg5ePCghg4d6qgRAAAAzqVfv3766Sf7/T2HDx+uXLlyOWgUWv369VPVqlWtub59++q7775z0AiZybFjx9SyZUt98cUXYTl+7ty5NXHiRNWrVy+o+8bExCg2Ntaa69u3b5rvsg0AAAAAANKuV69eSkhIyNAegwYNCuh9PWQvDF4JXH7Dmvm2vWf7+TzPV0zjPqebfY7ncktqkoE9AYTJ9OnTA7rw7Kuvvgro5G8AAJAx69at09y5c42ZkiVLqm3bto4aZV5Vq1ZV+/btjZnk5GS+hgHg1ODBg62ZHj16KCoqykGbzK169epq166dMZOSkqK77rpLSUlJ5834vq+HH35YiYmJxr1iYmLSNLCkdOnSatGihTGzefNmLV68OOA9z2fUqFHWzOLFi9WnTx8VL148w8fLDKKioqwDiObPn68TJ044agQACKURI0Zo3Lhx1txVV12lRx991EGjzKV27doBnSz/0EMPadu2bQ4aAchpVqxYoSZNmqT7ZKBDhw7plltu0X/+858gNwOypj/++ENPPvmkNdekSRNde+21DhplTN68eTVgwABr7s0339TPP/8c+kIAAAA4y9dff63hw4dbc+3bt1fDhg0dNAq96Ohovfvuu9Yb9pw4cUIdOxj59XkAACAASURBVHbUH3/84agZwi0xMVFt2rTRV199FZbjlyxZUl999ZVuv/32kOw/dOhQ5ctnvl/uTz/9pDFjxoTk+AAAAAAA4KS1a9dqypQpGd4nKSlJDz30UFBuBoqsg8ErgTtsWDMNZTmXrZLO9Sctj+d5ZdO41ynnux1h/XTuByBM9u3bpwcffDDg/PPPP6+VK1eGsBEAAAjkRJgHHnhAefPmddAm8+vbt681884772jZsmUO2gDI6ZYvX64vv/zSmMmXL58eeeQRR40yv379+lkzK1asMN79edasWfrss8+s+/Tt29d64uWZunbtas2MHTs2TXueacOGDYqPjzdmrrjiCl133XUZOk5mdNNNNxnXDx48yOdwAMgG4uLiAhqmEhERoTFjxigyMtJBq8znpZdeUp48eYyZgwcPqkuXLkpNTXXUCkBO8P3336tp06Y6cOBAhvZJSkpSu3btNHHixCA1A7Km1NRUdenSRbt37zbmIiMj9a9//ctRq4zr3LmzLr/8cmMmKSlJPXv25IRAAAAAx/bu3avOnTtbvw7LkyePhg0b5qiVG/Xq1VPPnj2tuS1btuj+/2fvzuNi2v8/gL8m7XvSJtoTRVJSkltcayQu2a9rJ/sesmVfrl2491ouubIvuShbSbYia7KllERpT8tUc35/3G/9bM2cmWam7f18POZRmvfnfd6i6cw5n8/7M24cXVerB7hcLgYMGCDwvv23tLW1oampWeXj29jYICoqCh06dKhyrsoYGhpi1qxZAuP8/f2Rl5cnsToIIYQQQgghVZOZmYkrV67gyJEjOHfuHKKiopCcnEz3WQipRfbu3Su2XCEhIQLnk5O6hRqvsMdvRpNQW9oyDFMMoLLZHCbC5PrCi0q+biNiPkJINZk1axbS0tJYx5eWlmL48OECdxEnhBBCiGjS09Nx6NAhvjHy8vKsJo3UF23atEHPnj35xvB4PIwZMwZcLldKVRFC6qtVq1YJjJkwYQIaNWokhWpqhzZt2qB3794C47Zt24a///77u69//PgR48ePFzjezs6O1XG+1bNnT+jp6fGNOX78eJUmrO3fv19gzIQJE4RuGlMbCGq8AgChoaFSqIQQQoikPHz4EJ6enigpKREYO336dLRt21YKVdVMxsbGmDZtmsC4sLAwbN68WQoVEULqgydPnqBLly7IysoSS77yhhMRERFiyUdIbbRy5UqcPn1aYNy0adNgbW0thYrEQ1ZWFmvWrBEYd/HiRRw5ckQKFRFCCCGEEADIzc1Fz549ER8fLzB25cqVMDU1lUJV0rVmzRoYGxsLjDt27Bhmz55NC9jqMB6Ph19//ZXVph3lFixYgNTUVHz69AlZWVnIyMhAaGgoVq5ciT59+kBFhd2eudra2li2bBmio6NhYmIi4t+Avblz50Jbm/+ykvT0dFYboRBCCCGEEEKk5969e5g0aRKsra2hra2Nrl27YsiQIejTpw+cnJxgZGQEAwMDTJ06FQ8fPqzucgkhfBQXFwtc/wUA7u7uKC4uhoyM4DYbBw4cEEdppJbg0IVKdjgcji2AhwAYAJxvProxDBMpZL6bANr/bzy+yDWOYRiht+TlcDhKAD5/ka88ZzzDMJbC5qspOBxOLIDvZrVYW1sjNja2GioiRLJCQ0PRo0cPkcbOnDkTmzZtEnNFhBBCCPHx8cHu3bv5xowcOZLVAu36JDIyEh07dhQYt2zZMixdulQKFRFC6qNbt24J3LVKTk4OCQkJMDQ0lFJVtUN0dDTatWvHKtbf3x9+fn5o0KABEhMT0aNHD7x4UVmP4P8XERHB6nfFj8ybN0/g7n8BAQEiNUYrLS1F06ZN+e6CraSkhPfv34tlh7WahmEYmJmZITExsdKYJk2aID4+HvLy8tIrjBBCiFi8evUKrq6urJp/Ozg4IDIyEoqKilKorObKyspCs2bN8OnTJ75x8vLyiI6Ohq2trZQqI4TURSkpKXByckJKSorYczdq1EhqC40IqUnOnj2Lvn37CozT09PDy5cvoa6uLoWqxIdhGLi6uuLWrVt843R0dBAXFydwESAhhBBCCKmaoqIieHh4ICwsTGCsk5MTbt68iQYNGkihMum7desWfvrpJ5SVlQmMXbVqFRYuXCiFqoi0LV++nPW8ID09PVy6dEngNdbPnz/j3LlzOHbsGKKiopCenl6x8ZOmpiacnZ0xatQoeHl5QUFBocp/B2Fs3boVM2bM4BvD4XAQEREBV1dXKVVFCCGEEEII+ZHExET4+vri2LFjQo1zcHDAwoUL0a9fvzq5eR8htdmJEyfg7e3NN6Zz584ICQmBnJwcq7UGJiYmSEhIEGeZrNnY2ODZs2c/euoZwzA20q6nPhDcioeUewWg/Mrvt91q3EXIl1jJ10X9j15ayde1RMxHCJGyz58/Y8KECSKP37p1Kx4/fizGigghhBASGRkpsOkKAIE3zOsjV1dXuLm5CYxbtmwZzp49K4WKCCH1DcMwmDt3rsC43377jZqu/ICjoyN8fHxYxS5duhSysrLQ1taGqakpq6YrI0eOFLnpCgCMGjVKYMyWLVvA4/GEzn3p0iW+TVcAYNCgQXWy6Qrw30S/bt268Y159+4dDh48KKWKCCGEiMvr16/RtWtXVk1XtLW1cfLkyXrfdAUAtLS0WF0b4HK5GD58OIqKiqRQFSGkLsrNzUWvXr0k0nQFAD59+oQ+ffogLy9PIvkJqYmioqIwbNgwVrEbNmyodU1XgP/ex69bt05gXHp6OmbPni2FigghhBBC6q/s7Gz07t2bVdMVBQUF7N+/v842XQEAFxcX+Pv7s4r18/PD9u3bJVwRkbYzZ86wbrrSpEkTREREsGpsraKigsGDB+PUqVN49+4diouLUVRUhOzsbGRmZuLixYsYOHCg1JuuAMDEiRMFNr1lGAajR49GQUGBdIoihBBCCCGEfKWoqAhLlixB8+bNhW66AgD3799H//798dNPPyE6OloCFRJCRLV3716BMatXr4acnByA/65fjRkzhm98YmJitTVeIdJHjVdYYhimEMDzSp7uLkLKyn7KXETIBQCNKvm6qoj5CCFStm3bNrx9+1bk8TweDzNnzgTDfNsbihBCCCGiKC4uxvjx4wXGde7cGa1bt5ZCRbXPtm3bICsrKzDul19+wY4dO6RQESGkPjl9+rTAnX5lZGQwb948KVVU+2zcuJHVxLZymZmZrOK0tLSwfv16UcsCALRo0QLt27fnG/Pq1StcuHBB6Nz79+8XGDN69Gih89YmHh4eAmPWrl2L0tLKekETQgipaWJiYtChQwdW16BlZGQQFBQEY2NjKVRWO/Tv3x+//fabwLgnT55g0aJFUqiIEFLXlJSUwNvbG48ePWIVr6ysjNmzZyMwMBA7duyAkZERq3FPnjzBqFGj6H4iqReePn2KHj164PPnzwJj3dzcMHz4cClUJRmurq4YMWKEwLgDBw4gMDBQChURQgghhNQ/b9++haurK65evcoq3t/fHy1atJBwVdVv/vz5cHd3ZxU7bdo0rF69mt6z1hFPnz7Fr7/+yirW0NAQ169fR7NmzUQ+noKCAjQ0NKp9t3kFBQWsXLlSYNyrV6+wePFiKVRECCGEEEII+VJUVBQcHBywYsUKFBcXVylXZGQk2rVrh9GjRyMjI0NMFRJCRJWcnIzQ0FC+MdbW1mjXrt1XXxs7dqzA3NeuXatSbaT2oMYrwrkPoPxqHAcA87+PLhwO5ychc8V98+fyXPYcDkdLhNrsK/k6V4RchBApy8nJwYYNG6qc59q1azh79qwYKiKEEEKkKyMjA0FBQVi0aBFmzJiByZMnw8fHB0uWLMHhw4cRExNT5Qtbwlq3bh3i4r49bf/erFmzpFBN7WRraws/Pz+BcTweD1OnToW7uzvOnz8v9X9rQsStpKQE79+/R2ZmJk0KqyYlJSWYP3++wLihQ4fC0tJSChXVTkpKSjh27BhUVFTEmnfNmjXQ0dGpch42DdI2bdokVM6MjAwEBwfzjTE3N4erq6tQeWsbDw8PNG3alG9MfHy8SLs9EEIIkb6QkBC4ubkhLS2NVfzKlSvRtWtXCVdV+2zbtk3gTqXAf83r6GY7IURY8+fPx6VLl1jF9u7dG9nZ2fj9998xfPhwTJ48GYmJiawX65w8eRL//PNPVcolpMaLj49H165dkZWVJTDWwMAAhw8frvbFeVW1adMmVtdbxo8fj5iYGClURAghhBBSf9y9exfOzs6IjY1lFe/m5obZs2dLuKqaoUGDBjh06BAaNapsf9Gv+fn5Yf78+XSfvZZLS0tDnz59kJ+fLzDWwMAAYWFhMDMzk0Jl0jFkyBCBm4gAwObNmxERESGFigghhBBCCCGFhYWYP38+2rdvj2fPnok19/79+9G8eXMcPHiQ3s8SUo3Y/AyOHj36u/vCbdu2hZqaGt9xNBes/uDQCzl7HA7nFwAn8P9NUso/AsADAB0ZhilgmcsGwJMf5GIATGIY5g8ha9sDYPT/xld8GUAiwzC19kokh8OJBWD97detra1Z36AgpDZYtmwZ/P39+cYoKChAXV0d6enpfOPMzc0RGxsLBQUFcZZICCGEiF1ycjLOnDmD06dPIyIiAmVlZXzjVVVV4e3tDT8/P5ibm0u0toiICHTp0gUlJSV84zp16oSrV6/W+gnZksTlcuHg4ICnT5+yHiMjIwNTU1M0a9YMVlZWX300NDSk7zepUfLz83H9+nVcvnwZN27cQGJiIjIzMyue19LSQpcuXdCtWzd4eHigcePG1Vht/bF582aBjbEUFBTw4sULGBsbS6mq2uuff/4R267PLi4uiIiIQIMGDaqcq7i4GMbGxvj48SPfuAcPHsDOzo5VzoCAAEyZMoVvzIoVK7Bo0SLWddZWO3bswNSpU/nG2NjY4PHjx5CRof7ehBBSE+Xn52PevHnYtWsX6zHjx4/H7t276X1XJW7cuAE3NzeBN+l1dXURFhYGa+vvbnERQqqIx+PhypUrePLkCbhcLuTl5aGoqIg2bdqgbdu2kJeXr+4ShXb58mV069aNVezgwYMRGBgIWVnZHz6/atUqVu9XtLS0EBsbCwMDA6FqJaQ2iIqKgpeXFz58+CAwVl5eHhEREXBycpJCZZJ3+PBhDBs2TGCcsbEx7t27x3rxKyGEEEIIqdz+/fsxceJEcLns9sls1aoVrl+/Di0tUfborL3u3LmDn3/+GQUFrKbZY/Dgwdi7dy+UlZUlXBkRt8LCQnTq1Al3794VGKujo4Pr16+jRYsWUqhMup4/fw47OzuBm08ZGRnh0aNH0NTUlFJlhBBCCCGE1D9XrlzBxIkTER8fL/FjtW/fHuvXr6/zm/sRUtPweDxYWlrizZs3lcbIysoiJSUFurq63z3Xu3dvnD9/vtKx+vr6eP/+vdTn1NnY2FTWLOoZwzA2Ui2mnqDGK0LgcDjyAD4CUC//Er5umBIOwJNN8xUOh9MAQB6AbzsjcADEA7BhGIbVVXgOh2MI4NU3ucp/eqMYhnFmk6cmosYrpD7IyMiAmZkZcnNz+cZt374d7u7usLOzE7gwfd26dZg3b544yySEEELEIjMzE3v27MHx48dx7949kXLIyspizJgxWLx4MQwNDcVc4X87YbZr1+6rxgk/oqCggCdPnsDS0lLsNdQ10dHRcHZ2Bo/Hq3IuZWVltG3bFoMGDcKIESOgqqoqhgoJEV5sbCxWrlyJU6dOsZ5EJyMjAw8PD0yYMAE9e/YUS+MJ8r3Hjx+jXbt2AicwzZ07F+vXr5dSVbXfvHnzsGHDhirlMDc3x40bN8S6sG/FihVYsmQJ35gRI0bgwIEDrPI5OjryPUfhcDhITEyEkZGRUHXWRoWFhTA1NRXY2ObMmTPw8vKSUlWEEELY4PF4OHnyJObPn8/3ZvK3vL29ERQUROepAixYsABr164VGKerq4urV6+iZcuWUqiKkPrhwYMHGDlyJB4/fvzD57W1tTFr1ixMmTIF6urqP4ypaTIyMmBra4v3798LjPX09MSpU6cqbboCAAzDYMSIETh06JDAfH369MGZM2eo2RapU44ePYqRI0eiqKiIVfz+/fsxcuRIyRYlRQzDwMPDAyEhIQJjO3TogJCQELrGTgghhBAiIi6Xi7lz52Lbtm2sx5iZmSEyMrLeNsEMDQ2Fp6enwE2Qyjk4OODMmTNo0qSJhCsj4sLj8TBw4ECcPHlSYGxda4T5I+vXr4evr6/AuKFDh+Kff/6RQkWEEEIIIYTUL+np6Zg9ezYCAwOlfmxPT09s2LABVlZWUj82IfVReHg4OnXqxDemX79+OHXq1A+f27RpE2bPns13fFxcHJo3by5yjaKgxivSR1uRCuF/jVCO4f+bmgBfN19xBxDL4XB+43A43zZU+TZXGYArX+T6MqcZgC1sauL8NwtqDwDFH+RhAESzyUMIqT6///67wKYr1tbW8PHxQcuWLTFx4kSBOVeuXIn09HRxlUgIIYRU2adPn7Bw4UIYGxvD19dX5KYrAFBaWoo//vgDVlZW2LJli8CGZMLIzs5G7969BTZdAYClS5dS0xWWHB0dWe20y0ZBQQEiIiIwefJkGBoaYvr06UhKShJLbkLYePHiBYYOHYpWrVrhyJEjrJuuAP9NMvr333/h6ekJCwsLHDlyBNQQV7wKCgowePBggU1XtLS0sGDBAilVVTesW7cOW7duhZycnEjj27dvj9u3b4t9IunEiROhoMD3MhyCgoJY/a54/PixwHOUzp0714umKwCgpKQk8CYCAPz1119SqIYQQggbDMPg/PnzsLe3x8CBA4VqutK1a1cEBgZS0xUW/P390aZNG4FxaWlp6NSpE+7fvy+Fqgip2xiGwdatW+Hs7Fxp0xXgvyYmfn5+MDY2xpYtW2r8e26GYTB+/HhWTVfatm2LoKAgvk1XgP+aRf71119o166dwJzBwcG0qIfUGUlJSRg8eDAGDx7MuunKjBkz6lTTFeC/14Ddu3dDTU1NYOzNmzfh6emJggKBe0sRQgghhJBvPH/+HM7OzkI1XdHX18fly5frbdMVAOjevTsCAwNZNwC9f/8+2rZti+homgpfGzAMg2nTprFqugIAf/75Z51uugIAs2bNYnWN5vDhw6ya6BJCCCGEEELYYRgGBw4cQIsWLaql6QoAnDt3Dq1atcLChQvx+fPnaqmhLikpKUFycjLi4+ORl5dX3eWQGmjfvn0CY0aPHl3pc507dxY4/tq1a0LVRGonarwivDUAyldVlc/U+rL5ijGAfQAyOBxOKIfDWcfhcBpXkuv4N3/+Ms8EDofzO4fDqXSG6/+auxwE0P2Lcd+6IvivRAipLmlpaaxuvvn7+1dMePf394eWlhbf+Ly8PCxfvlwsNRJCCCFVUVZWhg0bNsDExARr1qxBfn6+2HJ//vwZM2fOhLOzMx4+fFjlfAkJCXB3d8fz588FxrZq1Qpz5syp8jHrk6VLl2Ly5MlizZmbm4tt27bBysoKmzdvFmsTHkK+9enTJ0yZMgU2NjYICgqq8uKtxMREDBkyBH379mW1wIqwM3PmTMTFxQmMW7RokcD3VeRrHA4H06ZNQ2RkJExMTIQa6+3tjatXr0JHR0fsdeno6GDEiBF8Y0pKSrBkyRKBuXbs2CEwZtSoUaxrqwsmTpwo8GclJCQEaWlpUqqIEEJIZZ49e4bu3bujd+/eePTokVBjO3fujFOnTglsZkb+Iy8vj0OHDkFRUVFg7KdPn+Dq6lptE3kIqQvy8vLQr18/zJgxg3Xz0+zsbMycORODBg1CaWmphCsU3Z9//lnpbkpfMjExwb///gsVFRVWeRUVFXHmzBlW78GmTp1KTY1JrcUwDG7evIlJkybBysoKR48eZT12+PDh2LhxowSrqz7GxsY4cOAAq9jw8HD06dMHGRkZEq6KEEIIIaRuKCsrw44dO2Bvb48HDx6wHmdmZobr16/DzMxMgtXVDoMGDcKePXtYN1/5+PEj3N3dcf78eQlXRqqCx+PBx8cHAQEBrOJnzJiB3377TcJVVT9ZWVns378f8vLyAmPHjRuHK1do2QchhBBCCCFV9fDhQ7i7u2PkyJEi3f/w8vLChQsXkJubi8zMTNy6dQsTJ06Eurq60LlKSkqwZs0atGjRArt27WK9eQD5757/li1b0LlzZ+jp6UFBQQFGRkawsLCAuro6NDU1YWdnhxkzZuDJkyfVXS6pZjk5OThx4gTfGAMDA/To0aPS521tbdGwYUO+OajxSv1AjVeExDBMIoDd+L7JSXnTlPIGKMoAugKYA8CiknRnAZSvPP1RE5eZAB5xOJwZHA7HmsPhqHM4HEUOh2PB4XAmA3gKYOi3JX7xeT6Aq8L9DQkh0rRx40aBO0i1bt0av/zyS8WftbW1sWzZMoG5d+/ejZcvX1a1REIIIURkiYmJ6NSpE+bNmyfRLr337t1D27Zt4evrK/LOjJcvX0bbtm1ZLU6TkZHBX3/9BTk5OZGOVV/JyMhgx44d2L59O2RkxPtWtKioCLNmzYK7uzud/xCxKysrw9atW2FpaYmAgACxN/gJDg6GtbU1Nm3ahMLCQrHmrm927dqFP//8U2Ccqamp2BtB1Sft2rVDTEwMZs+eDWVlZb6xhoaG2Lt3L44cOQIlJSWJ1TRjxgyBMQcPHuR7cyUjI0PgLmJqamro16+f0PXVZmpqapg+fTrfmLKyMgQFBUmpIkIIId9KT0/H9OnTYWtri8uXLws9fuDAgbhw4QJUVVUlUF3dZW1tjfXr17OKLSoqwogRIzBp0iRkZmZKuDJC6pbc3Fx0794dZ8+eFWn88ePHMWnSpCo3T5WEGzduYMqUKQLjFBUV8e+//0JPT0+o/AYGBti1a5fAuOzsbAwbNowaGhOxYRgGXC6XdaMkYXG5XISHh2PmzJkwMzODq6ur0BNVvby8sH//frFfp65J+vXrh4ULF7KKvXr1Klq0aIFDhw7VyNdLQgghhJCaIiIiAg4ODpg6dapQ93Xbt2+PO3fuoFmzZhKsrnYZPXo0jhw5wnreTUFBAfr06YM//vhDwpURUZSVlWH8+PGs/326du2KDRs2SLiqmsPa2hpr1qwRGFdUVARPT09cvUpLPwghhBBCCBFFWloaxo8fD3t7e0RERAg9vnXr1oiMjMSZM2fQs2dPqKmpQUtLC+3bt8euXbuQmJiIWbNmibSGJDk5GZMmTYKJiQnWr19P88X5ePXqFSZNmgRDQ0PMnDkTYWFhSEtL++4eVk5ODh49eoStW7fC1tYWvXr1EunfndQNR48eFfhz9dtvv0FWVrbS52VkZODu7s43R1hYGHg8niglklqEQzfNhcfhcBoCeAzAoPxLXzz95Te0vIlKJ4ZhfviqzeFwVgFYgP9vtvJlHs4Xn/9weCWx5cfdwDDMfEF/n5qMw+HEArD+9uvW1taIjY2thooIEZ+MjAwYGxsLXIgeHBwMT0/Pr75WUlKC1q1bC9zJvX///gK7tRFCCCGSEBgYiMmTJyMvL0+qxzUzM8PmzZvh6enJanec9+/fw9fXV+BC6y+tWbMG8+fX6tPsahcSEoIhQ4YgOztb7Lnl5OQwdepULFq0CFpaWmLPT+qXxMREjBgxAjdu3JDK8Ro3bowlS5ZgzJgxfC/ske8dPXoUQ4YMEbg4hMPh4MqVK+jcubOUKqvbCgoKcPXqVQQHByM8PBxpaWmwsLBAt27d0KtXLzg7O0vt/3LPnj0REhLCN8bDw6PS3fDWr18PX19fvuPHjRvHqrlPXfPhwwcYGhryvVng4OCAe/fuSbEqQgghubm52LRpEzZu3Ij8/HzBA35gypQp2Lp1a51edCxJPB4P3t7eOHXqFOsxGhoa8PX1xdSpU6nZDSEC5OTkoEePHrhz506Vcy1fvhyLFy8WQ1Xi8fbtWzg6OiI9PV1gbEBAACZNmiTysQYPHoyjR48KjPP398eSJUtEPg6pnxiGwcOHD3H69GlcvHgRz58/x+fPn8EwDGRkZNCsWTN0794dkyZNEmqRaVlZGV6+fIlHjx7hzZs3Xz2Sk5OrNJmtc+fOOH/+PBQVFUXOUVuUlZWhd+/eAq+XfMnFxQUrVqxAp06dWN1jIYQQQgipD+Li4rBo0SKhrgGV8/b2xoEDByS6QUFtdvHiRfTv31+oBWdjxozB9u3b6XtaQ+Tk5GDo0KG4cOECq/iWLVsiMjISGhoaEq6sZuHxeOjevTuuXLkiMFZJSQmnTp3iuws3IYQQQggh5P9xuVxs27YNK1asQG5urtDj5eTksHjxYsyfP59VU5XXr19j2rRpuHjxoijlAgCaNm2KtWvXYsiQIXQ/5n+KioqwfPlybNiwAaWlpSLn6dq1K9avXw87OzsxVkdqOicnJ0RFRfGNefHihcB71gEBAQI30Hnw4IFU/3/Z2Njg2bNnP3rqGcMwNlIrpB6hxisi4nA4rgBCAXw5G+NHjVMENV7RBJAAQJ1PjsqU/+N926CFAyAXgAXDMJ/4/01qNmq8QuqyxYsXY+XKlXxj2rVrhzt37vzwJPrChQvo1auXwOPcvHkTLi4uItdJCCGECKOoqAjTpk3DX3/9Va112NnZYd68eejWrRu0tbW/eo7H4+Hu3bsIDAzEwYMHBTZB+9KIESPw999/0wUuMUhNTYW/vz8OHDgg1G6kbGlpaWHJkiWYNGkS5OXlxZ6f1G0MwyAwMBBTpkyRegMpAHB0dMS+ffvQsmVLqR+7NgoNDYWnpydKSkoExi5YsACrV6+WQlVE2m7duoUOHToIjAsLC/uuI3lpaSnMzc2RlJTEd+yjR49ga2tblTJrLQ8PD4E3CmNjY2Ft/d1lPEIIIWKWnp6Obdu2YceOHSI3s1RWVsbGjRsxYcIEen9bRcXFxRgwYAD+/fdfocY1bNgQkydPxtSpU6GjoyOh6gipvXJyctCtWzeBE2OE8ddff2Hs2LFiyyeqOEWOpgAAIABJREFU/Px8dOzYEQ8fPhQY26tXL5w7d65Kr9Xp6emwsbER2ORFRkYG169fh6urq8jHIvVHUVERdu/eje3bt+PNmzesxri6usLKygrGxsYwMjKCsbEx1NTUkJKSguTk5IpHYmIiHj16JNR1e7YGDBiAAwcOQFlZWey5a6qsrCw4OTnh1atXQo1zdXXFkCFD4OnpiaZNm0qoOkIIIWyVlpYiISEBSUlJSEpKQkpKCnJzc1FQUICCgoKKpmQcDgd6enpwdHSEi4sLDAwMBGQmhPDz+vVrrFmzBn///bdIzf+WL18OPz8/anoswK1bt9CvXz+kpaWxHmNra4vjx48L1eCRiN/r16/Rp08fgRtIltPX18fdu3dhZGQk4cpqpvfv36NVq1bIzMwUGNugQQNs3boVkydPlkJlhBBCCCGE1E4lJSU4cuQIli9fjtevX4uUw8HBAfv27RN6XijDMDh+/DimTZuGjx8/inRsALC3t8eUKVMwaNCgenX/6ls3btzA2LFj8fLlS7Hk43A4+PXXX7Fy5Uq6z1UPPH36FK1ateIb4+rqymoj3ri4OIHzoDdt2oSZM2cKVWNVUOMV6aPGK1XA4XDcARwFoIP/b3ryVQgENF75X55BAILw40Yrgv6BKmv2MpBhmJMCxtZ41HiF1FXZ2dkwNjYW2Enx4sWLlXYtZxgGXbp0wbVr1/jmcHBwwO3bt1l1XSSEEEKq4s2bNxgwYAAePHggcg4ZGRlYWlpCV1cXXC4Xz549q3LTA0tLSygpKYFhGGRlZeHjx4+sFud/q0OHDrh69SoUFBSqVA/5WlpaGnbu3In9+/cLXPAuCnNzc6xduxa//PILTWgirHz8+BETJkzA2bNnq7UOOTk5LFmyBL6+vnQuz0d4eDg8PDxY7YLm5OSEGzdu0PezDuvbt6/An11bW1vcuXPnq13wTp06hf79+/Md5+7ujrCwMLHUWRsFBQVh6NChfGPmz5+PNWvWSKkiQgipXz5//oyLFy/i+PHjCA4OrlLzyg4dOuDvv/+GhYWFGCus37hcLgYOHCjSewhFRUWMHj0as2fPhpmZmQSqI6T2KS0thYeHBy5fvizWvBwOB4GBgRg2bJhY8wqjqKgIvXr1EnhvDwB0dHTw5MkT6OnpVfm4J0+exIABAwTG6erq4vbt2/R6RCpVVFSEQ4cOwd/fH+/evavucoSyaNEi+Pv718trxElJSXBzc0NiYqJI49u0aYM+ffrAy8sLdnZ21LiPEEKk4N27dzh79iyuX7+O2NhYvHr1SqT722ZmZujduze8vb3h4uJSL38PEiKK+/fvY926dTh58qRIDVdUVVVx6NAheHl5SaC6uikpKQl9+/YVar6Rmpoa/vnnH3h6ekqwMlKZf//9FyNGjEBWVhareGVlZURERMDBwUHCldVsp0+fxi+//MI63sfHBxs2bICKiooEqyKEEEIIIaR2SUlJwdGjR7F161aR1x6oqKhg1apVmDJlCho0aCByLdnZ2Vi9ejW2bduG4uJikfNoampi/PjxmDdv3nebDtdlpaWlWLJkicTmnSoqKmLGjBmYP38+NDQ0JHIMUv1mz56NTZs28Y3Zt28fRo0aJTAXwzBo3LgxPnz4UGnMr7/+ioMHDwpdp6io8Yr0UeOVKuJwOPoA1gMYCqD8zlT5N5VV45X/5dkFYMI3Y4Xx5bh1DMMsEHJ8jUSNV0hdtXz5cixdupRvjKOjI+7evct34lJMTAyrGxHLly/H4sWLha6TEEIIYevw4cOYOHGiSE1SFBUV0b17d/Tr1w+9e/f+6mIRwzCIjIzEypUrcenSJXGWLBRzc3Pcvn2bdqGWIIZhkJycjBcvXuDly5d4+fJlxeeJiYmo6ntXU1NTjBo1CsOHD4epqamYqiZ1zfHjx+Hj44OMjAyRxrdp0wZdu3aFra0tGjRogOTkZISFheHy5csoLS0VOef+/fvRunVrkcbXZdevX4eHhwcKCgoExqqpqeHhw4e0eKyOi4uLQ8uWLQVOgh09ejT27t1b8Wc3NzdERPC9dIeTJ08KNQmurikoKIC+vj7fc70mTZrg7du3NHmfEELEgMvlIjY2FuHh4QgNDcX169er1GwFABo2bIglS5ZUedII+TEul4thw4bhxIkTIo2XkZGBt7c35s2bB3t7ezFXR0jtMnnyZOzcuVMiuWVkZHDkyBF4e3tLJD8/JSUl6N+/P86dOycwlsPh4Pz58+jZs6fYjj969Gjs379fYJyVlRVu3rxZryb0Ef64XC4iIiIQFBSEkydPIicnp7pLEoqysjL+/PPPam26VBMkJibCzc2tys3PjY2NMWDAAAwcOBCOjo7UhIUQQsTo48ePOHjwII4dO4Z79+6JPb+BgQF+/fVXjBs3jpqxElKJZ8+ewc/PD2fOnBE5h62tLY4cOYIWLVqIsbL6oaCgACNHjsTx48eFGrd8+XL4+fnR/SkpKS0txaJFi7Bu3TrWY5SVlXHu3Dl07txZgpXVHgsWLMDatWtZxxsZGWHLli3o27cvvQcjhBBCCCH1UmFhIaKiohAZGYmQkBBERkZWKV/v3r0REBAAIyMjMVUIJCcnY8mSJThw4ECV1jyoq6tjzpw5mDp1KjQ1NcVWX0307t07DBkypMr/nmxoaGjAy8sL3t7e6Ny5M5SVlSV+TCIdpaWlaNy4MdLT0yuNUVVVRWpqKlRVVVnlHDRoEI4dO1bp83Z2dlXarFxY1HhF+qjxiphwOBwTAMMB9ADQFoD8/55i23hFBsBuAGPx/01UAMENWL5t1LKUYZgVrAuv4ajxCqmL4uLi4OzsjNzcXL5xwcHBrLrxDx8+HP/88w/fGFlZWURHR8POzk6oWgkhhBBBcnNzMWXKFAQGBgo91sHBAfPmzUOvXr1Y7cxx+fJlTJw4EW/evBGlVJE5Ojri9OnTMDQ0lOpxyf8rKipCfHw87t69i127dlV5sqG5uTl+/vln2Nvbo0WLFrCwsEDDhg2hqKgopopJbfPp0ydMmTIFR48eFWn8gAEDsHTpUrRs2fKHz6empmL//v3YvHkzPn36JHR+WVlZ+Pn5YeHChZCXlxc8oB4ICwtD7969WTVd4XA4OHHiRL1umlGfjBs3Dnv27BEYt3v3bkyYMAHnzp1Dnz59+MYaGRkhPj4esrKy4iqzVmKzUDMkJATdu3eXUkWEEFI3lJSUIDY2FtHR0YiKisL9+/fx9OlTkXay/hE1NTXMmjULM2fOpN1bJKysrAzLli3DypUrq5SnS5cumDFjBn7++Wd6n0rqnYCAAEyZMoVVbOPGjXHo0CH89NNP2LNnDyZOnMhqnKysLE6cOCHVnccLCgowYsQInDx5klX82rVr4evrK9Ya8vPzYW9vj1evXgmMdXV1xcWLF1lPPCJ1Q0lJCVJSUpCUlIS3b98iKSkJDx48wKVLl0RquF4TDBw4EOvXr4exsXF1l1IjxMfHw93dHe/evRNLPh0dHbi7u8Pd3R1OTk5o1aoVXbskhBAhlZWVITQ0FHv37kVwcLDITfyF9fPPP2P8+PHo27cvvXYTAuDt27dYtmwZDh48KLC5Pz8zZszAmjVr6HpOFfB4PPj6+uL3338Xalznzp2xZcsWtGrVSkKVEQBISEjAiBEjhFoUp6qqigsXLqBjx44SrKx2YRgGs2bNwpYtW4Qa17NnT2zbto0aqBFCCCGEkDrv8+fPuH37Nq5fv47w8HBERUWBy+VWOa++vj62b9+O/v37S6ypYXR0NCZNmlTltQ6ysrLo3LkzfvnlFwwYMKBObZrB4/Hw999/Y+7cucjMzJT68eXk5ODg4AAXFxe0aNECVlZWsLKygo6ODjW7rIWuXbuGn3/+mW/MmDFjWM0rL7d69Wr4+flV+ryCggLy8/OlNqecGq9IHzVekQAOh9MAgBEAQwCqAO4yDJPFcuxcAIv/N47tPw4HQCqA6QzDiLaVXg1FjVdIXZOWlgZnZ2ckJCTwjbOzs0NMTAyrE7a3b9/CysoKxcXFfONatWqF6OhoKCgoCFUzIYQQUpnQ0FCMGzcOycnJQo0zNzfH1q1b4eHhIfTFiYKCAqxYsQIbNmxAWVmZUGNFMXLkSOzatYsmxtQwV69exbhx4wSeUwlLQUEBurq6MDc3h5mZGXg8HjIzM5GTkwMZGRnIy8uDx+Phw4cPSE1NRU5ODpSUlKCmpgZVVdWKh6KiIkpKSlBSUgIul1vxuYyMDJSVlaGsrAxNTU2YmJjA1NQUFhYWcHR0RMOGDcX69yGC8Xg8HD9+HNOnT8fHjx+FHt+5c2ds3LiRdYPD9PR0TJ8+HUFBQUIfC/jvnH7v3r1wdHQUaXxdwDAMtm7dijlz5rD+PVDeYIPUDykpKbC0tERhYaHA2EWLFuHAgQMCz2XWrVuHefPmiavEWis8PBydOnXiG9O2bVvcvXuXdhUkhJBKMAyD169fVzRZiY6ORkxMDIqKisR+LBkZGYwfPx7Lly+Hjo6O2POTyp06dQq//fYb8vPzq5RHWVkZXbp0gaOjI2xsbGBlZQUDAwNoamrSZA9SJ508eRKDBg1i9V7PwsICYWFhaNKkScXXwsPD0b17d1aT7uTk5HDmzBl4eHhUqWY2EhIS0K9fPzx69IhV/NChQ3Ho0CGJ/Jzfv38f7du3Z9Xcq1WrVjh79ixMTU3FXgepXgzD4P3794iJial4PHz4EO/evavSItOapF27dvj9999pYd8PpKamYtSoUQgNDRV7bnl5eZiZmUFTUxMaGhrQ19eHkZERjIyMYGlpiVatWgl9DZxhGBQXFyMvLw8JCQl4+fIlkpOTwePxoKKiAlVVVTRs2BCGhoYwNDSEvr5+vW+cSwipHZKSkrBnzx7s379fbA2xRKGjo4NRo0Zh3LhxtIib1EtpaWlYvXo1du3aVaUFXCYmJti9ezc1phej7du3Y/r06ULtEk7XQyWHYRjs378f06dPF+qap7q6OkJCQtC+fXsJVlc7MQyDGTNmYNu2bUKNk5eXh6+vL+bNm0cNcwkhhBBCSJ3BMAwePXqEEydOICwsDFFRUWJtUCwrK4vJkydj2bJl0NTUFFveypSVlWHfvn1YtmwZ3r9/X+V8cnJy6N27N4YNG4aOHTtCV1dXDFVKX3FxMa5du4bVq1cL1dBTWjQ1NdGsWTMoKSmBy+WCx+NBS0sLOjo60NHRgZqaGpSVlaGqqgoDAwM0adIEBgYGUFNTg4qKCt2fqiaTJk3Crl27+MbcvHkTLi4urHOy2dDz2bNnaNGiBeucoigtLUWDBg3QsmVLarwiZdR4pQbicDi6ABYB8AagJyD8DYC9ALYwDCN4RUktQ41XSF2SnJyMbt264fnz5wJjT5w4gf79+7POvWDBAqxdu1ZgnJeXF44ePUrNVwghhFTJs2fPsH79ehw4cEDosePGjcOmTZuqfPP30aNHGDduHKKjo6uUpzIKCgrYtGkTfHx8aDFTDZWfn4/58+cjICCguksRCw6Hg1atWuGnn35Cr1690LlzZ9phToIYhkFwcDCWLFmCx48fCz3ezMwMmzdvhqenp0ivEefOncPs2bNZ7TL9LRkZGcyePRvLly+vd02hsrKy4OPjg6NHj7Ies2rVKixcuFCCVZGaaNGiRVi1apVYcikpKeHdu3fUHAv/NasyNTVFUlIS37hDhw5h2LBhUqqKEEJqrqKiIsTExODu3buIjY1FXFwcnj17huzsbIkf283NDVu2bGHdIJCIX1xcHMaMGYPbt2+LPbeioiKMjIxga2sLOzs7tGnTBs7OznS+Qmq1wMBAjBw5klXTB0tLS4SFhcHQ0PC7544dO4bBgwezWpiloKCAc+fOoWvXriLVLAiPx0NgYCBmzZrFeqcuBwcH3LhxA0pKShKpCQA2bNjAurFkw4YNcfjwYVo8WIsxDIPExMSvmqzExMQgLS2tuksTOwMDAwwZMgRDhw6Fvb09Xdfng2EYHD16FNOnT5f6/4XGjRvDzMwMjRs3RsOGDVFQUIC8vDzk5+dXfMzPz0dBQUHFQ5iGQDIyMtDT06toxFL+MDc3h42NDZo1a0bX3Qkh1erBgwfYsGEDjh07JpVNRoTx888/Y/z48ejbty+9VpI6Lzc3F5s2bcLGjRur1DhXSUkJCxYswJw5cyT6Pq6+OnfuHEaMGCH09VQNDQ0sWbIEU6ZModczMUhKSoKPjw8uXLgg1DgjIyMEBwejdevWEqqs9mMYBrNmzcKWLVuEHquhoYGxY8diypQpMDExEX9xhBBCCCGESMGrV69w+vRpBAYG4unTpxI5Rs+ePbFp0yY0b95cIvn5KS4uRmBgINatW4fXr1+LLa+pqSnat28PZ2dnODk5wcjICNra2pCTkxPbMcQlPz8fFy9exKlTp3D+/Hnk5eWJlMfFxQX9+vWDnZ0dlJSU8Pr1a5w/fx6nT58Wa5OeqlBVVYWtrS1cXV3RsWNHuLi40DweCSsrK4OhoSHfzXfNzMzw+vVroe4dJyYmCtyg5siRIxg0aBDrnKJYsGAB7t27hzdv3uDNmzc/CqHGKxJCjVdqOA6H0waAEwBdADoAZAB8BJAKIJJhmLhqLE/iqPEKqQvS0tKwd+9erFq1Cp8/fxYYb2Njg8ePHwu1O3RhYSHs7e1ZNXXp3r07Tp06BWVlZdb5CSGEkA8fPuDff//FoUOHcP36daHHa2ho4O+//0bfvn3FVlNZWRkCAgKwaNEikS/C/Ei/fv3w+++/w8zMTGw5ieTcvXsXc+bMqZGdj6tCS0sLXl5e6Nq1K9zc3H64mIgIj2EYhIaGYvHixbh3755IOcaOHYvNmzdXuYFUaWkpDhw4AH9/fyQnJws9vmXLljh8+DBatWpVpTpqA4ZhcPDgQcydOxfp6emsx82cORMbN26khTb1UFFREVxcXPDgwYMq5/Lx8cHOnTvFUFXd4Ofnh9WrV/ONMTIywvPnz2mSMSGk3mAYBtnZ2UhNTcWjR49w584d3L59Gw8fPkRJSYlUa7Gzs8Pq1avRo0cPOgeqARiGwdmzZ+Hn51fZziNi1bx5c9jZ2aFJkyYwNDSEqakpmjVrBjMzM2rGTmoshmEQEBCAadOmsWqWYmpqisjISDRu3LjSmJ07d2Ly5Mmsji8jIwNvb2/4+vqiTZs2rOvmh2EYhIeHY+7cubh//z7rcaamprhx44bErwHxeDwMGzYMR44cYT3m119/xcaNG2nH8FqgtLQUt27dwoULFxAdHY2YmBipNH2rLhYWFvDy8oKXlxdcXFzQoEGD6i6pVsnKysLKlSuxc+dOFBUVVXc5UiErKwtLS0vY2NjAxsYGTZs2hZ6e3lcPOm8ihIhTaWkp7t69iwsXLuDixYtiuWYtaTo6Ohg1ahSGDRsGa2tr2qm1nisuLkZ4eDhu3LiBuLg4vHz5EgkJCSgtLYWqqipUVVWhr68PR0dHuLm54aeffqrRuy6npKTgwIED2Lx5Mz59+iRyHg6Hg2HDhmHlypUwNjYWY4XkWwkJCRg0aJBImzKZmJhg3LhxGDlyJN/rCOTHiouLsXv3bvj5+bGa9/wlV1dXnDx5ska/HtQUDMNgx44dmDFjhlBNJ8vJyMhg2LBh8PPzg5WVlQQqJIQQQoiocnJy8Pr1a7x+/Rrv37+HjIwM1NXVoaGhgcaNG6NFixbQ0NCo7jIJkaqMjAxERkYiIiIC58+fx4sXLyR2LCsrK2zevBk9e/aU2DHYKisrw759+7Bo0SKJNsTX0tKChYUFrKysvnpYWlpKbS4nj8fDo0ePcO3aNVy9ehXXrl1DcXGxyPns7e2xc+dOODk5/fD5pKQkrFmzBn/99VeNa3QN/LdGuGPHjnB1dYWrqytdRxKziIgIuLm58Y3x9fXF2rVrhcrLMAw0NDT4rlHz8/PDypUrhcorjLdv38LKykrQzw81XpEQarxCajRqvCJdRUVFSE9PB4/HA4fD+e4B4LuvycnJQVNT87tJ3Pn5+fj48SM+fvyIgoICFBcXg8vlori4uOKRm5uL7Oxs5OTk/PBjXl4eSktLKzrPaWlpQUdHB40aNYKOjs5Xn3/7kWEYfPjwoeKEVFtbGzo6OhKbKFNaWornz5/j/v37ePr0KTIzM1FYWIikpCTcvn1bqAviZ86cgZeXl9A1REVFoX379qyO5eTkhMDAQFhaWgp9HEKqC4/HQ35+PpSUlGpkJ05C6pri4mLcvn0bV69exaVLlxAVFSVyLjs7O5w4cQLm5uZirPD/ZWRkYMuWLdi2bRtyc3NFzuPg4IC1a9eiS5cuYqyOSAPDMDh9+jR8fX3F2hG6JjE3N0e/fv0wbNgwtG7dmhZRColhGFy6dAkrVqzAzZs3RcrRqFEj7NmzR6RzdX4KCwuxZMkSbNq0SeiJNPLy8lizZg2mTZtWZye+xsbGwsfHBzdu3BBq3OTJk7F9+3b6WanHEhIS4ODggKysLJFzaGho4MWLF9DT0xNjZbVbSkoKLCwsBC7ImjBhAnbv3i2lqgghRDxKSkqQkJCAhIQE5OTkID8/H/n5+fj8+TPy8/ORl5eH7OxsZGVlISsrq+LzjIyMKk0SEAdbW1ssXLgQ3t7eQjX0JtJRVlaGoKAgrFu3TmK7NPEjIyMDS0tL2Nvbw8HBAfb29rC3t6eJfKTaffz4EePHj0dwcDCreHV1ddy+fRvW1t/dOv7Opk2bMHv2bKHq6d69O3x9feHu7i7Se8nU1FQEBwcjICAAT548EWqsgYEBIiMjpdYIuri4GN26dUNERATrMZqamhgzZgzGjRtHC3mqUUlJCd6/f4/k5OSKx/v375GZmYnMzEzcuXMHGRkZ1VKbrq4uvLy88NNPPyE1NRW3b9/G+fPnweVyq5RXTU2topHYl49mzZqhadOmdO1HDFJTU7F27Vr88ccf1X5eWxNoaGhUNGFp0qQJnJyc0KtXL1hYWFR3aYSQWoBhGLx+/Ro3b95EaGgoQkNDq3SNuropKSnBzs4Ozs7OcHNzQ8eOHWmX1nogMzMTFy5cQHBwMEJCQoTeBMfBwaGiOV6rVq2q/XwtOzsbZ8+eRVBQEC5fvixSY4Mv9e7dG6tWrYKtra2YKiSCFBcXY/bs2QgICBBpvIyMDHr16oWxY8fCw8Ojzt5XF5fU1FT88ccf2L17N98doyszZswYBAQEUENDIV28eBGDBg0SeeMxDocDb29vjBs3Dp06daLGpEQqeDweUlNTkZOTU9FUW0FBAZqamtDQ0KB53oSQeiU5ORn//vsvbt26hVevXiE+Pp5Vs8fGjRujdevW6N69O/r06QNTU1MpVEuIZDEMg7S0NHz69AlZWVl4+/YtIiMjcePGDamsBdbW1saiRYswefLkGnc+kpubi7Vr12L79u3Iz8+X2nE5HA6MjIxgZWWFZs2awdTUFCYmJtDV1YWysjJUVFSgrKxc8ZCVlUWDBg34zj/i8XjIzc1Famoq3r17h5cvXyI8PBxhYWFiuVepoKCA5cuXY9asWazexz9//hzz58/H2bNnq3xsSWratClcXFzQoUMHdOjQAba2tnSdogqmTZuG7du3842Jjo5G27Zthc7t4uKC27dvV/p8nz59JPr/bdiwYTh8+LCgMGq8IiHUeIXUaJU1XrGwsMCrV6+qoaK6gWEYvHnzBjdu3EBkZCSePn2KxMREkS6SA//tCqSjowNlZWXk5eUhNze3xu6IJCMjA2trazg6OqJt27ZwdHSEra0t64v8DMMgKSkJMTExePjwIeLi4vD8+XO8fPlSLJOQqrowadGiRVi1ahWrWCUlJaxevRrjx4+HsrKyyMckomEYBgUFBcjMzISsrCzU1NSgoqJScbOZYRjWN54ZhsHnz5+Rl5eHvLw88Hg8qKqqVuQUdBJeWlqKvLw8pKen49WrV3j16hVSUlLA5XJRUlKC0tLS7z6WN0TS09ND06ZNv3o0adJEpG6YXC4Xb9++RXx8PN69e4fMzExkZ2cjKSkJT58+xfPnzyt+zpSUlKCiooLS0lJwuVw0aNAAxsbGsLa2hrGxMbhcLgoKCiAvLw9jY2OYm5ujadOmUFZWhpKSEpSUlKCoqAglJSUoKChU+01+QmqSuLg4bNmyBYcPHxbLBZ3x48djy5YtUumSm52djT///BMnT57E/fv3WXWt1dPTw9ChQ/Hrr7/Czs6OXg9qOS6Xi927d8Pf3x+ZmZnVXY7EWFtbY+LEiRgzZgydxwnA4/Fw+vRprF69GjExMSLn6d+/P3bu3CnRHZnu3r2LUaNGIS4uTuixtra22LZtm8CuzbVJfn4+li9fjs2bN1ece7Ll4+ODgIAAek0nuHjxInr16gVRr39u374dU6ZMEXNVtR/baw+DBg1CQEAAtLW1wTAM8vPzkZaWhrS0NKSnp6OkpKTi/Zm6ujr09fWhq6tb4254EkJql/JJnomJiUhLS0NRURGKiopQVlYGZWVlqKqqgsvlIiUl5avHu3fvkJiYWCN3P+HHzc0Nvr6+6NGjB5371AIMw+DixYtYv349rl+/Xt3lwMzMDAYGBtDS0oKuri5at24NZ2dn2NnZQV5evrrLI3VYbGwsDhw4gH379rGedCUjI4Pz58+jR48erI+zZs0aLFy4UOj67O3t4e3tDS8vLzRv3rzS19fCwkKEhYXh/PnzuHr1qsg7smlrayMiIoJVQxlxyszMhIuLi0h1u7i4YMCAAejXrx+MjY2l+juosLAQDx8+RGxsLN6+fYvExESkpKRUNEXLz8+HiooKGjVqhEaNGsHCwgLt2rWDs7MzTE1Na8X7DYZhkJGRUXHP7MGDB4iJiUFsbCzev38v8ntcSTE0NMTSpUsxcuTI776/aWlpCAkJwePHj5GUlIS3b98iKSkJHz58+CpOQUEBTZo0qbjXaGRkBFtbWzg4OMDU1JQay0lJRkYGzp49i+DgYFy6dAmFhYXVXVKN0qxZM/Tu3Ru9evWCq6srnS/VMJmZmbhy5QquXLmOoiOPAAAgAElEQVSC58+fIz8/H4WFhV89ysrKoKurC2NjY5iYmKBZs2awtraGjY0NzMzMatzi1LKyMjx48AB3795FcnIyUlNTKza/Kp/LUb5hlpycHBo2bAhTU9OKBlXlk+fpPpJgDMOgpKSk4hpC+f+X8u9tSUkJcnJykJOTg5SUlIrGZ8XFxeDxeCgtLcWnT5/w4cMHvHz5UuJN0DgcDvT19aGnp1exKKL8d3BWVhbu379f5cZn/FhaWqJNmzawtbWFoaEhDAwMoK+vDwMDAzRq1Kji97Yw855I9cvOzkZQUBCOHTuGGzduiO0amYmJCby8vODp6Yl27dpBTU1NLHn5YRgGL168wOXLl3Hx4kVcuXIFJSUlVcrJ4XDQv39/zJs3D46OjmKqlAhr37598PHxqdJrnL6+Pvr37w9PT0+4u7tTcxD8d0391atXiIiIwJEjRxAeHi5SgyJFRUXs3LkTo0aNkkCV9UNcXBxGjBiBe/fuVSlP06ZNMXjwYPTr1w9OTk70npqITUFBAe7du4dbt27h5s2buHXrFt/5edra2mjRogVsbGzQsmXLio86OjpSrLr2KS4urrjWWVpaisaNG1PzQ0JqqPj4ePzzzz84ffo0Hj58KJac1tbWcHV1hbOzM9q2bQsrK6uvrkPyeLyKDWMKCwsr1vbIyMh81TRBRUUFcnJyAt+XMwyDsrIycLlclJWVQUVFpdrOHRiGQWFhIXJzc1FcXAxNTU2oq6vTtYUarrS0FE+fPsXt27dx7949PHv2DM+ePavSRrqiatKkCebMmYOxY8dCRUVF6scXRl5eHoKCgrBr1y6xvX5IAofDQYMGDSoe5Q1ZytcgSkqzZs1w/PhxkZreRkREYM6cOYiOjpZAZeKnoqICJycnODo6wsTEBEZGRjA2NoaRkZFUrqPVZjweD02bNsX79+8rjTE2NkZCQoJIv0smTJiAP//8s9LnTU1N8ebNG6HzshEVFQUnJyc2odR4RUKo8Qqp0SprvAIAHTt2xJgxYzBgwIAaf0IkDdnZ2YiPj0d8fDwSExMrmp8UFxejuLgYRUVF+Pz5MxITE/H69etqOYmtqeTk5GBubg4tLS1oampWPNTV1SveRH769KmiIUV2drZE6ujatSvOnz9fpQl/XC4Xjo6OePz4MesxGhoaGDJkCMaMGQMHBwd6YyoAwzDgcrkVO96W73bL4/HQsGFDNGrUCGVlZRW7zL179w7JyclISUlBeno60tPT8enTJ3z69Om7BkUcDgccDqfixpWioiLU1NSgqqoKDocDhmEqJlOWT/zIy8tDfn4+30mWSkpKUFVVhZycHEpLS1FWVvbVR0k0SmrUqBGaNm0KbW1tcLnc7x7FxcU//Fp1UVRUhKKiInR1dWFhYQFLS8uvJqmUf/+B/76f5Qt1yics0c2p+q2srAw5OTnIyspCYWEhZGVlISsrC2VlZejp6dW4SXo/wjAMLl26hM2bNyM0NFQsObW0tLBnzx788ssvYsknrPz8fNy5cwcPHjxAVlZWxWuskpIS9PX1oa+vDxMTE7Ro0YJ+huug7OxsbNmyBXv27EFKSkp1lyMxOjo6mDlzJiZOnAgtLa3qLqdGKSkpweHDh7F27Vo8f/5c5DxaWloICAjA4MGDpXKeXFRUhOXLl2P9+vUiTWgcMmQIduzYUatvuGdnZyMgIABbt25Fenq60ON9fHywY8cOem0nFfz9/bFs2TKhx9nZ2SE6Opq6yf9AXl4eLCwskJaWxipeT08POTk5rN97amtrV5yvGRsbw8nJCa6urmjevDn9bBNSi4lrsU1JSQnS09Px/v17JCQkfPd4+/ZttV5jkgZHR0d4e3ujf//+MDMzq+5yiIju3r2L9evX4/Tp0zVuAb28vDxMTU1hamqKpk2bQkNDAxoaGlBXV4e6unrF5+Uf9fT0oKGhUd1lkxouPT0dQUFBOHjwIO7fvy/0+G3btmHq1KlCj1u2bBn8/f2FHlfO0tISffr0gYODAxo1aoScnBw8fPgQ9+/fR0REBAoKCkTODfx3LyU0NBT29vZVyiOqhIQEuLm5ITk5WeQcGhoasLCwgLm5ecUksC8fWlpaIp8DlJSU4MmTJ7h37x6io6MRHR2Np0+fVmkRqKqqKjQ1NSvuC/P7WP65kpJSxf27rKysivt95Y+srCwwDAMZGRnIycnByMgIHTt2hKOjI9/7vuUNVuLj4/HixQvExMTg/v37ePjwoVR3uRNV69atMWbMGIwdO1boxutFRUV49+4dioqKoKurCx0dHbpHXcMUFhbi6tWrCA4ORnBwsMib+NRV6urq6NatG3r16gUPDw+JNuwmP1ZWVoZ79+4hJCQEISEhiIqKEmmBcDkFBQU0b968YiOnTp06wdbWVqrXonJzc3H//n1ERUXh9u3bCA8PR05OTpXz6uvrf9WMxczMrKIhy5eT5hs0aIDCwkJ8+PABHz58QFFREeTl5aGgoAB5efmKz8vKyr5ravPlo6ioCHJyclBUVISCgkLFXAxFRUXo6OjA0NAQjRs3hoGBgUgNjL5splpQUPDd3JPi4uKKTcPKP377eX5+fsWcuvJmKzXtfVk5JSUldO/eHa6urmjRogWsrKzQtGlTvt+74uJiREVF4f/Ye+/wuMoz7/9zpmuapFFvlmRLLpKr5IoL4A6GUBITWMJLTfgRQgiQ3YTdkGwIm7ALgbz7klBCCDiFDZgeU5biGBsXZFuWZUku6m3UpZFmJM2MZs7vD3kOo2pJHmlUzue6nutMOfOce0ZH5zzP/dz3937rrbfYvXv3RY31RosvAcPtduP1ejGbzVIBp9DQUCneJi4ujtTUVBITE3E6nVJSlUKh6JPE0b+p1Wq0Wi1arZbQ0FASEhJk0YSLoK2tjX379vHGG2+we/fucRddEwRBSr5OSkoiJiaGrq4ubDYbVquV0tJSysvL6ezsJCIigpiYGKKjo6XCY0ajEYPBgMFgwOl00tjYSHNzMy6XC6/Xi8vlorq6moqKioDFxgqCwC233MJPfvIT0tPTA9KnzMVx+PBhvv71rw+bVDNSjEYjV199NTt37mT79u0TUlAqmIiiiM1mo6qqioKCAo4ePcqxY8c4duzYRSfMpaens3v37jElxcn0xePx8OKLL/Lwww/T2tp60f1FRUWRkZHBnDlzBjQ5zii4iKJIS0sLpaWllJaW0tjY2GctzRfr6P9YoVBIY3Oj0UhiYiLJyclYLJaA+1U8Hg/l5eUcOXKEQ4cOcejQIfLy8kZdOGkwwsLCpHmBXq9HoVBI40DfY//me12lUklFSbVaLaIo4vV60Wg0WCwWIiIiUCgUOBwOHA4HSqVSKgTjX7SzfwFPrVY7InGCQOP1eqmpqaGkpIScnBy++OILDh8+PKgPJiwsjLS0NJYtW8b69evZsGEDs2bNkv1pMjITiNPppK6ujpMnT3Ls2DE++ugjDh8+PO7HValUpKam4nQ6sdlstLe3j9iHoVQq+4ix+PKg+ufz+PenVCqJioqS5mMxMTFERkZKxY79fUT+jwVBkPp1u919tr7HPt9dT08PdXV11NbWUl9f38d309+/p1ariYiIkK7XvuP6fE6+3L/Q0NA+uYC+55GRkaSmpk77sf5E4vV6yc/Pl0Sw9+/fj8PhCJo9Go2GK664ghtvvJHrr79+ygmmi6LInj17+Nd//Vfy8/ODbc6k4Oabb+a5557DaDSOuQ+v18trr73G448/Tl5eXgCtm1jCwsJIT09n8eLFLFmyhJUrV7J8+fIpkZ82ERw8eJC1a9cOu89DDz3Ek08+Oab+n3nmmQvGqLS3twdcIEcURTZs2MCBAwdGsrssvDJOyMIrMpOa4YRXfBiNRm644QZuvPFGLr/88mmZECOKojRJ81Wyamtro7W1lcrKSkpKSgLiYJUJHpmZmXzxxRcBCU4+e/Ysl1xyyZgqqCxevJhvfetbzJ8/n4SEBBITE/tUI5kMiKKIw+GgpaWF1tZWWlpaBjzu6emRJtT+ze129xFMsdvtOBwO3G43brcbj8eDRqPp41jV6/U4nU5Onz7N6dOnqauru+gqGDLTC71eT2ZmJikpKcTHxxMdHY1Go5GCSXwBPHV1ddTU1FBfX4/H4xngwA8JCSEqKoqUlBRmz54tqZRbLBaio6On5f1tKuF0Ojl37hz5+fmcPHlSEjqrqKiQFr0GQ6lUkpiYSEpKCllZWaxbt461a9cSExMzwd9gcLq7u/nTn/7Eb37zGwoLCwPW7+WXX86uXbtITEwMWJ8yMmPB4/Hw0Ucf8dJLL/Hhhx8G1bk7nuh0Om644QbuuOMOVq9ePaMDDMvLy3nppZd46aWXLlp056qrruKFF14gLi4uQNaNnKNHj3L77bdz6tSpUX921qxZvPrqq1xyySXjYNn4UVdXx9NPP82zzz47psAupVLJ448/zkMPPSQHFsj0QRRFfvKTn/DLX/5yVJ87ePAga9asGSerpj7PPfcc99xzz4Qe02KxsHbtWtatW8e6devIzs6e0fc8GZnJht1u5+DBgxw7dozc3FxOnjxJXV2dFLAjiqIk3mCxWEhPT2fBggXMnz+fxMRE4uLi6O7upry8nMrKSurr62loaBjQZqIfPCoqio0bN7J9+3a2bt1KfHx8sE2SCSBnzpzhySefZNeuXeNakXy8CQ0NJSUlhdjYWCIjI4mMjGTWrFmSGIPBYEClUuH1egeImtvtdjQajXRdkO/vU5/29nZOnz5NYWEhR48e5csvvyQ3N3fMQfmPPvoojzzyyJg+K4oiDz/8MP/5n/85ps+PJ8uXL+eNN95g1qxZQbWjtraW6667ji+//HJc+jcajaSmppKSkkJMTAwRERFSIoQvWLa9vR2bzYbNZqOtrY2mpiZyc3PJy8ub0oJqBoOB7OxsZs2aRWJiIhaLBZPJhNVq5fDhw+Tk5Ey5sc38+fO57rrruPnmm8nMlGO4Zgper5cvvviC1157jTfeeAOr1RpskyYVgiCwdOlSNm3axKZNm1i/fr1cPGqcsFqtfPTRR3z44Yd8/PHHw1ZWDwQWi4XVq1eTlZVFVlYW2dnZJCUlXbT/uaenR1p39q095+fnU1ZWFiDLpw5RUVHExcVhMpkGxE+43W7JN2C323G5XHR3d9Pc3DxpRVIChUKhYPv27dx+++1ceeWV6PX6MfcliiL79+/nhRdeYPfu3VN6bDUUsbGxfYT/oqKiJJEOi8VCTEyM1Mb6W/b09NDa2orb7R6QYDaWa0JnZydVVVVS0a7+QkD+rwGSEKrFYiE5OZmUlJQRJZ+IokhbWxs1NTWUl5dTVlYmbUtKSjh16tRFiVZNd6655hoee+wxFi5cGGxTZPrR0tLCT3/6U5577rmLEub0x2g0ctVVV7Fz506uuOKKKZuY6fV6KSsro6CggFOnTnHu3DmpcGB1dfW4xMx8+9vf5qmnnrqopDiZgTQ1NfHjH/+YP/zhD+N2jPDw8AFiLBEREZhMpj5No9FI9ylRFCXhC4PBMG1iM1pbW6mpqaG5uZmWlhY6OzulhG69Xk9kZCRRUVFERkYOKrLb09MjFe6rq6vDarXS0NAgiYP5xra1tbVYrVZqa2upra0NmOiZTqfrI55uMpmkx77mG7coFApMJpOUlO4rAtrS0kJxcbFUpLa0tHTGxcr7cg1CQkJISEhgzpw5pKSkSEIv/kn//kKTHo8Hh8OB3W4f9L7k9XpxOBx0dHTQ1NQkie2UlZVd1LpQaGgo6enpJCUloVAoEAQBu91Oa2srbW1tksiBx+PB6/UOaKIoEhYWRlxcnDSm9hfqHEwEx1eUUqvVSgL9Y7kW9PT0SN+9/zH8RYdkZC6G5uZmzp07R3Nzs5R752v+zzs6OqTz2v//WxRFGhoaJN9EIMRxZYJHXFwcCQkJA8Y5JpNJEjBQKBQkJCSwZMkSFi9eHPBE+qlKR0cHRUVF5OXl8dlnn/Hpp5+OqaBiIElPT2f9+vVs3LiRq666aloUifF4PLz22ms899xzHDhwYEb6a+Lj4/m///f/8vWvfz2gY4GioiJef/11du/ePS3EbaKjo7n66qu55ppr2Lx585T1XwSCBx98kKeffnrYfQ4dOsTq1avH1P++ffu47LLLxq3/oXjzzTf5+te/PtLdZeGVcUIWXpGZ1IxEeMWfyMhIrrrqKrZs2cLGjRuJjY0dR+tGh9PppK2tDUEQ0Ov1qNVqamtrKS8vp6amhra2NimgzNeam5ulKh2BUuGXmXzMmjWLzz//nOTk5ID1eerUKTZv3hyQylNqtZr4+HjCw8MlZ+zs2bNZtGgRmZmZGI1GqdKIz6HmO9994kBlZWVUVlbS2toqqZHqdDpJBdU30PN3lnm9Xtra2gYIq/gWsmVkZhIKhYLY2FgSEhLQ6XSScn18fLxUnSo7O5v58+fLDudR0tLSwunTp6moqKC7u1taBCktLaW4uJjy8nKsVmvAg5/T09NZu3Ytl1xyCZmZmcybN4+IiIiAHmM4PB4Pu3bt4mc/+1lAK1wZDAaeeOIJ7r777kkl2iUjA70Vcr/88ks++eQTDh8+TFFRERUVFcE2K+BoNBqWLVvG6tWrWb16NatWrSIxMXHY6rpTma6uLj777DP+8Y9/sHfvXo4fP37RAbcWi4Unn3yS2267Laj3VZfLxa9+9Ssee+yxUSenKZVKfv7zn/Mv//Ivk/pvL4oiR44c4eWXX+bll18ec8BvdHQ0f/vb3y7o4JSZ2Xz22WfcfffdFBcXX3Dfu+66i9///vcTYNXUpaenh8WLF1NUVBQ0G7RaLStXrmT9+vVcddVVrFq1Sh6DykxZ3G43zc3NdHd309PT06d5PJ4+j/V6vVSdJzQ0dFyqtfT09NDQ0CAFhkLv/5xKpaKhoYGamhop8cnhcFBQUEBOTk7AgtxnMtHR0axYsYIVK1ZIyX3x8fGyv2cGYLVaef7553nzzTenRbDHWFGpVMyfP5+0tDRSU1MlsYbU1FTcbjc1NTU0Njai0Wgk8Qa9Xi8lvPkS7GQmjvb2do4dO0ZOTo7UAulv+fWvf82DDz54UX2IosiDDz7Ib37zmwBZdfHcfvvt/O53v0On0wXbFKBXoPvuu+9m165dwTZFZhIRFRVFcnIyqamprF27lh07dpCWlhZss2SCjNfrpbCwkL1797J3714OHTpEXV1dsM2aVKjVatasWcPatWuZNWsWCQkJ6PV6KZZisKbT6YiLi5ty1ThHQ09PD8XFxeTn51NQUEB9fb1U8daX7BUeHi4lBKrVakRRpLOzk/r6ej7++GNOnjwZ7K9BREQEWVlZLF68mEWLFjF37lwsFotUTddfRFAURerr6yVhFd+2sLBwWopfyFw8ycnJ3Hnnndx2220kJSUFvP/m5mZ27drFCy+8wOnTpwPe/1TAZDJJIiyxsbFER0djMpnQ6/UIgkBzc/OgbbgEO7Va3afitsFgkJJQNRqNlMDlS8ZuaGigqanpor+LfxVvXzOZTFJhqPr6eulaKzM6NmzYwOOPPy6L808BCgoKeOCBB/j4448D2q9er2fLli187Wtf44orrghKoZauri7q6+sHFCRsaWnB6/ViNBoxGo04HA7q6+uprq6msLCQwsJCOjs7J8TGmJgYXnzxRa666qoJOd5M5fDhw3z3u98lNzc32KYMQBAEDAYDJpMJi8Ui+XGTk5MlIQffNjw8fMTrHD7hsMbGRhobG3E6ndK9dbRrY16vl66uLhwOhySM0djYSFFREYWFhRQVFVFUVDSqeW14eLhUnNGXvG+320f8eRmZ6YZarSYuLo74+HjCwsIQBAGv10tzczN1dXU0Njbi8XgkYRVfodzh8IkEKZVK6X8/PDxcGgOHhITgdDqlubVPyFMQBMnXYDKZmDNnDnPnzmXWrFl9xs2TOZZOZnQ4HA5qa2upqqqSCgIUFBRQWFgoxTnIyIwVnU6HWq3u03zXMZfLhUKhICoqSvIv9J+jh4aGolKppOuSf1MqldL6tn8LDw8nMjKSsLAw3G43XV1dtLW1UVdXR11dHe3t7YiiKAlo9W++IigtLS2SoJyv+QS5/AW4vF4vISEhmEwmjEaj9B29Xq9UfHoyFBDIyMjgsssu49JLL2XDhg2TKld4PGhoaOC9997jf/7nf/j0009nhAj197//fX7+859jNpvH9ViNjY0cOHCA/fv3k5eXx5kzZy66yGsw0ev1bN26VcqlD3bBl4lEFEVSUlKorKwccp/ExEQqKirGHFPc0tJywRy/F154gW9/+9tj6n8wXC4XmZmZI4pzP48svDJOyMIrMpOa0Qqv9MdkMpGQkEBycjJZWVmsWrWKFStWEBcXN+ZAZY/HQ21tLSUlJZSWltLa2ioNfn2DSn+BCN92opzZMlOLHTt28NJLLxEdHR3wvs+ePcumTZuorq4OeN8yMjKTk6SkJLZv305iYiJarRaTyURqaippaWmkpKRMmLO4p6eH6upqWltbcTgcdHZ2DmhdXV10d3ejVqv7qAabzWaMRiMej0eq4KNWq9HpdH1U4gfbKhQKRFGko6OjT7UhlUrF6dOnOXbsGKdOncJqtUoVBAIR0BIooqKiWL16NZdccglr1qxhxYoVF1W9ajB6enp44403ePTRRyksLAxo39u3b+fZZ58lJSUloP3KyIwndrudkpISWlpapEX70tJSSkpKsFqtaLVaIiIipAAAl8uFx+MhIiKC+Ph4IiMjcTqdA6p1u1yuAQ53tVqN1+uls7OTjo4OqqurKSsro6ysbEISVE0mE9HR0WRkZLBkyRKWLFnC0qVLmT179pRLUm9qamL//v28/vrrvPfeewELYDCbzTz44IP84Ac/mFQK6Pn5+dx2220cP3581J9dtGgRzz///KQKDBRFkaNHj/Laa6/x2muvDev0HAlbtmzhj3/8IwkJCQGyUGY609XVxS9/+Ut++9vfDrkoeNlll/HBBx9MmgTIycz//u//sm3btmCbISGr+ctMZtxuNxUVFRQXF0vV4oqLiykpKaG+vp62trYx9x0SEiIFbfgCOQbbGgwGScDF4XAMKnbse81ms037hfvJgMlkIjs7m5UrV0piK7NmzZJFVmSoqKjg/fff59ChQxQUFFBUVBSwypczgYiICJKSkvpUPPf5SOfMmSNXJxsjTqeTyspKzp07R35+Pvn5+Rw/fpzTp0+Pyz1DEASee+45vvOd7wSkP1EUefTRR3n00UeDWiEsNjaWJ554gptvvnnSXe9FUeR3v/sd//Iv/yKva88gNBoNixYtIisri2XLlpGWlkZycjJJSUnynEpmxNTW1pKTk0NxcTGtra3YbDaampqoqqqioqIi4PEKERERhIaG4nA4sNlsdHd3B7T/YCEIAvHx8SQmJmIwGNBqtRiNRqKjo6WCNjExMX0eT0SFeZfLRUdHh7T+YbfbUSgU6PV69Hq9lNzkK0AFvYJex48f5+DBg+Tl5ZGfn09RUdGMSP7X6XSYzWacTicdHR0zsjKpzOj52te+xve+9z02bdo0IWt2oihy4MABnn/+eXbv3i0LAcnInGfZsmX88pe/ZNu2bZNuviYzNKIosmfPHh588EHOnTs3LseYO3cul156KcuWLWPu3LmkpKSg1+v7xKwplUo8Hg92u10qTOhrvucOhwP4Kpnct/VPajx79iy5ubmcPXt2Uvvob7nlFp566ikiIyODbcqMwOPx8Ne//pWnn356UgqwjASfQJnvvA4NDSUqKgqLxYLX65VirxobG2lqarpgcaKQkBAiIyOZN28emZmZREZG0traSnNzM9XV1VRVVVFbWysLosjIyAxKSEiIJOjka5GRkURFRUl+GF/zvWY2m+Ux4gTicrmwWq3U1tb2aTU1NX2eDyeSKSMjM3UJCwtj586dbNu2jQ0bNhAVFRVsk4JGVVUVf/7zn3nnnXc4fvz4tCpin5mZyXXXXcftt9/O7Nmzg2aH3W7n7NmznD17ljNnzmC1WlEoFJI4fFNTE42NjVJunMPhoKmpaVLG8KSnp7N582Y2b97M5ZdfTnh4eLBNGjfy8vJYunTpsPvcf//9F12cJyEhgdra2iHfv++++/jv//7vizqGP7/5zW944IEHRvMRWXhlnJhRwiuCIOwGfiaKYkGwbZkKCIKwFfiFKIqrgmjDRQmvDIXFYiEzM5P09HRJXdDtdtPe3j5ss9lsshNOJiBkZGTw1FNPjXuCUnl5OVdeeWVQK1DLyMhMDgRBICIigtjYWOLj41mwYIF0L4yKiiIiIkJaALbZbDQ0NNDQ0EBLS4skgOJ0OnG5XNLjwZ7X1tZSVlZ2wcWv8cAnajBdKmyrVCqWLl3KqlWryMzMlNqFVDMHo729nV27dvHUU09RVlYWMBt1Oh033XQT99xzDytWrAhYvzIyM4mOjg4OHTrEP/7xD956660JrzBnNBpZtGgRmZmZZGRkEBkZSXd3Ny6XC6PRSFxcHFFRUbS0tEiVxX3iWf5br9dLbGwsKSkpJCcns3DhQhITE8e84NjR0UFFRQXl5eVSKysrIy8vj5KSkoD+BgaDgfvvv5+HHnoIi8US0L4Dhcvl4t///d95/PHHRx1gJQgCN9xwAz/84Q9Zvnz5OFk4PF1dXezfv5+PPvqIt99+m9LS0ovuMy4ujqeffpobbrhBXtiWGTVOp5O9e/dSVFTEuXPnsFqtGI1GrrzySnbu3IlKpQq2iVOGX//61/zwhz8MthkD0Ov1rFmzhjlz5pCUlERPT480Z/HNb/znOQBarRatVovZbCY+Pl66B5rNZsxmMzqdDqVSiVKplO5/brcbi8VCUlISRqMxyN+6L16vl9LSUkls0j+IVxAEtFot0dHRWCwWqerqVMUXkKnT6S54TxBFkaqqKkpLS6moqJDGGxUVFdTW1qJQKIiLiyMhIQGz2SzNMX0VX3zz3urqalpaWjAYDMTGxhITE4NGo0EQhD6tra2Nc+fOUYt9rHIAACAASURBVF5ePm3mqjJjIzU1lWXLlpGRkcGCBQtYtmwZ8+bNm3IiiDLBwePxUFNTg9VqxWq1UlpaSl5eHidOnKCgoEC+vowSg8EgBcz6qh3OmzePuXPnMnfu3IDc00VRxO12D2jNzc2UlZVRXl5OW1ubVBGtpaWF2tpa6urq6O7uRqVSSeMOX7NYLGRkZLBw4UIWLVrEggUL0Gq1AfhFevGdZ76goYaGBvLy8sjNzaWgoGDYYJJAEx0dzUsvvcSOHTsC3vfx48f5j//4D956660JTWDS6XT88Ic/5Ec/+tGkGzf2p6KignvvvZc9e/YE2xSZABMSEsLSpUvJysqSWkZGxoirRMvIjBW73c6pU6fIz8+noqJCSppwOBxSdXSj0ShtjUYjBoNBEvPwtfDwcNLS0voEioqiiM1mo6amZkCrrq6mpqaG4uJiOjo6gvgLjB96vR6j0YhCoUClUhEdHS2tAftaamqqNO9wu93U1NRI8+GKigoqKyupr6+XhDjtdru0BtzZ2TkqsRSlUolOp8Plck2rAPBAokNgLhpmoSYRFRaUhKEkBAE1AgLQhUgnXjrPb630UIabMlzUI4/9pwt6vZ5/+qd/4qGHHmL+/PlBs6O5uZk//elPPP/88xO+RikjM1lIS0vjscceY+fOnbKvbgrjcrn43e9+xxNPPDGhPgwfPuGV6U5qairPPfccW7duHf+DdXXD2XKotEJ1PbS0QVsHdDnB7QYRCNGCXgf6kN5tXBSkJkJqAsROv+RMURTZv38/v/71r3n33XeDbY6MjIzMjEKj0fQRx/Wt9y5btoz09PQp52MVRRG73U5bWxs2m03adnR00NPTg8fjwePxSI99wrz9xXn9X/MVNfR6vWg0Gkncxn8rimKfnIP+raOjg9raWhobG0f9nWSfi8xkxIxihOdk73npOyfrmPg8nGBjNpvZvn073/zmN9mxY0dA18GnCz7B88OHD3Po0CEOHz48pPD9ZL0mrl69muuuu47rrruO9PT0cTnGRCCKIq2trVRXV9PW1obD4aC1tZWcnBwOHDhAbm5u0H0EgiCQnZ0tCbGsXbt2WhWjfOyxx3jkkUeG3efzzz9n/fr1F3Wc7du389FHHw35/mWXXcbevXsv6hg+mpubSU9PH7Ko6BDIwivjxEwTXvECXuB1egVFCoNs0qREEIR1wC+ADQCiKAYt8n68hFdkZIKBWq1m48aN3Hzzzdx0000TlsjlcDj48Y9/zDPPPDMhx5ORkZGRGV9iYmLIyMiQAiYzMjKIiYnBbDajUChobGyUWm1tLYcOHeLvf/97wKqUajQaNm3axDXXXMPOnTsnrUiBjMxUpaCggDfffJO9e/dy6NChKV2tMyYmhuXLl7NmzRouvfRSVqxYMcAZ7vV6KSsr48SJE31aoKugDoZOp+Pee+/lRz/60cQronu9cK4CTpf6BQrZoK39fKBQD4ji+UCh80FCeh1l3Q5+887rHGmsoQw3DaN0bi9atIjFixeTkZHBqlWrWL16NQaDIWBfy+PxUF9fT21tLZWVleTk5HDw4EG+/PLLgJ3LCoWC++67j0cffRSz2RyQPmVkZC6Ov/71r3znO9+RKvXB5F28G0/MZjMWiwWj0YjZbCY8PByLxdKnhYWFSQIvvspuvupu/QNKXC4XOp0Oi8VCRESEtNXr9ZK4SE9PDxUVFZSUlFBVVUVdXR21tbWcOnWK3NzcESWWKRSKPpWbfNWzo6OjCQ0NRaPRSM1nt68pFApsNhstLS10dHRIwi5DNZVKJSXM+SfR+T8eLCDJ6/Vy9uxZjh49ytmzZyXhgbq6Ourq6qivr6enpwe9Xk9KSgqpqalSi4+Pp7u7m9bWVr788kv27duH1WoN+N9fRsYfvV7PypUrWb16tdRiYmKCbZbMNMVut5OTk8OhQ4c4c+aMVO2tvLx8UlbYmQpER0cTHh5OWFgYarVaCiwdrA0mruJ2uyckiEapVEpiMb77t1arHSC21t3dLVX+a29vHyASJggCVquV4uLiSVHp/vrrr+e5554b93n6mTNneOKJJ9i1a9e4JoZbLBbuvPNO7rvvPpKSksbtOIFGFEXefvttHnnkEQoKJqamzUycQ4w3qamp7Nixg5UrV5KVlcW8efNkoVGZGYkoilRXV1NQUCC1wsJCqqqqaGhoCEoxiYlEp9MREhKC2+2ms7MTr9cbbJOGJAwFWzCwCQOzUBONEh0KGuihnh6O0s0e7Jxm5GIwo8GEgueI7fOaCHyLsSdvz0LFFRhZj55VhJCCmouREXcichIn++lkP50coJNWJu/fVKYvKSkp7NixgyuvvJLLLrsMvV4fbJMkRFHkwIED/P73v2fPnj20tLQE2ySZSUhmZiZr1qxh3rx5REZGYrfbqa6uZv/+/eTk5Ewp0S2VSsVVV13Fbbfdxo4dO+Rx8jSip6eHDz/8kBdffJG///3vQU90mi7MnTuX++67jzvvvJOQkJDxOUhFDXywH/YfgyMnoby2N2ZirGg1sHgurM/ubeuywBIWOHuDzIkTJ3jsscd44403gm3KhLIC3bDzhf/FQcc4jY/1CPwbkQNe/zdGLw4gM3OJRsnGPuewQAMe6Rw+xvjFCWoR+D+EDnj997SN2zFnCgqFguTkZJKTkwkJCUGr1aLT6aStfyEcnyC/rzmdTtxut1QIBnpjT8LCwqSYcECKEem/VSgUKJVKSdDft+3s7OwjqNJ/a7PZJrWPaCRMNZ+L2WxGq9Vis9lGJXQsM3XQIHA5eumczERLNGNLx3UiUoGbPLrZTxf76SSf4K/jBhKlUkl2djbr16/niiuuYP369ZNfxKq+CT470hvz3dAM3S6ItkBMBCxf2NvGi24n7HpnoEnXXIrVasVecBbNp4cJOVpEVJmVSLsLgbHPpwJ1TYyNjWXTpk1s3LiRbdu2kZCQMGabphIdHR0cOXKEAwcOsH//fg4fPhywXK6xotPpWLduHZs2bWLz5s0sW7ZsShfrW7VqFV9++eWQ70dFRWG1Wi/6O/7zP/8zTz755JDvR0RE0NjYGJACsnfccQd//OMfR/sxWXhlnJiJwiu+LywCu4HHRFE8FTyrJg+CIFwC/BzY6HsJEGXhFZlA40vSMBqNhIWFERYWRmhoaJ+tz1mg0WhQqVT09PTQ1NREU1OTlEzue9zU1ITdbg/215KwWCwsXLiQsLAw9Ho90dHRrF69miuuuIKwsOA57j/99FPuvPNOKioqgmaDjIyMjMzUZO7cuWzevJlNmzaxZcsWTCZTsE2SkZkROJ1ODh06xKuvvsrrr78+WgXbSYdOpyM1NVVKNPJV1pzosbzZbObee+/lBz/4AdHR0RNzUK8XDhyH9z/vDRQ6XgiusQUfivQGwIqil0Y8kmP7czrJG+XiilKpZOnSpcyZM4fExETCwsIGLNBCb0V4s9mMyWRCrVajVCoRRZG2tjZaW1s5c+YMx44d4+TJk+MqFrRq1SqeffZZli1bNm7HkJGRGRvnPtnHX2+5h7Q625QIaJjK+Hxl0DtWmG5Bw/7iLAqFAo/HQ0dHR9AXH2VmJiEhIRiNRgwGg7QNDQ0lPDxcamFhYYSHhxMdHU1cXByxsbEkJCRM6cVpmemB1+ulpqaG06dPk5eXx7Fjxzh+/Dhnz54NtmkyMoOSlpbGL37xC775zW8GJChlpNTU1PD000/z/PPPB8w/odVqWbduHTfffDM33njj+CUkTQCiKHLw4EFeeOEFXnvttYDO+adaUPRkJTw8nKSkJGJjY7FYLISHh5Oens6WLVvIzMyc0P8nGZmpiNfrpbW1lfr6+gHt7NmzfPzxx7S3twfbzGnPYrT8hEiuxYTC73XfFax/ZOMZXPyURt7gwoKzoyEaJVbSpeMJ54+t4vSo+jEgcCth3EEoS/mqgmQgr8j+wY+f4eBlbLxJB86LCKaXCTxms5nVq1ezbds2rrzySubNmzcl7s2iKFJeXs7x48c5cuQI+/bt49ixY9PODylzYZRKJevXr+eaa67h6quvZs6cOUPu63A4+Pjjj3nnnXf4+9//TlNT0wRaOjIEQWDDhg184xvf4IYbbpi4dWKZoGG1WnnllVd48cUXKSkpCbY5Uw61Ws22bdv47ne/y7Zt26TE74Bid8Ar78BLb8IJvzFXIHNbfPdeQYCNq+C2a+H6LaDTDv+5KUJJSQmvvPIKr7zyCpWVlcE2Z1yIQsk/E8HthBJ+geTlHkQ+oZOf0RhwAYv+8wUfo50vyMw81MC3CecuwljM8NeeBjy8STu/opkaAisUK5/DMtOBqeBzCQkJYfPmzWRnZzNnzhzS0tJIS0sjIiJC8gm0tbVRVFTEqVOn+Oijj/jwww/7FLuSmVpciZE7CGUbRkL8zsZAnJf+Z50NL6/Tzi5sHGTqFWAxGAysXLmS9evXs379elavXo3RaAy2WRfG5YLf74YXd8PJC8RaRFt65xoPfxsSY4ffd7TUN0HcpV/Nb6B33vT//m3I+VTfq5bYb5o1smvaaK6JgiAQHx/PihUrJLGVBQsWTAl/6HjjdrvJzc3liy++kFpdXV1QbQoPD+fyyy/nkksuYdWqVWRnZ0+ZuIa6ujri4uKG3ee2224bi4jJAHbt2sWtt9467D61tbUXtOdC7N27l40bN154x4HIwivjxEwVXvFfmxWBd4BfiqJ4LFi2BRNBEC4Ffgpc5nuJr34nWXhlmmMymaSb5OzZs5k1a5Z0o+xN5hu6QW81xYaGBhoaGnC73ZhMJkwmE2FhYcTGxhITE4PFYpHEVlQq1bgMmrq6uiRhFt/CXUxMDDExMQiCQFNTE5WVlRw7doycnByOHj1KTU3NRR1Tq9WyePFiFi1axPz585k3bx5Llixh1qxZk3Zg2NXVxR//+EdefPFFcnNzg22OzCRFrVYze/ZsIiIiUKlUqNXqAVu1Wk1nZyfV1dVUVVVRX18fUBuUSiUxMTFSAktKSgqZmZnMmzcPr9eLzWajq6tLsqWpqYmioiLOnj2L3W5Hr9cTEhJCc3MzxcXFcoKWjMwYUKvV3HTTTdx///1kZWUF2xwZmRmP0+nk1Vdf5Ve/+pWcKDdGIiMjeeCBB/jud787cYKI5TXw27/Cn96FRj/hnAD4YiQBFj8HdgkuXsbGn7BRHeAF+GAyb948/vVf/5Vvfetb4xPQJSMjMzb6BUP6rku917jA+JzlJBIZGZmLRRAEdDodCoWCzs5Oya9tNBpJSEjo0xITE0lLSyM9PZ1Zs2bJlW5lpiXt7e2cOHGCEydOUFdXJyUaHz16lKqqqmCbJzPDMJlM7Ny5k1tvvZV169YFdb5nt9v54IMPePfdd9mzZ8+oxW+XLFnCjh072Lx5M2vWrEGn0134Q1OMjo4O9uzZw+uvv84HH3xAV9fogzrHJyjaL4hVAPH8cxE4Ea7hd11W/tLVMKXnEEajkSVLlpCVlcXixYtJSUkhKSmJxMREDAZDsM2TkZnWuN1uDhw4wJ49e/j73//OmTNngm3StMKEgt8Ry02YgdHdD0TgGN3cSA1lfCVyrlQqWbNmDatWrcJgMBASEiI1r9dLZWUlZWVlnDlzhqKioj6iYv5JaP6BhSNNQlMDPyKSB7AQimLA97n4O5HQG1ffv6PzB+pUCrxq8vATewUN7vETSJfpFVRJTEzEYrGgVCoRBAGz2UxsbCyxsbEkJyezatUqFixYMG3WNDo6Ojh69Ci5ubnk5uZSUFBAbW0tDQ0NzKT445nChg0buOOOO7j66quxWCyj/rzH4+HQoUOSCMvp08FL5g0PD2fTpk1s3bqVq6++mtjYACc+yUwJRFHk8OHDvPfee7z77rsUFBQE26RJi8lkYs2aNezcuZPrr79+TNeAEeFywX/+AZ5+BWz2gfETgYq/HqpfkwHuvgF+fBeEhwbmWEHG6/Xy+eef8+abb/L2229PC1+vAvg5UTyABR3CiOcLvr/6m3RwN9aACfNe7HxhupGWlsbatWtZu3Yt2dnZaLW9giKdnZ20tbVRX19PYWEhBQUFnDp1irKyshk5bryTMH5OJLGoRnUOOxH5La38hEZcAfJryuewzFRm/H0uvQzVbwdenqeVx2mmbZD7il6v57rrruPGG29k06ZNo05c7+7uZv/+/Rw6dIjDhw9z5MgRWlpaxvYlZCaMb2HmJ0SShgYY+vy5GIbqswQXT9PC72ljMsnk+orWL126lIyMDObOnUtERARhYWGYTKZJm2c5JC/uhp89A3VNI4/5FgTQauDem+Cx+3sfBwJ/4RWv33VIoRjTfGrgtxnk+4l9X/etwbp1agrXL6LkG5djSIwjLCyMhIQE4uLiUKvVI/k2Mx6f8PUXX3zBwYMHKSgooKqqiqqqKnp6ghP7r1KpWLx4MatWrWLNmjVs3bqVmJiYoNhyIf7whz9w1113DbvPG2+8wfXXX3/Rx8rNzb1gLt2HH37Itm3bxnyM7u5uFi9ezLlz58bycVl4ZZyYqcIr0kvnt77XPgb+SxTFzybUsCAhCMLVwI+B1b6Xzm/9i3f0iKIYoLv86BlKeCUkJGRMwVwzBd8Cr16vR6vVotPp0Gq1aLVaIiIimDNnDnPmzGHevHlkZGTM2AByq9VKTk4OxcXFtLa2StXa29raaGtro6OjA7VaLf2G/oH3GRkZLFiwYEoPCnNzc3nppZf4y1/+MuoAUpmRExISIgU/xsfHExUVRVRUFJGRkURGRhIREYHX68Vut0vVFBUKBaIo4nA4+lR1FgRBatAbNGQ0GiXBI19TKpV0dHRgt9vp6OiQmiiKKJVKVCoVKpUKpVKJUqnEYDBIn42LixtTYonT6aSmpkYa7FdVVVFdXU13d7ckvKTRaIZ87HseGRnJ7NmzSUpKCti1SRRFGhoa6OjooLu7m66uLmnr/9hms1FSUkJxcTFVVVXY7XYcDgddXV3S7+71euns7MTrnf5VEmVmLpGRkdxzzz3cc889F628KSMjE3g8Hg9vvfUWzzzzDPv27Qu2OVOClJQUHnjgAe666y70ev3EHLSpFX70617BFY933AKFev3a3j7BCT65gzfo4BEaOYcrIMcKBtnZ2Tz88MNce+21KJVB04SVkZHpzwiCIX11E/zf+urSN9g18PwnRL/nAxbverlQQIOMjMzMwmw2k5qaKrWUlJQ+jw0Gg+RLE0WRzs5OBEGYuHGhjMwUoqamhtzcXEpLSyktLaW8vJy2tjZsNhvt7e20t7djs9lwu90X7kxGZggEQWDLli3ceuutXHvttZPyeuxLsvclCfaviq3T6Vi8eDHZ2dlkZ2ezdetWkpKSgmRtcOju7qagoIDi4mKKi4spKSmhqqqKyspKKisr+ySxQyCDon3rZOcf9397iLmJ16CjcvtqTmxfQWOPk9bW1gFrw/7b1tZWPJ7hQ1UVCgWRkZHSup9Go8Hr9UrX0LEQERHBkiVLWL58OVlZWaSlpZGcnNynEqaMjExwKS4uZs+ePezZs4d9+/bhck1d32uwWU0IfyGeZNQDgtVGgu8zrXi4L8qN8dotbN++nU2bNhEaOrLkWY/HQ3l5OQUFBRQWFlJ2OIdn3ynsEzQ30iS0SwjhJeJIQ9Pn/jTYdxrp9+299n8VHyKI4uBrC/0ccKLZQNsPbyV//UJKS0spKyvrs7VarRf8PiqVCrPZjNvtxuVy4XQ6B+yj0+n6CNv4mlarxePx0N3dTXd3N06nk+7ubmw227hWbxYEQYpBMRgMmM1mqZlMpj7PjUZjn5g6X9NqtYSEhKDT6VAqlfT09OB2u1EoFISGhmI2mwkPD8dsNo/b95hq9PT00NjYSF1dHVarlcbGRgRBkOJ9rFYr1dXV1NfXSzE6LS0tlJWVSYXVfKhUKrxerxyPEwQUCgUrVqxgy5Yt3HLLLcydOzeg/be2tnLs2DGOHj3K2bNnpfgym83W5/911qxZUqGwpqYm6urqsNlsUvyW/1alUknjcYPBIIkghYWFkZycTHJyMunp6SxevFheY5QZQHFxMbt37+b111/n+PHjwTYnaBiNRrKysli+fDnZ2dksX76ctLS08RcN++I43PETKK4cMI4ZgO/90c6JRzhuwmyE/7gfvnvT6Pqf5IiiSF5eHkePHqWkpKRPs9lswTZvRMxGzV9JYDm6Uc8X/Pcvx801VFPAwPHsaPEXrfAdJ5CiFWazGZ1ON6BArv9j3/jU5XJN6JjJYDCwcuVK1qxZIwldRkVFjaqPzs5OioqKKC4upqamhpqaGhobG/F4PNIY0P/xYM+7u7uluPienh4UCgWCIOBwOGhubu6TpOoT3xxsLjMRhKHgD8RxDaYLzhH9EQSfz1MAARwLUvnk3mvIa6iVEnPHOq8a73NYRma8GA+fy2CfG64/X5/tePk3GnlRbWfRokVkZ2dz2WWX8bWvfQ2j0TjKow6NKIrU1NSQn59PQUEBra2tGI1GQkNDCQ0NJSwsjNDQUIxGIxqNBrVajcfjobOzU2oOh6PP887OThQKxZB5PBpNb9poY2MjDQ0N1NfXS9u2tjZcLpfUnE7ngK0oin36UqvVA7a+uZlv7uYTaoiIiJB8N76tRqOhubmZpqYm6fj+x3M6nTgcDmkt25cD6Ht8oTWei2EOav5AHOvQj/icHG6fwfYfar/+xyvFzf3U8QHj53MbjujoaDZv3syWLVvYsGEDqamp02M9q9UGdz4C73x24TlLf/znMCsWwlv/D+JGN24aFJ/wiv8x/G2S51PTAo/HQ11dHZWVlVRUVHD69Gny8vLIycmhpqZmwu1ZuXIlO3bsYNu2bSxfvnzS+NiuvfZa3nnnnSHf991DAnFv7u7uxmg0Dntf+cEPfsDTTz895mM88sgjPPbYY2P9uCy8Mk7MNOGVfwZ+BugZXoDlBPAk8JooipNJ/O2iEQRBA9wCPAjM9718ftv/N8kF7hJFMXfiLOzLUMIrGRkZ/O1vf+N//ud/eP3112dUxXelUkl6ejpxcb2qcOHh4aSkpEhiKnPmzJGDr6YaXd1wthwqrVBdDy1t0NYBXU5wu3v/M0O0oNeBPqR3GxcFqYmQmgCxFzcI7+7u5u2335YWkmpra6dkgJBOp8NisWCxWNDpdINOrlUqFUajUWoGgwGDwYBOp0OlUqFQKHC5XHR2dtLV1SVte3p6iIuLY8GCBcybN4/o6GipD5PJhNFoRBRFaXIPEBcXR1JSEuHh4fL/4zRDFEVcLhcVFRXk5+dz6tQpKisrqa2tpaamBrvdTk9Pj+TY94na+BxE8fHx6PV6KajE12w2GxUVFZSVlcliSJMcs9nMokWLmDdvHikpKSQnJxMdHU14eDhGoxGv14vb7aaxsZGKigrOnj3LwYMHOXr06KROTImLi+OnP/0pt95666jVtmVkZILD6dOneeGFF3jrrbcoLy8PtjmTCo1Gw3XXXcddd93Fxo0bJ7ai4GsfwHd/Aa3twzuux+rU9v+8L4kYUQqq8J/ge4Df0MK/0UBwNLDHxuWXX87DDz/M5s2b5bG0jMxkY4KDIUXpJfF8f6L0ui+g4Vnk+ZOMzGRCEAQyMzPJyspiyZIlREREoNFo8Hg8tLe309LSQklJCUVFRRQVFdHe3j6gD7VaTWJiIjExMURHRw/ZEhISZN+bjMwEI4oiTqdTEmNpamqisrKS8vJyampqJB95dXU1JSUlIwpqFgRhRla6nClER0ezaNEiVq1axcqVK7nkkktGHZQfbHyJfWq1GrVajdFolO89wyCKIk1NTVRUVFBRUYHzs8Ns+utnRLZ1+QWEisMEoApfBf8LXyWdf/X+oAcNaACgrziCT4jF368fEhIirQcM5W8qLy9n3759nD59WipW4CsQ0NHRgSAIpKamsnr1alatWsWiRYuYM2cOYWFhw9olIyMzubDb7Xz++ed8+umnfPrpp+Tl5QXbpCnDlRh5nQS050W0+gerXSixQDz/TEpIUykRdv8Gvrbx4gyrb0I8XzXU54sSAYO2dNhx7Z2E8QwxqEf5ffz3EvDdyvrd88biV/N9btta+Mt/QXhfIZquri4pKdHj8UjNF98QExODxWLpc58TRZGenh6cTidKpRKtVjumdZf29nYprqKmpoba2lqam5sHxE74RFOjoqKIjo7GYrFIBcdMJhNJSUkkJSURFRUlJQrN1KJjU5mOjg7a29vR6/UYjUap+JkoilKibf9z1Jdo3NXVhdVqpaKiQhL/q6yslGJ2HA4H7e3tUy7+TaFQ9BEC0ul0eDweOjo6sNlsF51grdFoSElJ6dMWLVrE+vXrRyxaNS2ob4LPjvTGajY0Q7cLoi0QEwHLF/a28aLbCbsGSQz5zg3jd0yZYSkpKZFEWI4dOxZscwKKVquV4l19987ExESpxcbGTmwcBfRWjP/eY+DuGTiXH2pu35+h/IjjMG6aboiiKK3RDNbq6uomhQBaNjo+JIlwlCMeXw+VCANgx8sWKvmSbkaKQqEY8FuMVrTCFzesUChQKBSEhYURHx9PfHw8cXFxUktOTmb27NmEh4eP2D5//1tlZSVtbW2SePpgraOjQxIx6enpwWazDfB5abVaEhISSE9Pl4rU+razZ8+e9ONtURSx2+1S8QXf9c0nCumfE+C/7Z9n4HQ6aWxslMSVm5qa+rznE5f0iQz4o9fr0Wg0zPIoecdhIck72DnsS44+/8w3DxTF8y/1uy4CxEfDP16GtGTcbjcFBQWcOXOGc+fOUVpaisPhkGzRaDSEh4cTHh4u/Q6+ZnR08+2f/RnRzwsrAnffuZbKykpJkN9fwEZGJthcvM9lsHUFYbg3ezlfK8q/wFTvyoUAgoB3yxqUrz457ccOo0EUxUmzduYryNPc3Ex5ebl0ffPdE/2b3W6XrqEtLS1UVlYO2/dWDLxKglRkoP85ONLzMhD4j39eoI37qWO8s1Sio6NZvnw5mzdvZvPmzSxcuHDS/N0DRlk1bLoDKmoHn7PAwLnHYK8PbCdTeQAAIABJREFUch+/KOqbIHbDwNd9czp5PjWtEUWREydO8O677/LOO++Qmzvxqf7h4eFs3LiRrVu3smXLFlJTUyfcBujNgY6IiKCzs3PIfbZt28aHH34YsGNmZGRQVFQ05PuRkZHU1NRIImajIScnh0suueSCY3Cj0Yjdbh/sLVl4ZZyYUcIrAIIgpALPAlsZfIzjQwRqgd8BL4qi2DgxFo4PgiAkA3cDdwERDPyu0q5AF70CNU+JohhUD9pwwisFBQVA783j5MmTvP/++3zyySccOHBgyi2aQe8NyF990tdiYmJISEiQnFkLFixAq9UG21yZi6GiBj7YD/uPwZGTUF479OB1JGg1sHgurM/ubeuywDL2wDyv10tTU5MU6FBTUyMFA7a3t1NWVkZ+fv6IquBAb0BkYmIiqampJCQkEBYWJt3wGxoaaGpqwuPxDFDohl5xA4vFQnh4+KBb3+Pw8HBZJEBmWuFwOGhpaaGlpYX6+nqp2ktzc7O0ANLa2kpZWRlnzpyhra0t2CZPC/R6PUqlEqVSSVRUFGlpaVJFybi4OOLj45k9ezZJSUljchJ1dXVx9OhRvvjiCw4cOMDx48dHfC0dT8LCwvjRj37E97///UlZYVZGRmZk1NbWcuTIEQ4fPszhw4fJycmhq6sr2GZNKEuWLGHz5s1cdtllbNiwITgVBx/5b/jlC0M70oe7f4x0TjBEHyK+SjcDBVjycfI1qqiaxPIrcXFx7Ny5k1tuuYXly5cH2xwZGZnBmCTBkOL5fkRRRETkIxzcTA1tBD8QUEZmpmA0GomPj8disUjJMXPmzGH9+vVceumlWCyWEfdlt9uxWq00NDSgVCpJSkoiNjZ20lTJkJGRGTsej4eamhqampokoWpggKi5TqfDarWSl5dHfn4+ZWVlUisvLx+w5qdUKse1SpnM2Jk3bx4rVqxg5cqVLFu2jIyMjFHdE2SmIcPMIcR+z4cVVRkMOQBQRkZmktHQ0MDevXv57LPPKCwslGItpmL80niyCC0HSUGPYkDCon/42sBqsMJXglwifRPSRBFCdL0B7CsWjd04X9VQ/34FAXd3LqdPn+b48ePk5uaSn5/PyZMnaWpq4k7CeIHYftYPxP+OJyXWKRUQHYFg1PcWY9Kdbx4P9HjA6YIOB7Q7oMXW+/qAjoe4H/rus5lp8L+/v+iCTjIyUxFRFGlvb6euro76+nqp+T9vaWmRKn/39PQQHh5ORETEkC0kJGTYCt/d3d3Y7XZJrNQncOT1ejGZTISHh0tJ17NmzSIpKQmz2SyJrAyX0Oz1erFarZSVlVFRUUFrays2m61P6+joICQkhNjYWGJiYvpsfZXEJ1xkYbLgcsHvd/fOUU5eoMhjtAWu3wIPfxsSYwNrR/97jQ/PqcAeR2ZMVFZW8t577/Hee++xd+/eSTeOMxgMWCwWVCoVDoeDjo4ONBoNMTExUpx5RkYGCxcuJDMzkzlz5kwuP/uLu+E7P+t9PNq4CaWy939THjeNK6Io0tXVNSAZ2eVyodPpCAkJwev1Yrfb+7xvs9kkce7y8nKsVivNzc1jsiEJFcdIJYLec3fgnOErBhNbGex1AWjBw2rKKTmfjuwTxc3IyGDBggVSS0xMxGKxEBISIgl2tLe309jYSNuZYjbc+Mh50YqvMvJ//+z3CQsLk1pERARxcXEYDIYx/QYThSiKuN1uKV5WZnT4fj+n09lX7KWlDZbfAOU1vTv2m1+OsPO+n4PeYr0H/wIxkWM3eog5r/84xOPxSIJ//ZtPENHtdkvFRtva2mhoaKC2thar1dpHtNRgMEjjUb1eL42LNRoNOp0OjUaDIAiDHsvXuru7peP4WmtrKy6XSxLhBCQRT+gVn1EoFFRVVXHu3LkZFz85nRi9z+WrV0SFgNNsQDAbUZuNKA16BHnsIDMCWltbOXnypOTXdbvdUks6WcrXXvkU5XlxNv8xQd9zVBxyzcsNdAvgFES6EVGIoBJFNAiYUDDUHXno/4GvRIlyDHB/ihJviI6IiAgsFou09cX2+AtyKRQKSaTGN67zXX+hd03fbDZjNptJSUkhIyODiIiI0fycU4/JfB9/6mV46L8Gvt7fzyPPp2YElZWVvPvuu7z//vt8/vnnOByOCbchLS2NrVu3sm3bNjZu3IjRaJyQ477//vvs2LFj2H2eeeYZ7r333oAd83vf+x6//e1vh93n7bff5pprrhlVv+3t7WRlZVFSUjLsfiEhISQmJnLu3LnB3paFV8aJGSe84kMQhBuBXwNxXFiAxQ28DbwEfCxOkR9NEAQ9cC3wf4DN9H6voQRXOP/ex8D/J4pi2YQYeQFGIrzSn87OTvLz86UqBsXFxeTk5HDixIlxcYTHxMRgMBjQaDSEhIQMEIfo/1gQBLq6unA6ndIANCkpSRZTme7YHfDKO/DSm3DCT906kJcT30BWEGDjKrjt2t5FQN34nFutra2SaIovaNq3YKxQKKTF4tDQUKkqiYyMTODxeDwcPXqU999/n0OHDlFXV4fT6ZQq/Ewm9XFBEDAYDISEhEjN5XJJCsLjvWAtCAJz585l6dKlJCQkEB0dTXx8PPPnz2fevHlBSdBvb2/n7Nmz5ObmcvDgQQ4ePMjZsxcI8ggQ8fHxPPDAA3znO98JjjiBjIzMuNLT08Pp06epq6ujubmZhoYGCgoKyMvL4+TJk8Mq/U4VlEolWVlZXHfddezcuZO0tLTgGvTvz8Cjz/Y+Hk2gkEYNcVG9yuYXdGzboaEF6pt7K6L5c/6YIpxf/PDV/eylhh62UMkZJk+AWHR0NN/4xjf45je/ybp162ZusKeMzFRgkgZD9iZrQkOkmZujuvi0QK4uLTP5UalUpKamSmKfs2fPJiYmhqioKMxmM2q1GqVSiUql6tOUSiUKhQK73U5bW5sUZDbSbVdXF2q1GrVajVarHSBs3F/s2BcYGhcXh1arlZJITCaTPIeUkZGZMHyJZbW1tajVauLj44mMjEQURVpbW6UAW7fbTXt7O9XV1VRWVlJVVUVlZSUVFRWUlZUNVflFZoyoVCrmz5/PokWLWLx4MStWrCA7O5uwsLEXBZCZhkzSOYQcACgjIzOR+JL+/eMp+je3201zczMVFRWUl5fT1tYmrfW2tLTQ0NAgCQT4JzBNFWbPns3KlStZvHgxCzMy2PrwC2hOl39V5GKwQPRwMyyeB1HnK77XNMDxwt7rf/99/Z+nJEDuGxBqGpuxI0hC8yGKIvb3/4Hx2u+Dx+uX3Sn2qR4OAqJaBcszUWRnQlYGLEzvXQ+IjRwYGD8UogiNLb1B/+cqeuOOvsyHw3m9Amf+v4X/ZwAWzYXDr/aK08jIyMjMRF7cDT97BuqaRlcIQ6uBe2+Cx+7vfRwI/O81/vcyWXhl0tHd3c2RI0fYt28fhw4d4syZM5SXlzPW9AGVSoXJZJKSG71eb59ChQaDAbPZTGhoKGlpaSxbtkyKb/P57sdSOXnSsC8HNt/ZO38fbhyoUcOKhbBsgTxumuK4XC7q6+uxWq3U1dXR2NiI1+tFoVDg8Xhobm6msbERm80mrVvpdDq+9/qXJJbX+50bDDhPREHAHm6kTdWbjxHqcBLtAWkEfj77uFezUZCed6YnUfG3x9GHhRETEzP6Yp+jmC/IzGC+fj+89cnwc1fovaZZzotCN7cNvZ//mOHylfDJS6MXpPYxA89hr9dLQ0ODtGbuE0j0Fy9sb2+npaWFxsZGGhoaaGxsnLI+mOnEBvR8wiyU9BfhEvpc570qJfYFqbB0ASFrs9BkZcpjB5nx4eQZWPNP0NU9/HgWICEGli1AXLYAFqYhJMRAQnTvuTlMXp3L5aKlxortXCnOyhqMTe0Yrc0YzlURcqoYRXV9746D3Qd8tly6Aj75w8jPf5m+TNb7+L4c2HxH7xppfxQKeT41w3G5XBw5coRPPvmETz75hCNHjkx4ISOtVssVV1zBDTfcwFVXXYXJNMY1mhFw++238/LLLw+7T3l5OcnJyQE75pEjR1i9evWw+1x77bW89dZbo+r3lltu4c9//vMF93viiSf44x//SGFh4WBvy8Ir48SMFV4BEATBBPwHcA/0GZP32e381vdeA/AW8L/Ap6Iodoy3naNBEIQ04MrzbQPgU1wYStjX914T8JAoin8adyNHwViEV4bC6XRSWFhIYWEhBQUFnDt3Tqpi0NLSgk6nk9T4LtRCQ0NJTk4mNTV19I43mZmFywX/+Qd4+hWw2Qcu3o3V+dWfofo1GeDuG+DHd8lV22RkZiA9PT1UVlZSWlqK1Wqlvr6e6upqTp8+TUFBAdXV1cN+XqlUEhUVhdFoRKvVSgrhvseDPdfr9aSkpJCWlkZycjJmsxm9Xo9er0er1X4VRDcILpdLUsxVqVSSqrlPGb67u/uCW4CwsDDCw8MlYRen04nBYAiauMr/z959x0dV7H0c/5yEFEJvoVdpht6UchERRbFiARGscEWvYkOxYe/ifexYsV672BWVXhQRRUQIvfdQQiDUtPP8MZxka7JJNrub5Pv2ta/snmRnZvHszJw5M78prD179rBgwQLmz5/PkiVLSE5OZtOmTUFLv0+fPlx77bUMGzZMgd9Eyqns7GzWrVuXG4TFuU7asGEDOTk5uTuqpaWleU0cql27NtWqVaNixYq5O9pUrFiRY8eO5S5uC3bQr9jYWJo2bUqzZs1o1qwZbdq04eSTT6Zr164kJCQENa8im/wzDB2b/6IeMIPY/U9yH9iuXaNoee7a6z6wPW2+mTAIYJkJJbadk/v/0AI2k0k3NpJK+HaH79ChAwMHDuTss8+mX79+2jlHpDQoRZMhN3/2NFPnzWXlypWsX7+e9evXc+DAgdzrlfj4eJ/PgdxFTbt372b79u3s3LkzogJZSsmoW7dubj+jadOm2LbNtm3bcgOZRkVF5e705jyvUaMGjRo1om7duhw4cICUlBT27t2bO0na9REdHU3jxo1zg6y0atWKJk2a5Lt7rYiIBJdt2+zatYu1a9eyffv23Mmz69evZ/Xq1axatYq0tLSQlik2NpZGjRqRkJCQu7FDvXr1aNCgAdWqVXPbPTI7O5vDhw+zcuVKli5dSmpqasjKWa1aNTp06ECXLl3o1KkTLVq0oFmzZjRq1EgB9yV/pegaQhMARaS0sG2b9PR0UlJScoOx7N69m4yMDLKzs0lPT2fFihUkJyezcuXKgDa8qFu3Lk2aNKFJkybUqVOHWrVqUa1atdx7tPHx8VSpUoXKlSu7/bRtmyNHjnD48OHcx6FDh3LHVrKysqhfvz49evSgfv36eRm+9QVc+4D/cfSLTodxI6FHB++/OXgIPv8ZHn4FNu/wXrDutDNDzoRP/q9o/8iFWYR26DB0GGzaH1/tTFwsXHwGXHAaDOoLlUtot/uDh+DbWfD6ZzBvkXfZnZ8jzoX3nyqZMoiIRKp9+2HU/fDNTPe5lYHM13RtY3q0h69eMhtpFFc5XPBclhw9epSNGzdy4MABn3PWYmJicgOXV6lSxe1R0Jy5Mk39JgnUF1NhyG3+x5K6t4c7roYzenvPh1+7Cf73LTz3Phw87P964YZh8NJ9RSuf6nApyMwFZkzU3zncsC7cNALO7GOCjTq/y8iAOX/CB9/Bh9/nnbu+zuGHx8B91xetfDqHA2bbNgcPHmTXrl25wVic5zt27GDZsmX8/fffIb+3FCrOpjDOz+joaGJiYrzGhzzHjCpWrJg7r+LIkSO5QW5cf0ZHR7utOfB8xMfH07B6Df794g9U3rM/93zN7UGo7yDhkJUF3YfAP6t9nwcAvbvABf3hggHQulnJlGPVBtNfeutL2LDV/zk59ip4ZlzJlKEsi9R23PV6ylcMgPg41Yni5sCBA8yZM4fp06czY8aMQq+/L674+HjOOecchg4dyjnnnEOlSsE7JxcsWEDv3r3zDYrbsWNHliwJ7uaNtm2TlJTEypUr/f5NhQoV2L59O3XqBDZ++N5773H11VcX+HedO3fmjz/+oFOnTgq8EmLlOvCKw7KsjsBEoA++A5OAS1/d5W+ygYWYICy/Af/Ytp1SUuX0KpBlVQDaA12A7sAZwAmuf+Ly3F/AFRt4Fxhn23boZuoFKJiBV0RC7te/YOR9sHZzwTfvPCMcBsq1M+8rPSfNqpXh8VvghssKl76IlGlHjhxhz5497Nmzh9TUVGJjY6lcuTKVK1emVq1aVK9enShFvI0IBw8ezJ0smZycnBtIrqCALFWqVKFOnTo0atSIf/3rX1xxxRW0bds2RKUWkdIuKyuLlJQU9u3bR5UqVahfv36BuyhlZmaybNky/vzzTxYsWMCcOXNYt25dQPklJCTQsWNHOnfuTOfOnWnfvj3NmzenXr16kd0e7U2DE8+FPfvcB5DBPK9bC0ZdbAa2e3Qo2bL89je8+gl8PAVyco4XwT5+9W9j2/BrJTjl0IqSLcdx8fHxdOjQgd69e9OrVy/69u1LgwYNQpK3iARJOZ4M6SwiOnDggNfu1HFxcVSsWJGoqCi2b9/O1q1b2bVrV24gybS0NPbt20dqamruY+/evRw8eDDgYC4VKlQoVOCXqKgo6tevT/369alXrx5t2rShe/fudO7cmYSEhNzdE3NycsjJyXFbrOUs2HJ9vnv3bo4ePUpGRkZuQMv88nauH530fT0CWfRVkKpVq9KuXTsaNGhAvXr1cj9v1apV2bp1Kxs2bGDDhg2sX7+ejRs3cvjwYeLi4qhcuTI1atSgXbt29OvXj379+pGUlER8vBbZioiUd7Zts3v3blavXs3atWvZu3dv7k6HOTk5VKhQwe/DmWwa6CMuLo5GjRoV+TrXtm127NjB0qVLWbp0KWvXrs1tw/fu3Zvb5rrunGxZFomJiTRo0IDExESio6O9/iYuLo4WLVrQunVrWrRoQe3atalevbqCNkvRlONrCBGRSJGVlcW6detYvnw5O3bsICoqipiYGGJjY6lXrx5NmzalcePGod9oqsMFkLzWvX2wbahWBT6aAINOKTiNYxkmeMsH3/lfTDn5ebjw9MKXrzCL0P77Ntz5f77vCYy8CJ64FRJrFb4MxfHTPLjuIdiy071czs8578G/uoW2TCIi4bJhKwwYCZu2e8+v9DdP09dx1801Zr8LLYu5W64WPEt5pH6TBKr3cBNI17MejqkAL94L111acBope+CycTB7oe9zLioKZr0DfbsXvnyqw6UgZ42Gqb961ysAd40yi60LmHfH0tUw7HZYsd73ORwbA39+bgJYF5bO4aCybZstW7awevVq1qxZw7p160hPT/e5qWiOyxw+Z3zG2fQ0NjaWmJgYoqOjsSyL7Oxs9u/fT1paGgcPHnTLz9dz1yD+WVlZZGdnk5mZSVxcHNWrV6datWp+f/o6VqVKlfDP01TfQSLNm5+b//++riEH9IT/joNOIVybkZMDb3wGdz1rAs55lik6GhZ/UbS2ojyL1HbctU483p64SZmnOlHytX37dmbOnMn06dOZPn0627ZtC1ne8fHxDBw4kMGDB3PeeedRu3btIqeVkZFB165dC4wnMH78eB577LEi5+PP008/zd13353v3zz//PPccsstBaY1Y8YMzj777ALn0kZHR/Pbb7/Ro0cP2rVrp8ArIabAKy4syxoOPAk0xn8AFsg/oMlu4J/jj7XAdpfHTtu2fbRy+ZYpDmh0vEzOzxaYYCvtANdW2zP6QkGfYTnwH9u25xWmTKGkwCtSak2aDGMeMzup+bp5V5idEzwVJTiL874z+8CHE7yjfYuISKl08OBBUlJSciOCZ2VlUatWLerUqUPt2rW1iFBEIsLWrVtZuHAhmzZtYsuWLWzfvh3Lsqhfvz4NGzakSZMmdOzYkZYtWxIdHR3u4hbe/S/C46/7nvxx/3/gzpEFD7gHW/IauOJus8uzj4HtA+8+xuxqUfz1119s3ryZrVu3sn37djIzM48X3/0G7aFDh9i/fz9Hjx51yyYqKooaNWpQs2ZNTjjhBLp160a3bt1o1aoVDRo0oEaNGuV35y6RskITGoLOCUBy7Nix3IdlWW67+MTGxmJZFseOHcsN2uL8TEtLy11EHR0dTWJiIi1btqRp06bExMSUWLlt2yYrKys3EEtGRgaZmZm5OxkFMvnGtm2OHj3KoUOH3HbEdv3p+ty27dwdlBITE+nSpQsnnHBCoSb6ZGdnl87+hYiIiEhppWsIERHxZflaaH+B9zh6fBzMfd/sXl8Y9zwLT7/lu72pVxtW/mA2KCqMQBeh5eRA49Ng5x73zxIdDW89CldeULh8g2lvGpxzPSxc6v45APp2gznvh69sIiKhkpoG3YeaYJDge7fqgni2LQDNG8H8D6Fu0ReJaMGzlDvqN0mgNm6DFgO9rxeio+Hrl+CcfoGnlZ0NV98LH37v+3qhVVP452sTHLgwVIdLflL2QINT3Y8558irD8DooYGnlX4ILrwJZv7ue/F39/bw+yeFX0+ic1hKA/UdJBK1HgTrtuS9durPh24084PDZe0mEyxkg0sQBadsZ58C370SvrKVNpHajnvWiZ6BV6KiwteOq04slWzbZtWqVcyYMYNff/2VBQsWsGHDhpDkHRUVRd++fRk8eDBnnnkmbdu2DXh9gW3bXHHFFXz44YcF/u2iRYvo2rVrcYvrZdu2bTRp0iQ3oJ4vHTp0YPHixfnOVf3zzz/p37+/W4A9fx599FHuu+8+AAVeCQMFXvFgWVY8cCdwB1AZ9+Allsdr55gnf/+oOcA+4OjxxxGX5xZQ0eORAFTxV9QA8/UsswUcBB4FnrNtO/BtU8NAgVekVJo0GUY/aJ7n1wnwVf9GR0NiTaicABXjzCST+DgzEJyVbXbvST8EBw5B6n5z3JO/PJ0Oe7uWMPVNqFen8J9NRERERETyZGZC3b6w32UAzLahYjx8NxFO6xm+sh3LgKG3wXezvQe2O7WBxV8WOklnZ4zs7Gxs2yYhIUGBVUTKMk1oEBERERGRwtA1hIiI+PP8+zD2ae8FXi/cA2NGFC3NK++GD77zHVTrphHw/D2FSy/QRWhz/4RTr/L+u8duhntGF+2zBNOBg3DyMFi9Me+YU8bVU+CEJmErmoiUgOhCBq6KFJYFWUtLJu2Lb4Gvpnv3+z1fR0VBzeOb1+1N8/93rguk+p8E098u/EJnhxY8B1+LgeEuQdFYFqz7OdylKHnqN0mgXv0EbnzU+1y57zp4+KbCp5edDWdfD9Pm+75eKMpCadXhkp93voRR93ufH6OHwKsPFj69w0fglCth8Qr39JyfL42HGy4rXJo6hwtHfYzwUN9BIs2fy+CkS73PyaKMPZaErTuh52WwY3feMee+3OYZUF9rBgMSqe24Z53oBHxwXoe7HVedWCbs2rWLhQsX8vvvvzN//nx++eUXMjIySjzfOnXq0Lt3b1q2bEnz5s1p2bIlHTt2pF69ernrEvbs2cOsWbN46aWXmDdvXoFp9u/fn5kzZxa/cKdd4/Pw30v+JjU1Nd+3Nm7cmFYtW/n83YH0AyxZsiR3k9z8VK9enS6du+T+W/z+++8cOnzI6+/isQ71JmHh8Zc29vIBBSYuAVHgFT8sy0oEHgJGATF4By/B4xg+fh8oJ52ivs9f3p5lzgTeAh6xbXtnIfMKCwVekVJnzh9w+igzaOtrtwSnzo2NgR7tocuJ0DUJ2reCBolm551Ad+21bdidaiJ9r9lkdrNfuBQWLIHM4zGVPG/yOfl3aA0LPjYLQkVEREREpGh+mmcma3j2/d98GEZeHN6yAWRkQL+r4Pd/vMv412To1Da85RORyKYJDSIiIiLijyYdiy+6hhAREX9GjIOPp7i3EU3qw9qfoEKFoqV55Cj0GAor1rsft22oEA1/fwlJLQNPL9BFaHc/CxPecv+7Fo1g1RSzqCES/LHULLpwOJ/lydvgzlHhK1dRqN8pkr+oUrqhaUktDpq5wMzd9Ddvs2Fds0DuzD7QsU3e7zIyYM6fJqDXh9/nzbH0DL5iWfDwGLjv+qKVTwuegy+qnXtwnNKivPx/V79JAnXNvfDeN+7nSu0asHEaJFQsWpqpadDlYtia4n7ctiEhHlZ8D43rB56e6nDJz/UPwRufu58flRPMOVyzetHS3LgNul0Caenux20balSFNT8WLm2dw4WjPkZ4qO8gkeahl+GRV93PyXq1zZhPpKzF+/kXGHSdd/3+/N1w0+XhLVtpEantuGedGGmBV0B1YhmUnp7O9OnTmTJlClOnTmXz5s0hzb927drExcWxf/9+Dh48WPAbjouNjWXJkiW0bRuEdRFOP9BDjm1j2zkFvt2yoohyeb8N2AG+N7cIUdFuQSKyc3LwF8oiGisHEzvCxl4eIR2m0q+Idy7LPtu2dwE3WJY1AXgQGIH597LxHYQl9634O4u9WR4/XdMIVEHvtYB0TMCVZ23b3lqItEWkMA4dhmvGuwddgbxBl7hYuPgMuOA0GNQXKlcqXn6WBYm1zOOkjjDiPHP84CH4dha8/hnMW+R9AWXbsGwNXPcQvP9U8cogIiIiIlKe/fxr3nPnRmv7VpERdAUgNhbeexLanw/ZHgN238xU4BURyd+Uud7HmjeMnJtiVSvD+0+637xzfDEtcsopIiIiUhZt3FZ6Jx1LydE1hIiI+LPGZXKuM3dlyJlFD7oCZnHD+09Br8sgK9v9d1nZcOtTMHVS0dP3Z8nKvOfOZ7nygshZAATQo4OZlzRlrnv/Z+HS8JWpqNTvFClYaTvfSvL7POFt93xc64+7RpmgKbGx3u+LjYUzepvHHdfAsNtNYC/X9zvPH3sNBg8w94QlcpSm70Fpa9OKQ/0mCdTKDXnPnXPl0rOKHnQFzELWtx+Dgdd6/+7IMbjjGfj02aKnL+IqeW3ec+ccHnpW0RdrAzRrCBPvh+Hj3IPAgVnEfd+L8MoDxSu3FEx9jNBS30EizeIVec+dc/KK8yMn6ArAmf+Cvt2TppdMAAAgAElEQVTc1w4C/LZEgVcCFantuGedCCaNSBorVZ1Y5lSpUoULL7yQCy+8ENu2WbNmDVOnTmXatGnMnDmzUMFQimLPnj1Fet99990XnKArrjy+ZwH3Cu0ccmzLbTk32AG/37KisIqatwRNVLgLEOls295o2/Y1QCtgInAIc64656vt8sDld74eXsn7ebjKL72CypAM3AQ0tG17rIKuiJSwVz/xfcPftmHkRbBpOnwwAYacVfygK/mpXAmGnwtz3ocpr0Gjuu43Ep2fH34PvywquXKIiIiIiJR1S1e7v7YsuPzc8JTFn9bN4OKB3gPtf5Ti3S1EJDRK04QGzzpON+9EREREQsOZ3FUaHlLydA0hIiL+bN3p3R73P6n46XZNgnEj8+p11wnsMxbA97OLn4enVRu9P0vfbsHPp7iGnJn33Jkn5HlPozQJd19S/U4pLWw7sh8lKWUPTJuf9z10nSv52oPw5FjfQVc8dWgNCz6B0072Dt4CkJEJI++LnEVOIpFM/SYJ1BYf1wun9Sx+ugN6wbWXeF8v2DZMngrzFxc/DxHwfQ6f3qv46Q47Gy483f1a1zmHJ02G5Wvzf79IaaO+g0Sa5etKZkwz2Iaf4/7att3v2Un+IrUd91UnRiLViWWWZVm0bt2aMWPG8M0335CamsrcuXMZP3483bt3D3fxcrVr14677ror+Al7jPtbx3/6Cwjh/rDJsc3D/BfIewArKjcf10e+75ESocArAbJte5Nt2zcBDYFrgelADvgNgOLrvLWK8PAqip98nL/fDbwC9LRtu6Nt2xNt2y7ZUFIiAjk58Nz73p3hqCh49wmY9Cgk1gp9uc7qC399ASd1cO+sg3k9/oXQl0lEREREpKxYs8l7YLt3l/CUJT+DB+Q9d65Vlq8LX3lEpHTQhAYRERERESkMXUOIiIg/B3xMXWvSIDhp33c9tGhknnvO2bnzv5CdHZx8HPsOeB9rGqTPEkxdk7yP7U0LfTlEpGT17gLRUXmBTQIJAFRWAxNNmeu9WZ5lweghMHpo4dKqUgm+nZhXl7oGcQFYlGw26ZPwa1jXd2CfcAUAEnfqN0mg9qd7H3P6+MX19O2QWNM895xDP/bp4OQhkrrf+1jrZsFJ+6Xxpm/iKTsHbp8QnDzEm/oY4aG+g0QaX/V7yyahL0dBenTIe+70d3bvC09ZSqNIbcd91YmRSHViuRETE0Pfvn157LHH+OOPP9iyZQvPPfccvXoFIVBREVmWxaRJk4gNJNhyoGIq+O0HWlgBBYAoCssJ7iIRoUK4C1Da2LadDrwFvGVZVm3gEuBSoDcQ4/qnlFzQIM9v0DrgJ+AbYKZt2zkllK+I+PPLX7Bjd95FinOj7ZExZie3cKpVHaZOgpOHweqN5phzM/CXv2DdZjghAi/+REREpHSKbh/uEhSNZUGWdraVQkrzMfmjQWLoy1GQDq28j+3zcbNAwqPFwHCXoGgsC9b9HO5SSEnShAYRERER8adhXdiWYp57LljwR5NEyj5dQ4iIiD9HM7yP1awWnLTj4+CFe+G8G7wXxq/aaBbGjxkRnLwADh32PhYXxEm9weLr39dXAJxIp36nSP5++cB8t6fMNfXdvEV5QU78fU/K6qLQ3//xPlapIjx+S9HSS6gIk5+HbpeYe8Kewb3ufxGGDYKa1YteZim+LTMheQ18NxvenAwbtpbf70AkUr9JAuXreqF2jeCkXa0KTLgDrr7X/XrBtuGPZfDR9zD83ODkJeXXkWPex+oE6RxukAgP3WgWZ3uew1Pnw0/zzEa9ElzqY4SH+g4SadIPeR9LqBj6chSkro9N4nVOBi5S23FfdWIkUp1YbjVq1Ihbb72VW2+9lc2bNzN58mQ+/fRTFi5cGLIyvPDCC/Ts2TO4ie5bALMWwvez4cPv4eDh3H6gZdtgReEZvqH4dyRMSBfLT3+yoDDbxc5evCjwSjHYtr0HeA14zbKseOAkTACW3kAvwEfPJe/tBSTv74TPAZKBBccfs23bXl+YcotICZgy1/tY84Zw56jQl8WXqpXh/Seh52Xev/tiWuSUU0REREo/3UCS8uTwUe9jMRE41FKtivexg6VkUL482Lgt/xvzkUqT18s+TWgQEREREX806Vh80TWEiIj4Ex/rPYH9qI8J7UV1Tj8461/w0y/eC+MffgWuON/3OHlRVErwbjdS95sAIZHk8BHvY/FxoS9HcanfKVKwqpVh2NnmsWAJjBwPKze4f09cF/cMHgA3Xx7eMpeE5LV5z53POvSs4gVGadYQJt4Pw8d5B/dKS4f7XoRXHiheuaX42rUyj7v+DZ/+CLc+CbtS/X8HBvSEEQqyEBLqN0mgYmO8rw8ys4KX/pUXmABlC5d6Xy/c8xxcPDAyx7Ck9KgQDRkee2fnBHEv7Zsvhzc/N8FFPQNSjvsvDOwDUVHBy08M9TFCT30HiTQV473n2e5Pj7zNGX2Ns1aIDn05SqtIbcd91YmRSHWiAE2aNGHs2LGMHTuWrVu38u233/LVV18xe/ZssrKCeG13XPXq1XnxxRe54oorgp42CRXNPadz+pkgnhM/gkdfM3WtS/CVHDsHCxMk4g+O8iNF+762bduWIUOGUCHaf739ysSJ7N69x+t4ZaJ2j6PWxCJlLPmKwNVApZNt20eBuccfAFiW1RBo7vFoClQDEjwe8cAx4Mjxxx5gB7Ad2AKsPP5YZdu2jxZJRMJqycq8587gyZUXQD6NXsj16ACD+pogMa6d9YVLw1cmERERKZtK22J8TcCUoqpayUyqc7U7FRrVC095/PEVeb9ifOjLIfkrTXWn6s3yQRMaRERERCQ/mnQsnnQNISIi/lSp5B14ZcduaNE4eHk8fw90uACyst2Pp+6HB16CF+4NTj41q3m3d0tWQofWwUk/WFZt9D5WPUjBZ0JN/U6RwPXsBIu/hLNGw5w/fAcpapgI/XqEp3wlactO73ttp/cqfrrDzobPf4avpnsv1p80GcYMh6SWxc9His+yzP+vAT1hwEgTjMfXd6Btc7hqcHjKWN6o3ySBqpzgvWA4ZY8JgBUsL97re/PSrSnw9CR44Ibg5SXlT+UEc+3pak8aNA3SORwdba55zxrtfu1j27B8HbzyMYwZEZy8xJv6GKGjvoNEmprVvAOvLFsDJ54QnvL4s36r97FgBaEuDyK1HfdVJ0Yi1YnioVGjRtxwww3ccMMN7Nu3jylTpvD1118zc+ZMUlNTi53+yJEjeeqpp6hTp04QSluAKpXg7mtNIOszrzXXj8eDr1hWFNgmSNNCjvAI3oFR8mNZFg888ABD77+f6ALWn7/62Sss9xF4Bdg9zk55uFAZS0AUeKUE2ba9DdgG/BLusohICfOMPAjQt1tYipKvIWeawCuQ11Ffujq8ZRIREZGyLdIX55emQAcSeWpW8w68smg5dEkKT3n8WbbG+5iv3Z1FRFxpQoOIiIiIBEKTjsWhawgREfGnQSKk7HW/J7N4BfTpGrw8Wjczu4f+37veC+Nf/QRGXgSd2hY/n5ZNYMNW98/yxTS4/Pzipx1M38/Oe+5M5m/dLFylCQ71O0UCExcLXzwPrQaZ+5jl5X645yIpCF6999J4mP6b94K77By4fQL8+EZw8pHgqFMTvpsI7c43gd/Ky3cgEqnfJIGqV9tscuR6rixdAyd3Cl4ePTrA1YPhna+8rxcmvGU2Ww1moBcpXxJrevdFlq+Dbu2Cl8fAPnB+f/h2lvc5/ODLcOkg0wZKyVEfo+Sp7yCRpmkD2LTd/Zz8dhYMOSt8ZfJl6q95z51z8oQgBrwu6yK1HfdVJzr/fyOJ6kTJR40aNRgxYgQjRowgJyeH5ORk5s6dy5IlS9iwYQMbN25kw4YNZGdn+03DsizatGlD//79GT16NJ07dw7hJziubQv4diL0GGrGAy0L8020sIuwVqpGjRp8+OGHDBo0KNgllSCJCncBRETKhH0HvI81bRD6chSkq48FoHvTQl8OERERKbt6d4HoKDN45gygFTTI5/xNOB4ixXHiCd4Tej+ZEp6y5OfrGXnPne9l2+bhK4+4a1g3r8505Rzz9RAJhZZNvM+3L6aFpyz50c07ERERkcjgTDquGGdea9yl/NE1hIiI+OOrnv1udvDzeeAGqFvL+3hWNoy6H/KZvBuwXi6LP53J8d/Nhn9WFT/tYNmWAh98590f63JieMoTbOp3ihSsZnW4bmj5uqd05Jj3sTo1gpN2g0R46Ma8f0/X3amnzoef5gUnHwmepg3h6gvL13cgEqnfJIFq3dT7mLPJaDA9eRtUrex9/PBRuPaB4Ocn5Uerpt5tjusi+GB59i4TZM9TWjrc/ETw8xNv6mOULPUdJNL4Oic//xk2bgtfmTztT4e3v/Q+JzsHIQB1eRGp7bjn+eeIpDZIdaIUQlRUFB06dODGG2/kjTfeYNq0aaxZs4aDBw/y119/8c477/D4448zYcIEXn/9dT7++GPmz59Peno6K1as4JVXXglP0BVHp7YmSNLx76AFWFhERUXRvFlgazLi4+MZNWoUS5cuVdCVCKfAKyIiwXDosPcxXx3icPO1q73nznMiIiIixfHLB7BnPnz0DPTtljfAl9+kx/yCC4TiIVJUvm6szFoIsxeGr0yeVq6Hz37y/g52bx+e8oi3LTNh6dfwxK1mByXVmxIpNKFBRERERApLk47LN11DiIiIP91ddgd12ogZC2DFuuDmU6WSWUzpuTAeYPEKGP9C8fMY2Mf7WE4ODB8XGfNvMjPhirvN4lFP554a8uKUGPU7RQo24txwlyC0KkR7H8vJCV76N1+et7GF54Kncf8Nbl4SHFcPDncJRP0mCVQnl4XBzvXCD3Ngy47g5pNYC+6/3vf1wszf4fn3g5uflB8dWuc9d87hr6YHf3PcFo1h7FW+g8F99hN8/ENw8xPf1McoOeo7SKQ5raf3sYxMuPJuyMoKfXl8Gf2g743kB/UNfVlKq0htx33Vic77ImFMVHWiBEl8fDxdunTh6quv5t5772XcuHGMHj2aYcOG0atXLypVqhTuIua5dojXIQuL8847l7lz5zJo0CBiY93Xk1evXp2BAwfyzjvvkJKSwqRJk2jYsGGoSixFVCHcBRARKRMqJXhfzKfuNzuXR5LDR7yPxceFvhwiIiJStlWtDMPONo8FS2DkeFi5IW+AEPKeWxYMHmAmKomUNmef4j5R2zmvr7gbfv/E7H4WTgcOwrDbzW6enguKzu8fnjKJb+1amcdd/4ZPf4Rbn4Rdqf7rzQE9y9+EWQm9gX3gkVfdjzkTGuZ/5Hs3sFByvXnnWcfp5p2IiIhI+Fw9GF75ONylkHDQNYSIiPhzRm/vYzk5ZmHA7Pcg2sdi+aK6+kJ47VP4Y5n7mKptwzNvQ7ckGHJW0dPv3QXatYTlx4PGOGmvWA8DRsI3L4fv3kD6IRhxpwkO79nWNa4Hp3QPT7lKivqdIvlr18p897emhLskoVE5wczXdLUnzQRqCoboaHj+HjhrtHf7snydqY/GjAhOXhIc3dtDYk3YvS/cJSm/1G+SQJ3RCx54yf1YVjbc9Dh8/XJw87rlCpj0BazemPf/3jk37/o/6Jqk//9SeAN6wuOvux87cgzufhbefCS4eY2/Dt7/Frbv8j6Hr38YOrWBpJbBzVPcqY9RctR3kEhzei+zkd6m7ea1c07+uhgG3wSf/BcqhykgQE4O3PgofP6z9zlZq7opuwQmUttxzzrRUziDr6hOlPKqTxeoVsVnQLi+ffvSt29fcnJyOHLkCFFRUURFRREbG4uV30asEpEUeEVEJBhqVvNuNJesdI98GAlWbfQ+Vr1KyIshIiIi5UjPTrD4SzMBac4f7kEEHA0ToV+P8JRPpDg6tYWTOpgJ3A7LMrsn970CvnzBfWeeUNq6Ey6+Bf5ZnTew7Xz32jaHHh3CUy7Jn2WZoFUDepobxslrfdebbZvDVdpBRUqYJjSIiIiISFFo0nH5pWsIERHxp2MbaNPcLG6EvDZi/t9mh9j3noQKQZzG+PpD0H2oWYDgOYH9irshLhbOP63o6d9xDVwz3nvh/aJk6HABPHITjB4CMTFB+TgB+WYGjJ0AG7e5H3fKd+co7zawtFO/U6RgvTqbXZPL2vffl8Sa3oFXlq+Dbu2Cl8fAPmZzi29nebcvD74Mlw6COjWDl58UX+8u8PWM8vEdiFTqN0kgenRwDxbmnCffzYY7/wsT7gheXhUqwKsPwGnXuJ+XlgWZWXD+jfDzG3Byp+DlKWVfny5mkbvTF3HOrbe/hM5t4cbhwcsroSI8fzcMuc37HE4/ZOZoznoXTmgSvDzFm/oYJUd9B4kklmU2FR37tPc5+eM86HwRvHAvnNMvtOX6ewX85xFYuNT9uFO+264M7XektIvkdty1TvRk2zDxI9WJIqEUHW3qjClz/Z7nUVFRVKoUpqBcEjRR4S6AiEiZ0LKJ90K4L6aFpyz5+X523nOnU9u6WbhKIyIiIuVFXCx88TzUqGpea0BNypLx1+VdCzg/LQs2bIWTh8G4Z2B3aujKk5UFL/wPOl0IfyZ7/96y4L7rQ1ceKZo6NeG7iVAxzrxWvSnhcsc17nWc54SGiR+ZXeND6ZsZ5sb1D3Pcj+vmnYiIiEjk6N0lvLtsSfjoGkJERPz5z6W+24hPfoR/XW4WDARLp7Zwz7W+x+4zMmHoWHj1k6Knf9Vgs6GA6+dw2pJ9B+DmJ6DJALjvBbNpU0nZnQpvfAbdLoGLbjH3JVzL4jzv3BauG1py5Qgn9TtF8tflxHCXIHRaNfWuD6b+Gvx8nr3LzH/wlJZu6n+JLOXpOxCp1G+SQERFwbVDfF8v/N+7ZtOh7buCl9+pJ5kFqq75gHl+4CCcORqmzMk/DRFXMTEw8iLf5/DNT5gF+0eOBi+/iwfC4AG+z+GtKdDvquBeY4s39TFKjvoOEmluGgEdj2/I7hl8Zf1WE7St68UwaTKkppVcOXJyzDXuRTebgNMLl7qfk075mjeEW64ouXKURZHcjrvWib6oThQJPfUDywXL1o0niWCWZSUDSZ7Hk5KSSE72sYBMJFweehkeedW90xgVBX9NNjv3RIJtKdDmbDhyzLx2OrZjr4JnxoW3bCIiIlI+3PscPDXJe6DtxsvgxfHhLZtIcVxyK3w5zftmn/M8NgYuOh2GngWn94JKCcEvw6Jk+GIqvPMV7Ep1H4x3LUv/k2D628HPX0rGmMfglY9Vb0p49b8a5vzhffMYzPPEmjDqYhhyplnUUhJ2p8JX0+H1z+Dvlf7ruM5tYeGnJrK8iIiIiITPo6+a3b5d+5C6jik/dA0hIiK+ZGRA0nmw4fhOmL7aiFN7mPbhX92gTbPi7dSZnQ19r4AFS7zzcfK+4DT47zho0RhS9kD9ft5tRfYy3+lv3g69hsPOPe5/7zx38gKoVxtO6Q5dT4T2rczmTo3rQ3xc4J9n337zb7dsDfyzCub8CYtXmLw883PYNlSpBL99BEktA8+rNFG/UyR/P8yB824oH9+R+1+Ex193r4sT4mHTDLNzdTCNfx6efNP7msey4IOn4bJzfL+vsG2NFN83M+DCm8vHdyCSqd8kgThw0Mxx33V8YyPP+rViHAw7Gy4ZaILvVa1cvPwOH4FuQ2D1Rvf8nOdRUXDz5fDgDVCtiupwKVjKHmhzDqQfMq89z+H6deD6S8053LZF8fPbmwYdB/uvW+Ni4emxMGaEOZ91DgeX+hglS30HiTRLVsIpV8LBw+a1v3MyOgq6t4d+3aFrkjknT2gMsT6CdxYkNQ2WrT1+Tv4B0xeY/pJnng7bNvOUZ7wNfboW7XOWZ5Hcjm/daTYBdf7WlfMe1YkioTP5ZxPcP4T9wHbt2rF8+XJfv1pu23a7Esu4HFPgFYloCrwipcb8xWYHHs+Lp6QTYP5HxR/gLa7MTBOBe/ZC7wGzme+YCIgiIiIiJS15DXQYrAACUvakppnrgVUbzev8bvZViDY3VZwbKy2bQJP6ULcWVK+afz45OZCyF3budhnYXg3zFsGefb7zc9i2Gfxf+Ck0rFvsjywh8ucyOOlS1ZsSXprQICIiIiKFpUnH5ZuuIURExJ8Zv8FZ15mxbvAdfMVhWWbcvEolGNi7aP2I7bugx1D/bZJlmTH7SwZC/5Nh9IOFW4S2dLUJOLbvgO/fu87L9GyLwHy2WtWhSgIkVDRliY6GzCw4lgEZmZB2wNwXyMzyn7av9J0J+lNeM5+trFK/UyR/nvfnoex+R2YvhNOu8a7HR14Ebz4S3LwOHzELsrbvcj9e0HWGFjyH3pKV0OXi8vEdiHTqN0kgPv0RLrvDd+BE57nzs15taNrAnBt9u8L46wuf38r10PMy7wW2rs+rVzGLbE/pDoOuUx0u+XvpA7jlyYLP4ZrVoE1zaFrfnMPd2sG1Qwqf3/zFpv/j1Hu+zuGWTeCOa6B3Z9/zNnUOF436GCVPfQeJNLN+h7OvN+cO+L73Bd7ni2VBnRpmnLNWdXNu5p6TUR7nZLoZx9y5Jy/IiyO/PJyyfDjBBKqToonkdrx2dbjoFu80oqLy/t6hOlGkZP21HLoPCWk/UIFXQk+BVySiKfCKlCodLoDl6/JeOx3drknwzcvQIDE85Uo/BCPuhO9ne0e0bFIfNkzz3bEWERERKQlNB8DWFPNcEyClLNmyA/pdBRu3+e5fFzSw7RyvnGB2X/M1sH3oiPcgdiBp27YZ7J/9nlnEJKVLvb6w2yWwjupNCQdNaBARERGRwtCkY9E1hIiI+PPsu3DHM96TyJ3nniwLzukH304sWn5LV8OpV5mFC/7y8/U60EVo6zabwB/L1uQ/96agOZq+2quCeM4Bcv0cdWvBVy9Bz04Fp1Oaqd8pkr+Dh6DqSe7Hxgwvm9+RzExocCqk7s875tSNL94LNw4Pbn5fTIUht7m3GU6ejerCrHfhhCbu71HgldDbnw41erofK6vfgdJA/SYJxO1Pw3Pvh+56IZBF1MW5XpDyZ/g4+GRKweewa71UnHP44x/g8rvyXvs7hy3LBEFVPyQ41McIDfUdJNIsWAKX3GqCcPqq553X/gSybs/f+/2917bNfOP3noSLBxacvuQvktvx7Gzv9zuBV1ypThQpWXvToE4f92Ml3A9U4JXQqxDuAoiIlBl3XAPXjHcfULVtWJRsgrI8chOMHgIxMaEr0zczYOwEs/jTlVO+O0cp6IqIiIiEVq/O8NlP6oNI2dO4Piz6HC69Hab/5jtyvcPfQLVtw4GD5lEYBd1YbNscvnvFe3KflA69u8DXM1RvSnh1aA2/f+J/QkNBdZxr3aabdyIiIiJlX7OG5qc2gSm/dA0hIiL+jL3aBNMa+7R57W+RgnOsuDq0hhlvm93pU/YGvoAzUCc0MW3e/S/CSx+agGC+2qGCxvELu6jC1985aQweAK/cD/XqBPbe0kz9TpH8Va4ES74yi2wddWqGrzwlKSYGRl4Ez7ztPX/z5idg3RZ4/BaoGB+c/C4eaOpb5x6ea32/NcVs2PH9K9D5xODkJ0VTrYrZNNH1O9CicfjKU96p3ySB+L+7IMeGF/7nfT6UxPVC/5NNPXHRzXDkmO/81NeUwnj3cRPI58tp+Z/DnoF9iuqyc0yg6msfzAus4lmfutadvq69pfDUxwgN9R0k0vTsBH9Nhhse9V3PQ/4BUgp7f6sgtg3d28Pbj2lDxmCJ5HbctS7yRXWiSGjUqg4v3GOuWx2d24avPFIiLFsDARLBLMtKBpI8jyclJZGcnByGEokUoP/VMOcP75t3YJ4n1oRRF8OQM6FTCTWqu1Phq+nw+mfw90rfEbctyzTqCz81E1pEREREQuXpSXDPc+79Je08J2WJbcPEj+ChiWZHtVDdrPYVOT8qCm6+HB672ewOLaXTo6/Cgy+r3pTIcORowRMa8lPcXT0809HNOxEREZHI9d0s70nHHVqHrzwSHrqGEBERf2YugFH3w6bt+S9IKO4O9o4tO2DoWPj9n/zzg6LvYL9mIzw4Eb6Yato9J6388glUfu9xftc1CR69CQadEni6ZYH6nSLiSNkDbc6B9EPmtev8TcuC+nXg+kvhkoHQtkXx89ubBh0Hw8497vk5z+Ni4emxMGaEuW+bsgfq9/Oex1mYtkakrFC/SQry7ldw29OwPz001wt/r4CLb4UNW0vuekHKD9uGhyfCk296j4l6/l2wzuEf58KIOyGtgO8M6ByW0kl9B4k0sxfCvc/DgiXmtb/zp6jzh/2dl87xBokw/jq4bqi53pTgKQ3tuDMWGhujOlGkHGjXrh3Lly/39avltm23C3V5ygMFXpGIpsArUups3g69hvu/mQZ5r+vVhlO6Q9cTTXTJlk2gcX2Ijws8v337YcM2s1PcP6tgzp+weIV7FEJfF1pVKsFvH0FSy6J/VhEREZGi+GEOnHeDAghI2bdvv9lRbdIXsGefOZbfQLS/3/v7+4IG8wcPgIfHKJJ9WfDNDLNDuOpNiSSa0CAiIiIiIoWhawgREfHlyFF483N4/n+wcVvecc86PRiT18FMSH/5Q3js9fzH7aF4i9B27oY3PocvpsHS1XnHgxWo3fW+QuUEOL8/XDsE+vUITvoiIqXZSx/ALU96b5jned1Qsxq0aQ5N65u5lN3ambq0sOYvhtOuybvO8ZwvallmXugd10DvztBhsAKviLhSv0nys3M3THgbJk2Gg4fNMV/nRrCuFw4dhvtfglc+hozM/BdQqw6XQCxdbTZa+tYlWGRJnsPbd8GYx+DrGb7zUuAVKQvUd5BIsyjZbNT4zUzYdyDveDA3bHStv3t1hmsvgWFnm2CfUnJKQzu+bZbqRJFyQIFXQk+BVySiKfCKlEpLV0P/q90vmlwVtLCySiWoVR2qJJhd6StEQ3S0uTl3LMMM5qYdgJS9eTfsfKXtK31nJ4Upr0H/kwv90URERESKLXmN+2QiUAABKduOZcBnP8Hkn2H6AjOR3OT8GGwAACAASURBVBGMwW3Xa4CWTWDoWfDvS6BZw+KnLZFhyUrocrHqTYlMmtAgIiIiIiKFoWsIERHxJScHfvsbfpwH8xbBivV5gVEAzj01OJPXHUePwcc/wOufwcKlecdd26NgLULbvB1+mGs+31/LYdVGyM4uenqVE6BjG+jTBU7tAaf11CILERFPw8fBJ1O8A5w4zx2u9X5xFkp9/ANcflfea3+b9Tm7Uivwiohv6jeJPwcOwnez8q4Xtqa41+fBvl7Yvgte/xTe+tI8d5TE9YKUD2s3wac/wo+/wMJ/IMujbgv2OfznMnjpQ/j8Z3P9C77XlOgcltJOfQeJJNnZ8Otisznpb3/DklWQfqj46TZIPH5OnmTueTWsW/w0pXBKSzuuOlGkzFLgldBT4BWJaAq8IqXWus1mR/Jla/KfKFhQHewvQmGg7/G8iVe3Fnz1EvTsVHA6IiIiIiXh4CGoepL7sTHDFUBAyoejx2DW7/DbEjOw/ddy2LmnaGlViIbWzaBzW+jT1Qxsn3hCUIsrEWJ/OtTo6X5M9aZEIt28ExERERGRwtA1hIiI5CftAOxKNbvOx8eV3Pj31p0wZS7MWACLV8C6Le6L5IO9CO3IUZPHthSzYHTHbvMZjxwz9xAys8z4f2yM2bipRlVIrAWN60GLxgq6LiISiIwMGH4nfDktsLmbllX8Harf/QqufTBvF2zXeZuueTlcd6jWgmcR39RvEn8OH4HVG49fLxyBmtVKJuhuTg7MX5x3vbB0Td7iV1AdLkWTmQlrNrmfww0TYeig4Oe1b78JADBlnjmHd6e6/17nsJQ16jtIpFm90Tzczskj5lw9mmHahAoVPM7JmnnnZIfWZlN3iRylqR1XnShSZijwSugp8IpENAVekVLtyFG4/0UTaTAzy39AFH/yq58Ls+ubk87gAfDK/VCvTuDvFRERESkJS1fnTTgCqFPTROUWKY8OHTaD2lt3utxYCWBgu0l9c9NFyofvZrnXm86NNZFIppt3IiIiIiJSGLqGEBGRSHDosGmPduw2gdOvGhzuEomISFHYNjw8EZ5803vupuffBSPwCsCPc2HEnZCWnn9+oMArIiKlUU4OrFwPazfnXS88eGO4SyUSuO274O8V7ufwO0+Eu1QiIiISCLXjIuWWAq+EngKvSERT4BUpE9ZshAcnwhdTzU088H1jzfWmWqDye4/zu65J8OhNMOiUwNMVERERERERERERERERERERERERESmtlq6GB1+Gb102OfA11zIYgVfALIQa8xh8PcN3Xgq8IiIiIiIiIiIiIgFS4JXQiwp3AUREyrxWzeCjZ2DTdHjoRrMruW3nPRyWVbigK57vcU2zUkUYfg7Mehf+/FxBV0RERERERERERERERERERERERESk/OjQGr58EVZ+bzav690FoqPc51oGcwPTBokmv4WfwhXnQ1ysex5FmSMqIiIiIiIiIiIiIiFh2cEcMBYJMsuykoEkz+NJSUkkJyeHoUQiQbJ5O/wwF377G/5aDqs2QnZ20dOrnAAd20CfLnBqDzitp7lpJyIiIiIiIiIiIiIiIiIiIiIiIiIikJkJazbB6o2wKxUOHYGGiTB0UPDz2rcffpgDU+bBjAWwO9X995YF2cuCn6+IiIiIiIiIiIiUeu3atWP58uW+frXctu12oS5PeaDAKxLRFHhFyo0jR2HdFtiWAltTYMduOHQYjhyDo8cgMwsqRENsDFSpBDWqQmItaFwPWjSGZg3D/QlEREREREREREREREREREREREREpDTYnw6bd8DWnZC6H9LSzTzGzCywbagYDwnxkFDR/KxfB5o3Mj+laLbvgr9XwNrNZo7ozj3wzhPhLpVIeGVnw8Klpj7atdfMmU6sBXVrQbd2UKdmyeWdmQmzFnofH9in5PIUEZGyQ21Y5Ek/FMD1zfFrnPp1oEFiuEssIhJZVq437dq+A2ABVStD0wbQqilUqBDu0omUSwq8Enqq7UREIkHFeGjfyjxERERERKR80GRGERERERERESlvNBldREQK48hRWL3x+Fh6CqSmHR9LP2bqdRuoGOd7LL15Q6in8fRyQf0LkYIdy4BZv8O8RfD7P5C8FnalFi2tuFiz6KZTG+jbzTw6tgluecuqBola3Cni+GEOTJoMM3+Hg4d9/41lQbckuGQg3Djc9PeCKXU/nDXa5OOaZ9bS4OYjJUtzb0Qk1NSGRYaV692vb1ZugAMHC5dGbIy5tmneEDq1Ndc2fbpA9aolU2YRKb3K8vjjzAXw5mSYMtd/uxYfBz07wiVnwohzTUAWEZEyyrJtO9xlEPHLsqxkIMnzeFJSEsnJyWEokYiIiIiIiEgRaDKjiIiIiIiIiJRnkTAZPWUP1O9Xvieji4hEuk3b4Md5eWPpG7ebxZJFFRcLHVvnjaX/qyvUrB688kp4qX8hkj/bNotm3v4Sfv7FBK1y/V1xuZ731SrDkDPhygugT9fipy0iZde0+XD3s/D3SvM6kPrIsqBODbj/P6Y9DxanHffMK3tZ8PKQ4NLcGxEJJ7Vh4Ze8xlzffDUDNm13/11xrnE8r+nbt4RLB8Hl50Hj+kVPV0RKv0gdfwT49UPYssP0h9MPQfUq0LAu9OoMtWsUnO6mbfCfR+DnX83rgupRJ/8qleD2q+GuURAbW+iPIyKF065dO5YvX+7rV8tt224X6vKUBwq8IhFNgVdERERERESk1NJkRhEREREREREp7zQZXURECnLwELz3jRlLd9oLCM44usMZT7csOO1kuHowXHSG2alTSh/1L0QK9r9v4bHXYO1m89rze+K5WKco/KV5QmO47Sq49hKoUKH4+YhI2ZCZCXf+H7z4gXnt1CEF1UeudY1lwfn94X9PQeVKxS+T5wJG21Y7Hok090ZEwk1tWPjN/RMeeQVmLTSvfdX/xbnG8ZeeM45025Uw6JSipy8ipU+kjj+6liMqyv97Tupg6q6hg3z//vclcP4Y2LOv6O1am2Yw+XlIalngRxCRolPgldBT4BWJaAq8IiIiIiIiIqWSJjOKiIiIiIiISHmmyegiIlKQjAx4+i147j3Yf7BkxtHBf7pVKsF1Q+Huf0ONasHJS0qW+hciBVu7CUbdD7/85X3ueypsvVvQd84zvxaN4IV74Ox+vv9eRMqP1DQ46zpYlOy7LvG3nsWzvnHa2aQTYMbbkFireOVSOx75NPdGRMJNbVh47U2D256CD783rwtzTRKIQK9tAP7VFV68Fzq1LVweIlK6ROr4Yz0fwZ8KKpNlwRm94f0n3dudNRvh5GGQlu6dTmHaNYDKCfDtRDj1pPzLIiJFpsAroafAKxLRFHhFRERERKSc2Z8Om3fA1p2Qut8M6h05CplZZpCuYjwkxENCRfOzfh1o3sj8FIkEmswoIiIiIiIiIuWdJqOLiEhBfv0LRt5nFlAGOpZe2EWVTj3vLz0nzaqV4fFb4IbLCpe+hJb6FyIF+/kXuOyOvGBW/s7/UHD9no4eYu5ZxsaGJm8RiSxHj0GfEbB4hXnt2WYWxLPdd153TYLZ7xZvIaPa8ciluTciEgnUhoXXkpVwwRjYstP/OEAorm9c24XYGHh4DNz175LPV0RCL1LHH1esg6TzvI9HRfl/j2v527eCue9DtSrmeLdL4O+V3u1ToG2b579JQjzMfg+6tw/s84hIoSjwSugp8IpENAVeEREREREpw45lwKzfYd4i+P0fSF4Lu1KLllZcLDRtAJ3aQN9u5tGxTXDLK1IQTWYUERERERERkfJOk9FFRKQgkybDmMfygu4XZdFMoJPcA03HsuDMPvDhBKhRrXBpSMlT/0KkYD/MgYtuNnUr5P898VeHxlQwG6HEx0J8HGTnQFaWua+ffhiys32/L7/voZP/qT3MDsiVEgr3uUSk9Lv+IXjjc/+L+gpay+LrfU7dMvQs+Pi/RS+b2vHIpLk3IhIp1IaFzx9LYcBIOHTEvd4vzPVNURUUmMuyYPg58O4TEB0d3LxFJHwidfzxWAZ0vRiWr/P+nb/AK77qzQE9YeokeP8buPpe/5+vMG2b6/MGibD0a42ti5QABV4JvQrhLoCIiIiIiIiUI7YNU+bC21+aG+VHjrn/rqiOHoNVG2D1Rvj8Z3OsWmUYciZceQH06VqsYosUKJDJjAXddA3mZEbXvN743Hw3NJlRRERERERERErarU+aSYnBnoy+eAVc+2DxJqOLiEj4TZoMox80zy3Le3w7v/YiOhoSa0LlBKgYZ8bR4+PM2HlW9vGx9ENw4BCk7vc9pp5ffj//Cv2ugqlvQr06xfucElzqX4jk759VMHSsuU/peY/SOd8dDetClxOh64lmx+MGidAw0fyMick/nyNHYddeSNkLG7fBmk1mh+SFS80u9OC7nrVtmP0HnHcjTH8r/x2ZRaRsWZQMb072vzgvId7M6TmzD3RuC3Vqmt9tSzH1xoffw9w/3eszJw3bhs9+gv4nweih4fl8EnyaeyMikUJtWPhs2gZnXw8HD7v/+7mOIzltQIVoaNvCBDZo3/L49U1daFDHBDnId/zooNkoMmUPbNyed33zzyrvdsj1uW3DRz+YtDSeIFJ2ROr448MTYcV6/7/3VS7Ptsu2YcYC+Ho6vPKx+3td/7ZFI7jsHNO2NW0AibVMnblzj2nTPv3RpONZNwPs2A23T4C3Hy/a5xQRiSCWHezIfiJBZFlWMpDkeTwpKYnk5OQwlEhERERERIrsf9/CY6/B2s3mtef1aDB2I/GX5gmN4bar4NpLoIJikEqQ/bMKeg03kw393Wx1hHoyo2tZ+vXQZEYRERERERERKTmLkuGkS/NeF2cyuvMecJ+89+oDRZ+MXtZ3ARURiXRz/oDTR5mFLvmNpcfGQI/2x8fSk/LG0uvVDnx827Zhd6r3WPqCJb4Xz7jm36E1LPjYLNaU8FP/QiR/WVnQfQj8s9r3whqA3l3ggv5wwQBo3axkyrFqA3wxFd76EjZs9V0Wy4KxV8Ez40qmDCISeYbcCl9Mc68HnLpp2Nnwwj15bbc/U+bAvx8w8yTAuy9QOQGWfQNNGhS+fGrHI4vm3ohIJFEbFj6nXQOzF/q/vmlUF87rDxecZurkuNjg5n8sw+T/5TT4eEpeABhXTpkm3A63XxPc/EUk9CJ1/HHFOuh0oQkkmJPj/fuoKOjezgSgqlbZBEjZsM18Hid/18/TIBG273JPw/ndgzfA3f+G2ALq1Gnz4d/3w9YU73Sio+HvL6Bdq8J9ThHJV7t27Vi+fLmvXy23bbtdqMtTHijwikQ0BV4RERERESkD1m6CUffDL3+53wT3d5PaVUHBWDwjSueXnmWZaMwv3ANn9yu43CKB0GRGERERERERERFDk9FFRMSfQ4ehw2CzsNHXYpW4WLj4DLNoZlBfsytxSTh4CL6dBa9/BvMW+R9LH3EuvP9UyZRBCkf9C5H8vfk5XPeQ77p1QE/47zjo1DZ05cnJgTc+g7ueNQsUPcsUHQ2LvzCL5EWkbEs7AIn/MosEHU47ee9oePTmwNPauhPO+Q8sXe27TzCwD/z0RuHLqHY8cmjujYhEErVh4fPZjzDsDt/XN22bw5O3wfmnBWeTx0AcOAhPvAHPvut+PjhliouFFd9Ds4ahKY+IlIxIHX+8+XF4+SOTjq/AK5um+05v/RaY8Ba88bnvzwTux5+5A8ZeHXi5tuyAM/5tAhg6nLT+fTG8/nDgaYlIgRR4JfQUZlVERERERERKzs+/mCjQTtAVy8p7gO9AK55/k5+C/s41LduGdVvgvBvhPw9DRkbRP5eI452v3Cd+QN75NqCnmTj4ywcwblTJTfwAaNMc7r0O1vwIr9xvBumdsriW6fn/wbI1JVcOERERERERESmf0g7ANzO9xyIsC8ZfBx89U/CkRDABkxd+ahZi+poIePAwjH6oRD6CiIiUoFc/yQu64lqv2zaMvMhMEv9gAgw5q+SCroBJe/i5MOd9mPKa2SXZcxGlbZtdSn9ZVHLlkMCofyFSsGfedr9P6ZzbD4+BaW+FNugKmN2Wrx8Giz6H5j4WH+bkwD3PhbZMIhIeP86DrOy8104bfOHphVuwDtCoHkybBM0bmdeufQIwu65/+mNwyi3hobk3IhJJ1IaFz1OT3F871zcjL4IlX5ngW6EKugJQtTI8NRZmvQu1qnv/PiMT7nshdOURkeCL1PHHYxlmjNpfnRcV5T+IS4vG8NpD8O4TeZ/J+em6psKyoG+3wgVdAWhcH755GRLi8445aX7yI2RmFi49EZEIY9mei9zEL8uyKti2nRXucpQnlmUlA0mex5OSkkhOTg5DiUREREREJGA/zIGLbobM45dRntH1Xfm7No2pABXjIT4W4uNM1PisLDOgmH4YsrN9vy+/mytO/qf2gG8nQqWEwn0uEVetB5mAPg7n/HroRrj/P+Er19pNcNZo2LDNu2xnnwLfvRK+somIiIiIiIhI2fPxDzDiTu8xwAtPh8nPFz69XXuh13CzSN81PefnR8/ApYMKl2ZZ3QVURCTS5eRA49Ng5568Y7YN0dHw1qNw5QXhK9veNDjneli41HvTgL7dTIAWV6ddE9ryBYsFzHgn3KUoPPUvRPL35zKzCYrn+XfTCHj+nvCWDWDrTuh5GezYnXfMqf83z4D6dcJXNikb1C5HtluegJc+dK+jYmNMQIvG9YuW5t8roPcIM2fIlW2bgHorf4CEioGnp3Y8cmjujYhEErVh4bF8LbS/wPszDT0LPv5veMsGJuDWvy6H9EN5x5xzY8ccqFEtfGWTkjFyfLhLUDSWBW89Fu5SlB6ROv748y8w6Lq8cuXk5P3OCZ4SSJ1/65Pw4gfen8/5OetdOKV7oT5irufeg9sneKf98xtweu+ipSkSbhFY93/51VekpaV5Ha9EVNqlVP3q+Esbe/mo0Jas7KoQ7gKUMvdalnUG8D7wuW3b3meriIiIiIiIwD+rYOhYE3TFc0DNM4pzw7rQ5UToeqKJ9NwgERommp8xMfnnc+SoGaRM2WsGKddsgr9XmgmyW3aav/EMwuLkP/sPOO9GmP6WifwsUlh/LoO1m31PZgznxA+Alk1h9nvukxmdc/+nX8wxTWYUkfxosqqIiIiI+KO+oviyYIn3sZgK8NxdRUsvsRZ88XzeZHTPnebGPQPnnVq4yegiIhIev/xlxqQ9x9IfGRPeoCtgdiueOglOHgarN5pjTlvzy1+wbjOc0CTv72cvDO3OysHga0OE0kL9C5H8fT/b+1jdWvDkbSEvik+N6pkAW64LhcAsFpr8M9x0efjKJmWD2uXI9s/qvOfO577ojKIvWAfofCI8PRZuedJ9sSDAtl3wxBvw2C3FK7eEnubeSGmn8fKyR21YeHw7y/tYtcow8b7Ql8WX9q1MWa74f/buO1yOqn78+HvSKwQiBAKhl5CAoXcSOgIKSJOOoohIRxEEERSli4CCgDT90jtI7723AAmhhxpCKIGQXub3xzC/bbN79967987s7vv1PPPc3bO7c87enTnnzJkznzmmsD83ew7ccC/sv0t6ZVPHuPyW+uu7x3WLgVeql9XxxxfGJKe3dps85Qi46o4oAHnx5xcf1PagKwAH7Ap/uQAmTylMf/xFA6+ofmWw7t9+HkBigLcBwL5EPfsQMPBKjRh4pXUCYANgfeDcIAjuBK4Abg/DcHaqJZMkSZKkrJgzB/Y5JgqKkhQhGWD91WD7TWD7zWCFpdqeV+9esORi0bL29wtfe+M9uPFeuOQmeO+j5LI88hwc/Tc446i2l0HNy8mMkhqZk1UlSZJUjn1FJXEyuiSpnDsfLU1bejH4XUbmgM7XD/57SnQxZbEb70suZ/4NBrKs3vs/9i+kyl56Pfc43pb33i46h54VW20IG60Bj71QWCc9Ndpzlaod2+Vs+mBC6XfeYr32r/eQvaI+2qPPl17EeNZ/4Je7wBKD25+POo9zb1TvHC9vPLZh6Xg+L8hAvI3u8UNYcEB6ZSq254/gzMtg9BuF28iTLxl4pZHVy/GG2iar448vjC0sV6z45rct6d0Ldt8G/nFl6XUU246qfj1J+vSGHTaDy24urBNHv9G+9UpZkKG6v4Veu536DuAtvdsmAHoCOwA3AJ8GQXBBEAQbpVssSZIkScqAy26OBiLzB9Higb7N1oWXboTHr4Cjft6+oCstWXFpOPYAeOsuOP946NcnV5b8Mp39f/DaWx1XDjWueprMWDwA+FRClHZJShKG9bFIkiSp86XdB7SvmC0dORl95JqFkxLzJ6N/8En785AkdazR43KP4/p8n+2ha9f0ylRsrVVg641K+w7Pvpr8/iCoj6Xe2b+QKhv7Tuk+ssna6ZSlkj22LXwehoVtg9Reabe3zdIut9bnX5WmfX/F2qz7ghOgR/fS9Jmz4Ji/1yYPdR7n3qhRpD0O7nh57diGpWPs26V9pi3XT6csley7Q+HzMCxsy9R40j6O8JijY2V1/PHtD0rT2vobb7pOcvr3V2jb+vKNXLPweRjCux+1f71S2tKuz/OWEMouuT+qJQOvtE28XQbfLQsA+wMPB0EwPgiCvwZBMCzNAkqSJElSas64tHBwLz5h96eD4b5LYMTQzi1Ply7wq93gheth6cVKX583D37f5Cet1DZOZpTUDDJw4sATx5IkSRmVdh/QvmK2OBldklTOG+NL2+SN1kilKBXtslXucTwJ/tU3C9/TvVvyxWpe1NYx7F9IlX35dWnackt0fjlastYqucdxezApYf+WWst2OdumzyhN+96A2qx76DLw25/lftP4YsYwhGvvgmdfqU0+6hzOvVGjSHsc3PHy2rENS0fSMcKKS3d+OVqy3ojc43if+vTzdMqijufxRuPL6vjj5G9q124PXy45fViZ9NZYaZnc47i8Eya1f71Smqz7m163tAtQ5/L3irglWwI4BjgmCILRwBXANWEYehsEqZFt+rO0S9A2AfDAZWmXQpIkNZLnX4uiLMeDZ/GJoUP2hOMPTLdsyy0JD/8H1t09N6gXn7S6+/EobdGF0i2j6ku9TmYMQyczZonHk8qq7t1g9pzocf5JvEonCpykI0mS1BzsKypJZ0xGP/mi3NhG/mT0w/eGtb9fm7wkSbX31TelaUsO7vxytGT1hPusfTG58PlXT8NDz8LtD8OVt8O303IXr5XrCznxtu3sX0iVTZlamtand+eXoyWDBpamffNtbfPwfFtzsl3Oti5dYO680rRaOe4A+O+t8PFnpeNTR54Oj19Ru7zUsZx7o3rneHnjsQ1LR9IxQv++nV+OlgxeuDTt6xof3ygb3r4b7nosOt6476noJp8ebzSerI4/1rJeSaq3AAbO3/51L5iwjm+ntX+9UloyWPe3cOTggUUHMPBK2+VvkCHJQVhWBUYApwVB8AhREJabwjBMOJssqa49/Gz9DYDFHXZJkqRauv3h0rRBA+GUIzq9KIkWXwQuOQm2PqCwLzRvHtxwDxyyV3plU/1xMqNqweNJZZWTVSVJklSOfUUlcTK6JKmcqQkTrXv26PxytCRpknjxWHqf3rDtqGg5/bdw3lVw0gUwY2ZhXyh/Iv1aK8PWG3V8+RuR/Qupst69Si9m+XpK+Qtq0jJjZmlat661zcPzbc3Jdjnb+vUpDcD35dcwZNHarL93r+h33+Oo0osYn3oZrrkTdtumNnmpYzn3RvXO8fLGYxuWjh7dYc7cwrQsXrxfPE4B9usb1TJD4KA9ouXdD+H0S+DfN0SvlTveWHEpWMdAvnUlq+OPU6fXrgy9eyWn1yK4VdI4/6zZ7V+vlJYM1v233nwLk78uDVjaly6Td2W+Wzos4yZm4JW2C8kFWCkXhCX4bukKbPLdcn4QBLcDVwJ3hmFoSyI1knoZBPPAXpIkdZSXXs89jgcT9t6u/KBdGrbaEDZaAx57obBf9NRoA6+odZzMqFryeFJZ42RVSZIklWNfUUmcjC5JKqdvn9ILEr/8GhYblE55ypmWMJm9V8/y7+/fF47ZH3bYDLbaHz6amHxh3dqrwAkH1baszcL+hVTZgvOXnqt87S1Yadl0ylPOux+Vps3fv2Py8nxb87Jdzp6BA0rb8XHvwYihtctjt23g/Kvh8Rdz+1X8ux91Jvxo46gvqmxz7o3qnePljcc2LB0LzAfTZhSmjXsXVlgqleKU9cGE0rT5+3V+OdS5lhkCF5wY7bs7Hgpff5t8vLH5enDucakUUW2U1fHH3j1rF3yl3BhEpbHvak36qjQti0HXpbbISN3/h2dvZezXCf0P+GTX8KOfdVjGTczAK62TH1AlP8BKnJb/lzKv9wJ2+m6ZHATB9cCVYRg+VvviSup0nhCTJEnNbuw7pX2iTdZOpyyV7LFtFHglFoYwelx65VF9cjKjasnjSWWZk1UlSZJUjn1FxZyMLkkqZ8H5SwOvjB4Hq6yQTnnKeWN8adqAKsbShy4Dt50Ha+0a3R3Vsd7asX8hVbbkYHj/k8J657aHYJcfpFemJPc+kXscX2C07JCOycs6WLbL2bHcEvDW+4W/wYNPw0+2rm0+5x4La+5aOhb1yWfw+7974Ws9cO6NGonj5Y3BNiwdiy+S22didz4K222aXpmSPPh07nH82y05OJ2yqPNtvDZc/3fYcv/ouccb9S+r44/z9atd4JXZs6O/HRGs9rMvStP69q59PlKarPubTpe0C1BnTga2AS4FviIKphLvJSHJwViSXo/TFwD2Bx4OgmB8EAR/DYJgeEd/CUkdoHu3qANa3AmN05IWSZKkRvTl16Vpyy3R+eVoyVqr5B7Hgx9JUZelSpYcXNq3v+2hdMpSSWdOZlTreTypehJPVu363bCyJxAkSZIUs6+o5ZYoPWbNn4BcK+ceC10SprrEk9ElSdmT1EbceF86Zank9odzj+Ox9GrvqjxiaHQBluO3tWX/QqpsvRG5x/EFO9ffA+M/Tq9Mxb6eApfeVHqMuGoNL2ACz7epkO1yIs8fCAAAIABJREFUNgxfLvc4rqNuuBemTiv/mbZYdSX4xU6Fv3ec3/nXwANP1TY/1Z5zb9SIHC+vb7Zh6Vg34fjm6jth0pfplanYzFnw7xsK9+kggBErplcmdb7N1oMfjvJ4o1FkdfxxmcWTxzjaYuYs+M1PC5cj961NgJQXxpSWb/BC7V+vlDXW/U3FwCutEIbhnDAM7w7D8BfAIOAHwMXAF1QOwhJUeD1OXwI4BnglCIKXgiA4IgiCRTr+W0mqia+ehv+dDwfsGnU840a00iBZpZN6nbFIkiR1hClTS9P6ZDBy8aCBpWnFd1uUWuJkRtWCx5OqN05WlSRJUjn2FZubk9ElSeUkjaX/72F45Y3UilTi44lwxf9Kx2VXW6n6dey/S23LJPsXUks2Xbc0bdZs2OcYmDOn88uT5JcnlN45GmDrjWqbj+fbVMx2OX2brlOaNnkK/PXC2uf118NhgfkK04IA5s2DvY6O+nrKLufeqFE5Xl6/bMPSMXKN0rRvp8EBJ3Z6Ucr63ZkwYVJp+hbrd35ZlK4Dd0u7BKqVrI4/rrRM4ftibelX9OsLZxxVuvTt0/p1Fbv1ocLnQQBLL97+9UpZZN3fNLqlXYB6FYbhXOBe4N4gCA4ENgF2Bn4MxGG58oOvQGHwlXKvA4wAzgROD4LgQeC/wE1hGE6v9feQVCN9esO2o6Ll9N/CeVfBSRfAjJm5jjDkHgcBrLVy7U8gSpIkpa13r+hkR76vp8DghdMpTzkzZpamdeva+eVQfdt0XTjtksK0eDLjg5dBtwwMu8STGYsnf3gskh0eT6oe7b8LXHl72qWQJElSFtlXbF6brgNnXlaYFk9GP/mI2ub118OjC3AmT8ml5U9Gf/56WGxQbfOUJLXdlhvAn/9VmDZvHuxxFDx5FczXL51yxWbPhr2PgWkzSsfSf7hx9evZYDWYv7+B/mvJ/oVU2ebrwVKLwfufRM/jc0lPvAQ7HALXnBldXJOGefPgoJOi/aq4bh04ICp7LXm+TcVsl9M3ai3o1wemfnf5Q7z/nXEZrPN92H6z2uU1cACcfDgc+OfC/TwIYOIXsPUB0RyO7y1QuzxVO869USNzvLw+2YalY9tRsPCCMOmr6Hn8/7j1QTjgBPjXCdClS3rlO/lC+MeVpW1B396wzch0yqT0bLIO9OkF0xPmoqu+ZHX8ceO14d83lK4jbiey4KWx8MKY0vKsPiyd8kgdzbq/aWRgFKL+fReE5X7g/iAIfg1sTBSEZUcgvrqwNUFY4te6Apt/t/wrCIIbgP8Lw7AoFJikTOnfF47ZH3bYDLbaHz6aWHjyLrb2KnDCQemUUZIkqaMsOH9p4JXX3oKVlk2nPOW8+1Fp2vz9O78cqm9OZlSteTypeuFkVUmSJJVjX7F5ORldklTO+qtFdw4d+070PK67X38XNtsPbv1negH8p0yFPX8HDz9bOpY+ZBEYuWb16+raNeoL3flodia/1zv7F1JlQQCH7gVHnla43YYh3PUYrLojnHNsdAFjZ3r59WhfevbVwvS4fEfsA927d1z+nm8T2C5nQe9esOcP4cLrcr9BEMDcubDrkXDGb+HQvWuX3wE/iYIbPP5iYZ0I0bylTX8Gd11oILUscu6NGpnj5fXJNiwd3bvDAbtGARSLj28uvhFeexsuOAFWWaFzyzVhEhzyV7j5/sL0uHwH7hYFglRz6dkD1lsVHnja4416l9Xxxy03gB7dYfac0vVkIfjK3Lnwiz8ml2XjtdIpk9TRrPubRoqh/hpTGIbzwjB8MAzDXwODgU2B84GJFAZbCUkOthIUvRan9QP2JQruMj4Igj8HQbBc53wrSW0ydBm47Tzo+l1Va4MqSZKawZKDSycs3ZbB2JH3PpF7HA/6LTskvfKoPsWTGeNtPmky4x2PdH65Xn4dNtgTLrq+ML2zJjOq/TyeVNbFk1WL23xJkiTJvmLziiej5//2+ZPRz/2/2uZ3wE9gw9ULx2Ni8WT0jyfWNk9JUtv99mfJY+kvjIFVtofzroLZszu3TLc+kDyOH5fvdz9v/djsaivVrnyyfyFV45A94fvfXXhYfHHiux/BdgfB6jvBxTfAl5M7rhzz5kXn4Hc8FNbcNQq6UnzxTRDA0ovBYTW8SLUSz7fJdjl9v/1ZdGFSLK4XZs+BI06L6qcrboNvp9Ymv/+eCvP1ix4XX8j42ltR3++2B2uTl2rHuTdqZI6X1y/bsHQcs38UjAtKj2+eehlW2wl2OgzuezI6BulIb46PglyusHUUdCUpuMBCC8DRP+/Ycii7Vh+WdglUC1kdfxw4AHbesnwfIs2+xcxZsPcx8NLrpfXiwgvChmukUy6pM1j3NwUDr3Sg74KwPByG4cHAYsDGwD+BCVQXhKX4tTh9CeA44I0gCB4NguCnQRD06fhvJKnVRgyFn2ztYJkkSWoe643IPY4HBK+/B8Z/nF6Zin09BS69qXSwb9Wh6ZRH9c3JjOooHk8q65ysKkmSpHLsKzYvJ6NLksrZd4fo7qH5Y+jx+PVX38ChJ8MSm8EfzoHR4zquHJO+hIuugzV2hh0Pg/c+KixL/HjVodFdlltrxIq1La/sX0gt6doV/nNKdHdmKN1uwxBeHgcHnAiLjIT194DfnwXX3w2vvwOzZrUt3y8nw6PPwz+vhF0Oh4HrR3dmvvXB6Lxl8XnKMITu3aKydubd4D3f1txsl9O37BKFAfhi+fXTvsfCguvBmrvAXr+D486GU//dtvZ2qcXgPyeX5hM//mIy/PhQ2Oxn0QXbc+a2/buptpx7o0bmeHl9sg1LR+9ecOlfoFvX6HnxGNK8eXDLA/CDX0bHN3scBRdeC8+9CtOmty/vDz6B2x+Go86IggSv9EM45/9g6vTSAAnx8wtPhAUHtC9f1S/nnDeOrI4/HndANJaSJAxhvd3h8pvhk89qU65qPP8ajNwbrr2rdNwnCOCXuxj4Vo3Nur8pBKGDyZ0uCIIA2ADYGdiJKCgL5AKv/P+35j0u91qcPhW4Frg0DMOnalfadAVBMAYoCQM1bNgwxowZk0KJpDZ49HnYeN/SSRoH7Q7nHpdu2SRJkmrtvidhq/0L+z4QRWd+8DLoVmYAsDP95MgoGExx/+z282HrkemWTfVp9DgYuQ98Oy16XjxJG6LnXbvAmivDqDWjiMcrLw/LDoEePZLXW8mXk+G1t+GVN+CR5+D+p+Gbb0vzjIUh9OgOD1wKG6zetu+pzufxpLLshnuiuzrkn/xz25QkSRLYV2x2x58Lf72wdEJ08RjJ91eEoUvDkoOhf18Ytixst2nr87v1gejC+VjSxfMbrxXdKXPYsjBk09LX577W9u8rSareB5/AenvAp59Hz8u1EwCLfA9GrgmrrxSNpS+3BAxZFHr1rD6/r76G9z6OJqu/8gY88nx0F84wTB5Hj8vRvy88dRUMW6713/HFsdEFV/nrtR/UfvYvpJY99Axs8yuYNTt6nrSvQGm9FwTRXdoHDYzupty/bxQYpVvXaL+aPSe6k/Gs2TB5SlSHf/p57rxorFIecVmuPB1226Y237c1PN/WvGyXs2HuXNjyF/DQs+Xb8lj+b7XtKLjtvLbleeal8Lu/le73xY/7943mWdiOZ4Nzb9SoHC+vX7Zh6bn6Dtjr6Nzzao9vFvkeLLFo0fFNr2jecqXjm/EfFx7jJOVRXIbTjoSjfl6776z68+wrsO7uHm80iqyOPw4aCNfclRxQtkuX3OP5+kX1X/++cNlfYPmlWl+mJJ9/FfXTnx4Ntz0Ez48pLW/8fMH54c07DUilxpZC3T98+HDGjh2b9NLYMAyHd1jGTSwDV7w1nzCKdvP4d8vhQRCsTy4Iy5D4bRQGWykOwhIWpfcD9gP2C4JgHHAR8N8wDL/qkC8hqXobrAbz988NxEqSJDWyzdeLou+//0n0PB6AfOIl2OEQuOZM6Nc3nbLNmwcHnVQYdCU2cEBUdqktRgyFW/6Rm8yYdCe5MIzuNPHMK9ES68zJjJef7MSPeuPxpLJsmSG5x96lQJIkSfnsKza3Ew+CJ18qnYxePEby4tjo4vfYtqPaNjFx+82iCc7xZPSkPB9+Llr6pzQuKUmKLDEY7r4INvkpfPVN6V3jITfWPWESXHd3tOTr3/e7sfQ+eWPpXYvG0r+BiV9EafkqXRQVv96zRzTe35agKxBNuE/KS+1j/0Jq2SbrwEOXw86HR3c6Tro4MH6eLwyjOnPiF9Udv5Wr38p9NgyjCx3/cwrstGXL6+8Inm9rXrbL2dC1K9x4Dmx7IDz1cuX6qVa/1W/3g6nT4U/nl2/LoTDAhmNY6XPujRqV4+X1yzYsPbtvGwW6+tlx0f8jaQwJSv/vEyblAv5Wq9pjnPj/36ULnHkUHLFv6/JR4/F4o7FkdfwxDKP+7Jy5pevI3/a+ngKvTok+O2Va6Xtb65SLokA002cm55df3vjv348x6Ioan3V/UzDwSgaEYfgk8CRwZBAE6xIFYdkZWCJ+C5WDsBSnrwScBZwaBMGNwAVhGD7eEWWXVIWuXaOTd3c+2piDGpIkSfmCAA7dC448rXRQ7a7HYNUd4Zxjo4HGzvTy63Dgn+HZVwvT4/IdsQ907965ZVJjcTKjOoLHk8oyTyBIkiSpHPuKzc3J6JKkSlZZAZ65Bn58KLz2VvJFLLGkduKbb3P1edKFkC0pXn9+OzVoINz8D1h3RMvrKWfgADjn9zAvryyrDm37+hSxfyFVZ90R8OIN8OuT4Kb7cttrvkrnFFtbj7YkDGHNleHSv8DKy1f/uVrzfFvzsl3OjgHzwQOXwq/+BP+9tXL9VKs29YSDYNGF4JC/RhcpVjuHQ+ly7o0akePl9c02LD07bQnDloV9j4XnX0v+3yalteX/Um49xf/vIYvAJSfB5uu3Pg81nkHfi+ae5x9vbLRGeuVR+2R5/DEp6Aq0bXy8Wl9+DdNmlM+z+P9y2N6w93a1y1/KKuv+pmDglYwJw/Bp4Gngt0EQrE0uCMtS8VvIBVsJyAVbSUrvCewO7B4EwVjgfOC/YRhO7eCvIanYaitFJ+4kSZKawSF7wuU3w6tvlQZfefcj2O4gGLEi/Hp32HHzjotuPG8e3P8UXHAt3PZQbrCzOPr90otFA35SezmZUR3B40lllZNVJUmSVI59RTkZXZJUybJLRMFXjj8X/nFldPf5pIAoldqHSmPq1bYr+ZPXd9gMzj8eFlmous9Wcshe7V+HStm/kKqz8EC44Wx4+Fk49mx4enSU3tKFhK3dZ+LtvtxFPoMXhuMOgAN2je4InzbPtzUv2+Xs6NUTLj8ZfvIDOO4ceHlclF7tnIq2+OWusPYq8PPjc3elNwBT9jn3Ro3G8fL6ZxuWnpWWhWevhctughPPgw8/jdLLHYe0NJ5USdLc4ji9dy84eA/444HQt0/b1q/G9Lej0y6Baimr449BEF0TkYak+rY4SMyxv4S/HJZO+aQ0WPc3vCD0pE9dCIJgTXJBWJZp4e35P2pQlD4FuAw4LwzDt2tayA4QBMEYYFhx+rBhwxgzZkwKJZLa6IZ7YNcjCzuWB+0O5x6XdskkSZI6xuhxMHIf+HZa9Lz4roEQPe/aJTo5PWpNWH1YdIJ62SHQo0fr8/xyMrz2NrzyBjzyHNz/dOFd5uI8Y2EIPbpHg6QbrN627ymV09rJjK1Vb5MZ1XYeT0qSJEmS6tldj1aejB7bdhTcdl7783v59cqT0fPHVOLj7LmvtT9fSVLbvDUeTjgPbrw3CsACle9W3NoLJFta3+rD4KRDYOuR1a9X6bN/IVXvhTFw3lVw64Pw1Te59FpetJm/D6y3Kuy/M+y2DfRswzn/juL5Nil7HnoGrroD7n4cPp5Y+voPN65NOx67/m4472p49PlcWrmLCG3Hs8O5N5KyyDYsHXPnws33w7+ugUeezwUhqHVAmvzrbBcfBD/fCQ7cLQpyKal5ZHX8Mf9xcbCouC147rpo3Ls9jjoD/nZ54XqLy7Pk4Cgw2ai12peXpIqGDx/O2LFjk14aG4bh8M4uTzMw8EodCoJgdeAQYF+iYCrljhIqBWAJgVuBM8IwfLojylkLBl5Rw3hxLKy5S2FH0xN3kiSp0T30DGzzK5g1O3qeFHwFkqNBL7QADBoY3fGhf1/o0xu6dY0CtcyeAzNnReudPAU+/Txa4iAvsUp5xGW58vRo0pfUUZzMqPbyeFKSJEmS1AicjC5JquTTSXDR9XDjffDqm7n0Wo2l558z6tcHttsE9t/FSeH1zv6FVL25c+GJl+COR+Cpl2H0GzBlavvXO3hh2GA12HjtqG5dbFD719kRPN8mZdt7H8Hr78Cb78NnX8DU6bD8knDwnrXP6/V3oj7nnY/Cs6+W3jnedjybnHsjKatsw9LxxeTo2CY+vvkoYUwgX6UABvm6dYXVVsod36y/Wu0Du0iqL1kdfwS46Ry467EoOMzYd6I2COD562sbeKU438ELw8F7REu/vu3LR1KLDLzS+Qy8UkeCIBgM7ATsDKwPxGFzq+nFJwVhidMeAU4Kw/ChWpSzlgy8oobxxWRYaIPCtIP38MSdJElqfE+Php0Ph08+Kwy6kjQQl6SakxblPl/us2EIfXrBf06BnbZsef1SLTT7ZEa1nceTkiRJkqRG42R0SVIlH3wCdzwajaW/OBbeGB+NsbdVvz7w/RW/G0tfCzZd14snG5H9C6n13hwfLR9PjC5UnDAp2nemz4AZs2D2bOjWDXp0j26WssB8sPCCMGQRWGYIrLJCdCOVeuD5NklJvp0Kr7wZXaj49gdRPfjp5/DQ5WmXTOU490aSIrZhhb6YHAXpqnh8MycKrFJyfLMoLLM4rLx8tPTqmfa3kZRVWR9/nDETvvk2qt+6d29f/nHgldhyS8DINWGrDeDHm0fjRZI6hYFXOp+BVzIuCIIhRIFWdgbWIRc0pb3BVorXEQIPAL8Jw/DVtpW29gy8oobyjytgXt4uuOpQ75wjSZKaw2dfwK9Pgpvua13092qPV1u7zjVXhkv/Ep0kkdLUTJMZ1T4eT0qSJEmS1H5ORpek+jR9BrzzYdFY+jSYPjOaTJ544czA3Fj6Uoul/Q3UyOxfSPXD822S1JiceyNJkqRGlsb447h3o6BWAwfAoIGwwPwdl5ekigy80vkMvJJBQRAsTS7Yypr5L+U9DkkOvlL8gwa0LgDLbOAPYRie0ZoydxQDr0iSJEkN5OFn4diz4enR0fOkgClh2LpAKsWfTVpvnD54YTjuADhgV+jSpW15SJIkSZIkSZIkSZIkSZIkSZIkSVIHMfBK5+uWdgEUCYJgeXLBVlaNk4veVi5KTlKwFYDPgMeALYH+Ce8tDsISAN2BU4MgmD8Mwz9U/QUkSZIkqSUbrw1PXgUvjIHzroJbH4Svvsm9HgRtD7oSfz6WH4Rl/dVg/51ht22gZ4+2r1+SJEmSJEmSJEmSJEmSJEmSJEmS1FAMvJKiIAhWIhdsZeU4ueht5YKqFL8Wp08FbgWuAO4Nw3BeEAR9gT2BA4EReZ8Niz6b//z3QRA8FobhPa36UpIkSZLUkjWGw6V/hblz4YmX4I5H4KmXYfQbMGVq+9c/eGHYYLUo0Mt2m8Big9q/TkmSJEmSJEmSJCkNU6fBx5/BV19HNx2Yrx8sORh690q7ZJKakXWSmp37QLb5+0iS6pVtWDpW36nweRDA/ZfAAvOnUx7JbVJpsi2S0mHdnykGXulkQRCsQi7YytA4uehtSQFVKr02F7ifKNjKzWEYTiv4QBhOBS4CLgqCYH3gEGBHoDu5ACzBd0v+8zODILgvDMN5rfyakiRJktSyrl1h5JrREntzfLR8PBE+mggTJsHU6TB9BsyYBbNnQ7du0KM79O8LC8wHCy8IQxaBZYbAKivAwAFpfSOpvAmT4INP4LMvYcZMWHggDBoIyy8Z7QsdZd48ePuD0vQVluq4PCU1H+s4SZIklWNfUUncLiRJrTVlKnz0KXz5NUyeEp03mj0HwjCa9N0nXnrDogtFQfrr3dvvwyU3wu2PwLj3onas2DKLR+fZdtoCth4ZTcZtVvYvpI5lnaRm5z6Qbf4+zcM+n+qd27CK2Yal7+Vxuf9pGEaPZ89Jt0xqbm6T2dWo7bhtkZQ+6/5MCcIwbPldapcgCFYjF2xluTi56G3VBlvJf/15omAr14Rh+FkryzQIOJAoCEt8VWK83jjwSghsGobhI61Zdy0FQTAGGFacPmzYMMaMGZNCiSRJkiRJqtJrb0WD0fc8Dm+MT37PfP1gy/Wjwehdt659GSZ+DouOKhzkDgKY82rt85LUXKzjJEmSVI59RSVxu5AkVWvcu/DYC/DMKzDm7Wiy9zfftm4dPbpHd+JcejEYMRQ2WgM2WA0GzNcxZc736ST48NNoAv6UqTCgPyw2CFZevroJ6V9PgWPOgotvjCa5tzS/M17n0ovBCQfB3tu1/zvUC/sXUsusk9Ts3Aeyzd9H1bDPp3rnNtyYbMMaR5fhpRc6T3gkCqggpcFtMluy3I5/9KBtkdQoKtT9w4cPZ+zYsUmfGhuG4fDOLGazMPBKBwmCYC2iQCs7AUvHyUVva0uwlXeBK4ErwzB8swblXBK4G1ghL5/8wCunhWF4bHvzaSsDr0iSJEmS6s6Yt+D4f8BtD0WDX9UORq+8PJx8OGw7qnZliQfci/Ob+1rt8pDUXKzjJEmSVI59RSVxu5AkVWPMW3DpTXDzA/D+J4WvtWd+Y/Fk9JWXg59sDXv9CIYs2vb1FvtwApx/dXRX0LHvJL+nf1/YZiQcthesMyL5Pe98ANseCG+9X/i9K02UL37fxmvBlafDIgu1/nvUC/sXUmXWSWp27gPZ5u+jatnnU71zG248tmGNySAXyhq3yWzIajueX44uXZLfb1sk1R8Dr2SKgVdqKAiC9cgFWxkSJ+e9pVwwlZZe/xy4jijYylM1KGphJkGwFPAK0Lco7xB4MgzDjWqdZ7UMvCJJkiRJqivn/F8UAXzW7Nwgc0uRw4sHow/eA/5+TPlB8dYojnQeD8Z54lxSW1jHSZIkqRz7ikridiFJasmjz8Ofz4eHno2eJ81lrObunOWUW18QwKbrwBH7wNYj277+2bPh5IvgjEth+szqJ+D/YqeofevTO/faxM9hrV3ho4mF723puyS9Z/DCcO+/Ydhy1X+XemH/QirPOknNzn0g2/x91Br2+VTv3IYbi21YYzPIhbLGbTJ9WWzHFxkZrbfaICm2RVJ9MfBKphh4pZ2CINiIKNjKjsDgODnvLS0FWyl+T/z6dOB/wBXA3WEYzml/acsLguDfwM8TyvJOGIbLd2TelRh4RZIkSZJUF2bOgp8cCf97OHmgvdz4S9JgdBDAJmvDbecVDna3hSfOJdWCdZwkSZLKsa+oJG4XkqSWfDEZjjgVrrw9et7SBPbWznGsZj3xezZcHc49FkYMbV0eM2fBDgfDvU+2/q6g8R1B774IuneP0jbfDx58prTNrCbwTP774jwWWhCeugqWGVL+c/XE/oVUmXWSmp37QLb5+6ha9vlU79yGG49tWOMzyIWyxm0yPVltxz/4BJbcvDS9UlAX2yKpvhh4JVNqEDKruQSRTYIgOC8Igk+Ah4GDgcWIApUERMFL4oW89OKALPGS/7kHgJ8Bg8Iw3C0Mw9s7OujKd14pk26vTJIkSZKkSubNg+0Phtseyg12FQ9Ax2nFC0SfyR/kDsPo7p47HgZzOmNIQJIqsI6TJElSOfYVlcTtQpLUktHjYI2do6Arcb1f3BYUK9d2VGpTkuS/J877sRdgnd3gtIur/w7z5sG2v4J7nigsf7zelvIPQ3j4OdjvD1H6/x4qnOye/3/Jf560xOuN3xfnMelL+NGvYcbM6r9XVtm/kCqzTlKzcx/INn8fVcs+n+qd23DjsQ1rXpXGlqQ0uE12vKy24/PmwV5HJ79mWyQ1Nuv+1HRLuwD1JAiCnwDnAt+Lk/JeLm6pkrbqcu95GbgCuDoMwwntLWcbTS2T3r9TSyFJkiRJUr054Z9w7xOFA1xJUb2TJE0mjwe773sSfnM6nHNsx5RbkqphHSdJkqRy7CsqiduFJKmS516FzfaDqdNL24f4cTVtRlskTZSP85k1G449G157Cy4/Gbp2rbyus/9b/q6gSeVPel8YwlV3wP67wDn/V/p6/Hj+/vDDUbDVBrDk4OjutjNnwaefw6PPww33wpvjCyfTx58f9x4cfy6ccVTV/6ZMsn8hVWadpGbnPpBt/j6qln0+1Tu34cZjG9a5uq6cXt75v2MYwiIjq/9sEMCcV2tfJqXPbbK5ZLUdP/u/8PiL5fMtLpttkdQ+Gaz7X5kXAkOTPjGMYNjc+BOEY40XUiNBWOsTlA0sCIITgBPyktoTbOV94CrgijAMX69NCdsuCILfAqdTWN4AmBGGYZ90SgVBEIwBhhWnDxs2jDFjxqRQIkmSJEmS8rw5HlbZHuZ8N26VNFF8qw1gqw1h1aGw0ALRax9/Bg8/C9fdDe98WH7QPQjgpnNg+83aVr6Jn8Oio0rLNPe1tq1PUnOxjpMkSVI59hWVxO1CklTJ+x/DmrvCF5OTA67EzwG6dYWhy8Dqw2Dl5WDwwrDYIBi8EPTrC717Qq/vlrlzo7Zn5iyYMhW++RY++zKq98d/Am+9Dy+Pg1fegNnf3V20OAhLfll2/QFcfWb57/HBJzDsRzB9ZmGZ4/YKYNBAWGGpaLL6p5/D+I/h868K847zG7o0vDG+dFItwE93iCarDxxQvjxhCP++Ho4+K/ruxa/17AFv3AFLDC6/jiyzfyFVZp2kZuc+kG3+PqqWfT7VO7fhxmMb1vm6DE+7BG3jvtS43CabR1bb8fy2aN680teDwLZIqrUM1v3zwpDSMBWRLgTxCyHh2BbuKKBqGXilFfICrxQHJylWLtjKV8D1wJVhGD5W+xK2XRAE/wIOoPS7fRiG4ZLplMrAK5IkSZKkjPvF8XDpTaXqLZLZAAAgAElEQVTRu8MQNlwdzv8jrLx8+c/PnQsXXgdH/w2mzch9Nn89Cy0IY/9XeUC7HE+cS2oP6zhJkiSVY19RSdwuJEmVbPqzaCJ6cT0cz19cfBD8aBPYflMYtVY0UbuWZs6K8r/pPrj6Tvh2WmkAlrhMp/8GfvOz5PUc+3c49eLk9m7tVeCM38JGa5Z+7oGn4MzL4J4nkj8LhemH7gV/P6b67zd6HGx9AEz8ovT7HLEPnPm76teVJfYvpMqsk9Ts3Aeyzd9H1bLPp3rnNtx4bMM6X5fhpeM0nSHputpqy+G+1NjcJptHVtvx/LYoKfDKo/+1LZJqLYN1/9x58ygXeKUrwTyiOBAGXqkhA6+0QlHglZYCrsSvzwRuB64E7gjDcHaHFrKNgiB4BVg54aV7wjDcurPLEzPwiiRJkiQps6ZNh+9tEE3WjsWDx/tsB//+M3TrVt26Ro+D7Q6CjyYWrif+u9vWcOUZrS+jJ84ltZV1nCRJksqxr6gkbheSpEquuwt2+21yoJOhS8MpR8B2m3behNZvvoWTL4KzLoe5RZPW47tzvn47LLVY4Wtz58ISm0V3D81/fxDAXj+Cy09u+Tv8+Xw48bzCoDPFE99HrAgv3dT67/XMaNho78LvFIbwvQVg4mPpTBhuD/sXUmXWSWp27gPZ5u+jatnnU71zG248tmHpiC90zsJ1rga5ELhNNoustuPFbVFx4JUggHktXFttWyS1XgbrfgOvdL4uaRegAYR5C+QCrjwC7A8MCsNwlzAMb8lw0JU+wCSiMhcvN6RYNEmSJEmSsuveJ2DGzNzzeHB8ozXg4pOqH2wHGDEU7r8kGnSGwsH2MIRr7oL7n6xt+SWpEus4SZIklWNfUUncLiRJlZx6ceHzeNLqfjvC6Jth+806dzL2fP3g1CPhocuT7zI6azb84ZzS9MdfhAmTcs/j9mndEdVdeAXwx1/DbtvkPlv8mSCAkw5t1df5/9YZAUf/onRS8BeT4cmX2rbONNm/kCqzTlKzcx/INn8fVcs+n+qd23DjsQ1LV6X/b/y/rOUitcRtsrFltR0vbouK2RZJHcu6v6kZeKXtioOtBMBrwDHAkmEYbhKG4SVhGH6TVgGrFYbhtDAMN/uuzMXLJWmXT5IkSZKkTHoiYXA4COBff4SubQgavPxScPUZ0KVLbl3x3zCEw06JophLUmewjpMkSVI59hWVxO1CklTO2Lfh5XG5ujye6L3rD6LJ6927p1e2DVaHBy+D/n1zaXFbc8O98NXXhe9/7tXSdQQBXHhi6ybHnvcH6Ncn+bWBA2DbUdWvq9gR+0CfXqXpjzzX9nWmxf6FVJl1kpqd+0C2+fuoWvb5VO/chhuPbVg6bjwHBvQvHyAAotdqvcTy97XFFoYlFm15WXJw9FeNyW2yOWS1HU9qi+L12BZJHSeDdf+E7vABs0uWCcyZDXwAvP/dX9WIgVfaLg628jFwBjAiDMMRYRieHobhR+kWTZIkSZIkdbjRb+QexwNs246ElZZt+zo3XReO/nluEC1/MG3ce3DuFW1ftyS1hnWcJEmSyrGvqCRuF5Kkcm57qDRt/n7RpO8sWHn5qCzFd+ecPScKvpLvhbG5x3F7t/l60TpaY4H54SdbF+YZr++Ho9p3h8MFB8D2m5Z+n5fHtX2dabF/IVVmnaRm5z6Qbf4+qpZ9PtU7t+HGYxuWjh9vDi/fBBuunvte+Rc8BwHstAV8+RTMG1O7JV53vuevh/fuq35RY3KbbA5ZbceL26JYa9sO2yKpdTJY92+1fMAyvFOyDOHttwjHLv3/F9WMgVfa5hvgUmAzYMkwDI8Ow7BMGDFJkiRJktSQ3v+kdJDrBxu1f70nHgSrrBA9Lo52/ud/wReT25+HJLXEOk6SJEnl2FdUErcLSVI5z4/JPY4nde/xw2hidlbs+SMYsWLpJPEni+54Ou7d0s9ut0nb8txiveT01VZq2/ryjVyz8HkYwjsftn+9nc3+hVSZdZKanftAtvn7qFr2+VTv3IYbj21YeoYsCg//B/54IHTJu+Q13gduuh9G/BgeeS6d8qn5uE02vqy240ltUVuDpNgWSa1j3d/0DLzSOs8DuwKLhGH4izAMHwrD4rOtkiRJkiSpKXz2ZWna6jUYiO7WDS46MXmQ/Jtv4YR/tj8PSWqJdZwkSZLKsa+oJG4XkqRyxr5dWo9vuX46Zalk3x0Kn4chvPR6YdrkKaXfZa2V25ZfPPG+2LB23E019v0Vc4/j8n7yWfvX29nsX0iVWSep2bkPZJu/j6pln0/1zm248diGpatLFzjxYHjoMlhs4cIguWEIH34Km+0Hvz8L5sxJr5xqHm6TjS2r7XhSW9RWtkVS61n3N7VuaRegnoRheEfaZZCUUfsdl3YJ2iYI4JK/pF0KSZLUSOwXqZlMm16attCCtVn3OiNg/53hwutKo51fdB0csiesuHRt8lK6rDeVVdZxkiRJKse+opK4XUiSypn0VWlaFuvt9UbkHsftzKefF77n6ymln1u4je3dkEWS0xce2Lb15Rs4oDTtm6ntX29ns38hVWadlOP5tubkPpBt/j6qln0+1Tu34cZjG5YNG64Br9wCPz8ebr4/2vbj/WDePDj9UnjgGbjqdFhuyXTLqubgNtmYstqOJ7VFbWVbJLWddX9TMvCKJNXC5bfULpJgZwlDT9xJkqTas1+kZtezR+3W9dfD4Pp74KtvCtPnzoPfnA63/6t2eSk91puqJ9ZxkiRJKse+opK4XUiSILqDZ7H+fTu/HC0ZvHBp2tdFZZ8yrfQ9c+e1Lb8+vZPTa/G/6dOrNG3W7PavNwvsX0g51kk5nm9rTu4D2ebvo/awz6d65zZc32zDsmPAfHDjOXDBNfCbM2DGzCg9Dlzw/Guw2k7w92PgFzunW1Y1B7fJ5pCFdjypLWor2yKpfaz7m06XtAtQb4IgGBEEwR+TlpTLtWGZcq2cZrmkphOG9bNIkiR1pLT7OvaL1Bn6JgxGT/6mNK2tFhwAfzo4t53Gk+/CEO56DO57snZ5KX1p14XWmypmHSdJkqRy7CsqiduFJKmcHt1L076t4cTxWkm6iKr4Iv5eCZPuJ37Rtvy6lJm6mTRZvbW+mFya1r0O79Fn/0KqzDqpVNrn0Dzf1rncB7LN30fVss+neuc23Hhsw7LnV7vBc9fC8OVy+0IQRMvU6XDAibDTYfBlwv9E6ghuk40jq+14UlvUVrZFUm1Y9zcNA6+03qrAicAJCUuaVia5XLumWCY1mjCEqdOiTtHXUzz5kyRuLOthkSRJ6khp93XsF6kzLDB/adqb79c2jwN3g5WXjx7H22s86H7YyTBnTm3zU3rSrgutN1XMOk6SJEnl2FdUErcLSVI5C8xXmjbu3c4vR0s+mFCaNn+/wudJdwH95LO25Td3bu5xredgffZlaVotJtJ3NvsXUmXWSaXSPofm+bbO5T6Qbf4+qpZ9PtU7t+HGYxuWTcOWg+eug1/9pPB/Ge8LtzwA3/8xPPh0emVUc3GbbAxZbceT2qK2si2Sase6vykYeKV9grwlbdPzHueXa810iqO6N2Mm3PsE/P4s+MEvYektoNeq0G9N+N76MGAd6LYKLLAuLLcV7Hgo/PUCuPsxmD4j7dKnI+lOBN6xQJIkNSP7RWoWyw4p3YYfea62eXTpAuf8vjDaeeyN8XDyRbXNT+mw3lQWWcdJkiSpHPuKSuJ2IUkqZ/FFStuIOx9NpyyV5E+Ejcu75ODC9yw5uPS7tPXu4tNmwE5bwI6bR3/jx716tm19+V59M/c4Lu8i32v/ejub/QupMuukQp5vaz7uA9nm76Nq2edTvXMbbjy2YdnVswec/0e46Zwo0G/8veOLnT/5DLbcH446A2bPTresag5uk/Uvq+14UlvU1rEM2yKptqz7G56BV9on/G7JgvzfMr9cy6VQFuXbeF8IhpUu4z9Ou2TJ3vkAfv1nWGQkbLU/nHox3PN4VN5ZRRX9vHkw+Rt450O4+X74w7mw9QEwaCPY7zh46Jl0vkMa3r4b/nEcbLVBrpGEyncmqHRSrzMWSZKkjmC/SM1kpWVyj+Pt/fp7aj9Itsk60UB3GJZGOz/5InhpbG3zU+ey3lRWWcdJkiSpHPuKSuJ2IUkqZ90RucdxnX31nTAp4W6YaZk5C/59Q+G4bBDAiBUL3zd06cLXwzC6g2Fbxk3794Xrzy5d5uvXtu+Q77aHCp8HASy1WPvX29nsX0iVWSfleL6tObkPZJu/j6pln0/1zm248diGZd8Om8PLN8HINQv7/kEQXed21n9g3d3hjffSLaeah9tk/cpqO17cFsVsi6TssO5vWN3SLkCdCyAzgVcGlkmfv1NLofr17VQ49mz417UwZ0771jVlKlx2c7SsOwLOOhrWW7U25cyqZYbAQXtEy7sfwumXRBMyoPREXtxJXnEpWOf7qRVZkiSpQ9gvUjPZeG34x5WFaZ9+HqUd+dPa5vW338Gdj8GMmbm0IIgCZO72W3j2Wpi/f23zVOew3lRWWcdJkiSpHPuKSuJ2IUkqZ+QacPZ/C9O+nQYHnAg3nZtKkUr87kyYMKn0Av0t1i98PnJN+M+thWmTvoJzr4DD9u7YMlbr3Q/hiZdKv8tqK6VTnvawfyFVZp2U4/m25uQ+kG3+PqqWfT7VO7fhxmMbVh8WXwQeuhxO+hecdEF0gTPk+vwvvQ5r7AxnHgW/2i3VoqpJuE3Wp6y240ltUdbYFknW/Q0qCI2a3SpBEOwLXEYUcCXI/xuGYdcUy3UdsDOFgWACYEYYhn3SKVX7BUEwBhhWnD5s2DDGjBmTQonaYON94ZHnStPfuy87EdzGvQvbHQRvvd9xeey+LZx/PAyYr+PyyJqHn4UdD4Wvv42exyfs4r8H7Q7nHpduGSVJkjqD/SI1qq+nwCIjo0HvWBhC717wwKWFd/Gshb9eAMf/o3D/if+OWgvu+FeUd76Jn8Oio3ID2/H7575W27Kptqw3lQXWcZIkSSrHvqKSuF1IksqZPRuGbBpdpBSL6+Bf7AT/OgG6dEmvfCdfCH84t/TOof36wKePQp/eufRPPoMlNiu8s2jc3j1/Hay0bOeVu5zN94MHnylt7+66ELbcIN2ytZb9C6ky66TKPN/W+NwHss3fR9Wyz6d65zbceGzD6s8TL8IeR8GHn5aO7wQB/HAUXPIX+N4CpZ/tMrz0/zjhEVh4YOeUXY3JbbJ+ZLUdL26L4mAOsS5d0m/HbYukQh1U9w8fPpyxY8cm5Tg2DMPhHfFVml2KZyxVK0EQbAH8mMKgK1J1Ro+DDfbs2KArAFffAWvuEkWza4sT/1m6FN8NJ2s2Xhuu/3vueXEEP0mSpGZhv0iNav7+sNMWhSdZgwCmz4Af/BJue7C2+R39Cxi+XC6f/EH3R56DbQ+EKVNrm6fSYb2pLLCOkyRJUjn2FZXE7UKSVE737nDArrk2Ir/OvvhG2GhvePXNzi/XhEmw8+HRRPd8cfkO3K0w6ArA4IVhm5HJ7d2Ge8Fdj3Z8uSs5+m+Fk91j8/eDTddJp0ztYf9Cqsw6qTLPtzU+94Fs8/dRtezzqd65DTce27D6s8Hq8MotyftiGMLtj8D3d4B7n0ivjGoubpP1I6vteFJblK9cemexLZJKWfc3jCBMu5JNWRAEo4BRrfjIqsAOREFOgqK/f6p5ASvrBawCbAV0KyoL3z2eEIbhYp1crpoJgmAMMKw4fdiwYYwZMyaFErXBxvtGHZ9i790HS6X803w8EdbYGSZ+kfx6EESdnS3WhzWGwXJLwnx9Yb5+MGcufDstWse49+Cpl+F/D7ccWGWJReGZa2CRhVpX1qBkM4AlB8P4+1u3njRsf1D0vymOOuYdEyRJUrOxX6RG9PLrsGaZCeNBANttAr/5KWy4Rm3yGz0O1tkNZs9Jzm/ZIXDt32C1746hvGNJfbPeVNqs4yRJklSOfUUlcbuQJJUzfQYM3w7e/yR6nl9nQ3SHzu03hV/9BDZbN3reUd4cDxdcC/++HqbNyJUlFoaw8IIw9n+w4IDSzz/1cnShVbEwjMq96w/gl7vAhqtDt24d9jUKfDwRDjopGk8uLlMQwKF7wd+P6Zyy1Jr9C6ky66SWeb6tsbkPZJu/j6pln0/1zm248diG1a+LroMjT4PpM3Np8b4ZBHDY3nDqEdCjR5TWZXjpvjHhEVh4YOeWW43LbTL7stqOz5iVa4vmzStdz+7b2hZJWVXDun/48OGMHTs2KZexYRgO78iv0awMvBIEJwAnkAtWUtXHyqSn9c/MDwBD0eMXwzBcM5VS1YCBVzpQGMKofeCxF5Jf335TOPOoKNhKa9zzOBx7NryYWJlHNl0H7r+0dXcQqOfAK3c/Btv8yhN3kiRJ9ovUqA78E1x4XeHANxQ+XnjBKJLx0KWjY5n+faNjwnVHtD6/C6+FA/9cOCk9/3HXrrDPdnDML6LAmZ44r1/Wm8oC6zhJkiSVY19RSdwuJEnlPPwsbLV/dLMnKA2+EtfPAwfA5uvBqDVh9WHRHUD79G57vh98Aq+8Gc3fuvtxGPtOLv843+LJ7TedA9tvVn6d+/8RLrmxcnvXuycsv2R0k6p+feCUI2CJwW3/HsXe+QCeHg23PRQts2YnB5Hp0wvG3QGLL1K7vDub/QupMuukyjzf1vjcB7LN30fVss+neuc23Hhsw+rX6+/Abr+FV98s/V8FAayyPFx1BgxbziAX6hxuk9mX1XZ8ylS44d5cer44eLltkZRNNar7DbzS+Qy8kgu8Us/iH7E48EoI/DMMw8NSKVUNGHilA116I/z8+OTXTj4cfv/Ltq977lz4wzlw6sXl33P1mbDbNtWvs54Dr8ycBQPXy0Uo88SdJElqVvaL1KimTYf194gmbicNuseKg09uOwpuO69teR52MvzjyuRJ6fn5L79kdPdOT5zXJ+tNZYF1nCRJksqxr6gkbheSpEquvgP2Ojr3vNp2YpHvRRPHBw2MArP07xtN5O7WDbp2ie4OOnNWNOl78hT49PNoGf8xfDutML/iPIrLcNqRcNTPK3+PGTNho73hhTGlZU2ajxkE8Nx1USCZ9rjgmqjN+2ACTJtRmmdSEJnTjoTf7te+fNNm/0KqzDqpMs+3NT73gWzz91G17POp3rkNNx7bsPo2cxb85nQ4/+rSi50BevWM/m+HnWKQC3UOt8lsy2o7HobQszvMmFX6+eKyxGm2RVJ21KDuN/BK5+uSdgEyJGzFUot11HKBXNCVYrdV+w9QE5k7F/5yYfJrh+zZvqArEEXVO+VI+MOvyr/n5Ival0c96dkD1ls1eXBFkiSpmdgvUqPq0zsaOF9uidLB9iDILWFYuLTHOcfCz35cmEfxgHYYRifN47Ko/lhvKgus4yRJklSOfUUlcbuQJFWy+7Zw3VnQt3f0PH+iaaV2YsIkePZV+N/DcPkt0aTv0y6Bv14If/4XnPJvOOs/8M+r4Ir/wf1PRXcRnDK1tL2J88jPN25D/va7loOuQDQZ9u6LoruZFrcr+d8jafJ7e7zzIbz+LkydXvi98v9v+XnutEVjTHa3fyFVZp1UmefbGp/7QLb5+6ha9vlU79yGG49tWH3r2QP++Qe45R+w4PyF+wZEgXUOPzV67L6hzuA2mW1ZbcchOehK/B7bIinbrPvrkoFXCgVVLu39fEcssTDv7+NhGD7Qhv+DGt19T8J7H5WmL74InHpk7fL508Gw1irJr736JryYGGmrMbU3UqAkSVKjsF+kRrXEYHjqath47dJBsVj+4HYtBrkv+Qsc84vk/DpiIF3psN5UFljHSZIkqRz7ikridiFJqmSnLeGZa2CN4eUnkhZPGk+a1N7SUmk9+cIQhiwCd18IR+xb/fcYOAAevAwO3St5vR2p3KT6/AsC9tgWrjqj88rU0exfSJVZJ1Xm+bbG5z6Qbf4+qpZ9PtU7t+HGYxtW/7bbFF6+CUatVTpe5AXOSoPbZHZltR1Psy23LZJqw7q/rhh4pVBY5dLez3fkAlEglreB3dr8n1Bju6VMPJ6Ddo8i9NVKly7wp4PKv37vE7XLK+tWHZp2CSRJkrLBfpEaWXyi9bzjYdDA8hHNazkIfvIR8L/zYfDCHZ+X0mG9qaywjpMkSVI59hWVxO1CklTJSsvCs9fCJSfB4oPKtxMtBVFpaYnXkS8/vVdPOGo/GPs/2Hz91n+PXj3h7N/Dc9fCDpuVlrkjlft/zdcP/nMKXHE6dOvW8eXoTPYvpMqsk8rzfFtzcB/INn8fVcs+n+qd23DjsQ2rf4sNivbLPx0MXfMupXXfUFrcJrMrq+14UvAT2yKpvlj31w0Dr9S/oGiZCZwDrBOG4YQ0C6YMe+Kl5PRtR9U+rx9sFN0VJskzr9Q+v6xadkjusY2hJElqZvaL1AwO3A3G3wcX/xk2Wxe6dyu902YtB7u3HQVv3gmnHQlLLVa6/rQjnqt9rDeVNdZxkiRJKse+opK4XUiSKvnZjvDuvXDdWbDJ2rm7+xUHW2mP/EAr8bLYwnDCr+G9e+G030DfPu3LY7VhcNO58M49cNbRsMX68L0FOnbie/H36tUTfrkLvHoL7L1dx+WbBfYvpMqsk0p5vq25uA9km7+PqmWfT/XObbjx2IbVtyCA4w+Eh/8TXeNWy7EnqS3cJrMtq+14/mJbJNUf6/66EISdEdUqw4IgOAw4vBUf6QcMBEKiQCf5fz+oeQErC4Fvga+AscBTwC1hGH7TyeXoMEEQjAGGFacPGzaMMWPGpFCiNth4X3jkudL09+6LOkKdbd486LM6zJxV+to3z0H/vrXPc/8/wsU3lKavvDy8emt16whKNgNYcjCMv799ZessEz+HRYsC2xy8B5x7XDrlkSRJSov9IjWjadOjwJOvvwtvjofPvoSp02DEUPjzIbXNKwzhnsfhhnvh7sfhk89K3xMEMPe12uarjmO9qayzjpMkSVI59hWVxO1CklTJF5Phjkei5amX4aOJld9fPBG13FzIbl1htZVg47Vhu01g/dU6ZxLrF5Nh0pfwzbfRPKk+vdu3vqPOgL9dnnvepxesOwK22gB+vhMsOKB9669X9i+k6jRzneT5NkFz7wP1wN9HLbHPp3rnNty4bMPqz9dTouvcbri39LUggAmPwMIDO79cal5uk9mX9XbctkiqP1XW/cOHD2fs2LFJaxgbhuHwji5mM2r6wCutFQTBvsBlJAReCcOwa5pla0RNF3hlylS47UG47ykYPS6aPPDNt9Fr/ftGgUZWXh42Xw922KxtQVI+/woW2iD5tY4KvHLxDVEjUGzQQPj0serWUe+BVwB+cxrMy6tzN1oDdtyi9H1j3oKVt6+8rtduheHL17Z8kiRJncV+kVSdWuwDr78DL70OL4+Dtz+ACZPg08+jY1LVj2rrTbDuVP2wjpMkSVI59hWVxO1CkprTF5PhhTHRZPaPJ0ZzqSZMgqnTYfoMmDErevzRp5XX88L1sHodzD+tpr079YhoQv+ggbDKCtCtW+eUrRHZv5Aqa7Q6yXkKaq1G2wcaUTW/0QUnwNqr+Ps0M/t8qnduw43HPkZ6qvnfn3ss/Oon0L1755RJzava7XGJRWGbkW6T9SrL7bjHU1I6WtkfMfBK57O2k7JgylQ47WI4+7/RZIAkX0yOlhfHwn9vjQKkHLQ7HH9g66LQTZ9R/rXxH0cdoVpbexXYYPXS9D69kt9fLlhNsfc/SQ7IcsKv4cSD4fq7Ydcjkz971tFwxL4t51GNodvCG++Vph++D/z9mNzzvx1dm/wkSZLqnf0iqfOstGy07PHDtEui9rDelJJZx0mSJKkc+4pK4nYhSfVn4ADYcoNoKaeaSao9e9S2XGn64cZe7J8l9i/U7OqpTvJ8mzpCPe0DzWrD1f2N1H72+VTv3Ibrj32M9Gy6jgEulB2brmNdoHTbcY+npHTYH0mVgVektL32Fmx/MLz7Yes+N2UqnHox3PIg3HkBLL14dZ/r1bP8azfc0zGBV76/Ijx+Re3X25LtNoUB88Hkb0pfu+He2gReGT0uOegKwE93aP/6JUmSJEmSJEmSJEmSJEmSJEmSJEmSJElSh+iSdgHqXJh2AVTnnnsVNtyr9UFX8o17FzbeFyZ+Xt37F5wfepSJdvXPq2D8x20vS9b07AG7bpX82lMvwyeftT+Pa+5MTl91KIwY2v71S5IkSZIkSZIkSZIkSZIkSZIkSZIkSZKkDmHglfYJvluk1nvjPfjBL+HrKe1f1wcTYL8/VPferl1hpWWSX/vya9j2V1Ewl0axz/bJ6WEIN93X/vVfd09y+k9/3P51S5IkSZIkSZIkSZIkSZIkSZIkSZIkSZKkDtMt7QLUoU+BR9IuhBrAnr+LAp3k69kDdtwCtt4Ihi0LCy0AU6bCJ5Pgvifh6jvho0+T13fno3D/k7D5+i3n/YONYPQbya+NfQfW2AUO2RP23xmWXaJ13ytrNlgd/h97dx4m2VnXC/z7VlWvs08SSADJRgIJISBIRAQCXLawJOyKQowG8Iro5QquKIiIgCwuoPIgROWiEgx7EEIIBMImERQQMBIgspgAyUxm6b2qzv2ju5leqjvTPd1d3dOfz/Ocp+u855zf+6vkmZmqOm9/69QfSb7+7fnHLvtQ8tyfXX7tz34x+UaHuj2N5Gcfu/y6AAAAAAAAAAAAAAAAAAAAwKoTvLJEVVVdkeSKbvfBUeCWW2fv//wTkpf+anLH288/9+6nJQ+/f/KiX0qe+7Lk797dueZfvu3wglcufmLyqkuSdrvz8eGR5JVvmtzufWbyuAdPhsH82FlJvX7b9Y/UO/8sGZ+YPXbCufPPu9PxybWXzh/fOjh7/xnnJ7//F/PPu+ZzyfdvSW53zPL6vPQDnccf++Dk2F3LqwkAAAAAAAAAAAAAAAAAAACsiVq3G4BNb6A/eftrk0te1jl0ZaatW5JL/jB55AM6H//ANcn4+G3PedpJyYsoiOUAACAASURBVC888fD6+/xXkpf8ZXK/pyXH3D85/5eT1/xN8i9fSCYmbvv65di9Mzn+uNlbJ/Xa/POOP27yv9NMF16QlDL/+nY7edeHl9djVSVvXyCD6aLHL68mAAAAAAAAAAAAAAAAAAAAsGYEr0A3lZL8058kT3nU4V9TqyWv+53OQSKjY8lnv3R4dV7zG8ndTjn8eZNk34HkfR9NXvCqySCWHT+ePOgZyW+/dnL8lluXVm+tnHyn5Cd/tPOxyz60vJqf/HzynZvmj9/umOTRD1peTQAAAAAAAAAAAAAAAAAAAGDNCF6BbrrwguQx5y79utNOSs4+vfOxL19/eDW2b02ufFNy15OXPv+0kdHkms8lr3hTcv4vJ8feP7nbY5JnvSh52z8nP9iz/Nor7cILOo9ffW2yZxmBMZd+oPP40x+bNBpLrwcAAAAAAAAAAAAAAAAAAACsKcEr0E2/efHyr73vPTqP3/Ddw69xp+OTa9+e/PwTklKW38tM130zedNlydNekBz/oORhv5D87buSsfGVqb9cT31U0t83f7zZTN591dJqtdvJZR/qfOyiJyy9NwAAAAAAAAAAAAAAAAAAAGDNCV6Bbjn7rskZpy7/+hPv0Hn8B3uXVmfbluSSlyWfvyz56UcnvT3L72mudju56jPJz78wOfnhyev/fnKsG3ZsS85/SOdjC4WoLOTqzyY33Tx//N5nJvc4fem9AQAAAAAAAAAAAAAAAAAAAGuu0e0G1lop5ZJFDldVVV18BNevN7f5fOiih5xzZNfv2t55fHh0efXudUbyj69Obt6b/NMVybuvmgwYGZ9Yfo8z3fiD5Fdelrzlvcllf5LceYHgmNV04QXJ2z84f/yqzyT7DkyGsxyOt32g8/hFj19+bwAAAAAAAAAAAAAAAAAAAMCa2nTBK0kuSlJ1GC9T47cVVLLQ9evN4T4fuuXs04/s+oG+zuOjY0dW99hdyS/99OR2cCj5xOeTq69NPnZt8vmvHHkQy7VfSs75qeSjf5ucceqR1VqqR/5kcvtjku/dMnt8fCJ570eTZ5x/2zWazeSdV84f7+1JfuaxK9MnAAAAAAAAAAAAAAAAAAAAsOpq3W6gi8qc7UivX28b691Jdzyy62sL/PFtt4+s7kxbtySPemDyil9LPv2Pyb7PJtf8v+SVz08ueGhyu2OWV/d7tySPeFZyy60r1+vhaDSSpz2m87HLrji8Gld+qnPfj3tIcszO5fcGAAAAAAAAAAAAAAAAAAAArKlGtxvoomrO/lLDSuZev94IX1nvjtvd7Q6Wrr8vecB9Jrdp1/93cvW1yUf+Jfnwp5Mf7Dm8Wt+5KXnOHySXvnZ1el3Ihecnf/qW+eMf+lRycGgybGYxl36w8/hFjz/y3gAAAAAAAAAAAAAAAAAAAIA1U+t2A11UZmxHev1629gIBvq63cHKuMuJyTOfnPzDq5KbPp5c/XfJL/10su02AkyS5O0fTP71P1a/x5l+9MzkHqfPHx8dSy7/2OLXjo0n775q/vjtj0ke9YCV6Q8AAAAAAAAAAAAAAAAAAABYE5s5eKWasR3p9ettYyNoNLrdwcqr1ZJz75v85YuS716dvPL5yY5ti1/zhkvXpLVZnvG4zuOXfWjx6z54TbLvwPzxpz/u6Pz/CQAAAAAAAAAAAAAAAAAAAEexzRy8AqymbVuS37g4+Y/3JGeeuvB577s6qdY4L+jp5yf1+vzxD1yTDI8sfN2lH+w8ftETVqYvAAAAAAAAAAAAAAAAAAAAYM00ut1AF3wryZGkPBzp9bC53On45J/fkJx5fudQk+/fknzj28mpd167nk44LnnYTyRXfGL2+PDIZPjKkx4x/5qR0eR9H50//mNnJWedtjp9AgAAAAAAAAAAAAAAAAAAAKtm0wWvVFV1Ujevh676/dcnN/zP/PFnPil5wH1Wb94T75j84lOTP/m7zse/vsbBK0ly4fnzg1eS5B1Xdg5eufzq5ODw/PGLHr/irQEAAAAAAAAAAAAAAAAAAACrb9MFr8Cm9uHPJJ/8/Pzxu5+6usErSXLBQxcOXtm7f3Xn7uQJD0u2bUkODM0ev/zqZGw86eudPf62D8yv0debPO3Rq9YiAAAAAAAAAAAAAAAAAAAAsHpq3W4AWEO7d3Qe/8Z3Vn/uu5608LFmc/Xnn2ugP3nyI+aPHxhKrvjE/LF//vj8c89/SLJ75+r0BwAAAAAAAAAAAAAAAAAAAKwqwSuwmZx0h87j//LF1Z/7mEUCSrYOrv78nVx4Qefxd1w5e/89VyWjY/PPu+jxK98TAAAAAAAAAAAAAAAAAAAAsCYEr8Bmcq+7dR7/4n8l37t5dec+OLzwseOPXd25F3LufZMTO4TRvPejycTEof1LPzj/nBOOSx75gNXrDQAAAAAAAAAAAAAAAAAAAFhVgldgMzn3vp3HW63k7y9f3bn/42sLHzv9pNWdeyGlJE9/3PzxW/cnH/70occf+uT8c57+uKReX93+AAAAAAAAAAAAAAAAAAAAgFUjeAU2k1PvnNzzrp2PveqSZGh49eZ+x5Wdx884Jdm1Y/XmvS0XXtB5fLrfd16ZjE/MP37R41evJwAAAAAAAAAAAAAAAAAAAGDVCV6BzeZZT+k8ftPNyQtetTpzfvM7yZsu63zsMeeuzpyH6/STkh8/e/74u69Kms3k0g/OP3bOPZIz77LqrQEAAAAAAAAAAAAAAAAAAACrR/DKOlZK2V1KeVop5TWllMtKKVeUUi4vpfxNKeU3Sik/3u0e2YAuflJywnGdj73h0uTVl6zsfHv3JU/4lWRoZP6xUpJnLxAEs5YuvGD+2C23Jpd9KPnIv8w/dtETVr8nAAAAAAAAAAAAAAAAAAAAYFUJXlklpZRaKeWMUsqDSynHL/HaO5ZS/jbJd5O8NcnzkjwhycOSnJfkwiQvT/KpUsoNpZRfL6UMruwz4KjV35f86W8tfPzXX5085w+SkdEjn+szX0ju+9TkC9d1Pv70xyWnnXR4tWod/roaGVt2a7P89HlJb8/88V/9o6TZnD3W1zt5PgAAAAAAAAAAAAAAAAAAALChCV5ZQWXSE0oplyfZm+Q/klyV5P5LqPHIJF9M8owkfUnKbWx3TvKKJP9ZSpEGweF56nnJzz1+4eN/9bbkbo+Z/HlgaGm12+3ko/+SPPl5yf1/Jvn6tzufd8Jxyat//fDrbtsyf+z7tyRf/trS+utk987kMefOH//BnvljFzw02bXjyOcEAAAAAAAAAAAAAAAAAAAAuqrR7QaOFqWURyV5XZJTpoemflZLqPGwJO9J0rvEa0uSOyW5vJTyh1VVvfhw52QTe8OLk2/dOBmS0sm3bkye8wfJ8/84+V/3S+5/r+TMU5MT75Bs35r09yUTE8mB4eTbNybX3ZBc+6Xkyk93DiyZaduW5N2vS253zOH3e9Idki9cN3/88b+SvPRXkx89Y7KvVivp602O2334tZPkwvOTd334ts/7+ScsrS4AAAAAAAAAAAAAAAAAAACwLgleOUKllN4kf53k6TkUtpJMhqaUjhd1rnO7JP+QydCVmYErt1WjmnF+SfK7pZTdVVX9yuHOzSbV35e8/6+Sp/5acvnVC583Mjp5fLFzluJOxyfveX1y7zOXdt2Pn905eOX6byVPe8HssRc/J/n95y6t/mPOTY7dldy8d+Fz7nC75OH3X1pdAAAAAAAAAAAAAAAAAAAAYF2qdbuBjayUsjXJVTkUulJldhDKUrw0ybGZHaIyN8hl7jb3vOmwl+eUUn5zGT2w2Qz0T4ag/P4vJz2rnMNUrycXPyn50ruXHrqSJD913sr3NFNPz23P8YzzJ58HAAAAAAAAAAAAAAAAAAAAsOEJXlmmUko9yTuS/GQOha4k8wNTDqfW8UkumlNjWqeQlbLAsemxkuSlpZR7L6UPNqlaLXnxLyefuyx5xE+ufP16PbnwguQ/L0/e9NJk5/bl1Xno/ZIHn7Oyvc114fmLH7/o8as7PwAAAAAAAAAAAAAAAAAAALBmBK8s3wuTPDyHwk/mBqIsxcVJeqYezw1dmR77bpI3J3lFkr9N8tUO883cbyT5iyX2wWZ2j9OTK/46ufbtybOekuxaZkBKkpSS3P9Hk9f+ZnLDlcnfvTy5y4lH3uM/vio589Qjr7OQc85Ozjil87EfPzu52wLHAAAAAAAAAAAAAAAAAAAAgA2n0e0GNqJSymmZDF6ZG3iSOWNjST6X5Du3UfLCzA5rmVmjneRFSV5eVVV7Th8PTvI3Se6c2eEv09efU0p5RFVVHzqsJ8bquPrvVqfuRU+Y3Fbaj501uf3Vi5LPfin51L8lX7guuf5byXe/l+zdn4yMTZ67fUuyY1uyY2tyyo8k97xrcq+7JefcIzn+uJXv7fjjkn9/Z/I370re85HJvm65NWm3k21bkmN3Jfc+M3no/ZY/x1cuX7l+AQAAAAAAAAAAAAAAAAAAgHVL8Mry/E6SnhwKO0lmh6X8T5KXJnlrVVVDixUqpdwzyWlzak3XqZK8oqqql3W6tqqqq0sp901ybWaHr8z0zCSCV1i6ej35iXtNbutJT0/y7KdObgAAAAAAAAAAAAAAAAAAAADLVKqquu2z+KFSyq4kN+VQaM10QMr0z48meWJVVfsPs96Lk7x4To3put9JckpVVc3bqHG/JJ/sdCjJaJLdVVWNHk4/600p5ctJzpw7fuaZZ+bLX/5yFzoCAAAAAAAAAAAAAAAAAAAAWHl3v/vd85WvfKXToa9UVXX3te5nM6h1u4EN6IlJeqYezwxdSZKvJXnS4YauTHlMh7HpupfcVuhKklRV9Zkk75vRR5lxuC/JA5fQDwAAAAAAAAAAAAAAAAAAAAAc9QSvLN0jFxivkvxWVVX7DrdQKWV3kntPXdvJPyyhrz9f5NhPLKEOAAAAAAAAAAAAAAAAAAAAABz1BK8s3f1zKChlZmDK9VVVvXuJtR6aQ/8Pypx6/1VV1X8todbHkuzp0FeS3H2JfQEAAAAAAAAAAAAAAAAAAADAUU3wyhKUUnYlucP07oyfVZL3L6PkQzpNM1XvA0spVFVVK8lnZvQ1s97Jy+gNAAAAAAAAAAAAAAAAAAAAAI5agleW5sRFjn1mGfUenMmQlU4+vIx6X5qzP137hGXUAgAAAAAAAAAAAAAAAAAAAICjluCVpVkswGRu6MmiSinHJTljejezA1iaSa5eUmeTvrfA+I5l1AIAAAAAAAAAAAAAAAAAAACAo5bglaUZXOTY3iXWelCHsekAls9XVTW8xHpJcmCB8f5l1AIAAAAAAAAAAAAAAAAAAACAo5bglaVZLMDk1iXW6hS8Mu3qJdaaNrDAeFlmPQAAAAAAAAAAAAAAAAAAAAA4KgleWZoDixybWGKtBy9y7Ool1pq2e4HxsWXWAwAAAAAAAAAAAAAAAAAAAICjkuCVpdm7yLHth1uklHJskrOSVFND1YzDzSTXLL21JAsHrwwvsx4AAAAAAAAAAAAAAAAAAAAAHJUEryzNYsErd1xCnUckKVOPZ/6skny+qqrlBqXcY87+dO3vLbMeAAAAAAAAAAAAAAAAAAAAAByVBK8szbcyGY6SGT+nnb2EOk9Z5NiHl9TRlFJKb5L7ZX5fVZLvLqcmAAAAAAAAAAAAAAAAAAAAABytBK8sQVVV+5N8ZYHDjz2cGqWUOyR5TOYHpEy7chmtJckDkwxMTzPn2HXLrAkAAAAAAAAAAAAAAAAAAAAARyXBK0v36cwONqmm9s8vpdzxMK5/UZLG1OOS2QEsB5N8apl9/fYix76wzJoAAAAAAAAAAAAAAAAAAAAAcFQSvLJ0V854PDOAZSDJX5ZSShZQSnlskmdldtjKdJ0qyfurqmoutaFSysOSPDSHQmDmunqpNQEAAAAAAAAAAAAAAAAAAADgaCZ4ZeneleTGqcfTQSfTPx+b5G2llJ1zLyql/GySt80c6lD77UttppRyVpJLMzvMZebj/6qq6htLrQsAAAAAAAAAAAAAAAAAAAAAR7NGtxvYaKqqapZS3pjkxTkUcDIzfOXJSc4rpXwgydeT7EhybpIz5pyXzA5I+X6Sy5fSSynlUUkuSbJrTt2ZPb1lKTUBAAAAAAAAAAAAAAAAAAAAYDMQvLI8f57k2UmOz6HAk5mhKlszGcAyrVPQysxjVZK/rqqqeVsTl1JOT/K/kjwjyY9n8TCXg0neeFjPCAAAAAAAAAAAAAAAAAAAAAA2EcEry1BV1d5SyjOTvD+zg07KjP0y97I54zOvuzXJaxebs5Ty7CR/lqR3gfnSYfyPq6q6ZbG6AAAAAAAAAAAAAAAAAAAAALAZ1brdwEZVVdUHkrwuh0JOOgWrzNxK5oexTF/7u1VV3XobU25L0jejTqeQl2rGz88mefmSnhQAAAAAAAAAAAAAAAAAAAAAbBKCV47M85K8NfODT0qHbaaZASnvrarqr5Yw50JhLjPnvi7J46qqai+hLgAAAAAAAAAAAAAAAAAAAABsGoJXjkA16cIkL0rSymToSXUYW6bOvSrJ05Yx9dzAlZk135fk/lVV3byMugAAAAAAAAAAAAAAAAAAAACwKQheWQFVVf1hknOSXJFDoSilw6nT4xNJXp7k0VVVjS5nyswPXBlO8oKqqi6oqurWZdQEAAAAAAAAAAAAAAAAAAAAgE2j0e0GjhZVVf17kvNKKacleXKSByY5I8ntkvQm2Z/kP5N8KMklVVV9+winnA52GUryF0leVVXVLUdYEwAAAAAAAAAAAAAAAAAAAAA2BcErK6yqqq8lefnUthqaSb6V5Ook709yZVVVQ6s0FwAAAAAAAAAAAAAAAAAAAAAclQSvbBxvSfKPSW6sqqrqdjMAAAAAAAAAAAAAAAAAAAAAsJEJXtkgqqr6Qbd7AAAAAAAAAAAAAAAAAAAAAICjRa3bDQAAAAAAAAAAAAAAAAAAAAAArDXBKwAAAAAAAAAAAAAAAAAAAADApiN4BQAAAAAAAAAAAAAAAAAAAADYdASvAAAAAAAAAAAAAAAAAAAAAACbjuAVAAAAAAAAAAAAAAAAAAAAAGDTEbwCAAAAAAAAAAAAAAAAAAAAAGw6jW43cDQqpdSSnJXk5CQnJTkuyWCSgSS9ScoatVJVVXXxGs0FAAAAAAAAAAAAAAAAAAAAABuG4JUVUkrZmuTpSZ6Y5CcyGbTSTSVJlUTwCgAAAAAAAAAAAAAAAAAAAADMIXjlCJVSepP8dpIX5FDYSuleRwAAAAAAAAAAAAAAAAAAAADAbRG8cgRKKScleV+SMzM7bKXqRj9zCH8BAAAAAAAAAAAAAAAAAAAAgAUIXlmmUsrJST6V5HaZDDmZG7bSzeCT9RD8AgAAAAAAAAAAAAAAAAAAAADrluCVZSil9CW5PMntMxlyMh10sljYijAUAAAAAAAAAAAAAAAAAAAAAFgnBK8szwuTnJHFA1cErQAAAAAAAAAAAAAAAAAAAADAOiV4ZYlKKduT/N8sHLoyM3Bl5rHRJAeTDEcoCwAAAAAAAAAAAAAAAAAAAAB0leCVpbswyZZMhqcsFLpSktyQ5O+TXJ3kS1VVfX+N+gMAAAAAAAAAAAAAAAAAAAAAboPglaV7bIexmYEre5I8r6qqt65dSwAAAAAAAAAAAAAAAAAAAADAUgheWYJSSi3JA3MoaCWZHbry7SQPrqrqm2vdGwAAAAAAAAAAAAAAAAAAAABw+GrdbmCDOTHJwNTjktmhK60kTxG6AgAAAAAAAAAAAAAAAAAAAADrn+CVpTm5w9h0AMu7q6r67Br3AwAAAAAAAAAAAAAAAAAAAAAsg+CVpdmxyLG3rVkXAAAAAAAAAAAAAAAAAAAAAMAREbyyNIOLHLt2zboAAAAAAAAAAAAAAAAAAAAAAI5Io9sNbDBjixy7ac26AAAAAAAAAAAAAAAAAAAA2ICqaizt5rfSbn8v7dYPUrX3p6oOJtVYkmaqVCnpSyn9SelPKX0ptWNSq98htfoJqdWP6fZTAOAoInhlafYvcqy9Zl0AAAAAsO5UVTvt1nfSbv731E2g76eqDqRqH0iq8STNJFVS+lLSN3UTqD+lfkxqtROmbgLdIbX67m4/FQAAAABmsPAXAABg/Wu39qQ5/rlU7e+l3d6bVOMptV0ptd2p99wtjZ67rdrcVTWWiZEPzhvvHbxg1eYEAICNpt26KRNjn0lr4gtpTXwl7dZNSaojqNiTes+pqffcM42ee6bee3Zqte0r1S4Am4zglaX55iLHdiS5Za0aAQAAAKC7qqqd1sQX0xz7dJoTX0xr4rpMhqscmVLbmXrP2Wn03jONnnul3nPakTcLAAAAwGGz8BcAAGBjqKqJjI+8N+Mjl6fd/Pqi55barvT0PSh9W56RWv12K9tHeygjB16dpMwaF7wCAMBmV7WHMz76gYyPvD/t5vUzj6xA9fG0Jr6a1sR/ZjyXJilp9N47Pf3npaf/3JTStwJzALBZCF5Zmm8kGU/Sk/n/qh8bwSsAAAAAR71268aMDb8zE6NXpGrfOuPIStwESqr23jTHPp7m2MeTJLX6HdIz8Oj09j8ytfrtV2QOAAAAAGaz8BcAAGBjGR9+X0aH3pyqvSeH896tau/J+Mh7Mj7yz+kdfGL6tz4rpfSuQmfTvZRFzwIAgKNZVU1kbOjvMz58aapqKPNfs6/U6+VqRu0qzfHPpTn+uYwceG16B85P/5anpwjDB+AwCF5ZgqqqWqWUTyV5cOb/K3+fJNeteVMAAAAArIl2+9aMHvirTIxekaSd1bsJlFm1263vZuzgmzJ28M3p6Ts3fVufmXrjzis4FwAAAMDmZeEvAADAxlK192d4/yvSHPtEZr+HO5z3b1WS8YwPX5rWxBcyuOOPUqsfu8IdlqzUF7cAAMBG1Bz/Ykb2vzzt1ndz26/ZlxtcWE1dM/e6qXrVUMaH35bxkfemf+uz0zf4xCXWB2CzqXW7gQ3oAwuMn7umXQAAAACwZsZHr8rBm382E6MfSNLK7Bs2M2/czPwFmuWYeQNp5lYlaWdi7OocvOXCjBz4y1RV8wjmAQAAAKA5/sUcvOXCjA1dkqo6mM6fzUxb7uc+i33eU/1w4e/+m5+aseF3Lut5AAAAbBbt1v/kwJ6LZ4SudHifNc/M8UPntia+moN7npVW8ztr0DkAAGwO48Pvy9De580IXZn7mn2uhcJTOm1zr+tkznzVUEYP/GmG9r4gVXv/cp4SAJuE4JWl+39JZv5Wy/S//E8tpQx0pyUAAAAAVsvowb/OyL6XpKr2Z35CfqcbOZ1+Iee2tpnXdzLzplMr48Nvy8E9z0y7ddOynxcAAADAZmbhLwAAwMbSbu/Pwb3/J1Xrphx6H5fMD1WZq9M9/sn9qn1zhm/9tbRbe1anaQAA2ETGh9+XkQN/nGRiamTu6/O5X3I4cysptd2p1e+YWuPU1HvOSL3nnqn33CP1njNTa5yWWv0OKbUdmR28uND9men5Js9tjn82B/f+StqtW1byKQNwFGl0u4GNpqqqm0op/5TkaZn9L/H2JC9I8tKuNAYAAADAihs9+OaMDb1lam+hBVrJ/Bs2PSm1Y1KrH5tSBpLSl5LepPQmaSdVM1Umkmo4VXso7fatqdp7kowvUH/+fO3m13Nwz3OyZdefpN44cdnPEQAAAGCzObTwN+n8i3kLfeaTJLWU2q5Dn/mU3iRTn/mklaqa+synGpoKUGl3qLHwfNMLf7fsfG1q9WOW/uQAAACOUiP7XzkVutI5ROXQfi2lbJsc+eEXrEyfV+bsV2m3bszw/pdky84/TSkLhWcCAACLaY7/W0YOvHpqb+Zr9Lmv13tS77lb6o3TU+85PbXGKanVjk2p7U4ptcOaq6qqVNWtabduTLv5nbSaX0tr4qtpTXw5SXNOD9OPq7Sb38jQrb+WrbvfmFL6lv9kATgqCV5ZnhcmeVKSnqn96X/9f6uU8u6qqr7Utc4AAAAAWBETox/N2NDfZuFvJZ68CVRqx6bRe+/UG6fNuAm0c1lzttt7025++4c3gZrj104FsiTzbwIlVfsHGdr7/Gw95s2p1XYsa04AAACAzcTCXwAAgI2nOf65NMc+noXex5XacekbfFIaveek1rjLDwNUqmoizfF/z8ToFZkYvXLGddWsx63xf8vY0N+lf+tFa/m0AADgqFBVIxne/0eZDKOff98j6UlP/4PT0/eANHrvl1IbPKL5SikpZVdqtV1Jz5lJHjHZR3s4E2OfyPjIe9Oa+ELmv3+o0m5+MyP7/ziDO37viHoA4OgjeGUZqqq6oZTykiQvy6HVFlWSgSTvKqU8qKqq/+lagwAAAAAckXZ7X0b2v2bGyNxFW7vTO/CYNPoemEbPGSs2b622K7XeXWn0nv3Dseb4f2R85F2ZGP1wZn8UNR2+8r2M7PuDbNn1mnn1AAAAADjEwl8AAICNaWzo72fszQxPSfoGfzZ9Wy9OKT3zriulJz19901P333TGnxahve9OO3Wf8+6fvrx2NBb0tP/oNQbp6zqcwEAgKPN+PC7UrVuyqHX2Yfue/T0Pyb9235x8l7JKiu1wfQOPCK9A4/IxNhnMrL/Vana35/TV5WJ0SvTHDg/jd57rnpPAGwch/f1K3TyiiQfyexVGFWSU5J8vJRyWle6AgAAAOCIjQ+/PVW1L4c++pm+6VJP35aLs+3Yy9K/9dkrGrqykEbvWRnc8XvZeszfpNa4S2YvIpvsrzl+bSZGr1n1XgAAAAA2svkLf6dNLvzddtw7MrjjRenpf+gRh64sZnrh79bdr8/gzlel1I7L/M98phb+jn9h1foAAADYCNqtPWmO/2vm378vGdj2gvRv+98dQ1fmqvecmq2735h6770zN7xl0kRG9r08VVV1LgAAAMxTVe2MDb89HV+vb/+dDO74rTUJXZmrp+9+2XrMJan3nJHZYTBJUmX04F+veU8ArG+NbjewUVVVVZVSTB9e6gAAIABJREFUnpjkmiT3yOyvGz4lyb+WUn6tqqo3d6tHAAAAAJauqpoZH35n5uft9mXLrlem0XufrvRVb5ySrbvfkOF9L0pz7JPz+hsduiQ9/Q/sSm8AAAAA693CC39rGdj+2+kdOK8rffX03S/1Yy7J8K2/ntbEV9Np4e/W3a/vSm8AAKy8/Tc/pdstLEtJybZj397tNtikmuOfzuxflJx83DtwfnoHL1hSrVIbzJadr8zQnl9Oq/m1zA3AbDWvy/jIu9I3+MQVfAYAAHD0ak18MVX7lsx9vd639Zldu/cyrVbbkS07/yQH9zw77da3p0anXvtPfDGt5ndTb9yxmy0CsI4IXjkCVVXtL6U8MsmVSe6e2eEr25K8sZTyK0n+LMl7q6q6pTudAgAAAHC4muP/mqo6mLk3gQa2P69roSvTSunN4I6XZmjvc9Oa+Eome5y8CdRufj2tia+l3nNaV3sEAAAAWI8s/AUAYD2oWjflUNDDxlHNCgiEtTV5b3yO0p++rc9eVr1S+jO48w9z8JaL56wNmPyzOXbwTenpf1hqte3LbRkAADaN5tin543V6iekb/BnutDNfKW2JQM7fjdDe35x3rHm2NWpN362C10BsB4JXlmiUsopHYZ/Psk/JLlLZoevlCRnJ3nT1LU3JLk+yf8kuTXJUJJmkvZq9VtV1R+sVm0AAACAo1Fz/LMz9iY/6qk1Tk7vwGO709AcpfRkYPsLc/CWCzP3Y6WJsU8IXgEAAADowMJfAADWl40UZLKxQmI4+rSa35yxN/lrGj19Dz2iYJRa/YT0b/+1jOx7SQ6FIU3+uayqgxk7+MYMbH/BEXQNAACbQ6t5/Yy9qdfr/Y9KKfVutTRPo+eMNHrvl+b4pzPz/Xhz4qvp615bAKwzgleW7vos/unxzK/Fmf70bXrs5CQnrVpnnQleAQAAAFiCVvPrc0ZKevsf2ZVeFlJv3Dk9fedmYuwjmXkTqDXx1e41BQAAALCOWfgLAACwMbVb38/csKJG348dcd3e/odlYvSjaY59fEb9yRCW8ZHL0zv4pNQbJx/xPAAAcDRrtb6Vea/Xe+/ZnWYW0dP/kKn7L8n06/72vPXCAGxmtW43sEGVBbZO51RztoWuXY0NAAAAgCVqN7+TuR+t1HvO6k4zi2j0P2jG3tRNoNYNXeoGAAAAYH3bSAt/D7HwFwDgaFNqx+XQsvKZ5i45rxY4Dzafqto/b6xe/5EVqT2w7f8mZbDDkXZGD7x+ReYAAICjWdU+MG+sVrt9FzpZXL1x+ryxqj3/vQYAm1ej2w1sUAt9gt0p7GTm2Fp++i14BQAA1on9Nz+l2y0sS0nJtmPf3u02ANZcVR2cN1arH9uFThZXb5wyb6zTDSwAAAAALPwFAGB92H7cO9NqfiMTY5/MxMj70m7dmNnf99mJ8BU2uWps3lCp7VyR0rX6senf8gsZPfj6HPpzOPmzOX5tJsY+k56++63IXAAAcFSqRuePld617+M2lNr2eWNVNdSFTgBYrwSvLN9ygk3WKgzFp+sAALCOVK2bsvgCmfWpkucIbFadbgKtw4/RStk6b6yqRrrQCQAAAMAGYOEvAADrRL1xSuqNU9I3+PRMjF2V0QN/nqq9N7PXlhwKgGj03ic9/Y/oWr/QffUkzTljK7cOq3fwyRkfeV/arW9l7vfujh78yzR6z0kptRWbDwAAjiqlP6mGZw1V7f1J/bguNdRZtUHuEwHQPevvN0Y2jo31G5MAAMA6sJGCTLzlATavUrakqg7OGqvatyb123Wpo86qOTeqkiSlb+0bAQAAANgILPwFAGCdKaWkt/9hafTeJ0N7n5d285vp9MU+tfqJ6R04rys9wnpQymCqav+sscl7+MevUP16+rf9aoZvfX5mhh4lVdrNGzI+8q70DT5pReYCAICjTa22Pe3W7Psvreb1qfec2qWOOpsMWpyt0xcgArB5id0FAAAAgBk6fatwa+K6LnSyuHbzG/PGSpnfOwAAAACTC3/najWv70Ini7PwFwBg86nVdmXLzlfO+JKFjfTFPrD6Sm3nvLFW84YVnaOn75w0+h6QQ6EryXT4ytjBN6fd3rui8wEAwNGiVr9T5gaIToxd3ZVeFtMc+9SMvcnX/bXGj3SrHQDWoUa3G9iAvhVf/Q4AACxBqR2Xqv2D6b0ZRxZ7a2ERDUC31Oonpt36bmb+XTw+9uH0Dj6ue011MDF2zYy9yZtA9cadu9UOAAAAwLpWq98p7daNmfmZz8TY1ekdeGT3murAwl8AgM2pVj8+vf3nZXzkXbFmBGarNX4k7dZ/Z+afjeb4tekdeNSKzjOw9bk5MPYvSZqzxqvqYEb3/2kGd75kRecDAICjQb3n7mmOXzu1Nxle2Bz7VFoT16fec5dutvZD7dYPMj76ocx9v11vnN6dhgBYlwSvLFFVVSd1uwcAAGBj2X7cO9NqfiMTY5/MxMj7ZizsnvxgsTN5jwDdUu89K83x6V9wmfy7ujX+b2mOfz6N3nt3s7UfajX/OxOjH8m8m0A9d+tOQwAAAADrnIW/AACsdz0Dj54KXgFmqjdOSXPsE1N7k+/nJsY+nnZ7X2q1HSs2T61xx/Rt+amMDb01h9Z1Tc/30YyPPCC9Aw9fsfkAAOBo0Og9J2NDfztntJ3hfS/J1t1vSKlt6UZbP1RVzQzve2lSjWbu/Zeevvt3pykA1iXBKwAAAGug3jgl9cYp6Rt8eibGrsrogT9P1d6b2eErh27YN3rvk57+R3StX4DNrKf3fhnLG2eMTP79PLzvD7N19xtTqx/brdaSJFV7KMP7Xpyklbk3gRp9D+hKTwAAAADrnYW/AACsd42eu6XUdqVq39rtVmBdafTeJ2NDb5k9WI1l9OAbMrj9N1d0rr4tP5fxkStStW/Oofdmk2sGRg68OvWeu6TeOHlF5wQAgI2s0XuP1Bonp928YWpk8vVzu/XfGdr7fzK48xVdW3dbtYczvO8laU38W+beeym126Xec6+u9AXA+iR4BQAAYA2VUtLb/7A0eu+Tob3PS7v5zcwOX5lUq5+Y3oHzutIjwGZX7zkt9Z4z0pr4zxmjJVX7Bxna+5wM7nhZ6j2ndaW3duv7Gb71hWk3v55DN4Em/w2p1e+cRs8ZXekLAAAAYL2z8BcAgI2g3nNWmmPXZO7rQtjM6j1np5Qdqar9UyOT7+cmRt6fscZd0jf4pBWbq5T+DGz71Qzv+73M/BKtpCTVcIb2Pj9bdr0u9cYdV2xOAADY6PoGn5aR/X+U2a+hq7Sa1+XgLRemb+vF6R24IKWs3a+0T4xek9GDr0u7ddOcI5P99W35mZTivTcAh9S63QAAAMBmVKvtypadr0xK39SID+0A1pO+LRfmUCjW9M+SduvGHNzzixk58Bdpt/euWT9V1czY8Ntz8JaL0mpe1+GMkr4tP7dm/QAAAABsRH2DT8vsz3xmL/wdG35Hqqq5pj1NjF6Tg3suSnP803OOWPgLALAZ1Rund7sFWHdKaaRn4NHp9H5u9MCfZeTA61JVYys2X0//g9Poe+CseaY6mfrCluemNfG1FZsPAAA2ut6B86ZC5Ge+hp68t1FVBzJ64M9y4OYnZfTgG1f1tXS7vTfjw+/JgVt+IcP7Xph268ZZvUw/rjXukt6BC1atDwA2prWLBwMAAGCWWv349Pafl/GRd0XwCsD60tP3gDT6zk1z7GOZ9y1Wmcj48KUZH35HevrPTU/fQ9Po+7GUMrDifbQm/jMTox/L+Og/p2rvzcwFXZMm+6r3/mh6Bx6+4vMDAAAAHE16B87L+Mg/pzXx75n7rYvTC3/Hht6S3oHHpKfvIan3nLYqfbTbe9Mc/XjGRt6TdvP6LPSZj4W/AACbT71xardbgHWpb/CnMz7y3qQaztz3c+PD/5SJ0Y+kd+CC9PQ/JPXGiUc838D238zBW76Sqr0nc9cMVO2bc3DPL6Z/2y+ld+BJKcX3IQMAwOCOF+bgnv/d4TV0klSp2nsyNvTWjA29NaW2O42ee6bec9fUGienVr9TavXbpfzwS21vW9Xen3brxrSa30ir+fW0xv89rebXpuade99lhjKQwR2/l1LqR/J0ATgKCV4BAADoop6BR08FrwCw3gxs/40M7bkh7da3Mj98pUoykYnRqzIxelWSeuo9p6feOD21xilTN4Fun1ptV0pt26LzVFU7VXtPqvae2TeBJr6Qqr1v+qypn/NvApXa7gxu/90VetYAAAAARzcLfwEAWM9q9eNn7PkSH5hWq+9O/9ZnZvTAn2VuaOXke7mbMzZ0ScaGLkkp21Nr/Ehq9eNTymDqjbumd/D8pc1X25HBHS/N0N7/k6SZTl/YMnrgdRkffmf6Bp+Weu9ZK/ZcAQBgI6rVj8+Wna/J0N5fTVUdyOz3tDNfwydV+5ZMjH00E2MfnV2kDKZW256UwZTSn6SepJakmVQTqTKRqn1w6osMm3M6qObsz31PXSXpyZadL0+9cfJynyYARzHBKwAAAF3U6LlbSm1Xqvat3W4FgDlqte3Zsus1Obj3ualaN2Wxm0BJM62Jr6Y18dUOlUpSBqZ+Iac+tR26CZRqNPNv+GTOWKdFlVVK2Z4tu16bWv24pT05AAAAgE3Kwl8AANazWv2EqUed7h/C5tY3+OS0Jv5j6stR5oavTD9OqmpfWhP705r4cpKk0XvzkoNXJq+7Rwa2/3ZG9r90amT+F7a0W9/JyIFXR1ASAAAk9Z5Ts2X3GzO873fSbn4j818nz9zv8L63Gkq7NdTh3AXOn2du/UPvFUptdwZ3vCwNoYkALEDwCgAAQJfVe85Kc+yauAEPsP7U6rfPtt1vzvC+F6c5/q9Z8k2g6fFqKFU1tMDxhSz270KVWv3EDO58ZeqNOy6xLgAAAMDmZuEvAADrValtzeDOlyfVodeVtfodutgRrC8D21+YqmqmOfaxHApAmdbpvdyRrcfqHXh4komM7H9lDr1/mxm+Mj1XNeOxNWAAAGxe9cYds3X3GzN68K8zPvyOTAbUd7ovsvga2YXvtxzu6+3p1+5Jo++BGdj2/NTqxxzmtQBsRoJXuqiUUkuydWobyOT/j3qS71ZVta+bvQEAAGun3jh9KngFgPWo1LZncOdrMz7yzowdvCRVtT+db9ysxuKpuYuyqiS19A4+Jf1bnzX1jcoAAAAALJWFvwAArFc9fQ/odguwbpXSk8EdL83Y0CUZG3pr5r+X++GZObxgzNvWO/DolNqujOz7g1TVwQ7zzQxgAQAASunLwLbnpnfggowNvTkTox/L5Gv3pPPr97nBiYdzj2WxsMXJY/XG6enb+sz09P3EYXYOwGYmeGUNlFJOSHJOkh9LcmaS05KckGT3Apf8fJK3dKjz20k+k+TjVVW1VqdbAABgrdUbp3a7Bf4/e/cdJ1lV5338e26oW6G7Z3pmgEEQSWMYBBQQBAkqa1pFZHVNawIDKgYehEeExzVj2EcfMaAuZnd1V9E1LayBpAQDSSXpCCJBwWF6uqe7K9x0nj+qm67UPR2qq6q7Pu/Xq15Vde6tc34183p1nXPuub8DADthjFGQf74y2aepMvkNhaUfaCZv7lwXgWY7Ptv5cy3QMvKCY5UdeLVcb9/5Bw8AAAAAAICWWPgLAAAAACuPMUbZgVfLD56s8uQXFFeulpROH609s21t+sGRctd/TaXxj9VssLUcm7MAAAAAq4frPVz5Ne9WOrBNYen7iipXKI3vrDljIddbGjUm058uzskPjlYmd4K8zOMXUS8AoF+ReGWZGGMeJunVkv5B0kGNh+f46Fxpjj8wdXzEGPMlSR+31v5lSYECAAAA6DrH3VjzjgvyANDLjDOk7OCpCgZOVlS+TFHlCsWV6yRVas/Swv+eN54/M0XkuHvIzz5VmdwJctzdFxc4AAAAAAAAZsXCXwAAAABYeVx/PxXWnqckvldR+VLF4S+URLdJWp49bh13gwprz1Mc3a6weJGi8uWSwqmji1knAAAAAPQHx12v7MDJyg6crDS5X1HlWiXRzUqiPyhN7tZMIsVFMDm53n5y/QPlZR4vL3OojMm0LXYAQP8w1s6V5wMLZYzZW9UEKS9QNbHNbLNnrf7hzVT5ydbar7aoO9X09sbV54qkT0l6j7V2cqmx9yJjzC2SNjeWb968WbfccksXIgIAAADaz6YT2rH1WXVlmdzzlRs6vUsRAQAWwtqK4vAGJdEtSqI/KIl/L5uOLLI2V477cLn+pocuArne3u0MFwAAAAAAAPPAwl8AAAAAWHmsjZUm9yiN75FNt8vasoy7QZns8e1vK92hqHKt4vBaxeH1sulowxlGa3b7WdvbBQAAAFYTaytKk/uUJltl061KkwclW5ZVRbKhrI1ljCvJlzF5GWdQxhmW4+4qx30YGxoCWLUOOOAA3Xrrra0O3WqtPaDT8fQDr9sBrBbGGCPpnZLOlhRo1u1q6j82j3NamU6+kpX0NkkvNsacYq396QLqAAAAANAjjDOg/NoPSjWJMR33YV2MCACwEMYE8oMj5QdHPlRmbal6ESj5m9J0m6wtVS8AqSLZRDKujLz6i0DOrjLubjKGKTsAAAAAAIBuc9yNCvInSTpJEgt/AQAAAGAlMMaT6+0j19tn+dtyhpTJPUOZ3DMkSWnyoJJ4i9LkXtlkm9JFb9gCAAAA9A9jArnevnK9fbsdCgCgz3EXRxsYY9ZJ+pakJ2smmUptIhXT+Jk2mK7fSNpT0v8YY95jrX3fMrQFAAAAYJn5wdHdDgEA0EbG5OR6e0neXt0OBQAAAAAAAG3Awl8AAAAAwFwcd4Mcd0O3wwAAAAAAAMAiON0OYKWbSrpyqWaSrljVJ0WpTbpiGx6Lblb1CV6sqv+X7zbGfHoJ9QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9gcQrS2CM8SVdIungqaJWCVcaE60YNSdkWajZ2jGSXm+Mec8S6gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWPa/bAaxwH5P0BNUnQplma15Pl2+V9EtJt0u6U9IFmkmYMh83SXpcQ/3TyVemk7sYSf/HGPNba+235/1NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBDbFpUmv5NNt0hayckW5G1sSQrYwLJZGVMVsYEMs4GOe6GbocMAFiFSLyySMaYYyWdprmTrhhJf5L0ZUkXWWtva6jjgoW0aa09xBjzOEnvlHSS6pOtNCZf+Ywx5nJr7chC2gAAAAAAAMDS2HRCafLA1EWgcVk7Xr0IpESSlVEgmWDqIlBWxlkvx92dC0EAAAAAAAA9wNpESXSb0vQB2XS7ZEMZZ1jGGZbrP0qOM7yMbceKwxuayv3g8GVrEwAAAABWC8ZzAAAAQO9L4j8rCX+jOLpVafInJfGfJVtcYC2eHHejHHd3ud7+cjMHy/MPlHEGlyVmAEB/IPHKIhhjHEnn1xZNPdcmXNkq6SxJ/26tTdrVtrX2JknPN8b8vaoJXdarOfmKpso/KOnUdrUNAAAAAACAetaGisMblERTF4Hiu6oLuBbFl+NunLoIdJA8/2C5/v5tjRcAAAAAAACtRZVrFJZ+UL1RzpZmOcvI9R4pP/sUZfL/IGOybY3BpjtUHH2b6vd/Mlqz25VtbQcAAAAAVhPGcwAAAEBvS+I7FZb+W1HlZ7LJAw1HbcvPzC1SmtyjNLlXcfhrqfgNSUaOt4/87PHKZJ8ux92tDZEDAPoJiVcW54WSDtZMwhM1vL5S0gustduWKwBr7cXGmCMkXSFpz1lieaUx5t3W2r8uVxwAAAAAAAD9xlqrOLxWYem/FYe/kmyl9ugSag6VJncrTe5RVLlckmRMQX72KfKzz5SXOWhJcQMAAAAAAKBZVPm1yhOfURr/capkrvkdqyS+XcnE71Up/oeCwisV5J+/DFEtZY4JAAAAAPoD4zkAAACgt8XhTSpPfklJeONUSav+smlRNl+27nUa36HKxJ2qTHxeXuYQZfIvlB8cuYT6AQD9hMQri/O/Gt5PJzqxki6T9PfW2mi5g7DW/skY82xJV0kabIhDknxJb5T0zuWOBQAAAAAAoB+Epf9RZfIrSpP7pkoaLwIt5QLQtJk6rZ1QWPqhwtIP5bgPUyb/ImVyJ8gYpvUAAAAAAACWwtpY5YkLFBYvmi6Zet7Z/I6VZGXT7SqPn684vE75oXfKOPk2Rle79xIAAAAAoBbjOQAAAKC3pemYyuOfUFT+yVTJzvrsC+0/m4bn2nqqjzi8XnF4vVz/IOUG3yrX37TANgAA/cbpdgArjTHm8ZKeoOYkJ5L0F0kv6ETSlWnW2pslvU6tewhG0os7FQsAAAAAAMBqlcT3amLkTSrtOE9pcq9mLs6YhodUe+FmfheDGs9rrLN6PE3uU3n8/2li28sUVa5tx9cCAAAAAADoS2m6Q5Mjb5i6Sa9xnkdqnt+pnb+pn7eJK1drYvvrlabbO/kVAAAAAKAvMZ4DAAAAelsSbdHEtldPJV2Zrc/eqHHd7M4es2lee5tEv9HEyKmqTP7bUr8aAGCVI/HKwp3Uomz6V/hMa+1Yh+ORtfabkq6riaO257CvMeZRnY4JAAAAAABgtYgqv9TkyGuVRL9Vc7IVqfki0Hwv8DSev7Pj1amfNLlPxdG3q7Tj/6qD+X8BAAAAAABWBWsrmtx+upL4dtXP9cyVGLfVTXx66HNp/CcVt58pmxY78RUAAAAAoC8xngMAAAB6Wxzdpontp8mmf9PcfXZp9qSJi300qh0LRCpP/KuKY++TtUl7viwAYNXxuh3ACvScmte1v8Z3S/pmh2Op9T5J35vl2JMl/b5zoQAAAAAAAKwOUeUaFUfPlRRPldRe8DEtylrxJBPImIykjKRUUiLZUNYWp9630ioZy0xbYen7SpJ7VFj7IRmTm+9XAgAAAAAA6Gvl8U8ojbeoeU5nZ3M801p9ziqJt6i048PKr31P+4IFAAAAADyE8RwAAADQu9LkfhW3nyXZkuoTrrTa6NCV4z1CrvdIud4+Ms4GOe4uMs4GGZOTMYFkMjImmEqUkkg2krVFWTspm25Xmo7IJvcrSe5VGm1REt+h5rW+qms7Kv9EsjF9fwBASyReWQBjjC/pADWnV7OSvm2t3dlM3XL6saSSpKyaZwwP7Hw4AAAAAAAAK1sS/VHF0X9W9UJMY8KV+gz8xtlFrrdJrv9Iud6+DReB5p6Cs7by0EWgNPmr0vheJfEWJdFtU1n/peYkLFMLwMIbNbn97SoMf1zGOG341gAAAAAAAKtXEt2usPQDtU6uayWTVSb7DHmZI+T6m2SctZKkNNmqJLxRYfnHSqLfqH5+yD70OqpcrrB4iDL5Ezv6vQAAAABgtWM8BwAAAPS24th5snZMzX326lpb4+wiP3iSvOAYeZnHTW1muHPGuJLcaiIWFSTtImnvpvOsDRWHNyquXKmw/NOaBDAP1aTpvn9l8tEKCi9Z3BcFAKxaJF5ZmMdI8tX4i191eVcimmKtrRhjrpT0TDUnXjmgCyEBAAAAAACsWNbGKu54v6SKZrsI5PqPlR8cIy84Wq6316LbMiaQcTfKcTdK/ua6Y0l8t6LKFYpKP1Sa/LVlLEl0k8oTn1Fu8LRFxwAAAAAAANAPypP/pvo5npm5Hj97vLKDb5XjDDd9zvUeLtd7uDL55yqqXKvSjg/JpttVv3yo+ro08Wl5wRHVuR4AAAAAQFswngMAAAB6V1i+VEl0o1olOnHcRyg7cKq84GgZ07gJYfsYk5EfHCE/OELZgdNUmfyqKsX/lJQ2xVSeuFB+9sly3N2XLR4AwMrDNrgLM9cM2m0di2J2tza8n55R3LMLsQAAAAAAAKxYUelipfEdanURyMscqoF1X9TAus8oKLx0SUlXdsb19lK28AoNrP8PZQffJplcTSwzMYXFbyqJ71y2OAAAAAAAAFY6m44rrlylxnkVySgovEL5Ne9ueZNeIz84UgPrLpTj7aOWezfZkko7PtLu8AEAAACgbzGeAwAAAHpbZfLfG0qmkyQ+WwPrvyw/e8yyJl1pZJyCsoNvUGH4EzJmqMUZscoTF3YsHgDAyuB1O4AVZu0cx/7WsShmN1sMgx2NAgAAAAAAYIWrFL+u+qQr04u2Xq3swKs6Ho8xjoL88+RlDlNx9G1Kk782nGFVHv+sCsMsAgMAAAAAAGglqvxCUqKZOZ/qfI8XHKvswGsXVJfj7qrC8Mc1OXKq0uR+Ne64HofXKSxfqkz2+DZ+AwAAAKwGEyNv6XYIi2OMBobP73YU6FOM5wAAAIDelcR/UhpvUWN/3Q+eovyas7sYmeRlDlJh3Sc0MfJGyRanSqt9/6h8hezg6TJOq8QsAIB+ROKVhXHnOFac41injMxSTuIVAAAAAACAeYqj25Um96nxIlAm//yuJF2p5Xp7qjD8SU2MnCqbbpsqnV4A9kulyYNy3A3dDBEAAAAAAKAnJdEtLUo95QbfvKj6HGdY+TUf0MTI6yVFatx5vTz+afnBk2RMdnEBAwAAYFVKohtVvwHESjCdlALoDsZzAAAAQO+KKlc1lRlTUHbobV2Ippnr7avc4Bkq7Xif6se2saLyFcrkn9ut0AAAPcbpdgArzMQcx9Z3LIrZDcxS7nc0CgAAAAAAgBUsrlzdVGacYWUHXt+FaJo57q7KDZ2t6gLHWlZR5YouRAQAAAAAAND7kviOmndTuy1mj5Xj7rboOl1/k7KDb9DMPM3MfI1NH1Rl8quLrhsAAACrnV0hD6D7GM8BAAAAvSuJfl/zbrq//jQ5zlC3QmqSyT1djre/Gse5cXRzdwICAPQkEq8szLY5jm3sWBSz23WW8smORgEAAAAAALCCJfGWmnfTF4GeIWOCboXUxA+OkOsfrMaLQAkXgQAAAAAAAFqy6QOq38lQ8jJPWHK9Qf4FNfM09bukVyb/U2ly/5LbAAAAwGpkVsgD6D7GcwAAAEDvSuO71NxfP7xfZQA0AAAgAElEQVQrscwlk31WQ4lVEv+hK7EAAHoTiVcW5o9zHFv6zN3S7TFL+daORgEAAAAAALCCtb4IdEhXYpmLn/27hhKrJJpr+goAAAAAAKB/pelYU5nr7deWunNDZ0nyWxyJVJ74bFvaAAAAwGrhqZrkwTaU2zkeQH9jPAcAAAD0LpuONpU53l5diGRubuaAmnfVNcI2HelOMACAnuR1O4CVxFr7N2PMiKRhNc9inyjpi52Pqs5TVR+XmXq/pfXpAAAAADphYuQt3Q5hcYzRwPD53Y4CADrOpjuayhx3zy5EMjfPf0zNu+o0UKsLWAAAAAAAAJBkK01Fxlnblqpd7xEKCi9WZfJrmlmuU32Oypcpzr9Qnr+5LW0BAABgZRva9RLF4Q2KK9coLP9YsiVV+47T/chWSL6CPsd4DgAAAOhZ1k42lRmT70Ikc3OcDU1lNp3oQiQAgF5F4pWFu1LSSZqZwZ6eWXuaMWYPa+193QjKGHOwpD1UO9M348ZuxAQAAACgKolu1HRW5JVjemgBAP3H2mJTmTHZLkQyN+OsayprFTsAAAAAAAAkyZGUNpS1bx48KLxSYel/ZNMHG+q1Ko9/UgPrPtO2tgAAALByGZOVHxwlPzhK2YE3qlL6tioTX5EUqn4J+EwCCNd/tLzME7sVMtADGM8BAAAAPct4kk3qinpzLWvjmELifgkAQC0Sryzcj1VNvCLVz24Hkj4o6RXdCErSm+c4dkWnggAAAAAwl5WyAxETiAD6nAmmdpabYe2EpOZs991kbdhcaNzOBwIAAAAAALACGJOTteN1ZTbdIbm7tan+QNnBN6o09h417pKeRLcoLP9UmezftaUtAAAArA7GyStbeLn84FhNbj9DNt2q5v03JdfbrOzAKV2JEegFjOcAAACA3mXMoKyt1JWl8d1yvb26FFFrafJAU5lxBroQCQCgVzndDmAF+qak6V6ArXk2kl5qjHlOpwMyxhwq6eSGeKZtl3Rlp2MCAAAA0IpZIQ8A6G/GDDWVpfGdXYhkbmnyl6YyYwpdiAQAAAAAAKD3Gad5zidJ7m5rG5ns38n1D9LMUiJp+ma98vgFsg3JfgEAAABJcr1HqLD2Q5pZ2s/aDaAW4zkAAACgdznurmpMIBqH13YnmDnE4fU176rxOm1K5ggAWB1IvLJA1trtki5S/WyaVP2ldSR9wxhzWKfiMcZslPTvLeKZTrX8dWtt1Kl4AAAAALTiqdo9tw3ldo4HAKBbqhdS6v8WR5WruxPMHOLwVzXvqou/HHePboUDAAAAAADQ0xx3TzXO+SR1i2zbIzd4ulotybLpgyqPf67t7QEAAGB1cP1N8rPHizUjQDPGcwAAAEDvcv0Dat5Vb2sOyz9Vmm7vVkhNrA0Vln6g+kSnRq63f7dCAgD0IBKvLM57JSVTr2tTGltJBUk/MsY8e7mDMMY8XNIVkh5ZE0ftjGIs6aPLHQcAAACAuQ3teonyaz+sTO5EyWQ1022fa4eiuZKydOIBAP3L8x9b86463RKVL1ea/LVbITWx6YSi0n+r8bfE9TZ1JyAAAAAAAIAe53j71LybnvO5ou27lrv+JmVyz1H9XPvUQuPSfymuXNfW9gAAALB6ZHIndDsEoCcxngMAAAB6l+cf3FxoSyrt+JfOBzOL8vgFsum2pnIv84QuRAMA6FVetwNYiay1W4wxF0h6s+rvmJy+Q3FY0veMMR+T9AFr7Vg72zfGGElvUTUBzICa74qcjuVCa+2f29k2AAAAgIUzJis/OEp+cJSyA29UpfRtVSa+IilUff7E6ddGrv9oeZknditkAOhrbuZQqfjvDaWRimPvV2H4fBnT/Sm10o6PyNpxNSZe8YIjuhMQAAAAAABAj/MyhygsfqOuzNoJVSa+quzgqW1tKxh4naLy5bJ2oqbUSEpV3PE+Daz7vBx3l7a2CQAAgJXP9Q+UTEGyxW6HAvQUxnMAAABA7/KCo2ScYdl0dKqkek9EXLlKpR0fUXbwTBnjdC2+8uRXFZa+raZNc01WXnBkV2ICAPSm7t8lsnKdLenvJe2r6Tsj65OvOJLeJum1xphPSfqmtfZ3S2nQGLOHpFdIOlnSfpr5pZ9uvzYBy18lnbOU9gAAAAC0n3HyyhZeLj84VpPbz5BNt6q5Oy+53mZlB07pSowA0O+8zGEy7kbZ5IGpkurf6ST6nYqj5yi/5t0yTr4rsVmbqjz+MUWVy9V4EciYIbLvAwAAAAAAzMLLPF4yOcmWp0qqcz6V4tfl+pvlZ49pW1uOs0bBwOtUHv+oapOuS0Y2HdHk6JkqDJ8vx1nbtjYBAACw8hnjyvMPUhxeq6YbwoA+xngOAAAA6F3GeMrkTlRl8suq70NbhaUfKon/pNzgmXL9/ToaV5o8qNL4xxVXftZwpBpfJvc8GZPtaEwAgN7WvTRhK5y1tiTpJEnTqYxrt6iffm8krVE1AcpNxpj7jTHfN8Z83hjzoTmq32yMea4x5hXGmLcZY75mjLlN0p8lvV/S/qpP8lJ7l6aRFEt6ubV2R1u+LAAAAIC2c71HqLD2Q5oZlrFgBgB6hTFGQe4fNTPdMjP9Eoe/0MTIyYoq13Q8riTaosntb1BY+n7DkamLQIUXyRjyLAMAAAAAALRiTKBM9umqT4Q+tWv52D+rUvxWW9sL8s+T6x+kVvsppfGdmtz+VqXJ1ra2CQAAgJXP9Td1OwSg5zCeAwAAAHpbUHiZjLtx6l198pUkulkTI6docvRcRZVfy9p0WWNJ4rtVGv+kxre9ZCrpynQsM4yzVkHhZcsaBwBg5eFOjCWw1t5sjHmhpO9Kyqg2nfFMUhRp5ld5V0nPbqjGtHg+q0Vztb/sjTOGta+tpDOttZfP/5sAAAAA6AbX3yQ/e7yi8o9F4hUA6C2Z/PMVli9WGt+pxotAafIXFUfPluPtryB3krzscXKcoWWJw9pUcXidwtJ3FVeuVn0e3mlGjru7gvw/LksMAAAAAAAAq0Um/xKFpYtV3dNImplniVUe/6TC0iUK8i+SHxwj4+SX3F5+zf/R+LaTJVtU/RxT9Wa9iW0nKzd0tvzs0UtuCwAAAKuD6+3f7RCAnsR4DgAAAOhdxgTKD71Dk9vfJilR47pbKVVc+bniys9lzJC84DC5/uPk+o+S6+0jY7KLbjtN7lcS36E4vElx+Eul8V1TR2pv77Z1z7nBs5Zt3S8AYOUi8coSWWt/ZIx5jqrJV/KqT74i1SdgkeZ3N2Wrc+wc59Qee4+19hPzaAMAAABAD8jkTphKvAIA6CXGuMoPnauJ7W+SbEmNC6kkqzTeotL4v0jjH5XrP1qe/zi5/iPlePvKcfeQMf6C203THUrjO6cuAt2oOLxuaiGX1Jzjd7rMV27o3CVdeAIAAAAAAOgHrreHgsJLVJn8qlrtdZTGW1Ta8QGV5Mj19pPjPUKOu5tk8nLdfRZ8Q53j7q780Lkqjp1b18700iJrx1QcO0du6fEK8i+T6+3dhm8JAACAlcxxH1bzjk18gGmM5wAAAIDe5mUOUW7oHJV2vG+qpHndrSRZO6aofJmi8mUPfdY46+S4u8k462TMkIyTl1FWMq4kR1IsayPJRrJ2QjYdUZpuU5rcP7XGV3VtzLQ/XTYzhsgOvF5+9pg2fnMAwGpB4pU2sNZeaox5kqTvSNpX9XfBNN4JM58kLI1JVmq1SrhiJKWSzrDWnj/fuAEAAAB0n+sfKJlCzU31AIBe4fqbVFj7QU1uP1PVXbPqF1LNTPUkSqJblUS31nzayDhrZZxhGWeNjMnLmECSO/WIZW1YfU4nZNNtStORhgtA0txTSVOZ99ecIy9zUNu+NwAAAAAAwGoWFE5RHN2sJLxBc873xH9QEm956HNe5shF7WTuZ49RNnm9yhOfaWhn5nUS3qhieKNklr4rOwAAAFY2426cejXXcnKgPzGeAwAAAHpbJvc0GeOruOM8yZbVnDRxWv2Y16bblKQjC2xttnFz41rb6X68o+zAaQoKL1pgOwCAfkHilTax1v7WGHOopPMlvUKtk6zMN+34zs5rrPcvkk621v5knvUDAAAA6BHGuPL8gxSH14qdigCg93iZQ1QY/oSKY++UTR/UbBnwmy/gWNl0RDYd0fz+vs/3AlDN+Sar/NC58rNPnkf9AAAAAAAAkKrz8oU179fk6P9WEt2sued72nOza1B4qawtqzL5Jc12s161yclZYgEAAEC/cJw1yg6+VdU9Oatcb1P3AgJ6COM5AAAAoPf52SdrwNtbpbEPKIlvV+v+cauyxfThZ6unfnxgnF2VHzpbXvCERbQBAOgXTrcDWE2stWPW2ldJOl7S9apPtmK1tBm8xs8bVbdavkDSASRdAQAAAFYu12eBDAD0Mi/zWA2s/6K84DjVT83UMrM8pPppndkec32+kZXrPVoD6z5H0hUAAAAAAIBFMM6gCsMfl599pnY+39Pq2MJlB05RbvBMSW5DnY1zQwAAAOh3Qf4FCvIvfOjhZR7f7ZCAnsF4DgAAAOh9rre3BtZfqNzQ2TLOLpr91urGW6YX+pCa660tzyiTf4kGN/wbSVcAADtF4pVlYK293Fp7uKRnS7pY1ZTjC73bpvGhmjrGJH1a0qOstW+y1o514GsBAAAAWCaut3+3QwAA7ITjDKuw9v0qDJ8v19+sufPr1pYv5OLP9Gdnv7hknPXKDp6hwrrPyfX2XdJ3AgAAAAAA6GfGBMqvOVf5tR+R4+2v2edl2nfzXCZ/ogbW/WtDe9ycBwAAAAALwXgOAAAAWBkyuWdrcMM3lV/zXrmZQ1TtQ7e6ZXopmm/bNs4GBYWTNbjLt5QbfKOMyS2xDQBAP/C6HcBqZq29RNIlxpiNkp4r6VmSjpa0fhHV/VnSpaomcrnYWltuW6AAAAAAuspxH1bzjgvyANDLvMwhGlj3WSXR7aoUv6O4cpWsHa85Y6kXgRqTsFTLXP+xyuSeKz97vIzJLKF+AAAAAAAA1PKDI+UHRyoOb1BY/oniyi9l063L1p7rb9Lg+i8qKl+mSvE7SqLf1Bxll3QAAAAAmC/GcwAAAEDvM8aVn32K/OxTlKZjiivXKK5cqzi6eR7998Y+9mwbJrpyvU1yM4+XHxwt1z9QxtA/BwAsDIlXOsBae7+kf516yBizp6QDJO0laU9JQ5Jyqv5/hJJKkkYk3SvpLkm/tdZu73jgAAAAADrCuBunXs02EQgA6DWu/2jl15wjaxMl0e8UVa5REt2iJP6jZItLrt84G+T5Bz50Echxd2lD1AAAAAAAAJiNlzlEXuYQSVKa/EVJ/Gel8T2y6XZZW5LjPbyt7fnZp8rPPlVJfJei8hWKw18oiW6TlLa1HQAAAABY7RjPAQAAACuD46xRJvcsZXLPkiSl6ZiS6PdKk3tkk61K061K0wclW5a1FcmGkmJJrmR8GZOXMYMyzrAcd1c57sPkePvK9faRMUFXvxsAYOUz1nJjH3qXMeYWSZsbyzdv3qxbbrmlCxEBAAAAy6NSvEi1F99db5O8zOO7FxAAYNGS+G6lyT1Kk62y6ValyTbJlmQVSrYiq0RGriRPxml1EWg/Oc6abn8NAAAAAAAAdJhNi0riO5TEW5Qm98kmDypNRzSw7pPdDg0AAAAAMAfGcwAAAAAAoJ0OOOAA3Xrrra0O3WqtPaDT8fQDr9sBAAAAAACkIP+CbocAAGgT19tLrrdXt8MAAAAAAADACmOcvLzMgfIyB3Y7FAAAAADAAjCeAwAAAAAAWNmcbgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ3mdTsAAAAAAAAAAAAAAAAAAAAAAACwPKwtKU22ytpxSUbGFOS4G2VM0O3QAAAAAABYsPFtpzSVDQx/XMYZ6kI0AIDVgMQrC2SMOVjSia2OWWvf2+FwHmKMOVrSU1sc+o619uZOxwMAAAAAANAP0uRBpekDsul2yYYyzrCMs06Ou6eMcZetXWtTpcm9TeWut9eytQkAAAAAANAvmPMBAADAapDE9yoq/VBReI3S+M+SbNM5jvswuf7B8rNPlpd5oowxnQ8UaCPGcwAAAEB/SOMtkqbHsFaSkVUiRrUAgMUi8crCPU7Su9Vq5lnqWuIVSY9V67g8SSReAQAAAAAAaJMkvlNh6YeKK79Smtzd+iSTl585XF72OGWyx7c9BpuOamLbP0l1l4iM1ux2ZdvbAgAAAAAA6AfM+QAAAKBXpMk2penfZNPtsrYoYwbkOLvI8fadV2IUm06oPPFZhaUfqLq0vNWy9+m27lOa/EVR+RI57u4KCicrk3tm+74M0AGM5wAAAAAAALBUJF5ZmtpZsdlnpDujVPO6Nq7DOh0IAAAAAADAapTEd6o88XnFlau1swWKspOKKlcoqlyhyuRXlR04VX5w1DJE1e0pKQAAAAAAgJWNOR8AAAD0gjR5QGHxvxSF1yiN72p9ksnLD56oTP4f5fkHtDwlie9TcfQspcm9qu9XzpWwxU7F8BeVdpynsHyJ8kP/LMddv5ivAnQM4zkAAAAAAAC0i9PtAFa4nczOdVTt/2VtXPt3IRYAAAAAAIBVpVL8pia2vUZx5SpJqapTL2Ynj+oUTRrfqeLo2Srt+LisTdsc2XRbAAAAAAAAWCjmfAAAANBt1sYqT3xR49tepkrx60rjP2lmKXjDw04qKl+myZE3qLTjI7K2XFdXmoxocvublSb3qLlvq1nqlRr7u0l4gyZGXqMk/tNyfnVgSRjPAQAAAAAAoJ1IvLI0vTQjNltK8TUdjQIAAAAAAGAVsTbU5Og7VB7/lKRI9Yu1pFkXPUpqXMAVlr6jydH/1bQAEgAAAAAAAJ3FnA8AAAB6gbWhiqNvV2Xyy5Itq3Wfs3XiiLD0Q02Ovl3Wxg/VV9zxHtl0q5r7tpqjXjWcVy2z6YOa3P4WpfF9bfq2QHswngMAAAAAAMByIPHK6nH4LOWDHY0CAAAAAABglbA2VXH07KkdshoXa02bbcGj1LyAyyoJb1Rx9Jy6BZAAAAAAAADoHOZ8AAAA0AusTTU5epbi8Feq75dOJ1eZzcw5SXijSjs+KEmKKlcpCW9Qc791Z8ko6hOu1MZi09Gp5C6VpX5doC0YzwEAAAAAAGC5eN0OAEtnjHmapJM09yw7AAAAAAAAFqAy+QXF4a/VvNNbq93hGrXaRa66cCsOr1N5/FPKDZ3e1ngBAAAAAACwc8z5AAAAoBeExW82JEqRmhNJ1PZNW51nFZV/ojh3girFb7U4PvXaFOQHT5KXOVyOu1HGGZZsqDQdURLdpKh8hdLknpq2Zz6fJnerPPF55QZPa9M3BxaP8RwAAADQe8YeOLaLrdu61+NbT1zAZ43W7HZluwMCAKxgfZ94xRhznKTjFvCRx81R1z8vPaIFyUo6UNIzJLmqnUWfsb3DMQEAAAAAAKx4SXy3KpNfV6ud3aZfe5kj5AWHy/U2yThrJUlp8qCS6AZF5cuVJvc1fGZm6iYsfUde5lD52WM6/M0AAAAAAAD6F3M+AAAA6AVpcr/Kk1/QbEkgJMk46+S4D5cxBdl0RGnyV1k7VnPejNKO/1uTOKW+Hj/7LGUHT5PjrGmKw5XkB4crKLxWUen7Kk18RrLFpnrC4rcV5J8vx9249C8PLBLjOQAAAKBXzZUAsdN6KRYAwErT94lXJD1Z0ru08F9U0+L5XW2KaaHqU4vPlEnSXzsfDgAAAAAAwMpWXbAVq3naxcr1D1Ju6G1yvX2bPud6+8gPnqCg8BqFpe+pPPEZyVZUu7hx+nVp/CNyMwe1XOQIAAAAAACA9mPOBwAAAL0gLH5PsmW17pc+RtmB0+RlDm76XFy5TpXiNxSHv1LtsvE0uVvNyVuMMvkXKDf4lp3GY4xRJn+iXH+zJkfPlE0b9/2MVSlepNzgmxb4TYH2YTwHAAAA9DKz81PartUt4fONgwQtAIBmTrcD6CFmAY921NHOx2y/8lbS1Qv4NwAAAAAAAOh71pYVlX+i2XaEKwyf33LBVi1jXAX5f9DA8AUyzi5N9UiSTcdUHv94u8MHAAAAAABAC8z5AAAAoBdYmygsX6LW/dJnqDD8uZZJVyTJCw5TYfijCgqnaCbxhK15PVOX4+03r6QrtVx/k/Jrz1P9LQbVOqPS/8habkxDdzCeAwAAAFYC2+EHAADtReKVGe34Re50z6A2ntkSwnx/vv8AAAAAAAAAkOLKrySFNSXVhYrVXbLeLmO8edfl+ptUGP64zEM7YtXuvmUVlS9VXPl1u0IHAAAAAADALJjzAQAAQC9Iot/KpttqSqb7pQcoN3SujNn57tzZgZPlZ4/XTB+08TNG2YHXLCo+zz9AQeGf1Lhk3todSqLfLapOYKkYzwEAAAArwVzjWbMMDwAA2ovEK/WW+ou8HL/+C43J1jxfZa29dBH/DgAAAAAAAH0rbrlg0Cg3dKaMcRdcn+s9XPk171b97lvTz1al8fNlbbKoWAEAAAAAADA/zPkAAACgFyTRbS1KjXJDZ80r6cq03OAZksm1PGbMkLzMUYuMUMrkXySZbFN5HN206DqBpWA8BwAAAPSu/Jr3y5gBzZ4cVFPH2v2YNtOfN84GGWe3eTw2yji7tfOfAQCwCsw/tW9/sDs/RdLsyVfm+/nlZiRtkfTibgcCAAAAAACw0qTxH2veVS8EecGRcr29F12nlzlUQeGfVJn8mup3zJLS5G6FxYsUFF60+KABAAAAAAAwJ+Z8AAAA0AuS6Pc176b6pZlD5Xr7Lqge4wzJzx6vqPRDzSxtn+7nHrWgJC6NHGdIfnC0ovJPVbtsPo22LLpOYCkYzwEAAAC9y88eJ9d/tIpj71US/Vb1yVem++/HKj/0dhlnsG3tjj1wjBpv9R5Y/wU5znDb2gAA9Ben2wFgyUzDoyLpfElHWGv/2s3AAAAAAAAAVqI0uV+NF2O8zBFLrjconCLnoQWT9TtmlSe/pDQdW3IbAAAAAAAAaI05HwAAAPSCJLm7qcwLjl5UXV7msJblrv/IRdVXX8fBDSVWSXLfkusFFoPxHAAAANDbHHc3FYY/qaDwKtX33auv48rPNL7tVYrDG7sRHgAA8+J1O4AeMCrpzws4f0DSes2kNK59bp4JX15W0oSk7ZJulXStpO9aa3d0OA4AAAAAAIBVI023N5W1Y3GiMZ5yQ/9bkyNvVHVap4YtqjLxBeWGzlhyOwAAAAAAAGjGnA8AAAB6gU0n1JhAwvUfs6i6XG+/1uXu3ouqr77u/WveVZfK23TbkusFFoPxHAAAAND7jHGUHXi1vMxhKo69Rzbdqpnxr5VN/6bJ7acryL9EwcBrZAy3twMAekvf/zJZa8+XdP58zzfGvFLSl2apa592xQUAAABg9SiOndftEBbJKL/mHd0OAgA6z1aaihyzti1Ve/4ByuROUFj6nhp3zApL31cm/wK53l5taQsAAAAAAAA1mPMBAABAL7ATTUWOM7yoqhxn15blZpH11dcx1FRm08kl1wssCuM5AAAAYMXwMgdrcP1XVNzxIcWVn6nav57ua6eqFL+uOLxeuTXvkuvt2cVIAQCo1/eJVwAAAABguUXlS9S4W1Hvs5KMROIVAKgymbZVFQy8TlH5clk73nAkVXn8UyoMf6RtbQEAAAAAAGAOzPkAAACgw6wttihMFleZybYudvKLq6+2jpZ1R0uuF2gbxnMAAABAzzLOoAprP6BK8bsqj39KUjh9RJJVEt+uiZGTlRt4izL5E7oYKQAAM5xuBwAAAAAA/cOuoAcA9K9WiwibF1gtnuMMKRg4RTN/b6eSXckqDn+hqPLrtrUFAAAAAACAKuZ8AAAA0BNaJItI0+2Lq8rMcivALAlZFsKmYy1K2fMV3cF4DgAAAFiZgvzzNLD+QjnePprpb5vqw5ZVGv8XTY6eqzTd0cUoAQCoIvHK0nA3IgAAAIAFMCvoAQD9yziDTWVpfE9b28jkTpLj7TvdYs2zVXn8fFkbt7U9AAAAAACAfsecDwAAAHqBMfmmMps+uKi6rE1q3y0yotbSdLSprFXyC6ATGM8BAAAAK5fr7aOBdRcqkztR9WPXqWSHlZ9rYtsrFYfXdylCAACqSLyyNNyRCAAAAGCerJoXudg5HgCAbnHcPdT4tziObmprG8Y4yg2+VfU7ZlWlyd2qTH6tre0BAAAAAAD0O+Z8AAAA0Ascd6Oa+qXhrxdXma3IC46TFxw79Vx9bZRZcpxpfEdtQ5Ik46xbcr3AYjCeAwAAAFY2YzLKDZ2p/JoPyJhBzfS3q8lXbPqgJrefodL4p0l6CADoGq/bAaxA90u6sttBoD/E0W2aHHntrMeDgVOVLby8gxEBAABgMQbX/4ei8BeKK9coDq+TlGomj+NsSVZIvgIA3eK4j5B03dS76t/qqHy5sgOnyZj2Tad5mUPkBccprlypxh2zKpNfkx88Sa7/yLa1BwAAAAAA0M+Y8wEAAEAvcNxHKIlunXo31S+t/FxZe6aMWdh+oMbJq7D2/W2PUZKiylWNrclxd1+WtoCdYTwHAAAArA5+9li5/qNVHHuvkug3mrmnQpJShcX/VBxer/yad8v19upipACAfkTilQWy1v5I0o+6HQf6Q1S6eCfHf0TiFQAAgBXA8fZQ4D1fQf75SuP7VCl+XWHpB1NHa5OvTL82cty95PqbuxIvAPQ7L/N4haVv15XZdERh8SIFhRe3ta3c4Js0XvmFpLCm1EiKVBx7lwbWXSjjDLS1TQAAAAAAgH7EnA8AAAB6gZc5WFH5kroym44qLH1LQf6FXYqqXhrfpyT6nWZufqty/U3dCQh9j/EcAAAAsHo47q4qDH9SlckvqzL5ZTXeS5HGWzQx8mplB05TkH9e9wIFAPQdEq8APcraSFH50jnPSZO7lES3y/Uf3aGoAAAAsFSOt4dyQ2fJzx6v4ui5snZS9clXqrzMYcoNnd6VGAGg33mZQyX5kuKpkurf6fLE5+X6j5WXeWzb2tmsnncAACAASURBVHLcjQoKL1dl8vOqTcAlSWlynyZHz1Fh+F9kTNC2NgEAAAAAAPoRcz4AAADoBV7mCEmOGm8sK4//q7zM4XK9vbsW27Ti+EckpWpOvHJwV+IBGM8BAAAAq4sxRtmBk+VlDlVx7D2y6d9U7XdPjUNtWeXxjykOf6Hc0NlynLXdDBcA0CecbgcAoLW48nNZu2On54XlH3cgGgAAALSblzlE+TXvqykxs54LAOgs4wzIzz5Z9UmxjKSKJkfPVFS+qq3tBYV/kuPtU9OOfeg5iW7S5PazZNNiW9sEAAAAAADoN8z5AAAAoBc47gZ5mSeqZb905I2KKtd2KbKq0vgFSsIb1LiOxZiCvMwh3QkKfY/xHAAAALA6eZmDNLj+K/KC49Tc37eKK9doYtsrFVV+1aUIAQD9hMQrQI8KS5fM67yo/FNZmyxzNAAAAFgOXnCYvOAo1U8SAgB6QZB/ieqnzqYWUtlJFcfO0eToOxSHv2lLW8Z4yg+9U5I3XaLGhVsTI6coif7QlvYAAAAAAAD6FXM+AAAA6AVB4eVq3qDHyNpxFUfPVnHs3YrDG2Rt3LGY0mSrJkffobD4Hw2xVfuwfu5ZMsab5dPA8mM8BwAAAKxOxhlQYe37lRs8UzJB7RFJVjYdUXH0TJXGPylro26FCQDoA8x+Aj0oTbYpDueXhc+mI4rDX8sPnrjMUQEAAGA5ZHLPU1y5utthAAAauP4mZXInKCx9T/ULC6ez6F+tuHK1jDMs1z9QrreXHGej5OTlOBvlZR674Payg29RefyjNe3NLNxKk/s0MfJa+dlnKii8TMYU2vE1AQAAAAAA+gpzPgAAAOgFXuax8nPPVlT6oeoTOhhJqaLyZYrKl0kmkOPuKcfdTcbklB04VY67sW1xJPF9SqJbFFeuUlS5SlJcE0sNEyjIv7ht7QKLwXgOAAAAWN0y+RPlZg5WcexdSuM7NTNOliSrsPgtxeH1yq95l1xvny5GCgBYrUi8AvSgqPwjScmCzifxCgAAwMrkZQ6RTFaylW6HAgBokB18k+LoZqXxHWpe8GglTSVErfxMcc2fcS9zpLzMhxfcXpB/ntL4LoWlb9e0UbuwMVVUvkRR+RI57p6L/2IAAAAAAAB9jDkfAAAA9ILc4OlKoy1K4t+rVRIJSZItK43/qDT+oyRTTX6yxMQrleJ3FRYvUpo+0LBWxTa0P/OcLZwsx911Se0C7cB4DgAAAFjdXG9vDay7UOXxTyks/Zdm+t5TCRDjOzSx7TXKDr6hi1ECAFYrEq+0mTHGk3SopCMk7SNpb0m7SMpLyknKqCkN+LKx1tr9OtQW2igsXdKy3AuOU1y5sqk8Kv9cdrAo4+SXOzQAAAC0mTEZef4BisPr1bmhAgBgPozJqrD2Q5rcfrrS5D4172KlmvftkRs6XdaWFJUvbtHezGKxNLlnllgAAAAAAAAwF+Z8AAAA0AuMCZQf/qiKo29XEt2i5uQrtdrXN02T+5Qmf24VUU1bM+37wXEKCi9tW/vAUjCeAwAAAFY/YzLKDZ0hL3O4Sjs+JGvHVN//DlUe/8TU2fS/AQDtQ+KVNjHGPFXS6yQ9R9UEK02ndDYiSe2cMUTHxNFtSpM/NZU73r7KDrxREy0Sr0hlRZUrlck9a/kDBAAAQNs53iOl8PpuhwEAaMFxN6qw7nMqjr5TSXSjZi7e1JptMdfi5Ne8Q2VnnSrFf2vRXm1bAAAAAAAAWAzmfAAAANALHGeNCsPnqzzxWYXF70hK1bkl57O1M9M39bNPU27onA7FA8wP4zkAAACgP/jZo+X6X1Jx7L1KoptU3xen/w0AaD+n2wGsdMaYRxljLpP0E0n/KCmvmV/w2odU/TXv1AMrVFS6uGV5JvtMud4ecr3HtP5c+UfLGRYAAACWkett6nYIAIA5OM4aDaz7hLKDZ8g4w5p9+qV9iyCzg6cqv/bDMs6GZW8LAAAAAACgHzHnAwAAgF5gTKDc4Fs1sO5CecExU6WdWg7eqg0rmbxyQ+cqv+afZQz7vKL3MJ4DAAAA+oPj7qLC8CcUFF6t+tvh6X8DANqPxCtLYIw5QdKvJR2nmQQrJEPBolkbKSpf2uKIKz/7dEmSnz2+5Wfj8AalyYPLGB0AAACWi+PtUfOOSUAA6FVB/iQNbrhIuaG3y8scKsnTck4B+cFRGtzwDWUH3iDH3dii/lY7dwEAAAAAAGAhmPMBAABAL3D9R6qw9jwNbvhPZQfeLC/zBBlnjZZ3CXrj3qIZZXLP1eD6ryqTe+Yytgu0B+M5AAAAYPUzxig78CoVhj8p4+yqmT44/W8AQHuRgnqRjDFPl/RtzfwbNs6YdRNJXlaouPJzWbujqdzLHCrH3SCpmnilPHGBpLThrFRR+ccKCi9d/kABAADQVo6zceoVXXkA6HXG+MrknqNM7jmytqwkulVJfJfS5B7ZdLusLcv19m9je4GCwkuVyb9EcfhLReUrFIe/lE1JvgoAAAAAANAuzPkAAACgVzju7goKL1RQeKEkKU3HZNNRWTspx3tEG1uaWqNisnL9zfIzR8jPPUeOM9TGNoDlx3gOAAAA6A9e5kANrv+ySjs+rKhyRbfDAQCsQiReWQRjzO6SvqmZlMjS7MlWuHMS8xaWLmlZ7mdnssY77i5y/YOURDc1f57EKwAAACuS465TJv9C1Q4fPP/gWc9P4js1se0Vc9Y5sP6rcr192xUiAKAFY7LyMofIyxyyoM8t5u+4MUZ+8ET5wROn6rhLSfQHJfEflSb3yqbblCYjC/8SAAAAAAAAqMOcDwAAAHqJ46yRnDUL+sx8+qbZwTPl+ZvlePvKGG4pwOrAeA4AAABYneY3zn2LjBnsUEQAgNWIWdLF+ZikIc2edKVVspXZErMAkqQ02aY4/FXzAZOXnz2ursjP/l3LxCtp/Ecl0R1y/f0WHUdYulilHec1lXvB/2fv3qM0O+s60X/3fq9V1Zd0QoAYLhEDCAgoogyeCXcR0FHOCB5RWIKIDqyDI86ox+UojmsYQFRQcTwqo4J6ZPCOQgwQuQkqMCgiAYGYQJBwS/pSt/e69/mjqzrVVW93uqqr6+2q+nzWele/tfe79/OrpJNa9Xue/X2uydwlL93yfavxrZn/0tM3HG+0vjoHLn31lu8LALBXzBx84bRLAGAXaTSvSqN5VZInTrsUAAAAALaJng8AADul2X6IDX1gG/l9DgAApqvZ/lrBogCcFz9FNqkoiquSPD13HrqyenyY5MYkn0oyn2Qpk4NZ2OeGveuSjDccb3Uek6LonH6s+9j05l858fOD3nWZab3gAlUJAAAAAAAAAAAAAAAAAAAAsDcIXtm8701S5mR4ytrQlbWBK4Mkr0/yO0neU9d1b0crZFcaLF878Xh75kkbjpXl4TTbX5fR4G83nBv23prugf+Qoii3vUYAAAAAAAAAAAAAAAAAAACAvUIyw+ZtTMG4I4SlSPK3SR5U1/Wz67q+XugK52I0/Giq8U0bjhfl3dNofc3Ea1rdJ0w8XldfzHjwwW2tDwAAAAAAAAAAAAAAAAAAAGCvEbyyCUVRtJM8LCeDVlathq7USd6Z5LF1Xd84hfLYxYbLb554vD3zxBRFMfFcq/OoJJ2J5wa9t2xXaQAAAAAAAAAAAAAAAAAAAAB7kuCVzbk6d/wzWw1bWbWY5Bl1Xfd3vCp2tboeZti7fuK5VvdJZ7yuKGfT7Dxy4rlh/x3xVxEAAAAAAAAAAAAAAAAAAADgzASvbM49JxxbDWD5rbquP7fD9bAHjPrvTl2f2HC80XpQGs17nfXadvcJk0/USxn23rUd5QEAAAAAAAAAAAAAAAAAAADsSYJXNufgWc792Y5VwZ4yWL524vFW90l3em2z88ikmJt4bth7y3nVBQAAAAAAAAAAAAAAAAAAALCXCV7ZnM5Zzn14x6pgz6jGt2U0eN+EM620uo+/0+uLopNW55qJ50aD96Wqjp5nhQAAAAAAAAAAAAAAAAAAAAB7k+CVzVk8y7nbd6wK9oxh77ok4w3Hm51vSFkeOqd7tLpPOMOZcYa9t229OAAAAAAAAAAAAAAAAAAAAIA9TPDK5hw7y7nWjlXBnjFYvnbi8Xb3Sed8j2b74SmKSyaeGy5ft6W6AAAAAAAAAAAAAAAAAAAAAPY6wSub84mznDu0Y1WwJ4yGH001vmnD8aK4JM3OI8/5PkXRTKv7mInnxqOPZTz61FZLBAAAAAAAAAAAAAAAAAAAANizBK9sQl3X/5rk2OqX605fucPlsMsNl9888Xir+/gURXNT92p1n3DmcXrXbepeAAAAAAAAAAAAAAAAAAAAAPuB4JXN+6skxYTjX7/ThbB71fUww971E8+1Zp606fs1Wg9NUd514rnB8ltT1+tzggAAAAAAAAAAAAAAAAAAAAD2N8Erm/fnZzi++bQM9q1R/92p6xMbjpeNq9JsPWDT9yuKIq3u4yaeq6tbMx7+46bvCQAAAAAAAAAAAAAAAAAAALCXNaddwC70hiSvSnJo5es6SZHkKUVRXFnX9b9OrTJ2jcHytROPV+Obc/zz/3b7x+v9ZZrth277fQEAAAAAAAAAAAAAAAAAAAB2q3LaBew2dV0vJ/mVnAxbWauZ5KU7XxG7TTW+LaPB+3Z0zGHv7anrwY6OCQAAAAAAAAAAAAAAAAAAAHAxE7yyNS9L8vk1X9c5GcTy3UVRfMd0SmK3GPauSzLe2UHrhYz6793ZMTfUUE13fAAAAAAAAAAAAAAAAAAAAIA1BK9sQV3XC0m+LyfDVk4dXvn6N4uieOxUCmNXGCxfO51xe9dNZdxVdQZTHR8AAAAAAAAAAAAAAAAAAABgLcErW1TX9ZuS/Fw2hq/MJnlTURTPmEphXNRGw4+mGt80nbH7f5uqOjGVsZMkdX96YwMAAAAAAAAAAAAAAAAAAACs05x2AbtZXdc/WhTFlUmekZOhK8XKn90kv1sUxVOS/Ehd15+bYplcRIbLb554vNl5TGYOvmhbxqjGn83i0edPGj3D3vXpzP6f2zLOZlXV0amMCwAAAAAAAAAAAAAAAAAAADCJ4JXz9z1JqiTfnZOhK8kdISzfleRpRVH8QZI/TfL+uq5vmUqVTF1dnww+maTdfVLKxmXbMk7ZuCxl46pU45s3nBv23jK14JW6um0q4wIAAAAAAAAAAAAAAAAAAABMInhlk4qi+N4Jh9+Z5BFJrs7G8JVOToayfPfK9YMkn0tyLMliklFOBrdcCHVd14+/QPdmk0b9d6euT2w8URxIs/OIbR2r1X10+os3bzg+Hn441ehfUzav3NbxzsV4dNOOjwkAAAAAAAAAAAAAAAAAAABwJoJXNu81uSNcZZJizft6wrFOknuvvM52n/NVXOD7s0mD5WsnHm91Hp2iaG3rWK3OY9JffO3kOnpvSffAc85ydTH5cD0+r5rGw38+r+sBAAAAAAAAAAAAAAAAAAAAtlM57QJ2sWLCa9JnkpMBKOtfZ7rHdry4yFTj2zIavG/iuXb3Cds+XqN135SNKyeeG/auu5OrJ+cx1dXRLddTV/MZD/9py9cDAAAAAAAAAAAAAAAAAAAAbDfBK1t3pjCV9c4UijLp+u16cZE5GXYy3nC8KC9No/2wCzJms/Poicer8WcyGpw5BKUoZiZfdx7BK8PeO5KMtnw9AAAAAAAAAAAAAAAAAAAAwHYTvLJ16wNVirN//KzXbfeLi8xg+dqJx1udx6UoGhdkzFb3MWc8N+y95YznisZlE4/X1edSjW/ddB11PUp/6fc3fR0AAAAAAAAAAAAAAAAAAADAhSR4Zevqi/jFRWQ0/Giq8U0Tz7W6T7hg4zZbD0xR3m3iuWHvr1LXo4nnGo17nvGew97bN11Hf/H3Uo0/venrAAAAAAAAAAAAAAAAAAAAAC4kwStbU+yCFxeJ4fKbJx4vyivSaD3ogo7d6j564vG6PpbR4G8nnivKAykbV00811t8XarxF855/GHvHekv/uY5fx4AAAAAAAAAAAAAAAAAAABgpzSnXcAu9NppF8DuUdfDDHvXTzzX7j4uRXFhM3JancdksPSGieeGy9el1fm3E881O9+QwdLNG0/UC1k89iOZPfySNJr3OOO4dd1Pf/F30l98XZJqC5UDAAAAAAAAAAAAAAAAAAAAXFiCVzapruvnTLsGdo9R/92p6xMTz7W6T7jg4zdaD05R3iV19aUN54b996SuFlKUBzac68x8WwZLr8+k0JRqdGMWbn9OWp3HpdV9VMry7inKg6nrpVSjWzIa/kOGvbemrm4/7bqycVVStFONPr5d3x4AAAAAAAAAAAAAAAAAAADAlglegQtosHztxONl46o0Wve94OMXRZFW51EZLP/xhLODDPvvSHvmWzbW17wy7Zlvy2D5TybfuF7OsPemDHtvOsdK2pk9/OIsz//COdcOAAAAAAAAAAAAAAAAAAAAcCGV0y4A9qpqfFtGg/dNPNfqPmHH6mh1H3PGc4Plvzzjue6B56dsbkc4TDdzl7x8R4JmAAAAAAAAAAAAAAAAAAAAAM6V4BW4QIa965KMJ55rdR+/Y3U0Wg9NUVwy8dx4+KFU489NPFeUs5k78gtptB605bHLxpWZO/KqNDtft+V7AAAAAAAAAAAAAAAAAAAAAFwIglfgAhksXzvxeKN5/zSa99yxOoqikWb3mjOcrTPovfWM15blkcwdeXW6B56foji0iTEPpjP7rBy47LVptr9qkxUDAAAAAAAAAAAAAAAAAAAAXHjNaRcAe9XBu/zOtEs4ZfbQjyWHfmxL1xZFK52570579mkZ9v86o8EHUg0/mWp8a+p6KUmVojyYorw0jeYD0mx/TVrdR6couhvudeDSXz3P7wQAAAAAAAAAAAAAAAAAAABgewheAc5JUXTS7j4+7e7jp10KAAAAAAAAAAAAAAAAAAAAwHkr6rqedg1wRkVRfCTJA9cff+ADH5iPfOQjU6gIAAAAAAAAAAAAAAAAAAAAYPs96EEPyg033DDp1A11XT9op+vZD8ppFwAAAAAAAAAAAAAAAAAAAAAAsNMErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg32lOu4CdVhTFo6Zdw06q6/pd064BAAAAAAAAAAAAAAAAAAAAAC42+y54Jck7ktTTLmKH1Nmf/44BAAAAAAAAAAAAAAAAAAAA4Kz2cyhHMe0CAAAAAAAAAAAAAAAAAAAAAIDp2M/BK/W0C7jABMsAAAAAAAAAAAAAAAAAAAAAwBns5+CVvRxMstdDZQAAAAAAAAAAAAAAAAAAAADgvJTTLgAAAAAAAAAAAAAAAAAAAAAAYKc1p13AFNXTLgAAAAAAAAAAAAAAAAAAAAAAmI5y2gUAAAAAAAAAAAAAAAAAAAAAAOy05rQLmIJPJ6mnXQQAAAAAAAAAAAAAAAAAAAAAMD37Lnilruurpl0DAAAAAAAAAAAAAAAAAAAAADBd5bQLAAAAAAAAAAAAAAAAAAAAAADYaYJXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPad5rQLAAAAAAAAAPamqq5zSzXOp6pxPl9V+UI1zom6znxdpV8n49Spk3RSpFsU6RRFukkuK8t8Wdk49bq0tJ8EAAAAAMCF0lvp5X6uGueLVZUTdZX5uk6/rjNa+UwnRTpF0i2KdFOc1se9TA8XAAAAuIBur6p8YDTI56sqR+sq/brOpWWZI0WZBzSaeUCzdcHG7td1rh30Nhx/amfmgo3JzhO8AgAAAAAAAGyLqq7zofEwfzMc5B9Gw/zzeHRqUf75uKQo8tBmK1/dbOWrG+3cr2maEwAAAABgq26txvmb4SAfGg3zkfEwn6uq1Odxv1aSqxvNU33chzRaOSyMBQAAADgPw7rOnw16eeOglxvHZ1+FdqQo8+hWO9/Tnc1dy8a21rFY1/nZ5YUU644LXtlbrEgEAAAAAAAAzsut43H+cLCcvxz0cqy+Y3n++SzUX+toXeedw0HeORwkWcyVZSNPaXfy5HY3d9vmiXIAAAAAgL1oqa7z5kEvfzHo5RNrHlbajj7uIMkN41E+Oh7l9f3lFEm+ttnKU9rdPKbVSadY/2gSAAAAwJm9sb+c3+gt5fb63MJib6+r/OmglzcNevn2zkx+oDuX9gXoR6zWotOx9wheAQAAAAAAALbkWFXlV3qL+ctBL1U2LtDfzgnmtff+TDXOb/SW8preUh7T6uT7u7O5V8PUJwAAAADAesO6zu/0l/L6/nIW6/qC9XHr3NHHrZN8YDTMB0bD/FwW8tRON8/qzOZQWW7TaAAAAMBedKKq8t+X5/Pu4eC0Hsa59C/qnAyHfX1/OR8aDfOyuUO5yzZv6lVk+zYj4+KiawUAAAAAAABs2tsGvXzn/O1586CXcU5OKBfrXsnpi+23Yu0uIWtfdZIqyduH/Xz3/NG8enkho9q0NgAAAADAqg+Nhnnm/NH8z95SFtaErqzv4yZb7+WerYdbJ1lMnf+vv5ynzd+eP+ovb+n7AAAAAPa+z47Hec7C0VOhK5P6DOutPb72szeMR/ne+WO5ZTzegcrZCwSvAAAAAAAAAJvya8uLefHSfE6sLNRfH7Sy1pkW79/Za+31k6ydKB8n+f3+cr53/mg+V5ksBwAAAAB4Y385P7hwLJ+pxhMfVlpvfS83ufP+bSZcs/5+q+Mt1HV+YXkhP7xwPCeqaivfEgAAALBHHa+qvHDxWG6tqlN9jGRjqMp6k9atrX79pbrKixaP5XZ9CM5Bc9oFAAAAAAAAALvHa5YX89r+UpIzT2YnGxfft5JcVpa5S1FmtijSSZF2UaSdpMrJ8JRB6izVdRbrOkfrKrdXVQZnuP+k8T5ZjfMD88fyiwcO56qGqVAAAAAAYH96Y385L1teSDL5waQz9XGTk7v7HjnVx81KH7dIlXqlj5uVPm6VE3WdSY8unW28vxsN8oKFY/nFA5fkstJewgAAAEDysuX53FpVZwxRWf26THKoOHn0+MqmYaufK9ZdVyf5bFXlp5ZO5JfnDqcozhQfC4JXAAAAAAAAgHP0V4N+frO/dMYdTFcnru9SlPnaZiv3azRz/0Yz92k0c8kWF9DfXlW5pRrnE+NRbhgN8/7RMLfVJ5fyr61j9f0X6yovWjie3z54JIct2gcAAAAA9pkPjgb52TWhK0km7hTdSvKARjP3a7RW+riN3KUsc1lRpjzHB5Hqus7Rus6t1Tifqcb5+HiUG0ajfGQ8zGjlM+v7uHWSf6nG+aGFY/mNg0fS9dATAAAA7GsfGA7yzuHgjH2My4syT+/M5BGtdq4uG6cCVIZ1nb8fDfOXg17eMuyfuq5ec486yd+Phvnt/lKe053b0e+L3UXwCgAAAAAAAHCnjldVfm55/tTX6ye4Ly3K/Lt2N9e02nlgs7Vt415alrm0LPPQZivpzCRJPjwa5o/7y3nryoT5+no+X1f56aUTeeWBS7atDgAAAACAi91yXeclS/OpMjnwpJXksa1Orml18shWO7PnGXpSFEUuLYpcWpZ5UFr5ppXjS3Wddw/7+dN+Lx8aDzc8OLUavvLypfm8eO7QedUAAAAA7G6/21869X5t7yBJntmZyfO6c2lN6GG0iiJf32rn61vtfNd4lJ9aPJGbq/Fp16++/+3eUh7V6uQrGuI1mMwWbwAAAAAAAMCden1/Ocfq+tQC+dVJ6UaS53Vn8yeHLs0PzMxta+jKmTy42cqL5w7ldQeP5OpG87QJ99X63jca5l3D/gWvBQAAAADgYvHH/eXcWlWnPWCUlfff0u7mTw5dlp+eO5THtzvnHbpyNrNFkW9qd/OrBy/Jz88dzl2LckMft07ylmE/HxoNL1gdAAAAwMXt9qrK+0fDDWvSiiQ/OnMgL5g5MDF0Zb2rG838xsFL8rXN1obwliQZJnnJ0nzqup58A/Y9kTwAAAAAAADAWY3qOn80WD5th9Q6SSfJK+YO5+Gt9lTquk+jmd84cEn+y+KJ/PVosKG+16zsVAIAAAAAsNdVdZ3X95c3Kzx1nwAAIABJREFUPKhUJvmJ2YN5Srs7lboe2Wrntw8eyX9aPJ4bxqMNfdz/d3kxv3rwkqnUBgAAXLy+/cRt0y5hS4okf3josmmXAbvGe4eD0zbbWn3/be1untqZ2dS95ooyr5g7nOcvHMvHV3oQa0NY/nk8yh8Pevn2Td6X/UHwCgAAAAAAAHBW7x8Ns1DXGya4f3jmwNRCV1a1iyIvmTuUFywcy0dWJsxXJ8tvHI/yifEo922YFgUAAAAA9rYPjYe5ra429HGf152bWujKqsNlmV88cDjPnT+WW6pxkjv6uP84HuYz43Hu0WhMtUYAAODicmtVnfq9YTcp7vwjwBofGQ83HOumyA9057Z0v25R5L/PHsqzF46ett5t9f8nv95bzBNanRwuyy3XzN7kbwQAAAAAAABwVn83Gpx6v7qg5T5lI//uItn9o1UU+cnZg5m0LP9dw/6O1wMAAAAAsNP+ZjjYcOyKsswzL5I+7lxR5qdmD0489w59XAAA4AyKXfQCNu+m8ejU+9UQ2ce3zy8Y5YpGI/955sCpdW5rA5wW6jq/3lvc8r3ZuwSvAAAAAAAAAGd145oJ7uTkBPc3TXmH1PXu1Wjmsa3Ohp2OPjoaTfw8AAAAAMBe8okJDyo9ud1No7h4Hv97YLOVf9Nsb+jj3jBhd2sAAABg7/t8VW0ILvq6Zuu87/uN7W4e3Wqf6pFk5c86yRsHvdMCXyARvAIAAAAAAADcic+MxxsmuB+8DRPc2+1Rrfap96sT5TdXJskBAAAAgL3v09XGPu5XNy6+Pu7j2p1T71f7uDeOx1OrBwAAuDhdXpSpkw3BjfVZXsDuc6Le+F/vvcrGttz7h2cOZHZDtySpkvzS8sK2jMHe0Zx2AQAAAAAAu9G3n7ht2iVsSZHkDw9dNu0yANhl5idMcF9eXHx7PHxFY+P056TJeQAAAACAvWZSH/fu2/Sg0na6/4Q+7vG6mkIlAADAxezPDl+WfxmP8tfDQd44WM5nqypF7ghwnMQKEdh9+hP+y72k3J51aZeXjTy3O5tf7i2e+n/H6p/vGw3zN8NBHrlmoy/2N8ErAAAAAABbcOvKJN5um6jbmNsOAHeuN+EnXvMi/KEyV2wsalnwCgAAAACwD0zqhbYuwj7uoQl93EV9XAAAYIL7NJq5T6OZZ3Vm8rZhP69aXsjRuj5t7ebaMIWHN1t5Yrs7tXqBzWskGa07tp3xrN/RmckbB718uhqftoa6TvLq5YU8onkk5YReBfuP4BUAAAAAgPOwm1rtlisCsFVzRZGFdQvfj1ZV7nqR7Za6NGFxfmdX/bQGAAAAANiamaLYEGByoq5z1ynVcyb9CX3ctj4uAABwFkVR5Bvb3Ty82c4LF47lppUAhfW/Xdy7bOabBa/ArjJbFDmxrldwvKpyxTatS2sURX5o5kBetHj8tKCmOsnN1Th/NOjl6Z2ZbRmL3a2cdgEAAAAAAADAxe1QsXFa8Z/H6/camb5/GY83HDtUWrAPAAAAAOx9hybszvzJi7CP+6lqYx/3oJ2lAQCAc3CkLPOKA4fTWfnabxKw+x2ZsC7tpgm9g/PxiFY71zTbp0JXkjvCV17TW8zRqtrW8didBK8AAAAAAGzB5UWZOht3TKjP8gKA3eqqsrHhZ9lbh/2p1HI271pT0+pE+b23afcTAAAAAICL2T0m9HHffhH2cd8zHJx6v9rHvWdDHxcAADg3V5SNPKXdtSYT9oh7TuhnvG9N72C7/ODMgbQmHF+o67xyeWHbx2P3EbwCAAAAALAFf3b4svzuwSP5D925XFGWp5r+Z9tB4WyhLDvxAoCt+qrmHdPOq7t9fHA0zAcvwCT3Vt08HuX6YX/Dz+KvbEyaMgcAAAAA2Fu+qrGxj/ue4SCfHI+mVtN6X6jGuW7Q29DHvV+jOZV6AACA3emb291plwBsk/us6Qms9jPeOezneFVt6zhXNhp5Rmf21Hrq1TDYOsn1w37eMuht63jsPrpTAAAAAABbdJ9GM/dpNPOszkzeNuznVcsLOVrXpxrxyR1N+SLJw5utPNGEHwC70De02vm13uKpr1d/vv3Xpfm85uAlubyc7m6ki3WVn1o8kXE2hqBd02pPoyQAAAAAgB319a12frO/dNqxKsmLF0/k1w9ekrliuvv2juo6P7M0n1429nH/D31cAABgEx7QbOVIUeRYbUs62O2+rtnKa/unH+sn+R+9xfz47MFtHevZ3dlcO+jlS3V1qjexug7uZ5cWct9GM18uHHbf8m8eAAAAAOA8FUWRb2x38/BmOy9cOJabqvFp4Sur7l027bQAwK5030YzD2w089E1O6MWSb5YV3n+wrG8dO5w7julSecvVOP8+OKJfHLl529yx8/ge5eNPLDZOtOlAAAAAAB7xkOarXx52cjN1TjJHQ8O3VyN88KF43n53KGphWgv1lV+enE+HxwNN4Su3LUo8zUNfVwAAGBzHtxs5V3DwYbfMYDd5SHNVg4XRU6sBCmt9jP+YtDLfRvNPK0zs21jdYsiPzRzID+xdOK0jTWLJEup86KF43n1gUtyj8Z0NyFjOqYbWQwAAAAAsIccKcu84sDhdFa+NqEHwF7yPd3ZU4Emq38WST5bVfm++aP55eWFHK2qHatnVNf5X/2lPGv+aD62JhBmVZGTu5QAAAAAAOwX37Wuj7v6ENHHxqM8c/5o/rC/nNEO7wj/rmE/3zN/NO8dDU47vlrfM7uzKQozqwAAwObcb0obBAHbq1kU+ZZ2d2I/45XLC/nF5YX0trGX8dh2J49qtU8bJyvvv1BXecHCsXx8tHEtGnuf4BUAAAAAgG10RdnIU9ZMAADAXnFNq5PHnGHSeZjk9f3lPPXEbXnx4om8a9jP8gVavP+x0TC/uryQp564Pb+0vJj5uj5VU3LH5PvDmq08sd29IDUAAAAAAFyMvrndzdc0W6f1cVd7p/N1nVeu9FZ/bXkxn5gQaL1djlZV/rS/nGfPH82PL57IZ6tqYh/3vo1mnqqPCwAAbMHVgldgz3hGZzZzK12Dtf2MOskb+sv5jhO357d6i7l5m3oZPz5zMJcV5Wnjrb7/Ul3leQtH84b+UqodDq9luvxUAQAAAADYZt/c7uaPB71plwEA2+7HZg7mpvGxfLoanzbJvfp+mORtw37eNuynkeT+jWbu12jmKxrN3KNs5G5lmUuLMgfLs+8PUdV1bq+r3FZVubWqcmM1yo3jUf5hNMzxlQnttRPe611alPnJ2YPb9F0DAAAAAOwePzl7MM+bP5bb62pD+Eqd5Pa6yuv6S3ldfymXFmW+ptla6eM2co+ykbuWjXSKSZ3XyU5UVW6txrmxGueTK33cj49HqXP2Pu5Mirx49mAamxgLAABg1RVl49R7v1XA7nZpWeb7Z+byyuWFDaGtdU6Gobymt5TX9JZyqChyr7KRu5eNzBZFvrLRzLd1ZjY13uGyzEvmDuWFC8cySjasgxsm+cXlxfxRv5fv6szkwc3Wtn2vXLwErwAAAAAAbLMHNFs5UhQ5JukcgD3mcFnmVQcO5wULx3JrVZ22cGXtpHeSjJLcMB7lhgk7jRQ5uai+WxRpJCmLZFQnw9QZ1kkvdSb9FK3X3WPS+UNFkVcdOJy7rllgAwAAAACwX9y9bOSVBw7n/144lvm6Pmsf97a6yvXDfq4f9k+7x2yKHC6LzKZIpyjSTLHSx60zTDKs6yysBGiv7wCv7+2u7+XWSVpJXj53KF9uh3oAAGCLrljZ9McqTdgbnt6ZyYdHw7xt2N8QvrL6PkmO13X+aTzKP62sSftSs73p4JUkeUizlZ+YPZj/ujSfZGP4Sp3klmqcn10TBsPepksFAAAAAHABPLjZyruGA812APacu5WN/NaBI/nJpRN5/2i44Wfd2q/PtLilTrKYOourIWXnuArmbD9X6yT3Lht5xdzh3KMhdAUAAAAA2L+ubjTzmgNH8v8sHs+/VONN93EXU2exqjd89kyfX2/9/dc+JHVpUeZlc4fyVXaLBgAAzsOBoszL5w6d9jvKl9mkB3a1n5w9mNFSnXesrL+eFCab3NGbON812k9sdzOsk5cuz5/qX6wNX1kdq17z3rrwvaucdgEAAAAAAHvR/ezOBsAedqgs86q5w3nRzIEcLIozLrQvtvmVbFzUvzqh/X91ZvJbB48IXQEAAAAASHKPRiOvOXgk39mZSSOTe6vJufVk175yjtet/dzqtY9qtfPag0eErgAAANvimlYnj1rzutq6TdjVWkWRl8weyvd2Zif2MlZtZ/jJN3e6ecXcocytrIGb1NcQtrI/CF4BAAAAALgATOABsNcVRZGnd2byhoOX5lmdmRxemXw+04T3pIX5Z3Omz64PYHn0ykL9/zhzIN3CNDcAAAAAwKpuUeQHZw7k9w4eyRNanVMPLZ1ph+athKucS1/4/o1mfn7uUF42dziXlR5jAQAAACYriiLfNzOX3zx4JI9qtU8LdD3tc9s45iNbnfzeynibWd/G3mLlPwAAAADABXBF2Tj13iPgAOxlh8oyz585kOd253L9sJ+3D/p5/2iQ/prPbGXnj/WfXzuhfY+ykce3OvnWdjdXNBoBAAAAAODM7tlo5mfmDuW2qsqfDpbzjkE/N1bjU+eLdX9uxvoQllUzKXJNq51v7XTzsGZ7C3cGAAAA9qurG828bO5wbhmPc/2wl78ZDnLDeJTxnV+6JZeXjbxs7nA+OhrmD/rL+athP4OVc1tZ+8buI3gFAAAAAOACuGJlpzap5wDsF+2iyJPb3Ty53U2/rvPB0SAfHo3yz+NRPj4e5ba62tJ9G0nuVTZy30YzD2m28rBmK1c1THMCAAAAAGzWZWWZ53bn8tzuXD5XjfPe4SAfHg3z8fEon6rG2VoX96SZFLm60TjVx/3aZjvtwmNJAAAAwNbds9HIsxtzeXZ3LqO6zi3VOJ8ej3O0rrJc17l8Zb32dnlAs5WfarbyQ1WV944Gee9wkA+MBjlWWxG+11mRCAAAAABwARwoyrx87tBpwStfVjamVg8A7KROUeSRrU4e2eqcOrZc1/lCNc4Xqiq3rUx89+s6gySj1GmkSCvJbFHkYFHmSFnkbkUjdyvLNC3OBwAAAADYVncvG/n3nZn8+85MkqRX1/nXapwvVlW+UI3X9HGTQeqMcjIo+/Q+bpm7FWWuLBu5omEuFAAAALhwmkWRL2808+U7sGnXobLMk9rdPKndTZJ8sRrnE+NRPlON86Wqyu1b3ISMi5fgFQAAAACAC+SaNQ+bA8B+N1MUuXejmXtbew8AAAAAcNHpFkW+otHMV+jhAgAAAJzm8rKRy23AuaeV0y4AAAAAAAAAAAAAAAAAAAAAAGCnCV4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL7TnHYBAAAAAAAAwN62UFf5XFXli9U4J+o683Wdfl1nlKROnU6KdIuVV4pcVpb5srLMXcrGtEsHAAAAANhTxnWdG8ajfL4a5+hKr/ZIWebSosxXNpo5Ul64/X1HdZ3/PRpuOP6IVvuCjQkAAADsfvoZXGiCVwAAAAAAAIBtM1iZaP7QaJiPjIe5aTzO0bra0r1aSe5eNnLfRjMPbbby1c1Wrm6Y4gQAAAAA2Kz3DPt546CX/z0cZjn1xM8USe7faOaxrU6e1plJtyi2tYYTdZ0XLR7P2rsWSf76ksu3dRwAAABgb9DPYKdYlQgAAAAAAACcl7qu897RIH8x6OXvhoP01547j/sOkny6GueWapy/Gp6861xR5HGtTp7c7uahzdb5lA0AAAAAsOe9bzjI/+gt5hPjUZKz92zrJB8dj/Kx8Si/31/Kc7pzeVpnZttrOp++MQAAALD36Wew0wSvAAAAAAAAAFt27aCX3+4t5TPVOMnGCebt2D9k7T0X6jp/Pujlzwe9XFk28p2dmXxru5vmNu9UAgAAAACwm43qOq/uLeYP+stJ7uiz3lkntV55Ha3rvHJ5Ie8fDfLi2UOZ3cYe7OqdPLAEAAAArKWfwbSU0y4AAAAAAAAA2H1uGY/z/Plj+W9L87mlGp+avC7WvZI7JrZXX3dm/efW33P1/GeqcX5+eSHPmD+a9w772/FtAQAAAADseserKt+/cCx/0F/e0LtNNvZs1/Zk1/di/3o4yPPmj+b2qtrJbwEAAADYZ/QzmCbBKwAAAAAAAMCm/O1wkOcuHM0/jocbwlaSjeEqk8JYzubOPrd+ovxfq3F+ZPFEfnZpPsPaniIAAAAAwP7Vr+v8x8Xj+dh4dFr/9mxh15MeYsqa626qxvlPi8ezpP8KAAAAXAD6GUyb4BUAAAAAAADgnL1n2M+PLh7PQl2fmuRONk5yrx6b9GokmU2RS4oidy3K3KUoc6QoM1cUpya+z7Q7yXprJ9n/bNDLixaPZ9lkOQAAAACwT71qeSEfH49O652u7+We7XWm6z4+HuVlS/M79W0AAAAA+4h+BtPWnHYBAAAAAAAAwO7wyfEo/2XxREY5fVJ70g4jlxdl7tdo5v6NZu7TaOYuZZnLyzKXF2WaRbH+1qfp1XWO1lVur6rcWo3zmWqcj49H+eholM/XVbJm/FWr4//9aJgfWTyeX5o7nPJOxgEAAAAA2Es+NhrmjYPehv7t6vtukie3u3lEq537Npo5Upzcy/eL1TgfHA1z3aCffxgPJz6sVCe5ftjPw/rLeWpnZie/LQAAAGAP08/gYiB4BQAAAAAAALhTo7rOzyyeSD8bQ1dWA1ce3GjmmlYnj2q1c6/G1qciu0WRK4pGrigbeVBap5371HiUtw/7+YtBL5+tqom1/P1omF/pLeaFMwe2XAMAAAAAwG7zuv7Sab3Stf3bJ7Q6edHMgRwpyw3X3bPRzD0bzXxbZybvHfbz0qWF3F5Xp12/+v6Xlxfzb1rt3L1sXPhvCAAAANjz9DO4GGz8GwYAAAAAAACwzpsGvXyyGp8KOknumJh+eLOV1x48kl87eCTP7M6eV+jKnbl3o5lnd+fyhoOX5j/PHMjMSkWrda3W9L/6y7lxPLpgdQAAAAAAXEzmqyrvHg429EqLJN/Tmc3PzB2a+JDSet/Q6uR/Hrwk9ykbGx52SpLl1HnZ0vx2lw/A/8/evYdZetV1ov+++77r0tXdQCYxQSIhqIDcbyGI+AiDOAeOeMyBQYWDUQRBMYIhjuKoox4kzsFBQI94wxE8KF7xMIqDnDncQUFQUAQxYIIIJH2p676+80e6uqu6dnW6q3bXZdfn8zz76V3vu/daaz/prp31W+/7XQAAcACpZ7BXXLwrHgEAAAAAAICJ8YbO8rrQldUF6u9qTeU7W9M7Pp5KUeRbmu08otbIDYvH8y/D4brzZZJfXF7Mz83M7fjYAAAAAAB22nv73QxyJqR6tYb7dfVGvqd9YTXcSyrV/JeZw3nuwrH8y3C4YcfpD/Z7+e/dlTyh0RrjJwAAADjjhQvHd3sIW/bqmcO7PQTYN9Qz2CsErwAAAAAAAADn9Hf9Xm4dDjYscH9ro70roStr3bNazWtnDue75o/n9vLO8JXVxfL39bv50nCQu1equzpGAAAAAICL7WP9/oZjtSQvas9sqb2jlUp+Zmouz104ll6yYefpVy8v5rH1ZlpFsXkjAAAAW/Shfi/7bbaxej0NcP7UM9grKrs9AAAAAAAAAGBve3evu+HY0aKS51/griIXyyWVav7D1GzKs46XSd4xYuwAAAAAAJPmU8MzNyqd2R26mX+zjWDq+9ZqeUF75nTtdW0N9ovlMK9fWdpy2wAAAOej3CcPYGvUM9grBK8AAAAAAAAA5/QPg40L3N/Y2Fs7fzy63siDqvUNF7P8Tb+3K+MBAAAAANhJ/zocbNhZ/ZG1xrbbva7ZzoNP1V7P3iX6tztL+fxwsO0+AAAANlPskwewNeoZ7BWCVwAAAAAAAIBz+qcRC9wPHcMC97j920Zz3c9lkk+tCY0BAAAAAJhUx4cb91i/T3Xru0OvdePUTOojjveSvHZ5cSx9AAAArFXLndd9nD3TKc/xAPYf9Qz2itpuDwAAAAAAYD964cLx3R7Clr165vBuDwGAfeZkOdxw7IrKeBa4x+l+1TPLn6s7lBwfMXYAAAAAgEnTGXGb4VxlPHv1Xlmt5ZnNqby+s3S69rr659t7nTy938v9a6NuZQIAANiat83dPX/V7+bdvW7+rNvJcsoUOTMXGUX4Cuw/6hnsFYJXAAAAAAC24EP9XordHsQFWl0wAIALtVRuXOBu7cEvlSMjFt0XR4wdAAAAAGDSVJKcHUM9ntuU7vTs1lT+W3clXyyH69YcyySvWl7I/z17ZIy9AQAAB12rKHJtvZlr6828oD2d3+us5NdXFtPN+vCVtWEKX12t5Zp6Y7eGDGyBegZ7heAVAAAAAIBt2C+3cu/Be+MB2EeaKbJ81rfeYlnmHrs0ns10R3wxV3d+GAAAAAAAO65dFJk/K4j6ZFnm34yp/VZR5AXt6fzHpfkNu0T/7aCfP++u5ImN1ph6AwAAOGO6qORZrak8rt7IDQsn8oVTAQpnXyZyv2o917emd2OIwBapZ7BXjDPwBwAAAADgwCn2yQMAtuNQZeO3yT8OBrswknP73HDjmKYLS6IAAAAAwOSbG1EL/cygP9Y+ntho5UHV+umblJIzNyu9enkxy+V+2bYCAADYj66s1vKKmbnTN8e7NhL2P/UM9gpXGQIAAAAAbEEtdxbczy61l+d4AMB+dWlR3fBd9q5eZ1fGci7v73dPP19dKL+iUt218QAAAAAA7JQrKhvruH/Z7429nxvaMyNvRPlSOcwvLi+OvT8AAIC1rq7W8oR60zWZMCHUM9grBK8AAAAAAGzB2+bunpunD+WbG620Upwu+p9rB4VzhbLsxAMAtuoBtdrp56u7ffxFr5N/GQx2bUxnWyiH+ZPuyobv4qurtZGvBwAAAACYJF9RPRNCvVrHfUevM/Zdm+9bq+Upjda69cfV/n6/u5wP9rqbvBMAAGA8ntps7fYQgDFRz2CvcJUhAAAAAMAWtIoi19abubbezAva0/m9zkp+fWUx3ZwpxGfN8yLJV1druabe2K0hA8CWPbzWyG91ltcd6yX5yaX5/MLMXGrFuaLHdsbLlxYyX5Ybgleuqdd3ZTwAAAAAADvpYbVG3nhWHXehLPMbK4t5fntmrH09rzWdv+h1srDmJqgiyTDJTyzN59dmD+eSSnXT9wMAAGzHA6v1zBRFFscczADsPPUM9grBKwAAAAAA2zRdVPKs1lQeV2/khoUT+UI5XBe+sup+1Xqub03vxhABYFseUavnskolnx8Ok5wJFvvooJeXLp7Mf5o+lKldCl8ZlmV+bnkhf9HrbAhdmSuKPKIm9AwAAAAAmHwPqdXTTpGVU6uUq3XcN3SWc/9aPY+rN8fW11ylkue1pnPz8sK6jSiKJHeUw/zgwom8euZwDlcqY+sTAABgVbUo8jXVet7b7264VgTYX9Qz2Cv8VwcAAAAAGJMrq7W8YmbudOHVgh4Ak6IoilzXaJ8OFVtddC6TvK/fzbPm78i7e50dH9c/9Pv5noXj+aPuyrrjq+N7enMqtV0KhAEAAAAA2EmtosiTGs11m0Os7tr8o4sn8zudpbH297RmOw+q1tfVi1d9ejjICxeO5wvDwVj7BAAAWHXfam23hwCMgXoGe4XgFQAAAACAMbq6WssT6usXAABgElzXbOc+lWqSrNvxo0zyueEwNy6ezLPnj+WPO8s5MRxetHEMyzLv73Vz0+KJfOfCsXx80D89llVFkssqlTy92b5o4wAAAAAA2Gue2ZxKfc3Pq7XTfpL/sryYZ88fy592V7JUjmc188emZjN9qjp79k7Rnx4O8uz5Y3nnLoR2AwAAk+9qwSswMdQz2At8qwAAAAAAjNlTm638mYI7ABOmWhR52fShPH/+eJZTrlt0zqnnnxz087PLC7l5eSFfVa3lIbV6vrJaz1XVai6vVFMvis072MSJ4TCfHvbzqcEgH+5385f9XhZPLaKvLqWvbbVMUk/ysqlDaW2hPwAAAACA/eqKajXPbE7l9Z2lDWHVqzXc/7Q0n0rmc59qLfeqVHNppZqposhXVKv52nrzgvq7rFrNy6Zn88OLJ9f1s3qz0omyzE2LJ/OQWj3Pak7lymp1LJ8TAADg8krl9HNXh8D+pp7BXiB4BQAAAABgzB5YrWemKE7fFA4Ak+Lqai0/O30oP7h4Iv1sXHQuTz0GST4+6Ofjg36S5eTU+cNFJUeLIocqlUynSLMoUk1SLZJ+mXRTpl8m82WZO8phbh8Os5z136drfzr7wpnVsfzo1GweVKsHAAAAAOCg+a7WVP5m0MuH+r1z1nA/MejnHwb90+97TK1xwTcqJcnj6s18b2s6r1lZXNfP2ucf7vfy4f6JTLkdEgAAGJNLK3cGIbhKEyaDega7TfAKAAAAAMCYVYsiX1Ot5739rlI7ABPnYfVGXjNzOP9h8WS+VA5Pf9etLjxnzc856+c7ymHuKJNiOLjLfja7MGaz79YySSvJy6YO5esbF76YDgAAAAAwCapFkf9z6lBevHgifzvon7OGO64bFL+tNZWVlPnVlaVNb1ZKksVTz84eCwAAwIWaq1RyQ3smwzUzm6urbpuH/Uo9g91W2e0BAAAAAABMovtawANggj2gVs9vzB7J4+uN0wvMZy8qF5s8kjML4Od6nOv9ZyuTfFW1ltfNHhG6AgAAAAAceLOVSn5h5nCeXG/eZQ131LmtuL41nRvbM6me1ebZ9V4AAIBxua7ZztObU6cfD601dntIwDaoZ7CbBK8AAAAAAFwEdk4AYNIdrVTyM9NzefX0XO5XrZ1zN5G1xzcLVNksYGWzdleP362o5CXtmfzKzOFc5fsXAAAAACBJ0iyKvGz6UP7z9KHc5xw13HHePPTNzXZ+ZeZIrl7Tn5uTAAAAgPOlnsFuceUhAAAAAMBFcHnlTO614jsAk+wQ6hNCAAAgAElEQVSh9UZeV2/k7/u9vLm7knf2Opkvzyx3b3fXj7NDWFaPfU21lqc223livZlG4dsWAAAAAGCUa+rNXFNv5q963byt18n7et18sRxetP7uW6vlN2aP5O3dTn6vs5y/HvROn7NLNAAAAHA+1DPYaYJXAAAAAAAugksr1SSjU9YBYBJ9Va2eH63VMyhn8tFBL+/pdfO3/X4+OehnaQzfiHcvKnlgrZ6H1up5bL2RS0591wIAAAAAcNceVm/kYfVGkuRzg0FuGfbz2cEgx8phVsrkiup4a67f0GjmGxrN3DLo5x29Tt7T6+bvBv1cvFukAAAAgEmjnsFOEbwCAAAAAHARzFUquaE9k+GaG82vrirJAjD5qkWRh9QaeUitcfrYZwf9fHY4yBeHw3xhOMzt5TArZZlOWaaTMv3cuXBZS5GposhsUeRopZJLikour1RzVbWWuUpl1z4TAAAAAMAk+bJqNV9WreYx9Yvf15XVWp5TreU5rekslWU+NbgzsPvW4SC3n6oXAwAAANwV9QwuJlf5AwAAAABcJNc127s9BADYE768WsuXCyADAAAAADjQpooiD6zV88DaDtwhBQAAADAG6hkHg23hAAAAAAAAAAAAAAAAAAAAAIADx7ZyAAAAAAAAAAAAAAAAAAAAHGjLZZkvDgeZL8skyXRR5NJKNa2i2OWRAXAxCV4BAAAAAAAAxuZLw0H+dTjMHeUw3TI5UilytKjknpVqqhfxIpRhWebW4WDD8S+vWhIFAAAAAFhLHRcAAOCMfx4M8pbuct7d6+Yzw0HKEa/5sko1D67V8/X1Rq6pNVIIYoEdp57BxeS/JgAAAAAAALAt/zjo5y3dlby/181nRywyJ3fuAPTIWiOPrzfyhEZr7GM4XpZ5xvyxrF1CL5K86/A9xt4XAAAAAMB+o44LAABMmtuHw/zrcJBj5TBLZZmZopJ7VCq5qlI9r2CUhXKY1y4v5o+7KymTkYErq24bDvK57iBv7a7kskol17em8+SLMG8C1lPPYKcIXgEAAAAAAAC25NODfn55ZTHv6nXv8gKUhbLMO3qdvKPXyetXlvK89nSurTfHPqZzjQEAAAAA4KBRxwUAACbJvw4H+b3Oct7d6+aWTUIYplLkmnojT2+2c/9afeRrbh0M8uLFE7l1OFg3RzlXXMvq6z43HOanlubz/3ZX8hNTh3K3SmVLnwXYnHoGO81vcgAAAAAAAOCCvamzlOfMH8s7e90Mc+fCcnEXj9VF8H8cDnLj4sm8cmkhw3K8S9KrfQEAAAAAHHTquAAAwKTol2V+dWUx//7kHXlDZzn/dCowZdRjMWXe3uvkuQvH8/Kl+aycNae5YzjMCxeO559PtbF2TpRN2kw2zp0+1O/lOfPH8k+D/sX86HDgqGewGwSvAAAAAAAAAOetW5Z56cKJvGp5Mb2sX9hORl98stkFKG/uLudFiyc2XOACAAAAAMDWqeMCAACTpFuW+aHFE/m1laWsZPT8ZbMQhrd0V/KSxRPpr5nT/Melk/lCOdwwT8o52s1Zr1s99qVymBcsHM9tg8F4PiwcYOoZ7CbBKwAAAAAAAMB5GZZlblw8kXf2uxsWtldtdkFLsnGxe3X3n5vOusAFAAAAAICtUccFAAAmybAs8+LFE3l/v7dujrM6X9nM2td8uN/LTy/NJ0ne2evkr/q9DXOguwp2ODtwZe1Yjp8KhumYM8GWqWew2wSvAAAAAAAAAOfldStL+cCpi09G7fhzPhefrN1VaPX5B/u9/MLy4sX/AAAAAAAAE04dFwAAmCRv6iyfDko5e44zKixlrbVzmrf1Ovlwv5vf6SxvOL/6mumiyJPqzfzY1GxeOzOX3549kt+cPZJXTs/l2c2pXFGpbgh2WPWZ4SC/vGLOBFulnsFuq+32AAAAAAAAAIC977ODft7QWRq5c8/q80fXGnlUvZ6rq7UcKe7cA+KLw2E+1O/l7b1ObhsONl3kfnN3OQ+r1/O4enOHPxkAAAAAwGRQxwUAACbJ54eDvG5lcWTgyurzo0Ul96xUM1MUub0c5vPDQY6X5enXrXXz0kI+e2rOc3Y739Ro5fta05mrVDaM4z7V5FH1Rp7bmsofdVfy2pXFLJblhnbe3FnOdc12Lq1Ut/3Z4SBRz2AvELwCAAAAAAAA3KXf6iynn/UL2jn1/EHVel4yNZOrqhuXH7+imjyy3sh3t6byh92VvHZ5MSsp1128svr85UvzedBsfeRFLAAAAAAAnJs6LgAAMEn+oLOclYye49yvWssL29N5cK2x4X0f7HXzxs5S3t/vrQtf+cxwsGGOUyS5rtnOD7Rn7nI8RVHkm5vt3L9Wzw8unMgd5XDd+X6S3+ks5/vPoy3gDPUM9gJ/MwAAAAAAAIBzWinLvK27ssmOP838wszcyMXttapFkf+t2c4vzR7OJad2HVnbTpKcKMv8X8sLYx49AAAAAMDkU8cFAAAmyaAs89ZuZ+Qc5xvrzbxu5vDI0JUkeUS9kVfOHM71ranTIQ5lzgQ6rG3rqmrtvEJX1rq6WsvLpw+tu0l/tc0/7a6kLMtN3gmcTT2DvULwCgAAAAAAAHBO7+91013z8+qFKA+q1vPD7dnUimKTd250dbWWV83MZe7Ue9buVFIm+e+9Tj7Q656jBQAAAAAAzqaOCwAATJKPDHq5vRye/nl1TnL/ai0vm5pNcR5znOtb03lCvbkucGWtIslzW1NbGt/9a/V8e3MqZ0esnCjLfHTQ31KbcBCpZ7BXCF4BAAAAAAAAzumjg96GY0WSG6dmUr2Axe1V96zW8pNTh9btVLL6Z5nk55cXMrD7DwAAAADAeVPHBQAAJsnf9TeGlxRJXnqeoSurXtKeSXtD5Mqd5ooi19YaWx1intFspzXi+If7gh3gfKlnsFcIXgEAAAAAAADO6VNrduJZ3QXkMbVGrqzWttzmw+uNfMeanX/WLmd/ZjjI73SWt9w2AAAAAMBBo44LAABMkk+MmOM8vFbPVRc4xzlUqeQJjea6+czpOVO9eUEhLmebq1TytfX1bSfJJweDLbcJB416BnuF4BUAAAAAAADgnD4/HG7Y++fR9a3v+LPq+tZUrqpUk2zcXeTXO0s5MRxuuw8AAAAAgINAHRcAAJgktww3hpd8bb25pbYeUauPPP6V2wh2WPXgs9ouk9w2YuzAaOoZ7BWCVwAAAAAAAIBzOlZuXGgex8UntaLITVOzGxbPk2SxLPO6lcVt9wEAAAAAcBCo4wIAAJNkodwYxvDVW5zj3GeT9115KpRhO9a2vTreLwl0gPOmnsFesf2/dQAAAAAAB9BPLc3v9hC2pEjyI1Ozuz0MAPaZlbLccOxwMZ49Hu5fq+epjVb+sLuyYXeRP+qu5LpmO/caw2I6AAAAAMAkU8cFAAAmycKIOc6RytbmOJdsErCy1fbWmis2xjosjgiSAEZTz2Cv8DcBAAAAAGAL3rqmCL9flBG8AsD41Mf4Rfg9ren8Ra+T+bMW0odJXrW8mP88Mze+zgAAAAAADgh1XAAAYL9aGhHGMNx46Ly0Njk+PYarQFsjgld6224VDjb1DHbDeOJ+AAAAAAAOqHIfPQBgq0ZdJDJqZ6GtmqtU8l2t6dPfV6thYWWS9/W7+UCvO7a+AAAAAAAmkTouAAAwSZojQlHuKIdbaqsyYr6UJM1Njl+IEyPmXbVttwoHh3oGe4XgFQAAAACAbSj20QMAturQiAXuzw4GY+3jWxqt3LtSTXLme2t1kfuVywvpj3FBHQAAAABg0qjjAgAAk2RqxBznS8OtBa8M1sxVxj1rOTZiTKOCJIDR1DPYKwSvAAAAAABsUZmNi3DlOR4AsF9dXqlu+C77cL831j4qRZEb2jPrdhdZ9dnhIK/vLI21PwAAAACASaKOCwAATJJLK5UNc5wP9LtbamslZR5fb+Tr6o08/tTj6+qNNMeQj/KPg/7p56vjvVvh9n04X+oZ7BW13R4AHARPO3F7Pl+OTtKbLYr8P7NHc7Ry8f5H6prjXxx5/Pdnj+ayavWi9QsAAAAwyX539mje2+/m3b1OPtjvZZg7089XE9BHEb4CwH51ZaWWD+bOBe3V77q/6HXyfeV0amPcpedhpy5u+f963Q27i/zmylIeW2vkK2v1sfUHAAAAADAp1HEBAIBJcq9qNR87FWqyOuf4/3ud3FjOpLjAOc50UcnPTM+Nf5BJ3tlbHwZTJLm04r5dOF/qGewVgldgl82XZX5+eSE/OX1ot4cCAAAAwAW4vFrNt1bb+dZmO7cNBvmtzlL+uLuSZH34yurzIsmXV6q5f01ZFoD95yG1en63u7zu2B3lML/bWc6/b02Nta/vb8/kvb07svaylCJJL8mPLc3nV2cPZ8bOQAAAAAAA66jjAgAAk+TB1Ubems66Y8fLMr/TXc7Tm+Od42zVbYNBPjro5exoiPtWXScK50s9g73Cb27YA/6818k39bp5dL2x20MBAAAAYAsur1bz0qnZPLHezE1LJ7NYluvCV1Y9otbID07N7MYQAWBbHl6vp56kf+rn1e+5X15ZzNfU6nnAGHf7uLRSzbNbU/nllaV1AWZJcutwkJsWT+bnpufSGuOOJgAAAAAA+506LgAAMEkeVa+nsrxxE7xfWl7Mo2qNXLkHwk1evjyfYbIheOXBY5x/waRTz2CvELkDe8TPLc9npTz7VhwAAAAA9pOH1hv56alDp39WdgdgUswUlXx9vbkuVKxI0klyw8KJvLPX2eSdW/Ptzal8RaV6up9yzZ8f7vfyksUTWSyHY+0TAAAAAGA/U8cFAAAmyT0q1VxTa4yc43zPwvG8d8xznAv1muWF/FW/t+E60emiyMMEr8B5U89grxC8AnvEbcNhfm1lcbeHAQAAAMA2PaLeyLVnLfYBwCR4ZnNq3eLi6qLzYsrctHgyL108kY/0e2Ppq1YU+fHpQ1ndm2jUIvdz5o/nE2PqDwAAAABgEqjjAgAAk+RZrakNwSZFkvmyzA8tnsyPLZ7Mh3rd9Mudu2LzC8NBXrpwIm/sLK8b2+p86JsardQK2/bBhVDPYC+o3fVLgJ3y253lfGOjlXtX/dMEAAAA2M+e1mznXf3ubg8DAMbqvrVantpo5Q+7K+suHFlddH5Xr5t39bo5UlTywFot96rUcmmlkqmiyGWVah5wgbv5XF2t5QfaM7l5eeF0f2sXuW8dDnL9wvE8udHKs5rtTBf2nAAAAAAADjZ1XAAAYJJ8Ta2e/6XRyltOzXFW5xtFkmGSt/c6eXuvk2aSK6q1XFpU0i6KPL89nUsr1bGN49bBIB8b9PLOXjfv7HXSXzOWtZpJntlsj61fOCjUM9gLpDvAHtJP8rNL8/mlmcMpJNoBAAAA7FsPq9XTStLZ7YEAwJh9f3smf9vv5VPDwYYLWlb3DrqjHOZ/9LpJzoSQPabWyM0zcxfc39Oa7dwyGOR3u8un+1h74cowyVu7K3lrdyVXjPGCGQAAAACA/UodFwAAmCQ/2J7JJwf9/P2gPzKQIUlWknxq0M+nTh1/ZrO97eCV3+8s582d5fzrcJiV0z2d6XPtfGv1z+tb07nEvAe2RD2D3SZeB/aYjw76+aPuym4PAwAAAIBtaBRFHlCrr1lqA4DJ0CqKvGJmLldUqusWmtcudK9diF59bMcNUzP5d43WyMX0tX3983BweiwAAAAAAAeVOi4AADBJmkWRV07P5f7V2oa5RHHWY5xuGw5yy3CQ5ZTr5k5r5zxr+3x8vZlva02NeRRwcKhnsNsEr8Ae9NqVxdwxHO72MAAAAADYhq+s1nZ7CABwUVxaqeZ1M4fz0DUhY2dfvLL2gpZxXNjyI1Oz+Y5me2R/F+PiGQAAAACA/UwdFwAAmCRzlUpePXM41zXa64IRdsJm4S5rQyH+bb2Zn5ia3cFRwWRSz2A3CV6BXfSATW6+mS/L/Pzywg6PBgAAAIBxulrwCgATbPWClpe0Z3K0qGy6g8g4F56f357JzdOHcvdT/V3MvgAAAAAA9jt1XAAAYJI0iyI3TM3kV2cO53H1RpJsOs8Zt1F9lEmmiyIvm5rNj08fSq0w44FxUM9gtwhegV30na2pXF4Z/c/wz3udvL/X3eERAQAAADAul1eqp58ruAMwqb6l2c7vHzqaH27P5OG1emo5c1HL2se4XFtv5k2HjuZ7W9O5rLJxYd0uIwAAAAAA66njAgAAk+Qra/W8fHoub549mu9vTeeRtXrmiuKiBrCszmFW5zeNJP9ro5Xfmj2SJzdaF7FnOLjUM9hptlyFXdRMkRvbs3nR4omR529ens8bakfTlHQHAAAAsO9cdip4ZSd2UwCA3VQvijyl2c5Tmu2slGU+1u/lluEgnx0McqwcZqUsc5/q+JYlW0WRb29N5dua7byv38s7ep28r9fNl8rh2PoAAAAAAJgk6rgAAMCkuaxazTOqU3lGppIkJ4bDHCuHWSzL3GuM85vVa0BbSe5fq+dRtUae0mhlrlIZWx/AaOoZ7CTBK7DLHllv5Mn1Zv5br7Ph3G3DYX59ZSnPa0/vwsjOz5eGg7yn182HT31ZfX44yFJZpkwyUxS5rFLN1dVaHlFr5NH1eqYL/zMJAAAAHAxHK5U8o9nO2lL7g6v1TV//6UE/3zZ/7JxtvmH2SO49xgUCABi3VlHkYfVGHnYB79nqd2BRFLmm3sg19UaS5JZBP58Y9PPJQT+3Dge5fTjM7Ra9AQAAAADW2UodN9laLVcdFwAA2ClzlUrmcv73r57PHOd7W1O5T7Weo0WRq6q11Ipiu8MEtkg9g4vNFfqwB7yoPZP39rs5Xm7c//gNnaU8qdHMV+yxG2o+3u/l11eW8t5+N4NNXnOsLHNs0M/HB/38UXclrSTf2Gjlmc127rnHPg8AAADAxfD97ZndHgIAHBhXVmu5slrLk3Z7IAAAAAAAjKSOCwAA7CfX1ps2ywPUMw6I84/uAi6auUpl05tw+kl+dmk+5YhQlt2wUA7z00vzuX7heN51jtCVUVaS/GF3Jc+cP5afX17I8h75TAAAAAAAAAAAAAAAAAAAAMDBI3gF9ognN1p5VK0+8txHBv38cXdlh0e00WcG/Txn/nj+ZJtj6Sd5U2c5z5k/lk8P+uMZHAAAAAAAAAAAAAAAAAAAAMAFELwCe8iN7dm0Njn3mpXF3DEc7uh41vr0oJ/nLRzPrcPB2Nr8zHCQ7104nk/0e2NrEwAAAAAAAAAAAAAAAAAAAOB81HZ7AMAZX1at5vrWdF6zsrjh3HxZ5lXLC/nx6UM7Pq4vDgd50cKJHC/LkeenUuRx9UYeU2/knpVqDlcq6ZfJHeUwnxr0855eN+/rdzMqsuVEWebFiyfz+tkjuVtFFhQAAAAAAAAAAAAAAAAAAACwMwSvwB7zjGY7b+t18slBf8O5P+t18k29bh5Zb+zYeAZlmR9ZPJkvlcOR55/WaOW7WtM5OiI05YpU88BaPd/SbOe2wSA3L8/n/f3ehtfdXg7zU0sn88qZw2MfPwAAAAAAAAAAAAAAAAAAAMAoG5MSgF1VK4r8cHsm1U3O37y8kE5Z7th43tRZzt+MCIGpJ/mxqdncODU7MnTlbJdXq3nl9Fyua7RHnn9fv5d39TrbHS4AAAAAAAAAAAAAAAAAAADAeRG8AnvQV9fqua45OqDk1uEgv7GytCPjODEc5lc36euH2jN5cqN1Qe0VRZEb2tN5TK0x8vxv7tDnAgAAAAAAAAAAAAAAAAAAABC8AnvUc1vTubQY/U/0DZ2l/NOgf9HH8Nud5Syl3HD8G+vNPGWTYJi7UhRFXjo1k1HRK38z6O/I5wIAAAAAAAAAAAAAAAAAAAAQvAJ7VLsocuPUzMhzvSSvWFpIWW4MRRmXflnmLd3lDcdrSZ7bnt5W25dUqnlSozXy3P/odbbVNgAAAAAAAAAAAAAAAAAAAMD5ELwCe9g19WaeWG+OPPfXg17e0l25aH1/oN/NHSOCXa6pNXJZpbrt9p+02efq97bdNgAAAAAAAAAAAAAAAAAAAMBdEbwCe9wPtGcyWxQjz71mZTHHhsOL0u97et2Rxx9Zb4yl/QfW6hnV0scH/bG0DwAAAAAAAAAAAAAAAAAAAHAugldgjztaqeT7WtMjz50sy7xqeeGi9PvX/d7I4/euVsfSfr0oclW1tuH4fFnm9osUJgMAAAAAAAAAAAAAAAAAAACwSvAK7ANPabbz0Fp95Lk/7XXywV53rP11yzK3DAcjzx0pxvdr44rK6BCXz2/SNwAAAAAAAAAAAAAAAAAAAMC41HZ7AMD5uak9k2+fP5ZRESs3Ly/kv9aOpFkUY+nrc8NBNos+eeb8sbH0cS7HyuFF7wMAAAAAAAAAAAAAAAAAAAA42Cq7PQDg/NyzWstzWlMjz/3zcJDfWFkaW19fHO5u8MlSWe5q/wAAAAAAAAAAAAAAAAAAAMDkE7wC+8i3N6dy70p15Lk3dJZyy6A/ln7mdzn4ZEXwCgAAAAAAAAAAAAAAAAAAAHCRCV6BfaRWFPnhqdmR/3B7SX52aSHlGEJLutnd4JPxxMcAAAAAAAAAAAAAAAAAAAAAbE7wCuwzD6jV87RGa+S5vx708ifdlW33UWy7he0Z7HL/AAAAAAAAAAAAAAAAAAAAwOSr7fYAgAv3/PZ03tnr5gvlcMO5V68s5rH1Zo5Utp6r1DhH9MofHjqa2kWOZpkudjv6BQAAAAAAAAAAAAAAAAAAAJh0gldgH5ouKnnx1Exeunhyw7mTZZlXLS/kP04f2nL7h84RfNJMkcPbCHUBAAAAAAAAAAAAAAAAAAAA2AukJ8A+9bh6M4+vN0ae+9NeJ3/Z62657UvOEawyXw633C4AAAAAAAAAAAAAAAAAAADAXiF4BfaxF7dnMpNi5LlXLC+kW5ZbaveySjX1Tc7903CwpTYBAAAAAAAAAAAAAAAAAAAA9hLBK7CP3b1SzfPb0yPP/fNwkNevLG2p3VpR5N7V2shzn+j3t9TmKH/f7+UjZz0+1u+NrX0AAAAAAAAAAAAAAAAAAACAzYxOVgD2jac1WnlbdyUfGWwMRPmvnaU8sdHcUrsPrdXziRFtvqffzXdndNjLhfj8cJDrF45neNbxq6u1/ObskW23DwAAAAAAAAAAAAAAAAAAAHAuld0eALA9RVHkpqnZ1Eec6yV5xdLCltp9bK0x8vjfD/q5ZUQgy4V6S2dlQ+hKkjyiNuqTAAAAAAAAAAAAAAAAAAAAAIyX4BWYAFdWa/mO5tTIcx8e9LbU5kNq9VxeGf0r4tdWlrbU5qp/GQzyps7yyHPf1Ghtq20AAAAAAAAAAAAAAAAAAACA8yF4BSbEs1tTuVelOrb2iqLI/95sjzz3571OPtjrbqndflnmJ5ZOZjHlhnOPrtVzVbW2pXYBAAAAAAAAAAAAAAAAAAAALoTgFZgQjaLITVMzKcbY5jc32vmyyuhfEz+ydDL/0O9fUHsrZZmbFk/mI4ON76smeUF7ZivDBAAAAAAAAAAAAAAAAAAAALhggldggjy41shTG62xtdcoitzUnh0Z5jJflnnh4vH8fmc5w7K8y7b+stfNd88fy7v73ZHnn9ls5z7V2jZHDAAAAAAAAAAAAAAAAAAAAHB+pBzAhHlBazrv6nVzezkcS3uPqDdyfWsqv7KytOHcfFnm5uWFvLGzlK+rN/PwWj13K6qZqxRZLMvcMRzmbwe9vKvXzccG/U37uF+1lu9sTY9lvAAAAAAAAAAAAAAAAAAAAADnQ/AKTJjZSiU3tGfyo0snx9bm9a3p3D4c5g+6KyPP3zYc5o2d5byxs3zBbV9eqeTnpufSKortDhMAAAAAAAAAAAAAAAAAAADgvFV2ewDA+H1Do5nH1hpjbfPGqdn8H82pjDMe5auqtfzizOEcqfhVBAAAAAAAAAAAAAAAAAAAAOwsaQcwoX5oaibjjUlJvqc9nZunD+UexfZ+dVSTPKPZzi/OHM49KtXxDA4AAAAAAAAAAAAAAAAAAADgAghegQl1SaWa57Wnx97utfVmfvvQkTy3NZUjxYUFuzSS/LtGM785eyQvas+kdYHvBwAAAAAAAAAAAAAAAAAAABiX2m4PAA6CP5i72670e12zneua7bG3O11U8pzWdL6jOZX397v5QK+Xvxv0cttwkIWyzCDJVFFkOkWuqFZzVbWWB1freWS9kSlhKwAAAAAAAAAAAAAAAAAAAMAeIHgF2LJaUeTaejPX1pu7PRQAAAAAAAAAAAAAAAAAAACACyJ4BQAAAABgD7h3tZb3Hr7Hbg8DAHac70AAAAAAgL1PLRcAAJgk5jhwMPi3zvmq7PYAAAAAAAAAAAAAAAAAAAAAAAB2muAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAALBdf/oAACAASURBVAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAMD/ZO/OA5wo7z6Af5+ZXHvCAiu3CsghCAIq9Va861W1HrWtWqWeWO96VKu1nlXxvq1ardX2rdb7qlVEEBQVUQ7lVu572U02m2NmnvcPmJBkkmw2mWwmyffDH2Rnk3me2ZnM83t+M88zREREREREVHE48QoRERERERERERERERERERERERERERERERERERERERERERFVHE68QkRERERERERERERERERERERERERERERERERERERERERERBWHE68QERERERERERERERERERERERERERERERERERERERERERFRxeHEK0RERERERERERERERERERERERERERERERERERERERERERFRxOPEKERERERERERERERERERERERERERERERERERERERERERERVRxOvEJEREREREREREREREREREREREREREREREREREREREREREQVhxOvEBERERERERERERERERERERERERERERERERERERERERERUcVxFbsCRERERERERERERERERERERERERFTaQjKM5foKrDPWY53cgBbDj4AMIIwwNKlBQsIrvPAJH3zY+n93pRv6KL3RR+mNHkq3Ym8CERERUcVhDEdERJWKbSCVuoAMYK2xHuuNDWgxWuCXAYQRSTp+vfDBB5/woofSfdux273YVSeiTsT2jsh5sm3DXUf60DCoB6LrIgj/GEJ0XaTYVS97nHiFiIiIiIiIiBzDkAZWGCvxg758ezJJ+rclk7YmeAHAKzzwwRdL9PYQ3dBH7b0tydsL3ZnkdQzuU6LC4kUxIiIiIiIqN+znEBGVjjX6WkzXZmK29i3mad9hjbEWMo/1ueHGYHUgRrtGYbRrJHZ3jUQXpd62+pIztBh+fK59iS+js7DWWI8m2YSwjKCb0oBuogG7uoZiP/feGKDuVJDyA7IVd7bem7BMCIFbam4oSHlEREROwxiuMJjPICeQUmK+/j2+iIu1IzKChrhY+yfuPVEragpSfptsw7OhFyzLL6o6tyDlmSp1uyvJJmMzvtS+3rp/jSZEEEGDaEA3pQG7qkMx3DU0q/Xk2gbKFO8SEGwDqVNFZARfabPx9bbjd6n+A5rklpzW5YYbvZWeGKwOwmjXSIx2jcJg1yCba2w/xltE2SmnPp9dMUAuwjKCdyLvW5af6D2uYGVSecqnDff8oQ6DMCL2sxE2EFkZQmhJW79xTeMnApg6s2HytwWqekUSUuZzyiQqLCHEPADDk5cPHz4c8+bNK0KNiIiIiIiIyE6GNDBbm4Pp0c8xW/sWC/RFiELLe71dRReMdo3CGNdIjHHtjiGuXWyoLWWD+5SosMrpohgRERERERHAfg4RUakJyja8HX4Pb0bexUJ9SWx5qkFIuRIQ2/4H9nSNxTHeIzHefSC8wmNbGdT5FmqL8UzoBUyJTks4XszX5n437aT0x3lVZ+NQz0G21mOTsRlHN58cK09CQkDgs4YPbS2HiIjISRjD2Y/5DHKSzUYTXgj9C29G3oVfBjK+V4WKca6xOLfqbNsHqibH2qZCxdqVut2VIiqjeC38Fl6PvIPF+tKM720QXTHecwDO8v0KPZXGhN/Z0Qamm3gl+XWltIHUeaSU+FT7DG+G38Vn0S8QRmT772yI4+KP41pRg0PdB+Fo7xHY3TUy73XbgfEWUfbKqc9nVwyQL8Z4lA+72nDDMNIUAAhVmL9sBvBvAM/PbJj8ac6VJgCceIUcjhOvEBERERERlafV+lq8HH4N70T+iy2yOba8EAleAOir9MGxniNxtPcI9FR2sK0M2o77lKhwyumiGBEREREREcB+DhFRKYrKKJ4PvYSXwi8jIFst5+zkm49zlW691aIKJ3qOw1m+X6JeqbOlLOocAdmKu4L347+RjwB0rL0XEBimDsFtNX9EX7WPLfWJv2E+ftIX3jBPRETliDGcvZjPIKfRpY4nQ3/DS6GXEUEk62PRPM4Odh+A66qvsG3QeWfF2pW63ZXktfDbeKrtb9gkN3do/7rhxineE3BB1TkQELa1gQasA14VKAAqpw2kzvdO+L94JvQCVhqrAKQ/1vKRbp19lT443XcyTvAcC5dQ8y6nIxhvEXVMufX57IgBPDZ9lxnjUa7sbMN1XU/9CwEIRcSv2Hy9BMB9AJ6a2TA5/yfnViBOvEKOxolXiIiIiIiIyssWoxkPtT2BdyMfwIBRsAQvkDpJJQCMdx+I86vOwU5qf9vKqmTcp0SFU24XxYiIiIiIiNjPISIqTd9oc3BL691YaaxKOMemOm/H34DcERIy4/rMddaIalzom4CTfSd0aP1UHN9q83Bj621Ya6zL6dgwP1Mn6nB7zY0Y594j7zolP6nUPPZ4wzwREZUbxnD2YT6DnGilvgp/bL0V3+kLO/wdjn9/b6UX7qm9FYPUAXnXqTNi7Urd7krRYvhxa/BufBL9tN22K1n8/t1J6Y8IolhjrLWlDUw18YqI3bmWen3me0q9DaTOt0JfhVuDd+EbbW7Wx2+m96R6f7r3JZfXV+mNK6ovxn7uvbOuf64YbxF1XDn1+eyKAYarQ3FX7S3ooXTPqR7xGONRRxWiDY9NvGL+Ou5jQhXxQWr8CiSApQAundkw+Z2sN4AAcOIVcjhOvEKVIiTDWK6vwDpjPdbJDWgx/AjIAMIIQ5MaJCS8wguf8MGHrf93V7qhj9IbfZTe6KF0K/YmEBERERG164PIZNwVvB9+GciYwM01uRv/+fbWq0DBL7w/x0VVv4VLuHIqh7hPiQqpnC6KlQrmZ4iIiIiICov9HCKi0vRa+G3cE3wAGnTLeTbdeTdZuidT5nKeNz+3t2sv/Lnmeg6EcLBp0Rm4LnAzooh26NhJFQdISKhQcUv19eiv9ssrh8cb5omIStsmYzO+1L7GWmM9mowmRBBBg2hAN6UBu6pDMdw1tGBlh2UE70Tetyw/0XtcwcrMFWM4+zCfQU40X1uASwNXx+7XyeY7ni7OBoBqVOGhuruxm8sydKdDCh1rV+p2V4pV+hpMDFwZm7gz1T5L3seplsdPkpI8OUqubWCqNlGBkvV6zDbwsuqLsEBfxDiG0poRnYk/tt4am3gk1TFv54PwMok/fk/wHIsrqy+GW7gLUhbjLSoFARnAWmM91hsb0GK0wC8DCCOSlJP0wgcffMKLHkr3bfnI/CcASaWc+nx2xQDmskbRHY/V3Y/+at8ObUcyxnjUEYVqw2MTr6SQNPFKwq9ixQJPYusELJEOF16hOPEKORonXqFytUZfi+naTMzWvsU87bttM+nmzg03BqsDMdo1CqNdI7G7ayS6KPW21ZeIiIiIKF+Ptz2Dv4X+kTbRmSmRlC6xmyyXp5cMUgdgUu1t6KX0zOqztB33KVHhlNNFMSdjfoaIiIiIqPOwn0NEVJpeC7+NO4KTAGQ+36YbgNRNNKBKVMErPPDCA4/wQIcBXeqIIoqgDKJVBtEsW9I+PTpdeQICA9Wd8WDt3ZwQ14EWaUvwW//FCCFsuTE9XqanOspt/wSEZRBMroOM3HBjZ3VHLNAXJayDN8wTETlbVEbxWvgtvB55B4v1pRnf2yC6YrznAJzl+xV6Ko221iN50JXJaW0IYzj7MJ9BTrTWWIczW85Hs2wBgKzi7faWS0jUizo8U/doXgNUCzk4tVK3u1I0Gy04y38B1hhrAWTev+mY+zf5vJtqgpSOtIFhGcE8/TvL+1PVK11dM00GE49xTGWbFp2BawI3QYMGILvzXDIXXPAKDzzwwCs80KUBHVtjuFYZTBm7xZeViln+WNfumFR7G6pEVS6blxbjLXKiiIzgK202vt52X+FS/Qc0yS05rcsNN3orPTFYHYTRrpEY7RqFwa5BedWvnPp8dsUA8Z8DgD5Kb/y17iF0z6PfyRiPslXINnxj80bIKkCoKWJPRUgg423PYtvvPwZw/MyGya0d3rgKxIlXyNE48QqVk6Bsw9vh9/Bm5F0s1JfElmc74DAbZkMsAOzpGotjvEdivPtAeIXHtjKIiIiIiDrqyba/4enQ8wA6luB1w4XuSnc0iu7bErzeWILX2JbgjcQSvK3YLLdg87YnQcRr74mJjaIHHq67BzurO+azmRWF+5SocMrpopgTMT9DRERERNT52M8hIipNs6KzMTFwFQwYKW8SNc/bbriwq2sYhqq7YJg6BAPVAWhUuqO76AZFtP/0ZwCQUqJJbsEaYy1W6CuxUF+Cefp3mKt9Z7lRNfaZbeUPUgfgmbpH4RNeW7ab8mdIA2f4z8NifWnGY6dO1GGwOhBdRRcAwAZjIxboixBGBMmTrSTL9+nOqSZ8+aTre8zhERE50Gvht/FU29+wSW7O+nqOgIAbbpziPQEXVJ0Dj03n9/hBV/GDMp006IoxnH2YzyCnOt9/KWZrczJ+xxUI7KDsgAbRFcDWWHuj3AQAlvfG/zxYHYRn6x6FW7hzqlshB6dW6nZXimsCN+Lj6LSM+wnYuo/rxdYH4DTLloT3mZN3pqJAybkNTLV/AeDdLq+02wZmqlO683wlxzGVbJG2BBP8FyOcZgLb+OOoUfTAUNdgDFUHY9C247dR9ECj0gMu4cpYTkiG0WQ0YbNswmpjLVboq7BQX4z5+vdYZ6wHkPrYNOsyxrU7Hqm9J+t4sT2Mt8hJpJT4VPsMb4bfxWfRLxCOu2/ZjnsL44+3WlGDQ90H4WjvEdjdNbJD6ym3Pp8dMUDy58zXe7hG45HaSRAit1wyYzzKRqHb8BEjRmD+/PkQPgXuHm64d/DAs6MP1SNr1/e5fKdPAIwD0H/b21OdrMzJV6YAOGxmw+TUs7BRDCdeIUfjxCtUDqIyiudDL+Gl8MsIyNaUF+7tkG691aIKJ3qOw1m+X3KmTSIiIiLqdB9GpuAPrTdnvEABAI2iO/Zwj8GQbQneQeoAdFW65FTmZqMJK4yVWKgtxjz9e8yMfoVNcjOA9BeFeik74Lm6J3Ius5JwnxIVTrldFHMS5meIiIiIiIqD/RwiotLUJttwessErDHWpjx3euDGeM+BONC9H/Z1/wTVNj/p1hSUbfgk+ileDb+ZcoCd+f+RnkNxc80fClIH6rjXw2/j9uCktDm3g90H4AzfaRiuDku46T0qo3g69DxeDL2MEELtlpPqqeXZSDfwrVbUMIdHROQgLYYftwbvxifRTxPO2x154r2AwHB1KO6qvQU9lO5518npg64Yw9mH+Qxyqo8iU3Bd3D07ycflrupQ/Mp3Kn7i2tMS067QV+HdyH/xUuhlBNFmmXzBXNfPvT/D76svyal+hTpPVup2V4ovorNwceCqtPu3UfTAqb4TsbdrLwxWB8X6kVEZxSztG7wb+QDvRT6AkWFQvAoVh3vG59QGdmT/mm3gy6HX8K2eecxbuj5tpcYxlUyTOs7yn59yAlvzeBiljsCBnv1woHs/7KT2z7S6nP2oL8dHkU/wRuRdrDbWpI3hfuk9BZdUX5B3eYy3yEneCf8Xz4RewEpjFYD09wDmI906+yp9cLrvZJzgORYuoWZcR7n1+eyIAd6P/C/2l00V453r+w0mVJ2R03ay7aT2dEYbbk68ksJ8KeUIABjXNH4ogJ8DmABgALZPwGJOumL+f+/Mhsm/73AlKgwnXiFH48QrVOq+0ebglta7sdJY1e6Fn+SZ9rIVH1SmWp+5zhpRjQt9E3Cy74QOrZ+IiIiIKFdbjGac1vIbbJHNCUlMYGu82k004Hjv0TjIvR+Gu4YVtC7favPwSvh1/DfyUSxWTk5s7e3aCw/U/aWg9Sh13KdEhVNuF8WchPkZIiIiIqLiYD+HiKh0vRD6Fx5qeyJlHvg4z09xUdVv0U1p6NQ6zYjOxB3Be7HOWJ9QL/P/x+vux+gOPh2UCuP05nOw1Pghof2XkKgVNbil5gbs6/6J5TOpcnjtPUlWbPuXrfhjOd1TjpnDIyJyhlX6GkwMXIm1xjrLNZh013JSLY9/aMhjdfejv9o3r3o5fdAVYzh7MJ9BTjah5WLM1edbznUuuHBl9cU4yXt8u+vYZGzGDa23YpY2O+X5QoHAo7X3YYx7VIfrV6jzZKVud6W4xH81Pte+tLQTAHCm73Sc5/sN3MKdcR33Bx/Fi+F/p/29Gy48X/8kBqkDOly/ju5fM45ZY6zN2K+N79Myjqlsr4Xfwh3Be1PGHXu5xuKSqgswxLVLp9XHkAZejbyFh4NPog1tljopUPBC/VM5fZ9MjLfIKVboq3Br8C58o83N+r7CTO9J9f5070sur6/SG1dUX4z93HunXWe59fnsiAEW60txfeDP+MFYnvLv4oYLz9U/0SkxAFWezmjDs5l4xTSuabwC4DwAfwFQm/R+AUAHMGZmw+S5eVWqzOU25T8REbXrtfDbmOi/MnZDgIj7lyqBkupmAJnmX/LnUkkuLyBbcU/bQ7jMfy1aDL99G0pERERElMY/w6/EJugAts8grULFeb6z8UaXf+LCqgkFn6ADAEa5RuDmmj/ghfqnMFgdZEnsAsDn2peYEplW8LqUMu5TosJ5JfxG7GJyfN/fvCj2epd/4s811+Mwz8EFu5gMANWiCkd5DsMTdQ/g/to7sYPSaPl+SUi8H/kQs7U5BauHXZifISIiIiIqHvZziIhKkyENvBR62ZIHFhC4sfoa3FDz+06/eRsA9nGPw/N1T2CEOiwhDwxsbVsea/trp9eJrJbqP6ScdMUDDx6qvSflpCvpcnjpnv4dv97417nm8OJ/zxweEVHxNRstCYOVUw1ITnVOzzR4eYPchEsCV2OTsbkzNqEoGMPZh/kMcqrV+tqUk48oUPCX2puzmnwEALor3fBw7d04ynNYwrEEbD13GJC4LXgPIjJSkO3oqErd7kqxydiMmdpXKduva6svx8Sqc9sdcG1IAx9EJqfsQ5rxgQYdt7TehUI/vD4+jjHLTyd5wH0lxzGV7u+hf1nOcQBwnu83eLjunk6ddAUAFKHg597j8Xz9E+ij9LL8XkLikban8iqD8RY5wYzoTJztvzA26Ur8fX5A6olWkt+TSXvvS76vcKWxGlcGrsedrfchKqOW95dbn8+OGAAAdlEH4pn6R7Gna4wlxgOAKLROiQGoMjmtDZ/ZMNmY2TD5cQB7AFiW4i0KgDs6tVIlyFXsChARlaPXwm/jjuAkAKkD5XRBOAAoUNBNNKBKVMErPPDCA4/wQIcBXeqIIoqgDKJVBtEsW9I+gSVdeZ9pX+CCwGV4sPZu9FC62bK9RERERETJNKnh5fBrlmSSF15Mqr0Ne7nHFqVeg9QBeLruYfyh9WZMjc6w1O+p0HM4yLN/UermdNynRIWT7qKYAgV/rL4ax3iPLEq9zItiVwSuwzz9+5QXxZ6oe6AodcsG8zNERERERMXDfg4RUemarc3BRrkpIZchIHC+7+yinb9NXZUueLDubpzTchGWGysBbG9jvtHmYqW+Cv3yfAI05efz6JcJP5vHz++qzsdw11DL+9vL4SlQUubeTF540Kg05pzDS8YcXuXZu+nQYlchJwLADD5dlzrZCc2/7JRyNhtNCCEU+zl5IGY8c4B1qnN88mDm1cYa/LH1VjxSOwlCtD9IrtQwhrMH8xnkZNO1zxN+Nr/nZ/t+hf3d+3RoXapQcWP1NdhsNMUGvMYPlF1prMLfQ//EhKozbat/rip1uyvF9OjnCfvAfH2C51ic6D0uq3XEt4Hxfcjkc/n3+kIc0XwCakRNh+poSB3Jk3tKyJSxUXIc055Uk4aay+OtMlaXdRxTyeZrC7DSWGX5DpzqPbHo56L+al88Vnc/JrRchI1y68Q/5vdpRnQmNhqb0EPp3uH1Mt4iJ5gWnYFrAjdBgwYAlu9g8rJUXHDBKzzwwAOv8ECXBnRszUm2ymDaXGS6iUTNsl6LvIXlxgpMqr0NVXETD5Vbn8+OGMBUI6oxqfY2nOe/FAv1xQkxnhkDvBJ+HSf7TrBng0vQhf4ril2FnAgAj9bdW+xqpOTkNnxmw+TF45rGHwzgMwC9ty2W2PonPWpc0/jeMxsmrylW/ZyOE68QEdlsVnQ2/hK8D0DqwNsMuN1wYVfXMAxVd8EwdQgGqgPQqHRHd9ENisj8xBaTlBJNcgvWGGuxQl+JhfoSzNO/w1ztO0vwb76WkFiiL8Mlgd/jmbpH4RNe27adiIiIqNLxxrztvtBmwS8Dlpj4qurfFW2CDpNHeHBHzZ9wvv8yzNO/i93IKyGxWF+KhdriTp9huBRwnxIVTrldFHMC5meIiIiIOl9nDcCym4DAq13+UexqlB32c4iIStf06OeWZX2UXjjD94si1MaqVtTgTzXX4Rz/RMvvPop+gjPV04tQKzLN17+3LOupNKZ8Cn22OTwP3FCgIISwZdBLFBruqv0zBqo7Z6xXfA5vvrYAd7dlHigTf43h+ObT0Ch6lNTgNsa42Us3eMb5Sud4pESlfE+BAeuTowshm/UntxXtDYgz6z1L+wbPhF7AhKozbKqtczCGswfzGeRk8zVrrN1F1ONMX27fH1WouLXmjzjDfx7WGxssA+CfD72EY71HoaeyQ171zlelbnelmKt9Z1lWBR8urJqQ9TqS28Dk+zPM/yUkmmUL/DJgSzyzxlhrWdbR9abqA6dTjDiG130Kb1p0hmVZN9GAi6rOLUJtrHoqjbi+5ve4LHCtJSfzYWQKTvOd1OF1Mt6iYlukLcEfAn+GBs1yHCb3eRtFDwx1DcZQdTAGbbuvsFH0QKPSAy6ReWh+SIbRZDRhs2zCamMtVuirsFBfjPn691hnrAeQ+sFuZt/1isD1eKT2ntg9jOXW57MjBojnEz7cWXMzzvSfj0Dcve7m3/Tx0LM43HMIuij1Oa2/1M3SZluON6eLj5OcyOlt+MyGySvHNY2fAOBdICHQVACcDOCholSsBHDiFSIiG7XJNvw5eBcMGCkH1HjgxnjPgTjQvR/2df8E1XEzD+ZCCIFuogHdlAaMcO2Ko3A4ACAo2/BJ9FO8Gn4Ts7U5lo6AhMRS/QfcEZyEm2v+kFcdiIiIiGg73pi33YzoF7HX5t9loLozjvcebXtZuXALN26quRant5xjmVX8k+innKQjBe5TosIpt4tixcb8DBEREVFxrDHWdsoALLs5+WadUsZ+DhFR6VqkL4m9NvMYR3uOgCrUItYq0XDXMOzjHofp0c8T2vJUA/Koc63QV8Vem8fPoe6D4Uo6fjqaw1uur8AE/8XQoSesR4eO+4KP4KG6uzPWKz6H10vpiXvaHoyVZcavqZ6wKiGhQcMauRZClk7cyBi3Y0rt71VqfS5KVLr7zzqAuRDSPRHcLLe9spPP7al+92zo7zjYsz8GqQPyrq+TMIazB/MZ5GQ/6Mtjr83v+WGe8fAJX87r7KLU44bq3+OSwNWW34URwQPBx3B77U05r98OlbrdlWKp8UPsdawP6Tm4Q4OiU7WBB7sPwOToJwnLTAYMKMjuQTzx602WHJe0F8dkmiAu/j3p3leMOIbXfQpvob4o9to8Vn/qOdxRD3Daxz0Oo10jE+59AoA52jycho5PvMJ4i4pJkzr+FLwD4bgJnuPzgAAwSh2BAz374UD3fthJ7Z9zWT7hRW+1F3qjF0Zg14Tf/agvx0eRT/BG5F2sNtakrMvX2jd4uO1JXFJ9AYDy6/PZEQMk66P2wtXVl+KPrbfG/o5mPQIygMdDT+Oa6stzXn85KJU2vRTa8lJow2c2TH5/XNP4qQAOQOLkK/uAE6+k1bGeAhERZfRK+I2UyQUJieM8P8XrXf6JP9dcj8M8B+c9qCeTalGFozyH4Ym6B3B/7Z3YQWlMCL7N/9+PfIjZ2pyC1YOIiIioEokS+1coS/Sllr/LTz2HF6y8XOyk9sch7gMtScT5+oIi1cjZuE+JCqeULopZvl8OuhHSxPwMERERUXEVO9fhhLwIsZ9DRFTKfjRWWNrJ0a5RRapNeoe6D4q9NvMsi/VlRawRAUh4YrxpD/doy/s6msMb5hqCX/tOSzlJyhfaLEyNWJ8umQ0zLlSgpMzhpXu/k/9RfqTD/1F5KPZ5ohTPKx2pi4CwDKaO//5EoeGW1rsgZXl9pxjD2YP5DHKy9cZ6y/d8T9eYvNc7zr0HfuY5xhJrS0h8FP0E32pz8y4jH5W63ZUi1f4d596jQ+tI1Qae7P0ZDnbvn9B3jH9PZ8bWHYmrUsUx8YoVxxQ7Hi212LUjluk/Ws9x7vzPcXY70nNows8SMiFu6gjGW1RMb0XexWJ9acL3zmz/93KNxd/rnsRT9Q/hDN8v8pp0pT07qTvi7Kpf45X6v+Pq6stQhapYXeLr9FL4ZSzZ1l8qtz6fHTFAKkd4DkkZA0hIvB5+B0v1H/Iuo5QVu50up/a8VNpwAC8m/SwA7F6MipQKTrxCRGQTQxp4KfSyJSgTELix+hrcUPN7dFMaOr1e+7jH4fm6JzBCHZYQNAJbO6mPtf210+tEREREVCmKfeNdMW/MW2GssiSTRrlGFLTMXBzk2S/22ozhl+k/FrFGzsV9Z76HYgAAIABJREFUSlQ45XZRrJiYnyEiIiIicgb2c4iISpdf+i3Leis9i1CTzIa5hliWNcvmItSE4rXKVsuyXknHT645vHN8Z6Cv0jv2mfjPPtz2BHSp51X3TDk8oHSeBkodM0odAQVK7PppNjf3c9AB2anY9wx05J6CRtEj5XK77knI9P5cjv/4QcvxbQ0AfK8vxCvh1zu8TidjDGcP5jPIyQIpYm0zPs7X76rPQ4PoCsA6OcX9wUdtKSNXlbrdlaLFsLZfOyr9OrSOdG3gVdWXoBrVKT9jdzxTyDgmeT3lGMdUsuYUx28/pW8RapLZcHVY7LV5LG7JMYZjvEXF9PfQvyxtPgCc5/sNHq67B0Ncu3RqfRSh4Ofe4/F8/RPoo/Sy/F5C4pG2pwCUX5/PjhggnXQxgAEDDwQfs6WMUuOCq6A5nUpUKm04gC/iXps7trEYFSkVrmJXgIioXMzW5mCj3BQLwM2LNOf7zsYx3iOLWreuShc8WHc3zmm5CMuNlQC2d/y+0eZipb4K/VRHNuxEREREedu76dD232QTuxNNmZ5e4HR+I2BZ1kP0KEJNMhukDrQsS5WcJu5Tsjqh+ZfFrkJOBARe7fKPYlcjQbldFCsm5meIiIiIiqdR9MAGuRFA9k+OLPeBg5Xcb2I/h4iodLXJkGWZW7iLUJPM6kWdZVmrDBahJhQvgohlWfK+yjWH5xUeXFF9Ma4MXG8ZQP+jsQKvhN/Aqb4T86p/qhxePLPMSo5xy81T9Q8hIFsxPfo5Xgm/jtnanNgkJ+n2MwceUD5GqSMwT/8eOrZOFhV/LkzHKeeVt7r+H5boyzAtOgOvhd/GamONrd+XdO9t77ybSfxnkyftejz0LA73HIIuSn1O63Yap8Rw7eVCdKlb7q1pli1Fz6GYuRDmM8jJwili7a5KF1vWXStq8buq8/Hn4F8SYm0Jifn6ArwX+R+O8hxmS1kdVanbXSlCCFuWNShdO7SOdG1go9ID51adhQfaHovtVwUKDBgQEGgQXbFZNuUcz8QvzyeO6chnOzuO4XWfwgumyGX5hLcINcks1QS5qSbfzQbjLSqW+doCrIx7AKXZ7p/qPRETqs4sat36q33xWN39mNByETbKzQC2n/NnRGdio7HJMX2+9mSbt7cjBkgnVQxg/v+59iVmRGdiH/c4W8oqFR92fQNfal9jWuQzvB/5H4JoYw40T6XShgNYl2JZeSTDCoQTrxAR2WR69HPLsj5KL5zh+0URamNVK2rwp5rrcI5/ouV3H0U/wZnq6UWoFREREVHhdWbSJ58bflIp5YRVCNYEr0s4Lw1RK2osy4KyrQg1cT7uU0q2xlhr+3mvMzjxAn+5XRQrJuZniIiIiIqn0AOwSlEl95vYzyEiKl1Vwmc5F7ZIP3Zw2APwQtJ6Y7YXniLUhOJ54LEMjIzIxJ/zyeHt794H+7jGYYY20zKA/q+h53C093DUito8tiAxh6dASRgcbt6kX8kxbjmqFTU4wnMIjvAcgjnafNzaehd+MJZbJmww9/9B7v1wmvekIteaSlWpT/YzSB2AQeoAnOk9HR9EJ+Pe4MNoklvSfl/2co3FkZ7sHpbzbOgfWGGsTPj87upIHO/9aV51nqt9h1cjb1om7QrIAB4PPY1rqi/Pa/1O4ZQYLtdcyBpjbYFqlB3zuGA+g5zMDbdlokNN6rat/xjvkXgl/Abm699bYu1H2/6KQ9wHwiM6v89VqdtdKVxQEYWWsMyQRofWkakNPM17El4Pv40fjRUJ+xcAuqAel1VfiPvaHs0Yz+zuGomvtW8sA/X/WH11rLxs4pjNRhMeDj2ZsB4PPLg2QywyV/sO/4m8UbQ4htd9Cs8LL9qQeG9jQLaiEc56IF5ybgcAVKg5rYvxFhXLtOgMy7JuogEXVZ1bhNpY9VQacX3N73FZ4FrLZFcfRqY4ps/Xnmzz9nbEAJmkigGArX/PB4OP4yf1e0IRpfuA3I7yCR/2d++D/d374HfV5+Pl8Gt4uu3viCCSNgYarg7FPu6fFLnmzlUqbTgAX4plWopltI3zRscQEZWoRfqS2GszwDjacwRUkVtnshCGu4ZhH/c4TI9+nhA0zte+L2KtiIiIiAqvMwfZJyfnsrmQlFw/M558rPZe2+vXWWpEDQIykLBsi7EFPRVnJXhTTcjhhSNnGy467lNKx4kTmaTj1Iv75XZRrJiYnyEiIiIqrkIOwCplldhvYj+HiKh01Yt6yzl8kbYEu6gDi1Sj1H7UV1iW5TvhBuWvWlQjnDQYZ6PchL7oE/s53xze5dUT8UXLLOhIHGzZIv14ou1ZXFn9uzy2YKtUOTwBgV3VIVhjrGOMW8ZGuobj7/VP4tLANZi1bXBlcozcqPTAWPfoItWQykE5TPYjhMARnkOwl2ssJgauxFL9h5Tfl53U/jjWe1RW63wq9Dco2D7oSUDgZN/PcITnkLzqeqz3KDTJJnwcnWYZUP96+B2c4j0RA9Wd8yrDCZwWw6XLhaTLOxQzdxJfJ+YzyMmqRZVl4PtmuRl90Mu2Mq6q/l3Kh4isNzbg+dBL+G3VWbaVla1K3e5KUSWqEJX+hGVbZDN6d2D/ZmoDVaHi8uqJuDRwTUJ8JSHxg1yOZunHS/XPZIxn+it9MRvfJrRVAiIhxskmjpkamRGbtMTUILpmjJWcEMfwuk9h1St1aDMS73dcoi/DAHWnItUotVXGGsuyXPNwjLeoWBbqi2KvzXPWTz2Hwyecc3/xPu5xGO0aGZuk1TRHm+e4Pl862ebt7YgBMskUAywzfsTL4ddxqu9EW8oqNTWiGmf5fomD3PvjksDVWG9sSBkDDXcNw7mMg9MqlTYcQKqTRHOn16KEcOIVIiKbJM+ABwCjXaOKVJv0DnUfFHtyjBkULdaXFblWRERERJ3HqYPuTfEXyEr5hr0uos4yScd3+kIMdQ0uUo1SW5IiFq5XrDPVE/cpUSGV20WxYmJ+hoiIiMgZCjEAi0oL+zlERKWrn9In9gRj00fRT/BT7+FFrJVV/BNKzZumd1T7FbFGBACNSnds1psSjp8F2mLs7hoZ+znfHN5Oan+c5j0J/wj/n2Xg2SvhN3Cc56cY4tolzy1JncPzy9Z2B+Uxxi19HuHBnTU34+ctZyAgAyU1kSKVnlKf7KdB6YpJNbfhFy1nI7ztKcm5ajH8lmU7Kva07VdVX4KZzbMsTyI2YOCB4GN4oO4vtpRTTKUSwzn9nh3mM8jJuikNaNK3JHzPF+vLsJtruG1lDHcNwzGeI/FW5D1LrP330D9xtOdI9FHtm/AkG5W63ZWiQXRFS9Kg62X6j9jVNTTrdbTXBu7t3gsHuPfF1Oh0y/59MvQ3HO4Zn3c8k00ck2sewylxDK/7FEZvpSfWGusSjrup0ek4zHNw8SqVwufRL2OvzeO3r9onwyfSY7xFxbJM/9Fyjt/TPaZItUnvSM+hmK3Nif0sIbFIX1Iyfb5s2zs7YoD2ZBMDNChdbSuv1Oys7oh7am7Fb/wXwoDBHGgHlUobDuCIuNcCgASwJM17CYibTpGIiPLil9ZkSW+lZxFqktkw1xDLsmbJScqIiIiofI1SR0CBArntX/JTA1IRNv5ToHSovHKxs7qT5aLaB5GPilSb9KZEp8Vem8fHzsqORayRc3GfUrJG0SN2bo0nM/yj1PopfSx/n4+inxSpNumVwmAW5meIiIiInMUcgGU+Aa6cch/ZqOR+E/s5RESla6RrROy1eRPytOh0LNKccx/memMD3ot8YIkthqrOmii8Eu2o9LcsmxqdnvCzHTm8CVVnoptosCzXoePW4N3Qpd6h9aWSLodX6TFupeii1OMk77FlFaOTc5mT/dSJrQ+TKLXzSm+1F471HpX39yUE6xPl7RoA1aj0wLlVZ8XqGP+k68+1LzEjOtOWcorJKTFce7mQVJx0zDOfQU6WKtY2Jwq008Sqc1Ejqi3LQwjj9uA9tpfXnkrd7krRX+1nOe9+rn2Z5t2pZdMGXl51ETxwWz4bkAFMCj6UdzzTXhyTTx7DaXEM+8T2SnX8fhj5GKv1tUWsVaKADOCNyLuWfT1EHZTT+hhvUbE0p8hJ9lP6FqEmmQ1Xh8Vem9+7LbLZMX2+TDrS3tkRA2SjvRig0g1x7YLDPeOZA81BKbTh45rGdwFwDmDZwbOLUJ2SwYlXiIhs0iZDlmVuYQ3Miq1eWJ/0njxbKBEREVE5ear+Ify362u4peYGjHaNjCWGMl3wyTT4JZd/7SnHATYj1e1PFTGTSV9ps/FV1Dl5mh/05fhf5GPLsWDnbNnlhPuUkr3V9f/wYv3TuKjqt+it9CrK+dXu83GxlNtFsWJifoaIiIjIeewagFWKKrnfxH4OEVHp2tu9p2WZAYk/tt6KgGwtQo0SaVLDTa13pBzUtL977yLUiOLF5+PNGOBLbRaW6T/GltuRw6sR1ZhYdW4sfpGQsTZ9ob4Yj7U9nUv1E2TK4VVyjFtJjvQcVuwqUAUp9cl+jvEclfc6XFAtywxp5L1e02nek2IP7IjvB0pIPBh83NayisEpMVymXEim49spuRDmM8jJBscNcDePz0+jn2Gdsd7WcropDZjgOzNlrP2l9jVeCr1sa3ntqdTtrhS7qANjr839+3FkKrYY2T+4Jps2sK/aB6f7TrHsXwmJ/0U/xvuRD/OKZzLFMXbkMZwWx7BPbJ89XWMsy6LQ8KfgHdBsmFTWDre3Tko5ie6+7p/ktD7GW1QswRT35vmEtwg1yaybYp1sulW2OqbPl05H2zs7YoBsZBMDVLqfeY4pdhVKUim04QCeBGA9qQDvdnZFSomr2BUgIioXVcJnGSDTIv3YAY1FqlFqIWkNYM3ZZomIiIjKVa2owRGeQ3CE5xDM0ebj1ta78IOxPOHGDvO1gMBB7v1wmvckW+uwWl+DW9rutiw/2L2/7WU5wb7un+Cx0PabWs2/702tt+PZ+kfRqPQoYu2AgGzF9a1/hg7dcnHkQPe+RaqVs3GfUiqD1AEYpA7Amd7T8UF0Mu4NPowmuSXt+XUv11gc6Tm0yLV2nr3de+Lp0PMJy8yLYn+tfxi1oqZINdsq/qJY8vfLaYNZmJ8hIiIicqZjPEfh5fDrxa5GUVRqv4n9HCKi0jXKtRsGKjtjmbF1ogyznfrBWI6J/itxT+2tRcsHt8ogbmy9DbO02Zbzd0+lEWNcuxelXrTdONcelmUGJG4PTsLjtfdBFaptObxjvUfhP+E3MF9fkBBPSUi8EP4XhrmG4DDPwTlvS3s5vEqOcSvFIHUAeio7YL2xodhVoQpxpOcwPBd6qdjVyMlw11A0iK7YInMfIFUlqhBNGtC5RTajN3rlWz0AgCpUXF49EZcGrrG0G8uMH/Fy+HWc6jvRlrKKwUkxXHIuZFLwITTJLWnfv5drLI5yyGRXzGeQk/3EvQeeDD2bsEyHjruDD+Ke2lttLes078/xevhtLDdWxo4187zycNuTGKoOxlh35/S/KnW7K8VerrF4Fi8kLAsjgkfansL1NVdltY5s28BzfL/GO+H/YqPcZNm/d7beh6frH845nkkXx9TLelvyGE6MY9gntsc41x7orfTCWmMdgO3H5LfaXPy+9QbcVnMjqkVVUepmSAN3BR/Ah9EpluO3i6hPmQPKBuMtKhYvvGhDW8KygGxFI4p773OyiIxYlqlQHdXnS5ZL3t6OGCBb7cUAg9VBGKjubGuZpWR3126oFTV8cGAHObkNH9c0XgHwCIBTAMtMeZsA/K/TK1VCOPEKEZFN6kW9JcBYpC1JmIHPCX7UV1iW1YraItSEiIiIqDhGuobj7/VP4tLANZilfZPyqTqNSg+MdY+2tdyx7tF4Mvxc7MY88+JXIcpygiGuXTBCHYb5+oLYMgGBDXIjzvNfir/U3Iwhrl2KUrd1xgZcG7gRi/WlsQSqeQzspPTHcNewotTL6bhPKRMhBI7wHIK9XGMxMXAlluo/pDy/7qT2x7He/J94V27K7aJYMTE/Q0RERORMdgzAKnWV1m9iP4eIqLT9yncqbgneZRnM872+EKe3TMD5vt/gRO9xcInOu/1wSmQa7m97DGuMtQnLzfqd4f0FhBBpPk2dZbBrEHZS+mO5sRLA9hhgjjYPfwregZuqr7M1h3dt9RU4y39BwtPozTL/1Ho7PHDjQM9+OW1Lezk8xriVYaQ6HP8zPrbEjUSFUOqT/Yxy7YYp0Wk5f18aRFe0JA1YXqb/iF1dQ+2oHgBgb/deOMC9L6ZGp1vajSdDf8PhnvFoULraVl5nc1oMJ4SAFx54kf4p8gICO6s7OiYXwnwGOdlwdVhCO2Een9OiM/Bg8HFcUn2BbWW5hIprqi/HRYErEs4pAgIaNFzVej0erL0Lu7mG21ZmOpW63ZVid9du6CLqYzGA+Xd/M/IuhqiDcEqWk4lk2wZeUT0R17XebNm/QQRxqf8aDFYHYab2VYfjmVRxzLvhDzBVm2FbHsNpcQz7xPYQQuA070m4v+1Ry/E7IzoTv275La6ovhj7u/fp1Hot1BbjzuB9mK9/n7DcrN/p3pNzjikZb1Gx1Ct1aDMSJ15Zoi/DAHWnItUotVXGGssyMyfptD4fkHve3q4YIBs+4Ws3Bnis7l70U/vaVmYpUcXWiX2mRz9nDrQDnNqGj2saPxrAYwDGJVcZWydhuW9mw+Rop1aqxCjFrgARUbnop/Sx3Bj5UfSTItUmvWnRGbHXZoO+o9qviDUiIiIi6nwe4cGdNTejTtQBQKcliUaqwy0xYzk72/fr2PbGP8F5tbEG5/gvwoPBx9FkpH+qkd00qeOfoZfxq5bf4jt9oeX3AgLnVJ3RafUpRdyn1J4GpSsm1dwWe+onk/DZ+5Xv1ITvV/JFsX+HXoUmtU6t05TINPy65Vx8Gv0sYbmTB7MwP0NERETkXKNcu1VUXiSdSuo3sZ9DRFS6jvUehbGu3RPO32ab5Zd+TGp7GMc1n4bH2p7GQm1xwerRZGzBq+E3cWbLebim9SasNtYk1MV8PUQdhBO9xxWsHtQxP/cenzIG+CAyGef5f4duoqttObwhrl3wG98vU167iELDH1pvzvkJ3Nnk8Bjjlr8hrsHFrgJVmFK+p2Comt9DOvqr/Szb/rn2ZV7rTOXyqovggduyPCADmBR8yPbyOpNTY7h1cn3a9zoxL8J8BjmVIhT8zHNMyuPzxfC/cU3gRmwwNtpW3h7u0TjBc2xCOcDW722rDOKSwNWWY7IQKnW7K4VLuHCc56cp9++ktodxX/ARhGS43fVk2wYu0BdjD9folPt3vdyAudr8nLbDjGPMfwYM/DPyiu15DKfFMewT2+NU74mxyWiTB26vMtbgqsANOKPlPLwWfhvNRkvB6mFIA59Fv8DVgRtxlv98zNe/Tzh+zfr1UXrhF76f51UW4y0qht5KT8s5a2p0epFqk97n0e39YPP466v2AeDcPl8u7Z1dMUC2DvEchIPc+6eNAS7wX1bQv5nTDVWZA82FU9rwcU3jlXFN448Y1zT+PwC+xNZJV8yJVkwSwDIADxSsImWi86auIiIqcyNdIzBT+wpA/EzK07FIW4LBrkFFrt1W640NeC/ygeVCBYMjIiIiqkRdlHqc5D0Wz4Ve6rQbOYa4BuN/0Y87pSwnOMCzL8ZHDsDk6FTLDNFRaHgx/G/8O/wqDvYcgMPcB2Ocew9UiSrb6/GdtgCTo5/gzfB7aJJbEpKlwPZk7R6u0TjSc6jt5ZcT7lPKRm+1F471HoWXw6878kY5pzrWexTejryPWdo3lgS8eVHsmdALON57NA51H4QhrvxuXk2nydiCj6NT8Wr4TSzUl6T9fjl1MAvzM0RERETONVTdBVOi04pdDUeolH4T+zlERKXtppprMaHlYmySmy03cUtIbJZNeC70Ip4LvYjuohvGuEZhqGswBqkD0E/pi57KDvAKT9bltRh+rDbWYIm+DIv1pZilfYOF+iJIwHLujleFKvyp5g9QhWrLdlP+TvIej3+F/4PVxlpLDDBv26CdePnm8H7rOwszo7MwV59vuWk+Cg33BB/EzOhXuLTqgtgghfZkm8NjjFv+Bqk7F7sKVGFK+Z4Cc6BJPp83B72Z5/OPI1OxpaoZXZUudlQRANBX7YPTfafgudCLlnbqf9GPcUBk35K+xuzUGE5AwICR8Fmn5kSYzyAnO813El4Ov4YmucVyfE6JforPmr/A4Z5DcKjnIIx0jUCtqMmrvMurL8LX2jdYbqy03CfUKoO4KnA9TvWehHOrzkKtqLVpK60qdbsrxS99p+DVyJsIyjbL/v1X+D/4MPIxTvQej0M9B2Fndce068m2DQQQa5fi/weAVgSzrnd8G7jZaLL0dc1ykuWTx3BaHMM+sT1UoeKm6mtxvv8ytKEt5fG7UF+MO4P34i7cj13VoRjr3h1DVTOG6wO3sE7I055moyUhhvtC+wqtMhgrE0g8hiUk3HDhpppr4RO+vLaZ8RYVw0jXCHytfQtge5/zw8jHON93DvqovYpcu60CMoA3Iu9a2o8h6vacqVP7fMmyae/sigGy9YfqKzGv5TvL305AYIPchAn+ibi46jyc4j0RilDyLq+UDFadcW9tqSlWG652daFmbF31uKbxFwM4CMBhAOq3/dr8QsYHpwJABMBZMxsmZx/wVighJWcWJOcSQswDMDx5+fDhwzFv3rwi1IgovW+1uTjXf0lCwwgAA5Sd8Nf6h/NO4OVLkxp+F7gas7TZlk7go7WTMNY9uqj1IyIiIiqGJfoy/LJlgiU+Otn7M1xVfYnt5U2LzsCVgesTkiqFKsspmo0WnOe/BD8aKwDAkkwCtidcVagYqg7GMNdgDFQHoL/SF72UHdBNdEOdkvkitSENbJZN2GRsTkjwztbmYItsTlmeSUKih+iOZ+sfxQ5Ko30bX6a4Tykb87UFONt/YaedX8vFWmNd7KIYkPn7VayLYhIS1ajG0/UPY6ADbzhnfoaIiIjIuaZEpuHq1hsrKi+SSaX0m9jPISIqbYv1pbjQfzn8MpDy9/GDilLdXF0tqtBFdEG1qIIPPqhChQoFmtQQQRRRRBGQrdhsbIYGPe26U61fQsIDN+6rvRN7usfkuolUIDOjX+HSwDWx/Rh/03y6p2G74cKxnqNwXc2VHS5vg7ERv2m5MG3MISCgQsUhngOxh2sM7ghOsvz+s4YPAXQsh8cYt/wlX08GwH1MBVXK9xQs1BbjDP95OX9fvorOxkWBKyzn3uM8P8X1NVfZWteQDOHk5jOxUW5KWN5e/3CTsRlHN5+ctg1xCqfGcPFxgLncqcc48xnkZB9EPsINrbfG2goAltdb/996fPZSeqJaVGO0axTOqfp1h8v7QV+Oc/wXISjbAKSOtWtFLU7yHocxrlG4LHBtQc6TlbrdleJfof/g3raH292/9aIOOyn90UvtiWpUY1fXEJzgPTa2no60gen6psm6iQZslk2W5Qq2D8jO1Nc132dXHsNJcQz7xPb6Mvo1Lg9ciyg0AKnjD8AaEwgAXUVXdFMa0EXUo1pUwwfvthhOhQYNERmFhij8MoBNxtZ7MtvQlrCeTGWYdflzzfU4wnOILdvLeIs62+fRL3FJ4GrLcba7ayQerb0XLgdM7P2HwM34MDrFcq6+t/Z27Ov+Sex9Tu3zmb/vSHtnVwyQrW+1ubjIf0Vsu1LFeP2Uvvi171SMdI1IOc6kHGO877WFOMt/AXOgOSpkG/7W+2/B3xaA2sUF9w4euHt6oNZsPV8JVRhxqzIlB6Vi27JfzWyY/E/bNrqMuYpdASKicjHKtRsGKjtjmfEjgO1B3g/Gckz0X4l7am9Fo9KjKHVrlUHc2Hpbwg0Bpp5KI8a4di9KvYiIiIiKbZA6AD2VHbDe2NAp5fVWts+InSqRWY66KPV4sO4unO+/DGu2PdnQlJxQ0qBhvv495uvfW9YjAFSZCV6oUIQC3UzwSg0htKW8dNle8lhCol7U4cG6uzhBR5a4Tykbw11D0SC6xibJoez0Unrigbq/xC6KZfp+bZSb8L/ox5anHnbGRbG7a29x7MVk5meIiIiInKsS8yKZVEq/if0cIqLStos6EM/WPYqrW2/EEn1ZiptCEwfSJmuVwdiTclOdg9uTvP74tqObaMBdtbdgpMvyTC9ygHHuPXBx1Xl4sO1xmE8NjX+CqAHD8pkoNHwQnYzfGmd1OIfXqPTAA3V/wQX+yxHYFnPElychoUHDB5HJ+CAyGUDiMWXqaA6PMW75M/dxtoMyifJVyucV8wnhuX5fdnfthi6iHi3SD2D7NZ43I+9iiDoIp/hOtK2uPuHDFdUTcV3rzZY2I4ggLvVfg8fq7kU/ta9tZXYmp8Zw8b+LH0jnRMxnkJMd7jkE87Tv8VL4ZcsgUPP11v+BDXITNuibICByepI6AOys7oi7am6JDSRMFWv7pR/Ph17C83jJUh+7VOp2V4rTfCdhjjYPH0QnZ9y/zbIFc/T5mKPPB7D1HBw/6LojbWC2UUuqSVey//T299mVx3BSHFPKsasT7ekeg0fr7sN1gZuwQW5K+V0wf44nsfU43aw3ZbUf0h276T4rIeGDFzfVXItDPAdluTXtY7xFnW2caw/0VnphrbEOwPY+ybfaXPy+9QbcVnMjqkVVUepmSAN3BR9ImHTF1EXUY5xrj4RlTu3z5ZK3tysGyNYo1274Y801uKn19ti2JMd4K4yVuDN4X0W1bL2UngCYA81VIdtw9UAvusK79QfrW8wl6XacABAEcNbMhsmvZL9FlU3905/+VOw6EKV18803TwRgGSXV2NiIiRMnFqFGRJn5hBdTop8mBF0SEhvlJrwZeQ9V8GGoOhiKUNpfmU3MWWTNgY7JDfeFvgkY4d610+pDRERE5DRztflYavyQcHPHcNewhJmh7eITPjwXejFh2YgCleUktaIGR3uOwAJ9EVYZq1MmeOMTlqlIAFFE0YY2tCKIgGxFEG0II4woohmyRdtHKW9oAAAgAElEQVT/WdcpsbOyIx6tuxc7qzvmuZWVhfuUsvGtNg8/GMs75fxaTropDTjEfSC+1L7GZmlNprf3/YpuezrJZtmEDXIj1hnrsdZYh/VyAzbKTWiSW9AqW1MObEi1/uSLYvfX/QVj3KPs33AbMT9DRERE5Exe4cHzoZcSllVCXiSTSuk3sZ9DRFTa6pV6HOM5ChEZwXf6AhgwUt5YnelfJtl+Lr6dOMi9PybV3o4BzAM72ijXCNSJGnymfQnAmhNLJYIo3oq8n1MOr5vSgL1de+Hj6DS0oc1SXqpYIz4OG6wO6nAOjzFu+XMLN8Z7DsCJnmNxkvc4nOQ9Dnu790KNqC521ahMlfI9BR7hwTB1MA7zHIzDPeNxuGc8xrn3QDelIavPK0LBFqMZ3+pzLdd4ZmhfwC8DGOPaHS5hz3NnB6g7Y5G+JNYvj28vWtGKyZFPsKdrLLor3WKfaZNt+Ef4/xLaMQGB31adZUud7OTUGK6P0gsrjVUlkQthPoOcbG/3XvDLAObq8y3fvVTfSQGBHdV+ONJzaE7l9VF7Y7hrGCZHPoEOPWV5mWJtu86TlbrdleIA975Ypv+IZcaPGfev+TdPt3870gbmQ4GSdbvZT+mDx+vuxy6ugXmVaXJKHMM+sf16Ko04ynM4VhtrUn4XgPRxWLY68nkJiV3Vobi37nbs4R6d17alwniLOpMQW/fzZ9oXCftcQmKlsRofRD5CX7UPdlT7d2q9FmqLcXXrjZiqTd9aTyTmJM/2/QpjU3z/nNrnyyVvb1cMkK1d1IHopfTE1OiMhG1ILiv+rFPuMZ5P+FAv6rC3e0/s494L+7j3wp6uMeit9mr/wwSgcG24hNw6fYqAZXoVoYhMM+UIAF8COG5mw+QpOWxSxRJScgYici4hxDwAlunNhg8fjnnz5hWhRkTtu9B/OWZp31iCcGBr49gguuJ479E41H0Qhrh2KUgdmowt+Dg6Fa+G38RCfUlC+cD24HmIOgjP1j0GVagFqQcRERFRKXgu9BIebXsqIX472fszXFV9SUHKW6wvhSG3J/EblK4dfmpfqZJS4t/h1/BU6G9okf52E0W2lZtitmAFAqd6T8KFVRPgE75OqUc54j6lTJ5uex5Phv7WaefXchOSYTzR9gz+L/wqtG1PTzJl85SkTDPPd+S7Gn9R7Orqy9Aj7qYMJ2N+hoiIiMiZpkamJ9zc2Fftg11Ue240LkWV1m9iP4eIqPQt11fiybZnMTk6FRo0AKnPwcl5kGxk+oz5u6HqYFxQdQ4H8JSYL6KzcGvwbqw11iXs3/YGveSaw1tnrMd1gZsxT/8u7TEYH1eYrxUoOeXwGOMSkd0q+Z6CTcZmnNJyJoKyDQASrvEICPQQ3XCi93gc6jnIlgdxbDGa8auW32KT3JxQnvnaAzcurjoPp3hPhCIUbDI24+jmky3txGcNH+Zdl0JyUgxXirkQ5jPIyd4Kv4f72h5BQLZmjH0FBPZz741JtbflVd5CbTGuab0Jq4017cba8d9zu8+TlbrdlUBKiadCz+G50IuWc27C+7Lcv9m0gdIytDo78QOwTen6uQqUso1j2CcunK+is/Fo218xV58PIH28les9m+niOHN5o+iO31T9Gid5jiv4w60Yb1Fn0aWOM/3nY4m+DEBinxPYPjnzz70/w3j3Aeii1BekHoY0MFP7Cv8Jv4mp0U8hkfpY76P0wov1T7d7T7ST+ny5sjsGyMb06Oe4sfU2+GWAMR7Zys42XNd168JtHxOKSA4+zRWuBnAbgCdmNkxOHaBSWpx4hRyNE69QKVprrMOElovTJjCA7Y1ld9ENY1yjMNQ1GIPUAein9EVPZQd4hSfr8loMP1Yba7BEX4bF+lLM0r7BQn1RLOiOL88kIVGNajxd/zAGqjvnucVEREREpW1adAauDFxfUjd1lLoWw48Xwv/E6+F3sEU2A8ickE33+3Tvby/ZepB7P5xXdTYGqQNyqT6lwH1KqUyJTMPVrTfy/JqncrgoVgzMzxARERFRKajUfhP7OUREpW+jsRmvhd/ER9FPYjepAx07Z2cSn0uuRhUO8OyLEzzHpHyyJ5WGkAzj9fBbeCn8CtYYawGkHxSTagKUjubwDGng3+FX8Uzohdh1i3ipyk71dEnm8IiIOt+/Qv/BvW0PWwa/JbcN9aIOOyn90UvtiWpUY1fXEJzgPbbD5X2rzcVF/iugYetAluRrSgIC/ZS++LXvVIx0jcAvWybYPmC5szghhivlXAjzGeRUG43N+HvoJbwRfgdBbJ24KtWxZMfgVABok214vO0ZvBJ+HdE0g2KTJ84qxHmyUre7UizWl+LJtr9havRTGBnOkdnu3/bbQBkrJ1sKtk9EYZ6rk/uaZj+TcQzl4zttAV4Ov4Yp0enwS39suV0xHJAYi4xUh+Nn3mNwhOcQeDpw75QdGG9RZ1ioLcb5/svQhsQJP83XwNbjRIGCXdWhGOveHUNVMyfZB27h7nCZzUZLwn2FX2hfoVUGLWWaJCTccOGRuknY3TUy63Kc0OfLl90xQHs2GBtxd/BBTIlOS1kWJ16hfNjRhqeceMVcjyoMbJ9sRQKYAeApAP+c2TA5nEudiROvkMNx4hUqVYv1pbjQfzn8MpDy9+0NNqwWVegiuqBaVMEHH1ShQoUCTWqIIIooogjIVmw2NseSJKnWnWr95uy199XeiT3dY3LdRCIiIqKysURflnBBCUDJ3NRR6iIygv9FPsZH0SmYGZ2FMLbnd+xI8sbHxv2UvjjMczB+5jkGfdReea+bUuM+pXgLtcU4w38ez682KYeLYp2N+RkiIiIicrpK7zexn0NEVB7WGuswLfoZ5mjzsEBbhB+NFWmf8JyNalRhF3UgRrl2wx7u0djTNabTB3lQ4RjSwBx9HqZHZ2K29i2WaMvQAn/Ce1INXgNyy+FFZAQb5Sa0SH/aiV5SlWuWzRweEVFx3BC4BR9EJ1sGBpuvTfFtQz6Drt6PfIibWm+P/Zxu4J0AYKQY0FyKg66KFcOVQy6E+QxyqoBsxbTIdEzXZmK2NgfrjQ0Jx9P+7n1sGZxq2mBsxKvhN/FG+B1skJtiy5MHDRf6PFmp210pVuir8EFkMmZEP8c8/XvoSfdm5LJ/22sD2+s7msx9ntwGvhV6Dx9qUxjHkO10qeMbbS4+jX6GOfp8LNKWIIhg3uttFN0xyrUbxrpH40D3vthBabShtvlhvEWF9mX0a1weuBbRbRP8ZHOu3voz0FV0RTelAV1EPapFNXzwbstJqtCgISKj0BCFXwawyWjCJmNzbJIXU6YyzLr8ueZ6HOE5JOdtLPW8fSFigEzmawvwf+H/4MPIFEQQAZB+37DtpI7Kpw03jPTfW6GIVQA+BfAxgDdmNkxeZUd9Kx0nXiFH48QrVMpW6qtwdeuNWKIvy9i5ay8xk26mvGw/kxz8dxMNuKv2Fox0Wb5aRERERBUpKNswfssxCctO8Z5QUjd1lIOwjOAr7WvM0ebhe30RFmiLsEluzmldKlTsqPTDENcuWxO8rtEYoO5kc42pPdynFJABHLrl+IRlPL/ao9QvinUm5meIiIiIyMnYb9qO/RwiovIRkmGsMlZjvbEB640N2GhsRgghhGUYYRmBBg0uqHAJN2pEFepEHRpEV/RUdkBfpQ8n2q5AC6KLcH3wFqwwVgJIP4jGjhxepnWYTyI338ccHhFR8URlFH9svRWTo1Ozur4jIP6fvfuOj6Lo/wD+2d3rl4RQQi8CERBEEKk2HlB4fCyP4mP5oSgqIoqCigpYQQErYMOK5bGXxwKKXRSV3hGp0ntNSK7flvn9Efa4vd1LLpe9XHL3ffPilcve7cxcbm9ndma+s1W+2/Wc0PeY4p8aSTN6bCc6L1Wm3e26utpwmdYXQv0ZpCYLsiB2yXtQxIoRYEHU4XJTElCuMAV/yuuwUFyMZeJKbJG3R4JVAVT7eTJb33c2kJiEXcoe7JL3oPj451vAN8AAW78qpWtUB5awEuyQd2GPsheHlCOazxYo+3xn5Ew1rAOpHUOq0055N3bJe3CYHcYh5QiOKEcRZEEEEUL4eBtOgAArZ4ULTuTxuajL1UUjvgDN+KZoK7RGPl8n3W+jXNTeIqmyVlqP+70TcJgdNVwsS/09nkQWAoq3f3n9nw7YMcE9Hv1tfStMvzJqc799qtoARkoVDxaIi7FAXIzl0ioUs2Oa56nuJGZJtA5f8NsClOw/BumYBOlIGOG9IYR2BBHY5NskHg53SPf7yES08Aqp0WjhFVLbBVkIrwXewqehLyFBihtwE09VG+ix6fS1no2xrrvQgK+X8L6EEEIIIdlgi7wNCjvREV+Xz0cB3yCNJSIAEGABHFIO46ByOLLid4iFEUYYEosaEDrewVvveAdvI74RLJyQ7uITA/SZZp8/wgs1A53NhKYoFNqksUSZqTYPilUH6p8hhBBCCCE1GV03GaPrHEIIISS7pKsPL/bustSHRwghNQdjDDOD7+Cd4Ie6ukHzuuP1RFUDlgFgobgEj/imwMO8FS4ERgHLycvkvhDqzyCkbEGSHcou7JH34gg7iqNKMYY7h6a7WCmXre87WxxWjmCzvOX451uEo0oRHnGPi/t6ascQkjrU3iJmKlKK8bT/uQoXy4qVyE3bgMrPLTxFaI+H3WPRVmid8H4ktSrbBiDEbJ06dcL69euNnlrPGOtU3eXJBrTwCqnRaOEVkil2yXvweuBt/Cr+AQkSAOPGc3RHRqLK20d9rr1wMm513oQzrb0qXXZCCCGEEEIIIYSQTED9M4QQQgghhBBCCCGE1GzUh0cIISTWFnkbXg/8F3+IC6CUcy43I2AZKAuqesb/An4T5xvmRQHLhBBCCEkUtWMIIaR2WCGuxsuBN/CXXLa4Qbz+w8r0Rcbua5Suur2Aq48bnENwue0S8ByfVB6EkMxEC69UP1p4hdRotPAKyTRHlCLMCn2NX8TfsVXeHtmebMM7VvSKiS44cY7tTFxmuwjdrF1NSZ8QQgghhBBCCCGktqP+GUIIIYQQQgghhBBCajbqwyOEEBJrt7wXP4V/xSJxCdbJGyFD1jx/trWPKQHLqvXSJnwa+gJzw78hjDAA4yA5ClgmhBBCSEWoHUMIIbXDBmkTPgvNwm/iQniYJ7LdrD5JQLsIS2ehIy61X4SBtv6wcTbT8iCEZA5aeKX60cIrpEajhVdIJjugHMR8cTHWSuuwSfobO5XdUKAknZ4LThQKbXCa5VScYe2K7pbTqdFNCCGEEEIIIYQQUg7qnyGEEEIIIYQQQgghpGajPjxCCCGxJCZhl7IHu+Q9KGbFCLAgCvgGGGDrZ3pepYoHC8TFWCAuxnJpFYrZMc3zFLBMCCGEkMqgdgwhhNR8MpOxRvoLC8TFWCuvx9/SVvjhr3K6BVx9nGY5Fd2sXXGu9Uw05AtMKC0hJJPRwivVjxZeITUaLbxCskmQhbBX2YdDymEcUg7jiFKEIIIIsRBCLAwJEiwQYOGscHNO5HK5qMvloxHfEM34pmgqNE73WyCEEEIIIYQQQgip1ah/hhBCCCGEEEIIIYSQmo368EhN4mVeHFAO4ZByGKVKKTzMixDCkJgEBgY7Z4eDs8MBBxycHQ34+mjKN0EDvn66i04ISdJh5Qg2y1uwR96LI6wIR5UiPOIel+5iJUxmMtbJG3FQOYgi5RjCCKMul4/6fD10ENqhLp+fsrwlJmG5tEq3vbe1R8ryJIQQQhLhY/6yNj0ra9MHlCB2KLtwjJUgxEIAgHpcXdTn6+EMSxcUWtqmrCyprC9rezuGkKrwMp9uWw7nTkNJSG21U96NXfIeHGaHcUg5giPKUQRZEEGEED7eJylAgJWzwgUn8vhc1OXqohFfgGZ8U7QVWiOfr5Put1FpO+RdOKAchId5AHDI4dxozDdCC745LJyQ7uIRUiscUY7igHIQxcoxhBBGPS4f9fh6aME3g1DB96gqC6/0LO7HAyiM3b607q+bK1P+bGNJdwEIIYSUcXB2tBVao63QOt1FIYQQQgghJO1okmLtdVQpwnJpFQ4oh1CsFB+fqFUX9fi6OEVoj46W9inLO8TC+Db8g277IPslKcuTEJJZqH+GEEIIIYSQ6kUBX4QQQghRBVkIu+TdOKgcwkF2GKWKB17mRQihmPEhBxwo+1mfr4ce1m7Hx4jqpa3s1KbJDmEWxgppNVZJf2KdtAHb5B26O8YnygormvCNcLLQFl0tndHVchpOTmHwJslux5QSbJA34YByEKXMCw6Am3OjCd8IhUIbusN2JRXwDVDANwCs6S5J5cwXF2F26FssF1chgIDhazgAHYR26G/riyvtl8HBOUwtQwkrxZ3eceDAafJcVHeuqfnURhTMSKpDps/FovlKJFE75F1YLf2Jv4636Xcqu+BjfgAAO/6vIhw41OHy0I4vRAdLO3S1dkYXoTNy+Zwqly+V9WVtacdQvUhS4bxjl+i+V9/U+Qz1+LrpKxSpVVoJLdBKaJHuYlSLZeJKzA59gwXikrjXjzbYcKrlFPS39cUFtvNTtpAR9buS2mqrvB2zQ99iibgMO5Xdhq9xcy70snRHP9u5GGDrl4piFADYCGgauAy0tki5OMYqviAgJF04jlsHoGPs9o4dO2LdunVpKBEhhBBCCCGEELPRJMXaT2QiZoXmYHb4W2yRt5X72rpcPvrZzsFQx7VoZPIkvqNKES4suUIzQAYAi2miFiGEEEIIIYQQUqPUhIAvo34ECvgihBBCqs9++QAWSkux+vj40H7lQALhbfFZYcXJQht0tZyGrpbO6GLpjDp8nmnlNUJtmszHGMMCaTG+Dn2HxeIyhBA+8VyVjtgy0Z9bDufGeda+uNA+EF0snaucNsluClMwJ/w9ZoW+wXp5Y7mvbcw3wnnWvhhkvxjNhWbVVEJSXZaIy/FS4HVslrcCSOzcxYFDPlcHwxzX4UrHINPKotZZsXll63h+TQpmJJknW+Zi0Xwlkqit8nZ8HfoO88T5OKAc1DyX6GIr8XCRf0AboTUGWPvhX/YBaMQ3TCq9bK0vqV4kqdaruL/mdw4cvqWFV0gGUZhyfIGSskXo/Aggh8tBQ64BOls6IZ+vU2Ea++UDeMr/HBZLywBUfP2otn1cnBPX2q/C9Y7BsHLmrO5F/a6kttoqb8drgbfxh7gADIl/j9oIJ2Gk82acbe2jeb5Tp05Yv3690a7rGWOdyku7Z3G/RgD2x2xmS+v+SivZlYMWXiE1Gi28QgghhBBCCCGZiSYpZo5ZoW8wM/BfHGVFCX92HDhYYcWV9stwq/Mm2DibKWWJ7uRWy5INA8+EEEIIIYQQQkhtQQFfhBBCSHbzswC+CX2Pr8PfRdoDgDljQyp1jIgD0N3SDRfZ/4l+1nNhN2ksAqA2Tbb4NvQj3gq+jz3KXgD6zzk2sDYZ8dJsxjfFYMcVuMx2Md3RPcscU0qwVFpxPFDqGHzMj1wuBwV8WaBUB+Fk8BxfbhobpE2Y5H8a2+QdABI/R3HgcKFtIEY5RyQUkEVqNolJeCHwGj4NfQEAmvHz8kQfLxw4nGM9E4+6H4CLc1a5TLFBawys1tVZmRbMSDJLts3FovlKJBErxTV4M/guVkirAei/C2ZeiwLaRVi6W7phsOMKnGntVak0alN9SfUiqU16FffXfa9o4RWSCdZLG/Fh8H9YLC2Dl/nivq6j0AGDHVdggK2f4fN/Setxr/chHGMlSV8/tuJb4ImciWgjnFT5N3Ic9buS2uzj4Gd4KTATIqSkv0dX2i/D3c7bI/1/Ji28ombCgRZeqRAtvEJqNFp4hRBCCCGEEEIyD01SzAyligeT/c/gd3GBrtOvItGdiR2F9ng6ZxIa8PWrXKbaNPBMCCGEEEIIIYRkEwr4IoQQQrKbyES8G/wIH4U+g5f5UjI2BMQfH3JxTgyyXYKhjmuQx+cmnT61abLDbnkvJvufxhrprwrHwCp7LFd0zMTm14xvgjGuO3CWtXfC5Se109zwb/gg+Ck2yBvLDSlqwNXHVY5BGGy/wjDAdF54Pib4piCEcMLnKEB7bOZzdTDJ/RB6WLsl9V5I+pUopbjTOw4b5c2Gx0G8wLXYY0WtU1rzrfBS7rQqB6XW5jor04IZSebJprlYNF+JJOKYUoJnAy/hh3DZZxCvPjR74ZXoPNSfXSyn4h7nKLSzFCa0f204nqheJLURLbxCMo2XeTHd/xK+C/8IhsQXKOlpOQMT3fdrjv1d8h7c5BkJD/NGXqeqzPUjALjgxNScKTjD2rVS74f6XUltFmZhPOB7DPPFRab0w5xh6YppOVPg4By08Eoa0MIrpEajhVcIIYQQQggh6eZlXhxQDuGQchilSik8zIsQwpBY2Uq0ds4OB2eHAw44ODsa8PXRlG9iyqBspqFJipljr7wft3vvwQHlYKSTTxXvsyivI7GAq49Xcp9DC6FZlcpFndyEkETJTD5+152DKFKOIYww6nL5qM/XQwehHery+SnLW2ISlkurdNt7W3ukLE9CCCGEEFKzZXr7lAK+CCGEkOy2RlqLSb5nsEfZm/D4UGUDQ2PHKmLTUzlgx/nWfuht64Eczo3GfCO04JsnFCBKbZrssEhciod9kyMLBMX7/KpD9HF2me1i3OO6g+7knoEOKocw0fckVklrACQeKNVGOAlPuCeildAisn2dtAG3eu5CGGLkdbFpVjSuq24TIOAR9zhcYDs/2bdG0iTEwhjuuQOb5C0AoKsfKhJ7XKi/txdOxqu5z1UpeC2VddYOeRcOKAfhYR4AXKXr+XgyLZiRZJ5sm4tF85VIIjZLW3Cf7yEcVA6X+/mnYtEVNS8OnCZ9KywY7rwRQ+xXVTgWkKrjyYyxAKoXSW1GC6+QdDn/2L9jtnD4LO9d5PN1kk7zmFKC0d77sFneWukFStQ+hddzn0cOlwPGGK73jMBmeYvuOjDRa8jYc7gDdryS+xw6Wton9H6o35XUZgpTcJd3PJZIywEkN7YRvZ96nPW0nIHpOU+gy6mn0cIr1YwWXiE1Gi28QgghhBBCCKlOYRbGCmk1Vkl/Yp20AdvkHShmx5JKywormvCNcLLQFl0tndHVchpOtrQ1ucS1B01SzBwlSimGem7FfuUAgMpP1Ip9rfp5NOWb4I3cF1Gfr5d02aiTmxBSkfniIswOfYvl4ioEEDB8DQegg9AO/W19caX9Mjg4h6lliD1XqXkuonMVIYQQQkjWyYb2abYGfBFCCCGkzKzQN5jqfx4SZMNJ+JVpD8RKdN94+/PgAQA22HCq5RT0t/XFBbbzkcO5da+lNk12mC8uwjjvBEiQAJT/Occ7riywwM7ZYIMNds4GmSmQIUOECB/zQ4FiuF95x5GafzdLF0zLmQKnCXfsJTXDXnkfRnrvwUHlUKWDmgCgEd8Qb+S+iIZ8ASQm4crSodin7E8qUMooDx48puVMwZnWXpXen6TPE77pmBWeE/c4qChA2mg/9Tx0vvUfmJzzcNJlM7vOWiauxOzQN1ggLonbr5JIPR9PpgUzksyTbXOxaL4SScR6aSNu99yDAIK6zzv6OInXLjeLer2p5q3+FCBAgWJ4zKpjAb2tPfBW8H3Tj6eqjgVQvUhqO1p4haSLeuxFn+eqcuyFWRg3eG7DVnl7JL2KGNWJPSzd8GLuM/gm9AMe8z8Vt86szDVk9OMCrj4+zHsLeXxuuftTvyup7V4NvIW3o9pugPF1h5F4C0mq+19pvwxv9XiVFl6pZpZ0F4AQQgghhBBCCEknxhgWSIvxdeg7LBaXIYTwiecq6CwsTxhh7FR2Y5eyB3PF3wAAOZwb51n74kL7QHSxdK5y2WuLRCYpVtS5ZOYkxei8ZoXnYJeymyYpVsLj/qnYrxyocKIWDw55XB4AoISVal4XO4jAwLBP2Y+HfZPxUs40cFz1TPwghGSPJeJyvBR4HZvlrQDKr+MZgPXyJmwIbMYHwU8xzHEdrnQMMr1M2jLQeY8QQgghJJtkU/t0un8GNpUzeTrZgK/N8hY87ptapYAvQgghhKTWrNA3eMI/DcCJsYFo8doDarB/DtwQOAE8eNhhg4NzwMk5wYGDCBF+5oeP+VHCSnXjRImM8anBbiGEsFJag5XSGrwcmIlr7VfhesdgTaAotWky39/SVjzgfQwSJN1YZvS4FgAUcA3Q3nIy2gsno63QGgV8fRRwDVDAN4CFK39adpCFUKwUo4gVY59yALvlvdgsb8F6eSMOKocA6Mc31fxXSmswxvsgXsqZCp7jjZIntYiXeXGr524cYocBVG5xFPWYOKgcwr3eB/FO7mv4PDRbt+iK0TmKB498rg5EiPAwrybN6P04cFCg4GHfZHyY9xYa8QVVfs8k9TZImzA7/E3c48ABOy60D0RvSw+0EwpRl88HABxSjmCltBrfh3/GKulPzblPTYOB4WdxHs4IdcUg+yVJlzH6eFQffx76Cg25Buhs6ZTQXd/3ywfwlP85LJaW6dKMlUg9byTMwhjpHVOlYMZt8g7c730UL+Y+g2/DP+qCy6sSzMiBQxAhjPU+lFAwI8k82TgXi+YrkYrslw/gLu94+BHQfN7R16PxFueMPq7tsGOgrR96W3uik9ABeVwuZMjYpxzAUmkFfgn/hg3y5sjrjdKLrj+jn5chxy2/OhawXt6kO77NlMxYANWLxEwrxTXpLkLEWmkdcrnEj5du1i4pLA3JdLH9S8l6I/gOtsrbdefN8tp+sedNBoZl0krMC8/H56HZcdNpxjfBQNt56G3tgSZ8I9Tl8hGGiKNKEVZJf+Ln8K9YJq3U1bsAcIQV4fnAy3jYPa7c90P9rqQ22ynvxnvBj+P2J3Pg0MfSE72t3dFOKET+8X6Yw8oRrJBWY254HvYo++L2w/wvNAvC2TbAcN0Vkiq08AohhBBCCCGEkKz1behHvBV8H3uUvQD0nXNmDFxFp+lhXswOf4vZ4W/RjG+KwY4rcJntYli4zF00lgOSozcAACAASURBVCYpZpZl4krME+fHnahVwDXAVY5B6G3pgZOFtpEJCSITsVJag+/CP+GH8M9ggGEH4UppDd4Kvo9hzuvS9RYJIRlGYhJeCLyGT0NfAEj8Djnq+amYHcO0wAwslVbiUfcDVboDQqxEBwcJIYQQQkjmyLb2aW0I+CKEEEJIaqwUV+Mp/7MA4t/1FACssOAUSwe0FwqRi1z8Ja/HOnkD/CwAL3zQNE2OP+4odMD1jsEYYOtXtpmVtZP2KwewW96DheJS/CzOiwShlkdd5EUtj4/5MTP4Dn4M/4InciaijXAStWmygMRkTPQ/gRBChoEoAHCa0Ann2s7Cudaz0EpokXReDs6OJkJjNEFjdMIpmud2yrvwS/h3fBX+znABDQaGVdIazAi8jtGuW5MuA6kZnve/ikPscKWCTaOfPxFItBVfh7/DrNA3mn2j0+1i6YyLbAPR29pTs4BKmIWxWlqLH8O/4Nvwj5EFqaL39zE/nvE/h6k5U8z9A5CUeCf4keacEX0eG2Dth3tcoyL1VLSWQnO0FJrjMvvFWCAuxhTfVBSxYs3+6uMX/K+ij7UnGvONKlW29dJGvB18H4B+8ZVn/M9Hfu8odMBgxxWRej7WX9J63Ot9CMdYSaX6VQDjej6eTAtmJJklG+di0XwlkojH/E+jhJXGbdM35Apwjq0PtkjbsEb+q9L1ZR6fhw6WdrjeMdiwvow+tuIt8BLNqP6K3i/6ODVTMmMBVC8SM93mvdv04zpRse3Qcb4JCe/LAVhUd24KSkVI4rbLO/F+8NO4bUAOHDoK7dFKaIkczo2jShH2KQew8fiCYbHfvan+F3CEHY1sj05nuGMohjqu0S1aaYMNOYIbrYQWuMx+EZaIyzHFPxWHlMO6dL4N/4RrHFehrdDa8P1Qvyup7d4Lfhy5LjPqjxvnusvw+G8jnIRe1u4Y4bgRX4a+xozA6wge75uO7Yexj82D8D8L5OKKxzuIOTjGaFI3qbk4jlsHoGPs9o4dO2LdunVpKBEhhBBCCCEkE+yW92Ky/2mskf7SdKTHG8yKluiEjXivi82vGd8EY1x34Cxr74TLX1tITMZQzwhskbfFHdA0a5JieRKZpMiBwzX2K2mSYgVGe8ZiibTccOD5esdg3OK4ocI7Q22Rt+FB72PYoewy7Gi0woJ38l6L29FenqNKES4suUL3GS+mAS9CslKJUoo7veOwUd5sWD/Hm0QSW4er55LWfCu8lDsN9fi6VSoXnasIIYQQQrJTNrZPx3sn4lfx90pPYI8WPYE9unzqYxec+KjOW5UO+AKobU4IIYSkSoAFMLh0mOZu9CoGBhus6Gc7F+daz8KZ1l5QIGO6/yV8F/4RDIkFf3Hg0NNyBia679e0h3bJe3CTZyQ8zKvJsyI8TgSDqq93wYmpOVPwv9AsatNkuFmhOXjCP93weO1h6YbRzlvRzlJYbeVRmIIvw3Mww/86AgjoysSDx/t5M5MaSyM1wzppA27y3B43sMgFJ/pYe+IkoSXcUYFSi8QlkSCM6P1yODe8zKfJQx13vd91Dy6y/7PCMm2Xd+Ih36TI2H7sWPrruS/gNEsnk/8SxEwexYt/lgyCAiWyTf38bnBci1udNyWc1kHlMO72jo8EWMfWf70s3fFC7tMJpeVlXk09H10+ldHCDYnU88n2qwAn6vkzrF11+2yXd+La0psjZY39jnLgcIrQrsJgRvW1Dbj6OMKO6srBgcPNjusNgxljRQczxqZD9UJ2yda5WDRfiVTkp/CveMg3yfC8fxLfEiOdN+Nc61nwMl+11JeJLmoSXd7o4yd2fx58lY+nZI9TqheJ2XoV99ecx2sLOq+TZKnHPHDifPdtnc+SGuOd6n8B/wvNMmwT9beeiztdtxn2L+6V9+Hd4MeYFZ5juC+gXXRllHMErnVclXC5DiqHcIfnXuw+fiPc6Pd6qe1C3O++x3A/GksmtVmQBTHg2GUQIUa2qcfIhbaBeMB1b8I3Z94sbcG9vocibZvo74MiKyj64hC2jdgQu9t6xli5nXU9i/s1ArAfJ5a45wCwpXV/zdy7RpuAbuNMCCGEEEIIISSrLBKX4kbPbZFFV7iof4DxQiuxrylPRa+LTouBYY+yD/d4H8STvmchMjHufrXRnPB3moF+4ETHbA9LN7yX+zpm5r2I6xz/l7KBfgBoJbTEjc4h+DzvPYx13QUnnJGyRJfpo9Bn2CpvT1k5arujShGWSit0fzcOHMa77sbtzuEVDnoCQKHQBm/lvYzultMNO+9FSJjkexq0WDAhpCpCLIxR3nuxQd6kqe9jBwuN/gHaiSzqftuUHbjLOx5+FjDMkxBCCCGEkHiysX3qUbz4XVxg2I9wo2MIJuc8XOFEOQA4y9obb+e9gjbCSYb9CH4E8LhvWsreByGEEEIq7/PQV5FFV6LrbQaGS2z/wuw6H+Mx94M43/YPhFkYIz1j8G34RyhgiB27K699tFRagTu898J7PPiaMYYHfY/Bw7ya1yYyxhfb3uLAwY8A7vbej9/E+dSmyXDvBT/RHCPqZ3OL4wbMyJ1arYuuAADP8fiP/d94N+81NOUb655nYHgpMLNay0TM9XnoK83v0eeEa+1X4bv8z/F4zgTc4rwR1zquwmjXrXgyZyK+y/8CI503RxaLUo9bD/NqzmPqeWaCe3xCi64AQGuhFV7LfR6dhY6aICXVp8EvqvSeSeotlJZAhhz5Xf0c/2E9u1JB5ADQiC/AjJypaMo3AaCt/wBgqbQCP4V/qTCdY0qJrp43kmw9b1R/x5vjY1TPj/Hej/XSJl15Pg/NjvwtY4Po+1vPxaw6H+LtvFcw0X0/7nWNxhM5E/FO3qv4Iu99XGa7WPc+D7Mjht/RUc4RuNk5NKF5Fr2s3TEz9wW04JvpnmNg9B3NItk4F4vmK5FEvBv8SPO7+tleYvsXPsh7A31tZ4PjuGqpLyuzmER5YwHRFChpGwugepGkSkX9P2b/q0oZCKkJwiyM78NzDdtENziuxRM5E+MuLtJMaIr73WPwiGtcZF/1Z/T1FQcOXS2dK7XoCgA04htias5kOGCPbFPT/DH8KyQm6fahsWRS2y0WlyOMcOT36O/Qg5VYdAUA2lkKMSNnKvK5OgBi+mE4oN7lDZHXt2o35CGJs6S7AIQQQgghhBBCSHWZLy7COO8ESCjrwIsesIruuFO3GbHAAjtngw022DkbZKZAhgwRInzMb3h3nuh0jbYxMMwKz8EuZTem5UyBk3NW7Y3WEEaTFDlwuMVxA4Y5r6/28qiTFHtazsCd3rHYpxzQPK9OUpye83i1l602WCgu0XxX1MeX2S7GIPsllUrLzbkwLWcKbvHcic3yFk0HIQPDRnkzPg/NxhWOy1LxVgghWWC6fwY2HT+/ANrJlNG/x2O0HwPDZnkLHvdNxeSch1NVdEIIIYQQkoGysX2qTmCP7UeoygT2YZ47NEHc6k814GuArX8q3gohhGSd2zxj0l2EpHAAXs6dnu5iZD2FKfgo+JluwjwPHg+7xmoWAAizMEZ6x0QCMRMJZIkdp9gm78D93kfxYu4z+Db8Y2TMIfa10fvHS1ddyCB68ZcQgmA4EYRAbZrMs17ahD3KXt1xc5V9UFrGM6O1EJrhldznMKx0JI6wIgAnvlOLxKU4ohxFA75+WstIKs/H/Jgbnmc4jj7WdScut/877r4uzomhjmvQUeiAu73jIR0PgDVK6xzrmZU+n+RwbjyZ8yiGlA7HMVYSSZuB4TdxAUaU3gWeq333fM2WNsJf0nrdNgsE3O26Pan06vF18ZT7UQzz3AERoq5uf8H/Gs6xngkH5zDcP149X14fSFXq+cr0raj1ehAhjPU+hA/z3kIenxspd7xgxqGOa3Cbc1jcPNRgxtMsnTDJ/7RuHlJ0/lUJZhxaeiuCCGnK92P4V9znuhMWjsKDMl02zsWi+UqkItvkHYZ1xPnWf+Ah932a16a6vqzMoitA2YIq0d/p8urLdIwFUL2YepN8T6W7CEni8LB7bJVSKO/7QoudkFQ4oBxMdxEiDimHNQs2VKQx3wgrpNXwMI+uvjvT2qvc83G0i+z/xCb5b3wS+iLutdUtjhsr8U5OaCW0xC3OG/F84BVNegEEsFJag57WMzSvp7Hk6pXN9U2q/Cn9pdvGARjnuhtCJRZdUbUUmmOS+yGM9o7Vfi/LBijQ8olC/HX2MsQJVSImqvktSEIIIYQQQgghxAR/S1vxgPcxSJAMJ1REd+IXcA3Q3nIy2gsno63QGgV8fRRwDVDANyh3MOaykmvAwKAwBQpkSMf/i0yECFFzt4RYDAzLpVUYcOyyap8gx4HDl3U+MDVNmqSYef6SNui2OeFIuMM+loNz4En3o7jeMwLe43elAk58Fq8G38YAW3/U4fOqVG5CagMKZjHXBmkTZoe/MRwcZGBwwI4L7QPR29ID7YTCyJ0RDilHsFJaje/DP2OV9KemjRA9EPezOA9nhLpWehIXIYQQQkimo3atsWxtn9a0gC9CCCGJWymtrnXBDUYLbJD0WC2txRF2VNf2GeG4UbPoCgC8EXwHW+XthkFX6uNYsekyMCyTVmJeeD4+D82Om04zvgkG2s5DF8upeMb3PPay/ZrXRu+jnZivT4/aNJllvrhIt60eVxcjncPTUBq9RnwBHnTfh7u843Xflbnh33C14/I0lo4kY6W4GkGEdOezC20Dy110JVoPazcMc1yPV4NvxQ2UGu4YmlT5GvD1cYfzFk1wLACIELFKXhNZpKq2yKY2whZ5W+TxiYC1c9CIb5h0mu0shbjDeQumB2Zo6kcAOMyO4O3gB3HnC8Sr540YLVCbTD3f29oDTfhGqMvlIwwRR5UirJL+xM/hX7FMWqmr5wHgCCvC84GX8bC77M7vmRbMSDJLts7FovlKmc2McYUDyoFIv7mKB4+DymFd+pvkv3WvdXM5mOh7slJ5Ro8rRNeXie174pi7x3kHell7aMYC4knHWADVi6k3J/xDrWuvqp9fsoHwbs4FPwuU2/9T2UWMklVd+ZCa4dKSwWn7vkUfawwMN3huS3hfDsCiunOxUdqse44Hj/ucoytVlpHO4fghPBclrPR4+if+Jg35AnSzdqlUetEut1+Ct4Lvw8u8mu2rpbW6czKNJVevbKxvUu1veWvksVrWs6y90VpolXSaPazdcL1jMP4b/CBy7KocJ7vQaERzHHxlT5XKTSpGC68QQgghhBBCCMl4EpMx0f8EQgYTmNQOidOETjjXdhbOtZ6FVkKLpPKJXiXZSHnPqcIIY5+yv1o7t1KRF01SzDzblB2Rx+r35zzbP6o00aCp0BhjXXfiYd9k3QQnL/Pi1eCbGOe6u6pFJ6TGo2AWc70T/EhTz0fXvwOs/XCPa1QkmDVaS6E5WgrNcZn9YiwQF2OKbyqKWLFm/xMDca+ij7UnGvONqvW9EUIIIYTUZNSuNZat7dOaFvBFCCGk8mpL4EFta39kuoXiEt22pnxjXOf4P8227fJOvB/8VDduF13HdxTao5XQEjmcG0eVIuxTDmCjXBZgEPu5T/W/oFnwJTqd4Y6hGOq4BlbOCgCYnPMwbvJoJ/Bz4HCx7QIslVbgkHLY8LhSoIAHT22aDLNZ/jvyWP0s/mUbAAdnT2OptPpYe6KrpTNWS2s1x+ZaaR2uBo1p1jYb5E26bTbYMNp5a6XSud4xGF+EvsZhdgSA9rzYgm+GdpbCpMt4ge18vBp4MxI4H4vaCDXTAeWQ7j33snavcrpXOy7Hr+LvkUVhgRP17IfB/2GQ/WJdf0RF9Xys/tZzTavnVTbYkCO40UpogcvsF2GJuBxT/FM19byazrfhn3CN4yq0FVpnXDAjySzZOheL5itlNjPGFRQoum0yZKyV1yX02mPsGFZJaxLOz2hc4WrH5Xgz+C6OsRLDfc6xnIl9yn5sU3Zo6sMN8mZc6RikGQuY5H0aRSg2zLe6xwKoXqw+taWNbYb3c9/AQ75JWCdv0PUFqT/bCYVwcy5T810prdG1T8+z9oW9Bl3/k9SrKd+1ypWj7LhVr5fU/TlwONd6JpoIjSuVt4OzY6CtPz4Nfan7Tpxl7VWptPRpO9DXehbmhL/XnOujF6hQ0VhyetSU70Am2K8c1LUJe1t7Vjnd4Y4b8Ie4ENvkHSfSZwA4oOl9rXDk4wOQi6Uq50Pio4VXCCGEEEIIIYRkvDnh77BF3qbp3FA71HpYumG089YqTTyKVd5gYHQnZUWdV9UxEShVHWg0STHzHDKYqGXG4ORAW3/MDc/DPHG+boLT7NC3uNI+CG2Ek6qcDyG1QW0Z1KjJE1U9ihe/iwsMJ17e4LgWtzpvSiids6y98XbeK7jbOz5yN77ogTg/AnjcNw0v5D6dsvdCCCGEEFJbUbv2hGxun9akgC9CCCHJqcl9QKTmMrrL44W2gRA4QfO6z0OzIUPWBdcAZcHXd7puM6zT98r78G7wY8wKz9Eco+rCA4C2zTXKOQLXOq7SpNHR0gF9rD2xUFyiScPLvJiZ+wLu8NyL3creuO+R2jSZZbu8U3e+6249PU2lie+ftvOwWlob+Z2BGQatkJpvg0Gg1Hm2vsjn61QqHYETcIH9fLwb/EgXKNWnioFSFs6Cc21n4fPQV4btAWoj1EzHFH2gd6HQxpS0x7vGYEjpzZAga7aLEDHD/zom5zys2V5ePQ9AF2D7RM5EAObU8/H0snaPW88zMHwa/AL3u+/JuGBGklmydS4WzVfKDqkYV0g0zcrkHa8d5FG88MQs/BG9j5Nz4N/2C/Fc4GVNvpuivtdA2VjAc7lP4XrPLYZpVfdYANWL1ac2tbGr+n1tKjTGzNwX8FrwLbwX/Ph4LLl2wS4v8+I+153obOlYxdKe0Ku4v27bPa5RqMfXNS0PUvOl47tm9J1JtBzR+xr1V56Z5Dm0u+V0fBr6Ure9UGibVHrRTrechjnh7yO/MzDsVfbpXkdjyemRTfVNqhUz/UJ5HYSTq5yuhRPwgOseDPeM0v0FhFwLmo1vjV3j/jbcl5iDT3cBCCGEEEIIIYSQVHsv+ImuYx4AbnHcgBm5U01ddCVRHDjw5XRe1fTOoorUpkmK0WiSYnylike3rSXf3JS073WNhgv6OxQoUPC8/xVT8iCkNuBqyb+abKG0BHLUpM8Td0M4O+GgVlUjvgAzcqaiKd8EgHYiJwAslVbgp/Av5hWeEEIIISRDpLu9WpPatdncPk11wJfV4D5DasAXIYSQqrHAYrh4PCvnHyGqncpuXVurq+U0ze9hFsb34bmR10W3a25wXIsncibGnfzeTGiK+91j8IhrXGRf9af6T02rq6Vz3GDs86x9I4/VfbbI29GIb4ipOZPhgHHwKgOjNk2GKWH68a/mfLM0lKR8HYUOkcfqcX+M6dvcpOY7IOvvhtvLklzweDdLF8PthULrpNKLFnvuVut7aiPUXCGEdNvyucot6BPPSUJLXOu4WnMcqPXnz+I8rJM2RF5bXj1/tf3ycvtlzKrn4zGq59U0fwz/ColJpgczGjErmDFavGBGklmydS4WzVfKDmb39Zvx2sqMKyyUlkCBEvf5n8V5cHMnjjU1raNKke61BXx9w7zSMRZA9WL1yMY2tsAJGOkcjhdzpqIBVy/yvtTv2j7lAEZ47sSbgXfBWGa8Z1Jz1Nbvl5f5dPVD+yQXeWgTp9+gNd8qqfQ0aQgn0iivvqOx5OqXjfVNKgWZvh+mLpdvStqnWjriUtvF2s+hbKUyFAxtAkeh05R8iDH92YMQQkhSbvOMSXcRksIBeDl3erqLQQghhBCSMuulTdij7I103qmTMK6yD8Iw5/Wm5lXANYjcaSe6c7O8ziceHJQM7JyqrZMUGRhNUowjaDBRqy5vTgdhAd8Aw51D8XzgFc1kKQaGJdJyLBKXoo+1pyl5EfPQdbB5LLBAggQg8fqjugJFa5u/pPW6bRYIuNt1e1Lp1ePr4in3oxjmuQMiRN0k0Rf8r+Ec65lwcI4qlZsQQgghJBNQu1Yvm9un1RHw9d/gB7p+hJ/FeRgsXYFOllNMyYsQQrLR3PyvsFxahfnhxfgh/DP8CGgCXY3QJFyi8hiMDzWJWURlhbQaHubRjd2dae2F25zDEsrnIvs/sUn+G5+EvtClo7rFcWPc/TtY2um2lRwfH2oltMQtzhvxfMA40JLaNJnFz/y6bQ7OeOGddDK6A7eP+dJQElJVHubVbSu0JBds2opvabj9JMF4e2VEj+2r56Y6XB4muMenrI2QqvYEA0vpuGZNGXssm3sSs40z7x69NzqG4NvQjzjMjuj6fZ7zv4yZeS8CKL+eH+q4Bp+Evqgwr6rW8+WJruej0wsggJXSmlobzMjADIMZSWbJ1rlYNF8ps2XKuII6FhDbLuLBgaHs/Xwe+kq3X3lteqM2VnWPBVC9mHpf5L2PheISzBcXY6m0HMrx81C29MN1t56O9/PewCT/05gvLtK0/WTImBl8B4ul5XjU9QCaCo3TXFpS2wkQoECp8PtVHfVMMt9jr0F/Qj6fXD9lAV/fcHsdPi+p9KLlcfo0/Cyg20ZjydUr2+ub6mLlrKaldZtzGOaK83AM2mspTuDQYlIh/h681rS8iBYtvEIIISZZKa2ukZ045amuCwJCCCGEkHSaLy7SbavH1cVI53DT85qT/ym2ytsxX1yEWaFvsE/Zn0CnlPEgGYBIB29tRJMUM48FAsTjA90qhcW/U0dlXW2/HLND3+juhlk2WPwqeuV1N3ViGKk6ug42DwWzmGeLvC3yWP28/2E9B434hkmn2c5SiDuct2B6YIZmIA4ADrMjeDv4QcIBIYQQQgghmYzatXrZ3D6tKQFfhBBCKs/BOXC2tQ/OtvbBKNcIfBaahTcD7yGMsKZej66HOgrt0SfJOx6TzBJgQd222MnGG6XNutfw4HGfc3Sl8hrpHI4fwnNRwkoBaIPvGvIF6GbtEnffPC5Xt80XNbZ1uf0SvBV8H6XH01YxMGrTZBg77AhAG/zhZT4UoEGaSmQszMK6bQKENJSEVJXRWHSuwTkpEUZj3QCQw+UklV60OgaBUkEWTGkbYWbwvykbx1slrUlJujVp7NHJOXUL+5QopVXqg4jm4OwY5RqBh32TdYFra+X1+DH8Cwba+teIer4iaj0fG7i4WlqbccGMJLNk61wsmq+U2VI1rlDdi7+pYwGx5Y6eG7pJ3mzQdojfjohegEL9Wd1jAVQvpl4zoSmuFAbhSscg7JX34d3gx5gd/gaA9niKbn+14ltk1IIB+XwdTMuZgk+Cn2NG4HWIkDTH/5/SXxjiuRljXXfhAtv5aS4tqc1m5r6Ah3yTI3P7AWiuazhwaMDVh8CZ299yQDmoy+9U4ZRKL9Bg1O8aMugvSoQdxm1IN+dKKr1oNoP3JUHUbaOx5OpF9Y35nJwD3pjrHA/zoiEKTEm/Dp+HWxw34Gnf82qjMvKzzvn1kP+v+m5TMiI6tPAKIYSYrLZMEK0pgz2EEEIIIam2Wf478ljtCPqXbUDKBp7bCq3RVmiN6+2D8ZP4K6b7Z6CYHYvbKdXD0g3/tJ2H/wY/wC5lT8wkpA74j/3fKSlnqtEkxczj5JwQY+6ec4yVoAnMuZOAwJXd8ftO7zjdRK3tyk58FpqNqxyDTMmLmIuug6uOglnMc0A5pPuse1m7Vzndqx2X41fxd6yS/oykr34eHwb/h0H2i9E45s69hBBCCCHZhtq1etncPq0pAV+EEEKqxs25MNRxDfpaz8Zo71gcUg4bBj91tHTAcOfQNJWS1CROzqFZwAQASplHM9l4o3wiIFutw8+1nokmlbxzsYOzY6CtPz4NfakLXjirgjZmkOnvqGqHLSptB/paz8LX4e90r6M2TWbJ43MRULRjmlvl7Zo7ptcEe5X9um1mLK5Bql/Q4I7OgSSDQuPNeTAjUIo3GFeTIGvyMLuN8EbwnXKDrKsiFWnWtLHHOlwd3XX4TmUX2qHQtDwG2vrjs9BsrJHW6vojXvC/inOsfcqt548qRQnnVZV6vuK0y+r5OeHvNZ/j3/LWjAtmJJklW+di0XylzGbGuMKHwf/Bj7LrUPU1A6z90Epoqcvv09AXKD1+PKmv7Wc9F22F1lV6H9FjAbHljt0WvYBKDld+vGx5aVXHWADVi9WrmdAU97vHYKCtP8b5HoGX+Qzbxz2s3XCvq3KL2tUGVzv+g9MtXfCwbzJ2KLsQvQiTj/kx0fcEFopLMNZ1V4XfHUKMdLKcgvfzZuJJ/3T8GP4lcoxFa8Q3xGPuB9FMaGJavr2K9X17T+dMiruYajwO2BGA9rxcxIrREs0rXSaOM76etUX1jyarWDmm22Y1SJfGktMn2+sbs+RyubqFV3bJe6rcroz2H/uleGrtdHCtBUQ+nuOLr7SYVNi4Z3E/y9K6v0rlpUEqjxZeIYQQk9W0wRRCCCGEkGy3Xd6pa6N1t56e8nw5jsNAW3/0sHTD7d57sE3eYdgp1UpogYvtFyCMMJ7yP6cpq5/5cbH9gpSXNRVokmLmqcvlRwaeVdvlnTjF0t60PHpbe+Ac65n4Q1yoGyx+PfhfDLD1Q10+37T8iDnoOthcFMxSNceUEt22QqGNKWmPd43BkNKbNROLAUCEiBn+1zE552FT8iGEEEIIyQTUri2Tze3TmhLw5eScpuVHCCHZ7CShJaa6J+MGz21QoFCfIIkrj8vTLbzyt7RV0wbarezV7XdmkgHU3S2n49PQl7rthULbcvfbKe/WbYsdHzrdcprhwivUpsksTfhGmjsPA8Af4kKcb/tH+gplYIm4PPJYDRRpJjRNY4lIspycA/6YhVaKlCKcZBAYnCwrKnfXbCPFTB8oZTNINxVtBGpnJKcF3xS7j9/sR7VcXIUBJgeS3eschaGeEbqlbI6wo3gpMLNG1POJON1yGuaEv4/8zsCwV9mXccGMJLNk61wsmq+UPZIdV1gsLsNf8nrNZ+fm3IZjpahNkAAAIABJREFUD+ulDVgoLdW8tg6XW+VxitixAKNg/uiFV1RNElg0Jd7CdNUxFkD1YnqcYe2Kx90TMNo7FkB2tY/bWQrxTt5rmOp/AV+Hv9N8lxgYfgz/gj+ldXjM/QBOs5ya5tKS2sjNuTDJ/RB6Wbpjmv/FyDlOPc7WyRtwnWc47nWOxoX2geksqo6bc+kWxDqoHEoqLYmVrdOQikVKjfoTnJxDt43GktMvm+sbMzTnm2Kfsl/zd1slrUE/2zmm5cFzPELPe+B4Pj+y4Ir6tbW3ctgBPADgMdMyJAAAPt0FIISQTGGBBez4v2isnH+EEEIIIST1SmIGXgGgOd+s2vKvy+djmntK5C558TqlOgodIo/V1xxj+uCc2qIJ30jX5v1DXJim0sRHkxQT10JorvtMl0jL47w6eXc7RxpO2vMyL6b5XzQ9P5I8ug5OLXWiKn+8C5cGNRITMrhTZD5Xx5S0TxJa4lrH1bq7EDEw/CzOwzppgyn5EEIIIYRkkmxv12Zz+7QF31R3HbhcXGV6Pvc6RxneiV0N+CKEEGKedpZCDLD1o34+Uq7mBm2AX8TfNb+rd9CM1l44Oan82sS5e2Rrvvzg0/nioshjtR3VUtAGjsULYKU2TWbpbOkUeay2p+eG52GffCCNpdLyMi++Oh5wFq2dCQsPkOpnFHi+T0nueAuzMACkZByuiBXrtrk4l+FrzWoj0Nhj1bQWToo8jpzPxN8RiFnop6raWQrxb9tFmr+/mt/nodk4qhSlvZ5PRHQ9r5b3qFIEt8FxbkYwo9nHa6LBjCSzZOtcLJqvlH0qO65wquWUyGO1Tvox/IvhYhypqi9jxwI4cBhgjd8+Ur8bJyfYpo9efKU6xwKoXkyfntYzcLa1d1a2eR2cHQ+578MU9yPI4dyRv4F63O9XDmCE5y68HngbClPSXFpSW11svwDv5L2GdkJbzfeMgcHH/HjM/xQe8k6CN2ZhkHRqKuj7XReKS5JKKwwR19qv0vy/xn6lKefODdLmyGO1vA34+rrX0VhyzZDN9U1VRS+ifKJf+bdIm8csyioRxV8f1iy6AnURFuCBnsX9Un9H6ixDC68QQohJ5uZ/hWk5UzDIdgmccGgu7uIpb0CoOv4RQgghhGQDf8xd9YCyjvnq1ERojIvtF5TbBqvH19Vt8zFfKouVUjRJMfNE341S/Uznhf8wvHt3VTQTmmKw48q4g8U/hOeamh9JHl0Hpx4Fs1Se0SAZz5nXDX6jYwgacgUAtMc6A8Nz/pdNy4cQQgghJJNkc7s2m9unNSXga6m4wtT8CCEk211quyjdRSA1nNH40HxxIf6Wtka2GwUs5PPJLU5XYDBpHwDq8Hlx9zmkHMb34Z8qDArP44zToDZNZulu0c9LFyFhov8JSExOQ4n0HvdNg8fgZiNnWnuloTSkqowWqEo2aF4Bw73OUZr/9zjvgJtzV7mcf0rrIo/V8hbwDeK+3ow2Ao09Vk0PazfdNi/z4u3g+6bndZtzGHK5XM02DhwUsOM3GNL+baqznk+UUT3vZ4GMC2YkmSVb52LRfKXsVJlxhdMtXXTbAgjgCf903fZU1ZdGYwHXOwZH6ksG/eIQDAw9rd0TSp8Dl5axAKoX0+s/9kvTXYS0Ot/2D7yX+zo6Cx011wZl7U4FbwXfx3DPaOyV96e5pKS2aik0x1u5L+P/7P+JbFOPMbX+v7Z0OFZLa9NYyhNa8/pFHuaLiyAysdJpuTgnRrtu1f13cs4ql/N3cYHmdw4cmvJNdK+jseSaI9vrm2R1s3TVbTvKivBJ6AvT89r90FYogZj2ZNkhbQPwcc/ifubc/YcAACzpLgAhhGQKB+fA2dY+ONvaB6NcI/BZaBbeDLyHMMKaFWbVxxw4dBTaow8NgBJCCCGEpJQddgSg7YTzMh8KEH9SUCpcZLsAn4Vmx31evRtVNAFCKouUUt0tp+NdfKTZpk5SfDlnOixc+t+bOkkxdrCfJika62HphrehHWQOIYyXAjPxoPteU/O6yTEE34Z+xBF2NPL5qNdST/qexclCW7SJ6nQn6UHXwdXjUttF+D78c7qLUWs4OSc8MYEbJUopGvENTUnfwdkxyjUCD/sma45tBoa18nr8GP4FA239TcmLEEIIISSTZGu7Npvbpz2s3fBB6FPNNnUC+0jncFPzus05DHPF3zRB3GrA1wTf43gn71U05AtMzZMQQrJVF8upyOHc8Bksek8IAPS2dsebwXc12xQwPOybjDfyZiCHcyPAgrr9QgbjZImww/hmC0Z35QbK7rA9wfcEggjpxofOtvbW/G7jrJq+bhW1aTJLT8sZaMI3xgHlIIATYxp/Sn/hPt9DmOJ+BC4Tgk6SoTAFT/ufx1zxN93xWofLQ0/LGWkpF6maNsJJWCGtBnDieFssLoOP+eOeu+JxcHZc6RiUimLi9/ACzXHHgUNzvmnc15vRRqCxx6o53dIFLjgRQFk9q/6d3gt+gk7CKehrO9u0vPL5OhjpHIan/M9pPg81CJZBG4BeXfV8Zdg4q26bBBGt+ZZYg7LAythgRqvBPuVRgxlTIdFgRpJZsnUuFs1Xyl6Jjiucbe2Nulz+8cW/Tnxmv4sL8IRvGsa57o4siJ6q+tJoLICBYaRzGJ70Pxt3v05Ch4TzSMdYANWL6XWGpSscsCOE5NpSmaCJ0Biv5T6P14P/xbvBDyM9NOrx+Je8HkNKh+Ne1yhcZP9nWstKaicLZ8HdrtvR29oDj/qeRDE7pll85YByELd57sb1jsG4xXEDhDS2t7pZu2JW+BvNNh/zY2bwHYx03pymUmltkv7GRnmzri3YIWbBa4DGkmsSqm+S08N6OmywQoQE4ETd9FrgbZxmORWdLR1Nyyu8N4T9z+5Eswdaly24wiF6zdtCAF/2LO530dK6v5q7clGWooVXCCEkBdycC0Md16Cv9WyM9o7FIeWw4UB8R0sHDHcOTVMpCSGEEEKyQx6fi4Ci7UPYKm9Ha6FVtZajo6W9ZoAv1l5Fv+p6DpeT6mKlDE1SzDxdLKeiDpeH0uN31FM/06/D36Gd0NbUSX0OzoExrttxv+9R3UQtP/y40zMOr+ROR3OhmWl5kqqh6+DUoWCWyqnD1dFNZtmp7EI7FJqWx0Bbf3wWmo010lrdZKsX/K/iHGsfU+7+QAghhBCSSbK1XZvN7dOaEvBVxIpxl3c8Xs6ZnvQdtgkhhJwgcAJOs5yKheISXf86IQBwmuVUtOFPwnZlJ4ATbYAdyi7c7rkHU3MmwwF7pI2gKmLFaInmlc6P44yPQxtsum0+5scjvilYKa3WHb+N+ALdXdKLlWOGaVObJrNwHIer7ZfjucDLugDGReJSDCm9GWNcd+Bsa59qLddmaQue9D+L9fJGzXa1fIPtV8DC0RTw2qi7pRv+F5ql2RZCGM/5XzY9eDxZS8UV2K7s1J0rT7G0j7uP2W0EGnusPAdnxz9t5+PL8Nea/gEFCh7wPYbRyghc7fhPBakk7nL7v/F9eG6kP0I9P6kUKJHfq6Oeryyjet4KW8YFM5LMkq1zsWi+UvZKdFzBwllwuf0SvBl8T9emnx3+Flvl7RjvHoNCoU3K6kujsYC10josk1bG3YeBYYzvATyX82RCwd7pGAugejG9bJwNnS2dsExamdX9cAIn4DbnMPS0nIEJvsdxmB3RLIzhhx+T/E9jobgE97vH1Op51yR9+lh74sO8NzHB9ziWSisixxhQdm3zTvBDLBNX4DH3g2lrB/SydIcVFkiQAZyoA94PfoLelh7oZu1SQQqpJTMZU/zP6K4NAaCbpavu9TSWXHNQfZOcHC4H/Wzn4ofwXE3bLIQQ7vSOxUTX/TjXdpZp+e1/fjfqXd4QzvbuE4uvnHjUF8A3PYv7Xbq07q8e0zLNUny6C0AIIZnsJKElprongz9+uqXGByGEEEJI9WvCN9JNvvlDXJiWspxmOVVXFtUScXnksdqh10yIf8eomk6dpKi+X6NJivPFRdVers3SFtzsGYVZ4Tma7TRJsWIWzoJLbP8y/EynBWbgWf9LCLKQafn1t/VFX+vZmnyAsuuqQ+wwbvXchc3SFtPyI+ag62DzqRNV49UfRKsF31T3t1ourjI9n3udozR36lMdYUfxUmCm6fkRQgghhNR22dquzeb2qTqBPfr9R09g/yT4uan5XW7/N7pYOuv6EYCyRZhHesfgkHLY1DwJISRbtc+AwBWSWtc6rjIcS9gob8bg0mGG/cYHlUNJ5SUxKZJPeW3N38LzMaR0OBaIizXb1fJdZ/8/XXB3MTNeeIXaNJnnKvsgFAptAJwI8lB/7lX2417vQ7iu9BbMCn2DEqU0ZeVQmILF4jKM9T6CoZ4RWC9v1AWrlN25vTH+z8TFE0j16mk9A044Ir9HB4//EJ6bxpKVCbIQnvRPNzxXd7ecXu6+qWgj0Nhj5QxxXAUbrJHf1XOIBAnPBl7GdaW34LvQT/Azc26APNF1P9ycCwB09ZaaPwNLeT2fDKN63sk5IsGMquhgxpXiGlPLkIzoYMZYRsGMJLNk61wsmq+UvSozrnC94xo04RsD0Lfp18rrcV3pcIzzPoIl4nJcY7/S9PoyeiyAgUGBgmmBFzFPnB93Hx48tsrbMaR0OH4PL0gon+oeC6B6Mf2oH+6EM6xd8UHeGzjH2kdzblaPy7nib7i29GasEv9Mc0lJbVWPr4sXc5/B7c7hECBEtqvH2Dp5I64rvQVfh75LS/ny+Trob+urG3uVIWO09z58EfoqLeUCgDALY4LvcWySt+iu2+ty+ehq6azbh8aSaxaqb5IzxH61pm2mHl8+5sdY3yO4z/swVktrzclMZtg2YgOYyNTMgLJFV6IXX1nRs7hf+R14pEK08AohhKRYO0shBtj6Zd1EUkIIIYSQmqKzpVPkcaSDPTwP++QD1V6W9oLx3Yy9zIuvwt/pOhvbCW2ro1gpQ5MUM881jit1E6fUn5+EvsAVJUPwZuA97JB3mZLfA6570ICrr8lPfXyYHcUwz+34JPg5FKaYkh8xB10Hm48GNRLXWjgp8vjEwPrvCJg0gVTVzlKIf9su0g38MTB8HpqNpeIKU/MjhBBCCMkE2diuzfb2aU0I+FIn3VZ2AjshhJD4Tq7lYxck9S62X4Buli6aMQR1TMbDPPDCBwWKpu2yUFySVF5hiLjWfpXm/zX2K+HkHChWjuHL0Ne4vvQWjPNNwD5lv6Ys6uN2QlsMsl+iS3uDtBkAdEFt1KbJPAInYIJrPJwouzt87N+dgWGzvAVP+qfjXyX/wbDSO/BSYCZ+Ds/DdnknRCYmlW+JUoqV4hp8GvwS470TMaDkUtzlHY/fxQXHvyHa8UwGBgsETHCPh4NzlJMyqclcnBP/sg8wDB6f4HscLwVmQmZyWspWopTiLu847FX2655rwjfGKZb25e6fqjYCjT0mrrnQDNc6rtb9raLPZY/6n8T5x/6N60tH4BHfFLwceAPvBD9Mqm5pKjTGBNd4TT6xGBie9b+EJeJyyKjcsV1ePV9Vaj2vlhEAGvD1My6YkWSebJ2LRfOVslei4woOzo6HXWMjgfKx16IKGH4TF+BO7zgM945CM76p7ro02frygHIQVtgiC66oJMhgYJEF5KKp5eLAoYSVYqzvEYz0jKmwvqzusQCqF9OvncV4znG2qsPnYWrOFNzjHAVr1PiT+j04oBzCSO8YvBx4I23XVaT2u94xGDNzX0BTvrGmDQAAfgQwxT8V470T4VG81V62Gx1DYIlaEEut60RIeNr/PG4qvR1zQt/jsHKk2sq0XtqEEZ478bM4T9ePxYHDIPvFugWvVTSWXHNQfZOcdpZCXGq7OG4/zB/iQtzquQv/OvYfjPdOwCuBNzErNAc/hn/BWml9pfMLrPNh1/1/I6bpE734SiGApT2L+73Zs7hf9k3QMQndwpkQQqrBpbaL8H3453QXgxBCCCEkK3W3nI538ZFmmwgJE/1P4OWc6bBwQpw9zacOfMd63DcNHubRDQCdae1VHcVKGXWS4gjPXQggoBvQjJ6k+DSewylCe3SzdkF74WS0FVqjOd8UVs5aQS56JUoptsrbsUXehpXSGiyTVsDH/JE8Aeg6d62w0CTFBNTn62GE4yZMD8zQTUxmYDjMjmJm8L+YGfwv8rhctOJboLHQCC64cIqlHS6zX1yp/PL5OngiZwJGesZAgqzr6A5DxLOBl/G/0GwMcVylWWiJpBddB5uLglkS18PaDR+EPtVs8zIv3g6+j5HO4abmdZtzGOaKv8HLTgyilt11oWxy9Dt5r6IhX2BqnoQQQgghtVk2tmuzvX2qBny9HXxfF3QRPYGd9/MoFNrgJKElGvON4OZcaM23wrm2syqVnxrwNc43QZOP2o+gTmDvFuqCoY5r0FpoZer7JYSQbNGMbxJ5bBRcSwgATHCPx7DSO3CUFRmOD8X+/Cn8K1rzrdDOUojmfDM04hvCztkqzMfFOTHadStKFQ/2Kfsj40O3eu7GZvlvMBiPDamccGKi+wEIBuOFv4vqJHt13rIWtWkySztLIZ7JmYS7veMhQjJcfIWBQYaMdfIGrJM3RPblAORz+ajH10UdLg8uzgUH7BA4AQIESJAQZiIkiPAwL44qxTiqFCEAbdBIbDBj7HMcODziHo8uGRJAmM1ucAzBd6GfEERIFzz+XvBj/BCei4ttF6C3tTvaCCchh8tJeZnmhn/DjMDr2K8c0JWJA4cr7JdWmEYq2wg09pi44Y6h+FP6Cyuk1eWeyzbJf2OzvCWy31nW3pWuswCgr+1s3KHcghcDr8X93ItYMUZ7x0YC3BKl1vOpcKKeL1O2QETZMXyjYwjmhn+LBL7HBjPOCf2Ay+2XoJe1Owr4BikpX6z10iY8438OG+TNlQ5mJJklW+di0Xyl7FWZcYUzrF3xiHscJvgeB6BffEU9Vo+xEhxjJZptscGy6iIqG+XN2CT/HdnehG+EX8TfcVQpwlFWhP3yQQQQ0O0fmxYPPlIPR9fL0Y9XSmuw0rsGLs5Z7vus7rEAqhfTqznfNPKY+uFOuMoxCKdbTsNDvknYoeyKfJcAQIGCd4MfYZm4ApPcD6G50CzNpf1/9u47Tooi/xv4p7on7WxiyYKJYAKVHEQUMd7hmVHM+pjOrBjREznTT0UFI5jFHM7s6Z16RgQBRUUFBEEkGYBl2TS5u58/lhkm7qSe6e6Zz3te6GxPT1dNT3V9q6u6a8iK+tl2x3M1j+NOz3T8N/C/mDKmQcOnwdlY3LQU/6y8DkPsA4uWr17yTjjFdQKe9r2QdOx1ifITlnh+AgBUCje6SV1RCTcmV16LHeXtdcnDFrURy5UV+DG0FLODc7BUaZvUMn4SPgCoFlWY4Ew9CR/Hks2D8SZ3l7svwA/KYqxQfknaxgPa+kU+DX4BRM3fva99JO6pui3r9DY+/Tsqdq9E13N7AtsmXIkexJABnLn1389JNkFpcOIVIqIiGGDbE1WiMtLBSERERETFM9w2BNtJ3fGH+ieAbZ1k34d+xNWtN+C2yhvTDlbpZTupe+R5uFNqYfA7/KL+mtBJVStqMNw2pCj5KiRepFh6JriOxQ+hxfgw+EnCxQzh5wDQqDXhB2UJflDaZmTepNVnfSEDAOxt2xOTUwyKh5+vVdfhDs90dvWaCM+D9cWbWTI3yDYAblTACx+AbXXGs76X0V/eA2Mco3VLq4NUiwsrzsadnnsT6qbNWgMub5mEGVXT0EGq1S1NIiIiIisrx3Yt26fG3/CVzwXsRESUXHepG4DEm5KIonWXuuG+6jtxQfNENGstSS+cjxZCCDN8j8f8ErhbVKBW1MItKuCCa+v4kISQFkIAQQQRRIvWis3qZoTifhE82S9Mxr/ugB13Vd2C3vLOCflfFvoZP0XdwBWdZ7ZpStdQ+yDMqJ6O61qmYKNWn3QcLPx3NA1tF89vVhoyOtdJVX+meq8GDS44MaVyEg50jMnw05CZdZO64IKKszHN+1BCOdOg4U91A570PYsnfc8CaJskqlJU4L7qqegj98o7/QZ1C35X/8TPW2+U+iL4JRq0LTH1XHR57Cp1wXEZTLxSyDYCxx4zJwsZd1bejIktk/CDsqTdukyv7+pU1wR4NR8e9z2dNM6H04uepMHIvqH4OB+2u9z2Y9CldjMjlZ5yvRaL1yuVp2zHFQ5zHAQ7bLildSq88CXU42HZxMDodX9T/8AfgQ0ZbyO6jSdBYJhtKOaHvo7kJ9mNueniZbHHAhgXjcV+uNR2sfXBMzWP4h7P/Xgr8F5CH84SZRlObToXV7gvxpHOcQbnlqzILSpwU+X1GG4bgrs99yeM927QNuLilitxinMCzq84u2g/BHu+6ywsD63Al6EF7fa5tmitaFFWQUDAo8O59Czv83jK9xz8CESWxbcJ4ydxnVhxEWqlmna3y7Fkc2C8yZ1LuHBP1W24qPkqrFPXZ9ynnI81162ArYt9S6dju9Vi24Qr4clXwpOxAMCuca9RBjjxChFREchCxt62PTE3ON/QwQIiIiKiciSEwATnsbjXOyOhU+/L4AKc2nQOrnBfjNH2fQqelx5y28Qr0b+UsFJdldCpIiBwknM8bKI0Ttt5kWLpmVI5CaHWED4Jzk648C7Zd5rvedBhjoMQ1IK4zXN3Qsd8dHkKlwCjL9QingfrjYMamXMJJw5zHIw3Au/EDKirUHF96824VP07Jrj0u8DiWOeR+G/gIywK/RBTNwHASmUVLmy5AvdW3aHrrwkRERERWVU5tmvZPjXHDV+5XsBORETJdZBqcUXFxdCgRpbtKvc1MEdkVn3l3niqegauab0RK5VVGcVbFWpkvVbNE4nXyW7mTCfZ+Fv4eUdRh6lVt2AvW7+E9ymagts8dyW0ESRI6CXtiF/U1WzTlLC9bP3wTM2jmOq5N+k4GND+2GO2ZTMdDRr2kHfD5MprdJlwg8xjgus4LFdW4t+B/yatU6LLkgceeDUvglow6bay8YDnETzvfyVmWaox3fANwte5r4BLONNuu5BtBI49ZqdaqsJD1dNwh2ca3gt80G5dplf8OLfiDHSWOuIuz/0IIZT39golVZwHgMG2bb9UX2o3M1LpKddrsXi9UvnJZVzhQMcY9JJ3xk2td2CpsizpdxJ/Q3c2Uk08lGo7GjRUi2rcXjkFw+1D8Ib/HdzteQAKlIyP3XjFHgtgXDROJ6kjTnKOhxr1uQfxBwYjnMKB6yuvwgj7MNzuuScy+W+4THjhw/957sGc4Dyjs0oWdrjzMOxt2xM3tN4SmcAxXBeq0PCc/2V8FfoGt1TeoNuEU+2RhIQ7q27Gja234tPgFynbQ4C+4/JNWjN88CcsTxXLJjiPxTjnoWm3y7Fkc2C8yU93qRueqH4Q17XehG+2TiJU6H6YX85Z+lunY7vNBDAJ2yZcCYuejIWyJKVfhYiI9LDb1pnQiYiIiKj4TnAeg75ybwCJgy3r1d9xVcsNOK3pPLzpfxeNalPB8uGGG+e4zkB/eQ8IbOtAie/07CF1x4k63nRjBuGLFMfa90s5uC1SPIBtHabtPdp7f7zwRYpP1szgpCs5sAs7bq/8J852nQ4ZctYXWuTib86/4J6q21AlKpN2Orb3fZMxeB6sn/CFqhMrLoz8O9C+v9HZMq1TXSfAAXvk73CdEUII070zcFrTefiP/0N4NG87W8ncP93XoVK4AST+ItFKZRVObToXnwfm6JIWERERkZWVa7uW7dNtN3yNcxyatl8o2Wu5OLfiDExyT4QMOWab8X1IRESUmwmuY3Gia3zk32D7wPRvorK0vdwTT1bPwMnO4yPjCZnE4HTjRMnWa298KPqGujH20Xi25rGkk64EtACmtP4flikrErZRJzrgqeqH2aYpAx2lOtxRdRNmVE1Df3mPdm/syLQ8Jvu+Um03vLyz6Iir3ZfhyeqHOOlKibrBfTUmOI9NWqcU6hhvb5w9/Hr0/y+pOB/72IdnvP1CthE49pgdp3BgSuUkTK+6HbvIfVLWOXqWsWOcR2BW9UzUiOqkr+t5o1wu0sX5gVE3lYVvZjzAPjohz5lck5Kr8M2M8e2ecFq53sxIpakcr8Xi9UrlJ9dxhV7yTphVMxM3uK9GV6lLuzEo2+8w2bEEAFI722jRWvCA9xH8x/8hDnMcjKeqZ2DXqPicSxkq5lgA46KxLndfiCvcF0X+jXWU/thatg5yjMGz1Y9ib7l/0nLyWbDtWDCyLUrWtoPcE09UP4STncfHLA+XsZ+U5Ti96Ty86f93UfLjFA7cUXkTLq+4EC44i1q24+v96GMu/PxM1ymY6L4o421yLNkcGG/y00GqxczqabjafRk6irqi9MMsqPvkegBHAPgNySdZYeDLQWn8dDYRkQXsIvcxOgtEREREZUsWMqa4J+HvzZfDC2/CoIsGDcuVFbjDMw1TcS/2kHfDYPsA7Cbvgj5yL2wv9YBd2NOkkqhRbcJKZRVWKL/gm9AifBVaGDX7cRspak5UDRrssGFK5SS4hCvvz2024YsUFwa/wwzv4/hRWQIgeQdS9PeTbQdTqk7X8PIuohPOrDgVxzqOgCQ4J22uhBA4r+JMHOjYH496Z2F2cE5kpuv4iwL1Mso+Ai/WPIm7PPfjs+AXum+f9MXzYH1NcB1rdBYsY3u5J05xTcBTvucS6qNwzL/Jcwckj4S+cm/sLO+I7lI3VAo3ekk7YX/Hvlml10PujinuSbi2dUpMOuHBt0atCde03ojB/gE4w3Uyesk76fp5iYiIiKykHNu1bJ+2Cd/wdYhjLGZ6n8ByZUUkf9H0vuGrv7wHbvVMxbIU6REREVHhuYQTl7kvwDHOI/Co9yl8EpwNFWrK9eNvPMskfqcaG4p+bTd5F5xfcRZG2Uck3caS0DLc5bkXS7f+cm30+wUEjnH+DS7JyTZNGRliH4gn7A9iaWgZXvW/ic+Cc9GsNUdez/cGjPhyFl62t9wfRzkPx6GOA+ExwuofAAAgAElEQVQQjtw/AJmeEAJXuC/GYNtA3O25Dxu1+qId38nG0qNvmnLCiSvcF+No5+FFyU8mOPaYm1H2ERhlH4Gvg9/i/cBH+DK4ABu1TQVLb1dbXzxW/QBObjobCpSk60RP8FOsMp9JnBciNi/hmxlf8r+GR7xPwgufaY5RAYEzXafggoqzi5IfMq9yvBaL1yuVn3zGFY5w/hXjHIfi0+AXeM3/Fr4NLYopL8n67LO9eX3bNajJX0s9FrATukvdsFxZid/VPxLek06xxwIYF8nstpO745Hq+/Cobxae9j0fOSajJ4MgyodNyLjMfQGG24fg5tY7sVlriKmzvfDhDs90zA0uwD/cV6FWqilofoQQOMk1Hoc4xuJZ30t4y/8uvPBte72AdXSydqUGDd2lbpjivjanSVg5lkylYrzzKBzlGIf/BD7EB4GP8V3oewQRKlh6C+o+eXd4w9hdAVwM4HwA4Rm8tbj/U4Y48QoRUZH0lLaLPGcjjIiIiKj4drX1xV1Vt2BiyyQEEUoYaAoPmilQsFhZisXK0sh7BYAOogM6SnWoFTVwCzdccEIWMmTICCGEgBZECEE0ay2oVxtQr26GF7G/VBz/i2fxrwkI3Fg5CQOifkWnFPEixdLSV+6NqVU3Y62yHh8GPsGXwflYrPyU8iKqfHWROmNq1c1YElqGV/yv46PAZwggAIC/ImM2PA8mI53rOgPfh37EwtB37cb8ZcrPkUE6ANjXPjLrG1sBYIxjNC5Wz8MD3kcSLu4IP/8mtAjftCyCW1To+VGJiIiIyALYPt3GiBu+nql5FP8LfIpX/W/i29D3kdfYj0BERFRcO8rb49aqydikbsab/nfwL/+baNC2pFw/+qbssFTxO9nYEAC4UYH9HKNwtOPwhAv+t6iNWK6swI+hpZgdnIOlyvLI++PTqBZVmOA8LvI32zTlZQ/bbphsuxbXawoWhX7EnOA8/KAswc+hlfDAk/f2u4hO2Nu2JwbbB2J/+yh0lbrokGuykgMco7GPfTje9L+Dl/yv4zf198hrxbyZNVx/9pd3x5TK67CTvENR0s4Uxx7zM9Q+CEPtgwAA65Xf8au6GmuUdWjQGuDVfNhB2l63tHrJO+E014l42vcCgNjYHBZepkLFyU1noxJuTK68FjvK+uQjnzgfrdRuZqTSVY7XYvF6JcqULGQc5BiDgxxjsEVtxJzgvLY2fWgJNmgbE9aPrnOjn4cli2syZOwm98Ug2wB8FfoGy5SfIUGKOV7aGwsYbBuAobbBmBucjyXK0sjkMOkUeyyAcZHMThISzq84C8NtgzGl9XZs0DbGHA9EetjHPhzP1zyOf7bejvmhr2PqJg0aPg/OweKmpZhSOQnD7UMKnp/OUidMdF+ECyrOwbzgV/gyOB/LlRVYpayGF76ClP34+NhFdMLxrmNwvPOYvOMN+12pFNiFHUc6x+FI5zj4NB9+DC3Fr8pqrFHXYbPaAB98uk4wvKDuEy+Au4Y3jL0bwGEAxgP4C4AeuiVSRoSmsdFA5iWEWAygX/zyfv36YfHixQbkiCh3W9RGHNZ4TMyy451H4yr3pQbliIiIiKg8/RBagutapsT8WlT8hRXtdTJm0oGW6v2p3qtBgwttv5B3oGNM2u2XGoUXKZackBbCGnVdzIVaXaTOOMQxVve0mtTmyID416FvEy7SFhCYV/eR7ulSejwPJqM1qy2Y2DIJPyhLMo75o+374J6q23JO8zHv03jc93TaC3HCoi96YV1FREREVNrYPk0t1Q1fJ7iOSf/mLK1SVuPjwOcpL2Bn25yIiKh4VE3FRS1XYmHou6ze195YnRsV6Cv3xt62PTHEPhBDbYMSbgCd5X0eT/meg3/rTZJA4uQu4TZR5IcT3NdinPPQdvPFNk15Wq2sxRplHTZqG7FB3YRNaj18mg8++BHQAgghBBky7MIONypQI1WjTtShm9QFPaUe6CP3Qgep1uiPQSazPLQCc6NulGrQtqBV8+Dx6gewm22XvLZ9v+dhPO9/Jem5YT95N5zkOh4H2w+AJKS80ikEjj1ai6qpuKLlenwZWpDQ9xHfJxG+mW1W9Uzsbts1r3QLFefDfJo/6c2MAPB09cN55z/+GI3Ov543M1LpK9drsXi9EmVri9qIn5TlW9v0m7BB3YhNaj28mg/+SJteaWvTwwa3cKNGVKFO2tam7y33Qh+5F5xbzz3zHQvwaF6sUFZieWgF1qrrUa9uRr22GTOrp6f8HEaNBTAukpk1qc242XMnZgfnJvQlhcv/e7WvoqNUZ1AOqRQ853sZM71PxEz8Fq6nJAhMcB6HF/2vJtTPxSp7fi2AVq0VNaIaNmHLa1vhOjlse6knBtn2xkj7MBxg3w82Ieeb3ZTY70rlrH///liyZEmyl5Zomta/vfcObxi7B4BBAAYC6AtgOwDdF9R90kv3jJYQTrxCpsaJV6jUvOx7HRrUyN+7yn05syoRERGRATarDZjquRefBGdnNRNxprM+Z7vNPeTdMLnyGvSR2YcRxosUKVcb1U1YrqzAOmU9NmmbUa9uxo2V1xqdrbLF82Ayml8L4A7PNLwX+KDd+Bwe1NzXPjKvG1sB4A3/O7jb80DCgGqqXwHjxCtERERE5YPtU3PJ5QJ2IiIi0pdfC+DG1lvxafCLdm8KCy/bzzYKnaWOsAk7KkUFqkU16kQHdJO6oqfUAz3k7mnTjL9JICzVDWonOo/DRPdFOX/GQmObhoiyEV0HuuHGnrY9MNC2N/axD0M/2+4G5y49jj1aS7I4n0w49uox8YoRcb5Ubmak0sdrsQqL1ytRtHIeC2BcJLP5l+8N3O99BIGoifkAcOIV0s2S0DJMbr0F69TfEurccH0LxNa9Vix7vypr0Kg1olbUoqOoQ41UbXSWCo79rmQG+Uy8QrnhxCtkapx4hYiIiIiICmlh8DvM8D6OH5W2zohkg1zxg0/ZiO4sTba8i+iEMytOxbGOI0z5i1FERESlYm5wPmZ6n8ByZQWA1JOk6XExC9D2a5S3eqZiWYr0yvXGViIiIiJqw/YpERER0TaapuEl/2t4xPskvPC1O16n5w3ZqX7tOPr5Ga6TcUHF2XmlR0RkJpvVBoQQQq2ohVM4jM4OlQHG+eyU482MRESljGMB+WFcJL34ND9CCCYsrxJVBuSGSpFX8+IOz3T8N/C/pBNeAdafeIWIjMGJV4ovv6kDiYiIiIiIiCxsiH0gnrA/iKWhZXjV/yY+C85Fs9YceV1sfeQq1a8F7C33x1HOw3Go40A4eDETERFRwY2yj8Ao+wh8HfwW7wc+wpfBBdiobSpYerva+uKZmkfxv8CneNX/Jr4NfR95Ld/2BRERERFZH9unRERERNsIIXCSazwOcYzFs76X8Jb/XXjh2/Z6Adsq0TdhR9+M3V3qhinuazHYPrBgaRMRGYE3dlGxMc5nZ2d5R6OzQEREOuJYQH4YF0kvLuEE4DQ6G1TCKkQFbqq8HiNtwzDVcx+88ALYNtkKERFZBydeISIiIiIiorK3h203TLZdi+s1BYtCP2JOcB5+UJbg59BKeODJe/tdRCfsbdsTg+0Dsb99FLpKXXTINREREWVrqH0QhtoHAQDWK7/jV3U11ijr0KA1wKv5sIO0va7pHew4AAc7DsAqZTU+DnyOucH5WKIshcoBVSIiIiIC26dERETRvJoXG9RNaNaaISBQKSrRXeq29cYIKgedpU6Y6L4IF1Scg3nBr/BlcD6WKyuwSlkNL3wFuUkh+iZsoG1M73jXMTjeeQzcokL39IjCWOcRZY7Hi7ll+v0wzhMRUak5rem8mL8FgAer7kGNVJ2wbn/b7ugidcZRznHYqNajQWtAq+pBM5o5FkCGyKb8ElHm/uo8BHvZ+uGG1luxVFlmyUmv4vGcnPLBeKO/fp8MAQBITqn38Iax3wDQABy8oO6TBkMzVkI48QoRERERERHRVrKQMdg+AIPtAyLLVitrsUZZh43aRmxQN2GTWg+f5oMPfgS0AEIIQYYMu7DDjQrUSNWoE3XoJnVBT6kH+si90EGqzTgPrZoHG9SNaNKa0Ky1wL81DQ0anHDCJZxwwQWXcKKz1AldpM6F2BVFtUmtxx/qn2hQt8CPADqKDugodcQOUk/IQi5YuqqmYq26PmH5TvIOBUuz3JVj+SbSG+tM/fSUt0NPeTvsay98Wr3knXB2xWk4u+I0eDQvVigrsTy0AmvV9ahXN6Ne21z4TBARERGZCNu1icq5fcryQERUvtYq6/F24D18EfgSv6prkt5w21PaDgNte+NAx/4YZRsBIax9oTqlp0DBTvIOqJNqsZ82Cn4tAK/mgw8+rFN+Q4O2RZexhHB5217qiUG2vTHSPgwH2PeDLcf2B9s0lA7rPNJLOYy58ngxt3y+H5dw4gDHaBzgGB1Z168F0Kq1okbod+OV3nE+GcZ+MjOWz1jlEDvLgdnK9XJlRcwkXwICIYQir2cTL3vK20HTNN3bM8UcCzDb92N0vWN26cqv2bFeJzPbXu6Jx6sfxAzvY3jB/6+CTDJZaGY7J2eMsS6rxxszcu9Vha2HpAvAQLT9VYSrTMqH0DTrVdxUPoQQiwH0i1/er18/LF682IAcERERERER6edXZQ2+C32PH0NL8YvyK1ara9CqebLahh02dJe6oYe0HXaR+2CgfS8MkPdCtVRVoFzrY6WyCm/538P84FdYra5Nuk6lcGOEbSjGOvbHIY6xuuehXt2McY3jY2YTFwC+rPtI97TKUTmXbyK9sc4kIiIiolLAdi1FY3kgIrK2TepmbFA3YLPWAI/mRbWoQhepM/pIvTK6wLpFa8GDnsfwVuBdaFsf7QnX1T2k7jjHdQbGOQ/V5XOQ8YwYS/hVWYNGrRG1ohYdRV1ev67JNk15YJ1HRrLamCuPF3Mrh+9HzzifDGM/mRnLZxurxU5qnxHlOj5eapqGyZ5bIbY+gLZyrW69eRjYdiPxe7WvwiHspo+XemG9Y10jGg5MWn47SnUG5ywR63WysvXKb0nLa1+5NyQh6Z5eKZ3zMcaUBivFG7Pq378/lixZEvl76KYx4YlXIGShoe2v7RbUfbLBkAyWIE68QqbGiVeIiIiIiKjUrFRW4R3/f/Bp8Av8of4Z81o+s1rHd+r1lnvhEPtY/NV5CLpJXXPert5WKqvwiPcpzA7OQVtPT2adsr3lnXFhxTkYbd9Ht7yEO0Tj05vHDtGclXv5JtIb60wiIiIiKgVs11I0lgciIuv6U92AV/1v4YvAl1ilrk66jltUYJRtBE50HYc9bQmXfAEA1inrMbHlOqxV18fEgeh+4Hjx6w22DcDNlTegs9Qxx09DRiqFsQS2aUof6zwyktXqSR4v5sbvRx+M/WRmLJ/Wi52UXrHLdbp4qUKN+VuCFLl5GNh2I/HjVQ/iJs/tJR8vWe9Yn9lvhGe9TpS5UjvnY4wpLWaPN1bAiVeKjxOvkKlx4hUiIiIiIioV3wQX4QnfM1gY+g5A8o7A9jon00m1PQFgqG0wTnKNxyj7iJy3r4eXfK/iIe9jCCIUyW+6zxzfKXu882hMrLhIl5m+42eiDnfosUM0eyzfRPpjnUlEREREpYDtWorG8kBEZE0hLYSnfM/jOd9L8COQ8YXORznGYaL7IriEK/JavboZZzZdgA3axph1wzLpWw6v00V0wv3Vd6G3vHPWn4mMUSpjCWzTlDbWeWQkq9WTPF7Mjd+Pfhj7yczKvXxaLXZSZopZrjONl6mWS5BiXu8sOmGTVp80z6USL8u93ikVZr0RnvU6UeZK8ZyPMab0mDXeWAknXik+m9EZICIiIiIiIiplW9RGTPc+hPcDbZ1s6ToCs52NPbydZB2Y2tatfRX6Bl+1fIMBtj1xZcUl2NXWN8tPkZ+AFsD1rTfji+CXST9/qs8sIkMa29b7l/9N/KL8inuqbovp9CVjsHwT6Y91JhERERGVArZrKRrLAxGRdQW0AK5umYz5oa8TLmBOJbzeW4H3sFZdj/urpsIm2i5TvLH1NmzQNibU76n6guO3G44NGjRs1OpxYfMVeKL6QfSUe+T1OamwSmUsgW2a0sc6j4xixXqSx4u58fvRB2M/mVm5l08rxk5Kr9jlOpt42d6ELNE3E2/S6ks2XpZ7vUOFxXqdKDulds7HGENEZpL/tE1ERERERERElNTy0Aqc0fx3vB/4KNI9H93Jl3r29MwfqUSvE077u9APOKv5Qjzte7Fgnzmeqqm4quUGzA7OTfj8yfIa/9m2DWsg8lkWhr7DNS03IqQpRfsclIjlm0h/rDOJiIiIqBSwXUvRWB6IiKxL1VRMbLkO80JfxdTh4fo4leh1vgktwi2eqQCA2YG5+Dr0bUIdH/93skd4u+H1wmk0aFtwRcv18GuBQu4KykOpjCWwTVP6WOeRUaxYT/J4MTd+P/pg7CczK/fyacXYSekVu1znGi/jhddNFvdKKV6We71TLtqr/wqJ9TpRdkrtnI8xpvwYFW9KXHYzklG7bEZngIiIiIiIiKgULQn9hIuar4QXvoQOyPDz9gYG8pGswzGcThAhzPQ+jl+UVbjRfS1kIeuadrxHfbMwP/R1TJ7i90cqyQZPwp2iC0ILcZ93Bq50X1LA3FMqLN9EhcE6k4iIiIhKAdu1FI3lgYjIul70vxpzwTUQe/F0+O+wZOtp0PB+4CMc5TgcL/lfS3g9/LxKVGK0fR+MtA1Dd6kbOkodENCCqNc249vQ9/g48BnWqOtiLg4Pv3+1uhaPeJ/Epe7zC7o/KHulNJbANk3pY51HRrBqPcnjxdz4/eiDsZ/MrJzLp1VjJ6WXT7mOfi3++bzQV9h3y8EQcb9bH32TdrLtZ1N+VKhJn8dvJ7EMAWe4TrFEvCzneqfQRjYcZFja8cfAXxuPy/i9AsCXdR/lnQfW60TZK7VzPsaY4ij3eFMIxdqn7s+6YCjGxC5MbFb+MbxhbKab1BbUfcK5RdrBnUNERERERESks9+VP3B5yyR44E3oTIzv4JMhY2d5R+wm74I+ci90ljqhq+iMzlJnuEUFnHDCIRxwCgcUTYECBQEE4dE8aNU8aFAbUK814Hf1D6xV1mO5sgIrlF8QQghAbIdpdNrvBz6Coim4tWpywfbDamUtnvW9lDAYEr0/9rENx0j7UOwq90UHqQMAYKO6CQtD3+GjwKdYp/4W857oTt9/+d/EUNsgjHGMLthnoEQs30SFwTqTiIiIiEoB27UUjeWBiMi6/lD/xKPep1JetAwAHUUddpS3R5WoQr26Gb+rf2CL1hhZL9qdnulYo66NuWEivJ2/OQ7DJRXno4NUm5CPXdAHI+3DcL7rLLwZ+Dce9D6KVs2TsJ1/+d/ACa5j0F3qVoC9QbkopbEEtmlKH+s8MoJV60keL+bG70cfjP1kZuVcPq0aOym9fMv1LN/z7W5fi/pvePvFFh9jw0svqDjb9PGynOudYjCiPKaSXV6SlenssF4nyl6pnfMxxhRPOcebQinaPs1sF5h3R1kQJ14hIiIiIiIi0tnNnqlo1JoSOgLDHSxdRRfs59gH+9v3xWDbADiEI6PtykKGDBkOOFAlKgEAveSdEtYLaAEsDH2HTwOz8UHg48jARFg4L/8Lfoo9fLvhFNcJ+X7kpJ71vYQQQjEdoEDb/hhg2wvXui9HH7lXwvt6yztjhH0o/u76f3jD/w4e9D4KH/wx+zD8/HbPNAyw7ZW0Y5cKg+WbqDBYZxIRERFRKWC7lqKxPBARWdfr/rdj6t7oOry/vDsuqTgfg+x7J7xvQXAhnve9gnmhr2L6bVeraxPqcAGBE5zH4gr3RWnzI4TAMc4j0F/eA5e3TMJmrSHm9SBCeNn3Oi5zX5DPxyYdldJYAts0pY91HhnBqvUkjxdz4/ejD8Z+MrNyLp9WjZ2UXr7l+mnfC5H1U9GgQYKUdj2g7buMvzFdhZrVZwoLp5ksP5H0TB4vy7neKZbkE/MUVrLjINN86HWjOet1ouyV2jkfY0xxlWu8KaSi7NP43ZA8yUx3FidoyUDyFjwRERERERER5eTDwCf4JvRd0g74naUdMbXyZrxd+xKucV+OkfZhGQ8GZMMhHNjHPhzXVV6Jdzq8gtOcJyYM4oXz9LD3Cfym/KF7HnyaD+8HPorsh+jOzMMdh2FG1bSknaHRZCFjvOtoPFp9P7pKXRK2AwBbtEbc431A9/xTcizfRIXBOpOIiIiISgHbtRSN5YGIyLoUTcG7/g+S1uF/dRyCJ6ofSnrxNgAMtw/BfdV34lzXGTE3S8T/UiUA9JV7Z3TxdrRdbX0xtermmD7h8DbfC3wATTP/hbjloJTGEtimKX2s88gIVq0nebyYG78ffTD2k5mVc/m0auyk9PQo1+H3pbvxVd36yIQW98hFqklXUjFjvCzneqfY4stcoR9GY71OlL1SO+djjDFGucWbYij4PhSI/UcFx4lXiIiIiIiIiHT0jO/FmL/DnUZHOP6K52sexxjHaAhRvF6PKlGJi93nYWb1NNSKmoTXgwjhYd8Tuqc7L/g1AghE/g53zg607YV/uK+CTcgZb2tXW188WHU3Ooi22aajZ7bWoOHDwCdYEFyo+2egRCzfRIXBOpOIiIiISgHbtRSN5YGIyLoWhX7AJq0+8ne4zt1T3gNT3JMy6gM+p+IMHGIfG3lv/M1PAgJ/d52VU/72tPXD6a6TEi7abdSa8L3yY07bJH2V0lgC2zSlj3UeGcGq9SSPF3Pj96MPxn4ys3Iun1aNnZSenuU6k8lX0r1fghTZTvQjl23lwmzxspzrnWJrr8wkK5P5PozGep0oe6V2zscYY4xyizfFUOh9Cg2x/6jgOPEKERERERERkU5+UX7FcmVFpAMl3Gl3sP0A3FB5NWzCZljeBtj2wozqaXCLisiycIfix4HP0KQ265re96HETlIB4Fr3RMhZdIaG7Shvj1sqb4js2+j/a9Bwj+cBKJqSV56pfSzfRIXDOpOIiIiISgHbtRSN5YGIyLqWKMsSlgkA11VemdUND9e4L4cbFUlfqxU1GG0fmWsWcZJzPFxwJiz/Jrgo522SPkptLIFtmtLHOo+Kzcr15Deh7xPew+PFPFif6YOxn8ysXMunlWMnr1dKT49yfUflTagSVSlvIs+GluKRDQkSuomu6Cal/tdd6oZuUtek7zdTvCzXeqeYMim/qcplPo+w6O+gi+jcbrnNpPxmgvU6UW5K7ZyPMaa4yjHeFFqx9ikEYv9t23j0s/UA1mTwb/XW/1M7jGuJEBEREREREZWY2cG5CcuqRCWudl9mQG4S9ZF74ZqKyzDFc3tM504ICj4OfoajnX/TLa2flZWR5+EOpX3tI9FL3innbQ6zD8bprpMwy/d8pCM0/DlWq2vxsv91nOw6Pu+8U3Is30SFwzqTiIiIiEoB27UUjeWBiMi6fgotjzwP17XDbEPQR+6V1XZqpGoc7BiLtwPvJdxIMdo+Mq9fra2VarC/Y198EPg4pj94ubIi522SPkptLIFtmtLHOo+Kzcr15BdReefxYj6sz/TB2E9mVq7l08qxk9crpadHuR7r2A/9bLthcuttWBT6ISZ+pSJBiqQ33DYE91dPTbluvboZ4xrHJ8RFFWrS7R7uOBSTK6/NOP/xzBQvy7XeKaZk5Te+rB1g3w//cF+FaqlKt3RHNByYcIP40zUPo6NUp1saqbBeJ8pNqZ3zMcYUVznGm0Ir1j7t378/lixZEvl76KYxSNLMHbqg7pMNOSdCMSSjM0BERERERERUKpaGts0mHe4wOcxxEGqlGgNzFesvzkOwi9wnYWDx+9BiXdP5Xf0zoaNspH143ts913VmpJM4fjbqJ3zPYIvamHcalBzLN1HhsM4kIiIiolLAdi1FY3kgIrKuX9XEH7vb3z4qp20Ntw9JunxXeZecthdtkG3vmL81aFiv/pb3dik/pTaWwDZN6WOdR8Vm5XpyXZIyx+PFPFif6YOxn8ysXMunlWMnr1dKT69y3U3qioerpuNs1+kxN71mItd4mUopxctyrXeKLb78hoWffxqcjVOaz8E3we+MyqKuWK8T5abUzvkYY4qv3OJNMXCfliZOvEJERERERESkk1XK6oROwBG2oQblJrXDHYfF/K1BwzLlZ13TaNAaEpbtrkOHrE3IuN59ZdKh0VbNg8d8s/JOg5Jj+SYqHNaZRERERFQK2K6laCwPRETW1ay1JPQF97PtntO2+sq9ky7P51crt227T+R5OL8b1fq8t0v5KbWxBLZpSh/rPCo2K9eTHs3L48XEWJ/pg7GfzKxcy6eVYyevV0pPz3ItCQnnVZyJmdXT0UV0bnfyFRVq5Hmu8TKVUoqX5VrvGCG+/EZP+KFBw5/qBlzUciUe8j6GkKYYmNP8sV4nyk2pnfMxxhijnOJNsXCflh6b0RkgIioVt7TeaXQWciQwufIaozNBREREVDDFbKetV3+LGZTToOHdwH/xWfCLHLZWuHbaXrZ+Uam0zeJcr27WNQ2f5k9YVic66LLtPW39cJTjb3gj8E7CbNRv+P+NE5zHYCd5R13Som0atC0Jy3aSdzAgJ+0rRvmmNjwP1g/rTP2wXBIREREZh+3aROXcPmV5ICKyrlatNWFZrnV4N6lr0uUdpbqcthetViT+Cm6r5sl7u5SfTMYSzNBGalC3QNv6CFutrE3IW4vWGrOOgGCbpsSwzqNis/KYqwIl4SYvPY8XFSr+5XsD7wf+l9M2w8J1d3T9vUVrLGD8MccYj1nqs3T7ufjfT6bavkf2Z5CZlWv5tHLs5PVK6RWiXA+07YUXap7ArZ6p+CQ4O+36eh1HgBXbM+23Y8q13jFSdPn9NPgFxNYHAKjQ8KzvJXwV/Aa3VN6AHeSeBuc2N6zXySjGn3Pkqq2uNss5XzqZ9mExxhirHOJNsXGflg5OvEJEpJN/B95vd1ZcM9KgQZhk0IeIiIioUIrZTouedCXs0+CcrNMvdDuti7PsFPoAACAASURBVNQ5YVmyDlm92YVdt21dUHE2Pgp+imatJWa5ChX3emdietXtuqVFbZJ1fLuF24CctM+o8l2OeB5cWKwzc8NySURERGQu5d6uZfs0VrmXByIiq0jWF5xs/CMTLjiTLncj/75ll3AlLAsimPd2KT+ZjCWYo42kJSwJIIB3Ax/ErZW4Hts0pYV1HhWblcdcw+eL0fQ+Xj4Pzc07RiSruxUoCXW8Hsw0xmOW+ix9nC/e95OpdN8jYz+ZWTmUTyvHTl6vlBs9ynW1VIU7q27Gc96Xcb/v4aTrhNsMucbLVKzSnsm1HVMO9Y7RwuX3Nf/buM8zEwEEAGybNGCpsgynNZ2Ly90X4Wjn4QbnNnus18ko5uiTzE50XW2Wc760286jD4sxprhKPd4Ygfu0NEhGZ4CIqNRoFnoQERERlROj2ldmbKcpWrKOVn07kyuSdJzGd17mo1aqwXmuMyP7S4MW6ZT6MrgA84Nf65YWtbEnmb/Xo3kNyEn7ilG+KVaxzmELVU+bAetM/Rld1kqhXBIRERFli+3a1IxucxrRPmV5ICKyLiccCcvqtYactiWJ5JcnukTyC7uz0ag2Jiyz8XfoDJfNWIIZWz2ZrMU2TWlhnUfFZu0x10R6Hy+APvGhUNvNLJoYw2z1Wb4xuJiPaOzPIDMr1/Jp7djJ65XSKXS5PrViAv6f85SUr2vQcEvrVDSqTVlvO9XN+4VsZxQq/qVSrvWOWRznPBKzamait7xzZB+JrQ8vfLjDMw3XttyYU/k1Eut1Mlohzy30fkQz2zlfKpn2YTHGmEepxhsjcZ9aGydeIaKchTQFLVoLtqiN8GheqBkOtJQ6YaEHERERUTkxqn1lxnbaH+qfCcuqRKWuaVSL6oRla5R1uqZxnPMo9JF7Adg2kCnQ1ik6zfMgQpqia3rlLtl3ulpZY0BO2leM8k2xincWW5h62gxYZ+rP6LJWCuWSiIiIKFts16ZmdJvTiPYpywMRkXUl+4XZTeqmnLalRNXFmd7Uk6kGbUvCMj0uDKf8ZDOWYMY2TybrsU1TWljnUbFZecw1Wb1YiOOlUPV8MeOJEcxWn+Ubg4v5iMb+DDKzci2fVo6dvF4pvWKU679XnIU+Uq+Ur3+rfI9Tms7GV8FvstpuqhhZyHZGoeJfKuVa75hJb3lnzKqeiWOdR8SUufA++iw4J6fyayTW62S0YpxjFKKuNts5XyqZ9mExxphLKcYbo3GfWhcnXiGitEKagh9CS/C07wVc03IjTm46G2Ma/opRWw7GgVuOwKGNR+OALeMwasshGLdlPM5quhC3td6N1/1vY73yu9HZL6pkMwpmOvMgERERERWOke00M7b7vg59G3kezt92Ujdd09he6pHw2b8NLdI1DUlIuKLi4pjZqMNWq2sxy/ecrumVu65Sl4TvdE5wvkG5Sa0Y5Zu24XmwPlhn6ovlkoiIiMgYbNcmV67tU5YHIiLr6i51S6jD5wcX5rQtH/wYa98fB9j3w1j7/pHnDpH465zZWqH8Enkezm8n0THv7VJ+Mh1LsHIbiW2a0sI6j4rNymOuLrgKeryE07JqfDCameqzdN+jmbE/g8ysXMunlWMnr1dKr1jl+kr3JSknG9GgYaNWj0tbrsb9nocR0kK6pW31dky51jtm4xAOXOueiDsrb0a1qIrso/CN24Uqv4XCep2MZOVzTjOd87Un0z4sxhjzKbV4Ywbcp9bEiVeICuz85ssxvGFswr/flD+Mzlpavyi/YprnIfyt8Xic3XwRHvI+hk+Ds7FC+QVe+BLWV6Fik1aPH5WleCvwLu7wTMcxTSfj5Kaz8ZLvVbRqHgM+RfG8XvMcrqq4BCNtwyCAmECYSnuN82I8iIiIiMpBMdtpqahQTdNOC2gBvOV/N+bzCwjsIvfRNZ2d5R1jtq9Bw0eBz3TvFBpqH4Sx9v2hQUuYjXqW73ksC/2sa3rlbE/bHpHn4X38QeBjNKiJs5MbpVjlm9rwPFg/rDP1w3JJREREZBy2axOVc/uU5YGIyLqS1eGfBb+ApmUfJyqFG3dU/TPhnx6/Djs7ODfmbwGB7eTueW+X8pPJWIJZ2kiZpJPsdbZpSgvrPCo2K4+5dpE6xfyt9/HyRs3zuLriUl3iQzbrmuEcWg9mqc9yifOAsf0h6fYjYz+ZRbmWTyvHTl6vlF6xy3UqGjSo0PCC/184q/lCrFbWpN2mgIC09SG2PobKgyBt/RzhddpLM9t2RrHbMeVa75jVAY7ReK7mcQyy7R1TxgRE1uXXSKzXyShm6ZPMta42yzlfOpn2YTHGmFepxBsz4T61FpvRGSAi81mrrMcj3ifxYfCTjE+o27NC+QXTvA/hCd+zONN1Ck50HgdZyDrk1Fx6yj1wvHwMjncdg/XKb3jG9xLeCrwLYFuDLPq5gMBO0g7oH3XSSERERET6K2Y77Q/1z5hZzsO6i24Yah+U3wfRyQPeR7BJq0/oKB5uH6prOoNtA/GK/42YZfXaZrzsfx2nuE7QNa3L3RdgbuN8BBCILBMQCCKEf7Teglk1M1AlqnRNsxwNsg3AS/7XYpZ54cXtnmmYWnWzQbmKVazyTW14Hqwf1pn6YbkkIiIiMg7btYnKuX3K8kBEZF2DbHvj3cD7Mcu2aI142f8aTnSNNyhXsdYrv2FR6MeEvuDd5F0MyhGFZTKWYHQb6cfQEvyqJl7APMQ2ENtJsTcB/K7+iYVxY39s05QW1nlUbFYecx1mG4K1gfUxy/Q8XvSID62aB58GZydc+7yL1Ae72Ur7mDFLfdb+94ikV6V3ELUYbd+naHlsD/szyMzKtXxaOXbyeqX0il2uP2+cgxCS39AdbmMsU1bg9Ka/41L3BTjOeWTG2xcQuLVqMryaN6/zXDO1Z8q13jGzblIXzKyajid8z+AJ37MJZSvX8ltMrNfJKEb3SebLLOd87cmmD4sxxtxKId6YDfepdYhcZrQiKhYhxGIA/eKX9+vXD4sXLzYgR9k7v/lyfBNalLD8zZoX0cNkvzigaipe8r+Gmd4n4Ie/YOn0k3fHbZU3oqe8XcHSMIuFwe9wbeuNaNFaASDS8A7/f7zzKFzlvtTgXBIRERGVn0K100JaCH9rPAFbtMbIsvA2j3KMw7XuiZCEpNvnyNZT3ufwsO/JmA5NDRrcqMB/OrwGl3DpllaL1oK/bjkOwaiBSg0anHDioep7sJct4VQvL096n8MjWz9b/Pc5yDYA06tuh0s4Y95Tr27GuMbxkf0RXn9e3Ue65q1UsHxTJngenBvWmYXFcklERERUHGzXZqZc2qcsD0RE1rVR3YQjGyfE3N4TrsOfrnkYveSdDMtb2EXNV+Lr0LcJdfi9VXdgpH2Ywbkrb7mOJRSrjZTtWALbNKWPdR4Vm5XHXJ+peRQnNJ1e1OMl2/hQzseLmeuz8PfYpDUnfX1/+764u+rWIucqOcZ+MrNyLZ9Wjp28Xim9YpfrBzyP4Fn/SylflyBF8iAgMNo+Ehe6zsVJzWcllOvw/6OXvVf7KjpKdQByP881U3umXOsdq1gU+gGTW2/Dn+qGhDooXH5vcF+DDlJtwntHNBzYbvktJNbrZCZWGrc18zlfWDYxjDHGOqwab8wsm33av39/LFmyJLLO0E1jIrPaClloaPtruwV1n2wo7qcoXca1QojIVDyaF1e2/gP3emcUdNIVAFii/IT/13wBvg/9mNP7l4dW4FHvrIR/C4Pf6ZzT/A2xD8T/VU6J/B0/Yx8RERERGaNQ7TSbsOFY5xEIz0Ab3TH3VuA9nNd8KVYov+iSVjY2qfWY1DIFj/ieilkezt+xziN1HwyoElUY69g/si+Atv3shx+XtVyDzwNzdE3vdNdJ6C3tHEknet9/G1qEiS3XoVXz6JpmuWH5pkzwPDg3rDMLi+WSiIiIqDjYrs1MubRPWR6IiKyri9QZo+wjk9bh5zZfirnB+Qbmru0mqeiLt8OqRCWG2gYblCsKy3UsodBtpFzHEtimKX2s86jYrDzmuoPcs+jHSzbxodyPFzPXZ0PsAzHcNiTl611FlyLmpn2M/WRm5Vo+rRw7eb1SesUu1xdUnAM33ClfV6FG8qBBwxfBebiw5YqY/GUql/Ncs7VnyrXesYoBtr3wQs3jGGtP/I7C5ffkprMxL/iVgblMxHqdzMRK47ZmPucDso9hjDHWYdV4Y2bcp+bGiVeICFvURvy9+TLMCc5rdz0nHDjAvh+urrgUj1Xfj/dqX8XnHf6DuR0+xPu1b+DVmmdxb9UdOMd1BgbbBrSfptaIy5qvxfehxVnnd7myAo/7nk74tzBkvolXAGC4fQhGxzVsiYiIiMh4hWqnne46GdtJ3QEkdsz9oCzBaU3n4tqWGzE/+DVUTdU17XirlbWY7nkI4xtPw6fBLyJ5idZB1OJ010kFSf9U5wRISJyFt1Xz4JrWG3F1y2R8F/pBl7RsQsZNldfDBhlA8k7R05v+jmWhn3VJr1yxfFMmeB6cG9aZhcVySURERFQcbNdmplzapywPRETWdYbr5IT+VgGBZq0ZV7ZcjxtabsHC4HcIaUrR8rRB3YirWm7A8/5XYvIWru/HOQ6DTchFyw+llutYQiHaSHqMJbBNU/pY51GxWXnM1YjjJV184PGyjZnrs4+Dnyd9XQCQhLlubmTsJzMr1/Jp5dhJ6RW7XF/tvrTdddStj3BeGrQtkeXZnq9mep5r5vZMudY7VlElqnBH1T8xyT0RTjgiy8P7rF7bjMtbJmG65yEEtaCBOY3Fep3MxErjtmY+58slhjHGWIdV442ZZbpPHRdXQdjN1W9S6oSmmT8gUPkSQiwG0C9+eb9+/bB4cfYTdhjh/ObL8U1oUcLyN2teRA+5uwE5iuXRvLiw+QosUX5KuU6tqMFprhNxjOMIVEtVGW97tbIGz/tewVuB91I2PmtFDZ6qnoHt5Z4Zb/ff/v/iZs+dCcvPcZ2B8yrOzHg7xfRlcAEub5kUaUCGG2bjnUfhqjQdN0RERERUOIVqpy0MfodLW66BAiVmu+F2cTi9WlGDYbbBGGwfgN3lXdFb3jmvGdH/UP/Ez6Ff8G1oEb4MLsAqdXUk/XC60XkRELiz8iaMcYzOOc107midjjcC78SkGc5T+Hmd6IABtj2xk7wjtpO6wS3c2E7qjr1sCaeDab3ufxt3eu5N2N/h5xIkjHMcijNcJ6NSuDGucXxCnubVfaTHRy9ZLN+UCZ4H54Z1ZmGxXBIREREVB9u1mSmX9inLAxGRdd3WejfeDrzXbh3uhAM7yNuju9QVFaICF1Wci+5SN93ysE5Zjx9DS/B5cC5mB+ciiFDCzQ8aNLjgxCu1z6Cb1EW3tCk/uY4lbFQ34ZrWG3NuIxVqLIFtmtLHOo+KzcpjrkYcL/Hn0CpUCAhsL/XABnUjj5coZq7PwvmIJkFgvPNo0/WFMPaTmZVr+bRy7KT0il2uz226BIuUH3POrwQpaT7fq30VHaW6mHVTjQX8xXEQRtqGWaL9X671jtWsUlbjH603Y6WyKqEcCQj0kXvhlsob0FveGSMaDsyo/BYS63UyEyuN25r5nC+XGMYYYz1WizdW0N4+VRUV3iWtWHneEviWeTB00xiEu1aELDS0/bXdgrpPNhiS+RLEiVfI1DjxSmFpmoYrWq/HnOC8lOscaj8QV7svQ61Uk3M6XwW/wU2tt2ODtinp633l3phVPRMO4Uj6ejwrTrwS0AI4ZMtR8CMAwNwNcCIiIqJyUsh22vuBjzCl9f8if8d3BoZFd44AQCfREd2krugo1aFW1KBSuOESTsiQIUFGCCEEtSCCCKJZa0G9uhn12mb8rvwJL7wx6cWnEZ+HiyvOw2muE/P6nOn4NB/Obr4YK5RfknaKxucxbF/7SNxTdVtOad7jeQCv+N9IOggTnf4OUk+sUdexQzQHLN+UDs+Dc8M6s7BYLomIiIiKg+3azJRL+5TlgYjIuvxaAOc1X4qflOUJ9XT8DbNAW107q3omdrftmle6r/nfxiu+1/GnugE++BPSTHbzw8UV5+FU14S80iX95TKWoG19RBMAdpd3xSj7CMPGEtimKX2s88gIVh1zNeJ4CWgBjN1yOIIIxW07+r88XgBz12cq1IT3SZBM2RfC2E9mVs7l06qxk9Irdrn2awEc2TgBDdqWnPIbzkcmNxJHjwVEn/MKAAJS5P3h7ZmxPVPO9Y7VBLQA7vPOxKv+t2K+j/A+dMCBiyvOwzTvgxmV30JjvU5mYaVxWzOf8+USwxhjrMlq8cYKUu1TRW2boEz1qVh30y/Y8fa+nHilwGxGZ4CIjPO074WUk65IkHBpxfk42XV83ukMsw/Gw9X34vzmy5NOvrJC+QWP+Z7GRRXn5p2WWTmEA3vZ+uOr0DcJDT0iIiIiMk4h22mHOQ6CHTbc0joVXvhitp+sgylsk1aPemUztk7inpFkHaXx6YT/1qBBgsClFRfo0t5PxyVcuKfqNlzUfBXWqeuTdkyG/9bLle5L4NG8+HfgvwnpRXeSrlHXJc0LpcfyTenwPDg3rDMLi+WSiIiIqDjYrs1MubRPWR6IiKzLKRy4r+pOXNnyD/yoLEnZDwzoW4+vV37Dr+qahOWpYshY+36G34BEyeU6lhBPA7BUWY5lyop21insWALbNKWPdR4ZwapjrkYcLw7hQCfRCX9of8ZtH5B4vMQwc30mQYqZfMXMcYuxn8ysnMunVWMnpVfscu0UDrxcMwsTms7MafKV+BvL2xM9FhCdfy3qv2Zv/5dzvWM1DuHA1e7LMMI2FLd67kKj1hSzzwIIYLr3IQDm2Ges18ksrDRua+ZzvlxiGGOMNVkt3lhBqn0KDYAAJJeEHf+vb9vKAtDxkKA4ktEZICJjrFRW4RHfUylfn+SeqOvJwfZyT9xffReccCZ9/QXfv7BOWa9bema0m7yL0VkgIiIioiQK2U470DEGT9bMwO7yru122sc/tCwf7W0nmgYN3aSuuK9qalEHA7pL3fBE9YMYbBsYk99o4Twney0XkyuvwRmuk5KmF50W5Y7lm9LheXBuWGcWFsslERERUXGwXZuZcmmfsjwQEVlXB6kWM6qnYYLz2K3XcRbvSs74PuHo5dial8McB+GWyslFyxNlL5exhFSMHktgm6b0sc4jI1h1zNWI4yXZryGLmOc8XsLMXJ+FSRa4jYWxn8ysnMunVWMnpVfsct1BqsXbtS9jD3m3vLaTiWRjAQKJx46Z2zPlXO9Y0f6OffFczWMYbBuQUKcVs22YCdbrZBZWGrc18zlfLjGMMca6rBRvrCLZPoWGyAQsVHjm77EiooK4wzMdSoqpHc90nYyjnX/TPc3e8s64uOK8pK8FEcSzvpd1T9NMdrX1NToLRERERJREodtpveSdMKtmJm5wX42uUpeYTvxo6Tr30z3C24gWvdwBB051TsDLNU9huH1IQT9zMh2kWsysnoar3Zeho6hLuR/07Ki8sOJc3FN1GzqLTgVPq1yxfFN7eB6cO9aZhcNySURERFQ8bNemV07tU5YHIiLrcgoHrnBfjFnVD2OMfTQApKzH9Zaqv7lSuDHFPQk3V/4DNiEXPB+Un2zHElLFaDOMJbBNU/pY55ERrDrmWuzjpU7q0O7rPF5imbU+O85xpKViF2M/mVk5l0+rxk5Kr9jl2ikceLrmYVxRcTGccOiyzWSSjQUki8hmb8+Uc71jRV2lLphRNQ3nuc6MmfTOjPuM9TqZgdXGbc16zpdrDGOMsS4rxRuriN6nUKNe4Fw2RWEzOgNEVHyzA19iUeiHpK/tKe+Bv7vOKljaJziPwev+t7FKXZ3w2n8DH2Ki+0K4hKtg6Rtpe6lH5DkbDkRERETmUax22hHOv2Kc41B8GvwCr/nfwrehRVDjBgDylWxgoKvogiOd43Cc88ikvwBVbOOdR+Eoxzj8J/AhPgh8jO9C3yOIUMHSG23fB6/WDsa//G/gdf87+E39HcC2fcW2uT5YvikZngfnj3Wm/lguiYiIiIqP7drUyrF9yvJARGRdu9l2wdSqm/Gb8gc+C36BucH5+FlZiQZtS8HSjO8XdsKJvzoOwVkVp6Gb1KVg6VJhZDqWkM/NAcUaS2CbpvSxziMjWHXMtVjHSzWqEpZpW//L4yU1s9Vnm9RNeD3wTsx6VsDYT2ZWzuXTqrGT0it2uT7RdRyOdv4NT3ifwZuBf6NRa0r7nmzKV/RYwLb3t7Fi+7+c6x2rEULg7IrTMcw+GJNbb8Uf6gbd6sdCYL1ORrLquK3ZzvnyjWGMMdZktXhjBeF9eu+Z90C63g3H9s62jjBOvlJwnHiFqAw95Xs26XIBgavcl0Iu4KyoQgic5joRN3vuTHjNCx/mBufjQMeYgqVvpO5SNwD5XRxARERERPorZjtNFjIOcozBQY4x2KI2Yk5wHuYE5+GH0BJs0Da2+974jqdU+ZUhYze5LwbbBmJ/xyjsLe8JIczVaWUXdhzpHIcjnePg03z4MbQUvyqrsUZdh81qA3zwYRe5j27puYQTp7lOxKnOCZgX+gofBT7DvOACbNTqdUuDWL4pEc+D9cE6U18sl0RERETGYLs2uXJtn7I8EBFZWw+5O06Sx+Mk13gAwBa1EVu0RrRqrdhZ3lG3dMLx0QUn9rT1w0j7MBzpGIdaqUa3NKj4MhlLyLRtZPRYAts05YF1HhWblcdcC328VAp3wrKuogsmuI7l8ZIBs9RnNsgx61kJYz+ZWTmXTyvHTmqfEeX6Ive5uLDinEi5nhuYh03YnHT9bGJZeCwg9v2ACw7Ltv/Lud6xor1te+L5msdxW+vd+Dj4udHZaRfrdTKK1cdtzXLOpwfGGOuyUryxCvXHEJbu9xV2vm831B1p7sn5SoXQNGsGAioPQojFAPrFL+/Xrx8WL15sQI6yd37z5fgmtChh+Zs1L6KH3D1mWavmwezAHMwPLcTPykpsUDeiVfMAANyiAttJ3dBb7oXhtiEY4xiddBAhnaWhZTij+fykr+1nH4V7qm7LepvZ8msBHLLlKPjgS3jteOcxuNp9abvv/7f/v0knbjnHdQbOqzhTr2wWxL2eGZHZNgFgkG0vjHXsn3TdlcoqnNR0Vrvbe7HmSfSRe+maRyIiIqJyZIZ22ha1ET8py7FGWYeN2iZsUDdik1oPr+aDH360aq34Tf2j3W3cWjkZY+yj4RSOrNK2Ij2+h1XKaixTfsby0AqsU3/DJrUe9dpmvFX7ot7ZLXvpyndAC8Cr+dIOjD1d/Qj2sO1apFyTHsxQvxLrzHiZlkuWSSIiIiJzKdV2LdunuSnV8kBEVA4yqcMvqjgXu8p90VHUoY/cG7YC/ogUmUf0WMJ7gQ/g0Tzwaj6EEIJD2CEg0o6VpWLWdhLbNOUhk+/5WvdE7CnvwTqP2lXq1xRkcqwMkPdCB6kWLjhRK2oxxD6A59BFomcbrpz7Qhj7ycxKsXzyeiXSo1x/HpiDq1pvaHcbV1Zcgu5SV+xrH4nV6tq0aQ61DcIo2wic6BqfEC9LMf6lUor1jtlkso+jy69N2IqUs9ywXqdCK+dzFaC0+rAYY4qr1OKNGYT36Q/7LIBvWdscA9X7doBc03bcSW55bZ/H+l2ydfX3FtR9EjQoqyWHpZPIBFo1D57xvYiXfK/Cm2QyEgBo1IJoVJrwk/Iz3gt8gEqPG+NdR+Ns12lwCVfGab0beD/laxOcx2ad91w4hQPD7IMxOzg34bWVyi8xf/+m/IGjm07KaLuP+57G476nE5Ynm+TGKJe7LzQ6C0RERESUhBnaaR2kWoyUhmGkfVjS1zPpkOoj9zLlBVJm1UveCb3knfAXx8FGZ6XkpSvfQGZl3CHsemeNCswM9Svpo5TqTJZLIiIiovJlxnYt26fGMWN5ICKiNqPt+1juonTKX/RYwgmuYxJez2QcoRyxTVMaBtr2Yr1HafGaAmBS5UQeKyaWaRuOfSH5YewnMzNb+eT1SqSHnnKPtOsMtQ/Kqo1ypfsStml0YrZ6x4qyLb9GYr1OhcZzlfTKqQ+LMUZfVoo3ZtU8Z0vMn/Wv/vmWUXkpZZx4hchgK5VVuKrlBqxXf8vqfa3w4GnfC/gs8AWmV92BnvJ2Gb3v08AXSZd3Eh0x1DYoqzzk48qKS3Cy8/iE5RVZTCJDRERERERERERERERERERERERERERERERERERERERERJQrTrxCZKAloZ9wcctVaNFac97Gr+oaXNAyEU9Vz0AnqWO7665UVmGDtjHpa/vb94UkpJzzka0ecnf0kLsXLT0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiomjFm2WBiGKsVtfg0pZr85p0JewP9U/c2jo17Xrfhr5P+dpg+4C880FEREREREREREREREREREREREREREREREREREREREREZBU2ozNAVK5ubL0NTVpTzDIH7DjAvh9G2Uegl7wT6qQOaNU82KTWY37wa3wQ+BgbtI1JtzcnNB8Lggsx3D4kZZrLQz+nfG1vuX9uH4SIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyII48QqRQRrjJl05wvEX/L3iLHSVuiSs20fuhRH2oTin4gzc5bkP7wbeT7rNV/1vtTvxykrl16TLK+BCd6lb5pkvom5SF7xX+1rMsv8FPsY070MJ657iPAGnuCYkLK8TtQXLHxERERERERERERERERERERERERERERERERERERERERFZEydeITKYE05MqZyEgx0HpF3XLSow2X0N6tXNmBf6KuH1L4PzEdSCsAt70vf/qf6ZdPmO8g4QQmSV72KRhYzOomPMsipRlXTdClGBzlLHpK8REREREREREREREREREREREREREREREREREREREREREUWTjM4AUTkTELi9akpGk66ESULCVe5LIZA4UYofASxWfkr6PlVTUa9t/v/s3XeYtHdVN/DveVp6CCUJSSAhEEooUkMvoRfpRl5EsWBDuvRUyAAAIABJREFUEBEEFBUEAVFAUCSAoqLgCyogHaQIhg7SXoSE3gIkEHr60877x2w0ZXdmy5Tdnc/nuva6kjm/+Z2z8+x9z13PvWjs0C1XWnZ+AAAAAAAAAAAAAAAAAAAAgM1A4xWYoXvtuFtuu/1WK37f0VuvkuO2Xn3R2Jf3fGXR18/LedmTvYvGLl+HrLgGAAAAAAAAAAAAAAAAAAAAgI1s26wLgHl29t9+LydvOzmPfOQjV/ze6269Tr6w50uXef2Mvd9edPwFvXPJuQ6qA1ecHxZz8skn56yzzrrM64ceeuiq/s6BtbFMAuuJdRLA/PIdAACslu0IAADg4uwjAAAAAMDkOP4GAMwzjVdgRs779Dn5899+Tq573euuasfjylsOX/T1H+z94aKv786uJefaXttXnB8W88IXvjCnnnrqZV5f7d85sDaWSWA9sU4CmF++AwCA1bIdAQAAXJx9BAAAAACYHMffAIB5tmXWBcC8+vH7Fm+QslwH14GLvn5BX7Do69uzdHOVbdm6ploAAAAAAAAAAAAAAAAAAAAANhqNV2BGzv/MOWt6/z61z6Kv78yuJcbvWHKuC/rCNdUCAAAAAAAAAAAAAAAAAAAAsNFovAIzcuHXL1jT+7cssfjuzd5FX98nizdqSZKze21NYAAAAAAAAAAAAAAAAAAAAAA2Go1XYEZ2f3fXVPNtr+05sA5YNHZOnzvVWgAAAAAAAAAAAAAAAAAAAABmTeMVmJG9F+ydes7D67BFXz+7z55yJQAAAAAAAAAAAAAAAAAAAACzpfEKzEjv7qnnPHzL4o1Xvrrn61OuBAAAAAAAAAAAAAAAAAAAAGC2ts26AGB6jtl61Xxg94cv8/pZ/d18d+/3cqUtV5xaLRf2zvz9BS9fNHbfHffMUVuPnFotAAAAAAAAAAAAAAAAAAAAwPzReAXmyPFbr7Vk7LTdn8/tdtxqarV8ZvepeekF/7Ro7P47fnJqdQAAAAAAAAAAAAAAAAAAAADzacusCwCm5/ht114y9qk9n55iJckndn9q0dcProNyxNYrT7UWAAAAAAAAAAAAAAAAAAAAYP5ovAJz5JitR+ewOnTR2Nt2/ke6e2q1vGfXBxZ9/ZpbrzG1GgAAAAAAAAAAAAAAAAAAAID5pfEKzJnb77j1oq+fuffb+ejuT0ylhm/tOTOn7fncorGbbbvJVGoAAAAAAAAAAAAAAAAAAAAA5pvGKzBnTtx+uyVjb9j5lqnU8Lqdb1wydo8dd55KDQAAAAAAAAAAAAAAAAAAAMB803gF5swJ226So7dcddHYO3a+O6ft/txE85/f5+e1F75p0dj1t143R209cqL5AQAAAAAAAAAAAAAAAAAAABKNV2DuVFV+ep/7Lxrbm7159nnPT3dPLP9LL/in/Kh/vGjsgfvcZ2J5AQAAAAAAAAAAAAAAAAAAAC5O4xWYQ/fb5145vA5bNPbpPafmtTvfOJG8X9zz5bziglctGjtu69Vzrx13m0heAAAAAAAAAAAAAAAAAAAAgEvTeAXm0L61b35z/19bMv7c816QT+3+9Fhznr33nDzxnKdkZ3YtGn/Ufr+eLWWVBAAAAAAAAAAAAAAAAAAAAEyHLgcwp+6+48659bZbLBrbmV159Nm/l4/v+uRYcp3T5+TR5zwhX9t7+qLxu2w/MbfafvOx5AIAAAAAAAAAAAAAAAAAAABYDo1XYI495YAn5rA6dNHYuTk3v3nO4/OPF7wye3rPqnN8cc+X84s/fkQ+vee0RePHbb16nnTAE1Y055YlVl0X9oUrrg8AAAAAAAAAAAAAAAAAAACYTxqvwBw7ZMvl8pwDn54D64BF47uzOyef/zd58I9/KW+98B25sHcue+5v7z0rzz3v5Dz0x7+Wr+89fdExB9dBefYBT8t+td+K6t6/9l/09Y/t/mS6e0VzAQAAAAAAAAAAAAAAAAAAAPNp26wLAGbrOtuulb868Nl51DmPzzl97qJjvrb39PzReX+S55z//Jyw7aa58bYb5OitV83hWw7L/rVfKltyXp+XM/d+O1/Y86V8eNdH8/Hd/y97smfJvAfXwXn+gc/KUVuPXHHNR2658qKvn7rns3nyec/IA3bcJ1fecnh21I5c2Bfk8C2HZVtZ3QEAAAAAAAAAAAAAAAAAAAD/SycCINfbdnxectBf5XHn/GG+ufdbS447u8/Ju3adknftOmVN+a6y5cg8+8Cn5xpbj13V+6++9WrZP/vlvJx/mdjbdv5H3rbzPy7x2usOfmWO3Lp4sxYAAAAAAAAAAAAAAAAAAABgPm2ZdQHA+nCNrcfmHw96ce65464TzXO37XfKyw7+61U3XUmSbbUtd9hx2zFWBQAAAAAAAAAAAAAAAAAAAMwbjVeA/3HwloPy1AN+Py848Dm5ztZrjXXua209Li848Dl5+oFPyoF14Jrne9i+D832bB9DZQAAAAAAAAAAAAAAAAAAAMA82jbrAoD15+bbb5p/3Pbi/Nfuj+ffLnxD3r/rw7kwF654nv2yb269/Ra5/z73zi2232ysNR6z9ar54wP+IH907jOyM7vGOjcAAAAAAAAAAAAAAAAAAACw+VV3z7oGWFJV/TjJQZd+fZ999sk1rnGNGVS0el/60pdy4YWXbV6yIX6XfZKtN9mRLdffni3HbcuWI7amrrgl2bcG7Zt2Jjm/s/esPekz9mTvl3Zn76d3Z8+ndmYV/VpWpA7fkm0P3C9bb7ojW668NTmwkl1Jn7s3febe7D1tV3a+5NzkvI23rtuZXfnGnm8OHXOVrUdlR7ZPqaLRNvTfOWxClklgPdlM66RZbadtxO3DSfJ5bD7+TTev5X4H+BuYHJ/t6vjcAGZvM+1LAms379tn8/77X5rPA2DjWss63D7CfFvO385S1ut2gW2a+eDfmWnZ6H9r46x/o38W69EsPtPN+O+4GX8nNo95/fuc1997Xozj33elc6w15zz9Tc7T7zorq/mMN/rxN39XTMNm/TvbTL/XZvpdNgKf9/hd9Jle+JXz0zsXvTf+7O4+eNp1zQONV1jXquqCJPvMug4AAAAAAAAAAAAAAAAAAACAGbmwu/eddRGb0ZZZFwAAAAAAAAAAAAAAAAAAAAAAMG0arwAAAAAAAAAAAAAAAAAAAAAAc0fjFQAAAAAAAAAAAAAAAAAAAABg7mi8AgAAAAAAAAAAAAAAAAAAAADMnW2zLgBG+GGSQxZ5fWeS06dcCwAAAAAAAAAAAAAAAAAAAMCkXDXJjkVe/+G0C5kX1d2zrgEAAAAAAAAAAAAAAAAAAAAAYKq2zLoAAAAAAAAAAAAAAAAAAAAAAIBp03gFAAAAAAAAAAAAAAAAAAAAAJg7Gq8AAAAAAAAAAAAAAAAAAAAAAHNH4xUAAAAAAAAAAAAAAAAAAAAAYO5ovAIAAAAAAAAAAAAAAAAAAAAAzB2NVwAAAAAAAAAAAAAAAAAAAACAuaPxCgAAAAAAAAAAAAAAAAAAAAAwdzReAQAAAAAAAAAAAAAAAAAAAADmjsYrAAAAAAAAAAAAAAAAAAAAAMDc0XgFAAAAAAAAAAAAAAAAAAAAAJg7Gq8AAAAAAAAAAAAAAAAAAAAAAHNH4xUAAAAAAAAAAAAAAAAAAAAAYO5ovAIAAAAAAAAAAAAAAAAAAAAAzB2NVwAAAAAAAAAAAAAAAAAAAACAuaPxCgAAAAAAAAAAAAAAAAAAAAAwdzReAQAAAAAAAAAAAAAAAAAAAADmjsYrAAAAAAAAAAAAAAAAAAAAAMDc0XgFAAAAAAAAAAAAAAAAAAAAAJg7Gq8AAAAAAAAAAAAAAAAAAAAAAHNH4xUAAAAAAAAAAAAAAAAAAAAAYO5ovAIAAAAAAAAAAAAAAAAAAAAAzB2NVwAAAAAAAAAAAAAAAAAAAACAuaPxCgAAAAAAAAAAAAAAAAAAAAAwdzReAQAAAAAAAAAAAAAAAAAAAADmjsYrAAAAAAAAAAAAAAAAAAAAAMDc2TbrAgBYvao6KMk1k1wpyQELP7uTnJ/kB0lOT/KN7t41syJhzlgugfXC+uiSqqqSHJnk2CQHJzkwyY4kF2TwmZyZ5PTu/s7MigQAAAAAAAAAAAAAAABgqqq7Z10DjEVVbUlyQpI7J7lukmsnOSLJQRncZHp+kh8t/PwwyReTfGzh55Pdfe4Myp6pqjosgxtM61Khr3X31aZfEaNU1dWS3CvJXZPcMsmVl/G2nUn+O8kHk7wpybu7e+eESpy6qrpSBp/HzZLcIMlVkxyeZL/8783U5yT5VpKvJPlkkg8keW93XziLmtlc5nW5rKrbJzllRumP6O4zZ5Qb1q15XR8tZaHRyu2S3C3JXTLYTth/GW/9XpKPJvnPJK/v7tMmVSPANFXV45M8a5HQU7v7KVMuZ+IWjhPdIoPvgpsmuXqSq2TQeGu/JOdlcIzoB0lOS/KJJB9Jckp375lFzQCwXs3bdsTFVdXBSW6T5NYZbFscleQKSS6fZEv+99zTN5N8NYNtig8l+UB3755ByQAAMHHzto9QVYdmcP7tFhlcj3aNJIdkcKxxa5IfZ3At2o+SnJXBdSkfS/Kx7v7yLGoGAAAAYOOat+NvF6mqEzI4P3+rJNfJ4Nz8FZJsS3J2BsffvpLBte8fS/KW7v7+bKoFADYjjVfY8KrquCSPSPLzSa64yml2Jnl9kr9L8o7u3jum8ta1qvo/Sf55kZDGK+tMVd09yaOT3D2Di7nX4rtJXpTk+d393bXWNgtVtS3JSUl+Pcnts7rP5Nwkr07ywu7+yBjLY07M+3JZVQ/L4HtzFjRegYuZ9/XRpVXVAUkenuQ3Mrjwda0+kuS5Sf617UADG1hVvTXJPRYJbaqTsVV1dJLfTvIzWV4Tskv7TpJ/TXJyd392nLUBwEY1L9sRF1dVN0nyyAy2KfZbxRQ/yGCb4i9sUwAAsNnMwz5CVW1P8lMZ7BfcJpd9qNVyfTHJ3yf5h+4+Y0zlAQAAALCJzcPxt4tU1eWS/GIG135fZ4Vv353Bw4T/MsmbXOcNAKzVWm/Kg5mpqstX1YuSfC7JY7L6pitJsiPJTyf59yRfrqqTxlDiRnC/WRfAcFV1XFW9JYO/zXtmPOvtKyV5UpLPV9VvjGG+qaqqeyf5TJJXJjkxq/9MDkjyC0k+XFVvXmjiBCNZLv+HZQZmzProshYaC34uyXMynqYrSXLzDJoVfrCqbjimOQGmqqoOSnLHWdcxSVV1UFU9P4MbGR6T1TVdSZLDkvxmkk9X1V9X1WrnAYBNYR62Iy6uqo6sqtdm8HSsh2V1TVeS5PIZNA7/TFW9uKoOGVeNAAAwS/Owj1BV90xyWgbXpdw2q2+6kgzOq/9JktOr6uVVdegYSgQAAABgk5qH428Xudh133+RlTddSZJtSe6c5A1J/l9V3WaM5QEAc0jjFTakqrpVklMz6GY47r/jY5K8qqpeW1VHjnnudaOqDkxyn1nXwdKq6gFJPpnBjdSTcPkkL6yqV1XVARPKMTZVtU9V/W2SNya51pinv1cGO9m/POZ52WQsl5cwroYGwCpYH11SVe2oqr/PoEHKURNKc4skH6qqX5jQ/ACT9MAk+8y6iEmpqhOSfDrJo5JsH9O0W5P8WpJPVdWdxjQnAGxEm3o74uKq6uczOPd0/zFOuyWDBiz/VVXXHuO8AAAwK5t2H6GqtlfVS5K8JeM/H741yc8lOa2qHjrmuQEAAADYPDbt8beLVNX+VfVvGVz3ffiYpr1BkvdU1bOrauuY5gQA5ozGK2w4VfXAJO/O6p9cvFz3T/LxqrrRhPPMys8lOXDWRbC4qvqtJK9JMo0bnU9K8saqWu2TOyeuqg5O8vYkk2yMsn+Sv62qZ00wBxuY5fIyjpt1ATCvrI8uqar2T/LOJL80hXT7JvmHqnr4FHIBjNNvzLqASamq+yY5JcnRE0pxaJK3V9WjJjQ/AKx3m3Y74uKq6veT/GOSy00oxXFJ3l1Vx0xofgAAmJZNuY+wcL7p7Ul+ZcKprpjkZVX1wqpy7SYAAAAAl7Ypj79dpKqukMF13w+YwPRbkjwuyWuqat8JzA8AbHJO3rGhVNXtkrwi0+vceHiSd1bVNaeUbyqqap8kvzvrOlhcVf1Mkr9IUlNMe8ckL59ivmVb+Ht9fZLbTynl46vqmVPKxQZhuVzUuJ/wBSyD9dElLXQk/9ckt5ty6hcu3OgPsO5V1d2T3GLWdUxCVd0xg++BSTcI25rk+VX1sAnnAYB1ZTNvR1zcQjPuZ0wh1RFJXl1V26aQCwAAxm6z7iMsnG/65yQnTjHtb2Rwzg8AAAAAkmze428XudjDNm814VT3S/J65+YBgJWy8cCGUVWHJfm3LL/pymlJPpLki0l+kOTCJIdkcGHrrZLcLMn2ZcxzxSSvq6qbdPeFK617nXpykqvNugguq6qul+SlWd7N1F9L8tok787g7/07Sc5NclCSKyW5dpI7Z7DDeOwy5vupqnpMdz9vFaVP0guyvItb9ib5f0nen+TbSb6Xwed4hQyaKN06yQ0zuGFulN+rqs929z+upmA2F8vlZVXVoZnc03+BJVgfLeqpSX5yGeM6yXuSvDHJR5N8IckPk+zOYHv/0CS3THKnDD6TUV3OK4OnEd6ou7+6qsoBpqCqDkjy/FnXMQlVdUyS12T5x4k+leR9Sc7M4HtxvwzW/9fK4Dvx8suY42+q6ozufuvKKwaAjWUzb0dc3EJjtccvc/iZSd6V5NQMjj9vy+DY81WT3D3JlZcxx82SPCHJn6y4WAAAmKFNvo/wR0nus8yxZ2dwXcppSU5Pck6SHRmcb7puktsmOWqZcz2qqj7S3f+0snIBAAAA2Gw2+fG3i7wkyY2XMa6TfDjJh5J8PYNjcgcmOTLJTTN4YOeoe0LvluS5SX5rtcUCAPOnunvWNcCyVNW/JHnQiGFnJ/nLJH/b3V8bMd8Vk/xaksdkcKPNKE/p7qcup9b1rKr+T5JXZvgNu1/r7qtNpyIusvAEnQ8kufmIoacneVyS13T3nmXMuy3JQ5I8PYMLwIe5IMmNuvtzoyuevKq6fwY3jQ9zXpKTkzynu78zYr4rJHlUkkdn9E115yT5ie7+yjLLZROyXC6uqm6Z5INLhG/X3e+bZj0wD6yPLquqbpxBo8VRDUXfkOSJ3X3qMue9cpLfzeBA+5YRw9+V5C5txxpYh6pqe5JXZdBQapindvdTJl/R+FTVlgyaqIx68sUFGTw19oXdffqI+e6UQaPa242Y84wk1+/u7y+/YgDYWDbzdsTFVdWNMjjGNar55geS/HGSd3T33iXmqiS3SfJnGTQBH2ZnBsee18X+NQAAjLKZ9xGq6icyaNo/6kaN92Rwo8abu3v3iDnvlOSxWd7DA76f5Lju/sEyxgIAAACwCW3m428XqaqHJ3nRiGG7M2jO8qfd/fUhc10xycMzuN77oBFz/lR3/9tKagUA5teom8hgXaiq22Z005V3JLlWdz9pVNOVJOnu73X3M5Mcn0EjklEeW1WHLGPculRVl6uqP0vyigxvusLs/FxG30z9liTX6+5/Xc7N1EnS3bu7+2VJbpLBzcHD7JvkecuZd9Kqap+M7tb6rSS36u4njGq6kiTd/f2FBko3SPKxEcMPTPLsZRXLZma5XNxxQ2Kfn1oVMF+sjy7ruRnedGVPkod39/2W23QlSbr7zO5+TJJ7ZPAE82HulOSnlzs3wLRU1Q2TnJLRJ2I3qkdmdNOVDyS5Tnc/cVjTlSTp7r3d/c7uvn0GDcnOHTL8iCR/taJqAWADmYPtiCT/04j0FRnedGVXkt9MctvufttSTVeSpAfel8HT7R87Iv2OJL+/wpIBAGAm5mAf4bkZ3nTlvCQ/39136O7Xj2q6kiTd/a7uvneSByQZdS3LFTJ4aBgAAAAAc2gOjr+lqq6U5Jkjhp2R5MTufsSwpivJ/9wT+owkN0rymRHz/lVVHbz8agGAeabxChvFH4yI/3OSe3b3mSudeGFj+yFJnjVi6MFJHrzS+WepqvarqrtX1UuSnJ7kCbHcr0sLT8N8/Ihhb01yv+4+ezU5uvu7GdxA/J4RQ++50Oxo1n4pyVWHxM9Ncsfu/tRKJ+7ubya5fZKPjxj6U1V1vZXOz+ZguRxqqcYrP1pOEyRgZayPLquqTkhy4ohhv9jdf73aHN39jiR3zeCC2mGeXlW2sYGZq6qjqupXq+pdST6R0Y1JNqSqulySPx4x7C1J7rqcxryX1t2vzOCzG7Zd+5CquulK5waA9WpetiMu5REZNOZfyvlJ7tHdJ3d3L3fShQYsz8vo5isPqaqjlzsvAABM07zsI1TVLZLceciQc5Lcqbtfvpr5u/t1GTRn/MaIob/sXBMAAADA/JiX428X8/QkhwyJfzuDpivvX8mk3f3lJHdM8qUhw45M8ocrmRcAmF/Dng4O68JC04N7DBnyySS/0N171pKnu3+3qo5L8sAhw05K8uK15JmEhZPvRyS5RpLrJLl+khOS3CSDJyey/t09ybAGH99I8pDlPDlnmO7eVVUnZbDcHDlk6GOTvG8tucbg4SPij+/uz6928u4+r6oekORTSS43ZOjDkvzOavOwoVkul7ZU45VVL5PAUNZHlzXqu/nk7v6ntSbp7k9U1a8m+b9Dhl0zyb2TvGGt+QCWo6r2TXK1DLbJrpvkhklukcExgXnwmAw/CfvfSR7Y3ReuNkF3/3dVPSjJO7P08dM/SnLf1eYAgFmwHTFQVZfP4Lt8KZ3kwd39rtXm6O7nVdUtkzxoiSHbMmg+/tTV5gAAgLWyj5DHjYg/rLs/vJYE3f2FqrpPko8m2brEsCOT3DqzP/8GAAAAwBg5/pZU1bFJfmXIkL1Jfma194d191kL1/p9JEsff3tEVf1Zd39vNTkAgPnhSQlsBCeNiD+8u3eOKddvJblgSPxWVbV9TLnGoqr+LsmFGdxwe0qSv07yqCS3jKYrG8mov/MndPcPx5Gou8/KoFvoMPdeuPh8JhaaIN1wyJCvJ3nJWvN099eT/OmIYfdaax42LMvl0pY60KfxCkyG9dHFVNU+GTQ6WcpZSf5gXPm6+xUZHIwf5ufHlQ9gKVV1UFWdleT8JKcleWOSP0vykMzJidiFYzLDmnRemEEzslU3XblId5+S5E+GDLlPVd1grXkAYBpsR1zGbyW5wpD4s7t7HM01n5Bk2EMD7j6GHAAAsGL2EZKq2i/Drwd5a3e/ahy5uvuTSV44Ytjtx5ELAAAAgNlz/O0SHpmlG6IkyYu7+91rSdDdH8/we8wOSPIba8kBAMwHjVfYCO43JHbKWp8scnHd/c0kbxsyZP8kVx9XvjG5YpZ++jIbxz2HxL6e5F/GnO/vknx7SHx7Zttw5MQR8X/o7t1jyvWCDG7OW8p1qurAMeViY7FcLu24JV7/3FSrgPlhfXRJd8jgAPhS/qa7fzTmnMNuvE+Se1aVpofApG1NcqVZFzFj90py+JD433f3p8eY7y+TnDskrvEWABuF7YgFVbUtya8NGfKlJE8eR67u/loGF9At5eZVdblx5AIAgBWyj5DcNYPrwJbyrDHn+/sRcU2eAQAAADYPx9+SVNX+SR42ZMi5SZ4ypnTPSbJ3SPxhVVVjygUAbFIar7CuVdXBSW48ZMirJ5D2LSPix0wgJ3Osqq6f5MghQ17W3cN2/lasu3cmeceIYbcbZ84VGnVByX+MK1F3n5PkP0cMO3Zc+dgYLJdLW/huXuog4OenWQvMA+ujRd1tRPylE8j59gxv1LZ/kptMIC8Al3T/IbHOoFHK2HT395O8fMiQBzsZCwAbzv0zfD/7Cd09bP9vpV41JLY1jj0DAMCs3GFI7LtJThlnsu7+ZJIzhgxxPRoAAAAAm81JSS4/JP7y7j5rHIm6+0tJPjhkyLFJbjOOXADA5qXxCuvd9UfE3zWBnKePiHv6IOP2EyPiY2syssJ5bzihvMtx9Ij4uJs7fHFE/OAx52P9s1wu7ZpDYhqvwPhZH13WsM/kawsHzsequ89P8qERw9bDOhpgs7vLkNiHu/tzE8g57DvxKkluO4GcAMDk/OqQ2GeTvHbM+Uadxzp8zPkAAIDlGfZAoHd3d08g57Br0lyPBgAAAMBmc98R8b8ec77Xj4iPqgcAmHPbZl0AjHC9IbE9Sb4wgZzfHRHfMYGczLdrD4ntTfLhCeX92oj41SaUdzkOHBH/3pjznT0ifv6Y87H+WS6Xdo0hsUl8L8O8sz66rGGfyQcmmHc9fyYAm15VHZFBo5OlvG9CqUfNe9ck751QbgBgjKrqoCR3HDLk5HHfXNndZ1bVg5Lss8SQz44zHwAAsGzDrkk7bUI5h12T5no0AAAAADaNqtqR5G5Dhnyhuz855rSvT/KsIfGfTPKEMecEADYRjVdY744cEvt6d++aQM59R8R/NIGca/HpJIes4n13GHchrNqwm4e/2d2TavoxqsnQav6uxuXCEfGDM97mK6OeKvrDMeZiY7BcLu24JV7/VnefM9VKYD5YH11MVe2X5KpDhnxxgunX5WcCzJXdSU5ZxfuunOHfJxvFdUfEJ9J8a+Fm6e8nucISQ249ibwAMGbzvh1xkbsm2b5EbFeSV04iaXe/ahLzAgDAGsz1PkJVVQa/y1K+NKHUw65JW2/XowEAAACwenN9/G3BiUkOGhJ/07gTdvfnq+rLSa6+xJDrVtWVunvUNeEAwJzSeIX1btgG9qROOB8zIv79CeVdle7+w9W8r6rG+tRG1uSwIbGvTjDvnhHxpS5An4azRsSPyngbr1x/SGxvkm+PMRcbg+VyaUs1XvncVKuA+WF9dEmHJqkh8a9OMPd6/UyAObHQ5O7Elb6vqn4xyUvHXc8MHD0ifvoEc/8gSzdeuXlVbenuvRPMDwBrYjvif9xrSOx93T3OY84AALBu2UfIAUm2DInP4pq0dXU9GgAAAACr5/hbktEPjH/XhPJ+NEs3XkkGD1pSPRN2AAAgAElEQVR7w4RyAwAb3LATiLAeDGu8ct6Ecp4wJNZJPjuhvMyvA4fEfjDBvEeMiJ87wdyjfH1E/G7jSlRVhye52ZAhp3b3LD8LZsNyubSlGq98fqpVwPywPrqkYZ9HMp+fCcC8uOKI+CRvTBj2/XJQkutOMDcAMD7Djiu/dWpVAAAAszbserRkAtekVdUVkxw7ZMip484JAAAAADN00xHxD04o78dHxG88obwAwCag8QrrWnf/enfXEj+3GXe+qtqa5P5Dhpza3Z4wwrgdMCR2/gTzHj8ifsYEc48yqnPpQ6tqXN9hj0tSQ+LvH1MeNhbL5dKuscTrGq/AZFgfXdKwzyOZz88EYF7sNyL+4wnmvmBEfKnmhADAOlFVhya56pAh751WLQAAwGx19xlDrker7n7HBNI+MMOv1XzfBHICAAAAwKwMa3Dy9e7+3oTyjmq8cr0J5QUANoFtsy4A1pmHJjl6SPzN0yqEufKnSS63ROyzE8x7vxHxL0ww9ygfSPLDJIcsEf+JJL+R5OS1JKmq45P85ohhL1tLDjYsy+Uiqmr/JEcsEf78pcbuSHJikttlcNDs2IX37p/BNui5SX6Q5CtJPpNBx+K3d/dZk6gdNjDro0v6RpJHDYn/9ySSVtVRSW4yYthM19EAc2DPiPj+E8w9qunLMRPMDQCMx7CLunYm+cS0CgEAAObLwrnzxw0ZckFGP6AIAAAAADaEqrpKksOGDJnI9d7LnPs6E8wNAGxwGq/Agqq6epI/HzJkT9bY5AEW090vn3bOqjo2yR1GDPvQNGpZTHfvqqq/SPKUIcOeU1Vf6e63rCZHVV0hyRuS7Dtk2Ce7+wOrmZ+NzXK5pGskqSVin0+Sqjo6yROSPCTJ5YfMdfDCzzEZNGh5ZJI9VXVKkhcmeV13j7q5FjY966NL6u4zkrxgBql/KUuv/y4y63U0wGZ37oj4IUm+PqHch46Ia7wCAOvfjYbEPt/dFy4VrKrrJLlzklsluVYGDfwPSrJPkvOTfD/JV5N8KoOm4m/r7u+Pp2wAAGAT+LMM9iWW8nL7EAAAAABsIsePiH9xgrm/nWRXku1LxI+eYG4AYIPbMusCYD2oqusleWeSKwwZ9nfdPakbeGDa/jRL70Re5O3TKGSIv8hgh3cp+yZ5bVX9dlWt6Pts4UL5DyY5bsiwvUl+cyXzwhpthOVyqWVmd5IzqurZGRwEe2SGN11ZytYkd0ry6iSfrqp7r6pKYK02wvpoaqrqsAwaSg1zand/cxr1AMyxM0fEj5pE0qranuSIEcOcjAWA9e+GQ2KnXfqFqtpeVQ+vqk8sxF+Q5GeTnJDk8CT7Z3As68AMtgVun8Hx5Fck+XZVvamq7jHeXwEAANhIqmpLVT0zyW8PGXZeBo1ZAAAAAGCzuOqI+Jcnlbi7O8OvNbxcVR00qfwAwMam8QpzraoOqaonJflIkmOHDP1ikt+ZTlUwWVV1UpIHjRj2xe7+r2nUs5Tu/lGSkzLoNLqUHUmel+RDVXVSVW0bNmdVHV5Vz0ry0Qx/mlCSPKe737+SmmG1NspymeQaS7x+XgbL1eMyulnDcl0nyRur6pVVtZomLsAqbKD10VRUVSX5mwyeZD7MK6dQDsC8++qI+AkTynu9jN7GvdyEcgMA47PUca3kUhd1LTQDPi3Ji5LcaBW5tiX5ySRvraoPVdWtVzEHAACwgVXVbZO8L8nvjRj6O939pSmUBAAAAADTcpUR8TMmnH/UwzSvPOH8AMAGNfQGddioFp5GfIUk3+3uPQs3TO6XwY0wV09ygyR3SnLvhdeHOSvJ/bv7nAmWDFNRVTdJ8o/LGPr8SdeyHN39vqr6pST/kOHfWSckeVWS71fV+5J8Isn3klyQ5IoZ7BTfNsmNs7ymY/+Y5ImrrxyWb4Mtl8ct8frBCz+T8OAkJ1TVvbv7sxPKAWTDrY+m5ZlJ7jdizPkZNGcBYLL+O8meJFuXiE/qhuY7L2PM/hPKDQCMz5FDYt9M/ufc0p8nedQY894iyXur6vlJfre7d45xbgAAYMqq6tAk53X3uQv/vz2D44NHJrlmBscp751BQ+dRXtjdL55UrQAAAAAwI0eNiJ854fzfGhH3YGAAYFEar7BZHZPkC0ky6LmyaqcmeUB3f34cRcEsVdUtk7w5o28IOz3J306+ouXp7v9bVWckeXmGXxyfDBou3XfhZzX2JHlKdz99le+HFdmAy+VSjVcm7RpJPlBVd+nuj8+oBtjUNuD6aOKq6hlJfncZQ0/u7u9Muh6Aedfd51XVpzJoqLmYO1fVEd097qdhPGgZY0Y19QUAZmihOf+wJ1adUVX7ZNDc+z4TKGFLkt9OcquqesAEtlcAAIDpeV6Sn13j9Wh7kzwliWtTAAAAANiMRt379b0J5z9nRPyQCecHADaoLbMuANapc5L8cZKbarrCZlBVv5TkXRk0Jhnl0d19/oRLWpHufleS62ZwAcsFE0pzWpLba7rCtGzQ5XKljVfOSfLvGTwp+LFJfjXJo5M8I8k/ZeFpwst0+STvqKrjV1gDMMIGXR9NTFUdVFX/muT3lzH8mxnsNwAwHW8aEtuW5FfGmayqbp/k5ssYOqpxGQAwW4cl2T4k/uMk/5rJNF25uFskeU9VXXXCeQAAgPXrQ0lu2d1P6+6edTEAAAAAMAEHjoj/eML5R913dsCE8wMAG9S2WRcA61AneWGSl3T3pBo8wFRU1SFJnp/koct8y99192snWNKqdfePkjy2qt6VwUXw43yi+DlJHtvdHxjjnLCojbpcVtWOJMu9KeS9GTRbeWt37xwx7w0yeOLvQzP8Bphk0BTidVV184V1ArAGG3V9NElVdcskL0tyzWUM35PkZ7v77MlWBcDFvDLJk4bEH19VL+vur601UVXtm+SvljncMVYAWN+OGBH/7ST3HDHm20nemeTLC/+9K4OLsY5Ocv0kt8ryLs46LslbquqW3X3uMsYDAACbx+cyaOj/8VkXAgAAAAATNOp+r0lfez3qftAdE84PAGxQW2ZdAKxDleQJSb5eVa+sqqvNthxYnaq6T5LPZPk3U783yW9OrqK1qaqbVNU7krwx4226kgy6qb61qt690AQCJmKDL5fHZvS243eS/HR33767Xz+q6UqSdPd/d/cvJ7l2Br/vKNfKoKkLsAYbfH00dlW1f1U9K8n7s7ymK0ny6O4+ZYJlAXAp3X1akncNGXJQkr+vqlEN/YZaeP/Lk/zEMt9y/lryAQATd9CI+LCmK29OcuskR3T3z3X3k7v75O7+m+5+Xnc/prvvmuRKSX4mg33tUa6fwQMAAACA+XLtJG9J8tWq+sWqcu0mAAAAAJvRviPiI+8zWaNR1/Ot6fpCAGDzcvIOllZJHpzks1X1K7MuBparqo6pqtcleUOSI5f5to8muW93j+rqOXVVtaOqnpnkw0nuMuF0Jyb5eFU92QUujNMmWS6PGxH/aJIbd/erVzN5d38lyR2T/Nkyhv9yVd16NXlg3m2S9dFYVdX9kpya5PFZ/j7yk7r75MlVBcAQTxkRv1OS11fV/quZvKqOTfIfSU5awdvOW00uAGBqRl3UtZhvJjmxu+/d3R/s7h42uLsv6O5/TnLDJH+yjPl/vqpOXEVdAADAxneVJC9N8p6qOnzWxQAAAADAmI162PauCee/cES8JpwfANig3FQOo+2T5CVV9exZFwLDVNV+VfXkDG4cvt8K3vrmJHfq7h9OprLVq6rLJXlbkt9Lsm1KabcleWqSN6z2Rj24yCZbLoc1Xvlwkjt397fWkqC793T37yX582UMf+pacsG82WTro7GoqmtX1VuSvC7JMct8264kD+/up0+uMgCG6e73JvnXEcPumeSjVfXAqlrWSdKqOqSqfj/Jp5LcboVlabwCAOvbShuvvC+DBsOnrDTRwvGtP0jyxGUMt28JAADz7TYZHMe8zqwLAQAAAIAx2j4s2N27J5x/1P1nk278AgBsUNO6iR2m7dtJfuli/79vkoOSHJjk6CTXXfg5cAVzPq6qzuju546tShiTqvrpJM/O8m8aTpI9SZ6W5GndvXciha1BVR2U5D+T3GgZwzvJuzN4Kvl7k3wjyXeT7ExyhSRXSnLjJLdNcu8kRyxjzp9M8tqquud6/HxY/zbjcplBg5VLOzfJQ7r7x2PM8/gMGr0Maw5xl6o6vrtPG2Ne2JQ26fpo1RYauz05yaMy4sD+pXwjyYO7+/0TKQyAlXhkktsnufKQMccneU2Sz1bVvyd5V5IvJPlekh8mOSDJYUlOSHKXJD+VwbGjpZw5JJ/GKwCwvq2k8cppSe6z1gak3f2nVXVikrsPGXabqrpFdy92zA0AAFif/jrJOxf+e0v+93q0yye5TpLrZXBObrlPzb1Kkjcv7Bt8d8y1AgAAAMAsDG2sUlXbJtx8ReMVAGBVNF5hU+rus5P8w7AxVbUlgycYPzDJzya54jKmfnZVfbC7P7jmImEMquqGSf4yyR1W+NavJPmFhSeFrzsLTyR/WZbXdOUVSf6kuz+zRPyMhZ//TvKyqtqe5MFJnpTkmiPmvlsGN53/wXLqhmTzLpfd/ZcZ/F7TyNVV9Zgk98rwpgg/m+QPp1ETbESbdX20Wgvb/w9L8owMbrRfiVcleXh3f3/shQGwYt393ap6QAYNOEfdSH2dhZ/fXkPKd2awX/nQJeJnr2FuAGDy9lnmuAuT3HutTVcu5nFJ7prBzZhLeXAWb3YMAACsQwvnz4aeQ6uqKye5f5L/k+TEZUx79SQvT3LPtdYHAAAAAOvAqMYm+2REc5Y1GnXPtAetAQCLGnahH2xq3b23u0/p7kdncAL7aUnOH/G2LUn+auGmTZiZqrpSVb0oycezspup9yZ5QZKfWOc3U/96BhehDPPDJCd1988OabpyGd29q7tfnkFTlxct4y1PrKqV3rDOHJqD5XKquvsrSV4yYtjdplELbDTWR5dVVbdN8l8ZrFdW0nTlzCQP6u4HaboCsL5094eSnJTkggmn+nwGDf+OGTLm9AnXAABMx99095fHNVl3fzrJK0cMu9+48gEAAOtDd5/Z3S/u7jtmcK5uOc0W71FV951waQAAAAAwDaOu6Vvuw1NW64AR8R9NOD8AsEFpHgFJuvvH3f3kDJ48+IMRw2+axIluZqKqtlbVbyX5QpKHZ2Xr8Y8nuVV3P6q7z5lIgWNQVZdL8scjhp2d5I7d/ZrV5unu87r7EUl+b1RJSZ662jxsfvOwXM7QqBtTblJV+02lEtgArI8uq6qOqqpXZPDkwZus4K17k7w4yfHd/aqJFAfAmnX3mzN4CuxZE0rxhSR37u7vZNC0dylfnVB+AGA8di5jzJ4kfzqB3H89In5sVV15AnkBAIB1oLvfk+R2Sf7vMoY/bcLlAAAAAMA0jGpsMunGKweNiGu8AgAsSuMVuJjufn+Su2Vwge0wvzyFcuASqurmSf4ryV8mOWQFb/1ukkckOaG7PzKJ2sbs4UkOHRLvJD/d3Z8cR7Lu/rMkLxgx7A5Vdbtx5GNzmaPlclY+lOTHQ+Jbk1xjSrXAumZ9dElVtaWqHp3ktCQ/s8K3vz/Jzbv7N7r7h+OvDoBx6u7/THLjJG8Z89SvSXKz7v5GVR2U5KghY7825twAwHhduIwxH+vub407cXe/N8mXRwxbSaNQAABgg+nuXUkemuR1I4b+RFXddAolAQAAAMAk/WBEfCXXuq/GqMYr355wfgBgg9J4BS6luz+a5EUjht2jqg6YRj1QVdur6mlJPpDBzWTLtTPJc5Ncs7tf1N17J1Lg+P3CiPiru/ttY875xCTfGTHmQWPOyQY2h8vlTHT37iQfHjHs6GnUAuuV9dFlVdWxSU5J8hcZfeD84r6S5MHdfdvu/thEigNgIrr7m939k0nuncF34lp8NMk9u/uk7r6oCeB1k9SQ93x1jTkBgMk6fxlj3j3B/KPmPnaCuQEAgHWguzvJbyU5b8TQk6ZQDgAAAABM0vdGxK884fzDHgZ+YXd/d8L5AYANSuMVWNzTkgy7+XRbPIGQKaiqozK4cfgPk2xdwVtfneT47v6d7v7hRIqbgKo6PsnxI4Y9adx5u/ucJM8cMezO487LxjRvy+U6MKop0kqaKsCmYn10WVV1/ySfTHLbFbztR0mekMFn8i8TKQyAqejuN3f3bZLcMMkzMmjit3PE2/Yk+ViSZyW5cXef0N3/fqkx1xvy/r0ZNO8CANav5Vw09dEJ5v/QiPhVJpgbAABYJ7r79CQvHTHs5tOoBQAAAAAm6Bsj4pNuvDJs/lG1AQBzbNusC4D1qLu/U1UfzfCT2TdJ8t4plcQcqqqbJXlTksNX8LYPJXlsd39wMlVN3C1GxD/d3Z+bUO7XJHnekPjxVXVYd49qAsEmNqfL5aydNSK+fSpVwDpjfXRZVfWkJE9NUst8y64kL07y1O4e1VkdgA2kuz+V5FNJ/rCqdiS5WpJjkhySZN8MmrGcneTrSb7Y3ReMmPKEIbFPd/e5ay4aAJik5RzTneQTrb44In7gBHMDAADry5uTPHJI3IPAAAAAANjovjYiPunGK8Our//8hHMDABuYxiuwtHdkeOOVw6ZVCPOnqu6U5PVZ/gXXX0vyu939L5OraipuNCL+9kkl7u7Tq+q0JMcPGXbVLO8ifTahOV4uZ23UTbDnTaUKWEesjy6pqirJC5I8YgVve2OSx3W3g+cAm1x378zgZOla1vnDjg99aA3zAgDT8Z0kneGNOifZkPP7I+L7TTA3AACwvrw7ye4sfd3mIVW1vbt3TbEmAAAAABinL4+IX3NSiavqyAw/B+/aceD/s3fn8dLf493AP1cWsslqiSCJtZaKprZWNSKNpaHULiRElRJLq08fwaOKouiC1lJKKUoitPZdNY19acSDpsSSEKEIIpE91/PHnHjuJGd+c5aZOefc5/1+vc7Lbb7X73td92Rm7nPOzO/zAxhL8Arr0sLViB89UHJKd394xmN8e8L6HjPuzyZVVXfM6GTgnZZQfkGSv0jywu4+b6aDzcdQqmiS/PeM+38lw8ErV59xf9apTf68XGuTnnc/mcsUsE54PVrUi7P00JWvJnlCd88szA2ArUtV7ZzklgMlglcAYJ3r7gur6owk1x0omxT+uxqTfiZ3QiUAAMzJwnttQxcFen13nz2r/t19flX9MMNX9d0jLgoEAAAAwMb1fyesD30eb7VuMmH9izPsDQBscIJXWK+2SfJ3A+vvTzLr4JUfTFj3/GHqqur6Sd6epZ1M/bEkj+zurSltc/cJ65Oel6s1af+9Ztyfdcjzcs1dc8L6aXOZAtYBr0dXVlV/mOSJSyi9JMkLkzy7u2d5Mh0AW5+Dkmw/sC54BQA2hlMyHLyy5wx7TwryP2eGvQEAgMu7Z5JjBtY/m+TTM57hBxkOXvGZNAAAAAA2rO7+SVWdnmTfMSWzDF65+YT1z8ywNwCwwXmTjnVp4eoelyTZdkzJuG+8p2nSB11/PocZ2ESqarskx2dyuMclSZ6Z5Hndfems55qzSf8uzfoD6GdNWL94xv1ZZzwvk6r6tYz/0NcF3f2+GY9w24G1C5KcPuP+sC54Pbqyqrpdkr9aQunpSQ7v7k/MeCQAtk6HDqyd1t3/NbdJAIDVOCXD/67PMnhl0t5nzLA3AABweedOWN83sw9e8Zk0AAAAALZ2n8n48z93q6obdfepM+h7+4G1s5P4vB8AMJbgFdazMzP+6oP7V9U2Mz6Z9BoT1n84w95sTk9JcusJNT9L8oDu/sAc5lkLkz48Mulk89XadcL6z2bcn/XH8zJ5TJKHj1m7tKp27u7zZ9G4qm6S5NoDJV/o7otm0RvWIa9HW6iq7ZO8LpN/pv14kvt09w9mPhQAM1dVO2Z8SO+F3X3hDNred2DtbTPoBwDMxqeTPH5g/eZJZhUwPOmKWl+fUV8AAODKvjth/YZzmGHoM2kXZXQCCAAAAABsZCcmuf/A+t2TvHQGfe8wsPbv3X3JDHoCAFuJbdZ6ABjwzYG1nZLcbMb9h070Tobng2WpqmslOWZC2dlJ7raVn0w9KdBonxn3nxS4dNqM+7OOeF7+wtDjfpskvzLD3g+YsP7vM+wN64bXo0U9OpN/Hjgho/tE6ArA1uM/MgoaW+zrFdNuVlW3S7L/QMlbp90TAJiZEyes32mGvX99wvrnZtgbAAC4vEmf95p0IYRp2Htg7bQZX4gMAAAAAObh3yas333aDavqRkluNFDywWn3BAC2LoJXWM9OnrB+uxn3n/Qh2y/OuD+by+OS7DKwfn6Su3f3J+c0z1r5xoT1g2bc/8YDaxdl8nxsXTwvRyb9e/zbs2haVdsnOXpC2btm0RvWIa9HW6iqbZL8yYSyTyQ5rLvPncNIAMzPOQNr15tBvz8YWDsjyadm0BMAmIHuPi3DJ1geVFU7TLtvVW2X4d9rf6O7z5x2XwAAYKwvTFif6efRqurWGX7fz+fRAAAAANjwuvtLSb4+UHJIVe0+5bb3GRopydun3A8A2MoIXmE9m3Ti6D1n1biqdk5y6EDJT5N8eVb92VwWwgV+f0LZEzfJydSTPkByyCw+/J4kVXXNJAcOlJzU3efPojfrj+fl5Xx6wvrDq2rbGfR9RJJ9Bta/mVGwAmzVvB4t6rAk+w+s/yDJA7v75/MZB4A5+s7A2tDPc8tWVddIcvhAyRu7u6fZEwCYuX8ZWNstyZEz6HmvJNccWH/nDHoCAABjdPdZSb42ULJvVd1yhiPce8L6x2fYGwAAAADmaeg9+h2TPGxajaqqkjxqoORj3X3GtPoBAFsnwSusZx9IcunA+t2rarcZ9f7DJEPhDu/r7qHZYDl+N8m1B9aP7+5/mNcwa+xjGX7eXy3Jo2fU+35JamD9/TPqy/rkeblg4ZdLJw+U7JfkkdPsWVV7J3nBhLJXOtGVTcLr0ZU9dsL6UX4xDrDVOmVg7epVddsp9npGRm/uLuaiJH83xV4AwHy8ZcL6k2YQMHz0hPVjp9wPAACY7H0T1h88i6YLn3N7zISy98yiNwAAAACsgddOWH/iwkVKp+G+SW48sP6aKfUBALZigldYt7r7R0k+OlCyU0YBKVNVVfskeeqEsjdPuy+b2v0H1i5M8uR5DbLWuvvHGYWvDDmmqnadZt+q2jnJn04oO26aPVn3PC8vb9Lj/wVVdYNpNFpIGn5Vkt0Hys5K8opp9IMNwOvRFha+B7jLQMmHuvu985oHgLn75IT1oStWLFlV/XqGT4A4TsgXAGw83f2ZJCcNlNwsyTHT6ldV907yWwMln+/uT0+rHwAAsGTHT1g/ekYXA3tGkmsMrJ/U3f89g74AAAAAMHfd/V9JThgouWEmBxVPVFU7ZfjCv2fFOWEAwBIIXmG9e/WE9SdX1U2m1ayqrpbkXUl2GSg7Ncm7l7Hn66qqB76+tcqx2cAWrp5514GS13T3t+Y0zopU1VETHuNdVfsvY8tJiab7JPnHFQ+8uL9Mcu2B9Y9091em3JN1yvNyUf+Q5PyB9d2TvLeqrrPKuSvJi5P8zoTS53f32avpBRuB16NF3SXJULL501c1MABTVVXPnPTvwDK3/FiSnw6sP7yqbrGKkbPwPe2xSbYbU3JpRj9DAgAzNIPvIy7zwgnrz6yq26xw719YOEnzJRPKnrfaPgAAsFlM82eE7v5YklMGSnZP8lerHnoLVXVEkidNKHvxNHsCAAAAwFKt4Xv0z62qG65w78u8PKMQl3H+sruHzocBAEgieIX1761Jvj6wvnOSd1bVtVbbqKr2yih05VcnlD63uy9dbT9YcIeMPrAxzhvmNcg68qYkp0+ouV9VvWAhpGFVquq5SR47oew5q+3DhuJ5eQXd/cMkfzeh7JeSfLaqhkIixqqqPTP6d/+JE0q/FB84Y/PwenRlhw2sfXXh6uUAbKW6+8IkbxkouUqSY1d6Ndqq2jfJh5PsO1D29939xZXsDwCsC8cnOXlgffsk719N+EpV7ZjR+037DZR9urv/ZaU9AACAVZt0wsfvV9UfTaNRVT04owsMDX3G5WtJ3jyNfgAAAACwXnT3e5N8eqDkakneVlV7rGT/qnp2kocPlJyZ5G9XsjcAsPmMu3IrrAvdfXFVPSPJPw+U/VKST1XVQ7r7kyvpU1WHJHl9kutMKP1kkn9aSQ8Y444Da+cluWlV/dK8hrmCM7r7Q/Nu2t0XVtXTkrxxQumTk9ygqh7V3T9Zbp+qunaSf0hyjwmlb+3uf1/u/mxonpeLe06SB2X4JNRrJ/lAVb03oyv6fnhSWFlV7ZPk9zK6uteeE2a4MMlR3X3RkqeGjc3r0ZUN3SenV9VR8xpkESd09zfXsD/AZvHiJI/M+EDpX07y71V1n+7+1lI3rapDMwo123ug7AdJnr7UPQGA9ae7L6mqxyT5RMaf9LhXko8s/O55KPTtSqrqOklel+Q3B8ouTvIHy9kXAACYujck+d9JbjZQ86Kqun6SY1ZyRdyq2iXJ3yR51BLKn+h9cAAAAAC2Uk9I8qmM/8zfrTJ6j/53u3vShbyT/OKCKC9O8ugJpX/a3T9f8qQAwKYmeIV1r7vfVFWPTHLIQNn+ST5eVccneWmSj3V3D+1bVVdJcrckf5zk4CWM8tMkR07aF5bpVgNrO2Z0xZu18oEkaxLw0N3/XFX3TXLfCaX3T3LXqnpZklct5aS6qrpRksdlFPSw64Ty7y3Usrl4Xi6iu8+uqsOTfDTJVSaUH7bw9eOq+liSryQ5I8nPM/r+c48k109y24zu73G/QLuiP+7uz69gfNiovB5toap2SnKjgZJDF77WyuFJBK8AzFh3f6WqXptR+Mo4v5LkS1X1wiQv7e6zxhVW1YFJjskoZHCSo7v7x8saGABYd7r7U1X13AwHqu2a5LiqelySZ2cUtnnxuOKqulaSI5M8I6Mrcg15VnefvMyxAQCAKVq4GNhjM3r/e1woY5I8Mcl9qxlSNhQAACAASURBVOqvkryxu380ae+q2i+jsMXHZPTe+CQv6+73L6EOAAAAADac7v5sVf1tkj8aKDswyRer6plJXt3d5yxWVFXbJXlARu/jD32uPEne092vWcHIAMAmJXiFjeIRSU5KsudATSV54MLXD6rqE0m+mtGJ3ucm2X7h+L2S/GqS2yfZYYn9L8kodOXrK5oexvuVtR5gHTsqyQ0y+T7aNclTkzy1qk5LcmKSbyf58cLXThk992+Q5I4ZhT0sxYVJHtzd/7PsydnoPC/H6O5PVNVDkhyXZNslHLJHkt9Z+FqtF3b3y6awD2wkXo8u74AsPagJgK3bk5PcPcl1Bmp2TvKsJE+vqhOSfDbJd5JckGS3JDdJcqckN11iz7/o7reueGIAYL15RkZXtr/fhLqDknw4yU+q6kMZBW5+P8k5Sa6e5FoZfQDsN7K0n1nfm+S5K5wZAACYou4+oar+OsmfTCi9bkZXz/3rqjo5yX9m9LPBT/L/f9+4Z5J9k/xmRhcQW6oTM7poGAAAAABszZ6W0Tldtxmo2S3Ji5I8a4vP/P0gSWf0/vwtk9wlw+eXXub7Gb64GwDAlQheYUPo7tOr6sFJ3p3kKks45BpJ7j2l9pckeUR3v2tK+0GSpKq2T3LjtZ5jverun1XV3ZO8J8mtl3jYfgtfq3VJkod19wlT2IsNxPNysu5+W1XdI8mxSXafU9vndPefzqkXrAtejxZ187UeAID1obvPqqoHJflIkqtOKN8+yaELXyv1jiRPX8XxAMA60929EDB8bJL7LOGQ3TO6atZqfDrJg7q7V7kPAAAwPU9NcquMTtiYZNuMLvb1q1Pq/bkk9+zuC6e0HwAAAACsS919XlXdO8lnMnzBtWR0ge7VXAD4p0nu3t3fX+HxAMAm5WrhbBjd/aEkD0kyzzebz0ly7+5+wxx7snlcK16HBy38kHunJG+ZY9vzk9y/u4+bY0/WD8/LJejuDyQ5IKMTUGfpBxk9H4WusBl5PbqyfdZ6AADWj+7+eJIHZ/a/J3p9Rt+TXjrjPgDAnC2c3PjAJC+fQ7v/SPLb3X3OHHoBAABL1N0XZxTGeOKcW787ycHdffac+wIAAADAmuju7yY5OMm3Ztjmp0nu0d1fmGEPAGAr5UQ+NpTufltG32B/dw7tPp7kwO5+zxx6sTntvdYDbATdfW53PyjJw5P8cMbtTknya9399hn3Yf3yvFyi7v52d/9uknsl+dqUtz8vyUuT3HTh337YjLweXZn7BIDLWfjZ7bczCuybtkuSPDvJUQsnXwAAW6Huvri7H5fkYRl9AGvqLTIKdjm0u388g/0BAIBV6u5zkxya5JVzaHdekj/O6EJg586hHwAAAACsG919apLfyOi8zWn7UpLbLFzUDQBg2QSvsOF09yeT3CzJSzKbqxp/PcmRSQ5a+GYeZsXJw8vQ3a9PcuMkL0gy7Sv+nJ3kaRmFLZ085b3ZWDwvl6m735Xkl5LcLcnbMzpBdaX+M8lTk+zb3U/o7rOmMCJsVF6Prsx9AsCVdPe/JTkgybEZndg8DZ9Pctvu/rPuntaeAMA61t1vSHLzTPd7ipOT3Lm7H9fdF01pTwAAYAa6+8LufkxGASxfnkGLS5K8LsnNuvtF3X3pDHoAAAAAwLrX3d9NclCSJyc5Zwpbnp/k+RldiNu5oADAipVzB9jIqmrvJI9NcnhGgQwr9bMkH0jy2iTv9+Y2rG9VtVuSIxa+bp+kVrjVSUn+Kclru3vaYS6wKS08P++QUQrx7TIKStgryZ5JtsvoCl7nJvlektOTfDXJZ5N8oru/sxYzAwCwdaiqA5M8IckDk+y8zMM7yYeTvCLJO7t7NYGCAMAGVlW3SPKkjL6nuNoyD78oyQeTvDLJu4W4AQDAxlNVleSwJI/K6AIkO6xiuy8nOS7JP3b3GVMYDwAAAAC2GlW1V0bvz/9ekmsv8/D/SfLmJH/d3d+e9mwAwOYjeIWtRlXdLKOTvG+dUQjL9ZJcI8mOSa6a5MKMEgzPSnJGkm9mdLXBz2V0srerDcIGVFVXT3JIktsk+eUk+2YU9LBzRs/9CzIKevifJN9O8l8ZPe8/6gdrAACArU9VXTXJwRkFAv5Kkv2T7JNklyRXySiA96wkP0jyhSQfT3JCd5+2BuMCAOtUVe2U5M4ZfV9xq4zee9oryU5JLk7y84x+7/zNjE6mvOx7irPWYl4AAGD6qmrnjK6+e9skByTZL8l1Mvpd444ZXSjo/IwuPnJmku9k9LmUk5Kc6HMpAAAAADDZQhjyHZIcmtH78zfP6P35XRdKfprkxxld+PfzST6R5N+6++L5TwsAbK0ErwAAAAAAAAAAAAAAAAAAAAAAm842az0AAAAAAAAAAAAAAAAAAAAAAMC8CV4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAADgSqrqGlX1tKo6saq+X1UXVtX3quqEqjqmqvZc6xkBAAAAAAAAYDWqu9d6BgAAAAAAAAAAANaRqvrDJM9JsstA2dlJjunuv5/PVAAAAAAAAAAwXYJXAAAAAAAAAAAA+IWqenWSRy7jkJd19+NnNQ8AAAAAAAAAzMo2az0AAAAAAAAAAAAA60NV/VkuH7pyZpLHJ9k3yVWT7Lfw/8/couZxVfWUuQ0JAAAAAAAAAFNS3b3WMwAAAAAAAAAAALDGqurGSb6cZPuFm05Octfu/p9Faq+Z5ENJDli46YIkt+jur89jVgAAAAAAAACYhm3WegAAAAAAAAAAAADWhaPz/0NXzk/yu4uFriTJwu33XqhLkqsmeezMJwQAAAAAAACAKRK8AgAAAAAAAAAAQJLcbYs/H9fd3xoqXlh/yxY33X0GMwEAAAAAAADAzAheAQAAAAAAAAAAIEn23eLPn1viMZ/d4s/7TXEWAAAAAAAAAJg5wSsAAAAAAAAAAABcUS+xrlZwDAAAAAAAAACsC4JXAAAAAAAAAAAASJLTt/jzbZd4zG3GHA8AAAAAAAAA657gFQAAAAAAAAAAAJLkA1v8+YFVtd9QcVXtn+SBW9z0/hnMBAAAAAAAAAAzI3gFAAAAAAAAAACAJHlFkosW/rxjkndU1TUXK1y4/R1Jdli46cIkfz/zCQEAAAAAAABgigSvAAAAAAAAAAAAkO7+apK/2OKmWyX5QlUdXVXXrartF/736CQnJTlgi9pnd/ep85wXAAAAAAAAAFarunutZwAAAAAAAAAAAGAdqKpK8tokD1/GYa/q7j+Y0UgAAAAAAAAAMDPbrPUAAAAAAAAAAAAArA89clSSP0ny8wnlP0vyBKErAAAAAAAAAGxU1d1rPQMAAAAAAAAAAADrTFVdM8mjk/x2kpsk2S3JT5KckuR9SV7V3T9auwkBAAAAAAAAYHUErwAAAAAAAAAAAAAAAAAAAAAAm842az0AAAAAAAAAAAAAAAAAAAAAAMC8CV4BAAAAAAAAAABYZ6rqPVXVV/h64lrPNW9VtUNVnXGF++GnVbXPWs8GAAAAAAAAwMYneAUAAAAAAAAAtkJVtf8iJ+xf9vWttZ4PtkZV9TrPO6ahqh6U5LAr3HxGklfOcYYXDDyeL/s6r6p2neUc3X1+kudc4eZdk7xkln0BAAAAAAAA2BwErwAAAAAAAAAAAKwTVbV7khcvsvS87r5gTjNsm+SIJZTukOT+Mx4nSV6d5JtXuO3+VXWPOfQGAAAAAAAAYCsmeAUAAAAAAAAAAGD9eH6Sva9w23cyCh+Zl7sm2WeJtUfOcpAk6e6LkjxnkaWXVdVOs+4PAAAAAAAAwNZL8AoAAAAAAAAAAMA6UFW3T/KoRZae390XznGUo5ZRe6equt6sBtnC65OceoXb9kvyrDn0BgAAAAAAAGArJXgFAAAAAAAAAABgjVXVtklekSt/puu7SV49xzl2T3Kv5RyS5KEzGucXuvviJH++yNIfVdUBs+4PAAAAAAAAwNZJ8AoAAAAAAAAAAMDae2ySAxe5/S+7+4I5znF4kh2WecwRsxhkEW9K8o0r3LZdkldWVc1pBgAAAAAAAAC2IoJXAAAAAAAAAAAA1lBVXSPJsxdZ+mGSV815nKNWcMwtqmqx0Jip6u6LkzxvkaVfS/IHs+4PAAAAAAAAwNZH8AoAAAAAAAAAAMDaem6SPRa5/cXd/fN5DVFVN01yuxUefuQ0Zxnw+iTfWeT2v6iqa85pBgAAAAAAAAC2EoJXAAAAAAAAAABgCrr7qO6uMV/7r/V8rE9Vdaskj1xk6ZwkL5/zOI9YxbGHV9W2U5tkjO6+KMlfL7K0e5K/mnV/AAAAAAAAALYuglcAAAAAAAAAAADWzouy+Oe4Xt3dP57XEAuhKUcMlLwvyZkD63snOXSqQ433D0kWu2+OrKqD5jQDAAAAAAAAAFsBwSsAAAAAAAAAAABroKrukeTOiyxdkuQlcx7nrkn2GVh/fZLjJ+wxFNwyNd19bpJXjll+6UKIDAAAAAAAAABMJHgFAAAAAAAAAABgzqpqmyQvGLP8r939rTmOkyRHDaz9LMk7khw3YY/7VNXOU5to2EuTXLzI7bdM8ug5zQAAAAAAAADABid4BQAAAAAAAAAAYP4emuQWY9ZeMs9Bqmr3JPcaKHlrd5+X5JNJTh+o2znJfac52zjdfUaSt49ZfkZV7TiPOQAAAAAAAADY2ASvAAAAAAAAAAAAzFFVbZvkGWOW/293f2ye8yQ5PMkOA+tvTJLu7iRvmbDXEdMaaglePub2vZM8co5zAAAAAAAAALBB1ei9cAAAAAAAAABga1JV+yf55pjl07p7/7kNw4ZWVTsluXGSPZLsnmSXJOcm+dnC15ndffraTQgbT1UdkeQNY5Yf390vm/M8n05yuzHL30myX3dfulB7mySfHdjukiTX6+4zpzvllVVVJflqkhstsvyNJDe+bG4AAAAAAAAAWMx2az0AAAAAAAAAAHBlVbVrkpsmuWZGQReV5OwkP0ryle4+ew3HWxeq6upJrpNRIMgeSXZOcl5GoSBnZBQws27up6raPsndk9wpya2T3CCjIJOdM5r5h0n+O8lnknwwySd7Da6oU1VXTXLPJPdamPOmSbadcMzPknwlyX8meWeSf+vuC2c86rhZDkzyWxmFSNwko8fILhn9HX6y8HVWki9ldF9/JsnJa3Ffz9JCIMV1MgrNuexxdkFGYTnfTnJqd1+wRrPdIMlhSQ5KcvMk+yS52sJ8P0lyZkaPpc8keUd3/3At5pyxJ4+5/fwkb5rnIFV104wPXUmSf94yvKS7P1dVX09ywzH12yY5PMnfTG/KxXV3V9UbkjxrkeXLHmfvnvUcAAAAAAAAAGxctZV9ZgQAAAAAAAAANqyqOjjJA5LcLeNPaE+STvKNjE4mP7a7P7XIXvsn+eaY40/r7v1XMeqaqKqdkjwoyZ2T3CHD99FlvpnkE0nek+Rd3X3OKmc4OMlHxyz/qLuvvsgxeyZ5apJHJNlrGe2+keRlSV7e3ecvc9Rlq6rrJ3lKRvfxbqvc7qdJ3prked39jdXONklV7ZbksUkemeRGK9ji60lek+R13X3mKuZ4XZKHj1le8vNuwj6P6u5XjzlupyQPTPI7SQ7JKHBlnEszCjd5f5J/7O5xrxdTU1WHJflfC7Mt1UVJ3pfkz7v7c4vs+aUxx322ux+x/Clnr6oOSfKRMcv/0t33m/M8L8j4IJgkuWV3X+5+rqrnJnnawDFf6O4DpzHfJFV14yRfHbP87u7+nXnMAQAAAAAAAMDGJHgFAAAAAAAAANZYVd0vybOT3HyFW3w0yVO6+zNb7Ll/tpLglaq6bpI/yihUYyhIYpKfJ3l1khd29xkrnOXgLDF4paoqydFJnpPVzX1GkqO7+52r2GOsqtoryZ9mFFxylSlvf3GSf0rytO7+nynvnaraJskfJnl6kj2nsOWFSZ6fUWDMBSuY53VZg+CVqrpakmOSPD4rC825NMnxSf64u7+7guMHVdUNkrwqyW+tYptOclySx3f3j7bYe9yHn07o7oNX0W9mquqNSR46Zvnw7j52jrNsm+T0JPuMKVk0QKWqDkhy8oTtrxTYMitV9bUsHrp0SZL9VvqaDwAAAAAAAMDWb5u1HgAAAAAAAAAANquq2ruqPpTkrVl56EqS3DnJJ6rqqdOZbP2oqocl+XKS/5XVhZckyU5JnpjklKo6erWzDVkIwnhXkpdm9XNfJ8k7qurvq2r7VQ+3haq6Y5IvZhReMu3QlSTZLqPAnC9W1W9Mc+Oqun6Sjyf5m0wndCUZ3QfPyGje201pz5mqqnsk+VqS/5OVha4ko88QPSjJf1XV3aY1W5JU1YOSfCGrC11Jkkry4CQnVdUvr3qwNVJVOyS515jlS5N8eI7jJMldMz50JUnesNiN3f3FJKdM2PuIlQ61Au8dc/u2GR9yAwAAAAAAAACCVwAAAAAAAABgLSyEOpyU5NApbbltkudV1Suqqqa055qpqh2q6i1J/inJrlPefpckL6uq1087yCRJqmqvJCcmuceUt/6DJO+vqp2nsVlVHZzkgxkOXZiWayX5UFXdYRqbLezz6SS/No39FnGTJB+ddgjJNNXIC5O8O6P7dxp2TfLuqrr3NDarqmOSvDnJ1aax34LrJTmxqm49xT3n6bCMvz9O6u4fznOYJEcNrF2S0X+/cY6bsPdDq2pen09739Acc5oBAAAAAAAAgA1I8AoAAAAAAAAAzNlC6MoHk+w9g+0fk+RFM9h3bqrqKhmFSTxgxq2OTPLmaQbVVNUuGf23vdW09ryCQ5K8p6p2WM0mVXXtJG9JsuNUplqaHZO8rar2WM0mVfWbST6U5BpTmWq8nZK8tapm9d9yxRYCg96Y5H/PYPvtkvxzVd1sNZsshK48P8ksgqB2T/KBqrrJDPaetQcNrH1wblMkqardk9xroOQj3X3mwPqxE1pcN8mdlj3Yyvx7kvPGrB1QVbeY0xwAAAAAAAAAbDDbrfUAAAAAAAAAALCZVNW+Sd6TZLcZtvnDzCbsYF5enuS35tTrfkmeneRPp7BXJXl9kl8ds95JTkryqSTfSvKTJDsk2SujoJY7Jrn6EvrcKcmrkjxsFbO+IEsLLvlEkg9kFGrwnSQ/SnJukp2TXC3JDZPcLMldF752nrDf3kmemdFjdNmq6oCMnj87LaH87CQnZHSf/yDJhUn2zOg+vn2S2yW5yoQ9dknyxqq6dXdfuJKZZ6CS/GOSh8ywx85JXpHk4JUcXFUPzSh0ZSlOS/LJJF9O8uMklybZJ8n1MnpMXXvMcXtl9FjYMKpqpyT3HCiZa/BKksMzeg0a5w1DB3f3KVX1xSQHDJQdmeSjK5htWbr7/Kr6jyR3G1Ny74weYwAAAAAAAABwOdXdaz0DAAAAAAAAAGwKVbV9RkEWt1lC+c+TvC3Je5N8Icm3MwqO2DvJdTMKJnlgkluuYJTTunv/FRw3c1V1jyTvnlD204zum/cn+VKS7yX5WUYBArtnFK5xYJJfzyjk4DoT9rs4yW26++QlzHdwlh8icEmSVyZ5UXefOrD39knukeRZGQ4yuMzvd/drljlLqur6SU5Nss1A2clJntTdS/67VtVuSZ6U5ClJrjpQek6Sfbr7Z0vde2H/3ZN8LqOwlyHfTvKMJMd193kD++2S5HFJ/ndGIR5D/ri7X7SEGV+X5OFjlpf8vJuwz6lJbjRm7eKMXjPen+QzSc7IKIDmooyeF7fMKIDiEZkckpMkd+nuDy9l5stU1S0Wek8Kx3lfkud298cH9tomyW9k9Jy483LmSHJCdx+8zGNmqqrukvHhKpcm2WXoMTuDeT6dUQDRYs5Ncq3uPnfCHk9L8tyBkrOT7D2Pv1dVPTfJ08Ysf7q7f23WMwAAAAAAAACw8Qx9gAYAAAAAAAAAmK5jMjl05dIkL05yve5+WHcf292ndPe53X1Rd3+7uz/Z3c/p7gMyClE4fdaDz8NCyMILJ5S9NskNuvuR3X18d/9Xd/+4uy/u7nO6+zvd/cXu/qfufkySGyT5vYzCWcbZLsnfTudvcSXfTfLr3f24odCVJFn47/v2JL+a5NlL2Psvq+paK5jpiAx/ZuSEJHdcTuhKknT3T7v7mUkOySgcZ5xdkhy6nL0X/G0mh64cl+Sm3f26SUEPC4+XFyS5dZKvTNj3KVV1laWPOlPjQlfelNFz497d/Yru/nx3f6+7f77w2Pp+d3+4u5+Q5CZJ/mMJvR69nMEWnsP/mOHQlXOTPKC7DxsKXUmS7r60u0/s7kOSPCyjQKqN7A4Da6fOOXTlphkfupIk/zopdGXBsRPWd01yryUPtjr/ObB224XwJgAAAAAAAAC4HMErAAAAAAAAADAHVXX9JE+fUPajJId095O6+6yl7Nvd70xy8yTvXeWI68GhGf1dxnlxd//eUu+bJOnuC7v7tRkFDHxxoPSgqrr1UvddojMyCl357HIO6u5LuvvPkhw9oXSPJE9dwVx3H1g7Pck9u/ucFeybJOnuTyR5woSy2y9nz6o6OMmRE8pe3d0P7u5lhXN092kZhcUMhfNcM8l9lrPvHJ2X5CHd/dDu/vZSDuju7ya5W5JPTSi95zIDZx6V4TCPc5Pcubvfuow9kyTd/YaMHrs/W+6x68hQ8MrJc5ti5BET1t+wlE26+xtJPjehbNJzd1qGgle2SXLQnOYAAAAAAAAAYAMRvAIAAAAAAAAA8/HnSa46sH5WkoO6+4Tlbtzd52YUCvGvK5xtvbj/wNppSY5Z6cYLgRT3zij4YZxHrnT/RVyU5He7+/SVbtDdr0jydxPKHl1V11jqnlW1XZLbDJQ8azWhK1t4Y5KhEJAbLnO/F0xYPzHJY5a55y909/eTHDWh7MEr3X+GLkhyr+5+83IP7O7zMwrEuHCgbMckSwokqqrtk/yfCWVHLDeIaEvdfWKSw5JcvNI91kpVbZPhwKGhYKhpz7JtkiMGSr6X5CPL2PK4Cet3W87r1Ep19zeT/Hig5DdnPQMAAAAAAAAAG4/gFQAAAAAAAACYsaq6SZLDJ5Q9qLu/stIe3X3hQo/Pr3SPdWDopPjjF/6OK9bd30ry0oGSO69m/yv4m+7+3BT2eUqSbw2s75jhAIUr2jfJVcasnZdk2QEei+nuTvLegZLdlrpXVR2a5HYDJecnOaq7L1nqnovp7g8k+eBAyV2qatx9t1Z+v7s/vNKDu/vUJMdOKBsKC9nSQ5Jcb2D9zd399iXuNVZ3fyyjIKuN5hYZftzPLXglyV2T7DOw/qZlPp/ekqQH1rfL/IKLThpYGwqdAgAAAAAAAGCTErwCAAAAAAAAALP3hAy/R//a1YQnXKa7L0hyVJJVBVCsharaLsmNBkq+PqVWrxlYu2lV7TKFHj9N8pwp7JPu/nmSZ08oO3IZW15nYO3j3X3eMvaa5DsDa8sJMHnshPW/7+5vLGO/IX85sLZzkgOn1Gca3tzdb5zCPm+YsH79Je7ziIG1S5I8bYn7LMULM/z4Wo9uNWH91LlMMXLUhPVJj4nL6e7Tk3xyQtlyXqdW45sDawdWVc1pDgAAAAAAAAA2CMErAAAAAAAAADBDVXXVJA8bKPlJkj+ZVr/u/lKWedL8OrFnku0G1nebRpPu/lqS7w6UXHMKbV7T3edMYZ/LvDHJmQPrB1bV3kvcayhY5gtLH2lJVh3iUlV7JLnHQMmlA/esgAAAIABJREFUSf5qtX228G8Zvq9vM8Veq3Fhpve68fEkFw2s7z9pg6q6bpKDBkre2t3fWt5Y43X3+Un+blr7zcmkAJuh16Wpqardk9xroOTL3b2S14LjJqzftqp+aQX7Lte3B9Z2S7LU10oAAAAAAAAANgnBKwAAAAAAAAAwW7+dZNeB9Td191lT7vm3U95vHq4yYf3gKfY6MskDxnz9aAr7v34Ke/xCd1+U5PgJZYcscbvPJLnzmK+XrHTGMa4xhT0OS3LVgfWPdPcZU+iTJOnuS5N8dKDkptPqtUrHd/dUgjq6+7wkXx8oWcp/x//X3p3H61uXdQL/XIDIIpsiKqIimOKCiluWphYKpcZkDSaJBTmNWpPbOO1jOs1Mto1TzbSNZjZkKKbWyyWZVNzQbAC33MUNBU1FBQEBveaPc2wSf+e+zznPfZ/zO7/n/X69nj94ru99Xdd5lpt/fudzTk5SA/W/3NBS63NWkp6h71yGgleu7u4vbdEepyXZb6C+2eCuc7IShDTk9E323ohLRupjATgAAAAAAAAALJmhvxQFAAAAAAAAACzulJH6n009sLsvqqoPJbnj1L1n9JWR+slV9aDuftOig7r79Yv2GPCp7n7XDH3/KsmTB+r3TvKisSbd/YUk502005gHTdDjYSP10Z95E16W5GZr1KYI5pnCKybu94msHSpzwDquP3GgdnWScze80Yju/kxVXZDkPlP3nslQ4MckITrrdMZA7RtJ/mIzTbv70qp6U4ZDsh5bVc/s7jkDcz41Uj8myfkzzgcAAAAAAABghxG8AgAAAAAAAADz+r6B2ke7+x9mmvva7KDgle7+SlVdmuRWaxypJC+tqlO6++1buNpGvW6mvu9Icl2SG61RP36muZtSVY9M8l0TtBoLbzlvghnforv/KitBN7uzqe8bVwzU9l/H9fcbqF3Y3VdvcJ/1eksEr6xbVR2X4ffqvO6+ZIERL85w8MrtkzwgK+/bXMaCV4beBwAAAAAAAACW0F7bvQAAAAAAAAAA7Kmq6tZJbjdw5B0zjn/bIhdX1bOqqid8fHwdY88dqd88yZur6r9W1U0X+flmdOEcTbv7miTvGjhyzBxzN6qqjqqq/5jkpRP0OijJ0QNHPt3dH190zg50bZJPTtzzqoHavkMXVtWBGf78zfKdWDX0ndhtVNVeSY4aOPK5LVrlzJH6WQv2/6skXx8587gFZ4z57Ehd8AoAAAAAAAAA30LwCgAAAAAAAADM5+4j9YtmnP2+GXvP5Y/WcWafJL+Y5JKq+ouq+uGqOmTmvTZiziCIjwzUjpxx7j+rqv2q6k5VdXJVPaGqnlNVZ1fV26vqs0k+leQ/JbnxBOPulqQG6hdMMGMnuqy7e+KeQ/2G3oMk+Y6RM/+48XXW7UMz9p7STZLsPVC/Zu4FqmrvJKcPHLk6K8Epm9bd/5Tk9SPHTq2qKe4Pa7l6pH6zGWcDAAAAAAAAsAPts90LAAAAAAAAAMAe7C4j9XfOOHsopGO31N1vr6q/THLaOo7vn+THVh9fr6oLk7xx9fGW7v7SfJsO+sQ29d6/qg7s7q8uOqSq9klyXJJ7JrlzktsnOXr1ccuMB3FM5eiR+se2Yond0HZ9ttcyFvrz6RlnXzZj7ykdMFKfPXglyUkZfq/+uru/MsGcs5M8bKB+WJJHJHnZBLN25ZqsBAmtdZ86cKa5AAAAAAAAAOxQglcAAAAAAAAAYD5HjdQvnWtwd3+1qq7K+C/8726elORuSY7fwDV7J7nv6uMZSb5RVe9Kcl6SNyQ5r7uvmHjPXenM+J4m+aeR+v5JNhW8UlWHJPlXSU5N8tAk+22mz8TGAj2WNXhl4XCdid1qpD5n8MrnZ+w9pbH78NVbsMMZI/WvVNXYmfU4ZB1nTs9MwSvd3VX1tax9D7vJHHMBAAAAAAAA2LkErwAAAAAAAADAfG45Uv/KzPMvzw4LXunuL1fViUn+Jsn9N9lmryQnrD6eluT6qnpbklcmeUV3f2iSZb/dl7v72pl6J+PhDBsOS6mqw7ISVvPk7H6BBEeM1MeCaPZU12/3Ajdw8Ej9yzPOvmbG3lMauw/P+nNU1aFJThk59m9XH1vhEVV10+7+4kz9r87a98MDZ5oJAAAAAAAAwA6113YvAAAAAAAAAAB7sING6nMGEiTJ12buP4vu/qckD0ry7IyHjazHPkm+J8lvJPlgVV1UVU9dDR2Z0hS7DhkLZ/j6RppV1Y8m+ViSX8r0oSsfSfLuBXuMhVVctWD/neob273ADYwF/swZKrK7hdCsZVuDV5Kclk0EM81o3ySPnrH/0L1h/xnnAgAAAAAAALADCV4BAAAAAAAAgPmM/aL7lVuyxQ7U3dd197OS3DHJ7yf5yoTt75nkuUk+VVW/UVUHT9R37vCEG00xv6r2rqo/THJ2kkMW3ur/uyLJOUl+JMmdk1y0YL+x78+yBq/sbib5XG7SWKDJ7mLss1wzzz9j5v6bcfqMvYdezx0ZSAYAAAAAAADAfASvAAAAAAAAAMD22X/m/lMFimyb7r6ku5+c5NZJfiLJKzPdL84fmOTnkryrqk6YoN/1E/QYcuOR+tXr7POHSZ64wB5fS/LhJOdmJRTnSUnuk+Sw7n50d7+su6d4Lcb+XUtPMIPFXTdS33fG2QfO2HtKY/es2f5fUFXHJbnfXP0X8ICqOmam3kNBN1+daSYAAAAAAAAAO9Q+270AAAAAAAAAAOzBrhmpH5zkyhnnbzp4pbufleRZk22yoO6+MsmfJ/nzqjogyYOTPCzJiUmOT1ILtD86yRuq6vu6+8IF+swdpHOzgdq13T32eUtV/YckP7XOedcnuTDJ+Un+Mcn7k3w8yWe6eytCT9bz/WH7jb1PByW5bKbZt5yp79TGQpHmvHecOWPvRT02ya/N0HcoeOWqGeYBAAAAAAAAsIMJXgEAAAAAAACA+YyFqhyc5DNzDK6qfZPsO0fv7dbdVyV5zeojVXXTrASxPGT1sZkglkOSvKyq7rYa8rIZB27yuvW6xUBt9HNUVbdI8sx1zLk4ye8keXF3f2Gdu81hPd8ftt9XR+pzvk/Hzth7StsSvFJVeyc5fY7eE3lc5gleufFAbezzCgAAAAAAAMCS2Wu7FwAAAAAAAACAPdhlI/XbzTj76Bl771a6+4vd/fLufkp33yPJ4UlOTfLHSS7ZQKvbJfm5BVY5rKpmCVBYdYeB2np+zl9OcpORM3+S5K7d/QfbHLqSJJeO1G++JVswZuw+N+f7dKcZe0/p8yP1ue4bJyU5cqD+pu6uuR5Jvntkv++oqu+c7sdNqupGSfYeOHLVlPMAAAAAAAAA2PkErwAAAAAAAADAfMbCMO4x4+y7z9h7t7YaxPLS7n5id98myX2S/Lckl6/j8idU1T4LjJ8zTOcuA7WPD11YVZXk0SP9/3t3P6G7r9noYmsYCj9Yj0+N1I9fsD/TGAvImfN9euCMvSfT3ZcnGfpeHTDT6DNG6mfNNPeb3p7kkyNnTp945n4j9S9PPA8AAAAAAACAHU7wCgAAAAAAAADM5wMj9TmDV+bsvaN09wXd/e+T3DbJC0aOH5HkOxcYN0vgTVXdJsmtBo5cNNLihCS3GKi/P8nPbXSvEQcveP17R+qzfMar6oyqevsaj+fMMXOH++hIfa73aZ/skOCVVUMBNUdMPayqDk1yysCRryU5Z+q5/1J3d5KXjhx7zIJhVzc09lp+YsJZAAAAAAAAAOwBBK8AAAAAAAAAwHzeOVJ/cFXVTLPvP1PfHau7r+zun0zy/JGj91lgzAMWuHbIw0bqF4zUx8Jkntfd121gn/W47YLXfzjJlQP1O1fVYQvO2JXHZOX12tWjZ5i3o3X3F5NcNnBkrnvR92fxcJ+t9KmB2m1mmHdakv0G6q/q7i/NMPeGXjJSPzwr7+VUjhypf2zCWQAAAAAAAADsAQSvAAAAAAAAAMBMuvuSDP+y/a2TfPfUc6vqFkm+d+q+c6mqO1TVM9Z4PGaGkc9IcvVA/XYL9H74AtcO+eGB2nVJLhy5/oiR+rkbW2dYVe2f5C6L9OjubyR588CRfZL80CIzbqiqDkjyPQNHxsKUltXQ5+/YqlokzGgtPzFDzzl9YKB2y6raZ+J5Z4zUz5p43i51998n+fjIscdNOPJWI3XBKwAAAAAAAAB8C8ErAAAAAAAAADCv147UHz3DzMck2XuGvnO5RZLfWuPxn6ce1t1fSnL+wJGDFmh/h6q67wLXf5uqum2S7x848sbuvmKkzc1H6pdsbKtRj0iy7wR9XjNSP3WCGf/SaUkOGKgPBcEss9eP1E+fclhV3SnJo6bsuQWGglf2SnLkVIOq6rgk9xs4cnmSV001bx3OGamfUlUHTzRr7HW8eKI5AAAAAAAAAOwhBK8AAAAAAAAAwLxeNlI/s6oOn2pYVe2T5IlT9dsinxyoHV1VN5lh5j8N1K5bsPfTFrz+hn4pw0E6f7OOHmP/RuTa9a+zLk+ZqM85Sa4fqJ9cVXebYlBVVZInDRx5X3d/ZopZe6CxgKmfrKrJgkWS/Hp2VrhUkrxvpH6bCWedOVI/p7un/s4PeclIfb8k/3qiWbcaqF2T5LKJ5gAAAAAAAACwhxC8AgAAAAAAAADzOjfJUFjDQUl+ccJ5T0ly3IT9tsJnsnbwx95JHjzDzFsO1IZCWdbjR6vq7gv2SJJU1b2SPH7gyNeSvHgdrT47Uj9q3UuNqKrHJHngFL26+7Ikrxk4sleSZ08xK8ljk9x7oD4WorS0uvu9Sd41cOSgJP9tillVdXqSR03Ra4v935H6MVMMqaq9k5w+cuysKWatV3f/3yQXjxx73ETjjh2ovbu7e6I5AAAAAAAAAOwhBK8AAAAAAAAAwIy6++tJ/mjk2E9X1cJhKVV1VJJnLtpnq62+Rm8eODLVL+QnSarqxknuMXDk/QuO2CvJC6tq30WaVNVhSV6UZJ+BY2d39+fW0e7SkfrJ615swGrgzNjnfaN+c6T+qKo6cZEBVXVEkt8YONLZ4rCKHej5I/UfraqfWmRAVT0gyR8v0mO7dPcXknxk4MgJE406KcmRA/VPJHnLRLM24pyR+oOr6jYTzBm6t791gv4AAAAAAAAA7GEErwAAAAAAAADA/H4vyeUD9f2SvKSqDtnsgKq6SZK/TnLwZntss1cN1H6kqoZ+mX6jTkty2ED9TRPMuGeSs6pqU/82o6oOSvI3Se40cOwbSX5nnS3HghaeWlX7r7PXLlXVdyd5XZJNf453pbvfkuTvhkYn+d9VdfRm+q8G5PxVhsMqzu3uD26m/xJ5XsYDfv6oqn58M82r6l8leXWSAzZz/W7i7QO1e00044yR+l90d080ayNePFKvJI9dZEBVHZDkmIEjglcAAAAAAAAA+DaCVwAAAAAAAABgZt395SS/OnLs+CTnVtWtNtq/qg5Pcm6m+8X97fDXSdYKA9gnK8E0t1l0SFXdIclzB46c392fWXTOqlOTvKqqbraRi6rq2KyEvzxw5OifdPd71tOzu9+X5OKBI8cked5mgmKq6oCqenaSNyY5fJ2X7bPBMU9Oct1A/VZJ3lhV99xI09Xvzusy/lqPfX+XXndfneQ/jhzbK8kLq+p/r772o6rqqKr60ySvyM4Nlvqm8wZq96yqWqR5VR2a5JSRY2ctMmOzuvuiJB8eOfa4Bcccn+F/D3f+gv0BAAAAAAAA2AMJXgEAAAAAAACArfE/k7x95Mz9klxUVWdU1d7raVpVP5jkoiTftYvy9Rtbcft098VJzhk4csckb6mqe292RlU9Msnbkhw6cOz3N9t/Dd+f5ENV9YyxAJaqOnw1wOTdScYCRD6b5Jc3uMvzR+o/luTVVXXUeppV1c2q6heSfCTJM7OxMJVjNxLy0t3vT/LskWO3TfKOqvqdqrr10MGq2q+qfjbJezIeunJWd//9enddZt39/CSvXsfR05N8rKrOqqofqqrjqurgqrrR6vfgPlX1b6vqlVkJDDpzjT4fn2j1rfLagdohWQlAWsRpSfYbqF+4+l3aLkP3+CS5S1WdsED/4wdqF3f3pQv0BgAAAAAAAGAPVd1r/bEoAAAAAAAAAGBKVXXbJBckOXwdxy9J8uIk5yV5X1aCNq5OcpMkxyZ5UJIfT3KvNa7/hySXJjllF7VPdPfRG1h9S1TVXbMSOjIUyNFJXp7kt5O8o7u/PtJzvyQnJ3lakgePrHBRkvt09zcG+j0kyRsGenw1yYFr1K5P8tbVOZ9MckWSfZMcleS+WXlP9x3ZMUmuS3Jid795HWf/WVUdkJWQlFuNHL0myYuy8jpfmOTzWQlVOTTJnbISCvMDSR6S5EZr9Lg+yS9k5X1ay68m+b3VecckOay73zqw/15J/jbJw0b2T5KvJ3nH6uNjSa7Mynfn5knunZXX+oB19PlUknt09+XrOJuq+rMkP7FGed3fu5E+b+zuh6ynz3pNtfdqr8OSvDnJXRffbNClWflen71GffLXaQpV9d6s/do8prtfvEDvv89KgNdant7dz91s/0VV1T2SvHPk2HO7++mb7P+CJGesUf6T7n7CZvoCAAAAAAAAsGcTvAIAAAAAAAAAW6iqHpSV8Ij9ZxzzpawEeTwnyY/sor5bBq8kSVX9fpJ/t87jVyR5S5IPJPliksuTXJvk4CRHJrl7kvtnJXBjzLVJvqu7LxzZ7yEZDl55dJIXZr73t5M8obv/12YurqpTk7xk2pW+zbVJHpfkZVn5LK4VRHNDL+zuM4YOVNUhWQn1OH6RBdfpyiQP7O53rfcCwSv/3O/IJK9NcrfFNlvT1UlOzMp3/W/XOHNed3/vTPM3rar+S5JfWqP8p939+E32PS7J+weOfD3JUd192Wb6T6WqPpCVAKe1XJaVPQdDtdbofUmSW69RPrG7X7/RngAAAAAAAADs+Yb+QhQAAAAAAAAAMLHuflOSH05yzUwjrk5ySnd/ZKb+c3tGkgvWefagJD+Q5GlJfi3J/0jyJ0l+O8nTkzw06wtdSZKfGQtdWad/SPKvsxI+MrWvJ3n8ZkNXkqS7z0nyq9Ot9G0+m+Sh3f2S7r4+yXlTNu/uLyc5Kck7p+y7C1/Mys+x7tAV/r/u/kySByZ5zQztr0ny6O5+W4YDjq6bYfYUzh6off8Cfc8cqb9uu0NXVo0FP90yK/fuDamqu2Tt0JXLMvG9CAAAAAAAAIA9h+AVAAAAAAAAANhi3f23SU5M8vmJW38pyQ9295sn7rtluvtrSU7NSoDHVvnF7n7eVM26+9VJHpXkqql6Jvl0kh/o7hcs2qi7/1OS31x8pW/z0iR3u8Hnb+F9b2g1POJBSV4xde9Vf5fkhO7++5n6L4XVkJxHJHlqkisnantpku/r7leu/vcBA2en/P5Nprvfk+R9a5SPrKp7brRnVe2d5PSRY2dttO9MxoJXkuRxm+h70kDtnO7+xiZ6AgAAAAAAALAEBK8AAAAAAAAAwDbo7vOTnJDk9RO1fFeS+3f36ybqt226+2NJvifJh2cedU2SM7r7OVM3Xg1feUCS90/Q7kVJju/u/zNBryRJd/98kkcnuWKCdhdmJQzj1O6+YZjQy5K8doIZ36K7r+juRyX5ySSfm6jtF5L8TJKTuvuTE/Vcar3id5Mcl+SPs/Kd24zrkjwvyV27+23/4vlDB67ZLYNXVv35QO3hm+h3UpIjB+pXJXn5JvpOrrvfm7WDZ77ph6rqJhtsffJA7ewN9gIAAAAAAABgiQheAQAAAAAAAIBt0t2XJHlokscmuXiTbT6T5KlJ7t3dH5xqt+3W3R/OSjDN7ya5doYR/yfJPbr7hTP0TpJ09zuT3D3Jk5J8YoOXX5vkhVkJXHlsd18+w37nJLlDkt9KcuUm9ntFkod29727+w1rzOgkpyV50yK7rqW7X5DkmCQ/n+Qjm2xzUZLHJzmqu/9gdWcm1N2f7u4nJrltkidnJXDq6pHLrkvy1iS/kuT23f1Tu/ge3Gzg+t05eOWFSa5fo/aITfT7iZH6K7p7o9/xOb1kpH5gkkett1lV3TTJiWuUP5jkbWvUAAAAAAAAACDl34oAAAAAAAAAwParqr2SPDLJjyU5KclhA8c/l5XgkL/Oyi/UXzf/htunqm6X5IlJTk9y1AKtrkzy8iR/2N2b+kX8qnpIkl2GjKy6fXd/fBfXVZLvSvLwrATK3Dkr7/FNshIQ8fmsvK//sNr/vDnCVtZSVQdnJbjgoUnum+SIJIcn2Tcrr9vlST6U5B+TvCXJ320kyGH18316VkKGjk9y8ySd5CtZCUZ4a5IXd/cFC/wMleQ+qz/HfZPcKcmtsvIaZ/VnuDwrr/W7V2e+tbs3GorDBKrqRkmOTXJ0kkOT7JOV78IVWQkquri71won+WaPP8zKvWFX/kt3/8pkC0+sql6a5Ed2UeokR3f3J7d4pR2rqn46yf9co/yz3f0/tnIfAAAAAAAAAHYWwSsAAAAAAAAAsJtZDZC4fZI7ZCWc40ZZCb/4YpIPdvdnt3G9bVVVd0vyoCR3T3LHJEdmJSRk/6yEhHwjyTVZCdi4NMnFSd6T5Pwk53f3tQvOf0g2EbwCTK+q/jbJyWuU/013P38r99mIkXvJL3f3f93CdXa0qrogyb12Ufp8ktt191VbvBIAAAAAAAAAO8g+270AAAAAAAAAAPCteuWvqFy8+uBf6O73Jnnvdu8B7BbuPFDbre+f3X1eVV2U5IRdlB9fVb/e/qLWqKq6T3YdupIkvyt0BQAAAAAAAIAxe233AgAAAAAAAAAAABtRVTdPctuBIx/aql0W8JtrPH9MkpO3cpEd7GfWeP4LSX53KxcBAAAAAAAAYGcSvAIAAAAAAAAAAOw0Jw7ULu7uT2/ZJpv3kiT/uEbt323lIjtRVR2R5LQ1yr/Z3Vds5T4AAAAAAAAA7EyCVwAAAAAAAAAAgE2rqltU1fUDj6fNMHatwI0keeMM8ybX3d9I8gtrlB9eVXfayn12oCclufEunr8kye9t8S4AAAAAAAAA7FCCVwAAAAAAAAAAgE3r7s8muSbJ3ms8Hj7lvKo6IckPDhw5d8p5c+ruVyZ5zS5KleTpW7zOjlFV+yX56TXKv9Ld12zlPgAAAAAAAADsXIJXAAAAAAAAAACARV0wUDuxqo6bYkhV7Zvkj7ISTLIrX0zyiilmbaGfzUpwzQ39eFXdYquX2SHOTHLELp6/IMmfb/EuAAAAAAAAAOxgglcAAAAAAAAAAIBFnTtQqyR/UFV7LzKgqvZJ8vwk9xs49mfdvasQk91Wd380ya/vorRfkqdu8Tq7vdXP0b9fo/zU7u6t3AcAAAAAAACAnU3wCgAAAAAAAAAAsKizkwwFXnxvkr+sqoM307yqjkryqiSnDxz7apLnbqb/buA5ST6wi+efVFWHbvUyu7kfTXLsLp5/UXe/ZauXAQAAAAAAAGBnE7wCAAAAAAAAAAAspLs/muRlI8dOTfKuqnpiVR20nr5V9R1V9dtJ3pfkpJHjz+7uS9bTd3fT3dcmeeIuSockecoWr7PbqqpK8gu7KF2Z5D9s8ToAAAAAAAAA7AGqe+gPzQAAAAAAAAAA8E1V9ZAkbxg4cvvu/vjWbAO7l6o6Nsl7kuy/juNXJ7koyQVJLk3y5SRfS3JgkpsluWOS+yU5Zp3j35TkxO6+foNr71aq6k+TnHmDpy9PcnR3f2UbVtqtVNUPJXn5LkrP6O7f2ep9AAAAAAAAANj5BK8AAAAAAAAAAKyT4BUYVlVnJvnTLR770STf2d1f2OK5k6uqmyZ5f5IjblB6Znf/2jastFupqguS3OsGT78nyb12eugOAAAAAAAAANtjr+1eAAAAAAAAAAAA2DN09wuS/NwWjnx3ku/dE0JXkqS7v5jkKbsoPb2qDtnqfXYnVfXIfHvoSid5otAVAAAAAAAAADZL8AoAAAAAAAAAADCZ7v6tJKcm+dLMo16a5IHd/amZ52yp7j47yatv8PShSZ6+DevsTp61i+f+V3efv9WLAAAAAAAAALDnELwCAAAAAAAAAABMqrtfmuQOSZ6b5GsTt/9wkkd296ndfcXEvXcXT0py5Q2ee1pVHb4dy2y3qjolyb1v8PRlSX5+G9YBAAAAAAAAYA8ieAUAAAAAAAAAAJhcd3+hu5+e5DuS/GqS9y/Q7mtJXp3kB5Mc192vmmDF3VZ3fzLJL9/g6YOS/OI2rLM7eNYunntyd39pqxcBAAAAAAAAYM9S3b3dOwAAAAAAAAAAAEugqu6a5P5JTkhyjyS3SHLI6mPvJF9NcmWSzyX5UJIPJnl7kjd291XbsTMAAAAAAAAAsOcSvAIAAAAAAAAAAAAAAAAAAAAALJ29tnsBAAAAAAAAAAAAAAAAAAAAAICtJngFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAVVKbgAAADF0lEQVQAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAICl8/8AFlU9nL2y9ncAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 973,
+ "width": 2223
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,3.5), dpi=300)\n",
+ "fancy.plot_diffpattern(ax, model, dsp_ticks=True, dsp_step=0.3)\n",
+ "fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5, \n",
+ " show_index=True, \n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "ax.text(0.70,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = ax.transAxes, fontsize=16)\n",
+ "plt.savefig('test-2-dsp.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "peakpo7721",
+ "language": "python",
+ "name": "peakpo7721"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.py b/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.py
new file mode 100644
index 0000000..bb90170
--- /dev/null
+++ b/jnb-tools/2_1D_from_dpp/1D_xrd_pattern.py
@@ -0,0 +1,175 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# # Plot XRD patterns from dpp files from PeakPo
+
+# - Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder.
+# - In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`.
+# - `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information.
+
+# This notebook takes advantage of the `PeakPo` modules and other local modules. They can be found in `../local_modules` folder.
+# The cell below defined the search path for this local module folder.
+
+# In[11]:
+
+
+import sys
+sys.path.append('../../peakpo')
+sys.path.append('../local_modules')
+
+
+# ## Check the versio of pyFAI in your conda environment
+
+# In[12]:
+
+
+import pyFAI
+pyFAI.version
+
+
+# Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book.
+
+# ## Read dpp
+
+# In[13]:
+
+
+import dill
+import numpy as np
+
+
+# ### Change the following two cells for your own dpp file
+
+# Data files should be in the `../data` folder. You need: `dpp`, `chi`, `tif`, and `poni` files.
+
+# In[14]:
+
+
+get_ipython().run_line_magic('ls', '../data/hStv/*.dpp')
+
+
+# In[15]:
+
+
+filen_dpp = '../data/hStv/hSiO2_404_009.dpp'
+
+
+# In[16]:
+
+
+with open(filen_dpp, 'rb') as f:
+ model_dpp = dill.load(f)
+
+
+# The cells below show how to look into the data structure of the `model_dpp` and get values from it.
+
+# In[17]:
+
+
+model_dpp.__dict__
+
+
+# ## Setup a new PeakPo model and assign info from dpp
+
+# In[18]:
+
+
+from model import PeakPoModel
+model = PeakPoModel()
+
+
+# Make sure to reset the chi folder location using the `new_chi_path` option.
+
+# In[19]:
+
+
+model.set_from(model_dpp, new_chi_path='../data/hStv')
+
+
+# ## Make XRD plot
+
+# The following three modules are all in the `../local_modules` folder.
+
+# In[22]:
+
+
+from xrd_unitconv import * # Make conversios between different x-axis units
+
+
+# In[23]:
+
+
+import quick_plots as quick # A function to plot XRD pattern
+import fancy_plots as fancy # A function to plot XRD pattern
+
+
+# In[24]:
+
+
+get_ipython().run_line_magic('matplotlib', 'inline')
+
+
+# In[25]:
+
+
+import matplotlib.pyplot as plt
+
+
+# ## Let's make some plots
+
+# Let's plot in regular scale.
+
+# In[26]:
+
+
+f, ax = plt.subplots(figsize=(9,3.5), dpi=300)
+quick.plot_diffpattern(ax, model)
+quick.plot_jcpds(ax, model)
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+ax.text(0.05,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = ax.transAxes, fontsize=16)
+plt.savefig('test-1.pdf', bbox_inches='tight')
+
+
+# ## Let's do some fancy stuff
+#
+# I wrote similar plot functions with more options in `fancy_plots.py` in the same folder.
+
+# In[27]:
+
+
+f, ax = plt.subplots(figsize=(9,3.5), dpi=300)
+fancy.plot_diffpattern(ax, model)
+fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5,
+ show_index=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+ax.text(0.70,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = ax.transAxes, fontsize=16)
+plt.savefig('test-2.pdf', bbox_inches='tight')
+
+
+# In the plot below, we plot diffraction pattern in $2\theta$ scale to prevent any distortion in the diffraction pattern. We just plot tickmarks in d-spacing scale.
+
+# In[28]:
+
+
+f, ax = plt.subplots(figsize=(9,3.5), dpi=300)
+fancy.plot_diffpattern(ax, model, dsp_ticks=True, dsp_step=0.3)
+fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5,
+ show_index=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+ax.text(0.70,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = ax.transAxes, fontsize=16)
+plt.savefig('test-2-dsp.pdf', bbox_inches='tight')
+
+
+# In[ ]:
+
+
+
+
diff --git a/jnb-tools/2_1D_from_dpp/peakpo_plots.py b/jnb-tools/2_1D_from_dpp/peakpo_plots.py
new file mode 100644
index 0000000..abc2a60
--- /dev/null
+++ b/jnb-tools/2_1D_from_dpp/peakpo_plots.py
@@ -0,0 +1,537 @@
+import os
+import time
+import datetime
+import numpy as np
+import numpy.ma as ma
+from matplotlib.widgets import MultiCursor
+import matplotlib.transforms as transforms
+import matplotlib.patches as patches
+from PyQt5 import QtWidgets
+from PyQt5 import QtCore
+from ds_jcpds import convert_tth
+
+"""
+def get_cake_range(self):
+ if self.widget.checkBox_ShowCake.isChecked():
+ return self.widget.mpl.canvas.ax_cake.get_xlim(),\
+ self.widget.mpl.canvas.ax_cake.get_ylim()
+ else:
+ return None, None
+
+def _read_azilist(self):
+ n_row = self.widget.tableWidget_DiffImgAzi.rowCount()
+ if n_row == 0:
+ return None, None, None
+ azi_list = []
+ tth_list = []
+ note_list = []
+ for i in range(n_row):
+ azi_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 2).text())
+ azi_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 4).text())
+ tth_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 1).text())
+ tth_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 3).text())
+ note_i = self.widget.tableWidget_DiffImgAzi.item(i, 0).text()
+ tth_list.append([tth_min, tth_max])
+ azi_list.append([azi_min, azi_max])
+ note_list.append(note_i)
+ return tth_list, azi_list, note_list
+
+def zoom_out_graph(self):
+ if not self.model.base_ptn_exist():
+ return
+ data_limits = self._get_data_limits()
+ self.update(limits=data_limits,
+ cake_ylimits=(-180, 180))
+
+def update_to_gsas_style(self):
+ if not self.model.base_ptn_exist():
+ return
+ data_limits = self._get_data_limits(y_margin=0.10)
+ self.update(limits=data_limits, gsas_style=True)
+
+def _get_data_limits(self, y_margin=0.):
+ if self.widget.checkBox_BgSub.isChecked():
+ x, y = self.model.base_ptn.get_bgsub()
+ else:
+ x, y = self.model.base_ptn.get_raw()
+ return (x.min(), x.max(),
+ y.min() - (y.max() - y.min()) * y_margin,
+ y.max() + (y.max() - y.min()) * y_margin)
+"""
+
+def update(self, limits=None, gsas_style=False, cake_ylimits=None):
+ """Updates the graph"""
+ t_start = time.time()
+ self.widget.setCursor(QtCore.Qt.WaitCursor)
+ if limits is None:
+ limits = self.widget.mpl.canvas.ax_pattern.axis()
+ if cake_ylimits is None:
+ c_limits = self.widget.mpl.canvas.ax_cake.axis()
+ cake_ylimits = c_limits[2:4]
+ if (not self.model.base_ptn_exist()) and \
+ (not self.model.jcpds_exist()):
+ return
+ if self.widget.checkBox_ShowCake.isChecked() and \
+ self.model.diff_img_exist():
+ self.widget.mpl.canvas.resize_axes(
+ self.widget.horizontalSlider_CakeAxisSize.value())
+ self._plot_cake()
+ else:
+ self.widget.mpl.canvas.resize_axes(1)
+ self._set_nightday_view()
+ if self.model.base_ptn_exist():
+ if self.widget.checkBox_ShortPlotTitle.isChecked():
+ title = os.path.basename(self.model.base_ptn.fname)
+ else:
+ title = self.model.base_ptn.fname
+ self.widget.mpl.canvas.fig.suptitle(
+ title, color=self.obj_color)
+ self._plot_diffpattern(gsas_style)
+ if self.model.waterfall_exist():
+ self._plot_waterfallpatterns()
+ # if self.model.jcpds_exist():
+ # self._plot_jcpds(limits)
+ if self.model.ucfit_exist():
+ self._plot_ucfit()
+ if (self.widget.tabWidget.currentIndex() == 8):
+ if gsas_style:
+ self._plot_peakfit_in_gsas_style()
+ else:
+ self._plot_peakfit()
+ self.widget.mpl.canvas.ax_pattern.set_xlim(limits[0], limits[1])
+ if not self.widget.checkBox_AutoY.isChecked():
+ self.widget.mpl.canvas.ax_pattern.set_ylim(limits[2], limits[3])
+ self.widget.mpl.canvas.ax_cake.set_ylim(cake_ylimits)
+ if self.model.jcpds_exist():
+ self._plot_jcpds(limits)
+ if not self.widget.checkBox_Intensity.isChecked():
+ new_low_limit = -1.1 * limits[3] * \
+ self.widget.horizontalSlider_JCPDSBarScale.value() / 100.
+ self.widget.mpl.canvas.ax_pattern.set_ylim(
+ new_low_limit, limits[3])
+ if self.widget.checkBox_ShowLargePnT.isChecked():
+ label_p_t = "{0: 5.1f} GPa\n{1: 4.0f} K".\
+ format(self.widget.doubleSpinBox_Pressure.value(),
+ self.widget.doubleSpinBox_Temperature.value())
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.98, label_p_t, horizontalalignment='left',
+ verticalalignment='top',
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ fontsize=int(
+ self.widget.comboBox_PnTFontSize.currentText()))
+ xlabel = "Two Theta (degrees), {: 6.4f} A".\
+ format(self.widget.doubleSpinBox_SetWavelength.value())
+ self.widget.mpl.canvas.ax_pattern.set_xlabel(xlabel)
+ # if I move the line below to elsewhere I cannot get ylim or axis
+ # self.widget.mpl.canvas.ax_pattern.autoscale(
+ # enable=False, axis=u'both', tight=True)
+ """Removing the lines below for the tick reduce the plot time
+ significantly. So do not turn this on.
+ x_size = limits[1] - limits[0]
+ if x_size <= 50.:
+ majortick_interval = 1
+ minortick_interval = 0.1
+ else:
+ majortick_interval = 10
+ minortick_interval = 1
+ majorLocator = MultipleLocator(majortick_interval)
+ minorLocator = MultipleLocator(minortick_interval)
+ self.widget.mpl.canvas.ax_pattern.xaxis.set_major_locator(majorLocator)
+ self.widget.mpl.canvas.ax_pattern.xaxis.set_minor_locator(minorLocator)
+ """
+ self.widget.mpl.canvas.ax_pattern.format_coord = \
+ lambda x, y: "{0:.2f},{1:.2e},{2:.3f}A,{3:.3f}A-1".\
+ format(x, y,
+ self.widget.doubleSpinBox_SetWavelength.value()
+ / 2. / np.sin(np.radians(x / 2.)),
+ 4. * np.pi / self.widget.doubleSpinBox_SetWavelength.value() *
+ np.sin(np.radians(x / 2.)))
+ self.widget.mpl.canvas.ax_cake.format_coord = \
+ lambda x, y: "{0:.2f},{1:.2e},{2:.3f}A,{3:.3f}A-1".\
+ format(x, y,
+ self.widget.doubleSpinBox_SetWavelength.value()
+ / 2. / np.sin(np.radians(x / 2.)),
+ 4. * np.pi / self.widget.doubleSpinBox_SetWavelength.value() *
+ np.sin(np.radians(x / 2.)))
+ self.widget.mpl.canvas.draw()
+ print("Plot takes {0:.2f}s at".format(time.time() - t_start),
+ str(datetime.datetime.now())[:-7])
+ self.widget.unsetCursor()
+ if self.widget.checkBox_LongCursor.isChecked():
+ self.widget.cursor = MultiCursor(
+ self.widget.mpl.canvas,
+ (self.widget.mpl.canvas.ax_pattern,
+ self.widget.mpl.canvas.ax_cake), color='r',
+ lw=float(
+ self.widget.comboBox_VertCursorThickness.
+ currentText()),
+ ls='--', useblit=False) # useblit not supported for pyqt5 yet
+ """
+ self.widget.cursor_pattern = Cursor(
+ self.widget.mpl.canvas.ax_pattern, useblit=False,
+ lw = 1, ls=':')
+ self.widget.cursor_cake = Cursor(
+ self.widget.mpl.canvas.ax_cake, useblit=False, c= 'r',
+ lw = 1, ls=':')
+ """
+
+def _plot_ucfit(self):
+ i = 0
+ for j in self.model.ucfit_lst:
+ if j.display:
+ i += 1
+ if i == 0:
+ return
+ axisrange = self.widget.mpl.canvas.ax_pattern.axis()
+ bar_scale = 1. / 100. * axisrange[3]
+ i = 0
+ for phase in self.model.ucfit_lst:
+ if phase.display:
+ phase.cal_dsp()
+ tth, inten = phase.get_tthVSint(
+ self.widget.doubleSpinBox_SetWavelength.value())
+ bar_min = np.ones(tth.shape) * axisrange[2]
+ intensity = inten
+ bar_min = np.ones(tth.shape) * axisrange[2]
+ self.widget.tableWidget_UnitCell.removeCellWidget(i, 3)
+ Item4 = QtWidgets.QTableWidgetItem(
+ "{:.3f}".format(float(phase.v)))
+ Item4.setFlags(
+ QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
+ self.widget.tableWidget_UnitCell.setItem(i, 3, Item4)
+ if self.widget.checkBox_Intensity.isChecked():
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, intensity * bar_scale,
+ colors=phase.color,
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()))
+ else:
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, 100. * bar_scale,
+ colors=phase.color,
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()))
+ i += 1
+
+def _plot_cake(self):
+ intensity_cake, tth_cake, chi_cake = self.model.diff_img.get_cake()
+ min_slider_pos = self.widget.horizontalSlider_VMin.value()
+ max_slider_pos = self.widget.horizontalSlider_VMax.value()
+ if (max_slider_pos <= min_slider_pos):
+ self.widget.horizontalSlider_VMin.setValue(1)
+ self.widget.horizontalSlider_VMax.setValue(99)
+ intensity_cake_plot = ma.masked_values(intensity_cake, 0.)
+ prefactor = self.widget.spinBox_MaxCakeScale.value() / \
+ (10. ** self.widget.horizontalSlider_MaxScaleBars.value())
+ # intensity_cake_plot.max() / \
+ climits = np.asarray([
+ self.widget.horizontalSlider_VMin.value(),
+ self.widget.horizontalSlider_VMax.value()]) / \
+ 1000. * prefactor
+ if self.widget.checkBox_WhiteForPeak.isChecked():
+ cmap = 'gray'
+ else:
+ cmap = 'gray_r'
+ mid_angle = self.widget.spinBox_AziShift.value()
+ if mid_angle != 0:
+ int_new = np.array(intensity_cake_plot)
+ int_new[0:mid_angle] = intensity_cake[360 - mid_angle:361]
+ int_new[mid_angle:361] = intensity_cake[0:360 - mid_angle]
+ else:
+ int_new = np.array(intensity_cake_plot)
+ self.widget.mpl.canvas.ax_cake.imshow(
+ int_new, origin="lower",
+ extent=[tth_cake.min(), tth_cake.max(),
+ chi_cake.min(), chi_cake.max()],
+ aspect="auto", cmap=cmap, clim=climits) # gray_r
+ tth_list, azi_list, note_list = self._read_azilist()
+ tth_min = tth_cake.min()
+ tth_max = tth_cake.max()
+ if azi_list is not None:
+ for tth, azi, note in zip(tth_list, azi_list, note_list):
+ rect = patches.Rectangle(
+ (tth_min, azi[0]), (tth_max - tth_min), (azi[1] - azi[0]),
+ linewidth=0, edgecolor='b', facecolor='b', alpha=0.2)
+ rect1 = patches.Rectangle(
+ (tth[0], azi[0]), (tth[1] - tth[0]), (azi[1] - azi[0]),
+ linewidth=1, edgecolor='b', facecolor='None')
+ self.widget.mpl.canvas.ax_cake.add_patch(rect)
+ self.widget.mpl.canvas.ax_cake.add_patch(rect1)
+ if self.widget.checkBox_ShowCakeLabels.isChecked():
+ self.widget.mpl.canvas.ax_cake.text(
+ tth[1], azi[1], note, color=self.obj_color)
+ rows = self.widget.tableWidget_DiffImgAzi.selectionModel().\
+ selectedRows()
+ if rows != []:
+ for r in rows:
+ azi_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(r.row(), 2).text())
+ azi_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(r.row(), 4).text())
+ rect = patches.Rectangle(
+ (tth_min, azi_min), (tth_max - tth_min),
+ (azi_max - azi_min),
+ linewidth=0, facecolor='r', alpha=0.2)
+ self.widget.mpl.canvas.ax_cake.add_patch(rect)
+
+def _plot_jcpds(self, axisrange):
+ # t_start = time.time()
+ if (not self.widget.checkBox_JCPDSinPattern.isChecked()) and \
+ (not self.widget.checkBox_JCPDSinCake.isChecked()):
+ return
+ selected_phases = []
+ for phase in self.model.jcpds_lst:
+ if phase.display:
+ selected_phases.append(phase)
+ if selected_phases == []:
+ return
+ n_displayed_jcpds = len(selected_phases)
+ # axisrange = self.widget.mpl.canvas.ax_pattern.axis()
+ cakerange = self.widget.mpl.canvas.ax_cake.axis()
+ bar_scale = 1. / 100. * axisrange[3] * \
+ self.widget.horizontalSlider_JCPDSBarScale.value() / 100.
+ pressure = self.widget.doubleSpinBox_Pressure.value()
+ for i, phase in enumerate(selected_phases):
+ phase.cal_dsp(pressure,
+ self.widget.doubleSpinBox_Temperature.value())
+ tth, inten = phase.get_tthVSint(
+ self.widget.doubleSpinBox_SetWavelength.value())
+ if self.widget.checkBox_JCPDSinPattern.isChecked():
+ intensity = inten * phase.twk_int
+ if self.widget.checkBox_Intensity.isChecked():
+ bar_min = np.ones_like(tth) * axisrange[2] + \
+ self.widget.horizontalSlider_JCPDSBarPosition.\
+ value() / 100. * axisrange[3]
+ bar_max = intensity * bar_scale + bar_min
+ else:
+ data_limits = self._get_data_limits()
+ starting_intensity = np.ones_like(tth) * data_limits[2] + \
+ self.widget.horizontalSlider_JCPDSBarPosition.\
+ value() / 100. * axisrange[3]
+ bar_max = starting_intensity - \
+ i * 100. * bar_scale / n_displayed_jcpds
+ bar_min = starting_intensity - \
+ i * 100. * bar_scale / n_displayed_jcpds
+ if pressure == 0.:
+ volume = phase.v
+ else:
+ volume = phase.v.item()
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, bar_max, colors=phase.color,
+ label="{0:}, {1:.3f} A^3".format(
+ phase.name, volume),
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_ptn_Alpha.value())
+ # hkl
+ if self.widget.checkBox_ShowMillerIndices.isChecked():
+ hkl_list = phase.get_hkl_in_text()
+ for j, hkl in enumerate(hkl_list):
+ self.widget.mpl.canvas.ax_pattern.text(
+ tth[j], bar_max[j], hkl, color=phase.color,
+ rotation=90, verticalalignment='bottom',
+ horizontalalignment='center',
+ fontsize=int(
+ self.widget.comboBox_HKLFontSize.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_ptn_Alpha.value())
+ # phase.name, phase.v.item()))
+ if self.widget.checkBox_ShowCake.isChecked() and \
+ self.widget.checkBox_JCPDSinCake.isChecked():
+ self.widget.mpl.canvas.ax_cake.vlines(
+ tth, np.ones_like(tth) * cakerange[2],
+ np.ones_like(tth) * cakerange[3], colors=phase.color,
+ lw=float(
+ self.widget.comboBox_CakeJCPDSBarThickness.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_cake_Alpha.value())
+ if self.widget.checkBox_ShowMillerIndices_Cake.isChecked():
+ hkl_list = phase.get_hkl_in_text()
+ trans = transforms.blended_transform_factory(
+ self.widget.mpl.canvas.ax_cake.transData,
+ self.widget.mpl.canvas.ax_cake.transAxes)
+ for j, hkl in enumerate(hkl_list):
+ self.widget.mpl.canvas.ax_cake.text(
+ tth[j], 0.99, hkl, color=phase.color,
+ rotation=90, verticalalignment='top',
+ transform=trans, horizontalalignment='right',
+ fontsize=int(
+ self.widget.comboBox_HKLFontSize.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_cake_Alpha.value())
+ if self.widget.checkBox_JCPDSinPattern.isChecked():
+ leg_jcpds = self.widget.mpl.canvas.ax_pattern.legend(
+ loc=1, prop={'size': 10}, framealpha=0., handlelength=1)
+ for line, txt in zip(leg_jcpds.get_lines(), leg_jcpds.get_texts()):
+ txt.set_color(line.get_color())
+ # print("JCPDS update takes {0:.2f}s at".format(time.time() - t_start),
+ # str(datetime.datetime.now())[:-7])
+
+def _plot_waterfallpatterns(self):
+ if not self.widget.checkBox_ShowWaterfall.isChecked():
+ return
+ # t_start = time.time()
+ # count how many are dispaly
+ i = 0
+ for pattern in self.model.waterfall_ptn:
+ if pattern.display:
+ i += 1
+ if i == 0:
+ return
+ n_display = i
+ j = 0 # this is needed for waterfall gaps
+ # get y_max
+ for pattern in self.model.waterfall_ptn[::-1]:
+ if pattern.display:
+ j += 1
+ """
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.97 - n_display * 0.05 + j * 0.05,
+ os.path.basename(pattern.fname),
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ color=pattern.color)
+ """
+ if self.widget.checkBox_BgSub.isChecked():
+ ygap = self.widget.horizontalSlider_WaterfallGaps.value() * \
+ self.model.base_ptn.y_bgsub.max() * float(j) / 100.
+ y_bgsub = pattern.y_bgsub
+ if self.widget.checkBox_IntNorm.isChecked():
+ y = y_bgsub / y_bgsub.max() * \
+ self.model.base_ptn.y_bgsub.max()
+ else:
+ y = y_bgsub
+ x_t = pattern.x_bgsub
+ else:
+ ygap = self.widget.horizontalSlider_WaterfallGaps.value() * \
+ self.model.base_ptn.y_raw.max() * float(j) / 100.
+ if self.widget.checkBox_IntNorm.isChecked():
+ y = pattern.y_raw / pattern.y_raw.max() *\
+ self.model.base_ptn.y_raw.max()
+ else:
+ y = pattern.y_raw
+ x_t = pattern.x_raw
+ if self.widget.checkBox_SetToBasePtnLambda.isChecked():
+ x = convert_tth(x_t, pattern.wavelength,
+ self.model.base_ptn.wavelength)
+ else:
+ x = x_t
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y + ygap, c=pattern.color, lw=float(
+ self.widget.comboBox_WaterfallLineThickness.
+ currentText()))
+ if self.widget.checkBox_ShowWaterfallLabels.isChecked():
+ self.widget.mpl.canvas.ax_pattern.text(
+ (x[-1] - x[0]) * 0.01 + x[0], y[0] + ygap,
+ os.path.basename(pattern.fname),
+ verticalalignment='bottom', horizontalalignment='left',
+ color=pattern.color)
+ """
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.97 - n_display * 0.05,
+ os.path.basename(self.model.base_ptn.fname),
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ color=self.model.base_ptn.color)
+ """
+
+def _plot_diffpattern(self, gsas_style=False):
+ if self.widget.checkBox_BgSub.isChecked():
+ x, y = self.model.base_ptn.get_bgsub()
+ if gsas_style:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color, marker='o',
+ linestyle='None', ms=3)
+ else:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color,
+ lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ else:
+ x, y = self.model.base_ptn.get_raw()
+ if gsas_style:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color, marker='o',
+ linestyle='None', ms=3)
+ else:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color,
+ lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ x_bg, y_bg = self.model.base_ptn.get_background()
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_bg, y_bg, c=self.model.base_ptn.color, ls='--',
+ lw=float(
+ self.widget.comboBox_BkgnLineThickness.
+ currentText()))
+
+def _plot_peakfit(self):
+ if not self.model.current_section_exist():
+ return
+ if self.model.current_section.peaks_exist():
+ for x_c in self.model.current_section.get_peak_positions():
+ self.widget.mpl.canvas.ax_pattern.axvline(
+ x_c, ls='--', dashes=(10, 5))
+ if self.model.current_section.fitted():
+ bgsub = self.widget.checkBox_BgSub.isChecked()
+ x_plot = self.model.current_section.x
+ profiles = self.model.current_section.get_individual_profiles(
+ bgsub=bgsub)
+ for key, value in profiles.items():
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, value, ls='-', c=self.obj_color, lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ total_profile = self.model.current_section.get_fit_profile(
+ bgsub=bgsub)
+ residue = self.model.current_section.get_fit_residue(bgsub=bgsub)
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, total_profile, 'r-', lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ y_range = self.model.current_section.get_yrange(bgsub=bgsub)
+ y_shift = y_range[0] - (y_range[1] - y_range[0]) * 0.05
+ #(y_range[1] - y_range[0]) * 1.05
+ self.widget.mpl.canvas.ax_pattern.fill_between(
+ x_plot, self.model.current_section.get_fit_residue_baseline(
+ bgsub=bgsub) + y_shift, residue + y_shift, facecolor='r')
+ """
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, residue + y_shift, 'r-')
+ self.widget.mpl.canvas.ax_pattern.axhline(
+ self.model.current_section.get_fit_residue_baseline(
+ bgsub=bgsub) + y_shift, c='r', ls='-', lw=0.5)
+ """
+ else:
+ pass
+
+def _plot_peakfit_in_gsas_style(self):
+ # get all the highlights
+ # iteratively run plot
+ rows = self.widget.tableWidget_PkFtSections.selectionModel().\
+ selectedRows()
+ if rows == []:
+ return
+ else:
+ selected_rows = [r.row() for r in rows]
+ bgsub = self.widget.checkBox_BgSub.isChecked()
+ data_limits = self._get_data_limits()
+ y_shift = data_limits[2] - (data_limits[3] - data_limits[2]) * 0.05
+ i = 0
+ for section in self.model.section_lst:
+ if i in selected_rows:
+ x_plot = section.x
+ total_profile = section.get_fit_profile(bgsub=bgsub)
+ residue = section.get_fit_residue(bgsub=bgsub)
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, total_profile, 'r-', lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ self.widget.mpl.canvas.ax_pattern.fill_between(
+ x_plot, section.get_fit_residue_baseline(bgsub=bgsub) +
+ y_shift, residue + y_shift, facecolor='r')
+ i += 1
diff --git a/jnb-tools/2_1D_from_dpp/test-1.pdf b/jnb-tools/2_1D_from_dpp/test-1.pdf
new file mode 100644
index 0000000..04805ca
Binary files /dev/null and b/jnb-tools/2_1D_from_dpp/test-1.pdf differ
diff --git a/jnb-tools/2_1D_from_dpp/test-2-dsp.pdf b/jnb-tools/2_1D_from_dpp/test-2-dsp.pdf
new file mode 100644
index 0000000..52b8be0
Binary files /dev/null and b/jnb-tools/2_1D_from_dpp/test-2-dsp.pdf differ
diff --git a/jnb-tools/2_1D_from_dpp/test-2.pdf b/jnb-tools/2_1D_from_dpp/test-2.pdf
new file mode 100644
index 0000000..e7e55aa
Binary files /dev/null and b/jnb-tools/2_1D_from_dpp/test-2.pdf differ
diff --git a/jnb-tools/2_1D_from_dpp/test.pdf b/jnb-tools/2_1D_from_dpp/test.pdf
new file mode 100644
index 0000000..6c5b7e9
Binary files /dev/null and b/jnb-tools/2_1D_from_dpp/test.pdf differ
diff --git a/jnb-tools/3_2D_from_dpp/cake_from_dpp.html b/jnb-tools/3_2D_from_dpp/cake_from_dpp.html
new file mode 100644
index 0000000..ab1520c
--- /dev/null
+++ b/jnb-tools/3_2D_from_dpp/cake_from_dpp.html
@@ -0,0 +1,13819 @@
+
+
+
+
+cake_from_dpp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Plot Caked Patterns from dpp files from PeakPo¶
+
+
+
+
+
+
+
+Please check setup_for_notebooks file if you have problem using the notebooks in this folder.
+In this notebook, we will learn how to plot XRD patterns using the information saved in dpp
.
+dpp
is a project file saved in PeakPo
. You may plot, jcpds information and cake as well as many other information.
+
+
+
+
+
+
+
+
+
This notebook takes advantage of the PeakPo
modules and other local modules. They can be found in ../local_modules
folder.
+The cell below defined the search path for this local module folder.
+
+
+
+
+
+
+
+
+
Check the versio of pyFAI in your conda environment¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
+ from ._conv import register_converters as _register_converters
+WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl
+
+
+
+
+
+
+
Out[2]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Note that the example data files I provided are made with pyFAI
version 0.14
. If you see version higher than 0.15
here, you will get error when you read the example dpp
file. In that case, you either follow the instruction in setup_for_notebooks.ipynb or you may use your own dpp for this note book.
+
+
+
+
+
+
+
+
+
+
Change the following two cells for your own dpp file
+
+
+
+
+
+
+
+
Data files should be in the ./data
folder. You need: dpp
, chi
, and tif
.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
../data/hStv/hSiO2_404_009.dpp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The cells below show how to look into the data structure of the model_dpp
and get values from it.
+
+
+
+
+
+
+
+
Setup a new PeakPo model and assign info from dpp¶
+
+
+
+
+
+
+
+
Make sure to reset the chi folder location using the new_chi_path
option.
+
+
+
+
+
+
+
+
+
+
+
Let's make some plots¶
+
+
+
+
+
+
+
In the plot below, we plot diffraction pattern in $2\theta$ scale to prevent any distortion in the diffraction pattern. We just plot tickmarks in d-spacing scale.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Can I add cake to the diffraction pattern?¶
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[12]:
+
+
+
+
+
+
{'base_ptn': <ds_powdiff.DiffractionPattern.PatternPeakPo at 0x10b9a4cf8>,
+ 'waterfall_ptn': [],
+ 'jcpds_lst': [<ds_jcpds.jcpds.JCPDSplt at 0x112704198>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x112704f60>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x11275f4e0>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x11275f898>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x11275fa90>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x112768668>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x1127720f0>,
+ <ds_jcpds.jcpds.JCPDSplt at 0x112772940>],
+ 'ucfit_lst': [],
+ 'diff_img': <ds_cake.DiffractionImage.DiffImg at 0x11277d4e0>,
+ 'poni': '../data/hStv/LaB6_37keV_p49_center.poni',
+ 'session': <ds_jcpds.jcpds.Session at 0x1127852b0>,
+ 'jcpds_path': '/Users/DanShim/Python/jcpds',
+ 'chi_path': '../data/hStv',
+ 'current_section': None,
+ 'section_lst': [],
+ 'saved_pressure': 39.6,
+ 'saved_temperature': 300.0}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[14]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[2.60987346e-03 7.82961977e-03 1.30493661e-02 ... 3.03032372e+01
+ 3.03084569e+01 3.03136767e+01]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[16]:
+
+
+
+
+
+
<matplotlib.image.AxesImage at 0x11a68ef60>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Modify plot_diffpattern function to plot cake¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/jnb-tools/3_2D_from_dpp/cake_from_dpp.ipynb b/jnb-tools/3_2D_from_dpp/cake_from_dpp.ipynb
new file mode 100644
index 0000000..0999f7e
--- /dev/null
+++ b/jnb-tools/3_2D_from_dpp/cake_from_dpp.ipynb
@@ -0,0 +1,539 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Plot Caked Patterns from dpp files from PeakPo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder. \n",
+ "- In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`. \n",
+ "- `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook takes advantage of the `PeakPo` modules and other local modules. They can be found in `../local_modules` folder. \n",
+ "The cell below defined the search path for this local module folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "sys.path.append('../../peakpo')\n",
+ "sys.path.append('../local_modules')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Check the versio of pyFAI in your conda environment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
+ " from ._conv import register_converters as _register_converters\n",
+ "WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'0.14.2'"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pyFAI\n",
+ "pyFAI.version"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import dill\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Change the following two cells for your own dpp file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Data files should be in the `./data` folder. You need: `dpp`, `chi`, and `tif`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "../data/hStv/hSiO2_404_009.dpp\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ../data/hStv/*.dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "filen_dpp = '../data/hStv/hSiO2_404_009.dpp'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(filen_dpp, 'rb') as f:\n",
+ " model_dpp = dill.load(f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The cells below show how to look into the data structure of the `model_dpp` and get values from it."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup a new PeakPo model and assign info from dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from model import PeakPoModel\n",
+ "model = PeakPoModel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make sure to reset the chi folder location using the `new_chi_path` option."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model.set_from(model_dpp, new_chi_path='../data/hStv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Make XRD plot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "%config InlineBackend.figure_format = 'retina'\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Let's make some plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the plot below, we plot diffraction pattern in $2\\theta$ scale to prevent any distortion in the diffraction pattern. We just plot tickmarks in d-spacing scale."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import fancy_plots as fancy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAEV4AAAeaCAYAAACKdNpJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeUlPW5B/BnFxRBUIwl1iiKSldR8eoRUWIsiaEoQcBu1KioXDVWiDWWKPdejb0lMQFLsAAiigUExEoRpdg7KLLo7lJ2tt8/cvSkALs7lWE+n3M4B+b9Pb/3O7CzMztn3i9F9fX1AQAAAAAAAAAAAAAAAAAAAABQSIpzHQAAAAAAAAAAAAAAAAAAAAAAINsUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABUfxCgAAAAAAAAAAAAAAAAAAAABQcBSvAAAAAAAAAAAAAAAAAAAAAAAFR/EKAAAAAAAAAAAAAAAAAAAAAFBwFK8AAAAAAAAAAAAAAAAAAAAAAAVH8QoAAAAAAAAAAAAAAAAAAAAAUHAUrwAAAAAAAAAAAAAAAAAAAAAABad5rgPA2hQVFX0dEW1Xc6gqIr7IchwAAAAAAAAAAAAAAAAAAACATNkhIjZcze2l9fX1W2c7TCEoqq+vz3UGWKOioqJERLTIdQ4AAAAAAAAAAAAAAAAAAACAHKmsr6/fKNch1kfFuQ4AAAAAAAAAAAAAAAAAAAAAAJBtilcAAAAAAAAAAAAAAAAAAAAAgIKjeAUAAAAAAAAAAAAAAAAAAAAAKDiKVwAAAAAAAAAAAAAAAAAAAACAgtM81wGgAVUR0eLfb2zRokXssssuOYiTvI8++igqKyv/4/Z8vC+wJr7OYd3iMQnrr+rq6vjggw/WuqaoqCg6duyYpUQN8z0JoHB5DgAAkuV1BAAA8M/8jAAAAAAAmeP9NwBYd6zpeTn+0b1ABiheYV33RUR0+vcbd9lll5g/f34O4iSvc+fOsWDBgv+4PR/vC6yJr3NYt3hMwvrrnXfeiW7duq11TXFx8Tr1WPc9CaBweQ4AAJLldQQAAPDP/IwAAAAAAJnj/TcAWHes6Xk5/tG9QAYU5zoAAAAATVNWVtbgmtra2iwkAQAAAAAAAAAAAAAAAID8pXgFAAAgzzSmeCUior6+PsNJAAAAAAAAAAAAAAAAACB/KV4BAADIM40tXlmxYkWGkwAAAAAAAAAAAAAAAABA/lK8AgAAkGcaW7yydOnSDCcBAAAAAAAAAAAAAAAAgPyleAUAACDPlJeXN2qd4hUAAAAAAAAAAAAAAAAAWDPFKwAAAHmmrKysUetKSkoynAQAAAAAAAAAAAAAAAAA8pfiFQAAgDzT2OKVpUuXZjgJAAAAAAAAAAAAAAAAAOQvxSsAAAB5RvEKAAAAAAAAAAAAAAAAAKRO8QoAAECeUbwCAAAAAAAAAAAAAAAAAKlTvAIAAJBnGlu8UlJSkuEkAAAAAAAAAAAAAAAAAJC/FK8AAADkmcYWryxdujTDSQAAAAAAAAAAAAAAAAAgfyleAQAAyDOKVwAAAAAAAAAAAAAAAAAgdYpXAAAA8kxji1dKSkoynAQAAAAAAAAAAAAAAAAA8pfiFQAAgDxSX18f5eXljVq7dOnSDKcBAAAAAAAAAAAAAAAAgPyleAUAACCPrFy5Murq6hq1try8PCorKzOcCAAAAAAAAAAAAAAAAADyk+IVAACAPFJWVtak9SUlJRlKAgAAAAAAAAAAAAAAAAD5TfEKAABAHlG8AgAAAAAAAAAAAAAAAADpoXgFAAAgjzS1eGXp0qUZSgIAAAAAAAAAAAAAAAAA+U3xCgAAQB5RvAIAAAAAAAAAAAAAAAAA6aF4BQAAII80tXilpKQkQ0kAAAAAAAAAAAAAAAAAIL8pXgEAAMgjTS1eWbp0aYaSAAAAAAAAAAAAAAAAAEB+U7wCAACQRxSvAAAAAAAAAAAAAAAAAEB6KF4BAADII4pXAAAAAAAAAAAAAAAAACA9FK8AAADkkfLy8iatLykpyVASAAAAAAAAAAAAAAAAAMhvzXMdAArF2WefHUuXLv2P27fccsscpIHM8HUO6xaPSVg/lZWVNWn96r4P5ILvSQCFy3MAAJAsryMAAIB/5mcEAAAAAMgc778BAIWsqL6+PtcZYI2KiormR0Snf7+9U6dOMX/+/BwkAgCA3OrXr1+MGzeu0eu33HLL+OabbzKYCAAAAAAAAAAAAAAAAIB06Ny5cyxYsGB1hxbU19d3znaeQlCc6wAAAAA0XllZWZPWL1u2LOrq6jKUBgAAAAAAAAAAAAAAAADyl+IVAACAPNLU4pW6urr47rvvMpQGAAAAAAAAAAAAAAAAAPKX4hUAAIA80tTilYiIpUuXZiAJAAAAAAAAAAAAAAAAAOQ3xSsAAAB5RPEKAAAAAAAAAAAAAAAAAKSH4hUAAIA8UV9fn1TxSklJSQbSAAAAAAAAAAAAAAAAAEB+U7wCAACQJyoqKqKmpqbJcytXrsxAGgAAAAAAAAAAAAAAAADIb4pXAAAA8kR5eXlSc5WVlWlOAgAAAAAAAAAAAAAAAAD5T/EKAABAnigrK0tqLpFIpDkJAAAAAAAAAAAAAAAAAOQ/xSsAAAB5ItnilcrKyjQnAQAAAAAAAAAAAAAAAID8p3gFAAAgTyRbvJJIJNKcBAAAAAAAAAAAAAAAAADyn+IVAACAPJFs8UplZWWakwAAAAAAAAAAAAAAAABA/lO8AgAAkCeSLV5JJBJpTgIAAAAAAAAAAAAAAAAA+U/xCgAAQJ5ItnilsrIyzUkAAAAAAAAAAAAAAAAAIP8pXgEAAMgTyRavJBKJNCcBAAAAAAAAAAAAAAAAgPyneAUAACBPJFu8UllZmeYkAAAAAAAAAAAAAAAAAJD/FK8AAADkifLy8qTmEolEmpMAAAAAAAAAAAAAAAAAQP5TvAIAAJAnysrKkpqrrKxMcxIAAAAAAAAAAAAAAAAAyH+KVwAAAPJEssUriUQizUkAAAAAAAAAAAAAAAAAIP8pXgEAAMgTyRavVFZWpjkJAAAAAAAAAAAAAAAAAOQ/xSsAAAB5oqKiIqm5RCKR5iQAAAAAAAAAAAAAAAAAkP8UrwAAAOSJqqqqpOYqKyvTnAQAAAAAAAAAAAAAAAAA8p/iFQAAgDyRbPFKIpFIcxIAAAAAAAAAAAAAAAAAyH+KVwAAAPJEZWVlVucAAAAAAAAAAAAAAAAAYH2meAUAACBPVFVVJTWXSCTSnAQAAAAAAAAAAAAAAAAA8p/iFQAAgDyRbPFKZWVlmpMAAAAAAAAAAAAAAAAAQP5TvAIAAJAnki1eSSQSaU4CAAAAAAAAAAAAAAAAAPlP8QoAAEAeqK+vT7p4pbKyMs1pAAAAAAAAAAAAAAAAACD/KV4BAADIA9XV1UnPVlVVRV1dXRrTAAAAAAAAAAAAAAAAAED+U7wCAACQB6qqqnI6DwAAAAAAAAAAAAAAAADrG8UrAAAAeSDV4pREIpGmJAAAAAAAAAAAAAAAAACwfmie6wAAAAA0rLKyMqfzAAAAAAAAAACQTYsXL46OHTtGeXn5ao8XFxfHvHnzomPHjllOtn6qq6uLPfbYI+bNm7fa461atYr58+fHTjvtlN1gAA2oq6uLhQsXxgcffBAffvhhfPTRR/Hhhx9GSUlJrFixIlauXBkrVqyIVatWRXFxcWy44YbRokWLaNOmTWy++eaxxRZbxNZbbx3t2rWLnXfeOXbdddfo1q1bbLzxxrm+awAAAGSJ4hUAAIA8UFVVldK84hUAAAAAAAAAAPLJueeeu8bSlYiIQYMGKV1Jo+Li4rjmmmvi6KOPXu3xVatWxdChQ+Ppp5/OcjKAf1VbWxtvvvlmTJs2LaZOnRozZsyIsrKyRs9WV1fHypUr49tvv43PPvtsteuKi4tj1113jX333TcOOeSQ6N27t+IpAACA9VhRfX19rjPAGhUVFc2PiE7/fnunTp1i/vz5OUgEAAC58cEHH8Ruu+2W9Px7772X0jwAAAAAAAAAAGTLhAkT4pe//OUajzdr1iwWLFjg8zAZsO+++8bMmTPXeHzMmDExYMCALCYC+IdZs2bFqFGj4uGHH44lS5Zk/fy77757HHPMMXHMMcdE9+7ds37+VB188MExderUXMdolOLi4mjZsmW0bNkyWrduHdtvv33ssMMOsdNOO0X37t1j7733jnbt2uU6JgAUnKuuuiquvvrqJs0sXLgwOnTokKFEmVFVVRW/+tWvYvz48Snts8kmm8QzzzwTBxxwQJqSUUg6d+4cCxYsWN2hBfX19Z2znacQNM91AAAAABpWVVWV0nxlZWWakgAAAAAAAAAAQOasXLkyhg4dutY1Q4YMUbqSIb///e/jiCOOWOPx//7v/47DDz882rRpk8VUQKGqqKiI++67L+6666549913c5rlvffei+uvvz6uv/766NKlS/zmN7+J448/Ptq2bZvTXOujurq6WLlyZaxcuTJKSkri008//Y812267bfz85z+PX/ziF3HkkUdGixYtsh8UAFjvVFdXp6V0pW3btjFp0qTo0aNHmpIBmVac6wAAAAA0LNXilEQikaYkAAAAAAAAAACQOVdeeWV8/vnnazzerFmzuOKKK7KYqLAcfvjhceCBB67x+KJFi2LEiBFZTES63X333VFUVNTgr5122inXUSlgK1eujJEjR0a7du1i2LBhOS9d+Xfz5s2Lc889N3bYYYe4+OKL4+uvv851pIKzePHiuP/++6N///6x/fbbx0UXXRSffPJJrmMBAHksXaUrm2++eUyePFnpCuSZ5rkOAAAAQMOqqqpSmk+1uAUAAAAAAAAAADLtnXfeiVtvvXWta44//vho3759lhIVpquvvjp++tOfrvH4HXfcESeddFJ07949i6lIh3fffTcuvPDCXMfIuE8++SRee+21mDt3bixcuDAWLVoUixcvjpUrV0ZFRUUUFRXFJptsEm3atIlNNtkkNt988+jUqVN06dIlunTpEl27do1NNtkk13ejINXX18e9994bI0aMiJKSklzHadCKFSvi5ptvjttuuy0uvPDCGD58eLRs2TLXsQpOSUlJjBw5Mm655Zb49a9/HVdccUVsu+22uY4F/JP58+fH/Pnz47333ov3338/PvzwwygtLY0VK1b88CsiYqONNooWLVrExhtvHD/+8Y/jxz/+cWyzzTax2267RadOnaJz586x44475vjeZN5XX30Vr7zySsydOzfmz58fX375ZSxevDiWL18eFRUVUV9f/8PrmDZt2sRmm20WHTp0+OF1TNeuXWPzzTfP9d3IuG+//TZmzJgRc+fOjXnz5sUXX3wRixYtirKysqioqIiampof/p422WST2HTTTWO33Xb74TVft27dYuutt8713WAdUV1dHQMHDoxx48altM9WW20VL7zwQnTt2jVNyYBsUbwCAACQB1ItXkkkEmlKAgAAAAAAAAAA6VdfXx9nnXVW1NTUrHFNs2bNYvjw4VlMVZh69+4dvXr1iqlTp672eG1tbZx55pnx2muvRXFxcZbTkayqqqoYMmRIrFq1KtdRMuKNN96I0aNHx4QJE+Ljjz9ucH1JScm/FHtMnjz5h983b948evbsGf369Yt+/frFT37yk4xk5l+9++67ccYZZ8T06dNzHaXJEolEXHfddTF69Oi45ZZbom/fvrmOVJBqamrinnvuib/97W9xww03xLnnnhtFRUW5jgUFqbS0NCZOnBiTJk2K5557Lr7++utGzX1fwrJs2bL4/PPPV7tmm222iZ49e8YhhxwS/fr1W2+KM+bPnx+jRo2Kp556KubPn9/g+m+//Ta+/fbbH/48bdq0H35fVFQUPXr0+OG1TIcOHTKSORc+/fTTGD16dDz55JMxZ86cqKurW+v60tLSKC0t/eHPM2bM+JfjXbt2/eHvSbFk4aquro5jjz02xo4dm9I+22yzTbz44ovRsWPHNCUDssk7XAAAAHkg1eKVysrKNCUBAAAAAAAAAID0+8tf/vIfF8H9u8GDB8euu+6apUSF7eqrr17r8TfffDPuuuuuLKUhHS6//PKYM2dOrmOkVXV1dTz44IPRtWvX2G+//eKPf/xjo0pXGlJTUxNTpkyJYcOGxY477hi9evWKZ555Jg2JWZ26urq47rrrYs8998zL0pV/9umnn0a/fv3iV7/6VSxfvjzXcQrWqlWrYtiwYdGrV69YvHhxruNAQZk3b16ceeaZsd1228Vxxx0Xf/3rXxtdutJYX331Vfz973+Ps846K7bbbrs45JBD4sEHH0z58/a5UF9fH2PHjo0DDjggunTpEjfeeGOjSlcas+/rr78el112WXTs2DH22muveOSRR6K2tjYNqXNjypQpccQRR8TOO+8cI0aMiFmzZjVYutIY77zzTlx77bWx9957R/v27eOee+5x7UWBqampiUGDBsWTTz6Z0j477LBDTJs2TekK5DHFKwAAAHkg1TfvEolEmpIAAAAAAAAAAEB6fffdd3HJJZesdU1xcXEMHz48S4no1atX9O7de61rhg8fnvYLacmMF198Mf73f/831zHSauzYsdGxY8c4+eSTY968eRk917Rp0+LnP/957LXXXvH4449n9FyFprS0NI466qgYMWLEenWR82OPPRY9evSIhQsX5jpKQZs+fXrsu+++8eabb+Y6Cqz33nvvvTjyyCOja9eucc8998SqVauyct66urp46aWX4uSTT44dd9wxrr/++qydO1XTpk2LvffeO/r37x+vvvpqRs/11ltvxeDBg6NDhw5x//33p6WwJFvefvvt6N27d/Tu3TsmTZoU9fX1GTvXRx99FGeeeWa0a9cuRo4cuV69NmH1ampq4thjj40nnngipX122mmnmDp1arRv3z5NyYBcULwCAACQB1Jt4PamHwAAAAAAAAAA66rhw4fH0qVL17pm4MCB0aFDhywlIiLid7/73VqPl5WVxQUXXJClNCRr2bJlceKJJ2b0ItVsWrJkSfTp0yf69+8fH330UVbP/dZbb8WAAQOib9++sWTJkqyee320YMGC6NGjRzzzzDO5jpIR7777bvTo0SPGjx+f6ygFbfHixXHQQQfF888/n+sosF6qqKiIESNGRLdu3eLZZ5/NaZavv/46hg8fHrvvvnuMHj06p1nWZvny5fHrX/86evXqFXPmzMnquT/88MM4/fTT46CDDooPP/wwq+duqqqqqrjsssuie/fuMWXKlKye+6uvvoqLLroounfvHjNnzszqucmempqaGDRoUMqlK+3bt49p06ZFu3bt0pQMyBXFKwAAAHkg1eKVRCKRpiQAAAAAAAAAAJA+b731Vtx7771rXVNUVBSXXXZZlhLxvYMPPjgOPPDAta55+OGH44UXXshSIpJx2mmnxeLFi3MdIy2mTJkSXbt2jaeeeiqnOcaPHx+dO3eOv//97znNkc+ee+65+K//+q/44IMPch0lo1asWBEDBgyIcePG5TpKQUskEtG3b9946aWXch0F1iuffPJJ7LPPPnHdddel/Fn3dPryyy/j+OOPj759+8ayZctyHedfvPPOO7HnnnvGn/70p5zmmDFjRuyxxx5x22235TTHmnz++eex//77x4033hi1tbU5y7FgwYLYf//944orroiampqc5SD9ampqYvDgwfH444+ntE+HDh1i6tSpscMOO6QpGZBLilcAAADyQKpvRldWVqYpCQAAAAAAAAAApM+5557b4MV0Rx11VHTr1i1Lifhnv/vd7xpcM3ToUJ9PWkfde++9MXbs2FzHSIsHHnggDj/88Fi6dGmuo0RExLJly+LYY4+Na665JtdR8s6kSZOib9++sXz58rTuu8EGG0TPnj3j/PPPj7vvvjumTJkSH3zwQXz11VexYsWKqK2tjYqKivjuu+/iiy++iJkzZ8bEiRPjtttui3POOScOPvjgaN26dVozRURUV1fHwIEDY8KECWnfm8arqKiIPn36xPvvv5/rKLBemD59evTo0SMWLFiQ6yhrNH78+OjWrVvMnj0711EiIuLpp5+OAw44ID7++ONcR4mIiFWrVsV5550XZ5xxRk7LTf7dG2+8ET169Fhn/t1qamri2muvjf79+0dFRUWu45AGNTU1MWTIkHjsscdS2qdLly7x0ksvxbbbbpumZECuNc91AAAAABqW6gcTEolEmpIAAAAAAAAAAEB6jB49Ol5++eUG1w0fPjwLaVidww47LHr06BFvvPHGGte8//778Yc//CGuuOKKLCajIe+9916cf/75uY6RFn/84x9j2LBhuY6xWldeeWWUlJTErbfeGkVFRbmOs8575plnon///mkra2rTpk0MGjQo+vfvHwcddFBsvPHGa12/0UYbxUYbbRRt27aN7bff/j+O19bWxttvvx0TJ06Mp556Kl5//fW05KyqqooBAwbE888/Hz179kzLnjTd8uXL45hjjonXX389WrVqles4kLeeeeaZ6NevX8r/sWg2LF68OA4++OAYN25cHHLIITnL8fjjj8fgwYOjuro6ZxnW5L777otly5bFQw89FC1atMhplhkzZsSRRx6Z9nK2dJgwYUL87Gc/iwkTJkTbtm1zHYck1dTUxHHHHRdjxoxJaZ8999wznn/++dhiiy3SlAxYFxTnOgAAAAANS/WNaf+jDAAAAAAAAAAA65JVq1bFJZdc0uC63r17x3777ZeFRKzJpZde2uCaG264IT7++OMspKExqqurY8iQIbFq1apcR0nZPffcs86Wrnzvtttui1NOOSXXMdZ5kyZNSlvpSufOneMvf/lLfP3113HvvffGkUce2WDpSmM0a9Ys9tprrxg+fHi89tpr8cEHH8Sll16alotqKysrY9CgQbFkyZKU98qWKVOmRH19fcZ/VVdXR3l5eSxZsiQ+/vjjmD59eowaNSquu+666N+/f2y99dZpu0/z5s1r1PMasHpz5syJgQMH5kXpyveWL18ev/jFL9JWptVUTz/9dAwaNGidLF353hNPPBFHHXVUTjPOmjUrjjjiiHWydOV7M2bMiF69ekV5eXmuo5CE2traOO644+Lvf/97Svvss88+MXnyZKUrsB5SvAIAAJAHUn1zOpFIpCkJAAAAAAAAAACk7g9/+EMsWrSowXUXX3xxFtKwNv369YuOHTuudU0ikYhzzz03S4loyPDhw2P27Nm5jpGyZ599NoYOHZrrGI3y4IMPxo033pjrGOushQsXxsCBA1MuXdlll11i1KhR8fbbb8dJJ50UrVq1SlPC1Wvfvn3ccMMN8emnn8bIkSNTvsB28eLFMWTIkKirq0tTwvVD8+bNo02bNrHVVltFu3bt4sADD4zjjjsuLr/88njiiSfiq6++infffTdGjBgRO+64Y8rnu/POO2Pu3LlpSA6F5fPPP49f/OIXsWLFilxHabKKioro06dPfPrpp1k971tvvRWDBg2KmpqarJ43GS+88EKcd955OTn3F198Eb/85S/z4mvr7bffjsGDB3suzzPpKl3Zf//944UXXojNNtssTcmAdUnzXAcAAACgYakWr6Tjf4gAAAAAAAAAAIB0+PLLL2PkyJENrttjjz3i8MMPz0Ii1qaoqCguueSSOPnkk9e6buLEiTFu3Ljo27dvdoKxWi+++GKjHl/ruk8++SQGDRoUtbW1Ke2z6aabRs+ePaN79+7RuXPn2GyzzaJt27ZRVVUVpaWlsWzZspg7d27Mnj07Xn311ZQ+azd8+PDo0qVLHHXUUSllXt9899130adPnygvL096j2bNmsXFF1++GPBEAAAgAElEQVQcV111VWy44YZpTNc4G2+8cVx44YVx6qmnxogRI+Luu+9O+oLryZMnx/XXXx8jRoxIc8r12+677x7XXnttXH311fHAAw/EiBEj4ptvvklqr9ra2rjgggvixRdfTHNKWH/V19fHiSeeGF999VXKe2200Uax//77R5cuXaJ9+/ax4447RuvWraN169YREbFs2bJYtmxZfPnllzFjxoyYMWNGlJaWpnzeb775Jk488cSYOnVqFBUVpbxfQ0pLS6Nfv34pl4m0bNkyDjzwwNh7772ja9eusfnmm8dmm20WtbW1UVpaGt9991288847MXv27HjllVdSOt/dd98dXbt2jbPPPjulzE1RVVUVRx99dMpfW82bN48DDjgg9tlnn9hjjz1iyy23jLZt20ZxcXGUlpZGaWlpLFy4MGbNmhWvvvpqLFu2LOlzTZw4MS699NK46aabUspMdtTW1sbxxx8fjz76aEr7HHTQQfH000//8L0KWP8oXgEAAMgDqRanJBKJNCUBAAAAAAAAAIDUXHbZZbFq1aoG11188cVZSENjDBkyJIYPHx6LFi1a67phw4bFYYcdFi1btsxSMv7ZsmXL4qSTTor6+vpcR0lJTU1NDB48OMrKypLeo1evXnH22WdHnz59YqONNmrUTGlpaYwZMybuuOOOmDt3bpPPWVdXF8cdd1zMmTMndt555ybPr49qampi4MCB8eGHHya9x+677x6jRo2KffbZJ43JkrPZZpvFHXfcEf3794/jjz8+lixZktQ+119/fZxwwgmx4447pjnh+q+4uDhOP/30OOaYY2LIkCExadKkpPaZPHlyzJw5c534uoJ8cM8998TUqVOTnm/RokUcc8wxcfLJJ0fPnj0b/dwc8Y/n19deey3uuOOOGDNmTFRXVyedY/r06XHbbbfFeeedl/QejXXaaafFZ599lvT8nnvuGeedd14MGDAg2rRp06iZVatWxdixY+Puu++O6dOnJ3XeYcOGxV577RX7779/UvNNddlll8XMmTOTnt95553j/PPPj2OPPTa23HLLRs1UV1fHM888E/fff3889dRTSZ335ptvjh49esSAAQOSmic7amtr44QTTohHHnkkpX1++tOfxvjx46NVq1ZpSgasi4pzHQAAAICGVVVVpTSfanELAAAAAAAAAACkw5w5c2L06NENrvvJT34SAwcOzEIiGmODDTZo1AWqn332WVx//fVZSMTqnH766Q2W4+SDm266KV5//fWkZnfZZZd46qmn4qWXXoqBAwc26cLutm3bxumnnx6zZ8+OBx54ILbaaqsmn7+8vDzOPvvsJs+tr0aMGBEvvPBC0vNHHHFEvP766+tcOcahhx4ac+bMia5duyY1X1FREb/97W/TnKqw/OhHP4qJEyfGGWeckfQeN998cxoTwfpr0aJFcckllyQ126xZsxg6dGh8+eWXMXr06PjZz37WpOfmiH8ULh1wwAExevTo+Pzzz+Oss86KoqKipPJERFx55ZUplbs1xkMPPRSPP/54UrNbbbVVPPjggzF79uw45ZRTGl26EhHRqlWrGDJkSEybNi2efPLJpIrgampq4owzzkip4KaxZsyYEf/3f/+X1Gzr1q3jlltuiXfffTfOOeecRpeuRPzjZ5s+ffrE+PHjY+rUqbHnnnsmleGcc86J0tLSpGbJvO9LVx5++OGU9jniiCNiwoQJSlegACheAQAAyAOpFq8kEok0JQEAAAAAAAAAgORdcsklUV9f3+C6c889N5o3b56FRDTWGWecEa1bt25w3c033xwff/xxFhLxz+6777548skncx0jZR999FH8/ve/T2q2f//+MWvWrDjqqKNSylBcXBynnnpqzJw5M7p3797k+UmTJsUjjzySUob1wZtvvhkjR45Men7YsGExYcKE2HTTTdOYKn222WabmDZtWuy3335JzT/22GMxZcqUNKcqLMXFxXHXXXfF0UcfndT8uHHjYvny5WlOBeufyy+/PMrLy5s8t+uuu8bs2bPj9ttvjy222CItWbbeeuu48847Y+rUqbH77rsntUdpaWnceuutacmzOt99911ccMEFSc0eeOCBMWfOnDjxxBNTKpeJiOjXr1/MmjUrDjvssCbPzps3L/7nf/4npfM3pLq6On7zm9806mfDf9epU6d48803Y9iwYbHBBhuklOOggw6K1157LU444YQmzy5ZsiQuvfTSlM5PZtTW1saJJ56YculKnz59Yty4cU0ujALyk+IVAACAPJBq8UplZWWakgAAAAAAAAAAQHKef/75eP755xtc17p16zj99NOzkIimaNu2bZx66qkNrqusrIzf/va3WUjE995///04//zzcx0jLS688MKoqKho8tyZZ54ZTzzxRFpLOnbYYYeYPn169OzZs8mz559/fpSVlaUtS76pqqqKU045JWpra5Oav/TSS+OWW26JZs2apTlZerVt2zYmTJgQ7du3T2r+mmuuSXOiwlNcXBx/+tOfYtttt23ybGVlZTz11FMZSAXrj4ULF8aoUaOaPHfooYfGm2++Gd26dctAqoiePXvG7Nmzo0+fPknN33777VFTU5PmVP9w9dVXx5IlS5o898tf/jImT56c1PezNWnbtm1MnDgxjj322CbPXnPNNfHJJ5+kLcu/u+OOO2L+/PlNnuvRo0e8+uqr0aFDh7RladGiRfz1r3+NCy+8sMmz9957b7z66qtpy0Lqamtr46STToqHHnoopX0GDBgQjz32WGy44YZpSgas6xSvAAAA5IFUi1MSiUSakgAAAAAAAAAAQHIuu+yyRq079dRT01qeQPoMHTo0ioqKGlz35JNPugAxS6qrq2Pw4MGxcuXKXEdJ2SuvvBLjxo1r8twJJ5wQd955ZwYSRbRq1SrGjh0bu+++e5Pmvv766xg5cmRGMuWDa6+9NqmLqSMiLrroorjhhhvSnChztthii3j66adj4403bvLsSy+9FG+99VYGUhWWTTfdNG699dakZsePH5/mNLB+GTlyZNTV1TVp5oADDohx48Zl/PV8q1at4oknnoi+ffs2eXbp0qXx3HPPpT3Tp59+GnfddVeT537605/GmDFjYoMNNkh7pmbNmsWDDz4YBx54YJPmKioq4oorrkh7noiI8vLyuO6665o817Vr13j22Wdjk002yUCqiJtvvjkGDhzYpJn6+vq4+OKLM5KHpqurq4uTTjopRo8endI+gwcPjkceeSQjj0lg3aV4BQAAIA9UVVWlNJ9qcQsAAAAAAAAAAKRi7NixMWvWrAbXFRUVxdChQ7OQiGTstttucdhhhzVq7eWXX57hNEREjBgxImbPnp3rGGkxYsSIJs/ssccecd999zWqEChZP/rRj2LMmDHRvHnzJs3ddtttUVZWlqFU66733nsv/vCHPyQ1e+KJJ8ZNN92U5kSZt9tuu8Utt9yS1Gyyc/yro48+Onbdddcmz82YMSMDaWD9sGzZsnjooYeaNLPNNtvE+PHjo1WrVhlK9a+aNWsWDz/8cHTq1KnJs48++mja81xzzTVN/tz/dtttF48++mi0aNEi7Xm+16JFixgzZkyTy3Aefvjh+Oijj9Ke55ZbbomSkpImzbRu3Toef/zx2GyzzdKe53tFRUXx5z//OXbaaacmzb388ssxderUzISi0dJVunLSSSfFqFGjolmzZmlKBuQLxSsAAAB5INXilUQikaYkAAAAAAAAAADQNPX19XHVVVc1au2hhx4au+22W2YDkZJzzjmnUeteeumlePnllzOcprBNnjw5Ro4c2ai17dq1y3Ca1MycOTOmTJnSpJmWLVvGww8/nNELlb/XtWvXuOCCC5o0U1ZWFrfffnuGEq27rrjiiqiurm7y3N577x333HNPBhJlx2mnnRa9e/du8twjjzwS33zzTQYSFZbi4uI466yzmjz35ZdfxqJFizKQCPLfo48+2uTPoN97772x+eabZyjR6rVs2TL+8pe/NLmEramvOxqyePHiJhc+FBUVxd/+9res/J1tvfXWccMNNzRppra2Nm688ca05qioqEjq9dHtt9+eVMFWU7Vq1SruvPPOJs/9/ve/z0AaGquuri5OPvnkGDVqVEr7nH766fHnP/85iovVL0Ah8sgHAADIA6kWr1RWVqYpCQAAAAAAAAAANM0TTzwRc+fObdTaoUOHZjgN/8/efUdXVaX/H39ueiFICRBqKKETpLcgAoKAgoAyVAFRqpViRUF0XIoICo4oXaR8bUgRUVHKoNJBCCX0GgiBBFIo6bm/P/wxo47mnn3u2ffe3Lxfa7mcNXmesz8eSLIhZz/HWd26dZNKlSoZqrX6oCb+69q1azJkyBDJz893WOvj4yNLly51QSrz3nnnHeWecePGSd26dTWk+WuTJ0+WkiVLKvXMnj1b8vLyNCXyPLGxsfLll18q95UuXVpWrlwpQUFBGlK5zowZM5QP6mZlZcmqVas0JSpaevToYapv//79FicBvMOnn36qVN+lSxfp3r27pjQFa968uTz44INKPfHx8XLu3DnLMsyaNUv5mf8BAwZIhw4dLMvgyKhRo6ROnTpKPUuXLpVr165ZlmHx4sWSlJSk1BMTEyNDhw61LIMj3bp1k3vvvVepZ8OGDRIXF6cpEQqSn58vw4YNc/rPO08++aTMnTtXeYgTAO/B4BUAAAAAKAScHZyiOm0cAAAAAAAAAAAAAAAAsIrRN6tXqFDBbYc1YZyvr68MGzbMUO23337LAURNRowYIRcvXjRU++KLL0pMTIzmROZduXJFefBE2bJl5cUXX9SU6K+FhobK6NGjlXouXbok3377raZEnmfSpElit9uV+959912pUqWKhkSu1ahRI+nTp49yH4NXrBEVFSXVqlVT7jt79qz1YYBCLiUlRbZv367U8/zzz2tKY8yYMWOUe6wavJSdnS2LFi1S6gkMDJQ333zTkvWN8vHxkXHjxin1ZGVlyfLlyy3LMGfOHOWe6dOnW7a+URMmTFDuWbhwoYYkKEh+fr48+uijsmTJEqeuM2HCBPnXv/7F0BWgiGPwCgAAAAAUAqrTr//M2cEtAAAAAAAAAAAAAAAAgBk//PCD7N2711DtI488Ir6+vpoT6WW32+Xq1aty9uxZOXr0qBw4cECOHj0qp0+flkuXLjn9HJCnePTRRw0dSrPb7TJ79mwXJCpaFixYICtXrjRU27RpU5kyZYreQE5avHix5OTkKPWMHz9ewsLCNCX6e0899ZT4+fkp9RSVQ7h79uyRtWvXKve1b99ehgwZoiGRe4wfP165Z9OmTZKWlqYhTdFTv3595R5PHrySmZkpFy9elJMnT8qhQ4fk8OHDcuLECTl37pykpqa6Ox682KZNmyQvL89wfYMGDaRjx44aEznWoUMHKVGihFLP6dOnLVl79erVkpycrNQzbNgwiYyMtGR9FUOGDJHSpUsr9Vi1l9m1a5ccOHBAqadr167SqlUrS9ZXce+99yp/T1m6dKnynhbm5efny2OPPSaffPKJU9eZOHGiW4b7APA8an/SBwAAAAC4hbMPXGRmZlqUBAAAAAAAAAAAAAAAADDunXfeMVw7bNgwjUmsZbfb5ejRo/LLL79IbGysxMXFyYkTJ+Ty5csOD9uFhYVJRESE1KhRQ2rUqCENGjSQpk2bSsOGDSUwMNBF/wXOqVq1qsTExMgvv/zisHbp0qUydepUtwzJ8EbHjx+XsWPHGqoNDg6WZcuWib+/v+ZUzlE9LBkcHCzDhw/XlKZg5cuXl44dO8oPP/xguGfdunVy7do1KVWqlMZk7vfBBx8o9/j7+8ucOXM0pHGfli1bSvPmzWX37t2Ge3JycmTdunUycOBAjcmKhjp16sg333yj1JOYmKgpjXHp6emyfft22blzpxw+fFiOHDki8fHxDoer+Pn5SXh4uERGRkqNGjWkZs2a0qRJE2natKlUrFjRRenhjbZu3apU37NnT01JjPPx8ZG2bdsqfQ04c+aMJWubGfzw5JNPWrK2qqCgIHnooYdk3rx5hntiY2Pl4MGDEh0d7dTaZu7TU0895dSazhg0aJBMnDjRcH1SUpJ8//330qNHD42pIPLb0JXhw4fL4sWLnbrOlClT5NVXX7UmFIBCj8ErAAAAAFAIODt4JSsry6IkAAAAAAAAAAAAAAAAgDFHjhyRDRs2GKpt3bq1REVFaU7knOzsbFm/fr2sWrVKvvnmG0lKSjJ1nevXr8v169flxIkTf/j/g4KCpG3bttKlSxfp3bu31KhRw4rY2gwePNjQ4JXr16/LsmXLZMyYMS5I5d1ycnJk0KBBcvPmTUP106dPlzp16mhO5ZzDhw9LXFycUs+AAQOkdOnSmhI51q9fP6XBK7m5ufLdd9/JoEGDNKZyr7S0NPnyyy+V+x5++GGpXbu2hkTuNWDAAKXBKyIimzdvZvCKBcLDw5V7bt26pSGJY6dPn5avvvpKVq1aJTt37pT8/Hzla+Tm5kpiYqIkJibKzp07//CxatWqyb333iv33XefdO3aVQICAqyKjiJA9WvY/fffrymJGtXhSykpKU6vmZqaKj/++KNST8eOHaV+/fpOr21Wv379lAaviIh8/fXXTg1eyc/Pl6+++kqpp0aNGtKtWzfTazqrX79+SoNXRH67Twxe0ctut8vw4cPl448/duo6b731lrz44osWpQLgDXzcHQAAAAAA4JijwSm+vr4FfjwzM9PKOAAAAAAAAAAAAAAAAIBDH3zwgeHaAQMGaEzinHPnzskLL7wglStXlgceeEA+/vhj00NXCpKZmSkbNmyQ5557TqKioqR169Yyf/58j332p3fv3uLjY+xYysKFCzWnKRomTZoke/bsMVTbrVs3efzxxzUnct6KFSuUe9w9wKRXr16Gf+/ftnbtWk1pPMPy5cuVh1f4+PjICy+8oCmRe/Xt21dsNptSz44dOzSlKVrCwsKUe1w5eCU/P19WrFghnTp1kqioKHn++edl+/btpoauOHLmzBmZO3eu9OzZUyIiImT06NFy8OBBy9eBd1L5vVKsWDFp2bKlxjTGVapUSane6DC7gqxZs0ZycnKUety9l7n77ruVh9g5u5f5+eef5fLly0o9AwcOVP5+aqXq1atLo0aNlHq++eYbsdvtmhLBqqEr7733HkNXAPwPBq8AAAAAQCGQnZ1d4MeLFy9e4McdDW4BAAAAAAAAAAAAAAAArJSZmSn/93//Z6jWZrPJP/7xD82J1J05c0aGDx8uNWvWlGnTpsmVK1dcuv6OHTtk5MiREhkZKW+99ZZkZGS4dH1HypQpI23atDFUu3fvXtm/f7/mRN5t8+bN8s477xiqDQ8Pl0WLFmlOZI3Vq1cr1ZctW1buvvtuTWmMKVWqlDRv3lyp5/vvv1c+lF2YzJ8/X7nnwQcflNq1a2tI434VK1aU6OhopZ64uDi5fv26pkRFR2BgoHKPKz438/PzZenSpVK3bl35xz/+IRs3bnTpwfyUlBSZO3euNGzYULp27Sq7d+922doofJKSkiQtLc1wfb169ZQHkukSGhqqVG/F4CXVvYy/v7/07t3b6XWd4evrK506dVLq2bVrl/LglN9TvU8ivw0yc7cuXboo1ScmJhoelAg1drtdRowY4dSfc2w2m8yePVvGjh1rYTIA3sIzdjMAAAAAgAI5O3jFU996AwAAAAAAAAAAAAAAAO+0Zs0aSU1NNVTbrFkziYiI0JzIuFu3bsmkSZOkXr16snDhQrcPS7hy5YpMnDhRatWqJV988YVbs/xZz549Ddc6+1byoiwlJUWGDBki+fn5hurnz5/vUZ9Tf+fKlSsSGxur1NO7d2/x9fXVlMg41UO4aWlpsm/fPk1p3OvgwYOmBis98cQTGtJ4jnvuuUepPj8/n2EYFjAzpCw4OFhDkv/avn27tGjRQoYMGSLHjx/XupYR69evl5YtW8rDDz8sSUlJ7o4DD3T27Fml+gYNGugJYoLqvt3f39+p9XJzc2XTpk1KPR07dpSSJUs6ta4VVPcydrtdtmzZYnq99evXK9XXrl3bI35vqd4nkd8GJsJadrtdRo4cKQsXLjR9DR8fH5k3b548/vjjFiYD4E383B0AAAAAAOCYo8ErYWFhBX48KytL7Ha72Gw2K2MBAAAAAAAAAAAAAAAAf2nJkiWGa7t3764xiZrY2Fjp27evRxyM/rMLFy5Iv379ZO3atfLhhx86fGbIFXr27CnPPfecodrPP/9c3n33XY8YmlHYjBw5Ui5cuGCo9rHHHpNevXppTmSNH3/8Uex2u1JP586dNaVR07FjR3n99deVerZu3SotWrTQlMh91q1bp9xTqVIladeunYY0nmPs2LHK/43Vq1fXlKbouHHjhnJPSEiIhiS/DWSYPHmyTJ06VflrnW52u12WL18uGzZskE8++cTUYAF4r8uXLyvV16tXT1MSdenp6Ur1zg5e2rlzp/KanrSXUbV161bp27evct/FixflyJEjSj2ecp9iYmIkMDBQsrKyDPds3bpVY6Kix263y6hRo2TBggWmr+Hr6yuLFi2SIUOGWJgMgLdh8AoAAAAAFAKO/qKuePHiDq+RnZ0tgYGBVkUCAAAAAAAAAAAAAAAA/tKVK1eU3mjuKYNXPv/8c3nkkUckMzPT3VEKtGzZMjly5Ih89913UqZMGbdmqVmzplSrVk3OnDnjsPby5cuyYcMGDncrWrhwoaxYscJQbY0aNWTmzJmaE1ln06ZNSvU2m03at2+vJ4yi5s2bi6+vr+Tl5Rnu2bp1q4wbN05jKvf49ttvlXsGDBggPj4+GtJ4jipVqkiVKlXcHaPIiY+PV+4JDw+3PMf169ele/fu8tNPP1l+bStdvnxZ7r//fpkzZ44MHz7c3XHgIZKTk5Xqy5cvrymJukuXLinVlytXzqn1VPcyIuYGnugQGRkp5cuXV7pnZgeKFOb7FBAQII0bN5YdO3YY7tm2bZvGREWL3W6X0aNHy/z5801fw8/PT5YtWyb9+vWzMBkAb+Tdf0IFAAAAAC+RnZ1d4MeNDF5RmbIMAAAAAAAAAAAAAAAAmLVmzRrDwwjKlCkjjRs31pzIsc8//1wGDRrk8UNXbtu7d6+0b99e0tLS3B1FOnXqZLh2+fLlGpN4nxMnTsgzzzxjqNbX11eWLl0qxYoV05zKOtu3b1eqv/POO6V06dKa0qgJCQmR6OhopR5vPISblpam/Oso8tvgFUAHI4PA/qxq1aqWZrh+/bp06dLF44eu3JaXlycjRoxw6lA7vMuNGzeU6nUMLzLr8OHDSvWVK1d2aj3V74ElS5aUO++806k1rdSyZUul+tjYWLl165byOqr3yZOG7YmItGrVSqk+OTlZjh8/rilN0XF76Mq8efNMX8Pf31+++OILhq4AMITBKwAAAABQCFgxeKWwPBQCAAAAAAAAAAAAAACAwm3NmjWGa9u1ayc2m01jGsd27twpgwcPNjwsxlPExcXJgAEDJD8/36057rnnHsO1q1at4gVSBuXk5MigQYPk5s2bhuonTpworVu31pzKOqmpqXL06FGlnhYtWmhKY07z5s2V6i9duiTJycma0rjH+vXrJTc3V6mnTJky0qhRI02JUNTt2bNHucfqwSsPP/ywqYFE7vbEE08UmmEx0Et1r+Ypg1fy8vJk7969Sj3169c3vZ7dbpedO3cq9TRv3lx8fDznWLfqXiY3N1fi4uKU11H9mlizZk0pWbKk8jq6qN4nEZEDBw5oSFJ02O12GTNmjFNDVwIDA2XlypXSu3dvC5MB8GZ+7g4AAAAAAHDM0eCVsLAwh9fggQUAAAAAAAAAAAAAAADodvPmTdm4caPh+rvvvltjGsdSU1Olf//+kpOT49YcZn333Xcyd+5cGTNmjNsydOzYUWw2m9jtdoe1N27ckM2bN0vXrl1dkKxwmzx5suzevdtQbfPmzWXy5MmaE1lr9+7dhn7P/F7jxo01pTGnQYMGyj2HDx92+9c9K23atEm5p3379m4fuAXvdPToUUlKSlLus/Jry8yZM+Xrr7+27HqulJOTI0OHDpW4uDgJDg52dxy40T333CMfffSR4fqoqCiNaYz7+eefJSUlRamnSZMmptc7efKkXLt2TanHW/YyzZo1M1yfkZEhBw8eVFrDW+5Tnz59NKTxfna7XR5//HGZO3eu6WsEBwfL6tWr5d5777UwGQBvx+AVAAAAACgEHA1NKV68uMNrZGZmWhUHAAAAAAAAAAAAAAAA+Es//PCD0nMq7du31xfGgClTpsjZs2edukatWrWkQ4cO0rx5c6lVq5ZUrlxZSpYsKcHBweLj4yPXr1+XGzduyM2bN+X8+fNy7NgxOXbsmOzatUv27NmjPHzizyZOnCh9+/aV0qVLO3Uds8qUKSO1a9eWo0ePGqpfu3Ytg1cc2LJli0ybNs1QbUhIiCxbtkz8/ArXEaEDBw4o93jaIdz69esr93jb4JW9e/cq93Ts2FFDEkDkyy+/VO4pXbq0ZUMjEhIS5OWXX3bqGkFBQdKxY0dp1aqVNGrUSCIjI6VChQoSEhIiQUFBkpGR8Z89RUpKihw/flyOHj0qR44ckU2bNsnVq1edWv/s2bPy1ltvyeuvv+7UdVC4NWrUSBo1auTuGMoWL16sVF+vXj0pX7686fWK8l5GRVxcnOTl5Sn1eNp9qlOnjvj5+Ulubq7hHtX7hN/Y7XZ54oknZM6cOaavERoaKmvXrpUOHTpYmAxAUVC4/lYFAAAAAIogu93u8I06RgavOBreAgAAAAAAAAAAAAAAADhr48aNhmuLFStm6rCfVc6cOSMfffSRqd7g4GAZMmSIPPnkkw7fgF6yZEkpWbKkiPx2aO/3b91OTEyUdevWyUcffWRqgIGISGpqqsybN09eeuklU/1WaNmypdLgldmzZ2tOVHilpKTI4MGDJT8/31D9u+++K7Vq1dKcynqHDgkg7xUAACAASURBVB1S7nH0ueZqZr5+xcXFaUjiHrm5uaZ+Hdu1a6chDYq63Nxc5aELIiJt27a1LMOrr74qt27dMtXbsGFDmTBhgjz00EMSGhr6t3WhoaF/+HjTpk3/87/z8vJk27ZtsmLFClmwYIHpLB988IG8+OKLEhISYqofcIfz58/L//3f/yn19OjRw6k1zXwPjI6OdmpNq1WvXl2Cg4MlIyPDcI/qXsYb7lNAQIDUqFFDjh07ZrjHm/Z8rvTkk0+a/jO6iEhYWJh8++23ln5/B1B0+Lg7AAAAAACgYI6GrogYG7yi8iYhAAAAAAAAAAAAAAAAwIzNmzcbrm3cuLH4+LjvWMOMGTMkOztbue++++6TI0eOyJw5c5weBBERESGPPfaY7NmzR77++mvThww//PBDsdvtTmVxRsuWLQ3XxsfHy8GDBzWmKdxGjRol8fHxhmq7d+8uo0aN0pxIj8OHDyvVly9fvsBhBO4QEREhwcHBSj1nz57VE8YN4uLilJ9LDAwMlNq1a2tKhKJs6dKlcvr0aeU+Zwcv3JaYmGhq8EuJEiVk/vz5sn//fhkyZIhTX+d8fX3lrrvuklmzZsnp06dl/Pjx4ufnp3ydlJQU5QEWgLs9/vjjhp65/71HHnnEqTVV9zI2m02qV6/u1JpWs9lsUqVKFaUe1b2M6n0SEYmKilLu0a1q1apK9d6053OVJ554Qj788EPT/XfccYf8+OOPDF0BYBqDVwAAAADAwxl5uCMsLMxhTVZWlhVxAAAAAAAAAAAAAAAAgL905coVpTd7N2vWTGOagmVmZpo6VDx58mT55ptvJDIy0vJMPXr0kN27d5s6BHrhwgXZt2+f5ZmMatWqlVK9yoCeomTRokXy5ZdfGqotU6aMLFy4UHMifU6cOKFU74kHcEVE+bCy0aE6hYGZrzl16tQRX19fDWlQlF2+fFmef/555T5fX1/p3r27JRk++eQTyc3NVeqJioqSnTt3yvDhw8Vms1mS47Zy5crJjBkzZMuWLVK6dGnl/q+//trSPIBOM2fOlHXr1in1dOnSRerUqePUuqp7mUqVKklQUJBTa+qgOlBEdS+jep98fX2lWrVqSj2uoHqfbt68KSkpKXrCeKEnn3zSqaErpUqVko0bNyoNBAWAP2PwCgAAAAB4OCMDU4oXL+6wRvXNEgAAAAAAAAAAAAAAAICKLVu2KNW7c/DK2rVrlQ/CTZo0SV577TXLD0f/XmBgoCxatEgGDRqk3Lt+/XoNiYyJjo6WgIAAw/Wqv1eKgpMnT8ozzzxjuH7hwoVStmxZjYn0SU1NldTUVKUeTx28onow2JsGrxw4cEC5p379+hqSoCjLyMiQvn37SnJysnLv/fffL+XKlbMkx5IlS5TqK1asKBs3bpRatWpZsv7fadOmjWzYsEFCQkKU+jZt2iQ5OTmaUgHW+eSTT2T8+PHKfVOmTHF67TNnzijVe8teJj09XdLT0w3Xnz59Wun6VapUEX9/f6UeVzAzDMab9n06PfXUUzJ79mzT/T4+PrJhwwZp2rSphakAFEUMXgEAAAAAD5edne2wxsjgFSMDXAAAAAAAAAAAAAAAAACzdu7cqVTfoEEDTUkcUx1S0r59e3n99dc1pfkjm80m8+bNkypVqij1xcbGakrkmJ+fn9SuXdtw/U8//SR2u11josIlNzdXBg4cKDdu3DBUP3LkSOnRo4fmVPqoHsAVEeXPB1eJiIhQqk9JSZGbN29qSuNaZ8+eVe6pV6+e9UFQZKWkpMgDDzwgP/30k6n+MWPGWJLj4sWLEhcXp9SzdOlSl31da9Sokbz99ttKPTdv3pRTp05pSgQ4Ly8vT1544QV55JFHlPeUjz76qLRq1cqp9a9duyZpaWlKPd6ylxERuXDhguFa1QE1RfU+FVVPP/20fPDBB05dIz8/X9atW2dRIgBFGYNXAAAAAMDDWTV4JTMz04o4AAAAAAAAAAAAAAAAwF/as2eP4VofHx+pVauWxjQF27Rpk+FaHx8fmTNnjsY0/yskJEReffVVpZ4jR45oSmNMdHS04drk5GS35/UkkydPlt27dxuqrVmzprz77ruaE+l1/vx55Z5y5cppSOK8smXLKvdcvnxZQxLXM3OYuHLlyhqSoCj6+uuvpWnTprJhwwZT/dHR0dKlSxdLsmzcuFGpftCgQdKhQwdL1jZqzJgxUrVqVaUevk/DU23YsEEaNWok06ZNU+6tXr26zJgxw+kMRX0vk5iYaKguNTVVrl+/rnTtonifiqpnnnlG/vWvf1lyrddee015ECwA/BmDVwAAAADAwxkZvBISEiI+PgX/ES8rK8uqSAAAAAAAAAAAAAAAAMAf2O122bdvn+H6qlWrSlBQkMZEfy8pKUnpzevdu3eX2rVra0z01/r37y/BwcGG6909zEFl8IqIyK+//qopSeHy008/ydtvv22o1s/PT5YtWyahoaGaU+ll5hBqRESEhiTOM3MINzU1VUMS1zMzeMVTfx1ReOzatUvuvvtu6dmzp9L38j974403xGazWZJJ9aD3hAkTLFlXha+vrwwdOlSpx937CuD3rl27JnPnzpXGjRtL586d5dChQ8rXKF68uKxcuVJKlCjhdB72Msb2Mtwn79jz6TB27Fh5//33Lbtebm6uDBo0SG7cuGHZNQEUPQxeAQAAAAAPZ2RgSkBAgMMHUTIzM62KBAAAAAAAAAAAAAAAAPzBiRMnJD093XB93bp1NaYp2NGjR5XqR4wYoSlJwUJCQiQmJsZwverb5K1Wv359pXoGr/x2GPPhhx+W/Px8Q/WvvPKKtGjRQnMq/a5cuaLcU65cOQ1JnFemTBnlnpSUFA1JXCsvL8/UUAZPPUwNz3bu3DmZNm2aNG7cWFq2bCk//fSTU9dr27atPPDAAxalU9tXNG3aVBo3bmzZ2io6d+6sVO/ufQW8U1JSksTFxUlaWtof9j92u11u3rwpSUlJcurUKdm4caPMmzdPxo0bJ02aNJEyZcrI6NGjZf/+/abWDQsLk++//17uvPNOS/472MsY28twnwr/nk+HcePGyaxZsyy/7qlTp+Spp56y/LoAig4/dwcAAAAAABQsOzvbYU1AQIAEBgbKrVu3/rbGyAAXAAAAAAAAAAAAAAAAwAzVt85Xr15dUxLHjh07Zrg2MDBQOnbsqDFNwRo0aCAbNmwwVFvQs0OuUK1aNaV6Bq+IjBo1SuLj4w3VtmrVSl555RXNiVzDzMCO8PBwDUmcV6xYMeWe1NRUDUlcKyEhQfLy8pT7GLyCv5KdnS3p6emSnp4uaWlpcunSJTlw4IDs379fYmNj5dixY2K32y1ZKyAgQObNm2fJtW5T2Vfcd999lq6tQnVAmrv3FfBOGzdulAEDBrh0zcjISFm5cqU0adLEsmuylzG2l+E+Ff49n9XGjx8vM2fO1Hb9xYsXS7du3aRv377a1gDgvRi8AgAAAAAezsjglcDAQAkKCiqwJjMz06pIAAAAAAAAAAAAAAAAwB+oHDoW+e0ApLtcuHDBcG2bNm0kJCREY5qCeeob3/+K6jCd2NhYTUkKh48//li++OILQ7WhoaGydOlS8fX11ZzKNVJSUpR7wsLCNCRxnplcaWlpGpK41tWrV031eephavy1Dh06uDuC5SZPnix169a17Hr5+fmSkJBguL5Tp06Wra2qRIkSEhgYaPhFjlYNuwHcqVevXjJ//nzLv/+wlzG2l+E+Ff49n5UmTJgg7733nvZ1Ro0aJa1bt5bKlStrXwuAd/FxdwAAAAAAQMGMDF4JCAiQwMDAAmuM/qAEAAAAAAAAAAAAAAAAUFWYBq+oHABs1KiRxiSOBQcHu3V9FSEhIUqDYlJTUyUpKUljIs916tQpefrppw3Xz5w5U6KiojQmcq3r168r93jqIdxixYop93jDS9QyMjKUe/z9/cXHx71H2fz8/MRms3n0P35+vGddl3vvvVdeeuklS6+ZlpamNKCEfQXgGjVr1pQ1a9bIqlWrtAz9Yi9jbC/jTffJ399fAgIClHq8Yc9nlWeffVbeffddl6yVmpoqgwcPlvz8fJesB8B7MHgFAAAAADyckYEpAQEBEhQUVGANf3EHAAAAAAAAAAAAAAAAXQrT4JXU1FTDtfXq1dOYxLHC9rKlatWqKdUfP35cUxLPlZubKwMHDpQbN24Yqn/ggQdk+PDhmlO5luohXJvNJqGhoZrSOCckJES5JycnR0MS1zIzeMXRM46ATpGRkbJ8+XLLh/+o7CkqVqwoxYsXt3R9VYVtXwGoCggIkI8++kiOHDkiDzzwgLZ1vGmgiM69jDfdJxH1e+UNez4rvPTSSzJjxgyXrrllyxaZOnWqS9cEUPgxAhMAAAAAPFx2drbDmsDAQAkMDCywhh+WAAAAAAAAAAAAAAAAQJeTJ08q1VeoUEFTEsdef/11GTdunKHa6tWra05TsEuXLrl1fVWqv64nTpyQmJgYTWk806uvviq7du0yVFuuXDlZsGCB5kSup3oINzQ0VGw2m6Y0zvHzUz+a5Q2HcM0MXnH0jCOgS0REhGzYsEHCw8Mtv3aFChVk3759hmrNDDewUnp6uqnPXaAwyc7OlnHjxsnGjRvl4Ycflvvuu0/8/f0tX8fMQJFixYpZnsMKOvcy3nSfRNTvlTfs+aywevVq073+/v6m7+OUKVOkc+fO0rx5c9PrAyhaGLwCAAAAAB7OyOCVgIAAh2+DyMzMtCoSAAAAAAAAAAAAAAAA8B9ZWVmSnJys1FOmTBlNaRyLjIyUyMhIt62v4uDBg+6OoCQiIkKp/tSpU5qSeKaffvpJ6c3rCxcudOvnii6qLxHTcWDaKkV18IqZ5xEZvAJ3uD10JSoqSsv1AwMDpVGjRlqubbUDBw64OwLgEpmZmbJixQpZsWKFVKtWTaZOnSp9+/a1dA0zL0T11P2Mzr2MN90nEQavuFrHjh1l1qxZ0qZNG1NDfHJycmTgwIGyf/9+CQ0N1ZAQgLfxcXcAAAAAAEDBjAxe8fPzc/hDSTN/cQkAAAAAAAAAAAAAAAA4kpCQoFRfvHhxCQgI0JTGe1y9elV++eUXd8dQUq5cOaX6+Ph4TUk8T2pqqgwePFjy8/MN1Y8ZM0buv/9+zancIzc3V6nezIFgVymqg1cyMjKUe3x8OMYG12rZsqXs2bNH6tev7+4oHmHNmjXujgC43JkzZ6Rfv37Spk0b2bdvn2XXVd3LiHjufkbnXsab7pMIg1dcqVu3brJu3Tpp0KCBzJw50/R1Tp48KU8//bSFyQB4M/7ECgAAAAAeztHAlICAALHZbBIUFFRgnZk3TAAAAAAAAAAAAAAAAACOXLx4Uam+bNmympJ4l4kTJxa6ly1FREQo1av+3inMRo8eLefPnzdUW7t2bZk+fbrmRO7jTYNXzAwT8fX11ZDEtWw2m3JPYft6hsLLz89PJkyYIFu2bJGKFSu6O45HOHXqlHz44YfujgG4zfbt2yUmJkY+++wzS67nTQNFdO5lvOk+iajfK2/Y87nDgw8+KKtXr/7P+ZhHH31UevXqZfp6ixYtkhUrVlgVD4AXY/AKAAAAAHi47OzsAj8eGBj4h3//HX5oCQAAAAAAAAAAAAAAAB1Uh2eULl1aUxLv8f7778v8+fPdHUNZmTJllOovXLigKYlnWbx4sXz++eeGav38/GTZsmUSEhKiOZX75OXlKdV78gHcnJwc5R5/f38NSVwrODhYuYdnGOEK7dq1k19//VWmT5/u8LnaouLixYvy4IMPyq1bt9wdBXCrjIwMGTBggLz88stit9udupbqXkbEc/czOvcy3nSfRNTvlTfs+Vxt0KBB8vnnn0tAQMAf/v958+ZJuXLlTF935MiRRebPngDMY/AKAAAAAHg4R4NXbv+l0u2Jvn8nMzPTskwAAAAAAAAAAAAAAADAbcnJyUr1YWFhmpIUbna7XbZv3y49e/aUZ555xukDoe6g+mubmJioKYnnOHXqlDz99NOG61999VVp1qyZxkTup3qg1sfHc48/5ebmKvd4wyFcBq/Ak/j6+krv3r1l27ZtsmXLFomOjnZ3JI+QmpoqM2bMkCZNmsiBAwfcHQfwGG+++aa8+uqrTl3DzHAQT93P6NzLeNN9ElG/V96w53Olxx57TJYsWfKXv2/KlCkjCxYsMH3tlJQUGTx4sOTn5zsTEYCX89zRXwAAAAAAETE+eMXRZH5+aAkAAAAAAAAAAAAAAAAd0tLSlOqLFSumKUnhcO3aNTlz5oycPXv2P/+cPHlSdu3aJdeuXXN3PKcUL15cqT4tLU3y8/M9+oClM3Jzc2XQoEFy/fp1Q/Vt2rSRl156SXMq91M9hGrmQLCrMHjFuKysLMnLyxNfX18NiVDUhISESNu2beWhhx6SXr16SdmyZd0dyS1ycnIkPj7+f/YVsbGxcvjwYQ6Yw+N07dpV9u3b94f/z263S3Z2tmRnZ8uNGzckOTlZkpKS5PTp03Ly5EmJjY21fFjfP//5T6lVq5Y8/PDDpvrNfC/Pzc01NYhEN517GbP3yVMxeEWfp556SmbNmiU2m+1va7p37y7Dhw83PYDl3//+t0ybNk1efPFFszEBeDnP+y4NAAAAAPgDRwNTbg9eCQoKKrAuMzPTskwAAAAAAAAAAAAAAADAbampqUr1YWFhmpJ4hmvXrv3h8POf/zE6hKMwUh28YrfbJT09XUqUKKEpkXtNmTJFdu7caag2LCxMli5dWiSGUqgeQs3Ly9OUxHlmDgc7etavMDAzeMVut0tSUpJERERoSARvYrPZJDg4WIKDgyUkJETKlSsnVapUkSpVqkjdunWlefPmEh0d7ZEDDKx2e7DK3+0pLl68yHAVFColSpSQRo0aKfddvHhRNm3aJN9//72sXbvWkv308OHDpVatWtKiRQvlXjMDNfLy8jzy65bOvYzZ++SpVO+VN+z5XOH555+Xt99+21Dte++9J5s3b5ZTp06ZWmvy5MnSqVMnadasmal+AN7N875LAwAAAAD+IDs7u8CPBwYG/uHff8fRABcAAAAAAAAAAAAAAADAjLS0NKX6YsWKaUriGrm5uXLq1Ck5evSonD59+n8OQaenp7s7otuoDl4REUlJSfHKwSs///yzTJ061XD9rFmzpHr16hoTeY7bLxszysyBYFfJyclR7rnjjjs0JHGtkJAQU32XL1926+CVvXv3it1ud+maFy5ckB49erh0Tats3rxZ2rdv7+4YXu/q1aty9OhROX78+F8OVvHkIQSAq1SsWFEGDx4sgwcPloyMDFm5cqXMmDFD9u3bZ/qaWVlZMmzYMNm3b5/y3kS1XuS3/Yyj5/3dQedexux98lSq98ob9ny6TZkyRV599VXD9cWKFZMlS5ZIu3btTH1/zMnJkUGDBsmvv/4qoaGhyv0AvBuDVwAAAADAwzkavHL7LyQdTUTOzMy0LBMAAAAAAAAAAAAAAABwm+qgEU88cFiQmzdvyoYNG2TTpk2yY8cO2b9/v8NneooqM7+2N2/e1JDEvdLS0mTw4MGGDwP27t1bhg0bpjmV51A9hJuRkaEpifOuX7+u3OMNh3DLli1rqu/KlSsWJ1Fz5513unxNf39/l68Jz3bkyBH57rvvZOvWrbJjxw5JSEhwdySgUAkODpZBgwbJoEGDZM2aNTJ+/Hg5ffq0qWvFxcXJ+++/L88++6xSn5mBIhkZGR456EHnXsbsffJEubm5yucxvGHPp9M777yj/LknItKmTRt54YUX5M033zS17vHjx2Xs2LEyf/58U/0AvJePuwMAAAAAAApmdPCKo4cWsrKyLMsEAAAAAAAAAAAAAAAA3KY6hMTPz/PfIZudnS1fffWVPPDAA1K6dGnp1auXvP/++7Jr1y6GrhTAzIABb7yfo0ePlnPnzhmqjYiIkHnz5mlO5FlUD6HeunVL7Ha7pjTOKcqDV8wcpr548aKGNJ7NUw+Qw7VOnjwpkyZNkho1aki9evVkwoQJsnLlSoauAE7q2bOnHD58WIYPH276Gm+99Zby93Mz38s9ddigzr0M96nw7/l0sNlsMnv2bFNDV26bMmWKNGnSxHT/ggULZOXKlab7AXgnBq8AAAAAgIdzNDDl9g8vg4KCCqxTnbAMAAAAAAAAAAAAAAAAGJGTk6NU78mDV9LT02Xq1KkSGRkpffr0kbVr1/LCIwUMXhFZsmSJfPbZZ4brP/74YwkPD9eYyPOULFlSqd5ut3vs8Aozh3BLlCihIYlr2Ww2qVixonLf8ePHNaTxbDy7WbRt3bpVevToIbVq1ZI33nhDTp8+7e5IgNcJCgqS+fPny9tvv22q/9q1a/Lxxx8r9ajuZUS8a6CI0b0M96nw7/ms5uPjIwsXLpTHH3/cqev4+/vLsmXLHJ6hKciIESOK5FBAAH+PwSsAAAAA4OEcPVgQGBj4h3//HR4AAQAAAAAAAAAAAAAAgA7eMHglPz9f5syZIzVr1pSXXnpJEhMT3R2pUDLza6v6+8eTnT59Wp588knD9U8++aR07dpVYyLPZOYQblpamoYkzjNzCDciIkJDEterXLmycs+xY8c0JPFsnnqAHHqdOHFCevXqJW3btpVvvvlG7Ha7uyMBXu/555+XZ5991lTvnDlzlOrZyxjby3CfvGPPZxU/Pz9Zvny5DBs2zJLr1a1bV6ZOnWq6/9q1azJkyBDJz8+3JA+Awo/BKwAAAADg4RwNXgkICBARcTitl7cmAAAAAAAAAAAAAAAAQAfVwRm+vr6akphz4sQJueuuu2TMmDFy5coVd8f5jwcffFDq16/v7hhKzAxe8fHxjqMtubm5MmjQIMOHMuvUqSPTpk3TnMozlSpVSrnn6tWrGpI4T/VwcGhoqNxxxx2a0riWmcErR48e1ZDEsyUkJLg7AlwoPz9f3nvvPWnYsKGsWbPG3XH+IyIiQkaOHOnuGIB2b775pjRt2lS578iRI3Lw4EHD9UV5LyMiUrFiRUN13Cdj96koCAgIkC+//FL69+9v6XWffvppueeee0z3b9q0SaZPn25hIgCFmXf87RQAAAAAeDGjg1cCAwMLrMvKyrIsEwAAAAAAAAAAAAAAAHCb3W5Xqs/NzdWURN3KlSulSZMmsm3bNndHERGRO+64Q0aMGCGxsbHy1VdfSXh4uLsjKTHza+vv768hietNnTpVduzYYajW399fli9fLsHBwZpTeSYzv6899RBuYmKiUr03HcCtXr26cs+JEyckIyNDQxrPxeCVoiMtLU26d+8u48eP95iXJTZr1kzmzp0rZ86ckQEDBrg7DqCdv7+/zJw501TvunXrDNcW5b1MYGCglC5d2lBtUb5PIt6173NGcHCwrFmzRnr16mX5tW02myxevFhKlChh+hqvvPKK/PrrrxamAlBYMXgFAAAAADyco4EptwevBAUFFVjnKT/EAQAAAAAAAAAAAAAAgHdx9NzKn3nK4JXp06dLnz595MaNG27L4OfnJ82aNZNnnnlGvv32W7l8+bLMmzdPGjZs6LZMzijKg1f27NljuPa1116TJk2aaEzj2SpXrqzcc/nyZQ1JnKd6CLdChQqakrhe48aNlXtycnKUPle8wcWLF90dAS6QkJAgrVq1ku+++86tOcqVKye9e/eWWbNmyalTp2T37t0ycuRI5b0aUJi1bdtWOnbsqNy3ZcsWw7VFeS9Tvnx5sdlshmqL8n3y9fWVcuXKaUpTuHz66afStWtXbdevVKmSzJ4923R/Tk6ODBw4UG7dumVhKgCFkZ+7AwAAAAAACpadnV3gxwMDA//w77+TlZUldrvd8F90AgAAAAAAAAAAAAAAAEaoHubNycnRlMS46dOny3PPPeey9fz8/KRSpUoSFRUlderUkTp16kh0dLQ0a9ZMQkJCXJZDNzODV26/eKoomThxokycONHdMQp07tw5U8+aDR06VBYvXlxgTWRkpPJ1L1y4oNzjCqqHcKtXr64pieuZHR60detWueuuuyxO47nOnTvn7gjQ7NKlS3L33XfLyZMnXbZmiRIlpFq1alK7dm2pU6eO1K1bV5o2bSo1atRwWQbAkz3yyCOyadMmpZ5ff/3VcC17GWNKliwpYWFhcv36dcM93nKfIiMjxcfHR1OawqV27dra1xg4cKCsXbtWPvvsM1P9x44dk3HjxsncuXMtTgagMGHwCgAAAAB4OEeDV24/eODoARa73S45OTlF8kEFAAAAAAAAAAAAAAAA6BMcHKxUb2Y4h5XWrl0rzz//vOXXLVWqlNStW1eioqKkatWqUrVqValWrZpUrVpVKlWqJL6+vpav6WkYvAIjqlSpotwTHx+vIYnzVA/huuLgqatERkZKeHi4JCcnK/Vt3bpVUyLPtH//fndHgEbZ2dny0EMPWT50xc/PT6pXry5169b9z57i9r6iWrVqUrx4cUvXA7xNr169xNfXV/Ly8gz3XLlyRZKTkyU8PNxhbalSpaRYsWJy48YNw9cvqnuZKlWqyOHDhw3XF9X7BOd9+OGH8vPPP8vFixdN9c+bN0+6desmvXr1sjgZgMKCwSsAAAAA4OGMDl4JDAx0eK2srCweVAAAAAAAAAAAAAAAAIClVAevZGZmakri2KVLl2Tw4MFit9uduo6vr6/ExMTIXXfdJTExMdKkSRMpV66cRSkLL0fPOv0VDo8XPeHh4RIaGio3b9403HP27Fl9gUzKz8+X8+fPK/V42yHcJk2ayA8//KDUs3nzZsnMzHT4sjlvkJycLAkJCe6OAY0mTZok27dvd/o6FStWlHvuuUdiYmKkdevWUrt2bZ73BZwQFhYmDRs2lH379in1xcfHGxq8IvLbQJG4uDjD1/bEvYyIyJkzZ5TqVfcykZGRSoNXiup9gvNKliwpH3/8sXTp0sX0n/eHDx8uLVq0kAoVKlicDkBh4OPuAAAAAACAgmVlZRX48ds/WDHyQ0h3PrQCAAAAAAAAAAAAAAAAVt9X5wAAIABJREFU7xQaGqpUn56erimJY+PGjZO0tDTT/XfeeafMmzdPEhMTZcuWLfLGG29It27dGLry/12/fl25p0SJEhqSwNOpHkY9duyYpiTmnT9/3uHzfX/mbYdwmzdvrtxz8+ZN2bhxo4Y0nic2NtbdEaDRoUOH5N133zXdHxQUJKNHj5ZffvlF4uPj5ZNPPpGRI0dKdHQ0Q1cAC5j5HpWYmGi4tk6dOkrXPn78uNPDH62Wm5urPOhEdS+jep9SU1PlypUrSj2ucOLECaV6b9vzFRadO3eWJ554wnT/1atXZejQoR73uQrANRi8AgAAAAAeztFbYAIDA//w74Ko/pAXAAAAAAAAAAAAAAAAcKRMmTJK9WaGc1ghNjZWPv/8c1O91apVk7Vr18r+/ftlxIgREh4ebnE673Djxg2l+sDAQEPPPcH7REdHK9WfOnVK8vLyNKUx5/jx40r1wcHBEhUVpSmNe3Tt2tVU35o1ayxO4pk2b97s7gjQaNKkSZKbm6vcZ7PZZPTo0XLu3Dn56KOPJCYmRmw2m4aEgJqrV69KYmKi4X9u3brl7sgFql69unKPyl5WdS9z69YtuXDhgmokrU6fPq38daxhw4ZK9ar3ScTzBu5lZmZKfHy8Uo/qfYJ1pk2bpjzw5/c2bNggM2bMsDARgMKCwSsAAAAA4OEcDV65PdU+KCjI4bUyMzMtyQQAAAAAAAAAAAAAAADcVr58eaX69PR0TUkKNm3aNFN9ffr0kUOHDkn37t0tTuR9VAevlChRQlMSeDrVw6jZ2dnKg050O3HihFJ9kyZNxM/PT1Ma92jdurWULl1auW/VqlUOn430Bt999527I0CT48ePmxogVKJECfn+++/lo48+krJly2pIBpjXtWtXKV++vOF/pk+f7u7IBapcubJyj8qz9mYGaxw6dEi5RyfVvUzFihWlQoUKSj3ecJ9OnTol+fn5huv9/PykcePGGhOhIMHBwbJs2TLx9/c3fY2XX35Z9u3bZ2EqAIUBg1cAAAAAwMMZHbxi5M0vWVlZlmQCAAAAAAAAAAAAAAAAbisMg1du3LghK1euVO4bNGiQfPHFFxISEqIhlWN2u90t65qlOnglPDxcUxJ4uujoaOWePXv2aEhi3v79+5XqmzdvrimJ+/j6+krXrl2V+5KTk019TS5Mrly5woFdL7ZkyRLl79HFihWTjRs3yr333qspVcEK254CrhccHKxUn5CQoCmJNYoVK6bcY+R5/NvYyxhTr1498fX1Veop7PepQYMGyp9PsFbTpk1l0qRJpvuzs7Nl4MCBkpGRYWEqAJ6OwSsAAAAA4OEcDUu5PXglKCjI4bVUpnADAAAAAAAAAAAAAAAARqgOXklKStKU5O+tXbtW+dmZ6OhoWbRokdhsNk2pHHPHkBpnJCcnK9VXrFhRUxJ4uqZNmyp/bnnaIdxdu3Yp1Xvj4BURkR49epjqmzt3rsVJPMtXX33FoAsv9uWXXyr3zJ8/X5o0aaIhjTGFbU8B11MdNBgfH68piTVCQ0O19kRFRUnJkiWVrl8U9zJBQUHSoEEDpZ6ieJ9gvYkTJ0qrVq1M9x89elTGjx9vYSIAno7BKwAAAADg4bKzswv8+O3J2kYmbDsa4gIAAAAAAAAAAAAAAACoioiIUKq/cuWKyw+j//vf/1bumT179n9eiuQuaWlpbl1flepQHQavFF2lSpWS+vXrK/X8/PPPmtKou3Xrlhw+fFip5+6779aUxr26du1q6PnFP/v3v/8thw4d0pDIM3j7YJmiLDExUY4fP67U07FjR+nfv7+mRMYUtj0FXE91iMipU6c0JbGGo2fw/4rK4BWbzSYxMTFK19+6datHDeXavXu3Un379u1NrXPXXXcp1R86dEhSUlJMraWD6uAVs/cJ1vL19ZWlS5eaGsJ025w5c2TNmjUWpgLgyRi8AgAAAAAeztFf+t5+uMPIDy5V39oDAAAAAAAAAAAAAAAAOFK2bFkJDg42XJ+bmytXr17VmOh/7dixQ6m+ZcuWygcErZaXlyeJiYluzaBKdfBKpUqVNCVBYdCuXTul+tjYWI85hLt7927Jy8szXF+3bl2vHTR0xx13yD/+8Q9Tva+99prFaTzDjh07JDY21t0xoMn27duVe5577jkNSdRcvHjR3RHg4SpXrqxUf+bMGcnNzdWUxnk3btxQ7ilbtqxSvepe5urVq3LgwAGlHl3OnTsnly5dMlxfvHhxadGiham1VO9Tfn6+/PTTT6bWslpWVpbs37/fcL3NZpN77rlHYyKoiIqKkunTpzt1jeHDhyt9rgAovPzcHQAAAAAAUDCjg1eMvF0nJyfHkkwAAAAAAAAAAAAAAADAbT4+PlKzZk2lQ4SXL1+W8PBwjan+y263y/Hjx5V6+vTpoymNcceOHZOMjAx3x1CiOnjFmwZRvPfeezJlyhR3xyjQfffdZ/jQYPny5eXbb79VXqNUqVKGa9u1aycffvih4fr8/Hz58ccfpW/fvsq5rKZ6bzp37qwpiWcYPXq0LFu2TLnvq6++kgMHDkjDhg01pHKfadOmuTsCNDp69KhSfYkSJaRTp06a0hi3b98+d0eAh6tSpYpSfXZ2thw/flzq1aunKZFz4uPjleptNptUq1ZNqUd1oIiIyPr16+XOO+9U7rOa6l6mffv24udn7ki62fvUs2dPU+tZadOmTUovv42OjpZy5cppTARVo0ePlrVr15r6s42ISHJysgwdOlTWr18vNpvN4nQAPAmDVwAAAADAw2VlZRX48dsDV/z9/R1ei8ErAAAAAAAAAAAAAAAA0KFOnTpKg1cSEhKkfv36GhP9V2JiotJhORGR1q1ba0pj3J49e9wdQVlCQoJSfc2aNTUlcT3Vg7ruYOTlXr+vbdSokcY0Ip06dRJfX1/Jy8sz3LN69WqPGLyybt06pfouXbpoSuIZYmJiJDo6Wg4ePKjUZ7fb5aWXXlK+n55s+/btsmrVKnfHgEZnz55Vqm/WrJnpYQVWKoz7CriWmX3Z3r17PXbwiurgxYiICAkODlbqadasmYSHh0tycrLhntWrV8vzzz+vtI4OrtzLlCtXTho1aiT79+833LNmzRqZPXu22wddsOfzDgsXLpTo6Gilz9Xf+/HHH+W9996T8ePHW5wMgCfxcXcAAAAAAEDBsrOzC/x4YGCgiBj7oTiDVwAAAAAAAAAAAAAAAKBDnTp1lOpPnz6tKcn/SkpKUu6pVauWhiRqvvrqK3dHUHbu3Dmlek+4z3Cf0qVLS7t27ZR61q1bJxkZGZoSGXPmzBk5fPiw4foSJUpIp06dNCbyDKNHjzbV9+233xbKr3d/xW63y3PPPefuGNBMdV/hCd/r9u3bJ2fOnHF3DHi4Jk2aKPds27ZNQxJr/PLLL0r1DRo0UF7D19dXevToodSzY8cOiY+PV17LSjdv3pRNmzYZrvfx8ZEHH3zQqTV79+6tVJ+QkOD23192u12++eYbpZ4+ffpoSgNnREREyNy5c526xsSJEyU2NtaiRAA8EYNXAAAAAMCD2e12h8NSbg9c8fX1dXg9R0NcAAAAAAAAAAAAAAAAADM8efDKrVu3lHtKlCihIYlxKSkp8v3337s1gxkqh0hDQ0OlYsWKGtOgMFA9hJueni6fffaZpjTGLFy4UKm+Z8+ehl6sVtgNHTpUypUrZ6r36aeflvT0dIsTud7MmTNl69at7o4BzVT3Fe7eU4iIfPrpp+6OgEKgTJkyUqlSJaWejRs3akrjnISEBImLi1PqiYmJMbWW6l7GbrfLggULTK1llU8//VRpkN1dd90lERERTq2pep9ERObNm+fUms7auHGj0mDJqlWrSosWLTQmgjMefPBBGTp0qOn+rKwsGThwoNuHQALQh8ErAAAAAODBHA1dEfnv4BWbzSb+/v5OXw8AAAAAAAAAAAAAAABQVb9+faV6Vw5eMfPMTFZWloYkxk2fPr3QvWQpNTVVaXBCrVq1xGazaUyEwqB3797Kvw+cfVu9M3Jzc2XRokVKPf369dOUxrOEhobKpEmTTPUmJCTIE088YXEi19q3b5+8+OKL7o4BF1DdV7h7T3H16lW3ft1E4dK2bVul+hMnTsjJkyc1pTFv+fLlYrfblXpU/9tv69y5s4SFhSn1LFy4UPLy8kytZwXVrwlW7GWio6OlZs2aSj1ffPGFpKSkOL22War3qW/fvpqSwCrvv/++REZGmu6Pi4uTCRMmWJgIgCdh8AoAAAAAeDAjP2z5/ZswHL0Vg8ErAAAAAAAAAAAAAAAA0KFevXoSEhJiuP7UqVMa0/yRSq7bLl26pCGJMYmJiTJr1iy3rW+W6jCdBg0aaEqCwqRSpUrSqVMnpZ6dO3fKnj17NCUq2BdffKH09aFixYpy7733akzkWUaOHClRUVGmepctWybvv/++xYlcIyEhQR566KFCNzAL5qjuK9y5pxARefPNN5UGo6Fou//++5V7Pv30Uw1JzMvNzZU5c+Yo9YSFhUlMTIyp9YKCgqR///5KPRcvXpTVq1ebWs9Z27ZtU9pHBQcHK//3/Z1HHnlEqT4zM1N54J1Vzp49K2vWrFHqGTZsmKY0sErx4sVlyZIl4uNjfrzCRx99JGvXrrUwFQBPweAVAAAAAPBgRn4IFxgY+J//7e/v7/T1AAAAAAAAAAAAAAAAAFV+fn7SpEkTw/VHjx6V/Px8jYn+64477lDuOXHihIYkjuXn58uQIUPk5s2bblnfGUeOHFGqb9asmaYkKGxGjRql3DNx4kQNSQqWlZUlL7/8slLPyJEjxdfXV1Miz+Pv7y9vvPGG6f4JEybIpk2bLEykX1JSknTq1EnOnDnj7ihwEdV9hbv2FCIiW7ZsKZTD3OA+Xbt2VR5IsGDBAsnNzdWUSN3HH3+sPBDwgQcekKCgINNrjh49Wrln0qRJkpeXZ3pNs5599lml+v79+0vJkiUtWfvRRx91eN7hz6ZOneqW4VEvvfSS0ktvO3ToIHXq1NGYCFZp166djB8/3qlrPPbYY5KYmGhRIgCegsErAAAAAODBjAxKCQgI+M//dvQXkSp/+QcAAAAAAAAAAAAAAACoaNWqleHajIwM5QORZlWpUkX5AKm73kA/ZcoU+fHHH92ytrOOHj2qVM/gFdzWs2dPKV++vFLPjz/+6PLPlXfffVfOnj1ruN7f319GjBihL5CH6tu3r8TExJjqzc3NlR49ehSar4Pnzp2Tjh07Kg+eQuFWtWpVpfo9e/bIhQsX9IQpwMWLF2XAgAFuGeyAwis8PFw6deqk1HP+/HlZtmyZpkRqLl++LC+++KJyX79+/Zxat0mTJsp72yNHjsiiRYucWlfVp59+Ktu3b1fqefzxxy1bPyIiQnr27KnUk5ycLG+//bZlGYzYtm2bfP7550o9Vt4n6PfGG29IdHS06f6kpCR55JFHxG63W5gKgLsxeAUAAAAAPJjq4JXf/2+z1wMAAAAAAAAAAAAAAADMaNmypVL9oUOHNCX5o4CAAImMjFTqWblypVy/fl1Tor/25ptvyj//+U+XrmkllcEDvr6+0qhRI41pUJj4+fnJE088odw3duxYyczM1JDof+3du1emTJmi1NO/f3/lgTLewGazyeLFiyU0NNRU/61bt6RHjx6yatUqi5NZ6+eff5bmzZu77HsZPEetWrWU6u12uyxdulRTmr8WHx8vd999t1y6dMml68I7DB8+XLnn5ZdflmvXrmlIY1xeXp4MHTpUOUe1atXkvvvuc3r9sWPHKvdMmjRJkpKSnF7biPPnzyvvt+666y7LhyWauU/vvfeeHDt2zNIcfyc9PV0GDx6sNFCjWrVq0qtXL42pYLXAwEBZtmyZBAYGmr7G+vXrZdasWRamAuBuDF4BAAAAAA+WlZXlsOb3w1b8/f0LrM3JyXE6EwAAAAAAAAAAAAAAAPBXWrVqpVR/8OBBTUn+V+vWrZXqr169Kq+88oqmNH+UnZ0tY8eOlZdfftkl6+miMnwgOjpaQkJCNKZBYfP0009L6dKllXri4uJk3LhxmhL9V0pKivTv31/pxWc+Pj6F/nPaGVFRUfLOO++Y7s/KypI+ffrICy+84HHPPebm5so///lPueeee1x2WB6eRXVPIfLbcLX4+HgNaf7Xrl27pG3btnLq1CmXrKeqatWqYrPZlP+B6/Ts2VPKli2r1JOQkCCjRo3SlMiYcePGyfr165X7nn32WfH19XV6/QEDBkidOnWUei5fvixDhw5VGvJhRlZWlgwYMEBSUlKU+iZPnmx5lpiYGOncubNST0ZGhvTr18/Q2Qpn2O12eeyxx+T06dNKfRMnThQ/Pz9NqaBLw4YNnR58+uKLL8qBAwcsSgTA3Ri8AgAAAAAezMgPan8/Zff3Q1j+iqf9ABIAAAAAAAAAAAAAAADeo1KlShIVFWW4/tdff9WY5o86duyo3DN79mxZt26dhjT/dfToUWnTpk2hf1P29evX5fjx44brO3TooDENCqOwsDCZMGGCct+cOXPk008/1ZDoN7du3ZL7779fTp48qdT38MMPS+3atTWlKhzGjBkjXbp0Md2fn58v06ZNk9atW0tcXJyFycz79ddfpVWrVjJ58mSexyzCatasKZUqVVLquXHjhgwdOlQyMjI0pfptKNA777wjbdu2lfPnz2tbB94vICDA1PfkFStWyOuvv64hUcHsdruMGzdO/vWvfyn3VqhQQYYNG2ZJDh8fH1ODSr777juZOnWqJRn+Sl5engwYMEC2bdum1NeuXTvp1KmTlkyvvfaack9sbKw888wzGtL819ixY2XFihVKPVFRUTJ06FBNiaDbhAkTpF27dqb7s7KyZODAgZKZmWlhKgDuwuAVAAAAAPBgRgav/H7Yir+/v9PXAwAAAAAAAAAAAAAAAMxSOWS/Y8cOjUn+qHfv/8fenQdZWZ55A75Pd3PYFQEXiIZNjdIiRMGIuKGJFQRBhcQEUwZllJgYRzRixVGJER1x3xgFt6AxOiqCMS5RI+oYlygBARWVxAVXYqI4gnBomu+PKf0U6T77wunrqqIq/T7Pez8/AtLdcN7fOSzta2s2tG7dujj88MNjzpw5Bc/zwQcfxAknnBD9+vWLefPmFWzuRx99VLBZ2fjrX/8a69evz3i/4hU25uc//3l079496/uOOuqorB+SzcRHH30Uw4cPj6eeeiqr+9q1axfnnXdewfNsim688cb42te+lteMefPmxa677hrHHHNMvPHGGwVKlp2///3vMXbs2Bg4cGDWf2bX1dXF+PHji5SMcvn+97+f9T1z586NESNGxMqVKwue55577ol+/frFpEmTClYKVK6vKagMP/vZz2LLLbfM+r7JkyeXtHzlk08+iTFjxsRll12W0/0XXXRRtG3btmB5jjjiiBgwYEDW951++uk5/xyas2bNmjjyyCNj9uzZWd2XSCTikksuKXiezwwePDhGjhyZ9X3Tp0+PiRMnFjxPY2NjnHzyyXHFFVdkfe8FF1yQ9feZVI6ampq46aabYrPNNst5xgsvvBC/+MUvCpgKKBfFKwAAABWs0MUr3mEBAAAAAAAAAIBiOuiggzLe+95775XsIfrOnTvn9HBfKpWK0aNHx4knnliQB6UXLVoUEyZMiB49esS0adOioaEh75lf9Le//a2g8zKVTRFBbW1tXu8qTvXq0KFDXHXVVVnf19DQED/84Q9jxowZBcuyZMmSGDx4cDz66KNZ33v66afnXTZSLbp16xZ/+MMfokOHDnnNWbduXdx4442x4447xjHHHBOPP/54VmVPuXrkkUdizJgx8Y1vfCNuvfXWrM9MJBLxm9/8Js4///xIJBJFSkk5jBs3Lqf7HnnkkRgwYEA89thjeWf49NNP44YbbohvfvObMXLkyFiyZEneM7+oXF9TUBnat28fZ511Vk73Tp48OUaNGhX/+te/Cpzqyx555JHo379/3HXXXTndP3To0PjhD39Y0Ew1NTVx7bXXRm1tbdb3Tpw4Mc4+++xobGwsSJa33347DjjggPjv//7vrO8dP3587L777gXJ0ZSrrroqp68PLrvsspgwYUKsXr26IDk++uijGD16dFx66aVZ3/vtb387DjvssILkoHx69OgRl19+eV4zpk2bFvfee2+BEgHlongFAACggq1Zsybtni8Wr3zxf2+M4hUAAAAAAAAAAIrpgAMOyOodv59++ukipvmy0047Laf7Ghsb48orr4ydd945Lrroovjwww+zuv/FF1+MCy64IIYMGRK77rprzJgxI1atWpXRvR07dszqrJkzZ2a1v1Cy+XXcfffdY/PNNy9iGjZlhx12WE4PsDY0NMSECRPi0EMPjX/84x85n79mzZo4//zzY8CAATmVGPTv3z8mTZqU8/nVaMCAAXH77bfn9BD6hlKpVNx4442x3377RZ8+feI//uM/4uGHHy5IMVbE/73G8tFHH42JEydG796948ADD4xZs2blVJKVSCRixowZceSRR0bXrl1jl112KUhGKkO/fv3i4IMPzunepUuXxtChQ+N73/te/M///E9W965cuTLmzJkT//Zv/xbbbrttjB8/PhYsWJDx/dl8XfHggw/Ge++9l1U+qstPf/rTnMs3fv/738cOO+wQF198ccEKMj4zf/78GDVqVBx44IHx97//PacZnTp1iuuvv76guT4zcODAOPHEE3O691e/+lXst99+8dprr+V8/rp16+Laa6+N+vr6ePLJJ7O+v3v37nHhhRfmfH6mtttuuzj33HNzunfGjBkxcODArP7825jZs2dHfX19zJkzJ+t727dvX9DSP8pr3Lhxcfjhh+c145hjjon333+/QImAckiUot0TcpVIJF6IiL4bXu/bt2+88MILZUgEAACl9dBDD6V9F6B//etfscUWW0RExN577x1//vOfm9z785//PK644oqCZgQAAAAAAAAAgC/af//947HHHsto7wknnBBXXnllkRP9f4ceemjcfffdec1o27Zt7LXXXrHPPvtE3759o0uXLrHZZpvFqlWrYsWKFfHhhx/GkiVLYtGiRbFgwYJ46623cjqnU6dO8dBDD8XgwYMzfui/trY2Jk+eHEceeWRst912sW7dulixYkW8/vrr0dDQEEOGDMkpSzpbb711LF++PKO95557bpx++ulFyUHzevbsGW+88UZGe3v06BGvv/56cQM14Z133on6+vr46KOPcrq/Q4cOccwxx8TEiROjZ8+eGd3z7rvvxi233BKXXHJJvPvuuzmd26ZNm3j66aejf//+Od1f7a655po4/vjjizK7rq4udtttt+jfv3/07t378x9bbLFFtG/fPtq1axft27ePdevWxaeffhqrVq2KDz74IN5888144403YsmSJfGXv/wlFixYkNEb5qWTSCTimmuuieOOO+7za//+7/+e0es3a2trcyp6SSebz82fmTt3buy///4Fz1It5s2bF3vssUc0NjbmNadPnz6x3377xeDBg6Nbt27RpUuXSCQS8fHHH8eKFSvirbfeisWLF8eiRYvi+eefz/n36Pjx46Nbt24xZcqUjO/Zfffd4z//8z9jjz32iA4dOsQnn3wSy5cvj1dffTX23HPP6Ny5c9Y5svlc9EWegy2PefPmxZ577pnXn0udO3eOsWPHxtixY2PQoEFRV1eX9Yxly5bFvffeGzNnzsy7uDGRSMScOXNi5MiRec1pzsqVK6Nfv345F6gkk8kYO3ZsnHLKKRkXd3344Ydxxx13xIUXXhhLly7N6dxEIhH33XdffPe7383p/mw1NjbGkCFDcv41rampiUMPPTROOeWU2GuvvTK6Z+XKlfH73/8+Lrzwwpg/f35O50ZETJ8+/Uuf51uKX/3qV3H22Wdndc9LL70UO+20U5ESFc4HH3wQ/fr1y6t0bNiwYXHvvfdGIpEoYDJaqvr6+njxxRc3tvTi+vXr60udpyVQvEJFU7wCAEBLd++998aIESOa3fPJJ59E+/btI+L/3jFo7ty5Te79yU9+EldffXVBMwIAAAAAAAAAwBddfvnlcdJJJ2W0d+edd27qQZKiePPNN6Nv376xcuXKkp2ZizZt2sQf//jH2HfffWPXXXeNRYsW5T1z1KhROb2bezovvvhi1Ndn/szP4sWLs9pP4WwqxSsREffff3+MGDEir0KDRCIR9fX1sf/++8fuu+8eW2655eeFBitWrIh33303nn/++Xj66afj6aefzvuh/pb6AG42brzxxvjJT34SqVSq3FGKpra2Nm644YY46qijvnR99uzZcfjhh2d0v+KVTceJJ55Y0gK5XB1yyCExe/bsuPvuu2P06NEFmTl//vwYMGBA1vcpXtn0XHTRRXHqqacWZFaHDh1i8ODBUV9fH717946vf/3r0bFjx2jXrl0kk8lYvXp1rFy5Mt59991YtmxZLF68OP7617/GK6+8UpDzIyLOOuusrIsjcrFgwYIYMmRIrFq1Kq8522+/fey///7xrW99K7baaqvo2rVr1NXVxccffxzLly+PhQsXxrPPPhuPP/543p8/fvnLX8Z5552X14xsLVu2LAYNGhTvv/9+XnO222672G+//WKvvfb6vMSqbdu28fHHH8cHH3wQixcvjnnz5sUjjzwSq1evzuusH/zgB3HrrbfmNWNTVc3FKxER9913XwwfPjyvGZdffnmceOKJBUpES6Z4pfSyr4YDAACgZDL5x8VkMvn5/27VqlXe8wAAAAAAAAAAIB/f+9734uSTT86oMOGll16Kd955J7p3716CZBFf//rXY9q0aTFu3LiSnJeLLl26xJw5c2LvvfeOiIihQ4cWpHilWLJ5kH/77bdXukJGhg0bFhdccEH84he/yHnG+vXrY/HixbF48eICJtu4448/XulKBo4++ujYcccd4/DDD4/ly5eXO07BtW3bNm677bYYOXLkV9b222+/SCQSyiOqzPnnnx8Y3pdQAAAgAElEQVRz584tyZ8zufrRj34U119/fdTW1sZ+++0XNTU1eZVa0fKccsop8fjjj8c999yT96xPPvkkHnrooXjooYcKkCx7J5xwQklKVyIiBgwYEDNnzozvf//7ef3Zv3Tp0li6dGlcd911BUz3VSNGjIhzzjmnqGdszHbbbRezZ8+OoUOHxpo1a3Kes2zZsvjtb38bv/3tbwuY7qsGDhwY119/fVHPoHwOPvjgmDBhQkyfPj3nGaeddloMHTo0+vXrV8BkQCnUlDsAAAAATcvkLw/r6v5/p2a64pW1a9fmnQkAAAAAAAAAAJrTvXv32GeffTLe/6c//amIab7qxz/+cfzsZz8r6ZmZ6tOnTzz11FOfl65ERIwaNaqMidJ74IEHMt57+OGHFzEJ1eaUU06JY445ptwx0ho5cmRceeWV5Y6xyRgyZEj85S9/iUGDBpU7SkFts802MXfu3I2WrkREdO7cOXbdddcSp6LY2rVrF7NmzYotttii3FE26swzz4ybb7758zd57NKlSwwZMqTMqdjUJBKJuOWWWzb5P7fHjx8fV1xxRUnPHDNmTMmKXvKxxx57xG233Ra1tbVlOX/w4MExY8aMSCQSZTk/U3369Il77rkn2rVrV+4oFNHFF18c22+/fc73r169OsaOHRurV68uYCqgFBSvAAAAVLBUKtXseuvWrb/0F4yf/cNIUxSvAAAAAAAAAABQCj/4wQ8y3ptNcUehXHHFFfHDH/6w5Oc250c/+lHMmzcvdthhhy9dHzp0aF4PfhXTmjVrsirOOeqoo4qYhmp07bXXxnHHHVfuGE0aMWJE3HHHHWV7UHlT1aNHj3jyySfj17/+ddo3nNsU7LHHHvHss8/Gt771rWb3DR06tESJKKUdd9wxHnjggejYsWO5o3xum222iT/84Q/x61//+itrxx57bBkSsanr2LFjPPDAA7HLLruUO0rWEolEnHPOOXHdddeVpdjjzDPPjHPOOafk52Zqjz32iAcffDDat29f1hxHHXVU3HDDDRX7NVWfPn3i0UcfjW222abcUSiy9u3bx80335zX78XFixfHpEmTCpgKKAXFKwAAABUsXfHKhkUr6f4BMt08AAAAAAAAAAAohNGjR0ddXV1Ge++7776Sv6FQTU1N3HTTTTF+/PiSnrsxXbt2jTvuuCNuvvnm2Hzzzb+y/tnDopXokUceiZUrV2a0d/fdd4/6+voiJ6La1NTUxPTp0+OXv/xluaN8xdFHHx133XVX2jdMY+Pq6urizDPPjGeeeSZ23XXXcsfJSU1NTZxyyinxxBNPxLbbbpt2v+KV6rXHHnvEww8/HFtttVW5o8To0aNj0aJFMXz48I2ujx07Nvr27VviVFSDzp07x9y5c2P//fcvd5SMbbbZZnHrrbfGGWecUdYcZ5xxRvzXf/1X1NRU1iPdw4YNi4cffnij34OUw7hx42LWrFnRpk2bckf5kkGDBmX8uZ7qsOeee+b9/ceVV14Z999/f4ESAaVQWZ+lAQAA+JJCF6+U+gUqAAAAAAAAAAC0TFtuuWUcfPDBGe396KOP4rHHHityoq+qq6uL6667LqZOnZpxSUwhJZPJOPnkk+PVV1+NMWPGNLv3Bz/4QXzve98rUbLM3XPPPRnv/fGPf1zEJFS78847L2bMmBHt27cvd5RIJpNxySWXxA033JD2NXuk981vfjP++te/xowZM2KbbbYpd5yM1dfXx2OPPRYXXXRRxr8P9t1334p76J7C2WOPPeKpp56KAQMGlOX8XXfdNR588MG48847o2vXrk3uq62tjZtvvjlat25dwnRUi65du8ZDDz0UJ510UrmjpPWd73wnFi9eHEcccUS5o0RExPHHHx+zZ89u9r/PUkkkEnHqqafGPffcEx07dix3nC8ZNWpU/OlPf4qePXuWO0pERBx11FHx2GOPbVJfo1AYkydPjoEDB+Y14+ijj47ly5cXKBFQbL5TAwAAqGBr1qxpdn3D4pV075yRrsgFAAAAAAAAAAAKZfz48RnvnTNnThGTNG/SpEnx1FNPRX19fUnOq6uri7Fjx8ZLL70UF198cXTq1Cmj+2666aYYPnx4kdNlbt26dXHnnXdmtLdNmzYxduzYIiei2h177LHx/PPPx5AhQ8qWYZdddoknn3wyJk6cWLYM1ai2tjaOPfbYWLp0afzqV7+KLbbYotyRmrTddtvFNddcEwsWLIi99947q3s7depUtlIOSqN3797xzDPPxGmnnVayYqbevXvHddddF/Pnz4/vfOc7Gd2z2267xZw5cyqizIpNT11dXVx66aXxyCOPRN++fcsd5yt69uwZM2fOjAcffDC22267csf5kpEjR8bixYtj5MiRZcvQo0eP+OMf/xgXXHBB1NbWli1Hc/baa69YuHBhVt9PFlrXrl3jlltuiZkzZ0bbtm3LloPyqauri5tvvjmvX//3338/jjnmmAKmAopJ8QoAAEAFS1eUsmHbfLp/pFm7dm3emQAAAAAAAAAAIBPDhw+Pbt26ZbT3rrvuisbGxiInatrAgQPj+eefj6uvvrpoD2huueWWcfrpp8frr78et9xyS/Tu3Tur+9u0aRO///3v48ILL4zNN9886/MLXWTwpz/9Kf7xj39ktPeII46ILl26FPR8WqY+ffrE448/HldddVV07969ZOd27tw5Lrroopg/f37svvvuJTu3pWnfvn1Mnjw53nrrrbj66qtj5513Lnekz/Xr1y+uueaaePXVV2PChAlRV1eX05z999+/sMEyNG7cuJg8eXJWP3r27FmWrJu6ZDIZ559/frzwwgsxZsyYqKkpziOcBx54YNx9993x6quvxvjx47M+57vf/W4899xzMXTo0KzPbtOmTbRp0ybr+3JVqhIbsjN06NBYsGBBXHLJJbHtttuWO0706NEjrrzyynj55ZfjqKOOKnecJm299dZx9913x+9+97vYcccdS3Zuu3bt4vTTT48XX3wx45KmcurYsWNcd9118cADD5T0a69WrVrFhAkTYsmSJYojiZ122immTp2a14x77703rrrqqgIlAoopsX79+nJngCYlEokXIuIrtYd9+/aNF154oQyJAACgtM4555w466yzmlzfcccd4+WXX/7845///OfN/qXMPvvsE48//nhBMwIAAAAAAAAAQFPOPPPMmDJlSkZ7H3744TjwwAOLnCi9hoaGmDNnTsycOTMeeuihWLNmTc6zevXqFcOGDYuDDz44vv3tb3/ljZZy9b//+79x++23x4MPPhjPP/98vP3227Fy5cqI+L83c9p8882je/fu0a9fv9hrr73igAMOiB122KEgZ3/myCOPjN/97ncZ7X322Wdj4MCBBT0f1qxZE9dff31MnTo13nzzzaKcsd1228Xxxx8fJ5xwQnTs2LEoZ9C8uXPnxu233x5z5syJ9957r6Rnb7PNNnH44YfH2LFjY8iQIQWZuXDhwrjrrruaXK+pqWn2daNsel5//fWYPn163HnnnbF06dKc57Ru3Tr23XffOPjgg+OQQw6JPn36FCzjc889F3fccUc8+eST8eqrr8aHH34YqVQq6urqon379tGlS5fo06dPDBo0KPbdd9/Yd999o23btgU7/zMHH3xw3H///V+53rlz5/jnP/9Z8PMonIaGhrj99ttj2rRp8dRTT0WpnltOJpMxYsSIOPbYY+Oggw4qWtFRsaxbty5uu+22OO+88+LFF18syhldu3aN8ePHx8knnxxbbbVVUc4ohXvvvTemTJkSTz/9dFHmd+zYMX70ox/FqaeeGr169SrKGQDZqK+vb+pzw4vr16+vL3WelkDxChVN8QoAAC1duhee7LLLLrFo0aLPPz755JPj0ksvbXL/t771raL9ZSMAAAAAAAAAAGzorbfeil69ekVDQ0PavePGjYsbb7yxBKky98knn8QTTzwRzzzzTCxcuDBef/31ePvtt+OTTz6J1atXRzKZjI4dO0bHjh2jU6dO0bt376ivr4/6+vro379/wctOKsWKFSuiW7du8emnn6bdu99++8Wjjz5a/FC0WI2NjfHEE0/ErFmzYvbs2bFs2bK85m211VYxYsSIGDNmTBx00EFRW1tboKTko7GxMf785z/H/fffH08++WQ8++yzsWrVqoKe0alTpxg0aFAMHTo0DjjggBg0aNAm9xA/le3FF1/8/Pfv0qVL44033oh//vOfsWrVqli3bl106NAhNttss+jYsWNsvfXW0bdv36ivr4++ffvGwIEDo3379uX+KRTV0UcfHb/5zW++cr1nz57x2muvlT4QOXn33Xdjzpw5cc8998TTTz8dH374YcFmJxKJ2H777eOAAw6IYcOGxbe//e2q+e/iueeei7vuuitmzZoVr7zySl6zOnXqFN/97ndj9OjRccghhxSs/LESvPTSSzFr1qyYNWtWLFiwIK9Z7dq1iwMPPDBGjx4do0ePjg4dOhQoJUD+FK+UnuIVKpriFQAAWrpJkybFhRde2OT6brvtFvPmzfv849NOOy0uuOCCjPcDAAAAAAAAAECxjRkzJmbNmpV2X/v27ePdd9+Njh07liAV+bj66qvjpz/9aUZ777vvvhg2bFiRE8H/Wb9+fbz88svx/PPPx8KFC2PRokWxbNmy+Pjjjz//sW7dumjdunV06NAhttlmm/ja174W3/jGN2KXXXaJvfbaK3beeedy/zTIQENDw+e/xq+99trnP5YvXx4rV66MlStXxqpVqyKVSkWrVq0imUxG27ZtY4sttoguXbpE165do0ePHtGrV6/o06dP9O/fP3r27Fnunxa0aIceemjcfffdX7ner1+/WLhwYRkSUQhLly6N5557LpYsWRLLli2LN998M95+++34+OOP49NPP41PP/001qxZE3V1ddGmTZto27ZttG/f/vPP0dtuu2307t07+vfvHwMGDGgR3yu89tprsWDBgli4cGEsXLgw3njjjVixYkV8/PHHsWLFili7dm20bt062rdvH1tvvXV07949dtxxx6ivr48999wz+vfv3yKKw955552YP39+LFy4MJ5//vn4+9//HitWrPj8/6s1a9ZEMpmMdu3axVZbbRXdunWLHXbYIerr62PQoEExcODAaNWqVbl/GgAbpXil9OrKHQAAAICmpVKpZtc3bJ9OJpPN7l+7dm3emQAAAAAAAAAAIBsnnXRSRsUrK1eujFtvvTWOO+64EqQiH9dcc01G+/r37690hZJKJBKx0047xU477RRHHHFEueNQRHV1dbHbbrvFbrvtVu4oQIEsX758o9eVIm3att9++9h+++3LHWOT0qtXr+jVq1ccdthh5Y5S0bp37x7du3eP4cOHlzsKAFWg+ivLAAAANmHpilc2LFpJ17icbh4AAAAAAAAAABTa3nvvHYMHD85o74wZM4qchnw98cQTsXDhwoz2nnXWWUVOAwBUi7feemuj1+vr60ucBACAlkbxCgAAQAUrdPHK2rVr884EAAAAAAAAAADZmjRpUkb75s2bF88880yR05CPadOmZbRvwIABcdhhhxU5DQBQDd54441YtmzZRtf69u1b4jQAALQ0ilcAAAAq2Jo1a5pd37B4ZcOPN5SuyAUAAAAAAAAAAIph1KhRMWDAgIz2XnnllUVOQ67eeeedmDVrVkZ7zz777EgkEkVOBABUg7lz5za59s1vfrOESQAAaIkUrwAAAFSwdEUprVu3/tLHrVq1anb/2rVr884EAAAAAAAAAADZSiQScc4552S094477oj333+/yInIxbRp0zJ6DdLgwYNj5MiRJUgEAFSDP/7xjxu9/vWvfz122WWXEqcBAKClUbwCAABQwdIVrySTyWY/3pDiFQAAAAAAAAAAymXEiBGx7777pt2XSqVi2rRpJUhENj799NOYPn16RnunTp1a5DQAQLX417/+FXPmzNno2vDhw0ucBgCAlkjxCgAAQAXLtnilVatWec0DAAAAAAAAAIBiuvzyy6OmJv2jDFdffXV8+umnJUhEpm666ab45z//mXbfiBEjYp999ilBIgCgGlxyySWxevXqja6NGjWqxGkAAGiJFK8AAABUsHRFKRsWraQrXlm7dm3emQAAAAAAAAAAIFcDBgyIn/zkJ2n3ffDBBzFz5swSJCITjY2NcfHFF6fdV1tbG+eff34JEgEA1eDll19u8muMHXbYIb7zne+UOBEAAC2R4hUAAIAKlq54JZlMNvvxhhSvAAAAAAAAAABQblOmTIktt9wy7b6LLroo1q1bV4JEpHPXXXfFq6++mnbfcccdF/X19SVIBABs6v7xj3/EqFGjYvXq1RtdnzhxYtTUeAQWAIDi81UnAABABWtoaGh2vVWrVs1+vKHGxkYvRgEAAAAAAAAAoKy22GKLmDp1atp9f/vb3+LOO+8sQSLSufDCC9Pu2XzzzePss88uQRoAYFP35JNPxuDBg+Pll1/e6PqWW24ZP/7xj0ucCgCAlkrxCgAAQAVbu3Zts+vZFq9kMhMAAAAAAAAAAIpt3Lhxsc8++6Tdl0lBC8X16KOPxl/+8pe0+84444zYcsstS5AIANhUXXvttXHAAQfEkCFD4m9/+1uT+6ZOnRrt2rUrYTIAAFoyxSsAAAAVLF1JSl1d3Zc+TiaTaWemUqm8MgEAAAAAAAAAQL4SiURcffXVad9oaP78+fHAAw+UKBUbc+6556bds8MOO8SJJ55YgjQAwKbs3HPPjblz5za759BDD41x48aVJhAAAITiFQAAgIqWrnhlwxeepHshSiYzAQAAAAAAAACgFOrr6+OUU05Ju2/KlCklSMPGPPfcc/Hwww+n3Xf55Zdn9KZRAADNGTRoUNx0002RSCTKHQUAgBZE8QoAAEAFy7Z4JZMXLyheAQAAAAAAAACgUpx11lnRq1evZvf8+c9/jrlz55YoEV907rnnpt1zyCGHxLBhw0qQBgCoZgcddFA8/PDD0bFjx3JHAQCghVG8AgAAUMGyLV7Z8OONSaVSeWUCAAAAAAAAAIBCadu2bUybNi3tvnPOOacEafiiF154Ie6+++5m97Ru3TouvfTSEiUCAKpRhw4d4oILLoj7778/Nttss3LHAQCgBVK8AgAAUMGKUbySbiYAAAAAAAAAAJTSsGHD4ogjjmh2z9y5c+OJJ54oUSIi/q/sZv369c3umTRpUvTp06dEiQCAatK5c+eYNGlSvPLKK3HqqadGTY3HXQEAKA9fiQIAAFSwbItXkslk3jMBAAAAAAAAAKDULrvssujUqVOzeyZPnlyiNCxZsiTuuOOOZvf07t07Tj/99BIlAgCqwaBBg2LixIlx//33x3vvvRdTp06Nbt26lTsWAAAtXF25AwAAANC0bItXNvx4Y1KpVF6ZAAAAAAAAAACg0LbZZpuYOnVqTJgwock9jzzySDz++OOx7777ljBZyzRlypRobGxsds9VV10Vbdq0KVEiAKAapCt2AwCAcqgpdwAAAACaVozilXQzAQAAAAAAAACgHI499tgYMmRIs3smT55cojQt16uvvhq33XZbs3tGjx4dw4YNK1EiAAAAACgexSsAAAAVLNvilWQymXZmKpXKKxMAAAAAAAAAABRDIpGIGTNmNPsamEcffTTmzp1bwlQtz5QpU2LdunVNrnfs2DEuu+yyEiYCAAAAgOJRvAIAAFDBsi1e2fDjXGYCAAAAAAAAAEC59O3bN0477bRm95xxxhklStPyvPLKK3HLLbc0u2fKlCmx7bbbligRAAAAABSX4hUAAIAKtX79+mbfOSbiq0Urzb3bz2cUrwAAAAAAAAAAUMn+4z/+I77xjW80uf7kk0/GfffdV8JELcfZZ5/d7GuWBg4cGCeccEIJEwEAAABAcSleAQAAqFCZFKRsWLyy4ccbk0qlcs4EAAAAAAAAAADF1rp167j22msjkUg0ueeMM86I9evXlzBV9VuyZEncdtttTa7X1tbGtddeGzU1HkUBAAAAoHr42y4AAIAKVazilUzmAgAAAAAAAABAOe2zzz5x7LHHNrk+f/78uPPOO0uYqPqdffbZ0djY2OT6SSedFAMGDChhIgAAAAAovrpyBwAAAGDjFK8AAAAAAAAAANCSTZ8+PaZPn17uGC3GrbfeGrfeemu5YwAAAABASdWUOwAAAAAb19DQkHbPhkUrtbW1UVPT/Ld6qVQqr1wAAAAAAAAAAAAAAAAAUA0UrwAAAFSotWvXpt2zYfFKREQymcx7LgAAAAAAAAAAAAAAAABUO8UrAAAAFSrX4pWNXfuiVCqVcyYAAAAAAAAAAAAAAAAAqBaKVwAAACpUJsUrdXV1X7mWrnglk7kAAAAAAAAAAAAAAAAAUO0UrwAAAFSoTApSNlaykkwm854LAAAAAAAAAAAAAAAAANVO8QoAAECFyrV4ZWPXviiVSuWcCQAAAAAAAAAAAAAAAACqheIVAACAClWs4pVM5gIAAAAAAAAAAAAAAABAtVO8AgAAUKFyLV5JJpN5zwUAAAAAAAAAAAAAAACAaqd4BQAAoELlWryysWtflEqlcs4EAAAAAAAAAAAAAAAAANVC8QoAAECFyrV4JZlM5j0XAAAAAAAAAAAAAAAAAKqd4hUAAIAKlWvxysaufVEqlco5EwAAAAAAAAAAAAAAAABUC8UrAAAAFapYxSuZzAUAAAAAAAAAAAAAAACAaqd4BQAAoELlWrySTCbzngsAAAAAAAAAAAAAAAAA1U7xCgAAQIXKtXhlY9e+KJVK5ZwJAAAAAAAAAAAAAAAAAKqF4hUAAIAKla54paamJmpqvvptXbrilUwKXQAAAAAAAAAAAAAAAACg2ileAQAAqFDpClKaKlhJJpPN3pdKpXLOBAAAAAAAAAAAAAAAAADVQvEKAABAhWpoaGh2vanilaaufyZdoQsAAAAAAAAAAAAAAAAAtASKVwAAACpUuoKUpgpWkslkXnMBAAAAAAAAAAAAAAAAoCVQvAIAAFChci1eaer6Z1KpVM6ZAAAAAAAAAAAAAAAAAKBaKF4BAACoUOmKV+rq6jZ6PV3xSrq5AAAAAAAAAAAAAAAAANASKF4BAACoUOkKUpoqWEkmk3nNBQAAAAAAAAAAAAAAAICWQPEKAABAhcq1eKWp659JpVI5ZwIAAAAAAAAAAAAAAACAaqF4BQAAoEIVq3gl3VwAAAAAAAAAAAAAAAAAaAkUrwAAAFSoXItXkslks/elUqmcMwEAAAAAAAAAAAAAAABAtVC8AgAAUKFyLV5p6nqmcwEAAAAAAAAAAAAAAACgJVC8AgAAUKFyLV5JJpN5zQUAAAAAAAAAAAAAAACAlkDxCgAAQIXKtXilqeufSaVSOWcCAAAAAAAAAAAAAAAAgGqheAUAAKBCFat4Jd1cAAAAAAAAAAAAAAAAAGgJFK8AAABUqFyLV5LJZF5zAQAAAAAAAAAAAAAAAKAlULwCAABQoXItXmnq+mdSqVTOmQAAAAAAAAAAAAAAAACgWiheAQAAqFDFKl5JNxcAAAAAAAAAAAAAAAAAWgLFKwAAABUq1+KVZDKZdu769etzzgUAAAAAAAAAAAAAAAAA1UDxCgAAQIXKtXilqetf1NDQkFMmAAAAAAAAAAAAAAAAAKgWilcAAAAqVLpylKYKVpLJZNrZ6UpdAAAAAAAAAAAAAAAAAKDaKV4BAACoUOnKUZoqXmnq+helUqmcMgEAAAAAAAAAAAAAAABAtVC8AgAAUKHSFa/U1dVt9HomxSvpZgMAAAAAAAAAAAAAAABAtVO8AgAAUKHSlaM0VbCSTCbzng0AAAAAAAAAAAAAAAAA1U7xCgAAQIXKtXilqetflEqlcsoEAAAAAAAAAAAAAAAAANVC8QoAAECFKmbxSrrZAAAAAAAAAAAAAAAAAFDtFK8AAABUqFyLV5LJZNrZqVQqp0wAAAAAAAAAAAAAAAAAUC0UrwAAAFSoXItXmrqezWwAAAAAAAAAAAAAAAAAqHaKVwAAACpUrsUryWQy79kAAAAAAAAAAAAAAAAAUO0UrwAAAFSoXItXmrr+RalUKqdMAAAAAAAAAAAAAAAAAFAtFK8AAABUqGIWr6SbDQAAAAAAAAAAAAAAAADVTvEKAABAhcq1eCWZTOY9GwAAAAAAAAAAAAAAAACqneIVAACACpVr8UpT178olUrllAkAAAAAAAAAAAAAAAAAqoXiFQAAgAqVa/FKMpnMezYAAAAAAAAAAAAAAAAAVDvFKwAAABUq1+KVurq6tLNTqVROmQAAAAAAAAAAAAAAAACgWiheAQAAqECNjY3R2NjY7J6milcSiUTa8pV0pS4AAAAAAAAAAAAAAAAAUO0UrwAAAFSghoaGtHuaKl6JiEgmk83eq3gFAAAAAAAAAAAAAAAAgJZO8QoAAEAFyqQYpbnilebWIiJSqVTWmQAAAAAAAAAAAAAAAACgmiheAQAAqECZFK/U1dU1uZaueCWT+QAAAAAAAAAAAAAAAABQzRSvAAAAVKBMilGaK1dJJpN5zwcAAAAAAAAAAAAAAACAaqZ4BQAAoALlW7zS3FpERCqVyjoTAAAAAAAAAAAAAAAAAFQTxSsAAAAVKN/ilWQymfd8AAAAAAAAAAAAAAAAAKhmilcAAAAqUL7FK82tRUSkUqmsMwEAAAAAAAAAAAAAAABANVG8AgAAUIGKXbySyXwAAAAAAAAAAAAAAAAAqGaKVwAAACpQvsUryWQy7/kAAAAAAAAAAAAAAAAAUM0UrwAAAFSgfItXmluLiEilUllnAgAAAAAAAAAAAAAAAIBqongFAACgAhW7eCWT+QAAAAAAAAAAAAAAAABQzRSvAAAAVKB8i1eSyWTe8wEAAAAAAAAAAAAAAACgmileAQAAqED5Fq80txYRkUqlss4EAAAAAAAAAAAAAAAAANVE8QoAAEAFyrd4JZlM5j0fAAAAAAAAAAAAAAAAAKqZ4hUAAIAKlNjpqH0AACAASURBVG/xSnNrERGpVCrrTAAAAAAAAAAAAAAAAABQTRSvAAAAVKBiF69kMh8AAAAAAAAAAAAAAAAAqpniFQAAgArU0NCQdk9z5SrJZLLZexWvAAAAAAAAAAAAAAAAANDSKV4BAACoQOmKUWprayORSDS53lwpS0REKpXKKRcAAAAAAAAAAAAAAAAAVAvFKwAAABUoXfFKumKVdOvp5gMAAAAAAAAAAAAAAABAtVO8AgAAUIHSFaPU1dU1u55MJptdT6VSWWcCAAAAAAAAAAAAAAAAgGqieAUAAKACpSteadWqVV7r6eYDAAAAAAAAAAAAAAAAQLVTvAIAAFCB8i1eSSaTec0HAAAAAAAAAAAAAAAAgGqneAUAAKAC5Vu8km49lUplnQkAAAAAAAAAAAAAAAAAqoniFQAAgApU7OKVdPMBAAAAAAAAAAAAAAAAoNopXgEAAKhA+RavJJPJvOYDAAAAAAAAAAAAAAAAQLVTvAIAAFCB8i1eSbeeSqWyzgQAAAAAAAAAAAAAAAAA1UTxCgAAQAUqdvFKuvkAAAAAAAAAAAAAAAAAUO0UrwAAAFSgfItXkslks+upVCrrTAAAAAAAAAAAAAAAAABQTRSvAAAAVKB8i1fSraebDwAAAAAAAAAAAAAAAADVTvEKAABABcq3eCWZTOY1HwAAAAAAAAAAAAAAAACqneIVAACACpRv8Uq69XXr1kVjY2PWuQAAAAAAAAAAAAAAAACgWiheAQAAqEDFLl7J5AwAAAAAAAAAAAAAAAAAqGaKVwAAACpQQ0NDs+vpilWSyWTaMxSvAAAAAAAAAAAAAAAAANCSKV4BAACoQOlKUdIVr6Rbj4hIpVJZZQIAAAAAAAAAAAAAAACAaqJ4BQAAoALlW7ySTCbzPgMAAAAAAAAAAAAAAAAAqpniFQAAgAqUrhSlrq6u2fV0xSwREalUKqtMAAAAAAAAAAAAAAAAAFBNFK8AAABUoHTFK+mKVTIpXkl3BgAAAAAAAAAAAAAAAABUM8UrAAAAFSjf4pVkMpn3GQAAAAAAAAAAAAAAAABQzRSvAAAAVKB8i1fSrUdEpFKprDIBAAAAAAAAAAAAAAAAQDVRvAIAAFCBSlG8ku4MAAAAAAAAAAAAAAAAAKhmilcAAAAqUL7FK8lkMu8zAAAAAAAAAAAAAAAAAKCaKV4BAACoQPkWr6Rbj4hIpVJZZQIAAAAAAAAAAAAAAACAaqJ4BQAAoALlW7ySTCbzPgMAAAAAAAAAAAAAAAAAqpniFQAAgAqUb/FKuvWIiFQqlVUmAAAAAAAAAAAAAAAAAKgmilcAAAAqUCmKV9KdAQAAAAAAAAAAAAAAAADVTPEKAABABcq3eCWZTOZ9BgAAAAAAAAAAAAAAAABUM8UrAAAAFSjf4pXa2tpIJBLN7kmlUlnnAgAAAAAAAAAAAAAAAIBqoXgFAACgAuVbvJLJnnRnAAAAAAAAAAAAAAAAAEA1U7wCAABQgQpRvJJMJvM6AwAAAAAAgP/H3r3G2rrddR3/jb3nGrNF2tJiQEyktxQRoSBQChG8JTYqxIhFjFpEURBjImkAIwaw5RKpMSGlEFADKiYGKkRQqYS+IJhYxMampgaoEmvbKGkwvdHbHHvtM3yx9upZe5+15/PMy5rzmc/6fJKZedYzxjPGf6/zar843wMAAAAAAADAnAmvAAAATND5+fna9THhlaE9rbWNZgIAAAAAAAAAAAAAAACAORFeAQAAmKB79+6tXR8TXqm17nQHAAAAAAAAAAAAAAAAAMyZ8AoAAMDEPPHEE3niiSfW7lksFoPnDMVZWmsbzQUAAAAAAAAAAAAAAAAAcyK8AgAAMDH37t0b3DMUVRmzZ8w9AAAAAAAAAAAAAAAAADBXwisAAAATs6/wSq1153sAAAAAAAAAAAAAAAAAYK6EVwAAACZmX+GVoT2ttdEzAQAAAAAAAAAAAAAAAMDcCK8AAABMzKHCK2PuAQAAAAAAAAAAAAAAAIC5El4BAACYmH2FV2qtO98DAAAAAAAAAAAAAAAAAHMlvAIAADAx+wqvDO1prY2eCQAAAAAAAAAAAAAAAADmRngFAABgYvYVXqm17nwPAAAAAAAAAAAAAAAAAMyV8AoAAMDE7Cu8MrSntTZ6JgAAAAAAAAAAAAAAAACYG+EVAACAiTlUeGXMPQAAAAAAAAAAAAAAAAAwV8IrAAAAE7Ov8Eqtded7AAAAAAAAAAAAAAAAAGCuhFcAAAAmZl/hlaE9rbXRMwEAAAAAAAAAAAAAAADA3AivAAAATMyhwitj7gEAAAAAAAAAAAAAAACAuRJeAQAAmJh9hVdqrWvXW2ujZwIAAAAAAAAAAAAAAACAuRFeAQAAmJjz8/PBPWPCK0N7xgReAAAAAAAAAAAAAAAAAGCuhFcAAAAmZkwQZUx4pda68z0AAAAAAAAAAAAAAAAAMFfCKwAAABMzJoiyWCwG9wzFWVpro2cCAAAAAAAAAAAAAAAAgLkRXgEAAJiYMeGVoajKmD1j7gEAAAAAAAAAAAAAAACAuRJeAQAAmJihIMrdu3dTShk8p9a60z0AAAAAAAAAAAAAAAAAMGfCKwAAABMzFEQ5Ozsbdc7Qvtba6JkAAAAAAAAAAAAAAAAAYG6EVwAAACbmUOGVoXsAAAAAAAAAAAAAAAAAYM6EVwAAACZmX+GVWuva9dba6JkAAAAAAAAAAAAAAAAAYG6EVwAAACZmX+GVoX1D9wAAAAAAAAAAAAAAAADAnAmvAAAATMy+wiu11p3uAQAAAAAAAAAAAAAAAIA5E14BAACYmH2FV4b2tdZGzwQAAAAAAAAAAAAAAAAAcyO8AgAAMDGHCq8M3QMAAAAAAAAAAAAAAAAAcya8AgAAMDH7Cq/UWgfv6b2PngsAAAAAAAAAAAAAAAAA5kR4BQAAYGL2FV4Z2td7z/3790fPBQAAAAAAAAAAAAAAAABzIrwCAAAwMfsKr9Rad74LAAAAAAAAAAAAAAAAAOZKeAUAAGBi9hVeGbOvtTbqLAAAAAAAAAAAAAAAAACYG+EVAACAiTk/P1+7vs/wylDkBQAAAAAAAAAAAAAAAADmSngFAABgYoZiKGPDK7XWne8CAAAAAAAAAAAAAAAAgLkSXgEAAJiYfYVXxuxrrY06CwAAAAAAAAAAAAAAAADmRngFAABgYobCK4vFYtQ5Y8IrQ3cBAAAAAAAAAAAAAAAAwFwJrwAAAEzMUAxlTFAlSWqtO98FAAAAAAAAAAAAAAAAAHMlvAIAADAx+wqvjNnXWht1FgAAAAAAAAAAAAAAAADMjfAKAADAxOwrvFJr3fkuAAAAAAAAAAAAAAAAAJgr4RUAAICJ2Vd4Zcy+1tqoswAAAAAAAAAAAAAAAABgboRXAAAAJuaQ4ZWhuwAAAAAAAAAAAAAAAABgroRXAAAAJmZf4ZVa6853AQAAAAAAAAAAAAAAAMBcCa8AAABMzL7CK2P2tdZGnQUAAAAAAAAAAAAAAAAAcyO8AgAAMDGHDK8M3QUAAAAAAAAAAAAAAAAAcyW8AgAAMDHCKwAAAAAAAAAAAAAAAABw84RXAAAAJmZf4ZU7d+7k7t27a/e01kbPBQAAAAAAAAAAAAAAAABzIrwCAAAwMfsKryRJrXWnuwAAAAAAAAAAAAAAAABgroRXAAAAJmaf4ZWhva210WcBAAAAAAAAAAAAAAAAwJwIrwAAAEzM+fn52vV9hleGIi8AAAAAAAAAAAAAAAAAMFfCKwAAABMzFEPZJLxSa93pLgAAAAAAAAAAAAAAAACYK+EVAACAidlneGVob2tt9FkAAAAAAAAAAAAAAAAAMCfCKwAAABMzFF5ZLBajzxoKrwzdBQAAAAAAAAAAAAAAAABzJbwCAAAwMUMxlKGYylW11p3uAgAAAAAAAAAAAAAAAIC5El4BAACYmH2GV4b2ttZGnwUAAAAAAAAAAAAAAAAAcyK8AgAAMCH3799P733tnk3CK7XWtetDkRcAAAAAAAAAAAAAAAAAmCvhFQAAgAkZE0LZJLwytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAIAJOXR4Zcx9AAAAAAAAAAAAAAAAADBHwisAAAATsu/wSq115/sAAAAAAAAAAAAAAAAAYI6EVwAAACZk3+GVob2ttdFnAQAAAAAAAAAAAAAAAMCcCK8AAABMyKHDK2PuAwAAAAAAAAAAAAAAAIA5El4BAACYkH2HV2qta9dba6PPAgAAAAAAAAAAAAAAAIA5EV4BAACYkH2HV4b2jrkPAAAAAAAAAAAAAAAAAOZIeAUAAGBC9h1eqbXufB8AAAAAAAAAAAAAAAAAzJHwCgAAwITsO7wytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAIAJOT8/H9yzz/DKmNALAAAAAAAAAAAAAAAAAMyR8AoAAMCEjAmhbBJeqbXufB8AAAAAAAAAAAAAAAAAzJHwCgAAwITsO7wytLe1NvosAAAAAAAAAAAAAAAAAJgT4RUAAIAJGRNeWSwWo8+rte58HwAAAAAAAAAAAAAAAADMkfAKAADAhIwJoZydnY0+b2hva230WQAAAAAAAAAAAAAAAAAwJ8IrAAAAE3Lo8MqY+wAAAAAAAAAAAAAAAABgjoRXAAAAJmTf4ZVa6873AQAAAAAAAAAAAAAAAMAcCa8AAABMyJgQymKxGH3eUKSltTb6LAAAAAAAAAAAAAAAAACYE+EVAACACRkKrywWi5RSRp83FF4ZE3oBAAAAAAAAAAAAAAAAgDkSXgEAAJiQoRDKUEjlUbXWne4DAAAAAAAAAAAAAAAAgLkSXgEAAJiQfYdXhva31jY6DwAAAAAAAAAAAAAAAADmQngFAABgQvYdXqm17nQfAAAAAAAAAAAAAAAAAMyV8AoAAMCE7Du8MrT//Pw8vfeNzgQAAAAAAAAAAAAAAACAORBeAQAAmJBDh1fG3AkAAAAAAAAAAAAAAAAAcyS8AgAAMCH7Dq/UWne+EwAAAAAAAAAAAAAAAADmSHgFAABgQvYdXhmzv7W20ZkAAAAAAAAAAAAAAAAAMAfCKwAAABNyjPDK0J0AAAAAAAAAAAAAAAAAMEfCKwAAABNyfn6+dn3T8EqtdXCP8AoAAAAAAAAAAAAAAAAAt5HwCgAAwIQMRVA2Da+M2d9a2+hMAAAAAAAAAAAAAAAAAJgD4RUAAIAJGQqvLBaLjc6rte58JwAAAAAAAAAAAAAAAADMkfAKAADAhAxFUM7OzjY6b8z+1tpGZwIAAAAAAAAAAAAAAADAHAivAAAATMgxwitDdwIAAAAAAAAAAAAAAADAHAmvAAAATMi+wyu11p3vBAAAAAAAAAAAAAAAAIA5El4BAACYkH2HV8bsb61tdCYAAAAAAAAAAAAAAAAAzMHi2APcNqWUkuSZSX5Hkk988P30JKskH07ykcvv3vtHjzUnAABwHMcIrwzdCQAAAAAAAAAAAAAAAABzJLxyQ0opvyfJ5yf5zCTPT/KCB9+fnpG/91LKeZJ3JXnHg8//evD933rvb7+BsQEAgCPbd3il1rrznQAAAAAAAAAAAAAAAAAwR8Ire1JK+YwkL0vyR5J8WZLfed22DY89S/LCXERbHr3vvUnelOQ/Pfj8l967/1oSAABO3L7DK2P2t9Y2OhMAAAAAAAAAAAAAAAAA5kB4ZQellM9N8heS/JkkL7q69JhX+rZXXfPsk5N8xYNPknywlPKzSX4iyRt77/e3vAsAADiifYdXaq073wkAAAAAAAAAAAAAAAAAcyS8sqFSyqck+doHn993+fiRbUOBlceFWR7VH/led86zknzNg897Syk/leSf995/ZeRdAADABOw7vHL37t3BPa21jc4EAAAAAAAAAAAAAAAAgDm4c+wBTkUp5Q+VUl6f5N1Jvi/JZ+UifFJyEUa5+smVtes+o68dOOPRey/XPjnJNyR5UynlzaWUl2/+JwYAAI5h3+GVUsrgO0N3AgAAAAAAAAAAAAAAAMAcCa8MKKX86VLKryT5xSQvT3KWp4ZPkvVxlUcDKdt+Hhrtmvuui7B8QZLXl1J+rZTy57f8NQAAAAey7/BKktRad7oTAAAAAAAAAAAAAAAAAOZIeOUxSikvKaW8Kcm/SfKFeTJkcl3c5LrwyXXBlEdjKWM/l9ZFWR43y+W9vzfJvyqlvLWU8ie2/sUAAAA36ibCK0PvtNY2PhMAAAAAAAAAAAAAAAAATt3i2ANMTSnlOUlek+Sv5qkhk49vu+bZo2tXPZHkPUne/eD7o498PvLgvadd8/mUJL87yaclefo1Z/dHvtfNWJK8OMnPlVJ+Mckre+9vu+ZMAADgSI4RXhm6EwAAAAAAAAAAAAAAAADmSHjlilLKX0/yD5I8J08Nl5RcHzm5Glr5YJK3JnnLg887chFb+T+99/t7mO9ZuQiwvDDJ5+YiovLiJC9KcvfK1n7NjJfPLmMyfyzJW0opP5rk23vv/2/X+QAAgN2dn5+vXd8mvFJrXbsuvAIAAAAAAAAAAAAAAADAbSS8kqSU8tlJfiTJl+TxwZWrP1/6zSQ/n+QXkvzX3vtv3OScvfcPJPlAkl9P8nOXz0spyyQvTfKyJH88yRckuXP5Wq6Px5RcxFq+PsmfK6V8R5If7r1fDbYAAAAHNhRB2Sa8MvROa23jMwEAAAAAAAAAAAAAAADg1N3q8Eop5WlJXpXklbn4XVwNk1x6NFrypiRvSPKG3vtbDzPper33VZL/+ODz7aWUZ+ciwPLVSb48yTIPB1iSh/9cz07yuiR/rZTyjb33Nx9qdgAA4GFD4ZXFYvO/xtVad7oTAAAAAAAAAAAAAAAAAObo1oZXSil/MskPJXluLuIjyVOjK5fP/3eSH03yL3vv7zrIgDvovb8vyeuTvL6U8klJvibJNyT5/Zdbrm5/8F2S/IEkv1xK+cdJ/l7v/QMHGhkAAHhgKIJydna28ZlD77TWNj4TAAAAAAAAAAAAAAAAAE7dnWMPcGillE8tpfxkkn+f5Hm5CI70PBwjuQyu/HySr0jywt77955CdOVRvff3995f13v/nCR/NMnP5OLPWh7d+uD7TpJvTPJrpZSvOtykAABAcpzwytCdAAAAAAAAAAAAAAAAADBHtyq8Ukr5m0l+PclX5fHBlVWSf5rks3rvf6r3/obee3/KYSeo9/5Lvfc/m+RFSX4wyUfzcIDl8vdRkvyuJD9ZSvm3Bx8UAABusZsIr9Rad7oTAAAAAAAAAAAAAAAAAOboVoVXkvxQkmfmyejKpZLkQ0n+YZLn997/Ru/97UeY7yB67+/ovf/tJJ+e5NVJ3pfHB1i+/PATAgDA7XUT4ZWhd1prG58JAAAAAAAAAAAAAAAAAKfutoVXLl1GV0qSDyT5riTP7b3/3d77e4431mH13t/be391kucm+TtJ3pOHAywAAMCBHSO8MnQnAAAAAAAAAAAAAAAAAMzRbQ2vlCQfTPLqJM/rvb+q9/7+I890NL33D/fe/1GSFyR5ZZLfjAALAAAcXO/9RsIrtda16621jc8EAAAAAAAAAAAAAAAAgFN3G8MrH07yvUme33t/de/9g8ceaCp67x/rvb82FwGWb8pFgAUAADiQ+/fvD+7ZJrwy9M5Q7AUAAAAAAAAAAAAAAAAA5ui2hVe+P8kLeu/f0Xt//7GHmaree+u9vy4XAZZXHnseAAC4LcYEULYJr9Rad74XAAAAAAAAAAAAAAAAAOZmcewBDqn3/s3HnuGU9N5XSX7g2HMAAMBtcVPhlaF3WmsbnwkAAAAAAAAAAAAAAAAAp+7OsQcAAADgwrHCK2PuBQAAAAAAAAAAAAAAAIC5EV4BAACYiJsKr9Rad74XAAAAAAAAAAAAAAAAAOZGeAUAAGAibiq8MvROa23jMwEAAAAAAAAAAAAAAADg1C2OPcCpKaW8MMkfvG6t9/7jBx7n40opn53k869Z+qXe+zsPPQ8AALC5mwqv1Fp3vhcAAAAAAAAAAAAAAAAA5kZ4ZXNfmuTHHrN2tPBKkj+c5Aeuef73k3zPgWcBAAC2cH5+Prhnm/DK0DuttY3PBAAAAAAAAAAAAAAAAIBTJ7yynXLNs37wKR72oVw/1xceehAAAGA79+7dG9xzE+GVMfcCAAAAAAAAAAAAAAAAwNwIr2zvamjluuDJoV3O8Ohcn3mEWQAAgC3cVHil1rrzvQAAAAAAAAAAAAAAAAAwN3eOPcCJm0Jw5dInPeb5sw46BQAAsLUxAZTFYvN+5lCspbW28ZkAAAAAAAAAAAAAAAAAcOqEV+bj8x7z/JkHnQIAANjamPDKUERlm3fG3AsAAAAAAAAAAAAAAAAAcyO8MgOllBcn+eok/ZrluwceBwAA2NJNhVdqrTvfCwAAAAAAAAAAAAAAAABzszj2AMf2IFryeRu88qVrzvrLu0+0kacl+ZwkX/vgn3uSkocDLO8/8EwAAMCWbiq8MvROa23jMwEAAAAAAAAAAAAAAADg1N368EqSr0zynVu8V675/md7mWi7WS6jK1efJcl7Dj8OAACwjZsKr9Rad74XAAAAAAAAAAAAAAAAAOZGeOVCGd5y0HM21dc8/8+HHAQAANjeTYVXht5prW18JgAAAAAAAAAAAAAAAACcOuGVJz0uXnKdxwVWNjlj3x4303846BQAAMDWjhVeGXMvAAAAAAAAAAAAAAAAAMyN8MrDHhcvOdT7+9CvfL+t9/4zxxwGAAAYb0wA5e7duxufW2vd+V4AAAAAAAAAAAAAAAAAmJs7xx6AnfVHPslFAOa3kvzFYw0FAABsbiiAcnZ2llI27z2enZ2tXX/iiSdy//79jc8FAAAAAAAAAAAAAAAAgFMmvPKwRyMmj/vs+v4+P5fKlc/PJvni3vuvbvl7AAAAjmBMeGUbY94buhsAAAAAAAAAAAAAAAAA5mZx7AEmZPP/bfzNnLGpDyV5X5JfTfLLSX6i9/4/jjAHAACwo5sKr9RaR939tKc9bavzAQAAAAAAAAAAAAAAAOAU3frwSu/91UlePXZ/KeWvJPmxJD0XoZWPf/fe797EjAAAwO1wzPDKarXKM57xjK3OBwAAAAAAAAAAAAAAAIBTdOfYA5ygfuwBAACAeTpmeGXobgAAAAAAAAAAAAAAAACYG+EVAACAiTg/P1+7fpPhldbaVmcDAAAAAAAAAAAAAAAAwKkSXtlNP/YAAADAfNy7d2/t+k2GV1ar1VZnAwAAAAAAAAAAAAAAAMCpEl4BAACYiJsKryyXy8E9rbWtzgYAAAAAAAAAAAAAAACAU7U49gAn6ENJ3nnsIQAAgPkZCq8sFtv9Fa7WOrhHeAUAAAAAAAAAAAAAAACA20Z4ZUO9959O8tPHngMAAJifofDK2dnZVueOCa+sVqutzgYAAAAAAAAAAAAAAACAU3Xn2AMAAABw4ZjhldbaVmcDAAAAAAAAAAAAAAAAwKkSXgEAAJiImwqvLJfLwT3CKwAAAAAAAAAAAAAAAADcNsIrAAAAE3FT4ZVa6+Ce1Wq11dkAAAAAAAAAAAAAAAAAcKqEVwAAACbimOGV1tpWZwMAAAAAAAAAAAAAAADAqRJeAQAAmIibCq8sFovcubP+r3/CKwAAAAAAAAAAAAAAAADcNotjD3BopZTvXLfee/+uXd6fmqE/DwAAMB03FV5JklprPvaxjz12XXgFAAAAAAAAAAAAAAAAgNvm1oVXkrwqSV+zPhQqGXp/aoRXAADgRBwzvLJarbY+GwAAAAAAAAAAAAAAAABO0W0Mr1wq1zzbJKhy3ftTc0qBGAAAuPVuMryyXC7XrrfWtj4bAAAAAAAAAAAAAAAAAE7RbQ6vPBol2TSkMvWoySmEYQAAgCtuMrxSa127LrwCAAAAAAAAAAAAAAAAwG1zm8MrV8Mk20RUphw2mXoUBgAAuMYxwyur1WrrswEAAAAAAAAAAAAAAADgFN059gAAAABcOGZ4pbW29dkAAAAAAAAAAAAAAAAAcIoWxx7giPqR3wcAAHjITYZXlsvl2nXhFQAAAAAAAAAAAAAAAABum9saXilHfh8AAOApzs/P167vEl6pta5dX61WW58NAAAAAAAAAAAAAAAAAKfo1oVXeu93jvk+AADA49y7d2/t+k2GV1prW58NAAAAAAAAAAAAAAAAAKdIRAQAAGAihsIri8X27czlcrl2XXgFAAAAAAAAAAAAAAAAgNtGeAUAAGAihsIrZ2dnW59da127vlqttj4bAAAAAAAAAAAAAAAAAE6R8AoAAMBEHDO80lrb+mwAAAAAAAAAAAAAAAAAOEXCKwAAABNxk+GV5XK5dl14BQAAAAAAAAAAAAAAAIDbRngFAABgIm4yvFJrXbsuvAIAAAAAAAAAAAAAAADAbSO8AgAAMBHHDK+sVqutzwYAAAAAAAAAAAAAAACAUyS8AgAAMBHHDK+01rY+GwAAAAAAAAAAAAAAAABOkfAKAADARNxkeGW5XK5dF14BAAAAAAAAAAAAAAAA4LYRXgEAAJiImwyv1FrXrq9Wq63PBgAAAAAAAAAAAAAAAIBTtDj2ALdBKWWR5BOSPD1JTVIOdXfv/V2HugsAANhe7z3n5+dr99xkeKW1tvXZAAAAAAAAAAAAAAAAAHCKhFf2qJRyJ8kXJ/myJC9N8vwkz0vyzCON1OPfMQAAnISh6EqyW3hluVyuXRdeAQAAAAAAAAAAAAAAAOC2EeXYg1LKs5O8MsnXJfm0q0vHmQgAADg19+7dG9yzS3il1rp2fbVabX02AAAAAAAAAAAAAAAAAJwi4ZUdlVJekeT7kzwn14dW+mEn+jjRFwAAOCHHDq+01rY+GwAAAAAAAAAAAAAAAABOkfDKDkopr0nyLXkycvK4yMqhIyjHir0AAABbuunwynK5XLsuvAIAAAAAAAAAAAAAAADAbSO8sqVSyrcl+dYHP14NnRw6sgIAAMzA+fn54J5dO7BDIwAAIABJREFUwiu11rXrwisAAAAAAAAAAAAAAAAA3DbCK1sopbwkyXdnOLjSr3kGAADwFPfu3Rvcc5PhldVqtfXZAAAAAAAAAAAAAAAAAHCKhFe287okd3IRVhkKrly3DgAA8JAx4ZXFYvu/wi2Xy7XrrbWtzwYAAAAAAAAAAAAAAACAUyS8sqFSypck+aIMR1dKkpbkzUneluSdSX47yUfycJgFAABgVHjl7Oxs6/NrrWvX79+/n/v37+fu3btb3wEAAAAAAAAAAAAAAAAAp0R4ZXOveMzzq8GVtyd5TZLX994/cpCpAACAk3bs8EqStNby9Kc/fes7AAAAAAAAAAAAAAAAAOCUCK9s7mV5MrJyqeciuJIkr03yrb3384NOBQAAnDThFQAAAAAAAAAAAAAAAAA4LOGVDZRSnpnkhXk4tHL5zz3JD/XeX3mk8QAAgBN20+GV5XI5uKe1tvX5AAAAAAAAAAAAAAAAAHBq7hx7gBPzGY/83K/887uTfPMBZwEAAGbkpsMrtdbBPavVauvzAQAAAAAAAAAAAAAAAODUCK9s5lOveVZyEWD5J7334f9SEgAA4BpTCK+01rY+HwAAAAAAAAAAAAAAAABOjfDKZj5xzdovHGwKAABgdm46vLJcLgf3CK8AAAAAAAAAAAAAAAAAcJsIr2zm7pq1/3mwKQAAgNm56fBKrXVwz2q12vp8AAAAAAAAAAAAAAAAADg1wiub+e0t1wAAANaaQniltbb1+QAAAAAAAAAAAAAAAABwaoRXNvNba9Y+4WBTAAAAs3PT4ZXlcjm4R3gFAAAAAAAAAAAAAAAAgNtEeGUzb1+z9syDTQEAAMzOUHillJK7d+9ufX6tdXCP8AoAAAAAAAAAAAAAAAAAt4nwygZ67+9L8q7LHx9ZftGBxwEAAGZkKLxydna20/ljwiur1WqnOwAAAAAAAAAAAAAAAADglAivbO6NSco1z7/o0IMAAADzMYXwSmttpzsAAAAAAAAAAAAAAAAA4JQIr2zuX1/zrCR5+aEHAQAA5uP8/HztuvAKAAAAAAAAAAAAAAAAAOyX8Mrm3pjkHVd+7g++X1JKeckR5gEAAGbg3r17a9d3Da/cuXMni8Vi7Z7VarXTHQAAAAAAAAAAAAAAAABwSoRXNtR770m+O0l5ZKkkeW0p5dHnAAAAg246vJIktda16621ne8AAAAAAAAAAAAAAAAAgFMhvLKdf5HkLVd+7g++X5rk+w4/DgAAcOqGwiuLxWLnO5bL5dp14RUAAAAAAAAAAAAAAAAAbhPhlS303nuSv5Tko1cfJylJvqWU8m1HGQwAADhZQ+GVs7Ozne+ota5dX61WO98BAAAAAAAAAAAAAAAAAKdCeGVLvfe3J/m6Rx/nIr7yPaWUHymlrP/fyQMAADwwhfBKa23nOwAAAAAAAAAAAAAAAADgVAiv7KD3/vok35SL2EoefF/GV74+yX8vpXzlkcYDAABOyCHCK8vl+jak8AoAAAAAAAAAAAAAAAAAt8ni2AOcut77D5ZSPpbkh/NkyOYyvvLCJD9VSnlXkn+X5M1JfiPJ/03y/iQf7r2fH35qAABgag4RXqm1rl0XXgEAAAAAAAAAAAAAAADgNhFe2VAp5ccfs/SuJM/Pk9GVfvlKkucm+VuPOW/fI17Ve+/+HQMAwAmYQnhltVrtfAcAAAAAAAAAAAAAAAAAnApRjs29Ik9GVa5Trnz3PBxgAQAAuNZQ9GS5XO58x1B4pbW28x0AAAAAAAAAAAAAAAAAcCqEV7Y3JqRyuedqgOVQhF4AAOCEDEVP9hFeGTpDeAUAAAAAAAAAAAAAAACA20R4ZXvXhVQeFzs5dATl0JEXAABgR0PRk1rrzncMnbFarXa+A/j/7N1/kGxpXd/xz3N3tk83KyAgv1yCIhF/S2JFTQgYFIkCCgQ3ZSVqRcokhkJJ/BHLSolZKxrBwtIkKLE0WhqWqCiRqBQqqItGE2NpYoJGRIRFdMUfgLh0n95798kfM5PtvTvTp7unu093z+tVNTVzz/e55/n23n92/7jvBQAAAAAAAAAAAAAAAPaF8Mrqth1TAQAADlhX9GQb4ZWu+AsAAAAAAAAAAAAAAAAAHBLhldXVvhcAAAAOR1f0ZB3hlaZpLrQDAAAAAAAAAAAAAAAAABwS4ZXVlL4XAAAADktX9KQrmrKIrnhL27YXvgMAAAAAAAAAAAAAAAAA9oXwyvKe3/cCAADA4ekKr3RFUxbR9Y6uHQAAAAAAAAAAAAAAAADgkAivLKnW+v197wAAAByetm3nztcRXmmaZu5ceAUAAAAAAAAAAAAAAACAy+RK3wsAAADQHT1ZR3il6x3CKwAAAAAAAAAAAAAAAABcJsIrAAAAO6AretI0zYXv6AqvtG174TsAAAAAAAAAAAAAAAAAYF8IrwAAAOyArvBKVzRlEV3v6NoBAAAAAAAAAAAAAAAAAA6J8AoAAMAOaNt27nwd4ZWmaebOhVcAAAAAAAAAAAAAAAAAuEyEVwAAAHZAV/SkK5qyiK54S1f8BQAAAAAAAAAAAAAAAAAOifAKAADADugKr3RFUxbR9Y6uHQAAAAAAAAAAAAAAAADgkAivAAAA7IC2befO1xFeaZpm7lx4BQAAAAAAAAAAAAAAAIDLRHgFAABgB3RFT9YRXul6R1f8BQAAAAAAAAAAAAAAAAAOifAKAADADugKrzRNc+E7usIrXTsAAAAAAAAAAAAAAAAAwCE56nuBfVNKeWzfOyyj1npH3zsAAADz1Vpz9913zz3TFU1ZRFe8RXgFAAAAAAAAAAAAAAAAgMtEeGV5b09S+15iQTX+jAEAYOctEjxZR3il6x1t26bWmlLKhe8CAAAAAAAAAAAAAAAAgF0nyrEafwsRAABYm10JryTJ1atXc+ONN174LgAAAAAAAAAAAAAAAADYdcIrq6l9L7AAcRgAANgTi4RXmqa58D2LhFem06nwCgAAAAAAAAAAAAAAAACXgvDK6nY5bLIPYRgAAODEIuGVRaIpXRaJt0yn09x0000XvgsAAAAAAAAAAAAAAAAAdp3wymEQWgEAgD3Wtm3nmXWEVxZ5xyK7AAAAAAAAAAAAAAAAAMAhEF5Z3bZjJ2WJmRALAADskel02nlmW+GVRXYBAAAAAAAAAAAAAAAAgEMgvLKaeRGUdavXfT+9v858/5Mkd2xxJwAAYI0WiZ00TXPhexZ5h/AKAAAAAAAAAAAAAAAAAJeF8MryPn1D7x0maZKMkjwyyc1JPizJJyV5fO6NvdTcN8ZSkjw4yY/WWl+yod0AAIANatu288xgMLjwPYu8Y5FdAAAAAAAAAAAAAAAAAOAQCK8sqdZ6+7bvLKU8KMkzk9yS5Nk5/nObja8MknxTKeXpSZ5Ta/2Lbe8IAACsbjqddp7ZVnhlkV0AAAAAAAAAAAAAAAAA4BBc6XsButVa/7zW+oO11luSPCHJDyQps0dOfv3UJD9RShltf0sAAGBVi8ROmqa58D2LvEN4BQAAAAAAAAAAAAAAAIDLQnhlz9Ra315r/eIkz0zyvtlRjuMrT0nygz2sBgAArGiR2MlgMLjwPYu8o23bC98DAAAAAAAAAAAAAAAAAPtAeGVP1Vpfn+Rv5ez4yueUUr6kl8UAAIClLRI72VZ4ZZEIDAAAAAAAAAAAAAAAAAAcAuGVPVZr/d9JvjDHsZX///jk199aSnlEL4sBAABLWSR2IrwCAAAAAAAAAAAAAAAAAOslvLLnaq2vS/Ka3De+kiQPTPLC7W8EAAAsqyt2UkrJ0dHRhe9pmubCuwAAAAAAAAAAAAAAAADAoRBeOQwvue7XNcchln9SSun+X9oDAAC96oqdDAaDlHJ9a3F5i8Rb2ra98D0AAAAAAAAAAAAAAAAAsA+EVw5ArfVXk/zuGaMPSfLU7W4DAAAsqyt2Mhisp6dYSul8V1cEBgAAAAAAAAAAAAAAAAAOhfDK4fjlJOWM50/Z9iIAAMByumIn6wqvJEnTNBfaBQAAAAAAAAAAAAAAAAAOhfDK4fitc54/aatbAAAAS+uKnXTFUpbRFXFp23ZtdwEAAAAAAAAAAAAAAADALhNeORzvue7XNUlJ8pgedgEAAJbQFV7piqUso+tdXbsAAAAAAAAAAAAAAAAAwKEQXjl8D+17AQAAYL62befO1xleaZpm7lx4BQAAAAAAAAAAAAAAAIDLQnjlcDz6nOcP3uoWAADA0rpiJ+sMr3S9qysCAwAAAAAAAAAAAAAAAACHQnjlcHzYOc/9rUkAANhxXeGVpmnWdldXeKVrFwAAAAAAAAAAAAAAAAA4FMIrB6CUcpTkWUnqGeO/2PI6AADAktp2fi+xK5ayDOEVAAAAAAAAAAAAAAAAADgmvHIYnpvkYSc/l+u+37H9dQAAgGV0xU7WGV5pmmbuvCsCAwAAAAAAAAAAAAAAAACHQnhlz5VSHp3k5UnqGeOa5C3b3QgAAFhWV3ilK5ayjK6IS9cuAAAAAAAAAAAAAAAAAHAohFf2WCnlCUl+MskjTh+dceyXt7cRAACwiq7YSVcsZRnCKwAAAAAAAAAAAAAAAABwTHhlD5VSHlVKeXGSX0vyxCQ1Z0dXkuSnt7YYAACwkrZt587XGV5pmmbuXHgFAAAAAAAAAAAAAAAAgMviqO8F9k0p5et7uPaGJDcluTnJxyf52NN1Tr7XmbOnEZaa5JdqrW/d1pIAAMBqumIn6wyvdL2rKwIDAAAAAAAAAAAAAAAAAIdCeGV5t+a+oZNtKzM/1zOezXrZhncBAADWoCu80jTN2u7qCq907QIAAAAAAAAAAAAAAAAAh0J4ZXXnxU62YTb8cn2IpZx8f0Ot9bVb3QoAAFhJV+ykK5ayjK6Ii/AKAAAAAAAAAAAAAAAAAJeF8MrqaveRjTkr+jK7z+8n+aIt7QIAAFxQ27Zz5+sMr3S9q2sXAAAAAAAAAAAAAAAAADgUwiurOyt+0ofZ4EpJckeSz661vrunfQAAgCVNp9O5822GV7p2AQAAAAAAAAAAAAAAAIBDcaXvBVhYPecrOQ6ulCSvTfKptdb/28uGAADASrpiJ03TrO2urncJrwAAAAAAAAAAAAAAAABwWRz1vcAeq91HNqbM/FyT/FSSb621vqGnfQAAgAto23bufDAYrO2urnd17QIAAAAAAAAAAAAAAAAAh0J4ZTWl+8jatUnuSvK+JG9L8pYkv5TkZ2qt7+5hHwAAYE2m0+nc+TbDK127AAAAAAAAAAAAAAAAAMChEF5ZUq31St87AAAAh6UrdtI0zdruEl4BAAAAAAAAAAAAAAAAgGMiIgAAAD3rip10xVKW0RVxEV4BAAAAAAAAAAAAAAAA4LIQXgEAAOhZ27Zz5+sMr3S9q2sXAAAAAAAAAAAAAAAAADgUwisAAAA9m06nc+fbDK907QIAAAAAAAAAAAAAAAAAh0J4BQAAoGddsZOmadZ2V9e7hFcAAAAAAAAAAAAAAAAAuCyEVwAAAHp0zz335OrVq3PPDAaDtd3X9a62bdd2FwAAAAAAAAAAAAAAAADsMuEVAACAHk2n084z6wyvNE0zd3716tVcu3ZtbfcBAAAAAAAAAAAAAAAAwK4SXgEAAOjRtsMrw+Gw80zbtmu7DwAAAAAAAAAAAAAAAAB2lfAKAABAjxYJrzRNs7b7FgmvTCaTtd0HAAAAAAAAAAAAAAAAALtKeAUAAKBHbdt2nhkMBmu7T3gFAAAAAAAAAAAAAAAAAI4JrwAAAPRoOp12nllneKVpms4zwisAAAAAAAAAAAAAAAAAXAbCKwAAAD3adnhlOBx2nmnbdm33AQAAAAAAAAAAAAAAAMCuEl4BAADo0SLhlaZp1nbfIuGVyWSytvsAAAAAAAAAAAAAAAAAYFcJrwAAAPSobdvOM4PBYG33Ca8AAAAAAAAAAAAAAAAAwDHhFQAAgB5Np9POM8IrAAAAAAAAAAAAAAAAALB+wisAAAA9WiS80jTN2u5b5F1t267tPgAAAAAAAAAAAAAAAADYVcIrAAAAPVokvDIYDNZ233A47DwzmUzWdh8AAAAAAAAAAAAAAAAA7CrhFQAAgB61bdt5Zp3hlRtvvDGllLlnhFcAAAAAAAAAAAAAAAAAuAyEVwAAAHo0nU47z6wzvFJKyXA4nHtGeAUAAAAAAAAAAAAAAACAy0B4BQAAoEdd4ZUrV67k6OhorXc2TTN3LrwCAAAAAAAAAAAAAAAAwGUgvAIAANCjtm3nzgeDwdrvHA6Hc+ddOwEAAAAAAAAAAAAAAADAIRBeAQAA6NF0Op077yO8MplM1n4nAAAAAAAAAAAAAAAAAOwa4RUAAIAeCa8AAAAAAAAAAAAAAAAAQD+EVwAAAHrUFV5pmmbtdwqvAAAAAAAAAAAAAAAAAIDwCgAAQK/atp07HwwGa7+zK+bStRMAAAAAAAAAAAAAAAAAHALhFQAAgB5Np9O5802EV4bD4dz5ZDJZ+50AAAAAAAAAAAAAAAAAsGuEVwAAAHokvAIAAAAAAAAAAAAAAAAA/RBeAQAA6FFXeKVpmrXfKbwCAAAAAAAAAAAAAAAAAMIrAAAAvWrbdu58MBis/c6umIvwCgAAAAAAAAAAAAAAAACXgfDKEkopn1lKeVrfewAAAIdjOp3OnW8ivDIcDufOu2IwAAAAAAAAAAAAAAAAAHAIhFeW8zeT/HQp5Z2llJeUUj6h74UAAID91hVeaZpm7Xd2hVcmk8na7wQAAAAAAAAAAAAAAACAXSO8sryS5OYk/zzJ/yyl/K9SyleXUm7ueS8AAGAPdYVXBoPB2u8UXgEAAAAAAAAAAAAAAAAA4ZVV1RwHWEqST0jy0iTvKKW8sZTy/FLKg3rdDgAA2Btt286dC68AAAAAAAAAAAAAAAAAwGYIr6yunnwlxwGWK0memuR7ktxZSvnhUsqzSylHPe0HAADsgel0One+ifBK0zRz510xGAAAAAAAAAAAAAAAAAA4BMIrqysnX3Xm6/TZMMnnJfnPOY6wvKKU8uS+FgUAAHZXV3ilK5KyiuFwOHc+mUzWficAAAAAAAAAAAAAAAAA7BrhlYs7ja0kZ0dYHprkHye5vZTy9lLKN5VSPq6XTQEAgJ3Ttu3c+WAwWPudwisAAAAAAAAAAAAAAAAAILxyEbORleTe0Mq8CMtjk3xtkt8opfx6KeWrSik3b3VrAABgp0yn07lz4RUAAAAAAAAAAAAAAAAA2AzhleX8YpL/cfLzeZGV2dm8CMsTk3xLkneUUt5YSnl+KeVBG/8EAADATukjvNI0zdy58AoAAAAAAAAAAAAAAAAAl4HwyhJqrW+stX5qkg9P8lVJ/tvJaJUIy+nsSpKnJvmeJHeWUl5dSnlOKeVoc58EAADYFV3hla5IyiqGw+Hcedu2a78TAAAAAAAAAAAAAAAAAHaN8MoKaq3vrLV+W631SUkem+QrkvzSyXjRCMvs7PTZMMnzkrwmxxGWl5dS/sbmPxEAANCXrsjJYDBY+51d4ZWrV6/m6tWra78XAAAAAAAAAAAAAAAAAHaJ8MoF1VrfVWv9N7XWJyf5S0n+aZJfzH2DKsn5EZbrZ6fPH5rkBUl+sZTyO6WUF5dSHreFjwQAAGzRdDqdO+8jvJJ0B2EAAAAAAAAAAAAAAAAAYN8Jr6xRrfUPaq3/rtb6aUkek+TLk7wp8yMsZYHZ45PcmuStpZTbSynPL6V80FY+FAAAsFG7Gl6ZTCZrvxcAAAAAAAAAAAAAAAAAdonwyobUWu+stX5HrfWpSW5O8sIkP5/knlwswvLkJN+T5M5Syg+UUj5jG58HAADYjK7wStM0a79zkXcKrwAAAAAAAAAAAAAAAABw6IRXtqDW+ke11lfUWj8jyYcmeUGSn81qEZbTZw9I8gVJfqaU8nullBeXUh67pY8EAACsSdu2c+eDwWDtdw6Hw84zXXsBAAAAAAAAAAAAAAAAwL4TXtmyWusf11q/q9b6mUkeleRLk7whybUsFmE56/mHJbk1ydtKKT9VSrmllHK0tQ8FAACsbDqdzp33FV6ZTCZrvxcAAAAAAAAAAAAAAAAAdonwSo9qrX9aa/3uWuvfznGE5R8l+ekkV9MdYTnr+ZUkn5nkh5K8q5Ty0lLKE7b0cQAAgBV0hVeapln7ncIrAAAAAAAAAAAAAAAAACC8sjNqrX9Wa/0PtdbPznGE5UuSvD7nR1hyzvPTZw9P8tVJfquU8oZSyvNKKTds5cMAAAALuXbtWq5duzb3zGAwWPu9i8RchFcAAAAAAAAAAAAAAAAAOHTCKzuo1vqeWuv31VqfmeQRSZ6f5HVJ7s59YyunzgqwzEZYPj3Jq5PcUUp5cSnlEZv/FAAAQJfpdNp5ZhPhleFw2Hmmbdu13wsAAAAAAAAAAAAAAAAAu0R4ZcfVWt9Xa/3+Wuvn5DjC8sVJfiLJNPcGVk6VnB1hOX326CS35jjA8v2llE/cxmcAAADOtsvhlclksvZ7AQAAAAAAAAAAAAAAAGCXCK/skVrrnyf5j0m+PcmP5t7AyllmIyw1942wDJJ8YZJfL6W8vpTyaZvcGwAAONsi4ZWmadZ+r/AKAAAAAAAAAAAAAAAAAAiv7IVSyg2llKeXUr4ryZ1JfibJ3zsdL/KKmXOzAZaS5OlJfq6Ucnsp5Unr3RwAAJinbdvOM4PBYO33Hh0dpZT5/ykhvAIAAAAAAAAAAAAAAADAoTvqewHOVko5ynEU5ZYkz0nykNPRgq+oZ712Zlave/aUJL9QSnl1khfVWt+99NIAAMBSptNp55lNhFdKKRkOhxmPx+eeEV4BAAAAAAAAAAAAAAAA4NAJr+yQUsogyWflOLbyuUkefDqaOTYbVLk+wtI1uz62kuuelSR/N8knl1I+o9b6jqU+AAAAsJS+witJOsMrbdtu5F4AAAAAAAAAAAAAAAAA2BXCKz0rpQyTPCPHsZVnJXng6WjmWL3+ty0w+5Ukr0zyc0k+L8k/TPKYM35Pue5ZSfK4JG8qpTyx1vrehT8MAACwlEXCK03TbOTu4XA4dz6ZTDZyLwAAAAAAAAAAAAAAAADsCuGVHpRSHpDjyMotSZ6Z5AGno5ljq8RW3prktiS31VrfOjN/cynlG5M8O8kLkzxt5j315PfPBlhKjiMttyb5Z4t+LgAAYDlt23aeGQwGG7lbeAUAAAAAAAAAAAAAAACAy054ZUtKKR+U5HNzHFv57CSnf8vxorGVP07yQzmOrfz38+6vtd6T5MeS/Fgp5QlJvizJP0jywNwbW5m9qyR5QSnlpbXWP5z/6QAAgFVMp9POM5sKrzRNM3cuvAIAAAAAAAAAAAAAAADAobvS9wKHrJTyoFLKF5VSXpvk3UlemeS5SUY5DpuUHEdOTr8y8/w0hHLWbJzkB5N8TpIPrbW+aF505Xq11rfUWl+U5DFJvn1mj9M7Th0lecbCHxgAAFjKIuGVrkDKqobD4dx527YbuRcAAAAAAAAAAAAAAAAAdsVR3wscmlLKQ3IcV7klydOS3Hg6mjlWr/9t1/26njG7luRncxxveU2t9a6L7lprfX+Sryyl/FGSbz659/pdPivJ9170LgAA4P4WiZsMBoON3N0VXplMJhu5FwAAAAAAAAAAAAAAAAB2hfDKGpRSPiTJ38lxbOWpufef66qxldn5r+U4tvKfaq1/dOFlz1BrfWkp5XlJPjn3j7589CbuBAAAkul02nlGeAUAAAAAAAAAAAAAAAAANkN4ZUWllEcmeV6OYytPSXLD6Wjm2Kqxld9L8qokr6y1/vbFt13IT+Y4vHKqnuzzsC3dDwAAl06f4ZWmaebOhVcAAAAAAAAAAAAAAAAAOHTCK0sopTwiyefnOLbypCRXTkczx1aNrfxpklcnua3W+l8vvu3S3nXOc+EVAADYkK7wyg033JAbbrhh7plVDYfDuXPhFQAAAAAAAAAAAAAAAAAOnfDKcl6Q5OtPfl4mtnL9mdP5JMmPJ7ktyetqrVfXseSKBuc838zf8gQAANK27dz5YHDev6ZfXFd4pWs3AAAAAAAAAAAAAAAAANh3wivLKzmOqKwaW7knyc8neWWSH6m1vn/dC67o0ec8/4utbgEAAJfIdDqdO+8zvDKZTDZ2NwAAAAAAAAAAAAAAAADsAuGVi+mKrcye+Y0cx1ZeVWv9g41utZq/mvvvXpO8o4ddAADgUhBeAQAAAAAAAAAAAAAAAID+CK+sbja6cl5s5Z1JXpXklbXWN29lqxWUUq4keXLODsn86pbXAQCAS6Nt27nzTYZXmqaZOxdeAQAAAAAAAAAAAAAAAODQCa+s7rzYynuT/EiS22qtt293pZUdJXnuObO3bXMRAAC4TLriJsPhcGN3d727KwoDAAAAAAAAAAAAAAAAAPtOeOViTmMrbZLXJbktyU/UWqf9rbS8k333JRIDAAAHoyu8MhqNNnZ3V3ilazcAAAAAAAAAAAAAAAAA2HfCK6spSWqSX0jyyiSvrrW+t9+VAACAfTMej+fOu+IoFyG8AgAAAAAAAAAAAAAAAMBlJ7yyvDcnuS3JbbXWd/a9DAAAsL+64iaj0WhjdzdNM3cuvAIAAAAAAAAAAAAAAADAoRNeWc7Laq3f0PcSAADAYRiPx3Pnw+FwY3d3vVt4BQAAAAAAAAAAAAAAAIBDJ7yypFLKg+aM319rrVtbBgAA2GtdcZPRaLSxu7vCK23bbuxuAAAAAAAAAAAAAAAAANgFwivLeUuSR50zq0ken+Qd21sHAADYZ+PxeO68K45yEV3v7orCAAAAAAAAAAAAAAAAAMC+u9L3AnvmkUnKnK8/7G81AABg33TFTUaj0cbu7gqvXLt2LVevXt3Y/QAAAAAAAAAAAAAAAADQN+GV5VxNUs/4OnVPH0sBAAD7aTwez51vMrzSNE3nma4wDAAAAAAAAAAAAAAAAADsM+GV5fzhzM/l5GvWw7e4CwAAsOe6wivD4XDDRFsbAAAgAElEQVRjdy/y7rZtN3Y/AAAAAAAAAAAAAAAAAPRNeGU5v5v7x1ZmPWJbiwAAAPtvMpnMnY9Go43dvUh4pWs/AAAAAAAAAAAAAAAAANhnwivLeV3H/JO3sgUAAHAQxuPx3PkicZRVCa8AAAAAAAAAAAAAAAAAcNkJryzn1UmmJz/XM+bP2uIuAADAnusKm4xGo43d3TRN5xnhFQAAAAAAAAAAAAAAAAAOmfDKEmqt70zyiiTl+tHJs6eXUj5064sBAAB7aTwez50Ph8ON3b3Iu4VXAAAAAAAAAAAAAAAAADhkwivLuzXJ205+Pg2unBol+eZtLwQAAOynrrDJaDTa2N2LhFfatt3Y/QAAAAAAAAAAAAAAAADQN+GVJdVa35fk2Unef/po5ntJ8gWllM/vYzcAAGC/jMfjufNF4iirWuTdXWEYAAAAAAAAAAAAAAAAANhnwisrqLX+ZpJnJPnz60c5/mf6A6WU52x9MQAAYG9cvXo1165dm3tmNBpt7P6maTrPCK8AAAAAAAAAAAAAAAAAcMiEV1ZUa/3lJE9LcmeSMjtKcmOSHy2lvKyUMuhjPwAAYLeNx+POM5sMrwyHw84zwisAAAAAAAAAAAAAAAAAHDLhlQuotf5akk9J8is5jq+cBlhqjv/ZfkWS3yylfGkppft/Jw8AAFwai0RNFomjrOro6ChXrsz/T0LhFQAAAAAAAAAAAAAAAAAO2VHfC+y7Wuu7SilPSvKVSb42yUNORzkOsXxEku9M8i2llNuTvCnJ7yf5kyTTLez3pk3fAQAALG88HneeGY1GG7u/lJLhcJgPfOAD555p23Zj9wMAAAAAAAAAAAAAAABA34RXllRKuaPrSI6jK5n5XpI8MMmzTr62pcafMQAA7KRFwivD4XCjO3SFVyaTyUbvBwAAAAAAAAAAAAAAAIA+iXIs7zE5DpqUM2azoZXZZ2c9BwAALrFFoiaj0WijOzRNM3cuvAIAAAAAAAAAAAAAAADAIRNeWV297tclZ4dVTp/NBli2QeQFAAB22Hg87jwzHA43ukPX+4VXAAAAAAAAAAAAAAAAADhkwivrcxpVOS94ss0QyjYDLwAAwAoWiZqMRqON7tAVXmnbdqP3AwAAAAAAAAAAAAAAAECfhFdWt82QCgAAcGDG43Hnma4wykV1vX+ROAwAAAAAAAAAAAAAAAAA7CvhldXVvhcAAAD21yJRk9FotNEdmqaZOxdeAQAAAAAAAAAAAAAAAOCQCa+spvS9AAAAsN/G4/Hc+ZUrV3LjjTdudIfhcDh3LrwCAAAAAAAAAAAAAAAAwCETXlne4/peAAAA2H9dUZPhcJhSNtt8FF4BAAAAAAAAAAAAAAAA4DITXllSrfUdfe8AAADsv/F4PHc+Go02vkNXeKVt243vAAAAAAAAAAAAAAAAAAB9udL3AgAAAJfRZDKZO++KoqxD1x1dOwIAAAAAAAAAAAAAAADAPhNeAQAA6MF4PJ47H41GG9+haZq5c+EVAAAAAAAAAAAAAAAAAA6Z8AoAAEAPusIrw+Fw4zt03SG8AgAAAAAAAAAAAAAAAMAhE14BAADoQVfUZDQabXyHrvBK27Yb3wEAAAAAAAAAAAAAAAAA+iK8AgAA0IPxeDx33hVFWYeuO7riMAAAAAAAAAAAAAAAAACwz476XoD1KKX8lSTPPmP0qlrrW7e9DwAAMF9X1GQ0Gm18h6Zp5s6FVwAAAAAAAAAAAAAAAAA4ZMIrh+XWJPW6ZyXJN2x/FQAAYJ7xeDx3vo3wynA4nDsXXgEAAAAAAAAAAAAAAADgkAmvHI7fnvm5zPz8adteBAAA6NYVNemKoqxD1x1dcRgAAAAAAAAAAAAAAAAA2GdX+l6AtZn9s6wnX0nyMT3sAgAAdOiKmoxGo43v8IAHPGDu/K677tr4DgAAAAAAAAAAAAAAAADQF+GVw/H55zx/yFa3AAAAFjKZTObOh8Phxne46aab5s7vuuuu1FrnngEAAAAAAAAAAAAAAACAfXXU9wKHpJTyxCSfmuTxSR6cZLCFa4+SfGSST0lSk5ST77NzAABgx4zH47nz0Wi08R26wiv33HNP2rbdSgQGAAAAAAAAAAAAAAAAALZNlOOCSik3JPmyJC9K8uF9rnLO8z/Z6hYAAMBCJpPJ3Pk2Yidd4ZUkueuuu4RXAAAAAAAAAAAAAAAAADhIwisXUEp5fJLXJPn4nB8+2ZZ63Q7l5Nlv97MOAAAwz3g8njsfjUYb32HR8MrDHvawje8CAAAAAAAAAAAAAAAAANsmvLKiUspHJXlTkg/JvZGTPp0XfvnhrW4BAAAspCu8MhwON77DouEVAAAAAAAAAAAAAAAAADhEwisrKKXclOTHkzw8x8GV0+jKefGTbZoNwPyfJN/d1yIAAMD5JpPJ3PloNNr4DouEVz7wgQ9sfA8AAAAAAAAAAAAAAAAA6IPwymr+ZZK/nPODKzVnOy/Mct75RX7v9e84PfcbSZ5Ta717gXcDAABbNh6P5853Jbxy1113bXwPAAAAAAAAAAAAAAAAAOiD8MqSSimPTPLCnB1dmQ2onBVjOS/UskhUpevdp8/enOT7knxnrXXS8V4AAKAnk8n8f10fDocb30F4BQAAAAAAAAAAAAAAAIDLTHhleV+TZJT7xk6S+0ZVJkluT/L7ScZJHp7kyUlunjl3+vtrkrcnueOMu25I8qAkj03ywTO/76wIy9cl+d5a652rfSwAAGBb7r777ly7dm3umdFotPE9hFcAAAAAAAAAAAAAAAAAuMyEV5ZQSilJvjD3DZ/MBlfuTvKvknxbrfV+fzuxlPLCJP829w+n/Fmt9dM77v6IJM9L8oIkj8v9Ay5fk+RNSYRXAABgx00mk84zw+Fw43scHR1lMBhkOp2ee0Z4BQAAAAAAAAAAAAAAAIBDdaXvBfbMk5M8/OTnkvtGV+5Jckut9RvPiq4kSa31O3IcXimnj06+f1Ip5WnzLq61vq3W+rIkH5XkXyS5NjtO8qAk/6WU8tHLfSQAAGDbxuNx55nRaLSFTZKbbrpp7lx4BQAAAAAAAAAAAAAAAIBDJbyynOee8ew0wPLyWuuPL/COl5/z/O8vskCt9Wqt9SVJnpFkMjtK8sFJfqyUsp2/oQkAAKxkMpl0nhkOh1vYRHgFAAAAAAAAAAAAAAAAgMtLeGU5f23m5zrzc5vkXy/yglrr7yZ5z3XvKUk+d5lFaq1vzHGspVw3+sgk37LMuwAAgO0aj8edZ0aj7fQUhVcAAAAAAAAAAAAAAAAAuKyEV5bzcblvcKWc/Prnaq3vXuI9b8v9gykPK6V8zDLL1Fpfm+QVM+86jbi8oJTyicu8CwAA2J7JZNJ5RngFAAAAAAAAAAAAAAAAADZLeGVBpZRHJXno6S+vG79+yde9/Zznf33J9yTJ1yV573XPriR52QrvAgAAtmA8HneeGQ6HW9hEeAUAAAAAAAAAAAAAAACAy0t4ZXGPmTN785Lvevs5zz92yfek1vqeJP8+98Zg6sn3p5VSPmnZ9wEAAJu3SHhlNBptYRPhFQAAAAAAAAAAAAAAAAAuL+GVxT1wzux3lnzX753z/KOWfM+p70hyzxnPv3zF9wEAABs0mUw6zwyHwy1sIrwCAAAAAAAAAAAAAAD8P/buPrqv+64T/OcrOY5kW5ZiO3ITN5ETWw9JbJNC80ATUmgJtOXwsMAu2zmwcLrDUhhO5wwDDDvswOzscnaAZYeyC0t3OFMeNzuHKW0D03aaNH1I82SgKbZj68FK7aRuasWOpViOZEfS3T9sxbIi3avfT7/f1U/W63XOPZZ+n8/93reUcxLHye8tAFi7FK8s3eac2ViFZx1b4LUUEbdWeE5ERGRZdiIinrp0RkREdunjH0kpXVPNmQAAQP1MTEwU7rS2tpaQRPEKAAAAAAAAAAAAAAAAAGuX4pWly3s34niFZx2b93l26deuCs+Z6z8v8NrGiPjOZZwJAADUweTkZO68qakp1q1bV0oWxSsAAAAAAAAAAAAAAAAArFWKV5Yu70fSV/qj6I/N+TjN+XhDSun6Cs+a9ZVFXn9nlecBAAB1MjGR968XEa2trZFSyt2pFcUrAAAAAAAAAAAAAAAAAKxVileWbjRntrWSg7Isey0iXp79dN54ZyVnzXFkkdf3VHkeAABQJ5OTk7nzlpaWkpIoXgEAAAAAAAAAAAAAAABg7VK8snR5xStvqeK8YxGx0I+w763irIiIV+Z9nl06v9rzAACAOpmYmMidt7a2lpRE8QoAAAAAAAAAAAAAAAAAa5filaUbjotlJjHn11kPVHHesUVev6OKsyIiJhd5fWuV5wEAAHUyObnYb98vUrwCAAAAAAAAAAAAAAAAAPWneGWJsix7NSKOLjL+7iqOPLbI699exVkREVsWeb2tyvMAAIA6mZiYyJ23tLSUlETxCgAAAAAAAAAAAAAAAABrl+KVyvx9RKQ5n2eXPv/ulNK3VHhW/7zPZ8+6O6WU/87HhS32/OkqzgIAAOpocnIyd97a2lpSkuLilQsXLsTU1FRJaQAAAAAAAAAAAAAAAACgPIpXKvPpOR+neR//Tkqpku/nVxc569qI+MEqsn3fIq+fquIsAACgjiYmJnLnLS0tJSUpLl6JiDh37lwJSQAAAAAAAAAAAAAAAACgXIpXKvPxiJh9h2QWFwtTZn/9roj4s5RSWuTe+Z6LiNkfG5/NeT1FxC9WEiql1BERP7XAORERL1dyFgAAUH9FxSutra0lJVG8AgAAAAAAAAAAAAAAAMDapXilAlmWjUfEw3G51CTiyvKV/zYinkwpvXMJZ12IiMfnnDV7TkTEt6SUfq2CaL8XEe1zznnjMRHx1QrOAQAASjA5OZk7b2lpKSmJ4hUAAAAAAAAAAAAAAAAA1i7FK5X7jYiYufTxbFHK3PKVeyLisZTScErpIymln00pbVnkrL9c4LXZc/5VSunni8KklH4jIn58zn3zfa7oDAAAoFwTExO589bW1pKSKF4BAAAAAAAAAAAAAAAAYO1SvFKhLMsORcRfxJtLTmbLV2Y/viUi/nFE/F8RsWeR4/4qIi7MHn3pvtlzmiPiwymlz6SUfjCltOGNB6W0PqX0fSmlxyPiV+ZHnPPxhYh4pIIvDwAAKMHk5GTuvKWlpaQkilcAAAAAAAAAAAAAAAAAWLsUr1Tnf4qIsUsfzy06mS1Nmb3ml7NcIcuykYj4DwvszZ6TIuLBuFjQcjal9EpK6ZsRcS4iHo6Id8zbnX//H2dZdrrSLw4AAKiviYmJ3Hlra2tJSRSvAAAAAAAAAAAAAAAAALB2KV6pQpZlL0bEB+Jy6cr88pXcwpV5/teImP1x99m82WyhyuzVERGdEdE857W5pStz7389Iv63CnIAAAAlmZyczJ0rXgEAAAAAAAAAAAAAAACA+lO8UqUsyz4eET8REednX5pzVXLONyLif4w3l7XMLVbJuxa6L4uIf55l2QuVZAEAAMoxMTGRO29paSkpScT69eujubk5d+e1114rKQ0AAAAAAAAAAAAAAAAAlEfxyjJkWfZQRNwdEV+Oy0UpEZWXr3w4Ih6OK4tWZqW48uz5r79xzJyP/yLLst+vJAMAAFCeycnJ3Hlra2tJSSJSSrFhw4bcnXPnzpWUBgAAAAAAAAAAAAAAAADKo3hlmbIsO5Rl2Tsj4p0R8R8i4qVYuCilyD+KiE/HleUt8wtcFiphmbuXIuKjEfGBCp8NAACUaGJiInfe0tJSUpKLNm7cmDtXvAIAAAAAAAAAAAAAAADA1WjdSge4WmRZ9nhEPB4RkVK6KSJ2R8SOiNgUEUNLuP+1lNIPRMTvRcTPxMVSnIXKVxaSIuK1iPj1LMt+p6ovAAAAKM3k5GTuvLW1taQkFyleAQAAAAAAAAAAAAAAAGAtUrxSB1mWvRgRL1Zx33RE/JOU0h9GxG9ExHui+K/RaxHxFxHxr7Mse6nSZwIAAOWbmJjInbe0tJSU5CLFKwAr48SJE/Gnf/qn8YUvfCHa2trive99b/zkT/5krFvnj+wAAAAAAAAAAAAAAADK4F0cDSjLsoMR8QMppbaI+O6IuCciOiPi+ohoioiTEfFSRHw5Ih7Lsuz8SmUFAAAqk2VZYfFKa2trSWkuUrwCUK5z587Fb//2b8dv/dZvXfHPhI997GPxJ3/yJ/HII4/Etddeu4IJAQAAAAAAAAAAAAAA1gbFKw0sy7KzEfHxSxcAAHAVmJqaipmZmdydlpaWktJcpHgFoDyPPvpo/NRP/VScOHFiwfnjjz8ev/zLvxwf/vCHS04GAAAAAAAAAAAAAACw9jStdAAAAIC1ZGJionCntbW1hCSXKV4BKMenPvWpeM973rNo6cqsP/iDP4ijR4+WlAoAAAAAAAAAAAAAAGDtUrwCAABQosnJycIdxSsAV5/p6en40Ic+FNPT04W7U1NT8eu//uslpAIAAAAAAAAAAAAAAFjbFK8AAACUaGJionCnpaWlhCSXKV4BqL/Pf/7zMTw8vOT9hx56KA4cOFDHRAAAAAAAAAAAAAAAACheqUBK6UBK6ZVFrtMppZ0rnREAAGhsk5OThTutra0lJLlM8QpA/T300EMV7WdZFr/6q79apzQAAAAAAAAAAAAAAABEKF6pVF9EdORc31y5aAAAwGowMTFRuNPS0lJCkssUrwDU1/nz5+NjH/tYxff9zd/8TTz55JN1SAQAAAAAAAAAAAAAAECE4pVqZAtcsy6sSCIAAGDVmJycLNxpbW0tIcllilcA6uszn/lMjI2NVXXv7/7u79Y4DQAAAAAAAAAAAAAAALMUr1TmZMF8WykpAACAVWtiYqJwp6WlpYQklyleAaivhx56qOp7P/3pT8f09HQN0wAAAAAAAAAAAAAAADBL8UpljkVEuvRxmvPxrM5S0wAAAKvO5ORk4U5ra2sJSS5TvAJQP+Pj4/Hwww8v6/7nnnuuhokAAAAAAAAAAAAAAACYpXilMv+lYL6vlBQAAMCqNTExUbjT0tJSQpLLiopXXnvttZiZmSkpDcDV5eGHH17S3/vzPP300zVKAwAAAAAAAAAAAAAAwFyKVyrzlxEx+27DbIH595WYBQAAWIWK3nzf3Nwc11xzTUlpLioqXolYWmEMAG/20EMPLfsMxSsAAAAAAAAAAAAAAAD1oXilAlmWDUTEn0dEmj+69Np7U0rtpQcDAABWjfHx8dz5hg0bSkpy2VKKV86dO1dCEoCry8TERHz2s5/N3bn33nvjB37gB3J3nnrqqVrGAgAAAAAAAAAAAAAA4BLFK5X7lxHx8qWPZwtXZrVHxL8uOxAAALB6FBWvtLW1lZTkMsUrAPVx8ODBuHDhQu7O+9///rj33ntzd/r7++PMmTO1jAYAAAAAAAAAAAAAAEAoXqlYlmXfiIgfiYjXZ1+a82uKiJ9LKb1zJbIBAACN7+zZs7lzxSsAV49nn322cOdHf/RHC4tXIiL2799fi0gAAAAAAAAAAAAAAADMoXilClmWfTki3h+Xy1feGEXENRHxcErp7tKDAQAADU/xCsDaUVS8smPHjrjxxhvjrrvuiqam/D+me+qpp2oZDQAAAAAAAAAAAAAAgFC8UrUsyz4eEf9VRMx/92EWEW0R8fmU0s+XHgwAAGhoilcA1o6i4pU777wzIiI2bdoUe/fuzd19+umna5YLAAAAAAAAAAAAAACAixSvLEOWZZ+OiPsj4nhEpLmjiGiNiA+nlL6UUvrelcgHAAA0HsUrAGvD1NRUHDhwIHfnbW972xsf33vvvbm7zzzzTMzMzNQkGwAAAAAAAAAAAAAAABetW+kAq12WZQdSSvsi4t9GxE/H5e9pFhfLWO6PiE+llI5GxH+JiC9FxNcj4lREXCgh3wv1fgYAALB0jVi80traWrijeAWgMgMDAzE5OZm7M7d45du//dvjIx/5yKK7o6OjMTAwELfddlvNMgIAAAAAAAAAAAAAAKx1ilcqlFL6Us74RETsjIulKxGXy1dSRHRHxO6I+Cf1zDdPFv4aAwBAQ2nE4pWmpqbYsGFDvPbaa4vuKF4BqMyzzz5buDO3eOXee+8t3H/66acVrwAAAAAAAAAAAAAAANRQ00oHWIXuj4j75l2zr3Vd2klzrmzOlVbgAgAAGkhR8cqmTZtKSnKljRs35s4VrwBU5qtf/WruvKOjI3bu3PnG593d3XHdddfl3vP000/XIhoAwKrw6quvxkc+8pF497vfHVu3bo3e3t74wAc+EJ/+9KfjwoULKx0PAAAAAAAAAAAAuEooXqne/HKTxYpO5r6elXgBAAANqKh4pa2traQkV1K8AlBbzz77bO78zjvvjJQu/1FSU1NT3Hvvvbn3PPPMMzXJBgDQyF5++eX46Z/+6bjhhhvigx/8YDz22GPxyiuvxODgYHz0ox+N973vffGWt7wlfvM3fzNef/31lY4LAAAAAAAAAAAArHKKV6pXaeFJKvECAAAalOIVgKtflmWFxStve9vb3vRaUfHKkSNHYmpqalnZAAAa2d///d/HHXfcEX/0R38Ur7322qJ7Z86ciV/5lV+JBx98MGZmZkpMCAAAAAAAAAAAAFxtFK9UT+kJAABQsdVavJL3hjcArvTCCy/EmTNncncWKl751m/91tx7Lly4EENDQ8vKBgDQqGZmZuKDH/xgvPzyy0u+54tf/GJ89KMfrWMqAAAAAAAAAAAA4GqneKV6WQNfAABAA5qeni4sMGnU4pVz586VlARg9Xv22WcLdxYqXtmzZ0/hfYcOHaoqEwBAo3vsscfi7/7u7yq+78Mf/nAd0gAAAAAAAAAAAABrheKV6qRVcAEAAA1mfHy8cEfxCsDqV1S80tLSEn19fW96vaurKzZt2pR778GDB5eVDQCgUX3iE5+o6r6DBw/G0aNHa5wGAAAAAAAAAAAAWCvWrXSAVei7VjoAAACwOileAVgbiopX9u7dG+vWvfmP5VJKsWfPnnj66acXvffQoUPLzgcA0GiyLItPfvKTVd//8Y9/PH7pl36phokAAAAAAAAAAACAtULxSoWyLPviSmcAAABWp7NnzxbuKF4BWP2Kilfe9ra3LTrbu3dvbvHKwYMHq84FANCovvKVr8TXv/71qu//q7/6K8UrAAAAAAAAAAAAQFWaVjoAAADAWqF4BeDqNzY2Vvim4bzilT179uTeOzw8HK+99lpV2QAAGtUnP/nJZd3/9NNPx4kTJ2qUBgAAAAAAAAAAAFhLFK8AAACUpJGLVzZt2pQ7X0p2ACIGBgYKd/bt27fobO/evbn3ZlkWhw8frjgXAEAjW27xSkTEJz7xiRokAQAAAAAAAAAAANYaxSsAAAAlaeTilc2bN+fOx8bGSkoCsLr19/cX7vT19S0627NnT+H9Bw8erCgTAEAj+9rXvhYHDhzI3Xn/+98f1157be7Oxz/+8VrGAgAAAAAAAAAAANYIxSsAAAAlKSpeaW5ujpaWlpLSXKm9vT13Pjo6WlISgNVtYGAgd3799dfHli1bcufbt2/PPePQoUNVZQMAaESf/OQnC3d+/Md/PL73e783d+cLX/hCnD59ulaxAAAAAAAAAAAAgDVC8QoAAEBJiopXNm3aFCmlktJcqaOjI3d+9uzZmJmZKSkNwOrV39+fO+/r6ys8Y8+ePbnzgwcPVpQJAKCRFRWvbNy4Md71rnfFD//wD+fuTU9Px1//9V/XMhoAAAAAAAAAAACwBiheqVBKaUNK6eaFrhXO1bZIrpaVzAUAAFxWVLzS1tZWUpI3a29vz51nWVaYH4CIgYGB3PlSilf27t2bOz906FBFmQAAGtWZM2fi8ccfz915z3veEy0tLfH93//90dzcnLv7mc98ppbxAAAAAAAAAAAAgDVA8Url/uuI+NoC1/MrGSoi/vtYONfPrGQoAADgskYuXuno6CjcGR0dLSEJwOo1PT0dQ0NDuTu9vb2F5+zZsyd3/tJLL8Xp06crygYA0IieeOKJmJ6ezt35oR/6oYiI2LJlS3znd35n7u4//MM/1CoaAAAAAAAAAAAAsEYoXqlOWuRaSWdi4UxvX8lQAADAZY1cvNLe3l64MzY2VkISgNXr2LFjceHChdydvr6+wnP27t1buHPo0KEl5wIAaFRPPPFE7ry5uTne9773vfH5e9/73tz9wcHBmJiYqEk2AAAAAAAAAAAAYG1QvFK9bM7VCGaLX+bn2rcycQAAgPlWe/HK6OhoCUkAVq/+/v7Cnd7e3sKd22+/vXDn4MGDS8oEANDInnzyydz5nXfeGVu2bHnj82/5lm/J3Z+ZmYnDhw/XJBsAAAAAAAAAAACwNiheWZ5UvFKaDYu8vrXUFAAAwKIauXilo6OjcGdsbKyEJACr18DAQO58/fr1sXPnzsJzNm3aFLfeemvuzqFDhyqJBgDQcC5cuBD79+/P3bnvvvuu+Hzv3r2F5yqoAwAAAAAAAAAAACqheOXq0b3I6yv3zk0AAOAKjVy8snHjxmhubs7dUbwCkK+/vz93vnv37li3bt2SztqzZ0/uXPEKALDaffWrX43JycncnXe84x1XfL59+/bo7OzMvefAgQPLzgYAAAAAAAAAAACsHYpXrgIppfaI+LGIyBYYt5YcBwAAWMT4+HjufCWLV1JKsXnz5tyd0dHRktIArE5FxSt9fX1LPquoeOXIkSORZQv9URAAwOrwxBNPFO7cd999b3pt3759ufcoXgEAAAAAAAAAAAAqsbQfsXsVSyltjoiOCm7ZlnPWTRGRlh1q6VoiYm9E/KuIeEtcLF5JcWUBy6sl5gEAAHKcPXs2d76SxSsRER0dHXHmzJlF52NjYyWmAVh9BgYGcue9vb1LPuv222/Pnb/yyivx8ssvR2dn55LPBABoJE8++WTu/Kabboq3vvWtb3p979698eijjy5638GDB5edDQAAAAAAAAAAAFg71nzxSkT8s4j4tSruS4cp4iYAACAASURBVAv8eqwWgaowP8tcp8sMAgAALK7Ri1fa29tz56OjoyUlAVh9zpw5EyMjI7k7fX19Sz7vtttuK9w5cuSI4hUAYFXKsiyeeOKJ3J377rtvwdf37duXe9/IyEicPHkytm/fXnU+AAAAAAAAAAAAYO1oWukADSJVeNXqnFpdERHZAlmyiPhqRd8JAACgbhq9eKWjoyN3PjY2VlISgNVnYGCgcKe3t3fJ5y1l9/Dhw0s+DwCgkRw/fjxeeuml3J13vOMdC76+d+/ewvMPHDhQVS4AAAAAAAAAAABg7VG8cllWwVWLM2p9LVYI87kKvgcAAEAdNXrxSnt7e+5c8QrA4vr7+wt3Kile2bhxY3R1deXuHDlyZMnnAQA0kieeeKJw57777lvw9dtvvz2amvL/E+fBgwerygUAAAAAAAAAAACsPYpXrpSWeC33/npcs+YWw7wcEX9e4fcAAACog6mpqZicnMzd2bRpU0lpFlZUvDI6OlpSEoDVZ2BgIHe+ffv26OjoqOjM2267LXeueAUAWK2efPLJ3PnGjRtj3759C85aW1ujp6cn9/4DBw5UnQ0AAAAAAAAAAABYWxSvXD2yuFy6kiJiOiJ+Lsuy11YuEgAAMOvs2bOFO21tbSUkWVxRIcDY2FhJSQBWn/7+/tx5X19fxWfefvvtuXPFKwDAavXEE0/kzu+5555Yt27dovO9e/fm3q94BQAAAAAAAAAAAFgqxStXypZ4Lff+elwRFwtXUkR8IyJ+JMuyv6r+WwEAANTSaiheaW9vz52Pjo6WlARg9SkqXunt7a34zNtuuy13fuLECaVYAMCqMz4+HgcPHszdue+++3Ln+/bty50fPnw4pqamKs4GAAAAAAAAAAAArD2KVy5LFVy1OKPW12sR8YWI+GBE9GRZ9vByvhkAAEBtXQ3FK97cD7Cw6enpeP7553N3+vr6Kj63qHglorjwBQCg0Rw5ciRmZmZyd97xjnfkzvfu3Zs7P3/+fAwNDVWcDQAAAAAAAAAAAFh71q10gAbwx3GxsGSp3hMR/yIisrhYeDL313fVOFuRLCLGI+JMRBzLsiwr+fkAAMASrYbilY6Ojty54hWAhX3961+PCxcu5O50d3dXfO5SileOHDkS99xzT8VnAwCslKUUx911112583379hWeceDAgSX9fgoAAAAAAAAAAABY29Z88UqWZccj4vhS91NKO3PO+mINIgEAAFeh1VC80t7enjufmJiICxcuxPr160tKBLA6DA8PF+7s3r274nO3bNkSnZ2dMTIysujOkSNHKj4XAGAlFRWvXH/99bF169bcna6urmhra8v9d+0DBw7Ej/3Yj1WVEQAAAAAAAAAAAFg7mlY6AAAAwFqwGopXOjo6CnfGxsZKSAKwuhw9ejR3nlKKW265paqzb7/99ty54hUAYLUZGBjInff19RWe0dTUFHv27MndGRwcrCgXAAAAAAAAAAAAsDYpXgEAAChBUfHKNddcE9dee21JaRbW3t5euDM6OlpCEoDVZXh4OHd+0003Vf33+Ntuuy13fvjw4arOBQBYKf39/bnz3t7eJZ1TVFB3/PjxJWcCAAAAAAAAAAAA1i7FK8uTrXQAAABgdRgfH8+dt7W1lZRkcUspXhkbGyshCcDqcvTo0dz5rl27qj67qHjla1/7WkxOTlZ9PgBAmaampmJoaCh3p6+vb0lndXV15c4VrwAAAAAAAAAAAABLoXilemnOBQAAkOvs2bO580YoXuno6CjcUbwC8GbDw8O58927d1d9dlHxyszMTAwODlZ9PgBAmY4dOxYXLlzI3alV8crIyEhMTEwsORsAAAAAAAAAAACwNileqdx/iohbFrhuXclQAABAY1sNxSvt7e2FO6OjoyUkAVg9siwrLF7ZtWtX1ecXFa9ERBw5cqTq8wEAytTf31+4U6vilYiIF154YUlnAQAAAAAAAAAAAGvXupUOsNpkWXYuIs6tdA4AAGB1WQ3FK9dee220tLTE5OTkojtjY2MlJgJofCMjIzE+Pp67s5zilRtvvDE2b94cr7766qI7hw8frvp8AIAyDQwM5M7Xr18fO3fuXNJZSyleOX78ePT29i7pPAAAAAAAAAAAAGBtalrpAAAAAGtBUfHKpk2bSkqSr729PXc+OjpaUhKA1WF4eLhwZ/fu3VWfn1KK2267LXdH8QoAsFr09/fnzru7u6O5uXlJZ+3YsSOamvL/U+fx48eXnA0AAAAAAAAAAABYmxSvAAAAlKCoeKWtra2kJPmKilfGxsZKSgKwOhw9erRwZ9euXct6RlHxynPPPbes8wEAylJUvNLX17fks6655prYsWNH7o7iFQAAAAAAAAAAAKCI4hUAAIASrJbilY6Ojty54hWAKw0PD+fOOzs7l/33+D179uTOBwcH4/z588t6BgBAGWpZvBIR0dXVlTtXvAIAAAAAAAAAAAAUUbwCAABQgtVSvNLe3p47Hx0dLSkJwOpw9OjR3PmuXbuW/Yyi4pXp6ekYGBhY9nMAAOrp9OnTcerUqdyd3t7eis5UvAIAAAAAAAAAAAAs17qVDlC2lNIDefMsy760nPsbTdHXAwAAlONqKV4ZGxsrKQnA6jA8PJw7371797KfUVS8EhFx6NCh2Ldv37KfBQBQL0spiuvr66voTMUrAAAAAAAAAAAAwHKtueKViPhCRGSLzLIo/p7k3d9olvL1AAAAJVgtxSsdHR2589HR0ZKSAKwORcUru3btWvYzbrzxxujo6Mj9e/ChQ4eW/RwAgHrq7+8v3Ont7a3ozKLilRMnTsTU1FSsW+c/lwEAAAAAAAAAAAALa1rpACsoLXIt9/5GuwAAgAawWopX2tvbc+djY2MlJQFofGNjY3Hq1KncnVoUr6SUYs+ePbk7ilcAgEZXVLxy4403xubNmys6s6h4ZXp6Ok6cOFHRmQAAAAAAAAAAAMDaspaLV7J513Lvb7QLAABoIKuleKWjoyN3rngF4LLh4eHCnd27d9fkWYpXAIDVrqh4pbe3t+Izi4pXIiKOHz9e8bkAAAAAAAAAAADA2rFupQOsoDTn42qKSlLxyopRvAIAAA3k/Pnz8frrr+fuNErxSnt7e+58dHS0pCQAje/o0aOFO7t27arJs4qKV772ta/F+Ph4bNq0qSbPAwCotYGBgdx5X19fxWfefPPNhTuKVwAAAAAAAAAAAIA8TSsdAAAA4Go3Pj5euLNailfGxsYiy3Q9AkREDA8P5843b94c27Ztq8mziopXIiIOHz5ck2cBANTahQsXCn/vVE3xyoYNG+L666/P3VG8AgAAAAAAAAAAAORZy8Ur2Zxrufc32gUAADSQs2fPFu40SvFKR0dH7nx6ejrOnTtXUhqAxlb05uFdu3ZFSqkmz7rjjjsKdw4dOlSTZwEA1Nrw8HBMT0/n7lRTvBIR0dXVlTtXvAIAAAAAAAAAAADkWavFK2mBa7n3N9oFAAA0iNVUvNLe3l64MzY2VkISgMZ39OjR3PmuXbtq9qxt27bFW97yltwdxSsAQKPq7+8v3Ont7a3qbMUrAAAAAAAAAAAAwHKsW+kAK+C7Vvh+AABgjVlK8cqmTZtKSFJsqcUrO3bsKCENQGMrKl7ZvXt3TZ+3Z8+e+OY3v7noXPEKANCoBgYGcuetra1x0003VXW24hUAAAAAAAAAAABgOdZc8UqWZV9cyfsBAIC1Z2xsrHCnra2thCTFOjo6CndGR0dLSALQ2MbHx+PEiRO5O/UoXnn00UcXnSteAQAaVX9/f+68t7c3mpqaqjq7qHjlhRdeiCzLIqVU1fkAAAAAAAAAAADA1a26/4MRAACAJTt9+nTuPKUU7e3tJaXJt5QcSymSAbjaHT16tHCnp6enps/cs2dP7vyll14q/GcOAMBKKCpe6evrq/rsouKVycnJGBkZqfp8AAAAAAAAAAAA4OqmeAUAAKDOit4Ev2XLlmhubi4pTb7NmzcX7oyOjpaQBKCxDQ0NFe50d3fX9JlFxSsREc8991xNnwkAsFxZltW1eGXnzp2FO8ePH6/6fAAAAAAAAAAAAODqpngFAACgzk6dOpU737p1a0lJijU3N0dbW1vuztjYWElpABrX4OBg7rytrS22b99e02fecccdhTuHDh2q6TMBAJbr5MmThf8e2dvbW/X5XV1dhTuKVwAAAAAAAAAAAIDFKF4BAACos6LilW3btpWUZGna29tz54pXACKGhoZy5z09PZFSqukzN23aFLfcckvuzrPPPlvTZwIALNfAwEDhTl9fX9Xnd3R0xObNm3N3FK8AAAAAAAAAAAAAi1G8AgAAUGerrXilo6Mjdz46OlpSEoDGNTg4mDvv7u6uy3P37NmTO//bv/3bujwXAKBa/f39hTs9PT3LekZXV1fuXPEKAAAAAAAAAAAAsBjFKwAAAHV2+vTp3HmjFa+0t7fnzsfGxkpKAtC4iopXlvvm4cW8/e1vz50fOnQozp07V5dnAwBUo6h4paurKzZs2LCsZyheAQAAAAAAAAAAAKq1bqUDrEUppfaI6IyIjRHREhHNETEZERMRcSoiXs6yLFu5hAAAQC2dOnUqd77aildGR0dLSgLQmF555ZXCUq3u7u66PPvuu+/OnU9PT8ezzz4b999/f12eDwBQqaLild7e3mU/o6h45dixY8t+BgAAAAAAAAAAAHB1UrxSRymlFBHfFhHfFRHfGhF7ImJXRFxbcOt0SulERDwXEQcj4ssR8XiWZa/WMS4AAFAnRcUrW7duLSnJ0nR0dOTOz5w5U1ISgMY0NDRUuNPT01OXZ991112FO88884ziFQCgYRQVr/T19S37GUXFK8ePH1/2MwAAAAAAAAAAAICrk+KVOkgpfWtEfCAi/puImPsOyrTEI9ZFRFdE3BwR742IX46LZSxfjIj/LyL+Y5Zl47VLDAAA1EuWZYXFK9u2bSspzdIUFcG8/PLLJSUBaExLKV7p7u6uy7O3bt0au3fvjqNHjy66s3///ro8GwCgUhMTE4WlJ2UUr7z66qsxOjpaWDQKAAAAAAAAAAAArD1NKx3gapJSuiel9EhE/G1E/GxEbIuLZSuzV0REVsE19951EfGuiPh/IuLrKaV/l1K6oZyvDAAAqNb4+Hi8/vrruTuNVrzS2dmZOz958mRJSQAa0+DgYO5827Ztcd1119Xt+XfffXfuXPEKANAohoaGIsuy3J0yilciorAABgAAAAAAAAAAAFibFK/UQEqpNaX0f0fEE3GxHGW2LGWhMpWIKwtVFrpmLVbEsjkiPhQRQymlf5NSuraeXx8AAFC9U6dOFe40WvHK9u3bc+cjIyOFb5wDuJoVFa/09PTU9flFxSvHjh2LkZGRumYAAFiK/v7+wp3e3t5lP0fxCgAAAAAAAAAAAFAtxSvLlFLaGRFPRcT/EBe/n3MLVyLyi1UWPXaRe+aXsGyIiF+NiH9IKd277C8GAACouaUUr2zdurWEJEtXVLxy4cKFGB0dLSkNQOMZGhrKnXd3d9f1+UXFKxER+/fvr2sGAIClKCpeaWtrixtuuGHZz+ns7Ixrr83/OQWKVwAAAAAAAAAAAICFKF5ZhpRSd0Q8HhF748rClcVKVrIqr1jgzLnP6omIL6aUPljrrxEAAFiepRSvbNu2rYQkS1dUvBIRMTIyUkISgMaTZVkMDg7m7vT09NQ1w5133hnr1q3L3VG8AgA0goGBgdx5X19fpLSUn1mQr6mpKW6++ebcHcUrAAAAAAAAAAAAwEIUr1QppdQZEY9GxI5LL80tSJkrr0BlKVfeGXNn10TE76eU/pflf3UAAECtnD59Onfe1NQUHR0dJaVZms7OzsKdkydPlpAEoPGcPHkyxsfHc3fqXbzS2toa+/bty91RvAIANIL+/v7ceV9fX82e1dXVlTtXvAIAAAAAAAAAAAAsJP9H47KgdPFH7/2niLgp8gtXYt7slYg4cOkaiohXI2IsIsYjojUi2i5d2yLi9ktXb0RsmHNmXvlKioh/mVI6m2XZby3riwQAAGri1KlTufMtW7ZEc3NzSWmWZvv27YU7ileAtWpwcLBwp7u7u+457r777vjKV76y6Hz//v2RZVlc/GMsAIDyZVkWAwMDuTu9vb01e57iFQAAAAAAAAAAAKAaileq86GIuD8WLl2ZX7jyYkT8ZUT8xyzL/rbSB6WUmiPigYj4oYj4wYi4ORYuYJlbvvIbKaW/y7LssUqfBwAA1FZR8crWrVtLSrJ0GzZsiE2bNsX4+PiiO4pXgLVqKcUru3fvrnuOe+65J/7wD/9w0fmZM2dieHi4lCwAAAt56aWX4ty5c7k7ilcAAAAAAAAAAACAlda00gFWm5TSdRHxbyK/dCVFxDci4mci4tYsy36xmtKViIgsy6azLPt8lmX/NCJuiYifiIiBOc+dnyOLiOaI+OOU0oZqngkAANROUfHKtm3bSkpSme3bt+fOR0ZGSkoC0FiGhoZy5zt27IiNGzfWPcfdd99duPPMM8/UPQcAwGKKft8UEdHT01Oz5xUVr4yMjMTExETNngcAAAAAAAAAAABcHRSvVO6fRkTbpY/nlp1kc3b+94jYnWXZv8+ybLpWD84u+ouIuCMifj4iZv/v0IVKYHZExL+o1bMBAIDqnD59OnfeqMUrnZ2dufOTJ0+WlASgsQwODubOa/nm4Ty9vb3R1taWu/PlL3+5lCwAAAsp+n1TRMTu3btr9ryi4pWIiBdeeKFmzwMAAAAAAAAAAACuDopXKpBSShHxgbiyZGVu6clURPxElmW/nGXZ+XrluFTA8gcRcX9EzP6Y+fmZUkT8fEqptV45AACAYqdOncqdN2rxyvbt23PnileAtWpgYCB33t3dXUqO5ubmuOuuu3J3Hn/88VKyAAAsZGhoKHf+1re+NTZs2FCz5y2leOX48eM1ex4AAAAAAAAAAABwdVC8Uplvj4i3Xvo4zXk9xcWyk1/Isuz/LStMlmVfjYj3RcTE7EvzcnVExI+VlQcAAHizouKVrVu3lpSkMopXAN5samoqjh49mrvT29tbUpqI+++/P3f+3HPPFf5zCACgXoqKV2pdWLdjx45oasr/T5+KVwAAAAAAAAAAAID5FK9U5rvmfT5bdJJFxOeyLPv9sgNlWfZsRPxaXFm4Mtf3lxgHAACYp+gN79u2bSspSWWKildGRkZKSgLQOI4dOxavv/567k6ZxSsPPPBA4c6Xv/zlEpIAALxZUfFKT09PTZ93zTXXxI4dO3J3FK8AAAAAAAAAAAAA8yleqcxdObNfLy3Fm/2fEfGNSx9nc35N8eayGAAAoCRZlsXp06dzdxq1eKWzszN3fvLkyZKSADSOgYGBwp0yi1fuvffeWLduXe7O448/XlIaAIDLZmZm4ujRo7k73d3dNX9uV1dX7lzxCgAAAAAAAAAAADCf4pXK7I4ri01mPZ9l2VMrkOdikCx7PSL+LC4WrcScXyMi2lNK+T/eDwAAqIuzZ8/G66+/nrvTqMUr27dvz52fO3cuzp07V1IagMZQVLxyzTXXxM6dO8sJExEbN26Mb/u2b8vd+dKXvlRSGgCAy1588cU4f/587o7iFQAAAAAAAAAAAKARKF6pzA3zPk9xsYDlC+VHeZNHc2a1/z9XAQCAQqdOnSrc2bp1awlJKldUvBIRMTIyUkISgMZRVLyye/fuWLduXUlpLnrggQdy51/5ylfi7NmzJaUBALhoaGiocKenp6fmz1W8AgAAAAAAAAAAAFRK8UplNi7yev67bspxOGfWUVoKAADgDUspXtm2bVsJSSq3lOKVkydPlpAEoHEUFa/09vaWlOSyouKVmZmZeOqpp0pKAwBw0eDgYO68qakpbr311po/d+fOnbnzEydOxNTUVM2fCwAAAAAAAAAAAKxeildq48xKB4iI0zmzDaWlAAAA3nD6dN5v0y9q1OKVzs7Owh3FK8Ba04jFK/fdd1+klHJ3vvSlL5WUBgDgoqGhodx5V1dXrF+/vubP7erqyp1PT0/HiRMnav5cAAAAAAAAAAAAYPVSvFKZVxd5fWOpKRaW5cwmSksBAAC84dSpU7nzpqam6OjoKClNZdrb2wvfBKd4BVhLXn311fjmN7+Zu7MSxSvXXXdd7N27N3dH8QoAULai4pWenp66PLeoeCUi4vjx43V5NgAAAAAAAAAAALA6KV6pzIsRsdCPEL6h7CALaM+ZjZaWAgAAeENR8cqWLVuiqakx/7UspRTbt2/P3RkZGSkpDcDKGxgYKNxZieKViIgHHnggd75///6YnJwsKQ0AQHHxSnd3d12ee/PNNxfuKF4BAAAAAAAAAAAA5mrMd/g1rucWeb0+P5avMrfmzIZLSwEAALyhqHhl27ZtJSWpTlHxysmTJ0tKArDyGrl45Tu+4zty5+fPn4/9+/eXlAYAWOumpqbi+eefz92pV/FKa2trdHZ25u4MD/vPZgAAAAAAAAAAAMBlilcq88V5n2cRkSLiwZTS+hXIM9fb53yczfn4dJZlL5QdBgAAiDh9+nTuvNGLV4rerKZ4BVhLiopXtm7dGlu3bi0pzZWKilciIj73uc+VkAQAIOLYsWMxNTWVu9PTU7+faXDrrXk/q2BphXoAAAAAAAAAAADA2qF4pTKfjoiZBV7fGBHvKTnLfD887/MUFwtYPr8CWQAAgIg4depU7rzRi1e2b9+eO1e8AqwlRW/Q7e3tLSnJm91www3R3d2du/PZz362pDQAwFo3NDRUuFP0e5fl6Ovry5339/fX7dkAAAAAAAAAAADA6qN4pQJZln0jIj4TF0tN5koR8T+nlOa/XoqUUm9EfGdcLFqZ78/KTQMAAMy62otXRkZGSkoCsPIauXglIuLd73537nz//v0xOjpaUhoAYC0rKl5Zt25ddHV11e35Rb8vGxgYiJmZhX7OAgAAAAAAAAAAALAWKV6p3O/M+TjF5bKTfRHxj8uPExER/0cs/NdyMCI+VXIWAADgkqLila1bt5aUpDpFxSsnT54sKQnAypqZmSl8A/FKF688+OCDufOZmZl47LHHSkoDAKxlg4ODufNbb7011q1bV7fn9/X15c4nJibixRdfrNvzAQAAAAAAAAAAgNVF8UqFsiz7fFwsM5lbupJd+vx3U0pvLzNPSukXI+K9czLEnGz/PMsyP7IPAABWyOnTp3Pn27ZtKylJdTo7O3PnZ86ciQsXLpSUBmDlvPjiizExMZG7s9LFK+9617uiqSn/j/oeeeSRktIAAGtZUWFdT09PXZ9fVLwSETEwMFDXDAAAAAAAAAAAAMDqoXilOj8bEaPzXssiojUiPplS6iojRErpQxHxb+PNBTBZRPxxlmWfKiMHAADwZlmWxalTp3J3Gr14Zfv27YU7IyMjJSQBWFlLeWPuShevdHR0xN13352789nPfrakNADAWjY4OJg77+7uruvzb7311mhubs7d6e/vr2sGAAAAAAAAAAAAYPVQvFKFLMtejIifisuFJ2+MIuKGiHg6pfTOej0/pbQlpfTnEfHvYuG/ho9GxAfr9XwAAKDYq6++GlNTU7k7ilcAVoei4pXm5ubYtWtXSWkW9z3f8z258+effz6Gh4dLSgMArEXnzp2LY8eO5e709PTUNcP69esLf2+meAUAAAAAAAAAAACYpXilSlmWPRwRP7vQKCK2R8TnUkofTSntrtUzU0qdKaV/ExFDEfH+iEhxufwlXbr+c0T8UJZlr9fquQAAQOVOnTpVuLN169YSklRvKcUrJ0+eLCEJwMoqKl655ZZbYv369SWlWdyDDz5YuPPII4+UkAQAWKuWUmhy22231T1HX19f7rzo93cAALUwOTkZL7/8cpw/f36lowAAAAAAAAAAORSvLEOWZf8+Iv5RRMwvOcni4vf2v4uI/pTSF1JKH0op7UspLfl7nlLakFK6L6X0z1JKj0XEiYj41Yi4Lt5cupJFxO9FxA9mWTaxrC8MAABYtpdeeqlwZ9u2bSUkqd6WLVuiqSn/X2EUrwBrwaFDh3Lnvb29JSXJd88990RbW1vujuIVAKCeDh8+XLhz++231z1HUfHKUgpiAACqdfLkyfi5n/u52Lx5c3R2dsYNN9wQv/ALvxBnzpxZ6WgAAAAAAAAAwALWrXSAsqWUput19JyPs0tXunR9x6UrIuL1lNJwRHwjIl6OiImIuBAR6yOiJSI2RMSNEfHW/5+9O4+zse7/OP6+xgxj37fsrRKK6J4iS1GRXSl3I1IhlRalkopkKS3uustWKj/7VrcWCWFGScgaN8lE1pQl24wxc/3+kDtZvt8zM+d8zyyv5+NxHo3zfZ/v9VYxM2eu63NJKn3Gvqc+9s94zpe0W1IxSR943v9e4vu+3zkIvzcAAAAAabR161Zrply5cg6apF+uXLlUsmRJ43AVBq8AyO5839fatWuNGRcXDwciKipKjRs31qxZs86b+eqrr3TixAlFRua4twUBAIADGzZsMK6XKFFCJUuWDHkP22C8nTt36o8//lChQoVC3gUAAOQsy5YtU9u2bbVjx47/Pbd//3698cYbmjJlikaPHq1bb701jA0BAAAAAAAAAAAAAMCZzLcuz568ED3OPIZ09gAWTycHrFwu6QZJd0jqIqnbn/+8U1IrSXUlldXJ/z6nv/bUfqf/Pk59XEbSXac9Yv98AAAAAAiDbdu2GddLlCihfPnyOWqTfqVLlzau//rrr46aAEB47Ny5U/v27TNmatas6aiNXdOmTY3rBw4c0IoVKxy1AQAAOc369euN664G1lWtWtWa2bhxo4MmAAAgJ/nwww91/fXX/23oyul27typFi1a6L777tOJEycctwMAAAAAAAAAAAAAAOeTEwevSH8NMAnm40ynD0Y5V9Y2xOV8xzjXoJdz7QcAAAAgjGyDVypWrOioScbYBq9s377dURMACI+1a9daMzVq1HDQJDA33XSTNbNw4cLQF0FIbN26+9XWDgAAIABJREFUVQsWLNCiRYu0du1a7dixQ75/rrcmAQAIj8wyeOWyyy6zZhi8AgAAgumdd95Rly5dlJSUZM2+9957uvvuu/meHgAAAAAAAAAAAACATCKnDl6RzINP0vMI9DhS2ga5BHoc2yAYAAAAAA7ZBq9UqlTJUZOMKV++vHE9ISHBURMACI81a9YY13PlyqWqVas6amN3ySWXqEKFCsbMggULHLVBsGzYsEHNmjVT5cqVdcMNN6hRo0aqWbOmypcvrzJlyqhfv34BXdgFAEAoJSYm6qeffjJmLr/8ciddihcvrpIlSxoz//3vf510AQAA2d+yZcvUq1evNL1m0qRJ+vDDD0PUCAAAAAAAAAAAAAAApEVOHrwSLsEa6GLaFwAAAECYbd261bhesWJFR00y5sILLzSuM3gFQHa3du1a43rVqlWVJ08eR23sPM9T48aNjZnFixcrOTnZUSNkxNGjR/Xss8/qyiuv1BdffHHOzK+//qpBgwapcePGOnDggOOGAAD8ZdOmTUpNTTVmqlWr5qiNdNlllxnXGbwCAACCwfd99enTRykpKWl+7WOPPabdu3eHoBUAAAAAAAAAAAAAAEiLnDx4xc/GDwAAAABh5Pt+thm8UqVKFeP6b7/9pkOHDjlqAwDurVmzxrheo0YNR00CZxu8cuTIEa1YscJRG6TXjh07VLduXQ0ePDigQTlLlixRo0aNtGfPHgftAAA42/r1660Zl4NXqlatalzfuHGjoyYAACA7mzNnjhYuXJiu1x44cEAPPfRQcAsBAAAAAAAAAAAAAIA0y6mDV7wc8AAAAAAQJgcPHtThw4eNmewyeEWSEhISHDQBAPeSk5O1YcMGY6ZmzZqO2gSuUaNG1kx6LwiCG3/88YcaNWoU0AXsp1u9erWuv/56bd++PUTNAAA4P9vXTYULF1bZsmUdtbEPXtm0aZNSUlIctQEAANlRamqqnn766QztMWPGDM2YMSNIjQAAAADp0KFDGj9+vLp376769eurWLFiypUrlypUqKC+fftq37594a4IAAAAAAAAAJlOZLgLhIH9qkEAAAAAyIBt27ZZM5UqVXLQJOMCHbySGQcPAEBGbdq0ScnJycZMjRo1HLUJXOXKlVWpUiVt3br1vJmFCxdm+MIghM6jjz6qzZs3p+u1P/74ozp06KBFixYpKioqyM0AADg/28CwatWqyfPc3TvANnjl+PHj+vnnn3XRRRc5agQAALKbyZMna/Xq1Rnep1evXmrevLny5s0bhFYAAADIyb777jvdfvvt5zxvZfv27RoyZIhGjRql559/Xg888IBy584dhpYAAAAAAAAAkPnkuMErvu+f/4oTAAAAAAiCQAavVKxY0UGTjCtTpoyio6OVmJh43syWLVscNgIAd9asWWPNZMbBK5LUqFEjffjhh+ddX7x4sZKTkxnMkQnNnDlT77//fob2WLJkiT744APdf//9QWoFAICdbfDK5Zdf7qjJSZdddpk1s2HDBgavAACAdDl+/Liee+65oOy1c+dOTZo0SV27dg3KfgAAAMiZ5s+fr9atW+vIkSPG3L59+/Too49q7NixmjVrVpa5cRAAAAAAAAAAhFJEuAsAAAAAQHazdat53mOePHlUsmRJR20yxvM8ValSxZhJSEhw1AYA3Fq7dq1xvVChQpl2kFbjxo2N60eOHNHy5csdtUGgdu/erW7dugVlryFDhig5OTkoewEAYJOcnKxNmzYZM9WqVXPU5qTKlStb79i7evVqR20AAEB289FHH1mHkhcoUEB79uzRbbfdZt3vrbfeku/7waoHAACAHOY///mPmjdvbh26cro1a9aoXr162rlzZwibAQAAAAAAAEDWwOAVAAAAAAiybdu2GdcrVKigiIis8+0Yg1cA5FRr1qwxrteoUUOe5zlqkzYNGza0ZhYuXBj6IghYamqq7rnnHv3+++9B2S8hIUETJkwIyl4AANhs3rxZJ06cMGZcD16JjIzU5Zdfbsx8//33jtoAAIDsJpDvuXv37q1SpUrprbfeUtGiRY3ZVatWacmSJcGqBwAAgBxk1qxZat++vY4fP57m1+7YsUOtW7fW0aNHQ9AMAAAAAAAAALKOrHOlHwAAAABkEbbBKxUrVnTUJDguvPBC47rtrp4AkFWtXbvWuF6zZk1HTdKucuXKqly5sjHD4JXM5ZVXXtEXX3xhzXmepzFjxigqKsqaHTx4sFJSUoJRDwAAow0bNlgzrgevSFLt2rWN6ytXrnTUBAAAZCf79u2zfg9fsmRJ9e7dW5JUpkwZDRo0yLrv22+/HZR+AAAAyDm2bdum2NjYDP08aPny5brnnnvk+34QmwEAAAAAAABA1sLglTTwPO9Sz/NqGh55wt0RAAAAQPjZBq9UqlTJUZPgqFKlinH9559/5gQcANnOgQMHrH+f16hRw1Gb9GnUqJFxffHixUpOTnZTBkbx8fHq16+fNVewYEH99NNPuu+++7R9+3blzZvXmP/xxx81ZcqUYNUEAOC81q9fb1zPnz+/KlSo4KjNX2rVqmVcT0hI0P79+x21AQAA2cXMmTOt76k8+eSTKliw4P9+fffdd6tIkSLG10ybNk27d+8OSkcAAABkf77v67777tOhQ4cyvNfUqVP10ksvBaEVAAAAAAAAAGRNDF5Jm3hJK8/z+F5SifBVAwAAAJBZ2C7Ur1ixoqMmwWEbvHL06FH9+uuvjtoAgBvr1q2zZjL74JXGjRsb148eParvv//eURucz969e9WxY8eA7kT4zjvv/O/zcqlSpQK6W/ZLL72UobscAgAQCNvglapVqyoiwv2PJWvXrm3NrFy50kETAACQnUyaNMm4HhERodjY2L89lz9/ft1zzz3G1yUnJ2vMmDEZ7gcAAICcYcyYMZo7d27Q9uvfvz/vlQEAAAAAAADIsRi8kjYlJHmGx97wVQMAAACQGSQnJ2vnzp3GTFYbvHLhhRdaM1u2bHHQBADcWbt2rTWT2QevNGrUyJr59ttvQ18E5+X7vrp27aodO3ZYsx06dNBdd931t+e6d++uUqVKGV+3YcMGTZw4MUM9AQCwWbFihXG9WrVqjpr83ZVXXinP84wZBtEBAIC02LVrlxYsWGDMNGrUSGXLlj3r+Z49e1r3HzlypJKTk9PdDwAAADnDzz//rN69ewd1z9TUVD3wwANKTU0N6r4AAAAAAAAAkBUweCVtEiX553ic4p/rRQAAAAByjh07dlhPQslqg1eqVKlizSQkJDhoAgDu2O7mVrFiRRUuXNhRm/SpWLGiKlSoYMwsWbLEURucy4cffqhPP/3UmqtQoYJGjBhx1oXj+fLlC+ik2n79+ikxMTHdPQEAMPn999+1adMmY+aKK65w1ObvChQooMsuu8yYYfAKAABIi6lTp8r3zacH3Xnnned8/uKLL1azZs2Mr925c6fmzp2b7n4AAADI/nzfV48ePXT48GFr9rnnnlNqaqr27dsX0HDkpUuXasyYMcGoCQAAAAAAAABZCoNX0mbXaR97fz5OZ769LAAAAIBsb9u2bdZMpUqVHDQJnkKFCqlYsWLGDINXAGQ3y5cvN67XrFnTUZOMufbaa43r3377raMmONP27dv1yCOPWHORkZGaMmXKeT8X9+zZU8WLFzfusW3bNo0YMSJdPQEAsFm6dKk1849//MNBk3OrVauWcd02cA8AAOB0kydPNq5HRUWpffv2511/6KGHrMcYP358mnsBAAAg51i4cKHmzJljzXXu3FkvvviiPM9T0aJFNXv2bJUuXdr6umeeeUa//vprMKoCAAAAAAAAQJbB4JW02aizh62czv5uNAAAAIBsLZDBK+XLl3fQJLguvPBC4/qWLVscNQGA0EtMTNTatWuNmauvvtpRm4yJiYkxrm/dulW7du0yZhB8vu/r3nvv1R9//GHNDh061DhAp0CBAnr88cet+wwaNEgHDx5MU08AAAKxZMkS43quXLlUt25dR23OVrt2beP6xo0bA7o7MAAAQEJCgnWI7c0332wcZH7LLbdY32//+OOPdejQoXR1BAAAQPbm+7769+9vzZUrV07Dhw//23MVK1bUxx9/rMjISONr9+/frz59+mSkJgAAAAAAAABkOQxeSZtPLOv1nLQAAAAAkGlt3brVuF6qVCnlzZvXUZvgqVKlinE9ISHBURMACL3Vq1frxIkTxkw4Lx5OC9PAjlNsFwwh+N599119+eWX1lzLli0DGqrSq1cv6x0Kf//9dw0bNizgjgAABMr2tUTNmjWVP39+R23OZhu84vu+Vq9e7agNAADIyj766CNrpmPHjsb1iIgIdenSxZg5duxYQMcCAABAzrNw4ULFxcVZc2PGjFGRIkXOej4mJka9e/e2vv7DDz/U999/n66OAAAAAAAAAJAVMXglbaZLOnXLO/8c67c67AIAAAAgE9q2bZtxvWLFio6aBBeDVwDkJMuWLbNm6tSp46BJxtWqVUu5c+c2Zhi84tZvv/0W0F0CS5curffff1+e51mzBQoU0AsvvGDNvfHGGzpw4EBAPQEACERKSoqWLl1qzMTExDhqc261atWyZriIBAAABGLWrFnG9bx586pVq1bWfe666y5rZvz48QH3AgAAQM7g+7769+9vzd1zzz1q1qzZedefe+65gM5d6devX1rqAQAAAAAAAECWxuCVNPB9/zdJwySdebWD/+dzjT3Pu8R5MQAAAACZRk4dvLJt2zYlJyc7agMAobV8+XLjeoUKFVS6dGlHbTImT548ql27tjGzZMkSR20gnTyZNZDhJ6NGjVLx4sUD3ve+++7TxRdfbMwcPXpUM2fODHhPAABsNmzYoEOHDhkz1157raM251a0aFFVrlzZmGHwCgAAsPn999+1ePFiY6ZFixYqUKCAda8LL7xQ1113nTEzf/587dy5M00dAQAAkL0tXLhQcXFxxkx0dLQGDRpkzOTPn19vvvmm9XizZ89WfHx8mjoCAAAAAAAAQFbF4JW0e0XSij8/PjVw5ZRISW84bwQAAAAg07ANXqlUqZKjJsF14YUXGtdTU1P1yy+/OGoDAKFlG7xSp04dR02CIyYmxri+fPlyhmc5snr1ao0ePdqa69Spk1q3bp2mvaOioqwn0krS9OnT07QvAAAmgQxws30t4oJtEN3KlSsdNQEAAFnV7NmzlZKSYsy0adMm4P1iY2ON66mpqZo8eXLA+wEAACD769+/vzXTvXt3lS1b1ppr1aqVWrRoYc317dtXvu8HUg8AAAAAAAAAsjQGr6SR7/tJktpI2n3qKZ0cvnLqn808z+sdpnoAAAAAwsj3fevglYoVKzpqE1xVqlSxZhISEhw0AYDQOnz4sDZs2GDM1K1b11Gb4Lj22muN68eOHdOaNWsctcm5fN9Xr169lJqaasyVLVtW//rXv9J1jNtuu01XX321MTNv3jzt378/XfsDAHAm2+CV4sWL6+KLL3bU5vxsg1d++OEHJSYmOmoDAACyok8++cS4nitXLjVr1izg/Tp06KDIyEhjZvz48QHvBwAAgOxt2bJliouLM2aio6P11FNPBbSf53l6/fXXlStXLmNu8eLFmj17dsA9AQAAAAAAACCrYvBKOvi+v0NSI0k7Tj2lvw9fecXzvIfD0w4AAABAuPz22286fPiwMZNVB69UrFhRnucZM1u2bHHUBgBCZ+XKldbBGHXq1HHUJjhsg1ck6dtvv3XQJGebNm2a9YRYSXr77bdVtGjRdB0jIiJC9913nzGTnJysWbNmpWt/AADOZPsaIiYmxvq9pAu2wSsnTpzQ6tWrHbUBAABZzfHjx60Xm15//fVp+n6+ePHiat68uTGzcuVK/fDDDwHvCQAAgOwrkKH93bt3V9myZQPe85JLLlHXrl2tuWeffdb681MAAAAAAAAAyOoYvJJOvu//KOl6SRv019AV6a/hK8M9z5vueV7xMFUEAAAA4FggJ0BXqlTJQZPgy5Mnj8qXL2/MbNq0yVEbAAid5cuXWzNZbfBK+fLldcEFFxgzS5YscdQmZ9q3b58eeeQRa65JkyZq06ZNho7Vtm1bRUSY3/adNm1aho4BAIAk7d+/Xxs2bDBmAhkA50KtWrWsmfj4eAdNAABAVrRo0SIdOnTImGnVqlWa9+3UqZM1M378+DTvCwAAgOxl165dmjp1qjETHR2tp556Ks17P//888qTJ48xs2rVKn3yySdp3hsAAAAAAAAAshIGr2SA7/tbJcVImqmTw1ZOPU4NX2krabPneUM8zysXtqIAAAAAnFi3bp1x3fM8Va1a1VGb4LvooouM69wdHEB2sGzZMuP6RRddlKa7F2cGnudZL3r+9ttvHbXJmR599FHt3r3bmMmVK5f+9a9/yfO8DB2rdOnSatCggTHz5Zdf6uDBgxk6DgAAS5cutWZiYmIcNLErU6aMKlSoYMwsWrTIURsAAJDVzJo1y5pJz+CVFi1aqFChQsbMhAkTlJqamua9AQAAkH2MGDFCycnJxkzXrl1VtmzZNO9dvnx5Pfjgg9bcwIED5fu+NQcAAAAAAAAAWVVkuAtkNZ7nnTms5qikDn8+Bki65M/nTw1fKSypj6Q+nuf9IClO0nZJv0k6Huq+vu+PC/UxAAAAAJy0du1a4/qFF16o/PnzO2oTfDVr1tTChQvPu75q1Sr5vp/hC8YBIJyWL19uXK9bt66jJsEVExOjGTNmnHf9p59+0p49e1S6dGmHrXKGTz/9VP/3f/9nzT344IOqVq1aUI552223GT9nJycn65NPPlFsbGxQjgcAyJlsg9siIiJ0zTXXOGpj16BBA02YMOG86/Hx8UpJSVGuXLkctgIAAJmd7/vWwSvVqlWzDi4/l+joaN1+++167733zpv55ZdfFB8fr4YNG6Z5fwAAAGR9iYmJGjlypDXXq1evdB/j6aef1ujRo3X48OHzZlasWKHZs2erefPm6T4OAAAAAAAAAGRmDF5JO/PI8JNOXWXon/Hr6pKuCHojMwavAAAAAI6sW7fOuF69enVHTULjqquuMq7v3btXO3fuVLly5Rw1AoDgOnDggH788Udjpk6dOo7aBNe1115rzSxevFjt27d30Cbn2L9/v7p3727NlShRQv379w/acdu1a6eHH37YeOfBadOmMXgFAJAhpiFf0snvgQsWLOimTAAaNmxoHLxy8OBBrVmzRrVq1XLYCgAAZHZr1qzRtm3bjJlWrVqle//Y2Fjj4BVJGj9+PINXAAAAcqhJkyZp7969xkyzZs102WWXpfsYJUuW1GOPPaaBAwcacy+++KKaNWvGzXgAAAAAAAAAZEsR4S6QBXmWx5lZ6eQAFj/A1wfzAQAAAMAR3/etg1dq1KjhqE1oBHLx2apVqxw0AYDQWLFihTVTt25dB02C7+qrr1bu3LmNmfj4eEdtco7nn39eO3futOZeeeUVFS1aNGjHLVu2rOrXr2/MzJkzRwcPHgzaMQEAOcuRI0f0zTffGDMxMTGO2gQmkIuVFy1a5KAJAADISj755BNrpmXLlunev0GDBipfvrwxM23aNCUmJqb7GAAAAMiafN/Xm2++ac098sgjGT7Wo48+qgIFChgzS5cu1bx58zJ8LAAAAAAAAADIjBi8kj6+4XGm0wehmF4X7AcAAAAAh3755Rf98ccfxkz16tUdtQmNatWqKSoqyphh8AqArGzp0qXGdc/zAhpClRlFR0erTp06xszixYsdtckZ9u7dqzFjxlhzt9xyi7p06RL0499+++3G9aSkJE2bNi3oxwUA5Azx8fFKTk42Zho1auSmTIAuueQSlSlTxphh8AoAADjTrFmzjOslS5bUP/7xj3TvHxERobvuusuYOXjwoD777LN0HwMAAABZ07Jly6znYFStWlU33XRTho9VrFgxPfzww9bcwIEDM3wsAAAAAAAAAMiMGLySft55Hul5TbAfAAAAABxbt26dNVOjRg0HTUInd+7cqlatmjHD4BUAWdnXX39tXK9ataoKFizoqE3wXX/99cb1lStX6tChQ47aZH8jR45UUlKSMVOoUCGNHj1anhf8t/TatWtnzYwbNy7oxwUA5AyB3Nn2xhtvdNAkcJ7nqWHDhsZMXFycUlNTHTUCAACZ3c6dO7Vs2TJjpkWLFsqVK1eGjhMbG2vNjB8/PkPHAAAAQNYTyID/Xr16Be3nTI899pjy5ctnzMTHxzO8GAAAAAAAAEC2xOAVAAAAAAgC2+CVqKgoXXLJJY7ahM5VV11lXGfwCoCsKjU1Vd98840xc+211zpqExq2wSupqalasmSJozbZW1JSkt5++21r7vXXX1eFChVC0qFcuXLW/+bx8fHasmVLSI4PAMjebINXrrzySpUqVcpRm8DZBq/s27cvoMGqAAAgZ/j000+tmVatWmX4ONWrV9eVV15pzHz22Wfat29fho8FAACArOHQoUOaNGmSMVO4cGHdfffdQTtmyZIl9cADD1hzL774YtCOCQAAAAAAAACZBYNX0s/PxA8AAAAAjq1du9a4XrVqVUVFRTlqEzq2wSubN2/WoUOHHLUBgODZsGGDDhw4YMzUq1fPUZvQqFevnvWOd/Hx8Y7aZG+TJ0/Wnj17jJn69eura9euIe0RyMm248aNC2kHAED2s2fPHq1evdqYadKkiaM2aWMbvCKJO/YCAID/mTVrlnE9T548atq0aVCOFRsba1xPTk7WtGnTgnIsAAAAZH6TJ0/WkSNHjJm7775b+fPnD+pxn3jiCUVHRxszX331lfWGFgAAAAAAAACQ1TB4JX28LPAAAAAA4JDtjtg1atRw1CS0bINXJGnNmjUOmgBAcH399dfWTFYfvFKkSBHr5yMGr2Sc7/t64403rLk+ffpYB+Fk1O233249OXbcuHFKTU0NaQ8AQPby1VdfWTOZdfDK5ZdfrpIlSxozDF4BAACSdOTIEc2bN8+YufHGG4N2oWvHjh2t7xOMHz8+KMcCAABA5jdmzBhr5v777w/6ccuUKaNu3bpZcwMHDgz6sQEAAAAAAAAgnBi8kka+70dkoUeucP/7AgAAAHKCEydOaMOGDcZM9erVHbUJrSuvvNKaWbVqlYMmABBctsErJUqU0KWXXuqoTejUr1/fuL506VIdP37cUZvsaeHChVq9erUxc8kll+jWW28NeZfChQurbdu2xkxCQoIWL14c8i4AgOzDdgFy7ty5df311ztqkzae56lBgwbGTFxcnHzfd9QIAABkVvPmzVNSUpIx06pVq6Adr1y5crrhhhuMmcWLFyshISFoxwQAAEDmtHr1ai1btsyY+cc//hGyGwD16dNHuXPnNma++OILfffddyE5PgAAAAAAAACEA4NXAAAAACCDNm/ebD0BO7sMXilatKgqVapkzDB4BUBWZBu8ct1111nvOpwV2C6CTkxM1IoVKxy1yZ7efvtta+aRRx5RRISbt2Y7d+5szXzwwQehLwIAyBZ839fcuXONmeuuu0758+d31CjtGjZsaFzfu3evdYgaAADI/mbNmmXNtGjRIqjHjI2NtWYmTJgQ1GMCAAAg8xkzZow1c//994fs+OXKldO9995rzQ0cODBkHQAAAAAAAADANQavAAAAAEAGrVu3zpoJ1Z2GwqFWrVrG9ZUrVzpqAgDBsXv3bv3000/GTL169Ry1CS3b4BVJio+Pd9Ake0pKStLnn39uzBQpUiSgYSjB0qRJE11wwQXGzIcffmgdPgQAgHRy8Ogvv/xizDRp0sRRm/SxDV6RpE8++cRBEwAAkFmlpKRYvx6oU6eOypUrF9TjtmvXTtHR0cbM+PHj5ft+UI8LAACAzOPIkSMaP368MVOgQAHdcccdIe3x1FNPKTIy0pj59NNPOT8EAAAAAAAAQLbB4BUAAAAAyKC1a9ca1wsUKKCKFSs6ahN6V111lXF93bp1Sk5OdtQGADIukIET2WXwSrly5VSlShVjhsEr6ffNN9/o2LFjxkz37t1VoEABR42kXLlyWe+YnZqaqrvuuksHDx501AoAkFV98cUX1kxmH7xSvXp1lSpVyphh8AoAADnbkiVLtHfvXmOmVatWQT9uoUKF1Lp1a2Nm48aNWrFiRdCPDQAAgMxh0qRJ1p/X/POf/wz5z5oqVaoU0I0EXnzxxZD2AAAAAAAAAABXGLwCAAAAABm0bt064/oVV1yhiIjs8+2XbfBKUlKSNm7c6KgNAGScbfBK7ty5dfXVVztqE3r169c3ri9evFgpKSmO2mQvX375pTXTo0cPB03+LpATY7du3aoePXpw12wAgNEHH3xgXC9cuHCm/7opIiJCt956qzGzbNky7dy501EjAACQ2cyYMcOaadmyZUiO3alTJ2tm/PjxITk2AAAAwsv3fb399tvWXLdu3Ry0kZ555hnlypXLmPn444+1evVqJ30AV5KSkjRv3jwNGTJEffv21fTp03XkyJFw1wIAAAAAAECIZZ8r/wAAAAAgTGyDV2rUqOGoiRu2wSuStHz5cgdNACA4bINX6tSpo+joaEdtQu/66683rh84cECrVq1y1CZ7mTt3rnG9atWqqly5spsyp6lWrZoaNmxozU2ePFnTpk1z0AgAkBWtWrVK33//vTHTuHFjRUZGOmqUfoFcKP3ZZ585aAIAADIb3/c1c+ZMY6ZChQq68sorQ3L8m266SSVKlDBmJk6cqOPHj4fk+AAAAAifpUuXWn9GV7t2bWeDjy+66CLFxsZacy+99JKDNkBonfpesGXLlipWrJiaNm2qvn37asiQIbr99ttVpkwZde7cWd988024qwIAAAAAACBEGLwCAAAAABmwb98+bdq0yZipXr26ozZuVKxYUUWKFDFmvvrqK0dtACBjjh49ar2AuF69eo7auNGgQQNrZt68eQ6aZC+///679f+lpk2bOmpztjfeeENRUVHW3PPPPy/f9x00AgBkNe+99541065dOwdNMq5p06bKnTu3MfPJJ5+LpdNmAAAgAElEQVQ4agMAADKT5cuXa9u2bcZM+/bt5XleSI4fFRWlO++805jZu3ev/vOf/4Tk+AAAAAifd955x5p58MEHHTT5S9++fRURYb7cYPr06dYbFgGZWXJysjp27Kj27dvr008/1dGjR8/KHD58WOPGjVO9evXUo0cPHTlyJAxNAQAAAAAAEEoMXskmPM+7zvO8sed41Ap3NwAAACA7W7x4sTVTo0YNB03c8TxPdevWNWbmzZvHRdsAsoTvvvtOJ06cMGauu+46R23cuPTSS1WuXDljJpyDV+Lj49W1a1ddeeWVaty4scaMGZMl7uI8f/586+e+m266yVGbs9WqVUuDBg2y5jZu3GgdIAMAyHkSExM1YcIEY6ZQoUJq3769o0YZU6BAAd14443GzLx583Ts2DFHjQAAQGYxc+ZMaybUX/PExsZaM2PGjAlpBwAAALj122+/acqUKcZMkSJFrEP6gu3SSy9Vx44drbkXX3zRQRsg+FJSUtSpUyfrn7/TjRo1Sm3atFFSUlIImwEAAAAAAMA1Bq9kH/sldZHU+YzHHWHsBAAAAGR7ixYtMq5HRkbqH//4h6M27jRp0sS4vmvXLq1fv95RGwBIvzlz5lgz2W3wiud51r/H4+PjnV9ovHr1ajVv3lwNGjTQ+++/rzVr1mjhwoXq1q2bYmJi9OOPPzrtk1Zz5841rkdGRqphw4aO2pxb7969rReZS9KMGTMctAEAZCUff/yx9u/fb8x07NhR+fLlc9Qo41q2bGlcP3bsmObPn++oDQAAyAx837d+T1ymTJmQv1d0zTXXqGrVqsbM3LlzlZCQENIeAAAAcGfs2LHWGxHcc889YXn/rV+/fvI8z5iZNm0ag/2R5fi+r549e6Zp6Mop8+bNU+fOnZWamhqCZgAAAAAAAAgHBq9kH1tO+9g77VEvPHUAAACAnCEuLs64fvXVVyt//vyO2rhju2BfOnmSAQBkdp9//rlx/dJLL1WpUqUctXHH9vd4UlKSvvnmGyddjh8/rl69eqlWrVqaPXv2OTMrV65U7dq1NXHiRCed0sr3fevglWuvvVYFCxZ01OjcIiIiNG7cOBUtWtSYmzFjhnzfd9QKAJAVvPfee9bMvffe66BJ8LRo0cKamTVrloMmAAAgs1i3bp118Gvbtm0VERHa0608z9P9999vzb377rsh7QEAAAA3UlJSNHLkSGuuR48eDtqcrWrVqrrjDvt9QPv27eugDRA8ffv21ejRo9P9+ilTpuiRRx7h56oAAAAAAADZBINXso/o0z72/3xI0mVh6AIAAADkCIcOHbLesadBgwaO2rh11VVXqXjx4sYMg1cAZHbbt2/XmjVrjJmbb77ZURu3brzxRmvG1d/jvXr10ltvvWU9Ie3w4cO66667NGzYMCe90mLz5s3aunWrMdO0aVNHbcwuuOAC68mxmzZt0vr16x01AgBkdj///LP164IaNWqoTp06jhoFR4UKFXTVVVcZM5988olSUlIcNQIAAOE2Y8YMa6Z9+/YOmkh33323cufObcy8//77Sk5OdtIHAAAAoTNnzhwlJCQYM02bNtWll17qqNHZ+vXrJ8/zjJk5c+Zo0aJFjhoBGfPRRx9p6NChGd7n3//+t0aMGBGERgAAAAAAAAg3Bq9kH73O83whpy0AAACAHOSbb75RamqqMZNdB69ERERYL9pfuHAhJ30DyNS++OILa6Z58+YOmrhXtmxZXXHFFcaMi8Er8+fP16hRo9L0mj59+mj27NkhapQ+c+fOtWYyy+AVSWrXrp01E8jFZgCAnCGQz9X33nuv9cKLzKhly5bG9d27d+vLL7901AYAAISb7Xvh4sWLq2HDhk66lChRQm3btjVmdu3apc8++8xJHwAAAITOO++8Y8307NnTQZPzu+KKK9ShQwdr7plnnrHebAEIt71796p79+5B2+/JJ5+0Dk8CAAAAAABA5sfglSDxPC+/53mtPc8b7HneFM/zvvA87ysHjzjP83ZI6i/Jl3TmWa1Z7yxXAAAAIIuIi4szrnuep3r16jlq416TJk2M64cPH9bSpUsdtQGAtPv888+N63nz5nV2MU042P4eX7Fihfbt2xey4ycmJqpHjx7peu1jjz2WaYZ7paSk6L333jNmChcurDp16jhqZNeoUSMVLVrUmGHwCgBAOvn5esyYMcZM7ty5FRsb66hRcLVq1cqaGTt2rIMmAAAg3NasWaN169YZM61bt1ZkZKSjRlK3bt2smZEjRzpoAgAAgFBJSEiw/syyfPnyatGihaNG5zdw4EDlypXLmFmyZIlmzZrlqBGQPg899JD27t0btP2OHj2qbt26MXQIAAAAAAAgi2PwSgZ5nlfY87w3JO2UNFPSU5Juk9RUUkMHj3qSyurkgJVzDVkJ3ruCAAAAAP5m0aJFxvWaNWtaL2rOypo2bWrNzJs3z0ETAEi748ePa+7cucZM48aNlTdvXkeN3LMNXvF9XwsWLAjZ8QcPHqzNmzen67UbN260DjtxZcSIEfr++++NmRtuuMHphVk2UVFRat26tTGzZs2adP/3AQBkH1OnTtXvv/9uzLRp00bFixd31Ci4ateurSpVqhgz//nPf/Tbb785agQAAMLlgw8+sGbat28f+iKnadSokS666CJjZs6cOdaBMQAAAMi8Ro0aZR3W0L1790zxc6ZLLrlE9957rzX35JNPKikpyUEjIO2mTZumqVOnBpT96KOP9Pnnnwf052/evHl6//33M1oPAAAAAAAAYcTglQzwPC9G0npJvSQV1F/DT1w//D8ff6v353Nrg/37BgAAACAdO3ZM3333nTHTsGFDR23Co3LlytaTvhm8AiCzWrx4sQ4fPmzMNG/e3FGb8GjYsKH1rnSh+nt8w4YNGjp0aIb2eOGFF3To0KEgNUqf3bt369lnn7XmAhlW5logF4vNmDHDQRMAQGb29ttvWzM9evRw0CQ0IiIi1KVLF2MmOTlZEyZMcFMIAACERXJyssaPH2/MFC5cWDfeeKOjRidFRETo/vvvt+Zef/11B20AAAAQbImJidYbDURGRuq+++5z1Mju+eefV3R0tDHz448/avjw4Y4aAYHbu3evevbsac1FR0dr0aJFatOmjZo1a6Zvv/1WBQoUsL7u8ccf186dO4NRFQAAAAAAAGHA4JV08jzvOknzJJXV34efhOOhPzucC2eCAgAAACGwdOlSJScnGzMNGjRw1CZ8mjRpYlz/9ttv9ccffzhqAwCB+/zzz62ZZs2aOWgSPgULFlRMTIwx8/nnn1vvspceDz/8sPXzqM2vv/6qV199NUiN0qd3797Wz3PR0dG6/fbbHTUKXNOmTVWwYEFjZty4cUpNTXXUCACQ2Sxbtsw6cLRatWpq1KiRm0Ih0rlzZ3ne+X7MdtLYsWND8jURAADIHGbPnq29e/caM3fccYfy5MnjqNFfunTpoqioKGNm/Pjx2rVrl6NGAAAACJbp06frt99+M2bat2+vMmXKOGpkV65cOT388MPW3MCBA7Vjxw4HjYDA9e7d2/pnTpJGjRr1t3O+rr76ak2dOtX6uoMHD6p3794Z6ggAAAAAAIDwYfBKOnieV1LSDEn5dPbwk3A9dEYXSYrzfd98Sx4AAAAA6RIXF2fNXH/99Q6ahFfTpk2N6ykpKZo9e7ajNgAQONvglapVq+rCCy901CZ8bAO0tm3bpiVLlgT1mPHx8Zo/f35Q9nr11VfDdmFRXFycJk6caM317t1bJUqUcNAobfLkyaMWLVoYM+vXr9eMGTMcNQIAZDZvv/22NfPggw9ah5ZkdpUqVbJ+TbRmzRqtXLnSUSMAAODaBx98YM106dIl5D3OpXTp0vrnP/9pzCQnJ+utt95y1AgAAADBkJqaqpdfftma69mzp4M2afPUU0+pUKFCxsyRI0f01FNPOWoE2M2fP1//93//Z821atVKnTp1Ouv5Zs2a6d5777W+fvLkyVq+fHm6OgIAAAAAACC8GLySPoMlldbZA1dO8c/zOJ/z5QN9vXR2lzmS2gb0uwEAAACQZgsWLDCuV61aVaVKlXLUJnwaN25svchu0qRJjtoAQGC2bNmiDRs2GDPNmzd31Ca8bAO0pJMnhwXT4MGDrZmrrrpKhw8fVqVKlYy5o0ePhu3Coueff96aqVKlip599lkHbdKnXbt21syAAQOUmprqoA0AIDPZs2eP9WuAggULnvME9Kyoa9eu1sy7777roAkAAHBt7969+uSTT4yZyy67TDExMY4anS2QO6aPHDlShw8fdtAGAAAAwTBjxgytW7fOmLniiisy5Q1/ihcvrhdeeMGamzBhghYvXuygEWB27Ngx9ejRw5orVqyYRo0add7zoF599VVdcMEF1n369Okj37dd+gEAAAAAAIDMhsEraeR5XhVJnfX3QSen+Dp7AMrpj/MNUDlX9szHmfufeUxP0lFJn0m6zff9Zr7vH0jXbxIAAACA0d69exUXF2fMNGjQwFGb8CpWrJiuueYaY2b27Nk6cIBvTwBkHtOmTbNmcsrglZiYGOvJYVOnTlVKSkpQjrdixQp98cUXxozneRo9erTy58+vQYMGWfccO3askpOTg9IvUHFxcVq0aJE199Zbbylv3rwOGqVP8+bNVbRoUWPmhx9+0PTp0x01AgBkFoMHD1ZSUpIxc/fdd6tgwYKOGoVWmzZtVKRIEWPmgw8+0O7dux01AgAArkyaNEknTpwwZrp06WIdQB5KNWrU0M0332zM7N+/X2PHjnXUCAAAABmRkpKi/v37W3M9e/YM69ehJg8//LAuv/zygHLB+jkjkF6DBw/W5s2brbl///vfKlOmzHnXixQpohEjRlj3WbBggfVn4gAAAAAAAMh8GLySdn0lRf758ZlDV049t13SKEnPSXpC0suSlpwn70taLenDczzGS5olaZWkZJ09wMU/bc/ekor4vt/S9/2ZQfh9AgAAADiPGTNmKDU11ZjJKYNXJKlDhw7G9ePHj2vmTL5NAZB5TJkyxbieP39+1a9f31Gb8MqVK5f17/E9e/Zo4cKFQTne4MGDrZnu3burbt26kqSOHTuqdu3axvyePXs0a9asoPQL1MCBA62Ztm3b6tZbb3XQJv3y5cunxx57zJobMGCA9WsfAED2sW3bNo0cOdKa69mzp4M2bkRHR+uf//ynMXPs2DG98sorjhoBAAAXfN/Xu+++a8xERESoU6dOjhqdX+/eva2ZYcOGWYfnAQAAIPymTZum9evXGzNFihRRbGyso0ZpFxUVpTfffNOaW7VqlUaPHu2gEXBuS5cu1csvv2zNtWzZUnfeeac116pVK912223WXJ8+fRg6BAAAAAAAkMUweCUNPM+LknSb/hqaIv19AMofku72fb+S7/sP+L4/yPf9133ff8b3/XqSWkk6rr8PXfEk5ZN0r+/795zxuNv3/Ta+79eWVERSB0mLdfYAF0/SUEltQvV7BwAAAPCXqVOnGtdz5cqlW265xVGb8Lvjjjusd1maNGmSozYAYLZp0yatXLnSmLn11luVJ08eR43Cr2PHjtbM5MmTM3yc9evXWwdxRUVFqW/fvv/7dUREhIYMGWLde9SoURnuF4gjR47otdde07x584y5PHnyaPjw4U46ZVSvXr1UtGhRY2b9+vWaPn26o0YAgHAbOHCgjh8/bszccMMNqlatmqNGbnTt2tWaGTFihHbt2uWgDQAAcGHu3Llau3atMdO0aVOVK1fOUaPza9KkiWrWrGnMbN++Xe+//76jRgAAAEiPlJQUDRgwwJp7/PHHVahQIQeN0q9JkyZq166dNdevXz/9/vvvDhoBf7dv3z516NBBycnJxlz+/Pn173//23ru0ylDhw5VVFSUMbNu3TqNGzcu4K4AAAAAAAAIPwavpM0Nkgr/+bGnvwaoeJISJTXzfX/8+V7s+/6nkgbr74NTJOliSS1NB/Z9P9H3/em+7zeQ9E+dHPLyv2VJUZLGe553XYC/FwAAAADpsHv3bi1atMiYadKkiYoXL+6oUfiVK1dODRo0MGa++uor7d6921EjADi/KVOmWDN33HGHgyaZR926dVWlShVjZsaMGdYLsG2GDh1qzdx9992qUKHC355r2rSpLr30UuPr5s6dqy1btmSon8mxY8f04IMPqlSpUnriiSes+W7duqlixYoh6xNMhQsX1uOPP27NjRgxwkEbAEC4/fjjjwFdrPvUU085aONW7dq1Va9ePWMmMTExoLujAgCArGHYsGHWTJcuXUJfJACe56l3797W3JAhQzL8Hg4AAABCZ+LEifrvf/9rzBQtWlSPPPKIo0YZ89prryk6OtqY2bdvn5577jlHjYCTUlNT1blzZ23bts2aHThwYJp+tnvRRRepR48e1tyzzz6rQ4cOBbwvAAAAAAAAwovBK2nT6hzPnRrAMtT3/W8D2GPseZ6331r4T77vT5bUUNLp4799SXkkTfM8r1igewEAAABIm+nTpys1NdWYyWkX7EtSx47mb2lSU1M1ffp0R20A4Pxsg1cKFCigZs2aOWqTOXiepzvvvNOY2b9/v7788st0H2PLli2aOHGiMRMREXHOi7g9z1O3bt2sxxgzZky6+5n4vq82bdronXfe0dGjR6353Llzq0+fPiHpEiq9evVS0aJFjZn4+Hj98ccfxgwAIOt74YUXlJKSYsw0aNBATZs2ddTIHc/z1L9/f2tu5MiR2rlzZ+gLAQCAkPr+++81b948Y6ZIkSJq3bq1o0Z2d955p/ViwG3btunDDz901AgAAABpceTIET3zzDPWXO/evVWoUCEHjTKucuXKevrpp625UaNG6fvvv3fQCFndwYMHFR8fr3feeUePPfaYHnvsMb322muKi4vT4cOHA9rD933169dPn376qTVbu3ZtPfzww2nu+dxzz6lgwYLGzK5duzRkyJA07w0AAAAAAEIjNTVVa9as0YgRI/Tkk0/q5Zdf1tKlS63XiCHnYPBK2tQ+7WP/tI+PSHojkA18398h6dcz9vEk3eJ5nhdoEd/310hqI+nMs1/LSHon0H0AAAAApM3UqVON61FRUWrTpo2jNpnHbbfdpsjISGNm0qRJjtoAwLn98MMP+uGHH4yZ1q1bK2/evI4aZR62AVqS9N5776V7/2HDhlkv4u7QoYMuueSSc6517txZuXPnNr5+7NixIbmj80cffZSmoTNdu3ZV+fLlg94jlAoVKmS9a3ZKSooWLFjgqBEAIBwWLFgQ0PdtgwYNUhp+pJWl3HjjjapXr54xk5SUpEGDBjlqBAAAQmXYsGHWTM+ePTPV+0S5c+cO6ELdwYMHKzk52UEjAAAApMWwYcO0Y8cOY6ZYsWLpGgIRTn369FGlSpWMmdTUVN177718nYpz8n1fs2fPVtOmTVWsWDE1aNBADz74oIYPH67hw4friSeeUMOGDVW4cGFVr15dXbt21YgRI/TTTz+dtVdiYqLuuuuugAaeREREaNSoUdbznc6lZMmS57ypyJlef/11bdmyJc37AwAAAACA4Fm1apViY2NVokQJXXnllerZs6deffVVPf3004qJidEFF1yg+++/33qdAbI/Bq+kTTX9feCK9+evv/R9/1Aa9kn487WnKyjpqrSU8X3/G0lDTtvr1BCX2z3Pa5CWvQAAAADY7dixQ4sXLzZmbrrpJhUtWtRRo8yjePHiuvnmm42Zb775RqtXr3bUCADONmXKFGvmjjvucNAk86levbqqVatmzHz88cdat25dmvfeuXOnxo4da82ZLhwqUaKE2rVrZ3z9r7/+qlmzZqW5n81bb70VcDYyMjKgu/plRj169LBeRJ+WATQAgKwlMTFR3bt3t+aaNWum+vXrO2gUHp7nacCAAdbc6NGjtWnTJgeNAABAKCQkJFiHrOfOnTtTXvB6zz33WAe+/vzzz/rwww8dNQIAAEAgfvnlF73yyivW3BNPPKFChQo5aBQ8efPm1euvv27NrVq1Sq+99pqDRshKPv74Y9WqVUvNmzfXvHnzjHeYTk1N1Q8//KD3339fPXv21MUXX6xrrrlGAwYM0HvvvafHH39cFSpUCPjGUAMGDFCdOnXS3f2xxx7TBRdcYMwkJSXpySefTPcxAAAAAABAxnz00UeKiYnRhAkTtH///nNm9uzZo3fffVc1atTQv//9b8cNkZkweCVAnudV0MnhKNLZQ1PSesXBz+d5vm4a95GkoZJ2nfGcJ+nVdOwFAAAAwGDatGnyfd+Y6dChg6M2mU/Hjh2tmUDuKAMAoeD7viZPnmzMFC5cWDfddJOjRpmL53m68847rblBgwalee/XX39dx48fN2ZatmypmjVrGjOBXAweyICXtNi4caMWLlwYcL5z587WO/plVsWLF1fduua3Jxm8AgDZ16BBg/Tjjz9acy+99JKDNuF1ww036PrrrzdmTpw4YRwaBwCuJCUlaf/+/caLkgCc7eWXX7b+uencubPKlCnjqFHg8uTJE9DQ1/79++vo0aMOGgEAACAQTz/9tI4dO2bMlCpVSg899JCjRsHVtm1bNWnSxJrr378/A40hSUpOTtY999yjtm3bZugmTsuWLVP//v1133336Y033tBvv/0W0Otuvvlm9e3bN93HlaR8+fIFdB7UzJkztWDBggwdCwAAAAAApF18fLzuvPNOJSUlBZT3fV+9evXS/PnzQ9wMmRWDVwJX1rC2IY17/Xye5823FT4H3/ePSXpLfw2DOXUV6NWe5zVK634AMq99+/YpLi5O8+bN09atW8NdBwCAHCc1NVWjRo0yZnLnzq3WrVs7apT5tG7dWnnz5jVmpk6dykk0AMLis88+s15M3K5dO+XJk8dRo8wnNjZWERHmtwunTJmijRs3Brzn77//rpEjR1pzgZzU1rBhQ1166aXGzJw5c7Rjx46A+9mMHj064GyxYsX03HPPBe3Y4WAbPLR582Zt2bLFURsAgCvr1q3T0KFDrbn27durdu3aDhqFl+d5GjBggDU3c+ZMffPNNw4aAcBJJ06c0KeffqpOnTrp8ssvV5EiRRQdHa1ixYopOjpa9evX13PPPadFixYxiAUwWLVqlcaMGWPMeJ6n3r17O2qUdvfee6/KljWdxiTt2LFDb731lqNGAAAAMImLi9PEiROtucGDB6tgwYLWXGbkeZ7efPNNRUZGGnNJSUm6//77+b41h0tKSlKHDh30wQcfhOX45cqV0/jx460/Gw9EbGysrrnmGmvuySef5P97AAAAAAAc2rhxo1q3bm29eeiZfN/XAw88oMTExBA1Q2bG4JXAmd7J/imNeyWc5/nL0rjPKaMlJZ/j+aw59hzA/8TFxSk2NlaVK1dW8eLF1bBhQzVt2lRVqlRRhw4duEMVAAAOzZkzR//973+NmVtuuUWFCxd21CjzKVCggO68805jxvd9vfLKK44aAcBJvu9r8ODB1twdd9zhoE3mVaVKFeu/g0D/XZ4yfPhwHTlyxJi54YYbFBMTY93L8zzdf//9xkxqaqrGjRsXcD+TxMTEgE/2i46O1vTp01WpUqWgHDtcbINXJGnu3LkOmgAAXDl69Kg6deqkEydOGHP58uXTsGHDHLUKv0aNGunGG2+05p544gn5vm/NAUBGHDlyRAMGDFDlypXVsmVLjR8/Xv/973918ODB/2WSk5P19ddf66WXXlKjRo1Uo0YNrVmzJoytgczJ93099NBD1ovdWrdurcsuS+8pPKEXHR2tp556ypobMmSI9u3b56ARAAAAzufo0aPq2rWrNXfVVVepS5cuoS8UQpdffnlAX6fGxcXptddec9AImdHRo0fVpk0bffzxx2E5fmRkpKZMmaISJUoEZb+IiAj961//suZWrFih6dOnB+WYAAAAAADA7Ndff1WzZs20f//+dL3+xx9/zFHnyuEvDF4JnGnwyqE07vXzGb/2JXmSqqRxn5Mv9v19khb+ucfp+93qeV6+9OwJIPwGDx6shg0basKECdq6devf1nzf17Rp09SyZUulpKSEqSEAADnLG2+8Yc3k9Av2JalPnz7yPM+YGTdunH755RdHjQDg5Ml7S5YsMWZKlCihG264wVGjzKtv377WzIQJE7Rx40ZrLiEhQa+++qo19+yzzwbUTZI6depkvVPe2LFjg3IB9IwZMwK6OOnll1/W9u3b1bhx4wwfM9xiYmJUoEABY+bLL7901AYAEGqn7s6xatUqa3bAgAGqUiVdP8bKkjzPC2ho6JIlSzRhwgQHjQDkVCtWrFCNGjXUv39/7dixI+DXrV+/XvXr19fChQtDVw7IgiZMmKCvv/7amuvTp4+DNhnTrVs3lStXzpg5ePCghg4d6qgRAAAAzqVfv3766Sf7/T2HDx+uXLlyOWgUWv369VPVqlWtub59++q7775z0AiZybFjx9SyZUt98cUXYTl+7ty5NXHiRNWrVy+o+8bExCg2Ntaa69u3b5rvsg0AAAAAANKuV69eSkhIyNAegwYNCuh9PWQvDF4JXH7Dmvm2vWf7+TzPV0zjPqebfY7ncktqkoE9AYTJ9OnTA7rw7Kuvvgro5G8AAJAx69at09y5c42ZkiVLqm3bto4aZV5Vq1ZV+/btjZnk5GS+hgHg1ODBg62ZHj16KCoqykGbzK169epq166dMZOSkqK77rpLSUlJ5834vq+HH35YiYmJxr1iYmLSNLCkdOnSatGihTGzefNmLV68OOA9z2fUqFHWzOLFi9WnTx8VL148w8fLDKKioqwDiObPn68TJ044agQACKURI0Zo3Lhx1txVV12lRx991EGjzKV27doBnSz/0EMPadu2bQ4aAchpVqxYoSZNmqT7ZKBDhw7plltu0X/+858gNwOypj/++ENPPvmkNdekSRNde+21DhplTN68eTVgwABr7s0339TPP/8c+kIAAAA4y9dff63hw4dbc+3bt1fDhg0dNAq96Ohovfvuu9Yb9pw4cUIdOxj59XkAACAASURBVHbUH3/84agZwi0xMVFt2rTRV199FZbjlyxZUl999ZVuv/32kOw/dOhQ5ctnvl/uTz/9pDFjxoTk+AAAAAAA4KS1a9dqypQpGd4nKSlJDz30UFBuBoqsg8ErgTtsWDMNZTmXrZLO9Sctj+d5ZdO41ynnux1h/XTuByBM9u3bpwcffDDg/PPPP6+VK1eGsBEAAAjkRJgHHnhAefPmddAm8+vbt681884772jZsmUO2gDI6ZYvX64vv/zSmMmXL58eeeQRR40yv379+lkzK1asMN79edasWfrss8+s+/Tt29d64uWZunbtas2MHTs2TXueacOGDYqPjzdmrrjiCl133XUZOk5mdNNNNxnXDx48yOdwAMgG4uLiAhqmEhERoTFjxigyMtJBq8znpZdeUp48eYyZgwcPqkuXLkpNTXXUCkBO8P3336tp06Y6cOBAhvZJSkpSu3btNHHixCA1A7Km1NRUdenSRbt37zbmIiMj9a9//ctRq4zr3LmzLr/8cmMmKSlJPXv25IRAAAAAx/bu3avOnTtbvw7LkyePhg0b5qiVG/Xq1VPPnj2tuS1btuj+/2fvzuNi2v8/gL8m7XvSJtoTRVJSkltcayQu2a9rJ/sesmVfrl2491ouubIvuShbSbYia7KllERpT8tUc35/3G/9bM2cmWam7f18POZRmvfnfd6i6cw5n8/7M24cXVerB7hcLgYMGCDwvv23tLW1oampWeXj29jYICoqCh06dKhyrsoYGhpi1qxZAuP8/f2Rl5cnsToIIYQQQgghVZOZmYkrV67gyJEjOHfuHKKiopCcnEz3WQipRfbu3Su2XCEhIQLnk5O6hRqvsMdvRpNQW9oyDFMMoLLZHCbC5PrCi0q+biNiPkJINZk1axbS0tJYx5eWlmL48OECdxEnhBBCiGjS09Nx6NAhvjHy8vKsJo3UF23atEHPnj35xvB4PIwZMwZcLldKVRFC6qtVq1YJjJkwYQIaNWokhWpqhzZt2qB3794C47Zt24a///77u69//PgR48ePFzjezs6O1XG+1bNnT+jp6fGNOX78eJUmrO3fv19gzIQJE4RuGlMbCGq8AgChoaFSqIQQQoikPHz4EJ6enigpKREYO336dLRt21YKVdVMxsbGmDZtmsC4sLAwbN68WQoVEULqgydPnqBLly7IysoSS77yhhMRERFiyUdIbbRy5UqcPn1aYNy0adNgbW0thYrEQ1ZWFmvWrBEYd/HiRRw5ckQKFRFCCCGEEADIzc1Fz549ER8fLzB25cqVMDU1lUJV0rVmzRoYGxsLjDt27Bhmz55NC9jqMB6Ph19//ZXVph3lFixYgNTUVHz69AlZWVnIyMhAaGgoVq5ciT59+kBFhd2eudra2li2bBmio6NhYmIi4t+Avblz50Jbm/+ykvT0dFYboRBCCCGEEEKk5969e5g0aRKsra2hra2Nrl27YsiQIejTpw+cnJxgZGQEAwMDTJ06FQ8fPqzucgkhfBQXFwtc/wUA7u7uKC4uhoyM4DYbBw4cEEdppJbg0IVKdjgcji2AhwAYAJxvProxDBMpZL6bANr/bzy+yDWOYRiht+TlcDhKAD5/ka88ZzzDMJbC5qspOBxOLIDvZrVYW1sjNja2GioiRLJCQ0PRo0cPkcbOnDkTmzZtEnNFhBBCCPHx8cHu3bv5xowcOZLVAu36JDIyEh07dhQYt2zZMixdulQKFRFC6qNbt24J3LVKTk4OCQkJMDQ0lFJVtUN0dDTatWvHKtbf3x9+fn5o0KABEhMT0aNHD7x4UVmP4P8XERHB6nfFj8ybN0/g7n8BAQEiNUYrLS1F06ZN+e6CraSkhPfv34tlh7WahmEYmJmZITExsdKYJk2aID4+HvLy8tIrjBBCiFi8evUKrq6urJp/Ozg4IDIyEoqKilKorObKyspCs2bN8OnTJ75x8vLyiI6Ohq2trZQqI4TURSkpKXByckJKSorYczdq1EhqC40IqUnOnj2Lvn37CozT09PDy5cvoa6uLoWqxIdhGLi6uuLWrVt843R0dBAXFydwESAhhBBCCKmaoqIieHh4ICwsTGCsk5MTbt68iQYNGkihMum7desWfvrpJ5SVlQmMXbVqFRYuXCiFqoi0LV++nPW8ID09PVy6dEngNdbPnz/j3LlzOHbsGKKiopCenl6x8ZOmpiacnZ0xatQoeHl5QUFBocp/B2Fs3boVM2bM4BvD4XAQEREBV1dXKVVFCCGEEEII+ZHExET4+vri2LFjQo1zcHDAwoUL0a9fvzq5eR8htdmJEyfg7e3NN6Zz584ICQmBnJwcq7UGJiYmSEhIEGeZrNnY2ODZs2c/euoZwzA20q6nPhDcioeUewWg/Mrvt91q3EXIl1jJ10X9j15ayde1RMxHCJGyz58/Y8KECSKP37p1Kx4/fizGigghhBASGRkpsOkKAIE3zOsjV1dXuLm5CYxbtmwZzp49K4WKCCH1DcMwmDt3rsC43377jZqu/ICjoyN8fHxYxS5duhSysrLQ1taGqakpq6YrI0eOFLnpCgCMGjVKYMyWLVvA4/GEzn3p0iW+TVcAYNCgQXWy6Qrw30S/bt268Y159+4dDh48KKWKCCGEiMvr16/RtWtXVk1XtLW1cfLkyXrfdAUAtLS0WF0b4HK5GD58OIqKiqRQFSGkLsrNzUWvXr0k0nQFAD59+oQ+ffogLy9PIvkJqYmioqIwbNgwVrEbNmyodU1XgP/ex69bt05gXHp6OmbPni2FigghhBBC6q/s7Gz07t2bVdMVBQUF7N+/v842XQEAFxcX+Pv7s4r18/PD9u3bJVwRkbYzZ86wbrrSpEkTREREsGpsraKigsGDB+PUqVN49+4diouLUVRUhOzsbGRmZuLixYsYOHCg1JuuAMDEiRMFNr1lGAajR49GQUGBdIoihBBCCCGEfKWoqAhLlixB8+bNhW66AgD3799H//798dNPPyE6OloCFRJCRLV3716BMatXr4acnByA/65fjRkzhm98YmJitTVeIdJHjVdYYhimEMDzSp7uLkLKyn7KXETIBQCNKvm6qoj5CCFStm3bNrx9+1bk8TweDzNnzgTDfNsbihBCCCGiKC4uxvjx4wXGde7cGa1bt5ZCRbXPtm3bICsrKzDul19+wY4dO6RQESGkPjl9+rTAnX5lZGQwb948KVVU+2zcuJHVxLZymZmZrOK0tLSwfv16UcsCALRo0QLt27fnG/Pq1StcuHBB6Nz79+8XGDN69Gih89YmHh4eAmPWrl2L0tLKekETQgipaWJiYtChQwdW16BlZGQQFBQEY2NjKVRWO/Tv3x+//fabwLgnT55g0aJFUqiIEFLXlJSUwNvbG48ePWIVr6ysjNmzZyMwMBA7duyAkZERq3FPnjzBqFGj6H4iqReePn2KHj164PPnzwJj3dzcMHz4cClUJRmurq4YMWKEwLgDBw4gMDBQChURQgghhNQ/b9++haurK65evcoq3t/fHy1atJBwVdVv/vz5cHd3ZxU7bdo0rF69mt6z1hFPnz7Fr7/+yirW0NAQ169fR7NmzUQ+noKCAjQ0NKp9t3kFBQWsXLlSYNyrV6+wePFiKVRECCGEEEII+VJUVBQcHBywYsUKFBcXVylXZGQk2rVrh9GjRyMjI0NMFRJCRJWcnIzQ0FC+MdbW1mjXrt1XXxs7dqzA3NeuXatSbaT2oMYrwrkPoPxqHAcA87+PLhwO5ychc8V98+fyXPYcDkdLhNrsK/k6V4RchBApy8nJwYYNG6qc59q1azh79qwYKiKEEEKkKyMjA0FBQVi0aBFmzJiByZMnw8fHB0uWLMHhw4cRExNT5Qtbwlq3bh3i4r49bf/erFmzpFBN7WRraws/Pz+BcTweD1OnToW7uzvOnz8v9X9rQsStpKQE79+/R2ZmJk0KqyYlJSWYP3++wLihQ4fC0tJSChXVTkpKSjh27BhUVFTEmnfNmjXQ0dGpch42DdI2bdokVM6MjAwEBwfzjTE3N4erq6tQeWsbDw8PNG3alG9MfHy8SLs9EEIIkb6QkBC4ubkhLS2NVfzKlSvRtWtXCVdV+2zbtk3gTqXAf83r6GY7IURY8+fPx6VLl1jF9u7dG9nZ2fj9998xfPhwTJ48GYmJiawX65w8eRL//PNPVcolpMaLj49H165dkZWVJTDWwMAAhw8frvbFeVW1adMmVtdbxo8fj5iYGClURAghhBBSf9y9exfOzs6IjY1lFe/m5obZs2dLuKqaoUGDBjh06BAaNapsf9Gv+fn5Yf78+XSfvZZLS0tDnz59kJ+fLzDWwMAAYWFhMDMzk0Jl0jFkyBCBm4gAwObNmxERESGFigghhBBCCCGFhYWYP38+2rdvj2fPnok19/79+9G8eXMcPHiQ3s8SUo3Y/AyOHj36u/vCbdu2hZqaGt9xNBes/uDQCzl7HA7nFwAn8P9NUso/AsADAB0ZhilgmcsGwJMf5GIATGIY5g8ha9sDYPT/xld8GUAiwzC19kokh8OJBWD97detra1Z36AgpDZYtmwZ/P39+cYoKChAXV0d6enpfOPMzc0RGxsLBQUFcZZICCGEiF1ycjLOnDmD06dPIyIiAmVlZXzjVVVV4e3tDT8/P5ibm0u0toiICHTp0gUlJSV84zp16oSrV6/W+gnZksTlcuHg4ICnT5+yHiMjIwNTU1M0a9YMVlZWX300NDSk7zepUfLz83H9+nVcvnwZN27cQGJiIjIzMyue19LSQpcuXdCtWzd4eHigcePG1Vht/bF582aBjbEUFBTw4sULGBsbS6mq2uuff/4R267PLi4uiIiIQIMGDaqcq7i4GMbGxvj48SPfuAcPHsDOzo5VzoCAAEyZMoVvzIoVK7Bo0SLWddZWO3bswNSpU/nG2NjY4PHjx5CRof7ehBBSE+Xn52PevHnYtWsX6zHjx4/H7t276X1XJW7cuAE3NzeBN+l1dXURFhYGa+vvbnERQqqIx+PhypUrePLkCbhcLuTl5aGoqIg2bdqgbdu2kJeXr+4ShXb58mV069aNVezgwYMRGBgIWVnZHz6/atUqVu9XtLS0EBsbCwMDA6FqJaQ2iIqKgpeXFz58+CAwVl5eHhEREXBycpJCZZJ3+PBhDBs2TGCcsbEx7t27x3rxKyGEEEIIqdz+/fsxceJEcLns9sls1aoVrl+/Di0tUfborL3u3LmDn3/+GQUFrKbZY/Dgwdi7dy+UlZUlXBkRt8LCQnTq1Al3794VGKujo4Pr16+jRYsWUqhMup4/fw47OzuBm08ZGRnh0aNH0NTUlFJlhBBCCCGE1D9XrlzBxIkTER8fL/FjtW/fHuvXr6/zm/sRUtPweDxYWlrizZs3lcbIysoiJSUFurq63z3Xu3dvnD9/vtKx+vr6eP/+vdTn1NnY2FTWLOoZwzA2Ui2mnqDGK0LgcDjyAD4CUC//Er5umBIOwJNN8xUOh9MAQB6AbzsjcADEA7BhGIbVVXgOh2MI4NU3ucp/eqMYhnFmk6cmosYrpD7IyMiAmZkZcnNz+cZt374d7u7usLOzE7gwfd26dZg3b544yySEEELEIjMzE3v27MHx48dx7949kXLIyspizJgxWLx4MQwNDcVc4X87YbZr1+6rxgk/oqCggCdPnsDS0lLsNdQ10dHRcHZ2Bo/Hq3IuZWVltG3bFoMGDcKIESOgqqoqhgoJEV5sbCxWrlyJU6dOsZ5EJyMjAw8PD0yYMAE9e/YUS+MJ8r3Hjx+jXbt2AicwzZ07F+vXr5dSVbXfvHnzsGHDhirlMDc3x40bN8S6sG/FihVYsmQJ35gRI0bgwIEDrPI5OjryPUfhcDhITEyEkZGRUHXWRoWFhTA1NRXY2ObMmTPw8vKSUlWEEELY4PF4OHnyJObPn8/3ZvK3vL29ERQUROepAixYsABr164VGKerq4urV6+iZcuWUqiKkPrhwYMHGDlyJB4/fvzD57W1tTFr1ixMmTIF6urqP4ypaTIyMmBra4v3798LjPX09MSpU6cqbboCAAzDYMSIETh06JDAfH369MGZM2eo2RapU44ePYqRI0eiqKiIVfz+/fsxcuRIyRYlRQzDwMPDAyEhIQJjO3TogJCQELrGTgghhBAiIi6Xi7lz52Lbtm2sx5iZmSEyMrLeNsEMDQ2Fp6enwE2Qyjk4OODMmTNo0qSJhCsj4sLj8TBw4ECcPHlSYGxda4T5I+vXr4evr6/AuKFDh+Kff/6RQkWEEEIIIYTUL+np6Zg9ezYCAwOlfmxPT09s2LABVlZWUj82IfVReHg4OnXqxDemX79+OHXq1A+f27RpE2bPns13fFxcHJo3by5yjaKgxivSR1uRCuF/jVCO4f+bmgBfN19xBxDL4XB+43A43zZU+TZXGYArX+T6MqcZgC1sauL8NwtqDwDFH+RhAESzyUMIqT6///67wKYr1tbW8PHxQcuWLTFx4kSBOVeuXIn09HRxlUgIIYRU2adPn7Bw4UIYGxvD19dX5KYrAFBaWoo//vgDVlZW2LJli8CGZMLIzs5G7969BTZdAYClS5dS0xWWHB0dWe20y0ZBQQEiIiIwefJkGBoaYvr06UhKShJLbkLYePHiBYYOHYpWrVrhyJEjrJuuAP9NMvr333/h6ekJCwsLHDlyBNQQV7wKCgowePBggU1XtLS0sGDBAilVVTesW7cOW7duhZycnEjj27dvj9u3b4t9IunEiROhoMD3MhyCgoJY/a54/PixwHOUzp0714umKwCgpKQk8CYCAPz1119SqIYQQggbDMPg/PnzsLe3x8CBA4VqutK1a1cEBgZS0xUW/P390aZNG4FxaWlp6NSpE+7fvy+Fqgip2xiGwdatW+Hs7Fxp0xXgvyYmfn5+MDY2xpYtW2r8e26GYTB+/HhWTVfatm2LoKAgvk1XgP+aRf71119o166dwJzBwcG0qIfUGUlJSRg8eDAGDx7MuunKjBkz6lTTFeC/14Ddu3dDTU1NYOzNmzfh6emJggKBe0sRQgghhJBvPH/+HM7OzkI1XdHX18fly5frbdMVAOjevTsCAwNZNwC9f/8+2rZti+homgpfGzAMg2nTprFqugIAf/75Z51uugIAs2bNYnWN5vDhw6ya6BJCCCGEEELYYRgGBw4cQIsWLaql6QoAnDt3Dq1atcLChQvx+fPnaqmhLikpKUFycjLi4+ORl5dX3eWQGmjfvn0CY0aPHl3pc507dxY4/tq1a0LVRGonarwivDUAyldVlc/U+rL5ijGAfQAyOBxOKIfDWcfhcBpXkuv4N3/+Ms8EDofzO4fDqXSG6/+auxwE0P2Lcd+6IvivRAipLmlpaaxuvvn7+1dMePf394eWlhbf+Ly8PCxfvlwsNRJCCCFVUVZWhg0bNsDExARr1qxBfn6+2HJ//vwZM2fOhLOzMx4+fFjlfAkJCXB3d8fz588FxrZq1Qpz5syp8jHrk6VLl2Ly5MlizZmbm4tt27bBysoKmzdvFmsTHkK+9enTJ0yZMgU2NjYICgqq8uKtxMREDBkyBH379mW1wIqwM3PmTMTFxQmMW7RokcD3VeRrHA4H06ZNQ2RkJExMTIQa6+3tjatXr0JHR0fsdeno6GDEiBF8Y0pKSrBkyRKBuXbs2CEwZtSoUaxrqwsmTpwo8GclJCQEaWlpUqqIEEJIZZ49e4bu3bujd+/eePTokVBjO3fujFOnTglsZkb+Iy8vj0OHDkFRUVFg7KdPn+Dq6lptE3kIqQvy8vLQr18/zJgxg3Xz0+zsbMycORODBg1CaWmphCsU3Z9//lnpbkpfMjExwb///gsVFRVWeRUVFXHmzBlW78GmTp1KTY1JrcUwDG7evIlJkybBysoKR48eZT12+PDh2LhxowSrqz7GxsY4cOAAq9jw8HD06dMHGRkZEq6KEEIIIaRuKCsrw44dO2Bvb48HDx6wHmdmZobr16/DzMxMgtXVDoMGDcKePXtYN1/5+PEj3N3dcf78eQlXRqqCx+PBx8cHAQEBrOJnzJiB3377TcJVVT9ZWVns378f8vLyAmPHjRuHK1do2QchhBBCCCFV9fDhQ7i7u2PkyJEi3f/w8vLChQsXkJubi8zMTNy6dQsTJ06Eurq60LlKSkqwZs0atGjRArt27WK9eQD5757/li1b0LlzZ+jp6UFBQQFGRkawsLCAuro6NDU1YWdnhxkzZuDJkyfVXS6pZjk5OThx4gTfGAMDA/To0aPS521tbdGwYUO+OajxSv1AjVeExDBMIoDd+L7JSXnTlPIGKMoAugKYA8CiknRnAZSvPP1RE5eZAB5xOJwZHA7HmsPhqHM4HEUOh2PB4XAmA3gKYOi3JX7xeT6Aq8L9DQkh0rRx40aBO0i1bt0av/zyS8WftbW1sWzZMoG5d+/ejZcvX1a1REIIIURkiYmJ6NSpE+bNmyfRLr337t1D27Zt4evrK/LOjJcvX0bbtm1ZLU6TkZHBX3/9BTk5OZGOVV/JyMhgx44d2L59O2RkxPtWtKioCLNmzYK7uzud/xCxKysrw9atW2FpaYmAgACxN/gJDg6GtbU1Nm3ahMLCQrHmrm927dqFP//8U2Ccqamp2BtB1Sft2rVDTEwMZs+eDWVlZb6xhoaG2Lt3L44cOQIlJSWJ1TRjxgyBMQcPHuR7cyUjI0PgLmJqamro16+f0PXVZmpqapg+fTrfmLKyMgQFBUmpIkIIId9KT0/H9OnTYWtri8uXLws9fuDAgbhw4QJUVVUlUF3dZW1tjfXr17OKLSoqwogRIzBp0iRkZmZKuDJC6pbc3Fx0794dZ8+eFWn88ePHMWnSpCo3T5WEGzduYMqUKQLjFBUV8e+//0JPT0+o/AYGBti1a5fAuOzsbAwbNowaGhOxYRgGXC6XdaMkYXG5XISHh2PmzJkwMzODq6ur0BNVvby8sH//frFfp65J+vXrh4ULF7KKvXr1Klq0aIFDhw7VyNdLQgghhJCaIiIiAg4ODpg6dapQ93Xbt2+PO3fuoFmzZhKsrnYZPXo0jhw5wnreTUFBAfr06YM//vhDwpURUZSVlWH8+PGs/326du2KDRs2SLiqmsPa2hpr1qwRGFdUVARPT09cvUpLPwghhBBCCBFFWloaxo8fD3t7e0RERAg9vnXr1oiMjMSZM2fQs2dPqKmpQUtLC+3bt8euXbuQmJiIWbNmibSGJDk5GZMmTYKJiQnWr19P88X5ePXqFSZNmgRDQ0PMnDkTYWFhSEtL++4eVk5ODh49eoStW7fC1tYWvXr1EunfndQNR48eFfhz9dtvv0FWVrbS52VkZODu7s43R1hYGHg8niglklqEQzfNhcfhcBoCeAzAoPxLXzz95Te0vIlKJ4ZhfviqzeFwVgFYgP9vtvJlHs4Xn/9weCWx5cfdwDDMfEF/n5qMw+HEArD+9uvW1taIjY2thooIEZ+MjAwYGxsLXIgeHBwMT0/Pr75WUlKC1q1bC9zJvX///gK7tRFCCCGSEBgYiMmTJyMvL0+qxzUzM8PmzZvh6enJanec9+/fw9fXV+BC6y+tWbMG8+fX6tPsahcSEoIhQ4YgOztb7Lnl5OQwdepULFq0CFpaWmLPT+qXxMREjBgxAjdu3JDK8Ro3bowlS5ZgzJgxfC/ske8dPXoUQ4YMEbg4hMPh4MqVK+jcubOUKqvbCgoKcPXqVQQHByM8PBxpaWmwsLBAt27d0KtXLzg7O0vt/3LPnj0REhLCN8bDw6PS3fDWr18PX19fvuPHjRvHqrlPXfPhwwcYGhryvVng4OCAe/fuSbEqQgghubm52LRpEzZu3Ij8/HzBA35gypQp2Lp1a51edCxJPB4P3t7eOHXqFOsxGhoa8PX1xdSpU6nZDSEC5OTkoEePHrhz506Vcy1fvhyLFy8WQ1Xi8fbtWzg6OiI9PV1gbEBAACZNmiTysQYPHoyjR48KjPP398eSJUtEPg6pnxiGwcOHD3H69GlcvHgRz58/x+fPn8EwDGRkZNCsWTN0794dkyZNEmqRaVlZGV6+fIlHjx7hzZs3Xz2Sk5OrNJmtc+fOOH/+PBQVFUXOUVuUlZWhd+/eAq+XfMnFxQUrVqxAp06dWN1jIYQQQgipD+Li4rBo0SKhrgGV8/b2xoEDByS6QUFtdvHiRfTv31+oBWdjxozB9u3b6XtaQ+Tk5GDo0KG4cOECq/iWLVsiMjISGhoaEq6sZuHxeOjevTuuXLkiMFZJSQmnTp3iuws3IYQQQggh5P9xuVxs27YNK1asQG5urtDj5eTksHjxYsyfP59VU5XXr19j2rRpuHjxoijlAgCaNm2KtWvXYsiQIXQ/5n+KioqwfPlybNiwAaWlpSLn6dq1K9avXw87OzsxVkdqOicnJ0RFRfGNefHihcB71gEBAQI30Hnw4IFU/3/Z2Njg2bNnP3rqGcMwNlIrpB6hxisi4nA4rgBCAXw5G+NHjVMENV7RBJAAQJ1PjsqU/+N926CFAyAXgAXDMJ/4/01qNmq8QuqyxYsXY+XKlXxj2rVrhzt37vzwJPrChQvo1auXwOPcvHkTLi4uItdJCCGECKOoqAjTpk3DX3/9Va112NnZYd68eejWrRu0tbW/eo7H4+Hu3bsIDAzEwYMHBTZB+9KIESPw999/0wUuMUhNTYW/vz8OHDgg1G6kbGlpaWHJkiWYNGkS5OXlxZ6f1G0MwyAwMBBTpkyRegMpAHB0dMS+ffvQsmVLqR+7NgoNDYWnpydKSkoExi5YsACrV6+WQlVE2m7duoUOHToIjAsLC/uuI3lpaSnMzc2RlJTEd+yjR49ga2tblTJrLQ8PD4E3CmNjY2Ft/d1lPEIIIWKWnp6Obdu2YceOHSI3s1RWVsbGjRsxYcIEen9bRcXFxRgwYAD+/fdfocY1bNgQkydPxtSpU6GjoyOh6gipvXJyctCtWzeBE2OE8ddff2Hs2LFiyyeqOEWOpgAAIABJREFU/Px8dOzYEQ8fPhQY26tXL5w7d65Kr9Xp6emwsbER2ORFRkYG169fh6urq8jHIvVHUVERdu/eje3bt+PNmzesxri6usLKygrGxsYwMjKCsbEx1NTUkJKSguTk5IpHYmIiHj16JNR1e7YGDBiAAwcOQFlZWey5a6qsrCw4OTnh1atXQo1zdXXFkCFD4OnpiaZNm0qoOkIIIWyVlpYiISEBSUlJSEpKQkpKCnJzc1FQUICCgoKKpmQcDgd6enpwdHSEi4sLDAwMBGQmhPDz+vVrrFmzBn///bdIzf+WL18OPz8/anoswK1bt9CvXz+kpaWxHmNra4vjx48L1eCRiN/r16/Rp08fgRtIltPX18fdu3dhZGQk4cpqpvfv36NVq1bIzMwUGNugQQNs3boVkydPlkJlhBBCCCGE1E4lJSU4cuQIli9fjtevX4uUw8HBAfv27RN6XijDMDh+/DimTZuGjx8/inRsALC3t8eUKVMwaNCgenX/6ls3btzA2LFj8fLlS7Hk43A4+PXXX7Fy5Uq6z1UPPH36FK1ateIb4+rqymoj3ri4OIHzoDdt2oSZM2cKVWNVUOMV6aPGK1XA4XDcARwFoIP/b3ryVQgENF75X55BAILw40Yrgv6BKmv2MpBhmJMCxtZ41HiF1FXZ2dkwNjYW2Enx4sWLlXYtZxgGXbp0wbVr1/jmcHBwwO3bt1l1XSSEEEKq4s2bNxgwYAAePHggcg4ZGRlYWlpCV1cXXC4Xz549q3LTA0tLSygpKYFhGGRlZeHjx4+sFud/q0OHDrh69SoUFBSqVA/5WlpaGnbu3In9+/cLXPAuCnNzc6xduxa//PILTWgirHz8+BETJkzA2bNnq7UOOTk5LFmyBL6+vnQuz0d4eDg8PDxY7YLm5OSEGzdu0PezDuvbt6/An11bW1vcuXPnq13wTp06hf79+/Md5+7ujrCwMLHUWRsFBQVh6NChfGPmz5+PNWvWSKkiQgipXz5//oyLFy/i+PHjCA4OrlLzyg4dOuDvv/+GhYWFGCus37hcLgYOHCjSewhFRUWMHj0as2fPhpmZmQSqI6T2KS0thYeHBy5fvizWvBwOB4GBgRg2bJhY8wqjqKgIvXr1EnhvDwB0dHTw5MkT6OnpVfm4J0+exIABAwTG6erq4vbt2/R6RCpVVFSEQ4cOwd/fH+/evavucoSyaNEi+Pv718trxElJSXBzc0NiYqJI49u0aYM+ffrAy8sLdnZ21LiPEEKk4N27dzh79iyuX7+O2NhYvHr1SqT722ZmZujduze8vb3h4uJSL38PEiKK+/fvY926dTh58qRIDVdUVVVx6NAheHl5SaC6uikpKQl9+/YVar6Rmpoa/vnnH3h6ekqwMlKZf//9FyNGjEBWVhareGVlZURERMDBwUHCldVsp0+fxi+//MI63sfHBxs2bICKiooEqyKEEEIIIaR2SUlJwdGjR7F161aR1x6oqKhg1apVmDJlCho0aCByLdnZ2Vi9ejW2bduG4uJikfNoampi/PjxmDdv3nebDtdlpaWlWLJkicTmnSoqKmLGjBmYP38+NDQ0JHIMUv1mz56NTZs28Y3Zt28fRo0aJTAXwzBo3LgxPnz4UGnMr7/+ioMHDwpdp6io8Yr0UeOVKuJwOPoA1gMYCqD8zlT5N5VV45X/5dkFYMI3Y4Xx5bh1DMMsEHJ8jUSNV0hdtXz5cixdupRvjKOjI+7evct34lJMTAyrGxHLly/H4sWLha6TEEIIYevw4cOYOHGiSE1SFBUV0b17d/Tr1w+9e/f+6mIRwzCIjIzEypUrcenSJXGWLBRzc3Pcvn2bdqGWIIZhkJycjBcvXuDly5d4+fJlxeeJiYmo6ntXU1NTjBo1CsOHD4epqamYqiZ1zfHjx+Hj44OMjAyRxrdp0wZdu3aFra0tGjRogOTkZISFheHy5csoLS0VOef+/fvRunVrkcbXZdevX4eHhwcKCgoExqqpqeHhw4e0eKyOi4uLQ8uWLQVOgh09ejT27t1b8Wc3NzdERPC9dIeTJ08KNQmurikoKIC+vj7fc70mTZrg7du3NHmfEELEgMvlIjY2FuHh4QgNDcX169er1GwFABo2bIglS5ZUedII+TEul4thw4bhxIkTIo2XkZGBt7c35s2bB3t7ezFXR0jtMnnyZOzcuVMiuWVkZHDkyBF4e3tLJD8/JSUl6N+/P86dOycwlsPh4Pz58+jZs6fYjj969Gjs379fYJyVlRVu3rxZryb0Ef64XC4iIiIQFBSEkydPIicnp7pLEoqysjL+/PPPam26VBMkJibCzc2tys3PjY2NMWDAAAwcOBCOjo7UhIUQQsTo48ePOHjwII4dO4Z79+6JPb+BgQF+/fVXjBs3jpqxElKJZ8+ewc/PD2fOnBE5h62tLY4cOYIWLVqIsbL6oaCgACNHjsTx48eFGrd8+XL4+fnR/SkpKS0txaJFi7Bu3TrWY5SVlXHu3Dl07txZgpXVHgsWLMDatWtZxxsZGWHLli3o27cvvQcjhBBCCCH1UmFhIaKiohAZGYmQkBBERkZWKV/v3r0REBAAIyMjMVUIJCcnY8mSJThw4ECV1jyoq6tjzpw5mDp1KjQ1NcVWX0307t07DBkypMr/nmxoaGjAy8sL3t7e6Ny5M5SVlSV+TCIdpaWlaNy4MdLT0yuNUVVVRWpqKlRVVVnlHDRoEI4dO1bp83Z2dlXarFxY1HhF+qjxiphwOBwTAMMB9ADQFoD8/55i23hFBsBuAGPx/01UAMENWL5t1LKUYZgVrAuv4ajxCqmL4uLi4OzsjNzcXL5xwcHBrLrxDx8+HP/88w/fGFlZWURHR8POzk6oWgkhhBBBcnNzMWXKFAQGBgo91sHBAfPmzUOvXr1Y7cxx+fJlTJw4EW/evBGlVJE5Ojri9OnTMDQ0lOpxyf8rKipCfHw87t69i127dlV5sqG5uTl+/vln2Nvbo0WLFrCwsEDDhg2hqKgopopJbfPp0ydMmTIFR48eFWn8gAEDsHTpUrRs2fKHz6empmL//v3YvHkzPn36JHR+WVlZ+Pn5YeHChZCXlxc8oB4ICwtD7969WTVd4XA4OHHiRL1umlGfjBs3Dnv27BEYt3v3bkyYMAHnzp1Dnz59+MYaGRkhPj4esrKy4iqzVmKzUDMkJATdu3eXUkWEEFI3lJSUIDY2FtHR0YiKisL9+/fx9OlTkXay/hE1NTXMmjULM2fOpN1bJKysrAzLli3DypUrq5SnS5cumDFjBn7++Wd6n0rqnYCAAEyZMoVVbOPGjXHo0CH89NNP2LNnDyZOnMhqnKysLE6cOCHVnccLCgowYsQInDx5klX82rVr4evrK9Ya8vPzYW9vj1evXgmMdXV1xcWLF1lPPCJ1Q0lJCVJSUpCUlIS3b98iKSkJDx48wKVLl0RquF4TDBw4EOvXr4exsXF1l1IjxMfHw93dHe/evRNLPh0dHbi7u8Pd3R1OTk5o1aoVXbskhBAhlZWVITQ0FHv37kVwcLDITfyF9fPPP2P8+PHo27cvvXYTAuDt27dYtmwZDh48KLC5Pz8zZszAmjVr6HpOFfB4PPj6+uL3338Xalznzp2xZcsWtGrVSkKVEQBISEjAiBEjhFoUp6qqigsXLqBjx44SrKx2YRgGs2bNwpYtW4Qa17NnT2zbto0aqBFCCCGEkDrv8+fPuH37Nq5fv47w8HBERUWBy+VWOa++vj62b9+O/v37S6ypYXR0NCZNmlTltQ6ysrLo3LkzfvnlFwwYMKBObZrB4/Hw999/Y+7cucjMzJT68eXk5ODg4AAXFxe0aNECVlZWsLKygo6ODjW7rIWuXbuGn3/+mW/MmDFjWM0rL7d69Wr4+flV+ryCggLy8/OlNqecGq9IHzVekQAOh9MAgBEAQwCqAO4yDJPFcuxcAIv/N47tPw4HQCqA6QzDiLaVXg1FjVdIXZOWlgZnZ2ckJCTwjbOzs0NMTAyrE7a3b9/CysoKxcXFfONatWqF6OhoKCgoCFUzIYQQUpnQ0FCMGzcOycnJQo0zNzfH1q1b4eHhIfTFiYKCAqxYsQIbNmxAWVmZUGNFMXLkSOzatYsmxtQwV69exbhx4wSeUwlLQUEBurq6MDc3h5mZGXg8HjIzM5GTkwMZGRnIy8uDx+Phw4cPSE1NRU5ODpSUlKCmpgZVVdWKh6KiIkpKSlBSUgIul1vxuYyMDJSVlaGsrAxNTU2YmJjA1NQUFhYWcHR0RMOGDcX69yGC8Xg8HD9+HNOnT8fHjx+FHt+5c2ds3LiRdYPD9PR0TJ8+HUFBQUIfC/jvnH7v3r1wdHQUaXxdwDAMtm7dijlz5rD+PVDeYIPUDykpKbC0tERhYaHA2EWLFuHAgQMCz2XWrVuHefPmiavEWis8PBydOnXiG9O2bVvcvXuXdhUkhJBKMAyD169fVzRZiY6ORkxMDIqKisR+LBkZGYwfPx7Lly+Hjo6O2POTyp06dQq//fYb8vPzq5RHWVkZXbp0gaOjI2xsbGBlZQUDAwNoamrSZA9SJ508eRKDBg1i9V7PwsICYWFhaNKkScXXwsPD0b17d1aT7uTk5HDmzBl4eHhUqWY2EhIS0K9fPzx69IhV/NChQ3Ho0CGJ/Jzfv38f7du3Z9Xcq1WrVjh79ixMTU3FXgepXgzD4P3794iJial4PHz4EO/evavSItOapF27dvj9999pYd8PpKamYtSoUQgNDRV7bnl5eZiZmUFTUxMaGhrQ19eHkZERjIyMYGlpiVatWgl9DZxhGBQXFyMvLw8JCQl4+fIlkpOTwePxoKKiAlVVVTRs2BCGhoYwNDSEvr5+vW+cSwipHZKSkrBnzx7s379fbA2xRKGjo4NRo0Zh3LhxtIib1EtpaWlYvXo1du3aVaUFXCYmJti9ezc1phej7du3Y/r06ULtEk7XQyWHYRjs378f06dPF+qap7q6OkJCQtC+fXsJVlc7MQyDGTNmYNu2bUKNk5eXh6+vL+bNm0cNcwkhhBBCSJ3BMAwePXqEEydOICwsDFFRUWJtUCwrK4vJkydj2bJl0NTUFFveypSVlWHfvn1YtmwZ3r9/X+V8cnJy6N27N4YNG4aOHTtCV1dXDFVKX3FxMa5du4bVq1cL1dBTWjQ1NdGsWTMoKSmBy+WCx+NBS0sLOjo60NHRgZqaGpSVlaGqqgoDAwM0adIEBgYGUFNTg4qKCt2fqiaTJk3Crl27+MbcvHkTLi4urHOy2dDz2bNnaNGiBeucoigtLUWDBg3QsmVLarwiZdR4pQbicDi6ABYB8AagJyD8DYC9ALYwDCN4RUktQ41XSF2SnJyMbt264fnz5wJjT5w4gf79+7POvWDBAqxdu1ZgnJeXF44ePUrNVwghhFTJs2fPsH79ehw4cEDosePGjcOmTZuqfPP30aNHGDduHKKjo6uUpzIKCgrYtGkTfHx8aDFTDZWfn4/58+cjICCguksRCw6Hg1atWuGnn35Cr1690LlzZ9phToIYhkFwcDCWLFmCx48fCz3ezMwMmzdvhqenp0ivEefOncPs2bNZ7TL9LRkZGcyePRvLly+vd02hsrKy4OPjg6NHj7Ies2rVKixcuFCCVZGaaNGiRVi1apVYcikpKeHdu3fUHAv/NasyNTVFUlIS37hDhw5h2LBhUqqKEEJqrqKiIsTExODu3buIjY1FXFwcnj17huzsbIkf283NDVu2bGHdIJCIX1xcHMaMGYPbt2+LPbeioiKMjIxga2sLOzs7tGnTBs7OznS+Qmq1wMBAjBw5klXTB0tLS4SFhcHQ0PC7544dO4bBgwezWpiloKCAc+fOoWvXriLVLAiPx0NgYCBmzZrFeqcuBwcH3LhxA0pKShKpCQA2bNjAurFkw4YNcfjwYVo8WIsxDIPExMSvmqzExMQgLS2tuksTOwMDAwwZMgRDhw6Fvb09Xdfng2EYHD16FNOnT5f6/4XGjRvDzMwMjRs3RsOGDVFQUIC8vDzk5+dXfMzPz0dBQUHFQ5iGQDIyMtDT06toxFL+MDc3h42NDZo1a0bX3Qkh1erBgwfYsGEDjh07JpVNRoTx888/Y/z48ejbty+9VpI6Lzc3F5s2bcLGjRur1DhXSUkJCxYswJw5cyT6Pq6+OnfuHEaMGCH09VQNDQ0sWbIEU6ZModczMUhKSoKPjw8uXLgg1DgjIyMEBwejdevWEqqs9mMYBrNmzcKWLVuEHquhoYGxY8diypQpMDExEX9xhBBCCCGESMGrV69w+vRpBAYG4unTpxI5Rs+ePbFp0yY0b95cIvn5KS4uRmBgINatW4fXr1+LLa+pqSnat28PZ2dnODk5wcjICNra2pCTkxPbMcQlPz8fFy9exKlTp3D+/Hnk5eWJlMfFxQX9+vWDnZ0dlJSU8Pr1a5w/fx6nT58Wa5OeqlBVVYWtrS1cXV3RsWNHuLi40DweCSsrK4OhoSHfzXfNzMzw+vVroe4dJyYmCtyg5siRIxg0aBDrnKJYsGAB7t27hzdv3uDNmzc/CqHGKxJCjVdqOA6H0waAEwBdADoAZAB8BJAKIJJhmLhqLE/iqPEKqQvS0tKwd+9erFq1Cp8/fxYYb2Njg8ePHwu1O3RhYSHs7e1ZNXXp3r07Tp06BWVlZdb5CSGEkA8fPuDff//FoUOHcP36daHHa2ho4O+//0bfvn3FVlNZWRkCAgKwaNEikS/C/Ei/fv3w+++/w8zMTGw5ieTcvXsXc+bMqZGdj6tCS0sLXl5e6Nq1K9zc3H64mIgIj2EYhIaGYvHixbh3755IOcaOHYvNmzdXuYFUaWkpDhw4AH9/fyQnJws9vmXLljh8+DBatWpVpTpqA4ZhcPDgQcydOxfp6emsx82cORMbN26khTb1UFFREVxcXPDgwYMq5/Lx8cHOnTvFUFXd4Ofnh9WrV/ONMTIywvPnz2mSMSGk3mAYBtnZ2UhNTcWjR49w584d3L59Gw8fPkRJSYlUa7Gzs8Pq1avRo0cPOgeqARiGwdmzZ+Hn51fZziNi1bx5c9jZ2aFJkyYwNDSEqakpmjVrBjMzM2rGTmoshmEQEBCAadOmsWqWYmpqisjISDRu3LjSmJ07d2Ly5Mmsji8jIwNvb2/4+vqiTZs2rOvmh2EYhIeHY+7cubh//z7rcaamprhx44bErwHxeDwMGzYMR44cYT3m119/xcaNG2nH8FqgtLQUt27dwoULFxAdHY2YmBipNH2rLhYWFvDy8oKXlxdcXFzQoEGD6i6pVsnKysLKlSuxc+dOFBUVVXc5UiErKwtLS0vY2NjAxsYGTZs2hZ6e3lcPOm8ihIhTaWkp7t69iwsXLuDixYtiuWYtaTo6Ohg1ahSGDRsGa2tr2qm1nisuLkZ4eDhu3LiBuLg4vHz5EgkJCSgtLYWqqipUVVWhr68PR0dHuLm54aeffqrRuy6npKTgwIED2Lx5Mz59+iRyHg6Hg2HDhmHlypUwNjYWY4XkWwkJCRg0aJBImzKZmJhg3LhxGDlyJN/rCOTHiouLsXv3bvj5+bGa9/wlV1dXnDx5ska/HtQUDMNgx44dmDFjhlBNJ8vJyMhg2LBh8PPzg5WVlQQqJIQQQoiocnJy8Pr1a7x+/Rrv37+HjIwM1NXVoaGhgcaNG6NFixbQ0NCo7jIJkaqMjAxERkYiIiIC58+fx4sXLyR2LCsrK2zevBk9e/aU2DHYKisrw759+7Bo0SKJNsTX0tKChYUFrKysvnpYWlpKbS4nj8fDo0ePcO3aNVy9ehXXrl1DcXGxyPns7e2xc+dOODk5/fD5pKQkrFmzBn/99VeNa3QN/LdGuGPHjnB1dYWrqytdRxKziIgIuLm58Y3x9fXF2rVrhcrLMAw0NDT4rlHz8/PDypUrhcorjLdv38LKykrQzw81XpEQarxCajRqvCJdRUVFSE9PB4/HA4fD+e4B4LuvycnJQVNT87tJ3Pn5+fj48SM+fvyIgoICFBcXg8vlori4uOKRm5uL7Oxs5OTk/PBjXl4eSktLKzrPaWlpQUdHB40aNYKOjs5Xn3/7kWEYfPjwoeKEVFtbGzo6OhKbKFNaWornz5/j/v37ePr0KTIzM1FYWIikpCTcvn1bqAviZ86cgZeXl9A1REVFoX379qyO5eTkhMDAQFhaWgp9HEKqC4/HQ35+PpSUlGpkJ05C6pri4mLcvn0bV69exaVLlxAVFSVyLjs7O5w4cQLm5uZirPD/ZWRkYMuWLdi2bRtyc3NFzuPg4IC1a9eiS5cuYqyOSAPDMDh9+jR8fX3F2hG6JjE3N0e/fv0wbNgwtG7dmhZRColhGFy6dAkrVqzAzZs3RcrRqFEj7NmzR6RzdX4KCwuxZMkSbNq0SeiJNPLy8lizZg2mTZtWZye+xsbGwsfHBzdu3BBq3OTJk7F9+3b6WanHEhIS4ODggKysLJFzaGho4MWLF9DT0xNjZbVbSkoKLCwsBC7ImjBhAnbv3i2lqgghRDxKSkqQkJCAhIQE5OTkID8/H/n5+fj8+TPy8/ORl5eH7OxsZGVlISsrq+LzjIyMKk0SEAdbW1ssXLgQ3t7eQjX0JtJRVlaGoKAgrFu3TmK7NPEjIyMDS0tL2Nvbw8HBAfb29rC3t6eJfKTaffz4EePHj0dwcDCreHV1ddy+fRvW1t/dOv7Opk2bMHv2bKHq6d69O3x9feHu7i7Se8nU1FQEBwcjICAAT548EWqsgYEBIiMjpdYIuri4GN26dUNERATrMZqamhgzZgzGjRtHC3mqUUlJCd6/f4/k5OSKx/v375GZmYnMzEzcuXMHGRkZ1VKbrq4uvLy88NNPPyE1NRW3b9/G+fPnweVyq5RXTU2topHYl49mzZqhadOmdO1HDFJTU7F27Vr88ccf1X5eWxNoaGhUNGFp0qQJnJyc0KtXL1hYWFR3aYSQWoBhGLx+/Ro3b95EaGgoQkNDq3SNuropKSnBzs4Ozs7OcHNzQ8eOHWmX1nogMzMTFy5cQHBwMEJCQoTeBMfBwaGiOV6rVq2q/XwtOzsbZ8+eRVBQEC5fvixSY4Mv9e7dG6tWrYKtra2YKiSCFBcXY/bs2QgICBBpvIyMDHr16oWxY8fCw8Ojzt5XF5fU1FT88ccf2L17N98doyszZswYBAQEUENDIV28eBGDBg0SeeMxDocDb29vjBs3Dp06daLGpEQqeDweUlNTkZOTU9FUW0FBAZqamtDQ0KB53oSQeiU5ORn//vsvbt26hVevXiE+Pp5Vs8fGjRujdevW6N69O/r06QNTU1MpVEuIZDEMg7S0NHz69AlZWVl4+/YtIiMjcePGDamsBdbW1saiRYswefLkGnc+kpubi7Vr12L79u3Iz8+X2nE5HA6MjIxgZWWFZs2awdTUFCYmJtDV1YWysjJUVFSgrKxc8ZCVlUWDBg34zj/i8XjIzc1Famoq3r17h5cvXyI8PBxhYWFiuVepoKCA5cuXY9asWazexz9//hzz58/H2bNnq3xsSWratClcXFzQoUMHdOjQAba2tnSdogqmTZuG7du3842Jjo5G27Zthc7t4uKC27dvV/p8nz59JPr/bdiwYTh8+LCgMGq8IiHUeIXUaJU1XrGwsMCrV6+qoaK6gWEYvHnzBjdu3EBkZCSePn2KxMREkS6SA//tCqSjowNlZWXk5eUhNze3xu6IJCMjA2trazg6OqJt27ZwdHSEra0t64v8DMMgKSkJMTExePjwIeLi4vD8+XO8fPlSLJOQqrowadGiRVi1ahWrWCUlJaxevRrjx4+HsrKyyMckomEYBgUFBcjMzISsrCzU1NSgoqJScbOZYRjWN54ZhsHnz5+Rl5eHvLw88Hg8qKqqVuQUdBJeWlqKvLw8pKen49WrV3j16hVSUlLA5XJRUlKC0tLS7z6WN0TS09ND06ZNv3o0adJEpG6YXC4Xb9++RXx8PN69e4fMzExkZ2cjKSkJT58+xfPnzyt+zpSUlKCiooLS0lJwuVw0aNAAxsbGsLa2hrGxMbhcLgoKCiAvLw9jY2OYm5ujadOmUFZWhpKSEpSUlKCoqAglJSUoKChU+01+QmqSuLg4bNmyBYcPHxbLBZ3x48djy5YtUumSm52djT///BMnT57E/fv3WXWt1dPTw9ChQ/Hrr7/Czs6OXg9qOS6Xi927d8Pf3x+ZmZnVXY7EWFtbY+LEiRgzZgydxwnA4/Fw+vRprF69GjExMSLn6d+/P3bu3CnRHZnu3r2LUaNGIS4uTuixtra22LZtm8CuzbVJfn4+li9fjs2bN1ece7Ll4+ODgIAAek0nuHjxInr16gVRr39u374dU6ZMEXNVtR/baw+DBg1CQEAAtLW1wTAM8vPzkZaWhrS0NKSnp6OkpKTi/Zm6ujr09fWhq6tb4254EkJql/JJnomJiUhLS0NRURGKiopQVlYGZWVlqKqqgsvlIiUl5avHu3fvkJiYWCN3P+HHzc0Nvr6+6NGjB5371AIMw+DixYtYv349rl+/Xt3lwMzMDAYGBtDS0oKuri5at24NZ2dn2NnZQV5evrrLI3VYbGwsDhw4gH379rGedCUjI4Pz58+jR48erI+zZs0aLFy4UOj67O3t4e3tDS8vLzRv3rzS19fCwkKEhYXh/PnzuHr1qsg7smlrayMiIoJVQxlxyszMhIuLi0h1u7i4YMCAAejXrx+MjY2l+juosLAQDx8+RGxsLN6+fYvExESkpKRUNEXLz8+HiooKGjVqhEaNGsHCwgLt2rWDs7MzTE1Na8X7DYZhkJGRUXHP7MGDB4iJiUFsbCzev38v8ntcSTE0NMTSpUsxcuTI776/aWlpCAkJwePHj5GUlIS3b98iKSkJHz58+CpOQUEBTZo0qbjXaGRkBFtbWzg4OMDU1JQay0lJRkYGzp49i+DgYFy6dAmFhYXVXVKN0qxZM/Tu3Ru9evWCq6srnS/VMJmZmbhy5QquXLmOoiOPAAAgAElEQVSC58+fIz8/H4WFhV89ysrKoKurC2NjY5iYmKBZs2awtraGjY0NzMzMatzi1LKyMjx48AB3795FcnIyUlNTKza/Kp/LUb5hlpycHBo2bAhTU9OKBlXlk+fpPpJgDMOgpKSk4hpC+f+X8u9tSUkJcnJykJOTg5SUlIrGZ8XFxeDxeCgtLcWnT5/w4cMHvHz5UuJN0DgcDvT19aGnp1exKKL8d3BWVhbu379f5cZn/FhaWqJNmzawtbWFoaEhDAwMoK+vDwMDAzRq1Kji97Yw855I9cvOzkZQUBCOHTuGGzduiO0amYmJCby8vODp6Yl27dpBTU1NLHn5YRgGL168wOXLl3Hx4kVcuXIFJSUlVcrJ4XDQv39/zJs3D46OjmKqlAhr37598PHxqdJrnL6+Pvr37w9PT0+4u7tTcxD8d0391atXiIiIwJEjRxAeHi5SgyJFRUXs3LkTo0aNkkCV9UNcXBxGjBiBe/fuVSlP06ZNMXjwYPTr1w9OTk70npqITUFBAe7du4dbt27h5s2buHXrFt/5edra2mjRogVsbGzQsmXLio86OjpSrLr2KS4urrjWWVpaisaNG1PzQ0JqqPj4ePzzzz84ffo0Hj58KJac1tbWcHV1hbOzM9q2bQsrK6uvrkPyeLyKDWMKCwsr1vbIyMh81TRBRUUFcnJyAt+XMwyDsrIycLlclJWVQUVFpdrOHRiGQWFhIXJzc1FcXAxNTU2oq6vTtYUarrS0FE+fPsXt27dx7949PHv2DM+ePavSRrqiatKkCebMmYOxY8dCRUVF6scXRl5eHoKCgrBr1y6xvX5IAofDQYMGDSoe5Q1ZytcgSkqzZs1w/PhxkZreRkREYM6cOYiOjpZAZeKnoqICJycnODo6wsTEBEZGRjA2NoaRkZFUrqPVZjweD02bNsX79+8rjTE2NkZCQoJIv0smTJiAP//8s9LnTU1N8ebNG6HzshEVFQUnJyc2odR4RUKo8Qqp0SprvAIAHTt2xJgxYzBgwIAaf0IkDdnZ2YiPj0d8fDwSExMrmp8UFxejuLgYRUVF+Pz5MxITE/H69etqOYmtqeTk5GBubg4tLS1oampWPNTV1SveRH769KmiIUV2drZE6ujatSvOnz9fpQl/XC4Xjo6OePz4MesxGhoaGDJkCMaMGQMHBwd6YyoAwzDgcrkVO96W73bL4/HQsGFDNGrUCGVlZRW7zL179w7JyclISUlBeno60tPT8enTJ3z69Om7BkUcDgccDqfixpWioiLU1NSgqqoKDocDhmEqJlOWT/zIy8tDfn4+30mWSkpKUFVVhZycHEpLS1FWVvbVR0k0SmrUqBGaNm0KbW1tcLnc7x7FxcU//Fp1UVRUhKKiInR1dWFhYQFLS8uvJqmUf/+B/76f5Qt1yics0c2p+q2srAw5OTnIyspCYWEhZGVlISsrC2VlZejp6dW4SXo/wjAMLl26hM2bNyM0NFQsObW0tLBnzx788ssvYsknrPz8fNy5cwcPHjxAVlZWxWuskpIS9PX1oa+vDxMTE7Ro0YJ+huug7OxsbNmyBXv27EFKSkp1lyMxOjo6mDlzJiZOnAgtLa3qLqdGKSkpweHDh7F27Vo8f/5c5DxaWloICAjA4MGDpXKeXFRUhOXLl2P9+vUiTWgcMmQIduzYUatvuGdnZyMgIABbt25Fenq60ON9fHywY8cOem0nFfz9/bFs2TKhx9nZ2SE6Opq6yf9AXl4eLCwskJaWxipeT08POTk5rN97amtrV5yvGRsbw8nJCa6urmjevDn9bBNSi4lrsU1JSQnS09Px/v17JCQkfPd4+/ZttV5jkgZHR0d4e3ujf//+MDMzq+5yiIju3r2L9evX4/Tp0zVuAb28vDxMTU1hamqKpk2bQkNDAxoaGlBXV4e6unrF5+Uf9fT0oKGhUd1lkxouPT0dQUFBOHjwIO7fvy/0+G3btmHq1KlCj1u2bBn8/f2FHlfO0tISffr0gYODAxo1aoScnBw8fPgQ9+/fR0REBAoKCkTODfx3LyU0NBT29vZVyiOqhIQEuLm5ITk5WeQcGhoasLCwgLm5ecUksC8fWlpaIp8DlJSU4MmTJ7h37x6io6MRHR2Np0+fVmkRqKqqKjQ1NSvuC/P7WP65kpJSxf27rKysivt95Y+srCwwDAMZGRnIycnByMgIHTt2hKOjI9/7vuUNVuLj4/HixQvExMTg/v37ePjwoVR3uRNV69atMWbMGIwdO1boxutFRUV49+4dioqKoKurCx0dHbpHXcMUFhbi6tWrCA4ORnBwsMib+NRV6urq6NatG3r16gUPDw+JNuwmP1ZWVoZ79+4hJCQEISEhiIqKEmmBcDkFBQU0b968YiOnTp06wdbWVqrXonJzc3H//n1ERUXh9u3bCA8PR05OTpXz6uvrf9WMxczMrKIhy5eT5hs0aIDCwkJ8+PABHz58QFFREeTl5aGgoAB5efmKz8vKyr5ravPlo6ioCHJyclBUVISCgkLFXAxFRUXo6OjA0NAQjRs3hoGBgUgNjL5splpQUPDd3JPi4uKKTcPKP377eX5+fsWcuvJmKzXtfVk5JSUldO/eHa6urmjRogWsrKzQtGlTvt+74uJiREVF4f/Ye+/wuMoz7/9zpmuapFFvlmRLLpKr5IoL4A6GUBITWMJLTfgRQgiQ3YTdkGwIm7ALgbz7klBCCDiFDZgeU5biGBsXZFuWZUku6m3UpZFmJM2MZs7vD3kOo2pJHmlUzue6nutMOfOce0ZH5zzP/dz3937rrbfYvXv3RY31RosvAcPtduP1ejGbzVIBp9DQUCneJi4ujtTUVBITE3E6nVJSlUKh6JPE0b+p1Wq0Wi1arZbQ0FASEhJk0YSLoK2tjX379vHGG2+we/fucRddEwRBSr5OSkoiJiaGrq4ubDYbVquV0tJSysvL6ezsJCIigpiYGKKjo6XCY0ajEYPBgMFgwOl00tjYSHNzMy6XC6/Xi8vlorq6moqKioDFxgqCwC233MJPfvIT0tPTA9KnzMVx+PBhvv71rw+bVDNSjEYjV199NTt37mT79u0TUlAqmIiiiM1mo6qqioKCAo4ePcqxY8c4duzYRSfMpaens3v37jElxcn0xePx8OKLL/Lwww/T2tp60f1FRUWRkZHBnDlzBjQ5zii4iKJIS0sLpaWllJaW0tjY2GctzRfr6P9YoVBIY3Oj0UhiYiLJyclYLJaA+1U8Hg/l5eUcOXKEQ4cOcejQIfLy8kZdOGkwwsLCpHmBXq9HoVBI40DfY//me12lUklFSbVaLaIo4vV60Wg0WCwWIiIiUCgUOBwOHA4HSqVSKgTjX7SzfwFPrVY7InGCQOP1eqmpqaGkpIScnBy++OILDh8+PKgPJiwsjLS0NJYtW8b69evZsGEDs2bNkv1pMjITiNPppK6ujpMnT3Ls2DE++ugjDh8+PO7HValUpKam4nQ6sdlstLe3j9iHoVQq+4ix+PKg+ufz+PenVCqJioqS5mMxMTFERkZKxY79fUT+jwVBkPp1u919tr7HPt9dT08PdXV11NbWUl9f38d309+/p1ariYiIkK7XvuP6fE6+3L/Q0NA+uYC+55GRkaSmpk77sf5E4vV6yc/Pl0Sw9+/fj8PhCJo9Go2GK664ghtvvJHrr79+ygmmi6LInj17+Nd//Vfy8/ODbc6k4Oabb+a5557DaDSOuQ+v18trr73G448/Tl5eXgCtm1jCwsJIT09n8eLFLFmyhJUrV7J8+fIpkZ82ERw8eJC1a9cOu89DDz3Ek08+Oab+n3nmmQvGqLS3twdcIEcURTZs2MCBAwdGsrssvDJOyMIrMpOa4YRXfBiNRm644QZuvPFGLr/88mmZECOKojRJ81Wyamtro7W1lcrKSkpKSgLiYJUJHpmZmXzxxRcBCU4+e/Ysl1xyyZgqqCxevJhvfetbzJ8/n4SEBBITE/tUI5kMiKKIw+GgpaWF1tZWWlpaBjzu6emRJtT+ze129xFMsdvtOBwO3G43brcbj8eDRqPp41jV6/U4nU5Onz7N6dOnqauru+gqGDLTC71eT2ZmJikpKcTHxxMdHY1Go5GCSXwBPHV1ddTU1FBfX4/H4xngwA8JCSEqKoqUlBRmz54tqZRbLBaio6On5f1tKuF0Ojl37hz5+fmcPHlSEjqrqKiQFr0GQ6lUkpiYSEpKCllZWaxbt461a9cSExMzwd9gcLq7u/nTn/7Eb37zGwoLCwPW7+WXX86uXbtITEwMWJ8yMmPB4/Hw0Ucf8dJLL/Hhhx8G1bk7nuh0Om644QbuuOMOVq9ePaMDDMvLy3nppZd46aWXLlp056qrruKFF14gLi4uQNaNnKNHj3L77bdz6tSpUX921qxZvPrqq1xyySXjYNn4UVdXx9NPP82zzz47psAupVLJ448/zkMPPSQHFsj0QRRFfvKTn/DLX/5yVJ87ePAga9asGSerpj7PPfcc99xzz4Qe02KxsHbtWtatW8e6devIzs6e0fc8GZnJht1u5+DBgxw7dozc3FxOnjxJXV2dFLAjiqIk3mCxWEhPT2fBggXMnz+fxMRE4uLi6O7upry8nMrKSurr62loaBjQZqIfPCoqio0bN7J9+3a2bt1KfHx8sE2SCSBnzpzhySefZNeuXeNakXy8CQ0NJSUlhdjYWCIjI4mMjGTWrFmSGIPBYEClUuH1egeImtvtdjQajXRdkO/vU5/29nZOnz5NYWEhR48e5csvvyQ3N3fMQfmPPvoojzzyyJg+K4oiDz/8MP/5n/85ps+PJ8uXL+eNN95g1qxZQbWjtraW6667ji+//HJc+jcajaSmppKSkkJMTAwRERFSIoQvWLa9vR2bzYbNZqOtrY2mpiZyc3PJy8ub0oJqBoOB7OxsZs2aRWJiIhaLBZPJhNVq5fDhw+Tk5Ey5sc38+fO57rrruPnmm8nMlGO4Zgper5cvvviC1157jTfeeAOr1RpskyYVgiCwdOlSNm3axKZNm1i/fr1cPGqcsFqtfPTRR3z44Yd8/PHHw1ZWDwQWi4XVq1eTlZVFVlYW2dnZJCUlXbT/uaenR1p39q095+fnU1ZWFiDLpw5RUVHExcVhMpkGxE+43W7JN2C323G5XHR3d9Pc3DxpRVIChUKhYPv27dx+++1ceeWV6PX6MfcliiL79+/nhRdeYPfu3VN6bDUUsbGxfYT/oqKiJJEOi8VCTEyM1Mb6W/b09NDa2orb7R6QYDaWa0JnZydVVVVS0a7+QkD+rwGSEKrFYiE5OZmUlJQRJZ+IokhbWxs1NTWUl5dTVlYmbUtKSjh16tRFiVZNd6655hoee+wxFi5cGGxTZPrR0tLCT3/6U5577rmLEub0x2g0ctVVV7Fz506uuOKKKZuY6fV6KSsro6CggFOnTnHu3DmpcGB1dfW4xMx8+9vf5qmnnrqopDiZgTQ1NfHjH/+YP/zhD+N2jPDw8AFiLBEREZhMpj5No9FI9ylRFCXhC4PBMG1iM1pbW6mpqaG5uZmWlhY6OzulhG69Xk9kZCRRUVFERkYOKrLb09MjFe6rq6vDarXS0NAgiYP5xra1tbVYrVZqa2upra0NmOiZTqfrI55uMpmkx77mG7coFApMJpOUlO4rAtrS0kJxcbFUpLa0tHTGxcr7cg1CQkJISEhgzpw5pKSkSEIv/kn//kKTHo8Hh8OB3W4f9L7k9XpxOBx0dHTQ1NQkie2UlZVd1LpQaGgo6enpJCUloVAoEAQBu91Oa2srbW1tksiBx+PB6/UOaKIoEhYWRlxcnDSm9hfqHEwEx1eUUqvVSgL9Y7kW9PT0SN+9/zH8RYdkZC6G5uZmzp07R3Nzs5R752v+zzs6OqTz2v//WxRFGhoaJN9EIMRxZYJHXFwcCQkJA8Y5JpNJEjBQKBQkJCSwZMkSFi9eHPBE+qlKR0cHRUVF5OXl8dlnn/Hpp5+OqaBiIElPT2f9+vVs3LiRq666aloUifF4PLz22ms899xzHDhwYEb6a+Lj4/m///f/8vWvfz2gY4GioiJef/11du/ePS3EbaKjo7n66qu55ppr2Lx585T1XwSCBx98kKeffnrYfQ4dOsTq1avH1P++ffu47LLLxq3/oXjzzTf5+te/PtLdZeGVcUIWXpGZ1IxEeMWfyMhIrrrqKrZs2cLGjRuJjY0dR+tGh9PppK2tDUEQ0Ov1qNVqamtrKS8vp6amhra2NimgzNeam5ulKh2BUuGXmXzMmjWLzz//nOTk5ID1eerUKTZv3hyQylNqtZr4+HjCw8MlZ+zs2bNZtGgRmZmZGI1GqdKIz6HmO9994kBlZWVUVlbS2toqqZHqdDpJBdU30PN3lnm9Xtra2gYIq/gWsmVkZhIKhYLY2FgSEhLQ6XSScn18fLxUnSo7O5v58+fLDudR0tLSwunTp6moqKC7u1taBCktLaW4uJjy8nKsVmvAg5/T09NZu3Ytl1xyCZmZmcybN4+IiIiAHmM4PB4Pu3bt4mc/+1lAK1wZDAaeeOIJ7r777kkl2iUjA70Vcr/88ks++eQTDh8+TFFRERUVFcE2K+BoNBqWLVvG6tWrWb16NatWrSIxMXHY6rpTma6uLj777DP+8Y9/sHfvXo4fP37RAbcWi4Unn3yS2267Laj3VZfLxa9+9Ssee+yxUSenKZVKfv7zn/Mv//Ivk/pvL4oiR44c4eWXX+bll18ec8BvdHQ0f/vb3y7o4JSZ2Xz22WfcfffdFBcXX3Dfu+66i9///vcTYNXUpaenh8WLF1NUVBQ0G7RaLStXrmT9+vVcddVVrFq1Sh6DykxZ3G43zc3NdHd309PT06d5PJ4+j/V6vVSdJzQ0dFyqtfT09NDQ0CAFhkLv/5xKpaKhoYGamhop8cnhcFBQUEBOTk7AgtxnMtHR0axYsYIVK1ZIyX3x8fGyv2cGYLVaef7553nzzTenRbDHWFGpVMyfP5+0tDRSU1MlsYbU1FTcbjc1NTU0Njai0Wgk8Qa9Xi8lvPkS7GQmjvb2do4dO0ZOTo7UAulv+fWvf82DDz54UX2IosiDDz7Ib37zmwBZdfHcfvvt/O53v0On0wXbFKBXoPvuu+9m165dwTZFZhIRFRVFcnIyqamprF27lh07dpCWlhZss2SCjNfrpbCwkL1797J3714OHTpEXV1dsM2aVKjVatasWcPatWuZNWsWCQkJ6PV6KZZisKbT6YiLi5ty1ThHQ09PD8XFxeTn51NQUEB9fb1U8daX7BUeHi4lBKrVakRRpLOzk/r6ej7++GNOnjwZ7K9BREQEWVlZLF68mEWLFjF37lwsFotUTddfRFAURerr6yVhFd+2sLBwWopfyFw8ycnJ3Hnnndx2220kJSUFvP/m5mZ27drFCy+8wOnTpwPe/1TAZDJJIiyxsbFER0djMpnQ6/UIgkBzc/OgbbgEO7Va3afitsFgkJJQNRqNlMDlS8ZuaGigqanpor+LfxVvXzOZTFJhqPr6eulaKzM6NmzYwOOPPy6L808BCgoKeOCBB/j4448D2q9er2fLli187Wtf44orrghKoZauri7q6+sHFCRsaWnB6/ViNBoxGo04HA7q6+uprq6msLCQwsJCOjs7J8TGmJgYXnzxRa666qoJOd5M5fDhw3z3u98lNzc32KYMQBAEDAYDJpMJi8Ui+XGTk5MlIQffNjw8fMTrHD7hsMbGRhobG3E6ndK9dbRrY16vl66uLhwOhySM0djYSFFREYWFhRQVFVFUVDSqeW14eLhUnNGXvG+320f8eRmZ6YZarSYuLo74+HjCwsIQBAGv10tzczN1dXU0Njbi8XgkYRVfodzh8IkEKZVK6X8/PDxcGgOHhITgdDqlubVPyFMQBMnXYDKZmDNnDnPnzmXWrFl9xs2TOZZOZnQ4HA5qa2upqqqSCgIUFBRQWFgoxTnIyIwVnU6HWq3u03zXMZfLhUKhICoqSvIv9J+jh4aGolKppOuSf1MqldL6tn8LDw8nMjKSsLAw3G43XV1dtLW1UVdXR11dHe3t7YiiKAlo9W++IigtLS2SoJyv+QS5/AW4vF4vISEhmEwmjEaj9B29Xq9UfHoyFBDIyMjgsssu49JLL2XDhg2TKld4PGhoaOC9997jf/7nf/j0009nhAj197//fX7+859jNpvH9ViNjY0cOHCA/fv3k5eXx5kzZy66yGsw0ev1bN26VcqlD3bBl4lEFEVSUlKorKwccp/ExEQqKirGHFPc0tJywRy/F154gW9/+9tj6n8wXC4XmZmZI4pzP48svDJOyMIrMpOa0Qqv9MdkMpGQkEBycjJZWVmsWrWKFStWEBcXN+ZAZY/HQ21tLSUlJZSWltLa2ioNfn2DSn+BCN92opzZMlOLHTt28NJLLxEdHR3wvs+ePcumTZuorq4OeN8yMjKTk6SkJLZv305iYiJarRaTyURqaippaWmkpKRMmLO4p6eH6upqWltbcTgcdHZ2DmhdXV10d3ejVqv7qAabzWaMRiMej0eq4KNWq9HpdH1U4gfbKhQKRFGko6OjT7UhlUrF6dOnOXbsGKdOncJqtUoVBAIR0BIooqKiWL16NZdccglr1qxhxYoVF1W9ajB6enp44403ePTRRyksLAxo39u3b+fZZ58lJSUloP3KyIwndrudkpISWlpapEX70tJSSkpKsFqtaLVaIiIipAAAl8uFx+MhIiKC+Ph4IiMjcTqdA6p1u1yuAQ53tVqN1+uls7OTjo4OqqurKSsro6ysbEISVE0mE9HR0WRkZLBkyRKWLFnC0qVLmT179pRLUm9qamL//v28/vrrvPfeewELYDCbzTz44IP84Ac/mFQK6Pn5+dx2220cP3581J9dtGgRzz///KQKDBRFkaNHj/Laa6/x2muvDev0HAlbtmzhj3/8IwkJCQGyUGY609XVxS9/+Ut++9vfDrkoeNlll/HBBx9MmgTIycz//u//sm3btmCbISGr+ctMZtxuNxUVFRQXF0vV4oqLiykpKaG+vp62trYx9x0SEiIFbfgCOQbbGgwGScDF4XAMKnbse81ms037hfvJgMlkIjs7m5UrV0piK7NmzZJFVmSoqKjg/fff59ChQxQUFFBUVBSwypczgYiICJKSkvpUPPf5SOfMmSNXJxsjTqeTyspKzp07R35+Pvn5+Rw/fpzTp0+Pyz1DEASee+45vvOd7wSkP1EUefTRR3n00UeDWiEsNjaWJ554gptvvnnSXe9FUeR3v/sd//Iv/yKva88gNBoNixYtIisri2XLlpGWlkZycjJJSUnynEpmxNTW1pKTk0NxcTGtra3YbDaampqoqqqioqIi4PEKERERhIaG4nA4sNlsdHd3B7T/YCEIAvHx8SQmJmIwGNBqtRiNRqKjo6WCNjExMX0eT0SFeZfLRUdHh7T+YbfbUSgU6PV69Hq9lNzkK0AFvYJex48f5+DBg+Tl5ZGfn09RUdGMSP7X6XSYzWacTicdHR0zsjKpzOj52te+xve+9z02bdo0IWt2oihy4MABnn/+eXbv3i0LAcnInGfZsmX88pe/ZNu2bZNuviYzNKIosmfPHh588EHOnTs3LseYO3cul156KcuWLWPu3LmkpKSg1+v7xKwplUo8Hg92u10qTOhrvucOhwP4Kpnct/VPajx79iy5ubmcPXt2Uvvob7nlFp566ikiIyODbcqMwOPx8Ne//pWnn356UgqwjASfQJnvvA4NDSUqKgqLxYLX65VirxobG2lqarpgcaKQkBAiIyOZN28emZmZREZG0traSnNzM9XV1VRVVVFbWysLosjIyAxKSEiIJOjka5GRkURFRUl+GF/zvWY2m+Ux4gTicrmwWq3U1tb2aTU1NX2eDyeSKSMjM3UJCwtj586dbNu2jQ0bNhAVFRVsk4JGVVUVf/7zn3nnnXc4fvz4tCpin5mZyXXXXcftt9/O7Nmzg2aH3W7n7NmznD17ljNnzmC1WlEoFJI4fFNTE42NjVJunMPhoKmpaVLG8KSnp7N582Y2b97M5ZdfTnh4eLBNGjfy8vJYunTpsPvcf//9F12cJyEhgdra2iHfv++++/jv//7vizqGP7/5zW944IEHRvMRWXhlnJhRwiuCIOwGfiaKYkGwbZkKCIKwFfiFKIqrgmjDRQmvDIXFYiEzM5P09HRJXdDtdtPe3j5ss9lsshNOJiBkZGTw1FNPjXuCUnl5OVdeeWVQK1DLyMhMDgRBICIigtjYWOLj41mwYIF0L4yKiiIiIkJaALbZbDQ0NNDQ0EBLS4skgOJ0OnG5XNLjwZ7X1tZSVlZ2wcWv8cAnajBdKmyrVCqWLl3KqlWryMzMlNqFVDMHo729nV27dvHUU09RVlYWMBt1Oh033XQT99xzDytWrAhYvzIyM4mOjg4OHTrEP/7xD956660JrzBnNBpZtGgRmZmZZGRkEBkZSXd3Ny6XC6PRSFxcHFFRUbS0tEiVxX3iWf5br9dLbGwsKSkpJCcns3DhQhITE8e84NjR0UFFRQXl5eVSKysrIy8vj5KSkoD+BgaDgfvvv5+HHnoIi8US0L4Dhcvl4t///d95/PHHRx1gJQgCN9xwAz/84Q9Zvnz5OFk4PF1dXezfv5+PPvqIt99+m9LS0ovuMy4ujqeffpobbrhBXtiWGTVOp5O9e/dSVFTEuXPnsFqtGI1GrrzySnbu3IlKpQq2iVOGX//61/zwhz8MthkD0Ov1rFmzhjlz5pCUlERPT480Z/HNb/znOQBarRatVovZbCY+Pl66B5rNZsxmMzqdDqVSiVKplO5/brcbi8VCUlISRqMxyN+6L16vl9LSUkls0j+IVxAEtFot0dHRWCwWqerqVMUXkKnT6S54TxBFkaqqKkpLS6moqJDGGxUVFdTW1qJQKIiLiyMhIQGz2SzNMX0VX3zz3urqalpaWjAYDMTGxhITE4NGo0EQhD6tra2Nc+fOUYt9rHIAACAASURBVF5ePm3mqjJjIzU1lWXLlpGRkcGCBQtYtmwZ8+bNm3IiiDLBwePxUFNTg9VqxWq1UlpaSl5eHidOnKCgoEC+vowSg8EgBcz6qh3OmzePuXPnMnfu3IDc00VRxO12D2jNzc2UlZVRXl5OW1ubVBGtpaWF2tpa6urq6O7uRqVSSeMOX7NYLGRkZLBw4UIWLVrEggUL0Gq1AfhFevGdZ76goYaGBvLy8sjNzaWgoGDYYJJAEx0dzUsvvcSOHTsC3vfx48f5j//4D956660JTWDS6XT88Ic/5Ec/+tGkGzf2p6KignvvvZc9e/YE2xSZABMSEsLSpUvJysqSWkZGxoirRMvIjBW73c6pU6fIz8+noqJCSppwOBxSdXSj0ShtjUYjBoNBEvPwtfDwcNLS0voEioqiiM1mo6amZkCrrq6mpqaG4uJiOjo6gvgLjB96vR6j0YhCoUClUhEdHS2tAftaamqqNO9wu93U1NRI8+GKigoqKyupr6+XhDjtdru0BtzZ2TkqsRSlUolOp8Plck2rAPBAokNgLhpmoSYRFRaUhKEkBAE1AgLQhUgnXjrPb630UIabMlzUI4/9pwt6vZ5/+qd/4qGHHmL+/PlBs6O5uZk//elPPP/88xO+RikjM1lIS0vjscceY+fOnbKvbgrjcrn43e9+xxNPPDGhPgwfPuGV6U5qairPPfccW7duHf+DdXXD2XKotEJ1PbS0QVsHdDnB7QYRCNGCXgf6kN5tXBSkJkJqAsROv+RMURTZv38/v/71r3n33XeDbY6MjIzMjEKj0fQRx/Wt9y5btoz09PQp52MVRRG73U5bWxs2m03adnR00NPTg8fjwePxSI99wrz9xXn9X/MVNfR6vWg0Gkncxn8rimKfnIP+raOjg9raWhobG0f9nWSfi8xkxIxihOdk73npOyfrmPg8nGBjNpvZvn073/zmN9mxY0dA18GnCz7B88OHD3Po0CEOHz48pPD9ZL0mrl69muuuu47rrruO9PT0cTnGRCCKIq2trVRXV9PW1obD4aC1tZWcnBwOHDhAbm5u0H0EgiCQnZ0tCbGsXbt2WhWjfOyxx3jkkUeG3efzzz9n/fr1F3Wc7du389FHHw35/mWXXcbevXsv6hg+mpubSU9PH7Ko6BDIwivjxEwTXvECXuB1egVFCoNs0qREEIR1wC+ADQCiKAYt8n68hFdkZIKBWq1m48aN3Hzzzdx0000TlsjlcDj48Y9/zDPPPDMhx5ORkZGRGV9iYmLIyMiQAiYzMjKIiYnBbDajUChobGyUWm1tLYcOHeLvf/97wKqUajQaNm3axDXXXMPOnTsnrUiBjMxUpaCggDfffJO9e/dy6NChKV2tMyYmhuXLl7NmzRouvfRSVqxYMcAZ7vV6KSsr48SJE31aoKugDoZOp+Pee+/lRz/60cQronu9cK4CTpf6BQrZoK39fKBQD4ji+UCh80FCeh1l3Q5+887rHGmsoQw3DaN0bi9atIjFixeTkZHBqlWrWL16NQaDIWBfy+PxUF9fT21tLZWVleTk5HDw4EG+/PLLgJ3LCoWC++67j0cffRSz2RyQPmVkZC6Ov/71r3znO9+RKvXB5F28G0/MZjMWiwWj0YjZbCY8PByLxdKnhYWFSQIvvspuvupu/QNKXC4XOp0Oi8VCRESEtNXr9ZK4SE9PDxUVFZSUlFBVVUVdXR21tbWcOnWK3NzcESWWKRSKPpWbfNWzo6OjCQ0NRaPRSM1nt68pFApsNhstLS10dHRIwi5DNZVKJSXM+SfR+T8eLCDJ6/Vy9uxZjh49ytmzZyXhgbq6Ourq6qivr6enpwe9Xk9KSgqpqalSi4+Pp7u7m9bWVr788kv27duH1WoN+N9fRsYfvV7PypUrWb16tdRiYmKCbZbMNMVut5OTk8OhQ4c4c+aMVO2tvLx8UlbYmQpER0cTHh5OWFgYarVaCiwdrA0mruJ2uyckiEapVEpiMb77t1arHSC21t3dLVX+a29vHyASJggCVquV4uLiSVHp/vrrr+e5554b93n6mTNneOKJJ9i1a9e4JoZbLBbuvPNO7rvvPpKSksbtOIFGFEXefvttHnnkEQoKJqamzUycQ4w3qamp7Nixg5UrV5KVlcW8efNkoVGZGYkoilRXV1NQUCC1wsJCqqqqaGhoCEoxiYlEp9MREhKC2+2ms7MTr9cbbJOGJAwFWzCwCQOzUBONEh0KGuihnh6O0s0e7Jxm5GIwo8GEgueI7fOaCHyLsSdvz0LFFRhZj55VhJCCmouREXcichIn++lkP50coJNWJu/fVKYvKSkp7NixgyuvvJLLLrsMvV4fbJMkRFHkwIED/P73v2fPnj20tLQE2ySZSUhmZiZr1qxh3rx5REZGYrfbqa6uZv/+/eTk5Ewp0S2VSsVVV13Fbbfdxo4dO+Rx8jSip6eHDz/8kBdffJG///3vQU90mi7MnTuX++67jzvvvJOQkJDxOUhFDXywH/YfgyMnoby2N2ZirGg1sHgurM/ubeuywBIWOHuDzIkTJ3jsscd44403gm3KhLIC3bDzhf/FQcc4jY/1CPwbkQNe/zdGLw4gM3OJRsnGPuewQAMe6Rw+xvjFCWoR+D+EDnj997SN2zFnCgqFguTkZJKTkwkJCUGr1aLT6aStfyEcnyC/rzmdTtxut1QIBnpjT8LCwqSYcECKEem/VSgUKJVKSdDft+3s7OwjqNJ/a7PZJrWPaCRMNZ+L2WxGq9Vis9lGJXQsM3XQIHA5eumczERLNGNLx3UiUoGbPLrZTxf76SSf4K/jBhKlUkl2djbr16/niiuuYP369ZNfxKq+CT470hvz3dAM3S6ItkBMBCxf2NvGi24n7HpnoEnXXIrVasVecBbNp4cJOVpEVJmVSLsLgbHPpwJ1TYyNjWXTpk1s3LiRbdu2kZCQMGabphIdHR0cOXKEAwcOsH//fg4fPhywXK6xotPpWLduHZs2bWLz5s0sW7ZsShfrW7VqFV9++eWQ70dFRWG1Wi/6O/7zP/8zTz755JDvR0RE0NjYGJACsnfccQd//OMfR/sxWXhlnJiJwiu+LywCu4HHRFE8FTyrJg+CIFwC/BzY6HsJEGXhFZlA40vSMBqNhIWFERYWRmhoaJ+tz1mg0WhQqVT09PTQ1NREU1OTlEzue9zU1ITdbg/215KwWCwsXLiQsLAw9Ho90dHRrF69miuuuIKwsOA57j/99FPuvPNOKioqgmaDjIyMjMzUZO7cuWzevJlNmzaxZcsWTCZTsE2SkZkROJ1ODh06xKuvvsrrr78+WgXbSYdOpyM1NVVKNPJV1pzosbzZbObee+/lBz/4AdHR0RNzUK8XDhyH9z/vDRQ6XgiusQUfivQGwIqil0Y8kmP7czrJG+XiilKpZOnSpcyZM4fExETCwsIGLNBCb0V4s9mMyWRCrVajVCoRRZG2tjZaW1s5c+YMx44d4+TJk+MqFrRq1SqeffZZli1bNm7HkJGRGRvnPtnHX2+5h7Q625QIaJjK+Hxl0DtWmG5Bw/7iLAqFAo/HQ0dHR9AXH2VmJiEhIRiNRgwGg7QNDQ0lPDxcamFhYYSHhxMdHU1cXByxsbEkJCRM6cVpmemB1+ulpqaG06dPk5eXx7Fjxzh+/Dhnz54NtmkyMoOSlpbGL37xC775zW8GJChlpNTU1PD000/z/PPPB8w/odVqWbduHTfffDM33njj+CUkTQCiKHLw4EFeeOEFXnvttYDO+adaUPRkJTw8nKSkJGJjY7FYLISHh5Oens6WLVvIzMyc0P8nGZmpiNfrpbW1lfr6+gHt7NmzfPzxx7S3twfbzGnPYrT8hEiuxYTC73XfFax/ZOMZXPyURt7gwoKzoyEaJVbSpeMJ54+t4vSo+jEgcCth3EEoS/mqgmQgr8j+wY+f4eBlbLxJB86LCKaXCTxms5nVq1ezbds2rrzySubNmzcl7s2iKFJeXs7x48c5cuQI+/bt49ixY9PODylzYZRKJevXr+eaa67h6quvZs6cOUPu63A4+Pjjj3nnnXf4+9//TlNT0wRaOjIEQWDDhg184xvf4IYbbpi4dWKZoGG1WnnllVd48cUXKSkpCbY5Uw61Ws22bdv47ne/y7Zt26TE74Bid8Ar78BLb8IJvzFXIHNbfPdeQYCNq+C2a+H6LaDTDv+5KUJJSQmvvPIKr7zyCpWVlcE2Z1yIQsk/E8HthBJ+geTlHkQ+oZOf0RhwAYv+8wUfo50vyMw81MC3CecuwljM8NeeBjy8STu/opkaAisUK5/DMtOBqeBzCQkJYfPmzWRnZzNnzhzS0tJIS0sjIiJC8gm0tbVRVFTEqVOn+Oijj/jwww/7FLuSmVpciZE7CGUbRkL8zsZAnJf+Z50NL6/Tzi5sHGTqFWAxGAysXLmS9evXs379elavXo3RaAy2WRfG5YLf74YXd8PJC8RaRFt65xoPfxsSY4ffd7TUN0HcpV/Nb6B33vT//m3I+VTfq5bYb5o1smvaaK6JgiAQHx/PihUrJLGVBQsWTAl/6HjjdrvJzc3liy++kFpdXV1QbQoPD+fyyy/nkksuYdWqVWRnZ0+ZuIa6ujri4uKG3ee2224bi4jJAHbt2sWtt9467D61tbUXtOdC7N27l40bN154x4HIwivjxEwVXvFfmxWBd4BfiqJ4LFi2BRNBEC4Ffgpc5nuJr34nWXhlmmMymaSb5OzZs5k1a5Z0o+xN5hu6QW81xYaGBhoaGnC73ZhMJkwmE2FhYcTGxhITE4PFYpHEVlQq1bgMmrq6uiRhFt/CXUxMDDExMQiCQFNTE5WVlRw7doycnByOHj1KTU3NRR1Tq9WyePFiFi1axPz585k3bx5Llixh1qxZk3Zg2NXVxR//+EdefPFFcnNzg22OzCRFrVYze/ZsIiIiUKlUqNXqAVu1Wk1nZyfV1dVUVVVRX18fUBuUSiUxMTFSAktKSgqZmZnMmzcPr9eLzWajq6tLsqWpqYmioiLOnj2L3W5Hr9cTEhJCc3MzxcXFcoKWjMwYUKvV3HTTTdx///1kZWUF2xwZmRmP0+nk1Vdf5Ve/+pWcKDdGIiMjeeCBB/jud787cYKI5TXw27/Cn96FRj/hnAD4YiQBFj8HdgkuXsbGn7BRHeAF+GAyb948/vVf/5Vvfetb4xPQJSMjMzb6BUP6rku917jA+JzlJBIZGZmLRRAEdDodCoWCzs5Oya9tNBpJSEjo0xITE0lLSyM9PZ1Zs2bJlW5lpiXt7e2cOHGCEydOUFdXJyUaHz16lKqqqmCbJzPDMJlM7Ny5k1tvvZV169YFdb5nt9v54IMPePfdd9mzZ8+oxW+XLFnCjh072Lx5M2vWrEGn0134Q1OMjo4O9uzZw+uvv84HH3xAV9fogzrHJyjaL4hVAPH8cxE4Ea7hd11W/tLVMKXnEEajkSVLlpCVlcXixYtJSUkhKSmJxMREDAZDsM2TkZnWuN1uDhw4wJ49e/j73//OmTNngm3StMKEgt8Ry02YgdHdD0TgGN3cSA1lfCVyrlQqWbNmDatWrcJgMBASEiI1r9dLZWUlZWVlnDlzhqKioj6iYv5JaP6BhSNNQlMDPyKSB7AQimLA97n4O5HQG1ffv6PzB+pUCrxq8vATewUN7vETSJfpFVRJTEzEYrGgVCoRBAGz2UxsbCyxsbEkJyezatUqFixYMG3WNDo6Ojh69Ci5ubnk5uZSUFBAbW0tDQ0NzKT445nChg0buOOOO7j66quxWCyj/rzH4+HQoUOSCMvp08FL5g0PD2fTpk1s3bqVq6++mtjYACc+yUwJRFHk8OHDvPfee7z77rsUFBQE26RJi8lkYs2aNezcuZPrr79+TNeAEeFywX/+AZ5+BWz2gfETgYq/HqpfkwHuvgF+fBeEhwbmWEHG6/Xy+eef8+abb/L2229PC1+vAvg5UTyABR3CiOcLvr/6m3RwN9aACfNe7HxhupGWlsbatWtZu3Yt2dnZaLW9giKdnZ20tbVRX19PYWEhBQUFnDp1irKyshk5bryTMH5OJLGoRnUOOxH5La38hEZcAfJryuewzFRm/H0uvQzVbwdenqeVx2mmbZD7il6v57rrruPGG29k06ZNo05c7+7uZv/+/Rw6dIjDhw9z5MgRWlpaxvYlZCaMb2HmJ0SShgYY+vy5GIbqswQXT9PC72ljMsnk+orWL126lIyMDObOnUtERARhYWGYTKZJm2c5JC/uhp89A3VNI4/5FgTQauDem+Cx+3sfBwJ/4RWv33VIoRjTfGrgtxnk+4l9X/etwbp1agrXL6LkG5djSIwjLCyMhIQE4uLiUKvVI/k2Mx6f8PUXX3zBwYMHKSgooKqqiqqqKnp6ghP7r1KpWLx4MatWrWLNmjVs3bqVmJiYoNhyIf7whz9w1113DbvPG2+8wfXXX3/Rx8rNzb1gLt2HH37Itm3bxnyM7u5uFi9ezLlz58bycVl4ZZyYqcIr0kvnt77XPgb+SxTFzybUsCAhCMLVwI+B1b6Xzm/9i3f0iKIYoLv86BlKeCUkJGRMwVwzBd8Cr16vR6vVotPp0Gq1aLVaIiIimDNnDnPmzGHevHlkZGTM2AByq9VKTk4OxcXFtLa2StXa29raaGtro6OjA7VaLf2G/oH3GRkZLFiwYEoPCnNzc3nppZf4y1/+MuoAUpmRExISIgU/xsfHExUVRVRUFJGRkURGRhIREYHX68Vut0vVFBUKBaIo4nA4+lR1FgRBatAbNGQ0GiXBI19TKpV0dHRgt9vp6OiQmiiKKJVKVCoVKpUKpVKJUqnEYDBIn42LixtTYonT6aSmpkYa7FdVVVFdXU13d7ckvKTRaIZ87HseGRnJ7NmzSUpKCti1SRRFGhoa6OjooLu7m66uLmnr/9hms1FSUkJxcTFVVVXY7XYcDgddXV3S7+71euns7MTrnf5VEmVmLpGRkdxzzz3cc889F628KSMjE3g8Hg9vvfUWzzzzDPv27Qu2OVOClJQUHnjgAe666y70ev3EHLSpFX70617BFY933AKFev3a3j7BCT65gzfo4BEaOYcrIMcKBtnZ2Tz88MNce+21KJVB04SVkZHpzwiCIX11E/zf+urSN9g18PwnRL/nAxbverlQQIOMjMzMwmw2k5qaKrWUlJQ+jw0Gg+RLE0WRzs5OBEGYuHGhjMwUoqamhtzcXEpLSyktLaW8vJy2tjZsNhvt7e20t7djs9lwu90X7kxGZggEQWDLli3ceuutXHvttZPyeuxLsvclCfaviq3T6Vi8eDHZ2dlkZ2ezdetWkpKSgmRtcOju7qagoIDi4mKKi4spKSmhqqqKyspKKisr+ySxQyCDon3rZOcf9397iLmJ16CjcvtqTmxfQWOPk9bW1gFrw/7b1tZWPJ7hQ1UVCgWRkZHSup9Go8Hr9UrX0LEQERHBkiVLWL58OVlZWaSlpZGcnNynEqaMjExwKS4uZs+ePezZs4d9+/bhck1d32uwWU0IfyGeZNQDgtVGgu8zrXi4L8qN8dotbN++nU2bNhEaOrLkWY/HQ3l5OQUFBRQWFlJ2OIdn3ynsEzQ30iS0SwjhJeJIQ9Pn/jTYdxrp9+299n8VHyKI4uBrC/0ccKLZQNsPbyV//UJKS0spKyvrs7VarRf8PiqVCrPZjNvtxuVy4XQ6B+yj0+n6CNv4mlarxePx0N3dTXd3N06nk+7ubmw227hWbxYEQYpBMRgMmM1mqZlMpj7PjUZjn5g6X9NqtYSEhKDT6VAqlfT09OB2u1EoFISGhmI2mwkPD8dsNo/b95hq9PT00NjYSF1dHVarlcbGRgRBkOJ9rFYr1dXV1NfXSzE6LS0tlJWVSYXVfKhUKrxerxyPEwQUCgUrVqxgy5Yt3HLLLcydOzeg/be2tnLs2DGOHj3K2bNnpfgym83W5/911qxZUqGwpqYm6urqsNlsUvyW/1alUknjcYPBIIkghYWFkZycTHJyMunp6SxevFheY5QZQHFxMbt37+b111/n+PHjwTYnaBiNRrKysli+fDnZ2dksX76ctLS08RcN++I43PETKK4cMI4ZgO/90c6JRzhuwmyE/7gfvnvT6Pqf5IiiSF5eHkePHqWkpKRPs9lswTZvRMxGzV9JYDm6Uc8X/Pcvx801VFPAwPHsaPEXrfAdJ5CiFWazGZ1ON6BArv9j3/jU5XJN6JjJYDCwcuVK1qxZIwldRkVFjaqPzs5OioqKKC4upqamhpqaGhobG/F4PNIY0P/xYM+7u7uluPienh4UCgWCIOBwOGhubu6TpOoT3xxsLjMRhKHgD8RxDaYLzhH9EQSfz1MAARwLUvnk3mvIa6iVEnPHOq8a73NYRma8GA+fy2CfG64/X5/tePk3GnlRbWfRokVkZ2dz2WWX8bWvfQ2j0TjKow6NKIrU1NSQn59PQUEBra2tGI1GQkNDCQ0NJSwsjNDQUIxGIxqNBrVajcfjobOzU2oOh6PP887OThQKxZB5PBpNb9poY2MjDQ0N1NfXS9u2tjZcLpfUnE7ngK0oin36UqvVA7a+uZlv7uYTaoiIiJB8N76tRqOhubmZpqYm6fj+x3M6nTgcDmkt25cD6Ht8oTWei2EOav5AHOvQj/icHG6fwfYfar/+xyvFzf3U8QHj53MbjujoaDZv3syWLVvYsGEDqamp02M9q9UGdz4C73x24TlLf/znMCsWwlv/D+JGN24aFJ/wiv8x/G2S51PTAo/HQ11dHZWVlVRUVHD69Gny8vLIycmhpqZmwu1ZuXIlO3bsYNu2bSxfvnzS+NiuvfZa3nnnnSHf991DAnFv7u7uxmg0Dntf+cEPfsDTTz895mM88sgjPPbYY2P9uCy8Mk7MNOGVfwZ+BugZXoDlBPAk8JooipNJ/O2iEQRBA9wCPAjM9718ftv/N8kF7hJFMXfiLOzLUMIrGRkZ/O1vf+N//ud/eP3112dUxXelUkl6ejpxcb2qcOHh4aSkpEhiKnPmzJGDr6YaXd1wthwqrVBdDy1t0NYBXU5wu3v/M0O0oNeBPqR3GxcFqYmQmgCxFzcI7+7u5u2335YWkmpra6dkgJBOp8NisWCxWNDpdINOrlUqFUajUWoGgwGDwYBOp0OlUqFQKHC5XHR2dtLV1SVte3p6iIuLY8GCBcybN4/o6GipD5PJhNFoRBRFaXIPEBcXR1JSEuHh4fL/4zRDFEVcLhcVFRXk5+dz6tQpKisrqa2tpaamBrvdTk9Pj+TY94na+BxE8fHx6PV6KajE12w2GxUVFZSVlcliSJMcs9nMokWLmDdvHikpKSQnJxMdHU14eDhGoxGv14vb7aaxsZGKigrOnj3LwYMHOXr06KROTImLi+OnP/0pt95666jVtmVkZILD6dOneeGFF3jrrbcoLy8PtjmTCo1Gw3XXXcddd93Fxo0bJ7ai4GsfwHd/Aa3twzuux+rU9v+8L4kYUQqq8J/ge4Df0MK/0UBwNLDHxuWXX87DDz/M5s2b5bG0jMxkY4KDIUXpJfF8f6L0ui+g4Vnk+ZOMzGRCEAQyMzPJyspiyZIlREREoNFo8Hg8tLe309LSQklJCUVFRRQVFdHe3j6gD7VaTWJiIjExMURHRw/ZEhISZN+bjMwEI4oiTqdTEmNpamqisrKS8vJyampqJB95dXU1JSUlIwpqFgRhRla6nClER0ezaNEiVq1axcqVK7nkkktGHZQfbHyJfWq1GrVajdFolO89wyCKIk1NTVRUVFBRUYHzs8Ns+utnRLZ1+QWEisMEoApfBf8LXyWdf/X+oAcNaACgrziCT4jF368fEhIirQcM5W8qLy9n3759nD59WipW4CsQ0NHRgSAIpKamsnr1alatWsWiRYuYM2cOYWFhw9olIyMzubDb7Xz++ed8+umnfPrpp+Tl5QXbpCnDlRh5nQS050W0+gerXSixQDz/TEpIUykRdv8Gvrbx4gyrb0I8XzXU54sSAYO2dNhx7Z2E8QwxqEf5ffz3EvDdyvrd88biV/N9btta+Mt/QXhfIZquri4pKdHj8UjNF98QExODxWLpc58TRZGenh6cTidKpRKtVjumdZf29nYprqKmpoba2lqam5sHxE74RFOjoqKIjo7GYrFIBcdMJhNJSUkkJSURFRUlJQrN1KJjU5mOjg7a29vR6/UYjUap+JkoilKibf9z1Jdo3NXVhdVqpaKiQhL/q6yslGJ2HA4H7e3tUy7+TaFQ9BEC0ul0eDweOjo6sNlsF51grdFoSElJ6dMWLVrE+vXrRyxaNS2ob4LPjvTGajY0Q7cLoi0QEwHLF/a28aLbCbsGSQz5zg3jd0yZYSkpKZFEWI4dOxZscwKKVquV4l19987ExESpxcbGTmwcBfRWjP/eY+DuGTiXH2pu35+h/IjjMG6aboiiKK3RDNbq6uomhQBaNjo+JIlwlCMeXw+VCANgx8sWKvmSbkaKQqEY8FuMVrTCFzesUChQKBSEhYURHx9PfHw8cXFxUktOTmb27NmEh4eP2D5//1tlZSVtbW2SePpgraOjQxIx6enpwWazDfB5abVaEhISSE9Pl4rU+razZ8+e9ONtURSx2+1S8QXf9c0nCumfE+C/7Z9n4HQ6aWxslMSVm5qa+rznE5f0iQz4o9fr0Wg0zPIoecdhIck72DnsS44+/8w3DxTF8y/1uy4CxEfDP16GtGTcbjcFBQWcOXOGc+fOUVpaisPhkGzRaDSEh4cTHh4u/Q6+ZnR08+2f/RnRzwsrAnffuZbKykpJkN9fwEZGJthcvM9lsHUFYbg3ezlfK8q/wFTvyoUAgoB3yxqUrz457ccOo0EUxUmzduYryNPc3Ex5ebl0ffPdE/2b3W6XrqEtLS1UVlYO2/dWDLxKglRkoP85ONLzMhD4j39eoI37qWO8s1Sio6NZvnw5mzdvZvPmzSxcuHDS/N0DRlk1bLoDKmoHn7PAwLnHYK8PbCdTeQAAIABJREFUch+/KOqbIHbDwNd9czp5PjWtEUWREydO8O677/LOO++Qmzvxqf7h4eFs3LiRrVu3smXLFlJTUyfcBujNgY6IiKCzs3PIfbZt28aHH34YsGNmZGRQVFQ05PuRkZHU1NRIImajIScnh0suueSCY3Cj0Yjdbh/sLVl4ZZyYUcIrAIIgpALPAlsZfIzjQwRqgd8BL4qi2DgxFo4PgiAkA3cDdwERDPyu0q5AF70CNU+JohhUD9pwwisFBQVA783j5MmTvP/++3zyySccOHBgyi2aQe8NyF990tdiYmJISEiQnFkLFixAq9UG21yZi6GiBj7YD/uPwZGTUF479OB1JGg1sHgurM/ubeuywDL2wDyv10tTU5MU6FBTUyMFA7a3t1NWVkZ+fv6IquBAb0BkYmIiqampJCQkEBYWJt3wGxoaaGpqwuPxDFDohl5xA4vFQnh4+KBb3+Pw8HBZJEBmWuFwOGhpaaGlpYX6+nqp2ktzc7O0ANLa2kpZWRlnzpyhra0t2CZPC/R6PUqlEqVSSVRUFGlpaVJFybi4OOLj45k9ezZJSUljchJ1dXVx9OhRvvjiCw4cOMDx48dHfC0dT8LCwvjRj37E97///UlZYVZGRmZk1NbWcuTIEQ4fPszhw4fJycmhq6sr2GZNKEuWLGHz5s1cdtllbNiwITgVBx/5b/jlC0M70oe7f4x0TjBEHyK+SjcDBVjycfI1qqiaxPIrcXFx7Ny5k1tuuYXly5cH2xwZGZnBmCTBkOL5fkRRRETkIxzcTA1tBD8QUEZmpmA0GomPj8disUjJMXPmzGH9+vVceumlWCyWEfdlt9uxWq00NDSgVCpJSkoiNjZ20lTJkJGRGTsej4eamhqampokoWpggKi5TqfDarWSl5dHfn4+ZWVlUisvLx+w5qdUKse1SpnM2Jk3bx4rVqxg5cqVLFu2jIyMjFHdE2SmIcPMIcR+z4cVVRkMOQBQRkZmktHQ0MDevXv57LPPKCwslGItpmL80niyCC0HSUGPYkDCon/42sBqsMJXglwifRPSRBFCdL0B7CsWjd04X9VQ/34FAXd3LqdPn+b48ePk5uaSn5/PyZMnaWpq4k7CeIHYftYPxP+OJyXWKRUQHYFg1PcWY9Kdbx4P9HjA6YIOB7Q7oMXW+/qAjoe4H/rus5lp8L+/v+iCTjIyUxFRFGlvb6euro76+nqp+T9vaWmRKn/39PQQHh5ORETEkC0kJGTYCt/d3d3Y7XZJrNQncOT1ejGZTISHh0tJ17NmzSIpKQmz2SyJrAyX0Oz1erFarZSVlVFRUUFrays2m61P6+joICQkhNjYWGJiYvpsfZXEJ1xkYbLgcsHvd/fOUU5eoMhjtAWu3wIPfxsSYwNrR/97jQ/PqcAeR2ZMVFZW8t577/Hee++xd+/eSTeOMxgMWCwWVCoVDoeDjo4ONBoNMTExUpx5RkYGCxcuJDMzkzlz5kwuP/uLu+E7P+t9PNq4CaWy939THjeNK6Io0tXVNSAZ2eVyodPpCAkJwev1Yrfb+7xvs9kkce7y8nKsVivNzc1jsiEJFcdIJYLec3fgnOErBhNbGex1AWjBw2rKKTmfjuwTxc3IyGDBggVSS0xMxGKxEBISIgl2tLe309jYSNuZYjbc+Mh50YqvMvJ//+z3CQsLk1pERARxcXEYDIYx/QYThSiKuN1uKV5WZnT4fj+n09lX7KWlDZbfAOU1vTv2m1+OsPO+n4PeYr0H/wIxkWM3eog5r/84xOPxSIJ//ZtPENHtdkvFRtva2mhoaKC2thar1dpHtNRgMEjjUb1eL42LNRoNOp0OjUaDIAiDHsvXuru7peP4WmtrKy6XSxLhBCQRT+gVn1EoFFRVVXHu3LkZFz85nRi9z+WrV0SFgNNsQDAbUZuNKA16BHnsIDMCWltbOXnypOTXdbvdUks6WcrXXvkU5XlxNv8xQd9zVBxyzcsNdAvgFES6EVGIoBJFNAiYUDDUHXno/4GvRIlyDHB/ihJviI6IiAgsFou09cX2+AtyKRQKSaTGN67zXX+hd03fbDZjNptJSUkhIyODiIiI0fycU4/JfB9/6mV46L8Gvt7fzyPPp2YElZWVvPvuu7z//vt8/vnnOByOCbchLS2NrVu3sm3bNjZu3IjRaJyQ477//vvs2LFj2H2eeeYZ7r333oAd83vf+x6//e1vh93n7bff5pprrhlVv+3t7WRlZVFSUjLsfiEhISQmJnLu3LnB3paFV8aJGSe84kMQhBuBXwNxXFiAxQ28DbwEfCxOkR9NEAQ9cC3wf4DN9H6voQRXOP/ex8D/J4pi2YQYeQFGIrzSn87OTvLz86UqBsXFxeTk5HDixIlxcYTHxMRgMBjQaDSEhIQMEIfo/1gQBLq6unA6ndIANCkpSRZTme7YHfDKO/DSm3DCT906kJcT30BWEGDjKrjt2t5FQN34nFutra2SaIovaNq3YKxQKKTF4tDQUKkqiYyMTODxeDwcPXqU999/n0OHDlFXV4fT6ZQq/Ewm9XFBEDAYDISEhEjN5XJJCsLjvWAtCAJz585l6dKlJCQkEB0dTXx8PPPnz2fevHlBSdBvb2/n7Nmz5ObmcvDgQQ4ePMjZsxcI8ggQ8fHxPPDAA3znO98JjjiBjIzMuNLT08Pp06epq6ujubmZhoYGCgoKyMvL4+TJk8Mq/U4VlEolWVlZXHfddezcuZO0tLTgGvTvz8Cjz/Y+Hk2gkEYNcVG9yuYXdGzboaEF6pt7K6L5c/6YIpxf/PDV/eylhh62UMkZJk+AWHR0NN/4xjf45je/ybp162ZusKeMzFRgkgZD9iZrQkOkmZujuvi0QK4uLTP5UalUpKamSmKfs2fPJiYmhqioKMxmM2q1GqVSiUql6tOUSiUKhQK73U5bW5sUZDbSbVdXF2q1GrVajVarHSBs3F/s2BcYGhcXh1arlZJITCaTPIeUkZGZMHyJZbW1tajVauLj44mMjEQURVpbW6UAW7fbTXt7O9XV1VRWVlJVVUVlZSUVFRWUlZUNVflFZoyoVCrmz5/PokWLWLx4MStWrCA7O5uwsLEXBZCZhkzSOYQcACgjIzOR+JL+/eMp+je3201zczMVFRWUl5fT1tYmrfW2tLTQ0NAgCQT4JzBNFWbPns3KlStZvHgxCzMy2PrwC2hOl39V5GKwQPRwMyyeB1HnK77XNMDxwt7rf/99/Z+nJEDuGxBqGpuxI0hC8yGKIvb3/4Hx2u+Dx+uX3Sn2qR4OAqJaBcszUWRnQlYGLEzvXQ+IjRwYGD8UogiNLb1B/+cqeuOOvsyHw3m9Amf+v4X/ZwAWzYXDr/aK08jIyMjMRF7cDT97BuqaRlcIQ6uBe2+Cx+7vfRwI/O81/vcyWXhl0tHd3c2RI0fYt28fhw4d4syZM5SXlzPW9AGVSoXJZJKSG71eb59ChQaDAbPZTGhoKGlpaSxbtkyKb/P57sdSOXnSsC8HNt/ZO38fbhyoUcOKhbBsgTxumuK4XC7q6+uxWq3U1dXR2NiI1+tFoVDg8Xhobm6msbERm80mrVvpdDq+9/qXJJbX+50bDDhPREHAHm6kTdWbjxHqcBLtAWkEfj77uFezUZCed6YnUfG3x9GHhRETEzP6Yp+jmC/IzGC+fj+89cnwc1fovaZZzotCN7cNvZ//mOHylfDJS6MXpPYxA89hr9dLQ0ODtGbuE0j0Fy9sb2+npaWFxsZGGhoaaGxsnLI+mOnEBvR8wiyU9BfhEvpc570qJfYFqbB0ASFrs9BkZcpjB5nx4eQZWPNP0NU9/HgWICEGli1AXLYAFqYhJMRAQnTvuTlMXp3L5aKlxortXCnOyhqMTe0Yrc0YzlURcqoYRXV9746D3Qd8tly6Aj75w8jPf5m+TNb7+L4c2HxH7xppfxQKeT41w3G5XBw5coRPPvmETz75hCNHjkx4ISOtVssVV1zBDTfcwFVXXYXJNMY1mhFw++238/LLLw+7T3l5OcnJyQE75pEjR1i9evWw+1x77bW89dZbo+r3lltu4c9//vMF93viiSf44x//SGFh4WBvy8Ir48SMFV4BEATBBPwHcA/0GZP32e381vdeA/AW8L/Ap6Iodoy3naNBEIQ04MrzbQPgU1wYStjX914T8JAoin8adyNHwViEV4bC6XRSWFhIYWEhBQUFnDt3Tqpi0NLSgk6nk9T4LtRCQ0NJTk4mNTV19I43mZmFywX/+Qd4+hWw2Qcu3o3V+dWfofo1GeDuG+DHd8lV22RkZiA9PT1UVlZSWlqK1Wqlvr6e6upqTp8+TUFBAdXV1cN+XqlUEhUVhdFoRKvVSgrhvseDPdfr9aSkpJCWlkZycjJmsxm9Xo9er0er1X4VRDcILpdLUsxVqVSSqrlPGb67u/uCW4CwsDDCw8MlYRen04nBYAiauMr/z959x0dV7H0c/5yEFEJvoVdpht6UchERRbFiARGscEWvYkOxYe/ifexYsV672BWVXhQRRUQIvfdQQiDUtPP8MZxka7JJNrub5Pv2ta/snmRnZvHszJw5M78prD179rBgwQLmz5/PkiVLSE5OZtOmTUFLv0+fPlx77bUMGzZMgd9Eyqns7GzWrVuXG4TFuU7asGEDOTk5uTuqpaWleU0cql27NtWqVaNixYq5O9pUrFiRY8eO5S5uC3bQr9jYWJo2bUqzZs1o1qwZbdq04eSTT6Zr164kJCQENa8im/wzDB2b/6IeMIPY/U9yH9iuXaNoee7a6z6wPW2+mTAIYJkJJbadk/v/0AI2k0k3NpJK+HaH79ChAwMHDuTss8+mX79+2jlHpDQoRZMhN3/2NFPnzWXlypWsX7+e9evXc+DAgdzrlfj4eJ/PgdxFTbt372b79u3s3LkzogJZSsmoW7dubj+jadOm2LbNtm3bcgOZRkVF5e705jyvUaMGjRo1om7duhw4cICUlBT27t2bO0na9REdHU3jxo1zg6y0atWKJk2a5Lt7rYiIBJdt2+zatYu1a9eyffv23Mmz69evZ/Xq1axatYq0tLSQlik2NpZGjRqRkJCQu7FDvXr1aNCgAdWqVXPbPTI7O5vDhw+zcuVKli5dSmpqasjKWa1aNTp06ECXLl3o1KkTLVq0oFmzZjRq1EgB9yV/pegaQhMARaS0sG2b9PR0UlJScoOx7N69m4yMDLKzs0lPT2fFihUkJyezcuXKgDa8qFu3Lk2aNKFJkybUqVOHWrVqUa1atdx7tPHx8VSpUoXKlSu7/bRtmyNHjnD48OHcx6FDh3LHVrKysqhfvz49evSgfv36eRm+9QVc+4D/cfSLTodxI6FHB++/OXgIPv8ZHn4FNu/wXrDutDNDzoRP/q9o/8iFWYR26DB0GGzaH1/tTFwsXHwGXHAaDOoLlUtot/uDh+DbWfD6ZzBvkXfZnZ8jzoX3nyqZMoiIRKp9+2HU/fDNTPe5lYHM13RtY3q0h69eMhtpFFc5XPBclhw9epSNGzdy4MABn3PWYmJicgOXV6lSxe1R0Jy5Mk39JgnUF1NhyG3+x5K6t4c7roYzenvPh1+7Cf73LTz3Phw87P964YZh8NJ9RSuf6nApyMwFZkzU3zncsC7cNALO7GOCjTq/y8iAOX/CB9/Bh9/nnbu+zuGHx8B91xetfDqHA2bbNgcPHmTXrl25wVic5zt27GDZsmX8/fffIb+3FCrOpjDOz+joaGJiYrzGhzzHjCpWrJg7r+LIkSO5QW5cf0ZHR7utOfB8xMfH07B6Df794g9U3rM/93zN7UGo7yDhkJUF3YfAP6t9nwcAvbvABf3hggHQulnJlGPVBtNfeutL2LDV/zk59ip4ZlzJlKEsi9R23PV6ylcMgPg41Yni5sCBA8yZM4fp06czY8aMQq+/L674+HjOOecchg4dyjnnnEOlSsE7JxcsWEDv3r3zDYrbsWNHliwJ7uaNtm2TlJTEypUr/f5NhQoV2L59O3XqBDZ++N5773H11VcX+HedO3fmjz/+oFOnTgq8EmLlOvCKw7KsjsBEoA++A5OAS1/d5W+ygYWYICy/Af/Ytp1SUuX0KpBlVQDaA12A7sAZwAmuf+Ly3F/AFRt4Fxhn23boZuoFKJiBV0RC7te/YOR9sHZzwTfvPCMcBsq1M+8rPSfNqpXh8VvghssKl76IlGlHjhxhz5497Nmzh9TUVGJjY6lcuTKVK1emVq1aVK9enShFvI0IBw8ezJ0smZycnBtIrqCALFWqVKFOnTo0atSIf/3rX1xxxRW0bds2RKUWkdIuKyuLlJQU9u3bR5UqVahfv36BuyhlZmaybNky/vzzTxYsWMCcOXNYt25dQPklJCTQsWNHOnfuTOfOnWnfvj3NmzenXr16kd0e7U2DE8+FPfvcB5DBPK9bC0ZdbAa2e3Qo2bL89je8+gl8PAVyco4XwT5+9W9j2/BrJTjl0IqSLcdx8fHxdOjQgd69e9OrVy/69u1LgwYNQpK3iARJOZ4M6SwiOnDggNfu1HFxcVSsWJGoqCi2b9/O1q1b2bVrV24gybS0NPbt20dqamruY+/evRw8eDDgYC4VKlQoVOCXqKgo6tevT/369alXrx5t2rShe/fudO7cmYSEhNzdE3NycsjJyXFbrOUs2HJ9vnv3bo4ePUpGRkZuQMv88nauH530fT0CWfRVkKpVq9KuXTsaNGhAvXr1cj9v1apV2bp1Kxs2bGDDhg2sX7+ejRs3cvjwYeLi4qhcuTI1atSgXbt29OvXj379+pGUlER8vBbZioiUd7Zts3v3blavXs3atWvZu3dv7k6HOTk5VKhQwe/DmWwa6CMuLo5GjRoV+TrXtm127NjB0qVLWbp0KWvXrs1tw/fu3Zvb5rrunGxZFomJiTRo0IDExESio6O9/iYuLo4WLVrQunVrWrRoQe3atalevbqCNkvRlONrCBGRSJGVlcW6detYvnw5O3bsICoqipiYGGJjY6lXrx5NmzalcePGod9oqsMFkLzWvX2wbahWBT6aAINOKTiNYxkmeMsH3/lfTDn5ebjw9MKXrzCL0P77Ntz5f77vCYy8CJ64FRJrFb4MxfHTPLjuIdiy071czs8578G/uoW2TCIi4bJhKwwYCZu2e8+v9DdP09dx1801Zr8LLYu5W64WPEt5pH6TBKr3cBNI17MejqkAL94L111acBope+CycTB7oe9zLioKZr0DfbsXvnyqw6UgZ42Gqb961ysAd40yi60LmHfH0tUw7HZYsd73ORwbA39+bgJYF5bO4aCybZstW7awevVq1qxZw7p160hPT/e5qWiOyxw+Z3zG2fQ0NjaWmJgYoqOjsSyL7Oxs9u/fT1paGgcPHnTLz9dz1yD+WVlZZGdnk5mZSVxcHNWrV6datWp+f/o6VqVKlfDP01TfQSLNm5+b//++riEH9IT/joNOIVybkZMDb3wGdz1rAs55lik6GhZ/UbS2ojyL1HbctU483p64SZmnOlHytX37dmbOnMn06dOZPn0627ZtC1ne8fHxDBw4kMGDB3PeeedRu3btIqeVkZFB165dC4wnMH78eB577LEi5+PP008/zd13353v3zz//PPccsstBaY1Y8YMzj777ALn0kZHR/Pbb7/Ro0cP2rVrp8ArIabAKy4syxoOPAk0xn8AFsg/oMlu4J/jj7XAdpfHTtu2fbRy+ZYpDmh0vEzOzxaYYCvtANdW2zP6QkGfYTnwH9u25xWmTKGkwCtSak2aDGMeMzup+bp5V5idEzwVJTiL874z+8CHE7yjfYuISKl08OBBUlJSciOCZ2VlUatWLerUqUPt2rW1iFBEIsLWrVtZuHAhmzZtYsuWLWzfvh3Lsqhfvz4NGzakSZMmdOzYkZYtWxIdHR3u4hbe/S/C46/7nvxx/3/gzpEFD7gHW/IauOJus8uzj4HtA+8+xuxqUfz1119s3ryZrVu3sn37djIzM48X3/0G7aFDh9i/fz9Hjx51yyYqKooaNWpQs2ZNTjjhBLp160a3bt1o1aoVDRo0oEaNGuV35y6RskITGoLOCUBy7Nix3IdlWW67+MTGxmJZFseOHcsN2uL8TEtLy11EHR0dTWJiIi1btqRp06bExMSUWLlt2yYrKys3EEtGRgaZmZm5OxkFMvnGtm2OHj3KoUOH3HbEdv3p+ty27dwdlBITE+nSpQsnnHBCoSb6ZGdnl87+hYiIiEhppWsIERHxZflaaH+B9zh6fBzMfd/sXl8Y9zwLT7/lu72pVxtW/mA2KCqMQBeh5eRA49Ng5x73zxIdDW89CldeULh8g2lvGpxzPSxc6v45APp2gznvh69sIiKhkpoG3YeaYJDge7fqgni2LQDNG8H8D6Fu0ReJaMGzlDvqN0mgNm6DFgO9rxeio+Hrl+CcfoGnlZ0NV98LH37v+3qhVVP452sTHLgwVIdLflL2QINT3Y8558irD8DooYGnlX4ILrwJZv7ue/F39/bw+yeFX0+ic1hKA/UdJBK1HgTrtuS9durPh24084PDZe0mEyxkg0sQBadsZ58C370SvrKVNpHajnvWiZ6BV6KiwteOq04slWzbZtWqVcyYMYNff/2VBQsWsGHDhpDkHRUVRd++fRk8eDBnnnkmbdu2DXh9gW3bXHHFFXz44YcF/u2iRYvo2rVrcYvrZdu2bTRp0iQ3oJ4vHTp0YPHixfnOVf3zzz/p37+/W4A9fx599FHuu+8+AAVeCQMFXvFgWVY8cCdwB1AZ9+Allsdr55gnf/+oOcA+4OjxxxGX5xZQ0eORAFTxV9QA8/UsswUcBB4FnrNtO/BtU8NAgVekVJo0GUY/aJ7n1wnwVf9GR0NiTaicABXjzCST+DgzEJyVbXbvST8EBw5B6n5z3JO/PJ0Oe7uWMPVNqFen8J9NRERERETyZGZC3b6w32UAzLahYjx8NxFO6xm+sh3LgKG3wXezvQe2O7WBxV8WOklnZ4zs7Gxs2yYhIUGBVUTKMk1oEBERERGRwtA1hIiI+PP8+zD2ae8FXi/cA2NGFC3NK++GD77zHVTrphHw/D2FSy/QRWhz/4RTr/L+u8duhntGF+2zBNOBg3DyMFi9Me+YU8bVU+CEJmErmoiUgOhCBq6KFJYFWUtLJu2Lb4Gvpnv3+z1fR0VBzeOb1+1N8/93rguk+p8E098u/EJnhxY8B1+LgeEuQdFYFqz7OdylKHnqN0mgXv0EbnzU+1y57zp4+KbCp5edDWdfD9Pm+75eKMpCadXhkp93voRR93ufH6OHwKsPFj69w0fglCth8Qr39JyfL42HGy4rXJo6hwtHfYzwUN9BIs2fy+CkS73PyaKMPZaErTuh52WwY3feMee+3OYZUF9rBgMSqe24Z53oBHxwXoe7HVedWCbs2rWLhQsX8vvvvzN//nx++eUXMjIySjzfOnXq0Lt3b1q2bEnz5s1p2bIlHTt2pF69ernrEvbs2cOsWbN46aWXmDdvXoFp9u/fn5kzZxa/cKdd4/Pw30v+JjU1Nd+3Nm7cmFYtW/n83YH0AyxZsiR3k9z8VK9enS6du+T+W/z+++8cOnzI6+/isQ71JmHh8Zc29vIBBSYuAVHgFT8sy0oEHgJGATF4By/B4xg+fh8oJ52ivs9f3p5lzgTeAh6xbXtnIfMKCwVekVJnzh9w+igzaOtrtwSnzo2NgR7tocuJ0DUJ2reCBolm551Ad+21bdidaiJ9r9lkdrNfuBQWLIHM4zGVPG/yOfl3aA0LPjYLQkVEREREpGh+mmcma3j2/d98GEZeHN6yAWRkQL+r4Pd/vMv412To1Da85RORyKYJDSIiIiLijyYdiy+6hhAREX9GjIOPp7i3EU3qw9qfoEKFoqV55Cj0GAor1rsft22oEA1/fwlJLQNPL9BFaHc/CxPecv+7Fo1g1RSzqCES/LHULLpwOJ/lydvgzlHhK1dRqN8pkr+oUrqhaUktDpq5wMzd9Ddvs2Fds0DuzD7QsU3e7zIyYM6fJqDXh9/nzbH0DL5iWfDwGLjv+qKVTwuegy+qnXtwnNKivPx/V79JAnXNvfDeN+7nSu0asHEaJFQsWpqpadDlYtia4n7ctiEhHlZ8D43rB56e6nDJz/UPwRufu58flRPMOVyzetHS3LgNul0Caenux20balSFNT8WLm2dw4WjPkZ4qO8gkeahl+GRV93PyXq1zZhPpKzF+/kXGHSdd/3+/N1w0+XhLVtpEantuGedGGmBV0B1YhmUnp7O9OnTmTJlClOnTmXz5s0hzb927drExcWxf/9+Dh48WPAbjouNjWXJkiW0bRuEdRFOP9BDjm1j2zkFvt2yoohyeb8N2AG+N7cIUdFuQSKyc3LwF8oiGisHEzvCxl4eIR2m0q+Idy7LPtu2dwE3WJY1AXgQGIH597LxHYQl9634O4u9WR4/XdMIVEHvtYB0TMCVZ23b3lqItEWkMA4dhmvGuwddgbxBl7hYuPgMuOA0GNQXKlcqXn6WBYm1zOOkjjDiPHP84CH4dha8/hnMW+R9AWXbsGwNXPcQvP9U8cogIiIiIlKe/fxr3nPnRmv7VpERdAUgNhbeexLanw/ZHgN238xU4BURyd+Uud7HmjeMnJtiVSvD+0+637xzfDEtcsopIiIiUhZt3FZ6Jx1LydE1hIiI+LPGZXKuM3dlyJlFD7oCZnHD+09Br8sgK9v9d1nZcOtTMHVS0dP3Z8nKvOfOZ7nygshZAATQo4OZlzRlrnv/Z+HS8JWpqNTvFClYaTvfSvL7POFt93xc64+7RpmgKbGx3u+LjYUzepvHHdfAsNtNYC/X9zvPH3sNBg8w94QlcpSm70Fpa9OKQ/0mCdTKDXnPnXPl0rOKHnQFzELWtx+Dgdd6/+7IMbjjGfj02aKnL+IqeW3ec+ccHnpW0RdrAzRrCBPvh+Hj3IPAgVnEfd+L8MoDxSu3FEx9jNBS30EizeIVec+dc/KK8yMn6ArAmf+Cvt2TppdMAAAgAElEQVTc1w4C/LZEgVcCFantuGedCCaNSBorVZ1Y5lSpUoULL7yQCy+8ENu2WbNmDVOnTmXatGnMnDmzUMFQimLPnj1Fet99990XnKArrjy+ZwH3Cu0ccmzLbTk32AG/37KisIqatwRNVLgLEOls295o2/Y1QCtgInAIc64656vt8sDld74eXsn7ebjKL72CypAM3AQ0tG17rIKuiJSwVz/xfcPftmHkRbBpOnwwAYacVfygK/mpXAmGnwtz3ocpr0Gjuu43Ep2fH34PvywquXKIiIiIiJR1S1e7v7YsuPzc8JTFn9bN4OKB3gPtf5Ti3S1EJDRK04QGzzpON+9EREREQsOZ3FUaHlLydA0hIiL+bN3p3R73P6n46XZNgnEj8+p11wnsMxbA97OLn4enVRu9P0vfbsHPp7iGnJn33Jkn5HlPozQJd19S/U4pLWw7sh8lKWUPTJuf9z10nSv52oPw5FjfQVc8dWgNCz6B0072Dt4CkJEJI++LnEVOIpFM/SYJ1BYf1wun9Sx+ugN6wbWXeF8v2DZMngrzFxc/DxHwfQ6f3qv46Q47Gy483f1a1zmHJ02G5Wvzf79IaaO+g0Sa5etKZkwz2Iaf4/7att3v2Un+IrUd91UnRiLViWWWZVm0bt2aMWPG8M0335CamsrcuXMZP3483bt3D3fxcrVr14677ror+Al7jPtbx3/6Cwjh/rDJsc3D/BfIewArKjcf10e+75ESocArAbJte5Nt2zcBDYFrgelADvgNgOLrvLWK8PAqip98nL/fDbwC9LRtu6Nt2xNt2y7ZUFIiAjk58Nz73p3hqCh49wmY9Cgk1gp9uc7qC399ASd1cO+sg3k9/oXQl0lEREREpKxYs8l7YLt3l/CUJT+DB+Q9d65Vlq8LX3lEpHTQhAYRERERESkMXUOIiIg/B3xMXWvSIDhp33c9tGhknnvO2bnzv5CdHZx8HPsOeB9rGqTPEkxdk7yP7U0LfTlEpGT17gLRUXmBTQIJAFRWAxNNmeu9WZ5lweghMHpo4dKqUgm+nZhXl7oGcQFYlGw26ZPwa1jXd2CfcAUAEnfqN0mg9qd7H3P6+MX19O2QWNM895xDP/bp4OQhkrrf+1jrZsFJ+6Xxpm/iKTsHbp8QnDzEm/oY4aG+g0QaX/V7yyahL0dBenTIe+70d3bvC09ZSqNIbcd91YmRSHViuRETE0Pfvn157LHH+OOPP9iyZQvPPfccvXoFIVBREVmWxaRJk4gNJNhyoGIq+O0HWlgBBYAoCssJ7iIRoUK4C1Da2LadDrwFvGVZVm3gEuBSoDcQ4/qnlFzQIM9v0DrgJ+AbYKZt2zkllK+I+PPLX7Bjd95FinOj7ZExZie3cKpVHaZOgpOHweqN5phzM/CXv2DdZjghAi/+REREpHSKbh/uEhSNZUGWdraVQkrzMfmjQWLoy1GQDq28j+3zcbNAwqPFwHCXoGgsC9b9HO5SSEnShAYRERER8adhXdiWYp57LljwR5NEyj5dQ4iIiD9HM7yP1awWnLTj4+CFe+G8G7wXxq/aaBbGjxkRnLwADh32PhYXxEm9weLr39dXAJxIp36nSP5++cB8t6fMNfXdvEV5QU78fU/K6qLQ3//xPlapIjx+S9HSS6gIk5+HbpeYe8Kewb3ufxGGDYKa1YteZim+LTMheQ18NxvenAwbtpbf70AkUr9JAuXreqF2jeCkXa0KTLgDrr7X/XrBtuGPZfDR9zD83ODkJeXXkWPex+oE6RxukAgP3WgWZ3uew1Pnw0/zzEa9ElzqY4SH+g4SadIPeR9LqBj6chSkro9N4nVOBi5S23FfdWIkUp1YbjVq1Ihbb72VW2+9lc2bNzN58mQ+/fRTFi5cGLIyvPDCC/Ts2TO4ie5bALMWwvez4cPv4eDh3H6gZdtgReEZvqH4dyRMSBfLT3+yoDDbxc5evCjwSjHYtr0HeA14zbKseOAkTACW3kAvwEfPJe/tBSTv74TPAZKBBccfs23bXl+YcotICZgy1/tY84Zw56jQl8WXqpXh/Seh52Xev/tiWuSUU0REREo/3UCS8uTwUe9jMRE41FKtivexg6VkUL482Lgt/xvzkUqT18s+TWgQEREREX806Vh80TWEiIj4Ex/rPYH9qI8J7UV1Tj8461/w0y/eC+MffgWuON/3OHlRVErwbjdS95sAIZHk8BHvY/FxoS9HcanfKVKwqpVh2NnmsWAJjBwPKze4f09cF/cMHgA3Xx7eMpeE5LV5z53POvSs4gVGadYQJt4Pw8d5B/dKS4f7XoRXHiheuaX42rUyj7v+DZ/+CLc+CbtS/X8HBvSEEQqyEBLqN0mgYmO8rw8ys4KX/pUXmABlC5d6Xy/c8xxcPDAyx7Ck9KgQDRkee2fnBHEv7Zsvhzc/N8FFPQNSjvsvDOwDUVHBy08M9TFCT30HiTQV473n2e5Pj7zNGX2Ns1aIDn05SqtIbcd91YmRSHWiAE2aNGHs2LGMHTuWrVu38u233/LVV18xe/ZssrKCeG13XPXq1XnxxRe54oorgp42CRXNPadz+pkgnhM/gkdfM3WtS/CVHDsHCxMk4g+O8iNF+762bduWIUOGUCHaf739ysSJ7N69x+t4ZaJ2j6PWxCJlLPmKwNVApZNt20eBuccfAFiW1RBo7vFoClQDEjwe8cAx4Mjxxx5gB7Ad2AKsPP5YZdu2jxZJRMJqycq8587gyZUXQD6NXsj16ACD+pogMa6d9YVLw1cmERERKZtK22J8TcCUoqpayUyqc7U7FRrVC095/PEVeb9ifOjLIfkrTXWn6s3yQRMaRERERCQ/mnQsnnQNISIi/lSp5B14ZcduaNE4eHk8fw90uACyst2Pp+6HB16CF+4NTj41q3m3d0tWQofWwUk/WFZt9D5WPUjBZ0JN/U6RwPXsBIu/hLNGw5w/fAcpapgI/XqEp3wlactO73ttp/cqfrrDzobPf4avpnsv1p80GcYMh6SWxc9His+yzP+vAT1hwEgTjMfXd6Btc7hqcHjKWN6o3ySBqpzgvWA4ZY8JgBUsL97re/PSrSnw9CR44Ibg5SXlT+UEc+3pak8aNA3SORwdba55zxrtfu1j27B8HbzyMYwZEZy8xJv6GKGjvoNEmprVvAOvLFsDJ54QnvL4s36r97FgBaEuDyK1HfdVJ0Yi1YnioVGjRtxwww3ccMMN7Nu3jylTpvD1118zc+ZMUlNTi53+yJEjeeqpp6hTp04QSluAKpXg7mtNIOszrzXXj8eDr1hWFNgmSNNCjvAI3oFR8mNZFg888ABD77+f6ALWn7/62Sss9xF4Bdg9zk55uFAZS0AUeKUE2ba9DdgG/BLusohICfOMPAjQt1tYipKvIWeawCuQ11Ffujq8ZRIREZGyLdIX55emQAcSeWpW8w68smg5dEkKT3n8WbbG+5iv3Z1FRFxpQoOIiIiIBEKTjsWhawgREfGnQSKk7HW/J7N4BfTpGrw8Wjczu4f+37veC+Nf/QRGXgSd2hY/n5ZNYMNW98/yxTS4/Pzipx1M38/Oe+5M5m/dLFylCQ71O0UCExcLXzwPrQaZ+5jl5X645yIpCF6999J4mP6b94K77By4fQL8+EZw8pHgqFMTvpsI7c43gd/Ky3cgEqnfJIGqV9tscuR6rixdAyd3Cl4ePTrA1YPhna+8rxcmvGU2Ww1moBcpXxJrevdFlq+Dbu2Cl8fAPnB+f/h2lvc5/ODLcOkg0wZKyVEfo+Sp7yCRpmkD2LTd/Zz8dhYMOSt8ZfJl6q95z51z8oQgBrwu6yK1HfdVJzr/fyOJ6kTJR40aNRgxYgQjRowgJyeH5ORk5s6dy5IlS9iwYQMbN25kw4YNZGdn+03DsizatGlD//79GT16NJ07dw7hJziubQv4diL0GGrGAy0L8020sIuwVqpGjRp8+OGHDBo0KNgllSCJCncBRETKhH0HvI81bRD6chSkq48FoHvTQl8OERERKbt6d4HoKDN45gygFTTI5/xNOB4ixXHiCd4Tej+ZEp6y5OfrGXnPne9l2+bhK4+4a1g3r8505Rzz9RAJhZZNvM+3L6aFpyz50c07ERERkcjgTDquGGdea9yl/NE1hIiI+OOrnv1udvDzeeAGqFvL+3hWNoy6H/KZvBuwXi6LP53J8d/Nhn9WFT/tYNmWAh98590f63JieMoTbOp3ihSsZnW4bmj5uqd05Jj3sTo1gpN2g0R46Ma8f0/X3amnzoef5gUnHwmepg3h6gvL13cgEqnfJIFq3dT7mLPJaDA9eRtUrex9/PBRuPaB4Ocn5Uerpt5tjusi+GB59i4TZM9TWjrc/ETw8xNv6mOULPUdJNL4Oic//xk2bgtfmTztT4e3v/Q+JzsHIQB1eRGp7bjn+eeIpDZIdaIUQlRUFB06dODGG2/kjTfeYNq0aaxZs4aDBw/y119/8c477/D4448zYcIEXn/9dT7++GPmz59Peno6K1as4JVXXglP0BVHp7YmSNLx76AFWFhERUXRvFlgazLi4+MZNWoUS5cuVdCVCKfAKyIiwXDosPcxXx3icPO1q73nznMiIiIixfHLB7BnPnz0DPTtljfAl9+kx/yCC4TiIVJUvm6szFoIsxeGr0yeVq6Hz37y/g52bx+e8oi3LTNh6dfwxK1mByXVmxIpNKFBRERERApLk47LN11DiIiIP91ddgd12ogZC2DFuuDmU6WSWUzpuTAeYPEKGP9C8fMY2Mf7WE4ODB8XGfNvMjPhirvN4lFP554a8uKUGPU7RQo24txwlyC0KkR7H8vJCV76N1+et7GF54Kncf8Nbl4SHFcPDncJRP0mCVQnl4XBzvXCD3Ngy47g5pNYC+6/3vf1wszf4fn3g5uflB8dWuc9d87hr6YHf3PcFo1h7FW+g8F99hN8/ENw8xPf1McoOeo7SKQ5raf3sYxMuPJuyMoKfXl8Gf2g743kB/UNfVlKq0htx33Vic77ImFMVHWiBEl8fDxdunTh6quv5t5772XcuHGMHj2aYcOG0atXLypVqhTuIua5dojXIQuL8847l7lz5zJo0CBiY93Xk1evXp2BAwfyzjvvkJKSwqRJk2jYsGGoSixFVCHcBRARKRMqJXhfzKfuNzuXR5LDR7yPxceFvhwiIiJStlWtDMPONo8FS2DkeFi5IW+AEPKeWxYMHmAmKomUNmef4j5R2zmvr7gbfv/E7H4WTgcOwrDbzW6enguKzu8fnjKJb+1amcdd/4ZPf4Rbn4Rdqf7rzQE9y9+EWQm9gX3gkVfdjzkTGuZ/5Hs3sFByvXnnWcfp5p2IiIhI+Fw9GF75ONylkHDQNYSIiPhzRm/vYzk5ZmHA7Pcg2sdi+aK6+kJ47VP4Y5n7mKptwzNvQ7ckGHJW0dPv3QXatYTlx4PGOGmvWA8DRsI3L4fv3kD6IRhxpwkO79nWNa4Hp3QPT7lKivqdIvlr18p897emhLskoVE5wczXdLUnzQRqCoboaHj+HjhrtHf7snydqY/GjAhOXhIc3dtDYk3YvS/cJSm/1G+SQJ3RCx54yf1YVjbc9Dh8/XJw87rlCpj0BazemPf/3jk37/o/6Jqk//9SeAN6wuOvux87cgzufhbefCS4eY2/Dt7/Frbv8j6Hr38YOrWBpJbBzVPcqY9RctR3kEhzei+zkd6m7ea1c07+uhgG3wSf/BcqhykgQE4O3PgofP6z9zlZq7opuwQmUttxzzrRUziDr6hOlPKqTxeoVsVnQLi+ffvSt29fcnJyOHLkCFFRUURFRREbG4uV30asEpEUeEVEJBhqVvNuNJesdI98GAlWbfQ+Vr1KyIshIiIi5UjPTrD4SzMBac4f7kEEHA0ToV+P8JRPpDg6tYWTOpgJ3A7LMrsn970CvnzBfWeeUNq6Ey6+Bf5ZnTew7Xz32jaHHh3CUy7Jn2WZoFUDepobxslrfdebbZvDVdpBRUqYJjSIiIiISFFo0nH5pWsIERHxp2MbaNPcLG6EvDZi/t9mh9j3noQKQZzG+PpD0H2oWYDgOYH9irshLhbOP63o6d9xDVwz3nvh/aJk6HABPHITjB4CMTFB+TgB+WYGjJ0AG7e5H3fKd+co7zawtFO/U6RgvTqbXZPL2vffl8Sa3oFXlq+Dbu2Cl8fAPmZzi29nebcvD74Mlw6COjWDl58UX+8u8PWM8vEdiFTqN0kgenRwDxbmnCffzYY7/wsT7gheXhUqwKsPwGnXuJ+XlgWZWXD+jfDzG3Byp+DlKWVfny5mkbvTF3HOrbe/hM5t4cbhwcsroSI8fzcMuc37HE4/ZOZoznoXTmgSvDzFm/oYJUd9B4kklmU2FR37tPc5+eM86HwRvHAvnNMvtOX6ewX85xFYuNT9uFO+264M7XektIvkdty1TvRk2zDxI9WJIqEUHW3qjClz/Z7nUVFRVKoUpqBcEjRR4S6AiEiZ0LKJ90K4L6aFpyz5+X523nOnU9u6WbhKIyIiIuVFXCx88TzUqGpea0BNypLx1+VdCzg/LQs2bIWTh8G4Z2B3aujKk5UFL/wPOl0IfyZ7/96y4L7rQ1ceKZo6NeG7iVAxzrxWvSnhcsc17nWc54SGiR+ZXeND6ZsZ5sb1D3Pcj+vmnYiIiEjk6N0lvLtsSfjoGkJERPz5z6W+24hPfoR/XW4WDARLp7Zwz7W+x+4zMmHoWHj1k6Knf9Vgs6GA6+dw2pJ9B+DmJ6DJALjvBbNpU0nZnQpvfAbdLoGLbjH3JVzL4jzv3BauG1py5Qgn9TtF8tflxHCXIHRaNfWuD6b+Gvx8nr3LzH/wlJZu6n+JLOXpOxCp1G+SQERFwbVDfF8v/N+7ZtOh7buCl9+pJ5kFqq75gHl+4CCcORqmzMk/DRFXMTEw8iLf5/DNT5gF+0eOBi+/iwfC4AG+z+GtKdDvquBeY4s39TFKjvoOEmluGgEdj2/I7hl8Zf1WE7St68UwaTKkppVcOXJyzDXuRTebgNMLl7qfk075mjeEW64ouXKURZHcjrvWib6oThQJPfUDywXL1o0niWCWZSUDSZ7Hk5KSSE72sYBMJFweehkeedW90xgVBX9NNjv3RIJtKdDmbDhyzLx2OrZjr4JnxoW3bCIiIlI+3PscPDXJe6DtxsvgxfHhLZtIcVxyK3w5zftmn/M8NgYuOh2GngWn94JKCcEvw6Jk+GIqvPMV7Ep1H4x3LUv/k2D628HPX0rGmMfglY9Vb0p49b8a5vzhffMYzPPEmjDqYhhyplnUUhJ2p8JX0+H1z+Dvlf7ruM5tYeGnJrK8iIiIiITPo6+a3b5d+5C6jik/dA0hIiK+ZGRA0nmw4fhOmL7aiFN7mPbhX92gTbPi7dSZnQ19r4AFS7zzcfK+4DT47zho0RhS9kD9ft5tRfYy3+lv3g69hsPOPe5/7zx38gKoVxtO6Q5dT4T2rczmTo3rQ3xc4J9n337zb7dsDfyzCub8CYtXmLw883PYNlSpBL99BEktA8+rNFG/UyR/P8yB824oH9+R+1+Ex193r4sT4mHTDLNzdTCNfx6efNP7msey4IOn4bJzfL+vsG2NFN83M+DCm8vHdyCSqd8kgThw0Mxx33V8YyPP+rViHAw7Gy4ZaILvVa1cvPwOH4FuQ2D1Rvf8nOdRUXDz5fDgDVCtiupwKVjKHmhzDqQfMq89z+H6deD6S8053LZF8fPbmwYdB/uvW+Ni4emxMGaEOZ91DgeX+hglS30HiTRLVsIpV8LBw+a1v3MyOgq6t4d+3aFrkjknT2gMsT6CdxYkNQ2WrT1+Tv4B0xeY/pJnng7bNvOUZ7wNfboW7XOWZ5Hcjm/daTYBdf7WlfMe1YkioTP5ZxPcP4T9wHbt2rF8+XJfv1pu23a7Esu4HFPgFYloCrwipcb8xWYHHs+Lp6QTYP5HxR/gLa7MTBOBe/ZC7wGzme+YCIgiIiIiJS15DXQYrAACUvakppnrgVUbzev8bvZViDY3VZwbKy2bQJP6ULcWVK+afz45OZCyF3budhnYXg3zFsGefb7zc9i2Gfxf+Ck0rFvsjywh8ucyOOlS1ZsSXprQICIiIiKFpUnH5ZuuIURExJ8Zv8FZ15mxbvAdfMVhWWbcvEolGNi7aP2I7bugx1D/bZJlmTH7SwZC/5Nh9IOFW4S2dLUJOLbvgO/fu87L9GyLwHy2WtWhSgIkVDRliY6GzCw4lgEZmZB2wNwXyMzyn7av9J0J+lNeM5+trFK/UyR/nvfnoex+R2YvhNOu8a7HR14Ebz4S3LwOHzELsrbvcj9e0HWGFjyH3pKV0OXi8vEdiHTqN0kgPv0RLrvDd+BE57nzs15taNrAnBt9u8L46wuf38r10PMy7wW2rs+rVzGLbE/pDoOuUx0u+XvpA7jlyYLP4ZrVoE1zaFrfnMPd2sG1Qwqf3/zFpv/j1Hu+zuGWTeCOa6B3Z9/zNnUOF436GCVPfQeJNLN+h7OvN+cO+L73Bd7ni2VBnRpmnLNWdXNu5p6TUR7nZLoZx9y5Jy/IiyO/PJyyfDjBBKqToonkdrx2dbjoFu80oqLy/t6hOlGkZP21HLoPCWk/UIFXQk+BVySiKfCKlCodLoDl6/JeOx3drknwzcvQIDE85Uo/BCPuhO9ne0e0bFIfNkzz3bEWERERKQlNB8DWFPNcEyClLNmyA/pdBRu3+e5fFzSw7RyvnGB2X/M1sH3oiPcgdiBp27YZ7J/9nlnEJKVLvb6w2yWwjupNCQdNaBARERGRwtCkY9E1hIiI+PPsu3DHM96TyJ3nniwLzukH304sWn5LV8OpV5mFC/7y8/U60EVo6zabwB/L1uQ/96agOZq+2quCeM4Bcv0cdWvBVy9Bz04Fp1Oaqd8pkr+Dh6DqSe7Hxgwvm9+RzExocCqk7s875tSNL94LNw4Pbn5fTIUht7m3GU6ejerCrHfhhCbu71HgldDbnw41erofK6vfgdJA/SYJxO1Pw3Pvh+56IZBF1MW5XpDyZ/g4+GRKweewa71UnHP44x/g8rvyXvs7hy3LBEFVPyQ41McIDfUdJNIsWAKX3GqCcPqq553X/gSybs/f+/2917bNfOP3noSLBxacvuQvktvx7Gzv9zuBV1ypThQpWXvToE4f92Ml3A9U4JXQqxDuAoiIlBl3XAPXjHcfULVtWJRsgrI8chOMHgIxMaEr0zczYOwEs/jTlVO+O0cp6IqIiIiEVq/O8NlP6oNI2dO4Piz6HC69Hab/5jtyvcPfQLVtw4GD5lEYBd1YbNscvnvFe3KflA69u8DXM1RvSnh1aA2/f+J/QkNBdZxr3aabdyIiIiJlX7OG5qc2gSm/dA0hIiL+jL3aBNMa+7R57W+RgnOsuDq0hhlvm93pU/YGvoAzUCc0MW3e/S/CSx+agGC+2qGCxvELu6jC1985aQweAK/cD/XqBPbe0kz9TpH8Va4ES74yi2wddWqGrzwlKSYGRl4Ez7ztPX/z5idg3RZ4/BaoGB+c/C4eaOpb5x6ea32/NcVs2PH9K9D5xODkJ0VTrYrZNNH1O9CicfjKU96p3ySB+L+7IMeGF/7nfT6UxPVC/5NNPXHRzXDkmO/81NeUwnj3cRPI58tp+Z/DnoF9iuqyc0yg6msfzAus4lmfutadvq69pfDUxwgN9R0k0vTsBH9Nhhse9V3PQ/4BUgp7f6sgtg3d28Pbj2lDxmCJ5HbctS7yRXWiSGjUqg4v3GOuWx2d24avPFIiLFsDARLBLMtKBpI8jyclJZGcnByGEokUoP/VMOcP75t3YJ4n1oRRF8OQM6FTCTWqu1Phq+nw+mfw90rfEbctyzTqCz81E1pEREREQuXpSXDPc+79Je08J2WJbcPEj+ChiWZHtVDdrPYVOT8qCm6+HB672ewOLaXTo6/Cgy+r3pTIcORowRMa8lPcXT0809HNOxEREZHI9d0s70nHHVqHrzwSHrqGEBERf2YugFH3w6bt+S9IKO4O9o4tO2DoWPj9n/zzg6LvYL9mIzw4Eb6Yato9J6388glUfu9xftc1CR69CQadEni6ZYH6nSLiSNkDbc6B9EPmtev8TcuC+nXg+kvhkoHQtkXx89ubBh0Hw8497vk5z+Ni4emxMGaEuW+bsgfq9/Oex1mYtkakrFC/SQry7ldw29OwPz001wt/r4CLb4UNW0vuekHKD9uGhyfCk296j4l6/l2wzuEf58KIOyGtgO8M6ByW0kl9B4k0sxfCvc/DgiXmtb/zp6jzh/2dl87xBokw/jq4bqi53pTgKQ3tuDMWGhujOlGkHGjXrh3Lly/39avltm23C3V5ygMFXpGIpsArUups3g69hvu/mQZ5r+vVhlO6Q9cTTXTJlk2gcX2Ijws8v337YcM2s1PcP6tgzp+weIV7FEJfF1pVKsFvH0FSy6J/VhEREZGi+GEOnHeDAghI2bdvv9lRbdIXsGefOZbfQLS/3/v7+4IG8wcPgIfHKJJ9WfDNDLNDuOpNiSSa0CAiIiIiIoWhawgREfHlyFF483N4/n+wcVvecc86PRiT18FMSH/5Q3js9fzH7aF4i9B27oY3PocvpsHS1XnHgxWo3fW+QuUEOL8/XDsE+vUITvoiIqXZSx/ALU96b5jned1Qsxq0aQ5N65u5lN3ambq0sOYvhtOuybvO8ZwvallmXugd10DvztBhsAKviLhSv0nys3M3THgbJk2Gg4fNMV/nRrCuFw4dhvtfglc+hozM/BdQqw6XQCxdbTZa+tYlWGRJnsPbd8GYx+DrGb7zUuAVKQvUd5BIsyjZbNT4zUzYdyDveDA3bHStv3t1hmsvgWFnm2CfUnJKQzu+bZbqRJFyQIFXQk+BVySiKfCKlEpLV0P/q90vmlwVtLCySiWoVR2qJJhd6StEQ3S0uTl3LMMM5qYdgJS9eTfsfKXtK31nJ4Upr0H/kwv90URERESKLXmN+2QiUAABKduOZcBnP8Hkn2H6AjOR3OT8GGwAACAASURBVBGMwW3Xa4CWTWDoWfDvS6BZw+KnLZFhyUrocrHqTYlMmtAgIiIiIiKFoWsIERHxJScHfvsbfpwH8xbBivV5gVEAzj01OJPXHUePwcc/wOufwcKlecdd26NgLULbvB1+mGs+31/LYdVGyM4uenqVE6BjG+jTBU7tAaf11CILERFPw8fBJ1O8A5w4zx2u9X5xFkp9/ANcflfea3+b9Tm7Uivwiohv6jeJPwcOwnez8q4Xtqa41+fBvl7Yvgte/xTe+tI8d5TE9YKUD2s3wac/wo+/wMJ/IMujbgv2OfznMnjpQ/j8Z3P9C77XlOgcltJOfQeJJNnZ8Otisznpb3/DklWQfqj46TZIPH5OnmTueTWsW/w0pXBKSzuuOlGkzFLgldBT4BWJaAq8IqXWus1mR/Jla/KfKFhQHewvQmGg7/G8iVe3Fnz1EvTsVHA6IiIiIiXh4CGoepL7sTHDFUBAyoejx2DW7/DbEjOw/ddy2LmnaGlViIbWzaBzW+jT1Qxsn3hCUIsrEWJ/OtTo6X5M9aZEIt28ExERERGRwtA1hIiI5CftAOxKNbvOx8eV3Pj31p0wZS7MWACLV8C6Le6L5IO9CO3IUZPHthSzYHTHbvMZjxwz9xAys8z4f2yM2bipRlVIrAWN60GLxgq6LiISiIwMGH4nfDktsLmbllX8Harf/QqufTBvF2zXeZuueTlcd6jWgmcR39RvEn8OH4HVG49fLxyBmtVKJuhuTg7MX5x3vbB0Td7iV1AdLkWTmQlrNrmfww0TYeig4Oe1b78JADBlnjmHd6e6/17nsJQ16jtIpFm90Tzczskj5lw9mmHahAoVPM7JmnnnZIfWZlN3iRylqR1XnShSZijwSugp8IpENAVekVLtyFG4/0UTaTAzy39AFH/yq58Ls+ubk87gAfDK/VCvTuDvFRERESkJS1fnTTgCqFPTROUWKY8OHTaD2lt3utxYCWBgu0l9c9NFyofvZrnXm86NNZFIppt3IiIiIiJSGLqGEBGRSHDosGmPduw2gdOvGhzuEomISFHYNjw8EZ5803vupuffBSPwCsCPc2HEnZCWnn9+oMArIiKlUU4OrFwPazfnXS88eGO4SyUSuO274O8V7ufwO0+Eu1QiIiISCLXjIuWWAq+EngKvSERT4BUpE9ZshAcnwhdTzU088H1jzfWmWqDye4/zu65J8OhNMOiUwNMVERERERERERERERERERERERERESmtlq6GB1+Gb102OfA11zIYgVfALIQa8xh8PcN3Xgq8IiIiIiIiIiIiIgFS4JXQiwp3AUREyrxWzeCjZ2DTdHjoRrMruW3nPRyWVbigK57vcU2zUkUYfg7Mehf+/FxBV0RERERERERERERERERERERERESk/OjQGr58EVZ+bzav690FoqPc51oGcwPTBokmv4WfwhXnQ1ysex5FmSMqIiIiIiIiIiIiIiFh2cEcMBYJMsuykoEkz+NJSUkkJyeHoUQiQbJ5O/wwF377G/5aDqs2QnZ20dOrnAAd20CfLnBqDzitp7lpJyIiIiIiIiIiIiIiIiIiIiIiIiIikJkJazbB6o2wKxUOHYGGiTB0UPDz2rcffpgDU+bBjAWwO9X995YF2cuCn6+IiIiIiIiIiIiUeu3atWP58uW+frXctu12oS5PeaDAKxLRFHhFyo0jR2HdFtiWAltTYMduOHQYjhyDo8cgMwsqRENsDFSpBDWqQmItaFwPWjSGZg3D/QlEREREREREREREREREREREREREpDTYnw6bd8DWnZC6H9LSzTzGzCywbagYDwnxkFDR/KxfB5o3Mj+laLbvgr9XwNrNZo7ozj3wzhPhLpVIeGVnw8Klpj7atdfMmU6sBXVrQbd2UKdmyeWdmQmzFnofH9in5PIUEZGyQ21Y5Ek/FMD1zfFrnPp1oEFiuEssIhJZVq437dq+A2ABVStD0wbQqilUqBDu0omUSwq8Enqq7UREIkHFeGjfyjxERERERKR80GRGERERERERESlvNBldREQK48hRWL3x+Fh6CqSmHR9LP2bqdRuoGOd7LL15Q6in8fRyQf0LkYIdy4BZv8O8RfD7P5C8FnalFi2tuFiz6KZTG+jbzTw6tgluecuqBola3Cni+GEOTJoMM3+Hg4d9/41lQbckuGQg3Djc9PeCKXU/nDXa5OOaZ9bS4OYjJUtzb0Qk1NSGRYaV692vb1ZugAMHC5dGbIy5tmneEDq1Ndc2fbpA9aolU2YRKb3K8vjjzAXw5mSYMtd/uxYfBz07wiVnwohzTUAWEZEyyrJtO9xlEPHLsqxkIMnzeFJSEsnJyWEokYiIiIiIiEgRaDKjiIiIiIiIiJRnkTAZPWUP1O9Xvieji4hEuk3b4Md5eWPpG7ebxZJFFRcLHVvnjaX/qyvUrB688kp4qX8hkj/bNotm3v4Sfv7FBK1y/V1xuZ731SrDkDPhygugT9fipy0iZde0+XD3s/D3SvM6kPrIsqBODbj/P6Y9DxanHffMK3tZ8PKQ4NLcGxEJJ7Vh4Ze8xlzffDUDNm13/11xrnE8r+nbt4RLB8Hl50Hj+kVPV0RKv0gdfwT49UPYssP0h9MPQfUq0LAu9OoMtWsUnO6mbfCfR+DnX83rgupRJ/8qleD2q+GuURAbW+iPIyKF065dO5YvX+7rV8tt224X6vKUBwq8IhFNgVdERERERESk1NJkRhEREREREREp7zQZXURECnLwELz3jRlLd9oLCM44usMZT7csOO1kuHowXHSG2alTSh/1L0QK9r9v4bHXYO1m89rze+K5WKco/KV5QmO47Sq49hKoUKH4+YhI2ZCZCXf+H7z4gXnt1CEF1UeudY1lwfn94X9PQeVKxS+T5wJG21Y7Hok090ZEwk1tWPjN/RMeeQVmLTSvfdX/xbnG8ZeeM45025Uw6JSipy8ipU+kjj+6liMqyv97Tupg6q6hg3z//vclcP4Y2LOv6O1am2Yw+XlIalngRxCRolPgldBT4BWJaAq8IiIiIiIiIqWSJjOKiIiIiIiISHmmyegiIlKQjAx4+i147j3Yf7BkxtHBf7pVKsF1Q+Huf0ONasHJS0qW+hciBVu7CUbdD7/85X3ueypsvVvQd84zvxaN4IV74Ox+vv9eRMqP1DQ46zpYlOy7LvG3nsWzvnHa2aQTYMbbkFireOVSOx75NPdGRMJNbVh47U2D256CD783rwtzTRKIQK9tAP7VFV68Fzq1LVweIlK6ROr4Yz0fwZ8KKpNlwRm94f0n3dudNRvh5GGQlu6dTmHaNYDKCfDtRDj1pPzLIiJFpsAroafAKxLRFHhFRERERKSc2Z8Om3fA1p2Qut8M6h05CplZZpCuYjwkxENCRfOzfh1o3sj8FIkEmswoIiIiIiIiIuWdJqOLiEhBfv0LRt5nFlAGOpZe2EWVTj3vLz0nzaqV4fFb4IbLCpe+hJb6FyIF+/kXuOyOvGBW/s7/UHD9no4eYu5ZxsaGJm8RiSxHj0GfEbB4hXnt2WYWxLPdd153TYLZ7xZvIaPa8ciluTciEgnUhoXXkpVwwRjYstP/OEAorm9c24XYGHh4DNz175LPV0RCL1LHH1esg6TzvI9HRfl/j2v527eCue9DtSrmeLdL4O+V3u1ToG2b579JQjzMfg+6tw/s84hIoSjwSugp8IpENAVeEREREREpw45lwKzfYd4i+P0fSF4Lu1KLllZcLDRtAJ3aQN9u5tGxTXDLK1IQTWYUERERERERkfJOk9FFRKQgkybDmMfygu4XZdFMoJPcA03HsuDMPvDhBKhRrXBpSMlT/0KkYD/MgYtuNnUr5P898VeHxlQwG6HEx0J8HGTnQFaWua+ffhiys32/L7/voZP/qT3MDsiVEgr3uUSk9Lv+IXjjc/+L+gpay+LrfU7dMvQs+Pi/RS+b2vHIpLk3IhIp1IaFzx9LYcBIOHTEvd4vzPVNURUUmMuyYPg58O4TEB0d3LxFJHwidfzxWAZ0vRiWr/P+nb/AK77qzQE9YeokeP8buPpe/5+vMG2b6/MGibD0a42ti5QABV4JvQrhLoCIiIiIiIiUI7YNU+bC21+aG+VHjrn/rqiOHoNVG2D1Rvj8Z3OsWmUYciZceQH06VqsYosUKJDJjAXddA3mZEbXvN743Hw3NJlRRERERERERErarU+aSYnBnoy+eAVc+2DxJqOLiEj4TZoMox80zy3Le3w7v/YiOhoSa0LlBKgYZ8bR4+PM2HlW9vGx9ENw4BCk7vc9pp5ffj//Cv2ugqlvQr06xfucElzqX4jk759VMHSsuU/peY/SOd8dDetClxOh64lmx+MGidAw0fyMick/nyNHYddeSNkLG7fBmk1mh+SFS80u9OC7nrVtmP0HnHcjTH8r/x2ZRaRsWZQMb072vzgvId7M6TmzD3RuC3Vqmt9tSzH1xoffw9w/3eszJw3bhs9+gv4nweih4fl8EnyaeyMikUJtWPhs2gZnXw8HD7v/+7mOIzltQIVoaNvCBDZo3/L49U1daFDHBDnId/zooNkoMmUPbNyed33zzyrvdsj1uW3DRz+YtDSeIFJ2ROr448MTYcV6/7/3VS7Ptsu2YcYC+Ho6vPKx+3td/7ZFI7jsHNO2NW0AibVMnblzj2nTPv3RpONZNwPs2A23T4C3Hy/a5xQRiSCWHezIfiJBZFlWMpDkeTwpKYnk5OQwlEhERERERIrsf9/CY6/B2s3mtef1aDB2I/GX5gmN4bar4NpLoIJikEqQ/bMKeg03kw393Wx1hHoyo2tZ+vXQZEYRERERERERKTmLkuGkS/NeF2cyuvMecJ+89+oDRZ+MXtZ3ARURiXRz/oDTR5mFLvmNpcfGQI/2x8fSk/LG0uvVDnx827Zhd6r3WPqCJb4Xz7jm36E1LPjYLNaU8FP/QiR/WVnQfQj8s9r3whqA3l3ggv5wwQBo3axkyrFqA3wxFd76EjZs9V0Wy4KxV8Ez40qmDCISeYbcCl9Mc68HnLpp2Nnwwj15bbc/U+bAvx8w8yTAuy9QOQGWfQNNGhS+fGrHI4vm3ohIJFEbFj6nXQOzF/q/vmlUF87rDxecZurkuNjg5n8sw+T/5TT4eEpeABhXTpkm3A63XxPc/EUk9CJ1/HHFOuh0oQkkmJPj/fuoKOjezgSgqlbZBEjZsM18Hid/18/TIBG273JPw/ndgzfA3f+G2ALq1Gnz4d/3w9YU73Sio+HvL6Bdq8J9ThHJV7t27Vi+fLmvXy23bbtdqMtTHijwikQ0BV4RERERESkD1m6CUffDL3+53wT3d5PaVUHBWDwjSueXnmWZaMwv3ANn9yu43CKB0GRGERERERERERFDk9FFRMSfQ4ehw2CzsNHXYpW4WLj4DLNoZlBfsytxSTh4CL6dBa9/BvMW+R9LH3EuvP9UyZRBCkf9C5H8vfk5XPeQ77p1QE/47zjo1DZ05cnJgTc+g7ueNQsUPcsUHQ2LvzCL5EWkbEs7AIn/MosEHU47ee9oePTmwNPauhPO+Q8sXe27TzCwD/z0RuHLqHY8cmjujYhEErVh4fPZjzDsDt/XN22bw5O3wfmnBWeTx0AcOAhPvAHPvut+PjhliouFFd9Ds4ahKY+IlIxIHX+8+XF4+SOTjq/AK5um+05v/RaY8Ba88bnvzwTux5+5A8ZeHXi5tuyAM/5tAhg6nLT+fTG8/nDgaYlIgRR4JfQUZlVERERERERKzs+/mCjQTtAVy8p7gO9AK55/k5+C/s41LduGdVvgvBvhPw9DRkbRP5eI452v3Cd+QN75NqCnmTj4ywcwblTJTfwAaNMc7r0O1vwIr9xvBumdsriW6fn/wbI1JVcOERERERERESmf0g7ANzO9xyIsC8ZfBx89U/CkRDABkxd+ahZi+poIePAwjH6oRD6CiIiUoFc/yQu64lqv2zaMvMhMEv9gAgw5q+SCroBJe/i5MOd9mPKa2SXZcxGlbZtdSn9ZVHLlkMCofyFSsGfedr9P6ZzbD4+BaW+FNugKmN2Wrx8Giz6H5j4WH+bkwD3PhbZMIhIeP86DrOy8104bfOHphVuwDtCoHkybBM0bmdeufQIwu65/+mNwyi3hobk3IhJJ1IaFz1OT3F871zcjL4IlX5ngW6EKugJQtTI8NRZmvQu1qnv/PiMT7nshdOURkeCL1PHHYxlmjNpfnRcV5T+IS4vG8NpD8O4TeZ/J+em6psKyoG+3wgVdAWhcH755GRLi8445aX7yI2RmFi49EZEIY9mei9zEL8uyKti2nRXucpQnlmUlA0mex5OSkkhOTg5DiUREREREJGA/zIGLbobM45dRntH1Xfm7No2pABXjIT4W4uNM1PisLDOgmH4YsrN9vy+/mytO/qf2gG8nQqWEwn0uEVetB5mAPg7n/HroRrj/P+Er19pNcNZo2LDNu2xnnwLfvRK+somIiIiIiIhI2fPxDzDiTu8xwAtPh8nPFz69XXuh13CzSN81PefnR8/ApYMKl2ZZ3QVURCTS5eRA49Ng5568Y7YN0dHw1qNw5QXhK9veNDjneli41HvTgL7dTIAWV6ddE9ryBYsFzHgn3KUoPPUvRPL35zKzCYrn+XfTCHj+nvCWDWDrTuh5GezYnXfMqf83z4D6dcJXNikb1C5HtluegJc+dK+jYmNMQIvG9YuW5t8roPcIM2fIlW2bgHorf4CEioGnp3Y8cmjujYhEErVh4bF8LbS/wPszDT0LPv5veMsGJuDWvy6H9EN5x5xzY8ccqFEtfGWTkjFyfLhLUDSWBW89Fu5SlB6ROv748y8w6Lq8cuXk5P3OCZ4SSJ1/65Pw4gfen8/5OetdOKV7oT5irufeg9sneKf98xtweu+ipSkSbhFY93/51VekpaV5Ha9EVNqlVP3q+Esbe/mo0Jas7KoQ7gKUMvdalnUG8D7wuW3b3meriIiIiIiIwD+rYOhYE3TFc0DNM4pzw7rQ5UToeqKJ9NwgERommp8xMfnnc+SoGaRM2WsGKddsgr9XmgmyW3aav/EMwuLkP/sPOO9GmP6WifwsUlh/LoO1m31PZgznxA+Alk1h9nvukxmdc/+nX8wxTWYUkfxosqqIiIiI+KO+oviyYIn3sZgK8NxdRUsvsRZ88XzeZHTPnebGPQPnnVq4yegiIhIev/xlxqQ9x9IfGRPeoCtgdiueOglOHgarN5pjTlvzy1+wbjOc0CTv72cvDO3OysHga0OE0kL9C5H8fT/b+1jdWvDkbSEvik+N6pkAW64LhcAsFpr8M9x0efjKJmWD2uXI9s/qvOfO577ojKIvWAfofCI8PRZuedJ9sSDAtl3wxBvw2C3FK7eEnubeSGmn8fKyR21YeHw7y/tYtcow8b7Ql8WX9q1MWa74f/buO1yOqn78+HvSKwQiBAKhl5CAoXcSOgIKSJOOoohIRxEEERSli4CCgDT90jtI7723AAmhhxpCKIGQXub3xzC/bbN79967987s7vv1PPPc3bO7c87enTnnzJkznzmmsD83ew7ccC/sv0t6ZVPHuPyW+uu7x3WLgVeql9XxxxfGJKe3dps85Qi46o4oAHnx5xcf1PagKwAH7Ap/uQAmTylMf/xFA6+ofmWw7t9+HkBigLcBwL5EPfsQMPBKjRh4pXUCYANgfeDcIAjuBK4Abg/DcHaqJZMkSZKkrJgzB/Y5JgqKkhQhGWD91WD7TWD7zWCFpdqeV+9esORi0bL29wtfe+M9uPFeuOQmeO+j5LI88hwc/Tc446i2l0HNy8mMkhqZk1UlSZJUjn1FJXEyuiSpnDsfLU1bejH4XUbmgM7XD/57SnQxZbEb70suZ/4NBrKs3vs/9i+kyl56Pfc43pb33i46h54VW20IG60Bj71QWCc9Ndpzlaod2+Vs+mBC6XfeYr32r/eQvaI+2qPPl17EeNZ/4Je7wBKD25+POo9zb1TvHC9vPLZh6Xg+L8hAvI3u8UNYcEB6ZSq254/gzMtg9BuF28iTLxl4pZHVy/GG2iar448vjC0sV6z45rct6d0Ldt8G/nFl6XUU246qfj1J+vSGHTaDy24urBNHv9G+9UpZkKG6v4Veu536DuAtvdsmAHoCOwA3AJ8GQXBBEAQbpVssSZIkScqAy26OBiLzB9Higb7N1oWXboTHr4Cjft6+oCstWXFpOPYAeOsuOP946NcnV5b8Mp39f/DaWx1XDjWueprMWDwA+FRClHZJShKG9bFIkiSp86XdB7SvmC0dORl95JqFkxLzJ6N/8En785AkdazR43KP4/p8n+2ha9f0ylRsrVVg641K+w7Pvpr8/iCoj6Xe2b+QKhv7Tuk+ssna6ZSlkj22LXwehoVtg9Reabe3zdIut9bnX5WmfX/F2qz7ghOgR/fS9Jmz4Ji/1yYPdR7n3qhRpD0O7nh57diGpWPs26V9pi3XT6csley7Q+HzMCxsy9R40j6O8JijY2V1/PHtD0rT2vobb7pOcvr3V2jb+vKNXLPweRjCux+1f71S2tKuz/OWEMouuT+qJQOvtE28XQbfLQsA+wMPB0EwPgiCvwZBMCzNAkqSJElSas64tHBwLz5h96eD4b5LYMTQzi1Ply7wq93gheth6cVKX583D37f5Cet1DZOZpTUDDJw4sATx5IkSRmVdh/QvmK2OBldklTOG+NL2+SN1kilKBXtslXucTwJ/tU3C9/TvVvyxWpe1NYx7F9IlX35dWnackt0fjlastYqucdxezApYf+WWst2OdumzyhN+96A2qx76DLw25/lftP4YsYwhGvvgmdfqU0+6hzOvVGjSHsc3PHy2rENS0fSMcKKS3d+OVqy3ojc43if+vTzdMqijufxRuPL6vjj5G9q124PXy45fViZ9NZYaZnc47i8Eya1f71Smqz7m163tAtQ5/L3irglWwI4BjgmCILRwBXANWEYehsEqZFt+rO0S9A2AfDAZWmXQpIkNZLnX4uiLMeDZ/GJoUP2hOMPTLdsyy0JD/8H1t09N6gXn7S6+/EobdGF0i2j6ku9TmYMQyczZonHk8qq7t1g9pzocf5JvEonCpykI0mS1BzsKypJZ0xGP/mi3NhG/mT0w/eGtb9fm7wkSbX31TelaUsO7vxytGT1hPusfTG58PlXT8NDz8LtD8OVt8O303IXr5XrCznxtu3sX0iVTZlamtand+eXoyWDBpamffNtbfPwfFtzsl3Oti5dYO680rRaOe4A+O+t8PFnpeNTR54Oj19Ru7zUsZx7o3rneHnjsQ1LR9IxQv++nV+OlgxeuDTt6xof3ygb3r4b7nosOt6476noJp8ebzSerI4/1rJeSaq3AAbO3/51L5iwjm+ntX+9UloyWPe3cOTggUUHMPBK2+VvkCHJQVhWBUYApwVB8AhREJabwjBMOJssqa49/Gz9DYDFHXZJkqRauv3h0rRBA+GUIzq9KIkWXwQuOQm2PqCwLzRvHtxwDxyyV3plU/1xMqNqweNJZZWTVSVJklSOfUUlcTK6JKmcqQkTrXv26PxytCRpknjxWHqf3rDtqGg5/bdw3lVw0gUwY2ZhXyh/Iv1aK8PWG3V8+RuR/Qupst69Si9m+XpK+Qtq0jJjZmlat661zcPzbc3Jdjnb+vUpDcD35dcwZNHarL93r+h33+Oo0osYn3oZrrkTdtumNnmpYzn3RvXO8fLGYxuWjh7dYc7cwrQsXrxfPE4B9usb1TJD4KA9ouXdD+H0S+DfN0SvlTveWHEpWMdAvnUlq+OPU6fXrgy9eyWn1yK4VdI4/6zZ7V+vlJYM1v233nwLk78uDVjaly6Td2W+Wzos4yZm4JW2C8kFWCkXhCX4bukKbPLdcn4QBLcDVwJ3hmFoSyI1knoZBPPAXpIkdZSXXs89jgcT9t6u/KBdGrbaEDZaAx57obBf9NRoA6+odZzMqFryeFJZ42RVSZIklWNfUUmcjC5JKqdvn9ILEr/8GhYblE55ypmWMJm9V8/y7+/fF47ZH3bYDLbaHz6amHxh3dqrwAkH1baszcL+hVTZgvOXnqt87S1Yadl0ylPOux+Vps3fv2Py8nxb87Jdzp6BA0rb8XHvwYihtctjt23g/Kvh8Rdz+1X8ux91Jvxo46gvqmxz7o3qnePljcc2LB0LzAfTZhSmjXsXVlgqleKU9cGE0rT5+3V+OdS5lhkCF5wY7bs7Hgpff5t8vLH5enDucakUUW2U1fHH3j1rF3yl3BhEpbHvak36qjQti0HXpbbISN3/h2dvZezXCf0P+GTX8KOfdVjGTczAK62TH1AlP8BKnJb/lzKv9wJ2+m6ZHATB9cCVYRg+VvviSup0nhCTJEnNbuw7pX2iTdZOpyyV7LFtFHglFoYwelx65VF9cjKjasnjSWWZk1UlSZJUjn1FxZyMLkkqZ8H5SwOvjB4Hq6yQTnnKeWN8adqAKsbShy4Dt50Ha+0a3R3Vsd7asX8hVbbkYHj/k8J657aHYJcfpFemJPc+kXscX2C07JCOycs6WLbL2bHcEvDW+4W/wYNPw0+2rm0+5x4La+5aOhb1yWfw+7974Ws9cO6NGonj5Y3BNiwdiy+S22didz4K222aXpmSPPh07nH82y05OJ2yqPNtvDZc/3fYcv/ouccb9S+r44/z9atd4JXZs6O/HRGs9rMvStP69q59PlKarPubTpe0C1BnTga2AS4FviIKphLvJSHJwViSXo/TFwD2Bx4OgmB8EAR/DYJgeEd/CUkdoHu3qANa3AmN05IWSZKkRvTl16Vpyy3R+eVoyVqr5B7Hgx9JUZelSpYcXNq3v+2hdMpSSWdOZlTreTypehJPVu363bCyJxAkSZIUs6+o5ZYoPWbNn4BcK+ceC10SprrEk9ElSdmT1EbceF86Zank9odzj+Ox9GrvqjxiaHQBluO3tWX/QqpsvRG5x/EFO9ffA+M/Tq9Mxb6eApfeVHqMuGoNL2ACz7epkO1yIs8fCAAAIABJREFUNgxfLvc4rqNuuBemTiv/mbZYdSX4xU6Fv3ec3/nXwANP1TY/1Z5zb9SIHC+vb7Zh6Vg34fjm6jth0pfplanYzFnw7xsK9+kggBErplcmdb7N1oMfjvJ4o1FkdfxxmcWTxzjaYuYs+M1PC5cj961NgJQXxpSWb/BC7V+vlDXW/U3FwCutEIbhnDAM7w7D8BfAIOAHwMXAF1QOwhJUeD1OXwI4BnglCIKXgiA4IgiCRTr+W0mqia+ehv+dDwfsGnU840a00iBZpZN6nbFIkiR1hClTS9P6ZDBy8aCBpWnFd1uUWuJkRtWCx5OqN05WlSRJUjn2FZubk9ElSeUkjaX/72F45Y3UilTi44lwxf9Kx2VXW6n6dey/S23LJPsXUks2Xbc0bdZs2OcYmDOn88uT5JcnlN45GmDrjWqbj+fbVMx2OX2brlOaNnkK/PXC2uf118NhgfkK04IA5s2DvY6O+nrKLufeqFE5Xl6/bMPSMXKN0rRvp8EBJ3Z6Ucr63ZkwYVJp+hbrd35ZlK4Dd0u7BKqVrI4/rrRM4ftibelX9OsLZxxVuvTt0/p1Fbv1ocLnQQBLL97+9UpZZN3fNLqlXYB6FYbhXOBe4N4gCA4ENgF2Bn4MxGG58oOvQGHwlXKvA4wAzgROD4LgQeC/wE1hGE6v9feQVCN9esO2o6Ll9N/CeVfBSRfAjJm5jjDkHgcBrLVy7U8gSpIkpa13r+hkR76vp8DghdMpTzkzZpamdeva+eVQfdt0XTjtksK0eDLjg5dBtwwMu8STGYsnf3gskh0eT6oe7b8LXHl72qWQJElSFtlXbF6brgNnXlaYFk9GP/mI2ub118OjC3AmT8ml5U9Gf/56WGxQbfOUJLXdlhvAn/9VmDZvHuxxFDx5FczXL51yxWbPhr2PgWkzSsfSf7hx9evZYDWYv7+B/mvJ/oVU2ebrwVKLwfufRM/jc0lPvAQ7HALXnBldXJOGefPgoJOi/aq4bh04ICp7LXm+TcVsl9M3ai3o1wemfnf5Q7z/nXEZrPN92H6z2uU1cACcfDgc+OfC/TwIYOIXsPUB0RyO7y1QuzxVO869USNzvLw+2YalY9tRsPCCMOmr6Hn8/7j1QTjgBPjXCdClS3rlO/lC+MeVpW1B396wzch0yqT0bLIO9OkF0xPmoqu+ZHX8ceO14d83lK4jbiey4KWx8MKY0vKsPiyd8kgdzbq/aWRgFKL+fReE5X7g/iAIfg1sTBSEZUcgvrqwNUFY4te6Apt/t/wrCIIbgP8Lw7AoFJikTOnfF47ZH3bYDLbaHz6aWHjyLrb2KnDCQemUUZIkqaMsOH9p4JXX3oKVlk2nPOW8+1Fp2vz9O78cqm9OZlSteTypeuFkVUmSJJVjX7F5ORldklTO+qtFdw4d+070PK67X38XNtsPbv1negH8p0yFPX8HDz9bOpY+ZBEYuWb16+raNeoL3flodia/1zv7F1JlQQCH7gVHnla43YYh3PUYrLojnHNsdAFjZ3r59WhfevbVwvS4fEfsA927d1z+nm8T2C5nQe9esOcP4cLrcr9BEMDcubDrkXDGb+HQvWuX3wE/iYIbPP5iYZ0I0bylTX8Gd11oILUscu6NGpnj5fXJNiwd3bvDAbtGARSLj28uvhFeexsuOAFWWaFzyzVhEhzyV7j5/sL0uHwH7hYFglRz6dkD1lsVHnja4416l9Xxxy03gB7dYfac0vVkIfjK3Lnwiz8ml2XjtdIpk9TRrPubRoqh/hpTGIbzwjB8MAzDXwODgU2B84GJFAZbCUkOthIUvRan9QP2JQruMj4Igj8HQbBc53wrSW0ydBm47Tzo+l1Va4MqSZKawZKDSycs3ZbB2JH3PpF7HA/6LTskvfKoPsWTGeNtPmky4x2PdH65Xn4dNtgTLrq+ML2zJjOq/TyeVNbFk1WL23xJkiTJvmLziiej5//2+ZPRz/2/2uZ3wE9gw9ULx2Ni8WT0jyfWNk9JUtv99mfJY+kvjIFVtofzroLZszu3TLc+kDyOH5fvdz9v/djsaivVrnyyfyFV45A94fvfXXhYfHHiux/BdgfB6jvBxTfAl5M7rhzz5kXn4Hc8FNbcNQq6UnzxTRDA0ovBYTW8SLUSz7fJdjl9v/1ZdGFSLK4XZs+BI06L6qcrboNvp9Ymv/+eCvP1ix4XX8j42ltR3++2B2uTl2rHuTdqZI6X1y/bsHQcs38UjAtKj2+eehlW2wl2OgzuezI6BulIb46PglyusHUUdCUpuMBCC8DRP+/Ycii7Vh+WdglUC1kdfxw4AHbesnwfIs2+xcxZsPcx8NLrpfXiwgvChmukUy6pM1j3NwUDr3Sg74KwPByG4cHAYsDGwD+BCVQXhKX4tTh9CeA44I0gCB4NguCnQRD06fhvJKnVRgyFn2ztYJkkSWoe643IPY4HBK+/B8Z/nF6Zin09BS69qXSwb9Wh6ZRH9c3JjOooHk8q65ysKkmSpHLsKzYvJ6NLksrZd4fo7qH5Y+jx+PVX38ChJ8MSm8EfzoHR4zquHJO+hIuugzV2hh0Pg/c+KixL/HjVodFdlltrxIq1La/sX0gt6doV/nNKdHdmKN1uwxBeHgcHnAiLjIT194DfnwXX3w2vvwOzZrUt3y8nw6PPwz+vhF0Oh4HrR3dmvvXB6Lxl8XnKMITu3aKydubd4D3f1txsl9O37BKFAfhi+fXTvsfCguvBmrvAXr+D486GU//dtvZ2qcXgPyeX5hM//mIy/PhQ2Oxn0QXbc+a2/buptpx7o0bmeHl9sg1LR+9ecOlfoFvX6HnxGNK8eXDLA/CDX0bHN3scBRdeC8+9CtOmty/vDz6B2x+Go86IggSv9EM45/9g6vTSAAnx8wtPhAUHtC9f1S/nnDeOrI4/HndANJaSJAxhvd3h8pvhk89qU65qPP8ajNwbrr2rdNwnCOCXuxj4Vo3Nur8pBKGDyZ0uCIIA2ADYGdiJKCgL5AKv/P+35j0u91qcPhW4Frg0DMOnalfadAVBMAYoCQM1bNgwxowZk0KJpDZ49HnYeN/SSRoH7Q7nHpdu2SRJkmrtvidhq/0L+z4QRWd+8DLoVmYAsDP95MgoGExx/+z282HrkemWTfVp9DgYuQ98Oy16XjxJG6LnXbvAmivDqDWjiMcrLw/LDoEePZLXW8mXk+G1t+GVN+CR5+D+p+Gbb0vzjIUh9OgOD1wKG6zetu+pzufxpLLshnuiuzrkn/xz25QkSRLYV2x2x58Lf72wdEJ08RjJ91eEoUvDkoOhf18Ytixst2nr87v1gejC+VjSxfMbrxXdKXPYsjBk09LX577W9u8rSareB5/AenvAp59Hz8u1EwCLfA9GrgmrrxSNpS+3BAxZFHr1rD6/r76G9z6OJqu/8gY88nx0F84wTB5Hj8vRvy88dRUMW6713/HFsdEFV/nrtR/UfvYvpJY99Axs8yuYNTt6nrSvQGm9FwTRXdoHDYzupty/bxQYpVvXaL+aPSe6k/Gs2TB5SlSHf/p57rxorFIecVmuPB1226Y237c1PN/WvGyXs2HuXNjyF/DQs+Xb8lj+b7XtKLjtvLbleeal8Lu/le73xY/7943mWdiOZ4Nzb9SoHC+vX7Zh6bn6Dtjr6Nzzao9vFvkeLLFo0fFNr2jecqXjm/EfFx7jJOVRXIbTjoSjfl6776z68+wrsO7uHm80iqyOPw4aCNfclRxQtkuX3OP5+kX1X/++cNlfYPmlWl+mJJ9/FfXTnx4Ntz0Ez48pLW/8fMH54c07DUilxpZC3T98+HDGjh2b9NLYMAyHd1jGTSwDV7w1nzCKdvP4d8vhQRCsTy4Iy5D4bRQGWykOwhIWpfcD9gP2C4JgHHAR8N8wDL/qkC8hqXobrAbz988NxEqSJDWyzdeLou+//0n0PB6AfOIl2OEQuOZM6Nc3nbLNmwcHnVQYdCU2cEBUdqktRgyFW/6Rm8yYdCe5MIzuNPHMK9ES68zJjJef7MSPeuPxpLJsmSG5x96lQJIkSfnsKza3Ew+CJ18qnYxePEby4tjo4vfYtqPaNjFx+82iCc7xZPSkPB9+Llr6pzQuKUmKLDEY7r4INvkpfPVN6V3jITfWPWESXHd3tOTr3/e7sfQ+eWPpXYvG0r+BiV9EafkqXRQVv96zRzTe35agKxBNuE/KS+1j/0Jq2SbrwEOXw86HR3c6Tro4MH6eLwyjOnPiF9Udv5Wr38p9NgyjCx3/cwrstGXL6+8Inm9rXrbL2dC1K9x4Dmx7IDz1cuX6qVa/1W/3g6nT4U/nl2/LoTDAhmNY6XPujRqV4+X1yzYsPbtvGwW6+tlx0f8jaQwJSv/vEyblAv5Wq9pjnPj/36ULnHkUHLFv6/JR4/F4o7FkdfwxDKP+7Jy5pevI3/a+ngKvTok+O2Va6Xtb65SLokA002cm55df3vjv348x6Ioan3V/UzDwSgaEYfgk8CRwZBAE6xIFYdkZWCJ+C5WDsBSnrwScBZwaBMGNwAVhGD7eEWWXVIWuXaOTd3c+2piDGpIkSfmCAA7dC448rXRQ7a7HYNUd4Zxjo4HGzvTy63Dgn+HZVwvT4/IdsQ907965ZVJjcTKjOoLHk8oyTyBIkiSpHPuKzc3J6JKkSlZZAZ65Bn58KLz2VvJFLLGkduKbb3P1edKFkC0pXn9+OzVoINz8D1h3RMvrKWfgADjn9zAvryyrDm37+hSxfyFVZ90R8OIN8OuT4Kb7cttrvkrnFFtbj7YkDGHNleHSv8DKy1f/uVrzfFvzsl3OjgHzwQOXwq/+BP+9tXL9VKs29YSDYNGF4JC/RhcpVjuHQ+ly7o0akePl9c02LD07bQnDloV9j4XnX0v+3yalteX/Um49xf/vIYvAJSfB5uu3Pg81nkHfi+ae5x9vbLRGeuVR+2R5/DEp6Aq0bXy8Wl9+DdNmlM+z+P9y2N6w93a1y1/KKuv+pmDglYwJw/Bp4Gngt0EQrE0uCMtS8VvIBVsJyAVbSUrvCewO7B4EwVjgfOC/YRhO7eCvIanYaitFJ+4kSZKawSF7wuU3w6tvlQZfefcj2O4gGLEi/Hp32HHzjotuPG8e3P8UXHAt3PZQbrCzOPr90otFA35SezmZUR3B40lllZNVJUmSVI59RTkZXZJUybJLRMFXjj8X/nFldPf5pIAoldqHSmPq1bYr+ZPXd9gMzj8eFlmous9Wcshe7V+HStm/kKqz8EC44Wx4+Fk49mx4enSU3tKFhK3dZ+LtvtxFPoMXhuMOgAN2je4InzbPtzUv2+Xs6NUTLj8ZfvIDOO4ceHlclF7tnIq2+OWusPYq8PPjc3elNwBT9jn3Ro3G8fL6ZxuWnpWWhWevhctughPPgw8/jdLLHYe0NJ5USdLc4ji9dy84eA/444HQt0/b1q/G9Lej0y6Baimr449BEF0TkYak+rY4SMyxv4S/HJZO+aQ0WPc3vCD0pE9dCIJgTXJBWJZp4e35P2pQlD4FuAw4LwzDt2tayA4QBMEYYFhx+rBhwxgzZkwKJZLa6IZ7YNcjCzuWB+0O5x6XdskkSZI6xuhxMHIf+HZa9Lz4roEQPe/aJTo5PWpNWH1YdIJ62SHQo0fr8/xyMrz2NrzyBjzyHNz/dOFd5uI8Y2EIPbpHg6QbrN627ymV09rJjK1Vb5MZ1XYeT0qSJEmS6tldj1aejB7bdhTcdl7783v59cqT0fPHVOLj7LmvtT9fSVLbvDUeTjgPbrw3CsACle9W3NoLJFta3+rD4KRDYOuR1a9X6bN/IVXvhTFw3lVw64Pw1Te59FpetJm/D6y3Kuy/M+y2DfRswzn/juL5Nil7HnoGrroD7n4cPp5Y+voPN65NOx67/m4472p49PlcWrmLCG3Hs8O5N5KyyDYsHXPnws33w7+ugUeezwUhqHVAmvzrbBcfBD/fCQ7cLQpyKal5ZHX8Mf9xcbCouC147rpo3Ls9jjoD/nZ54XqLy7Pk4Cgw2ai12peXpIqGDx/O2LFjk14aG4bh8M4uTzMw8EodCoJgdeAQYF+iYCrljhIqBWAJgVuBM8IwfLojylkLBl5Rw3hxLKy5S2FH0xN3kiSp0T30DGzzK5g1O3qeFHwFkqNBL7QADBoY3fGhf1/o0xu6dY0CtcyeAzNnReudPAU+/Txa4iAvsUp5xGW58vRo0pfUUZzMqPbyeFKSJEmS1AicjC5JquTTSXDR9XDjffDqm7n0Wo2l558z6tcHttsE9t/FSeH1zv6FVL25c+GJl+COR+Cpl2H0GzBlavvXO3hh2GA12HjtqG5dbFD719kRPN8mZdt7H8Hr78Cb78NnX8DU6bD8knDwnrXP6/V3oj7nnY/Cs6+W3jnedjybnHsjKatsw9LxxeTo2CY+vvkoYUwgX6UABvm6dYXVVsod36y/Wu0Du0iqL1kdfwS46Ry467EoOMzYd6I2COD562sbeKU438ELw8F7REu/vu3LR1KLDLzS+Qy8UkeCIBgM7ATsDKwPxGFzq+nFJwVhidMeAU4Kw/ChWpSzlgy8oobxxWRYaIPCtIP38MSdJElqfE+Php0Ph08+Kwy6kjQQl6SakxblPl/us2EIfXrBf06BnbZsef1SLTT7ZEa1nceTkiRJkqRG42R0SVIlH3wCdzwajaW/OBbeGB+NsbdVvz7w/RW/G0tfCzZd14snG5H9C6n13hwfLR9PjC5UnDAp2nemz4AZs2D2bOjWDXp0j26WssB8sPCCMGQRWGYIrLJCdCOVeuD5NklJvp0Kr7wZXaj49gdRPfjp5/DQ5WmXTOU490aSIrZhhb6YHAXpqnh8MycKrFJyfLMoLLM4rLx8tPTqmfa3kZRVWR9/nDETvvk2qt+6d29f/nHgldhyS8DINWGrDeDHm0fjRZI6hYFXOp+BVzIuCIIhRIFWdgbWIRc0pb3BVorXEQIPAL8Jw/DVtpW29gy8oobyjytgXt4uuOpQ75wjSZKaw2dfwK9Pgpvua13092qPV1u7zjVXhkv/Ep0kkdLUTJMZ1T4eT0qSJEmS1H5ORpek+jR9BrzzYdFY+jSYPjOaTJ544czA3Fj6Uoul/Q3UyOxfSPXD822S1JiceyNJkqRGlsb447h3o6BWAwfAoIGwwPwdl5ekigy80vkMvJJBQRAsTS7Yypr5L+U9DkkOvlL8gwa0LgDLbOAPYRie0ZoydxQDr0iSJEkN5OFn4diz4enR0fOkgClh2LpAKsWfTVpvnD54YTjuADhgV+jSpW15SJIkSZIkSZIkSZIkSZIkSZIkSVIHMfBK5+uWdgEUCYJgeXLBVlaNk4veVi5KTlKwFYDPgMeALYH+Ce8tDsISAN2BU4MgmD8Mwz9U/QUkSZIkqSUbrw1PXgUvjIHzroJbH4Svvsm9HgRtD7oSfz6WH4Rl/dVg/51ht22gZ4+2r1+SJEmSJEmSJEmSJEmSJEmSJEmS1FAMvJKiIAhWIhdsZeU4ueht5YKqFL8Wp08FbgWuAO4Nw3BeEAR9gT2BA4EReZ8Niz6b//z3QRA8FobhPa36UpIkSZLUkjWGw6V/hblz4YmX4I5H4KmXYfQbMGVq+9c/eGHYYLUo0Mt2m8Big9q/TkmSJEmSJEmSJCkNU6fBx5/BV19HNx2Yrx8sORh690q7ZJKakXWSmp37QLb5+0iS6pVtWDpW36nweRDA/ZfAAvOnUx7JbVJpsi2S0mHdnykGXulkQRCsQi7YytA4uehtSQFVKr02F7ifKNjKzWEYTiv4QBhOBS4CLgqCYH3gEGBHoDu5ACzBd0v+8zODILgvDMN5rfyakiRJktSyrl1h5JrREntzfLR8PBE+mggTJsHU6TB9BsyYBbNnQ7du0KM79O8LC8wHCy8IQxaBZYbAKivAwAFpfSOpvAmT4INP4LMvYcZMWHggDBoIyy8Z7QsdZd48ePuD0vQVluq4PCU1H+s4SZIklWNfUUncLiRJrTVlKnz0KXz5NUyeEp03mj0HwjCa9N0nXnrDogtFQfrr3dvvwyU3wu2PwLj3onas2DKLR+fZdtoCth4ZTcZtVvYvpI5lnaRm5z6Qbf4+zcM+n+qd27CK2Yal7+Vxuf9pGEaPZ89Jt0xqbm6T2dWo7bhtkZQ+6/5MCcIwbPldapcgCFYjF2xluTi56G3VBlvJf/15omAr14Rh+FkryzQIOJAoCEt8VWK83jjwSghsGobhI61Zdy0FQTAGGFacPmzYMMaMGZNCiSRJkiRJqtJrb0WD0fc8Dm+MT37PfP1gy/Wjwehdt659GSZ+DouOKhzkDgKY82rt85LUXKzjJEmSVI59RSVxu5AkVWvcu/DYC/DMKzDm7Wiy9zfftm4dPbpHd+JcejEYMRQ2WgM2WA0GzNcxZc736ST48NNoAv6UqTCgPyw2CFZevroJ6V9PgWPOgotvjCa5tzS/M17n0ovBCQfB3tu1/zvUC/sXUsusk9Ts3Aeyzd9H1bDPp3rnNtyYbMMaR5fhpRc6T3gkCqggpcFtMluy3I5/9KBtkdQoKtT9w4cPZ+zYsUmfGhuG4fDOLGazMPBKBwmCYC2iQCs7AUvHyUVva0uwlXeBK4ErwzB8swblXBK4G1ghL5/8wCunhWF4bHvzaSsDr0iSJEmS6s6Yt+D4f8BtD0WDX9UORq+8PJx8OGw7qnZliQfci/Ob+1rt8pDUXKzjJEmSVI59RSVxu5AkVWPMW3DpTXDzA/D+J4WvtWd+Y/Fk9JWXg59sDXv9CIYs2vb1FvtwApx/dXRX0LHvJL+nf1/YZiQcthesMyL5Pe98ANseCG+9X/i9K02UL37fxmvBlafDIgu1/nvUC/sXUmXWSWp27gPZ5u+jatnnU71zG248tmGNySAXyhq3yWzIajueX44uXZLfb1sk1R8Dr2SKgVdqKAiC9cgFWxkSJ+e9pVwwlZZe/xy4jijYylM1KGphJkGwFPAK0Lco7xB4MgzDjWqdZ7UMvCJJkiRJqivn/F8UAXzW7Nwgc0uRw4sHow/eA/5+TPlB8dYojnQeD8Z54lxSW1jHSZIkqRz7ikridiFJasmjz8Ofz4eHno2eJ81lrObunOWUW18QwKbrwBH7wNYj277+2bPh5IvgjEth+szqJ+D/YqeofevTO/faxM9hrV3ho4mF723puyS9Z/DCcO+/Ydhy1X+XemH/QirPOknNzn0g2/x91Br2+VTv3IYbi21YYzPIhbLGbTJ9WWzHFxkZrbfaICm2RVJ9MfBKphh4pZ2CINiIKNjKjsDgODnvLS0FWyl+T/z6dOB/wBXA3WEYzml/acsLguDfwM8TyvJOGIbLd2TelRh4RZIkSZJUF2bOgp8cCf97OHmgvdz4S9JgdBDAJmvDbecVDna3hSfOJdWCdZwkSZLKsa+oJG4XkqSWfDEZjjgVrrw9et7SBPbWznGsZj3xezZcHc49FkYMbV0eM2fBDgfDvU+2/q6g8R1B774IuneP0jbfDx58prTNrCbwTP774jwWWhCeugqWGVL+c/XE/oVUmXWSmp37QLb5+6ha9vlU79yGG49tWOMzyIWyxm0yPVltxz/4BJbcvDS9UlAX2yKpvhh4JVNqEDKruQSRTYIgOC8Igk+Ah4GDgcWIApUERMFL4oW89OKALPGS/7kHgJ8Bg8Iw3C0Mw9s7OujKd14pk26vTJIkSZKkSubNg+0Phtseyg12FQ9Ax2nFC0SfyR/kDsPo7p47HgZzOmNIQJIqsI6TJElSOfYVlcTtQpLUktHjYI2do6Arcb1f3BYUK9d2VGpTkuS/J877sRdgnd3gtIur/w7z5sG2v4J7nigsf7zelvIPQ3j4OdjvD1H6/x4qnOye/3/Jf560xOuN3xfnMelL+NGvYcbM6r9XVtm/kCqzTlKzcx/INn8fVcs+n+qd23DjsQ1rXpXGlqQ0uE12vKy24/PmwV5HJ79mWyQ1Nuv+1HRLuwD1JAiCnwDnAt+Lk/JeLm6pkrbqcu95GbgCuDoMwwntLWcbTS2T3r9TSyFJkiRJUr054Z9w7xOFA1xJUb2TJE0mjwe773sSfnM6nHNsx5RbkqphHSdJkqRy7CsqiduFJKmS516FzfaDqdNL24f4cTVtRlskTZSP85k1G449G157Cy4/Gbp2rbyus/9b/q6gSeVPel8YwlV3wP67wDn/V/p6/Hj+/vDDUbDVBrDk4OjutjNnwaefw6PPww33wpvjCyfTx58f9x4cfy6ccVTV/6ZMsn8hVWadpGbnPpBt/j6qln0+1Tu34cZjG9a5uq6cXt75v2MYwiIjq/9sEMCcV2tfJqXPbbK5ZLUdP/u/8PiL5fMtLpttkdQ+Gaz7X5kXAkOTPjGMYNjc+BOEY40XUiNBWOsTlA0sCIITgBPyktoTbOV94CrgijAMX69NCdsuCILfAqdTWN4AmBGGYZ90SgVBEIwBhhWnDxs2jDFjxqRQIkmSJEmS8rw5HlbZHuZ8N26VNFF8qw1gqw1h1aGw0ALRax9/Bg8/C9fdDe98WH7QPQjgpnNg+83aVr6Jn8Oio0rLNPe1tq1PUnOxjpMkSVI59hWVxO1CklTJ+x/DmrvCF5OTA67EzwG6dYWhy8Dqw2Dl5WDwwrDYIBi8EPTrC717Qq/vlrlzo7Zn5iyYMhW++RY++zKq98d/Am+9Dy+Pg1fegNnf3V20OAhLfll2/QFcfWb57/HBJzDsRzB9ZmGZ4/YKYNBAWGGpaLL6p5/D+I/h868K847zG7o0vDG+dFItwE93iCarDxxQvjxhCP++Ho4+K/ruxa/17AFv3AFLDC6/jiyzfyFVZp2kZuc+kG3+PqqWfT7VO7fhxmMb1vm6DE+7BG3jvtS43CabR1bb8fy2aN680teDwLZIqrUM1v3zwpDSMBWRLgTxCyHh2BbuKKBqGXilFfICrxQHJylWLtjKV8D1wJVhGD5W+xK2XRAE/wIOoPS7fRiG4ZLplMrAK5IkSZKkjPvF8XDpTaXqLZLZAAAgAElEQVTRu8MQNlwdzv8jrLx8+c/PnQsXXgdH/w2mzch9Nn89Cy0IY/9XeUC7HE+cS2oP6zhJkiSVY19RSdwuJEmVbPqzaCJ6cT0cz19cfBD8aBPYflMYtVY0UbuWZs6K8r/pPrj6Tvh2WmkAlrhMp/8GfvOz5PUc+3c49eLk9m7tVeCM38JGa5Z+7oGn4MzL4J4nkj8LhemH7gV/P6b67zd6HGx9AEz8ovT7HLEPnPm76teVJfYvpMqsk9Ts3Aeyzd9H1bLPp3rnNtx4bMM6X5fhpeM0nSHputpqy+G+1NjcJptHVtvx/LYoKfDKo/+1LZJqLYN1/9x58ygXeKUrwTyiOBAGXqkhA6+0QlHglZYCrsSvzwRuB64E7gjDcHaHFrKNgiB4BVg54aV7wjDcurPLEzPwiiRJkiQps6ZNh+9tEE3WjsWDx/tsB//+M3TrVt26Ro+D7Q6CjyYWrif+u9vWcOUZrS+jJ84ltZV1nCRJksqxr6gkbheSpEquuwt2+21yoJOhS8MpR8B2m3behNZvvoWTL4KzLoe5RZPW47tzvn47LLVY4Wtz58ISm0V3D81/fxDAXj+Cy09u+Tv8+Xw48bzCoDPFE99HrAgv3dT67/XMaNho78LvFIbwvQVg4mPpTBhuD/sXUmXWSWp27gPZ5u+jatnnU71zG248tmHpiC90zsJ1rga5ELhNNoustuPFbVFx4JUggHktXFttWyS1XgbrfgOvdL4uaRegAYR5C+QCrjwC7A8MCsNwlzAMb8lw0JU+wCSiMhcvN6RYNEmSJEmSsuveJ2DGzNzzeHB8ozXg4pOqH2wHGDEU7r8kGnSGwsH2MIRr7oL7n6xt+SWpEus4SZIklWNfUUncLiRJlZx6ceHzeNLqfjvC6Jth+806dzL2fP3g1CPhocuT7zI6azb84ZzS9MdfhAmTcs/j9mndEdVdeAXwx1/DbtvkPlv8mSCAkw5t1df5/9YZAUf/onRS8BeT4cmX2rbONNm/kCqzTlKzcx/INn8fVcs+n+qd23DjsQ1LV6X/b/y/rOUitcRtsrFltR0vbouK2RZJHcu6v6kZeKXtioOtBMBrwDHAkmEYbhKG4SVhGH6TVgGrFYbhtDAMN/uuzMXLJWmXT5IkSZKkTHoiYXA4COBff4SubQgavPxScPUZ0KVLbl3x3zCEw06JophLUmewjpMkSVI59hWVxO1CklTO2Lfh5XG5ujye6L3rD6LJ6927p1e2DVaHBy+D/n1zaXFbc8O98NXXhe9/7tXSdQQBXHhi6ybHnvcH6Ncn+bWBA2DbUdWvq9gR+0CfXqXpjzzX9nWmxf6FVJl1kpqd+0C2+fuoWvb5VO/chhuPbVg6bjwHBvQvHyAAotdqvcTy97XFFoYlFm15WXJw9FeNyW2yOWS1HU9qi+L12BZJHSeDdf+E7vABs0uWCcyZDXwAvP/dX9WIgVfaLg628jFwBjAiDMMRYRieHobhR+kWTZIkSZIkdbjRb+QexwNs246ElZZt+zo3XReO/nluEC1/MG3ce3DuFW1ftyS1hnWcJEmSyrGvqCRuF5Kkcm57qDRt/n7RpO8sWHn5qCzFd+ecPScKvpLvhbG5x3F7t/l60TpaY4H54SdbF+YZr++Ho9p3h8MFB8D2m5Z+n5fHtX2dabF/IVVmnaRm5z6Qbf4+qpZ9PtU7t+HGYxuWjh9vDi/fBBuunvte+Rc8BwHstAV8+RTMG1O7JV53vuevh/fuq35RY3KbbA5ZbceL26JYa9sO2yKpdTJY92+1fMAyvFOyDOHttwjHLv3/F9WMgVfa5hvgUmAzYMkwDI8Ow7BMGDFJkiRJktSQ3v+kdJDrBxu1f70nHgSrrBA9Lo52/ud/wReT25+HJLXEOk6SJEnl2FdUErcLSVI5z4/JPY4nde/xw2hidlbs+SMYsWLpJPEni+54Ou7d0s9ut0nb8txiveT01VZq2/ryjVyz8HkYwjsftn+9nc3+hVSZdZKanftAtvn7qFr2+VTv3IYbj21YeoYsCg//B/54IHTJu+Q13gduuh9G/BgeeS6d8qn5uE02vqy240ltUVuDpNgWSa1j3d/0DLzSOs8DuwKLhGH4izAMHwrD4rOtkiRJkiSpKXz2ZWna6jUYiO7WDS46MXmQ/Jtv4YR/tj8PSWqJdZwkSZLKsa+oJG4XkqRyxr5dWo9vuX46Zalk3x0Kn4chvPR6YdrkKaXfZa2V25ZfPPG+2LB23E019v0Vc4/j8n7yWfvX29nsX0iVWSep2bkPZJu/j6pln0/1zm248diGpatLFzjxYHjoMlhs4cIguWEIH34Km+0Hvz8L5sxJr5xqHm6TjS2r7XhSW9RWtkVS61n3N7VuaRegnoRheEfaZZCUUfsdl3YJ2iYI4JK/pF0KSZLUSOwXqZlMm16attCCtVn3OiNg/53hwutKo51fdB0csiesuHRt8lK6rDeVVdZxkiRJKse+opK4XUiSypn0VWlaFuvt9UbkHsftzKefF77n6ymln1u4je3dkEWS0xce2Lb15Rs4oDTtm6ntX29ns38hVWadlOP5tubkPpBt/j6qln0+1Tu34cZjG5YNG64Br9wCPz8ebr4/2vbj/WDePDj9UnjgGbjqdFhuyXTLqubgNtmYstqOJ7VFbWVbJLWddX9TMvCKJNXC5bfULpJgZwlDT9xJkqTas1+kZtezR+3W9dfD4Pp74KtvCtPnzoPfnA63/6t2eSk91puqJ9ZxkiRJKse+opK4XUiSILqDZ7H+fTu/HC0ZvHBp2tdFZZ8yrfQ9c+e1Lb8+vZPTa/G/6dOrNG3W7PavNwvsX0g51kk5nm9rTu4D2ebvo/awz6d65zZc32zDsmPAfHDjOXDBNfCbM2DGzCg9Dlzw/Guw2k7w92PgFzunW1Y1B7fJ5pCFdjypLWor2yKpfaz7m06XtAtQb4IgGBEEwR+TlpTLtWGZcq2cZrmkphOG9bNIkiR1pLT7OvaL1Bn6JgxGT/6mNK2tFhwAfzo4t53Gk+/CEO56DO57snZ5KX1p14XWmypmHSdJkqRy7CsqiduFJKmcHt1L076t4cTxWkm6iKr4Iv5eCZPuJ37Rtvy6lJm6mTRZvbW+mFya1r0O79Fn/0KqzDqpVNrn0Dzf1rncB7LN30fVss+neuc23Hhsw7LnV7vBc9fC8OVy+0IQRMvU6XDAibDTYfBlwv9E6ghuk40jq+14UlvUVrZFUm1Y9zcNA6+03qrAicAJCUuaVia5XLumWCY1mjCEqdOiTtHXUzz5kyRuLOthkSRJ6khp93XsF6kzLDB/adqb79c2jwN3g5WXjx7H22s86H7YyTBnTm3zU3rSrgutN1XMOk6SJEnl2FdUErcLSVI5C8xXmjbu3c4vR0s+mFCaNn+/wudJdwH95LO25Td3bu5xredgffZlaVotJtJ3NvsXUmXWSaXSPofm+bbO5T6Qbf4+qpZ9PtU7t+HGYxuWTcOWg+eug1/9pPB/Ge8LtzwA3/8xPPh0emVUc3GbbAxZbceT2qK2si2Sase6vykYeKV9grwlbdPzHueXa810iqO6N2Mm3PsE/P4s+MEvYektoNeq0G9N+N76MGAd6LYKLLAuLLcV7Hgo/PUCuPsxmD4j7dKnI+lOBN6xQJIkNSP7RWoWyw4p3YYfea62eXTpAuf8vjDaeeyN8XDyRbXNT+mw3lQWWcdJkiSpHPuKSuJ2IUkqZ/FFStuIOx9NpyyV5E+Ejcu75ODC9yw5uPS7tPXu4tNmwE5bwI6bR3/jx716tm19+V59M/c4Lu8i32v/ejub/QupMuukQp5vaz7uA9nm76Nq2edTvXMbbjy2YdnVswec/0e46Zwo0G/8veOLnT/5DLbcH446A2bPTresag5uk/Uvq+14UlvU1rEM2yKptqz7G56BV9on/G7JgvzfMr9cy6VQFuXbeF8IhpUu4z9Ou2TJ3vkAfv1nWGQkbLU/nHox3PN4VN5ZRRX9vHkw+Rt450O4+X74w7mw9QEwaCPY7zh46Jl0vkMa3r4b/nEcbLVBrpGEyncmqHRSrzMWSZKkjmC/SM1kpWVyj+Pt/fp7aj9Itsk60UB3GJZGOz/5InhpbG3zU+ey3lRWWcdJkiSpHPuKSuJ2IUkqZ90RucdxnX31nTAp4W6YaZk5C/59Q+G4bBDAiBUL3zd06cLXwzC6g2Fbxk3794Xrzy5d5uvXtu+Q77aHCp8HASy1WPvX29nsX0iVWSfleL6tObkPZJu/j6pln0/1zm248diGZd8Om8PLN8HINQv7/kEQXed21n9g3d3hjffSLaeah9tk/cpqO17cFsVsi6TssO5vWN3SLkCdCyAzgVcGlkmfv1NLofr17VQ49mz417UwZ0771jVlKlx2c7SsOwLOOhrWW7U25cyqZYbAQXtEy7sfwumXRBMyoPREXtxJXnEpWOf7qRVZkiSpQ9gvUjPZeG34x5WFaZ9+HqUd+dPa5vW338Gdj8GMmbm0IIgCZO72W3j2Wpi/f23zVOew3lRWWcdJkiSpHPuKSuJ2IUkqZ+QacPZ/C9O+nQYHnAg3nZtKkUr87kyYMKn0Av0t1i98PnJN+M+thWmTvoJzr4DD9u7YMlbr3Q/hiZdKv8tqK6VTnvawfyFVZp2U4/m25uQ+kG3+PqqWfT7VO7fhxmMbVh8WXwQeuhxO+hecdEF0gTPk+vwvvQ5r7AxnHgW/2i3VoqpJuE3Wp6y240ltUdbYFknW/Q0qCI2a3SpBEOwLXEYUcCXI/xuGYdcUy3UdsDOFgWACYEYYhn3SKVX7BUEwBhhWnD5s2DDGjBmTQonaYON94ZHnStPfuy87EdzGvQvbHQRvvd9xeey+LZx/PAyYr+PyyJqHn4UdD4Wvv42exyfs4r8H7Q7nHpduGSVJkjqD/SI1qq+nwCIjo0HvWBhC717wwKWFd/Gshb9eAMf/o3D/if+OWgvu+FeUd76Jn8Oio3ID2/H7575W27Kptqw3lQXWcZIkSSrHvqKSuF1IksqZPRuGbBpdpBSL6+Bf7AT/OgG6dEmvfCdfCH84t/TOof36wKePQp/eufRPPoMlNiu8s2jc3j1/Hay0bOeVu5zN94MHnylt7+66ELbcIN2ytZb9C6ky66TKPN/W+NwHss3fR9Wyz6d65zbceGzD6s8TL8IeR8GHn5aO7wQB/HAUXPIX+N4CpZ/tMrz0/zjhEVh4YOeUXY3JbbJ+ZLUdL26L4mAOsS5d0m/HbYukQh1U9w8fPpyxY8cm5Tg2DMPhHfFVml2KZyxVK0EQbAH8mMKgK1J1Ro+DDfbs2KArAFffAWvuEkWza4sT/1m6FN8NJ2s2Xhuu/3vueXEEP0mSpGZhv0iNav7+sNMWhSdZgwCmz4Af/BJue7C2+R39Cxi+XC6f/EH3R56DbQ+EKVNrm6fSYb2pLLCOkyRJUjn2FZXE7UKSVE737nDArrk2Ir/OvvhG2GhvePXNzi/XhEmw8+HRRPd8cfkO3K0w6ArA4IVhm5HJ7d2Ge8Fdj3Z8uSs5+m+Fk91j8/eDTddJp0ztYf9Cqsw6qTLPtzU+94Fs8/dRtezzqd65DTce27D6s8Hq8MotyftiGMLtj8D3d4B7n0ivjGoubpP1I6vteFJblK9cemexLZJKWfc3jCBMu5JNWRAEo4BRrfjIqsAOREFOgqK/f6p5ASvrBawCbAV0KyoL3z2eEIbhYp1crpoJgmAMMKw4fdiwYYwZMyaFErXBxvtGHZ9i790HS6X803w8EdbYGSZ+kfx6EESdnS3WhzWGwXJLwnx9Yb5+MGcufDstWse49+Cpl+F/D7ccWGWJReGZa2CRhVpX1qBkM4AlB8P4+1u3njRsf1D0vymOOuYdEyRJUrOxX6RG9PLrsGaZCeNBANttAr/5KWy4Rm3yGz0O1tkNZs9Jzm/ZIXDt32C1746hvGNJfbPeVNqs4yRJklSOfUUlcbuQJJUzfQYM3w7e/yR6nl9nQ3SHzu03hV/9BDZbN3reUd4cDxdcC/++HqbNyJUlFoaw8IIw9n+w4IDSzz/1cnShVbEwjMq96w/gl7vAhqtDt24d9jUKfDwRDjopGk8uLlMQwKF7wd+P6Zyy1Jr9C6ky66SWeb6tsbkPZJu/j6pln0/1zm248diG1a+LroMjT4PpM3Np8b4ZBHDY3nDqEdCjR5TWZXjpvjHhEVh4YOeWW43LbTL7stqOz5iVa4vmzStdz+7b2hZJWVXDun/48OGMHTs2KZexYRgO78iv0awMvBIEJwAnkAtWUtXHyqSn9c/MDwBD0eMXwzBcM5VS1YCBVzpQGMKofeCxF5Jf335TOPOoKNhKa9zzOBx7NryYWJlHNl0H7r+0dXcQqOfAK3c/Btv8yhN3kiRJ9ovUqA78E1x4XeHANxQ+XnjBKJLx0KWjY5n+faNjwnVHtD6/C6+FA/9cOCk9/3HXrrDPdnDML6LAmZ44r1/Wm8oC6zhJkiSVY19RSdwuJEnlPPwsbLV/dLMnKA2+EtfPAwfA5uvBqDVh9WHRHUD79G57vh98Aq+8Gc3fuvtxGPtOLv843+LJ7TedA9tvVn6d+/8RLrmxcnvXuycsv2R0k6p+feCUI2CJwW3/HsXe+QCeHg23PRQts2YnB5Hp0wvG3QGLL1K7vDub/QupMuukyjzf1vjcB7LN30fVss+neuc23Hhsw+rX6+/Abr+FV98s/V8FAayyPFx1BgxbziAX6hxuk9mX1XZ8ylS44d5cer44eLltkZRNNar7DbzS+Qy8kgu8Us/iH7E48EoI/DMMw8NSKVUNGHilA116I/z8+OTXTj4cfv/Ltq977lz4wzlw6sXl33P1mbDbNtWvs54Dr8ycBQPXy0Uo88SdJElqVvaL1KimTYf194gmbicNuseKg09uOwpuO69teR52MvzjyuRJ6fn5L79kdPdOT5zXJ+tNZYF1nCRJksqxr6gkbheSpEquvgP2Ojr3vNp2YpHvRRPHBw2MArP07xtN5O7WDbp2ie4OOnNWNOl78hT49PNoGf8xfDutML/iPIrLcNqRcNTPK3+PGTNho73hhTGlZU2ajxkE8Nx1USCZ9rjgmqjN+2ACTJtRmmdSEJnTjoTf7te+fNNm/0KqzDqpMs+3NT73gWzz91G17POp3rkNNx7bsPo2cxb85nQ4/+rSi50BevWM/m+HnWKQC3UOt8lsy2o7HobQszvMmFX6+eKyxGm2RVJ21KDuN/BK5+uSdgEyJGzFUot11HKBXNCVYrdV+w9QE5k7F/5yYfJrh+zZvqArEEXVO+VI+MOvyr/n5Ival0c96dkD1ls1eXBFkiSpmdgvUqPq0zsaOF9uidLB9iDILWFYuLTHOcfCz35cmEfxgHYYRifN47Ko/lhvKgus4yRJklSOfUUlcbuQJFWy+7Zw3VnQt3f0PH+iaaV2YsIkePZV+N/DcPkt0aTv0y6Bv14If/4XnPJvOOs/8M+r4Ir/wf1PRXcRnDK1tL2J88jPN25D/va7loOuQDQZ9u6LoruZFrcr+d8jafJ7e7zzIbz+LkydXvi98v9v+XnutEVjTHa3fyFVZp1UmefbGp/7QLb5+6ha9vlU79yGG49tWH3r2QP++Qe45R+w4PyF+wZEgXUOPzV67L6hzuA2mW1ZbcchOehK/B7bIinbrPvrkoFXCgVVLu39fEcssTDv7+NhGD7Qhv+DGt19T8J7H5WmL74InHpk7fL508Gw1irJr736JryYGGmrMbU3UqAkSVKjsF+kRrXEYHjqath47dJBsVj+4HYtBrkv+Qsc84vk/DpiIF3psN5UFljHSZIkqRz7ikridiFJqmSnLeGZa2CN4eUnkhZPGk+a1N7SUmk9+cIQhiwCd18IR+xb/fcYOAAevAwO3St5vR2p3KT6/AsC9tgWrjqj88rU0exfSJVZJ1Xm+bbG5z6Qbf4+qpZ9PtU7t+HGYxtW/7bbFF6+CUatVTpe5AXOSoPbZHZltR1Psy23LZJqw7q/rhh4pVBY5dLez3fkAlEglreB3dr8n1Bju6VMPJ6Ddo8i9NVKly7wp4PKv37vE7XLK+tWHZp2CSRJkrLBfpEaWXyi9bzjYdDA8hHNazkIfvIR8L/zYfDCHZ+X0mG9qaywjpMkSVI59hWVxO1CklTJSsvCs9fCJSfB4oPKtxMtBVFpaYnXkS8/vVdPOGo/GPs/2Hz91n+PXj3h7N/Dc9fCDpuVlrkjlft/zdcP/nMKXHE6dOvW8eXoTPYvpMqsk8rzfFtzcB/INn8fVcs+n+qd23DjsQ2rf4sNivbLPx0MXfMupXXfUFrcJrMrq+14UvAT2yKpvlj31w0Dr9S/oGiZCZwDrBOG4YQ0C6YMe+Kl5PRtR9U+rx9sFN0VJskzr9Q+v6xadkjusY2hJElqZvaL1AwO3A3G3wcX/xk2Wxe6dyu902YtB7u3HQVv3gmnHQlLLVa6/rQjnqt9rDeVNdZxkiRJKse+opK4XUiSKvnZjvDuvXDdWbDJ2rm7+xUHW2mP/EAr8bLYwnDCr+G9e+G030DfPu3LY7VhcNO58M49cNbRsMX68L0FOnbie/H36tUTfrkLvHoL7L1dx+WbBfYvpMqsk0p5vq25uA9km7+PqmWfT/XObbjx2IbVtyCA4w+Eh/8TXeNWy7EnqS3cJrMtq+14/mJbJNUf6/66EISdEdUqw4IgOAw4vBUf6QcMBEKiQCf5fz+oeQErC4Fvga+AscBTwC1hGH7TyeXoMEEQjAGGFacPGzaMMWPGpFCiNth4X3jkudL09+6LOkKdbd486LM6zJxV+to3z0H/vrXPc/8/wsU3lKavvDy8emt16whKNgNYcjCMv799ZessEz+HRYsC2xy8B5x7XDrlkSRJSov9IjWjadOjwJOvvwtvjofPvoSp02DEUPjzIbXNKwzhnsfhhnvh7sfhk89K3xMEMPe12uarjmO9qayzjpMkSVI59hWVxO1CklTJF5Phjkei5amX4aOJld9fPBG13FzIbl1htZVg47Vhu01g/dU6ZxLrF5Nh0pfwzbfRPKk+vdu3vqPOgL9dnnvepxesOwK22gB+vhMsOKB9669X9i+k6jRzneT5NkFz7wP1wN9HLbHPp3rnNty4bMPqz9dTouvcbri39LUggAmPwMIDO79cal5uk9mX9XbctkiqP1XW/cOHD2fs2LFJaxgbhuHwji5mM2r6wCutFQTBvsBlJAReCcOwa5pla0RNF3hlylS47UG47ykYPS6aPPDNt9Fr/ftGgUZWXh42Xw922KxtQVI+/woW2iD5tY4KvHLxDVEjUGzQQPj0serWUe+BVwB+cxrMy6tzN1oDdtyi9H1j3oKVt6+8rtduheHL17Z8kiRJncV+kVSdWuwDr78DL70OL4+Dtz+ACZPg08+jY1LVj2rrTbDuVP2wjpMkSVI59hWVxO1CkprTF5PhhTHRZPaPJ0ZzqSZMgqnTYfoMmDErevzRp5XX88L1sHodzD+tpr079YhoQv+ggbDKCtCtW+eUrRHZv5Aqa7Q6yXkKaq1G2wcaUTW/0QUnwNqr+Ps0M/t8qnduw43HPkZ6qvnfn3ss/Oon0L1755RJzava7XGJRWGbkW6T9SrL7bjHU1I6WtkfMfBK57O2k7JgylQ47WI4+7/RZIAkX0yOlhfHwn9vjQKkHLQ7HH9g66LQTZ9R/rXxH0cdoVpbexXYYPXS9D69kt9fLlhNsfc/SQ7IcsKv4cSD4fq7Ydcjkz971tFwxL4t51GNodvCG++Vph++D/z9mNzzvx1dm/wkSZLqnf0iqfOstGy07PHDtEui9rDelJJZx0mSJKkc+4pK4nYhSfVn4ADYcoNoKaeaSao9e9S2XGn64cZe7J8l9i/U7OqpTvJ8mzpCPe0DzWrD1f2N1H72+VTv3Ibrj32M9Gy6jgEulB2brmNdoHTbcY+npHTYH0mVgVektL32Fmx/MLz7Yes+N2UqnHox3PIg3HkBLL14dZ/r1bP8azfc0zGBV76/Ijx+Re3X25LtNoUB88Hkb0pfu+He2gReGT0uOegKwE93aP/6JUmSJEmSJEmSJEmSJEmSJEmSJEmSJElSh+iSdgHqXJh2AVTnnnsVNtyr9UFX8o17FzbeFyZ+Xt37F5wfepSJdvXPq2D8x20vS9b07AG7bpX82lMvwyeftT+Pa+5MTl91KIwY2v71S5IkSZIkSZIkSZIkSZIkSZIkSZIkSZKkDmHglfYJvluk1nvjPfjBL+HrKe1f1wcTYL8/VPferl1hpWWSX/vya9j2V1Ewl0axz/bJ6WEIN93X/vVfd09y+k9/3P51S5IkSZIkSZIkSZIkSZIkSZIkSZIkSZKkDtMt7QLUoU+BR9IuhBrAnr+LAp3k69kDdtwCtt4Ihi0LCy0AU6bCJ5Pgvifh6jvho0+T13fno3D/k7D5+i3n/YONYPQbya+NfQfW2AUO2RP23xmWXaJ13ytrNlgd/h97dx4m2VnXC/z7VlWvs08SSADJRgIJISBIRAQCXLawJOyKQowG8Iro5QquKIiIgCwuoPIgROWiEgx7EEIIBMImERQQMBIgspgAyUxm6b2qzv2ju5leqjvTPd1d3dOfz/Ocp+u855zf+6vkmZmqOm9/69QfSb7+7fnHLvtQ8tyfXX7tz34x+UaHuj2N5Gcfu/y6AAAAAAAAAAAAAAAAAAAAwKoTvLJEVVVdkeSKbvfBUeCWW2fv//wTkpf+anLH288/9+6nJQ+/f/KiX0qe+7Lk797dueZfvu3wglcufmLyqkuSdrvz8eGR5JVvmtzufWbyuAdPhsH82FlJvX7b9Y/UO/8sGZ+YPXbCufPPu9PxybWXzh/fOjh7/xnnJ7//F/PPu+ZzyfdvSW53zPL6vPQDnccf++Dk2F3LqwkAAAAAAAAAAAAAAAAAAACsiVq3G4BNb6A/eftrk0te1jl0ZaatW5JL/jB55AM6H//ANcn4+G3PedpJyYsoiOUAACAASURBVC888fD6+/xXkpf8ZXK/pyXH3D85/5eT1/xN8i9fSCYmbvv65di9Mzn+uNlbJ/Xa/POOP27yv9NMF16QlDL/+nY7edeHl9djVSVvXyCD6aLHL68mAAAAAAAAAAAAAAAAAAAAsGYEr0A3lZL8058kT3nU4V9TqyWv+53OQSKjY8lnv3R4dV7zG8ndTjn8eZNk34HkfR9NXvCqySCWHT+ePOgZyW+/dnL8lluXVm+tnHyn5Cd/tPOxyz60vJqf/HzynZvmj9/umOTRD1peTQAAAAAAAAAAAAAAAAAAAGDNCF6BbrrwguQx5y79utNOSs4+vfOxL19/eDW2b02ufFNy15OXPv+0kdHkms8lr3hTcv4vJ8feP7nbY5JnvSh52z8nP9iz/Nor7cILOo9ffW2yZxmBMZd+oPP40x+bNBpLrwcAAAAAAAAAAAAAAAAAAACsKcEr0E2/efHyr73vPTqP3/Ddw69xp+OTa9+e/PwTklKW38tM130zedNlydNekBz/oORhv5D87buSsfGVqb9cT31U0t83f7zZTN591dJqtdvJZR/qfOyiJyy9NwAAAAAAAAAAAAAAAAAAAGDNCV6Bbjn7rskZpy7/+hPv0Hn8B3uXVmfbluSSlyWfvyz56UcnvT3L72mudju56jPJz78wOfnhyev/fnKsG3ZsS85/SOdjC4WoLOTqzyY33Tx//N5nJvc4fem9AQAAAAAAAAAAAAAAAAAAAGuu0e0G1lop5ZJFDldVVV18BNevN7f5fOiih5xzZNfv2t55fHh0efXudUbyj69Obt6b/NMVybuvmgwYGZ9Yfo8z3fiD5Fdelrzlvcllf5LceYHgmNV04QXJ2z84f/yqzyT7DkyGsxyOt32g8/hFj19+bwAAAAAAAAAAAAAAAAAAAMCa2nTBK0kuSlJ1GC9T47cVVLLQ9evN4T4fuuXs04/s+oG+zuOjY0dW99hdyS/99OR2cCj5xOeTq69NPnZt8vmvHHkQy7VfSs75qeSjf5ucceqR1VqqR/5kcvtjku/dMnt8fCJ570eTZ5x/2zWazeSdV84f7+1JfuaxK9MnAAAAAAAAAAAAAAAAAAAAsOpq3W6gi8qc7UivX28b691Jdzyy62sL/PFtt4+s7kxbtySPemDyil9LPv2Pyb7PJtf8v+SVz08ueGhyu2OWV/d7tySPeFZyy60r1+vhaDSSpz2m87HLrji8Gld+qnPfj3tIcszO5fcGAAAAAAAAAAAAAAAAAAAArKlGtxvoomrO/lLDSuZev94IX1nvjtvd7Q6Wrr8vecB9Jrdp1/93cvW1yUf+Jfnwp5Mf7Dm8Wt+5KXnOHySXvnZ1el3Ihecnf/qW+eMf+lRycGgybGYxl36w8/hFjz/y3gAAAAAAAAAAAAAAAAAAAIA1U+t2A11UZmxHev1629gIBvq63cHKuMuJyTOfnPzDq5KbPp5c/XfJL/10su02AkyS5O0fTP71P1a/x5l+9MzkHqfPHx8dSy7/2OLXjo0n775q/vjtj0ke9YCV6Q8AAAAAAAAAAAAAAAAAAABYE5s5eKWasR3p9ettYyNoNLrdwcqr1ZJz75v85YuS716dvPL5yY5ti1/zhkvXpLVZnvG4zuOXfWjx6z54TbLvwPzxpz/u6Pz/CQAAAAAAAAAAAAAAAAAAAEexzRy8AqymbVuS37g4+Y/3JGeeuvB577s6qdY4L+jp5yf1+vzxD1yTDI8sfN2lH+w8ftETVqYvAAAAAAAAAAAAAAAAAAAAYM00ut1AF3wryZGkPBzp9bC53On45J/fkJx5fudQk+/fknzj28mpd167nk44LnnYTyRXfGL2+PDIZPjKkx4x/5qR0eR9H50//mNnJWedtjp9AgAAAAAAAAAAAAAAAAAAAKtm0wWvVFV1Ujevh676/dcnN/zP/PFnPil5wH1Wb94T75j84lOTP/m7zse/vsbBK0ly4fnzg1eS5B1Xdg5eufzq5ODw/PGLHr/irQEAAAAAAAAAAAAAAAAAAACrb9MFr8Cm9uHPJJ/8/Pzxu5+6usErSXLBQxcOXtm7f3Xn7uQJD0u2bUkODM0ev/zqZGw86eudPf62D8yv0debPO3Rq9YiAAAAAAAAAAAAAAAAAAAAsHpq3W4AWEO7d3Qe/8Z3Vn/uu5608LFmc/Xnn2ugP3nyI+aPHxhKrvjE/LF//vj8c89/SLJ75+r0BwAAAAAAAAAAAAAAAAAAAKwqwSuwmZx0h87j//LF1Z/7mEUCSrYOrv78nVx4Qefxd1w5e/89VyWjY/PPu+jxK98TAAAAAAAAAAAAAAAAAAAAsCYEr8Bmcq+7dR7/4n8l37t5dec+OLzwseOPXd25F3LufZMTO4TRvPejycTEof1LPzj/nBOOSx75gNXrDQAAAAAAAAAAAAAAAAAAAFhVgldgMzn3vp3HW63k7y9f3bn/42sLHzv9pNWdeyGlJE9/3PzxW/cnH/70occf+uT8c57+uKReX93+AAAAAAAAAAAAAAAAAAAAgFUjeAU2k1PvnNzzrp2PveqSZGh49eZ+x5Wdx884Jdm1Y/XmvS0XXtB5fLrfd16ZjE/MP37R41evJwAAAAAAAAAAAAAAAAAAAGDVCV6BzeZZT+k8ftPNyQtetTpzfvM7yZsu63zsMeeuzpyH6/STkh8/e/74u69Kms3k0g/OP3bOPZIz77LqrQEAAAAAAAAAAAAAAAAAAACrR/DKOlZK2V1KeVop5TWllMtKKVeUUi4vpfxNKeU3Sik/3u0e2YAuflJywnGdj73h0uTVl6zsfHv3JU/4lWRoZP6xUpJnLxAEs5YuvGD+2C23Jpd9KPnIv8w/dtETVr8nAAAAAAAAAAAAAAAAAAAAYFUJXlklpZRaKeWMUsqDSynHL/HaO5ZS/jbJd5O8NcnzkjwhycOSnJfkwiQvT/KpUsoNpZRfL6UMruwz4KjV35f86W8tfPzXX5085w+SkdEjn+szX0ju+9TkC9d1Pv70xyWnnXR4tWod/roaGVt2a7P89HlJb8/88V/9o6TZnD3W1zt5PgAAAAAAAAAAAAAAAAAAALChCV5ZQWXSE0oplyfZm+Q/klyV5P5LqPHIJF9M8owkfUnKbWx3TvKKJP9ZSpEGweF56nnJzz1+4eN/9bbkbo+Z/HlgaGm12+3ko/+SPPl5yf1/Jvn6tzufd8Jxyat//fDrbtsyf+z7tyRf/trS+utk987kMefOH//BnvljFzw02bXjyOcEAAAAAAAAAAAAAAAAAAAAuqrR7QaOFqWURyV5XZJTpoemflZLqPGwJO9J0rvEa0uSOyW5vJTyh1VVvfhw52QTe8OLk2/dOBmS0sm3bkye8wfJ8/84+V/3S+5/r+TMU5MT75Bs35r09yUTE8mB4eTbNybX3ZBc+6Xkyk93DiyZaduW5N2vS253zOH3e9Idki9cN3/88b+SvPRXkx89Y7KvVivp602O2334tZPkwvOTd334ts/7+ScsrS4AAAAAAAAAAAAAAAAAAACwLgleOUKllN4kf53k6TkUtpJMhqaUjhd1rnO7JP+QydCVmYErt1WjmnF+SfK7pZTdVVX9yuHOzSbV35e8/6+Sp/5acvnVC583Mjp5fLFzluJOxyfveX1y7zOXdt2Pn905eOX6byVPe8HssRc/J/n95y6t/mPOTY7dldy8d+Fz7nC75OH3X1pdAAAAAAAAAAAAAAAAAAAAYF2qdbuBjayUsjXJVTkUulJldhDKUrw0ybGZHaIyN8hl7jb3vOmwl+eUUn5zGT2w2Qz0T4ag/P4vJz2rnMNUrycXPyn50ruXHrqSJD913sr3NFNPz23P8YzzJ58HAAAAAAAAAAAAAAAAAAAAsOEJXlmmUko9yTuS/GQOha4k8wNTDqfW8UkumlNjWqeQlbLAsemxkuSlpZR7L6UPNqlaLXnxLyefuyx5xE+ufP16PbnwguQ/L0/e9NJk5/bl1Xno/ZIHn7Oyvc114fmLH7/o8as7PwAAAAAAAAAAAAAAAAAAALBmBK8s3wuTPDyHwk/mBqIsxcVJeqYezw1dmR77bpI3J3lFkr9N8tUO883cbyT5iyX2wWZ2j9OTK/46ufbtybOekuxaZkBKkpSS3P9Hk9f+ZnLDlcnfvTy5y4lH3uM/vio589Qjr7OQc85Ozjil87EfPzu52wLHAAAAAAAAAAAAAAAAAAAAgA2n0e0GNqJSymmZDF6ZG3iSOWNjST6X5Du3UfLCzA5rmVmjneRFSV5eVVV7Th8PTvI3Se6c2eEv09efU0p5RFVVHzqsJ8bquPrvVqfuRU+Y3Fbaj501uf3Vi5LPfin51L8lX7guuf5byXe/l+zdn4yMTZ67fUuyY1uyY2tyyo8k97xrcq+7JefcIzn+uJXv7fjjkn9/Z/I370re85HJvm65NWm3k21bkmN3Jfc+M3no/ZY/x1cuX7l+AQAAAAAAAAAAAAAAAAAAgHVL8Mry/E6SnhwKO0lmh6X8T5KXJnlrVVVDixUqpdwzyWlzak3XqZK8oqqql3W6tqqqq0sp901ybWaHr8z0zCSCV1i6ej35iXtNbutJT0/y7KdObgAAAAAAAAAAAAAAAAAAAADLVKqquu2z+KFSyq4kN+VQaM10QMr0z48meWJVVfsPs96Lk7x4To3put9JckpVVc3bqHG/JJ/sdCjJaJLdVVWNHk4/600p5ctJzpw7fuaZZ+bLX/5yFzoCAAAAAAAAAAAAAAAAAAAAWHl3v/vd85WvfKXToa9UVXX3te5nM6h1u4EN6IlJeqYezwxdSZKvJXnS4YauTHlMh7HpupfcVuhKklRV9Zkk75vRR5lxuC/JA5fQDwAAAAAAAAAAAAAAAAAAAAAc9QSvLN0jFxivkvxWVVX7DrdQKWV3kntPXdvJPyyhrz9f5NhPLKEOAAAAAAAAAAAAAAAAAAAAABz1BK8s3f1zKChlZmDK9VVVvXuJtR6aQ/8Pypx6/1VV1X8todbHkuzp0FeS3H2JfQEAAAAAAAAAAAAAAAAAAADAUU3wyhKUUnYlucP07oyfVZL3L6PkQzpNM1XvA0spVFVVK8lnZvQ1s97Jy+gNAAAAAAAAAAAAAAAAAAAAAI5agleW5sRFjn1mGfUenMmQlU4+vIx6X5qzP137hGXUAgAAAAAAAAAAAAAAAAAAAICjluCVpVkswGRu6MmiSinHJTljejezA1iaSa5eUmeTvrfA+I5l1AIAAAAAAAAAAAAAAAAAAACAo5bglaUZXOTY3iXWelCHsekAls9XVTW8xHpJcmCB8f5l1AIAAAAAAAAAAAAAAAAAAACAo5bglaVZLMDk1iXW6hS8Mu3qJdaaNrDAeFlmPQAAAAAAAAAAAAAAAAAAAAA4KgleWZoDixybWGKtBy9y7Ool1pq2e4HxsWXWAwAAAAAAAAAAAAAAAAAAAICjkuCVpdm7yLHth1uklHJskrOSVFND1YzDzSTXLL21JAsHrwwvsx4AAAAAAAAAAAAAAAAAAAAAHJUEryzNYsErd1xCnUckKVOPZ/6skny+qqrlBqXcY87+dO3vLbMeAAAAAAAAAAAAAAAAAAAAAByVBK8szbcyGY6SGT+nnb2EOk9Z5NiHl9TRlFJKb5L7ZX5fVZLvLqcmAAAAAAAAAAAAAAAAAAAAABytBK8sQVVV+5N8ZYHDjz2cGqWUOyR5TOYHpEy7chmtJckDkwxMTzPn2HXLrAkAAAAAAAAAAAAAAAAAAAAARyXBK0v36cwONqmm9s8vpdzxMK5/UZLG1OOS2QEsB5N8apl9/fYix76wzJoAAAAAAAAAAAAAAAAAAAAAcFQSvLJ0V854PDOAZSDJX5ZSShZQSnlskmdldtjKdJ0qyfurqmoutaFSysOSPDSHQmDmunqpNQEAAAAAAAAAAAAAAAAAAADgaCZ4ZeneleTGqcfTQSfTPx+b5G2llJ1zLyql/GySt80c6lD77UttppRyVpJLMzvMZebj/6qq6htLrQsAAAAAAAAAAAAAAAAAAAAAR7NGtxvYaKqqapZS3pjkxTkUcDIzfOXJSc4rpXwgydeT7EhybpIz5pyXzA5I+X6Sy5fSSynlUUkuSbJrTt2ZPb1lKTUBAAAAAAAAAAAAAAAAAAAAYDMQvLI8f57k2UmOz6HAk5mhKlszGcAyrVPQysxjVZK/rqqqeVsTl1JOT/K/kjwjyY9n8TCXg0neeFjPCAAAAAAAAAAAAAAAAAAAAAA2EcEry1BV1d5SyjOTvD+zg07KjP0y97I54zOvuzXJaxebs5Ty7CR/lqR3gfnSYfyPq6q6ZbG6AAAAAAAAAAAAAAAAAAAAALAZ1brdwEZVVdUHkrwuh0JOOgWrzNxK5oexTF/7u1VV3XobU25L0jejTqeQl2rGz88mefmSnhQAAAAAAAAAAAAAAAAAAAAAbBKCV47M85K8NfODT0qHbaaZASnvrarqr5Yw50JhLjPnvi7J46qqai+hLgAAAAAAAAAAAAAAAAAAAABsGoJXjkA16cIkL0rSymToSXUYW6bOvSrJ05Yx9dzAlZk135fk/lVV3byMugAAAAAAAAAAAAAAAAAAAACwKQheWQFVVf1hknOSXJFDoSilw6nT4xNJXp7k0VVVjS5nyswPXBlO8oKqqi6oqurWZdQEAAAAAAAAAAAAAAAAAAAAgE2j0e0GjhZVVf17kvNKKacleXKSByY5I8ntkvQm2Z/kP5N8KMklVVV9+winnA52GUryF0leVVXVLUdYEwAAAAAAAAAAAAAAAAAAAAA2BcErK6yqqq8lefnUthqaSb6V5Ook709yZVVVQ6s0FwAAAAAAAAAAAAAAAAAAAAAclQSvbBxvSfKPSW6sqqrqdjMAAAAAAAAAAAAAAAAAAAAAsJEJXtkgqqr6Qbd7AAAAAAAAAAAAAAAAAAAAAICjRa3bDQAAAAAAAAAAAAAAAAAAAAAArDXBKwAAAAAAAAAAAAAAAAAAAADApiN4BQAAAAAAAAAAAAAAAAAAAADYdASvAAAAAAAAAAAAAAAAAAAAAACbjuAVAAAAAAAAAAAAAAAAAAAAAGDTEbwCAAAAAAAAAAAAAAAAAAAAAGw6jW43cDQqpdSSnJXk5CQnJTkuyWCSgSS9ScoatVJVVXXxGs0FAAAAAAAAAAAAAAAAAAAAABuG4JUVUkrZmuTpSZ6Y5CcyGbTSTSVJlUTwCgAAAAAAAAAAAAAAAAAAAADMIXjlCJVSepP8dpIX5FDYSuleRwAAAAAAAAAAAAAAAAAAAADAbRG8cgRKKScleV+SMzM7bKXqRj9zCH8BAAAAAAAAAAAAAAAAAAAAgAUIXlmmUsrJST6V5HaZDDmZG7bSzeCT9RD8AgAAAAAAAAAAAAAAAAAAAADrluCVZSil9CW5PMntMxlyMh10sljYijAUAAAAAAAAAAAAAAAAAAAAAFgnBK8szwuTnJHFA1cErQAAAAAAAAAAAAAAAAAAAADAOiV4ZYlKKduT/N8sHLoyM3Bl5rHRJAeTDEcoCwAAAAAAAAAAAAAAAAAAAAB0leCVpbswyZZMhqcsFLpSktyQ5O+TXJ3kS1VVfX+N+gMAAAAAAAAAAAAAAAAAAAAAboPglaV7bIexmYEre5I8r6qqt65dSwAAAAAAAAAAAAAAAAAAAADAUgheWYJSSi3JA3MoaCWZHbry7SQPrqrqm2vdGwAAAAAAAAAAAAAAAAAAAABw+GrdbmCDOTHJwNTjktmhK60kTxG6AgAAAAAAAAAAAAAAAAAAAADrn+CVpTm5w9h0AMu7q6r67Br3AwAAAAAAAAAAAAAAAAAAAAAsg+CVpdmxyLG3rVkXAAAAAAAAAAAAAAAAAAAAAMAREbyyNIOLHLt2zboAAAAAAAAAAAAAAAAAAAAAAI5Io9sNbDBjixy7ac26AAAAAAAAAAAAAAAAAAAA2ICqaizt5rfSbn8v7dYPUrX3p6oOJtVYkmaqVCnpSyn9SelPKX0ptWNSq98htfoJqdWP6fZTAOAoInhlafYvcqy9Zl0AAAAAsO5UVTvt1nfSbv731E2g76eqDqRqH0iq8STNJFVS+lLSN3UTqD+lfkxqtROmbgLdIbX67m4/FQAAAABmsPAXAABg/Wu39qQ5/rlU7e+l3d6bVOMptV0ptd2p99wtjZ67rdrcVTWWiZEPzhvvHbxg1eYEAICNpt26KRNjn0lr4gtpTXwl7dZNSaojqNiTes+pqffcM42ee6bee3Zqte0r1S4Am4zglaX55iLHdiS5Za0aAQAAAKC7qqqd1sQX0xz7dJoTX0xr4rpMhqscmVLbmXrP2Wn03jONnnul3nPakTcLAAAAwGGz8BcAAGBjqKqJjI+8N+Mjl6fd/Pqi55barvT0PSh9W56RWv12K9tHeygjB16dpMwaF7wCAMBmV7WHMz76gYyPvD/t5vUzj6xA9fG0Jr6a1sR/ZjyXJilp9N47Pf3npaf/3JTStwJzALBZCF5Zmm8kGU/Sk/n/qh8bwSsAAAAAR71268aMDb8zE6NXpGrfOuPIStwESqr23jTHPp7m2MeTJLX6HdIz8Oj09j8ytfrtV2QOAAAAAGaz8BcAAGBjGR9+X0aH3pyqvSeH896tau/J+Mh7Mj7yz+kdfGL6tz4rpfSuQmfTvZRFzwIAgKNZVU1kbOjvMz58aapqKPNfs6/U6+VqRu0qzfHPpTn+uYwceG16B85P/5anpwjDB+AwCF5ZgqqqWqWUTyV5cOb/K3+fJNeteVMAAAAArIl2+9aMHvirTIxekaSd1bsJlFm1263vZuzgmzJ28M3p6Ts3fVufmXrjzis4FwAAAMDmZeEvAADAxlK192d4/yvSHPtEZr+HO5z3b1WS8YwPX5rWxBcyuOOPUqsfu8IdlqzUF7cAAMBG1Bz/Ykb2vzzt1ndz26/ZlxtcWE1dM/e6qXrVUMaH35bxkfemf+uz0zf4xCXWB2CzqXW7gQ3oAwuMn7umXQAAAACwZsZHr8rBm382E6MfSNLK7Bs2M2/czPwFmuWYeQNp5lYlaWdi7OocvOXCjBz4y1RV8wjmAQAAAKA5/sUcvOXCjA1dkqo6mM6fzUxb7uc+i33eU/1w4e/+m5+aseF3Lut5AAAAbBbt1v/kwJ6LZ4SudHifNc/M8UPntia+moN7npVW8ztr0DkAAGwO48Pvy9De580IXZn7mn2uhcJTOm1zr+tkznzVUEYP/GmG9r4gVXv/cp4SAJuE4JWl+39JZv5Wy/S//E8tpQx0pyUAAAAAVsvowb/OyL6XpKr2Z35CfqcbOZ1+Iee2tpnXdzLzplMr48Nvy8E9z0y7ddOynxcAAADAZmbhLwAAwMbSbu/Pwb3/J1Xrphx6H5fMD1WZq9M9/sn9qn1zhm/9tbRbe1anaQAA2ETGh9+XkQN/nGRiamTu6/O5X3I4cysptd2p1e+YWuPU1HvOSL3nnqn33CP1njNTa5yWWv0OKbUdmR28uND9men5Js9tjn82B/f+StqtW1byKQNwFGl0u4GNpqqqm0op/5TkaZn9L/H2JC9I8tKuNAYAAADAihs9+OaMDb1lam+hBVrJ/Bs2PSm1Y1KrH5tSBpLSl5LepPQmaSdVM1Umkmo4VXso7fatqdp7kowvUH/+fO3m13Nwz3OyZdefpN44cdnPEQAAAGCzObTwN+n8i3kLfeaTJLWU2q5Dn/mU3iRTn/mklaqa+synGpoKUGl3qLHwfNMLf7fsfG1q9WOW/uQAAACOUiP7XzkVutI5ROXQfi2lbJsc+eEXrEyfV+bsV2m3bszw/pdky84/TSkLhWcCAACLaY7/W0YOvHpqb+Zr9Lmv13tS77lb6o3TU+85PbXGKanVjk2p7U4ptcOaq6qqVNWtabduTLv5nbSaX0tr4qtpTXw5SXNOD9OPq7Sb38jQrb+WrbvfmFL6lv9kATgqCV5ZnhcmeVKSnqn96X/9f6uU8u6qqr7Utc4AAAAAWBETox/N2NDfZuFvJZ68CVRqx6bRe+/UG6fNuAm0c1lzttt7025++4c3gZrj104FsiTzbwIlVfsHGdr7/Gw95s2p1XYsa04AAACAzcTCXwAAgI2nOf65NMc+noXex5XacekbfFIaveek1rjLDwNUqmoizfF/z8ToFZkYvXLGddWsx63xf8vY0N+lf+tFa/m0AADgqFBVIxne/0eZDKOff98j6UlP/4PT0/eANHrvl1IbPKL5SikpZVdqtV1Jz5lJHjHZR3s4E2OfyPjIe9Oa+ELmv3+o0m5+MyP7/ziDO37viHoA4OgjeGUZqqq6oZTykiQvy6HVFlWSgSTvKqU8qKqq/+lagwAAAAAckXZ7X0b2v2bGyNxFW7vTO/CYNPoemEbPGSs2b622K7XeXWn0nv3Dseb4f2R85F2ZGP1wZn8UNR2+8r2M7PuDbNn1mnn1AAAAADjEwl8AAICNaWzo72fszQxPSfoGfzZ9Wy9OKT3zriulJz19901P333TGnxahve9OO3Wf8+6fvrx2NBb0tP/oNQbp6zqcwEAgKPN+PC7UrVuyqHX2Yfue/T0Pyb9235x8l7JKiu1wfQOPCK9A4/IxNhnMrL/Vana35/TV5WJ0SvTHDg/jd57rnpPAGwch/f1K3TyiiQfyexVGFWSU5J8vJRyWle6AgAAAOCIjQ+/PVW1L4c++pm+6VJP35aLs+3Yy9K/9dkrGrqykEbvWRnc8XvZeszfpNa4S2YvIpvsrzl+bSZGr1n1XgAAAAA2svkLf6dNLvzddtw7MrjjRenpf+gRh64sZnrh79bdr8/gzlel1I7L/M98phb+jn9h1foAAADYCNqtPWmO/2vm378vGdj2gvRv+98dQ1fmqvecmq2735h6770zN7xl0kRG9r08VVV1LgAAAMxTVe2MDb89HV+vb/+dDO74rTUJXZmrp+9+2XrMJan3nJHZYTBJUmX04F+veU8ArG+NbjewUVVVVZVSTB9e6gAAIABJREFUnpjkmiT3yOyvGz4lyb+WUn6tqqo3d6tHAAAAAJauqpoZH35n5uft9mXLrlem0XufrvRVb5ySrbvfkOF9L0pz7JPz+hsduiQ9/Q/sSm8AAAAA693CC39rGdj+2+kdOK8rffX03S/1Yy7J8K2/ntbEV9Np4e/W3a/vSm8AAKy8/Tc/pdstLEtJybZj397tNtikmuOfzuxflJx83DtwfnoHL1hSrVIbzJadr8zQnl9Oq/m1zA3AbDWvy/jIu9I3+MQVfAYAAHD0ak18MVX7lsx9vd639Zldu/cyrVbbkS07/yQH9zw77da3p0anXvtPfDGt5ndTb9yxmy0CsI4IXjkCVVXtL6U8MsmVSe6e2eEr25K8sZTyK0n+LMl7q6q6pTudAgAAAHC4muP/mqo6mLk3gQa2P69roSvTSunN4I6XZmjvc9Oa+Eome5y8CdRufj2tia+l3nNaV3sEAAAAWI8s/AUAYD2oWjflUNDDxlHNCgiEtTV5b3yO0p++rc9eVr1S+jO48w9z8JaL56wNmPyzOXbwTenpf1hqte3LbRkAADaN5tin543V6iekb/BnutDNfKW2JQM7fjdDe35x3rHm2NWpN362C10BsB4JXlmiUsopHYZ/Psk/JLlLZoevlCRnJ3nT1LU3JLk+yf8kuTXJUJJmkvZq9VtV1R+sVm0AAACAo1Fz/LMz9iY/6qk1Tk7vwGO709AcpfRkYPsLc/CWCzP3Y6WJsU8IXgEAAADowMJfAADWl40UZLKxQmI4+rSa35yxN/lrGj19Dz2iYJRa/YT0b/+1jOx7SQ6FIU3+uayqgxk7+MYMbH/BEXQNAACbQ6t5/Yy9qdfr/Y9KKfVutTRPo+eMNHrvl+b4pzPz/Xhz4qvp615bAKwzgleW7vos/unxzK/Fmf70bXrs5CQnrVpnnQleAQAAAFiCVvPrc0ZKevsf2ZVeFlJv3Dk9fedmYuwjmXkTqDXx1e41BQAAALCOWfgLAACwMbVb38/csKJG348dcd3e/odlYvSjaY59fEb9yRCW8ZHL0zv4pNQbJx/xPAAAcDRrtb6Vea/Xe+/ZnWYW0dP/kKn7L8n06/72vPXCAGxmtW43sEGVBbZO51RztoWuXY0NAAAAgCVqN7+TuR+t1HvO6k4zi2j0P2jG3tRNoNYNXeoGAAAAYH3bSAt/D7HwFwDgaFNqx+XQsvKZ5i45rxY4Dzafqto/b6xe/5EVqT2w7f8mZbDDkXZGD7x+ReYAAICjWdU+MG+sVrt9FzpZXL1x+ryxqj3/vQYAm1ej2w1sUAt9gt0p7GTm2Fp++i14BQAA1on9Nz+l2y0sS0nJtmPf3u02ANZcVR2cN1arH9uFThZXb5wyb6zTDSwAAAAALPwFAGB92H7cO9NqfiMTY5/MxMj70m7dmNnf99mJ8BU2uWps3lCp7VyR0rX6senf8gsZPfj6HPpzOPmzOX5tJsY+k56++63IXAAAcFSqRuePld617+M2lNr2eWNVNdSFTgBYrwSvLN9ygk3WKgzFp+sAALCOVK2bsvgCmfWpkucIbFadbgKtw4/RStk6b6yqRrrQCQAAAMAGYOEvAADrRL1xSuqNU9I3+PRMjF2V0QN/nqq9N7PXlhwKgGj03ic9/Y/oWr/QffUkzTljK7cOq3fwyRkfeV/arW9l7vfujh78yzR6z0kptRWbDwAAjiqlP6mGZw1V7f1J/bguNdRZtUHuEwHQPevvN0Y2jo31G5MAAMA6sJGCTLzlATavUrakqg7OGqvatyb123Wpo86qOTeqkiSlb+0bAQAAANgILPwFAGCdKaWkt/9hafTeJ0N7n5d285vp9MU+tfqJ6R04rys9wnpQymCqav+sscl7+MevUP16+rf9aoZvfX5mhh4lVdrNGzI+8q70DT5pReYCAICjTa22Pe3W7Psvreb1qfec2qWOOpsMWpyt0xcgArB5id0FAAAAgBk6fatwa+K6LnSyuHbzG/PGSpnfOwAAAACTC3/najWv70Ini7PwFwBg86nVdmXLzlfO+JKFjfTFPrD6Sm3nvLFW84YVnaOn75w0+h6QQ6EryXT4ytjBN6fd3rui8wEAwNGiVr9T5gaIToxd3ZVeFtMc+9SMvcnX/bXGj3SrHQDWoUa3G9iAvhVf/Q4AACxBqR2Xqv2D6b0ZRxZ7a2ERDUC31Oonpt36bmb+XTw+9uH0Dj6ue011MDF2zYy9yZtA9cadu9UOAAAAwLpWq98p7daNmfmZz8TY1ekdeGT3murAwl8AgM2pVj8+vf3nZXzkXbFmBGarNX4k7dZ/Z+afjeb4tekdeNSKzjOw9bk5MPYvSZqzxqvqYEb3/2kGd75kRecDAICjQb3n7mmOXzu1Nxle2Bz7VFoT16fec5dutvZD7dYPMj76ocx9v11vnN6dhgBYlwSvLFFVVSd1uwcAAGBj2X7cO9NqfiMTY5/MxMj7ZizsnvxgsTN5jwDdUu89K83x6V9wmfy7ujX+b2mOfz6N3nt3s7UfajX/OxOjH8m8m0A9d+tOQwAAAADrnIW/AACsdz0Dj54KXgFmqjdOSXPsE1N7k+/nJsY+nnZ7X2q1HSs2T61xx/Rt+amMDb01h9Z1Tc/30YyPPCC9Aw9fsfkAAOBo0Og9J2NDfztntJ3hfS/J1t1vSKlt6UZbP1RVzQzve2lSjWbu/Zeevvt3pykA1iXBKwAAAGug3jgl9cYp6Rt8eibGrsrogT9P1d6b2eErh27YN3rvk57+R3StX4DNrKf3fhnLG2eMTP79PLzvD7N19xtTqx/brdaSJFV7KMP7Xpyklbk3gRp9D+hKTwAAAADrnYW/AACsd42eu6XUdqVq39rtVmBdafTeJ2NDb5k9WI1l9OAbMrj9N1d0rr4tP5fxkStStW/Oofdmk2sGRg68OvWeu6TeOHlF5wQAgI2s0XuP1Bonp928YWpk8vVzu/XfGdr7fzK48xVdW3dbtYczvO8laU38W+beeym126Xec6+u9AXA+iR4BQAAYA2VUtLb/7A0eu+Tob3PS7v5zcwOX5lUq5+Y3oHzutIjwGZX7zkt9Z4z0pr4zxmjJVX7Bxna+5wM7nhZ6j2ndaW3duv7Gb71hWk3v55DN4Em/w2p1e+cRs8ZXekLAAAAYL2z8BcAgI2g3nNWmmPXZO7rQtjM6j1np5Qdqar9UyOT7+cmRt6fscZd0jf4pBWbq5T+DGz71Qzv+73M/BKtpCTVcIb2Pj9bdr0u9cYdV2xOAADY6PoGn5aR/X+U2a+hq7Sa1+XgLRemb+vF6R24IKWs3a+0T4xek9GDr0u7ddOcI5P99W35mZTivTcAh9S63QAAAMBmVKvtypadr0xK39SID+0A1pO+LRfmUCjW9M+SduvGHNzzixk58Bdpt/euWT9V1czY8Ntz8JaL0mpe1+GMkr4tP7dm/QAAAABsRH2DT8vsz3xmL/wdG35Hqqq5pj1NjF6Tg3suSnP803OOWPgLALAZ1Rund7sFWHdKaaRn4NHp9H5u9MCfZeTA61JVYys2X0//g9Poe+CseaY6mfrCluemNfG1FZsPAAA2ut6B86ZC5Ge+hp68t1FVBzJ64M9y4OYnZfTgG1f1tXS7vTfjw+/JgVt+IcP7Xph268ZZvUw/rjXukt6BC1atDwA2prWLBwMAAGCWWv349Pafl/GRd0XwCsD60tP3gDT6zk1z7GOZ9y1Wmcj48KUZH35HevrPTU/fQ9Po+7GUMrDifbQm/jMTox/L+Og/p2rvzcwFXZMm+6r3/mh6Bx6+4vMDAAAAHE16B87L+Mg/pzXx75n7rYvTC3/Hht6S3oHHpKfvIan3nLYqfbTbe9Mc/XjGRt6TdvP6LPSZj4W/AACbT71xardbgHWpb/CnMz7y3qQaztz3c+PD/5SJ0Y+kd+CC9PQ/JPXGiUc838D238zBW76Sqr0nc9cMVO2bc3DPL6Z/2y+ld+BJKcX3IQMAwOCOF+bgnv/d4TV0klSp2nsyNvTWjA29NaW2O42ee6bec9fUGienVr9TavXbpfzwS21vW9Xen3brxrSa30ir+fW0xv89rebXpuade99lhjKQwR2/l1LqR/J0ATgKCV4BAADoop6BR08FrwCw3gxs/40M7bkh7da3Mj98pUoykYnRqzIxelWSeuo9p6feOD21xilTN4Fun1ptV0pt26LzVFU7VXtPqvae2TeBJr6Qqr1v+qypn/NvApXa7gxu/90VetYAAAAARzcLfwEAWM9q9eNn7PkSH5hWq+9O/9ZnZvTAn2VuaOXke7mbMzZ0ScaGLkkp21Nr/Ehq9eNTymDqjbumd/D8pc1X25HBHS/N0N7/k6SZTl/YMnrgdRkffmf6Bp+Weu9ZK/ZcAQBgI6rVj8+Wna/J0N5fTVUdyOz3tDNfwydV+5ZMjH00E2MfnV2kDKZW256UwZTSn6SepJakmVQTqTKRqn1w6osMm3M6qObsz31PXSXpyZadL0+9cfJynyYARzHBKwAAAF3U6LlbSm1Xqvat3W4FgDlqte3Zsus1Obj3ualaN2Wxm0BJM62Jr6Y18dUOlUpSBqZ+Iac+tR26CZRqNPNv+GTOWKdFlVVK2Z4tu16bWv24pT05AAAAgE3Kwl8AANazWv2EqUed7h/C5tY3+OS0Jv5j6stR5oavTD9OqmpfWhP705r4cpKk0XvzkoNXJq+7Rwa2/3ZG9r90amT+F7a0W9/JyIFXR1ASAAAk9Z5Ts2X3GzO873fSbn4j818nz9zv8L63Gkq7NdTh3AXOn2du/UPvFUptdwZ3vCwNoYkALEDwCgAAQJfVe85Kc+yauAEPsP7U6rfPtt1vzvC+F6c5/q9Z8k2g6fFqKFU1tMDxhSz270KVWv3EDO58ZeqNOy6xLgAAAMDmZuEvAADrValtzeDOlyfVodeVtfodutgRrC8D21+YqmqmOfaxHApAmdbpvdyRrcfqHXh4komM7H9lDr1/mxm+Mj1XNeOxNWAAAGxe9cYds3X3GzN68K8zPvyOTAbUd7ovsvga2YXvtxzu6+3p1+5Jo++BGdj2/NTqxxzmtQBsRoJXuqiUUkuydWobyOT/j3qS71ZVta+bvQEAAGun3jh9KngFgPWo1LZncOdrMz7yzowdvCRVtT+db9ysxuKpuYuyqiS19A4+Jf1bnzX1jcoAAAAALJWFvwAArFc9fQ/odguwbpXSk8EdL83Y0CUZG3pr5r+X++GZObxgzNvWO/DolNqujOz7g1TVwQ7zzQxgAQAASunLwLbnpnfggowNvTkTox/L5Gv3pPPr97nBiYdzj2WxsMXJY/XG6enb+sz09P3EYXYOwGYmeGUNlFJOSHJOkh9LcmaS05KckGT3Apf8fJK3dKjz20k+k+TjVVW1VqdbAABgrdUbp3a7Bf4/e/cdJ1lV5338e26oW6G7Z3pmgEEQSWMYBBQQBAkqa1pFZHVNawIDKgYehEeExzVj2EcfMaAuZnd1V9E1LayBpAQDSSXpCCJBwWF6uqe7K9x0nj+qm67UPR2qq6q7Pu/Xq15Vde6tc34183p1nXPuub8DADthjFGQf74y2aepMvkNhaUfaCZv7lwXgWY7Ptv5cy3QMvKCY5UdeLVcb9/5Bw8AAAAAAICWWPgLAAAAACuPMUbZgVfLD56s8uQXFFeulpROH609s21t+sGRctd/TaXxj9VssLUcm7MAAAAAq4frPVz5Ne9WOrBNYen7iipXKI3vrDljIddbGjUm058uzskPjlYmd4K8zOMXUS8AoF+ReGWZGGMeJunVkv5B0kGNh+f46Fxpjj8wdXzEGPMlSR+31v5lSYECAAAA6DrH3VjzjgvyANDLjDOk7OCpCgZOVlS+TFHlCsWV6yRVas/Swv+eN54/M0XkuHvIzz5VmdwJctzdFxc4AAAAAAAAZsXCXwAAAABYeVx/PxXWnqckvldR+VLF4S+URLdJWp49bh13gwprz1Mc3a6weJGi8uWSwqmji1knAAAAAPQHx12v7MDJyg6crDS5X1HlWiXRzUqiPyhN7tZMIsVFMDm53n5y/QPlZR4vL3OojMm0LXYAQP8w1s6V5wMLZYzZW9UEKS9QNbHNbLNnrf7hzVT5ydbar7aoO9X09sbV54qkT0l6j7V2cqmx9yJjzC2SNjeWb968WbfccksXIgIAAADaz6YT2rH1WXVlmdzzlRs6vUsRAQAWwtqK4vAGJdEtSqI/KIl/L5uOLLI2V477cLn+pocuArne3u0MFwAAAAAAAPPAwl8AAAAAWHmsjZUm9yiN75FNt8vasoy7QZns8e1vK92hqHKt4vBaxeH1sulowxlGa3b7WdvbBQAAAFYTaytKk/uUJltl061KkwclW5ZVRbKhrI1ljCvJlzF5GWdQxhmW4+4qx30YGxoCWLUOOOAA3Xrrra0O3WqtPaDT8fQDr9sBrBbGGCPpnZLOlhRo1u1q6j82j3NamU6+kpX0NkkvNsacYq396QLqAAAAANAjjDOg/NoPSjWJMR33YV2MCACwEMYE8oMj5QdHPlRmbal6ESj5m9J0m6wtVS8AqSLZRDKujLz6i0DOrjLubjKGKTsAAAAAAIBuc9yNCvInSTpJEgt/AQAAAGAlMMaT6+0j19tn+dtyhpTJPUOZ3DMkSWnyoJJ4i9LkXtlkm9JFb9gCAAAA9A9jArnevnK9fbsdCgCgz3EXRxsYY9ZJ+pakJ2smmUptIhXT+Jk2mK7fSNpT0v8YY95jrX3fMrQFAAAAYJn5wdHdDgEA0EbG5OR6e0neXt0OBQAAAAAAAG3Awl8AAAAAwFwcd4Mcd0O3wwAAAAAAAMAiON0OYKWbSrpyqWaSrljVJ0WpTbpiGx6Lblb1CV6sqv+X7zbGfHoJ9QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9gcQrS2CM8SVdIungqaJWCVcaE60YNSdkWajZ2jGSXm+Mec8S6gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWPa/bAaxwH5P0BNUnQplma15Pl2+V9EtJt0u6U9IFmkmYMh83SXpcQ/3TyVemk7sYSf/HGPNba+235/1NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBDbFpUmv5NNt0hayckW5G1sSQrYwLJZGVMVsYEMs4GOe6GbocMAFiFSLyySMaYYyWdprmTrhhJf5L0ZUkXWWtva6jjgoW0aa09xBjzOEnvlHSS6pOtNCZf+Ywx5nJr7chC2gAAAAAAAMDS2HRCafLA1EWgcVk7Xr0IpESSlVEgmWDqIlBWxlkvx92dC0EAAAAAAAA9wNpESXSb0vQB2XS7ZEMZZ1jGGZbrP0qOM7yMbceKwxuayv3g8GVrEwAAAABWC8ZzAAAAQO9L4j8rCX+jOLpVafInJfGfJVtcYC2eHHejHHd3ud7+cjMHy/MPlHEGlyVmAEB/IPHKIhhjHEnn1xZNPdcmXNkq6SxJ/26tTdrVtrX2JknPN8b8vaoJXdarOfmKpso/KOnUdrUNAAAAAACAetaGisMblERTF4Hiu6oLuBbFl+NunLoIdJA8/2C5/v5tjRcAAAAAAACtRZVrFJZ+UL1RzpZmOcvI9R4pP/sUZfL/IGOybY3BpjtUHH2b6vd/Mlqz25VtbQcAAAAAVhPGcwAAAEBvS+I7FZb+W1HlZ7LJAw1HbcvPzC1SmtyjNLlXcfhrqfgNSUaOt4/87PHKZJ8ux92tDZEDAPoJiVcW54WSDtZMwhM1vL5S0gustduWKwBr7cXGmCMkXSFpz1lieaUx5t3W2r8uVxwAAAAAAAD9xlqrOLxWYem/FYe/kmyl9ugSag6VJncrTe5RVLlckmRMQX72KfKzz5SXOWhJcQMAAAAAAKBZVPm1yhOfURr/capkrvkdqyS+XcnE71Up/oeCwisV5J+/DFEtZY4JAAAAAPoD4zkAAACgt8XhTSpPfklJeONUSav+smlRNl+27nUa36HKxJ2qTHxeXuYQZfIvlB8cuYT6AQD9hMQri/O/Gt5PJzqxki6T9PfW2mi5g7DW/skY82xJV0kabIhDknxJb5T0zuWOBQAAAAAAoB+Epf9RZfIrSpP7pkoaLwIt5QLQtJk6rZ1QWPqhwtIP5bgPUyb/ImVyJ8gYpvUAAAAAAACWwtpY5YkLFBYvmi6Zet7Z/I6VZGXT7SqPn684vE75oXfKOPk2Rle79xIAAAAAoBbjOQAAAKC3pemYyuOfUFT+yVTJzvrsC+0/m4bn2nqqjzi8XnF4vVz/IOUG3yrX37TANgAA/cbpdgArjTHm8ZKeoOYkJ5L0F0kv6ETSlWnW2pslvU6tewhG0os7FQsAAAAAAMBqlcT3amLkTSrtOE9pcq9mLs6YhodUe+FmfheDGs9rrLN6PE3uU3n8/2li28sUVa5tx9cCAAAAAADoS2m6Q5Mjb5i6Sa9xnkdqnt+pnb+pn7eJK1drYvvrlabbO/kVAAAAAKAvMZ4DAAAAelsSbdHEtldPJV2Zrc/eqHHd7M4es2lee5tEv9HEyKmqTP7bUr8aAGCVI/HKwp3Uomz6V/hMa+1Yh+ORtfabkq6riaO257CvMeZRnY4JAAAAAABgtYgqv9TkyGuVRL9Vc7IVqfki0Hwv8DSev7Pj1amfNLlPxdG3q7Tj/6qD+X8BAAAAAABWBWsrmtx+upL4dtXP9cyVGLfVTXx66HNp/CcVt58pmxY78RUAAAAAoC8xngMAAAB6Wxzdpontp8mmf9PcfXZp9qSJi300qh0LRCpP/KuKY++TtUl7viwAYNXxuh3ACvScmte1v8Z3S/pmh2Op9T5J35vl2JMl/b5zoQAAAAAAAKwOUeUaFUfPlRRPldRe8DEtylrxJBPImIykjKRUUiLZUNYWp9630ioZy0xbYen7SpJ7VFj7IRmTm+9XAgAAAAAA6Gvl8U8ojbeoeU5nZ3M801p9ziqJt6i048PKr31P+4IFAAAAADyE8RwAAADQu9LkfhW3nyXZkuoTrrTa6NCV4z1CrvdIud4+Ms4GOe4uMs4GGZOTMYFkMjImmEqUkkg2krVFWTspm25Xmo7IJvcrSe5VGm1REt+h5rW+qms7Kv9EsjF9fwBASyReWQBjjC/pADWnV7OSvm2t3dlM3XL6saSSpKyaZwwP7Hw4AAAAAAAAK1sS/VHF0X9W9UJMY8KV+gz8xtlFrrdJrv9Iud6+DReB5p6Cs7by0EWgNPmr0vheJfEWJdFtU1n/peYkLFMLwMIbNbn97SoMf1zGOG341gAAAAAAAKtXEt2usPQDtU6uayWTVSb7DHmZI+T6m2SctZKkNNmqJLxRYfnHSqLfqH5+yD70OqpcrrB4iDL5Ezv6vQAAAABgtWM8BwAAAPS24th5snZMzX326lpb4+wiP3iSvOAYeZnHTW1muHPGuJLcaiIWFSTtImnvpvOsDRWHNyquXKmw/NOaBDAP1aTpvn9l8tEKCi9Z3BcFAKxaJF5ZmMdI8tX4i191eVcimmKtrRhjrpT0TDUnXjmgCyEBAAAAAACsWNbGKu54v6SKZrsI5PqPlR8cIy84Wq6316LbMiaQcTfKcTdK/ua6Y0l8t6LKFYpKP1Sa/LVlLEl0k8oTn1Fu8LRFxwAAAAAAANAPypP/pvo5npm5Hj97vLKDb5XjDDd9zvUeLtd7uDL55yqqXKvSjg/JpttVv3yo+ro08Wl5wRHVuR4AAAAAQFswngMAAAB6V1i+VEl0o1olOnHcRyg7cKq84GgZ07gJYfsYk5EfHCE/OELZgdNUmfyqKsX/lJQ2xVSeuFB+9sly3N2XLR4AwMrDNrgLM9cM2m0di2J2tza8n55R3LMLsQAAAAAAAKxYUelipfEdanURyMscqoF1X9TAus8oKLx0SUlXdsb19lK28AoNrP8PZQffJplcTSwzMYXFbyqJ71y2OAAAAAAAAFY6m44rrlylxnkVySgovEL5Ne9ueZNeIz84UgPrLpTj7aOWezfZkko7PtLu8AEAAACgbzGeAwAAAHpbZfLfG0qmkyQ+WwPrvyw/e8yyJl1pZJyCsoNvUGH4EzJmqMUZscoTF3YsHgDAyuB1O4AVZu0cx/7WsShmN1sMgx2NAgAAAAAAYIWrFL+u+qQr04u2Xq3swKs6Ho8xjoL88+RlDlNx9G1Kk782nGFVHv+sCsMsAgMAAAAAAGglqvxCUqKZOZ/qfI8XHKvswGsXVJfj7qrC8Mc1OXKq0uR+Ne64HofXKSxfqkz2+DZ+AwAAAKwGEyNv6XYIi2OMBobP73YU6FOM5wAAAIDelcR/UhpvUWN/3Q+eovyas7sYmeRlDlJh3Sc0MfJGyRanSqt9/6h8hezg6TJOq8QsAIB+ROKVhXHnOFac41injMxSTuIVAAAAAACAeYqj25Um96nxIlAm//yuJF2p5Xp7qjD8SU2MnCqbbpsqnV4A9kulyYNy3A3dDBEAAAAAAKAnJdEtLUo95QbfvKj6HGdY+TUf0MTI6yVFatx5vTz+afnBk2RMdnEBAwAAYFVKohtVvwHESjCdlALoDsZzAAAAQO+KKlc1lRlTUHbobV2Ippnr7avc4Bkq7Xif6se2saLyFcrkn9ut0AAAPcbpdgArzMQcx9Z3LIrZDcxS7nc0CgAAAAAAgBUsrlzdVGacYWUHXt+FaJo57q7KDZ2t6gLHWlZR5YouRAQAAAAAAND7kviOmndTuy1mj5Xj7rboOl1/k7KDb9DMPM3MfI1NH1Rl8quLrhsAAACrnV0hD6D7GM8BAAAAvSuJfl/zbrq//jQ5zlC3QmqSyT1djre/Gse5cXRzdwICAPQkEq8szLY5jm3sWBSz23WW8smORgEAAAAAALCCJfGWmnfTF4GeIWOCboXUxA+OkOsfrMaLQAkXgQAAAAAAAFqy6QOq38lQ8jJPWHK9Qf4FNfM09bukVyb/U2ly/5LbAAAAwGpkVsgD6D7GcwAAAEDvSuO71NxfP7xfZQA0AAAgAElEQVQrscwlk31WQ4lVEv+hK7EAAHoTiVcW5o9zHFv6zN3S7TFL+daORgEAAAAAALCCtb4IdEhXYpmLn/27hhKrJJpr+goAAAAAAKB/pelYU5nr7deWunNDZ0nyWxyJVJ74bFvaAAAAwGrhqZrkwTaU2zkeQH9jPAcAAAD0LpuONpU53l5diGRubuaAmnfVNcI2HelOMACAnuR1O4CVxFr7N2PMiKRhNc9inyjpi52Pqs5TVR+XmXq/pfXpAAAAADphYuQt3Q5hcYzRwPD53Y4CADrOpjuayhx3zy5EMjfPf0zNu+o0UKsLWAAAAAAAAJBkK01Fxlnblqpd7xEKCi9WZfJrmlmuU32Oypcpzr9Qnr+5LW0BAABgZRva9RLF4Q2KK9coLP9YsiVV+47T/chWSL6CPsd4DgAAAOhZ1k42lRmT70Ikc3OcDU1lNp3oQiQAgF5F4pWFu1LSSZqZwZ6eWXuaMWYPa+193QjKGHOwpD1UO9M348ZuxAQAAACgKolu1HRW5JVjemgBAP3H2mJTmTHZLkQyN+OsayprFTsAAAAAAAAkyZGUNpS1bx48KLxSYel/ZNMHG+q1Ko9/UgPrPtO2tgAAALByGZOVHxwlPzhK2YE3qlL6tioTX5EUqn4J+EwCCNd/tLzME7sVMtADGM8BAAAAPct4kk3qinpzLWvjmELifgkAQC0Sryzcj1VNvCLVz24Hkj4o6RXdCErSm+c4dkWnggAAAAAwl5WyAxETiAD6nAmmdpabYe2EpOZs991kbdhcaNzOBwIAAAAAALACGJOTteN1ZTbdIbm7tan+QNnBN6o09h417pKeRLcoLP9UmezftaUtAAAArA7GyStbeLn84FhNbj9DNt2q5v03JdfbrOzAKV2JEegFjOcAAACA3mXMoKyt1JWl8d1yvb26FFFrafJAU5lxBroQCQCgVzndDmAF+qak6V6ArXk2kl5qjHlOpwMyxhwq6eSGeKZtl3Rlp2MCAAAA0IpZIQ8A6G/GDDWVpfGdXYhkbmnyl6YyYwpdiAQAAAAAAKD3Gad5zidJ7m5rG5ns38n1D9LMUiJp+ma98vgFsg3JfgEAAABJcr1HqLD2Q5pZ2s/aDaAW4zkAAACgdznurmpMIBqH13YnmDnE4fU176rxOm1K5ggAWB1IvLJA1trtki5S/WyaVP2ldSR9wxhzWKfiMcZslPTvLeKZTrX8dWtt1Kl4AAAAALTiqdo9tw3ldo4HAKBbqhdS6v8WR5WruxPMHOLwVzXvqou/HHePboUDAAAAAADQ0xx3TzXO+SR1i2zbIzd4ulotybLpgyqPf67t7QEAAGB1cP1N8rPHizUjQDPGcwAAAEDvcv0Dat5Vb2sOyz9Vmm7vVkhNrA0Vln6g+kSnRq63f7dCAgD0IBKvLM57JSVTr2tTGltJBUk/MsY8e7mDMMY8XNIVkh5ZE0ftjGIs6aPLHQcAAACAuQ3teonyaz+sTO5EyWQ1022fa4eiuZKydOIBAP3L8x9b86463RKVL1ea/LVbITWx6YSi0n+r8bfE9TZ1JyAAAAAAAIAe53j71LybnvO5ou27lrv+JmVyz1H9XPvUQuPSfymuXNfW9gAAALB6ZHIndDsEoCcxngMAAAB6l+cf3FxoSyrt+JfOBzOL8vgFsum2pnIv84QuRAMA6FVetwNYiay1W4wxF0h6s+rvmJy+Q3FY0veMMR+T9AFr7Vg72zfGGElvUTUBzICa74qcjuVCa+2f29k2AAAAgIUzJis/OEp+cJSyA29UpfRtVSa+IilUff7E6ddGrv9oeZknditkAOhrbuZQqfjvDaWRimPvV2H4fBnT/Sm10o6PyNpxNSZe8YIjuhMQAAAAAABAj/MyhygsfqOuzNoJVSa+quzgqW1tKxh4naLy5bJ2oqbUSEpV3PE+Daz7vBx3l7a2CQAAgJXP9Q+UTEGyxW6HAvQUxnMAAABA7/KCo2ScYdl0dKqkek9EXLlKpR0fUXbwTBnjdC2+8uRXFZa+raZNc01WXnBkV2ICAPSm7t8lsnKdLenvJe2r6Tsj65OvOJLeJum1xphPSfqmtfZ3S2nQGLOHpFdIOlnSfpr5pZ9uvzYBy18lnbOU9gAAAAC0n3HyyhZeLj84VpPbz5BNt6q5Oy+53mZlB07pSowA0O+8zGEy7kbZ5IGpkurf6ST6nYqj5yi/5t0yTr4rsVmbqjz+MUWVy9V4EciYIbLvAwAAAAAAzMLLPF4yOcmWp0qqcz6V4tfl+pvlZ49pW1uOs0bBwOtUHv+oapOuS0Y2HdHk6JkqDJ8vx1nbtjYBAACw8hnjyvMPUhxeq6YbwoA+xngOAAAA6F3GeMrkTlRl8suq70NbhaUfKon/pNzgmXL9/ToaV5o8qNL4xxVXftZwpBpfJvc8GZPtaEwAgN7WvTRhK5y1tiTpJEnTqYxrt6iffm8krVE1AcpNxpj7jTHfN8Z83hjzoTmq32yMea4x5hXGmLcZY75mjLlN0p8lvV/S/qpP8lJ7l6aRFEt6ubV2R1u+LAAAAIC2c71HqLD2Q5oZlrFgBgB6hTFGQe4fNTPdMjP9Eoe/0MTIyYoq13Q8riTaosntb1BY+n7DkamLQIUXyRjyLAMAAAAAALRiTKBM9umqT4Q+tWv52D+rUvxWW9sL8s+T6x+kVvsppfGdmtz+VqXJ1ra2CQAAgJXP9Td1OwSg5zCeAwAAAHpbUHiZjLtx6l198pUkulkTI6docvRcRZVfy9p0WWNJ4rtVGv+kxre9ZCrpynQsM4yzVkHhZcsaBwBg5eFOjCWw1t5sjHmhpO9Kyqg2nfFMUhRp5ld5V0nPbqjGtHg+q0Vztb/sjTOGta+tpDOttZfP/5sAAAAA6AbX3yQ/e7yi8o9F4hUA6C2Z/PMVli9WGt+pxotAafIXFUfPluPtryB3krzscXKcoWWJw9pUcXidwtJ3FVeuVn0e3mlGjru7gvw/LksMAAAAAAAAq0Um/xKFpYtV3dNImplniVUe/6TC0iUK8i+SHxwj4+SX3F5+zf/R+LaTJVtU/RxT9Wa9iW0nKzd0tvzs0UtuCwAAAKuD6+3f7RCAnsR4DgAAAOhdxgTKD71Dk9vfJilR47pbKVVc+bniys9lzJC84DC5/uPk+o+S6+0jY7KLbjtN7lcS36E4vElx+Eul8V1TR2pv77Z1z7nBs5Zt3S8AYOUi8coSWWt/ZIx5jqrJV/KqT74i1SdgkeZ3N2Wrc+wc59Qee4+19hPzaAMAAABAD8jkTphKvAIA6CXGuMoPnauJ7W+SbEmNC6kkqzTeotL4v0jjH5XrP1qe/zi5/iPlePvKcfeQMf6C203THUrjO6cuAt2oOLxuaiGX1Jzjd7rMV27o3CVdeAIAAAAAAOgHrreHgsJLVJn8qlrtdZTGW1Ta8QGV5Mj19pPjPUKOu5tk8nLdfRZ8Q53j7q780Lkqjp1b18700iJrx1QcO0du6fEK8i+T6+3dhm8JAACAlcxxH1bzjk18gGmM5wAAAIDe5mUOUW7oHJV2vG+qpHndrSRZO6aofJmi8mUPfdY46+S4u8k462TMkIyTl1FWMq4kR1IsayPJRrJ2QjYdUZpuU5rcP7XGV3VtzLQ/XTYzhsgOvF5+9pg2fnMAwGpB4pU2sNZeaox5kqTvSNpX9XfBNN4JM58kLI1JVmq1SrhiJKWSzrDWnj/fuAEAAAB0n+sfKJlCzU31AIBe4fqbVFj7QU1uP1PVXbPqF1LNTPUkSqJblUS31nzayDhrZZxhGWeNjMnLmECSO/WIZW1YfU4nZNNtStORhgtA0txTSVOZ99ecIy9zUNu+NwAAAAAAwGoWFE5RHN2sJLxBc873xH9QEm956HNe5shF7WTuZ49RNnm9yhOfaWhn5nUS3qhieKNklr4rOwAAAFY2426cejXXcnKgPzGeAwAAAHpbJvc0GeOruOM8yZbVnDRxWv2Y16bblKQjC2xttnFz41rb6X68o+zAaQoKL1pgOwCAfkHilTax1v7WGHOopPMlvUKtk6zMN+34zs5rrPcvkk621v5knvUDAAAA6BHGuPL8gxSH14qdigCg93iZQ1QY/oSKY++UTR/UbBnwmy/gWNl0RDYd0fz+vs/3AlDN+Sar/NC58rNPnkf9AAAAAAAAkKrz8oU179fk6P9WEt2sued72nOza1B4qawtqzL5Jc12s161yclZYgEAAEC/cJw1yg6+VdU9Oatcb1P3AgJ6COM5AAAAoPf52SdrwNtbpbEPKIlvV+v+cauyxfThZ6unfnxgnF2VHzpbXvCERbQBAOgXTrcDWE2stWPW2ldJOl7S9apPtmK1tBm8xs8bVbdavkDSASRdAQAAAFYu12eBDAD0Mi/zWA2s/6K84DjVT83UMrM8pPppndkec32+kZXrPVoD6z5H0hUAAAAAAIBFMM6gCsMfl599pnY+39Pq2MJlB05RbvBMSW5DnY1zQwAAAOh3Qf4FCvIvfOjhZR7f7ZCAnsF4DgAAAOh9rre3BtZfqNzQ2TLOLpr91urGW6YX+pCa660tzyiTf4kGN/wbSVcAADtF4pVlYK293Fp7uKRnS7pY1ZTjC73bpvGhmjrGJH1a0qOstW+y1o514GsBAAAAWCaut3+3QwAA7ITjDKuw9v0qDJ8v19+sufPr1pYv5OLP9Gdnv7hknPXKDp6hwrrPyfX2XdJ3AgAAAAAA6GfGBMqvOVf5tR+R4+2v2edl2nfzXCZ/ogbW/WtDe9ycBwAAAAALwXgOAAAAWBkyuWdrcMM3lV/zXrmZQ1TtQ7e6ZXopmm/bNs4GBYWTNbjLt5QbfKOMyS2xDQBAP/C6HcBqZq29RNIlxpiNkp4r6VmSjpa0fhHV/VnSpaomcrnYWltuW6AAAAAAuspxH1bzjgvyANDLvMwhGlj3WSXR7aoUv6O4cpWsHa85Y6kXgRqTsFTLXP+xyuSeKz97vIzJLKF+AAAAAAAA1PKDI+UHRyoOb1BY/oniyi9l063L1p7rb9Lg+i8qKl+mSvE7SqLf1Bxll3QAAAAAmC/GcwAAAEDvM8aVn32K/OxTlKZjiivXKK5cqzi6eR7998Y+9mwbJrpyvU1yM4+XHxwt1z9QxtA/BwAsDIlXOsBae7+kf516yBizp6QDJO0laU9JQ5Jyqv5/hJJKkkYk3SvpLkm/tdZu73jgAAAAADrCuBunXs02EQgA6DWu/2jl15wjaxMl0e8UVa5REt2iJP6jZItLrt84G+T5Bz50Echxd2lD1AAAAAAAAJiNlzlEXuYQSVKa/EVJ/Gel8T2y6XZZW5LjPbyt7fnZp8rPPlVJfJei8hWKw18oiW6TlLa1HQAAAABY7RjPAQAAACuD46xRJvcsZXLPkiSl6ZiS6PdKk3tkk61K061K0wclW5a1FcmGkmJJrmR8GZOXMYMyzrAcd1c57sPkePvK9faRMUFXvxsAYOUz1nJjH3qXMeYWSZsbyzdv3qxbbrmlCxEBAAAAy6NSvEi1F99db5O8zOO7FxAAYNGS+G6lyT1Kk62y6ValyTbJlmQVSrYiq0RGriRPxml1EWg/Oc6abn8NAAAAAAAAdJhNi0riO5TEW5Qm98kmDypNRzSw7pPdDg0AAAAAMAfGcwAAAAAAoJ0OOOAA3Xrrra0O3WqtPaDT8fQDr9sBAAAAAACkIP+CbocAAGgT19tLrrdXt8MAAAAAAADACmOcvLzMgfIyB3Y7FAAAAADAAjCeAwAAAAAAWNmcbgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ3mdTsAAAAAAAAAAAAAAAAAAAAAAACwPKwtKU22ytpxSUbGFOS4G2VM0O3QAAAAAABYsPFtpzSVDQx/XMYZ6kI0AIDVgMQrC2SMOVjSia2OWWvf2+FwHmKMOVrSU1sc+o619uZOxwMAAAAAANAP0uRBpekDsul2yYYyzrCMs06Ou6eMcZetXWtTpcm9TeWut9eytQkAAAAAANAvmPMBAADAapDE9yoq/VBReI3S+M+SbNM5jvswuf7B8rNPlpd5oowxnQ8UaCPGcwAAAEB/SOMtkqbHsFaSkVUiRrUAgMUi8crCPU7Su9Vq5lnqWuIVSY9V67g8SSReAQAAAAAAaJMkvlNh6YeKK79Smtzd+iSTl585XF72OGWyx7c9BpuOamLbP0l1l4iM1ux2ZdvbAgAAAAAA6AfM+QAAAKBXpMk2penfZNPtsrYoYwbkOLvI8fadV2IUm06oPPFZhaUfqLq0vNWy9+m27lOa/EVR+RI57u4KCicrk3tm+74M0AGM5wAAAAAAALBUJF5ZmtpZsdlnpDujVPO6Nq7DOh0IAAAAAADAapTEd6o88XnFlau1swWKspOKKlcoqlyhyuRXlR04VX5w1DJE1e0pKQAAAAAAgJWNOR8AAAD0gjR5QGHxvxSF1yiN72p9ksnLD56oTP4f5fkHtDwlie9TcfQspcm9qu9XzpWwxU7F8BeVdpynsHyJ8kP/LMddv5ivAnQM4zkAAAAAAAC0i9PtAFa4nczOdVTt/2VtXPt3IRYAAAAAAIBVpVL8pia2vUZx5SpJqapTL2Ynj+oUTRrfqeLo2Srt+LisTdsc2XRbAAAAAAAAWCjmfAAAANBt1sYqT3xR49tepkrx60rjP2lmKXjDw04qKl+myZE3qLTjI7K2XFdXmoxocvublSb3qLlvq1nqlRr7u0l4gyZGXqMk/tNyfnVgSRjPAQAAAAAAoJ1IvLI0vTQjNltK8TUdjQIAAAAAAGAVsTbU5Og7VB7/lKRI9Yu1pFkXPUpqXMAVlr6jydH/1bQAEgAAAAAAAJ3FnA8AAAB6gbWhiqNvV2Xyy5Itq3Wfs3XiiLD0Q02Ovl3Wxg/VV9zxHtl0q5r7tpqjXjWcVy2z6YOa3P4WpfF9bfq2QHswngMAAAAAAMByIPHK6nH4LOWDHY0CAAAAAABglbA2VXH07KkdshoXa02bbcGj1LyAyyoJb1Rx9Jy6BZAAAAAAAADoHOZ8AAAA0AusTTU5epbi8Feq75dOJ1eZzcw5SXijSjs+KEmKKlcpCW9Qc791Z8ko6hOu1MZi09Gp5C6VpX5doC0YzwEAAAAAAGC5eN0OAEtnjHmapJM09yw7AAAAAAAAFqAy+QXF4a/VvNNbq93hGrXaRa66cCsOr1N5/FPKDZ3e1ngBAAAAAACwc8z5AAAAoBeExW82JEqRmhNJ1PZNW51nFZV/ojh3girFb7U4PvXaFOQHT5KXOVyOu1HGGZZsqDQdURLdpKh8hdLknpq2Zz6fJnerPPF55QZPa9M3BxaP8RwAAADQe8YeOLaLrdu61+NbT1zAZ43W7HZluwMCAKxgfZ94xRhznKTjFvCRx81R1z8vPaIFyUo6UNIzJLmqnUWfsb3DMQEAAAAAAKx4SXy3KpNfV6ud3aZfe5kj5AWHy/U2yThrJUlp8qCS6AZF5cuVJvc1fGZm6iYsfUde5lD52WM6/M0AAAAAAAD6F3M+AAAA6AVpcr/Kk1/QbEkgJMk46+S4D5cxBdl0RGnyV1k7VnPejNKO/1uTOKW+Hj/7LGUHT5PjrGmKw5XkB4crKLxWUen7Kk18RrLFpnrC4rcV5J8vx9249C8PLBLjOQAAAKBXzZUAsdN6KRYAwErT94lXJD1Z0ru08F9U0+L5XW2KaaHqU4vPlEnSXzsfDgAAAAAAwMpWXbAVq3naxcr1D1Ju6G1yvX2bPud6+8gPnqCg8BqFpe+pPPEZyVZUu7hx+nVp/CNyMwe1XOQIAAAAAACA9mPOBwAAAL0gLH5PsmW17pc+RtmB0+RlDm76XFy5TpXiNxSHv1LtsvE0uVvNyVuMMvkXKDf4lp3GY4xRJn+iXH+zJkfPlE0b9/2MVSlepNzgmxb4TYH2YTwHAAAA9DKz81PartUt4fONgwQtAIBmTrcD6CFmAY921NHOx2y/8lbS1Qv4NwAAAAAAAOh71pYVlX+i2XaEKwyf33LBVi1jXAX5f9DA8AUyzi5N9UiSTcdUHv94u8MHAAAAAABAC8z5AAAAoBdYmygsX6LW/dJnqDD8uZZJVyTJCw5TYfijCgqnaCbxhK15PVOX4+03r6QrtVx/k/Jrz1P9LQbVOqPS/8habkxDdzCeAwAAAFYC2+EHAADtReKVGe34Re50z6A2ntkSwnx/vv8AAAAAAAAAkOLKrySFNSXVhYrVXbLeLmO8edfl+ptUGP64zEM7YtXuvmUVlS9VXPl1u0IHAAAAAADALJjzAQAAQC9Iot/KpttqSqb7pQcoN3SujNn57tzZgZPlZ4/XTB+08TNG2YHXLCo+zz9AQeGf1Lhk3todSqLfLapOYKkYzwEAAAArwVzjWbMMDwAA2ovEK/WW+ou8HL/+C43J1jxfZa29dBH/DgAAAAAAAH0rbrlg0Cg3dKaMcRdcn+s9XPk171b97lvTz1al8fNlbbKoWAEAAAAAADA/zPkAAACgFyTRbS1KjXJDZ80r6cq03OAZksm1PGbMkLzMUYuMUMrkXySZbFN5HN206DqBpWA8BwAAAPSu/Jr3y5gBzZ4cVFPH2v2YNtOfN84GGWe3eTw2yji7tfOfAQCwCsw/tW9/sDs/RdLsyVfm+/nlZiRtkfTibgcCAAAAAACw0qTxH2veVS8EecGRcr29F12nlzlUQeGfVJn8mup3zJLS5G6FxYsUFF60+KABAAAAAAAwJ+Z8AAAA0AuS6Pc176b6pZlD5Xr7Lqge4wzJzx6vqPRDzSxtn+7nHrWgJC6NHGdIfnC0ovJPVbtsPo22LLpOYCkYzwEAAAC9y88eJ9d/tIpj71US/Vb1yVem++/HKj/0dhlnsG3tjj1wjBpv9R5Y/wU5znDb2gAA9Ben2wFgyUzDoyLpfElHWGv/2s3AAAAAAAAAVqI0uV+NF2O8zBFLrjconCLnoQWT9TtmlSe/pDQdW3IbAAAAAAAAaI05HwAAAPSCJLm7qcwLjl5UXV7msJblrv/IRdVXX8fBDSVWSXLfkusFFoPxHAAAANDbHHc3FYY/qaDwKtX33auv48rPNL7tVYrDG7sRHgAA8+J1O4AeMCrpzws4f0DSes2kNK59bp4JX15W0oSk7ZJulXStpO9aa3d0OA4AAAAAAIBVI023N5W1Y3GiMZ5yQ/9bkyNvVHVap4YtqjLxBeWGzlhyOwAAAAAAAGjGnA8AAAB6gU0n1JhAwvUfs6i6XG+/1uXu3ouqr77u/WveVZfK23TbkusFFoPxHAAAAND7jHGUHXi1vMxhKo69Rzbdqpnxr5VN/6bJ7acryL9EwcBrZAy3twMAekvf/zJZa8+XdP58zzfGvFLSl2apa592xQUAAABg9SiOndftEBbJKL/mHd0OAgA6z1aaihyzti1Ve/4ByuROUFj6nhp3zApL31cm/wK53l5taQsAAAAAAAA1mPMBAABAL7ATTUWOM7yoqhxn15blZpH11dcx1FRm08kl1wssCuM5AAAAYMXwMgdrcP1XVNzxIcWVn6nav57ua6eqFL+uOLxeuTXvkuvt2cVIAQCo1/eJVwAAAABguUXlS9S4W1Hvs5KMROIVAKgymbZVFQy8TlH5clk73nAkVXn8UyoMf6RtbQEAAAAAAGAOzPkAAACgw6wttihMFleZybYudvKLq6+2jpZ1R0uuF2gbxnMAAABAzzLOoAprP6BK8bsqj39KUjh9RJJVEt+uiZGTlRt4izL5E7oYKQAAM5xuBwAAAAAA/cOuoAcA9K9WiwibF1gtnuMMKRg4RTN/b6eSXckqDn+hqPLrtrUFAAAAAACAKuZ8AAAA0BNaJItI0+2Lq8rMcivALAlZFsKmYy1K2fMV3cF4DgAAAFiZgvzzNLD+QjnePprpb5vqw5ZVGv8XTY6eqzTd0cUoAQCoIvHK0nA3IgAAAIAFMCvoAQD9yziDTWVpfE9b28jkTpLj7TvdYs2zVXn8fFkbt7U9AAAAAACAfsecDwAAAHqBMfmmMps+uKi6rE1q3y0yotbSdLSprFXyC6ATGM8BAAAAK5fr7aOBdRcqkztR9WPXqWSHlZ9rYtsrFYfXdylCAACqSLyyNNyRCAAAAGCerJoXudg5HgCAbnHcPdT4tziObmprG8Y4yg2+VfU7ZlWlyd2qTH6tre0BAAAAAAD0O+Z8AAAA0Ascd6Oa+qXhrxdXma3IC46TFxw79Vx9bZRZcpxpfEdtQ5Ik46xbcr3AYjCeAwAAAFY2YzLKDZ2p/JoPyJhBzfS3q8lXbPqgJrefodL4p0l6CADoGq/bAaxA90u6sttBoD/E0W2aHHntrMeDgVOVLby8gxEBAABgMQbX/4ei8BeKK9coDq+TlGomj+NsSVZIvgIA3eK4j5B03dS76t/qqHy5sgOnyZj2Tad5mUPkBccprlypxh2zKpNfkx88Sa7/yLa1BwAAAAAA0M+Y8wEAAEAvcNxHKIlunXo31S+t/FxZe6aMWdh+oMbJq7D2/W2PUZKiylWNrclxd1+WtoCdYTwHAAAArA5+9li5/qNVHHuvkug3mrmnQpJShcX/VBxer/yad8v19upipACAfkTilQWy1v5I0o+6HQf6Q1S6eCfHf0TiFQAAgBXA8fZQ4D1fQf75SuP7VCl+XWHpB1NHa5OvTL82cty95PqbuxIvAPQ7L/N4haVv15XZdERh8SIFhRe3ta3c4Js0XvmFpLCm1EiKVBx7lwbWXSjjDLS1TQAAAAAAgH7EnA8AAAB6gZc5WFH5kroym44qLH1LQf6FXYqqXhrfpyT6nWZufqty/U3dCQh9j/EcAAAAsHo47q4qDH9SlckvqzL5ZTXeS5HGWzQx8mplB05TkH9e9wIFAPQdEq8APcraSFH50jnPSZO7lES3y/Uf3aGoAAAAsFSOt4dyQ2fJzx6v4ui5snZS9clXqrzMYcoNnd6VGAGg33mZQyX5kuKpkurf6fLE5+X6j5WXeWzb2tmsnncAACAASURBVHLcjQoKL1dl8vOqTcAlSWlynyZHz1Fh+F9kTNC2NgEAAAAAAPoRcz4AAADoBV7mCEmOGm8sK4//q7zM4XK9vbsW27Ti+EckpWpOvHJwV+IBGM8BAAAAq4sxRtmBk+VlDlVx7D2y6d9U7XdPjUNtWeXxjykOf6Hc0NlynLXdDBcA0CecbgcAoLW48nNZu2On54XlH3cgGgAAALSblzlE+TXvqykxs54LAOgs4wzIzz5Z9UmxjKSKJkfPVFS+qq3tBYV/kuPtU9OOfeg5iW7S5PazZNNiW9sEAAAAAADoN8z5AAAAoBc47gZ5mSeqZb905I2KKtd2KbKq0vgFSsIb1LiOxZiCvMwh3QkKfY/xHAAAALA6eZmDNLj+K/KC49Tc37eKK9doYtsrFVV+1aUIAQD9hMQrQI8KS5fM67yo/FNZmyxzNAAAAFgOXnCYvOAo1U8SAgB6QZB/ieqnzqYWUtlJFcfO0eToOxSHv2lLW8Z4yg+9U5I3XaLGhVsTI6coif7QlvYAAAAAAAD6FXM+AAAA6AVB4eVq3qDHyNpxFUfPVnHs3YrDG2Rt3LGY0mSrJkffobD4Hw2xVfuwfu5ZMsab5dPA8mM8BwAAAKxOxhlQYe37lRs8UzJB7RFJVjYdUXH0TJXGPylro26FCQDoA8x+Aj0oTbYpDueXhc+mI4rDX8sPnrjMUQEAAGA5ZHLPU1y5utthAAAauP4mZXInKCx9T/ULC6ez6F+tuHK1jDMs1z9QrreXHGej5OTlOBvlZR674Payg29RefyjNe3NLNxKk/s0MfJa+dlnKii8TMYU2vE1AQAAAAAA+gpzPgAAAOgFXuax8nPPVlT6oeoTOhhJqaLyZYrKl0kmkOPuKcfdTcbklB04VY67sW1xJPF9SqJbFFeuUlS5SlJcE0sNEyjIv7ht7QKLwXgOAAAAWN0y+RPlZg5WcexdSuM7NTNOliSrsPgtxeH1yq95l1xvny5GCgBYrUi8AvSgqPwjScmCzifxCgAAwMrkZQ6RTFaylW6HAgBokB18k+LoZqXxHWpe8GglTSVErfxMcc2fcS9zpLzMhxfcXpB/ntL4LoWlb9e0UbuwMVVUvkRR+RI57p6L/2IAAAAAAAB9jDkfAAAA9ILc4OlKoy1K4t+rVRIJSZItK43/qDT+oyRTTX6yxMQrleJ3FRYvUpo+0LBWxTa0P/OcLZwsx911Se0C7cB4DgAAAFjdXG9vDay7UOXxTyks/Zdm+t5TCRDjOzSx7TXKDr6hi1ECAFYrEq+0mTHGk3SopCMk7SNpb0m7SMpLyknKqCkN+LKx1tr9OtQW2igsXdKy3AuOU1y5sqk8Kv9cdrAo4+SXOzQAAAC0mTEZef4BisPr1bmhAgBgPozJqrD2Q5rcfrrS5D4172KlmvftkRs6XdaWFJUvbtHezGKxNLlnllgAAAAAAAAwF+Z8AAAA0AuMCZQf/qiKo29XEt2i5uQrtdrXN02T+5Qmf24VUU1bM+37wXEKCi9tW/vAUjCeAwAAAFY/YzLKDZ0hL3O4Sjs+JGvHVN//DlUe/8TU2fS/AQDtQ+KVNjHGPFXS6yQ9R9UEK02ndDYiSe2cMUTHxNFtSpM/NZU73r7KDrxREy0Sr0hlRZUrlck9a/kDBAAAQNs53iOl8PpuhwEAaMFxN6qw7nMqjr5TSXSjZi7e1JptMdfi5Ne8Q2VnnSrFf2vRXm1bAAAAAAAAWAzmfAAAANALHGeNCsPnqzzxWYXF70hK1bkl57O1M9M39bNPU27onA7FA8wP4zkAAACgP/jZo+X6X1Jx7L1KoptU3xen/w0AaD+n2wGsdMaYRxljLpP0E0n/KCmvmV/w2odU/TXv1AMrVFS6uGV5JvtMud4ecr3HtP5c+UfLGRYAAACWkett6nYIAIA5OM4aDaz7hLKDZ8g4w5p9+qV9iyCzg6cqv/bDMs6GZW8LAAAAAACgHzHnAwAAgF5gTKDc4Fs1sO5CecExU6WdWg7eqg0rmbxyQ+cqv+afZQz7vKL3MJ4DAAAA+oPj7qLC8CcUFF6t+tvh6X8DANqPxCtLYIw5QdKvJR2nmQQrJEPBolkbKSpf2uKIKz/7dEmSnz2+5Wfj8AalyYPLGB0AAACWi+PtUfOOSUAA6FVB/iQNbrhIuaG3y8scKsnTck4B+cFRGtzwDWUH3iDH3dii/lY7dwEAAAAAAGAhmPMBAABAL3D9R6qw9jwNbvhPZQfeLC/zBBlnjZZ3CXrj3qIZZXLP1eD6ryqTe+Yytgu0B+M5AAAAYPUzxig78CoVhj8p4+yqmT44/W8AQHuRgnqRjDFPl/RtzfwbNs6YdRNJXlaouPJzWbujqdzLHCrH3SCpmnilPHGBpLThrFRR+ccKCi9d/kABAADQVo6zceoVXXkA6HXG+MrknqNM7jmytqwkulVJfJfS5B7ZdLusLcv19m9je4GCwkuVyb9EcfhLReUrFIe/lE1JvgoAAAAAANAuzPkAAACgVzju7goKL1RQeKEkKU3HZNNRWTspx3tEG1uaWqNisnL9zfIzR8jPPUeOM9TGNoDlx3gOAAAA6A9e5kANrv+ySjs+rKhyRbfDAQCsQiReWQRjzO6SvqmZlMjS7MlWuHMS8xaWLmlZ7mdnssY77i5y/YOURDc1f57EKwAAACuS465TJv9C1Q4fPP/gWc9P4js1se0Vc9Y5sP6rcr192xUiAKAFY7LyMofIyxyyoM8t5u+4MUZ+8ET5wROn6rhLSfQHJfEflSb3yqbblCYjC/8SAAAAAAAAqMOcDwAAAHqJ46yRnDUL+sx8+qbZwTPl+ZvlePvKGG4pwOrAeA4AAABYneY3zn2LjBnsUEQAgNWIWdLF+ZikIc2edKVVspXZErMAkqQ02aY4/FXzAZOXnz2ursjP/l3LxCtp/Ecl0R1y/f0WHUdYulilHec1lXvB/2fv3qM0O+s60X/3fq9V1Zd0QoAYLhEDCAgoogyeCXcR0FHOCB5RWIKIDqyDI86ox+UojmsYQFRQcTwqo4J6ZPCOQgwQuQkqMCgiAYGYQJBwS/pSt/e69/mjqzrVVW93uqqr6+2q+nzWele/tfe79/OrpJNa9Xue/X2uydwlL93yfavxrZn/0tM3HG+0vjoHLn31lu8LALBXzBx84bRLAGAXaTSvSqN5VZInTrsUAAAAALaJng8AADul2X6IDX1gG/l9DgAApqvZ/lrBogCcFz9FNqkoiquSPD13HrqyenyY5MYkn0oyn2Qpk4NZ2OeGveuSjDccb3Uek6LonH6s+9j05l858fOD3nWZab3gAlUJAAAAAAAAAAAAAAAAAAAAsDcIXtm8701S5mR4ytrQlbWBK4Mkr0/yO0neU9d1b0crZFcaLF878Xh75kkbjpXl4TTbX5fR4G83nBv23prugf+Qoii3vUYAAAAAAAAAAAAAAAAAAACAvUIyw+ZtTMG4I4SlSPK3SR5U1/Wz67q+XugK52I0/Giq8U0bjhfl3dNofc3Ea1rdJ0w8XldfzHjwwW2tDwAAAAAAAAAAAAAAAAAAAGCvEbyyCUVRtJM8LCeDVlathq7USd6Z5LF1Xd84hfLYxYbLb554vD3zxBRFMfFcq/OoJJ2J5wa9t2xXaQAAAAAAAAAAAAAAAAAAAAB7kuCVzbk6d/wzWw1bWbWY5Bl1Xfd3vCp2tboeZti7fuK5VvdJZ7yuKGfT7Dxy4rlh/x3xVxEAAAAAAAAAAAAAAAAAAADgzASvbM49JxxbDWD5rbquP7fD9bAHjPrvTl2f2HC80XpQGs17nfXadvcJk0/USxn23rUd5QEAAAAAAAAAAAAAAAAAAADsSYJXNufgWc792Y5VwZ4yWL524vFW90l3em2z88ikmJt4bth7y3nVBQAAAAAAAAAAAAAAAAAAALCXCV7ZnM5Zzn14x6pgz6jGt2U0eN+EM620uo+/0+uLopNW55qJ50aD96Wqjp5nhQAAAAAAAAAAAAAAAAAAAAB7k+CVzVk8y7nbd6wK9oxh77ok4w3Hm51vSFkeOqd7tLpPOMOZcYa9t229OAAAAAAAAAAAAAAAAAAAAIA9TPDK5hw7y7nWjlXBnjFYvnbi8Xb3Sed8j2b74SmKSyaeGy5ft6W6AAAAAAAAAAAAAAAAAAAAAPY6wSub84mznDu0Y1WwJ4yGH001vmnD8aK4JM3OI8/5PkXRTKv7mInnxqOPZTz61FZLBAAAAAAAAAAAAAAAAAAAANizBK9sQl3X/5rk2OqX605fucPlsMsNl9888Xir+/gURXNT92p1n3DmcXrXbepeAAAAAAAAAAAAAAAAAAAAAPuB4JXN+6skxYTjX7/ThbB71fUww971E8+1Zp606fs1Wg9NUd514rnB8ltT1+tzggAAAAAAAAAAAAAAAAAAAAD2N8Erm/fnZzi++bQM9q1R/92p6xMbjpeNq9JsPWDT9yuKIq3u4yaeq6tbMx7+46bvCQAAAAAAAAAAAAAAAAAAALCXNaddwC70hiSvSnJo5es6SZHkKUVRXFnX9b9OrTJ2jcHytROPV+Obc/zz/3b7x+v9ZZrth277fQEAAAAAAAAAAAAAAAAAAAB2q3LaBew2dV0vJ/mVnAxbWauZ5KU7XxG7TTW+LaPB+3Z0zGHv7anrwY6OCQAAAAAAAAAAAAAAAAAAAHAxE7yyNS9L8vk1X9c5GcTy3UVRfMd0SmK3GPauSzLe2UHrhYz6793ZMTfUUE13fAAAAAAAAAAAAAAAAAAAAIA1BK9sQV3XC0m+LyfDVk4dXvn6N4uieOxUCmNXGCxfO51xe9dNZdxVdQZTHR8AAAAAAAAAAAAAAAAAAABgLcErW1TX9ZuS/Fw2hq/MJnlTURTPmEphXNRGw4+mGt80nbH7f5uqOjGVsZMkdX96YwMAAAAAAAAAAAAAAAAAAACs05x2AbtZXdc/WhTFlUmekZOhK8XKn90kv1sUxVOS/Ehd15+bYplcRIbLb554vNl5TGYOvmhbxqjGn83i0edPGj3D3vXpzP6f2zLOZlXV0amMCwAAAAAAAAAAAAAAAAAAADCJ4JXz9z1JqiTfnZOhK8kdISzfleRpRVH8QZI/TfL+uq5vmUqVTF1dnww+maTdfVLKxmXbMk7ZuCxl46pU45s3nBv23jK14JW6um0q4wIAAAAAAAAAAAAAAAAAAABMInhlk4qi+N4Jh9+Z5BFJrs7G8JVOToayfPfK9YMkn0tyLMliklFOBrdcCHVd14+/QPdmk0b9d6euT2w8URxIs/OIbR2r1X10+os3bzg+Hn441ehfUzav3NbxzsV4dNOOjwkAAAAAAAAAAAAAAAAAAABwJoJXNu81uSNcZZJizft6wrFOknuvvM52n/NVXOD7s0mD5WsnHm91Hp2iaG3rWK3OY9JffO3kOnpvSffAc85ydTH5cD0+r5rGw38+r+sBAAAAAAAAAAAAAAAAAAAAtlM57QJ2sWLCa9JnkpMBKOtfZ7rHdry4yFTj2zIavG/iuXb3Cds+XqN135SNKyeeG/auu5OrJ+cx1dXRLddTV/MZD/9py9cDAAAAAAAAAAAAAAAAAAAAbDfBK1t3pjCV9c4UijLp+u16cZE5GXYy3nC8KC9No/2wCzJms/Poicer8WcyGpw5BKUoZiZfdx7BK8PeO5KMtnw9AAAAAAAAAAAAAAAAAAAAwHYTvLJ16wNVirN//KzXbfeLi8xg+dqJx1udx6UoGhdkzFb3MWc8N+y95YznisZlE4/X1edSjW/ddB11PUp/6fc3fR0AAAAAAAAAAAAAAAAAAADAhSR4Zevqi/jFRWQ0/Giq8U0Tz7W6T7hg4zZbD0xR3m3iuWHvr1LXo4nnGo17nvGew97bN11Hf/H3Uo0/venrAAAAAAAAAAAAAAAAAAAAAC4kwStbU+yCFxeJ4fKbJx4vyivSaD3ogo7d6j564vG6PpbR4G8nnivKAykbV00811t8XarxF855/GHvHekv/uY5fx4AAAAAAAAAAAAAAAAAAABgpzSnXcAu9NppF8DuUdfDDHvXTzzX7j4uRXFhM3JancdksPSGieeGy9el1fm3E881O9+QwdLNG0/UC1k89iOZPfySNJr3OOO4dd1Pf/F30l98XZJqC5UDAAAAAAAAAAAAAAAAAAAAXFiCVzapruvnTLsGdo9R/92p6xMTz7W6T7jg4zdaD05R3iV19aUN54b996SuFlKUBzac68x8WwZLr8+k0JRqdGMWbn9OWp3HpdV9VMry7inKg6nrpVSjWzIa/kOGvbemrm4/7bqycVVStFONPr5d3x4AAAAAAAAAAAAAAAAAAADAlglegQtosHztxONl46o0Wve94OMXRZFW51EZLP/xhLODDPvvSHvmWzbW17wy7Zlvy2D5TybfuF7OsPemDHtvOsdK2pk9/OIsz//COdcOAAAAAAAAAAAAAAAAAAAAcCGV0y4A9qpqfFtGg/dNPNfqPmHH6mh1H3PGc4Plvzzjue6B56dsbkc4TDdzl7x8R4JmAAAAAAAAAAAAAAAAAAAAAM6V4BW4QIa965KMJ55rdR+/Y3U0Wg9NUVwy8dx4+KFU489NPFeUs5k78gtptB605bHLxpWZO/KqNDtft+V7AAAAAAAAAAAAAAAAAAAAAFwIglfgAhksXzvxeKN5/zSa99yxOoqikWb3mjOcrTPovfWM15blkcwdeXW6B56foji0iTEPpjP7rBy47LVptr9qkxUDAAAAAAAAAAAAAAAAAAAAXHjNaRcAe9XBu/zOtEs4ZfbQjyWHfmxL1xZFK52570579mkZ9v86o8EHUg0/mWp8a+p6KUmVojyYorw0jeYD0mx/TVrdR6couhvudeDSXz3P7wQAAAAAAAAAAAAAAAAAAABgewheAc5JUXTS7j4+7e7jp10KAAAAAAAAAAAAAAAAAAAAwHkr6rqedg1wRkVRfCTJA9cff+ADH5iPfOQjU6gIAAAAAAAAAAAAAAAAAAAAYPs96EEPyg033DDp1A11XT9op+vZD8ppFwAAAAAAAAAAAAAAAAAAAAAAsNMErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg32lOu4CdVhTFo6Zdw06q6/pd064BAAAAAAAAAAAAAAAAAAAAAC42+y54Jck7ktTTLmKH1Nmf/44BAAAAAAAAAAAAAAAAAAAA4Kz2cyhHMe0CAAAAAAAAAAAAAAAAAAAAAIDp2M/BK/W0C7jABMsAAAAAAAAAAAAAAAAAAAAAwBns5+CVvRxMstdDZQAAAAAAAAAAAAAAAAAAAADgvJTTLgAAAAAAAAAAAAAAAAAAAAAAYKc1p13AFNXTLgAAAAAAAAAAAAAAAAAAAAAAmI5y2gUAAAAAAAAAAAAAAAAAAAAAAOy05rQLmIJPJ6mnXQQAAAAAAAAAAAAAAAAAAAAAMD37Lnilruurpl0DAAAAAAAAAAAAAAAAAAAAADBd5bQLAAAAAAAAAAAAAAAAAAAAAADYaYJXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL4jeAUAAAAAAAAAAAAAAAAAAAAA2HcErwAAAAAAAAAAAAAAAAAAAAAA+47gFQAAAAAAAAAAAAAAAAAAAABg3xG8AgAAAAAAAAAAAAAAAAAAAADsO4JXAAAAAAAAAAAAAAAAAAAAAIB9R/AKAAAAAAAAAAAAAAAAAAAAALDvCF4BAAAAAAAAAAAAAAAAAAAAAPad5rQLAAAAAAAAAPamqq5zSzXOp6pxPl9V+UI1zom6znxdpV8n49Spk3RSpFsU6RRFukkuK8t8Wdk49bq0tJ8EAAAAAMCF0lvp5X6uGueLVZUTdZX5uk6/rjNa+UwnRTpF0i2KdFOc1se9TA8XAAAAuIBur6p8YDTI56sqR+sq/brOpWWZI0WZBzSaeUCzdcHG7td1rh30Nhx/amfmgo3JzhO8AgAAAAAAAGyLqq7zofEwfzMc5B9Gw/zzeHRqUf75uKQo8tBmK1/dbOWrG+3cr2maEwAAAABgq26txvmb4SAfGg3zkfEwn6uq1Odxv1aSqxvNU33chzRaOSyMBQAAADgPw7rOnw16eeOglxvHZ1+FdqQo8+hWO9/Tnc1dy8a21rFY1/nZ5YUU644LXtlbrEgEAAAAAAAAzsut43H+cLCcvxz0cqy+Y3n++SzUX+toXeedw0HeORwkWcyVZSNPaXfy5HY3d9vmiXIAAAAAgL1oqa7z5kEvfzHo5RNrHlbajj7uIMkN41E+Oh7l9f3lFEm+ttnKU9rdPKbVSadY/2gSAAAAwJm9sb+c3+gt5fb63MJib6+r/OmglzcNevn2zkx+oDuX9gXoR6zWotOx9wheAQAAAAAAALbkWFXlV3qL+ctBL1U2LtDfzgnmtff+TDXOb/SW8preUh7T6uT7u7O5V8PUJwAAAADAesO6zu/0l/L6/nIW6/qC9XHr3NHHrZN8YDTMB0bD/FwW8tRON8/qzOZQWW7TaAAAAMBedKKq8t+X5/Pu4eC0Hsa59C/qnAyHfX1/OR8aDfOyuUO5yzZv6lVk+zYj4+KiawUAAAAAAABs2tsGvXzn/O1586CXcU5OKBfrXsnpi+23Yu0uIWtfdZIqyduH/Xz3/NG8enkho9q0NgAAAADAqg+Nhnnm/NH8z95SFtaErqzv4yZb7+WerYdbJ1lMnf+vv5ynzd+eP+ovb+n7AAAAAPa+z47Hec7C0VOhK5P6DOutPb72szeMR/ne+WO5ZTzegcrZCwSvAAAAAAAAAJvya8uLefHSfE6sLNRfH7Sy1pkW79/Za+31k6ydKB8n+f3+cr53/mg+V5ksBwAAAAB4Y385P7hwLJ+pxhMfVlpvfS83ufP+bSZcs/5+q+Mt1HV+YXkhP7xwPCeqaivfEgAAALBHHa+qvHDxWG6tqlN9jGRjqMp6k9atrX79pbrKixaP5XZ9CM5Bc9oFAAAAAAAAALvHa5YX89r+UpIzT2YnGxfft5JcVpa5S1FmtijSSZF2UaSdpMrJ8JRB6izVdRbrOkfrKrdXVQZnuP+k8T5ZjfMD88fyiwcO56qGqVAAAAAAYH96Y385L1teSDL5waQz9XGTk7v7HjnVx81KH7dIlXqlj5uVPm6VE3WdSY8unW28vxsN8oKFY/nFA5fkstJewgAAAEDysuX53FpVZwxRWf26THKoOHn0+MqmYaufK9ZdVyf5bFXlp5ZO5JfnDqcozhQfC4JXAAAAAAAAgHP0V4N+frO/dMYdTFcnru9SlPnaZiv3azRz/0Yz92k0c8kWF9DfXlW5pRrnE+NRbhgN8/7RMLfVJ5fyr61j9f0X6yovWjie3z54JIct2gcAAAAA9pkPjgb52TWhK0km7hTdSvKARjP3a7RW+riN3KUsc1lRpjzHB5Hqus7Rus6t1Tifqcb5+HiUG0ajfGQ8zGjlM+v7uHWSf6nG+aGFY/mNg0fS9dATAAAA7GsfGA7yzuHgjH2My4syT+/M5BGtdq4uG6cCVIZ1nb8fDfOXg17eMuyfuq5ec486yd+Phvnt/lKe053b0e+L3UXwCgAAAAAAAHCnjldVfm55/tTX6ye4Ly3K/Lt2N9e02nlgs7Vt415alrm0LPPQZivpzCRJPjwa5o/7y3nryoT5+no+X1f56aUTeeWBS7atDgAAAACAi91yXeclS/OpMjnwpJXksa1Orml18shWO7PnGXpSFEUuLYpcWpZ5UFr5ppXjS3Wddw/7+dN+Lx8aDzc8OLUavvLypfm8eO7QedUAAAAA7G6/21869X5t7yBJntmZyfO6c2lN6GG0iiJf32rn61vtfNd4lJ9aPJGbq/Fp16++/+3eUh7V6uQrGuI1mMwWbwAAAAAAAMCden1/Ocfq+tQC+dVJ6UaS53Vn8yeHLs0PzMxta+jKmTy42cqL5w7ldQeP5OpG87QJ99X63jca5l3D/gWvBQAAAADgYvHH/eXcWlWnPWCUlfff0u7mTw5dlp+eO5THtzvnHbpyNrNFkW9qd/OrBy/Jz88dzl2LckMft07ylmE/HxoNL1gdAAAAwMXt9qrK+0fDDWvSiiQ/OnMgL5g5MDF0Zb2rG838xsFL8rXN1obwliQZJnnJ0nzqup58A/Y9kTwAAAAAAADAWY3qOn80WD5th9Q6SSfJK+YO5+Gt9lTquk+jmd84cEn+y+KJ/PVosKG+16zsVAIAAAAAsNdVdZ3X95c3Kzx1nwAAIABJREFUPKhUJvmJ2YN5Srs7lboe2Wrntw8eyX9aPJ4bxqMNfdz/d3kxv3rwkqnUBgAAXLy+/cRt0y5hS4okf3josmmXAbvGe4eD0zbbWn3/be1untqZ2dS95ooyr5g7nOcvHMvHV3oQa0NY/nk8yh8Pevn2Td6X/UHwCgAAAAAAAHBW7x8Ns1DXGya4f3jmwNRCV1a1iyIvmTuUFywcy0dWJsxXJ8tvHI/yifEo922YFgUAAAAA9rYPjYe5ra429HGf152bWujKqsNlmV88cDjPnT+WW6pxkjv6uP84HuYz43Hu0WhMtUYAAODicmtVnfq9YTcp7vwjwBofGQ83HOumyA9057Z0v25R5L/PHsqzF46ett5t9f8nv95bzBNanRwuyy3XzN7kbwQAAAAAAABwVn83Gpx6v7qg5T5lI//uItn9o1UU+cnZg5m0LP9dw/6O1wMAAAAAsNP+ZjjYcOyKsswzL5I+7lxR5qdmD0489w59XAAA4AyKXfQCNu+m8ejU+9UQ2ce3zy8Y5YpGI/955sCpdW5rA5wW6jq/3lvc8r3ZuwSvAAAAAAAAAGd145oJ7uTkBPc3TXmH1PXu1Wjmsa3Ohp2OPjoaTfw8AAAAAMBe8okJDyo9ud1No7h4Hv97YLOVf9Nsb+jj3jBhd2sAAABg7/t8VW0ILvq6Zuu87/uN7W4e3Wqf6pFk5c86yRsHvdMCXyARvAIAAAAAAADcic+MxxsmuB+8DRPc2+1Rrfap96sT5TdXJskBAAAAgL3v09XGPu5XNy6+Pu7j2p1T71f7uDeOx1OrBwAAuDhdXpSpkw3BjfVZXsDuc6Le+F/vvcrGttz7h2cOZHZDtySpkvzS8sK2jMHe0Zx2AQAAAAAAu9G3n7ht2iVsSZHkDw9dNu0yANhl5idMcF9eXHx7PHxFY+P056TJeQAAAACAvWZSH/fu2/Sg0na6/4Q+7vG6mkIlAADAxezPDl+WfxmP8tfDQd44WM5nqypF7ghwnMQKEdh9+hP+y72k3J51aZeXjTy3O5tf7i2e+n/H6p/vGw3zN8NBHrlmoy/2N8ErAAAAAABbcOvKJN5um6jbmNsOAHeuN+EnXvMi/KEyV2wsalnwCgAAAACwD0zqhbYuwj7uoQl93EV9XAAAYIL7NJq5T6OZZ3Vm8rZhP69aXsjRuj5t7ebaMIWHN1t5Yrs7tXqBzWskGa07tp3xrN/RmckbB718uhqftoa6TvLq5YU8onkk5YReBfuP4BUAAAAAgPOwm1rtlisCsFVzRZGFdQvfj1ZV7nqR7Za6NGFxfmdX/bQGAAAAANiamaLYEGByoq5z1ynVcyb9CX3ctj4uAABwFkVR5Bvb3Ty82c4LF47lppUAhfW/Xdy7bOabBa/ArjJbFDmxrldwvKpyxTatS2sURX5o5kBetHj8tKCmOsnN1Th/NOjl6Z2ZbRmL3a2cdgEAAAAAAADAxe1QsXFa8Z/H6/camb5/GY83HDtUWrAPAAAAAOx9hybszvzJi7CP+6lqYx/3oJ2lAQCAc3CkLPOKA4fTWfnabxKw+x2ZsC7tpgm9g/PxiFY71zTbp0JXkjvCV17TW8zRqtrW8didBK8AAAAAAGzB5UWZOht3TKjP8gKA3eqqsrHhZ9lbh/2p1HI271pT0+pE+b23afcTAAAAAICL2T0m9HHffhH2cd8zHJx6v9rHvWdDHxcAADg3V5SNPKXdtSYT9oh7TuhnvG9N72C7/ODMgbQmHF+o67xyeWHbx2P3EbwCAAAAALAFf3b4svzuwSP5D925XFGWp5r+Z9tB4WyhLDvxAoCt+qrmHdPOq7t9fHA0zAcvwCT3Vt08HuX6YX/Dz+KvbEyaMgcAAAAA2Fu+qrGxj/ue4SCfHI+mVtN6X6jGuW7Q29DHvV+jOZV6AACA3emb291plwBsk/us6Qms9jPeOezneFVt6zhXNhp5Rmf21Hrq1TDYOsn1w37eMuht63jsPrpTAAAAAABbdJ9GM/dpNPOszkzeNuznVcsLOVrXpxrxyR1N+SLJw5utPNGEHwC70De02vm13uKpr1d/vv3Xpfm85uAlubyc7m6ki3WVn1o8kXE2hqBd02pPoyQAAAAAgB319a12frO/dNqxKsmLF0/k1w9ekrliuvv2juo6P7M0n1429nH/D31cAABgEx7QbOVIUeRYbUs62O2+rtnKa/unH+sn+R+9xfz47MFtHevZ3dlcO+jlS3V1qjexug7uZ5cWct9GM18uHHbf8m8eAAAAAOA8FUWRb2x38/BmOy9cOJabqvFp4Sur7l027bQAwK5030YzD2w089E1O6MWSb5YV3n+wrG8dO5w7julSecvVOP8+OKJfHLl529yx8/ge5eNPLDZOtOlAAAAAAB7xkOarXx52cjN1TjJHQ8O3VyN88KF43n53KGphWgv1lV+enE+HxwNN4Su3LUo8zUNfVwAAGBzHtxs5V3DwYbfMYDd5SHNVg4XRU6sBCmt9jP+YtDLfRvNPK0zs21jdYsiPzRzID+xdOK0jTWLJEup86KF43n1gUtyj8Z0NyFjOqYbWQwAAAAAsIccKcu84sDhdFa+NqEHwF7yPd3ZU4Emq38WST5bVfm++aP55eWFHK2qHatnVNf5X/2lPGv+aD62JhBmVZGTu5QAAAAAAOwX37Wuj7v6ENHHxqM8c/5o/rC/nNEO7wj/rmE/3zN/NO8dDU47vlrfM7uzKQozqwAAwObcb0obBAHbq1kU+ZZ2d2I/45XLC/nF5YX0trGX8dh2J49qtU8bJyvvv1BXecHCsXx8tHEtGnuf4BUAAAAAgG10RdnIU9ZMAADAXnFNq5PHnGHSeZjk9f3lPPXEbXnx4om8a9jP8gVavP+x0TC/uryQp564Pb+0vJj5uj5VU3LH5PvDmq08sd29IDUAAAAAAFyMvrndzdc0W6f1cVd7p/N1nVeu9FZ/bXkxn5gQaL1djlZV/rS/nGfPH82PL57IZ6tqYh/3vo1mnqqPCwAAbMHVgldgz3hGZzZzK12Dtf2MOskb+sv5jhO357d6i7l5m3oZPz5zMJcV5Wnjrb7/Ul3leQtH84b+UqodDq9luvxUAQAAAADYZt/c7uaPB71plwEA2+7HZg7mpvGxfLoanzbJvfp+mORtw37eNuynkeT+jWbu12jmKxrN3KNs5G5lmUuLMgfLs+8PUdV1bq+r3FZVubWqcmM1yo3jUf5hNMzxlQnttRPe611alPnJ2YPb9F0DAAAAAOwePzl7MM+bP5bb62pD+Eqd5Pa6yuv6S3ldfymXFmW+ptla6eM2co+ykbuWjXSKSZ3XyU5UVW6txrmxGueTK33cj49HqXP2Pu5Mirx49mAamxgLAABg1RVl49R7v1XA7nZpWeb7Z+byyuWFDaGtdU6Gobymt5TX9JZyqChyr7KRu5eNzBZFvrLRzLd1ZjY13uGyzEvmDuWFC8cySjasgxsm+cXlxfxRv5fv6szkwc3Wtn2vXLwErwAAAAAAbLMHNFs5UhQ5JukcgD3mcFnmVQcO5wULx3JrVZ22cGXtpHeSjJLcMB7lhgk7jRQ5uai+WxRpJCmLZFQnw9QZ1kkvdSb9FK3X3WPS+UNFkVcdOJy7rllgAwAAAACwX9y9bOSVBw7n/144lvm6Pmsf97a6yvXDfq4f9k+7x2yKHC6LzKZIpyjSTLHSx60zTDKs6yysBGiv7wCv7+2u7+XWSVpJXj53KF9uh3oAAGCLrljZ9McqTdgbnt6ZyYdHw7xt2N8QvrL6PkmO13X+aTzKP62sSftSs73p4JUkeUizlZ+YPZj/ujSfZGP4Sp3klmqcn10TBsPepksFAAAAAHABPLjZyruGA812APacu5WN/NaBI/nJpRN5/2i44Wfd2q/PtLilTrKYOourIWXnuArmbD9X6yT3Lht5xdzh3KMhdAUAAAAA2L+ubjTzmgNH8v8sHs+/VONN93EXU2exqjd89kyfX2/9/dc+JHVpUeZlc4fyVXaLBgAAzsOBoszL5w6d9jvKl9mkB3a1n5w9mNFSnXesrL+eFCab3NGbON812k9sdzOsk5cuz5/qX6wNX1kdq17z3rrwvaucdgEAAAAAAHvR/ezOBsAedqgs86q5w3nRzIEcLIozLrQvtvmVbFzUvzqh/X91ZvJbB48IXQEAAAAASHKPRiOvOXgk39mZSSOTe6vJufVk175yjtet/dzqtY9qtfPag0eErgAAANvimlYnj1rzutq6TdjVWkWRl8weyvd2Zif2MlZtZ/jJN3e6ecXcocytrIGb1NcQtrI/CF4BAAAAALgATOABsNcVRZGnd2byhoOX5lmdmRxemXw+04T3pIX5Z3Omz64PYHn0ykL9/zhzIN3CNDcAAAAAwKpuUeQHZw7k9w4eyRNanVMPLZ1ph+athKucS1/4/o1mfn7uUF42dziXlR5jAQAAACYriiLfNzOX3zx4JI9qtU8LdD3tc9s45iNbnfzeynibWd/G3mLlPwAAAADABXBF2Tj13iPgAOxlh8oyz585kOd253L9sJ+3D/p5/2iQ/prPbGXnj/WfXzuhfY+ykce3OvnWdjdXNBoBAAAAAODM7tlo5mfmDuW2qsqfDpbzjkE/N1bjU+eLdX9uxvoQllUzKXJNq51v7XTzsGZ7C3cGAAAA9qurG828bO5wbhmPc/2wl78ZDnLDeJTxnV+6JZeXjbxs7nA+OhrmD/rL+athP4OVc1tZ+8buI3gFAAAAAOACuGJlpzap5wDsF+2iyJPb3Ty53U2/rvPB0SAfHo3yz+NRPj4e5ba62tJ9G0nuVTZy30YzD2m28rBmK1c1THMCAAAAAGzWZWWZ53bn8tzuXD5XjfPe4SAfHg3z8fEon6rG2VoX96SZFLm60TjVx/3aZjvtwmNJAAAAwNbds9HIsxtzeXZ3LqO6zi3VOJ8ej3O0rrJc17l8Zb32dnlAs5WfarbyQ1WV944Gee9wkA+MBjlWWxG+11mRCAAAAABwARwoyrx87tBpwStfVjamVg8A7KROUeSRrU4e2eqcOrZc1/lCNc4Xqiq3rUx89+s6gySj1GmkSCvJbFHkYFHmSFnkbkUjdyvLNC3OBwAAAADYVncvG/n3nZn8+85MkqRX1/nXapwvVlW+UI3X9HGTQeqMcjIo+/Q+bpm7FWWuLBu5omEuFAAAALhwmkWRL2808+U7sGnXobLMk9rdPKndTZJ8sRrnE+NRPlON86Wqyu1b3ISMi5fgFQAAAACAC+SaNQ+bA8B+N1MUuXejmXtbew8AAAAAcNHpFkW+otHMV+jhAgAAAJzm8rKRy23AuaeV0y4AAAAAAAAAAAAAAAAAAAAAAGCnCV4BAAAAAAAAAAAAAAAAAAAAAPYdwSsAAAAAAAAAAAAAAAAAAAAAwL7TnHYBAAAAAAAAwN62UFf5XFXli9U4J+o683Wdfl1nlKROnU6KdIuVV4pcVpb5srLMXcrGtEsHAAAAANhTxnWdG8ajfL4a5+hKr/ZIWebSosxXNpo5Ul64/X1HdZ3/PRpuOP6IVvuCjQkAAADsfvoZXGiCVwAAAAAAAIBtM1iZaP7QaJiPjIe5aTzO0bra0r1aSe5eNnLfRjMPbbby1c1Wrm6Y4gQAAAAA2Kz3DPt546CX/z0cZjn1xM8USe7faOaxrU6e1plJtyi2tYYTdZ0XLR7P2rsWSf76ksu3dRwAAABgb9DPYKdYlQgAAAAAAACcl7qu897RIH8x6OXvhoP01547j/sOkny6GueWapy/Gp6861xR5HGtTp7c7uahzdb5lA0AAAAAsOe9bzjI/+gt5hPjUZKz92zrJB8dj/Kx8Si/31/Kc7pzeVpnZttrOp++MQAAALD36Wew0wSvAAAAAAAAAFt27aCX3+4t5TPVOMnGCebt2D9k7T0X6jp/Pujlzwe9XFk28p2dmXxru5vmNu9UAgAAAACwm43qOq/uLeYP+stJ7uiz3lkntV55Ha3rvHJ5Ie8fDfLi2UOZ3cYe7OqdPLAEAAAArKWfwbSU0y4AAAAAAAAA2H1uGY/z/Plj+W9L87mlGp+avC7WvZI7JrZXX3dm/efW33P1/GeqcX5+eSHPmD+a9w772/FtAQAAAADseserKt+/cCx/0F/e0LtNNvZs1/Zk1/di/3o4yPPmj+b2qtrJbwEAAADYZ/QzmCbBKwAAAAAAAMCm/O1wkOcuHM0/jocbwlaSjeEqk8JYzubOPrd+ovxfq3F+ZPFEfnZpPsPaniIAAAAAwP7Vr+v8x8Xj+dh4dFr/9mxh15MeYsqa626qxvlPi8ezpP8KAAAAXAD6GUyb4BUAAAAAAADgnL1n2M+PLh7PQl2fmuRONk5yrx6b9GokmU2RS4oidy3K3KUoc6QoM1cUpya+z7Q7yXprJ9n/bNDLixaPZ9lkOQAAAACwT71qeSEfH49O652u7+We7XWm6z4+HuVlS/M79W0AAAAA+4h+BtPWnHYBAAAAAAAAwO7wyfEo/2XxREY5fVJ70g4jlxdl7tdo5v6NZu7TaOYuZZnLyzKXF2WaRbH+1qfp1XWO1lVur6rcWo3zmWqcj49H+eholM/XVbJm/FWr4//9aJgfWTyeX5o7nPJOxgEAAAAA2Es+NhrmjYPehv7t6vtukie3u3lEq537Npo5Upzcy/eL1TgfHA1z3aCffxgPJz6sVCe5ftjPw/rLeWpnZie/LQAAAGAP08/gYiB4BQAAAAAAALhTo7rOzyyeSD8bQ1dWA1ce3GjmmlYnj2q1c6/G1qciu0WRK4pGrigbeVBap5371HiUtw/7+YtBL5+tqom1/P1omF/pLeaFMwe2XAMAAAAAwG7zuv7Sab3Stf3bJ7Q6edHMgRwpyw3X3bPRzD0bzXxbZybvHfbz0qWF3F5Xp12/+v6Xlxfzb1rt3L1sXPhvCAAAANjz9DO4GGz8GwYAAAAAAACwzpsGvXyyGp8KOknumJh+eLOV1x48kl87eCTP7M6eV+jKnbl3o5lnd+fyhoOX5j/PHMjMSkWrda3W9L/6y7lxPLpgdQAAAAAAXEzmqyrvHg429EqLJN/Tmc3PzB2a+JDSet/Q6uR/Hrwk9ykbGx52SpLl1HnZ0vx2lw/A/8/evYdZetV1ov+++77r0tXdQCYxQSIhqIDcbyGI+AiDOAeOeMyBQYWDUQRBMYIhjuKoox4kzsFBQI94wxE8KF7xMIqDnDncQUFQUAQxYIIIJH2p676+80e6uqu6dnW6q3bXZdfn8zz76V3vu/daaz/prp31W+/7XQAAcACpZ7BXXLwrHgEAAAAAAICJ8YbO8rrQldUF6u9qTeU7W9M7Pp5KUeRbmu08otbIDYvH8y/D4brzZZJfXF7Mz83M7fjYAAAAAAB22nv73QxyJqR6tYb7dfVGvqd9YTXcSyrV/JeZw3nuwrH8y3C4YcfpD/Z7+e/dlTyh0RrjJwAAADjjhQvHd3sIW/bqmcO7PQTYN9Qz2CsErwAAAAAAAADn9Hf9Xm4dDjYscH9ro70roStr3bNazWtnDue75o/n9vLO8JXVxfL39bv50nCQu1equzpGAAAAAICL7WP9/oZjtSQvas9sqb2jlUp+Zmouz104ll6yYefpVy8v5rH1ZlpFsXkjAAAAW/Shfi/7bbaxej0NcP7UM9grKrs9AAAAAAAAAGBve3evu+HY0aKS51/griIXyyWVav7D1GzKs46XSd4xYuwAAAAAAJPmU8MzNyqd2R26mX+zjWDq+9ZqeUF75nTtdW0N9ovlMK9fWdpy2wAAAOej3CcPYGvUM9grBK8AAAAAAAAA5/QPg40L3N/Y2Fs7fzy63siDqvUNF7P8Tb+3K+MBAAAAANhJ/zocbNhZ/ZG1xrbbva7ZzoNP1V7P3iX6tztL+fxwsO0+AAAANlPskwewNeoZ7BWCVwAAAAAAAIBz+qcRC9wPHcMC97j920Zz3c9lkk+tCY0BAAAAAJhUx4cb91i/T3Xru0OvdePUTOojjveSvHZ5cSx9AAAArFXLndd9nD3TKc/xAPYf9Qz2itpuDwAAAAAAYD964cLx3R7Clr165vBuDwGAfeZkOdxw7IrKeBa4x+l+1TPLn6s7lBwfMXYAAAAAgEnTGXGb4VxlPHv1Xlmt5ZnNqby+s3S69rr659t7nTy938v9a6NuZQIAANiat83dPX/V7+bdvW7+rNvJcsoUOTMXGUX4Cuw/6hnsFYJXAAAAAAC24EP9XordHsQFWl0wAIALtVRuXOBu7cEvlSMjFt0XR4wdAAAAAGDSVJKcHUM9ntuU7vTs1lT+W3clXyyH69YcyySvWl7I/z17ZIy9AQAAB12rKHJtvZlr6828oD2d3+us5NdXFtPN+vCVtWEKX12t5Zp6Y7eGDGyBegZ7heAVAAAAAIBt2C+3cu/Be+MB2EeaKbJ81rfeYlnmHrs0ns10R3wxV3d+GAAAAAAAO65dFJk/K4j6ZFnm34yp/VZR5AXt6fzHpfkNu0T/7aCfP++u5ImN1ph6AwAAOGO6qORZrak8rt7IDQsn8oVTAQpnXyZyv2o917emd2OIwBapZ7BXjDPwBwAAAADgwCn2yQMAtuNQZeO3yT8OBrswknP73HDjmKYLS6IAAAAAwOSbG1EL/cygP9Y+ntho5UHV+umblJIzNyu9enkxy+V+2bYCAADYj66s1vKKmbnTN8e7NhL2P/UM9gpXGQIAAAAAbEEtdxbczy61l+d4AMB+dWlR3fBd9q5eZ1fGci7v73dPP19dKL+iUt218QAAAAAA7JQrKhvruH/Z7429nxvaMyNvRPlSOcwvLi+OvT8AAIC1rq7W8oR60zWZMCHUM9grBK8AAAAAAGzB2+bunpunD+WbG620Upwu+p9rB4VzhbLsxAMAtuoBtdrp56u7ffxFr5N/GQx2bUxnWyiH+ZPuyobv4qurtZGvBwAAAACYJF9RPRNCvVrHfUevM/Zdm+9bq+Upjda69cfV/n6/u5wP9rqbvBMAAGA8ntps7fYQgDFRz2CvcJUhAAAAAMAWtIoi19abubbezAva0/m9zkp+fWUx3ZwpxGfN8yLJV1druabe2K0hA8CWPbzWyG91ltcd6yX5yaX5/MLMXGrFuaLHdsbLlxYyX5Ybgleuqdd3ZTwAAAAAADvpYbVG3nhWHXehLPMbK4t5fntmrH09rzWdv+h1srDmJqgiyTDJTyzN59dmD+eSSnXT9wMAAGzHA6v1zBRFFscczADsPPUM9grBKwAAAAAA2zRdVPKs1lQeV2/khoUT+UI5XBe+sup+1Xqub03vxhABYFseUavnskolnx8Ok5wJFvvooJeXLp7Mf5o+lKldCl8ZlmV+bnkhf9HrbAhdmSuKPKIm9AwAAAAAmHwPqdXTTpGVU6uUq3XcN3SWc/9aPY+rN8fW11ylkue1pnPz8sK6jSiKJHeUw/zgwom8euZwDlcqY+sTAABgVbUo8jXVet7b7264VgTYX9Qz2Cv8VwcAAAAAGJMrq7W8YmbudOHVgh4Ak6IoilzXaJ8OFVtddC6TvK/fzbPm78i7e50dH9c/9Pv5noXj+aPuyrrjq+N7enMqtV0KhAEAAAAA2EmtosiTGs11m0Os7tr8o4sn8zudpbH297RmOw+q1tfVi1d9ejjICxeO5wvDwVj7BAAAWHXfam23hwCMgXoGe4XgFQAAAACAMbq6WssT6usXAABgElzXbOc+lWqSrNvxo0zyueEwNy6ezLPnj+WPO8s5MRxetHEMyzLv73Vz0+KJfOfCsXx80D89llVFkssqlTy92b5o4wAAAAAA2Gue2ZxKfc3Pq7XTfpL/sryYZ88fy592V7JUjmc188emZjN9qjp79k7Rnx4O8uz5Y3nnLoR2AwAAk+9qwSswMdQz2At8qwAAAAAAjNlTm638mYI7ABOmWhR52fShPH/+eJZTrlt0zqnnnxz087PLC7l5eSFfVa3lIbV6vrJaz1XVai6vVFMvis072MSJ4TCfHvbzqcEgH+5385f9XhZPLaKvLqWvbbVMUk/ysqlDaW2hPwAAAACA/eqKajXPbE7l9Z2lDWHVqzXc/7Q0n0rmc59qLfeqVHNppZqposhXVKv52nrzgvq7rFrNy6Zn88OLJ9f1s3qz0omyzE2LJ/OQWj3Pak7lymp1LJ8TAADg8krl9HNXh8D+pp7BXiB4BQAAAABgzB5YrWemKE7fFA4Ak+Lqai0/O30oP7h4Iv1sXHQuTz0GST4+6Ofjg36S5eTU+cNFJUeLIocqlUynSLMoUk1SLZJ+mXRTpl8m82WZO8phbh8Os5z136drfzr7wpnVsfzo1GweVKsHAAAAAOCg+a7WVP5m0MuH+r1z1nA/MejnHwb90+97TK1xwTcqJcnj6s18b2s6r1lZXNfP2ucf7vfy4f6JTLkdEgAAGJNLK3cGIbhKEyaDega7TfAKAAAAAMCYVYsiX1Ot5739rlI7ABPnYfVGXjNzOP9h8WS+VA5Pf9etLjxnzc856+c7ymHuKJNiOLjLfja7MGaz79YySSvJy6YO5esbF76YDgAAAAAwCapFkf9z6lBevHgifzvon7OGO64bFL+tNZWVlPnVlaVNb1ZKksVTz84eCwAAwIWaq1RyQ3smwzUzm6urbpuH/Uo9g91W2e0BAAAAAABMovtawANggj2gVs9vzB7J4+uN0wvMZy8qF5s8kjML4Od6nOv9ZyuTfFW1ltfNHhG6AgAAAAAceLOVSn5h5nCeXG/eZQ131LmtuL41nRvbM6me1ebZ9V4AAIBxua7ZztObU6cfD601dntIwDaoZ7CbBK8AAAAAAFwEdk4AYNIdrVTyM9NzefX0XO5XrZ1zN5G1xzcLVNksYGWzdleP362o5CXtmfzKzOFc5fsXAAAAACBJ0iyKvGz6UP7z9KHc5xw13HHePPTNzXZ+ZeZIrl7Tn5uTAAAAgPOlnsFuceUhAAAAAMBFcHnlTO614jsAk+wQ6hNCAAAgAElEQVSh9UZeV2/k7/u9vLm7knf2Opkvzyx3b3fXj7NDWFaPfU21lqc223livZlG4dsWAAAAAGCUa+rNXFNv5q963byt18n7et18sRxetP7uW6vlN2aP5O3dTn6vs5y/HvROn7NLNAAAAHA+1DPYaYJXAAAAAAAugksr1SSjU9YBYBJ9Va2eH63VMyhn8tFBL+/pdfO3/X4+OehnaQzfiHcvKnlgrZ6H1up5bL2RS0591wIAAAAAcNceVm/kYfVGkuRzg0FuGfbz2cEgx8phVsrkiup4a67f0GjmGxrN3DLo5x29Tt7T6+bvBv1cvFukAAAAgEmjnsFOEbwCAAAAAHARzFUquaE9k+GaG82vrirJAjD5qkWRh9QaeUitcfrYZwf9fHY4yBeHw3xhOMzt5TArZZlOWaaTMv3cuXBZS5GposhsUeRopZJLikour1RzVbWWuUpl1z4TAAAAAMAk+bJqNV9WreYx9Yvf15XVWp5TreU5rekslWU+NbgzsPvW4SC3n6oXAwAAANwV9QwuJlf5AwAAAABcJNc127s9BADYE768WsuXCyADAAAAADjQpooiD6zV88DaDtwhBQAAADAG6hkHg23hAAAAAAAAAAAAAAAAAAAAAIADx7ZyAAAAAAAAAAAAAAAAAAAAHGjLZZkvDgeZL8skyXRR5NJKNa2i2OWRAXAxCV4BAAAAAAAAxuZLw0H+dTjMHeUw3TI5UilytKjknpVqqhfxIpRhWebW4WDD8S+vWhIFAAAAAFhLHRcAAOCMfx4M8pbuct7d6+Yzw0HKEa/5sko1D67V8/X1Rq6pNVIIYoEdp57BxeS/JgAAAAAAALAt/zjo5y3dlby/181nRywyJ3fuAPTIWiOPrzfyhEZr7GM4XpZ5xvyxrF1CL5K86/A9xt4XAAAAAMB+o44LAABMmtuHw/zrcJBj5TBLZZmZopJ7VCq5qlI9r2CUhXKY1y4v5o+7KymTkYErq24bDvK57iBv7a7kskol17em8+SLMG8C1lPPYKcIXgEAAAAAAAC25NODfn55ZTHv6nXv8gKUhbLMO3qdvKPXyetXlvK89nSurTfHPqZzjQEAAAAA4KBRxwUAACbJvw4H+b3Oct7d6+aWTUIYplLkmnojT2+2c/9afeRrbh0M8uLFE7l1OFg3RzlXXMvq6z43HOanlubz/3ZX8hNTh3K3SmVLnwXYnHoGO81vcgAAAAAAAOCCvamzlOfMH8s7e90Mc+fCcnEXj9VF8H8cDnLj4sm8cmkhw3K8S9KrfQEAAAAAHHTquAAAwKTol2V+dWUx//7kHXlDZzn/dCowZdRjMWXe3uvkuQvH8/Kl+aycNae5YzjMCxeO559PtbF2TpRN2kw2zp0+1O/lOfPH8k+D/sX86HDgqGewGwSvAAAAAAAAAOetW5Z56cKJvGp5Mb2sX9hORl98stkFKG/uLudFiyc2XOACAAAAAMDWqeMCAACTpFuW+aHFE/m1laWsZPT8ZbMQhrd0V/KSxRPpr5nT/Melk/lCOdwwT8o52s1Zr1s99qVymBcsHM9tg8F4PiwcYOoZ7CbBKwAAAAAAAMB5GZZlblw8kXf2uxsWtldtdkFLsnGxe3X3n5vOusAFAAAAAICtUccFAAAmybAs8+LFE3l/v7dujrM6X9nM2td8uN/LTy/NJ0ne2evkr/q9DXOguwp2ODtwZe1Yjp8KhumYM8GWqWew2wSvAAAAAAAAAOfldStL+cCpi09G7fhzPhefrN1VaPX5B/u9/MLy4sX/AAAAAAAAE04dFwAAmCRv6iyfDko5e44zKixlrbVzmrf1Ovlwv5vf6SxvOL/6mumiyJPqzfzY1GxeOzOX3549kt+cPZJXTs/l2c2pXFGpbgh2WPWZ4SC/vGLOBFulnsFuq+32AAAAAAAAAIC977ODft7QWRq5c8/q80fXGnlUvZ6rq7UcKe7cA+KLw2E+1O/l7b1ObhsONl3kfnN3OQ+r1/O4enOHPxkAAAAAwGRQxwUAACbJ54eDvG5lcWTgyurzo0Ul96xUM1MUub0c5vPDQY6X5enXrXXz0kI+e2rOc3Y739Ro5fta05mrVDaM4z7V5FH1Rp7bmsofdVfy2pXFLJblhnbe3FnOdc12Lq1Ut/3Z4SBRz2AvELwCAAAAAAAA3KXf6iynn/UL2jn1/EHVel4yNZOrqhuXH7+imjyy3sh3t6byh92VvHZ5MSsp1128svr85UvzedBsfeRFLAAAAAAAnJs6LgAAMEn+oLOclYye49yvWssL29N5cK2x4X0f7HXzxs5S3t/vrQtf+cxwsGGOUyS5rtnOD7Rn7nI8RVHkm5vt3L9Wzw8unMgd5XDd+X6S3+ks5/vPoy3gDPUM9gJ/MwAAAAAAAIBzWinLvK27ssmOP838wszcyMXttapFkf+t2c4vzR7OJad2HVnbTpKcKMv8X8sLYx49AAAAAMDkU8cFAAAmyaAs89ZuZ+Qc5xvrzbxu5vDI0JUkeUS9kVfOHM71ranTIQ5lzgQ6rG3rqmrtvEJX1rq6WsvLpw+tu0l/tc0/7a6kLMtN3gmcTT2DvULwCgAAAAAAAHBO7+91013z8+qFKA+q1vPD7dnUimKTd250dbWWV83MZe7Ue9buVFIm+e+9Tj7Q656jBQAAAAAAzqaOCwAATJKPDHq5vRye/nl1TnL/ai0vm5pNcR5znOtb03lCvbkucGWtIslzW1NbGt/9a/V8e3MqZ0esnCjLfHTQ31KbcBCpZ7BXCF4BAAAAAAAAzumjg96GY0WSG6dmUr2Axe1V96zW8pNTh9btVLL6Z5nk55cXMrD7DwAAAADAeVPHBQAAJsnf9TeGlxRJXnqeoSurXtKeSXtD5Mqd5ooi19YaWx1intFspzXi+If7gh3gfKlnsFcIXgEAAAAAAADO6VNrduJZ3QXkMbVGrqzWttzmw+uNfMeanX/WLmd/ZjjI73SWt9w2AAAAAMBBo44LAABMkk+MmOM8vFbPVRc4xzlUqeQJjea6+czpOVO9eUEhLmebq1TytfX1bSfJJweDLbcJB416BnuF4BUAAAAAAADgnD4/HG7Y++fR9a3v+LPq+tZUrqpUk2zcXeTXO0s5MRxuuw8AAAAAgINAHRcAAJgktww3hpd8bb25pbYeUauPPP6V2wh2WPXgs9ouk9w2YuzAaOoZ7BWCVwAAAAAAAIBzOlZuXGgex8UntaLITVOzGxbPk2SxLPO6lcVt9wEAAAAAcBCo4wIAAJNkodwYxvDVW5zj3GeT9115KpRhO9a2vTreLwl0gPOmnsFesf2/dQAAAAAAB9BPLc3v9hC2pEjyI1Ozuz0MAPaZlbLccOxwMZ49Hu5fq+epjVb+sLuyYXeRP+qu5LpmO/caw2I6AAAAAMAkU8cFAAAmycKIOc6RytbmOJdsErCy1fbWmis2xjosjgiSAEZTz2Cv8DcBAAAAAGAL3rqmCL9flBG8AsD41Mf4Rfg9ren8Ra+T+bMW0odJXrW8mP88Mze+zgAAAAAADgh1XAAAYL9aGhHGMNx46Ly0Njk+PYarQFsjgld6224VDjb1DHbDeOJ+AAAAAAAOqHIfPQBgq0ZdJDJqZ6GtmqtU8l2t6dPfV6thYWWS9/W7+UCvO7a+AAAAAAAmkTouAAAwSZojQlHuKIdbaqsyYr6UJM1Njl+IEyPmXbVttwoHh3oGe4XgFQAAAACAbSj20QMAturQiAXuzw4GY+3jWxqt3LtSTXLme2t1kfuVywvpj3FBHQAAAABg0qjjAgAAk2RqxBznS8OtBa8M1sxVxj1rOTZiTKOCJIDR1DPYKwSvAAAAAABsUZmNi3DlOR4AsF9dXqlu+C77cL831j4qRZEb2jPrdhdZ9dnhIK/vLI21PwAAAACASaKOCwAATJJLK5UNc5wP9LtbamslZR5fb+Tr6o08/tTj6+qNNMeQj/KPg/7p56vjvVvh9n04X+oZ7BW13R4AHARPO3F7Pl+OTtKbLYr8P7NHc7Ry8f5H6prjXxx5/Pdnj+ayavWi9QsAAAAwyX539mje2+/m3b1OPtjvZZg7089XE9BHEb4CwH51ZaWWD+bOBe3V77q/6HXyfeV0amPcpedhpy5u+f963Q27i/zmylIeW2vkK2v1sfUHAAAAADAp1HEBAIBJcq9qNR87FWqyOuf4/3ud3FjOpLjAOc50UcnPTM+Nf5BJ3tlbHwZTJLm04r5dOF/qGewVgldgl82XZX5+eSE/OX1ot4cCAAAAwAW4vFrNt1bb+dZmO7cNBvmtzlL+uLuSZH34yurzIsmXV6q5f01ZFoD95yG1en63u7zu2B3lML/bWc6/b02Nta/vb8/kvb07svaylCJJL8mPLc3nV2cPZ8bOQAAAAAAA66jjAgAAk+TB1Ubems66Y8fLMr/TXc7Tm+Od42zVbYNBPjro5exoiPtWXScK50s9g73Cb27YA/6818k39bp5dL2x20MBAAAAYAsur1bz0qnZPLHezE1LJ7NYluvCV1Y9otbID07N7MYQAWBbHl6vp56kf+rn1e+5X15ZzNfU6nnAGHf7uLRSzbNbU/nllaV1AWZJcutwkJsWT+bnpufSGuOOJgAAAAAA+506LgAAMEkeVa+nsrxxE7xfWl7Mo2qNXLkHwk1evjyfYbIheOXBY5x/waRTz2CvELkDe8TPLc9npTz7VhwAAAAA9pOH1hv56alDp39WdgdgUswUlXx9vbkuVKxI0klyw8KJvLPX2eSdW/Ptzal8RaV6up9yzZ8f7vfyksUTWSyHY+0TAAAAAGA/U8cFAAAmyT0q1VxTa4yc43zPwvG8d8xznAv1muWF/FW/t+E60emiyMMEr8B5U89grxC8AnvEbcNhfm1lcbeHAQAAAMA2PaLeyLVnLfYBwCR4ZnNq3eLi6qLzYsrctHgyL108kY/0e2Ppq1YU+fHpQ1ndm2jUIvdz5o/nE2PqDwAAAABgEqjjAgAAk+RZrakNwSZFkvmyzA8tnsyPLZ7Mh3rd9Mudu2LzC8NBXrpwIm/sLK8b2+p86JsardQK2/bBhVDPYC+o3fVLgJ3y253lfGOjlXtX/dMEAAAA2M+e1mznXf3ubg8DAMbqvrVantpo5Q+7K+suHFlddH5Xr5t39bo5UlTywFot96rUcmmlkqmiyGWVah5wgbv5XF2t5QfaM7l5eeF0f2sXuW8dDnL9wvE8udHKs5rtTBf2nAAAAAAADjZ1XAAAYJJ8Ta2e/6XRyltOzXFW5xtFkmGSt/c6eXuvk2aSK6q1XFpU0i6KPL89nUsr1bGN49bBIB8b9PLOXjfv7HXSXzOWtZpJntlsj61fOCjUM9gLpDvAHtJP8rNL8/mlmcMpJNoBAAAA7FsPq9XTStLZ7YEAwJh9f3smf9vv5VPDwYYLWlb3DrqjHOZ/9LpJzoSQPabWyM0zcxfc39Oa7dwyGOR3u8un+1h74cowyVu7K3lrdyVXjPGCGQAAAACA/UodFwAAmCQ/2J7JJwf9/P2gPzKQIUlWknxq0M+nTh1/ZrO97eCV3+8s582d5fzrcJiV0z2d6XPtfGv1z+tb07nEvAe2RD2D3SZeB/aYjw76+aPuym4PAwAAAIBtaBRFHlCrr1lqA4DJ0CqKvGJmLldUqusWmtcudK9diF59bMcNUzP5d43WyMX0tX3983BweiwAAAAAAAeVOi4AADBJmkWRV07P5f7V2oa5RHHWY5xuGw5yy3CQ5ZTr5k5r5zxr+3x8vZlva02NeRRwcKhnsNsEr8Ae9NqVxdwxHO72MAAAAADYhq+s1nZ7CABwUVxaqeZ1M4fz0DUhY2dfvLL2gpZxXNjyI1Oz+Y5me2R/F+PiGQAAAACA/UwdFwAAmCRzlUpePXM41zXa64IRdsJm4S5rQyH+bb2Zn5ia3cFRwWRSz2A3CV6BXfSATW6+mS/L/Pzywg6PBgAAAIBxulrwCgATbPWClpe0Z3K0qGy6g8g4F56f357JzdOHcvdT/V3MvgAAAAAA9jt1XAAAYJI0iyI3TM3kV2cO53H1RpJsOs8Zt1F9lEmmiyIvm5rNj08fSq0w44FxUM9gtwhegV30na2pXF4Z/c/wz3udvL/X3eERAQAAADAul1eqp58ruAMwqb6l2c7vHzqaH27P5OG1emo5c1HL2se4XFtv5k2HjuZ7W9O5rLJxYd0uIwAAAAAA66njAgAAk+Qra/W8fHoub549mu9vTeeRtXrmiuKiBrCszmFW5zeNJP9ro5Xfmj2SJzdaF7FnOLjUM9hptlyFXdRMkRvbs3nR4omR529ens8bakfTlHQHAAAAsO9cdip4ZSd2UwCA3VQvijyl2c5Tmu2slGU+1u/lluEgnx0McqwcZqUsc5/q+JYlW0WRb29N5dua7byv38s7ep28r9fNl8rh2PoAAAAAAJgk6rgAAMCkuaxazTOqU3lGppIkJ4bDHCuHWSzL3GuM85vVa0BbSe5fq+dRtUae0mhlrlIZWx/AaOoZ7CTBK7DLHllv5Mn1Zv5br7Ph3G3DYX59ZSnPa0/vwsjOz5eGg7yn182HT31ZfX44yFJZpkwyUxS5rFLN1dVaHlFr5NH1eqYL/zMJAAAAHAxHK5U8o9nO2lL7g6v1TV//6UE/3zZ/7JxtvmH2SO49xgUCABi3VlHkYfVGHnYB79nqd2BRFLmm3sg19UaS5JZBP58Y9PPJQT+3Dge5fTjM7Ra9AQAAAADW2UodN9laLVcdFwAA2ClzlUrmcv73r57PHOd7W1O5T7Weo0WRq6q11Ipiu8MEtkg9g4vNFfqwB7yoPZP39rs5Xm7c//gNnaU8qdHMV+yxG2o+3u/l11eW8t5+N4NNXnOsLHNs0M/HB/38UXclrSTf2Gjlmc127rnHPg8AAADAxfD97ZndHgIAHBhXVmu5slrLk3Z7IAAAAAAAjKSOCwAA7CfX1ps2ywPUMw6I84/uAi6auUpl05tw+kl+dmk+5YhQlt2wUA7z00vzuX7heN51jtCVUVaS/GF3Jc+cP5afX17I8h75TAAAAAAAAAAAAAAAAAAAAMDBI3gF9ognN1p5VK0+8txHBv38cXdlh0e00WcG/Txn/nj+ZJtj6Sd5U2c5z5k/lk8P+uMZHAAAAAAAAAAAAAAAAAAAAMAFELwCe8iN7dm0Njn3mpXF3DEc7uh41vr0oJ/nLRzPrcPB2Nr8zHCQ7104nk/0e2NrEwAAAAAAAAAAAAAAAAAAAOB81HZ7AMAZX1at5vrWdF6zsrjh3HxZ5lXLC/nx6UM7Pq4vDgd50cKJHC/LkeenUuRx9UYeU2/knpVqDlcq6ZfJHeUwnxr0855eN+/rdzMqsuVEWebFiyfz+tkjuVtFFhQAAAAAAAAAAAAAAAAAAACwMwSvwB7zjGY7b+t18slBf8O5P+t18k29bh5Zb+zYeAZlmR9ZPJkvlcOR55/WaOW7WtM5OiI05YpU88BaPd/SbOe2wSA3L8/n/f3ehtfdXg7zU0sn88qZw2MfPwAAAAAAAAAAAAAAAAAAAMAoG5MSgF1VK4r8cHsm1U3O37y8kE5Z7th43tRZzt+MCIGpJ/mxqdncODU7MnTlbJdXq3nl9Fyua7RHnn9fv5d39TrbHS4AAAAAAAAAAAAAAAAAAADAeRG8AnvQV9fqua45OqDk1uEgv7GytCPjODEc5lc36euH2jN5cqN1Qe0VRZEb2tN5TK0x8vxv7tDnAgAAAAAAAAAAAAAAAAAAABC8AnvUc1vTubQY/U/0DZ2l/NOgf9HH8Nud5Syl3HD8G+vNPGWTYJi7UhRFXjo1k1HRK38z6O/I5wIAAAAAAAAAAAAAAAAAAAAQvAJ7VLsocuPUzMhzvSSvWFpIWW4MRRmXflnmLd3lDcdrSZ7bnt5W25dUqnlSozXy3P/odbbVNgAAAAAAAAAAAAAAAAAAAMD5ELwCe9g19WaeWG+OPPfXg17e0l25aH1/oN/NHSOCXa6pNXJZpbrt9p+02efq97bdNgAAAAAAAAAAAAAAAAAAAMBdEbwCe9wPtGcyWxQjz71mZTHHhsOL0u97et2Rxx9Zb4yl/QfW6hnV0scH/bG0DwAAAAAAAAAAAAAAAAAAAHAugldgjztaqeT7WtMjz50sy7xqeeGi9PvX/d7I4/euVsfSfr0oclW1tuH4fFnm9osUJgMAAAAAAAAAAAAAAAAAAACwSvAK7ANPabbz0Fp95Lk/7XXywV53rP11yzK3DAcjzx0pxvdr44rK6BCXz2/SNwAAAAAAAAAAAAAAAAAAAMC41HZ7AMD5uak9k2+fP5ZRESs3Ly/kv9aOpFkUY+nrc8NBNos+eeb8sbH0cS7HyuFF7wMAAAAAAAAAAAAAAAAAAAA42Cq7PQDg/NyzWstzWlMjz/3zcJDfWFkaW19fHO5u8MlSWe5q/wAAAAAAAAAAAAAAAAAAAMDkE7wC+8i3N6dy70p15Lk3dJZyy6A/ln7mdzn4ZEXwCgAAAAAAAAAAAAAAAAAAAHCRCV6BfaRWFPnhqdmR/3B7SX52aSHlGEJLutnd4JPxxMcAAAAAAAAAAAAAAAAAAAAAbE7wCuwzD6jV87RGa+S5vx708ifdlW33UWy7he0Z7HL/AAAAAAAAAAAAAAAAAAAAwOSr7fYAgAv3/PZ03tnr5gvlcMO5V68s5rH1Zo5Utp6r1DhH9MofHjqa2kWOZpkudjv6BQAAAAAAAAAAAAAAAAAAAJh0gldgH5ouKnnx1Exeunhyw7mTZZlXLS/kP04f2nL7h84RfNJMkcPbCHUBAAAAAAAAAAAAAAAAAAAA2AukJ8A+9bh6M4+vN0ae+9NeJ3/Z62657UvOEawyXw633C4AAAAAAAAAAAAAAAAAAADAXiF4BfaxF7dnMpNi5LlXLC+kW5ZbaveySjX1Tc7903CwpTYBAAAAAAAAAAAAAAAAAAAA9hLBK7CP3b1SzfPb0yPP/fNwkNevLG2p3VpR5N7V2shzn+j3t9TmKH/f7+UjZz0+1u+NrX0AAAAAAAAAAAAAAAAAAACAzYxOVgD2jac1WnlbdyUfGWwMRPmvnaU8sdHcUrsPrdXziRFtvqffzXdndNjLhfj8cJDrF45neNbxq6u1/ObskW23DwAAAAAAAAAAAAAAAAAAAHAuld0eALA9RVHkpqnZ1Eec6yV5xdLCltp9bK0x8vjfD/q5ZUQgy4V6S2dlQ+hKkjyiNuqTAAAAAAAAAAAAAAAAAAAAAIyX4BWYAFdWa/mO5tTIcx8e9LbU5kNq9VxeGf0r4tdWlrbU5qp/GQzyps7yyHPf1Ghtq20AAAAAAAAAAAAAAAAAAACA8yF4BSbEs1tTuVelOrb2iqLI/95sjzz3571OPtjrbqndflnmJ5ZOZjHlhnOPrtVzVbW2pXYBAAAAAAAAAAAAAAAAAAAALoTgFZgQjaLITVMzKcbY5jc32vmyyuhfEz+ydDL/0O9fUHsrZZmbFk/mI4ON76smeUF7ZivDBAAAAAAAAAAAAAAAAAAAALhggldggjy41shTG62xtdcoitzUnh0Z5jJflnnh4vH8fmc5w7K8y7b+stfNd88fy7v73ZHnn9ls5z7V2jZHDAAAAAAAAAAAAAAAAAAAAHB+pBzAhHlBazrv6nVzezkcS3uPqDdyfWsqv7KytOHcfFnm5uWFvLGzlK+rN/PwWj13K6qZqxRZLMvcMRzmbwe9vKvXzccG/U37uF+1lu9sTY9lvAAAAAAAAAAAAAAAAAAAAADnQ/AKTJjZSiU3tGfyo0snx9bm9a3p3D4c5g+6KyPP3zYc5o2d5byxs3zBbV9eqeTnpufSKortDhMAAAAAAAAAAAAAAAAAAADgvFV2ewDA+H1Do5nH1hpjbfPGqdn8H82pjDMe5auqtfzizOEcqfhVBAAAAAAAAAAAAAAAAAAAAOwsaQcwoX5oaibjjUlJvqc9nZunD+UexfZ+dVSTPKPZzi/OHM49KtXxDA4AAAAAAAAAAAAAAAAAAADgAghegQl1SaWa57Wnx97utfVmfvvQkTy3NZUjxYUFuzSS/LtGM785eyQvas+kdYHvBwAAAAAAAAAAAAAAAAAAABiX2m4PAA6CP5i72670e12zneua7bG3O11U8pzWdL6jOZX397v5QK+Xvxv0cttwkIWyzCDJVFFkOkWuqFZzVbWWB1freWS9kSlhKwAAAAAAAAAAAAAAAAAAAMAeIHgF2LJaUeTaejPX1pu7PRQAAAAAAAAAAAAAAAAAAACACyJ4BQAAAABgD7h3tZb3Hr7Hbg8DAHac70AAAAAAgL1PLRcAAJgk5jhwMPi3zvmq7PYAAAAAAAAAAAAAAAAAAAAAAAB2muAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAALBdf/oAACAASURBVAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAAAAAAAHjuAVAAAAAAAAAAAAAAAAAAAAAODAEbwCAAAAAAAAAAAAAAAAAAAAABw4glcAAAAAAAAAAAAAAAAAAAAAgANH8AoAAAAAAAAAAAAAAAAAAAAAcOAIXgEAAAAAAAAAAAAAAAAAAAAADhzBKwAAAAAAAAAAAAAAAAAAAADAgSN4BQAAAAAAAAAAAAAAAAAAAAA4cASvAAAAAAAAAAAAAAAAAMD/ZO/OA5wo7z6Af5+ZXHvCAiu3CsghCAIq9Va861W1HrWtWqWeWO96VKu1nlXxvq1ardX2rdb7qlVEEBQVUQ7lVu572U02m2NmnvcPmJBkkmw2mWwmyffDH2Rnk3me2ZnM83t+M88zREREREREVHE48QoRERERERERERERERERERERERERERERERERERERERERERFVHE68QkRERERERERERERERERERERERERERERERERERERERERERBWHE68QERERERERERERERERERERERERERERERERERERERERERFRxeHEK0RERERERERERERERERERERERERERERERERERERERERERFRxOPEKERERERERERERERERERERERERERERERERERERERERERERVRxOvEJEREREREREREREREREREREREREREREREREREREREREREQVhxOvEBERERERERERERERERERERERERERERERERERERERERERUcVxFbsCRERERERERERERERERERERERERFTaQjKM5foKrDPWY53cgBbDj4AMIIwwNKlBQsIrvPAJH3zY+n93pRv6KL3RR+mNHkq3Ym8CERERUcVhDEdERJWKbSCVuoAMYK2xHuuNDWgxWuCXAYQRSTp+vfDBB5/woofSfdux273YVSeiTsT2jsh5sm3DXUf60DCoB6LrIgj/GEJ0XaTYVS97nHiFiIiIiIiIiBzDkAZWGCvxg758ezJJ+rclk7YmeAHAKzzwwRdL9PYQ3dBH7b0tydsL3ZnkdQzuU6LC4kUxIiIiIiIqN+znEBGVjjX6WkzXZmK29i3mad9hjbEWMo/1ueHGYHUgRrtGYbRrJHZ3jUQXpd62+pIztBh+fK59iS+js7DWWI8m2YSwjKCb0oBuogG7uoZiP/feGKDuVJDyA7IVd7bem7BMCIFbam4oSHlEREROwxiuMJjPICeQUmK+/j2+iIu1IzKChrhY+yfuPVEragpSfptsw7OhFyzLL6o6tyDlmSp1uyvJJmMzvtS+3rp/jSZEEEGDaEA3pQG7qkMx3DU0q/Xk2gbKFO8SEGwDqVNFZARfabPx9bbjd6n+A5rklpzW5YYbvZWeGKwOwmjXSIx2jcJg1yCba2w/xltE2SmnPp9dMUAuwjKCdyLvW5af6D2uYGVSecqnDff8oQ6DMCL2sxE2EFkZQmhJW79xTeMnApg6s2HytwWqekUSUuZzyiQqLCHEPADDk5cPHz4c8+bNK0KNiIiIiIiIyE6GNDBbm4Pp0c8xW/sWC/RFiELLe71dRReMdo3CGNdIjHHtjiGuXWyoLWWD+5SosMrpohgRERERERHAfg4RUakJyja8HX4Pb0bexUJ9SWx5qkFIuRIQ2/4H9nSNxTHeIzHefSC8wmNbGdT5FmqL8UzoBUyJTks4XszX5n437aT0x3lVZ+NQz0G21mOTsRlHN58cK09CQkDgs4YPbS2HiIjISRjD2Y/5DHKSzUYTXgj9C29G3oVfBjK+V4WKca6xOLfqbNsHqibH2qZCxdqVut2VIiqjeC38Fl6PvIPF+tKM720QXTHecwDO8v0KPZXGhN/Z0Qamm3gl+XWltIHUeaSU+FT7DG+G38Vn0S8QRmT772yI4+KP41pRg0PdB+Fo7xHY3TUy73XbgfEWUfbKqc9nVwyQL8Z4lA+72nDDMNIUAAhVmL9sBvBvAM/PbJj8ac6VJgCceIUcjhOvEBERERERlafV+lq8HH4N70T+iy2yOba8EAleAOir9MGxniNxtPcI9FR2sK0M2o77lKhwyumiGBEREREREcB+DhFRKYrKKJ4PvYSXwi8jIFst5+zkm49zlW691aIKJ3qOw1m+X6JeqbOlLOocAdmKu4L347+RjwB0rL0XEBimDsFtNX9EX7WPLfWJv2E+ftIX3jBPRETliDGcvZjPIKfRpY4nQ3/DS6GXEUEk62PRPM4Odh+A66qvsG3QeWfF2pW63ZXktfDbeKrtb9gkN3do/7rhxineE3BB1TkQELa1gQasA14VKAAqpw2kzvdO+L94JvQCVhqrAKQ/1vKRbp19lT443XcyTvAcC5dQ8y6nIxhvEXVMufX57IgBPDZ9lxnjUa7sbMN1XU/9CwEIRcSv2Hy9BMB9AJ6a2TA5/yfnViBOvEKOxolXiIiIiIiIyssWoxkPtT2BdyMfwIBRsAQvkDpJJQCMdx+I86vOwU5qf9vKqmTcp0SFU24XxYiIiIiIiNjPISIqTd9oc3BL691YaaxKOMemOm/H34DcERIy4/rMddaIalzom4CTfSd0aP1UHN9q83Bj621Ya6zL6dgwP1Mn6nB7zY0Y594j7zolP6nUPPZ4wzwREZUbxnD2YT6DnGilvgp/bL0V3+kLO/wdjn9/b6UX7qm9FYPUAXnXqTNi7Urd7krRYvhxa/BufBL9tN22K1n8/t1J6Y8IolhjrLWlDUw18YqI3bmWen3me0q9DaTOt0JfhVuDd+EbbW7Wx2+m96R6f7r3JZfXV+mNK6ovxn7uvbOuf64YbxF1XDn1+eyKAYarQ3FX7S3ooXTPqR7xGONRRxWiDY9NvGL+Ou5jQhXxQWr8CiSApQAundkw+Z2sN4AAcOIVcjhOvEKVIiTDWK6vwDpjPdbJDWgx/AjIAMIIQ5MaJCS8wguf8MGHrf93V7qhj9IbfZTe6KF0K/YmEBERERG164PIZNwVvB9+GciYwM01uRv/+fbWq0DBL7w/x0VVv4VLuHIqh7hPiQqpnC6KlQrmZ4iIiIiICov9HCKi0vRa+G3cE3wAGnTLeTbdeTdZuidT5nKeNz+3t2sv/Lnmeg6EcLBp0Rm4LnAzooh26NhJFQdISKhQcUv19eiv9ssrh8cb5omIStsmYzO+1L7GWmM9mowmRBBBg2hAN6UBu6pDMdw1tGBlh2UE70Tetyw/0XtcwcrMFWM4+zCfQU40X1uASwNXx+7XyeY7ni7OBoBqVOGhuruxm8sydKdDCh1rV+p2V4pV+hpMDFwZm7gz1T5L3seplsdPkpI8OUqubWCqNlGBkvV6zDbwsuqLsEBfxDiG0poRnYk/tt4am3gk1TFv54PwMok/fk/wHIsrqy+GW7gLUhbjLSoFARnAWmM91hsb0GK0wC8DCCOSlJP0wgcffMKLHkr3bfnI/CcASaWc+nx2xQDmskbRHY/V3Y/+at8ObUcyxnjUEYVqw2MTr6SQNPFKwq9ixQJPYusELJEOF16hOPEKORonXqFytUZfi+naTMzWvsU87bttM+nmzg03BqsDMdo1CqNdI7G7ayS6KPW21ZeIiIiIKF+Ptz2Dv4X+kTbRmSmRlC6xmyyXp5cMUgdgUu1t6KX0zOqztB33KVHhlNNFMSdjfoaIiIiIqPOwn0NEVJpeC7+NO4KTAGQ+36YbgNRNNKBKVMErPPDCA4/wQIcBXeqIIoqgDKJVBtEsW9I+PTpdeQICA9Wd8WDt3ZwQ14EWaUvwW//FCCFsuTE9XqanOspt/wSEZRBMroOM3HBjZ3VHLNAXJayDN8wTETlbVEbxWvgtvB55B4v1pRnf2yC6YrznAJzl+xV6Ko221iN50JXJaW0IYzj7MJ9BTrTWWIczW85Hs2wBgKzi7faWS0jUizo8U/doXgNUCzk4tVK3u1I0Gy04y38B1hhrAWTev+mY+zf5vJtqgpSOtIFhGcE8/TvL+1PVK11dM00GE49xTGWbFp2BawI3QYMGILvzXDIXXPAKDzzwwCs80KUBHVtjuFYZTBm7xZeViln+WNfumFR7G6pEVS6blxbjLXKiiIzgK202vt52X+FS/Qc0yS05rcsNN3orPTFYHYTRrpEY7RqFwa5BedWvnPp8dsUA8Z8DgD5Kb/y17iF0z6PfyRiPslXINnxj80bIKkCoKWJPRUgg423PYtvvPwZw/MyGya0d3rgKxIlXyNE48QqVk6Bsw9vh9/Bm5F0s1JfElmc74DAbZkMsAOzpGotjvEdivPtAeIXHtjKIiIiIiDrqyba/4enQ8wA6luB1w4XuSnc0iu7bErzeWILX2JbgjcQSvK3YLLdg87YnQcRr74mJjaIHHq67BzurO+azmRWF+5SocMrpopgTMT9DRERERNT52M8hIipNs6KzMTFwFQwYKW8SNc/bbriwq2sYhqq7YJg6BAPVAWhUuqO76AZFtP/0ZwCQUqJJbsEaYy1W6CuxUF+Cefp3mKt9Z7lRNfaZbeUPUgfgmbpH4RNeW7ab8mdIA2f4z8NifWnGY6dO1GGwOhBdRRcAwAZjIxboixBGBMmTrSTL9+nOqSZ8+aTre8zhERE50Gvht/FU29+wSW7O+nqOgIAbbpziPQEXVJ0Dj03n9/hBV/GDMp006IoxnH2YzyCnOt9/KWZrczJ+xxUI7KDsgAbRFcDWWHuj3AQAlvfG/zxYHYRn6x6FW7hzqlshB6dW6nZXimsCN+Lj6LSM+wnYuo/rxdYH4DTLloT3mZN3pqJAybkNTLV/AeDdLq+02wZmqlO683wlxzGVbJG2BBP8FyOcZgLb+OOoUfTAUNdgDFUHY9C247dR9ECj0gMu4cpYTkiG0WQ0YbNswmpjLVboq7BQX4z5+vdYZ6wHkPrYNOsyxrU7Hqm9J+t4sT2Mt8hJpJT4VPsMb4bfxWfRLxCOu2/ZjnsL44+3WlGDQ90H4WjvEdjdNbJD6ym3Pp8dMUDy58zXe7hG45HaSRAit1wyYzzKRqHb8BEjRmD+/PkQPgXuHm64d/DAs6MP1SNr1/e5fKdPAIwD0H/b21OdrMzJV6YAOGxmw+TUs7BRDCdeIUfjxCtUDqIyiudDL+Gl8MsIyNaUF+7tkG691aIKJ3qOw1m+X3KmTSIiIiLqdB9GpuAPrTdnvEABAI2iO/Zwj8GQbQneQeoAdFW65FTmZqMJK4yVWKgtxjz9e8yMfoVNcjOA9BeFeik74Lm6J3Ius5JwnxIVTrldFHMS5meIiIiIiIqD/RwiotLUJttwessErDHWpjx3euDGeM+BONC9H/Z1/wTVNj/p1hSUbfgk+ileDb+ZcoCd+f+RnkNxc80fClIH6rjXw2/j9uCktDm3g90H4AzfaRiuDku46T0qo3g69DxeDL2MEELtlpPqqeXZSDfwrVbUMIdHROQgLYYftwbvxifRTxPO2x154r2AwHB1KO6qvQU9lO5518npg64Yw9mH+Qxyqo8iU3Bd3D07ycflrupQ/Mp3Kn7i2tMS067QV+HdyH/xUuhlBNFmmXzBXNfPvT/D76svyal+hTpPVup2V4ovorNwceCqtPu3UfTAqb4TsbdrLwxWB8X6kVEZxSztG7wb+QDvRT6AkWFQvAoVh3vG59QGdmT/mm3gy6HX8K2eecxbuj5tpcYxlUyTOs7yn59yAlvzeBiljsCBnv1woHs/7KT2z7S6nP2oL8dHkU/wRuRdrDbWpI3hfuk9BZdUX5B3eYy3yEneCf8Xz4RewEpjFYD09wDmI906+yp9cLrvZJzgORYuoWZcR7n1+eyIAd6P/C/2l00V453r+w0mVJ2R03ay7aT2dEYbbk68ksJ8KeUIABjXNH4ogJ8DmABgALZPwGJOumL+f+/Mhsm/73AlKgwnXiFH48QrVOq+0ebglta7sdJY1e6Fn+SZ9rIVH1SmWp+5zhpRjQt9E3Cy74QOrZ+IiIiIKFdbjGac1vIbbJHNCUlMYGu82k004Hjv0TjIvR+Gu4YVtC7favPwSvh1/DfyUSxWTk5s7e3aCw/U/aWg9Sh13KdEhVNuF8WchPkZIiIiIqLiYD+HiKh0vRD6Fx5qeyJlHvg4z09xUdVv0U1p6NQ6zYjOxB3Be7HOWJ9QL/P/x+vux+gOPh2UCuP05nOw1Pghof2XkKgVNbil5gbs6/6J5TOpcnjtPUlWbPuXrfhjOd1TjpnDIyJyhlX6GkwMXIm1xjrLNZh013JSLY9/aMhjdfejv9o3r3o5fdAVYzh7MJ9BTjah5WLM1edbznUuuHBl9cU4yXt8u+vYZGzGDa23YpY2O+X5QoHAo7X3YYx7VIfrV6jzZKVud6W4xH81Pte+tLQTAHCm73Sc5/sN3MKdcR33Bx/Fi+F/p/29Gy48X/8kBqkDOly/ju5fM45ZY6zN2K+N79Myjqlsr4Xfwh3Be1PGHXu5xuKSqgswxLVLp9XHkAZejbyFh4NPog1tljopUPBC/VM5fZ9MjLfIKVboq3Br8C58o83N+r7CTO9J9f5070sur6/SG1dUX4z93HunXWe59fnsiAEW60txfeDP+MFYnvLv4oYLz9U/0SkxAFWezmjDs5l4xTSuabwC4DwAfwFQm/R+AUAHMGZmw+S5eVWqzOU25T8REbXrtfDbmOi/MnZDgIj7lyqBkupmAJnmX/LnUkkuLyBbcU/bQ7jMfy1aDL99G0pERERElMY/w6/EJugAts8grULFeb6z8UaXf+LCqgkFn6ADAEa5RuDmmj/ghfqnMFgdZEnsAsDn2peYEplW8LqUMu5TosJ5JfxG7GJyfN/fvCj2epd/4s811+Mwz8EFu5gMANWiCkd5DsMTdQ/g/to7sYPSaPl+SUi8H/kQs7U5BauHXZifISIiIiIqHvZziIhKkyENvBR62ZIHFhC4sfoa3FDz+06/eRsA9nGPw/N1T2CEOiwhDwxsbVsea/trp9eJrJbqP6ScdMUDDx6qvSflpCvpcnjpnv4dv97417nm8OJ/zxweEVHxNRstCYOVUw1ITnVOzzR4eYPchEsCV2OTsbkzNqEoGMPZh/kMcqrV+tqUk48oUPCX2puzmnwEALor3fBw7d04ynNYwrEEbD13GJC4LXgPIjJSkO3oqErd7kqxydiMmdpXKduva6svx8Sqc9sdcG1IAx9EJqfsQ5rxgQYdt7TehUI/vD4+jjHLTyd5wH0lxzGV7u+hf1nOcQBwnu83eLjunk6ddAUAFKHg597j8Xz9E+ij9LL8XkLikban8iqD8RY5wYzoTJztvzA26Ur8fX5A6olWkt+TSXvvS76vcKWxGlcGrsedrfchKqOW95dbn8+OGAAAdlEH4pn6R7Gna4wlxgOAKLROiQGoMjmtDZ/ZMNmY2TD5cQB7AFiW4i0KgDs6tVIlyFXsChARlaPXwm/jjuAkAKkD5XRBOAAoUNBNNKBKVMErPPDCA4/wQIcBXeqIIoqgDKJVBtEsW9I+gSVdeZ9pX+CCwGV4sPZu9FC62bK9RERERETJNKnh5fBrlmSSF15Mqr0Ne7nHFqVeg9QBeLruYfyh9WZMjc6w1O+p0HM4yLN/UermdNynRIWT7qKYAgV/rL4ax3iPLEq9zItiVwSuwzz9+5QXxZ6oe6AodcsG8zNERERERMXDfg4RUemarc3BRrkpIZchIHC+7+yinb9NXZUueLDubpzTchGWGysBbG9jvtHmYqW+Cv3yfAI05efz6JcJP5vHz++qzsdw11DL+9vL4SlQUubeTF540Kg05pzDS8YcXuXZu+nQYlchJwLADD5dlzrZCc2/7JRyNhtNCCEU+zl5IGY8c4B1qnN88mDm1cYa/LH1VjxSOwlCtD9IrtQwhrMH8xnkZNO1zxN+Nr/nZ/t+hf3d+3RoXapQcWP1NdhsNMUGvMYPlF1prMLfQ//EhKozbat/rip1uyvF9OjnCfvAfH2C51ic6D0uq3XEt4Hxfcjkc/n3+kIc0XwCakRNh+poSB3Jk3tKyJSxUXIc055Uk4aay+OtMlaXdRxTyeZrC7DSWGX5DpzqPbHo56L+al88Vnc/JrRchI1y68Q/5vdpRnQmNhqb0EPp3uH1Mt4iJ5gWnYFrAjdBgwYAlu9g8rJUXHDBKzzwwAOv8ECXBnRszUm2ymDaXGS6iUTNsl6LvIXlxgpMqr0NVXETD5Vbn8+OGMBUI6oxqfY2nOe/FAv1xQkxnhkDvBJ+HSf7TrBng0vQhf4ril2FnAgAj9bdW+xqpOTkNnxmw+TF45rGHwzgMwC9ty2W2PonPWpc0/jeMxsmrylW/ZyOE68QEdlsVnQ2/hK8D0DqwNsMuN1wYVfXMAxVd8EwdQgGqgPQqHRHd9ENisj8xBaTlBJNcgvWGGuxQl+JhfoSzNO/w1ztO0vwb76WkFiiL8Mlgd/jmbpH4RNe27adiIiIqNLxxrztvtBmwS8Dlpj4qurfFW2CDpNHeHBHzZ9wvv8yzNO/i93IKyGxWF+KhdriTp9huBRwnxIVTrldFHMC5meIiIiIOl9nDcCym4DAq13+UexqlB32c4iIStf06OeWZX2UXjjD94si1MaqVtTgTzXX4Rz/RMvvPop+gjPV04tQKzLN17+3LOupNKZ8Cn22OTwP3FCgIISwZdBLFBruqv0zBqo7Z6xXfA5vvrYAd7dlHigTf43h+ObT0Ch6lNTgNsa42Us3eMb5Sud4pESlfE+BAeuTowshm/UntxXtDYgz6z1L+wbPhF7AhKozbKqtczCGswfzGeRk8zVrrN1F1ONMX27fH1WouLXmjzjDfx7WGxssA+CfD72EY71HoaeyQ171zlelbnelmKt9Z1lWBR8urJqQ9TqS28Dk+zPM/yUkmmUL/DJgSzyzxlhrWdbR9abqA6dTjDiG130Kb1p0hmVZN9GAi6rOLUJtrHoqjbi+5ve4LHCtJSfzYWQKTvOd1OF1Mt6iYlukLcEfAn+GBs1yHCb3eRtFDwx1DcZQdTAGbbuvsFH0QKPSAy6ReWh+SIbRZDRhs2zCamMtVuirsFBfjPn691hnrAeQ+sFuZt/1isD1eKT2ntg9jOXW57MjBojnEz7cWXMzzvSfj0Dcve7m3/Tx0LM43HMIuij1Oa2/1M3SZluON6eLj5OcyOlt+MyGySvHNY2fAOBdICHQVACcDOCholSsBHDiFSIiG7XJNvw5eBcMGCkH1HjgxnjPgTjQvR/2df8E1XEzD+ZCCIFuogHdlAaMcO2Ko3A4ACAo2/BJ9FO8Gn4Ts7U5lo6AhMRS/QfcEZyEm2v+kFcdiIiIiGg73pi33YzoF7HX5t9loLozjvcebXtZuXALN26quRant5xjmVX8k+innKQjBe5TosIpt4tixcb8DBEREVFxrDHWdsoALLs5+WadUsZ+DhFR6VqkL4m9NvMYR3uOgCrUItYq0XDXMOzjHofp0c8T2vJUA/Koc63QV8Vem8fPoe6D4Uo6fjqaw1uur8AE/8XQoSesR4eO+4KP4KG6uzPWKz6H10vpiXvaHoyVZcavqZ6wKiGhQcMauRZClk7cyBi3Y0rt71VqfS5KVLr7zzqAuRDSPRHcLLe9spPP7al+92zo7zjYsz8GqQPyrq+TMIazB/MZ5GQ/6Mtjr83v+WGe8fAJX87r7KLU44bq3+OSwNWW34URwQPBx3B77U05r98OlbrdlWKp8UPsdawP6Tm4Q4OiU7WBB7sPwOToJwnLTAYMKMjuQTzx602WHJe0F8dkmiAu/j3p3leMOIbXfQpvob4o9to8Vn/qOdxRD3Daxz0Oo10jE+59AoA52jycho5PvMJ4i4pJkzr+FLwD4bgJnuPzgAAwSh2BAz374UD3fthJ7Z9zWT7hRW+1F3qjF0Zg14Tf/agvx0eRT/BG5F2sNtakrMvX2jd4uO1JXFJ9AYDy6/PZEQMk66P2wtXVl+KPrbfG/o5mPQIygMdDT+Oa6stzXn85KJU2vRTa8lJow2c2TH5/XNP4qQAOQOLkK/uAE6+k1bGeAhERZfRK+I2UyQUJieM8P8XrXf6JP9dcj8M8B+c9qCeTalGFozyH4Ym6B3B/7Z3YQWlMCL7N/9+PfIjZ2pyC1YOIiIioEokS+1coS/Sllr/LTz2HF6y8XOyk9sch7gMtScT5+oIi1cjZuE+JCqeULopZvl8OuhHSxPwMERERUXEVO9fhhLwIsZ9DRFTKfjRWWNrJ0a5RRapNeoe6D4q9NvMsi/VlRawRAUh4YrxpD/doy/s6msMb5hqCX/tOSzlJyhfaLEyNWJ8umQ0zLlSgpMzhpXu/k/9RfqTD/1F5KPZ5ohTPKx2pi4CwDKaO//5EoeGW1rsgZXl9pxjD2YP5DHKy9cZ6y/d8T9eYvNc7zr0HfuY5xhJrS0h8FP0E32pz8y4jH5W63ZUi1f4d596jQ+tI1Qae7P0ZDnbvn9B3jH9PZ8bWHYmrUsUx8YoVxxQ7Hi212LUjluk/Ws9x7vzPcXY70nNows8SMiFu6gjGW1RMb0XexWJ9acL3zmz/93KNxd/rnsRT9Q/hDN8v8pp0pT07qTvi7Kpf45X6v+Pq6stQhapYXeLr9FL4ZSzZ1l8qtz6fHTFAKkd4DkkZA0hIvB5+B0v1H/Iuo5QVu50up/a8VNpwAC8m/SwA7F6MipQKTrxCRGQTQxp4KfSyJSgTELix+hrcUPN7dFMaOr1e+7jH4fm6JzBCHZYQNAJbO6mPtf210+tEREREVCmKfeNdMW/MW2GssiSTRrlGFLTMXBzk2S/22ozhl+k/FrFGzsV9Z76HYgAAIABJREFUSlQ45XZRrJiYnyEiIiIicgb2c4iISpdf+i3Leis9i1CTzIa5hliWNcvmItSE4rXKVsuyXknHT645vHN8Z6Cv0jv2mfjPPtz2BHSp51X3TDk8oHSeBkodM0odAQVK7PppNjf3c9AB2anY9wx05J6CRtEj5XK77knI9P5cjv/4QcvxbQ0AfK8vxCvh1zu8TidjDGcP5jPIyQIpYm0zPs7X76rPQ4PoCsA6OcX9wUdtKSNXlbrdlaLFsLZfOyr9OrSOdG3gVdWXoBrVKT9jdzxTyDgmeT3lGMdUsuYUx28/pW8RapLZcHVY7LV5LG7JMYZjvEXF9PfQvyxtPgCc5/sNHq67B0Ncu3RqfRSh4Ofe4/F8/RPoo/Sy/F5C4pG2pwCUX5/PjhggnXQxgAEDDwQfs6WMUuOCq6A5nUpUKm04gC/iXps7trEYFSkVrmJXgIioXMzW5mCj3BQLwM2LNOf7zsYx3iOLWreuShc8WHc3zmm5CMuNlQC2d/y+0eZipb4K/VRHNuxEREREedu76dD232QTuxNNmZ5e4HR+I2BZ1kP0KEJNMhukDrQsS5WcJu5Tsjqh+ZfFrkJOBARe7fKPYlcjQbldFCsm5meIiIiIiqdR9MAGuRFA9k+OLPeBg5Xcb2I/h4iodLXJkGWZW7iLUJPM6kWdZVmrDBahJhQvgohlWfK+yjWH5xUeXFF9Ma4MXG8ZQP+jsQKvhN/Aqb4T86p/qhxePLPMSo5xy81T9Q8hIFsxPfo5Xgm/jtnanNgkJ+n2MwceUD5GqSMwT/8eOrZOFhV/LkzHKeeVt7r+H5boyzAtOgOvhd/GamONrd+XdO9t77ybSfxnkyftejz0LA73HIIuSn1O63Yap8Rw7eVCdKlb7q1pli1Fz6GYuRDmM8jJwili7a5KF1vWXStq8buq8/Hn4F8SYm0Jifn6ArwX+R+O8hxmS1kdVanbXSlCCFuWNShdO7SOdG1go9ID51adhQfaHovtVwUKDBgQEGgQXbFZNuUcz8QvzyeO6chnOzuO4XWfwgumyGX5hLcINcks1QS5qSbfzQbjLSqW+doCrIx7AKXZ7p/qPRETqs4sat36q33xWN39mNByETbKzQC2n/NnRGdio7HJMX2+9mSbt7cjBkgnVQxg/v+59iVmRGdiH/c4W8oqFR92fQNfal9jWuQzvB/5H4JoYw40T6XShgNYl2JZeSTDCoQTrxAR2WR69HPLsj5KL5zh+0URamNVK2rwp5rrcI5/ouV3H0U/wZnq6UWoFREREVHhdWbSJ58bflIp5YRVCNYEr0s4Lw1RK2osy4KyrQg1cT7uU0q2xlhr+3mvMzjxAn+5XRQrJuZniIiIiIqn0AOwSlEl95vYzyEiKl1Vwmc5F7ZIP3Zw2APwQtJ6Y7YXniLUhOJ54LEMjIzIxJ/zyeHt794H+7jGYYY20zKA/q+h53C093DUito8tiAxh6dASRgcbt6kX8kxbjmqFTU4wnMIjvAcgjnafNzaehd+MJZbJmww9/9B7v1wmvekIteaSlWpT/YzSB2AQeoAnOk9HR9EJ+Pe4MNoklvSfl/2co3FkZ7sHpbzbOgfWGGsTPj87upIHO/9aV51nqt9h1cjb1om7QrIAB4PPY1rqi/Pa/1O4ZQYLtdcyBpjbYFqlB3zuGA+g5zMDbdlokNN6rat/xjvkXgl/Abm699bYu1H2/6KQ9wHwiM6v89VqdtdKVxQEYWWsMyQRofWkakNPM17El4Pv40fjRUJ+xcAuqAel1VfiPvaHs0Yz+zuGomvtW8sA/X/WH11rLxs4pjNRhMeDj2ZsB4PPLg2QywyV/sO/4m8UbQ4htd9Cs8LL9qQeG9jQLaiEc56IF5ybgcAVKg5rYvxFhXLtOgMy7JuogEXVZ1bhNpY9VQacX3N73FZ4FrLZFcfRqY4ps/Xnmzz9nbEAJmkigGArX/PB4OP4yf1e0IRpfuA3I7yCR/2d++D/d374HfV5+Pl8Gt4uu3viCCSNgYarg7FPu6fFLnmzlUqbTgAX4plWopltI3zRscQEZWoRfqS2GszwDjacwRUkVtnshCGu4ZhH/c4TI9+nhA0zte+L2KtiIiIiAqvMwfZJyfnsrmQlFw/M558rPZe2+vXWWpEDQIykLBsi7EFPRVnJXhTTcjhhSNnGy467lNKx4kTmaTj1Iv75XZRrJiYnyEiIiIqrkIOwCplldhvYj+HiKh01Yt6yzl8kbYEu6gDi1Sj1H7UV1iW5TvhBuWvWlQjnDQYZ6PchL7oE/s53xze5dUT8UXLLOhIHGzZIv14ou1ZXFn9uzy2YKtUOTwBgV3VIVhjrGOMW8ZGuobj7/VP4tLANZi1bXBlcozcqPTAWPfoItWQykE5TPYjhMARnkOwl2ssJgauxFL9h5Tfl53U/jjWe1RW63wq9Dco2D7oSUDgZN/PcITnkLzqeqz3KDTJJnwcnWYZUP96+B2c4j0RA9Wd8yrDCZwWw6XLhaTLOxQzdxJfJ+YzyMmqRZVl4PtmuRl90Mu2Mq6q/l3Kh4isNzbg+dBL+G3VWbaVla1K3e5KUSWqEJX+hGVbZDN6d2D/ZmoDVaHi8uqJuDRwTUJ8JSHxg1yOZunHS/XPZIxn+it9MRvfJrRVAiIhxskmjpkamRGbtMTUILpmjJWcEMfwuk9h1St1aDMS73dcoi/DAHWnItUotVXGGsuyXPNwjLeoWBbqi2KvzXPWTz2Hwyecc3/xPu5xGO0aGZuk1TRHm+e4Pl862ebt7YgBMskUAywzfsTL4ddxqu9EW8oqNTWiGmf5fomD3PvjksDVWG9sSBkDDXcNw7mMg9MqlTYcQKqTRHOn16KEcOIVIiKbJM+ABwCjXaOKVJv0DnUfFHtyjBkULdaXFblWRERERJ3HqYPuTfEXyEr5hr0uos4yScd3+kIMdQ0uUo1SW5IiFq5XrDPVE/cpUSGV20WxYmJ+hoiIiMgZCjEAi0oL+zlERKWrn9In9gRj00fRT/BT7+FFrJVV/BNKzZumd1T7FbFGBACNSnds1psSjp8F2mLs7hoZ+znfHN5Oan+c5j0J/wj/n2Xg2SvhN3Cc56cY4tolzy1JncPzy9Z2B+Uxxi19HuHBnTU34+ctZyAgAyU1kSKVnlKf7KdB6YpJNbfhFy1nI7ztKcm5ajH8lmU7Kva07VdVX4KZzbMsTyI2YOCB4GN4oO4vtpRTTKUSwzn9nh3mM8jJuikNaNK3JHzPF+vLsJtruG1lDHcNwzGeI/FW5D1LrP330D9xtOdI9FHtm/AkG5W63ZWiQXRFS9Kg62X6j9jVNTTrdbTXBu7t3gsHuPfF1Oh0y/59MvQ3HO4Zn3c8k00ck2sewylxDK/7FEZvpSfWGusSjrup0ek4zHNw8SqVwufRL2OvzeO3r9onwyfSY7xFxbJM/9Fyjt/TPaZItUnvSM+hmK3Nif0sIbFIX1Iyfb5s2zs7YoD2ZBMDNChdbSuv1Oys7oh7am7Fb/wXwoDBHGgHlUobDuCIuNcCgASwJM17CYibTpGIiPLil9ZkSW+lZxFqktkw1xDLsmbJScqIiIiofI1SR0CBArntX/JTA1IRNv5ToHSovHKxs7qT5aLaB5GPilSb9KZEp8Vem8fHzsqORayRc3GfUrJG0SN2bo0nM/yj1PopfSx/n4+inxSpNumVwmAW5meIiIiInMUcgGU+Aa6cch/ZqOR+E/s5RESla6RrROy1eRPytOh0LNKccx/memMD3ot8YIkthqrOmii8Eu2o9LcsmxqdnvCzHTm8CVVnoptosCzXoePW4N3Qpd6h9aWSLodX6TFupeii1OMk77FlFaOTc5mT/dSJrQ+TKLXzSm+1F471HpX39yUE6xPl7RoA1aj0wLlVZ8XqGP+k68+1LzEjOtOWcorJKTFce7mQVJx0zDOfQU6WKtY2Jwq008Sqc1Ejqi3LQwjj9uA9tpfXnkrd7krRX+1nOe9+rn2Z5t2pZdMGXl51ETxwWz4bkAFMCj6UdzzTXhyTTx7DaXEM+8T2SnX8fhj5GKv1tUWsVaKADOCNyLuWfT1EHZTT+hhvUbE0p8hJ9lP6FqEmmQ1Xh8Vem9+7LbLZMX2+TDrS3tkRA2SjvRig0g1x7YLDPeOZA81BKbTh45rGdwFwDmDZwbOLUJ2SwYlXiIhs0iZDlmVuYQ3Miq1eWJ/0njxbKBEREVE5ear+Ify362u4peYGjHaNjCWGMl3wyTT4JZd/7SnHATYj1e1PFTGTSV9ps/FV1Dl5mh/05fhf5GPLsWDnbNnlhPuUkr3V9f/wYv3TuKjqt+it9CrK+dXu83GxlNtFsWJifoaIiIjIeewagFWKKrnfxH4OEVHp2tu9p2WZAYk/tt6KgGwtQo0SaVLDTa13pBzUtL977yLUiOLF5+PNGOBLbRaW6T/GltuRw6sR1ZhYdW4sfpGQsTZ9ob4Yj7U9nUv1E2TK4VVyjFtJjvQcVuwqUAUp9cl+jvEclfc6XFAtywxp5L1e02nek2IP7IjvB0pIPBh83NayisEpMVymXEim49spuRDmM8jJBscNcDePz0+jn2Gdsd7WcropDZjgOzNlrP2l9jVeCr1sa3ntqdTtrhS7qANjr839+3FkKrYY2T+4Jps2sK/aB6f7TrHsXwmJ/0U/xvuRD/OKZzLFMXbkMZwWx7BPbJ89XWMsy6LQ8KfgHdBsmFTWDre3Tko5ie6+7p/ktD7GW1QswRT35vmEtwg1yaybYp1sulW2OqbPl05H2zs7YoBsZBMDVLqfeY4pdhVKUim04QCeBGA9qQDvdnZFSomr2BUgIioXVcJnGSDTIv3YAY1FqlFqIWkNYM3ZZomIiIjKVa2owRGeQ3CE5xDM0ebj1ta78IOxPOHGDvO1gMBB7v1wmvckW+uwWl+DW9rutiw/2L2/7WU5wb7un+Cx0PabWs2/702tt+PZ+kfRqPQoYu2AgGzF9a1/hg7dcnHkQPe+RaqVs3GfUiqD1AEYpA7Amd7T8UF0Mu4NPowmuSXt+XUv11gc6Tm0yLV2nr3de+Lp0PMJy8yLYn+tfxi1oqZINdsq/qJY8vfLaYNZmJ8hIiIicqZjPEfh5fDrxa5GUVRqv4n9HCKi0jXKtRsGKjtjmbF1ogyznfrBWI6J/itxT+2tRcsHt8ogbmy9DbO02Zbzd0+lEWNcuxelXrTdONcelmUGJG4PTsLjtfdBFaptObxjvUfhP+E3MF9fkBBPSUi8EP4XhrmG4DDPwTlvS3s5vEqOcSvFIHUAeio7YL2xodhVoQpxpOcwPBd6qdjVyMlw11A0iK7YInMfIFUlqhBNGtC5RTajN3rlWz0AgCpUXF49EZcGrrG0G8uMH/Fy+HWc6jvRlrKKwUkxXHIuZFLwITTJLWnfv5drLI5yyGRXzGeQk/3EvQeeDD2bsEyHjruDD+Ke2lttLes078/xevhtLDdWxo4187zycNuTGKoOxlh35/S/KnW7K8VerrF4Fi8kLAsjgkfansL1NVdltY5s28BzfL/GO+H/YqPcZNm/d7beh6frH845nkkXx9TLelvyGE6MY9gntsc41x7orfTCWmMdgO3H5LfaXPy+9QbcVnMjqkVVUepmSAN3BR/Ah9EpluO3i6hPmQPKBuMtKhYvvGhDW8KygGxFI4p773OyiIxYlqlQHdXnS5ZL3t6OGCBb7cUAg9VBGKjubGuZpWR3126oFTV8cGAHObkNH9c0XgHwCIBTAMtMeZsA/K/TK1VCOPEKEZFN6kW9JcBYpC1JmIHPCX7UV1iW1YraItSEiIiIqDhGuobj7/VP4tLANZilfZPyqTqNSg+MdY+2tdyx7tF4Mvxc7MY88+JXIcpygiGuXTBCHYb5+oLYMgGBDXIjzvNfir/U3Iwhrl2KUrd1xgZcG7gRi/WlsQSqeQzspPTHcNewotTL6bhPKRMhBI7wHIK9XGMxMXAlluo/pDy/7qT2x7He/J94V27K7aJYMTE/Q0RERORMdgzAKnWV1m9iP4eIqLT9yncqbgneZRnM872+EKe3TMD5vt/gRO9xcInOu/1wSmQa7m97DGuMtQnLzfqd4f0FhBBpPk2dZbBrEHZS+mO5sRLA9hhgjjYPfwregZuqr7M1h3dt9RU4y39BwtPozTL/1Ho7PHDjQM9+OW1Lezk8xriVYaQ6HP8zPrbEjUSFUOqT/Yxy7YYp0Wk5f18aRFe0JA1YXqb/iF1dQ+2oHgBgb/deOMC9L6ZGp1vajSdDf8PhnvFoULraVl5nc1oMJ4SAFx54kf4p8gICO6s7OiYXwnwGOdlwdVhCO2Een9OiM/Bg8HFcUn2BbWW5hIprqi/HRYErEs4pAgIaNFzVej0erL0Lu7mG21ZmOpW63ZVid9du6CLqYzGA+Xd/M/IuhqiDcEqWk4lk2wZeUT0R17XebNm/QQRxqf8aDFYHYab2VYfjmVRxzLvhDzBVm2FbHsNpcQz7xPYQQuA070m4v+1Ry/E7IzoTv275La6ovhj7u/fp1Hot1BbjzuB9mK9/n7DcrN/p3pNzjikZb1Gx1Ct1aDMSJ15Zoi/DAHWnItUotVXGGssyMyfptD4fkHve3q4YIBs+4Ws3Bnis7l70U/vaVmYpUcXWiX2mRz9nDrQDnNqGj2saPxrAYwDGJVcZWydhuW9mw+Rop1aqxCjFrgARUbnop/Sx3Bj5UfSTItUmvWnRGbHXZoO+o9qviDUiIiIi6nwe4cGdNTejTtQBQKcliUaqwy0xYzk72/fr2PbGP8F5tbEG5/gvwoPBx9FkpH+qkd00qeOfoZfxq5bf4jt9oeX3AgLnVJ3RafUpRdyn1J4GpSsm1dwWe+onk/DZ+5Xv1ITvV/JFsX+HXoUmtU6t05TINPy65Vx8Gv0sYbmTB7MwP0NERETkXKNcu1VUXiSdSuo3sZ9DRFS6jvUehbGu3RPO32ab5Zd+TGp7GMc1n4bH2p7GQm1xwerRZGzBq+E3cWbLebim9SasNtYk1MV8PUQdhBO9xxWsHtQxP/cenzIG+CAyGef5f4duoqttObwhrl3wG98vU167iELDH1pvzvkJ3Nnk8Bjjlr8hrsHFrgJVmFK+p2Comt9DOvqr/Szb/rn2ZV7rTOXyqovggduyPCADmBR8yPbyOpNTY7h1cn3a9zoxL8J8BjmVIhT8zHNMyuPzxfC/cU3gRmwwNtpW3h7u0TjBc2xCOcDW722rDOKSwNWWY7IQKnW7K4VLuHCc56cp9++ktodxX/ARhGS43fVk2wYu0BdjD9folPt3vdyAudr8nLbDjGPMfwYM/DPyiu15DKfFMewT2+NU74mxyWiTB26vMtbgqsANOKPlPLwWfhvNRkvB6mFIA59Fv8DVgRtxlv98zNe/Tzh+zfr1UXrhF76f51UW4y0qht5KT8s5a2p0epFqk97n0e39YPP466v2AeDcPl8u7Z1dMUC2DvEchIPc+6eNAS7wX1bQv5nTDVWZA82FU9rwcU3jlXFN448Y1zT+PwC+xNZJV8yJVkwSwDIADxSsImWi86auIiIqcyNdIzBT+wpA/EzK07FIW4LBrkFFrt1W640NeC/ygeVCBYMjIiIiqkRdlHqc5D0Wz4Ve6rQbOYa4BuN/0Y87pSwnOMCzL8ZHDsDk6FTLDNFRaHgx/G/8O/wqDvYcgMPcB2Ocew9UiSrb6/GdtgCTo5/gzfB7aJJbEpKlwPZk7R6u0TjSc6jt5ZcT7lPKRm+1F471HoWXw6878kY5pzrWexTejryPWdo3lgS8eVHsmdALON57NA51H4QhrvxuXk2nydiCj6NT8Wr4TSzUl6T9fjl1MAvzM0RERETONVTdBVOi04pdDUeolH4T+zlERKXtppprMaHlYmySmy03cUtIbJZNeC70Ip4LvYjuohvGuEZhqGswBqkD0E/pi57KDvAKT9bltRh+rDbWYIm+DIv1pZilfYOF+iJIwHLujleFKvyp5g9QhWrLdlP+TvIej3+F/4PVxlpLDDBv26CdePnm8H7rOwszo7MwV59vuWk+Cg33BB/EzOhXuLTqgtgghfZkm8NjjFv+Bqk7F7sKVGFK+Z4Cc6BJPp83B72Z5/OPI1OxpaoZXZUudlQRANBX7YPTfafgudCLlnbqf9GPcUBk35K+xuzUGE5AwICR8Fmn5kSYzyAnO813El4Ov4YmucVyfE6JforPmr/A4Z5DcKjnIIx0jUCtqMmrvMurL8LX2jdYbqy03CfUKoO4KnA9TvWehHOrzkKtqLVpK60qdbsrxS99p+DVyJsIyjbL/v1X+D/4MPIxTvQej0M9B2Fndce068m2DQQQa5fi/weAVgSzrnd8G7jZaLL0dc1ykuWTx3BaHMM+sT1UoeKm6mtxvv8ytKEt5fG7UF+MO4P34i7cj13VoRjr3h1DVTOG6wO3sE7I055moyUhhvtC+wqtMhgrE0g8hiUk3HDhpppr4RO+vLaZ8RYVw0jXCHytfQtge5/zw8jHON93DvqovYpcu60CMoA3Iu9a2o8h6vacqVP7fMmyae/sigGy9YfqKzGv5TvL305AYIPchAn+ibi46jyc4j0RilDyLq+UDFadcW9tqSlWG652daFmbF31uKbxFwM4CMBhAOq3/dr8QsYHpwJABMBZMxsmZx/wVighJWcWJOcSQswDMDx5+fDhwzFv3rwi1IgovW+1uTjXf0lCwwgAA5Sd8Nf6h/NO4OVLkxp+F7gas7TZlk7go7WTMNY9uqj1IyIiIiqGJfoy/LJlgiU+Otn7M1xVfYnt5U2LzsCVgesTkiqFKsspmo0WnOe/BD8aKwDAkkwCtidcVagYqg7GMNdgDFQHoL/SF72UHdBNdEOdkvkitSENbJZN2GRsTkjwztbmYItsTlmeSUKih+iOZ+sfxQ5Ko30bX6a4Tykb87UFONt/YaedX8vFWmNd7KIYkPn7VayLYhIS1ajG0/UPY6ADbzhnfoaIiIjIuaZEpuHq1hsrKi+SSaX0m9jPISIqbYv1pbjQfzn8MpDy9/GDilLdXF0tqtBFdEG1qIIPPqhChQoFmtQQQRRRRBGQrdhsbIYGPe26U61fQsIDN+6rvRN7usfkuolUIDOjX+HSwDWx/Rh/03y6p2G74cKxnqNwXc2VHS5vg7ERv2m5MG3MISCgQsUhngOxh2sM7ghOsvz+s4YPAXQsh8cYt/wlX08GwH1MBVXK9xQs1BbjDP95OX9fvorOxkWBKyzn3uM8P8X1NVfZWteQDOHk5jOxUW5KWN5e/3CTsRlHN5+ctg1xCqfGcPFxgLncqcc48xnkZB9EPsINrbfG2goAltdb/996fPZSeqJaVGO0axTOqfp1h8v7QV+Oc/wXISjbAKSOtWtFLU7yHocxrlG4LHBtQc6TlbrdleJfof/g3raH292/9aIOOyn90UvtiWpUY1fXEJzgPTa2no60gen6psm6iQZslk2W5Qq2D8jO1Nc132dXHsNJcQz7xPb6Mvo1Lg9ciyg0AKnjD8AaEwgAXUVXdFMa0EXUo1pUwwfvthhOhQYNERmFhij8MoBNxtZ7MtvQlrCeTGWYdflzzfU4wnOILdvLeIs62+fRL3FJ4GrLcba7ayQerb0XLgdM7P2HwM34MDrFcq6+t/Z27Ov+Sex9Tu3zmb/vSHtnVwyQrW+1ubjIf0Vsu1LFeP2Uvvi171SMdI1IOc6kHGO877WFOMt/AXOgOSpkG/7W+2/B3xaA2sUF9w4euHt6oNZsPV8JVRhxqzIlB6Vi27JfzWyY/E/bNrqMuYpdASKicjHKtRsGKjtjmfEjgO1B3g/Gckz0X4l7am9Fo9KjKHVrlUHc2Hpbwg0Bpp5KI8a4di9KvYiIiIiKbZA6AD2VHbDe2NAp5fVWts+InSqRWY66KPV4sO4unO+/DGu2PdnQlJxQ0qBhvv495uvfW9YjAFSZCV6oUIQC3UzwSg0htKW8dNle8lhCol7U4cG6uzhBR5a4Tykbw11D0SC6xibJoez0Unrigbq/xC6KZfp+bZSb8L/ox5anHnbGRbG7a29x7MVk5meIiIiInKsS8yKZVEq/if0cIqLStos6EM/WPYqrW2/EEn1ZiptCEwfSJmuVwdiTclOdg9uTvP74tqObaMBdtbdgpMvyTC9ygHHuPXBx1Xl4sO1xmE8NjX+CqAHD8pkoNHwQnYzfGmd1OIfXqPTAA3V/wQX+yxHYFnPElychoUHDB5HJ+CAyGUDiMWXqaA6PMW75M/dxtoMyifJVyucV8wnhuX5fdnfthi6iHi3SD2D7NZ43I+9iiDoIp/hOtK2uPuHDFdUTcV3rzZY2I4ggLvVfg8fq7kU/ta9tZXYmp8Zw8b+LH0jnRMxnkJMd7jkE87Tv8VL4ZcsgUPP11v+BDXITNuibICByepI6AOys7oi7am6JDSRMFWv7pR/Ph17C83jJUh+7VOp2V4rTfCdhjjYPH0QnZ9y/zbIFc/T5mKPPB7D1HBw/6LojbWC2UUuqSVey//T299mVx3BSHFPKsasT7ekeg0fr7sN1gZuwQW5K+V0wf44nsfU43aw3ZbUf0h276T4rIeGDFzfVXItDPAdluTXtY7xFnW2caw/0VnphrbEOwPY+ybfaXPy+9QbcVnMjqkVVUepmSAN3BR9ImHTF1EXUY5xrj4RlTu3z5ZK3tysGyNYo1274Y801uKn19ti2JMd4K4yVuDN4X0W1bL2UngCYA81VIdtw9UAvusK79QfrW8wl6XacABAEcNbMhsmvZL9FlU3905/+VOw6EKV18803TwRgGSXV2NiIiRMnFqFGRJn5hBdTop8mBF0SEhvlJrwZeQ9V8GGoOhiKUNpfmU3MWWTNgY7JDfeFvgkY4d610+pDRERE5DRztflYavyQcHPHcNewhJmh7eITPjwXejFh2YgCleUktaIGR3uOwAJ9EVYZq1MmeOMTlqlIAFFE0YY2tCKIgGxFEG0II4woohmyRdtHKW9oAAAgAElEQVT/WdcpsbOyIx6tuxc7qzvmuZWVhfuUsvGtNg8/GMs75fxaTropDTjEfSC+1L7GZmlNprf3/YpuezrJZtmEDXIj1hnrsdZYh/VyAzbKTWiSW9AqW1MObEi1/uSLYvfX/QVj3KPs33AbMT9DRERE5Exe4cHzoZcSllVCXiSTSuk3sZ9DRFTa6pV6HOM5ChEZwXf6AhgwUt5YnelfJtl+Lr6dOMi9PybV3o4BzAM72ijXCNSJGnymfQnAmhNLJYIo3oq8n1MOr5vSgL1de+Hj6DS0oc1SXqpYIz4OG6wO6nAOjzFu+XMLN8Z7DsCJnmNxkvc4nOQ9Dnu790KNqC521ahMlfI9BR7hwTB1MA7zHIzDPeNxuGc8xrn3QDelIavPK0LBFqMZ3+pzLdd4ZmhfwC8DGOPaHS5hz3NnB6g7Y5G+JNYvj28vWtGKyZFPsKdrLLor3WKfaZNt+Ef4/xLaMQGB31adZUud7OTUGK6P0gsrjVUlkQthPoOcbG/3XvDLAObq8y3fvVTfSQGBHdV+ONJzaE7l9VF7Y7hrGCZHPoEOPWV5mWJtu86TlbrdleIA975Ypv+IZcaPGfev+TdPt3870gbmQ4GSdbvZT+mDx+vuxy6ugXmVaXJKHMM+sf16Ko04ynM4VhtrUn4XgPRxWLY68nkJiV3Vobi37nbs4R6d17alwniLOpMQW/fzZ9oXCftcQmKlsRofRD5CX7UPdlT7d2q9FmqLcXXrjZiqTd9aTyTmJM/2/QpjU3z/nNrnyyVvb1cMkK1d1IHopfTE1OiMhG1ILiv+rFPuMZ5P+FAv6rC3e0/s494L+7j3wp6uMeit9mr/wwSgcG24hNw6fYqAZXoVoYhMM+UIAF8COG5mw+QpOWxSxRJScgYici4hxDwAlunNhg8fjnnz5hWhRkTtu9B/OWZp31iCcGBr49gguuJ479E41H0Qhrh2KUgdmowt+Dg6Fa+G38RCfUlC+cD24HmIOgjP1j0GVagFqQcRERFRKXgu9BIebXsqIX472fszXFV9SUHKW6wvhSG3J/EblK4dfmpfqZJS4t/h1/BU6G9okf52E0W2lZtitmAFAqd6T8KFVRPgE75OqUc54j6lTJ5uex5Phv7WaefXchOSYTzR9gz+L/wqtG1PTzJl85SkTDPPd+S7Gn9R7Orqy9Aj7qYMJ2N+hoiIiMiZpkamJ9zc2Fftg11Ue240LkWV1m9iP4eIqPQt11fiybZnMTk6FRo0AKnPwcl5kGxk+oz5u6HqYFxQdQ4H8JSYL6KzcGvwbqw11iXs3/YGveSaw1tnrMd1gZsxT/8u7TEYH1eYrxUoOeXwGOMSkd0q+Z6CTcZmnNJyJoKyDQASrvEICPQQ3XCi93gc6jnIlgdxbDGa8auW32KT3JxQnvnaAzcurjoPp3hPhCIUbDI24+jmky3txGcNH+Zdl0JyUgxXirkQ5jPIyd4Kv4f72h5BQLZmjH0FBPZz741JtbflVd5CbTGuab0Jq4017cba8d9zu8+TlbrdlUBKiadCz+G50IuWc27C+7Lcv9m0gdIytDo78QOwTen6uQqUso1j2CcunK+is/Fo218xV58PIH28les9m+niOHN5o+iO31T9Gid5jiv4w60Yb1Fn0aWOM/3nY4m+DEBinxPYPjnzz70/w3j3Aeii1BekHoY0MFP7Cv8Jv4mp0U8hkfpY76P0wov1T7d7T7ST+ny5sjsGyMb06Oe4sfU2+GWAMR7Zys42XNd168JtHxOKSA4+zRWuBnAbgCdmNkxOHaBSWpx4hRyNE69QKVprrMOElovTJjCA7Y1ld9ENY1yjMNQ1GIPUAein9EVPZQd4hSfr8loMP1Yba7BEX4bF+lLM0r7BQn1RLOiOL88kIVGNajxd/zAGqjvnucVEREREpW1adAauDFxfUjd1lLoWw48Xwv/E6+F3sEU2A8ickE33+3Tvby/ZepB7P5xXdTYGqQNyqT6lwH1KqUyJTMPVrTfy/JqncrgoVgzMzxARERFRKajUfhP7OUREpW+jsRmvhd/ER9FPYjepAx07Z2cSn0uuRhUO8OyLEzzHpHyyJ5WGkAzj9fBbeCn8CtYYawGkHxSTagKUjubwDGng3+FX8Uzohdh1i3ipyk71dEnm8IiIOt+/Qv/BvW0PWwa/JbcN9aIOOyn90UvtiWpUY1fXEJzgPbbD5X2rzcVF/iugYetAluRrSgIC/ZS++LXvVIx0jcAvWybYPmC5szghhivlXAjzGeRUG43N+HvoJbwRfgdBbJ24KtWxZMfgVABok214vO0ZvBJ+HdE0g2KTJ84qxHmyUre7UizWl+LJtr9havRTGBnOkdnu3/bbQBkrJ1sKtk9EYZ6rk/uaZj+TcQzl4zttAV4Ov4Yp0enwS39suV0xHJAYi4xUh+Nn3mNwhOcQeDpw75QdGG9RZ1ioLcb5/svQhsQJP83XwNbjRIGCXdWhGOveHUNVMyfZB27h7nCZzUZLwn2FX2hfoVUGLWWaJCTccOGRuknY3TUy63Kc0OfLl90xQHs2GBtxd/BBTIlOS1kWJ16hfNjRhqeceMVcjyoMbJ9sRQKYAeApAP+c2TA5nEudiROvkMNx4hUqVYv1pbjQfzn8MpDy9+0NNqwWVegiuqBaVMEHH1ShQoUCTWqIIIooogjIVmw2NseSJKnWnWr95uy199XeiT3dY3LdRCIiIqKysURflnBBCUDJ3NRR6iIygv9FPsZH0SmYGZ2FMLbnd+xI8sbHxv2UvjjMczB+5jkGfdReea+bUuM+pXgLtcU4w38ez682KYeLYp2N+RkiIiIicrpK7zexn0NEVB7WGuswLfoZ5mjzsEBbhB+NFWmf8JyNalRhF3UgRrl2wx7u0djTNabTB3lQ4RjSwBx9HqZHZ2K29i2WaMvQAn/Ce1INXgNyy+FFZAQb5Sa0SH/aiV5SlWuWzRweEVFx3BC4BR9EJ1sGBpuvTfFtQz6Drt6PfIibWm+P/Zxu4J0AYKQY0FyKg66KFcOVQy6E+QxyqoBsxbTIdEzXZmK2NgfrjQ0Jx9P+7n1sGZxq2mBsxKvhN/FG+B1skJtiy5MHDRf6PFmp210pVuir8EFkMmZEP8c8/XvoSfdm5LJ/22sD2+s7msx9ntwGvhV6Dx9qUxjHkO10qeMbbS4+jX6GOfp8LNKWIIhg3uttFN0xyrUbxrpH40D3vthBabShtvlhvEWF9mX0a1weuBbRbRP8ZHOu3voz0FV0RTelAV1EPapFNXzwbstJqtCgISKj0BCFXwawyWjCJmNzbJIXU6YyzLr8ueZ6HOE5JOdtLPW8fSFigEzmawvwf+H/4MPIFEQQAZB+37DtpI7Kpw03jPTfW6GIVQA+BfAxgDdmNkxeZUd9Kx0nXiFH48QrVMpW6qtwdeuNWKIvy9i5ay8xk26mvGw/kxz8dxMNuKv2Fox0Wb5aRERERBUpKNswfssxCctO8Z5QUjd1lIOwjOAr7WvM0ebhe30RFmiLsEluzmldKlTsqPTDENcuWxO8rtEYoO5kc42pPdynFJABHLrl+IRlPL/ao9QvinUm5meIiIiIyMnYb9qO/RwiovIRkmGsMlZjvbEB640N2GhsRgghhGUYYRmBBg0uqHAJN2pEFepEHRpEV/RUdkBfpQ8n2q5AC6KLcH3wFqwwVgJIP4jGjhxepnWYTyI338ccHhFR8URlFH9svRWTo1Ozur4jIP6fvfuOj6Lo/wD+2d3rl4RQQi8CERBEEKk2HlB4fCyP4mP5oSgqIoqCigpYQQErYMOK5bGXxwKKXRSV3hGp0ntNSK7flvn9Efa4vd1LLpe9XHL3ffPilcve7cxcbm9ndma+s1W+2/Wc0PeY4p8aSTN6bCc6L1Wm3e26utpwmdYXQv0ZpCYLsiB2yXtQxIoRYEHU4XJTElCuMAV/yuuwUFyMZeJKbJG3R4JVAVT7eTJb33c2kJiEXcoe7JL3oPj451vAN8AAW78qpWtUB5awEuyQd2GPsheHlCOazxYo+3xn5Ew1rAOpHUOq0055N3bJe3CYHcYh5QiOKEcRZEEEEUL4eBtOgAArZ4ULTuTxuajL1UUjvgDN+KZoK7RGPl8n3W+jXNTeIqmyVlqP+70TcJgdNVwsS/09nkQWAoq3f3n9nw7YMcE9Hv1tfStMvzJqc799qtoARkoVDxaIi7FAXIzl0ioUs2Oa56nuJGZJtA5f8NsClOw/BumYBOlIGOG9IYR2BBHY5NskHg53SPf7yES08Aqp0WjhFVLbBVkIrwXewqehLyFBihtwE09VG+ix6fS1no2xrrvQgK+X8L6EEEIIIdlgi7wNCjvREV+Xz0cB3yCNJSIAEGABHFIO46ByOLLid4iFEUYYEosaEDrewVvveAdvI74RLJyQ7uITA/SZZp8/wgs1A53NhKYoFNqksUSZqTYPilUH6p8hhBBCCCE1GV03GaPrHEIIISS7pKsPL/bustSHRwghNQdjDDOD7+Cd4Ie6ukHzuuP1RFUDlgFgobgEj/imwMO8FS4ERgHLycvkvhDqzyCkbEGSHcou7JH34gg7iqNKMYY7h6a7WCmXre87WxxWjmCzvOX451uEo0oRHnGPi/t6ascQkjrU3iJmKlKK8bT/uQoXy4qVyE3bgMrPLTxFaI+H3WPRVmid8H4ktSrbBiDEbJ06dcL69euNnlrPGOtU3eXJBrTwCqnRaOEVkil2yXvweuBt/Cr+AQkSAOPGc3RHRqLK20d9rr1wMm513oQzrb0qXXZCCCGEEEIIIYSQTED9M4QQQgghhBBCCCGE1GzUh0cIISTWFnkbXg/8F3+IC6CUcy43I2AZKAuqesb/An4T5xvmRQHLhBBCCEkUtWMIIaR2WCGuxsuBN/CXXLa4Qbz+w8r0Rcbua5Suur2Aq48bnENwue0S8ByfVB6EkMxEC69UP1p4hdRotPAKyTRHlCLMCn2NX8TfsVXeHtmebMM7VvSKiS44cY7tTFxmuwjdrF1NSZ8QQgghhBBCCCGktqP+GUIIIYQQQgghhBBCajbqwyOEEBJrt7wXP4V/xSJxCdbJGyFD1jx/trWPKQHLqvXSJnwa+gJzw78hjDAA4yA5ClgmhBBCSEWoHUMIIbXDBmkTPgvNwm/iQniYJ7LdrD5JQLsIS2ehIy61X4SBtv6wcTbT8iCEZA5aeKX60cIrpEajhVdIJjugHMR8cTHWSuuwSfobO5XdUKAknZ4LThQKbXCa5VScYe2K7pbTqdFNCCGEEEIIIYQQUg7qnyGEEEIIIYQQQgghpGajPjxCCCGxJCZhl7IHu+Q9KGbFCLAgCvgGGGDrZ3pepYoHC8TFWCAuxnJpFYrZMc3zFLBMCCGEkMqgdgwhhNR8MpOxRvoLC8TFWCuvx9/SVvjhr3K6BVx9nGY5Fd2sXXGu9Uw05AtMKC0hJJPRwivVjxZeITUaLbxCskmQhbBX2YdDymEcUg7jiFKEIIIIsRBCLAwJEiwQYOGscHNO5HK5qMvloxHfEM34pmgqNE73WyCEEEIIIYQQQgip1ah/hhBCCCGEEEIIIYSQmo368EhN4mVeHFAO4ZByGKVKKTzMixDCkJgEBgY7Z4eDs8MBBxycHQ34+mjKN0EDvn66i04ISdJh5Qg2y1uwR96LI6wIR5UiPOIel+5iJUxmMtbJG3FQOYgi5RjCCKMul4/6fD10ENqhLp+fsrwlJmG5tEq3vbe1R8ryJIQQQhLhY/6yNj0ra9MHlCB2KLtwjJUgxEIAgHpcXdTn6+EMSxcUWtqmrCyprC9rezuGkKrwMp9uWw7nTkNJSG21U96NXfIeHGaHcUg5giPKUQRZEEGEED7eJylAgJWzwgUn8vhc1OXqohFfgGZ8U7QVWiOfr5Put1FpO+RdOKAchId5AHDI4dxozDdCC745LJyQ7uIRUiscUY7igHIQxcoxhBBGPS4f9fh6aME3g1DB96gqC6/0LO7HAyiM3b607q+bK1P+bGNJdwEIIYSUcXB2tBVao63QOt1FIYQQQgghJO1okmLtdVQpwnJpFQ4oh1CsFB+fqFUX9fi6OEVoj46W9inLO8TC+Db8g277IPslKcuTEJJZqH+GEEIIIYSQ6kUBX4QQQghRBVkIu+TdOKgcwkF2GKWKB17mRQihmPEhBxwo+1mfr4ce1m7Hx4jqpa3s1KbJDmEWxgppNVZJf2KdtAHb5B26O8YnygormvCNcLLQFl0tndHVchpOTmHwJslux5QSbJA34YByEKXMCw6Am3OjCd8IhUIbusN2JRXwDVDANwCs6S5J5cwXF2F26FssF1chgIDhazgAHYR26G/riyvtl8HBOUwtQwkrxZ3eceDAafJcVHeuqfnURhTMSKpDps/FovlKJFE75F1YLf2Jv4636Xcqu+BjfgAAO/6vIhw41OHy0I4vRAdLO3S1dkYXoTNy+Zwqly+V9WVtacdQvUhS4bxjl+i+V9/U+Qz1+LrpKxSpVVoJLdBKaJHuYlSLZeJKzA59gwXikrjXjzbYcKrlFPS39cUFtvNTtpAR9buS2mqrvB2zQ99iibgMO5Xdhq9xcy70snRHP9u5GGDrl4piFADYCGgauAy0tki5OMYqviAgJF04jlsHoGPs9o4dO2LdunVpKBEhhBBCCCGEELPRJMXaT2QiZoXmYHb4W2yRt5X72rpcPvrZzsFQx7VoZPIkvqNKES4suUIzQAYAi2miFiGEEEIIIYQQUqPUhIAvo34ECvgihBBCqs9++QAWSkux+vj40H7lQALhbfFZYcXJQht0tZyGrpbO6GLpjDp8nmnlNUJtmszHGMMCaTG+Dn2HxeIyhBA+8VyVjtgy0Z9bDufGeda+uNA+EF0snaucNsluClMwJ/w9ZoW+wXp5Y7mvbcw3wnnWvhhkvxjNhWbVVEJSXZaIy/FS4HVslrcCSOzcxYFDPlcHwxzX4UrHINPKotZZsXll63h+TQpmJJknW+Zi0Xwlkqit8nZ8HfoO88T5OKAc1DyX6GIr8XCRf0AboTUGWPvhX/YBaMQ3TCq9bK0vqV4kqdaruL/mdw4cvqWFV0gGUZhyfIGSskXo/Aggh8tBQ64BOls6IZ+vU2Ea++UDeMr/HBZLywBUfP2otn1cnBPX2q/C9Y7BsHLmrO5F/a6kttoqb8drgbfxh7gADIl/j9oIJ2Gk82acbe2jeb5Tp05Yv3690a7rGWOdyku7Z3G/RgD2x2xmS+v+SivZlYMWXiE1Gi28QgghhBBCCCGZiSYpZo5ZoW8wM/BfHGVFCX92HDhYYcWV9stwq/Mm2DibKWWJ7uRWy5INA8+EEEIIIYQQQkhtQQFfhBBCSHbzswC+CX2Pr8PfRdoDgDljQyp1jIgD0N3SDRfZ/4l+1nNhN2ksAqA2Tbb4NvQj3gq+jz3KXgD6zzk2sDYZ8dJsxjfFYMcVuMx2Md3RPcscU0qwVFpxPFDqGHzMj1wuBwV8WaBUB+Fk8BxfbhobpE2Y5H8a2+QdABI/R3HgcKFtIEY5RyQUkEVqNolJeCHwGj4NfQEAmvHz8kQfLxw4nGM9E4+6H4CLc1a5TLFBawys1tVZmRbMSDJLts3FovlKJBErxTV4M/guVkirAei/C2ZeiwLaRVi6W7phsOMKnGntVak0alN9SfUiqU16FffXfa9o4RWSCdZLG/Fh8H9YLC2Dl/nivq6j0AGDHVdggK2f4fN/Setxr/chHGMlSV8/tuJb4ImciWgjnFT5N3Ic9buS2uzj4Gd4KTATIqSkv0dX2i/D3c7bI/1/Ji28ombCgRZeqRAtvEJqNFp4hRBCCCGEEEIyD01SzAyligeT/c/gd3GBrtOvItGdiR2F9ng6ZxIa8PWrXKbaNPBMCCGEEEIIIYRkEwr4IoQQQrKbyES8G/wIH4U+g5f5UjI2BMQfH3JxTgyyXYKhjmuQx+cmnT61abLDbnkvJvufxhrprwrHwCp7LFd0zMTm14xvgjGuO3CWtXfC5Se109zwb/gg+Ck2yBvLDSlqwNXHVY5BGGy/wjDAdF54Pib4piCEcMLnKEB7bOZzdTDJ/RB6WLsl9V5I+pUopbjTOw4b5c2Gx0G8wLXYY0WtU1rzrfBS7rQqB6XW5jor04IZSebJprlYNF+JJOKYUoJnAy/hh3DZZxCvPjR74ZXoPNSfXSyn4h7nKLSzFCa0f204nqheJLURLbxCMo2XeTHd/xK+C/8IhsQXKOlpOQMT3fdrjv1d8h7c5BkJD/NGXqeqzPUjALjgxNScKTjD2rVS74f6XUltFmZhPOB7DPPFRab0w5xh6YppOVPg4By08Eoa0MIrpEajhVcIIYQQQggh6eZlXhxQDuGQchilSik8zIsQwpBY2Uq0ds4OB2eHAw44ODsa8PXRlG9iyqBspqFJipljr7wft3vvwQHlYKSTTxXvsyivI7GAq49Xcp9DC6FZlcpFndyEkETJTD5+152DKFKOIYww6nL5qM/XQwehHery+SnLW2ISlkurdNt7W3ukLE9CCCGEEFKzZXr7lAK+CCGEkOy2RlqLSb5nsEfZm/D4UGUDQ2PHKmLTUzlgx/nWfuht64Eczo3GfCO04JsnFCBKbZrssEhciod9kyMLBMX7/KpD9HF2me1i3OO6g+7knoEOKocw0fckVklrACQeKNVGOAlPuCeildAisn2dtAG3eu5CGGLkdbFpVjSuq24TIOAR9zhcYDs/2bdG0iTEwhjuuQOb5C0AoKsfKhJ7XKi/txdOxqu5z1UpeC2VddYOeRcOKAfhYR4AXKXr+XgyLZiRZJ5sm4tF85VIIjZLW3Cf7yEcVA6X+/mnYtEVNS8OnCZ9KywY7rwRQ+xXVTgWkKrjyYyxAKoXSW1GC6+QdDn/2L9jtnD4LO9d5PN1kk7zmFKC0d77sFneWukFStQ+hddzn0cOlwPGGK73jMBmeYvuOjDRa8jYc7gDdryS+xw6Wton9H6o35XUZgpTcJd3PJZIywEkN7YRvZ96nPW0nIHpOU+gy6mn0cIr1YwWXiE1Gi28QgghhBBCCKlOYRbGCmk1Vkl/Yp20AdvkHShmx5JKywormvCNcLLQFl0tndHVchpOtrQ1ucS1B01SzBwlSimGem7FfuUAgMpP1Ip9rfp5NOWb4I3cF1Gfr5d02aiTmxBSkfniIswOfYvl4ioEEDB8DQegg9AO/W19caX9Mjg4h6lliD1XqXkuonMVIYQQQkjWyYb2abYGfBFCCCGkzKzQN5jqfx4SZMNJ+JVpD8RKdN94+/PgAQA22HCq5RT0t/XFBbbzkcO5da+lNk12mC8uwjjvBEiQAJT/Occ7riywwM7ZYIMNds4GmSmQIUOECB/zQ4FiuF95x5GafzdLF0zLmQKnCXfsJTXDXnkfRnrvwUHlUKWDmgCgEd8Qb+S+iIZ8ASQm4crSodin7E8qUMooDx48puVMwZnWXpXen6TPE77pmBWeE/c4qChA2mg/9Tx0vvUfmJzzcNJlM7vOWiauxOzQN1ggLonbr5JIPR9PpgUzksyTbXOxaL4SScR6aSNu99yDAIK6zzv6OInXLjeLer2p5q3+FCBAgWJ4zKpjAb2tPfBW8H3Tj6eqjgVQvUhqO1p4haSLeuxFn+eqcuyFWRg3eG7DVnl7JL2KGNWJPSzd8GLuM/gm9AMe8z8Vt86szDVk9OMCrj4+zHsLeXxuuftTvyup7V4NvIW3o9pugPF1h5F4C0mq+19pvwxv9XiVFl6pZpZ0F4AQQgghhBBCCEknxhgWSIvxdeg7LBaXIYTwiecq6CwsTxhh7FR2Y5eyB3PF3wAAOZwb51n74kL7QHSxdK5y2WuLRCYpVtS5ZOYkxei8ZoXnYJeymyYpVsLj/qnYrxyocKIWDw55XB4AoISVal4XO4jAwLBP2Y+HfZPxUs40cFz1TPwghGSPJeJyvBR4HZvlrQDKr+MZgPXyJmwIbMYHwU8xzHEdrnQMMr1M2jLQeY8QQgghJJtkU/t0un8GNpUzeTrZgK/N8hY87ptapYAvQgghhKTWrNA3eMI/DcCJsYFo8doDarB/DtwQOAE8eNhhg4NzwMk5wYGDCBF+5oeP+VHCSnXjRImM8anBbiGEsFJag5XSGrwcmIlr7VfhesdgTaAotWky39/SVjzgfQwSJN1YZvS4FgAUcA3Q3nIy2gsno63QGgV8fRRwDVDAN4CFK39adpCFUKwUo4gVY59yALvlvdgsb8F6eSMOKocA6Mc31fxXSmswxvsgXsqZCp7jjZIntYiXeXGr524cYocBVG5xFPWYOKgcwr3eB/FO7mv4PDRbt+iK0TmKB498rg5EiPAwrybN6P04cFCg4GHfZHyY9xYa8QVVfs8k9TZImzA7/E3c48ABOy60D0RvSw+0EwpRl88HABxSjmCltBrfh3/GKulPzblPTYOB4WdxHs4IdcUg+yVJlzH6eFQffx76Cg25Buhs6ZTQXd/3ywfwlP85LJaW6dKMlUg9byTMwhjpHVOlYMZt8g7c730UL+Y+g2/DP+qCy6sSzMiBQxAhjPU+lFAwI8k82TgXi+YrkYrslw/gLu94+BHQfN7R16PxFueMPq7tsGOgrR96W3uik9ABeVwuZMjYpxzAUmkFfgn/hg3y5sjrjdKLrj+jn5chxy2/OhawXt6kO77NlMxYANWLxEwrxTXpLkLEWmkdcrnEj5du1i4pLA3JdLH9S8l6I/gOtsrbdefN8tp+sedNBoZl0krMC8/H56HZcdNpxjfBQNt56G3tgSZ8I9Tl8hGGiKNKEVZJf+Ln8K9YJq3U1bsAcIQV4fnAy3jYPa7c90P9rqQ22ynvxnvBj+P2J3Pg0MfSE72t3dFOKET+8X6Yw8oRrJBWY254HvYo++L2w/wvNAvC2TbAcN0Vkiq08AohhBBCCCGEkKz1behHvBV8H3uUvQD0nXNmDFxFp+lhXswOf4vZ4W/RjG+KwY4rcJntYli4zF00lgOSozcAACAASURBVCYpZpZl4krME+fHnahVwDXAVY5B6G3pgZOFtpEJCSITsVJag+/CP+GH8M9ggGEH4UppDd4Kvo9hzuvS9RYJIRlGYhJeCLyGT0NfAEj8Djnq+amYHcO0wAwslVbiUfcDVboDQqxEBwcJIYQQQkjmyLb2aW0I+CKEEEJIaqwUV+Mp/7MA4t/1FACssOAUSwe0FwqRi1z8Ja/HOnkD/CwAL3zQNE2OP+4odMD1jsEYYOtXtpmVtZP2KwewW96DheJS/CzOiwShlkdd5EUtj4/5MTP4Dn4M/4InciaijXAStWmygMRkTPQ/gRBChoEoAHCa0Ann2s7Cudaz0EpokXReDs6OJkJjNEFjdMIpmud2yrvwS/h3fBX+znABDQaGVdIazAi8jtGuW5MuA6kZnve/ikPscKWCTaOfPxFItBVfh7/DrNA3mn2j0+1i6YyLbAPR29pTs4BKmIWxWlqLH8O/4Nvwj5EFqaL39zE/nvE/h6k5U8z9A5CUeCf4keacEX0eG2Dth3tcoyL1VLSWQnO0FJrjMvvFWCAuxhTfVBSxYs3+6uMX/K+ij7UnGvONKlW29dJGvB18H4B+8ZVn/M9Hfu8odMBgxxWRej7WX9J63Ot9CMdYSaX6VQDjej6eTAtmJJklG+di0XwlkojH/E+jhJXGbdM35Apwjq0PtkjbsEb+q9L1ZR6fhw6WdrjeMdiwvow+tuIt8BLNqP6K3i/6ODVTMmMBVC8SM93mvdv04zpRse3Qcb4JCe/LAVhUd24KSkVI4rbLO/F+8NO4bUAOHDoK7dFKaIkczo2jShH2KQew8fiCYbHfvan+F3CEHY1sj05nuGMohjqu0S1aaYMNOYIbrYQWuMx+EZaIyzHFPxWHlMO6dL4N/4RrHFehrdDa8P1Qvyup7d4Lfhy5LjPqjxvnusvw+G8jnIRe1u4Y4bgRX4a+xozA6wge75uO7Yexj82D8D8L5OKKxzuIOTjGaFI3qbk4jlsHoGPs9o4dO2LdunVpKBEhhBBCCCEkE+yW92Ky/2mskf7SdKTHG8yKluiEjXivi82vGd8EY1x34Cxr74TLX1tITMZQzwhskbfFHdA0a5JieRKZpMiBwzX2K2mSYgVGe8ZiibTccOD5esdg3OK4ocI7Q22Rt+FB72PYoewy7Gi0woJ38l6L29FenqNKES4suUL3GS+mAS9CslKJUoo7veOwUd5sWD/Hm0QSW4er55LWfCu8lDsN9fi6VSoXnasIIYQQQrJTNrZPx3sn4lfx90pPYI8WPYE9unzqYxec+KjOW5UO+AKobU4IIYSkSoAFMLh0mOZu9CoGBhus6Gc7F+daz8KZ1l5QIGO6/yV8F/4RDIkFf3Hg0NNyBia679e0h3bJe3CTZyQ8zKvJsyI8TgSDqq93wYmpOVPwv9AsatNkuFmhOXjCP93weO1h6YbRzlvRzlJYbeVRmIIvw3Mww/86AgjoysSDx/t5M5MaSyM1wzppA27y3B43sMgFJ/pYe+IkoSXcUYFSi8QlkSCM6P1yODe8zKfJQx13vd91Dy6y/7PCMm2Xd+Ih36TI2H7sWPrruS/gNEsnk/8SxEwexYt/lgyCAiWyTf38bnBci1udNyWc1kHlMO72jo8EWMfWf70s3fFC7tMJpeVlXk09H10+ldHCDYnU88n2qwAn6vkzrF11+2yXd+La0psjZY39jnLgcIrQrsJgRvW1Dbj6OMKO6srBgcPNjusNgxljRQczxqZD9UJ2yda5WDRfiVTkp/CveMg3yfC8fxLfEiOdN+Nc61nwMl+11JeJLmoSXd7o4yd2fx58lY+nZI9TqheJ2XoV99ecx2sLOq+TZKnHPHDifPdtnc+SGuOd6n8B/wvNMmwT9beeiztdtxn2L+6V9+Hd4MeYFZ5juC+gXXRllHMErnVclXC5DiqHcIfnXuw+fiPc6Pd6qe1C3O++x3A/GksmtVmQBTHg2GUQIUa2qcfIhbaBeMB1b8I3Z94sbcG9vocibZvo74MiKyj64hC2jdgQu9t6xli5nXU9i/s1ArAfJ5a45wCwpXV/zdy7RpuAbuNMCCGEEEIIISSrLBKX4kbPbZFFV7iof4DxQiuxrylPRa+LTouBYY+yD/d4H8STvmchMjHufrXRnPB3moF+4ETHbA9LN7yX+zpm5r2I6xz/l7KBfgBoJbTEjc4h+DzvPYx13QUnnJGyRJfpo9Bn2CpvT1k5arujShGWSit0fzcOHMa77sbtzuEVDnoCQKHQBm/lvYzultMNO+9FSJjkexq0WDAhpCpCLIxR3nuxQd6kqe9jBwuN/gHaiSzqftuUHbjLOx5+FjDMkxBCCCGEkHiysX3qUbz4XVxg2I9wo2MIJuc8XOFEOQA4y9obb+e9gjbCSYb9CH4E8LhvWsreByGEEEIq7/PQV5FFV6LrbQaGS2z/wuw6H+Mx94M43/YPhFkYIz1j8G34RyhgiB27K699tFRagTu898J7PPiaMYYHfY/Bw7ya1yYyxhfb3uLAwY8A7vbej9/E+dSmyXDvBT/RHCPqZ3OL4wbMyJ1arYuuAADP8fiP/d94N+81NOUb655nYHgpMLNay0TM9XnoK83v0eeEa+1X4bv8z/F4zgTc4rwR1zquwmjXrXgyZyK+y/8CI503RxaLUo9bD/NqzmPqeWaCe3xCi64AQGuhFV7LfR6dhY6aICXVp8EvqvSeSeotlJZAhhz5Xf0c/2E9u1JB5ADQiC/AjJypaMo3AaCt/wBgqbQCP4V/qTCdY0qJrp43kmw9b1R/x5vjY1TPj/Hej/XSJl15Pg/NjvwtY4Po+1vPxaw6H+LtvFcw0X0/7nWNxhM5E/FO3qv4Iu99XGa7WPc+D7Mjht/RUc4RuNk5NKF5Fr2s3TEz9wW04JvpnmNg9B3NItk4F4vmK5FEvBv8SPO7+tleYvsXPsh7A31tZ4PjuGqpLyuzmER5YwHRFChpGwugepGkSkX9P2b/q0oZCKkJwiyM78NzDdtENziuxRM5E+MuLtJMaIr73WPwiGtcZF/1Z/T1FQcOXS2dK7XoCgA04htias5kOGCPbFPT/DH8KyQm6fahsWRS2y0WlyOMcOT36O/Qg5VYdAUA2lkKMSNnKvK5OgBi+mE4oN7lDZHXt2o35CGJs6S7AIQQQgghhBBCSHWZLy7COO8ESCjrwIsesIruuFO3GbHAAjtngw022DkbZKZAhgwRInzMb3h3nuh0jbYxMMwKz8EuZTem5UyBk3NW7Y3WEEaTFDlwuMVxA4Y5r6/28qiTFHtazsCd3rHYpxzQPK9OUpye83i1l602WCgu0XxX1MeX2S7GIPsllUrLzbkwLWcKbvHcic3yFk0HIQPDRnkzPg/NxhWOy1LxVgghWWC6fwY2HT+/ANrJlNG/x2O0HwPDZnkLHvdNxeSch1NVdEIIIYQQkoGysX2qTmCP7UeoygT2YZ47NEHc6k814GuArX8q3gohhGSd2zxj0l2EpHAAXs6dnu5iZD2FKfgo+JluwjwPHg+7xmoWAAizMEZ6x0QCMRMJZIkdp9gm78D93kfxYu4z+Db8Y2TMIfa10fvHS1ddyCB68ZcQgmA4EYRAbZrMs17ahD3KXt1xc5V9UFrGM6O1EJrhldznMKx0JI6wIgAnvlOLxKU4ohxFA75+WstIKs/H/Jgbnmc4jj7WdScut/877r4uzomhjmvQUeiAu73jIR0PgDVK6xzrmZU+n+RwbjyZ8yiGlA7HMVYSSZuB4TdxAUaU3gWeq333fM2WNsJf0nrdNgsE3O26Pan06vF18ZT7UQzz3AERoq5uf8H/Gs6xngkH5zDcP149X14fSFXq+cr0raj1ehAhjPU+hA/z3kIenxspd7xgxqGOa3Cbc1jcPNRgxtMsnTDJ/7RuHlJ0/lUJZhxaeiuCCGnK92P4V9znuhMWjsKDMl02zsWi+UqkItvkHYZ1xPnWf+Ah932a16a6vqzMoitA2YIq0d/p8urLdIwFUL2YepN8T6W7CEni8LB7bJVSKO/7QoudkFQ4oBxMdxEiDimHNQs2VKQx3wgrpNXwMI+uvjvT2qvc83G0i+z/xCb5b3wS+iLutdUtjhsr8U5OaCW0xC3OG/F84BVNegEEsFJag57WMzSvp7Hk6pXN9U2q/Cn9pdvGARjnuhtCJRZdUbUUmmOS+yGM9o7Vfi/LBijQ8olC/HX2MsQJVSImqvktSEIIIYQQQgghxAR/S1vxgPcxSJAMJ1REd+IXcA3Q3nIy2gsno63QGgV8fRRwDVDANyh3MOaykmvAwKAwBQpkSMf/i0yECFFzt4RYDAzLpVUYcOyyap8gx4HDl3U+MDVNmqSYef6SNui2OeFIuMM+loNz4En3o7jeMwLe43elAk58Fq8G38YAW3/U4fOqVG5CagMKZjHXBmkTZoe/MRwcZGBwwI4L7QPR29ID7YTCyJ0RDilHsFJaje/DP2OV9KemjRA9EPezOA9nhLpWehIXIYQQQkimo3atsWxtn9a0gC9CCCGJWymtrnXBDUYLbJD0WC2txRF2VNf2GeG4UbPoCgC8EXwHW+XthkFX6uNYsekyMCyTVmJeeD4+D82Om04zvgkG2s5DF8upeMb3PPay/ZrXRu+jnZivT4/aNJllvrhIt60eVxcjncPTUBq9RnwBHnTfh7u843Xflbnh33C14/I0lo4kY6W4GkGEdOezC20Dy110JVoPazcMc1yPV4NvxQ2UGu4YmlT5GvD1cYfzFk1wLACIELFKXhNZpKq2yKY2whZ5W+TxiYC1c9CIb5h0mu0shbjDeQumB2Zo6kcAOMyO4O3gB3HnC8Sr540YLVCbTD3f29oDTfhGqMvlIwwRR5UirJL+xM/hX7FMWqmr5wHgCCvC84GX8bC77M7vmRbMSDJLts7FovlKmc2McYUDyoFIv7mKB4+DymFd+pvkv3WvdXM5mOh7slJ5Ro8rRNeXie174pi7x3kHell7aMYC4knHWADVi6k3J/xDrWuvqp9fsoHwbs4FPwuU2/9T2UWMklVd+ZCa4dKSwWn7vkUfawwMN3huS3hfDsCiunOxUdqse44Hj/ucoytVlpHO4fghPBclrPR4+if+Jg35AnSzdqlUetEut1+Ct4Lvw8u8mu2rpbW6czKNJVevbKxvUu1veWvksVrWs6y90VpolXSaPazdcL1jMP4b/CBy7KocJ7vQaERzHHxlT5XKTSpGC68QQgghhBBCCMl4EpMx0f8EQgYTmNQOidOETjjXdhbOtZ6FVkKLpPKJXiXZSHnPqcIIY5+yv1o7t1KRF01SzDzblB2Rx+r35zzbP6o00aCp0BhjXXfiYd9k3QQnL/Pi1eCbGOe6u6pFJ6TGo2AWc70T/EhTz0fXvwOs/XCPa1QkmDVaS6E5WgrNcZn9YiwQF2OKbyqKWLFm/xMDca+ij7UnGvONqvW9EUIIIYTUZNSuNZat7dOaFvBFCCGk8mpL4EFta39kuoXiEt22pnxjXOf4P8227fJOvB/8VDduF13HdxTao5XQEjmcG0eVIuxTDmCjXBZgEPu5T/W/oFnwJTqd4Y6hGOq4BlbOCgCYnPMwbvJoJ/Bz4HCx7QIslVbgkHLY8LhSoIAHT22aDLNZ/jvyWP0s/mUbAAdnT2OptPpYe6KrpTNWS2s1x+ZaaR2uBo1p1jYb5E26bTbYMNp5a6XSud4xGF+EvsZhdgSA9rzYgm+GdpbCpMt4ge18vBp4MxI4H4vaCDXTAeWQ7j33snavcrpXOy7Hr+LvkUVhgRP17IfB/2GQ/WJdf0RF9Xys/tZzTavnVTbYkCO40UpogcvsF2GJuBxT/FM19byazrfhn3CN4yq0FVpnXDAjySzZOheL5itlNjPGFRQoum0yZKyV1yX02mPsGFZJaxLOz2hc4WrH5Xgz+C6OsRLDfc6xnIl9yn5sU3Zo6sMN8mZc6RikGQuY5H0aRSg2zLe6xwKoXqw+taWNbYb3c9/AQ75JWCdv0PUFqT/bCYVwcy5T810prdG1T8+z9oW9Bl3/k9SrKd+1ypWj7LhVr5fU/TlwONd6JpoIjSuVt4OzY6CtPz4Nfan7Tpxl7VWptPRpO9DXehbmhL/XnOujF6hQ0VhyetSU70Am2K8c1LUJe1t7Vjnd4Y4b8Ie4ENvkHSfSZwA4oOl9rXDk4wOQi6Uq50Pio4VXCCGEEEIIIYRkvDnh77BF3qbp3FA71HpYumG089YqTTyKVd5gYHQnZUWdV9UxEShVHWg0STHzHDKYqGXG4ORAW3/MDc/DPHG+boLT7NC3uNI+CG2Ek6qcDyG1QW0Z1KjJE1U9ihe/iwsMJ17e4LgWtzpvSiids6y98XbeK7jbOz5yN77ogTg/AnjcNw0v5D6dsvdCCCGEEFJbUbv2hGxun9akgC9CCCHJqcl9QKTmMrrL44W2gRA4QfO6z0OzIUPWBdcAZcHXd7puM6zT98r78G7wY8wKz9Eco+rCA4C2zTXKOQLXOq7SpNHR0gF9rD2xUFyiScPLvJiZ+wLu8NyL3creuO+R2jSZZbu8U3e+6249PU2lie+ftvOwWlob+Z2BGQatkJpvg0Gg1Hm2vsjn61QqHYETcIH9fLwb/EgXKNWnioFSFs6Cc21n4fPQV4btAWoj1EzHFH2gd6HQxpS0x7vGYEjpzZAga7aLEDHD/zom5zys2V5ePQ9AF2D7RM5EAObU8/H0snaPW88zMHwa/AL3u+/JuGBGklmydS4WzVfKDqkYV0g0zcrkHa8d5FG88MQs/BG9j5Nz4N/2C/Fc4GVNvpuivtdA2VjAc7lP4XrPLYZpVfdYANWL1ac2tbGr+n1tKjTGzNwX8FrwLbwX/Ph4LLl2wS4v8+I+153obOlYxdKe0Ku4v27bPa5RqMfXNS0PUvOl47tm9J1JtBzR+xr1V56Z5Dm0u+V0fBr6Ure9UGibVHrRTrechjnh7yO/MzDsVfbpXkdjyemRTfVNqhUz/UJ5HYSTq5yuhRPwgOseDPeM0v0FhFwLmo1vjV3j/jbcl5iDT3cBCCGEEEIIIYSQVHsv+ImuYx4AbnHcgBm5U01ddCVRHDjw5XRe1fTOoorUpkmK0WiSYnylike3rSXf3JS073WNhgv6OxQoUPC8/xVT8iCkNuBqyb+abKG0BHLUpM8Td0M4O+GgVlUjvgAzcqaiKd8EgHYiJwAslVbgp/Av5hWeEEIIISRDpLu9WpPatdncPk11wJfV4D5DasAXIYSQqrHAYrh4PCvnHyGqncpuXVurq+U0ze9hFsb34bmR10W3a25wXIsncibGnfzeTGiK+91j8IhrXGRf9af6T02rq6Vz3GDs86x9I4/VfbbI29GIb4ipOZPhgHHwKgOjNk2GKWH68a/mfLM0lKR8HYUOkcfqcX+M6dvcpOY7IOvvhtvLklzweDdLF8PthULrpNKLFnvuVut7aiPUXCGEdNvyucot6BPPSUJLXOu4WnMcqPXnz+I8rJM2RF5bXj1/tf3ycvtlzKrn4zGq59U0fwz/ColJpgczGjErmDFavGBGklmydS4WzVfKDmb39Zvx2sqMKyyUlkCBEvf5n8V5cHMnjjU1raNKke61BXx9w7zSMRZA9WL1yMY2tsAJGOkcjhdzpqIBVy/yvtTv2j7lAEZ47sSbgXfBWGa8Z1Jz1Nbvl5f5dPVD+yQXeWgTp9+gNd8qqfQ0aQgn0iivvqOx5OqXjfVNKgWZvh+mLpdvStqnWjriUtvF2s+hbKUyFAxtAkeh05R8iDH92YMQQkhSbvOMSXcRksIBeDl3erqLQQghhBCSMuulTdij7I103qmTMK6yD8Iw5/Wm5lXANYjcaSe6c7O8ziceHJQM7JyqrZMUGRhNUowjaDBRqy5vTgdhAd8Aw51D8XzgFc1kKQaGJdJyLBKXoo+1pyl5EfPQdbB5LLBAggQg8fqjugJFa5u/pPW6bRYIuNt1e1Lp1ePr4in3oxjmuQMiRN0k0Rf8r+Ec65lwcI4qlZsQQgghJBNQu1Yvm9un1RHw9d/gB7p+hJ/FeRgsXYFOllNMyYsQQrLR3PyvsFxahfnhxfgh/DP8CGgCXY3QJFyi8hiMDzWJWURlhbQaHubRjd2dae2F25zDEsrnIvs/sUn+G5+EvtClo7rFcWPc/TtY2um2lRwfH2oltMQtzhvxfMA40JLaNJnFz/y6bQ7OeOGddDK6A7eP+dJQElJVHubVbSu0JBds2opvabj9JMF4e2VEj+2r56Y6XB4muMenrI2QqvYEA0vpuGZNGXssm3sSs40z7x69NzqG4NvQjzjMjuj6fZ7zv4yZeS8CKL+eH+q4Bp+Evqgwr6rW8+WJruej0wsggJXSmlobzMjADIMZSWbJ1rlYNF8ps2XKuII6FhDbLuLBgaHs/Xwe+kq3X3lteqM2VnWPBVC9mHpf5L2PheISzBcXY6m0HMrx81C29MN1t56O9/PewCT/05gvLtK0/WTImBl8B4ul5XjU9QCaCo3TXFpS2wkQoECp8PtVHfVMMt9jr0F/Qj6fXD9lAV/fcHsdPi+p9KLlcfo0/Cyg20ZjydUr2+ub6mLlrKaldZtzGOaK83AM2mspTuDQYlIh/h681rS8iBYtvEIIISZZKa2ukZ045amuCwJCCCGEkHSaLy7SbavH1cVI53DT85qT/ym2ytsxX1yEWaFvsE/Zn0CnlPEgGYBIB29tRJMUM48FAsTjA90qhcW/U0dlXW2/HLND3+juhlk2WPwqeuV1N3ViGKk6ug42DwWzmGeLvC3yWP28/2E9B434hkmn2c5SiDuct2B6YIZmIA4ADrMjeDv4QcIBIYQQQgghmYzatXrZ3D6tKQFfhBBCKs/BOXC2tQ/OtvbBKNcIfBaahTcD7yGMsKZej66HOgrt0SfJOx6TzBJgQd222MnGG6XNutfw4HGfc3Sl8hrpHI4fwnNRwkoBaIPvGvIF6GbtEnffPC5Xt80XNbZ1uf0SvBV8H6XH01YxMGrTZBg77AhAG/zhZT4UoEGaSmQszMK6bQKENJSEVJXRWHSuwTkpEUZj3QCQw+UklV60OgaBUkEWTGkbYWbwvykbx1slrUlJujVp7NHJOXUL+5QopVXqg4jm4OwY5RqBh32TdYFra+X1+DH8Cwba+teIer4iaj0fG7i4WlqbccGMJLNk61wsmq+U2VI1rlDdi7+pYwGx5Y6eG7pJ3mzQdojfjohegEL9Wd1jAVQvpl4zoSmuFAbhSscg7JX34d3gx5gd/gaA9niKbn+14ltk1IIB+XwdTMuZgk+Cn2NG4HWIkDTH/5/SXxjiuRljXXfhAtv5aS4tqc1m5r6Ah3yTI3P7AWiuazhwaMDVh8CZ299yQDmoy+9U4ZRKL9Bg1O8aMugvSoQdxm1IN+dKKr1oNoP3JUHUbaOx5OpF9Y35nJwD3pjrHA/zoiEKTEm/Dp+HWxw34Gnf82qjMvKzzvn1kP+v+m5TMiI6tPAKIYSYrLZMEK0pgz2EEEIIIam2Wf478ljtCPqXbUDKBp7bCq3RVmiN6+2D8ZP4K6b7Z6CYHYvbKdXD0g3/tJ2H/wY/wC5lT8wkpA74j/3fKSlnqtEkxczj5JwQY+6ec4yVoAnMuZOAwJXd8ftO7zjdRK3tyk58FpqNqxyDTMmLmIuug6uOglnMc0A5pPuse1m7Vzndqx2X41fxd6yS/oykr34eHwb/h0H2i9E45s69hBBCCCHZhtq1etncPq0pAV+EEEKqxs25MNRxDfpaz8Zo71gcUg4bBj91tHTAcOfQNJWS1CROzqFZwAQASplHM9l4o3wiIFutw8+1nokmlbxzsYOzY6CtPz4NfakLXjirgjZmkOnvqGqHLSptB/paz8LX4e90r6M2TWbJ43MRULRjmlvl7Zo7ptcEe5X9um1mLK5Bql/Q4I7OgSSDQuPNeTAjUIo3GFeTIGvyMLuN8EbwnXKDrKsiFWnWtLHHOlwd3XX4TmUX2qHQtDwG2vrjs9BsrJHW6vojXvC/inOsfcqt548qRQnnVZV6vuK0y+r5OeHvNZ/j3/LWjAtmJJklW+di0XylzGbGuMKHwf/Bj7LrUPU1A6z90Epoqcvv09AXKD1+PKmv7Wc9F22F1lV6H9FjAbHljt0WvYBKDld+vGx5aVXHWADVi9WrmdAU97vHYKCtP8b5HoGX+Qzbxz2s3XCvq3KL2tUGVzv+g9MtXfCwbzJ2KLsQvQiTj/kx0fcEFopLMNZ1V4XfHUKMdLKcgvfzZuJJ/3T8GP4lcoxFa8Q3xGPuB9FMaGJavr2K9X17T+dMiruYajwO2BGA9rxcxIrREs0rXSaOM76etUX1jyarWDmm22Y1SJfGktMn2+sbs+RyubqFV3bJe6rcroz2H/uleGrtdHCtBUQ+nuOLr7SYVNi4Z3E/y9K6v0rlpUEqjxZeIYQQk9W0wRRCCCGEkGy3Xd6pa6N1t56e8nw5jsNAW3/0sHTD7d57sE3eYdgp1UpogYvtFyCMMJ7yP6cpq5/5cbH9gpSXNRVokmLmqcvlRwaeVdvlnTjF0t60PHpbe+Ac65n4Q1yoGyx+PfhfDLD1Q10+37T8iDnoOthcFMxSNceUEt22QqGNKWmPd43BkNKbNROLAUCEiBn+1zE552FT8iGEEEIIyQTUri2Tze3TmhLw5eScpuVHCCHZ7CShJaa6J+MGz21QoFCfIIkrj8vTLbzyt7RV0wbarezV7XdmkgHU3S2n49PQl7rthULbcvfbKe/WbYsdHzrdcprhwivUpsksTfhGmjsPA8Af4kKcb/tH+gplYIm4PPJYDRRpJjRNY4lIspycA/6YhVaKlCKcZBAYnCwrKnfXbCPFTB8oZTNINxVtBGpnJKcF3xS7j9/sR7VcXIUBJgeS3eschaGeEbqlbI6wo3gpMLNG1POJON1yGuaEv4/8zsCwV9mXccGMJLNk61wsmq+UPZIdV1gsLsNf8nrNZ+fm3IZjpahNkAAAIABJREFUD+ulDVgoLdW8tg6XW+VxitixAKNg/uiFV1RNElg0Jd7CdNUxFkD1YnqcYe2Kx90TMNo7FkB2tY/bWQrxTt5rmOp/AV+Hv9N8lxgYfgz/gj+ldXjM/QBOs5ya5tKS2sjNuTDJ/RB6Wbpjmv/FyDlOPc7WyRtwnWc47nWOxoX2geksqo6bc+kWxDqoHEoqLYmVrdOQikVKjfoTnJxDt43GktMvm+sbMzTnm2Kfsl/zd1slrUE/2zmm5cFzPELPe+B4Pj+y4Ir6tbW3ctgBPADgMdMyJAAAPt0FIISQTGGBBez4v2isnH+EEEIIIST1SmIGXgGgOd+s2vKvy+djmntK5C558TqlOgodIo/V1xxj+uCc2qIJ30jX5v1DXJim0sRHkxQT10JorvtMl0jL47w6eXc7RxpO2vMyL6b5XzQ9P5I8ug5OLXWiKn+8C5cGNRITMrhTZD5Xx5S0TxJa4lrH1bq7EDEw/CzOwzppgyn5EEIIIYRkkmxv12Zz+7QF31R3HbhcXGV6Pvc6RxneiV0N+CKEEGKedpZCDLD1o34+Uq7mBm2AX8TfNb+rd9CM1l44Oan82sS5e2Rrvvzg0/nioshjtR3VUtAGjsULYKU2TWbpbOkUeay2p+eG52GffCCNpdLyMi++Oh5wFq2dCQsPkOpnFHi+T0nueAuzMACkZByuiBXrtrk4l+FrzWoj0Nhj1bQWToo8jpzPxN8RiFnop6raWQrxb9tFmr+/mt/nodk4qhSlvZ5PRHQ9r5b3qFIEt8FxbkYwo9nHa6LBjCSzZOtcLJqvlH0qO65wquWUyGO1Tvox/IvhYhypqi9jxwI4cBhgjd8+Ur8bJyfYpo9efKU6xwKoXkyfntYzcLa1d1a2eR2cHQ+578MU9yPI4dyRv4F63O9XDmCE5y68HngbClPSXFpSW11svwDv5L2GdkJbzfeMgcHH/HjM/xQe8k6CN2ZhkHRqKuj7XReKS5JKKwwR19qv0vy/xn6lKefODdLmyGO1vA34+rrX0VhyzZDN9U1VRS+ifKJf+bdIm8csyioRxV8f1iy6AnURFuCBnsX9Un9H6ixDC68QQohJ5uZ/hWk5UzDIdgmccGgu7uIpb0CoOv4RQgghhGQDf8xd9YCyjvnq1ERojIvtF5TbBqvH19Vt8zFfKouVUjRJMfNE341S/Uznhf8wvHt3VTQTmmKw48q4g8U/hOeamh9JHl0Hpx4Fs1Se0SAZz5nXDX6jYwgacgUAtMc6A8Nz/pdNy4cQQgghJJNkc7s2m9unNSXga6m4wtT8CCEk211quyjdRSA1nNH40HxxIf6Wtka2GwUs5PPJLU5XYDBpHwDq8Hlx9zmkHMb34Z8qDArP44zToDZNZulu0c9LFyFhov8JSExOQ4n0HvdNg8fgZiNnWnuloTSkqowWqEo2aF4Bw73OUZr/9zjvgJtzV7mcf0rrIo/V8hbwDeK+3ow2Ao09Vk0PazfdNi/z4u3g+6bndZtzGHK5XM02DhwUsOM3GNL+baqznk+UUT3vZ4GMC2YkmSVb52LRfKXsVJlxhdMtXXTbAgjgCf903fZU1ZdGYwHXOwZH6ksG/eIQDAw9rd0TSp8Dl5axAKoX0+s/9kvTXYS0Ot/2D7yX+zo6Cx011wZl7U4FbwXfx3DPaOyV96e5pKS2aik0x1u5L+P/7P+JbFOPMbX+v7Z0OFZLa9NYyhNa8/pFHuaLiyAysdJpuTgnRrtu1f13cs4ql/N3cYHmdw4cmvJNdK+jseSaI9vrm2R1s3TVbTvKivBJ6AvT89r90FYogZj2ZNkhbQPwcc/ifubc/YcAACzpLgAhhGQKB+fA2dY+ONvaB6NcI/BZaBbeDLyHMMKaFWbVxxw4dBTaow8NgBJCCCGEpJQddgSg7YTzMh8KEH9SUCpcZLsAn4Vmx31evRtVNAFCKouUUt0tp+NdfKTZpk5SfDlnOixc+t+bOkkxdrCfJika62HphrehHWQOIYyXAjPxoPteU/O6yTEE34Z+xBF2NPL5qNdST/qexclCW7SJ6nQn6UHXwdXjUttF+D78c7qLUWs4OSc8MYEbJUopGvENTUnfwdkxyjUCD/sma45tBoa18nr8GP4FA239TcmLEEIIISSTZGu7Npvbpz2s3fBB6FPNNnUC+0jncFPzus05DHPF3zRB3GrA1wTf43gn71U05AtMzZMQQrJVF8upyOHc8Bksek8IAPS2dsebwXc12xQwPOybjDfyZiCHcyPAgrr9QgbjZImww/hmC0Z35QbK7rA9wfcEggjpxofOtvbW/G7jrJq+bhW1aTJLT8sZaMI3xgHlIIATYxp/Sn/hPt9DmOJ+BC4Tgk6SoTAFT/ufx1zxN93xWofLQ0/LGWkpF6maNsJJWCGtBnDieFssLoOP+eOeu+JxcHZc6RiUimLi9/ACzXHHgUNzvmnc15vRRqCxx6o53dIFLjgRQFk9q/6d3gt+gk7CKehrO9u0vPL5OhjpHIan/M9pPg81CJZBG4BeXfV8Zdg4q26bBBGt+ZZYg7LAythgRqvBPuVRgxlTIdFgRpJZsnUuFs1Xyl6Jjiucbe2Nulz+8cW/Tnxmv4sL8IRvGsa57o4siJ6q+tJoLICBYaRzGJ70Pxt3v05Ch4TzSMdYANWL6XWGpSscsCOE5NpSmaCJ0Biv5T6P14P/xbvBDyM9NOrx+Je8HkNKh+Ne1yhcZP9nWstKaicLZ8HdrtvR29oDj/qeRDE7pll85YByELd57sb1jsG4xXEDhDS2t7pZu2JW+BvNNh/zY2bwHYx03pymUmltkv7GRnmzri3YIWbBa4DGkmsSqm+S08N6OmywQoQE4ETd9FrgbZxmORWdLR1Nyyu8N4T9z+5Eswdaly24wiF6zdtCAF/2LO530dK6v5q7clGWooVXCCEkBdycC0Md16Cv9WyM9o7FIeWw4UB8R0sHDHcOTVMpCSGEEEKyQx6fi4Ci7UPYKm9Ha6FVtZajo6W9ZoAv1l5Fv+p6DpeT6mKlDE1SzDxdLKeiDpeH0uN31FM/06/D36Gd0NbUSX0OzoExrttxv+9R3UQtP/y40zMOr+ROR3OhmWl5kqqh6+DUoWCWyqnD1dFNZtmp7EI7FJqWx0Bbf3wWmo010lrdZKsX/K/iHGsfU+7+QAghhBCSSbK1XZvN7dOaEvBVxIpxl3c8Xs6ZnvQdtgkhhJwgcAJOs5yKheISXf86IQBwmuVUtOFPwnZlJ4ATbYAdyi7c7rkHU3MmwwF7pI2gKmLFaInmlc6P44yPQxtsum0+5scjvilYKa3WHb+N+ALdXdKLlWOGaVObJrNwHIer7ZfjucDLugDGReJSDCm9GWNcd+Bsa59qLddmaQue9D+L9fJGzXa1fIPtV8DC0RTw2qi7pRv+F5ql2RZCGM/5XzY9eDxZS8UV2K7s1J0rT7G0j7uP2W0EGnusPAdnxz9t5+PL8Nea/gEFCh7wPYbRyghc7fhPBakk7nL7v/F9eG6kP0I9P6kUKJHfq6Oeryyjet4KW8YFM5LMkq1zsWi+UvZKdFzBwllwuf0SvBl8T9emnx3+Flvl7RjvHoNCoU3K6kujsYC10josk1bG3YeBYYzvATyX82RCwd7pGAugejG9bJwNnS2dsExamdX9cAIn4DbnMPS0nIEJvsdxmB3RLIzhhx+T/E9jobgE97vH1Op51yR9+lh74sO8NzHB9ziWSisixxhQdm3zTvBDLBNX4DH3g2lrB/SydIcVFkiQAZyoA94PfoLelh7oZu1SQQqpJTMZU/zP6K4NAaCbpavu9TSWXHNQfZOcHC4H/Wzn4ofwXE3bLIQQ7vSOxUTX/TjXdpZp+e1/fjfqXd4QzvbuE4uvnHjUF8A3PYv7Xbq07q8e0zLNUny6C0AIIZnsJKElprongz9+uqXGByGEEEJI9WvCN9JNvvlDXJiWspxmOVVXFtUScXnksdqh10yIf8eomk6dpKi+X6NJivPFRdVers3SFtzsGYVZ4Tma7TRJsWIWzoJLbP8y/EynBWbgWf9LCLKQafn1t/VFX+vZmnyAsuuqQ+wwbvXchc3SFtPyI+ag62DzqRNV49UfRKsF31T3t1ourjI9n3udozR36lMdYUfxUmCm6fkRQgghhNR22dquzeb2qTqBPfr9R09g/yT4uan5XW7/N7pYOuv6EYCyRZhHesfgkHLY1DwJISRbtc+AwBWSWtc6rjIcS9gob8bg0mGG/cYHlUNJ5SUxKZJPeW3N38LzMaR0OBaIizXb1fJdZ/8/XXB3MTNeeIXaNJnnKvsgFAptAJwI8lB/7lX2417vQ7iu9BbMCn2DEqU0ZeVQmILF4jKM9T6CoZ4RWC9v1AWrlN25vTH+z8TFE0j16mk9A044Ir9HB4//EJ6bxpKVCbIQnvRPNzxXd7ecXu6+qWgj0Nhj5QxxXAUbrJHf1XOIBAnPBl7GdaW34LvQT/Azc26APNF1P9ycCwB09ZaaPwNLeT2fDKN63sk5IsGMquhgxpXiGlPLkIzoYMZYRsGMJLNk61wsmq+UvSozrnC94xo04RsD0Lfp18rrcV3pcIzzPoIl4nJcY7/S9PoyeiyAgUGBgmmBFzFPnB93Hx48tsrbMaR0OH4PL0gon+oeC6B6Mf2oH+6EM6xd8UHeGzjH2kdzblaPy7nib7i29GasEv9Mc0lJbVWPr4sXc5/B7c7hECBEtqvH2Dp5I64rvQVfh75LS/ny+Trob+urG3uVIWO09z58EfoqLeUCgDALY4LvcWySt+iu2+ty+ehq6azbh8aSaxaqb5IzxH61pm2mHl8+5sdY3yO4z/swVktrzclMZtg2YgOYyNTMgLJFV6IXX1nRs7hf+R14pEK08AohhKRYO0shBtj6Zd1EUkIIIYSQmqKzpVPkcaSDPTwP++QD1V6W9oLx3Yy9zIuvwt/pOhvbCW2ro1gpQ5MUM881jit1E6fUn5+EvsAVJUPwZuA97JB3mZLfA6570ICrr8lPfXyYHcUwz+34JPg5FKaYkh8xB10Hm48GNRLXWjgp8vjEwPrvCJg0gVTVzlKIf9su0g38MTB8HpqNpeIKU/MjhBBCCMkE2diuzfb2aU0I+FIn3VZ2AjshhJD4Tq7lYxck9S62X4Buli6aMQR1TMbDPPDCBwWKpu2yUFySVF5hiLjWfpXm/zX2K+HkHChWjuHL0Ne4vvQWjPNNwD5lv6Ys6uN2QlsMsl+iS3uDtBkAdEFt1KbJPAInYIJrPJwouzt87N+dgWGzvAVP+qfjXyX/wbDSO/BSYCZ+Ds/DdnknRCYmlW+JUoqV4hp8GvwS470TMaDkUtzlHY/fxQXHvyHa8UwGBgsETHCPh4NzlJMyqclcnBP/sg8wDB6f4HscLwVmQmZyWspWopTiLu847FX2655rwjfGKZb25e6fqjYCjT0mrrnQDNc6rtb9raLPZY/6n8T5x/6N60tH4BHfFLwceAPvBD9Mqm5pKjTGBNd4TT6xGBie9b+EJeJyyKjcsV1ePV9Vaj2vlhEAGvD1My6YkWSebJ2LRfOVslei4woOzo6HXWMjgfKx16IKGH4TF+BO7zgM945CM76p7ro02frygHIQVtgiC66oJMhgYJEF5KKp5eLAoYSVYqzvEYz0jKmwvqzusQCqF9OvncV4znG2qsPnYWrOFNzjHAVr1PiT+j04oBzCSO8YvBx4I23XVaT2u94xGDNzX0BTvrGmDQAAfgQwxT8V470T4VG81V62Gx1DYIlaEEut60RIeNr/PG4qvR1zQt/jsHKk2sq0XtqEEZ478bM4T9ePxYHDIPvFugWvVTSWXHNQfZOcdpZCXGq7OG4/zB/iQtzquQv/OvYfjPdOwCuBNzErNAc/hn/BWml9pfMLrPNh1/1/I6bpE734SiGApT2L+73Zs7hf9k3QMQndwpkQQqrBpbaL8H3453QXgxBCCCEkK3W3nI538ZFmmwgJE/1P4OWc6bBwQpw9zacOfMd63DcNHubRDQCdae1VHcVKGXWS4gjPXQggoBvQjJ6k+DSewylCe3SzdkF74WS0FVqjOd8UVs5aQS56JUoptsrbsUXehpXSGiyTVsDH/JE8Aeg6d62w0CTFBNTn62GE4yZMD8zQTUxmYDjMjmJm8L+YGfwv8rhctOJboLHQCC64cIqlHS6zX1yp/PL5OngiZwJGesZAgqzr6A5DxLOBl/G/0GwMcVylWWiJpBddB5uLglkS18PaDR+EPtVs8zIv3g6+j5HO4abmdZtzGOaKv8HLTgyilt11oWxy9Dt5r6IhX2BqnoQQQgghtVk2tmuzvX2qBny9HXxfF3QRPYGd9/MoFNrgJKElGvON4OZcaM23wrm2syqVnxrwNc43QZOP2o+gTmDvFuqCoY5r0FpoZer7JYSQbNGMbxJ5bBRcSwgATHCPx7DSO3CUFRmOD8X+/Cn8K1rzrdDOUojmfDM04hvCztkqzMfFOTHadStKFQ/2Kfsj40O3eu7GZvlvMBiPDamccGKi+wEIBuOFv4vqJHt13rIWtWkySztLIZ7JmYS7veMhQjJcfIWBQYaMdfIGrJM3RPblAORz+ajH10UdLg8uzgUH7BA4AQIESJAQZiIkiPAwL44qxTiqFCEAbdBIbDBj7HMcODziHo8uGRJAmM1ucAzBd6GfEERIFzz+XvBj/BCei4ttF6C3tTvaCCchh8tJeZnmhn/DjMDr2K8c0JWJA4cr7JdWmEYq2wg09pi44Y6h+FP6Cyuk1eWeyzbJf2OzvCWy31nW3pWuswCgr+1s3KHcghcDr8X93ItYMUZ7x0YC3BKl1vOpcKKeL1O2QETZMXyjYwjmhn+LBL7HBjPOCf2Ay+2XoJe1Owr4BikpX6z10iY8438OG+TNlQ5mJJklW+di0Xyl7FWZcYUzrF3xiHscJvgeB6BffEU9Vo+xEhxjJZptscGy6iIqG+XN2CT/HdnehG+EX8TfcVQpwlFWhP3yQQQQ0O0fmxYPPlIPR9fL0Y9XSmuw0rsGLs5Z7vus7rEAqhfTqznfNPKY+uFOuMoxCKdbTsNDvknYoeyKfJcAQIGCd4MfYZm4ApPcD6G50CzNpf1/9u47Tooi/xv4p7on7WxiyYKJYAKVHEQUMd7hmVHM+pjOrBjREznTT0UFI5jFHM7s6Z16RgQBRUUFBEEkGYBl2TS5u58/lhkm7qSe6e6Zz3te6GxPT1dNT3V9q6u6a8iK+tl2x3M1j+NOz3T8N/C/mDKmQcOnwdlY3LQU/6y8DkPsA4uWr17yTjjFdQKe9r2QdOx1ifITlnh+AgBUCje6SV1RCTcmV16LHeXtdcnDFrURy5UV+DG0FLODc7BUaZvUMn4SPgCoFlWY4Ew9CR/Hks2D8SZ3l7svwA/KYqxQfknaxgPa+kU+DX4BRM3fva99JO6pui3r9DY+/Tsqdq9E13N7AtsmXIkexJABnLn1389JNkFpcOIVIqIiGGDbE1WiMtLBSERERETFM9w2BNtJ3fGH+ieAbZ1k34d+xNWtN+C2yhvTDlbpZTupe+R5uFNqYfA7/KL+mtBJVStqMNw2pCj5KiRepFh6JriOxQ+hxfgw+EnCxQzh5wDQqDXhB2UJflDaZmTepNVnfSEDAOxt2xOTUwyKh5+vVdfhDs90dvWaCM+D9cWbWTI3yDYAblTACx+AbXXGs76X0V/eA2Mco3VLq4NUiwsrzsadnnsT6qbNWgMub5mEGVXT0EGq1S1NIiIiIisrx3Yt26fG3/CVzwXsRESUXHepG4DEm5KIonWXuuG+6jtxQfNENGstSS+cjxZCCDN8j8f8ErhbVKBW1MItKuCCa+v4kISQFkIAQQQRRIvWis3qZoTifhE82S9Mxr/ugB13Vd2C3vLOCflfFvoZP0XdwBWdZ7ZpStdQ+yDMqJ6O61qmYKNWn3QcLPx3NA1tF89vVhoyOtdJVX+meq8GDS44MaVyEg50jMnw05CZdZO64IKKszHN+1BCOdOg4U91A570PYsnfc8CaJskqlJU4L7qqegj98o7/QZ1C35X/8TPW2+U+iL4JRq0LTH1XHR57Cp1wXEZTLxSyDYCxx4zJwsZd1bejIktk/CDsqTdukyv7+pU1wR4NR8e9z2dNM6H04uepMHIvqH4OB+2u9z2Y9CldjMjlZ5yvRaL1yuVp2zHFQ5zHAQ7bLildSq88CXU42HZxMDodX9T/8AfgQ0ZbyO6jSdBYJhtKOaHvo7kJ9mNueniZbHHAhgXjcV+uNR2sfXBMzWP4h7P/Xgr8F5CH84SZRlObToXV7gvxpHOcQbnlqzILSpwU+X1GG4bgrs99yeM927QNuLilitxinMCzq84u2g/BHu+6ywsD63Al6EF7fa5tmitaFFWQUDAo8O59Czv83jK9xz8CESWxbcJ4ydxnVhxEWqlmna3y7Fkc2C8yZ1LuHBP1W24qPkqrFPXZ9ynnI81162ArYt9S6dju9Vi24Qr4clXwpOxAMCuca9RBjjxChFREchCxt62PTE3ON/QwQIiIiKiciSEwATnsbjXOyOhU+/L4AKc2nQOrnBfjNH2fQqelx5y28Qr0b+UsFJdldCpIiBwknM8bKI0Ttt5kWLpmVI5CaHWED4Jzk648C7Zd5rvedBhjoMQ1IK4zXN3Qsd8dHkKlwCjL9QingfrjYMamXMJJw5zHIw3Au/EDKirUHF96824VP07Jrj0u8DiWOeR+G/gIywK/RBTNwHASmUVLmy5AvdW3aHrrwkRERERWVU5tmvZPjXHDV+5XsBORETJdZBqcUXFxdCgRpbtKvc1MEdkVn3l3niqegauab0RK5VVGcVbFWpkvVbNE4nXyW7mTCfZ+Fv4eUdRh6lVt2AvW7+E9ymagts8dyW0ESRI6CXtiF/U1WzTlLC9bP3wTM2jmOq5N+k4GND+2GO2ZTMdDRr2kHfD5MprdJlwg8xjgus4LFdW4t+B/yatU6LLkgceeDUvglow6bay8YDnETzvfyVmWaox3fANwte5r4BLONNuu5BtBI49ZqdaqsJD1dNwh2ca3gt80G5dplf8OLfiDHSWOuIuz/0IIZT39golVZwHgMG2bb9UX2o3M1LpKddrsXi9UvnJZVzhQMcY9JJ3xk2td2CpsizpdxJ/Q3c2Uk08lGo7GjRUi2rcXjkFw+1D8Ib/HdzteQAKlIyP3XjFHgtgXDROJ6kjTnKOhxr1uQfxBwYjnMKB6yuvwgj7MNzuuScy+W+4THjhw/957sGc4Dyjs0oWdrjzMOxt2xM3tN4SmcAxXBeq0PCc/2V8FfoGt1TeoNuEU+2RhIQ7q27Gja234tPgFynbQ4C+4/JNWjN88CcsTxXLJjiPxTjnoWm3y7Fkc2C8yU93qRueqH4Q17XehG+2TiJU6H6YX85Z+lunY7vNBDAJ2yZcCYuejIWyJKVfhYiI9LDb1pnQiYiIiKj4TnAeg75ybwCJgy3r1d9xVcsNOK3pPLzpfxeNalPB8uGGG+e4zkB/eQ8IbOtAie/07CF1x4k63nRjBuGLFMfa90s5uC1SPIBtHabtPdp7f7zwRYpP1szgpCs5sAs7bq/8J852nQ4ZctYXWuTib86/4J6q21AlKpN2Orb3fZMxeB6sn/CFqhMrLoz8O9C+v9HZMq1TXSfAAXvk73CdEUII070zcFrTefiP/0N4NG87W8ncP93XoVK4AST+ItFKZRVObToXnwfm6JIWERERkZWVa7uW7dNtN3yNcxyatl8o2Wu5OLfiDExyT4QMOWab8X1IRESUmwmuY3Gia3zk32D7wPRvorK0vdwTT1bPwMnO4yPjCZnE4HTjRMnWa298KPqGujH20Xi25rGkk64EtACmtP4flikrErZRJzrgqeqH2aYpAx2lOtxRdRNmVE1Df3mPdm/syLQ8Jvu+Um03vLyz6Iir3ZfhyeqHOOlKibrBfTUmOI9NWqcU6hhvb5w9/Hr0/y+pOB/72IdnvP1CthE49pgdp3BgSuUkTK+6HbvIfVLWOXqWsWOcR2BW9UzUiOqkr+t5o1wu0sX5gVE3lYVvZjzAPjohz5lck5Kr8M2M8e2ecFq53sxIpakcr8Xi9UrlJ9dxhV7yTphVMxM3uK9GV6lLuzEo2+8w2bEEAFI722jRWvCA9xH8x/8hDnMcjKeqZ2DXqPicSxkq5lgA46KxLndfiCvcF0X+jXWU/thatg5yjMGz1Y9ib7l/0nLyWbDtWDCyLUrWtoPcE09UP4STncfHLA+XsZ+U5Ti96Ty86f93UfLjFA7cUXkTLq+4EC44i1q24+v96GMu/PxM1ymY6L4o421yLNkcGG/y00GqxczqabjafRk6irqi9MMsqPvkegBHAPgNySdZYeDLQWn8dDYRkQXsIvcxOgtEREREZUsWMqa4J+HvzZfDC2/CoIsGDcuVFbjDMw1TcS/2kHfDYPsA7Cbvgj5yL2wv9YBd2NOkkqhRbcJKZRVWKL/gm9AifBVaGDX7cRspak5UDRrssGFK5SS4hCvvz2024YsUFwa/wwzv4/hRWQIgeQdS9PeTbQdTqk7X8PIuohPOrDgVxzqOgCQ4J22uhBA4r+JMHOjYH496Z2F2cE5kpuv4iwL1Mso+Ai/WPIm7PPfjs+AXum+f9MXzYH1NcB1rdBYsY3u5J05xTcBTvucS6qNwzL/Jcwckj4S+cm/sLO+I7lI3VAo3ekk7YX/Hvlml10PujinuSbi2dUpMOuHBt0atCde03ojB/gE4w3Uyesk76fp5iYiIiKykHNu1bJ+2Cd/wdYhjLGZ6n8ByZUUkf9H0vuGrv7wHbvVMxbIU6REREVHhuYQTl7kvwDHOI/Co9yl8EpwNFWrK9eNvPMskfqcaG4p+bTd5F5xfcRZG2Uck3caS0DLc5bkXS7f+cm30+wUEjnH+DS7JyTZNGRliH4gn7A9iaWgZXvW/ic+Cc9GsNUdez/cGjPhyFl62t9wfRzkPx6GOA+ExwuofAAAgAElEQVQQjtw/AJmeEAJXuC/GYNtA3O25Dxu1+qId38nG0qNvmnLCiSvcF+No5+FFyU8mOPaYm1H2ERhlH4Gvg9/i/cBH+DK4ABu1TQVLb1dbXzxW/QBObjobCpSk60RP8FOsMp9JnBciNi/hmxlf8r+GR7xPwgufaY5RAYEzXafggoqzi5IfMq9yvBaL1yuVn3zGFY5w/hXjHIfi0+AXeM3/Fr4NLYopL8n67LO9eX3bNajJX0s9FrATukvdsFxZid/VPxLek06xxwIYF8nstpO745Hq+/Cobxae9j0fOSajJ4MgyodNyLjMfQGG24fg5tY7sVlriKmzvfDhDs90zA0uwD/cV6FWqilofoQQOMk1Hoc4xuJZ30t4y/8uvPBte72AdXSydqUGDd2lbpjivjanSVg5lkylYrzzKBzlGIf/BD7EB4GP8V3oewQRKlh6C+o+eXd4w9hdAVwM4HwA4Rm8tbj/U4Y48QoRUZH0lLaLPGcjjIiIiKj4drX1xV1Vt2BiyyQEEUoYaAoPmilQsFhZisXK0sh7BYAOogM6SnWoFTVwCzdccEIWMmTICCGEgBZECEE0ay2oVxtQr26GF7G/VBz/i2fxrwkI3Fg5CQOifkWnFPEixdLSV+6NqVU3Y62yHh8GPsGXwflYrPyU8iKqfHWROmNq1c1YElqGV/yv46PAZwggAIC/ImM2PA8mI53rOgPfh37EwtB37cb8ZcrPkUE6ANjXPjLrG1sBYIxjNC5Wz8MD3kcSLu4IP/8mtAjftCyCW1To+VGJiIiIyALYPt3GiBu+nql5FP8LfIpX/W/i29D3kdfYj0BERFRcO8rb49aqydikbsab/nfwL/+baNC2pFw/+qbssFTxO9nYEAC4UYH9HKNwtOPwhAv+t6iNWK6swI+hpZgdnIOlyvLI++PTqBZVmOA8LvI32zTlZQ/bbphsuxbXawoWhX7EnOA8/KAswc+hlfDAk/f2u4hO2Nu2JwbbB2J/+yh0lbrokGuykgMco7GPfTje9L+Dl/yv4zf198hrxbyZNVx/9pd3x5TK67CTvENR0s4Uxx7zM9Q+CEPtgwAA65Xf8au6GmuUdWjQGuDVfNhB2l63tHrJO+E014l42vcCgNjYHBZepkLFyU1noxJuTK68FjvK+uQjnzgfrdRuZqTSVY7XYvF6JcqULGQc5BiDgxxjsEVtxJzgvLY2fWgJNmgbE9aPrnOjn4cli2syZOwm98Ug2wB8FfoGy5SfIUGKOV7aGwsYbBuAobbBmBucjyXK0sjkMOkUeyyAcZHMThISzq84C8NtgzGl9XZs0DbGHA9EetjHPhzP1zyOf7bejvmhr2PqJg0aPg/OweKmpZhSOQnD7UMKnp/OUidMdF+ECyrOwbzgV/gyOB/LlRVYpayGF76ClP34+NhFdMLxrmNwvPOYvOMN+12pFNiFHUc6x+FI5zj4NB9+DC3Fr8pqrFHXYbPaAB98uk4wvKDuEy+Au4Y3jL0bwGEAxgP4C4AeuiVSRoSmsdFA5iWEWAygX/zyfv36YfHixQbkiCh3W9RGHNZ4TMyy451H4yr3pQbliIiIiKg8/RBagutapsT8WlT8hRXtdTJm0oGW6v2p3qtBgwttv5B3oGNM2u2XGoUXKZackBbCGnVdzIVaXaTOOMQxVve0mtTmyID416FvEy7SFhCYV/eR7ulSejwPJqM1qy2Y2DIJPyhLMo75o+374J6q23JO8zHv03jc93TaC3HCoi96YV1FREREVNrYPk0t1Q1fJ7iOSf/mLK1SVuPjwOcpL2Bn25yIiKh4VE3FRS1XYmHou6ze195YnRsV6Cv3xt62PTHEPhBDbYMSbgCd5X0eT/meg3/rTZJA4uQu4TZR5IcT3NdinPPQdvPFNk15Wq2sxRplHTZqG7FB3YRNaj18mg8++BHQAgghBBky7MIONypQI1WjTtShm9QFPaUe6CP3Qgep1uiPQSazPLQCc6NulGrQtqBV8+Dx6gewm22XvLZ9v+dhPO9/Jem5YT95N5zkOh4H2w+AJKS80ikEjj1ai6qpuKLlenwZWpDQ9xHfJxG+mW1W9Uzsbts1r3QLFefDfJo/6c2MAPB09cN55z/+GI3Ov543M1LpK9drsXi9EmVri9qIn5TlW9v0m7BB3YhNaj28mg/+SJteaWvTwwa3cKNGVKFO2tam7y33Qh+5F5xbzz3zHQvwaF6sUFZieWgF1qrrUa9uRr22GTOrp6f8HEaNBTAukpk1qc242XMnZgfnJvQlhcv/e7WvoqNUZ1AOqRQ853sZM71PxEz8Fq6nJAhMcB6HF/2vJtTPxSp7fi2AVq0VNaIaNmHLa1vhOjlse6knBtn2xkj7MBxg3w82Ieeb3ZTY70rlrH///liyZEmyl5Zomta/vfcObxi7B4BBAAYC6AtgOwDdF9R90kv3jJYQTrxCpsaJV6jUvOx7HRrUyN+7yn05syoRERGRATarDZjquRefBGdnNRNxprM+Z7vNPeTdMLnyGvSR2YcRxosUKVcb1U1YrqzAOmU9NmmbUa9uxo2V1xqdrbLF82Ayml8L4A7PNLwX+KDd+Bwe1NzXPjKvG1sB4A3/O7jb80DCgGqqXwHjxCtERERE5YPtU3PJ5QJ2IiIi0pdfC+DG1lvxafCLdm8KCy/bzzYKnaWOsAk7KkUFqkU16kQHdJO6oqfUAz3k7mnTjL9JICzVDWonOo/DRPdFOX/GQmObhoiyEV0HuuHGnrY9MNC2N/axD0M/2+4G5y49jj1aS7I4n0w49uox8YoRcb5Ubmak0sdrsQqL1ytRtHIeC2BcJLP5l+8N3O99BIGoifkAcOIV0s2S0DJMbr0F69TfEurccH0LxNa9Vix7vypr0Kg1olbUoqOoQ41UbXSWCo79rmQG+Uy8QrnhxCtkapx4hYiIiIiICmlh8DvM8D6OH5W2zohkg1zxg0/ZiO4sTba8i+iEMytOxbGOI0z5i1FERESlYm5wPmZ6n8ByZQWA1JOk6XExC9D2a5S3eqZiWYr0yvXGViIiIiJqw/YpERER0TaapuEl/2t4xPskvPC1O16n5w3ZqX7tOPr5Ga6TcUHF2XmlR0RkJpvVBoQQQq2ohVM4jM4OlQHG+eyU482MRESljGMB+WFcJL34ND9CCCYsrxJVBuSGSpFX8+IOz3T8N/C/pBNeAdafeIWIjMGJV4ovv6kDiYiIiIiIiCxsiH0gnrA/iKWhZXjV/yY+C85Fs9YceV1sfeQq1a8F7C33x1HOw3Go40A4eDETERFRwY2yj8Ao+wh8HfwW7wc+wpfBBdiobSpYerva+uKZmkfxv8CneNX/Jr4NfR95Ld/2BRERERFZH9unRERERNsIIXCSazwOcYzFs76X8Jb/XXjh2/Z6Adsq0TdhR9+M3V3qhinuazHYPrBgaRMRGYE3dlGxMc5nZ2d5R6OzQEREOuJYQH4YF0kvLuEE4DQ6G1TCKkQFbqq8HiNtwzDVcx+88ALYNtkKERFZBydeISIiIiIiorK3h203TLZdi+s1BYtCP2JOcB5+UJbg59BKeODJe/tdRCfsbdsTg+0Dsb99FLpKXXTINREREWVrqH0QhtoHAQDWK7/jV3U11ijr0KA1wKv5sIO0va7pHew4AAc7DsAqZTU+DnyOucH5WKIshcoBVSIiIiIC26dERETRvJoXG9RNaNaaISBQKSrRXeq29cYIKgedpU6Y6L4IF1Scg3nBr/BlcD6WKyuwSlkNL3wFuUkh+iZsoG1M73jXMTjeeQzcokL39IjCWOcRZY7Hi7ll+v0wzhMRUak5rem8mL8FgAer7kGNVJ2wbn/b7ugidcZRznHYqNajQWtAq+pBM5o5FkCGyKb8ElHm/uo8BHvZ+uGG1luxVFlmyUmv4vGcnPLBeKO/fp8MAQBITqn38Iax3wDQABy8oO6TBkMzVkI48QoRERERERHRVrKQMdg+AIPtAyLLVitrsUZZh43aRmxQN2GTWg+f5oMPfgS0AEIIQYYMu7DDjQrUSNWoE3XoJnVBT6kH+si90EGqzTgPrZoHG9SNaNKa0Ky1wL81DQ0anHDCJZxwwQWXcKKz1AldpM6F2BVFtUmtxx/qn2hQt8CPADqKDugodcQOUk/IQi5YuqqmYq26PmH5TvIOBUuz3JVj+SbSG+tM/fSUt0NPeTvsay98Wr3knXB2xWk4u+I0eDQvVigrsTy0AmvV9ahXN6Ne21z4TBARERGZCNu1icq5fcryQERUvtYq6/F24D18EfgSv6prkt5w21PaDgNte+NAx/4YZRsBIax9oTqlp0DBTvIOqJNqsZ82Cn4tAK/mgw8+rFN+Q4O2RZexhHB5217qiUG2vTHSPgwH2PeDLcf2B9s0lA7rPNJLOYy58ngxt3y+H5dw4gDHaBzgGB1Z168F0Kq1okbod+OV3nE+GcZ+MjOWz1jlEDvLgdnK9XJlRcwkXwICIYQir2cTL3vK20HTNN3bM8UcCzDb92N0vWN26cqv2bFeJzPbXu6Jx6sfxAzvY3jB/6+CTDJZaGY7J2eMsS6rxxszcu9Vha2HpAvAQLT9VYSrTMqH0DTrVdxUPoQQiwH0i1/er18/LF682IAcERERERER6edXZQ2+C32PH0NL8YvyK1ara9CqebLahh02dJe6oYe0HXaR+2CgfS8MkPdCtVRVoFzrY6WyCm/538P84FdYra5Nuk6lcGOEbSjGOvbHIY6xuuehXt2McY3jY2YTFwC+rPtI97TKUTmXbyK9sc4kIiIiolLAdi1FY3kgIrK2TepmbFA3YLPWAI/mRbWoQhepM/pIvTK6wLpFa8GDnsfwVuBdaFsf7QnX1T2k7jjHdQbGOQ/V5XOQ8YwYS/hVWYNGrRG1ohYdRV1ev67JNk15YJ1HRrLamCuPF3Mrh+9HzzifDGM/mRnLZxurxU5qnxHlOj5eapqGyZ5bIbY+gLZyrW69eRjYdiPxe7WvwiHspo+XemG9Y10jGg5MWn47SnUG5ywR63WysvXKb0nLa1+5NyQh6Z5eKZ3zMcaUBivFG7Pq378/lixZEvl76KYx4YlXIGShoe2v7RbUfbLBkAyWIE68QqbGiVeIiIiIiKjUrFRW4R3/f/Bp8Av8of4Z81o+s1rHd+r1lnvhEPtY/NV5CLpJXXPert5WKqvwiPcpzA7OQVtPT2adsr3lnXFhxTkYbd9Ht7yEO0Tj05vHDtGclXv5JtIb60wiIiIiKgVs11I0lgciIuv6U92AV/1v4YvAl1ilrk66jltUYJRtBE50HYc9bQmXfAEA1inrMbHlOqxV18fEgeh+4Hjx6w22DcDNlTegs9Qxx09DRiqFsQS2aUof6zwyktXqSR4v5sbvRx+M/WRmLJ/Wi52UXrHLdbp4qUKN+VuCFLl5GNh2I/HjVQ/iJs/tJR8vWe9Yn9lvhGe9TpS5UjvnY4wpLWaPN1bAiVeKjxOvkKlx4hUiIiIiIioV3wQX4QnfM1gY+g5A8o7A9jon00m1PQFgqG0wTnKNxyj7iJy3r4eXfK/iIe9jCCIUyW+6zxzfKXu882hMrLhIl5m+42eiDnfosUM0eyzfRPpjnUlEREREpYDtWorG8kBEZE0hLYSnfM/jOd9L8COQ8YXORznGYaL7IriEK/JavboZZzZdgA3axph1wzLpWw6v00V0wv3Vd6G3vHPWn4mMUSpjCWzTlDbWeWQkq9WTPF7Mjd+Pfhj7yczKvXxaLXZSZopZrjONl6mWS5BiXu8sOmGTVp80z6USL8u93ikVZr0RnvU6UeZK8ZyPMab0mDXeWAknXik+m9EZICIiIiIiIiplW9RGTPc+hPcDbZ1s6ToCs52NPbydZB2Y2tatfRX6Bl+1fIMBtj1xZcUl2NXWN8tPkZ+AFsD1rTfji+CXST9/qs8sIkMa29b7l/9N/KL8inuqbovp9CVjsHwT6Y91JhERERGVArZrKRrLAxGRdQW0AK5umYz5oa8TLmBOJbzeW4H3sFZdj/urpsIm2i5TvLH1NmzQNibU76n6guO3G44NGjRs1OpxYfMVeKL6QfSUe+T1OamwSmUsgW2a0sc6j4xixXqSx4u58fvRB2M/mVm5l08rxk5Kr9jlOpt42d6ELNE3E2/S6ks2XpZ7vUOFxXqdKDulds7HGENEZpL/tE1ERERERERElNTy0Aqc0fx3vB/4KNI9H93Jl3r29MwfqUSvE077u9APOKv5Qjzte7Fgnzmeqqm4quUGzA7OTfj8yfIa/9m2DWsg8lkWhr7DNS03IqQpRfsclIjlm0h/rDOJiIiIqBSwXUvRWB6IiKxL1VRMbLkO80JfxdTh4fo4leh1vgktwi2eqQCA2YG5+Dr0bUIdH/93skd4u+H1wmk0aFtwRcv18GuBQu4KykOpjCWwTVP6WOeRUaxYT/J4MTd+P/pg7CczK/fyacXYSekVu1znGi/jhddNFvdKKV6We71TLtqr/wqJ9TpRdkrtnI8xpvwYFW9KXHYzklG7bEZngIiIiIiIiKgULQn9hIuar4QXvoQOyPDz9gYG8pGswzGcThAhzPQ+jl+UVbjRfS1kIeuadrxHfbMwP/R1TJ7i90cqyQZPwp2iC0ILcZ93Bq50X1LA3FMqLN9EhcE6k4iIiIhKAdu1FI3lgYjIul70vxpzwTUQe/F0+O+wZOtp0PB+4CMc5TgcL/lfS3g9/LxKVGK0fR+MtA1Dd6kbOkodENCCqNc249vQ9/g48BnWqOtiLg4Pv3+1uhaPeJ/Epe7zC7o/KHulNJbANk3pY51HRrBqPcnjxdz4/eiDsZ/MrJzLp1VjJ6WXT7mOfi3++bzQV9h3y8EQcb9bH32TdrLtZ1N+VKhJn8dvJ7EMAWe4TrFEvCzneqfQRjYcZFja8cfAXxuPy/i9AsCXdR/lnQfW60TZK7VzPsaY4ij3eFMIxdqn7s+6YCjGxC5MbFb+MbxhbKab1BbUfcK5RdrBnUNERERERESks9+VP3B5yyR44E3oTIzv4JMhY2d5R+wm74I+ci90ljqhq+iMzlJnuEUFnHDCIRxwCgcUTYECBQEE4dE8aNU8aFAbUK814Hf1D6xV1mO5sgIrlF8QQghAbIdpdNrvBz6Coim4tWpywfbDamUtnvW9lDAYEr0/9rENx0j7UOwq90UHqQMAYKO6CQtD3+GjwKdYp/4W857oTt9/+d/EUNsgjHGMLthnoEQs30SFwTqTiIiIiEoB27UUjeWBiMi6/lD/xKPep1JetAwAHUUddpS3R5WoQr26Gb+rf2CL1hhZL9qdnulYo66NuWEivJ2/OQ7DJRXno4NUm5CPXdAHI+3DcL7rLLwZ+Dce9D6KVs2TsJ1/+d/ACa5j0F3qVoC9QbkopbEEtmlKH+s8MoJV60keL+bG70cfjP1kZuVcPq0aOym9fMv1LN/z7W5fi/pvePvFFh9jw0svqDjb9PGynOudYjCiPKaSXV6SlenssF4nyl6pnfMxxhRPOcebQinaPs1sF5h3R1kQJ14hIiIiIiIi0tnNnqlo1JoSOgLDHSxdRRfs59gH+9v3xWDbADiEI6PtykKGDBkOOFAlKgEAveSdEtYLaAEsDH2HTwOz8UHg48jARFg4L/8Lfoo9fLvhFNcJ+X7kpJ71vYQQQjEdoEDb/hhg2wvXui9HH7lXwvt6yztjhH0o/u76f3jD/w4e9D4KH/wx+zD8/HbPNAyw7ZW0Y5cKg+WbqDBYZxIRERFRKWC7lqKxPBARWdfr/rdj6t7oOry/vDsuqTgfg+x7J7xvQXAhnve9gnmhr2L6bVeraxPqcAGBE5zH4gr3RWnzI4TAMc4j0F/eA5e3TMJmrSHm9SBCeNn3Oi5zX5DPxyYdldJYAts0pY91HhnBqvUkjxdz4/ejD8Z+MrNyLp9WjZ2UXr7l+mnfC5H1U9GgQYKUdj2g7buMvzFdhZrVZwoLp5ksP5H0TB4vy7neKZbkE/MUVrLjINN86HWjOet1ouyV2jkfY0xxlWu8KaSi7NP43ZA8yUx3FidoyUDyFjwRERERERER5eTDwCf4JvRd0g74naUdMbXyZrxd+xKucV+OkfZhGQ8GZMMhHNjHPhzXVV6Jdzq8gtOcJyYM4oXz9LD3Cfym/KF7HnyaD+8HPorsh+jOzMMdh2FG1bSknaHRZCFjvOtoPFp9P7pKXRK2AwBbtEbc431A9/xTcizfRIXBOpOIiIiISgHbtRSN5YGIyLoUTcG7/g+S1uF/dRyCJ6ofSnrxNgAMtw/BfdV34lzXGTE3S8T/UiUA9JV7Z3TxdrRdbX0xtermmD7h8DbfC3wATTP/hbjloJTGEtimKX2s88gIVq0nebyYG78ffTD2k5mVc/m0auyk9PQo1+H3pbvxVd36yIQW98hFqklXUjFjvCzneqfY4stcoR9GY71OlL1SO+djjDFGucWbYij4PhSI/UcFx4lXiIiIiIiIiHT0jO/FmL/DnUZHOP6K52sexxjHaAhRvF6PKlGJi93nYWb1NNSKmoTXgwjhYd8Tuqc7L/g1AghE/g53zg607YV/uK+CTcgZb2tXW188WHU3Ooi22aajZ7bWoOHDwCdYEFyo+2egRCzfRIXBOpOIiIiISgHbtRSN5YGIyLoWhX7AJq0+8ne4zt1T3gNT3JMy6gM+p+IMHGIfG3lv/M1PAgJ/d52VU/72tPXD6a6TEi7abdSa8L3yY07bJH2V0lgC2zSlj3UeGcGq9SSPF3Pj96MPxn4ys3Iun1aNnZSenuU6k8lX0r1fghTZTvQjl23lwmzxspzrnWJrr8wkK5P5PozGep0oe6V2zscYY4xyizfFUOh9Cg2x/6jgOPEKERERERERkU5+UX7FcmVFpAMl3Gl3sP0A3FB5NWzCZljeBtj2wozqaXCLisiycIfix4HP0KQ265re96HETlIB4Fr3RMhZdIaG7Shvj1sqb4js2+j/a9Bwj+cBKJqSV56pfSzfRIXDOpOIiIiISgHbtRSN5YGIyLqWKMsSlgkA11VemdUND9e4L4cbFUlfqxU1GG0fmWsWcZJzPFxwJiz/Jrgo522SPkptLIFtmtLHOo+Kzcr15Deh7xPew+PFPFif6YOxn8ysXMunlWMnr1dKT49yfUflTagSVSlvIs+GluKRDQkSuomu6Cal/tdd6oZuUtek7zdTvCzXeqeYMim/qcplPo+w6O+gi+jcbrnNpPxmgvU6UW5K7ZyPMaa4yjHeFFqx9ikEYv9t23j0s/UA1mTwb/XW/1M7jGuJEBEREREREZWY2cG5CcuqRCWudl9mQG4S9ZF74ZqKyzDFc3tM504ICj4OfoajnX/TLa2flZWR5+EOpX3tI9FL3innbQ6zD8bprpMwy/d8pCM0/DlWq2vxsv91nOw6Pu+8U3Is30SFwzqTiIiIiEoB27UUjeWBiMi6fgotjzwP17XDbEPQR+6V1XZqpGoc7BiLtwPvJdxIMdo+Mq9fra2VarC/Y198EPg4pj94ubIi522SPkptLIFtmtLHOo+Kzcr15BdReefxYj6sz/TB2E9mVq7l08qxk9crpadHuR7r2A/9bLthcuttWBT6ISZ+pSJBiqQ33DYE91dPTbluvboZ4xrHJ8RFFWrS7R7uOBSTK6/NOP/xzBQvy7XeKaZk5Te+rB1g3w//cF+FaqlKt3RHNByYcIP40zUPo6NUp1saqbBeJ8pNqZ3zMcYUVznGm0Ir1j7t378/lixZEvl76KYxSNLMHbqg7pMNOSdCMSSjM0BERERERERUKpaGts0mHe4wOcxxEGqlGgNzFesvzkOwi9wnYWDx+9BiXdP5Xf0zoaNspH143ts913VmpJM4fjbqJ3zPYIvamHcalBzLN1HhsM4kIiIiolLAdi1FY3kgIrKuX9XEH7vb3z4qp20Ntw9JunxXeZecthdtkG3vmL81aFiv/pb3dik/pTaWwDZN6WOdR8Vm5XpyXZIyx+PFPFif6YOxn8ysXMunlWMnr1dKT69y3U3qioerpuNs1+kxN71mItd4mUopxctyrXeKLb78hoWffxqcjVOaz8E3we+MyqKuWK8T5abUzvkYY4qv3OJNMXCfliZOvEJERERERESkk1XK6oROwBG2oQblJrXDHYfF/K1BwzLlZ13TaNAaEpbtrkOHrE3IuN59ZdKh0VbNg8d8s/JOg5Jj+SYqHNaZRERERFQK2K6laCwPRETW1ay1JPQF97PtntO2+sq9ky7P51crt227T+R5OL8b1fq8t0v5KbWxBLZpSh/rPCo2K9eTHs3L48XEWJ/pg7GfzKxcy6eVYyevV0pPz3ItCQnnVZyJmdXT0UV0bnfyFRVq5Hmu8TKVUoqX5VrvGCG+/EZP+KFBw5/qBlzUciUe8j6GkKYYmNP8sV4nyk2pnfMxxhijnOJNsXCflh6b0RkgIioVt7TeaXQWciQwufIaozNBREREVDDFbKetV3+LGZTToOHdwH/xWfCLHLZWuHbaXrZ+Uam0zeJcr27WNQ2f5k9YVic66LLtPW39cJTjb3gj8E7CbNRv+P+NE5zHYCd5R13Som0atC0Jy3aSdzAgJ+0rRvmmNjwP1g/rTP2wXBIREREZh+3aROXcPmV5ICKyrlatNWFZrnV4N6lr0uUdpbqcthetViT+Cm6r5sl7u5SfTMYSzNBGalC3QNv6CFutrE3IW4vWGrOOgGCbpsSwzqNis/KYqwIl4SYvPY8XFSr+5XsD7wf+l9M2w8J1d3T9vUVrLGD8MccYj1nqs3T7ufjfT6bavkf2Z5CZlWv5tHLs5PVK6RWiXA+07YUXap7ArZ6p+CQ4O+36eh1HgBXbM+23Y8q13jFSdPn9NPgFxNYHAKjQ8KzvJXwV/Aa3VN6AHeSeBuc2N6zXySjGn3Pkqq2uNss5XzqZ9mExxhirHOJNsXGflg5OvEJEpJN/B95vd1ZcM9KgQZhk0IeIiIioUIrZTouedCXs0+CcrNMvdDuti7PsFPoAACAASURBVNQ5YVmyDlm92YVdt21dUHE2Pgp+imatJWa5ChX3emdietXtuqVFbZJ1fLuF24CctM+o8l2OeB5cWKwzc8NySURERGQu5d6uZfs0VrmXByIiq0jWF5xs/CMTLjiTLncj/75ll3AlLAsimPd2KT+ZjCWYo42kJSwJIIB3Ax/ErZW4Hts0pYV1HhWblcdcw+eL0fQ+Xj4Pzc07RiSruxUoCXW8Hsw0xmOW+ix9nC/e95OpdN8jYz+ZWTmUTyvHTl6vlBs9ynW1VIU7q27Gc96Xcb/v4aTrhNsMucbLVKzSnsm1HVMO9Y7RwuX3Nf/buM8zEwEEAGybNGCpsgynNZ2Ly90X4Wjn4QbnNnus18ko5uiTzE50XW2Wc760286jD4sxprhKPd4Ygfu0NEhGZ4CIqNRoFnoQERERlROj2ldmbKcpWrKOVn07kyuSdJzGd17mo1aqwXmuMyP7S4MW6ZT6MrgA84Nf65YWtbEnmb/Xo3kNyEn7ilG+KVaxzmELVU+bAetM/Rld1kqhXBIRERFli+3a1IxucxrRPmV5ICKyLiccCcvqtYactiWJ5JcnukTyC7uz0ag2Jiyz8XfoDJfNWIIZWz2ZrMU2TWlhnUfFZu0x10R6Hy+APvGhUNvNLJoYw2z1Wb4xuJiPaOzPIDMr1/Jp7djJ65XSKXS5PrViAv6f85SUr2vQcEvrVDSqTVlvO9XN+4VsZxQq/qVSrvWOWRznPBKzamait7xzZB+JrQ8vfLjDMw3XttyYU/k1Eut1Mlohzy30fkQz2zlfKpn2YTHGmEepxhsjcZ9aGydeIaKchTQFLVoLtqiN8GheqBkOtJQ6YaEHERERUTkxqn1lxnbaH+qfCcuqRKWuaVSL6oRla5R1uqZxnPMo9JF7Adg2kCnQ1ik6zfMgQpqia3rlLtl3ulpZY0BO2leM8k2xincWW5h62gxYZ+rP6LJWCuWSiIiIKFts16ZmdJvTiPYpywMRkXUl+4XZTeqmnLalRNXFmd7Uk6kGbUvCMj0uDKf8ZDOWYMY2TybrsU1TWljnUbFZecw1Wb1YiOOlUPV8MeOJEcxWn+Ubg4v5iMb+DDKzci2fVo6dvF4pvWKU679XnIU+Uq+Ur3+rfI9Tms7GV8FvstpuqhhZyHZGoeJfKuVa75hJb3lnzKqeiWOdR8SUufA++iw4J6fyayTW62S0YpxjFKKuNts5XyqZ9mExxphLKcYbo3GfWhcnXiGitEKagh9CS/C07wVc03IjTm46G2Ma/opRWw7GgVuOwKGNR+OALeMwasshGLdlPM5quhC3td6N1/1vY73yu9HZL6pkMwpmOvMgERERERWOke00M7b7vg59G3kezt92Ujdd09he6pHw2b8NLdI1DUlIuKLi4pjZqMNWq2sxy/ecrumVu65Sl4TvdE5wvkG5Sa0Y5Zu24XmwPlhn6ovlkoiIiMgYbNcmV67tU5YHIiLr6i51S6jD5wcX5rQtH/wYa98fB9j3w1j7/pHnDpH465zZWqH8Enkezm8n0THv7VJ+Mh1LsHIbiW2a0sI6j4rNymOuLrgKeryE07JqfDCameqzdN+jmbE/g8ysXMunlWMnr1dKr1jl+kr3JSknG9GgYaNWj0tbrsb9nocR0kK6pW31dky51jtm4xAOXOueiDsrb0a1qIrso/CN24Uqv4XCep2MZOVzTjOd87Un0z4sxhjzKbV4Ywbcp9bEiVeICuz85ssxvGFswr/flD+Mzlpavyi/YprnIfyt8Xic3XwRHvI+hk+Ds7FC+QVe+BLWV6Fik1aPH5WleCvwLu7wTMcxTSfj5Kaz8ZLvVbRqHgM+RfG8XvMcrqq4BCNtwyCAmECYSnuN82I8iIiIiMpBMdtpqahQTdNOC2gBvOV/N+bzCwjsIvfRNZ2d5R1jtq9Bw0eBz3TvFBpqH4Sx9v2hQUuYjXqW73ksC/2sa3rlbE/bHpHn4X38QeBjNKiJs5MbpVjlm9rwPFg/rDP1w3JJREREZBy2axOVc/uU5YGIyLqS1eGfBb+ApmUfJyqFG3dU/TPhnx6/Djs7ODfmbwGB7eTueW+X8pPJWIJZ2kiZpJPsdbZpSgvrPCo2K4+5dpE6xfyt9/HyRs3zuLriUl3iQzbrmuEcWg9mqc9yifOAsf0h6fYjYz+ZRbmWTyvHTl6vlF6xy3UqGjSo0PCC/184q/lCrFbWpN2mgIC09SG2PobKgyBt/RzhddpLM9t2RrHbMeVa75jVAY7ReK7mcQyy7R1TxgRE1uXXSKzXyShm6ZPMta42yzlfOpn2YTHGmFepxBsz4T61FpvRGSAi81mrrMcj3ifxYfCTjE+o27NC+QXTvA/hCd+zONN1Ck50HgdZyDrk1Fx6yj1wvHwMjncdg/XKb3jG9xLeCrwLYFuDLPq5gMBO0g7oH3XSSERERET6K2Y77Q/1z5hZzsO6i24Yah+U3wfRyQPeR7BJq0/oKB5uH6prOoNtA/GK/42YZfXaZrzsfx2nuE7QNa3L3RdgbuN8BBCILBMQCCKEf7Teglk1M1AlqnRNsxwNsg3AS/7XYpZ54cXtnmmYWnWzQbmKVazyTW14Hqwf1pn6YbkkIiIiMg7btYnKuX3K8kBEZF2DbHvj3cD7Mcu2aI142f8aTnSNNyhXsdYrv2FR6MeEvuDd5F0MyhGFZTKWYHQb6cfQEvyqJl7APMQ2ENtJsTcB/K7+iYVxY39s05QW1nlUbFYecx1mG4K1gfUxy/Q8XvSID62aB58GZydc+7yL1Ae72Ur7mDFLfdb+94ikV6V3ELUYbd+naHlsD/szyMzKtXxaOXbyeqX0il2uP2+cgxCS39AdbmMsU1bg9Ka/41L3BTjOeWTG2xcQuLVqMryaN6/zXDO1Z8q13jGzblIXzKyajid8z+AJ37MJZSvX8ltMrNfJKEb3SebLLOd87cmmD4sxxtxKId6YDfepdYhcZrQiKhYhxGIA/eKX9+vXD4sXLzYgR9k7v/lyfBNalLD8zZoX0cNkvzigaipe8r+Gmd4n4Ie/YOn0k3fHbZU3oqe8XcHSMIuFwe9wbeuNaNFaASDS8A7/f7zzKFzlvtTgXBIRERGVn0K100JaCH9rPAFbtMbIsvA2j3KMw7XuiZCEpNvnyNZT3ufwsO/JmA5NDRrcqMB/OrwGl3DpllaL1oK/bjkOwaiBSg0anHDioep7sJct4VQvL096n8MjWz9b/Pc5yDYA06tuh0s4Y95Tr27GuMbxkf0RXn9e3Ue65q1UsHxTJngenBvWmYXFcklERERUHGzXZqZc2qcsD0RE1rVR3YQjGyfE3N4TrsOfrnkYveSdDMtb2EXNV+Lr0LcJdfi9VXdgpH2Ywbkrb7mOJRSrjZTtWALbNKWPdR4Vm5XHXJ+peRQnNJ1e1OMl2/hQzseLmeuz8PfYpDUnfX1/+764u+rWIucqOcZ+MrNyLZ9Wjp28Xim9YpfrBzyP4Fn/SylflyBF8iAgMNo+Ehe6zsVJzWcllOvw/6OXvVf7KjpKdQByP881U3umXOsdq1gU+gGTW2/Dn+qGhDooXH5vcF+DDlJtwntHNBzYbvktJNbrZCZWGrc18zlfWDYxjDHGOqwab8wsm33av39/LFmyJLLO0E1jIrPaClloaPtruwV1n2wo7qcoXca1QojIVDyaF1e2/gP3emcUdNIVAFii/IT/13wBvg/9mNP7l4dW4FHvrIR/C4Pf6ZzT/A2xD8T/VU6J/B0/Yx8RERERGaNQ7TSbsOFY5xEIz0Ab3TH3VuA9nNd8KVYov+iSVjY2qfWY1DIFj/ieilkezt+xziN1HwyoElUY69g/si+Atv3shx+XtVyDzwNzdE3vdNdJ6C3tHEknet9/G1qEiS3XoVXz6JpmuWH5pkzwPDg3rDMLi+WSiIiIqDjYrs1MubRPWR6IiKyri9QZo+wjk9bh5zZfirnB+Qbmru0mqeiLt8OqRCWG2gYblCsKy3UsodBtpFzHEtimKX2s86jYrDzmuoPcs+jHSzbxodyPFzPXZ0PsAzHcNiTl611FlyLmpn2M/WRm5Vo+rRw7eb1SesUu1xdUnAM33ClfV6FG8qBBwxfBebiw5YqY/GUql/Ncs7VnyrXesYoBtr3wQs3jGGtP/I7C5ffkprMxL/iVgblMxHqdzMRK47ZmPucDso9hjDHWYdV4Y2bcp+bGiVeICFvURvy9+TLMCc5rdz0nHDjAvh+urrgUj1Xfj/dqX8XnHf6DuR0+xPu1b+DVmmdxb9UdOMd1BgbbBrSfptaIy5qvxfehxVnnd7myAo/7nk74tzBkvolXAGC4fQhGxzVsiYiIiMh4hWqnne46GdtJ3QEkdsz9oCzBaU3n4tqWGzE/+DVUTdU17XirlbWY7nkI4xtPw6fBLyJ5idZB1OJ010kFSf9U5wRISJyFt1Xz4JrWG3F1y2R8F/pBl7RsQsZNldfDBhlA8k7R05v+jmWhn3VJr1yxfFMmeB6cG9aZhcVySURERFQcbNdmplzapywPRETWdYbr5IT+VgGBZq0ZV7ZcjxtabsHC4HcIaUrR8rRB3YirWm7A8/5XYvIWru/HOQ6DTchFyw+llutYQiHaSHqMJbBNU/pY51GxWXnM1YjjJV184PGyjZnrs4+Dnyd9XQCQhLlubmTsJzMr1/Jp5dhJ6RW7XF/tvrTdddStj3BeGrQtkeXZnq9mep5r5vZMudY7VlElqnBH1T8xyT0RTjgiy8P7rF7bjMtbJmG65yEEtaCBOY3Fep3MxErjtmY+58slhjHGWIdV442ZZbpPHRdXQdjN1W9S6oSmmT8gUPkSQiwG0C9+eb9+/bB4cfYTdhjh/ObL8U1oUcLyN2teRA+5uwE5iuXRvLiw+QosUX5KuU6tqMFprhNxjOMIVEtVGW97tbIGz/tewVuB91I2PmtFDZ6qnoHt5Z4Zb/ff/v/iZs+dCcvPcZ2B8yrOzHg7xfRlcAEub5kUaUCGG2bjnUfhqjQdN0RERERUOIVqpy0MfodLW66BAiVmu+F2cTi9WlGDYbbBGGwfgN3lXdFb3jmvGdH/UP/Ez6Ff8G1oEb4MLsAqdXUk/XC60XkRELiz8iaMcYzOOc107midjjcC78SkGc5T+Hmd6IABtj2xk7wjtpO6wS3c2E7qjr1sCaeDab3ufxt3eu5N2N/h5xIkjHMcijNcJ6NSuDGucXxCnubVfaTHRy9ZLN+UCZ4H54Z1ZmGxXBIREREVB9u1mSmX9inLAxGRdd3WejfeDrzXbh3uhAM7yNuju9QVFaICF1Wci+5SN93ysE5Zjx9DS/B5cC5mB+ciiFDCzQ8aNLjgxCu1z6Cb1EW3tCk/uY4lbFQ34ZrWG3NuIxVqLIFtmtLHOo+KzcpjrkYcL/Hn0CpUCAhsL/XABnUjj5coZq7PwvmIJkFgvPNo0/WFMPaTmZVr+bRy7KT0il2uz226BIuUH3POrwQpaT7fq30VHaW6mHVTjQX8xXEQRtqGWaL9X671jtWsUlbjH603Y6WyKqEcCQj0kXvhlsob0FveGSMaDsyo/BYS63UyEyuN25r5nC+XGMYYYz1WizdW0N4+VRUV3iWtWHneEviWeTB00xiEu1aELDS0/bXdgrpPNhiS+RLEiVfI1DjxSmFpmoYrWq/HnOC8lOscaj8QV7svQ61Uk3M6XwW/wU2tt2ODtinp633l3phVPRMO4Uj6ejwrTrwS0AI4ZMtR8CMAwNwNcCIiIqJyUsh22vuBjzCl9f8if8d3BoZFd44AQCfREd2krugo1aFW1KBSuOESTsiQIUFGCCEEtSCCCKJZa0G9uhn12mb8rvwJL7wx6cWnEZ+HiyvOw2muE/P6nOn4NB/Obr4YK5RfknaKxucxbF/7SNxTdVtOad7jeQCv+N9IOggTnf4OUk+sUdexQzQHLN+UDs+Dc8M6s7BYLomIiIiKg+3azJRL+5TlgYjIuvxaAOc1X4qflOUJ9XT8DbNAW107q3omdrftmle6r/nfxiu+1/GnugE++BPSTHbzw8UV5+FU14S80iX95TKWoG19RBMAdpd3xSj7CMPGEtimKX2s88gIVh1zNeJ4CWgBjN1yOIIIxW07+r88XgBz12cq1IT3SZBM2RfC2E9mVs7l06qxk9Irdrn2awEc2TgBDdqWnPIbzkcmNxJHjwVEn/MKAAJS5P3h7ZmxPVPO9Y7VBLQA7vPOxKv+t2K+j/A+dMCBiyvOwzTvgxmV30JjvU5mYaVxWzOf8+USwxhjrMlq8cYKUu1TRW2boEz1qVh30y/Y8fa+nHilwGxGZ4CIjPO074WUk65IkHBpxfk42XV83ukMsw/Gw9X34vzmy5NOvrJC+QWP+Z7GRRXn5p2WWTmEA3vZ+uOr0DcJDT0iIiIiMk4h22mHOQ6CHTbc0joVXvhitp+sgylsk1aPemUztk7inpFkHaXx6YT/1qBBgsClFRfo0t5PxyVcuKfqNlzUfBXWqeuTdkyG/9bLle5L4NG8+HfgvwnpRXeSrlHXJc0LpcfyTenwPDg3rDMLi+WSiIiIqDjYrs1MubRPWR6IiKzLKRy4r+pOXNnyD/yoLEnZDwzoW4+vV37Dr+qahOWpYshY+36G34BEyeU6lhBPA7BUWY5lyop21insWALbNKWPdR4ZwapjrkYcLw7hQCfRCX9of8ZtH5B4vMQwc30mQYqZfMXMcYuxn8ysnMunVWMnpVfscu0UDrxcMwsTms7MafKV+BvL2xM9FhCdfy3qv2Zv/5dzvWM1DuHA1e7LMMI2FLd67kKj1hSzzwIIYLr3IQDm2Ges18ksrDRua+ZzvlxiGGOMNVkt3lhBqn0KDYAAJJeEHf+vb9vKAtDxkKA4ktEZICJjrFRW4RHfUylfn+SeqOvJwfZyT9xffReccCZ9/QXfv7BOWa9bema0m7yL0VkgIiIioiQK2U470DEGT9bMwO7yru122sc/tCwf7W0nmgYN3aSuuK9qalEHA7pL3fBE9YMYbBsYk99o4Twney0XkyuvwRmuk5KmF50W5Y7lm9LheXBuWGcWFsslERERUXGwXZuZcmmfsjwQEVlXB6kWM6qnYYLz2K3XcRbvSs74PuHo5dial8McB+GWyslFyxNlL5exhFSMHktgm6b0sc4jI1h1zNWI4yXZryGLmOc8XsLMXJ+FSRa4jYWxn8ysnMunVWMnpVfsct1BqsXbtS9jD3m3vLaTiWRjAQKJx46Z2zPlXO9Y0f6OffFczWMYbBuQUKcVs22YCdbrZBZWGrc18zlfLjGMMca6rBRvrCLZPoWGyAQsVHjm77EiooK4wzMdSoqpHc90nYyjnX/TPc3e8s64uOK8pK8FEcSzvpd1T9NMdrX1NToLRERERJREodtpveSdMKtmJm5wX42uUpeYTvxo6Tr30z3C24gWvdwBB051TsDLNU9huH1IQT9zMh2kWsysnoar3Zeho6hLuR/07Ki8sOJc3FN1GzqLTgVPq1yxfFN7eB6cO9aZhcNySURERFQ8bNemV07tU5YHIiLrcgoHrnBfjFnVD2OMfTQApKzH9Zaqv7lSuDHFPQk3V/4DNiEXPB+Un2zHElLFaDOMJbBNU/pY55ERrDrmWuzjpU7q0O7rPF5imbU+O85xpKViF2M/mVk5l0+rxk5Kr9jl2ikceLrmYVxRcTGccOiyzWSSjQUki8hmb8+Uc71jRV2lLphRNQ3nuc6MmfTOjPuM9TqZgdXGbc16zpdrDGOMsS4rxRuriN6nUKNe4Fw2RWEzOgNEVHyzA19iUeiHpK/tKe+Bv7vOKljaJziPwev+t7FKXZ3w2n8DH2Ki+0K4hKtg6Rtpe6lH5DkbDkRERETmUax22hHOv2Kc41B8GvwCr/nfwrehRVDjBgDylWxgoKvogiOd43Cc88ikvwBVbOOdR+Eoxzj8J/AhPgh8jO9C3yOIUMHSG23fB6/WDsa//G/gdf87+E39HcC2fcW2uT5YvikZngfnj3Wm/lguiYiIiIqP7drUyrF9yvJARGRdu9l2wdSqm/Gb8gc+C36BucH5+FlZiQZtS8HSjO8XdsKJvzoOwVkVp6Gb1KVg6VJhZDqWkM/NAcUaS2CbpvSxziMjWHXMtVjHSzWqEpZpW//L4yU1s9Vnm9RNeD3wTsx6VsDYT2ZWzuXTqrGT0it2uT7RdRyOdv4NT3ifwZuBf6NRa0r7nmzKV/RYwLb3t7Fi+7+c6x2rEULg7IrTMcw+GJNbb8Uf6gbd6sdCYL1ORrLquK3ZzvnyjWGMMdZktXhjBeF9eu+Z90C63g3H9s62jjBOvlJwnHiFqAw95Xs26XIBgavcl0Iu4KyoQgic5joRN3vuTHjNCx/mBufjQMeYgqVvpO5SNwD5XRxARERERPorZjtNFjIOcozBQY4x2KI2Yk5wHuYE5+GH0BJs0Da2+974jqdU+ZUhYze5LwbbBmJ/xyjsLe8JIczVaWUXdhzpHIcjnePg03z4MbQUvyqrsUZdh81qA3zwYRe5j27puYQTp7lOxKnOCZgX+gofBT7DvOACbNTqdUuDWL4pEc+D9cE6U18sl0RERETGYLs2uXJtn7I8EBFZWw+5O06Sx+Mk13gAwBa1EVu0RrRqrdhZ3lG3dMLx0QUn9rT1w0j7MBzpGIdaqUa3NKj4MhlLyLRtZPRYAts05YF1HhWblcdcC328VAp3wrKuogsmuI7l8ZIBs9RnNsgx61kJYz+ZWTmXTyvHTmqfEeX6Ive5uLDinEi5nhuYh03YnHT9bGJZeCwg9v2ACw7Ltv/Lud6xor1te+L5msdxW+vd+Dj4udHZaRfrdTKK1cdtzXLOpwfGGOuyUryxCvXHEJbu9xV2vm831B1p7sn5SoXQNGsGAioPQojFAPrFL+/Xrx8WL15sQI6yd37z5fgmtChh+Zs1L6KH3D1mWavmwezAHMwPLcTPykpsUDeiVfMAANyiAttJ3dBb7oXhtiEY4xiddBAhnaWhZTij+fykr+1nH4V7qm7LepvZ8msBHLLlKPjgS3jteOcxuNp9abvv/7f/v0knbjnHdQbOqzhTr2wWxL2eGZHZNgFgkG0vjHXsn3TdlcoqnNR0Vrvbe7HmSfSRe+maRyIiIqJyZIZ22ha1ET8py7FGWYeN2iZsUDdik1oPr+aDH360aq34Tf2j3W3cWjkZY+yj4RSOrNK2Ij2+h1XKaixTfsby0AqsU3/DJrUe9dpmvFX7ot7ZLXvpyndAC8Cr+dIOjD1d/Qj2sO1apFyTHsxQvxLrzHiZlkuWSSIiIiJzKdV2LdunuSnV8kBEVA4yqcMvqjgXu8p90VHUoY/cG7YC/ogUmUf0WMJ7gQ/g0Tzwaj6EEIJD2CEg0o6VpWLWdhLbNOUhk+/5WvdE7CnvwTqP2lXq1xRkcqwMkPdCB6kWLjhRK2oxxD6A59BFomcbrpz7Qhj7ycxKsXzyeiXSo1x/HpiDq1pvaHcbV1Zcgu5SV+xrH4nV6tq0aQ61DcIo2wic6BqfEC9LMf6lUor1jtlkso+jy69N2IqUs9ywXqdCK+dzFaC0+rAYY4qr1OKNGYT36Q/7LIBvWdscA9X7doBc03bcSW55bZ/H+l2ydfX3FtR9EjQoqyWHpZPIBFo1D57xvYiXfK/Cm2QyEgBo1IJoVJrwk/Iz3gt8gEqPG+NdR+Ns12lwCVfGab0beD/laxOcx2ad91w4hQPD7IMxOzg34bWVyi8xf/+m/IGjm07KaLuP+57G476nE5Ynm+TGKJe7LzQ6C0RERESUhBnaaR2kWoyUhmGkfVjS1zPpkOoj9zLlBVJm1UveCb3knfAXx8FGZ6XkpSvfQGZl3CHsemeNCswM9Svpo5TqTJZLIiIiovJlxnYt26fGMWN5ICKiNqPt+1juonTKX/RYwgmuYxJez2QcoRyxTVMaBtr2Yr1HafGaAmBS5UQeKyaWaRuOfSH5YewnMzNb+eT1SqSHnnKPtOsMtQ/Kqo1ypfsStml0YrZ6x4qyLb9GYr1OhcZzlfTKqQ+LMUZfVoo3ZtU8Z0vMn/Wv/vmWUXkpZZx4hchgK5VVuKrlBqxXf8vqfa3w4GnfC/gs8AWmV92BnvJ2Gb3v08AXSZd3Eh0x1DYoqzzk48qKS3Cy8/iE5RVZTCJDRERERERERERERERERERERERERERERERERERERERERJQrTrxCZKAloZ9wcctVaNFac97Gr+oaXNAyEU9Vz0AnqWO7665UVmGDtjHpa/vb94UkpJzzka0ecnf0kLsXLT0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiomjFm2WBiGKsVtfg0pZr85p0JewP9U/c2jo17Xrfhr5P+dpg+4C880FEREREREREREREREREREREREREREREREREREREREREZBU2ozNAVK5ubL0NTVpTzDIH7DjAvh9G2Uegl7wT6qQOaNU82KTWY37wa3wQ+BgbtI1JtzcnNB8Lggsx3D4kZZrLQz+nfG1vuX9uH4SIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyII48QqRQRrjJl05wvEX/L3iLHSVuiSs20fuhRH2oTin4gzc5bkP7wbeT7rNV/1vtTvxykrl16TLK+BCd6lb5pkvom5SF7xX+1rMsv8FPsY070MJ657iPAGnuCYkLK8TtQXLHxERERERERERERERERERERERERERERERERERERERERFZEydeITKYE05MqZyEgx0HpF3XLSow2X0N6tXNmBf6KuH1L4PzEdSCsAt70vf/qf6ZdPmO8g4QQmSV72KRhYzOomPMsipRlXTdClGBzlLHpK8REREREREREREREREREREREREREREREREREREREREREUWTjM4AUTkTELi9akpGk66ESULCVe5LIZA4UYofASxWfkr6PlVTUa9t/v/s3XeYtHdVN/DveVp6CCUJSSAhEEooUkMvoRfpRl5EsWBDuvRUyAAAIABJREFUEBEEFBUEAVFAUCSAoqLgCyogHaQIhg7SXoSE3gIkEHr60877x2w0ZXdmy5Tdnc/nuva6kjm/+Z2z8+x9z13PvWjs0C1XWnZ+AAAAAAAAAAAAAAAAAAAAgM1A4xWYoXvtuFtuu/1WK37f0VuvkuO2Xn3R2Jf3fGXR18/LedmTvYvGLl+HrLgGAAAAAAAAAAAAAAAAAAAAgI1s26wLgHl29t9+LydvOzmPfOQjV/ze6269Tr6w50uXef2Mvd9edPwFvXPJuQ6qA1ecHxZz8skn56yzzrrM64ceeuiq/s6BtbFMAuuJdRLA/PIdAACslu0IAADg4uwjAAAAAMDkOP4GAMwzjVdgRs779Dn5899+Tq573euuasfjylsOX/T1H+z94aKv786uJefaXttXnB8W88IXvjCnnnrqZV5f7d85sDaWSWA9sU4CmF++AwCA1bIdAQAAXJx9BAAAAACYHMffAIB5tmXWBcC8+vH7Fm+QslwH14GLvn5BX7Do69uzdHOVbdm6ploAAAAAAAAAAAAAAAAAAAAANhqNV2BGzv/MOWt6/z61z6Kv78yuJcbvWHKuC/rCNdUCAAAAAAAAAAAAAAAAAAAAsNFovAIzcuHXL1jT+7cssfjuzd5FX98nizdqSZKze21NYAAAAAAAAAAAAAAAAAAAAAA2Go1XYEZ2f3fXVPNtr+05sA5YNHZOnzvVWgAAAAAAAAAAAAAAAAAAAABmTeMVmJG9F+ydes7D67BFXz+7z55yJQAAAAAAAAAAAAAAAAAAAACzpfEKzEjv7qnnPHzL4o1Xvrrn61OuBAAAAAAAAAAAAAAAAAAAAGC2ts26AGB6jtl61Xxg94cv8/pZ/d18d+/3cqUtV5xaLRf2zvz9BS9fNHbfHffMUVuPnFotAAAAAAAAAAAAAAAAAAAAwPzReAXmyPFbr7Vk7LTdn8/tdtxqarV8ZvepeekF/7Ro7P47fnJqdQAAAAAAAAAAAAAAAAAAAADzacusCwCm5/ht114y9qk9n55iJckndn9q0dcProNyxNYrT7UWAAAAAAAAAAAAAAAAAAAAYP5ovAJz5JitR+ewOnTR2Nt2/ke6e2q1vGfXBxZ9/ZpbrzG1GgAAAAAAAAAAAAAAAAAAAID5pfEKzJnb77j1oq+fuffb+ejuT0ylhm/tOTOn7fncorGbbbvJVGoAAAAAAAAAAAAAAAAAAAAA5pvGKzBnTtx+uyVjb9j5lqnU8Lqdb1wydo8dd55KDQAAAAAAAAAAAAAAAAAAAMB803gF5swJ226So7dcddHYO3a+O6ft/txE85/f5+e1F75p0dj1t143R209cqL5AQAAAAAAAAAAAAAAAAAAABKNV2DuVFV+ep/7Lxrbm7159nnPT3dPLP9LL/in/Kh/vGjsgfvcZ2J5AQAAAAAAAAAAAAAAAAAAAC5O4xWYQ/fb5145vA5bNPbpPafmtTvfOJG8X9zz5bziglctGjtu69Vzrx13m0heAAAAAAAAAAAAAAAAAAAAgEvTeAXm0L61b35z/19bMv7c816QT+3+9Fhznr33nDzxnKdkZ3YtGn/Ufr+eLWWVBAAAAAAAAAAAAAAAAAAAAEyHLgcwp+6+48659bZbLBrbmV159Nm/l4/v+uRYcp3T5+TR5zwhX9t7+qLxu2w/MbfafvOx5AIAAAAAAAAAAAAAAAAAAABYDo1XYI495YAn5rA6dNHYuTk3v3nO4/OPF7wye3rPqnN8cc+X84s/fkQ+vee0RePHbb16nnTAE1Y055YlVl0X9oUrrg8AAAAAAAAAAAAAAAAAAACYTxqvwBw7ZMvl8pwDn54D64BF47uzOyef/zd58I9/KW+98B25sHcue+5v7z0rzz3v5Dz0x7+Wr+89fdExB9dBefYBT8t+td+K6t6/9l/09Y/t/mS6e0VzAQAAAAAAAAAAAAAAAAAAAPNp26wLAGbrOtuulb868Nl51DmPzzl97qJjvrb39PzReX+S55z//Jyw7aa58bYb5OitV83hWw7L/rVfKltyXp+XM/d+O1/Y86V8eNdH8/Hd/y97smfJvAfXwXn+gc/KUVuPXHHNR2658qKvn7rns3nyec/IA3bcJ1fecnh21I5c2Bfk8C2HZVtZ3QEAAAAAAAAAAAAAAAAAAAD/SycCINfbdnxectBf5XHn/GG+ufdbS447u8/Ju3adknftOmVN+a6y5cg8+8Cn5xpbj13V+6++9WrZP/vlvJx/mdjbdv5H3rbzPy7x2usOfmWO3Lp4sxYAAAAAAAAAAAAAAAAAAABgPm2ZdQHA+nCNrcfmHw96ce65464TzXO37XfKyw7+61U3XUmSbbUtd9hx2zFWBQAAAAAAAAAAAAAAAAAAAMwbjVeA/3HwloPy1AN+Py848Dm5ztZrjXXua209Li848Dl5+oFPyoF14Jrne9i+D832bB9DZQAAAAAAAAAAAAAAAAAAAMA82jbrAoD15+bbb5p/3Pbi/Nfuj+ffLnxD3r/rw7kwF654nv2yb269/Ra5/z73zi2232ysNR6z9ar54wP+IH907jOyM7vGOjcAAAAAAAAAAAAAAAAAAACw+VV3z7oGWFJV/TjJQZd+fZ999sk1rnGNGVS0el/60pdy4YWXbV6yIX6XfZKtN9mRLdffni3HbcuWI7amrrgl2bcG7Zt2Jjm/s/esPekz9mTvl3Zn76d3Z8+ndmYV/VpWpA7fkm0P3C9bb7ojW668NTmwkl1Jn7s3febe7D1tV3a+5NzkvI23rtuZXfnGnm8OHXOVrUdlR7ZPqaLRNvTfOWxClklgPdlM66RZbadtxO3DSfJ5bD7+TTev5X4H+BuYHJ/t6vjcAGZvM+1LAms379tn8/77X5rPA2DjWss63D7CfFvO385S1ut2gW2a+eDfmWnZ6H9r46x/o38W69EsPtPN+O+4GX8nNo95/fuc1997Xozj33elc6w15zz9Tc7T7zorq/mMN/rxN39XTMNm/TvbTL/XZvpdNgKf9/hd9Jle+JXz0zsXvTf+7O4+eNp1zQONV1jXquqCJPvMug4AAAAAAAAAAAAAAAAAAACAGbmwu/eddRGb0ZZZFwAAAAAAAAAAAAAAAAAAAAAAMG0arwAAAAAAAAAAAAAAAAAAAAAAc0fjFQAAAAAAAAAAAAAAAAAAAABg7mi8AgAAAAAAAAAAAAAAAAAAAADMnW2zLgBG+GGSQxZ5fWeS06dcCwAAAAAAAAAAAAAAAAAAAMCkXDXJjkVe/+G0C5kX1d2zrgEAAAAAAAAAAAAAAAAAAAAAYKq2zLoAAAAAAAAAAAAAAAAAAAAAAIBp03gFAAAAAAAAAAAAAAAAAAAAAJg7Gq8AAAAAAAAAAAAAAAAAAAAAAHNH4xUAAAAAAAAAAAAAAAAAAAAAYO5ovAIAAAAAAAAAAAAAAAAAAAAAzB2NVwAAAAAAAAAAAAAAAAAAAACAuaPxCgAAAAAAAAAAAAAAAAAAAAAwdzReAQAAAAAAAAAAAAAAAAAAAADmjsYrAAAAAAAAAAAAAAAAAAAAAMDc0XgFAAAAAAAAAAAAAAAAAAAAAJg7Gq8AAAAAAAAAAAAAAAAAAAAAAHNH4xUAAAAAAAAAAAAAAAAAAAAAYO5ovAIAAAAAAAAAAAAAAAAAAAAAzB2NVwAAAAAAAAAAAAAAAAAAAACAuaPxCgAAAAAAAAAAAAAAAAAAAAAwdzReAQAAAAAAAAAAAAAAAAAAAADmjsYrAAAAAAAAAAAAAAAAAAAAAMDc0XgFAAAAAAAAAAAAAAAAAAAAAJg7Gq8AAAAAAAAAAAAAAAAAAAAAAHNH4xUAAAAAAAAAAAAAAAAAAAAAYO5ovAIAAAAAAAAAAAAAAAAAAAAAzB2NVwAAAAAAAAAAAAAAAAAAAACAuaPxCgAAAAAAAAAAAAAAAAAAAAAwdzReAQAAAAAAAAAAAAAAAAAAAADmjsYrAAAAAAAAAAAAAAAAAAAAAMDc2TbrAgBYvao6KMk1k1wpyQELP7uTnJ/kB0lOT/KN7t41syJhzlgugfXC+uiSqqqSHJnk2CQHJzkwyY4kF2TwmZyZ5PTu/s7MigQAAAAAAAAAAAAAAABgqqq7Z10DjEVVbUlyQpI7J7lukmsnOSLJQRncZHp+kh8t/PwwyReTfGzh55Pdfe4Myp6pqjosgxtM61Khr3X31aZfEaNU1dWS3CvJXZPcMsmVl/G2nUn+O8kHk7wpybu7e+eESpy6qrpSBp/HzZLcIMlVkxyeZL/8783U5yT5VpKvJPlkkg8keW93XziLmtlc5nW5rKrbJzllRumP6O4zZ5Qb1q15XR8tZaHRyu2S3C3JXTLYTth/GW/9XpKPJvnPJK/v7tMmVSPANFXV45M8a5HQU7v7KVMuZ+IWjhPdIoPvgpsmuXqSq2TQeGu/JOdlcIzoB0lOS/KJJB9Jckp375lFzQCwXs3bdsTFVdXBSW6T5NYZbFscleQKSS6fZEv+99zTN5N8NYNtig8l+UB3755ByQAAMHHzto9QVYdmcP7tFhlcj3aNJIdkcKxxa5IfZ3At2o+SnJXBdSkfS/Kx7v7yLGoGAAAAYOOat+NvF6mqEzI4P3+rJNfJ4Nz8FZJsS3J2BsffvpLBte8fS/KW7v7+bKoFADYjjVfY8KrquCSPSPLzSa64yml2Jnl9kr9L8o7u3jum8ta1qvo/Sf55kZDGK+tMVd09yaOT3D2Di7nX4rtJXpTk+d393bXWNgtVtS3JSUl+Pcnts7rP5Nwkr07ywu7+yBjLY07M+3JZVQ/L4HtzFjRegYuZ9/XRpVXVAUkenuQ3Mrjwda0+kuS5Sf617UADG1hVvTXJPRYJbaqTsVV1dJLfTvIzWV4Tskv7TpJ/TXJyd392nLUBwEY1L9sRF1dVN0nyyAy2KfZbxRQ/yGCb4i9sUwAAsNnMwz5CVW1P8lMZ7BfcJpd9qNVyfTHJ3yf5h+4+Y0zlAQAAALCJzcPxt4tU1eWS/GIG135fZ4Vv353Bw4T/MsmbXOcNAKzVWm/Kg5mpqstX1YuSfC7JY7L6pitJsiPJTyf59yRfrqqTxlDiRnC/WRfAcFV1XFW9JYO/zXtmPOvtKyV5UpLPV9VvjGG+qaqqeyf5TJJXJjkxq/9MDkjyC0k+XFVvXmjiBCNZLv+HZQZmzProshYaC34uyXMynqYrSXLzDJoVfrCqbjimOQGmqqoOSnLHWdcxSVV1UFU9P4MbGR6T1TVdSZLDkvxmkk9X1V9X1WrnAYBNYR62Iy6uqo6sqtdm8HSsh2V1TVeS5PIZNA7/TFW9uKoOGVeNAAAwS/Owj1BV90xyWgbXpdw2q2+6kgzOq/9JktOr6uVVdegYSgQAAABgk5qH428Xudh133+RlTddSZJtSe6c5A1J/l9V3WaM5QEAc0jjFTakqrpVklMz6GY47r/jY5K8qqpeW1VHjnnudaOqDkxyn1nXwdKq6gFJPpnBjdSTcPkkL6yqV1XVARPKMTZVtU9V/W2SNya51pinv1cGO9m/POZ52WQsl5cwroYGwCpYH11SVe2oqr/PoEHKURNKc4skH6qqX5jQ/ACT9MAk+8y6iEmpqhOSfDrJo5JsH9O0W5P8WpJPVdWdxjQnAGxEm3o74uKq6uczOPd0/zFOuyWDBiz/VVXXHuO8AAAwK5t2H6GqtlfVS5K8JeM/H741yc8lOa2qHjrmuQEAAADYPDbt8beLVNX+VfVvGVz3ffiYpr1BkvdU1bOrauuY5gQA5ozGK2w4VfXAJO/O6p9cvFz3T/LxqrrRhPPMys8lOXDWRbC4qvqtJK9JMo0bnU9K8saqWu2TOyeuqg5O8vYkk2yMsn+Sv62qZ00wBxuY5fIyjpt1ATCvrI8uqar2T/LOJL80hXT7JvmHqnr4FHIBjNNvzLqASamq+yY5JcnRE0pxaJK3V9WjJjQ/AKx3m3Y74uKq6veT/GOSy00oxXFJ3l1Vx0xofgAAmJZNuY+wcL7p7Ul+ZcKprpjkZVX1wqpy7SYAAAAAl7Ypj79dpKqukMF13w+YwPRbkjwuyWuqat8JzA8AbHJO3rGhVNXtkrwi0+vceHiSd1bVNaeUbyqqap8kvzvrOlhcVf1Mkr9IUlNMe8ckL59ivmVb+Ht9fZLbTynl46vqmVPKxQZhuVzUuJ/wBSyD9dElLXQk/9ckt5ty6hcu3OgPsO5V1d2T3GLWdUxCVd0xg++BSTcI25rk+VX1sAnnAYB1ZTNvR1zcQjPuZ0wh1RFJXl1V26aQCwAAxm6z7iMsnG/65yQnTjHtb2Rwzg8AAAAAkmze428XudjDNm814VT3S/J65+YBgJWy8cCGUVWHJfm3LL/pymlJPpLki0l+kOTCJIdkcGHrrZLcLMn2ZcxzxSSvq6qbdPeFK617nXpykqvNugguq6qul+SlWd7N1F9L8tok787g7/07Sc5NclCSKyW5dpI7Z7DDeOwy5vupqnpMdz9vFaVP0guyvItb9ib5f0nen+TbSb6Xwed4hQyaKN06yQ0zuGFulN+rqs929z+upmA2F8vlZVXVoZnc03+BJVgfLeqpSX5yGeM6yXuSvDHJR5N8IckPk+zOYHv/0CS3THKnDD6TUV3OK4OnEd6ou7+6qsoBpqCqDkjy/FnXMQlVdUyS12T5x4k+leR9Sc7M4HtxvwzW/9fK4Dvx8suY42+q6ozufuvKKwaAjWUzb0dc3EJjtccvc/iZSd6V5NQMjj9vy+DY81WT3D3JlZcxx82SPCHJn6y4WAAAmKFNvo/wR0nus8yxZ2dwXcppSU5Pck6SHRmcb7puktsmOWqZcz2qqj7S3f+0snIBAAAA2Gw2+fG3i7wkyY2XMa6TfDjJh5J8PYNjcgcmOTLJTTN4YOeoe0LvluS5SX5rtcUCAPOnunvWNcCyVNW/JHnQiGFnJ/nLJH/b3V8bMd8Vk/xaksdkcKPNKE/p7qcup9b1rKr+T5JXZvgNu1/r7qtNpyIusvAEnQ8kufmIoacneVyS13T3nmXMuy3JQ5I8PYMLwIe5IMmNuvtzoyuevKq6fwY3jQ9zXpKTkzynu78zYr4rJHlUkkdn9E115yT5ie7+yjLLZROyXC6uqm6Z5INLhG/X3e+bZj0wD6yPLquqbpxBo8VRDUXfkOSJ3X3qMue9cpLfzeBA+5YRw9+V5C5txxpYh6pqe5JXZdBQapindvdTJl/R+FTVlgyaqIx68sUFGTw19oXdffqI+e6UQaPa242Y84wk1+/u7y+/YgDYWDbzdsTFVdWNMjjGNar55geS/HGSd3T33iXmqiS3SfJnGTQBH2ZnBsee18X+NQAAjLKZ9xGq6icyaNo/6kaN92Rwo8abu3v3iDnvlOSxWd7DA76f5Lju/sEyxgIAAACwCW3m428XqaqHJ3nRiGG7M2jO8qfd/fUhc10xycMzuN77oBFz/lR3/9tKagUA5teom8hgXaiq22Z005V3JLlWdz9pVNOVJOnu73X3M5Mcn0EjklEeW1WHLGPculRVl6uqP0vyigxvusLs/FxG30z9liTX6+5/Xc7N1EnS3bu7+2VJbpLBzcHD7JvkecuZd9Kqap+M7tb6rSS36u4njGq6kiTd/f2FBko3SPKxEcMPTPLsZRXLZma5XNxxQ2Kfn1oVMF+sjy7ruRnedGVPkod39/2W23QlSbr7zO5+TJJ7ZPAE82HulOSnlzs3wLRU1Q2TnJLRJ2I3qkdmdNOVDyS5Tnc/cVjTlSTp7r3d/c7uvn0GDcnOHTL8iCR/taJqAWADmYPtiCT/04j0FRnedGVXkt9MctvufttSTVeSpAfel8HT7R87Iv2OJL+/wpIBAGAm5mAf4bkZ3nTlvCQ/39136O7Xj2q6kiTd/a7uvneSByQZdS3LFTJ4aBgAAAAAc2gOjr+lqq6U5Jkjhp2R5MTufsSwpivJ/9wT+owkN0rymRHz/lVVHbz8agGAeabxChvFH4yI/3OSe3b3mSudeGFj+yFJnjVi6MFJHrzS+WepqvarqrtX1UuSnJ7kCbHcr0sLT8N8/Ihhb01yv+4+ezU5uvu7GdxA/J4RQ++50Oxo1n4pyVWHxM9Ncsfu/tRKJ+7ubya5fZKPjxj6U1V1vZXOz+ZguRxqqcYrP1pOEyRgZayPLquqTkhy4ohhv9jdf73aHN39jiR3zeCC2mGeXlW2sYGZq6qjqupXq+pdST6R0Y1JNqSqulySPx4x7C1J7rqcxryX1t2vzOCzG7Zd+5CquulK5waA9WpetiMu5REZNOZfyvlJ7tHdJ3d3L3fShQYsz8vo5isPqaqjlzsvAABM07zsI1TVLZLceciQc5Lcqbtfvpr5u/t1GTRn/MaIob/sXBMAAADA/JiX428X8/QkhwyJfzuDpivvX8mk3f3lJHdM8qUhw45M8ocrmRcAmF/Dng4O68JC04N7DBnyySS/0N171pKnu3+3qo5L8sAhw05K8uK15JmEhZPvRyS5RpLrJLl+khOS3CSDJyey/t09ybAGH99I8pDlPDlnmO7eVVUnZbDcHDlk6GOTvG8tucbg4SPij+/uz6928u4+r6oekORTSS43ZOjDkvzOavOwoVkul7ZU45VVL5PAUNZHlzXqu/nk7v6ntSbp7k9U1a8m+b9Dhl0zyb2TvGGt+QCWo6r2TXK1DLbJrpvkhklukcExgXnwmAw/CfvfSR7Y3ReuNkF3/3dVPSjJO7P08dM/SnLf1eYAgFmwHTFQVZfP4Lt8KZ3kwd39rtXm6O7nVdUtkzxoiSHbMmg+/tTV5gAAgLWyj5DHjYg/rLs/vJYE3f2FqrpPko8m2brEsCOT3DqzP/8GAAAAwBg5/pZU1bFJfmXIkL1Jfma194d191kL1/p9JEsff3tEVf1Zd39vNTkAgPnhSQlsBCeNiD+8u3eOKddvJblgSPxWVbV9TLnGoqr+LsmFGdxwe0qSv07yqCS3jKYrG8mov/MndPcPx5Gou8/KoFvoMPdeuPh8JhaaIN1wyJCvJ3nJWvN099eT/OmIYfdaax42LMvl0pY60KfxCkyG9dHFVNU+GTQ6WcpZSf5gXPm6+xUZHIwf5ufHlQ9gKVV1UFWdleT8JKcleWOSP0vykMzJidiFYzLDmnRemEEzslU3XblId5+S5E+GDLlPVd1grXkAYBpsR1zGbyW5wpD4s7t7HM01n5Bk2EMD7j6GHAAAsGL2EZKq2i/Drwd5a3e/ahy5uvuTSV44Ytjtx5ELAAAAgNlz/O0SHpmlG6IkyYu7+91rSdDdH8/we8wOSPIba8kBAMwHjVfYCO43JHbKWp8scnHd/c0kbxsyZP8kVx9XvjG5YpZ++jIbxz2HxL6e5F/GnO/vknx7SHx7Zttw5MQR8X/o7t1jyvWCDG7OW8p1qurAMeViY7FcLu24JV7/3FSrgPlhfXRJd8jgAPhS/qa7fzTmnMNuvE+Se1aVpofApG1NcqVZFzFj90py+JD433f3p8eY7y+TnDskrvEWABuF7YgFVbUtya8NGfKlJE8eR67u/loGF9At5eZVdblx5AIAgBWyj5DcNYPrwJbyrDHn+/sRcU2eAQAAADYPx9+SVNX+SR42ZMi5SZ4ypnTPSbJ3SPxhVVVjygUAbFIar7CuVdXBSW48ZMirJ5D2LSPix0wgJ3Osqq6f5MghQ17W3cN2/lasu3cmeceIYbcbZ84VGnVByX+MK1F3n5PkP0cMO3Zc+dgYLJdLW/huXuog4OenWQvMA+ujRd1tRPylE8j59gxv1LZ/kptMIC8Al3T/IbHOoFHK2HT395O8fMiQBzsZCwAbzv0zfD/7Cd09bP9vpV41JLY1jj0DAMCs3GFI7LtJThlnsu7+ZJIzhgxxPRoAAAAAm81JSS4/JP7y7j5rHIm6+0tJPjhkyLFJbjOOXADA5qXxCuvd9UfE3zWBnKePiHv6IOP2EyPiY2syssJ5bzihvMtx9Ij4uJs7fHFE/OAx52P9s1wu7ZpDYhqvwPhZH13WsM/kawsHzsequ89P8qERw9bDOhpgs7vLkNiHu/tzE8g57DvxKkluO4GcAMDk/OqQ2GeTvHbM+Uadxzp8zPkAAIDlGfZAoHd3d08g57Br0lyPBgAAAMBmc98R8b8ec77Xj4iPqgcAmHPbZl0AjHC9IbE9Sb4wgZzfHRHfMYGczLdrD4ntTfLhCeX92oj41SaUdzkOHBH/3pjznT0ifv6Y87H+WS6Xdo0hsUl8L8O8sz66rGGfyQcmmHc9fyYAm15VHZFBo5OlvG9CqUfNe9ck751QbgBgjKrqoCR3HDLk5HHfXNndZ1bVg5Lss8SQz44zHwAAsGzDrkk7bUI5h12T5no0AAAAADaNqtqR5G5Dhnyhuz855rSvT/KsIfGfTPKEMecEADYRjVdY744cEvt6d++aQM59R8R/NIGca/HpJIes4n13GHchrNqwm4e/2d2TavoxqsnQav6uxuXCEfGDM97mK6OeKvrDMeZiY7BcLu24JV7/VnefM9VKYD5YH11MVe2X5KpDhnxxgunX5WcCzJXdSU5ZxfuunOHfJxvFdUfEJ9J8a+Fm6e8nucISQ249ibwAMGbzvh1xkbsm2b5EbFeSV04iaXe/ahLzAgDAGsz1PkJVVQa/y1K+NKHUw65JW2/XowEAAACwenN9/G3BiUkOGhJ/07gTdvfnq+rLSa6+xJDrVtWVunvUNeEAwJzSeIX1btgG9qROOB8zIv79CeVdle7+w9W8r6rG+tRG1uSwIbGvTjDvnhHxpS5An4azRsSPyngbr1x/SGxvkm+PMRcbg+VyaUs1XvncVKuA+WF9dEmHJqkh8a9OMPd6/UyAObHQ5O7Elb6vqn4xyUvHXc8MHD0ifvoEc/8gSzdeuXlVbenuvRPMDwBrYjvif9xrSOx93T3OY84AALBu2UfIAUm2DInP4pq0dXU9GgAAAACr5/hbktEPjH/XhPJ+NEs3XkkGD1pSPRN2AAAgAElEQVR7w4RyAwAb3LATiLAeDGu8ct6Ecp4wJNZJPjuhvMyvA4fEfjDBvEeMiJ87wdyjfH1E/G7jSlRVhye52ZAhp3b3LD8LZsNyubSlGq98fqpVwPywPrqkYZ9HMp+fCcC8uOKI+CRvTBj2/XJQkutOMDcAMD7Djiu/dWpVAAAAszbserRkAtekVdUVkxw7ZMip484JAAAAADN00xHxD04o78dHxG88obwAwCag8QrrWnf/enfXEj+3GXe+qtqa5P5Dhpza3Z4wwrgdMCR2/gTzHj8ifsYEc48yqnPpQ6tqXN9hj0tSQ+LvH1MeNhbL5dKuscTrGq/AZFgfXdKwzyOZz88EYF7sNyL+4wnmvmBEfKnmhADAOlFVhya56pAh751WLQAAwGx19xlDrker7n7HBNI+MMOv1XzfBHICAAAAwKwMa3Dy9e7+3oTyjmq8cr0J5QUANoFtsy4A1pmHJjl6SPzN0yqEufKnSS63ROyzE8x7vxHxL0ww9ygfSPLDJIcsEf+JJL+R5OS1JKmq45P85ohhL1tLDjYsy+Uiqmr/JEcsEf78pcbuSHJikttlcNDs2IX37p/BNui5SX6Q5CtJPpNBx+K3d/dZk6gdNjDro0v6RpJHDYn/9ySSVtVRSW4yYthM19EAc2DPiPj+E8w9qunLMRPMDQCMx7CLunYm+cS0CgEAAObLwrnzxw0ZckFGP6AIAAAAADaEqrpKksOGDJnI9d7LnPs6E8wNAGxwGq/Agqq6epI/HzJkT9bY5AEW090vn3bOqjo2yR1GDPvQNGpZTHfvqqq/SPKUIcOeU1Vf6e63rCZHVV0hyRuS7Dtk2Ce7+wOrmZ+NzXK5pGskqSVin0+Sqjo6yROSPCTJ5YfMdfDCzzEZNGh5ZJI9VXVKkhcmeV13j7q5FjY966NL6u4zkrxgBql/KUuv/y4y63U0wGZ37oj4IUm+PqHch46Ia7wCAOvfjYbEPt/dFy4VrKrrJLlzklsluVYGDfwPSrJPkvOTfD/JV5N8KoOm4m/r7u+Pp2wAAGAT+LMM9iWW8nL7EAAAAABsIsePiH9xgrm/nWRXku1LxI+eYG4AYIPbMusCYD2oqusleWeSKwwZ9nfdPakbeGDa/jRL70Re5O3TKGSIv8hgh3cp+yZ5bVX9dlWt6Pts4UL5DyY5bsiwvUl+cyXzwhpthOVyqWVmd5IzqurZGRwEe2SGN11ZytYkd0ry6iSfrqp7r6pKYK02wvpoaqrqsAwaSg1zand/cxr1AMyxM0fEj5pE0qranuSIEcOcjAWA9e+GQ2KnXfqFqtpeVQ+vqk8sxF+Q5GeTnJDk8CT7Z3As68AMtgVun8Hx5Fck+XZVvamq7jHeXwEAANhIqmpLVT0zyW8PGXZeBo1ZAAAAAGCzuOqI+Jcnlbi7O8OvNbxcVR00qfwAwMam8QpzraoOqaonJflIkmOHDP1ikt+ZTlUwWVV1UpIHjRj2xe7+r2nUs5Tu/lGSkzLoNLqUHUmel+RDVXVSVW0bNmdVHV5Vz0ry0Qx/mlCSPKe737+SmmG1NspymeQaS7x+XgbL1eMyulnDcl0nyRur6pVVtZomLsAqbKD10VRUVSX5mwyeZD7MK6dQDsC8++qI+AkTynu9jN7GvdyEcgMA47PUca3kUhd1LTQDPi3Ji5LcaBW5tiX5ySRvraoPVdWtVzEHAACwgVXVbZO8L8nvjRj6O939pSmUBAAAAADTcpUR8TMmnH/UwzSvPOH8AMAGNfQGddioFp5GfIUk3+3uPQs3TO6XwY0wV09ygyR3SnLvhdeHOSvJ/bv7nAmWDFNRVTdJ8o/LGPr8SdeyHN39vqr6pST/kOHfWSckeVWS71fV+5J8Isn3klyQ5IoZ7BTfNsmNs7ymY/+Y5ImrrxyWb4Mtl8ct8frBCz+T8OAkJ1TVvbv7sxPKAWTDrY+m5ZlJ7jdizPkZNGcBYLL+O8meJFuXiE/qhuY7L2PM/hPKDQCMz5FDYt9M/ufc0p8nedQY894iyXur6vlJfre7d45xbgAAYMqq6tAk53X3uQv/vz2D44NHJrlmBscp751BQ+dRXtjdL55UrQAAAAAwI0eNiJ854fzfGhH3YGAAYFEar7BZHZPkC0ky6LmyaqcmeUB3f34cRcEsVdUtk7w5o28IOz3J306+ouXp7v9bVWckeXmGXxyfDBou3XfhZzX2JHlKdz99le+HFdmAy+VSjVcm7RpJPlBVd+nuj8+oBtjUNuD6aOKq6hlJfncZQ0/u7u9Muh6Aedfd51XVpzJoqLmYO1fVEd097qdhPGgZY0Y19QUAZmihOf+wJ1adUVX7ZNDc+z4TKGFLkt9OcquqesAEtlcAAIDpeV6Sn13j9Wh7kzwliWtTAAAAANiMRt379b0J5z9nRPyQCecHADaoLbMuANapc5L8cZKbarrCZlBVv5TkXRk0Jhnl0d19/oRLWpHufleS62ZwAcsFE0pzWpLba7rCtGzQ5XKljVfOSfLvGTwp+LFJfjXJo5M8I8k/ZeFpwst0+STvqKrjV1gDMMIGXR9NTFUdVFX/muT3lzH8mxnsNwAwHW8aEtuW5FfGmayqbp/k5ssYOqpxGQAwW4cl2T4k/uMk/5rJNF25uFskeU9VXXXCeQAAgPXrQ0lu2d1P6+6edTEAAAAAMAEHjoj/eML5R913dsCE8wMAG9S2WRcA61AneWGSl3T3pBo8wFRU1SFJnp/koct8y99192snWNKqdfePkjy2qt6VwUXw43yi+DlJHtvdHxjjnLCojbpcVtWOJMu9KeS9GTRbeWt37xwx7w0yeOLvQzP8Bphk0BTidVV184V1ArAGG3V9NElVdcskL0tyzWUM35PkZ7v77MlWBcDFvDLJk4bEH19VL+vur601UVXtm+SvljncMVYAWN+OGBH/7ST3HDHm20nemeTLC/+9K4OLsY5Ocv0kt8ryLs46LslbquqW3X3uMsYDAACbx+cyaOj/8VkXAgAAAAATNOp+r0lfez3qftAdE84PAGxQW2ZdAKxDleQJSb5eVa+sqqvNthxYnaq6T5LPZPk3U783yW9OrqK1qaqbVNU7krwx4226kgy6qb61qt690AQCJmKDL5fHZvS243eS/HR33767Xz+q6UqSdPd/d/cvJ7l2Br/vKNfKoKkLsAYbfH00dlW1f1U9K8n7s7ymK0ny6O4+ZYJlAXAp3X1akncNGXJQkr+vqlEN/YZaeP/Lk/zEMt9y/lryAQATd9CI+LCmK29OcuskR3T3z3X3k7v75O7+m+5+Xnc/prvvmuRKSX4mg33tUa6fwQMAAACA+XLtJG9J8tWq+sWqcu0mAAAAAJvRviPiI+8zWaNR1/Ot6fpCAGDzcvIOllZJHpzks1X1K7MuBparqo6pqtcleUOSI5f5to8muW93j+rqOXVVtaOqnpnkw0nuMuF0Jyb5eFU92QUujNMmWS6PGxH/aJIbd/erVzN5d38lyR2T/Nkyhv9yVd16NXlg3m2S9dFYVdX9kpya5PFZ/j7yk7r75MlVBcAQTxkRv1OS11fV/quZvKqOTfIfSU5awdvOW00uAGBqRl3UtZhvJjmxu+/d3R/s7h42uLsv6O5/TnLDJH+yjPl/vqpOXEVdAADAxneVJC9N8p6qOnzWxQAAAADAmI162PauCee/cES8JpwfANig3FQOo+2T5CVV9exZFwLDVNV+VfXkDG4cvt8K3vrmJHfq7h9OprLVq6rLJXlbkt9Lsm1KabcleWqSN6z2Rj24yCZbLoc1Xvlwkjt397fWkqC793T37yX582UMf+pacsG82WTro7GoqmtX1VuSvC7JMct8264kD+/up0+uMgCG6e73JvnXEcPumeSjVfXAqlrWSdKqOqSqfj/Jp5LcboVlabwCAOvbShuvvC+DBsOnrDTRwvGtP0jyxGUMt28JAADz7TYZHMe8zqwLAQAAAIAx2j4s2N27J5x/1P1nk278AgBsUNO6iR2m7dtJfuli/79vkoOSHJjk6CTXXfg5cAVzPq6qzuju546tShiTqvrpJM/O8m8aTpI9SZ6W5GndvXciha1BVR2U5D+T3GgZwzvJuzN4Kvl7k3wjyXeT7ExyhSRXSnLjJLdNcu8kRyxjzp9M8tqquud6/HxY/zbjcplBg5VLOzfJQ7r7x2PM8/gMGr0Maw5xl6o6vrtPG2Ne2JQ26fpo1RYauz05yaMy4sD+pXwjyYO7+/0TKQyAlXhkktsnufKQMccneU2Sz1bVvyd5V5IvJPlekh8mOSDJYUlOSHKXJD+VwbGjpZw5JJ/GKwCwvq2k8cppSe6z1gak3f2nVXVikrsPGXabqrpFdy92zA0AAFif/jrJOxf+e0v+93q0yye5TpLrZXBObrlPzb1Kkjcv7Bt8d8y1AgAAAMAsDG2sUlXbJtx8ReMVAGBVNF5hU+rus5P8w7AxVbUlgycYPzDJzya54jKmfnZVfbC7P7jmImEMquqGSf4yyR1W+NavJPmFhSeFrzsLTyR/WZbXdOUVSf6kuz+zRPyMhZ//TvKyqtqe5MFJnpTkmiPmvlsGN53/wXLqhmTzLpfd/ZcZ/F7TyNVV9Zgk98rwpgg/m+QPp1ETbESbdX20Wgvb/w9L8owMbrRfiVcleXh3f3/shQGwYt393ap6QAYNOEfdSH2dhZ/fXkPKd2awX/nQJeJnr2FuAGDy9lnmuAuT3HutTVcu5nFJ7prBzZhLeXAWb3YMAACsQwvnz4aeQ6uqKye5f5L/k+TEZUx79SQvT3LPtdYHAAAAAOvAqMYm+2REc5Y1GnXPtAetAQCLGnahH2xq3b23u0/p7kdncAL7aUnOH/G2LUn+auGmTZiZqrpSVb0oycezspup9yZ5QZKfWOc3U/96BhehDPPDJCd1988OabpyGd29q7tfnkFTlxct4y1PrKqV3rDOHJqD5XKquvsrSV4yYtjdplELbDTWR5dVVbdN8l8ZrFdW0nTlzCQP6u4HaboCsL5094eSnJTkggmn+nwGDf+OGTLm9AnXAABMx99095fHNVl3fzrJK0cMu9+48gEAAOtDd5/Z3S/u7jtmcK5uOc0W71FV951waQAAAAAwDaOu6Vvuw1NW64AR8R9NOD8AsEFpHgFJuvvH3f3kDJ48+IMRw2+axIluZqKqtlbVbyX5QpKHZ2Xr8Y8nuVV3P6q7z5lIgWNQVZdL8scjhp2d5I7d/ZrV5unu87r7EUl+b1RJSZ662jxsfvOwXM7QqBtTblJV+02lEtgArI8uq6qOqqpXZPDkwZus4K17k7w4yfHd/aqJFAfAmnX3mzN4CuxZE0rxhSR37u7vZNC0dylfnVB+AGA8di5jzJ4kfzqB3H89In5sVV15AnkBAIB1oLvfk+R2Sf7vMoY/bcLlAAAAAMA0jGpsMunGKweNiGu8AgAsSuMVuJjufn+Su2Vwge0wvzyFcuASqurmSf4ryV8mOWQFb/1ukkckOaG7PzKJ2sbs4UkOHRLvJD/d3Z8cR7Lu/rMkLxgx7A5Vdbtx5GNzmaPlclY+lOTHQ+Jbk1xjSrXAumZ9dElVtaWqHp3ktCQ/s8K3vz/Jzbv7N7r7h+OvDoBx6u7/THLjJG8Z89SvSXKz7v5GVR2U5KghY7825twAwHhduIwxH+vub407cXe/N8mXRwxbSaNQAABgg+nuXUkemuR1I4b+RFXddAolAQAAAMAk/WBEfCXXuq/GqMYr355wfgBgg9J4BS6luz+a5EUjht2jqg6YRj1QVdur6mlJPpDBzWTLtTPJc5Ncs7tf1N17J1Lg+P3CiPiru/ttY875xCTfGTHmQWPOyQY2h8vlTHT37iQfHjHs6GnUAuuV9dFlVdWxSU5J8hcZfeD84r6S5MHdfdvu/thEigNgIrr7m939k0nuncF34lp8NMk9u/uk7r6oCeB1k9SQ93x1jTkBgMk6fxlj3j3B/KPmPnaCuQEAgHWguzvJbyU5b8TQk6ZQDgAAAABM0vdGxK884fzDHgZ+YXd/d8L5AYANSuMVWNzTkgy7+XRbPIGQKaiqozK4cfgPk2xdwVtfneT47v6d7v7hRIqbgKo6PsnxI4Y9adx5u/ucJM8cMezO487LxjRvy+U6MKop0kqaKsCmYn10WVV1/ySfTHLbFbztR0mekMFn8i8TKQyAqejuN3f3bZLcMMkzMmjit3PE2/Yk+ViSZyW5cXef0N3/fqkx1xvy/r0ZNO8CANav5Vw09dEJ5v/QiPhVJpgbAABYJ7r79CQvHTHs5tOoBQAAAAAm6Bsj4pNuvDJs/lG1AQBzbNusC4D1qLu/U1UfzfCT2TdJ8t4plcQcqqqbJXlTksNX8LYPJXlsd39wMlVN3C1GxD/d3Z+bUO7XJHnekPjxVXVYd49qAsEmNqfL5aydNSK+fSpVwDpjfXRZVfWkJE9NUst8y64kL07y1O4e1VkdgA2kuz+V5FNJ/rCqdiS5WpJjkhySZN8MmrGcneTrSb7Y3ReMmPKEIbFPd/e5ay4aAJik5RzTneQTrb44In7gBHMDAADry5uTPHJI3IPAAAAAANjovjYiPunGK8Our//8hHMDABuYxiuwtHdkeOOVw6ZVCPOnqu6U5PVZ/gXXX0vyu939L5OraipuNCL+9kkl7u7Tq+q0JMcPGXbVLO8ifTahOV4uZ23UTbDnTaUKWEesjy6pqirJC5I8YgVve2OSx3W3g+cAm1x378zgZOla1vnDjg99aA3zAgDT8Z0kneGNOifZkPP7I+L7TTA3AACwvrw7ye4sfd3mIVW1vbt3TbEmAAAAABinL4+IX3NSiavqyAw/B+/aceD/s3fn8dLf493AP1cWsslqiSCJtZaKprZWNSKNpaHULiRElRJLq08fwaOKouiC1lJKKUoitPZdNY19acSDpsSSEKEIIpE91/PHnHjuJGd+c5aZOefc5/1+vc7Lbb7X73td92Rm7nPOzO/zAxhL8Arr0sLViB89UHJKd394xmN8e8L6HjPuzyZVVXfM6GTgnZZQfkGSv0jywu4+b6aDzcdQqmiS/PeM+38lw8ErV59xf9apTf68XGuTnnc/mcsUsE54PVrUi7P00JWvJnlCd88szA2ArUtV7ZzklgMlglcAYJ3r7gur6owk1x0omxT+uxqTfiZ3QiUAAMzJwnttQxcFen13nz2r/t19flX9MMNX9d0jLgoEAAAAwMb1fyesD30eb7VuMmH9izPsDQBscIJXWK+2SfJ3A+vvTzLr4JUfTFj3/GHqqur6Sd6epZ1M/bEkj+zurSltc/cJ65Oel6s1af+9Ztyfdcjzcs1dc8L6aXOZAtYBr0dXVlV/mOSJSyi9JMkLkzy7u2d5Mh0AW5+Dkmw/sC54BQA2hlMyHLyy5wx7TwryP2eGvQEAgMu7Z5JjBtY/m+TTM57hBxkOXvGZNAAAAAA2rO7+SVWdnmTfMSWzDF65+YT1z8ywNwCwwXmTjnVp4eoelyTZdkzJuG+8p2nSB11/PocZ2ESqarskx2dyuMclSZ6Z5Hndfems55qzSf8uzfoD6GdNWL94xv1ZZzwvk6r6tYz/0NcF3f2+GY9w24G1C5KcPuP+sC54Pbqyqrpdkr9aQunpSQ7v7k/MeCQAtk6HDqyd1t3/NbdJAIDVOCXD/67PMnhl0t5nzLA3AABweedOWN83sw9e8Zk0AAAAALZ2n8n48z93q6obdfepM+h7+4G1s5P4vB8AMJbgFdazMzP+6oP7V9U2Mz6Z9BoT1n84w95sTk9JcusJNT9L8oDu/sAc5lkLkz48Mulk89XadcL6z2bcn/XH8zJ5TJKHj1m7tKp27u7zZ9G4qm6S5NoDJV/o7otm0RvWIa9HW6iq7ZO8LpN/pv14kvt09w9mPhQAM1dVO2Z8SO+F3X3hDNred2DtbTPoBwDMxqeTPH5g/eZJZhUwPOmKWl+fUV8AAODKvjth/YZzmGHoM2kXZXQCCAAAAABsZCcmuf/A+t2TvHQGfe8wsPbv3X3JDHoCAFuJbdZ6ABjwzYG1nZLcbMb9h070Tobng2WpqmslOWZC2dlJ7raVn0w9KdBonxn3nxS4dNqM+7OOeF7+wtDjfpskvzLD3g+YsP7vM+wN64bXo0U9OpN/Hjgho/tE6ArA1uM/MgoaW+zrFdNuVlW3S7L/QMlbp90TAJiZEyes32mGvX99wvrnZtgbAAC4vEmf95p0IYRp2Htg7bQZX4gMAAAAAObh3yas333aDavqRkluNFDywWn3BAC2LoJXWM9OnrB+uxn3n/Qh2y/OuD+by+OS7DKwfn6Su3f3J+c0z1r5xoT1g2bc/8YDaxdl8nxsXTwvRyb9e/zbs2haVdsnOXpC2btm0RvWIa9HW6iqbZL8yYSyTyQ5rLvPncNIAMzPOQNr15tBvz8YWDsjyadm0BMAmIHuPi3DJ1geVFU7TLtvVW2X4d9rf6O7z5x2XwAAYKwvTFif6efRqurWGX7fz+fRAAAAANjwuvtLSb4+UHJIVe0+5bb3GRopydun3A8A2MoIXmE9m3Ti6D1n1biqdk5y6EDJT5N8eVb92VwWwgV+f0LZEzfJydSTPkByyCw+/J4kVXXNJAcOlJzU3efPojfrj+fl5Xx6wvrDq2rbGfR9RJJ9Bta/mVGwAmzVvB4t6rAk+w+s/yDJA7v75/MZB4A5+s7A2tDPc8tWVddIcvhAyRu7u6fZEwCYuX8ZWNstyZEz6HmvJNccWH/nDHoCAABjdPdZSb42ULJvVd1yhiPce8L6x2fYGwAAAADmaeg9+h2TPGxajaqqkjxqoORj3X3GtPoBAFsnwSusZx9IcunA+t2rarcZ9f7DJEPhDu/r7qHZYDl+N8m1B9aP7+5/mNcwa+xjGX7eXy3Jo2fU+35JamD9/TPqy/rkeblg4ZdLJw+U7JfkkdPsWVV7J3nBhLJXOtGVTcLr0ZU9dsL6UX4xDrDVOmVg7epVddsp9npGRm/uLuaiJH83xV4AwHy8ZcL6k2YQMHz0hPVjp9wPAACY7H0T1h88i6YLn3N7zISy98yiNwAAAACsgddOWH/iwkVKp+G+SW48sP6aKfUBALZigldYt7r7R0k+OlCyU0YBKVNVVfskeeqEsjdPuy+b2v0H1i5M8uR5DbLWuvvHGYWvDDmmqnadZt+q2jnJn04oO26aPVn3PC8vb9Lj/wVVdYNpNFpIGn5Vkt0Hys5K8opp9IMNwOvRFha+B7jLQMmHuvu985oHgLn75IT1oStWLFlV/XqGT4A4TsgXAGw83f2ZJCcNlNwsyTHT6ldV907yWwMln+/uT0+rHwAAsGTHT1g/ekYXA3tGkmsMrJ/U3f89g74AAAAAMHfd/V9JThgouWEmBxVPVFU7ZfjCv2fFOWEAwBIIXmG9e/WE9SdX1U2m1ayqrpbkXUl2GSg7Ncm7l7Hn66qqB76+tcqx2cAWrp5514GS13T3t+Y0zopU1VETHuNdVfsvY8tJiab7JPnHFQ+8uL9Mcu2B9Y9091em3JN1yvNyUf+Q5PyB9d2TvLeqrrPKuSvJi5P8zoTS53f32avpBRuB16NF3SXJULL501c1MABTVVXPnPTvwDK3/FiSnw6sP7yqbrGKkbPwPe2xSbYbU3JpRj9DAgAzNIPvIy7zwgnrz6yq26xw719YOEnzJRPKnrfaPgAAsFlM82eE7v5YklMGSnZP8lerHnoLVXVEkidNKHvxNHsCAAAAwFKt4Xv0z62qG65w78u8PKMQl3H+sruHzocBAEgieIX1761Jvj6wvnOSd1bVtVbbqKr2yih05VcnlD63uy9dbT9YcIeMPrAxzhvmNcg68qYkp0+ouV9VvWAhpGFVquq5SR47oew5q+3DhuJ5eQXd/cMkfzeh7JeSfLaqhkIixqqqPTP6d/+JE0q/FB84Y/PwenRlhw2sfXXh6uUAbKW6+8IkbxkouUqSY1d6Ndqq2jfJh5PsO1D29939xZXsDwCsC8cnOXlgffsk719N+EpV7ZjR+037DZR9urv/ZaU9AACAVZt0wsfvV9UfTaNRVT04owsMDX3G5WtJ3jyNfgAAAACwXnT3e5N8eqDkakneVlV7rGT/qnp2kocPlJyZ5G9XsjcAsPmMu3IrrAvdfXFVPSPJPw+U/VKST1XVQ7r7kyvpU1WHJHl9kutMKP1kkn9aSQ8Y444Da+cluWlV/dK8hrmCM7r7Q/Nu2t0XVtXTkrxxQumTk9ygqh7V3T9Zbp+qunaSf0hyjwmlb+3uf1/u/mxonpeLe06SB2X4JNRrJ/lAVb03oyv6fnhSWFlV7ZPk9zK6uteeE2a4MMlR3X3RkqeGjc3r0ZUN3SenV9VR8xpkESd09zfXsD/AZvHiJI/M+EDpX07y71V1n+7+1lI3rapDMwo123ug7AdJnr7UPQGA9ae7L6mqxyT5RMaf9LhXko8s/O55KPTtSqrqOklel+Q3B8ouTvIHy9kXAACYujck+d9JbjZQ86Kqun6SY1ZyRdyq2iXJ3yR51BLKn+h9cAAAAAC2Uk9I8qmM/8zfrTJ6j/53u3vShbyT/OKCKC9O8ugJpX/a3T9f8qQAwKYmeIV1r7vfVFWPTHLIQNn+ST5eVccneWmSj3V3D+1bVVdJcrckf5zk4CWM8tMkR07aF5bpVgNrO2Z0xZu18oEkaxLw0N3/XFX3TXLfCaX3T3LXqnpZklct5aS6qrpRksdlFPSw64Ty7y3Usrl4Xi6iu8+uqsOTfDTJVSaUH7bw9eOq+liSryQ5I8nPM/r+c48k109y24zu73G/QLuiP+7uz69gfNiovB5toap2SnKjgZJDF77WyuFJBK8AzFh3f6WqXptR+Mo4v5LkS1X1wiQv7e6zxhVW1YFJjskoZHCSo7v7x8saGABYd7r7U1X13AwHqu2a5LiqelySZ2cUtnnxuOKqulaSI5M8I6Mrcg15VnefvMyxAQCAKVq4GNhjM3r/e1woY5I8Mcl9qxlSNhQAACAASURBVOqvkryxu380ae+q2i+jsMXHZPTe+CQv6+73L6EOAAAAADac7v5sVf1tkj8aKDswyRer6plJXt3d5yxWVFXbJXlARu/jD32uPEne092vWcHIAMAmJXiFjeIRSU5KsudATSV54MLXD6rqE0m+mtGJ3ucm2X7h+L2S/GqS2yfZYYn9L8kodOXrK5oexvuVtR5gHTsqyQ0y+T7aNclTkzy1qk5LcmKSbyf58cLXThk992+Q5I4ZhT0sxYVJHtzd/7PsydnoPC/H6O5PVNVDkhyXZNslHLJHkt9Z+FqtF3b3y6awD2wkXo8u74AsPagJgK3bk5PcPcl1Bmp2TvKsJE+vqhOSfDbJd5JckGS3JDdJcqckN11iz7/o7reueGIAYL15RkZXtr/fhLqDknw4yU+q6kMZBW5+P8k5Sa6e5FoZfQDsN7K0n1nfm+S5K5wZAACYou4+oar+OsmfTCi9bkZXz/3rqjo5yX9m9LPBT/L/f9+4Z5J9k/xmRhcQW6oTM7poGAAAAABszZ6W0Tldtxmo2S3Ji5I8a4vP/P0gSWf0/vwtk9wlw+eXXub7Gb64GwDAlQheYUPo7tOr6sFJ3p3kKks45BpJ7j2l9pckeUR3v2tK+0GSpKq2T3LjtZ5jverun1XV3ZO8J8mtl3jYfgtfq3VJkod19wlT2IsNxPNysu5+W1XdI8mxSXafU9vndPefzqkXrAtejxZ187UeAID1obvPqqoHJflIkqtOKN8+yaELXyv1jiRPX8XxAMA60929EDB8bJL7LOGQ3TO6atZqfDrJg7q7V7kPAAAwPU9NcquMTtiYZNuMLvb1q1Pq/bkk9+zuC6e0HwAAAACsS919XlXdO8lnMnzBtWR0ge7VXAD4p0nu3t3fX+HxAMAm5WrhbBjd/aEkD0kyzzebz0ly7+5+wxx7snlcK16HBy38kHunJG+ZY9vzk9y/u4+bY0/WD8/LJejuDyQ5IKMTUGfpBxk9H4WusBl5PbqyfdZ6AADWj+7+eJIHZ/a/J3p9Rt+TXjrjPgDAnC2c3PjAJC+fQ7v/SPLb3X3OHHoBAABL1N0XZxTGeOKcW787ycHdffac+wIAAADAmuju7yY5OMm3Ztjmp0nu0d1fmGEPAGAr5UQ+NpTufltG32B/dw7tPp7kwO5+zxx6sTntvdYDbATdfW53PyjJw5P8cMbtTknya9399hn3Yf3yvFyi7v52d/9uknsl+dqUtz8vyUuT3HTh337YjLweXZn7BIDLWfjZ7bczCuybtkuSPDvJUQsnXwAAW6Huvri7H5fkYRl9AGvqLTIKdjm0u388g/0BAIBV6u5zkxya5JVzaHdekj/O6EJg586hHwAAAACsG919apLfyOi8zWn7UpLbLFzUDQBg2QSvsOF09yeT3CzJSzKbqxp/PcmRSQ5a+GYeZsXJw8vQ3a9PcuMkL0gy7Sv+nJ3kaRmFLZ085b3ZWDwvl6m735Xkl5LcLcnbMzpBdaX+M8lTk+zb3U/o7rOmMCJsVF6Prsx9AsCVdPe/JTkgybEZndg8DZ9Pctvu/rPuntaeAMA61t1vSHLzTPd7ipOT3Lm7H9fdF01pTwAAYAa6+8LufkxGASxfnkGLS5K8LsnNuvtF3X3pDHoAAAAAwLrX3d9NclCSJyc5Zwpbnp/k+RldiNu5oADAipVzB9jIqmrvJI9NcnhGgQwr9bMkH0jy2iTv9+Y2rG9VtVuSIxa+bp+kVrjVSUn+Kclru3vaYS6wKS08P++QUQrx7TIKStgryZ5JtsvoCl7nJvlektOTfDXJZ5N8oru/sxYzAwCwdaiqA5M8IckDk+y8zMM7yYeTvCLJO7t7NYGCAMAGVlW3SPKkjL6nuNoyD78oyQeTvDLJu4W4AQDAxlNVleSwJI/K6AIkO6xiuy8nOS7JP3b3GVMYDwAAAAC2GlW1V0bvz/9ekmsv8/D/SfLmJH/d3d+e9mwAwOYjeIWtRlXdLKOTvG+dUQjL9ZJcI8mOSa6a5MKMEgzPSnJGkm9mdLXBz2V0srerDcIGVFVXT3JIktsk+eUk+2YU9LBzRs/9CzIKevifJN9O8l8ZPe8/6gdrAACArU9VXTXJwRkFAv5Kkv2T7JNklyRXySiA96wkP0jyhSQfT3JCd5+2BuMCAOtUVe2U5M4ZfV9xq4zee9oryU5JLk7y84x+7/zNjE6mvOx7irPWYl4AAGD6qmrnjK6+e9skByTZL8l1Mvpd444ZXSjo/IwuPnJmku9k9LmUk5Kc6HMpAAAAADDZQhjyHZIcmtH78zfP6P35XRdKfprkxxld+PfzST6R5N+6++L5TwsAbK0ErwAAAAAAAAAAAAAAAAAAAAAAm842az0AAAAAAAAAAAAAAAAAAAAAAMC8CV4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAAAAAAAAAAAAADYdwSsAAAAAAAAAAAAAAAAAAAAAwKYjeAUAAAAAAAAAAAAAAAAAAAAA2HQErwAAAAAAAAAAAAAAAAAAAAAAm47gFQAAAAAAAAAAAAAAAAAAAABg0xG8AgAAAAAAAAAAAAAAAAAAAABsOoJXAAAAAAAAAAAAAAAAAAAAAIBNR/AKAAAAAAAAAAAAAAAAAAAAALDpCF4BAAAAAAAAAADgSqrqGlX1tKo6saq+X1UXVtX3quqEqjqmqvZc6xkBAAAAAAAAYDWqu9d6BgAAAAAAAAAAANaRqvrDJM9JsstA2dlJjunuv5/PVAAAAAAAAAAwXYJXAAAAAAAAAAAA+IWqenWSRy7jkJd19+NnNQ8AAAAAAAAAzMo2az0AAAAAAAAAAAAA60NV/VkuH7pyZpLHJ9k3yVWT7Lfw/8/couZxVfWUuQ0JAAAAAAAAAFNS3b3WMwAAAAAAAAAAALDGqurGSb6cZPuFm05Octfu/p9Faq+Z5ENJDli46YIkt+jur89jVgAAAAAAAACYhm3WegAAAAAAAAAAAADWhaPz/0NXzk/yu4uFriTJwu33XqhLkqsmeezMJwQAAAAAAACAKRK8AgAAAAAAAAAAQJLcbYs/H9fd3xoqXlh/yxY33X0GMwEAAAAAAADAzAheAQAAAAAAAAAAIEn23eLPn1viMZ/d4s/7TXEWAAAAAAAAAJg5wSsAAAAAAAAAAABcUS+xrlZwDAAAAAAAAACsC4JXAAAAAAAAAAAASJLTt/jzbZd4zG3GHA8AAAAAAAAA657gFQAAAAAAAAAAAJLkA1v8+YFVtd9QcVXtn+SBW9z0/hnMBAAAAAAAAAAzI3gFAAAAAAAAAACAJHlFkosW/rxjkndU1TUXK1y4/R1Jdli46cIkfz/zCQEAAAAAAABgigSvAAAAAAAAAAAAkO7+apK/2OKmWyX5QlUdXVXXrartF/736CQnJTlgi9pnd/ep85wXAAAAAAAAAFarunutZwAAAAAAAAAAAGAdqKpK8tokD1/GYa/q7j+Y0UgAAAAAAAAAMDPbrPUAAAAAAAAAAAAArA89clSSP0ny8wnlP0vyBKErAAAAAAAAAGxU1d1rPQMAAAAAAAAAAADrTFVdM8mjk/x2kpsk2S3JT5KckuR9SV7V3T9auwkBAAAAAAAAYHUErwAAAAAAAAAAAAAAAAAAAAAAm842az0AAAAAAAAAAAAAAAAAAAAAAMC8CV4BAAAAAAAAAABYZ6rqPVXVV/h64lrPNW9VtUNVnXGF++GnVbXPWs8GAAAAAAAAwMYneAUAAAAAAAAAtkJVtf8iJ+xf9vWttZ4PtkZV9TrPO6ahqh6U5LAr3HxGklfOcYYXDDyeL/s6r6p2neUc3X1+kudc4eZdk7xkln0BAAAAAAAA2BwErwAAAAAAAAAAAKwTVbV7khcvsvS87r5gTjNsm+SIJZTukOT+Mx4nSV6d5JtXuO3+VXWPOfQGAAAAAAAAYCsmeAUAAAAAAAAAAGD9eH6Sva9w23cyCh+Zl7sm2WeJtUfOcpAk6e6LkjxnkaWXVdVOs+4PAAAAAAAAwNZL8AoAAAAAAAAAAMA6UFW3T/KoRZae390XznGUo5ZRe6equt6sBtnC65OceoXb9kvyrDn0BgAAAAAAAGArJXgFAAAAAAAAAABgjVXVtklekSt/puu7SV49xzl2T3Kv5RyS5KEzGucXuvviJH++yNIfVdUBs+4PAAAAAAAAwNZJ8AoAAAAAAAAAAMDae2ySAxe5/S+7+4I5znF4kh2WecwRsxhkEW9K8o0r3LZdkldWVc1pBgAAAAAAAAC2IoJXAAAAAAAAAAAA1lBVXSPJsxdZ+mGSV815nKNWcMwtqmqx0Jip6u6LkzxvkaVfS/IHs+4PAAAAAAAAwNZH8AoAAAAAAAAAAMDaem6SPRa5/cXd/fN5DVFVN01yuxUefuQ0Zxnw+iTfWeT2v6iqa85pBgAAAAAAAAC2EoJXAAAAAAAAAABgCrr7qO6uMV/7r/V8rE9Vdaskj1xk6ZwkL5/zOI9YxbGHV9W2U5tkjO6+KMlfL7K0e5K/mnV/AAAAAAAAALYuglcAAAAAAAAAAADWzouy+Oe4Xt3dP57XEAuhKUcMlLwvyZkD63snOXSqQ433D0kWu2+OrKqD5jQDAAAAAAAAAFsBwSsAAAAAAAAAAABroKrukeTOiyxdkuQlcx7nrkn2GVh/fZLjJ+wxFNwyNd19bpJXjll+6UKIDAAAAAAAAABMJHgFAAAAAAAAAABgzqpqmyQvGLP8r939rTmOkyRHDaz9LMk7khw3YY/7VNXOU5to2EuTXLzI7bdM8ug5zQAAAAAAAADABid4BQAAAAAAAAAAYP4emuQWY9ZeMs9Bqmr3JPcaKHlrd5+X5JNJTh+o2znJfac52zjdfUaSt49ZfkZV7TiPOQAAAAAAAADY2ASvAAAAAAAAAAAAzFFVbZvkGWOW/293f2ye8yQ5PMkOA+tvTJLu7iRvmbDXEdMaaglePub2vZM8co5zAAAAAAAAALBB1ei9cAAAAAAAAABga1JV+yf55pjl07p7/7kNw4ZWVTsluXGSPZLsnmSXJOcm+dnC15ndffraTQgbT1UdkeQNY5Yf390vm/M8n05yuzHL30myX3dfulB7mySfHdjukiTX6+4zpzvllVVVJflqkhstsvyNJDe+bG4AAAAAAAAAWMx2az0AAAAAAAAAAHBlVbVrkpsmuWZGQReV5OwkP0ryle4+ew3HWxeq6upJrpNRIMgeSXZOcl5GoSBnZBQws27up6raPsndk9wpya2T3CCjIJOdM5r5h0n+O8lnknwwySd7Da6oU1VXTXLPJPdamPOmSbadcMzPknwlyX8meWeSf+vuC2c86rhZDkzyWxmFSNwko8fILhn9HX6y8HVWki9ldF9/JsnJa3Ffz9JCIMV1MgrNuexxdkFGYTnfTnJqd1+wRrPdIMlhSQ5KcvMk+yS52sJ8P0lyZkaPpc8keUd3/3At5pyxJ4+5/fwkb5rnIFV104wPXUmSf94yvKS7P1dVX09ywzH12yY5PMnfTG/KxXV3V9UbkjxrkeXLHmfvnvUcAAAAAAAAAGxctZV9ZgQAAAAAAAAANqyqOjjJA5LcLeNPaE+STvKNjE4mP7a7P7XIXvsn+eaY40/r7v1XMeqaqKqdkjwoyZ2T3CHD99FlvpnkE0nek+Rd3X3OKmc4OMlHxyz/qLuvvsgxeyZ5apJHJNlrGe2+keRlSV7e3ecvc9Rlq6rrJ3lKRvfxbqvc7qdJ3prked39jdXONklV7ZbksUkemeRGK9ji60lek+R13X3mKuZ4XZKHj1le8vNuwj6P6u5XjzlupyQPTPI7SQ7JKHBlnEszCjd5f5J/7O5xrxdTU1WHJflfC7Mt1UVJ3pfkz7v7c4vs+aUxx322ux+x/Clnr6oOSfKRMcv/0t33m/M8L8j4IJgkuWV3X+5+rqrnJnnawDFf6O4DpzHfJFV14yRfHbP87u7+nXnMAQAAAAAAAMDGJHgFAAAAAAAAANZYVd0vybOT3HyFW3w0yVO6+zNb7Ll/tpLglaq6bpI/yihUYyhIYpKfJ3l1khd29xkrnOXgLDF4paoqydFJnpPVzX1GkqO7+52r2GOsqtoryZ9mFFxylSlvf3GSf0rytO7+nynvnaraJskfJnl6kj2nsOWFSZ6fUWDMBSuY53VZg+CVqrpakmOSPD4rC825NMnxSf64u7+7guMHVdUNkrwqyW+tYptOclySx3f3j7bYe9yHn07o7oNX0W9mquqNSR46Zvnw7j52jrNsm+T0JPuMKVk0QKWqDkhy8oTtrxTYMitV9bUsHrp0SZL9VvqaDwAAAAAAAMDWb5u1HgAAAAAAAAAANquq2ruqPpTkrVl56EqS3DnJJ6rqqdOZbP2oqocl+XKS/5XVhZckyU5JnpjklKo6erWzDVkIwnhXkpdm9XNfJ8k7qurvq2r7VQ+3haq6Y5IvZhReMu3QlSTZLqPAnC9W1W9Mc+Oqun6Sjyf5m0wndCUZ3QfPyGje201pz5mqqnsk+VqS/5OVha4ko88QPSjJf1XV3aY1W5JU1YOSfCGrC11Jkkry4CQnVdUvr3qwNVJVOyS515jlS5N8eI7jJMldMz50JUnesNiN3f3FJKdM2PuIlQ61Au8dc/u2GR9yAwAAAAAAAACCVwAAAAAAAABgLSyEOpyU5NApbbltkudV1Suqqqa055qpqh2q6i1J/inJrlPefpckL6uq1087yCRJqmqvJCcmuceUt/6DJO+vqp2nsVlVHZzkgxkOXZiWayX5UFXdYRqbLezz6SS/No39FnGTJB+ddgjJNNXIC5O8O6P7dxp2TfLuqrr3NDarqmOSvDnJ1aax34LrJTmxqm49xT3n6bCMvz9O6u4fznOYJEcNrF2S0X+/cY6bsPdDq2pen09739Acc5oBAAAAAAAAgA1I8AoAAAAAAAAAzNlC6MoHk+w9g+0fk+RFM9h3bqrqKhmFSTxgxq2OTPLmaQbVVNUuGf23vdW09ryCQ5K8p6p2WM0mVXXtJG9JsuNUplqaHZO8rar2WM0mVfWbST6U5BpTmWq8nZK8tapm9d9yxRYCg96Y5H/PYPvtkvxzVd1sNZsshK48P8ksgqB2T/KBqrrJDPaetQcNrH1wblMkqardk9xroOQj3X3mwPqxE1pcN8mdlj3Yyvx7kvPGrB1QVbeY0xwAAAAAAAAAbDDbrfUAAAAAAAAAALCZVNW+Sd6TZLcZtvnDzCbsYF5enuS35tTrfkmeneRPp7BXJXl9kl8ds95JTkryqSTfSvKTJDsk2SujoJY7Jrn6EvrcKcmrkjxsFbO+IEsLLvlEkg9kFGrwnSQ/SnJukp2TXC3JDZPcLMldF752nrDf3kmemdFjdNmq6oCMnj87LaH87CQnZHSf/yDJhUn2zOg+vn2S2yW5yoQ9dknyxqq6dXdfuJKZZ6CS/GOSh8ywx85JXpHk4JUcXFUPzSh0ZSlOS/LJJF9O8uMklybZJ8n1MnpMXXvMcXtl9FjYMKpqpyT3HCiZa/BKksMzeg0a5w1DB3f3KVX1xSQHDJQdmeSjK5htWbr7/Kr6jyR3G1Ny74weYwAAAAAAAABwOdXdaz0DAAAAAAAAAGwKVbV9RkEWt1lC+c+TvC3Je5N8Icm3MwqO2DvJdTMKJnlgkluuYJTTunv/FRw3c1V1jyTvnlD204zum/cn+VKS7yX5WUYBArtnFK5xYJJfzyjk4DoT9rs4yW26++QlzHdwlh8icEmSVyZ5UXefOrD39knukeRZGQ4yuMzvd/drljlLqur6SU5Nss1A2clJntTdS/67VtVuSZ6U5ClJrjpQek6Sfbr7Z0vde2H/3ZN8LqOwlyHfTvKMJMd193kD++2S5HFJ/ndGIR5D/ri7X7SEGV+X5OFjlpf8vJuwz6lJbjRm7eKMXjPen+QzSc7IKIDmooyeF7fMKIDiEZkckpMkd+nuDy9l5stU1S0Wek8Kx3lfkud298cH9tomyW9k9Jy483LmSHJCdx+8zGNmqqrukvHhKpcm2WXoMTuDeT6dUQDRYs5Ncq3uPnfCHk9L8tyBkrOT7D2Pv1dVPTfJ08Ysf7q7f23WMwAAAAAAAACw8Qx9gAYAAAAAAAAAmK5jMjl05dIkL05yve5+WHcf292ndPe53X1Rd3+7uz/Z3c/p7gMyClE4fdaDz8NCyMILJ5S9NskNuvuR3X18d/9Xd/+4uy/u7nO6+zvd/cXu/qfufkySGyT5vYzCWcbZLsnfTudvcSXfTfLr3f24odCVJFn47/v2JL+a5NlL2Psvq+paK5jpiAx/ZuSEJHdcTuhKknT3T7v7mUkOySgcZ5xdkhy6nL0X/G0mh64cl+Sm3f26SUEPC4+XFyS5dZKvTNj3KVV1laWPOlPjQlfelNFz497d/Yru/nx3f6+7f77w2Pp+d3+4u5+Q5CZJ/mMJvR69nMEWnsP/mOHQlXOTPKC7DxsKXUmS7r60u0/s7kOSPCyjQKqN7A4Da6fOOXTlphkfupIk/zopdGXBsRPWd01yryUPtjr/ObB224XwJgAAAAAAAAC4HMErAAAAAAAAADAHVXX9JE+fUPajJId095O6+6yl7Nvd70xy8yTvXeWI68GhGf1dxnlxd//eUu+bJOnuC7v7tRkFDHxxoPSgqrr1UvddojMyCl357HIO6u5LuvvPkhw9oXSPJE9dwVx3H1g7Pck9u/ucFeybJOnuTyR5woSy2y9nz6o6OMmRE8pe3d0P7u5lhXN092kZhcUMhfNcM8l9lrPvHJ2X5CHd/dDu/vZSDuju7ya5W5JPTSi95zIDZx6V4TCPc5Pcubvfuow9kyTd/YaMHrs/W+6x68hQ8MrJc5ti5BET1t+wlE26+xtJPjehbNJzd1qGgle2SXLQnOYAAAAAAAAAYAMRvAIAAAAAAAAA8/HnSa46sH5WkoO6+4Tlbtzd52YUCvGvK5xtvbj/wNppSY5Z6cYLgRT3zij4YZxHrnT/RVyU5He7+/SVbtDdr0jydxPKHl1V11jqnlW1XZLbDJQ8azWhK1t4Y5KhEJAbLnO/F0xYPzHJY5a55y909/eTHDWh7MEr3X+GLkhyr+5+83IP7O7zMwrEuHCgbMckSwokqqrtk/yfCWVHLDeIaEvdfWKSw5JcvNI91kpVbZPhwKGhYKhpz7JtkiMGSr6X5CPL2PK4Cet3W87r1Ep19zeT/Hig5DdnPQMAAAAAAAAAG4/gFQAAAAAAAACYsaq6SZLDJ5Q9qLu/stIe3X3hQo/Pr3SPdWDopPjjF/6OK9bd30ry0oGSO69m/yv4m+7+3BT2eUqSbw2s75jhAIUr2jfJVcasnZdk2QEei+nuTvLegZLdlrpXVR2a5HYDJecnOaq7L1nqnovp7g8k+eBAyV2qatx9t1Z+v7s/vNKDu/vUJMdOKBsKC9nSQ5Jcb2D9zd399iXuNVZ3fyyjIKuN5hYZftzPLXglyV2T7DOw/qZlPp/ekqQH1rfL/IKLThpYGwqdAgAAAAAAAGCTErwCAAAAAAAAALP3hAy/R//a1YQnXKa7L0hyVJJVBVCsharaLsmNBkq+PqVWrxlYu2lV7TKFHj9N8pwp7JPu/nmSZ08oO3IZW15nYO3j3X3eMvaa5DsDa8sJMHnshPW/7+5vLGO/IX85sLZzkgOn1Gca3tzdb5zCPm+YsH79Je7ziIG1S5I8bYn7LMULM/z4Wo9uNWH91LlMMXLUhPVJj4nL6e7Tk3xyQtlyXqdW45sDawdWVc1pDgAAAAAAAAA2CMErAAAAAAAAADBDVXXVJA8bKPlJkj+ZVr/u/lKWedL8OrFnku0G1nebRpPu/lqS7w6UXHMKbV7T3edMYZ/LvDHJmQPrB1bV3kvcayhY5gtLH2lJVh3iUlV7JLnHQMmlA/esgAAAIABJREFUSf5qtX228G8Zvq9vM8Veq3Fhpve68fEkFw2s7z9pg6q6bpKDBkre2t3fWt5Y43X3+Un+blr7zcmkAJuh16Wpqardk9xroOTL3b2S14LjJqzftqp+aQX7Lte3B9Z2S7LU10oAAAAAAAAANgnBKwAAAAAAAAAwW7+dZNeB9Td191lT7vm3U95vHq4yYf3gKfY6MskDxnz9aAr7v34Ke/xCd1+U5PgJZYcscbvPJLnzmK+XrHTGMa4xhT0OS3LVgfWPdPcZU+iTJOnuS5N8dKDkptPqtUrHd/dUgjq6+7wkXx8oWcp/x//X3p3H61uXdQL/XIDIIpsiKqIimOKCiluWphYKpcZkDSaJBTmNWpPbOO1jOs1Mto1TzbSNZjZkKKbWyyWZVNzQbAC33MUNBU1FBQEBveaPc2wSf+e+zznPfZ/zO7/n/X69nj94ru99Xdd5lpt/fudzTk5SA/W/3NBS63NWkp6h71yGgleu7u4vbdEepyXZb6C+2eCuc7IShDTk9E323ohLRupjATgAAAAAAAAALJmhvxQFAAAAAAAAACzulJH6n009sLsvqqoPJbnj1L1n9JWR+slV9aDuftOig7r79Yv2GPCp7n7XDH3/KsmTB+r3TvKisSbd/YUk502005gHTdDjYSP10Z95E16W5GZr1KYI5pnCKybu94msHSpzwDquP3GgdnWScze80Yju/kxVXZDkPlP3nslQ4MckITrrdMZA7RtJ/mIzTbv70qp6U4ZDsh5bVc/s7jkDcz41Uj8myfkzzgcAAAAAAABghxG8AgAAAAAAAADz+r6B2ke7+x9mmvva7KDgle7+SlVdmuRWaxypJC+tqlO6++1buNpGvW6mvu9Icl2SG61RP36muZtSVY9M8l0TtBoLbzlvghnforv/KitBN7uzqe8bVwzU9l/H9fcbqF3Y3VdvcJ/1eksEr6xbVR2X4ffqvO6+ZIERL85w8MrtkzwgK+/bXMaCV4beBwAAAAAAAACW0F7bvQAAAAAAAAAA7Kmq6tZJbjdw5B0zjn/bIhdX1bOqqid8fHwdY88dqd88yZur6r9W1U0X+flmdOEcTbv7miTvGjhyzBxzN6qqjqqq/5jkpRP0OijJ0QNHPt3dH190zg50bZJPTtzzqoHavkMXVtWBGf78zfKdWDX0ndhtVNVeSY4aOPK5LVrlzJH6WQv2/6skXx8587gFZ4z57Ehd8AoAAAAAAAAA30LwCgAAAAAAAADM5+4j9YtmnP2+GXvP5Y/WcWafJL+Y5JKq+ouq+uGqOmTmvTZiziCIjwzUjpxx7j+rqv2q6k5VdXJVPaGqnlNVZ1fV26vqs0k+leQ/JbnxBOPulqQG6hdMMGMnuqy7e+KeQ/2G3oMk+Y6RM/+48XXW7UMz9p7STZLsPVC/Zu4FqmrvJKcPHLk6K8Epm9bd/5Tk9SPHTq2qKe4Pa7l6pH6zGWcDAAAAAAAAsAPts90LAAAAAAAAAMAe7C4j9XfOOHsopGO31N1vr6q/THLaOo7vn+THVh9fr6oLk7xx9fGW7v7SfJsO+sQ29d6/qg7s7q8uOqSq9klyXJJ7JrlzktsnOXr1ccuMB3FM5eiR+se2Yond0HZ9ttcyFvrz6RlnXzZj7ykdMFKfPXglyUkZfq/+uru/MsGcs5M8bKB+WJJHJHnZBLN25ZqsBAmtdZ86cKa5AAAAAAAAAOxQglcAAAAAAAAAYD5HjdQvnWtwd3+1qq7K+C/8726elORuSY7fwDV7J7nv6uMZSb5RVe9Kcl6SNyQ5r7uvmHjPXenM+J4m+aeR+v5JNhW8UlWHJPlXSU5N8tAk+22mz8TGAj2WNXhl4XCdid1qpD5n8MrnZ+w9pbH78NVbsMMZI/WvVNXYmfU4ZB1nTs9MwSvd3VX1tax9D7vJHHMBAAAAAAAA2LkErwAAAAAAAADAfG45Uv/KzPMvzw4LXunuL1fViUn+Jsn9N9lmryQnrD6eluT6qnpbklcmeUV3f2iSZb/dl7v72pl6J+PhDBsOS6mqw7ISVvPk7H6BBEeM1MeCaPZU12/3Ajdw8Ej9yzPOvmbG3lMauw/P+nNU1aFJThk59m9XH1vhEVV10+7+4kz9r87a98MDZ5oJAAAAAAAAwA6113YvAAAAAAAAAAB7sING6nMGEiTJ12buP4vu/qckD0ry7IyHjazHPkm+J8lvJPlgVV1UVU9dDR2Z0hS7DhkLZ/j6RppV1Y8m+ViSX8r0oSsfSfLuBXuMhVVctWD/neob273ADYwF/swZKrK7hdCsZVuDV5Kclk0EM81o3ySPnrH/0L1h/xnnAgAAAAAAALADCV4BAAAAAAAAgPmM/aL7lVuyxQ7U3dd197OS3DHJ7yf5yoTt75nkuUk+VVW/UVUHT9R37vCEG00xv6r2rqo/THJ2kkMW3ur/uyLJOUl+JMmdk1y0YL+x78+yBq/sbib5XG7SWKDJ7mLss1wzzz9j5v6bcfqMvYdezx0ZSAYAAAAAAADAfASvAAAAAAAAAMD22X/m/lMFimyb7r6ku5+c5NZJfiLJKzPdL84fmOTnkryrqk6YoN/1E/QYcuOR+tXr7POHSZ64wB5fS/LhJOdmJRTnSUnuk+Sw7n50d7+su6d4Lcb+XUtPMIPFXTdS33fG2QfO2HtKY/es2f5fUFXHJbnfXP0X8ICqOmam3kNBN1+daSYAAAAAAAAAO9Q+270AAAAAAAAAAOzBrhmpH5zkyhnnbzp4pbufleRZk22yoO6+MsmfJ/nzqjogyYOTPCzJiUmOT1ILtD86yRuq6vu6+8IF+swdpHOzgdq13T32eUtV/YckP7XOedcnuTDJ+Un+Mcn7k3w8yWe6eytCT9bz/WH7jb1PByW5bKbZt5yp79TGQpHmvHecOWPvRT02ya/N0HcoeOWqGeYBAAAAAAAAsIMJXgEAAAAAAACA+YyFqhyc5DNzDK6qfZPsO0fv7dbdVyV5zeojVXXTrASxPGT1sZkglkOSvKyq7rYa8rIZB27yuvW6xUBt9HNUVbdI8sx1zLk4ye8keXF3f2Gdu81hPd8ftt9XR+pzvk/Hzth7StsSvFJVeyc5fY7eE3lc5gleufFAbezzCgAAAAAAAMCS2Wu7FwAAAAAAAACAPdhlI/XbzTj76Bl771a6+4vd/fLufkp33yPJ4UlOTfLHSS7ZQKvbJfm5BVY5rKpmCVBYdYeB2np+zl9OcpORM3+S5K7d/QfbHLqSJJeO1G++JVswZuw+N+f7dKcZe0/p8yP1ue4bJyU5cqD+pu6uuR5Jvntkv++oqu+c7sdNqupGSfYeOHLVlPMAAAAAAAAA2PkErwAAAAAAAADAfMbCMO4x4+y7z9h7t7YaxPLS7n5id98myX2S/Lckl6/j8idU1T4LjJ8zTOcuA7WPD11YVZXk0SP9/3t3P6G7r9noYmsYCj9Yj0+N1I9fsD/TGAvImfN9euCMvSfT3ZcnGfpeHTDT6DNG6mfNNPeb3p7kkyNnTp945n4j9S9PPA8AAAAAAACAHU7wCgAAAAAAAADM5wMj9TmDV+bsvaN09wXd/e+T3DbJC0aOH5HkOxcYN0vgTVXdJsmtBo5cNNLihCS3GKi/P8nPbXSvEQcveP17R+qzfMar6oyqevsaj+fMMXOH++hIfa73aZ/skOCVVUMBNUdMPayqDk1yysCRryU5Z+q5/1J3d5KXjhx7zIJhVzc09lp+YsJZAAAAAAAAAOwBBK8AAAAAAAAAwHzeOVJ/cFXVTLPvP1PfHau7r+zun0zy/JGj91lgzAMWuHbIw0bqF4zUx8Jkntfd121gn/W47YLXfzjJlQP1O1fVYQvO2JXHZOX12tWjZ5i3o3X3F5NcNnBkrnvR92fxcJ+t9KmB2m1mmHdakv0G6q/q7i/NMPeGXjJSPzwr7+VUjhypf2zCWQAAAAAAAADsAQSvAAAAAAAAAMBMuvuSDP+y/a2TfPfUc6vqFkm+d+q+c6mqO1TVM9Z4PGaGkc9IcvVA/XYL9H74AtcO+eGB2nVJLhy5/oiR+rkbW2dYVe2f5C6L9OjubyR588CRfZL80CIzbqiqDkjyPQNHxsKUltXQ5+/YqlokzGgtPzFDzzl9YKB2y6raZ+J5Z4zUz5p43i51998n+fjIscdNOPJWI3XBKwAAAAAAAAB8C8ErAAAAAAAAADCv147UHz3DzMck2XuGvnO5RZLfWuPxn6ce1t1fSnL+wJGDFmh/h6q67wLXf5uqum2S7x848sbuvmKkzc1H6pdsbKtRj0iy7wR9XjNSP3WCGf/SaUkOGKgPBcEss9eP1E+fclhV3SnJo6bsuQWGglf2SnLkVIOq6rgk9xs4cnmSV001bx3OGamfUlUHTzRr7HW8eKI5AAAAAAAAAOwhBK8AAAAAAAAAwLxeNlI/s6oOn2pYVe2T5IlT9dsinxyoHV1VN5lh5j8N1K5bsPfTFrz+hn4pw0E6f7OOHmP/RuTa9a+zLk+ZqM85Sa4fqJ9cVXebYlBVVZInDRx5X3d/ZopZe6CxgKmfrKrJgkWS/Hp2VrhUkrxvpH6bCWedOVI/p7un/s4PeclIfb8k/3qiWbcaqF2T5LKJ5gAAAAAAAACwhxC8AgAAAAAAAADzOjfJUFjDQUl+ccJ5T0ly3IT9tsJnsnbwx95JHjzDzFsO1IZCWdbjR6vq7gv2SJJU1b2SPH7gyNeSvHgdrT47Uj9q3UuNqKrHJHngFL26+7Ikrxk4sleSZ08xK8ljk9x7oD4WorS0uvu9Sd41cOSgJP9tillVdXqSR03Ra4v935H6MVMMqaq9k5w+cuysKWatV3f/3yQXjxx73ETjjh2ovbu7e6I5AAAAAAAAAOwhBK8AAAAAAAAAwIy6++tJ/mjk2E9X1cJhKVV1VJJnLtpnq62+Rm8eODLVL+QnSarqxknuMXDk/QuO2CvJC6tq30WaVNVhSV6UZJ+BY2d39+fW0e7SkfrJ615swGrgzNjnfaN+c6T+qKo6cZEBVXVEkt8YONLZ4rCKHej5I/UfraqfWmRAVT0gyR8v0mO7dPcXknxk4MgJE406KcmRA/VPJHnLRLM24pyR+oOr6jYTzBm6t791gv4AAAAAAAAA7GEErwAAAAAAAADA/H4vyeUD9f2SvKSqDtnsgKq6SZK/TnLwZntss1cN1H6kqoZ+mX6jTkty2ED9TRPMuGeSs6pqU/82o6oOSvI3Se40cOwbSX5nnS3HghaeWlX7r7PXLlXVdyd5XZJNf453pbvfkuTvhkYn+d9VdfRm+q8G5PxVhsMqzu3uD26m/xJ5XsYDfv6oqn58M82r6l8leXWSAzZz/W7i7QO1e00044yR+l90d080ayNePFKvJI9dZEBVHZDkmIEjglcAAAAAAAAA+DaCVwAAAAAAAABgZt395SS/OnLs+CTnVtWtNtq/qg5Pcm6m+8X97fDXSdYKA9gnK8E0t1l0SFXdIclzB46c392fWXTOqlOTvKqqbraRi6rq2KyEvzxw5OifdPd71tOzu9+X5OKBI8cked5mgmKq6oCqenaSNyY5fJ2X7bPBMU9Oct1A/VZJ3lhV99xI09Xvzusy/lqPfX+XXndfneQ/jhzbK8kLq+p/r772o6rqqKr60ySvyM4Nlvqm8wZq96yqWqR5VR2a5JSRY2ctMmOzuvuiJB8eOfa4Bcccn+F/D3f+gv0BAAAAAAAA2AMJXgEAAAAAAACArfE/k7x95Mz9klxUVWdU1d7raVpVP5jkoiTftYvy9Rtbcft098VJzhk4csckb6mqe292RlU9Msnbkhw6cOz3N9t/Dd+f5ENV9YyxAJaqOnw1wOTdScYCRD6b5Jc3uMvzR+o/luTVVXXUeppV1c2q6heSfCTJM7OxMJVjNxLy0t3vT/LskWO3TfKOqvqdqrr10MGq2q+qfjbJezIeunJWd//9enddZt39/CSvXsfR05N8rKrOqqofqqrjqurgqrrR6vfgPlX1b6vqlVkJDDpzjT4fn2j1rfLagdohWQlAWsRpSfYbqF+4+l3aLkP3+CS5S1WdsED/4wdqF3f3pQv0BgAAAAAAAGAPVd1r/bEoAAAAAAAAAGBKVXXbJBckOXwdxy9J8uIk5yV5X1aCNq5OcpMkxyZ5UJIfT3KvNa7/hySXJjllF7VPdPfRG1h9S1TVXbMSOjIUyNFJXp7kt5O8o7u/PtJzvyQnJ3lakgePrHBRkvt09zcG+j0kyRsGenw1yYFr1K5P8tbVOZ9MckWSfZMcleS+WXlP9x3ZMUmuS3Jid795HWf/WVUdkJWQlFuNHL0myYuy8jpfmOTzWQlVOTTJnbISCvMDSR6S5EZr9Lg+yS9k5X1ay68m+b3VecckOay73zqw/15J/jbJw0b2T5KvJ3nH6uNjSa7Mynfn5knunZXX+oB19PlUknt09+XrOJuq+rMkP7FGed3fu5E+b+zuh6ynz3pNtfdqr8OSvDnJXRffbNClWflen71GffLXaQpV9d6s/do8prtfvEDvv89KgNdant7dz91s/0VV1T2SvHPk2HO7++mb7P+CJGesUf6T7n7CZvoCAAAAAAAAsGcTvAIAAAAAAAAAW6iqHpSV8Ij9ZxzzpawEeTwnyY/sor5bBq8kSVX9fpJ/t87jVyR5S5IPJPliksuTXJvk4CRHJrl7kvtnJXBjzLVJvqu7LxzZ7yEZDl55dJIXZr73t5M8obv/12YurqpTk7xk2pW+zbVJHpfkZVn5LK4VRHNDL+zuM4YOVNUhWQn1OH6RBdfpyiQP7O53rfcCwSv/3O/IJK9NcrfFNlvT1UlOzMp3/W/XOHNed3/vTPM3rar+S5JfWqP8p939+E32PS7J+weOfD3JUd192Wb6T6WqPpCVAKe1XJaVPQdDtdbofUmSW69RPrG7X7/RngAAAAAAAADs+Yb+QhQAAAAAAAAAMLHuflOSH05yzUwjrk5ySnd/ZKb+c3tGkgvWefagJD+Q5GlJfi3J/0jyJ0l+O8nTkzw06wtdSZKfGQtdWad/SPKvsxI+MrWvJ3n8ZkNXkqS7z0nyq9Ot9G0+m+Sh3f2S7r4+yXlTNu/uLyc5Kck7p+y7C1/Mys+x7tAV/r/u/kySByZ5zQztr0ny6O5+W4YDjq6bYfYUzh6off8Cfc8cqb9uu0NXVo0FP90yK/fuDamqu2Tt0JXLMvG9CAAAAAAAAIA9h+AVAAAAAAAAANhi3f23SU5M8vmJW38pyQ9295sn7rtluvtrSU7NSoDHVvnF7n7eVM26+9VJHpXkqql6Jvl0kh/o7hcs2qi7/1OS31x8pW/z0iR3u8Hnb+F9b2g1POJBSV4xde9Vf5fkhO7++5n6L4XVkJxHJHlqkisnantpku/r7leu/vcBA2en/P5Nprvfk+R9a5SPrKp7brRnVe2d5PSRY2dttO9MxoJXkuRxm+h70kDtnO7+xiZ6AgAAAAAAALAEBK8AAAAAAAAAwDbo7vOTnJDk9RO1fFeS+3f36ybqt226+2NJvifJh2cedU2SM7r7OVM3Xg1feUCS90/Q7kVJju/u/zNBryRJd/98kkcnuWKCdhdmJQzj1O6+YZjQy5K8doIZ36K7r+juRyX5ySSfm6jtF5L8TJKTuvuTE/Vcar3id5Mcl+SPs/Kd24zrkjwvyV27+23/4vlDB67ZLYNXVv35QO3hm+h3UpIjB+pXJXn5JvpOrrvfm7WDZ77ph6rqJhtsffJA7ewN9gIAAAAAAABgiQheAQAAAAAAAIBt0t2XJHlokscmuXiTbT6T5KlJ7t3dH5xqt+3W3R/OSjDN7ya5doYR/yfJPbr7hTP0TpJ09zuT3D3Jk5J8YoOXX5vkhVkJXHlsd18+w37nJLlDkt9KcuUm9ntFkod29727+w1rzOgkpyV50yK7rqW7X5DkmCQ/n+Qjm2xzUZLHJzmqu/9gdWcm1N2f7u4nJrltkidnJXDq6pHLrkvy1iS/kuT23f1Tu/ge3Gzg+t05eOWFSa5fo/aITfT7iZH6K7p7o9/xOb1kpH5gkkett1lV3TTJiWuUP5jkbWvUAAAAAAAAACDl34oAAAAAAAAAwParqr2SPDLJjyU5KclhA8c/l5XgkL/Oyi/UXzf/htunqm6X5IlJTk9y1AKtrkzy8iR/2N2b+kX8qnpIkl2GjKy6fXd/fBfXVZLvSvLwrATK3Dkr7/FNshIQ8fmsvK//sNr/vDnCVtZSVQdnJbjgoUnum+SIJIcn2Tcrr9vlST6U5B+TvCXJ320kyGH18316VkKGjk9y8ySd5CtZCUZ4a5IXd/cFC/wMleQ+qz/HfZPcKcmtsvIaZ/VnuDwrr/W7V2e+tbs3GorDBKrqRkmOTXJ0kkOT7JOV78IVWQkquri71won+WaPP8zKvWFX/kt3/8pkC0+sql6a5Ed2UeokR3f3J7d4pR2rqn46yf9co/yz3f0/tnIfAAAAAAAAAHYWwSsAAAAAAAAAsJtZDZC4fZI7ZCWc40ZZCb/4YpIPdvdnt3G9bVVVd0vyoCR3T3LHJEdmJSRk/6yEhHwjyTVZCdi4NMnFSd6T5Pwk53f3tQvOf0g2EbwCTK+q/jbJyWuU/013P38r99mIkXvJL3f3f93CdXa0qrogyb12Ufp8ktt191VbvBIAAAAAAAAAO8g+270AAAAAAAAAAPCteuWvqFy8+uBf6O73Jnnvdu8B7BbuPFDbre+f3X1eVV2U5IRdlB9fVb/e/qLWqKq6T3YdupIkvyt0BQAAAAAAAIAxe233AgAAAAAAAAAAABtRVTdPctuBIx/aql0W8JtrPH9MkpO3cpEd7GfWeP4LSX53KxcBAAAAAAAAYGcSvAIAAAAAAAAAAOw0Jw7ULu7uT2/ZJpv3kiT/uEbt323lIjtRVR2R5LQ1yr/Z3Vds5T4AAAAAAAAA7EyCVwAAAAAAAAAAgE2rqltU1fUDj6fNMHatwI0keeMM8ybX3d9I8gtrlB9eVXfayn12oCclufEunr8kye9t8S4AAAAAAAAA7FCCVwAAAAAAAAAAgE3r7s8muSbJ3ms8Hj7lvKo6IckPDhw5d8p5c+ruVyZ5zS5KleTpW7zOjlFV+yX56TXKv9Ld12zlPgAAAAAAAADsXIJXAAAAAAAAAACARV0wUDuxqo6bYkhV7Zvkj7ISTLIrX0zyiilmbaGfzUpwzQ39eFXdYquX2SHOTHLELp6/IMmfb/EuAAAAAAAAAOxgglcAAAAAAAAAAIBFnTtQqyR/UFV7LzKgqvZJ8vwk9xs49mfdvasQk91Wd380ya/vorRfkqdu8Tq7vdXP0b9fo/zU7u6t3AcAAAAAAACAnU3wCgAAAAAAAAAAsKizkwwFXnxvkr+sqoM307yqjkryqiSnDxz7apLnbqb/buA5ST6wi+efVFWHbvUyu7kfTXLsLp5/UXe/ZauXAQAAAAAAAGBnE7wCAAAAAAAAAAAspLs/muRlI8dOTfKuqnpiVR20nr5V9R1V9dtJ3pfkpJHjz+7uS9bTd3fT3dcmeeIuSockecoWr7PbqqpK8gu7KF2Z5D9s8ToAAAAAAAAA7AGqe+gPzQAAAAAAAAAA8E1V9ZAkbxg4cvvu/vjWbAO7l6o6Nsl7kuy/juNXJ7koyQVJLk3y5SRfS3JgkpsluWOS+yU5Zp3j35TkxO6+foNr71aq6k+TnHmDpy9PcnR3f2UbVtqtVNUPJXn5LkrP6O7f2ep9AAAAAAAAANj5BK8AAAAAAAAAAKyT4BUYVlVnJvnTLR770STf2d1f2OK5k6uqmyZ5f5IjblB6Znf/2jastFupqguS3OsGT78nyb12eugOAAAAAAAAANtjr+1eAAAAAAAAAAAA2DN09wuS/NwWjnx3ku/dE0JXkqS7v5jkKbsoPb2qDtnqfXYnVfXIfHvoSid5otAVAAAAAAAAADZL8AoAAAAAAAAAADCZ7v6tJKcm+dLMo16a5IHd/amZ52yp7j47yatv8PShSZ6+DevsTp61i+f+V3efv9WLAAAAAAAAALDnELwCAAAAAAAAAABMqrtfmuQOSZ6b5GsTt/9wkkd296ndfcXEvXcXT0py5Q2ee1pVHb4dy2y3qjolyb1v8PRlSX5+G9YBAAAAAAAAYA8ieAUAAAAAAAAAAJhcd3+hu5+e5DuS/GqS9y/Q7mtJXp3kB5Mc192vmmDF3VZ3fzLJL9/g6YOS/OI2rLM7eNYunntyd39pqxcBAAAAAAAAYM9S3b3dOwAAAAAAAAAAAEugqu6a5P5JTkhyjyS3SHLI6mPvJF9NcmWSzyX5UJIPJnl7kjd291XbsTMAAAAAAAAAsOcSvAIAAAAAAAAAAAAAAAAAAAAALJ29tnsBAAAAAAAAAAAAAAAAAAAAAICtJngFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAVVKbgAAADF0lEQVQAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAIClI3gFAAAAAAAAAAAAAAAAAAAAAFg6glcAAAAAAAAAAAAAAAAAAAAAgKUjeAUAAAAAAAAAAAAAAAAAAAAAWDqCVwAAAAAAAAAAAAAAAAAAAACApSN4BQAAAAAAAAAAAAAAAAAAAABYOoJXAAAAAAAAAAAAAAAAAAAAAICl8/8AFlU9nL2y9ncAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 973,
+ "width": 2223
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,3.5), dpi=300)\n",
+ "fancy.plot_diffpattern(ax, model, dsp_ticks=True, dsp_step=0.3)\n",
+ "fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5, \n",
+ " show_index=True, \n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "ax.text(0.70,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = ax.transAxes, fontsize=16)\n",
+ "plt.savefig('test.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Can I add cake to the diffraction pattern?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'base_ptn': ,\n",
+ " 'waterfall_ptn': [],\n",
+ " 'jcpds_lst': [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " 'ucfit_lst': [],\n",
+ " 'diff_img': ,\n",
+ " 'poni': '../data/hStv/LaB6_37keV_p49_center.poni',\n",
+ " 'session': ,\n",
+ " 'jcpds_path': '/Users/DanShim/Python/jcpds',\n",
+ " 'chi_path': '../data/hStv',\n",
+ " 'current_section': None,\n",
+ " 'section_lst': [],\n",
+ " 'saved_pressure': 39.6,\n",
+ " 'saved_temperature': 300.0}"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model_dpp.__dict__"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#model_dpp.__dict__['diff_img'].__dict__"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(360, 5808)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "intensity_cake = model_dpp.__dict__['diff_img'].__dict__['intensity_cake']\n",
+ "tth_cake = model_dpp.__dict__['diff_img'].__dict__['tth_cake']\n",
+ "chi_cake = model_dpp.__dict__['diff_img'].__dict__['chi_cake']\n",
+ "intensity_cake.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[2.60987346e-03 7.82961977e-03 1.30493661e-02 ... 3.03032372e+01\n",
+ " 3.03084569e+01 3.03136767e+01]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(tth_cake)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvIAAAHpCAYAAADgYtiJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvW2spdd137eec+55uffOnTdqSI5JSSMpZEW/1JaoIFSa1oKNonLhFxiwFcRAK0fxh8Qp0KIf0nww7LD9FARp+yVN0SZpgCKAjQYFDKGVYDhJ3TQfZFtsJcekDMKWaYkih+RwODP3zj3vTz/c+T/ze/5nPefeIYciR3cv4OLc8zz7Ze211977v9Zee5+qrusoVKhQoUKFChUqVKjQg0W995qBQoUKFSpUqFChQoUK3TsVIF+oUKFChQoVKlSo0ANIBcgXKlSoUKFChQoVKvQAUgHyhQoVKlSoUKFChQo9gFSAfKFChQoVKlSoUKFCDyAVIF+oUKFChQoVKlSo0ANIBcgXKlSoUKFChQoVKvQAUgHyhQoVKlSoUKFChQo9gFSAfKFChQoVKlSoUKFCDyAVIF+oUKFChQoVKlSo0ANIBcgXKlSoUKFChQoVKvQAUgHyhQoVKlSoUKFChQo9gLT1XjPwfqCqqr4ZEWcj4k/fY1YKFSpUqFChQoUKfW/TlYi4Wdf1R95pQQXIH9EHq6rqf+ITn7h4vwqs6/rY557mJHmyd1VVnTj9ScpR/tVqFXVdN38n4ZnpyFfG09tpr6d75ZVXIiLi8uXLJ6qrqqoTlX8SmWcyux9ldr17O2V2fZ/P5zGbzWI4HMbW1lZn+aKMN36nPFwHqEN6duPGjYiIuHDhwsZ6WRdlndVHnjLdO66NWbleftbfWZqT5u3ig+lZTleZXu6mMpy6+Pc0Kld9d+7cuZSP+0mZTrFO14mTlqn8pC79yurt6oO3S1nfdc2hXfrVVZbS3bp1KyIi9vb2OvNka8km/evi7V7ae6/p/NnHP/7xE5X1INMLL7wQERFPPfXUe8xJoXuhTf32wgsvxOHh4X2pp3o7oO97jaqqOtje3t65fft28+ykC3GX/FarVfOeQFjgeLVaxXK5bL3vAs78XlVVq+yO9jRlOZ++CNR1HcvlspV/uVw2fwJ8s9ksFotFJ7+r1arhi/WtVquGH/2vutV+vs/kLl6qqoperxfL5TL6/X7M5/N49tlno6qq+NVf/dVYrVbR6/XWZJ/9X1VVLJfLJj1539SHW1tbrfQqU7JZLpdx48aNGI1GMR6PW+nFv+TldZAoH+XR/5SX5KOyer1eS8/4nOlfeuml+JM/+ZP4gR/4gbh48WJsbW016QeDQSwWi1b/iQfyrH7p9XpNf4g/8k09Uj9++ctfjoiIn/u5n4vbt2/HarWK3d3dqOs6+v3+mr6qHOqqDBDlmU6n0e/3Y7FYNHKQLPv9flO35M80TEs513Ud8/k8tra2mrZqHpAcMiCnPuKc0e/3036hgTOfz2MymcT29nYMBoOGF+eN9bA90ovlchmz2SxGo1H0er0W3yLqCkGxaD6fx61bt2J3dzdGo1FTxxe/+MWo6zp++qd/ummLZCt9pwxUl9rIOSgD6avVKvr9fqvN7H/JYDAYNLriINzLpWzUF5khQJloTKjf+Y7lqZ+y+lk3dcjnFslPfSf513Udw+FwTd84DrJ5jnOrvv/O7/xORET82I/9WKMzKou6zXy9Xq8ZTxw/0mXOm5KL86eyybuvIexv6iTnGslN+VXes88+G5/97Gfje5mefvrpiIj46le/+h5zUuheaFO/Pf300/Hcc889V9f10++0nhIj/y6QLyzZ+03fu56JujxAGcCgR869O6qDE7gDKIJ1LmZcYJVna2t9g4cLuPJxESN41+K6WCyayVoLgt6JtKi4rAhKVDbTsv0EpyQtUGqv5KNFTTzRgFE6gZDhcLgGXlQ2QXImOwJqgQnVr4VMPAhEq1+4YGpx1OdgMGjqJw/sq4ho3vEZ20p+VPZ8Po/BYNC0VQCLRthsNotvf/vbcevWrZYBtL+/3wK0MopEkrn6dmtrqwXiIyJms1nTnq2traZ+gl496/f7DQjMiG1W36hNlC8BeES0wBNloDyUhYjAVPLc3d2N4XDYMjgdINIgJCgSj5KT9KTLCeHl0ijc2tqK7e3tBrS5XMg3ddWNOZXvc4wb7m5gacy7g8DnDzfCvV98HGY7UBxf6juNNaVXHhqag8GgJV+1i+WSB5c503FciU/pAfvNQTzLyAwyylL88U/8ZeXxe7/fb/WJt0Pv2EaCfs3tvnZoPiLAp1EjEK85YDqdNs9Xq1U8/vjja+0tVOg0UQHyhQoVKlSoUKFChQo9gFSA/D2Se7Qy6vKYe3rf/u/aot/kTVMa31qlZ8frd+8Rtzc9hMI9aNrulfdQXhgP3XBvOz2T9FjSU6X89HzyHb1bHjrkuwWLxaLlKaIHWl5p8icvr3sFlYbeeT6nXOv6aBv8woULrW1/ysC31iU799TKI7VYLNY8iCxPXisPn3EvJz278optb283ZbuHjlv8Kl880ltGXeDWustHevPII4+0YnSrqorRaBSTySSm02mrfO5+yEPMcBNvF2WkcBjfDXH5cieka6xlOq30DEnyXYiIuzstGivso16vF1tbW2sebMmWuy3ijd598uq6o3Am6gzJw3M4B9DTurOz09JlJ/cWcweQfCsddxI49kUcM/P5vJED5wfJTPUwLMP70OdGz9fv95sdHNVPojeZ86DLjeNcfa7+83w+V2chXpQP82TzuZevurt4pvc/yxtxd/fI52bNoz6v6Rl3zpSW5YioE9xd8/rID9cqzuPf/OY31+RXqNBpogLkT0hd4Lzr+XHvOflx4dFzTu4EnErn4TBM79vurId1cHHgouFxuwSN3HKOuDtJi8+IaIF7LuxsD8vItrk9PxcBhrJQnv6Mi7pvrxNwLpfLWCwWMZvNmgVei5La6PG5lJdvLTOkh31A/tyAyfpY8ubC5sCV4M5lJF4JiEX7+/vxyiuvxP7+fqte8icDQ/UyFpiGGMOZXIf5XbKhjBaLRVy/fj1ef/31JjyG7RC4VKiSwC95FiATKBMvMubUDqUhUFb5kplIfScesrGjvnBwxD6kDhDwd5UnYKNYc7WBekL9lpxpAOmswmAwaMCkj0OW44Yr9Y9GL4nlUI/VZtdZB9cZ79kYZZ6uvnGd8XEr/mi8k78sTITk4YEEr8zjstW8Qnm6oav/XebKrzSc7+no8D7x0DdvgxtRlF0WosTxOp/Pm8/FYhHz+bwxtvhc7aYusJ2si/OHO2PIN9Po7JHCuX7jN35jTRaFCp0mKrfWHEObgPpxIN7TuVci82g4+cTri1q2QLrH5bg2ZDxp0iQ4pxdWQElpeCDKF3G23dtIT6B/V7uzGPdMXtnirvyZ558LtMuARDlQRg7mFev5u7/7u/Hwww/HlStXWkaH/l8sFmvx0yxL5XHx5iItIOuGFg90EjQPBoNmkZUcDw8P4/z583H+/Pmmbi6aMiIyg4yLu+uc65X6dbFYxGQyiYODg4YPGQOPPPJIrFarVryxG62UGY1H6YlkyDMV9OLRABL5IWGCCnlVqVP05hJYqC8yg4DpBap5cDszfsSH5M/zEA6ufE5QPt+lYD/xjEeWlryQJ+o+edbOhvJTdm7setlqi8vL80l+bsRTHtQp6YDGi3iUTsgwFNDmmPK6RATJkhvT8VNtZFvo3ef8SSObOkWDxb3tnAvoGGF9HnMucuNaRs5isYidnZ0GhAu4LxaLODw8jIODg7h9+3bcvHkzbty4EePxOM6dOxd7e3uxs7PTGKAyqMmvr180+rJdCx2ed5loZ4+GypNPPhmFCp1mKkD+iL7x1FNPffJ+FeZAMAPom557Gi6cDpiYxsvNPD5ZuRF3F3p6h5XOAbw8s55W5Xi9XKwyL23E3VABLZCcsJWONyuo/F/7tV9bAyH0jGvhzAC8PJe9Xq8VhqAFgsDXn9Ew4eI8HA7j05/+dMsDLL54+JA3OXQZGFzkMrkRAKgeykuy9Hapzq997WvxxBNPxJkzZ1ohIt73bAPBiuSs22JoOBFMCBhfuHAhzp49G8vlMn7mZ36mORy7Wq1iNBqtGbUeUkEDQOnkxXevqWQn/RQgkZeaBiJB5dbW1lpYFt9nedzgykALgR4NFY4ZHx8cVw4iCYaUz8O2aFj4rSAETpl3l8TQrYiIn/qpn2r0j8aBGw1qg3valYZjM3tPXRWv6sfxeNwKg+HYcicAdZD1ihR65wfqBZLJE+dNN4r42TVnO9B3L3XGn++WdO2g0NniIUJ1XceP/uiPdhoHarvmXd2edHh4GG+88Ua8/PLLa3oxmUxiMpnE1atXIyIax8C5c+diPB43IVk+rt0ooZ5z7nMjh23l38WL9+3W6PctldtqHkz6bvVbAfId5F6iiJMD7+PK5SLtYFXPssUtq8s9Rl5+Vzsy8KAyOJHqGYnfVQ6BCj1BmdHhC5nyZB51lxHLibi7aBO0U4asJwOK3jaRe9Po7SOfekbDhqCGwEzev2wRFtDnd3qq5vP5Wp9531M2BN11XcdoNGoA6tbWVjz88MPxIz/yIzEajVr9Qo8mwTA9ngQCSq+2sd2qTzKZTCaxXC5jZ2cnIiKm02m89dZbceHChQZs0utOjzPlpr6ZzWatKwIJlMlLXR+dXRgOh02b/GYcGj7UNwJojkcfO/7c30lm8sRSb6jPDtbdYxwRDegk7+x76oODUPLmxrH6wOcV3XakPtU7jx93A8YBl+/8ZPxlz8WvjCp5092gUhk0lpVGgF5AVeNNfe4Gt/53I8f7mX1IORKEsk88v/d7pgf6n1d7ZnOt2jocDpv5gjLUnKI8bDPD0LQ7VlVVjMfj2Nvbi8cffzxms1kcHh7GdDqNyWQSvV4v9vb2mt+iGA6Hza6anz1h/Q7qXSeYR4a15JsZjA8//HAUKnSaqcTIFypUqFChQoUKFSr0AFLxyJ+AujzCXZ7yk+T39/rMPNgi93LR+5jtBND7nXk73HOWxWFG3PWuZLcYuCeJnkD3avsOgx/adE+LaLlcNjdVsP6sbKbxMA/KgF445VOojcuCOwj6zrAZtiWiHeYirye9xX6biIe8qA6G3jDel55R7QK4fBkTrPIYQ6sfrOL2N2OyufugPB6Xqzr1TqELkjtDe+RRZH8Oh8N46KGHGs9o184M+4HhDPRuZ17piCPvtTzx6lseQKSeZ7HrXq7ruodbiC/Jm6E07gGnnOmR5Cd3e8SLvJ6+W0Dd54961XUd0+m08bJ6e1QW28RxTM93RlkeHSzVWOBc5V5YnxfYf2wjxxhlmemKSO/pKac32nnkrhrHMetl6JXvFjGUKxuPWTgLx6XK8zCpTIfo4adMuIvB8c8+d/mzf7XbNxqNWnMh69Uf+1Xku7m+8+lhgtzJ4BzOHb9s7hF98IMfTPu+UKHTQsUj/zbpOBDftbB4XgLzLC8XUoJVB1dclLmA+ELp9XGBUtnaxtZzD2nw59mi7fwoD59zknZ5cDHiFX4EnCyTIJALNhd6bldnPwrDw50E7wTsBGbaqtc2NtPqoBhB/2p190YRyoVX7rHd5I+AgIDGjQDpg4ccRbQP9M3n8zh79mxErIdOZXHW1AHyrjoZn0swzj7UIiz+2A/+o08E6wRjlEm/32/9EFHE3XhuPePC77HD1B2PNfYx6HHLes7D3RxjmXHqoV80aP3shfolA9LezzQWVZd+jVl6yL5Xe30ssmyOA+qQjAGGPpE3tUH97SETLJt5qFP63+c71xXJzg0u6op0ksYG5eAGhvL6D7R531L/3bmg55wrPGad4ymLZ3fjgW3NKAvjooxpLOpP4WXZnML5lKFUnEMVSqOylU7nUJRHZbjzg7rDOZv9x/b6OqR2njt3LpVJoUKnhYpH/l0in4h9AnbwznQZCHaPCv/3hWxT3G4GJDiBEyRw0csWEE2+BAZ8Tr6zxc+BlHuJHODyF0ezhZVeSLZHwIILFxcCAkemZ5voCZNHnF5kysRjbh10ifwwZtav3CmgDui52ukLLm988Nsser2jqwm7rnuk7MiP35m+Wq1aXl+22T2HEXcPx+ndYDCI4XAY165di36/H9vb2w2fPGRKvXDjxsGOABhjuRXjLSNDpB0L593l5fLhOJU+OPD03SB6KT3WVyT9lG76eQzyIflkoI1gmTrF8UTDO5Ov95/rmBtP7CvJh4dPWQ/HHT9ZPtvCMaL+5M0oXXMc49/VF/47BErnbeT8QiAqWft86GPTDbquOTSbh7N5nXqeGWLZPEJjmsaM2kyeeKWr64DazP5RPs0z2VzmdXE8sF+9D2ezWeucDvPIacIdjt3d3TW5Fip0mqh45N8G+QJ8L+QeB06avvjyuf7n5OteUpXf5dHxMrsMDOfNPSDMp8mdHm56uliOAwZ6fdgOTfoEXfTe+AImcs9+5ulnqIKIoM8XTnqGKU8uXKrb5UUvq6cnv+6xc08iQQc/FZLiQMO92fKicmFdrVYxmUzWwEKmM27UUT7yvGrRp26Sbx4ulRdd5YzH4+YWEo4BLfaZV5N3mwuUcuzIG6zFfzabpUDVgRDbrOe+Y8G2iE9P7z9FT28m66GOU+4c0/RIU97ky+XGnbXhcNiSnXTHgTT7XEZeZtQQRKp/HMA6AKQsSEpLAK161cf7+/trVzVmOz8qT3862Mrbdch3xo8bowTObuxz3mJYmfer7174eJP+sr66PgqH8j7m+MoMGBqQvNed/cT+dqODfEkevhYob1VVrbEsffO5Uv3YtcPk+kfvPp+LH86vdV03B/YLFTqtVIB8oUKFChUqVKhQoUIPIBUgfwJ6Jx74rCz3itCL1OUR1ad7091zQW+He3l9m7fLGx/RPshHj6Pyuddk03YzPT3a6pZHlCEUlI2HJ9D7RS+eb7urXj3Tn7xF8uLQY0leVQflxNAY98a5p5LeesZae1yv6uF3HmJU/9EbxmeMq6bH0PvWQzPU3sViEQcHB62dhK7+9pAg3x2gZ4+7Jh77u7OzExcvXozd3d3WWQL+Aqlv3buMJQMepOV5DvKmg66UNdvJMlkv/7JdJe7qMA3LZ3+IspAI7qrxf3qS2Sa/bpDp9WwwGDR/DCsRb34YO9u9o+55eIPk4P1PvaYuuO7Q60wvLnc/9GxrayvOnz/f7CppjJDIU9YP7GfuWNB77LsBPscyrepheBN/NZbefpeJ2ug7RNlO3XA4XGsP5+eI9rkXlaPdAcau+y4E50736jtxrnZes/GjPHW9frDc87guMlRNaTzcKiJaoVWf//zn194XKnSaqAD5t0EOWE9CXcaAT8LZFudx9TF9tjBkfGfb6Q6k3eDoSk9g7eUwLRehLE6Wi6DSEAxrO93Bvhs9qouhGsqbLcoitZlA1sGoeCVI0dY6gbmeiXjQi4dflYdb9x5qxEVZ72mAuG7RmBA/atdyuYzpdBrT6TQODg5a9Ul+HirlsiQYIuDUc+qPiPe9z2azpj/YV37zD985WGIa12sZOIqHdkMvAwbUGx+TBGAEHD7u3OCSTrheZX8qp2sOUNvcuKQBSdDNw9bexzSCCehUn4dhZPIi4KeeSscyw55gjvrjRhP5JWiWzrB8GhhuMPgc5KDT5yCNP4Ws0YjN5ljWyzQyQHzcUl7STW8vw3A437ENDJ3iTUvkiTo3nU7j1q1bcevWrZhMJk3IDefaq1evtkJ5vDzKR0SjkvJ3A06yyOZ6hitRvq5zkhvnTX3/whe+EIUKnWYqQP67QL7IR+Q30ziQcCDMvNki4O+y+FGvL+OnC2gw7j1rF3cCfDIWOJRnjTwSgNCbJ28Xb1zIwJYfJMziNLW4OrDjouCGQwZg6EkkLwThrJegwcGK3+CgdFlfc7FkzLRkxzqOA2OLxSJeeeWVePHFF+Pw8LDV92q/DrG5ceW6onoJQJRWYFLfDw8P4+rVq/HGG2/EtWvXWrHmzOfgxI1EPyjaBYoFWChrffphZuVxL2a2uyXiONAOiYNTB5vMS31wAJXtejCvgyJ6xHnmQ+1yrz37jmVpPGRGCg1PleljhHllyJDHTB99XOi975Zp7uAOEeuj/vlc5f3F+ml4Z3M1+8DL8/bzbITalu0WKi+BLMe3DEEeQu2qMxubi8UiFotFHB4exrVr1+IP/uAP4qWXXoobN27EdDpt8dLr9ZprYKXLPF8gOSsPD/2yf934Ul9RHuSxruvWAW+OE99ZoxHhOviRj3wkChU6zVRurQH5Inc/y9WnL+4EgxlxEc0W18xbl/3PNCojC2PgAuNAlG3IynXPFvn3a+J8oZX3mosLb6BZre7ei85yfLFn+IKeqz3u3afXytup/x0w0ptJr7dI7dJiyOcsh/2odnifEIwzr/6y6xQJuFwXyMtDDz0UTz75ZIzH49bOgZfjbVOds9msFQYh0jsHYr1eL7a3t2M0GrXCAtgmP4gs/aOsvY0O9gVG1F7eYsN77DNjVul8nOnGI92KRLBIUObgmjKX3KjfbC892HrP/tctSQRNVVW1fvtAdQ8Gg8aI4RWQ1EGOQ9bD6zpdhxgGwX7tAmluICp9pteeX+WzvxlKxT7y9neVx/ec3zRWOQ74q8QuK5btczlv89EzN4LYvmzHhIYhd/qkA+wfznfqK3rbl8tl3L59O954440m1Mp3GzR2srAlkt8k47sRbsDQyUB5sb1caygvypC/h0E99rWjUKHTSmUEvAPaBPwzL0QXKPPvDriPq8u9WRlQyQC/AzURgVQGWgguCPi6FtHsdgm951Z85vHV/wQjBFsC+w5wfHH371zEMnlqkaUnkzzIU0R5EKA4MPPbeQaDQUyn09ZinHnRPcZUoTHL5TJGo9Ha7SDZ/5nhuFgs4syZMy2gnMkhM/j8bAP7kmWxDWq/ADHbyXLZVx6i4bshyqP33gaeB6BnU8DAAUjmcY24+5sAEfnYIDhxYEOPvurwsxYEuVlZ1Cfvx/F4vBY3T+DHcBHJi/lpzLJ9nG/4P9O5AU/gq7FF3dGc4XfaOwAkfxxXIrWXMeTZ7hn1ivrD9JwvxC8NZC/f50SmEXlaUtcaQFlyruCYUngR5wu20+e/1WoVo9EoLl68GD/8wz8cw+Ewtre3W2F+Ee2bemicc66jHtAYZT9n8yBD6thmluMy9vnTZeXG3muvvbbW94UKnSYqoTWFChUqVKhQoUKFCj2AVDzyJ6RsG/idpPfQBffK0DPlHinmcY+Y1+seRC+7i/eunQCWQc+Te27oaWSMu97L6+S30tBbqVtmvD3uTXJvP71Z3HpmOnndlD/zSHIrWZ4nl7dIXl7eJMO84lXPsh95Yjptj7sXuq7rxhMvbz5lq/hoD02il1veTt0VTr5UD2OlqQ/yCnI3wz27rleSi8JxtCOhssQnwwgoQ4V7qGy/zUVUVVUTIpGFVNED6OEdmfdZ+iAvehZK0uUpz8K16G3Pdk98Z8s93u7d1s4KdxNUtvSXus96/AYSpmXdWRiM5OGyZ1r97zrMfsi88dqx4TPuXnBuYd/6zhF1kn2b7bx4OJ7fpKJ5irst9OB73V6X+sJ3PtxLzX5R+7ytyuvtUv0a9wxtG41Gcf78+da4850jtZcedA8lynY/PFyKcusKRRJp3OseeLXVZea7SJyTqCuFCp1WKh75d5lOMslk28ld/yud8nHL27c8ldZBtJ77VqUWEwI4PfdFkM+4qCuvg1S/KUPPfWvfY/OzyZtyc4BBcOtbtTo8Jj5FjNVmem5TOxh3+epwGI0WB/2UqcuB/cTvkgmBrA7CEZDPZrNWHi2KbBvbrGsZBQaVPgPjXaDBwx2yNvjhP8pZ+up6yOfsd8lB/aE/xv2qvbrSUjz6YVxvA4EcdSs7WEnjj+VlIFWGigMiAS2WSZ11WUkfafhSFqT5fB5Xr16N3/zN34xbt2615FpV7Ssc3VBgP4tX8uBjvwvoe3+6QU0wTRDadeWiytMhTubr+l/yd6DqB5952DULScvmIBpqAvubxjv58Hmc5dPw4fkGnu/x+r3faKTplij9WqrfMkT99TlN8wd10w04H0fZnEC584eztre3Y3t7u5G9l81bxnjA1ucm3b5VqNBppeKRvw/kC1nXM/cGZeA8A6wskwtEFnfYZTi414R59D/rd48V00Tkd8TzOcsiAMvyuhfI5cTy/OCTtyfbFfCFj7sE9HyTL3oUCTgoZy66mZHDPvUrGn3x9L6RcUDDoN/vp558Xs1HWaku9oVA6G//9m9HRMSVK1dib2+veU9A5IYcwZja5ECQ11aqTXomY4c61ev1YjQarRldLm+V7WBI4G61WrUOTEt2Amd+kxHjpiVTyZBgV8/VXvaFlyeZy6ss2VMm1HuOFfcIy6tKXVN/ZmOJfd7rHR1m/omf+IkYDoct4zrrV+fLDTruermeUrczI1SkOYDjOruJRGW6UZXt9KgezkG+Y8d+dbDPMy6cE8hjNod728h/1jeZgcTzG2wP03DM+VkY7ox53+hMh2Q+mUzi8PAwzpw509TlOzI+R+tZZph0eeq5dtCY9XXDQT/nbZ+3aPy5vPXs9u3ba/1RqNBpogLkjyEHi/f63sF65oH0RZAA0vNz8nPA5OW4kaB8Xp5Pzr54ZQswt37pffS2+8LIw5tsOwGr33risqSHioCSYIceLAIgB1G+SDiY4XsH7vTM0ru3XC4bbxrBruTsVx86+CAAEE8E6mpH5mVmXR62wjb85E/+ZCyXyzh37lwrn/rVDREaWnqm21zUHvHErXseTOb1o7PZLEajUSNDbuW7MUdwqP8lM8mKwETtYP/S4PFxJdAtr6A8mAJ7vgujcrsMdYJ9PeetM+oHGRv0PNZ13RgWrJPfNaYyg5ZAUfV5aIbL0ecL7hZFRMsD7n1EfeSzLgPBZZcZAO7ld8DOsqjTmQGxWq1a13EqnGw0GjXpOZ8Nh8O1kDE39J2y+VL5OZdTFq57PrYdzHMc6LkbVGqjZCMjbmdnp2UIZGuK9ER96HMX+42y8HXjuLVQPLK9vtNDvmic+c6kg/5ChU4rldCad5E2TWr+3r1knpdA1UGEFliCH6/DPaeiLLwhm1DJh4MsephVJvPTdiHKAAAgAElEQVRw0lZ4i3vgWJbCItg21u3164/lqpwM2PkC7X3AuvicXlgaKN5uv1ZR7WBe3y5mfgcGEeteXb9Zw/VFz7a2ttbCFSIi9vf3480331wDSzQOVI/kR+AnvuUl548fCcDTk02d6Pf7MRwOG74E7lVPZlCynwlgySdlyb4m78xHw5QG22AwaECQxhXvpKe3XP1Gmasu8knjTe8I2gnUxJ/CSMhbpvdsrwy+V155Jb74xS/Gq6++2oBXyYd9SH6oWyyfc4SAFOXuOkEgTHmrngxw+xhQGjdgOG7IG4ltkdzUJo0HlblcLpvdF3cO0HjOyiSwdcDu3n83bJjWY8Bdl7wchszpOWVNJ8hqdfT7Da+++mrs7++3+s/70vtcMhEpnV8L7Lz7OsQx6ETHiPjmPMI/n/9Fuhe/UKHTSgXIFypUqFChQoUKFSr0AFIJrXkHlHlPT/pM5F41Pmd+PaMXxbfIlbarPnpfnRga4d7oLm89y/JdAHrLMm8r08n7SA8nb6xh27jtq3ce2sOQF9bH9ut/50cx09xh8B0BbrX7Vjn5d++Re1xF9J5RVtmvHooUAkAvusdAi3d6gCOOPGq/93u/FwcHB/Hkk0+m8qFnkXG5TMOtbrWDfUO9kLeNh4IZ8qB6GMrCtme7V+wHhg5l3kHyzj53byjr8l0jhlHRi+ghTc6jytva2mpCdgaDQSskSXrlXn6XA0ltF0/k95FHHonPfvazTR9pd4q3+rhuMiZa40Ce1OzmEO5AKVTId8XIJ+cqleHnCSg7ku/GuMebxL4WPwz/UTv46Z5hfWZhdz4+uGvlbch2a8RjRP5DYdxF4K5XNsYpW/GicSSednZ24rHHHou9vb2GF7XR9Y+7IKqH/U35ZiEt3gaf86jHTOfzouuA5g2+127e5z73uTU+ChU6TVSAvJGDBlEG2Pi8K69vfSuPgwYHLSzHF6GINrj0bfkMUJD8EJPHWbNcDwlhvKIbE9q6ZkytePcFkYCICxRjIZWWcZXOuy9sKs+NBqbngkAwKIPCb4igjBwMeB2UU1fYjm+pcwHVM/5wTga6PFSFALBra5tb4k888cTaVX8OgPXMdYryiIjWLSjsN6ZR2Qqj4TkCpfMzFyL2cVffuiHFfuZYcrAqwMO0GWhmOZSR9wvHhMtRfFG/mFb8sE9l9JAHHwMcRzQKB4NBjMfjVuiSOwHc8CGvfqsLDVkaa0rn5zD4TuPGjXCCWBLHkId/sN5sPvY+57j3tjKcRs9lYFKPfKz7vMZ+8Tr0nvnUFhqykitDaDycj/VRVln4mvKMRqPmz/NSXjIGM4CutHznBpv0w+dAXyPZ/75usUw9m8/nza8V88fEIo508+WXX44LFy6kPBcqdBroPQfyVVX9ckT8g4i4UNf1W/bulyLiBzuy/pu6rv83S/+LEfGfR8STEfFWRHw5In6lrutX7jffGWUTpL/nJMQ8XNAzMOGLCd9zAud3ByYZwOfC4/kiogHmDmLIcxfAciNF77jQ0/ukMpnHD9aqDvHMBcwNEbaDCy/bLnLjhAe9sgWaC5YDK7XDY4W7dCCi/Qu1NFw8n8qWLBT/nAE58lnXdbMY9nq9GI/HMZvNUkOPdTqAz/h3uavPqNOr1aoFUgVQ6KGnHqse3/3IDp56zHSXPruBRU+qg1WVy98FYFscoJMY957JjzrdRbzVhPrFMe1jjbH+lGl2OwydA260uRfZvdjkneOffeX1uNwcbBMw+wFxEeXAMjxG3OXOfuV7HgImX9ShzKD0OZhgnOOD3ym/DNRTP5Xf5x0aYOrfzBhjOp1Jyowl8Syjmu2nc8BlqXTM5zy4wdK1pnQZvdRxGlvUt6qq4tKlS/GDP9gFEQoVOh30ngL5qqr6EfHXNiT5GxHxyY5344hogHxVVb8SEf9NRHwrIv5ZRFyOiM9HxH9YVdXTdV2/fq/8bQI5J83fBdyOy8P//bvz5ouig4yuLWIu2llYhvOQAS0tvLoWUgu6Gw2+yDkv2S0xEXd/DIhpfLEQYHEwSGI9AjcEKSKCRvLqiwifE4SQLzeg2B9+nRx/9Ejlu/fN5eYLqfeZp53P502dly9fjslk0njk5Smm8ZHprHu0qQ8EGwJjKm86ncbzzz8fvV4vrly5Ejs7O9Hv9+ONN96IL33pS/HpT386PvKRjzQHEb1OB9/6TiNTbWdoBI0B7bb4bgnHgB/6ZLnsC7aZuiGART3ie4J5H3u87YcGkeugeOaYpIykQx7yQRkyDIP5aQA6uGT7mY/jk95W1sV5LAOIlLOHpVVVtXbAsqv/yDvr4PiTh5d1Zf3Ashywq2yfN7PdIOqi0jpAVV55nLVbloF4yV2UedE513BMuuzUXv6QXDZ+3EDivEsesjnD1w6SQs1UnveVZOxODaWdTqfx4osvxhNPPLFWdqFCp4W+60C+OhrNn7jz94vRDdQjIj4aEf9DXdd/85gyPxYRfyci/jAi/mJd1zfvPP+rEfFPIuLvRsQX3i7PDoyy9yd55uV1gSWv09M5OGQaX4DdI5SB6KxMTejuOcninwkmuWiwfC4G8si4J4ZlihdO5j6xa0Fzj6y3lWCO9XABdSLQdi8/+eTilXnnM4+ZZOZ32AtM6x5oN3JUH4F+1wLK9LyGUDehvPDCC3FwcBCXLl1qruLzmzm4kPvVhZQHZa326510qNfrxeOPP96K3a2qKsbjcTzzzDPx8MMPt3YaCCg9nli8kg/Jl3pLfWMb1D7xKfmKN4YEeB3Z2Mv0jXJgfZuAENvEtErjP1xGcMsxsFwu4+DgIK5fvx6DwSAuXbrUulZR/FDP+Uz1Z4ad65qDfxp3boBxtyjbCRAR/LMPvY88LMz7yecV6p3z5GCT82DWv11zB407zlnSR6/P5xaOAfa1y8h3EShXGruqR3Vz/qRTY7FYNKE32a5NFy8qnzxlcuT8R36Xy6MfrJJuE8y7XNRnlPVkMikgvtCpp/fi1prdiPhqRPyjiPhLXYmqqroYEecj4o9PUOZfj4h+RDwrEH+H/mlEfCcifqGqqp23y3ChQoUKFSpUqFChQu83ei9Caw4j4ufx/dmI+P4k3cfufJ4EyH8mIlZxFBPfUF3XdVVV/zoi/nJE/IWI+Ff3wugmj/m9knvMu8r17Wfl4V/mIfEdg8yD3/WeXhXyxnCLLu89PSQMD6E3iG3xrVhvq+8icLvZy8jCSSgL35Ilv/T6ZHG9zENemD77Tg+0e2/lmZPXSR7yzLPOPpY3zz2yXTexsD8lA95GNJlM4hvf+EZERLz++uuxu7vbur/Zdy+8r7i7ojLFG9vhury7uxu9Xq+5P14e+UcffbT5dVf2HW+wcT6kb5S1/uTR9RAHPpfMGAdPT6qPH+9P6nW2e6N2M87Z+5n8eEga5cdfPqY8KRPque7BP3/+/NpOjvK4t5l65W3XJ2VDnaYusg5/Ro+95KHwMPJAbzzHgXRY6Z0HtiV75l529Z3vFNDbzjATlzmJMmO4k/hTH7o3m+S6kx0EzsY75wN9UuYqj7Lxe+jH43GLf8qHepLtXrr+ZLx6GdwdcLl7mbyFLPPqFyp02um7DuTrul5GxD/X96qq/rOOpB+98/ladRQi8+9ExEFE/Ku6rv8fS/vDEfGtuq5vJeW8cOfzidgA5F944YX41Kc+lb77/d///bVnGTjeRL7VmwF0vhP5xJVt5/tWpPPl28AZ33zGdF3gmKECAl3OLxcOAlTlJ99My8nZwyTIb7at64usFhDF8HNxdVmr7Vk5qt/jRQkElI7AgGEhWpwJKgkMyY+HsBAYqB0EB1m7KRsaNePxOM6ePRs3b95Mr8xjW7Xoe/8SjPJmDQdL6jv9HR4eRq93dP3icnn0S5ra0hevvmgT0Kuf/fAz9YzgIJOJxzp7yA3lTxCvfuJBXpWXGW6e1/vU5S498Vhll7WD8oz34XAY/X6/ibNm2gxwdYEo9onqYF9Tb30OWSwWMZ1OY2dnp9EnNyZojPoPbTE0hXT79u0YDocNqPcx6I6SLuDsgF31STd9jvG8Gou8RpT1cTzwWTa23TgjXzLmlc7LcFm54aF0mjekv6zLD9tzHmJ/s/2Z0a4+YZ2krBw/k8CxRGPGDcOIiIsXL671TaFC7yd6+umn0+cvvPBC+vzt0Ht+a80Gkkf+ixHxEF9UVfXFiPiFuq73q6o6GxGDiLjaUc71O5/vaMR3LXbHpfVF8yT1qHxf9LN4aAIHf9b1PauPlHm1OPFrweCnewYzEB+x7jkmOKb3K/N4sUz3JmrhJU9sH72mDirYLqV1IEVDwePg3QOXAcCqqporJbN6MyDvB0s38cay2Edd/XLhwoWYTCaxt7fX+uXXbOH1g4ZsX3bYlsaa6uz3+zGZTFo6TPBFWbqOq88mk0nzi6vZFZTZblC28+PAzXdtCIKy6wnJLw2xDECqfyh/9YuPM+o0Abzq133rar/OUrjuqE2r1Spms1nzS8leH9Oz/kwHaXhmhjLzqXz+irPv8tDA1afAOQFs5qjwMznZfJXNee6gcBlQJ3y8OUimTLz9mXNCdXTxpefc1eT8yDMCqoOA3w0Gto/6OxwO1/RKxjZ3anxOznQ/cwy5kee7H268ZTcqUf85j/nO8KY1uFCh00TvZyAvj/yX4u5tNP9uRPz9iPipODrE+rmIOHsnXdfvNB/c+dzY1qeeeqrxvHOCyID1Jso8biyza1LM6snyuMfPJ3zy4ZN51qaI7gVGxPAalasJPtv+5eSrhcc94e61dvDgJPDiP1nP9AIw3Hp34gJFeXJxE/gg+KKMHHhRxrzK0PuL98KTHx4A9Vs/bt68GYvFIra3txsAIzmyf71MPZeX0w+iPfTQQzGdTlttcDmpjQ6mxEN2PV5EfpOMQKe+d3ny2T6FUiiNQLyDykzG7Dd6IZVO3km2h15A7iSQJwcv1AWmJzCMiLXwMOVxfeTuieTkfUCjlDIm737bDQ0+n4PIh95lHmbyQqCb7ZjQYKExw/mDOp/txKgM/TBVXdeNzmoXxw3XLgDLdogf6YvrANNSRpQ1/2e7PC3lzFu1svHk+pWtCzQm2JfZXE+Dw/uEZVE3yXMGlDNg77xRF0XuSKAe67vv7rhxQtlLbw4PD9d4LFTo/URf/epX0+dPP/10PPfcc/eljvczkP+fI+J/r+v6/8Szr1RV9R9HxPMR8fNVVT0ZETfuvNvuKEf32d1+d9i8S11A2CeiLtCeeXToFWF+X+yyurkgc6HwMt0TxwWJiyQBDsvPPKgR7RtMeFvDfD5PeSGgdj5UHq8PZHqXFUGQy41eLZWvBY/XaLrx5ODAganHwRIgcQH3LWLGixJsRBzFlasOGlQEtNnWPwGOg/z5fN5MIJt+PdZ1IgMgDnD4XTwsl8uYTqcxm81iPB43euWAgd50v/Vl086F67MAgkCx+lx9pHcE9WoXjU96PFWnG7/UD8rJAbq3h2Uovbc9IlphG9QX1xOlV1vm83lMp9MYj8ctY1k6w+sGszmEhqxkQ5kRkNPjz3HsHn3xrv6gB1j1+O4XjYDVatW6kpF96QYdASPnEc4XbnQrvd8Y45+sj+X6vMB+6fokOUAmbzQ+6rpuhcJQd30sU47US+qqj2nmUXt9F1KfbrCSd/JCWYsXhuwxvEb5SW6Qq/7t7a5lv1Ch00Pvxa01J6K6rr9iIF7Pb8bdQ60/EhFvRsQyjm64yUhhOd+570wWKlSoUKFChQoVKvQe0fvZI7+JdKh1Udf1vKqqP46Ij1VVtVvX9YGl/XN3Pv/tSQrOPCXZs+PKyDzv7i3x7cks5nCTlz/bmnUPpnup9a6rHvfWyGOmPPSy0Svu3jrfSu3yzistvUriw0N+VLeH+mRyydqj77p/mjyqXOZzL7+8gr69TK+i88FdDcaMMq9+qInhDXo3GAwa+bk+iVg+PY18HxFNPfo1WOal95WeP9/RUf0Kn3GPJutluMXZs2cbHtz75+NLctOPxbjHVbLyUBmWI2+f+lSxwdSJiPYhP/c0u1eQ4SHe3/TU8zu9v+SdsqSX1XcqKHfmU9n0amb88JBkxN3dJ4ZpUS8pT/IinXDdk774zh13OlivxlF2X7jS+Xhhn0iHqSeZjlJ+TK9QNvYlY9A1HlWuh95k/eP64DucXeFrvntAnZHM9ZmdJ2G/qx/Z3izskTtX1Cvf9aVOZDt+Kivbhch2fckn/+/y8ut/9r1+C4G6/EM/9EMpb4UKnSZ6X3rkq6r6eFVVdVVV/0dHkn/vzufX7nz+izi6R/7HrJx+RPx4HHnj//A+83iiZ/ea3xdLTnac1Ei+sHIi5ILJhSgDhZxMCeL0TIssy9R3z896PC6UfyyXIDdbTLRACGT4di9l4+EbzK80jIV34Eb+uFjzsCqNEvaD5M6wDhoG+iOA5uLkW+Q0dKgLKp/x7A7MVDZDN1TG7u5uq43iW8QYeDeQVCb5I9hTHZKt3ukmFQJJfTq4JKikkeO64vH8KkdhGARtPINAkOOg0uPnladrzDjYoVwIaMUn9YPgdz6ft34QjGOBn6qzKwxoMBg0B2L1TiEw4s+NS5cn25EBMAee4oN6zVAIAlufj3j9qfJRD+gw4HzjOu0GNj81fnlgWsQzEaojMzZ8XnSgSsrmPKeuubxrLWE40tbWVmvMbZKL8sqQ9v5kGpWtdzxPoPNHlCk/mT4rnwai+GQbVJb0gfOG5lL+SOG1a9c65V+o0Gmh9yWQj4g/iog/jYj/qKqqf58vqqr6TyPiz0fE/1XXte6Y/58ioo6IZ6uqYtDc346IxyPiH9SbZtxjKMvKZ12TllMXeHdge5xB4AuU+HGwyPS+8HBRili/AYIgmGUoP2+jICjKFqxsYfVYRwE2LjSMVxdPXIC5qGhxzRY4N4C4WDIt5cAFVgBCAEQLvO6AZ3kOwuVldeKVeTIi2Ac8GEsvKg0kLuDuteM7gn62/+DgIG7fvp3qHWNyWZ4vtlxkfdeAMhf1+/21m2548FmyUSy/e8x9bNALTKBHsKAzGTxgKznwDnMHIE5dUwj5Yn56c2mEiG89404PeWH/+zkK6oPyyUBSmsFgEHt7e418XF9pNHJecLDohyFdFtRjzicyNDiGJSPWzfI4dlS2dEa7U3zuxiXzutNC5TMGngaEG0/kV+WpbZksMmOXeuj626VrXp8TeXaDRDLleRKm0e81ZPyzP5THjXSS6wXn1wysa65VGhl8foGBZEAwr/LH43GMRqNGz8th10KF3qehNXVd11VV/XJE/GZE/Muqqr4cEX8WR3fJ/3hEXIuIv4H0/19VVX8vIv5WRPzbqqr+RRzdG/+ZiPj9iPhv3yYf7zjPSctwEO6L3CYPkE+mXQtEdkCrC8RFrIMx96zzmcA0iYujJm0uCvQyEqTwmWTBRcnBCHklbwLIfnjN2xmx/tPfrJO88vlwOGzd0KLyBZjoAVU5dV034QEEvrpa0MG772xQVpS9ylR/doEN8XXu3Lm4ceNGjMfjZtHUe4FAD5PJdizocacx6eFXBKxa0Hm3P3mnUcd70EkEzhkwIS+SrUC7jAMBEe6cZES9ohGVycaNRr1n+ALBuMpX33bduETjju0kb+zzXu8oFIHUBQxZrsqgsUWdV3tE6h8P4aCxIf75qfeZ8UnKHAzcCXJjiWVTXzmmeKidYUEMKSNP/j3zdnt61xnyl8214kF88Z1knvVxVh71j2NBf77rxvLIY13XrStB2X72i7eL84/PVZTDcrmMyWQSdV3Hzs5OqvvKw51QyuzSpUtrfVCo0Gmj96tHPuq6/lIcHWb953c+fykinoyIfxwRf76u629Y+v8qIn45IiYR8Z/E0T30/31E/Hhd15PvIuuFChUqVKhQoUKFCr3r9J575Ou6/syGd89HxF+5h7L+YUT8w7fLy6Zt9XdaZraF3FWvezjco6J3XenoAcnq6Tq8lHmP6I3TwTrfvmY+eo3lbXWveUT7ejIPF3APnHvIvS3u7XOPEHcFGIfrBzx5CE9pPVyEW9aeXvWPRqO1g5KsjweDRYplzraq/Z5qj1l2/ulFdZkNBoMYj8fx0Y9+NJbLZZw9e7bxhLGtPFSs713e2bquWzsTPEMgz6l79bgTwTrcEy3vqcr2rXnuBPjOCw/7cVdIOsYdIrZX+bwsyp5toD54eAJ1m3rI3RTJxL2dHjqidCqb6ajz9MbSg8zdKe8Hxjp7nZ6P77J5RmEP5Nc/efjX+zt7pzAdHVT1PvDySZxjqMf+i6zUNc6D3ElxudHrnvHgO3J65nMw5xuV695oetpVBnnKdJs7XH741fuNZbJs9RfHr7dPY9HPbHhblL/f78dwOGx2y9jnHsLE3RXqfV3XJbSmUKF4HwD59ytli8ymtD5ZdeX3RYDPPY1PuNkWPydrAkoPhxH5tqg/y3jSxOvAleDMt331jMCAC6bnYWwn69Pixu17tVUAJYtt1eTPRbxrcWF5kpn4ZDkqW9v5GUB1ebOfGSajZ1z4GH7BG0yoL7zBxY0ZB3R8zu9bW1vxfd/3fXH79u3mHWPRRQ68GW/P906ur0pLw0LGzqZDpVmYGGXk48iNQz8MzXMOkoN4ImDPDiAz9GJra6uJuxdoohFK4C55ebmu7+LPjWn/X+nED40D8T+bzeKtt96Kt956Kx599NEYj8drZ0HYPu8vGgLZQV03Dtlmxu2zb1gH83r7eGDT5zaNu8wxoLaL3Nhl+uVy2cTb80yBx8ozjzsrOF4Jcr0tm0JhaBzqOQGt+pjycEORY5ThJyqHzgO2x+dQGjjkl+sKDWWOI5bDsz3ef/zkuPPDrll/ql6O/4ijH8wrVOi0UwHyJ6STAvsMxLjXiOn0l3nCvNyI9QNJBNLZwuXeOQdADrR94SUg0gGzrltU6A329nICp9dIlHljya/SyoNDUEiQqe8yAnyBzeQkWZIHX3gi2t5gyolgX23JAJgfaHXwSLkRZDK+t6qq5vrMrrhTLrwEmgLO0+k0vv71r8cbb7wRjz32WOzs7EREtBZh93wzdpf1Scd8IabnlPpyXD94ufT4ZmOGoMqBE8G0yHda1E7qrnvyRQLvBPHSHf8uUoxxtkPjwE3GG/nNQL0DMaaTsX3u3LnY3t5uDjdyjHQZCJSpnjNGmoYGvfScZ1z2NFoy4O596cCP84kDeLZFRprKpr5yDuv1es2PklHfXL5ZH3g6jlH3Ymv3h3H3HFfceaTB6iA+Wzv4XTsIqs/PEHhbugwsEQ0BGohOlD13O0h+sNx3CN1oyPpEPGVjvaqq5lrbQoVOMxUgv4F8kjsu7dsp38GJkz/379lC74tT5i3qAvG+QGqR1AFOTbgOKiIi3VYln5yIfYGirDOPWHbYi/n4zo0XP9CVbS9rQcoOPBIAsR56lNxTrrS+ne0Gm8ommGc7CJgIVt2QIKDxqxZdXovFIr71rW81z7jzEXF3x4G/gEujTuUo1Mr1kQCTwEBtY6hMF3BX/QKS0h+/vUVleFiC6nYAmoU6KK30ej6ft8KNCNDcCOM4ErFN/OVK7w8aKepvB9UZ4Mp2vmhsqlwZfOorkRuONNQp/2znR7zoekuVp/fZGM4AuvPf5ZDgWJrNZk2fDofDTt7YZgJa9iGNEHp53aDx+VP1uZOAu4ZMmxmYPs6pn+zHbN5nv/E5x6PaynHMeSFrC8vzNYV1si+7dgTYVoZiUqfZH1l/H0fi67XXXjs2baFC3+tUgPy7RCeZkBzc8Zn/7+BBk6l7ZR1oeDkOZDNeWTYnXZ+4uQBnhoAvhr5QqXyllRzk8YxoXwfJRcGNEIItD41wEMX0XJAyAEovmkjleWhGr3d0T/NXvvKV+NCHPhSPPfbYmuwJOmk4+DY7wye6gJb4Y/9JRlmYjXRhNBrFZz7zmQYo01hiudS1jFxn2S4PIxFvlCkBBAGAeNGtP270sQ9JkoWfFXCgmJWn/K5PrlMiPy/CPsjklRlVXTtX3h6fJ7rilQkcWYePb9cJGuYkGQIRd72rDoojomXkiw/v28xZwPGptjsf5F38cM5gO9nHzE+gzP5nWvY7ZdOV1qlrjETc7XvqMuXFdlJ/HWC7A0Xk87kban4uQuWRFxmvGU8eTsn1Qbro8xJvK1Jazgk0Inzd0nuPi6cjQHX87M/+bKfcCxU6LfS+vbWmUKFChQoVKlSoUKFC3VQ88h20ycNC6vK6b/Kw0/OTee67POru8aP3wrcuPZ975twLmHlFIqLlCedhR49p9QOs9NhoS5exrh4Gwa3jiPVt+sw77T+2RI9htp3PNnsscNbf9JAxDeUj76PauLW1Fc8880y647HJo+y64bHuGQ9etur3GH3yKVnqkBh/gMtvcaG+ZOEcrJ9e79Vq1ZxlEK1Wq7h161ZMJpO4cOFCK3Y484zzlza5c6K63QtJ76Du94+I1rkAP+SofL7Nn4WGDQaDjWEyzj93scQH5aVnDKchdXmmuUMmWVCX/MYd8sK6OVfQ49oVNkdd5E6a0mTl6zO7kYQhFt7ebKy4jnkfuQfd9d935MiP18UdGc1JlLeH4XCuzPjzscPdN93apHq5M8ay1X56wF2WEe3Ye8mL9ftcovbwx7Yot67dJvKp/icPGneUQxZm6GFrbKs/z+bLq1evRqFCp50KkL/P1AXsT5reASIXFJ9UWUa28HOh8TjerjqzkAqCDQIUXwy4ACqfgzGm7wodoJGjEBby6oBfPDGm240MbxtllIFCLsoMJ/Dr4ZTOr+jzuHrxwS1oX7RFHjJA8JABaJcpATvfMY2uodRhSLWVW+KZUUig7HIjP9Rb9cuZM2eaH34hsNrf34+qqmJ7e7uljzLU5vN5jEajNT1nOBaNMj/kWNd1c70n9ZngnXKlEUNARNCn/7Obi9g3ri8OSlSe39DUBaZZlv7neFTZHFMenuSAiKFh2fxCPtivbkSrPifXkS7wzveZIa7yHUwzjY8F/1E29hXHqORG3lQmjc6ufmCf+v9d9WbpMgV8QgEAACAASURBVOOWsvAwJfaNy1rkfeJrhdL4OsO0/p68u8yUn2c0mE/lebhbZhCd1HArVOg0UwHy7yJxcvUF0kHmcSCb5BMqF7GsXv3v9WdeF8+bxeKSf5+83Yvl8bP6BVJfHB2gqczBYNC6JSTzojtwzwCY6qBXkYaJABcNBOUhSPJYdgJgjwElqK6qo4OP8nwJ1DOvL+Dkl33Hqym9r3yB80VXPL355pvx2muvxeXLl2Nvby+c1IcZkOJVlQ6cBNz5q6n0YDPOWTQej1vG1mKxiOXy6Fcft7a21n4d1OVDUOkx+uJnNBo18bUqzz3rvAEk82KqLv+FWOXle+9P71caGQKL6utszEv2LMPLZ2y15OjjgWPHddtl60Yjdxgy8Cx5exszcNpFmUHA8mez2ZrhUtf1mndYesC5oWtsdM2frJfGIfNIpjQSI9YBuv8qr5McFjQA2SbyyzjxbC4UcaeFOu0Go197SoOQfefg2ikzOCg71u1GiPeJG1/6dJ188sknO2VaqNBpoRIjf4/UtTBn/2/KH3G8NyEDLicpy0E+AXBXnQ6o+anFUd8zD48WHwJUEb3OvLe5K7SFCzWBrOr2w1seckHwoBtlIu5eCSdeyXMmF/HHe461IHJRJSAXoJpOpw1PAlY6WEqPFQ9u0RBS+TxwqLKqqorpdNoCkkqj+8K5aLue3Lp1K1588cW4ceNGS8bcEu8yQr0sAo+qunuPOPWNaWazWXOLhvpLfKp89ZfS0shiX7HPuDNDner1jq4bHAwGsbOz08jc9dsP+qrPCbApCwEvlcMwAr+T30EiwUpm3HeNUz6XLpP8Kkvmoc76ePa6yKsbUc6v804+NDZ8V6KrLj7zOSzzwHq/EYByDqH+iT8nGikZfz7vdM2H9Lrrs+vGLZZBEN/r9dYOnjpA9+cO1mmsybijkah5guVsGuvk10NefIeGgF71u4FKffL04oFjWuW4bvz6r/96FCp02ql45N8GbZrssjT+3CmbRP09t309j6fN6uOk695r9y6R/wzga+Hhr3mST6bP4om7eNBi4N40gqYs/puyYVvoRVK9EXdBl0Aa+eOimy02lKt7sQj8+WuM3k/u1VcdDhbZNrZHcuLtFL74MR7V+3I8HsenPvWpePPNN1shIjR69MxBZfadRs58Po/pdBqDwaAVjy4e5FGlLukHjC5dutQCFwcHB7G3t9fI0o0SN1a8P+q6bgwh94gyDInk+uIhXOw3H2vZrRxd8mIdXeNM6bM7/NXmDGAznRuiXj/L93lN51BIBM8uB9Wh8w1Km/Gm9O6h9Rhu9pNiynmjC+cRb7vrAuPLda1pF0BnGV0AlCCeAJ7ee8lD75RXxqHGncsoM/D8ezbXbTLM+N3j1729rgs0Bl1HtUPgxorPn5Svy8jrd8Oa+sT0Fy5ciEKFTjsVj3yhQoUKFSpUqFChQg8gFY/8CajLU34/y8k8u07ugWG+Li+M31DgZWReJ3oI6bXRDQsRR2EP9KjJW8KDShnv+p/x44q7znY56Bmk99jbTtnS409iuA69TNkNJCyTYSJ65oe1WL7CixTfn3nMuQuReZmznRt5b+Wtco9ftsORyUeecnrDJBeVTU8sy3QPKHc3yB9lrXJ7vaPbMSQjhW2Mx+M4f/58i5d+/+jXSfUrnJn+Zn2mT+mM77C4bol/1xn3ENMDKy8qx6l0wnlRPR5ulKXL2uDhRGwDddnrGg6Hrd0ED5HJdM75Yjsj2uOKHvxsXsoO7bJPKH96tj0tY8W1e8C06juOwa4dI1Gm/6RNuxyUA2UX0Q5toqc+87g7n+SXnx62Q5lzV0bf3Yuutrh+e3iRy588+tygOrLdQOZnmxiOozw6L+W6nY0P8UDq9/vxxBNPrMmwUKHTRsUjfx/IwdhxaZ2yreFsMckWcwcGnOg9rW+XcuJlGX6YLNvaFFjYdPita8Hh4uAgi1uvDBPJgBYNAj4j+Cbvi8Ui5vN5U95yuWxdYcl4VpLkwbZzwc3AhQCs6tGip8OWjIPNAEXWr35oTOm4Fc0zAuJVn/x/sVjEq6++GteuXVury0NEXDfYBwTtKntnZ6e5Daeq7v7iI/mjvHgtJONhz5492wIPi8WiFTOvOnnwT0RDkfKgXmSy99h3tZGy5Jji2QaGaYgvhqFk4yOjrgPVrhtd+dW+2WzWClMjeYy32iNDi3Kk4crQN5cHDTca5hpX6gf2H8thjLcOTGvcaj5Q+BZD7Nyg2jQfMlyKsmJ7vR9cbgK1DPFRf3Es8jmNJcrb9Y+gnGFX1B3Pz7ycF3ieR+VJRxk3Lz1lCJbPx8pL2Wj+4jjUWPSxkI0d3ShEHdi0lnoYU0TEtWvX0rSFCp0mKh75E5IDGqcuz9qm8jKvsXt7ldY9wL5Y+XP3RGX8O7DI0nk5ukGGnjpO+pnHlIs8+fH4YwL8iPbPzav98hRvbW01vBDwU/YO7D1NVVWtXQbGibNtHkvtZbKv9JyHPn2x54LkCzWBhhtkrDMD2wROOr/gOqD3H/rQh+LMmTNx6dKlVt3UP4FYj431//nJPlMbZTDdvHkz9vf3Y3t7O/b29hpDkIaa5MVDuwJO7CsCMwF8N7Qyr6a+C1yxLwhuM++ny1x1s28lg+wQNfs3M5L0nSBWOpntGjGP981isYjZbBZbW1sNOGc6fffdHZHi5mkMUWcz4158L5fL5ipRGiUO1mjc6Zl2sGRQy1AmwBffkosbct5Gn2NlDEgu3s/uaHBdZ3uycxbKw90qGnLUy2y+7DK8Ml1h27xcP3OTGa3ikzceSUZOlI/+53PJS78hIR44bjhPZI4JGovsS45n/qL2lStX1vgsVOi0UQHyx1DmHTgJoD8O+LPsrgm5q36m80XLF7OsTgKVDLiTCKYiorVoahGn98296zww6WBYi4KAmvjKDmqKuGD4bgAXf/HgwJKLHYErASDr0f8iyoKypCdZ9bAN+l8Aktczqk6CHe9fl4f/4JIbZdQHByoRETdv3ozJZNJ41mQY0aNGj57qcFAicE0PONugz62trTh37lzs7u42njj1Fw9Hsj/n83lzKNH7TrKk3AmSHSRxXGQhAeJdfZXJlodOqbeUh9/Dr34VuTfY+0vEg+T8n+A7A/cC1Lo5STsd1A0eslQ5NPI4jtzL7Idi+YxlsO89PCYDv5ItbybhcweA4lHy5k5KNu9SfrwqlHNINmf62HHvPQ+1s33kVYap3mfl+3jRJwEuDXP2GdOx/VldWXtojLkseIUpx5SXr+csk3Ojz6WUv7eDYTyezw/J/tEf/dFanxUqdNqoAPn7SMcB95NQ18LeBdAdDGTeKC/PdwIIjt2gyOrlghIRawujGyIeU8yFhkCX9XCxcoCYeSjdg+YeHtaxSe4OKkncHRAgcs+t9w0XegFlASTmESjwawPFGxdqhil4nzjQcIAi0H7hwoU4PDxsYtAJipSX4Cki/3VShiZ1gSH/ASkCaX3ymWQjcE5w7Nv13t8R7R8Wy/TZQxZUHsmBp9rPscK8BK3igbpHXWcZqkN1Kj/HFNudGVfe99q9OH/+fAPMxRPl6DsIvqPlek0jhreUuD767iGNdLVNeqCdK+2oMLQtA/w0zqkLBKJsg8gdF7rNiHrn+pLNq963Gq/Zro/3KXUlqy8D9L4j6TJx0Mx208j0+Yn/czy4M8R3y1wmXXJ2GTr5OMgMGj8bok8a+JcuXVoru1Ch00YlRr5QoUKFChUqVKhQoQeQikf+HqnLu+Db+F2eiIyO2w7lZ9f7zJueffp7eXLcI850XbsE9KD1+/3mFgJ6ECOi5X3l1rxvs6o+fXdPv2J1FRbDfO6Vyryh4lU8KE3mLSW5p0tt2hT+Q/nJ26kwB8o627anh9Z3GRivTDkynbybvuWvNi8Wizg4OIiqqmIymcR4PF4Lh5Ds+Mu8KpO8yrvqoRfuxRQv+lEsPqOHWH0bES15sb9ELIfy8J2TbJeA6ekd5W6AyA9AU/9cz8iP0kmOvnPAfvFdKY4B6RD59v5VXzANvez+XPz5rg3HDmXst8v4eKX+cFxRPt53/iNI5NfDz8SzdoA8/II7gV0ypVd6Pp/HaDRq6Qdj8Skb35ni+4y8j7PdAp+X2QddfPtck+1YsD3Hhd7pz3djOH/Xdd3MJ+wH9qN74LN5jOFwnt9lyh0kpvfDuN7GQoVOKxUgfx+oC7BnYN4nvqwMLrZZ2V1gvqt+guausjgBR7S3jwmkuABHRGuL3W/ZYOywt93DFBx8+WLHrepMXl2gjoue2uOgmSDOQaWIMuiSn/9P8OOyYXy+t5dg2uvP+suNLdWXgd66rmM6ncZv/dZvRUTElStX4uzZs00ahrd4u8gL+SWQpW7wEDFlTYOKi3ZmnPEAHhd61w0aeW5sOlglGCTQFi+89lC64KBIYSF8R/69vwkClYYHdB1o8eyJx7CrThocbohkgIlGNA0olku9cyOA/UpdYR2i+Xwek8kker27V456/LsbzhwTPtbIr9rtBoLPc9ncSf1iWJgb6wTJ4sONWOq96wANGxqLbghRbq7bSse5V+k5H/FwvpfvRir7jLrm452Ggxu1lFUW5ki5+dwv+Uj2dBQwnY8HzjWc3/QL2oUKnWYqoTXvEnWB+03vs8mdgKXLKHBQk3lJvI5sgqRHj2mUz71G9DhyEWUcb5cnyuvXd4EogllO7A7SeMBNPBCcEABx0aU3irKLuHs4jyCMBo3aSBloQczakH16f6o8HQQVH+wzAk/2P3khOdATwNve3o5nnnkmPvrRjzaxwq4rArGSpwMR6kLWp/JAM0abAGoymbTy6+YMtoEgXt+Hw2GrLr3nVXjMN5/P14w5ykz6QO/9YDBovLMCzSyTxqz6n8aGy7CLeM0l5c1fTZZnmldZkg8aEgL+att8Pl/7fQaOSfYVZSxZUf/UR9Q1ycHT6/tisYj9/f01EM9x6QDabzJx447t7dJHjgXOUWoLD9USYHo50heSf+dBb/ckqy8I9B1wc370nR2StyMD9SL+z7qoq+RV/ejnT1wmHF/UXa+bRoDyURZ8p1uVuoxCjQvWR7187LHH1mRVqNBpo+KRPwE5IL2XfBHrXs0ukO+ToNJmXhSW5R5Z93oxn+fP0h9nNGghIMDhwSoRFyb+MJIvPM4nD4jSI+UGi8uYXlACT4KbbCERCCHQWC6XzQ86iQTUuU3s4EhyIZB3r5q+a8EnIBf/TEN5EcjoPb1k7uF1b5kA6OXLl+PMmTPNAulb62ojf2xKZcuT5p47tV/eahoP0gHl1z3zuiZxNBq1jDcPraAMaLS5t1M6yUOjzhvzUYccGKoNfqiSYFD5mVd8u7Go/zPDjLsK7FsHyK4X7k2V/NRvvIbU00if9ElvMMcXd6qq6m64FccEnQDqXxrUPk593nH5upHGHRfV4aEuPhdSxl6Ph6Vk8zt1hDs4medc6dl3XQCXafmO/eC8d83TPu/z9h6Wr7kmI59fM76yucyNrEyWmbOGc5mvrTSusl0OH79dbSpU6DRRAfLvIjlQ8P+7yMFwFyj3urw+TpLuSfJyjqvDy9ai6/Hf8rRq8mVIS+bd8jAJLkqczN2zk7UnA3z0bPoCz7YxBEMhDzI+/GYWAqVMlgIdDDNhGIzk5qEMBK3iR/m4gGVb+uSBdSg9gc5kMonDw8OYTqdrP+oiw8XjrcUj7/HODFz3PJJ/HwdVVbXu8iZRL3wbnh7dzCCczWYtkJfdrEOdU5kE5vpTPyqvbh5S6Atlw/okI7XFd1ekk7p9g3wwzKcLBIloTFIG4pFGGkFXlxFBOal9NEw03hkiwfeUH/WUIXiUl49ZB9luEHOnzPUpcyK4keO7js6Hy5G7jJQbb9khD/qknrqx65QBfvHEZ6rbZZbNH+KVZbtRwDlWZehaWzcgs3XB52DXc45rjWc6HCi3TbLhe+5W1XUd169fT/MVKnSaqITWFCpUqFChQoUKFSr0AFLxyL/LlHnj3YN2Ui89vYldnlCl5dY0PUUMbyFlW79Z+IHSRtyNq2fsMeukF8e37t0z59vi7olzHhh6wfq4hUxPtNLQO6lP95by9goSPenqC3ryxHuv14vhcNiSi/jJvJXcdWBIBOVDT2QWHsI2Sd7kkQfdBoNBjEajmM1mrdAK9We2E8K2cTfBd1FcfySD+Xwer7/+eiwWi9jZ2YkPfOADTflsm9KzrxQXL73YRPIgUx7cyfCDrspD7y3fu7fUw0REzENvo+9EkEfu7KjcyWTSCkuibNxD7DsBDHfh2QC1i+FwkqV0mjts7p11vj3cirJwTyy9vgzLYB7qFtN0HRhVm1Q/9ZxEXjg/ed9z5853Fdj+bDx6eI/yahypPNcn8uDrgrdD73yXyz3wPgbdA68+YNtdvsrrZztcD6TnHOPc/ch2jpxf5ncZZiFRrF/8fvKTn1x7X6jQaaMC5O+BHIC/03Sc1BwoZ5M7t/yzkIKuMvQ9or3dmpVHQJ8tjPokOOWPqwyHw5hOp2tb2szHTy40/DEkXk3n+RkKkoECLgZcxAXWWK/HBfNAHw+E6Z0bOwRi2bay/9S9y9L7mnH4HiMqHaABk7V50+InHmezWbzyyivx+OOPN2WKL5418ENtbjD5Fr2IAFQg6eGHH47ZbBbD4bDJ7zH6KqfLMKVOegiG6xeBkxtp4o9GioMd7yMCfYFsH5uMcVa9DAWi3rCfFotFTKfTpt0KOVJ5DBFTGeLVzxI4KPO5wp/rU3ra6/WaECLqloeCMXwsG+ecuyRrP1ugzyxe3cEvedH/lD1JZ1w4HggaKYMMePqY8rI5BkSZ4ZGdB/B51HmgPLM51x0B3o8ZWOYcRx5F1HelyQwK1e/yzkA505APnumhUSj9dkND5OE+ERFXr15NeSxU6DRRAfLfBcrAdxfQ7krHyTMD+tlC5OVxUXCvTQb+MhDN5/SEMU7eAVxVVS3vnrfdF1gu/P5Lq/zkosGdAREXBAIcylQLbZdXS5++65ABFMop60OBfS5WApV+4weJ7WJZjBVlvDZlmy2sy+Uyrl+/HtevX2/kQhDnnraIu7f+8HpD54FtJoBSPy4WixiPx62bebwO9h31zb3rNDbYb9QRB20Oqr3dBPM+ftR2evXZf6yDu0lMw+8OAnu9Xmxvb6/JgwYI5UzQ44aHe0/ZLoJoGgA+f8g4V3to1NEwpm5R76QnfijUwXHmdXVDYzabtfS+a+7j+CRYZH0HBwdx/fr1uHz5ctNGb7v3m3unabzQ4cCdsi6DWu3L5EB9Jbj39voOmfc3v0tXHRx3ybAL3GfzK9tNg9wBPXljm9nGzJDLZOZA/vz586mMCxU6TVSA/DHUNRmTHJjeS7qTeM74PxdRXzx9od/Uhq56HaSzjmyS18TNhZPhERkIZagHQ264wA0Gg3SrNpOfAGXWNpbrC17EEeAQGPX2k3cuarz/W2Vwm9wXdbaBh7Ui1u9l5nN6mekFJahUnX7rjG7coREpWSndq6++Grdu3YqLFy9GRO55VAjIarVaA7BuvOjgI+XFdr311luxXC7j8uXLsb293QKGOkDZBQYldw9v0HPqPsNFCMpp0AnIivicOzAOZtQ2eovn8/laiImDcLYna4N4kCdevAhAE6xL9uxL8Uq9OTw8jPF43OiPymWIhu/uqDx+sg1852Ed1A2N3wyoq098zHM+IKiVE2A+nzdhXbr1iMai0mdzhMrb29uLM2fOtPpK5GCSIWSSgeYEGpTkn+Df5ai2+u8HuD75OFSf0eDi3Mh52A0TzmMEzl3rh8+D5InjiKBcoW+ZN92NGo1P7jy5IeGGDh0ITufOnVt7VqjQaaNy2LVQoUKFChUqVKhQoQeQikf+HVKXJ9697+79Oe79SerwfO4BzTxT/i7bVs08OhHtw1MMVWHYhbyZ3N52L5P+p3fZr/5jrLJvU8ujRW+Nt8U96r5NTfIQA98+lrdZ3+ktomdOddM76J4pehyzEAp6T7OtZPLFOjw2OgtXEfX7/bh48WJ8/OMfj52dnaa/6N1j/5N4/SCvPqTHmDLU8+FwGB/4wAfWvM7L5TImk0mMx+OWl1z56QXnQcu6vvvbBPSsu5cxO5zqcea+O0Wd6boKUuWon7groB0i7WZwZ4XjhOUwpIk7XB6HL8pCM+iNV15elyne3VuczT3UW54V8d019r/L0O/T13N6vn2+4rj2nQnxoRA+8qn/1R8cD73e3XM88/k85vN5bG9vN3my3QqPD1eZ3HkgqV0e6uT9xN0ntZ9/9NK7fNhW5yHz/nM+ysr0Zz5fsa0epig99osBmE/puJNBT7/vxnqdlCPnWPJZ7pEvVKh45N812gS+304e39bMtr+7tk25CHj+zMDQp9IIqHvMsecdDocNaBgMBs0WM7eFM8DKBYeLYZZOYK+r/eSdZet+dC5IvLFFIFsLDu8s9xhT/+P7iGiBTV+cHPiKN+8z519Eftgv3h6RgyYaSJPJJCaTSeu5ylG4iOQiAOi3/mT9pPJpGHFrngc9+/1+7O7uNukZkqX86hcBPd5Uovb6vf6ZvolvglECXAFvghf+6qTABNvHctQnahf7xPuBYF7t5kFrB7h87iBOMuaPl0UcjUf9Si3HlcqTnjsYYv0MOaKRQL3mJ/WTh0JVFo1O/vEZZcR+z9pOnWQ97CPe2jMYDGJ7e3uNL9ZF/XYi2Kdxkd1Sw/IYiud96nM2wbTSUwe7wH/XnOFt45zpoVGc07wc6bfrrcrUM1/H+M7PwXgbGWLnRoXe8ZeOn3vuubSfChU6TVSA/DugbMLy75nHKwPsDuT8XRfg3pSO//sknuX3OF8uOL6IunFAcDkcDlvAhjGRnKxdTlwUfFFy2Qic6J2X63GnAmQqg4s7Pa70ujE+XGVGRAN+CMCcly4w5PKn18llusnbpDwEyHrGg5FdoH4+n8d4PN74Azm6njLzfvGHnNhWkQwh7pbs7+/HwcFBE7svuUwmkxbA5m6OQJzq97h5UVVVTQy1wCLBCPXLvZDeX10xztIjkYCw2so2SAYi9n/2c/PkiYYO+5cAkkT9V3oBR/4wFMd85hVXG9kH7sn3ccabnCRjAUfxSuDP9ni52XxCgzDi6Afn5vP5Wuy0e44Zg+4Grxuj/J8An7LyPqDs3AjJwLCPewfv3s4uY8fjzVU2+Sa415iRsbvpUD7LVBpvU9Y3NADIhz+nXrFMJ86JbjBy3u/1evHhD394LX+hQqeNSmjNCYkTXzaRHpc3K4P5CPhZh6fLJl6m9YXS027iNzM6yBM/sy32iPZPtnsIg9K591TlKTSAgNvbru8CT5rcs/Aa9w4RzPmCzVAGeg49DUGDyuY2MuvJQosywyTzbGV9RA8ev7Ot5NsP0qr8/f39+LM/+7NYrVaNR17tUiiJe+TYbj8EqPpUP0OVRLq7Xr/8y7LFx87OTsO/dEiyIZjv9XqtHQOXDW/WIblhmL3LxiZ1X21lfQSKvLXDeaeMHOxQD8S7G8DOq2RMbz11gGCX4JUH1L2fM+NRdRBIMi95ZL+zLxzAqg8oUwJWerA5bmVIKT3TkV/qBPvTwaHnoYxooPMwMfPTCGS/6D2BvwNUGos8KO5zSSY7f0dyQ4l8HFdG11rDealrfvVx4X1AvfB1tGtd8zmM8qyqKs6ePbvW/kKFThsVj/w9koOit0PHgeWs3MyDctwkru/HeVkyHnxR8jIzb4ue9/v92NraisFg0ITY0CNO7z3ziAigvQ7uDtCzKdCXgWA98wVS5ekzA00R63HmvV6vdT0fy1ObGAKiPHpOAODx6B72wcWS3mD2IRc7/clrKeI1ebu7u/Hwww/Hd77znRiPx01/8apPAuG6bt/37H1FgySi/YNV4qHf78f29nacPXu2kZ1od3c3dnd312LEvXz+mJNAokh6RlmK9wyoUFby4ss4zIw/9qOe8+YlvXNjUeBMZYvoJeef9Eb9pf/p/ZR3lcBXsmK73Uig0UGwK0+t74iJT9+l8jaJLx8L3jbfCWE/kTifuJ5zjHCHhn3lPPjcmYFCB/WcpyQH5e2aF1UmHRckyl5Gs+YdGnG+O+Eyc94zsE8eyZMDep/rusjlSH2QjmblZW3J2sM+dN5ZrpfPObFQodNKBcgXKlSoUKFChQoVKvQAUgmtuU/0djz19Dxkebqes55Nsa7c1tT7zFOTedN8m57ebq+HnhZ5ljzmk15jeRXpNaPnlp7giFhrB/nzuGSVxwOneubt9G3hzIvLMCDGX7uniO/JI72kbCfrZwgGw0YYisEbSdgmetEpa33XbSr0Xs/n8/j617/eHE6WV1a3wNCzzZACht6wn3zHQrxRtsvlsnUAmjJ3j7I/Jw9sC+twffJwJ9/y9zAXD6PKDqOyX9lOHnTs8tbyx9IyPlUuy8h0Ul56erflIe8K/crOQWQhFAxl8PlBxPAa9pOH6EiGrC+7rUf1+1jMdrq8D3m3ve+OeV+7DD0E0ecQhsaRD3rrWR55lo6yfs4ZIu5Aed2URebddw85dS4Lj/J5yfN07Vx1vec78pDtdji/Xq7rOt97KJLkqve3bt1aa2uhQqeNCpA36toyPY4y0H0cEGed/OTz4wyEDFRnYLuL5+z/LtBCoMWrwDxtFrc6mUyaRUm3tDgvzjPDFli3L0QEQ8ojsKhwDB2w9K1yLZK+sDjIdoOJhoTHyooHxtrSsOJiJoDD2GqGLvjBYPYx2+mgSfWpfrZhNpvFW2+9FRERh4eHsVqtGlBPQMJYagERAX+Pffb+lwGk8wvcfvfQKT+wSKDFMmk4ZIDBgb3riMuHYIX9o373mF++p0FCnZCcKDvqFnVOsnGjw9vigJBGtgM6jhMZZqqboU9qgxuX2Y9rsU+6wmj0nuOKuk750OghmPe+cHAqPeFhbj+f4H1MHiVD1wm2NQPEnAO83Q5YlYYHOtUWGlqut5y33UhiuayHxoHrOtNqzHZdZuD6ln1349DJefCQRb6PaP/gn8+vbuAp2vJUmQAAIABJREFULw1B6dLe3l7KT6FCp4kKkH8HdC+A38GD8nuMcQbI/H9f/DYZEJyofRH19NniK77IP8t04Kv0EW2w7PHdAqK8Gzwrz8ELQaIfBtSiwXaIBy1mbLdAi9e7yUtET5vScIfBFxzxQHAnWXPBJ0gigFBd/DVYypF6oPqyw8QEYOfOnYvPfe5zcePGjbhw4cJGQCne2G4HFwQ1BNyUW0TEdDptyoqIJj4/Ay1+zaNAqd/CI/3RboF0TzHm3OnhWNMnDzS6LNnnbmTxakXlp/Ei4rWn3HWh0adyJAMaaKpL8tXOBME8+6GqqpbRSl32A8IErz5mNzkQqCOclwh4qbd+aw7nJ/c4O8jOjF7fDXMQz/QOMCknEXd6sl+6VZ+qfvafA+dsnia5Ecbn6huVx/+zdcNl4wBe7ygrLy9bkygrn/M9XUYO2mm4uMGp91yDPD3nTO3sqR+6bt0qVOg0UYmRfxfJJzqfMPmXTfCehnn5mdWbLRT+XZ9Z3Q4Ss8mc4JpeaREP7ul/Ah83ZCLa97x7mwnWCIaVTou5L+oqnyAlk1G2sKgeB1gOYFkeQSnTqhzx4tvxBLkCWTRaCFwod4IAbz/DUnit4csvvxxXr15t6srCQ1SXypR8tHjqk8/dU00+VqtVHBwcNIad74qoTrWZwNDbp+svPQxB73l3NoE626JyCab5mwJ+RSmv3OTh6ohowLMb0TocOhgMYjgcNvovEMLxMZ/P4/DwMKbT6dp4VfvcyK3rurkm1A1R8SQZ80Cih26JaEypDdQLhr05eHQA3uu17+HXc59HfEcr0xuOdwL5Xq/XXHfr5IefxTPHQWaIRETDt3TFjXv1rcrI2ka5sWw6HNgeD51jfzggp+x8zHatIQ6QSdyVIWXt2fRc/1OvJUfODW5c8JnvfrA/B4NBy1j85je/GYUKnXYqQH4DZZ6K4yjzYDgo5vMMzHsez89JUIsLJ/SMJ98aJah0UJ+1xwEvefFdBQdPnNQ9hMP51qK2Wt29o5uLNm+qYX2siyCJYM8XRfaBe6ki7npC6fXxUB+2PzNMKFfva8qfciYY8+1wAk9vC9voXmZ63BeLRRwcHMSLL76Y3nXeFd/LNDQyXGaMY2X6wWAQ4/G4AV5sgxZ5lxPBmPqUsuNOhtLyh5EkL/JPDzv1g3pG+bE/JD8HlwQsvGXGjWeOJeq5wLvkxN0RyYH6xp0n6btus5HcJ5NJ3LhxI2azWVM/+8oBuHtGu+YDjjkZZZvmH+bNdssoF94TTh68zZLbcnn042U0/vTnY0G8D4fDln44SKdeZe/8rIbPHXQccBx0zdPUB/YL9ZB6s8kJQb3O+qLLUeI7INla5/rrz51oZMuozOL3mZd954ZhNud97GMfWyuvUKHTRgXIFypUqFChQoUKFSr0AFIJMDshncQb/07Kzbyqm967B5fkXsbME0ePIz2w9B51eU/cg+ReZHpzRYpRl9dR8aj0rLJN8sx4uIBvrTOmUu887tZj6ekxVhiFx7l6TClj+b3t/CEXyo1yzTzDWaiEPp03lk+PHA910sNJTyA9h/J8X758OUaj0dqOgtrjB5L53mPmReLb5aR2Hx4eNuXKu666u0JhqFP0jjLGlnegKy/7i/zoDnuP0eWYU/iW948+R6PRmi6prdwtYP+wD+hVpn7ofXb4dzabxWg0avFFng8PD1t6slgsWr/j4Lronld6v+kVZVv4o0U8cMxwN9cZ9rHPER4a57pGb7n4UnsUF++eZI0RURaK4v9zzqBuqV0cX9wV4LzqbfD5meVwHG3yrIs3jmXWl40L11Xmyzz5Ga/Zuy5yPXVZM1RJz3jex8cB+57jWml9l2Q6nXbyVqjQaaEC5Duoa/LKJkbPd9zkl9XVBbi9Xi6Cnv843lkWy/Qwl2wLVXV2LRbOP0G0yuYBRPJPkOuHEr3tBMIERAK8viBzYWeMtR+apBxZf1VVrfhnj+Ek0OOiRIMlM0hcfh7242AmM3jYFjdCBNwUU6qytYguFot4880314warzfrZxH7kIcBvc8iornekrJlf7MfuLBn+iV5MAxD+VSWDAb1lUCZX23q/c62qL9d7lmYjnTPz1EQaLLPaGQpTXaVqOTiIUtM0+v1YjweN+Og3+/HZDKJ6XTa3OoxHA5bbSAwVVkOxqnvBM0k7xsHnlk4G9tFHSK5oSVejrta0cf6cXMx+1jt541DnO94mJp1qZ3e1163H5QVucypAzS6vE1uxJAnL3vTmuVl8Dvzex9k65RT1meUqb5nMtmkH6r7xo0bnXUXKnRaqAD5e6BsAjzOW7HpGSdvf5YB2Yj1xc8n3E3l+KScAVAuwpy8HeiTLy48BG9cIHkwTIBD/zuPXTLl5J4BfpJ7RX2xdaOJXk4C4bquGzDs770P3QASnwTXeq5FWuX1endvZnGwzPIyD6S3hwaDeJBBwrSPPPJIEy/cZYw4aCBgIzAV774bovzj8TiqqorDw8OmbZLHbDZrHYTLjEX+z0OybhDyJiLlocEnnnxMRRyBXQfq1B8aZDy7QNAqOUsWlAfl6WNAY6RrrIu3LgPSjYnt7e3WzhfLpG7QiMmMFpXH3yPIdq9oFFA/OKdQ7ylX6ntmyPh5jGw3iDLx8rIblzg2OKao916Xz6/cGfSyM3kTZLONbghlz3w+P85AYVrnnc+8jGweY1+7Mehzf1Y2+9/f+7js6keR3xpWbq0pVKgA+RPTSbwP90IOWLP/My+FJjh6MrOynXcHRp6GQM158y1gLk6Zt0jfOcn7drhCHLTQ8gpKpc3uX/c6yZPAAeVAvnzBzvqBhysdLNHznRlCDmg8NENlkle2xa9MJPCLiFYIjxsxHg6htnL3gTsEw+EwDg8Pm/AaB1wOQFwWg8GgdSWkH0ImucEmsDsej+P27dvx8ssvx6OPPhq7u7stualdNIh84ffdFR36dNDB/he5DvDaT69bcqf+uM4rD+vTwVjvJwJIjjmFr3B8+XWUm8aEA/PM8CZx94DjSWVQX1l+Vh/TZzKm3ByoMaRFslZ6hif5HfiSs9fjtz+pzMlk0uivA3PnnX1Ng0z1ediQyzqTgRvq7PuuHQ+mdfDfNf9Kppt4850v8tOlN9na4mV5ehrc+tRB5bquW4Ydy+3afWFdV65cWUtTqNBpo/f8sGtVVb9cVVVdVdX55N1WVVX/ZVVVz1dVdbuqqj+tquq/q6oq/RWIqqp+saqq/7eqqoOqql6uquofV1V1+d1vRfcEd1zazOuR5c0mf3owWIYWi+yP77x+X8y9HKbJ+HNAzLwqTyBGC6F4yq4t5J3R5N9jZ8mf2pKFISgvwZUDH+UVaBbPWnAcOFL+fv+72k3Pu2Slch1AsD300jI+1wFqRPuHV9ROAR+CB5X1gQ98IB577LHWlZHsD4JR5lX8vAwPkm4Zimjf9CNeKXPFzG5tbcXjjz/eeOypPwT/7hllf9MTzTp1A4z+2JfsP7VT5J7D1WqVno+QbFx3XGf8+tWqqppQo9ls1hitN27ciJdffrm5711gxgE/eaA82H7JV3Lg2HUjQPL2UBIHyCpPeuXeUdYlGahsn2d8jpPMaeQwDXcteEOQ3rHtPj7VR/1+P8bjcUsXJAcCTeoq+9jBtgNejl3qVJchme1cEagS4PucwTzkM1sPfNyQ3NHA9F5H9j57xvFDHtzI4A/EMY/vgGVl6fNrX/vaGi+FCp02ek+BfFVV/Yj4axuS/I8R8fcjooqI/zUi/jgi/ouI+L+rqhpbWb8SEf9LRDwUEf8sIp6LiM9HxFeqqrp0/7kvVKhQoUKFChUqVOi9o+96aE11ZE5/4s7fL0bEJzvSfSaOQP6/jIifqOt6duf5sxHxqxHxtyLiv77z7GMR8Xci4g8j4i/WdX3zzvO/GhH/JCL+bkR84V1qUovc2555FDblpWcm89b4Z+apz8i9Ne41cS8Ly+7aYvX2ZbwzrzxKvMGGISHu9WSIgZ5xK5uePnmkZrNZ4xn09tHDSU8XPfgqN5MZ5cZbFdhe9+zpnW5R8d0N5pOHimEBHgOvtopP1sf0yu+3pkQcebxu3boV+/v7cfHixTQEiLH19I7pucI9snrpSWOfzefzmE6nsb293bRpMBjEaDRK9YaHoF0ODOVwvaNOZdvzHirj3lbJwkNtfDywvb6Tscnrrx2h6XTa+qn68Xjc+uVYjRXqu4dDUM5+k4zapr5yLzzJ+08ecIb1UC9dZ6gjlIPyuedexL7jmQDyRa85eaBnlvxRNmqH2pK1XTxz18znncyT3dUPWd9nXmzOPxxD3BmTDDz0yOfhLh5YLtvmYVfZGsDnXe3bROqvbM3xuTaifRjYQwc5/jnnfv/3f/+JeClU6HuZ3guP/G5EfDUi/lFE/KUN6f7mnc+/LRB/h/5eRMwj4pfw7K9HRD8inhWIv0P/NCK+ExG/UFXVzjth+qST10nLcSAXsb5luckoyLZLs8Wti7ryOY9eN4Ez8/o2vAMj5WF4jYjPuXg54PWFIDMYGNLhMnb5ORh0kM1YWNalOGzGITPWWG3ij1IRmKp9EXcXbRo33m4usg509NwNF8mP4E75V6tVfPvb347nn38+XagJhD0uXO9dzkqjEA2G+Yi/0WgUZ86caX7hlHrjekVAKv4EDHR7CH8ZlbJWmmyLP4t3Z7gXZcowD75neeSLYIM6RXBCULWzs9P65dfxeBx7e3sxHA4bAKQfPHJjwnXEZcl28cpI5vV+ZflqB/Xab67xulSHg0TpBW8Zok7y7IdTNidKLkwvA5Pzi/PruhZx16giiBdPma5kvPg84+kYEudg3A/9+xxF2bpc+M4NBh9T3m8+r/CXnZ3cMMn+d3koBl79pE/9Se4aq7wIgGX73MVyl8tlvPTSS2v8Fip02ui9APKHEfHz+Hu+I91/EBGv13X9e3xY1/V+HIXNfLCqqo/cefyZiFhFxJctbR0R/zoiRhHxF+4T/ykdB6C73ncBeQLCLsoWvsyz0mWEcPJ3QOeLHr0kDiJUli9E2eLiCw9BmHvklJceqmwxJujhLzxW1dGhNi5SAhMEnSyLBgkXHb2j1zFbIBV/64aH3vN/LqZM755ignSBYHpYKSsaFQ5IWffFixfjwx/+cFTV0S6Gt5t6QW8mjZcMZFRV1fplVcZ4K08Wp02vJHVIdbM/dY+7e/p4eI5EY0oAIou/JZgi2CK4YJsZty2igSbe/ayHx4+TdP6AN/jw1iQatQSYAkXkj22WgUPexFN2noR9pbZ7rDbl67/W60BafOhd9mvJau//z967xViWXGd6a5/MPHnyZFV3XbrZF3arxOZFat5MsqWxBUgGZVmCBpDfjHkRDIxhP9gyMLBfpLFhzGAMyKOBAGMeOBhhbD8Z0sPAkKERbPhBtKEHjjUQm2iZlPpCiqSoNlns6q7Mrlue+/ZD1r/z2/9ZcTKr2WpWM2MBB+ecvWNHrFixIuJfK1bEztqOuu4yoI7yGmVD3SKgZJ3Y3r5imIFc9j3VNwO6WX+hQedGLMn7ggPcbAxm/iXiM9QNJx9PSuMm+7Kv3KiO3BDvzpESsd3c2RARcfXq1Y3PV6p0Hug9B/Jt2y7btv1f9YmIG56maZoPRsQHogzyX77//dH73/9WRPx127a3z5D2h0Ilb00J+Ps9BxcOqHndB/tNZXheHJA5IWpS4zMZr+455H0H7wTwGTjIJlL3pLIsgThNPAw94STDyY6ASMQyNeG4545ea7YPwR3Ld3lygnTwx0nfQbnzTLmwjbKleNbr1Vdfjddee63LR+eueznehgRG4tEBPb2m+pZMBoNBB/oioueRo6HIvDwshOetu/4QYEjHJA8HU863Aw/+zvqIiHwTmPHFUjRgpAM8RUh5apOq+KGsvU/RWy798pNACLDFv4wFgnjm43WVLKnLAmtqv9lstuaBpdecxslqteoZe2wD6px0mOMNj7FVGh+LKG/J18Elxx6S+okDXR9HHFjymo+7GfjOVi1KYzzJdcENr5KBSH74nPNFWXIs8LTUSy/L5yW1CY2XbBwsOa04t/gc8ed//ufpM5UqnSd6WI+flJn9/cL9g/vfV5qmeSQids6SdlOBL7/8crzwwgvpvS9/+cubHn1H5AN2KU02SfkSPvMT+fUMJPG3JjsHfp6OgIBl+dnO2STFfP0EGD2rYw1ZV3rSNAnoI5DCN5HqmawMgXKfNDSx8mxrnjZD0KUy+EZL1c296F53PatJl0v67lV171oGOpR/CZCqbSiPiIjPfvazHZAXsBH/nKAJOilz5avf8/m8O1JU6UVKs1gs4q233orlchmXLl3qYuXdY08vPI0ngUldZ5rFYrEGKDIgtLW11QORrK+Th1vQgBC/lLfKpJzY7krr+kx+XXbkkYDK+aOB4SEMNIqp0yUQSaLxxL6ntNQLzycDeREnK0SSAds0SxvRX3Vz/cwcANzf4GOTypG+sh/qedbLTw5yQ9PrvlqdHCXrlIFiyeo0KrVRxovripeXGRtu2NJLL73x8EAaWxHrL9eT3ngbb21t9cZh9W22KeXP6+SrNGdXqvSwUElHX3755fT6O6Ef+vGTBXrk/nfp/ct3739vP2DaSpUqVapUqVKlSpV+JOhhBbdyme0V7g/vf997wLRFev755+PFF1/seVdOo03p6C33JdMsD/eo0jvqnhtf8vT77h3x55xH9557vu7JoeePnhx6gZSGHjR5uuRh4UbCtm1jOBz2vKX0EA0Gg7WNjyU5yFvnJ7WIR99cR97l8ZFs6A0tyZcyUV5cVdA3vbXufWfIDz2P+q3TTbjMTO8WQxC8bSgDPfPmm2/G1772tfjMZz4Tjz76aE9uTO/hQWpTD+9RSAi9qlxiXy6XMZlM4s0334zxeNzzxFFnyDfL4KoKY86lE3wrKlckPKQi4nifAeXvlHkn6SVkmAhlzLpzdUbls69nISRKx/I8tMe94uTFV9iycYF6oo/S+mpbNmZRH5h3Jr+I6L3ginVlCIhvFM7KoW5yJU55utxFHBuU92w2i93d3d49T8PxwmXAumSrkKqvj7nUHz6bjeO+0pfJWc+y/cibzz8c231VQeTva6Bs9ZsrU9k4w3GRq2hKL7lmoWVZ39LhApxD1Fbf/va347Of/eyaXCpVeljoxRdfTK+/8MIL8ZWvfOVdKeNhBfJv3P9ee0nUfVLozXcj4mZELM+Y9j2lTSBblC2XckLx50qgfpNBUVoy9/I4gJMH/vflcw8fcFBTimFluAQ3qSoUwF/uo4ncB/PsaLuszixTzxHERERvsiCg4KTlss7COVSeT3TMXzJiGInyI3j18CA+67xITjzCUNcZ9z2bzWI8HsdP/uRPphM69YCyo4wZd8020JI5rynE4969e7G/vx9Xr16NnZ2dXniFG4JsN9bR9YoggGFRDkhZDjd9ZmEd1CeW4QYc24W6RaOQ5btxMp/PeyCFAMiNcJFk6+Dfec4ApgM4/ff+Qzk7mJM+i2+RG7Nqj4j1YyGdL7/moRibwjdoGGWhNjL2tMdla+v49CTPg7LIAL63hesYy810idc5pmgs0/Us3MrzyMC191mOE94Xsjp5SA3bgWMcx0XPl6Cc+0N4rDDD7zxvhgOST8rIQzE//elPR6VK550e1tCa78SxB/1ThfsfieNTav6ibdt5HL8o6kNN0+wX0kZEfO2dMOKT34MSB2IfTFmGg3em80Ha8z/tOZadpSMY4r2sHv7NeNwsbzdAOBnTI6/TXgRC9U3ZtO3JCRy8J6L3myCU9+n55uSjMjm5clJXHTMQznIoD06ibpj4qTOSg2TEcr19OOEpv8Fg0HnF5/N5NxmLZ/HKiXAymfSOaXRQ5/XN9EJyY96uM6ovV1+m02kvPY0Xypp1JEB2HRBwoE7TUHMeJH8HK2wHAhyXuXhVPXmPnnTKwfmQzpfANHWfbT8cDmN7ezt2d3fXjvIkb2xDfVyPHYxRD3zc0m/J29vZ21J5ZZsZHZhzhc6NCX7PZrNus66vlmXOBIJSyor8ZeOgt2cmi5Ic3RvuK5eSofqMGwOleYIyPI0f/s5I7UInhvdx59cNKT8CVH1JDgjxQdnqxCL2wdLcw7bQ8/7sa6+9VqxjpUrnhR5KIN+27TIi/jginmiapgfmm6a5FBF/KyL+TXtyZvwX4/gc+X/P0m5FxC/EsTf+Xd3eXgLGJSp5TDal54REIOB5Zd8Ooh3UZ59N9fEJM5v0OVGLOPHQC+b15GAvfgjm/SPysALWhyeWlPiWfOUNI/DghOteIZ6JvVwuO3BBsMpyfblffIkneuvpmXavrhtNlKV44HMu/7Y93pj6R3/0R/Htb3877ty50+ORusDwBW6UpX7xxBnJQoaZZMSTZS5evBi7u7sxHo87YEUgKh6zlR7ywJAtytJXQignyoLee7WxdIAA3WWisAmGX7lBSR1We2fAKgNhfFZgmfqT9QFdlxz0Wzy68ese36we2TgjcmCbecLdW0+vM0Ee9Vn19GMyvWyl9XusG8uR0eRGoPjkSork4Dxx7GUf9bFT/33MYVrdV9+gUVIi1zE3WlxeboDyCF7KzY0ngnAaayrL9c9Xq9wIVjtkH50qNRwOu/GCYwUNq2x+GQwGcXR0VJRZpUrnhR5KIH+ffuf+9281TTOIiGiOR49/Esfx8F9A2n8REW1E/KOmaRgr//cj4pmI+Gftaci5UqVKlSpVqlSpUqX3ET2sMfLRtu2/aprmX0bE34mIl5qm+dcR8UJE/FRE/GHbtr+HtC81TfPbEfHrEfG1pmm+GMfnxn8+Ir4cEf/DD8rPJm9JKb17wp3ctnCvub59+dY9Z5mnr1S+e9V9GTjjLfNiZ3ZRxkfGL/mW91Zer+Fw2Hu9vPOtfBUqwpjyzFOdLRe7XHXdY3HJOz1c2UY8pr1582Zsb2/HxYsXI6IfR++b08iPys7i7sUD6yovNb3Tkou8fFks6/b2dnzmM5+Jv/zLv4wrV6706uAyymQZceLJZKiOyhJP3JwcEbG/v9/FhXsIgW96c11iDLTXm3LiUj7jiRlmoTZhmS5jfdMT6Csp7EO6T4+u14ee38FgEJPJJEaj0dqqS9ZvlY+HkzjvLg89x1UkLyMbozKPr+RGPeCxhBlRZ/mMl6XysvAg8pkdBZmNMfTq87dWUyQXeuqzMUo8uZ5T5j5e6LevfHh9OQa61z+if1Slt4X30azPZKFMrBP1mftVIo5XnjQOZ/MS5cAyPDTNn8s2mPuqULaCyn5D+umf/umoVOm808PskY+I+NWI+G8jYhwRfzeOz4L/hxHxH3rCtm1/IyJ+LSImEfEfRcSHI+KfRsQvtG07edCCOaCijAfNppiPD1Kn5ZHxweczoOrlbcpzE0jnUvBZDBMNxg7KsjIZ+6gytBktW57mQO8xy5qYfbBX/Utx7oPBoDuJwWPTCax5WgpDArh0HxFx+fLluHjx4ppxwHoIWHKCyowOfcTDaedTE+ArZp5tpyXta9euxbVr13r1K4UqcIKnwaFr3OMQEb2NheJ1Pp/34pTFs4ctedysgzi1geukh6a4wZPpNkEpQxwI5j0mmc/yxB2GSqid2AeYj9KMx+Pe82xzykJ8U1+UlvVjiMZsNos7d+50AF6bi93QyWjT2OTx6CVj240fXs/GIhpavp+E9Xcdo3z1LEN2pFsM52E99U3d8d+sa9b3HNDSOPT29/sub/JF/SGxv3gfET/su+orvmE007mMT47DTO+GgcJiqKsk6X6Wn3SUMfDcN+H9R3X85je/udYelSqdN/qhe+Tbtv38hnuLiPjN+5+z5PXPI+KfvzucbSYOnu65LJEP2NmAeNrzEeueGnp4SxuwnG8CSPdssSwNoH5qCicJ/WfcqMryidM9VpqUdFyjwIa8Qe4lZzlNc/IiKPfW0BNHWdDbJU+bx2PSk5x5xxiLrnLo5SOwogxLcqUcvO0IWt0A9LpphYInqfB5ym+xWMR3v/vd+MxnPlM0+gSMXGdluKxWq9jZ2UlflCTZirft7e14++23uxNz2raN/f392N7e7uTJ40fVJu4dp0zV/gLV9LBT1pn3WobGcHh8Ou1sNuvKUb3ci8n25p4A1c91nDLTPRoI7C/Mj3tD2CZqR/ZzB/aS+dbWVuzt7cXu7m46Vrg+OmXAdmtrq+sbHtut6+wvJB1D6OMBjSny78/7eOsgmN5gtYfrsuq/WvWPoOU4TN4ISgU2WTfyTrm63rix7sC7RM4T+1J2YhDrna0oqR3c6GAezFPE1QiW5eMa77sR6s+6zFhH3fOTr7g/RWneeuutjTKsVOk80MPukX+o6TTgnqXNJtHStdKA72DP83EvjU+uni/TOC9+qoIom6xYhoggOQM5us/NkZkn1CdbTiYMH3HQw7ooX/eUeUgEPVvuuVSeBG70kOk5lkf5OxhX2vl8XmxL5uFercxwc+8aQwEEutu2jWvXrvWO/RQQpqeZmzqZpzyiPDrUwaXr59bWVkyn01itVjEajXp8DofDXpsQ/NAwUXovV7yIB27CdeOROqNnM++8SHnRSKJhJDlRX9mG+s1+Np/Pu1UKGpB37tyJyWTSk73uS+eoF77ypXoNh8Pem3OdL/Yl31js/Ym64MBQnn59l4inI7EOfo2A3FeDCPy02uRgmf2Y9XQjgjzom7pH3ZSXmLywPF/1YX7U/yw0hOR9zI0QNxS8/dj/XR9YhufngNvlwzGZK2alsTZ7Xs8of40xw+GwlydXDuh5Jw/Uj+vXrxflWanSeaEfukf+/U6cODZRNnj6Uq2DSffG+G8HKVlZ7gFxME9e9JveKAdx/rwP/pw4vV4+STJfDcwCUZpA+Ypvhj6wbpy8/PQXTSJ8HbiDeebpS8MOtjIw4jGumRfNAb3qLxDJ6yJ5Z1lHgdcsTt9PcqGXV//n83lcv349/uAP/iAiIp566ql47LHHOmAkEOyrIIwvJqATXwK6qi/5lJGys7PThRypTn5M+pWkAAAgAElEQVR2v7yN2b4CyZrAgf2IQFflutePgI6hBn56h0AQ2yg7LtP7joh9xY1yycJB6mg06lYIyDeBk6+EMV+283Q67WLwGVqivFV/rgJxpYDlsg68TyOrRGwn13flxTzcsGa/o5HWNE23aqKxIjNi2T4cE7xNSBwTfKXNDXvqLgF9Bur5P6NsjmDfz75FNMakJ+yPzgP5osGkPqlVLubpYy2Jc1FmiOg3dZjpqJ/e/z10ifRrv/Zr6fVKlc4TVY98pUqVKlWqVKlSpUrvQ6pA/l2kzNNC71m2dKnn3BuzyftR8uhsupd5iktLwVkdeI/Pku/s2dIyLu/Lo8aNTvSa0ZOuJVl67skfPXHuGXIPk7yB9IjTeycvLz3crIfHzHo65U+PVxZeoxAQeijFP9+OqThRXVd99d835Yo8tEne94iI0Wi0tqQvr+nOzk4XMqHVANV7MDjZIOzL6oxtZV2kN0dHR/HVr36129+gc/jJI9vBvbrk11dmspAstiu98e6JZvmUo3vjqY8MA6OuuR4xDb3tvurlekR9od7Q20q9lHdzNBrFhQsXevH29IazrehNLa0s0ovu/UVlu9efK2msX+aN9U2N2TsI9BIsxf4PBicv1fJTj5Q3veTiRy8jy2QvWfl4xxUk9mmu4vhGTh/7N5HHzqtMhsb4N+XtY4p48xWPbHXIV0AU7pLpH8siL5Tdpr542ooFxxdel+5K9yXr01aEKlU6D1SB/DukbPB/J89tuu4g2H9vuu/5+cBbMhQyQ0KgJwPHytPjcLkk7hMj8+LSLmMieepKVqfs6EFNSvwv4oZajy12YKbyI/KTOJrmeJOlvzDFl915jQCdAMABJ8NYCAolR8osi0tlfVQ+n2vbNsbjcTz55JO9+z5hErgxHt2PtqQR4mCxdLLGcDiMK1eudM9of4TKV3rGo3t7UT8dGIpfAYLSi2a8PspPoUUemsRwA9WFekGQxPAV6UBmLLCtpB+LxaIzbKgb1PHMEPDQmIjogK7SZ6eJKJ9NxH5F8CQDXHk7ePO2Y37ZKTUEbBwzspA3lelhgawPv2WIlniiPAmkaQRyPBSRVx9nS998VvXLePDjNkXsnyVgLHm5fnJcyWQg/WK4DvuOt7GPZyzfjXLW0cfvbB5SezFWXs4VGpWVKp1nqkD+DHTaJHfa/U3EwYsDZGYYOEg7jQ/3KpV45QDvE4Lz6Gl0jV5o58G9MJnnzEE1Y+Y9ptI94A7wfPAnEI44mfzbth9XnXlGCfp8IuVkKr68Pb3NaOC4YSNvFNPpt4waHsHIEygImrP/jCVmfpysBbIJXrLNrpzMaeTpfmYE0mO6v78f165d662QZIaTgwECWRkRXra3getV5iEWD1zpcB2QLBj7TyOA+bAevO+64Ma0VjkkN+q0k/SAIEvlqf7aY5KtBGUrNuTfPbAivm1W4DjbO5BtRHYvre9VEC++osT+u1qtOhm5N1bleEy86s7+6HqQrRpIzlwlcAMlGzOptz6WbxqP/R7l5J7/7Dz2bGWIb6D29uTYQBL/brjwk80tvEY+fB6hkcJ+khlf1B3l4SeoVap03qkC+feYHLxl9zIQ74Oop3dg7KBUA6Z7TpTel3aZdzY4Z4NolnfJg59d8wmTky7BCSfUzMOlwZ7HxhF4Kw1DJnyzlfOvurlH1sNICKwEYJWGm/MoK/LB/LyNCCqytC4HPsf7o9EoLl++HBERd+/eXZO/gxwHnJxICewcqM7n817ZDv4kg8VisXasofPjXkC1iRt5/M82kP7Te+zgTRuifTXCw3IIXtlPMsBDnmQIsFwaPgQu3q40KqnTmWFIMOk8Uj/0jAMl99QqrwyUkX+2C8vyUBxuWJY+OejOjC21nxvfIukU8/BN0x6q4h+Se7KpB76SQzkxb8rbr2fl+6Zrrujov2RHvSef7PM0NjJ+ZERn4wjzc9nQWHI5eR0py9J8kvGQOXykKxp3vvCFL0SlSued6qk1RhmIPiv5AJUB7mwQ83sO1jkxn5a+VCfPj56ozOunazQA3Fua1d/LyX4LKBAcKH8BOZ4YwjPCCZbpkc2ApwNB1kXpGBKiPH3y29ra6h3bSBlSdvRS8wQRhlboPs9e97ALf1a86qQTAmBvY97XdXnu6Wl/9tlnYzQaxZNPPtm9pMkNGMos00fVhbyKd7UZ23s6nXaAfTqddqBM9SoBRzceIk6MmCzEijJjG1HHuZ+A8pK+kdh+pdUh1TNbMTtNX1T+fD7v7V+gHPgcQapf1zM63pL5iVyvyDONTLUVxwg3qlg246opGxrLWV9VWvUbnpNOffSQj2wFzOvigFXlefgO8+FqVwa82Vc3AWRvE7/nfYeyUz24AsS2V37cG5P1/yyshbyyXX1Mz3SWsvU5xMuh8UPZqB34bgHOAz6Oexurfba2tuLpp59eq1elSueNqke+UqVKlSpVqlSpUqX3IVWP/Bmo5O3OlpydMk8In/W0nmfm5adHr+RJoTfVvSSelh4Rpafn35ePN9Urq08pztd5oZdUXjk9L+8NveLyRslzSJko3lj50nudyUzX9e1xtO5BlCeXXm6P86aXkt4p9+5LFpIXVyV0neXQE+fx2VztcI8uw0suX74c4/G4i6HNvMnujWfISxa363rHdh4MBt1LoNS+i8Vi7fSVTaEADJXw9mA5bDN6HMmXeJBe0WtMb6fS0tvMtszab5MMVQb7HD2fTtlKGuWVrWJERLfKIR64GqR6ZP2ScefsU+LB48L57StfLJu8MC1l7r/V3twPwfZVu3j4CVf0xLf3E8qM+kyPtsuUsuJvP/fc5ZKNuU7u6dc1ett9BU7y8pUF92hrLPSz9lkPX7VifqXx38f3TP9dP112qmPp2ZJ+a/Xv2rVra7KsVOm8UfXIv0PyQScbpJhuE6DPQIBPBNlSNMv2CacEnEvpSsug5KE0GGd8ZsTB3tO7nHwZ24FDxMkkRjDIMniMWcT62ziVL4E4l+cZZiASeM/CBObzeSpD1pdgzeXgOqUJODtizfnipMo8xRPjoHUi0Gw2i8lk0jvhhW2gcjh5+jK+xwvLSFE5osViEZPJJI6OjtbagafT8JsGGwGJZO6nBmk/AuU7m816BozXg3WjHFkP6oiHEZTaT/xqPwcBLPPif8qLv0vgjKA6MwzYHvpo3wL7CdvP+yE3y3rIEYn7Chh2xD7A8CgZFNy8rXs02LxNGXLDvTIEsZnxptN7sj023me9nZw8/OO0k1MyI4L1YTvS6HDdVBian1jDfqI21/N8lvXTfQfgbvxkBpt/KH8H3l4WdZ59m3LPjB+ObzyC+MqVKxtlX6nSeaAK5N8FykBvRNkT7oB30/PZQMo8fPDU78wT6OVlz5YMCF0jEHXQzfv67d4wgiD36mri0XGEw+Gw+y2QnfHtkz/L1wRGTyS91j7BuLEhnh1cCpiwjZhO5fuExQkpa2MaaqvVKnZ2dnrAgsC5bdsOgLvxlk3CksdisYjbt2/H7du3u/j4iBMvtW/8JanNuImXctE9HQ+o8mU87O7uRtM0sbu7uxYjm8mJYMb1j3XXPd7nqoZ7igng9Fs6phWerO8MBoOubtQ9ysGBOvsC24KGI4FuRP/UFxpkJOopN0kKzHHVyNvCTyuijNj3F4tFHBwc9ICty0V5+Zn15Jn15DWS8pWHln1e92mssjzVhflmJ/+o/9BQc+NDeblsmMb1cZMDIwOl0vVsvOZmf96joSvZcI+H5KExQ8/6OO3OFF7jeOx9hPVw4yQzDkrt684S8bhptYvjNXl65plninKvVOm8UAXyBXJgtGmgFvmAnQHmbGk684g4kPbvLE1WrvOf8eiTHQGKy4TPuZdQeZXCDrI8Mj44ATjYiTiZnHwpPOPVPUz0ZLKNXY7uKRR/9Ob50ZgE3O7p0r2sXHp5XR8c2EaceOYkiwxQC4TpGutN4iQ6m806kEoQ5f1gPp/H1tbJmeoEq3rWDam2bWM6ncbdu3c7Ly896tPpNG0z1dt1kX2KIU3K2w1GyYCrN24oUOddTszPPaLUAedNRHCmtvHjKwXmZ7PZ2vigFyB53yZApbEiQ1jt7n3IgZtk7Pnv7u7GlStXeqEqTuorOn1oPp/HYDCI3d3djgfKgxvZ2df9XQUCu75ClpVP+bM/Eih6m/gJQtQJ709sI8qMz4mycV9lcDWPfVyksrjyIP2az+e9saNt27XNzOTDxxQ3ZF2fXG6+Qul5E1zTKGA9nBc3zNwBk5HnT75/93d/d+OzlSqdB6pA/gz0TkB8lkcJcD8I0SDIQDPT+eTsQMm9HA7m3RBwAOreeZ8wHZCRN3oKPSygaZrehMfl1Iw3kS/LlkA8J2/Jkr+zSUNyFtjQPf3P8nByUO9t4Wnp2WK7q65ZnR1MMgRIb7RcLBbx+uuvx5/+6Z/G4eFhl9d4PO7KF4jyuilPyoJHx+ke48CVx+7uboxGozXP4nQ67RkBroMyVBxMkTcBPj+b3o0AekIJrClT1sPlTd1iqAj5pMGpbx1tSYBDo54Afjgc9vIlD9QL8eOGoFYN5BGnYecrUgRk3q+8v1FWlJP3b/ZtN5goa9/jMZ/P43vf+15n1NFDKw8/5efn1xMAcwWL5eqer/JR1tRnf86vlcY7fVOu3qd439uH+avO/mZq8kRe3DjM5gZvs8xgzurh9c8MG/+dORAkA4a78bqeVXlucOnz+c9/fi3fSpXOG1UgX6lSpUqVKlWqVKnS+5AqkH+HdJqXvuRt9xjMUtpsad+XQUvPZ96VzKPmXhZfVqcnLvOyuOe65LnxsuVhoWeSecorphhofbhhbZMXyL1gKsPlzzT0UtK7LQ8+VwfYBn5ihoibS8k7n3MvXdbuXHbOlqX9uSwkiDG0XCq/fft2t/mReTA8qKTHzFfPMCzAdW25XMbR0VHcunUr3n777c7rulwuY3d3d20PBPnJdJ8nytDzLdl6iIKelRwy76LKkafYQ1H0vWkVheQhN9IjPwddHvv5fB4HBwdxdHTU0x+vB/WI5DrMuHnvN+I30yFSycssWSvW3E+JoWecnmbWRc9FHK/u/PVf/3W88cYbvT7q/c29wVyN4Kqij1H8rXAU1ynlQZkwtM3D5qjzWb8t7UXgqgj38GR9jTrLaz7+Ul6+gsd8fXz2PkZvt+ThZWQrAmxfv5/1GV+t4MljPuf42Mt++vrrr6/JrFKl80b1+MkHIA74pcGR1x6UPJ8sj2wgLA22GXj3ydvr1jTrrz7P6kWgV+Lby2caPuf88lm+Zp7/Wc/MYBHp6DodEadJI5M7ZeMy08RBEKKJM1sOzyZGX+52A4gycgMkItYAOo/lYz1UT6XnMZ5K98QTT8QnP/nJ3mZa17eSLrJ+Cnfwt/HqebXdcrmMN998M770pS/Fxz/+8bh48WIXDsOjEpW3//fJnTrDdpCclIcApr88zPuFQCABKPU6O1qUz/KUlVKsvBuw1DvFkvNa1rez8CI3oKUDzreHznGjpI9fTE+w5saJ8mIIH/PKYtp1nX1mOBzGhz70oQ78aq+G15d6yms8wtABP8n1isfDsp/yZBS2petcqYxsDJU+0vhwmWRjJMvM8mS/57iROSdK4y2dKln5lJkbWuTLQ5Wy+UH9jGMjdT+brzKjKyLqqTWVKkUF8u8KZZ6UiHVvFtNnA6oP4tmzDqhKYH3T4O+TqPPPQTViPYadz7hh4AC0BFBLPKs8B25+n8/yLaKaFPzUD+eHZRB8cWJXegdKfF511xnNOrEl2yzKejhAY1m6R5BP4K/yBQgYt6+6bm9vx2w267UbN7IKPNI7qRj6/f39Xpu58aBrKodeffHIU2sEYB577LH43Oc+F03TxGQyifF43JuoaXS5/olvb3/KUwAhk3vmxXYjQOXxP/sKZa78KRMHyk4EcQKL1AMZVeKLZ39zdYi6onJZX8qMb9p1METQ5vrFvNVGBLUk7xu8xtUsyo8GAuUjnrn3gXlKN3zTOc9yd0OQ5MYSN4p7e7tsfQwskcvZ9crlFLFuaPn+gUzvqLMud7YvxxLm42My+fP8szHI5ZuB9sy4YhrqQWZEsP7epqvVKp544on1BqhU6ZxRDa35AWgTyH638vJBMaIPrEpgXuk23fdyOdgyfTZ4+6CsNJz4Nw3qHs5BsMVv3SNgUtgNJyim028Pb8nAjwAAATLBnS/dZ5O5ypEHnGeHu3w4yXKC53nf3oYeFkT5EABQvvP5vMeDwI/4XSwW8dJLL8V0Ou3kur+/H+PxeKOe+AZDNxhVJ20mZLmLxSIuXboU4/E4lYWHwfAMfd3PQDx5pJdVvGUnn7hhqOtcxncQT3DEkCfJl6DQeWL5/Gbf9HQ0shSiojzJo/Oh35PJJCaTSafHCl/IDFMaTQyNysoRZYAwG7f8dB6V4ZQBU1/pKYFIhrDweiZ79ovMCcF+mV0vjZMi7+/Ky/uv8+gGY2k+8XGf+fGe6qdvN1ZdX3x1z2XsY3uJPz7rdfF7EScnZJWMpKxMpT04OEh5qFTpPFH1yL8DKnmgst8ZyFGaEmDyQdknDQ1iHOB0X9dI7sXzCdyf2WREOHArycABw2l19eVmTtzySq5Wqw7c8Ig+LzMi1p6jHLxsGgO+fO/5U+acfNq2/2IYX37Wb/3niS9ehi+JuzFC/pRX0zQ9oO6TNvNR+IJCXHSPQI9yyryqAmK+GkB9lVEjYDgcDmM4HHa/+VZZ6rzA92w2i8Fg0J3i4qEdBMDkmafHSIcyrzVj6dlm/oIsb1P9Js9s36x/eYx7RHQrN1zd8br4ChF1ht596od42NnZ6Rk07o2mASO5kTJQxTqw3GwFw++VyN9bQJ585VDGlvLmKgzHRfY1PSu9pfc+ew+De74pr6yMpml6xqPGAj8nPqsT6+6hctn4RL70209Lkk5n4yPvs57eZplOu/4zT13jc5S7fmcGQvZSLJatZ7lSJxlPJpOoVOm8U/XIV6pUqVKlSpUqVar0PqTqkf8BKfOcZpQtxbr34rRnMg+5frv33j372XO8Ru+Vp3OvCq9v4puUeZZL9+WZYniB8qWnO3vbZcYjN1P6ErN71lgWPeDZsjp58d/yGDGkQPflPWMc7NbWVrcxVPxmS9LywHNDYMTJWzWzdlosFl2eev7WrVtx+/btnieTm3nlSc3OCWcb7uzs9Lzy4o2hDqrf3t5e9/xwOOzFXHv7KNSIXmrKLNM996h6TDbLopy83bmSQ2+6hz8oX6066Dnd12/psnvQuUHzLP1KRH3yl4GJsry9T1O/9Uy2epC9K0FpfFMty2CdKUPyw/bYtGFVK0ZapeG4wNh635yqZxnmxfGFHm2l9fHcx1+umOl+9gZk1lHX3PPsuuGrAUpD+VD+3ka+uuE8sB19f4DyZntztSLTY7UtVyDY531sJHn7a/zIeFJ6tvFyuYwLFy5EpUrnnSqQ30AZEM7+b6ISYM2WGT1fH4B1LTMcfOmTE4IDZwcuTOPANjNAmIdf87xKdfEBnESQpRAZXRfYJUjm8rmf7MJQEPLAJX/GkTI8gJMrJz0/vcbpT/7kT2I6ncbP/dzPdQDa24dy1v2dnZ30rZbZEj11x0G8tx/bTnk9/fTTcXR01JWjMAwPj+Ck7SDCjbOI6IXL8ASYW7dudSErEcdvDM30TfVt2zZms1l3SpFAvINwpSe4Upu5jvHkIoJLD50gsX09/Is6R53gPeWRGZwReZgMQzg8Xp066YBSdVe5Aq0uu1JYBNtxU51ZPwfqJMrby2HYlXh3g4nymM/n3ZuHd3Z21sLmXOYi6Rb3W2RjEccCl4OPzzQwXXbZ2Ey98j4qOWXGspOftuX50ygh6M/Sl4wU59vBuXh1I9dP83J+S8YZDwbIDDzmqeva/zMYDOKb3/xm/PiP//hGuVWq9KNOFcj/AJSB29Lg6QNZCSTTi+aDHr95nUCWzzuwdS9RZkB4mQ5+Mx4ImDwenMDef2swzgZt8ctJSUBXwEFvy+Rkk8W7OmCLWPdoESh5zCYNAuZD+XFS/9znPhfb29s9EM+y6Nmi/AU2lB89lEw3m826SVKeSd8o6isP3n4vvvhivPLKK/Hss8/Go48+2iuHbyF1uTkgoT748wLhbHtO1ipDZ6jv7Ox0J7cov/l8Htvb2zEajdZWUjbF9Wqyd5BOEOLeS/UXeiy9HTLwqDpQBqJSHL4bdwTZpX7GNhQYY9uIZ8mfnvaSt9r7dlY3fSivkpHCfk0gWIqdZ36UCfNVG1DXZRQqbxqbPp4xL44t+s7GbTkLOHaQb5dX0zQ9ubsc3HBwygyyEpWMdNbHZcv6u5FSmmfcecA83XjJdDYb16k3GtMdqLMePu+Rh+l0Gs8880xRTpUqnReqQP4HpGyw8UG2BFQ9H+bBa17OJiOAlAHu0vVsEM0mn1Kenp7XCNpcTvxP8J2BUJ1Ws1qtehNARN8jVAL33EjGowAJgnnCiofWlM6h13M86o8TvhsVCqPh5jYBBxp88lpmxpUmQRpxnPzcu8Vnp9NpvPXWWxER8dprr8UTTzwR+/v7PW+veHNw5J5gATyCG/cKR0R3pOXdu3d7cmiak3cD+Mbf2WzW5eeGIeXBDbW65uFJzi91ULyrzRkywzJLXnXlQ/mQP36zv7iRlslZ5McR6pp7TAeD483Bs9lsDez7mESdyPqv1yui7LlXXjRqed15977B9nEg7gZAlr97hklcVVN6hqN4WtFsNlsLGZK8KVuuNJFX9h8CXjda+JzaQatQTOvAmuNfNs8oP/JAb7xIBqy3P/MorUDSM1+aI3jNdc/1iXVWGtaN8uVLsipVOs9UN7tWqlSpUqVKlSpVqvQ+pGrS/g1StmTJ/5nH3uPZS97ViHzjbHadnhuGGjC98+hLtpmXxXn0svich0XoGknXGd7A61xi17I9Y2Xd6+PhMPRqKk++OIrL4+KD1zI5qazseEHd99UFed91j6EB7n3kkZD0XmnjqF93+ctDSs8zvfxXrlzp2k6rHZKLrvuLjDxum23MzbH0ZissihteWffRaNTJvG2P4+Mnk0k0TdN5RumVpMfc28K9r5ST10Uy0r2M2FaM52VsM3XavaHufS55wCk/EvUkC29QWe6NLXmMPdRNMiOvXJXLxgV+fBXBval+3b322ZjB5zwGXCtV0llfqfExke3MfRuuT9xEKSp5+N2T7OOKp9OKE0P3vK18tYvjtHums3qyX7rc3Zudeb6zFRmnbHUlC8sqhWpxlZN1yFa7fGXVw4a2trbiu9/9bnzsYx87le9KlX6UqQL5H5B8UHXKJsLSsw7aswH7QX57uRmY5oRc4tmfLy2hZqcg+DcNFq+b/meAVM/wZA0BFE2O4sHlXAI5zqdPFLonw8HDTDgZ8qQHB3Yqz8E8yxWg4ttNdU1lDAaDbnMYz3Vn6BBBGcMQ2AYEUZcuXeqdACIS8CM4Fs/coOlGqEjlZPsTFotFD7irznxbZ0TE4eFhjEajeOSRR3r3GRKV7TUgD94mGdB2npkfw4AchCiNh71QXpQLAXwGbjP+MtCcAX0aoDQISyFbbB8ZjMrXAWHW1pQDeec1gld9+AZkN/y8ThyvxJP6u4PuzDnBPNR2rKfy028/j118uNHj4DIDtyIH8xwXXEcY6uMhf95+pY3BmQwzfkqAOjPQM4OT6bIxt7SxWPL39vF5I9N1Gc4cMy5evJjKvVKl80QVyINO80qUwHrE5o2uus88SmkzYOv3smc1GJ7GB/Mo1dcNCgeup9UxS5MN1PrvQKxUhrzJOk7RvVXa4JiBYOeD/+XxpdfdY9cJxjLPJT2ew+Ew5vP5GmguTWDuOVN+pbhU5aGj+HyyFsjRfYHvtj054ea5556LN998s5fegecmsODGJ0EO29VlGnF8Yo2vQij9crmM+Xwei8Uidnd3e554ykdAh9eytiYQpRz4cTDJejg49JUXbiZXXtkGc+luFmPtfTHr8wReBM5KQzlLPnxebaHfBKTudVb/ccOAINyNF8Y4R5wANj+5htcijl+KlYFW5UfgPZlMujcR7+zsdC8X030aeqyv8pHMuULhgJFt4caLA1g3/OiA4HN+6pTSctXL37qbee0pH88ve5mb66obW1mdfY5xg4/8RZyMHZlhqm93gLBvuHOAfFDHfLxRG+7u7kalSuedKpB/ADoNJGfpT6MsPwfPJXCSTfxMk01GzpvnTS9YBi4cZHgokK57HbxuDsqcB68HwYrAtXvKuWGSANG9YJx8Haz6ZC0PYAkk+YS9Wh0ftdg0Tezt7a3JlBOXQFRmUNGTqElaXmnxmx15KLAXcbIBlxMvj++MiLh582bveEcH8eKF3xEnmy8J3Ak6WR+lo2FDuWQe4K2trbh48WLvTHqf4FWOT/IuD+qpVjRcJ73tBe4ZbkM5EawTdPkKDAGOnyZDQ1H/yRN1k+3Bvs06y6OrfHTiD41HAmmu4PDYQoZQsTy+t8A3ihLEqa1ULkGmfvOUH9aNK1Ksy2q16k404n3qgW+Y9tUWXpNsXGc4FpFKBiPr7W1EfXYdzQCq5JGBZx/D+TtbkfJrmTxJm+YV9V05J7yOesZ1m6sm2RzEsSpbfaH3Xv3TDb5KlSpVIP+OKQMND/psNkBH5CECfs2BSAbcCagy0O3GAkEPrzOt804wkaXxfEr8b6q/80jPG+Pld3Z2Oo8d83U+HKTyKDvyTz4YuiMemBfT6ihFEtvQDRc3JkT0posf92oxrl3XCS4yT+x8Po9vfetbERFxcHDQrXAwX+eZPBFIsVx5nfVf8vFwo7ZtYzKZxO7ubm+ZP6K/OqAjPGV8sV2Vn4wb1tvBhUDBYDDovRzMwZbal7H3GXBw4ysLnXFAn5GDOnqxKRsaDW4wKNwqMwS5YuTtRSBOkKcjUH0McKOTBg/5cSPd+6C3nzsO/DrvR0RqWFF/GL7C8kg0bHxPQmZUsL9ytcLBp/frTX37LPzRWM6MdvGYyTLzjpfKzcZq9h21u8EMzFYAACAASURBVO6znzGNGw/UMa+7Owe4ikr+COK9306n096em0qVzivVU2sqVapUqVKlSpUqVXofUvXIn0I/iOed5KED2T2Vl93f9L+U3r2T/tuXWeWFEW3i1ZejM09/xsNp/GZlu6dTPOgkFIVfyDOr88fdi8V83CvPe/KEsZ76pgfMPfwq//Lly115lC3ly1hp5ZstkbsnlPWSbD3O1FdhvIzhcBjPPPNMvP322/FjP/ZjvVCTTS/BkaxIyjPzrupZtp2vgAwGg5hMJl37UU5Kx3AP5cm6qlzGoMsLL48mY6L1na1S0QvK1QWucrl+eswvNyJ7v1Ze8lby1BXd53n2HrKSeWW9v83n87h582bcu3cvrl692p3hL7l6+JjuuSedvxkaxZWCLL34YB+h7FSe6xk95aqrymEsPVdxXF99jMi8xLrPfSPsQ5K3Qol8DGMIE1dIsvFSJP5dLtQNys5XvVxffBVn05zAcnwe0HV6vaUnXE1QHT1PX72h7EU+H3H1RPwrbEoy3bRHgGPLG2+8ER/+8IeLda9U6TxQBfLvAfnAtildRB4vmS3LumHgEyef9cmS5TmwLxkO3LRFHjK+HABn9fI6O8jYVI4mYoWEcGJxAE8wzNMyNFlkYTCc9EoTkb4Zi+4g3IGjeNQkxXhrAn2ffPVbL5PySZlx49wg6GBjMDg+6vEjH/lIXL58OZ566qkYDoe9cgWUBWizeFqP8dV1Lu17/PdsNuti1JXeY/YpY51sw5NFRFn5vM729bhpgjyCQN9Q6nH9Xh6NBuXhBhrlwU21BKiuNwLy3MhX6hN8cy7rsbu72xlCDJ1iuIMDr03jgNLyuFbKY1PYiNqPcekuTweVlLHuC/ipvOFw2OvPzJcGmn5L146OjmJ7ezv29vY6w4eba5Wemzu9H4qy2G7KTHKjDumZbLznvSzMTU4KH59cpj7uKx15pM5LTiWjzK+xjszbZaIxNzNc1DcpPxoQXn/1R4bt1dCaSpUqkD8zZYNYNiHxt4Nq0SZgv8mz4uV4fgQP7kF1/jKg6CBy00kE9Nw4aHHw7gCvNIkpLeN7S14kAXmBaP0eDocdiNTEwNMhyBc9SSSV7+eX0wDgRO/tcPv27e5UjWxjLL2wHsMuuXMClBz0xlgHkwIxyoeTOOUq3gX+dDqM8tMKh/gtxfeyLdheBHUql/nxKMKvf/3r8RM/8ROxt7fXyYPe3ogTbyOBgUAp9YC6LnnoxJ5MZz2O2oEY+yw3fjI/X9GhfPjfZcfnxKs/o9N6KD9uTqU+MT+CoL29vRiNRl2bCKyyb1H/KXPl70YMefY+RR3w8S0D/3qORjc33VKW+p7P53F0dNT1Le6/cODpYxPLGI/Ha/2W5eoZGZ3UZx9Hva7ZuNY0TbePgf3E54aSztBQcaCfGY3q2zSQ3Snh/dOBtvdnN2YzoE/yecXz1DdP51K9fY+Tr3ixPcfjcVSqdN6pAvn3iHwgjVgH2ZuMBZ80S/kzHw3ApQHXr/ukTR4ICr088ueDP4Go14n5kDfKKvOCkeTV0SZGTQTcjMpJj/lz4ow48QhpIqGXj5OlJmT3EGkiGo1GvdeHs10zubhnjR568ccVBZ/QPV/yqXoIjOr573znO/HKK6/E5cuX4+rVq2vedwcSlLd7tTn5ZisLDGVQHh/96EfXDAfJQ57T7EVQMmY4oROsuMdXcuaJKx46RV0reRPJYwaGqaMO1gUUed8N27Y93rynTcB7e3tdWXo+M6qpx+SP4LQEyHg6SGk1zPtlxInXmrrhRhvHsSw0i4Ys03h5BHdt2w/BYJ0cpLIs8sX/NMi5gkNgSb3R6obuMc8M6MuJ4OFtbsCT2I9pxKkvsF7eViL1NaYvjb80hFxG7Hc0frP5guOft487aXz85beH1XBMYNsxfaVK550qkH9ActDl1/X7neTF5xw8uwfRB3ACEKVx761TBnj8nG3nMwPWfs0HcX8+y5f5uOcuM4B8MuJ9TbhK4147gkbyw8mDYL0kV16nt1m8K2yHYMABDutE4E6gn8megIN5uYfNvWdKc3BwEAcHB3F4eNgBYOWTGYoOLtwLT3BXAjQMA1FeAuoEcqvVcfjDjRs3YmdnJy5fvhy7u7sdj4yTbpqTYxGZF0EtiW2veui7bdu1GGTWjYYiDSuSr1ywnfyscPIjMKkjSxlyo28PkWJbu95J3oz/9tUzAiGBp5KTwOum/zRqXD8pa5ZP2auvsmydROV6oeMlCewIwNmnszFY/CyXy+50q+3t7d4xlMzDw+X8pVmSjfcvEQ0GpXUjT8Q9MpKpdMKNldL8Qjm7nlFnlYfn46Be5HMJjRE9x3pQLr7q6QaQrrnDiXVSf8/GQ4UaVap0nqmas5UqVapUqVKlSpUqvQ+peuQfkEpe+Ad57qx50DuSeco25ZMtkbt3PFtByGIwNy3huhfevde6l3n73GtEz3y26kEPc+ah4guN6CXjb54wIw8bvemZ94keMXp5sxUVbSqkp5P1I9/urWT96OnMZOHeeHqH2Sb0zpHvp59+Oq5fvx7D4bB3TyfHZB5aXmO4D71vCotxnpbLZdy7dy9u3LgRi8Uinnjiibhw4UJPN9SWy+Uyjo6O4o033oirV6+u6Zr+y0PLPQeneS2pc1yB0nXViW0S0T/ZiJuN6Q1XOj9RhyEarofkS55J5sVn6HXP3gTKsAWuAijMQryzvbL6aVMqdUk8UwauV57Wx4csDIlvY+azvjfAPbPcvMu+xGf8xV/KZzKZxHw+7/YQ+AofefTVQraNe7Y9jdc5or/i5eNuFq7FfQDkiXrn/cd1kmO5r7i6d5188TmV42Mgy/b29XxK8vTVRF/J4W/php45OjryZqtU6dxRBfKnUAkQOBGsZeDWJ4qzpnGwWJpwyOtZlmD9voNJgk4OwKJsWZYTIicfBw4ED9nk5+VoMM94JgCi0aH4ay5rO1/+hk7lyXz9DZbkyduFAMIBPMmNAW0eJA/cZKcPN0BmS9QyTqhLrC8nXYVeXLp0qRci4fHP3vYuT25WJFhwmVI39vb2ejHfWiJX/DPjotkmHnLl4UUlEl8ZWJlOpz0QIvlubW31XrQk3hlmI3kQ4Ei2ko1At/hw48z3EnifZ/1p6Dhoc51U+brHvSLigWBZddOzqnumR+y/mZyVP/u3A09SFpblZaxWq154FuXpgJr7Epw/fUaj0RpgFmUbRB10UzfZ/sozi90miPffLNvrx3q6Qc72II80/qgn2SZlto++6cCgLKSjmTHioTulOdHHI/HhwJ3tIt6Vfrlcdi+Mq1TpvFMF8mek0wB9BsQzwJdRCcxzEnQQvwnY+yBKgJB5zxwwbKIMaHg+pbr5xB6xvhlK5Bun3DvsfAh4RZychEDw69521tVPBFH59BDpo4lNQMcneMqegFZ8Ml5e1wkiOOnqnuJ5h8PhRhn7mdJeb/JycHAQg8EgptNpLJfL7qQUGjbMK5u43bvo+uPtdefOnTg6OorRaNR5iZXHcDjs1WVvby8uX74c+/v7XT0IsDZtciNo8NUD8S3ZEjCw7Xg6i5dFoEXgQYCjPETeBm5Y6HmdzDIYDGJ/f79LR+ON+qE2Ul2k+wKsNEyYNqK/r+O0vu/GEPWUeXBDaMQJSHedpFxcFu6Vdt78VBM3vpne9ZVGv2LQIyJd1fFy6AzY5CU/DcSzjpKdH02qa9RJgl4eqUo5+djPFUBfgZEcfGx048vrnxn4NP5d7plBStkJoGcGoo+9NEqXy2VMJpM1OVSqdN6oAvkfInGwyyZSgqMS2Pe0ystBpg/wm8oV+aTkHvSzGCkcxDkRuofd86AnplQHn0wEDH0Sdg+zPvSek1cBJwI/nhaja5xUfNLT/e3t7Z53Uxv5KDcvn/KdzWYxnU67I/fo7SKQUplZOylvAZDlchlf/epXI+LEI01gq3o5WHD9IejlKT3umROwHI1G8dRTT8VoNIqdnZ3ei5O8/be3t+PRRx+N3d3d3nGMKt+9waV7bkz7BkR6U+mFzIAwVy5KQFxlOEhSmewD9O6rnO3t7djf319r1yxsjKFhqr90TccPRpwcK5qF0khGNGScX9YhM2hJR0dHvRNTGMrGcqn/rJeHWThPflwl5ck2d3JATP5kgDjYdVBLQKxrrl9ZW6tM8sw6uDODhnQ2vvL0JzdOM7CdhexoHMp02GXmY7gbKi6bbJxwOUrfGSrjcwvz8JOG1IZvv/32WltXqnTeqAL5H5AycCna5OHi80ybAessfw7wJSCdgd5scvHJyPnZBNQdPHKS4kTnoQsZgHfvkMujxIvK0XOc9OXtoffUJ//M289Jn3WgfPwZTsq6x5NafJnaJ0afWLe3t2N3d7d7MVI2SZaedQ8WPe3D4TB+5Vd+Jb7//e/Ho48+ura0T4+XAGR22oae42oI07PddO/w8DB2dna6lx05sKM3ki/7OosRSiONQIZx/zSc3IjTufoCPYyxdgCvdmYYjXtc+U3+BoNBd9oGQwUIyOktppElXrlalK0cqc11ag0NhwzssV+yHP3PQsxoCLPdpAMMTSI4pbdZ19gnWDYNZBm2bpgTxHIMI2XGmQx+1lNlS2al8dj1QrRprFTdZVBTN7jys4l/9mm9G8CNLc/D55ZMF3yuyJwBkoc7Ytyg8ZUMysz7J+XrY4bf9/osl8u4ePFiKutKlc4T1VNrKlWqVKlSpUqVKlV6H1L1yL8D2uR18XQeAlB61j0jZymz5H0qrQy4lynzmDC9x/R6Ovcsu+eZ5XhYgD/j9XAvfKm+rANXHLIlYNYjYv3sd3mJuPnU86QsmR+9s55W4TWZZ9n1Q3zpXhbXyjqTfz+BwsvTi2Xk2bx161YvZEP5sc70nlHm0g2XP0ON3Lu8v7/fC6lRe+qzWCx6sfI82559KfM80tspmevEFsqDlHkAfeXIvfCllSLfWOnX6P3OQlXED1cLZrNZL+bc+c08x+61d91liIK3u1ZSPMyB8hRv8vbL60499pNFeF/6pvbiC7w8fMppa2srdnd3u7ozvch1z+Wv1QB69UsvfiuFb2VjoL55OpA/532ePGQed6VRuzhPSut19j6Zha65/mm8zMZlrjKyrUrjTGnTq1btlstl7w3C7BsZSW+5eiXd+fSnP50+U6nSeaKHHsg3TfPrEfF04fYftm37xfvptiPi70XEfxoRPx4Rb0TE/xYR/6Bt29vvAas9yiYTX/rNAHX2XAnM+YSiPJkPB2a/zzJFpSVaH+A9r9IEynxPMwJ8iZb/NdFkhpHuaXLnBOdvHBXf2dJyNtGJCJIZ2836lZbiWQ+myUA868vlZ01c3lYkP77Nl+oXi0Usl8uYzWbxxhtvxKuvvhqf+MQneiCVbUTA4fomYMEjID2mmnrCTYWbjBgZGnx1OwEEZUtAKN745k2GzmR66XwwJIChMwJSLiPWP9vn4ICOm3WdJzcEBHp44g3DzrwfepgMy1utVmv6zs2v1GWlyfST8esKz3BivqybAOl8Pu+9uMtj990YzORFGRAAZ+EgIhqVNEg81Ih581kfi2j0Mf/VarVmQJV4Yt2yUCxviyzW3eVCw8QN7axcH/+y/LNxXe2YzTfkO9tEzrBD3eczlElmJEg28/k8vvSlL8Uv/uIvFuVbqdJ5oIceyEfEb0TElcK96xHxxfu/fyci/pOIeCUi/peI+EhE/JcR8fmmaX6mbdv3fHt7Bn7PQhz4Mk9KBtC93IyP7N5p6TQR0cvCtA7afLKLyI+ucyCcATWfVEr18MlSoCGbfEUClOTHT44QACWI0n+f6FknTebyPgusyCsvHl0Gup4ZU6WVlAwM6xkCLfI/HA7jwoULce3atc4DrlUI1Y8bFrMJlYAw4mRSpseVHwfCelbggR5cGkySCeuh/zxqk23HCZ9ty1UWlpMZp+I54ti4WCwW3aZRB3I8dYOx34PBoPdmVY+JZrqIdTDvscg8fpR67UeGEpT7PhD/duK9tm1jOp3G4eFhXL16tbdnoaR3ysOJdXAjj+1Pp4DvzfBVDT8nPlv1o0EoPrzvbzKQPE+CVwJ8/S8B/MwxQB1gHQjq3VPv7cS24JuP2Q6l0284Puq5bKz2+rqes9+VjG62HfdTuEGRrfQ5qX9vbW3F448/XkxXqdJ5oYcayDdN82gcg/hfb9v2tzek+3wcg/j/KyL+dtu2s/vX/1FE/IOI+PWI+O8esOwHSpuB59PSZkAu8wRlYJkDfmYwuFcpq1PmwXKQ4gCuVB8HniWgq3L5n4CPE3nJI+yTLUGCPNe+eYygIJssKGvWozQxiTycxSdcNx6Ur2+SdGOD+XFid1k7CHTjRZMzQWDbtnH58uVo27YDZz6x0rsuQErvNPnxejpIE81msy4/vZBH+SmsJjPkGFog3uhxZzvpmht9PDmIhmnWrgSXkidXEpR+Op2u6R/7HcNY6LVXHgJy1FPJ2D2rWZibdD0zFmQ4+elDvJ+NB6SmaWI0GsUTTzyxZnRQX6hXboyIN+qi8qZBx/GG/HA8UJ0IuktjIw3I0jgTcWJQcZVA45+POS4b5inZuEFKY8z7BcvxfudtUlodIcinDBiiJTmoL3kIDevk4zDzZFsrb8qMebAO3PBPufgGeh83s35JB8LW1lbd7FqpUjz8m10/fP/7L09J91/c//77AvH36bcjYh7H4TbvKfkAWDIMMiCdXeP3pkkly9/zKw3evOcDqfPAemX5Zzw6GODE6rHank6Ueavp6WGITdM0azHZ9FgSJJE3GkoOVh2wKh6YE5x7EV2GBOuc5H0lwduDxJNoCHi8LHrpPC767t27cXR01PHPE1tIAoSUmZ4pGZdsGz13dHQUBwcH3ZtDKX/9z/TMDTi2jXjhh8+TH9aBxiLzZdvR++pvOpVu6XhMvcyK7SDeFNpCfS8ZvwxBIq9uDCutVkKoH5ke8TpXWwjulK8bHN7/JLNMB5wYC62wFgd07GNuxBNAZkYr00gHaVhlJ6iQLw+tYb09b5cDiUYF9Ur6nbWR88w6sV3YZjzm1evLMZCnBw0Gg7Vx0OtIvkiuS5SrrvuJSjSC2L80xrCvurHkTg3qAuWsEMGDg4OoVOm8048KkP93I+JG27Z/yott296JiK9ExLNN03zob4C/SpUqVapUqVKlSpV+KPRQh9ZExHP3v281TfOfx/Em1oOI+D/btn0pIqJpmg9GxAci4o8LebwcEf92RHw0Ir71N8otqLQcm3nNea+Uxpcudc2XgOUVoqe35NUrefLdW5jxnnn1s7wyL53zlMWm0qulfDKPc3afZ0PLg8T47Yh1T7mHb7AePJ2D4RasN725Ko9l+BK7L4fzBTXunWUoi5/yofvupfb2F4mn6XQaN2/eXAt3oLfTPcfywtKLynZinXzZXPLIdKgk05JO0XPnISueN4mblLmyw/ADyYghHAr9UXn0MjZNf8PraX3Kvc3SS9ZF9ZPeeOyyt6VkqLowhEzf/C1+srAw8UU56x7Lo+7xnH4/tcVDOXZ2dmI+n3ceYuqO6qQ+yz7l/UmhPR7KRtm7HlJmKs/7GHUw0yFfbaMnXOm5qsXVHq5a+bhNuTNNFpojWUvumc55/LzLx2PhfbXD5xOS91P+99UI/+31URtx5YQyYV/LwsI+/vGPr9WvUqXzRg87kP9wRKzi2Kt+Cdf/cdM0/1NE/GcRcfX+te8X8tDaW2nDbEREvPzyy/FTP/VT6b0XX3zxrPyukQPU09JxUPfJxH9nS/NnAbwZaHaQ78CDgz3TcdLyvDOjxOvpdclCUbyOpfAaLT0LWCn+24+C89hbkUCyg1mBK1+GJ/gvga2I/pthuRxN8KJ7nODJK8sWWOLStIeIUNZsf9Vrd3c3rly50nvjpmTPTY0ihiNtCr0gXwTNap+mabo31aqNCDpoDChchcapA5wSiGc7sW40QnisY2akEVSKP53WkcnE+xDbizLxvurgyQFRBtS8LAfQ2qC7vb0dw+EwVqtVt1lXpJcrsV/5SSQO7qkPHvpGMFYK0VC7ql4OpFWWG/luSLg8SmMhxwoCSG9XAkz2wZKRyzbx8c7bn/2XxiKBO8unscx8WRZl7yE92RieGTss3/PJDE/XOY+Np15Qp3WfG87Zp33cZN09NMfb/s/+7M/iZ37mZ6JSpYeVXnjhhfT6yy+//K6V8bCH1jwXxzz+zxFxLSIuRMS/HxF/Ecdx7/84Ih65n3ZayOPu/e8fyGgpAWqnkkeulG5TOaU0vM5BNhusS/l5DK1PhNn/TAY+CNND5ZOdgxLPTxMnPeqcTD2e3WWitNvb29130xx7AbOTKihDeY15AknmYcomOBENBgIZNzw4iRG8EXB6Poy19s1jmdHHiVBxqfo9n8/j61//erz00ksxn89TryW9X3reDSJ62fUM0zAeerlcxuHhYdy4cSPu3LkTN27ciOXy+O2UBFgOzlmnkndV6dwAEm80eARwHWyyzZUf20hvfXXQXmpj50l9gp5l975v6iPZMZSUC3V3MpnEW2+9Fd/85jfj3r17MZvNYmvr5O27ykOGkvoK6+2gs23bXny2wFbmFWad9DxXNdxYonGm/Ahila/rsuKkfZ+At6FI4wo3/zIGfGdnp6d/vklYYxPHoGycI9/knWWSVC93mHhZPi6Xxk+1aRb/7/L31TWmyfLkdepyljaTD8tVnTwGn7rOPCg3lXf58uWoVOm808Pukf/NiPjNtm3/b1z7YtM0fzuOwfzfi4j//f71vUIew/vf9zYV9Pzzz8eXv/zlIniOKIPz7HoGrvyZ08D+ac/Sc8IJRJ415pF5VzIwSv6z+vDZUn194OZkselZl5kmBs/Tn82W/3VaBl9kw8mXYNXzFs88VcTlG3ESkqF7mngFTrlEzmeVX7b50q97+ynv7CQS1sHrSK/wZDKJV155JSIiJpNJB14Y6kA9oQHlBl7ESXgFdUogfblcdh7Y0WgUFy9ejL29vbh48WLvGX0LbKoNM1CftQsNtExfpEs0CllHhl3RABGg5WqNg58MyIro5XfjgADNDZjsaL4MYFG/RDs7O/H444/HlStXOoDKU0tUJ18BodG4vb3dtZt0Rytd4kf6wjFHQIxg1I0sB3N+nytOfka/jCGlkdHuulkiB8UqT3rOfkUQnLWx9+cSGBZJb7PxSsT2VJuRV+peVicaUtmKQ5anP599i183Hsi3G11sUxFXJ6nz1GG2uc8X1FcZcpUqPcxUiuh44YUX4itf+cq7UsZDDeQNwPP6d5qm+ZOI+IWI0Pnwl7K0cRJ68913mb1KlSpVqlSpUqVKlX5o9FAD+VNIb2tdxLG3/VOFdB+J4zj7v3inBZ3mORe5BybzInua0/IqeUAyDzm9XXzG4z/dI8g8mHeJV/dAZekyL3G2LJzJLPOA+fMsh95neSDpIdJxafIUzufzNM7aPaC8L+++e+MoY/c00etIfkqrIC5Pr3fmnfZQC/fqe/lNcxxaMBqNYjKZxHg87sXJ+4tqVAd/MRb5FW/02MmzqbbY3t6O/f39aJrj+HyueNDDyDbO3hzqHnj3zpf0mm2i56gDHuLBPkLvterq/Yxt6t5e5cF79PQzL3pMJUd6VX08oLy1mtG2bXdmv7zqrKe/aEt8qnzpOV8Qxn7FUChfAfLf7Gsqyzdnl1a86OlX3+Ibb7WXg/JzD77LkN5q5Sn991AUX7Fj+/I303lariq5XlIfSb7Kwr6cydg9+wxNFA+8x7Zwb7uvMGWrXr66ovGB1z2MTPVQ3bIXopXmG5+LJLutra147rnn1tJXqnTe6KGNkW+a5pebpmmbpvlnyb2diPjpiJjF8ak0fxwRTzRN8ylLdyki/lZE/Ju2bW+9B2wXKZsM/OPpfBm4lIcPfr78SkBSMgxIbkBkPOm35+EDrt/nhM20WeiNTyCsS7bsq0lFH569rE1/ChlwfnyZmJM+Y3e5MYyghpOvyvBlevLO53wpmrzRABMId8OstN9B+TswGA6H8Uu/9Evxsz/7szEej3vP8Nxv1pNx5oxt99ARrwfDiHg6hb91lufZE1hm7a4yGPPNeH3tI1Boj96oy48DD56so3h4hZMofENxzCSCKdcfb3fnoW3bLrRJ4HI4HK69aIngWzogWdBQ4xn0Hl/tfLrxKzlRFwjuHDiyffmM2srzYRuIH4Ywsd9Sz0XiQUagx0t7e5A3vh+BOkQAKt2T7lDnPM7bw/287uwDNKA3ycx5dmDOkBLVKTOoM3DM8Ux5Z6Dd+zyveT5ZG1Gv+bI08SG9jIjeeEo9dv6dp+l02rXRcrmM3//931+TYaVK540eWiAfEV+K442qv9o0zU/avf86Ij4YEb/Xtu29iPid+9d/q2maQUREczwi/JM4jp3/wnvBcAaMMwC+Ka3uZYDb72dpMhCeTXSZkeCeFg7EPrCTJ+fP8yWP/t/Be1Zfn8TID4mTwc7OTvcRmHcApMlJQN/JVzE0ebjsKHtOMuKRvOq+nnMA6BNpxLFXU6CUE6rH4utZ7gmgp5VtPxgMeqfTiBcCRn77xjbXRY8rdx5drsxrOp3GbDbr6QvBlBugDo4FQrlhkBs1lQ+fJYAXsSzuMZF3W4Ce9WY9vU9nfYoyYBvQOKNu0OAoGdFuwLZtG7u7u7G/vx+7u7s9Y9a9+mxbGb4E7KwDnQGu974RmUZtRP8toNJLf1EbgS/z0X/1YdXJDdhNfMhDrN/+rIAlDX3yRj3yzZhKS1nRKNVzbHuvI+9JXtk+J13zfioSvzRsWZfSWO2/6bBQvtlxn9lcdFqfY3tTZ70O4oNziU65Uhv98i//clSqdN7poQ2tadv2dtM0/1VE/IuI+ErTNP9HRLwREZ+NiH8njs+E/437af9V0zT/MiL+TkS81DTNv46IFyLipyLiD9u2/b2zlJkB7rM+55Pbfb6yem3Mh5PDJjBfWvZlXnqOwCCbWLweGb8ZiHDg5p47v5fxugmcOC+l8Aku9bOu9Mxz8la92rbtNjZDXgAAIABJREFUNsW6PN37qLopJIOTjU929I4yD/127xb51m+CCOqFjITpdNqtFGTgm5Mlfy8Wi5hMJvFXf/VXcXBwEI888khcunRpLSRBYCQzLt3Io0fNgRTTubGkEIutra1uZcD55zV5zSlPne/v5ek+w0EI5igvylnPySgg2FRZTMd3FCgf6geNJDdGFMZE3XP5+QkqBN3eXl4PGTeSgY6hjFj3XLsuss9K5iJueqXOs476r7xpIGRAPfNcq23Ypl4OiWNMJkvlx/bSMwTQai8fi7OQKo6nBN4C+3QkZBs7ySfLZDtwg7F4EI+ZsUh9o0x9fPC+wn7iYyzbgnk4r8wjK0d5Sn9pbJxG2bzzve99Lz7wgQ+c6flKlX5U6aEF8hERbdv+j03TfC0i/puI+Nk43tD6ekT804j479u2vYHkvxoR/29E/McR8Xcj4v+LiH8YEb/1HvIbEWeLg88mLPcueTqm9zhHB9UZT2fhhzy458gHY+abLQmX+PNnvX7ZBOL56TeBSzZxEVgT3DOe3Y0eyrg0QYpPTqwEL5yUOVl5GyqNn9LgvLl3bTgcpoCbIRNsC51cIoA3mUzi+vXr8bGPfazzhhPceFtIrzxsq2maXpgMJ1qC38lkEt/4xjdiPB7HeDzuTlTxch3M6FsefwfcWZiDDBzKTfxTRxhTnhmCGWBzYhurbDfMeF88e5tnwJyAiDqjFR1vG6bTyk9JH13//DqJpwvJ8KXxJnmRx2wM8bqwvTl+sD8yPIZ15eoR28f7qORKUO8vdyNvpXb28/VZphsD0j8/WlVpS7HxLns3Wt0QlLzIWwaayWMmI68nZeHjaWlu4PMiOiHYX7la4f2FvHp/8DJWq1UcHh6mcqxU6TzRQw3kIyLatv1/IuI/OEO6Rdw/rvJvnKlKlSpVqlSpUqVKlX7I9DDHyP/IET1oEeseHaajJ4TXfGmRVLrH8ty7nZF7g70OpdUCz889ic6/p3fePE/3wrncPA+G1ehbL4diPL3zQU8YPVEMP9CHGwvl/ZfXUqTyGA8qGbvn1Tc1qk66r1he3ss+7k3mBtCtra24detWTCaT+P73v7/mUVT58p6VNkkrFpfX3FOsU1NUh+vXr8d0Ou1i/qlrPHueXjz30jImnp4+tp/SrVb9lwhJFoxpd2+8k3v/uV+AMdjetpQlvfVeJ/1nXHTE+gkj4p8y5VjB1Q3VkW1JGZFH1oUfz1t5sU5cSdE937TMZ7I+r2vUJdZbsqAc2U98NYbXsnAx75+UgctU97JVIuXLkCHKejQadf2VVPLGO09O3qepzwzV8/7CcctfCsb8GC7l3nivO9tbvz10jf2eq4TUGV+x4VjKPU7ZteFwGB/84Ac3yqxSpfNAD71H/mEgn4AciJ8lTQYQTgMO2TUfWB2A8RoBWjYZl+pS4s+XVz3NprwILjmYZ3Uq5e1GQLbsy2MfVXdNUA4qeGQfy8jCNfhyGt5T+ILKZbwww2YEIjJjzMNJ3IjJwgIkRx7p5mBSz0oO0oP5fB5HR0cREXHlypVeWIOe9xhb3ZvP571Yd4+tzoyiiGMgduXKlbh06VIvnEJluWwkV8ZWe1w3Zcd6ekw3l+L1rAwul2lWjwyIUb4ExdQ9j2fmBlwahjRysxhltqmHIpSA9XA4jJ2dnd7xnCTf1Mp8qSsZgHej3MP8svKUP8t1mSpPHnmpezylRTqvjY+eln2Lexe8rykPtZWeYVtmBiz1i23MZyi7bHw8C5h3g9BDXjKDnXXwNoiIzgjMDKASX6fViTLKyqTxyTxd/0vjZyYbpT84OMjEWKnSuaIK5B+QSgOw7jmQ8YH3rOSgVXllMeEZH/T+EdQ6sN9kNDjgzP4rf947i0yySa0Ut5nlU/qdGQWKWeUmPYJJj/lmvgRk9DSqDgQ+jHP2WHrnlUYBy8pAKylbKRAQUxwxN9axXZRmMBjEhQsX4vbt23Hp0qWORwJnb0+CbupRxrueo8G2tbUV+/v7cffu3Z5cZUwRDBIcagWBBgGBm7zyjL0lKKERpPbWNX/jbxZ7ThDoAMoNHf0mKOR910/3trPfMu6Zxgk3ano5vkKi+qie0n15pCVX1Vf/6ZH3scvBMPl0EMe8MtBJI8cdD5QX6zWZTDpgSJ0ojcv+LgLpIuXmhrPqIh6df6an0eL9gd+etjR2My/ymekcZckVFzfwWHcfdx2YOx/Mn/mwPK5UKb2vRLBfki/XI9chH8u1n0flfuxjH1uTYaVK540qkH8XqQQu+d8H9k3p+D/z+DjA53OkzMPsgCci36jKPD3vkkHh4LTkmdLvDKT7NQ9FKBkSPN1D/wV+9Nnb2+ul4eTOCdR5ds8x6+KGE8NFWE8ZEzy33IEA6+wTG0/N4YTKc5tZBkFwRHTH9126dCna9viYQpUlD7XrGCdoDylReraPbzBUKIw22Y7H407GXOongHTPpAMptomIAFOrB2wztpe3ncuKAJiAnGDDN/FlgFz5MZxD+SjkZzgcrtXVdUEbTv0YUcnXwbV4knHmxq50k3rLMSHTSQeQLs8MyIrnrF1dl2jEMXSMBt9sNuv67XA47IV4KL1vuPTVEF3TqUFN0/Q8xjRms7GVoJNtRX3KxqrSOKq285OuvD11nXrGscjTZ+mkm9k8wf7PduE444aQp4uInrFJ4tgpuZaMQCelZV9ZrVZx48aNePTRRzc+W6nSjzpVIP9DopIHSfcy0OvAdpOXy//7oOrXs4nHPeSZFynLJwP3LIPhLxzMM14yeWUeKk4ODrw0SWsSmEwm3bnaHlsaEV38tDzYAl0s2z2wBKLMU8+4d1L5O1DgxEZDQMRJWHIUGOaRbmwzn+j1n+ClBJ5Vpp7Xb8kjA2E8K1+kmNbRaNQLhXHQSvnpObWhe5zFk7e/ZKz2ZfgEgUjJ0FG+BFCUt3j24waHw2EPMMpTTL4l66Zpeme7u75khrnkS10TcKXO+0oDyQ1kGh2Unbcf7/mYQINd/MhIcdC4CYh63yK4k+z39vZiuVx2+qA8ySeJ/LVt2xmU4/G4awMCVBrCng/z87YsjdlM5yQDg6sjBMB+RCaf42oidcHl7W+tVV+iN91DDpWfntG3PpnXnDpcWk2M6IcJZseDuowZfqO8OS698cYb8ZGPfKRYXqVK54HqZtdKlSpVqlSpUqVKld6HVD3y75Dcwx2Rb87c9Jwv3WbpS/kzj9JzHpOYlc008gCV6ubPcgk+81SV+HYPk377ikLmASyRr0R4/eh9Zqz7arXqNjvyeXo7V6vVWpiF0tEjxlNUMi97acWEy+jy3nrMqMfOe4iPxxnTM8bTdOS939vbi+l02vOwlfhjfLbKogfOPZ4eriEZM0RCZSvcifWkTMQ7VznoXRR5OIEv7VN+ar/s7HaPG+cqBOPz3Svpm/Q8tIa66DqtU0cUV0x5eviLZMb/ro/6PZvNeh5Z6jZlRvmQ/BnypJUOypN6x9Um1sdXKjx8I9NDtsV0Ou362d7eXtfvuCpBomxUj93d3Y4vhapJz+kB976QnSXvZXn7up5Qz12XPFzNn6Wc6UVnKJL49lN+dM296x5O43VUvdkurAtlpDr5ufaZDEuhoNk47Ct0uhcR8YlPfGKtHSpVOm9UgbyRD1a6tun/WWgTsD+LAcD05DED0BwIS3Xi86V6+b0sH4+hdR421Ycg4Cxy8Ho5gGH5BBG6pglPQFSnenCTI/ngx497dPCtSVFAJ2sfAl/W0dPyBTyc9Lg51oEGY+eVViCQx8pFRPcaem0czNqb4TqSJWPfvRzxTcAv3pfLZcxms/je974Xh4eHcfXq1V6sq/JReaofy/M4a5cDgYEbgARnNOB4+k7TNF04iBN1i/H0bFMH6QRGAokCnAJoDtIXi0UcHBxE0zTd6T4EaeSl1P9F0+m094yHirDeDFHJYuRVnocg8aQg5ucx5gS1NESk5xkfXt/VahWz2SyOjo56e0D44i+C22yMEDHESu0pI5fAV7z4mLBpTJPsXAaSGdOI/LcDew910TUeoysj0NPwfzbGEdiTPERHOs+82OYkGmhZP8zGOZ8HlI/yZ78lfec734lPfepTaVtUqnReqAL5d4kcLJB88CxR6b4PbNk9nxzIk36XynBQ5Pc4mbFMzzsDqBnQ2OQ5KwGiLG1WltePvGrikEeOG93kSaZHiedwt227BpYdRMprnxlb9G6x7Ii+d06A0ttQnkcCLTcyxBP3IOjtkgIXAi+PPfZYTCaTuHPnTjz++OM9YK5n6an0+Hl9u/fNJ2WB1d3d3bh69WqMRqMYjUY9QOuT93A47J4VuYednj19UyauYzS6BIJ4yk9mkHqfUvk0jDKvqQM4GlBsa19VWa1W8cgjj/QMTtcDfjKApP/axMz6UBZusAgILhaL3qlH9JiLJ4IqB6HSFX2Ub8a3G7ySHQG90iquezQarRlJBLDs726MtG3bnUFOXtS39AxXVnwM8/ZycKvfqpvzxv4rmeqb7aX3Uyg/xvLrWukoSY4ZrtcqmyuOpBKgzzavZmDfZU7y+5S188hnCeC5Eqh8KlU671SB/HtMPrhm5GC0ZBgwTy4LZ0BG5AOsAwSCaPeqOEhzfjKvCuucgRsSgYjnwec4wfJeBuIdcBCkarJ0UOOeb/EuEM789SyPUCRPPrHxNB2CFhoELhPlTXkovMCBf8mDSs/5arXqQPzTTz/deSRdrsqvBOJl3FD+DFMimFAZGfiQLGRo0IhiudRJAkbJhuArkyWPp1Tb6EQdlaFnXad1XQCI+pz1swxkU3czELyzs9PLgysxWRhM1o/92FH2a+okw4Q8TWaEUza6RgNfZQsUL5fLePvttzvDTcZZCSD7OORyZIiSaNP4RoOJebEdBI5VNo/f1H3XAfLq9/mct+1wOOyBefeyZ7/1LL9Zdx+zeZ18ss7z+TxGo1FE9A0hNwY8H46fNGh5jZtzfRz2ucXngVIfch3h2Nm2bTz33HNrz1WqdN6oAvkzUOYlyCgDnw5Ys3w4OXpaLz+b/E5LlwFsAi2mzXjXQOwAIvOcZJNwVmfmn9W9JMfMENjEuy8t8wxtTqwk98pl9XFZ6iPQRQ8wPbhsG8qVk50TeVW+8poS0It3PkcDjyfwfOtb34pXX301nn/++Z7+kUfFbvuKjOvbdDrteQuZB1c5jo6O4vbt2zEejzv+xK/HuFOuBJ4C3/QUMmRJ6bUaQYBPMMz9DPQUZuCHoNdPKGJ+GfBhHg52KEvmXyICKD7nISIRx+dtuwHrQMu9ow7kMwOE8nTwrfQCso8//nhaD4L5bPzhb3qOFQbnoNdDn1z+DrQjTk5zUd6uI274M08+T71n2J7GGl1XXnIeuDx8jMjGUZGPWVnb+dgqQ15tQw+/rxJQXj4O8xp5YJ9l+aVxlO3C9tN15ufPscy7d+/GxYsXo1Kl80z11JpKlSpVqlSpUqVKld6HVD3yZ6TTPO2bnqMHwpcc+b3Jy+z/3WPBvDKvjHtLN+Xr3vOMl9OWRzeVmRHv04NT8uZ7GR5nnnm9+bzCOLThdXt7O2az2UavOeXLD722ESceXg+JUFrdc0+mvI0e7sO21HMME/FwCj4jTybTzmazuHz5cjz//PMxGo164SL8rbZQfr7JVWW6R5A6oXzu3bvXlStv5nw+74UheBgPY7VF2l/gG1XpzZYeUPZcnSCVPJkkbuZ1TyLbpLRKI/mQP3qAXQ8UnkFy7yc90f72UoULrVarLrbcvZyu49lqG8vmPgLqe+b5Vj7u4WZZ2VhBftyLq9UhvRRqZ2cnZrNZ7O7udnriq1HZahpXseQxp66zLbjqQm9005y8QEpeeMa6MxzGddBXI7i6kY3N5KU0lvoJV2ojhbRNJpN47bXX4vDwMJ555pm4du1ax4v6H1fGfJWFPPiKgfSV/d7bk32AdZPcs43YPiZwXOP/b3zjG/Hkk0+uPV+p0nmiCuQLdBbwSSqBAB+gs3Q+eG8CG6VnmE5pOXhmAzDz8mdOKy8D19mSeBZ3zWXc0n0nTgybQj0y/lh3geutra3upApNatr06jJhfC7jsgmMlKeOWSSQdd7FA1+qxJM4/DlN1N6WnAydF07kIk2Amthv3rwZTz31VOzv73eAPmsLj0WnccOjPEsgI+L4uEuGqAhA6Br5zMKDuDGSxx5SFgRJNEoE/H2DLPVKeTvgIE8OygkOpTsevkIdlyz04ij2R34rntxDtBzYRayfVqTrApoE2iS2nwCt0lGOmd4R3GZhYc6LZFSSDUOVBLIZPtW2x5tUdW04HMbW1la3odcBN41Sla36zWazmM1msb+/v6aHDNcS0RBSOQS7PC3GQ/QoK29jB6QcE5WOfDBkx0F7pkPKW+PMvXv34t69e7G/vx+7u7tdf9TL0lhv8u3f3sd974ID+tI1tY/0V5QZXxy7qYNt28ZHP/rRqFTpvFMF8u8ibQL+nOh8giylzSZST5OB7sx7vAmYe976n9XntGteL3pWlDaTRQkUcIIoAfRMrtlzBGL0pAnULxaL7q2u4oc8axOf8naAxvz9t8tJ5VBG+k0QyiP+yA/54OQfcbIRVDw5qDk6OoqbN29GRMTNmzfj2rVr3YZaeZ3ppSRIUX3oKePRkS57AsLZbBYRx+BoOByuAUbVhasW1DF5qrNVDbWH+Kc3X95t98jTMKBXnR5TypMyFu/yeisfpvG4fJVBA04yZOzxbDZbA70E9sqD9eUYoVWX1WrVvUnXvbbUT/FKufBeZnC7ocF+m61+ZCCX+qW0PE6SgJd1UJ8juBVg1W/WJ+LE0zwej2M8HsdwOOydDLO1tdVtSHXvOlcVHNiyvd0YcnmxHfWdGXPZJlsacPxfSsM2HY/H8fM///NxdHQUe3t7HZh3A4X18HGeK0jZSgz1dNPYzXHF+wfbifzrN/uLSPttKlU6z1SBfIE2gfISAC+lK+VFzwnzdA/YprxLz7IMB8kEJZlR4V6zjJ9MBqVrnGSycsjrpnL8fmagMJ3LgLxErL/QhOnd00z5MS8P/eAzJUMq8x7qWYEW91Jy0mdYi8uLmy5VhiZL5XHp0qV48skn4/r16/HYY49FRN9DxvAAnzjlQfMzxLnSwPwiogvz4HGPb775ZjzyyCOdd9rBl0CqytOz4oc6XAqh0MTPk4LEKze7+oZhGm4y9AR4JF+GNpUMN/LD9tZvkYNcysANV36zPL7DQF5iHiXKDbKDwaC3EqW6O1BygJkZXB6SQ33IDGrKwr3+7J+Zx5kAl150GrxKzxUJedUZHrS9vd2BeRqrGVhm2EnWZpSJjwvs66V8/R4NAX57W2Reev7neCHAy+doPGb66IaC6q920Gbykl5nsuGqWHb0pRuU/p/jRNu28frrr8fzzz8flSqdZ6pA/gHpNDC7iXyy40CZ5eWDrIN3B5XZhJIBac/XPTjZRO6gwnksAW56mEklEM7nSfTasf4Zf1n9vT4CAtvb290ELw8d307KU0r0rE8w4o9eyMlk0p1ZrbzY7kxPgMUJj57hDAh5e3s7ZLGrapNr1651xwMKzNDD3jRNTx6So7yt9Jy6x4315Rtx9X84HMb+/n7PwKBBRIBN+bIerhOUg+SmFQCG53h6B++qh4ebRJwYJEwvQ8NDmzI9JM9cGZJsXFcFtghSvT9xP4bKFy9+AgvJV08cOJJYZwIx1keyYJ/XM2x/ytzbbTabxY0bN2I8Hsfly5d7gJcvcYo4OfdeKzush58oo37OuvuKnJ6nx9nBJtvTxzRvX+79YDqBYPfGK43us06Z574E7vktvjKjoPS80ov4m2OsG4/ZPED9It+eJhu7+Ix746lLBwcHa89UqnTeqJ5aU6lSpUqVKlWqVKnS+5CqR/4d0IN64p3ovXCvcSl/elSZh/9mvly6ppeMaZg386P3hHxmKxJen8wj7nXalEep7lk+WYwu07i3tOShJ68KPXBvmfL10BaX7WBw/CZTbxe+Bp6ebHkcF4tFL87avbdcCVDZ8jbTk+96wrJ0/eLFi/Hss892z7MMeVz9pUyUPz3tLkfVlSErTdPE/v7+WjiGvG3u6SUxRMSf9XZVKI2/GTPzJtP7yFNPdF65SJ5Z5iE5KD6esdQud+bPVReuHjCMirxxM6Gfd+9tSvno5BqPK/eVIZcz60eZ6zrbwleEqEO+SpR5i93zu7e3F88++2z3jL65ysNyh8NhF9eulTWGjXADq/dlho+R6PU/bRWOYUxcYfGQFbavX1M57n1n+VkITMmbzrFb+qcN+OPxeG1vAevt7cJr1AEPB/WVHR97vC+QX/7O5giOSeoPXBmoYTWVKlUg/66QA0wH55uAf2lZMRvcPF8OkhmYL/Hq3wQ2nPSYjsaAT9YEEuSLeWTggUCqVAfykw32TOeyyfjkpCB+HHSwrvr2iYi/WVbb9l+kRP4I4h2QciMZwUvE+mZL1lVAz99GmxlKLPfWrVtxeHgYk8mkA78EsvwdsR6mkZ2uk8nD9U1HB3p65u91Vxr+J2gneCJAYT4E2W44CwjyxCLWg0CSQIl14N6AkmFD+bNtCIxWq1V3ao0bAlk4jL4FstlHuSeBgNaBKYGmx/6zfWl48TdllIXQidgWvpE5M2bJs4zCtj0O6dCxkwLzTMuQGhoAPl5Rlm6EeV/j9QxYC9Dz4zrJDwG76uTyIHG8oi6SBxpyPq6yXTOjQnxkxg11LAPk5N0NZaZjGpadzXHZtWzPyJtvvhmXL19Oea5U6bxQBfIF4mDzbtIm0O+giwNaBrw9LwcorAdBiMc6Ogjms5lBQuDugy4nAy87A8IZqMquu/eGcuBzm+RAoCJQJTCo6zzxJSJ6EyABPT2VfnQiNxZyYvN6Snby5DFtCcRThgJu7jl3UOflc0InuODZ4y5HgSyXK2XK/P0MfdX36OgoFotFXLhwodtMGhG9FRCB0LZte6DfY5YFjt2ocd6Ulr/Z1tQttifBqreZg3uCHAIxeijlcVcdBLR5nOZkMonDw8O4cOFCd8yiZEJd8bhkPU/wziMWJVO+0ZQgTu3lOuIGqXvRWT+nbAyV3NmG1PHxeNyVk4FjfeSJJ4jP4s49lp3jHw0YB5V6lm0p2bPuLDOTTcS69z9Lz7rxWuZ5533lz/TUQRkJOm6SMvV8nFy/MucI25SGhJPPE7zOPuirbLy/WCzi8PCwO3UoImI6nablVap0nqgC+TNQBgz9/qb/EWVPQ2ngKwFf56MEsjflWQL/XqbzyMmBoDMr9zQDKOPF83Hjxg0IN27odXMedJ3gzicRbmz1jZEOVkthJzynnoBBn2xjmCZAB8p8nkYVgSTTiEeerOLefuUvA0ZncfMITvLk7cmyKVOCSYIlAZ2jo6OYTqfdc74CsFwuYzQa9cCV80AdZz2dxAs3MvopNgTI1BkZdeKNoF9yYR9wHXPQSvAjfkRu9C0Wi5hMJl0oBPWbusOVArWl8nBDhAaFdIDec7YT21L8u0fb+6EfAUqZZoBRPJEHGRdsLxkgSs/nIo6NH4XTuJxImYeZwDoD/2wvyk/paFx6qIobcO79Jl8O5N1Qyq45L7y/CZAzvf9nm2dGP/WLbeB64iCcz/vvLG9e9zlG+nD16tXU41+p0nmmutm1UqVKlSpVqlSpUqX3IVWP/CmUeZofxBOwyVPuXhJPl3nl6W0ueUwz7xifowfGPb4Z/5kHnOVlXn33pLs3KKLvcc7k6vG5Lh/mS++iy85ltlqtujCS6XTabW70eHPmrSMYM88nPbj0jDtvjD1n6BRDC+hxZR3p9Y5Yj4dVOm3AYwgQ21F1vXv3bkwmk7h3715cuXJlLWSIYTYef0+vsuQp76h4lKdU9Z7P53Hv3r2Yz+dx8eLF2Nra6r01U7JQ+ZQNz0WnR5ltTZnS0802Y7t46A9XaTL91QuH/Ex/PcOXYnnoBssseVKVRrJhGdkYxFAhxudLNtJX5kPvu9Kz/pQj5aprrIuHgIlK4wTj1dU22pCs9oqI3jV6ulk/nuvv45mIXn8f/7y/0pPOOvGYSi/P+wGvs30ps2y1wFcsnNzL72m5kqBvbwN+kxfpA/WAdWD4oZ7lt4jPM62Pwa47XAXw8d3HWfUxreqpvtevX49PfvKTa3KrVOk8UQXy74A2gfl3AvIzkMqydI8T/qaQnOy3A0jy4HywvGwCyiYk5slJ1AftksFRqsemic6XhDPwTtJkQGCXLTe7MeIGgu9f4IkeHpqQGUyUgYf6UN58xkOAqA+cJLXs728R9XoeHh7G7du3u/qpjvP5vNscqfK8HTM5M2yGoEb87uzsxMWLF2M+n8d8Po/pdNo771thNb48zzeXEqSXQAh58hj0iJOYbJepnmNMNXVlNpt1xooMssx4FB/UBZejh8bQoCEvIm87D5Ei2JK8hsNh7+VeBNTUVRHBfenkI5ZL4jV/yY9vkubJMjJItCdD4DgDzjTsKE/JivXjPhfqJPll2IyDZd5j6E4pHMcNNt4rXfd7lBeNPJdzCaB7PbJn3VBmnm608R0XGfjm2Khv119Pw+f8OimLt9dzDGtiGZUqnWeqQP5dpk0g/6zPOODLYg9PA/8OUPjtkzHvc4LgIF4CGSL3GHs6nyhKPJR4z/JzEOfGjp4pTTYEQZq8/BmXTyYjgT96j1hn8s04Z+eVPBK4zmaz3oTLN1QyBpux0SpXoNLBznPPPReXLl2K8XjcAUnWl3xsmsTl5Ve5brDQcyw5a6OavPWvvvpq3Lt3Lz71qU/F3t5eJ0sBLsXCS27ctOl86+PeZhpBfEEUQSL7m8pmOp1G5JtVXdd8NSDTA7Wb711wQC8DwvsojQHf3yAgO5/PeyfAsF0dROq3AyiV5ZtufTxw45Mf6ddgMOjFvaudfQMzZZr1Z6WjgUZeHKQT4Gq1KAPuDtR9Y2upjrzG3zQKPY0oOy3H81I/dtCefbse09jxFVA3kkoeeP6nAeiy51jE57NxQ2XK2NxkIGTGr56/ceNGVKp03qkC+fcR225nAAAgAElEQVSACMyy/5428y5zAvXBUgO958mBm8/6fZWr/DiRZBO3KPO4Z8u/XgenDPD7civrkQFlBzpeHp/npMBvr2/miRLw4lssORH6RKTfBPwRJ+es+8qF0hPwswy2BTfnihc+63LTueICKXfu3OmF9TAkhSBW8lNZfpa4hxpIBh6udHR0FAcHB3Hp0qV45JFHOpkcHh7G0dFRCkJ0KoWAtEIvWI7rnowayXg2m0XbHr85lCsOMjTogWcdlaeMCbarZMrTXuRZpsd/02qV/xdIov7SYCGIJzgVX1wt0H/JgqEtHuKT9TmOAaU+rf9+agp1TPXRCTy8Jt0hb5STj5c8kYc6ojQyeCgb8ktD+/9n711jdMvOO69nV9V7qdupc/pcfNrtvrgTt49lx7HpJhc5JCQjT0BESAhpQtAw84ER8wEJkAABQiDEaIZ8gBESE0QkEIJRuE00gvmAAGmSjGIUlNgeLDs57cTxdOO2T58+fdp9LlX1XqrezYfq/67f/tez3qrT7na6T61HevW+795rr/WsZ93+z2Wt7WfOsw+7R4DjKJuTHBT7NSceI8r2z2Sr9CqzZHHnM5lSVlJGlC/HOuczn2P9dC1X+piWv9mn3RPGU4w4zzkf2TyvMVep0nmmCuR/yOTWCr/H66eBd09bys8n/8wq52lL4H1ZnTLrmP/mAkJQlIH0DEgzP/JMa1AJwPMewVZE9EA1FzYH9gIUni+tTMyXMmQoBkGjW/8FKLLFVM8qb55EQpCmtAKxam+B693d3Tg4OIjpdNpZXLmYO7Vt251vLqCmOPqIk8d0EnwcHBzE3t5e7O7u9hbewWAQg8EgPvvZz0bTNLG+vt7dE3impXQ0GnXyECA/ODjo+GI/4JGOfGmQy1n90D0LtGATFIuYF/Okcuf9g+1IJUhWSQJiKkgOaEugRn3s8PAwZrNZLBaLTsZuHFC9qRRmVnqXF4Gg5EBLtmSte4yBJ1gm2KUi5nURj/R0SElTmWwz/s74VXmSd8aX0hFIZ7wqHXnwMjMliP1L7exzdJaW/S9TKkg+b4ln1oFzhp/SRR4y0M4+yTlA+bvHUOTGjmyN4Jyv+rM92ffl3atU6TxTPbWmUqVKlSpVqlSpUqUPIVWL/BnorJbp0rNnfT6zquu6W9NKz7jlKeLkKRSZ29qtOiVrnFtT3EJSIg8DIL8lz4Jb+F0WtEgyr5LXI5OVW+w8vCALkaG1XHx4LDc33TGfLKyiZInSc7IIu6VLaWmRZ74Ma2F9ptNp/MEf/EFERDz33HO9N5rSqu8WYsnFY+IpE8Vlsw602CreXyfARER3UktmJXdrNuWrctkOLh9Z8zKLpqenxZLhLqrXyspK9wIiz0dlsT9klkxvJ1lkFf7iY8PjjtXWtCK7Z0feE9+bIMsyvQQeS06Z0Dsnq7rSqj3FgzwWtHL7OfC6T28Hwz1YD40fb3d6hNwCn1nG3drt9/wFSUybxaWXrO7evzjGJUOm9/w8bdZfsz6Xzdssy8sgL3whmu77Phv30JG37OAA9TWmZX9TO+ubczL7JtcofXv7VqpU6YgqkH8XVALUpcklS5+BTU5k2fUMuJZ48N/LlADP30FNaRHxhT+7JxDgi8tpCxXB26NQpvBwQeF/Liha1PxEE9bRwVSm7LibWdcETDyUhnxrIffFNSK6+HA+63H0dJVnsaui1dXV+OQnPxnf/OY3e3w2TdO99p6KAOVFEO/hRBHHL+pp2+OY5ul0Gvfu3YuXX345JpNJPPfcc/Hss892CkpEdPH7Lgv99w27rC9lzxdyKVyKgJXx7vqvt8oSPPpmW4UfKFzFY7AJNqTQeSiDj1vx76E7OuWHY8VfSMUxJL6VtzYYK91gMOhtKHQFK4u7JlBVvyMYjzgOL1L+AvR6jptO+e2KgfoqlTP9V92osClvhfGwTzC+3a95vciny5OKaAbyvd0pF9VP1/XfAWhpXlTds/bI2ochgR6u6EqHvrXHh31LPLFfuoKYzY3kw9cR9cNMIcgUIJez8hEpP6XZ29uLSpXOO1Ug/x4SJ/+zgPcMzOt6BkYfhQe32GRluKVTlFmG3LpyWp1LSoWX6SCnpHQsq6vXi/fdQpWBqYjjN5tm1kgHxeSfsqEliYs0eWVsvBMXTD7j1nivL62vtNBmFjEB0eeeey62t7fjmWee6cA3z2v2RTarMxd5giERLc0qa319PXZ2djrLts6p9zxVB7WJgA2tzCqDypIDd/Hg+x3YL7gvwhW3rK7KL4ud5qk4XgbblNe9/Ijj02oIgjhmS9Z+JyqHjDlXXD55puIpuYs/jQ8/jlHX5YXxOHP1jbY93rjrYzIDyATk4pt9gbH35IXPOJAVqXwpAhyzDvD9GQfo5Ff3OXay+cLnRe+PzjP7THadY533vSz2UZ8bfB72PkUAz3yUhvmxXvQckW/n0evua4Ty1H4YfZ544omoVOm8UwXy74JKQP0s9CjPZeC4lBcnzyz8IlsAzsJfCSg7UC2l1zUHr9lkLeLCpHqU8uUCR7DLhZfWIAfw5IOeCFqsmA/rT4s48yQQFLgh0M4UOuXlJ4qQHwI1AYbDw8MTp8OIF1nEaMXSM3t7e3H//v3Y29vrNqAytMM3zUYcewX8lAludPV+Jsvp1tZWp5CMx+PeRkgPsRgMBp383f1P4E43vlv/ZBVXO/B4RvEmeZNXtfdgMIj5fN6zxpMHvnRL7cF6eB92QO+8MA/vpw72mbdb5wnSHUDSSk/Fi9Z6phc4Fs/yEsgC7yDNPSo+Nnl6DscHxxTLdwU5InrhOspL7eFgmvJ02VIB8P+Uv4NSjj+mc74pU1cUHOS7HDKA7WUxHZVEjnXVd29vL/7kT/4knn766dja2joBnlnPDNhnc3EJ+DufHjLn6UqKR0lx8bXgIx/5yIl8K1U6b1SB/BloGfAVlSbdzFJSAsvLJseI/KVOvuC5FSYD3L6YZMoCgaRP7r7IEUCLzwzElBQRplX9vN6qc2bpdjlSPiVZZhYfpXdrKgEheeF/8sPrdFN73akYCLAJxNI6TvDiwJXgmwudyqaVUqExu7u78bu/+7sREbGzsxPb29s9y3rEsUJAyzbDbRSS4gCYljcCp+FwGJPJpIuRd9DG8ZEdA6k6+RGEqr8fi6f8yRvzK3leBIQItNlnqNSI3Hsh2RNY+7hyHrwfiVd9M7yF+fDDvqAyve+qniqP7UUALuVH/UfWeCoIjC9n6Et2DCQt/qoff2e88Dm1EfkkgKcVnu1KXjxfPuft64oj+XQQ733Yv9nHsrXE50GXk89lfo9zlb9fYbFYxGg0io997GO9vTDsQ0rHeuua7lPh9fmOMsjWCt6jPDlGHND7vF5Sbq5evRqVKp13qqfWVKpUqVKlSpUqVar0IaRqkX+X5JYBXSPRgpBZGLI89dxpVnuWwftuWSl5A9wC6FZ8T+9809qX1d2tM5mFibTM0i7KTvXIrFXkha5g5kk3N4n1cmuX8iPprHNuZCVPtGi3bdudf07eVDe38LmVVfnQKqgy3LoriyPPitf91dXVuHr1arz55ptx8eLF7po8AMvaQOQniig9LYoKZ1GoS8RReAbPfadcaUWk3Fh3bTSVN2A6nXblK0SIz9MCr3ZVfRkS5G3PZ5rmeG/DYrGI8Xh8wppLmclSzJeG0fJI7xKfY5tH9K2rCmvy8eg8sq/rBCFvT1rJRcPhsAvJYSgNN7DSIk8LOL/FF/lwqzLHKDcVsz9llnB6Ahgjz2e5YdnnBHpnMuu7p/e2JS/+IqKSNZ5esrMQvTulOdTLdQu5W/6Hw2Fcu3atG4s+b3LNiDj5JnH3JrmHQfd8HPG6y7xkdff7WRqO5du3b8dTTz11JtlWqvS4UgXyZ6ASQD/LcyUg7fmV7mdgVde1eOueh7QwT06kXPy9fiVwy3Q+gWdU2njnfGaKQWnByvhwPlkngbasHIIaBx3ZBkIPWXGArjQMbRBQEtiP6L9IiGBFvM1ms+4/Y+tVJwJKxjxnYVd6KZADlNFoFJ/+9Kfj1q1bsbW11SkLfDOp+NF1KmyUpYeu8DmCkf39/djb2+uuCQy7jBniQ7kKvEueus6jLqmI+Ck3Dngkf8kxUzRVpt4OGxG9TZ0MbWI/Y+iV5OFKXtM0sbu7G4vFIjY2Nk6EkCwWx5s79Zv9pFQP8bO/v9+1NcnlwXL54iwBZb1wh6ExfIb9ipuNszmPMuHpNqqDb7qlouHhOlRYmUfTNF0bKY3vb/C5L1NAHMTzOVemCVSz+cXnbX5TPuTDw6hKQJdllMrkuFJ57KfcR7Nsbs+UMQ9d4hzvefi87TLODDXZ+ufyrlTpvFMF8o9IjzpxnGZ5cGvHWcpell+JBy08Pjl6HhkPbh3xBSXipBXH60Rrik/gzD+zaBHkL1OEllmwsgWQ9125cOAqQEDQ6fUmvwJ7AvHedll8PMEGF1/d5zn1HhM8m826a7JWt23bswoTXI/H426jmK4pD8qv5J1h/LYDclcym6bpAOH+/n5P0WC+PKWF7S7QPBqNOtAxn89jPB6nvHnb+lsrCTK4J4AgQnJjXH7E8TGZrmRwfDkPBD1sV/EvBYp58ttjx+llUrq2PY5NX11d7d6Sy6Mo3bvh1nXFwatMXRP/lJdk4F4Vn1/IO3mgnJQX39JJsJ7NVeLf02fyp7Ip4CrPDkE920p58j8BLNvLgSx5zOZakpdfSifyeSSbOzne9fG+xf6ezUmcx0mZF4lyL9XHn2UdfSyRz0wWHB/b29tpWZUqnSeqQN5oGSB+N+STIf+XfmdgW9dLwN9/E4z5BJnl4wCcgKFkJfFFpQTEuRiXgHqpTg62ffHhdQfTBP8EsgJoDJ/xejB9SYGgpd0XU55qwjAOP0+Z9aZMVDYBM4GE+OL55rzvMqCcDg4O4uWXX4633347vvCFL/TCTcgTwYB4yGROy55CMSjDlZWVzqq/vr7eC9eQ9Vjn17si4f1Yz45Go67+uq5NoS5nP5NbshRAp1dD+XDTsV5eRRAkQM92ceXP+yM9LAL2kkHWXxaLRQdu6YVQnbKzxjlWZ7NZtO3RKUGrq6udwiBALjDrSr6s+HzJE8cmra7yPPmma1cCM0XCf7tlPJs3MgWdIJ7zi4d6cC7MgDfvOy+sN/nJeJFsXGlxj5CvNdn86X2JdcryoQKv8eFjiXMFx7fPg16vzJPr/LLOVPSW8UuFiwqGZMh523m7detWvPDCC1Gp0nmmCuTfJWXA7lGfySby7FtpfREh+SKTWUYI2LNJmGlYPstexoMviFoAaLUVn5yss3qepiTwObqhs4WeiwzDTTKrN092cBe6AB7DGHhcpCsOykukt4NSgaDMBOJkeaclWKBP5QpkuitbeckKKYDFcJmDg4MYDocxnU571mrlK2KoRnYcpQBe6YQXyp/WQVrY27aN7e3tzvrr/UJ1Y10ZvqHFnkcuEkiqPB4nqvQsT14MekZ47KTkIRCftblO8qFiQACldiUfzFtpdI9n+2fAkn1f/KrtaaXXewL8mEj2LZ7iomtu4Vb/4ZhgyA/b3oG69weOV6XhHEHlwK3+tNZTxpkSSJ4yo4IrHVRcWGfv+6U2cUNEVlZGzhufz+ZylusKI8E6jR88PcnDnzzsK1NYspAqt7KTL44lbwfKnXX2l95lnl79b5omJpNJKs9Klc4T1VNrKlWqVKlSpUqVKlX6EFK1yCdUcgO+X+W4BSQLKyh5ANza4ZuaStb7zM3rFg9aS/hMZn1iPm7N8rhKWorcauX5ZJbriPzFJJ6PW3boCZDrmeEZtLAyb1lwmY9by/w/LfUKwdEmvCyWmC+XUnq+RVNp9E1r+3A47MXFkxdZ4WShVz2Gw2E88cQTncVaaekZ8LhxhvjwGq2drAstdh5+0TRNFyP/ve99rztZQy8dYv1Ujp5TKIrag9Z4WvBobdcbZFm+h1dJVvyeTCZx69at2Nvbi/l8HleuXIkrV67E1tZW5yXgxlf3SlFOko0s4m4VjeifVMN+zJCQLH89Q3mNRqNuDKu/Z3HKmTU8syDzhU+8loVvlDxjbp2XN4D1o6Wdlnf1MT2nfFgnv8YxzXZXH8ms8pk1Wnn6HKlvl2tJBp5m2X+fk7O5nP1cxHA7v+78ZfOmrvFlTi4L7hOhl6VUZ/da0Lvm87homTVez9YTaypVqkD+kWkZiBX5AuGT8Vkm8NPKLk2+GS8ZX3wmW6A4ARPQ+oSbKSG+iGV19njiTA7LlA1fWLx8Jw+TYRlt23ax0M6LFgwBYI8FJlDlZlR3W1PeLj/nhZv+CJw9REYy5ouZ9EwW1y++7t+/H9/4xjciIuKzn/1szGazGI1GvUVarnSVy7ha8s7NvKy3A/CIiOl0Gnfu3ImrV692Rxuurq7Gs88+2ykUrqw5iS/2SYLViOheOkVlQIDB81wsFp385vN5TKfTePjwYdy/fz8ePnwY9+7d66V/7bXX4rXXXusUoe3t7djc3Iz19fUYj8cxHA5PbC6l/LhJ1MeJxwOzn1BhUJ9Q+AufUZqDg4MutItHNKpMhs7wyEnubxC4XSyOTwfyPqxnPc7eFQMH+q7MZAoh8/F2U2gU51mfEzLgyPFUmsPZp5iPfnt5pfmG44Xt7GCXebOf8ptl+DGaIg8F0zVPlwFjn+eztmTZrKPXgd/k041Mzk82Pl3h8HQ3b96Mz3zmMydkWanSeaIK5N8lZeCUVJrEl+XlC/gykO5gJ1t0MrDtZbq1fFk9+JwvzM6zp3Vgny1UJQDHsr28ZcpFZvWhBZ5WeW74ohw8xj877lM861mWx/Pl+bwvarQ40nvA/MWP0mkTpstNi6/LQL83NjbiySefjFu3bsW3vvWteOmll3rt7BtyZSXO+hgBlfcZ1nc+n8f+/n5Xh4jjk1F4QoyAJWPps77g/ZKARWe4cw/EfD6PxWIRk8mkAyqKd1ed9/f34969e/HGG2/EdDqNZTSbzeL111/vxegqj9XV1djf3++8MB5/zvqRR9Vnd3c3NjY2es+ofeWpcTlI3lKsVlZWuo3F2iBM5Uy/CQoVk++n8uib7c/NucxX7Zv1B08rvrzfsm+o7Kbpn4LEerjy7HNtNve61V/l0NPDZyUjlktA63P4Wed8EucE1ac09nxu5Rjih+PDy9b867HsJb4zhT3Lk/xSdtnapN+lOZ/9j3OoeN/Z2Ul5rVTpPNFjBeSbptmIiH8vIn4lIp6KiO9ExG9ExN9o23a+7Nkkr6XA9lHpNCtMqXwCSwLfiH54CUGuT/qsh9crA2e+eGVAnTy4nKggZEoKLV6+KHha59mViAzoZfUjOKbcMgVHYJrPKD0tqlQA6JbnZkP3BBCMiC8t1gLmtOh6eAZBjQCN8hQ4pRwZeqNyh8NhXL9+Pb7//e/H+vr6iY2NDKGhAsR2Wl1djel02j2bAQY/43tzc7N7GZR40Wk1bsH3/1y8JWMqMTxmMSJiY2OjtwlXYH19fb17QZbk17bH1njV66y0t7cXbXvkRdHLriKiO/mFY0g8qC5uuZesFRJDkCVi2JLypPLnyihDZdS3/RpPwNE3255pxSe9Akyv+x7u4mBb/Y3jh1Zgzhv0FnAseZ1YnvNEvrJnxJPn70o9ZZwB08zY4JTN05Sdz9v+3wEzT1TK+Pa5U3XxuYJlOS/ZfL5M1kzLuZHrXSYb5zOir1T53H358uU0j0qVzhM9NkC+aZq1iPi7EfGLEfGViPj7EfG5iPiPIuInm6b5Z9rSzHEKPSp4z4DoozyrMrM8ly0SPnn7pMs0GY8lpSJL465nLnDOs//PJuplC4EvfB6WkNUpW8xYN1p6BPhcgeGRhjy1JVuIeCoKeWPZ2QLtQJVy9AWa4JoAnm9QdZ7W1ta6t58KkAkQTSaTzvJL0EavAU/mYZ2Ud3ZcHL0Fqt9sNov79+/HaDTqjj4cjUbdEYhc7OU1kQzYL/Wb7Sd+2G8I8sW3LNkKE/F6bW9vd8D01q1bpwL68Xgc169fj+3t7Q7E8yz2iGPru2ROoCfZMSyFYMfDGDLrqfdbAmOfHxhKw/ZyZdQ9BwTdKs/nAveiZEo689d1KsZefjZvunLh9eZzDiCz61QgqPRnSonPcaU52sf+aQoBn2cfKD0XcbzHR/1I5dL4oPJLcy6J7UwZ6XcmX1K2zmTrE2Xn82gmk0zWbKdXX301XnzxxRP8VKp0nuhxOrXmL8YRiP/bEfGPt237V9u2/cmI+O8i4p+OiH/pz5K5SpUqVapUqVKlSpXeS3psLPIR8a9GxGFE/Dtmef9PIuIvR8RfiYj//ofJUMkBkFnKS+5TWYTcwpFZgxjmssxtyfwzixGtgLzmoR7km8+VvAaZtdqtO7rvscElmWUW+4xoTedmQIbacLOYXM+SK18e5HWhbEoeBOUtGg6HvfPi3VornrOXCDEvP8Pdn5/P5501WGlV3lNPPdW93VVWTg/lUT5eP4bzePvQ0q18NzY2IuLIq7CxsdFLR6toVida4Lzdyafy99h6WjE5puQ5kJwVZjQYDGJzczPu3r0br7/+etqfLl68GNevX48LFy50L1xyiyrDOHxPRMTxxlIPGaClXGllvaf1mO81oKdmNpv1rOk6s1+yWywWMRqNTrzFNXvBlCzmtNqrLu69EVEWtGiT3CrPuqtsTz+fz3unA9G74N4s/eY8U+ozXufS3CiZe3y+7mUewSwcJ/O+iTx0zr2Emq/8FC1at5dZ5Z1fjlPKjWnp/aJMXU5OWZkeMucy5wlibsF3z8NisYhnnnkmbcdKlc4TPRZAvmma7Yj4fET8w7Ztb/Fe27bfbJrmdkT8VNM0o7Ztzx4A+z5Q5oI8CxAtkYPw0jWVlf0uXcvcsc6vL0geQsKFbdlkvywsJ1M0eK8UH8pvbgAjCCUwJ5/Z4qb7LEflEwRxIWJZ3CDIE3L8baSZi57hM5S1rlM2BAICWx57Pp1O44033uhOePH2kazIMwG1AB03uzIMRnkxDnc+n8fe3l4cHh7G1tZWVxY3WFLhcnkSyEumWtyVB2O9feMmN1ASCLftcaz3YDCI8Xgco9Eotre349q1a3Hnzp14/fXXo23beO655+Lq1atdWJBCg7L+R+DDfROuHPIEF25WVZswrIHt7BshqWyqv0n5m8/nMRwOeycbraysdC+LEm/cfEolgoB+sVh0x3l6CAa/mYff9/HioUUZAFT7SZ5Z7L6XyTbxuYGKiithbMPsGEbm4fMgQ7+YLgP3Li/WxecBzhka436KlT6loyZJnNsI0KlgO1+6n8W9c17IiPOCh75R3vrmXObzv+7/6Z/+abz00ktpeZUqnRd6LIB8RHw2IlYj4g8L929GxD8ZEc9GxB8vy+hRwHQJMD8KlfLwRaeUxtNm+WWLkC96nJB53/Nx4Ovfno7XyF+m0Ph95yni5GkvGY+ZNc8XMwFL3ecxilzgGKfu8bHZQsMFSXXxo//49k4tStz4qNhs5e17Agi0MssigZ/Hu6u8+/fvd/H/bmlT2QKKDu7EB+UhPh0AqGx5QMT/w4cP49KlSzGdTtP+KvkxPptn20s2EUcn0hAMk0+2Db0spfGkNtje3o7Dw8PY3t6Oy5cvxyc+8YnOu7G+vp7GExN4Uzli++rM+5K3Q5tlOR4kZ56VL8WAMvJz9ymj8Xjc/RYIVr60MjMNLe/iiXtGdI1t7nOR88t2yOLTHeQqH7VtpvDzuYwItl1JYPt5HDifyYC55KX28w3YmdJP8rmElnDO15K7wLKDds/LFe9sznJ5SGn3edz5V1/m3JkpQOTdFRjd97Hq19Um5IdeqqZpTrw9u1Kl80iPC5DX1vXbhfvff+f7iVIGN2/eLG6a+fKXv/zuOTsj+cSn3z9IXpn16DTQX3q+lD4D4w7kCGKz57LF3/Nc9nuZvDwdeeQJJRkQiTiy0HIjq5/mEnF8YooWKwKs8XjcW/y00bP0gh7f4BqRu7SleChPWrAIMmjt10IYEXHlypVuk6Z4END29hH4FRFc674reErHcuU9WF1d7QArLZjcEKp8VSdZm1Ufl7WfBuS/3WtSshoz3IXWQwL4iH44CPMhsGafUR8ZDAbdkZdvvfVWbGxsxIULF3pKlgNZAjEB9my+EF8EO8PhsAd2BeDZplQwxLefBsXnJVvySQMA24VAkWlZXz9Vx9MT+IsIoPmdtbsrndn8sswAoN981kGyy4NpNVZKIJr5U2kX//QiSjasr9ITwDO8hmOVSlc2r5TmQfJNzxfltswa72C9JL9MSXHAz/7tYXiVKn3QqIQrb968+Z6V8bhsdr3wzncpbGb3ne/HRXGpVKlSpUqVKlWqdM7pcQG28q+tF+7rVZl7pQw+9alPxVe+8pXUnRiRW2yWWcxLVuLMSl7Kq2QRp4s0In9Lqufpeek+3blu5aF11Pl0ixLL4XNez5JHQPllRx16Hehiz9JF9OM8s7PmadVRfr4hNeI4ltPPR/f83JJJq6wsaHz5johtJz50rrq3Jc8fZ+y380zrtGLgXQ6yCtNiKX4YpkIZeZgBraJMwxcy6bpCa4bDYXcEZSYnlssXRmlTpyyCtM6xPej+V7vQA+Jn29PSyRAJtoXyHAwGvXLcwkprrHjQkZRt23Yx66rLtWvXeu3qVl9ap+WxoKyy+cDHJfcBKE998zefZR9nW5PcilvyovmcQqs/Q7ZYlo8vbxP1f85d7H/KQ+WRL318vwTTeLiIZMR+mc2z9BTpv/cTr1fmgWS7MpyGcyj5KfHAvk35Ko9sDvffrC/58v7i+ZMyq3tmlWcePk8yRJCyqS+EqvRBp6985Svp9RdffDG++tWvvidlPC5A/o13vi8W7iv05ns/BF46yoA6J0ESJ3xOZp6f0vozfi+iv4jqeefJ+crK9Wsl12gGqDM+M5lksanZRM+6lWTjbn2FoPA5gUu6oFUuQQvzUDiLwD1Dagies4WYQJ2/HbCzfpQBw3sijkGowJAv9oqpzUD56upqTDZZX6kAACAASURBVCaTePXVV+PJJ5+M7e3tXn1LCpq3hQByqW6Ui2/o5VnrWb35hk2G3JTAM0NDvN66x/aUjFQnhgHpWtM0XViNKw9ZnlSyVAcf09yEzD6sk5TefvvtODg4iKtXr/Y24lKJY+iK2pP7LhzYCowxJEMAX2VnypBCKHh6E0Gd+qGIG6sdtGUn4jjIpzLs171/MJ3Pa2o3D8lxMKr8PLyNY8wBJcct/xPYZuE8zNvnQR+7nA9dmWYfzNYL3sv6eaYkOd/MS9fVl135Ka0ZJVl73tkcnykTmndVP+VXOlWqUqXzRI8LkH/5ne8fK9z/0Yh4s23bP/NR75M4r2X/OVFm1hMHrbxXAmW6z3R+nYsir/sz2aRcSpPV1e8rTcaTL7BcVLXgMA0BLo+blOXdXwSl3269Jhghb8rPgQ+vEWyqnlpQGVefxXpKVqongYnyFmBnG4hP1dFlqWf0X5s4I47j0glSnSdXMmitpvdBJKBDcK96Oyhlvb3/UrYi59MBVsTxiT8lsMG4d6+jeGTbZRt7Va7Xh30nA1/Ke21tLSaTSezu7vZOhJFsCRZ5so144skz4ssVQSrL2f4Cj/t3i67HtWsseTtRQaFC5coAlS/G37NvklfyX5p/fN7K+NL/+Xze9VvOKb7xl+XxBVasH/vUMgWAPFPpopVf6eg1WwaI6cXkR2NRxH6ncujV0Id92+di9wR5W/DbxyplRP79Hj+ezufnJ5988kT+lSqdN3osgHzbtreaprkZEZ9vmuZy27Z3da9pmk/G0Wk1/+OfGYOnUDaZ+W+37nDhclDuC4iez6xPPilnLlu3rrgVLAPx7vZmXuTHF23nWzzyNxcIf35ZmQT0/sZQ1puy5qKULTIC4dxUSLBKOSk9w2+U3q37fn43FQvx7BtAeaKLQBYtv7o2nU7jO9/5TkREbG1tdbxxY+9sNuudYlHa0KpnXWHILInD4TAmk0lEHAMXgnq22Ww2684+l+dBYJQWRJGfGEKZ0Zuh+7TmiscMdLK+KlehMbTMk0fxw/HEsUfwK0+RZPHw4cOYz+exs7PTgVsPayEQZpswX4br8KQcHy8ErVSUsjHNdOpr9KywHTMFSApiNlfwt4fqsM3YTq548HcGml25GQ6HPX5ZnisF2RwrOWdHWPo8Sxlm/135Ozg4iP39/d4pRirP52S1a7ZBOSsrmx+pUKiPuBHCZUG+PF9fV3xMZfO4Kyq6Rg9fxLGxYbFYxCuvvFKsc6VK54Uel82uERH/VRzFwv91XWiaZhARf/Odv7/2qBlm1oR3c99BYek5WkWW5SMq5cd8sgVxWZkZgHZLmAPZUjkOelkWF74MIJ6VWIZP+AQqWf6+eLu1ivmzXrou/sfjcUREd847n3erFxcrD0Ehf1ywPYzCf9Oar8XeF0Ol93rfvn180BOt1h5qQWDKEBoCUQEQPkuwNZ1OOyVqNpt1YHM4HHbP69poNOpZig8PD2M2m8VsNjvxYicCO/FCUMu0qp8DUH6z3zv4k0yVpwCywNza2loMh8POGyKZ0trP+GyVofCdq1evxvPPPx+j0ag3Jtk/pUDwPo/h89AwKhRsY1ekfI8I+5H6Fa+rvUWsk8rSs97vM6WYbUBruI/bzFvGuipNadyyfNVFbUUe9CwBZQZiKc+sLpwrJB+fi52fiOi8BVk5lCU9I15PtlXWFkzH5/ibbebtl8mV9XFZ+3WV7XUjZQqo6nL58uUT6StVOm/0WFjk36H/MiJ+OSL+atM0Px4RX4uIn4uIGxHxt9q2/b//LJmrVKlSpUqVKlWqVOm9pMcGyLdte9A0zRcj4q9FxF+IiM9FxD+KiH8tIv7We1xWRJRPoDnt2czKpHt+3V2ULD/jKSsrc31m/7Mys3v+263W5Nfdqc4vQ1oyNznL8HrQas7YTT5DS5Vb2mhNVKgFwzA8DjriKG6VFiKGTpAHbZJk3Vk3j+Evhc8wlt7d0bzuVlh6UTxf1vvChQvdb8pHlvTZbHYi7EU808UtWehsfvLKj8IZ9vf3Yzwex8rKSsxms2jbtheeRAsh+4rCVxjG4ps2WWfJlX0ni33Wf8qJXh56Idyz5KcRMb5dlnN/IZL3A/G+ubl5og3lSWAIhyz8DOVRmzBuXycFKQ29EmxXDy3ys8LFk49DeuRYf84DkkEWB690krf6exZ7rrHH8jlOfHyTd/cArK2t9drBy3JaNtdz7nKPoz/rIYdKy7aWZ8S9MKwHy9Dz9CiqDgzRUz5ZDL/ajXkxT/Z5J461bH0rzf9eB//omSxkiH2rUqXzTo8NkI+IaNt2LyL+zXc+70f+J66VQHmWTnmcJf1ZeHHAnQFFT+cLiU+anjfzLfHBZ1lfLiA+iRO4lhQMB78eR+qy4MLnz2WLr4C75KWwEIF5LRLKk0egCdxpwytpMpn0Tl0RCSARwFNOdE37Yur9hgu6b2SkHAn2dW1rayueffbZePXVV2M0GnVhHCyLYS1etisdzJ9HA1KOOiFIoFVlLhaLLmRme3u7t5mQbU2gKWBKQCsQKJAv3n3DpvcptQtP/+E9hjJRrg6yJBO26erqardxdbFYdC+D0jPsR5I9j7hk3mxLyoJx9yIfV1QuM+JeBMbMc85QWT7+GLfuCg5lpKMzPXTPY8xLfZr5UVHhb4aicHywzTinUSkj+R6g0tjzMbdMedjb24u1tbUYjUa9/Bm6tWyeZn6c07IQuix8iXMnjQ6umJaMCR626HsASnM9yZU3B/CkbG3zeTwbL5UqnUd6rID8e0k+iZ5GWVq30DBdCRxni4GuZ+CV933yy3jixO2xk6W6+ITvPGXKjMvPrTuZbE7Ls6Qs+D1fHAjGXIkhKOVCSUsWAYSAon4rfz6r+G5f8FUGF1kBaFpxJS9aYgkydd9jw10RYLy66ri2thaz2SwuXLgQ4/H4xPncahMCU8qX/SCzxiptdvzfZDKJhw8fxhNPPBFbW1sxGo2ibdtu8+hkMonRaNSdouOnyNB6Tes8wRBPfHEvhYMntsNsNovBYJCejOMgSHmpfQiM2D4EY7QwO+Bx66fajdcJ+JkPwazHEmsDruTh/UyntvAUHPZT8U0+ybePU/13i7rvMyDPkj0VMpUrBYH5c0M385fcJHP2TXoI1G/Fh8+feocD68n6e5+M6J+m5HOLfuutwD7PZgqDz+GaAzwOXnXPwLfK5bjM+p3Sef/MlDLnlfVQPsuu6Tq9DQ7USZmHoW3bntf0zp07UanSeacK5H8AKoFxT5OBSNIy8FoqR4txKW//Xyo3+89n9U1rDNM5IM8WJVp6lxHl4Pxl8vFFqlRHWq8yK5DLieCdIE1AkXX3Y+MEfhUG4JtGBVLcUuxuaS1YBGnMn6CELzuiohDRd3sTGM5ms5hMJl0Zi8UiptNpDAaDDvx5XygBIt1TW9OToXRra2uxvr4ew+EwNjY2YrE4Djtpmqaz2OozmUxic3Oz1+9YLhUe3xTLNstApwChg01vJ1fgCKY9dCfbVO0n+WThPuKLoEqnBRHw0hsUEb2wLf8WsFRYlAC78nalUM/SwpwdP0p58j/7o48xATd5PXSPygU9VZxvWG/9ZsgaefEQEo539kXd43jg5mP2K9aTZVCRo+wcyLpRwOVJyzzn0dI6IHLAzznFxwvnC855PobZV6moe9+g8qo0JQC/7Dr50McVV93nt3hV/6ybXStVqkD+BLklIQPfp020fJ6/PZ8SsHcr0bLJMbN4aJHJLCmej9/nf69H9r+kLPiCkpEvHA4uMuB+2gLnv32xizg+htEtzpIbZSeeHBATMBMsCKCNx+MTIJhpMr4dGMtSLXL5UJnLQkwyuSiP2WwWEcent6ysrKQnpeh5B3esv8CQgEPTNDGdTjvPxHw+71ldHfTS+r5YLGI4HKZeFIZhRERPERA/DvAIECh3AUd5V6i06T73Tai/UObZOBGvvkeC4IT9RrzO5/MO8I7H407e5F1tq7pnRK+FeKR8Ce7ovSCgE7DNxqTan/KlssyjOMW70tN74kd9ci8BFV1X6rM5IAPf7AfZvOu8ca6kAscx7N8+RpiP88E+ms2zbBspuWobL8M9Cey3VGQIxn2vkM+PrshlvDMffTgv6tvXGuXJdYl11n22ezbHilcei3v3bnfSdKVK55Yep+MnK1WqVKlSpUqVKlU6N1Qt8j8EyizLy64vS7fMnc10p1mv3RLl5btVyevCb6Y5zVORycR/L8vHrWseR+leAVqq/KxoD0WhdUvWJrp6JWPGxtNiz+uyeioPvsSH92kNZdvR8k9Lo8r09qVbXVYzWo89nvrixYsxHo87S7DLnlY3WrNlEZvP51278bQYWXnZBk1zFDrz/e9/P27evBnPPvtsPPXUU919hiyoLFqVZa1zqybjhj00g7HhzotkR3nRGsnwIMmYew0YTuP91TcJs49moQMif3srLcKMC3cLpcpnmAr79MHBQdcmqpv4UsiNwsDkldFzsuSzH7rFnmMvG3d+nx4Ger88lEa8ehlu0RXRKu+x/uzPWYhNaa4p5cmxy3J8/vVxzfYlX56HyvU29nGpdmZa1oehO1mbqI7Mzz1O/OZ84KFS9Kx4386o5FXJZEmZ+2d9ff3UsipVetypAvkCOWAspVkGON3tvoyytBmYPs2V65Ogu0m9nJIyUcqHv31B4oTPPLLYV5eJ5++Kiq77wuPt5O5vrwuBnoefeOyyx0ZLGfCFSmEXikNmmICAGIE3wYqDcgIeV5LovhYwdwVPoQkM4fFQkLZt49VXX43JZBKTyeTEIs4Td1xOTXMUNuOy9yMd9ZzyXV1djfF4HM8++2xsbGx0aQmaWT+GoXDzK+XjYTDkyd/cS+DP/qD4bPYD5eljRHWhYiEqgVc96xuWs77r+ylYtt/LnucLmMSfxzlTIWOcs56bz+exurraKWse/5+9SIv8Z3Oih1s4aPNxp7QMLVJavfGXfVlpWS8vk+Wy3h4q4nOe9yG2Qem/z9HkX/0nCz10o4ET293D+tRHvH97fbLfDo5JrghxnmD55JmKXwbKs3nd+wbnNvLrPD58+PCEnCpVOm9UgfwplC1My4B5tsD+oJQBCi+DcbSZlSlbpLiYMx3vlxYUAurSPfG+LG7yUevqG8Scb+dD6bgw8BqP9GM+tGArJlOANLM4s0wHgbRi6RmCGdapafqx4ASubgkW2HIgSjDD6+wjOsJRm3cJ5giqBMYzpS4DSu5JcMVke3v7hBWtBID0WwqSzqfneehUthhHTplK0XLrJctwZdHvUZYOnrSp1JVVKhoZ2HQZKg9aq7kJkf2G40OWUdHq6mrP0+IeHfY1ndbjwIl9PyJ6yl3mVZCcs9h4xme7gq37DgSdCFJns1kPeHse4sUt0rynMe2AV8prNscrH/32uaqkmPk8tgwwc47yeYJjyQG291vKkXO/932OIz/9xpUvl7WfCkUlRelcLq68iG/vS7zHayKVrbdqV6p0nqkC+R+ASoD+NKB/FnIguixdBrAyAMw0fNYBeck6UypX/wk4nKdsIVdZfl/XSguZ58OFgIsX3cR63i0+5FugiOERLEPP8OQPyYmhHVzwaR0UCVS6q93lR8vdcDjseQPcAu718fZXvXT/4sWLsbe3172ESQAy4gjcN03TO1ffN1nSku6WQsqMQKNt27h//348fPgwbt++HT/2Yz8WW1tbvU29VLDIi0jy0GZdpSHgXllZ6c5rJ7kVUDx6CI7u86hR1okAWjyJL9XFN0frN0n9hkoG61lS/ES08ouHpml6G2ezYyzdMj2bzWI4HPb6JeutZ9QWrmg6aNc3AfxwOOzSOg+lEBp6w9wrpGf135WLktLDtuLYl6y8jxA8cxO52t7nIefPx7SDb85J3v7uMcxAePZsZjwgX5K3+rI8jRng5njnnMIX47VtG7u7u7Gzs9OTv8/1ngfbhXOn3xM/SkcFfW9v70T9K1U6b1SB/BnIJ9Bl17PJSJRZYUp5ZRMef3teBE0OXp1K5fKZ0kKQlb2snm5xyZQMfyZbhJmfp2eseuay1m9a5Zqm6RZjphcw4gt3CCj8GECXn1sECVTULjwphfHPni+BkIeIiHQqjMuHMsnCiO7evRv379+P2WzWs6zt7u7G9vZ2Z+XVAk/QTiuen/PNttaxmBFHYHt9fT12dnZie3s7nn/++Z4c/BhPyozg0k9rycAO9yHQQqi8JVsBafeysP/zvytXBCBsD1piCVz1rfqy7fXM/v5+7O3txebmZheClFnB1Xf8JCEB6NlsFvP5PDY3N0+ATcpU/cNj+6nYMU5eYTfe/33uUJ1cgSSgZn/yF0CxD3HsaS9K27adNZbAlf1Q7c1+yfLZfg7gszmXio7Pi1QKPByPfLCPZcqj0nH+yCiTu19nu7v83XBAZZag2o/1VHqlE21tbfX45olSVPK4prnC4/w6iPffPhdWqnReqZ5aU6lSpUqVKlWqVKnSh5CqRf59pGVW6sxSvux+5oalq9It5R5m4Xy4xYP/3VKU1UF5ZO7YzNIUkVtesjKUjukzK5PXnencK0FZcSOgv1xG4RQR0bnS3T3uITG0jnobyVou65Zb4EW6x3hlWo8VDy950kKrOPemaXrWeYar8NQVphsMBt1LoNq2jYsXL3aWz1J70prNt2my/m5pnkwmsbKy0r3h8rXXXouPfvSjsb6+3rPG0zrOTa4s0zdGzmazLvSDlnWl5TXKg/2fHgD1D1pplU5ypceD/dLbn3JgCAy9JbJkHhwcxP7+fvfmXfeocKOprJ5usW3btjsBZz6fd6FTDAuhx4NtSo+T+rN4VmiM+NQ+BHk0RD7fqEw9Q6uteHGPQ9sevwyN7cwQpMPDw5hMJl1dvR0pf/HKfqx2cu8L28TnFNaPHg0fyx66ks3P7FvuRfR5W/JQWvYrjlNa21U2+fO6+hj1MZh5pPQc5cj5Xe2UyUWy5fyXWejJi7cXPUWLxSL29/dPlFGp0nmjCuQfgXxCXJYuc3Vm7kFR9v80d2n2HPnk/wzQZ4sU83RXp/PmdfI8/Jrn7+TuXgdaHtvLNA42PTwnA2S6p2cZikGeeXyfgDZPqHGQQD6Vjnx5Gnf7++IsQLW+vt4pDZIJN+YJxAnwsGx9CxTeuHEj3nrrrdjc3IzhcNgDmL7Zj3sCKJsMfOtZlcNwogcPHsTt27djZ2cnPvaxj8V4PO7Jjsd36pvAT/2Yp/Ksr6/HbDbryUnPSAlwmVO+amPdd5BDUCb5uJJJEJopsQIf7EfsdwRTm5ubcfHixd6mUYZ6sT+rbgxZULs4yPe+wntUJrJQJ22eldKnMqVAki8/zUf9NDsFiDJXHTgW5vN5165SPNU/GfKlvBXKI54Z0qFnPYRLJHn4MaaurHHOcYXNy/RwQicq2h5+R6MBx4VkR+WZoF3kpySxvjQU+P3MGELldNl8z3pzLHGtcAOLy7YUSpTJjWVUqnSeqQL594kyK4zfj8it3NmCJzDgFmjmkSkYbhHKLNr6XeLX+fBrJSXD83brCxdtTvAETJkykSlUvnC40pLlIaulSAulrJFuOSTvKoO8Egh7DK34IFDQwkkg7KeKiAgoCLrFC4E0ATAt5ty8+eUvfzkODg7iE5/4RGfVL7WXgLn4EJDiwq97BJzD4TDm83kHRC5cuNApDqPRqPMEqB14QgrBNr0J7KcqX2/RZT9im7si4PLkxlTJV8pQNs5coSFlpxoRaJPPbDwqpl3txzGh/7SuS0mirMTfeDzugT/fvO1GBvVxpqNSpecE4rkJmvITX3qOSovuUYauwBMIUj4EotzfQgsw+3tJseC84+Paya9nbUYF0RXB0hwm2fjcSb6oBPu+BJXB5x1wc24pzeFK62NZ5apePndTjpmXmPyRHx+bfMbllK1PzKu0tlaqdN6oAvkzUjbJ8/ppQDmjZRORA2XnIVMUSgtR9luTt4MMpeNESutMVs5pSokm+9Jk7aDbJ219O/8RcQJEO3md3PrD+olHBzJcCJVG9XLLly/K+i0LIq2BrqzQUubyITjXM9yomclGi7GserLQr66uxnPPPRff+ta3YjQanQBb7rYXuBKgZ5iH8mN/cSsiAT7BlXhjGcpH1l5u6PQ29vAPhjexz2RAlX2OPPqRjZKxAKy8ANm4Up6ScwZC1Nd8XLB+Du5odSZvbpmkbEajUe99BqUNvS4PKrIqi0qC+OKRl1Qum6bpWep5uks2BjOAlgFNDzlTWTxdRx4K5c1y2L8lD+bjPLIvO6iUXDKFhPmwfxCsZmlZV45vznMib0d9U/lVf2V/87lWzyktZZH1lWxu9t8O3p2/ElHerhiUrPQaj7/1W78Vv/ALv1DMu1Klx50qkH+XlFnqTkufPbssbTbxOpUsExlvWdoS0CefWV198cnyp3KT3WMZzkMGgkp8Mx9XOHyBdD4ZD6t7jP2m5VILHYE9rcQkghSFNRB4cpFlXRiXL55VBhUE3hOIdSCkvDysaDwex6c//em4ePFibG5u9gAN+VFcNBUdhi/Q+km5cl+AlB3x+fbbb8f9+/fj8uXLnfdgOp3GZDKJra2tDmSpXCoMUiDc2pmFs5A8/MjBOn8TlDHmX0oM0yg/Wqu9r7G9CEQdKEYc7QnY39+PxWIRW1tbJ/odZc16uXWabaV+IFmqXIaEKe/Mq+NAkG0scD2dTrs+Th4ZSiQ5UL7Zy9V8/PM3FS5XdlV/fbMN2C6MB/d0In/WeXRQ7vcy/r1eWTrmrXbgSTk+l5YAs4ddeYiLzz0ao5ly4bJlGRyHBPI+p3H8eDgSZcTwJvLCPuPegYjo3olRqdJ5pRpgVqlSpUqVKlWqVKnSh5CqRf4RKbMqi2iFOIvFPrOQZxYQWmf9uj/nbttlvHo8sVtg3JLkbtPSRqMsz8yF7DySV68zLT+ef2YJdSu5exZEjIWWxU5WIJ1XTWuqW+adaNnUb5517qdPuFz1llC3IipP8SL+GMbCOjLsQuXRsjedTuPNN99MN8qpHJ4FTXnRAscX5FD2DBFp2zYmk0k8ePAgDg4OYnt7O0ajUUQcWaG//vWvx2AwiBs3bvQs7m6xU1iPrHuqC62WpMwqLlosFjGfz7t4a7cgMlSKfYByz6yEtPp6SJZ7eMgj68HTd2jlZF0YTpR5u/R+AD9n29uo5EXIXqjleah/iBd5U1SmYrvpTdB9ziuy1DPmPhvrlKM8AG7hdTmxHC+TbzVmKA5lRItwlhfHKsPsPC+XHz1Amfz1myf1KB1loXrznnsJvZ3dG8G8SnMo+cnWAqbX3Oh9nX2adTitfryX7Yd44oknTsi4UqXzRBXIn0IZ+DvLM/585sYtAXyfPAkiS8/6pOvu1hJIz5QNpvXJtMS/g22/7u7WEgDPZJHlWVKimFf2nC9y2eJJ8MtNqARPDlb1HBUDxvH6IlTqCwz1ydpPwIHHBHJBJC/6MPb68PDoBVLf+9734pVXXokf//EfjyeeeKJzwWdyZmiIypR8lM5f1ESgP5vNYjKZxMOHD+PevXuxuroa6+vrXV4qmxtedU+gT6BRdZlOp72+Jb65Z2BZTC779XQ6jfl83jsBpGmOY/kpR/HlSoL3OY4FAhr2ed8joecPDg568vR6OJCmzHV9f38/5vN5rK+vd/sgPJ3kwJh7xff7uGNbKK2UIN+0qfAr9X0CbyrKSlsyCJDfTLEbDAZdflQAIqIXQsN7HiLG56lUqO6z2SxWV1djNBr1QqskI+Y9n89PzIHMKwvRyX6zHhxb7Ec+Tr2PUfnkb7b/sth5pvM1zNuD1/1aCfRTQfH+qGse869vV2C2trZO8F6p0nmiCuR/AHKgWEqT/T4NxC/LyyfFLH/dz57JQH2WbwaOHZCT3AKjPJYpIFz4HAB5+Vm+mSy4gNBqy3q51YkLjL5pldUi7RbsDDA62KF8XAHgAujWROXLeH23XqluHkevMmTBZvrpdBrj8Tg2NzdjMpnE/v5+D8CpfJUnwEKgqPh7BxH+bER057zzxBoBfL19dDKZxHQ67dqM7cf6uLJFMKXXxjvA9T6jb99XoOMOszZlzDH5onXV+1JpgyrTCFSqz2Wb+wj4s7GpsmghF5BWPanQkVw5kZJIhVUg9ODg4MSmSCod9KbIQi8edIKOyhPA53GR2Qk7Pg/IU0CPjNqLbcF6coO46sfN1OwzBPKrq6u98/O9LQnQ2Y9E2vOws7PTO63KvSnkN8vbvWk+5zkwF1G5zIhl7+7uxubmZgravSzNK9xDwjp4HnyOcyr54PVM4dD/xWLR6+dt28bXvva1eOaZZ9I6Vqp0HqgC+feAMjD8bvM57Zpbpfi7BGwzhcPBvJdZys+VkQzsl2TBPLIyPF3GH0FURH6qgQNztxLpmjaCaoHgsX6Z5Z5pqdDMZrN0sXQARUARET0gLL5IDJ0REMjqpGsCKKqbK0cHBwcduPj93//9iIi4c+dOXL9+vQNhSj+dTnshPe6NEN8EF5QRF3wCwYj+6ScCSw4eCA5c6SIoE4grHZHHPpEprAyT0bO0PlMhYftQNlIgxK8ADq9LDgKL5JcyVj+g9ZdyIE9UeLhxtGn6G1vdUuthQc5L2x5Zon2TMJ9VOerbHDt6eRlB/97eXm9DrMqUwkGLuDZ56h4BsGSfhUplwFXt6fME20cfyVsy43hVeQcHB/Gbv/mb8TM/8zPx8Y9/vOOR6VSuFBhXosi7e2V8LmO/4NjwMZEZDNi/ndiuKysrsb293ZuTXY4OtKnsZjxTMVQ5lKPzwf8egsZ5h/1D6S9evHii/EqVzhPVza6VKlWqVKlSpUqVKn0IqVrk3wOihTmzfpeI1oezWONpMclCDCL68Zul8ALP67S6KT0tsO5GdkuLnnUrvFtjSvczvkoxlbT88L5bYWW55EeWclrqaf3SdVroWK5fy7wDLMPjXFkXhtPQCsz60Ronq7D6UUR/k2ImE//98OHDODw87GKBlTfDDWht9zzcEsi6ubVxaRxwaAAAIABJREFUPp/Hm2++GdevX4/V1dWuzJ2dnVhZWelZ5lUGrc4cL5KNSLLwDXUup4h+qJJv0pV1uNR/ZL2VNZdWZ3pH+IyPG4ZvRfSP2PPNq+yPrC+9OhzzKms2m3XPuxeL/bXk0SIvOl7S49BpKSXJg0RLeNu2naVe8mvbtotz5wZZeQP86ErWh+TjgW3m+zs0FlWWj3t5CUQMa4mI2Nvbi5/+6Z+O69ev90Kx3KLPc+plGRev5Mu9RO5VoCWc7e/hLO494nrA9YVlsw3VLj6vu/c0C/vib++75IXjwfN3WXifYrgew7fatq0x8pXOPVUg/x5RNvlllIHzs+afAWXlQTCne9kzrgRwYSHwyvjiYpW5Uzkh0wWrslhfB2xZ3bK4Ueah376YZYqOh9cwDy5eDlj5nMeoetw9gSL5VVo/ZcPrTqWEIRgeNsHz1F2mAicEqzxLmnWKiJ5b2vsQ4+YJKAVssrOnHShFRHfm+M7OTly4cKEDOAoDYqiEA08BUo9PZ9+SzNl3M2BNeU0mk15IBeXIfkDwxH7PzaMKm+G1LJTC+9be3l636ddDb1zZcyCnts42sXIjMNtceTKcSO2qPsX+x7Qe8+7zHZUVtgf7IU9syuYcnnuvNw1TuSRJ3txMm4FlhnaRP9XN65QprLy2sbERW1tb3fOcexhmww3cvqHXQ6tcEaRi4EQgmwHlLC1lEnHy9BiWV6o/25rXPfQrW298PHJscP5zWVMJYX/0+mxvb6eyqlTpvFAF8u+SssXlB80vA8cin+z02y05npYLVEkRiDi5mXAZHz4xMz9fVJin8+hllaxIJd5c8SA//jzz571MKeE1WQZZb4JJAVHWQccH+kkwXOx806DLhe3qp274EX3+HOXtQHVlZSXW19fjp37qp+I73/lOfOQjH+k2oHKBp1wFRAjEXOYeo676so58KRblIKAvYEYAy5cdZaf/kF+XsfdFyksgWHsPuEGW3haCfdaf6V1BW7a5lOB5Y2MjHbfsN96eBH++WVd97vXXX4+bN2/GxYsX48aNGz3ZO4B3pYwKq0ht4JZQtgFl4O3CspSP6sn+JNCrPsF+7l4S9g0qlPrN2H+1F5XBxWLRe/stZeRj0oGsj9usXy5TfPi2W8nB25j9xq39bBuP/88MF/rva4e+S+0uotKcjaVlawfbn3yJPD8pz+RDstVc5Pdffvnl+NEf/dETZVeqdF6oAvkz0jJAzPula6XnPH0pX5/YHFCXyvZn3RpC8o1aWfkZ0OREv2zCd/Jn9Rwnfi+TANyBUkl+vmiVrLD8zYUlU1C4cbOUj59GwtAZLnC0IGbAT0CG9w4ODjrw6+E93i+Ur4DFYDCIhw8fxne/+9341Kc+1fHMcAj2Lz+pRb99Q7DyIB/eFrJiKoxG4H0wGHSAS6DQ+6pkMRwOO6Dmx4JSlpKTZKC60QOg+zyBY7FYdJbe0skzlCvJPQvs45TZwcFB3Lt3LzY3N2NjY+NEuIH6icvTlUOeMCP57OzsxI0bN2I4HPbCRByQN03Ts8J73uor7NNUXqnssN+Rn8x74p4N1osbuRlWJr60oVttPxwOY2VlpbdpluFSLiv2VZ1ERS+WtyWVJ13jGOYcoXSZMqK8XDa654pKNp+zHB/nWRvpN9t82dzq7e8eDJ9reS1T3qiQ6LqPM84z2VxOpYzlUgn90pe+FL/0S78UlSqdV6pA/gegswJ6ps2A7bJ72UTtIJppfWIt8ZcBEN0vgffTyC0+BJOceN06k8nDnz2Nfy4KWV10n/cy61C2MDsAiIjegpTJx8EK8yCwIUBxIijlAqbnFA+vNAIIAiTki2E2soCvr6934TOlfsnTW9wSzjZUGh5LRyvofD7vnWpC/hRGIVk5COApFYvFooutd+WGMmN/iziO21bePPNbgFRAQ6CLSgLbSu1JMMI+zrTKx/kbDAZx5cqVDtAR8Cpfthn5kqx4whLbYzwex5NPPtlrG+bLoyppOVYMOwHn/fv3Y2Njo3dmO8HgMsDJ/uHEunkYCevveSjUTH1YYLlpmu4lY5ITvS6UG/OjLFifDFiqLTmmfK5R/mwjf4Y8qqzsfH3KimnZPpShrwWcO7I5xOdZXnN5lNqRlM3rzM/BP2XFuZRt7euQ2p/pf/3Xf/1U3ipVepypnlpTqVKlSpUqVapUqdKHkKpF/j2kzGJesnaU3KL+m5YMf06WFrds877+e95+Lct/GX+01Hg93SLDupC/jFdPl8mgxE/mRaAFyy1gbXvkXleohyzKmddAv2nVdNlF9C2xDKUQZZvYaGWnJTaz9tO6Kp7oJXC5y2pP177e9Dkej7vwC8pNPNBF7vsAxAfDccinLJ2yoN27dy8ePHgQ8/k8dnZ24oknnui1pSysrKfK4alBbu2VjD1ERjywn7FOPEGFadxyqHIpQ1qLVU9e83bSOPU+qnS+Gde9AOwPlJnXT3yzTegNYjvSSq3TV2g5Fk+XLl3qZEF5ePy3zyu0pvu4pdeiVG9e1/M6aWowGPReCjSfz2M4HMZkMunlq02z8oCQP+7H4DXVhe9VWCwW8dZbb8X6+nq3WZseDo4HH99u2af1nONFlnsRxxNDb3wceggN5y2f11l/jneff3mf8le+nKN0rxQW4x4b55OegqyvellZPe7cuRNXr16NSpXOK1Ug/z6TL9yc9On69ok0u86F013czJu/OVFnAJrPZmDO+Yk4+XbXDOz7M6W02TPkh2CSIIphOq58MF+CdwebBBR8A6q7esmDgBWBnvLKlBnGZmdhF9xASb70OTw8jL29vZjNZrGxsRGj0aioGHBhF+DSAsn2ELD+/ve/H/v7+706s350sXPhFYhiWEQG7tbW1jqAsra21p2mojwY9qBTfQiSSgoC6844+bbtv8k268PKg+FH4v/evXsxm83i0qVLvTIZPqHfPs6cJ/YXjieBRAHl+Xzei12X8jMcDk/UgQBVPLftcViWnvH+wNNUyDuVDI4BngzCPpvVydtJpwxFHG8oplyy8cf8M2JfFn++wXQ2m53oKysrK911HaGpMgaDQaytrXXhOLrG/idZr6ysxJUrV3p9j/temC9PTxLv/O+GF/KbnWTD8cax7Ephaa5X+/r8rm8qidzwzD6kepF8nwDrU2pLKto0AOnZDMzrOVeSqfhoDqtU6bxSBfKPQA5uSCUwXkrjk+1pdFbgvOxalkfGAydOAhaCuVJZzJ/gm5MywSZButfLgUcGnnyh5OLFckhanAkGlAfBqYCox4YLAHGjqf4T2DA+1Z/VbyoN4osWcfGrOGWl902GXMCVt56lApS1NZUWj08WwJZsCDQkbz9fnG3Msr7xjW/E+vp6XLp0qctT8hmPxz25+BspJddMuXVrNb9ZXwFs5U0lYnV1NS5cuNDVndZipfH6uOKkMrLx5s8SlKstBXwzZZQKJeOEJ5NJ/N7v/V5ERPz8z/98pxwdHBzE3t5ejMfjrhzvIwRdPEKTihaVJVdqWRe2pcpTHXx/iO4JkOu6vh3gig4ODmJ3dzfW1tZiPB732tAttqqfe6lUX1nr9/f3Y21trfPQRERnveexkVRK3aiQET0w7FOuPGXzlfoR+4nqw+f5rTp623BO43wjGbuC5M8KNLON2V6Z8YTrRMlYRcUum89d8dA1edE495baoFKl80IVyJ+RfCLiIusg4izA/LT8S/cyKzT50W/ni6CDILukSJTAvy/Yus7JWJN0RgSDJWDm9VnGU8ZbtmhoUfbwAbcc+cbUzMKk+nkZHoaSWbccdFCWlBnvb25unsiP1kHx6f1EeXIDqtJduXIl7t6921vomXe2kAp08Xz5bCMvgbDkt76+Hl/4whdiPp/H5uZmJwOdQEMZ0rqutqJ1l2BvWZ8Q75SP+oDycMDkJ/f46SvsB94G3h7ilWV7KITSusInEnCnQiW5t+3Ry3C++MUvRkR0SqfK3Nzc7PqjH6PqllGO2bZte2FOmUdA+fC4UPURKj56LpsTfLMy+yDrLzApvtkPKC9a/32sUQHWN9uGJzrt7u72NgDrm8CefLBf+VhmPyC493dD+FyhtMyHm6ypaPpcpbFDysaJG2uy9K5Mqkzdy+YcpSefvkZ4uVR6eI+AnbzJ05TN4ZUqnTeqQP59JrdYlACH7kfkcfHZs5z4MsoWRp8QHQCTzxLwd8tSxiPd71n5TO/XXAasq/PofPt1gQ4dcSjroixsWtRZp4jjhZdgOwMdBHglBcaBhfMnsOZyYsiCy8sBZsTxS4UU3yvQ4h6U1dXVuHv3brz11lu9Fy55W0sO3l8YrkFwyHbzUCTxpxcgKW/FZwsQypq8uroa0+m014bsWxFxYoGnvAl4HOyQT8aZ01rrSplb/TxEgnnQesj9B+QjA1ElZVQAk+2nfszyWZZAvfqcrN/kj/1HwJS80tpJebC+7g1R3/ATf1Rn9iH2M34TxJJPKnaSL5Uf5SvZCMwyPMiNCFRiVlZWulN7XEnjmfXq0zzykn1dadQmbDO2N8e3tzfbN1MKqaCwTb2ulLVkxPLZHmo79k/yc1Zi/8rmOh9vmXJBvjlHcmxK4fQ1rlKl80bVJ1WpUqVKlSpVqlSp0oeQqkX+fSa3GNJ6UPqdpV/m/mRZ7hLlvczK7TGWbh3idbcULiubH7e6ubX8tLp42c6H88+yZBWURV5pFa4gSw8t8M4brfclL4l7B2gNz+KuRYxlp0XNvR20/LONmN5PtBgMBp3FXSd9qB5bW1tx7dq12Nzc7IUb0WLG7/l8HpPJJNbX1zvrqPiTFZPeC/dY6P+3vvWteOqpp+LatWtdzD+9D4vFovOcMD/JlNZaWj4pc4b6uDeFGyXpNWK7uXdC7UvPgofG0LJLyzm9MJSFxwfrm2E9tJIyHIueBvKpPqAwHNWnaZoTngHx5fsy3ELqctCmUY4/tbfyy+aHkvWVeZOvTP7yKOg/+62I3iiVyfCfzLJMC69k5rzyHQhqP4bSqL11TV4U9g1a7pW3npHsJJemORl+w/6mdG7Vz+SuckTqQwzVoeyyMa1y6QWg/NTuvp7w28O4FPbnYXNeZ86F7l1o2zY+9rGPnah3pUrniSqQf0RysHsWt95Z0mSuz4j+C3dYvoPKDPhmvJbyZwgCF4RSHn7NJ1pO9h4XnCkKXsdlcdBZuE4WdsNnBOa1mAvUCyxpQSM49rASL59567rkQfDgcqeiwHtcEDNZcRGMiF6ogS/iKysrHYjnwiw57OzsxHe+850OLJTAnL75hk+BFIVsEGx7TKzqojK1gD948KDLx+Oq+aIjgmGGGkhOfCEQZePAhgqa/pNnPsuydL801gk8SsArC8+hAuHl87QhH5fsKx52pbSMdddGTtafp9KoPIIrj20mOOWbYl2J1dhinVRHDyvJwni8vVyOlJmH76gPCBi6Aqxy2Bf4rM+lJALf7EQfjlke97q/v9/JgYoHw8jEK8E4TxmiXNwowBeusd/5XEMZMD9uyheIp0xdaeT8p4/ko3p7my0j1lX/pVxQ9q7EULGPiN4bdCtVOo9UgfwjkE9QpYnfJ9MsH1+Ymb8/mwFxTsjLysv403VaUDJg7enJo5Nbij2f0sLs4N0BpKfJ5BbR3w/ARZaWL54Ooo1S+ubJHLQmt+3xG0rJo8rykx7Ei8hl4soO60hA56eEZFYvnrpCmSptBkiU59bWVjz99NM9Sxj5pbWU4CnrGwQavO+WbZW7sbERq6urMRqNOtkQPHBjpuLMCUYpL4ISAhpXith+kg3zoVVSz9PjQCup2kB9iUeIql0IcmiFFx0eHsYrr7wSb731Vrz00kupYk5QTTlxgzBly/9qF+arcsWr8qcllhZnlac36eq+x1NTjhz7Pp7dEMBxxnyYhwN89UfVQ/1XbU8FQc/xHQPySnGzqsejez9mOawLyyBfHg9PIE8lKQP4fCbi+EhMlUGliv2Wfd/3TkjGHMvKj4qJj2P2KYJ5Kh2spyvvusayKDvOg7qeWeapTGTzz4MHD7rTmSpVOo9UgXxCJatMNoGTSsDe0zDP7HeWp/NS4tXBvruIM8Uhey4r+zQFJOLkaRz+2xWRLDwge86/GZrgYIV5ufXN02SKBYEYraxcUBjCQLDtgJ8eD/Gj/DMrGcvQx+XtVjivj1umKQOlnUwmcevWrXj66adjsTgKZ1ldXe29JIkLO/nI6sK29XJ1b3V1tSuHoFfgnXnoHtuMSpmX5Z4A8kg5uewyBZR5uffHFST2BQFFlwct8gIjo9EoPvnJT/bybtu2x5v6opfvY1ogSRZeB14q20Gd8iLAotU32xguyyvbiyCRY8+P+aSc6f1i/6dFn+D44OAgZrNZdy48ZevtyzmB/ePw8DCm02m89dZbcenSpS70hfIvAU325Uz+Pp69/1AeBKSUCxW27Lp+S6bsj1QIdJ2KP+ctju9sfuU85koW6+Njy+czAn16udhPGEomGbEd/EQrb6emaeKP/uiP4ud+7ueiUqXzShXIn0LLQHkJfGd5ZFamd/M8/zNPz1+/CQpKYGwZn6ynT/wZaCrxnwHSrI4lpSVTXrgokocMRHIhJDjJlBAHAt5mLJfuaJGHm1B++i1LmMAfFz+CAgIrlxcXSFp7VU/FyFN2ssLu7+/H22+/3QunIGjw4wNFsgbzlI+sHb39pPDoJJrhcBjj8TgGg0EvHEE8EtB5m/LEEcrB5ZyFbKgcKm0EhW3bdhZoKRMM1VA/obzUljzyzxVS8cVvpWNaehHYr2hl5XMCb3qOYJGnvjBeW7Jiv3ZPhfJmHLPPK1SGfKyo/zmgc8WSdaRC5v1HfUY8DQaDLn8p1FQ0JIPd3d349re/Hdvb23H9+vVYW1uLq1evnjhekyCdFnOf4zKih4D7SJQH8+W49vYkaPU5h31Gz7JNJCP1BbUP2989AOTBFQM95y+4Yh18nvA5XunYP1wxdln7XMfxoLZgOYeHh3H79u20XSpVOi9UT62pVKlSpUqVKlWqVOlDSNUi/y5pmTX9NEu733dLeEa0kiyzWrvL060mnietG26Bz6yKpetu2ee1kmXJrZERccICWyqbFnMPMXE3MHliOXI/a+PrZDLpWeeUzkMGaCn2urdt2zt1hZYvyVoWRaX3jbER0YtFZqhNKeyF4R1+EoU2uooePHgQX/rSlyLi6G2rP/uzP9vx4mW4d4Bx29xjwHhjyomeE51tPhgMuvh4nSMv+aithsNhTCaTODw8jPF43LM6u6VP1kfv595GWd9h/VQv9QdaCdmHPC4585bwORFPUuFvtzqyLyk/9gP3RPC+l73M+0crfxZb7nx43eg5EA8MNaMHhbxkngp5QjR+PI36tbwlbDfyznkvImJzczNu3LgRr776avz2b/92vPTSS7G9vR2LxSLW19dP7I9Rn3R+fa7yfhVxZI3/+te/Hi+++GKPF54sI2I7ZiE5sja75ZzEd0Cwr3lIjfdTt9xnlnyl47sHMqu8y4LX3ELv4zMbI74WZn2P/1dXV2Nvby8qVTrPVIH8I9AyAL7s2mnPO3AtAfUMIJ/Gqy8+fv00JSLjOauDx+TqngOnZflEnHxFuwP9DJhkCoGX4QsAY3d5TcSQl2zzop7zY924aLtSQiDMa5mSI6DCTbq65qCF8uXGTCoHriiIxuNxL3aVgEZl+MKtciUjAt5MWYs4Ajnf/OY3YzKZxAsvvBDr6+tdeNN0Oo3xeNwL6+GJNQJ2rDeBLcdDNlYyAE/+dM/DCnx8EixHRKewiSe1v2QjZYztwnYln+pn0+k02vbojbcqW3l727LNeESl+KEM1a7sJ8PhsFe+j5GI4zfqsm2Vtytyrvg4GPWYfcnT9xAwDp97Ag4ODmI4HHZpCT5L+yZUxgsvvBAvvPBCp0xGHAFhHUvL9tZz9+/fj+Fw2L3EjLIScW5YX1+Pn/iJn+jq7iA1A6U8KpTPOYBnP/X9MVTU1TaUfTY3kn/Wm3MSwTs3B/OaGxb0vNdb44dKmK97nGe4mVsfKm/M8/Lly2ndKlU6L1SB/PtADo45IZ4G8rMFNQMj2aLLydjL8vwdEDuPPslmdSoB7kxhUB60IGbPZGBcn2xyLykWWUy+Fn4tfFkMtW++IvGEBgdTusZNgFpMaXElqKJ8yC8XQ6aT5Z7xot6/RLRQsw1XV1djPB7Hc889F6+88kqMRqMujY6UJI8eoy05ECgQvNLqRvA4Ho/jxo0b8fDhw9jZ2emdCa7yPV56Mpl0QN43w1J2jE0vAVIHlbqnjzwGAhsEnuoPBJUE7bTos+15jXkK/IoHP3GEINSt5sqTPDkQ4h4DkTbDEqB7/Sgvxv67kqO+yDnA+/nh4WE8fPgwtra2un7lp6mIh/l83m2CjoiegiFedJ19jQBPciG4dEWICrH6OOWnthFvly5dCifvW743xeXoSiA3RUv23FDvz6p+PJLSlVe2H+fX0lhgXeThiOhbzLN4/mye4fVsLfB0omzuVV3YfqwDvZwsp6SkVKp0XqgC+feZSpNMBrb5jF8vLRI+2XmeJbDr90oKRikdrWvLeFXaUj1cKSgpDuQjW5AoD9bR+dNipUWBi5SAmiyjepZgjBtkacFyMOfhKeTdwx6UJy2bTONhI251o+XXX15FxURlTyaTeOWVVyIi4mtf+1p85jOf6UJd3LJJa2nb9jdTEhT6GeoePrKyshLD4TCuXLkSo9Gok/XKykpnjafsFOKi/2xTgjjxqrbxsAv2AXpKqCjx+EiGNPG4UllyCUjV3ll4gIM8paUCQGu2A1Iq2uzz2Zijcqe81D9u374dDx48iCtXrsSFCxc6izbzpZIpftifHKzqm/MCjwdln793715cvHjxhKeH44B9oRS2ISWLXi2BW1rlPYzM56LpdBp7e3uxtrYWW1tbvXHB8gRyXamgDPjfw5oyICw56RmeMKRn2S8ly8zbwDQZ+ZxMbwm9Su4NEZV+e/5Z+fQ8uYFCdBood08ky6VCGhFdKFOlSueVKpD/AWgZ+C2lzUD6srQZIFkGoDNQ4eU6aC6B/RLgZr6ZQkKAwLSevgRQMrCQAWGvIy1wXEC4kFD54SLhJ80obIJH8/kzBGXOt77dSs10bhGlFdTLEqBapigoT+WjRZpWN1cKyAf5EZD100qUPiJ6oJFAzdtWAGKxWHSn1jRN39IecaxkUb6y3NMCzbZmWgJ/fzOlrMIErbrHc+vp7VC5OvLQ5UfeS1SybM7n8xNneM/n87h7925sbm7G9vb2UpDkCq1+c7/CwcFBXL9+PZ588snu5BmmldwIFjlu3UpMgMb+xzEpkDgcDnuhT1mYiP4r/wwwih8pWPS+kEfJxN8DwDzVngrZoVLnc2DTNJ1y67JymTMkTOmoWNE7wtNhOKdwXnSFWMojT/6hbPgcwbPkQHl4XajAefnZ+uJj29tC5TMfeYiUp+aMkgeAPPIZPss9QfUM+UrnneqpNZUqVapUqVKlSpUqfQjpA2uRb5rmYxHxby1J8h+0bfsA6Z+JiL8eEX8uIi5ExB9FxH/etu3/8IPy8iiW97PmU7LMu4WqZH13a3lmBc3ueZgLy6B1l1ZilklLjlvsaKnj78zaQktaSQbu9nZ3PmVIqzT51//MzSurEK2xEf0No7LM09Ik8s2RrAtDWmiZ9PARWb5lmePGQsqWscGKK+ZpFLL+eRvxlBmFIGxtbcXzzz8f3/72t+Pzn/98bG5udvdYJmPmKU+SWzUZRkT5KO3a2tqJkAWPwV1ZOXq9vdpoPp/HaDTqhRBR/m61VBiPtzv7hspjf/N4acqV3gm1m1uHVRfJXfmQvC9T5hsbGzEajU6MSX5n4yULaZpMJrG3txfb29vdyUzMR5R54+iN8BALegOcJ/KhNuCbk+VdoVVfcvD5hLyojPl83nlHmJdvOCd53dbW1mJzc/NE2/s8p2tuVc+8CfSCMB+ObebnsuPY0linjDMvAPsswwUpU+eH5Xt5vuE2W09E8hxdvny5t1fC33CsD/Pl3Mb+RTnxGQ+FpIdB1/WCr0qVzit9YIF8RHw+Iv71Jfd/NSIeREQ0TfPRiPhSRDwVEf9HRHw3Ir4YEb/RNM0zbdv+6vvMa0Qsjxs8C7mrlN+lfF0hcFCepWHogPPPMjLwli1KdBF7fhF9964v/r4wZouQAxt3uWb5+D19Cxjq2EPmzXy4AZF8cfHRQrdM8SG/BNoEgQ6CtRjP5/PeUXKuhPmGUW4+FZBmSIVoMBjElStX4vbt2/HRj3605+ZnnXgii2TEozKp3LBMgguF+IxGow6g8wQMLvpsYz9RSN8CmAxLkRwcfLh8WS7lnYErfbM9SuObANbDlig/tiPjwiVH8aWyCVCVj8cLZ8ptRHQvT/KxpXzUt7J6UTYMu5LsSVQSCbQI4NWevO+KfxZ6w77o8lWfY9vSWMFvyV//FS7Hjd4+pyiESn3Z95pQoeNYEY/iyUN89Ox8Pu/6LQGw0mQGFLajh9FwDvE+6oqCrxe+v8FlzXZQ+mvXrp2QF5UyKbqTyaQLZWJ/JUDP1g7dY35UpsTXfD6PP/7jP44f+ZEfOfF8pUrnhT7IQP75d76vtW1755S0fyMino6Iv9K27X8TEdE0zVZE/D8R8R83TfN32rb90/eP1T45+H2vnssAj8gn6Iy0mBF4Ml/P08tzYEqe/RpjeVl+ybLLOvgC7oCaSkrGi//Wf1oCI06eNhJxvGnSF04uni4PLdi0mlPeqkO2uLOetMQpjR81p7wI8AWWCRIJwheLRc+aLWvp7u5u3LlzJ65du9ZZgtv2OB7Z5e6yJChWfV32HiMsKy3PG9ezDkodiPlGTCps4kfp/M295M1PPnFw4KfnEECwzbPz/8mrg7EsBphvzpSXhW/hFGUKmfJbVg8Cdgd7BOoCuGrTvb29uHXrVmxubsalS5d6b0JlvxWP7G/cy8F+QJ69n4tczgRx+q3z0xnzX/JUqC28HIFneYYkNx8n4ll5Zf2IxPZ0LxyuEVl2AAAgAElEQVS9VQT8VFCzeZj9keQAX2VQAfQxFtF/nwHrqXx83PEe+zXvuZFBipK8en6Kknu/2H+zNYDjknUaDAbx/PPPR6VK55k+yDHyPxIRD04D8U3TXIyIfzEi/kggPiKibduHEfFfRMQgIv7y+8noWYkLwWlpSukywO4LDL/1u2R583z4zLK8PD3/69uPrIvIQwNIBI/ko8RrZoFy8jK1sDOshvzRbcu8aX3ify1EDGFgfXzhy9zwXNCV1q1cSufn21Mp4AKoulCBEVDRa80d7KrNCNJpiVR9CCpVppQJBwHa1Crwrk3EetZDl1SXwWDQbZqU8qK0BM6j0aiz+BNg+zgST+LT83KgobaQJZ+bJNVXaI2kHPQ8Lad+QggBn+7v7++fOI4w4hi0st4qxxVCKoaZ4syyszZbWTkKv7px40Z89KMf7c78Z3+gnEhSRFz503jzsItswzCVDvGofqAxpvZT3vomQFVfUjuo302n004ZiDg+EYfjzJV1n4c4b7CvZWmVD+vDuvKkJc5Dmp8mk0nM5/Oe9Z+Kk3vMfD1QvdTf2S7sfzqZifxzbPqm/dL64Ioe5xVPpzown0xRoKyYJiLiu9/9blSqdJ7pgw7kz2JF/0IcgfX/Pbn3D975/rn3iqlKlSpVqlSpUqVKlT4I9EEPrfnDpmleiohfjIjtiPhWRPzdtm3fQrrPvfP9h0ke34yIRUR84v1k9DRyi9hp17N7mUV62fO0iNByQusrLYt0ddIywmuZ65cWSefLrTaZ1dzrQYtYVpbHv7rLviQLbmyVlUkWqCwUwC1abnWj2508SB4eP7usDyg/egNocaR8ae2SF8CvtW3bs4rK4ii5DYfD+PjHPx537tyJq1ev9t6W6Xy4rFU/1dst68xDPMkSqo+s23pOllbJQxZptc36+nqXf0Tf0xNx7GHxEA3l625/1pVelizUKrMKMkTB5c92YygC5ZN5UcT7sk177FP8Twsmx7z6ANuEXh73MDFmW/XwceteI/VBpuV5/pS/X6OniP0+6z+6p6MGfX+IKLMSq03ZF+fzeWxubvZCNJSObUmZ0vPmngha/nnNeaFHLeOTewpEDJtTn+NcqHw4VtkvfO7KrPL65m/l4f2EoWaaR99+++1YXV3tNldzrSjtG9G9bK3TgQP+LNPr++233z6Rf6VK54k+kEC+OZpNPh4R1yLin7fb/2nTNH+pbdu/985/vZ/5tufTtm3bNM29iHjitDJv3rxZfLHEl7/85bOy7uWfKU0GcJcRF5XTns0WYgJsdwcznZfpAJ2Lgy8onOjF7zLeHLRn1wguspABrwe/tYDLTT2bzbqNrxmI94VR5Ss/D6vggsNTbxxsOREU+jVfWMUDy3NFKVOoVlZWeqCOigxBFt3zpbAFliNQQX4oS/YTyUEhMGxngYCdnZ2unPl83p05L/kMBoMuL+5jUKiPlAp32RMoulw9lEEASiFI3i4lpdgVTLYV+4pIIJbAmP05U1DZjwgSBYwVR69wDIF5bep0BdSVCi+LgNHTUr6Mm/b+onTqczxZyEllsU+Kb2/Hg4ODXn+gMqG4bBJ5GQ6Hsbm52bvGfipePNTDeWYfUB4eC+5yUN/2fQ0eTpLNoy4TN754n3ZeeI9lZ2sI5ce25ZysZ9fW1mJnZyfa9viNvyLx6SE7i8XRXof5fB4R0XtRmVO2NlH5Vh6VKn0QqYQrb968+Z6V8YEE8nF0+swoIu5FxC/HUdjMdkT8ShwdMfl3mqb5qbZt/2EcHTUZETEt5LWLND9U4sIvyixGnFRLz/v9s4B/Bx5u0XOe3KJXKjsiP6rPF5eIk0eu+aTs9c+eVRoHiRnvWd4CObLA89vBmsrlIkhQk93zZ3lcYaYkMAaa9aKcaa3ls1kf8L6gNi4pcbPZLO7evRsPHz7sWQfFD5UEb+eI/oY+1Vnp2c6MiRbYdsDRNE1cvny5+y0r/2AwiK2trc6DIEWkbY9P/JFVn1ZMegXEi9ILaLgVUPzQeqwXStH6z3b3/kzrrRQNyUZ140lFBFu+38AVDycqs+TZZU3FRvVgvtxcLXnSSk5LOMmVAf4mIHUPivcpWt+ZjooyFZbFYhF7e3s9L5iOGeVmYCqV7HOSi8AnFUrOI+5lyyzKekb5lhRq5eHKvq5nQNpPVqL8XYHMynPwTB79mWztoSwkT+/3nLOapjlxnKz3LRphuDeJSiT55JjgfJatB3fv3k3bp1Kl80IfVCD/ICL+uYj4ent82szDiPib70wM/1lE/NtxtMlV6vh6Ia9hROydVuCnPvWp+MpXvhIR+SkdEWcPZzkLnTaJ6nc20Z/GT3Ytm/x5L+NnmbJQUj58saC1KQP0y5SYrL7LZOCKS8QR6JzNZjGdTrtNbvr2o89cyXGArcWYC6wvsgSJBOzk3U9ycfm75VLXWE+GHzivzN8BoYCUNvvJsk2wp/zIkwA2QY63qfctKj7yfuzv78f6+nrvRAsdBeobRMfjcU8BKIEW51Mk+Qk4crOfZMP8qLAJdNFKzzL5rLdtRHSKh1vO3XpNoENrtojXlR/BbhZ+JaX1jTfeiOl0Gk8//XSMx+OeNZd8ZKeYEACy77lVnjIj72xHAlgCU1dqaRAgsa6DwaB7UzGt2qwT5wGCaA8JyvoPefC5y+9JPrQ2sz9k9RAfUhR1nXzJo8c5xxU25knSczoBSWOHwJrzA0NnCKwpW9XRZatvtjVlmPXnTIliXr4eeD8if8p7f38/KlX6oJJwpdOLL74YX/3qV9+TMn5oQL5pmuci4h+dMfmltm3/18K9/yWOgLxi49945/tiUuZKRFyKiG+fmdGEHgWgv9t8S/k7aHHL0Vn51ILgCw2BgYgTeknhULoM/DOdP5/di8jPyM7AvV93ZYfyYgiJ3Ljz+bwDOlqcvdws1IHWRS76zisBgAM9KgHLjpSTRTdz5YtoNVWZJess+dP93d3diIjuJBaP+9VvAqAsLpiyIb+sN/NysN62bdcWilNmeVzACUSUn4CB9wlZ8mmVJjCV/Fw5iojujG8CcQJ6ghvv3z5eXVayehNQeRuzfg6CCMoI1mQRlTKmcAMpQw4qqUCoLPcMiG8fm+xjPNqS96hscI6TzHnUJQFyyfqtPJum6cIwfI+CW/fZH8nfdDqN9fX1HlgWf2wHpeec4PLJ7mVppLDylCDln7WNrwvsa1kYnmSpdle91P8Hg0Enc9ZZY0910LyTrQdM50YMypi88drq6movlJEeIJ+/NWfRM5PJpWma2Ns71U5XqdJjTT9Mi/zDiPiNM6adLbmnt7nKT/3yO98/lqR9Jo5OtPnGGcutVKlSpUqVKlWqVOlDQT80IN+27ZsR8RfPkrZpmv+paZpfjoifaNv2D+z2F975/to7378dRyfTfDEi/l1L+4vvfP9fj87xu6PMgk3L92nPnbUML4uWMJYpymKu3Z2pdH4tcxHzt8eIupXKrea0Lrk10+vj5WbWcK9T9qHsaGmlRZLyoTuZvGRvxHT3NGXGuOjMNS7KTldxGZBXf869CLRW0o0uK90nPvGJ2Nvb605J8VAh8U2rsVvzxKNbVlUeXwYj2tvbi/F43LOiyzW+vr7ehaQoTl7lSMYKzYmIXh5uCWc7LuvHbgGknGXhXiwWvRj9rEy3SCtPlZ9tTGQ4k/5r/8ba2lpXJunw8DDG43Fvs6famiEew+Ewrl+/HisrRxuds/Agnzfodchi3d0Km1lc2SYeRpRZXlkW5cYTbrgHQuNP3gN6BTj3cA5iXVdXV3tvdM2s8h5awjbzuZd1ycahvt3jRS+a153zINvVvRaqL8eoe6dYXlYn7Rlxj1IpNp9pfX+Nt52HZGWhi6UwMvHsoWW+ltCTV6nSeaUP6jny/+c73/9h0zTdKG2aZjuO3uIaEfFfR0S0bft6RPxvEfGPNU3zLyDtkxHx70fEmxHxP/8wmCb5ZOpuwbOAdk+TuX6Zfwmk636WP0GSu8U9bQk0MRaSrlCfdDNlw4EUy3EAzu8SYFfZPGaOITXT6bS3+VF5EjTqHsECAaHyJnggCFS9uIjrHnknuPbFiekoS7qlBZqZVqAm23TMNr98+XI888wzMRqNOtDo/UBx8ZIFQYZkxUWb19r2OE6XYFYnB81ms05O4/E4tra2ekcKiifxpzroeDvWT/nw4/JlW2VKoitmfq9pmh5/bAPVTc96qJL3H337MX16Vm3hea2srJwIoSEYZNjOysrRi7L0IiVRNrZUDvsT684wFYWlaYxxfGkfyu7ubkyn0y40iCFC7KeSAfu9QLorCaorX3ikfkF+NB8JaOoeTzkqzXMcPwzpUlqOIe6FobKayY/GA8qBpwKpHbxtubGbxgVdU9swZMdlR2XFQ2NowGAfp9Lm48j7tJQM8q28mF4vhWM9OU4cxLNs9gn2Af2vVOk80wd1BPztiPhLEfFLEfHNpmn+fhzx+k9FxPWI+LW2bf8B0v8bEfFPRMRvvAPm70bEPxtHx07+Stu29x6l8Az0nuWZEjgn4PCFIwPc2e+zAn9/nhYNr5cDHKbhhMxrpZjOLIbRgemy67xH5YDpsph95uWKjBZYLbqz2awni6Y5jiXWospFiacsECDoNxeyiOMYeI/bJdh2q5PyZ8y45y+lgXHdymM4HHabRZWG1jQukgRNBwcHsb293R3DxwU+a0PmyfqQZ/YlLuKyMr/xxhvxO7/zO/GFL3whtre3OznrzaFUQmgVVVswRp1lKK6XvKhcHw88jUZEj4P3a68zAZN4lOWcfUiybJomjT+n7Dwm2T0+rrxKPjqZhvcHg0EX40/gKPkQQPkGRveouPIjWUwmkzg4OIgLFy70+FQ7rKys9JRl7jdgG7osXPnMvD3cszCfzzulR3LLTqAS+djk/Ux5kwzZDu6548lM7C8+R3obsxxPqz6h5zR+9N/HnyuwXqbzyHblb8mGfVj5LNsr4Mqz0vl87HKmt9IVOvcSsG96Pp/73OeiUqXzTB9IIN+27UHTNH8+Iv6ViPiX4+jYyUVEfD2OrOz/raX//5qm+cmI+NWI+HNxdFLN/xsRf61t2x84rIaT2jIQml3P6Cyg/7Rrfr+kABD8ZvmU3N38zxNWMn64KJAfWp9KC5mX6wA94uQRlsvqrI+s5nzpEwG3FmUt/logXFYE1Cy3tMFTaTJwrvwI4piHFiqXl/c/D5mK6L80hmA/U4gEUvb392N/fz+2t7d7dddvbY7zhZptw82OVF6UVlb51157Lb7xjW/Eiy++GJcuXepZ1Bgywf5EmdIiyTbSsYNUdpS3h7MozITglNZ9trX6ha45yBdv5I8gkmPCQTTzVH2yoyL1TVAs2dJC6X1zOBzGbDY70V70EHhYD9ufcss2Vm5ubvbGCzcxUxF3Jcj7r67z5WWe3pVj9QFZd92a62E2rgBobKp+PHPewaiuUR5+gpLn7SCZfcG9b9z8TvlyTua7AdiO9H5yfuBJNVTimL/IjQpUENiGnKt8PIlXD5FRGsrG5a+x5/MUefO1KVuH6qk1lc47fSCBfERE27bziPi1dz5nSf/tiPgL7zNPS0F4ljZLnwFuXs9AtwPM7NllvPliz/I87MIXotKzns//z97bxdiWXfdeY1Xtr6o6db7qdPfxcbrdcidyTGLLjoPypeuLE2PCw73yC4hERChRJIQACQkeroSQAF3BA+IFEDyg+3SVq/AlgWQBshBRJ3GEUBwsXYduf8Z0/NXH7tPns2p/1N6Lhzr/Vb/132PuqtN93O7umkPa2nuvNdecY4455pz/MeaYc2XPlQwc9+74ZMDnMzDq5XHQ55I+T65RqE3EKUCnV0j5MFSIMuGkJUA1m816XkHx5LGqvmLhE6TypVw06alePrm5vNzgYtsRsCyXy/jjP/7jiDh5k+izzz7bA8D6PZlMemCBQIQgxEE+6ygA/sILL8Rzzz0X9+/f70JmCP74zbaXnCVrB6MENww7cH4IvFzvebIH29y9jzQk2GY07CJizRtOUJsZqeKfxg3rLTDpKwx8nnqmEDKBJb2EizzoWfY7GoAE9WwLEQ0bXc/AmPMmA0LfDmZJNHQywOs8shx6/jUOCJDTkOHLmVhv6iH7Bt+h4OM0ZZkZNEyn+mUrnPSMs3waJtJFGjj8dsCbHd1IPpk373n9lJ/aMltlYbkcG8QXj2blSpc7ncSvr9bQEGuaJu7de6IF90qV3nf0bo2Rr1SpUqVKlSpVqlSp0gZ613rk302UeZ/PInoimM9bIV/qPSsNr7lnT3xs8uzTi56tKmTLzywzq6t7nrM83SNIL13JYx+xHj4kLw498vTisBx5erT5kvedf68nl/q5aYueo8xD5l5rksf00guenfGsNubJNCpPISf09C+XyxiNRvE7v/M78d3vfjeeeeaZLi1DY7hCEBE9j3BErC3306OXefLkcRuNRjEYDLpY9a2trZhMJhFxumlRz7APyfPKPOXdU3vzra3ZUrx7ByVvrRrIc8k21DPKmysbXJkhcSNv1qa+oiIPq7elZKoytcrDsB/mqTaWLvobeCk3yoZtJnmQP5VJ77d02zdful6zj7F/eLgHQ55E7LO6pz69XC67lQZ6qUX0oisER3lJpqwn+4d7433DtvOZebGz8dJXPmazWS8cSaQXQvlqkvKSfkgnGV7FMrI5IdujwHp4vShHla/nXOZMk62ucaVBcuWY4XXw8U+6xFj5bF6oVOmiUQXy56ASeCZlA/eT5J2BfE5iWd4c5DMQr++SQcGJwoEXB0gH98zf+WC+zk8JHGfPZwbEJqODoJN5uPxo2ESsv/2T9WMds3hNhiroVAwCLY9B1TMZQPGymL8vYXMydNk4uGa5DCeaTqfxox/9KG7dutXlRTDvRDCXtWXE6YZhvuyHk66OQRQI8dAO8prJwnWF8mVbqGyPzSaAVN4OZAjqlUYhWZIdQbfCM8QTjQ2GjjAWX3HPypMyJv+SE+uqNnRQTNBDXeFJO9R9Ps8xgvLwzafiie3hcfaUO3nL2pd7VJhGhovqQsNJG9Z1BKfrEEEfy2KoCtufeevkKm0WzuSQhUll18gDeZM8XFfIG4G5y97HYeq6g16GjmUbxpmn9w/pCfmloU8+pJsO8ulc8LSuCxyfWD8f55S/O00qVbrIVIH8U6DSYFICPKXrm/JyAF0yFhwcO/DKwDFjKzOg5saA552V7cCXA3MGWv23yCcJyiAjTp6cfP2YRoIiXwEg+JLXyE90IBjJ2iarj7eHylR6AkXfTMu8GU/qHmSCedWNp4movNu3b8err74aN27ciFu3bkXTND2PO4nlcIJ2r6/q6yBRaUejUcxmszXQR0+ub/Ckt5VAgp5CGmAEgfTyCuhIxsrHAZXSCGRvbZ0e+ch2lBzcG0xALRJAFI8CiQ4CHaBQR8QbdUaGF0n15FtyyY+DbpXpscpupCgv/qZesj0coDKd6wV1zscOAl6uAMjD7ht+9QxXZlg2818sFjEajXoGlnhjDL8bOZkc2R99hY18ERTzXjbGiZwHppFB6GCZZeu5klFbmkfcsUEZuIPA9cHnBuaTtUfE+v4e6hXJ+VBfrVTpIlMF8mdQBlidNgHz8+TPb79WAuvZQJkBGwfw/hxBGK9v8lxqYvAJiSEBzn/mTfLrDoRZD5ZBvgguCHL81Jq2bXunf0T0PV/klZOSwIM87tlk5kaAiIDGj1PzyZ+eJ3rH3euuvNg+Aqcsl158B4QR0XutuYejUL4OcjcB6cy7LDktFou4f/9+3L17NyaTSezv73dyUNn0iKoe3IhY4rfEBwG8luQJ0Lk8r/RsK/fMy2tLY4k8sN4Eg+JdBpXS86QhAi7KWXmx3u4p13Ou1wxbcI+sG13kk15slkGDi23Stm1nQNEooIx9TKDhRcrGUspULwMTkKcXWnJwA50AXnkLxGfjHr3G5DeTC/n2scjHLuoJyU+aYb/heEJiiJNkzby5IuarkFm+Wd/P9In1z/o76+typayV/3Q67Vbq1K/Ik89n2fxWQ2sqXXSqQN7oLNBeIgcDWb6lchxgc2LaxCfLze6V0pwX9HvdItbfEJuBck4APoEwPy+vVK4vxZZWDhh3qRdAEcjTq05ZUP4OegmkNGk4SHCwIuLLXBhCwDrw5AmfnMib/jvQUL0d4LEO7pHd2tqKW7duxdHRURwcHKy9UIUGDXnypXnWl55fAl3JSzK4evVq92ZXAXWmc/l4+3s/Yf1Z10zvZCDRIGIeBGOSuRsy3m8pMxoK0gkBc4FdpVXZ7gmnHFwv3OtJnqij8qK7IaJ2btu21+b6z2dUT7aJA6rMCPB2oOHn3ursaEvlp/vKz0+mIbhkOBRPROFvlb1YLOKHP/xh7O/vx9WrVztjSjyoDXxMckPYwX02XmdGv9/XPRriZxFP81HZJB9XuXoYcfqytYzv0njusmjbkxj/7373u3H16tXY39/v6ZfqTllyLFHanZ2dnoHk4433Y+e1bdtuj02lSheV6qk1lSpVqlSpUqVKlSq9B6l65M+gt+KdP4s2eX/17V5y58m9+cy35KV374Z7td1r5vnxf+YtF7nX3ENznAfnkddLS+Pu6aIHhxtPve4Z3yXPOr1z9DAxT4Uc0Cvu8fj0tjGMpmmaXkw3PWhsG3r9WL7XgbHfusZ2UN2Hw2E8++yzcXx8HNevX19rW/c602NLjznLpkypQwxf2Nvb6zYSyhvPEBSV557bzAvvnl560dmm9F6yTmoTrnC4h5jhC/RQM2TJZUX5eew866Z8uELgKxRc/XE5UDb0+otv1VFhRdJT6g7LpWzZx3ylxEMkSAzjUR4qk15XyYb6revckyLdUH9eLpcxnU6jbdsYjUZdfyO/bDv+piwPDg7W5C1eKCO2l3vpM/3kd9aPxY/rEmWele365auFmX7wmfl83gu1ybzupXkjW2UQb+PxOF566aWIyF8a6HLhWJDVm20m/ZeuUj/I63K5jFdeeWWN70qVLhJVIP+UqLR8uol8YihNkEx71r1swvGBm5MNB0UPS/BJKJvEMtCVgRu/54ZMVj+fHHnNgbqAmE4YOT4+jvl8HrPZrDvpQvIphWo4QPV6ZeE2Hq/tExRDJlQGgSfrx5hm5sV25STom0T99A+GDdDQEb3++usxmUzi4OCgpwcCNwLdHp8ufgSiPDZYp2Qojd7uev/+/YiImEwm3XM60pHAmu2cAU4956DR5c/nCPAjTowZ7zc8ypIbLF0vySOBE4Eg86E+UG/Fl+95EO8CqyrH90GoHO+DyoMgdDwed/fYh2nseAgM25Yg3o0TysSfUxl6jvrN/qZ2HA6HPYOKfS3iJBRDcuYpSzS8CARZN/WH0WjUa0Png88RhLJtHKjrWR4NyXYXcRzIxhrqkxvyIo4fHjaXGTUCwBzfvV2yOcjDhrLxPws3cv3yvuzzkesU25N9g+nYXr/4i7+4JsdKlS4SVSBfoGzQKt3LAKhTCYwyvQ+A9KaexVcGbgmSM6DsMdBelxLIzsA1Y7g9jedJfn3C8jo4WODbLd3IWK1OYuPn83kHHukpYjwyyb247oXkPeXjxoDyURqenKGJUp5FAQUaFx7H6jIVP36aDcumt1f1dJBLL/BkMolr1651GwcZW618fAWCp6FQbq4/4pmrBEdHRzGbzeLg4KADzQLl9ES7gekTvYN4lenGgPLy8+VdpxhPTf1wry5BRbaxW9/0xJMcXEtP9CzzZN3Eh78tmGWxr+qMfgE4ejQJVLlyRp3xTcC6RvDk/BIQczxjuZSTfvvYx9OF1Hb0KOt56TDfqsyxhStIjAenccXnmF73+ZzrpOrNo1Ylm8yJQT0SsT1LYNf1lJ5pN6RZHvu69x3Kj7yKf58nnJifbxjO6u1jNcuj7kgO1CW1gfRPdeAqaMn5UqnSRaEK5DfQJjB/3ucj+hsPHaTymj+bXc8AOcspLbU6HwQ0nsa9TpxcSoMyQXAJgGU8+QS5iegF9uvyxGvA1yZXnjbDyZC/WSd6nL2O/FCOzCvi1GOchUUoX02C9JLpv/L3MBxOujwBhRMay/Rv/Z7NZhERsb+/36uPe651Tzy6/qgtdMqM6uiGkup28+bNmE6nHYggIJTcqMsuX3qFI06BO+vnISsEQirLQa4DOtd3tadIz/Nkoe3t7e44wGwjop5Rua7zDj4zo9aBJHXUjcimaWJ3d7eTPcGS7rNObGPqnedNfuk91zM0BCh3yi7iFDDSmBMwdy+vjCx5uZU/T7yhYUI98DGYPNN4U53cy+5t6OPfeDzuGWI0QhyQsw1Yv8zo81AVykyrWMo3M1A5tnj/cI8+68g2coPE8/K+qvz5jN9nnbMxx3mJ6IdjMZ105a//+q/X5Fep0kWiCuTPIB/gSoD0neYnAwolbxcH+2yCy/LXPTdAeM+NjfOkKQ3W5FOkAZwDvfOj0AR+GF7jMesCDVm7+vKzPh47Lzm6wcIj5JSGExVJvLonTAArA/AOkBS24rJhGZQrP8PhMPb397uwFvErIOp5udHJb4Jklx/lRT7v378fBwcH3fX5fN69qZMgVYBfeTOGWrKnQZAZLzSqCMZoCHk/INhRGexj9ETy6EX2LQKgLDyCnu/SCkcGgvjbPfzs95Q5jUQa6ZtCk+ilpyw9LVevHMzTsKKsyWO2guEgT/dlmEvvGTIkXqkj3vZZmW5Ysb4OMqk/DlQ5JjjodHk5+XP0OPvYnp0SVHKG0IHg1/Tx/pCNwZlhUTJYWI7PT55euuHzgY9/1C8anep/lSpdZKqn1lSqVKlSpUqVKlWq9B6k6pF/m1TyQvN35n0u0SZPd8n77vzQe6H0zJ/eP68DvczuhcrK9ryfhN9sSVjeI/falfKiR15hDvRo06tKntzj7B4ppmcYQJZHlmfmKaOXl6dyyOvvqyYR0YVsuFeX8fcqmyE9LitfQdra2orZbLa2WVfPMSbZ20f5StYeTiI+dM9fprW1tdXzxt++fTvu3z7jMmcAACAASURBVL8fH/7wh2M0GvXqyPpLL7jyobL0zgDqP88XZ1t66AY9qbpGzzq91i5PX8nhCSnUGdVFbUvPtih7U6v3YfYx6quf4U258HQW6gr7GfPVf6bT9dFotMa7e3Z5TfLLwph8XFGZ4lftFRFre17G43Ev1t1lwdANlqU9NHwjqjy67HP6z37A1SYfh/y+6sSVCV/V8fHSddVDYPibdeL446tXSsNVBo4j2eoAdYRy5DNsS84VPpboGmWmdpZsFCbo+sM6q58pP67C/dIv/VJah0qVLgpVIP8WKAOz2dLiJjoLiPO/T94OrCJO46RLIDrjMVty5bfHiZO/DPiwjFIITyk/1suXozVxlU730CCvuPiI/mkyBMcEOsqTYD8DweTHeXDZuZxZP5bF+zQIOIEKYHBTG+Ws33xjbRYXq4lvNpt1wPiNN96IL33pS/HpT386Ll++3AFNtZ0mVzfmGLqiZzzmWICLGzapn+JPp9fcunUrbt26tSZHGQhueOq+yhbwU7wyQaSMO29jhj9loJr3lHaxWKzta/B4ej3rfUfhNzoJKCJ6G7cpI8rbN096uJTK+ta3vhX37t2LF154oXvREdtU7UoQ5KA7M/Y8tMFBnY9PlJ0/m/Un/+/hGtJv9TkaEpKNb16lnvpmTL3RVTwxpM31lfUoGXIMvXF5UlY+ZziYpuHH8cp5yICyADtDhmREe9k0On2MY6iR9hJQLmxn1yvmlYH8km65cUKdoB7QqHAj8U//9E/j85//fFSqdFGpAvmfIPmg7+Cf6RzgZgCcA6kGN0/PCcafLYFw55WUxU2Sb5bFPLMNTFkd9e3y8fK9DhHrIC0iuvh4DvaZXFz+2eTJja8EgH4aDcvQ5L1YLFLvKgGgxxarvjQwMi9uBioI4AlM5ZFVXgKDr732Wty9eze++MUvxu///u+vnWKStSu97gLa8oJHRAdSKUu2ozaDykihfP3kDwfG1APKTjzQAMtiq50XGiTeT1RH1ZcrAW4UZkad7lNnVEflodhgGqLKU0djsl7UaV+ZGQ6H8XM/93O9MYOGFE8Eyvo+/3sfVH5aBfHVCQLvTeMRyyPQc/IxL/Oq85Qj6a23HeXAfu3AO9MtXWddCShZF9dV3ctAvANTr6vL0cfeEjj2s+/Zl2kgEDxnqws+BlG2dDZw5UjPOz+ZgUPZ0vnAZ/10oqwcl4vehVGp0kWlCuQLVJrUeH8TbUrLe/7bwW3E+tIl+StNlix7k9fd02bpNtXVJ4ES4Nc3J1Xmv8nokQy8Tm3bdiEVBEICTg5eWD4niGwSIxDLNrv6EXwkbcRj/g4mWAe1tTaeajJWvefzea99VUcHF26QbG1t9TaSKf1wOIyf/dmfjTt37sTly5cjIgfPnGAFPOmpJ1iRB5DGhAPd4XAY0+k0IiIePXoUV65c6XkRlZ/LmXV2w4dtobJns1lqqKme8/m8V0fmw/Z0IExg73k7QCYQzE7x8f4skK82pz54O9JI0XXmx1Uj6h8NVK6kEBy5N1UrCTRSWZ6HO3BVgcCSzziIpBz4m3JlHsPhsCdT6rwMG+VB4yvixLCVLkvenoevxPj4Qc+16iMeKVN+u/GivsQ0qqNWoti3uHqQjbGUG1cjmD/LKBmhPhbzOVJm5Ph99hVf+ZJe+eqKjzvq61xh4BjUtm3cvHkzlUelSheF6mbXSpUqVapUqVKlSpXeg1Q98uekTR76kofkPPmVPPe+pMgynZeMt5LHW9cyb1i2xJqtGPiSrJdLr7PnxzTMz8NQvA4Mh6DXXb+54ZVedtaT6VkfX+YueRW5KYvplMdisejllcnU66L6cyMf26RUnl7gRH2h9zeLa6VHdDgcxsHBQdy8ebM79pFL+iyLbeFx+vQoe4gLyfnf39/vxSrL6+j64jL21QzqjUJ3XCZKz9hheWX1PI8DdW9xRHTx8Z6f6uqhNNQ9hjSpXszD+xhXjOil5/nhWd+jd5OeYXp8I07jzLmi42moeyq/FG9P3VcIlW/mVvuoTr5Kxbq4LrNe8qg3TdMdPamVCZ7jrnx0X/n4Cob0Sn1Q93mkoeuEP0/d9X4nogeeYUq+ssE2cU+8jxlcMeDY5SF/3q5sv9IeFKWh593bx1e0WJ6ueaw9Zcp24eob86MuqI962+qN0ZUqXVSqQD6hbCA+D5UAKfM9T9lZvhlgLoWHZMujGSjj7wz4Opj1kIYS/5xwOPlldciuMy+Wx/SahBjGwXwYJsH7rAPDAggOmZYgzWVOcKn0PjlxOZlpvU7ZRMyJVt++oVc86J63meuG5DWfz2M6naZnMHt4APOj4eHtpok4Cw9qmibm83kcHx/Hzs5OD/ioLA8/INjM6pWFeiiWnDwpRISx1avVqjM8SkazrqntvI0oU4E/GjN63sOMCMJYBnnO4vgVO88NnBlQVxtQxxhHzbhz6mJmjGWAzcGs8tO3QlsoJ4J+5kMdoZ6rfjwVKSK6sBqBTOl/xClApgHFdsjCQ1i3wWCwlsYpG8O8D7N9eJ3hUYwFp7HH/KlzLM+dBZlhwjqzHdx4Ev8Z+OfvrFyWTZ12fjlGUafVZxT+xGeUr/otN7V7yNPDhw83tlmlSu93qkD+KRIH7U1UGrQc9HKwIqDYlH8JGG/iy585K102wfO5bLJ3b6rSO6hh/cgHATDL06ZSfeSxI4Ai+BR/HtvuExbBP0FYRP8FQ5qgVB7rqucYb0tvKY0ByoHGYMlQYJu64eQgk2Ur3f379+PBgwdrYIZy8HZR3QnYubFUqwSsI1dJ5EG9d+9eNE0TN27c6Omlgw73gLO9CFbYDuJdZdOQ8rhdpXEQIk892431pi6rPKVxY5fe4ZJRSBClMgmasvh19jFvM4+Rp0yYhnKRHAk2uQLl+Xne5IXPEDz6RkYHotRxjnc0ZgXmeJ+y8nGHvHL8kswJNJ0XPpuBWOqr12XTGM/rnibbT+GGIduSz2d1Fp9MTx3iOOaGY2l85PjMtuAKG9NRttSJ5XLZHSs6mUzWeKVOckyhPCIi3nzzzahU6SJTBfLvAvLBkdeyicnT+OSQbbjKQLCHMmQTIPPJys9AiXudHYQ7WM/AOwFAVl8u7wqw8bxyB+L0KPkRfiSCMQJ+gj8H0ASbvEYAHhE9LzDTUMZZOzGt0snjSr7Jh/LkpCqQenx8HJPJpJtMvU3dYBPvbM+I6HlKNQFrE1sGeAQgR6NR7O7u9sBLqY1Z7nw+75357SCOMnG5O8imgSXvrigLk3GdcF1wfXfwpXxdd2kgUdcVNuVGXsajAzq2K+UvY476632bPLhnvvSbgJayZzu6bFi+G6DsCyxLKwbT6TRGo1HX/iUgnvUpjokE85QV25gANxsb2c6Uu6fVf65ccEWNebj+ON++mkM94PGSboD5Jme1N2XI1avsvQbZShJl6HNJySjyVSE3TjLjTKtKrONZjq1KlS4CVSBfoLc6ODzpc5vSZxMHgWLpmfMMbj4hR/TjsZ2/zLDwCTIDxhkAdM9pFtqQecCUVsBMYSaazPyFQD4BaxJyA4GTti/1kw83ejjRuVeLk6gDGJVFYyPzJnpbE/i4V5jAQPLgqgMn+uVyGd/4xjfi61//ejzzzDNx69atNSAmgFYyJP2a4tMznZXn7ejoKO7duxej0ShGo9EaKHcDQnWQnIfD4ZrnkGDf9YYgkm2h89sz72fbtp0xonQe7sH01Cm2FfVO190gFLgioJvP57FYLLp9C2xzNxL9mD/99jwFmny1wA0ofVN+3HfgsqWR64a4y5XfjGXPxhc3Jtj3tra2YmdnJyKit0Li/YiGDvWZBr9Clag77pBQOQS/rk+M2+aKhu5zrOS4wD0ADDtyvXTZ+FhBGXn5bAPJi/sE+M3VDvfiK0+uamWGEscR6qaPlxr/yANj5J13tqOPMxXIV7roVE+tqVSpUqVKlSpVqlTpPUjVI/82yL3SvB6xHk9aWup1T2/Jw0CvFD1Q9B6VnvPl6ox39xa7h7ZUB/eqlbyS7slzD6V7cjx/52W1OjljXZsolXe25Kv6KGSBdWGMcLY64bJyPhm/Sy+U15118Hoz3EL1YDn0grEc5uMnTHB1QfWWZ/sTn/hERES88cYbMZvNep488aOPe8nkqZXuccmeYRaUz2g0ip2dnbU2GQwGcXR0FLPZLHZ2droXRkn+8uK5l55tRKKn2uUnnhnakOmVh0fQe8i29ZNG1Dd94yK99tQr6SrP59ebR8WT64yvFDHMyct69OhR7O7uroUNyeNKuWZylA65199XIChrX+2iXCir7FkReco2i2tvBmPn6aWm19rz3N4+fQMwwzPkqc/GII/Nzjzs2eqCj8scO12XMp3yVUwf11hnrkZwjvDymI4y8hVMla18OJYova/QZONkac7jmMFVBQ8VY77ZaklExI0bN6JSpYtMFcg/AfkA7sumJWD/VsvgtWyJ3QHWpvIdiPuyM/PLJvhsoKYMMj58EOf1jFdOyF6GBnKCOYbVLBaLLq0fUcY6sH685hstM+Mke57tIWCqFw55uawb8yBIdOPBJ3w3VkgMp3GAwzANAefj4+P4+Mc/3oFHnzC9rfx4R8YEq+66rufZZpKV4ptXq1UcHh7Gm2++GcvlsgPybH83WBxUCrgrPp4AlTHzkoUbbZmOsj20eVr1YvvQcHJjw8NiqO/cRKp73EfgbUqQ7G/VFPDRW3XJk/YhCHS5cch6k6h3rDf3GXhf9TCKTc4Fj+GmAemydKNVho/LR9/sL6oL+6GHyDCEhHVmf1C+m8ZeHx+yMB0H0TR4KHddE9hlO3mcOPOkkZbJ28c99tOsTWhgcZxUHUttSnKDwMcjN6jFH/uxrvM4U7b1/v5+VKp0kakC+YTOC8g9TTaI+URSSqtrJcCc8VYC1p4+m1AzD5LnwcG/FM+q/+4VK8mQaTKjyHnIwL4+GtQ1ec3n894kSCI48AmKRkG2EZYe6szLtMljRNmrbL6enJM/JzzlI7m69zgrS7zN5/Mzjxd89OhRfPWrX43d3d04ODjo4mMJkig7xfAK2PK0G9WDnlK2t3iWgSPwraMKBTQFUrny4Jv3dM0Bc0T00mdgkgA0q6ODP67yqE5aMcjeTBlxCtIdxOucdfHsMeyuK5Id6y4+3JOZGX563g2T0hjB62pnGQWM4fb+KF3I8qF++PjBb9cTj892A5ZGGevkqzAql/3XwSDlR+JYkBkY+q88SNRD8qe60BigrrBsletecsrQn8vy8N/ZGMi8aJjxv5dDveQ45nrINsnK4W9f8WBbZWXome9///tRqdJFpgrkz0nnAfabKJvkSh4rB7AOarNJx3+7Z4UeuMyL4/n44JoB7+x/tqzteWb/N0089Orq+/j4uNvsqmVxkh/zGNE/lzwzFDjp63n3tEb0J3Svk3veGG6i/23b9l7oRIDnMiBodh10A0Pf3DTWtm1Xjq4NBoPY2dmJ5557rgu9EHjzSVLPsa4OmLONlQxVmM/nsVwuYzqdxmKxiMlkEqPRqJMnwTzrKH6oBzTgeMIIj77zfkUDgHol8hUcf5YnAgnAuIefwJBnuEte5Ev8Nk2zJvPFYhHz+Tz29vZ6/YsAXqsfek7l0UgQz9Sd7e3t7nhQ6n8WhsFr2QbKzGDPQCfHOr/mAJyArRQawg3ux8fHMR6PYzwe9zZh0oPufT8Lp/J2pSypI66fDsId4GcGmsqhwUePfUYOin38Znu48eJjlHu5/fnM8HNDhc9Kdkrrxg7l4gCeBqkbJsqTK0yuZ6qvNj9XqnRRqQL5nyA5+OX1DOiSHCj7vYh1b2/2fGYQnJV3BtB9AmYdsgm3xJdTVj4BagaiWZ5AvZ4lqPHQB/EnQOOeZeXFyUy/OZnxfPMMXBP4sV5Z+IFAl4cvEFj7xCpy77IbOyqzFLc+m83i0qVLXT0FDilzfTMGvmma3hF1IpZJI0pAfXt7O9544404Pj6O4XAYk8kkhsNhd5a0+HIPqrzD3q70BvNMewdlBOPkMzNo2Q7Sc4Li4+PjGI1Ga/1AAHMwGMRoNOqtuvhKC8vTEZ6S73A47E7zIYBmOtVXuuyAlWWUwmloUEqPMhDG0Ba1D8cVpicI8xUxAjiOJ0qfjRu6xna8d+9ezOfz2N3d7YxBAlilc554Qgxl5LIh+fiqlSR3GvC+58f/NIwpTzfwGApD4hgkGfsKYRbGkwFpH4u8ztn47ulLc4y3Jcv09ndjyuvp8uJ95ZW91K5SpYtE9dSaSpUqVapUqVKlSpXeg1Q98uck91xk3tjzPEdPx3ny8DhIp5J3nB5Hps2ezUI6eI+eocxL4/dI7sHTs5nHyb3+nje9RfI6ZZvXuGzN+9xQKA9xVg96ut1rLq8rvWi+jP69730vxuNxXL9+ved9pTeKIUjkgV7FzLsvT7N7l1UnemoZs87QEnqPL126tBaK4zrBUJrMG0lPG5fEWffV6uS0nL29vc6DxrAj91Yz1IYeXnlEFdPP9B7KoPAr6YG8fmp7lcdVIPHBUB2tGkiuqgtj1t1TTr1VXfWf7a18PQxM1zyMyb3E3OTL0DHmrxUE95Rz5UVyYTtm3m7vs5S9+J3P5739Dh7q4iEqHu5BOXjY2LVr17qNvd6W7FPuBfZYeOk/xxzngaRrmf77GJTJx6+JyBP5Yfv4CplWUTLvfyZLD10Sef9Se5XeB8G+Jt69Lb2OlLvPMxzfPI7e24tzBr/VPytVushUgfxTohL4dKAtKqXN0pSe94Ge1wlGHYhzosiWMTkZZCDeyUMUfMk1iwEtGRybZODhNSxD4F3AzUGzEydH5knAwW/KiaeORKzH3t+8ebMHtnXPNwQznEPEJXOCQpYlckDQtqfhH5QbY6MFYPb29uJXfuVXYjwedy/GKYXhRJyCDIZ7ePgJn6VxoHSKj484BZgEjRkAoVwYRkXZDIfDHvDT/gPfvOt9RfkpjfcNGoV8Y62Ao/Kfz+dr8iIwcZBOcqCieknOPDJT7aC6UWcZ/qO6OchhCI3KdMAl3VH+fkqJg383UFhX6pEbv3zGjTH2QxrK0iG1Gw0Uj7H30BY3HHRdcfasH9NnDhHlmwHyLKTGDUzywbwczCoN9TIzWFl39h1ecyPHQb36IUPbsrHZ5xp963k6QETuTHLjyY0v1t9l6wZM27YxGo2iUqWLTBXIPyHRC5GBb6Zz2pSeaSLWPfFnGQP0fnJQjOhPFAT4HKDpIfEyssGb9eF39jvzSLN88nCW7LSJkt52lidgxYmPG1clW48XZ17ZpKh79IzqPr2h+u/glODIDSnmRw92dnYz2265XHbAhvkR+Oh3tvn30aNHsb+/v/ZWVje8MgDsgNeBVER07SAgp7IE+lUmz4pn3K8fFek6yfYimM30K/vPk1l0nzorz7vyLr0J9KyNtt53KUfyNZ1O486dO9E0TVy/fr0zevgM94NopYD5s/8K8NPo9L7l17XSQOPVAR37M2P09Z8b0GezWUwmk04vuYIgkqzZx7knQP2dAM7bgoazVkgyPaAHX3pGQ9x1weXkBks2ljoQZdnuQHCd8d9eDxoqXJESZUDa+cvmDfKmscrHD+pK5uGnwVDqD95mXi/KMzOmOPfq84Mf/GBN1pUqXSSqMfLnIAcAT5I2A7BvpfwS6HWwmQFIPsdvhm1wEM7q4zyQDwfzJY9LydB40rpzkmK9FUrhxoSAAidw5u/eJ3r4KAN6rAjamUY8eRt4fgTwvlzsk9nW1lZMJpPuudVq1W0QFS+SA4ESvVgMz1C+d+/eXTMC6EEU+QlBAkP0ursM5MkmIJ9Op/HgwYOYzWa9k1XozRO4V3kEGVk5kjcNtQw4u64KCLs+ZG3kRkd2ihD12/UzS0uiTin0iO3gm5oJJv0IRvLCkBY+qxUIbz/po4dL+HGpBMCUmdpZMtre3u5ORRKwZz6sB2Xm7aL8dE+eeB/jqMNsZ55yw1UK9jeGmWRjp8vQ07gRy7YVcaOt+pDk7cBbaUrGBDemM302x/icwFUKGmwRsWYcUJ+93bwMv8YVSJGvWnH84lyhelKmWd28v1WqdBGpeuRB2UBxXsBZAukOcJU2AxuZF+K8ZWeeNn5Kg7wPkuQ3YnOM/qb8PO8SuCK5J0f36aUWaOMxdBH9SUOTJe/zPyeqDECXPHT6Vj4OeHmqi+pInsibgyGfwPTRZH94eNjzwql8ysxlod/iRfJbLBbxwx/+ML7yla/E888/3/HjshH40WRPIKD8+L3JQNO96XQao9GoWw73+P2I6IHl0gkhXp5k4CFlDvIoCwcx3v8INNnG7r3MwimUhiCKHkq2tUgv5vIVEnqvZbAScEtPPKxMwJUGFQE12833krg8VHfuUWBd3aD2fpPprb5LxogDOjc6SexnbB+XH40+AXo3SkrAMwPVvMd+6Dz78+rLXPWgkezhMxm4zeYUEvWTq7JZSI7ydmM069vZHJVdI0j3ctyxwbbwcZ+8Mz+VW4+frHTRqZqylSpVqlSpUqVKlSq9B6l65J8yuUeH5N75bOk28wKfh9yL7WV52AG9Il5m5k3K6kjPi3vLvG6Zpz7Li89QTv4RycPm3m7dcy+/rqsMDyVwr7Ji7lkP8exeKz9zO2tTeuwi1l95Tq846yn+ucnTz7NX+ZvkHXHiWf3mN7/Z3ZMM27btYqTp6XWZeKiHtz+9ZfKSb21txWg0imeeeWbtRU/0uEX0TwZp27Z7Kyo9xb6XQzKjR5vtmnnn2RcoA/LjXnzF87MN3fvuHmGXm9oqax95vYfD4dqeCtWDYSDi2XWfqxLM29uIdWCojp5TiAxXuTy0iP1Inm7KiHH9qruHe7i3lytI4s9XnpSXeCNfmYdY/Ldt271ESmnZzq5XrkOuP+SHfYVtTJmyr3sbsR84eTmuz8ynbduYzWaxWCxiZ2en9wIxl1Hmmec4xzxZR/7WKo3fU35Zf/C29jh86RXlRj71rRfeVap0Ual65N8C+YB0nvsZKM9Aafb8JlC2adLKJoSSwZBtWMxih7N8ObASYCmfUniOL6vrGpe/fWLwcA6G1GQTB4E879GYcX4pR23YZF1cluSb9dIk5HxowlIdswnd40c9XIMyoPxZV8l2MBj0TmYZDAbxsY99LCLWw3A0KQp8e8iN+MhOB+Jv3tP38fFxvPnmm3Hnzp04OjrqtSXbgQB6e3u7t+H0+Pi42x/A+rPemX56aAeBBnXPAbAbMQT4yo9gmrH/BLgEUpKvyiaYZriFh4a5jrCPUB9VX7311HVV9zf1PTeE+CzrmbUZNzlTDnzB2WKx6HRIuuHjHMcl1dtD0WjAUA9kmDCMSLrvbeFydV3m2ME+mbWPePE2KzlFItZDp3wM8nzFg4+pvL61dbKvZn9/f+3kJp8vvO78zgwjL1cy8v7FvB3ckxfJR/rMsEk3xlVPjg+3bt0qyrZSpYtA1SNfoJJXwgexbMCN2OyZZz4O5pkn0zgPfCZLtwmoZF6ZjJjuPOnpISRfyov36c32OpBXpdGHgLnEj64RAAgoMF6ZHlKVSWCUgXDGbXKDZUT0zs4mrzxjnPkS0KscejBVF+XBo/hK7ZEBYzeumqaJ3d3duHr1aiyXy5jNZt1ErDp43DLL1tnnlBs9mpyA+Zze6CqPM8sRKU3btr0TVDKdcMDE+GgaeL4K4uCAAEjPCfxwDBDPqr97QQU8BXKp/4pXp/eYPEdE73x0Gh9K54Z+BviymGrXa/ahiNOjRelJF7ByWbvxS/3ydO5hVXw9ATGJQNBXXERcpWjb/tGDPt74uezOLzfRUq5K455qGheZASWiDDPKvOe67v3a+7vPDb6SkI2jXMVxntleHIOoI25cuMHF57N0dMj4qoR+l1ZFvc78rbb7+te/nsq5UqWLQhXIn4M2gddN6Rx0erpscPbQiE1AVeSgNPOi8NnsesZXZoz4gOyDL5ervcxsQM8G7Izo6dF/eTq5tOpAUvlm4RsKlcgAGUEgX2PPCcRlL5Ci3/6iEpUjOdCrSb4JVp2yFQgCKZXDOjJcRqEnd+/ejbt373ay87PUXc5qM7a7gFkmZ2+7pmliMpnE0dFR53lWmWwX8kEvbNZGlCk9tzSSZExQtwSK9QzbTeUTOOscfpU3mUw6ry69iAwhEYgUKBW/yt83jNJQ1Ln0rKv3RQdsukYZzOfzzgBxg4nP0cCkPFR3le+bkj0/Dy0j0UBlX1a9Va6vJmWAV23HPqe24RjK/sFVDlKpPuTHQaQbaayH8nR5k1yP2cdKYzi/3ZDQNebN/sKxjPw6YPYxuGQ0U3fcueH3aSg7P3Q6cEzLxj+m9zlCq06VKl1UqkD+J0g+4GRA/7zPZ8DYJ3P/9slG10qA2UF1KV2pPOVBo4TAlF4mfZcGZwIb5UUvV9u2PfDEfCPW49YJQjOgxbooT/EnYMVJ3AEAQRzBvK7RW+xeQE2yDMugLH2lg/Wj8eQrFVnohOiZZ56JT3/603Hjxo1uImTdxb9PzgR0kgVBhbcfw3CUN1cgIqLnuZXR5CcAuQdRMiBIJ/AmmHPvItO4zGiYjEajTs40MDI9kXHCtpehwGf8pCVvn8zDmhnYmbFaGi+48pGBccqWhqKeZT7km/z6dZblRgl/06gl+OQKkWQpeavvMi+1AccuvgFYRKOM/GR6rJUhyoBjkuTMNqZnme3C9imt2qhebtRQ1h7SxnbLQDPbzsE7ycG59Eq646sCnkdWb45Nm8rL7nnb+jPk4YUXXijmVanSRaAaI1+pUqVKlSpVqlSp0nuQqkf+KdNZXmymKXns3ePu3iJ6rtxbV1qSdQ9b5k0nHyyTsb0ijx8V0fNDL00mn8zDkvHOpV16JOlh97CbTM5c+qZsszbjioC8fe5xJO88zYRea5anPBVj7fKVF9pXB7T5UF5JPkNvPXUg4jTmWjIkf7PZLMbjcYxGo65+voRO7x69tRH9GO/MO0eZquzpdBqvvfZavPbaa/Ebv/EbXbw8dasU319a5ne99r5BzVPUFAAAIABJREFUz6CvyrD9lZ71Eqm9qEMMtfE9DQrHko66p5krGe7JjDh9uyr3VmQhD/TK6z/1QKFdDK3x1RCWS6+rh+u5bKXv3j5MI484n/Exivrknl7yShm4t5rtT154yhF5zcYlti3lIll4+5ZCA6k30rtMh9WHPUyIq5Xer0ohRQxtcX7Ii4+3JM/LyyXPTpmHn/IrrSopDfWDzzI8jrrO8b5p6ptdK1WqQP4pUhZekFEG6rO8Nj2/yWDIJgAHeRnoZ9nZgM5ns1hYXc+WqUv1c56cX1/yZZ6+XJzlR3BAsOqTiQNi8sNJiKEZWWiEJnNNfjQClPdwOOzFQYsXbTZkesZisw0oA9Y14hRcMxyBYHR7eztGo1FMp9O4c+dOXLt2be0oSwf3BAo0RAQ6mc7bX+ERk8kkfv7nfz5+4Rd+oTN+dJ/t4WFUqgfBZRY3r2cEgtVGbsy5/uo/+cgMG5WrdmFsPetLkN+2pyc5ZRsrHczrRBflz/QZ+PI+I14i+htsvTw3qEt9m7rNcDXV0fsd29UNVQ/Vonwzx4AbMnoukwUBbhYG5Q4JjoebDFiXdWYAsiwv03nPYuepc1k5npa6yrGBz7EOHlbmZbLt+OF4QFC9aX7xMZq/WZZ4oFwyw4l6nW3a13hUqdJFpp9qaE3TNP930zT/84b7LzRN84+bpvl+0zQPH6f/3ULag6Zp/qumaf6/pmkOm6b5p03T/NvNJjR5Nn9v9dE0D05SJQDNdA5CmT6bZLLfzIOTblaGD8D6X/KCZmUQ9Hla550TgMehRpxuOCRAc2AvoMQ8MyOk5EnKrnOCjzgFmsqfoNBl4OCEvzWJE1QTXPNYv7NAoCY/AU6l1fF6BHPT6bTja3t7O+bzebz88svxZ3/2Z/E3f/M3MZ1OO8DB5wjeRAJj2iTsp6mUdI31Pzo66t5U6/G4bEfJzY0Ybu4VAGD+KlsTPOtOLygNg+Fw2K1+eAy0rnHDsHvMxRdj46kbyoega7U6OQGH7cf6Ua9cT9lWuk/Zqywd1cmVHJXvbabfGdjkc/62XT2j1QmP4/axhP0nkzPbmiCcz2RjgfY36NvLV7tLxtK3bCOwA/5s7Ha98DE5A7Wu49kqAMvIYt2df5XjQJ2GsM8f3v70urPeblSr3tIr7v1R3+IcxDYvtS3nDp832K/9usoZj8dr432lSheJfmpAvmmaT0bEP7vh/q2I+POI+N2I+H8i4p9ExDMR8UdN0/wDS7sfEf9HRPybEfHtiPjHEdFExH8REf/NT4L/EpUGFPfglNJm6Rws8zkOmg7SGUpB4K5vTqpZ/tkzzpfSEUBz8nMgSODAMJKSbBzkaeJ0EKMPgVPE2aEEnEz8N+VLT7y3gYNPlsfJkSAxq1PE+hnJmaHBSTzidEnagbXA5mg06kJoBB6/853vRETEq6++urYBkzIgkCaP3BRKMFHSOfE1nU47nghGKQOlnc1m3ZnkAs9sb3qI9T8DR6xP27a9TYz0HivUR2XRu8829z5HPaOcqA/kRTSbzXr6qTpoZYbtnIHJDJQ7OBoOhz15kTLgnuXB9iNgpByyFQ7Kw/son1E+fmY8iWDQQbIbsc4T+0rEab/atDLB/FVfjhc0DB1Ie3o36HXPQ39cP5ievGdjVTZHZGOQj/fUK347IGc5EdEZ8nyO/HKjure98+5hX+RBbavrPEZY9x89erQmt0qVLhK9o6E1TdNcjYhPRsTfiYh/64zk/0lEPB8Rf9i27T96/PyliPi/IuI/bprmf2jb9luP0/67EfGJiPiHbdv+B4/TDiLif4+If71pmn/Stu2fPvUKVapUqVKlSpUqVar0U6J32iP/r0bE/xkR/1GceNdTegz4fzci/l+B+IiItm0fRsR/GRHDiPjXHqdtIuLfiIg3I+IfIu1xRPxnj//+4VOtBajkVS/dd28X07jXjffd6+vPe76ZV73kyS+V7cus7mV1705p1SHzlmQextLqAT2T/E2vH2XATXr04MqbQ48iPW98QQy9eqvVqvdGUZcTl60Z0+mePsZg04OndIzfzpa0RXxZEY9AZDhFFnYh3sbjcfzmb/5mRET82q/9Wuzu7va8im3bdrJgmJMf5adnsmssV/V4+PBh99p4edoYQqPwlsViEffv34+HDx92YRoMk1F70AvPuHTJxuP+GQJBD7jLSDJmCJH2KnBvBEMzXP+pd5Jj9rbUv/iLv4j5fN7xoXIGg0G3ikK+uLmYXsusL4gv945nqwl8+28WyiCZ+LijevJdC+SN45bk47HOvteEuu17HErEMDz2La+D65LuU/eVn+6pLh4qw/bwuG6OMVwNyFYuKA9fbfS20m+WR53PxmiOI04sw0NzVE7J06/+4DLhOJ2t0vn4zjbzVQKnrK/Vc+QrXXR6pze7/m8R8S89/v1MRPzXhXS/ESdg/X9N7r38+PvvPv7+ZyLi2Yj4H9u2nVnaL0XEMdI+NSoBVJEDZV73NAxfyMoh+OOz2ZJ7NmATtGTLyAR5Z5EmOzcYvH6qV7Z0m9Uxy0P3somAgz8BgyYXTiJc2ve6u3GTxYlmBpDHbXOZmLwR0DDe04F2RH9TX9OcbOIqhXmQHwdGBBHciErgure3F/v7+3H58uVefh4WID55Vr3qGXEKZBgr63zJAJhMJmtL7MvlsgufEZBfrVYxHo97uqznHHQwfKFEJeNT364nfMZDdRysqt2Yp4xGbxOBUtVld3c3fuu3fivlS0CWeqRnM8DqxuNgMIj5fN5t/swMbeq7jFyevkRwJVCt53gajbeTjzMR0bUtDQzJ0/c20NhiHpIJdVChQ66rAuvUUz/XnrHjrlfUd9e9DPwqf+834juTEY0AjhElAM/5ggYq86AuKD+fP/Tbx3+XeUnv/WQt1ak0rrrxSpn4nJOlc5lnfeVP/uRP4jOf+UxUqnQR6R0F8u1JKMy3IiKapnlxQ9JPPP7+6+Te1yJiFRE/d1batm0fNk3z3Yj4UNM0k7Ztp2+B7Seis8DwWZ6lTaDWPSOeJgOd+s68HDQGzgJCnDiyiYFpOZl7uZkB5PnQC63JX4BvsVh0G+rc8650+q/TP5S/JjZOqvLsCnxJJgI0BNL+Mh2WHdF/WYwbFwS59AxnHmQaHgTDip1WXTi5umHhqwSuD+PxOJ577rmYTCZroKNkwPA3PaUEkfpPOUmew+GwJ5vV6uQtphER0+lJ1xyPx7Gzs7O2OsI60LurehJYev3Fg9crAy2uT8rH91owVlnkewmUjrqjZ7KVFueTbSLeVC75IcBx0Oj8OLkn2Y1CHvvo/b8E5p3viIj5fN71xa2trd6pN26cuKxENFwiIkajUVcO02rDsRsLSjObzXpHcpbGP/Y/pik5RdjONDQdQIto1DO9g3nXW5an+pXGbx9nSgYJ+XJ5utxddzNPvuefpWEdfGUrM+Z8nuDK2K/+6q+m9a9U6SLQu/X4yYPH36/7jbZt26Zp7kXE9bPSPqY3I+LFiLgaET8sFfjKK6/EL//yL6f3/vIv/3Lt2ibAfhZYz9L7pMXromySFy8aHDlQ83kHQln+DthLfCifTfXhgJ55hbJ0ylcTKCcqgffj4+OYzWbd5ORhDiyH5xLzZBGXJ38TuOjDZxxcE7wR9GWnOQjAKH/x53UQv5x8ZZhQdjxXnpOnjoT0N49S5pPJJC5fvtwZCJw4qSNcRYg4PcGHqwfinQBEcmLbMzRJgG1vb6+T12g06h0dyJUVyl1l8D5l7rqotiKf+q1vhZeUdNTzULtRB/yMb/LsBmDpdwbo6Fn14wzJp9pO9ZCRJN6ojxlAzU6rIW8+vsjbT1Dr9cwMZxoGDHURDz4+uR4RpDM9605Pv6+yKGTJ9ckNcd1zB4obzSTd86M2mQe99040+KmrNML9uQwYl0KL3Phnvhmv7qygznEFguNPySjwvlWqp88bHJeYB1dD5vN57OzsrMmzUqWfNn3qU59Kr7/yyitPrYx3K5DXer+HyogeIc150ka8g3UtgXLeK4H9kjeO/0sTuZ7nNV++dJDPCYzln2UwbPJuZgYBJwiGGOhZTt7iW2BUXviI/qCviYiTl3txsuVmkXvNHNiLZ8qH+TkYcjClNPIQ8vx190ISsEpm9PBRXrru3wRp3q7eNoeHh/G3f/u3cf369VitVr04U9dPb6sMRLNtOBFLFvP5vAfAlMf29nYvHl/P8kx9tjXLofwF/EmZHjowk6eYR0qy/ipDdXGjTnrpoUbUKxo2lKGTyhXYJdjz0KXMuPZ89EIolieDR/wzL6VzD67nLZI8NvGxaTWAbeNjA9vIw1/8RWfkke3pbe4y454FN5o5dtBA9HFCPKgMGu36Tb30/5Sxj8Ols9tp4LEtvK6sv8YgT0/KrmXjt9K63jAdx87SfEZnDe97f83CESmTyWTS6XqlSheR3q1AXi6akok9iojDJ0gbSJ/SRz/60c7zngHfSpUqVapUqVKlSpXOS1/+8pfT65/61Kfir/7qr55KGW/r1JqmaV5smqY95+fqE2R9+/H32jNN02xFxLWI+P5ZaR/TQZx46998gvKLdBawd48Vid7AbInRvdql8ugt4jV6Mtxb4+W5F4XfGd+8T6+VvC5ZnTPPJMsohfjIU82TKOTZzkICSisTmSzIF71sDIdQiEvmfcvOkfd6e9w760SvtXuxnDeeie3eSubHNvH4Va5u8Np8Po8f//jH3ckw9NSy3pSh8mFa6oR44HngTLtcLuPhw4fxve99Lx4+fNiTHU92GQwG3ck7DFvxdqcXlP/dm0ddXa1WXYiWNhMrPePPsxUilaVwEoZvUFclD287/T5rDOF56Kyjr5SQ2EfVVvP5PObzeU9GHm4iIu/ZufLUHf7nqpKPGy5XD6vJxj3/732bK03UBT3HvsffbC+u8jAUxt+NwHx9XCePWfw4f3M8ycKlPD1PfCF5G0f0N4F73/dVDZbPdJ4n5yilz9pq0xzmqxrMkzqq0CruuSFRz/Qs901FnKzCvP56KbK2UqX3P71dj/zDiPijc6adn52ko1cff38sufdCnJxo89Wz0jZNM46Ts+j/afsTcq1ngFhUAuHnuebLh7oWsT55ZuDtrfDloRil+vlEXLpPPnmPy8/ODwEqY+N90lWejJ8l+C7V2Q0GD2/xkBoHDx5KwDbykysE+MSrh9M4QFBZPnH6tcxI8w14lKUArWQ0n8/jq1/9arRtGz/4wQ/iYx/7WGd0OFiljvmpJQzh8RNfmqbp8qARcHh4sjCmcCmGQ9HoYVgBy/F+ofZwgJHpYBZrTb3wsCDlLcNCwF8np2gvgohhTRGn+wk8JIDtE3EaRkRZOojjBlDXZ6+z8mbbsa4MA1M/ZF2yPlsCrr73Ihuv1F89T6YnwGM7izxkiWUTrNKgch1x40XPejieg3ZP57L2PpzpouTA9pTOqz5uZJEvfkuXSy+Hcj5LeqH74sH7L/NS2Vl8P8dInwtKc5bXl2F3XqbLkQ6DpmliMpnE9evXo1Kli0pvC8i3bfvjODkb/mnTn8TJyTT/fET8A7v3Lzz+/uLj77+MiPsR8Xebphm2bbtA2n8uTkJrvhjnJJ9Az3v/SZ7zyaIEuJ18ovRnfPIrTTT6JqjxNB6vWapTNjFnwDWb5Hnd0wi4M3+++t3rwsmcEwuPBmRdafxkcdiatMiDH1fHyYwgkUaGy90nKOWTeUEpf07ufIZgicCT5fEEEN3/yEc+EovFIl588cUuVr3kLfRX3lM3snb1E15oTOzt7cXh4WEPUOg5z59AR9/0gqtNMuDJtiXYV1rpBkHJYrHovQFX9xgHz7byYye5+ZVGlfcf1lPPse1Zf+Xpm5+9rp5exhgNpGzs0DOup85vZjCUxpvseX5TLgSQknE2LtAQ9TqIaDQ3zWlcuNqbuul8+PhMOdPxUALtrKsbXZ7G290NjEzWbOdMdhzD3SDlykBWT7/vYznzp475GOXPsz6uK+rLqkO2Odn7LXklzWazODo6iitXrqzdq1TpItA7/UKoc1Hbtj+MiP8lIn6paZp/RdebpvlARPz7EfHjiPjvHqddRMQ/ioibcfKGV6Xdj5O3w84i4r99B3g+d5pNaTfdczDK9Nkk6hMNnytNwpr0fCL15yP6y/ER66dDcOLws4f5m/kwDET3dB42Jw4O8v585tEjXz6Bl5a+BSAYKiI+VF/3Lrl3zSdXlaG8CLzFh/Lx4xcFKpqm6Y5yzLxokh8nRqUX+ByPx7FYLGJnZ6ebnBeLRfdyIoYyUY7kSWVyJUQTMkMY9NxwOIzxeBxXrlyJg4ODGI/HPX1Tvd3jqvq7MSPKABNBh3hzPSDvEdG91IirCwwZol6y7ZkmAxpZn3VjjcYJPeN+fKr3D+//2eoUjT/qh/Sfz1D/BLT4IbDystkuzh9lQZlnIJ79Uvnr+nA4jOFw2HtZlhuN/PaVIn1UN8rCxwWvVwn4O6lMflhXyVKeaMpG5A6FrL18PigZs1zNdPJ6sK7UG467rAPLojxZJ3rjOY5pUzLHXbYpHRUi75cu20qVLiK9Wze7RkT8OxHxdyLijx6D+Tci4u/HybGTv9O27T2k/Q8j4u9FxH/aNM1vRsR3IuK34ySs5t9r2/ZvzlOgexBLdJ77nl/2bGkCOY9RkHlWsv/ZJCc6y+Ouez7B+MTh9XBefLLN+FIaTQY8L16TkdeP4IITy2Kx6MCyPox/zsCIL8fzWMG2PY3LzJbCOTlRHltbWx0vnICZRvk7ABSoGQwG3UqEyhLvvmrCOnt7kP+2bePGjRvx8Y9/PK5evdrxJdDooMHbhvJzHfBwB7b5arWKH/3oR7G3t9eFcij8JjtX3OvrXlHpha9AUE8ZNkAQqdNNPF8aVp5PBooE/lnHDFS4brj8pCeZfnqdvKwMaLbtyXnpbdv2zkyXkSX5sX08tM6Bcql/0wjWNaWlV1vX+D4E8RSx/tbZDJxT1qPRKB1HWBfqI/dqsFzyxnoSkLO++lBnMpn4yhVDfGjMkH/lRx69XVimG1e+auNtxvbM2iubC7J2z4y6bDz3Oc2NNMqG5dPIzgxM5qNxtlKli0rvWjO2bdvXIuJXIuJ/ihNA/y/HSTz8v9i27X9vae9HxK/HiWf+43ES7vOjiPjdtm3/83eS70qVKlWqVKlSpUqV3gn6qXnk27b9TkRsDCxv2/bbcQLgz5PfjyLiD98+Z+ejkle+5E3f5GU/ywtPj8mm1QB6PdzLSA9QyfsizyO9XkzD5315l3xm5XqaiPUVAXm+3YulUw1KJxsoL/HuXjR6nhiP6Z4jxU27h4ebsfjqd5eN5Bex/qZVlu1eVNbHvXx8qZOu68QVLU97zC09epSP5Nm2bdy+fTt+/OMfxzPPPBPD4bB3praHKvGMdbYNQwz0m23NMCTRBz7wgZ48Vd7x8XEvPl1lu/eSm4lVXuah474Atat7EKVv3oast2RGGUjWaguXhYccKF+trni7S19VJt82LPJ+I896qezDw8O4f/9+RERcu3atS+8eVPdOuxx87PEwCddx1on5cRyQ7uoZf7lYNsZJN5fLZcxmsxiPx2urEz6OMpyP/c71WB5fPynIZe8eZx9TXdezMCteZ55qC4/LF388N9893M6TrmerENQrD3GiB9x5Yxn8dhn4GODzls9BzJ8rp7pOb7xWaH3VazAYdJvoK1W6iPSu9ci/W2kT4H4aeWcgnSBJ/z09B1fy6BOxP89rXI72Mn1AdjCSGQcZ0C8ZIYzHXi5P3tQ3m83WYuM9znQTKIpYf1slJwFOXLxHvhlew7ZQem4S5TOc/B1EEzxlgMmXyj2ERjHC3FjJ+joAFDHM4OrVqx0Y4uZM12/+zzbnERBndfeTW2azWTx8+DCm02l3nfk5+MnuO5AiqFCYjof48DcBA1+aFBGdkaQ6uZEkg7Jk4LKPMjRF+RH4uLHFNqd8JQMP0fJ4Zuqz9INHWdIQcP0qxTZTBzwUQ7x4f2I/0F4L6mhGCplg+X5f7TaZTHr9lvyUZKs6+jjioVciycNl7H3aiWMBy8muqc4ybnRN6ZmnSPmwLVxm1EfpgMKrvB4lwO1zAOXroUgkH/dYB47VykvjlYd8+ZifzWn6HB4exuXLl6NSpYtK7+YY+Z8qZd6Ft0qZF6KUzgdW/faJKvPKMJ9SXiL3wOgavSwlkEly3nyyzkA/eWJZmvQVH6+zxAWoCFp9UlCe9GLxmsctcyLTpMW8I/rxqR6bLd41WRIIcQKkl40yodeY8idg0fPZJKtJ2WNi5/N5d99XVpReAOv111/vNp46OIuI1IiJ6J/WQpDnXjq1qerxxhtvdCBT9VZZOzs7a55S8Uudci+it6cDIdWBBgUBjdfRNy074CEPpRjyDORn6bQB2YEigR51k3Km8eltLIB05cqVtfZx8nGOPLAfOXAlb6y3/yZg83GIbZzJx1dktFKWtTv7GFdNCKS5mlNqH9c3N6q9XuSZ8nV9dAeEv39AdWCf8FUrz1vEFcasffnbx3jm5+MX03ibuQyYt4inJbFfrlartfcbZIY325/t4RuEB4NB783UlSpdNKoe+bdABNSkTUDdB8nsmU3PcyLOgDUHVwfO2bUSQHGw6kDZPcDizZ8hOPHysgldeTKUxoGEgwz3TDk4U915pB3Ld94o41JYgx+7RhCvj4CyGzWUJU9/cCCl+xko4j3KTcRjGr1dXfem02ncvn079V66flOGSuOGD3nR86rfcDiMq1evxqVLl3ohDMPhsAhWHRiwTWXgUefo8ZYMVGfd87PjVTcZG2w35SmwQPlQL1yn/b8DewdmvDadTuPRo0cxn8+LoIn1cm8my1PoFWVDI4vAXc+x3dyoYnhOttLlYxBBcuYc0DNcEfJToZiPG3RuUIlKm8O9T4g3npzisva6sY4u6wzQe3nUkVIYoIN2liNZ+pjk7ceTbjjW+JhC8pWekpGW1ZHPeV+grKlLLE/9lZ/SyiLr0jRNHB0dxdHR0ZrMK1W6KFSBvNEmMP128swG94j+4Mbys8l/E28++XBC8gnZJ3Evi5OjfzhpcuJgGuYlco+LT5QCZvLGC8j42yA1QfkStuop8MJyM0BEUMfJhB59pecE5cfZZfG9qhPjr9v25PQQ5eFGDsHL1tZW7yVB3kYEPpkOeJ1L6W/evBkf+tCHumV3AkQ+o9+SK2XuRhWBRNP0Q2sGg0GMRqPuGEqCDMnBjcJMp5WO3vMS+Hfwmnk2BSL8yFAS23mTnjuYiujvpxAvjHlm2yyXy3j06NHaW0azdOKVOiVDeDabxYMHD+Lo6KgnSzfW3UEgGTKUxw15l6WDXweA5FO/3ZBRu0suSqN7bjAybzdmfbx0YM97bmCwvr7/gX3K65Q5EDLw6b/poc+Mb/ZJfTLjl+0goCw9KQFi59H583p63TcBfcmjNLcxpKZkAGUGDXnX+LGzsxM/+MEPolKli0oVyFeqVKlSpUqVKlWq9B6kGiP/hJQtKZbSPal3n95Xf9aXKxXr7LHfJa+8/+Z9fvO3L7E6Xx7j7d5xUeb1co8xPypbcZR8ayljTSkPetflCafnT/lIbpQp60rZqs70ltE7SI8f60kPr3tDsxhVb2Mur2ey5HX3luttljzBRx5gbti8f/9+fOUrX4nVahW3bt3qzpBneR53S7lSf1wf6Bkn78vlMg4PD7tVk9Fo1AstUt3VnllIg5+BTq+1h/+4B93DG+hRJrmee99g22WeZ/2Xt9HDOFzfKMfxeNy1n7y1kgnjxdl3eHqNZCj5knhyizzuLINezmyVyXmQDPW8dEb3qX+Zl56yYd/JVszYJ6gH5MVXh3x/iV541rZt77SnxWKR5seTnDwu2/uut39JjzLK2o8yEF+sn/L1ECcfrz1sJ6K/b4TEsZFt423oK1xsT/92rz7zzFYJnbhCynHbw4RcDpUqXSSqQD4hH4BKdNby4lnPn1V+Bq6zSTUrh8voPnE6wClNPryfnRzAb19+ziY2zz/idNlbITVZfDkHaoZKKH9OeBnY8IlXddHSeZZeefqSuRstyo/pCZIoA06SDpI5MdIw8PovFouenHkMoXhh+zK8R5sFV6tVd1zbvXt8r1qsGUx+nbwSFOo/5aH6EDB9//vfj2vXrsV4PO6MDpUnPfB4b7YLwTRf6KN2yoxgPU/DV3xRz7SRkiBJYJAbfGkYeP9yIujx/sQ2pjHG9sp+qyw/WtDDvrgXgfx5vbMwOqb3/uzt7fog44KgXs96+dlY4eNNCShmseEi8cC+K2OVeqfryodhaeJF7e+6SPIxxsdaT8N+kY0vmfxVphtzbMOI6BwWbkgrnb6dZ/Zll7e3lxsK3hfOA9D5TdmyLBqsDDFjfY6Pj+ODH/zgxvIqVXo/UwXyT4Ey8PBW8nDKJguWV5okPE8O+qUNhJy43EvqBgoH8MxTXeLdJ0ceT6fYXgF68kAPn9dHpMnLJzwCIN/06uAlAxd8nh5GGhsEhQSU3NCVnV7DEyu8bTIDzD1YGcDlkZTkn+B0MBjEzZs3e3kzDWVNOWW64mlkiOg/jZvd3d146aWXYrVaxb1797q3ynosrfPOyT4zmt24oiy1EqFr9H46sPcTa3wFghsTHUBl+p61J/UgA886KtB1xle1RHozrspTXgSkx8fHvTfpkkf3NKvvbTpTXfrFo1fJI3mmkZwB09JpNmxPgW8HuZlhRhn5Jm7pozsG+BzHSfLqq3RuDLHNnXxsztLQKPbnSuMZZZQ5GJqm6fRD/9nmrHMGwGk0q4xsTHLjgO3HucrlRT6lLzQIHbRn423EST+tm10rXWSqQP4pkIOrTf+fBOiW0vtgzYEyA4IcDJmPg+8MBDiIL3l6SkCD5fpkybPHeVKNJu0MtHl+vszrYDybDOhJpHx8IuIkH7EeaiKgoI2pBK96xgF/1n5sC9/86ek9tIdpCKQ85MKNorZt45Of/GQ8//zzvbAIlasJnx59J+WjFx3JmMpCImi0jEajuHSsMnRyAAAgAElEQVTp0trZ0aqf/jtw8ZAPyiYzvNz4Y5uJHNgT/LNv6b7S0EijHhEQEfip7CykIAP8BGFuFFFW7ItugKntHLw7eJOuEGw1TdOtUFAOqntm2JFXtgv1jnLwtstAn49rLJOnvmShMdzAzbofHR11hqW/JCsjyphyIpik3hLssw5uAPC3f2eGQsaXyzkiOkOQeuI6wtWSbLWVdfQ5gMRNtSLvA6U5Q2kzg8WdCxpL/KCA1WoVw+GwvhCq0oWmCuSfErnXhddF7vXYBPo5mWWAjflvAv0kn9BYJr+zevlkTcBBwMZJK/NYOY8CefTO+9JxBjyUh9LyDHLWlXWkIaKyWUc+T9BEz6zAwXK57E2YlINAa+ap4goGQY5AsDyhTEfZUu4ETqxb256ckEMQrslRz21vb8fe3t4aCKI8CIIE6jMwxhAltjX1RTxOp9M4Pj7uTq0h8KKMOVFTVwmECb4ZU05PrcIoRAT2g8Eg5vP5Gpjzk4iUnqCFAFNtLVk6qBkMBmnIkJ88U1oto2zY9u5pVR58G7AbLn46D40Lkr99lcay2mXT2eXeFx1Mst7Ua4Jf1pN9dDabdS+8cpCpNpBhyXZUvcfjcW9ljX2R/HmYSTYWuSFKuWSGjbe565n0iGMqif/dYFeZNLQ45vIUJS+bRpGvDpR0k/npOb5ETTyyHLYv+6mfOc/xSmVxbKPMj4+P6wuhKl1oqqfWVKpUqVKlSpUqVar0HqTqkf8JUrZcGZHHw7t33j3XvvybLTX7En2WX0TuVWf4gPOU8ZB57lk2vbCZXOR9V0gNY+XpEeMLYkjZsi89eh6CwPPo+Tw9ftnJB/TE0tNIDxJ5Xq1W8eUvfzleeumluHLlylp4C+WodmBog3u0KLNSuJHXyT2iXi+VuVgsunPduQLBs9/ZXr6ipN9sL/Km62pX1U1lenr9lzd4Npt1vKl+Hj4m0iZgenJ5ek/2zRUWejEzj7HHhSsd+5z0mbpP/chkqHS+ysSNtvIyu5ebfHnIxnQ6jTt37sRoNIorV670PKN+eo17+OlRpv7QSysdcf3zDciLxaK3mdQ92fS2kzeORfQW6yQZbwP9zlbluDKhFZKsXJ5hL97cm+yrjj4esp1Lfd5Dk7K2IPk450TPtvQxCyFTGt+nwXZlnX3F0McRX2FiHUScF7IwnIhYa1O1jfqS8hXfHrJ25cqVuHr1aiqbSpUuAlWP/DtApQE4A8mb0pNKwF6Drw+oWdkEHAwRcBBOEMm8WT6Xkd2g8CV1xkwL5DlA49IqwU82Ubftabx9BvYE2Dw8gPc8vMJjVhnrzucoL/HzqU99qtvISYDEb4I7AgiCBbYfy6AR4Pcj8pNrGCqxtbUVly9fjlu3bsXe3l4PAKqumiwzInhSfbJ2ZBrJarU6OVZURwFmAEWGF8FtRHTgn/VjnK8bpW6Y+DI+4/a9vg7QGIKUGcned7ytvE0JXMQj6+FhEG7EUV948g9pf38/Ll26tKb3kptksFgses+xnxM4MT6c/Y28+HjkgJ8fjimUt36rfLU7+zb7o8vVSeA5A5oEiF6fUltnYy0/BOrilzL1PsJ2ob6o/Tle+FjDsYtGwGAw6O55CJSH3oh8zBH/Pu6RFxoNfN6vUQ5sJ/E3Go1iNBp1oJ58qP7UGY35x8fHcfv27fjCF76w1u6VKl0Uqh75DXQWoN4ElHWfk9NZeW/yuvC5UprMS82yHJjomWwSdf6ZD705/oyey9Lro5Np/LhJeloIrhxcO2+aDOV1J/hQHVlvB/qZUaLJj94y3wBJAOSggt5U9+ARNOjjsdW6714v1mG1WvVOZVH+8nzTe+pevu3t7e7Mcno0NcmTf9XPDRICT8b2sq4ij4elnjr4IjCmDDxuNjPQ3Mh0febbOhW77h5EfouoNx4vTD5YJwc8rsOMR2a5vEZDgwCnxIeePTo66k6rcZCflekrQaUxxo1Nypbx97rGMh3EZf1ZvwkI3ZOsdmZseAZMSXpG+wf0DoOI082h5Nn5YfksT3lLB86Sn4PlzLgq/We5JV4I2qlvPo65AZH1QfZXysKPFXU+yFupPvqtk8p0LC7HNs4JBPGe140bN+Lzn//8mqwrVbooVIH8O0ibQLKTLyHq25d0szJKZeo/JykC54jyy5tIDgK8bF+2Vj7y/gnEy1N8fHwc8/m8S+cgRvKQ94ey4ITBiYRAh+mzPF0G5KH0nPPI9mJ6n3C9DeWJFRBgnr4JlcQy9Z/l0Rghz3zuwYMH0bZt7OzsRMTp6SbcJEvjRTzSk+yyzgCOjI3VatWFysjzpjTc7Ns0J6+hn8/nXfkOMl0H2G4sn/d4fni2GZJtTONA8vN0boh4uzN95rGn8el6Jzmr/n4SkNqG4J594cqVK11Yi67TSIs49fY6qHOdY3tTHg6gCYgpQ+9nvJ8RDbASQM+MNs+PcuHqS9u2MZvN0jq4IyS7Rx6V/1njOSlzCkTkG2d13cdbrirxqNAM6KoechZwfPC5wNuB4x/r6jLm8zQalCbTMZYnpwhPLyNf+mQHHTx8+DD+/M//PD7zmc+cIflKld6fVENrKlWqVKlSpUqVKlV6D1IF8k+JSp4Yets8Xebd8WdLXiZS5knRd5YH0/F+yZvvnqeSh5heLHrxIk7jqBmeIe8Lj3f08A2/rrzFu3uEs3Lp+aKXSHXy88y54uD1cbkxJtZXL3xzGHmiV1d8DIfDGI/H3dF6EScetzt37sS9e/c6+elDb57kS9kpbEnX1Jbz+Txef/31+M53vhN37tzp+NPzHh5BTzDzoReQdWNMta7Jq6h7qovSKKaXMqEcMl10L6mHanCDqDz+9Hh7eQxHor5Q/8gL5eox9tlKEfslvZyUs3idz+ddGBDbnelcl3ldeqk+xnLkpZfcRVxtYT287/GoT8pB4TxcrdKzLk/3hGcrFhxrKFvfO+FjHPsi245tzvAuPsc29VUZX6nLxk56/jnm+xjMzfIi6ZHrBvNkflq5EpFPrlZRp7mxNFv5UD6qu1aMfIwkUc7sS1n7knxlivtixIeH2bB9WOfXX389KlW6qFRDa94mZQD8Se5H9MNsstCZDAiUgL8vSXqoAIlggwN6Fl7jaUp1dMClawKVCq+Zz+droQXkuWTkcLmeYQGcFPSb8bWcEPSfS80+AVMuHrvu/BLcih+Fk+hlSQQGKs/Pf+aZ5gozOT4+jqtXr/ZOXHFgwJAZDwVhnblMPpvN4t69e/EzP/MzvbZ00McwgEynvJ0E9HhKDcGQ4vUFpBjj77pDY0B1Ylq1McGZ66R0ROUKuDLcZVOf8xAB8eQAryRz5ae2ZD767ZsRBdCUju8WYKgWAbXX2/WW9ckMcY+DJm1KT5DMOqo/6fz80WjU0xvWg+OOG+KqB0E1DUClIe8Z0KTR72MM05CXDOBSPiyT6dn22b6DTJ66noWgiNieAuMej640BPCsV9bGvO/gm2PkJqKR5vVl/fy/O02YjrKkTH1O2Nvbq2E1lS40VSB/BmUTw1tJw3Sb0nNS8IGfE6coGzhLE7IP2Bkwd/7o/d5UtvPuE4IDeQE9H5h9IvPJ1XkQYMiOWKRnkPX2umd1zWTN2GQBDE3W7rnMAGDEqTcpA5Aqn4Bva+vkuEZ5Oj0e3OVHnl2PRIPBIK5duxYf/vCHe5v+so2z9H5yohfvrpvUPXrbBDy1F0Kx8A423SDzcgkoJB/Wl/doLIkELFUu9xhQrs6P65XK1r0MNFNnCdglK9VvPp+nse7eLh4rrbhi1tu9zFrp8HRKSyDO35QrjZ+sz6j+MuLEn1YVlIYg3Q1fl6eIx6JSlyVvHm1JyoAp5UbvvFNpjMwMBHckUK6UTcYL9dcBK+tP3RJ5P6f3fZPBQf1jeu/vNAS8D1FPSmVkdXH+xYvHvZfy03Vvlzt37sRrr70Wzz33XLG8SpXez1RDa54SZRNCxObNpw56ssGrlJbl+r1sYyB55GCu/56nT2Qa+DNw42DZJ2yeTCMQr5MKHAARfLuHnPUjEJBnKmL9yEMHAQJ47uGhd8iBUcTpZMkQCsohO2FH6ZWvJnSCq8zoovHDlQQaNA6wCYbE76a23d7ejqOjo9SAIA8ZiBIo97bP/qus5XLZHTvpBhaNIgKMko7xGbaJ3/PQE/HiQIdycgDooFx5uIfSw3TYFg7MJXOCUT99R/JzHVbbbvLcMkRhNpvFbDbrnh0MBj1g7sapfrMN9M3jDPU8Zcg2U130Jl8ZdNRT72s07FlnlU3dLZ1JzrbUb8pOxgbHZRp1Gh98TPO6+rjLcvnN57xfUIfV1k7uhS+R9EFODeeV5bPdMx1yB4SHu/CISK8Dxw0aAySlUTgNHT2ezo+h9fnk+Pg4Dg4O4kMf+lBRNpUqvd+peuSfAjlYcso8O/yvPJifP+vXSzwwT04inn9mNGTeK13PPO3uvfRrKocvBNIpNZxA/JQC8qnJteS9Vj3dOMnkpzw16clbKG8n82K9OEn60n8WOuPHJZIXTYAOJjMvpz8rWbn3z9uOcmG5OrVFcqVBwed5mgkpW8J3fgnm6GUcDAYxn897Roq88psMAe9brt8sT3x7Pd0zWupP1HGetCP5COSxHfWc7meGo4M7bzvPgyETHtZ1FrCjscL00nEdt+l9lZ5f6Yqu08CjweH8KS+FMl26dCkuXbrU02sabS4Xz4P33FPshhblWmpjpfFwFJbbtqen77D9vO04Brl++vgtOWcx4nRYqJ0yI9Z55H8nhuFtIoJttrHzyLKUVt+qv69COL+Um4/XWT3c+HIjiHK4f/9+fPvb345nn312Y30rVXq/UvXIV6pUqVKlSpUqVar0HqTqkf8JULbUelY6v555ZPjbvT6kUozkpvIzXumJzrz8Z5XBsBBfQqW300MONq0QZCsa3ARKzz15pHeWXmeV6cvn9NpziZwx1e4JZn2U3kNeyDtjpullkxeU1+jV82XszAOvtMxbGz5Xq1VMp9N488034/nnn+/S+xnxriuUl7yx2SpJ5k2fzWbdm1ybpunilJkf28o94SybPGUrYcPhsOflcw+/nnVPH8M9+F4D6ibfVOrtqTycJ/cQZ55S6op7/OmtlbdYm8R9FYfecp4vnq3iiDysgZ5VrU6wv3ncO/VSMvRQD9Wdq1bseyrLVyDIDz24qh9XSHxsUh7sg6yrVoSUTuMIdYQvV/N2luzYZr4KUxp7KQ8fTzMvv+t9iVQHnvDCZ311kasypGwFgWVQRvTWZ+T6L/1V23DDOsdvH0+ZnnmvVqs4PDwsyqRSpfc7VSB/Bm0aiN9KuojyyQr8nU0CfM4BrQNXn9SYJpsIfOIpgWJfkvaJwAdsgvnFYrEGwHlkooNAn2C4FKzBPFsSVv4a9B08uDwIFLwtONFmMueESQDjMcwlQ8fbQMDH41wJHAgY+IIjToZumDmQ/MY3vhGvvvpqPPfcc3FwcBDj8bgrx/nmpO6GliZlkUA0J1zlJ5CkTZpqDwIyHafnxg5lpussX+kYXtM0TYxGozUjj0aS6kFQT7AjPr2dvN95CEYWhuX9b7FY9EAi8xbIIt8yxLa2tjo5y/hi3USMdXcjhGCR+wa87g7S/TuLg2bfn81mMRgMYjgc9mLuqWM8FUl9m2MPdfrw8DAePHgQly9fjp2dnTVeXN5uZEoOmbHPEDvxwjpxHHADXc+XjLjSKTt0QlA3aMhm+pEZAZKliO2YhetRv3kyEvkiMVxNeVLPfZzw0Bo6cpQPAb2/gTobi+hIkRwODw/j7t27UanSRaUK5N8mlUB5yWvCycmBQAb2HODzdwY8M17OMhqySS0zGtwr5QA3K5cDtwBWtqnJ43IJYgRYCC7cgMjAhE+0bBdNrh6TSu8nKXveAZ3H9RKQST6UoZ+YEhFrb2lUHRi3Tq990zQdMHaPYDZ5S74f/ehHY7FYxPXr1zuQxRjmzIggcFB7EqQwflbAU/+3t7djZ2cnHjx4EE3TxO7uboxGo66Mo6OjmEwm3WSviV1HcsobTXCgepNXB9+ulzwXm6A9O73GjQjpRdY/9E3w7H2LoG6xWMTDhw9jNBrF3t5eT7bUSXqS3YhWG9CIGA6HnVwI/NmHuXlQ7eb9j2WIBxopejYzpH2DrgwtAjN62Eun+YjE22q1itFoFPv7+2tpHGh7f/PVAqXjOfrKxw1Qjg8+nrJM93wzva9yiLy+bC8H7RltupetDpE3yl55sd6lstyrz7pkv9UvMqPXedJv98KrfF8RWy6Xsb+/H7/927+d8lyp0kWgCuR/QpQB6Ox6CQTrHv+f5eH1MgjqMtB/njIzQyPzSPp1emUFugTimSbidBDXIE2gQNBOEKy6+ekprL+vSriXiOA7ov/KenqHmI9PXvSCljzhPiELTBIY0cvHNCyTech7SCBNuWWgQrS9vR27u7tx8+bNmEwma0aMn0pCo4my8I2QXCaPyM+9nkwmnQ4I4Akcz2azODo6itlsFtPpNObzeVy6dCkGg0GMRqOYTqfdagXPWc/aX7oho4BeawI63/zJdtU3vYmZ8acyKWsHLb7BczAYxI0bN3qeV/YHGm8OLPlNI0r9zMG9QLQDaeqdvLJsYweg3KCs/+4J9743mUx6cnEDx41ethV1naCbRj1lxzpTnl6O2lEGghsZ3ITN6z5esZ5uJLDszGNNfdNvH1uohyI/v1/k3uvS89Qb5uWe9MzbrjZnmWof5s18OJ4TzIs3jrkc70Qco6mTHIeWy2Xcvn07XnzxxbW6Vqp0EagC+XcBlUC/33dA6L8jTpem9ZwTJ24HGw4+Odn64OpepcwYEQjRedL6Tx7Jl7/hlWCGZbEevEZg5pO5eyRZBwIaytMnRzccMmPGeXRQ4gaKeFDd3UPIPAnyXe5sM8YwSy48Wi/i5E2IL7/8cnzuc5+Lg4ODjg+BGHl1mbfqpGseEiCjIosB10QtEE6QJgB6dHQU3/zmN+NrX/taKoPPfvazcenSpQ4cKl/+JoDyMBO2h8iBJNvS+4kbnA5KHDhKjso3C6+gp3s4HPY8/jQe2Cd0j3ywvzA8xY1myYB8qK5sZ5724x5U1xU9m3mAvSzy4U4DyaoESDle8QhKlkPgrzxVL+ogQ7OUjvLx/sp6E0Rm8syM6ew/9cTvZ3LIxs3MOMvKzMA520PfNOLPyjviFNizn2TedO6Jysp1Dz/HNTeGfP7b2dmJK1eurPFWqdJFoXpqTaVKlSpVqlSpUqVK70GqHvkCuTeGRM/QedLrmVIa94bzmVJ654X5ZEvXZ5VTyj9iPY7Tn2Mcqr51ZjyXQrN8yJsvT6tsfvvqgcr3sA7ywxhjeuO5JO/e2Mwb5fLUN8ND6P2TF+r4+LjztHOjWObNpDedniuujFBGXN6nvtADL9nr3PjVahUf+MAH4nOf+1w8++yzMRwOu1AV1ZVhTq4HLi/ywE26qrvuSSe0+VH8KZRpNBql3vibN2/GRz7ykdjb24vRaLTmGVZZm/orl+XdG6s2ZP24YkCPNL2OTq63volTvGSrahHRW2nxsCnxSF0uhWK4TqldfAWJ4TV6luVloTuuE3qO+ksdYV68xr4nuXB1gnJTOyyXyzg8POy8sB7Wo3K0WrRcLuPu3bvxpS99KR48eBAvvPBCfPKTn+xWdDg2UMbcj8D+x9XBbHXFx1/y5fdK3n3qna6xrdwznq1K6nlfHfO0Ss9rvhKj8jJ9J2X7nrxcysr5YTiZb0ZX/uSNfevOnTvxhS98IX7v935vI4+VKr1fqQL5p0wZsM7uZeDZlxMzIJ+l46TB/25oiHzy4+9N/Hs68sdJnnHw3OxakpdCYiL6E4nX25dfM0DhQMVlwvozftrBjYiTjNeFz3JjoQAsN+1m9XeAyThmNzAUn5zF7CoPyY4x6gRibKcHDx7E1772tRgOh3H16tUOxFEmBAMEYQzxaJqT2HaP3ZVMmMdgMOhiuAUSxd9oNIrRaNRNxqwPgaJIoJahILq+Wq16mz4le4YtMXRIpDZ0HWIeLN+NOxoTbAdRdjqJ64O+qefsEzSaPE8S07sM2VcJ1pVeaRiSpX5NmftYJB3KDEuVQZDKOnMMY/4CdTJydLqSg0HXb45DSvPaa6/FBz/4wbh+/Xrs7+93IV4s34GsSPXyF2J5HywZl9k47jIvUQbcS1Tao0LKHCVZ6ExpLPY8+N9DZTzEhuU6wHfD2ecnjSPaAK9yL1++HL/+679ekEilSu9/qkD+bZAPwJu88md57JXfWeDagTY/BCE+GPqEpWvu1WOdOEll6TyNrgvwLhaLHnAjyMvkQuDq3jrWiSC3NLFlHnT32vrEzI/q6pM1AQMnby9L+YvfiP6JJ14/lSXAQkBP7z3r7WCSwM/L51n3i8UiHjx4ENPpNEajUW/jm8uPE72vJuj0FW6ApFzp2Vfe4/G4m5Ql++VyGaPRqAc0Xbc40XubeXwuV14iojOACPLorXTPIMvM+oPHMmdtT6BH3c0ApwPHDOi6nlAHRdQ1eTalc/QmU54ybsSby4SgNfOAqyzx7QDXNwhv6i96NgO9NLK0auVe6NIYt7e3F48ePYqIiEePHsXe3l4H4rU6xPZ0frJx1A03yo+6xnbiCgjbjrJgft7eTq5faguOs5mBkHnk9Sxj2Zk2A+okrkiK3HmSzX+cs5jGjWPKWrqg8eDNN9+Ml19+OV566aVUTpUqvd+pxsi/DfJB8iyg7uSD/XnS+jObns8mSh8YM++a/jvQ9PIj1idRecIWi0UvrEOTvHt3RQ6yOZD7xEOvXuadd9DPa5SDh1jQyyxjJOL0nGV6FTNATqAxn897QFhgiidvUMaclCkDBxZ++om3uxtLDvR07/DwMO7fvx/37t2L+XyeHrnHfAigvWwHINnJGqvVyUuoHjx40F2TV13hMtRFgTeWKS+3gwLqCL3LfM4BAjeEC6A6eKD8yZ+e82tZGpLrI/sFn+UmUoJw6op/XI908o/C27haw1NsXJdFpXtu1Ar8KaSGBvDW1umZ7T6WMG8ahhl41X3ltbW11R2ZyvwpB+Zz/fr1Lq+HDx/2xo6S8ZhtzmTYmLcvV9HYnq6DGY+ZTpVAONNuMuIzwyMjtiv7QpburNUAjvXZCWUO2iP6euSGLuXHTbjsC03TxMHBQfzBH/zBRt4qVXo/U/XIG20aPDdRaaB0gHzePLJB3n87oPPfHPDIi667R+isuuheKWTFwXTmiacnlOV4jHJE9OLFHeRmnjJ/Xt9ZSIN458kmbtS455teIIIPToKM+d4E9jPwQDl4O3sdZ7NZNE3TgWDK2T1/kgHB9cOHD+Po6CgePHjQA5QiehZVNsNuKEPKj2Xz9/b2yTnyDszZZiqLk7bq42+6VXkqP/PKi089Sx1zGTlwENFIUfv6c24kOvEe25B1LekedYb9OuuD0lUCX8o7M8J8VYtt7oBOZVN/PW/ysUkWmXc+K4cAmOPJo0ePomma7gx+GZpaiRiNRtG2bdcPx+NxHB4exkc+8pHY3d3tjGrmXzKiadS4cSqdkIEu2dIJwDGA+ud1z2SRGeQ+/ouXbEXJ02Xt7StSJcC+ybhQG9DAcP7dgPZvAnzxExG9scnvq19zH1KlSheNqke+UqVKlSpVqlSpUqX3IFUT9imTe+Cf1BufhUbQE+fp3evi3s3M63WWNyzzGGchHu6VVDiKL0l7vG3myfdlV8YJZ3GnzN/r5EvcDPXwelHO9Lpn3n566N3zxPK0VMz28U2JfOETX49e8o5SN7a2tmJnZ6cnD3lguWJA7xc9vYPBIPb39yMiurdkOrFNPV/ywzZzGYp/hljN5/OIiNjd3Y3ZbNbFJzPkQERPNk9dobc3kw/1gromr61WIFgGV1fcu06+SqsIfs89iJneuM4qHb3PkovSrlardFMuVxkoT8mLnnzu1fDTlrx8hjKx72by50qNryL46oyPAdRX8sY66rf6jrzulI9+6/9wOIyDg4O4fPlyp8ccF7ytxSe98NQj1sPfNEwvfESsxd5nuuqrGb5i415qUXadelFK4972kneedRaVvPHMx8vPNtx6//SVBc/TxzL2sdVqFXt7e2eG/VSq9H6mCuTfAvkE/lbziFjf4Fq6nwEHXybnsreH1XCiU76lMpVXdr00iWtQ1RGDOnaQgy5BBIEiJ16CZi6pOr8CGV4+jQ5OLpRf6fQQTe4Rp6eaZC864STsvGUhKZK/T0Cst9Jkp5DofxaPnIWIKBSFzylMSXsX9vb24hOf+ETs7OykBqDK5cYy8qr/2sxMgMeTbmg8DgaD2N3djYgT0MGlcMmVYCsDjm7QUj7j8XjtuD0PW3AAz/xd9t4OBKJZGoJzb0vqO5/xMCIvh8/4Jt+SDku/jo6OerHqyptGAZ/jdf7n+ONtQbCYGUduVCsd0yidh5Uxb/YZxccz9MXbwIGhnvF2Yh/x8UOGH3WE7eIGIfngCVNucImvtm07I57tUDLmHdy7HqjPUwb6Zr/w8VFU6ldO2VhMZwyvs81LYZIsj3qZ8cc2Ut2vXbsWo9Eo5bVSpYtANbTmCeg83gkHt9lvT0/Q58Aju+cDf8YXYyWz8jIvT8abe2jck8QJjSBXoJ5eNX9bqPJx750P9D7pEyi5PHxFQ89xtYD5ZHJmvG1E9OLo6W3PDLpsQ6yALQ0XAYuSIaeyKCcHxQ6QlJdiwmncEDDIy/rKK6/0Np8ytppA2ldw3GgiQKJBp03Pahd6OdUmbC8BH11n3ehhJhEIamMnjUi1nb652VNUOg6RMvD2UDnkje3gm7E9Pt/lpf/ef9leMuIoS4J7NxAEJtl/OC7oeeXvKwUE8HyeRiTr62ORP5Ndo6woDwJmto0bE+7pdh4IZKUfysdXl6gXup+dxsLf3ATvq3C+YieZiUf3gHNsy4wt1pl5sj6uX+pPXlc3FrK6OWV94/j4uPdGbvZ/Au6I6MYET8v/Ps5RB3idz9+5c6fIc6VKF4GqR/4MyiZJ0qaBLwMeGRDRdY4Q5mQAACAASURBVAeVun4eg4D3HQyUJtkSX25QZHVxLw89MgTmBD5Kp/zpmfMJk/JwsC+Ps/PPYxQzQM/JkeXQG8hnOdG6JzPzNkoGkoteeiSe3dvGOtJ4kCy8DnyWYF3lqF2apukmTYaScFK8detWfPazn41Lly71joH0owL5IbhynnwFSB4y8aKjKqfTaURE7O3tdYCFoLdt28577EdxEgyVyqU+ajVBG+EcEIinDDAyHduc7U6+CK71LAGu9JNtrXwJNnU/Ay/k2/uVg7fZbBbL5TLG4/EaeHfvP/nVbz7jMibYF2VOBumMPMXUHY4dHJsIhmncRZyA5vl8vmYYZGMsnQxuFKrerKcbq9I9npTDfqAVLr4vguOZxhSODdmJSplxImKbZvJ12TtxhcO926RN93wcpuz4XKk9+ZIzrxtXEJg3SWk0hnm/WC6X8eKLLxb5r1TpIlAF8uekTWDeqeQ5LAH0bCLipBGRLzNm/Lgn0T2FHJjPqq/yowfHPWv0xNMbw+Mb3QOUTcKa9BgSQqCsiZMvAnGPF5+hN41pCSjEH0M8eJ+AnmDOQQwB3Wg0WovnZD1IvrzPiY1pSJxAWWelkyeMAEJpWZaftKFvyWw4HHbGgocLuZHngI58uTEiL7G3lesyDSevi65lZ9/LE60QL7avQoFotPkbd1kv8u0efJXtXumI9VUZytcNIBo6W1tbMZ/PYzabRcRJqND/3967B2l+nXed39OtvkxLM25ZsixZtiVZkmN5yZZlxUqME4cFqkJYsuUC4nAvWLxFoJLs1rK7qSyFk2wSJ1SArVocNgTCslSRZdcsRjZJRIDIBAUwiQ0olZ0oiRLFdizrLo+mZ7rfvpz9432/b3/eb5/fOz2yZqbbfb5VXd39u5zznOfcvs9znnN+jLNO7yRXNEgaFxcXtba2ptFoNCVAPt2Ibcx6YvhUlp2GRpJrepd5j2Xa29ubntk+FFLD+rOunT5/u355lKbTyTaZYxJJu8vGIw/TUE/vOsvHeufqFQ3TJOnZ5vPvlvHYGr8pZ67s5NjRIuiXM49RnnynNWdRRr6fz7pe8qQsGjocw7IPclxZXFzU2bNnD12ejo4vR/TQmo6Ojo6Ojo6Ojo5jiE7kX2XMW/Ll9Ut5xDPN9IRnWukVpbeGnqj0SuV7Q0u3uZrQ8pgwBjLDQ1LWPM2A3kx6dZz20tLS1HMoHTz1gV5deuG4MuD3crXBXrR58lGe3IRLL6u9pP7IUspEuakbfh01vZzOj3HR9DKzjFwxoCc107x48aK+8IUvaHt7+8DKQK11Jp44NxW3dEJYZq4O+BrjttOb7Y2zzNttIz2Z9Ii22gD16HrwMj9jhqm71AHTYJntheVqlb2x9B7nqg7rh7Lyg1gLCwtaWVnR2tratGzWP1e42F9aYQ6j0Uil7H+51bplPultn+cNzlUehqRQ9149cz3yy86sl/QiZ3tlG059ZdiP/6acLA+ft37YHzlmsWy87+e9SsWVgPSMc88B2016oFleytfyQGdfzPdannPuY6DuKWsLvjfUv33NG+c5FvL9LCv15Gu11mm4ncGxOMOi2L5876abbmqWo6PjpKAT+VeISw2EUjt2kRMAJ7EcDP1sa8KTDsZPtpbw8/oQUc8wnZSP5JDlSqPAkzc3KzIUhu8yfS6fJ4GgfvJrqdRXTrK8R0LATaKWwwSP5U7yxKV26mIoZIibEEnA/S5JGYlMLumz3kw6W2FLDiUhuaCuTI6d9lNPPaVPfvKTevrpp2f2G/BIPrYL/uYkarlay/jWueXY3NzUCy+8oPPnz8/Ev0vSxsbGdAJvEWfqxETahiPbKSd/6jXrgXXKslHvQ4TEv0sZf2iIOmuRuySLWb8MT+NHjZi/SXm23VbYCPdjuA8yDIUyuf6YLuuN6aT++W6SRrdlGiM0CPM40Ry/WAck1JYr6zDbH4k/w/0oaxoImbfT4Rjo9Cgr9eO8rKfWHJDlyv7EOnI9s60wjaF5I/tpIg3U1nWOo2mcuq2mDJkXw2gy1M5td3V1dWafQQsk75n+5z73ueY7HR0nBT1G/gphiDQTeb/1fBLceYNm3h/y9iRxSU8JyQ+9dvRc+zmSFINeyNzslJN0xp/npDG0spDGTYu8krSlR51pjkajAyd3MA0TB5IXkhwaAPbGSwcn8hbZNYYMBuqMcdlOK4mhY8ANy8Qzr0spuu222/TVX/3Vev3rXz9jtFgPnlRJ8jx506PrcrK+uMrh/Cz/xYsXde7cOUnS+vr6tP2Y6GXcO72uNJ6cpvdOzCMmfN9x2ybLaUwa1L3jsgk/zy/Ouuwt7yjrMDcTt2LNbbyUUqbHua6srEzbNNt9ki8ap2xTliOJf8t4ao0X/j+N1zwVhXtOhjZBUnb/35It9WcP/8LCwjT2nn0/4+pbRkQahqmjVhw8y0H5OD5Yd636YfnTMMyxhGMb22+28SHSPW/MYRujYcI05v2dBijTSwMz027Nb3mkbisfzjd58pgk3XfffQfS7eg4Sege+SuEJNBD91tkPN/JQfIwabUG4hzkOQHmO0muWxMT5WoRet5jGkn06a1phYhQniwHCXQaKJlny3vOiZdL6CRnJissP/WRdeAwoPTKtnSYEy2925SZxJjv+Pg7lt33SfxJvr1ycu7cOZ0/f36mrql7loGrGfMMSpMoEgWnV0rR9ddfr52dHY1GoykJpueW9U59OQ+G4Njr2wqFoI5dDnqH08OXIQtc3m+1C3oPnQ//z35GA43t2Ol7k6sNE4ZdLC4uanV19YDRkQYAvbskiJSRz1K+XGkgQU6vfxoQrJ8WUWVZWWduq1kHfJfp+n+3Ha8y0ahkuySJX1xcnNk4nGMh20/2f8uWqw4ue2vTdauPZ5/Jekvd2SBrjbk5Lua1HL/ZN1r9NQ3CLEvKnbLk+2xP/s22Yr1xfLOes1215h3+/dxzz6mj4ySjE/mOjo6Ojo6Ojo6OY4hrGlpTSvn3kj5fa31f496apA/Nef1/rbX+Fp6/SdL3SvomSa+T9ISkH5P04dpa0zskLvfV9CDOS2foWengZsih5dKWl33IO5bptJYv/Qy9cc4zPaUMQ/GHQTI0RZo9z57v2zvHMJFc7qVseS/15zQZbsIP8aSnteVp9DstL37Knjpn/pubm9P4aYadsF5r3T8CkN5yeq3oic7QIR8RyVACv2fPPs+RZ91vbGzo7NmzuvPOO7W3tzf1WlM/ua+B3k/nw7+pD5cj28/S0pLe+MY3zsSW++NY6Q1l3paN8dT5nHXkGG63A+s32/m8EI4E8+RqgGVie2Q69NY7jfQg2ztJD7XbZYbruH1ap/T++nkfKcnQrvTSp+faem+tKjDMJ1fJ0tNv0NPb0g09/jlm5TNMkytQ7E+5WsD6zT7E9kAwJMi6yJCrbA9s6+lpl/a/quw0c8Ul5WR9cWzK8Zjlotc7V4mybrJPsxxMN2Vj+hw7h/TC+5Sb5chVBI6VKa835TME0r/vuuuuA3J0dJwkXDMiX0q5X9K7JD008Mjdkv7bOUn8Q0m/NUnrtKR/Iekdkj4h6WFJ75H0v0n6zyR966si9CHQGtxamGcg5PIpn28RmCQHvp7L3kO/W3G9aQwMGRzcfGnZcvnWeZAE+Vou3bfIUKbDMvIaCQn11vqIkSeFJNZ8RjpIBtLAar1XStGpU6emusgQG19jviT7LCtJWxoDPic9J0ppP/aU5NZne+/u7mp1dVUPPvig1tfXtbS0NJ0guZTfKnMSfcrENtEyIBcWFnTq1KmpzNzgxjSTvOU9tvednZ1prDQ/+kTCS4KaG1z9XG54djn8/xARJrF1/mnEtPrUaDTS448/rrNnz+p973vfDDmlzlqk2UgyyPAvtkkbCiTPJKnUaRphGd7i+mA4l+VjvdDoTEOQ77TGlxZJZF/f3t4+8NXalvFHPbG95ljmsvDrv63xK8vWMlgpi/VM8kxdpiGcumiNBy2dGLlZnHK1NqYyPxukLBd157r0+MWyttqH5cm6YTly/0RrbPczJP95UMDTTz+tjo6TjKtK5Esp65Lul/R1kr7tEo+/ZfL7wVrrL1zi2b+oMYn//lrrX57kdZ3GhP7PlVJ+otb6c69A3iaZvhzk+0MerBY59/V5JJ5Iz3IS9pbXhRNcKw9f40DqayRZ9NQ4r/TWtuJiWx9BYvlIwPIYySEvIMufAz89edLsKkCrXph26tjykfxRl9QfPacmfOkxHfKKkRjYA+9309Nuwp5kN+NgNzc39dJLL814+lvH47HtULfcCEvdkDRSBqbJurQsOzs7OnXq1IF6aZFLkopccZH2T+ixLEmAWu2YBhDJj2XJTdM0EpLAkgRbTsZX7+2NNx/fe++9eutb36qVlZUZWfglWpK5bMc07kgG2VeTRKYR1iJ2SXz9vn9Tf86T7YirJ9QnZWg5GGhgs7zUeyll5rjOlhMiDRDfIykcag+WZ3d394BhyPZO73cah0yH+uapOTnO+v/c15L30xjg2JBzC8elrPfUWWuTOXVDcp7zyzznSurf9UWSn+0iy0z9p/FWa50eLtDRcVJxtT3yf0LS3zjks3dPfj8x76Ey7tV/XtKLkr7f12utO6WUH5b0eyR9QNJlE/lXgnmkNAfAFtLDMfRsEm8OiP7dGmCHDIbW5NLyEPF/b1Tll1xNXEji06tC71NO5q1ysjx+n2fKM630JJHk5QSeJMleuTSISJBIkj3xGiYv9FpRhyQYGR6Ry81ZLykvy5p/s755JCcnwptuuml6DCQ9nAR1kaTJstGz29I3DbYvfvGLeu6553T77bdrdXV1pi5beXD1xmmYBHO1wvm5fK4DkifWkfNrhdy0vIhDoQ+8ngZhtpskedL4/Pi8t7CwMCWqWf8tsjVk9FtGp5GrX4mWF5ptdshQdXp8Pw2rbFepn5YMSTb9t49YTeLKdLKv0eDlsadcjfB7lIV9xteoVxocLcOBv0nOWwZFy2i/lAf+UnNDtn3qNUkz80iSTvLO8ueKk69R7hyXOIYOlWHevJVGVynjDfQdHScZV5vI/7Skb578/TpJf3POs3dLeqnW+sIl0ny7pFsk/aNa61bc+3lJO5K+/hXI+oowRNRbA1d6t5J887nWwNsi/S2vjZ9NDw3JdmsSGpIjiWPGnZMskBg5FMRppWfFEzTTpYHRWvpNLyjLkfH3fJ/y0ruXEyjv0QPniZnL2fl/S59JGKknTvZZTtZZ1hdlzvAKn9TBfD3BLy4uTo80zBM9qL8WKbFeSGx9+gxlX1xc1Gg00nXXXafXvva1OnPmzEw+loMGTtYJvYYZrrCwsKCtra2ZOHueZMO8nAePumuRONZfGnO8x9UYvs+Y6AyNSELc8jDmMy39Z71QXyxH7ivIk2EoG9s0z2lveeBZvzRAqYtsp6nnLF/2eXq99/b2pif7LC8vq9Z64MQm1nHqjMYlx74cP9meGcrBdOxEoE7njc851uWqIQ2TNDz8TBodrbKlnnPVyOVqPU8jj+Td75O0c6xNQ69lfOTckGD7SoPoMIS/fxCq46TjqhL5WusTmnjYSyl3XuLxt0h6opRyn8YbWG+W9BlJH621/jaee8fk9y838jtfSvmcpDtKKau11s18pqOjo6Ojo6Ojo+M44ih/EOpujT3tvySJbqS/Wkr5jlrrj03+tzk+tOPlRUl3SlqX9IWhzM6ePasHHnigee8Xf/EXDy/1HNATkh6G9OS3POoJenvoXZdmQ2VaadB7Rw8uPSj5Lr3g9trQw2MZHAOdHlxfT29i5pcex5ZnK3Xa8kqmd8+yp7c8PXHpqaMHmOFDQ7pimendZIiD0fLeUo9ZJ76fadCzlx5Spr+9va3t7W1tbGzowoULM15uI3XFEA3ruBVKkjHEXMVwetbp5uamTp8+faDe83/qI72srgduMuXf0r5HueX95SpKtil6GtOLbDC0IvtQouXZ39ramp4uQ53z1B3L6DQoA1d1MpQr+2qe9tPqL609Dswv/8++1fJI82+usKTn1e8z7VZoED/olf1gKISHsnJzfp5+k3laf04jY+LZrrI8lJle9VzZYBu3vPSkU6/Zv5wm69jvtXSbdUR5GOKX+mN6refnhdKwbVIvqdvWWO+/eThArfXAqUP+wFxHx1HEEK88e/bsq5bHkSTypZQFSXdI2pb0FyR9ROMz779J0l+X9KOllN+utf6kJK/VZ1iNsTH5/aqWtbU8eal7867lsnjea02KSUo42HKiaA3sTrdF4FsyctIgad/dHX+gJ08ysGz5saUsRyt+2HJxI2xLpyQHLRLI0Br+Zny9r3FylGbJC8vt53OpPr9MyKVqLlPzhAwaXaxvkuC85xNWUscGdUZ9cKLf29vTqVOn9LrXvW4aK8yvV+bkOnTqD8vL0BzGwXL/xNbWlra2trSwsDAT8pObAJPkSJrZ/Em9kbhaNxmexTZFPVrHvD4U6+70sz+REPt51geNkDQWHSNv+UspMxsskzAmEW/F7lsv/hosj1RkG0/S1iJS/p9fC7acQyE6TKOVfjoVqHuWieWvdT+Mxm2rtfEx6znzsH79Ow2QPA2FMhAZFse2kWOqZWuF7KWzgvobGveYbhpGLCvHJsqZ5eC84/1OTDsJ/JBxQb2xXEy7hXQm8TrbqPfH2JGSeujoOMk4kkReYw/8t0h6otb6S7j+90op5yT9v5L+kqSf1JjsS9KpgbSWJ78vzMvwvvvu06c+9amZa0NE/bDIwY8YIvscwFsDv9NLb5qfIRj3ymt8Nsk180/jQNr3PnrQ5+BND00Sv8zb9+lNyjjMxcXFKYkgWfPfTDP1REJFkpikXNo/6SXRmlBzc6vvpXc2jSPn542lLgdPmcm6sgyeGGkUDBlhXvUw4fE71osn1HPnzumxxx7Te97znpkNvNnW6M0lMUhywfdZT9KYDG1tbencuXM6e/as7rvvPp0+ffoAIachlYSdbbBlvKWhYj20DDu339y8mKs1zit1wuv+O/sTSXPGULMNZ/w1jTmitXExyVYSUqbZOiUk03E5Mm9vLqa3vDV+pE4S2VZpVFCPKSPbrt8rZbyvg+27VSeZPuVlH6HMWZ7UcZJ7GudDR1cO1V3q0/nTk0+ZMk3qg2VNfadR4TSkfZLcGqeJ9Iz7PsfOlDdXUthnW303576su3Q2LCws6M1vfrM6Oo4qklcaDzzwgD796U+/Knl8SV92LaXcWUqph/xZP2y6tdbtWus/CRJvPKSx992x8c9Mfg+lf9Pk+RcPmz8xz9p/pZ6AnETzWv7f+rtFvue9P49c5jM5yGaaHLjTO8xJKwf9oY19zI8el1rr9Ixw6eCpEfk+70n7YTD03mVYgCdg67FVpywTz1m3N5vyOFSDk7893iYfQ5NmyzOf3jZPiq4bGgFJDLnsnoS0lKIbb7xRL7300oGJ3eEeToPv0XvOMlLXaUSVUrS6uqpbbrlF999/v2655RYtLS1Nj4nc2xufDU4ymSQ1vXx8zvXgfIdCQ6hb1q3LzDZKIpWGn68NEZ40yJKYZp2zLr164TaZZWV+mX+uMDgt68cebf+d5I7kl/IlaXTZaVCmTDl2ZN/L1S+SUcrgdEygW+NIyxBiXTM/XmM79fO+lsSR+TE8h++5DbFt5IZ95+/Td9jOU8c5xmcbYJ22ykb5mQfrbzQaTdvePMPC6dA4Zn9vtW06fTg+ULc0rHMMYZqj0Ujb29vTDc+cIx5++GF1dJxkfKke+fOS/sEhn31VDnutte6WUi5oX/Zfmfz+yny2lLIi6U2SfqnmDP4qoUWiD4P0trRIdU5ovJ+elhx4h57NyYGDd8rH5zwwc7BtLXeSUPJroelVJnn0M5m/5SOBT28jy9GagPw7vbP0mDKURZo97SZj2DkJZh36XRsfuSLislsPrVUAlivrIOtM0tQr2SKVJj/WnevZBGBtbW2GsLueNjc3Z3TJ9sNQIrYNErMkMwwHevLJJ7W7u6u3v/3tOn369JR4b21tzdQ70yKhZJ05jMbki23JZc92J+2vwCQRY17pAWe7sb5Y/zSeeD3jnZOg8qx1tsHl5eUD7S7bRate2OYYipLGThL0NPaolzRMDL+TxDNDVljmrFsin+P1/HEduZysp1YeJKNuiz6xiXpkX+J+C55URUKa4xZ1m6ErbB8sr+W0DltedeubBg+/D+G0Wf/sFzkGMq80wpwP5ZB0oL/wOnWYRgjLaDmybyVI4lmelZWVA+3/tttuO/B+R8dJwpdE5Gutz2l8NvyrilLKD0n6Tknvr7V+JO69XdKNkh6dXPpFSeckfX0pZanWuo3Hf5fGoTU/82rL2NHR0dHR0dHR0XEt8SWF1lxB/LPJ7+8spZz2xVLKksabXSXp70jjMBxJPy7pVo2/8OpnT0v6kMZhNX/7cjIf8hi9Uthz0PKw5rWWpz69v63nDoOW558eqdZ9/7bH0J4mnt6SXiSDMfT2INkb5vel2fABhrxwKZne1NaXFOetjOTHl1p647I/kV46e1DpCaQnNL1T9HbRu596nreUTn3Zy5aexiwLPbT+3+kuLCxobW1NN9xwg06fPn2gXPRgc6nboQOl7J+lzVUFX3f5qPdaq1544QX9xm/8xoH27Xo1uLrAtmnvcoYUOSwny2xd2DvPD0FlHaenl7Kkh1qa/XQ8y5weVNZx9tv08lsPXmVx+gyzoVz0gLJP+l2HSHllzLJa/lY7pceY7YXp8h7fa4V5ZHhN6pH6yT6RsuU7rdA21k2m636ztLQ03WjMkCqGHmXoD8vDscrtyr9bK4ZOI2Xnc/7GBttIrkpk+2EIEFcAnD6fZ7gKV1Hdz3d2dqYhK9Sh3x1avWL9pL6Zlz885zF4NBrNzCF8Pld5KY/1Ts//Pffco46Ok4wjSeRrrY9oHLLzgKRfLaX8H6WUH5P0uKRvkPRPJf19vPI9kn5d0g+WUn5m8uwvS3qnpL9Ua/3Nqyx/839OnC3S1iLuOSny3Zw0mR7T5eTTeiZlpZxD5UoSn2XKiYoTn4lVkksTKefFSYUTlp9LXXIC5uRvYseQGd/z/dZpDakzy0Ji7bTzCMGc3KT9iTdjln2N8madkRzmKUG5vG7ZOOGZZLP+/HEdklcS8NzkOhqNpmVnXbo+nFfGYEtj8ry2tqZ3v/vduueee7S2tjbTfhknzf7ANuT9CRlClYZNkhXrK0mW30vd+X6rDbA+hkiSjYw85YZtl8ah03MbShLcatPsD9QVZTWBst5IjLJ8NN6oR8vBcJHWmEO06u8w93d3d/Xss8/OnLyUcdTUI9sO6yk3o7Kuk+Bav+4bSXJTp8aQAZF9nPeyb7OPt4xM9vkW2eV19tNa90+L8ulF1GUrTl2SVlZWZtpIjkO8ToKfbYXtnf8zXz/LfObNiWz72UcfeuihZjvr6DgpOKqn1kjSn5T0U5K+TdIf1Pgkm8clfVjS36jo9bXWc6WU3ynpByX9AUlfK+mspO+stf5fV0K4FtFtkY8WyW4RfXoxhtLIybc1uftvptV6XmpPRpcqGyc6TiScUFoTOO9nfr5PckMC3iI3TKuVZhodLpO9Zkna8sx2ggSd14YMHRoklzK8XMahuNEkk/xEPclM66QSykTCV2vVxYsXp+TY+xl48g7zzvcpt2Xa29s/3Sa9ac7z2Wef1bPPPqu7775bu7u7M57n1C914Lxzg2y+S4PIZfKz/LZB6oz1zrpxvWQsMg0W55XGYiuGnvVIou/rLFOelU2jIPN3e0sy7zI7rpj5s59x/0FrPKGcaaAzrdQR+wFBAk4dLS4u6uabbz4wVrkt8dhYynupfpjkj5vfh4w7ktFWX6deWPdZB+mlt54oG8kyY/FzHGY7pdHQcqTQ8HEerKvWuM+Y/kyX+abecv7yM9km3R6p79ZcY9l4kILLQOPDad9xxx0H6qaj4yThmhH5WuuTkgZjVyZE/ScmP4dJ71lJH3hVhLsMtEjrpZ5PYp6g94wTYw6qTq81keWmqqHJzoNyekDyudzQmkSRA73UPnKS5RvSQ5JghjC0dMmJPCdoE3d6JA17vkhe08ufJNthDlkvLAvL702e3HyZ5JaTceqbRM355OZV59HSDTfvmrTTO7+6ujr93H2t4xCVVmiTy2K5ah17500AGa6R7cbPLC4u6vbbb9ett96q5eXl6ek9SRKzP2R9WA6TuiS0tY7PZ0/DJdsG65X9ysYC807yahLF9upy5ipVy6hy3lyNIXni30ybaeVxfUzfadhY4ylEli+Pe2WbTeNinnc6iav/ZntujWNEy0vOdGkwMcQukeNc9lGXkWlm+iT+Djdz2i6Tw3FYF1kHlIMf+GK+lDPHQ9Z3Ggit8B+2c/5vuTket8ZstguOAXw36zbrk/rIeaRleM+bA1InlsPfRvAzu7u7OnPmjDo6TjKOskf+mqNFgFtoEeChZzjoJWFukZj8m3lxEM3JuOUBH5qESYTyHaeZy6mMd+fk0PJE+nee4sDy+X5r4jFMbFpeORI6ltNhFZxsTaqTCNILaj2T/Po6J/uc8JI8mhx6JWOeIWaPFctsokjDLpeW6VGld9Q6MoG47rrrtLW1NfVW7+zs6Pz581pdXZ3xjrcm62xvJF8XL16cxnbn6R65qnLx4sWp95JHi7rd8pQN58dQi0R6VmlMMNyp1ZbYBp2+Pf5DxFUahyCk8ZREq9VfXcf8zfetr+3tbS0vLx8wrtPgsZ7Z/tOIzffYTqgbtstsRyRd8wzqFmnPfPJ/jj02SnPMchvIuG23K6bF1ZAcx/xMfoyNBlXq2GfDZ590+Uj+M+/UR6vO07BJY6b1jvNm35FmT9jK1S0+x/+df37rYGg+upTBnXKmrgzKzz0+ToMrlEzbY6nbxMLCgr7yKw8cWNfRcaJwJGPkOzo6Ojo6Ojo6Ojrmo3vkLwP0IrSWbee91/KQGPM88+np4LJrvku5uByfaeUyfcu7kp6h/EkdGLlRLNPxPXuyGPaSCNde1gAAIABJREFU8Zf2FDndXDmQNOOtdTr0iDkNejelg7H29jTRa26vZnrbuRSddVtr1aOPPqpSit71rndNvc6p42wP+SXSlieWXr8ME0pPOFdKKLdDRzY2NvTZz35W6+vrM0vVuUqTbYJe21rr9F3WvcvDVSI/W0qZepztcdzbG2+8XVpa0tLS0oyOsg68tE5PptuOTw7xShHbXCte1x5MftmXafJv6mM0Gs3Uu2VJ73srbn2of/OHdUxvK0OkcgWOaTk/r7IwFIQeXoZeMY38RkB6mLN95DnulIMrQy1vLsOb6IVlm3V7W1xc1Gg0mq4AcbM482Ldu/z5gS16o32PK0c5fvIevfC5Cuh22Bons88PtS/Ll9fZZvyTK3Ct8TbzHVoJoEy8x/A4rr5mWVrzSe7jaK305Ue5/F4rVM+wPLmJvaPjJKIT+VcBLTJ/GIIvtUm0308y5/sZwyjNEvdWfK7TpGxJKPI5TgQZXkOClEujJKVpNDA+OPPKTWVeOs2QnNapKUk0nZdjudOAoR5bMiapZzjDEFHz/w8++KAkzYTU8EMx0n6Mr/PNoynziM2MbSVBykmP7cf6Wl5enjl15gtf+IJKKVpeXp7qkZtDaQRker7uSXRvbz9O3mWWNP3IE0nJ6dOnD8THLiwsaGVlZaZM1AWNOxplJLkMIzFxo+5b8EZEGoNZt9lP2K+SfPma02O/cJ0yLYbDkKBb3iRBLeMh+57rg5uY2bb5cSiGRxlJ1C2P6zj7Wr6XBgvDXdIoyFCnHLNoXEv7pP/6668/MA7yeRJg6ody5VhB/RDZz6ThmHj3AV5zXh6zWqFNLDvHqWwv3FeRRNshYU4v9ZsbWVMnNKhYT2nQso5bzql8l/oYcmbR+GG/4wb1rCum/dhjj+n9739/M+2OjpOATuSvENIrNO8Z/82Bch7BH3rfGHqGEwsnPQ6+SRYS9Lgn2XV+aYz4enoZU74k7Z60eNIMPZPOo2XM+P7y8vKBjbo8bSK9OiYtGf/u9OzJpdx+x3o8derUzLnQGRfNuk7ZGa+fnlbrITfmSpp62tPrZcJmImbSe9ttt+mGG26YHjl33XXXzcjsd5OM8NhQ1heJk/Vv3dc63hx77tw5bW9va319fRoD7rK6vEtLS1MCah1zorc+uJ/BejGJp+yMu6ehkpsCW8g2xvogESTppfc/vdxJ2DItbsxuEdTWu1lXXBFhDDnJEMufabdipTlWEKyXJOCt39IsIU6jmnpn/3efa62cZJw/DVvXvdsk6zrHHRqb9LanLphXvp9jBeUhUc1xle0k64ppeWUqy0GnScrIemmReZJ+GqFcfWjNR6xP5pfGp5/J8c55pnPGY1Dm4TLn2CtJv/Zrv9aUraPjpKAT+auM1oCYkwu9Rnl9yFvSMhhag3q+x9+cSFqemByQk3haZk6mOSlRdudH8kwvd3rsaAwMlbElv0FZUg5OOulRS+QZ6c7bZfCHVfgxnlLKjNe9RURYVp5Ok8aJdPBs/dZEmTC59JnuPjbSE/bOzs40tMV5sQ7Ts+2NxJYhPbYmMFtbWxqNRlpeXp45P97txKsCltnhSC3jxvrPFR2fVON2aE+0DR+e721DgaEc85BEz/myDtyWkri5HF6pSMLKI/myv9AbTZJN449tOIk2iRrbG/uYQdl4L3XE8jId9qmUgeNI1luOX5l2Sy56tYf0QAJPZBgQV2yyfaeTI/WfBDnLxTbMNitp2s8ob45ZOSYnMWef5z22Q+rE93MjKY0BGuSsw6H2kWMkSbf1m8YWy8jxItsQx2Kfh0+ngfO+/vrr1dFxktGJ/BUGB7r8nYNgen5aRDJJfev5FmHgO/M8TDkx+31+pZUDbIbQcHIhucnJh14sSTOExvDESTJD+DonrJxAOZGk99gy0ftEPbbIbGsSI9EejUZ66qmndO7cOd11111aW1ub8TDa6+XfLfDsaXrw0uDgfdaHQSKYZdzc3NSLL76o9fV17ezsaGVlRcvLyzPtgYSKRhp1M2QsUb9LS0taX1/X5uamRqPRjHy11mkIjsvROh+7lDLjbR9atm/F26ZHWNpf8WitPrXq2HWXJ2/k6UfpNWZbS/LE/mLZmZZ1YbnTAE/y7ns0HrnixPQtGw2SLLvTovwtcun7LaM0iWnLIy8d/IAc87OR6HKwPlK3/j9JPGVOA4wGng1dhral0Z/lz7FMOrhvxfm0VtPyeMkhLzjDhFpjarbbTCeNQLflvb39k5LYH7J9cg8M65ZjQ+rbusjxlNdbBkrOQ7kaxjxuvfVWdXScZPRTazo6Ojo6Ojo6OjqOIbpHfg7S+5UekkvhUs+37s/zkudzrbCA1jvz5EivJb2g0qzH3RvoGF/M+9Lsud5+h56Y3MyUS6r0cvn39vb2zLP0KPJ9y5+byvh8lrGlr/TwOzbVKxP0VqUnam1tTXfcccfUi8jVgMwvl7HpMU05c6k8P3SVKwpsGxkjvLu7q3Pnzk3LRjnZHpwuvdz8lDzj6v1uKwRgaWlJo9FIo9FIL774ok6dOjX1/nvVZHt7W6urq5I0E6vPUBDqmV75DHvJ9k2vMr276WE1eKINy0LPLD2s7DvWET209LBTp2xTDEty2Vlmeinp0WU/ybAw6oVtIsc1ppNe1qHzxdMzn+NH1gG9z/YGD41RrfS9Iuj24LpO+TK9XI30O7znfuR2wo9NtcZ+l5c6Tu+85eMYZT2nVzv1S2TfZVvy/y1POMdv1wvT5vVSyvQUKaaToUSGZeDqVGtMzVW1nC88Pwzt/0i9Uxbq7M1vfrM6Ok4yOpG/SsgJunXPaE2G0vCRkrkMmWQqn2+RLQ663FhqouXl19FoNI0BzxAHD8Q86o1pc/LhRJPpsExconaoQG548gTqSYIxxy0ZmU+Sw9Qr3yFRzpAhhgEtLy9P5Wkt0xut5WvqjWXOSYyTKY2blD83jvrvW265RS+//PIMaUmy6nJRPzTkMuTJoQnWO+VeWFjQqVOnDiz1uz55BCBhmRy/PxTaQRld7gxLGiKPJEY2HFthGawzP8s6THKfZJ6Emdf4kRvmSRLEPrC3t9cMP2Kf8vuM/86wiewP+XcaMNQBySqfSZnSeHA9UJ7WGEWdU3cej9yueXJVtoNWu7DcDFlKQ4Z91hvI01hx/bu9sL2nIc3xwv/nPgWnl7rIrya3DDYaD9ykn+NUjq1+l+/wXfaX1r6KfKc1b7XGSva1PPqWekhjJN+l3jo6TjJ6DxhADlotYj3vfr5/qXw4uLaIdz6fk2zLA8R3WoN5a9JhGga90yaWnmDsYaPXk97GJKtJrkj8pYMeKOqXZIyTgyd3kl7rJD1dvGe57ZFuecoMnrXNZ7LOPAFy0uYJK/l8K9aVRLHWOj020jp1GX29lHLgK6YuK4+DtGw7Ozt65pln9MQTT0w91EnYLIONJpeJeuVRkNLY855tgcahJK2ururUqVMzci4uLk6v0VPOv2kY7e7uTuPt/X8rDpmrIHkaR7YJ1gXl5R6E7KO+nqs/BL3iLX34mTToXKfZt1vtmnL73b29PW1ubk5XN9Jr6/fya6A5Jvg69WRZss3yntNo6U/SzJ6b1v3clMr+7/s5TlEGxtLneEfnhNOiDIzHdh1Qdyw7jSrqlWNUSz8t8prP+rnsgwTbEdus5XM/ZV/l+GcZL1y4oPPnz0/zbhkE3KOQjhfWWbYTGzmpA+qTcvI9ysy64nz2pje9SR0dJxmdyF8lJKE0WoQ/SWSS0Pw70+Hknx4x6eAyKycfppHeHEnTQZmEjcQiJzenw4mXkzsJCydakpb0lEsHPcW8R9LEMKBWmAbLRqLG96SDXiGXJ4+4Y9ksJzez5Qew+B7Lyb9d1jyn2sTZ6VK+nGA5UV533XV6wxveoHvvvXdmgyvr0c/bC876ZNuaZ0CarPnECZY3wxdaBqU06zE1kWHduL1xtSjLvbe3p6WlpZk6Sx1nv/I9Gw/Mi+2aJLxlOLaMh9YReiRNTo+bASlDvsN2TYKYhhb7VKu+/TtlY1gb29fQymHWH5FtKEk123M+m57xeTpMMstrfHdoVYuGFctIQkn9ctWt1b58L42PJLjsu9YNDRjey1VRw/2MYwzHO3r1ncba2ppOnz59oD3lcy19DBlUaZTzPg0Y11OOH06D5XZ/dDq7u7t66KGH1NFxktGJfEdHR0dHR0dHR8cxRI+R/xLQ8l4d5h1peDNqetXsMZqX15Cnnl5Bpp2eb3owW9629JTQQ5ohAelpyfcydtmgh50fxaGnjt7rXCXI8qUeWp4+xvIy5IFeNb6Tx79JanqHNzY2phs66WlaWFiYnpFOD5fTy5WXrCN++ZPlt04YKuA43/ReOe+XX35ZL7zwgm6++eYD7Yi6ybANylrKftgQV2ToZbS3fHNzU5ubm9P9A5K0srIy0z6dN3Vca9WFCxem3nZ73JeWlrS2tjYN4xqNRlNPv72lXA3xhlLXWR71yHZkWdKbuLe3N1On6U1sbQx1fgwxaPUXwisI3B/CcLWMk+Z4Qfl9Vjn3irjsblNu576eY9GQ95v6Yjvls/PGpDxyMfshdcO2yP6Unmyu6jEGviUT37Vu8ohD7i1hn2CerLP8m32Eq2luU4wPp+ebaWd52UezbvM56zn3hlCfLR3m6ix1lLomMg+OU9xzkG3Y93O8YZ/iiiPH0MXFRb3mNa9RR8dJRifyc5CTRWtiOmw6rb8z3Rwo8/5QehxUSWSl9ialjNE0SBr5k0u3JNckpVzGttxcRr1Uekny8zkTU5NtknoTfctlgsl7aWB4kvV16tD5t5aRFxb2v0CYH3IxieCGSZOk7e3t6Ykm3BSadd5qDzmRctJOY0oah+FsbW3NECYSyyeffFJbW1szBmOmyUmW9cYwBU+q1qXvOy+GTflZy5CTOAmhf29vb091ubi4qDNnzhzIf2FhYfql2Fa8cqtfua0sLy/PtBXrnT8bGxvT+l5dXdXq6uoBI8ztgGSI+0goh2UheeR1hmZkW8z2mMTL/9Oo4HhAgst3sp2wj1kWypgYIna8zvGTp/0wTcrKPs56Sz3yPfYdGisZKsc6oJwcQ3xaVvZ3y5Ex4UPzQo55DkvM8cXl5GEB1EfGw9OQ9PsMZ2nJQmOA6XrDLr+4zOedPmXONsE6aIXa5TjL93i/ZShzzrIMbrNvectbDpSzo+MkoRP5VwlJlvI6J9ScXHPAI7lK70iS9tbknjIwfrd1389IOjCBM80h7yzlLWXf85sk04MvPaHpfaPXfWlpaTrB5ESY6dOj1SKFnARsEJRSDmzMZL0lOXMZ8jQcep7sRXVsOctuD1yWhc+ZdLhM+QVSTqK58aw1sVMfLP9rXvMaPf744wfIQhKv/J9pur6cLz+GlISaZc3j/1xWGkG+vri4qLW1NY1GI62srByY6Jk3dWOvtskY67XlAeVKDa9vbm7q5Zdf1he/+EUtLi7q5ptvnu4zSD1bDtYF2yTLTRJP4uN3mAZ1laSH7Si94iZ+KysrM15ZGk+s81yd4DiQbSCR7adFUIc82i2Dmff82/KlbGkQuQ9lvxkao9lWrUd6rXP/S0tWkmISfMuWRhnj0Kmj3PifuvJ11jfLSYeG35un55QvCTl1ls4C5pHvt+o657KcL1oysh0zbY51nch3nHR0Iv8KkV6FlqfDyMHe7+S1Vrp8dmhCbHm6mKcnDZ6eMkTcmA69iOm5asnhPFIvSQZYjpwE/JzTWVpamjEMktSnF4jEns+2PDp81s9wEueRiOnV5WTiiZUEiYTf5I5kz+lknfBkCKdt/TncggSBuuCknKsEOUnfcsstev7553Xx4kWdOXNmSnxJAlpgnZEMO+88bYRta3NzU88++6xuvvlmra2tzUzsbAfcCOtyUGfWC+vD9USPLQ2OlIltk9f4vj2VLt+FCxd0ww03aHV1debM8RbJSjLO/pMhYmxbSYJZ1iSRrXbCvuO0bBhxhSCJMvXgUBD22xZ5TQJppPFJXeeY4fT4m3lkfdPgTaPCBJ6hLH7HY1MSSY8Zed3v5fGs3NhOA5xg+BLbAo2FofZHHXDcYPsZCkvKuhpq+9RjPj/U9qibdERw9dG/GRKTY4LzdfpDc1rL+HL53Y8k6Z577jlQBx0dJwl9s+sl0CLbh0HL89Qi3/PeTy8YiXnKKGmGXLbKQfLMcnFS4sBOQiTtD855GkZOAJbBZcjwgfTYk/TkD489TJl9n/llWXmdevRz9OomKcky5sRMz5MnWxoQPNaSE6e9fHkSCQk6Y8n9PD1xXNlgm/Bzfo8erIWF/VN2NjY2tLy8PD21hhNjtg+Wk22DstOTW2udnlSTZN/edYY6sQ6Y5tCKA8lMKeNYcJPHjPN2u6XMJAMud546sre3/wE0H3NpgyJPJfHv9Lya7LIvZD9IPe7u7k73E9DQyT7mVYGlpaXpiTz+SYKa44fbncvqd5x+hleQzLJ9ZN2xzNlPjZZh3yKQ1qvvkbhn2yQpdHruM1kP1nW+Q3AcaD2fpJnjjI+zTUOEZcoxnON3jr8sXyvePcPZ0snRMjRc35bHz9IJ43rNtsVx0DK2xkinwRXPdCK1jKocB3LudB7M94d/+IcPlLGj4yShE/mOjo6Ojo6Ojo6OY4geWnOFMbTsaQx5+9NbQQ9E3mt5tpzXUN7puaSHyHkx3jI94vTStrzklJPPMQSAseXpYcvQGMrKsmU56CGnl5obNrmMTe+bZbfny/HaDNlhOaXxKQz2NtFjxhUOp09d0rvMDXbWUSvkwZ7u1mk00thz6mVuy5Reasu7vr4+DadJ7631Sm8e4365FO4PTrleXX7uB3AZuCLw8ssvT1cD+GErrkS4fGwXucTuvL0CUuvsR7CYTpaJYQC5smJZV1dXtb6+Pn1nZWVlmhbbVyllpq0wXXpaW6trrC972lshagbHg9aJVouLi9ONzPRo54pdjg1sa/SADoUoSQdXAdODmuNQaxWP/ZHgipxXmhyq4Xzp6c36tXwMh8mTaShP6jtDjHj6EMvD8CqurHAc8QoPP9zWWpnIzaocB3gYgMud7Zlti+9yHMr5YmdnR9vb21pdXT0QqsfVKl7PeqI+GZ7IfDimUwbWJfsIx44c7zKssaPjJKP3gDHedvbs2Vc1QQ5sOXD7fj6fE2mS39byfE7GSVCNnDRb7/u5DIcgWeKSauaby7w5UaZsntzSOJgX22z43Q9+8IP67u/+7gOTVWvpl2SJJIGk3Ok6LCQ30XHZnrHOJIAtnWeZSMRSpxn2wbrxkYIM48j3WY8kLib8u7u7eu655/Too4/qxRdfnD5Pop26Z3hQGlnUqd8nuaYeRqORJOmRRx7RRz/6UUnj2P/l5eWZDcKtk4lITmwspPG1t7c3E9fOcmffYTt121xaWppuqjWBeP755/XYY4/p13/91w/E9JocJvFaWFiYtiOnzy/R2lii7qlfb6Z1/VJ2t03nk+Qr26Hr3HlxbCDJon79Domly/ixj31MH/vYx6abutn2WmF/qXdeZ7o5LlFmw6SZYTet9DOdHA99z+VkfgY3wfJ/t0+2yTSG3O7Zxmy4cvzw/gXnz7GwNU6zTbM/57utunjkkUf0sz/7s9NnPL64HnmULPuDZWGeJOQ5rrNuUvYM/fGYwXmS+hkybJzv4uKi7rzzzsH6/3LBAw88oAceeOBai9Fxmbha9dY98nMwjzgfFvMmsswjf8+TqUUKOXEkgU1izfsGCUBOKDkYtyZgHvPG+HV6VDwB8D7zmTcxc6JokbIsG3VsbxjjrjlRJzHK4/goHz1/aXx5csoNsEmkMkY1y8DJ0R741upEKwY2SRUJofNZXFzU7bffrtXV1RmiM7QCkuVjOV2fTN/pOFZeGhP29fX1A7GwLZJVStFoNJoxaujhdp2aNEn7q0wZR5x9xbph+2BZqSMTx42NDW1sbGhzc1PXX3/9zN4C6jaNKrc5xwtTLq6esJwkqtb9Sy+9pNOnT09XUFp6pzz01LPO2O/Z34faI5H9jsYfSR5BApa6yjbO97NObCjyHPI0qFoboJNMckxymZJcthwWTstGFp8lwSecB78HkPfoBGiN/61xOp0jlJVlo06yTnyfRlyOma0VAN/jJv3UD8e3TINtMue+NNyzTbJ+adzfcccdB8rY0XGS0In8IZGE41KeoPT2tbwrfLb1/5BnZUi21qCYk1qScubZmoycXi6HMozEA2wuwbbKwLxNbFreJJJ/X2dZONDneyTnfC+92yaGJgecXFu6bb3LCY+khcYBVypa5J7e5yybSTwnt0xvd3d3GlbDiTzPyOexjpJ055136tSpUzOeYddHhtIk0W/VLcvq637+woULeuqpp7S6uqozZ87MpG1Yr9a12wfbTBI43su2Tq9ha7m/RS5dH5Kmm0lvvfVWvfe979XFixe1vr4+4xVukaBcgUvDztdYfy2D2e1Ekl772tfO6D29xayfXDlhvbXIO9Ngf2HdtAglPcFs+1n2Vl58hn0l88vypc75vJ/L96yvNNCpD6aZOmP9+W/KREOYdZx1TfAe219u8OZY1vqgGXXIECIabTl2sZ9T/2xv6dRJPeVYzDql7C6fjZkcg1vtN8cEGiPp+FlYWNBdd92ljo6TjE7kryByoCIZJlrekNYz/t0ivTmBZtrzPEatgZ7v2utmIphkmQO80SIn0qzH0gTaMcF+zv/z2fQyp5x+3nK2dGkPruWlR9eTvMkwZU9S60k9vexp3Dlvkgh7Uvm/vbYuq/PghMv07Znk6kG+7+sk805jc3NTzz33nHZ2dnT77bcf+PIk0/Hf1oMNCevG9cITjVxHbi8LCwtTAr+xsTHTBil/tmvrMCdvtsvRaDStd+qKBqINBMfOM/0k8UlgTJi9N8HX/DdJGgkR+zufS5LIe7mKQ5CYZV/me/T65wpMa+xJ4yjbLv9vrcSlgeLycLWNabWM5JZTJFd9WmQ/DbeW7Oyz+Q51zDqn8eEwD/cPE9KWJz8dJynP0DjPPme5ShmvSA0dA5r9hmMDjVeO0U6jRfBtKMyrs5au/X8S+9xPwLEuT7PyO15tahmSrZUFy/3GN76xea+j46Sgx8h3dHR0dHR0dHR0HEN0In+ZSG/PpdDy0Bz2vXyu5an3dXpc6eWiByg9kfM8yeldMexJyWv8TU8LvTz0qNKTyThTe5S88dHvZVx1S156Ann2NT2h9FandzS9iC6Hn+d52+mBSr24HPSQefNjniQz5G1iubNOeNY3ZabnN5ewfeqHJL3hDW/Q6urq1Iub3ttsB/Skpjyts8td95a3lKLV1VU9//zz2tramqmb1okirfxz3wJXIdK757AYtgOefJLe7dZKisu2srKi173udXr961+vU6dOzXyoh6eqsJ1xFYWbYdNzzfpxGRlyRm8qz7CnB5117rJxw3auZPgd/k/PrpF6yXrP+mP74/2sz/S4ZviTr7GM1jH7SpaJcjs/11V6kzN/hsewjpxG5t0KQSylzOic17OeuArisY9p+3rKShm44d7yckWI7+cYw/ZfSpn52Fx66tmvskysC+ft8TfbN3XqsvObBq0Va24MdzkYvidJt95664G66Og4SSiHIZVf7iil7JRSFu+///5XNd3UbUvXSa4Pk07eaxH8y6nXJBm+lj9S+2uZ+c7QUnLKNpTOUBla6T311FOSxoP5pYys1NUr0fcrfXZIF4dNb2hZ3vdyaf9SbW1nZ0ej0UjLy8sHPvjTmniH0kpSNq/Nk2C99NJLkqQbb7yxWd7LwZDO5ul7qFytdFs6H8pv6PlLGfRZt0Nt9TBtyM+36uZSZchytJ533fFYzizzYXV2GAy1oTQMsgyH7ZtDum8R13l15PuXU+ahsfcwaR12/PL/58+fV61Vp0+fvmSaLZ0cFkPvHXYMHEov/zbe9ra3XVZ6xxE+Ve++++67xpJ0XA7m1dvZs2d18eLFF2qtN32p+XQiL6mU8puSzkh68hqL0tHR0dHR0dHR8eWNOyWdq7V+ybu1O5Hv6Ojo6Ojo6OjoOIboMfIdHR0dHR0dHR0dxxCdyHd0dHR0dHR0dHQcQ3Qi39HR0dHR0dHR0XEM0Yl8R0dHR0dHR0dHxzFEJ/IdHR0dHR0dHR0dxxDXXfqRL1+UUtYkfZekPyrpdkmflfQPJH2o1rp9LWXrmI9Syv8k6Q0Dtz9ea/2XV1OejvkopfwFST8i6cZa60tx7zpJ3yHpAxofyfWMpI9K+mCt9eWrLGpH4BJ19wFJv2Pg1Z+vtX7kSsvXsY9Syk2SvkfSH9B4fHxZ0qOSvrfW+h/wXO9zRwiXUW+9vx0hlFLuk/R9kr5e0mskPSXpn0n6nlrr5/HcFe1vJ/b4yYli/6mkb5D0qcnPOyQ9KOmnJf2X9aQq5xiglPK8pNcO3P6uWusPXU15OoZRSlmU9O8lvVNtMvh3JP1ZSb8i6eck3SPpd0v6j5LeXWvdvLoSdxiHqLtPTe618Ldqrd96hUXsmKCUcqPG89hdkv6tpF+S9BUak4wLkt5ba/3U5Nne544ILrPeen87Iiil3KtxvV0v6Z9L+i2N+eM7JP22pHfWWp+ZPHtl+1vrC54n4UfSn5ZUJf19TQyayfW/N7n+p661jP1nsO5eM6mj//Fay9J/BuuoaDzh/FlJ/3pSX1XSejz3uybX/6WkZVz/3sn1D17rspy0n8PW3eTZFyX9yLWWuf9USfork3r6/rj+302u/7vJ/73PHaGfw9bb5Frvb0fkR9I/nNTPH8W1IulvTq5/3+TaFe9vJ9kj/wuS7pf0plrrU7j+FRpbTf+61vreayVfxzBKKe/U2BL+Q7XWf3yt5ek4iFLKDRovDydmvLqllI9I+sOSHqy1/kK8/4KkL9Ra33yl5e3Yx2XU3WslPS/pL9Za//rVkq+jjVLKr2kcInpTrfUirhdJn5d0q6Q7JP019T53ZHAZ9XZevb8dCUzqZkPS52ut98S9eyX9qqSfrrX+/qsxx51rCVIKAAAG5UlEQVTIza6llNMak/j/QBIvSbXWxyU9LelrSikr10K+jkvi7snvJ66pFB3zcFHSN+Pn/xt47r2SnuUAJ0m11vOSPi3pTaWUL/kT1h2XhcPWXe+HRwQTYnGnpF8hGZSkOvbWfW7y7xvV+9yRwWXWW+9vRwc3ahzn/vONe7uT3xcmv694fzupm13/c0mLkn554P5ZjZdD7tDYsuo4WnjL5Pe5Usqf13ggfFHSw7XW/3jNpOqYota6K+kf+f9SyrflM6WU2yXdIulfDSRzVtJXS7pX0m9eATE7GjhM3U3gfvhMKeXPaBzXuyHpkVrro1dWyo7AgsZG13N5o5RyRtLb/K96nztKOGy9PS3pqyZ/9/52jVFrfUFj3tHCt09+/4urNcedVCJ/0+T30wP3X5z8HtpM2XFtcbekPY2t2XVc/8HJppJvnZCRjqON3g+PN+wh/Lj261KSVEr5uKQ/NvE6dVxhTMa7f5LXJ5uVf1TSDRpvonTIVO9zRwCHrbda6xOllG+Z3O797YihlPInJL1H482u75T0tyT9uKT7Jo9c0f52IkNrJJ2Z/N4auL8x+X1SDZ2jjrdo3HZ/XONVkxsk/V6NQwA+IOkHr51oHZeB3g+PN+yR/2mNvYNrkr5G4+Xmb5L0d6+RXB2SSil3S/qExscrb0r6c+p97shjoN6k3t+OMn6vpG/V/olCb9XYE39V+ttJJfI+I/7UwP3lye8LA/c7ri1+QNLvrrX+D7XWz9RaN+r43Phv1LhjfMdkH0TH0Ubvh8cbf1vjY3r/ZK31V2utF2utn5T0+zU+fu2bSylvvbYinjyUUpZKKd+lsQf+ayV9RuPx8t+q97kji0vUm9T725FFrfVPa+xQfEDSP5b0X0j6iK5SfzupRP6Zye/1gftetvr8wP2Oa4ha6yO11kca1z8j6d9JWtH+klbH0UXvh8cYtdZP1lp/qnH9nKSHJ/++4+pKdbJRSrlT4zHwQxqThA9L+h0gg73PHUEcot56fzvimDgUPy3pWzTekPxu7e99uKL97aQS+V+Z/P7Kgfv3SHqu1vqFqyRPx6sHx4DuXFMpOg6Dz2jsiZjXD/c0fGpKx9FF74dXGaWUN2j8NdB3avyhma+qtX57nf1yZO9zRwyHrLdLofe3q4hSyh8vpXyilPJH8l6tdUfjepTGR4de8f52Ion85MjJs5Lun3waeYrJOfJ3aPylro4jhlLK7yul1FLKjzTuLUl6l6SR9o21jiOKyUavfyXp9aWUmYGulLKu8cahT048Th1HCKWUt0364U8OPPKeye//dLVk6tBf0/g88p+S9DWtE7x6nzuSuGS99f525FA0/vLuNw7c97nwv6Wr0N9OJJGf4Ec1XsL6AV+YEEF/aOEAUew4Evh5jePg/3gp5W1x77s0HhB/otbaYzyPB3508vuHSikL0vRs5b+icVzhh6+VYB1z8bikJyV9Qynl63ijlPKnNDaoP1Fr7WdeXwWUUtYkvU/Ss5L+SK11aHOd1PvckcFl1Fvvb0cLD2u8EfkPTpy/U5RS/muN6+Pf1Fo/p6vQ307yl12v09hS+p0ax6b9J40trLdJ+nCt9dvnvN5xDVFK+W8k/ZjGH675KY3jPu/XeAf/b2rs1XhmOIWOq41Syic07l8zXwed3Pu/Jb1f401e/0bjDUNfJenjtdb/6iqL2hEYqrtSyjdKekhj79TDGodtfIWk36PxFyi/ttbaV8auAibk7uc0JnwPz3n0f6m1vtD73NHA5dSbxueN9/52RFBK+e81Xk3Z0JiHvKjxN4q+RuP6+Lpa69nJs1e0v51YIi9NreHv01jBN2tMAv93jYn8yVXMMUAp5d2S/meNLd91jb+A93FJH6q1PnstZes4iEsQ+eskfaekP6PxFwx/W9L/KemHaq2jqyxqR+ASdfd2SX9Z41M2btH4vOSfkfQDtdb+QaGrhFLKN0v6fw7x6F211id7nzsaeAX11vvbEcIkRv7bNCbwqxr3o4c15iGfxXNXtL+daCLf0dHR0dHR0dHRcVxxkmPkOzo6Ojo6Ojo6Oo4tOpHv6Ojo6Ojo6OjoOIboRL6jo6Ojo6Ojo6PjGKIT+Y6Ojo6Ojo6Ojo5jiE7kOzo6Ojo6Ojo6Oo4hOpHv6Ojo6Ojo6OjoOIboRL6jo6Ojo6Ojo6PjGKIT+Y6Ojo6Ojo6Ojo5jiE7kOzo6Ojo6Ojo6Oo4hOpHv6Ojo6Ojo6OjoOIboRL6jo6Ojo6Ojo6PjGKIT+Y6Ojo6Ojo6Ojo5jiE7kOzo6Ojo6Ojo6Oo4hOpHv6Ojo6Ojo6OjoOIboRL6jo6Ojo6Ojo6PjGKIT+Y6Ojo6Ojo6Ojo5jiE7kOzo6Ojo6Ojo6Oo4h/n/z5MFzQqJ4CQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 244,
+ "width": 377
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.imshow(intensity_cake, origin=\"lower\", \n",
+ " extent=[tth_cake.min(), tth_cake.max(), \n",
+ " chi_cake.min(), chi_cake.max()], \n",
+ " aspect=\"auto\", cmap=\"gray_r\", clim=(1.e2, 7.e3))\n",
+ "#plt.xlim(0,20)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Modify plot_diffpattern function to plot cake"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from xrd_unitconv import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[5, 20]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAEUEAAAeaCAYAAABc0QAsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3d+PJEl+GPbIzOru2fmxd7wfe6RICbQFSebZR/okE5Bs0XciTcu0YICECRjQq54FPYt+oF5EPgrQH8BHwoABQoAt0aQkkvph2RZsA7YsWw+URVCm7njHu9u9nZmdme7K9ENNVkdFRURGVvds7d59PsTedGdlRkRGxo9vRFUXu2maAgAAAAAAAAAAAAAAAAAAAADAufTnLgAAAAAAAAAAAAAAAAAAAAAA8N3Nl6AAAAAAAAAAAAAAAAAAAAAAAGflS1AAAAAAAAAAAAAAAAAAAAAAgLPyJSgAAAAAAAAAAAAAAAAAAAAAwFn5EhQAAAAAAAAAAAAAAAAAAAAA4Kx8CQoAAAAAAAAAAAAAAAAAAAAAcFa+BAUAAAAAAAAAAAAAAAAAAAAAOCtfggIAAAAAAAAAAAAAAAAAAAAAnJUvQQEAAAAAAAAAAAAAAAAAAAAAzsqXoAAAAAAAAAAAAAAAAAAAAAAAZ+VLUAAAAAAAAAAAAAAAAAAAAACAs/IlKAAAAAAAAAAAAAAAAAAAAADAWfkSFAAAAAAAAAAAAAAAAAAAAADgrHwJCgAAAAAAAAAAAAAAAAAAAABwVr4EBQAAAAAAAAAAAAAAAAAAAAA4K1+CAgAAAAAAAAAAAAAAAAAAAACclS9BAQAAAAAAAAAAAAAAAAAAAADOypegAAAAAAAAAAAAAAAAAAAAAABn5UtQAAAAAAAAAAAAAAAAAAAAAICz8iUoAAAAAAAAAAAAAAAAAAAAAMBZ+RIUAAAAAAAAAAAAAAAAAAAAAOCsfAkKAAAAAAAAAAAAAAAAAAAAAHBWvgQFAAAAAAAAAAAAAAAAAAAAADgrX4ICAAAAAAAAAAAAAAAAAAAAAJyVL0EBAAAAAAAAAAAAAAAAAAAAAM7Kl6AAAAAAAAAAAAAAAAAAAAAAAGflS1AAAAAAAAAAAAAAAAAAAAAAgLPyJSgAAAAAAAAAAAAAAAAAAAAAwFn5EhQAAAAAAAAAAAAAAAAAAAAA4Kx8CQoAAAAAAAAAAAAAAAAAAAAAcFa+BAUAAAAAAAAAAAAAAAAAAAAAOCtfggIAAAAAAAAAAAAAAAAAAAAAnJUvQQEAAAAAAAAAAAAAAAAAAAAAzsqXoAAAAAAAAAAAAAAAAAAAAAAAZ+VLUAAAAAAAAAAAAAAAAAAAAACAs/IlKAAAAAAAAAAAAAAAAAAAAADAWfkSFAAAAAAAAAAAAAAAAAAAAADgrHwJCgAAAAAAAAAAAAAAAAAAAABwVr4EBQAAAAAAAAAAAAAAAAAAAAA4K1+CAgAAAAAAAAAAAAAAAAAAAACclS9BAQAAAAAAAAAAAAAAAAAAAADOypegAAAAAAAAAAAAAAAAAAAAAABn5UtQAAAAAAAAAAAAAAAAAAAAAICz8iUoAAAAAAAAAAAAAAAAAAAAAMBZ+RIUAAAAAAAAAAAAAAAAAAAAAOCsfAkKAAAAAAAAAAAAAAAAAAAAAHBWvgQFAAAAAAAAAAAAAAAAAAAAADgrX4ICAAAAAAAAAAAAAAAAAAAAAJyVL0EBAAAAAAAAAAAAAAAAAAAAAM7Kl6AAAAAAAAAAAAAAAAAAAAAAAGflS1AAAAAAAAAAAAAAAAAAAAAAgLPyJSgAAAAAAAAAAAAAAAAAAAAAwFn5EhQAAAAAAAAAAAAAAAAAAAAA4Kx8CQoAAAAAAAAAAAAAAAAAAAAAcFa+BAUAAAAAAAAAAAAAAAAAAAAAOCtfggIAAAAAAAAAAAAAAAAAAAAAnNXm3AWAJV3XfTWE8MnMS69CCP/6Qy4OAAAAAAAAAAAAAAAAAAAAwJvyh0MIl5nj707T9L0fdmE+TN00TecuA1R1XfcihHB17nIAAAAAAAAAAAAAAAAAAAAAnMnLaZoenLsQb1J/7gIAAAAAAAAAAAAAAAAAAAAAAN/dfAkKAAAAAAAAAAAAAAAAAAAAAHBWvgQFAAAAAAAAAAAAAAAAAAAAADgrX4ICAAAAAAAAAAAAAAAAAAAAAJzV5twFgAavQghX6cHNZhPeeeed0HXd0QW///u/H25ubo6Oz9dwbJqmcxeh2de//vXi8/3sZz97hhK9GUvPJNf231Re30n+4A/+oNh+PvOZz5yhRPfjPp9hS9sq5Ve69ju9jb3J+/vGN74Rttvt0fFhGMKnP/3pav7z8fT1bprCww+uw9RN4fnbu9euL4YQQhcuXmxCNx0/x1q7uM/xiDfvw+iPH+Wx4Jvf/GaxT33qU586Q4nW1ctd+tvRWFBJ68OeV96UaZo+su3xPsu1dl7+sJy7ju/Du+++WxwzPvnJT34oZbiPNjH/Po7j0Wvz/cXHuy6Et5/srw4hhPDet0OYT+n7/vV5h21sGIbs8fn3XJs8dzvtphAevXh1cOzZg8uQCYd2538Y67AuhOuHh2uWi+eb+VG8WSfmvbZePjbjwz0/i4/k/DpN4fEH1weHnj64KPaBU7XEHe+9914Yx/Ho9WEYwic+8Ymj89fksb82TOHm4eG4vvlgyK6BSuVc4z6f+dq0ui6ER8m9Pnveh+nEh7sfy6cpPH7xul+8Turpg4ujbnHuGDBXX1M3he2jwzY2PO1DmMrl/U5cC09dF7YPHx4cG54/D91d2msXjvvW86E6Xr7pvaVuCuHxy2R8u9qE6aP23LoQbh4ldffstu7OuQe8Ju+Pzdz+Xezb3/52dp7t+z68/fbbZyjRodY29HEdez9stfr8qNbhKeNI673s0+66sH306OC14dmz28XuPciVKXdv3uP76DvlGZ1j7/0juc4M53sfYtVe+xTC45c3IU7l/atNmPpwvG541n84+zIfglodTd0UxkeHr/dPu+Z7P2VdtZTWhz3GdSGEJ6/XvFMfwvO3p/BqM+xf/05qC7NT3ys6dZx8//33i3HpkydPMld9fL2JfaGuC+Hx48P6e/q0D1PDGvKjGgd+3HRdFz2P9fPy6hj2DXqTbeJNv3e5VD/xPuCcY//0eAxf+qxNvCf65NU2dHNq3W6fae6NXdcVY5M39cxPrctumsLjl4fve7Tumb2JteZHcj3THceD/fMujA8Py5qLC47eIz2hvu+rTvbxVDeF7cMkvn3eZ98XKbXZj0N8X0rju0Zmj770nD9stTnh4D2n154+OO4jaz5Lffi5h/Pff07uvt9/sHnjS4176ctdCNvHt3PsxeUU3noV9m3t6bPb2PTkLO7puWXHlRVj4pL7SGupD3wc2vN92tdpF8J4cRlCCKG/vgph6sLw/Fno3kAnWXqO99lfuy6ER8l7gs+eDcU+c3J8ld5Tt4tbPgpzwpty7vfA+hDCoxeH70s/e3Bxp/elzxUn12KydL496bNiC++Nn+pcMWxLOULY9cujz1M8G27XmG9A83uvIYTHK9vvKc//vr2JOfLUfZ2pC2H78CaE6HkufV7mKI0wHfeN5/nPs93md2t4vjmYJ7tpqo5La9rkR3Ld3iiOLWZ3GXMW1yVTCE+SPYD3rzZ3+hzmm6r/e+3DR/soUxjuWM9veoy5U71Ga6LZkNl3/CjophCevEra5OXd2uSH6UN/j3Dh/Ze7mLouTI8fHxzrnz6tf1alC2GMyvP8a8/DdJM9/1Xu4HcSX4LCx8G/DiF8Pj34zjvvhF/8xV/MTmx/9a/+1fB7v/d7R8c/97nPhV/4hV8o/kHY0htba15b+wGPU/K4T9k/DPgQg6XcxkPJX/trfy185StfOTr+2c9+Nvz8z//8yeU69x+F1/5QMWf+A8PWPOI0c8fXPINTzX8smbrPvHNpxX90+df/+l8PX/3qV4/O+cxnPhN+7ud+bjH9D/OPnuIPT7TmcR9/SD8fzz2vuX7Xjn1rnvEpb5ovja330b9raZ3ShlvnnL/xN/5G+NrXvnZ03qc//enwV/7KXwkhhPDqVT5mnY+nf7y9eXkdvvRP/2V4dTWFf/RfvgwhhPA73/89YRyG8G//bz8QhushbDaHYeLcHtKxp+u6Yt8uHa/9IXRJqY5Lf9x2ilM/hHlff/T7YcUC5x7vz7kZ1nVd+Jt/82+Gr3/960evfepTnwp/+S//5YNzQ1j/vGpt8pRnn6qN0aW0il+I9CF9CcrasaClL6yZH9fOTafGUmvyCCGEi4uL7PF5zF7TV9fey31vDi7d/318YH3tOmocx2K9lNpkLp9f+qVfCt/4xjeOzvvkJz8Z/tJf+kvFdEp5l95wrcl9CcvSuWlsMB9/7733jr4Q8Fvf+lYIIYTnz5/vj11dhfCzP929LvPu2v/mv70OL17uyjt/GUEaF8xfDHN1dfg9pnN7f+utt47KXPrilNIXrdznHyFN0xSubrbhz/2vv3Nw/Df/gx8Mry7yW2a1uGftG6qlZ7u92Ibf+w8P478f+J8+F/pX9bayZowq1WMu7+//J++E4Tr/nJbSKzllD2LNOLB2vCnNF9uLbfg3/9HXX5+zO/b9/+SzYbgeqmv2pblnzRi/NI/mzi+1xVy+F69uwk/8779zcOzv/vt/JLy6yO85nFLWENrm11/+5V/ej0mxT3ziE+Ev/sW/eHT+mvzna7YXY/jKn41jwS78of/xs2G47rPn5461Pr9pmrJfNFVTW3OXxox0vp1dXGzDT3zp3YNjf++3PhGur4fF/pQbk+djl9fb8FP/11den7d77dd++AeO2szatntKDFZ6FtfX10f1td1uw3g5hm/8+LcPjn/y7z4K/av+aA08l2ez2RS/9GtpDk/l7mNOI31tbdq1fNLftxcX4etf+rOvf9vd2zv/8B+H4fr2AxBrx/XtxRi++mOHMdP3/qNPh+G6Lz6/UpsurbNrfS+Xx+X1Nvyn/8f/F+J3mX/13/tD4dXFkN1zi/OM639pL+wUcV7j5Ri+/uV3Q9fd5vnOP/ie/bh0zj9GLs0puWexH2e322LsUTq+ds84t+5eu8/ZMpav+eBUaR/1vtpN6b2AmvQef+VXfiW8++67R+e9/fbb4Wd+5mcW+0XOm95zzTllL24pvVq5Wq+5zzHiPus1503sFbT+ocna/bTae1fDUI5pcumEsJsDv/njXz547VO/8Vuhe/myKZ0QlufoNV+Ccu595dJzWzq3NZ/cmHLuD8Wucd/7D/eRfu66+3xfoTT3n6I2j5fcdX6vjRmlePE//+dfDXE2f/vz3xtePOrCN378/YNzP/0bT0L/6rT6uY/3BWa1mKol/biOjtYJ223YXozh23/++cHxR3/nKvSv2v74al5Xld5jXLNOLK2VarHDfcxxu3bxlRBCF149mML//F+N4bffeRK2QxemKYTP/ObboX9VXucsOfW5r3l9bRxw6ntFp/aHv/W3/lZ47733jl578uRJ+Omf/ulq3ms/o3BKGdfs7Z+aVuu4EO9FzWldXk7hp37y2cG5v/p3H4VXr273MUI4vPd53bV2XbEmRp//bW1jS88yNyesiVfi+PKuf6SVe4+itIfWUmet+a9tP6f0g/voO2vnubXv+axJP95/Hy/H8M2fePo6j93rn/j1h0fvs7x48SKEcLhP1XXd/vd5Prq6GcPP/Pa39r9vNkP473/onfDy9RdlbTabbB9b0+aW1seluls7D+z2d//NwfF5z6xUpta0T/EmPz9yymc6uq57vY98GA9+zz96FL71Y8+i80L49G+8fdSm0pg6V99/59/9vup7MEt1sraNjJdj+IM/dzj3fuY3P5F937HUZmt1Vorja+3/rvNFyZrP0dTk5rT7juvv87wQds/5a8l7Qp/9rfxzfhNq9ZDOafH4Fb/nNPsfvnA8JpX2pHNjYW3dUvv9ruNRa6wyTVN037fXLI0NuTzi31vi57Xvs+ReHy+n8O5P7sbDYZjCH/23XoY/9dubcDnu2tqv/f3H4fq6Le6svd+dvp7rly1rpfSc+T2Z2Gd+8xP7z0Os2SPfpXU4vq7td5fX2/Cf/bN0Xr5tC63vU9x13bj2veNSOqe6bV+7OWsahvD8B38whBDCo9/54dBtL8Knf/O3Qv/qelU9tJTv8Dnuzo/nydpcXuuTuXJeXozhx790+HmI3/gH3xNeXR+3mTXrq/o97eKW+J5qaSztf6fjyF3bQGmfL5dXTe09sJ/92Z89vYCVcsRx39XN+Pp96Vu//iPHn6FIlWL60nuMpf3Pvu+b15ClOi+VJU6jZX1dm1unaQrbizF8LekH8XvjueuWlPpLLYZdSm++vtYOc+22tMe+vRjD7//H3zw4lt73fWu998vrbfjz/+fh314utd+W539KWdak0TJHtoyZS/FULs302e+e7zdCiL5pY/68zJzu0vp61ze+eZDG5/7hp8JwfdymbvML0bm7/PZ7iPvPy9z69R/5gXB9uYnSmNvkrizv/INPZdvkh7kXXvssyinmOTGuws/+1icX9/jX7N/Gxy6vt+Ev/N+Hf6v4tz//vfv+VHuPpzTHpp+tqn3+tPRey5rxKk2nNJbGY+/xPsoUPvX3nxT3HZaM47j4flI6Bqxdw9/l76nGyzF86z95dnDse/7eo2K7OuUzAXdZq8bnX92M4b/4F4efB//v/p13wstN+/xT2rNfO362WLOGbbm+JvdcLi7G8FM/efhs4/dfclrX2dPlZXj+F37q4PVHv/proS/8LWgIu/X30596sf/9f/mv/3F49m+e5U7918VEvkN8OLtbAAAAAAAAAAAAAAAAAAAAAAAFvgQFAAAAAAAAAAAAAAAAAAAAADgrX4ICAAAAAAAAAAAAAAAAAAAAAJzV5twFgLsYxzF0XXd0fJqm7PnTNIVxHFfn03VdMc1SfqXzc+Vtyf8UtXrIKdVNLf9SWtvttphWKb21x2vl+TDqudYmate03uf8+ynlOrXNvGnjOGbrbam8a9ty6by1zyxXrvhY3x9/l9gpY8ypbSlXrlyZlvKZpungtfnn3L3UXqvlX7vH9Jr5XtJyxemkz6blGZfqrPV4KZ20PK19fKnMpf4SXz8/h7kO0+cyDEP22s1mCpvNJoybKfT99e7YsAnboQ+Xl1dh0w/Fa3PHl/pw6fVaXabXzPdYel6l9GrHT7Fmzl/qLzmlel9yytiTc2pdpc9rHMf9M4tfG4ah2o+X7uOuz3Lp+txYWJMbL7quK46FLTFVbtwrxbtr49PaHJG6SyxRGrtr8XFtnCj1u9b2cJd7KcVnufLkytX3/eI16eu1cWDuI2tjoFx/K8UOtXmw1Edb1j7pcz4lxi3NG6X2Xmvza2PytekMw1Cc00rjXXyP8evDMBydH5+XS6vruvDy5cuj4w8fPgzvvffewXrt8ePH+zSfP3/+OoPD+DLOYxzH8N5774UQQnjy5MlBm3333Xf3xx88eLA/PpdlmqZwdXWVnb83m83B8TjOKc33a59jei8hhNCPc384TLfUF9augU+Vjp03N9swbMt9N4RyHLUUq6Tz3zSFUGr69xVX1ebcUr9eO+8t5V+qp/j5H56zq5txnEIXtaPasygdP2WfJVVqcy1tsTT27/7twsXFRZgu6nHpqevsOL/W4yG0xzHry7Ubk7uxPaY+JT4p3dvNzU1xzr2+vj5KP4TdmJq75oMPPjgY+6+upvDtb29fp7cr27/6V98KL1+GcHFxEUII4dGjR/uf43JeXV0dHC/HpLuy3tzchJvu8Jy5LdbioTXjValtz/WUvh7PPbPxZgo3N9vQ97f53txsQ3+zm0/nuSudd9I5Kn7truPiXO40nfh+TolPSnHXKXtp7fnP1+x+m/tWbW08pxXfbzxfr1nDpOnvfo/vtzspJo3LcJ97rvt7H8bsuLz0vkftPYv7Ws/Fz6UUj65Jt2Wtk1paX7e+H5C25bgs6b3U9kTT/NNr4vLmYs9S2ZZst9um/d9YvAezpGXvrrQeK+3h1dIt5bW2HZTy2G63q8e7NZbi67uOFUv9e6nvp+19bXmW3hPNueu+bNqW4rpsafO1PhqnPXbHa52uW45Xlt4TWLL0nsPadOa01uzdpNcvnZvLr7RWmqapuH+/dh13Sny1dn1Re3a1fcq7lGVJ6Z5rc1IurzXlz8VoaX6lfrm2zy/No/HxNXVYex8tbkvlMh/Gr7t1/xjG8fj8cRxDuMPbMLlxuXWszvXF0jm5fbP0XuY4KHd8vBzDMLw6OP7w4Vuh39yOxbl2mcZ56fjd0h/j51laA9bqLH7maQwT1/nSPJqW4zbtw3zWxjlpuXL3cKp4HF4zBqx9v2HtPHKKU+eR2nlr19CluqytIdbuR8VtMa7Hruv2v4/J/uNcnuH1GjLOaxj6MAzHc3E8Dmy328W1dutao7x/mndKG4vrojWNlnNay93avu5zPVF6bWlf5pTxaJa2v/h4y55DfM7a/dvcPHXKnnP8TOd+2vd9GDfH+y0XFxehn26PTdO03w9M49A0jri6GcNmM4QQDvOL59V57iqNl7m5664xXVzWnNwa4nZei/ZNxzEsvbVQWre1lGO25v2Uu8jFzKvizEz72Ww2R8eGYQj9UG/7cRxxG3/W+1eurKX+2v57+n5Xee1Vqr+l+kzTbIlxW+bpOe1SnvE5tfG7tJYqlWVtHdWc0l9a0z9lz2HtNfex71O6fpfG8XsLpTGpFoeU9ixq9dgy98Z9v7ZPnhsj49fj+XW3f3mc1n3siaRlapmv07/FKK2tduuIeO11u6aI49hxbH9GtXKtubeluojj77Sa4/Kn1+XKP5uf6e7wXfaTjvPJjUnxz7V9wlPm1qW211ona9KMr9//O+w+6zV1ffRav/8MWNpWTh1fKyXalycu22F93x5baofp/Q3D8X73MAxhGE/7/2veuj+Ra/OpeF9kjVpbXSrbUt9f8z5xq9Y1bHxey2e64/lsFo+Hufxr67NSeeJ+UNrPSPM5Lmf59zS/XNpL91JKMy5zOm7WPue5Nl5Jy1/qpy1r83ndt2YPZEmcRHzfrfsQy+mX7z12fPy4bdTeL2g5XjvnPvZaTl3v1fKJ22FpPMuN9YdrrnhPua3+a2v1Lhka5ueaG9un6XafuO+nkFbLfO3tPRzvV+fqMt6LjNvVUvyaGyfWjIMtsXrpvONzDs9fuqbUf3LH4zFiV+/H+8q5Pee4HPNzScfLEA7rfz43l3eafu782vF0fV1SXjdM4bYfLO8H5MaZ2/abX4OldTErfebsPuTi8ON5P7+/N19Tmxtr151azkyq81lH+dwl3ZZ9opa07x7Dr0+jtG9QGgdrebbGrOMwZMfl9PfDcSCE3fOb+9f976N+XNz/ygAAAAAAAAAAAAAAAAAAAAAAYAVfggIAAAAAAAAAAAAAAAAAAAAAnJUvQQEAAAAAAAAAAAAAAAAAAAAAzmpz7gLAXU3TtOr8rutOeq2UzzRNi2Uovd513dFrpTLM55XSGsexWoaSOL+u64r5z+m3lncYhuI5tbpcuo/aM2p5Pc5/TdtZOvfU+o/1/f1+L1WuzHGbS5/9/Mxy5ag9s9zrc9q5Z7/dbleXu9T+Skr5t17XqnQva8elFqXnGf87n1e6j9r4MqeftuVSu+y6LtvuS/nPbS/3Wm0crR0/5fnG6bX8XEtrrdrYU5snamW4vLwsnl8bey9eXYerq6sQrsYwDK9CCCFcXl2GcejDgwdXYXOzOUgjvrY2V9SU7js9HtdTqV5q7XJtGyuN3+M4ZvOJj+f6Sy69NeN7PEbHP8fP4j7mnDS/VNd11Xpek1Za5jndpfmglPebGGNb8l16vWUcqZW95bXtdnvUH0PY1WlaxrmeW+Ow+PW15WyNaePz0vpqqb80zbVjUTx31O4xbpu5uq2VK/55TRsv9bdSf2+pi9o9xuefO45d06fncpfKvCatOY1a3LQ05iy1jdqcluvLaUw3lzFuS7m05vPGcTyc7y8uQgghvHr16iCNR48ehRcvXoQQQnj58uX++kePHkVleRVCuK2jYejD5VUfur4/yOPly5fh7bff3uc3X399fb1fX7z11lsH68Obm5t92Tab222pON24TS2NS0uxb6lfzunuxtYxhNCFEPLPrNZPSuNda/vIHds9y31q+3KlfbcWK7WMkbU5Ik56ux1DSIa03Jgep1eKo3JOeb7pPbbs58TzwNI4evss8u2vNm+13k/LeaXza7FaSW7cCSGEvk/XVrvxZxyP6zSOL+I5tTS/tsZuLe21NieW9jlKa9ZxPB5Hu4XpsLZuSNMvnb8U7+zq/fa6YRj241Z8/PLyMrtP8uTJk/2YvFsvjuHx46cHefzhP/wk3NwcviVQihvLeztjuD10e07pWcxrqLXxSlqWeS6Jx79pmvZzSVxf2+12t+aNyjCOYxg300Hf6brD9jzPj3F5+74P19fXB/VxmMZhHcxy/SW9Zm19tO5p1traOI4h9H3UD16vNW5uwnRzUy1fKu5nN9NNMs+GcH39KoTtRfH6Ur+K00nX5rW6TMfFzdQdxCAh7OKV6eLwWJpW6z7F2v23NX2gNC7NddYnMdl8LFfOUl5r1wFL7S7uM7k80udT2+9dWq/E95/bvynFcbW+sdTu47g1va625zlfl+adm+Nb95lKe1apNWvSNfP1mjiktd3MPw/DsHhNqe3GZSrNbWm5SvP4Ullz+Z6ytq7F40v7wmvSTfNYGo/icaS03nnTWvZv0vNb1nDTMBysdeJbadnPK+1tlc4vlbV23Zp5JK6n3L5y7rrWNVGpfPHvuXF1aQ1fmtdzzzzXXpdi6jXPqLaOqV2flj2X5tLP6b2V6n+OZXKx9tq1Vnp9ad0Zn1cqY8uauNQO03Rrz6k1/s2lnf6cby/zc5hf60LX9aHvj2P4YRhCP9T33Fv2Jmr3XyrnUr9a0jKuzHnk9pvGcZy3CY/KNUvjjly8OudZK0/u+dXaUk3LWFAfu6bov32u1XtI76f2c+2Zlu453YPJzX1L88Cp81Tr9XEaa2Pu1vTXpNd67Zxva5xbei7pPFTq1/H7ffGzTGOYuW/FefT98WduttsxbLfH9Z2Lked8Sq/VtKxrc+2e3E2eAAAgAElEQVQv129annW8zm29pkXLuHhKeVvyWFoD36VdL8VJ8fGWZ5lrF2n/XhrXc+m29JE140WaXlyu3a+3acXz+ay03k/LdXm9Pfp8zmZzEcZon+m+xthafFZKt2W+WzpWix2Xjrf2mdxabU27X9te3uT6tesO961naTx12xZDmNtj6/t4sVPfj5/7Q3r93B9axvFT8lxzPJd37ljrun22dv+q1lfWjOu511vX4LV8ltZku3/b7uGu64ulMaJW9lx6t33j9lgaB5TyKe1zpK+v2UNI049jslzatXIdjwe3ewK5dtFap+nP2XXcgjSdpTqcyzdubmPJ3fr5JvR9H/ppd95mswnj2Nb/lt6jTI+t3Qsp38fxa0ttKatv2wuo2fXT8uu5ctXq665x7FqnjIO1WHT3nu4Upm4Mt2PaGKZpvNP+SG083PWXuD8c7oUc75Uclv+uf/tRiqlb9gbSdPbl6bvQ9/E5XRiGTRg2y2Vd6gO1fYraPbQcL2l9X6yktm6pxZelcT03px6Oqe3liuX2gmvlzO3HxdfHbf7U/bVa/qXjaR2VY5DDeSg3vy21r1pfyInb0in10DK/tse8XdNnlfLXluu1NZ4/nPvmz02G/RzZ9/3BumVp3bmUZxwDLZWt1VJfLKmd01rGOI1xHMM4zG348Hjt+Z6617T7tx7719LPtf341Nx16VxY6wtL7wPW+l7pfYXY7dz95rWsMdK+kYvtdvHNcTpr2kD6eer051P2W5bWai1pxX1v92N5bM9J5/dcPum+S5p3as3fcrWO60t7AyG8/jxq4fNJa+erU8bb+pp/fk63r6+JrVvG+VPi9NK6P25Xpc+ape46rxy25bZ7KcUpxed38JnX3bFxuw39wl7D66NNZfpOdr9/cQ8AAAAAAAAAAAAAAAAAAAAAsJIvQQEAAAAAAAAAAAAAAAAAAAAAzsqXoAAAAAAAAAAAAAAAAAAAAAAAZ+VLUAAAAAAAAAAAAAAAAAAAAACAs9qcuwBwF13XHfw+TdPiNdvt9uD6NI1S+qXz4uO1/FvKtvb8+Jy5HLnrlu6zRd/31XJN01Sto1xZa+VcW19xOVqtqZOlcg3DsH9tHMcQwm2dtaTb2o7i1+d85rzi3+9i7iO58tfyOKX9555B7tgwDMW0T8ljKY1aOz8lj9LzzaU3TVO1Lte0lSVL16d9N86/7/t9Gym1i1q9lMaMU9rROI7Fsa9WltzrrWNvy5i29FpO3/fFOs+lPT+j3Dmleglh18+nKXn99X2N47h/pnG68ZiQtuNSW86Z84i1jJexuHxpnyj141J7iMeX+Jq4TOl4Wyv32ntJ5dpiei+1POayrp2v0+PTNO3ng1NiiDXPf0lLDNZantY5Nh7/0rEwPl66tpZ+KX4rtdm0vS6NbWk6cZ23zhstsWPaZkrn1+bOuC3E561tI0v9LleXtbhzs9nsj8fPpna/8Tnza2n8snbebq2HU+KBWux+n0p9b21MlVtP5J5fbU7oum4/rt1H3BhC/hktpXFzc1N8rTTe5+b0+N7icsw/v3z58qDvX19fhxBCePr06dFr7777bgghhA8++GBfRw8ehPDs2YODPL/2tafhxYspbDab8PDhw9fnPQjvvffe/t4fP34cQgjh0aNH+3t9+vRpePDgwf78EMK+PNM0hYuLi/31ueda6+MtzyxtI/m21IUQyn0pV4ZT+1BuTErLOvVpH+3CMPRhmIajdj2L28l2u11dN3OZpmk+Pr922K9KzyjNb826rjUWr/WDktZ9nfJ4n567ez1uE7l101JMWppHa3VRig/HcSz2k9L9l+fE3bF5vRePMencHV/fsoZeGyusUVrbpfUy1/vaNXru2NK58z5NS7vO1Wu8fzmnl2tXtb3RXP7jOIbtdruvm/S5znFQmmacz/X1q3B9ffP6+t2xFy8+CC9vhn0/T8s1j/Wp0npsLmt8fP43Lu92u93PN9vtdv/aOI7hxYsXIYTd3DvXxXQ1hRdPD+v7+Ve/HbqXuzLP9x+XaxiG8ODBg4P2NJ+32Wz2P8dtK96ni59dLs5eaoPp2qRFrY30fR+mrts/uzjLU+eOXbpD6Lp4bAxhGDahG7ujMW4W76emabbsGdbiwF2ZphDPY7tjt/tZpZi4tBdSWr/U1PYp4uPTdDjnzHXQMr/myl9aw8RlKM3LrfdW2iuJpTFCqW5rluaP2hyajqUt6ZakcXzc39PyxGVa6te5tEpa7y3Wsq/edd1+nG7dz0nfZyvJtcWl9dhSPZReT9tkre3k5t7cmFAaA+JrSs+iNL7X9lhjp6w3WuOtw/GnfV+3lt/S/l2uDbSUN30up8SO9Xh1/q++pliarw/TPG5LLePCUt61mKjUfpbmknjszO0f5q6txTW1e6ntRdXmy9x7FUt5re0/LTHGUr2sKct8v3FdLq0hc2UpzfeldVvrerM0zraMF0vx2fxz6bp0Hi2NmWvXl6U+fLj/cZt2F8XL6fG0/KX2U+rvpXkod36uL5fqNVe2XLmWjsdz6PzvZrMJ/Xi4D5JLJ72HeN1ZqrN0LFuKneKxpNZXW/dD0rKGEEI/xnUfQgjT7v+mLnTdYf+txd25dlcbL2rPaM1aMd0LWFsX6bFaP88dj8ehWqxekq6ha1rm5JZ00mtqsVMu77t+Tqe2hsiNyRcX41Gcf3GxCdNU38NOf073N9f8nGqZR9Lzll6vjYslLXN6LZ8189pSbNIat7bG5LVnkZsjavNTrZxLce+p64eWOHCt2vOe59tsbDneXr+0DsiX9/b3m5ubcNPVy9/ap9LnslTXubZbih1b4tfW/h6XpXZeqf5yxnE8qf+0zC9L5SyV8bD97P7dfc4qbmev96Rf1d8vvk2rrV7Tf5eeTXpOLg4ZuzHc3FzHJQw3Nzehv8nv3eXyb6nHWqzTonXd1zp2rX3+cX7ztUv5L40jLWP0mnKlvx8c74/n4WHYhGFT/wzwKeP42jk5lo5lXTft11+loiytaUM4vKfc+aUyLX0uvqa0PqwdP7w+n97SnF7rt7XjadxaWlMsxcPjdgrTdLuPdPvf7vztdhu22+P7z7WjlvcZWtcmpWddrs/D42vXH4fn58eF2nr41BioVKalsakWk7SMl7n5JoTjdlVKa5qO37uPz0/7z22bet2fptNix1ysn8aJ25vt0X1st9swbaf9GjXOtrQ3ULv/3XX5+HP3ee1Vt1Wth939pXsD9f2F1rTT10vtIk17bdydqr2nvGbtlea3dG3Lui/+fMI4Lu9DlMaE2nWlek33BkrzUC3P0lqxdS+n5e/L4vNCCGHqxnA7BuevS/dJcs/tlDG19P5haxtN585SG8mnNx87nn/qc0z++HFM1dbfltf9h6/F/64dg3Pr1qW2kl5fsnZcWRPPtpbxYC7Zjvv4aDaOY+in8nrq6DNt/fws5/QPP99yrB6LpPNXCPPfCHX78s3jVlzmLrPHmN5Dy2cQSlrbUvp5yNoebNt4kMTFY36sW4o9a7HecX7t402tD5Tijvi+b2OW+vifXlMrR6ms2biyP27npfZbq4NTY+Ta57trabZ8bjFOq/T77tj69f4p42rp+lLb2P3YRT+H0Pf19c8pfzfcGju0pJWmGSu9r1FKs3Qv8Wc718SULeUs1e2Y+5z962Ol9VW8/g4hhKnydw7f6e72V5oAAAAAAAAAAAAAAAAAAAAAAHfkS1AAAAAAAAAAAAAAAAAAAAAAgLPyJSgAAAAAAAAAAAAAAAAAAAAAwFltzl0AuItxHI+OdV1XvSZ9fZqm/bGu68I0TQevLYnPSa9vMeedu5c5rVK6tXtN7yNO6770ffl7lEr1UKuf9LXSczm1TDW59JfqPPfMYrnXa+WL77em9CyHYTh4vZZHLd2a1vpN7/0u7S7Nc067ta+u6ZOt7SB3zin3OF+TjiO5463lOeUZl8q/lNdSP8/16ZZ+HR+P21JaN/PPLe0y129y95ybI0rnxOcujbHxOJxeEx/fbrdH19Tq6fr6OoRwW0/X19cHdTZf+7u/+7vh2bNn+zzeGkN4/M//Zbh+K4Tf+1MXYRy34Z9+5f8NN30X/uEv/0YIL6bwwz/8w+H7vu/79unMY8zjx4/D22+/nb3XUn9dsna8jO8vncdncXupXd9yLE0n7aMt+ZSeY2sdzfq+z7a9+PU53VJfnOX6Q3z9Guk4UqqTtO+n9xLXbVz+3D1P09Q8L7XOsXN6tfup3dvS8VJbWIp1lsqfppueF9fT/GxL883S2BMrtZPSHB3fZ6lfhXAb05Tup1V6Ly1jfHrv4zhm21lrm4+1zNG1NUGa1lyu0pgQp9X3/dH8UOpjufKW4vQl6byfexZpWXLX546viYnmn9O2laaVphvPy6lpmsLNzc3RsSVr2nNcrpaxZBzH/XlXV1f78r18+XL//C8vL8Nmswnvv/9+CCGEDz74YH/NW2+9tb/ni4tt2Gxut4y6rg+PHj0MDx5chKurq33722w24cGDB/vrLy8v92Wer3/w4MG+7vu+D33fH/we181SvyrFUzWlthy3z92P5TiitvYozVEtSunehG0Yx7n97cq33Y4h3NwU66g1Dju870x7HI7TGoY+DONQrP/cmH6X9VHt9VzdpuUt1eva5xi9mpx7WJa0rmtjWcu6oXSsdE0cH9bOXbNWjMuaGztbyl3L95Q1dC12yD3bdK1QOp72qTRuailnLv+u64oxeTq/zHlut9uj1+bfb25uDvZD5p/HcTw4Hud3eTmGFy+uD9J7771tuL4eDu5/zn8YhoP4Yj5ns9kcnHcVQuj7w7Hk4uIyhMtNcc5N67YWL6b1MsdjcRw7G4ZhP/csrbmnaQrj5Ri+8cn3QwjzuV349A8+Cf2r43gvjbWW+lU6p5XOq93z0pxVsyY23UbjxnxqPwyhL+y11/Yl9nkN3b5dzIZhCMN4WC/psy+VNW7XrWut5Xhpet1nymuh9Nh2u227/4KlOPq2nFOIT82ty2rzbeuYWpsL15r7eS3vU9ZgJen6JlWL3XPlSfc/1tbHfP52uz1Kt5TWnFcpdmktSy0mKOVZM023e4wt+ZbaZa3cLfU796nWdXGtjOlaPrdfmssjXSfn2lVtDG+N1Utlb1nv1Nbwa9dHp+63lNKt1W3uudZirXQ/oaS1beXzuP23Vi9r48F8XqftLdbGyFK7qq01Smu1U9dwafpLx9L2u7g+bcznlGeUWyvMSnvE6bW1Nj+Xq1TeUjsrzSO59eTatVZpzyId19Z8/qJWD2vHwbks6dqtlm7tfls+x9Bvj6+fn0/r8VJbSo8v/ZyTiw2Wxqi1Y0zansbN8X74vJ83n1daA6f55Npcev2p4+MapRi49rxK/WUuT9xnl8oc3/NS/2yRq7/0WOu4WHsWpbGgZewpja8tluaOtfFOa55xHFnLK3csbQentNk57qyta1v2UuLy5MqRa7Nryru0V7G0PrxLHyitgdN6WZqf11g7RrXsEyzdQ6x1DV0aF06p77XXnNLeS+VvSatln2GWfq5ivn4p1lsoQYgviefIUlnX5LFmvVYbo2px6PxvmnxpTdvSPu+6x3RqGq2fack9i3R+Pjqnj8/f/TsMw9Fz6fs+9EN5L+g2zV2dL91mWo7SWFFrH9lYbeiqMd5SOWp55H7PlbM1PqmN8bXr0jyW1m2l8qaxwNL4f+pnle9LWt60X2y3N2G6KccGtfVJrc3dpd/n0qoll45HpbLU5tbcmnr+ufX63PFamUux0uHYk7+uNQbOrenS4/H1uc8TrJlv5j4yP7PSpekasiTdv433z5fqek0smm8PIYQwJcfqsXe+7U4H6dSuKa3fW+blU9Jf45Q4bP695bMEqdoadhevdWHq+9f10oWu28V1m2ET+s1hfadjfet7IrHhcjhoj9P0+n3zId+Op6m8d1Bbt+365nj0vtLuMwK3z7Sl/8Svpe+phxDC1OX2cMZQq577iOnSci3t7bXmX1qrt7b79LkstZN0HC3N9+XPzu6Ob7fbsO2Py7oUO63ZZ8itAeZ+tZRnLda6S7y/9NzjsTM+NXddWsfpOq8U36z5PU1raQxeyrO0N5E7Po5j6MZyfJLmt/Y5tc6Xa2L1pfaQxpelfJbmglOdunfYsp9SLdewm68ODg1D6MfbPYilthjHWbv8bttImv9hDDKvOZfq8facw7zjeXQbwjbffkv3X1sTtbxHXzPvmdb6RNtYd3g8XQ/n0qjlEzuu9+n1+v82xovn91o50/iiVGdLf3ucE++H3VXuMxRjPx6tL8ZxDGGMfg7Hf8uQrglKn/HIWVqPt9xr6XNGS/HduG1bx+bEsdsp413cRtrG7xAO590pbLdj2HbxOevjq7RM99G2Wtzl80TxuWv+Vi4em9fMM7kxqnR5HIccPo8QduP8FEI4fX78TnDeHTgAAAAAAAAAAAAAAAAAAAAA4LueL0EBAAAAAAAAAAAAAAAAAAAAAM7Kl6AAAAAAAAAAAAAAAAAAAAAAAGe1OXcB4K6macr+3HJ+13Wh67qD1+Lfl66f05iPjeN4cHyNvj/tO4nS+8/lW6qXlvpK1e63Jb1avaTP4pRyxmVayjNNd/69ll/8nOKf4/tPn2Upn1xZl6xpJ/N9x2VL6yJX57n7j4+tLXfaLtfWcym/OM21/a0kbcdLdVFqs+nrS224lE7uvlruteWcNJ/Sc4mP58a/XH65+84daxmb4uvSMpTadc1SW14z3pTybX3urenUXr+8vDx4fg8ePDg4Zz7+hS984eBZDi9ehs8/exBeXk3hq9//dJfeH3knbIc+/NHLPxI2N8NBOn3fH5UjHQPTPEMIYRgO02mx9nnW6rnUL5fqNn2t1lZr40apLZ8y/se2223TeS33mYrLlhsX4jE9TfeUOCqX31K54vNb67K1Du4SM6X1tTRGlcbU3M9L7SqXXpx/Lu2l/HLjfy2OSOXKNo7j6jm7JY/a3Fma48Zx3I9jaTuKx7d0HFuax3JtMhe/lcbUpRgoPlZq/3FacR2V0r6P2KLUR9K2Nf/eEtMu3X9L/qVzSm05LuM0TWGzWbdlkva3U8qSK1faJ0vnhXBbtzc3N/tzh2EIl5eXIYQQXr58GZ4/fx5evXq1T+/Zs2chhBC+/vWvhw8++OB1mi/DH/zB98e5hH/x//xeeP7BGKZpCo8fPw4hhPCZz3xm//NmswlXV1chhBDefvvt8OjRo31Z5r50eXkZNpvNvm67rsu22dw9pT/X6qFlPI/Hptz8NLe3pbEvl2Ytpq61v8Pxtr4WyM0PpfE2bkulWHU+vu3GME1xX8vnmfaXlvZfWxuW5rtafaflX1oDtzy74zKHEMJ08Ps4TqFP+vEpa9LSNbk2mZaxNHelfahUtjiO2m63UdpdSE+P803zqZVx6fe167GWuC9XL6Vxs5RXLdYutatSHaf9ZCn/i4uLpvi49fjlxRiePPnWwbHv+97vCS9f5ftben38vOPx92oYj2Kkvu/3/83X5NIK4XCMSvtuqS6nadrnWVsHxuNgLu/txRg2mw9C3K+vrh6EIVnznrrWyY1xtWO1ttiyt1Ab15bKUkurZXyc3Y4l+fm0G9vupfZcS3Py0riwG98O57Q5nzV7yKVzWtZttfVcSTpWLsV/Obk9m9I4tFSPpfirFlOsKXPrWiPdm0rvZ2mNkd7n/Httbd4ae8Za9mxKz7VVKQbcbreh67p9GVrmnvm86+vrEMLxPS/tLeXGnbj959ahtWcZn9cy39XGwfhZ1Mb4+HhunL4va+f1dI6M9zBy9VpqF/P1adq5/FrbZW2Oy4nL27oeLt1vrPRa9ZqLi4OYIoTdmrkfTt9vSM9dqpeldlVad91Vrr+03F+67muJiVv3iVqUxum142itH7TOUS1jRGvcWMqnpe6W1oul60qv1epmaexqud80naU5aakccdvNrTty65vaXky6Ds71u1Jzy7X9pTi8dZ8jTqtlHM09i6V1QG6sLL0fGPe9ljbY8ixrry3dW8na+TZ+PW0705Q++ylM0+t1xra9TGvHvrQcpfV1uudQGx/XjkvpNa1rh1J+a9ZEreeeMkfWxo843dLvrfNmrT/Elt7vKPWXOTZM4+5T33eJpemW1rap0pwY/1wbi9d+Xi59lqXYKVeXrc8nLmN83pxHKe3WdlKKyXO/n7JWucuaM+euMWlcnvl5L82TpbGpZU3RdV2YwvH18Z5QrV2m+c/XTdN4MDeM4zbMS89aHZXKXBvL1sRkS/FFmv/tvsTyc0332Fvu85T5eG1MOZet9dz52NK6bW5j03jcn9P9nK67TTNNtxwvdVFa9T23+bylMbYm7TPzj3GSa8bFUjlrbXEpjiylVTun9tp97uW0rs9Pab+t57TsIeyvD8f9ulTu3NxYi/Vr42VOLe5P7cqYO1Yek5ee+Zqxq1TmtDxrLcW1u/oOR/c+a429l+aCOO+lNHNtIf55HgfHPn6PZff6drsN/XZXhpcvX4VXr27LM+/Fxc917l9r+lWuPa+dL2/v53iM76Z6nrm8x348en0YNmHY3K7bcuVaeo9gLudS/SytG9e4y+dZ+75f9d7/8hiSXvu6nY3bMDV+braWz3F9DUd7L7s9492xYUzrdPf60mejc/d/sTneu669x54rc+lz23F5btvlfO6bic9a21rLZyBK4/n871LdrBmrS58ZLZWl9NmDuFy7djJft/t3s9mEcXM7BoZwHB/l4sfD8apeZy0x8V2f89qxdznN4zm6dC9r9pHiNNM1aFwX8Zq0tD5YmsdPsWtHx7H3Uvq1956XYvLcWrB2bVSyYtlKc3Qp9irVZan9x7+vjefWnBefW4uDc5bm9rkIabpx28vG6H2+v+XqaY4lX+ceQnj9WYFoWGtvc/EcM0Rj2fE9rjmelvkuSuuDXH2l7Sd3z/Mefy6NNL3aObm84rYwZ7v7LPLyurV0ny31eErbb13XNe3H9IfXpHsbuZ9bfq+5699jpTFYqZ6zny8bjvdravsGS+nFSu07zic9N3d9/Pvhoe5o3k3HpVxcUsvn1HVPSRr7lmLeuCylzxm17Eflxo70vHQNu7Sey57TcE2+7PNr9zOmflyd9q0LAAAAAAAAAAAAAAAAAAAAAAD3xJegAAAAAAAAAAAAAAAAAAAAAABn5UtQAAAAAAAAAAAAAAAAAAAAAICz2py7APAmfPnLXw5Pnz49Ov7kyZMzlIb79qUvfSm8//77R8cfP358htLwcfNjP/Zj4enTp2GaptB13f74o0ePzlgqKPszf+bPZOc0Yx6c5kd/9EfDs2fPQgjhYB54+PDhuYoEfIR98YtfDM+fPw/TNIUQwv7ft95665zFAviO9IUvfCF88MEHR8eNuQBwd3/sj/2x8PLly4NjXdeFq6urM5UIAIDvRn/8j//x8OLFi4P36EII4cGDB2cqEQAAAPBx9vnPfz77WRN7DQAA8PHnS1D4WOv7/uD3+Q/SfvInf7J63Xze/Kb6/Hvt59z1d9V13Z3Syl27VOY1+aUfOpivX5Nvmk6aZlyuOO24btJrvvzlL6/Ks3ZOLo352lL7KNVLSz7xeX3fh3Eci9el7TstXynfWpq1dO8znfjatL7S+v0wxGWd209sHMdiexvHsdqGc0rPqNROSmnetY7i/Lqua7qPpX6RS7uWb3ys1H9KebWOV2m6pTxq5y31q/h4a/la62ypLv/0n/7TxXJst9tqGXJ5jOMY+imEaRoPxt1xHMPYvf533JV97jvpmNz3/f61WhtP22BOOpYstZE0j9IYW1Ma39I20vLM0j7T0sZL4+c4jgevxeWMj8c/19rjfP3SfLMk7Su1emkZ80p59H1fHItzZVkjLkvcp1rGu1paOa3zXO1+W2LTNWNKLp/tdntSu1ia46ZpOmrLLf2qJY94LktjqtL5pf5Z6lOp3JiTHm+tx7heWsbv+dyl9NOx6y79fclSn0lfT2PC+fWbm5um62t5LR1fijty/SJdj4QQwp/8k3/yoO2l7aq1X9buLTenxr/H8Wg6503TdDBfz3W+2WzCZrPZX399fb3P6+HDh/tn8PLly/2XAb7zzjv740N/HT73ufmed9d98YvvhGfPt2Gz2ezfJL66utrnPwzD/vjl5eXB8YuLi/3PwzAc1Gdc/qW11na7La4v1rb9egx2Wux+X2ucbrMNfT8/8zn9fBuN84/r/JSYOoQQpn4KIaRroil00ZopW+YT1n3pa6XxfEkuBlm711KP5+JYKOyfTazW/uJnlnsuuXEwPi9Xl7W9lXQePriThfxDmMI0Ha4JcuPfUtycS7+0txIf/5Ef+ZGjdFpiszmNNO5Nn0spPpnXN+n6v1SW9Oe1sdtY6U/pefM9xLFDuo4rpXNzNR3NuS9fvQzX18N+jojHjvn3UvkP7zlE17TdV9y+47Y0z1Gx7XYbXrx4cVCmOO3Ly8sQQjiaU+b5Jl1Xzf1vmsawa+f1/bRSf03LX+uXpb5bOq+kFt/Xfq6OS8Nw3G+j59e6xi2NUbvXjvd7l9IrKeVRem8gLVs6r60pR2l+zz3HpbE9N1belrMLIcTPbxvCdnkuK/XfUplzZUzHzrScLWuX9H5Pec5Le9ZLfSdX5+l95cbx3PW5/bD4nGmajuplaT+jHnvm59dS+eLf43FwFo/xsS9+8YvZ8rSu6UpqcUdu7V5rb2vVYvZSvPGm5J7dmnZdm5vSNpfrl+mYHK8PS8+1NG4sjXtL67ZafBRfX0tz6X7na3JtNB7X0jFuO25fxwOHZT+1jSzNcafM/aVzWsaR1rTSsrWM3bU1Xqke7mON3DourlnD5+63pQ20xDSt78G25pOTK/spMWVuLDhFrV5anl9pjKqtM+N0SvF563o6TXteD2fLNR6mkYt1l55f6fzaOrt1TkvTXrOe3h8bj4/t3lfMx521Y6XX1ra5lj2fpWNLbTGur76fXv8ewtyl+64PU38bf/XDur5eG0Nz5a8987echfoAACAASURBVNL6Ir02d2+5MrWUZzYMQ/b6NXFACCH8iT/xJ5rikNa5p/RabRxJY4jSGFOKY0rX5n4uxb+nxB/puFdLJzc/lNaQuWPlNXbb9XEaaXtO86l9vqiW7vzz2nk8LVOprZ3Sd5baw/z8Wsq8Nv+0LLlr1sxT8fVr5/RT7vGUOGI57cP9lvReWu5tbiO7+aEP8embzUUYL4b9eaX5KBcjtralXd75eScdZ1rWJ3Pa0xRC163b1y7J7Z+sme9b5/aleCOus9I8movjcu149+8U0n3F21MP21b6/tbheDuFrgthmg7bXst91+LL2hiRfx7dwTMv5Vnrv2vGk9Yy1/rOKevLteWqzZW1/YU4v1Pq4tR9iFl5D2JO/7Tr12q9j5Z16+682/PXrH3uUq6SllihZqlc87ojvWZp3K/Ffkv5x/F8ek5tXEzT2l5sw4uL7es10xT6fhsuLi7Cxes108OHb92upfq+ab1413Vjbo4vnjt0oesO63gYhtBv299fn3+f59TXR14fH8M8XJSeZbxXfhuzHKuNx7X5uuV9nZY201qW1s8w5/LLjfd934Wp68Nu7gq7GKzvw9APoR/G4nhcO1Zbj+/2gkrPd16vHL4/vt1uw7Zf7pfp53+7bjz6e4XtuA3b7e17hnG/yMU3pc80xMfGYXydXrl+0mvmua5lfzP3GYaW9Guv5yytsWM/9EM/VEy/NA/l3mM71XFfLu9JpOvDuKxxeqXxp5RubSxtieNa2sldx+sk5ab81q5PltamLeumWnmW8iyWq8/HnrW+kcYF9xFD5tpCHEe+PvOobGld1uKF3Dh2H+uHUn/Jlad0LD6/9B5Jro+uuYf4ntestef5Ji1nrk3u2tP+SAjhOO5aGpdKlsaLu7bDU9Xqb7lMbeNzLc/4WNvYt37saF3/p3F97dxauq3PsrY3EZ+TfqZ2br/z51dqTl1bl8oyp9kqjWnSvYF0XOuGw/vNZXXX+2n525Hc7+n932X8rT2Xlpix1lbTspXK2/L5otzeZO7nlj2A3fqjvq+YyzMnraOxP9xbntOp7qX2h2vGrhA/fTe4+6cwAAAAAAAAAAAAAAAAAAAAAADuwJegAAAAAAAAAAAAAAAAAAAAAABn5UtQAAAAAAAAAAAAAAAAAAAAAICz2py7AHAX4ziGEEKYpunota7rQtd11etz183Hcq/lpHnk8pym6eB46eeWcsY/x9dO01Q8r1S+9Ofa9WvTLimlM//cUjfz8b7vD9KY28OcXku9xcfm47nnFb+WM47jQf6xOL007b4//i6qcRyzx2fb7bb42lq1Z7bZ3E4RubpM77e1Py091/j8Un+qyV1TqrOltKZpOnoWpfGmdv+lspXq8i5K9bvUx1rKXzu2NEakfSjuV6XxJ1fWXF+s3UdtTCm1s6U6rOVbalP3Md+Uytcy9qb1MAxj6Psh9P0Yum7XxofNELqhD1dXl2EzlEPENfmXxtvS72lbio/XzimNNS39tdYnWuf0tH3myl06nvb/pfGg9no8XsXn1ean1jl9zfx8F8MwVF9vHS9b+tVd4sQ1+S3FGGvlxstcn4jzLI2rS/W9VI6lmGaNUj8q5VnrR/H5pTRb49aWsaR073O5Wvpj7folrWNP6/Vrzx3HsSlmi3/v+/7e1kS530vHS30xd06pXuc+VYqPT4lVY+mapnQvuTgy7Rfxejmd++b+f3V1tS/T06dP9+358nITLi62r9PahhB2Y9mDBw8Oxo75WAi7MTyuv4uLi+zx+N/0tVL9nxLv1GLSuV66rgvDFF7HQ7fnD0O/Xw+1xBdxmuk16c+5+03TPswzhBC60Pd9ddw+ZQ3fqutuy1sbW3P5l8buUllrx5ae61LZ0jpvfba36c6/18eXkpZnkraBU55dKSZMXzs0t8vdb8MwhGEYmtpVbd1WK2NubZjmUeoXtThgvsf52qN+1t/eZ3y863b9rGWvozRGZfPLXJ/mU1qfxPPlMAwHsUWuztL9pM3mpljWm5ubo3LFY3Kcdy6N3CPu+/6g/ltM0xQuLy/3v8f18vjx46P0c5Zivfjn7Wa3Fo5KEDabTRimcizbGucuxaTxz2vGuNL5teNzeiW5q5b2sOLjpXtqGbLuMiet3buapimM4xTmO57LnpubWtfGa19vKffu5+N4raVNlMaSpfKWxp3c72u1XL9m/di6T5e7JjeXhZDvr/F5817yPDfk0p/jsl07G4+uTdNM57vc8XkcLc2LufLn7mUuc21va23bqUn33lviopLWtV4uv9rP6fkt6d61XkK4+3s5uTigJF0r1N5naombY2k6tfdmc9eX2v8pyuum2/RzfSQ/Fof9a63P+z7GzNb5bD7eEl/WpG1n7bhaai+l/lqqo/uqq6XX0nzm+8+Vv2XMyLWzWptpiQmXytz62tJ5tfk+PlZr17nnmtZd7d5y802t3tM5trQOLKVRK1vu+W232zBN40EcO01jGMc5bpyvzT/3NFYo9ZP7GgNz7r7nk/SZbsyumU9Jq6TludbyWNtnWuOL3NrmcK6If54Wy1JeN9WfWW7PMH299Fop/zVtcL63lnVM6VmuiRGW8lg6v3b9qfP2fcWKc37xPnPLPbfMJW9q3da6/5aax8L4vDSGrI2RS3s7uTKVyrw2JlnbrtaMu63x9tKzjeuydR5urZcWaX9vjQNa7j8t59J6smUMnZXes6uNZbl2Eh9bqr6lfZel/ZClfhFL76+l/R/nl8+/fk0+PiyNcSWtbad1TC61pVK6pbluf05fGof2Px3kXYs3Dp9VfR5fM1eVYo3cuWM3hnHcHjzz6+vr0F8fj98hhGyM2xqD3FfseJe15Fq1+W/OP35PJe0ra/cU0uvvc2+hdZpaM57W+vepbbZ0/fxrXC9LZY3b/9p207oGqeXdWr5Ubp7afcajO7r/Wl3k1hq5dEtycVyt3LsxZXrdP0LouuN11G6tnU93Fq/90/ss5V9rQy1j1KnjSWsfT9eMIRzvD9fn0ZA5tm4fL5d2y3kt0vEqnivi+yylm74/nn6mYf++RnL5NO3+iw/n9qvXxvWVs/bnlte8t2cvjeNpW++7w2u6rgtDP4RhuH2PfSmmLJY802Zy8WIprTWfaWx5n69ljizdY9q34/Pi90LWpN+yxjjls8lzGfub7cH18/3X9jZOXWu2WnP/rTFJy55P7tnnrzucO8K2bT+pRW1NdMp6szQXH64X68929/phueLP2JSU5vfW/cP5utz7ZS2xUyn/0twdP//cNUtzfOt91ZTig1Id1tpES7vouvmzaIf5DsMQ+m17v8q1kVx+rent/s3HT7d5hoM8S21ymqaj/an459Z9vNQpc8/SvH+U79H6fvc+VD+09b21hjGE9LPI6fzeOpYuae1jcXppX0j7QUvZ8ifs/6dZro+vrffSvZzy95mlz0TEn3Od0x634+vPo5Xd135GKb4rrdvnetzHKIXPyub+jdOv5R1C+fNqaTuuzcFrY6H0MzEt8/spbWHtPk/pmqN1dmYfYKr8Lfqc7u6S3Zg+ZT/1+d3hbn+pBgAAAAAAAAAAAAAAAAAAAABwR74EBQAAAAAAAAAAAAAAAAAAAAA4K1+CAgAAAAAAAAAAAAAAAAAAAACclS9BAQAAAAAAAAAAAAAAAAAAAADOanPuAsBddF138G8IIUzTlP05Pjc+PzZNUzatNJ3593EcwziO+9/ja9M8aq+VxPm2qOWxlNY4jienfao0zWmais8vV/5aOdJnuXRdriy59tX3h98dNZcrPj7fR6nOl+5lGIaDdpYahiGbztIznMvZ8vxq5S9Zqte7pnVKmrU2lfs9TT+9vnXsSNtOLp9SGyvlU0oj/Tk9L9e2059L1+TK1dJHW55fOha3tstcOy+1/fj55cbEUj23Hj91jMmVqdTf1vah9JnUx6Hj/jCOU7i+vgnTTbn/z+PI0hxcKn9prq1dE+eX68dr23J6fen3uW3VxuTtdrv/ue/7bHtM5464fKXX0nRy6ab9Lj6n9uzvOo/HZW7pB3G50vtIy3lzc1PNu7UfznNlLs+l60vjxnysJSYptfOWcS/3jJbG2KXxZM0zT+9xKXae/63ND61j/FJ+adpL9702lpnTrI1LuXK2xBc1reNAKZ+W+aRWppY1RGu9pK+fMtfnfq8939K9xfU31/F8LK3ztWN3aR7s+z7bF5bWZqXxO3ePuecwX5/GSvMcNY7j/uebm5swjmO4vr7enzO/dnl5uf95GK7DZjPf10UIIYS3P7EJNzeb0Pd92Lx+cRiGfV1dXFzsj6frjtx6ac5/fi2t1/jn2ticUxqHynFEPYZutRR71OKY2DjGx7sQwu7ZduNhuWpr1TiP2mvpz7dp5vtW/LxqSuNCyzjVGsek7aW2/sqlVRu/16SVO29pPi6treZ/S/FLPJ6VnmucVyluO857zndXx9vtNmz7w+taYoJxHFfF3qVjOS17Hkvpzvt443j42na7DWF79zVZbp1dit1qz2++fpqmo/VGfB9xPrM5nt71/eN2vt1uwzgu76nGzzJf3sPrh2EI16E8p6bzQss4Gddla7wSH8vt78x1N780Tbs6m27q/al1HZIrV+vYn6ab+7kWG7TuC96WoVzm1uNpGQ+rpds/+9b04nto3XMpxerzz31ff1alubvU/tJrl84rHT9+vum8PoRh6Fet4ZfWsKWYam6TubkvjS9bxuyW8sZj2ylyeeTaWiluH4ahOnfH/Sq3rkjn8Xg/KI6P19ZdWt/p2Hnbrm/vdWmvdCnfpTV4XJZSHmlep6zFc/nU2n8ppliaf3PXto43S3HMUjy7VM+1Pap4v6yUTtyvarFGy3yRix/itNeMBS2xUYvavJgrcyw9r3TqqWW7D63tsHZuTikmin+P/y2lkcu/1j9zY9d8fCneOI4v2uumdl7tvteuYWplaNmnW7IUE+a0jDutMezS3NI6DiyVJ813qVy53+eytNR7bs0/x2HxkLmLw7rQdX3ourmt5O9j7lMt823rvZWuq+2HLFkT5+fGyWmaDraJanNWKT5vLUvuOZXyvEucXDuv76f92ub23y56fd06Jy1DPC7V1hBL5U7bXinWift167jQss+VOlzPlNfYLevL0vlL75nMx1rvs9Q2W9rMmr6X27OPxZ85i68r3/t0lM6rV9fh1avl/aa4/KV+lZvr03RL17c++3QNujRe5GLzXDnXjLel/rNmHCqlnTs/7aNrYpw0/VJM31reWtqtbXvpWa2JL0vuGgvfrqmnEO9lxvtj6b+1eaq/2R7tK+/2DW7TLj3f3HiQtuGWNpreX0ltPTtN0+u5bq6bEOZ9qVIcn0unpqUt5sqYy6vUl07pn7U5KN8eQojbT02tPHN916ovjW/XKI3dsfFiDH0/hDiou7i4CP3UV9tenGZp7E2v+f/Ze/dfWZLjzi+yqvuce+7cmTtDDjmUSIoy5ZW0WkCA5d3Vro1dGIb9HxsG1r95bXhtw7DhtbzCrqyHJVIWSXEed+7jnO6uTP/QJ7ujoiIiI6v7zuVwvh9geLuz8hGVGRkZEVWnadl7ea0lc63fsrFee2s+LX2Tcq2JzXr9iGg+i8tpzf9R5lo272ONvV9TV8p0lmv98/7I2eKN72HJ1RNDte7Hun62xbzs/DytjtXy72Q+tf4r8zFVFqn/Eb9CtxPl8bkyf/52bHM4HGiaxlM/2r6KPiPQ/FDts8Sz/3nKVEq972MfOWdK5ZK4M1TNOReX9dbsPaJYbNob/1S0ZxOtvIy25inN33Oa93d8ll9SpvO59fjcPE9Upsk9Ly+xd48tTuMu/YPTKIt9Vv/18u/DMFAuy7hW66vK3soh1Hq1/1O/aWn/pT3mbWv7NXrn2WlNfm+NtHmotJ5tWM8JZd/ePfJ3jiWt82IcHV+Mvd/TmxfpoTd/I797flvPOe7lOJbjH/+V+bY1uamoTBZr4n7PD5Z1ZP6H6Pyu0pp4nr/T07LFrX6XuanHd4tGP0dh5QMsv9Y736yYqHdvePL1xKe9Y3NfnPeTUjtXNr/n+Toc3xe1Ywhdjup7Ld/h438DVAYiLd7V7j8Sm8v2rTKtveWnlnLOh8q5iNiuaxDJKXhY+yLq07TyBi0fSIsPIu2ilMW7xvO9eM21qMj3Zy99D0n+fYH1nu4wDESxNPwC62/NNLS1iOb/5+8dabGnngeUn6Pycb2M9hV53iPHkWsxz4cs7VIpZfZ+mHYWRzjq8FIejubrLd6zGkd2LjzKbjxzPHci/IRO2X+dWLntAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DrgR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvFPwICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4J2yedcCAHAJKSW3rJSyuJ5zPpVr7Xk/wzCc+ql1U0qn9vW6Np78bF2z4GNaY3jy97aT98LrSXkj8kfqSZnqf56cstya55yz2aY1r9q1iM7I8XrWz9ORnPNsfeS9aWjrKceU5d4cWGNabeo4VY7afhiG7r6svmUbbY3kPorolyYT79vb5z307F9tbN6HvM+oLeLwe+zVE8teeffo6UHPPiPy9V2uoRwrUuaNLT979Sw7wu85am893eP3zPvl9YZcTmWn+rlQSfp44zgu7ks7F7090jqfPeRays9af1IWLq92H5qcLUopC/1bs7dln0RLvdb2TFT3eH/e+RhB2nFr/8k14W3qZ6krkX1l9Svr8/Gkjlp9eecHh99zry5b+7117y0br+2DiGzR9bfG9MZq+SutvWj1bdk1rY7ni1ntp2ly5e7F2iMSTS/kvo2sl6WfPfbCusbPAqmT2np7dsDTT28PWHZd628cx0W5ZQu1cumDS9mtcz2qy9o4OWfVv9POCi6HFrcOw3AqPxwOs764nvN6OefTtc040mbzMBt3M24o54HGcTy1idoRXp/v+WEYmnGTdUZE/cZWneN1v06vvY+2l3mHEyNRSnP9q2sl7Vi9Py/X4dlFXufcnqgUvs/bus/L1sZhkfPaw7KXWr9cDz1dGke+F49zkdLSxrRyCvXfS88e63ztzZ/wa3wPDMPchsg5i5y9a+JGKx7iZTImqeVyTlo+iKYn4zjSmAd3HS29iuRoWnAd4b4y/85ttFW+7Heiw+Ewk3+329Nudz4XxnGcrR+31/zz0o+d24RpmojGzcLey89cFkkrtuJzzsfl81I/T9M0m6PTfN4Uur+/p9p1SolevXpJw26u8/KzlKd1Dlp7r5XHiNgVay/LPeLKNY6n/X66xnwCs534vry3Wm9dLjlyDxVv71X9HTMxmc7XLH2M5Ma0uvVfKzfhfU4pEY2JhiERb859tEv8EEunPHvb66tXLF872g/Xv1ZczPHk1XIREbS9IGMtK99txUfch/awbJ+81jofJVImyz+xzutL/WEr5yI/t3wNIj/Otu5TwsstHzISK7d820i8wu1J5P4j8DPxUqTN79UFT5/W5iou0cejjdfKbBvTOtd7ZJrHXfZ+b/Xh4cks++m5h549EunH8mkka/aoN26rrbwWsd3ec9xIrCjHtWLjaAzaOjM9P8Dz1Vu+Tg9r1jMi/zpZaOaHHeeaiPu01b+scULkfPHuUasXybec5WvPQe+cVNuRp0ylLOPsocSei7Rki8aHUZktP8bbXy1f5xhD1vLHf6k85soefT3FtfTsbTS+08q8+eL7wtI565yL2sJS5vlnT39rWcRGRc4gbS54We87MWtjHauPqD2KvB/j5caIlnHHco2SmWvntHTBO49l/5E8YSTOjuxRjZ4Ylsti/VvhsZ7VJ5ez16Zpsf61dJbPs2dLIj5tj32O+DGtdq0xI/GB3J/zM43lcvO8Tyu+03Vked5qtjji63pnlqWXnrya7BpVT47N63jLdlof3A5o89UbU3g2oqVD2ngRHe73PfrPB/md57P59ej9a+We7mljSR+vlGMOvUzxeYz6uvx7j/3XyqPvWmj9aPbIkktrF323KhrbSqzzI+rXWz5HznwuH9efvYNwbTy7Yc2NZuOOZfF9cK341Ionorov92LrHOSfR/Ycq3I47GlP2fQf5bOp3rgvmi9s7fdhOL/zMQxEKR2OMfPj+wXb7ZZS0v88qfe8b8UzrXyGvJZSojQm0t7FuCw+Xd30KkTzKr0xqGeHI88mrBjGku9ct/7PXK5xGGkYz89/W/JHxzt+1u3KUc+PNurcdaLNZkN5s3yn2hqjft9ulu+i8WeCvfEFX9dpmtjeaPsfEs32ROLuyFnFbbf3HEfKxcevOifjxp44XKP1fNK7trSRy+sppcU7l3wdPFt+6b1pRN//tmL1aNzu6cXxP7ut50NGxltrF7T2l/pQln9x/H6+Vyl/9IzXdMnzM/1+q5zH/8ZxpEn5W8me8zoiuyarF9/w65H4+FJZou0svfbyV3bsVcu8eJH3Z+lYOl2z8xlxP1wjGr/I/iM+nHw3M/o3iHLOtXPe061WbkQb3/IrtHyLNqZWx4qzrfzT2ryaR0+8Ue+bN+FzEzl7OBGZpQ/PfQVO79mp1W+/nxrLrVx6jms5Jm1Mric5L/U950JlaO/fuobRnIiG1bYnnuDXeFxb+/b+tsvL70R1XDuvefuUUuj9gDJNNH8Gm055G63fUgrlYX79HYee75S+LCEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcGfwICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4J2CH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8UzbvWgAALiHnvChLKRERUSnl9JkzDPPf/imlqN9zzrP22liyTUpp0Z+HJp91jY+hlct2nhzatWvILcv599q/tS61PpfD+szLeL/8XzkGX3d+zZLFm9foXEXk50gdqzJLnZXfJTlnV197GYbhNGbOuTm+Jk9lmiZTR7VybU/JtZZoOqb1zT9zGb196WH1J69Z+tfSy1qm7SvL9mj3q9VLKZl7RKKtf2RPyHUZx7EpqzcnfC/K+bZ0rPW9h9b+lrJE6bFJ1vpzXeF15vNZy871hyFRGQbabEba0Gaha/KeI/upMgwDG2fonpecs6vjmq5EbX10LS/Rl9b9an1H7biU3xrr0nMhcg5InbHGtNr37lFpuyz4vER9GEu2S/Sgto/0FZGzdY5G51mWVRlbe8g7h6U8rTEj+9XrS45rzQ3/bNlOT6fW+ICctfswsucsOdaMyfc7x+qrZ+/a51K/T+7tB6uv2kb6IRVe3hqjxyfT6ls6F7kXOX/aWTZN06lsHMdFnFvH3e/3tN/viYjocDic2h3GPR0O5z6IiO4fMu12A43jSJvN5tR37cs6h1JKJ/2psmvniucbe/5xi9Zanv2Mc/k0TTQN7TGjMkTqLess95ZlO+v3teec30dR7a+Xj5F+aEQOeUZGchuy/Vq8vTvfX/Z4Ut7ofRO1Y3xNnlb+yYqv2/0TEZXHvIKv77022bOPVpwakZvbuFbOxjvLrPiyFy9vx+Ws41hxVv18OBwW7adpOpXz+c85n+x4Som222HWtu7xzeYc7/GczziOatwm/x0yUUo8h0C02WyobDaq7mtzoukozxlxLN9Eysn73Ww2aqyUbzK9uTnM+ri7u6NhnOfgZI7E08OIvfL8iEhf8h4vjktmMXY6lV2i/zxuP4pb2Pe4TYxS/TbLJyMiGoZCgzjPuc57fnvEBkXzCRXun3Edm1Kd+/NYOWdKj8vRO2cRufhaS19M6jyX1bPxrZjK8oe9M5SXW3GHZatkPXkf3vjWXuRnBbdNkfySlX/mvnFKiQ6Hg3l2eOelvEftuiVfxPf22kewcjPa51YOge8lTk/M0BtPSllacZ+mt5F5jcrSiqFb+0prc01afVr7Orou2h6RuuTZFN51vezFs70yenmSiA/fKov0pdkcSz8iY2lj9rbvvXftWmQ+vP3p7R3uU/N6ls3hY6WUTvUsXYruC6tuz15t7f1orNUb28n+I2O06PW3PFm862dbYEpystNzv3fph6zLAbXjijWxdg/ze4nNm1cW3dcel9yz9It65mOY6j4utGyWTjHFtWKbt8GaOOYSG2/1L79Hz/poDioC9wt6c/EyBo/4Jz1xdSuGkWVV/s0mL/wdzf7IMv5dy/tIubRrnoytviJ4cyF1KaJbfO2krbbugecb1pzpGp4erY0BWrbYisE1P0GbS2+/eXtZaz8Mg2vTo7ZIoj1b0sc4n/U5Z6Isr/txG99j8+vzMmvO+RjaWmiyeDoajTe9/buc95rf0H0arS/pN3vyWHtJtr/UD47kGCJjLOU/l58vnfVbO1+Wstg2uiUT1wvrnGk9x9feueJzbp0XvI81z7LkZw3L9nv3G+1L9mfJqLWrtqtX/ihRP6Snr+O/fO7TbM9H/GvPnvTmLaKx0TBUn4uIN4mcHZa9bO39VvzV6o+XW3qn6d40TadrwyFTzhPlfN6nL1++oofN/JkY9wNrX9Vf2W63Xeui7WM+jud78bKc+fNMfX6u9f66jL08fydKnjKVUuVj+aBi6/q7JHJvvbGSN3f8u5cXs9pEfCJeT47Pn7nUS8fPmaY8UQnIFNGNnrP6+N0ez4sZrTPWKrfsda9e8vnT5L9WPkkbV8PTpajN6vEvqp3sjd/WxHu8bW2u3ZLlq3pnkjY3/P0YC80GW3mL+j2aM4nvqTmz57SDHzNYvrBHK2fTu7aX7AUrnrLu++gPDeocXOJXa9et+DwlLQ/a9hMr3rPbSP5Jjun5n1abNfFkS29bNnm5PmXh0/I2TT0eZNxpv9+inV1Gr2rpXJ75fVhz6cnfazO4HF4dgYZewwAAIABJREFUPqb1zrccR76PFznnLV339NSWlz+jPZdHYlM+/6UU1Vfn5Zq8Wr7MywVb99bKW1jw7nkf9X1zr78em6fV64mD1mLHOcncPzKHdmohyjw5L/17V8svbK23zI1YtpzncLT9qGHdL2/TssH1Oj+Houe+pW/jsNxj0zTRNMVsoBcbUc5sLY7nRp4mGoycRUqJSspuLPJN4no7GQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFaAH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8U/AjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHcKfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwTtm8awEAuIRSyux7SmlWVj+nlE5lOedFO/ldlpdSTn3wvirDMCzqWX1ycs7mmBba+Lyt1j4iS+84Pch54X3zz6WU01x68mjjt9ZV+6zpj1UeuWc5Z959yvKUknnv3tiajo/juJDDuueKpov8WpVtGIZTXS4vr+P15d1nbefNo9yL2lxaba068l44mk61dMHSO69Mlnv7r2VjLHsV6VPKIuee37/XRvssZe6dS+2atq/W2lBtXqN7X8rCy6O2Q6vnlWv/yutSFv55s9lQSolSKpQSUSlExOZAyu7JIT9XG2TtXdn3peeNpWfW/Hs2Kop3VvWew5fKE93nLdvbgtfz2lzix8hrmi7JMaQsLRt7jfW/hOO+s+egty8NaQ89W2aVe3PO67RsQ/3euufW9da+kp/lOkufpQfeNrp+0t7V72t8J3mdt9H2dc/9WfNq9eHpXEvHtDPL8jeiY7TuVdpH+T0SA66Je7QxpN3yzkFNX+R1vk7yjK3l0zSdPuecaZqmU53D4UC73Y6IiA6HAx0OByIienh4oP1+/zj+nh6r1JHp9auJHnZHf/7m5oaIiG5ubmi73Z76rvfGy1NKp/HHcQzdM1+zS+2mtv5V3vP14z3WpbH2ezSX0CufcWVRz9Pd6DzF2tc5OX4ex4HGPC7ae/dvzZ83r6242RozYodkP31nT93Lx285F0pBH8SjFZu0rkXWnO8ra+2W/SRzD/aOHzk7LL2Qe9XK4Xjns2wzjiMN2+UZ2tpfEp4bscaMxFRVJo9qS61xrPKUEt1sM93dneVMKdFHH35Ih2n+SKDOhzWXci1u0rSYw3EcaVLmVcPLl2nz6uX8ZF9WPFqZxuX6j+OGxs3y3LV0zDqjI8icmud3RX34y8+iWN6jyuWhXW7JG8nnRfrTcliW7lhzpq2tlWfzZLP2v9zvyzrcZ5yIpmOufO6zxPPNmsz1u2d7euNHacd7z4doXC/by3F6Y73e+CIqzzAMZvwT8Wlku0i85LVfYyNasb6lPzJWkX31rm3Ld9TKoz7BJXixpWcvWjG8Jr9n42Qdq77Wd9Suy/6jtOKE3hjP20u9vuo5/rPH4NTxLJ+0JS+R7ZNH6DnHLOSzt55Yy5Mnavutc8w6070xes8oeS3yHNLah2vmPiqjJUtrL/lxXZ++Re2W1XfLLl2TaC6iJ8bjbYZhoGFY2qporqq1Lrxc1i0l9q6EN3YkVvTO+rmd9P2bliw95a2+WjZH3lc0btLWYp6z0OXptZlaeUumXr86YmNl2SU5H0sOOZ5/Jsd8t5av3mNjW/kkz2ea64Y+f3y/eH1bckf28VbJbW02G8p5WJRr7/bI/jRb1CO/9OF5/Z74XhvPiw2svi/J20haMZpGZP0j/ph31kf8qEtltPqrclm2KnKf/HokBmxhtT9+nvv/ml72nLHzOSmU80SPj7/C/Ubisd5zRtrJ1j0dc2ZEMi9o2QXuR/essSWfbNvjH0RsVHQtoj50LZvnGo//TtNEtDKlFD3ze2M4K0+hxare+aCNqdl7jZ697J09vTZ9jT/YqsPPeFkW6bc1Z62zP2JvT58HopTmc2atsxynVe7ZtGh7q97xvQb2/iLV/RaL3SM+XTS+XaPbPXHiZnN+Pnezn2izmT8DfP78Oe22y+cIER3xZJX2nds1Xj+aG8jbTMMwPo6/7vxuoeXTuB55a9EXdy7zPp4d9Mp6meecltciPkMLa+9dO1/Tc9bW8bV4y5OtR+Soj8Lr1GrRceo9aHvHy5NVf8JaX9kf/xx5z/C0d4ZEwzC3A60YzexLoVeHtPczZD+avvbs6x67YPmnmr/kjTNfHxmPxM5hjUvOo6Ms8zH5vXl9R+wOf3bd6se/Prd9OWdKpa1zUXsj79c6VzSZo/milqzy+1HvuE14vG9lS3P/ojcH4PlJMZ+YTjaRj7/mmb5mD3t00bKnno62dMFqo+UWWrkYue9a/qC8H1n/HHOmWZmmI5qPWOvW8mmaaJp440K73Y525ehvZso0TZlS0vOfnGvnwzy/VDvvPFtqvZvQQyQuj/hU/KyXMsr4xuqLy1Ljh2v4bpf4tH22ZL4vvLO05XevtTNE9t9YeOPztt54nr6ndP572Z58T865+S5qtFxen9vPpcySln/q7WXZXvt7AU1G/pm/l+v5ZpaN8M4ryw+f2fNxaXPGcaRxtM/ksJ+QEpHynqZ1PpRSqIyXvaPw68T1nvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADACvAjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHcKfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwTtm8awEAuISUUuh6KeX0OaU0K5doZbKNHLe2SSmpn1v9c4ZB/22iVrs6Zqu8NWctInJcMn7OWR3HGjdaro3L15UzDENTT2q51r6U4s6T1cYra+mVJ+c0Tc36sl8pY10Xq9+UklpH6nPOWa1nyaV9t9rzPR5B3vOa/XrJ+J6OeuNq68TLLBvi9e3plLUekX2h7ZHIvopg7TNphy3kfGu6wOWvdkHrw9o7UTvmXdPGkPPK5bf2omw/TBPlXChnonrpWEfXS24TtXnQ7js6F/Jz7zkj75ePW/cDLxvHsWtteojYK7lHx3FU+/Lsfc94LVlaNkNrW9tofbbOOG/vSuo5Y+1l65zU4PrL97h3Dni2zJNbK1/ji1n2Nqqv3p7tGZ+3kWNXXfD8Y6/fiqW70XuXY8t91bvHLR0vpZz00to70bXntojLW0oJ7+XWHrkUy1cmOt5/laVnfE2vW76hJ5/sSxvLGpcT8U+184XL4Y0vx5C2SKPlw/N/a9/TNJ3Kc850OBxO5bvd7vT5cDicrj08PNDDw8Ppcy0fhz3tdvU+j31++fIN7fcjDcNA9/f3RER0e3tLt7e3RER0d3c30+cqFy/T9IrLbNXTfJIeWv7u+fLyjIjGdlFb7+2ryjROxKtxEby+I76+FRt7eL6gVZ/D702L+T2ZPPkjMVQ0l2L5BDkXmndRZvrRkisij3beRXIA2vjeOkkZ+Rjz+sXca624I0qPb2Tdk+XTtTjXre0fbe4Uz9flnFW9lvLKtbT6s/Qi52xei/iKQ8oL3T4cDrQ/FHMNvDxZ5XjezNd/miY6JN9ettbaylNpbXvyp7O6Y1JjsjHbcZGca3lGR31UDreF0Tyh1W+PXT/dS0pE5Mf2kbF5WRno1GetVmPOyNnh5Z+8uK3OpVzXaqdyLid5Sqm5yeTGefy+pExe3NMbd3B7MQzD7LwZhpHGcXlPvbHppfkP73yV5/DauCRqG7itbd2HZcu8OtJnbfUZmVtLf7VYU8M747w8yNteC2kHZf7UstHR2D96rbd+K4Zc03ePLrZ8p+i6eXvvUj90Da391rLjVj9r7F0khjv6V3ZbTc6oLYysRU+eU9YvpSz2VyQOumbeKHrerIkbe+X05knrVzurtHZWnZbfcI39pOH1G8ntR8fotRFvy8fgRPZRXVdt/0fGOOeEznFi9Rdz1mP1Hn3ncln6Jm2Hdl6tme/onpJzN49Dz2VDWeqbZ/esfWmV98RAWn9ybbzxY/M3/5dOetLORWmyaeUcORcRGxk9Y6N7OZJzW2vrIn4m3xdSLyP2WpNRm0dtXeSYl96z1d6KZ3ux8kVen95Y3vMua77lfWnyeHrcG49HY/G3dR5bckXb9MQNkXvzYkXeZ8/e8WTysM6oHpvUkyvW+uN9LnMHSxu8Jk91bif1Ova+RWQMC0teL+6Ks8zl9cjQypVE+2qde5fGNN55olHX+1z9nPfQcqqt+9bsds5ZfRas+QFyPEtejdO4gyzX9Ubry/K3eum9L6J1ZyXPU1lj9Ohqjw2X9aP22hrXy3W0fEoPz3ZH4/4I0b2sPUPg77NpcrXkaflda3W5x55Ya7Scl/Pnet9rYhguSyll9hzK20utvvk7KKe4MRXKeaJSiIahnMYoj3HjNE00Tcu50j5rZ4+XR/ZiQG2/2HoYP2u8nIll41OJn3fzM4dY2eU5vUg+oXUmevPZC79nuZ9OfSvPG1OixRxF6csPEZF4Z8jzg3pzwCklGgY/VvWw3iOTdY7zu9TNSOzWepbmIdfUm3vt/UutPr/nyLt6FlLn5LuaWp+9Me0w+H5cK0bS+u+d/6hOaueYbO/JG/WTiM7v1ix9pKWMkfnrtUmR+KOWaWN469Mz5rmc92Pfdyu2jshR2/fm/1I6xwveOGv2pJXnuHYMqLFGF/r6q/NFC/0m0n3eBaPM5dg6opXLZ/XDtHyuuN1uqWyPNnDa5MU7KRLr3IiuX0SXJZovGI0N1+QpeL21ecZ5e/nciR7P5WFWV8rryRDx53vOAY1WDB3flyJPJ0TX/EA+jtqjUd7SC+tvp1p/B6L9DWzltMcUny4iN++L/x2GR2RdNb/vZAuG83tzES7NLWiyRdZQWw9vLTgtPzmSQzjtt6kscsz73Y52u+TKwPci/1xlK6VQ2e9p/7Cb1d+/eEHp4UGdv5QSlVui/cO5/JLc3Ned67wZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvBj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeKfgRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDsFP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4p2zetQAAXEIpxf0euZZSmn0eBv23gWo9b8ycszl+bc/Hk9dTSrP+eF1L/p45aLXlZXJsOU+yvVcmse7La8vnzxtXk8ObI28OWrLzuj26p8kv78uqP02TOY6HpdeX4Ol7Tx0Jn+NhGBZ9aHNeSgmtBe+f67XUcU8mjdba9ehJa6zWuHwuZH/eXo7sVznOmv1m9Vd11BvPg8+f1odlK7wxeX05rxGZrLqefF7/1nmz5uyLyO7ZOz7Psi/tXoZhCJ3D1j17c2HZN88uWLJbZT3w+xnHsVnHGn/NGm02Z9f+krWXWHMsy6Ve9twLkb1/vfreWdDa5559vESulswWUVtq9duj5x7a2Jfopfe99idtBC/3ZGuV17F4P9q+tOa71uVzae1ra47W+EK9tHxbXt7y2a25kOvIfdLI2d3yryNxT+ta5Dofk2Ota6RtZL+24sSILynns/aZc559PhwOp8+73Y6IiA6HA+33eyIienh4oPv7e3r16hUREd3f39PDwwMREb169Ypevnx5lIse6NNPP6kjUs6F/uw//JT2h5Fub2/pyZMnRER0d3dHT58+JSKiZ8+ezcrr5ydPnpzOqHEcabPZnPblOI6nz8MwqGeONUfXsM1V/85dne3GJTFUj73S9llOmdWN3Wf07NDOSq6j05CplDwbN+dMKds5jda+aMWx2h6J+swWPX5e3WNRW9QrjxarSDssz5G154e1hzxy5vp2Hj9new1yzlfzjzy5LORaWbFSvc7rTTnTNB0WY6XGlEdyE5q9asXt8/mnRTm38fxatfeyr2rvSyn05Jbo5cv7Wfuf/PQl5XwzG6/qzXa7VWPzYRhoHMeTLDf7iV6/fl3vmoiIPv30U3rYDGZftQ+t71Y8rPm5Pf6xFTMc6+nxfiuWiNj5S/1wCzl/WnmzD2XeE1sjTx7NL9HKiWJ7KzKedyZYMs/jmKX8Wq7euq/o3FpyRp4rzK/p+tfyqa2+I+UWPb752nyKt6ej+S9LtmgMLsfie8s6j7z7v9YZGcnHWOdTD3wfXSK7Zgc4rWdvvB8if/0928Ova/a8lbewWDM3UT83MmYrPtHGiujl24q1eF+9/a3JEbTm6lR3GEiKE5FPkylybxF7JK/3xMCR5zqRM733+VAP/Bz0fCVrX/O9a82TLF8Tt2q+I//ec6ZE153Xt9bJuxe+79fss16fttdf9fyoa9qZiL/m36uWD6eFrdByB5WePc7laZ2dWpvoOFHfcSH7oJ+VVlx0af5kzX7RPq9pr323yo4u+jGH6OV3NKznH7PulTwHn5tWG+/+WzFPRfoSVo7J6q/3mVTrXOB9WvdqyWL5kWvzWWE9ITuukPJq17U+vgq88aqMnn/N8dYqGhNHdcEat8Xa2PUaNoeXWfep5V9bMUxvvBy1H7xNy2ZotPZw/b42JpH3svhO+vxH4nlrvY+5xLmcvb6B53dqdk3Wa+WfvHq1r2EoM1/HUyFP36z8WUSW6Nnl0eufWmVrczrVL2jF68f5Xp4B0sZGxl8bXy/jqcdntOPgxgbe2NEYqdV3y2/tvWe5d7T4yWpjxf7ymkevjfX6udRHJio0TROVybYjER1u2au3geYr9sztJWdlT79yjIh/w3OfNf489n1+PhuN57xr/HPkOUqVKTJmGjOlNDzawXLSo1TSabxxbL9rYcm12WxM/8DSC/6Z75+eMyhyXkTjHisvrNn88zPgZVzoYfXXez5e++yJ8rbtyHqOsT8/q4+y6rmSHvtS20Tvfe07Sz2++pq2kuizH14evbdIPUv3I3507xhxfFnW+p+LUVbGaZEYLCKXVYf3X2393LfqP5e1dfZ8Ei/n2BMLRPMRni2wr9ltPL3syVNp53zte5qm0+ejD1Ln7Nw2ahOsM9LTK2sdrPuJxKY98L1gydmaV3kPxXiu4LXj1+T7Y+d+l7p+rKfN2/y+5FDcBhflWYB8h6uVp/B8loj+9Op6D3N5z373SbaGeD2xMteZYSAahqPvUJuP4+b0/rS1R7x9IP3miP5H4qdW7tKygdHc1CXvYHvjV7z3/r0zkts+Waahvdso99dCvwL0+F0RXZR79Bx7zvW/1Z8Wd/XIosVQml2Vz3H4O+Y8bo6MLc8hPgfyPLNym7XO4TDRbneY1fny5Z4eHhJN03SSk//tBv8bDV5nt9ud3vGdpomm7Zae//E/mcn+yz/5Eypv3sz+pqLq9na7pfG9DT394vnJfn/Vz49+lbj+X8UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAB/gRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDsFP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4p2zetQAAXMI4jlRKUa9Z5Vq9Wpd/5n2UUiiltGgry1JKpzJ+jX+2xvDuoecetbKUUng+tPuU/WpyWXMk+7RkkX168lpzy9vJcVrya31pyDbWGDnnZl+SYVj/u1St9eXy8LqReybSZeNla+43guw3qscW1v0Ow2DqdVRPPBtR/+2VX+6ryF6O7kUuj3afss6l5S1Z+FpH5pLbW6K5Pno2ds0+18r5+Nac8/qt/c1tl4UcT54tWj2LccyPfSzvSfat9dW7zpfuXd6HJps1F1wObW69dYnes6UX0X4jRPV4zTrJNdLmMuds2vxaLu11ZC48PB9D+9zSWV7O77XK752NER3j5Zrtj/g3Hi0b0+Nb9tyLJwfvy1uvln3XxvPWs2cO5bxH+m35NFVntDhgjYyXoM2/J9elWP6CLOd7gM9969zSvvesXUtG73vP+snra/1gL16U5V48KRnH8fR5u92q447jSDc3N0REtNvtaL/fExHRhx9+SA8PD49tJ/r445vaiogK/cM/+IDu74k2mw09efKEiIhubm5os9mcPt/d3Z3GrrJsNptZnWEYTteGYeiy5dL2XEPHj3OqlfXHTa360X5KKnSc96VckbIIMrY4r8Op53rFHM/zI3rQzuOIvZFy8O898XXtVzsLcs6L82SaJqJp3bxH5B+GQZX/mjady3L8ty8HY+W/5He5ZnVu5Rx7aHPh+YfcDqo2e0yU0rzPOudRvZH7R/N35L6Qc1HHsvIRtd+1sXcphW62mZ49+2xW/oPvf0i7vR4/R8e4PWS6ufnysc7Rbjx9+pRubufnDveb+NyujRUiuVktz8H/nYZMpczndb/f0bQ7nk2tuEN+t2ypRdVdyxa01vVSOzDfw37f3lmm2Wutz17ZWvfn+WxafKLJJPe6tZbR8a2zy9r7Wp/H/wbitrjKGc0tWf42vy/Pd/LO4N5Yx7KRlvyaXPW71+YSLBter03TtGgjZeTnjae7PbK2Yn9OlbsVT7d8irB/KnTEet4QxRp3GAbVN/Dsraaja32pa8f2vXbbizerXq5ZP49r5w3W9m/ZK77XvP7W6eX5DODng3cmRP2zVh5Clkv9juTmoteiPu6aMVvtvXXQzuO3geYfamP2xvGRe7PW9ZK90tOmpYc9ckhfY41964nztXG0fFCVq+WTW77SMQaY75FxHGkcE8l8iBczanlaDr/PHl1r+QZr44dLzrjoekXK+bWo3eTI9eDrvMZW8/KcC6U0zxkdY0miw+FAw0F/TsDLrBymFYNoPrzX3rqvnnvlfUWemco921qnnty55b9dkpeV+47PbdSmlVLM3JQGz3fXepEzUpsrbb6P8uRF/cPhQIfDYN6XnEtt/0jW+nFcXq/PqP5Z/fXqOI8VvNwMrx+Zg6hdlHvcij2seDXiu1h5Mn5tjb3V9uKa/IJVPypDq2xRZ9Bj5Mi96O/IFSKa55o8O9V7Tlv+iiUjL/fsjLbmx7iG93OZ3yDPPkn0PNDu59r+zJq4v1ZbzmVMh4/Xl+tgxYN+P+s4jqeVxfaglMHzY6JoetMb42jl1h6/NEfjzZVloyJ5gug9x8+kPj2J6h8n4qP1nges5YXt+/D67h23J2dzzEUtfQ0ed0Zk8/zzqPzXfO+b5/PGsf18l7eJxPayPGIz7XhsXl/zEbx+W3h+ud1Pf4x/iR//VdG7l+ZxOLMJwXOXyJ5n3wfn3x/3xuP2kDlhni+IsibHqj2r6h1H5iY8Oaz3gHvk9GKSlszRfSip8vaMHYnHehkO02Lucs6U83XOzGvtbW9fRMdd4wcscxT+mL1nQstPXBMHcKx90etLR33M3jg5MkcyzuXfNb+k2oxef/GaMU00FxFd315b3IoBuH5xvT7/67+/uGy/tNOWf3is5+cVYvd3KlXKznV79oCmd/LvTuT7g5FYb23+yOrXirXk2dnDXBfn47XuldfVPlestZB/27B2v/bG9XN5ibhPxf0pK+dpwd+Xiup1NLbR6vXGRXnKlPN8T/a8eyrH1Np576NWtNxSOye57C+yB5f9xHJ20zStyj3Vz9F767UXRz/tbItqm3Gcvy+ec6aH+4nuH47PYWqb4zOZAxEd/w6j+sQPDw+02+1OdfjnfHNDt/f3Mzm++OILyq9fn/7GYrPZnP6+4/b2lrbbLd0eDsffT/gVi/W+atb/xT0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcAfwICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4J2CH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8UzbvWgAALmGaplXtSilERJRSmpXz7ykls14tr/9Wcs6zMtlOlpVSTt/5Z02WFrwf77qsa9WX98G/a220uYzcv3XduufWXPC1seakNVdyHGtMuWa8v2EY3P5bfcs6tS/ebymFcs6LOlKWlNKpHh8zMnalth+GQS23kHPEZbP2gtWP9pmjtffWiH9vjc/rt8bvmVdNFg9rviO67MnF9cea65Z8vfdvrUVkLG/8qAzeOmo2QpZ78mvlrTWK1uP/atc8eN9HXSqyAvHho3PqyRxdS8/OXiKDd16/S6Qt5WurfeZ1OJ4uXnrPXMZhGGbjj+O4qD+O4+xc0mQlWm8jeb+WXlifLT9A9mvJavk0so113sm+Wsg19M6eSD/eZ4+WrFG/2UKuqbbG9d41vZZ+d+QehmE46baUf43cb4sqY8455Hv12MeePaiN3bLXUtekr7XWP/buw9JFrY9WLBL1CXl7Pk/e+JYds2jNl2ZXPDt0OByIiGi/39M0TbTf70/l9do0Tac+xmEUZ8FIT24TbTYbGseRNptjOunm5mb2mctVzwveT9WjGsuXUtR9qd2r7OtaHG2AVrac40v91IgetvqK7uuIjVTzBEOhlObzzO3n26DXt9bKrZg4mvPgZfxex3G53zabDY0lNh89doWj6YmlO97e17571Lo5Z8p5Kbe0eZYMrbEt39KKx1r9tuLdyjAMlDb50b8919lutzTSoM5lK1au/VZ4nsaSRfbL512OYem1Vc7zN8OQF/mgXDKVots4zyfi5RuaFjZhs9lQFnGDZzcsHe7Rba2sdXYe+0xCzpHGcZnHk34XXz8rhrPwcnYcbc6iezhS76Rr00Q51/rHf6fDgcqjTxDRA2/8+tEXMXT1AAAgAElEQVSKZbS5jNxDdC7qPA7D0gbXNdPiLo3WXERiRat8PrY9fiSe6435vH6l7mt62bJxrRzCNfKH0b68fB7R8f74PWvyynF65G+da604obaX61DlbMVAvB9L3z27pJFSUs8+Ld8VicH4HPQ+89P2uPfdk0WWW3MbiW2l/xb1XaLye2NarM3J9Ywfva/ImV71IvIMKlJ2upZHOl8ulNLZPlj6Z/leb5PoXoxwSXyg1Y/465F+In306FWLVv6vdw/19mX5li3WyGzl1qx78PxxTfe18h6dXXOmSnpiQqvNuWx+L9M00TSlxbVpmqhMfg7ciq/W7FfLd5Hjrbn3dgxdr/f7Xtq4UTsk50zNW62MGSL7Za7/pHw+5hC1PJm17+TnHttp5YYi+1K29/z3HlkittCbCyvP4sl7yRms6Q0fv+Wr1To9Z4TMbcn50N7vicbzx3xdpmlaPo/d7fa0283XSVsvmYeTMmvtOFpusCee0HTWmuPWHuqN46N1WnJF9d7TnWjOrDdW8+xtb7+tOerx7aJxu4eMsbw6LSK5KO0dO3nfPJbQxrg0Butdc8uP0Ndq/r5QKcv4XOu3R9ZIPOzFipHPsp+I7+Xl76Usdaha9biuy7GlTskzhvcl60lZPF23zmHNh9fsgRp3iyVfm4eQ99DyjXqwznOr3Nd9XWb+rNpbg0uelUbW75Jzp8onn/GO40iDeP6h6kKDSG4n2l7bI0TzfXL0eaZZ+8hZoI3hyeL5oNre9O476tNVpml6tMc0K5uGpTzeOJrvaclf4WvO30+6lDrOMa5eHwPx9xS9M/XSs/axl3hNwy7IchkzWrp7vl+pr8l8P6Plq36VvK3xdft9/J9pylQCzxAifggvk2f1PCeQTj5ArVN9pzWx/iSe3xPN94yUrVfPpUxcZ1IaTs/EtL2v2QHr7IvaDL6vLbRnAT02nxPN19T+W++femeuVrfXLEV0VNaV+7+d57PLrnmmtmQy97ZyPeLLWn1qMvTes9b3Nc6ikvJCT8ZxpDHP9cm6rzW6GkWzN9pZtEYfZHutvva91d5i7VxckufgcR+/5OUMZD8tm9+695TOfUT9UitOTMo7kdq7AVVuLx+lPXvlZT16HbF3tu4t6/fmq6IxgXa2lKK/h9njQ7T+PqfO66Wx7Nq/NzrfS1uveY7ailU8OaIxjHXfkfYR34VTSgk9R/T6vMS/9va+3OulPPqfqZ0X5X1Y41a8+V7bp7yvSEzetpfH/sdxVHXxZptps9nNyt57NtBmO8+58TWTOYx6v4fDYe7j3t7S5pNPjp8fc7Mf/aN/ROnh4VRH/g3f+HQk+mBL9LifhrQ+N/V155t75wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF8J8CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAdwp+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBOwY+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3imbdy0AAJcwDPPf8SmlUErp9JmXV1JKpzq8rP7L62rtZV+ePFq9UsqpD9lejqnJ4tWPknO+qA/rPi3k/PXIKvtozZn2uXcMrdwaV5NL3qM13xxtTmWf2vXoWkRk4Fh63tuPnDc+N/KetDFb62jphadzrTbSRsjvLfll+TAMrm55fXlYOmnpojWWNmbv/rFspzbHmtxr9qs1vpQlYjt6ZdF0RF7XPkd0xtJXovP+65kv676HYXi8j0LHKonSMNAwJBrHkcYyhsfgMrXsliyvOmHVvXTdrPbjOL+/iP7y8pbNacm39lyw5LHKuS3V+vPkiMro1YvMhYd1FkX0IjqO1a9lS/j9emNIGa15ithyTeda40t72xonWj+K9Hc1e8fPx5ZPw9v3+iJ1rDV487BmjrTYRfbF506zVbXM86kqOeemDyu/c13IOS9k9PaMLPPGjZ59UazzJ7oXtfo9a6zNn9RXvv6ReCw6Lymlk15M00SbzWYxXimFbm5uZt/rdenrn+xdyTRN+VSnlEz7/Z72h0zb7VYdM+LTTtM0k5nX47bgUjskx/f2yzRlyrn6REdyzqd18ny9NXK07Pf531pv3fjR/WiPXdsXU+5IPBa9FjlXW/ac30PLlmjzo8flNNMN3m3LDtdx1pxdXn8SbU5b9ozbq5Qy1fU+lh1tRHS+5eeIzBbeXEXyQa39Wv2qeXF6XOdYjK3J6s2FpZdafKfZC95+mqZFXW67l8xtWSmFDocDHQ76OcA/8/Wvbe01SAvbzvvzcrGcHv/W2n/WvNb/csl0OByYHET7/Y6m3aDKyWXV9oQW32r3d82cBK/X67uc/LzHnAC39+lUNq9r3aOsd8wzVL06XttsNjQWf97eVnndM/oZ769TKy/TIroW9T85RaU8+vJZlvf7ybJNNOd6LSI2VO5bmeerrI3reuNJq470ryNtovmq3nuz4uyU0uKssOL+OqaUkbf37kFDtrXWzzq7NH3V6q2J1Sy8mNmzMa1Y+9IYwsPyp685xhoivppWHo17ozm0FsczsC2n5+t7/kKrXwsvR97bbzSfdW2daZ3XrXlr+YeXxhzXyHdaskgdXaMjEXsl9791rl/yTDiih1odK4eiIeVbYzOj/mHrfsbTmVTHPPtoRzHOsozjSMOoP8+37EfPvvbsgOUfEfWvtze+VTYYsQLRco/z+7fWcq1f57HGv7V8smHgOvFYl2QuwR4/mse6JlbM7OHtRe/s5WNEzs7oWe/lE61Y27NHWn2rTJbL2CVy5lo5Cy9WsOy4Z0eOObu8eAdleHzOb1HHqj67jG+sOZbtW/HSVxVrevCcmYXMe3n9aHXW7Lle1vgul+wdec3au2vyCmvjslZfng9xzgeeSojoUS+YalxyH6XY5/1anYjMbzS+qOjPPY5nHZ9Cnt+19Lvlk6+N4T177fkUa+g9B/h37UzIOVMqti7Ofcsz/BmM1Otr6JU+p8s6vXPbOu+lDlv+RU++t8eGRPyX6PW1a6D5xVp7zUZHzidNjvp9miYqpeZaj9cOhwMNh8ufv/fGN5p8lu+WDtMirzhNByqb9e/NeTkGzw9rcekc8O+lZJLdlXJ+fnHpONFYsVVP0+Gc588v5bl7fDZz/LwmF9Xjx/XoNV/3cy6gL4bXzoHI2VDbtvzux5pNeaK6GOmjnj29a9WKh6L0nm9r1rw1/lEGrutzv7E+b+RM00RTZ9gfyQFb9xiJW7w+ZPyo5S60vVfLpE/Z+y5yfVcsIr92veXfakT8vmvkbmw9S02djY4vz67oPtBseK8/4OmtF5/J8qXNmPvIMv8Y6UfKsrTzSzl730m61L/U6vImVdaIDV4bO0dY03ck19DjU0fsmTemNZbm92n5hEvjCi3ua9kAKf9SP207spyLZR9WXqT6m+fzz37mEF2vlo2yyjUb48UPFq2Y4+hf1THP57xmW6SP1JLZl7P2P6jxnnXv9TPPR2jlmmwaOefm36vW71ae17Kl9XOeMsncvCarnD85F9bZqI3ZolmvFPrwzYE+erOn52/29Gx3oCeHTE8OmcZcaCyFMiXKA9FuHOh+M9Cb7Uhf3G7o8/cHen0/0cOT87uSa/IsUSzbG7EPw0CLZwfjONKoPPM81m/ripTLQq6rpiOtsXg97xyI5PYs+fj1zSZTSvtZn9vNlnJe6rSVM9R0r5RC9OQJTXdPZuXPPvqI0sODeh8pJSq3hXY39fsyv/dNAj+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfEP4o7/+jH702evFDzYSFfrFe7f0P/zOt9+FWFfl41c7+u3PXtP3XjzQ7TT/IVHJQIWGiWgzTfR0NxHRnr5PROWXhf6T/3ZHn3+wob/+/g391Q9u9A4AAFcDP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArz2/+eKe/uBnL+n5/f5qfX74YqIPX7yhP/zTN/TiFxP9+YfP6O/ev71a/wCAM/gRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxtebo70B/99AV98vLhrY7zyZcP9L3Pd/T3T2/o//yND+jzp9u3Oh4A3zTwIyjga01KiUop5ndeHkG2re3kGGv6rXVTSma/1vgSb1zehzYXXnurvodso/URva/WNW+M6JzIevUaL/fmwbrmjTGOY6hvjiUP1xOvLynDZqObe66L1lrmnEMya/JGZLsGrbnQxpR7js+rNcdy//PvwzC4MrTkjuxdr09L5qhdW7MuvTZjjY3W5PXqWci9Luu31qhlI+o+kesY0T0P7cxptY/MxbFO/W95fc15UNtqcqw5R3tk6NFfb3xvH2o2wpPVGsc7J3m9XtsrbRAfp7evKLzfS3SS6Cw/7/Nt2E5Lrh5daMlXr2nXLd3p2ReeDfLkrXBd4Xot9bTX511zdl1qI1vj1/lqzRmfE++s9/QkUnY4HLrWykP6INpcjuNo2gJrLTx/huPZlYi/LMduxT3yOpczKktkX1t1oueM1BdrPq1zIeesjmv5rPVf77qUZbPZ0DRNs/igXiulnOZzM06nOKaUTCnN5dnv96e+D4fDqZ9zm3NffI3HcVycd3X8aZpmbaw5k1i2RPuurcmYCw3DUscsexmJF3tsaFvXCnGfLRLfWki5pLzentHiCt4ues+R89G6Hs0teLYsanuv6Yt6e55oKe+anE3El/FtX5+/0+N/954LHG4jrPXvsReWHDkXSsIGczvWkrnXd5ymSdUFbXztnLPO9MherGVc/zQbkHMO7uv2/Gs+cK8tkHao5VNpNmzeR90XybRxHtqaS7saOZ+8frXylh3g+8KbY3XfG+sS9Q8fO1mMF/WZe8t7fPyc9TMtsu5efGC1acnplR/7tJ8heET3v0Udh+eyvbqRvI+8phEZz5KBE7FZ1lhR39+y9zz2iuQ1rH1Vz71WHqfHT7F8As2OrskPR+drmqZmOy0fsEamS9rJ9tZca2f3tWWwzktZ51rjeX1H/BtZHpHNipsvyZdcQm8ubE2/8ruVA/Bis7VnjzZORN7e/mVfkbMzkr+R43J/tTdv0xPDaWXXiIeibaPz0TuOty69PkhvPs3LuUb9CC8O6rGNY5kopYHOfmx6zAktdVfmiix5NDl6/Dmup5aNkHJdi6VesfJyluMSXYyeHZZsUf866iu28h7HfwqlIZ10heuCF6v0xEJridqjiD5qsa0cI5LzG4bBXY+1OuK1lfJ6a2DZi2icyPei9HFruZaTkG345/1+Tw8Pxxew7+/vT5/fvHlDr1+/JiKiV69ena49vRvot3/wG1RFG8eR/s2/+ZLevCn07Nkzur09/j9NPnnyhJ48eUJERHd3d7TZbE7PBcZxPMVHPDfEP3v2mrPGDnkxT4+tleV8/eWzszXxeeRar9+o2dHWvck6a/LHLZlafcsxen26Xjss+7DKrBzYkqVeR3xrPq6WT7NyX4vRA/bTK1tj72P1520vea/Em8+IPbZ8DM8fXOtXRGVkPXa3jeylaExmndFr80M91y6F36e1Lj32IRofWUTi8Uifnv5F/dDoda1vS7b5OX4sG8eRhnHdc1PrXq6dg9qmaZG33W5vqKzMG2tcGkNXvJi119YPWZYXIkoL/Yr61l/FezN1nJwK5Vx94XLybYfpKPfhMBF3lTXdqffJy1rPCvhZo7X32i2x1zLin/Hv56KlT/220HIWFlYu+5q50KhPFNHFaZiolEylVNtc8xL6O4DXn+uzjtV5HYblO0WbzYbypt9OjeP6nFMr9pr1e8pjVHRbEn0etfZ9R75nrfczI/Tabf6eSc94EVtu2YhjWS0/xg6tvdHyN1qfrT56fK5erH56cnby/Uiix3x/tuW7Vtx1bZvR09+x7vG8P6K9xxIfI+KHeP6nPebZ52zF82vyfP1zRqq81tnt1Yv68JF4VOtDVo+ej/M2s2+nvaHtGd22W/Nb9a9dbr2bvVbnvHLtWsS29CBjJJkLsZDrZ+nzUv5Mmq8Z8cO9POeauWi10XSfy7q8ns0zNo1p4S9p46y5j0v+nvW7Xz7QP/ubz2k7lWrdAu3P+nJmrkfHr2l2terDd97s6b/8y0/pz751R3/yyftUjHlZjBD0Q+ayts+PxGStQ8jnoC1dj57zLVlkzKe1X5uf1PRWyzlabeq407B8h3h/2NN+P+9Hvter9SXf/yrDQGl2f4lommg0ztuUEg3jQMNwtCtJ6N03DfwICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL52/Nbnb+gf/+QLSm/vt19NhlLod//+FX3r9Z7+5x99SA8rfjyP8/zNnn7zxf3ix5bqj7r8u+8+u6h/AL4O4EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8LXiN1/cv7MfQOF8/HpH/+IvP6N//R99i3abYXU/H97v6Q9+/hI/ggK+0eBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC14f37A/2Tv4n9AEqhRL94b0uf3m3p87stfXk70kNKNG0GOgyJhkI05kJ3U6an+0wf3h/o26/39PH9fVie5/d7+uf/72f0r3/8LSopXXBnAHyzwY+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GtBKoX+6U++oE32fwHlMAz0/3z7jv7io6f0+macXSulUHr8sZIpEU1Dov12pBdPiH72wZPjOJuJPvi9z+gP/uyePnwxNeX6+PWOfv/nL+lPP3l/5Z0BAPAjKOBrTUrpdLgQzQ+bUgI/29UxDu9P9l2/J+NXuUopszpWfa+99j16j57sstySwSofhmHWhzb/cv48Wfi99cjiyW/148kjP0fmmo9jfY6i6XbPZ0mPzuScF2V8ndeg9WnJI3VHXlszt9o4lkyyf0t/Zb/R/RiRme8jq9+c86yvukZS3loudUDu3ZaMco95e9SjV6/5OllzIfeLNp6UN2KjeL3IGaB9vsR2WHXkd08ei2Od43/H6oVKzpRTopzzQr882fwxlt892S8ZT/a3Zl48GXp1v5Si2pmW/rTklPpaZZFjXbo/JdVmWLZTg+8fz7bXftfomGabJNacybmv5VIOy156/g2XzVpXa048m2YhZWzNt0Tzp625bH2WdlPKo31u2b7WPXjzHdHZnPPivNTkjcgi2/D1tPy7nn2lcWl7zjS1k3FE/jxY+zEa60TORXnPrTnQxrjWGa31b41Zy2W/te44jmr7nLN5XvBrOefTGu73e7p//LXpV69e0evXr4mI6PXr1/Tzn/+c/vZv/5aI6FRH8vTpQP/yP//+rOzf/l8/pdevl3P95MkxsfvJJ5/QRx99RERE77//Pj179oyIiO7u7ujm5oaIiLbbLW02G9psjukoGWfwObD2ToSI/17n/vif31/EHllnSevs0NocP/fZG/79ktyCdm6VoreV+52PHzmLeuy8VublD6y5sHxSe86kzLpvzmXpiX+JiA6HQ8gPIZrb6TX+mYa0MbUs50TDMKh78RL76JXLOtwm8Ha9MRxHu19N71NKi/F7ZKnrol2z7kvq9TRNi+9Ex7XX+tf0R+7T49rqcQSv32auA5YvVa/3+qcSuResPFXL3kzbTF/ezM++u7unNG6GWb1rco24Nxqfa36wnSsVfYr192IsPp7mk3AZhrLsM2r/tfG977LfYSiPtotmdew5WbLmjOqpM7c/dax1MYgWa3k+qaT3POH70NPRS877SJ1aZsUyVr9cHu9eLKx77s2jc/lqW96Hti7e+fQ27BjRch7l+dFCngXeOcnb8DHWtLGw+rL2TiRuXZvLjOZPWnbZWxNLX6VN9MqjMYYmwyXPl7x1b/nOrfbH8ljuSmNtPq9l73rm2/KxIudaxFeP2GaPnnO8RWS9a71Wv9H9xse19ovsw5tXbx+3/BMvbiXSz7KoXvbqvKZ3kbXs1cuo/NY8eetckT5sSuUUD8v60zRRmYq7lpfIy2Wq9TT5e3Musr1FleVYrxDR2Y+W8XErT9MDn0tP5ojt9L5rWDIf9SITEcv35EIl5dN1yvG55/JbNiqyPmvxzqs1+tMrf6996IlLLD8smrfS9rJ2vlj3b/ke3jle9xLXv9vb21MuXeaCtLFvbwr9g38wz2388R8/pd0uuWss8z7W2WHR8jG1+5W8jXeRvDGje8fat5Y+8L0c8amsPrS6kTMm4u/0wG3UJUTX0htnTQ7R9+X9PHDERlTGTJTSMMszbTYbyptljH6J31vH1talpW/RcZb1+s5ZrY+IL9CKdSw/WTtHPV8v6nd666/mOksmKaIlt8yBLPp69DlbcnrXevZsj657tHyaNf33+HxrrvfsoZ75jb532pLPkqkVI2p9cF0rhSils+/qte/1CXv9K0/ms11IVOOQebkvo9WvJVdvvbdJfX4xLxsWz9uuce5bfoQVd0rk+7vH/+JjR/MUWo6f+7DSn42u18LXHejxPNd95X77ul5v5vN5ntRpmmgKuFZVVjl3a+7Fkq93nrU+tDqWfS51b5zu4fyf1X/PWaKNf7Sfpx4opWM/Nb7TznvrLG/t2Wqr5f1bc837ir7TR0SUh/oOOO/r+J6Ah3w+ZcWQvE5vTMfbtJ41RXRZm2/+9xQePdc1Wdb6Q1H/iJ/x1zyjWj5Tb9ue/utZoNnh3ndAeuWS/Xn77hI/jo+hXJnVse6716bKa1bcZI0xj59j5/ZavVyTG+2h1+fVZInkHBfthnq9P68Rod3XMi84950KEQ00jiON43jUjZPM9l5s2bzI8/u1rOnTPof53ju+bzGMfh44gl/fjm+sPiJ/NxdF+uEt5vHeUZet9dfi4TxlynmeizscDjQc+nLKHO39GY+cM/3409f00f3ecdETfXa3pf/1hx/Sy9vHd9gDfcuzeUpEf/GjG/qL39rS7/3FA/3Rn7yhnAulU/y97OP3fvGK/uqjp/Tmxn7fh4/Bv+fc/wyO5wfqutSlm6ZMUyMfWOnNKfGzR8uJaTJGy606VkzgPW+yYoh5buXY7zQVmqbj31keDodTveqfHw6H01i8nGjulw7TRDe7/fn7MNC029G035/+pmIcx1kMTI8+01eZr/hV5XpPkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeEkMu9Hs/f+XW+fTuhv77H3/79AMoF5MS/fvfeUL/6l++Tw8b/ycaxlLo93/x8jrjAvANBD+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF95fvDFPd0dJvP6m+1I/9Nvf0jTkK4+9qcfbeh//HG77x9+fk9jLlcfH4BvAvgRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzK88PP37jX/+333qeHzfjWxv/s6Zb+70+euXW2OdP3vrx/azIA8OvM5l0LAMDbIqVEpcR+IatVz7peSpldk/VSWv6Kl6zj9d2ql1JajKGNydtb8lrtopRSZn3w+eef5Zhaubwmy3POptxWm4j8VhtLztb6R2Tw1qtnLbXrHD5nUYZh+TtZvf1490Gk37+3b3rnMXq9B0vHtHJtrbQ5bOkf/9eaC2t8S0+8tbTG0OSyxtb6lPPUKzO3edL+tdZYroW3lz35eHlLH7U9FCE6L/xeomtw4jBRzpky+yXJ+il6tkT2o3XOyDnsmf8oa2x/9Lp2vslxU0onHeix15YNXGPHW/fXYxv5+C2fQvat6VTv+BxvD649J3i/0fM8uib8/qO+V6SeJ6dnfyJ2MGrv1+xTPheeXbBk7RmDiGgcx5BvtGaPraHnXiL+wdscPzpG1B+OyqH158V20kZeopecYRi67HRLTq2+Vt66l7pftWvDMKjn0JMnT+j58+dERDRNE/3gBz+gP/zDPyQiosPhQNN0/PXrnPOp3+12oh//+HDqK6VE//V/9Qe02w+03W5pHI/J4HEcT2OO4zgrr+OnlBb1ub/E61Uivm6LiA5XWbyqvB9pXyO2w4t7OUvdX9rcVs6h1zZwmzzvW/br913vMXJmRdeydaa3bKLlZ3r7Xeszp0zn+SiLdtp4vDziB3I98vYD39e8fLM5p3dbMah2zo4jUUq131p23s+8fsQuRvyx3njOIxoPneoOVWfnsmnxqrfHNV9f+iBybMun1j7XulYMLPvWZLi9KbTZvJm1f//Z+7Tb276idw7V79M0LeZmt9vRrozuHuW2X7uu6beFZVcsHa3y8rOuknOm5JjzVtzRe0ZFfDzLpnr+uCWT5XdrWPcaydPUvcWRa92KJyL5vWgcVe/7WP9sx6vv0RujRcb0ytpjzfWA+0iRca11iuZuWnOrtY/6Nacz1cnpW229OZPfq92NrKlm87XPWrsWl8TN0bi0+u8RPF+2Nb61RzU7atW/Vgyq2W+Nlo+lfef1+PmdczbraWOuiaGtNVkT/8gzXPoYWr0IUsaID8fXPqoHPbGNZcN79sa5nT92r328hGvGTb19tfIu2lheDOiNY7WPnJ+8j4gfJL9bfa2JVXrnmO8lLQZt9dHzvEnb8zJukrbA89+jY61hbV4jco7LzzLWIiIaDhPlPLcdOU80TYlyLrN8Uc6ZKPvjzPu5/Nm8FRNYuiPLvf3bppzi5mmaKO/7zsHeuF/bn1asFME7i1pnNx+7VuFlMqaI3k8t772Xlqy9bTiar3Dpvo7KYe3Rnn57YiBt3Ihc3vhau2EYzP0v9Vobiz+XKKWo/s24WTLQHQgAACAASURBVJ7BR71Mp3jSktOK+7Xylp5r9+H54ETLfJknlxxDrnnPvXgyR/bXWn8w6t9o1zzblXO+agzfskue38f7tmJK70zojc+jtrf2W8rZltc60VhFyjJNE5WSiTc5HA50SMtzJeKrev61l9vT8Pw3e06XfnOv79C7T9bYe69vT3c0W9zKVfLxjv8R8ZzdOIys/Vy/18TA0bwVl7fVt9Qh/v1YpvuLvVi+ztvoq6fvVj71WjGOt37X8qvW+IrLvXte5948nSZPxI+N2G7tXJD7jdfxdHVNzomXeTmEaJ89Miz1kLeN6b41djTPyG2k57t6TNuJ3mz2REQ0joWGYaLNZkObR9lub2/o/Oz5TOs5YLSs0uOvKzWIz7+M+a14VD8j5/a1h/l+mOfye989vsQWX6NP6+xq1ZVxaR6P7zSXNM/lpJzpcDjQcDjM+orOUyQHcJaJZmPL5xOlEE3T0Q9sPVdZ+qh5FuellOgwHehwmL/vZcnm3UuU6JxF3o+y4lYNnlepaO9UWOPxd2k8/7eW98QZ1via3bJi+7M9OLUIyyrx3jtfcyZGYuVLfENtvIhcUa7lw2j9tZ79SbwYqKVnUkdKSd3z7sUKXpsWNX5+/EZE1f75beV7TS3W5Di1eq111cqiOQZPf+WZxZmGTKXwdwwf7QjZP7ig+8nLOtq6H9tyfYzsdeu941ieVjs/1j678sq5XvXuf003zvMS2ztrYrHleMc97snZKovEnBx5bkX6s/N1RETLdyuHYbDzu2OiYTjrZSmP75CPsVyMJ1uo/pTpu6/3pt68uN3QTz68Wz2+/n1Z9ucfv0f/8adv6OnDYbGfK999uaOfPr9zx/ZyiFGZz+V0krVWGYbUHW+00HLB0RyjfNfl2rFN5Iyo32+2mcZxmtV5crullI55+er7cj84P8Yqsq8aS1SGmy0N46NPW33Fx33V8hkviTt/XbiuxgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcmY/e7Gl0fuDkJ8+ffCVylJToz7/91K3z7df7r0QWAH7dwI+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Fea9+8P7vVfPr35iiRp/+DKs4cDkfODLQAAnc27FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/+rz3aqIf/u2evvX5gZ5/MdG3/uQ13eyIxlJoGhLtx4Febkf68smGfvHeDf382S3tN8N1xt77P4Jyv73OOBHebEd68WRDzx90mcZS6O6Q6c12/MpkAuDXAfwICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEy+9+KefveXL+ju85fnwkJ0tx8o5UREiTZToc000d3uQN959UA//uUrmlKin354R//+O+/Rl0+2F8mwnYpfoXH52nx6tzV/BIWIaGv8CMrtfqLvvXygIuT99uudO96PPntDKSX12t+9f0NERHf7iZ7tJiIi+v2fv6TduPxhmD/9+D0qg97PpXxwf6Dvf3GvXisl04vbDf3NB7dvZWzw6wF+BAV87SnMuhdh6eV3r61GPQRSSrMDwTocUkpdY5ZSTn3Vcu1++Hje/Voyys/WfWl9ynI5vixvySzHs+ayR6Y1ZWvGk2jzx6/1juN91/rzxpbzPwzDos9SCuWc1T5q/YpVLzJXvfPfc69ruJY+WPsvum5WPb6vODnnsL55e1yTv0fntTYRG1Xvq2VLW2t9qS70tF87lrbGHG++e/SNr3Mvm3y0C8OQH/sgGlKiwrqyzrTWeBE7HNE/qS+9slj7gvczDEPzXPboOXOs8SP9H9dqWJTLNYrIHLEJRDG7z8eP+kq8D7nGmhxWmUZ0L0TnTOvP0uWIDyj79fw4T7ZaT+qv1zayNpfoT08/rTVunaM9OpJzNveZLF+jP9Y+8WjZtahMno307FhkfM3vl20jn70xLCL+lSSlROPY/kXkS/x2iefvrKG133mdam/rd67nlk5O00SHwzGh+vDwQPv9nna7Y1J0v9/TmzdvTu1rvdubQq9ebR/HPO6ZX/7yS9ofRtpsNnRzc0yM3tzc0O3tMfE4jiNtt9tTX/XzMAwn2bT1sva99vkaZ8LSR8hEZMepfMxpmi46e1vnBd9/tZq8lV5bbMUXLVlleSu2afk1lmwtmaW943oetXca2hq3zvXzGWzbHa2vlu0dx9H0sThR/0yOqa0Nn+OUCtOz4dQmuqZr7GhkX1jnkVWmlWt955xpXlTUfZJScnMjLT9Ak9+6F82/4DpUv1u+kb1Wy301TRNN01xnKuM4umdqlWkzlVO9KtfNzQ2lm81JFi8fweVd409JubV+ObMxxkQpDVTnppS+/GgdOxr7WFh6wWWNnBdcxy0dkfXPbWr/Zx2Lrod2/8d/23lfz+9p+bRRez+vV2Z7vu6FqJ1txW0R5H7Wy/h9xs5vKz5dc+7LvCP3NTX4frPyL954Lbms9Y+c/Z6/Ze2XSA5Dfp6m48sB3O5p/Vk6auWJpK+v6U/LvlrrdkmO36unnVmtfnvsg9dG4ummNo60u3VdK/V7K1ch67SIxN1W35Hz9dIx18T21n7V+uuNaTx56jVP77lNzUSnuLdyf/9Aw27n7ueenIhln+vn1npyO7jm3JFj99rliJ+iXb/UP4rK2RPrrZFFix8itMbxznY5d5faGa2etBHjODZjVakLkbnozRNGYjhLHqsPq719DhLx+GC/P9B+nyjn+Zmw3x9o2C/1q/d8qu0kPbkvyxfS8gPamNba13XW9sFQlucMz0t6Pq8lc8u/0+g5bzWi8Vwd5vzvOa7IOR8PFKd9RP97coaXnAeROdNkaa2f1wdvF7Ef1h6J+oyerJfG7FEf2rNR9TvPLcucPf/88PBARESvX7+m+/v7Wfn9/T09vRvod370nZNswzDQf/evfk6v3xxz8nd3d0RE9N577y0+11z+drud5e/rGtSYpGKdUZF59dZd+u2aDdHqt/acdd5Gy+QYrbycx5qzKrLvWnvKigustbNsUfR+5dlj+YdWPNKbw+g5L2r+K+fzc5aobdPjm6V+lZIp53YOwBrj0tyE159/Ns/zZcdr83vR5LpUXzSZW585UvdD+WBRHnnuUUqhPGXK+ahD9faO/cZtx/x7opRoMe91vMj9R+Jsf014+7gvu9Y/9er02NXefIvXbyv/Ho3NWu0s2byxI3Bbao9Z7f3xm8w3yjbeucDbWHsnYpP4ewJaGysGkfa1tWba9xaX5l28PiLyEvXp2BpfV6vDn/FFc4rzDoiOz9qIUjrbndrX8Xnjst9WnGSdXWvW3vP/jjpX3xHxz6LWeVdtvEUr93Kut2zn+T/avPScHz02rtV/tD8us3f21bgpaivlub8qtt7wNV/Ku+znuAda71RoenqzzTSOr2fl46DvmSqH7Ct6jlpVos+j+RjDMKjvEfTsaytWsPqT4/XobOu+LLsi71mrF8kTlMd8ozzP+Fi9tPwNfl/y3+h5f027IJHv2tR4rTJNE6VAKt6T0cu5Vi7NLXr7r5kzOb2rckazI1ZeSbvuyREtb13zaOUgovTa7rpfW/q7JuboOYOM3ujsk6/xVef+idX2OAfK6CKvefR5aFZW7ZIW41pn+lobrH3W/P9r4cu+jPd68019ssxlaNluz155ul6/W++Ham20fvn3Uqq/sxB41tfT3YH+6K8/o49f7qiMhY5voT9eN/MO53f2NkT0W5+9oR98fk//4Tvv0b/75Nlp0MiazN4jnrR3a85jP8tErwJ/Z6ChxastvrzbEn3+xry+Me7v/YcD/eOffKE3cvbhP/3bF+a1/+YffveYkxqIvvPq+HcDv/+LV3RQfuzkl3db+tn79g+RrLHXld/9/J5+/OlrNTdGRPS/ff8D2mw2i3GkXYsQzb9rfWtxy/6wf3x2fP4bi8PhcHqfaL/fm+Xc9tGTW3r/5fHHglJKlCjRq5/9jLYsZ3lzc3Pyg7fbLQ2HkfJuPPkM5av+RZ9fIfAjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJjx7VcP9M/+8lPaHtb9n59xhlLo93/+JT2/39P/8lsfUVZ+nKPF1Gjy8asd/eyDJysl7OcvP7qjv3N+TOT1dt0PslzCw2ak+81AT5w1+8GLe/dHUNaSSqHvf3FvXp+GRD/54Prjgl8vYv+XngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhG8PHLB/rP/uKXdDNd/gMonN94cU//6U8+X9V2t/F/HuG3PntDKZdVfa/hMA705e3G/G9a8UMv1+DzJxv3+m++eKBUrj9P3325o1tHX37ywS0dRvzEBfCBhgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICIiJ6/3tE//8tPafOWflDkh5+/od/+9HV3uy9v/B/3eLKf6A//vxdrxfq14YsnW/JW7nbK9J1Xu6uP+8Mv7t3rf/XR3dXHBL9++LscgF9xpmmilPRfwEopna5ZdYiICvuVKusz/y7LZR1vrAi8Pf88DOffLLJkiMicUjp918aq/5ZSZu15Hznrv8DlzU2kjpSzp73Xb2RNImP3EJmLnvq9cyvXqOpPznmmS7ycY62x5JK54nJ46y1lsfRSqyP7tfaCJwPH2p9WnUq91+h4kfWW8kf66tVLrX3EFnrjWWsT1aVL76d3vJYMreuR+YrqwhqZLZuec34sq+PM10aeCbxMk80qi9SRZXwcrVyetRFdsua/2peIXvXOv7yPyFx496Lp0jRNIVkiPsRau1+/1zFa89QaX9NZOQ/eGLy9Nb6lP9F9GjkLov6l1aa3PDrvl9jNte2987pirYO23hH/QZMhUqaN78Fl0dD2lbYWrTlq6axln7XyyFqsiZ2uhXcGrDkHI3sucnZFbWRrzLXwtTuf4efvVb6cMx0OByIi2u/3tNsdk5G73Y7evHlDRESvXr2iFy9e0BdffEFERH//939Pr169Woz59OlA/8W/+P6s7H//P35Kr19nev/99+nDDz8kIqL33nuPnj9//tjmKT19+pSIiG5ubk4ybrfbhX3vjdEie4T3652x+ppXfYiP1+o30t66VoblHPXsA892WjbidP1xbH55GAYahqHLT7rU3qiyrThHL43vh2FgffT7upEYKpJviRL1yZZUv//4eRiSu+azlsG19PJMa2LgSHvb3ixtROQerByKJW+kTMou8we955IW9y3bzm1ClWuaJtXXkv9uNhsRKxKN40iT8I2sM9aSv+Vn9/iBbZ0663y1cdZ4rXVr6UPL12j59Wv9II//n703a7YkSe77PCLzLHepu1R3TS/VywAzGAAcEBBp1AsomkQTRekL6DPqRXrRm4wmGU0Gk0mEKGyDwUIO0Ot0Vy+13+2ckxF6ODfOiYwMj/CIzFtdPf3/jdVUnshYPDYPd8+s7G19w3MmZ9+W4fZ5efwnXAup/R4bPzdmOnGmxerK+Xe1sZ0Uzpbr163IGENKcCTEnh+MPS/9NZdaE6X+WIltV+ofc7EKLv5bIjs3Bk3TROXi4hmcvL6Mod7hzuLc2vXrkcSBUrZjCWFsx0d61o/F79eUvlnJs4AYuXhmLH9NOylK1n9s7+RiblOfVaVI58jM2mD/bn1WXbBeOH0m3fO5Ov3fqfrHxm+4dTnFXE7pR0jbkIwZl56yLzg9nKsjJ0uqfM0+q7GPY+dVaFv4Z0JKx3Ly+89gploXYZ6+357Hl2OmOmrbhnzR5vM5mYWiprnxS9Fs1pK2cR+htn3/t1tXpTEzPy0VGxsDJ1PMZpDYzrH8KbulhFj/S/ebteZ2LIm28QM+hvAqYun+2Ejbk1KzL3P6rkYO7t2WWL8l9r10j8bWS7iPfLshRBKz8fO0bZvcv+46pjvdtbWWFnNLP/3pVa+uf/2vf043K9WTQWsdvXa458z+O0RhbMD1vzR2FpLSTX6fU76IJB7HxY5ycbrYGg7XQuy6ltSazOnx2LqU6NJS/cyNd338OQ4XjwjvcXPkE9ogpjNkjMu7z8P5rqlzNG7LqMGeicni/y6J/3NjLbVxuXWfsjW58c/toRBpXMdfu5K5b9u2l15io0hlcfjxOndr03XUBf/V2vV6TXo9fA+z34dhXdYaMkYmf+4cDtMl87XbC9P+R5uj7cWuU7bDGLtprI4ukaXmXIjVl9q7OT0XphttyFqXvrcLGmqS6yonq2+HSMtzdcTY7zfF5pfqlTGEdvdUdadiQdx5M2W/XL2leVJnlml8vTa0Y7uuo67b1yd5diHRdTF5a3zg7RgT+b6etZbU7tmh/Dy0yX9CONTPKTn9W7F1EK7Rmtha6F9w1Nabu+f7cNzYNrOG2vaabNPQSmki2tq/ippdHFd6jkhj4Z0a/luk0PcP78eeL0v0vIRS26s0f00+oriPHqtPMufStvzfsXpTtq3kNxczqtkf23RX7/ZP0zTJuAJHTA7uOmX3p/ybVPkcpXbAIJbWKFKqv3+apiFtyp5P1sRRpXtpTMyPO0O7zrfV9nlT7wSk9CUnUw3DPSqPVZfKU6orU3ZgiY0o1ZWp2ExSTh3XNSX6eJ+Xj5X0ZXHp8T29fXYy3GtN02zHLyIz9/4UUTouXDIX0ncRpDGUKWznrM03od/qt5EaU//at7VL8O3wWB/TNo4vmyIiSwcbS//y4yc0s3Z70FE/iyJFz+819OhBSxfLhhbdMc2viRabju5db+hHL29Isx9P2Z+hf/DoBX1xfkjrJr1W/Pdpnt9b9tZ7bOv95NsLWreafvmj43iGAG6etdb+q5d8HgE189oXKz2eg/YaRReLhiihn95/saJvTg5u2+rvcUn8uSeFUqSNpYcvboh67yfvZb+Yt/T14axXDxf/IJL9251wj/lrnuuLy6Ob/nti1lpazOdEt+/yzWZbWbuu28djgn/HEfs3ikREdj4nde/ktkEipTSdPnxIerWKPotpmoZoSXS96Ggbi6ad3/pDBB9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN27WUfTjVb00YMD+n/+hwN6ebz9kIO1RG98cUh6tf9QSdsZ+vDxJf38yxfUsB9DIVpsDL3/+JL+4cGxWLaXi5YuFi0d3WyS+X7v0Qt64+UN/eLtE3pyNBfX/5vE0+Usef/h8xv6s3cjH7qp5O2XNzTr+Pn++Gw5WVvgNxt8BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRvj2a03/88JxeHmt6efw8mXfTaPrVg2N6dLKkf/Wrb2m57ti8Py78CAoR0T/eP6Q/+CItAxHRmy9X9N/852/o+cGMPj1b0q9PDujl8vX4vMI3xwv6X/7pO4P0D59c0r/47Blb7n/+g7d7v5X3UZFlZ3r3Xi4a6rQizXyXZLHp6M2LFX1zvCiQnOf9Z9fsPUuKPjo7mKQd8JuP/q4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOvHf3pwj/7kp2/S5bzsAyIvFy39hw/OyCo+z+n1OvmRlBj/+MYh3czkn0k4uVrTz794Qf/d331F//ZvH9EfffaM3n12RbONyRf+HmOVos9Plsk87z2/maStxlh658WKvf/10Ywu580kbYHffF6PTxUBUEnT8MrOWhu9NmZ4IPn3/S9exVBK9fKn2poSJ7cvX3ittWZlicmVum+tzZZJIckXjnX4O1ZHbn4kxOrQem/sWGt7ecbOaWq9jK0rhjGm1x8fSXpqjLuuzJAk4mXuuo6959Jja8KlKaXY/VAqC5deu964OQ91DdfP2PoLdU+t3sntq5ws7neqTa5fU1Mz57G5kNRbu2+5PRfWLdG3/vkVzpk/5ty4+HtHa32b15LLvr0f18Ph2pXsvXC9xNZOqt+5fsTKcHVydeRkil1L13Wor3J53d85+f26fDsoVS5m+0xNqg3JPgjx15nfN9/W8dsM+58a85zOd3NXu65S6dx5y50PUyDR1yVlHCk9IB272Jjlxp47Fzlq2k/dz7UZrleOV7EvfaT2aGgHc/WE8kv8qVK7bYq94OagZN789h1N01SdAyk9VYvEFiPayuzOifl8vsuvtSatNR0eHhIR0fn5OV1fb7+0fH19vcu3XBCdnp7s2tRa009+siRrF7RcLnflF4sFte02tLRcLmk2m+3adO37sjRNs6svRo2+jemFVJ503fs27tqWJeL7a4yJ2oLKpPWWpJ3cGtqmW7K2f06VruHS8ZPoqVSdpTqGayNMj81FuL9TdZbGA9ze4M4oydlVfr4PdZUx2z5KbSo/ZsWd5SkbLOVThHnD65Sf6q9dJ1dMju3+ioqQjSFJ1wJXLzdnLj3WNy4eGs5J06hB3tl8TrTW4jF3dYW/+3O8jfF0Om0H5Pyj1HqTxK1iazJOPgaqlBLZayn9KPHzU3HeMXGuWqaN56iq2F20pgq97uZm+2efxxhDxuz3l+S84WKRUllSZ69Simxk77i2cnq4dEwlPo50XY1Zf1PaWW6euXiq36Z/Jknt6txedrrC6Sk/Nl8Sq/Dz5/QZpxNjetbvp0QvEZU/A5D6d2PJxZekfnYuLlTC2PNeUkdKtjC9NA4x5gzLMeU417Qp7ZtS7s+0eqnU3rmrcSmZt5K4dK58ygeQxsxj9Zf6jf5c1PqTXF9KdXyqrN83SYxNUmdYPmZXSGx/6ZmQ2/NhzIazO0v8Q+k9SX6/yW0cS5HWvhxb30o3Qz0r8ZvDea2d51wZ7pmD3FciMp0hY/rj03UdaSN792CMPkvVVarjOR9Uogsaq7z4jCUiQ9vHp7wtLV2DkvWSsxtyY5GSxR+XErvflztmi3IyOXlzdlzJusnZt6EMqfpTPrn7Wxobc9f+c8x9nC3+jJ/zG2Pj6sdimnY4prP5nGxkjbq6YjFHSf9DpO8Vxe6nzuXYGvHnOOcXpdp1daXkjJXhztHcecTtC27tSs7nHFPEXkJy72PWxpBy+SV+XWhfcPpeDc7z+B7MnRfW2tt4UviswFLXdbQpGIKa9yZSdmgYkyip09qh3depfp4Yd+nTcUif99YSq7dpmsH6aZtmMNZt2w7spNDe3b6XpYho/35WzK5whPtAoqO5M2OX1pnb/RJvM6WXamyqkrmack3lbNOa2GjO3hgrf6o96Xm5y98o4mzWlH1Us7c4fc2dqZL2/DXqdC9XZ65NSblQFonflLMZcm34ads28vGB2J6K2Y4l7cfupd4Bipdz9+P988u72ELKvkyd6bHrWJrUP9quyd0vLy2tIzifM4c/p2n9GcpYtt4ke7k2LjeG0r0YqYH281S+50vGpRZuXONrXh4PK11jORmU0sn3UWrg/J4SGWNIxtKlx87kVPxVIlsurhC3z0I9un8uHZM7lRZbU6Xn9Vg/UXJ+SOJsLr/7Hfet8me/JG4Waz8XD4i1IckbIyfjtg75mMVkSr2fNGZf+3My5RFRcnZPeTaNqSu1//Nrfuv3SeqN3effFx225dtjrogkduzKK7V9TyVck6l9kasvh2Rf+khjHVl9pePxoRI7WnouERFp7ccBh/l9HRH2kYstEqVjdTk5ufMyXd5fz/462P79qwfH9It3T8IavLr276r7ODmenBzQ5+eH9P6TS1aeN16u6PPzg165FJtG01++e0r/5cdPSLLM/O4erwwdP76gnzy+IEuKnh209M3hnL49mtO3h3O6ng//zRanz0ridNK8SundPPanUEXrCfduOB6fnC7ovadXbHvvPL2i/++to+ihULLf3316RTNrGc1I9NHZQbZ+6XcDHKn3esPzMuZbK2UG6du1vP3b1en+3URMFna/LRd0fbD/AI1Smg7PTkndrHr7tbe2FkTd7NorEx2KHwT4CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2PF/O6BfvhB9AKefT++mPoJxd7T+CIuWzswM6v1zRT7++qJZLkaWzqzWdXq7pJ99s67mcN/Tt0ZweH87pm8MZPZ2Vf+j4deLx4ZxezFu6t9pE7x9sOnrzck3fHM1HtfP+s2v23lpr+vx0yd4HIAQfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCOv3nnHlmtRtfz7eGcjFKkrY3eP1x3VfX+1e0HWsZ8CGUgy6qjw9UVvf/kiogsreaKPl129PX9lh49mNFX581kbb0qPj5b0h989ZK9/97z61EfQWk7Q2+/XLH3PztdUDfBOgI/HPARFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4jpl7H4NQSlFHhhbXhoiI3Pcj5uuOmrXtlWk6M6hHqe1HB/w6/Pt6vf8ogfU+TmGZD1W4+nK4fFw9IVPks9YO+nmz1KJ6QZzrWUNfnCwnqatrNF3NGjpabaL3D1d1H0Ehpeiv3j2lZwcz+qPPn1HbydZSCbPO0DuP1vTOozXR31zRplH08ss1fXF0QL8+O6R1+/qvs0/ODujnX12Qovj4vPv8hv78bUsk3OMhD5/fkDaWiCn+0flBVb3ghws+ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zH/9i8+9X4pso2ll99ebn/efr/g6OML0mb/tYGms/STR8/7Ff3VZ2Sa7ccZjLb08pur3u3jjy9Idf4XC/yPoMRlk38fwWWUftxEWm/qIyhEtrF08XTfz//pf3wgrRhE+OJ0Wf1RjBiXc/4jKPPgIz6lfHJ+SF8dL+j3v3xBHzy5Ii1fVMU0naW3X9zQO09X9M++eEFfM7vN5QAAIABJREFUnCzp7x8c0ZPD+Z21OZbLeUPfHM3owcUqev9w3dEbV2v6trIP7z+7Zu+9XDTV9YIfLvgICvhes9lsel9uC78iJ/n6m6RMrh6/Du5Ldn56TRta578Exn1pT/IFvlrZJH2X1BWmS9ssaTvVbmqMUmtM0r5SSlRHTsYQY+qMOlcut6ZicrZty44VJ49fj58n9TXIsG33O3bP4fqTGpdwLnLp0i9IhnVxeoXTAyXrn2tzTN6SL3D6feH6UKqvpPfCdElfuL6lxnzKr5am1lXJ2ZJr0x/zmL6Jr3FFsU8r+mtY0s9wX+fmL3XuhtfcGRNex+SUzF3NHg/l4upPjUWszhicPvP1Xbjfas+GVDtSuTg43V9in+TGVarbSvaVRDbJ2gv7WbPuctTaatyXlblzsbb9Ur0Qrr3cGe3vyxq7PaeXfL095R6TUrtviPg5l5zVMRlKysVk9f+WzFVqz0rGoma+Svd1WMZfV6nx4tYVN26psfPbmc1mRLT1lefz+e46lK9pmkF5pdROltms8/JqUkpR0zSk9Zy01r3yrh2/Xm5fhueoL7tER4f9T/kNYyg5b/x7Ujs2h9Y6qhulezBlr6TGaF8ub+vk2i8l5euNocYe618ThQ/LUlWm/H9uX8RsOontzO2xmEyxusI9fptKRJaUGtbPrStjDGurcXtJ4tul0nP3uDxKKbKaKFzj/v6SyJ86X6RnNTcu4ZkpiaNw940xA1m7zYY2m6GOIUqf86Hu7p99W/3vnw2p8lI94o9F13Xs+o/VHRs3pRR1ypAxtvh5LGcLhO1LzgHOn5XqwNQ8xdZmLG0rj5Op3PbxidvhNlpvrq6afPlxU735LjlPU21IdJuknn36UF+l+pabkylsob1ssrwl+XL6MbavSs6K3NkX0xu1fleo+1K6MCaLT87Wz/mwEj/FXXMxw9BGKSGMz3N7TRqvHZxhXfl/6UeybqQ6oeRMTuWT+rk19deMUQ2S8ZOOF3cvNXeSMuw6q9C5XDtT6L+S2E5pjDLXBjeWqT1aukZTOjpVX2pflK6ZlF097uyup9QWjyGZixrfXII0Fp+KB0nPMq6N8EyMrRnJ2W6MuV2Lrl6irtvQZqOi55Dt0s+HYn2L9Uu693JtpWzS3Lk6BaGdwunTGp3uI80TtuP6XLpnm86Qte6/orn1nXydZYwhigxniQ0dIxX/9UnZeCWkYk6cbH78uKSdEt0tlUtqU/ppEtlL9XEMSdyo1P/w5WqaYSyxaTQ1jWbbDtO11r15ldqtsX0Vi2PH+uK3Y23d87bY/NTsuRKfT0LOpk+dYVIkMSdpvdK2S/dfqoz0viMWM+fqcH6QdP+m7GtOL2mtqbHqdu/sJBG1WSqXlJhvH4uZcnZIPx5lb58Byt8P0ZrXOTWk1oab49QYTf3ejOm2cWSfTdcN6t1sNtSa9Cv4xnSBbbG1OTsliyE5Qt2dsrEG97Qbv/S+zp3NUl8qVjZX5xTk3hmVyFIqW3qPlcmSyiv1yf2qpUNb4+PEdEwqzhiW9etsGiKl9K3s2zLcczv3u9SOKSV31tXGanx93dfDROH+lNr6sTFP7YVQX7q6/bh2LkY8lH1439U79hxMjbfEp+TXb//ZkTvvx+DqG65xXt/vn7PzOlre/nR2oOOuYkshvTFzZ5ZS3pju56j2vbXY7x063HPbedPdti2t62zcWKyC01k1ungrG+MjaUVK+ffiYyG1mSTPe0r8jJjdGpMvVYdrk8s7hc8pOe/6+cPf+3hZqa/Ejc0UhP3JXY8lrNdmbNOaZ0opOy4W35BS8iwhN5ZWGXaNxOoLZUjJnpo7iR7SerjeQtlKfQFOxinXWW352j7IyvX7l/K1YrYNv0ZifVX9vwbrMFYiVk/wLGd3HcoSKVpEam+X1dSXRTHlb9e16vdbKU1tO6PG7v2N2Pp2z4/G4NuHkjhXeM3J5ZM6o/3yEh/GtRm3V7Z/f3NvmdBbvvz9Zyncft00mjjforF1sVRf/pt5S3/+wTn9zdv36MffXtKHTy7pcBV7p8Im12G45rb/DG/f5+3P7fuUylp6+OyKHj67okfHC/qLh6f0clH++Yb+s+2y9Rjq2phu0VrTJ+eH9KPLNVvP+y9W9OR4mW0vlG2+MfSjlze394b5Pzo7YM9AsQ0vkEfy75HCe7OZGfhwy4Ml6absfc1ovvmcNu2slzabzUkZXi6jLPX3yN3Yh98Hxj+9AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG8Ezw5m+UwFdJr/oEOT+DBEKdezhv727Xv0v/3+W/Tvf/om/f2Pjun5ctq+xHjr5Q39t3//Nf3065d33lYNn58uaZOYg3efXVfV+/D5NSlu+hTRJ+cHVfWCHzblnxICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbxxGKbqYN5PXycF+RGMkT47m9ORoTr98V9Fy3dGDFzf05sWK7l/c0L2bDdHE7TbW0h9+8Zzu3Wzozx6eEiX6/KrZNJp+fbKkD55eRe8frTs6v1zRk8N5Ub3vJz6e8uh4QVezadcR+GGAj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHfMv/sv3u/97maGvvqXT3ppb/1f96lZ693v+bqj8GsO/8cfvker248PdDNDj/74cS/Pgz8539Vhbb+susMPN4Rt5QhliZW31pJSirqZoa//qyeD+6Ccm1a/Vh/wmILrWUOf3j+kT+8fkrWWZhtDb1yu6P7Fit64XNHZ1ZrabpqvovzW40syStFfPDydpL6p+PjsgP0IChHRw2c3RR9BWaw7enCxYu9/dLYskg8ABz6CAr7XaK3zmW7xDZvwOmeQKaV6ebj8ofHEtRmrJ1ann8YZdmMNvrCenByp9qWySNqoqVfaZm6+c+1xRnJtWoxQ3tj8NE3D1pfqY9M0SVlKxttvJ7YfjTG93yV7tpSwLQ5ubKbabyVznMsb5knpq1LHsnaPSdZ1bC5cntI169LH7CeXNzVGU41rKJdEbmnbNeuPG3dr7e5PDak+puYsle6XjaVzely6p/2xSK1HX9/G6s6NW8kad2n+mHF98+v195hU9+Uo0c8ub67tu9D5uTa5++FYO8aehX57KTvwrpDoKMl+jdVbspdr+1pqX0v2V2yO/b6UyB2uG6111o6aAk5GYwyrl3LUBqBr1rWfJxzDsYFwbmxq6i2x/XybzP2d2v/SdnNlY2vbrQPXftM01HUdEW3XqLtu23ZX93w+3+nk+XxOi8WCjo+PiYhos9nsynRdt6t3PjP0xhs3vfZ//OFbdLNS1Lbtrr7ZbNa7dnL6123b9vYR1//wHIz5QKn9LrX1Qhl0Z0kpPamtn2o/p1+ZlotstzE+/DbNT4/bVHfxYCtlu+aQ2FCcDzbFvIbpsXHm7EutdVIn1fgq4+ZHkdZabMvVjB/nn5Wc2zkfM9V2+JDXGEPKTGdbO3x97ffHGNNL32w2u/Sbm5td+tXV1U5HX11d0Wq1fUB0eXm5q2uz2fTGYLncPijSWtPJyYL+8OfbeXS6+7PPL4louZtfX0f7urtpmt61q5OISK+7wVit12taUzoGJLH3XH+JaNdfYwxdX1/v7l1eXu7uPX/+fDdml5eXdH29/S8JXFxc7MbVrSulFKkDTe++9eFOtsODA/rkP/yK6Jro7Oxsl352draT9+DgoGcHcvrG72+Yh7uXGheO0nUaO3u3bcrbTc1d39f2ZbPbOevSZ0epr1+Or0e2a6yLqLex9mRpfT29r+PrIrQZYrZAqV825fmdWhcxe0dyVpemEdXFHqS+YHg9pm5u7mrOnlyfuTpjssX0mK//uf64NrTWu+uwXWNMVNbU+Nf6WRyS+fDPnpA6231YPkSybo0xryS2VIN0/CTlfcbGuQokGNQptcH9dmvsdKnMuf2aa6c035R1hZTOd873LV0nqTpytknq3hi/e2y9ufGRzpNkncXy1uy9nExOL5buEWn8gPcnTdA3twa312EZib6QjKvkHJDEgWJ+Ri5+nJtLMzPUNK7ebV3z+Zw0pWWO6UbOjpX689w4ldp/5brX7uY/thYcNXp5bGwvZUfXxNNy7cXu5/LG4r05/8AnZsv6tmcqH8cunsHEKaRnUsrOLvVrpDZxrK6us4M8m01Hm40ZjDEXn/DvxfKNwZfNH/Owz6lYCUdunO/Cv+IYG0cM/a8SxvY5heS9r1eFHz8tyb/73Rkypl+26zqyzD9c0Dr+nGj3PK4bxkSNMUQ6/V8u5fzcKfyGEOl62vubfd/ORIr7cdFQNv+9EW4vSezr1BkmXX+pfLHzgztTdunaPyfcPTVIa5qGaJOWp8S/556dhHVy+HGaXlltBuluP8R0de2+n/IdoZStNWWMs8b/TJWp2Qtc/rE6Q6m8j1giV86vqK0rtkf8vRDrg8THkY5fqbxO5vBeuEZLYty3pdi8U579Y8r3bdm9/xTe3z4H7acRpX3j1HMFzs8eE2NUqu/rWTu0sSX1+evX1RfaG67etE4pO/tTayl1lkj3Rc5XysmQI+9X1tcf80nDdgft957T5WPHufTUtVLDM3mz2dBmM/QPJHG+ruuie2u/rtw9Fa3Pt/NKkMZ2cuWVUtE9klt7krx+30p1SW0snhuO2thqaWy5BunZOdYW8+d8+4fIP/u2fgcfQ6ilJOZ112zbUiTR+f6ZKIk/c/dT63t49vp5+Wcnuef8OblyZer3X6ntVf6MKNV27DyXxPiHdcXT3YdLHGau6WbZl/Wm1aQ9x94YRRvt5nibdqWJ1s02rWvUbR3uD9FmMSOb8eumjDuH+D4t59/GZEnJ1M0M3Sz58y48H11dnG+X639r1e1ZvI8dtG1LXROPQ3D1lfo8IZzelujFeB5Lq3Y4jn0Z/HYo+v5pbI9z7TmftpSY3sw9O3OsW01fnizpy5Pt+5fKWjq9WtMbl2u6f7GiBxc3tFib2z3FjT8v80++vaQnhzP65PxQ/Ox02yed9IHG8NXxnK5mDR2s4+99vPf8mn7xzr1kHX5f3n9+ww7NqtX069uxrXleJl3/vt1R6gPpyDt8bi1zbXI29SC/9544J9ddzPFvCvgICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjTr+7DUa8LVil6ejinp4dz+tWbR0REdHK9pjevr+n0zaf04JsNqcIPGv7Rr5/Tl/eWtJ7VfYxucpSiT84O6He/fhm9fbTa0NnVmp4ezETVvf/smr332emSzA9wHYFpwEdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAbfriAioufLGT09aejxf21oeW3ox5/e0M9+dUMHwvKzztDPvn5Jf/3u6Z3KWcLHiY+gEBE9fHYt+gjKwaqj+5dr9v5H59JRAmCI/q4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgduV5q+tvfOaD/9b8/pf/7t8/pYtGKyv348SVpY+9YOjkvli09SXzk5OHza1E97z+7IkXxfj3PtAFADnwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCFUvTrsyX9u589oH984zCbfd4Z+tGLm1cgmJyPzw7Ye/duNnRytc7W8d4z/mMpH53z9QMgQfaJIQBeU6zdfiFKKbVL868l5VP5uXpdu5w8qXx+GldPrE0Jqfw5WUrqk/a/RJaadOm8145jyZgppUT9l8gSy+OnGWOi6eHaitXj5/HruUu01tG2UuNVOmdhva5u6ZocS+3649Yat7ZLx0Wik1LpUsJ1mNpDkv5weyC13mPXPv66yLU3Vndz9brfYV9SSOasRh4nwzZNuURKieW3M2Yt1pyD/vxJ9W1KTn8uUrrTzxerM6ZrJPpHuva5drXef8dQuq9zOj93328zlVZSZw1+m7FxbJomWT48B2P6Kqc7JWu4ZJ+n6nF15dJTayf8Pcbe4vRASn6pXo5dx+ZHYp9y9o6/flLr0+Wb2o6o2RNjZBhjT0nqKF0zY0nVFRvbnD4vJVyPTt+k7GtOT0rteT9/eL50XTeozxhDm82GiIg2mw2t19ug483Nze764uKCrq6u6PLykoiIVqtV73q1WhER0WJh6Z//0YOdjG3b0l//9XO6viE6OzvbyX16errr58nJye56uVzurmez2e66bVtSSu1++2MU6vjcOZwbQx83RjE7ojEdWWtoZxNF6r+LtZzSCcP21KRnSyr/0G621HWG6HbJpXTzFHrH1cPp/rG+Yuw69puR7FaG/HnEj6dXW4VPMNaPkOaNyV1r0zskflcsPdeWtH235zptiCsS6m3pPnV98/V1Kl9os/q2R9u2u7oWi8VOhnv37vXq5NaYn75cKjo6uuq1f3R0SOv1vp9OL7v7sf2cip9qve9TWBcHJ7M/3tba3TgppWi5XO7OvrZtd9cnJye7s88Yszvv/Hp9eezCUvdOs/N9m6ahex8ekF4pms/nu3yz2Wx3rbUe6GD/XpgW639qHY+xWep0mcs3LMvF7yTypM6u2HjFfscIZQrHMmcjWku7+VZq26ab0xSlfZbMBSfrVi/56//W1uvS/ZPIyemxcOxzPuVetnifJbFMXo9o0VmZ62vJOZUb17G2X0xWbsybpin203PySfZWzTMQH98fKjk/Y3D5a+w+yZil4ixSvZ5rIzzbQrl8fy56XgVxEWm7qTSfqezrVPma9cvFVVNx9tL2xtrmY+saq28l7Yf1TuWn1TJV+2N1c8xuiI2TNM4Z2kiSGK6kD6FOzMVBcnL6aXdxjkvXYepeKEvpmvfLcHuMK6sNkVKafNtYKU1aD2MwkrjMlPstPF9z+j41x1Kbnij0a/dxSNtNF6dO6XF/zrh5TZ2dtfbTMG9/DCjih4dySJ7L1KwRbl/kYpaxtrj9lvKtXtU7JSli9m3ueWCOMLZSU94Ri9+79DDNtxP9613cyrMT/RjHZrMhay1tNhtaLIhevvTnj+jXnz+h6+CdaX+MXJzDxZ1cHIeIeum+vxzz53PPacM01x/JOXvXcDK86jXu2vfn2qfmzB2L3+brsOdDUrozpQtUo3axSzd8Li7k8Pv7KvouPQcksfRcWj4+S+TOuW0sylCnhmW5Z5qpfKWk4hjcO4clxMpzdfrPXH09u03z9bn725KioR3Qj5sMbbFwLU75vCi2L1TDv3NXM77cnOXskxiS9zZCyuLgQ2pi+VK7i5ujV3EGxmw6Ywwpy5/ZJf3K9UfiZ6bKh6SeDXByptLGILH1faT6ONaO20epPT4mbi7Z/zm/ylpfDw79Hd+OTMkXvs+V8+1TfnlpPEG6JXOxje2feLqkjlIkvuUU7Un1X2270vhbSZ7Y2HDX8ZixS+uvt+1zg+GebJpG5JeGY9k2JrrGubhCzTOCruvINObWdrFe+obsRu/qDpE8W0oxNsZec+7WtJNKr7HJ+mn9dRRj6v1bE3MaqydSsblYG7GzyPdHiG5tlpEumeTsCUn5Oz5T2HL9NZKuPzWvJTG/uvWWf9aRryPPGJ2Te1c4llby7Ifb4ykbeqO6gVybzV7vxmQMzynJsx2Hexdm2A9u/uIy7PeiF6/qhns8JfeUSOM0JbZEau85JH1K7auhXnQ2Ynwspe+V5/byq421un4xc67262yXlLFlwmdRdwW318as322cpf98sWka0jNNf/nBfVJa0299c8GVJiKity7X9NU5/8EUf373cXtFkvHqv5fPx6X8Nffp2QH94ZcvSDPPo95/saK/OVqwbR5erej89kMp4dAapejTs4Pk+EvmQxIzDdNLz0Kth/aNb6+X+Eqpc8h/9pI6E1VjdzHuHzrjvBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHxi/eOeErubpD+adXK+T9181q1bTl/f4j5w8fHadLP9e4v6Xxwu6mY37sD0A7XctAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECMnz16Qfcvbtj7f/rhfeoa/Qol2tI1mj66f0i//+ULNs/xzeYVSiTj47MDevd5/GMmJzdrOrle0/PlLHo/9RGUj88PJpEP/LDBR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwWnLvek1vMx/tICI6WHf08jv4CAoR0Zcny+RHUGadeYXSyPji3oJuGk0LRraHz66jH0E5uVrT6fU6Wuam0fTFvcWkcoIfJvgICvjeo5SqzqeUImstWWuJiHZ/x/DvcW1KZZHmL61vTF2xMeCuXV3heLnxnEK+0npi+bk5c+lj51G6Xrh0Lk/JvNfI4NA6bswZM60xZYxh25qi7hClVHIM/XHxy5fOR8k6qd0XfjuxdZtb99K2x+zdsE1fvtS8h+1x8yItL80Tm7dUXS5/rpxk/UjyS8qm1nhKh/vjaowha03/DDSGrFZkjNnllbSTaj/Xz5pzLrV2uDpT7fj3JP1N6Q2p/vT3hr//xu7FVF+apiGi/F7j2u+6LtsmR+0ZEJOv5IyqPYvDPkl0mWQdxvLlbJIU/h7LnQ0SWUJi64lbY6n2ORuv5ByV5OXyuLUfyuanS2SIXUvk8ufJX0tS+2hqu8y1OUW9kjNOuh4l53Ptec3Vwfk/3NhI7J2maaJybs/dMtuF20vunHZ62VpLq9Vqd+/i4mJ3/ezZMyIiurq6oq+++oqIiF6+fLm7TnF4qOnq6riX9vmvP6fLS0OffvpptMzR0REtFttg5QcffEBtuw05PXjwYLfnjo+PSSlFy+VyV242m+1kDsfT9d23icP5luzL1H7blgl1f1OkJ0Ikeyx2NjusskQ03AMlOqjUjvPHdXgWqsEY5vbTq0YSUwjnRbov99nsbT2WtPAc9e27lB1Qc35LzuVwXGLrQmtNqeUUm2uJDS2tK7zm8oe4+czv7y27Pd3E1rje1RPaC5z9zPkdXMxM6h853Wmt3V2HbefqcMxnhpbL/pydnZ7SetP08ru+h2d7qHud/K1VpLXf/+GYpmw4bl2Gdhvne/lj6Z+xqTIOMzf09OBy91trRcfHR6RX+nYvqNv0vs8WylfiR5b4qDWx5dDGTMmyu+7pttv0hL0S9iVqezWKlOrvR39vxaixSaV+iFuDSlGvr279THVmldTD+VhW9+0RpYjatqXGDvVS2G7uXPfXdS2xs6fEVi+pP1XXFDEmqd+Q27ehjivtf+rsl9SltY7aEbE4FaeLUjoqplc4WzBWL6eXOH9UGjcqsbFr8GOiROPWNbdXUnlzadz9Urs/vFcrY678XcU4S2POA9kDvWhtvA1pPHkMfl9qxjFlT3C+RmksKyfL2LVUMpa1NpUkFlk6p3s7o9x2c39LfSNu3GvsyVI/rsR/42J7Eh011q5I6QUufXe+bToypuvlX6/XtFqp3jMRpYg2mw3pjR7Y4KWxa1/eGpuA628q3lzqtw98BaZNaSw2ZbOGe1Sqf8J7KV+ulMbu51hrS0pZUkrv/OCY7z+lj5Gi5kxO5c/tESk5e66kPq11zwYNbbS7QnJe+HDxlLDOcJxdX8J4RizOMZvNon1fzC0tl/v/uqW1ls7OW7q54XWK8w39ufLjTn5fJOsstPv9+5yvJNF3U6xxaZy0tN6wnlodE7PPcn5brP1SpP7BVNTON2dTcHk2m000nYjIdIaMGfrJZNIycnJsywxly513OXLzzMlS8w7GsK19LCr2HCgsk9rjNWtTartM9Uxd+izBWkuknU7c52ma/bMUfyhzbceeE2/Pt7Ixy8VbUsT2kYvdSudOYjdM+S6CtB7pvJac8VyZsTGUXF0x36hoLNu0nvJllOxfqa8m8Qvy51C+rZIzuDTWk0N6ZpTGOfr597GG1Bxx88Kl594NjF3nYgtbH2nYD/d30zTURP6hYUlsRvosKJcejrNSaqfjfXLPs9JyD2WfKn4Yb+/Vlh3zLKSmje0ZpcgqTduxtbd/q+gecdfTjfnQT9vHSlz/9//2qDSWrzPrr+Ycqel7bC7D94NLbbKS80aylsbYE9L9zJ31qZidjPg6ysmQ0sM5eUp8rRq/jGurVC8HLfXaHBu/To11aX13QS7uysV8HSX6oW78dr92bfs+y9hnLDGfqLSOqeYxZXdIGbTTDn1q/50PSTtWaKO4OQ6rS++jYWx7f73P1zQNNUbuY6ZiNq8SP14/GK/IuJbaa7l1FXu+oRSRtcNxT8G96yDVT9KzM+ff7EUN/RV+/xhlgvx8v/lYaJgvrtN6scHG2YxbGUMO1h299D7aITm3pHZKVK95U/Bs0UZlcmgjfybW19PDMa31ZQZrriH69f0j+u1vLqJlHj67pr99+2SQ/v6za9q/M9iX/7P7h6TaJiL1OHtviudy/FgP/eux9sXelxnWwdWz9V+n9HW+33w3nzMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyHA1T/9Hck6v1q9IkiFWK1pHPg7pMK/phy0+OT9g751cb+j4ejNIf+/ZNVvm4/PDSeQCAB9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGvJxbxN3j+/XL0iSeJsNP+hk9S975Inh3N6seTH9eGzq97vs8sVHd0MP4xCRPT0YEbPDmaTygd+uOAjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgteXY4T97/0Ysb0sa+ImmGzDeGvXc1a16hJGV8cn7I3nv47Lr3+72n10xOoo8T9QBQSvqTRwC85ihV9+Urrbff/7HW7q6JiIzZHzDW2uh1rE0/rTav5LfT2T8SAAAgAElEQVSkjlz+2ryxNpVSg/zuN1ePtXZ3LzdW/r1cP919Ll9JephWs844mf30XL25+/5Yhukhbm37651Da93bC6l8NUjqTiFZ81L8PpSuHS5PbE5Kxspa26uP00shnL6R6ItUvaVt+uvSGCPeP36+lP6I5eH0dawsV4dETq6dlK5O6UupXoulc/s/bD92TUTUttvzT+v9HGmtySpNTdNQY5uiseTkzp2D4e+aM407V7h9VFJ3LD2ld7XWIvshNQZT9cUn1EGpOsbsBY6u64rqL0FqO3Fwa5RbVxzhGKf0mNT2yNkRYTtT9D0lE5FMr5fMsVSvpmybVJ0xmfy5kso6xkbg2mkaWfCqaXh97CMdD7cfS2zSHFIdk5rv2L2Uroz9DplyrfrkzsHYvvTn0deJqbKc3eDmzq2hrut2c2CMobbdhnnW6zXNZtsvKK9WKzo4OCAioqurK3rw4AFdXFwQEdHjx4/p6upqV0ZC27Z0fHxMRETz+ZzOzs6IiGg2m+3SF4sFHR4e7vq/XC575WNnZ6mtVFImpRu29/r3jenImKENn7Lrw7UvlT9nx7tquLylezlln2mtSbXqtp/7fLPZjBri9ZaTQeq7lFJqn4Rl/PUWyx+e+b4dUHtW5OylnK7MtevrFe6cc+T8q60eTjY3qEvqJ0ps/9SZkKpXcpbye99vk2iz2ZDdlPnt3O9Uf2r2SKxua22vLq5eYwxtNvsv7Sul6Prmmtbrpjd+7trXM0qp3Xpy6ft7lnwdEZM3NkZcbMql+zJt/dV9+zXEynUzQ9fL/ll8dHRMzTw9/9J1KUEad5Ngre3NMZdHIlt4zkj8eVc/0XYerfXXYvneirWfkj01L9s1ZG/7tb/XNI3YFk9Rqve5dLc3+vaI2vpegmWSiznWxvxy1OxLXydyzxpq25TGP1M2IbfmYnottof9tNK4eagfS3REqi1O3/p6SGrf1sajfF3u+0c+0rVY+zxCSq7+2nhHDTHfoqZ9bm9wfeWel8bqLiVXTurz1+ofx17n7n0tYyyR199czERiy6f8E1/fSJ/xxe6l9B1nt0v2stTWJyrzP8bOXW09pWOcKh/zLaWk5kVqU0riJ6G+qNmzJTZZLo5bY0f745STP6YfS+L5WvfHVClFbdtQ2yrqx5G355duhnOfGv8cqWcF3DMCX14/fxhHrvU5TGOK+8HJJvEpxsSmJetDki+kf1Zs7XRL+9iJW5tcvWOf40ljUqkzYSqfM4dU7tJ3Mvz8Up07ts81azHnA4TP1Kzdv5/GPReRxJHmc0uzWb+/JyfHtFrpwR6UnMuxOKlLH/v8yNfpNTEUKaX7XKJfa9qqiWFI7Lswf6kM/ecN8mdc3H3pWVtqy3F1j4vR92Pfoe3PtcWtf6X68kjiTLXPAsasR8n+9W+nplRqa0ntUD899cyUa38MJvD7knm7bazT70bXme0aCupsdTtIk1DyzNGlxcbVT+f6FYvdrtcb0uvtvnNzEdo5qXhazLd1z244v3dq/e/69joxNn4VPvPjnpPEzg8jCSgzZWNtlOrfGpt0e17E1jZ/3kn9zpCa5x8SSs9yx35f9nVniZ+d8tWl7wbmdHdsXvf6cPvHPY9U3bauy8srWq2G/oF/Zsb8B4m+4N754vRNbPxCnUi0PZMM8w8UU3L1n+3ICddNOPSSmEjpmh0bs75LwvEwxpJVhvZj6+y6/B6RENd3w7T+eUa9PCl/q0aenB0ayh2zQY0xu+c/e5nj7UgIx9Z/5zBGeAbW6C8/b6mtFN4P9UWNf1yr47f54+3U2P/cuuDki8Wfc/YiV28Jsbhm2gfsyzhGtruMOUrWQagzYnIYZZN+GBdTSz1PkMgvWXNKmWKdUTrGuTUujYn4f+dsutrnGhyyNdqvt0SPxHy+2Njs54Y/u/by8vM/Zp9wurNE14+hRJdKxsrBnQPSviileu8puWJc/Chnf5e2nzo7peu8aZrImU5EtH1ulo4N5tcvEW/Hh93UOv9+6OVyRjfzhpbrjqwdjtOss/TO82v6/OxgKK2NvyMs0bMSW+v4ek3N7djFuFjKPung6t1XPawv9g7Orm/d0I5QSg/S/PX26fkh/fzLF6S899huc9HZ9YburQ1dLFqyxtB7z66C8237wyhFn2U+glL7bpWT8y70jNbDNbDdw2lbV4JqGlLK1WNv29Psv0Hcx+moV+aHyt2+MQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwgi9Phx848fnZVy/SXwC+I956cZO8/+Rw/ookKed63tDXx7x87z7d/odX37hc0eE6/pHjL04XtGrx2QowHVhNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeG359Pwwef/0ck0fPLl8RdJsUcbSb39zkczz1fHiFUlTxyeJcX34bPsRlIe3H0MpLQ9ADfgICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF5bHh8v6OnhPJnnn37+jI6v169IIqLf/eoFHd1s2Psvly29OJi9Mnlq+PXpkjY6/tmJs8s1Hd1s6OHT6+j961lDj+693h95Ad8/8BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvNb83dsnyfuzztAf/8O3yQ+TTMUHjy/p9x69SOb5hzeOJm1TGztpfUREXaPp89Mle/+PPn9Ky00Xvffp+QFZpSaXCfywab9rAQAYg2a+KhVire1d+7+NMWxeH3WrgK21u+tcmVgeP29Yj1Kq1460Ti7Nr4urLyWPpE1JvSHhmLu2Y2M7BeG4xtoI5ZXKwc1Bqrx/LzVOkjUgyRsb75xcTdNk25HWOxZuzaXWomT8uXkK00I9E+qTXHsxWbl6YtcxPRG2yeXJ1ZWTX7JXYu1w/ZEg1a85XR1e53RXSi/l8HUMR27cuLRUvbG9wJUP57/rOjLGkDH7+TLGkFFE6/Wa7Eauj8Mxj61RTvac/LF97c+V9MyUyuLX7V/7eiC19yT3Y3vkrvQpZydx6caY6D1uLGrkzu3FmF6S2gel+qaknty8purw59zvS+7ckuhmaZ9L9PxYuHOaS4vBnWs+tX5ATp6Y7h+zR7XWYnthDJLxCPsxRh7p+Je2Z60V1S21tcO6ORspzJe7lsqS0ydEwzPGP5f9evx0ay11XTe459M0Dc3n+69b37t3r9e+a9daS227DQ1dXl7S9XX8y8yO+XxOh4eHdHBwQEREp6entFhsv9h8fHy8uz46OtrVu1wud/5F27aktd7d01rv7imldnJxeje3jmp0JEesvBv3VwEnfqlvL40tKKWo6zrqdEfGWCLal9tsNmQ30wfKpZT6BOFY5MYgZVeXnl1SvyD0uaWxltzeiJ053DnW7+OwfamNHZNdYu/4eoiXa5jO/ZbmcX7QGFI+eHid25tOr/vyufv+Pe5c8OuK+Wa5eIFvq/jyp/ZOa4jcmrGWSKn0mnFycLEmLt0vL/UJpkJij9aS25PhdUiNrz2IfzcNhfueayOnR/010y+3nVvdpe22krENfavQRvLzERGZdUebjf8AW9HNzQ2tTENN0wxiGCWypPTuWPuQyEb3VCpOx+leKSkbWkK4R6Vr0b/P+X2SeZHEc7g2Qjkk/l+sHmffpvQVN56hnDX+lgTf1k7FhqT1cLg6pL50qr4S+z9E4gPGdEctd31WceMpjfmU7qWQ0vFJtV8zTmPmx2/P1ysuuWk06Yw9wtX3KkjFT3Mxp5J1kLOvU/e5M2Csjx6Tt1ZP15KL4ebK+EjswFR5bj5TdoyvB2tiXrH1lqNkPYR+k1R3hPljPlmqb36dSg3thf2Y2kF6jpJYv7S8NL8/lrm4A4t2fe23UXomx/zjmBwpuXI6TloX9+yLx+7ictYOY3T+GuHiQTUxDO6+5AyVxpwlY+n0hUTfxmxv6VqT6kSier0+1r4rkWOMr28tH+8Pr5VSvef7jq4z1HVp352zV8P1ItWjEn0njZmO5a7rr7GDpqo/R07/EG3Xp1R/SO6l2oz51qkYqf87tUek8g11pjvT3Hyl49qcnK4P29t9nzL22CgVK+XgxlUyD7kxHvaVBjFyY+xg3rjyHJJ8NfZUiQ9U0iZn6/av977jNn24brquG9QVjl9saLhnjlPsS6a0l9/5wtszwMW1nLwldUvtrCnei7qrmFmKVKzREbPXpjibwni4n87l7zerenGQkphtDt/fcPVzsdycTtKGIn6Zzj5HDOsftz+mOcc535QvS+TrFWsNGZMuJ1kLRPH1morPS6/3v/tnq9aatN3K3rYNGRN/1zKVJiHckzk7wr+Xyyubs/58+zrePy8k8Qj/OmxaGoOYgrveI68TKf0Z3jPGkL31sbbvWoc+WEedLl/L3D6UjK+fh7Mjuq4rXsulcHo4fO8hzFMSSyZKn/vuXirmI/GVUunhPszHxiyF9lbJXk79e7acvU+UfibKxeZK9ZWUmJ0xnHenP+Pxayk5+XJ+X6yuXIw6d96nbZJ9zDkleswGDNeBlLoy+TkpjRnF0mNjnool5+qREtY/dp0TxXUgF2NNrzG+TV9uzj8dxhLdNdd+X3fVwOl1qd0qqbcWNwcpXcDp+tQ5lPKhYrYd59tx5WupsQEG8qjd/3n1ur/1wBd05bvGkNb+cylLTdNS0/bHMTy797pxX65EfscXJ0t6dLqkt57x778frjb0r/7T1/QfPzinr0+WRXo1dhaE492Qop9/+YJ++uhFbBh3XM1b+vTBMbvGYnPUNZr2Z8hQ5pOrFT05nO/y15wZMd37yfkBffD4wmtzf449eHbNztbH5weDev3+1MhFlH72OTbulIq/bN83lsspY38Gpp7LWGU8naLGquzvNa8+KggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQyJ+/d0arNv2ZhOWmoz/+h2/pn33yhA5vNsm8UrSx9OGnN/RvfvkV/c6jF6QyH3L5y4dn1BV+5HXVpPP/ky+ekx75HwWM8fXRnC5n8v+YDBHR48M5vVjOJpcFgDafBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC75Xre0p/++D798a++IZX4HogiSx8+vqD3n1zSl/cW9Nn5IX11vKB15gMqPtpYeuurNT38YkUffnpDB9eGDq+XRKSS5f7zg2P68uxA3I7jxTL9+Ycfvbyhf/N3X9Hnp0u6mDVkGk2KiGYbQ5+cl7e3Qyn65PyQfu+rF+Iin9wf0R4ACfARFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwv+Obekv7fD+/Tv/j4cfJDKERE2lp659k1vfPsmkgRvVy09Hw5o8t5Q9etpk4r6pQibYlaa2mxMXS47uj4ekP31iu6fnpdJNun54f01++eVvXrZtbQ5byhw9WGzXO02tDPvn5J1hIp71ssoz6Cclte+hEUoxV9VvGRFwAk4CMo4HuLUoqUGn4ly1rb+9thjInWE+bj7sWurbWklGLriKX7ab787jr8O8Rvz88TS6shNR5TkepbDk6+VFlrbXYu3Fxy9ySyuPJhXSnZ/DISJGMXrgWuTNim+83tlRqk+ytHbDy1ln1pT5ov1W9u/eT6IN2P3L6WriNflpRO4uTj9FKsHWmdJYQyS/pdondr2wz3srT9WBlOv7jfJftBa51cJ7Fz0G9jn66IyGv39lzVWu/2TUpuH+48Ll0zkvEeIxOXL7b/pLrDhzs7ptSrPr6Muf5yYxXKlpPVvx+uK8nZ6cua0+01+oRb/yVyperN1ZErG+oe/+z1ZffH2Riz+911XVYmY8xgn3BnZ9M0O7n8eZHsy7AuyTqX7Kvac0Ryr7Tuqe1iqX9yF+2FezQcl9KxGSt7qHtzdszUc5FaF6VrplR3uH0g6VNMp7kxcvUYY3rXnIxuvx8cHFDTNDSbzYiIaDab0eHhIRERXV1d0eXlJRERNc2aFouFV4ems7MzMmZOh4eHuzIHBwd0fHxMRESLxYLm8zkREc3nc2rbdtdnd+1sjZyv4t8rWZ81a2Vbf78trRuRzZHS8ZKzucam5XzIlK84xteWkJO3dF+nbEKpLVjTjsw/soOzuoQSG1WantJjkrq0tpT6Cn3NOuViaLE8OZ1cGzuIxex8uyqURbqnYmW5a79e395zv8O2Y/Jx45drP6yb649vO4Z5/LL+va7rPDkVWbtNs60WrdEwbex5GyM3Lz7GGFImvn5q26+B8+1z+DZ2Tt+6626Qi/fvpLbStsywTqXSPoC/5iWx7tBvd/mcrePnm+uOmqb10rb2ipr18+7lT++3MH9ILqaXPseG/SyN0Y05m8b4vGH73Jw5OzDWvo/0fOHqaJpGOOb59lLtSOYntBm49lOxSM6fl8qbkzmc+3AvpWTn8OOKsb2cilFN7ftNiWQuuHN8yvZL7sfibNIYIWe7SSiJU041RlOc1WP8plw/Sv0YqVw1fnOMVMwo1XZuLmM21V2OcypfzlfIlc/5+6W+Wqq+mvnM2f0x3TXmXMy1V0uqfc7WqIkv7O+HPszWPy713Uv0Wk0sNixfH//i09y1ac1t7G6fr21b0ibud3DXKb+hlNSZJH0u4fJx53h/fBQpRQP/Ztv2bZuJZqeIaXLncqpOrm9TPIcYa8eXyFATj6mtq+aZZG791dhQfvyeq99P38byyoj5u7t97z1jiMnm/x2TJ6UDU/5hKaHsubNZIm+sPKcva2OHEiTjPCbdvzd270rHoSRdYpOk5o1ra1vGrX3a/S09t/0x8+NefpFUnCJnJ4zxuVwbNff2efy+9GPZSqno/Id+/l3ZgmEMN6YbpeMVyiiJrxhjiBrltbVN32w6Msa1a3dpTZfzP/b5XQywVo/GkPtYwzWXikWFlMRDShl7JkvkmGKPxWzKtA6S1x0jNeb+ftnVp4liz/tyce9YPDBlw6f2qCSmENbXmI6sDd9d68i9HiUdr3D+w5hrTWxNkkei72NzYK0Z9LvrOupU2m8pjavEbEruGWWu3P5v9/6aIiJ7+3xTkTFb2TabjjpPN3J7RhK/ThHOec5vGfZV5qumbK9YTJvzGbl9xckj0VspW0RKLk4maa+27Vjd23kd2nC1Vofc1hymKVLZuSiNr8XeB+i6/Z7h9kTJXpGsn5zu9+uStDk1Uh+Pe6Z1F+2H/kH8fvrMTCFdZ7W2Uqz+mmePuTpDYn7b9lrmG8bySOPsOZlqfbLSfe/o9PDsj62RmI2ea8MvI40Z8OO1jY36/5aEoyQeU3KfiwFMrZPGyB/zNcO13TQNNW3+2UzfRszLs7ehhr7cMO7D17NvN267TkGNv+TnKbUVo/bg7TOPUF/k6qv598eS8S/xS0ptfwm5Z5cq8Xwk1fZ2TP1yKhofS+uVaWzNL+4f0Z82mv75R99Su/NLuFjl/vreTUf3bmJv1A2xSRNEDX7+/YNj+uU7J2FALpAlHut0+u/z80P6meBjJOEQhf/20KVJ7ABrLV0dLujp8ZLuX66y6+KLswPatE3Sdi/ZA7mz2l9fY+wav82m6QZzIR2vFMO9ysdBObvpFZvkrx3jZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgFfPl6QH9nz/7Eb1YtvnMd8jFoqU/+ckD+uW7p6O/YPEPbx5TN/JDHLV8ev9QlO8TYT4AasBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC948VyRv/+d9+iv3v7Hhk97gMkpdzMGvqrh6f0v//eW/TtvcUkdV7PG/rFOyeT1FXKZ2eH1GU+4nI1b+ir42n6CkCM7/aTRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVGK3ob985pY/ePKbfefSCPnh8QW1n76y9p4dz+ujNI/r0/PBOPrzyjw+OiYjon3z5nGadmbx+jnWr6cvTJb375IrN88n5IZFSRPbuxhf8sMFHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB8If/Fbb9Jf/NabZLkPWUz8gYs/+/A+/dmH92+rvruPZ1zPGvqr987ol++c0LtPr+jhsyt64+XN6A+iWFL0+LyhX78zp5eHb9JFs5hIYp5/fHBMn58f0PuPL+nByxu6d72heWeoMZY6rWijFa3ahp4ezOjp4Wyydv/0x2+Q/RAfOAHfHfgICvjeYq0lY8zuOodSw69oWWuj6WGZsH7329336wjvuetYegprbbQMlx4rn/odS3fjGSPWlrQvY5H0JbcGcrLG5tD/LR2nGFrraDuhTNJ++u37dbt0Py0k1b6jaRrReuHSfflS4940DSubhFAWbl5K5ytGbv3n1l/svlQvuDyx9VGi1/z2XL7wd46w3pgOlMLVlcKXkRt/Sbq75/YK1/dwzGL1hr8ldYXjltqzMWJzl2o3lEspVXQWcXVyv3Pth/VL9EqNUys9Bzm4fuX2fmzdhfqulJTsNWeS3wcnm1Snhnmn1AMxWVPEZByrr3NylayrkrZCfeOfxaFel845Nze+LkrJWGL7hTqO27+l7aXaycmTa1OS7tqT6GlJm1PYJD5OLmNM1CaU2H1TIbXPS/dg6hwp1es163IMOf/CXw9c/3w94PJ3XUdE+3k2xuzSrLW769VqRTc3N0REdH19TVdX2y8wv3z5kh4/fkyPHz8mIqKnT59G5T881HRzc9xLe/r0KV1eDtfxyckJERG98cYb9OabbxIR0dnZGR0fb8vP5/PdedM0zWBsfD+G82kk+92nZF63efs2tzEdWSvTSxJ5uLJpXZT2S+Nl0vfuSheU+NvSMlO0GyK1oYft7K6ISFHTaGpMM1qvlOrp0CYYO4b79W5ovwdo93fOB5XGN3I+gY90rXA2WU38RilFTdNQY+R+WVhvTF8bYwayxPS1Maan43O+HVHfv/Dt+3BOmmaYprUelOGuw7adbm4MkVL98YrZS/7ch37oVPooHK+U/EREVg9ld/Mv9fVL9sIYpGufsyNS+0l5a8AVr5mj4Rj5suznX3IOSduX6l6352LpxqTHVrIPS2TjyvdjfuNjFqXjx6WF9Ujibql7pXZcSrZSXysloyOMk0iR1s35k9z5yK0j7uyZEndOcOur5Ez3y0nSiOLxs7FtccTqlfrsOV+utn0fSbw1rCtWp7M3agjnu9TmT8VSYs+QpGMp0Qv+ORiX26WNix/3aiz0BWNI2ufO+BLG6o8xto/0jOXsIGncNlee+zsnb42vJy0/5rxMEdMRqX5J5ZgyZidlTCzYpz8WJiiztcu2SZb2+iL9bE2ylmrkrFkXuT2a8t/710ROTxpjyEZeBM3ZvJx9lCovOSP9POF5w9WZi/Hz6yK0+eJrITaOkr3FIY2NSghtLKl/lvNvxtgZObj5kryHklpXYZmxz2zSsd39dSxuJIlthXbnrqyxtNlsdveUUrRerWi1UoPYDveuUqpPsbWbOjul61Maj83tp5CUrvTnXuL3S2yVmv2YsnVKbP8YpbomF28q9VW4cR5rN5XEIzjf2XSWjBnGhSgSF0rJlYrf2EgcPSZjLj1sV7pGUvXl7vVv9/VHqt1Sm0Zqz6Rirj7+uSZtP3f2RffFzJLW/TN0NmsHZ9Rs1pK2w9iyj7bmVg5exvC6ZA1JYlTbtRpvX+pnSuMhUj3pv+sw9XsUMXy5UvE6ia3k97/WJip9V9CnJDbk5y/1L8Kx4MYmt17D++F8h8/T9nn677Pl1laJzX8XMWvJvnBrbKtzt36KX6xpmuS727n1VmNHxdaHtbanbwdz1lrSek1ERFqrnd2pb9+vaNuGrG2SbYSEcekam0tsy2mXtk9vmoZ0pwf5U+tbKUWqUaQ1r+NjZUK5Qlm4PsV0FDdmuZhpjClsyRLCvnHrZOuHVzURrc+lce1vZdunbde3Fckg2XdW8DyQXyfpvESeLtSKhs/zG2oa/p156Zk25gyLIVlX3JiG+omLp4zVL5I6lDLembnPl2vP9W17JuTte6mfNJU/edfxX9dsGMPg2gr37xi5plgLflp2rnU4Z/tyqbko1c81612pMEa+j+OMnW+p7ciViflIpf/mMWQKf4bff/3nClxZLv7GNV8bjwqLDc/c4Xqr3Rs5WWK/x8aPHK6e2DtCndr6nH4Vbm3XjmtOljHbRvLuyxh/JqwrlV6ib2N+na9DuDO5NM5Tk6cXL1SKPnvzmD5785iUsXR+uaLTqzWdXK3paLWh5bqj2aajxljSt3FFq9yHRTRdt5ou5i29ONb00b+a0zf3W9rMtufXm49mpFf5mJeEXJlV29CvfnSPfvWje9kxmK/zNl5qTUltj1xdJUjXItdm6dmVy5969yuE28N7/2KX0rMF/Hz9tl3adPbX9xV8BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/cVit6PHxgh4fL/rpgg/bmbmhb9/CRykAeJVM+ylGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAQfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyntN+1AABMgVJqd22tLSpnrc2Wd/nC9sK8/m9r7e63RCZXpzFmcC/VjqROSZ5Undy9cOxSuDq4/Kl6uPEvIdaHVJ3+73B9NE0zqm1/Xfj3YnOfI1YmTNN6/70rf864+cuNVaxNvw2tdXKOUusph3SMSvQA0fg1Vdqewx83iSzcmg3TY2tMqo9KdEFM1lKdEF6n9uLYdlLtcnB9lMyFpC5XpmYNcm3K5dn/iWXz14/f5xJ9yRvR518AACAASURBVOVzhHsgdxaE9YZ6NNZujlAv5urJnUdj9UlsDJVSrO6O6ZGwTskYhXI3TbPL5+te6R5KrWuJ7RG2y7UhSSu5z+WRyhwrU5tfsr5Kz1vJunZzJ7FJubokfU+tS1deusdCvVxr18YI686RyuvvV2MMu399uH1graWu63bX0vkq1VupezH5fTliNkmtzRTWlzpTU+VTv1P1ptrhrv2xSOmz2jFx5bqu262FzWZD6/WaiIiur6/p6uqKiIhevHhBT548ISKip0+f0qNHj6ra5HBrYblc7nwlrfVOxtRa58bcGBPVBeF1OLY19p0xZlDOGLMb11w9nHw5Uut5mzZcs6U6KUTiT4XjsbUVbXb/lZKrR6rDpmgz5jPF/Xa37wwpU6c7/TZL1yt33kn1uKy9oW8g0Xl3RY1vn92TjSKt4/tLKg+n14wxg5hRyfjVxNm4s8daS/OZoba97JWbz+bEfRc9J6urv+kMWevaUj196K79MQr7pLUW6aOU3VaqD/iYSNxGkf6eSifGkNrzOZsm7J+1lkzXkTH99E23Ib3ZDOpK+e3h+oudp8qU22FS3zy135VSpLWlsClO/+Z8/fBeqg7uvM7HScr9qNJ8sdhCyr7g4gF+ei62U+O753zwlA7h9I/Uf46t41QbXLkcpeMSxtxTfePWYkq3O7i5Df27mjhJjJhvnJs3yRy9CjuFqOwcSNkPITVxDf9eSs9y452ql9MFKbnGnPUl+bi+yuamb8NIn9fE9GFpvCnWjkTmKWwPyb6aqt6aPLmyUjuhJJ2D03dOJ46N/0rvhe2XtDH2GUbNmT32GUmprVYbl7ktEdiLivY+Tv+eXLcMZauJl4dpUtshp3/D8z1uRwz9H+XpzDH+UGiHhkjOJUlcvXTP+HI1Vt3GNomUsts/jO/r1xPTE2E7XPs52WN1pfSQNB7E2fg+nH3dtvLXDbm1zLVZ896MY6zeS1Fqo8V8wPA5kcsX8884G7xphnvUGEMmEq907bl1y63jnA/p18PliVFjx3G/ubFJ7YNSH4pDeh6OzcO1GYtLlcxFru2x9mFsbKewB3Jxllgbbq1aa4n0cJy01tHYcE6WuB2wtRWm0jtjy0hirq5fOjo2KrnX/fI5WXLtx+rK6aFYusT2DcnZETvdTPI9IG1bYltK7JywzZQNslsT2kTHKzfXY/dyqrzE9uDKlMaSQrliv13aGDsk9VyEoybOlvJ593M3TCutj8sj0csl9nxMJzVNQxvBvKbarPWja+sK12HORor1Wynde88ipDYuzdng3Hmb06+qsaSUvpVpf07G7ABO94djFMala/ypWlvIyebb3jmGbe+vt/aGTJ/vx45LLz/ruHxT2idj40Cpci4ms29r+2cary7efn/Nkne9XxPhsnBrJlzjqVj6VuebwVmz6Ta02ejdcyDOP4zJHM7F3s/0n+dvMaYj6tLngiTm2XWd2I7h1mJpnJaTqW1bsR7k8nHPaMLx5/rn8jTGkDF9PbLZbGij+u2W6IfY7yn2X4wSO6RU3w58cGU8vcfH20rarx0XSWwh1ZaflvNpQl3i/Elp33OU2J+StLDe1NkiiZm5/TImPiIhfH/Zvx4Ts0ixr1ter9R25vKUjkstY3WO1K4qjQmk8g10jo7r1KnXAVHY374N7mK3KVnvSq4QTreVxCRC9Gz43kfbttTY8nfHY7LFrqX4/yaKqzu1DsN0Ywypht/zsecCpZSWCeXvxwzzOrom/s3psZpzONeeRH+XPr/h8tTsw9pYkm8LsHLtdMnd64bXnXoNBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOAj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+U/ARFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHdK+10LAMAYlFJERGStTebL3Y/VmUp39SmlyFrb++3ncb9dvlT9qXbC61gdsbRYGW4slFK7PyVIxzbWPnft8nPyl8xnjlhd/ryFaWPqdel+X/x6m6bJthfWmxoLY0zv7xxay76L5fIZY3rXYyhtO4YvQzh+qfmIpXHlJfoh1U6qfG4Ph2s/vOb2eFivVH9wssRk8GUr1QnS9kOkay7cz6H+DknppZL9x8nBMUavpepOr9n9H6X267BpGmps08ufGpew3pgO9ctxYx/mK1n//X6F/eTJrVvp2pTMX8qOKK0rtXbH6uNce9w5HM57jU0hxT8LUudlbCykcyVZoyX15dJr16rrY40+Sp2N0j2ROhtKbN4wvWZPxvZYTl/l6g77UjpmtfsxVS61/8LrGDFb6i7kjMmTkk16Rkj9v1x7ElnCNIl9z5GzYSXz6n5rrQd2r6u/67qeXJvNZtfGfD4nIqK2ben09JQuLy+JiGi9Xidl9yQiRYqOjo7o3r17dHBwQERER0dHu+vDw0NaLBZERLRYLKht250sTmatNW02m909l+bkdNfhmHH2BeeDi3rUq3NYr5OhZi1Jzveyc9IOzrZwD6bGhhu/WH6rh+Por8GUD5WLW+SIyVxqN4a/U/apn4dbP9z6kNoKpaR82dyc+2lS/3Cf5spt/zSN3sUocn5TmD51XEliJ6X6G7Nlre3n7bqOqCubt5huT52zof6OlcvZr5wucelh+02jhmltS62VxWC4sZ+pzothbfO0bUu2lT1qCPtZeq7716Vxon3ZtL2ZWneSGNYUfllqj5fEM8JrYwx1WpG1w3mI1evbF749EsoY05ehDMaYSf3ElN/g+ho7I0rP5dg9aSwzJWc/PT8u4ZnGnX8529WVT61Tbv1x+iZl90t8glDm3B4K4wK18SCJjNIYRCn+fk6d/1zaVPGf1PmUOrf8fR2uB//sy9UVu1eqZ6XjPzaGk5MrJ5OvT6eixCbLxQ7H2LB3Xd/0MUYnW7/e1DqVrueQWtnHxj1KqamrZo4l64/T6TE7LRYPlNbLpUn8+dAXlcSZUs84JPKVPKuQ+lhj1pA0lpeTgfvttyGpp+Ts9691JAaitSat4/aFdB3liK3NVGyCKx/zd3P6iotF7urRlrquX26z2ZDepM/B2DlZ84wgt9dTa47bZzm/IZZ/n26JyG7/ZxW5GF1MV/hy1vi9KXz7SlKXtD1fZv9dlbCOMbbnlGdaiR/mqHmnJaWvS/ojlddfU/51uF/db6XtwI43xpAxarA+/T3l67GmaXq+fWzP5XyhlO0c3k/5WSmmXHv+GEtj2bG+cDqYK+twfRk7llOROy9KztZYvKokfp7bVyU6tEbfSvWqiyvv/YntmWl03o67izkMKXluO7RzZHKO7YfUvo3ZOLE8KRuBi7v445SM8euY7hrf/9x6u4v3fWqQxuBj+Yni+6qmb6H+5WSR6J9YDCuGfz6OseGkMegav4/NF1m3tTqopExpvH2YN+YHxe2TdD3lcWmi+PqR+OwpJLFLYzoyxlKs6tyemip+7K+PmF7lMK3x9oqN2ppNU267l9j7EpuTSyvZK7KzcZp956bQLxqebSU27LD+6eykWBuS99FKZXDNuHGOje10cWi3pra/tNakb9dxY/p2gLVunfN+dJjm5m8+M9Q0V708s3ZG1uqk/Z/ScdF3m7Qipfw5saSUHviS/t5PnbUpav4diSSuKn0+NzY2Gc6jf79kL+vODsrF1knYTlLfZs4TaSxxan+kZMxjNtXetyIi2v9bJ1VoLkqeK+TKx/z9GuR2XHndKbly8vvjH65Pv/9a66Au2XmWOydCvTLGxpbGYVK2geQcTbWbzzdV/CIfU+in8c+hYvYFI1G0jpjMUjvAJ3dGvIq4CUdNLF1SPjxrUufB68A0czCNXTyoldnXpedRDs7vCttsmoZID98fadsZNcw7mWPiJGPP+9g8bJ+F5u0+aRx37FxPvU7KdHe/vIq8vxf6ziG+jR3G3Tlb2T+Dk3OhKdn2D4lyTwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBB9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKfgIygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDvFHwEBQAAAAAAAAAAAAAAAAAA/z97b/cjSY4k+JnTIzKzqr+uZ3p7ZndxdwsId1jg9KCHhSBAgP73exAg6VkvJ0gvh130fOz27Mx0dVVmhpN6iGIEnWEkjXTPyt6e32/RW+EMfhhJo9Fo9IwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAeFUOry0AwB5M0yQiIiGEy+f8+xDCTXpM896b29DSS9+N1pmjyd6qMy8Tn0vpWnlNvlL+Wr78c228S/OXfi7Jtdd4eu9XOpN/tlIaA4283tpz7xzV5qJWrtXXeZ7Vz3k9pfl2Tv8drjx/CEHVX8sYlZ5r6Xuvy7y+mi1q4ZxTx6Aks3OuOP4WvbDqbboua2Us/Wy1b0mz6EJL/1vpWt21sqke18rXdLVWvkf+qyzpf5Pyva5jNZ1OP2truSVvab5qtt+SVmJ0/x5pqyarZV9qEW2qZltrutLrA42Mmab/uSw99ZZkztdJq87a/t6zb0Ty+WzNq9XelebP4h/1tpXX25PWs3+0GPEvR+rt0ZG8jKVN59yQLqXreMR21uiZm5KvFrHYj4hlrEXq/q2l/6P7hWXd5u3EvLl/puWvtZ/6a7X9PM2zLMsl77IscjqdLt89Pz+LiMjpdLrk+fDhg3z//fciIvL999/L+/fvi/0sEyRIkB/fvZN3796tvnl4eBARkW+++UZ++ctfiojI559/Lm/evBERkbdv38rd3Z2IiByPRzkej5ey6TkiHYt0LvN5HTmbt+Y2L2Y95/fan9LZJsd7n30fxPuw+iXjuEa37tO9aHYwprXsRqkuDcvYtnzFnnqL5wZ3a5ecm1a6a5W3lE+zR5pdrO0rmuxWObxP9fKctixeFrfcyNR7puuVy1qmpPctGadpkuBu1/3hcJA5uOp+M4L3/rIuavtmz54a0XTkRlfn27XhnLvR3965mX3a/jV9NB6g+b1W25aOcZ437+c5MY7JOt/sy/ETrU0LlrkXsduFWv5a+XxPiX5Fru/PzydxH/0IkfIZYJqm1X59qXcOEsI6PfotJf82r6NXF1tnpdv6tscS9+RWzrr9TNd77j9qc6wR50KzHVqf8719JJ5YO8eW2tLmtnSG7zkPl9q2lKmVs8botPlq2YiSf2Xtc+usodVbmguNeZ5v5lizv3k+jSjrsiwmWS209oVa/DIvH/OWYu6t/qV1WeZ1JIZnYU9fx8rIOW3PNsvtXNdkS5a99DJfLy0bafWvPsW+ldPbZgih6BOMxM/yOizl9/I1euTY69w6Gj+ujXNtz9LSamu5FT/eOpetOkqxllYfz+s/beM6V6Xm9rDPNd0atY25jtXWXPys7mcFn1QjrX80TmXRQ2uMPI8n9ra9fs7sh0SdOJ+p3Xy7l6d6la8/a2y79F30Y3rHpVVvLS2tW/NdttrFWr7U72rJ12ovjacdDoemX6LpheV9C63emi5Y5jL3O6NPPc/nOUnn5c3btzIf1vqv+fU9e2Gtf5YYTq3fe/m2I1jOwiLtNbZ17+uh5zxnLZf6t1vjtlt8spIfsWU/jDinxR4mORzar0trOjqHc/l0jzgcZlm0GGSC1V6LlOMh1vJaPeU8pqqG/LR83+hd85azUv7Zej+lxdl69K3V1xp7noF77jJCCOKXa+z2zCTeBxFlbvI+aufhLWPWyjuyR1jmIb9j02KOKbUzkMW/0vyAEtt9V63Oa901OUqxsFb9mo1q5a3kkNss4WaOtu6ze+htzX+wzndkDtON7uY+3ig1fcnthyZzvg5Tmfby46xnSMseUKO0vvPkkl3dQ/dqXM+x6zhEfsbt4aVirjVZau+pt+qwyRsk2oW9+tcfv8ifdVlaZyfNR4131aNoa/Ysmz5We9gZS735PX7rjiWn553pyNZ4cOnsaq03JkfVKO3DpRjEbX23epqnfeo1UdtD+m1We38atbsj47LFxlvau7Ubk2pLRmM3WnlrTOr2PcX2maPmL5dkHNnbNF3YGseokdsoa7m4n2+Rp7eOpOSlfD5O9qHqv8uK1PaVTxEDbO1r8T1BS4x+Va7iQ6c2WdvXndvPPufs+V7/v3VK7z+O3uNZY6shhItepZTOcyV7Wfrbg5ruWO4q9sTqA/XGLFrl96p3L853hPX7hNbf8M3zLNM8yzTV/deqHDufR/+t8TKnGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj/AgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvCr8CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8KofXFgBglGmaxDknIQT1+1J6qa4tcqRt5s818u97ZM7LxHZbdeR9zZ/T+tK6RmSLdad1OefEudvfX9oyBymanL39KI1JK18pv2Wee3ShV55Svpbuxna896Z6tXmtYa13mqbd9KMmY00erf0emdK8o33R5j3KXJrLWp/S+kryWWW1rKtRnbbKVlpXtbWlfS71uTUWmu1s2duSnCNrvNX/9HvvvYSnZ1mWRZYliPdBRIKcTifxwcmHD49yOJ1u2kzXT9yDa7LU+p9/Lu09WnlNd0v6vJXWnl6yp7XP+VyIXMfWahc18rpSQgjNui17k4ZFz9O1XNIbTb7WuqzJY7VLlrnT6tfSNX3Q2rS2p9WXj1+vvtfa7PX1evRV0/9S2y2dsoyzVq/1+x6/UZOl5l/V2kzHc4stGEWTa1mW1fOIX2Cd8y3rvVZ3b121fShvI9XrltxpvbmPXVqLtXF0zl3Kz/N8+Xw8HuWzzz4TEZHD4SCHwznk8/DwIF999ZWIiHz77bfy4cMHeffunYiI/PGPf5TTx30/prX47LPP5M2bN5fPX3/99aWdh4eHS/rd3d1Frvv7+4u80zTJ8Xi8jE06fvM836SXzgOtvUUjXV+xnFuCTJO70cs9dUyrtya/OzpxLrUnk8yzE+d/Or9lnI+RZR5y+7ZlLHO21mWLLcX12bZ1vbGq1JfL9bTmJ5Q+1/amPG32YaVvIiLz7C7rscTIuaXkq6W2b8v5UrPJ2vM0ndeVJp/lDNpju9P57IkH1Xw1c5xm8jd5T8/P8vR83ePzc17J1yr7wdfvc53p9desZ5a8Xst4xH5uib22GJFLKzcq07Is6nimvmb8vHgvp1PUg3OZ5+dncc/PF5nSfcquD7fpLVtS6lNvrErzw/M1HcKtnpd8OutZwOLHWnzFc5YpSyuffbQ5SWWJOr81zlfzjyy+Um3vz8euNJa5nWq1acVqf9O2NRk1+Xv2bm2Nae1Yz/AlH61njHrtdzoGFrveOkO1fMweu9nqdyvOUtJLi22rjUXLP/i5sWcfc/3QYqKjcZVeOUf28N51PbK/9JxFevtgtdGaL7y17bTe0fy99wij+2jrDGaRtZSWUrKRWls99bfiryN22BpzbflAtTZ6ylx93XyebWW3+H4i/TEDaz3WWGwpJjVNk/ijl3lepx+PR3HhmlbyVUr7aIne+dLaTPHer/wSix9d+26a1mfedNxacbBP5Z+mn1trq6ftnrS8DUu83EptH6nNQUlPLHEn7XutrVTfWnJE3zEvY7GNmt95d+dv0u/ujrL3/w5ebR+0zHEuo2XMfkqM+AE1Rvarlq8V00t+npbe8pV77vI12Xqx+Bu976JFvLvVuVZdrfHR6mu96zGqS6V9TDv7tGTIdWkOItO0Hot5ni/rdsueolE6Q1v9TetdRC1eo9VVi79c4zVBYszOTe7GX5ymSabkfuWl7/mtfuRLn32sMV9rmyUsPtWIT5k/j5yNLb5SHv/ZMheWsprdi37sVls9so+l1M7Kc0jj2efvD4ej+ON2PXtptvia3ntVZ7zfd82OxIPSNT5yP2nBe7+6B7esq5ZPqo2LOlbutqzlnPcSXPXm1o6PxlT3tJ3WevP3y14aazwkpRb7t+h2Wjy/b+yRrbz26zG5nn1zWRbxs//4XnjaziKylPejkfdSW3GWtK9p/aX1tjXmlrP1bqInBq+t29Ja7o1/ltrf8+4l3av3tj+5Llzt3tpG9/pBPbHITxGPaJ5b5unmHFbaf0r3sGq9DSwxnWnyks5HzGddkyN3Br1YYiE5tVhKiRF/Z3Q/z+e2p46f0v1y9Ovi54glZmKlFQuuxcC0vddSd64/1j602tuKNbb3Kf4OYTV2czx7nh9DGPOxe+TuiXOOjEtt/wkveKaorfn8rFbTtUsZr8cBrfFXm69sjxuU7kVKPvDWPbx3Pc7z7d9JzvMsc/buvuV+50b2m/fDwk2894aLrn08vzR78PPlp/PXEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAXCT+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK8KP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArwo/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvyuG1BQAYJYQg3vvi99M0qZ9DCDef83/zMqV6S3K1GK1ba6vUt1FK41Zqo/QcQlDlKckY03vGoKf+lFIfrW23xmWaJpMulcrH51JfRvQkZVmWmzzOrX8TK21jnmdz3ZHS2nTOrb7L283btjKq+1GWXA5NLmtdNbn2WKMp2ljVZC/pac2W1uqwpI+g2eka0zSpa7k1Fqndadmg1hrVyuVpPXW3ypTayu1PiYNMcjgcZDn4yzgdDgfxs5OHh3s5nA6qbC+B9/4if6qLed9rsvTa2fxzLF9rY699KsU5Z7K31nmoydaqOx+DEVuclk9J59V7373GU7buEfn6irJZ683Ll8qV7E+u4xY7VLMdmg/betbarLVT62NtT+iZ21SWln5Y7G1evleW3vpLado8WHQm158en7e2p5f8Pev4WP2FXv969EzzUj6JVZaSrmhrOe1jtB0lO1HS2zj+uf+2LIscDofL5+jrH49HefPmjYiIPD4+Xj5/+eWX8uOPP8rT05OIiPzyl7+U9+/fi4jI6XSS5+dnERG5vwvy1VdfXWSe51n+0396KyHcy8PDw6W+u7s7ubu7ExGRN2/eyPF4FJHzvhPlOhwOl30o1hX7n+tLOk752ObUzinaGOZcx9Rv1rsRol7kcysisrhFtKZ6/P90zVrtyJazpnbOtJaNz635t/hqped9iPJlqYrdKMUNSmOc6nNLt9N28nrzflvOB27x4n2U+5zmvW+ecS0+ylYscZHavqPJck6ztZn7sSO09qt8Lkvtl+oszXFpHTnnVjo2EhfTxrAWp9VsftpmKltNhpbv6703xXPyNeO9l8mv7WntbKq1nT/3lLGkW+LcacwthHDpT65Tzjnx0yTTJMW1UNLDOEdpPy/yBFnZEsv5Yst5ZIQoV653r0Wq0/lcRL3MyXVBk7+ky1rbpee0Dcu507K/jdyr1PaUEVtYw2qLWuVL42T1Y6yxvVIssDYW1jNyfuboIR2/eB7IZe6JYURSG1/ac/b0efP1VfLjSuc2jdLatPh+eb3W+F3LxpX0JR3vWp9q/q2Wd2/yvV+7e/Ler22Rm2/G5TAfxB3s5wmr/pXSS+eeEnuNsTbfPX6kyPj5U/uupH89scFe/6EUqym1aTmPtL6rxRpbe2nPHclIPs1ftNRlrX/Uv0tj9iO+s0WudK9bz3k8D0/qmcdSf8tGp75oXl8r5q59zuvWnq0x2mvemN/mM8RyWkwi5mvpQ2sN9M6tZf2U5Fqdc845z/8XzmnLskhY2ja39txKL1Ebh5KNttgsTb9btmrERuakMqflUj+yFn9qyZKejVv5Wu3lpP5Fy28o+VOWs36pnKZjvT5G73m4pset/cJ6tqi9t5Q+v4Rv2aLXJ7POac/5z/ocacUMeiit15EzsFZPjZFzV8k/9d6LGNRRs4ve52fRSZZlEe/s4783I++6Xft2+86UJc5amltrbDaSxyl69/2a7bbUZbf9+XdXPymEj7LLZLZzafwpjZtv9QlaNneavUxTdhY+zOL8rd3t8R17qO3pJb/DGsMZOR9Yzpa95UfOf59qTxvxd7Sy8XkkflqKp6TnsthUPJdFrHufha1jvqX8Hr6M5Wya+8oj9wSpjb7ZE6cg3i8iMsk0hUuemK0mY+3c2usfl/K31vR1H0z6lPkIW3RsnHUf0j1DxB5/ex3Zt5HP3zk0kfbjHKso7Q1b4qfXtPS7tf6l+h3zpnaqdj7Nn5fZr96XFok273Y/KcUyS6x0xk3i3O16q8VLNFvR+huPVsynFncotalRi5nVbEFpj7bEPC3xrLWMt/lTn6+Hlp3vrdPqb5fiajUbq41FK64fnF7PS4xVScY96rXmL8Wi43fWGPye/pBWd17dyDnF2pZI/xi3Ykafmvx+ch1XP9Nzprn+a6tDS482p2Vbc59oD7Q2R9+zs9bfS6p7qX3eU04rL+nL9fRHi/f1xlTStJId6blL6H0n3NLf0t9nbDmb53tZT3nLfpf3a0usZvZy4xee3+8v352kz7V3qPbxw+3vp/TUH9l7v0jXSs9dgJ5e/3uSaZpkmqNfP13K/KXyem94AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvDD+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK/K4bUFABhlmiaZpklEREII1bwhhFWe0udYb/pv/rlUfy5TKY81CUhrBAAAIABJREFUXZOplh5CaMpZazMfIyt5m5b+j7Qz0n7vXLTqtuaNcxHbKbVXq782t6m+pZTSc72c5/mmvVzGrWOUt5HW55z++1u18UjLe+9NsvWQ11lqo3curbZjz/HvqUuzd9b2S2vPahOsWG23VibNU9svavpVs92lOrU+W9d7TbZ9mZL/rim7t2LYp637bWk+R3TMumZbstXWTroPlPLk9Vh8hVKfLfZAS8vbHrWx+d5Xki+X37I2S2u/Nj89fpxGbS4sci3LMty+dd3XbOIea07zPVJSXdHq0fb7Wp3puKY+Tc2Pb1HamyxltDSLXuTplrQ0vTUnrXw1HyyvK1LyzUbPB1a0eW3t+y37X9LvEV2wYp3/XI8sfoRlLc/zvKoz6sDhcJDT6XTJc39/LyIiz8/P8ubNm8t3z8/Pq8/Rfh2Pi3z11dq2ffvt53I6HeR4PF7aOR6PcjgcLm2m7cf0eZ4veuacE+dc8dzdc4aLcpfya2Nc3i9vbZJWbpqm4ppJ6fEpNdnOY7HOWxoby95tHYs4B1rbef50HDQZWvaqZz22zsDad3ut9+BSe6PHfjQ78BL2s9dXrsmx1jdJ5vyq65pvZx3Xvca/Nuea75CX0XS3ZAdeas9L158mcwjhsoZGfLqS7N57OU3Lan2GEOTx8VGeT/OqntTGxc+ardbthhS/S2Vxzm0+c1ho1V0aa61stHO1OkdsT80utvaL/N98flttxnmY51mmyck0BYnrPu7RGml6rjOXcRKf6YO+r4/EUNL2audu3Se7bb/mZ9bk0rDG/vK281hUCF6uNviat6f+mHdZFtMZqtTnkfOXxX69pJ0tjVXvGGrPW2XT9Le0V9f60mpH+5znafUt/97i99bqzH1y63rTxudst+rnWIvfoMml4b2v+vSt8hpbYkW1uaj54mmbvVjktfRjZE1Zz10i5X06TV99Dl68vz2X53pRmuNSezX9tIxfvj9Z9/i0Lou9G/HT0/ZL5/Da/lyK5fT48BbZNFJZUr+7lLf12SpTy0Zs3Sf3iHPlfWytuV6d3MKW8e/F+ZO6D/X6D3l5LY8lFqg9t9K3Up/P27NiTRbLGi+1XfOTavZrZPxaPtnZJmdnx3D5fzc+Xqtv+XNJljy95UfW2rfKos1/HhNK7UPNpythlbnml/Xkr+03JdlG7E7pbFnzIVMf83wOPH+XxuWXZZGnp6fL55g/fnbOyf29yL/+6zVu49wkv//9B3l8nFax+MPhcBOXj6T5rGs8JY0b5WOula/dXdV0Mte3lv5Z5r5mA/aIBWh6Vdv7t5z/NLbu03v6Ya300b0t6pO2p6a2yzt/o9+Hw0GmZT03mp+Tx3BCCLIs57PENf61jjul66KE9XyRUorLxedSO6W1FW2Rtr/GZ+29wlI7mpxWan5Rz3rP67KeoUrlr7qk1ZPmu85Jqpd53XO49benSY/FWvemlr3My/o7L4fDhyT/x33C2+etdO4bWcs9ZUbmU0sftTmj/rllf+yVq5nX3eapxf0jlrNr71iWYgMasz/7MykWuUex+ooaPbGVWmzgfA6Pe8o6ptTaT2p+lLYutTN/Ky7RetfBH/zHOmM/pst/Iud9ZJ7r86fZYU1nSrpU+rfV5rqu9XdDe5m6V9y2G9HamP15X4jZQljrgnY2i/T6Ehq1u9MapTEfjeuufa9cnrbP0KIdWyh/d1vuqvNaLDA9H+byLYu/0ffTcpLT6TrnqV5bYgM513vHNc7pa7N3jxrdU7W5KvmdJdvZkqd0hrTGaVvrtYamR7r+tPXW2vboXFjlGG2rlXc9Vrf7mnX+S+Nbo3ZuKLVh2f8tuhOcPRa9dW73wjJGo1j33pd8v2gvnHMSOn3xGOdLqdWR+zEyl9/vjLbVLXqc9GJ750mmaS3DPM8yF86Jmn97I1eG9t1Lzql6RztPq/OG5rtuZR0f0e8J03fQam1uHZ88jmQllzm3T1p67cyX+9opJXtfimmU0kIIq7HcM85U8zfLZ7zzetXWd8pLrYFS3w6Hg2pbLLrf8qUs7ef1pXNxY5fEFmO1yhTpuefu8Tl69/Bpdjfxj3l24payvtTOKn9pvEyUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAIP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArwo/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvyuG1BQAYJYQg3vubtJRpmtSyabpzTk2fpulSX15v2t40TZdy8VmTJ83TS14m73fMo7WXk6fH57QfrfbT55H+bCGdl1zempwltDwjemSptydPbS61dmuyiOg6U6u3pA/WMbb0X5Mpxzm3yuecu6zZUvkRnWyNX0++Vvslu1Kac+u6TNNL5fN5bfWnZyyt/e7Bsj5b35dsb8mW5DY8LZ/OXW5z07o0GWtjXSozQm1dpW04v0gIXkLwIpL269q/2r5gIR8jTY6aPcvHv9f2tWxcKktpX0s/W2xWyp62aM89pbcfGqnvlFLT5dhuz566Rf9KlGRP8d4P7f0pJf231lebM4u+1uQqtV3zCUfWX6tvub6k7W+hZncse2/J3uSy5WW1/UZbE9reU2pzxLfN2WPNt2QYsVE1/bO220NrHFo6PqpXvbJYxzI9C3vvZVkWERFZlkWen58vnx8fH0VE5P3795f0H3/8Uf70pz/Jhw8fRETk3bt38uc///ny3dPTk4iIvH3r5B/+p7+9tOvcLP/X//mdPD07+fzzz+Wzzz4TEZHPP/9c3rx5c/n88PAgIiJ3d3dyf39/+TzPs4iIzPMsh8PhYo+nabp8l/r6FjtUG6/Smd85d1PX7G/3B+fmi1wi13nLzydWYpvaPqTq32Fa5Q3h49iFQ5JW1r2SjNM0VffCaZpEZttZd1mWm3yl+Eqa1utrvWb84dpmvV3NXrTSLHXV0qzY29TzWXynPdH0uhWbE6n7pzexIxey/EEOh1nmMN+0szpDOafKUvLVtHOjlq9Ea3/RZGmdLaMNqMUGYnnv/WWc8vPhuc+xfVu8c2+fZBu6nuW6sqfMlvNaaf5qPnPJX/HeV23PeT7j/J3z1dZ7ug+mep23fxUhfKy/bf9KfbbYUduZS0TLpq2plv9n7Udp7ZdidMGJTFPuizh1TvJ2SuOkrXFrHLA1DqX0kv+lfW+1cVZ58rI9c1kbH2uspZS31o9S/i193wOr7bP6CK1xabWXthPPPXld2ty15Osdz5qvocmS15/uq3mfR/ab/IxTkmeU1t1rD9qZoeX7hxAu8107c6TP+T1SvY21H7X4RcKyFO1FLZ6m2U5NV/eiJs+W/dKCNWamPcc0y/nEGle1slfMsae91hmmFn8t7ac1Hz5tKx+/dC3kOpLm26K3aZ977VCvn7g30S9OOftht3M0z7O4ub3/Wc56lnEq5Wl93nK3YV2jL0Gt7Va8aa/2NX/6/I/dJ8zLx+ct8tTqsNat1VXzZ2vnDm0+anpdOiuVxjwnz9fSwZ7x1uoajQXEdtOYcl6/Fm8WEXl4eFDHLLfh8fnuLsgXX7xb1f3115/L05O70b10f2n5VTGfdZ23zou1OGfetvW8am07/1waF2v7Wt6WDKMxQWt8eNQe1vyBknwjZ65SXWm69m9Jrj33qFwfau+NpvXePS9yPB4l3ReOx6P42a3yWWVJY7UtGbXvrOsir2OeZ5nDbSzKeo6wvuvXkqOWT8trSe/xP1vnm2me1HjdNS2IyNT0Ec/tnPNey7X7kteRf1ezY9paWsdub2XM69JseW3vHvFVRtbsnrz0GbF1ft+r/Vvbkz5/XLOVZWuxNyOkdxStdmv6uRe955iWrdl6LoprSBvz1riX1qj2XKLlr+SxNe18HO1h/Mo5Jy5cbdRed8zWeLnlbJ19Y8xX5jqP6zqcm+VwmItlorzX/GEVm4jjF+/kNNsf+5ueMUap1aHFuVuksfC0jJaWsj67yEflin0++0xuuv37AasP0PI7chWI83tdb7f1pe8PRFq27+7o5XB4v0p/uH/4JLGPErX4w5Yz9oittPg6lvLWcjUfqnaeGYn7tO7L0rpa56EtOrJlXvZoL8Y3avoyOqaWcvkeZbFrvf0v1qmY29I7AWldubxa/u13jbf+aTyvWvd0iwz5nJXuJUbjEDW2xlFSvPfqfa+2b04fs2n3m7oveCu3bhut5980rjvJ4XAQH98Fc7p9Kflc/f6WTu57bLlLyu1mzV+8ptvvIkvtWsqu/b21f62tl6gj6fvTrXufmiz53XmKVl9rH7fFr8r6ZLXzI3HaWH81ztOppy2frrZeNf86HYfDof+nHFry19bq5JcsnnW7/9TeN7e0X5KlVmf6eeu5T0S/E2+hnc9G9AU+DZ/2TXYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACADH4EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF4VfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXhV+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABelcNrCwAwyjRN4pyTEMIqLX221JGSlg0hqHXlafmz977ZjuW7Whnnrr9f1JInppXGJaZr7cW0fFzTvNb2W581NJl65tdSZ22cW2NW6nusc6usLTnyeajNSyqTlk9bOyXdaNXVKhOZ57kob1xH+XrS1ldObV2XqMneS8uulPKl67qmQyNzWcpvWY81vd5ib0vtjOTpTdco2cDUDqZzlLeTjs/oGI3IWMuTy9Gr2yU7Uvo+TyvZgXRcc0r6m6Zr+35pv6iNh6UPWl+s41jTy5G9v2e91uqb59mkl6W9v1a2Nv+pza8R67DY+xbamt2j3hK1senVoXT8c/231FXSM0vbmh3r9dnyda59DiGoPm3Ljrb2u5rfWpNZa0PzhVrjr7XfsxeM7Bu1vsS1V7PhNd8hEteOpc9p+a269FJY/FjrXPTay5I/EUntlLYWvPfivZdlWVbPIiKn00lOp5OIiDw9Pcnz87OIiDw+Psof//hHERF5//69/OEPf5B//Md/7Oqn94s8n57l/Xsvz8/Pl7ofHh4ueaJMtX5GPUjbTcul6650Ho30rq/YVq5nhxCkVU3sj/e+2Lea7zOyf2pFUv1o7WklOUs6FlmmRbxP02/nLC8f5Y5157GaUnv5nqCtn3z8WvLvzVmm27ltreWIJR5itZVWf6IWGyjlK1Hah3vksdZdqj//N6cVs9DHIB3z9biX/k0/19ZfSd7SWJZ8olL/tHwluQ4Hf+OHH+/uRCanymmdR+eCxHURi7zEHr73eXq9vtb91uS3rvORWFUrX00PSv5yLocWP0r34bPu+8t+czqdZGrsybGuODa3Z/X4+Zzu/SLLIqv8tXiYhsV2lvDef8xXj3uXvhultP5bZ4VYrNa1EdvdSh8ZC82m9c6PdY+yxm5Ksmj1amdmze632kqx2AIt/qvJWJLFSo8O521YbN8ecV6tvdoYlvzwUpnUL61hjRNd7cktJb3K86fnnpjPerYo0eMnW3zMNM26D9bq0dq1+FE1LHOW51n1xc0yTeu+zW4WN+tnrVKMLTKyZ2xZozWfUsuzNZad1lHyu3vq+xRnuK3sYXtbZ5haW6V1PeqflPz92hrX1pk1rmEZvxHdGcUyxus88dwgkp4b95Axj6HEtJEYv1aXVe9anH12La2//j1jCK36R8rV48OpjOEyBiHo55raOrCe8y0y19J69vretkrfW2NQ2vjkaZbzyFadqsUmt45Trz7msVDN5pf6fzze+sbOuZu01vhp9r5VRyue1PKbesZpJK6ZxqXztWr1T7R81vNyjy72+OwtX790/tHmJo+Zjq6lLefWHr8yb6Nn7aX7/DXmUr+rrH/nRfMPevbImj0s6WstlmRpp8Za5PZ+X2q/tR62xkZL9faeWy1c7sTnSZxbyz3Pc5I2XdImV+/f7OWm3OFwEN/5Do01T8lHLE2Ddf5K+2XPmnrpM3RLhlKcdku7Jbu0dyyh1e41vTd/fwyhl1os9vr5Nn4UQnmNb4mTW8vXym6Nj8b9KM/W2qe0+tP9REtvxdJ6/P+IP13912k677fLsohbzuPy/PwsT0/nWKjmt57LTeq/+ecWW/abVlqrjtt5jHPhJQkFV3HOfdT3tG79/YyRuRqhNqal9z9r4xfnPJWv+rcDch6PtW04j4cPXuTjXYHlfZi0/pa903yxOD+3cYKrLbDGeVpta3cGo3p5ruhW5t56rTapVG+uS5Y9UpMh/lvzUVvlrd9bfBf7vU75XStrzL10buz1Y7bYh96zfN6+1sfgbtPTOMkIVptQSnstvPcy+focxfvFOD4l+XvvREvvIK58iHnePF4W/bHM/VY5avbVEo+p1We9u8znyGIXtTXvvZfF+ez9zo+6soRs7039w/iu8VWX8vpPp5OE035nbU0ve+NCItvietFfi81M0+2dRys20+rD7Xe3f0Nh/TsajRE7XtuvRs6BrTmI+hazTVN67qm/R2Fpp8cGlNZa5KXOvjV64hG18jmWs806JnT1OdNxGn13z/L38xZ9K6W34qdpzCr9exmrjmvj6hI/ZYsvfK4ri9e7WUTWtsd6jwEi+0eCAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrgR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgVeFHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBVOby2AACjhBAkhHCTPk2Tqaz2r5XYRt7WNE2rNK3ePC19Tj9777tkaqHJnLbXGjdrufhsqdsyPlpaT301Qghqv0rza62rNscl0rZKY9ojU4/sMb9FznzdWedQ+77Wz3meTXVpeO/FObd6fgms85yvBW1uSvOV62dt/EtrLx/vkpy9a9wqd8oea2PExveijXFL71vUZK+tv5osUbeXZbnkWZZFfvjhh8vz8/OziIh899138vT0dCn/r//0nbz97+/k+Y3I7/6Xt3I4zPL/LT+In2f5zX/97zI9TvI3f/M38uWXX17q+vzzz0VE5OHhQUREDoezG5mut/RziVyPW/tmTk0nrXWUypbSRmjNeaRn7i1tas+WvTo+b7WZFh3Q6GnbYuNDCHI6nUTEvse1dCtvOyeXZasuWextyUb1+kojtrZEyzfo1bHaOtK+q/W/Nsfpfql9jnlae28rveUrj+7dGrnstbEfWSOR0prUxrekHyV7bNVFrX7r2u9F88dKY6vZjNq8eu+bMjvnZJqmS93e+4svMM/zZX8+Ho+X9Ldv38pXX30lImffYFkW+fu///vLc5T/6enpUubhXuRv/zb65Ge5/+Ef/ka8P8rhcLj04+HhQe7v7y99i5/v7u4uMjrn5Hg8rsYk+vvpPI/YHst6z+fhxhYsQc5J6zK1+YvU9DfNY93X135e3Xd2zq10L/8+9RFHuHZhUtdj3n5tj0z1vjbP2tiU+jGyvlvtV0re1GM991rTU6xnntI+WIuhlG1zLDPJNLXPrnk7vX5Qz1my5O+M+sjL5MX7dVnvg0wf+2DxCaMN02Rt7d/n9ny1r/FzzXZo9afr8mzHiiKodfee8TVGzwMviU/m9twXW3+2nI1aZ5aeeJq2HrW1nLZZWqNxf5sO88f8V3/peDxe1kFeptS36JeIiAQXJI5tFC/1WXr73UvZZr1MLHWkfMvnvQ7FOgaojVGvn1xv17Y/jsRCR221pe7eNeqcG9qf07Uw0mZKy/ZvbTO2ZxmnWvy3lb/nu5RW/FqrK/UFfWOv7tmDND+2Nda9/k3JX/CKrc1lqelF6fsW6bmrtfdr7bbG1yqT5dyQ1te7brS8Kz2anYSwzrv4RcLG81MLzY/O9V87x7b6X1oXWl6LfD1Y6y7NZe4nbNXxEtYY70vdJZYYjffFPL3jn7M1ZrCFl4jXlWjFbJy79YNa54ZRv3HLfZTlPNCiJ1+e1XoGt9xNtPS398yQxxWt7dTqXcdJPvrkEiSEtS2vxR+t8pewxCZa7Wxda1t0trfcVlmtvm1p7fTGK7Vy1lhyyfe13rFP0yR3R3/jaz7cP1zO6D2+XklWC9p6q43r3jqatqO1WxrvkTP2iK2t6Vvp2aKjVt+mVq5X51vroGcuNfvWc1Yv79u334djkHmOY3NOPxwO4vx6vMxnGX/bfukuqSazJa9lT63NVVNnvIhz9r5o9Y3uCT12Qiub9j/3aXvXcknHQggS5nC5R4jV3t7jnvNOlfhjlDmN++V9afVhNO54+315zi3nk9H40UissFTeMj5bY5alOx7r/UlevrRmR+bassevv5pMdmorpX04ksdlb23prc1L7x5GqZ2bRvwlja1ne62+mp3XylpidjX97+1DCEH80V/22Hk+69k8zzJ/tDPH41FCqNuXuNdZ1rjFx0/3zvyzhZY912SMssWk6x5pW3fe+8t/6zk6x22WDUt3T1/b2p4lr/W9fucmCdP5HvOjJOLcJLObxc3196qGbJ5b75PnuOUs0zSddVvxA1NK68oax07jDOnfP1jPrSU5tubrpeXDauuy995F4yXjuj3no3U8SaQUWyzVEef/JRiJk9V8otYctmJ/2vuR3nuZlO7XfKh0j3ipsRu5H+5duz35amwdA4ttKNnYWtt79G0P9taR/K45uHrMIO75GqndT6chrpd8bbTmKrZTWmveT6vvc9/yNc4PKSP7haWtfGzT/VqzJdbYXl5uWRa5uYvOfLvaPXBKKQZj8Utqtn/Pc9C1rnUMpdaepmOtvSMdM4u9Grlj6UGLs7TOLrkse/huljpK8aza2XDEZm61HVv+vqg2372x8EmJUcyHgxxC+Z2zHkrz/1I++s+Jn95byQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAXBT+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK8KP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArwo/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvyuG1BQAYZZomcc7+Oz4hhFXZNC0+a2304r2/aU97brVlbTvvQ2zfUtdI/6zlpmm6yGYdi1J6rT3ruLVkDiGs8tTmS6tLS9PqsIxFCOFGXy11jWAdr9ZaKZWt9deqB5pOa0R7kNqFaZpknueuuq3jmvezpAOlsSylabbKQqveWFfPHFrXhVWva8+9Nq9WptZXy/zme0RMy9eBZTzSvKV1VBuLmr2Jun44XN25EIK8efPmpu6//uu/XqUdn57lf/yv/7c83nv57bfvRETkf/iP38oyz/Kf/7e/k8PpsCpfs7W9drdlI0bqa+lFz7ou1VX6vHWPq8lSkqtWr8XORqz2tUbUw7yukT3KOWeSyZJnmiaTnqa+Smks07LLshRtgFWuFlZ7Xqo377ulTq3/o35iC6u/pcnQ46+1sNrerfau5t+mOta7Z2tz1iL1iazENmr63aP7o3rVc7YqnUH20p1YV1pfaWytZ9CYNs/zasw1mx7nXuun916WZbk8Pz8/i4jI4+PjJd+7d+/k6enpMm/v3r2T0+l0qSt+Pp1EHh/fXORybpLT80k+PD7L27dv5e7u7tJG3Avu7u7k6enp0v7xeBSRs+2M7Ue/Jbaf+u7OudVYbll/KamOOudWYyQiMvtFvA8ich3LZTnJ83P/+TRtR2s/paaHi4syJWnLIrIWvTpGIz5JCOGjvEFCWOtoXi7dE0Vs/cxlLPkRVnl7GbFB6/YnSfUkrddic3r2C0u/rWPT8g+9D3JNPn/23qv+XessZJWtZx9uxf66dX3WdPG2ndY+rD1r/WiNf7q+0jFflmX1fDqdLjY6PotcbX2sK7Vxb944+fHHDyuZvv/+exG5X50ro21O97d87NPP6z6JpEOV2vct/qQ2VqP1Wc8Ze9Jqr+XT53Y3ra+kU7nvUCobQhDvnITgP679xMfI9sxYPvd1SnGjPM80OfV80kMpHmGpc/bn9b1Km+cuv7gnZqfZfsscLe42vXVGa52NLPHrUt96Yii1f2uM7Hs1H9waP6/FAEp1af6KdYxyv7OExde/+mm3lGIylnnV4gmWubTczZXkzeP3IzrTe09Ri2327hHWtkf2HmsZTYae+9IeYr0989SKz5Z8ytLep8ljTc91zB+O4ly6DwQ5zAeZ5mt7I+s9tpXL0xo3rc+5T1dqo1e+Wl17nrtKbWjPn8JHU/feJE5Ry9eynZb9tjee0bOWtdiK994Uk0jZe/4tvuJLtl+qW9sfz+eu23jHskwf5Y9lP47lx+Gs9avX9+05e25pz7rmz3ZTS9u291opnast8Yhc53pkWNvwkKxzkWkKqzFwzolzritOksvZk8fap5r92HOdvcSaLfWrxzZbvrfYaKveWPeR3A6N6EyaP4QgQYlP+uDF+9u7p5zetWkZz9ZZ+VPKkn7Oz3Y1O5iO2YjtbfVlZF5q8VILtZjp3megrWtpy/5Ry+8nL+eY/jp/7/xF0v3hmuaG312tfV+LW6RY4mblOGta1ibX6BnCEsO3+hqxjHXca23UbFa4zHde3ubflvuz3R5q7dnypHdBNj2rxZZKtreU5yX9/lKblvSeekvrSdOzmN7TbmuMWvZyraNxzrePe+vMsuVsXKu35EdZ2Nr+aDv95dfP2r7SivH27OuWe4hIjE217k9DSOPaer3WvT7dB7XzoLaPb73n6KEVl7vKf/bNRcoxm/q8hercjPJS6yDWbZHXGvO8poto1Wrtlf4WwHIG88vtuxHLchJZzu9wudMiIaS+pW2O8vv1aZqk5sLE+uI4afHmSCkGH8cm7v3595pft/feuWc8y8KeZ4jKE6hAAAAgAElEQVSI5cyf17fOc2u3Wu229rpee5fPce1MKjLmX9far2GJP+bjWvIrre2P6lzrrnePeMcWeu8Gt97J5O9gjsqxB/ldSC3fT4GRMTrvG069c1xmr78L46/tzF5kmtxtnviexTxd6igtpdZ9rWbjSntvLTawd7whlaVmc1rnhpLtzJ/Td1fcEvszrb4feX8/l6P03CpjtUsln84eC9fSbDH+2hjnc2WJM1nkqGHZt7UyPeWsMdfWvViLUjwrH1Pt3LU1Fm0lhKDayWiDSr6vRYbed9M1ffHLIstym7dl2/O2ffAfzxX19qp8OjfjJ8en9zYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEvgRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhV+BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeFUOry0AwCghBPHe36RP06SmldJ72kv/jZ/T5/z7nna0vsS6SuU1WUbb78EiT/rcGrNWG6X5y9uy1t1CqyNN23s8NfI28vHIZcqx6GUpXdPFFOde5vezSjJa2vPeX+RO8+drKB3HEMIqbyzfM7+abOn4TdN0o5eldTGCxa69tL7sgWWMtH5p6yLPU0trrfVaHotdy9Nq6zpNGxlnS/u3baf/icjHMZ3nWeYwb26/ZUtadZXGojU+vTa6tBat82BdPyUse1yrzbw+K/PcN89b6rKMy4jOlPYIa13a/mAlL9M7niV92+qz5vWVsNikWr0j9mrresnZMi61/WCkXzVZSt9Z/Nvac2+9Pb5AXpem37HMqL1vtd8zD6m/UxvXnrWR6vio/6/pWV5XKnMqn3PuMrZ5v9Ix997L6XS65IvfPT4+rup7//69iJzncp5neXx8FBGR4/Eoh8M5NPT8/HyZ64f7Se7v79LeyOE4yRd3D+Kcu9T95s2blX7c399f6o3c3d1d7PU0TeKcW5VJv0vHbvQcHdHme1kWdQ5E6udo6xlIk6fn/JSeSaaLi3Zdh7Mv7zV529q6yHVJPR/NIhf/sMHWfWBZFlPe0pkm9xu1fT3qXKuuki5d/eZLyo0OWe2g9/7FzlRWrH5GCPv6+LW2zu31+eG1PTDXnZs17273CufcRU8ssa18Lvcal9S+RtucP2vtlcbs7ujlzZs/rNr4xddfy9Oza/oRLb/huv5EvD+v58Vdy+exEa2NSMlOprLkfU73yChL3A9jerQx8ftlWcTfefnw4cOqjT//+U/ins4yxP0plXGe55WMzunj1+NP9/oWpXlJdT73HdI86fiFEOR0Ot2M6el0Epf5GCW543is2vTpOo7ztsjpVPZh87Es2XEL5fiNlmafhx6f3XLGs95dpHZpZDw0OXrK9JTTxtMSW7T0y+LbW2P5o3GeSMunq93v5M+1s14+/pq/5L1fpWtrP6fkE43ol9W/zfONxHItdaW8VDykl718vtK60vS65ltb26jxEn5sbyxKpNzPVMfT9eicW68XN92s18Uv4rxf7W8jbNUlTX5Nnr101nIm2jrvLXv3EljHx7LHWO+TajGM3n6OrOW8TG8dtXkp9dEaf/sUZ+ARPcv3wbQ7aV9j8Wlap29Zh1vk7fnO4qeq5/7Fi/dhNSbee5HERFj2ceu5tVaHpeztXO6/r7fajp9r/umW+kf82JcaB4ssrfnqPTuX7kX2OM/1YvHvrfGUvZmSmGUa4yrZ7i3nzBq1s+Ae59lRWa1jb7E3LVla+tCjA5odKK2JVpulOwKtjlLaFnrGdo96R+rUbM7ejK49iy7lelKb17M9Xn2zikWNylRiz/cMR+OqvYTLveGYLkXO45rOx3WPK91JlOLnJf/Kvieu5733HGM9A6R5vfddc2CJL/awpQ6LfdXSX8re9bOff/wpznXXts7/anvVVl+i1Y/S/tjy73r30dSHDOF6Hi01k+5Po3G82n5ZqlN7Bzt91qpc7zN1HRz162vveGtz1hMnGolVXsciSFx3qe+Zvp+S3qk1pDHJk/t4vbLn+1ULn8RP43NPfTU/KH1eDl6myYm4a8zGuUkmP4mbZ5mVdy5CCMV9Nc1TxE2ZzEGcu94Pz17OMl0lvrx7pZH+LUOus3Fu0z6f3wXS/xahNTfauE7TJMFFma/9tvp7Lf9gdL9uxad6/PFPsaf22ty17Kmt36dPFptQe/4UMYEaK72ZvLT87Nrdae18q7VXq7tVVqunde7/lD7f1neVrvdifXvKHm3vQUuGPeKllvE4vy/lJYS1bnvvZUpEbMUwrO8V9vnnt7Yh3iEt7nwXkJLLrKG9M9V1B5Hd45bylcjXaP++dLsXt2xJj3+Rjk96vhk5z3yquG3EuheXfPE8uSfWNBLn6qnTYuP6z4T966cHiw2znqfybK34cO+esFVfS7pXO0Pla79kC2r2ytpPp/jrpTar56LJZecKkdnN4uZy/OzkFnHuU8aTfrq8zF+yAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjhR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgVeFHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBVOby2AACjTNMk0zRV84QQRETEe3+Tlte1RY496qmhyVxL31K3Vqclj0Ycj2maLmX2GKNS+5a5sPQlL9t6Hm2nVJd1rHp0b0RXtDLpWuqpN5WvVCave5S96hltK+1ftFMtfRxZhyN6acW5l/mNtFI/c/2wrrG0vEUX8zwWXdFkae0/VpudPmu6kPZRkyW1sVbZa+S58/J76KlFrtK6sNTZklnk1ifI9UDTC+dc0eZa/JEeNHtZGnvv/WW9firbl9uHfOx79puWzJa6lmVR5bGQ9sU6frU12dtObR8vyZO2X5qLreS2pzYPpT70+h2pHc/btvgeLftYshElmbf0RcNiLzW5Wnt9qd5a3T22YkTfW/W1xmLUh7fuN625bY1fTcbW9xY/IKVkL0REDofD5ftlWeRwOFw+n04nERGZ51men59FROSHH364lH1+fpbvvvvu8rwsi/zud7+7yBFlmd2z/OY3v161+d/+2+/lw4ezPF9//fUlPfLtt9/K8Xi8PP/iF78QEZG7u7tL2tu3b+V4PF7kT8unfqBV52r5LHWc93Ev0RO6tu+KPvHWPTeWr+naeS5klW9ZFpGlWKRIzznZsgasbUWsZ4t8XLX1WrOLtb7l/sLeWP3b3G+07AUj8RjLWfG2ntt2Wm2PxNe09dNaU5oOWf0gzZZ677O9x75HaXMZQpB5nm/KWG1FyQ+qtZ/7l1GWfFzmw60tc/Mss1+n9Z6nz5+jzNe0fLxzPU7H6SJPxUbUxjItp9Wfz/PFlh69vLt7Wn13f38vbmrrWXzujQVr89qKJ8U+tPLk+dPvo+1LbWD0FfzdnZxOp4/zdy7z+OGDuI++Q97HOLZxXtNzqDYuIiLOTeLcLPPsVnVp/+bf1+iJgZzl1dL2OzuVSPW/FdsJLn7W5bScz1I/anQvT+eyO6ZkOKvUvrfY4VKbFjsS87diTqPk609rv3TW1tZtqUy6dqIfbd17LfHX2pi24kGaLCNr7daW3NqYkr20xpXzOkq+ppXeGEJqR0v1jJ5nLWm95Dq0R51bzg0p+V6p+f3Ws0AtTrhHnzU/qGRvtbwlWvGEUp5PRWlN51jj3Fv60jOuqVy97ffIaDnr7oUWSyvtMb3UyozMme0MW85vic3l+3Ba/TUmEyTGi0K47sulsbPS48+W5Lfm6Z3jaZrEH/zt2XKexc31+xRNx15Cl3/KlMbYug5GdaOUzxLbTO2Q1Y/pjZ+P6IHVL6idj0S0GJDN9tXmwlLecn9RiwGUzi3XOwF/sw5Py0lOp3UcSJNL8+l6dHbLut7qk2zdU0b2izQt37dLMd/eM8nWc4hF334KlM4zpZj51n5c52y913vvRQruZklHemIJe/iCmlytM2JLjlvfJ47P+Dj3+GxabKJUR2+bWyjtg3u2k+tiq31tbffccRX9ATeJc5Okcz7PB5kPzhSX7qFkE/deQxY7/ho2sWaXR/o3un/GZqMNec3YQA95jHxbXfuctVtnqNH68vuLUlWaTbfEEVObX7qvyO+rSntevq78dC3n3LVM+g7LslzvNDV5LedXDYvfNTIvpTuKGnF9nZu77tf53ViJaKOdCzf6MM9zNZZVi4VbdL9271Qah/ysEeVrxSdjubzNuh0Pq63zHJcRCf72LJTTO/9XufaLpUe0PTzqWrr3e+9F65blXqbO9b2jnmHpfad3L3u99x6u+VhWWXJ5SrRkTn35lu+y515dq2vE3vWi2SFLPKl2bixhnacendLGyHJubc1l612ll/BdnXPJnm2Lt133M/3dyU/5d1pbaY1paUyGYvXzJNPkVvpmfbftslc6u7634qK1PFp7rbWU98W6F2jp8zzvfg6txUQ/plbLt/qf25Ga/6S9O3Le66fLZ+1eWtPHlz7fWmLnW+u33ifUfNbRfUDzSbW0vA0ttqLr/L5n1la69fuceQ4yXd6LjOc0/Z0VkbpejLRfQ9O5vL30XGRp23q+KXE8LjdnncPhICGU91Fzm/P8MT535fwub/k3D/bQtZ8LL/NXzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABG+BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeFX4ERQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4VfgRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhVDq8tAMAWpmnq/j6E0PUc07T0kfa99832NNJ8sd68/vy51Jfe9kvttPpvqds6/jV5tDz5OMfnmkzWfrXQ9CWXR8O59e9SWcbCKs9WttRhHc+0/5bx2pNW/yzrf88xynWhxWjbpXJpeimPZV5H7M0e+qrVZZXFki/2PX5nGYtpmrpty8h+1apD5Ly+ptNJvPfifZAQvIQgcjotsoQgHz48yuF0utHDeZ5XzyM6YGHEFsd28jlvte+c615vvTKVnq3ltLQ4Numc1ObHOpZ7rL9SW1p6bexL+3iO5h/1tFPCYvtK85LbhhEfIJ/P0lquMepHaPaq1u+YVqs79q+mi9o69t7ftK31u8dvKNkYTU/ytB79Tmn5EaP2ooU2l3vZvFzGZVlu8njvd/O9a3lLPlltXEv78qfyx0t1pLpcGuOY5/n5eZUuIvLu3Tt5fHy8PH///fciIvLHP/7xkvbdd9/Jb3/726Ysb9+6Vd3Lssif//xn+fHHc/uHwzWc9Nlnn4mIyPF4vKTd3d3J/f395TmO7eFwuJmLtN/R/qVprXNvbjNjHsvaDCHINDmZpmlly0LwpjNkCW1NaDLWvsu/1vq0l3+d+w3O3Y75SLxBZD0Wo2ftdI41m7/nGcJKrS+WuM/IGdQSG8nTLHvkud7ynPfY6VxWy5msFQuw9MHi+8b2vA8iksp1Tpsyv6Mmcy3NPuZXNJuRp1lkydueXbip5/npSZ6ey/6AZX+8tQmTzPMsx6P9qiHKn8q3Z8yrp65p0s+FLV2q5am3Z9ujUpksOpNzOp1u0p6ens71ffTT0nqenp9keny6KXN/f7/Srfv7+1Xdcf/3y3XvdG4S70W8X0SWUPRJ87Xbin9b12iqX/maP51OcppuZdoaD87piQFc5dbTLdTG0kpvPLZ0prGMrVZ2NG62JfY0SstGa/priYGMxAJbY7+XblvOlq22LLYrR9PLVgxFpL0/W/Y7611eqsOW+KnFr9bkLc11yWfLYyra+FviHq0YVcs/b+mO5b6v1E6t3hK3u2O42RN7sK6xVP4oa6/9strp1hiPjG8Lq0+Wj/PWmHHPGLbmuFWXda577O7e/odWb2mf3bpHWO4RtXa3tLMVzXY651Q75ZweI8/tceucbrFNe961vbSPG2WxnJVSf/ZTyPVTohWXLu2TW8+aNRs5cnYeXX973EFsXftb7pr3aD+vN52brXdcLXKfo6Z/GiP3XT15LP7xCFvrtcQW92ZUP2tpo/V/aj7FeF99nfNdS7zzOByOMocxO3UI5/qu1O9/LTJabGbt7jCPjZTWwkvGC/J6e9J7qfkhI9R0sXxPV64jpfduTotttLDcl13ul+fz+2HTlL6LcY7d1sqX6t9rr84/91C7Sy61ORqHFBn3yUcZiQ1rOprnGalfK68xujdFe63Z1T1l2PM9nK3E81IuUuleYOQuslQ+9wnjXpS/32OzY+22tZhYKkvPZ8uz1s5thvJa0SjNuXNOwtTni5bfbbHLU6q/FGfttV+9Nlqrv+dcmMsY10ZY2YTzXV+pPxYbV7cP/uN94pV0n1yWxTSOcX5reef51gdM32GundvSfdiqA726tfW+vrRGP/U9rKZXuUy99fbdbdpjYdaxGb03Hm1vr/LaGUZ7p9R7Ly609bp1l6e13ytz67w0eu4J7mXvclPScSrZ5NF4lOVdcI2t/kzr7qs3pjXiN9ZkTvVa87X2wLJH3+apxzHychbd2eMeLLepqY9k2ev7z+K389+755Xy5+vYOf19pJiW+4Ppe9h5mRFKfpD1vD/q/+Xnm7Samq9mHddavhLpWGs6XmPkHJLK3GNzcrS9q+WH1PzfZfESQv53Wfrf41jl09ocidH3+Ve6HHld2thZ7sjWsZV1XfPsxPty7C6/ByraqOK9tK6XZ/t4jW3veHX1bxJ+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuvjPXz7K//y//kacL/+ghfeT/O//x7fyfHqZ/0FrAPh5gaUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC7+/dtTM49zQb79q/efQBoA+DnAj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJlf3C3yxXEx5f31r/gRFACwcXhtAQC24L2/SQshVMvk30/TpD7n6VodeV35syZfXq9z698i0uQPIajytPpa68MWSv3fUlfp2UppHkvPlrZH+6m1lc+zRcaeOa/JGEIo6pW1jj3RxiJnRHc1+bU1uFd7pTbz79O6tefRtkbmq9TPHpm0dWEdvzyf1larLosuW+QpydKjC5b9osTIfFr1WSOVcZ5nOR6PMs9O5tnLNDmZJpHDYZZpnuXh4V4Op7aLODoXe+xN1vGztP9Sts9i019yLNL0vfbWHjm25s3bnufZlM+il5a1tGVuRspuWd89cozov9WmWnznWlpJdy26XPMtnHPq9zUfPPZlxNfPaY1N2l7puTR+lj3bYpdH9tEci3/XareUtrVMZETGkTOE5QxYIpVxWZaq/mv9eXh4kLu7u8vz8XgUEZGvv/76kvbtt9/Kjz/+eHl+//69/PDDD6t2RURm9yxfffXFR/nPffi7v7uTDx+C3N3dyRdffHEpE230mzdvLmmHw2ElY76uSutsZL+MMtfK9J5BpulqO9I5tZzrRHawr7Peh7R9773Jj++1AyEE8f5Wzz/VeTGXR0Sf41p+K3Y/wj4eo7Kka8Pq21rOIzbb51Vb5n3f3h7LFVvxXrVr6fxq+qrZkjxNG4Pcf1yvl7Nta2Hx6Z1zK5tm0atcpy3yW/ab8/q9pk9Tv98bx3ZtE9djPPlFRPps3x7nI0s8tqRXz8/PIiLiFy9PT8+rcfrTn/4k7mmS0+n6v0IxTdNqDpxzcn9/fyNrmiain1tG4hxWvz1Nz/UqPqd9/fDhw9mGeS/PzydZlpPEKpZ3P8r8cZxq+2i+x6cyX4tNF/8hHcveM0Oerq33mi45d7sm53lezdNLxc+tRLsxTSKlJdQbgyvdJeTU8ljbSf8tlWnJr81rb8zVyl4x58NhHTfrHe+8zqiTnypen9ZrjUeMnKdG6rDIk+ex+Ogj8u8lbwvtbNTSKa3dPG3krG/Zk2oxO4uPWBqzrTpmn4t8r55MsZteauu3dL4Z8Rm08vkZ9lPYkp7vIvnZp3Xue2ly/7cXTYf3sBEj89d797YlnjAiS85Wn2SLLHU/7Nb+5WfUkfnJ9cLi374UZd+snK9nvl6qLyN6ZfEXYr2zP8cGr+1M5/+bruVq8bXWOJTGpRQvLaXVGIkhWdt8jTPUp4hL1sZ/qyzaGtqyj1rvjGp+c27PNFmt9JQZ1Z+t4/7ajMTMav5xOref4j2AlB7dHTmDWMpYzw7THO9UbLHs1lie/dX97FEIweQD5zZEOzu29ud8zOJet0rLYma91HzfPe34p7qrOtvVclpLVfU5Kc9lrgt730HF+5m0uPdeJJu21hq02KgtcvYwEv/ceu5+CfY6f4qIhEnr89kWbt079hibdpz42q95nodjWbf1rm3lVr+iNP61+K92L3h79pqK7zdZsPQrt9XrO0XdP1xJGGNPRy/z7OQsc7iUnT/+7zIfD0cJoT1O2nMrf47W71Y8JgT9nZ6e9Xg7VtviSqO89B67+b0XA5pOnJPS9EleKo57btOJc+v25vkg8+E8z4cwZd+viTpn8ZXd5G90dFkWWZbrvVfUL4s9KL1Xdt3387T6u2cv9fcde5LfEWrjXuvHHvGO3jHYYy21fPWXeP9YpH0P3EJb48HpsTtLG5ZzXE+sf2RfHyX2+1P4nHGcamth9c6E18+mNb3K32HspSbb1ncdIum7lfn7VBZqfbyRf77dK3r3rVJsXotjl86sqd95fv9Y8//K9mSapo9+ng3Lu2w5+diN3Cu8pA9Uujfpqa9HvJKd3XoPm7PV72765Ylt/4+fP4tkdyolmb/68lnevlnk/Yf6365tnRdrnSX0/Wafukvttfailu6mZ+GrLSzL1/tumkVn97hrtrZfO/OXvrPqleVecM93BfSxHKrqZ8X2t9YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4C8CJ0H+9u2pnTHhV9++fyFpAODnBD+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAm/ubtSY4udJX5NT+CAgAG+BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDxHz577i7z5s1Jvvzi6QWkAYCfE/wICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0eZi9/NXDaajsr3/1fmdpAODnxuG1BQDYwjRNq2fvvYQQusvlzxpava22RuvV6rHU5b2vPtdkiumaPKXxssi+B3k7Wh8s42OpO03L/41o45qXd679G1MtmUvta3nyNIsu7EnaX2tbtX6NzqdWb6mdtI1We1vkyetJ5SnJZlmHljIjeVr2sSTHXrasNH/x39G5sJZ7KbvWGkeLLszzbGpLqytfl8uyiPdBvA+X/N578dMkp9NJ5HQrY1znMV2zc9Z9L18HqXylsai1t2WNWubCald62rG2ZSWEsGqjx77swVY7aZWrNV8W/d+LUp9bPoAmj8XX2YPR+e/ZM2vl0/bzPbHVbmRkjlv+bylPLqNz7ua5RcnG9ehlan/zMcxlH5ljaz9qWM4Huf231j2K1e+y1qV9js8WXdX24h7Z4jzV7N7xeJT3799f0mOZ5+fnS3vOOXl6elrJE79bluVa37xICP5jXedy3ntxbpbT6XQpczweL2WWZZG7u7tL+8/P51/1jml5nkjq41h8vtwXKa2ndGyivPpc+Wq7uQ82YgfT+dbku8k/nX21mzpuq2ky7j+v65imqXrus5y7avlq7BWPae09W2INqU222DvvfXUv0GzzSGzEIr9mx5xzNzJY9vG8TNrHaEdaspX6YPFH8vbzMut9QZLPoThvGpb9JZc7laUkZy2WUzqf5WXS/WI+uBsbdjgeRSbdrtX6ldqx836hnDHnqThPmg/TS8/573g8rp7v7+8lhCDL0csP94+rWMMXX3wu7sk151I7k2ux6VodWhlLnCWfI23O5nlePb99+1ZE5LIfi5zH5enpSfzdnYS7o4RwvMzl2y+/FPcxb9rXeZ5X4+ncWq8u8s8i0xT91vNn52Y5HOZVWQvpeh05Ayo1Fr8ZiZWN1lMqd/6v3X6+pmprrGdPq+1ZFp8s5rfszSVb0IoHWhjdF7W2W3beOdd9TraO0d6xndZ5XF3PlXpq6S3/xzJHua0djdNZYwe5f9t7rzPPc3XcNF3e4wystanJ3oo9WPq8RyzJGteutds6/1nrOT+naeM2vubf5Vjiga17ofxMZmmvNl577YG1+mpnmHwvs7RZO5NsuUPb4/6oRzf3joWNnI9KMpTOIOl89cyDpa8vFRvsQYuBlNgqr3Udp/T4cT2U1m2eHEKQSWy+T8+e12NHI957cyw6badnjdbeOQrB5tfl9NjTLfGpPajFdkRe7v5xrz6O7D09clhijjV7W/KL4jjn8UONw+HWhzscDuJ9n30ZeZ/M+rw3e9ZfirFFtt4rW/xyi/3S7hRE+sbeaidL9MbY95gny95Ru+9JOdtzv8obgpc4HT178nX/uY1/tnysET+1paeafBbSGFMuVskHstilnPysHW3fHu8TvkT5Ed2NTeR+klZ31J0RmXLfyhLv0PZCv/iPenxNP51O4k7uZu4tscWaHXgpG1E739TQdNiqI5Z7mfzuS8vfqreE5Qxaav8ak7ravVb7I2eVnJF7odmLOBd1/pzmvRdR3iHI6yqdKWr7Zb6WSntuShovt7zjWJNznXYb9+mx+en852Oh6Xv+zlN+r2Tpi4iIT/xR567vEUzhep82d/qme1I6E1zuUKfb8c/vsyz1Zt+KZusttrOG1fer2d9PcVbbGv/e+zwx5se2fLb18/l9j/r8aOtZO8/Nh4McwtiaKdmM4Nb9mqZta7NHDz71+dB6r5b6wqW6tpDfHcb6a7rXI8OWs2ptbxl97/alKcmcy7tVvk85rnpZV48AACAASURBVNa/c6y10dtfa1yglK/m61rfeRvZC1tnityfs8Szpmky3VfWxqLEuZ397jlSEXpj0amczt3GQtM5TXWyNLZWWvfwaRsaPfd9e5Pbaeu7B7FsL6X7tlp8yDo+tT3ype6Z0vr/w2fP17hDpsct/uqb9/L//L9fSAi3+3WJre8x5Hei/fOcr69pdeYa1euta0B7B2Gdpo+x5iu16n+ptTu6tl6iXivpes3PoJHQ8d7k+vM1lvs6ntlPg9eLMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAvxn+/dvn4nf/+sd7ef/+UPz+7ujll18/voRYAPAzgR9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAqX33xJF8cffH73/zujfzunx+qdfz6V+/3FgsAfkbwIygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUOWvvy3/gIn3k/z+9w/y29+/qdbxzS8f5TCXf0gFAP6yOby2AACjhBAkhLBKm6ZJpmm6yaulxTpKeO/V72tlPgV5+7Vnrd8hhGJ6ivde/X6aptXnXkbmIm0zzdsai552auOW65VzTs2Xl7GQj3OURetv6blUj0aUfQtaW3la3o5lXY7MX2x3RBdG86dyW+ZZs1Vb6irlL5UfWaettre0o9mSrfNnaa9Gusadc91zMSrLS+8nmt3Svstl8j5c1laaL8qb15U+j/RpmibVNpVs4R7jVhuP+Lm0xkbsRU2nSnphses1O2DZ79Ln1j5cey6V19JKMlrrbMlq3Q9jPSM2sqUDy7JsbmdUthY9de7le+2xX2m6kqZZ/ZvevUpLt+i6ZT3N82yWp2V/LOmttWHxb1vnhRZbdTq3H3uuEU3Hevw0iy217MXe++a4TtMky7KsdCnaHeecPDycfy378fHxkueLL76QP/3pT5c2vvzyS/mXf/mXy/ObN+fg8h/+8Ac5nU4iIvJwL/L4+BR7+PH77+Xdu3Pbv/vd70RE5M2bN3I4nENL//RP/yTffPONiIjc3d1d2v/FL35xkevdu3fy2WefyfF4vPTp/v5eRORST+xXa23n9taCpjvTVPf/8jLpfOdn1Z51MeJb1OrppdVu+nW0f6U4SQ+9MYHUV2/5DlvaH6H33J7inFP96FynUnpkt5zBr2cgf/Odc2cfPR/z3pjTPM9q+ZIsVnubf+7hrFO2fD2yaTKlNsHqR6Q450x7eCmP1mbwXp6fy3Wmepn2PU2f59vx0M7S1jVr8eVqfSw95/p2tSdTkhZkng8yH1yxnhF/tpSn1de0n5Z1PM/zpcw8z6vzZFx/h8NhVe/Dw4OcDgd5vrtb2fovvvxS3NPT5VnrT+4zpnm8eHEuPvf7UWley1rP03O/YFkWCc+LLMtplf74+ChP/jw2uY0qzU8aI9HuI6yUYs7BtePRWl2pzbWes7Q+tmK0Fv80r0OL2ZbsYG2NleZEW/stn7y1Rm9tRbnNXBdKtiiPf1r9v9b6H/FnavtwykgsxiJPSc9q49jrL9Ti8CGEoj6lZ6s8fYvvm+vSlnsda5lS3Lak15Y+1vba2r1Qac2MjGvJv6zJqcW3r89tnbXG0y2y5PWlsrX0cqQt7/2l3tbdnSW2b43Favpu8Wes5H7vlrFrxeBb/onWhjbmI3q0Nfad7jcjcZNW3a20Lb7SKCMx6zRvCGI6I74me9yL9ZKOSbqP5Hqd66XF3ynFRVvlLLTOEi0f+1oulj1/DhIkhHFF2RLr+dTzP2o70vEr6UHJlu5pK/L9aI94YotSP9W4jMGWputKiy1Nkz+feZNyj4+P8vRUPrPn/mAax6nNhWXNlPrVKvNaaPGE0t5eep8rxTJGmt9i2dd73+8q2eS8rh4fKJa16IZF30vvIo7Qs9eMnMf08UjXtS1OZIk3tchtQY4l/pOWPd/33K6FpaBysb6ST97zzqKlfO3cX0q37Cu9cbw8ezmtrG/XvSCsYrHn+zbdjtb2FS29pR8iIt75i+97K9vtGS591vb4GiV9TM+qtfw5vedei13J97DSnlaLQccyNf3P+9zSTasuhxBW8ZHYxiK3Z/Rpct37Santlq+f6lRPzGtZlhubJNJ/d2S9R6pR2jt746mWdbk+d4h4H6q2WJOj5LvHdz609i3j0fLpvfPJPnZ9jyCK83x6lqcnPZZr8Sly29obX7LrfKqzi3hvt3H6OOq+fi2u3esLWeN3lnNHpDUnvWeqPP673xkgVO8A9mXdVm18a/pW+luLmzPgssiylO8wROz+UTlfuYyFUd+7Nf+Wc4pVtpp+9Jx1X4LaXYDG6FjktPywPO9e7aZt51jbsN6FfapYj8bIeGm+cu1cNTonvX63dncW9XbkXlnLE/XQcs/T216vXdNk6aFHbu2+rO5PX5+nqX7Hm8YqRKabdxGnyYs2r5ezxDwl7/jc1tszrq0xaZ2FLG2W7h5L+1DNB7PKZ0H3E2z75sjfPvTcIbfuS3qo+t9TkL/65Xv5IKJ2/V++f5DT4uT0zsmP7w/y9s3pNpOIOBfkV98+yXe/fTssi8ae/kHu62qU/i6uR7Yt1NeTLWZmvUtr2bbeO9tYf8/+0tuORh5n0uJkpdhZxHLfEhI7HYvP8yxzJbYV3ym8jvfr37G8Ftv/Gh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfrZ8880HOR7KPyr0m9+9uXz+bfJZ41ff/ribXADw84IfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAIn/9q/IPlzw/O/mX7+8vz7/754dqXf/uqye5v192kw0Afj7wIygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHJ/t8jX/+6x+P3v/vmNhDBdnn/88Sg/vDsW80+TyK+/Lf+oCgD85XJ4bQEAXooQgvo5ZZomNT1+V/v+JSjJOVpXqb6Y3uqfVt57v/o+r6NUZ6yrNi979L/Vpz3mNK0jlbmUbqmrVE/+XJO/NJ5bxzmdc+dsv52VlklJy2v6o1Fbv/M8V/OV5PiUlGxJvkYt81Iar09hq6ZpMuuOli/XR8vclMatVGdvXRo127k3JZvR068cq42d5XxIXA3LNIlzkxwOsxwyFzEfv9wWtOaqla6Vr9nUEbvWaqOUp9VGaS1b7Lq2B7RIbad1HKz7Q63NEXrK9dixmm609qnU9rR8lnScW3txze6VPrf8hj1tu8UXbo1H/Ny73nrXq7Z2Suu35F/W2rDspVZfOZWvtuZTRtZ7a81a6oxrI66B2lqxjlGvH7aX7Rax+6StevaipKu9dnmaptVcleQ+HA6X8c3LRN6+fSun00lEROZ5lm+++UZERJ6enuR0OslXX311eX58PAehf/3rX8vz87OIiDj3JL/6VZTv/O9/+S+/kqenc3t3d3eX9g+Hs9/w8PBwkflwOFzyOOcuMh4Oh5XM+fkgPocQZFmWS56RNdri2na6N8R/y3NZ82M13czPA6X5Hz27tNZS2rZp7cwizt36Lj3nAat8pX0oldN7f/Pc00YPpf3m6hOs02o+WUtnW3uXtq/keWrxBEv5Wvveh5uxznXZep63xINKlPzo0hhb6ovFtCKj57La+rX4K5odCGE9B6fT6WLXReRir9M07/3FdoqI3N8F+fOfn1by/OY3z3JaDuqaS+1zus875y62XkQkLGHVjsh5P3nOzpFpvem/eVpaV8/ZPS+T6kXRt3W3tvB4PMqs/Fb8S8SUtDpTeXrOM1qZOC7OOfVz3F8Ph/ljuojI+bt5nmVK9uHUdsXPy7KsbEF5j7v6salP04oFWs4C+RiV/Nvj8Sh387LSXRGR+/t7mY5zc41bz4DanJTK1nwA7buS3bfKGOtJv4vrTZOr93xVa780fyOxTUs8p0Rt76vJ39qzevyvmg3Unlvz3iNLXq8mg9Zez1mtNce9e2uvv9DSndSWWeNArfp74mypjWr5mtZ2LOf51n7Yorb2U/88laVl+1o+qXXfLcWl8zZL+0WNVLbc19mTHlvY2je1sZ7nuaov6VjEz3udqSyMtpXPycgc1caztLY03dXGTZNnxM8t0RtTzNH2hC3zPjKWlrL5OI/IWNpXrXb4eubXz40aW/csC5b4Tn6mbJHakfV+FlZ9995fwmdarKAkb2mfsGKNx2nyOOdM7zi0/PmXxnKvUPOv/n/23r1ZjhxZ7EtUVZ9DHnKeyyFndR2SrqQrORyOkBWyFfLjQ/sLOMJ/yArLkhwKR0i+uvaVLK0eOyR3Z3cePI/uQvmPJrpRKCSQqOoznMfvF8FhdxUKSACJRGaiWbOV0v5ci7trdaaf0+8Wv2+t3ljjEEtdJSxjEdtbLdZKc0DxPhPH43HMPf8u8vCwl4cHp+ZGnDv+tiZeI/G6CHmg9PnUl3us/ayU00zluhRabiwmdw6W+gFpn7T9P7VDuTZbcp4Wu6jZvrhfFlrGvma7a/F4oPR7FEusov0mwLluMfa5HFhepklE7PF84NKxRWnMQr9rZ7RHmeq5qHn5JZoepn6c9rx2Xetj3/ezODs9K62dg5f22kV+zOV1Ih0iew7Pzc7ehmEQPyzXYm3uLGTzE1dehmF+VnB1dSWd8v9QzY1V6/m89fm1a2TtfFvZGou00OrH28nnnbS1q+23lxgL7aw3+EHnOOTY1n7/IPdTXjfSOKPmp6yZl1SvLPksa542vuZc3JejnYttXQ1t70r32tjGWfzT6j7ivIxjsMFTNI/Hdg+Hg3hf9zdKucXa2VepzzUdn6bzPnXWn3z+VmOud7Ycfurrxtfjbk3T0d8fM2eaFj9Ku1fydVrrqpXRYk1LLv40posi599o5PIZLfLm2p4/5k4xkxZjxjGVFrfH/sl8vuf+wziOMo7nOE+L6XL91M4egl2NBzJu1xp3aFh0puRfBuLfOqTPrpGpNR+g6dJj5IZqv3Wy+ZTr26z9zqDltxG1vSetL/09xNRtm+sWWbf6sC1tVtvqU1tTf742bzUu4RNbYnBL+yEX0aJ3Lf9urSUuCDmy3DPauqytp7Hz4n0ur2M/+1vuRzXC3nL87L0XF4l23gskK0eNnF3NStG4jkv2rZQ/1mSp7TdbYiyLvVvm/PK+Q0l+7XotxmnJJVpYk4P98tXtUW/d0n9zzsnrN88WY/Tm7VP56PncB4h59fJW/t1vPirKGbdRwzknT64P8g//u6/UMn/+F5/Jb1/fqO3l9y197r58+U7+y7/9tdre//qP/uQi8X+7/sx90jX7saXsmvME7ZzKGveW2qrJPD8ryefyLf9+0tLW+flzPUUb0dnt8c+dy3h1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCz48tXt+q9d7e9fPPt1eL66zdPi3U+uznIR88fimUA4JcHL0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAUff/QgN0/36v2v3uZfdnJ7N8g33+6Kdb96qb9cBQB+mfASFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABY8OtX74r3f/sm/xIUEZE3ygtSAq++uBUn0yq5AODnCS9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAZnZvk5Rd36v2v7we5vRvU+6/fPJGp8I6Tqysvn312v0VEAPiZoVsUgB85zjnpuvl7fKZoF3TOzb7nyuTux8/nPue+t6C1OU2TWm/aL+99tT6rjFq52tiW2q7ds8gSj0daV9x/TSbn3KI+q4w12XNjVhvvlvtWXUifz41B6Zn0evieXo91wTknfd9n5bbqXKtu1Oax1H4s65q2c7p2KVId/bEwTZPJTlnX/xpbUHo2d22rvUvrt9gAi+6n45DWq9mSWt3a2s3di6/HdXVdd2orXI+/18aqtDasa3YL2r5c09+cfFZ54+dTexn/HdeRG6d0f7XMeXp/i8xxfS1226KLJXms6y/HVlucjnmNVNZ0L4kJspXmzbIOLuFr5ubYKovF9uWe19osyVIjt0a1+lL7ZalPk790TavPcl2ru2VcWvfVeL7T9d66Hkpt1OKDrutm69fq72qk47BmDHNjU2rnkmh+gKYX8VyldtCyFsdxnNmo+/tjQni/38s4jnJ7eysiInd3dzKOo4iIPDw8yMPDg4iIXF9Ncn8fUkZOnBN59/1eDuMgu93u1OZut5NhOJY7HA6y2+1EZG47+74/lem6TrquO32P4/p0LZfsbzpeKdq68d6fvod+936UafLvy8r7ewfx/XI+UnmtWOxNPOd930vXLfej3p/HJLc/1uyMtqfGz43dKN4vdewx1oa2LlI54+8WO1byHVrzGMe+l9tbY99q/cjp8Np9rKYX8SPOidpfLTdj8V/Ta5ofXvLPrXk6Ww7kaNfe35nFQdp+s9ZXtfjea+bSUvZq5+X587ez6y9ffi73D2d7G+tiiBODvOm+FPp6tR9Pdjzw5MkT6Xa63c7FQVas9ifNl+Zis9H5k/0/ynHcG/2+K8q4xnexotm4Up6rFndO0zS7HvocxmUcvXgfxuhY136/l+5wmNWRk0PLCx6fCddDW16maWnvLLlVbbzj+SvJGe4d74d7x3HxfrkuLbmQ1NctyavvKUv7HvsngXEcRcZpJleqhxaZLeOa8+3jcdXs2Jo4VvPRLHuctS1rDLmm/pJtro1Tqw+i1Z+Wt9ab2+O0OixrVHvWksOpxdXW/d9CTZcse33aviZTTo9jm9myj7fMQanONbkekXJOU/Nj470nF8+Ga2vyfLEfkrOZNWo617lO+r4v7ikxln3YKkM8PrU8i5W167IWo4R6WmSyriurr6WV0WS/hP+WW+db9Dk8770vrhWrLDk5LLq0NcYvrZc1urKFdI9L79XJ5UCWsbElB72mz63rQORyY6z7SUt/plWX0pik1v6lSeOGQxTraGh5qUurcm7Oc7m33Pi05MWsdr0mZ+1aen2N35vGIFvY6j9qdYno+q/FejmfrBbDT9N00tf0+jGe9TL5aabTzjnx4yjjuDznD5/7vi/mtuPx1/YRbZ4uPc6tZdJ7mu6XdF67l6sr9QMs67KkS+M4XmzPTNu51O+dcn2s2QNLziLQ6ruUfJ/Y/p/39PjZY75lDce65znmnKwidr3Mlc1Ry00f831jtkxuLmr7falNi1ytz+TWSMnPTD+H76FubSw08nnFfOwZFz3a1V6cK89x19n9vNROt+bGNTnG3ifnjk76fpB+WP/bgbVnJoE4z1Aany15QktdtXP4mr8ej/lae25Ze2kMaWN670OU5Wqx86eaK31Nx1Vbl/N6znao7wcZhvyZU6vv0TIvuZigND5xPimVTfNvz7mFvK/ovZ6vL9ESq+Xkjb+near42aMulvd5Lc+k+ara9xTv/cI+avYyV9fpjM3ly2hzVsqNH5+Zz2Xqb2hnf2E80n3COSfDMIh/vwa2+tulOX9sSmNZiq9EpjRdo9bT4ndqHOco7xuFOYr30Wk6//Yp15dYnvR3T/2wtOfH3wK12fg4LsntRUffSMS5uv24pF60xveWPMNjcsnY9kO0vzWWjOPRlrxnaz6z5LvnSHNmW+am1TcVyc9L6Wws91njuC7P3zUbFp9FXEo3S/IddWHpv40V0/QYv+1viQ1KMWKtLYtuxfOTk3W2LoawL0wS9pTa/G05V5jXs5T3XL9Ff9r31S25jHTsLec7tTxtfZyXeZrY5221OSXb2Zpz2fKb/rTeS/37gIAWE4iIvHhxJ8MQ/05vXu4373Zqvc45uX/YybffXcnHHz2crqXt/frLO/nDH29m7bb46um81vSoRRePf/3wvkOK1v/570H9olzX1X8boLVRGvMtlHyOx8wDXIJLtKflTI9/4oubm/rJclkLBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/eX796p16z08i//HdoN4PvH7ztHj/xed30neP9z+1B4CfFrwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOXF+N8tmn9+r913eDPPj66wpev30qIk693/eTvHhxt0ZEAPgZwktQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODEl6/eidPfXSK/+X5nqufhoZc//PGqWObVF+9aRAOAnzHDhxYAYCvTNBW/p7jMbhuuac/W2qi12SJLrdw0TdJ13ex7KNMqxzRNRRni+rTPmqxpvda+1ubAOTfrv+V5rU5NJqusGlufz1Gb29qcWOavJHdp3VhlzJXRnvHem+sokcqY6k6pHa29LfNb0t0WmdZwCbvlnFPXeFxvarNa2o+f1T7XKPXNYtdabYNlfVlt09r9RKNpvbz/bzzPa+rJlY3ry62D1n14Dbk6vPfivc/OYarLse6n6yC3L7fIZem/td6tcxVsUDpPOf1vaWscx2qZuM14nC37/jRNM/sZj+tWu9q6J13KT7RQsl2x76SVqV0v1aXZ+5Z2LP5FTg7te+5aOn/xetPat+w5NT86lNHKpeOlzZdmi0rjbdmvtlyvtRMT1m9tHa1ZJxadS+9bYo216yFcs+7vNZ8qfq7v+5m9i21eHB/G17uuk77vRWQ+/ldXV3I4HGS3Oyaanz59Kg8PDyIist/vZb/fv5frQYYhPDfJNInsdiKTdLO6d7udDMMxtXR9fS3X19eL67vd7iRj3/eLmC43Bl3XzfaOWJfi/lp8x3hegtwxvT/WH09T3w/i35cttXMJcutjHEfxflpck2g7vaT/lPbPufm1vu+l98uxq8kgoq//0j5SKldC8x1iGbS1m2s3I83pXmlPSu16bpximWq+ytb9ylrnsby8n3+bnbJQ2+9TO1aT0dqeFssHHT+3f9b5UvyvjXmwaznSOEOLHXM6UFpflnWfi3XOZc591fQv7Xtsk4/1xmWXz5fs/NqcYWBNXis8N+78Yi/Y7XbSS1dci7WYNtf+mjlcE7vk8i61PEVY5/H/UaPve+miscnZgND3rH/axfePdQ/DTgZZ1qlh8R1b9Ge5bt1xT8v4AxqaXbL6nxZZ3XD0b+L7QS9rsl3CZ0/LavFJSY7Uhtb21pYYwBJfttoVLQ9UKqv5+rk6azJvjX9aylhyI6V8Qm18cs+v3cNLeSrnnOrTbanf6nuU+phbO2mZNfF4HPvU5KnV29I3kXzcZCEbbyXXLGckOeI94lIx2ckfmrxI5OukMUhJZu2eNQ6qySai2460jVbbYu1jWqbmr6zJWZXGxNJufK/ryn5dC8dcgT6u8bi1tBnK5p5J+xKjjW0pBn7M3HRr/dZ9UIvtLXZ167oI7aRxY1qnlmMuyWjZC1pz7FY9KLWfl2cpe2scZrExLetG808tPkqcd6g9c35uPs6d62Tqgm720vdL27R2j0ux2juNoJeWc7nAlpx4+jn9bo2jrHuEZntbYu9cvVa/P36+5VwhtJHm+dP2vfenvLrG1ZWXJ0++mV17/tFzuXpY6mAax+fi+tx37doWSnO5pT6rf7XGx7XsN6V1mTu7yWGRv9XvWLsHro1BrO2n+6j1uViOdC61WDK3n2v5+lqb57/t+1Aqj0h5Hi/tt+XmrOQrx3ZJs2uW35DE9eWw/vaiJTeVymOJCaw+WK2P0+TFZXLLNRuXjnFpH7T4kbVz15z+anVtJc1zaljntuZ/bJW9ptetOZj0uiZ/bItq50U5tBz9+frx777vpRucqkuaHxfvXemastgC6747TZPspDv514HdbifTTq9jzbxb+xOXTT9baY8/2vOHWj3hmZLuaXnkWkwafIWxH6Xrjnal6/zpejed9W4cl/3KxZZanjVXpuWMpraPODef967rVNtdjyvm8sUxoyZD2pecr1zLC1nPK7T7ljxLfO/S8UHMcm7dbNtyTtQ8jci29XM+e8jnQvLzd563kn+bvZeRqet76X0+VovlzKHa237pC4c+WWNliywlXbKcU6zV45pspX3YqvtWtqyNNTb+Um231lGzZWvz8rEPf4kcYo3HasOi7+MYfusZypTrqF1PsfRB6781R3OpXM6lno9toGWcrGMU+40hx1rr+/z3Wec8n5u2jJluk3Mx3vlsI6yr5T4Wr7WjaG22OVfGOq+5/Gtpb7DuIza/aHnG6vy5Xk0eq/3dckZ7KR8rl29urdsay//61V1mrCZxIrL3Tr6625l9t6/ePJFPP7lfzHuYl08/uZO+f5CHh3qMWZq/mg+kxUgtTNNcf0tnDq37Tkv+3movUjRfyepTa3Vt8bdSf7vWbo3SWZZ2dqNdW8Oxntw13QdY/P73cY/+f9Rc5hQWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH7yfPzRg9zcHNT7/+l2J77wEtaUN2+f5N4Rd8I5kVdf3LaICAA/U3gJCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIiMiXr94V7//m3a6pvv2+l6//cF1pk5egAIDI8KEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+KWz242z793Oy1XnF2V6mcQ5d/wuo3TX06LMtCvX0U2uSbbQXso0Tdnvcfncs+lztbLOOfUZkWU/H3ynloUynZvk5Qv9hSTvxk5+d9831/v67RP5/LN79f7zZ3t5drOX7xtfsAIAPy94CQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAH5n/6h1/Nvk/9JN/+ybvZtY/+gRc3utPLQvrRy5/86d2szH//69cy9seXgPhukm//5PtsHY9B7iUoPwS+m+S7qJ//828+/kHb/znx4sWtDIMXkfwc/ofvd+q9Em/fPpXpb/1RSqrx5atb+ct/y0tQAH7J8BIU+EkzTVPxrW2ttDpUoXzskFnkKZVZ2590LNbUk75Vr/ZWvtzb+S41H1o94W19mlcJygAAIABJREFUQUarM5yrrzRf6Vha+mUZv1K9a9rQSOuNdbU2VtaxLMmr1dF1XXXMp2mSvu9Pn72fv2FyS+CT1mXhkoFW2n5t/uNrOX1NbVB8LSV93rLGtPsltHWVytp1+bdoxm2numtdI7lxSVmjv1Za5sUiT+5+aZ6173M70L3/c75+/O6k6zp1fh4Di12szWWun6WxqOlhSsv81fTPOpelOko2fav+xva3JpO2Xkv1lupO29niU7SOQ80Gt7RX06twv7QnaW9ALsml+aOWvb/GFt+hJK9Fx7eirRHLmFj3CqtNLvl+1v1bk9M6Zpa3aed0yepDxfof1zsMg6rXrf5RinX8LXW0+A6a3ci1W9OFWnvp53EcZ9/DGI7jePrsvZf9fn/6fDgcRERkv9/Lw8PDqdzt7e3p3jiOcn9/fKP21dUkISE9TXLyGeI/oe7AOI6nNmO5x3GUYTimn4KfEXSl67rZutTmIu5z3Gasc5Y1lVsvx/mYl/N+lGla7l05m9KaD0hlzO29wzBEfZtO5YbpnMZb47d776t73nk8ptlzzrvFHmfpb/pMmL9U9thX0PDer7JH2t5cqmuul6erp/pqPphl7wzj1/d9Nr8UeGxb2PtJum5eLhcTaHawtA8557LjXJLr0oedaUy5XPOTeD+Jq+iWNR9zqjVqL3yP2ZqfyOlIem3Y+cXa2l1dibh6PF6i66R48CiytNWa7fben75vjZtLcxTW3NQt7wV919ZdOlfa3K2xkWmbW2PxnGypHk7TJN0wSNf1768f7+12g3QGP8y+RudroFRnTv41+pD6Ast9zxX9sJY+p/uw1QfYknOr1aWNyRpdzNmulrgjrlfzj7U2LfVb85y550L5NDas9S31VVtjylTmUl2a71kjzb1bfdVSrmpNXFW7Vms/9/ya/Jc1vlvjR2n7eyuluKXv+2z92j506RxKaU/S9nWtrkvYyHAv1nNLGwsfLNNO58r5cOs6iNu6VH69NCdaPBznCVL5Sn3JzWtaTxwntOpBjZqepD6lto5j/7JGbT1Z/T7nXDamXZMjqF3Tno3bKp2xWuQqxXdpHS1zbMmLx6Rz2WITAyU7q5HLE6V1bvFDtpbRKOVYWzjKsNx3W2UrxVRr/N54H5jL2i5PjnIscs4lTNMxbyjjsr6Qv1xzvpGury15IeeWObw1aGPSIs8ana7l4eM8cc1vzenNpbDYlzCGLTbT4tNc5fI9w06mqZutl9KYaPvoJXxKjVi3186JZb8s2Z+YnAyavUp9MquvnOpATt6aTLlnSrl0a/8t7VrraZnPNTlRzR9YU1fMJXI02h6p5VBiG9aCxX5YzkFK+13f9yfdasl/5+ouyVZae7kxK8Ux2vlTKTcd6Pu+GNNMLpeLyJ0Nnc87cwQdOT+2PBMVKdt/a/9L1Oa05L+0rjXtt6Fr81/a2Fwy7t6yL2rlc/KFa6V9QeuXJc81z4cf1+jhsJfuoOtpKeeWrt3cGrNQm+s4BgtFSjGINU+tyWmRP91r1+wZa+Iey282tdxIWpeWi9bktOSWTjJ0Xrw/ni85N53Kez8/k63Jn5KL99Icd+5+ei3XP5HzPux7L9PkZ7H/OB7E75d12mPQ9PcW5flP9fj4fX6/Nl9bffeS/tRoyZdq+7smS7Blafn4T0vOTGszbu/Y5lL28Cf3O5ug87W9M86Hqet7sv2mQNPHeD3MP3cS66b1d+Fbz4VasO6DMRY7bs21bvWz5vNq9/Wt+dmt9dTKrjkfE9H12jpuoyz3Mu+99JJ/vtXvK+5hG+NIjTVzNk3v96Zx+TuRIOclc1qlWKx0FhLLEs+55YwoLtd13SwmvsS5Uutzlt8mpuWscXLpt0inMoUzl/P3ltx8up8en577C8kTiz0nX8djsHXPWN+uyLxXTh1XLTdvjalDe85JduxzbPHpLGfrufasZ2dpuS9f3WbLHa+J/Ob74X2ccL5miWUf9k5+//WVfP7Zfbacc06+fHkn/+b/+1haNHTNWZ72fHrN+7o/XopVHuO3BDbq8YR1rLTxteZVLPGI5iO3yPrYZx7t18tnYDEfym7+WPnh/oUrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwoub4a5fNP8y8pERH59vudfHuwvWgox1dvnpbbvx7l008eVtcPAD99eAkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwC+cVy/ficik3v/t6/JLTGq8fftEvHfFMl++ut3UBgD8tBk+tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/dP7R//5q9n3cefnP3ZvZtS//jxfS77vT96u9l6t/cTcr84//m5fysOtOdfy2d8U6rDh3rmea9BdlrK1zC8exenuRun7JlF5AMk0iX719IvI3vl9d/2Hs5PdfX8uLX92pZb741a38RfdJ9WUpAPDzhJegwE8ei3NzKQeoxjRNM6ct99k5Z3LsrOXi+uNn1vQ5lT/UcSlH1NJ+7rt2vUTcf20s0uva99JclK5rutBST+0ZLWCwfC7VlZLThdYx0eqslen73lRfSRbvfdNzXZcP3jRdKPUlLp/KYdHT3JosXS/J5pxT13WtX6ltaZ3/nIw1HdBkT9vRxrimi63jr93T6rHqhYW079qa1a6XxjK8lXOS6fjfQv05LPauNi7aGtWes+hj67ovYbWd6bqs7cnaPpd7Jt6TAjlblatrjV1esyY00mes+3KujjU+gYU1NkpD20Ny5Sy6X5IltOW9n7Vr0f+WsbSMj6U+694T5LfOQW0frNmoFj2q+URbdTLna5TsX9pmbSxqY6rZ/77vm/s2jmNTeZHl+rmkLbdQSsZb12VM65iluhT7srEd9N6fxmYcx9O9w+Egh8NBRET2+73c3h4Tz7e3t6fPf/jDH+Trr7+Wr7/+WkREvvnmm6wsNzed/A//4E9m1/7ZP/+P8u7dfE4+++wz+eyzz0RE5JNPPpHnz5+/f/5Gbm5uRETk+vpadrudiIgMwyDDMJzmuuu6k78f62j6WRunVj1L69L9/vz1rftQyWeZ9eswLvR/HEeRg60da3xQki8WNehjOt41vyRXLo7v0vG45Jqv1dXiR6WX1+x56XXN78rJtcYnafXlwuVSU9b1U/JxanKk99bY2prf6P0x7okJNqcmV5BH61+uzbVj0ZJH0voc7x/za7Y9TbO/2rrw3mfrSm1H/N05d/putSkxsR9s0atzmfB3KVY+MgzDbP6t+lu6lmNrDqHFhh77KiLiovVvj0FzNsz3U/TMse6+76Xz7T+Q0EjzDymp3izHNPhR6/NRJXlya7HruuzzsaxTZYi25GBLPlWpvloMYpXHYtNz8pX8cu1arZ30uS1rM6cXrXtWaVw1f6B1ztP4bs0cWnyKVPe1emq61GIHLTbPYtesz5ZksehVaR5a7b+2Plry4pb2tFgrlTdud2bbovmOr7foVO5+qVxOL5Z5jn5x309epGEfbcnHXSp3GVPLE8afres+G39m2tPWXnrdak+sPl9r+Zq/bvHrLPWvySnW5Fibb6o91zrWpfrXjFu8D7TksbfElvF9LefWvc+/xDHxMb/mkrbff/d6/rTEJfa+1na0+KqeL+ml69xCLy36WvLHSzmxmJrvN45j0Z6EOku5CZvepLHjEefm45G2Oy+7Ld9Tk7PUP+s+3tJeeH5N7L6WNWdfW3NrLX7nmnVay1uVfB0tL+XcMf7uDfH3lryFhRbfo2U/C/Ma6/YWueOzyFq50FY6/pqulX5rlNb1GFhz8YH4vKmEdn6n2VttT1hzPhDbAq1/eaHd4qyn63rp+3X/mGeYwvye5e77/iTHmjxD6fwrdy3dW0t7bZsfddw7fL9eN7fsCWvPhy3lSmVKe8bx71z8vrzWplNxjt2mM1rsn7uffg/teO/fnyGH9kW+//476R7mufVc/knzvUo5M0s+am08lCtnyTtolMavVDZnB3N5kRZK49Z1XTXv1HXLXGDfD9IV1rZmS3L5z2Go/3OTNflXme3vx79zefzc+JTm+1I5wJb1uhXL+UVMKc9muRd/TvO3xT1G2n7nGaPt35b8aUuuu9TGec3E9XWqPS/lkebxYx7N7w3nqqGOuFjQhVIu2ZJnzbVbK2Oh5fnaeUEs16Xbt+5HUxfONo92KMT+NRnS3Gourov3bu+9dG7pf4/jKONY/8127kxdJO97j51/r2Pn6957cZnlW/JJSznNXPktZ28tz1up1aetsZZzd2vZOIe05d/FWGTJxWmXjENTvU4pxQbe+/SYpljXpbDEK7V4fy0n29DZzvhyMuXkah2vtHzXddHvN5f2J9Wj8DnXbprDC4ScVaDv+017kdV2WM5rS/Wtb3N5LedflfYkTaT9fr5wRnHy4ONrk+z3vUyH8zW3P4i/n1e433eyf78Ij3V0yf1evPISlLXnV+G6FkNaSH3VUjvp59E7uR/jdqbTnpibk9x+Z83nHePvMO9O4hyApY+l/mjtWdH269K6COv9448e5OmTB9Ga+/3X13J3H35/Nrdt8TjniO+9fnsjX7y4V8sOwyQvfnUnr988VcukdYrY4vxJlnFfSWdL69XSbu7fyVhsVC0HlG+rHrNobI25fwy0yhnb67V5gXIubDnPpbzu6Pz7OQReggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwC+bXX74r3t/vO/n1y1vZPXuYXX/x8la6Q/l/3uqiF0L0ff1FD6++uK2+BAUAfp7wEhQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAXyidm+Tli7timVcvb+WLL9/Jd5/ficj5RSbP/6yTzusvQBGR4gtScvzq8zvZ7UbZ7/um5wDgp0/3oQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA/DFy/uZBj8hxbjhHMir74ov5QFAH6e8BIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF8oX75696FFWPDq5Y9PppSumz60CAA/O4YPLQDAFvq+FxER79e9WWyabBvLNE3inDOVjcuFz+nzWl3p9fj5nMzTNKn3Su3U2svVlRur0vjF95xzprEuyWNp03K/VNbS5/S6VqY0x+EZ51x2jkt1p9dyut8yBtpzVl0K1+N+dd3y/Vpxn+NrWv81WaxrPZbBOXeyFbEMVv2NGccx205tzEObsRzp/Zq+pX232iTNZlj0JJ6j3PrUZMjNX2qvrDJYsNjXtW2V7FDNRtfkbBm/UrtpPTkZYv2ZpknceBDvvXjvz3PkvXjnZBxHceNSvtZ98BLzUqurNBct7dTk1MY4rN2avdZsqra+SqT1WvaR1A9J9+gcmr22Pp+TNfc5rseyfjRdqPkMlnVq1ZPaXpTe36p/1rbC5zBf2jhbsdq2Fkq2T2u7Vp+lfM430dpr8YFye1zJV9fqq62vnK5bbH8LqV3LUYoVLoW2fkp6k85vrBdW37FmF3L2tjaXWr2arqSke3fcRt/3J79yGIZT2d1uJ4fDQURErq+v5enTpyIi8vDwIA8PDyIi8vnnn8vt7a28e3dMBN/f38vt7a2IiLx79072+/2xrmGU58+fn9rtul7+iz9xchgH2e12cnV1JSIiz549O32+uro6tTkMx3JBriBvsAMt+qTF42vsZopVR9a0r81xqkthbGbj0It03XIv1uKJnGxr1qn3Xpxzs7aDjL23tR3a1yjpe2veoGbf0/q7rjt99t7Pnvfez8Y3lDvqayx/WaYW+eNrW2Olkv3J7SNx37txmn0P+rbWb0jj5lr59HpsZ+N4xUIphjn1sV+W6zonXddV104tBuu6brF3xHmDXHyftrkmvtTqqvUj/a7lX1KfZnw4yOGwD62KiMjd3Z3sr85HDX3fz/StpFNb1nX6OVdP7D+d25rbWC33Yqk/baf0Ofc9phZblmTSyOUfp/dzEsvTd724Qt4qV18iqcwvT6exXbNn59ab1TaF+el9+Hx+5vr6Wtyuz66D1jOGVlsZU9NhSyxxCV/IUl/N/8j58CU/WmtLa99qFyzPlubYuv7CdcvebY0v0zKa7xiv21J7rTZCw5Lzaq2z9HxLPL7FP1+zV5aw5EDT9q15tlqfrG1b71tjWE3HSrqn7Z3WfW5NfiBX3nX9bL9yrpOhH8T1ej4vlSf2d+PPVr1c25f0GU1PU3lLdjQXH5SI69Zs7Ba73SJDHN/FdF1XlSGO92qkcWOg1VdfOy6tuVTr+myVZ20usKYX1rlaK0vtDGaY3EKGYRhkGJw4t8w5bvH/cuT2vlwsc0n6vp/ZoVSGUZbrw7lu5hNqOrf2bCSmdtYTf4/Lpm2neZ9aG3G9sV503STOTeK6o044J9L3g/TDvO44H3AJLHW1rONLrSVLva11p/XPclYZW5+b/1QnH+v8QkPzm0W2n8OmbRx12y98kIf9gzw85M9K4u/W3IWGpT+Bko6GPHSg5quX8o2xLVtrN2vPL3OJ+b6lupjmXHOf4/pLubmSTK17hyVmLJ29icxzBdoeERPP4Ro/ZM3vQn3vZZr0nIVIfU9IZUjnsbT+NeLYXfNpczKUsOyfy3uTnHNmbuGH5OovxSBaPyz6aV1jsQy1WFKro5b/nf8OcErW5RjFEudr3dRuTzVaY+T0ezlfNUn4etTpSST53dg4jrPvWhwR68swDJHv1MkwDNlYs6RjGqU5XZN/0uorxfO1nOk0Lc/YLNTKlfyD0vyn1R7vlX/DYLGLIvNYeou/le5x4zgu7PXRrszPmFrRzvJy91LSsrkcbamuWu7YknN9zPgip0/pnrZm741tR+24OLYngZp/mpO79kzqMznnRLp8zK9Rz9+W/W7N14zHYH5v/psgTRYN6zmE5RlLrJIrVyO2nXlfV2Q+rsdxdoa8X66tVqZpaT/TaoKdqvmHi7xLt4xZj3WVdbi0b2nPaVPSEtfFbMlZb2Wtj/UYubW1xHbV8psakfXyr/13dZfiQ7cfkzvHsOSq1/QhPB+3keZOtTViOcdJKZ3hl/K/LWzNP+bqquVg4j2lxT9qzXVYx+ZSdq20NwSCjoTbzuXzjnnZl2cXOT86vnb2Yy4Tw8TypcT58zV6aRk/TY5lTjT8Fnbpj1raXRPzafkj6/n+JfRwzTnlk2svn3/2YPQv5b3rFPvfTty09Ftac+lp+Y8/2suzm4O8u91V5Qr11vwfJ0sffkvO+Xi2pD+3Jo4sPRtfT8fY4hOW/PzW9mv1tMYNH5IwlpbfHwTsNkoiez8fkzjnNHU/Lp/2Q/K4v0IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB8lX756p75A40Pz6uXthxahyCP/P0MAfpGwrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+gfyYXzTy6otbEZk+tBgqV1fjhxYB4GfH8KEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAflo8/epBnNwf1/nff7+Sf/p9fnL6POy//yb0WEXe69if/+Avp9/3sOeecTFP+5SXOnZ99/uxB/tu/90Zt/8mTg3zy8YP88ZvrWlc+CNdX/kOLAPCzg5egwE+asMn1/XFjTDdD78sbR7xJ1srFdaeftU24tS1rXWvrr7XXMh4t5adpmpXN9dHab63N8HytnRbWylkbn9z19Jo2Zmm51rmI69Kuhc+azueeK42Lc07ts3U8Q7mu64rlcrJM01S1BV3XzWSMxzVuP9iaUG+u/5a2LOUuRa5fObauF63N0pxpcpR0UFvrtTUQ5KjpsoVaW5ouatct9VvXS4l4DK17klW+2vNrZX+M/SJXh6ZzFjtca8vSfo4146zVEdthbf7D2rOMeWlcWteYtZ85m7l1Xayxw2vmbo2PVrKdFv/W4t9dQs4S2rpqsQ0t6z3WRW2NW/sc63NpLHN+WLzGNDlKn2O897P+tOp7yV5pfUnlz/mo6fMWP8hiq1rv1dpsoRZDaHYzd601ptLq77quqCeh36mvHfuah8MxCT0Mg1xdXYmIyH6/l5ubG/nkk09EROT+/v5U7nA4yDge30Dd93t58eKcxHbOyd/8W1/Ift9L3/endoZhkGEYTp+Dv7zb7U6fnXOzMrGcsb3TxqQ0Vs65rM207hGx/pTKW30Si80txXDhmndewoGAc+cx7KZ5XzU7E+YxvW4Zl2P8NC8zjqPIuOyLRtd1s7GtxQQhHmu111bi9jVZ0jUXyo0yijZkj5ELsuaxar5qza6N43jWNz/KNIV21+Um4lg5JbfOWvIlrdR8/eN4i5z/bwCuyRdOr2nt5eZSq0urbxzHZv98dl38cv8YRxnHKbsWvPeqTY3n+Eo66fvh/b3jtevra+muBlUWbe2l46SNm8Wn9H7Z37gPIiL+ysvhsJfYxj48PEi/79T8VY5gZ7f6+pacTc4nyOXCLT7R3EY4iZvsh0H6Rn9zaTeX9lvbq1NS+Wu5JcvYn/N6+Xupr6+tixxr8xUtMUkurrhkPsGKti4tslsoxTsl/yBmTQy9Ns7SZLFcu+TcWNqz2t5ALv/a4vOuKVfzwa152C3y5OJ+awxbygFobYjY41jLPqHJpd3TqO2hNbtsrc/CWru/jqNfkdYet1fydVe12BirpsTjk4u70vFLdVSzHxZd1sZimvL+ZQ6Ln6zpW7pft/i0cb1xvqJEKteldKEUm7fsHTUfodRGyfdfg9ZW7kx0i33YQq7dXAzhvRfv3XsbH65ut0FhbLU1mivf6geK2GNR9fneL/JC3o9yOKw727RS+w1ArQ9pv6dpWuTHSnLF7Z/zBiLT9P6Pn2RyXqZJZBwPMh3mcZp1rV6CrXGoRm4Mre1t8cfTz9q8lZ63XA+0+EWWvTGUs/ia2vU4z9GSJ4yfP9ouU3ERKdui1lx2kCFF06lLYM1Ntvrdrb9tKZHmyGMuMRatOaEY615kbV+rK5dvr8llWXf2ee2a/b1Se0u/4bjX+L7drsR1t+hdKUZsiUl7fxyf1BZZfu+25Vx2HMesf2j1S616H/sBmg7EY5/+ZvD8XHoG2y9k7bq+cQ2d7WprfsmaJ8udWYw7L8MwzO49e3Yj3W693bPqrtYnyx5Zi+1a283tF+l5gzUe35qnKO2xqXy1eixnv5a2amUteSrLmWL6fZjOsX7oSvx7hLgui5w5tOe1Okpr1LoWSxzzG9NiTIdhED/0xfWxJj6K99d0jnL6n55DldZFrMuxTxWvt9bcueWMoRbXxcTyH/duL+ez8VBmFPHlnFNuDZz3kEmCje+6bvZb5drvlpf3jvvYmOnOY505aHlui77FdbTc19Zh2IPjVIxzItaurvG14zzA+yuLOE2rO7UJmj8cPte2z9w6FSmf47diOXvRnqu121qvluuutb+2vcdgHs8v7+Vy3x9a7poft8bnf4w6a+2syceV/EuLH1rqR3zP+tuNeM/QaM0Ll3woO86kq61xv0hezlnLUbvp/lDaS7R/T2rNv2tlSlj2vpY5SO3IMTddqmM5Hqlvlzv/mCaXLZ+7tjXvXzu7ukTeJsYibzquLb+1ql0/rmv/Xo/P8U1praf7vuaTxWUsrM0hBX796l3x/levnyZtiFjO0qzz/+13O3n3rpenT/UXsbx6eXuxl6CkPvyaMQs45+Tpk/I5x5b6a2OYyn/yr5P2NR2prdvc59SmpnFiiy3Zaje2khsby36dY6FLw5D4MsfYu0/s9Wxcux+Hz/tj4HKnNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwo6dzk7z84q5QwsnrNzePLsfrt0+L91++uBXnPsz/eKGEk0mePdt/aDEAfnbwEhQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAXxAvXtzJMHj1/td/vJL7h/7R5XhTeQnKMHj51eell7XYueTLVG5uDtJ1P76XswD81OElKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/IH796l3x/ldf3fwgcnz3/U7e3e6KZV69vDXV5b0r3r/kS0su9WIWAJgzfGgBALYwTfONxnv9bWNbcc4tPk/TJM65kxyxPKls4XtcT1rOObe4/5gE+Uv3a9dyZVK0NnLXS2NoqSsdz1JdFtnXkNOHVmK90uovPduqRzn9rrVZm6vS9RZ5Yj2N61uz3rtu/u4vbZziObS0E9ebtmHBMpYiy3nS7MoaHsv2hPEojaPW/5Y+bl3PNV1Y01aL7Yvr1tZjzabl7uU+B72epun9n+N9P00yTV7GcRQ3usVchPbD5/S7pW8WWnSxtifV7HGqX9oekj7Tsk7Tz7l64/a32FarXuTw3qv2q7ZHxNdbbUlpDmsyl/yYkr8VPsf9rdn6NbZ9i18aP1vqZ64PNbsbr4tWP866xlt1cY29TNm6/2rXSzJoY1ya+9xa0fQ1tU2xvU1lz13PfdZskLbHpHY01bO0/b7X3+5s0bd07NL2t+isRZ+0+tesg5p8ljnL+b7n/Xvpr47jeLo+jqMcDofTs+HzOI5yf38v+/1eREQOh4M8PDycPoe6+v4gh0PcVye3t3sZx0GGYZDd7phc7rpuJltufIZhWPjL4btzbvY5N1bhGY3WOV+sqcNyzQaf6BKkcrTaq3j9uUwyPqdL8bzk6tJkC9fSy2GsWmSvlS35RCnaOkn3y1Ys++tRX5fxackmr5FD86W0ePgS5Os7xgepnYllLVHzfywxjWbzazmsGud6RUTius99LrXXOv7pOkzHNGfHS/Fnmiey5IZy5UrPpbpf9ifj8XSLfatkw+N7se9QyoVplPJEubrG3TLuSfelS7DVN7XqnjaWpbpD2di2iczHYQ1eDmmrJ/2O56Y0xmnO/VS3ootaTBf00e1HORzm+/nd3Z08jH1RlpJP0nrNSkn/S/tAa5stcXCJS+bpsAvnAAAgAElEQVQRc3tgrq+aTc3V1+IflvIH6XWL/paoxeO19d467pY5rvketTbX6EJLjrBFljXtptcs8bwmS+6aFs9b7K3V/lvur8klpuW2+qS1PJXFN8+xxV/T6imR+mNaTKLFgZqNSvVK63cph9Aaw6Zjt2WNrfUhWp/bGqenOrK2vhZdy81rSe81/93aZuwTlp5JfTTtmS35tEuyVj9z6zIfmwV/JG5TZtfD+k1jGK29Fhsbk7O3lvytiG5rrTkd7/0pL5SK3+qram22xH0t/mqLHmZjxcgeHHOscZxezxlfch2EMVrrB4V43rKHxnIH3Y5zkXF9JcK58xYeczw1an5Irg7rWoqfvUQsJ3KW92rnZRjmP/e8vroW52y/hbHet/phtf2mVteaHO+l9nSR+ThY8g9WLLHFlvpb21xTLsYqY+v6TX3j8HzXdWoMF2SpzfvR30l9Ky9p9zV/ISdj/N05J8MwiM/k5NL9uZS3q2E5N8m1WSLY7TS3mOuLVV8tcae2p1j3kZosFv86bj+2UT+ET/teopNcWu5/8UQmJoj1vzYOZ19yfv7nXD0ffIl4wHKW0ZLLK9Vbu6btyfFclPz9GpfIX6VY7O/JdnWxzMucVFq+VFcLmk+lnX0uv3tJY7JSLtQSd5X0SqtLi+9SP1Wzt612LBdrhPq1OLE0PyVbar2e5i3S6+Ge693pjMm55dm5JZedrpd0XtecweT2mPTsq+s6mVxOD9vOyOa2OchuH/81+YNc2UvEGqn/Y13L6fqp9bMU8y2fnRbDaR2m1r0jfSbkg2Ld6bppodd936/y8Xa7pW+4u7oScW0xQWmNWHTKGg9f6nnL+qqdYbbIeinfrrbGlrZvWTbnw8b9u1Q8WCIdz8f493aXrDPn39binZYztdyYt+TfLbYtq6/R/hmX2+I/pvFWK3MbX9+7S1j/vZXltzm1OL10b815X2uZ3N7Ydd17XZXZtZYzYasdWT5/rmfpY4Tv+TpK7Vl8yK35xVod1r2tHncu69V81y17yNKPP/+t9WU+//UYpuWMRaM05tdXo3z+2YN633snb3735PT97BeLLOOb9nPOVM7Xb57IX/+re/X+i8/vZbebZBzLv5nzU1fUp6urQ9NeEnzGeI2FeX754q7oO+fQztPS5y95jpKeQ5Uo6WOtjVLsZ8WS88tdX5vjyK1TS+4u16Zul89rpBiDd0l8fNm000+Kx/eaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBHwauX70R7uZ+IyNvfPZFx/OFeRfD6zZPi/a6b5OWL22o94zh/SVHKs2fp//hrHZ98fC/Pn+svkQGA9fASFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBfCF++Kr9Q5Ks3Nz+QJEe+f7eT798NxTLHF7fUcHJ3p9fz6ccP0rnCW1KM/Olf+3ZzHQCQh5egAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwC+PijB7l5ulfv7/e9/P731z+gREdev3lavP/xRw/y5PpQrefdrf4SlL738vKL8gtgavyVV+/k00/uN9UBADq8BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgF8CXr94V779++0QmcT+QNPN2Szgn8uplWXYRkW++vSre/5t/+o3sdmOTbIEvrg/yt//0m1XPAoAN/TVGAD9Buu78Xh/vvfm5aZqK952bb9ShfHrdObe4VmtP+2yRay1BxljWmtxan2vla3Vp9ZbGKFd3rp7c57jNFixyas/Ez1naDjJa5yT3PdX/x9KlGmm/145/Wp+ISN/36r1AbU2V1nKunWmasrZFszexTcrdC89Z9SpdC5qOxO1a1uw4rnPWLfPaWncsb66PLWsprW/NOOfGr3VtltpqrdvSntZWbAf7fpC+76Tvw9511HXX93J1dSVDp7uI6bqJ7bJlTNfcK+2vms5Y7a31+xobU6o7fkYbP03/NB1boz+Bvu832efQj1YZ1o5ZYK39aiW287U1XhqDFj+iVl9pj9H2pdSPytVdqjfUkfscU9oX4jVaW6/p2iit0TX2x4J1bnNy1eZ7i83U6lrr58Y6U4qjWnwMzW9qIR3L1rhNw7p+LHao1L5FHuv+EMoFu5dbS6l/Gfo5juOsTPx83/ezz4fD8Y3YV1e99P3Zxjrn5Pq6k/2+l2EYTj7ybrc71dn3fXZsc7Y6yBn72vF+n46LVZdy7Wu2IjeP5/a7RbwR7qd2oRaLauRi2/latq3n8ExtryrJFY/b1C33867rqvtDqf4ca9dzrPupTDk9WeOHxjo7dqNJ1kvtN1rOI9yz+MQl6nuvTc6US/lk1nHU9ufSXhuvlbTcOI4iY9sc1uxSujfH7Y7jOLse6hrH8fTZez/7Pk3TyUbHz2h2zTkn11eTfPvt/vRdROS3v32Qh3032w/C567rTuViW++ck2EYzuUOPtpvOnFuyupuqCuU3WpHavphqV96J87Ny/V9L70/Xtvqu+Ry02vz1RZa4ynTGK0k1p/3Ekjf9zLs5nv9JYn7PwzD7LpzTq7cuNjPr6+vxb2XqeSvWvdSy5ha5r01Noz9vhxr5rq1L2vieStr8nGXaCNcb4m7cntrTX4tz1XLN+Q+W9qykvqVlvg/10Zub46fL+XStbGxxGYl/15jTe65VcZUvpK/Z6U1JrXoe1pvac603EBJr3Px1aVpjeHfP1Ucp1JuJ/XPc7FZIL42i7+M66xG3/er/IySLUmp7RNWexN0obW/LT6lheM5SV4vLbbAEp9dYq23xrlpOWuuujUHurVvFpliSjnJdWv/yE466fv5edhut5PD4NS1GsdzNWprLPXv0ra2zn/8OcSTNbszuUnGcd7uOI7ST+f40OprxHnMmo616FRu3FK2xF7H+uexjYYWA1raj8tdOlbbGoemucDWc4EfM7n8f6qfrbYotafpXpfzr3PfUzRfI+dPHnNF5X7lZM0R53O0XHgr6blGzCXi6tq5gNa2iO2szhoLp+2t6ZslT6HZwfS3TbU6c3VoOrLljKaEJR6J5Yrl2+12xbrHwUvfp3nAQfphueem7eb2rt6LdF177nKNH70mB5LqRal/Xbe0RyEfXSK1S2nfLH2Jc3g52dLPFkrjlY5Fek6qc5m4PehS2qXYlrf47YH1MXY9P9Wqf9by2p6i5UkueeZYqnOalueNWr2tdtFqE615m9pedvy7PpZr9nRLDFxrs1RvuB2LZR2XuK74c6teWMa6NpYtbS7jjrkfXutjoObfpnJrY1Pak3NrIVyaJrusa+O+3OdcbJqLwb33ylpczmVctz1PEsq15WVjen88bz0/e9wv/TC39bl5sOS/LXGH9Z5lDi1limcKzh/lnq0Rd5qjWp9azjLi6zmZwp8u8xuavu9Pv7cqxRS59VhqyypzCeecTN3y2drvftbs6VrcmhLyUjVa9pqWeqxnKtb7a2Lj8Ezqc+d88DXzniP+HUiOS/ozLbTqZzrerTJp/Vwb59b2qJRL58qsudnWOtOqSjmyHPHvi9J6tDZzrPXtW3POa+/l2jvuW6Mc96tzma7Tz6GydQ7jQt+GoT/l5ktlp+lc9nQ2m/gYR5kifzOzFvu+k97n5/JSxHuH9RxO22tMetBNUsrxx3XGeq/FsLX92jn/vr228/wWLjk3J33pRF59cVes+/Xb5wsdPcWjXeoTHP3a2hxq8sTl373byXffD/L82SFbVkTk5Yvv5d/+u+dqvSIiv/v9lfz1v6q3vduN8l/9na/lX/7fn8thtO81f/XZg/zdz+7E/eaZyFSPL3N6Zo0rNf0pxV/ez3MF03S8tsZvX0MpPrfuBS17aemswHIWoN1PdbOUI1Xr6TqZ5+Zyv7cEjcf71SsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/Ch48eJWhkF/OdTt7SDffnv1A0o0583bp8X7T58e5KPnD8Uy3363k3fvyi9V/uzTe/n7f++NfPbpnZRfkDvJr64P8j9+8b38vc/vJH1v8uHQife82ALgkuRfrQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxu+fPmueP+rNzc/kCRa+0/lT//at8Uyr17eyrfflV7U4uQ3/+mZ/J2/9YdiPU+fHOTv/te/k/v7Xn7/9RO5f+jk4aEX5yYZhkmePdvLx5/dyf3L79U6/uIvP5E/+xt/lK4rvUgFAFrgJSgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP2Our0b57NP7YpkP/RKU29tBvv1uJx8936tlXn1xK3/5bz6WSZxa5re/vZG/8uU7+ej5Q7XN6+tRfv1l/kUnUz+JNmJfvb6R129u5M/+xh+rbQCAHV6CAj9pvPcXqcc5fZN7jOe18qV6pmnbG8Byz8fXrPWn5YLMtee19i3txuPinDt9j6+n9Wh9S3WmNi6XQJPNqgdp/7Vylva1Ma/pQouOO+cWdXRdV6w/vl6ay5Icmj1Ir8ey1MYzlck5J33fL8ppcpV0aZqmmSyxvNbxzj1fk6XVbpbmo3TNKletjtbr8b1Ud0q6lFuXpfKaLSrV0SJ7Sa6UtL2cXV7W62f2YJpEZJLwnyK1uczdj8erxBp9i/vcai81u5Pez9m1koylNkukc1nrf9rHeCxKslna16jtFxad3dJ+Wi5nBzWZrNcvRc1HarH32vOW65YxatkbrL5IbX3FpDKGZ7TroW3r/pNbF+nzW/RBs705WbTv8XMlv6nWTmo70nnQ/OLQZu6aRsvc/ljitkCpn5deMyJl3W311buuk3EcZ/etMZmIyOFwkHEcT3U8PDzI/f0xHbvf7+Xu7k5ERPpuL7e3R7839Perr27l/t7JMAwyDMd00vX1tVxfX2c/73Y7ERHZ7XYn2YZhUNel1m/N7nRd17Tfl8oc63NSG8Ja3FnTjZp+hee99+L9vK1xHEWiqa/Nt9ZXLR6aX8v7vi02Lnc9nYuS7q6xy9bxrbURy9z3/aJvXddJ13UXs21pm5eydaX6tPkMRWv2qMVvq+UYLP58iWa97EWcm+tK3/fS+25RnzYO8dyX9t7YLmh7etAnETnZzRqajOnnqysvNzfnAzXnnPzqxSfy8NDN2o/v5+Yg5EHC9+veL3IjqU1Ox8U5N9u/avObs/FaDB5jyW+lj8d153I+a4nryo13CW2/Se1Oq72I95k1+8ga21zylbf44CV9mOuOqPu7c86Um7POm0b8/KX2jlrcZ9GNUr80OUt7g9XnSrnEvteSA7TIoOmXVm+aj1lLzufIzUVq67a0XcstWSit7dxY1vRV8x9bY/iSf1rzT9bkqGIsY1Jiq3+c+mylMY5tdGtutSSjtZ9b/OB4LrV5rY/btPDbtmKLuexofUz3sZxdv1SsFdMyZzkfuBZTpM+k/nSaE2khZ2dLMljPFdL4QFtXVp+iZvsDOflK+mf1o7XrrXuqVddadXKNDmhtdOMo0xTPX8iduWQenBoflrDqkMjZR9dsdK4vsV+fs2MWXUrb850X70eJc0P7/V6mQz5PF+81aUyptdm6j5ee1/KkKS05o2P9oY3j50kmmSYn8b6Ra79FprhN6x6k9aP2vGZDtLnQ4vdcbrrURq6OuK7c/ZIPXmvHQmv+ML1nsYvamYMW05dylNb+ltZgjCUXEO+Dln1sTfxoySXHlM6apmk66WVpry/Zv9q4rI3rc2Vz+hHrgnWcYz/EkrONxzCNNdf4wWl9KdY5tubASmtPa/9or/XcUE6WdF9Ly+fabs0nluxaLs8bo81Va44nzX2F2KKm61ouLZW/JGtOZqufvibuq/k+lmfi8vNHluOWqyt+ThO1xd63lmux/S2yWNreklso+d8lnzRXV/jc+ruYkm6m5yYaOd8//t6SI9gyN5Y5LtnuLfnHWix13sva29B0bKser1kTpXHS8kPasJbaT79r+5Bmk62xVlF3u+jcyy190c6VbWNOltz32vW0jDUnN3WyGHvruOiyzMdO809t7c3XTcs+13o/lLHEXZq9XXP22RY/Tqc/QdZaXVpuopz/Wo5B2DvGJH8kcoybx6Trlj1BG+/c9VIutZbnC77wuXybrCVKz25Zx4/JpdtfU1+w11tzQDG1ui5x5hHqaIn7RPR1fvw93PK3Ct57cV5/9pJzGPep1L/cMyktz42d9lvAZX9b/q2TiN2/s/k19bPFUvstfphm4yx1WPR7rd60Pne2udvO5FLbfb6Wyw/k9pM1fvAx553zxVvjBnOLxjix5F+XYv30+tQtf//Q9530/nK/D8vLZYtbtec1f7ElZ2zBOSdfvrpVYxMRkT9+c/X+t+Rlf8oq1hpfQkTkzdunxZeg7HajfP75vfzu909OMi3kFJF/9a8/kb//d38nw5C3IxYdnzKvWnFO5O3vbuRf/7+fLWKkOP+rreuSjmj5MItfvfQDw5/2nE1J/9b4gbW6rLmTOK9batuS9+j7Zbm+78W/txmtuck15SDPtl9vAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCPmi9fvive/+r10x9IkjJv3tblePVFuS8iIu/e7eT/+pefyeFw2Vcq/OfXN/Kv/vwzOb5QHwAuDS9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiZ8vFH93Jzc1Dve+9MLx/5Ibi9G+S7766KZV786k763lfr+uM31/LP/8WLan0W7sZO/snbG/nzv/xUJuEFKACPBS9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiZ8uXL2+L93399LftD/wNJU+f12yfF+103yRcv7kx1vbsd5J/9ixfy5//PZ/L997tmWd6NnfzLPz6R/+W3z+W3d+3PA0Abw4cWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeh7/4y0/lL/7y0w8thpl//x8+kn//Hz66YI1OfvvVjfz2qxt5/mwvn316L598vJenTw5ydTVK30/SdZMcDp3s953c3ffyx2+u5PfvBvlX7g8yiVNr/t/+ya8X16ZpuqDsAL8seAkK/OLouu702bnlhpO7pm006XXvfbM8cXtpfa0bnHNOfSbXr9z98HytfO35mGma1HEt9V+7Hn9f4wTknonlcM4t5M31zypH61imdVra0cbdKkPa/7SeWv1afSW90K5rY19DKxev+ZIc4Z73/vRM/DmU22IjQp2XIldXaV7WrBfLfKzV8YA2rrm6W2xUznbEOpnTe63eXF25NZr7rlFbH2vqzNWv3I3+2OrSxn7r/JfqsuwRpXuaHYznu2b/SnWW9jHNdpbkTbGuC+36mrmJ9Vpb71vqTduIr6XjUpqbWhsWSvN9CVtt2YfjPSZmS/vxHmatqzY/Oaz6pq2R1G+NbUzrWqz5cS111a7X9o6S7KXP2r3UF9Fk0e7HMqbrOlev1lZOttr1S/o8uXZadVTjMeQU0f2DFr8hZ5fSerz3s3vjOIqIyDiOcjgcTmXu7+9FRORwOMjd3Z3c3R3fdv3dd9+dPn/zzTey3+9FRMS5e/nmm5DcPurOmze/k3HcyTAMcnNzc2onJoz7MAwyDMOp/b4/vw089clyz2t+W1x+HEeTfY3nuKTj6VS0+r3OuVk/rcR9CvK5wUnfdzO5hmGQflrW37r+cvfivWPsRpmmeZlxHEXGxWMqXddl56+2V9TWtdavSx8OpHrm/bz+cRzF+XlftLmPZb6Eb2iJhyz7qKWtXD21fcIij/V+zV5aY8PlcyIienxnka3v+6rvGOxzGLNxHGe2O7bn8fWS/Fo8e7Idzs0+X+3Ouhnm9Mn1k9ka1fpZuubcMlboum6mH5odTkll0fDez/qv6bXWVpDn+Oz8Xm0OSnrfGrOltNqFNWswK0/fi3Pdosza9ZpjmqajDyDdyV+oyd9i53OypHn/3HzH97WYJPVbSu1adDGN0eLrrfGaJsdj+bS1drVrl8K6h6X527Vrpdb+lrzrmv3YOq9a3dp5US3/svZsKK3fcn6QK1eLnaxjaSlXksOS9yjlz0p5oVb7H89L6dn0Xhyv5daFxQ9r2dNy41k6T0n921peMpUpLbfFHqVjl66/mi3W7E5pDVrWeO58K6cLa2Oimgxpv7Txbj3fyX1P8x5bsNq+0OZWn057prZfb+1rbp2lMWgpb2LZ10trOPe9tn5zpDaz5tPnfuvRMpZx/cv+xjb38Xyckq+inVFrbPUXFvbvyssw3M/86KurK+mkW5Sv2fgaubgyvnfpfE9JhjgGGIZY3yYRmaRznUzdUS+6rj/l7XJ11ajFENY4IW6v7/vmM5qSLKX8rZYDu9Q+XIr503Ysbbb68Om6K82F5h9szWGu8YeD7bpkfJbzLVvqL63jWMes+fv4vmW/SttLv2t7j/abwvBZkyHXTu56aVxK9yx7gmV+whqunWW0xOM1H7HFnufsclpv6/6QzrXz588lPz7ny87tVTiLK7ef/gYtUIvRcucqNT2o5csCwxTsxVw34+fDGZ+F3JysOS+ztHNJ/6AeX6d28JDEEO/PZceyDxznKON40Pv8M+WzzLrfnNbhvRffe4nP/o76e5Dp0KZTFh0s+REaJbtY+1yTp/S9pa6Ylni8VraWj2q5voxj8r67NTbQ8i+tpPYlbSfsJfFl63pfm3+s0XoWEv625NpC38IZ9PneJA8PD/KQ+T1ASa7cuqzlH3J7jKWtU7zXO+m69/czVaRnhlZaz6is9jJ3L719LJ8fl/o4zffU0jM5n/54buxPMjl39DHGTPfSubP4wTmb3OpPl6jFr7X1l/e5RI5jOve9ZNJ/sz1/3rZfnsqMfrbHH9foeZ88rtd5zu3+/l4efH/8jU3yO61Q9nA4nO4Fua6vJvnmm/2prq7r5O1bkYcHd/xNUN+f/LC+72fxRxqT5MZvPt9nvZ6mswy1mOTnjjXvcmnivE/MljFfG9e1+kRr9tFiXum0j5ztZ9/30vtt57sWOdN+WvNcLWdAWv1Tl6/X+nvdrXpbaif+DVOYk3EcZe2UXOL371uI9a/1zHNtXjrnX3g/SddQV9j/4ke8n8QpvyXL+TNl//h8BhK+v79jljG0k/v8GGw9vwtjssxz+uxvYUs+kjXPPPfx53LU6tHq3BLbpM9rbVhlMZSOnivHvLVzZI21OYFamXe31/Lu9lr+43+el8nJNe5GmeQcx5aaWpPP0Nq1tFEpeSp/ydxKyf78kGd9lrZr15wbF/vYOI6S/FOJ4ryWbFd6yzm32PvS9X985ufvp9e4zC8BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbCS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgg8JLUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCDMnxoAQC2MAxzFZ6mKVvOet17fxnBVpCT0TnX9JzWz7SuUM45d7oeX6u1l6srV067F57vOv09TKW+WMqVxiXXR0u/c89Yxq11HgO58UnL5dpPr6VjkWvLqjvp9fieVq40F7Vxbalbu1+SP/6c00ttDANrbIZFtzWZu67LyhRTkklbu/Fni77W2gz11eZR0x/LerKs/bS/qW5Z7ad2X7Ml1r7U6k/v1/peqjOV46hLcvpzLKTXpc1xWndr3zVdKWG1d+n18Dkno+X5XPupndbmqWT7Wvqek0G7Z6k3ZyPX2ttcmdz8tvQ3nt/ac2Ht1XyUkiwWm57bIzQsdrrU5tr9Ys3etMZulbD6G7V2w9y3yDRNkzoGVp9GkzeVZYvfXKonLtf3fbGNFkry1tZbbS5yNrbve9VOp2vRqre5cUv1zbK3WPxDK1afSttzLPMicrY/0zTJOI6L6yIi4zhm5yKuZxzH059cffv9XkREvL+T+/u72fNff/21vHs3n6vdbifPnj0TEZFPP/1UPv74YxERubm5kU8++URERJ48eSJPnz4VEZGrqysZhmEWy8d9CLpgWWulsdN0Ku5r0OvejzJN8/Lej3I4LGXI7QPh75K/VKIWt4W/x3EUGdvrLe1daV1934v0Is51Ehfd7XbSS68+a/Wl18ZSoQ9aDsHiK7QQy3bcI5btxaTrSGOrjJYxXzMWSzsqcjiMEpZAbq21+EQWSj7+lnZS/zw/Nk66zhVzVKlslvgs9S/6vj/pSdd1Jz2L98FxHGefY93SPoeyqYzOObm56eTbbw+n733fy+s3XsbxbIf7vj/5G13XzdZbbEfi/njvk34v9c57f6or9gmCLBoWm6+Nf8muhHtBdi0nZPG9LDFwyQ/cagusvkMgNy5j1y32vuM+k7dlFr/Kd34xz13XiYxLm9E6Brl1XNtbnHPSHY5rKh6ycRxl/IH/1wC5OYjXh/RHOxTT9730fp2g1nWxNR+4RZet7Wlrcmu+bW0snvO1c8/H+llb/5o9Wktp/7TGIJYcTKmMdq/Vj83lMz8ktX7VdMfqM+e+r80fhjW0JX9bks2a5yjtkbX8a02e1hxAbp25rpvZm2maZvpWmostY6vpdG3uLWtUk8Oyrqz65r2/eD41LWNdV+ka0/KMrWh1hj6VfMFSXWux6lvNp95qw0trOn3G0qZGKQegyVYip6/2velsP1r2o7jN3HMlvUzLW/MoW+N1v5sWPtjV1bX0rm6zWrHGTVrOrda/2lrN1ZnDOZHjGerZR6nFtdZ1mcv/hs+tvkepD632OmaN71CSa4vOXOL3XLU1nPYx9RG2yKP5hFpe2Hs/ywWFP957ORwOszpu727l4aFb6F/sD8b30nI1fbt0/i/FYiNLPlLuzCSdH+16yiV/N1jSt9qYpvpSykG20JpXEimPScv5Q8t1q0+oPe+9l2kQEdHj8Jo9yNmvmii58dXOw2ptXipXo19ri1EtWPxwq/6zCEYAACAASURBVA6u2e/iNmo5mKqMvROX+D/9sJOum/tJlhxe3/dR7u/49263k2l3rKuljzkbXyLEt2PvZ/1xTqTreun7tn1xa06upUzOpljOZUr1WdZIa/7qUuXWPrdcN+H70YnNxTCXiE81LHGyvkblZGfjM6o182otl+pV63xZ9SeXm+q6aeGTlWxDrf3l2d25zJq9tJRz851/356IyNlHDS7Z/cO9HA7Lf56U80ettjml5j/m9tR5nyYR5ceyNn3NPduW95pfm/8mIYyNJS9rk23OY9iBx7QtIiE2dwvbUNTVBt/+/PgyTu+6aaFz19fX4nZ9drxLY7Hbefn447ezay9evJD9fv35hz7nNh233vsheezzIGvescY8r6PvI/HvQ36If6sWt7f2+UDJx19jo8L9sIfMr+XzgZb5asnZWPTL8huwH/rcstbeY+U71uzVW+zH1nOF0nOlM77as7VyOV/seI5mP6/K+W1xTjCud3TLM7rD4SDT4fy7r+PvzkIZJ9MkMo5exu6o32PnZ/ePdU/iGnWldZ7W5gla20z1KG6m9DvBFv3N5U6P50nmKmbtrtmHt6yXnB21xgQp3tvjjrT+WJYfwv9o7WPOL0/7O03l9aPFnSUdr+XZrPFUHF+XntViqK1+/tb4xLoPteZztLivNK6WfH2J0TkZx7mO7Pd7mZLznlius649brz1U+DD/mIMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfvHwEhQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4oPASFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPigDB9aAIAtTNM0+zvFe7+41nX6u3+6rss+U2qjhHPuImVLbWv9iZ+ZpmnxvVZ3et3a/7gfuT7FspTqrNUTnk/vhTqdc7PPrbKn1y1jZq2v1kbLczGaXJaxtNRTq9t6PzdHJRlKY7+mfY3WNa7ZijV1tbSZq3uNTrbYzda6w+dce9a1He5rtsjS55pMGrm6NVuT+2yxF1Z7U0IbS0tfu64T59z7Mufyzjnp+176qS/KYZHR8nxOVk1PtXmp6ZH1s5Xa8622ON3HLXWW1sFa+5PbU2s6lpLOXfi+Zsxb1054Jn4up1/aeE/TdLqX1mOxizXbEtcXy7DG71zrJzwGoS9pP+K1GY9nqiM1fcjpZY2SvuX0Y0udsf7k9D3XjkVX0rqs/nqO1vHbGgvV1ku4n8ZduZjG6pOU9oItWPUvtY+abQ7lcuvFKk+gNH65z4fDQfq+FxGRYRhkt9vJ1dWViIg8efJEbm5uRETk+fPnst/v3z/7IL/6VR+1L/Jnf3Yj9/dHX2G324mIyNXVlVxfX5/qDnXtdrtTmWEYTmWcczIMw0m24JOkn7V5Ldn0NXowTZN04yTOnfeAY939TC5LO1a/JF3j2ZjJTbOxmCY5+mi+7KPFbVj879zamzq77mt92OpvpdRsU8vcl3JCuTLH8YifOfoM6X6+NocSuNR+Z4llFAmi8pN0nSuO1dp5tayRLdct7Z9FsPtvuWs5P1LkrK8htqr5m6n+aPGlNSaI99phOMjNzbene845+eTjj+UwDmosVpr3+TPh8/xeTpYccTu5GDDnj+fGKR4/LWcS2ui6Tkbx4r2f6cF+vxe/7xZ9t+Rc0zZK32M5cuVK+h6PiyVW0XyD0jMltP13pj9Dl9w77l3dWM4Nxfdya8mik7nr0zTJMKXjPbfha3NgOVrt0jiO58/OyzjOZQl6KdKe242x+jFbc1Eamn2z2getba2NUPeWOS75Ndq1dFwsOdg1lHLttWfimOQS8VNpPmp2zYrFv6rpxSXj5pbxr8ne2uba51vGIa23tN5L+f/wuTW3FtMS663L7y4vWGMYiyxrY1NL+49V19o8mSW+CqR6oOl1KX/XEgfVsMTHGql/avKVKmO8Zr+vxQS186b18eOSnD3ouq66LkryabmvlvnO1RFfi2Ob+No8dgzXljFDjbhNi++uEfs3KaWxjWOlmozz55btOz//rtWjxZpWG5mLfdI4IeQ5Y6x5eIuND3rhXIh53Ukvwv2WM6HUP9rqB8Tk4qb0Wkl/0rZqbI2hLL5ySZY4z1Ly+1NbrNnY1n0lbqfFFll8Ru1zbm77fqmDcT/j5+PYU6Pke6VruiV/n2LRf+taTsnZhWEYsmM/DMufylpi15Y1lWKNJUr6apHXGqdb8/+BXH/X+gxWX7v0uZSbC/f6vpfRecnlgNfm7s/+wbnOvu+r+1JLnKztoxbZtTg0N39dcg40TbY5La3RLbn8NXpRa3NtjBM+j6OXaZrvL34cs763q2yP87z1WReseeYtcVBp/IZhkH6q/15pDdoe0VJ/KN+6d6SsXfOWui9BbR21jtlWu3fJPscxQMl+xDYpXE7PYnP1pp9r1PSy5Oe35sJLspVytDnbME1T029nAqUceYuu5XxFP5z9ob4/lun7Xob3+vfk+ok8NPpLJXla50XzjZdjX9clzQ4ty89tR81fTOVKmzjnJtbrZFqupKNr49ZcvRZZSvdP/U7i8GAXsr9xUexCzk/LMQ5xriH4k4N0PvyuaZLjHC9z4GPiH8TrOP0scvQxDofDrN/7hwd52HeLOY/lt+QirGXXxl3W3JQ1/rHca+GS574i9nxxaLeUM7i0bBaZ1sSt1v3BGtdYnonzPL3ov3EoPZujdf7SZ9IcQO13rjGtfm9Jpphau3F+ttkH9sv4OdgS6x5p9aMtvpw1Vmrx0azxZHovtz+mfZ+Xz5xDJuVKucf0Vs4/7PtepHfSdXGf3CLG6xa/eZz72VOXH9NLxljWvOxjxKJn+zLNzj2cO15zDba5pqtpjiVuqyRjXEeLD2ZZR9Z8kvZcLI9lTefjPrsPYy23dpzStizXSvdzv7EOv7ct2RstZ5grt0bOXF2x/s+v6Xq9ZU2u2Ye2+opr7FZLXr0Wn9XaSuuJycU4M70w/p7/l8C2LAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARngJCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxQeAkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfFB4CQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8UIYPLQDAJXDOiYjINE2na977bNn4+jRNp2dzdN3yPUFavZcg116pzWmaTn2O+16j1OfaM1o7LXLEZbTPWvulz6Vn1tyP+6TJZpUlV2/aRnytNs4t7Wltpp9L13JtOueyZbXrVtJn43Vaqtfa5mOu4UCQN13TpTnLyZ+TNa4jPBO3U9IdyxjF82fVMUu5dA61Z9LrlnLWuU/r0mSx2IZ0nNauzVSW9Hlrvc1r/HAQ7yfxPtpH/CRTN4n3Xrz3zfoarlvmrDR/a+YlZyNa7HPNFlr3Kk0Wre6avWy10XH71jWmjf80TQufKRBfL9k5qwwleUr3czqSG3/LHltqt+s6VWar/QnjlJaPxy8e1y1jZKmjhtUnteyp8bxcgtp6XOMnlubX4ofU/KNWG5KWseh1oDYn8dzmxqCm62vbyl1rjX1a29pa99b9vKQHrc/E18dxXNyL+3U4HE6fw/Wwt8fPhTHruk76vhcRkd1ud3q+73oRCbrnZRy9PDzs5e7uWE8Yn+vraxmGY2rp/2fv7WJtSbLErBWZe597q7rKXZ5/z4/NTDOypTYzsmWBEELmZ8A2QggJMEg8IINkIYEFkvkRCFniwRbyA5YQ8MaDLYR/npBsjDC8INkgAx4xgLGFNTN48HimZ9xd3V116957zs4MHvaJvSMj14pYkbnPPTVd3yedvrkz42dFxIoVa63ctfv999+X169fi4jIhx9+eLn/8uXLS7vvvfeexBjleDxe5Enl5nlW/VrLvk/TtFgnrx5YhLDcC2leWvT4DOUYteciIpNMqzMv/ZX72Iov8zlL1549MA2TxLgsN02TyHTts6Tmt/X4A3viyF7KubB8jHmeV/Mxz7OEuR6PaPNv4Y3VvPTO/1m3Fk9lGIZde8pj81rUfIg9vkUcooSQjy2qdsbj15f0nDOlXdawfIxcr0o7kNsubQ2jRNPvHIbh8iyfk3Eczdgl3eqZJ49u5f0Pw+DOZ1zlWu7p9Hk6ziv7fjgcZIz9cc0WvPu9N84o2eLzePZ93WeMj39JhsfzY9ZjntSnRl6uNhYrHvXqi/esr+HN57VkWc7p0i7t0cHzObYvZ3WRqpG/sfwyzV6VsXBuf2r9e/KBnpgjp9Xv3rjgVuw9E1v5oBZb4hsvPbllbx3vvLRifsvXbtHjH2/NwXru3eoM8+R8azqWfAlLTqvNvO9b6ZxVumbjymeefEjNhnvzu6mspT+e9d2SX26xVa/Gcezuu4yhazF1S8fKnHYrPi/rec8Xz37X7Il2r6YLnvPdyjG26lltWHPssXnlWK13DxYpH7aH1EZrHtIeXt4Pyr0rrTHU/F6Pv2u9oyjjiy151XV+RKS0luXYa350y+55fYqyrdyu3vJ8S+Q2IfnQMcrlPWo+11Zc59ljW879Whspr5rfL+2tx4feGjNYOlfGAy0/wpNT9fZvvXcradmysi3tc68tq/WvUfaX1vtOyW28fPGyej6VepyzzhPqfswtc/E1OWufe8jPjtr3aaw9UnsnauWWa37rXqx9VI7Ns4dre8OzF1JfrXu9dtBqq8yLluV67FZpk2prXr7fv5Zd2izPXFh6Yedcb6dHVvt6nFPf29a61PCej1vyFpZ/reX7rTqWTDKG4j1C8snaspdcfbmlHbV8qr220Bs/n9/9LfN7id48VG9+qsfvaZWt5XZ6Y6DW3N8y72XJvOf9wfn+ur0t8711rGXO2NPWMocdsnu3y2V769zS/lr2Jv8Ox3m90jjts6K0F5bvofkrW2IwX+61LncvW/PwLd9VzdOMQfW1y3eFHmbR8xXaXshZ5pnKnE/7bPTqao9Nsdpv+XRb1q597p9j8pSjSLmkeZpEOnJE3rx8HPLP19h6mM7X5Rql5+mvx3Ycj7McDq+W9+7uRMJa/zxza+VOlmMSkY53j3l+JL9+F//txa3ojRNKPN/ratW5Vf5qC978tYjv3VdvrLv1PG3leW7V5payPd8rqM/l4pP6HY3a99Wtvmoxp79+vx+55WzS8K6T9Z3Jnvcy+f0eO1sbX4xxYXdDqMdZrbnKqyU5yzGe3ZZ2Ln55pi/vpRz4aiwNn8CT/9Go6Wmvzdymb2nc4Wa+f2/Mee6/rktb+n0KvGO55M+GpPfLNmrtbIlBS/1svZPaQ23PrnXoqldb+2/NVS97bXxeticfVFv3PTkPqz/t/pacZV5Xy6Hd4FX1Iv9xtslrP7v0uzRb/UXlad5KAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjhR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgWeFHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBZOTy3AAB7mKZJYozNciEE1/1h0H8XKC83jmP1uSWPR04RkXmeXeXKfq0xanLksqRrr3xlP1a/Wh+1OqmMZ0zpvlfmLWsSQlBlscZVzmuPfB45U/+ljqb7rfXX2rbk18bSK68mu7etlqw5lr5Y5fP9Ze33si3rmUemFh45a2h9ee2dB69Ol/JadmWLzSp13DNmS5+sefXqvNVnaS+sPqx7tXm2rq25DCGo5fL7IQQZhuEi96XMcL4/jqOMcXnWtebRI7Mmr3ZPm5eWLvWun4V3LWp1bolmbzznbo0efdP0LISg+kKtM7VXZo9ea220dC4fV8/aWX5Kbe9b+6Zl41tj2GLPe8ll9J7l74q9c9HjZ7TKedry+s5amdYeyfUyXdf8m5ocmo5r5fPn3r7yPjznsiZX7X4IQaZpUsu9a90t9TPNkeUrlde19hKHw0GmaVroSbqepulio0+nk6pLDw8PMs+zvHnz5lLn9evXl+v7+/tzwbtZrimjIOM4yPF4kBjPvsLxeLzI8+LFCxEROR6Pi+u7uzsROcfQ6X6SN63ZOI6X+RnHcVNcmLB0yqurMYp4VMbrE2v9ts7QVCcO67j9dDrJ/ODPF+RoZ6c1r/M8q35A68zrjfvKzz25EJF+G6TVr/nUl3LH4bouj+KO4yjDNFxk7rE1T2GXvP6Idf8p/Nle/68nnqj14YnLpmGWGJf6Ns9RwqPue/ru8R2sHFy6nuf5okvzPF/sYyrj8SPz/ZCXORwmeXh4WPT9ySefysPDVf/HcbxcHw6HS1vjOGa6HxflcvnTlGtxdc3O5LJ7Yy1r/NYcae1O0yzTdBKR5Nucz8x4Gha2rmVjWvYrtzG1PGh+XfMbtXNfaytRnjc1eXNdDA0d69kXIazHpJ2DVn0PtbMjxijDaVqVOe+59Zrka+6Z4xLLT3blzlfqZvfvPUc0u2DZCi897wVyW1Y+08j9+XmeXTY+jacWP/WMc6tvofWx57zvzQtq/bZ0tpUbseySZy/U3rF54zvtulbHyiVaOuvxAWv3ttir3rFsaXtrvqTXxlj+TU8/vWh+xu04t12OvBYPlfZn1aLT9nmoxWJbfP3aO5J3Ra+NTGdEnvvQ2mnpchkDljkIaw4s/2VPPJvkaWHpkuedlKe9W9Tfuj+tfbT3fV/Zh+WrX6+9skc1RvPI0Pv8Vr5bicc/EBGZp3nV3+n0IPND3fZpsVRPLrwl45a8QatPKwYchuRHxMe4xtduPm+WXemNLVr19+Qpa2tptVuL8Sybar0X6PmuxlZfvRaDWrTOTu/c5GUtP3PL+0oRkWHw58xvNZctWr60Nx7w3Pfify+g57a3zFUez3rl3xorpHpb9nuvH1H24YmpLPuuzYsnFqvJbD4bgwzDeg+Uc5RkquUp9X76/bEeXbtVPKrV0/zJcRxl6pBlq1xaDN/Txt44TIsb7BxDlGi8O0xV0jlXy/Gen4uIxMe/c1xzOqkiuujxoa42OIqlt7XYoycn1aJHV2q2wZtL6vUbW+PQ5t1ai5Z97/EpvGXKuDfda+UxWuxdN62N9TuP9d6pvRfZ07d1b09Ot0apI8tc3lJ/8/Wq+ZKWLdP8c5HrWb60Cev3a9p9jXme5fRoxFKcPE2TDNNZlofTg5xOui++J2er6Xii51yZhlnmefl8miYJ2bC9OeTWvmvJqXGOQ9dn9dbzuNVnT7x4K2p7MO2Nazx+/Y7zMI4yOmO0Vp/rPZJ8gOu9EPP92PYTW7b/vM/Xfqe2971oZ10IIfvez1JOz9p64navTJ77Ce87Gg9b6tXydDXSuKZputiWEN5tzl3E/u+LWnjijjInas2Vdw7zM6dFbQ0sHb1FLtVqz8o5e9tZDnsZSyye3ChX0vKjPPZr75ngzet7YmOPLFvi01uUaZ0VObW4KuWlff3V27b8iWV+vC7brefcgyfu7MltxyGdh/rc1PKWVv+9/sc8X+2oFbf27LXeOb+Fb9c6p6/5FFnca+Usnio3XMq3pUxbhlyn1ntui+9j9b8lp2HFnume1zfslXHv2m2RaasuafIPw/o96fn7pv68j8U0DJK+t5yamqZJ8iRheR5Op/nxvUMStLvb7xie5u0WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBN+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFX4EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4VfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnpXDcwsAsIdxHBefQwiLzzFGtZ51f57nTXIMw9Csb/WZKGW/BUkukatsIYRFX0muUr4Y46KcVqd23Utq35oHq/8cbQy1+7egJrcl8561ro3d0v/eNUo64pHTuy6tfodh6N6vtTK57nv66dGR9MzaH639NU2T2ba3vxZp/CGE1Vhaa1azY7X9aen43v1WzqFn3tN1vi/StSWPx/aUMiV6z46WvWv1n4+pxJJFkzntzcscz1HmeZbT6SRyaopmymbJ5z1HenSmNhc5t7DBvTb9Kc71su+eudpSr8d3sexuT3/e+t6zbE95z/rV5KrZG48sXp3V5n2eZ9UH1OT09FEbyx7bb9nw58JrP3O89nyLXett17q+pd/pmYtan+V9y27sjS885/It44EaNb/Ps37pOp3biXyM9/f3l+s3b95crl+/fn3p/9NPPz2f7yLy2WefycPDg7x69eoi49u3by/9pTrvvzfIw8OvExGR89IFeXg4yTwfFnZymqbLdeqjlCuEcIndQwhyOByadqWmB7XzPz0bhqEZo+X30u3UZD4XNXI9rvXZvRdHkWFI+Y6zUIfDQYZ5228Ze32m1HcIvn6scW2J7Wq+xBa22HWNKU4yTcu2TqeTjNNo1Kjj9Vu3nh3l560xRynPLWQRWebx0hpZfktPTsM75hijxCGKSF4mSgjtverJeeTji/EcX2my5f5aPubc7qR20/PSLqXr8r7lB6T+xnGUGMeFvczXQLMXuRyPpVbXm2ydrPdqzRZYumLZOE2f5nFe9Xl//1aG+2sepWxXZLm25XWSS5vHdF07y6y8w1PFcOM4ioyjhDBI3vXhcDBfFrnWdnF+nOU465dvX1nx5R5/9hDDY1vt+cv1otRDT7xr+WqtuFFEZBrWZ9Y4jjIW534rR5X3q52DW999bNFFLVa6ddy3dTwi+jh6crY9cXVvLtIq4zmjavF/T071XeONIT3jeRf09KfZiNp4t4xFa7snV+q5/y7oyUPuIov/zv2e570Vj1jvlVpzudUeetao1yaLrP3VhGVTt5zJ3vdIpQy1e632a3FIbS6t8fXuhVvHsxp5DOE9h7aMqRXTlW1tsYn5taYTnnd/5XdEetas5TO1qK33HluV9kg5NpH1d2I09uZRU//nMaz1wJurzn0qj49fk9vyz0obq/VRQ4uhF7KepkxHH/OFUdL/VO1/2e4WttSt5V9q5bzteWTyrnGSrdZm7Rz1sCW/lqjFc54+RfzyWn21zvshrHMb8zxLulWzo73fVbHw7D/vOyWrnNdG3yqH0MKS2fK19sYse8fS0skeP0Gze618iCfOq+1Vb5xo1b/Krd3blvNen4dhlVv1yOQtq8lQyyV62xJZv3eM8Xw+zmNbb61zWJPXe9/qo+eZFm9s4SqjMs7MT0q3kw74+17r01afOpe5uR7jOu7N84+eWG3LfVWWzrot+7un7z3ltfisx9e6ZQ6m1FuLnpzC3nOs1df6+VoHa3mLVpua/LY9fxo03V3GSFFKMfJxa7a9tm6eOSrvl9918PQVY5T5MD9+N0JkHOIltzbEx3ePQT8fRXx5h7K/VKb8PpxVv9VHHPQYyvNdDN1epnt9Of9bUtONPXmrLbnIGrXxJx1ef685XGLzp4zHe6vVfORandIPK9mTg13YHUXPe9n6Hm6vL/hcaN9b8MSbaT3HWVZ2fSvavu15D7nnHWrZf7K9LVtizZWaoxrD6jsEnj7Kti16cset9rTnW94niZz35bnNavWLrejBkz8uKf2lpe+i+0y977fKNm61xt4YuHz+lOewloMo8embL+by+NDaWXXOIYZLTJIeL0Nff27gKejJk3rew16r5WXacbk3/rXXJs8h2DHIuzgfa7mUvW0UpXb1syW+7skrPkX9azsi8xwlKPa7lq/vPaNqstXbWrezZZ68+cBb6JzWfw1rH5fz3JJNm5thqH+fZK/vZbX1Lr6D8GsJZgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFX4EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4VfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnpXDcwsAsIcQwuJzjLG7Xn49DO3fBcr7SNfzPHf12UvZp6etEMJFrrx+Xre8X86fNtYavfOn3W8997a7RRd6iTFW+/GMxdJFC6tMLos2l6med8+0xlbDqzc1XbTKedpqyZbKlrJ59rHIVc971zcxjqOrnxbTNJnP0ljyPanJYs1F/nyLjue0ZCjL5ORroum1R9e22LV8v6Qytb1q6bKlU2WbpV235qm837K55Vjzz8MwSAjh8pfaD2GQcRxljG097bFfXpvSa5O19dnSbksXetrqKefVT89c99hsr471lrHW+SnW3mq7ZSs81GSpPfP4QXm5UsbcZnjs5TzPqp2JMa7OiD2+R14u2Y4W1hnVsotWvxrlXNTa7dWH3j1nnZea/9U6ezV5W/Jv9dk89MhZ4vWtnoot8+LZe1oZKy6szZG1li1fovQbjsfjpc6XvvSly/WLFy8u9d9///3L/U8//VRijPLNb35TRM779etf//rl+hvf+MZj35O8epXslUgIIl/75a/J/cMgL1++lOPxKCIiH3zwwaXtvJ+7uzs5HA4XGVP5cRzleDxe5vRwOKg2xnNWpTasfaXNsWafwnRazfU8TxJj33lp2Y6eWCW/1sbTimG8Z1Gt//O/7b5FbHvfG49rcu+J1UWWcVfLRj2lHfVQ85U9spV2Ye+5n8rmsYJIPW7zyq/pTC22TbJo13vmLJ+KfK/32u16H0HGcVTteq6f+byW5a1zwRtH3B1nefHitCj74QcfyP2D7tO17NvFjz0t908Ia1m9+tZjt/I2PbkVTYbpOMu37j5b3PvSlz6Q8a4uR7kfWmz131p6Vp6Trfis1o5WdYtc6dk0zBJjeZ7OEmL/2dRzdlr+kojIcJrOMhjNWT5e6d/X1lNbC+sMOsviy81O0yQy+d4DlHjPBU9OpdyjW/M2Jc8dK7TWYUvO1BPX7vVvNLT1S1Hw1QAAIABJREFUveyBTt/Qa4O20prXpLtaLL+XXh+iZUOta49d9sT5Hjtf66OHWox7K7w+7Z7+azn79XX+WSQo+S7LLrT6bT3fMjZrT3jzbDWfPj1rxU/W/VwG692Z9R4kf2a9i6lR7muPLntzM5b8XrbYy1adfO28slj7yoorajLtyTdo7e3Jm2jlLfmSbltjHecyPnSJsusdSy1u2pJD6q1bm/sYo8gQZBjCSk4th9MTV+a2rJYHyNsvc3+3IuUsrbaPkuco1zmSYRiasvXmxrS6rT1sUduv3ndHnjb3nnGlT51/v8Gb8/T6MdacpXat52X7mmw9eONMS4arDq7ve/Rya3xp1df6a9n3Hj9DszfWWdDzHq7mK3nzLLfw0/fkNrfIsKVePt8eH8ljF7x+ds/8eM6j9DHfK6k9fx5z7Uue39f747feHP2WeiXaGh3i+btB1/vn83HuzLluPavKdrZSiy9yubbq/TV2jOnh9boov9dft+7t3evLf9fzZdnqXl0t9czaq5493DvmLbFKmZuxynif7/UJ8/K953gt55HubYlrc1l6dGJ7TieItb9qbffk5nriF4stZ3otR54/ymMPS7banHjem6Xyve/Jy7HER3sYo8j8uJ/yM3GOs6TQY28uoJQxj2msvEUrN5XebecizPMsYV7XKdFt1jZbvcwXL54s5tNjb26Vp+h51ttXy1ba9ePlL7ffW8Zcj73W7dT2Y2/7+fsPLc87z31nYsseaXrumb9bszenqOUKam32xuy1fIPnHNLqle1v/T7EHv+i1WfP+rfyqz2xf/68LNI6x622PbHpVn+o1p/1vMZZDl/Z2hruiT2tuE373pdmrzT7pVH7b632nk09PKWty33ka/5YROS6zpYNqMdGPjsSh7bNGYZY6Nw1h7js/7on53kWmfrP/617rGyndr+m17Vcq6bf8xwlKPrrOYtbZYZh/b0gi61+i1bf0qseyjY8Oezr2otYfnFPzNGauy15k622v74+ImcfNV8D/3nmkWtv3sjjy2rnp5YDeIo4pAfLxnh09Ba5tnnWv5/YQ7JVpZilDcvlS/+tWKr3rnz4zyv7v60AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsAN+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFX4EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ6Vw3MLALCH0+n0pO0Pw/V3guZ5ftK+aoQQ1OsY4+U6yZffy69Tvbx+SV7ec/+W1OTyPtfG60UbY2vcrblMz2vtpGel/D1yeuTrXUNrbKUuPoXO7J0Lb9/lWPL97u03XU/T5Kr7rumxW2n85TxYbeQ6bhFjXOm4VqfsQ1sLzYZZ9q6mAx5buAXNHtfkyvW8lLe1/zzz7rm37qBdJPWfr61XFu3amoOynMcm7cHTjtfmeHRxj9y19j1rYtnxUiZrv9bO2vKzZy9osqTPWv+tPjUbUbZt2WzvXtQYhqFbT8u10Nag1aeGZrc1GfL6tb7z9rb4wx7bt8Xn2uqb9+738rp3n1n3e/Qr9yk9+0Lb17V7nr41ch3S5mwcR7M9a795bE95z9KFW571Xn3z2uUt9juR9lGSaZ7ni12b51nu7+8v169fvxYRkYeHB/n0009FROT+/l4+/vhjefPmjYiI/Mqv/MrlOv0rIvL++4OcTu+LSFrrQWKMcnd3J4fDQb785S+LiMjLly/l5cuXl+sXL15crpOOHA7X1FMIQeZ5vjybpumiK/M8L/wdbc947HlZrty7+XpO0yTTw7TKLbx581bup9Nl/Kn/8jqXIY8ptpwppYwxLvVumiaRhipaZ68mRyv+8djmcp9bZ6/3jLT2emsPprFYOtM6BxN5P5fno8gwLG1nqZ+tudoTu+Z9bfWJfTamraPeuHeLb93rN+fzYvk0WrxunfHzHCU0fCjLP621W6LlGT05v/Q533OeuO94nBd1Qghy9+KFhMJ37d2jY5xMP7y190TqfmiNVp6tpldpvqcwyzwvy03TJDLFpmy1/Ej53LKxSY9aPt2W/F8559Z8LfV1eX9PPu9cf/k5n9ut9MQ9iaT347y04am9Wvwm4tvTt3pXUNOH8jyt7avant6TU9k7Tk9evCXPrXN4Iv78Z63vXrm27q9aPs1T95bzuiXvbj3XYtQtedstfve7ygt7ZXgKHa/52eWcae8Wt/rzXtm2tN2bNzBzO4tYK1zutc751prtifOtNrUyXrtqtdfzLsYjm5Ub2rIXt9iAVn+t3FX+b2uNW75Dy1f12MYae/y0sv08T7NHJhH9bNLs4jAMrvcCZf2ynRY1f96zriHk/pnuR7baruWWa8+9/qk1F7U8Tz7PrXc8aezLHNIo47huvxaX1ux7LW/cuuel5gdZ5ZfX6bO9927pK7bI29Pmz9u3FQvtjY/Ktnr9xjyvml9vQfODtDnLZezpL5fzljmwVl53KUNt/8rqfoty/D572f6uUC3PULZnrcHePLsHS04rbulpdwv5O4aWf6H11etTWLFDqVM1382Tj8rbr+2LnpxZy3ad37MkfTzfP51OEk/tPa+1PU2TtJZVe0eyJZ7y6pzHRmv3z2NZ50gnY2pu5Yv2+Nxbx6bdt/SmJsNZty9308PrdVa+1Gt7za+6aJ13W+KCWg7gkhcfjPeOO3O3mkzedbHsRU8+MW+n/Fzz2T2+T09sbGHV8cQEt/GPY/Wc62rJ8f7glvkjrV5P3qAWq7Tuefuo1c/Pccu2retc57k1l722ojyfkn9c2gst/6b6JKNICIOIRBnC1aaFRzMTRH+/nfsNXh1v+ar74sb8ev09Z00+fW7X93r07dpGGktQ56rXPqb7e3JSNb//VnFv2c7hcDjfK+Yg6Vn5Pfe977FCCDKHcg2X62jpQ0sft8Qme+rnciS9svS8LP9U9P43DFb5vd9f7c0zbPlvQvL4Q6PXL9jrg9fwtO15l2DR/D6akdfw4M1/7NlP3jOqtLH9a6Z/d8SjKy2859DyrEnXZzuoyVa2Yf23lrUcdutcKee1dg72+qd75tafo7ra3i0+QR43ttoob5dlz3Ypl3kdH5yHkb8LGNR3ATk9+d+ntGUJa52XsZ0/VtF0zpunO+ej9NzXFh3ewpa8QqKMCTx1lv6S7lP1sNVebzmDb0M+T/pa9+YnWjlFt2TZ2ixtgS3bLfrN+y6vtc9PTe9ZrZ1/4zjIPI9qzq1HjmW+0e7P4l3P3eeN7W8OAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4AP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzwo/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPCj+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM/K4bkFANjDOI4SY3SVDSFcrq068zxXP9+CYdB/e6jWVylv+hxjvIzL+re89radX4cQ1PsaWv818rFo/9auW3jnwJIr1Sn7bLUVQrj8lXXytjw6mZ7la6HVKWXyyOwdV+/cba2j1a/pZ8nWZ1vxtJn2u7Vut7IxuV3p2e8aZf1xHNX6luw1vfTKME1Ts4zVltde1PTfs8dr7Vt2Pq9v1c33u3U/t0+azK3+Y4wyDIOEIFIbassOW+eFRmkTrfu1eand32pzWjrUI0tC0yVr/LX2Wnbd007PfJZ65ZG353y25sWLpneezxraHsn3ZWuPl/UsWRNem2btXY9dz+XX2kk2uzwvvPPVe155fMXy+pZ49KLX3ogs93LNDuf3vDpak3GrH1P6kNYZs8UHLM+l3vo1G9fr+3v9IKs/j0/TmjdLL3I/yrOPyj7T2Mq1m6ZpYavSs/v7ezmdTiIi8vr1a7m/vxcRkY8//ljevn0rIiJf+9rX5Nvf/rZ8/PHHTXmWss/y9v6tfPbZaxER+eSTT0RE5MMPP5SPPvpIRETee+89ef/990VE5OHhQV68eHGpfzweRUTkcDjI8Xi82MbD4bCwUWnMZ1+lHtum+e09Y8u2jvcnubu7Wzz74IMP5OHusCrrZcu+XfhEQ1zZ88PhIGMczTpWv5Z/rvknIQQZjoMMw7Kf4/Eoo4zVvV9bh5Z/q9XP17/l32rytPac9rzcZyIi0zDJPKf78VI3zLp/tzVnsYfbxLvr82qrr136lZqdttbLe2aXdnzLWiztySDjPK58Qs+ZVNsLZW5Js2FeGcv6nhjseJwu9jfx8uWLRT61Ni5rXx5lkHHM92U429GjbqNasbk3Brfqa5/NM7ViTmq2xpKzXNMt+2aPz1fa0l4fNxezFrfW2uuNq/MzfilLn086DMOmeDAv641NtL3n2cOaTPn5Y+llOvta599TvLvYgjf+y9kSZ+5FO+e1Zzlb41fPXvS215uruQUeW2advZ48X8ve7MnN9eZytqyrlU/Jx3WrPETZfs/9soy1rq363jxCSz5N/61YIS/vzdPVxlXGMampGM9+5DzPIplNqvmW3nxaL7VzyYr7rHfkPXrt8aO9+6rXj9i7J3rzRyL9Z2dPzmnvuFr7aovt2mJrvfNa7lGrL+sdo6cPzW8q75dt5Gd8GZdqdnCt77mdWMbF51yAKe6lXMse1uyIdz5ySj31nBd77VjNV7hlzn9PfOWpb++xOVuvdPPyPybWWdSzl7biia3LPlv3Er32Z4ss5bpt9Ud7yu09hzz9eOciz1tYNq7MhZW+VZo37b4mY55z9cjYOkN7z6xbnGUJj++yNefisXNeHeutV87jlti7hsd36Z23PXJYn1tt1/bZ+Vxc3svzLa31LffPOEu1vZ5cUypv7VFvnsITN1jtLOs+vq871PNdW/dS3m/NJ+vJz3j3+tb8Q2lrRUSicm+eZwlxWI1nvVYiIledzO1wSyYrnvbW0Vl/t1UtdeOz32rXGo8nPrF0TMsr9OhwKy9xK7/XOq+1vZLOY+tcUPW2Me6tOYSt85rq6P3bNs6So2zP26/VlrXevefTlvgrhO35Re2Z53swnrasecvtWpJ7GM6yHw4HmWsv5MSXkxJZj2PL94PKunFY1x2GQX3v09KFnn1n+R7DoL+T9fqPmlzeeq26Pe3cinVMlP9d456y3Fb59LVantXaGtXe4+U2vLzW1rb0UXvyiOa4xyAhLOXzvHv0YttyH9b3d73vX1sy1fDIm+QoY/Fe5nmWeb7N3snzBp51fM73yL1+uVam58zzlLG+P92Sz8pd9XCLWLkXrc88dtXK51VKvyTVq41lz/4t2bOfa2u1Z15ben2+XuaULZ+2rt/rPq656mw91LMpLN6FrL+bs87BnsuG1X1tjIke+7JF/2v+cE+7+byFsJ5bq489MWn6XBbN57XHx3uKnF+tXUs2V25gWOrSuV57n/aO0drXvXmx1r3SJ1vnBHzyanW3npOprnf98vue5m95vtVy2549XsNa81b5so41l1YsVt73+tULPVK+M1nGouXcDcd5+T3ddxOWfS65TSQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsBF+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFX4EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ6Vw3MLALCXEEJ3uXQdY1yUGYbr7wLN8+yWIdWryZL3VWu7lCnd0+5r5bWxxRh3zVNLvvy+t59SLm9f5bi8aPNSk9W7ll7ZPPOTyqT11vqx6lt6UCs7DEPXHGr99NbL5fLqtKdfr1whBHWdevRW09ncdpTParKV9WrU7MY8z5e2arrg0R+vrbLomcseeta4V5beOppNtWxvft1rF3J9DSFsOmOseQvTlMm0tj2189E6Q1t91tD2VT7PtTZ7ypV9bNFXb38lvfupXMctfebk47fOwtq190zusdc9+1rTEa+t3SJPj+9UUtYbx1FttyVzj65aeyehnTfTNKlt1eTqsasen7HH1+nBM8eWT+BdF4/ObfFftpx3NUr73Su35zqn5pP0cgt7nct16/61s7EmQ83vS/J5fILyc97uy5cvL2199NFHl+sf+qEfuuz50+kk8zzL6XQSEZH7+/vL9TRNl3Lj8CBf+crbhRz/6D/yW+T+YZBhGORwOKeTxnG8yDCO4+J+sn/DMKyuU51hGBY23ponbW60de3xr5fx17rtrWeWdm/LfiirlD5aarelq9Z5mbe3LpOXO89HmPv9XZH1OvWs0R40e+3xk+vPr7rq8aESrVyTFSeka+vs6bWNtbO5fDbP82Uf9IxV68vyOTyyeemvv47nWv6mx3fxyuGNwT17rNbv6WGSh4eHRblXn76S+4dt+aA01ruHSe7v7xfPP/nkE7k/jpcypX235thCO2c9uV2rj9T/cJzkcBgXz168uJNxGM296I1HtX7LMj2+9p7cZMsmx+KcS89CpoM1v0Rdi6Gc/3j2B+brWmpz6vHTtLOjlK9mx9b367a6xGPHeokxXsZe2/sitl2yZLZ0eYtPXKKdabW8vsc/6LENvXh8do29+Z6nyo/m7PGpvDrXmxtp+aItvDGyx79utaXZZa/8t8yJevqr3W/1uzeuTvW8da08S69PqflAeTnL/ljxTc2nijHKHGcRw0bmPk0PtbPfyo316pAnF9GSzaMjPXH6VrR10a4tvHPhGUttXOXc7dn3ZV3L30gy5zk3jS05Eitu7hlXLQ9d8289fVjy197JlrTOg5QTSk2EcG5/GMLK/p3v1+f0FjbZauOWezFfe1tm3XZa+d9WzLPVZmnttGI07V5PP8M0yTyn8T6+N52jxHD13x8vu+ff2hetfIPnfo1tucl1/Na7vrWy1jnU64O2uMX52tLvXMfyWG+rDFrfS3tk5z1qe23lAxk+VS3u9Oilx1/uzQVssZu3iIEtvLLt3cdbfEVvXLMlV2Xd74k7WrnwvbKsn51zVLU6Xr22zpheXSvnq2fOymuP7HWdSLbrvGdyl9Sjp1vKWPLUdCNHyynV+rTifmv+0v2r/mTtruLDuFrDNBbN58x18Tzf06KeNQYPrfJpPHmxJLs2994cTdl3j71pnf2ts60lV8u/2pvH8vTvba/Xdovo8UEclvvbc3TUfGXP+Vuz457xX/tfypvn8Ut/yGN3967vlrOil3EWGQbdp9vadr4Gedxm+WHec1nLYaSYaQj5902vfXiOR48P0dpLrfyul9qZnq/Jan3GICEs96Mnf3BrvPvtKdvSzt+yLSt/W+s3hPxv39lgoZ77j32c19OXh9BsY1m23JO579DKedT6LOXeGod6dNeb4+uNe7b41lZs1mMPavO5J668ZW5DxJYlv5/PR/luY8+c5LrpyfG15m0K8yonkefbtlIbr+o7bYy5PfOqxhpKPicvX4tdtuIdY36OW+Utm67Rq/9Wzsqi9t9u3vJMbPnJS10QaXXdinuTX5z1tMo7XstKUfZ8rz626zkaQih0Mp179vd3L61UYvje2NYbj1r1fDmHtHdT3fU4tf23xXcKIcg4x5WfP47X70/36N8t8srlda0/zz27vshZJ7fvf88ZY93fEo+WbfWPVyQfb9I1q/0tcm2tk/e5fve7zl319NPyeb30nCu1er3ltXxUSw+1GGRTnuBwWNnYw+EgYyXne74M2fUXl3cbZQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU8CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KzwIygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwrPAjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCsHJ5bAIBbE0LYVTfGKCIiw9D+jSCtr3QvtVNe72mzRGs3v5fLMs9zta3yfq2cNjZt3B6s8to4ys/5fe+619Zl65ql/i15ynZbbZdzqvW1h1b93rFv7bPUJa1say60OmXZcv5zXbXWaY9MNb3y3E971apj9Vur18MwDJc+xnGsltXGsFWOlj1LY99rT1v9e9oPISzG6V1jr521ynjKlzpi6fj5fv4nEuS6N1p67J3bvfbKO7et9bPs+1Z7WGvPo0vlOabZlfJc6cVr+zy2rGdf99hr75lc3rd8jt72vHvSkqWcx9r50KNraQ9q45nnWfVRa+O1dGkcR7fNa1G2M89zt/727J0eWWpYe8HaL1b7PedAride/yituaXjHv8y9XfLs0eTZxiG3T61pgvTNHW1ozEMw8KeaXupxzdsybfFJ/LEQKWtsfyjeZ7ldDqJiMjDw8Pl+v7+Xl6/fi2vX78WEZFXr17J/f29iIi8ffv2cn04nOTjjz+49DEMg/ztX3oj03SUu7s7ubu7ExGR4/EoL1++vFxrY8j9yzTvufzlvfI6X6ua7S73mFcXc/lEonKvjnYueWJYy9av27q20bsny8+t8+oql9lN1dfUnpV7zZM7KOfGE4954udSltr5mfbwLNe9nK9FHitpa2OdF0kGr43YEkNY/Zf3a/Z+GIbLPmjZy1p/FuUe1ebDm/Py9q/twxZb8iPWGR1j7D4b8thznudLW9M0Xe6XfeT9Hw6ni11P4357/1YeHnT9rcUjSSdERMY530/nMsfjUeTu0NQrrZ8WpW9Qi09bvvs0zDLPSxs7z1FCsTY1P7DnjLHw1PfYy9r8WTGAiMj0mBMIQS42P1/jlo22r/N6a/9TG1OSqXdd8xiphzTOsl6tHY8drD1r5WmG4yzjOCzO33zu9uqbNbaaT+B5N5KXKfvo3eeePvba7y12eC9b9q81Zsvv9+ZvPL5qC6+uWParNf89+ZQtOb2WT7x1Xmp9Wv23+mmdfV5bUGu71o7XjtXaq9n1lo2wfIiSWh/lvUvZ7LxLxQ+Ho4zGlO6Za7V/6ZuLso1aHKd93npe5fdq9sOSRdPdWv6qxydssfcM6vGDPGe1lYsqZWu9jzscDtW8Yl7fs2ZbbF4tzuytv8WnSezxLco2DjEU63Key3EMEsLS9ozjKONc95G2fr8kYZ3rtftlzGmdga19mfKb8918iSMTn332Sob789jynFkZT5Y6nn9u+SxazlDDm0+y/A4rT1Xeu+aA1m1oe7DnbGv5dDUsn7CGNxdU0ooPa/6Jp05NJzxxQE8uaC/a/mnFWVr/NT3wnJ3Xc2Be2YKH04M8PKxz2tae0vRYK1fSm3O0+rT6b8mg9W/ti9p+7+1Dq9PSzS199PTvfdbCY1e0GCD3gyy71tIxLf/YS29803r3U2vP0r+e83+LD1TTNStmbLWxzuPV+7LY49O1+t7jX/bEim05ls/yzzHq79/Xur3eDzU7WJOp91xc2ud1uz1yePu81fm7ly3nnMjt9Lql03t9uvbZe9bXPO//FPSMo+YLarH0PLfzdnvzeXvpPQdztHHXcic1Gcprb864xJPnSOXS8GJWLhU9j62e/2rNT3pey5dr5a/yVc77Ye13HI9HOYR6bkZlDDIM6xyNlT/ozZnfklvuD2/+tvbuyCtXjNe/rfJd26qdl/p+nKZJpmkq+o8rO5W3X+Zq8ntDEc+JiJwezvFckl3T+1Kve/IQSWaPjZmmyZw/LU9QO988vkIZW9TOLG2/WPmErXn9cu5bOdu8rzLPGGPKM97uO7pln5aMWpy31cfR7LbWVte7dsV2bvVL9bzJen/0vnP2xBpbzmztHAhz3xnn6be3TE/uvzf+9JCPy7v39uR5anmOVjnrs+XTBmNr+ObparvXbdv61JIpnV/n59e+Urvl96dqsrdszZZcuLa2Hv/a7k8W3xMTqY+zd2+X86H5LWcZ9P5q+Qlvbl5rr9zjnjxdq+1af+d/lnmTVh0vln+wZY68dtRPaqs/5tmCt818zc//bts/3vm6xVhrPnyPfnreVZTPWvHkrXIrW9qOSl7xi8rTZbcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPAjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCs8CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KwcnlsAgK2EEGQYzr/jE2NcPdfubWWe50tfZR8hhGafeRkRkXEcd8mo9Vn2kcu2dy7meTb7L/ts3d8rS6vvlgxW/dYzrd28vFbX6jN9LtfRO0+eOczX3xpXbbxlP3vW7Za6KNKWe0s/Vvm09/PnaT/kNqGlC61+8jqHQ/1otuxduU+3cqt2LFr2unxePtPm16MTrXK5jm45Uzw6V+5Jj12q9eXZo5btOt/P/5Js5+famdJqN7XtKWfVq9kua12sNcvrWHbYK1etf6tOrc+y3dbZVpPDu3+8eMbcOhNr96znrXPCo+81W7xlXJq9z9uy1rFs57rn1mjjSntQW/9xHLv31dYyvbbQe36kPst5vdX54923tX231eZZz/P6t1yXnj3e8pXzvj3xhVZPu/bKaM1Rup/0pVdPSj1Ln60zZqtPlfdj2Y4a2rrO86z6oFr59HmaJpmm6VI+XZ9OJ3l4eBARkTdv3sibN2/kk08+ERGR169fy7e+9S0REXn16pW8evVKREQO40m++c3fkHqRYRjk53/ua/L2PsgHH3wg7733noiIfPDBB3J3dyciIh9++KG8fPlSRETee++9y/1c5hijHA6HxWdL5yx/27pnzUv5rCSf69Rkrgu98a+X8jwp99H1ox3XWbLlc1fu3VrsmsatnYlh9tuvcv577UJ5dlr+r9Vur3+t1bvkbcYow7Dux2srevVE88WttrznXGv9z/fWvlMqm2zJu6I2Z1vzG0ZPiz57Yj5PnKrJZp1DtT61M+Z4PJpnV66jx8NBDofPFm3eHe8k/130PL+ay1aC1TGKAAAgAElEQVTq4iJvEYOEkNc575nJOPuGYXDnTTRKm9Cb28vHFIdY2FiRcRxknMdFnVac1Trna/pSk08rtzUPUvUpszVJxfI137SnhlmNw2rxkFfemv7U1uIQg+oPpr+aXPle0vw7z/ma0PZoXl47e3NqOmL5iy28vqp3jGV7t4ony7nZGw9v9RE8eOa01xZauQYrbunJU1n91T5rfZZ+wtqn9b+D0D5r97esryVLK2ezx35tzUd6aJ0NrbxqKzdS1qnFWh4Z9+7JPbFX3dZfLyz/bkteo/bMY6tr7548/XhzyWUOyJPzbfm+Zb2WLmp483C1HJZVp8YWO9m6L1L/TkCvXcqp6ZI1/1vOodpn7dneXElOb+5aq9fSjRQb6M2tx9+ygdM0deldLfexzFfty01Z52A+nvTuYTpMWex6Lnc8HmWUUW0rXae4z3P21/ZFPg++fIZ+z+Of1il8muEaB4/jKOO8Lfeby2jdq+2nHp/f8iN763ufb8lnWd+7KO2YR69qvktr3p5yXjzzn8ufX+fxaLp/tg2znE6nRZ1Xrz6T+3u//xJCuOzFPDeU4mXtvrUny/2m5RKHYVisg/Xu1St/Xq7XD9h6VvXWa5XX9miu/1tzQ3vijr0x95Y+PDZyaz/ntuPinJ+mSWTy9Wnbuf5YrzdPYsnS8pWtfVHa02FY+/X5/s/b6jlHWnbbmxuy9L88I2q2qAc1xzJY85jLs543jeRz5uT1nnLv9eSFtrb9HHjjRk9uqzeXVaN8n1OefzVZyzZKP+nW3+fck4Or0crPaRwO6z18PB4lHke1vBdv3GiV3+pHp/KtPMC5TF89TUbNv26tr+Z71uqVXONV3xlq9VGLKVp5htxXLeu29PDsZy991oeHB4mn/n02h3W8kfsb1hmx93tJIvvP21b7PTzld85DSGduWJyfW+xk3e9b62OZP8qeVn2A2r46HudLLJY4HI8SHf+/5l5fzHhqnnO1tc/nVYvpNH++JWdtX9fGsPV7eDVKeffbfruflk+v2cdWzr/nrNuT//ZQ6rW/zWsur/W9zi0yPkXe2pvrEWnnOzS99+Th8/oanv/Gcl23ng/fGlt4y/d8B8dbzuvf19bJG3uUubN0rzau1dobcaiqJ2GW2tl1/VzvU7L/hsjL3v20JWbw6pGeQ0v3+3TDsxe1cy/lox57qspWY2982svWPXa1syJlHi7G9buenNre23Nu1XJauczefIA2hqtepftx0YbVz7vCGx+18Pp1Pf5f7udYZ4slf20s3rNXY+scbfHPvXmAPXJ9p7I9YgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4AfwICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwr/AgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCuH5xYA4BaEEFz3NGKMzWfDsPy9oHmeL9flM629vHyNsi2LaZpc5XqpzYWHEMJi3lN7W9eiJU/+PIRQLd/SkbJ+/tlzv7fvVv1hGLrWQ2sr/Vvq35Z1TmMox9Ja2xjjYs5a6+RhT/1yzVt9aPt7HMdqe2W7McamzN49YpUNISxk1XRUxLZFlnw9ct2KXh1L9I6h9763zy3yWrK3xpT+TfvM28ZVP65/IvFRV306W5O5x/bfwiYMw2DuC2ueyz4t2+C13/laWOVqOrdnvmtodslj+7zXLVm27Mtc5rx+snG1tbPwyK/ZHs2uWjaqZrusfWHtNa+fNwyDatfTfa9f2SKX0evTajKl+rlc+d7R5E39tfyIcl41O1mWLf2T/Hl5X2snxriSL5X1nmV7fDKr3fJMqNmhXl+9Vs6yg1va7rV5tXks99NT+TaaLlhz3zortL2Q15/neWE/pmlS+zqdTpf7h8Nh0cbhcJD33ntPRETevn0r3/Vd33Vp63Q6PZaZ5Ad+YCnHV7/6PXL/MMgwDHI8HkVEZBxHefHixaXddP94PF6uS/uez1k5F9Y5oM2FSN0PaJH3db5c7q+0Fq091YoJamdqvpalvb1+vq61KGa4V6/3+l61tnr8Y8sm1ep57FBNllp8ZM3LFKZsja5laz54KdeWOffU2ZMLU3pMLSzaKM9t79lxi3zE08ej+3RMoxZLlfU1/cv3fvI1NHtflsvvL33Y+XIW5ufDNI1Nn6jMfZQ2WpsOzc+7lrc/W9T8+K376rqPr/fneZYwr/dqrQ+PX2z5kB68e6xWf0/OYkvf+fwmm3Ke2339eWNY7dnyPD1zOp3kFPS8n3amW3nA8rNXX0vdSTngrcez5Ydb/Se8cee7zA22YtjamWrtSWuNa7G5N+6t+RVW/9b52Is3r9VL0vfe/Ggt3mmNdWsuOKeWT/D0uyXWzenVS6vPvXnSUpctW+T16bzPtqyZFgN569TI16tcO82PSvdP00mG08mdC2zlJ8r5yePWW9rVrbk/Kx73sPVc9tS3fKdePa3F4N5296LZRS1mbfmJPXskz5/ner8nZ7d3vWv997blpdeWDqepiM0e/cVTkHmOi7hH82235oFb8ZjI+Vz2+P1evLnK0+Ek4zgs/NNxHGWYdJuTx6ye3KZX/i1njSc3VN7X8rpnvZgen8dLbD09lnl4uJfpfjDteys/qMl8K3+u1V9P+VYbXrti7ZMYr9+7yNvKY5WWXFvOr73z67V/vddau7l9CiHIOI4yz7McDut3gC9fvmh+x6jM+eX6p+V0vOeAFV/m9Uv/o/a9lVY+Ph+DVqfFLXxgi16f1Vt/q5+wR+Zbns85Wp7QKlf7rFHqyxyilDngYRjM7x2U9bXnMYqEYMdaFp4YsPTjWm1tybf20BPDbI0nrD3u0QuvXfHIsm3urvq1N77w2lvvPHvlsc4fT9383OiZey03saVMq/2ect645V3oZV4n97O9nOukMdTX0YqnLXv13Fiy1fzsXrlvkafs3afeLnp8vJLSp7xFTmQ+zjIMo4QgMg7n9sbDQQ6P7d7d3YmE6/fEPNTiC+v9Y4ll28vrOKR71/vjOEqYNuybMEttv+19F9DTlidXmMdgnpj1lvKL2DKW/01OCEGkXMNCxPy7iM+J9t8X1fyMYVjfO8d6t/v/NR+GIdPzZT+j0k/NxrT0qmf+rba8MYn2325ZttvKNXv7LtuzWLe/9OenaZIypWZ957cs0yOnJq93n3va0j6XeNdx6a+I5HOmxUPlWtbG6O1/j7/j6bPuNy7P/zxGbdHzPsTSMctH0r5/2ZKtltvewq1y4VviiFo//rHlffriTXvf1Hu62rr1/aUPtV7vYQiXdw/aWbE3N3aLOq36tXxOLZe4XJe2bFtzGMMwK/Na7cqQdxue3JLWb7JvrX298q0v5UWWfnFczLNl263+9rxX1HJalj3z6JhlV8632rm9cuy9a13T+VJOrVz+/YhUxPt+p9Wnl61nr/ccb/Vbtw3b84Q939e4yqDlnG2/be07fXG5XcQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsAF+BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeFX4EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4VfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnpXDcwvwRSaEcCciXxKR90TkrYi8ijG+eV6pvnOIMXbdT8/meRYRkWGwfyOofBZCqPY1jqPZb+qvvN5LTUZNlnmeV+PIy9XmTSOEsGjPmqO8/Vr/2v1Wm63ntfJ539ZYanPa+lxrS2OLPtf6sz73ovVfG3tN3pq+pM9WW3vnJy+n7cNxHFV5c11srXF5HWO81Mmva3agd73LPr1lavZPq+Oxb2W9vI6nP41yn2qy1HRJmxvv3vWshdcGevdhTed7dONqd65/5xsiIvGijzV7URtba2+Wum/J571vkfeT99XSkZbM2jOtrT1rlNrS9Lq0N7V+WrazrFeb+1Sv3K+WHWz5W5qsvXVqWPprnemt8yyN27OuWt89eq3ZREu+vGyyueW/vTa2Vs9qq+XD7vV3a2dprb+a3ShtUc2uaeMux2Hp6NaYRJOjlFPb7z2+ntZWr77W6LUJrT5DCJt9htRPjy22dLVHhpqv0doLln+axmHZn9RnHoMOw7BoY5omOZ1OIiJyOp3k7du3IiLy+vXry/1huJc3b14+9nmu+/VvvJKHh0Hu7u7kcDink47Hozw8PIiIyMuXL2Wapksf2lycTicZhkGdm1z+2p7MffP8mXVG5dctP0SkXq52Xlp953LW9uii7VEkhOV4xnGUcV7GJZ6z1OyjIu+yvnW/bmN72RK39MpSrqsW560Yl/6ziL4WibTXtszB1nqafezR02GKK30LYVi1OU2T6hPN83y5f4t4Nu+3tF+9aOeyZkPz+x5fI6d11uY6kZ8BVj6gLJ9/Lv08Tc5kf1PfKzshvnGeTqdFmXy/TNMs85z7DrKSS7PJuf5o/k7Nh/fQ8sNCCBIHza/W/S/PuVKjZm9b8Uer/dvk81IffTpvyZLrQmpzGJa2ZGs8l2Odsdr987O8rbPtz/XZinU9fZfPLP/NSz7sml+enpf727LFqZ3WGHt9hMSWsdZk2Wr3NVlLn1SjnB/LV83tcF6vRn5GevHE3fn6t+KcHntxy/dTLbwxohU35GWtdc7PO68f75GvlKXXR7XOq9Y50Gv7rRyYh1vpVKuNW7SlUZ3LcVzts+PxTobo96EtG2GdeZbvk5ez5lxbw/RvzcZp/Xn3XUv/e/2ULbkpq65l8zz5Ny3nsDXX1Tozt/iNW89hra2ePmp48pze9a3l/y3ZbpWjFLF1Z913ePQX0/20R/V4UjvrPbbXqyOt+mXMaPVh9aPt1zhG6VG9MobyrGVvbs2KAXqw1kW1Q6dZznGEbVuSD6LFkMMw3CT2uUX5Wj2P7az1aZ1pLTla9n5Ljsuitg/y/bM1PvH4+uV5nWSYpmmR59FyQ9ZZP89xkbcJIcg0TTJNcbEP82vNN+zxFcu4ybOn8vFan739e6n5ajW/yOMzWbF2PpelHdRs2S187T1+a9mGZ87UHNvOvOlTUM79Mle1LtN7PpXtxZj27zpnvjUW2+unan1q+/Asd3/bW/2zHh/e2+aWOfaefdd7LRuWcu318+DsO8iivXmeJZl5ry7usRHne/vmKW97aw7Js25b98+vBXLfoXX2bP9ezfY52zLf2neWWnjsSslTxLPa/VY8U5Ojx88JIcgwrM/g8v2Fpx8rdkpte9tr5ZlTmzFGiSGuztirrVvi1ZEyJrB89TKe8MSgeZ3lOKPke6alZ1qsEgfdN9Ji9Zo/7u3TIo8jPPVbfe99V2DZO4vFe+jQ7vup32Wc9+iQxfnr/Vq+A/08sFWeLfF93mdvnscrRzkezzvnml3v8T28/uvSdsWFbYrRtuvpntcP7M0T974T0/rx5tw9rGx8ONtfq3puV1tnem3NNBm32EVrzN55Xo/hej3Ps9TM3pZ40ivLLfKSnnzKlv56Y7weOVrlWrnj2ufrrWvOb57r+Zeyn3JvWD7DMJS+/3r/zvPaP0vvOvL+rDy4LaP93OuH35Jt9s5eE8863fL93VKutl2pybenfs43fvOPy6sf+P5mue/9mf9LXn7zm+cPQ2o7zU246G9NLssu1+b4l//+v1emly9l6cuf/z28eSu/4S//r802tH56/BVtb9a+I7cnv1HzFzw5nLNca1lvYZefIm9Txqa3yBO15sxzhu31rTRZRPS4ouXffFHhR1CeiBDCKCK/VUR+i4j8qIj82OO/Pyoi3y3nHz9ZRTUhhCgir0XkMxH5loj8TRH5+ce/n3v896/GGF89/SgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgi8rHP/4V+YH/7acl8EMNAPAO4EdQbkQI4QMR+Yce//5BEfkJEbnTiraakvMPpHxJRL5XRL6ilJlCCP+HiPyl9Bdj/MVNggMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAonN5/T779G39Evvw3f+G5RQGALwD8CMoOQgjfLSL/nIj80yLyO+X6oye1Hzrp/Ykrra2DiPx2EfltIvKvP8ry/4jInxKRPx1j/OudfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs+OQ3/rC8/yu/KsPp0+cWBQC+w+FHUDoJIRzl/KMn/5KI/GNyncPyx0o8P3ai/cBJWc9qJxT1f7OI/CER+UMhhP9TRP6kiPyXMcZfdMjxa54QrlMRY7zcS9flfQ/zPC8+D8Ngls37sZ5rMubtlv3t5Rbt5TJb8tfQ5r82F7X6nudW+XIceTmvPlj9a32WbWrzYH22sOS05rI2xpoup/LlOvX0WT7P59zal63rliyt/Vlbg1Lmw+Gg3tfqe/Sntuaa3OM4NttM7Vj6o8lY07XSXmyxH5otK8c3z/PintZPa600PbOua9R0yrPGvX3W5t+zL3p02MMwDBJCeKwXLm2EEGQYhqadKOWxZNLmspT1Kkc/2vz06oYlv9VmaZN6bH5tDGVb5f6w9nJrrVr1yz1l+Uvefqy5tPqvyeXR/5ruaM88e1q71+tH1s6uvH1tjK12Lbznh9WW9yxorXFJbf/c0g/K71n6W7Px6X457hijTNOk9u85hy0881CzTVvnUutf+1zeK+eulMVz34vXjrb8ldxuaT5jy/ans7JEs1v5vfx+rju1dd5yDrb81GmaLnOUX8/zvJIz2Y+7u7uLL3x3vJOXL5NdCTIMQb73e9+XaTrI8Xi8lDscDvLixYvLdWrrcDhcygzDcLk/juPic/I90rV2xmprqY05ja1VTpu38+O27tX2QlmuRW0Nz//aZ6PW99Y9p/eRt7vsu7UHRNZ7rRYrWmj9lHNQ8y9ae7x1/7JnhrmQ4XFv60fDzdDmxuOP5fsg0Yrbh+l0GW+6HeN8uZf6tfrP77dktGy3ts9ba9jS+ZqfsHxkx0C1s7bl3yZaPlotZ5E/y+cuxnj5nJcpz52747zIcYiIHMaDzPNyrC2btYwfRYYhj+/0OmVuQNPNsu9WbJjbSMt308rn19NpltPplPUp8vDwIPPDUs9bvtIt8gB72vHE4GVf63v+eMnqu1wLLcYIxRL15hvLz944X39mjy/XJUsvSx21zjgRW5c0Wc/lRPJha3NXk9nCe3bkZbfmBb1jLfttldPoifdzannJ1rhrvsueuGVveUsny/Z6/ONWP9az1pno2b9aPlmj5RNYsUWNLTlmL1ZMU8sLe7j1e0VP/quVV9Hw5H9bY7fyhLXYzWhIYsznLUhU4uRaLluT2RuD5LaktWda/ffqqSVj+axlLzx+jFevrTxX2VdNHq1OPhbNh9Rova8q5dmSl+/1KXve09TueZ55sNbDq4u9fqC1x/bmQspc0jQt1/7t27dyfwirnPA0nSSe1mtSlttzhnj1SqvjeR/hYTrMMo7nNtNUjeNBxoOeVy1tWuss8crptTHlPSsHZfWl+fp3MWS5zCghnOQwHiSMQWIUOR7vZJRh1XZtv2tj9N638OQoW2jzVPNPaudYTc5b6ac3t2fZW2/OJh/jOI7ddsfyl2qyaHWtnNHdcZbj8X41lrR3E9p33rT+QwjNfIj2vHVO1+KTss1eP8yDZx3KcrV+vDkrjzy1Mh6fyLv/PbmpspzHfvbam5529ubcynJaUa+Nttb1+rGdnyzrb81naOVLfbFiGq2+tX9b/qV37r2x4pZnmo3w6rqVv1PLj5OEsHy+PDeWcvTms0IIi/Y8sa11DntswjTMRSzsyz9aWHq0dT4SPfGFpa9b9cG6l9Prr9fO+zIu8bA3pnsKyndXvTm4kjTE1lp62tpSbg/ePq7vXdN8LXMNrfyo5TtZMnjyKOW1ZWNS/Jufsddj8XpvmiaZpnaescR65+zxz7w+3NV+9euEtleX3yW4+g5DqMfquY6f36/pz63vq3nn1fsepqZXW8jfO23xHbVYaJ4f50OZk1vv8XN/13PSegc6z7qfbvm5W+T0+ggi1z0aQlBlPs9fNM8zK17slbfnjLXy0q17LV+wx5/Y6+8u7+Vzp697LeeypW8rF3drv6G1rj025Dwv9vO9Oa5aW/M8qzGVNzfg8b2tuCMO6/0xjoOMc/s7RandW8XpPfTmAq2ymq5aOuSxfdrndG/LfOQ2fMuYl3p9zafltrW2ftex+OIZ5enK7gzDvNprqUy6zuVN97Sc3ZYYvMae/I+2Rv25FXtNrO9X7KHmB/T6YFvtQEuvFzHqo+/lI8jXv/Jj8t1/7X8vxrI8Z63+vTnT5Y0UOyrrl33n1ZTYGTu0WY9ly9nukWVPW+86l7A1rrhlPOKztzqlH51sRU/OKq9b++ypf/UxP385oXdN/1v0LyghhL8rhPBHReQXReRPicjvEZGjiOTalP9J9sz6U7ty1iv7i9nznxCRPyIiPx9C+NMhhN+xewIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgC8nbX/+RfPZ93//cYgDAdzj8CEqDEMJPhhD+jIj8DRH5gyLyPaL/8IlI/UdOtB8t6flbiGX0VcpyEJF/VkT+cgjhvwsh/H0bpwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+wHz7x35M4nB8bjEA4DsYfgTFIITwIyGEPykif0VE/hkRGaX9wyci7R8x0X7ApPaXaP1ASl4nf5bu/ZSI/E8hhD8bQvjq5okBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALxzT8U7e/vrf/NxiAMB3MIfnFuDzRgjhKCL/joj8eyLynix/3ORSLLuX3y+f50QR+VUR+ZqIvC7+Pnus81L5+z4R+X4RsX4SS5NBky/d+ydE5HeHEP64iPwHMcZfNtoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuPDw4Y/I8dNflPHtx88tCgB8B8KPoGSEEH5KRP5TEflxsX/8pPzRkfIHT35BRH768e/nReT/E5G/JSJ/K8Z4v0O27xWRHxSR3yAiXxGRnxSRnxCRr4rIl7Kilnz5j6GMIvL7ROT3hhD+iIj8x3tkey5ijDLPs/k8hKBel23k/4qIDMOwqhNjNNvLn+Xt5NciItM02YP5nFDK7HmmzaFGOWeeci1ZtHXw1PeU2VM+xmiOsbctq/2eciEEVTdr+6Kso5Ut5cj3QU1frL1kyVPK4mm3dr9nbbw2xltHk68Xz5zV+uiRT2un1WeyoSWp31b/rfF55mzPPrN0Ke+7Nada/ZZ90sbtkUX7vEWvRESCnGUchmG1jmX7pVyetdLk0s7P2j2PLD3jT/aqJpvWZq4Le/rX9KJHf7W+WueyZbu1z3vPLEsvtevavOX6WMrXOutqMnnua3j13fJXtvab2urZI9rnreeAiG3jW7TmbI9MZVvl5xDCwg/36IlX97fa21Z/5Rq35NliRyzbV9sjHv0t536LHfHodghBxnHsbtcbu9Rk8Yw7kWSs6bvld1ttpvKpnWEYFtdJ3/P5yds6Ho+r8yvt7XEc5eHh4fH6JMPQ57uM4yh3d3eX68PhnHI6HA4XeUpfw6O/5ZyVdb0xhcjy7E7/DsPwqK8iKYVyOBwkKuuXf/buodYY1TGH+SJLXm7rfm+Rz4WM63bzNdtzvu09B632NH+stmfLOkkH8rJJZ4fj0jeO8VGn4+g6y2pnZ0vGsu28D+/c5XqTxllyiEHGMa1vqjesytfyYpZcNR3Nx7MlZ7bPV+2v6/H7a/mQvE7Nd03Xmk5p9qfmH2/JkVl2OJcnPEyLNQshyMPDgzzIvLiX2w2PPGU/+Xin6drnPM9yOp1EROR0Ol3OrnmeL2XS87z/w+Eg812U168eFmfXp59+IsP9IOM4Ls6YdI5pZ5blh3ji+bKtFlvKtnze870o19cda2p6ll/32vLa3ORndMvOWP+WMtbI+6nV6T3zS3+jNkdLGfT7Wh81mbfGWr1xmRWr559r61LuI+tc1OZva/61dt60zuXcB69RjjPV2XpuefyFml60dLzn7E608r978LbRuxdq5Wr05LBqe9bKS1h99dCyFbfG4x/WaOVwWv1uzTUkpnGUEJY6HB7jnZ48Se25Fndq1MayZV09eWGPT1ver9mV1vx4+9vrG3liFU0OLQbsiaFb/XvXzHvtsZGWr+Xda1t8KpHr2WDlcHK26MUiHinm2NpLnrUcZ7nEw4m7uzuZjqG4H+R4vJNR1uPZ4w9rZ5UnH+nJzYjYOlP1Zcf8edtGeXLYW/MGPaS5a8VE+ZxYPs04zRLjOTd3sRcSJcbbnLm1fJZ233NWaGO3/BhLbzz261ZxbklPnuvWfZcyaDkbb6yvldf60D634viSUo7DeJD5UH+HVzuvWj61Zk+0fEkrzrb2Xa6jnr3g3SdaH+W1xRZ988Rt2nz3+AzaPU9M5N0ntZyk1U7tXEv3vfPZc8Zo+3Ut9/JMq+VvLf92qdPpXdK5zWEYLjnEzwMeXbn+Lct5clFb2BuLW2148yQ1av71FKZHf+D63uR0Oq36nedZQtFMeRbM8/yoe8t6KVfQs68sHfXt0yBWLtiq27t+Pb7xnvxI7UzY+p0WD0lnbpnDqbEl1ujllvPlzevVcw7X+97YsbfPPfajZp96bU+yDa19qa1RK9Zr+Zmaj7dtfqNIR71yLN4zvlbem4PbIl9ZXz1nh7UM4zjKOLf3Vip/lPV3dQ+Hg8yHcdO69Pqre99haLTmskYIQYYhyByG1b3z3Na/cyVyHZPXxk1S7qnrd4rTWT7P1/0ao1zejfd+z2GeznXyuTidTnI6rb/Lccs9InL93s+W+MMjV+2ZV78s38djf73j2pub8u/LbXGHh97zx6Nbllwifv+s9Y4ib08r8lR5J01JrvYAACAASURBVKud/L3Q3vF7yp9vl/YqSujwoZ4yN+ahllf05g5yet8Zecdp9VXunVae3dIL615LVVr26nx77R9b89mK669x4FqGmoyWjfW8CxDR/f2e/dUqW8riy4stn+X5kbKOpQ953Rpa/G3lo7S5flfxpla/NmcaMV7LpZpvvvur8v7f/osij3vCezZc23S8swg++Xb10cCzzlvbtvtb4skZreVq50hb/Vp9bKm3t47VjrWfPH3U/OVbjLOcdl++ens+5DuJz08W/hkJIXy/iPwxEfnnRdQfP5HiXirzICJ/UUT+goj8FRH56RjjN55Cxhjjr4rIr4rIz+T3w3nH/JiI/AMi8o+LyE+JyPcpMie58zF8ICJ/WET+lRDCvxFj/PNPITsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8ZzDffSgPX/5RufvWzz23KADwHcYX/kdQQgj/qoj8ERH5stR/7jr98Mkvish/KyJ/XkT+hxjjp08uZIV4/kmfn338+xMiIiGEnxSR3yUiv1dEfnsqKsux5T+G8hUR+bMhhD8nIn8gxvgL70B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Bwyvr2X6cWd+fztRz8uh1e/9A4lAoAvAsNzC/BchBD+nhDC/ywi/5mIfCT2D6AEEflMRP4LEfmdMcYfiTH+/hjjf/3cP4BiEWP8mRjjH40x/g4R+aqI/DER+YacxxLK4o9/QUT+SRH5qyGEfzuEML5LmQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODzwZd/9uf0//o+EUZ5+91ffWfyAMAXg8NzC/CuCSG8FJH/UET+TTmPX/vxk/RDIX9Nzj+S8ic+rz940iLG+NdE5A+GEP59EfkXROQPiMhvT4/zonIe95dE5D8SkX8xhPD7Y4z/y7uUt5cQyt90sZ9pZct7MUaJMV6u83L55/xaRGSaJr/QG9Hk0q6tceb3rXnT5kN7pt0v56jWbm3dtHK1tWjd7+mznM95nkVELv9q5Tx45sU7J6WM3jEPw/o3r8o11ebb6rcmmzYWrX8Lax1aZXNqOjeO4+p+bUzWPFv7o2ddrX2l3dNsQP6sNZZEWouaHWitsch6X+Sfe/dI2b/neW3t9/Rftm3ZIS952TRHW+Tr0SVtv5V9nstov422tC2ajS/bv5VNTP3kfeb3a2tg7RWvbLld6JE7ydXav6XM2hjT5z06V/bZ8hk0evS71b/X32i11bKV6b53jC2s9am12+PbeHzSWpvWedDyBRNpD+dnh9Zere9E7Yy+FeXa9shcW5eajajNZd5268xPc9zjR2llLPtT9uMt773X2tNbfNkcj+3OdcyykbX5KmWs7W/vOMo92Gtv0h4sx9aSRT/LbT9wHMdLmXEc5XA4p39evHgh0zTJ6XS6yJFkOZ1OlzYOh5P8ul/3yaLPH/7hD+R0OsgwDIu20zma9zkMw0WucRwXc2/tn7xOOQe1s1Obox5dHscowxDEs5SWHdf6aclVq3fuZ31vGIZunevdn2mMeTfa/qmNxcqtlPW8dsW7N/M+c9/b44eXZ2X6vDzrzuuS9kDeXq+PbJ1DrbPVu/4ePU19jfOkxHeTTNN2v1CTo5YX0PZs0nmrvDUXt4pNW1h+e37fyuF48x61+uk6z0n2jLdlM/P5T3silbsLkxwOyxjqeDxKPF7v5Wun2U7POVqeHem8iTHKixcvLtctHz0/e6bjLF/74Ot5Kfnggw9lfFjqWnkmae3WqOl7zUZqfdTixl5Sf3NI+YB4sffzPIsoOe58v7XPsfy5vbat3Fbep9fnt/yp8+30LKo2vNZPTwxn5U00yv1cdu/NNbRk2prv8LA3HrTOzpp/kNct+y/tTtluSV4/b8+792tnlEVvDN7Tdo5Hd6zx1vTXel/i6X+v3bJoxU3Ws548Tm+dVv9bZO49k2o21JO/88RiNVp5uj3zarXtzQ3MIUiMSx8/ZnGxR6aWH9XzPkxrZ6uu9a5VmU/S7mvzuicf13NG1q61z73yeM74W+W7PG15+vWc62W/veW98XepI5r+74nxS2pnaC0GbJ1Z4WGSaVqWub+/l4djWN1/eLiX6b7+vj2nFRNY963x5LmNfN5TTJhyfCnnN02TPDw8XJ5dYoHM5pU5vuPxKMP7o7x+/foxJjo/e/PmtRyn42W8lr3J4yhLF3qwzrGabbDI85SaXMt4JIoo70972OPrefW4J4/a8ilugdef7/UVPTmuWpzdG0N5+uqh1y/I92veX2+M7L1fK1vbxzU75sl1bMmH5HhyabV2PfNRm0tPP5ZcNR/ds35bY4S8fs0/3+LLtuiJD3rvW9cxRjW/V8s5t0h5Ji2Hs7W9W+PRlWUu6ir7NE0yDX2y9fro5f6zfIo9e3QLVtwTo0gIIqmra65xKUfLdo2zyDAs7+fvV2vyeGP45t4f0jiSv7HMm+/JOWny5LS+p2i1X3u3V/rMXt1/KnI/7pa6WWvLHo+Vr9fZkuMt7WhvG+W5MwzreSv7yG26d569+dAentKfFknxmu87Rl5qNsr7frvcV9M4X98hjuf1CMMgQ7zGXeGk95Hbfm8cUMvfbMn5WmzZD7n/rk3fPM+m77HWZT3GuZWsuRxP/X2/8v1LwqPPaz8lXP5yvfHESN73SOfvOuVrEeRwOMgwh8c1jDKOy3eL6d348XhcyW+N61xvXvmp4zjKPPvzKK4c66D7WB6/qyePueiz4hve2pZ53n3U+rXiU6+ctn+yL2ftLeeJry08Of5aH7U5tfz7er11f15ZtvlKepme/NHW/PvVvm2n1ndvzqiVKxmGdaxTs3Fb8hRP5Vu1bHHrfss2qjqu+LQh+PNrSxn68k5by2mU7yjy+9bnWp6mdy3KNjz3ffs9b8du0yNzy45O0yznd9G+XEfNpvfY61vljUMIMoT194dzXnz7E/ngb/+SfPpDP5jVi4shn97/Pnn7fa/lg1/6uCpXbf9Ze3EIw+P33tYMYZ0P7N3jfZTxrf7f8W1dH60tq47VhpUjvWUuqCznOa/f9RlwC24hcyu3qPf5tLmIXyvc/s3F55gQwu8Rkf9bRP4tETmKrH4AJWnGfy8ivzvG+NUY438ef43+AEpOjPFtjPGPxxh/h4j8wyLy5x4flRmU9Eb/J0TkL4UQ/pN3KykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8N1/++f9XDm/fVst868f+bpmd/wcPAAAtvlA/giIi/42I/Ca5/vhJ/jOhUUT+jIj8thjj74ox/oXnEfHpiTH+jzHGf0pEvioif1xETqL/GMooIv/au5cQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnpNhmuSjv/Gz1TLTizv51o/+pnck0bsjisjpxQs5vfwueXj/++XhSz8oD+//gLz56CN5ePny8kMFAHBbDs8twDOR//jJSUT+KxH5wzHGv/F8Ir17Yox/XUR+XwjhD4nIvysi/7KIvBTB5gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzRee/rX5f3/s7X5fX3fLdZ5tUP/aB86Zd/Re4+/fQdSnZ7Hl6+lNff973y5qOP5P7LH8p0CPLZD7xalPk7v/VLMsxBwjTJ3bc/vczP+ObN/8/eu8faluT3Xd9aa+9zzj33fbv7dk8/p2e6PU97xmM7toPzcCLMQ44ViCxHRjhCCAUQCYoDCAF/IBwh4YBMFAWBHAECrAQZFAUwAdlJjDBWxpI9ydhj98z09Ew/pqef933PPefsvVbxxz61d63av1/Vr9be595+fD/S7bt2rapf/er1q1/91rqrH5DWhHyw+LB+BMUB6AD8TwD+E+/9Nx+wPg8U7/2rAP4t59xfweJjKP8agP0Hq1UZ5xyccwAA7/0gXbqOifOnZaUy3ns0TaPqockL13Fa3/dygwoEvbQ2nQZaX0j9Hl/n0nLpWp1jZGrjMlanuM3WMQgy0/xxuiardpxz+qfytLFK9R3TV+n90MZSndb+j2WV2pSTJ5XTxgvAYP1LdaVttOhmsR258nE9cX2arSrJ08ZijM2ytj/QNE3Rdof5EvTJrRGtfKqPNpbxda7/Y5mleSG1r2Yua3WUymm6LPrRI/7umYdf1lOqL0epX5umMbez1h6l/ZybC3F9lnme8zlKdkPLU6ovnmPWeSL9ttoUy30rFn8hZzvT3yU/KO0j7Vqb25KO0ryo9Tk1XSW9cnWV0seOq1XWWP/VSm5eAPreNsZvDGVytignx+q75HTQZOauc/WU9puS3qfhs5fI+dRhvNO+6LrOVD6WE/eLdR897fk+Bmnvin+HvknbEX53XbfMM5vN0HUdZrMZAODo6Gh5PZ/PMZ/PAQCTyRwHB/OlPOccrl07RtdN0bYtdnZ2AADT6RSTyeSkzGRwHa/dtm2XctJ5Gt+L07U2W8iVkWyOlLXW3mrzUjsP5mR2XZekuzWfpWYdjj1njy2jxWvi3zk/Lr0/Rr/YRkr2MLULcd92Xbcs0zXdml2YzWboZ6u0eK6X/FeJWH7TNGu/43wl/zaXlsoNspumxSJUumpDfJaP907NRlrWm9auXBu1MtZzq+RvLv6s56tdJ9Z+L/VNrHtsu8K1ZOPTdM1/9b5f2nVg0c7ZfIaumxR957ZtR8ddJF1ysYq4nrAn5PLk/PDcGvTeo5v2a3VMp1O0yMdScvpo9y2+R21sIy4r/S6dUeL1vLKTi3tt26IR9uScToP6JvPotwfg0DSNOqZSW7R7mh23y5V9KauvIJHayLicxXfJzZGw57uMW2o9K4ylZs1Le7olTpKWkcbF4psHuSFvui9bzx1hrmpt185daZla/S1nmxo2lVfT56ctT/PXUt8hLQPkz8Da+hsbr7fYTIu9l+aV1R7XUFu2xmbWnqFysdzSOUqSldsjhv083AMR+b8lXWvXmNVex3K3bRc2IV0XNes/llFK12KDm8Zfx+o4xg/L7R/SfUt7Su2QfBarH5P+LvW5tU9yepd89fTemFgAsNobcvGIZXtnM3TdfJD36OgQh63DfD6PbMcibtbMm8SX1n26OJYZ45xb818kPVO09Rf7MHHbuq4b1BO3P7eW+50eB+1scHZummbxdlVB1zS2EuqpnVc5xtihmNL8DNfh5+CIA2EOGfxey56WniE0m1GzLiUdtTNMTt+c7pY41di1HJe3nMFr7FQun1Rf6RxQOjemsZ8aPUu+2DIf1p/xS/a+Zg5Jdqx0vrpf1PrJ0vqqkZH6arW65dad5Qwd2/EgI97vamyERPwOjnUvrrXhkq+bsyE15wjNj4l9/5jcOTW3flb3humb+PFpnKrky9XFw/Qyi7zrc7G0lrcdbxrTHi3vJn2T9nvoC/mcINvW3NxdjK2UJu/DtWdj+1qN5Q6fE6XyNo1HxDrl/GILtXa1lJ67P3aOW+ZrLp5VW4e2d2h2LydLlpFfr7nnfZb4XUzf92v73LJM9GzhvfgOR8AaQ0zR3gfI9X3OJqR7ilYmp6fkt4rlJ8ByHxHauZCzfu6N3+FJbU3O/lnOHbk0ud/Wzy2WmIqF9PlOaf4u5sIwz2JtjIvjArL+m9qeGjSbobF+jgY8gk3zyz/a/lmSJ7G+fobpXdcBff7fDeTSa+pfjPe6XwHUj2Wu7aH/LHHwVMf4t6aftK412Zp+Y9JyvsLYc4tWd3rPYqvGzJF0P7b4hJqOFj1D+tj+rr23ir2FNZ5nbCylRqcclnVpGZM45rgoY6vbWscmsQHrUtFkW2KOY7H2rfa7Vq+crJKflvZjKitnv4e+kO4jabKB4bt+q3xB9/Wyms6bxPnGnBk3raPeRuTzxLZXmkul+tvewzn7vyGqjQGU7o+JTcX0fY9+uX9Jc2/YN5df/AaOL1/CvJXnjYfD9U88j6u//aWltJxN3TT2FMuIx7J0VtN8pMNLl3DrmadwdOlScif8W7yBFHjv4JsWh5cu4PDSBVz/2LM48847OPfat7F785aop6aTlFfrn9JcsMalNmHTPbdWnxofZaxOUp21e0nq95fiANtYAx9U7u9TqPcGHsAvAfiU9/5f8R/yD6DEeO/f8N7/JQDPAvgFAPcesEqEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQh4gk+NjXPjmt7J5js+dw50nHr8/Cm2J+e4u3v6ez+Ltz3238AGUChxw75GH8fb3fg7vfuZTmO/tbU9JQj5kfNg+gvJ3AHyP9/5f9t6/+KCVea/ivX/be/+XAXwMwF970PoQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHlwnHv9O9i5fSub59azz2C+s3OfNNqMg0cexps/8AUcXr68Vbn3HnkYb/7A9+HuRx7bqlxCPix8qD6C4r3/M97733/Qerxf8N6/6b3/2QetByGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQB4cDcPnrX4fzXs3TtxPcfO7j90+pkdx6+ilc+/Qn0beTU5Hv2wbXP/E8rn/ieei9RQiR+FB9BIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCH1TA/uYufWN7N5Dh55GPeuXLlPGtVz6+mncPPZj8LDnXpddz/yGK5/8rv4IRRCKjidTxMRch/w3sN7D+ccnFtsMuHvEiFfKB/LzNWn1aHVK8lummYtDQC6rhvcA4C+75dlwnVMml8qWyLX5lKeOD3tg7hv0/JxXi1POjalfg/5g5xYnnZdwjqfasvH81XTJx4/q865/i7JqOkjS7+keTTdLDLDWh+jh1RGa6u0nmL7kuqiydHanubNzfGgi7QuSljWa4rVXmjEfZeb9zndwr2+75fycnpp8yLVQRuPTdd3KlOy96U6pLmU3q+xWZa6cji4ZVvSNq3ljcaztH7jMrXk9gjpvnXNpHrl9lMpf1x/re9R0k+a92PWtUbaVov+Y2xRrm+kcZVkxuNa2gdKNibkTf2weCxz/oqkV5qWzovSGhm7vnN9FRP7kQGLzyrJltaIZqPH2K7S3pnKT/NpazRHzlfV6ivpFvLXrpF0LWjnE82nyJ1nau1Hbl3l1mxpjVp0ldLifbtt243s4bb21G2gjbPWr2l613Vivr7vl2tzPp9jPp8DAGazGWaz2TL94OAAt2/fBgAcHBzg+PgYAHD37l1cv34dANC2M/zg910FADRNC+eA3//96+i6Kc6dO4dz584BAPb393H27FkAwLlz5wa6TqfTpX5xW/q+R9u2a/ov6lrYm9JZUGq/ldT2L37n53RNHKCkX7r2RR+h8UAhmF5jbyxrJ1x3TYe+j23PUNYY3yFOj9f1ts7cpfGy2NWmacQxcROHplnNV2Axtxs/3Bu1c55GvI/GMZ90f03Xu8YmfZnTOU6Pz2rxPWsMIa0jtgMBKWYWy6+NldTOMy0uF2SV/BBr/XGZ1B6m9nIymayVS9eu5Jc55zCd9tjZORzou79/FsfHQ720MdL6rm3X29U0DZqm2ejcV2P7rTLTNN+E+GGcXlefdd+p9b1r7bU1X34dOMR7YKkf+r5f86PDdd/EeoUxHbePp3ucNsdLYxH0TWX1vds4FgYM945UN4vvsOzHJp3/wGQyQSvsNVbfP15XVjutYZ3zljNGrR6pjZTGLYxzoOu6rcb9xmCJmQWs59+a/rXUr8UKrGfQ3BlQ8u9zay71iwKaH2RZv2NjwLm9qObcsY05WDo/p0g+3TZiGJY4saRnuNaeu+RkafYsxep7D8o0DZpG9mOy5UaOv7RepH7Krb1SH1h00CjZmdw6GBP/08Zs05jNpmvOGk/T7qfrpHbvtdrhtL6S75jKzY1naVxq+yinV6782LkQ24/Seo7butNMlvGrwP7+Wbh9h7s7x4O+DLGAXLzdut5CvpKupTaU/EFNHymGsYwLTXvc3ZmdyFjk393dQyvomttH4jilRtqXm8actLScHnEscnm26Xt4P4yJLY44Ds7p+0ZuXDT/TLLXufUqjVkqJ5xTSmcS7XxRsw5rz8e5GJ7WR7m9blN/O64jZ8dzY1OqM9YzPZtafGVJh6ZZb1fbtGhb3aZYzqghzfJcsRQPk8rWrvMxe4JlTy3Jr52Laf1pPDGUzfWLRBoHXRtzIbZa0i2WV1tmk7N9ej+3xnL5Atb0xe+yj7vNtmnk4kenEcPQ9p5Nfa1NqZFjyRvb0dh2pXa11AeyT1Z/3tF0bHusnUPbtl3bvzUku1IitnUhppbzUWJqx3vs+8tauW2d73JyxsQPa2Okqe3eNB5tXROr/WaR1rYt2l4fo1y7LDrHebRrSc9txOffK1h8evk86AHDP66r8Ulif8OyX5aew2j1Lc57Ya0tbIk/efYSykjlpHivNLc1f7S0h1t93oWOyZkvk1dj1c6w7lfpEto7m20PONcg3nss8cptkfpiubm7SQyvpnzfe3jXY9W363NKei9yDJrfEI9B05TXXYk4NpqWKcUZNiGIiLsv7sv43y6N6dPcfleKTeb1Pj1fuVRvqkOOdb875F/Y+Jp3KErPEbTYipS/lDfGkneb47DoV2DVV9vzybRzd60sq49cayMlW1byyWt9UKmMtpduI65WE/Mv9VGNPtqesAm16yYdu76X9ioPp7zrkta1OLelcYxVPfLYyX1WsxbS5uZi/rl1UGNvxhDPH2kdlePM+tjk4p9am7W4Y/gt+Zlj2r9JLGoszjk0I/XdufEiZvsfQT/dx3pcZfH7+nMfw6PXr6M56f94vE5z3y/JvvuRx3DrYx8t7krNbIYz717Dzs230TWvoumOgH4ONBM8+qUn0e2ex9HlS7j38MPoJ/n47cFjj2JydISL33pla/YRWF+Xw/m6yn+//awStfrcT/1Df+Xi/LmyAS/4he/FsXivwo+gEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghpIjzPfbe/QoOHvsBNc98bw+3P/oMLr70zfuoWZ7jc+dw4/mPZ/O4rsf5117D+VdeQ9P36KYd2tmdVYZ+hunBXezdPMTZt95G/+JLuP3k47j99FPwmQ/M3Xr6aezeuInd6ze21RxCPrDcn8+EEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5H3P5PAdTO98O5vn9lNPYHb27H3SKI93Dtc+9Ynsh0om9w7x6G9/CRe/9QqavjfJbboOF19+FVd/5x+jPTzSMzrgxnMfh69VnJAPIfwIyvsA59x559xnnXM/7Jz7fufcMw9aJ0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghH052r70A1x3rGZzD9e967j3x4Y9bTz+F2f6+en965y6ufumfYHrv3ij5O3cPcPUffxntsd4fs7P7uPuRx0bJJ+TDxORBK0BknHPPAfjXAfwpAM8J9w8A/AaAXwbwt733B/dXwwePcw4A4L2H936QFtK3XRcA9IUvd0n1lsqU8tWmA0DTNMv7TfRVsrRM3DYN59xAhoa1nRa08YvTc2MctyudF9o9qz7hOq1fmodWPUt6SDKcc6Pm+SZrQ2tz0EfLJ7XTOWdaW5vqm+ql2QvLnLPWaSlvlZvODWmuxO1M50UuPfzW1nc8JiGPNE5pmiTPahubplnq3Lbtmr5BTt/3RZsvrfVYt3gfia9LOkryS+mSfladNZlW+5XWt2pv+HNyHx7atJTWkiZb0y93L06X7K02r0trV6vHsqeleuXkWmx0bs1b7MEm+1V6PydrzF4W6xjPBW0s4/ya/Jy9rp37sXytf0r7fGld5/YUza6k9kjrewuSbUttaA5pLcX2toZ0f091k8bduientj+WK/1O17rFd6rxla3+WckXyPmUNXuNlJ6uuZo1PtZn1tqVpmn9EvsulvPdNn0qoLxHWMc3JjevNP8sV3981kvlxvN/MpkMygVd9vf3l/f29vZweHgIADh37hweeughAMCknePSpeZE1uI8+NGPXsJ83mJnZwe7u7sAgOl0upQV1zmZTJZ9GesVruN2dl0ntiWU1+yI9SylMfacYZ3jJb1CP5TzyfJyvy1nq7iPw7xyzsFN1s//TdOspeXan7Plcf2bxm1S/9ZiG2v9oN7Z+jK+zukSysX7dOh/CWl9WHSX5MXzIpY78f1GY2E9q2g+UayXFkvI1Vuz7jTCnLX2t6RHqf7Uv9X2xFhG27biGTitJ55PscymWT87dfM5uq4R/cf4Onee7mczcTz7fqiX5ItpsqV2af5Kzn7k/IvQB7nprp0749/aetX0GuM7SPXX6JymS+O1sJ02ubF8zb9c1wXwvmzHNBtiWc+leSDZ5LCnSeumxobkxscaCxj6RxjMzdV8tZ/TcnNT0jH1aaQ4oMUn996j7/ts7NBCSX/nnGrvrNT0m6XsWOL4ZynOJM21TXXR9ryaWNDYPReoj8vlKJ0rt0mNzNyZ4TTJ7Tmb2NuaOqX7lrml+YFj+tAew1jVXVNPbZ9Z4hHp3mGtw7L352KO8ZnQep6yxMNye4e0PuLyWrrV19awxoW0PKX8JT2t+pdiayXZWpnSOwW5fSmtR7Id1v4pYTkD5uSXzuJWHSQ/sm0naCcrH0mSrc13a/7a+EUuzfp+Sbrm+raH9/3JvVWZODxiOY+nfpt1LUvyatdriuRD5lisiVS5xX+8X++PVId0HVnPB4PqMn1rmVdj9s8xemo6WuxSToZlLWv2Kq07/W3xH7WxtPhOpX4MaXGMvybGUYo9WvQKcrR6LWcFy/lTioVZ/NOc/qUyufFKZZRs6Zj4k/YcU4uRBVkWu57DGmvT6t/Uv63FaiPifrP0h2yL1tO0/t9kH5Kw2AOrT1WK96fk9HfOoWnW6459Qo30+WTuLwgjYwAAIABJREFUfdT7QfreRdC/bdsqexGztNPTHm077PfFs891n6fp8v2mzUXNR0nnSymOYpmjzbRfk9O2LdreHk+UdAPGj70Wp7P6tZbYcIpljlvZxBaGeOq2CXH/RR2LtK7rgO7+xqdKWOyX9Kz6NPpsG7HF0rzJveeUJlv8vNz+XorRS+/bhj6In0nGMop7sLDfWc8kmr+Ve66UzpF4L4jjFjkWZTy8dzg57A2ec1r9gNV4hXL5Mtq4LNor95l13m8Sy7e8B1KqA5Dfh4yfHW0j/rs4j8t9MjYm1DQNOqy/LxGf/XPjIPl8uTpjWx2XG3smSNsdv4OxkDu8p7z+AmA7+6DlbDImZqCdW3Lla+MRuWcZ9ecDWU5Ot7Hn7pxeY/yhmvxj40/+JM6m1SW1Kx6LOK0UJ8u1QduHrH1kPc/F951LffIGbV8Xu9wES2zNKsMaJ7PWYZlPtb7bpvPX5gecyDs5Z8dinbM981jOaeGsHtdj6cvUnxuOOdD3PtorPNK16L1+prLGcLZJrU+pzcuhjVi9D53WYd2jSnPL+5VvuC0sz1ik/DnqbIAl70lMpT/C3vWvAvihk3pw4nsDYarMLl3EvScex9nXv6PqrPmLqY+zfs9m27vpFHeefnJtrELxZj7DQ7/7FTTHx2u71qIOD0u/TI6OcPkrL+Cdz383vJL/zpNP4Ox33hDvlvb7lHz8eyVzE7sr6bJpnMRyb+wevS1dNpG7KpuPV5d0+DBzOjvNhxzn3Pc75/5d59z/7Jz7defcn6go2zrnfh7AVwD8JQDPA8t/pRz/OQvgxwD8IoBvOef+otv0KRMhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGJgeuc17N64kc1z89mPoptO749CArefegI+8xH9Ky98DZOjo63UtXfzJvbfeEu9P9vfx9HFi1upi5APKpNyFmLFOffnAPwsgM+GJCw+7XTJWH4PwP8O4E9g9Wmf3Od7Qp6HAfwCgJ9yzv2k9/71StUJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghD5BuOoVzLvrdoG921vJ43yx/Nx443l3l8X6Rp5u2J/l7UQawkBHXV6Imbw3e+6X8cF3Kl5L2leuOt6wl0bj04tfx9ud+AGgb8X4/neDmxz+GKy989T5rBnjncPexR9X7uzdv4sy717Za5/lXXsXBY1fhIa+Xe488hL2bN7daJyEfJPgRlC3gnPsMgF8E8IOAYo1s/LcA/uTJdbxDSzK9kOeHAfyWc+6f9t7/wQZ6EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQu4jr//hH0L8fY++8bjz1N1Bnu+4s3DdKlPbdfjN5z69/O098Nrjl9A1iw9S+NbjbiLjzUhG3XdNTucjKKt/Mu0w/OfTSa6TW5LOfeNx5+lVO89/8+9tTz2SZXLvHi68/Apufeyjap67j17F/htvYu/GjfunGIB7Dz+EfjpV7194+ZWt1zm9dw+7N27i8NIl8f7hlSsAXtp6vYR8UJA/p0TMOOd+AsAXMfwASvqBEoucPwPgzyZlHXRvwCX3Q5nHAfxD59wzNfUTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCG1nH/1NUzvHmTz3Piu5+DrvrqzMfcefki918xn2L1+Oh9lOfP2O+q9+Zkz6CeTU6mXkA8CXB0b4Jz70wB+GUB7kmT7zJjMz8Wik3s5WdKHUK4C+N+cc9/vvZ9V6vG+wftVt7iTDU9KS69zcqTfIU1KT3HOiXW1bSvkHtbV9/3a/aZZfadIkuucU/Xy3g/KW2Vq+sVIuqb5U91KdaVY8kvtj39r17X15cqGe3H5MF80mWlerY7cvRLWMtZ5raVr8ymne+1cyM3ZXL9J+bW64zWe65Ox87ikZ80Ya+uv67rlddxnORsR9NPa1bZt0U5JdUr2V1oTko3SCHqEMpr9y+louT+WXD+npP0urZ2QnpsnJRurzX/nHNq2RdM4NM1q32pcAzQOTdOK+5amZzy26bWWP4xDaU3l1pDWztgux+Xj9FSeVE/f96P3yfReTkcLVluW8ws0tL5I81jkanlytlezQ3Fbamxvrq4SaX2WfTwuq62RuIz3frm+cuNq9WNzSGswN0e0ejRbPcaeanOp67rsnmCpK5SP8/Z9j6ZpqnWVZElY54jmY2zqH1htqCVNq1ebp9oc13Tq+97U/jhdmi/SOrOskZxvbtEpvrfpvCphlRv3Uygzn88He3hIn81mODo6AgAcHR3h+PgY7777LgDgzTffxJ07dwAAx8fHODhYBJyn0w4/8sNPnOjeYjqd4IUX3kbf7+DixYu4fPkyAODcuXM4e/YsgIXveHx8vNRrchKQnUZfzA7n1KBnbi8I+pf6xHJuluzq8G83+BJ80zTqmElnv1z9GqFdui0IYxzlr5h2JT9K6lfnHLqmM60Zy9lMyldKH0ONz5azHdY0YP3Mldu747lmiTnFv6U1bSHOG3RV7dB8dZaU2hufwaxo7czNe6ucXL7SXuOcW+5J8f8FIufvxn1ZM88l26Zd5+ZoehYOafG+FLc/rje2f+Hvnd1duGQuWOxozGQyWZYJqrft+jkybaPmR0vXEjXnbo3O9SdnvSit64GuPL4WH31MDM9CzuZuYme9x6AvpPN0Wl/+fL68gnNA0zg1Li7VaaljWJ+8Jw/t7qC2ZT45b3kOjonnleZL3/fo+3hMV2PQNI35fKjZK2lcpfaW/NU0zpKmS/YqLa/91mIAlnWf83kse2fw7zW9AjVxTE1XCav/YY3LWtpsPbOO8dfis9KYPqs9Z9XoWKtPuqZqbHyY02N93m36ylbG6nu/dLX40Vre9f0ivre+75Xq1WLbtWfDbcf/4rSS3zUWbR+07I+anxuQfK4QQ5CojfPkzgrpWIzxSwK5/dgSD9bm46Z+R+xTSH2v+YGSDjmbaNlLrGf4tM/ivtXOGpYzfJyn7QHn4jnmT2JC6fo+eWaUbFNpvWP2vtx8q917LL81HZfj2riTPrE9/0rTNH9RKivNt7GxB0knbV5YzqaLn9Jcd9m4Ya4Oidp4mhWLHRvT92P2Esu6qLHRcZ6a/SeUj89hY/aYMXZNyqvtcTlbp9Xn3OLs3fb5GKDl3GvRfWx62uaaOFDQvXTu084T6dlaIxfLsvRdbh+N5Vjmr3WN1vS/pk8pXTu/bwtLPEA7n6djvt6v5XhxfF3jX5ewxBesZ+Axz+Vzsb30XBSn58rG76VJvy26SNTE3E7rrJO2ufP9SftW6fP5fBDDA076oM/vdV3Xwft+La0zuo61Z01Rh6ZfWxNd1wHdMCZU8qutjJnnQadc3WPjc1Y9cnly+0K8v2u+h2WP2DYhvjy232ptT81cHeq0siWxr4aRz0hrSO2zJT6U6rIt3byvj0GmusV22dKWdF5L+1Wsk9jWQnwrNy82jUdbfHpRpyZet3I8Kr6uPQOkOllsYtoXi+dG5f7YxC7m0PpjjC2tXSPLd3bX4nWNatM2XYeblJfWUGz707FtmvX5Y7HV6f3iemndWnwrPjda5Gwaj8xRGw/JnUNqfUctfdNYzvr5oy62YK0nLj8mjpb6/ZYYjNb/1jOzbmOH+o15Z9JSv7bfbPscUc671GiZFvb/+4W03yz+XvdBpLRUlmUtW2LeublnkaPt16V5aYnH5JBjygCidz6lc7bd3gz7eajuesxj8TuS7dzg92J7jc4l7qR8UqTOrvvk7xw2uXH1wVcrlc+p7JxfU086u62XK8fAQh55/un1lWSGMhIWneK/t0f9GDvn0AC4/LUX8dbnv0ccQueA+f4Z3H7maVx8+RVZqhAn1Zpnis8CODx5/11i78ZNNAUZLllfep6hjdq7eSs7X2cXzmNvSx9gKc2F2nh56V7u395Y5236W3qOIp2vtrmXnlbsZqXj+n5Wilnf53DSe5bTOf1+CHDOfQ+AX8LiAyjBgyhbMVnWPwvgk1jzOgBg8GEV6Y92WvosgP+wVhdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIaSG3Vu3cO47b2Tz3H76SczOnLkv+szO7qOfTtT7u7dun1rdk4MDNHP9o8Kz/f1Tq5uQ9zv6qiUqzrkWwH8H4AyGHykB1j9vZfkoyr8qpMUfVfk2gJ8D8CsA3gbwGIAfBPBvAPjjWP94Svj9l51zf917/65BB0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgD4vHf/EeD3920Q+/fHqQ99sVH0M7a5e+d2Rx/+HdeHuSZf+EZHJ98/KGbduj+0NtwTpdRwvv0n0/rOGf5p9XDfDXyNUI7yYPl4kvfxL2HrqDb3RHv+6bB9eefw9Uv/+6p6zI7dy57v5nNTq1uB2By7x6Oz8s6zO/Th2AIeT/Cj6CM42cAfC/0D6A4AK8C+B8B/DqAL2qCnHPnAPw4hh9PCR8x8QC+BuCPee/fiu6/cvLnl51z/w6An8fwoylB1j6APw/gP61tICGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeT+0a59lKFD0x+v5WlnffR7jp0jIc/ynxsvZMTfJklllHg/fARF6ity/2m6Dpe+8RLe/fQn1TxHly/i7qNXcfbNt9Q822C2v5+9f5ofQQGAyb1D9SMo3Y78kRhCCD+CMpZ/H8MPnsTXRwD+IwB/zXs/N8j6cQC7GH74JOAB/FTyAZQB3vv/3Dn3JIC/GMlAdP0z+IB+BMU5h8lksubYxE6P5ijFZbz3y9+ak+S9V2XVpsf1xHmapsnWL91L0/p+6HA2TbOWHtIsaG1o2/Wv+5V0idsstWVTp1aaByFvPH5peUme1N/a2Eh6h7qlcc7J0mRa5pJFrzS/tY1p/1lkB6T5ZtE5p6eUP5dPyjs2jwWpX0t9ZrFbEvEcn0zWt3TN1lnrSvNr9iOdF7Feqbyaw2hsR9Ky8XXODm8yrrk1kcMynrGN0Oxlbb0lXWKavof3wECkW/xH67fYRmq2PDdHYjnpHCm1LXc/ZyMse6eWlrPjlnpiuZuOqWbvJLtp8UviesOYlXTV9tEULU1as5LtSOeZJEvbuzfRJUZaA6X2S36cNj6WcU/tXa29tuyjWn5JR8mux/6gxSbn9NFsR2ofc2h5+74X72k6O+fQdd1a+lgs/lZqb6zrOGerU7nWMjX2OJ4XpbFK/eO4fM73HWP/pTyabxLStD1ZI5cvns9jzoqpXY71lOrXfCTv/VLWmTNnsLu7CwA4Pj7GbDbDhQsXAACPP/44jo8XQf67d+/i8PBwoSOOcPXqQs+u69E0DZ58chdHRw5t2w7aGdbMLAr+Nk0zOI+GNvd9P7CZaV9I9iBeFyU/q+YhyHofD++l/Vwqb9E5zVN7nkvbP8bfLfZLE2zF+IdIzjlT7CG3P9b6HFZbGutlsREl3dPfaXoaj9HmsGYLvffLNVajY5wvLi/V13qPMN7SGbA2pqTZyK2eZyp8B3luOcSic3NG83lK+ub81Fz8Ize3QvvieRGn932P+Xy+TJ9M5jg4OACwmgevvz7HfN4O5kWIJ7Rtu5Q1mUwwnU4BrM/dMz2We8dJi3BwcIBub0ec19J41cQnS9TsB4ux1uXU7t3aPlYz30v6x+TOglI+TVYY0/hW0zTL+Z47w+p9AaweTYS56dEYfU1NdslXzO2DE78+19q2UWPbFv9UKldKK/qiDdA0LvJF/NIeWM/o6fzVYrKSbZLqqTmLpWj+cKlftfG3nKG0WEGsS65NY56f5NaZxWctxWHSsmnsVypfM26a320hN1/i/SXsSVIZrc7a9ZaTl86LWB+LLrn7uX1Gk1eK3Y2l5GtY8kv3LGer2jGx3rfGmXJ7d85GxGcd70/mcOIzW9ZmLq4vnd3SdIudr6F0BpX03IQxMQ+rHtJ6SfdTSzyrZi1I+3VtjDWtM7en1PZTTbwjrsNqIyz6lNbjGKzrQDsnWc/zWl+s1x98sPXybdui7Yf+/qaxqVIezXZI5cfYd7m+9bbFZwVNxxyar5aW35Z9SuWl9dWsoaV60Xmn73u4gtu1Dd/ntLHOGY0x+0CuTDxemh9Vq09uvNNYh0VPTaeavrT47CXfK9iu2AYunoUN67DOr1y+OMafe/YhrWvLeTlXf7qPjpkXWt70TClR8jOl3xYbk/PZcnql/m2JOlu3bout7bfm0+pOy1h82k1iFmPOJzFxs5zL+zJaeqz/pj61pT5j6WxbxlDThlxcyzrem55P5bm9+T69ivEtUwCEdxj08dfiC2P6JpEu1hP7epvOv7S89IxFe8d5oOlIX1urQ8Mam3Nu9eyzxleQ9kWLvU8ZM97BRyj5roHYP/LeD9q7iU0L8rRy8RoJImKbdL98Zq2P0/mZezeyxo42jU/m2GK9pGcvy7PPWAfpfu4cWdK5+F6r4t/Fe7p1DC3PFuJr7Zya1RerOefcas5p8bsx9H2PFrK9HmPHNdsT1njIE19rej0IpDaX+iGem4v4rQf6fvH8oese2FlaWi65mIe0xqS0cJ7LtatT2p1/R02Oiaf65KiJI6ZxmFy/WM4R1hjKmOd6VrT2S+lt7+FcrIs/sTO2eH3uvJzzF7Ty24gJSPWl6ZuUj4umdnhT/34MY+ZIXWwC0NZiLGsb8VLrWXPV5x6SzbDG71NbpMUwcnNGSreet7d9hhkjyzq+6XVM30v7Rm4/kfTI1bM6+6/Gfri/xf5FjLWPLP1aOoNtEvPbRh7N99SonT8l21nT/lx/bXOOb4v9t9/B3Xev4d6VK8u0VLUbH3sWe+9eQ5u8a7LNNnQn79JrvPPdnynK6BuPW0/dHaS91p5Fo8R6SoTh6qb37zMPY87d6R4Vl5feUbboUEpPx39MPQ+SMbGN9TMFTmRsVbX3Hdt72/hDgnPuhwA8H34Cgw+g9AB+xnv/X3jbB1AA4E9J1ZzI/RXv/ZcNMv49AN85uU490Oedc88ZdSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkZz+evfQJP5iEW/M8XNj330VHXodndOVf4meMOHHgn5sMKPoNTzLwpp4aMlf8N7/8tWQW7xGZ8fg/7Jt//eIsd7fwzgv4T++fE/btWJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggZy+ToCBe+9XI2z93HHsPRhQunpkM/mZya7E3p+REUQlT4EZR6/kh0HX+8ZAbgP6uU9QUAD51chw+pBO4B+HsVsn4pKp9+VOXzlXoRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGjOPfat7Fz+7aewQHXv+s5eOdOpX7fvHc/peDb965uhDxo3rufL3oP4pybAPheDD8yEj5e8n9671+vFPmjUjUn8v6+9/7QKsh7/7pz7p9g8cGT9CMon6zU632N91681vLEuMwmKd3T5JTu1dRRQ6t89StND7p1XWeWHcrU6KjlzckI9XjvxT703i/Lx9dBbvw7lpWmab8lORqbjldp/tToMHa+aX2TWztan0nXaX7tOm1r+J3qmNNFus6VT+tJZed+l9K1PBZdpHmtydrE3sX3xqzVXL6+76v0SJHKW9dlkxxKJFklrGM2Vq5zDn3fq+NsaWfteKfpfd/D+/DHL9N65zCfz4B5vt3p/JPWknX+pHNekyulW9ZUThdprW9i28fYjpxuUjtz8zOdVxJN06g2stY/ktZlTZulPaVUPi4zdu8bs8Zq69L2H2v/5OqXbHeurr7v12xjKF+7dsfY1Fhmbr1bZDdNs8wXtynVP50jcV6pvFZ3adxr/UVtveRsj3bPOo9z67fGj9D8bGDYl5p/EtIlGWn/l/aX9N7YvVoqZ5kXJVmaH1SzL0r6lc5JKcHfABbnvtlsBgA4PDxc/gGAu3fv4ubNmwCAa9eu4datWwCA2ew2/ug/9cRA5h/8wbdxcLCQubu7CwC4cOECLl26BAC4ePEizp8/DwDY29vDmTNnAAD7+/uYTqcAgMnJV7TD303TDMYyXqPaGVyzKXE/pX0hlY/vp1U550TbuW20edG7HovwUKDsC6R9E6/f0BbLPijd7/sernfq/iat1bH7YCmvZhfSusNcinW2xCLS353rZJ/Ly3Mv3We0/SrOK6XF5UJMJ7U1Odml2Ehcl4vmmzTGoR6LXczZ9DFY/Ob4nrRug05jdcnZnBSLDQo6SXY97r+QJ6TFZeLrruswn88BALPZbJl/Pp+jccc4OLg3qOfGjUMcHzeDPgtzrGmapb3u+34pt21bTCaTZb6u8whNdW5lZ7qojbG9Kfkk0m/ZVudlmPbHSbc2TyaTFq1fj6lucjasOQ+U/C2r35bTWT5vLMYx3FrYenm95PabQN8vZObqLo1RzTq1+ADNvIP3sV1yJ22W6ymdCyzzUCLE4DUbsVifQNx/pfO21Se06pieWzbxgyx9tGn8RJqTpT0j3TfTOi16W3yeNG6h+lYZGZpPl9aTpsc+nyS3RMln0mIIkq+iybbopa3F0vmglH8Tu57DKleL8+XOvXE+rb7a2GKNzqX8WvrYs7Um12IjSvPPEuOxxEByemr9nVvLOZ0lXTadx9qa0WI2EmPjVKlcix2M7wUdtfotY2zVuebsmqurJCfXzlydpXOHJd2C1Xeo9Utq9laL/hZbUBP/Db7Z8JY/8ZfzcaacvdikLZZriw6WdClOFsu12uj0XjwGIT1+XhWo8UOtdstSPpah9UGgaZqinpZxKPl30lqwtlNbl1qczOoraPOv5KtLvy12OWf7pXwS6VhZ9mRTfMHQR9I9yxwvPWOQ+sRqZzS94jiRRE7vWrudK1/KV/JvNbucpud8VOk8Fqdr+aV6Uj20tNJZQSpnlZnTN6ffNnyLMXa61m/O1bm4Pp1zIIBljMliG3UZde+npM/UaomfmzRNXO8iFjSJ/k+48TopnfFqfFbLGG/jHLlJ+dW42uJXJbnBt8gVj/slPUNqZ6Dc85BU9qo9cj9Z+rzWzwTWn/eGa+0d57G+rla39q6Mll6iZm4G+Vo7tDUWE6+ZnL5Lu9CMjwsC498HsmCPG8TXwz1vk73JOt65Z7fbJn7WF6f1fbk9YQ3FcWatjdKz25q4R/qeIQB0kx5tG56FL+xU07ZoT2xMO5lgCnmda2ei04rdSsRrJa4/TrPOGUlWfGYs2cjF3x7ONYj3HencKY1PHJuveaZ/P9l0XTkX/7GdD6Xfmt+V7r2xjq5fXS/ur/sLcdlg37PvJ/h+8G93vPc4OjzE8axZa1/btuJcSs820p4jtSmkpbFU6/nYusdsI348Rkdt7CUZFp9Ui9to7e+6xfv4wzJyXZZ5XBtzzcVgcmVKOpV0KPmI+TgJBjG4ki+YI3fWsM4/LbaQUnOGHtCk7wIOy4/ZC0vz2rpeg509SQXg0LaN6renaGMnrcOxvp31PGml9jwu6TOgxcl+vqJpnHouEOMzTbqOV/tfKmNxGcu0tMUJc83BuaEPYnn2P9A7E/OtPePl+sm6v6zvh8D6+V7fCyztzu1Xw3jCuv61e2JaZpvn5nz9ed3ksZN9jxjnHBrncOXrL+LNL3we2tydnd3H7SefwIVXX9v+WeGUzx5y35XG5USnLdi60rqKsZx7cj6mZJ/Gxo9z97c1rzdljH9SO47yWTXUXyXqAwc/EVTHkwB2Tq7TWfgbI+T9aOber46Q96XkdzhxPyHkJYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCToWdO3dx/rXXs3luPfM05if/s86t8p7+ksT9+zgkIe83JuUsJOKZzL1/VCPILT7z9iPQP+c05iMoX1fSr46QRQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEjObCt17GvUcexnxP/tCJbxtcf/45PPJ7X9lqvU3XZe9f+erXix9K6SY9ZmeuDdIuf+0K2nkDL5QtfXYlfPrEvac/0ELIg4UfQanjYuZe/hNU63wvgPNY2DKHoU1703v/1Up5AHBTST8zQhYhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEDKapu9x6esv4p3v/oya5/Chyzh4+CHsv/Pu9uqdz7P3z7z9TvFDKd20w/TOW4O0s2/N0M5a+SMohY+bOOey9wkhQPOgFXifcTZz70alrD8mpIWPofw/lbICMyV9Z6Q8QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkNGeuXcf+W29n89x47uPo23ZrdbZHR9n7/WSytboIIduDK7OOPnPvVqUs6SMogV+vlBW4rKTnP1P1Pif+4lX8daz0S1nhd5qe+2KWJq/0Fa6cjpa6SvX0/WIqNo3+HSOtX+LyOWLZfd8v5TVNI5bX0mtI6wxY+9t7X9TBObe1r6R570fNv23NH61u51y2Dm2u5cpIdVnaWyLIjedYWj4es5yeIT2WE+aD1IeprNp1qs2lkpza8deI10s85rm1v+35F49LWk9JTjpP4+ucbYuR1nvf94PymixtnaRzcZtfVWyTw1dufgYs41W73ld1Lv6E6hdjuuiz0G/SvCpRs15Lesb2xiLXMnZp+U3295IOsdycPlr9NfqktjnnQ+TGs2asSzZGGo907aU2q8Yf0uSXdN6WHY51S9ul+SMWP1SaL7V2KZaR2h5JnxpfMWdXNTb1ESU5sb3X1lHqM6flS9Ts6WP9/VodSnMmt8ZSObFdta6hQNM0g/LSniaNi+YjaGspR21/5tZfPK9DvnSu5+aZJkuqq0ZHaZ4GOxb3aRd9dTqk930vXjdNg7ZtMZ1OAQD7+/vLsmfQ/cpYAAAgAElEQVTOnMFjjz0GAGibGa5cGbbh+ef3cXTkBuXOnDmDyUnQdzqdYm9vDwCwt7e3TJf6J54zpfHP2cDUR9Cu0zKxvEV/Yi2PZY6NGdtUL+1MkabHPloqUyqzuR87HLdQd+m8kUPT3yrHaiOsfZHmEXVqgbS4ND5xzCSVYx3jUD4mnovxWg6/B7qeyE11kNronFv6CE3n1/qiadrl/VAm9ik0m9q27VqbNR+pNJY5OV3ma/vaeLdtu7TZNcuj5F9reUrnodAXaZ+k6UHG8fEx5if/J4I43/Hx8aCeefR/K9jZm2BnZ/ht7EsXz6Drp8vxbNt2Oe/adjXuYb8AVvM19O3OrIts/ELudDqFn6zmSOwr1PoZKfEaCFjOVzFB/xqbbxn7tA7ptyVGkisv5bPGXWy6yHXEaGeAwZxvPOK9Y/Gtd1luyaet8QdzMlexjyBv5UeV6tD2Ecs8THUM5PbxE4nZ8qXzpGW/y+lpySeNUS4eEc/Xkq9rjQdKWPS32iBLnC6dQ5Y9IndmyJ2jSuMqzYtcTCjVQZpHWtty++/9xjJfap+DSeVr5qU19jHGZx+zh+bqOY12pXPF4uNb419W+yattzTNn1L8Jib2x6V9Slq/NWMsxbmsz4vT+qW2luLHFjQ7MuacXd4/5XJSes4/1/KMWbPaeb/st4yTO0ZWLM9CzZyw9LPlXjpHLXt0jHbmT8+ofT/c3+bzObrOnayFdVlyXGl9DqV76qZ7es6ebIOhn1POpyHpF58na+ZHKWaY5tFiLTms5z6HuliCRY80zhPrFPtd8Xs4uTkV+3eaLYvnq7aPSjKk+iUZJeJYQVy+5MOW1k/t+tLSNrlXsv05PVO5aUwO0OfLWFJdcs8SA7lYnVZHbi6W5k/OLtaex8eOiyX+NMZvjdNq22XVTTvb5WIi1jiDhnYGSPurZh6UdI6RbJcUi3CZI06tv5HatTGxjdi/196bjKk9m2s2sO/Xx0t7H1T6ndtHYlKZ2/RfxpA7N8qk+nolvcyiykW5pmmWMfYx72Zo60ey5957oHVwzjY/a/eb3FoeE//b1rslJXnbrkeSn4sBamOV21dKfpxUNn7Gexpt3sY744G4Wc451f5YSHUao+Mm76/WkO4jlvHS3pktsRYny/hqmo5D4ucvK9L3iTQd4jlf++wlliHVkyP4CLFdTvVP85dkpWmxv5G+551eL/yjlS7eD32mgPVcs8mzltPE6md1mX+qFfuFqa+r+zzyeTam91J8aAZ0Ezjn1HHu+/XYjXNu8Iw9xjmH6bRf2wP2zpxBO5HniQVLnDgWWXu2K+Xb1L8rxYzCvdI5wnqeybVfS7fEjGvOElos0xKz0ZDaP/YMbaUUM9V009ItflAO7axiwTJGQbbUbsveucpTF6fKybSmSXUN24EoJry46Pvyv8vT6rW0x7L2auNQpXpy+bU1b3kXeLUPhfmQptv0SmPzzg3n3OB5WePXznjpu6U2n2B97teem3NrXpujaVw/rmdb+8qSFmt91bYN2n49BhuT00VrYzjHrPasobyirsq9sXuw5jfF5fU26nKlcovf62mW8bz04ks4vHJ57eMjQdX5zg5ufPRpXH7xpYV/52PfTF6PuXrbw/WPoMRd3O1MMSl8KCXHGNu8TaSxSau3jo0m736xzWcipXpCXanvH2zWGJ9Z8jvDba0bJZ/kPnXDe5735kn3vcv1zL09qxC32EH/CCQPdsGvV+gUc0VJPxwpjxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII2Yh2NsPFl76VzXP3icdxfO7cVuqb3r2bvT/bUj2EkO3Cj6DUkfsIyqUKOd8X5U8/hfum9/6rtYqd8LiSntObEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgg5Vc5+5w3s3rip3vdwuP6J5+Hd5nXt3L6TvX98nh9BIeS9yORBK/A+453MvU8CeN0o5yeEtPAxlH9Yq1TEj2D4QZUg840NZBJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRvhAFz+2ot48/u/AN/IXzo5PncOd554fOO6JkdHmNw7xPzMnnj/6NKljevQ6CYTfOeHf1Bt49UvfRm7t26dWv2EvJ/hR1Aq8N5/0zl3A8BFDD82AgA/DOAflGQ45xyAnxbKB35tjG7OuScBPHsiN3z8JPDNMTLf63jv0XVdNs+iu4fXcVqQE9K8Hw5LmreULuloxTmn1p/W1zRNURfv/VKeVr7ve1Wf+F5cn/RbSs/JttSZIx6v9Dpua9yf4dp7P6hH66NNxzhNj39bZZfqicdYolRPuj7iPsrpH5eR1liJuB5rWalMTDqmOXnxupLmS9/3G639mrkvzeVSPXFfhHyaLdTmTUknqf7SnK6xd8Cin7S+CrZEG580X66ONO8Y26RRql/TRSov3U9tWG4Mavo/7J9BZigarlfpsvzcPqrlLa1LSzu0sbPu47G9r52vmo7aPp1i3WPG2FRJr/C7Zo5IOkq2V5Mj9YVUrmka1Q7n2qOlW/er2j3Hso+PWYM141qSn5tH0jrN1ZHmb9tWrEeTG6/D0h4mreWSbZbsbdxOrX0l2y+1vzRXNvXJJJljfMO0vHQ+SNul9X9Myd5L+3FcrtQXqd6la0036bclfZO+1nRM56c2R6w+SKn/0n1a2/uaphms5VB/0zSYTqfL37PZbJnPOYfZbLZIxyG83xnUcXR0jMNDj6ZplmnHx8fY399f1jOZLMJMh4eH2NnZWcoN6cEHCcQ6xmPU9/2yb62+svV8otk+S76xfoRmZ6TfIU3Kp629VLec77Hp2VTCeoZM69w05lLrO2k6Oueya3TYf/JZMifbokvOJsZ+VKktgdLeF9N0c3gf8oc12KHrVvZEK5vKDX0T5x17Bhs7PzU9w7k5PgOV6i3ti1KeeLzSMQt9oZ2hUv8vPjfH+/18Pl+mTyaTZbmu6zCdTpf524mHc8fL3845TKZTuG4yOHfH19peP2DWrcUhjo6OMMdU9PUl/1Q698e/pTWhncFLvnr8Ozf2NX5MWl9ap1VW2qYa/1Oq32J7V3nXZdb6V8M8AJaPJGx7rCU9bWPurJNeL/yO4VxerCuX9RtSOxZfW2JBqSxpXqbxkrhZcTfkbH+uXi09N580/1IqWxMH0fos9QO1ukp65WILmk7xb2v7U/3SuKN2Jo7Xq1aHdY+VsJ7/g545WaG89eyT09eaHlOKn1liG+l6HRtLltJKMYZ4Hmg65uqqodSWdD5qNk1jjH6l8bsfaDEX3S4DwLptK62R0rW13Nhz2pjY2lhy+0aM9TxqtddanMnin9fYxZKOad3pHLHMGY0xsQXtbJbzXeI8lrQc2jzOtaU2/mepU5oH1hhPmndxbmvjnJhOp5hPHNp2/f0IyzsScZ01fSy1pXbv1c4k2jhJ63W4nw3P+tY25PTUdNGeAaTXJTucxidyaPNicZ2Udcv/FGXX7AnSuHvvs37F2HrTeqTfY+vJ+erxWtDiYaHNuTya/FIe7b4eN1jXt6ZvpZhPyadPzxelPpbuL866db5+TIjzaHYn52tYz63WPdriU9ecqUpytfKpf5ObvyV7VdKlxl6VZGllcnuK1s7S3LXqkkvX5qXke0mycjYjjbes0ur3tFVfxGmbzcWQN46zlvz6vu9H+ZE6w/GO49cWnTaZG1afdQzpXjsmpta2LZxr1DRNZhp7WexxXtTDco6Ln5daz0BSHmt6CakuS4x7W/Vr5GycFhvS3uNL829y3k7Laj5vbazBkh6u+76HE5pQ885jaW+T3lWRfCKNtm3RJP8ALH3XwULqU2l6Wsf0tGItQZemWfc1w/OLTSmdE+P5USoj0aM/2b8cgNW7SEH3+WyGrlu8H1LyVSzzpPZMoM2/OG8qMrf3SbYjpHWoe99N8/Vzfb6JzbT0nfWMV/NuX9pPQaZpXWWWfuzLaftiegbT7F1cvpv2azZnOt1Bi0XZtseaXxB0Kfn20m/NPwlzt9ZPssWP1uuyyK6h5Jtr9yR7kDvvb0tfC5YzySo9Xlfr90vjOibGWqK2ryS7kPPlNZ3jtZ73x232TTs35vYYq+20ypXiRjkdCrVG5e3+vLVNWpn8uhqedwGHppFtqBaTrT13ab+1GLeme06vsZTWZil+GX7mnilI+CbMr/LaOimxppfeD+tjtbge3u97D1fhB0txkdK6Ok07ro9XnG6Ly1ltdFrXsF9XsiwxQ434fe0aHvQ+Wsv03j2cf/VV3HrmaQDrcTgAuPPsswCCz7S6H/JaY397167jzhMfweq5z+re/MwZHF+8qH6MZIw9Dty9+gh659aWuXOA63tM79wxyZbI+/fLKwD5f8tpqSOXvo2YX8nXqJVp2SO2ZaesZYMawW68l9fmewX7jkoCX0S66y1+/1lj+X8BwLNRuZRfHanXn8vc+8pImYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyNa48PKrmBzcU+/3kxb9yf+QcxP233ore//ORx7duI6Uvmlw56kn1fu712+gOcWPcRLyfocfQann/4uu48+sfdo599O5gs65CwD+KobfbPJYfQzld733r9UqdCL3Z7H2LaglX6yVSQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEbBvnPS5/7UX9X8dvid1btzG9e6DeP3j0Ko7Pndtqnbc++jTmu7vq/XPfeWOr9RHyQYMfQannb2FlTuO/HYD/yjn3fVIh59wegF8C8GxISrJ4AP/LSJ3+BoDLkdzY3B8C+H9HyiWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQrbK3s2bOPvG6X8Q5Pwrr6r3PByuPf9xeJf+0/9x3HvoCu489aR6f3r3AHvvXttKXYR8UOFHUCrx3n8DwP+F1UdMwt8ewAUAv+Gc+znn3KecczvOuUeccz8J4IsA/nmsPpgSyiC6/lu1+jjn/jqAfymRG/TyAH7Fe39UK5cQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDktLr70LTTHs1OtY/+ttzG9e1e9f3z+PN799CcH//B/DAePPIx3P/0peOgfVLn4zW9l7hJCAGDyoBV4n/ILAP656Hf8UZNdAP/ByR8oedJ0D+Dvn3xgxYRz7scA/McAfrCQ9RetMt9vOOfQNMPv+Hgvby9xeprHObdMc8lXutLfqYxUllZ/6V6JbciN2xKu0/5L5YXrvu8HeaRyaR1t25r0DGXS+33fjxpPS39IfZFeS7/TOmrqjmXF+SzpteU1/VKktSDVnRLGv9Q/8e8wh6x9pKXF6zUmnW+lNqS6xjKbpjHNvZLMWuJyuf4qrSXnXHZe1+pkmefxGOeIx8k5t/Y7rcNqt+Iymi4l/Up9La27WpmWPopJ25/ay3jMg+zceA/neQfngEF2v/hPady99wN90utSWzS5IV/Oxtekx/2i2TvpurSGpbaU7HJObmlNp7/H7A8WvXP3UrtSyl8iXgu17dHyS3ajtF9Lcz3OE8u27FEatftCbj2ladIcy9nQtGxNH4cycb/k+rLW5uUIsuI9IDd+VqzzutYujNl7c+vXUqbrurW0+Lc2j0N9Uv3W/q2xF5rseG+V8tSMhcUOjzlDpdTKC/NXWhuaLK0PYhnxWpjP58u5EF8fHR3h4OAAAHB4eIjDw0O88847AIAXXngBs9l6sHh/v8H1608M0l555ds4OFjXfzqdAgAef/xxXL16FQBw9uzZZZvPnj271PHMmTNq+dw5U9sfYsbaW+1e6bxcU2fOJpd9fnkdh99Bz9w6l3SJ506+nM3vyvlUm5xJ0jq1Pk/XVs0+mt6P+1Ky8U3TDM6N0lrd5j4Yz0XNhmj2bhtjUdsWTd80XTvj1e6r6dxP95S1cZ44NM3wO9Jt26Lth3GFFMuZJrXPORnaeU7rj3icJ5MJJpPJMj3uyzj/7q7H7m43kHXu7FnMu4l63s6d88LfO22H6TQ8Vlik7e/vY7Yzya6d3G+JnF9TkqWl+cYPzsHehz/r5+wxPlksR+sLrV1WvyPNG1+n/rJFVgnreXYxR8OvHoBcznpWLY1rGpuQmPh1GzOZtOhP1o/Vb93kPC3FU9I6olpP0odts5zbcvWXfGlpH7fKtrANfyknMzdXtPZL61A6d6by43JpjDx33kqvtXWV66vg20vEOufWxSY+2TbOUJKsTX2mkt0rPcvQZEkxRWkMYrm5tqTzKn2eEbD28zZ9zU0pzWXLvm25V4sWzxrmAYCVfx+j6b2JD2PVKx1fy7zYRmzKWketjSnZ31KdpT05IJ2Nx9qumvgqMDzflGRvQs7HKK1FybcYc27O1ZGTJcU0LOWk9FodQxndJ1qfl+GcIKkixQxqfWyNXNwjxtqXqY9gkbmYK8vUKr1yOpZ8MutaGeOr1q7DRdkwD9afgfR9D1fYijfZ72r2nDFsKtd6BgcW/ZbOQ2u8pCR7U7R6pLljPRMD635fbv+qXVdhHvZ9v+YvdH2Hrss/B0rrlPJ2XWcaY8s4SXZAOxNtagNOY17H6dI5q2SLc+Nu8Yly/WPxKVMZVhspzZU0/mzFktc6pmN80MW9cF+O36WyYlsfCDHT9fz2GKL0jLBUTouzl9tcY1/CHId4LjpNrHt6KW9A013z1Uv+aO691VinpmnQtu1aLCqOIcSygsg4FiXJTXWRCG3OxYzifNuM7cSUYhSW94xjLDETbR9JY05x3fHzj7ietF9SfS3vyWpxxbRvTjueU5q3mi6lc0Pob2kfT+uL52Pp+WZO767r0HXb9QMlHXLzs8YvrK1X8ue2Qe06b9tWLZPTz7WrZ+XaKGnrwqpfyX+tOTfJeWy+hmYT4t/aOQco/9sL2ZfQdRsTEynJSte4RmyfS3GCko3NrUffnOiW6OrcKo5rjYtodaXlhn7jep1tDzTNcJwnkwn6STv6nfB0LKx+ZcpY/82it/bsqXTWscSA4jzSvNTjeOPOf9bzVa5cLg0A+l4+6+XmqDX2qsXZtLUg2aVtxlcsZ9Cc7RqW0dLlc3POD8lhWSvW8a6pdzhGANb+v/freUtjWVNvrnxe7mo9x3pJtiuuLyX3vCs3xjm7UNJf29O2ETuyxkbic580X/NrqHwOXdnbkC7nW/TlMhXA6uwf+mn9vhucgUrzZ0xfpzK1d8atMkv2RtrnaynF4uT9qizLyhg7cL8Zzqc4rc4OLc8q8zkufeMlXPvUJ07SpTpjWbrM3Ly6/NWv463v/Zw6RQ4euoL+M5/Cla+9iPb4OJWM7NxqGtx65incevppwOk59969hjPvXtPlxDUmdjTnC8RotkCaj7k9M+db5/aEseeWTc7isayaddc08rzMtc/qk7vJZO0dp1JMVlpbH1b4EZQReO9/zTn3PwD4GaxbrZwVy937q7k6nXOfBfATAD4L4EcBXA23Erk+SvtN7/2vZhtDCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ8AM6+9TYOHr2KwyuXT62O3du3ceGVV3HrmafUPIcPXcF3/tD34cIrr2H/zbcwOTrKyuwmE9x75GHceuYpdLu72bzNbIYrX3txlO6EfNjgR1DG8xew+BjJk1h9eCR8fET7xJD0sRQP4Fe9979WqO+fAfBXkP/oSlzvMYB/s9gKQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkAXH569/AG9//Bfi2ObU6LnzrZcz293HvkYfUPL5tcfPZZ3Dz2WcwvXMXk4MbOLp0Aa47BuDhm13c+PgjmJ+5iOPz54f/6l8V6vHQ738V7fHx1tpCyAcZfgRlJN772865Pw3gHwC4gOGHUIrFo+vbAP58bfXRdVpf+LDKX/De/26lXEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5L4xOTzEhZdfxs2PPXtqdTgAD/3BC3in/TQOr1wu5p+dO4ujC/s4unQB8T/pv/ORs2h6yycFAHjgygtfw96NG+OUJuRDCD+CsgHe+y855/4kgP8DwGPIf5xkWSy6PwPwU977l0dUH8tPZf7b3vu/OULm+462bQEAfd8DAJxbdYtzDt57sdwmeO+X9YQ6tHpOq/6YoEuurjF94Zxbym6aZlk+lRP6Ps4Tp9fSNM3g7yAr/i3R9/1gbGJd47ZYScc1nVtpWlyfJKumfkmO1v9auiYvp0fcX1p/a+VLayDIS3UpldP+Lum1ydqTxl6rX1t/cXpOt5Ke0ryrIbduLH1Us3aCPU7LW+pN0yS9rX0Vz9+cfU5tlDSW1raX7G9Neg5t74nbEqfPZjPRFh8cHKC7dQe3b9/G8bHH8fHiC5R37txBP2nxzjvvoJ0txjP05e7uLvb39wf1BFL7H+spzWFpXEprPF1Lmh22lKm1yamO1nzW9WPZo6W9TcsX8vZ9X1yD6f2cviUdLGMSylr6Mh6nuIw2d9Jra79K+1Mqb8w6zq2RWix7XCnNun+GvJZ1UtqjUl8u/lvCan9LvshYHzQn39o+jdL4a3PXOsfG9JeWpzRvxs7ltI8stiDti5xdrZmvqewccf25PaqmX3L+Wc4/iXWJ/a6u65b3JpMJJpNFmKdtWxwdHQFY7OM7OzsAgMPDQ1y7dg1nzpwBAHz+85/HbDYDAFy7dg2vv/76oh74pa5hT2lcgytXLmFnZwd7e3sAgAsXLuDy5cvLtoX0vb29pe8wmUyWsqbTKZqmEX1HK5r9Seey5eyyGts4rFI/rpIOVtK4BrDoy5Ust8zX9Kv5I51BtD1asiu1Z9TS2SwnT7OTFntnpRQzkEjPANJe0jUd+j5uq8d8Poefy/NDimksSyo+fFy3VEaKeWltkfLZ+nfoyznXJPMwU1Kw14F4rVv00uI64Vrap7z36LpO1S9d813Tncha5ljYOeUh1Ni9L+hrPXun19PpFNPpdDn+3nvs7u4ur0Obc/7xdOIHc9E5t9gn3GRQZ27eSultizUblc6XdO/yfqhLbZwnTrOetaS13fc+Gf+TfS4xU2lsLBdztp5PpbaUyoWy1lhSTawnVBsX0fy/nL0ejssyVc2f07fUTquvHtIWYyg9RlmNYxprSese45Pnzs/62RYAVhNRm5fxfLbsC5a5Jtkri39tjVXUxlOsZdJ9XNIn1rM0LpIN1MpIe1qqj5RPupfOQ0k/YLGnjulLKf1++bkWWW3bqu3O6WmJM2ik9l2qp2ma4jrLkc5Li57WZ2LpHqWxSXwklW9Z73F9sQ+Y6hH61qqDVN5C/OwyRvcah2h+Tfid5hvjj+fSa2yypJeUtsneWsIyZ9K1bjkTlfxpaR9P9/Tavsz5mrnziYbmR1n9We3clCLFubW4dOgjrc9r42zW+7k5Ku0Fpb1XS9fOjVL9s9kM8/kcsc94eHiIo9ah6+YD+bPZMbrjRT+H+FuK9awiMfbsWXtuj+tK/UsA6JrFuUkTm45Luv5rznqSD1XqB2s8ahPbuUgHnMNaPyzS7M//0nosNk2zk2k+rS9zxHGmkq4WLP7yGB/Wcqay6iX9ttYfbKJ1X9BkaffimI81NtD3PXq/PobS2d0iN+SvtV1xO7quE8uXYoul86o1djLWfmoycmfM+Hd8vyY2vS3/yyJ/E7k162iM7yqROyuMGedFmWB/4zS9bZqPUUsuzpqeVbQ215zpap49Amkc772H5Rli2q5cf4X+0WIAEr5Zzy+dYfq+R+bxxBqh31Pbm9ocbQ7G88Y6R2rylqh9FrfNujVdcvLje5u+y6yNi3NOnLMh3ijVa/UJt7k/WOJsKek5M9ZNk6ett9zcaZr1trZtiy4pkz5Lt1ITW4pttGXOWMbyfqLNnzRerp1PYv80fR81Tu99j9lsvrRp3nv4vof36+/sxr5ijX+oxVMknXL5dELb8/M69wzaObf8dwsWSu8PxLpp/r2FXJ9J+5o1hp3zMy0xgJjYblrja2H+uQ3tuayQQ9PE8w+D95oW7Rj6T2E9pXJL70bmYqBhfY61H+lzhaGYha7pewFj6hoTi9HjL2P9fJmSD5XLVzr3lRjmXZ0rSmdubY2nMe8aHXJ9lIuzbHru02JWcfnFuomf3y7yNY3t2VdOr1yeTWKvpx2TCPWU7kn7++k8oxjO31SWNY6r6VJ7Bs/NN+35xyZocrX4XpwWYsrDtPVYfI5hFr+I1Sd7dqhrFfNwy7xNMkYreYt4SOoXnrR60P7cWXUsJbtRa+8scdkgL44PxfmsMVkL67F6UzGxvtKeWdofxuzTcn2DX7EkUa90Xq7Syv8ut8SF117HvatXcXzuHNKxXMnSZZpsjPd4+Pd+H9c+8V04ePRqaEGcMynn4dTPBjhVTwBwXYeH/uCrOPPutbxOEdKYW+KPqzKhXPl5S3oGsu6D29oTJTaJ2dau49gOhr/btkXfD2M/g3fMjcHBPvPeVy493Hovx3PvB/WeIhngvf8dAJ8D8L9iYRViyyD9wUmeawB+3Hv/f4+oNq0jpL0K4I967//rETIJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJD7jgNw+esvwmU+LLKVerzHQy98FZe/8dLoD++VmN49wNUvfVn9AAohRIcfQdkC3vu3vfc/CeCHAPxtAAdYfRAl/XMPwH8D4DPe+18dWyXCp9gWfw4A/DyAz3nvv7hBUwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkPvO7u07OPft79yXus5/+3U89ttfwt71G1uT2czmuPjSt/Dob38JO3fvbk0uIR8mJg9agQ8S3vvfAvDTzrkJgC8A+BSAqwB2ANwC8AKA3/De39u4ngEAACAASURBVNugGhddfxnA3wHwN7z372wgkxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIh4QrX/06Lr/wteVv7/3y2jkH55xU7NS5/I2XcOnFb9yXuqb37uGRL/8eji5cwO0nn8Dhw1fgXVMnxAM7d+5g/403cfaNN9H0/ekoS8iHBH4E5RTw3s8B/NbJn23xIoC/CeAVAN8E8Ove+29vUf77kr7vBxtqjly+mk04zuu9r97Ec3k1HfvMZhfKpHLjMqlcSYfQlvh3XC6ng+W+pkuqlyTHe4+u66pkpfqXyI2Lc65KVo3sIFeSr9UZj3mQXZqDpfu5+nN9qclN07V5Gsit5biMdp3WVZobtUj9HM+LdO2k9cXlJb1zbbGkafclXdJDyFi0sk3TqDZGG+fa+VUqI7Ux1F/COqdzNM3qgBPqjNPSe7XkbHp8bzqdiuV3d3cx2T+H8+ffxNFuj52dOwCA8+fPo580uHr1KibziViXVKdVV0mW1YbF5eN5HPpQW6MWXSx7pFW33BrPrXNpDEtrWaqjtG/EeTW9NBuR8ys0tPGV1kMg7PdpHbXrJe5Xrf9Ke4pmyyyksnP7xBh56XXJttbsPRK1OqfzOox5vEfEazmev9LYh7TUHyz5F9sKtOXmbHpfmqul8R/r02jjL6XnbERufWnrOKeblK75B1ZyczzXv7l1von/nM5fKd2KpmPsuzjnBvMsrqdpmsG+GNbJdDpd+gJd12E2mwFY+AEXLlzAY489BgC4e/fu8t4zzzyDj3/844sy87t45JHQFg/vgU99+iLm8wnath3oHH6fPXsWk8kqzBTktm27bFtoUygT34ttR5ye66cxpGtamp/a3i3NMW3Ptuo51ics2fbQztxer+shnyNybS35fZsg2bW0fquvr9mTGpuWo2QHtJiHhma74nlcWh+l/XKKBm07XBdt26I/WaeWPtBscW6eSD5BTs+cLqW9eiCjSWN5Hk3TLGWEMaoZe4t/mcbYgr1Oddd8ojRfaxif6bQf2GwAmEyngGvVftb6Mk63dHfcx5YzTigj3ZfWVc1ZcqjT6u/AdDpBi1a1I1Y7mvrAtTEsix+jnR/Te7X9Ev6Wxj+tU5cDDL/fjmV/5/SM26bVnyNn/7uux2JPC3q5ZZ2h70vj3ve96TyXyrGO/1Bm6BcM7JJUt7QfbBNtXsaMsddSf0ttKPk5kj3R9pgSJT8jju3l1qLmY+RiMGm7JNnpvZr00r2Uvu/VOaWtl6Zp1tI1P9Sio6avFlsq1SHJi/XNrSGpbZZyNfXEedK6tFhcrs1xv1jqjMukusTplva2bavGAyxpQe+UcMbMxY2CzCA33lNSmYuzZqjfdoavjSdsA+lsV0N69rbmD5RsWkmv2D9O4xnxHhbXa7WRGpvGDWrngmbXt4nW/niu58pocXEpryUGEqdrulnjtGP2CCnd2kb1PBzFzxblgTNnzgB7DpPJ8P9rNJlM0XrZb6k562way9Z8hVJfxGNkOTd4H3x8Xc9SXEyqc4wu67ptFncqnUGAXmz7oswwTib5h+G6JuaX5rfYGK3v0/WYW/tSeS2PVRcARfsupVvr1HzynG6WfU1buzk/TLJ96VxIxyaOO8W2LMSJuq5bpvd9v8wfnpV577Gz43F8fDzQ5eDgHo6PF7H62A9Kz/zS+USzUVrcXOuPXL+MGe/SuU+iNhYj5U19l1I9QPnZYM299wNanCe9ZyEuq9nNzde7nj/+O9ZH83e0/THFsgeMfTZ02rJypDbOQuoTSISzQe17VdZzb+69rRK19mEbaDGQ+F58BpfWYHlOrPszFu7XXJOI17hzTnyXuNSWmjkQ78G58mP6ZJv7QC5+tWn9lnfWLef0Uixrcd8hjuWnzw5C3qCX9i55rs7S+OfidBoPek/PnQlysTTNx43Tc88hZ+0MTbN6npHKiZFiQ5oeJbuuPR9P0zSfcHh/3T/VYlaBOH0Zm2nk+GPb53UNrOat7XmL9nxZy29FeiaSUrI3UjxZWqtpfkCKIQAeq35xroFzzUnf9mt9uq04weq3Nm4hbXGG6wrbSo2/NCY+AqzH7+PfcfXO1b+PoZ3jNu3vsTF5yzMyS56cLK3OXHwg32flfkvfgY/zSucTLc6Wu9bQ4oelspZzfyA8a49l933Yp4bvbcSyLGNpJRcfsJxnc/FYbe2KdbYLexZJWI6nFEOq0SUuo81XqV9X4zJIReyTaW2qnW+SvFxsOWB5t7m2v0oxP8vcTundIqasdUXJv1yN00rGwj9a95Gcc8t3305SADi0bYNm4IPEce7cPiP7kTly77KkbcrlGbunaPNa+q3NgZB3kxie1qY0OY4Lp3LT6wd9xghY18H6Pd1Pr6kzpXZfs8SjtDNIXHb/7l3sf/Vr6L4xweHlSzi6eAGz/X0cn92B83PATQDfAf0ck3sOO3eOMT04wPTOHexdv4F2NlvVXzG22nN0a1xD991lfyItG7PN83FtbG5MzCX1jeP3JXLvRMS+SuoTdV2HzNFmQLZfhWcu4T0Xtf9aLM/fQO7k+MGHH0F5n+C9/7sA/u6D1oMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPmg0c7nOPv2Ozj79jsAgG7aYd5+Z/Axpsd++yrame1/UEIIqed0/jdxhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYoQfQSGEEEIIIYQQQgghhBBCCCHk/2fvbWOtS7L7rn/VPvfe5+nu6Z4eu6fHGWbGDnEimdh4EifKFzACW+DEyGgkEP4QBEQ2ioiRAiiKjHgx/oCIABES4QBy7ERCEEGiJCjOixIUIwORMlGClQFiJRAjjx3P2PPW0/08zz1n7+LDuXVO7dprrVq1z773dk//f9IzfU7tellVtWrVqlX7niGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghjwp/BIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKo7B5bAEIuIYSAEMIsLaW0yJdSEtOtMrl+K71+ruW32pimyXzekqv8XNYxDIPYfpknhHBqvyVDjOffTCrL1PT0wyqr9bHMV6dP09TdvjVnvazRMQ1Jt+u6tDrrdE9d0hhret5qt15vIYSZ/kj11M8tebU14x2PVhsttPHX0mOMYltrdNzqo1fHttJ5Sc+ApX2w7IX1TGpDw+pT1q0QgmoXe+Wq9bW2PeM4Ltqo67TWpZdcXlpzLbJeHv/lgsf/OafP95dy7ZU2wmLt/tqqq7RPZbqml9Znj7ytZ62xWLPHa/u79czTx1Jfe9aYVLekB9peUJaV9gTrmVffJDlKeddi1dWry2vtuObf9uLRHW/9LXl75GvZ4zU2w1O/tx5pX5D2Ag89Y92a97Xnh/xd8/U0LvG1a52wdKTXD7KeXbJOeuyrZu887VvtZD1LKc38i3L+DofD7Flmmibc3t4u0l+8eIG33noLh8NhlgYAv/ALv4Bf+ZVfAQA8fRLw9tuvFzImfO5zX8Tz58cyr776KgDgIx/5yMnHev78OXa7Y5jptddew9OnTxftX11d4fr6WhzTus/lc0n3LX9qja9VTlfp+9hlfHrZ60dI622aJoRpvnYtH8Fz1pf2hXPe/CyJ/mHNlr6S56xX12n5F2vI9R1240nHsxy73Q5DGtSyl9CKt3jO4yX1HLdtfwCwPNNaWHJ5fKfWWu5FO4MBx7PaGEdM09GulekYZXvvseXSWqrXTWlXQggne1na47rd29tb0b+u00tKO3p9PZ1sfD4DPn/2DLf785wOw6COc32GzvvNfj8u9pi33noL45Nrsa7cRqlLOZ/Vfp1X6nM5LprtmKbpNPbjOGG/P495CMCzZ88x7M+xA2AZy7F8Jy09j5dl0zx7Td1277lZklWKVcUY1fXuj0HOvol1WuNx6Rln+exU86n+cZwwxmXcpqZcyx4ZpTiKlEfydaV5jdGOp0r/1fRJGyMrHtuKZVoylXnrcch2pWX7PXu/h564VNkPzVfV4iFeX8tz1umJ1Xjy94xba8/Xnlu2w3tWluqz13c7BlbL5hkLbVw1f0dLb8XIs1zWmJdles7tveQy5b5ftjcMQ8c+0LdHaXtiuX/U+2y9lsox1HyF0q7k8+1aYowLWet+lbT0w7Pms0+xxg5KOuE5U2j7QFlWikXkfNK8tPJprFkLa+JXl8aQHwJvbNr7vLc977m/V8fr8j322nrWc5Yrs571QY+nWvL0xHS9PoHlh3lstHd/iDEWdjKgNYSt9anNq3eP13ynLZH0dZgmpFSdb9Lpf8RzaG0jpXvhGmtNXxpn8eqGVo+mi2vObJou9/jqHtk01qxbK7akxQCk+I1UX7n35ZhQSml2Vtrv96fPOX6U64gx4vp6wm53O5PhlZdfxu11XNiq2lcpfayetdXyc6Q2L13PPefSFvW8WOdzT5yg/O5ts2xDS9NklPCMhfes2tuGNn73RT0WlvzlGk1hwjE+NdfP+h5K0wWNsknrrO/FcwYu2+t9Z9Mav17qs2Km5Wu0bMg4jndxO//Zpz6baXWX1PmtPWWKCSnN82c570qYbXm4z7O+o/VHOQdp7x9LZ2tpr5XWW3mGlWJ2ZTuesdRiNuU9w33ROku04rwpLvNocf/cl0vfe9Fsco9+H9dWbvdYx/E+r91+K61u6z7x7uOtWKZl36S6evYhKW/WgWma1HFd3PPs0nmthLt1Z5xbpRiSND71OzG1jHV6bce8ZwkpPug5Q0v2RHqvo/W9JU+2XdO0XM/13a2nnVJm694pj592d2vF8kr7W+qlJ/ZXl/fEbr1+dpne9nv1ONCy7uO76PV7JEBfrET6Xuu7J04rlV3uCem0l3r9l7WxidaY98T1pJj/WrQ9S3tPrS5Tylaum3PeRYuiHmlnGCtP7bdqPoO1J7TWzSX21cOsDzHf25zPV1K8zVOnJ+4jfe+pq87XqlPbn5f7z3yMS1306oI2T1r7tfy6/i7thScOYmGfs317Zy9e++Tpq6VT88/zPJ5+57mcplTFHFpr/vQNwPLd0rmfMrdhHlvcg6eMd431tu9b7z5bYcnVI09dreVH9dIzPlutpUt5CJml9daKXVmxqNbfT3v+DlyLVXjQ7lq9d7C97bXOQ5L+arEZbzserHhGWV/ZtnWers/bmq9d2/hhGDBN9/O+eKY8D9v24mFjee8m+CMo7xJCCAOO8zEAeJFSkt8cIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkawz+CMoDcPcDJ78RwHcA+BYA3wzgGwB8GMAHALyC44+fZP4VAH9cqOf7Afy1lNL/e98yE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyUPBHUO6JEMITAP88gE8B+G4AT+ssStFkVPvfAkghhL8N4L8C8EdTSs8vlZUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkMeEP4KyMSGEDwD4/QD+NQCv52Qle/2DJ1q+Os+3AvhDAP7dEMKPAvixlJL14ylfk4QQEGN05dWGJ6W0eJa/S8/WtqMxTZMpWwhLlZDScn6rLi29HsNWH1rPJfm0MlZeq4xWTnvWI2sthzf9krZ68pbtl/2t061yZZp3bnrmpSxrzYmm4yklTNOkltHQ2tF0vEcvPc+8uiG1r9mhNXW15NL6kNM1u7pG97V5zO0Nw6DK4Wl/HMduGTz7Rpknly/bz+3Wum7VY8lk4Rn3NbYvxqkod167x2qWtqVcr622PM81m6XZHgAzfZHkqlm799eySnK12mjRstktWrpntanpi7V3lM8utVfTNLnWbmv/2IpL7fpW/oJ3HV+qO15ZrD1aar/Ob61lT3ouL+0TPfUAR527j7GqbflW5wYpfc2aB+SzRrnf9+pTraeePnh9N+2zZe+lPdpqo/zeazul9LXnJmtteewjsLSl2ecYx/E0LtM0Ybfbnep/5513AADPnz/H1dUVrq6uAADvvPMOXrx4AQB444038MYbbwAAdrsDPvjBw135Yzuf+MRreP484aWXXjqVL3n69Clefvnl0/fnz5/f1bU7pccYcTgcTnmur69nY5LlL/2onr2n5etKxHHENOU979xGz3n8VFen/6f1Jca4aCvGuKi/9Kt67ZLWl6PtAMqQlabz1nlEmtcyvefc1bt21yL5/GM4YJrma3McR8BYrpqtXOPbpJRE22D5wdr60eQ6zm/OM4+J9a63NbbRWrdr4lxW/bvdDmFXxxMThmHAMB39jnJ/8e595fN6XZTly3ZbNj/GiCdPnszqzvb65uZmlp5t/H6/r+TBzOYCwFtf/SrGcXeqo9aRLGMIYVZ2GIbTvrJLATEOd/mOeZ88eYLbq7nvVtZVk9Nq+7DGRmjpuW+zcb+aFj7m1dUVBsRFXkmuGs3vqePW5bOyz6Usa2KHtQ+lxbXrM/7cTzzPRRDstdZ2/TnFen2khS2p14V17ui1MdKzacpt57rCaT49/lxdr7Q/l75XSct21M/neRIOhxHp4D9j1PMt2aAazT/x7leWHyDVbfl3WrvWOFpyXnKe9+S39qi6TK8u99Tdg2f8emOMHiS7+hBxHUsPvPeKdX1au5IM9V6jydITJ25h9at3XqX9TdMZ77mjtRZijDOb6j1D9fZNstf5rOWNE+ax1uTs0TGP/L06u+Z+rZTFG4ey5mJL3V7DfZ8dL6XeH6zz3ZZtaj6Z1/f2ymidPb2ySu1Z50BJ58q0uuzJTu/3GMdzPm29hSDHZSyseJbHP/D4cXXfy+91ffm82IofTdfHs2d5pnn27B3E2/OZSbvfHYZhcfbIz7zz32s/1sbOc35JX2NMWFQVTv8zK7eFXyGleeP11rM1cRup/ktj6Vb+3rp7/VXv2aBEaqMn3mWda+pnUowdwCkeNI6j2Pb11YSrq2eLuhLa+ijFJKQ4tIc1cYwWWjzD0mfvvqPFnKU6W/l7Y5ZSeY/vJclYz0/rnZxeubxngRZevfLa/d544Lkv8z4d4192WY3zeMzbv9SPW+s7W2vVilNZ9Ul1euRr2Q2pDkvfrfOZFfPsoXXWGYcJIcz7Vfo6gP5OxX1SnkffzWhyanJL7+HVtPbbuu2WLBprxrZnPWa8+53nnZkynrLw7wu71yPfGlrzp63VUbmrr/H4KGvOrRqe86x0By7ll+qS5utwOOAQbNui2U/PGsnnvHz/l5J8D11T5kkpYYpZ9uKsN7uL0WWX3neQ8PghpV7p53nNP2/7Xf0cZRnHERDud+q9DjjHF2v/UNuXtfvGsk6tXe3MLsWL1tgG771PP+n0z7IlLX9gmibz3XjJfsZUj1cyy9SUMW8NKe4sPddsjN+nPd+Rtuj1sWoZPfbIO4/ec0CPnHV56b7T0udL9XrL/ayHS3znkl690J7Vj1OS9b03DtRqv1cn17SttXnu99mmTFM6vaMhvV9j3SNod+/WOaW0A54+t+ZRkrNuT0M7t66dcy3NurvyjmfrMwBMg/y3KZYuLmy4EJcu85Vz5z07WXmyP1e358EbM/Ke41r7XU2tx2259bnx7o3e+GQIE87jelkM41Lb1Evv/rPFnlC3vXa/kvJ7/sZAK986J0l7WYlnL+t5v0M6B2y5p7XmvrSfWW7r3KvVW4+LZ7+uba8nzqydm+pzlhiHiYLcOL9r6NnzPD6JRttXfFi78G6i/0aWqIQQ/iUAfxfHH0H5EI47V0B5Ap//W0MuFwC8ieOPofz1EMK3rJecEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJDHgz+CsgEhhJsQwk8C+AkAb2D5wyfA+QdRtH89lHUHAL8JwKdDCL/zoo4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPII7B5bgPc6IYQnAP4MgO/C+cdPTo+r7Kn63vvjJ3W58kdWngD4yRDCN6SU/sDKegkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeXDiYwvwNcD/COC7Mf8BlIDlD5XUz9b+AEquU2onAPiPQgg/cEHdhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ8KLvHFuC9TAjhhwH8dsx/lCSTyqx3/50AfAbA/w3g/wHw+3D+8RIPnwfwRlV//iGU/EMrAcAfDiH8nZTS/+LuzHuQlBKmaQIAhGAPofY8pdQsW9ch5U8pLdK86Vr7llxSvVaaJkfrmUaMy99PynMh5av7ovW/nNNaLs8cW+1oZbzPcl2WLnnx6pzWfj1mWp3SnJTpmswhBHX8t9BXz7x4x2iN/q4po5XVxtJae2vGUKNVprZx1thmWTW9sWyMVkayFb3977WvLbR2xnEU06U+ZLR+a881veixRZdQtn/8B5xFOaflz5Ksl5DHsh5Taxxbckhj2bJXXjx7Z93GmjZbetRbV4/dWdO+Ncae9dWySaX8W+qfhGYTW+1uNcZWO1p9wzB019VLthEeedY8z3VrdndLhmFYjFmr3TVrsmftW/5Xb10t3bLmsS6bn/XokrVHtvDaD6uPl/iBta3pnXet72v0R+vLOI6ivqaU8OLFi0UaAHz5y18WZfi5n/s5fO5zn5ulffaznzXleumliN/8j350lvbpT38W77yj9/EjH/nI7Pv19TUA4JOf/CSeP38+e/bKK68AWI5ZXrNXV1diG7vdTtWf3n14jR1uncU9OmDJmef8sD9gmub75ziOCNNy35Ta9JzPav3a7XaIMSLFhLp4jNFc8z1+f0uuGo+vKKV74yZNuQa5jNcGesbBklXbtywd9ZYpYzblo+M5QR7DNT6BFQOSsM4ArXiGhzGMSGlS+2LZeK1/1n4lPSvlL30Vq65pmma2MddxOBzwgQ98QM6/G3FzM9eHD7zyCm73ch81X1O2vadPM53J+cpxlM5PPX6/5Ld71pZU5mjjlumWL3Sprx1CmI1tPTa9cQ8rruKOp8Uo2oQ1/t3ZXi3Po9OUgHF0xyBbNsIbY54/852t1syzdabU5BfzL/becJoPS67e+fLqm2csWvEXSbYt4+etWJpnv9HGr2WLPZR1r4k5PgSajnpj+WvOPq0+S2eDll/uldfSCcvn6EHaR9fEz4Ft7gqsNdeKjfSsYc1/yG3U5cq66z3Rc/dY9jPGqN5NauORNjzPa2xZ15b1XRovl2LPHnvrleOSu9PetnpjnzVrbbj2XsN93mWU+/Wa86nlb/XSqy9125bulHPSI+c14p0da90J3J0JG8vR68N7zh1b7hHTNOGll14y288cdiNePJnvE0+fvoTdlWzvLdb4q1vdi16yl8bi3BhC/ifrYGmjL2nzPuxA647V855BK+1Sv93DFjqh+WRSLEDSwzJf7xleu7sFjjEdqR4tPct/fT3N7ghCCHj7nbdxeztfczneW1Le10vtDMPQfSas00uZrecl2n7Tq0Pespp8Xrz7aq8tt/RIq0t792LN2u+JLXnfG2w963l3JNPnd7bjX/4+L+9ONLaMgWhY72m29uC819X3W9PkX8N1+2Wbtc56fIKyvq3PVJIcrbs9yX5bNv0h0M7A992mhmXLSjnXnp8km9S7DwP9+rSlHw7M4yZrzsMenyy3kaJ+F/jYWHvMMAyIsX1O3nKPaLHl+VerLwr3Va17mtoftfqrxTytM4xH37K/eo5xpNP99DAdZd8f9tjvz/fQUrw864Q0NlpcuBUbkJDOAMc+Xf5uVAgBGEKhv8f/7nY7DEnec6S6Y5yf3ayxKdHisifZhPat/V3zpdfcV/bQPmeG0z/rHNJa//WdvCVDnW7pTI8PnOdbG1/t/ak6X3luXbM3Wljn3hIr5th77pPeJZDKtOpv0aq/pUdSnKX8PI7T8W4c53cppmn5t26a7W29V9Lqi5XvvtexRG07l7HeOn8Q/XVpva7RC89zS3elsbTyS3py/E9t8+y7bcteeePnknztPPlfUnW3pG5/q/iP9w7IM3feelu6ILUPAOMwIoRlHK7l25X1SHEMzc5K6XV70n1pWe6Stb51bLcV57u0/lZ8qPfOynom+Q0xDou4iafdLdZJD713vbV80rnOe97N6/WSvc/r47Xw+JZauVLO1t8ZrHn/qPzujmmOaTE3MS7/vmYNrXHyrhvvPYB17rv0HXbLL5LsrlffavnnzZzfD1TfYVvEDi73096rvDsiXO9BQgjfBuBHAPMHUAKArwL4CQC/A8AHU0rfllL6F1JKv39Fs78GwKcAfLpor24/AbgC8JMhhKcr2iCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5EHhj6Cs578AkH/2qPwBknT3/QWA/wDAx1NKvyul9OdTSl+9pMGU0phS+tMppd8K4PfctZHbLeUAgE8A+PcuaY8QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkIeAP4KyghDC9wD4x3H+wRNg/kMk/xeAb08p/YcppS/fhwwppf8SwHcC+FLVfv4cAPyeEMIH76N9QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK2YvfYArxH+Ter7/lHRxKA/wPAP3FfP34yazSlvx5C+BSAvwjgqpIDAF4C8IMA/sB9y/LYTNMkpodw/I2alNIsPX+v0wEgxjgr6ymjkeuqserS+tKiltf7zJs3y9XT/4xVpnw2TVN3/XmMpbE+HA5ddUkyWWm9dVxSZhzH7vq0udT00kKTbc266G3DQuvjmjVmrf1W/711WWXW0KpLal/r/yVyThdaKwAAIABJREFUeXUqhKDOWSu9li+EsKkua3X1jpfHFvfY5DVospV9yfZ2pt/p+D9lWm8/rfXS2qt70MbS2kda9sKbbrFlXb3yWuWsMR6GQay/d75SSmYZzR5Z89XTF6ntLfeoTIxxszFeoy+1P5DblWzYWn1c43PUeGz0bjc/iuY5lOay197nOqS+9Po01tyu2Yd617a2Tnp0ztNOTq/rtdbcFrpyCZf6WeVe0rOG1tBzvijnol4nwPGMc319PUu7vb0FAFxdXc3S8xyllPD1X//1s2ef/exnndK3efPNNwEAH/7wh2fpH/rQhwAAT548maXHGBdp5TNAX4u13pV2WSvT8jPLOnLWeh/qXaMWljyn9bub25iU5HLDMKhrvte/PY19BEKI1TO9HQnLdmjt98ZCtD3Zal/DbDui0oXj955+rPF3Wza2nl+rDy3/6XA4YBynZn7rPGetkTVzq9Wlydgfs5mXGccRWLmtpZTUPUkbM03e/X6v5tX26HqvKH0ar+5lfcv7SebFixcAgC984Quz9Cdjwic/99XcIgDgM5/5Cp4P4bTf3NzczMs8eYKnT58u2tb2O8D2tXrPndlej9OEcSzjhQH7/R7TvrZ7UW2/96wSQug+90zTtJktW+OzeiljAEdxS5nPuutZs2ti2y2feJeAGGsbLs+JFc/oOYfm/F57qfkrMR59VMtn3CoGIcnbiof1zqFUpneNWW2smQsLye/pOf9keTRfrceGtdbwlmfo+8Sa74x3rHptagupTM8YWrGZTN231pivOdv2xDO0vbfXV48xdscG6nu71lhLzz16o909jjFimuZjNY4jho7x24ot12pPXS390+qS0re8b7rkzkWrpzdO4OW+7eaasejdm9fGDDz5PXcY97nGevTvnPcsT5YvhKP/eEkbnnyaXnp9PY9ea+dJqa5hGIS4kByDsfRuTfzgUlpnL0uukuM+kj/f6cHdHWquY6t3ALQx7F0jvfdWvWixiVafpXNX79h5zwbed5IuSbfk0e4YrDtCySfT2i59ruurCdfX8xjOS09fwm7X9gc0+Xtiv1Y9a++RJaQxbb3PV7MmZrolXtvWuqOU4tEt/++++9djt62zirdfW8aG75Mt43C9flnrHdWS4xjO9xvrvqn1Don0bCufeYv3jHLeHpkk/+cYM56nDcOAYYrqXrnlfXqPHfDcVZUxcG08t5B/7R2RFf+8r7alMq27a+/7Ff33WHpMTLovz23XzR/vYPzxyTXnUQ1vn2Nc+ojWHQ2gx0R75dzqnn9N3d5+W3tgb3979inLvxqudtjtngMAhiEhxj12V1fYjUd5njx5imHQ3+sHtosNtGKHNSklYAjiubd3H892Sr53bs3/ub0Y06Jt7/j0xB3WsOacdWndx/Rwd593TMuf19wfefKkqO+T53Ps/A70cDjgEJZ9aN6vVe/b5TbK8ciyWPa+1a9jmv8udC2S7L17Se+dag+tultj2TqrlWt3mOz3M7R9vJW/Zs0a6O3Xfa3vzDQtdXGaEkL1Nw4S2px5z0Nr+lbWXbbfGz+KcWnDWvZesk0e+mWLmMfIz+8raNTPrLuZHll63o9orYc1vluP7bl0rTxEbOq9Rq/v0eNTWtl6dFGKnSx99truyu9PXhrjlvrfe/+3JXM70F63W99r9MSZLep39sTyw/x9tJwvxmj+PYwXz/s1LUq7VqvPFn7hpXdla95z9PpBa2z36W/mh6XvMKUJ09QfXwRady/nv91sze1Z7ndPLPyhub83YL9GCSH8egD/FLD4wREA+BKA700P8AMomZTSTwP4t1DvkkcCgN/5ULIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELIG/ghKP58S0vKPofw7KaXt/u+U/fwYgL9z97n+cZZvCSF87BFkIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEBX8EpZ9/tvicis+fB/DjDyzLUYiUJgA/iuOPn0h81wOKQwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJIF/wRlA5CCBHAJzH/8ZNw9/1PpZT2jyLYkT8LILefqmff+sCyEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiZvfYArzH+A0AnuD4IyP5x08yf/lRJLojpfTVEML/BuA7sfwRlN/4CCI9CCGEi/JJ6SnVw2enW0zT1F1Gk7XV/hr5pDo0mbNctXy53Rj9v6lkjcswDF1lxnEEABwOh1l6CMGtHx56+pfZYk5a7Vtt9Oh9qy7tWa6rfq7pi6f9uq6U0mmea7K+1HXm8ZL0VatLk3mapmb/a7S+eNDWWA+WvL26ZPVlzRrT2qnXcMZae5pd0NJjjKqN0dpp2cQe1tiR3j4+NiGE7vVi6aRWlzUumq722j6t/RjjKvu61Z5g9aW3fc++L5Xp1f9enbCeafJa46vpmLUme/1BKX3tOrXGRdojtbbW2HWtLg1tv7Xq0crk75KdznV515Fl01v62+O7bMVaG7HVWrTqsmy3Zld6+6LZNauuNb5xL1vOu+Z/Arofba3Fuv+73TG089JLL83Scx3f9E3ftGjnxYsXAIAvfelLs/Rf/uVfVtvV0M4EmrzDMDRts9dGePbFHv+6tKvlHPSunzX7NXDuf4rA8Xd4c3rA1dU1dmHef82HBtp2uGa/P/6u7ogR03TW2RACpmmEocYXo9kT7Rlg2/Te9WvFhiT/smWfvH5n/i7ZiJb/5N2vrTPgfH+d/96zZZutuiS09nv98xij2o52zpMzH9dUXX6YBvP8r7FGD7V+ZHtektd5LVeuw9pj6nnMvrw2J5KNBYAPfehDs/Sbw4Snn8vtHuV6/fXX8WIXT3tR3RfN9lvndA1rbLW68jjFqwkxzvPsdjsMaS7bmriitQ60fW2N/vSeryS5xnHENKVFWjb2PXKd967lWTFGXd8egxD0ue2V0zpP95+zj//q+ltndm+cpbWn9sT81uimp6y3Hs3mbbk/Wfk1O9Ybw+iRqTWuvTYU0G2SRO+9wBq2Ottae6JGb0zYqqOnzJYxgC3Ho5c1sa8txlyra92drGxTtbunNfTGGbeM/Uvyt+xGj36umc+e+tfcN9x3HA/Y9q5HojVHdV1b+q5W29p9iSRPL48V0zvnPbd/9MOW/llZxmuTt9wvt3yHpXWPntJ8TsdxRDr038n2pF/iZ5b5eu8i7TbO8ZKEhJSOr4gdz07yXEus8XW2XBM1W9nJNe+WWM9630Xw7qNWHERrJ9fR897IlmtUQtoTy9jCsNthJ8Q2pHosOb368RB34lI9YyNu4amjxUP4ElqbPW333pk/RL+2aHvL9yyXr8/KsUjrvr0X7U77Mcdfz7/c78co1/UY6yKz2+3ube+y5lyy+ce7Qymmms4x0qrMMZ609FGGYRB97zVnee89qOUr9d7JPwRbzPuWMQgN7e5vbXkL652au9rUNrz6/xhzrq03QO5nCGHTe6VL6Y2fWrEOL7673yXWnbyWrpdJ+YtU+FQuv4NQo8Xagb47tS1i8BLeelt3y9b9AVDGGMo893e26L2/6tk3eveY+zw3tPJKe2c9NofDAelw1BcpVqLFh+o78trXDHHefrbRZT80G9dvy5ZraU28dQu2uAd6CJ3pvdMv62qJp62bnrM7sFzHrXvgS+peW1drvo+P67Gel+vd67ewNVu8a9ZL77tZ9+VrPsR97xo/pOa+fNU1dyy91La+7MuauNBjs9X9fk+99zU+vfrfOrfP38Ps849q1vT50ncEcptb+82Z3vewe+h9b0NrT9qDtrg/75Ghl9b9Qd3MurvUy+Srsfb63rOFN5/2Ht7cPo+LO6JjTNBeG5f+XYt1Vjk+yunvnb1ia949b6C+N/io8ewzDyaFzt+svicctfsTjyALIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEu+CMofXzQePaLDyaFzueV9FcfVApCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQjrgj6D0cW08e/vBpND5FSX9Aw8qBSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghHeweW4D3GF81nn0QwBceShCFp0q69eMt72lSSgCAEEJXuTJ/rkN6JqXXz1NKizo0OevvUrne9rU21qLVo8mc5UkpYZqmrrZiXP4Ok1ZHzls/b43LVuR2vfoi5b0EaaxacrTmUqNH7jV62asnVv0trDXmHZ8Qwmn8Lf0v0fKXZbwyW/JqfdDKWHO7pb6uYRgG87kkn1amtV6kulv938Je5e91XdaasJ619gutLlX3kZCSbzwstPHvnRcLq+9rbZ+XaZpMfZVkizGukkuz7WvWsjZm2rxourdmvw8hdNvxLfpR7lHaWG7VF0neUqZe/dsyfy1vay6GYVDrW7OHe+vIbW7RhgdN96XxGcdRzLvGrkj1W2vkEtu1xg/R6pDmRfIDW/VvtRZ7bWer3Bob3btOrH1QG19J94ZhwOFwWKQBUNNfeeUVvPXWW7NnH/vYxwAAb7/99qzcm2++CQD4ylc+p8pb8/z5cwDAhz70oVk/c/vDMODq6mpWJvetTi/P+B599cxRa70f2zqlAgB2ux3Sbhky61lDrfUrzfvZX5tm5VNKGMcDcPDbBK19zaadzjAxqXEPK5bilcm7x+fvMcbNbGTP/JXtZ70on1n+nbd9j72q9aTVplVn/Syv0d0OiNE+j7Xqt/yetf65tEZael3LJ+nP8fsyLYTQ9IN6+2L5Pb111bbM42uGIMc36rp2d/Zut9u51sn1fsRr/+A21woA+PjHP47bK1uPWmvZu0bX2B/Lxg1DxDD51sBaGTRd0NLLWFTdbq+vo51Rj+nJzOepf/7M137rTKCxxpf1rrVLYyElwzCo81fHZnK79fiN4wSM63xbS6960q121txr1GNijXe26713NzWWXc/0nEW0+KDlb2rjp42h5S94fbG1Pook15ZndC1m2ooL12jjEGPsltfa3621oa1xL557Fc2n6ulj7/1B/fwSeuIua+qx8rZiGB4RtHPTGjx9KMeld00Ats+9Zh33xoy98li0bLx1zig/r9XfnnL3Hb9s1b/mvtDbP0v31+hmz93aGi6NAx5lSSjPiHk/rqsu9+nSl/PI5Imftt5BueSdCO2+Ujx3D8e7wpZ8mZ0QP2uV8T7vzWfhsUvzec13pvnh6X8KHVnOmVZvbx+2eAfF0tPetj1nNU87Hv/qUr1Y46dp5w7LXnnjN2vGX9r7Shs87IQziOA/WjZd67MWi/Xqe4ut4rnedeVZS9oZSDubWWukZ5zW2jbL5/XUu+XdoVSP5qd4Y/wtv67/jma+z0/ThA1dfXc8qTf+abEmrla36znv9OwHW+x1mn9vxV3eTbTe+5Js9Hhht8o2vTG0li5K/djSp9/CBkn06kiZf43dtNLLej37Qmk7veNq3Z1qstRsGXvoRbqvDCGijI9bc+qNddR7ylpb4t3fa3vVitVItuGYvtxPa/9Quhct7/80+xBCcO8j1l31GMezz4S7O4472YHjeyuHg73OrPcvvXfNJV7fTRv7cRwR7iHcU46fdFbIczKXJx3HMPjXXG0XLnkHq46/az5Z7U+viV9LjOPdHIWqzru5CxvElaR+Se8Z5DmL0XefI5HznN+fku+ByvpaY1ivHe891HH8ZPlyGa1f3jspTWe22kOA9b7DJTJ4/IH6rjels10H9PigdAa1zhkpJdWX8Z67NDTb6dH33juynmnc6vzfU0fvXuSZh2yrPeJseU73tFHPiTc+vFWcZ22+tazxpSX/rF/v7TW6pa0sWlblKOe9t+lLY8Fb4o2HlNm88ZxezuNr3/e06rhUhi2w/JFyH6rfxzvHHY4+i/U+nrcNb76MdM5Y46v2nSHleyMJLQZ2qqmyO711avLVbbTO3ZJMWr5y7lvjJp09evbd3nHx/k1Hrm83LMdmiAOmSq+8fvOlOiHFuN+vvPsjxO8uvmg8+4YHk0LnDSX9nQeVghBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQDvgjKH38PePZtz6YFDofUdK/8KBSEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDSAX8EpYOU0i8CeCt/rR5/3wOLI/GdmMsV7r7/3ccRhxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQNrvHFuA9yM8A+B6cf2wk4fhjI98TQng9pfTFxxAqhPDNAH5dIU/5Yyg/+xgyPSQpnbsbQlhV7pIyWps5fZomUcYQQpe8uX1N7mma3DLXsnifWfmHYehuozdvjFHsZ4xRLTuOo5ieUnLLVs6ZNp5auqUfvfOvzXGtYx7qtss+emm1GUJYyJzrt3RZk62es1xeGxeprla6JZeXXF6a40vrLtHmrGz/0rouYY1eavTYqtL2WrohUdsSza6Vz3r7OI5jtx3poVVHjPHUz1JHY4hADIhxWPS7rtNqIz+r86xZp632evY3S8cte2BR96m0H3VZrX3PmtPWeI9PotGSt6fOlJI4z9a4aG1o7bd8vvK59llqR2p/7TrtmZde38FijR73+pTWsxjl39fU/B0tPaWE/X6vti+102vre8to+2r5Xev/Gtm0Ni719Tys0UmrTK+Nq/0wT/81G6nZI68s0nfPs6wL2t7ZI5fma5RnorK+J0+e4Pb2FsD8DPTyyy/jxYsXAIC33jr+rutudwwHvf766/j5n/95ADiVPfZPFAkA8PTpU7z22msL2X71V38V3/iN33hX/lzB22+/ja/7uq+btZtJKan+lrauetMB2afLsmtnyV7/pPc8bunjsa6lDklnWI9e98ggnYdymnaGlsqcfMxiXi49G9Xtl+dEKa9HzhJ9L6u/2/bNakeyBTFGNW5hIe1PUlpuK58D5Hr64xnad+3cbvkda2y2RD32Zb1ZpjGMi/YOhwPSwd+ed1+MMTbjFq0zTbkXZD2R+gUc++Gh3mtzfYfDwXVums9ZQAjHfWes1CvrW71WPXbX6wNpvoOkV9M0YUzT3Tiey7x4cYthH1W5pLWjyd977qj7Usur5bv0fJlOfT1fI8QYzf2y9d2z13jttcePlPaUuq3WXtA7fl7fvlyvdV+k/REDEGOeDyClPr2T0raMzVg+loRl73vsZ067NCbUim9I/dPuAjzya/k1vS7jhDmu0tK1tf5rC0nGcnxaa7glt/bc4wdp90Jr8PitGU+brfiUJUNr/CSZetdkrrtVrvZP6/Q17WY0u+QZ363m3YPW1prYQNnPWsc9cY81sdlL6NkvWtS6kuuS1p627qw4m+Y7eOLcFmvOH2vLX2rDt9oDPDKX9XrsteSDXypDCyvO7G83fy/vzZa+ouSHrznr9ebvOUe09uvWej+uswlltnE8IB3O5zvNP7DuCLZii7paZ5Q8/yEUMaFw+h9VF3pj4ZpMrbw9d2Z1Pi02Z51ntbrqtrU4nfeeoK5fS7PigVsjjUvpO3rmU9ujrLItHYWz75JP12pf24e1uGwLb2xRQ9Ndb1krvrTW97LiID22fM36A+T9uHddbHF2bD3ruUu4pL12ufv1pWv715qL+7JdPbbWMwe9a1fT7946LLsF2LGBS+NHnvT7xHvmXnNuPTPfX6ZpQpjmbdcx/UUNnTpc75et+5K1XFqf1m8ttuvVt1673BN7Ke9b5vVkeRNSOs810B6nS/VwLcf46PJcMk2+eyLvWtZiXx60c1Sp48MwuOf8GP/39cnr85c+grYP57ZblHtFnT+lhLCLiHG4e36M+4cYEdOxzd1uhykdy9Xjfkn8wnunY/mA57SE0k/Y2vbncSv7b8XH6zUg1dVirY3N86L5uWW9Ur9qOT13WxYp3pVx3K/0os5BlP/Gp6T2LYeh/Y611aZF665iHEfzPZxzev19Gc9Ye95+6Pj1WjzxFusMLsV/NF0p73qPz+b3vVbcxJLXkqVmbXzRkiXvCa3y3rP0uc7Tt7u09nsHa9pdg88eLMtoczQfyy0ltWWSqOdhPue5rvyv/52NS2RrcZ+xQG8/1sZyvDIc/y1jK5rNtux8/d2+L7HlktrupcdG9JTz5LHGynpXRJPJ8omOflVc1OH1ZVpxkYwkW/ZLPO306q/1N6zl51pPjnGH5VhIWD6vx++RkPpptVOvvb5xOr9frdVby+DZX92tG/5Flu+Y72jjrfhgz12AJy7ad19rnzUkf1aSqdS33vOJdFZPWPpD1hjaZ9Vz3EbLvxzXpR17P7L+jaX3L3+5+Fyq0AcA/PsPLEvJDxrPfvrBpCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghpBP+CEo//z2A/JO5qfhvAPC7Qwi/9aEFCiF8M4B/o5In8zaAv/LQMhFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4oU/gtJJSumXAPx5HH/0BMV/E4ArAP9TCOHXPpQ8IYRXAPyxu7ZLecKdTH8ypfTOQ8lDCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkgv/BGUdfxI9b38IZQ3APyVEMIn71uIEMIHAPwFAL/tru38wyeZBOA/uW85CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgi5hN1jC/BeJKX0N0II/x2A78f5x0fyD5AkAJ8A8L+GEP5tAH8kpTRtLUMI4fsA/EEAH5Me38nxP6SUPrN12+9mQgji55QSUkqL/FJaD1L5sl1NFqkOqVxL5p4+SfWvSdfayPk1mXrHOoSgjmVOr59r7cSo/97TNC2Xp9V3z/Ot0MZZ0pkyvYfeea7TPWNRjr9WVlsXdV6tn2v0whqv3jnuaV/L56GsqzVmUtmedlp4bGxZV73WtHW5dly0uoZhUMtI63+aJlU2Kf9aNF227JVVl4Y+zgeEAMyKhtP/NNuw1q9Hrnose3WuTNPmZZomdW/NetHae8vn2n6hyR5jdOu5Z29fY+N7ymQ75rH9VlrLD9LKe9d+PSeWH9OyvfW4b7nG1/o+nnTPWPXMo/TMamO325n5UkouG1GOuTX+9TqS2tRsfS2D1oZ3XCzKvvSyRv+3oOVTectYePeCcp57x7LUubK9ll5Y9Vlplg3XzqMlua9aO639Jvc392+aplldV1dXp8+3t7enMq+++ioA4OnTp/jKV75yevaxj30MH/3oRwEAX/ziF/HOO+8AAG5uEt588yZLgGGI+E2ffBO3+6P819fXAIDXXnsNT58+PbWZ5Xr69OksvZSvtCPlmMQYu/S8x28axxGAoveHw924h1n+w2G93z6rf82ZOyaEMO9fjMNMryW/VbNzPTKc257rtmUfth6jei+pn/Wkl/XX9sIj9zFPmc/nK2oxkpw+DMPsWTm3vXbY68OU+fQ2fOdZ62xq13+utyTr8jRNbvttxaFy+ppzh4dW/6X2NP8UONuoUt6UEg6Hg1j/4XAQ20gpzfaZEKZTnbm9cRwxjucyu93uVEeWQ6p71v7zW+z3h1na22+/jfHJ9Wl/KPuTz0ZZhtKPL9ei1pfeWGtuUzpnjVfjnY7N984BeltW23X7Hl/AKqvFiS+J39Vt5HN0XW6aJkDZL3P70l59mr+Yr0nmz6Qxqf0aSWbN9tRpdt+P/+bP5LFp1Vk/77HHUrmZDYgTpqltn7znTGnOc/p9nT16fPfeZ609tf68llaMqP6ufe6JeUvthhC6/NxajkvOc5Z909J7YineOFnrLGXJVqLlKf3ols9Z+iiSHCWWT2vJYtF6XspirQlLp7JspX9alrfOaWvWvtUnj533rg/J12qxJjYvlbVilqVsml1bE++vKf0w7ZnU9hZ4z6VWPNDSk/s6l17KVu3HGLvj1Ja9tvRtrcyt/a2lyz19bN2dXLpe4nT53NX7U8v21/S2r51zvb5iOfdljDEz7ibEOE+7uro+nZmserXvPWfxVrlLz/W9Z4AyXyumpJ3nLD229lhfHEdux5Ne1qudIawyHi69e+mN1dfpntiNVd76rMkk2Uip/XEcu+4IynqmaZrFhoDjXcDtfh4L6bmrbtlMbyxEktuDtn48ZTx5pDiDx/eyWHuGrGOEPetvjUwPgXYuyayx3V77aHFsV1+Tvbp7LDtPO8bY1r/71Gujl/LYsZT6e9ax+9IVz/mjtGW1/uezW217JXvujXNpdZXPar3wzEsm29pL3zXZ8l0VHXm8pPf5ynm6BC2eosUa6viBtT9tdTb0rjFNF7W2e84vXj++Vba2eyGc1/2Wcb4182L3sR23qc8tnv2mjI3UfevV7brPa997lc4DvTFbjxz12qvvH/V9ztbt+X5yelik3d0lDQPieL5XsvDojPd8qd2FyPviZXthax+SdEwbixiXddV3q0D77sGKB7bqsMa1py91Gz15ctow3H0WzuGSH9Pja0pyhxCAISBG/Y7zrDPzMdPsjiaftXeVz6S51OygVr+k51mv7DIynvsuibX6ULdz6f6u6fuaOJHmT4ewvBfIe3FdXvNJrb+36fEXcv7eM4kkV0v+HplO7ZzsXkLW0xjXndNbeb1+UPldmmPvWlkj42Mh6esl9MYmt/LbvbRsjdff0J7P/KMNZZPy5T2oFqPem47fl2fypa9U7sMDhkl+b8/7jn9P2bMMZ3la9fW8MyuR0nkcpDiEB+t+M6Xl+1g13vvelr9/yXv3l6D5h5pPW5bx/E2IhRY3aOnAluMSgv7eXZjseJ63fuCydxeWtqC/+z4bAAAgAElEQVR8Jvuy2j689i4n43lXpaT17nArHtCy6fW7tDXiuxRYvt/q9Z2XsuRn8/NFax96gKX9rmf9iiA/BOCX7z6XGpi/PwHwhwD8XAjhd4UQXru0wRDCTQjh+0MI/zOAPwXg4zhr/Vz7gS8D+L2XtkkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyH2za2chEimlL4QQ/kUAfwnHccw/RJJ/jCR//7UA/msAfySE8DcB/DUAnwPwK0b1Hw4hfBuADwJ4A8C3A/gOAL8NwKt3ecofPSl/Piin/+6U0j+4sJuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhNw7/BGUC0gp/XQI4QcB/NGchOUPoeDu+4DjD5n85qqaIPz3P777V1P+2En9Ayi57QTgP00p/Yne/hBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8hjwR1AuJKX0x0IICcCPA4iY/xAKsPwxlLCoZImWJyl5yvSfSCn9Pkcb73lCCIgxIqUkPp+mafYshLD4XKYBUOvagrLNut2crrWfUjo9K8tK+XOap6463zRNrW64iTGKY15/luSo5dlCLk0XpPYkNJklubX6W880tHZSSt31rW2/Ry5gOZa5XU3mOr3M75WtXCMxxlldWr/L9dK7/jX7Ufa9p05rPfdg6YVmZ9bockuGmhjjbGy867qcy0vz1/3Jeb1rfxgGAPa8WHXV5UpZy89lHVJ/pmky++kZZ7F0Ov1PF7VeaeOj7cP1vEjr36rfoyN1Ge86ba2Ber3Vcnr0vN6fSlvS8mO8Mlt2vP68dt238PZFy9eyUdJctPpS+ypZl9bY7jU2tMdWe3TRW7dnT/aOgSeftQe3/GNv+z2+Yu++Uq/Lsh6pXW8/NLu/BZpervErNBtt1de7HjQb31rTmr9o+TrW2rCwxqHlZ1pySe1o/olmL6+urmZzfjgcAADX19e4uro61bXf7wEc/Zmbm5vT9/1+fyrz2muvndqNcY/XX//qrM1f89GXkNL1wt++ubm5KxNxfX29kHe32538qLym8vNhGMQxtNZqreMt36M1X/V+kPNJe8TW69ViqUMTpmku5yXy1GN8WlMRiPEcvkqpbaenaXKvi944hnWWr899rfZru2KtS9knO6fFJPsRdXmvr6Plq/2CUq9zujYOXqQ1EGMU16HmR3h8as0ulul1X7y2s2UPyrxb+buSjZHOKp79sjxrluk3NzezvuU17937drsRw/DVWdowDAiHc5nb21tVlzUd3e12d3YCyLZit9sBwzCzS7nMNE0zO6Gt5XJ+QggYx3GRnr/3+qFnG5dw/Fj22Y4xA/aZVGrTq2eWj1G2p50btXNAS9ePz+dpMcaTLt43ki0r02s96o2Z1eNT9jUEXbd7zsWSbeuxx9IcnouEmZzSGNWyWmdC7zlA07+e8ViL97xgpZXPes4k1rr17F25rFaPJ86xpv9S+mP6qpmWz5gp10vpd1n2uCeGYM1D3Ub5uR7DLGfP+USqxxt/1NrZco1YdXvWcl33pWcSyXewyP6BVaae45m+dcaFJKTxHcfRdbbV+lvaW8s+9I732vuqEmtNSucWbX+XymttWOUv2XN69voevPc1Flm2WsfXxGm9+400Hj2xOS1fax8u+2jNhee+r1435bmpxDqX2UM83y9aOmT5ma2zsSmF41wp7Y+9un7uY663vd+uWU+WjpRjvPVazfW29s6jDs1jQXls5meL4JLXe4at67r0rCJR3z1qdkA6h3rbr7H0X6PXP6nbW7OuLBmlceqZbymettvJr2umlE52UrMXu2HuN4cQTrE87zmjjufW+09dRxm7keru2VPyM208Pefc3r3XWodWzMea8x69aNFa796zuTffFpRjpemshDde4tlrW+WPeS+fkzJNiqeVz7f0Nz3xyNY62ro9re2Mdv6QZOuJQ2rzsQZ9buv0ts0A7uzppJ/9jvbZXpvae2HevFb+tUhzacWie+vUaMUcpHiSdR5dew7OePb7tWNf3j1Ln2usPcpD9hfq8peOUUkpf8/Z5Pi+wLzfu90O0063E9K4a3Oxxfrw6mJJy3Zl23Cei+NYDMNgxhlruVr6L923aGeC8r05bc5ijEgx11Xea8zbLN9rkPpg2b56D/HEVrW/V/DqYutuXGs77JbrdrfbYUjLurxnlVPdTv8PWNoSjTXvFUh7div240nX6sxxiZRwitnkz94x7F33Y5wwTfN6x3EExnO8LqV5nbWeS32R0nvsbus9cUDXccl3bbVf27PSFvS+b1nWJ6VrZ8eS3tiQx1a00r02w3NeONpIOcYj7cO1DdNksXyC2m+75E5gzXhaMpXf8/4l7SFe+XI7rXKSXmuyrrNXvrwAMA313wT4Ys41nvXTkqWnjLe9+45HbHkGBPrj9GvaX7M31jqZfZRybxuGARhqP0ytcVG/1H7pU4RpaftDCKd4pqS3rfHrOcu2/o5Kes+x9FcWtnXA3XnjLPMwDBimYZ6vKu+xMRIhSO8iy77mPI/epxqpv1lPLtm7PfJpZ4UxjDjq23LMyjnV4tBrKd8trOmZP6l86+88NPu4xdhfYlPrssc1s8yztV3zxN/Xct+xnln9xt9TtmyoWF8VRz9/bftCZ1/SsvPvH7a1au9TUkp/HMDvAPAFnK12Vq/yRiVV/9QqlX91fajS/yCAH7igK4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPDj8EZSNSCn9JQDfAeCvYvmjJ8D5x0vKfxpSXu3HVAKAdwD8QErp96Ytf5qZEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAHgD+CsiEppZ9PKf2TAP5VAJ+F/KMla3+kpC6ffxTlpwB8a0rpx9fKTQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIY8IfQbkHUko/CeDXAfjXAXwG5x8s0X4UxfMPRR0TgD8H4B9LKX1vSunv33efCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgi5L3aPLcDXKimlWwA/BuDHQgjfAeBTAL4HwLfh/GMoPdwC+BkAPwXgT6SUPruVrO9lYoxIKZ2+l59DCGJ6/czLNE1iXSVa+3V7Uh05Tau/9bxG66MlS4z67yJp42y15xnnuq5W/zQZQwjuscnkOa3rjjGq41SWsXTMg1cPrTmzZJB0pv7s0RNtbC35h2FQ83jGKufJ5cu+WGurLm/1sUSrs1W+NS6ttqW59M6vVpd37dfPesepplybmqzDMDRt3Jq2U0rNNZrztcbZakOzGVpanT+3M02T+qz8HELAOI5inrr8JoTT/4hcuv+Uz3vXVU/9WpnSLtT2Mddp7YNS+7leaf1N09Q9ZuXYlD6OtVd611Sp+2V7texSvjV7nNdfqtdiOYZ5Pqy+1GkaWl8s/6rX9yrbquXR+lLaLq9PVKaXtsDykaQ519rwrjHvHHvrbO3pVnpte71rubV3ppRmdriktsOSvlj2rpxzayw1X8Da7+v13MI7X1Y+rf9Wfk3/LNtnrVXAvz9a60WjtiOt848mS+1T9K4XaX6l9TCO40l/Y4y4ubkBAOz3exwOh5O/XpbZ7/dm2wBwe3uLlNKp/G63w4sXL07Pcx1XV1enPIfD4STvMAzY7XanZ9M0zfqUZbF8pVLuEMKsL2vOoPPz31nO6a5eyQ/U6vKuU6lMr48TY7xY50uyvkxxxDTJ6691Nmz1YRgGNc84jur8l3j6olGfFbx2+Czy2U/zxHlqrD3N499ZaL6OFSvJ6XE8z3nu1tGGhMV+KZ37yjUineW1uEDLjvaMg6aDor4NSz0ahgHDNJj22UI729fzqvl+WrulL6KVqX2Vso3r6+lkl7OPsD/sAVydxsDyHWz7JK9lbY3GGMVntV6V6ZZP0vIJpPqAPI7zZ9OUEO7G09LLNWfRFh4/oD4nlnunVIfURq2j4926D0UcoD7bWnZJj/eVZe72+Um3Qx5buvZsMT/Tnp9NUzqtp944kTd+Jsktpc/rSic5U0o4HEakQ1LblOzdJXarLt/Se2kdavMnxbzW4o0ntc4qZZ41+02dJu2FwPJ86rEn1t7ZQorJt85dLZk1v8zqw5rzFnCOHbfyedZrvca18nUd5dmizGvZK2mM6jHw+u2eOE8tV2/MRfM1tDZy+TU+qtR+yZoYt6e/pd8kr9s8trJPYaH5IflZ3eY4jqrM5ZluS1tZyuLFipN5YiXWZ02mco32tHlJPNOyj+Wz1tm0LluvI6muMv2S9VTSks/qr7YPeGxs61mrXm9dW96D9fg0h8MBh0OoYgjZt13GEzR/p05fG/+xyqxdO/7z1LyfuQ2PT+OJ39zLXaeD1rzYe3D5eT6ma+a292zrWUvtOJdPLy/Zm2of3HsmzGkeG6W12XNelvroOX9pbee82th5z1BlWalM+S9zjOUldb1KtPpftp99mvK+U9vv155nLMozVylPTT3ennOqh5Ze9vhEVn2XrnEpvyZXj09rpZdpl9qKEutdm7q9nj1WsoOtmHDOP57i6DlPuHv3Z1m3Z49rrVFpP9py75RUoMdeS5R+dI9//RjU41vrU4p5js5j5b2fCiHMYjQxLu3ObrfDtDvfQ5aklNS2esew9lvruoJQnRZ/3uKsWtdZ19tqo6f/0j1qqYue+fTY3J44mDSu9Z39JetkjNPijnccR2DU+9Hjt/fm9e4P87V2vuOaJt9ZsXznu65XwzO31lysnac67irF6cbOq/CWH2LFP0p7U8e4pfKnPbHQtfl+Lsuy28l/qlTLVsdm63wt/0b6LH2XmKYJg/D/K23FSc62VfbZ6/ISZ39gKbPlg9bfy/eyvXZJ65smc4/et/YOy54c139CChPOcYnzZ6ne+rukS5peHwsszxf5bjuEgGEqY8rHONEwDIv3XzzzPgzz94KPfkPENC1l9saDpPY1v7ZnPy/zbu3HrT3XtPJ6z03eGLO2TqS4vvb+rzQfLb9bOreWOuOJlWjjsfZ83jMX1t4TY0QS/GPtfZK6TnMtG3J78l4SW3KNT5Ttl8dXKmV5iDnUymx5JngovOvFk27qaJTfq/SMWTm3sj8/zy//HZLsP/Si9bG2Zda+0BNzt3x4TyzYOtstx37uL7bm3dvfpWz2PbVebt28abJpY9PrD0jlM16Zy7Ou9f7w2thiK32NH1OPXf09xeVaL/cya/xb1OutXNc9NkX6nj/mNrYYmxqPfQB0GyH1t/fOwXOG1NJjWPoprXWjnUdrGXe7HTxqLseU2uW+1uGPoDwAKaVPA/g0gB8OIbwC4NsB/CMAPg7gHwLwKoCnOM7HLYBnAL4A4BcA/H0APwvgb6eU2n+RRAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIewz+CMoDk1L6KoCfuftHCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsj7nvjYAhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQt7f7B5bAEIuIaXkSquf13mkMiGE2ecY4yJ/mUeru4WWX0sPIZye1XlqmVuUeSy5pX5qeMbfqluSaRiGZhspJUzT1GzX089xHGd5tbG8dPxbeGT26JulMx7969Vpq37vuOR8eU571ro0D73rIVOu+7rdlJJYpmctrcmTx6ReK9713NOWV188bWrjZclS1pn7ba1zizyXeX2Xc1uuEU2WEMLJFuW8l8gi7SlSm616MlmWGONqucp2tTFYS8vWeMa/LGPV17uvlpRjZ9n0Um5r/nK5lr1o7euljmrz02OrLZuqPdPGo94rW3un1q7kD2h6Ie1RLdurza2FNP7TNDXXrDReZfua31m2Z8nY2qMt2+3RkzW23vKl1+yXNS27FmM8tSHZxh7KurLt12SV/IQaaz6kPV1C6odnfbTQ2rXWi7VmLVmyvdTsp8f212k9vkHeH6U5q+11C8k+SbYoxij20Xu2ksYPWPrH2bfJafn7OI6zMvv9HgBwe3uL/X5/qme/3+PZs2cAgGfPnp3K3NwkPHt2ONUbY8SXv3yL/X7AbrfD9fU1AGC3O4eVdrsdrq6uAADX19en8Y4xnvyoco0Bx7OeNDa1LfTa7nI8NOoxj+OIaUoAzvZqHEeM49mulP0s66n1QWqjpaO9PlYeV6+NK/WiTi9lmOtYf5zCQ0tmT5/W2vbyv7meeq+X1vJ40g/M0tLBthc9+uuJi2jfAXlMcl89cYvjepNlq21RqUu9Z28rbtOrW6V/UduVjDYGdzUs5AqTvJ41vPMq7WG1f1GeNWs9LNe8ZFs0fySlhOur6WS/ctkhDihNgmZva5+obOdmmLDbDadnKSXc3NwgXJ3jd/WZW5unNWc7b/mSc5zJrlfau60zh7Wvr4nNtM5TrX3OGysbhgEx2rbHc9bSZK2LaL6WV16rLYlsI2LMtn4+r60zlyaPpFeeeIfm6wB3PmNMCKFcM8BuN2BI+llE0j2Pr1vqWO2be3RR60u9Zlvj0hsjtOqqy7XiA636ete1tdeWvm5dT2/sTZsLae7K/dbyE6R618QWy72q1sNyv2rZUWttavPQmm9J5+t2NXm8e4zkn/eMYS4vzbGkP/X6ldZ4rwwSlo/6bkKyfaWvnynPOymVcbr+WEprLFqxufI8r8UN1ux/tZy5PU/5NetKK6/l95wZPEg6b61vjw9ar6s61pLzePbFmlzXQ66h3j3G8xzo93U9dW4xLp4YLaDvibVfvNvtsNuFRb3DMGCY3h3/H1PaXNR99JxhSr8UAFK09ySpHaleSxZLRy+xsXV9Ht+zlLe0z+N4jI+N49HWTOOE6e5csd/fYryNs3dYrP3B8kkstPnTxrKnv3WZus66P542NXvpPdNIe98WNkJbL7WMa+yg1E9LRz1rtH5en9tSShiHaXHvOKUJ9dIs66/jMuU8SWeCmpZeSGmtPVkrL+lyHu+ePa61P/TEO+r5ts4t2t1f3S+PjW7JZT1rrWHPmag863j63CtPLYtnjUpnSykOfNalvIZw7stU5zl/12Jv+/0e42HEfn97kmWaJnzpS1/C/np3krmsL9+j1WfwHK+19tsQQvNMZ+m45zxYT6nnrNNCa/fS82nG6nOv7C0bcPYN5np89h2P9ypXV1cYhP8fUj2msHzeilnU9jzLV8trtZ/v/up9KUx2zFmL67f0pef8sXZePXOopdX3H1q9lo3L1GNU+wSaPdbk955vMmvvTaV3LbS2W/HC3MfaP7aodVGKUdeUMtTvk0v1rvHBS7SYndbemnbWyLUGbV9t2Z86bR67ArItPKed92vv+Gnt964FL8c7GSxiAcMwIEx98RQrftxz7lvmTe46PD6qFhvznGFLaltg3TNI5cv7A+1sAgAYAoYhYorDTKfCFE665d335f1QJldZi177lTlPeUarsdqZprQ4z43jBMerTjPKsdT3mr46azT9qtvrtWU9PoSnbsn298RIevVJ28+PelGXOa83KW6irUXprFSeezz7rBQDL/97H0g2vR63aZowDeW7L+d0zQ7Xe1fdRkuWuj7te0/M4T6px9H7jvF7jZYPch9ccoYB9Pe0pmkS/7ZgjY30cN6D5HSjpOscFZP8npqGta60OKNW7ziOqh+4VWzBSymn99waQsAwLfPXfzuWuVQ/jnGKeVzME3Mu4wBbxlrqMmW/NV2oZVvblpXuaafXPhzf81rG1XPsUntvps7v9a+1eWrF64ucd/kBIJ10Z83fwbSeWf66dx/X2rDsnGSja5+wfqdHetdpSrbta+1fbT3WY8JSncfvX1s+wFreHbf0hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQ9y38ERRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsijwh9BIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPCq7xxbg/UQI4R8G8C0AvhnANwD4MIAPAHgFwFMc52MA8CMppT8nlP+GlNIvPZzE7w1CCOLnlJL4OYQw+17XpT3T2pTql9K1euq6pmlyt1/La/VLwtPXVj5PHXWeLI9UVut/Tq/LWO1rc1GOn4Xnea43pWTqXEuuuq4Sr/7WaPks2aR0q01JZqt+r+wePOvd22bPuPbWXefz6JVnzaaUVF0u15i2/loySHljnP92mjbukl5fSpZlGAbzeYu6D8B8LOv0Eo99ruu36s31eWWvkeSp06TxTynhcDhgmiZM0zSTZwoB0zRiHMPCDnjk7F1/HvtofZbSpD2mtaY8tlgrL+lUpqUzXllLHdXGuOyDF82HqtsMIYh9qW1Mvea9e0z+r8eHqtdrOS5W+Z5xsXSslLOlIy1dquUt6/XYG62uus1L7bClJxJ1v8u+aOulpYu73fLY6tEvy0+x/GjvmHnscI1Xb0pafV3jj2t7n2bvvTrmXbtlnaUtKT+Xc9S7JoClvtXfc51leiljmV7LVY+T5Dtpe0RrH5PSarugjVNJjHFWJssWY8Rut8Pt7e2irzc3NxjH8S7/3tw/c74XL17M1mhZJqfvdrvF2ObvtY3wnOFyepZb0w/NDu/3+9n3cMg+0bmeFy+e43Y69+vq6mrWZt3Xsg81wzA0+1IzYhTWTJzVr+l0jbZ+Jb8n69bx+3wuJF9D24cfgp59+HA4AFjK7vF305AQYzkWx7FvnUsuOR9ZdrW2BXW/LCwbL539LD9Xkk1rU2unlD/blLLNfFbRypT5SrnrOch1nsoMx/V0lutop4Y0n9Os92viUSWSvSvXVD6X1fXm9LL9/LnMX+cp0w/X08neZzmePX+G/X6Y2aKsz+UchRBmYzezP/uxkCEghDxfsn2v5ffsyaXMUrp2lirHr3yW7cAYJkzTiPOjhGfPnmHYx0X/y/Y1H6GUwfLZrDOBVN46Z7XaqsvXzGMB7TOYdc6a63J5PrT3c+27ZP+s87DGcnxKW2T3qZVe5+mZC+28n7OUjyWf09ID7Xyjta/tCVJeaSwkuyVhjW/vurBiDnUMQ+uLlebxyaX2JLRynvOxF+vsW7ZT+iyaH6ednay9T9Lx2l6W7Vvr3UqTsOZYq8OKmWp+Ra9/a82pR1/W+hrefJ56NHvbOqdtTc/5ohUvWMxL5S/W+8JaPPuo9P3Stlr11X6c99xotd2yq3Wcp9YrzXfSZNB8R/UM51hL1rqpfUIpb888WrGVhzxHSza6NX71HrZG3lbsxmrf+2wcx2pdt+PZua5xHDFNCcDZjx3H4x3ZMU6UdaGOmdj11+1ofkyd1rMWJSzfSSornTPHNOJwGGdl9vtbjLd2DLX2Xy198/rKElq9rbiVhLbfHc/JEUDAMCTEeMCwG4C7vl5f32AIsWlLtO/e803rrKHV4Tmj5nyW/9Ib98lo94l1fsuHt2Jjmhye/cUaO8tOaXtfa13XZYdhmOWzfHpLpuuraeHnX19do+f/B6+WS0q3ymh5rTVa91nTP2vv9Z7vPPTsg5pcUp2etVt/7/XpLZ1v5ff2K4RQ3Bfpa9Sz70p1X5K+1j7WxBgXeqndd93c3OB6P+Lm5qZoA3j99dfxYrdu7Xmfa3Zlzd2ppgePwRo/YE2fV3NnGks5z74jkP3H/X6PaW/rQDyMC9nHccRdyHqBFjezbEwzzjTUscZwdy8SxXcxWvVd6reuqbcV8wbmcntjb9oay75S/c5AXcYbl7DySXmsNKksAKRY7plHO+W578u0+lKO86Xvb7Te1bDKT9N02qO0+kukmKmU19pHeua8zi/1a3F3WaT3nqPrOut2W/F97/liWbffB/PWW9vc3NYaf0Oa4/Lu9WzPi/bG9tmxbn+M57pKn7VH5hiPMcozfp/Kc660zstaPav3G6V+QH/vO1Pa2PM/ADh/n6YJoeNvbMp6veSiyxjHw8XxPLRsxPFOfB7PO45fu+7S3/T43peedXpjAB68cTbL79LO7VrfY6zHS75/0OIh3jNqz5iujW2vObdo6XVfU0pIobR7bdvZe+73xt612E5vW315++Nta+MePSzbWL6rYKGNo7aO5Dbt9Fb5S+1HT3nJFz3vW/O9xHq/cNHmgNk7isBx/xymYenLKnnDwVo78/egUpTvhj3rzxuX8r5XopVpIfnVbf9If9YbE6/3keyvHHUfJ52o3w3M1Gk95yNN3tbaSinN9NJ7T9W6Z8k2rsx29D3CQn9735tZaxc89WnnppZ/Ur+XCISZH1vWHUJQz4DaXJTf18ZKTpIZtkCr89I4ryeP1Y41H9p5vncs18SQ6jpayHKUuoXFGaeuf6lr71/4Iyj3SAjhEwD+OQC/HcBvAfBaqwiO2vx1yvPPhhD+PwB/GsB/k1L6zFayEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyWFz2fzVGREII3x1C+CkAfw/AfwbguwB8EMcfOdH+efkYgB8C8LMhhD8TQvjWLWUnhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSh4Y+gbEgI4TeEEP4igL8A4J/GcXzzj5ykxr+upu7+fS+AvxFC+M9DCE836QQhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQ/M7rEF+FohhPAvA/jDAJ7i+AMlwPLHTQJ0en4IJecNOM7hDwH4Z0IIn0op/Z8d9RBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCNLqmMQAACAASURBVCGEEEIIIe8bbp/u8eLVW9w+3ePw9ID9kxHTbkIaEqYhISQgTAEpJLz1kbcRx4h4CBhud7h9aY8nX46P3QVCvmbhj6BsQAjhRwH8MOQfP5F++CQZz1xNCvX8egD/ewjh+1JKf3Vlve9JUvL9fkzOJ+XX0nJ6CGGWXn4vqdOlfFp5qS0PtWze/vXWvRW1jLVs0zR1yeSVsZUvxqi2XcvYGs96jmtd0vqfy9S6oPW5JUdZLsaotqfVZa0ZqS6PDocQxOeWLOV4anOhtWmtV639njrKcbXmpWeu6rEo9bJXF9dg2ZR6jbTGtsc+l/pezmu9Djz6qH1u2ReLGCOGYZilSTJZY5Lb75Ej69g0TafPdX0ltb5q62232yHGiBjPeWKMQIyIcVj01Utt46z9TsKjM5Yd1erQZKrr0mS2ZOl9XttByy8o7bA231qaZm9LpmlaZbusOa71tM5j7UO9Pp03vX7m0RFLl1t7j7R/l3PZK3/v3lc/8+q0Z/xavkPOU+q1Zjstmcs26vRyLFs2Rlrfl/q3l+wlWYaact1Y9Wt99s6Ldy1KeH30lk9V5pf84/JzrUce2WKMM7tm+RGtva60kWUd9ViUNrqcy3osxnE02yv7kNvJn0MIs/TSlkzTdKo7pYTD4XBqL6fv93s8f/4cAPDixYvZ97feegtvv/02AOD29hYvXry4q/cd/JZPvpp7iRAC/tbf+jzeeWfCbrfDSy+9BAB4+eWXcXNzAwB4+vQpXn755VP61dUVAODJkye4vr4GAFxdXeHq6uo0/sMwiHNWzqWmFy17WM5xWWa3283qHZ7fYhgigPP8XV/fIFzvZmXLNiVKmcu83rnPdchtJUzTiMNB91vW2DfprJlibWvCnd/47grQr/HDLkWbfunM5rELnj3RKuPpo+W3zffMZlXutq2zmbTegfN67bHTrTZrG5Ht9ZhGpDQtzophss/93piRRr2+S/nK2EKZXu5/9fmg1DUpfpNSwtVuxG73bCbHzfUNQpD1UjqDZ+p9qYdcTrLL+XwqyVL2xbLF5T6Y5ymltLC/KSWMmO72+HNfhmHAMM37Vts8q8+afbzEbrbOudLa1uIB4lmn2rPKZxbWOaksetbPhFCdgXrOA1K6tf/Xa2GaluevlPyxh97nnhiAyJDL9sUU6zlv6Vyr35otydQ+WZlurd+e9Pys1F9v3E2SrcQTi6nz9uy12lm19g0y3rNljy2p7bTXDyhl0ea5pN4vNLtsIe3zrXiMRN22dA9S11PruCWvNv6aXHW70jxbMV7Ld7Ta0dqS2MKvvzQ2UiLFRIZh2KwNae15/bcerDVWf78kPlPTOheXOl7nrctIfm+vHLleyz/RZJbaCiG4z9StfpV471uk+tYi7a+1/a3b87Zd75cSdZyrpqefXjsyTZNLnzxxaQ3LD6l1sS4HLGM587aB7J+ldLe/jct93jt2mq9Yn/M8c9m7Ti2fMT/L57J4tbwj3O2usIN8Rl+zRiSZvfbGOjd4/EArPZePd7GxlkiW7a3Xt/f8UMvSerbmbNMaJ++5QSsvzYW0L9RxDg/emFkpq7ZOPfa2dR7RfE/pjJApdSPH8us5LWMbdZ3Hz9PCp9kf9tjv5bO+9jl/z3LkdCn+I/npWmxCkrn+vrUt7S3bG5uo8axDzfZKa6TX9+21A5ZsHh+0Jzbh2bsfgrOOZ9t0TLfuOrS+5LqW62u+Zuq6NLl68dpxbx2uWNUDIMnQ864JIN/Z1ljxgR7ZHpLSF5POLoBtowF57ynvBTw+Z412h+k9Z2j7odWOpy6rjIXH5mn6U8qi3WXlPb0V92nZZO1MKzG/LzqnhY5tphVnqNupZS79ijL/ixcvxHPM8+fP8WRMeOuttxBCPKX/4i/+ItJLTwAA19fXs7m4uro6nV/KOsv3Dkok/0iLNbTOkN59rmVHsm5Idm1S7iszuo/YPk96/S7LpgDH83FK2Wct2z9+PvZjWe/a8+OaOFme4zqWrclk2ZFeHzHHD3K91rrKtqLu5ziOGOO8XqmO3vi1Jndrznvo9V3k83zAuZpQ/PNxH/HfGinu5PVNWmuxtV+45NtNiHE+bq31sKijU/etcdfiwmt8U21NaGvMem6t/drGSm2V6+d4L13qwDG2ZPmj96WrrTFt7fdrYkOeOM2SACj/P/KeGIRaa4dOlXN59pu3Ow8s9WZ93Wt0SbLJrbVyl9K1B1t19dbRu+/3cMn669tbz22UfmfLpxzjiGla+l0Y5+Xrc0bJfA+RYoVRPdvJfVn/vG67Putq9fTMjecOcQxjFa+fj2svrTPaNOX3EjFLG0d7D67rtda1N87qiZPUzz7/zV/AV998B3N7dbQHT750gzd/9uvEuqZhEvfLEMLifcGt3qfz2htrv5vShOev3eLtN9/Bsw++wHiTFaPeo+7WbwBSTEjDhPF6wog893v80rd/HrvnOzz94hO8/LknePLFGwT07WEeuaU8PWtRwhvL95avn13q8/TqteaXlPk0WxgF2+ltR8pjz815TazVk/cT/BGUC/n/2XvXWNuS7b7rXzXX2q/z7O7T3ffevtjX16/rp2JkLPL44PAQihyBA8gRHwKERxAES5EigRQUgxSBJZs4JuZ7hAX5QEICwUIgIIEE8rJzhR3b129f2/f63n6dPu+z91pzVvFh7VqrZs0aVaPmWnufPt3/n7T7rFWzHqOqRo0aNeZcs40xPwTgP7n8GjQu1bacxu6jkR67E72P6r8F4KeMMf+s9/4f7FE/IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDy0uKMx+NPPsGjt56iP5m+zHMuw9LhyRvP8OSNp1icL3D7yzdw6ys3YDxfakHIvvAlKHtgjPk+AP8pcq932iClvwfgNwB8D3YvNFE3i92LT+LXAYa0MwD/ozHme7z3v9NQLyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8lLj4fHkzWd48DWP0R8f7uUnOfqTHve//iEevfUEr/7GHZy9f3ql7RHyUce+aAFeVowxrwP4b7B7CUnuhSQh7YsAfhTAHwZwz3v/hvf+n57R7HcC+IsAnmP8MpTQfuBNAP/tjPoJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCXkv64x9vf/j7e+8YH6I+H62v3ZMA733of737zB3DWXVu7hHzUWLxoAV5i/gsAr2L3spNA/FKS/wvAn/Pe/61DNOi9/3kAf8oY88MAfgLAvxq1F9oM8vwBY8wf997/pUO0/WGl6zoAgPd+cs17v003xsAYM0kP38O1kDf3uZSmQZJRIm3HubbNLi0ffy+1m45NmmaMUZefI2eY01JdYSystdn0lDRfrkxaVmq7dexq5SUdS+crfJf0L9Xr9FpubGp9yc1/Kb8kW5qeq0+au5q+5dqsjUWurHNOnAtJf6R+WWub10iqO/HYt9intL64fE0mjS7W6ilRkjftV07mtN3a91zdsX3RyFfTv1y+kv4FcjolrYE4XbMPxP2w1jbvHYCH925brqSv2jWfptf2I2md1uoq5Zfqb7FzmjY086+1UXFbsS1K9a1WttROSce1tj9XZ0mGWP9r+5vku0m2XyNnXL42Rq3tBMKeorFLJVlqY1paSy32U2o/Hv+c3ZLWX6qf6VhINkS79nN7hFRXbQ8L351z2z6W7GbLOtNQ8lGlNjXjJNVTWu+SzmjtY6v9TdM15aU81lr1vqBdQyFNa9skHyOWS1ojUpnSPp7u9wHnHJbL5TZPKG+M2aY757BarbBeryd1PHv2DO++++5l2gqr1fGo3cePH+PZs02dDx8+BACcnp7i3r172zyhX33f486dOwCmZ7xhGLbydF23vW6t3X4ehmFULu6nxo5rCOck2UMc9yltPydbbFek8qW6tnO2kM8gqd8p2UWNr5br2+a6PLaa8/VcNHax9WwbM0dn4vEIxWO7A2z0OLWdOZ2VZNCebeLyko3K5c/pZYxzLtGfTZp0Tg7ta3wRaU/R6EqqD+k4SntiaTyttfB2PG7BFhg3Pf/H39Nrod5hGCZp8efcWTG20em4pPMV/h2GAX3fb8uEdodhGNn0uP3FYsDFxcW2Te89Hj1+jNVqZyNyNgwAlsulaO+8x1YWYFPXxcUFerjRuaU0nqmsAWkuJT9wLJcfxYoXi/GtD+89hqVD1y1Gc9F1HTq3kzuVI22/ZGMPhRQXrJXJ+eCynwMgurWhPauWfagwRjs5auNV61vLWMc6sml3Y9NiMTdp47EqtdNyZm6JLcQMdmqHd5+nssbttcQ1Dnme0cbCUv3NfW4Zy9KZQCornUdzZ9dAvE9pzzqt+5wW6V5ITu6d7uvjZjXfUKNbcXs5+1sqk0vP6YY27tOyZgPpmSqXnsqoRaq71l4cp8i123IurVHzFbWU5M/1B5jqX7yPx3EabZxbawvTbOnZat82cvmlc4AmNhFT2hdy1PQmJjfGsU9Xm4Oajantua3pWmI72nq/RUvJV8r1e06f0jZK+/o+Y5aed+P2pXvqtfpKlM6dGkrrRuMrpefhmLFYm7WgiVtIskhyp9c0cQ/p7JmeKeNzZzx/IU+8d4Q92B8D5+fnl/3fDMKzZ0/RrXfxu9zZKD1javyQUnprHm0+jd8w1ovNvrHTp8vz+KCP98VtSefsdN61Z6hWP6h0PkvrKp3PS+VL+0HtfCOh2Ufj9NKa0dSf6nUtzhV/b/G5wxqMdS6Np+RkXy7cJN9ysYT3dRuViwfF6dq1KunSnJhJGjNLr4V0rb+mbTNHqf5SmTl+1j7M8Vu156vWtrX2XkuLr3sopLhBnHYoeWLf5xB1as/s8h4xrqtWn1Z35vYtjrXX6ovnJSd7Syy3fHZP4z3TtXVIHQGm4xC+H2p9zaXFlrXEk1raSWMFrXK9aGqyamNBkq/g7TRGHs4xreOUnqckG9H3/UhnQztPnz7F8+fPR+kPHjwAsNHpo6Oj7bXh0WO8//4mphjiivfvezz7YNPe7du3cXJysu3bxcUFTk5OAGAUh4zXYtd1E19un7hPqY6cLtZigvsg+dTSXp+zl3PHIjs+ir0jF+895DkvEN8vzJUfP8839vE3z43YUT0lWbbrw073Wil+IO1z03v17TGIVAb1/EXlS981ZWp5SrGt0ZrBEOVL7/HpzhvNeawDMB2D8Gdt0OP8uJZiImm/F4thEsu3dny+q8X5amtpN05xPfnxy/m9rWdoLekeFT63tiWdG0vx0vR6yY/UypGmx7E0jP4/51Ny8ctc3a12syXWoq2nNcaSkyMn16aa2Nf2MNFzjml+zTlKmuP4X2lc55yZtfvpWIb8eWJOOzWdb6nrkEh+6yFo/Q1hiUPFkvN179rQ2LHgr2/yT/NqdSD37Nt0DbvRvYJcnfF6kWKJtT5J7QdSf7m0d9bK1siNa+tZ/pDPy5ba3ddHLtnfnB3N7fvG2Mg27vIZY2A7Kz4LMiwGWJv6OFOfds6+ItEyXs/unuPdz93H0LlIH2rlC3sOTOayGdWddu3pG8/Rn/V48wv3sFhNn+2Q5k8ao8dvPMX6uN9+j/MdPz3Cjfun2/S46pBNMxe5fbPmq5Zkjq9p8pTayMlaq1ca43Gf2u5VtbaZXC36OONxqB6/P/LwJSgzMMZ8O4A/jrEXGj4bAE8B/Env/U9eRfve+7cB/IAx5gcB/IVYtEgWA+DPGWN+0nt/fa+oIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCrpHHbz7Fe9/wADC+9I6ya+Hi5hpf+c538cmfez37IpQWnrzxDM/vnG+/xy/IuPXOje1LUAj5qMCXoMzjTwOw2L1sJH4ByvsA/gXv/eevWgjv/U8YYzoAP5bIED5/EsAfBfCXr1oWQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkunn4qSf44OsfNpUxg8XpwyOcPDzG8tkSy+cL2N7CDgbeeLiFx/pkjWE5YDgaMBw79MeDuv7+pMdXv+NdfPJnX0fX7/ciFEI+TvAlKI0YY+4B+Newe9FI/PKRHsC/ch0vQAl473/cGPM5AH8Cu5eyxPy74EtQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8xHjy+jN88Fn9C1COHx/h9u/exNn7J7DOZvMYb2BXgPHA8mKB5cUCeAx4eLz+q6/i6b3neP7KebWt9WmPd77lPj7x8/dgfPoaAEJIjvyqJCW+H8DR5WcT/esB/Nfe+7/9AmT6jwF8cPk5fjmLAfD7jDG3X4BMhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIlXB++wLvfdMH2x/Yl1icL/DmL76GT/3sG7j57pn4ApQSBgZn90/wiV+4h0/8/D0sLhZ1Ge9c4P5n9C9pIeTjTn1VkZTvjz7H9vACwH9+zbJshPD+oTHmRwD8MHYvPwmyLQD8cwD+2ouQ7aoZhmGS5r0f/Zu7bowZfQ55Q3r6uUSpnRzGmG3dcRve++1fWkdcJr6ek1EjdymPtt8SOfk1Y5Tmcc5V23LOwdqdg2GtbZ7DuLwkTyzLvuMzB22baT7NuOfqTtdDukZy9cY6WqK0LnLXpPwlSuMQt5PWrR2v3FrUyizpmNRGqs+lMa7Na6mMdiziulP7FX+eI4tUvpQvJ5e2bUnnYlI7VMqvsVmHxFqbbTNOj22kc25i13ZjvdODTRZZB0vyhHpbMMbAOVe0Rel3SfdKtNiSFj8i910iN6Zpm5o1LskV9sDUxwmfJTsu1SvJItXVYnfmzKHUr/h6aY+R2q+1V0PaE6U8pXGVbH6pvtz8pftFWj43/jmfNM5f0x9gt/5zYxKuSX7XHCQ9Ks23pLNd140+a2WLbZ52nuPP4SxTk1lTb+t4ltqJmXNu0M5NnB7rcquPNcf3AvJ6OZeWsSzZq1L/4zUW617uTAxs+nV0dLT9vFwuAQCLxQJHR0c4PT0FAKxWK6xWKwDAq6++irfeemtTxqzwiU8sIrkcvvVb7+D8fFNfGLflconj4+Pt59DO0dHR9nOc3nUdlsvldt11XbetK56LdBxLZzLNmpMI45nzO1r3uFTOWL5WX8n7NJ/Z2nftuU8aszlxD6neFM2ZrmQL+r4vth3brtr+XpOl1vd9z7dSPmktz2lHIm5fWldpHmvHMsfrPJajdf+VxiK1hbmxSGM+c/eump8bf0/39tTGtuxFOT8tPqsFhmHY6v4wDNs2Q3qw0X3fb8udn5/jwYMHAIDnz59vy1xcXODRo0fb/DdvLvBt33xvK0fXdfi7f/d9GHM6ssNhTzg9PcVisbH9i8UCJycnAIDj4+ORvV7YRTSXgPfTM2faz3D2S0ljeSXbG18rna9KDMth5PsBwHK5QIdxWk6P5toFrd3O5QXqvoq0ruI6c+eFTVP6uFNoSxdDCvNTr7d1XLVzvms39BUAvLiftrZXOhtp5BzpvfXbtbSpazzWtXiApr1Jm8q6Sjaz9ayaohmzNM4hlS/5Pblz6Jx4hkSuj7Gd0fhqQcbces3VE+eTzgM5NH6BFsmPSffvHKUzUS5vQFpzko6kcmrOfqU8tVjsIYjruo54c8sajcnpTKyL8b4f9tDcXMQ+sbU2O68hTpM7U6XzpTobdt3E9+26Dl1BpzVtzKEWH8jlT2XYR55SnDXOU/KJNb7PoeRNKe0LObnSfmjl1NirOXG1VrSxEA05W5c7q0jo/MGNjKltKOWv1dVaRio/1ZVcTGjnm12mZmNFaZ9Ke3lOnrnzKPldsV1N88T5pFi+cw5YxL7JTt7YX5HkT893gZa4VE1PSjqq2QfS9nNluq6L+nj5h90ZKuej1vodyxKnhzVSWletetV6rYY0Tq1+E6CzHy2+oubckdZd+l6SK1dXbl5a41LAHB+0/QxYaycgxT+0tr/UvpQmpbeeMVtIbUHNJ6udTWP5rtov0MaZDumH5No5dP1pG5LOpXv6PuOt9SfDZ9sPl2tyHE92rm0sJH2unXlDunQuKMWqUl9FivFJ+9q+vkvaTixLDc0c12J9Nco+8K7uTex8OjaHXg9Xsb4OTRoPic/smv2mZQ+WYiWtMZ+4TJq/pAO5uufanprO1+xC7lyjkaXWvzk2M9QZngFIuXXrVlaWHEfrAV/7//32KO+3f/vXYrXsxPKxXcrZ1TR2LOlsCW1sTrrHKaHxayT5Qr0tdqJ2BqvFU9K6JnlyskR7ijQW8RmzJF+crolD5dLSfWzzrzyGLXHZcH90sx/s2pPOmrk+WFu+B6mJiZTOkLGsWjS2T7OPt/o3u3y52ExZnjhdc4aelgvtj9M3/l56H3zsT2ljvJIfVjpv1OYt19c49pNDWiMl25iTO5Vhrn9Xiqu1nAFL/q1GllQXtft9/Mzb7loYUzO59xHXIZ1Nc/qQ8wNqtJzLpWta26spF5dPq+g6i851+QIKanGL0jOJUtqh2M6n8Wg9T8yxZ3OYjp+8hlp83pb72C1cVb2HQmu60t9Bejvv9xXALoZfu3dqzC5P2h4Q7pnm12Jp7Ui6UoqnAeXfaqV2MbdPqeKdlX5K5wTNfmWMmTyD1nV+Ipe13fZ5vBpz13pujKVzYUjPpW3WfkhrlmIig2Y/jmVo9TFzuKXDu9/8Abzg38Xc+uoNvPobd4ovPpF13yDuc9D50wcneOvzb+Ddb76PZ6+eZ+TffX70qSc4ff8Epw+Pm2PfLpqrGvGcbv7yaypQWtvjetvu5eTaSD/Xytdiq9rzwL77as3XkdPbzvM7v2nqP33c2P/XPh8/fh/GljlYrb/hvX//xYgEAPjJwrXvujYpCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQK+S9b3yA/rjysiRv8Oqv38W9X3ul+AKUudjB4o0vvIaz+ydlMQDc//oH8Gh7AQohH0f4EpQGjDFfA+Bu+Jpc/l+vWZwR3vuvAPjHSF8lteHbr18iQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHksDx77TmevXZezuQN7v3aXdz5ys0rlcV4gze+8BqOHx0V863Oejz5xLMrlYWQjwJ8CUobny1c+9lrk0Lm/82kGQDfeN2CEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghh8RZh/uffVTN98pv3catt29cg0SbF6G8/iuvwgzl1zc8fOsJPPy1yETIy8riRQvwknG3cO2L1yVEga8m3z02L0Epyf1SY62F9ztDb4wR88b5pPQ0T/hujCnmyzFHFmNMsVwJ7/2oXufc3nLm6o7za8c+zpvKmGKtHf2bq19qV5o/jVzpHLeSK9syZqWx1MxRmsd7n60/nsuSHqaE+YjrTT/n+luqe46up23G6bl2cuNQ0plQNu1LTtZaPXF6i/2QdME5N9uutJDOpTQWUr2xXU7tkvRZWn9pukZ/tGM0Z72X6u66TpVPkkdKz9nJWnpcfhiGbZ3xZwwDnHOXf5v8bhjgDND3a6Afz7u1VrRNxpiRPK17T6lerb2P0yXbq50XKV+oN92f0u9xPTV7m2uzVkZbl3aPbrUrqa8S8gQdkNrX7he5fKlMres3XfslW5SmpddKzNm/NcTrS2svAblvufKSTQllYz2X9FVac977bXnNOs6132ILSvNd6mcJaZ2HdGmPrulrbU8t6WScnq6xWr1p+VL9cV2S7U71Q2NXvPfb+ZB0t+S3pnMpzVFaJs6X08v0e6vOSjYmlVejF2m+eC7ifnRdN2on7PfSXIQ9PVffcrkczYu1obyHcwbLxRLuyODo6Gjr+1hrsVhsQktnZ2dYLpfb9KOjo229If9isYC1djT+LfaypIu57zlCH1er1SZh3WMYhpFePn36FOv1YjsWIX25XE50J/St6zpRtrn2R4PGLu/Hpv/GTc+cWrmkcmkezVou5de0GajNSb5/4/GVzp1xeSld+hzsSLr/1+ST5iPYhFw98T4WzgSBcFaQ2tf0pUS6luOYQ1pP61mj1u5gh6QdnY+p8c9L9cR6Ep8fu64bfQ9zFuYgHocwFs45vPnmmwCAvu/R9/3k8zAMWCx6fPKT/Ui2z33udVxcjO1GbONysqxWq639BoCn/cXWhhqzsekXFxdYuX6bJ+5XmO9474j1T9oTSp+1Z620fO2Mk6s3t1fFZ+WcXKFvgdIZKEbTL2n9a859W32K/IdYXiP4Z6V6NX06xNrVpAXGOjUqVZQ5HktpLqTxluqt2YhNTGWaHmxTToa4bFy3Zu+vnaGAeX5La9whN8bS+SAu0xob1OhfKY5Sik1o/VDJ/kjnbE0f42tdZj3XyqRo9/EwRyWfTeufaZkbo5Hk0dYhnaVycsXpmrNqXPdisRjVFfbK2pxq5qJWNpUlbjeN65TQjGU6RrEMUh808ZySvdKOTfCFjNL2ae2KVk81tixuO82T27tq7Unrao4tqY1zaX20kmtLc27SxGCkvTCdy9wc7INmj78KanMR++o50nUt1S/Nf6vfUKLFRuXqXiymurU5y5goLrYrXzrjp+2U4h+19Bqa+Gv8WbvXG2PQLwYslxeX3zfpp6dn6NZ1e90ik1S2FGsJ11vPByV5pZiR97v+bxrY/md7pm3Zh0vrKf43h9SOVGfreTktl6s/t5bimJO2Tqmu0mepzkPYyn18fUlHS2ezkv7V4l+te36unmEYxH08ns+SD1tbf9p5lGSNx2+uP5Ubqzn+f4vtLNUj5c/JNid+UtK3lj2pxJxzhxbN+SS+NlfHpHpb6l74qQ8UP0ejiQun7c7pQ0mvtetx830cN8s9E3QV7DuHh1wnrW1e5b2+fdDaqEO0E+pLx6IUp2iRIacfuftHX3DWCgAAIABJREFU6Xepfen5gFwfJHIxjHRda2Io8ZpPz6qH0i1np8+LO+ewtAt1bCV3HkzTWn3hXJvjeSnHtjUx7RLS8+jacjlqvrgmfRqzMNu09P5uq+0rxfy0suX6uLvHtLu3bMxGZu8cnNudFYZhvv+xT7x8Ltba0T3SgDQWuXxhKIdhAIbynE3vjcoxCMlfTO1KnJ7WFdrc535dbZ3W/NpYl3NnlW3ZBS7H0l/+Ad67y7/8c2Ql3792JghzLO0zYZzHxY1oC1vuS+XSS+fRml8/ymuTuEaE5llUrczpNc1alPbRWnlNjKGkh61x/XRsNPGo+GvcnDTOtfhD7bc7cZlSPCKlZb8q5dPohRxnOYxNP2ScqJXriO/ndOcq+prT5bln1kO0H7DWFvfhfeMdh8JaC3SY3FNo8ZvT+6fA7l5M7Z4NEN/vjO3gYc+wpVjWvj57qb3wOX4uOqbVz4/HKp0jTZyuFjMMfqEUc9HGjrUySGjGqeYHTPZSJ/vGOX8qjHOLrzAnvhp48snn6E/K9y3O7p/g9u/c2L5wRLO/p+z8vd0ZAMBkDQaW5wu88lu3cf+zDy7rj+va/Ls+7XF+9wKnD07U8mxsdVHUjOzjPkh1X1UM7BCxwNpaqvlXmjY0aPsS57N2urdaK993381RKLOfXX3Zubq7FB9NSq96qr8u6up5V0i/ea1SEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghB8Qbj0dvPSnmsYPBa796F6bwIq6r4tZXbqBbTV+6GPP03vNrkoaQl5PFixbgJeNZ4dopgLLFvHqkV/qcXasUhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+crjOYX3WYzhyGJYDvvTdbwPGANbDOAPbWywvFlg+W+L04RFOHpyg6+1B2n76+nP0x0Mxz93fvoXFuvwikqvCeoPbX76JD77uoZjn+SsX1ygRIS8ffAlKG48L1z4J4FevSxCBN4R0WkJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIbN49uo5PvjMQzx66+kofThysM4AMPCdh+sGDCcDzu9c4PEnAeMMbrx3iju/cwtHz5d7yfDkzWfF611vcesrN/ZqY19uvnuGDz7zCDA+e70/HtAf91hcjF/1cH77AuuTfpJ/WDqxrf60x+M3NvOxWA/43a/bvSDm7ImZIz4hLxy+BKWNLxaufRYv/iUorwvpj65VimvEGANjdgbY+/FmEH8P+eI07z2MMZNy4VpIz11P600/S6TtS9c1daV1xH1Jx0Zq3zmXvSa1H49Lmi61KWHt7q1taTntWGrmPK23phcARuOiQWqr1H6qO5KelfpY0k3pWmg3Hv/0emn+c99L8kvlnXNN+pKrQ9NmjFbPUr1obVOTR2s7JJug7XurLkt9TcdCY2NK9jktU5uLXHptvcf1pm1I/WwdL2C6lrTrIm4r1CG1X9JBrS503e7Nld3gYW0Ha8227a5bwHQWy+URlnYh2vu0X2k+qYxGZu3aKa2Z3Dy37k+5eko2M6bW/9pchrySvNZa9Ti1+hSxTNoyYVxCe7nyqV632u64vtLan1OvVq4Wva7ZJylfnC7ZgpJNlHRHu0enxHZf0tuS/1Pyc3OUdD83zxpbmNbVdV2z/sRzMcc/3MfXCb5S+j3NF9rSyKNJL/koufEvjYvG3qc6pumLtbY6Nzn/IuSLbbrkI5R8h1J6zvdYLBbZ/Gla2o+STx7yxuM3DMM2fRgGDMOwrXe1WgEA1us1+r5H32+Con3f49mzTQD4+fPnUfoTPHiwaW+1WsF7j1/6pa/i4aMLOOewXG6Czjdu3MDx8TEA4OzsDPfu3QMA3Lt3bzSWJycnADZj33Xddg6stZEv0qnPVXMJ7QPAcrmE9x7LVX/ZHwNgI/OtW7ewPpqGzHJ6NdevOWS/0jrn+gE72s4z2Roazk1h7WhkjusNOl6TKefHpXtCzPSsGtusaSwllauUXssX/s2dD+J+OOfE2IZ0vkrbDuPXuXQcx+ViGaQ9QhvfGLcz9RlydbbqcKpHkzmwcixQI0/6Oc1fqje3d8V6nNOXnF2Py8f6ulwut/bZOYejI4+Tk+ejul955RSr1Xi/iveUmHjfjPe4xcLCGDu6Zq3Bcrnc2tjY3sa2Ph0/6ZwVy5Mb17n7RS2PVt/ivbcF7Zmj5Ke2xlBzfsPQ9xM71vc9kOmPdt8brIP3cZ0GznmYQsynROs+k5NrGFw2nxTvaJGr5Gtq5q/cvoEx9bEv+av70lpvSU9z+3vp/FY6j8yJp+bOMHN1oOSrzN2vcmeZYBtLZ41c/lI7WkrnxjgG1NqGlKfFb5Xmcg61ctp6nXPZ8Q/7YyCND+RsvtYHLuXVjGUcI079E806LOmbRCluMCceL5H6y1J7LTGr0P9cvzWx/BrSutLUJ91jk84DaV0lG6vtg2TPW32l2viHulptbWntSe3E32tx3hoa25cro1nLpWs5fdWe05xzom5r179kFzWkZ+CajSjFX/eZu015YBcPKPsgc32DObGj2ljm7HpLbGIzptN0SS9L+1jJd5bKaORsRTv/O5sffI74bzcGzjkYN7ZxLeu15iunaPbK3Bi32rKrjFVedZ0aO1BKi+vQ2kuNfOm5oxSDyZVJPwO7ewAhjh94+uwpVivZPsT+fCCO29TiyiFPTWdL/pFmbLUxj9L+3jLvc/Npz6aaNuL1e8g1s4+MKYf02WMOEfOS2OlbTj8OMzZhXYU6uq67srFK2z1MPVdXt0R6Vk7Jzan23unVkcYg8rHGGHlfypfbt08ln/GQOqmZu9wZUNO/nI+bxs405wPpnlru+hykOF6sA5K8rfGUQ85hSx255ylSmaR9uNZO/HyAzOH3xG3NwvlI8s9LMew4vibFZuLPed3J+/CHiD2nski+rve75yHT/oY+xvLPlaP1fK6J/6b+05wYgCafMWY0FoHc/hSqi++RamNRm/0lf5ZoPZ9I/nGsC1q/XBuL3/fcGduFwV7GPKP1YK2Fhd3ec87do5gT2wx1e5uPg8/x02vxgRBzyKG9dyWN9/Q+WL3+0hynY3rI2M4+et2yxqXYVJxei5Np5cqNecyceysB6Xwn7TE12VtjU/sg7XVpc9pYfkqrLmltv6ZNSV7J19/MVSzv4farUj6tXUnlKcXeS0jrde4aKJXTxk1z8sxtU5Ijd//ROQdER6RavLx2bfTMc8aXnD6bZYtrbVfeZK8HeXIyaqmdifaxjdq2pXvDcR7JJ07zpeTtgZvsCcPQwzn5t7O5Oku0xv20PsYu7hF807gdwNixfqyP1njvmx/g/M4FXMbH2WSd2vxte9bjyRvP8PTec9z58i3c/a1bsCavEyW/uj/ucX7nQmh/w62v3kDnu5Gpk8596bzKvsK4jd0el+/wcr3A8dMjXNxcZWUEgP6Gw3HfjdKefuI5Hr85fsHMTohQwVjG89sXOL+9aacbHL5wa7299qnf7GCc/vd48feSHul1rN6e9lqubu09Ual8zmZo11BKrGMbv21aj3MepmBjSjbs4wZfgtLGbwJYYzNuqQb9YQD/27VLNOa7k+8GGzl/4wXIQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkJeX89gXe/pb34Zb7v7jTW48H/8QjrM7WeOOXX4P1updeBJ6+el79Xz7eevtsvoAH5O6XbuH53XPxuh2u++W/hLw88CUoDXjvB2PMzwD4vdi9BCW84upfMsb8Ke992//+8UAYY14H8E9h+nIWAPjCNYtDCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQl5fmdC7zzbe/D2f1fgBLz7LXneO8bP8Abv/JqU7nzV+SXigDA0ZMjLM+X+4h2MG68f4ob75+WM/E9KIRksS9agJeQvxV9jk3LWwD+/WuWJeYHsJvP1OT9nWuWhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIS8jFjRXe+db34ay/kvqfvP4Mj998qs7v4fH8zqqY5+yDk33FIoR8COBLUNr57zNpHpsXj/xnxpjXr1keGGPuAPihSzkQ/QsADsD/ft0yEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5uRiWDu982324Tn4Biu0tjp4c4eTBMV799bt49Tdv486XbuHs/gmMM6p27n/tQwydU+Vdn/XwlbwnD49UdRFCPtwsXrQALxve+58zxnwewHdh9/KTYMFfBfBTxpjv9d4/v0ax/jyA1xN5wr//h/f+q9coy7XivR/9CwDGmEkaADiX39i895O8oZ5Ql9SGVj5jjNiGlJbLryGUT+uOZSnJWqs3zid9LtXdMna5vFJd2vmOsdaO8llrxWslOSUZcnLmvtfSS2Nb0lHtWJfaDvXW5iKuQytvPN5Svpze5uqX1nENqa5anlJ6idIca8Z4TrstejAnf1omXROl8WzRq9z32loq9UW61nWdKEstPVzTyJi2pWk/2KQ5c5RirYUxQK6qMG9SP51zo31NM07aPSb9rMkf16+1t1q54nr2tQW1/Tn3PTfG8d40Z3/IyZCTryZnmh72nZz8qSy5NrQ2MM7bYi8kNPOa9iuW/1D7SLpv77POte23IPVZmrfavl2iJn/rWtT4czGpfxJ/77pu245zbnStdNaQvtfOCoF4/KU1WvKrWiiNl2aMJTtQI6czaR+dc03zmdPPME6l9abR65IPXjt3hTw5W9aiUyGv936bt+s6Uf7FYhf+GYZhW77rOpydnW1lu7i4AACcnXW4e3dTV9/3cG7A137mGH2/GPkrR0dHuHnzJgDg+PgYy+USALBYLEbpof2u67Z/8ZjkxklzbirZ6xzDMEzqcs5dlqvr675+2CH8uFa06zD4f4MdLj/vrjnnijchcvtYSzyl1e+olU+praeSrQ7jkV5vGVfpu+TX1fzwErXxje1MSF/4dL2NZanZ3s3ZYrxXSf5abu+r7YE1P7E0pqX9cifzxmZ1vivK0hojyhHb7tB+13Vb25Tb6+O9K9hO7/3W3pbaPT7yOD4ey/3K3btYrfN+Q21PDN9PBo/T3724TAMAg1u3bmN9tMj6KkFHava+1L5mzWnW5s7mj9OMK8fRWmXZN7YStzPHRsZjEe99W1sPYBgc4vW+Xq0wrNcq2XL9c8bDuVjmjf2wfuwflfyw1jhY7ayQm+9hcBjskO2TVs+k9mLbl/PhxfifnaZLa6O0p7XsEamM2vhCzcedQ8t6mXNekdo6xDptaaO0J0p5JD2Qzn8aPciVmUOun0EPcr6fVse0bWppjVtK94skUt8i/q49G+fGSGv7pbrSc09cR2kcc33O7eG1udDEInP5Dom4TiLfNc7bdV3Rxsb+mubcryW0WdI3bSwkXoua+IKmrhyh7rTefdostZeu0ZrelM6muXsycd2tssXkxkXrX7a2ZxM91uw3kq1rYW65fZDWhtZOBplzfiKwsZfBh72s6TIGGeo32/Rc++n4lvzDOE2y+RqfKo5Lt9oH6fuIzsCYMO4bWTZn5t15VpI3jXlK/k7JP5B0e9/4tyZ+P+4bRrGx2J5Yaw8Wjz9UrDCOC7fsr/uua+04tLSTW0e12GJJrtS/08hS89Fz6VL+tKw0ZrnnAHL62XUdjpZudL8K2MTpAauOn0pxmriteL1qfJa0nUP679p8pX5pkMrmdCcXd5HsbWlc0jGds5Zbyx/ybN26RrT1tZ6/5etl3U/HP6frYe+1yf/hNr1flyv3sqH1vQI1H0ybrqV2bspd338e0vOE3p4C2OrOJt8uPb1Xemh9mVtf7l56jvR8oVmzpVhBvPbSuuJxqj3TF/c7fI7rbvWjNWtam946J4fWidz9sRolm95yxsyNe5w2Puvv9lencDW1/SrtxS02bu49Y2m/KTEnnqqJmaSxLc25bPIc1XJnw7puY+Ns16G7tJHLoyN45O/9aTiEH7CVNbM3eJsv3xIn3t7ztfFamdal73/b/pJSujeQSy+tCSmGImGtnbTfct7P5TMGWx26TAVQfg5BU7+0rnNreXP/eBcbTs9nfd+jN/U4XHrNOTeJ36/XPdbr8n46J0a5mZexDOlctcRearpUQ3vPRNO2tt2aLsbfa+cSzX2BcCltVmNv5yDZCt1Zafy5ZU4kHdfYod2aC9fqMgKyP6F9ZreFOWU1Opp7rrPrOnRuet9CmpdD3u+Zrsm6n1OKbdXaj+1gCcm+z43HlmI9OTTPKKfnpq7rgA6XcXU/yhd8pvTeUay/O79Cf6+/9OxTwHuX3P8AnBswDJs8u2cid3mGYQCmt5knSPGslNJ9Oan8oe4fb9vu0hjRtP7cvfVSDE/6Tddu3ZR9+VK8u3Vv2He80j3BGJuMFxD6sz7bPFMWldj81xncfOcE6ICuD/eSgFtvn6FbR7GPzuHxm8/w4DOP4KwX9gCPYTng8etPcecrN7Myx32+OFtN9t1dvo2ER4/qz1jW2sn7BPVyc0h9ykH124mcMHnf1Hv9WTaVCdh/veZ8QslXynGo+2oteEz9aFW5zLilVRgjj2nw9V5Alz+U8CUo8/hhAH8Fu53JXH42AL4bwF83xvyA9/7RVQtijPmvAPxbUfspP3HVMhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+Why8ugY9375FVhn8PT158W8drC487s3cfbBCb76He9hOJbfuPPkE/JLUGJWN/L/s6/A4ryDHWz+1/YvCa//6iu49yt3J+lf/Y73cH73Ilvm5ttneP1XXwEALFc9vvenx3Pzf3/P4eUk5Ko5zP+e4mOG9/5/APAz4evlv/GLUP55AD9jjPnOq5LBGPOWMeavA/gPU/EiWX7Ge/+/XJUMhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+utz50i184ufuYXmxaCq3fL7A67/0CuDlN5OsbqzRH8kvSQn0J+U8y+fLJtkIIR9e+BKU+fzbAMIro3IvQvkGbF6E8peMMd90qEYvX37yQwC+AOBfTNr0UVYH4E8eql1CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR8fbn/5Jl794h0YyC8yKXHy6Bg33z0t5jm/fVGtZ6i8KGXxvGuSixDy4aXtdUtki/f+Hxtj/iMAP47xy0fil5EsAPzrAP6YMeZnAfyfAP4+gHcAvKdpxxjzGoDfA+C7Afwzl3/2sh1g9wKUtP3/0nv/M+09e/nw3he/B4zJb67e++01qS5jTLa8MUZsL07XyhTnk+SdQ9xHrWySDJJctbzS51RO6Xvtc1qntbp3POXm3jmnKpuWbxmbFlI9k/R1n3ZKegDIY1IrF8jNf2ntpPOaW4txvpJMGhlT+aS1WBpj7VhIZbQ2QzPPres6Ti+V1cqbuxbmKzd/JZnSuYjrk2TUrOGu67J2MU3LtdNiI64Krb5J82SGAc55OLfro/MOzhk4N2AYTNGuAbux0qyR0n6XjrNmL6zpQSir1dm59lO71vaeL0G+dK+bsw+17LWlsqGdWC9yOqK10VI+aV2Ga5o9MpYrHsNWPaitEalM7nMp3xw0+lebC40MJZ1p9QNz9QR7W5MlnsuaTyjJHNpqsfG1vDUboR2jnF+bznFuzufsVy0+rbSPt/oqWh/IWrsdi9gWHGLOpLNDzo5JedLvJXuVypKbv1imNG/s7zjnMAzDtmz43Pf9tq7VaoW+7wEA6/UaFxcXWK1WAICnT5/i/PwcAPD8+fPtZ+ACz57dHPXl6ZOnWK0tTk9PcXJyAmDjU8WyHR8fAwBOTk6wXC63fQl97LpuVCb1yVr8i5Z8Oay1cM5t5dPaS821OesiyAQAzshneC2hvKTf6XrYttcBxljsmvej9adB62tJtqxkb2KfYN+zcayL4pnXehgT9z0/Hq1nMO/9qP2S7xMz52wej1+u/DD02/Sc7pbk3NUh31DK7dHac3ppLeXGSDP3mzx6e6H1R3Tt7j7H+pvb37z3WCzGofvcnlnq83LpsFw+HaWdnJ6iW9TXc67eIOfRetjKtslmcHJyArvM3zgs2aPYj4v1c+66rvqa1iPNUou1pPGMUtvS2tWu8Rq1OFjNRkzlGOfJ+VfWWlWcyjmXXY+5s2FOnrSsZJda7O3ue2gf6Dq7tWtavdLGwGoxjNz13fjE19rjeq35S/Y1tVFbqSrjMOcc2iprbC9LurHPWV2TnrtWGzOJmi+8r1yt+Wo2sVQ+t25z43EdMY9c3niOpJhVvFft44Nr02M09lxLLY6QS9fG4uL9rrQONb6KNJeS/xy4ivh8ze+VzvAS0pleQvKnc3oo7Scx+4xRzVaHuuOzfixD6ayjkasUr9XsI3NtTO3sHGIIEiVftoZ2f4z9Lsletcx9yzk/5tBtSPUdwhbmzhrALh7QOcDaWM9CDNIk5wYj+kijXIldk2xhblw0djNwffcpp3HOVL54vUu02tBaHXN1N0d5n9r9HZLWPUJDiw2SzvtzZNnnGZIWv6nVl4r31dj3K8WvtLScHVr8oLCWJJs+jiNN/fZFt4Bb2OJ6bUlL03PxvVbfd84enfalVsecuLSGnK6HOjR2MEeQdRiGrF881162Urs/JqW3nqO1NkZzHk5laB2r0j4i+Q7OuShOvJUGfd9jjf33uVzZ69KBmJa9QDonxmlpvhqlmHSNeC+Ly8x9HsTbOE6zKx/7jt6PfU5VvVH81bnrn+McOfnn7pktY5HTt0P4RhoZ0jylM0nIm56Bc5RiVqU4wxz/NitLp9PRQ8dYNM+zpPlKe2vIKz0DJFHyQbTx1JrNqo1XbV+Nx8Jan7WfGjlqMqfX0znXxv2ltGEYsF6vYQzg3ebZlaHv0Q+bfq4uLrDux8+RAOXnHNP7TVJ8MBfjTeuKkWxNzY/I+ec14v0iljknT7xvbWzudM5CH0txU+09hVweTWxjs/e1/RajldwY7cYgjKsH4Ef6LM1/yRbE+jPt/3Rsw19Yr/G1xWIBt2g/CyyXwyR2ulh08H6TVrIztbmI9SH2ZXJ9ylFbF6X7Qho0c9Z6j63mk0plpDN8SZdq9wE3uptvS3N+2tf/b4lBHPI+nab9EkGUVK70s2TPa/qqjb1L5TV5tfUGuxYzDAOQcb33vd9xVXjvVWcFzf0/rf7H8ZN9idvZ5/mk7LN3doD301hCh419z9nw0n2CuA7jpvbN26k+5ddRnEleu60+aTof+5znpbYOdVbZ1b1ro+s6dK5Txx7juFCujdH3IX3WFKPvtbNijjk2Vms/pvK4ie6keZZPl7j9azfQ+36bNpgh+5x7KW5+4+1TPHnjWdL+7vPFjRVuvHtaPE+vF/1k7cVt2JUV5djnbJz2F7h8Zr/X2+2a7amtoXG/pmMUfjPQuamsw9Cj70dJ6j3zkPfoNG2X8l7F/VJrh6zOuYwtDmjGZxgGDMZgGGKZPVarNbr1Wqw31TVfeKbwow5fgrIH3vu/aIz5FgD/HnYWw1z+Basfvn8XNi8zScntRj9mjPlxALcz18N3L3z3AP4mgD/T1BlCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQTA3S/egvH7v9j1+NER4A1g8i916E/qLz9yi/JLMLr14V/YQQh5MfAlKPvzHwDoAPw7mL74JH79VUiTMNG/rxby5V7FFrfxjwD8y/7D9to/QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiMiwHJLvDs66SdroOxxWx36SJ9Q1LIdtHeHnx3E7LT9JNmb6U2lv9/tJs3Pll1to8NaP+gkA1vGlGPvQXXQ4ff/4IHVZZ7G46NCf9Nnr/XH9JSi+Mp2253wT8lGBL0HZk8uXjfwJY8zbAP5MSL78N35JSW4Hl16KUtvt43JxW38fwPd57x9XyhNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+RHzp974z+u47h8effjpK+13zDsywe+FD5xz+n8+uohwGv/WpdzB0mzzO+m0dfvuz5Hdh3ebnyg3vQEHmHSjZF6O00PISFgljDJz1eBSN1d3fvrV3vR9nzt4/gRF/Ct9O6SUoblF/EU7tZTvGHU5WQsiLha80OhDe+z8L4I8AeB/Tl58Y4U+DVC5+sYoB8N8B+IPe+w/26gghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkI8txw+ODlqf7eXXGtRecKLB1N+jQgh5SVi8aAE+Snjv/4Yx5nMAfgzAH8Pm5STxy0oA3ctPpDypBTcA3gHwg977v9Io7kcGY4zqLXHxm+Diz3FZ6fMcpPZKb6QzxlTz1t5o1yp3Kb/Ulvaterl8aXtpnpZxc27nkVg7dX5CW3Gbkuxxnq7rRJniNmPSMlqk+lJy8yTNnfd+77kr0aKXpfa899s+pPnSucv1NS4f5ynpVPo9fJbGrKTDqUytdqiUv3VdluY8rfdQujHH9pbS47lI2yml577H61Fjf9O+hHwa2/GiiOfSOTf6vF6vAQDPnz/H+fk5AGAYBqxWm7e5vvPOO3j6znu481uPsT4BPvjgCOv1Cr/w7H2s3IBf/J9+FuYCuHv37nYMTk5OcPfuXQCb9JOTEyyXSwDAcrnE8fExgM3Yx2sk9zntx5x9qFQ+nr85e7lGZ+I2aroppUltxmN2qD3fOafS55r9LMmbppfGRWP/0vxaX0pjyzUya/ootZHas1j+OfoyRxbtXJbW5dx9LbZHuXZa1oi1drLfl9pO00tpubaC3KWxrY1Lra85n7Fkx1I/NMiZyjgMQ1EuLXP8yxK1s0/4t2RX43qktVRCrAVBAAAgAElEQVRrszZvQV+ttSp7dWhfO7du0jGX/NZ0rS0WmzBP13Xba8vlcvt5GAb0fb/1F+7cubP1EVar1faztSvcuXNxWcYB8PjUW7dwcbFpJ+jicrnE0dHR9nNsC0KbOXnjfLkxj+civS754/GZUHPOCnlK6z7Xjubsl9anPfftxqwsUw5rbbYdbdubdnNrfTPf6Zl7zrmwtMfFbWt9+PS75nwX609pbLbr0jp4P87nnINxur2ytEdp2teg8S+AfNxkk97BWp1fKdUdbE+JdPxzddZ0JDdmJbuYY7ADvJ/6x3PXbSxnTt7Yxse2OOzdcZ60j9K5t3QeHvXLefT9+P+WsLq4wGpdfy96bOuDDRjLtv0EY3D5p9tva2OvobXM+Pw8uqKSIc0jxRylMajpdq4Nrb9RWxfp+nDOYYCHc8Po+mq9hl2tJnXFsqd2JNaTTT2hzV17sQ6G/V2rK7n+pnKV7EnnPIzJ67sUb8q1W5qXmu+Z6kXOZg/GTdaXcx4mOcuXxk57Np+7dtLPOb2T9pncWJfOeGk+TcxkqovTdtL01B89VByw9aySS6+NlZRem2+tX9Wq11qZpH2shOTT5dJz94vm9qUmZ01f9ol31sofEu0+XIptlcq05I/LtF7LEcd5YnLnP+dcNa4i2bgWWQK1sSn5gxqZJD9Wq6stMedW2dK4Sy4e0uKHXzXpWVgbd2jV1zlrXjPPLT7XodCuleuY57lt7PyCaTyoc7qzFKC3f7lzUo597JCm/bn5NeVLZ9i0X3PP/a33HaR6RPz2P6r9s+QrxHtO676qSY/jqy20xlZTWuxPml+TntLSRst8zfXD9umzdC2ek/h6t3CT+V0eHQHGNulKy/VUnlKZUl2SbknPfqX5a/dsNOfJWj4N+863Jm/prFIqrz33BQ6xJ2viAbk8c9o+xHpNfX9NPH2so6FfmzxznxeU7psciln7nYA2dppbZ/v2TyN/HMeeUz7bro3j9pu0YRjgXCY2O5THJ5QrDUVpH9Xs6Wk/8zGhaZr3PnsebrnPNGeOD2kXrqKOferTxPnSMas9A62VY7Auq6OlH33NiYOW5N+H6b0MnV97yDmvtSXdj8/JUtufbT9kz1fOlZ/vTe8lamL46X2oWvlazNSbuI5dnWHO+qFH3+/2gVLsXvJ5pX0kzTMn1ryR3U/Saj+QzM3/+D7vJm0YBqASP6jFleJ7FiW93CfWfGgfZO59lbzfvrv/nLZRO+eV/PtSPDadk77v4S9/lJtbr33fozdzfP5pW8PgMAyHOY9qzyqHuoeRtl3aB/f1//c9Y7W2p0kftxm36zNp5brm3Es5xD3hWp+DvtTiPtp+hT0jd5/GuHa9lOIBWvkk9rGR0lzM6XdOppps0tmsVOehkXRTE6fJfZdolT/1dTT+RkvdabHW89buudG03vnPLiQSbX7c7KPvmbHfJRmk58hdelJzJtth5N6njs0cezNee+7yWTrfH2Zc0znu3Oa5xBjnBgzD9dz/35eNXySPzfLxQoxlpro7DANQ+WmDX7vRs3zx8hiAyXOPKWYAXCY0t7W9Q/05ALHuqr2dtrmP3qc2suWef45DxrDjfNJ47runlGJOrT6ldr+RyuZto+7+jjb2fHl18rxaSc6DbQcvKVdzp/xjjPf+vvf+3wTwnQD+CjZ2N35Kwu/xh6iu+wD+LICv9x/jF6AQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDkMxhsszue9DFik9AIsxQvnai+S8i/Hu2cIIQrq/5tOMgvv/S8A+KPGmDcA/BsA/giA78H0xTMlq5ya22cA/iaAvwzgr3nvp/9rRkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshLx6f/3huj78PSwft3Rmmf+odvoFvvfq58tB7wBz7/dJTH/ZOvY7Xs5Dr+wevbOowx8H76c2djru+tErn2tQQ5c/0k8+hWFmbyM/cXS/UlKHa+DhFCPlzwJShXjN/slj8K4EeNMa8A+P0Afg+AbwPwNQA+DeA2gFNs5mMF4DmA+wC+BOCLAH4OwOcB/D2++IQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCPHt26m6RZZ5M8dpSvW3scXZhpHuzylOr4qLwEBZj2k8zDrj9842jXFjgexOtu4a5RGkLIVcKXoFwj3vsPAPzU5R85IMG5KTk5sROjcby896N8GgdKk8fa8caflglt7uOwpWj7O6c+jbzxNedcNr1GOm5SWlxnkG3kwEZlvPej/KkexbLWcM5N2r6OOWxtQ6pHexiR1kXa31J9NZlz18NcaMc1bT/W0zm2IM4vtS+NS0muoI/a9RPXkeqvlF6q66rJjW9NthYdza3fFjR7R679rhsHEq57XOP1EOQJMnRdt5Xv+PgYw7A71IU8n/70p2Gfn+Mzf/sXcXHs8Ot3Nm95/dxn3oDrLL7FfAMW/QLW2qz9zNne2lqao5PGmCbb1FqmJoekX7l13GpLWurWyFpKD/Ue0i7k+pvbc3P5a/autq5b+hGvcY1tmbOnSr7GPn5jag9bfYp0HUj9L+leaczStkp15K5p5jB8DjYsnsu5OpKTUSojrcVSfzW2MW2n5mvm+hLb9augNBbpZ43tbPFx0jJpG5JepmPf4sOnpGXjud93TcTEfdHIWxvLXD7nHPq+BwBcXFxsP6/Xazx79gwPHjwAALz99ttbvbq4uMCjR48AAKvVI3zHt3waAGCtgXMOP/3TX8azZw63bt3C7du3AQBnZ2c4OjoCAJyenuLmzZsAgJs3b2Kx2ISclsvlNs/R0REWi8XWXzHGYLlcXraTD5JL9jbuN6BfH/veiCm1o/FPa2eENN0YwHvAGAtrrXimHoahqic1HdXourR2Nf0q2eHSOGjPCKmfDpTXWOmst12jxgGY9k3S17k+WVw+7dfcOAowXVe5tWSiPu70rU0XUv+lZuPjPsUy5nS0FndKbUTQAzH/wsAYCyB/PdUZzZzFvkoon/oxwzCM0iT/Rjdn2nNPe2wz5I/POUHGeO/azTngvUFadSl2mMq0z5m6dM7Kzot3GIY+ygecn1+gW1vRFuXGO+cjlParVj8i/S7ZK42vVR/f3fqPy5bK5/rsjY/2SANjgNXqAot+MRmXXHlgHHdojQfkZB0GB+/Hdtw53+SHzzlPx7qU9lGzP3q/WWcmI2ZL3Kwmp4bSeUCbt5QmUdPf3BzF85rar7Rc6zk7rbf0WZKzxQZryrXKrz3nl8rX2tfbnTEl+yfJnPPF4hhpKFuyYTmkM7H2rFuKtUjpc2JImnOk5K+WkPwuTX/nnMVL90tL8yT5ezkZJm1Ye+kLjuvrlPLPtan7xCok0rNpbY23xgc1SOMRZLuK/am2rrVtpvt1jrnzVlt/UvypJEuOljG8Ch3UtJM7A1wFrfZerifYeSA9Mw7DAAz77af5NnU+gnYOa3EbzRl30/f8GfQQ/U/jWRKSTy3VVboWl6/FWab7IC6HwyDWC61/VcpzlWvjUOu+1R+NfbBD9P2q7UdKLS5U89Vr417bI1T7WMYfHfoefW+re4q0Z2p8Ak38XTtf0nMIgF53a3NR65PWf0hJY/QS16W7qS2q2cs58Zbcd8muvgxoz2SpzgcfYRNr2uCcg3PTPVYTdwj7274+ucQh52Xf/W4OLb5u69noRRF3qbSmUqS5DLYzvd/inBNiLdO0lvtAQH0vKNWniVO0nqVeJLnxB+Q4l7Rvpfmvu49XtV5adLzGnOdqahw6DlBrI9eetdPzhLV28sxZbixrMR5Af38511bpPiYAOOsme9juLL2xFX3vt32K40TpOS835pq4avAn58Sig6ytaumcm/rbnYG1YZ3vZJvj30ZSjr6V+tiytubEpVvQ3NfQ6G6IS2z8Llx+Hv+VxjQd+zlx8hq7+JF+DDX6qrV3OduRtqGL/9TzxfuYdIYspdUo2crWMU5lqMmrKd9y32szf3G++vMC2pjDHDugjcnk9E6Ko6dl556ro5YiOTyM0l7m2m3xayXdmLunaNnFnOf5Rdr7kzG1eEgol/4OLqTV/H9tbLuljEanUx9bex83LS89U9AiV7i2i6vvfILNMx/6+R7sAOem85CrY2pzpv2I/bNcnly/NWOxz1i1ss+9y/G/8biU50Zjr2vtz3WzWtZyKX+pTFquyZ9s0OfYhyu3Mx6v+LOmtW6V8/V2lfRHw2Qv01KyuaU1eOj7aKU8crb0ub/2ta6R65D2QHtukvzTnFy7819eDw/l00qk47zZb8f93Nx/zsc2g64d+uz2svLhew0TIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCrp3c/8jpRbO4mP5PE2OGow+h0ISQWfAlKIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPlQ0lVegtKf9dckCSHkqlm8aAFeJowx3wTgpJDll733F9clDyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8lFm+az8EpT1jQ/fS1AevfUU3vrsNeOB21+6ec0SEfJywJegtPF3ANwTrnkAXwvgy9cnDrHWqvJ577OfS/mkdGOMmN8YU23Lez+qI1dvri6pTm3fpLZCGWtttj+59nPlJXnTenL9TOvPtVn7rC1TyuecE/NpCH3R6mXM3La7Lu+0aerT6kspb+izpNc5WsZHW2dMaY1o1mjafklnJflCvem/JTnnoLElh64/oFmXLX28CrlLNk2yZZp6c99r8pd0oKazaZq1drLG43xhjcV9TPN3yyNYa2EtYK0BYNDZDqazl+kWxpjsenXOTdaS1P/auGjnvTY/8ViGOkv7UiqDZi2VfASNLZG+x2Ocrp+4X7k2Uh3UjKfG1wnfpbVUYu5+lhuj1nW1j13N7WM1G5+maWyhZo5KY6HxD+f4g1pKdjOe+1b/Lv7uvR/Vla6FXHqpbknmYOdStGspXrvpHKWy5OTUrJXaOO5je1Jin15Dab5b2ks/1/LE7ebGMC2T2jFpnsJ8Snt7PI+lPWPuGUQqJ/VxGIbRmIR8wzBgGAYAQN/3288XFxe4uNi8r/Xhw4d49OgRHjx4sP3+7rvvTto5O7PYhDkA58Z9efz4MR4/fiz2DwBOTk7w5ptvAgDu3r2L09NTAMDNmzdx48YNHB8fAwCOjo6wXC63n8NcdF23Peuk6y0+A2nXbEyqv+kcAFNbFOcvpeU+S+efktzOxDohZmv2b0s6GvaYdDyMufT/XDlmIfkOcb7Sem+JGwDTcY3XQq7+XF1SO2n+OFu4pPHhS/labHju3F+yFfG1YAfSOmPs0Edy7eqonfNbr8Xrteu6vX2kmNy4lvan3D4gnYFyPspUR6b7Sy4uEJfP7W1BlhppmVy9Ye7TdeqcwzDU5Y8p7XNBT4ZhQN/n11ho4ypiGFq92Nq2zsCYXQzUGJ+VLz2zSefj0plBu0Zy+Uo+sJY4HhDriHMOawDD4ADs2lmt1sDF7v3u0rpKxyLYKINNbGGTL+S1o7w5nyu9lvZ/Trxlek0+R9TsRun6Pvo79VPLe34gzGXurFBaf7kyJf2t6d3c/UFbV86Pqp0bUp9RI0+t7kPEhrQ+QpzWMuY5f1BTXpKlNbai9X+19ZbyafapVB7pmtR2ujZbx6Oks+nemaaX4gTpmEr6HrPPWb2mqzkWi/EjB5Id16yV+LtzTn2mimWQzkreWqRDULP/EtJ6y+UL+6V01mwhHo/WuqSxLJ2lcr5gCe3+OGcfTeXXyCbFsPb1QyXmzI8mXxzLzNl0TWyp1aa1IK35qxrnuL1cfCPOU6unnC2/r0iUznPSPO8zRtp9M/1cLgfE/dZSO8tq4skaajGkVtKzHwB0LvKnkZ5pNza9c9N7tddBayzlEKRnQOlMEqjFHzXtlZhjy7SxwTQt6JtkVzQ+U2k8cjEjTV3WTOPZm3sDUz9DY5el+2VS/lKekk2O88UxS207pXa1Z63WenO0rP199t6SH6b1sefI1BpDaK2/pa5DtVejPW4w1r05zwheBRp7Ez7bfrjU5V1fNjHE/eZ/Xzlb2muRSRtnjPNvyuTGMZdW3k82e4l8vYRGv0oxg7n+yqHWclzPMAzX5r8cgjCOYQzTZ/Vqzyrkvkvxh0PZWElHtbb/EGjva8Rt5u7Vb9LyMQCpzpZ+zo2B5uZUNy/T78MwTJ7DGIYBQ7LsW+vPoT0n5/yr7Fza+H6R38a+ukt7uFwst/MnnUdL/ky8LqQYXymfxLj/IR6wKeecg/X1OlI/djDTZxSGYQAG/T2uzXkgls1hvV5jjalvv896bTm371t/bDtj0vHLMVgH5zy82dzHBKa6WzrDxPk1e6L3HoPdtbXh8LGa+Jnr0hl1zhzn+rYZx3F63/fw/YfDd70qNPcVtbSWj+c2/JtbyxKlZxHm6EXJx2i5B5bqZc3fKdUTcK7un0ho299n/mvjXdwjMfW/ts91wl0+o7Grp+8H+N43rf8WnyiNLUi+S25ONPPUEh/M7eM5gr3UtJuzp5q5L7Wh6VPue94ncMCQrzd/NgA2+1G9//N8Ap+1Vbn6NWlxHZqzflEyQWfmyhWXD75FdAXOeRjh2WCN3tfjxKmf7zDYqR90iJhlq87W+rg5i4Wxif0UwEO2C+FcF4sT9K3UZm68dtTnY/GoE/Js0vplj/XxGovzxWU/9t9TQ7/SZnfpssz9SY/7n304knGHweK8w83fPlPLJfV983zoRueGYbwGjCk/ax3q3uXXnaWlmEepjRbbLdVRk0VjJ9K0iY0fBgyDvH7qOr7JE//2I7B5Nn/sH6TrdVdk/1j4y8xH+yRzeO4B26d5c3/TXw4RQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkFovzBWzlJW/nd1fXJE2dizvr4vXls0XxOiEfZ/gSlDbOsXltTvoX+Hi/UocQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDkwR4/LLw45f+3imiSpc/5K+YUsyyd8CQohEnwJShtfiT6by7+YN65RFkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5CPPyf3j4vXzV1dw1l2TNDLeeDx/7byY5/jR8pqkIeTlgy9BaeOXMX3xScyb1yUIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyceD0/fJLUJz1ePZm+eUj18H5Kyu4hRevG29w/ODoGiUi5OVi8aIFeMn4nwH8ocL13w/g89cky8ceYwyWy81brrzfbQS5z865UTkJ7/2ovKZMWn5OOU1ZqY/7lMld17SzL1r5w/c4fe5c1NIBoOs6MW+sQzWcc7B2/I6pnNz7jq/3HsMwZOvSjJN2jLTzVbpWW6M1GWr9ia9r5U/z5NrIzXuoTzPGxhh1+/EaLJXJtVtaI6Wx0chValuyIfvOa81O1yjZu1Ybp9GtOL00/ho5a23OxRgzqrfrOlhrsTFVZpSn6zp0vstXJMhVGoOWeqS0UnlJL69qD0vRzJc0PrX1Hkj3FIl4PFrXSjpurXYopNdsVFx3TVda/ZjU5rbOhxapXmnvn7MvxcR7Ual/0l5Qst0aWvfw2t6nWffxWDrnRn3QrIc586qhpFO5c8ehadljglyl77VyNf91H3sb60lqF7V2LOiCdNZLP0v+nrW2eu7QjkUpj5Qm6XR6pojH21q77bdzThzLcFZwzqHv+1Hd8TlisdiEhuI8LRwfb4LIr7zyCm7evAkAODs7w+np6fZzyHN0dISjo6PtWb7rutH4hz5rfKh03iRbIdUV6rG9y64v7f5bQ7ILJR13ZsisYQfn9GewVp8y7OPe+on+d90Ci4p/COz6KsmSjmmcP7X92rYCJZvXaqem/lo+zz6+xpz9UiKnq9IYpnEPALBD3lalvqrm/DZ3D5bmKx0nydfM7R2p/OHzYAd4Px6fvu/h+0ubIPh04axUkj0mnYNUTmlv0ezfXdep9G+x6Lc2PnB6dobFsm7fcvW3xGZyNkjyMebokDYmEwjzapfDZB5PT0/QLeQxraGZi5JNmuNTxb5nXD7e++P01G/oL9NinTs/PwfOz7dlJB2IddlauxtPY7a+hLWbPOv1Cm49jPb31PeS1kUos//5Lf3uR7qY8yPmoJ2/tL/W2u3eG4uwWJRjM63tpZ9LdUr2UxvHaz13lOrUxM4OdW7RxO/38S8A2VfSyCKRk1FzDtHovibmlqtXs3dr24zbkeZS0tHYrrT6bi2+tVYvamso52fMRRuTnrv3adqRzvrSXEh1pb6Mdn2U9tvxpc2eaKLEnC8tnQ818mjiAGkMQFtvKabQkp6TM5deir/mbHdr7KpWbp+4W2ntasdbky/4Y9p6tWj7XrKX6f65b3w+rnOfGMqcM7vGx9GeGdJsu/rb7c1VxoZz7eX2/Za1mLPVm/Oyzr+ISfue6kQulpvKKcmmSS+h1bGwfodhgHOXZy7vAYxjJM45GMVUz10XJT06pF1poUW3JR/gULTWV5Jh37NLze+eE/uryZSL2ZXS0/N3rn7N/Obi9tK5TfKdr2I8crLkZNTse1clU+u1XJ4566hkg/b1qUo+YUBzJjmEL1Iv37anlfQ31BeSjRnH3VrnqRb72CcmVtM/a9vs875nx1w9c2yCFulM36JT4ew4HSY5XhDXO9UfYKOPJkqrj8HcsUjLxfHiOC3n0+wz/rU4UEvdmvjWnDpSudIYcSiTPpOrff48beOQvpAmfjm+pvPlDxHPTWk9f7a2p9EPzVlj35i3ZFf063scp4rnS4pTauYht+bT+nPfNX1xzsFZF+1/mzqGYYAdNrKu+zXW66kvksa+JD3R+BFx/CWuo9bmuM/1sdWchSXffD6med1o2kvHTOsTaeXI+ZiHjJMEv8scOPZSigPF63W3l29wrvz8Tq6u2HeM0zd15WWby6adw/hwWkr+S+meS4ncuaYlJj/nea25xPGkuJ3WuFTMi4oDXTWDcZO52Tyzs5vv0pn2kPHYXDutcdBDoNWVWgwWkH2H0hl0Z+dCHdPykty5z7kzQOlebbrvzJkDTayh5uPUkJ5r1bZZIuwHsS5477FardGtp/ZhcA7DMJZ5vd49+wYAth+ScwzgXPz8kL+M88RyyL9ZkNJKscEaaSyvljf3uf1eZOoTynm1Z7CxXcrHbltth9Yfa42faccu9X02uuGz+xWwedFIakuc81nfLbXj6f4ZXRTbi+uxTwy6pxb9mfT8u8ejTz7B6Zc2z7DXdEYz7+G8PRZ319/cOD/+5NPiHJ08WML0Bl7pw23yzYmZTtd6KrMGbbxnXxup1dnSfSBNXCSUH4bps/stvn9cV6rrPvrtR2DjA8m/3fAmmavrdfE/VBzmFx0fH/4qgCeXn3Nq833XKAshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKx4Oztk+L19c0ez14/vyZpMu2f9jh/7aKY5/Sd42uShpCXE74EpQHv/XsAfhTT132G13T/QWPMN167YIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyEeYG797AuPSn/qPefTZp/DGX5NEYx5/5ilKLdvB4Oyd8otcCPm4w5egtPMjAP7R5efw8pPAAsBfuHaJCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQjzDdqsPpO8fFPP1Zj0df9/SaJNpxcWeFp2+eF/OcffUEduArHggpsXjRArxseO8vjDHfD+AfAvgEdi9CCf/+IWPMn/be//kXKObHAmMMFosFvPfwfvdOrNxna+0oLaQ757L15uqSZCh9D+VTmUr1hjpq+aQ2pbrizzkZW+o+lFy5OqX+l+qT5JL0olY2pxcagp6VZE3lmNtWrp10jqU+hzbj8saYyXjHc5LOT41Yhjn6oh3DnL5o12VJ5pKcoT7N+ij1Px3/nO0p2bdSXSWkfmrWm2YupfKxHdKWzeXX6mCu/UPmi/Omc5db1/E+VMI5p8qrrS+utzTHxgAwQRetyp4dgtq608xHy5zVymvWknYfleqdI29pr5Bst5Rvn3Vca79ko0p7fy1Nkiuut1ZXS1vpWLX4cRq5pTRpzFvTc9dje9XqE0p7VGl/lcZpjt9jrR3tvbl9uKT7Glp9hRJd1zXlb22nZVxz49KyF+faytnJVnlzdeX0qqZjpXqA6bik9eX20pY5a/Vrcr51SM/NoeQHltautXarg977bR+Pjo7Q9/32s7UWi8UuHBSuzeHk5AR3794FANy+fRtnZ2cAgJs3b+LWrVvbPMfHmwDz8fExjo6Otu13XbeVOZ4TY8zIH5F0Q5qHdEzjulL96boOxlgAfpI/R3wtbsdaK/qBufTYXkz60hlYm+psNykTU9J/qVx2L+pM0n+/nYPaGmnxUVMZ5+wRuf0tpMf7RWtsYdSGjc8xY1uVi7mU5EwpjZfku9R8imA7NPtRbFfSaq216vls8Rs1e0cpLtbi08V2ZESHyzW/Y7FYoPOdyj4DU3uVkyWs/da9M+2/NL5BhlTmWhuhXy2xhtgf210LdnUnT+q3SWjid3P3ZE37gEdc/TA4YJjKUtp75sRhpGst5dP5K9n+cG0Yhu1e75zDer3G2lqs12s4N2zLrR8+hHv2bJsvNxbB1wj7+GKx2O3jpoNzw2XbG11Yr9fAsJPFWjvqc9ft1p107kgpjVculjHObkT7NtenbZEx599u5nTzFxPrZaneln1NewZM683ZldJ5Vnu+0sqea7/lnFObv3C9dK7KpWn7matLGw/Q0HK215SPicdEI3Np72zpc0u8I22/VU+keayV3TceqYoU3rkAACAASURBVK2rtt9I/W2J/2niPJJM2jEunccl/y6ei5b1JbUZty3tDaGdeH8KBN2uyR7nbWWf+4WHoNUuA/JZM1Dr0z72r5U5tjf1GUq+9ouev0BJ/+fUlbMRuTPIPudubf4598W0xFO6sTsAMN1jtX6FlkPMlWZPleYnF5tx1mVtoKkMZypHeh6WkM4Dtfyt11rY1BPq2uhDPP/a8RiGIZuul6F8TetPzRmXOWt6jr+pkTO1OS3xjJJcc2m1A/E6uyr9DTGw1E6Wxi4tn/tcujb3TLPvOtWUr+mINq3Wx33jQbW+7KvH0n2fWpxfY2M0566555NDEvb0uNo5+pGSilk7u2jjRCVa107Npqaxv3BtTmxW034phpmj5Pft6y+02SsP76f3X2KcczC+HGvcjffOxxiGAb2pr7c5sudkCTJ4vxv/vl/DrfNjLd0DSeutyamNO7SuxxZfv9YXbdxBK5u2TMs+kH6X5kRa2zVZcu3k5qdl/dXsYXy9y8jtnINz+THQxoal/Pue31vXYskmp5c0tliSXxs/a7WjOZ1yS4eus/AesJf30q21sJc2c9Et4BZT+1K6v3YIPyCnq7nnRnbjPLbVuXPeHLniOHkpthK+59ZuWAM1362FuTHufW1ka/nBuM2YmNh38YDzcMMAZM7aMa16Fe+TUermTO/sZfsO3rvRmo3tlPbcBwDWuEm8YL1aYZXZk+euC2MMXKad1eoCdmXFvXHfddhyr05rs3KxlVpbGq4iLr2xcbm0+T5c6xm45VorV2m/c+w799q+S+1o2tPO0dgn8QB23zVxxhKHui8xDMPorOD9Jq4QzixXTbwvtjD3+d/SuKXPeYY2NnZfLrfZv8b+Rd/36BQvNQh9H2yoI+Czelbyc2OVrs1r2HNj1uvxOVF6TvYqab0XVFvHm3Edyz4MAzCUn8ubi+2Hyf2RjS9xmHOERE2vW+oJepjeJ/B+PJapf5uNmVTUpmxLd75wLk/a57PfPMHT15+jNNSPPv0Ey3cXOH6wLAuG8rgNdvrsZd/38P14/bjO4f43PSyezY0Hzn7jePOMXQNDP2yeLUP+Hl1YG+H5wJj1eo0e5fv8LxuxvU7nrsV+mYxtHAZXO4aomGNHc+fFjyt8TdAMvPdfBvC9AL4ckoDRi1B+xBjzgy9GOkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIf8/e+8aa8uy3Xf9q3rOudbar3POPffpK24cG18ntqNgGzkGgsDKh2AUKw8SEt5GoCjiCxJIAQmiCOUDQgEcCYRAEJJAHIEUwIBiEUckEMUioGDHNn5iX9vYvtfX93Eee6+111rdVcWHXtWzuroeo7rn2us8/r97t3bP6qpRo16jRo3u3YcQQgghhHzw2F/u8Ojz58U8TgFf/W3vYjg/wRctKjg4vP1bnqN/VK7r8a9coLv5YH2QhJD7gB9BWYlz7v8F8A8D+GkcP4ACHD+E8meUUn9ZKfXmA6lICCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8oHj6ucfQgyrmsXuLr3zbOxguhnvV5Z3PvsDVx2+Kebobjae/+Ohe9SDkgwI/grIB59wvA/hOAP89xg+f+D/+Qyi/H8DPK6X+XaXUpx9MUUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5ANA12u89rNPqvmGc4Mvf/s7uP7I7cl1sNrhrW96Fy8+/bKYTwF4/WeeQpvTf9rBaXdymYQ8NLuHVuD9hlIqti5XAP7Juz//DoBvuEv3H0J5DcAfB/DHlVI/CeBvAvhVAF8GcHprGeGc+6/uuw5CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRV8eiL57h9vcflp6+L+czB4qt/3zt49GvnePq5x+j67R8juX2tx9vf+AL9kwEKqpj38f93gfOvHFbXpUxefv94WC2XkPcq/AhKO70gj7ckLvr9LQC++eQalfnAfgRFKYXD4QDnHJwbuzq89r/Dv3N5JPmstQsdUuXieym9c+R0kchLyS3VJSmTa1eqXEpfn1bToyQnTi/JinWX1BvK9fm11sX+T82FUnqI1qf/Shswb3vc7ty8stZm104sz//O9Wuur5VSs/6UzoWwvq3E6zo1x2v9l/qdsjW5ulvnYqhLTZ+U/NwaVUpl9a+NcSy3NDYSHXP54nUk0aWE1Jbm6iiNYS4ttc5r+vp6wrLxmpTMudScieUqpdBZYLfrYHZHfTvdwSidlVHTPaVLjdIe9qrI2YUc8VhsWS+xrLBcya5I50Lqd8nexfVI84Z65PJJ/LNSmTX7Qk5+SlaqrWvXwZr25fKkkI6FpE9r+5fPl/JxJHtPTo8SWuui7Jo8aX25tSTx5zzefoZl4j0gvtci/xTE873FZodpcVtL7QxptWWldVOyt6k5Eu+pLfLi+yWfrLSWSvWFZbquS+qZm5fW2iktV79SCrvdMeRzdnY2XX/iE5/A06dPAQBvvPEGPvnJTwIAnj9/jufPn9/luina3vPzcwDAxcXFdK21xn6/T7Y3lFU6K/rfvk/ivqj5ZzlKa08NQ7KPnUvvB9LzYDgH/XWLDxt2u3MO1hoYIype1S2Ht1O5830sR7quUv5x6Wws1Vd6Vmj1NUuxoVyaRFbLvZCab1KznSk/J/T1xrFY9lnKBkj80NJakFCyl62xr9RYleZ4iNZ6oXvrXMqd7yQxJl+fpFwu5qP1su+6TmO3m9vYuM74Op5HBzVA63lfaK2SflytjhwtPkFqXyjZ6tLaK62zeC+r6Z1Ki8eqNP6lcuHfXkaoV9jOYRgW6eOYAkpp+Gl6dnaAS8gK8TGPKY7QdUd/Qyv478eP+RS6roN2eravd12XnFtb4z/xejuOV5jL3flRbXXmziNb9qG5nPGPRFZJzto88RqStDEk5Y/n4oyt58OU/xHrlurvVP25ee1j12v9hViPkn2o7eW1uSK1PTldcus69zsXI5Ta0dKefgofqYY0nhrmD69Lc7fFr29Jl8Ticmeimk+UozZ318RJWtgaJ/F1SsfaJJ7/WWuhC2PsnJu17VXHdmK2PmcsPe8+hayttKzVHLU+qp1tQ99pTay4lVPs5zlafaxS30n39FqcMLbP0r491XxbnvmPvth4XX5GJt0b17Qx9l1qtOopyTOmKWD6bz7ly0l8i9b6WzmV3wDEfp0/M/k/83dJSmtl7fqQ9kfrupb6CK1+i9Q/KsXPa/XXxjcXc5XYK6leubNOTnasS9d11XaE+42Erlu+j5CyXadcj2E8wRO/f1C6Lu2nkrNBy7mrNeaa06um49p9aetZwsvInSOlfsUp4g0t5XJ9uDV2XLo31pl61iIbu1xcOUw2xmDAeh8l1/616zllV1N2K24HMMYQB+WSetXqT61NSfwzp/+aMSrpGLbH3D1ok5wZ/Bya0oyBc/O4/DD0sNE/kont41zO0Z6ldJDGS1rP8LazyXPQllhA+P5Arj+3xH9K9k3y3kVtjGu+Rxh3T+kjrVPil6TewajF9VLtt8oGeo9+rDEDXF9+btf6rgfQvqeXyhtjYO18vYU2KVdfiZody/kUkvNYap6U8uTS9WAW5cN2t/rx4ZoOr0vPE+MyYbtKa8SdATc3438DuOscjDG4vXWAHfv95fVL9P3xuVDJV6z5l1I/M6VnCudcYBPDeTjADfJ3fqf+VRbGxOPYQ1dkhc8l1tjK1LilaPG3JPGcHKf8dxHpNnm/ru7vt5wJgLv3r5SFtfOXcYwZoOzumMfOfejweeMy1rQcH3+t1XJPNsbAGDetidrzulJcz4+5K5jNcF7EsaiWc1Kujbn7Kbm563gcW/ekmh65eb0lVjX/NzljWryfxUifqUlpPQ/Hc0waQynlk5DaZ6y1gKnHWbbGAtf4N2tixbmzUXzGMMYk2y2tL+Vr1vaWFEd/bJ5mEub9lM9K1vqP/lrii7XaktQ7pBKk76Ll9AQAo2105jzOkbjf47zAcj4tdVKTTiUfJ2xz7V2Nkqy1c6V1XGt1xuvOp4V/UnLXxvBS55u+79EL4ken3JdinWr4doz6+3fT5/ettQtZUzksfZxhSPvYsW5juYQfMTjc3t6uehb27Oceo38y4Pa10icAFBwcLj/9ElefuMbjz1/g0RfOsb88+oALnXx7pzU41m/ODN76pue4ffN2aklp/Z9/5YBnv/C4oFsdPfhneVjY8JsLi3c//gKPPn+OLhEHbPWZc5Tij6+acLwkcz6H1kt77v31GGnM1BPHZE+4pX4o4EdQ2mmZYt6ihFHsVzlFH8ZyEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh94iyCh/5u8/wlW99F/2z0odQRtzO4cVnXuLFZ15if9nh8PYeh3f36K467K411KCgrIJTDrZz6J8M6B8PMOcO5sLA7i30oKFM/ZMBh3f2eOP/eQZV+mqdgN1l+ZMQb//WF3j58Rs8+coOX3hhoRxgO+DsclO1hDwY/AjKOkofF4mtUPj7VX6UhN8DIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDygUUPGm/+qPxDKJ7+sUH/2ODy09eJu+NnAax2uP74bbNOZ2/v8ZEfew1a8LGUGod36p+EuHmzh3njFj/7xExpn/wFDVxtrp6QV45+aAXex6jMnzVlTv2HEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5wKMHjY/+36/h4otnD60KHv36GT7yd0/zARQAOLy9R3fDz0KQDw/1z/4Q8h5FKYWu62CtnaU75xbXYVotPXXPOTfVE+ex1kKpcROKdQl1TV3HhLJrbSrlkZbL9YvXM1Ump7/W880zp2ftXq4eXyanV0qupJ5Y71z9IV3XLfI552bXsR6SMZSSm6OpPKnfuevcPFVKTb/Da4n82r1cn+Xyp8qW0mtjkcpXGvv4fi1vqp5c/bW+8PXV6izZsZzOuXWQki2hdWxCnUtrvFWXFhuWozQuOVm5OZ/bI3Lk5oVPz+13YboxZkr31wCgrq5xeXmF28Hh9nb8CuXl1SVs1+Gtt97CbuigtZ7mRtd103X8d3ydsothuqTdqetWwj6qzclaPaWxiPPlyktJ9VmuH1vWpNR21OZsPK5xPVvaGsuWjItUvp+jUnsruR/nkczd0jisWTulOde636XGI1VHzt5IfMTcftOyD6fKhOVqe1puv8nZi7iecF2k1kjJ1of3tNaL3xIZa2n132LCPQRY6thqr2O7FLZfsr/Fdefm+5YzSYt/JqG0ljxhv+Z8Jb+n1/b78DqU23XddJb2v3e7MTR0OBxwdnZ2V95CKW875+MPANfX19Pfb731FgDg4uICz549AwA8e/YMjx8/BgC89tprePLkCQDg8ePHMMbgcDhMuvlr51zSXgNpOx73U+k8U2Kcj8v08NzXSmwrQv1TeWKcts3rqmT/anbF12WMgdUGzlmE39h1zsLaZSflbG9cn9Su1Xy3+ybVh04v07tuh507zg9p/+bSpD6J5JyV8vtqZ5n5GlAA6mf4+Dq0UXF/SdZgSceUT1yTF7Kwv9ot1rzvt1QdpXNsrg5fruRf184OpXN9jlDX8QyX991r5cuxlVmpRX6JvmvjMHHZljP3OCbFLEW8fMkai5GOY84H98TnpnDeOueSOmqtJ3l+3x12O9zu93f9Md578uQp1P64P4c6hfY+rNP/BgB1oXDdmZle+/0e2uls+XjdrbH/3uakzjeSc3ALkhhpSnZtXJfJClqrWf/6OqW6586XNV3jeiSk/O6ajZOu+zVzomQLcv59azwj1m3NGk+NbYudb00vzYWcLZX6cKm4YCw3x336fZL537qOU2Vqvp5ny1k/18c1amOQi0uEa6Lruub1EcuO5Yf4c1d8Bpe0M47/SvVMxXrCuMfatViiNoY5/cP93RM+r96yhtaMa4tvCpTjj2upnW+A/HqTtjl1hj9FbGhL+bWxPUl6KDuOAa7Z0yXxmTX2V7reW8bDWhvF3YCbmxvc7tSiL/r+FuZ2+XysVGct5h++ZxLqFCMZ69h/SslOkbKJx7RlbLbW/y22JVV36p7UX916tpj77Q7O+bYDzjo4Neo3DAPckI/DtZ6P4zwl3ZVSIp9ibcy6JV/LWEvGZsu+VFsjLX5YKs7p0yRy1rQjLh+2K7nvwS5s1DAMGIb5mRuQnyFq+6s09hzGIEr1hWlbbcrWfT/UJaT2DlzNXrfWl6ozlT+eFy1+bKluKS2x35o+qfaueacmh1UWxszlDUMP2687w+rBLPQbhgFWLZ8lSfs5XsuvivE54/JZr++Dh9Ir1OVUZeK9s8WmL+uwgY0+1hvXPXs3S6lxnkT19X2PHq/mnQCtNZxC9rlISGpvzfk2YTulc6b13J+qV8pDzGPJM6ASa3VO77PH69Ic3VrP2r1v/h6Rnw/HPLvdDqZL74vzM0uaeH9snW9r4sW+LklaKT11v+TvhueI8FwYxvak+uXixLFtMHuLrru9kz/2b9d10Ci/OxDb5NgOhflSvmju/dQaCz/O+Dnk4OedtRbeLLf4B0c5ACr/DeOcDzf6GOG6HPeOQY35Sz5TuK+l8tXe45AgWT8l+1crn/aB3fh/N16PMVIHYw1c8E7UqfBn/zjNj9P49/K5v3+HRuqHZ+0B5u/t1vbheL2HOk26Te8cpc8Skr2g1XZK/x2CMWbVe5I1+bVnYq2xDWn8wuvfmXGehvVnz/UJG7ZmT10b12ldP9IxKj1zivONfXT0q6210FierU651mtI92xJDC+VfymnXndcXzynWp6D1utYtjMVY24dk9wZQDovW/Z8nz/VRy02YO07Cin7oJ28/qOMtN8dtyW1d8V71fG3AuCm/cv7ZSkdlKvb89y8Bk77zKy2LlPjG6cZbSf77DHGAKas+9rzQM0/bImlbf33yduI/SN155+t65dc3x79vWU5FflIQHtcGwBggNd/4in2b+3w/O+9gu18mbhsW9vi3Mc1r2Z3lVF49nOP8ejXzuFgYVc8v8n1+8UvnuHdz14tYj5jmTu9nJ3p4/1cEy311jjv1vUiqWNtjL90Jqnt4yn/LefTpcao5JNarRHGZJ1TsMYABd98UPOYtGucpx8k+BGU9Xx4Zw0hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIe4/GvXuDsywe8+9lLXH/s9pXUef4bBzz72cfobtb/BzlLPPqVc1x/4hb968O9yCfkvQQ/grKO+/tPkxFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWQVu+sOH/nxZ7h9rceLr32Jm4/ewp24DgXg8KUDnvzSBQ7v7E8sParLKbzxI0/x7rdc4vrjr+bDLoQ8FPwISiPOOf3QOhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWt4/aee4vWfegrn5p8GUUrdU31P8PpPPVnUd98c3tnjIz+2x3Bu8PJrbnD9sRv0T8wmmfsXOzz6/BkuvniO7uWr+/SANhpv/Pgz3D7rcf2JW9y+PsCcG9idA5SD7jXOXyicPweefFXho7+i8MuffGXqEXIy+BEU8r5mtxunsN/wnHOza4+1droO031+n6aUSsoCAK31QoZzDl3XZcuU6o0JdYhRSmWdhlhWqv2lOsP0uI6wzTVZKZ1b8qfq97+dc7N7UgdKki83LpL+20o4P9YQt8/LS83D1LzItcnPt9z413RZM/YSuSlKayklJ1xL8foulSutzxZCG1OSmxsnyZxZ0+fSuS+VHc63eG6EYxGmp65zekjrT83FU6zl2jyQti2lSzjGa+xeKDdc++H1MAzQwwBrLax1wN33K511sGp+eMvZ4a7rZnla7K20/8I6S+MmmTO58qV1L6mjJCfUf+1YpmTl9ErNL0lfx+OS6/OUr5TSs3WNtfZHbb+R7Oun3NPD/srtm60+nO/jUHbLPuT3cOn8Duts0bNUf1xXyxosyZTMvZLMUvlS34T484dEtpebqzc3ZyQ+WLhftM69UL9YVup+fJ36XatDSmkc4jm1Zo232NLc2NX6oqaLtVY09qVx0VrDGDPl83mHYcAwDNP1zc0NAKDve1xeXgIArq+v8eLFC7x48QIA8NZbb+Htt9+e7nkePdKw9mlShxwvX77Ey5cvAQBXV1d48803Jx29Xn3f4+LiAufn5wCAw+GAvu8BAPv9fvIxdrvd1B9he0MfJF67kr0vxTifgLio71etdXLNleqKy2w9+6WI59eWOpbroK0fT9W+VJ/G60Wyv5T0KdkIP89msrSBc6E8BecsrM330SnOVFNtK+Z0LhZVyn/MNo9vbfVjt1Db03NnldgniP822izOXdZaqGhMwxhLibDuVOwwJ6cmN+fP+bJhu3JzXuu2+RbWF6+H2Ty+HTAM8/vX1zfo7TFNa52MxXhqa3nNWU2yJ4xJCqj8dxxadEr5v7mysX/RdV3S7w/L1OJCqT0qlNV13Wwfdc5B7XbQugNwzLfb7aAz9iOe5/53eI19uEf6c0mH3a5bjFPLuTtcV6nxLtkprS20nu9ru10Hu9uJxzhHae3lZJXWwV1KtU6JD1yqp9SHLX2SWmOt5U91Nt8qZ+3+VpqzuTN8Kl16bpOee2M70xKD9eMarvFc/lPGVnLcVx1rfTNJnLKE7881vnOpTOp8ItmbgPn5KiR3ls3VXdJLIudVYiO9nEvbpFP7vqdqdzx/c/ZGGkOs1RHnb7UFOVsjrbMkTzpGa+Ziayyz1Gcl1tqTNc8wJGfplnLSOVcqU6tT2t9Sufl2hzqOtlFrBaXmc0frDl1XjtuWzn1rY1a+bO1csGY+pfZEYw2MGWaxstvbG6ib8vrzNiK1TqXvHMTtaj2P5+ZG7nyYk9/3/d3zU8BaN/n+9k6GtQYwbf1d64NwjGtx+5rcmn3bsseVnkWU5usW+9ka7y/lk6yTZHwwiO3U5lLpmVCpXM7XL623XJrU362dFUpxohxhvlOM3asipeswDKK50zLmNaT9vIWtuq7RMbc/ron/1eQv7YdDKd4i6Y/5uRwIfYdcfGOr3xTXK9VRih58jPyoizEGRpd1lCJZ/2tiIy265fpPejazxi7ypva0Wt+v2RO2kNqrjDGwXfgc6Jg31Z5W+71172vhlOeO1vqttU0+pZSW9Vara5y33ie7S7MWuuG/+yqJFbee1VLzcvZcYzCL9db3PQak41aSPsvFT6RsHRf5WaYtHhL3Zep3Specrx4TPmNKxQ2nst0wnZmVOsaUvS5d12G3Wz4zLbWthJ8f4bs2Pq3F1/c6+j09rDr37KqN4xqp7TflcZv/uxbvf5VitkqpV+JLSsnZ+1Qfx3rbbrRlTkX/7sH3ayYm0hIPDfMf9cvviUc/MH2/Vl9YZzzXnHNQSMdT5vrl606VzfktoT2o0RqzbYlXrZmvr3qO52xmLr0U/4jLVPf0lc8TJO8dxvlyOsXlU2XidoU2OlfeWnvnm87PI9YaDINL1lV611Ly7DPHVn90XTx2/nt8V2mZJqUWc2zx01N2riZjjV8mkZUqs/U5W20/Sr3v1S4/ju8a9L1M73E92ZkcLyv2CYDR95+/z7iMW4fj6vMOw4BB3emnLKw1s/6w1sIN9ffJa23ZUv7UWL20ScYMcEPbRyqkvqIxZvbvs4C7841atr/0XmzueUvM1jhF636R0yO1D3obF6avfa/3vuLJ7tbh7N0dzn92D3Nm0b8+oH82wDy2MBcW9szCaQc3vmIHZRQ6q4BBY/cRDdUD+lqju9F44/98iq6/2+8wb6fEv9vUDuewe7vDk7cvFn116A1+x4+/mBdIfATlVb/HITk35cqtpTSPvFytEjZjGDAM+fVa2kNmtrvTU9xmlHHnG939+4qUTk67hb3/sMKPoBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQDT3ej0X3xgPMvHor5tNYwewvzxDzYx30I+TDS9ukqQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIOTH8CAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRB4UdQCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghD8ruoRUgZC1KKXRdB+ccnHMAMP0dX2utZ+nhPWtt8l5OVnwdywvL12Tk9MjVUypfQyklSkvJjNPCcv5eSlYK51xT3ha9JHLCupVSs9/xPKnpktPPj6WXF4+tTw/ri/PU6i5dp2SW5nyMUgpa61k7fL5Q59Q88NdrxjhFPEYSuaW1E8qIZaXSU/M712fh/Zye4b34Oie/1P6cLpK1kdNRUkeNWh9Jfkt0a9VDYpfD69Ic36obMF9PpbRcnbV1X2L3qMejR4/QnVns9wMA4NGjR7A7jTfeeAN7U3cR18yNXLmcnU4Rz/HYptXWeEoH6R5Zk7O2T1LkZOd0T6XX/IXavA7v5WyR1N6kytfGes3en+sPCWvWcYravJDMrTU2MqyvttfXyufSSnrFfZ+Tk2unZL+Xtqu1zZL14utP2elQr9CH2op0v8np1eKfpiiNr0TXlL4lmxWnS88/sY2RjH/pHBYS91uN0lnDX3tZuTWS0ic+s+T6T2uNrusAAF3XTXXtdjvs93sAwMuXL3F2dobz83MAwOPHj/H6668DAK6vr/HixYu7MgN2u73XDM4BZ4ez8e+zMxwOBwDAfr/H2dnZJOvRo0cAgMPhMNVxdnaGi4uLSZezs7NJ58PhMOnZdd2UHl7780mpX+PfUrvp+0zref6u62Dv+tL/V8uUZwAAIABJREFUltBif6TnptBGhTbmVPuWZ7IPaqmXUrq6Dk5l+04h95Q+WUL6dK6Q+h0tflBLvEdSv8Sn0FojTHYuHe+qyZbei2ndW9aWC/teqbpdL835lphHau+N139LLDH+nYs5+fS4nDEWw5COf4b2JrS3cXvjOePzjOnLMqW0mNZ4Uthn1tpkv4RtMs7CGDOTZYwBzNJPnc+Z+b2WM6wUyfkylSdnC8I+8v1hrR19x91uiqsDY77z87PkvE/FTpM+6c6h63x5BaXGfX+H+R4azpNcXWtji3EfWOtmbQTGNWD0fA7E9edIrQVp2SIdFnZJa73w+1I+YMu5OmfXS3LWnF9b9Mldt8yF0t5aKtsSI5Tca82Tuxef73LtKrWtdj7M6Vbrrxb/pIbEx2iJzbboVdrjc3MxJ6uF0KdPkTvbx/XmbH+Y3uJD1/LmYkIpnUtnc4lO0rFN+TG5mFOs9ziX6/Jb5/upz2dSX7d2rqjV0aJ36Tn2KVgTCw5p3bMkbW8569X0T9lhaTztPjjl+En6detY1tZEysaU4o9TLG0wsDZn7+e/pf7ZWkp9FJ5hto5dLi7q56TRY5+M98e/+76HHmTn6NQ5qnS+LNFqo7b0TVhW352bRrnjecLBwbnjHGqtKz6Hnoo1crf0U1xfyseK5cfPTFrP06ewia0x21Jazt7k4hRh+fB8boyZXQ/DMJW5ubmZ8vs+9393XYezM4e3356vq1//4jVubsZ36HwsO4yrexsW/o6fWXj5Hum+WTrD5dLjdSQd59Z9plSHRFbr89Y1dUhkl+Tm2tjq66XkrelXCbmYWywv5feX9IrvHfeGMC5k4Ez+jFPXI+wf2Z6w1u62zLnSPps//yvM2zO3Za1+9JY4SU12K7lYbhzXLdl8q+3C5vdDD2P8M7oxbRgG2H6ebxFDHMxC1jD06GGzZVI6SUme3xPtGYYh6+NtPWuGcu5rjYR1pOrbagNL6+mU/kltTracj8Yx9nKDNGGYSHq+OUV67B+Ndud4f3yWcf9n45ROpfSWWGFpHc3/HO+FtiEXS8vNGakfkiOWW7SROPq1StlpHP2Y9X2PYeimMlvnTPg7PJO0tnF+ZvF97ya5dki/h1Gqx8/fsLuMMdC2foYOY7n+/D2mH9eA1KeTxhIl+uTS1tQh8QNiP8bc7ZtOHX0V5yyctRgGAz0MRV3XrGU7zMcAcNM+6Zy728vn5+G+v8WtK79HlGq/c3Y6/3lu+1vc3pbnTMs60lrDGjvFNI4699B9/llvybcs1b/Gb69RkhXrJYk5Sfz2nE8RkzsnGmPgXHhv7PMediHvFLHplBxpn3tb2rKufRnJOSrlU8TxTX+e8nM09FlSe+B9vJNW6i/JnJfkD1n65A7GDHDDMqYmXfNbY47hXhS3y1qLewppPjilOb72DDsf3yAeBtlZL/SL53qNcyS13sOsqSmTi5nP45hxLMVAO9m70jm2xGJLdqm0L72XnqvF8aNS+ft6bnAqWvRLxR1CG9dK/Oxhy95Z2kNyckv/FmRcW8v15ZxFWGSrL1Tzb0NK/ZOOSw0Y1LZ4jLT+rXGfU3JKXWI/UF5mbvuNNdAFX3Vhy9873fnK2bY7EUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyEb4ERRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiDwo+gEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCHpTdQytAyFqUUjgcDgAAa+2U7pxbXDvniunh7zCP/x3KL+WTXOd01FovdPP1KqWS9UnaGF+HsmqE5Wrpcf25euK2xNe5OtfomuuDUJdcffGYt+DH0re167pFvbFOYZ5w7MP8sc6163BOefmleRIT1utlhTjnkuPcMsckeVvnRK19OXmpcZHmi8vUfpd0LfVJPGdz66lEy7pukVurL54vuXZIbEeqDum8DgnndUr+mj6V6BHXFfZNS3+ndO66biYjZ8tK9fj+rK3PlrVeqlu6XnL3c/OnNKfj/k7Nx61zP66zdN1qN0vrJLfftcoqjcuavmn1S9bagjDf2jks9UlKa1zar5KxbLUx8f3WvTa1BqTtSRH2R2m9lvzCtX2Q0kVyryTX29WUbxTer5Ern9JJ0k5JvWGdse9Zk1NbF9KxkOgp8S9z57Fcnrh8bi7G+Xw/xfZVsne17G/hvXCcUmcC/7fPt9vtZuMzDAMA4HA4TOWNMVP648ePYYzB7e3tdO/m5ma67vseALDfGXzmMzeTXKUU/sF/6Otwe6vRdd2kx+FwmHQJr/f7ffJa67G879t4XobtlI7TFkpzvnZW1FrPysfrOrXOS/N71sadDtapA6Cw2+3RoVvEDkKdt5xjfVnnbEK2hbX5s0iJuB+26CildY6U1nDJ7qXO41vqlNzzSOuMx0zmh43jprUW6yKtv7V8LGPNPhTv3WPeML/K+m9bYhbSOFU4l8J1fFyTbvbbX8f3U1hjJ/vvub25wW2fPgvH6zUXZ7LWwlcbd1HKjkt8c19fql21s0ktLhznHfe1SWNYa6Hs2P5SbOBUZ8UtcZmaf5wjHFutNdR+j66bj/fZ2Tk63cVFxZjOQqllTLRzR5klny71O0V73HHpB26NZ3qke1rNj1naJdzNy3KsKnduDOsp7QOhzNY9Pj4/Sc6MufFOpUvP5aEuqX6Wxk9KdiU1zrG9XOML5IifJYR1hDqWzvwtumyN94Q6eL3WxKxzOoWcyo+M2xzqv9ZfyRE/K5LkTeXPxU2A+/eva7rX6t+6Nko2uxSbK8lL+S+xDSnpvSVOFpY/xRmitoZz+0OpTMyp18UWWs9R1tqZD1t7JlRKT9WRqjOcP9L9IbeOJPqWiOteYy9qMcyWOSX1N1LzutSXSqmZva3ZyKUP5XAsMsbWjFEwZl62729hbuX/jamt+2ouTdrnknhGqUzoo1rr4IzJ5DmyOHcEcczQPwvHqxS3TcmNieOnW/r9qK8L9AUANf7vHs1eyX/Kjdl9xUvX+pJrbMyaOE+NljjTmvISObFNSr33pZSaxazCc8D5+flUh4/XA8c+Pjs4dN3NbF0d9gc4p2ZrLIy3++vUvAnbMgxDdh2mzkGpdoV9JB3L0vns1KwZ45YyufUsjYHkxmjrejmVnSi1Q3oWPNW4Ss4qufjgGqw1sDaWNz47SZE7t0vPE5Kzcel5dc4PHtMMnJvHVI0ZMChXlNvCmnjFfaz5GOn4W2MX421tGLMa04wxcKasd2fMol5jDAbU7cAakmcjZRc6DMMAPWz3b2N9c/vFWmrzwtz5qS31tzz7WTsvS7G7lvItjM+OQrt8N+etPN4mfb5doxR/jevdWXdnT4/7qLUGfmi3xr6kz6pz72lsrTdb37C0DeMYlvs7F3coxTzDdKkPX1rz1rhpH3HuuL963Y2xGIa2mFP8jK7mV5TOf7mYr7cXVnubeKxjGAZoU7aJyXfo7dJPk/hu87GbP7t07jgX7nNvlMRDS+/TtNjSUvn0+CJ6vHc865Tel6npkKszHDP/d7jHx/Y1LJNaYyaIoYRyx3tu8fz+5ctr3N4e31nI7V2peEp8fdTXRuXTeVO2WrIHtjyTOwUlm7DmeW0qvdQXEk4Vb2ipt3QGbZUdj+maZwm1+FWixKxsq81bo2NWk8hWxLLC9ZUrL4tJ1ddVyracgpJ+xpjk2nJuOb/WPuPaol9r/lPFUFrir2q5eYnndW7+eD8rJSeOeTi3PJ+O4+rnrArKhWMo209TOqeQrMs1cycnN56PrfNIau9rccJlTLRJjSprbKRUrqfULkmczxo7izUBxzm51UeIz/0pWvfDFJJy036QiBtJYkQtuknsjmQOp3xZYwzi4899+nISH2HLs5lT+mGpvX7sQ7GIiYXtNl1iLOz0DBZIn/nHn/cfN32vw4+gNKKU+rMAfvND65HBAegBXAV/fh3ALwL4HICfc8594eHUI4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkCT+C0s53APimh1ZiLUqpzwH43wH8EIAfcM7dPrBKhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRDDj+Csg4FwN39/X7j6wF8HYB/EcBXlVJ/DsCfcc59/mHVIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfVvRDK/A+xQV/vx//qLs/bwL41wH8jFLqX1NKcT4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkFfO7qEVeJ+jHlqBFfgPoXgUgCcA/jSA36OU+iecc289iGYr2O12cM5BqeVQWGvh3NhU59x07X+H16V7qWtr7Sw9/J2SK5UTl8mVD3+n2istk0oL8f0a50v1d0pm3D4JJdlbyuXqz/VZ13XVsjG+vdZaaK1FdXpC/ZVS6Lou25dx3hoS/aVzIc6bmyNSWRJ9JNe5sr4uSZ+V1mltLQOA1sfvSEnqU0pl+zWXVurnsP5S36T0idNb12FpjGJZufmTug7zSO1OTa+WdVlj7TxN2VSf1jJXQznGmOna24twfzLGYBiGKX130+Pm5ho3cFP6zc0NnO3w8uUV+mF0Ef28UkrNrnN6luZ7Ls9au58iNb9SupyyzrjeXJ33XVdur6/Jqq0NT+uYr6HF5m2hpn/OTpbS4v6P/TKJLqU8Nd8hpaO/n/JTU/lL8nP9VOq/WttK+oc2MdwXrLWr5l9tv43z5ux4uNeGxOlb/LPUeOXqleRpnWNa66QO0nGtrePUWLTsC6mzUm7MJHNMinS9lHRfc4aS5In9gZxdj/s+5ceHtsu6uQ9srUXfO/S9xjAMU/m+73F+fg4AGIZhurbW4uLiYkrf7/dTutZ65rt4WcaY6To8D0nXvda6yf+fytl+lX/i2yJBst8sx8L7dGOaMQbKYEFuzkhI6W/V0odXSlfbmtNji36tnNJ3mK+Zcj25c1YsR8pWnyg+G9bOgFLbtaZ/QxstbVepHsl53hOei4DjmcloA2vD/OOZyA3p/WMtpXbkfPf43BXqHcapQhtZ8km7zkzyQpsatjFe22G/TXuCtej7/mi7L1/i+fN3AQDDMO49v/ALt7gKuu7s7GyS/fjxY2it8ejRo0n/w+GQbHMqthL3Sdzulvij2ZtpT/Kcn58t4nDSc4KkTmnetXYkd1ZJ+Upd18324FyZ2vrMxeIBX/6Y5lw9XiWlZq9i/ce/3cyOW2thrZrFTGLCeRhfl+ZJqX9a8pSQzJNc22oxu1S+Uh0SWmJ2rT5DbL/Cvs3Zha1+ScofivfTUj+1xo9yv9fOn1psYW38tWRXcpw6NidBEltpvV8j1Tels9p99cuW83BJRu6cmaIlhlzSV3ovWyayEQBghgHIzGMpp/T7TzFeKXy7U/5W6dwQy/DlW87EsQ41wjpySM46sYzwOqd7S8xOUl4yNyT9WJsLuZji1r0vNW9qutX8kFdJbj2F58TxfOh1VjDGwBh1F5fxe2973bm4fknH1G8vK5dHYjOke7w/Lyrly4zl9vsdtGuLP0ueKdXsTnyej++XqD0/KeVPvWfk4OCcmqWV5K/VM0dNXsom5s6KW3Vq8fFPgcSuhrGOWly8VkfJ56nFelIopWYxnWQ8tvE53uFg8ejR81nak6dPcLhdypbqXBv38Szdto/HbI0zej3ieiT7e0gpHpCj1eeJke4JpWeUW+LP0jhXLs54ynO1lDWx4xirHIyxs32873t0pssXCkjHHeZ7gDEG5tUfb2f1e+LxC+/5a28vjz4Q7tLnMsLnjTFrYltbzrpxWclZIaR1Ls1tfm2+zd/1LekQZ6nZ59Y+q+3Dznm5sV7t55e4ntR5oCW+npObkl1L9/WHdZ6yL2tn6DDPfZJ7PyWu29rRFjhTn6PHMqd57iw5J/p8oU2andV0W1/mzsDSNpWeF9TiE+Hf0nqtXa5Ba+ux/dTvVP5UjNyv+/BZYO28Fc93pRScdej7u/dQ73Q2xqGz4xwY+h7DsHzPdCHHzd8Hi59pxmVKtJx7gzuTfbbWAdUxS8wvPfobo+wxbRgG6GH5bDPHuO/a2V5hzIBBrd8raufBNe/HlJD6y6L1uLtbH+o4Pm7cyMby0TsANbmSs7HTDv79HGT+aVjcRccYyvKcE54BYw4Hi/1+mKVdXJyj69rOHKX4itZ6+s+k54ZW4leXnsNJkMSv4rGTvINZ0n3N3G7d+8L1N2+XDXxsv5+l17LUj2iJaZzCXtbqWstiv9PLGMO4vvMyJHNhS2yqJWbRGmvyGGWmPWOUM98zanWVWDNmy3ho9OzMGJhIta1zI7d+Tr0v1UjFaVralnxfRjCva3t36uyY0zE+szp3rC/s42OR8TyYi/eEck/1jKelzJY1m0v3MlNjU1t7JdkSX3wcm7Z3eNbU2fIcQqb3+nhk+EwpTGvrt3pajq12o8XeHsczvQal8mv7yRofJSV/ruvyTBaXl8Y8ttjRo15lpnV8opi0xNcctJnOyb4vBjPMzril8rm+O9rf1LxJt0/dvdsSx/Q+rGx7SkNc8Eeab82fFj1qclTwJyyrAPyjAP62UurTgjoJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDkJ/AhKOyrzJ0Xu4yMtf0I5uQ+irJHjEvcA4BsA/M9KqcelTiCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5FTsHlqB9xvOuW8JfyulvgHAXwHw9T4J84+V+N9/B8DfAvBjAH4OwK8D+DKAawADgEcAHgP45J2sbwTwO+/+PPPV4/jxEv83APwigH8TwDsALu5kvQ7gTQBfA+A3A/itAD4TNgXpD6EoAL8dwJ8F8EfEHUMIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyEr4EZQNKKW+FcBfxfixEWD+ARQF4FcB/EcA/qJz7gsVcZd3f34DwI8HdXQA/jEA3wvg9wHogjr8318L4PsA/AHn3A8V9P0ogN8F4J8C8D2BDP8RlPDjKn9IKfXnnXP/S0XvB0WpUfWu6wAAzrlS9gU+f1jOWpu8H+ap5Y/LOOdm+XJl4zKS+v211nqRL1Vnrt2lenw/p8qU0sNyOVrk+fSSXImurSilZrJydfh5GKfn8ufG5xRorZPpuTolYyXNm5urqbScrDBdOo9S+WrzJYcv45xb9GVurkvmci7PGh1jeZL5VNIzJbekV2tbUum5vKk+i9vXaiNK7U7ZwhJrbUtuXrf0Q+6+n6fW2uk6vr/b7aZ07RT2+z3s3qLrNIC73zuN8/Nz7IYdlFKi8ZT0x9o53lLH2nokNqllr5LICyn1cUq+3+/j+uL8a/ZXCaW5K5VRyldbG5I2ttS/pp/ucz626CKtL9zHQv1r63jrfnEqP2zL/uppsVlxW+I5ear9XjJefu9r9RnjMZcQ6pPzadf4rlK/vXY/bscanyb26Vp8Wum9tTZ2jU8Xlk2dO40x6PseAHB7e4vb21sAwDAMuLy8nO69++67GIYBAPD8+fPp2gyX+B3f/vqdrDHtJ37iy7i+Hus9Pz8HMM6X1157bbp+9mz8hutut8PTp0+n60ePHk15DofD5JcAxzkbz93QJ0/1VaovUum5s9HEMCz63RgD29Xt+H2d6awysDb2US2sPc3eMtWT0N85m/CPj3Wv8f1O5S/WzrnefsXtCn3lVrTWCFVr3d4ksYEWGyHZxyTn4OX98Hd+H0vVL+3X0h7bmhZTipMt8nWA1nOZXdehsx2klNos3T9CG5e69oT2stUX3u/NYt0czs6gCnaxajMB7J71ePbFfpb29V//Gdzuu1l535bU35Kx9v281a9c9pubrWVrLZRd2q1WWya1daUY75rzTi3+m7q2Wt/tM8e+6PtbmNseJWr+lJeVW7bxXFiD1N/y/ZnrRqUUuq5rimOF6VvjD+G4GW1hrVvsN6XzZ+1sWotBpWxy61rbMo6psluf8YS/czK2+ASl+qXzKOXfpuSlrnPc5zMGKbHt3+IvSGk92+fSavdrNqfm37TqsWYfaH0uUop/1s7hNUo6h3Og1i9bzustebwPfF8xyBS5tZDzwWr+SMvaStXR2s5QRslvlOqVq9PHJkLWrNESxphqHkmMb62MWJetz7dTOlm7PN+n6pD4FPGY3lfsO6dXi01bF+v29iA8r4RjsozBlfQqsTYGEI6B9H0WP89ztiO5Zx8cbm5uZm27vLxC149rvuuO5774bDfGUJb+Tku8usUmb7XPuXVnjIFzFsDRr3HWwalj3NWZtr2o5geu6ZdcHbV0qb1pfWYazsvUc44WSnuMr791T43Z6p+W7JfnlDYitgepeLapzEuJHxr782vakNpjT7FvaK2T4xs+04o5lR9X2lNLSH3omm2TnDOk9eXqiNPXjtmWftpq03J6hCo5d1z/tTURr7NuWK49a9Pvg0qQ2iuvT+q6lC9331oLY+xC5jAYhCHSmr+T6v/WebPmbLemv1vm5XGfWcaXxn5bzgFk3h1ellOzcpIzSU6/kh2Qxh1i3U9BaT2fMh4W5sudm/2eFvrLa2LBEv88ZbMkz7lrtMbZrHKLOZo6x7TUnyPV/nhOS8Z+ztx2t653a624TsmZLteuXD7JM6V0mpeTl78mLpeKt4fvknj2+/2UL+VrJ3XWDlqPMrRWUMrOdFwb4wj1qr3vkXumWMsHANa4xDMZh/nz8jTpc8BY1t/yMYRUmZYYaIk1se5TxXJSrHl2ntPH+97HvsVo25y9O4+37Z+iZ9Iq1L8+F+I4UTnv3AbXznMSuxTKS+0V1lpYPe4J4a1hGKCH5TsUpXpKaTFhXCgmXgf+t9Y6G/OKZbfok+r3+2a0YW1+TEhJR8nZYY1vKamnxeeX+E0AYPVyHfj52aKblPDfVeQ4RfzAt0mqa2hLcn7E2jN2a/yu9q7gqajt7ylKPpVkbZ/iWZaE1LyWxpGn5zCJM2dOhjHzd0vHc/18HenBwNq5bej7W9y6u/crYTEM8/u1tfheocW/8D5F6HeX4nGpedFig3bWTu9jeYwZYJT8vcRYp5Dce7G5+zVS7/m16gAAw+0we96p1HH+ls4Hrb5ijMRelnzwsHyLzU3Fi0syThWnlsrN7wXH9kp8+NKcaBm7UtxEQvgMoOWdgVS+Wr2dPq6LyWdVOv8ucoMu4xyp67nsL19OQepvfhB57+9O71GUUt8M4H8F8FEcT7v+5GsA/EkA3+Cc+9Ou/gGULM4545z7K865PwTgWwD8AJanawXgawD8daXUdxdkfdk59986534fgL8fwN9BegX4dnzfWr0JIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCJHCj6CsQCn1EQA/COB1jB8M8R8RUQDeBfBdzrk/5Zy7OWW9zrmfdc79AQD/PICX4a27P48A/GWl1HcIZP0ogN8J4Psx/xBK+IGVz5Y+qkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCngR1DW8R8D+Htw/HAIMH485BLA73HO/fB9Vu6c+4sAfjeA5/EtABcA/jul1GsCOT2A7wXw1zD/EErIv7JJWUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCKuweWoH3G0qpbwfwh7H8AIoD8Mecc3/rVejhnPthpdS/AOB/uKs7/IjJ1wD49wD8MYEco5T6lwD8JIAngQwv83cppc6dc9cnbsJmlFJQSmXva338xo+1drp2bv6tl/C3c24m099LpeXw9+N8Xp9QF6XULF9YT65O59ysjlBeTKrOsHxKduo6JKdX3BZpe+IxrPV5acxLeqfklnQsya3VAcz7PDcXc+kpeTndUmMMAMaYZP5TU1sPXu/auMV5JH1cWstx+tr6YzuTsxElPXN1SO6l0lKyS+MgaXuuTKu+KWpzpJavtS9b2huOc2q9leo+Rf2xHqXrFDn7n9uHQuZ6Lu2wn+s5OyS1T7l5vcbe5uxaqc+kaz9nS1Ny1u59Ennhb6lNk+y1OVrtSUmXmn9Vk1+y1WvWVY7SvC7V6cuEe3eL3Wrp11PLXLMuYtasZekeVrsn2Qda2lSbsyXfei21faVGOO9a5Nb8y1hOix4Se5mitv5afD2J/QnTQjuTst8S/VvzpUjZ+dZ5F++P/rcxZpJ1e3uLvu8BANfX1xiGAQBwdXWFq6srXF5eAgDefffd6frtt9/GixcvAAAXFwqXl/OQ0TvvvIOrq6WuX/rSlwAAu90On/rUpwAAXddNe/dud5TTdR201tO9cCzCORbamJxPEa8NqX+RkhOX1Vpn117MfdiNHLU1VPNpTkHXdcn0tWf4FLn1UWtX7r60P1LzxFoLn6yU/7PcAyXtbI0rtOT1bZTO2xA1DHBu3kfWWlhrxf601BaHZSRyc7JKsmvnoFFu7lvQMiT97MdEsk+He0POJ2k5K3qUsou849jmy2zZHyWy4vQ1cYdWfZZ+o0IoImfz156pJOk1Hzc+a+Viu6ONWl4756a91jk3+QHOOfR9D7Pf4+rqEtY6+LVgfuM34F5eV/UL+6vruuN+/ajDzc31Xb5xb728fIHdsFvEmcK9JN7/a9clvCy/1sc/yzaEfdsyhmt8DUnsdMzjEGZN6Rb3iVR/SZy4xa61ypLGPD25+EDNJrScNbquazpHSe6dklfh0+VYE2eO97w18dlTI/FNtspslSvJK7GDrc86pHWH+db4HaX647TSud1zqvkf26R53UsfLJXPWptcl5I4SVx/7jyVqzvVJzXbn5sjxhjxuaUlHn4rHW5zAAAgAElEQVQftPp7kjlb073Wf2H61vkp8Q9Suqz1N1L5Su0M+6L2HKrEKfeDlj5vsUGxH+YcYK2BMWpxTh6GAXo4+ps51trQWpwh5zeX4to1m5OMgxwcbnZzWWdnB2i13l9seW9Buj5OQa4uPRgYM7bFmGBe3P03xsK5kCMeL/m54MgWW1N6ltW63tac7cMxX/OMZ0tM5D7iGpK45xq7kIsRpNb1vN7le2LDYDAM87TwGbifY5JnOGG7JXtnjtazYK3OrfuvJAZVWi/yeNxyvkja7fNL/bWWtRDP1dwz3rD/wzpOua5quoZpqXFJjVF5/JZpx32//Qw7EvZn+3kt7tfWs+Z6vdPnodz9NbFZyZrZYlfCs1msy5pzcNHe7NJ7c1wknFMpcs8k4nKSM2W4dtfFzh3m81dl7e7Ws8eWM51EZs6OhaT8iVyZ1nOuNAawRVZKXi0O6py7i/kfMcbCGXd3r76XltpQOx+utUvKuMWZwRgDo45yJWfYUJeSnrW0VB2l3xLbmar3aAf8flB/hpeqM6T07yTCtFq7a3PZ6OAZsv8rHCe1fOdaUm/KroexCal/WXu3L4wFzHxv0+7f+nFUKm3jS3G1Y93ptWsK00ni15fy1p6hrHmuk0Nie+cxUO/DzeM1cDI/WEpc51zs3Zjczb3xfrx3u9mz2VjmMd98UWu9/Dc8xlgYc1wnYRw4XD8pO5zyFZRSsMbdvTPm1xJwfX0DfVt/9z08R6bu5wjfA8vJLlHKc+rnZaeObXqWa9kU13KM9DycO6NJxyxXTymGt+UMGM95v6ZCwjWXakfrv4sqxdla2tJibz05Xa2xGGPO0bOGEz8Oltrk+H28VJ9Zu93vWaOnBOnzqvv4N3XStpfGN7TfXkdrbNKOuGCP8LjudHtiSKxz6xnwFONaI/ZVq++TRv3q3LxfJXW17EPj+9zLf9uZ2g/WnCFL7+OE8eA4z5q4eqte8zNAeO5ply2NUbX6qGv81q15JXLW9n/p+efxXjgGqbQ80vGrPUNpbd99PIeVlrduuSe6Sn9J4nRKKahOQ+v5OvHvYcrm6+nt/vuJdotJ/gQw+9fCPkL9N5xz3/8qFXHO/Y8A/nygA3CMVn+vUupTQjm/CuA/x7FdYfvOAPwjp9CXEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAU/AhKA0qpNwF8N9KfzvmTr1gdz58A0CfS9wC+t0HOf1q4950tChFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ0gI/gtLG78X4cZGYLzjnfvhVKwMAzrlfA/BDAFTi9nc3yPl5AJ/zP6Pb37hOO0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC6vAjKG18R/RbYfxgyA89gC4h/1P022HU7TuUUi1j/H9h+TEVBeCzG3QjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIaTI7qEVeJ/xbZn0X3mlWiz5keDaf5gFAPYAvg7Azwvl/Fz0239M5eObtLtHlFKL3865xXXXddO1tbYo0+dzzk3yw+uwXufcTLb/21+n0kOstZOsWK+wTK5dubaX6lRKJdsV6pJCUmdL2RyhbnFaLC9M92la62qdkn5q1TfW0esRo7VO1hnm93Mh1b7SdUovKSl9a2ulVE9pLaTaVZrXud+tbUzpJkkv3duiTywzVUfJLoR1huu6to5Ta2ytjmv68pSk2ppbN61pOfk1JG0vzWtp/UopdF2XrDd3Hc6nnR33xq47zh2tNaA7dN0Ou8hFTNmIWl+XbEjORkrLS+dYLV9uD5aUyf2u1R3axJq82hzcOsdL+dbu77V1KV1Xa+zIKeyapNyadZ6712pHJWu95CeVdFuTvmbvrBHrHdYTr5/WuiQ+9RpiG+JtXLw3r/HP1vRxyaat9Z9iua1rSVpv7UxT27Odc6I9JqdT7gyWIjeXJPZCuu+kzpPWWjjnJhmxzr5dXdfN2miMmfIcDgecnZ0BAJ48eYKrqysAwMc+9rHpWuseT54cpjqMsXj99ddxOMzPKmdnZ9jtRr/h4uJiun727NlU9+FwmOrf7/fo+x6Hw2Gml29b6jwXrv3UuSnVZ+vm+ny/kq7d1jNoi9+x0DDQRTrXT43XP65/69lgTb+EOkh8slodKRla6yg9vQ/V4j81Wvay1HXYFxLbuZTj5/uY1nUdbHDeSMmS7smtYxvvozmd1/h+1loYbeCcXaQrezrfIKw/5ceE196up/IYY5L5jDFTvw7DMEsPrw97i3feuZrp88u/dInrm6P9jddyKs6w2+2gtZ7OoOfG4erq5ZRPa40XL57jdr+b8oTl/TpqjWHEazxVPtXnOZxzMMre9d0xX98PsL1dxKwkrPWhU2fRcH/3v/3f8XXoB/hra+1sXvgxDq9vbm4wDAP6roO5egnnjmWef+lLMJfH+eIZYwfddL3b7bDf7wGMc8Pv6XYIfXULpfSkbziWoY8iHdcSqf0w7KfYBg3DgEGlfcZTncFzpGLcR13ncoZhgBvqe31qL4z7MmdXQz1Kvz1dYl+okTvDhT5gqGNKh9rzgtj/W7OnhoTPe2LC+RTr3LLfSe2N1N/b4l/GbI1x59JaZJ1CpjTeVorRxH7P1lhx6xwN895H/EVSb421z0fW9MVa4rOz7fRybzAD9DBkZSilsus/t/5Cn+yUlOIikjGIy7c+Y8nZ9Zys+xzj1jhhzS6smcMthHrFMb/acz3/d+481uorp2S9ivW4JS4JlOfT2r2wC85WHmMMjFEL/8wYA2fur59in620L6ViMyW/IRe/TjHoYTGP4meS0v6W2MuYmi2R2DEpKf/cp/tbSgFrlkeuvS0+5Np1qZRa7D8SWVue363RNX5XSnJeWWOvJOf2+NlRqf6t1GJnp7THPrbUiuQ8mbITNVm5fLmYmf8d5/Xk4tQ1nVK0+DclQr8x9bwzvj4VkpitZC8onZtaffhYp9zznFyMuxT/La3TMG38A4RxwGEYsLPz+EbNJ57LDOWNz86MyuuRk5XSv9Tm2rmjlW6waV+nq7/H0Gqz4vb7cS494ysR2rVTr6WQMB4f1h3qrZT3Ecv9pgcLa+f2eBgGGMF/v1TSXkm/2bv5Gure9z10336OPBVb/ZMtseTSmortneQ5cRijD2VtpXUft8ohfv4Vz9GqjJVrsyVfutzyeZ5XpfbeTOq9ifsm90y5Rti/oy2eP68ahgFDwTaUfPF4Hyldp3yqmNSzB79GbHfcRxTs5Hfqu7k29D36Pr/H+79L/qTE18ydD2rvTFnjfZP5+zS1tZLSw5px3YVqDMMA1RdFzeUm9om+79G7+XsKcSxIEltacy5fExsuzf9We23t+MzMqaNtcM4Czt6N0/HdpxrS51/jnFiOgbq9a8NgFzbZj1Gp3tRZR8Gh7+cT5OryEje3alEmR85X99daazi7lHP0Z8vxl9T+U5pjpWdnufKt80xit8L615wH1/qWvpwxNrEPL88LLf7NmudJEiRtzZ0BS+cWCeP5cDk/rbWAbXvmVIqXrxnXkl2VnBtr52bnfJwxnM8OSMQRJJRiMSkdTnF+2iIjtIdr6pGmtejTGqvZ8n5AqvwiXZef0c3uJd5fjOvQuu3fjaU41bw8JS39Pv7bqHRsIt7DanVJ393w/V7q8637ZW6ebD0TSfzzeL1U47dRF+feU8zJy6Wl0lv2Nwlt+/C83Jr98j5jxkFq4V5aD8lz7Fz+tW2SPCNo3QelKCT2G6x7p3EZI8/56Pm1Ptbr/X1M1x9GHuZfTLx/+RTiaNvI51+1IhG/VLj3mxrkfCWT/qRBBiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghTfAjKG28nkl/6H58p3DvaYOcy0z64wYZhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ08dAf73i/cZZJf+OVarHkonDvUYOcXPtMgwxCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQprYPbQC7zOeA3g9kf7Nr1qRiK8p3Bsa5LyWSX+nQcYrRWsN59z02zkHpVTy2tN13fTbWjvl8aTKlK7D3+H9UK5SakoPddZaw1o7uw7L+XyperxcrY/fMgqv4zK+njDdp4X9kqon18Y4LZUel4n7O0cpX+peKX9uXrToU2pbqo6S7HCcUvL9fclYhGO4hbVycmsjR269SeRL64jzS+rM6eHXbup+yRbk9AzTJXNPOj9zdbTcr6W39ptUH6ke0rzhXI7v59Z+aKNL8lvbkqu7dL+ki2RfKs33ruuC63G/Gf8AzgEoqBjbiC19AQDGyL6vJplj7zfiMbbWzvb7Vlk5SmtasseGevq50qpDWGdt/tb0ktSRWz/S8jnC9ufsSK5NrXWFsnO+XypP3HensFcSfynl05SQ+pQl3Wp7cgutPmWurvB8EeeNx3Kr/i3jkjsPlKiNqZfR6tN5fUq/S+lxW3L9egrfSTIvSmeKnA4pfz9Od87NxillZ/x50t8zxlTPHzk7BgDDMODm5gYAcHV1hRcvXtzV9xI3N+P3Xq01ABReXr3EMHTY7/d49Gj83urhcMDTp08BABcXF1P62dkZLi4upjxnZ+M3V7tuLO/7YLfbTdda60k/a+2UHp6TjTHNPmhtXhz34mMZYwyMKZeT2sBTndlOIbdmbyRrqNX25yjpXzpbhTp6n3KN7U5Rb7/8fJCKLbXEIiS+f61cWz7vv4y/rLWLMSrFz0pnwHDOnOqM2zKmqRjYKGMub+sZJ5bjr3Pjt3UNp2SF42atXZy7lFLoug67ncLhcJjSwvvhfhFfT7ZbOYRD6dxYl+2OMc8wv7fjXp7WerpX2qMkbZfux97Wp8ZlGAa4QRfnQU7PcO+S6F7Cj48vE/pd4TzOxaPCMuH4x7K83lYpOHdsV6c7dHfzIqTrumm8uq5b+OS+Hm0BY45xbsBiGAYoM++vcC8P+08ylqm+Lq2ltfcA2bhJ9oHS/CjZx3CdbGnHfRLrl/IRpPo9ZDtKlGIVW+24xBda8+xi69xtRbIOpOkpeVviPLn+XqNzPL9z45fzldfscRLWxGzjfWxtXdL6SvWfglPO51IdYT2p2HYuZhHvByW7IokZSWIpkrhESVaO0p5d8ntzciT573OOSdZPOF7SsZPEzOL4cdwXqTpTsahUH76qPTWsJ7YluTavGc/W9rTW0RInCf2zLdT2hK17QWuZ2F75GFmshzQGE8qVPgusyT313uHJ2UVr3V3MwP+t4Nz8PhI2JLf+4/NTbo3EsZWWeEgpNiPt29J5OCT1LktJjlRua/xnja8cYowRr+laXbFNztUvWa8Sf7Tr7Oy3H/+1a2VN7E6yj6/VR9pntfGr2dP73mO2klt7a8mVL/lEkvkoPWvlCMunYpkxKV87K1u7ZPtK+1PRFg0Wxsxfw+37Hr1rW0NSf13CmvV33GOW9vpUe3e6vhHp2kudG+J672Ndzv2Bufw4NjulBd2W94XlOrTETaTpcXucu3vGbNL+y30gOSulONV5MZ7juXNcyZepxadbdJL6a63MVXCLORrXXSL3/EimR1tfeP/bY4yBUW66rulWq/fU9qLlLJkba2MsnJvbxLDdLfWl8klsb+l5U6n+cT3N5761d2clAP3Qo+/TcaT4nFTzN9asj5q9sWY556y1UC793n5pT0rtDcYYaFs/Q6R0i5HO6dK5J1UvUPYvJbYtFy9d6+v4cmYYn3e76PmosuNzRz0MyXJbniWMfuNyHJXx1zZ536hlTHRcD+n+c85Bq6WP4ddGbGvjs1rtmWmI1Q5KDUDmpfA1cYOUXvHv1nNW+O+oSkjjA7EsyXk3d+6Q6pCO8crqicn1hXTspf3UYlvjONBWv0UpBeh0HK3V11/7vGsLrXrN2qmX/25Ra7XQXWrjW3260jOO8L2NrX5T/O8jY9bGY0r6r0G6JkrvbMzap2U2M4d/36vU/7l16H+X6grzTPkyOrfWXyLVf69qvUoI/22VlDXnKenzpZzsU7z7H8rK5d0S8/V2ROvj/f1+D+2WdaXmUsv8kozBGtsp9RVSMuKipXhWjlOdW+v7iOxdzbIMiMqvsd21vmuNv0r31ek+1o2DXC+fTzaPwzhufI79sPHe2T3eH3w++u0wzr5/4AF0CfkthXtvN8j5VCb9PfsRFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDy/ocfQWnjp3D85E74iZ7fpJT6zgfQx/MHC/d+qUHOt0e/FcYPvXyxVSFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQqTwIyht/M3CvX/rlWkRoJR6E8DvxfixEgR/A8BLAL8glPMEwLdG5T0/tkVHQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJK8CMobfxg9Fth/GiIAvCPK6V+/6tXCd8H4EmgT6jX/+GcM0I5/wyAi0iO50c3aUgIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCSIHdQyvwfsI594tKqb8B4Ltw/PgJguu/oJT6Zefcj7wKfZRS/xyAfzbSJeQHhHKeAvg37uSk+NurFHwFOJdTGVBKJa/DMlrrRZq/ttbO0lJ5SnVZa6frUtkQr0+qzpouPj1XJtQxVZ/XN9dXEr3iMpJ2x+mpMindc+m5tJqskk6lcim5tTpKc0ByP8SPYThfw/QSsZ6SeuN6wjmeqtPPvZY2lcjJqs3x1jFJzef4d+lejliPlI2o1dNKa/m4L8Nxlayfmh45W9GqZ04XydyPdQrlpdJ8es0+rqm3Rd6aNpfrUvDug1Jt4yvVJTfHY1uSK58iV7ZGro+l7Y732636tNS5Zu3l5mu8X5XmfHh9KjueQ2striO3T5f8sxpr+jj2FePrFn8ipb9kztV0yOkR6xL7gEDa/tfK1Cjll/qKErnSM0IqvVR2jY4SXVr6JWVzTmkXjTl+Q1Nyfsil5SjZmZqO4TqR+m6l+lOEtqg0xyXnppo+YT3hdcq/l/ogcZ/2fQ8AuL29xc3NDQDg5cuXuL6+xosXLwAAl5eXuL6+nu69fPkSALDfm0AvDaUUut0Oxirs9/tJv91uN133fT/J6rpuug7t2H6/h3MOu91uuufbrLWeXXu5YX93XTfrl9w4tfiwXeeglEYYEgl1yc3r+/QBJKzdm6W2u9WPK5Hy8bquS8ZffN0SP6i1Lds52u2cHYj7LcxXshVrzpdJDRt922P9Mp0kZ1hpva20li3N1TVqbPWHwz02lGetna6HYZjlt9ZO5Ywxk1231k55jTGzPKHcszOHYZjrfX3jMAy7yQ4rpSbbGto+ALM84VzeqWPMc/x7lGG7bkoP5XR36eG9nO1u8ZfDfvTXpfUWtuNYz7gnde6034pfe4aq2VjfR2FM24+/c24ay/1+P6WH88jPHbPb4fLsDM4d59/5G68D16O/EMeFUns1MI7tpMsZcLOb+y9d10G7ebw7xBiTnBfxWNZiNqW0NUjPltL6WmJVrdRiW3H66fbE5Xytzd/a+LUi9cHX7I2SdEk+SZtT6TkfqVbvKeNvXreWcdva1/E951y1DfH91ri6NJ4Q7+M5pPly9cfU2tCy16RsRKu+saxwT4rxY7PmPNEy18J9JCd7qx/XGnOrxQlzZ51UnGCNni12q7Z3hPjnyJJYo2SdS84UqbjQ2uc0LfHDcC6FczxcM/Ez/RZqfowk5luqd+vzBAne7yyN26uIm7TE4FNlnEv365gU+vRqPG+ZeqyiFk+SIhnv8rk3Xz68ju21MeOZITzTPH/+HO5l2bal1mhoo8MzRbiPxGfIWsx8zfyWrp2wD3y/WHt37rIG9i4u1Pc9dL88+5aQnPVCtraz1SeqsdVnaZEllZ3zFVt0kTwPkehb8mFbxyJ3bpvvTcu2W2thbf05V4phGKrn7tozwVOcBVKy4rURtnutL7sVyR5QonSGKck+ta+7xTacsu9T+0aKmq9Ykluj1hdxHDQo2VxnHDM8lU2MkcRoUme1VLGcjqeIF5RsfO5e+OywJKd1zizyJmytu4vZhwxDDzWoos0c6833d/xMrPUdkNQ6iu16Soej33u6c0fLc7tTxwpzrLV396FTLh4gpVbO2syzveifFrSe30vXUh1LdYbPycI8W+O1sS6nHNMWWeX9bV39tfFYe1b0lNaoUgpOOyjl5zMAKCjlr4FOd+i6uo1o9bVTlOLrk77JteeAaG2Ee4w0Lmu78vPA2jz2dn+eT01roOUsVnpGmkrP+XRS/ywnWxJnlOgnZet5VCkFaAetff+N6Vpr6Lt53Dk13fd0XYeum/v/kvV1ODjsdvM1en5xMdW1th3xfbtz0Lpf6Ky7ZUz/lPaxC94XkJL7tycl7t0XbIg5ps4LY5MUuk7P3nO7D+7Dp6r5ebnrNfbQ+6ixD52LEb7KZ8wppOfWlE2+bx+mFv8t1TPGQ8O9fT3SOKg0fn6fZwWPJJ6TyhO/y9/ql7VSO1tba4GgupROYQwxdT9+JyiHtF1r3nfP1b/lHKVU2vde40fUYqRK+X8/eVxPpdiq5HwV7yVb1sXWNVXzUcPmhOe62t6cesaUyyuxcTG1ed0al2yV1eqr31fM8C73NDa1+JJUH2n9kjNOLG+rL9C+9pbnJIf0uS/nB4XjvUXf8awSygPic+yHift7+/KDy38Q/fazxwF4AuB/U0p9z30roZT6lwH8l5hHp8PrawD/jUCOAvBfAPhan4R5dOennXM/vVVfQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJy8CMojTjnfhDAX8fxYyG4u/a/nwD4AaXUf62U+syp61dKfVIp9ZcA/GcA/Oe8ws/4eD3+gnPuKxVZnwXw1wD8QaQ+azumVT+kQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIFvgRlHX8UQDP765ddM9/TOSfBvDzSqnvV0p9j1LqbEuFSqlvU0r9hwB+BsAfxvFjJ/7DJaEeLwD8qYKsf1Up9VcB/BSA78L84yehnBsAf26L3oQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE1Ng9tALvR5xzn1NK/VEAf8knYfyQiP8wif+9A/BH7v68VEr9CIAfAfCTAH7t7s87AK7v/hwAPAXwDMDHAPw2AL8dwHcC+Pq7ulIfPUFwzwH4t51zXyg04d/H+AGcUFb4IRQv5z9xzv1aQc6Do9SotnNu+u2vQ+K08HfuOq4nrstf+z8leUopWGsBAF3XTenOuUmu/+3z5eqM25jSp3bt6wjLa62T6aV+SaWHOmuti3lT9YT9kaOkW64eiaxWamVb7ofX4Ti04Pvbz5FUX8Z1rq0rJjduPj13P1wj0vR4zfh8krVfki2h1XaU6onTU2untCakdk2iY1h/bixqddbk1vJI+0lCrv1hf5Z0T82R3HilyuTmWFy3dA7FslLl1xG6LICCgtYKWmtoV/5OXrzmWm1AuD/MNBLaxTVzLzf2rftQrHvXdVVdWsa6Vl7K1rVT8zckMlp0a7HNpTzhOLf0Qcn2xb9rfVGrtyYr9i3D+Z+7DstYa2c6GGNm9fs5bK2d+Q7hfa31VE4pNZv3YZnwOl7vkv3rVPvI2jUWzpfUHCzZ2zjtVD7VWlJ2tWUNlNofkmqntO2lvVTS76VzV62tqbpz5aV2SGK3UnJT7UrZrvh8lvMjwn4xxqDvewDA7e0trq+vAQCXl5d48eIFAOBLX/oSvvrVr+KrX/0qAODly5dJ3R890hiGZ7O0q6tLXF1ZvPvuu8kyb7zxBj760Y8CAG5u/n/23j3WlyW77/pW92/vc86dez0PZ2biuY5xYhmEA5aDzWhMsGJhQxIUcGTyshSEHCWKEAQQiFhAiCASCUEOAVlCOIosRwiiSAYUyXKwJTtKeMQ2wcQIKzGRYwt5GDuZuXfuzH3ss3d3FX/0rt+vunqtqlXVvfe59873ozn3dFfXY9Vr1Vqrf6fnOV5++eWN/FFfSGOT66W0TDxvJX0jzUVpXaZ6EACGeUYI/r6uJc88z5jn49ZC3mZKTEvXxjxcZLpvaRmfxEZrOW+s+mAYBngXVP+qF6mPNbS8mp7qsX36KMeBxBJCDKi0Rkt1S3Gbkq2t6bf87Jf0ZE1vS+Pf46v02PqaXG3lYnt6vaU1pvl1uX6W5iy33bR5TfXfOI4m3yPl+trj5Ze/sKrvE5/4IKbptNHLFmK+p3PA9fV1TAUAPHv2Ek7Xp1Vey9q0rFFAjwflebT1E8svzy9+sCarVkdLeiuaXpB0Qipvui7SdRXTpXU5nU6Ynlyv6v6yL/sg3JPnm/bT8Yn6QvIJ/LXH21e3K/mePn2G0zRu6trr99VY93f1pLhOavX1ylezl733or53BjNbkuOhY2xHYPXZNR1bslWO8DMt8UMLvbrF0q4lT+4n1vQoYPPvLHE9qb4j11Me68ip6Zo9srTMT22PlvaCFpsq2YrWc7Umd02OUtyppe4j8kZaYw7L9SWtZuP37lVNvhIWX6hUxiJ7nq7ZurWYqbU+i5wSNb2l7TEtby6jJfbVE/OznDN5POgoW7O0F0rU1rjVb3s833yh5iNp/lialvdlnj3muT8uIq2Znrq0/WLdhynaushj/845+OuAd8YJSH6O9OzZSxjGrX10ZEw8xgV74go1SvaxpLu2+VM/ZvHTh7EcN8lJ16rFJsvnvGbjl2yC/LnFt86RznvrHLXEJWtIvtNRSPus98oRWGQAACAASURBVN1HKV8aJ5XiRKZ2Q8A0Tauk2+fP8fzWroPzeGDtXUavX9zjn6ZtWW3NvdT2gmXfAtt3tD1tWv3IVrsqZ08srIejbATrORhCwDx7rN+zLGsqKO9+avO86KBtfbN7nHi2hdpajtfjFGPSa9/O0pcev7PV1k3XuPVdSk2GWvnN2ekDvM/sRD9nbQbM84zBD8U9Ge5m3N2t9fY777yD2yvZli2NqxRjl+wGyS/cxEm9h/dln88Ss5bGXfvtQiqzbnvZsMbvNL+rx+60xnBaOSqGFcaw0VN+ngH/eP9fuZbzqfWdVGmvl2IgpbGzxOy0ei11ldLX+m0dp1reGapNiXVLcqf/RiHfxxY/pqq3XfxP7l8v1z5s9YvWD6kvqd0M2HyFvF6tjSVNHodhsOuo83uyMcC5bRw+LV9b88MgyyOVtZx9Vh/YWs7CY8eD9rZZPyf7yPVWOuaa/xfXu/f1OMMeHyyl5nNqe05731PbJ6U89thMu7w5R57XUvx82bOrFuF9EP1ESz9bY4O9ceFa+zWbS3uXYCeORd/8l2QSWyvo5SPbLY9beS3m7w4saGdqSx2X/EDPUNRiirXx3b+W+nmo337H3+LbC2z7v8SiL/+uDLif7zG1XbT27HG11nG3xnJ7OP+mt3CO1GykNL10zvest1psKgSfnPtrOUq0xBRb39O02tMleUp+jhhTyMQr9dOqu9J8rb+l7CGXK31fdMmj73lLnLk2/612f1r/4LHxWYZhXPmNJZlLbbae3da4Sq9/3tv+Kg+28avB1edWS0/9gDwO0CLXks+U7X0LP4LSSQjhLznnvhrAnwJW/4o4Lqm4KuP9SwB+8/2fVtJlmtcb02JE6a+EEL7PWG9eV7qTPg/gP2mUkxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQZvgRlB2EEP70/dd28g+hAJePkqQfFun95k7+mR/poygA8H8D+K7GunOZotx/KITwemNdhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ0M7xoAd7rhBD+NIB/GcA7MQmXD5O45E/6rPWPVBeyZz8H4LeFEL7Y0w2sP6byPSGE/6GjHkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCmjm9aAHeD4QQ/lvn3N8C8AMA/klsPyqSf7xkd5NZ3T8C4PeHED6/oy6H5UMu/1oI4Qf3ifd4OOdWfwNACGFz7ZxbpafP02dpPcMwwHtvliFvexiG830IAcMwbPKFEFbXzrlzfSGEc/t5G2keq2wp4zgCwKp/+Vjkz6U+1tLz+mtltHtt/vK8Wn9LZaX1kpPWq7WR50/ryu9rfUnXSq2dlFKbe9pK5zHdF61lJbTxLPWt9VrDkqenfGldp3s8H5u98kt6rHXttua1yGmpq0Wv9JZJda2UVxq/fO5yUl0sjXWLju7RX3vmNK7FVbpbP8vlkOqoYdH9lrNWK9+zRkpy9+6Zo9rXsJwjNd1jbScl6vlS3T3tSvvMelbW0lttN2sbLfMp7SEpf97fXE+1ngs1ufJnLXWWdKBE2p/WNnrO5737tTZfkr7P5yfa15KOs9p2aRmJ0jps1aWPjbSuNdJx1/Ryjx2myWFZryXd1mPHpOR9tMy/c+68rlL9OQwDTqclzPPkyRM8ffoUAPDKK6/g7u4OAPDqq6/i9vYWt7e3AIC7u7vV9TRN93Xd4dVXY9sAEPBP/KaP4/mt27R/fX0NYPEz4/XV1RWurq4AANfX16s8V1dX5z0zjuO5rmEYVvOftiH5/qUx0sjHeBiGrF2c5fL3MubkcyTJlMsyz7OaJ+3bOu3yPd0YH5DqaT1ve+wC5wZzjCRtr5Qu+c1a+9Y2W85wK/Mwi7okT7PGCtJr65q1zJ9mY5vamCZ4v15b03SHO7ctm8fNYls9sYX02tIvLcbUOseXs8CWTy6rnyM9NlA6lml6Ov/e+7PunOd5NcdRx3vvV3VcX/mzjo/1vfXW27i7G1Z6OI5/qpNz3bvSy94j6qglizvPo7RGYh0S2thZzn3r8zTf8gdIw+vee7gGU8qyL3v9vlRWKS4s6Q7JVs3XzmacT2Pi7y3pV1dX93Nrl/Nc3/k65pHLSntIO+Ot816KzSx/VtI36dKcvX5HmYD0FVLNRu31m/aeixqtMULrmd0jb6tvVDrDSvFbC5pOzJ/laQ8Rk+rxGTUfWLJJe5FijimlMcypvY86CosOifuttq5LeXpiqK02SUssNNe7OblNl9sRmt9k2fs9cWjN9wj+BO/zsQ1wWfk9doxVfx+t51Na49wWu7vUBgAxTlHzQVtiuu829shc0mc9e/9o9pzJPfEw6b7WRmwnnkkt8Xt7O6u7RXcoNnpJ1no7+nsBzY/W2rfGoTW5Fp8y1c0XmdIie+yt0txbYlxRHgmrzrL4ns7JcYMQlvhcmGUdeBR7+nyEHtHigJazq8WfTznSxizRo+M0Oyaml8ZYixulfn+eLumD9H4YwiaGNM8z5lm3u/I0Teaa32LZS2layUZrtVe1diz59/qbR8Smevrbw15Z9vi92jOrDsvtSItvW1qzYYz7KY+3yPLWxmWJscnpElJ6rl9b3rtYkOLMmmxLf9e+fhjld7QSkj9XWz+1dwmSXTAm7+p6zrhW365tPuT3l3k74wgMw9Z2KI1F7R1pqS/SWSKt1dnPcHOf3qmtD8mO1WIAVhsw1hGf1c6hNH8p/SH2oCRTr47viYm0Pm9tr1S3xSaX9vJiW63r2fteWms/v67lTe9LdlarTtzWs97zpfLp+6OSf5dT8j+1aylGHlxANN8X32k5I2Ox9LzVxr3FzmzV9zlSnEo609O0Ft10X4NYVyq/5Xxd1yH7BW1y9eVrLbMnltn77qp0DrS8S1jKb69bY1Xa9aZvgq7w9/5cjvTeM3+Wp699S/2dbaQlniHlbZm/1n1VOselPj/EWVvTk6kskrzD4JreQ1rkaMnXqz8kfWXx76zv+1KdGZOXc+SYGO/R71mtctXiMZdrux1yRJzAUse6zUv6Hv3e0n5LvqPYq7sKNZ+vljhy3W+J5L/tyevIfau17bLdu9Lv8aIvqv0OwnsPvEte2R3lq9Vitzm1Pdgb/9bq6CmbtqudM60+adTjlpivyCC32ep7tZQ1yZVRik9rz6R3F37wm7V1d3eH4a4c7zkSayzA+xkhRFnjee7h/f7xtcRmSvkfK2beimTTt7xjsNmnZXt+3fY5BcD+s/m9yuPsrC8BQgg/B+BTAP5VAL8MrD58ErI/zdVnf2LdvwLgD4YQfkfo+wBKKuN/D+AfD++hD6AQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkPcH/AjKgYSF7wfwNQC+G8Bfu3+UfmwE2H7UpPYnrcMB+FkA/waArwkh/ECHqA7A2wD+OoA/BuBrQwi/O4Tw9zrqIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkF6cXLcD7kRDCBOAvAPgLzrlXAfxWAN8G4JMAfgPWH0Sx8CsAfgbATwD40RDCz+0U8RMhhL+/sw5CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQg6BH0F5YEIInwbwA/d/4Jx7CcDXAvgEgK8A8GUAngK4AnAH4AbAW1g+fPIZAL8QQnj9YJn4ARRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8q6BH0F5ZEIIbwP42fs/ZCchBNMz7TrinNs8d85hHMdNGe/9qlxJBk2utD2tLufcOV8I4dyuVLZUb6mdYRjO6d771bNcFm3c0vGSyqXylcqX+qbVLz1PscxNHANp/Kyyae1qMkt1pXPR2k68tsqYruFW0rJaPdK4t+6TUrm0n/G61PcQgqgDSjLV1lupzdI6qtVZqzstr+3Xkr6Txk6q36pbNWp7v/SsZbxa1kKtX9b5LLUttZmS75na2dRDyxyHACzNhiT98txS15GyS/Vq56WmM7UxTue/plc0rOeMNK+lc1Srp9S+dW5qcln3m2VPx/myyKONW6luKy32Qm0c9+prqa5e+1RKs579mj1j1dXa87T9kiytY1SS60h9Y22npstzpOd7bK9hGM7lo29SosVmjWi+Tg9HzNEeXVBbM636RPKb8rpKa1/TLfkak+SqzUWqV+Z53qSn5VN/cpomzPN8LnN7e4vnz58DAN555x3c3NwAAIbhFjc3T1cyvvb6W5jnE06nE66urgAA19fX57qvrq7O6zTNM47jeQxPpxOGYTjfp9fpmA3DYLLvLD5kCe89vPfiXt+zH3pti7NeHdK+OTi3jN0YdD1gsbtrZ4/3HrObEUJuU3l4vz1jrWel1WbSymu06ovW+EMtX1pvT2yoFatOa41bLX10m7Ta2Ke6J72W69dl7KHX5tyLpJdKMYc8tpfSOgZ5O7F8npbeX195vPTSa6t6PvTBD+L2bn2upbo3TdP2whhcMhZy/lTGvO6cHl+rpa7VfA3bPOlZpJH7lNr85WOYt5+vh9K+jnXlbeX72uLrSX3O5/B0GjH4K7FfJWI93nloW1MaF0muveRjIZ3xJZ19tDwloo5Yy9Pul0WOHFfNV7L6s636t2Tz9ej71G/qiZmk99L7Ew1Jj5T8TunsTO3iUl3pvXQ+HHkGtvphmpwaLe+IJN1rsYGPIJWzFv+PaZa90SJjzzukXpurJeYZmee5eY+kWO3+fC4sMau0fs3/cw17p1dfSTJbfLTUJsjH0aKz07paKa33vfZtjmb77OWoGG+PTtHWaMl/slCLSUl5a/X0xIdbkdZrujfzPKV6SueN9Vy5PJf94VLR1thIa/5Ibou05M/JY4VqvmHr78zzjDDb5sbiW1llSeuNaL6F1E6ktb1xSuKCAQAGBB8Qa1nO+e05aJHFSss6zvPttTkAuy7uiflZ3iW16KeYrxRD1nxlSU6pzdq7R6mOWv58v6R6UIo/pNfeb21Nn8Rvczmke+1as+liHEFbmz02scWm2rMWS2siJ7bTqncjPbZ6C9K6PMpm0mTP51db1z12jdZmLZ4F2N6VCjWL7bTETyT7IIqrrWWtn+nvFNN7YP+8tpZfxXzHEZOwr61rzxL/S/NY11LPmZhiiZP0x9Lu9VxY6/7ed4QS1j1WW9fBb58PwwA3HB8PbTnrY3pJN9fWXO4rW+Kkaf5Ur+y126z5jnjXIe0tPwY4t9Y9wzhiGMs21Z591rt/8jb3hLRL8eWjkfZa7X2DZkMt05bKXD8HS+3kWP1DCxub7kmAP00IARiHAOeW/gz32U7jCfOprgs0Wt8pWutdn20BUjygVC631S/36/FZ3jvK54LVDkl9nNY+5+PX6hPn9L7zsZY9IuZktVcsPmG8DCHAwa3SY9dCiL8pWpc3+SVum3a6uoIP/Wu7RG1487EqxZ81et7Ftfhw1nyl32yWbG6LT1Qinf9Lv2LMcxtna5nTPfHbPfu9pWzrnt+2aWv/CJujVpc1XZOz1pZ0ZsR109M/65xb/LNxzH06YBxPuLra2sot75+k2JAmm1b+iLF5iLLlfXk5w3vOa4383/Hl59cSxw9qnpiWxxBzuVriXJKetZaxYK3X+lvrVf6KGMMw7I5JpO2Vxv1I8rhTxBIbsfQ339fx2s8euY6T6mqJcT6Gj2dpexzH7fgJvz8cxxHD2B8nPrq/qe+5jhUsvlDLGW45T/PfLKflpLZ67Q2rfGnZmk1VrR/190xpXbb3l8vf8zwjTFNF9v0+0/uBh30LQwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRX4ERRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgLhR9BIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEvFBOL1oAQnpxzmEYlu/4hBDE5zHdObd6lubPr9O8Ur3DMMB7v2onlgkhiGXy9HidpsU602fx2nt/7mvattRfSX6tT2n6MAyr8vl1Kkvet9J9Xlfex7QNTT5N5pRSXkkmqXxpndTSS/OrzVlOnGNNvlinZQzydZnKVltLpXWT7iutnDU9f6b1K8WSxzLfR7ZXk8W6rqQ2pfZrOqomTy1du5bkqMkqtWHpf7reLOOn6dhaO7W9dGR7eb3pfWlfl7DqIr1s/GOrP9UZJX2llWklPefz9BTrfJfy187L/F6bS+mZRF53y3ml1VVbD9a6JPkt9UQ7Yg8le8WqO2O+dO206r6a7rVSs/16dUnPmbxnfWjrPV/3UrpUl2arabZcOk5an3v0aMtcRF2m6b607XEc1XbSuqyk+ffoVCu1NVWbs1IdaflaWq+ce223lvos/U/nTEvPy0r+YAhhU5eUb55nzPN8buPu7g4AcHt7e76+ubnB22+/jZubGwDAm2++iddffx0A8NZbb+Gtt966799zfO5zr67k+6Vf+jTefnu9Hz7wgQ/gAx/4AADgQx/6EF555RUAwLNnz/DSSy8BAF566aWVv3t1dSWO2TAMK18l9fdLOiLFYitLtkSetVdHS21Y7eRt2nZtSWvnCJ9gOybbMvFPqT+t541ljHv2tWYvpmvGOr/zMCOEdbzm7u4O/m5tG1ttQE0vWMhjOFI6sD2LNFnO5Wddp1tkqdW/105tWQOWei/7q21vtvjK6d9a+R7bRfPJtDE+neaN/TKeTjiFuk1T8pmX52V58/hpymPYNFr7s/Ob9GmaEKb1mPT66Q/Rt5pv2uKDnm2G8XTvw+Gs40ptpu1pOJfqwvU+sMSELHZXDWms8ibnecacTHfrPFv0pXX96HXpMYdW/7Y3X0uevK9pfKDkw+XX0Y61kuq3Fv0oke9dyfdLz1ep3iP2/xG23kPSoxuOsFVL7bToDmsMRUovza8mQ76OevaT9o5HqleqP8rQE6+0+PoWv0eSr2e/lN4HS+mpTkn9O+/cRt/c3t5iuL0VY1Y1pDGwxlet7aXylnRl6zyXYmNa/aV3Kha7v9TGNE2r+iztHBUHOlLXWt/hlebioWTrQVvX1vVmtYn2+piabLW8l+f5ftBiI8e8u81/F3IUuY5oGatecv1es+labHvLOajJUlp/tvV78XtDAALC+dp7D3jXtC419s6Btvb2xjV7YiKtfpvFVjt6r1hszd44lvUdc0rN/s/flcfr0xjgXJt9WotT1cpHWbU4falsiuavWfd7q47XxkLyY/M6NR9Qskc0WaX1Xisv9bEkc06r/a35w9Z1nMtR0725fs/rrf0mxWpre+8RfID3uZ8wwc19unectnHFeZ4xu4e116y/zWmrc7v28r5o7Urp3m/H5iF46NhiO+68P0t7YQwOzq2fp+9EAf33CNb5r/rkQ8AwZDY9ZDu8d5xj2dYYn0bse6qPpfZL8Rfrby20+In13Gn1xy2/O6m1K+n7MAdc4v1LXdF23btHWn3xFvttqa/9fXqtnZ73cDW7pmYLtdiS0nuBqFNqtoJmu9bsq4imyzW0upapc3AO938uMYTafk1/D9JCycbRbIdSzC6tt3aWSfMSYwVL2iWfNO2SzxrblWMQffbuPM/VdSnZqun9Hh/sRceyHkqGdKidu5zlJftWWlfBb+d2niZM03bf5DrJ6nu5ZF9qWPef5sNb5cjrsbS1h1we6bczp9Pln0+2xCTTNP2MaD9TW8dGi5lJ8mg+aamMJGMPpTPK+/T3wJfng9uuy5iv9O/nYj7rOu2Zd+u7oFp966rvfVbvi3Ok7aV8/dRiLjE93i/nz5JvmuZkjJe0u7s7PPeX9zY5rWujdg73PNsT/22ts5Y3nN8x2MpbfOjoa4o6+6BQQU9/tfhZfKbpqJ64wWPEGo5uO91bR1L6regeLL6FJb6d27SpiD3vK46Y+6NiarnvosXBLDY8UI/htGCpKwRpTa5/C96jo/N/Vy9dW+O7JVrjAS1rOT0Tz3kK/77SgibXpd/bc14bv3eDb/Vugh9BeQE45z4C4CsAfAzAKwBeBvAMy3yMAH48hPDzL05CQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIeD34E5YG5/+DJbwXwSQDfBODrAHyoUuy7AWw+guKc+1EAfwPAXw4h/J8Hi0oIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyAuBH0F5AJxzA4DfBeAPA/gWAGP6uFI8FJ79swC+HcB/6Jz7GQB/MoTwP+6RlRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQF83wogV4v+Gc+y4Afw/AXwTwrVg+NOOSP6Hwx9wMgG8E8EPOuZ90zn3jUfITQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPLYnF60AO8XnHMfB/DfYfnwiUseSR83cUJay0dQAi4fVfkkgJ90zv0pAP9RCME31POeJoSAEAKcc3BOGtLjcM4hhHC+ju2FEOC9X+VL5ZPI07V8efux7lQW7/2m7/FZHJ9aG2m/pHbzurT2Y560rdq1dSws8yuVtYztnvwpqYxxjGLaMNi+N6X1Mx3zHCk9z5+v0x458v5Zy/XQMw+1MrU+1eoo7ZNSGzG9Jp+1z3m+dP9ZsMg4DEPX3rHuQUmXaHkkHSHp2TytNC6PpU+kcul1LsdR50e614dhUPe+9x7eB3gfdTfgZw/vgGm6A6awkVcb55Rc343jWOxTrFu6toxDTbfV6s7/zuuzrKEjdF+6Zi36tkRpneXPJTn2rH+LjuzdS1p5y3yU1lVNT5Xqystr11o7Whul/KUypTzSuuq1SbUyR+3zvM7SGGt1ter6Wt+jbrPaU6kutJTJ9XVre0fSY+dZ9aK25tJ+WnVUSV9Ja9yqT3v2hZVUhnEc1bpr8y6dXfM8n+uN13d3d2K919fXK//g5ZdfxvX1NQDg5uYGt7e3AIBhuMOHPvTSqq1f95UDbp4v7VxdXZ3re/LkCQDg6uoKz549AwA8e/ZslSdeD8Ow8W9rflMsEynpFMmHlcYtxU3TvW8LxHBN7gOXztSaLqud7Xradm9Zfcs9hCEgF0mLL7To0k07nT5QylHnaElHLOPhVvlOpxPGMKplSm2ncyiNqaQDavOe7mnJB6iN9ejnpMySd5pmTMKwSOu5109ukbGExZfP05bk9bg73ydT7ezQ9on1nLfss5LOycd6GAZ1TdX6sta5MU2W23u/aSeWj36i1EaJFttI2gdxryxtXtqd5xmY2+JKDx2Ltq5rLR5Tq2/2M7yPcfVlnsZhxDD2258zPNKzy7nLGsz1RUucTYs/pPXkZeL1cNbhcnxDG79WP7P0rGS3puvS+zSPxzRNCFP93O+NcwFYnR1avbkescRt8nwWPz2EsPKDLOs62r15fdbymjyxjpwjfQOrHOm5brEDY15rbLGUV5NJS6uR+3MtMtTyHRnLba2jFktrkUPSPa19K+nLlrpKMWbJngXWe1KixZeR7J90fWvPLePtAXgfZV3Ga5omnIT3rS3ylbDUa7Vz9saOLXW3xCskP6Q01xZfpTWOKuUrnW0taPZ7rF/yiUq2i0ZpXov+asP4tegjSV9b/ZwSmg9pjcdZ/SnJP9LmZZx8VlfANE2YJpf9BmTRc2Guz+2RsZvWcT7i/JuTMYlDNk0TxvmYfpX2iMWOzue+dY9YZVz+jr5vWP4XZD+nte5audyOKPl9Fr+pRbb0bw3NPpTOkaPiiS3nX0k3WvVa7UyUOOp9TulMifsirsOUwQ0YBn1d9q7Zc/1KjCenNma94xTbb7FTrHW2UrN73+1Eu63Fx6zlrb3jzH+DVLKxtLa0OS7aEfc6PE1K48C5jprneeVfxLme5yV+/nQOePPNd9LW8Ku/eoPnp0Xm0+l0ln8cR5xOy8+y89hYaktqcZc8ziFR+j1QjRiLSrdyPpatdbfK0+I31HjoWK2F0pqXyM/OI38fkJ8fIQSEOWTxxyVG7DL79sh5ifXV3ntpOqn0DqrnvVTexp74odWH0UjnaK/Nml6HROeF4O9tBw/v6+/zpHpTtNhQqV5r3+bZ4/LPHsqx+5yW/V/Lm/arJUZUs9s1W12KZS362d5mnp7WY6Hbn09+V+Ea/ulLLpf191SaTOn7xtK7jG1ZQPotRulez7d9V7rM0fo+LxuvF/tnW4fVfm+JAx0d59mzR1ObaOvnm5p/11Bad9IYjaewWdfDOGIc5fdyPVzeQZbf5eeU7IC9Mce971572tX0b+kctsqpxz62e6ska2/7VrT+a3l77BKr7ZXiT1v7T4tpXGIh5X4fuX563hVZ6tvub4dxHDCMtvhEzQa17tO63FFeu91Xa9OStvcdTsv6bXkP005Abmd01xTufw8omExWO+rSt+XvcRzPNpQbHZyLMfCk3qTqve/sHoNqjGvY6rhSDKpGzzvdtL09sRwLrf3K38X3YrUjrPH9vL6afC39rp2PtXfiwzAAlebyNVeyxUvtHsHWRjnmXZKWdsS7yh6OGr95Tt+T6jGKHj242AJSWn19kOq2Ixacc98I4G/h8gGUkPzBfVr6Z3eTWf0jgP8AwF9xzr1yQP2EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDwa/AjKTpxz3wTgxwB8HJePkwDbj54E4c+uprH+GIoD8O0Afsw59/LOugkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeTT4EZQdOOd+LYAfBvBhrD9GIn34BFh/GMWhn7zOmOYAfBLAX9xROOeNwQAAIABJREFUNyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghj8rpRQvwXsU557B8bORj2H6QBELarwD4XwD8JIC/A+AXAfwcLh8vsfBfAPguAB+H/tEVB+Cfd879iRDCH2/r1fuPZZrWhBDE9Jg/hCA+0/KndYUQ4L3ftJ3WqdUf06W8ab0hhHN6TMvT4zOpzlKZ9L40FjF9GAaxvzGPNs6RvI18zLQxlGSxtt86vy3ppb605M+flWSO5fI86dg65zCOo5gvXQ9WarKlfamtgVqd+RrVyNvRxkVrM9/LWv2ldantnVwGyx7TymppuYxWavVb508bE4seqdWX5tfmOb1O04ZhEPNaKcneKn+t/RY9EcdVqjPtc36f1jUMM5wDlirccj24+70wYBiGrjHz3qttalj1nUZ6FsV7SS4pf++8WND2UoteLNkGLXXl5VJy/SbtpdYzuUSrrZXXW+qzReeX9FWerunImh6vlbfIYFkz1nE84uzX6mpdm63pwLJnNXvvISjZsOM4iuOej2lNJ1nL79FBGkeNYY+Np1GaY4t9Lfk0khwlOyJNk/afxQa0kvc1ryuumdJe1fzD9Dpdr+M44unTp+frYRhwdXUFALi7u8Pd3R0AYJomTNMEADidJrzyylqffcUnXsHd3WInRP9iGAacTkto6fr6+pw+jiOePHlyX9fp3K/Yfoo2zml/SzqmVa/mZa88MI5bG6q2f3ObTNORPetlHmaEkK4BB+89nN9/9tdkmN0M7wMuQ6aPo8WH0trM13jNVqm1Z7HdnXOrdi1nYhjDJt80TQhT+QyspbUwz3NT3lYbYelfXK96fm0uJB3Z2+cj/KZSnmXfAkBY9dX7ACecvz3xCIvMWmwu13fp3Fv7uGpn9me9HuW8ff4cd9NYlLlGuJsxz9Mq7ebmBrfzpd40FhXPV8nXAGz2kkkuxSZI/54HjxB8Ns4TwrSVIcqlyd0il4XSHsvz1Wzvug8Q44QeUc/74AGDXtTO8TSOEEVKbYaSfFJ6vk+0cppNd1kP6/2e7zmLr9vqQ1nPrrgvwpDnW/bP6IeqrVsbk1LMM85lLc6ltV+ya/ecfZpO0OahJn+aL5XPqu8f2g8trcH0HMjPhKPO2JIPlt/via9Ke1rDotd6/DBLzLa03rU1qMWgS/uvFnOqyamxd5ykPuZpmn2S3+d+Xk2X9qzFNK1kT6R7fkj808g4jhi873ofUpJPepbfp7q0N76QX7fst5KcOaXx0fRVbUy19zm9clieR1ptfcmm0eqq1d3rG5ZoiSc65za6Syqn7XfJHm21T4+mZl9qczROHt7PQPJzmyU+ttZbzi2xgGGqrz/Jh++1J1reE1x83rLtppU/139vQy+X6/eSuSy5bQ1c1qLmN6x0ckV3t6ylkm26375xy/8KWVv0QI8dV7Ovj7BZpXmNWM4Iab2m/qKEZhNpz/Nnki1dSiv5fKmMLbG4XvK+SLEh3f4U5uje97XGjFJKuibel96tP8a7uz3vNnPiWBw5z61joPknj0Ecy5Yx7Rl/i62R52ttvxoncst/0qRhGOAGeezjuy6NJ5PHy59PfwsDfOxjX4bnp/q7pIdAGherTT0MwJCNQ8ne7ZFHkkXTN/kYae/kSzquZx/26RbhbArrMyf3ieZ5iUmnzPOM2T2MjSzq8obh0cZyHEfTOOfzVFsLab21uaydkXndpfSe+FPtXYHVt0/z1WJTLXFWl+g85wY4BwzDiGG0v9/VZMl1hCa/tb6UYRMfL8fVjqBWd6/t0fJuYAzbPqa/USidc9JazONkqX1peS/f5AP4tS+62KHrPeqV3zVYxshyntVs/ZL83qe/H7jkd5DHs1RvWleaJ02q+anz7OH99t1APCdqa6mERaf2xGykuFBtLnJZSjFE55CdXUtCj26oxZVLWPR6T1yw5tv36Ni8bWl+vfeA1/VHawy/NZ/0u3LL+Vxro2RHaPpOiw1ZYkZaDOSEOdHhy7NxHFTbVqInHtNKT9zAWl+7PPa9KN0fEXO21LVHT6Z6ZNH10plhs0FLtrK2jq1raklOn8l7zFKXRs3+bol7tsSnSnaP1Q+xsNQZ25LtsFp76zouabJOT9dOAOCWNZa0N01+o9vv7ibc3fun3gXMc/7b9XUdmk1qPat69J/Vp4tptbiRz3zyEIBpmjFM23K951KpfaBsHx/NkXHU1nbXe/r+d6zzw8Q+pPZTNJ9C05d5WW0crbHVo98x7Pl3kS7MQpmtXX30WQhsfYVSna1rt+X3prXYVMo4OrNP2qoDp2lavWsJYXkv7e7u1PPWXS2/d7409WLeK7wbOOYXxl+a/AEAvwXYfOwkWh4OwAzgv7nP92oI4feEEP7zEMKPhBD+dmuDIYR/G8A/BODfBPCF+zZyTRLb/h7n3Ne1tkEIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyGPDj6B04Jx7BcCfhPwBlHj/EwD+0RDCvxJC+J/DEZ8aBBBCuA0hfB+A3wjgb2D9IZT0cz5XAP7LI9okhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQh4UdQ+vjDAD56f51+ACVe/6chhG8PIfzCQwkQQvj/AHwrgL+K7YdQ4vU/45z7hoeSgRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQI+BHUBpxzo0A/gguHxoBLh9ACQD+TAjh338MWUIIdwC+E8DfSeTI+dcfQxZCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQno5vWgB3oN8G4Bfh/WHT+LfPx1C+KOPKUwI4Q3n3O8H8L/HpORvB+A7nHN/KIQgfSDlPY1zDs65TbrWVesQpHWm17F8COGcHq/TusdxFNvz3m/qzOstyRvLpe3lbYcQVs/meS626Zw7y5W3k/czbWcYLt9PSuXP8+V1S3XV+p3LkrepyWiptyVdWmt5mpQnT8/ljEhjVapDQltLJdK57JFF67OGRbZa/S39K8lnkb02V3tUa0/ZfC9I5HrB2t6Rx0SprnTPHtmOVt/eNSrJW9v72vjvOZ/SM682v9oZka5dp+5zd25rGIaqPgBkPZLKLcmYY2nHWrZWV0tbVvm1sj16xmoXtMiUrz/LutbaL+Ur6Z+arKmdo8lUoqYfpfZL9pFFVi1vHIfaGRZCOO+f0vi0zLPlWU0X5evDOg/5HGq66CGo2YFamVTWPXqoR7+lunMcxwfTkVqbpTpb/SbLeo/5a7rIaufm+7BV35Z07F5/0qLvSnZLfJafw+kYeO/P9/lcxnn23ou+6TzPqzV3d3e3ej5N032ZCffuJELwCAF4fnOHd24Crq6uznU753B9fX0ue3V1BQC4uro61zuOI06n0zk9vffen/3WYRhW9aY+dJzjkt2RY7WZcDdhnv1qLU/ThClpSjqn8nvtWe1Ml/bFdl0vtpnmi0vstbsvxZY157x+vrXa3JpcLTrCeu7n19K+Ku3LeZ6RP7LY9q12jEbP2Lae3cMwbMoMg9vst5aYi6ava/SuV6mduj6ObcrtW+elZg9rsbH0ea6nY54QwlkvL2sxFK/T9kIIePIEuLm5Wcn8xhe+gNtbd9bD0feL11EPp+sifQ4set25y/pwDjidTvCnURmx7dimY2i1dWq2TO43i2thdHBuQLocT6crjGFosg9a1rg1ttWy/rW2NL2W2geXfAHL6wNs8vXoMEk3eu/hvU0PSLZjjtVHX8u0eiLmKXG0by8xDx4hpGva3Z+9ct3AcT7CQ/DQ/l8rmv1g2b+5vmr13S22U8t41Wylmiw9cyO9l6rFYEr15Net/md+32Jr7903ki9SipNZbQnN10jrSOfPGq/13lf9p54xyWXPzxiJfFz2noNp+1Zf7TyWp1MSj1uej+MId29ztcq1ty/pHFn3ibTO0vyLrWa3S2r5WmOu/T5oWzxGO6OtY1fql9WnsMi8V/eUxrjl7MmJfgdw/LvennXREts4It6cx1wsRNuy9x3GnjKx/VKaNU5Ua98PqS91qdtB3lv5WZPG9qT2a2kSpThPKa+1z3Idy3wv1YXz/ANO8DN0GXJZ2mTQ67OWraHNyx4fKL3usfUs79ZK7fToB+s7calcjjU2lJep+fnp9WkMAG5X+eZ5xjxv3+/nfv5eG0HzSazlpdhOS8y/Rq+OjbTOXQ95f3viYpqtq9Hi20rzUotvpqSxTct87JmzeOZozJiLz3Nqtl0ex43PWuKEUr2WuIUVaf/X2k/LBoOOsOjZ9B2fhramJaQxbrEP03W9f19vbRzr2RnzR1mkMajpIev7fgvDMMAN67l6iNiJRCneXvLbpPqtvuQSq67/dqPVB7ZiiY2k5OvKcoZ7t475L/ZsOP+t+Vfpdas/p8X1tfa0dqW9VcKqN6T2NZkt9e+1NVIZljHa1p/bbZL8tbhFOpfOudXvRrz3JtuzlB58XMMB/uwzXXzI2S+2adqP0nVE0yHW+Wjt1/LM3l65rnXfLDGrdK7XY7PYOeNot5Mt7zgsa9/KMKzfq+a/Y2mZ323Guq5tsW/zci1Y7R5LzLGmSy862/ZeIU2T3zecU9S8kSN9sr1Y4gmWPVrSpXv8X0m2i78Q4H1sPz6zx4lafOtSPZJsLWVa6srrlWy6cnvy+qyd3T3x531xwnZ0XbC6W9ZMgw1eOqslO6x0Vq7y+dR/1s9dy1zk6bV4de2ZZb5LPpnF1kv1rzXOuK1ja1eEAAw74uKXemv6wcG5RfekOn0YtuVWvwccol2Y6rs2WSXZ9sY2JFJ/vuTby7Hj5U8UJY5Viy/fQ1p3+rtoTd5eSn58S+wlp9kmGR2GYZ0+jiOGcfu7VK2NVl+tZOta4rwlG6hqH2WPc1Et9pXVjrRQ1qkDtHjWEfW35Cmh/Vt86z7RYsWtOmlwWxtS8tVL7Wi4qysMw0VO5+7/TYWSP4QAP/rN3vpS5d3jtbx3+J2FZ//Wo0mREEL4GQA/hItWSlf3RwB86tGFIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHECD+C0s4/h8unztJPJ//NEMJPvRiRAADfW3j2Tz2aFIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGENMKPoDTgnHsFwK8XHgUAf/mRxcn5mwA+e38dsmf/2CPLQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKImdOLFuA9xtcBcFg+MhL/jvxvL0Sie0IIwTn34wB+L9ZyOSxyv+8IISCE/HsvMs45OOfEOkr153VI9YYQVs9iubR8CAHDcPnmkPd+U+84jpsy6bVWb6wrypHWfTqdzu3F9FyOcRw3deUySH3PiWORyhfbytPzdtI8sa20TD6+8V4a97y+vEyeL8po6aMVSZZI3o7WxxxpzLS8Wls1Yv50jUjt1OZSorZXjxx/qV1p/rV5sY5/vq6lOkp6J32W6qiavtJ0gdS3vA2tTg1Jz/bOlaQva9Tya/taq8uSltdfKqfJlu4hrQ1tzjRKeiRfM9J1COGs7wFgHP25XMwe74dhwBDs38mz6oHHQNJfOQ8tb+saT/+21qtdW8/RtGy+DjV7xyKX1pY2L606Ia+3toekfVPaS6XyFmo6V0ov6ZM98pXGRjsTtbks6TEJ65yWxkizNUo2lhVtrFMdqZVpHYuavknt81JebQ+16jPN1teuW2xajdJalMbNolOsddXk2ZOnRO96ic9qdmdNvljee495ns/X0zQBAOZ5xjzPuL29BQA8f/78fH1zc4N33nnnvh/P8c471/flA0Lw+Oxnv4Dnt4utEH3N0+mEp0+fAgCePHmC6+ulzNOnT8+yXl9fr3zDpf6L7RufDcMg+mdpHs1Wzsu0cLGH1uutxVZracviHy4+fNpmwDRNCJN8vrdgszvrOn7PGW5Jr8kZ17dUJpct1aMWexG47KXUXo5I6zBtW/KjSmh1xeu87lp5qY4S87xeb85tYzSxnZrvHNM1n0SSWdPpPevCwmVMowzBNGet565Up2bHprG9tL28zfQ+1fdpvatrvx2zpdy4Wlea/Oncpetvnme1fEk3aGu5ZrfH9NK+l+6lOU3Ha6lXj320njctenGPvdCTL7K1O+W1mJeJlP2WtC6cdWe+lnL2+hV12vXGPM8b2yViWeMplpiuH7fn/jxPCNP2zCrFb2vtHmXPvFuxxAW0c7S0F3vGrSVeEWWQrnO0+HN+rb0/SdNb/bsWH1Drs3WOLDEwqywtSG1Z2rTY96WyFjk1XVLSBfkziz4qyaKNhXQ+l0j9u7TNkv9vkdHm5wB+GDDP67GYpgmD0o9azM6yRi32Sst5Y8mX+jM1f8Iis1S3NX+k5Kel9ab2Ss+aLFGya1J/PE87ipZ3WhKlvVCz76X5L9nevXJp5Wu+pDUGCCxzZOlnSSenej7NFkJ8b+bufYWYvvwnBPs5nvsUD3GOWWMcWr2Sjg2Zz3T/AJo4mh3SoxdabZJaPERLq/kg4b6/zl38GgeHNHZYqkd6rp3DJZujV2e0+CxHvTOtnRvSWu05N2N9D4G2n0rvrB7jnXMemwGAYdi+0zuNJ8yntb+4J14uXVvIz9qSLpbGPB/TPE/NTrfYO6XYY75eazERSzs1tN8SSrIdxTAMan+iPLX2rPGJWh099l7Jpkmv0372nEvy8+3ZVVuXpTFK7Zra++JWetaTZZ2X3qn3YtX1JR1Tkr32jkg6e4Kga3u5rEX53WdKyW+y+u9S+3v6Y9nnPXadpQ+lGIDFX7fokdp1y75M90euG/aup9J4nZ8JcaYQPKZpnaadry1y2nSmnFeO9ax9Du89QhKjL/l6NblK+6pn7aZYYp6lc2vresnvLLV7bS9IZYB6TEc7U/fEM7TypZhgy5xp6UVffdyO2/Jblfr8b/bPGOBcTLvIXxuzdVwi3yOXtVBbkyXbNtZ/dHwrtleK9UhtWuPIfo7xl1WNQPZO/yH6VePSZLh/lx/T7bLU8lp0ckt6mqSdjSUfUptnbY1r/rPV79HQbCJtjZfeveyNK1rqitnTdfLYHOEDHdVevo7CuNgoy/2SPk0zxrk9BmZ9/7H3XYzWvnSvr5dwvycv5cZxwDCW7e0jY4PlfHKs1dr+nniS9bzK9+hRZ4Kk3/LrFDF92L63GAbdJ1nnu9fDo0vsioXTacTghRjaadueZN/INk8ef5B9VYt9UbLzUlrGWIpNWWOyYt3C3JT8xVZy+3AcsZnHkt1kPRc137zk35XSJHl64nTb51u/vEePWJ616J29/w4jt5ekNZT+/t3KUT54HSH2dbA93WovaRzhp1ueaflmPxfXRSlWZZNtOxe19l6A6/OupP9NxJcmX1549v88mhQ6v5jdx2X+sccWhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQK/wIShsfLDx77dGk0PkHSvorjyoFIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEN8CMobcyFZ9OjSaHzRSX95UeVghBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQBk4vWoD3GG8Wnv1aAL/8WIIofOQFt/+oOOfgnNtdBwCEENRnkZgnTS+VDyGo6cNw+f6Q9351nbajyZXmiXXF9sZx3LQ/DMP5Om1vHMdVeiyb9zmXI9aRpnvvi32p9T8fy7xM2n8pXSLm1cYyRWtDei6NS15/Xoe2brQ1nMvcutZr/W2pM5UzvU7XX4ssFtlS0nUV2y3VJaWldWjzW1ovUhlNR9Swrq8auY6xjIW0DqX71jlKy+frNt0v2l4s9aO0D1r2eMzTuq9a9kkkXW9Se6XzxFJ/y7OeMrk+76XUhtbfXKfU9guwPUdbZWnNZ9EHViQ9YtFxpXVcs2lKsmr7r3f99axNCc3my9eL5byx6AsrVtuiV79adUmeLqHpaK18yUZJscilyVJKT/W7hdrcS2u5ZV5azumS/kzLzvPl+5o1nautBanu0rxq5TW/RapLmxPNh7HYvVpdVnr3dG3MSjp5jx7pOWPTsY/zFesZhuG8ntJ8+XzF63EcMU3TWYc+efJkVebJkyf317d46SWc2/Te49f8mmu8c3PxMQHgdDqdr6+vr3F9fX1u53Q6nfNEX3MYhpX+zmXWSPvbel6XbIcQAoZ52syL9zPmuSxX7Id2zu6JV4QhIC8ex2qvbyit8XQ/LGltZ0CLL1Q6n6X9cYStm+rcnrpyETS9KbXd0k7LdS/W81qSzRKnke4l8n2oyWXtv9VuueRzAMpzaD3TNdmsfUnjZ1pdwNr2TfsyjuN5jef1usGLtoAWs3POnfV1qm9i22ddPnmEEGODDs4B0zRhcmX7VIohWXSoxc6NfSvpuEu/VjVsztm8jHXtWeVvjZPV+q+tP82mGccRbozn9yX96nSFQRHFtMeGPJ8cJ4kyleq2+G2WcVziG9szYd7xfw3QEmsD1vF3lcFhGHTbW1qP0zSpbVop2cPaM4u+y+t6aFr2qNYvS/lS+xa7wBqPOdrOsMogPbf6zb3nd3xe0sHSeXxE3FKTRaN3Le+162rter896/ew14e3+mo9uqQWk7XuGzeOoo1Si3fUYjNp+dznLSH5wyX7WJItovlTFpusVN6SZiHXwZqfpqXHvtTifCXS+ImF3riupd7S+1VNz6X2eZonv5eQ1oLWJ4ue3RMLKclRsrUsaHWV9cjFPyw2J9RRi2nVzjRJTrlpOV3STb1n/7lcNiYAEBBEF1rSXbX2a/Pdaq+1nj32/b+6a2pf6let3dQGlMaxVX5NplJsTpPfgqbTQgib3yD1kPu0peel8i2xmocgnee87fT8k+RK/57ngGla+w03z2c8f77VUbldksa0Lfo7X3u1Pa6NXW5vpe2X5lfzlfL5svxuSZM1LVuqJ7dRUlm0fVOzYbU8R6Ctd+fcqi+97UvvR6yyaOmlvafNjeb3A4DDEgcM4ZJvHMbV/2WkZpdI6WPY2nDLu7A+PRd1ZCqz1M+H0km99MhjmT/gMv7a72rzvHvPR42Lflqnj8OIYfCbNDdWzqHgIdkTmv2m6VpNj0p1Riw2aIsPW7MjLHVY85WeW35bJiGtmVrMTrNlanZgrw+Zn7k1nyNN92NI9POSdjpdYXiixxhKMlttbQ1rfct+3tab993ih1r2hYbVZ9bkTMtY7OvS2PXuI0l/WGNLlrWw9SccnJPrz+MWUl0lG3S1tg2/FcnLSGMR5V/yXvqQ5ilRz3OpS9u72npZ0utxDItMeZzSEjOyUpb/kl7bA/V1ufxZ7DizeEVKbebv62MavFOfp+yxia1Yzq51HmzePS6/13KqD1WbK4sdaPGvrP6b5XfhWmy/Zw+1xF9s67ruB+VtlnSGJf6YplltNEvMxJKu1SumOyDGH2O+0nuaUr25ji+1Ddjlt+Qr2d6yTYJ7myfdVwEQ3vVZ7VVNHqvOSscvb0bbRzV7q+TTlLDYcXtjKlr+3vjlqr5hO47572Qj29+p+vPf8nm0bduik7X6vN/vs7XOhfa8dCZovqrV5j+nbX7LJP+GuYZFL1zGfKtTtfLW94V74jHpudAydzW9Itl8ab5pmjBM2/6Vfj+49/yRaLVhJORxWvtGGr2y18q1nA9pVa329d5YQavtUDpTrPn22O41O7Kmj0plZ+eQrxVLe0f5RO91dvzc80uSXyk8+4pHk0Lno0r6Fx9VCkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCGuBHUNr4u4Vn3/pYQhT4muw+fuvnM48tCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghVvgRlAZCCF8E8EvxNnv8HY8rzRrn3AnAt2ErVwDw848vESGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghNvgRlHb+KgB3f+2wfGTEAfhm59wnX5hUwG8B8Mr9tcue/fQjy0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiJnTixbgPcgPA/huId0B+LMAfvPjinPmjxee/cSjSfHIhBA2ac7l34Cpo5VJ67fkyeuMZfJ60vthGM554nW8n+e52F4IAd771fN4n+eLjON4vs/zpPelesdx3LQ/jiOGYTjfD8MgtpPe53Wl+fK+S/1K7/OxTucrhHC+z8dfGwuprRK1dVcbi1rZvD+19kvylPoMbOf+IZH60jLuPWWOarOEZfxL1yV65dfWfktbJX0n7b383tK+ta60jpIuy9tJdYFWr4bWfikt1U2anJY9l54PLTJbCWErY0ubUl96ZHwo/dMiS21v5GfKnnqlPSaNgWW9luQu7TernFq7qR2Tl49lrPNa6tseHdnTZv6sR2dqdUpjVDvbJTmttkd6XdLrPfaPVpcVyx7Kx6F1D1jS8zypPduKVCbWZ9UZretN8zvS+9r8auvNatNE0v1uOY8t7cTyPXaTJptGPn+SP1Zqv+fsy+1wqZ/auMZnqa80TRMA4Pb29pz35uYGb7/99jn/G2+8gddeew0AME0T3njjDQDA66+/fi5/fe3xqW96ddXWz/5fn8bbby9tPX36FADw5V/+5bi6ujqnffjDHwYAPHny5Dx+kj5N/47X4ziu9l9aLs5NPifOudW81fRl6nd775P9s12TtfmUdEVqx+7xMZa1sE7L90HpHNfa1vZBPOtDCJjdfD82l+fTNCFMdb9U46HOiIdkPZbpvrxfO94+Fpa+9MQKSnlbyi/rYt1HyT+wnrWtZ4fiCPRdAAAgAElEQVR1v5R8WotvFfPM8Btdcnd3B383mM8nLeaU2/PSvSRXzOP9RbZpmlZ6fZqm1bOYHkLA3d3dpv/eezx96vDWW8NZZueAz3/+Bnd34zkel+rb0+nyqiCES8wunk8x35PJ480337qvF3BuwGc/+1ncXZ/Oea6urs71Oecwjpc2Y7ulcdXyWCnPZd0HqPlXUr5e+6BWLt2L1ro0v2Mtf/3MrMm4bbvelz36PZcj38u15y2k+0lbiz36XYpx+9HD+3T83JKvYL4eEcvS6qjprfxZLS7fKnOP3dDqQ/X4Fi3nW8vZrOmUUrneWIa1/j3xufQdUbyvUVonUl/Ts6s0f639KO2XVBeX2rTYDhq1+Wk5T+I5UIthWvZry560xBpL81KSU1ur2n7O2znbiwC839qCw71t1UupbWv5Wvy1RurrRkr2lcV2lrDsvxLSXiq9F8rbPcJXtPowtfGqnX2ldo+wU84+jiF+1eK39tjh0ryW2rfqUquvmOaX5lPTCfPsEUJq+9zrFu/u7bO0jIf3rihfS/xfQtPdpXhOjiXOW1wbgl3vUI+THWFTpc/zudwb+0jL1OzgJd66jIP3QAgOPniE4BACMM8T/LSep9KZrek7LU9pv+TnjcVXSeOcre9kavLU3qXU9sCR74WtfrO1ntp9ah+W3ovkuj/q7BDCKs4T67i9vT2ne+/P8Z+03LOnDq+//mWIfv0wOHzmM+/g5maJscd4ffwNF7DEaVI7ehzH1brQYuzxOpaN+TQbo2TPa/ZSyzqQ1lrug7RiLdt6Ph65vmttHxVraZFZ2v8lm8qis9PYYV6fZGvU5A0+wPvsPEGAQ/l8ienS7yZDuLy7cS7u07r+Kc1hbf7S/WrRyUdgWe+lcyh9lu936Z0asH0vl+ofC62xBa3sOc0BpTjyUm5ZU0pINKvfbg/m9y3vuKW8i31bfseojVFrzC2Xee9aOvJdYanPtffLvW1Y4uGaP1x6d6bbh2n8akmb5xlh7hvH2hiV0mvPUk4YNmtgeack6wuN3PbSfH9tXqyxgr19Xu/Fy1yVKPlztbNAGhPJpk2pnrFzagvf68MQzn70Yrtefk8o1RftA8v+i/fx9x1aPivBBczzWqbp7g5usvmrq7pGrOIKUU74umz5e8CjVN7e+JNV/7Sm5W3oz4DlDHaHjUmtzdRXivtyGAYMQ7RHZB/IaufG9p1zGMftuk/b6umD6J8NuVwukWFU6yr1Z8+7+1zO2nUIYeUftMYZW+ZFO4c12Ut1XfIFAAPGcdj4OXvj6r1o42SN1Wn3tTJirHaI+jyNSTt1jVnfle2xafN6jo4vLfVudb1z9Xdr1phXSww6v17sSFt92jue9PmR42d9l9Bab1q+1Z/Wfu905LlVbX9Y68w9dezVL3uojX3+b1TidWsMK+9j7fc4adtSfVqeYRgA3//+ryRDj3/SijW2ayXaS9Y20vvSe5U9747yf/Nspa6Lg2ldtcxXbY/X3rtc9k/+22AHwP5vs3KZWm2HnFZfIbe5Nduxx5YTz2vp95TKe1Lpdxkl/eTHEXEuQoi+x3YujtzX7yf2eSNfmvwwgM/dXwcs1ndcbZ9yzv3Hjy2Qc+73AfgWQR4A+IUQwv/x2DIRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGKFH0FpJIRwB+D7sf7Ud/zwiAPwx5xzf/Cx5HHOfQuAP4ft58KjTH/+sWQhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIaQHfgSlj+8F8Mb9dfz4SPohlO93zv1nzrkHHV/n3O8E8CMAXs5kiLwO4L96SBkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCNnL6UUL8F4khPB559z3APivsf7oSPohlH8HwD/tnPv3Qgh/7cj2nXNfDeDPAvgXszZzOf5ECOHNI9t+t+GcKz4PIRSfH9GOc+7cjtZeWr4kU1oXAIzjeC7jvd/U5ZzDMAznPCGEzX1OrCe/j3njfawnPkvvU1liuvdebT+Vw3uvjkfaz9Ppop6madrIk1/nfY3yRDnz/kl15eRjHfPX1l2tXkvZvHx6L42ftT1N9jQ9XXc5+fhZkeash1z+dI61PD3zlY9ri8xSe2n5dI+06jCtTK47jiJfa3vGslR/nkdrJ5XBOafOu9Zmi2wl8j1qlUPrZ9xzOem8lta1pV/zPOcJ8N6vdOXSLw/vZ8yz2+z3vXtLkkvrX297PVjXX5q/pCNK+sjyvFVe6azT8tbq0ijJqc2xNiZ7qZ1j6/VctxfS53vl1PpsPTstuqtlX/SevS3jYGlfs/WOJrUVI/lZkT/TxkWqqwfJ7pTa3OvTWOY39rdkh0t1teriXMfl61eTtXVdaHUdvb6sa6HWbukM7LFb4hke06dpAoDz3wDwzjvv4Obm5nz/2muvAQDeeOMNzPOMT3/60wCAz3/+82L719flvse6P/e5z+FjH/sYgMXe+OIXvwhg8eeiT3dzc3Mey3EccXd3txrbaKc45852kff+nMe5tV2Sr+PaHsjXbax3GIbFp50DhsEhrcb6TVttjexd6+EUsA43yT5Ki39bbXOz5s5Xix/v7fs/v997xj6EHTgMQ3H8Ur8jDbk5F0RfxBpbsMSNcrQzVWo/yqadi1L7w5CHFduo+cBSWnomWfZxRNtD0tjk8a6oa3zw99eXMre3zzHcDpu+jOO4ipO12Ag127xmh5xOJ3jvz3rx6upqpeejXNM0rfqarpcn1wFPntyt6n/p2TXursaVLoxtpGv7dDqt9sE4juf7J5PHB351un+21PuRj3wE05OrVVsxf6rPa1jtmtp1Kc4jxRCd1+VL4zjxXlvjmj/+EDGbGml/0rV70QXbMZL2mDReEmGU8zq/vs/3US3OmcYtxHarenXbz9b5iPojLWuJY1iI+24pup6zfKxa5N6z5rT4q1avVb/15tPoOVN76uupu8U+rcVztPc1pbb3rM8QwkpvW+I7eUym9H6hRM2HrsXfemySGtKe1+xeze+QeKjYSKpH89iUNhZSjF5al1osX6LlfY203lOks8NCGnNfjcXVFYZhHY+/urqCy3xOq46ynJ2ltWF536PZtz1s3hMIWGNB2jhZdeCR8X/rmJTePUnX6fxa9KEVyb+X2umhpqul+5K+bW3Xej7n60Br3yKL1cbQz440/T5eNGzjys4NGIb6GSu9B7bas7lPV+vTQ5wnYQzwft3e7Ge4eetfSO2nz1p8wTx+bbFDLPGWPF9JD2z1U5I3XGJlljgZsPaFJf+sdPZa1n7pfNxja0v7NV3Labs1u6/kP6XlS3VYdDdg2w898X6LfzSO464xL/VFKv/kScBHPrI+07/yK78cz59v585yfsU4uZTPcp3LXEKaA619aS1KOjLNW7JvS0h553le6bQenSv9zq7Ftt3bl1bStWzVsVrbuT+S0rpeUj0k6VNtTPwpYBzXbQ3DiGG0+Tb573iunBd9iXksv3stUcrTsuZiHKl25sU0qS+n0wnzSV6fUl3aeonPLD66Zbxa1rT1zLC0r8cQ41qMtuNlTWkynbD1a8dxxDhubQLJVyjZXpFcx6T3Fr81n0tpz7X4QS2xoVK9lj1S06u1uId2XcK6Lkv+/573JWr7wzYuuOgHW8ysJV0bM23vl/o7zx4hxJjHkjZNEybUx88ag9pre7e0m9er+dzzvLUv5nnG7MrrvrTmJX1RWuMl+zBvd9unNIf+3sU5p/pG+X1ergVtv0n1+DHAufXYu2yv1HzQc13KvkuTan1ZxqGY5UHYE/99SM7jsRqTTcIDtNtbbr9cpb3Q2v56//adsS37skduLRbWg6RX9tAaA163vXpSyGeXcU/MVMMqy96xtJW3rYUj+t467rldXlv/Flsvj0XHtBYb1OKr12wvWbZq88Xykgy9ZdN8pb4coT9abP9UjmmaNnLNzmOe/Wos53lGmMvxUaXVVfu5nPM8I/h9/U//DVEea2l9L3vke4rch7XUXVvzvVjalvzS0l6P9MxdLJPLddS/d9hri2x9pe1vbCPpvir9ezVrzFirP43fp8/2jFlpvZX2z1Fnt4U8pimtyb1tRGqx5FIsMKW236yxn5qcluc+bH9b44OH9336Lv+t13p87utU6o17JPXBA/rX0nudY7TdlyAhhD8H4EeB8wdHIvHeAfgUgJ9wzv2vzrk/4pz7ut72nHMfd859l3PuRwH8Xaw/gHIWK0n7aQDf19seIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGPxelFC/Ae5/cB+CkAX4vLB0iA9YdQ4sdQPgUAzrk3AfwDAJ8t1PudzrlvAPAhAB8F8A0APpE8v3waa91e5DUAvze86M+xEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBigB9B2UEI4Q3n3G8H8BMAvgryh1CQpAHAK/d/fkP2LP37X8iactl9Xm96/w6AfymE8P82dYYQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkBfE8KIFeK8TQvhFAN8C4Odx+fBJ+lGSNC1kzzVc9kcqK30A5QbAd4YQ/vquThFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8oicXrQA7wdCCL/snPskgB8E8J2QP4Ryzp78naZDyJMi5U3b+PsAviOE8FN2yd8/OCcPpZQeQvkbNPG5c+58nZfR6qjVXZKrJGsIAeM4nq/TduK1935Vh3QPAMMwrNLy+9hOWiZtTyqT1iuNWQjhnC+tf55nk8ylMjnp/MV8qSxpXbmM+fzF9kv9spDKYknX5NPktJRP09J+lUjneS9pP3v2ZW+9PaSyxDotMmv6olROm6NSHstYSXJL662lX3nePfrO8kyipHtb96a1baneOJbSWtHaqM2jJrMmp9ZfbY9v8s/zedyWR0s579yiZ+ftesl1Qml/lPpSy9+ie2r67CHWhTSv2l6S1khJjnxdldqU2ivd97CnDstYtshcG7+SDs71n6Z7W2QtyVgr0zquVluhVK5F37boq9K4W+2No5DaG4YBIYRq/7W9Z22nZlMeYec8BFafJFKyQ2v76gidlKLJWTpDcj+mlK8VyT9KKekHze9092eyJF+6rqdpOj8bxxHPnz8/3z99+hQA8IUvfOEs1yuvvILPfe5zuLm5OeeJ1z189KMfPfffOYcPf/jDZ1kiL7300mqMnjx5shqT02kJTaV5TqdT1x6wlMnnaPQzvN+e6ak8rbo4zlNe3qq3JV801llao0fojeXcBC6iOgzDIO6fmr3YQt4v63lTkqeEtL906rZDSbaSzVjKn6OdV1Jfaut3axvl31y20+MbWuxbqXyqW7R9lcewIldXVwCA+crjdHpzVebJk6cYE11Wo9RmLlc6F1o8L4+pxet8z8fn6Zyn53N+fTrNuL5+a1X22UsvYbyVx3Icx1X/Y55oT5/zhct1zD5k46fNQ/7MinNOHSetHTHP4Df55nlCmMr6K5e5tq/SeZfshCPjFjVCCBs94Qe3GYdpnjAkdkUr3vvzeXpJm4F5ndamf+toumCRxyvpZV+p5V1DxBKzleJy69jMtr6ar5GXqaWX+mvxIXv0t5Z/j89ci6v30FtfnBeLvZeWKbUr6WJpLffIWmrrISjFMEt5I7XYaO5P5eu51e9N67fGE/Iykfk+/qrJLsmi2Y2WuH6+h/N2pDXaE7u3xL/yuS7JX7MRpT2grf/0zI3nzTAMmOf5/Cw/G0IImKYJJ2MMQ7NrWt71lex9qS9pWv4e9Sh6zheN2lmRjuGec6WVlvifVr43TluqM/07T9fq7VkDLTHfWh2Wd4taPqmcNVYipZd0taWPkr2Y2maXqmNsxP5erLSnpX2Q96Vn/PL7I2P0Upwh9yG1/FYs552Wbm2vVw9INntb2WN0nOUM3EtNVu3s18qV1mEt3ljSLble1sYg9Yl794Tky1vO9DT2k5fX0qU4UF73MASkXXHOrXzdkl6Mz/bEvkvletZi/u6mR4+ltt7e/dBqd1o5yrfLY3Cl61JajXSNW+2otC/ab0uAdcyxJKfkQ+bx0hJhCJjn/HeIM8JsO2+luQohjyvOmJJstbWR67jSGEhzbZU1jxPnzHPsy/q9lDa0NRlyP6XHn86RfP0Se+zx/BoAwgAMw7Q+/51DfJcS04P3qIU7T3MQ4qb6eKfypPsvjelrxLx5fDoMtnGM/vOeGK71fXzNDqj5YNrZoaGtuZazrjXOk8djpHkt1dfqty3rTCrTHgMv6ZV1m2vfRvIba+Mo+WBWH7zHt83rLdmRlrQ4BhadnrK8a1unj+OIcdy+C9Nkt9gtkg2rnava2btJPzmE4O7bXeYvncdcx5X6otk20ho6Iia21L3292O65fcQ2+eXOlrK2eTc2u6RlveNpTYi+Ty3ym/ZVyXbOj0XfDyznEM6P845nE4nDA32s9W3yLu7NL/9jbilHXHP4DJG87wd6zzm0DL+uXzx39gse3Nru6a2sFSXZS57Yrqt9mF+Xzq3emKLqVxSfuv5sl5jqQ8Vnx8bF8rltOaxtq+VycdZyqedUWVZbbafdU8cOc6tZ0+p7Ut8KK6FS9559gizvA6l+9ymLMluTa+V0ebyiHO5htVuy6n9xrvWVu1MlNNk+8L6niCrbdWW1F4Q/8nx/bOVHSc/W9UU0jU5b9ZklKOH1NazxI974rc9smm/he2VIS2z/EZgewZLR3BtTVtkOSp+uTdmufweb63jameg1VazxLKtfnZeplZvqY48yXsP7Hgt16NnrX5rTz1HlK+dWVIca49t10t+3m3OHzcU9YaZYRDPtlK97t4vWoqFjl93v3847k3olzghhDdDCL8LwB8A8BoulkceWXTJHw0n/Dk3lfyJz34EwG8KX6IfQCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh7234EZSDCSH8IIB/BMCfAfA2th9DSf+YqhTKxI+f/DyA3xNC+B0hhM8cIT8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIY8NP4LyAIQQXgsh/LsAvhrAHwXwt3H5cIlLsxr+ICsbAPwYgN8N4DeGEH7ogbtDCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiDcnrRAryfCSF8DsD3Avhe59w/DOC3A/gWAN8A4Ndj/UEUjQnLR1R+BsCPA/ifQgiffRiJ37uEEDZpzsnDOwyXb/+EEFb58nutLS1PrWwNqR95vd77jcxpHksdeRkpj3QPAPM8m+7z9tJx996b+pXPFQCM47hKS/ub38d2cqT0PC0fx3hfak8be61eS/4caR731FdCG7+Wdqx74oh+HdX/nnpq60VaP9p+c87t1iWW/a6VkfZdei/VV1rX1vmU5MvTavu0VH9eZ55vj17X2tTOi3yOLWdPqZ20rHOuOIcx7XQdMI4jxjHK4jCOI9w44urqGldD2URM29DQdEiN/FyR6NEtEg+hR9O9vKd8ut+OPDu0Oo4ai9azUMMis1RGGvdS2T3j2VKvNuaWucj7JO0/iw1npdS/kh7Kz4fUZttD3maLbvHem/QVYB+z3BaV2kx5aHutxNFt7T2rLGevtvdLNpXFZo31annTdWJdM3up2WshBHEfxbzxvEzzTNOEq6srAMDLL7+M29tbAMCzZ8/w8Y9/HADw/PlzvPrqq/j6r/96AMDNzQ2eP39+ruPu7g4AMAy3+KqvWs/ZN3/zV+H588XWOJ0utkK8fvbs2TltGAZ84AMfWN0DwNOnT1d9vbq6WvVb2mM9dlqvrXJZY95kk1hJ29Lkzs9777f6Y5qmaj0lLDbFPMybtr33cL7c3jAMh41Zq+6U7GuJko5WxwN+VS4E4O5uwjhd1the/60Hbd/kz9q56Nle364ki2RnWM/6fF/X2i/bDFu5cl9KqsNi0+VnVazDYjvWYk7aHtPO1HG8+Jrx79NpRAjjKp+2ZmJ7wzCs8szzjBBiv5a0aZowZ6rXYg+2rFfLWKZs9aqHH5Y9nY75zc0NhtthU0azw9P0YRjO6alvf4Q+LPVTiuHksuVrsFbnuxXNhqyNz7Knt/GWdM60tjR/XGqndF+qN322rMv1mrm7u8Nwp9szLXundkZaY2kaUnmLb75nPcY9/VDsiVtYbJKHiK+3tmM5k3tiDZY2azEfbf/Vxjj1O3vjrT1ztmctl86L2rvMkix798dDnBd71nI6Fs65lT8ayWXO/fw4JosdsLXxFvtmn16yUBqHtI50bRzlb1hltPivViyxH6B9jffI1nMGpkixrRZ63sn36jJL+dI7qlJ8T8tjsQe0c2DvO+Ke/bc+U9Y22t3dHabJYZ6nVfnnzwPc83Ufcrs811d73iVoZ7R1XHvxVwHjGABc2jydrjBU4kKSDJZ917OvWm01i0+xtSMu/i7g4AaHYbh/9zGMcGOfTtj7flPzZY6y2WuU7LN0XHO/uSZLi4yWeF6OFp9Ibacop2RH7XlnkPuBaWwjypWe++M4Vu3hxdet65WSvk37XNqXpbiDxNF+WhqLKfkrl7Fpk7dWV8tvzo5Cij/VkNaMZrscGbsCtna3xf7Lx9sSg0nL1vb0+V6IC9XKtOZd5CnriL2+tSVGLbVZsx9qMTNJ32rv3qV0iy7K07QzuofWeNfGjkGUP7EJDHayIo0oX0+cu6Z/pH3onIN3cT/EuhycGzAM67WSnkM1cts3/VvrR03H7rVZSmd2q+1m9QGtfS5xxL5WSq3y9caJc51hjW1YGcPF1o6U4vh5e5IdWpLR4v9qdUhzWnsvkF73xPVL57tlnfbMXX6d79dpnDDfVzUMDs75+3US0+o2QT7HWpkSmu3Xti/19zclamvMus4sckr/JiOXY288t8dubvWTNN2fxm2Xv0PS/zg/Hgge0zRhmKZNHXtjItL6W9aoS/5tS12vSLG42hzFvqaPLbE5S8xP61MvNR8dsPtK0vopxTItsYTeOI1mf1hjq7JcF5l63x30rGtN91jq6m2/1eey1Nv7u52SfK3judcOVGo119W79oqtV2PUeXxo/29N9vpzefk98ZgeO6y9/lhO1k0tv/mqkZ5d2j5L7bMl31qmeP7kzR/1rgGwz9nD7Lk+NBvnIeKBeZ1521oMJn2e37eijWsef6vO0aDX16P7NSzve0rta7ZDLVaqx73W7VjsJY3S+5eUmk24tW+O3Tu1M6p2Tlvk7+Eon+j/Z+9dY21bsvuuf9Vca+19zj3n3rZjtx2whSHGRiECIQWUOGCZhJdIPqDwDFIiWQiFQIKQMIqTgBQQcTAoikFCCg8rfECRlYiHcCTwB1BkpMgCBRILBexYjg1uO251d/revn3OfqxZxYe1a62aNceoGjXn3Hvfe8//pz591qxZj1GvUWOMOc+8ThiviHoM2/rvlfJ3VvM0ZP+evrRBp2d03S/5rMOPoDwRMcafBfCzAP5jAHDOXQP4dgDfBuB9AC9wmo87AG8BfAXALwH4Qoxx7rETQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIZgR9BeSZijDcA/trDH0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3ln8cwtACCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5t9k9twCErME5110mxli9btXfalOrr9ZOT/veT79dpPVnGIZJmtR+nhZCmJQJIUzaSnnLtNp1YhzHWVpJ2ddS5hDCrEwIoTqfkizW+ZHak+SU5qgmk3XN1upIv2sye+/V9SuNS688WpokS0+dEpYx69nXrbrzNGnv9OzlVJc05lvorzTOa2TswbL+l/RLo1z35V5aoiO1dnrHzKpLrO23yrR0VO8exfGIEMJDPRedEmNACCPGsT6PZftL9IpGuQdLpLXQW4+mR2t1aFjmwsqSPbZkjS1p29pOa/6sWM6RGkvPWy0tZ61sOUvmWLKrWuNukdm6j3v7X9abZLWslZYNuURfWrDsRQvSmEry1M67reylJWtdyrO0HmlMLeNarhepLcvZ31oXrXmpyVZDOm+W2Ap5W845xBhnvlu6J43Vbrc7XzvncDgczvfu7u7w4sWLc5lU19XVNXa7+0n9+/2AEBx2u91Epuvr65mcKS2R5E117XancFS+z3M5AbsNLY1hqT9qdqNzc9/JOX+WsdaWxQ6wrvd5mfX1SPVKvxPpLF/SzBL7tNzjlzmZnhG99uGSuIw2vsFFAPm4neSU4iW9ba5lyRmnnU2lmEt8pLJOqyzluJd7z7LHpfya/FIsKYQAFx7H9lhqr5dzUMqm1WuxCXIZy/zSvJR9GsdxVsfJl5ym5TJrcaqedaaNU95uypO3HWM8X4cQcXzwhxM3N7fwd3MdkK9F59zk7M3TNd2vsSTOpd3vjblO9a5DigfU2rf6hvO9dRr3OPbH0Z4LyY7qkWmJrZzOn9Na0tLn8rRsyqV+YYsltv9jt7ekfMsmqF1rdbRs/6Xj0jsGmr3XM3dL171V1qV+br7+l/qmrTZq+R7DrvPeqzH+mo5vxcXzehM9tkN55klnbS9rYpg1/bXsGYUco7A+z+mRc4t1o/lRvfWXeuqpdLolVlfr4xLdtEQuS/7yHO6JbbXSrPZfb5mtdFd5prXiC7U6tohTrjlzpJhDnnZ1dYVwcLjbAbm9fDhcwUOPUbba19ZCbV3V0srrmkxajF7COTzEhabnilRki1h8GV9Z++zZYv/1xuiBePpfTFen6/LdDIvcVvQKpbAAACAASURBVN3bY6+28mjjukQ/WO3rmp7U1rPVj16yRjS9k5/9KU/5nlUNy5lWi4em32X8ocXVIWK/v52kvXxxhWHQddQW52i5zrXnirleWxIDsdit1jVem8OWzipjwL3ll/JY9ZZY9FbvfrPEkMr40RKbVJOhTA8uXxsPegn25yzl2VHKnvR1rvPWxv1atu8Sn0liHMs4Xr0vLbmGYajaBdLzFGm8LHE0iaQHJLto6XsSMUSEUOgnxLM9UIqyRPdZz/v8txSj1sopOZqytfRfibSnW7Zvakeqo5ZW1tfLU8SfrTpLo2bfN22ebI2mlBACEOz6vHcuar6ite5xDOf9loqf9G5b5nKvWGIIFhu0Zo/0xBNreD/XJS0ZSt2RyzMMQ/c5FOPlGVvN5i51wnA1IOyOD+2e+rLbAbuHcleHA6bP17fZezXdZLEPL+vjnDK51+t71tZPPn0tn77Mn/Zu7Qhbq2t6z2BLGxYZav5Wioen8WiJpMVyy/Fu+W3OuYmdl26dnnHmPla+dy5z1xvHHIb52qmtP0u6NAZuiNDi4Fasvlpefz7HW+z9tXGitTJo57J0lpzGd97+UhnWxm3WPjPbauyk9BDmtnAIEUnxbekX9zwPSSzxGW31pjMo37/L/l3XvG67DSb76uVZpPssWz1zsJxlkg9urU8qX7u/lvKsqLXbUevMV09I7761OK1BV+itdTbFElprfu1zBkv5k5/U3UwX5Vmdy2g537X5LWMwa3XIlvvA+7xfTo0v1GIH59Irxqh2T1vz+TMCC9K5X8u7Jf1ztm6OyzG3PidSpWnYK0uevdXk6I7LLBivVrzOIos2LlN/MS6S77PCdv9ilRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQhbAj6AQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKeFX4EhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8qzwIyiEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBnZffcAjw1zrnvfW4ZnpIY408+twxPQYyxet859yj19pS1yJDnKcun61Y90v2yrhDCLK9zTm0z/y2lWfvQI/c4jjP5yjpLmWOMk+vUz5bMUvvldaqrxFJ3bRysYySNRYn37e9a1eZYQ+t7rb10TysL2Pdl2Y5Up7R+gXb/1t7P269dr6m7p92e9i17tRzr2nzm9fbqXMtYSGu31AeWupa0pbXfQhsHyzi2GIahKU/ZjqTHT7iH/3cP8+fP+27p+bkUix5rjZ/ezwupX9Z1U6OUec3ZZ6mn50zpkWUrfdhC0xEtu6m3/TXyttqW5F8ir/Xs6j1jpPvS3lq6XvK6LPpsHMemfFr75X4u7S6p/bI9C+X4lNeWOZeQ5q53/pxz5vO3laadC600SzuPtUeX7OWeM7FWZgu9Z9Xl0hzX8pTrP+W9v7+f5P/6178+y/PVr351UvcXv/jFSTsffvghAODqCvjKV16l0gCAX/iFj3FzE3F9fT2xRV6/fg0A2O/357RXr17hcDicr1++fDnLA0xtmuPxOLlOcrb2pOVckeYi6YshjIixtHtHHI/L9rnEkj0yLfIw52Ger9V2L/O29TYt6a228r+X2snWs9PiV2t1ZndmvkhJrz9onbsyn3S+t/ZDrV9ZLc0zK8Y4ub/k/JXm23tfHVuLvtSYrrfpOg8hwC1001rzYpFZs99q68Rydh0OfibPfr9HjOu+i+6979a95ZrJ68qx1Fvmz+vQ8qbzJRwCvPeT8+blyxfwu3mflsR6lujiJX5wj86V1mAIIavjooPdinhI2ls91OK8ku4urzXZUp/HcUQIU519PN7jHqE5hkt8gCVnYep3ee6ns0Y7c6Q1sdYu6N1/a9pa0s6SdstxsT4bkGRboiO2iHPVZJKutTOm59mB9FylxGr3LllDS+JGvVjih1a2iPUCfc/Wav7NGlK9x+Nxkl72ccl5bbHFt/RpavdEfzvr4/Sc1OMej2UbtOZ/bZxozTiX+sZynpbtSX7/FrJY6PEJW23m171x/jVx/J4yS98paMm8NnbfI0srTwvp/MvTdghwbv6M59R0sd5DQAh2GUofaKtnLCWWcan5E7MY8hgRwtS2H8cRPvT3ZUksXJKzpdd7sT0bdJPfzjt4n+yqAX5ws2e1pUzS/C/x7UvZLXu099yVzsYlPlOJ1U5a62tZzqRWnY9h05XXWmzEIke+H4Zh/nzg5vYGt7d951FrnZTxnyVxktbztzLNGnteq1Mt873VmujlsfzIWh2pTcu4WuyfGkvsiNr829elSxlM74qU+9V7D+/nezqEAG06pHduWvtuqe61vKNXbyvieDziCPt7Qvlabdn9Nhls9Po6wzAsOm+Di1m9p3TvB3hfvPvg/dlGyGWYn83zNtb6lJaY4TRvxNTGabeh3e/ZyxbdXosFW8+GlhxLn8X10vuMUMNyHswLzdftMJxsVwstH6Y3fl9LyxniONlHQNK77fPJYiNsFW9q0WtfjuPc5rbGWqTfVrnKGKJlL8nz/LAGhOdCpY7r1fdb2BmPMe9L67TETadVu8keeAx61pnmm28Rj96CtNc0nSG959gzl5dndfp9Kb92f/Dz9x3DOGIcp7ZnWb529kp7Noz157YWfbnVcxjp2vJvcpxz4j7o8VMfIx6n2XGnJNuzs+dGkyefl9KuXXLGt/LmSc7ZnpPV/EEpvWfst7Lj9LKY6ZJT2vz8r9ldj3E+5GdRS99pfsia+J22r0q/sldPlfp0TfmWD++G07+/2Xa/y+/vee8BP5eptB985h+k/k/yGOoQpeo8RyW2jru16qv18yligEF5vlSusS3XT2+/LO/vtcsv97utcbKefi3V65Y4ftbKpL21/lqzNUOcSD5TpvfGccRYVPVY/kfvM+1c928VP209F5zMmxQ7wzymrNHu7/wsqtVZ+otPE+H4ZPLOfQQFwF9Azav7bBHxbs4xIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPkU8S5/IONd/vgNIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGfGN7lj6DE5xbgkeFHXgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIp4J3+SMon+WPhHzWP/ByJsYI5xycWzadMfYPVatMkmWJTLW6e+vL63LOza6lPDnee4QQqmWkdEvdWp5a/5MseZ4YY/U6tTOO4zltGAa1jRzv/azusv0QQjWP1h/LuivzLCkjoc1FWU8+9xqWPNp66aFsZ0k/Naz7uZVmneuy7BIdJGHp75I1ZVkvlras7fXIUmu71tbS9bPlOWPZOxa897O0XE5Njzvn4L2fn5/u9H/DMGBAXVdu1YdWvVvqUYnWvG65lnt0x1KW7llAntPaWd5D7eyU8kgs0XNL61nSjqR7WraXlceUWaJnf1tsV03+nv2t6eWkB/MyLVuvZzzXzteSs7esI79e4w+k8nmadI5Y69rCnt1iDfbQ62tp45PSNTlzv8hqk0hthRAmbeTr3Tl39nHyPPf39xPf5/b2FgBwPB7PaTc3N3jz5s3k+mtf+9qszFe/+gYffzyRGF/81V/Fm7cBh8MBL1++PN/5+CHj5z73ufNYvn37Ft/wDd9wHou7uzsAwKtXrybX19fX53qcc9jtduffiXJfp7Go7Q1LnCDXzeVUaTblFv6NRuu87PEza+vLMi5llnw8a3q9pRsseaQ2LDLne0Frx2r75fs3eHkuWvs7b8viX5Tzu+Y87l2Xw2y9RRyPRxzd9jGzVpnSf7HoUautkepO+yuEy/1xPCIe53ZFyZpYX7lGk27O19PXv/71TKbxrF9TvqSjNdsnxoirq6vz9dVVRKbiAQC//Msf4/5+qlcPh8OsrsPhMNEf+/3+fD2Oo2jr9q77Vrp23zJH5dlxHmc/14ve+9nZUqvboqOkOGtOvh62sr+1vJIOC0HyX+T4a43aPo3RrvdTm2tiABIhjIhxquPGccTYsZV7bGaNmm+Y4rCWs6aM+ZQsidVK91p7WWq/9IN6bfol+tUyN2Vs7DGo+Qdr5wRo65jS7ijrrOmCNbIs9W8teS1xl1Yca0n7Wh1Wam1tEQN87HhG3saaGOMnBdWfknRu4X8D+npv7b8taNk+luewEj3ncq2OnnyWeKmV2rp8LN+8R57eerd+NqC1WXsu0SPDFjaRhPQOQ7resk0t5jKOATHOn0vNh8YBD7ERaS57YuC9cZpWvdrvJXU9JADl60YxIn+96qmfFy/Z/73PlCaxyJjHwTCLk7WQ5O15Hinp69J/aJGeA7dkq/kqW+jWnnctprFaW1y9p91WnhRH0OJJa2jZ55qtq60D7+frIOmuXE+VeyV/rpZT20dSHWvQxlN6FrKWx/YFc1oyt2TJy1vOlK19Xate0eSRsK6d8t08iZ74t0Uu7VzRbJJpuTw2c3qmNe7k+W+dg0vtzppuzecp1wXl79NZl8sdT+8JDX37z3JGt8a1zCPVK9HyNVq+R0unLbEByvqnvx1yG0trf4k/bllLwUc4d5ykaTIsiSFZ4urW9BzpnbfU/pJ5fU5ymZfMq7Y2Juk+TtbtJUa/rJ0eeXuQY+HzPGtiCGUZyz5Z66tItlONHcLDOXhJy59XSXI5N38m3ovl3wVIZ8c874Nde5Zl+kw0BKeWL9vOZdPupbRyjCU5a5zqACD8E6J1vlBhzwf7s8/WHrDEvXv99B4ftZe87tI3leZrHpd9OIMbXSplzN+V6mU+B3GWVg5Zvh7zucr9dsnPGwR/7v7+Hvf3l/rSXij3hNWfu8gxHaPj8Qh/7D+ze6jFvfLx0p5zls/4rXGFxJYxV2u877KW5XjOU8SBLSw94x9T/lrVS+wQTV9a7YDHj4mdbLUkTtJ3SZ9oZ1q+d0pb4DG46CIn+pjSdS1fmd6yZfK0/J1XaQ1L7/nkv0MIJptQm3Pr2ZLm5VJ//zOYC2VsMgLFnIcQEIeI8tnGOI5AKPIVcYjcTpPeUznZMQvE/oQgxugaoY41sUgp3u793F+V7PwSa+y/hzV9s8iT23oXH2FZnGFr1uhyyxlUxgml+y19aI2XWH1bTW7n/OzeMOyw2w0me8d6lmoyWn0X6zNFy/xY1txjxY+0Mymd45pfocrjS1k/mXGvp+Bd/gjK1lrTuop627XU+8nwjgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIWcC7/BGUp/z0TfmRkp4PpljKvruf8SGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn3rexY+g/CTmHxZZywsA/8BDvfkHSVI7edobAD8L4OcAfBHA3wRw+3Dv/Yc/rwF8B4Df8PA7r0/6KMo9gD8G4C+t6wYhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIU/PO/cRlBjj921Zn3PumwH8D2Uz6fbD3z8N4McA/ASAvxJjDB31/x0AfhOA3wXgHwOwx/RDKPEh7Q8D+MEY44/09oEQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkOfknfsIypY45/4WAP8LgL8Tp4+ROEw/gPJTOH2Y5CeXthFj/HkAPw/gzzjnfg2A3wfgBwG8LNo8APgTzrnviDH+G0vb+7ThnJv8nRNjnKUtJa/LOVete8t2Hwtt3ErZvfez9BgjQrh8x2cYhkme8u9UT14mtRtjPOcr8wzDMLlOsuRpUnvpfq19qa6yvbIOS71lXuk673M5rjXyMWvlWUI5r2to7Y8lckrjr7VT1l9rT1rjlmsJi2yWejT5yzWQ58vXVZ6nTHss/dQ7Po/dvjTnPesir7ccZ6mO2nqR+p3WnVZGS9N0i1Rfkm+3k0293RjhvYf3l3547wHv4ZyDcw7jODZllNrckry+vJ9l3zX9tXbdaf1ZU+8W+mYrmVpl1uiynHwc0/paW2dZbw+W/bak3a3Wv1W+2vzUZMnPFauO0vaYtketYyHZWjX7VJO5NSc989tqb+m+0WTrqcNy3lnp9WeW7lHL/Fls0J55t8pjmUupjXEcTetCy1Oza7UyefrxeJzkOR6P5/vDMJzvH49HHA4HAMDd3R3evHkD4DQOt7e3+NKXvnSu4wtf+MJM/pcvPY7H+0naze0Nbm4Cbm5u8NFHH83K/OIv/uLk+vr6GgDw3d/93WcdcX19jc9//vPn63Ec8fLly7NsSf7D4SDqGE3vlPdq5OMaY8Q4BpTfqh3HgNGPq9qRaOnn3NYvs6Yz1GrH5r8teiXVO/qAEKb5xzEAU9Owi7U2meQDlXjvxf5oPnhOCGEyz0vk1eIJW9vHEq02LPouZVkr7hIbQPO5rHES6/0Uv8Lg4JxHugQidrs9hmiLDyTKWE/6W+uDtkZyv2sYBtzd3Z2vd7vd5Dqt07u7u3P54/E4ORuSfo4x4voa+Pjji44FgC996S2Ox91ZRwPA7e0tAODFixcTedM5kq7P++QYzm2e0hzu74+4i+EyzgVabDD/3fIbNDtiic2XV33yjWW/Oq9Xm+d2W/O+9pTrsQG19Sev63matje19nN7KeKiS2r11urT0izxFw2pjDWmCEzXfi1+usQ+PLfhIkIYcfmmPnA8jvDHaVtrz5QeHa3ltfp9UgxnS042nG6cLDmHW/tH28utudbuS3X07hWJXh9aksVyNvfOqzWuqOnjfC+GEMx62OJL9uiEWpmlNu+Svb3WvpbqsvoqT8XW7Z375z28n/bVDwO8YsO0ZLHZ2o/Tl8k5bFzHS3zKPK2l/8p2tz67lp79ZboUs9Lq0Pq8NkastWntc02WpTIsyWONn7b60WvTW9qszfN0jeZ9LOtty9K7zjUfxhLTl66XxEgTkq8xDgHOFbGwh2eHqYxFF9TmqMcHaPXBwrI1GmeXKUseR6nVmbD2pRUjTvlzv9uib639r/meWsxNy6+lWXSnlKfX5i7l7fXF8/LDMJjsYIu9UMYpc58mpWvvFuV5vAfGcRrbGMeIcZzGj/P92rIJWvPXGkOLr2jxIS22lcSS50y9ek3DObfa79XKt96F6MF65kg+mWV/W+9bYnDl9RKb0jmH4GK2Ty57wWKHSbGRU9lJyqw+iw+qYV17vbZeLc6zVRu1cjV9U7MFe/ei5Vlel33hhXGr2I7tc2CugzR5rPEXS3+mZ1AhcwgIYS5HTba169liU1ja054JLpWr1qZmu7f8cIuttEQO6doSWyztiiW2W2uv1mIgtTWV69dUvCceYLFjavXluqhX99TWRaveeYxTfhegdW31yfLy2r8LyGWr2oLu/H9wSP285PNF/E16drjEvsjl1Ma7p64kd8q/xtcu27aUz231+ZHjJvfX0GsTLGlPm4vac5xaXTHzwddQs/v0/Z7av/wdgvQOzYjRyfpXGsO0D4YhzuyW3W6HMcx1bBlD0uzjcq2sOXNq9nqOZKOUfm6tHak967tZ2nrrsfW22lf5by/Yj9oZtMYHLevSri3rvzdesoWMl7SUnta47pv11J3o9fm1PNKcWuZMWqchpH186bMmQ03G3vfbNL9ruo5xlmvp2WiJuS71NVttLrHj8vJaWrlfanZImt9S9H4fZFqB9/Lz8+DCLG/PPj39myFz9glL4gxPhfZvO0/vBrtpviyr5fyr6ZI1ujxH+/epPeU1euvV3qVrz33bR5Tq6BlDzU+30NNOHrMv34EKfv7OSrmuemQp9cpSvZZzGRPpfb5YnZ+1vr5GzabtrXPJmrGUj+XzwYc06zi0dEVZRapXW8/zMtvom08jC48t4k4fJPkLAL4Ll9MwraQRwL8VY/yeuOIDKCUxxi/HGP99AH8XgP/+od3UZrKI/4Bz7k9u1SYhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIY8NP4KyAHf6pM5/A+A7cfr4SP4pwgDg98QY/8RjtR9j/KUY4+8E8Ecw/7y4A/CvO+e+/7HaJ4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkS/gRlGX8PgDfi8vHT4DTx0cigH8lxvhjTyFEjPGPA/i3IX8I5Uecc7/2KeQghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWQNu+cW4NOGc+4awB+B/AGUH48x/uhTyhNj/CHn3G8C8DsKmV4B+CEA3/+U8jw1zrnJdYxRyWkrb82nlSvbl+TRZLTKYi1nldFyP4Qwufbei3nz67JMupenxxgn1977yXXqQwjh/DvPk6c75xBjxDAM57pzeVK+PM17j3EcTf1K90IIszrK9CRL2bZ0bVkj+XXZr/S7LGNZT737xcrStSyRj+ljtGMdA0tb0hqT2snXrEW+fI5ra6FVn3Pu/MfSbk0WLY+1Lkm23nvaPlkio7X9Wt1r+2nJn/RbK59FR5x0FjBJjpd5zvVeSanfnwqp3VyHA/16LcY40dmPNa89cml6byud3ZI3b3+pLdGTb02/amux1s8leqJFj833GNRssKdCa3fJvkqk/dlzDtfuaXPf0u+azK2+LJkLTfcmemx/qw+T05ovy1jUbKLWOqn1T7ODeteUFesasdSh+UalXKXdkY9lqmO32yGEgOPxeC6T6ru/v5/UcXNzA+C0rtLa+uijj+C9x8uXLwEAX/7yl/HBBx8AAD788ENz33JS+RcvXuD6+hoA8E3f9E3nNoZhOOc5HA7w3p/z5bINwyDugdwGKs+n8hzPx8w6b6e88zSt7BL9Lu2L1lk1bSYihAhXrCXrederO6bJDt47cW6sY2z1gVp2rFWvlrKWa6aVfyKTL8vE2Tqs2c4aS84Iq23Va0fOx92mK9fYyuX49da1ZB9O11S+x0461oX2vCzps3TG5fGrcn1eXV0BOMlyOBzO93LdX/ZH2+/7/YjPfe5SBgC+/du+Cbd3c11aIuneaf9TzC7CuRSjG0RZvPei/i5/S35rnkerO6d51p/39Nyu6Imz5DL3xPlKH7SsS+tL7Szq1ZMptiqO90P5XMZ87mr9O7Wdy3VK8/EyR0v1eEKyb2s2p9SevJ7r1OTW6tHPWCF9CHBu2mft7NWo5ZXi7VbK/pVxmJ56Nfus1JM1/aTNt8UOKdsq97Gml6RnBmv9/bJfeRtrYt6STtrCDyzRnhf1lOnNl7eR/177jCD3tdJ1/jtfM9YzYokMUhtSnhYWO6QlxyeFLcc4J6KIiUO2R1u2UkpvxSaW7kMt3Tl3XrNrdbqlzSUxl639aa2dteVatmlv2y1/tlaf9dldXr/VP+r1gaW2Wu1s8RzBUveSubHY6tP0+GBbOIRQrt+AEPqeV7fk0mJcNdrxpHV7OAz5+dffvoa07qzx6944h1Re8+HE/JN3UFLi5bfkU0g2mDQXtf1uiZ/VdLdVF2i+StlG65yw6tFeHVGOq8UGs/qQW5xRUlv5e0s1yv4s0cfOOVwdIvb7u8n9q6sdADezp8s+l+9npTpzGWvz2drLS+e/FU8BIMoupWs+RS5Lbc1oa+Gxnr9a1kFv7BnQ52WpPWad2xat52USS3yxGCNiyHXjQ/xqHBHH/r5cYoeX80CKJ0r1tuq3+G1WPa6dPVL+afLpWZ32TlJeTurvFv5sWcZqSy+9V6s/n+883nlKqM+3Nj7AfN1ZfM3aWabZ+tJZ44YI7x1ivNg4w24HL9i3Wj8kObWyrXFe4o/V6tDGZW08RIsNWfu4ZayldnbmskhNlvHPWgxESpPOAGlclpwNyT6Rzv2Y2SprzqGWTtH37XZI8vvZM+i571LKuMTna+nE/Gy22DsXGXKZ8PDnlDaOI8bRtt40/zhHsltb51x7zpP8p7TTM7J+fRQe7I3eJbNU32n0rvGldUmkdbs0bj9bI+nM8pfz0zkP5062ih8GNabfal8/fya54Fx6vm3br+W+ra9PUTRDubZNn5efr01dj1r8jVKm3G6s+W49rLGHS6zn+xJK3ZkYx4AY83SntqXZ7VvuV03/Lu17r+9Wtj3fc3M7NxW3zlFtXfSel6191ZrHpf5Jfn5aZeuN+VrsqNz3OfkM8axHpDq1tkoZy7TamC2xv9bEPmo+mdZG9azz8/igtY3lpH5O+25pM4Qwe8cnlW+t7cft02NRl1l6D6bWT+3fnaZxldOXj5vFh0vtbEVvXWEMs+dq4zgijtM067+RsPqtrecZlrYkLPbN2r1S6q1evVg7++Z5Ux75vuU5giZ3S8a8b7VYUq3OXr2Tr6OecVpKKf8aPdku+2nUwdvQ/5SE/E4Av1ZIvwPw+59YlsQfAHCfXUecVvXvcs59y/OIRAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIDX4EpZ9/prg+feoO+IkY4y89gzyIMf4igD+H+ed89gB+99NLRAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIHX4EpZ/vw+mjJyV/9onlKPnvlPR/8kmlIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkk91zC/Bpwjn37QA+h9NHUBymH0P56WcR6sJfKq6TjL/ZOedijNKHWz4TlF3TuiqlO+ceRaay/hjj+bdzrktGrU4NSx3W5ZDylTLnMpTp6dp7jxDCrIz3flJmGAYAQAgBzrnJmEl1xRjPZcq6xnEUZcnL5PWmOlL7ef4kT36d5y/L5LLk812OkbZeW+tYy5evKyvavJZ9q8mzJ+sI+gAAIABJREFUBRaZyzxamS3lq82fBUnGfC3l9Up1t9ZCXr82/1p7ACZ7yaJP1ujYGuUYW+ZW05+a7ijrrMlo6VeZp9wnNUp9ZVn/a9prcdJf6c/D2ogBMbblKvV7zpZ7cUsdAeh6NO9L7zlc2x9LzvR8Lef3SztCazO/1trv6a82nrUxyHWMJqemJy3zZ6V3LqxtWnXiWkIIk3PZWuaTSM8+XcOaucjPl9b5JK3lWtvaPC4Zl/Jcfuw5T/Zzatt7X7VzShmdcxP7vEavztdsAqt9Vau3VS613WMv5uugHJOafSjp9OSbpDrHcZz4Ksfj8Zxvv98DAG5vb8/lX7x4MfF1Xr16hbdv3wIArq+vcXNzU+3Lfr/HixcvcHV1dS7/6tUrAMDV1RVevnx5riutoevr67MswzBgv9+LZxyASV9SH9P6A2y2sJRWO9N2EVn9qZ87xF07ZGaxL5f4akWqKX/NZ1+ne237p7R3m7Ua85ZtSLq3J07SGxs65U978ZJmsbVKrGd7Pmeaf9MTG2jFJ8r+OHfSMyHM67TIUqZZzkupbFnOaivW2gkhIPgwm6cQRmBcb9fV4mf5tRaLGYZh4rvvdruJfZ3ujeMo2gR5v8ZxxG5wcO5y7mjjJMmcn1dJrukaTvPi4Vy979K+yOtq+UBl/7U6LT50QJidxeM4Io7zPdVaS6182potY45L4hFa3b0+hCTb4rI+IIS6bs7XeMrT0g1b27y5jbFFW3ls+ynQxivZgEvKJiw2laXu2tqV9IRkg/fYFK14QplXk7NmS5XUylra12zgrVlSbxn30/aL9Cwh9esxYiVW37JXJ7eo+Yu9srTGpWW3azbZ0/gEuiwtem3A3vIW+758XpiVTpWY58sSL9XartEbm2jd02xwizylLKXuWuP31cZJ070Wf6JWXpMr3xc1fWlZC5bnW1rZlK9l31n3cY9taZlLSx802daez5osW+j0PK2cy91uh2Fw8H569gzDDn4n693es0/S40vrspwdS2y6UqZk69dibhZ/pDXH0jyXe7QWp7DGB2qMYzi/BzKOQIwOYQwYH56hHo/3cPf1MdXGorQde8+IMr0WK+21Y9c8++3xUXueBST/WdsfrTOidr5bfP61WOdby6M90/U+zmQcxxHj2NbF0pzkcpbPJ8t1lcdDWm3kddV0hxYn0NZ4QvMR8jat8cRaWqteq62mrSuL/2V93mGxvWrjUuuXFnfT7EOr3azNca8/JdUdfG6jPKxl7+G9zd4u7eD5mtTHc4vzqKc+aVxrc3BaatO+aPFai1xb+G15Wm/7Nd+4VqYl44NUuYDn61TcF2tKOpt8DF1zJMlXUvMPNBtzqpNSXLyuX0q93OsfrY2lWKnpxZYMVj9X04OtfLV2LVj2j8XPz/vZ+xyhFv+0+r21/g7D6VkTsmfStTh+3m7Nvs3TnyIu1nuO+eP8eeXxeMRR+G8bl/19DHv15PddnjfWfN8YgPv7h3s7IISI4zHAPzxbvruPuLuTdXr+HlJ5XzsbpDiRRGttn3V0iEhVpuqsNtIs3c/XV0vHK9JtUMfTotnnvfHDxHl9P/g7MasnhAAfw8PZ1X5WsDROU9I6+3p0XcIPcfZujR8GDIP87qLlHJMbikU9F5nLvbIm5ggs+/cmLRt6qSyWdqw2jVZeS/det8st50KPX3Vps//dgDVxnla9/XZgv9+3NL91zqU0a/y7uV685BdsYzPXbDXNB9Lbbccy6uXtslnq3eo87IkzSGPWWm9hjIgxID/Ta+NfkTT77cQ65nbvxVZzmPqDuc0T46Xsyfa73L/IbBTzAendgqXvKCR6ytfmqmftpLxr37k6+THL35motS/FG3qQyltiDyXa/Ej/viD5dUv2cTmnPXp8SRu1e/m8nNfX4GYxxtTfdG4siZf15LOfTx5lPMs53efeWr/3+lmWNqxYxmd2H0IZzGPDW8R8W1xi0o/e1KeCdRr63ePXVe594cmkkPmV7He+vA8AvvOJZSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxAw/gtLHB5V7Hz6ZFDK1/9TfdzyVEIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE9MKPoPTxqnKv9oGUp6Am2/tPJgUhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ3wIyh93FTufeeTSSHzHZV7V08lBCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghveyeW4BPGV+r3PstAP73pxJE4O+r3HvzZFI8A8458TcAxBhn+aW0Xqx1JHlqMm7VdkpP9ccY1bySDFJeSe48X34/tZfnG4ZhVn8IYVYOALz35/vlvbyusl9SHgAYx3GSJ9Wbt5/LW/a1HI+8Han9sr0yX96vPE2qVyovjb/ldwttLaT5eCqk8enBOafKLM1nTQbr/ugZ53J/pjRtX0lz75wz6btyLWky5+NVrp9a3zQdpqXXdJakC3rqaq37so1a3ZosUp5Sb9XQ9n6tvKSXyn3Zu2fKtmqyhxCa9Xvv1X5oZaX01j6y7MfyumeNlvuqrFdaY+U5Zd0vWl/y9PKMatEaC8u9XF9Y9OVSm0azTyx2Sy5n2a6kX6Uylro0mcu0cszS7yVnmbQXnXMTmyZHOzt62pbaDCGItlgPNZ1s1dESljy1c9SKZS1oMveejakuzb7M7cqyzBp6/ZBSDm1tlGsqb0dby4DcH60NydeR2mud5xbbwYolryRPGpPc9qzpMq29VH6322G/3wM4zdlutzunH49HAKc5Su3e3NzAOXfO9+bNG1xdnb6b+t577+Hm5vTt1/1+xMuXL89yOefwLZ//FhzHHa6vr8/3DofDufyLFy9wOBzO/Uy/d7vduf1hGDAMw7mv+e+y/7mtoeleC/l5L60X5wKWuuk1O0KT034OnX8BALyf+zyWumr7QrN1ynzjGIBxXl9tLiSfZIke0eqt1WehZs/mMpx09LT9EAKcsWlN3to5qPmEknwXGdvrzGIbna6nMZ41flfN3rYitW+x1WvyrjxSqz60JqN1veblQwjn8zi3N0MIZx1f2hQpzziOiDHieJzGq25uA+7vL+dzbnsmHQ2c9kXaG+nvdG83Rng/PJQHAIdhOOXvne9aPE7qV5KnvE7jojFdp/kCcKdyHeqkjKe0YhjS/tDOPql8nm+tPdiiFeeojXE5/87NdUCpVyx7ZImfuMQ+T30oaclVxoQt7ch12e2aVrrV1pDl6C9XlrfGDaz2dI/NV5OlbDPNt3SG1uJ5Eq04m0Rvv5a0UaMWl6zFJMo2pfFbuhdyGZaiyV6O0ZrnH9IzLAlrXDrHYq/nv1uxFc2O7I1ra3JpdtBS8vOxFQtM6Vadn66nkQ6Xbi6ar1yeci6svpo2ZjVd2pr/miyS71DD4g+UbeZt19aaZf9Y5dXytcpa9FXNX5TSrH6Xdn9J+dp6q62lvG8tm7ZMs9qnrfO5LL/Mjuon6bj7+yNCGM8+YowRb9++xY13uL8/Tsq8fTvC3U71RXnuaHEbbV4s/rYVqx6z1zkJhiDpzKVxLk02y5qv2XSteso67P13D7G4y9npfYpn7uB39b7Wximx9v2Ip0KbV6s9Zeln6ee38ia2ihO25EptLvWTWuvP4jPkvw/7iGG4m8hzdTjgbNsILDkDNFlKmbXYbq4je20rqc0Syfa36MKaTqnZTWvXWPmuR+vdjzzPOI7q2l8SW2r5EVK9tXHreTZXQ5NLs/tb50OKW2p1tWTV/N282Zq9uibOktvhPfad5by71DtvU/MvLPJO626vF2m+rTElra7HiaGWdSW7HQDcwxrI7ipnfpk+jiNGZ/OJWvT4s5Pq4vxZScufzNtYooukdG3ee/WU1t5j2VxbxnmstHzYEMr3sXBeo5pNUls/S+TX1m7Nbx+Ol/cUU/OndxcvdVriP0tstbXxay2/tkfm4wLkeqYVB5HsrLxsy65M9efXeZw3ped6K39WeS4zBuB+/5DgEILDcTzCPbjRNzfA7a0uf+pD/lwpj1nmzyi1OW7Z6DXbIfj8PK/bGGti1X3Y9oxGzd5/Dpbo3vO7VLvTe9IxWx/ee7h4eu/JC+vf8o7AUmQdNN9LWvvlvcHP92oMASHYY8s1vaiRzoIY9fcSpXZ6qO3LpXvJEk+0lC/raMV8l/g1ks2Xn2e9WG2NNXEyLa0nZrvG78l1sPcOfpB1l3bGar/Flgy6XYvZrpmLvL7SVgNO7+PF0dZGjVp5yz3npLPk9Mx4iU+ylpatWdJ77vW+vyW1PbseApybx8hq70/LcuhxjHlaPe/pOr9/yeOcA3wQ571nPss+1GKGVnr+vVRuK2j33ODOsf3Eyabok69PF07HMbdva1hihmvpiTFKadK/EQaA0PPiXScW28cSC+spU7ZvobQPe2SWbIjWmumLucv+xrYxtLlcPTGrVl0Sa+TXbPgovL8XMR+rntjlGeHd2qQfNJuujD2+yzyvl/vp469X7v3TTyaFzD9RuferTyYFIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGd8CMoffw8gLuH3+k/d5L+/h7n3G98DqGcc98M4J/C/NPjib/6hOIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEENIFP4LSQYxxBPBTOH30pMQB+BHnnHTvsfl3ARwyOdKHWQDg/44xfvgMMhFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQYmL33AJ8CvmfAHxvdp1/dOQ3A/hjAP7wUwnjnPsdAH7vgwwlEcCffypZnovad2eke845xCgNF9T0Eu99M3+MUbxfK7PlN3Scc+f6LP2yjouWr5Rd68swDJPy5e9hGAAAIQQ1T7qW6knlUj1SXVK5PD3lr9Vflsn7W7YRQjjLk9/z3ov9THk0OXOs5XtYuxZKubZEWzsAMI5jV/lc/nz+tN9Sm5Y5qsncQxpTaW9Z6837HGNUdUSvLlrarx4dmWTXZNP0vVRH+VtrX9tHS9a3VEZK896razmdPeXvJW1Z+lA7x47Ho1pu7VlmmUsNTXcurV/TB7U2eveDpXzPHm/dK/fRGr0kyb6mPkDXcdJc1HTCWr2W16GNVymTti/XroktztSaztiqnXI8pLHSxq9Wl0ZZV20tbHUWa7JpdmBpU9batox/bVy0Obbqe+m3dN3TRm1eAFnm0j7O66pdJ1o+mHavd81pLN1HLb+t9C1Kn0jyX3LKsa7t0fR7GIZzOec8vHc4HA5wxwGHwwES4zie7ZhhGCZypXrT39qa7ZkLqQ5JZ5c2cJk3jWn+vdtLGmblNHks41rKqs85EEJe1+naFXJJckj02DrRz/N77+G9V/so9UVa1/mc1XxLS19ijJP6tP2X6xUtv1Q2yXDEmN0/pY3jCIy635L/3eqHRG0stTPVskbreky26yzzWiPXUZJMrXQtNmQlH+fz/HsH7x3yPe/9gGGY6pSabm2Necojtv+ANC95f5N9Kem1GCP2+/35t1RHjBH73Yjd7u2k/PXV4Vx/SsvXbSqfx7JCCJM+H8fLvJ76GTGOAcE7Ua9IY9Nro+SM4zjRvensadkxMUYEHyf6FYg4Hkf44zTmUvYjvy5lz+e2x3ddkr5VvK0851Ka5jVo53fe3xEj0mWM6c9cj2h9zGO5Zd01NPtO0z3jOGJ0lzZ6Y1M1LL62bCuc/lyKu/PYWWOTFh3Zc/b01GWtd63f0fIJeuMpNf9eIn+uoZ3JUhvl2q610ZJNq0N69tCSzTqHUhnvffd4Wyn3bk+d5fmSn6Ol/mr5UGVMyBrPWIvV911D0oWtPFZq9s4aep4DWJj2KZY31XhCjaV6SPMhtfQaeRnN76ytqy32rVSXdD5pdnUpp6TftPZ6z4/a3q6100rL50zTr9us3b70Mn5UskbW8kzU6rf4g71jo423lTyesNvtZrrr6uoK4eBwv8vHBLi6OsB3+vo98vXYdbXy2nVHRbjoybPhvMg+77WrazGBVhywdd1nn6e5eBgOod2aHumZSylWpcXIl1K20RuXrc2XRZ+W7wfV8lnbTvc0Gy33oWt+bCt+C+j2TW3P1eZy6XORqe7rt+FLarFUqXxZj3ZGl+dzbywx7+cS27KcS0mWnlhlzS7pjdXk66KM+e1289d38/5L492j16T8Pf5t6+yV9pVWpmUz5khxfa1diThGxFi8JzOOiKNN30nXUpOWsy/3wWp6Ka/H8iyg177Nx7zMGkJA6PQV8n3V62e07M/WuPbEPHriMPnePs3DJGPeirlOiaQLJJmtck7ns34uxYcYfs4YRjhlP5SyJhmt8f/e2JYlvUTTS1vY5OXvnrq0uWjZNS1M/fBzm0bziXvjnDnaebvEx4wxwoc8j7zft4xfWNde73xr5es6LOKiT9Lzi236al3DeWzZQggB8Sri7io+lAeGIWC/22P/UP2LF8PDs9g5eby2plc0OzSXI9UjodmBzjnEIOvNPGlNXDivqyeGkbef1v2StV/GY1rt9uqApbTqP8fsh3R2pffFcbLpYjg9Izb8OwGpz7X36rQhSnNwki1fI6e0EB5sqOLdE+mMTnnGMeJ4nJ7Jt7e3uL2bvxtQe8ahcdk7mPTLOXd6D2zQ95ZVDy6Nc1rKWWzlpfVr57zlPUULuziXf7cbMO70GPdz0xNPXLMebHF4e8xb+71ExpZsa+MvE3yY5dvtBviw/Nma1QdMLImtW2K5a2P+1jZraLbBmphrre+yr17E1XGJB6wdky25vD83l6v0VXN63/Max3FVv7331eeELRnyv6fviekxzJ566/nm7/KF0LZPyv7m161Ydk0u67Maq58v5j+vp+m4rvHRNSx2TE7NT7eOjXx/GitM/a3VW7avtWex/ey+bUAZx8pl7aHm91p9KIvN9hw6M7V52IdZvP766vo8J5ouNPng+/1snx/2ewyV/o77MHn/txGS/Eyz3dtI7w7/NYDkQedWSopG/UHn3A88hSDOud8G4MfyJGASBYwAfvQpZCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZCn8CEonMcZfAvDfYv7tnPxDKD/snPuvnHPf8BgyOOcOzrl/B8D/COBl1n4py4/HGP/aY8hACCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshW8CMoy/hDAG4ffscsPf8Qyu8G8P84536Pc26/RaPOucE59y8D+DkAfxTArmg//30E8INbtEsIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyGPCj6AsIMb48wD+PZw+dlKSfwjlmwH8aQC/4pz7T5xz3+Ocu+ppyzl3cM79I865/wzArwD4UwC+LWsntVm2/0djjD/T0xYhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc/B7rkF+LQSY/zjzrnvAfDbcfnoSaL8QMk3AvjXHv6MzrmfAfCXcfqoyUcAPgTwMYAXAN5/+PO3Afh7AXwXgCGrC1ndUloE8BMA/oPVnfwUEGNEjBHOSd+jgSk9xthMl9ptobVdK2+ptye/dr93vHry9fZBK5dfp3mWyoQQTGXS71pdWtkQwuw6/1trz9K+lJ5+p+txHMV6Y4zw3ovy19K0/tfWf7p2zon152Mh1b2W1py12kl9c85N+tla89p41WRJc9LKZ81j6ad1jLeYi9661urbMs9S/bm079J8Svsux6pLpT1a20vpXtqvW87nqeK05sNM7/W0tUQuacxq7ec6qZdyX2tjaT0ry7Wsre0lMlvWdapv6zkq9aVWT20sl6yFtM57x7XW5hK9UduLkl7Ycl5b7eWy5fdSeu0c0up5DPK12bJTlmCxFUtZaunWs6ilryzpkhyWebOcEUsobSPJ7pOw6Kja2S/J3LJJe5BsPm0t9OjbGsMwmHRneZ3rPst6subL99swDOf03W6HFy9enK/T+ru6usLd3R0AYL8fsd/vz+0BDoerA+A8hmE41+e9P//O+++cO6fX7O98/ef3vPdqOctclOMgnZeX8Tn9cc7uX0j3rf6J1pe5bLm/9eAXjtM6e+3OMr/kT48+IISpLKntlj6V2rGs1dzn7ZHfQt7HEMJ5vUl6N8+b2jqtxXPqw1pxM31pYQt/sJRPQ5qDHh1vkU8qn4+x1GatbF6H1mae1hqbso9pnYUhrfF8j53WeG38LXZumacWN7LWK/mKNblKXZr7r8457HY7DEe5n+XYl3viXPcxYByP53TA4fb2Fndheg7kZQFMziItX03fW+1cSf5z2i7M6tntBvig64aWz2Wxw3pl1/zOfAxLSvmqduvDOVuWafkUaY6kOJvf+0m5GE82hw9+5gNIPkH+u9QlUp802ed9nlw9nPt1n6Tm91vpORuci1jQRPe5UuqIXltri3Go6blev0qbc6vd2GtTamW991VdLtUxjqO6xss9ZpFtSSxmbfwmZ+36ydsfhqFbHs23bNmYLXp9EK1skmdN+0D7LLHYUEvb3hJtj/S0uUYfSTFP5333WQ3U97u2j8vzt7cvmn+7dM6WxJZLeWr1Lo3fp3I98S6prZ5zoDUG1vrzNWY923rPkSVYx6JXj5f+cU4tnqb12eKrWuOVlnP85KcJdUQg9xlPYZp5Xqt8pa27hJZ93LJhrft9dAEQ/1tQMrU4w5bniXXcep+ZWPZ28iFS947He7j7S9yoF60veYy09P0s82fRF6W8a/S15s9Lcljqz8tb5ZHK5L9b89Mb68mxrEkxLqH6rrKfnKdfniOcbN18/93e3eL29jQPZWwu/12L21j7VaKtq/J3Tm28Letc03FL39XpOf9KGbbQda1+WWUr62z522X7Whu12IJGj3+i7X/LHq7FNoKfy+q8xzDI9bb6luKgmvzl7zxN68tWsSlr3Dmd1+X7QMApVhHc/By1kGIjvbGmXL6tfdh8XVnHOaU554DBwfv5+pHmRopZzvXvNE5ZyrU2blDTt957hCHC++mcDsMOftcXH2vFda3ktmNr32n5Wuse6D/Xeu1Gy71EbS3WbGpLe1N9PfcpHepjZ43N9NhrVr11iYeeSwKYviuwNHaxds4kebXrWr3lOk7jNz9X3OS5XsK6ji0ypnWY7mnvxWs26TkfIsbj5fljCA7HcYQ7PTrEzc0Rt7eX/LmvU8bopJhdPv+lbVuOsfYOnTQX52emDijP9FM/7HvxvC4HIMYkQ372XOptIcUmav2opS9hq9jTEv0lZ3rIN9MN/bGKnNrzglJ/xvjwrDK6bN+gyHP590v52mvZsFeHiGG4maTt93uEWPedtOf2mj1QrqsYH/zIsf5OsCa/9uy2bFdL31KHl0jnWHlW9cQaettPhJDrS90WrcVSLUh965W5d7/WbI+a35z/Ls8b0W4L8zNBurZgtc+WzHXP+NXbWK/LW3GXmq+kkZ9hS8+Ite+m98qdrylN34/juNn5qcvXP95Apnt9ufcu733N9uEg+6IW8n8LKe9Fc1UzhmEQ4/Kazdaix+7W7qk2pNDPlj2Z8lh84jLGVXvfq9Zeea929luw5qvFprRzyBV2du7fPIb9uqXP1yo7W0P7MIsx7vd7+Nj/zChh2Rs9/kFKOwwj9vvp5yNevHiBYV9fk5Z2rfclas8V1tIbW805/duJjydpL997if39/N9D9NY/7vf46OowSXv1+jWG+3v9TL+K+Oj6TWoJ3i1fY592+BGUdfxzAP48gH8YwNRrwflDKGX6DsDfDeDXG+ovV3BU7uVt/J8A/tm4VVSCEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBH5t39/MsGxBjfAvjtAP4cLh8lKT9UkqeXH0Vp/amVQ3Y/pf9vAH5bjPHrK7tGCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiTwY+grCTGeBNj/OcB/JsAbnD6GEn+0RKg/mGT1h+pPIT7fxbAb40xfnXD7hFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8ujsnluAzwoxxj/pnPtxAP8pgH80JWdZXPH34qaKOj8C8IMxxj+1st5PJc7VhzPGaErT7rfqb9FqS8qjtSmle69/x0hru0y35mulL8E6P7V5GIZhUi6EIJZJ9/P6Y4yz6zw9XXvvJ/dS3fn4hxDO6SmP1GaervW3LLfb7Waylb9TvyX5Lb/L9mvzn/qZj3E+FtIay+Wr9V0j1a+NpSaXJEtK69nf+dy21m0ui9RWr14q+9Wjw2os0W9LdJqlbC6Ltnd7ZFiTt7ZHpXUM1HWxldTv3a5tmtXGRJNRruf0pyaTdb/07iutD71nzBZnkjbflr5I+9KiI7R6rHJq6eVe6tUX1v1W27NSXyy6Uyub0q3jquld6YzQfscYm+daS16NXBatLy00nZPSe/SAlZ41vqT9Vv9b52iZZ0m7PXu+LN+bXjKOY1W+Hr2x1H/ptQmX1KXdK+3YRNmX2nkr6eNSd9T2v1Z371xqSHso9dtSlyR73ud8/+e+iqT7rq+vcXNzc153+/3+/Pt4PJ7lOR7HTMZT2dubW9zeOdzf3+NwOJzry/uS2joej2e5vPfnNrz3GIZh4rdp8yTZZ7X8eZmS9rqMyNXXOAaMfpy1oZ0vLTQ9Wu6zNC4jAkKY93Otjs/XRU7ZxzzL6dpV/ZE1Njtw8es1mTQdUo6Hpd20Flvncb5Xp9Ve/G1N99RkWTN+S/pbottqeZ6+unI5Sn2qnXFl+9q41frY8sPqczCyxoytAAAgAElEQVTtcwgBCG1d0YoNnNaLvMfz3/m4hBDOc5v/HscR9/f3mV4+4ng8nvPd3d2d0/N683Xy4oXDV/7+l+dr5zx+8f/9VdzfD+fxc86d/dBhGM77cRiGiR7f7XbimMcIOBfFMdHiZBYfQiLvWy6/RH1/6LEiy5otscifZC/HcG3s2VJXOx5zKjcMA3ymj1t+DTCdk+ADxnGqp47HI/xxGj/V6ir3TmsurL5oUQrO9Y+7dg61/KQkV82HPN0v4zPxZAc09L42Bq3YqCSDJl9epmaHWGyynthILe6g1fsY81qrV7PPLOdzy//Ir5f4qj35rbEjqxxWG8hi1+bjVNvzludkS+wmjR4fQPN7WnVL56qkF/N8LV9p7Zlj3Ytr7i+xCSws1Q+tuqxjrMXNajELS9xnSbzMci6U+toau275mmX9Pc8fUrma75C3aam3N+5VG4tabNBqL2h19aKti5ostThFjtavvN18nGp7pNbPLZ655fLW0u3j7YBsb9bKtXSB5dlDSe4rtpB80Ny+zv3WcRzPfma6jlcR+PgwqfPrv3oPd5f5DQ99GIbh7E9679V4ZE+ctydfCEHN45ybxJt0W3yuL7zPbeSHP97B+1PabreHD7quBupzK733IMkmXdfWl2VdbrsvpuXX2luS3ZbmaKluXLJXNVmA9c+/tDgRoNt6ksxl2TRGzrlZ/Fc7o3rWn5S2VMdrtGwSa901f25JLL/3Paela06jxw9PtPai1WbTbFKr7tP8k5p+rJ0XVjtMqvd0fUmvjWtNnjV6rnf9aXp1yTtLPTGAPG86R3vOO+me1VfRzmXLuFttKgvJvhgx4ngcJ7KMx3sh/nk/iX9KjOP0mV+S0aLnrOPfHAOpvXh5TrLWvrWshVaaVlbyNXK5Sh8kX0eWmJF1zJfuBan8ljGbSds+H69L3b36XMvT2qO1c7iWfrpOae3YVs3vX2PX9sTVLOeaRt6PUsR8vvI9Vup/Kb5U6hXpfZSUJ6Xl/mH+u8yT26oxRsSriOHu+nR/B4zjgOP9PdxDtpu397i9u/Qzf9447f/Fb8vvjeMo2gFS+ZYP2l4HZyMBaR1a1vJ5njDfAyd7w6bjp7Lq9x6btf5czlq548P5NBUpArDL2Nuf+Zxjtr6cA2K86Kp0v8dmO92b+3PjOGIc27paiilJesM5d25Hmo6ar1l7Pmt9jj6NsdSf6ZfyrH0nRmq7rMvqq/Su5em7Iin2FiBMrYrVRljrQ2+xT1u/a7K1zkBLHVYZe/y6Xj/E0n7++7L/L7okfyfAarP1yLYsRnC5tzYmZ4nvWmnN3VOem4mJvTJc4seJYRgw7C4xast8WOxDqa5kc+Ux8SEui82vfUYj6f5hGFbHzdb4lmX1p/ej6mfUUh9uBw/vhwfb4SFtt0fYzd+PrbXZcw+Q5603nm2de0mWcIjY7d7kuXB9/QLDUH9P7qn27pp1La2FcR9wOLwBsk8EvH79GsN9O562Fa39ne7v7464urpKqQCA999/H/cH2ycleu2J59DHgDzHS+Ihu92Iq6uvTtJev34fx2N9bjWbMue42+FwuJqkvXr1CrvsWW3JuA/Y77Pnts8zvJ8ItnmDgAAAYow/F2P8x3H6CMpfxGlp5dG5/I+5WqGcAzAC+NMAfn18Rz+AQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+G/AjKI9AjPF/jjH+gwB+I4D/AsCXcfkgivZRFO0PirJ/A8B/COC7Yoz/Uozxl5+iT4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPBa75xbgs0yM8f8A8Hudc/8qgO8B8FsB/BYAfw+Azxur+RKAvwLgLwL4CQA/FWMMjyAuIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHPAj+C8gTEGEcA/+vDHwCAc+4bAXwbgG8F8BrA9cOtGwAfA/gbAH4pxvjlp5X204Vzrno/xiiWkdJrdeb5pfKaHHl6+m0tW+ZL13n7tX5Yydsv+/nYlG3EGLvHqSw/DMOsfIxxch3C/DtCZR7p2pqefkv58ralMum3JKMV59xsnbbkL3/3lqntEeccvPfn69S3JWusLLOkDmnfLBkXrd68/zV9I+kHaxs1tD1d62NeboleXauL8r1f1meZ87JfUl/KNiyylP1K+qUHbWxqezzfLzWW6gnrfNXWS0lrbK3rqnVGW+VptamNcamLtfbK/WuZM8veKfeplM86f736sWcf9+ooa7q232t62DI2Nb2Ys+bsLfHeq+1qdoiVrWy0Hl3TslclO8BiH+d7X6pXqsN6XtXk1eTQrlvpJbUzXmIYBtO6tq5RbW4te6y0Q7f0CbbS72U+i62/FmlMpbWY7PBSTmmN53W25lyylaS5yevMZfHen+2Y/X6P6+tr3N/fAwCOxyPGcQQA3N/f4+7uDgBwOAR88MH9WY4YI771W1/izdtwvi5lvrm5Ode13+9xe3sLALi6usLhcDjXdTgcsNtdwlH5WKY+9PjJmq6wrrnTn3PKJF1q04JVfuAyz977c/+jB7yf79lhmM7xGnm0MbrohqncvePwGHuxhcVXkH6X1/N67OdCy75pnb+S35auLWd3Oe7e+8kaE3nYt5c65jENQF9z3nt1PMs2pXVh9Zt7Kc+51KcQAkKIyOd1HEfEsb7OnXPNM1IaY6nP+/1ejLmcZAuT9HSd614p37kfWR+uriJevZrO7zd/82vc3l5kH4Zhcl5I51ueBwD2PsK5pK8BwGEYhonPfNJZ02vNRloyz5qOqdlxS2LCa5DaGsdRHdvaGPXq4FqcJcYIPMx1TdcvabO8DiEAjeNgqX1fP8NynZ6Xmebd2u63+EBSO85FlFm8r8caavGEMrbVWleSztfGt+arlXl77/f4+tJ5t0QOKZ81frjm7NoiBqPdDyGY7A2JWryiZ/41/6nUf5o8lvHJz0etrPScoiar9dmDVd5SNi3OJdXVs9es6ze/l/qtrRdpXJf4RVr7Pek1fb+EiOl5kNrQ5muLNtfaPZayS+0GzVestbX0/NTiKK16tPO2ppcsvlpZbskat8QNes8Fi+6qjZvlPG3Ja9mX1rUstduK5Umxoda6lNqTrsu04/GI/L8/pLdhH0uLjSDtB8lnaT1L6Nl3tedief54FfH2xdSPfPGNr+BuZbu9Fito5bGu7yU6qZdy3C/r9eHcSH8jreG+vSD7Kutsai1va47W+kGS7l1rN+W05O9dI2W7LX0p0RPnXKpj83h5rTwAXB0idrvbSZv73R4h2MdmbQzE+oxxDS0fxDLvtXleGr/ObelPApq+rZ2jVr1avt9moTVXrfOh135p+VcWsfvicXmaU/e11W7p9TvKOG1Pezk7hNkzqN1uh3GY7+2abbP2TMnrkv4uf1vrzp9Z9I7N+bn94OB9mMTs/LCD9+mdx1PabreHm5pOgk8zj/1pa2fJ2VnuFdGGDHO/fgwj3DiVIT0jsIybde+01myPTdUjx5a2FmDz+1o6KeXrOUOksa3ZXtbt17u2LCyJf1zO66nstVjN1nEqy15cc68WO4xx+gyjjHtoMva8w2r1Mbt8/auIt6+PABx2Q8TV1YhXrw7YP+iUb/3WK9zePY69abVvq/l83tfT334Y4Ie6HSA9bzldnv5Ot7z3GHZ2e/lSjy1vD9Z5XaOHa+9TSfJoXP5dwcNYTqo4JVjPqJYcpUxpHsuy6c+pi/k8ufP7PbUzUOrvbh8xDMdJ2v5wQERf3zQuOgSzdaWdE5azu5Ze1pPXNxbvorTqtLxfYqHms9Zk0t7lA9rnfT6+Kc84jhjdPL+2b7ayr2tllq4zS/9rdt/UL0z9neZr+2P9SHaDNaYqXS+xdxLez/f5aa+uj32ujf/02G49tHRAT/ul/bMmLlOL7ZT7U1vX5ZoPLkA6S3IbvhXDdYNDehcrMQwD/OBnOmIcxplfPwwD/JjHXWLRH4fdbo/rwykOGQ5hEmMEgOvra/g7OTZQm6ee2I8Vy96z1D/uAz4+TPv53nuvMByW/dsfTcZ0fdiN2O+nsd4XL15gf7UXy/XERCxsYU/U6tLO2HAI+PDqzSTt/fdfY7gfuvq0pT20JeW6Pu5GfOXqI6R97xzw+vX72B3192CeStayzv3uiP3+kKVEvHjxAruD/ZnElrSe2S+Vw2r7t+4Nw3ydn+KFcz9ceuZXk6P0H1JazcePPq8zYvsZ+fTAj6A8EzHGrwD4CoCffm5ZCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5Th7/0/yEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBSgR9BIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPCv8CAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRZ2T23AE+Jc+7zMcYvPrccnyacc78hxvh/PbccGjFG9Z5zDs65Tdop60nXzrmqDFpdqUytfNlmytdqL5XL8+V1tcYsz9eqq1afJb02P973f6MprzvGKMoQYzzXHUKYyGIZ87ze/Hdel9Rmqtt7f86bt1nW672fXKcyWvvDMKhrJC9fpkt1aWMnle9JT+RzWxs3rb6etVWTxSq/dY9L6znNvbTny3XVK2ePHCld02UWeWppVr2yRCdbdKT2u1zL2m+rXNp+r62l/LywYtkXNSxr5tRGPP+JMZWLog6oyW85C8vxLucp6YV8zKz15dd5ejmO0npv9Uv6Lcmi6dg1LN07vXt5qS7vRepDuXbKNvNxtdhOOda1JLW1lFzG3vpqtpplvdf0ndZOK71n/KTzRdpnuZylHWRpV9vjW67XHv3Xan+LdbUErd1e+7w2L0v9oF65ynXd0rd5Gy1/okd3j+NYrWtLrDat5pOkfo3jeP59f39/7sM4jri9vcX9/f353u3t7fl3Sn/z9Vvc3AwP9Z5shI++9hY3Nye50vju9/uzTN77c7pzDrvdKeQ0DMOkT/lc5mOb+0DlXPbuxZouzcd1Wm99zVuw2CQWTu3NZbDqyJ575f0QQmYbXtLc86g0laV+m6Uu/Yy52Pa12EjtjM7b0PRUz3ldku+3WlpZb2l75vs5R1rj+T5eMg+1tV2bZ6mtlk3jnAM84L1DjCk9nvub6wXNlpFktNoC+fjlcR5tDHN58nksdX/eXt7Gfhfg/VS2YRjgXJzMb15Xnl7qy4t/i8nvlDc/H6b552tMGpfWGm/tmdr6y2NxVv1asyVaMYktYtKWeIZ2r3X2hCw+eU4LAVhwZtXmJe2tJWfhEl91PjZpvySZ5jLmSDHjnva1fFr87DxfYzzbW4njcYQ/9o1by0eq2cqa7VPzj6zr3bJHy3paPqJkN66Jb9TytPrXKtvyz3vjF7V20xrIz5jeeizxhJrMeUykPGu02I62FzW58vZrOsbSt+fy9TS2PEdKSptB+r0mBlJj7Rq3xo0s7Z/O/fn9XK/kbVpjVzX7Zo2vtjRvrczaebaUXzPnrbHUYqMtOSSZenzlJSyJn0nxMK1uS13Wa+1c0s5nq63aSgfadkkqv9VeKtuWfASlEcQo6ZT+dyes45E/O3sKYozADrgb0j47pe92O/jQ9+6GxcapxTzXUov1SLRiyTGz1dNaaPWx57lLz1g81XpIbGmXLNGLJT1jteTZV09c9zH6UuMSU5/rxNz31dpYc4bn8Z4aLX2ttbUkHqrZDppNbYn5W2ORMcZzrG6tfaqh6Rjp7LH43RY7oPbbWpckV5lXk3etDTonzn8Le6W1lqbX02dKmn1aslaXWnWXVUeOY5iln54x2mWq6RdLLLhWZ80mrZ3ZFp1n1oVe2IPxEr9LYzWOI3zQ+5v8zcu6r8vesy9q74LmceJxHBFjxPE4bef40Vu42+lzhVzm9DuPweTjn+vB8lmAFs+T/A7pmYRGT2ylVadFx/W2V8YWrDJa9aj0XCf/HbM1mm6f4v42m6hmq1n3fJ6/rKsVD82TynWo1aUhxTJ77CKrTrf6xrp+jrg8r5zv4cSW7x7V1lufjbJt/NL63Nxiq9S4jK/dnrbEbE/xgjVyaXLO03vbsNoHWjxTWvN52vQZ7HrSXExFTPvF7m9c6mrr9RDy5xdTOeRytrPCoi8eEhBj/b30Hpt9mibHsdbGb9fELIF2HCbVk+wNfe5k/VimS/G2XnL7qtVmeg4xDAOGwfbOW63NGrU10Nr/S2zmWvx+Sz1gwdpezxlX1t3yX3r2lHR+JtnKf1tleW+hdy236nJuWt8wDOd3P0uZJbaMIbZIcRlL7M86N5IPZC0PAOM+YL+/mdi0L1++h92h/s7evI63k7T33nuF4TCf63Ef8LXDbSYn8Pr1+xjuL3kP9yOurv7mpNzr169xtx/OdXx4mLe3u5q+61tjSfx1bX7A/j4XAIz7EVdXX5ukvf/+awz387np0X/avf3dEdfX15P7H3zwAe4Pl/209CyqybLWPuypW8pz3I3Y7/fzPXCcj/NTP+PQsPqFue1zLrNLeuNSxzAMGKKsmyz0jovmW7f9Zz12I7G1fn+s82Lturqc6dI92QbqjS1ovmjtjD7F9bL3AastfrZZpzk/ffy8c+6HnXO/5rkF+aTjnPt1zrk/A+AvP7cshBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSzzbv2EZSXAH4AwF93zv0QP4Yyxzn3Hc65/xLAXwXwL2Drz/USQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEFLwrn0EJfEKwB8E8AvOuR92zn3+uQV6bpxzf7tz7j8H8DMAvh/A/plFIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHvCLvnFuCZiAAcgPcA/ACA3++c+1EA/1GM8f97VsmeGOfcdwH4QwD+RZzWg3u4FbPfn1pijAAA59wsrad8SapvbV218jHGidz571odPe0455p9rLWd3yvrqZVZgmWs8/4459R5T7+HYZikaWMZQhDT8zLe+0l6Xqa89t6LbaY8kixSmfJ3SZ6Wyudy5GNUyqiR11lbP1q6pY2Sch61tSWlL9mrZb8sa7k2DuXa20IHbVVmrY5MaGvBop9aZdZgbb+Wbl1Dko7RyqU6W2tLWj8aWp1aG977TAc4OHfRCemPpm9KeWrnRUsPS/2ynD+5Tszzlfl75m0NNf1Ta6u2Ri3zvSSth949Y6mrRyZtLUjrKq1Zqf4lumgJtb6lNQu0z8Jy/1naq7VdOzt7sdajtamdF1bdYdU3pSxr07W9ucSu6ZnXremxoSyyPIasrb2e7PfamZLmpbTHe9sHpns3J4TQXEM1GXt1vNSG5KuEEM7X4zjieDwCAO7v73FzcwMAuLm5wdu3b/HmzRsAwIcffogPP/wQAPDxxx/j448/BgC8fOnxff/Q3zpp92d/9gt48+ZU/3vvvQcAePXqFT744AMAwPvvv4/d7hRm2u122O9P31YdhgFXV1fn9GEYxLEtxymNRbnXUtnSTqudvTUdcco3nZdxHBH8pT2rf5DbJJLfKckn2ZuSr3c8HhGP9m8Zt/SZpqdr67tWv1Vf97K1D2GNLWQlZr9793GPrSiNf0uv9NiBUro/jghhnKTd39/jHrZzrpxvTXcCsm7u9dcTLT1SSzvVdf4F773qY+T1tGwULZaTSP0v4zEpX9LbKW+p19Pv4/E4Oe/yPLkMV1fA3V0+Px5v3x5xd+cm+irXqyk919XpfE36LASbbyr9TuPSa+uvZRiGUz92YTYv+/0ePs7XkxaPqq3Z1rru6UvNP1xjkyYdVorYE7OS2g9+Hls8Hkf4YzDHQXJS3tKX6qnD+1jMt8Nut8O4m8aEy76ULJlPzTeV1pEbArw/xWdO9x724NAXkyxj3dZyVlr2r7SXLful9BOtZ3W5l/PrXvtB8yl65JHy1+Ja+dlfOzs1anu/tz7N3u5t22oDAPWYqYWW7SnJkj9/qckm5VnqN9fqlOrq3ZtbxY6s9fWUse5/CcmeXmoPlOfbyd6u58ll6Dkba7aoxXbUKM/RnnP1MeNMWluSP1v+Lq9rayGvq7c/Ft3TwnLebxl/LevVZO61AUv7PP9bajth8bFK/6bHDqjRM649sehpnv65q63lNSzxkQHbnPWslzCGWf5xHBFHWa7a+d9r7yyJt29FLmOKFV6Ip//FPJZge85rSdPQ1nXLh5aue2JHLVktOl5D0kWSLEv2vtUm6fHvylhR+dtqy0jlc//WcnZO7BnhfAgxIIS5zVQboyUxXMu6ks6E/5+9tw25bWvvu/7jZc617nvvfc6T6JMaktgoCZj40lrRYESwqGCipaUqitYiqCAEi1D9KO2XiiDaT76BEuuH+EZFKEqTQmkVX2pjrSmWalpJLEZSkqfJOc/Ze9/3WnMMP8w11hpzzPFyjTnXvfdznvP/HW72XGOOcY1rvF3jGtecax2p/7J3jcTpe+dE7Z4krlVrq3T9SO3IlrGsPTMJ93v9VSlp+3vPW5K9D0hjkJezYibe0tfmbba9tM9vWXul81SP3zp/XuaPY+SS+kv399CyFRK7n+aTnCfFe9pCbl1+KjN8LJXbcp7oGQs3emB8juoDXn3nAfq5v16pLre62nt/r0ypTum6Ls2x0tmu15bX4gu1tNIcqu1D2X41673XWgs1lW3cS8TAWvn3nu0ltPb7rfNLanslbTReQSmNeG8JY5uWT+1z0U9s9FWPz1nto/Py2dA8X29zbH6mWX/ullKLOcfzuvcckd07dLAPQG5vT+vPcdVF3ycmlIoorfOUe8zlpX+wvl8qF6fdP648/6Xn8B45QTeR72785TndjXnuxXIWkrNrVXRezvlyF1npfNtjY25Z8j7JlrNt6d2nLc+4Yp1yn6VzKn3v4EMQtzeue7brcc78POlh67qs3euJi0jubcEpB2DZX1qX3zWqvV8Sp5XOSjH3iI2U5LbGyI0O1r5HfBY7Ho/VNdTyCXqo+eXjacI4/tVF/sfHV7CDWeWV6BlTWjPS8jUk8u41xq16p2HCOH6+SHt8fIA5zX2Y64dUzjRM+KuHb+JmuxVev351lRHnd6PDNw7L+t68eX3NCwDD8xnjOC7yvHr1CuNoI51/fXE/ri/m3s/BJHvevcbubKfLO81Bhsfx+ABrzd1iX/GZclQGxoSv6s/yx3GEPgwbtO/XSxoTfSniamrn2pdkq73qmWe6cg6QxqzWMrfb+LjenA+X+rrGGLiCbyetp8S9/YY9c6gVB+nVVRoHLp7Zpyl67zacn89wz88oMQ0TpqnvfclvV/atkC8f76LrcEpWAB4A/ASAv6iU+k+UUn/rx1DuQ6KU+hGl1B8G8OcB/G4AA+a+SJ/o/+mPoB4hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+QrxVfsRlL8ZwE9j+VPm8Y+hDAD+aQB/Vin100qpf+jDq/hyKKW0Uup3KqX+ewD/I4DfgXkOpD9+ogC8BfB7Afzox9CVEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHx1+Er9CIr3/he89z8O4J8C8Mso/xiKAvAPAPhvlFL/p1Lq9yilvvbBFb4TSqnvUUr9awB+AcB/ifmHTUI74x8/wSXtpwH8Ld77P+i9dx9YXUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyFeMr9SMoAe/9fwbgbwLw72H5AyDA+sdQfhDAHwTwS0qpn1JK/cNKKfsh9d2CUuqvU0r9c0qpn8H84ye/H8D3ov7jJ78C4Hd573/Me/+LH1ZjQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJV5Vv+xzxeCu/9ZwB+Qin1kwD+HQB/J5Y/CpL+QMgRwD9x+ftcKfUnAPwMgJ/x3v/FD6J0BaWUAvCjAH4MwI8D+E3x7cu/6Q++xPd+EsC/6r3/xosp+QJoXf8dn7lbAO/9Ki1Nr5WP8d4vypVk5MqG9FCmlKd1T0KqV07PVvt79FFKrfo21/+9OvbSqrOmQ6ms1hrOuWxdcZm4nNZ68TmUj/Ol99P64zKxvqXyab5c+VivOI9SarGe0npyc76UJ3ed678atfHrXRu1ubhnXaT5cnpJ06TUdIvtypa11CqTs7et/pOu8ZfQt5Unvdc7R1v7T01mj17x3K3tXzm7UEOdz3DOLWyH8w7OqcUaDnXm5pVk/ZT2O0n/lepI07fu8T11tmTl7tf8gPQ610+1tkvaVrM1Un1LflBJdq9PlNtfcnunhLBXh7kVl4338XjuxXoZY6ryc23r0a/XxgBlv2SP79lbd0qP/cqlS3zomh41vXJ93NI3Z2N7+ipny3r1qOnVQ6/tKtnOmF47sqdc63xUs5dpeljP0r2+1ueS8Sy1KfWtS2VK86+kf+7faZquZUL6+bLXh+uAMQaHw+EqX2uNV69eXfOdTicAwDBM+M7vfAQAzOop/OAPPuL5WWMYBozjCACw1uJ4PAIAxnFcpIdrYwyGYbhex+Oktc7ujSWk/VoiN6bpWSrUU/JX9vqhkj0hzhP6JKdTTda+s0he//jcmpNX8h1a1z307h9bzndxvzrtVv08TWf4sxbZUgBZ/6RUd+5eayxz/qHEXi7LB7lFVYp6pXUHm7SXmg8jiTO05nssOvRhy9eW+DuxXrGesb0Gbv00TdM1T3pdqjOO4VhrF3YiPsMdRo/j8WlR7mufHvH0rJrzKo3zxZ+tctm54r2/7jm5M2CsW3ydqz8ltWhAo9sAACAASURBVH89Ni6tV6n8+KdtqVG6vye2UFqvqcze80BaDwBoa1dp1lpooZ1K5/lcR6yDB6CgtRKf/1+Kpe4e0zRhKszf0rVk/yrN5VzMvJZ//lxoTFJ/KjuXLt0fSvT49lvOvVvrr9nrLeepOGZeGrOYOP6wF+kzrpRcHKMndlGzc5K9PDfH9voA0vnZOl8B7fkoPYO26imVy+1zrbHecr4pPW+UxnLj9K3PLbbEUyRjXHr2JqGaPzn/KQXgUkfONrfmgqTOkl3e+qwryJDKSvNtPYsFWb3tj+uuyZWk19ahxD/cc1bMrbetZ9x0DHv3tJIP0CoX3y+NZe++kc7LXlo2pHdv6X12Z6bcmX/C5BSca8dppePQ60+mn3vi5LnPpXha7iw7y5bVF/sjqd2MZcfnQam93MKWNZ7DGAWl9EXm7Qyu9eXsbQy0KducPXXHSOxtbjx75lKvLpJ9WVqf9Kz7kpRsXsmWpHt6yUbVbGZuzOL4kWRPNGYdF5umCdO0Hvs07hA+p+tt7/kmN9Zb3i8pkdv3986Z3vO9VOYevXrqrsUxekj94FK6ZO9JryX+WW3uSdZDScfbWIR1Nqc75wBXLrNFf2Py8T3p/JGMZe8eI4mTpszPysrxrZrcnM6S9Jq+PX5Yabxq9W/VNecntXzCEJMuldvrS7dI46NzGuDd/I5YS24t7hnkh7Xc8vV62GIfWpTsXc2n2rpf5Py2Vr57+G1IvirgvYdC/zt/W/akvf54XCT2j2p6pGtwz3ki1HuPdHmfYWV7a3G9NF1yhk+v088lPzR3BgjXznlMJ325BqZJ4el5gru8lvL5N5/wdHk8WXoOVouj9pyHc7YinhfpNQB4eExTOANf2uscvM/7r7W57Q3g/do399OtztJZLb5fWzIvfVZaPUPsPBuk75AA+2KF89l7/tu5pKt6LGMi8dqI7L+/5Z1vL+MoYQlKY32hrnTtnk8nnE6XmEPl2XFMbc3kz0tqZTNrMgO5d13Sd3Qltqh0/mytcYkfUqPHTu/dTyym1foZBgtn18/ztvi/OWp+sPTcLKl3S5yyhhsdrH1apD08PECbtf2J4xgtXUps6YfeekRx6dHjs/Edgp1RCnj9+g3MaVtMpqSztF/ifOPpjGEYF/dfvXrE4TAWy9TI9XmP/ZGsEanvudc/jKnFDM92ur4fG3h4eIQdTFGPNO1sJ9jEZgzDCKuWad57nPV0jVff9DOw9vYVcevWOltr4UMeoy6x+3p9OXpjRj33JEjPbUmpRfnSPlWrT66bR/BnUvmtGEZPvT1zX3Jul1Bai97k55tFez71EPdfT1/em7nedR/3+NI1myJBOpZ6SvtJwRgNl3nGt4c9fkcrvi1Zo6XvfOeeLeTqDJ+XZ4OLzT2dcTovnwnF7wLPz2fm69PpdH1/9nQ6Xb+TcTqd8KQUPvu+77mUn+Ccx1/50z8L9/Zt0adWDwrP3z37DVprnE/nbL6vAl/ZH0EJeO9/FsCPKKX+eQB/AMDXcdvd1OV6ebIFPgHw2y5/UEr9IoD/CcDPAfjfAfyc9/6XXkpnNT9x/2EAv+Xy97cD+M0AXid6BuIVq7Bsz18A8C967/+7l9KXEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAaX/kfQQl47/9DpdR/AeD3AfgJACPKP4YS0gLfD+A3AvgnrzeV+gaAvwTgl5K/vwLg/eXvXXStADwkf48AvgvA913+vvfy719/0S+m9sMnaRvUpe4/AODf9N6fCt1CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiLwx9BifDefwbg9yql/l0A/waAfzTcuvyros+5HxmJ+Wsuf2m+vaT1BEr6+OjfkPaHAfwr3vtfvLNuhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR0wx9ByeC9/0sA/nGl1I8A+NcB/NZwK8oW/xhJ7kdRQp7Sj5ZsVq9yL9UpTf9pAL/Pe/+/3Fmnj4b3+35jRqnl8NTkle6lMlp1xXL26i+p70PinFt8lrSvV89a/rg+pVRX/7byaq2bMuL2e++vMr33xfEPn7XWi/ze+2udcb5SHVrr6720fE2vUh1x/5V0ju+V8njv4ZyDMWbxOddnMfeav6l+6TjH9YR7tbrje7mypfpzn1/SFuTa0LsmArU+bM2Fml7xdby+auulJV9Cb/lS/tLcBW7tkdgNQG7XSms5zSeZW639TtLfrb4s2RFJ2a1I9d2y/uJ5mY5ZaQxzsnN7ZWnNtuS36kv3lS0ycmlBn1Sv0pyX7CM5cvJqfRH2mrSsZN+J99EWvfZOSrwPSddMbp5IbUpap0S3ms6l/Hv2u5y+Up1DntK+kvadZL1uJVd/DakdL8ndU1/q35TmVc88a+lSa6+kDaW9UlpGWo9U7pZ53lozqR1zzuF8Pl8/x9fv37+/Xj8/PwMAnp6e8PbtWwDANE34/PPP8cUXXwAAvvjiC7x79w4Arv8CwOOjxje+8T0LXX/+5/9fvH076xLmwJs3b/D4+AgAOB6PeHh4AAA8PDxcrw+HAw6HAwBgHEcMwwBr53CUMeZqv2M7boy52nKl1LW+dIy11tU9Ou3TdG9xzi1kBOI6a/Jq+0qJ0h5VqyfkVZUpfk8/d753a/80TcA092/qk7Zkl/qxZ6+MbX/Lb9paT2meTMatxtMYC2O1yF7HpP5GzV72+PE5O9La+2JmnUK9eZmpjHjvvHf8KbV9pTXe4wvE+W//5vPn2ljTM01L+z58NsZcbV9avnZuksyZkp7D6GHMeZFmrIV1sn6srV+lgo2e06y1cINZ5Wtdp8S2f1nfdt8j7l83OTi37LPz+Qx9lp3fpfXH6TU/Kh7f0t4hjS3cm5r9iPfsgDMuyjf/q7UWn7VKPu00TUU97sk9z+Cp3NocDffjLEqFPyW2fVvOYKW5Kd2DauUl+39pXpT2tFrdNbbExnJ1pbHMLWMh8aNydaVpPcQ2RDIutXmdGzOl1Mq/zT2XSNkSA5GwpZ+kZ+hSPLtG3M64P6R+jCR/6wzUQhLP65UpPU+V5PauT2k6AHilsn6gtN60baFM+oyjpEsthlZKS+dRacxbsrbG/2r5Sr5MbDvTOVby06TxnR7fqGSTY1tVa0eL1rlLkr6FVvm4X/fuo7kyse1uxfCl66p1nSKJJ5byLOJPfj7bxFVZa2GMgtbJPMzYti1jWfMjpLL37KOluo0xc1kNaB188HCetTBD3idpxajTe+mcqdnJPX5cbS61/GXvb3GSOF/I6pwDXF8MvqTbvUj3J+m6qvVFqZwknhGo2fNUl5I92evP1+qP7YHUp4rXX2n/T2NbpTri/ovfp2kxDh7GnBZpgx3gXNnm5841Mbmxaq3XmJzePeOf0y/dx6RnXQktH62FdF7Gc0Hqe9xr7y6V33p+kPrxQb7kLCqVWysrPROEj3vOKjmfe35m164/l16b4yXdpHNXIjstKvFRYrk9+rfy7TkX5vL3rpncGnHKQylAqobUR4r9iXjulMa4RCtOl9673VbxjaIPIbEVpfOcpHwrZlqSsyUOUJPfkrVnXtXq33IGKrF8j2A9FsGPlfp9uTw5e9uaNxKZqY6XT9H9vrOBdF6VdN5K7/kuXTvh1mxz8u9EpfqGPNdzHG7vkaRla30i8deyYzl6PF9caWM8tPawxly/kDSOCoDsnb+S77BljknQWsNrD2C62MaL7Ggf7FmjzniEZ6YBYwy0keu3tNP5+y32+scxve/KtWJp0rjb9fsPmPdg6bev7rOOkVR4WYsX+zm/Q+MWtup0OuHk9WLd5t4LTp8LTZPH+Twt8j09A09P6vqeVC62mp5Ba3PzNqdy6aro99VsfXx+jt95yJVrIW2HhFb8s0d+LQYhKT+eplXfDMMIn3mHohRL30JrLtyD0trd4psppTANDp8d3iGeo69fv4Y9y77aeq92lWJT99hvcvVMw4RxHOM7ePXqEea0fvci1UmC1H7n5t/wfMYwDIt8Dw+POI35d5x6kJ6VtsjcMz6tNV8jZ3uMQd4ncOv+rp/x1/My/r5fyKeUW+WVyAt7wdI/vd2ffUpZTCOkSd77qOlZSivJ6D3bXO4sPsX9KqHHvt72WZVJ67OdrTmea8O9vvdQkl/Cm7xdLb2bnbJ1Pfeu471xhYC259W7c+M4wOrtP9Nwr/0tZfDr9/yGYQASu38v7j2WEv+sFteVPFOOMea0mvt2sICyMMZc11jpvQ3n3PVdx9n/n6+fnp7wzns8PT0BAKbpjOk84fNf/VVMX3yRPTcZYzD6A/xprlspJT4nfTvycd6g/ZLgvf9T3vu/H/OPoPxxYPGjJj76U5m/NM+9/gK5OtN8CsAzgD8E4Dd773/Mfxv9AAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+fZg+08MfYXw3v9JAH9SKfVbAPzLAP4xAMdwG+sfJ4n/fVHVMmmh3r8A4D8C8B9773/1A+hCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgm9MdW4MuE9/7PeO9/N4CvA/hdAP4IgBPmHx4JPz7iC3+7qy/IVNHfLwH4twH8Xd77H/be/1v8ARRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8q2O/dgKfBnx3n8B4KcA/JRS6lMAvwPAPwjgRwF8f5o9+XcPKvl8AvCnAPw0gD/qvf9f71DHlwrv/eLfFKXSLtvOHlne+6KOpfQtpDreS3aPnN46JfnjdvX0Y49spdQ1v7Qf03Stb78r5ZxbyHHOrcrF8yK9jsvH17GeqdyQJ8jKtadWZ7gO7Uj1ybU/Vz4tq7VefQ7XxpisrFz7UtkS0ryldey9X/SfRF5tXZfqLM2zdFwl8mKdSzrGn0tj1HOd1perX2ora30u6YuSni1KfRbPxYBz7pouJTdnJTrEukjkKqWKc0Fis+Z1GP+GW1vX2noqXUuI5b6kvY+p6Ruv0ZxurfblyrTaIpk3pTpeIn+gtMalc1hyLdWx1e9pX8f54/05Ju73njGQzoUSpf2yZK9reuR0CTahp5/T9kvnzEv6saX6cnaipUdrXZfqz82d1lwpyS/V0Sp/r/NMro96ZKd9Ld27JXMk7dNcv7fWndTG7PEZSnXX8uXqrflkQPvc4JzDNE3XfOfzGefzGQDw9PSE0+kEAPj888/x9u1bAMAv//Iv4/PPPwcA/Nqv/Vq50R0EfT777DN89tlnq/uffvopvuM7vgMA8LWvfQ1v3rwBADw+Pi7OF8MwXK/jswIATNMEYO7TkJ7zgcLndO6k57MSzrnsnC757WkdEv+lVn9unkzTBO9Dv8xp5/MZ/qyLc67X5hTXkwaU0ojDWFrr67mu1h+S88lL2rXevBLbkM4P7z2maR6LOG2PD5x+lpzp0vxSWyo598ZnhFq7pL57z1kh3QelflFJRu56HtN1mZo9TqnN/TQ2E8Yite+xPrEdjOuX+oilfp3ObtWO6XzG+Zy3nTXfI7bFViGyy/O9cRygxqFok3rmfJqe2vucbqkcyfys1Vkrt8UnkNBzJimdcaTMbVvak2ma4C977xbctN5PnXOAsFnSfo1pn7XDugnzcplPclasIR3zEFsq+3lAvO96P+uOjG2Q1FfKU4t/98rtobWuWv6VRG5OTimtpZc0lrElFhXmQs+8lvgrpWcHwMvEnFL9p8R2pJ9b9dX8k1YsPJVVQ+KT1OzrnmcVkvP91vb17KlSWjZCclbaIjsmjeXk1kLuLNeqz2fKOOegMvH3j0nJr4nnaLp+cv5Pyydr3cuNcaxD6/lJelaRnmdLciV74pZzaokt9lpST2oT9vqRUiR7SS1/bl72tjvcj+vr3aukxPXU7H6u/7P5r37bup5S/Tm2npFLMqT3WvP+amcxtzM+M0zTGe7UNy+lZ809/SclfW9DcgYNWea+mPslyni9XxrPLf5syfan9MruiW/kyktiMyW71vKBSnGump6pj5Cm59obx5Zz9ZfqrelcqzNtVyue17+neJzPy3l9OgOn09LmxTYujEXcf625JIk3ppT2tFYbpWu+99wXy5ee7/bsw/G7UTHGmEV6aiPvUXcOyXmyVnZLzLt0VsjtyZJ5GMvup/8c1FePWrRBGk9IbdqecZfEXHNtKj0XK+0ZpX00He89sZmSrhJdcvZ9S6wx0e6SHwixxZzvOD8/K+8vtzmyjE8aY2BM+Zl4SV4pXbKnpaJzazCdN73xx558W216T75auV4/oHe9vvQ5L7t/6FjH2xjmnvFK6LW9rTpKe54xiNbR/K+1FpO97//jt2df3DPWaX1xnriPZndARWuzPy4cy1ZKZeMprXcmWrYkZ6u98dB6lmWMglIOWivoS9bDOGJ+3yCva3pd07nFFl/KKb+y3a1YTalupW72NZQxxgCq7tOvz1zrvGG+5ObS3ueE0liM1rqZ1zknyhfXu01/+fi05KflnfWrMsMwQPu5/0ftoPVyfR2PR6gNdmocPY7HLxZpn376Gs/PKnt2LfnRpbZc300YHd4P02L/f3x8gLbld456kOzjtc+ltu45H/Xkl5zJJLGkmMPZYRwPl7Jz2iefvMHzYLv7PDeu9/YlQj29MbgtfnZ6bxomDMO4SHt8fIQ53b7HUYonbN0/SvIk+u7Jt7DhVmfebTSr76/0nBlz66qmm9y/W8cDwxq911y8h6xtsYJtZVvn19w5e37+KK9jUrf3RWMZzq3tY+l82jN/c2Ogte767tQ95sNLy8itPWMMjDfNNdZaV8GOxvesx8pvsNbAD8OudkjZ6ydu3n/tum5rDSzW+2Bv/S99vpbosMpj1+evcRxhtRXLeCndUiw0jFn+fMQ4HqAPX445mfJSz5UD1pxxPB4XaV/79Gs4T8s+rD1HWz5vvD1HOhmD/+sHfiDkgvcef+Nv/+0wp1O2DACc7YT/+wf+MoDZx/xz9n+7T0O/hPBHUHbivf91AH/o8gel1G8A8Pdg/kGU3wTgbwDwfQDa1qHOOwA/D+DPA/hZAP8zgD/jvX+/Uy4hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR8V/gjKnfHe/zKA/+ryBwBQ80/afi/mH0T5jQA+BfCY/B0BPGH+sZN3AH4FwP8H4JcA/GUAv+j3/FQdIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHfovBHUD4A3nsH4P+5/BFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQiL0x1aAEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDy1cZ+bAUI2YNSCt57KKU+tipVgp6ley9Zb4uSXiU5pfw1ORI9Wnkkekpl5tLTeRTXVxs/qX5Bdm2+pnmCzPg6rieW5b2Hc24hK/6clkuvvfeL9LhsfC0hltWaF7n7rf6WzJW0jbk2S+ZHqkfrc0mfLfdK99O52UOav9TW3FxIy+61aem4tGT0yI3pnb9a538fLpVT0723zhKl+dYz7vW1H/7WZXrnXo9utXWU1i3Zf1L27KslG12br5I64/u5NrVsdCoryCjJzbHHXkltX0t3qR7Scun+eM+1d4+29Niy3Fj29HNrjtbqyelVm09bx7CmSyxX6sPEOOeK9lvatpzsnjkV118qJ/Evt9qwUH+p7rS+eM3s9eP3rvfS2OVklfzVmNLa6x2jGj3nDIlcyT4Q6zxN0+I65DudTtd7r1+/xul0AgB8/etfv15/85vfxPv37/HZZ58BAN6+fYvPP/8cAPDu3btNtvT169fXfz/99FMAwMPDwzX9eDzieDwCAIZhwDiO1/Gw1l6vS3PBe39tV9zHWuvVmSi+n/Nj0zHSWkPr9f7vnINzfesx1T+WaYy56ljSb5kfUEpf0uc0ay2M3/dbxhI/b9IO3i/ngXMOSjA19p6PWvlL+32PHZP4+4txMg7OhT2qLacmq6RzzfeQ7u9hjm3xP5RK6/DNNVDzKSTnBol+Kb1nyFL67E/Hctf15K4leWrzM42VhOvaWTOe8/OYuKysHEopKKxtzfzZLOrI+Z+pr62Uuu4lODs8Pb1fyPiVX/lVPFm9sGnW2ut1mKMArulXPaMypbEMNj9uS679pX1Ma73ow/Reuqadc9+S8ebQ3tgXiMnprLVer1m9HCtgHhcVyZX4XRJy+6N03aTX8RzZci6Ji6R7Sq8fmDsnb4njLdOW47R1DtbWcilfL5J4uURG7hpYng+l9fSe6ST+w96zcm1/l6yre5y/S3YhR832lXzdLTHbkg3Ira8ev6gU15OWB9b2tTWuLXps1r3Hu2V/JPda1OyoZP3UfLjURuzRM44J+MMBz3ZY3D8+PEAbU52nvXNBqm9vHFDq+9R0y/lU8edc/0t066k7RWpva3H2Ul/G/nCp7SUdt8R/S7Jy5XLtKe19Pb7KljNlrm9KfRzL7Ym95vTq6eOc7Jrt/xAx7lZde88UvXMsHUvJnM+V3UKwsy2b0WMjSmMupXZ2TNPW13H+pGxhX0pl9NSf6l2b25I9Q0puH8mt6z1nky3nkDQGHCN5ntDSKZdWs52teETJV+49o7R0DZ8Po4e1z4t7gx2ysTzJnl4i167aHlZD4ssHWTU7JrFrrTNQzh6V4nc1mb3+SkyvH9WyJ6UytRhuD1LfolaH1Kb37l3t+31tbc+tso2U2EupXezxsWp1hbJpv5b6pndupGPesrE9e2O87iXl9pw12u0u+wVz3fV1kjtTzrHqtQ5S/zjN19oflfEIzx1DO+a4+P3WiIRef2WPvQqf72FP7lU2ty5LeXL19M3f5Z69ZS+RrquYLc8SbmtkqaM0tiVFEs/c0uZWfXK7pbLjLNVX4ptc42ON+dd6duKtx0mfL/IBpTy0BrSf6zLGQE+yPsvZL6kPs9W/mW1i/dwj2ae893DOX+dvuD9N07UvijokuqfqS+bCHn8hfm7bkpV71yVHPJa9+218z40Ob80J3pjFe0VKGRyPx+yc6T0nrnyYg8fbIZyx5nuPjw/QdpY7niYcDuO1jPfz+1HjIOubmHFwGMfTov7Xr17heVz3X82nz8Vh4utpcPjm+LyYW69fv4E51ftvy7rqPZ9J8+6Nt+2NH/S8jwrM8yR+DwIAxvEANW77uua9bN4Wmr7lXp9QY+WHam1WtqmnfqmvsyfOVUPiQ0jOlLnyUn0lZ/eSf7zei9TqPRNpPZIYb0vP4Iu01uC9zicSO9ayUcas57UxBtav53XRvlkNrZf5jTEw3qzKaO2T+uZ3tGz0PtjgFYxZ9uEwDMBgo/qW+8k4jrDn/Fqs+fotny5N3xLLzo1FzR6EOrQ9J/bFYxwHWL22z5I51dLdGHMZm5ssay189A7dHrb6hPeyfaX6zvYMa5dz53A4wJr7tLtU/0uVKXF9192s961hGDHo5TuR99Bn61oK92zBFqhhEK8niW737OeXjh/Vyhtzmm1lxOOrR0zTUI1BSs7nJ2Pw+Pi4SPuu7/ouDIX3QOcyZ/zKJ792/bzXx/0y89VtOSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5FsC/ggKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHko8IfQSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxU7MdWgJC9KKW68nvvN93bUt+95Unkhnux3DR/fE9afyw3V39LTu5+q4yk/6SyWjLT8mn/hc81neI8xphFXufcNU+uL+O83vvi59p1SecY59y1jHMOxpiFfnF6Tv+crrk8kmtJG9N+j8vXdJHMecmcSeuXzIvcHCnNm1a5nD5b1lJJVms9eO+h9e330uL8Pf3XKp/2QzrOLVnx59ocqckLpOVzugC4rp00X9xftfIlJDamlq/UL7l83gPz7dvac87hfD4D5/XaTfs4bmu4Vkot+ia+LvV5Ohdr+Vple8mVbdm7mq5b9ldgPW+kupb0Sj9L54Vkjkn16mWLH5Gml/pRYmPSfKWxLOmR27tz1yVi+57bc9K8ufprfdjam9K299iSnE7SPstd1+xmSVZqk2v0zNkemy6x97V+ipHa+NY96TjG99Lxl+5Lpfu18r17ZEuftM7Upk3TtKuO0jrZYjul6yJn40M74vpze/PhcLh+HoYBT09PAICHhwc8PT3h008/BQC8f//+eu/du3d49+7dRdYzDocjgNtYPT6+gvdnHA6HaxvevHkDa+31OqzHTz755Fr/8Xi85hmGYeEvKKUWeod8tX6Kka6rQDrvpmmCOk2YpnX61PmzwdI5VmO5F4RxX7aptN/tiY2EfvHew+t1na1zSM8ZqKZvKdYQz/cem5+TWbM9cd8G/SbjVn2utVn1SVxPrGPqe+RsR81e1mIFuXy52EBMy2a1zFhr3Fo+yRafr9ePKcmM5+uy/GVeuLqvWPPZpXtarEO4juVO07TKE6/P+DreD0prx5ibbQpz9nQ+4XRy2fq11tl1EMoGG23hFvYaUHj16hWsLZeP/61d56j1fVo2ZyNC/2itsz8JH8b/QyI9I0jz5uSG8rn56bRepZ/PZ+jEz6jpJbmXG7uettfqk+ihtb/Y2GX9pXO0hF4fVnJWUspDqXSvUZtjBb0+wZa4Yk+5LfGsgDTOV6pP6nfHcS8pNdk5e9/aIwH5XrPVLgS2nI22nN+2sHU+lsrmbGnPGS6XN43hbFlzEr9Xol+rnq150v1cMhfuESPM2ectfZwjzHt3PsO55Ro4nU7Qp1M1aCtV+gAAIABJREFUFtxqX0nPkN6K99WolWk9v8nFhkprYMs6l+xVUrl7zrq9+0NuvFo+6xYdcr5xS3bJv5fuKbUzYI1WbPse83hP3KJE/Gxqi2zlHNKiQddVutbQuv2ctjcefg/72VOHbH8A4tiQ1hoeeT1LY9C7dtM50opFteTV0kuxmYDWsU246AIFQN0+d9qHkk8iaWO6F/fOH8mZpEatvtI+WdJrS8yoJls65nvsee7sAMxz/6V95NLYhbNuek+SFkj33Xgf3GPva9TmRRqDSvWq0Rs3yO35vXO5RLrGS3251d+QlNkSRymxiKll0lvcu20lSuer3H6uL/t5qVxJl2DLlVrG0J1z2GoKbmu67lPXbNrW2FG818WyeuWVzm698Z9Aj0/esvUlGfI5tnyGAABumiJ7MadN0wQ/tZ+J3+zBTf+ava2d6bLaNuyYmzy8z7wP5+Q+V5r2EvvFXhvQY5+2+Ct72btG+vvcX+ZaWZdUfuncmcbVW/GSNP4Yl4l9qPfv3+M4ebx79w7T5K73fuEXfh1vk/USv/sQnlEdj8frc6FxHK95rLVZm5Jrf8tG1Npb2u9r8b/wb84WG2NgTHnfDbr0+Ci5tRuPc0lWLabhjYfWDt4DWq1jpvF+G5eXnPl62pNel3RO63GjhzEnxOfew+EAXZkzZVkO7+1yvh+Ph2LMLifvcJ6S566zDGWNOF625QwtYa/fKpG9ejdv9PhiPMEbjfNlfQ/DCG0GvH71CnocxetaqvM0OHw2vF+kPTw8wthZt/E0YRiGxf1Xr15hGJbPpUvnrJhhmHA8Luv65NNPcDqZVZneWEt8fxomDMM3o3vAw8MRxpqsrhJ6fLWabvFn6bOb3vnXal/veV7y/M44LGwfMNt11/GOU8329tCyO6X03hhiT72x3Fm2PIaRyi7Fz1N5LVm9ayxXz71iu3tja1ttx7IvXnZv6bFhLyH/nnVlMRPSdz6MMTB+bXdL/artefXO0zgOsHr9tW9lY99nlmetwaBu+9Xg1+9QjeMANQ6zT2jVxfe86WOtgUX9/d2Wf9mzT0jOxbuxaf9fzhTKrub5FjuQMiiz8u0OhyPMYSiUuPGS59HAlr1Gkk8ZDWOW7R7HAwaTmb87+nmL7S7R4/ev4mjGwNrl+jocDhiml/mZhj3ttAVboMfxLvJzfIi5DMief/bu1a15UfJZJXu0MSbxF+f3cW3NV7bz++pRka8s/ScYQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIuSP8ERRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshHhT+CQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+ajwR1AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfFfuxFSBkD977u8tRSjXzS/J477P5Up3v1YZArk6Jvj1yS/IkbYn7pZZfKquXnjKtvNJ+9d5D6/k3p5xz4jmWq18pBefc9Xqapmz+kKemd2lMtdaruoP+pT6J03PXkvul9sZzJugBrPsy16+hH3rqLMmSkhu7WF7J3txjneaQzPmSfjk5pbHsqaMmv6TPVnsh7dd4bm0hnZs9SNZVi9y6rskwxkApdcl/K6u1grUWFvZuNjBl7763d63ENiXXb/FYSuxZaU3U7H269nvXVS6PNK0mU5q/1F+lPLU+yl3n8pZkx3qUbGqa3xiTlRvX27uOb+spL69XlqTcPdbCS+St5d+7/reUl46lZC635g6wbf7U6pSk53QI+SXnnHvb81ydubxb9s7S+o+Rymr5pzUdJPapdu7bcyY0xqzmWZibzrmF3z4MAwDg+fkZh8MBAPD09ITj8XgtOwwDrJ1DQ8fjEY+PjwCAcXB48ybMeQ/nPL77uzWenmZ7F8pYazGO41WPh4eHbHrQJZQNfRWvq/h8U2t/Stzv8VkpIN/fljJjP6H3HCRdb6ncoP80OTgX7s3/ns9n+PPaVknq6pljsw7rObrVVyjp2Eq7V5/HxOsmJz83/5x2K7syTfmx2EPtzBjb9ZjeOVfzVdLuKPk2H+PcWophSOMQ4d8wjm5ymKZ4TD3O5zN0YUxDvdM0ieOBuc+1WEC4Z+3tHGaMwTRNC7vXcy733uNwAA6Hd4u0h+MDtO7br7TWmKapGRsq+eStOFQqI3Adsw2+VeoftM6AtfNEz1lrj08jLSf1wXpt5Fb9rn0ddfli3bllem+cak9cR2t/sWe3+mtnt1jP3HWubE9f5eKFt7TUJ/DAznOFRIdSWs/92n4hsYnA0o+t0drLa7rF8tM5Vjrr9az1mvweaja2pUOrTEmnvWf1EnvPxjW2xFpKYySRG8f5ttjXOB5ZenaQ2wPjs15Mbmxb6yPnU5bam/OLt54veij1kWQuSeOCs/z083p/KsXb17Lk/dpiS7neuHLannguSeJecT21s0qM1Ma2zh9bbNe22EDZj0rl9Z5hJenxvdZa6Omz3HMNSXwrty5rY5f2S0vfGlt85i1x7LnIrdw0TXDT2u92boKf6r7klja+VL9IYp+568lNUUxqxjkHhXpcNuf3teZo6dzW0rVE7bxUK5Neaw0opS9pt3vx3pCr617x35TefghI/B2JLdqbnubpmfNbz857nl3mPud8kS2+rnQtxp9L77ucz0t/7enZXWP3OWr+cO91IH4HKpee1l+iJ+7coid2V4vH7qlzy3lwy/7VG7stxUxLxHYvre9D7NG1MtIYXhz3LtnzXj1Sv6GmW0vfmg5S+7x1v3HOJfO+z19Or2sxr5d6prBV7pa5eJ0/SQwZCLHl+rlg9i3WYy+Jm/fO0+IeaNZ2I9W9t969Nk5qj7f6Hq21/lJzM5YvsWOS9B1adMXD7zEXA+E9gVw9Ma9fv8bh7PD4jWX693//d+LJymKbLVpxMslcitdYGufLx57a9nlOW+4x0zRhUvV4STqm9zgDpYR3UnKk+0fQJ3dmqpHOu1KZkh9b+jfXrlA+pLvRwZjl16fGcYAu/H+lq/Gpg4e174HozHw8HkVnkvBscjxNGMdfX+R7/foNxqH+bkz8ea/9kD5L6PUJe2xJuDcNE35t/ALeaDxd4orjOEK7Aa9ev4Y5nbrrbTENE4ZhOSceHo4w9lK/PWMYlnbt8fERw9j/NbxhmK7vWwUOhwO0Npv6u5Q+Feox2mx+z+4l6GmX5BlPjORs3/Nsr/X8Ln3fIKT1npFL9Oi3NfYiPZ/0xKpy8b7bHrg/RnSv+FXaD1J729PXWvuV/22MgfFLe7/lnFgqL9mTAWDwCsYs5+owDMBgu79fcw+f9kOfI7ekp37g2Z6vdjckPzwcYc/yvULZ9TiM4wir1zK01Rl/ZsQwDdfP1itovZxf1g5Q4Z1ea2CMRdzMw+EAa+o699jIVvm9544WWmuczHnxPh4AjOMBQ6Gde2ODFjp6Nqou9Y3Q44CU1rPSl1gLUpnddWfm7zAMGDLzdw/Ss5B0XW/tY2ccwnOkgLUGVuW/g3evsazpX+oPO8XfK5jTjDHwlXcDpP23ZW/acj+HJH7aY6/iMqV+jZ9l1K5LnKfp+mxnrkLh+fkZyue/M307a19TirK/Ctz3jX1CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjphD+CQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+ajwR1AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfFfuxFSBkD977XeWVUot/P0S9rbpKskM5ad1xvr39FNf/oeTE+SRtyaXn6pLUH2Tl8tbGp1YuoLWGcy6rj0R27l7u2hhzLZPWF+spaWva/3F6kJ2ml9qUtqV1HctN25LTNaU1ByS6lPo/lV0aCwk9fdKLpJwkT+iHXDtr5XPzoqVDqb/TcbknpblVQ6Jz7fPW9FyfxvqL5tD5DO/d5e8iz3l47TFNE9RU7t+tfS+di63+SO3CFp3SPpTYrxo5f0Ip1RxDYDl2NRvXauPeNXGPce21N611F+uktc6mS/o41Uuy3iX+Rqu9e/aFUpla/Xt03jLfpemlPCWbnsqR2P5au+K5A9zGP02v1dGat2kfS+z/vcflHv5+D7Uxq/kHe/XMlZ+maZOsWM+Wf1Ob3yVfuYfSfJD4vs65bPk43TmH8/kMADidTjidTnj37h0A4OnpCW/fvr1ePz09AQCMPuHt20+DVHjv8Y1vfAOnk4HWGsfjEcC8lh4fH+cyxlz7Kr4OdbfaaIy5Xpfs/vl8Xo1HyFsbJ5nfutQx5x9I17NkXqZnw7jNs5wgVx5D2HN2us4XOEzTsuz5fII71X9HubRvx6Q6xWNX851a67WlV2hbfE5O9fnQdrTn3Fdqc62/en2WIMp7oNStPT5Y797WY2cDpTne7C+dzlEPay2001X5sY0q4ZwTj0uLdL6XfL84NpPqbS7nu5jT6YTzeblG07UYp4X0hrYrPXJ2QLJmY333nHFK9kY6BltsQmlO9vRFbg5KYwuSOXqdh1pn99Oga88eEvKmPklNh5q8IKu0d5fWeE5n5xycS8+DPqtr75i3xqXnDOCcv/geS93h1n1QWmdpumQ+SvZuaVw69znVvRbbiH3Hmoy1v1RHOq61s6o0jhGfNe8R063pCMjW/FbZMbV12pN/a/1b6+h5DifxcUpzVBIXB8o2Mj535PLkzhVKqWz/v3TscOv5olV/a73k7HUuFttD7PuWaPm1tfpLNrVUR49sKS95vtkT89wbLwVubZP41601WtJHMoYSnybNV9Olt+xeub2xvZ4zXjxGcVotztKKvWzZq1r3bvcz9koppPEYpTS0rseXtsR57/W8M95PJPlK9RttoPW0uDcMI7Tvj3H3tC0XV+21ZTU/rrRm8/FmF51zAO8NnHfwlz6IfXWJHbmnTe5ZC7m1KJEr9Xmkvn5JZo9vUIrf94xrSO/1JWsxy1J9kphVWi62kbEPmDuPTJNf1eEc4JJ5Geueyo3PE9I9Jc2Xa2fv89weHXp5qTol6+FeutTWsTROXNO1R5e0/J5zb61sbyy8tK5v6UHfOX2aJvhp+3lCKVz3gyAjXmclXUq2S1Zn3nZIfaCcrxc/Eyjlk96r6djSUyJT2l+9PmHLPwuxulL1c7q6xFTrOhqvVnniWOw9kPXT9jNEjx5b4nG9abX0PSilusdF8r5eSs1PfYl25epqpaexZ0m/xLGttC9qcTJ9vj2bDqrMedY+Ta0dqY4lX7H3HdG+52VyRu1gzPIrPMfjEcqu+7o0n0rvJNTORjWkvrIb/O3cqOd5a4yBVbPuh+MB+uJvxuOXjqXUdyzZBmmZ1PedBodheLracgB49eo1zKhXerWYZb1bybIHmb/tvcdoJ1i7ngt6WD4DkPRLjj1+cc+7daX7vTEsPWgYo+H0LSavtYGGwTAMyD0Z6a0vzTMN02o9Hg4HGD3XNiiTfb/AJ+NWO6cGjM7HYtzGZz71vaPv+c5eWmuntQ9t8UOk5wngZgu2zBFJOWM8lNJJ2nps9+4lW2LJe7nHWWGxNgyufRWSjTEwfr0OtrRr77n3XmVS4nYHmcMwwKryc/KterTi7Wn64Gdbe7sHjOMANQ679ZE8L+y141JZrXJ7xjUtq61ePb8fhhGDln9lW5kg4yZ7HA8YzFqGNqZZ3wgNa0OeWebxeMT5MFxl3O7nZdzTtmyJy0rvxemreoyCMUv7PAxD39h09IOdwvcWojU2WKihvp5a9WyJv91z/Joxw+w+qGGy3tu++l4qTtAzR51x+ViPl58l7r13l/tFR3ZvzmftIJqTAekzj3tR+u6PtO5evdJ3UNJYbnquTXVK47+l/nLTBO/DvZucybmrTY9jMCGeUotRfpW4XySVEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCNsAfQSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxU+CMohBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQj4r92AoQsgelVPW+916Ur0emUuoqNy2TprfI5d9SfymfVGZNn15KMmIdpPW08rXaGJfPyWrJ7+mPNG+pbuecWF6cN1x776/y4uu4nrRsqUx87ZxbXKfyetqQztGSnqU6Ur3SfDnuMXdL88l7n13jqc5xWYk+vTrn5nhpbe/pj9ZYST+3SPtb0paSHYnTjTFdeuTkxZTm+732gS2EunrHP26L1tO1369i1E1+bd8Ia0Ji72sySukvuc4B+X7U4zuU2LIucnNpqy6ttt5zvpbWRE2nLes1t0ds0a+VLunzLb6WpP7c3rJlXezdZ3rt7559YauvumUOa337HVDpHIrLxNcxQVbcFqkfU2q/1vrF7OKWMZWktXxGiW0r9bGUtN9z9feep6R93Ws7anq19spWmbSe0K/OuevcitOBpV221iYyFIwxmCYNa222jDFmIbd2HWQHfVK9S/vFFnuRzsv0nns64Xw+hxQAwLt3b/F8vrWzZAdKe5l0Hpfyee9WYzxNZ/jzMr9SKtt/qW7x3lnyW2s+psQ/jOVN01TMG5fp2ctzSNfch/DRe6mdP1NKtqt3X6mdE273FCTdJfX9gvyWnmkMo1ZXTW5uTeXndCxfFluUzOvWuV2yt5TaH6+zaZoW6zr0RTyWIc/pdF7Ie/d+wtNT/jwe25TU1iulrnZlueZvNiWNY6X9ET5rrbP9ktqaUEdtHacxm9IY5PooME0T/FT2uVI9pfT4HT35SuXiObra65L14qbpOjdCu56enmBOp0VauG7FIST6ST+n6bVzSqvPnFvf11rt9jdLurTOwcX7xkEpDa1v98dxgE7+HwY1/1pi+2v7Rm1spXF3yZxv+ROt8nvPuXF6qW9qddTmTmxnJLJq5PRO65bGinP92tKxd61LdOvpi3v0YW5tlHyS+KyUkxGuS+2qzbOSr15CEmtqxSVS/e5F6xxRoxTbkJ7NpTZqsy6ZtNR299jZrW2NqT2X6JlLaf7avppLS32tnIyQttVXql1vlZfqVkqX7pMtWTWdtsSK7uFzpemtfaO1H7TWQGktSMdW8jyhVrZn3cV6xeepwOl0wvmsVmfA8/kEdVrbhPh809Nn0vRavlx9uX0tPhOk7U/Hazo5nN8v1/3Tr34B/y5+xqivdabnydz5Ms1X6qfSHldbI71+bC09Xi8hi1KXPyhcH6RmyuTSe9by1jUo8btKn7fEv9O6Jef2WH5uX4nlpempHUnXayluLPUJ4uveOOWWZ00xtb0zjsnkOIwe4/i8SHt8GGFMez/Z459K6InjtfzznB4tfSRnztLnUL51zpboUSvTswaldiC338bxsLi8tC+l8ZuSLGl+aV9Kzw6La722xfNe1VfHUoZalNdaN995aOl+z9iB5F6SU5RLsi5KOtxzry6R23db/dqMDxbnT1jLy+yl/a3Gln7dT91v7rUNufv3GteXQOKLp/vTS+id+gGluSCpO56XznoYs5zbwzBAe9X0q1JWzxSE/k5O52AnS2eCw9lhHL9YlDkej1BWFseXzLnS3Myt8x658efevWo8TSu/73A4QA1mJatXlx62lHGjw+k4XxvjYa3H4TBimGZZn7z5BM+nuS/TPi35JFvXWutdk9z1NOT6foTRZlWmxTRMl+eo22UN6pzo4zGOI9SYvrOz5EPZVcnaSemNjy72ZQOEZ2a3WIeChtr9jG9Pny2LKqS2rCW/FacKfzVfuWcs5vQ0BqPv3n/3sENx2VrMJra30rhbr21O03raUztrSHXaP+a3a+kZWKKXhLT+at/Z9Vo2xsD4fe/g5XSppUlkbF3nubV8tufL+5i3MofDCGvqcaBe/7r3WQkAWK9WZ1trB2AYijL27kPSvn2JOE0ct76HPABQZh0fsNbCqvz4Zusw63EYhgGDzsgwKuv7x3mNm23/XN8lzRj4Sx3O+NX6SnX+mOc4aZwuVy7+113ex4kxRsPAbGpf6wxtzLSqL+cH5+SltNacVP+tfSmVDQDe+MU7T8C81rTX2X1JokvurHVv/Uuy5e9EdOx/GaTvupaQzJ/5vFJ/77wld8s7/BIdW9zOA/ve8+vRQau1bTwejpjcUCghj5mcjMHxeFykvXnzBsM0FeMRJ3OCtQZhrilhPPfbkfu87UkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEb4Y+gEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPir8ERRCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshHhT+CQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+ajYj60AIXvQev07Pt7767VSKpteKxOu47KlvCFfSXZJhgTvfVH/nNxa+3rasheJjJCnpnMtX/jcKt/SS9re3Pyo1e+9h/cezrmqvJCvlJ7LV7uO6yvlK9VfypOStin+XLqepmmRHmSX8kv0SFFKLeZLa+606umZW6F+6bwMutXsU++ckyKpp7Yu4nbWbF+vLqW58CFptUva3rj/emxqa5yl86BUv1JqsWcaY67rZm4boJUGtIYxBsYbse6xTj1rtle+ZC8r5UnTc+uwJlu6Rkt5asT2S6KL9Fpat7SeUplSX0p1KdmCkgzJePewxRfYUqaWVkuv1VlbFxK9UrsmnddS/7qlZ013yZp7qf0id75o1bXF9tX2i3S+5fyamr8jodSm2G/b6h/tWSOpDtIyW9bWnn29tieVxqtUb02uMfN+nOuTeI+K74dr7z3O5zOAeV6H68PhgLdv32IYBgDA8/Pz4jqsgfP5KVpvEwCF8/mMaTIL3Ywx1+txHK+yxnG8ph8Oh6tcay2UUtd7WuvFuouvc32TpvWcP3N47zGa4aL3bWweHh5hhrU/1HOGLvnXNT/kKt8ufTfvAWMsjP3wv2UsWdLGmIVd0Vo3z8M9+8CefCX/Ij3blHSa86zt4Za5kKZJ7WXL/kh9utreH5WE93O/OSc/G5Z0krSztEZy+5Bk/0/bm8oJcYlc82Ndwpkp187a+VASp4ljI6WYSSifi5ek4xjy5Pon17+tc3+QFexQuA57iZ08nAv9cmvHpMp+X5w+TdP1s9a62Me1dufa2tr3vfdwZ4/T6Xkx/l98AejnpR1Iz9DxPa11cV/K4ZzbtV/d49yz4njE07B8NHQ4HKCjuvb723OfK6zn4J5zXY/vG8Y9ruKWtq1faz5eyd626nLOw3t3nZfeA8/PJ+hn1bR9Ej+q1Za98cYe7llXzr5vIfSbNFaUqzuWk7LnPNyyezliP6ykUym9VVcpTpT6gblze2ndxTY1EM4Kad2lZwg1JPnivTj1Q3r9mLTu2vm2Re+ZOfV79px59yI9q8VstQ+9MVM/TVc/BpjPO845qMgPm9PzPumWM2laLpe2J8ZWyiuRndNhq0/SO4Zb4mQSPXp02RtTkNTf2y+1spKx3LqWesa9Fq8pxY9LZ6he366H2rktzRczx7oUjFnuh9YO0C7/jLcVD6yxp121/TE9d+bKOOcWsUTvPdzkgPMAF8k6vX8CnubreO9Oz0bhHA3M/RiPf/A/Sj5r6pOlbS71hTSvhKCD8QpKBX0A4PY8NeTTuh0DLvlOOWp7UGkup3MhldWaW6UzyxY7snWPiusv+aBxO1M/dsuaK82bnA9a0yWuM9ar5bdL8rZ90HyZVrnWOUBCy3foWYPW1l9Zle6DtXUo9Tdiem1Lre9bsSop0v0Y2DbOLV16/F7pWeolyNnhtGne+/m9mAyycaw/K9iyN/X45FJysc2Acy7a65a636Pe+N8eSjGQLf6c9F4vuTkV3+ut/15nm742bvef9s6Rvf6GRC6wtoPxfLqHr1iTJY1XSmy11J4s9gOz9sm0lvk5vbTaIJ37SimMeoIxduHjHI9H6Myz+pasLbT20XvXET6Pp+n6bkXg8fER9tLue87XGlvi6tPgYO0XADyMmesz1sJedB4PB5iCr5fuFfG/PftI8M0l45fKm4bpcn69pY3jCKvXOrd0Odvzao0ZY2C9/OtZxqz9VmMMXHTG/rJx7/N6LOPD9EnuOxxJjuS5YI6c/dB6Pd7DMAAqb/NyMSdJzMsVntvn9C2ty3vzoexaXJ/kHNmSkStbmuNqcdbw17XcW8e91ouErX1bq6fW90opKKtgjMYcc5vTD4cRgx2KMnP0+Mq9/nrv+pGUn9u93H+GYcSgrdhXlvRN+s5e/N5PKd8IfRmTWLcB5nAoPnfu9ZHu/eyipsNefXrO8Vd5Zt1HwzBgyPgXRZ0MEjtyeV6BtR1xxi/yKjXH2qy6zSfr/GpcrTXA5f1dZHS21sAqG8mt98WWZ3hb2GMX0vcRlFr3a4/esY1LfVLvZ9sfnh8EjDHwgv2gFmdv2TNJfC/+t5Wvl7nc+nyuffnZT5/sOtL97F5z1Bt/qfMmL6zBarkNtqems0ReaQ3gDs8Lvh0x2mbtuXZDocSa0pgZrVfPRY6HA8ba+k3jOl/OI+Jd4IwlhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8VPgjKIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkI8KfwSFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyUbEfWwFC9uC9F6XVUEpBKbWpTu+9uL5WHel9iU6tPEG33j65F6GBn0+GAAAgAElEQVRepZRIhz19Watja93OuWzeOD2US9NK8yStpzSH4zLOuav8aZoW6bHctI7cvbTOUp64PaXrWhvT69y9tH97+qiW3ronQWoT4npCGe/94rpUJq6jtP5TWek8b63xnn54aXsRdM/1Tdx+Y0zXerw3Jbueq79ki2JZOaT7QamPavMrprbu1TTBOQ/nPMKteL22ZJfambattU/n5r5k/fXaiWpfdO4fNf1q67rGVv3jz5K+z+kobfu91mBpfklsYymtli7RJ3ddylPLV0LqB6XrSuJH5dod29pWGa3zv4nZuw5rvk6sf8l21Pq+tEcaY5rlt7Blrvf6+T3yWntBmif9LOlnQLbPxX0u0TcnszUXatT2iF5fqLVOWvSu6VpdtbVU6sNSP5/P5+vn8/mM0+kEADidTtfrp6cnvH//Hu/fvwcAPD8/4927d9d8T09PAABrz5im86UOf8l7wtPTCcYYTNMEYD6fhDLPz884Ho9XWYfD4ZpnHMervsMwZPvCGHPVX2u9ODfk7FU6n6TzIB2P+FwV55H6ejn7t2WNBl0AwCmHaVqO/zSd4c/Lfmi1LaSF/tNat9efVtA6v/eU+jjMh9LnEqWx27M+S3XsK5/fi2L9a+NfaqfEx2ulpelh7qY6huvcWrJ+nW6thbNLu3/vs2LrDJprQ9iLameKJhoAFOJioc9y49DSs+Q7hLLhvvd+sTZy6WmcZ5qmm11IYkNxelxn3B/OKZzPYf2rS1kP782if2P/KlzH9kJrvZgj2vurvLA+jDGwdlk+UJqPOfb6+3H/pX3pvQe0h1IaQH7d1HQt7UWtM3zJ507L1PzQkl1JZbQI5dzVZ7jJmaYJPpqjUp/yKnPy8D60Yb3GcmWkazmXL12b9fPt7XqOhbhmfXv9vXjcSzb95ut4pFniORlkSc+WpTpz8rfSOtfv3TMkcyNdr7k+L829tC7JuTvVSep7Bhuflg/65nzd2CcOaK2b59V0r0l9MklMMV3vvbGuaZpEvk9Ox9YesiUOkOvLErVxrfW9pD9Lsu8RzyqR1tnyL2vrRWqjA3F/SeX21NHyz1J58fnSL85Es/318MvNoiJbsj+2bE/rHCTxL2ppNWpzsVVn7dzWY1fuRW3+bIltluoo7Sk1vXp9tZ75I0G6J/f2UyC1iWk9rbkcI7HP9yYeI63zflwuFhCXT/OX7sVs8eMk/V/SLd43rbVF27mq4wi8e1j6EI9f/wTqaX1WSknHc8v83XomDPOw1c+S89Q0uevZZr4dZANKXcbAyfQp6RDyxPlrOrfa0jqD5tZiei2pp0TtftrOkk9eswcSuyrRXxp/K9Un2QtLvn36Oe1ziX8TMGb97OB0PuF0Uqs+judI6qvnxiK1adJzUExtbsftLL17VPJ5Sv5K7Ou1ykvoHReJ7ybdA3rs5pazS09dW/TvXZ9b2RPPAMoxg1p9yzb02Wypfd3brlR2OG/HMQggxHpxeQ5UttE9fuw9YkExL9UvH4Ng70P39DbnJdvfGx+8hy5S31mCJL7Q8jGkcrbQcxarPU/J+Xsl3OhgzNMl/5x2PB67/PTSvTQ2ueUsV+rfg3UYBovYvj4+PsIO+fdTUr321J37XCu7pXyJ0Z4v7b5KwuPjA+xgi/29NUZZyrOljFIK0zBdz5zGzM9brLGwl744Hg84ncw1v4TSWKbx81K8t2ctz3vjeh1umde3GML6uWONun/Zb6NzegVyfbZ3Pe99j7T67PTip7goNqOUhlIaRhsYs93nlMZUAAWtzfXZuXVrna218Hb9NbxUD0lfze8BlJ+PpOlrfddonfqac6zI+KVtrdk06V62Z//sOWdu8Tdr+9o9iN+pGPxa7jBYoPCOXE2/2v4v2YdaZ9RefaTlpXmNNTBmuX7GcYQ921X5rbZQUu6Dx6aNusyZW5K1FlbVv9K7xffIvecb0nLlrT+tyozjiKkyf4Ft5/2t4ytZDylb4zQ98YKAM27lXxijYdD2aUsyvJ/3RO1v74vU6ovz3vKv50/8/sltrw0yyjrX4imlmK+ELXOi57zlzfpcqLWG9vouNmYd/17LVUrma+6x1T1tkfjXvcz+dLoGTHUN3Hsu3YvWfhhiDTn73Hu+lOYt2TNJzKCkaxpXl+q7Zd3c812ZWOY9+zugdcZmGAOouj2X1DXp+VyTytaVM0Nu/L6qfPi3CgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIISSCP4JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5qPBHUAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR8V+7EV+KqglPoagL8DwA8D+EEA3w3guwC8AfAawAPm8TAA/iXv/X+ekfF3A/iz3vt3H0pvQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJeGv4IyguilPp7AfxOAD8O4AdK2ZLPHsChkPd/APBeKfXHAPwH3vv/9i6KfsVxzonyKZUOVT4txnufvY7Lh/Tc/RZpmS0yPgQlPeP2K6UW/dnbFu99tT9y8mr3JfW38sRjm6urlh7Py3SOhn7SWl/LOOeu6c65hdy4X9N7pTpL7YvrLOXJ6ZpDa72os5S3JkOqS898iudlT53SOnLzPG1jzi6F+RLylsY4Rmtd1C/93LJntXyStZf7N9eWlJqNfimbF/SK50Lcly0kc0Sie21MUpvZ0iMvY/5LUheySzIkNrM2R0v2fm+/lPLG8622BlNdJPP9Xrr2lM/5Drl9MMc0Tdn5nPZPagtDGcleEdJz/V8i1FeaD3H5vf2a1pu7lo5zzqdJZcWfJbq37E5JVm0+SNdyoOR7lNpYa3tt/eVkpDpN05TVUYJk7u2hZftqaS1/o1Y2R2kut+xIyGOMEdWzVeet55Z47kn8M+ncj2X3ks7n3vUlkR3I2d6cvYzvhbzOucX109MTAOD9+/d4+/Yt3r59CwCL6y+++ALPz88AgMdHjaenVwv5b99+gbdv53PH69evr+lh/tTGKejivV/sRXF+59yizZLxV0pdy6T+UWsfD3LDGSm+dzqdcEI7VhDb6pJ/VpqTqa3VWt/aD7fy03LyS/uP1P7lzgs5m62U7vKHpXGWm/zynnZPpOu+1ydt+e2tOraeJXPzSWvdvXf687Qqczo949mv94aX8sOk9/Pzs1MnDWi9LGOMgTbreEdt/5LO89je5Xwf51x2H47tU6pPySdPdR5Hh8PhvMhzPA7F8ufz+ZoW29fw+crkcTqdr+lKAU9PTzh5uxij+DqVlZOdxgnj+/G+ICG1maGP3ejwzp4QD+3j4wO0LZ+RepD6gjl6zgqluJFkH7z5EoBSZVtUk5Vdn8ZBKb3Kl+5VkjNkK18rfXm2iPPL4vulfaknRiCxEdd1oNf7tiTuI9Ulp3/tDJfqIZ3DRZvR0K+lg1RGSZcWLV1zcfqc/NaYl2xfugfEPmGqX853C/uFhHasUK30LPESMdtQTuLLSOLh6di9lI9ZoxV32npWrp2PYkrPB1p2WbqGJbG82h7es9eU7HyuL6vzUwHOTYs6vPeAYB/t1TnVMXyO9ZP0fy5u26Nn6V5tHkhtdrzHlNK31FHyCdO0nvIp8R5Xsnu1eVWLk0r8i1pdpfSa7ejpn1adgZI/kj4rTmVKfb9SnT069sjOEcfPAufzGdOkVunTdIY75+1sb2w2RmJLgPZzg1L+Wnr2XKE9lFo/Hyj5JDV994xfr72tpd8lj8I1Vpeed2O9c0j3qNI6lpyT0ndFXioG1isrTcvFQyX17Tl3lUjrLvV/bc1JbJkxJjufa75Zy9c22kPrpc9sjcVky+fIUntr5OZ6L1J737KdPeNSql/q+0h1zpXfY5/uRW/8VHrul+wrve3f4h9tO9elMd98Lpkfsp67uflTi8Hc01eqEdub9Jw9TWsfqLR33zO2KZUnlfUSa+vq3xl/fY6wPPesdajpobWG9etYizT21xPjismdO0u6a63F/lbpfi2eKjl39NTdQrLn7fXTa3ZNGneV6NN6Zyi9ngYHa0OscU4fxwOsNqs6ts6tXL2l+9Kz+XiaYIy9fJ7Tx3EABrvIt0WPVr69/SCpozReA/QqNmztAH9pd063rfrWfB+JT70qr5dxiJafVDvTxOeY3Bk77qNgs9KyPdT07fEz1jK2xwJy+0ugZtNq563cuJbGOvfcY89ZK5XVa4ed8gDU/N/1HH750/n3ViS+OrB+HnPVdzCJzsAwDLBqzm/deiyMMXCJvFzsblXOrv0COwyAWs71VrtKXMtYBWOW9YQ23eN5nZR72tl4XrbmQa0Pe2J3PXmtX79/OQwj1DgU5W7xNyS6bmWr39SLN1j5oMMwYtD5r7Zu8SnvlW/vs8WF3TapfQSstbDKrspsqXfPWOXOBFprOOG55aXiHveOs0jOKbV12PJrgz8Qsmmtof3avynhLu/cxFmHYcCg13bEG4/0/RxjDAzM4nPu/Th/GW9nXP79OfR9Z6rUn/fcA1J6/Pswv9OzWk5GzYcp+dBpnbf1lPi0Zr3Xp0jjSbk8LXkl7jVOs5z1mpHGP3K89L7UI2t91l+O8eyv9vuqEh3usRflYkJp/feK7W7dx75VSOdsLc6zxV8LReIu+jL314fk5XaVryhKKa2U+heUUv8HgD8B4PcA+EHcLFz6B8xPW6Qz9gjgHwHwR5RSf1Yp9eN3VJ8QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkA8OfwTljiil/j4APwfg3wfwQ7j90Ilv/PXgI7l/G+YfQ/mvlVK/4Q5NIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkg8MfQbkTSqnfD+CP4fbjJ8DyR05U46+HVO5vA/DnlFK/daP6hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8NOzHVuDLjlJKAfhJAP8Mlj9+AuR/3MRH170/fpKWi+v5awH8UaXUP+u9/083yv3S4v3cFfNw9KGUEpULdfTK/pB86PqAdb+U+imXHqdt6d/e+mrEfee9L/al934h2zknktnSK5brnMt+TvO1rlv9m9ZRupfK2atLqc8kYybpv1y+1vxLqY1/b5m0XGi/Uiorr5QOAFqXf7tM2sbSuMbXe21JXL50XevL+F7a5nj+tPSU2gGJHcn1S6n+Lem58UjndXo/yJP2ZVqf98Didka9uI5afbm29fZD614O6Ri35p7EXkrqL9k3abskYxnPF+mcjDHGLOpJy5R0CPmMMdm8advTtV+rs1Qmh3QfkCAdl5Jd7rGdOdvbo1tuDm/de4Ndrc2lkv5pmmTMavtd7nPaVmNMt6++1a9sUZvnJWpzVlI+7r+STxbrIllrLd1y5YMeuXq894u+2euHS3Uszava3lWaJ625XLN3qR6SPVHazpLtVUpd17JzLusfWWth7RzyGccRwzAAAF6/fo3z+YzT6QQAeHp6ul5P04Tz+Xyp84Svf/2wqPOHfugTvH8/6xPqj+ux1l7rGcdxkR7nj9e1MebaPq31NT2+LvVrbh3l9stSv4Zrret+Tm29pvMh9l1b/kfNz53LrPXIzdvWnEvrya2DuG5nXJIH8N7BOdl8z7HXL2/VmaZprbN2af/+kN9rS/t0mpbmLY1h7RyQS1+MXyVGkRLmhtYe6WFAGisLeXvZclaIqe37rfPo/O96zuTO2yV7XYpBpGNRs0WtMQ77a052nK+2B+fshoKCtbbLT0j7xvz/7L1drG3Lct9V3T3mWnufr9z45uI4NiTIFyE5DjYJRGApEQriBSWEEAnxQjAB8wIvYAUCTyg4fgEEEQiFh0QIKWCZCMSHFIEBCyMRgixQwJEszJcdEhFf59zPffZea87RzcNcPWeNGlXd1WPMvfb5+P+kffYYPfqjuru6urrG3ONQoRj9Pr3WVpU7xrjqsyYDfzbP8+X6dDpd9q7j8Xi5fvPmDT08PFyu67PwMtAHX/2uRWzmF/77r1N5XS57FNF5H3vx4gUREd3f39M0TXR/f94XD4eDusfxvYvv1db4WOPVQhvTUT8whECU0moO5d7bqo+fKS55UrjUWYvKfF4f2OpDLzbBy57nQB9zXocnBtDyBSse34Wny/VOZPdHKz/yzBOPs2zpyPnCwuOftc70vXNPxbIfWv9bfen5aL30Fi39qczzfLm2zoOyrludgWs9XAaONm7S/23J4pF5NF3Kx+279txb14g8IzEP7X5Pny17Veu33kW0/NgRWVo+oydO42lT06stPu+lXmGvLXmsddCrv9Kac+vc2KN11vDY8VuxV388uuF97qnT8k+l/lrjutUOyLZbPkdrjFr+H7/fE6fs1d+qpzXee9Z+79mWfVhjnmcRfylPsbZALf+Mx+U8cReJZy5GY8cj7Ve47K0xjTFSiLpc3jOEdYbx7nfaevHqgcdX1/yuUvifctGVnGcq87hf3nvm8WNayH3f8lG8/jWn53/34Odm3rblq8t0q//antraJ1sxNK2u1rjLMd5jl2ScR6t3OT6F5nleyHe1Xe04DMfqJx8Lue/39FPq1xab79HRrevMkm0kLtjL15Np1Jey6hrduz0+sKddb7qs2xN/2YJvHJdjxcdQjk0rhnW9l/3Sff1W2i3YMn68X7K4tGsjPskIt6zvluedKle1rzn3/ZTqIxC1f3dx1rtl2jRNNE9jutFayzJdvlvOh0IxPi7yHA4HiiUM2RMNqeNyLx+tvxdT6ZXR5Om1UenFeOSZcg+tM0UPKdNFfw/58u6i2qYXL+4pHZNa7rmobVnxkEM40TSlRZnD4Y7oblrllch1Mbovj9KLOW6LP/Lrte3xnrNkXsu/luXqvEifVKtzC5Z96vk0Hl91qw9+rnNbbMXD1jGT89LzUVu239NWy9cfqUuTzZLRY5NLIooxUI7XeTrPT1THZeRsYK7RNKvvTet7bLmXl9JfW5Zs06S8e0+RSlnb6l5dV3nWeqH9BqT2qXUebrXr3UdG4xpef3wLI37EXh/kUMJq7dzf31O6P3hEJaKlfzCS35JrZAyf0zegFCilpewxRkq0tj29vXeUrf28xfjkVNT1r/XbkuEWa0M7u6Q0Uwhr2Wha/3Pj0fZvFSPf4hO+Lb3W7MWUJja/5/ZjjBSLz8bW/Frd3viYbC8Erb7rXqr5RBba/sFlaJ3JNFkrb+M9pkYIa18nke/fJlzraPeRP2vNo1Vn79lo+dF83neIVn1zzIo/lZo27hb2TKtjr61s9beOU1L7GynS1X+0bNHo2XzvOff8e31p4xOR4fNveT8/ei4f5Zax5S1xKmsNj8rA3zUS+y16qy75zuiLzNuJsn+x+JNE9IfovPuXpz/cGyjiD4nnW5D11LoPRPTvhxB+3466AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4VvARlB2EEP4wEf0YrT9wQkpa/fNtIvp5Ivppls/LqVF/TUtE9GdCCD84UC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO8MfARlIyGE30JE/xatP3RCIq0Q0c8S0T9NRD9YSvlSKeV3llL+kQ3N/kYi+ueI6K8abdX7D+j8IZS0oQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ6V6V0L8BnmXyeil3T+6Ij18ZN/j4h+spTyf9yiwVLKx0T0b4YQ/iQR/TEi+nHWbv0IS5XhB4nonyWif+0WbX/aCSGsrksplzR+rZVtPR/llnXxfu1pd69Mt+gTn5eRfvXkkXXVZ602tDxanTWtlLJ4nnNWy8lr7RlPt67rPW+nh1aXJrNMa7XvXUMjePtktSfTPTK29IVjPbN0rCcbT7P0X9NBq4/VVo3MC2+vJ1+9jvH6fTRL1l6b1jWXX+pCS74RQggXWb0yy31gi/7xunptyHLWuujJ5Bkf3xgUKoWo5EIlZprnmcLcLuexsVtojb1Hl/fS0l+rfT4WfP14ZJTj6LVDrXq1Parl61hrcgsxRrOevXt/HduWnFYb0nZWen1u6cNI+1Y+rlfcdmny8n3cswZ4fURt3fTK22JkXY6u15b9bNmFyqhue33qkX5o+1JLX637veUtuax88zybZVukpH+L0+NDj9DTTa47I2e+Xr6eT+YZN7kme33pnQ24jtW6SykL2zlN00LWWl9KiY7H40X20+n0lO9E85wWeV+9+oRev86Ldu7u7uhwOBAR0f39PStfFuMvfcyqJyklVRd5f2OM5jmvtS9raVIuucZq3pSSqcsW3vUr02q+RXsxUIzLMjEmSiku9oTemZZoqZOetXAeIy1t21neGhe5juSa5Wj95GlyfczzrOZr6Ys1fue6eblw0ZWevmltevyIVh3anrhlXuR4r8c8UoxxU8ylhU//xvs24rflkCnnmeUhenh4oPho+7IjWLEVuVdocuacLzLUPHUNz/O8eFZtdynlci332vv7Qq9e3RMRUR3Kr33tSI/HeNkXYowX+xNjvNhraRM1W/50RSEQTdNEmdl0TXc0382zb9b4Ve1fzvmy3xyPx0v/Hx8f6c2bN0RE9Pr1a3r16tUlz+PjIz0+PlJ4iBQ/eUEXQxcCff3rX6f8SabD4XDZ016+fHmRLedML1++VMdsy7lcrjmvX8fTWzaw5mnZm8JigvXVRuusIfW4js0yzlMu81J5eHikdFr7PSNxm9Y+Ip/LsYinTPO83iPmsLZ/XjvMfS2Jpz/2fPXT9sQoRwghXORsncd4e9beben7yPj1zrNyb+rFkIiWcXHtGW+b20XZpnXfklNL52tKPuu9V9HKWLEebS5bZ5vVmlLmQpvfnsyy3MgzL5ofY9W/RUZvPsv33YLnHG2NfctX8u5lvfN1y59v+Xe9PaGeba06evoufY3C/LBSzj5SzplCwy605Lf8R34el/LXMt54nVdnNblaa5rjsTctpJ/YiznxvN5rzcbsxVqjnnNLK593n7P03+sraevSe7Zuydxb71pZT5xOm7vefFp5R/zxFimRiL8EmqaJpilQjEXknShOMlZj+4ackViAd96JdJ9G+jKeNomucalyIEqp1lme6kkUU//c4vXv98wb16XRGGtt35seAv/D272Ox2hfRuzriF2yymnPLHs0On5yf/Pudb09QtORXv8t2yfXlZTHc65s9UNbQ7y+lv/e8yG0emv5KZWVjerNoXcP4OdBKZe1r3h8PQ1tXLfaB4/PI/e3W50DvH3Wzq7eNnr0/HOZZ/QMoLU1EtvxymXV1zpftMrHuF4XZ11e5ve0ec1LRMTbiDfV5RG2nJ2XNnL97Bbn8S2yENnxHG0OrWcj9GxXnspqbqdpWqUdDgdKnf8PaSz5qQ2+b0T1PaSmT573FjJ+JffDfJfp1fSwkOHFi3vzXGr5jKN454/L7bWro7+BkXV7rr31bsHj34w+C9Os+hIpJ5fvvHdv3Gr75PqoaS1dsPwtj05bzzxnBW3f2eq3X+tY1tfrd8uftuK/FS1e5JNx6U+H6frOMD6dl2KMFJ/mcUoT5Tw+Fx5G3+WqdjWsfcEY1+ukRZ37EmVc4Rw/SCVd8vEy8jqEQIeQKKXlP+c6HA5Eh2XavjW2P/0WuM6diSiE+PTnnBZjoEjn3xmlG/hZq3NWWuvKNCWaaDqfwbJ+VsvGb4p68VDNdl3WVCPOytO1thY6NoVVPw+Hiaaw1CtPTK+Xttdv8JSx2rylvm7xM3m+qWhjfqDw9PsDTx0WtzhfbJnrWyH3y/PvT9ZrKlJU83M8scWR2MQt+92r63xGXZfp6fNIfzxo46fFfWKMlDu+SS8GskemVv3PeXbdhn2+GSXGSLEov1dIRfFBEiVKi7LavBa252jPeR2c+pspTq9/PR+7t894zgA9clqfyWNMZj9b8nrat2wc7XivNRp/lPla79lvtc7O+2j/XGfxLvepEZY2W+/viJ/Ssn973wttHTOvb3er91YeeSxb0Tofe9L1+Pe8OnfOpxPNuf17z3GfeKknlt5cbfWnYw28S7b/a7gvMCGEHyGiP0BkfgDl/yOi31NK+cPlRh9A4ZRS3pRS/vknGR5E+/U6ENEfDSG8vHX7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcEnwEZRs/Lu75B1B+mYj+rlLKf/e2hSil/GdE9KNCDv5pn19PRP/Y25YDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA94CMog4QQ/kYi+v10/fAJ/wDKayL6vaWUX3kueUopP01EP0HLj59UAhH9488lCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW8BHUMb5A3Qdt8D+LkT0k6WUv/QOZPpJIvorT9fy4yy/I4TwlecXCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9O7FuAzyO9n14Vdf5uI/sQzy3IWopSHEMIfJ6J/50mm+lEWerr++4joP3gXsr1tSjl3M4Swehaj/o2fWkZeb2l3BE3GXp2eduQYjMrG81sy9mQfIYQwLKvMNyqP1Y7UhXpf/845u+vl1znnVX3aNS9XSlm0V+vQytd8WpuW/DJvr18e+eW4Wv3ytEm0nFc5x9Za763nUgqFEIbW0pY0K0+rbU89fL3wNO1aq681phZeeT3zT9See4/Mli3v1d2jNf7auLbGz9Pflq1tybJ1PnpwO3Uter5urfOttMZPrhNtj7jlPsRp6aBnzr3zwNeyZhe22tspI7MAACAASURBVBqZ37smtHWlpY2usT1rcqTurf7DSFnN/o7W1bPRvbpa+2qvXa/NsvJ5/GXLlt1iXN6mLvXo2ase0teTz7TrVl1W3urjyOc558V6tmwal1PzI2V5SWsvm+e50Ss/3v3S0xepU9LmjfhMrb2jlNL0XTQ8voN2XcvxPuecL+N/Op0W16fTiYiIHh8f6fHxkY7HIxERPTw80MPDw+IZEdFhmul4TE9tntt6ePOGTqe46GPO+SLL6XS6jMXxeFyMS5XlcDjQ6XSilM51T9N0yZdSutQdY7ykz/N8uW7NnRyr3lhWTqfTah5OpxOdwm38oC3kmCnnZfs5zxSyz5bsOYO02FJe2n1tLut8e+2sRx5tbXn1h6fPh7wqF2OilKLpn2yZI++ZwDpr7tlT53mmnK+2O4RAOc8kzfnWeI5Wxkqv7dS/eT7+TJYf8d3rGWi1T+R+OflMa0vGbLi9tq6rjZTlc84X+y33OF5ejk9lSmddfXpKRESHA1GhuBjnLXjOytb5Xq53795r7YfauJZS9LG7L/T6N8/Em/yB3/VVCg9L2xRCoGmaFrJrY6b5Xdo4jJxDqvyW3yzPlx7k2OVFLOA8ZvM8Eykxx1Y7i/6nQiHU8SMiCnQ4TBTLvu/w79HRuzhffI6nVEqLdbFdBmnDzrazH4vt7UUali332Hipo9ra0/oyEpPZYk96ccUt7zo0OTy6640dtM4Xrb7XtqwzSUs/enVrtHyCW8X5trLXl9zbnicG0krr1dXzR6x9zGsvPMh13Frz3rpk+RZb3jHusXFEtDhDetos00SPbL8KgWhKE4XJ117P97Tks9J6uuQ9J90azznG68959xRP/HTLum7FcfjfvbpkPyxd4Pvo1vgyb3PE39aue/VvkU+20dLp3p7ei39ukWdcL5b5lzGK67OUEsWkn2977Vg2rWXrPTY1xrhqn/u/W3yqc971WuuNsTYO3rXovdfqGbWRnvcTLLe7vhH/uUdP9/f6h6O+jyf+Kt9LWLot821hq22VZTW7TrT9falnnfF1UUpZxIO8ddY1ejotZXrzkOnhYb2/cVJK6t7niZHWMeBxE8+6bqV7x+xWtHysLfaypxdbz8ianm7Re+8Z0LLvXF975wpPPGHEV2nl43Pn82XWNjBQ365ZcvCsIfj2u9G44N48t+JttWX5jnv1wpMmac5NzIo/GClG7msR3d0dKAXdvlbuT5kOh8My7f4FhUOiHp4zlMyjnY/nQ6ZpmhY6fDjcUWLvCrR2t8xRTxarLe3e4x+OMFJey+t5H7CHPeuAiCgeljpKdH43n2ita7f0X3sxp54fwN+/VLvdOqd7zictRs6aVT5vfVZdvT3tXNZXr0d+y7+r50Vt/i3/mFP9n3meqf6GJJfrb81rkTnPxP8fzZ758pw7WvmJlr5qq+2SiGJc287l+yRdlpWcsaYt4wcTTWp+rZ7lGrim7T07WTL38LS7115p+S7jPD3JwMYlxkiRIk3TtPqHb7ewxyWtY3B8DlLKVN+BVg6H6fzindbxrZb+prT+XVlKiUpZ+hMVy8foraswBbFv0dP4Tc2ye+IsW+uo9PyG5/CFvXbctuta2n65vbZzZC/W8njPoJUt73HP17k7Vqa/w+Kh7/p8NDovWbElKSXVV7uFfCN5Y0zK3pjMvfGW8mj5rb2oFQ/Y+451BK1/OeXVGI7O71lHlrbEsiPS/9DyLn2McJGJnubVkjkyP85jF1t5Ru3S27D9IRi+lqOflr3ZI9fIWcZj71q+ques5pkLb4yxN86fFrz7YgvTh1f0auu+esuz+h4fZeT90S1onXnlWdX7boXvH711oc1tmiYKeWq+u/effbic1zatOqU8Mrb9ReLTZ00+/fydtHxDEp7u/+NSynfejUhERPTTdP25vlzFP/TMsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AYfQRkghPD9RPRBvRWPf+aZxVlQSvmYiH6e1nIREf3WZxYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3+AjKGL+58ex/ezYpbP4ncV/o/FGU738HsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GJ61wJ8xvhS49lffjYpbH7VSP/oWaV4RmJcfsenlKJe35oQQjePbN8rz2jdMr+nvJW/lKKW5+m3GNecs1seTZYW1nNLN1r1cf2yZK7lSynDY8PLaGNszYVGCGFRTtY3Mn8eOaQ8fHxKKd3x8qZrsrXGoFfX6Bxp7fF2ejraa68n85b1NtL/nr3Q+sjv6zxLW8zrTSmZ7VljxfVH6lZPdilzq88j487LtcYtxui243LNyrY9/fU+t+Ssf851RIox0jRNNDVcxJbeS/m1dH6vrbEt4z+yLnuM7DMt2S1dG7HtnJ69CCEs1tvW/XrEfo/YlD02+m35dD1ZenNl9belo7wOrv85582+Y6XlX3G4ze7JqmGtaylLbccrlyWjp/zesZO09quRdrbIJXXF2gdbzPOs1mexRa+tvd+SsfZjZG60dVHx+vZSf+pzPkajco2cvzzrYHTvKqXQPM+LtXg6nYiI6HQ6Xa5fv35Nn3zyCRERPT4+Xq6/9rWv0Te/+U369re/bcpERPTee5G+/e3vXaT9tV/9a/TJJ3ZfPvroI/rwww+JiOjDDz+kDz74gIiI7u/v6e7u7iJvva5M09nvmOf5Mjfcp+L+Sr3nf3N651mNVApdvyHbRtO3ERvR2jsX6z9XmWgh19uMc1QZzn/0dLn2Jdpab/W51if9UguPr8XlkM/k2veQY6acZf0z0WzPRct31c7Zlg89UjdfFyPnCCKiVM5nASalmq81fp42rXXtPWu1xqnlt8mxadkQjszP67Tikbxf3FZvoZatPr48N1YZ+Fhw3V/HdpZrrT6PMS7asGwv90vmmZ/1MoVw3oPmuBxvvsbrmEj5qgwaPOYg99JahpedpkmNU/A+57tC3/zg1aKuL/369yk+XsdTYyRupcHnq1V3lb/lk8k5H4kH6P246oI1/x5CKGL/KCt/tiWHxw+11mSr/PlZzR8ua6GH14/ma43rHV+v2ll9Efuaz/u+PCvW7llrJMZo6pTHtrZ8md5a8OrHiK9r6cXouYto/Bwq59LCY7ssrLN4K3baojWGmi3UbOlzM2pXOB473IvT3ar/1plwy1lB2ltrv/D6S7L+0bRW3NFK9/roWro3Dtlqg++dLj2J8ezPX2uk4+lI4XhU26hoNl7zNyRbYm/evnjr3OLHcF9RMhqr8q59r5/uabu3942wRS7PWvC06WnLk3YLWravFQPYwkh9nrNgvdbyTmS/0ztXs4wplLm91qVP0VpLFblvazbPjB9t8JN6tr/ktf+Wn/reksGKf+zB07+9525rH6/zXwo9/alpS1+9Is/sFpaNH9F7z15q0Xqn70nX6iBa+rQj7ffGorePjsQSW2mtulrz4fF3Wraojlsr5qW1cTgUSukk0ibKedt5wjMml7gK0zlNF+Q+KNuw9lVvTMDDFv9EnsfltddvbuWRfR/1MWS9W/bI3nPvvFjtW+/kWlg60zrDWXtP2z7YMU+PjNe/+dqx96KRsezlGY0/eEglEH8nEMI5tnpKfn3cso57Nrz3XtX7eyxef+vcytPkmsx3mb4zPS7y3d/dUUrLtMPhQLEs5ZJzlsp8Ge+abZomKofJlEnriyevpI7ZfMhivw704sULSsmvX7fU6z0xopH6rPUzItetzpeevaQVD+L3Hh+k2qtR38fb3p5zYLvt/v5o2QivvZF24RY+Yw87trXMF2M0fSzremQuvWdoK+/l3dwhUoxnm5Li+T1VjIHi0/+X+TAdiEg/I+yxHVIWr33cMm9a3Vo9KREt37M/zWNp/zaP502pUIzr/aoXo+zV7WXv+PTqGd27aXrqJ5vjGCNFSnQ4HGgy5mNXHGJajy3/DXWay3p/TxOVSd/LW32e0unyG6nK/d09pbT+vfaoD7CwL6ms4tfTdKBDWLaz1dccntcbMKJ3kp4/eAuZzmO51gVrPY/W/xxo+uDdO7x7ZwiBcsor25lSpGTsHRYjdueW7zI8+S0bvkwvXf3Qxvi59aLFFhvSiy0R9f261jn8FuNzq/csrRhE62zKH3G/gpeZQ2Z9PvuV9d8B8bLaGrymrfVP1uFdO7dcP1vo+Vuqv0bXcd37nmHdXlillcbvxjh79n8vo3uqV45RUd6WPbvFue0WZ8LePtmLAWxp823QiovsjY2MMvq7h62xrNE4k0eWa3m+xp9sxjv+LddnhdtHyT/fvGw8a/8Loufha0b6h88qBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+AjKGO8ajz7NHxoZP0Z0DOtj7cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBOwUdQxvhm49n3PJsUNl8x0l8/qxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyAj6CM8X81nv2tzyaFzXcb6V9/VikAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhgetcCfMb4FSJ6Q0T3RFTEs3+AiP7TZ5doyY+I+0BnOVsfb/lMU4qchk8PIYRN5Xp9ks897YyMk5X3VmMt6+H3VhtWHz1ltxBCWNSXczbbrPfympfjz2Q6r0u206pbk1PCy2h9aLXRe+aRv3et3VtlPPOr6UlNs2T2yLK1zT31etH6Y+lFCKFpL7zrj9/HeP2WmlZeG2OuJ6PwvrXGlcsodYDD5ecy8nRL3lKK2o7Vltde8T5a/fXqbmu+c87qWs850+l0IjqZRd37G9e5LeMj1z6/5nPE2+npZE235GmNc6svfM6sfrXaqHqm6WSt91Z7XmvvaK1Py97t9RusdbS1vpHyHv+i1faWvlttSr3aUkdKSW2/Na/zPBPRUvdqWsVab635kmW0/rTkGt0rZBvc9nvXuKxPu5Z49j6isf5IOyDv9+yjo+toxG9/22cIScvf4Ta5rouWLDnnzWe3Htp8aXuG1r7lD9c1KvcQorMd4Gv07u7uUuajjz4iIqIvf/nL9Pj4SK9fvyYiom9961v06tUrIiL6zne+Q9/4xje2dJWIiI7H49mPeKJeT9PU9FX5s6rz3rVn7Z2c1liXUp7GbVlPSommSQ+Z7dUXz/qZp8xs2XgbvbNiS7arvq33JrlH8Oc9ebS83AeSPhrPr7Wr2f0eW/bXp5KrevbY45Y8Xv9R2rvROolkbKKvL9ymWu3Xe26LRteMnNuRPcYzftbZsNoTObfa+STnrMZ2ePrpdFroyul0uujyPM8XG3k6nejx8fGSfjweiYjo8fFxVabm4+3M87yQq16nlOi9l5G+9rXrN7NTmuh//6Wv0ek0XeYlpUQvXrwgIqLD4XCZ52ma6HA4XNJjjJf7KUSa57p+AxGFi0zaebqu8YrUH22Nc72R9Ur4M+ucfxmjeR2/enw8Unz066n0dfm1td95bPLIWbt33a0jpae5u8LXwRbO7a/tAZ//3pnZExsYYZ4zlZIXe2nOYzbcig1o9/wcYp2ban2LtTKd913vGbXW6/XPt5zPe3j3K37NbZQXS6aernp8SilfRdoI63xZbZeMPb6tswWRz/e18nn1vhWbqvTiDm/rHOhBrsneuuLz6okLas9G5SLyz6UnprEnvrFFX6X9sfZey/55YupSpzwxV8vGrOzjPFPOfPwyPT4eKTz5WVafPDE9692JrG/U3vPrLXv/nlhla31bZ7hW/6RdHWWLH+TxL/buTz1/oaZZtsBzht9zTmqlS3n3xvg867WXX/OprDpb68Yzx2d/UfGjCtE6FpApZ7/d3Bo3sPxIjx2S7NHzc5mnv6lchkP2q+qxnK/WPnwrf6lVT0sXrdjKcozEdanjUWieT5RP/T5Y+4lmv7b6Gtb5dEvcjOf3xC9l3Z52tvjnLZvtPWvuQb5n6NHyaax8nvW+8L/C2j7GEFfnfIkVz7PWq4wFan+P0JqXLe8Ftzzjz0f9u0rP57R8HStdlvXK32v/00TLV2rNw237wv3Afhuabz9RXtmDw+FAedp+Buf1t2TwpHuofZ5oppSW7U5TosOULjJt8WW4f2vFzFqyVVrvd6191HM2I7J/myNtwzzlpzG61nW4u6dper0od3d3T1Nc7xO8/vuUV+8c7+/vKRz8+4uU05vncp3WfZ6mRKkk0+/u1d17p9KS2Rt/2rPHe9d4q849cf3eWcfKt8v2pfEYVO8M3yt36ziFR7Zb7BFb5LawfHKO1ueUCnmbvtU492JPWr5eHG7k3N+yB62z0q3m61J2CopNnGiiNNxGifq6S7T2pVVZ6PyuVfZzmhKVaTJtRO99xF4/4m37lNo6vs7Pk17EmidQjIkiRZqmpP7DN29sxJRlOrfBORwOl3mc5rLynQ6HA4XDwX1mqG1Nyp58d3dHce7/kz7P+8IqT47rOE1KaaGbPSx7e0sb3MNrtzxtvc09i+g8r8s2iFKKVMQZYmTv3xq3HvHvenLc4vwv4xFyrIiefqtQxs5GXjw+ZSsu7pmzbTKu7X8z91M+j+8xyvq3k+d/S1M2/H7Eu/dvwRtf8MZuPHW14PnmmEn+/jSEODRfc1z/NirGs+3W+s6rC8Hym9b6W9tYtqX7XlveaVvPR8+zW9HWbKvaPbHk9plJyrBewy3kHv9pwl5D2tjf8Mz7lnmbsnn2Dmu+e7+d6KXzeOgybV88xBMz2KrDNzn3bcxX7Snn/O7F/g3Jtt89XOtoyaytrS8q2z2ILyDlrJV/npbaU57uf18I4eU7EYyIQgjfR0S/jcnD+YXnlwgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/4CMo4/y275h8b+TIR/ZFnloXzhxrPfu7ZpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBB8BGWcn1LSCp0/iPJHQgjf/8zyUAjhe4jojz7JQexvIqJHIvqZ55YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv07sW4LNGKeX/DCH8HBH9brp+/KQ8/XmfiP5cCOFHSim/9hzyhBASEf27RPSBkKf+/V+UUr7xHLK8C0IIVEox7992+V7de8pZcozUW+vgZW7VP62NVt2edlt90/rgHQvetue6J6PUGavNGOPlupax0onokp5zduliKYVyzmobsm5v37R7WTdvX5Nfy1ep8sp0fi/TR8bcopZ5jrVgtd3Kb823No7W2NZ2+BjL9ksppjx8/nryamlcr3nbW9ZZq/3eum/1Q46NVb82riGE5lyO7j2yzVY+nle7l/PqscsxxkufLkXDuUyMcZM+3ILWWt+z9ols+1Ntrnwm2+utgXrvGRtLF2U6X1f8mTU/ls5wXWjJF2NsrhNJb0x6Ps1IXdq1phNamldHtvgIo/5eay176+L5PGVa61mz3Sml1RrR8vXm1aNLt/B3ZZnWOvTUq5XXdE7uC9p1LZdS6rZvrVF5z+dzZL1qclr1akhb6am35XfU5yN49I/PX2989uxlXl3qXfee8fZqm9M0LfaFGONCf2r6NE2X65wzzfNMRESn04lyznQ6nYiI6Lu+67vo8fHx8qymH6aZvud7qlxEIRD98A99hR6PceEr3N3dXXT8cDh0r2tZrnOary7vNR3dYis0HyDn+Sl9+ayOmdW+Vreld9beZdVbSiZNHTxnRK2din/MbL/Lu/9uaZ+P+WhdrbGt85JSUn1C7dyyrG/dlkcnNKy9v2XX9swntx8y/2VdHmcKIYpnE01T6tZfZWylWX32noNG/SW5Dvi+HEIgikS8Gi5+6zwtfWruH1XdTSld0qu+1TKHw2ERw6ll5nm+pM/zfLHD1Q7Vey4fHxdpT6vMMUZ6/71E3/3d09MzohAi/cAP/A10PEbVP+Hya7pTn92fMh0Oj7VVCuG8H5QpqnPc8pvq2VQro/VL0vL91LN9Kgt9D+G8Z8bsj19IXdDWMk/n+VvnzL3+giWjNr55ninnslgLOWcKg3609wzptWMje7un7YnmJ19p2cZIfLAVL7Xms+fTS7b4pa1zQqtMax/vxR553h6aPNXuaG1IH60HP6e2yrT2EGvMuG7JtTQaH+B1eXS2pwsjvtJI3Vx2bxue/XlvLN6ri3yO+Bi37K9WlzcWy++lvbdk7PXHSrPkHY0NyXU2Er8bkWsknWh5nuXzxWNTct1Yez8fFz4vK9sWWDz8qVxKiYKIh3n7YOXndcl11YvNbIn3eOLFWtqWtdkrb/lH8r6XT8PrB3nSvXtn77rXrlUf1xMed7POpiN2Y3Q9brEpVpo1315/fvTMaMmzlVb3A+nna0uPW+vSY3M9PqU8m0h5PKzGk/h8PP1txImIlufULVhrs3UObJXn9PSyPw963SkmCmnbvs/jAS07tDfuqd23sHwrWY+cl9ZvP7T6S9n3vtOidZ6QbYz455Jb/w5Bw9KlXtlzzF33S638nvalHNa9py6PT87rbsV8vPVqaPV69tTWvmTprLderYzX99hiLyxZJK1zn1Zuqz/n2fM974hWtiCu4yB8rUg70FsX1rlfKzdi43t6pr1P65Xr+UuHMFOMaeH73N3dEx3a7wRGdUJ75n234u0rT9s6ftr9fMg0Tcuf1t/d3VGMiZU5p01xOW5yXdcYJedwmKgcxn+6v3ntxULctwnhar9649bbL60xVuVQfNaeD6zNm0zbYwtb68Vz9uj5lJ4z9Ih8WxhZr548nrjgqDyymq3zasVWZJx2FGsMrXTPukypLGwK0fldIj3ZBo9PoclQ87f8uhE5tTynab7E+1M674UpJUpP79/u7u8pTWsbN2KHvT7tJl8wEcl349OUaFL+SVV3D5oCpbS28dPcrounTbms9HKaJirTZJbz1K2le/frPXlG80sdizGd/TU2vyEEijFQiomS7ycMg3KudSmEyPR8/Zs5yw9srT+Zr5JzVv/diHf++Hv/y/pO9KSbSz8slv66GY0VSm4VqxvdC0b65cnjnctKjPLdzVJPbrFn7inXm5cRn8Zqq+WXr/23Wj9P89myW73L4Vj/BqrXlz2cbdt5XW5lj19mzclTyvkdnthrrXccW7hlPEPKMWrHvDrWq6Pl095in+2dg2KMlMJ1ozz/Bqz6fdc8hcl09Qv1Nr06ttUGj+iBd160c+Uttiav7bnqgu/cKn3zvfvwrbDe47b6IR/FGClSdM2dV4du+U6wV2//vM7z+trZwpYzj5K6ytPqn2fte2xC3St6sZEee23ILX1KTu99o3x2tr+1zDmtngUsMuVlHXTbNfBZYrvH9MXmXxH3XMO/SkT/ZQjh+962EOH8AZSfJqLfS3T58Ink33jbcgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsAd8BGUDpZT/hoh+hs4fHeH/G5Dy9OdvJ6L/JYTw978tGUIIv52I/jwR/YNSPCbLf11K+R/elgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwCfARlO/8UEX376Zp/CKXyZSL6z0MIPxtC+Htv1WgI4e8OIfxpIvoLRPQ76PrBE/5BFiKiByL6Z27VLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb4vpXQvwWaWU8sshhH+SiH6qJtH5QyT8YySBiH43Ef1XIYSPiehnieh/JKJfJaJfa1QfQwgfEdGXiOgrRPTDRPR3ENHvIaKvsrp5u8TSCxH9i6WUX9rcQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAngl8BGUHpZT/KITwtxDRT9D5wyPyQyj8AyVfJqI/+PSHE5S//9TTHwn/2EkRaYX9/R+WUv7EaH8+i4QQKIRApZRFWoWnt+po3Uu0Oq00Ld2qf0s/PP3rsaUOLluM8VKP7FutW7ZR73tjrWHV5cWSkY9/KYVyzsOySXh99TrnvJDZatPbL88Yyrq2jLtVX61Lys7725NHEkJY6NWozHwsPW156xx57tXTEf2tsm6xUTzdo9u1DU13LLvG623ZuZSSKqvWZs75ogteXZrneXhetTWp5d2y3jx55H6xZf339iarzfOfmnj+D5fHu4/21mprTbTk5PVpdVs6WdHsqrU/t9pptc/rtvYYeV3XgVeveBmLVr+8OjW697XGxEqTYyLb9Iw/H/cta8fTnszT0/GeLmptWutCa2uPfzvqnxGtdeEWfpHGqE9S9wQie4+o5wMLj2/RmhttLni61EuuG9wPbPl9lo6MovXRqnOeZ7OMRsvejO4d1niN7G3WeHptP2+/dV/TvGuC+297fXCO9Lfr/BFd18k8zxc5c850Op0u6Y+Pj/Tw8EBERMfjkR4fH4mI6OHh4ZJ+f1/o8fHFpb2cM3389e9QzgdKKdHhcCAiojdv3lyu7+/vL9en0+mydx2PR5qm6TIWKaXLePD9TZ4zNf+Xj6UcVznG3GZo1Ocxlifds/PusYOt/d7U3aQLs/UMrdkVbX/o1e+Nn1jrTZ6HK9KHb7WjzWvLB+NjzNdKS95brNeeXyZ9h55fUK/36KIcu6teZKEb53HL2a8jLV3w+oxW+mh8zLePBqrVhnAem/qH1yl1yZLFOufye2m7LZ/A2rusuW/18/6u0MuXj4u0jz68p+Mpqba0Z1cv9aZCKU2LfPf39xQOuk33po3acaL2vPB6L3liVtoJq7b4+LdsUuscwMt7NJ/pMwAAIABJREFUYjp875P1tPTaipdYNqbKo4li7ROWvzbPM9Nl3mZ9nqnM23zani/o0bF5zpRzUfta8ewrHrw6owvRltFDKy7nPTd7bDDfS0f9a6nj8lmtL6Xksn/e+K91vqjlt5yBtsRZRmKyFlVfe7baWj9bYvVWO3zvu5Wv7LFdmiye831LRm/MZW+8ZsQn6uGJ7ch0S+56bfmKtbylV9qcWTFZiTc2Y7UjY3aa7ViNUUorfTidThSezsxaGY/tku1LffX4Alwubb33ylvyS7lG7JEVB7Pa6snZOjf0bJd3z7bOIDLdcw5s2VvPGY6X0/xWq88tP8xqvyWbTB+xPZ455jbaE1vo1cXbHtE7+dyj6+eshYjC5T6EQBSUWJ7oZ/2bx6lH8e7jPG9vfWnz7DlLX+xmKpTzMv+cZwrZp3+aTBI+XiN7gacN7zmulSeVwOKG5/RzzOCpHLu25JLxBX4t33NoZTz0bNQt4luybnkmqLRiuZLqR8p9nOP1abT82vnekqn37rV1FvecWbQ2pS/hhbeRUqEQTovnMqbjqU9rn49Xby4tO2PFtlqM2r6Wb+s9q1r2csva2XJG055Z4z+iK6Nn9b1zNIr3XGTFyXh+ze+qaTHGp3jLOt5YbTjR+h1VS/8nmldzkVJ072uS2sfemttyJmgRQqCp1Hd11/S7uzuiw9oubpHFGpOe7Rw9B42mewkhUFH0Z5qSqgOpLMctxrjc43Oty7+OPGM7RKKF7te6WmuNaOm7SL9F82OkbZXzr/lI3rNWL02ry5LFytvK32q3lWf03CzLefzbZd6x+MsWPPqp+RpWubNvU/NeY8S546tJ+D6q+XncD+VlRvGcYbboSqsdT5ve/J58XZ2ZArPZ1zj79RwVqRR9LxjVx5YebZW/pKLY80ST8k+qevtzmALFuN5Tp9O0KmPVO2WiGLnOnt/Dlqn9T7z27INen8xD6/fdHtbt6r/p6LWv1edd43w/tM+j8r6o54feOFr+fiyxazdH5txK8573PM8sbvXudbSOkXPrLdu/nBdyMf0tyags8qyr6Wur/5Yf1srf8on2cq6z1n9N854vRuNJ3vit9u7Y6894yCmvdMTqd88mtWRpjdEWWnpmjavHd7HSvfMq2+v5/Vyve3Ga0XG7tr/8HU6MkSL5x+i8H+l1t/cE1neja9pa09aiJXNP30bt7V7dHHlHkdTfiS37ab3H9qwl/b2gf0+yzpCe/fltx/W4LHt8+i3zLfc+z3uuLW1qPqy37PUd41WWrWfBLf75WN/b+09rrOUY7RnzLX7nrc7gXnKeV793OT4eac7Ld2T832icTqfLv714fHy85Hl8fKTXr18/1Zsp393RX52utudwmOgXf/EX6T12Hpmm6fLvMKZpovmQ6ZMvf0Ixrr+f8EUDH0HZSSnlJ8M5AvfHiFYfQiFauhFey23lk5oq2whE9OeI6Eed7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8M7Z+GlowCml/AQR/RgR1f+1Jv+ksvwgShHP1SqNP7w+7QMo/wkR/UOllOX/8gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE8x+AjKjSil/Cki+l1E9Eu0/ugJ0fLjJfwjJhpaXlmm1h2e/v7jpZQ/WEp5uEV/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4LqZ3LcDniVLKz4cQ/jYi+peI6MeJ6H1afgiFqP3xk24TSj2/QEQ/Vkr5Czvq/cySc372NkNYT6GWZlFK6WcS+awyvbo8cvE8Vn1WPSEEl2yyDa2+Vl94O96xkLLVNr3jH2NU9auUsqiD5+EyynxSDktuS/4Y46o9Xh9vT5Obl9fGUl7z+mRfrH5Zc96iN589WXv19NocKafl98gSQjD1j6eProvW89566qWN2LTaXtUxOb6y7yMy1zotuJxa3lY/SimXtcL112PXeN6RNnv1yTr2zj/XPSlXjJFiDBQjyxMDhRCfnsVVnS2b0ZOJP/Oso9az3hhvWRd8zCzfYnS9c1m1tcCf97Bkt/YpL6Nr3YOmDy0dkeMx6ttwXdXGXpPPq4sj+4XXJ7Xa6JW3/AD+3NN/i9a4jtbRGqu9vrv0YzQ/jMti3Wt1tewN/9uy/byueZ5d/dljrzx+u/QvWu1tsbc9GbU29/hhEi5fSkmt822cF+v68IxP79yg3Wt6qelrrS/nfLme55mOxyMREZ1Op8v1mzdv6Fvf+hYREX3jG9+gjz/+mL7xjW80ZX/vvUh//a9/7yLtV37lr9Ann7TH9Etf+tLl7w8//JCIiF68eEF3d3dERHR3d0f39/c0TedwVErpMqYppctccqSN03wd7d67Fud5plJqv/R5bdlFSzZNx/lctjj3pdbZza7KsqxrnW726clH1OqwytT+cv9a27usdWOdvyuWrzbqR1g0xyde5+LcZlvGen0r30GeVfga2WtH9faW93KMNX9j73mSY8U8pCz8vrXfybnIOVOOedXO6XSieFrqt9R3eW/NYe8cqsmv+RF1TWl7idXH9Xl8XtnCh8cHOh6vesTnldtbfi6s6Za/d5U1LtK8tGxDL4+33qWecNmCaidbNo+Tc27GTXvINup89exipXU2b50Pzve6rW+1QbT2abTY5Lk+vfyovZZ20EKzvXUN1eRSCh2PRzqW9dz29jhep2zXKlfrtexlLZ9zlXH7utHiOPXv0XcErTyjPrAcP+3a4wPsoRe/22KvNBsxGq9qxfD31GvhsWst/ZbteH1tDVmv195p+13PBrfWnybPFr9mr55a+7j3/OzZhzxxshG2rptWPVv6z/XHGwMZkVm7b619K360xY9prYsRH4mPUYzxrcXtvLFEy6e3fE15Btoylt4zeO+9QO/86YkNtM5XWj09mbW+yTnXqOvFilto9OIiXP+tc48sY+Edcy6zJl9KqenH1bRznmu+0+lE8xxonpf55/lE+aTLPTJu3r2L04olWuleP1DKWmK/nGUXW3aYj9HbjNla9Nrn5XM+++jn63OaPFeUsi2+b7XbOvfwuWz101pvsk5tnkZ8Si0W3/I1evJq+Sy55Hrv2dHWntxaVx6b1arX8655xA+WzPP690in+UQnYaN6cQFP+549vuU7yWtLPzV92qo/VvoWv1SWtfJ4YuAe/9Bqp7UnbvGBW3uEJ04n83vGzMNomdY+G0KgfMgU4/Kd0+EwUSx23Le13lM5/56GZ0lposMhqfL05rzXX02u1vryEkKguzhTSkt5+fu6VtktMnvO5p629pYf+Q1EmNZxlJTi5f1ZXUcpJYo5Ls6mMmay9DevY1H31C2xCElv/Z/rXMcTR+ZcvsPV3ul66+L3LV9/S72j5Tw+zUhbli0flVMbX2uP5O9nuY4REcW4fv/eOyeNINc991u9ftgy77W89ltUWZcnvT7bEs+SMnt1xJPvQHFliw+HA9Gh/c96RnTWKuvxt5r1JLrYwzp/MUYK+WnPTJGK8h6m5teQOuI9O4/st5frqcp/fTZNE01hPfa9MT7vn2GVloq9hiXX97CXnOff00xv7594yTUqaZ1PPXVXrPhXq84U85PPxX2ISIEixZQoKXJZWHtPy65wO1b9xvpb64WcKVFR9vLemMVU1j7GNBGFaZPPZOU/zzGfiyfdpL5u7vXDPGj7wt49XcMbGx7Biiec44zrvJpN642xZq/3nAlG/c3W89HfFVtxONkGX3MtPPEAWbfXbx31b7W2+nnXc9GylXvOfb0yfPz4nJRythkxRiqD78NHZBtN9+5Jlh/B0+r7sj2+lLaXyOpa72FHY2H6Ol7Lv37fystYddPKfrXqlelbznR7zoCj7ch3QDy9F3/c6zdXPHZY219ucUYdySfl6PVfk7Fm1dbDCN71sHcft+rt1X1d80vbEqn9Pr5Xr1fWffnb+u8dh3exJ2zB+461ovopKRGFs59Q/QX57zpevnxJRMvfUsl/3/EQAn386z5alP/oww8pnU4LuWodOWfKVCjnmUpZn0m+aIz/6zbQpJTyWEr5l4nobyaif5WIPqazVauaVnb8IVbXXyKif5SIfqh8QT+AAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+H+AjKG+JUsqvlVL+BSL6TUT0DxPRTxHR1+n6ERP5h2Pl+b+J6N8moh8ppfy2UsqfKc/1CTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4S07sW4PNOKeVIRH+WiP5sCCEQ0W8loh9++vtvIqLvI6KPiOglnefjkYheE9HHRPT/EtH/Q0T/KxH9z6WUX35u+QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeNvgIyjPSCmlENEvPP0BnwLOU2Jz/m6NL6+Wn9976tTy99rzyDVSn4bVRiml2f5I/71995aXcvF7z7x7+tWaYz42PJ9MjzGuZMo5r9qpabJ865rf8/IcbVxk+V7+Vr0xxkvbVj9bbWjPLF3R0lv97bXled5rv9Zxy3Z6jNTF59yitTa1cq35kWthpE2pS5J5ns1nvfZkm3Vd9urorRHvsxBC05ZYdVlr0LN35Zwp50I5M1uRC5WYn57lVV2cGKPbHki5PHvlCC1725tXaa/5XMgx1extRdNN3l7O+XIv+2u1KevSxri1Ljz6euu5kHVrc+6RRZPNwuon749cS1t8DquNVt6RdZFSarZfy6eUVH1p2YTnotdHomU/uX+ypQ1Lf3l6a66lXnjHTJt/eW3tI5yc80W+3h6n4dVj7xmmN27e9rb0pZYbRfNv5bXMU/8e9UNlva39UcrnaUMbf56P7wPzPC9kiDGaflAtM00TffDBB5fr9957jz766CMiInr9+jW9fv2aiIhevXrl8plevHhB9/f3RET04sULevnyJRERvf/++/TixYtLOzXP3d0dTdN0SY8xXsaq3te6eb+0dM1v8uin3y7q+33P1xzBsy+e2/fV59njtDasPuV09hPX8hSzDJ83idcm9uRtpfee9WiNT05Z9Td65xntrG+1qe3jHp96i+5ren22K9Ve1mcnOoXlniZ1TeujtGHefZnnafndvP+a/yTl4fd1j85T9c2v+VJKFFN7ziw97c1dr76WvBbWWVGO92GKFONyLu7v7inGpK7b3nwt21zL3bMRfM6ss0KL3vnOij/xecnzer3Nc6Yyr/d3TY9vjSXz6XS6XHvjv9b8aeehHAKFcF3zvXqtvWZ5rZ/rYlyfeT2xPekLyTS5VvQ9iChG3lagu7sDlWmti7L+nnyt/U3Oa2tdh6e5qPItyy3jCbxuy3+Qsloxjxaesx2/l2NhnS8se9fzFWqfZT6ePnoG8fjtWl6O1B1t3Kz542lcfk0WPn9bfCRN3l55LbbC65BzbM2NR5d6OmnFYHp93uIbts7CvX25R0tHrHosP6zle0gd6q2v0di/xpYYQK99LRZq7QE9G1ljA5cyKdE8V5nP9Z7evCF682Yhl+a39OS31gj3nfm1LLMFzzxpZ2vZPtHVV5Nr3/LJ95zBtPa5vK19zuMva/VvjX15zrTWGm3l6+UlWq6v3n7LqXmt9amNca2rxm8krdiDR19G7I13zVVac2Tp+LXsmD/Ya9PTz9Z+3orr1Gctu9s6B2iy9KjVpZgopLH3mDKfdYaX+fbQGkPpfzXlUM7/OWfKT/76PJ8on5a+cIzR1CX+3tVCll/Iw9It30HGT714Yoktuey4Zr/8FvmmaRqquxXTa5W14nqL+EJjTr32vneuk3p0PUOtYzCn04lOJ+1MbvsBnrO+J83TvxGbpM2R326Nvzvg+bbaTet3AKOM7IlbYntWW60zhZYu27ylf9tD84ms+3IolFLNf06/u7ujFJJZxkqPMdJdnBe+Ugjnd2TxsPYxWlj2mz9r7Wejtltb/weKFONyHKZponxYvsvXZPfI25p/b3yt0rK3nvJbdNFjx+U4tN5XxLlQCFJ3l2d+afNG11J3zUfpJ7XPLZpdbPlalhy3ssNchlaZkfnW/HPPXEssO1zr2xo36f0Ojbd5Oeus4uH2Hq7tI1Z+jZ4t8tqBKovMrvm3I2fFLWv/be1dI23y30h4sOLPtS6ZtnWNyjpLOtuxEIhizBd/INL1NyDaP0+y9pEtsmh98epCSTymeI2HJEpm3RYlLm36Of/YPMo1cBnPho9ZbXIv5iyxYs5refrrTZa37GHPtmr56juyZRluM9rlW+1o6efxXqallC46kVL9jV/NU1zr1dpT1/Lots4jf9tvbIqnlvecz1rlvc96+3dLx1t17ZXLg2UjlmN+TdPW8ui4PtceteX3mxXrzKi9Q+QxDpley7TOoL1rIv97vS3vWEfn4zrfVUeutsTaM7z+sYZ37azHr9ohetrjI5XOvuEZC8/7Yg8jY+E5V3jGyToDtd8D0cUWWL5Pvy/tM73SqrNeo7Sz2F5bdCtduCW3srd73pl6zv971tpWeVp1Wu/tvfV60i329vM59G1LbGL02T50n3q0veeSfa/ujMaNtPhESpFCaP9bL48cjzHS+++/v0j/Td/7vXRg73vk+nqMR3r//b98sdXv0ma+a7Z7qgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAD8BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAOwUfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALxT8BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAO2V61wIAsIcQApVSdpWX8Pqs61uhtT/aXqsOD94+Wu3IdF4HfzY6flvH2yrX66eWFuP5O1E550uaNQ6llMuzVv2lFPPaIsboKi+vudxaXyx4XzTZtDblc9mONb5auqZTNd+oTrXW+N713RqXVj5vfSP5PW3KsQghdO1HS0c9utQixmiuGWssYoxmu72+ePpa8/XmYmSOPTZarplR3eRtWPLz9Ou81j+X1qiUQvM8U5hte6b1Scqg5fOsR9l3nt6ysVoZ3mfLdtT8PF/PN5B9CiFcbKxlP+tzLY+sT2vX0gneNtF5XVrjr42llNEqY43fVh/Euy74tWdecs5Da2nELvAyvXVZ8/O56bXRS+s9l/q+x2ZXuUfn12qfX1tytHS8pXNam629K4RgyqD5Tb303lhpdqumpZQu6bwu2aZsV9YjGfEn9uzlVjvzPN+0nJxLjy+o6ZPHN23ROvPw57ydlNIif302sra0fvN6ic5jV3VkmqZLO4fD4TKu7733Hp1OJyIiOh6PdDweL/en04nevHlDRESPj4+X9MNhpt/wG+4Wcnz1qy/p4eG89xwOByIiuru7o2maLm3y9Ho9TdOlD9M0UUppsX6svUsbC7merP3eQhvLqdT99PpsmibKU5LFVzJI6vhbfmtvb/Ce1/g1tzW9ddHyz9bPuNyJUvJ/R9najy16e6flB+xd235q+7c727XG3srrOQOOnKfreKcSKMb0lOf8/O7unuigrwGtfSmrZq9bfrBVl3U+sNrq1efJbz2Xe7e29up5iqdrPorlt+acF/nlveX7WLKHQDTPy3Xy5qHQw0NYrDvLJsv0634n7U24yGetV75/aWcPrYzsF0+r+1XL9vn2hVqHfVbSbOeoz96633Ku8p4prfTa56e7S5pnH9pyTrD8c1mvNS5VLm0cNZkv59xTXq2B02mmE5WmTbDsjUbvvCP1XerYuQ+FSlnalZwzUQ6r8tXv0trvydejF+8ZqWtkL5T2zqrHysNtspfWucVznh5pr7bFdZy33ztDWXJp8vTeT9zqHGTZy7eB5Vt429+7Rkb8hi3jYtXPY438vlWv3G+tvB77xvvSOw/zNi0dlOeWXvxO+k0caQuk76TVuVhnMRLJda3IW30N3q/aXysWbtlRec7R4gPaWVfSit9a9M6lmvzWudGaEw1r72v5UZqNsc4z2n1P32W9Wh2yzRZWPMJjB1rnJp4u17TVvpS/4n2nxudf1unx27Wx1eSxyo/GdjT5e+1Ztud4PNHxeFz4xq9evaLXJdDjm+WczN9+Q+HhfF/npq7Ly/ma2YhWXzzvDqz8W8ZLwmVczRnxdXP+e84zpbLWR+/eJ/0dzQ5p9Vlo+4Bsy7K9Hg6Z6HxOWp6PY6xrc6I42fGXCh9nGSuWaDbOq9tWHVY+T/mW7e7Zi54f0NtvWnJaNsbqn/auhcdvPf4Ov269x9DK9N5bar6LLCN1OcZIKfEz/Xq+rDiPNccWrffbrT16b8xDq2dLfbeMt3jtkzyf9s7ZW9hr+7X70TiThdRXT/9H5RqRqUxlJdM0HWiiGgtf24BW+weKlFJcrL+UkumzWT596/lCfsda8q5r295f86S0jBPzsqP2o4V27muhnalq+qjv6s0bQqASa7/DZZxSTBRCHaOzr5RSopht366Uop7leFxe5tf+HulLy79vydm6l+kteynvR3WmJbtn3Wxtz9uGRP7Wg8Pn2TsXHv/YkjHGqw/L847YXo8cHn1prXF7jK/p1hqp5b1nTatNj13x6IInzmHVk1Km9XyN7X/SX9P2JM87uRZa2ZTK5XxUdYzrmnz32Kpvi79gPfNel0RP9pyf+2ydGyXGSLH467rOkR6r4Uj/RetnK56kIWMzI3J78PgR/Hx03vsDldDeXz2M9klD6vdTatdOSRmu87P2Uc9zpsddtDqtPK18rTyj9tLbzhZaOr6lnooVv/Tafp8c2rptr2Ui/XeqI//mx4Nnve6dU28se5omKso6mKaJpnB9D+61MSN+c5WldS/r8o6L5wwlbUkp+9eRZm+s9yIy3zqNlwtNf07W1fIVLXlbea11c6vzaKttq4wvXlHPj/1YrFaPPIOWcu13W961X0ak+4H8+fl63Q/vnmNK09EHr42WZbxxdT3PHvveL8Pl18a1PtPYcu7vpXvr7dU5Mj5XvWrns86Tt/Attuzp3viJbjvb/fXUba2Xlm6P2l6LkfY8bW3VHa+M8t4Ts9xy1tGy5tz/TaVnjZ8W7+7P8s7zTMl4j7TsX0/yzz+3ObEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARvARFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDtletcCPDchhD/9rmV4Rkop5Z9410IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDiC/cRFCL6USIq71qIZyDQuZ+f64+glGJPZevZFkII3TxWmzzdU4+37b19lOVlO/y51VYt06vLymexdbytclb79T6E4JJNjkm959fas5ZMkhgj5ZyHx8xTf627V86aT/7M6m9th4go52yOhadfUhbv/HmuvTJY9HS+l753XnmfW2uXp8mx6OnCCKN6fsu2LaxxqPTswtZ6ObWffBxG5t4jIx9Lr+0sha/N6/rM+awXUu5SymVdhxAuf/h9v82+Xkp4G54+8vqsdWHtT1Z98ro1F9Z+75XZqvcW60Uby55smt727LjVTtUfIr0/sv6Wvdeo4zhii7fqgpZvxC54n/fYoiN8HojsvozqnLb2emPmXSMt+8n1RavP8oVaabIN/ozXl1La5NfzdmpbKaVFX7gfxf9uofVLlrXWoZXe02uvv0XUXm98H/H62q0xaZ3JerJ59bJFbeN0OnVl2ipDqy8pJSI6z2u95mcLorPOzfNMRETH45Gm6Rwamuf5Uu/dXab33puf2iMKgegrX3mfjse0kC3GeCkfY7zo0zRNpl5yOxNjNG1Eay2PYOnVPM8UQqB4yk/nlnM/ic7zdwq+80qF91/qaG3TSnf0Qt3rPPriHb/LfMVAMfbLtPZz3q7HD+ZzIsu3yrXa0mxbax+Rf9e68pyplNpXX/xDMnIe7o2bty2e39qbr/drmzLPM83RPnd6z3l2m0sZNarsXj9Qttk+oxWy1GrknK3lq7a32jrv+Vy2IdPkHs31mudZjrm1lwd1XYQQVuc+ed2itd9z+flab2HJxvHY1YUPQYXmeVnmdDpRPPn7J/cuz7nVG3P12LtW3d665hh129ZZby2/PoRC8nEIaz/V23fPmuN+CH9Wy96nmVLivv5yv+Z55bqqcF+dI/PKc5S2rrU1FkKgnAuFsDx3pJQoJt/Zs0XrrOM5d1t+p8Sy8RZen2jk3G7l4/6Z5atxGVr7zRa/tBfnsPL38m3BijNa+WReLV2be24XR/wYL5ZeyDni52tvXRKrn9p1ax20xrxVZnT/9egPT/PsyS3ZPePirdOyoxXL97F8fS+Fnva/hq7yueBjxn0CPhZWer2vesnrlWU4LVs+EsPje5CsS9r7lq/j0Uuvf96zvSPtj/hUvXx8jqy8vbXRkrVVxirXO0tZNr6eT1o+vcdWb7GnXK8sfdPqtfpi7UNa3ppmrZFaLqW08CeJiN5//31K7wf65MVpkf7ehxOFu3a82RrnW8a2rPS2r94/31rnysqt3uv2dIm3Y8Wwt9QvbaDGxSafMhu7xRZhltHSuZ5usZ0jdm1x7mVxV4+cvTqtM8GW9xZ7/JZWeasfcn1rMrWQNsx6l5JSUsejtZ/ImF3P7+R9vL8rNE3HRdqL+/vmfFpxeCmftQZbvmlrTK114DnrtXzNXntavZZN3GKjW2PRs11a+yM2YmSf6emEzDN63Wt773lWO9v32uTMKa/mIKVEMS9jM1bdsr6prOOTh8OByiGtZGnZKNlGT/+9cZmeP8mZylo/Y4x0OBy6bcngnP+6AAAgAElEQVR2NbbO/UgfvHn2xyWkHarzQlTjqppcfM1ebbAd7+Z7zd7zjOYHVx/PGoLWGvPGTixGx13G77T9V+qvle7RqZ5P4rWHWlmeb3QctLjW6JkuhLPdS2Vpp/auHc+5Z6S/ab7Gx2sxGcdvtcXxlPHY6F46r2t0PCsp5dU7+ZQS5bTeVzx4Y+xW2gg5ZLrawLHYR2sf9OhQ60zQi9nW66s93zcORG0/W8qr3V/rWO/LI2eXUVrnT6K+7dqqQ5ZPG8L1t06HiSjGRBSv+hFjpFDOv4HSVsgW32O5jrlOn3XD66fz9j0x8VLm1T49zzPN83ovHh1/uQcs8wVKKZI+gja3siGteMBWOUZk2XKm2Uv198pAXDWJPYDfa2P4tmSXeM8krWdr+0/E7XAIb8/ujerclnH1xrl4cl2nI/tIC247Wn3WziGaHDXtFr5jT+Zevvq8pftWDInb+7e5ty65zsVIm9e1Ue+v19znqH2RwzCyd42ytW6P7bqFLd8i14hub93HalbvuaEnxx5ZLG6pM1Ic692CdZ66pb3eE1vxzhfPUor9XmfLmdGzr/R+p9sqq8nl9bd6sYmReem16Y29tJ633ler5fNp9W7kdDzSnPfHGeeSKec6Tme/YJ5PdJrt921zOl3+fcNZoOFmPzd8ET+CUnkerx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDki/wRlM/7t2/wkRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Jngi/wRlM/zR0I+7x94AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfI77IH0HBh0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgU8EX+CEp41wKA/ZRSKAR9KmOMrvKetF55S4a99XvKeeqz5NtaHyfn3K3HqpPL1ZOx1iHr2jKetS1Lf2qdvG9a+6WURbrnmbzm+WV7nvLaONd03g+rL556LXienLM5bpacHK+OetaaV0dCCKYOturorfuR9daqv3XtbbdXhtvJOm/Sdlpr3NN+D81O92yKpada+z2ZeFvcLljUPCEEl02Wa0TmG9EhqZ9cBpnfoyv8z8UlCoFiDDRNE02Ki2iNEbdfHj2w7FYtr/WrtV+0xlmTX659j42S5TV97LX/HHC9kv0Y0fHWs56+aWMh14ylu3JurDZ4urX3yXp7trvVFzmuWrqGZ417fUU+nprt7Pm9tbxmi3q05twjvzWv3vasZ1v3K453n9XmX9aj7aPcP+L19Nqz5GyNzTzPptxcHo0RvbD8aC29Z2tHz0qt+ed9GfWJev5ED8sn8e5drX2otWfWeePl53mm0+l0Sa/XDw8PdDweiYjodDrRw8MDff3rXyciou985zsX/Xl8fKRXr14REdFhmul3/vbfWHtAIQT6i3/xV+l0SvT+++/T4XAgIqK7uzt68eIFERG99957dHd3R0REKaXL9TRNlFK6yJVSusxhzvlyHWNU9+uW387Z6p+nFCiESDxbSsmtD57YQ+1/yw7IvTNG3n6glCaaDmlRRuqex7b0bEEpeVVPKZlyXvfV03dv+x57OWJHPfuC5d8s6o9EIaz7LX1CuUZ7csr1Le2oZSNHbZznnHv+u16fn83ziU7Bt1dxPZBjqvl72nULz7x7z/ZngYnOdu2Sa7g9ud9rvna1dxzrPMttusxv6Rnf+y0f+P6u0DQ9LNJfvrinGIO5fi07zPMnKpd1UfNM00RzWo6L10Z4Yj0550uf5Rrh41fzSD9snmea55nKfaHHB25XIr1+nSk8nM/CWp/rmq/3cmysvnh1XDsPy3RtTHq01gXfc3kez5z5+1X/FLUv9d7qp9bvno1d+7+F+HoPgSiluPBLNFlG+nkL8l2mT+Lj5b6Us97FqOsExzo/9nRF9q8196OxHikLb8OKP/J2PHOh6YLnvKPFyL1s1YmtPirR9hiOVcfb0Guuby0/piVXK93j82kxbi8j/qx1Hh4p23rWOveMxLNG0lJKm+ZL24e5nJYdl8/4HiFtl3UG5u+7PPpS7cOlzflE4clfKFQoUKD5dKTy+LgoJ2MQ2nxofZf3Z3u+9Jf5M6uMVm/L7+D3LX3ZEj/b69N5ykifYDRmtLVdfu+JzVhlrPwjZ57WmtGuW3PZ2mc9svTKaX3srUtrHKv/zmX27hFamlwz09T+OdREdR+p5cpTHCtQStxvIEppoji1348Q9d89Wn53a6xbvrJMt/RSW2NqvDUFijETPyunmCik9rmkZ18sW1J1oCkT6fZQrh1Oa4/o2cv4FDfgY1BY3OQcJ9vvV3ltMvejb0nPLmhzwfVPxjyeU7YqSy9dq8ejM1IftbU8cn726ilR+3c317bP8Q+e9vpNpoeHdoyCx7y1uICE+zGt9Wa1qaX32u+d8z3tevdir6wSK6ailfHoYMt3bqW12tiS3qJ3zrP82D222yun5asTEc2HTClNT+nntPv7e5oM+9VrP8ZM8l3BNCXKir8xIr+11j3+vcyrvXur973ysm+9sjHGYd1s6ZI8H1ptjrTVonXWWvsRT3+v/p+b4++7e/nku4MW3lgDERElEu8dr3a+N1ZWbNcjh1ZPr4yMH/K83P+w/EbenjXPLVm8+bRx4TaupZctn96itX6u/pmU5zw20m/z+pfcplhytvZLS05JStnUT429umjtRZ59vGLFsEbWw/nPdY/i6b32t9i9Xhut9yUemaQs2lro+ZSe9xpclt6aa9VDnX9CZJ1HJTkUNofX/TgW/xrozXVr/LWziofx8bpNXRZaDGPZpULU+H9f75HhqkuXFOoPpz2XLVsdwvl3QJq9sdbMyLWsU8rqtX/t+vy0Yqy30Jta7x7faWQf02jtp/XdhPTNR+bPWv9b/C9P+dF52R6z79vhTbU6+7VF7lvo7NLWvN12R/2os7+41jNP3L7mHZV1jx5u2Zt6/ume99u1rhBotYeMrsMW7d86hNU8bNWfW9noLfXe2q+43q/TejZ2xL/XfbJAISx9V03GW4+L1o6n/N73sCPlrbPG6BloS55boPkfIYzbQrleb+3T1/rO7wXWZUdk7b3Ht+Tpxc20d5ot22y1733P73mvFMNx9W9yTqcTzQPvBa2xzbSOp/b82eXZaN86/azzRfwIys/RF33WAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4FPGF+whKKeXvedcyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArsR3LQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCLzfSuBQBgDzFGKqWoz0opl2chhMV1C+u51o7My+95ft7+Viy5arpWf02z2tbq1NJkedk3nu6t08rTk3VkfniaNhZcR3h6znm4jJbO/7bmot7nnFcyWLL16q3pvG5NTgs5F3zMc86X+jSZrfp4nfzaknEPrXXJ65e6y9NbY9DT1Z4u9tJ5+9ozrSy3MZre9+QgIkopqe3FGFdtS2SbmpzaXFs6o1H7aNkCr9701iK/lvPuacPab+o4yry1vVEdGR0LrY1Szn8u9ZKu67JfFW3dWvqnrat6bem1lJ+X5+PJy6eUVBvZkttaP0RE8zxfrnmbtQ45r9o892itgy32sDf/rX3b017LxvB5lrasZWN7clp5tLa1OfDs41JGz1jItqx2vLZO1meVG7Gdtd6e/np8NQ1Lr0ZltIgxuvYf6ZPIPJq99e6RUh8sefg+WvPHGE2fTls/Vvtb56fHqC9j7RGclh1stdcbI+94yXmoumjZJHnNdbflK0pZuI5pdXh0SMrjPTfM83y5P51Ol/bneabj8XgpU/e04/FIr1+/vtzf3d3RmzdvLs80WzjPM4VA9Ob1a5rzgeZ5voz1y5cvFzI/Pj5e6tXGqK4Ly8e0xqq3P9S6tbJWXfU6X/otxjWu/WMN7i9YcvI8HLm2FnJl6XvNdDrZ+1PL9+R6aa1Tj+3W9G8PUi9aeYj6dqu3vlJKbt9r6Wuv16Osx/KBPG21zpDSRlpj0NJ/Xr4Xs2n5QL19WcNqcwvWuh7Ri2vaoiZz3qy6W/rq3e9k7Elrw5p/Hptp6UVKff9ayi9l1vrFbSbfK2i66khKyTyz9u61fvGzXmvv6Pnx+a7QN19+skj76KP3KT4uZdV0Yo/99CD9Vo3ePHripjFGIrae66PWWY3X41vXgUIoFEL/nNw7wy5qFfPS809jLNQT1eOrW3jOrXy9a7Y6hEB5rrHcax05Z6K81vXW+uHrzyOjJq+Wj8uv6Xsr5iXjjdPkeyXZk1uTt7dG5bm4FR/R6mz5sFImj13wxFy5ry/b8tr33jnI9n/Wbfba8Prgsl7P+rPWey82t2Vta1hz2qrf017rrH0LH2rk3L91/rR7Lb9lP1pnJaucpv8yn5SltlPmmRKfNzqfvUpjjq2xkfNVbZ6US+bj61/zPc5ncJ8fVZF7jFbea/u0chYjvibP32tTo3VutPYyb3seP6glq7UHteri+4r33MTztPZUry/Z2xdayP2V34/Ec2Q/PLZUO3dZMTjfWCyvqz7wotb0tM7Yln9fSlnYvj32Xhuv0XOsPHPmkul0qjHVc57H4yOFx7W9GpFfi01ZtlPWPdqnXpmW/0pENM88pr/OF0KkGNvxn9Zaqs/4ubm39vhaGbW9W/DsDxLLL7LWq5XG1+7W/cVj0zxxsp6cHG7TPXLyfdmyF3Lv02JEmizcD6hrTL4rtOI2ln/C+2i1q9WlyST7M6LLnjJ73n96fKWeDKN6NTqutcxeG+BpZ7QvEuknjMhk+bcj8pVYnsry+FdfXsmWs6TXD5X7oxYzbvk0sr3/n713j70tye67vlX7nN/v9r3d092ZGU88HseOHcfgJMZKbCcEghCOhHhYoIRHDLYURRqQQILggJAgQUZA8geJH+LlB0GQAIEoEHD+QRZYSYwQ2BA7cfxKjO1JbNzT7sx0z3Tfe3+/s/cu/jinzqlde62qVXX2vXfa8/1Ivz7n1K7HqqpVq1atve/u1MeQzlqavT3alVncrzX/LicvW7JTeVoI62eAttrnLPcO9TNytF2nuly7jlzG2a5HPX0vxXQu6ev+t55DLFiem3oefkz+WdNJKV3T/dJ+cc2YltaaNc60/C2fEdK4Qwnt/rKlvyWfbu0fAsez2CXNe7eKLbfoTc0P6d3Hrb5erU4A2AV38skuaTc3t/C3+2rMxqLPmlw9upW373YOw3DaJ9zF7xxOdnK/28P7vVrekn6NnajZIcmX8t5jgO35kMjFji71t+Xc7JxT5cnvIVjPKimaT3GtX95zhrfWd+y7Q3Aex73r5NMV7unXZMspn1OP8+m9hw+pP5TqVVjMUWld1cYj9qnF583b0m3e2v5Kfbec26207olbsJWv0rPGFufs3TrmtNvt4Iz3RlOutdXA2hZZ1vo199Gk9qXfsh/QVlfaF229lfab56GbUhuqvUc9LmChx19cthvztNXZgtVGW8/ALe1YbXPvGjnKff5lkvMan07IcR67q/fkbae9iWt1Tlrj1rRrZMj1KwTAuTytfn9+a1mkNC3OtEWssWTjeu6/Pg96xvjiB9Ztekv71/S/NKelmFDr3tHi5/bWUdoHWmOmOZpPkfpw3q33a81mSPNnlSlmC0H/d1fzPGMM4/I+0Ys00i+Y9n+pSQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIRvCl6AQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJeKHwJCiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5IWye9ECEHIN8zyb8oUQEEK4qq1rylvKOue664/lW2Xs7VNJVq3OWv9iOal8i5xpXul7CAHTNIllc33S6qrJFkLAPM+LNuN3LV2TtSaHlGee50U7eT6tTJ4/vy7Vpa3BmCefd00P8jGq9Vf7XUNrP18/LfN9Tfvpb0k2aU5KayWmp3VtZbtK9eT90MqVbHatLcnGxXbzPqf1pLqYlnfOXW13NXlTuaQ8PTat1n8pPU/Ldce549+5LSz1LB+/XK+0eYp4v3zXXskulGyDRLTjNRm0sdDI64t9yNOHYajKqdkraR3UdKJHV73357ZKtq8ki2RLrPt5/j1N0+xYupZ712fss9UOaWOf58v1uVQ2J9eX2nzEemOblvXRMl65PLW6rfuj1S+XkMY3ovltqb5Y9C5i0bGSv2GpP617GAa1TcueDpR9I6n9HlrsmJa/Vibfi9Jxqc1RPtclX1WTK80zz3NVF9K5tOy1pfRc9vRT852svrq2/uKZADiuo1SfvPe4vb0FAIzjuKg3pj+4BR48eOlUZoL3Az704Q/hcBjgvT/bkgcPHuDm5gbAcS3H7/v9/jwe0hkoypav//g7TS/t7envfJxSSvvYEAKOntCynZg33VOlOqW6Nf+0JP9iLLxLfsd9YcAweHGvy39rthPQ18vSrsplW/yEmu+Q9jfqpbbmNNm1MdDWbGlcyqznrbR3mWpU9DrqcdqHtC2pjyGExVrWdNZ7Xx2DVO/zPrbsMS3nn9J50lImT7ef55frL9XBmF8a+5hf6mO6v5Tk1vyY1I5FOyS1k7af9yud+90Q4Fxd72v72vrMltrM4/d8nUl9rOlQrnPpXpGOTbrHzfN8bvPu7g6HwwHAcn+7u7vDNE3H9h8Au699CemovfOJt+DujntX3N/yPS3Vj2EYRJ86HSdtjVvPqNaYRWkvkJDq9D7p1253riedP4uvP7sZS3tZ74MWW0hlvca/DSHuaekeOWNylzYsvrrFV85lT+vb7S634fI1fcwLHMfrUscwePjBN9g0+Vpp77Sce9N059xZ9zVfJ+broWXvAJby536FVL62B0pl8jHSfFgLef2l2FbE4kfl+5cUA8zRzpglXd8qjppjPZvnvm7PHPTELVrWYCmttF9fI0cpv3aGBOS4snZPoVef0rR0v9bqTPebw+Gw2PenaTrv7YfDYXEmint/LU5wbvPmBh9+661F+id/+qcQnjwV4xQxrpOvu/i53+/PZaK9T2NB0b9IfYzUj0jrTfOIZ9ekXql82qfSPtq6x5bytazFeO7TzrSynyL7h9I1i0+roa0R7Zyf74OlPabUbjoW0vqp+ZG9lOatNMaWOlrtW9QJqb6ST2xJt/rTy7E/Pkcwzw6pD3kMHR39S8lvrMVDtPhnLrtlH9fOACVdT8+36XhLcar5JmDc3S/Sb25u4ARxSmfwfP5az/r5956zhdSmdu9Sk0NqZ5pGzOM6NqTNgSVW0bLGa/GzUhmN1rOltS4phqbpaPrd6iOXxjytt+d8naa36rJG7k+kcZ70rJHKLc3N7U3ALlmnzjm89OD2fL63tJ9TOxsDWPlzlhhHab+33gOoyZyT7kXXxhYitfvEqc7V9C7aNMmv0HRZkkXbb7Q2W7HIkspTKnNNnDkv07IGY0wohOvGJfX/n8XRWNIvy/383IeSfte46F68ByXHPC31WM8Gmh0v6a921myNqeQ+fU/cbRn/bPMjoNyHbJehLX/LmrOeFazlNV9/y9iitR6rXeutL8c6hxb7WuPs3+88hiGWO9Z7c7PHcFjHE1rsaotPpe31pf1uGIaTH+MWaSGxSdr53EJtvdXqks4mLfYjzZ+Pz7Ju+X5lXk7rf4vfKsnTtMcO0W8FnD+Ni/fwp/8v8zAMgJP3spLvoLFlTCTKkO6BwEkP0S6bNl/aPWYLzi31tnaGinkssSWLD7+l71xaL3r5i798FOU4nj547HY77CpnjtLvUjzGueXzOdIcXIo7+NMzPZJ/UbLhw6A/T7DF/ZhlXKl8D7ZWRzp/lviXlM/apoYUz7Ki+S5a/LOkKyUb29O3a8pb8+dtSGfQlvYs+2XLfbLTVVyS5fN0aU2XYvZaPOKauE6NUjwHAIJL+5vaFLkeDcu+0EoIS9lK+SzXanauhWvX2JbU4l5JTgAnP2Fe615LvCruLbleLb8v8551cbUX2Nt7P2Ebx+vqbo3F5yJ57xGUGF7Peb51L8jtpUR85nHL+KKlvGbXP5e5dp1oa7mU7xqOvs96P+2Li8nXdfu0fm5Fq6dWb+Saf69kYfDjqo1pmjDN7f+WLNfnCUAI6fM1wDhOcMKzNJcy06LM5zPXPbFPCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghV8KXoBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQl4ofAkKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkhcKXoBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQl4ouxctwPsN59yPA/iqFy1HgQOAx8nfGwB+HsDPAfgZAD8UQvilFyfetjjnnkneLcqHEK5qz1o+lyv+DiGoMl8rW2uduRytfXPOVcvE61Kf07Fwzi3GSKs3H795notl5nk+55HqSq+l7adp6e+8jfhbaz9Nz+WY51msOy2TXo/5tTJSP/O0NH+tb3l6Ou5brKO0/VwOaS5KayevyyKrls/SN22upTRN/yx4v3wnmsXe5WNWa79mI7S50Mrn66dUd+37tZTqkua7tiYkO+6cO8+TlF9a15rtPI63P497FD/+9t7De6+uBU3eGlI+aX+QbHRtvLS1WLM3sXyLranll9qvrY9eHyOXJa1nmqZqPZY5qeXNZanpjGZ7I3GsrGPSuk947xfrylqvxeb0yGzR13me1TGL6fleX0LSx3wfsJSpUdvvUl1I+yjla53nrdZ+7Lc2PpLMlrWX19m7h2q6XJvPEvM8n8unclntXm1dSTKX5j+tN7cx6brQxlPzSfMxSm2Z5qtfizZfJbsY9Sn39ed5xjiO5zzx+/39Pe7v78/fnz59CgD45Cc/ibfffhsA8OTJE9zd3VXlffjQ4733liGjN998E48fz7i5ucGrr74KABjHEfv9HgDw6quvYhgGAMBudyk7DMOq/3Gepmla9D+dvzhPsc483TlXXD9W3+94bX1dW0vpGkn1z3svyp/7KaX9Ol5L96ujbOHso1n20VxeSS4J5xzgHby3n8Hjd6uNjfKnfZfm8pp1Z4mFWH3aY76Y1y6TZR+Uvqc+eUnOlnNrWoekl+4wwbmlXng/rNaeFn+S5GzJkyL1S/J9refv3F+9fNb9QMnXlvaGlrWiIcWMgOM6Se1/au/TPeJwOAA42uSY7pzDg1ucbbn3R1v89jtPMY4XuzwMw9mOp/bBe7/QgfzcdVkXx+8hhJVNK+2lqS5Ke2SuO+leYkGzkfNNwDu/5vEi/QNf/BL8/VIGSZbWWElJ/6/1LVrPsJa65nkGjL5sCzV7ZYk7WGyMtN9eki7XvHfZPltuR5PRUrZ2bb2m0j6sY6U9Z9jSnqzFA7X80zQtyqRr3qKTkk2W0PqS+/n5nqCdFaS28jNI7odqaP6d5qNpe1pOfm6pxWCkujV67E06pqV7HnkbJVtXswW1PCmaPyvJKo25pmO5f2bpu5XcJ9N8tVTf83bSe1QpcS1K92jitXy9pnWlZ7Toa6R54hk0tjtN06K+NF86f/Fsend3d9W9i63xDx+e+xm5vz9gNpyTXzTee+x2u8VZOfpruR8Xz+SpTYn+lHTulPLl9TrnMAyD6MfF3/FT8/Xy/Hn96ackY0oaw8rLa3YpX3taPsnep5TORhYkO2Y9X8S81r0rkq93Cz12UBsLaa6ka5Z2pDNfi79Wjhed7pvBIQSc/ckQgICwPAYlWJ4DsOhTacy1tdByXgGW4y2ukUUc5HwB0VetrVFpj7PEjGp+kzR/2j5qJbdD5/TznhbgHE5/qZ3cwe+cOq81X7c1VtQaV7CWsa5FKW8pvXaG0s4qPbbFkrc05pY6tHsJpT1GiwfkfpiUbjlnObeMwXjvcRgPOBz02EasW9uXo0/Ro9fp9Z55zP2FSD5Gms7kZ02tjtK89sjbcz6TZCy1I/kkYny349xnoearxd+1M2FtDdb6YtW/Fbv1eA3DgGG+xDzT+yclvbicd/T+a/5OqV7ND7WQj1s+DnFdy/tubtv09aLpu7bXt1Dzb3KsNsayJtJ+1XX0UmZZ9eX5qlI7Uiyytl+2rGuL3sxu7TM7V5Y9l8USo89t5G63u9pG5PmtSPZao9X3sszds7LNOakdO8Zv4pUYYwrwoXwftyar1TaV1rK2Py+pnwHi7xb7UTt/SN9rutP7TE5ab4tt0OKEtXw1LPc15LNawKqo4h/naM9UtZxPWqjpdyqm5b7Kunx6hl7rucW/lvaXmvxSvdfY1dIavcae9fgI0edKm43hitL5zmJ/dbuCpL3o2zm42Z2vRzki87yOzZXOLZe0adUHLVbZ6xPF+tLYlqSfaRnpu3a+Lel16zkp96FLfdNsn2Yv0mcdLHpt9UnL6Ta7fs26spZtlb9Gr16WbZNbfL9mXnr+HcwWSOvCEvs7/l7aNavMveevFo52sb5/yWVre2/7fmuptwWLD5S3WbO96/18nccuX1kuKV+cs/Ucbb8WWnwFqz5oabX9xm4TTdlW7V93XpX86OX33jXQeu/des613r/IywDA5KdT/CzmPz7H6M/+VN1XzX2PWrokT/q91W60zIc0VqV/U/y5QhT54i+udbG2LqU07X5JWRabLc6R/o2LtR3b+p5WdY/TiGnqjFEvaj6eI1LeD3rzuQJfgtLH8/GK+7g5/b12+v3lAP6+NINz7ucB/NkYUoIAACAASURBVACAPxlC+H+er3iEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhCzZ5lWpn3+E99GfE/6+DMC/COCHnXM/7Jz7xq0HiBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQK3wJynVILxh50X85tZejfC2A/8k59/3OuS/aYlAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCGlh96IFeJ8Tku/SC0gs5SRa6uopG1+EEvM7AP8YgB92zv2TIYQfuaL954pz6+6GUBtevQ5r2dY20nasZaW+Se3n9dXqT6+nbVw7lrX+9YyZVL9WZ95+fi1Nl2SZ53lVdp5nUfY0vVSXdi2Wz+XN06W+5PKlZUrtS22W6gohYJqmYj8txHnx3q/S0vZ72rDkj21J+pPqRX69tK60OrU1m7ZTym/Jk+dPy6RjbCXOuaRHNfL20t9Sfdo4lNov9d85d5XdarXFNVvbYntr10o2PpWppZ18jOd5wjwHzHNALHK0Q+FsD7QxjnMp6VxpLddsmnRNar+k6y3jnKZrY6rZcY2etVRCar82xtq6KOmNRm2ONfmsdWk6VqtLIrfNuc3RxkXaH6NcaT8t4xfrstj3mG4dQ60vJV9Ikk2jR3dr41vag2N5zQ/I+yL5EyVZrP6o5utFYnva+FxzJkh9z57yJaK83ntV9nws03zaPg7YfKJIzaZra0bKXxqrvLzkk7T4elJ6rf1WG5vrfH7+kNpPrznnsNvtVu3vdjvc3t4CAMZxPI/Fl3zJl+BjH/sYAODu7g6f+cxn8Pjx43O+J0+eAADeffddjONYlf/+/h6/8iu/Il57/fXXAQCvvPIKbm5uzjJ+8IMfBAA8fPgQ+/3+LPPNzc0in3ZG1fShZossxPWYFk/PQzkxfRiGRXouY8xX0tGYN60XAGY/r9ofxwPmw/JcZbEjeT1av2Kd8xDH4yK39wOGwRfba7WVvfN1Dcs+XcaybmP6ZdXsTa7H6fh574t7q1a3lq9mp4+f7XuStBajXvbGiCS9rsWutHHJ61rq9Xpe8nmoyWyx3fmnFGdJvx8Oh0U98zyf01L50vT0ey5HKloIM4CjbzBNWNheKbaQr5HcP5Zwzp3L5TY9HX+rjqbXLfqv7a/p96jvNd2cpmllr3vlT4lnbW3/0urK/Zt8D4rpFrz3wMLOHD+HYYAX6k1lldo4y+bTMQJCOF0TumSxDdK4bHV+jPm1s15LjECTTbP3+RlnmSd+2uy9lsfyPd93rPt4ascs5GNcOmdLY5Oi7d3zPK+uRTlL557cjmtzE9PzcUrzW9dfrY9W8vFL+2A5R+V7Upqu7Wup3JYznCSPVqY0Lq1ntVK6NE8953KtXL4Ppfny+0+179M0LX4f9+/p/D31CaT0WD76CPF3bOf+/r6r3+TFMs/zpnPnvcd+vwdwjCdE/8J7f7af+/3+/H0YBjjnzvny76kfGMnzaGeytFxsJ0+XfrfY0zSv5EtZzlcWm5H2M7eDaXoIQRwzQI+lp9ctZ8i8Ta2+/Lcmf0v9Oel+bZXF6vtZY/ma3+f9Mv3oF0edjnvUMTbiB9mX1/aFSL4HWeJcWj5tvGr7UKr3krxxrzrGpKK8x3zvPX4P7q587ym1IfG39nyAVD73yTQbkY//VvGl5Rq7xIOOyW7R1tFO2uY+r9sirzX+I53la2W0PKVzUW3Nxjyt9lKr1zqnLTZCy1OLc5TatNiuvN48xp8ixWO09m5vAna7u0X5/W6PedbHJO4VqS2R2tLuw5X2qp44ibZHpt+vib9IWOM8GrmMUvlSXZb9vpQ/Iq2dUrwilqn5EqU203al82iLnSvNaz1uItdROs/HotK5CzielfK9KCf6x855dbxjeUmW9J5M7rdZbZk1PpfeI051tLZfRZ3WZLPs6aXfViSZU51rjSVZ2xPxmr62+65i9cm5a0vi2Emy5yJafKkeG2nRh2vXQV5XScctbVn3P43SXNbihi33IWo+sR8OWX0Bw+AxhPUZWMO6rlr361J93s9wLh8HL57dS3WVnk9u9cNL5y5L+ZS6HtfvIVj6I50JpTYtvnJpr7+0c95kV+3nz6Jr5w2Lf1Tzr1r7c2lbz2fx6eI8SDEZ7z18qPtXyzrTfLLOWH3N0pnSYldL9VrXgMX3yNOX6ywgBJve5OuzxY+M9OzJml3W7rHk+pX7WkHQGYtd0tLmYT7FLpbtRN2s7c9WWa49t/U+b12zF1ucJy3xmEUbqW1M8kZ70eojW8+EtfwtdbSWtfhZ+h4gpfWf+1v90Zb6tDo0mUvnqjy79x4eug1qsa0WSvMUL4UQ/8p11+y6RYZr5rwkz7OusycW+qxkKVFaa9fIvOW8SbLU6rf6MzW7cG3soo7tPNtTf89Z3UK+rlvGaPDR94jlj/eJBmc/j+ZsqWvXtKfvAX3t9OiexafXvk/394v4ZAjHfwMwZduPNT5TS5fWm+VMHen1D0u2oTZOVpteii9o95sWcwHg+AzvhWma4AvP9E84/rvPyxlczfqrnu0jqZ8fOOGvRMj+tHq0/DUVlfKX/tI207QvBPAXnXO/q9IeIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGbsXvRArwP+REAb2VpvwHAF+HyMpFI/sKTyB2AN0/1PAUwAngI4BGAXwvgtaz+9EUo0gtXWl8lltblsrSXAPx559zfG0L4m8Z6CSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjphi9BaSSE8AfS3865fwrAn8LyhSf5C0t+BsBfAPC/A/irAP5WCCHNv8A59zqArwTw9wP4BwH8bgA3WL4MJa3/5wH8fgD/F44vMXmI44tUPgjgowB+PYC/G8BvA/BVp3KxLpfUFdN+DYD/zjn3dSGEWR8NQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKuhy9BuQLn3B8A8D0AfEzC8sUifw7AfxhC+JGWekMInwbwf57+/vjppSj/HIBvxfGFJvFFKPHzSwH8IIBvDSH8RwDeAfDLisy/FsA3AfhDOL4gRXoRCgB8DYB/BcB3tshOCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkgrfAlKJ865fwbA9+HyApGAywtF/jaAbwkh/OUt2jq9FOU/cc59D4B/GcB/AOClKMrpcwDwnc65D4YQvq1Q1xsAvsM5990A/iiAfxXLF6Eg+f2HnXPfHUJ4ukU/ngXzPAMAnHPi9RCCmG7Jo9WZXwshXNXO1mV6iW31thnHJB+bHhl6ykvzEPUjhHD+Xiuj5Y/55nkW65LS0/Yjzjl47xfXpfRctlr7Wh/z9ktl8vZT2eK8trYRy2t583YsxDKpXLW8LddqZTSd0fI755r6abUp1roice7iPAPAMAxinVq9pXUhkbal1RHbTMtIsmptlOqSxrLH5sfr1r1GG/dUd3t0v9SuRf7lb7/qk4M7p8X0VOa8vnT+W2SR9MKyB5Xy1NqX+qSxGBOhTEnHUv1toWW/y+WzjL1Fx0r7qIb3XpzPXvJ9qWWu8vLaurTsQXnZnnG1zI3WZk1WbV1qbfcS51bbx51zmKbpnLdV9y37uIRme/K6Lemxj7W9N90vLWMbx0XimrlJ/cVW8nZLMvbW2Zq/Nk/Rj4pp6Tzleh71z+qTlMayts9IPvQ1+p/2M/UX5nnGbncJ2cQ5y+UbhkHs/zRN5/KHw2GR5+WXX8aTJ08AAHd3d4s2nz49Hv8P95/Fo0ePzvICwEe+4CP45Tc+jXmez+vi9vYW4zgCAHa7Hfb7/blMTP/ABz5wrmMcR4QQznXf3NyIurDb7UQ7qa3jEhbfJM5Jy96Tr6P0muRnR7S9ak287uDc2m5K+0WLXdV88JUUp7XXakd6/e7nRW3czrrlj+N/LLPMo42ZxSbk+pau99K5I7WLmq9qPQPFPg7D8XyQlBDXRP59y5iV1JeWc7E0ZrndWH4u5zU9B6WyaGOb2+48viOVj3kjki2QfI74OU3TYt1JPlHe3u1twEsvjYu0V17Z4f5+6cdLMudtee/P8o3jvBrfmC89A0tnK+l3/J7bTou9KLWRE0LAfDPjyf6Q1oCHD1+C3138wryuOC65X5K365xbxKpb41x5v6znlcgwDFXbG/vhhiFZ9+s4W6oL8zyf9eXa818tTlTrZzoPOdqZy/v1WObrOaZLcS7r+UrTxbzPeXvHPgH57Zl5noFZXzd5Wm4/azGQXK50/WlnwBwtvbQPSrazpFfzPFdjM1J5LeYp2b6IdL7Ycq+T5Km10dp+6Zyc1pfqdck+52OujUspFiPtnVLdaX5NN3ruTbSgraP8em5DpPbjfRzt3Krt6TFdWu/SOk3rz8+T4zie65umCYdDuv8RctSTu7s7ADh/Asdzejzbj+N41r39fr/wN1KdTGMTacx4GIaFH+GcO5fL/cVIvqfmtjuNWea+PlA/H2ltaddL7VlsubaPlfwezUam7HY79Ryg1WM9b1n2iDRvrT+xbGr7Svm1PrfGE7RYR5p+GOdVfOP+/h6HvVulj+MB7lD2J0qyRFp9WmtbcR+Qxjb3jaQ5iuXDHrgf7gGEcxzkwYObxbxIOhLXS+2MZo0tWHzyfC4s81GKc6RtX9YXAASEOWAG4FyUW6+75GeW+mxdyykWXdLKbxmjK8WyrGVa5WmJyWvnS6m+VI+lfcbSVmqf8/ueNdudtmc958X9dRjKNiSff00f0nObdL2UlqZLayHKrp0DS3oh3ecp0WtTU/mtcy/ls+4Xue2WvlvXbmlc83L53lSipj953hIlv8eSLsV0WuTIZc/jtZot1+uS46yazHmekr+azn8ql3YPH7js+Zr9SNf30d5dyub7uNV3rFHqn9UuafW17h0t/Tjmjfnt54ae54Xyukp2oVSuhPdrH1R63kfz5fPvkl7l6VYZS3NtscWlNkv1W7DqW+ncYdnzWvbZ/NrCv/Cp3trbtHy/JkZe43Kv/pI2DANCIW7cMn6lc4nVj83zt9iT8p4EpDYmrstS+717sIRlX5bGcnZrG+C8hzvd0xiGAQH68xISJV/Puh6sY6P5Rj7Ie2xJx+ZhxvF+W0CcS+/duS4LzgHLJo73tkr3TvKzpWYLrfurBasfp2H1z47f0/VxvI+mSd6y95b7v573NNZyvN8Yr55kytZB6ewZ8wzDvPIfjz7coJ6lWvqU+nsl3e+xJdfoT07qO0nfeyitiV7Za3thz1zVfJeUlv332ntl1r21dIYr7bmW9i1+SOkMJZWVfvdQWzOajOt4bVq2HCvM6+3B6idpe2Puj21xT7Z2Bt6irmvXq1ROOwM9C9L6vffwWD7PFPPUxEjj2Ed9k/zK+nnrGq6Z723Hue4PltosySLf/5P9imvQ/Ixrx6nVny7P6XayaNfaYzt2fbPoa++asNybKtk0yz0OLd0tytt0+VzWuLdb47SlM7j276Q1rHMh3U9pJc5BricWnbl2fwun+5QE2O5fLX4e4Zz7agD/JeLp+hK9cAB+EsDXho1egJISQhhDCN8F4LcC+Nms/SjDH3HOfdxQ15MQwr8G4F9K6gGWFu11AN+8XQ8IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCFnDl6D08X0AHmD54pAA4G8C+IYQwq88y8ZDCH8DwD8A4GfySydZvss59xuNdX03gG/H8kUoEQeg+kIVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKugS9BacQ5908D+DqsXxgyA/jmEMInn4ccp3Z+D4DHwuUHAP7jhur+MIBPxKqzz9/mnPtgl5CEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBjYvWgB3of8oey3w/GFId8XQviR5ylICOGnnHN/DMC/f5LBJZ/f4Jz7mhDCjxnqeeqc+y4A357Vg9P33w3gv38GXbga55x6LYT8PTVtWMo7585/LeWtssV60/zOufPvUv+161rb1jq1uuZ5NpfT6uqZM63MPM+La977c3pKOsYxfwhhMQ7zPC/KpXXF9LRMCGHVflq3NFZ5Xfm1aZrEvsd0qUyeFwCmaSq2I1Ga29hnq95IY6L9TtNbdKN37ZX6ovWvtp6kdVVba1G/Yt6e/kh9yWXS6krn22pjU5nTOiTdyfOWyqTfrTqwhe21lM9tRoq2ZrS5t8jVI3s+/2kd+zAnabEfM0JwK5un1Z3vTXmbeX7LOirJLNlrK7lNluRL8+ZpJZnTMpp+l2jtp7SuY3q+f0l+hIakl5oNSedbm7+8LotOWWTW2qjNsVQ+lz8S51Fqy2KXrPtbXt/nGlJfLX222rhcx1K0OlJbMgxDSXyVtC8l+6Nh8ROiDknruKbjkk6kMks+4RZcu0f2tKN9l8ZImq/UbsQxH4ZB9Gnib23N1XSxZo/T84FlL8j9LWmNSXuTJKv3ftF+1BHnHG5vbwEcx+XJkycAgMPhAADna0+ePMFnP/tZAMA4jmcZxvEpHj/eL+T65JufxNOnR1lubm4AAO++++55Pb788sv48Ic/fG4z8uDBA7z22mvn72k/9vv9OW8+phb/IsVqlzXy8a/ZGe3MBWCxVlttiiAZQji1N+v7TF5Xre7UDkvn5OV5fwKmdn+i1r6Vlnpb2i/5G+fziU99DNne5+OVn+nyduOnRbfz/VjaE9Myeb8s56NpmjL9X8pSiy1Je51mN3vO1tI1y9kst+Fnfffz6exzzimur9p5wBJDcc6d7UE+zuM4AjjaZWmvjzZZGmvvvSjrbrcM9U9T3d/Jba/mC6fXbjzgfbTdAOCw3+/hbvfiPpin5b8lXZZkq+XRSHVh2s/Y7R4jrmfngJdeeohh5xfr0mqjSvqu0RO3aI0/aHWe18FuOI1pQByL3W6An+XbRaZ4iAe8T+fm6A/4/XK+c3lKvnOtj1o8SmsvJdqkku8Y85XWUaoz2ve83Vq/NFriIa3+fT7HtdjWtaS+Uuq/RtK5leyKdfzyfl1znqrJJ9nrkr/Yagss9i73q7331ThGzVe1+Dj5OVvaY3I/QLIjkn+09Enl+xq5zK1I8kr2VtK7kk6la6nkE0r15dfTcc3j51Ib4zhimqazv5GWOxwO5/TU772/vz+fF/M27u/vn1vcgGzLbrc7+4i73e64N5/WcvwNYJGufY/n5NTGpNdq6ZE0X0T7XvP7NNuslbecm3vsiBYbzLHGpbR4hHaPWyONrQBre9dzPotylHx6LU5RonXcS357mpaOpbY/5xx1WL9fIe2trfKn43fN/aUcbS9r8anTZwm0NqT+lnyiVLYQgnjujH6AtO4t56vch9X8cK0vS3tyOevGZOfdWS+ijtTWSkubLb6+1JbWXp6unWGt/pX1DKzFr/IytZhFni/1F0u+mzW+k16TbK/13FHa6/IYjmRL03uclpiulDZNE6Zpucda67LsY7X4nyW2c02MV9p3LPaiVa+s1HyQkly9/ocmb/pdeq4tLVuT05qnZ11Lcl1LPr6rPW2YzrZbOttK5zytrqhzzqX9cgvfNy2fj4PVFklnQC0W1RJbsup4bV1p9lbbH+K1ku8W03vWoiZ7SqvOLZ8XssuTz0fa7vEcFX+3xT9b0faAy14T08NpDaz7WJrL9LsW/7HGSbX2Sn6FRa6tqOmOpa3dbne1DW45C89+XtgoIKzsVGv7MU/Nr7uG/Owa07Rzp7an59T88jyflldK12y31RZZn6F71pT6FZHH9/j8wrGQcFXZxySkffTadV3bd1t97tI6nnC874zkn93Ms3yPpdcPlLCcl69tY4t6LPfL0rxCDWa5rvUjRDsULjHSNEZwvl6JR0rXhmFp90IIp/r7noPMWfqTads2GS20+FdaW1FOLS6cx8ss/lJJrtZ7cpEWe3Hywlbl873K4mtZ01rm0horqZW3xAJypPVV2oNK+7v137jkbHmPyzJX6RrX7gmmPy3yWc7cFiR9dCF/Nqn8rG1NztLvVnrXbymvtAeVzr4xTfND4/e8WF6m5h9d6oj59Ljx8sxaOo/L7aSf6zLltf287hn32mdJB49py9iQR1+MqqaTx+trf9ISVy9h3Scse46WX6vbOudHnV3WUfPVSutCus8lrb0a+ZhINlrLr9Vx8AdM09JGHg4HuFmvoyajZe4s9mpF9swqINt4S12tzyn25m3xl1ratbRn3Xd69idtryiNq1Tm85Xt7ix8HuCc+woAXw8kTwdf+M7nLxEA4DsAvH36nqv1tzTU86eT8nk9v7VDLkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCTPAlKG3848n39EUoPxFC+BsvQB6EEJ4A+PNYv5TFAfiHG+r5OwB+VKgHAL6yW0BCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQirwJShtfK2QFgD85ectSMYPZL/D6fPvcs49aKjnrwppDsBv6JKKEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBADuxctwPuMr8blBSMp/9/zFiQjfXmJw0VGB+A3Avhrxnp+NvsdTnW8fpV0Lwjn3OJ3CNLU6YQQVnVIeSxpvVxbf5r3WcvVM1atdeR1SXXO8yxei+l5ezE9vx5CwDRN4jWtjZg/T7fUJbU/juNKZq1M2pcQgtr/VK9L/U/xfvm+rHT8LfNayleaSy29VZdTvcr7UkOSvaV9SafTNK1/rWMMXPRvC+I45XYwhFDUFWu9gKzzNUp5auVL151zi+uWOSqVT/up1Zte02xfj0ySbPEzrWPZpouJKJnhVF6tnVK6ZU+yzEXel1J92rhco8dSG1GetN5Sf3P503mK+qPlkdrX2onyWPdXrb2SHdTGOLdlWt2t8miy5Onee1Hnc10sybKVH1VqYxiGZlks6VvreMSql1qetL8W4t4m6WPLHlmyX5Kcmr4A+jq30LrflOTdmtZ12SuX1ueaz5TbAM1fKul+7tfE77l/mNYh+Y6SP5/K0rr+LHua9754ztF8+qdPnwIADofDudx+v8fhcMA777xzLvPo0SMAwP39/Tnde4fb2wcnGY/r9yNf8BHcH5b71KNHj/Dqq68CWK7xm5sbPHz48Pw97d/NzQ32+73Yf8mP0s7mpTN7uqfW8LO83ixz2XrOzfeW/HyWlTylA8557HZ7DGE5PtM0Ne8RFr9yntP1ufS/Ul+lpL9S3emZpbanPCv7l4536Tya2pXL9YAQgHEc4UdZv2r2LE1Lz10a+d5Z8r00ebT1Ezn6TXL71v225N/W6rX6ypazVSlNn+9QPPtL7Zb89jhncU+I+fb7/UKvctsIQFzTaaxJWmMlW3V7EzAMd+ff3ns8uH2A3W55SyDKOAyDulem6bfjlNjYi5+Vrpc0f5RR03lNT9IxzmNgGiWdc85h9jOmKa0LOBzuMd371b7R6h9JfY7pVlstxe8kHWzxKaX2jp/2GIvVB88vaWvLor8W0n1FkmueQybTcY+b53k1lvk4pvpQ01Gp/Zb9Oc5Heina79YzRCld841a4jwRae5a465pXbmupHMrxTxbzpaaH12itv7T/pdisj1nOm2dtZxlo0zjODbFNkrzbtmfNXlK5dMxqulQusfWkHS0ZnNKvvkwDIv2owypLkr+jSVmKlHSK01H0rNhmpZ+5un5PajUJ8nLxLyHw0GU9e7uTsz/9OlTTNPFd7i/v1/VQcrEM7tzDrvd7jyWt7e3Zx1M/bX9fn9OT3V5v9+v9rfUD5TSU2K6tE4se2Utr8Xv1/y19NyT+1FafKnnDJrLJvUlHaO8Ts2/KLXdE1u17j2aXazZy5q91s7AZT/Svl+W/ONSrEGKBe5wPLOlzcc5zOdr8APcUI9l1PwISyws/w7Y/C/LPlwb69h/5y7+vfcezq/rq/VVmherDWjdI9P4aZomyVLzcf2c7qFACMNxn4U7xYUOcAe9773nnJK/rqW3+HoSlnEBLn3K4wZpPVY/UJrjmg9ciq/WyM/ntX2sFkdL69VkLvly2vMS0cZr+pOOhaQS3nt4v+5bKZar9Vs7Qw3DIMbDpNhxTh4b0sjl1GyDRa8kOdM2LDEwi9/TGj9qwepLte49LfrfyrV11NZgaq80vzVeO9a1nMNhGIDTEs3nu9SukuMcA66hrQFt/HOf0hLryWP+UvpyLJOeBKh90caoFl/T5NVsZ97Pms9g9cO0+ZF8h15Ktm0tU932tGKxAd7n4+NOe0c9nlebi1KadlaztGfN/6xI7+9I1PRe2htb+lNaX+U2l/mkebbafsu5WfNJW/Yrzb/Ryln3Ymu8+lnsXTnSs08tpD6Y5awIyL5+7sPm8UyLfCEEzDczQrjEHUMICPOMKIrmK0d5NPmlZ5ZrMRPrWkzlP/6t+2Upn6dLNlzzNXNSWdbyyL5tqy/aer9BojYXPbGBnnpa8pbGPF5f90e/n7nOuz5TWGXLZZG4pt5ISTdb9tieeGaK5t9Z44va/aMWn6IkU96WZY2Vx69Fj2R5pLY1u1jzn7Xr18SQ8rTWcQaA2aX7xDG99EyuZews676GVl/Njpfy9Nrpa/2bvA1LHotatNoiaa/u0b+8/ah71+p1Xm/8brHDrecbqQ4pbylL2sfj82Xr+7/pWV3yybT9LyZL95slOUu/a7Jb6fWd5XWZ2k5bP0vy1M89Mb0cyy7FfJ7HOaVWrmZ/87ySvtX2wVL5mhylfK3fpd8l+z9jvQanacQ4bbceLOOhxRwX+p09/3yUdTL/+9PW9Xvt+aNUtnb+3QJJF2s2wzynV79SpgAAIABJREFUgl2qjdfx+3b9ez/T91Ti5y8fUtLffK5SrPnlwrWPNtTzjpL+ckMdhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ0wZegtPGakv7Sc5VizbuFa48a6nmqpL/o/hFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQX8XwJSjb8OEX3P7rhWsPGup5qKRrL0chhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRq+BKUNj6jpH/Nc5VizRcWrrW8wORVJf2dhjoIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCGli96IFeJ/xCwA+DCCcfgcADsDvdM7tQwiHFyTX1xWu/Z2Ger4s++1On++bl6CEEOqZjDjn6pmuLHetvHl5re1SO1uOWamN1nbmeW6ua5qmogxSG1qZcRyby2gyT9MkXpvnWUwPIWCeZ3i/fk9Vmp5eT8cl14O0L+k1rf0S2vg751T9K81LWl5qQ6qzdY055871WfQwbX+L9aHVYa077a/Wd01f4jUJ7706vlJ6lHcYhqrMaZm0/ZK+9drc2E6tfH5dG39NxpKOa2NfaqeUrum/lp6uMcs+EPM4d/w7pyfXW+ejZTx79gStjZqNuPR1mZbrca2/mo5JMtX6VirTY5db2mklHT+rTtTsZ4+fVPIJpDkutVOzcSm9c9Ey9qU2om1p9e+kOjU7pY2fZZ32jI/FJ0jJ5S6tEa0vWlq+R1nqKtmC0nho60KzB7GNZ+mnl+q2rNPcd6u10eP3SHVJczPP8/l3bt/zdjWfPM2f1x2RfPCSzC36Lu3TWl3xepRtmqZF+XEcAQBPnjxZyB/reOONN/D48eNF/W+++SYA4O233z6nPXzo8fTpIwCA98dx/dSnPoXHT2YMw4CPfexjAID9fr+o77XXXjuVf3hOu7+/x36/BwA8ePAA3vuFbPGadWxLOlqzdyXSPCX/LsouncdbfNJ4TpFsxPoMOePu7in8vVdtRGm8Sv3RiXKd+nwSR/JJt/DtSr/Ttd/aVq9PEq/n5ybnjrbGD75o52o2MIQg2onSPpbKUjvnan6EpL/zPIv2cp6XNtd6pirti5b52GqOc6JMx74ty0zThDDJ49jq88T8+VrV/Cst/jRN09mm53VP0yTqT17X/W3A/T0W8nz23QPu7i52IdrgnGEYVvvq+Xdwq/YPhwMmJ99qiG1J+5lmn4ZhWLVRsz+WuZqnY1wvreNwOMAf/KK+Fj3siWe0xiTiOOXXW2NBse15mnA4LPXr6dM7+KgwHcw+9dWP/UvHNrad9722d7fEVfL5O9q3dCwue29pri2+cs+epNV3rDJ+HvHeibY8lVtbC5K/keeRqO1d0n6RosWn0jm2+Nca1n0ox1J/675VQvO9LGfGWL43Ttrjn8Z8pd9bUJo/6zi3lMnXj3b/Ia2r1O8t4lyW+GOuJ7W9rbSf5HZCs6vxd+53RPIzZypXvqeWbPbhcFjlcc6d281tSEy/u7tbjd2TJ09WbXjv8dnPfnZVl/ce77777mYxFu89PvCBD5x/73a7c3p6Do4y73Y73N7eLnQx9cNSe5H2M/XDLHFO7T5SaX1rZ3CtTGt8WJO5hdK9n2vuYVjjhznX7CnXUtpbSnOp9bUUU+i571HLWxt/iy0ulc/jZVK70twM44xpWqYfDgeMo8M8L88j4+TgxjbdafV1Sz6mZhdifumMqOmjlH6uc4575TK/m9vukbb6NNK+JfmxaXt528MwqPqn+cSS7XVhhnPRl7j05bK2PLx3q3morck0r3ZNklGru1aPRs8ZKO53lnpL/U1j+Zb2a2eZ2v2EtN0WtL6s44TyWk59UW1da2NaehYjtre/CRiGcZG+v7lBQJseSDpk9Q803zz3DyPeewzDYNb5XJZcPk2eUrrF3y/Jn8siXcuva3VpslxrU0tnptJ6kXS55oO1xKR6YqxSm1Jd2rNSFx2334coPacXQoCfxlU/pmnEJAxFHhvQxqtnzrTYVPo7tbeW2FoIy/vw2n6T6m/ep7wvWt+sNlbqcw0thirRq5PLNX68h6r5STF/jP+lU6Gd56TfLXLZ/fbrfAepbe13Lb3UXulMmNJ6H1Tbn0ttlc7KrX22rvfatRohyDF5Syyyth9qtO5XQBp3luN3kh5Yx1a6ZolltZ5napT9kHJZzSYDy70rt2viWUew4fnzMrKMy/RxmC7x/Xhm8h7+9P9lHoYBQfh/NLc8D9K6rlrmS6rfe39+HmLLuQf0ve9iR45/y2t966n1+rNAs93WM2zcN482IeY7fk/nrnW9S+0sv6/nZ2nrJTnXsvTERjWd13z1Ul0WJPsgUdo/SmjxEal9Ld3q21j0oESLTan5tHk87ZJmi8P0jnc6Vpqd0WJj1/idNez+WTKWQpdL/qDFb8x1Set/yT8vtaulizrs4rWlfC3zcI1dl/SjxdeX9Nly7pT0UGqnNq4WeWtYbPS1a+RYztZmmif2r5Q9j49I/oyHz9qMedY2bNnXZR1bYTl3tc5tzZ+vzVt+uWY/2utPYwD2c//WPijQHldPy/T4NMdyy7rSv5p8+Vy0+loWpPrztiW5chlmt35+qtTXyLO6j1y6PwpItsX2717y3z16aj1nbjnPVhkiab+kZ+Nq82ptW4vRlOYv+PLe8PnEdrvT5wc/nnxPV+7rAL7xOcuS8s8Wrv1sQz1fK6QFAH+rTRxCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQuzwJSht/G9KugPw77r4vwN5jjjnfjOAfwiXV7Ol7/d5K4Twi8Z6PgbgN2XlIz92lZCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBTgS1Da+F8A3J2+BxxffhJfGvJVAL7teQrjnHMA/nMAQ0xKPgOAv9RQ3cdx0QeXXfvRXhkJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCKmxe9ECvJ8IIXzaOffnAPzzuLz8JL5wxAH4t51zvxhC+N7nJNJ/CuDrk/Zz/qylEufcVwD4Vlz6FJLLM4AfukLGZ0oIoZ7pOfCs5Di+5+bZ1TPP8yb1a+3EcXHOiTKEENSx0+rSyszzvEqPv7V+TtOkpreWkdqPdeRlYr5xHNU2tHY0JHljWghBHX/v1+/CmqZJnZe8nVhvaQ3k85/Opaabpfm35JfKar9L9VnXYK6XsZw0jzGfNsfSnGiyWMYlr8/SN6m+0rhZ9cVCiz29Ri80HdOQ+lJr16rfljpLc9KiM4A+L1LLpTGurY+aXbDIlI6l1J41rXTdotul/UorkxPXvHV9Wcav1P9rfYgQgq4rBd2X2u+pC7jodt6XlrVd43A4iOk99ksb+9J+p63fvPw1crW2If2utd/jC1vmKm/Pey/2R/LDtHZS/7BV7pJPK6WXfKpSG8+DVl+7pS4p/dp+leZL88F7GIZh8Tuty1rvbrdbfEZKe2rcI/JxSv3FVPfT80Kql+M44unTp+d20vreeustAMDd3d2in5/+9Kfx9ttvK72Jvv7lXDNNMz760Y/iwYMHq9wvv/wyXn311VW69x63t7dnudJ+7fd70T92zq3mo0bJJ2r1i+Z5BpT2tXZ6baF0VpJk9t5jGIbN7ITU99g37x3SMNMw7DDs9P1EOttEOfPxsq4l7QwpYfWlnHNqXSU9scho8VdSn8jqk3rvm/2IUkxDmhfv1/uYtuda2s/Poeneq/Wl57xhzRfrjjbFDe6k4xeGYYAflv2RxrG2ztPreUwqL6udD2J+KWaU+q7SGsnnxPsZzq39vBAuZXJ/OI5TCEGNW83TjPv7uyTF4d1338XdLtUrf94r8jna7/eXupIxTv0Qre2cFtvrnMPsw8rfGccRfvzce1d8KqMWW2zV0UjqW8XpmecZEGxH27m73L60720VU5JiYEMAnPMLuaIMNb9X2ydL+0grSzlS+wFM04wwXfwCjdreqNmY1rUD2M6WNbQ6tr5PsdX9mt5YdEtsf4vzdOpD1uTLy+RroXVdlNpL/Zi8jdax1dacVleua6U1a1ljrbFkCUv8Mz0Dpb5r3nbxHIP12day9tIzbGm9l2IdpXsYUlrJhmnn49axX+2ht7cYf90XL9J+3e/4HQhPnhTr0fzV/OwfOfueWT92u504TiXf2noOqtkALabWyhb7QaTlHkPpzNYyTmm65FNrzPPcfL+txXa0+hKWtZDayN4zV889GIl5notxiEg+55pM2tjmZ1HNb77EPyCeD4fBwbl5le4Ge+ygNc7Qc95MkdZmmmb1E+YhwPtl33e7Pfws7+m5jNI8l2J8pfsqeZ6c2jpOYzAWXY7jtYNP5AIAB4Sjnx6/xHO1to9r9KyfEIJYd49NKd0XsHLNfci8H5qvVfN3c3r8dmsdlnsmmvx52VKcT6tX9hvWvlIa77HOZ3rWk2L0Un7t3q3m+6RYz0mxjTy/Va/zeoDluEjzpckff7feq7DIk6bXdLtVB/P0Le4paLFNC9a8Vj821cNSXEl7js/N+niUzm1H+Zbr0vthE/2Q2kvRfBoLkg+7Pktc7kGVqPmXLeT7aGkdWNry3pv8TQu6HuS+qy6f7HuUrx/rDOKZuEQtv3wtFNvq3UOvudcT8245ZxZq7bXY6GtixHkdreMWP5fFnOl+n0Su25rN7ZUzRdoLpdhdr92JskvtW/ceLea2xf2N2hBK8YjWtvK4mnZWqvkU1jkojYvmT+Zpqe/W6gf2Xkt1RNP3ta4CR//gkua9gw/tz+rVsMZet8SyxuP6qp3brOlxnFOb5pyDw3IOrrUNazlkuVI/UJLTKkvtWm0v6PXpl76rhw/2c2lv7LBl36nFmaS28nHZShdSPZbars2HtJ957xFO49ETe2m5VrIRuezXxIN69gIthpEyzxOmSd4jSvf4SvliXmuc8Rq7bPGbLnkv37W4uVavti9axqR4rpxn5M96xFhvPvdav2vtSmh6laZvGdsoreOe+GNvvKYln6aba5upnSdr9x2iDOX2rDJb711dW6aEtD8viy+fG9P6oj3nKK2hNN8yHmX3tUv5tLN7iw5q/e2x61KZKayfsxzH8XxvqdbeFvGm1rI9baVy5sVTvbLa9hKajayNYYvtsdkXPR5o1ctan1vsQsu8WeMYy/12Xaa2X7fJE8fyUndpH7yUiXI/2zPg5zKfe0/3fu7zRwHEuzPpzhQ16j9zzv0J59ztsxLAOXfrnPuvAPwLWGpv+v1NAN9vqOsjAP4HAI9iUvIZAPxQCOGNq4UmhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIUSBL0FpJITwUwC+F/krPZcvQvmDAP66c+6bXP4K8Ctxzv2jAH4CwDdj+cKSXI7vCCHcF+q5dc59HMCPAfhNWL4WKOXPbCE3IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEafAlKH/8GgP/39D0k6emLUL4cwH8N4Oedc3/COfe7nHM3PY055z7qnPtW59xfAfAXAHxZ1lYuxy8A+K5Cff8jgDcAfDeAj2D58pO0nk8C+G96ZCaEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxMruRQvwfiSE8Ng593sB/BCAl7F8GUl8OUn8/sUA/uDpb3TO/RSAnwDwS6e/dwA8Pf3dAHgFwAcAfBjAbwHw9wD4oqQ+ZPXnv2cAHw8h3BW68I0ABqWutA//XgjhcaEeQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKuhi9B6SSE8NdOL0L5fgC3kF+Ekr9gZA/gq3F8uYkVl/2WXlqStvnHQgg/aKg3JN/zl6kEAD8J4Hsb5HwhOJcPw7MjhKBeq8mhlS3V2dpGS9mevsQypbIt/dHy1+pwzokyzvOs9jNPn+e52JaUHstolOT23ot5h2GQsmOaptW1cRxFOWJd0zSJ9bTKGtH0IO9LS521NrT5ugZp3p6F3dD0cr/fr9JiP/NrMV3TtXmeV+Mc2yyt29qatrbfQ4+Ns8oL1GXNr2vzlKLpuFSuZkNabEzPPtG6HpdrLP2rI61Xbfx3u3b3UuuLRmmMNbm0MqW+aOktehLTW8clhKDOZUn3W3WpJHOrvSzJ3LK2geMeqe33rXZKk6t3jJ813vuuvaq1L9775v1b0/0WnbT0TZPrcDg05a/ZUOs4a3tkzafUfD2JHp3r8b80avvwVvSuudwmbbkPhRDOfvMWa7+1jmmaqr6BtA9L+jWOI25vb1fp9/f3eOWVVwDg/BkZhgGvv/76qsxuN+K11x4s0j72xQOmaYdHjx6JfXn11VfF/t/e3q7mJdoTbb5KuthqV+JZSuM4B9fPfcu5u1bHUecXV5r3h9reK9n0uNZy2ed5Aqa+mIi2JqTx6rVrVl+ydD7SuPjOyzRpnNJ2WnyiUr9bbUq/D9dUpMm3641BlM7zLX1c6YfHaf7OEi4u9+hh6TwhXSvtY6VYjmQzQwhnO7deC7ofKI3hMAyq/5LWPWA+/46ft7e3wC7JMwwreeLv1rNBSa+1dGkco21d27gANOpbj1/cypZnglL+WGSaJgRF/1LUWMSMlS0JoWwXNHm1ddCKG+fVHn9cl7JeaXNeir9qZWr7X2l+nVvK13rekWKILe3nbZT6r7Uhtb+lTrfup7202J7ee0BWH7LHVyqdSWv6njPPs7j+S23kurj0dW36UFtLuUwlHS/FBjV69qwt6olltH60+L8leXrWWD7nPTbdkjfNU7JrGrEPuf/kbm7gsnszNw8fwu92zfP3PO5RS2usx5ann7X6PxewxnItY2Cdv1pdPXG+Fnl7/DipPm2/1uLttTas92Bq90zys0asYwu/Txu7cRzF+sdxxN3d8f8n9GAKeO+9e8RzYQjAG288xdNHDu7d27P8Nzc3eO+9A1z2vyF66aWXms89W/gXraRzWa0zHB9zSrPN84QwlfXHuWPsyrJHpbLk8mjj17OX1u6j5mWjvozj5Sw/z0AIDgHrdkp7tYZ2rTRurc9ttNTR6sOm6Vb9LJ995PFrtfct/Wtdmz3PxyzvyS/TW2WS72vrZwPNP9bSW9DGovU+f0melnvwre1qbZTuPce86fVWnY7peRtS3ZJ8ed0tdscam5fazs9yPX6Eldr5pNdfkOLe1rO17Ie33aOp6ZW1rnT8t1jLsZ5WfzjP1+u7pOUsNtkSt9jibGaJ64awPpuGMGOeK/vUOJ6ea/WoiVqbly1jG6W1LdVXsrs9/k8uS0R61q9W5hpaYvqtz4rVrgH9McW0/vR5lks5B+dCk2917Vi3zElqSySb5L1XY1BWSutFsyVRjnTvSWXb6t5F3m4knqm0Z5OA9rhkek3ac0vPpZTrccjvsaZoY2x9hi1ta4t1kjK7+RRXASA8O9ti044/8zP05T6wxQaXxrM2r8/rXolVnhLW8+SE6eiju3Qdz4j312tja5FFyiv5jfEznGIl+fWafdXWl7Tf9/jcFvI4e0tcTyOVs6ZvPTZLy9MTG2rl2jnIi6/X+pHe+x1bXbtGllbK8qXfbXHFnF4dtF6X6PEJNWprv2Tne+dRkv+YJtumkiwa16wlrU3tnkhv3SnaHmX1CS7+yuU+A2B7bmOdvs6n+UOaeLrcbmWXJDF6xvlaW7JV/Ncme3nfLcU9pPRy3/V7IVq9W8bma2VbYgs1uUY3Hp+/S2j5Nz/WPlljey11RkqytuxRPc825Gj9tNSb58nlCeH4rOk42O59lNZZr4y18luMX296CNNKF6ZpPscDWn3SNH0MYRVXGA8HoBBrmDCf1tbJnqg5f/XT7imSMyGE/xXAPwLg3ZgELF5S4rL0/JrlL2R/ab3AUn//bAjhjzR2I5Ux/n4XwO8LIWwfsSOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghJIMvQbmSEMJfAvDbAfw01i89AZYvNEmvWf+kOpDUFa//twC+pbcbST3vAvgnQgg/0VkXIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFN8CUoGxBC+GkAXwfg2wFMkF+GAixfZtLyt2gu+XMADgD+zRDCN4cQxh7xE9l+AsDvDCH8xY56CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjpYveiBfjVQgjhMYB/3Tn3XwD4dwD8XgAD1i9CieQvNxGrVdJj2f8ZwL8VQvipRnHzej4B4I8D+J7OF6m8MELQhuiIc27xeU2dsY5am5a68jpb0OoMITTJprVfq8N7+d1J8zw319Uqb2uZmLenndb2pf7HtLxMTJ+mydyG1hdL37T2rfmBi65o818aF01ma/o1aPJu1Y42xyVq677FLtTmsoeWNV4aX42azC3t1+xyj43V6NGXvP0eHdf6EEJQbYg2xss9MX2n2un66b/Ouer+2TO2pTIttrWUv7QXlsZdk20Yhqb8Wvs9/kAIoXmN9/gCPeO1JdpYTtNU3I8kNPvRs45ubm6afY7WsSz1pVUnt6Ske9p4SWh2pGYLJd8hvZYS51ybeyn9WfifJT1+v/Gs/TOtnlafoiTP4XBoqss51+R/AGV/Zcu9S6Mn/zjKR/3D4SDqaghrOxwK6zO2I12f57np7AMcx1hbW636UqtnmAHn/Oqa1E6PT9yyn5/rGpZ6GUJo9st64gPeewTX7uu1+D89+9+W/n7felvbxpb9KrJl31vajnWXfNu8+biet4gz1dZIS997zuD5mMS5m+dLHdM0IUz9e522X07TpMbLJLuY2su8Ls2Ol7i5ucEwjFnaDsOwV+dK05M0/Xacsdu9t7i+2+0w7a5737pm+3vWutQP5xzcMK/q8/5o/1rs9bOIx1jb6DnDSbHBuLfE4RiGAf40bmlcwMqICZK9DGHdfi3O2BPPk9KH0G53S21IeqXZpZbzaUxKq4hjV5InbT+XUzsLPY84+RbxuFrMT0rf8vxVG6fSfpuntep5j262+tpbxshKbBHDiOPUakck4jhZfY8e302rS2PL+xc9trtlP+u9d5jrgWW/kmITrXuv6pPvd5gyWXe7AUOQ/aPSuG7hD8S+tpz3ajpsXfsWncmvl/ps1VnLvYfW+9fP4x6R1GarXdYYhqFJ/0pjsdu1P/7TamNbxrWm2y12vHVfs4zF7Tjj0WfeRvRjQwj4gi94FU8fOTx+dDlLOefw6NEeblfve1wnWlxco7Ter9XlHv8iLeLQbi8seVtiCD22b7t7NgFhDogWcJonuKl8ryrvx5Y6X7u+hc+/RWwwku8dWz8j1Upr+1vFqHuwnjtKxDGS9iZtDbY+E1RaU9ZxqvkxpfN4Tk1+6z49DEPzswIazrmr74/12JGt9L2nTEvMt/XsWPJJF+MzHON+eVvDfGlPq0uO6drzHvOXfcWW8d7qPub5+jQt4uNRrinZ32praYv7Qlv565LfHH8/yzjusV3dbkbSuHca77tmH3uW51SgfH/GQqsfu6V/8KzvL7eiPfdkjSX2Pq8hid+6Fnv8DutzXmk8ZBJskvTcxZb+V0vfSvfptyAds9LzJhHNx+pZozmt+00P2lkpp5beOodyOhDjAenYl55VacXiQx/1//p7fzW28D22usdU8v/mYT7tr8tnmB2Ouu87ZSj5p9ozIakNXjYbxPVqG5/18wPjOJ79sNb12RI/HoYBA+zxeo0t7zVa2TJOofmN17bbE3+z1rHlvdfWulv8fmt55+MzCpe2U/+oJa76LPforVj6cyFJl/d+a5+2XL9OeAau9FzcFvScH6+VZ6u9s8U/bLdf67aet93tee6xlS3jAbV6t9pDrHb0+NtB8++2kKUn/Vp7rnHWl0Hyadftajb+Weh5S3wSaPt3AbOT7WbtHmHLMynXkLYj+boltt6Heu4rWH2BVv1p1QlJpmvvV9XqyXnW+/H7Cb4EZWNCCD8J4Pc5574UwO8H8E0AviLPBrsFyVfYrwD4MwD+ZAjhxzvF/BkAvwDg/wbwAyGE/6OzHkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCroYvQXlGhBB+AcC3Afg259yXAfgGAF8P4LcA+EoArxqqeQzg5wD8dQB/BcAPAvjRcOUrfEIIv/ma8oQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEbAlfgvIcCCH8HI4vM/m+mOacewnAFwL4AIAHAPYADgCeAngPwBshhM8+f2kJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHm+8CUoL4gQwhMcX4xCrsA5Z8oXQmhKL12ztmnJW2pfy1sqo7XXInNNppZxqbU7TZNaf96Opf9a+/M8i9dDCGJ9IYRVGa2OtC1NtrxszCf1P+bXyrT2pVbGmt6rFy2U9KU2/z1rvGe95PW1rC2LTCV61pjUlqZ3Frz3Yl1anXl+Cy3jE+vXxqGky5qN0fJLbdTKbLEuSmj9HoahWs45f/p0OFdz+u29X81dj11oyd9qp3pkKOnJVusyjuk1dViuaWvO0n4+t3HsrWui91pNrh57KrXd6qftdvJxqGdfLbXTSqkN6VqPvZ3n2ewHpdckSjayxUaX0gHdvnnvze2k/qEmd15GG9/auPfal16bmBNtuqXuUh2x7Vb/vFWPAd1GWfJGavtgqUyuE7H9cRzNcm3ll5bye+9XMgHHftzd3Yn543g9efJkce3p06f4xCc+sSrz8KHHO+980SKf52BPAAAgAElEQVTtb//iL+Hx42PfX3rppVWZT33qU/joRz+6St/v9/jQhz4EQD6jSXMWQlDnuGevKfnF0zQhhHl1bRKal9qIfWm1UWXfaMI8r9ecd2s/TdvLa0h6PM8zZj+v2tbK9PgxW7Klv63uI9D1rdUO9eyxGmkMIi1bGndt7zuVXPyKdqNHrta9v2dMWnyffJyO8jnEKjR9byHdL1NKe5JUJs2f+/y73Q6Hw0GsSzsfjKNfje80TRhHh/1+v8o/z7O6J6byDeF4prz05SjftFvOy5Yxk1Jdkj5Ivm70Z/L0eQ6AoIep7khnvxqpXKmt7llX+e9eGxtlmm9u8GQ3nGWK16SxbDkr5rYk2spWedM2NH/eEqOTxirtp9aXFh9Ek0fTn3S8Y7pzYRGfiWUu1+U2NFlDCGd7oY1TyT6t14jsa2jz2nM+1fS6Ze9ojYdsTet+VorRxvnJ69Riodp8auf+mh3Rymh+e+zLtfHDlthC7R7LFlxzb6Hl3uVW/mGt3Zb7IdJ+dU1sT7ORWt+lvU+L4dXGfHXOv7nBIdPlm/0NXGG4e9ZS6ZyWlonfe3S5dY+V5LXE76znDW0ueu7J9KwliZ64knVPkvb3SNRXq2/bc46S6imRzqU075r/pflY1n21tt61Nkr5tj1nhJMPdql7t9thGBy8z2Ig6JunS1u6zqRprfHbvC7t3m2MJebnylj+/v7+mPAAcJ+9XeR5983D8X/ldCLqeG6b9/v9Ii31PSWdkXSpFlstxzZkNN9Jt4m5DA7OO3h/6o8f4Ia6r67FEbeKZ10TG4lco9NaGauNazkD1NbHlveuJLm2uvdrGW/LfZh5EmIb04RpcsXxtsibjrE0DqUYuETPPSktzlMqk1KbYyupHS3FFqxcK4/Fv2z1DXN6/I7WMqV7LD1xwVLbMQ4spx8pxUdKzzRefs/wvvz4des6kNqJdeR6V3tmSiONQ2nENltsWq+eb1lX5FpbEJ+pSvF+OPsDp1ziuSw/61/2/8u8Tie7XaP13CJxiYvL6Vr9Wj3WvDU5azHTrZnnWfVJNaR7A6VyPXGZvD1t7UmxhFzG9fjpvkHerlZ3L636Cax9IO357VZf69r9sYetzvKA3e+X7knFdOte1L5nOUgbSqp3ufz5GaoW/9XusUhlVClV3Tj14SSnDxdZrfp/sa+Jv548/29d+8f20n7WZdBsVMlvs9r3mi2S5qvFZpTO9hOOz+/M8+VZhXkO8JDv85ZsdUu+0j65tlOyfS3tiaU99/hcRvneZeueJDFNE7z0IFSBki8S5bLIYY0NS23U2mndrzRZnFv/O6CWMS/Jce2/pdjiflGvTSmVbdk30jFIbWdsMl9zrbJsFW/T6tX8YEk3S7Kn1TjX5teX6D0318q32vdSXVb/Nm9f+m5tU6P1XHMNLXVofnH9fBsWeUv58rUm7X8pW53Nt6i3N240hUn0dXriNbG9ki0K45j4UuX2pL2uxf6V/DhLeak9y35hRfPdrHl7ZWyhVw8uLO1UTedb57eXVE+ltV6qv8dvq1HziZ+Vvb223lh+GkeMGzyaFBbzckpDea9d7g3PJmb2fuHZPvVHCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghFfgSFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyAuFL0EhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS8UPgSFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyAtl96IFIGRrQgirNOecmFdL72njWZSRKMmsXbO0bZUvhNDcFy1/qa55njHPs7m+EALmeRavaXXFMlr7WttaXdM0iXJqcpXamaZJ7Uvr+Hsvv+9Ka9t7X5wzCedcUf966pN+l/reOsal/K22wTlnnpe07tZxsdRZq2sYhmpdVlsSdWsYhuZx7tEXjXEczXXF3637gmZ3tGul9FI73nvxWmleNEpyHetK/wAHvX7JjtT63bJee/fjnnIlO2qd/1IfYx0tddV0Pq8rXcd52XQtptdiHaX10oqkl9rY1PRCsiHX6Lx1/Ev7i3YtrgfN7pXa18arxY5LlGQpodkbzXcoUZt7qZ2a357LodU1TVNRZqmfaX5Nd6Q+ta6V1v2xh5L+5P7pNW20njVKc6LZPs1vKY2XZtdbbEjvGpKI7ZZ87ZzauWEcx1V9MV8+x7vdMczz3nvvLcrc3NwAAN566y185jOfEctoe4REzPvaa6+d0548eYJPf/rTAIAPfehDCzv69ttvAwBeeeUVeO/Psk3ThP1+D2A9NrF8np76oPma7fENjvq4TqvpRd6Wdo7osavHNbdsx/thMXY5JT9fKqPJlLa9TKv3o2Zve2UqlQH6/E6rrlz8ZgCw7XGW9kt9aT1bSudnbf1Ie55z5XNLSz/jOpTGN11XLf5C67rS2oixodnr8SZJZq0vkszSGo1rM7fXsd5pmtT9Om8n9jlvO9rxtUzSfDvM83y247FsJMqS29i0X9OU71euOPc959kcix2d53mRT5cFK7vf0k6O5DM655r21byua+XS/Ns4jy3xxdwO6GedcN4/0qpTPW7RA8s5WYsfRoawTvN+aT+0OK9kY0tjkfYzz6PFeGMMdp5ttr9lLZXiBpL8eT7J9kS5JdL8qU3T/BPNtpbkvdZnT/Xe6rNY4rhWn9GyjkvxnxTt3kGk1Uex6FV+/8N6BqvVXfM1SrpibaNGn38oy5JiWXvOua71WmuzZy5K9q01nlU779fWxRa+gyrPytYddTAU7gvl8kh7q+Y3Sv5bb6zGGqOvjZ/Wl1Jamt4bqyzde4zXcyyxo1S2Wrp0jrfUb2lH2ke1se65RyDV27MWAf0+lFSuVncuu9bneA6R0MamNH4lv2Ern3MVG/Ee3reNde0eg7QPavHQ1JeX2s7T53nG4XBYXRvHEff396v0eGYOM3BzOMkX+zGO8PNljcbyzrlzXC/WIZ01p2k6t5Wv9WgTS76S1Q9MddsSM8zT0/0pzrX3R13wzmN2DkAAFDurxTZb16iUTztT9KwFS3rpHFSrS5JXs+e1McqvW3xq694htaOVs52JbXtv7XrJrsbfwy6s9tWSjYr1Sm3l7eT3zvL8qR+jxY16fNHUZ4ptpD5NlFXzF6y6VEPTsXwsaufLUnpebpqmRV5Jhlos3WID0r1HK1Mq3+MjWe1cjZZ6Uh2d/YwQ5kWcahxHhLGvL0c51vbt2nux2pppiQfWxmgVs54nzHPel/I6jumt890ao7DSuj+15ov+S5plmtb3a8fxgDCu4zf5+aB3OWx1D3ty06quaRqBUbevgH6m0uKIPfZY25tK8QgtNlSLI6VjUFtj+XleO0+WYsalvlloXYtHu5fWfbJRY7uv0hvnO7eczF/Pua0UY9f843Rc0jK9+1HJrrWOj+43L9PiuSzNn/sKrbTovUY+t/nZK/7F+v0wYMAgli+lldqUsPonetwTiHu7NTYjyxDLLcfEKnPUhfSevaQLufzWNWcZyz79XdpHi57a88RnVo7n8Hgc1+apZBc0W5D+Hocp05Na/Cmcr0ttl58FGVc27fi8gD1eV/p3L7GOwzCeYjQX/Xz69G4Vh8njhKX9rtUW5bZC079SzEiyWyX/W3uuV4vZpFjO/lLeZfriV/HfL+X0xBVK45r3xzJ/rXaw9myGRNwvWn2BWjs1W5fayBZdtu5hJRsT8w9+XsVuvPfwaHvuWWszTbfsCen1db61fe+RRZOrp3yt7mvL13zH2hpNfbtW182il3L8MN1P1vvh2t8MCx/jUkd9blvXZEn+FrS2Wuo72px1vTXbWJoXbY157zEMg7jWg/G52HTMW2LdLetAO59eU/fs1s+hWdaWhdr5Elg+M7hVLKU0HrX+SvJZ65fytcZyC7UhBBSfU6u11atreVr/+euI1Q8C2nTCYR1D25J8r3CwPNvRHxP41URfRIMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI2YlfPQlpxzn0EwG8H8OsBfCmADwN4COAlADd4fq/gCSGEb3hObRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ0gVfgrIRzrkvB/BxAL8HwJe/YHGA44tWwosWghBCCCGEEEIIIYQQQgghhBBCCCGEEPL/s/d+obMtWZ7XN/bO/P3OObfqVrXVdFfZqIzYvqgPOiOjoNiOT/oirfimSDOgIIKDL4Ioo4i+iPgiiA8ygjCK+DL+AUEZtX1TZBRGH4R2dBi6+t+MXbfq3nPOL/eO8CF/kbn2yrUiVuz8nXPq3vv9UJdfZuz4syJixVorVubJIoQQQgghhBBCCCGEEEIIIYQQQkgP/gjKnaSUfhHAvw3gn8L5h0fSp5UIwLfox09yzpv3KSWUUi6vK7XspZB9S+4Zx+vzJZDrskdGr82H7CulhGmaANj77JXrMt2/fl7f6/JSCtZ1NWVrtQFwaSfx+vLkmqbpUibbeOWWfD1kX7o/qTOSlNJl/Uf0wtLvyBktpZi6YfXp6fg8z+azaZrM8tZZ3PNMzsHb/xG8vu6xS5b+7cWbo7VfPbs00sbSS6mv0b4iY1hy1jXTa+eNr2W5l57ts+xYKfW/WiejlIR1XZHWuE+6R36r7Wh/cp8jfbXsUVQXvWdRuzQ6x1LKZY9751M+t+Yln0f9RVRGOaYeV56Fnh23+vZ0ZdT2ybWMnnHv2TRNIdvfktlqb7Ub3auWnvTsRfRZNHb1Ygrdh3VeWvNu6VKvnR5zWRa3/ijSJwBtPZFntBXXyZj4Jeym1S7aR2/fR86x3HO5Z94dQGPZu5EYZqT/XjvvjFj2pjWuXgvZl9aD+r6UgqenJwDbe8jhcMAXX3wBAPjyyy8vMjw+PuL3fu/38P79e1eOCKfTCQDw+7//+/jhD394GfPLL7+8yPyjH/3oMqZs9/j4iMPhmo6Sc57n+WasnDOOx+Ol30rPpnp7qG3HsSTMc11PXOaSj1dZrH3p2Vqp49YdUc5Dj5GRxfuElIB1XVCWW72X9+OXyn3oblp2SuLdla044HZMW/9le11/lJbd02Ns46haNzYP3Y8lq9QfK2aKxJEtvbLG8WSe1/O9QLKuK1ZDxb290D6tF1+3+pX2zSPnvLGx3ng6TzjPM9KcME3bFO48z5jm6UYPtS0fzY95e6TtXrV98hzXMi+fVMtlHNPKs0idmqarfVuWxbzPrut6eT/P8429rc9q8TzPWJyc0UvYJr2Wnj5761XL8qr38WxjW+e6h7Rx1nnWOiWRuSnruZTdeg3YeiZjSMtfeTO9L0916z/qc2+O+oxafl2vazSHAwDzkpGzXq+MNfVzlXIML94YtQt6LvXM53zbT84ZyHYOHLjmdXvxjifLXqptauXZpE5GfJW+QwHjsboXB1n+JUJP7si51c9beXirvDdu5LnWX++8WfJafd6bA7TiXmtMa3wvVmt9jtHrs1dP15Vlo3dz73MVb157abVv+aPRPnv5nF55T//2xP9efN+Kpzf3FMdG9MaN2hbZj+mbG7ktbw4jnwVaWLmYVrklp4XWj4gvkHi5tHqOLP3zPvvtjROpr2PkloxVToucc7PNyLnc4y+sGKrXT9TGRu7IrZhJ67v1WYgX97TiISnryH6VUoBS1+latiwnpNN9dtqitQ+jNjbnvLkTyXxizeXVv7X8q6++AgC8e/cOAJBeJ3z33YwsdOSL3/4DTE/nvg6HAx4eHgDg8hc45/8eHx8vObynp6fL+IfDYXPHtfJEdd9Hz1all0sY8d3ne0TNcQGlnHMDGdW3ZOR8K4/MH3i6GY39Ip9XRWPd6JpE6u3Zn0i8o21UK8/jtXHzAA2/JvE+h/V8jxffWfTWdjTOvs1tXG1WdI+8u3bPb8s5y89lrPVr5e7l+sn8W8vHAn0f3xvTKpe05m/ldHp1LHvXOxPRGM/7XE3aQ1lHz836LEauf8tGaLvg5XN67LkrjCB9ebS5F/vckzv0xmjZEHkugFhM37KZup+Ubs9aSvZnFhKZM44SjbW3svhn2avXqjOSB9DIpZA6tS271d3t+c9NHezlxazPzr27mneOynTbZp4POJRbWxCJTzWts9vLLXl75N1HWnLJ+Xt/99I6YyM5iJ4sLXsry61nno7Wv54MvfhMz691//PitZgd3cqkZRzdwz15t9E9uydWPs9pWzZN04t+b1djxTojMWmdy4oV9bPl8pybl7FHXlesA989bdH6rDuiF3qPcs7IKQt9Pj+Tnz1bY1nc1rmupXVe2nHG1ud4c2vZYTmm9bot+7id3BufRepc7dl2TfU+STk8eXpnqpSCPN/m7VoxvNd/nV9rzHm+7e8cm8/d9ZF3MKt8c1+d0ybmTwl4fHzAcT26/e4lYrda59VrH4kVAVuvIvlCq68WvbN0fh6LXazYoeVT3BhvIM4dzT2M4tnQKrscP1/8iB3fRPZ4FGutdW7Hq6Pbv4QNleOMxN+R+1EvBvL9kd1nJBa09nyUXqw5IoOu3+pLt/W+zzdCbSbjo8gZ1fH8OT64fp5zu5d+X9e//Thgcz6Fr/Vklp93jeioHM+7w47eAfWYVvuM9ve1ZR+tO11ULutepr/nqJ/Jv/W5/ncNcl8tPU0pmfm++uylaOW6WzmT0fvYnn/j5K2xtu/36G+tZ9nNWt6KGfbYFcsWt15rzt+bq/pzLZc+6CXjhJfoS8/X6jM6f2Ds34N8SAqkzNuy1tk679/LneOvK/wRlDtIKf0xAH8OwA9x1aYPe0MghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQbBn8EZScppb8TwJ8H8J3nIvnjJ5/653X4QyyEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5GsDfwRlByml7wH4L3H+AZTIj5/wR0kIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHHgj6Ds498C8Nfj+uMm1o+fWD984v1ICiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh31r4IyiDpJR+CcCfhP8DKFb5WwB/GcBPAXwF+wdSyAtQSjFfS1JK3Tp7xmuNI9/rct3fiEytvry6KaXwGLXeNE3N51ZZZC7yeZVrdE/keLUfAMg5I+e86b/+reV6LK+vUsqmL4nX17quXZnlGNM03fRV1z3nvJFN7rs3viev7FeP4elsi9Y8LblSSm6/ev1lfauNXAtrTWW5d/68fuVzT0/0a6+Oxz1tq2y9cl3HO2PeGW8h9VLj2QZvfK3XPXkBf/6tuVi6pV9Hx9H9eeWWTWzplDe+1uuWLY/okH22ElI6r2FPJ+R8Rv2qtw+tMTwsHe+NadWJ+GhvzMj4Xh8jPk/uiWfjR8+L7lfT8iUj44/ofKSO1D3P/sv3us48z5fyPTJ7bbz1mue56290eWuPPR2W5dKvj+6/NfbIObfGa/kmq9+ozlRZe+eyp8uyvV4T2daKa3R5KaUbH/Vkiei1Jc+esTS9+HgEq6+IXRm1PV7bPTJbcXaP1n5VeyPrWX/raz1mq3xZlsv7w+FwKX/37h0AYFkWPD4+Xur89m//NgDgd3/3d/Hw8HDR9bdv34bm2eJ3fud3AJzPz6/8yq9cyn/84x8DAF6/fo3PP/8cAPDmzRu8f//+Iv/xeLzIL+cq4xF5h5N23IoD5P1K92lRSkFa1ps667pidVzknnPRus9ImS8+bk5IabrpIxrrtspbNnmaJmBKmKYEmdaqckZ9gNT9KCP5DSlTD++MRn3zud7W3uecAaEyWn/kWulxPH1s+Q55FqTvkeWtOchn9poV3Da7vb/knMNny0LGRLKf1nrp2KcXZ0h5tc5expzqs0uLTV9Sf9d1Nc+d5y/lPbnGY5a9l228M7osC9Z13TyvtnNZFrOvWz1KWNeqJ+e+13XF6XTVn3meN+2lHa7UuVxzSNex6vI/PT3hVLZnv2WzendwfcZ7NlD36Z3x/JAxTfONXml90fuix9axtzVWxE+s67o5F705WOf+eDyGZKp1cs7Pe32by5x33Cmve1awrXb2J9M8hdZCz6HSysn2Yqe05Gddvfb7/v17vF+ny57LNZV5UmutLaw9i+SZNnZv2trnUrZ9SLvUurvIdYjIIutr2ay8undGbtbdii8M5BjSfkbyLtE7l5Qz2iayZq246J7cUi/PZelbz096RPKU3jxHxrFyE9L3WHWtZ9F8Z6u+1LFoHBnJKVpraedeb2XplUfyKZYs3vN7iMRkcg+jeVv5POJvojK21nj77HndBu4N98oRsR+tOlZM3TvLFvIs6jMq27bscyT+qnJaZyXi+1vz9OSwfM/Ivnr5JS2LrFef3ZMXtMbxuOdM6/i3dafqlVtx74iP0vaylLLJc1V0niESL7TsUCu3k86Xp+fX17JpmpCm23H1XdkiklPZjP9MRJ/0HdTSxWmaLut6PB43snz22Web9niVgO8dN2P84I98juN6uPQl+5W+Xr+34oCWbxzV69ZZj6x3ZO9u+/fb6/2K5E288Vs+wYq79Vm8Z+zady+OidZp+SjPT+rchGVvrTILL/aUpJQ2OeqWzK2yHt5Z0DZ5b9+Ru2ivzKuj78j6zHo5+xbSFtd28hxF+9J5Rs8PeX5Jj9Nbq5Ec/ei9MRoD6PZWPs+LibRscm2in7F5NspbJy1zJNaN3Jl6Z3OdMkqp36m79tuamxfvRM5m9H4+ercB+jGBju+sPmQ/c14va1PJecW69m3I6HdVWkQ/Y9D61KOlb2Mx6qVElG/LIt+v6qF9mtffPZ/P5Mn6LHQBlva+tWKVlr1s+Tyvv0orVvewdDTq+zzbsyzLcH5AftZb23i2qmfvLNvuxWHbNauvr/1oO+bJdW8+RMvozckbEy/wzypG47ZIHNBiJPbS8px90u0zfQZG4riR+9Aeqnw5i8+YpufvBOeMusXrevUpPXthEfn3ClWPo3a9tvds/DRNmErcnt+eowSgLUvPBukzeI8+9u5qL6EjltzWe8/29OKl7fMk9q5/D7XKPxTRO8BVvtvv3dfPPFufD0Rl2J4NGRvan61qIrG+xvpMMdJuL/fGXl7MvEfWzdxv9nBrp3o2YC/3nOveedrbR/RceL5/T55wD6374agut/pp+f5RrO+ntWSI3BN7xPdznNYd3CISY0XLI/f2kTzdNr6QZaP+HID4zuY0TZhg58GvfV/XcfP905Q2fV3LrDHjMkftsLd+tzLetgP6OZxKxJbrblo+cSS+NNts/ME152bldqS+1/Wq7/VnOdZY99LqvzV3q86e82mx998P7MnL7rXtpRTklJ/1SuQi1xXTes2jj+zfiK3x7Lob4+R88x1BHXvqfEaUnu9p3VFba9Tazz06Eh0HABLWm/J6xx3NS96MN23vjbXcm9NL50y+7vBHUMb5DQAPOGuP1kxZ9psA/mMA/0Mp5bc+nniEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHy94I+gjPOPGGX1x08SgP8bwG+UUv6njyoVIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFfU/gjKAOklA4A/h6cf/SkUn8ApQD4iwB+rZTy/30C8QghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+VrCH0EZ428GcMT2h08qTwD+Cf4AysdlnmeUUrr1InX2kFJyxymlXJ5Hymt/uk+N7qslj1evVV7LRtp4Y1vzTCmF9iPn7JZb7XPOu9p48uo29ZlXXtvVssPhcHm/ruumvuxLyqDLrb0upYTWb5om95m3TnKs1hjyWWscq36r3FpLLetLnuWRvqps+oxaei/PuB5H6r9nP3o24B60/D1ZdJl3ZqxxPDwbZul4Tw+9ffFk6dnsWqdlZz1ZRm3maLlFRFesPS6lYF0XYYMKSgFyyVhX4HQ6oSy3cujzLtffkilir2odq49Rn6jH1+XeHnt9jvrU+sw7/55ce5B7YfmREVo+YW9MoOXR+xvVc8/3SX9tjdGSz9NLWa7jl57ftJB7pMe0+pumaTMH2V6vWW0/TVNz/639068jc4ucRdm3F+daMkTKPd8lx9Lja53rxStnu3iO11pr0vIR8zybdWSfERthxQ0ylpT1vLVoxSee7/PmKM9Y5H7j9Vvf170Y9bWtudW1bxHVd4nWG6/9yPmQ9T2drfut97iWr+t6Ey+dTqfL67oepRR8+eWXAICvvvoKb968AQD86Ec/wo9//GP89Kc/7cod5Xg8AgA+++wz/OxnPwNw3pdf+qVfAgC8fv36MsfT6YTXr1/jcDhc6sm1sHzcPM9meV273j3C85t77xZ7/K1lk63zdtHn6dZ2zfMBc57Mc1jx9EeusaXLdR3XdUWeM3IukCkvK2YbWb/oXWfknO7dh57tvZFpzShF6s1zXmC116MXP0TWTc9tTywywllvpFz2Pt/q5HxTz4pHqvyWP9NjWH2MEPGtGRnrul3TdV1RVjv2jdxPZf9V/rpedf5yH709Xdd1U1/aCXkGj8djSJ7Hx4J53q77PM84Hg/mOuuYVNrhKh8AnBaZzyrIueDt27d4WmyfrPuV9s6KF3Sbuq6teFFj2cFSCrIRW51OC6bT1qfo1zo+t2jaksA59nRPjunlC3vjt555R270Dp2ztrEF65ovZ8uTx7rf9caq7bx4rerPXOo+XvfyeDwiH6bmWDI+0XFkxGZ5+ZPWvLbxHbAsC6bF1/3evmhbpGWz8je9u1orr+bZeP2st71i11EAACAASURBVO6akdzQyF20lXOOrKuUt5dXfYn4syXH6PporPuy9GHRfItVHp2vtHGt+bTuur36OocUyS3oZ5EYpVXHuwO22nplozGt1693t7dswr36O5oPqkTXJawL04SUlJ2eptBnXXWcSHmkntzLiK619GuapuEzF5VR+o6Ijnvny5O7/vX02st/tuTv2a577VXFs6Fe/jeSiwe2vrN13nu6MnK30veXnwdGYyog7se3bYw+CgCkTaw8TTOm+fb87PmsPJK3ilLnpb83o+/s0fg2PxScjuoO+uqI9P46nnVvs/ZLrrm3Tvo+YMVsURttzUeOodmnY0BC2ubxnqn5TksOL180ai9acYR3h9U+PkrELt+Dp/uT8MuWDkidt7D8kDX/PfNoxRuWnnq56/o6cteyynMum9i5lIJ1WbAs/nh6vlJevb5y3XSeSs/PonVmrRyAjtWl/JG4yNtLnY+SbXXfVg6kt5aWXo74Xmsu0XpevDWi1/LzOkuGyBnTZbKv6HeLNL24uPd8I9+M59g/Hh94fW5zJ7c5FWv8Xg4xmtuJsCcWL8XPC3r9a6w8iYUX+9zLnruTZ3vb62XNv/15gi6zYk5Ld+RnoD322BxPBq8vb+/23I33yhu5L0d0VL/und2ovPfGFz2sPWitf310Fv8cF6bsx0St/vbY7tZzz8ZeP/fY+rTR9Wzt9x670Ou31Zcu02tv5d68MXvxvG93YmPJMaNrcP7v+f2m7GXy1q3Y1Yvx5bnurW1OUufOddd1xbTGY4/t+gIp7TtX1xgDF1kA/wzca/utfroxlVHeittfIn966zt1PNbG8z9e2xXy89ezbsg9sP4NyrrmzfdzInOro2n51nXFuk7NO6T2XZ5tleXnNrX8+b5d/FxI6w7288RIbDmSDxnJmYzixf69O4FkJOfVex5p99LrsR0zoeZerzoa+/ctH4s9caylb97rvURzSK3n/nxu7cmemDgil9X/h9rrPf2+pP6P3C/ONk3W833fuayWizHKdazb3FjZrPv57/59t4jetT3/04q97rlT6qbTNGGC7UNGfcbN63WF/K4psI0lovGMxx7f0arfuveP3MlWFePUvl/qnhyNMXvlESL3x94+evc4z463PuvX5bJf68zo8rMtgNmHN0ZPhii9dlLm6H3Xiv96etbLM0vm+dbe1Dg6spctn+jlCD25qq3f3Bc/XMj6c8/LZZW/HfxNRlnNgvwnpZT/6yPLQwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELI1x7+CMoY3208+88/mhSEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHyD4I+gjPG68ex/+2hSEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyDeLwqQX4mvG28ez3PpoU5EIpJVTmkVJCSmmojW4vx6zvrXrWGLpc17H602Wt9j2svmqZN5fWeLK9J48sk/MvpWyeTdOEnLP5zOprmiaklC5t5BzkOPL54XC4lK/rutlHPb4cx+pLzjvnHJ6L1KFap44vZbPWTJZLpFw9Wjrrvff2TD6P6KLsU76Wc2/tuxzH0kUP79leO3APvfNr7U9PTqlLn4rW/nlYtqeUgmmazHryXPXkqK/12bTqRcr3IO2j9hl7xvF8gXcucs4bm3F8WrCuK9a1IOdnm7ZmZADLsgLLud48z5fxtI3y7IeUsTfHKu/oHrTGjvgvXWY9W9f1Rv+8/qX+WratN3+LyDl+Cd3Z06Y1HznnD3HevH5b89LxiddG25/6vp6Dnlwtevspn1e9q3+1Lazy6HLPF3pjR2NgueaR85Vz7saDVl9eG61XIzpcSrmJl0ZjlMgzOY7l260xW3Y06kd7503HV578rbGkLNq+1Weer+7NxYqJR+jpuDdub+z63uvXikFG7LEVj1j6o+U6HM7pG22TSil4fHy8vK59LcuC4/EIAPjud7+Lt2/P6Ywvv/wSDw8P+OEPfwgAePv2LX7yk58AAH7yk5+E5vLw8IDPP/8cAPDZZ5/h4eHhUv7ZZ58BAB4fHy9yTdN0keV4POJ4PG5sXZ3TPM/uHUHilctz5d07tb5ebdY2FtVy1HZePBml56/q/uU53+jZui4oS+y3jHUc5t3zfZtVUNfEqz+Sm7DsQstXyD3rrVmvju6rJ4sn07kMAM42N2Gbz7B8uSdPay5A23dHaZ0T/XwuUl+AOseInb0Hb51aMYJFy9bruOTaX4FslnMBxH3HklP7W7k+1hppHyjth7e++t6mbY71Wuu4HGNZ8mWetXxZCp6e8mb9ZdwrdaSWe3ejc70J81xwPB6RD5Nrb6L7bVHXy7Lx8rXM7ekzVf8rjwVPTyfRHvjqq4z0fivHPM8X/6TPjfQ3cp1aZz9C1EZbcZmWpXdnK/OMaUqbczDPM9KydGVx/fOckZJcg4JpSpjnuRnf9/rdjGGcZ9mH3oNp0j59u07enciLw1r3yqiP1OXXZwm1mSWn7iuar7DG9Oj5Qz1HKZ/M53p9eL6/2jpp/3r7Yt11PL8V0t87bFbPX8q+RnKZL1GvF2953Ov7vXugtxeRvIE+r5bv89pG3uvyej6j93Lg1j9E19yKD2p76zOoEZ32YhTPj1h96zPcWhcvDmjJ6j2PxPpeH619Kzf9FaDYn9t5fY3qX+t55PU99PIxo30119ZZC60XXkzdyiFZ6BxA605qlbfW29MBfQf0bLznR7w882j+w5JNlnnzb9l365nOX7bOuCWTluWl/IvG69ezw1KuacnIed3ExU9PT3g6puf7RW0LnE4J6SmZ87fu2t46aXn1+16c11oHz1/qPuRnfzd1H4A8n+deHz8+HpDQ9kM9/ejV9XTQmqeHd/ZG7d5ZLjmPdP6fMTXPprXG7/nydV3DfqDOWd7bLR8eWYPo2R61fRJtO622Wlc9+b3vyuhYZ5RW/O7JIuO2XhzUO6O9mDGlhJxvY9Vz3mNs3r2xZJ1Wbkb6e8Dem96+RPZM60nPruw5S7rP1hjeno/GsfVO3ZrLnvi6R88vy33U8rV8gSdrKxaURGK6KMuyinmWS1lZ+r5SPrva2vz83ZrtebR0Qd/nRpHrHI1VvfX3x9i82yWnjo8j43v2O4K+g7dyMt5n4727bV37dVov36WqLOtyKavd5pyxLIt7Hz3rSX62g/UzmNscwIe6A0b6jY49otOj8cJL3Y29c6xf7+krIsu9dqvnK3t7sKR1Y5NSOudc05rM+3mPSM5O15NnIZKnUSNu+tyjz1ZuIZq7ufcctnykLvNyj/WzLO9ut1fHWnfKXt/mnSVdbWSays18rDyn1d899qf1HaiWXd3Os6DnA1u6fJ2b/tzZ/k6J9u/1v2nScScwzxOKyiO17vz6/d7z0qrX06NIHity9s5dF5Ry/RyzlPrf2HcYAf/feWxl2LxrzGE7Tu88jfoOfe+SfejyVv6z6sq5Tm3fltnipeKTHqO6K4nk1ax+98ytd38xWpj2fu+6Ru9Ue+n1da8+2LZk+7z1vZsR7oknK/Lz54iP98aPlFdG8wle3Wgu0Bu/or8L9dI2ISrjS+l5K7+oc2zL8/dmgO3ZO53O3zWycpbpdcLpdG0HAMtywgH+vz/Qdn0tq2mn+/ZnG9PIu3KrvxrH6OfWWWzpdS9e6tGqc6/Ni547axy9P/ti6usdzMsztny6x2h80Opbfnap+4vm/PcSjUM9enfokT57umbvedtuvqSfjvTp6eXZFlxKAfifc1RG7/O9GLNlg1+aPXZD6v6K9aaP87+7vD9PZNll/X1h3bfMK37bue+bud8+ftJ4xrUkhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWQH/OGOMX6r8ex7H00KQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK+QfBHUMb4fwF8+fy6qGe//JFlIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkGwF/BGWAUkoB8JsAkvH47/7I4hBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8o3g8KkF+BryXwP4h43yfwjAn/nIspBnzr9P45PS9XdrdF39XtZ9KTz5UkpN2bw+evO9R669fde51PmUUjBNk9lnfZ9z3rQHgHVdzb5rG0++nPPNs9q/HEf2IceSba2+ZL36zNu7ug5yfKs/r7yOUZ9N02Su2TzPmzb1WV13D7mWem30cz1P73y09DOylpI9Z1C3uecce3JZfcs1Gp1nq9+WbJFnVQe0rPq9tf/AVc+i9knrXG2XUjJl0e/1OL3zrsf1zrhe+9aZlXvp7UV0PWQdaROt57pfS7aWHF6f+n0pBcfj8fo6TZjnGfOcMU0JpQDTPAHzhOPxgEM6uP5R605rL+XriM+5dy9aPl3KH/H9PVvqIde8tf+1XK7lNE3uudT9AzH/2Gpf+7DQPt1by1bfvXK93y0iaxmhZRe9epH+pmm6kdHz3T1fWuXydNs7S94azfNsyiLlb53X6Bnz5hN5Ho3l9bp4c5b1ZbzUGl+ujXzdks3rW/YT0X/rmUfU/9S/3jm2ZNX9W7GD1Uc0zmmdec+WRfr29mHUb7fqefqhx7LWTJdbMVHPrkpdqvcMS091PCh9/+FwTv+8evUK8zzj8fERAC51KvWOdDxmM9Z69eoVjsejec5kX9KPzvPsxoRyTPlcxpG6nRcrWXfJUby+rXtYz2dXdsUUU8I0bddqmmbM89S0Ud5Z6vlRWef8d/xu0tJzaxx/7LFxrbK9d0pr/eR6pFRQSjJtWtWLOnbPR8hxWrZvb6wyFjPJ8bCZI3Cbe9D0zkLvDLTinsiYXgw9TZNpR9KckNIEOe9pSt0clucTvfmt69q8d8pnVv5qWZaNvS+lXOycjF3kOLIOADw+Frx9+7iR4YsvnvD+/XW+8zxffMT5jjhf5lXLD4cDcs6XZ4fDQdh1AHj2OQ+HzXnWZ3s0jojc51vnRcfApRTkh4KnA1D3vxTgeHzAVNImDs454+np6bIWun9Ltzxd0O1aMYpn41sxmjVO694BAPlZv55bXsaeOvfZqrv2udQ5GHuO0VjXspH6rOt90HswTXW8fowH9GMJTwf0My8Hptfyck6mut7XdofDAVNOzfhSU+WXsml7qetac2kRkSXnbPbp6a5VdyQm8HyAlKc1llVPlvXuMPWZtScppe7nHXtorU8kt6S5577kzbv+9fR/zzhePiAS40bLW/kRi5xzyL9ZflHLIuu0ZPTGsc6nFd/ocSxZevp9z7p69Xo5h5aueeOYshi5mlLKOSiw6jfG985aKwfTOv+Rs6vPVUR/RnJJ+n3UnrRydl4M3FsnS7ZWXNDrR77Xuu75W48a08l+evkpa49a9yAL7ZMiNtaKX6x2kTNm1bV02tOFKLXuuq677veWbG1dSJCPz3fJhJTk52Bt+znqe+VYEd3z4lTLV3l6XdHz0Ge0xj/n/851np6ekJ5u/Zh17/bW3JpDyw608GI6774Q3Z8q+2EtKEX6+HL+n9oeL9ap9sBbi177+iwaewG43N8lcp16eaKWf4r6rdY6V1la92ZLd6sujpwxaY/r3SQa4/TmUdtV5Pq19tKST8eRXr5f69HZ55Sb9su6YFn8/EtdB0svPJm132rtk/X9kijR+5H2C95dUsof9ZG9e2UPKw6z1s9qU0oJfbZR67fyEdb7SLllr3rrU9FnzOqrZ+97+9+K1VrzP687IPMt8zxhzrPbplV+KOf2knmezDiwlDKkQ7Jdr2w01rLW7rb+/hyFHqPFSG7Aw1rXmguR/XvnyjpL0bvAlKQNveY/9/hRaTute46M3a2zGY31WozUtfDyb/K99zmNlsOTT+L5cb1/XnzT8gteX7IsklsZuVeOrn3r/Pi5NGBdM1LDz0TjeUnrfuV9n7ClszmvyFnbujyUk4jK2CKSC2z1Hbnf3MZ513tXStfykTu0J4s3vpcLGBlzTStKef5ss+SLTatbdo5NtzIBtu314o+ebWjFb95nFJXrPgAp3frGaOzhrVn0Pnfpa7muZ5VrXfPFl+3xs5E8z4i/GKnfG9fjan8Anat5rrHR4ZGYsNZ37eV07n9bLu+k17Mq++2tqSWjzgXVslL6sWM01t7akirD+fOqaZ126bh3H9REyr32vX69u65ExiCtPFHkc31v/L12OuIjIudF63f0LrBXPn3mImev55uvd7W+DHVd7rFrrTtVrzwav0Z82PMoYjzcfAfUkuOeuLHX3t7Xax70nvtCRJbInu2RobeX9bnM48rn+vu0ldevX7tyPU2n5+/pXMvm+YCUr+fCsyPy7OjpynZeXPU8q7viSItoDC3/es+9fkfkHdWFW/+4lau3XvpZ5Du7174v7y5tI/8uoRVfRuWMtBuNA1tc8t3P/yZNMk0TpmL76kj/o37RY9SmRPQyzxkpbed2OJz/DZ7upxUjRu9kvftF1Nc9P705A708Q0/OPbZH/vsmYN9nrb2zNJKzu72vX21wL4c2eqafnz7Xaa/39XPbRlffEvb9685vN38WwFvxvuD8acmvp5R+4dOIRAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELI1xf+CMogpZQ/BPAfATf/t7ivAPzpjy4QIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFfc/gjKPv41wD8VLwvOP8oyj+XUvq1TyEQIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFfVw6fWoCvI6WU308p/SkA/yHOP4CC578HAP9ZSukfLKX8H59MwG8RpZR+ped6KaVQP9E+K7Lf0ba6frT9njGt+et+WusUHdNby/palll9TtP1t5lyzmYb2Zfu13om2+ScN2PVMWSdlNLNONZayL70XEspl769Nrpcz1fKrNepvpbPIuix6/jWnkZ0QZZZ6111ypqLteatca05tMp6WPq/dyzvLFvle2TV8kaf92yMPG+SeZ5v6mtdacnj6ZXXxrMbnu5Y7b119fTqXnvdqmeN6b3WZS17p8fp+S5t07V9LAWX/4CCkgtyKjidFpTFt9m136o/em5eeU8uS36vvVVe30fOiqcPnu+w+uiVaxvnyT/Pc0jP67rKOpbPtGitsZbR0quU0sZfRvqWtPZE64tny3p6Mk1TyJZ4drE3L0vvvH3Vbed53tSta+ntZe1jNN6TeiRjHNm3LJf0bFSESFy71wf2xmjtX2QtdZ3Dwb4ma7vQ01e93jp27a1HKz4biZ1kf57MUX0eiRmtthFZLXs0GvOOMjIv4Ly33ppZsnoxlx5Lj1n7kr5iXdebOF6e/3VdAQDLslxer+t6o4un0wkA8PT0dHl2OBzw9u3b5zYncy7v3r3Duq6bOdXxD4fD5fy8f/9+M79av8pU61VfWF/Xeek1trDiIe8OaFFlKcuKZTmpeb7FUh42c9BzkeUay+57c7DIc0bO22c5r8DathuRM9byidLnjxLNuciySKylX1u6743Rk9eKJfWYJRVc3yakdD6T03zruy2k7dOve7bBkjnqO7x7wJ5Yy7NR8rxqvZJ61NOpPfvoxXeRs5fXHJqvN64eR76XaznP8yYHJO2H3H9Zp9ql2l7HDhe7pXTJ2uNSCh4fC16/3s71+99/g9Np3she7bC0vdo+b+a9yj0DgLLxQXpdtK63bOc9dzCPupY5Z6QEpASUUud0lm+axmLg3rjaj3k6A/TvvtqHa/238oayn7qPtTylhHQ8og6b0nV8yy7J9hXzfE0ZcprXnEM7Hu/tuZyjthfnPb1dZ3kHO/+5zmuep03eS9515RnVfXrvI3Px7NF1j2tefvusZRKtO5DnV6x8gpRV2pbad+/eo2MiWU/qjLffniy6r5Zf0PJG7g/ROMfK60dkaaHXTNvMEXrnphev9sb25uzpgiff6B3Y60+Xe/FhS3dbvr/1TPZl1fPO3cXeDuZbIvpm1ffa9PIm0fLRXJGVl/HuIb3cRm3vraUVS1r7OrK2PbsUldlq32unX0fWLjoHXe6dpWh7Xd47i1re6H0osvfy2ejco+ixW3sa1UuJlcv1ZO3dWyyi9y4dX1ZG7q978gqj92M5lpWD1bR1f1v3eh5un3n9R7D2LLpW+q7n9evZKD1OL09wbn/dk8NhwpRv98jS/Z6cnn/1bJ0eJyU7dzVN083nbfIeYfm4lj2ud90qTi75co9c1gVpafsCby4ee+xSi96dFPBtmWWv7s3P39N+NE+gx/qQny1Y92WN9ouePNZ9VLIsy+X5PN/a6nVNWNftfUD693p/tu46EfRdYzRPU8ceifd78lm+U+bP9L1I9huJ4/bqTuuO4JV7c7Zin55tse6FLT/pxWjeOumy6L62iKxZND69zRUAgIyDbu898v1L2eNoP5EclLQjrTvcyJ3zpf2OxYjv1bTq9b5LavVh2S4vPq79r9OKUrb6ncttTJVzxlRuPzPVMrdyolJ+nZPXePdGWWatxblsm2/MOSPl/v3fi+9kfsnTzVadPfT8kCWDxGtnfe6t8xkS/dmP7N/Ts+i926N1J932eatrvc+qrb5ad9NeTG/Vs97X9tYZWdcV62rL0DrvLZsTsYGjuQNvjpH91fMuZXuP2UPPX1YbYckZkbmuyZpW5Hz+TMPKe2hbpGPSWkf7uN76t+y9jnVb65jT9bsYtbt1XbGst75Dy2LFEbWPWs2bh1V+3ZNre1mu291D9Oy02ntzsN5rojHj9T6egM0/0WrL5r3v+dTe3O04a3uWenO/h966WbpSSsEKbVsLcr79zFXPz4qhWnJI9Hq07jcfmt73Z1tt9GugvbeXz5qN+MDSnz1r2Wr/odZ19O4w4lOk7bxHDi8O7vmUl7z3WXN17xrIm3mn5OuIF+vLstY6WzaitYZnOW5l67HX9lf2tovK5ZW31i5iy60Y2vqua+9+oO8eV/lqHV+2rZz33PVv5zGjn/PURNfNqzsiezRm38amdp3eHbino9F4IsqevEkkZ+bZq5emFGX37rzf7JejfxeNtG/6/3R7j/Xm663ByL5EY2ngVu55XkW99Fw2IwdjHW3z9p7XHt53zeRZ1GvZu2/V157dse6wU7qNr885iv69ocU5PyPtynVOrfzZNndQUDp3o28y+75NQFBK+TMA/iy2Xr8A+EUA/2NK6e/7JIIRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPI1gz+Cch+/AeC/x+0Pofx1AP58SunfSCm9+iSSEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyNYE/gnIHpZQTgH8U9g+hHAD8ywD+UkrpX08p/V0ppfkTiEkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyM81h08twNeNlNKfMIr/HQB/A4C/BecfQMHz3wTglwH8K8//PaWU/jKA3wbwhwC+BLAAyB9I3FJK+ZMfqG9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQl4E/gjKOP8drj90YpGe/xZRr5Y9AvhVnH8s5UOTnsf/Rv8ISkqp+byUYr72+mnViYxxL3o+vb5bz/Uzr25r7tH161FKcfuv5fp5ztffBvL2eZqmm74smWVf8zyb5XKc2k99ruW0ymV/8rnVRsrX6stbfy23Vcd630Ovc+98yTG8tdfPZJ8ppcseemOXUm6eWfOPnh2rv9reKvd01xrD06vRfcg5X9bF2+sPgT5Pmqh+7ZFZ99XSPctmRNq3dNTD0ytPX3Sblu5E9SJiI702Wh5ZNk0TpilhmupcEqZ5AuYJj48POMwHpJRMOb3ylsz67Ov+ZNv63ltLqatWf/Isen2M7l8khqhj9tr0zoh3/q122ldE8dZY6ra2l71YKSqHpz9ab3Q9KbOnD/fKZslq9dHzfd65qX+rzDImGaGny4fDYTOO3MtSykbHIv5Gj+fN09rDiLyjROJ2T4ZWHBCR0Ytv9DMr7muN5cXE0zQ1YySv39YZs2Jsry/PPrfG9PRFz9OT0yvXtt8jGof07kaRca0+vPuFLtNr17Mx2t7rMy7Ht2yM9okpJczzDAB4enrC09MTAGBZliF7DgAPDw94eHi4kUuWHw6HS/k0TZjn2dQz632rPHoHqHPVHA7nlNjjnC+vaxcPD4/AYW7KFJGxJZf1fHuW6uvzs5zzzU/otmTr2Utr7bf2ciujdaeLMLKno/168YG+a0ZttC+nlLWd25BlVl+te7M//rVObz17/te2sTNSkvauIKXJtDM93wWM3wm9uK+OIfuz+pZnXOuF/LtFy1wAI5dj/bVkae2r9SznHI7v5XrIuUbyZvNckNJ6qZNSwvF4QM7bMyL9neX77LuVlLNtb6qsVnwq243ExlZM1bqrX2R5yPhqPm3KXr16NPVd9t+ygxG5W3WsNZf1D4dDNwbvjafXqAjfLOtYc1zX1ezLRu4LLjkH74y09kzKInXfimtreX1WZZ6XjJwLUrqOuSwrFmxlqP314uBofByx7zKPnNeCUvLF55dyjsumpa/TESK5VFnW8jeVUsqNbljslT/iS7Qd6I3Vy2eNttH3TGt8rQvWmmn74ulchNa+tO5jnl2LxOotuyTrW/dbry/L5rXOVST/ENGRiGzR8j11e7Zjr5+sbb14S5ZZNjEqn1de+7X8te7Tu8PsyYG6/mKekPP2nJyWE9JpGx9IpP6mlC59tu72Wn7L30d0snXuenF+Dy+H09oL7/y16njl98ocba9tbCVyeKUy1QAAIABJREFUV436O42XT2rFrVa8I19b6yf12xvTug/vwdNjq29ZLzrmqGx6XtaaRfI0e/Qwei5beL6uZ0sifer+vOda3stdYS7IGUipXHIFWmdb+Rg5nmWnvPji3nVtrY+XG9Tttmf0HJfX/yysOM4iElNJpmm6OVPW/Ho58z326x5Gz0GUaH97bE/0cwcLL7cj2XuHt8plvv+c7/HH1nkYwL5rRNZW5o88W6Bfe3MYPQvW3dRaq1EfNLLv3t3ZykH2xm2h98rqNxK7SFvkydG7G0fWLRKD9L7TIcv37tWITkVMScsPA/a9xLMFkVi9F4d4vtHzry0/9KFsdIuIzlbuvSu07ikypvfWqbUut3Fn/RzhXLau6/n/AtPhPGbVnf4dcl1XTNO0OcuWjdD3ttYccs5Yp/X8OYgqTzl12+v5WK8jezYyjjfmqI2VcVTE/lt+x5vnnjXzcjNt+9X2sa27US2bSjvm9vzrqO8eQe7H7Mgd0atWXjNiW/bkjEfkaXG1DduyaD6/3Xfbp43el/U5yll+Tty+f+7xd5E4U/cfyVmNrGM4n5HyZi2Asy2fc9zmnNuXzd2zxhg9mSP3bi+XqM/LqI3zcoujtGyt5pK7COx3j/ts2u39qPbZsz3W+Wzt9+gZqnJdvxd+lXmeJ8yYuzmb0bWJtovmTUbat/qUeZF1XYfzSxE7cP4e/vX7cNvv3fhy7smhezn7CHts5Eud8ZfAi5dG1vFe+fecT7uffp2eH43G3iPtzmsUl/HaZsx3RO9e0bX1fNyoHCOxh1dH5pSlLNa8PH+RoT/rSJu8w60vr2Pb8VCMlz8vL2W7POT6xc9DLJ8zGtOa5QP5o1LKJtb2/h1i9Hy0dPme2Cdyn1+xdu3MCBHf4/nNvXo3EqtYZ95j9P7Vw2rXan/OB8k27Tt3NG7Rz0bvEHvKo59Va3p+XOqbjO8q8zyjwP+ssbVmepyrKOkyXutzzO13rRIS9p/lrzv8EZT99LSmPr/1mP22hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8a+CPoOzH+pkh68dNZFlRfz8k/KEVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPK1gD+Csp89PzLysX6Y5GP8yAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIS8CfwRlP/yhkZ8TShnfij1tRtundP9v3sg+rDFTSuG59OSZpulmHKtNa7zWs9pXKeVST74GgJzzpi+rP6+NVW6NU0q5tGnVkX15smi5pPy1bGQcuUZ1P3pjajnlX4mWrUVLV3Tfsq6UX76OjKPr6bnUunIesn1vfrVu5Fy29siStVfu7aW1d6360b69OY7Yi0h/gD8HWdZar8h+eLok20bXbPRc63F6/VmvZT/e+NF+9Htpt6WOe3qxXcv+2nvnytvrXtk9693zh9pWAOf1ifoxay/kWsr9isqi16/2pfdHyyj30utLjtXSn57ts2y49V6f11F7H0GfEfm+tf7e/O+JwywfZPXtrZHl3714xxpXI+tP07R5P8/zjSytvWz17eHthey7FbuM7kXPno72G7VFL6XLwO051zGuNbal46390WN49iiip57taOmy58e9c1j9kNXGs6ut2MWTP0pUf6w9qHOP+gX9TI/txTjad0uf4N0vPKRPOxwOWNcVh8M5HfT9738fj4+PAICvvvrq8nqeT3h4eAAArOsKAHg4PiC/Oo/57t27S3/H4/G5zbyZV5Xr8fHxJt6VPtY6I3L+Ld25x/bX9tf1vO8Ov0cXPfkLrvLUYrluFlovLZ0Lxd9zwjxvx5nnA+ZDP+a29vIl7Kru0yqXeqLXSb63/Lg+V3Ks89/+HTDqf6M2Q9bp+a7oeF6blDK21VJzPVvj9fa9d29oxQEjeY2WDGe28k9TusmLpZSQczbjc+DW5lkyWvfAWi7Hq3ZW68eyLFiWBcDZFtd667pe7PC7d+/w9PR0Gf90OgEAnp6e8PhY8Mf/6C8+932e91/4C3+A02m++IGHh4eLvZc2/eHh4VLneDxubTfSZZyUJqQEvH//Hu/X6bIu8j5Wz6i1h1HdrX1qvLtKW0flngA5F6ChX9rGeLJGYlcrDujlBnr07qBW3+uyPOs3UM/Duq4oji7qeZhyZOvcFkxqKq119Ma11qh1F6p7dkz1DG/nYMWZ3l0z53xZS30302UW2gdp/zzPM9JckNJ0kTOlc/k0p834FjI33iO6rzq3VMdo3XMkUf21xqjt77nTS3Q/lt60aPkirw9vv3SsIfsZjdd6RMbxaMXYXr8RWUbm1bs3jrbVsrTQtmfEHo/4I0+m1vsRn2nh+VGJZVPujeej95LIvXaPTDpHXOb52eae7W0pz7bBySVb43v1WjkE65mXJ9br79nbe3NxrTVt+WGrnRf3WvGJt5bRfZX1Ru8I9yDzsnXtR864F2tYdSWeHwaufu1jrUmrb32P0nh+fy+Ru64nQ8Sf3ytPxfODUT+h+9GvrffWHbYn36bsoWCd102ewPu8rSdnLwdgyebF97J9VJZab13Xrk+V9a+yi3rl7DOAs11OOa47MrdQ31c5LFn0GfHOjPfdGr1u0ThQ07PLei9aayxzKF5fUdvQ83+llKadHolDPH8WbW89i+TBep8pravtR3TVmkeq6LuetBfWa0tuz/dHGc03hHMSgb2SNiEqUyQvC/Tzz9a6WnZhL5Hvy4zeO7VeRO8mvb2w1sLTq1YfkXmUWeruuWxdV6S8lSXSn28n7Gc6BxC9z+3xt97f1pjrmpFz2fh77zOSe2X34kAZX79UTGahz7h15r2YRReXgpuy3pjn97exlGdvtc9sfScg4kcq67SilHyRP6Vne7iex9D7PaqLe3NtkX6s59GYUK7FS9xDIvZW63XPlu0pa9W51dvYdwlaZR/ijMp1WdeMUrbrdLZTt5+5VXqxrudrrOeR+FCfjUjOc09eVLa9J4aP5vZa6yD7sv5tgahpytHLJVvjRW2Axb06a92pIlh5/5zzTcxZsT67O/dhy+PN37ovy7bRurL+iO3v1fXu871+AaCk57mrz3NLuX6vQ4/hxfF7/VON8eQ5sPY58tn3iD71zk2kfCszRLx3q1OV6L9XiTyLzte7h41y7/qO9qHZ5BlzBrDVefkdjw9F5Ps8o3qkuWePKpu4LK03vj/nFevqz8X7/KXH3rXQdmTv3WV7z7XyObYtifYdIZLLSZvvop7LXkJ/vVhel21k+QB5zF79Pfcf/T6j//3T3n3mXJYutvtsx1vfVZLyeXlIK4e49RUSz79J+UeI7k00ZtCyROpa82z1a50Z+drypxt9cNa9d5705/SjfkvrpSfjnlhln6/0Yw9Lxt4drieXda722Oyxukmcw21M3dKRVtleZG7HlnWsL4/WvPbsWaQ8uk4jOZvat2WXrc9Ep2nCVPx7cST/eO7nrDfXduey2DmM5SW/yfBHUPbz4bLvhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8i+CPoIzzm7B+upYQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELIL/gjKIKWUX/vUMhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8k2CP4JCvtaUUtxnKaXhZ63+5LNW33vkeakxvfoj6+S1a/VhPS+lXMqsZ7o853wjR5VF9iXJOV/Ka3vZt/VattHj6fdWvdY6zPMMAFjXFQAwTdPlr5xfT8b62lon/dqTR6/nKF6/EV2Sa1dfW3No6Zdsb41hjWP15emg1XdvXr12nr7knN39qDqi+62vq06Nytw7r1Y9vWdWHTkPKbtE6rs8x9Y4lci89thQOV6rTzlnXV/bFqvfiL3T48m/0zQNzy9iV6X8mimvyLkg5wKg1E5QynU+nkx1X71zukf+kXoR21Ff67UekSNiX1vnpdWuNdbIelpnLNK/pS+WvZbs8SvRfZZI32/Z9t6ZHjmL3ti9MUfjA++Znp/nb6Zp2vRRfUPL9mi8/dtzjq1z5cVNLdmi+xCJaXs2q9deP5N62KonsXykF3f2ZNFyWO/33kescff4oQiWTYnEgRWtt627wx7ZWnJWrHWJ2v6or9ZlvTvQuq7N+FrGLvX1+/fv8f79ewDAu3fv8PbtW3zxxRcAgJ/85Cf46U9/CgA4nU6XPt+8mfD09Nlm7KfTE9692679u3fv8Ad/8AcAgM8++wyff/45AOC73/3upb9SCl6/fg3gbMPqHADgeDzexLx1HaQdrFj3Kvle1o3cKWr/13W/EeVmnGiuwYv1Zb+e71nnDN3E8vv6rlnXMnqH0WOXUlCStbYZdRhvXe/1+56ckf3Xd+h6J5fPrDG9uEP2n9f8HDMDNW5elgXzequ33hz25lksmSV1PXLOl3Xa40endbmxq+u6YEkx/3ovUf/m3UE9exv3FeVGT2o/kbMk22kZc86h+FbWqfpbSsHxeMThcE7fL8uy2fNXr15dXkudr3Wenp7w8JDx/e8/PJef+/7BD36At2/LxvbW8R8fHy/9Hg6HTW5imqarnuUCoH3H0noZ3WfPjnrj6Ncel7VD2awXcF6r6eksozXmyLm2GKkr20RtdySHdKPLh4OY61mmrT8cj2Fzlufoao/Xk31Pt/DW39KLnr3bxuLb9i3dkn1omayYRd7PrPaa2t/t8+065ZyBfJY7mk+Q9HzqiB2PxmI9+fSY9Sy29jKyV9b6eLG3Pv8RemtV4zFvnbRML4W3x6OxgFV2733L6juiq3vz8JG7ltYlL2d4T866t8cjazCiL1YsHT3jnvwtfziaW6nlvbXq5cl64+nykfalFKRGf5Ezof1L677knV/v3mL5HwtPr+U89bn09MaKYXU+xLqf6jGlXWrpkPUZse6r1aZng0frWfUBOxawGMkpAu3YzxrTuvt64+y5Y0Vo7Vmvfm8fRvcJ2NpCz8a8lH/zxrbYc3fu2fVon3odrf02Y5apICX/exuaPXmDiC/ZM/+WLxu5z8v5plT/q2UJx+MRKftytPLaHyIPr2VujdWKz+TaR9Zcl1v2qq7Fnjjcw7In8ux/iLPes0u9PIeXA/LuPt49s3I8FEzT9tnhcMC6jp3V3j63/MSedY7Y6JEzYsULe3IwXp8jsujvD7T6bX0mt8emppSwLEt4fClHayxtu7y1ked7z/0uIksrttbP5bP1lJHz1v4sy4JyiunbzfPTauTRV5wQPw8t/+TdY6Jr6eU2rTZzLpimtPlMbGTPLHm9M+f5gGVZwuesd4ccIZrLPev9tmyeJ0zTrf87lPZX8NNa0BLXso/35JH0Z4fbsew2tb6Vu7w33zCyV9G71Ki+vhT3xBn6fFprLD9Tsujeu6YMmWeu41i5M+/8RvM/oz6r1d+0ruKz2DM5541/a/V9z/7vzZnvbbOJCcR3Jirye8YvlU+27IvUich3YyUpJeSUn/vZ2hXvvHo+Xbbx8lReHNDymbE87W084e1nK1ea52L7htT/51m3c7l+piX3yZpXLxfhrausI/uN5lPl+C078tKfh3gy1PE0kThGv++dFdWD26++993KdvtdQmt8S9ae7d62O8spuz1/Xzzv3qOPYSf3tL93jJfS1xnlxp8B/t5WvDyBh/fZZ6+tZcteImcVlTlqo62294y9N258qXhzZL736HLkbtkaQ95/zn3c1v8QMXfks9M97Xv9RO3gvvlv/bXlr2puyMpvnOtd20zThAm35/d8prc57HmeMeVtjjEl43Ou59zjPN3eP7zxPiRenieiH1E7YJ1pb5ze+en5bSv3N03T5ft/VhvrNTB+B/1Yd+MYL+vDXyp2Gcm/tPxkvVPI5q3792ierVUvmte153a2973vNugxIzKP3cfGYwir796/b62fj/bO0kv4u6iObvvvf66xzVHuEu0bw8f1ToQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKLgj6AQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+KfwRFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCeFP4JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5pBw+tQDkZUgpfQbgB8aj3ymlPH1seT4WKaVd9Uopl/L6Otqf15fV38egylNKceVvyZVzHh5H0pqvlKfW0/X1+PK5bGO9zjmb5fW97Nubp5yXltEbX47hzcubs5RLt5cytsa05jKid17d0XKJp2OWvvT6SymFzqKn871z6K2rJ3OrLDKXaZowTdPlfZVZyx61Zz25LBm8+t68vfM+z3NIllrP0tc987yHiF2UuqT1p+6d7EvaoMqIDvV0vLVnsqw3ZkrJ3bNpys+6CQB17hOmaauzHj3dsWTx3nt21RtP7lF9XeXVbeW+yjFbvtySRdublu2v6DX01kb2EfXJvX7qe2vMnh/3zr9nu1r99+q24jCtF71zodtHbU3P1+t6ni7L/Y7K68ke0a/aJhqfSfmknllxkO5byxeZgydL1Hd6ZREb04qJp2ly99LCkteLPesa55zNNZZ1LDyfohnVLd3WswujdyIr9vbq1b/Ru5J1rnRb6d96+m+VeXvktW+Vj+plbw2s5/Leo+vp+8WyLACAZVlwOp0AAOu6Yl3XS/nT0zVF8PDwgMfHRwC41B/l4eEBAPDmzRt85zvfAQB8/vnnl36Px+Nlzw6HA+Z5vrzXtsZaz5yzG6u14qqILs/zjLRkXOOhc7mMh0b2LHIuWlz15DaGTulWHq0bdZ89WxGxIXnO0I/22m+L1hpZY9Q5jYzdOtdRP7CNIy+lAM760bsDR/pv2QUvvpdUHZ3nOWxfrTFTmkQ5AMT0+N7YS5a5+pjzxsf27iktv+vH2slcm55/8GI2rbOW/nnzl22rjllneJ7nS92qj7Wv+vr169d4/XrCs4m+6PEv//J38PQ0KR2/vvbyF5u1XTKmKRYvSHr7p6l7ZrUbzS1c/M5cLvb0WUrM84xpvvUn0bzN6FnQcUHvPmrp4uhdz9Zn4w4p6rfOvy9zFuOd13Sa/bxKtP/WOWrlSaclI+ftmXx6esJTtmWy4lAPKwaxdEGvpc5niNaoe1LP4jSlm7NoyS3/1tdWrsG7c/T227OtXlwxki9rlQO3dtGSo7Vf3vm0zlHP/vd8v8STKZrXj5ZpWnHTqN1s4d1vonZTttsTM2u83Iwez7K9ulyft54fv1dmby2tO3TLBujX0Zx81G/p/iP2XN+7Y7awPW5rzGj+5eyfrq9Lad8rSyluXs2ziZHY0mtnlUX8on7t9S9jx9acrc8xW5/nencVKb9ei0is0dLRaGzp1ZumyY0399jM1p3mY6I/E4rmrXrl+n3r88II0na39NjaP2tN99xPJddhy7Pe19e1z2fZjG1unaXWOaloG3OPz/bskrdfuryUghV2/OWN08I6Y3t9UsTnja5dLHdzW55zRsr9sXrr9LHtA9COdSOxm+7D2gsrpmnJAIzlC3o6ZOXJXnKtLX321tWKz3vxZcvfXmW4/Q7G6XTC6ZTcnIG1D70c0LquL3qP8PY5mtf03rf8SCumGLE7L3HX6cX2rb7jsa7fTpdbnyWM2GipP17daN+jZzSql+X5rNQ8FfCcYy6x/JTm/Flb3viGdV2B+fbr1zLu7srp6GkrxvDKPf2xYvHW9HVfvXtb745hMVI3qvf33Nd1nkCu0dWuZ+Qsz/JZp9Z1dc9EBBkDtnKempH8kyXbPM+Y83x5Let598te/sx7H5EnQk+ulxrHGuslfKK1N96dKBqb6f6tOCh3Yteo/R+9R0bP5LnerQ7t0SuvrjeX6B3sHn11256Wm3jx6emEE0ozZxGRJ5qjsNa51b72saT1ee2AnM99rOuK9dlGPj09YV2vfUQ+e9TPLB3TutZ6314jqafX9t68rbj+EjNj3fiGWn9Z43fG6xmw16OFt389Px49T3vuiS0fZvWn5c3pbMsKZH4mo5Rnn6v2Y0+s35fp9nOEiJ26zKHxHcCUbtuta3Y/D/POhXzu7bEsltOM5KssRmOtlsyjY+6J81rnKKI30bjb7mtEUr+fe+qNImNaoP1dDSlL5DMb297f+ubRuUX0Inq3GeGePdDD39qafbGZV96b77YPuU/PceoL6FtrveK+O869Pq6lM17scn3W1uvY3pTNa/199NqP9E21q5vvruez/xQtL3VKKVjLavbxEufkJbj3niHrW3eLkRgp8pnmqAyR9nu/Z/fzTiQWia7rPc9H2um1rTGrbhfRK+t+MxIHRHXXs/EWe+6GH7Lennae/nvle/M+o/5X5vy2bffbtW8rYxaR/Dzz9wP4S8Z///SnFIoQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkB78EZRvDv8Lzj/NpP/7E59SKEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCehw+tQDkxfjD579FlCUAf/QTyEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCSBj+CMo3h7/dKf/RR5Xi54xSyuVvSsl8bpVbRNrX8Tw5RvH6ruVWWa8vLUt0/j3kWrfKUkqX9yklTNN0eZZzduW0sNbHGjPnvKkn63iv9V+r3xbRcerrnLNZHh1zZB9H91yPP6LPej9TSua+aZm8cl1H1ovuUU/HtIwtPB3Xr63+rHq1L0u2PXrhydhqH10/XeaV1zPuzalSz6m0CVHkGdflo3vZKm/Zz944vfl75VF7P3KuI3vc0l1d7tn4yPhRPdZyaPk8GyPH8cb11jbiY/X5yjnf+LVWO68fq34kDhnRyV49zy57snh70iJql7z9j9TtjduaS+8sWu975T2/Juvc469bttSzy1r/ezFuKSWs43KM0XPWO3/W69Y+ReKQKFa7eZ6H9bC2s8oB25a8ZHwYqVfrVP2RsWtErrovI36ldfYj8XlLRzXemdnrFzRSDsu+evcaaQ9q+bqum7NUStmc66pLmlrncDjgcDjg4eEBAPD4+Ijvfve7AID379/jq6++AgDM8wmPj4/P8p/X+9Wr1zgcZjw8PFzGOR6PeP36NQDgzZs3l37necbxeASATX19Rj3b04pHvPcRG63LlmUBlvU5btyWL6kd42s5tUyWXvXiuIv+zxNSku3P5dM03dxvvb7q+FF9rf2e5wRY6uzFeq257rFXrbO09x4TGddcq0mWJwDnMzdNk+mLqo7LM+sh90jrfiTXJOWWexC9U26fbXoM3Yv3xPVWfe9MaZs2z3PorhG1/R4tX2XJLfUypXSRuZZb9kPLaJ3rnDNyzhsdknpV28jx13W91M85I68F798fxUgFf/iH7/H2bdncwaX+VV2a5/kyl2VZNnN5XDL+6l99C+DsO1JK+N+/+H/wdnq2q8/9fu973zvXf3zc+IU3b95cfEw9T3XM+lrKVeck19Lyd1p/NLb+xO623v5rLJ+vz0pKydxzz8ZauZM9Nm8jJ27t0+l0wnQ6bWQHbm2856PTDEzTdl/O+xvLYUTWV9eLlLfw4qZIDFhtassvR8nTre1a1xVl3a6z3Attp7XuybpWTGDp94jv0Uj91fZ6j13Wc5V/9Wstr+eH7z03PVo+38KK9fWzaG7l3txQ625l3c9aNqLXX23v5V6i+9SbW+3Li9ckUdvq6aKcy715I28sPWYvnzFiZ2Vf3n1Fr2MvT9HaHz2OjmNb8rVo5RwkOSVU/1+rT2lCMuyON07rvaYXm1g6uscPynaRO2uvL+9sezIDsfxVz36MyDbiF6T8sn4kFmj1e+/dQ2L5Pm9soP252MdE5ylqWY8P7Zej45314moPtvfhtMkV1XJrr6yz4Omltpf1DmXJ5umClzN7if2Xd7FWfqbW1Vj3toh9jtrXl8j3Wn2PrN00TUhT2nwmOHIOPvY59fDyT9Z+efbSorUuvXaV0f3rEbFLnl57Z1nPrRV3Wuc/kueUvkvuz7reft5i5RStXEZvLVpncST2tIjogydfL07q5SnvzqN0ZPdy8XvisB5WfOf5BS+fIPVnr03y7g5eXW8PvTbSH43ItMmVLPl5ftey0+kJ+WT7p9540+WzpGu9ZVmwCLXV+cxKZP5e7L7HJrZ0pJSCdc0oRea0gNNpwQm3Z17HHq34xJKnFat7MUckN9caYw97+ijlaqv1nm9iorwi5zqPmrNaYIWBlu32iH6HoN5ddP2npyfMp/nGp7Q+146sk7fn0fxV6/PNEfvZug+P9BEh4nu0/dhjh3uxw4r1pr91XZAaactW7LM3BxLBjou2ejjqo/bmyXpxRHTMSM7OelaHTMm2KaN55x73xkXXuBPA82fnsry+9vI3XtzS2oeo/eiVV9bknJXFbt/M1U23cX0pMf291FmWm5hlWRYs8/12bA9WvhbYn7Ps1dO+r+ZqkAqAfr/3fqZQ/aRl8/yccxJnof0Zj7arKVm+L6GUyZzLnjO7V28+lr5FYo09McgIvXx9777j71W9w8f69PrqyR5dDy/G84jU6a2D9Uz3u5TltmxZkNb4fUjLYr3/EETznL6Puu1vb8z5Ejn22sfzN09vnll2bISRXF7U57wU0TiiFUtu5mZ0p21Aby1G1iq+FzJ22uYQz+crXZ4Bz/mYbNviqGwj5b1nP69oXx+5K0X+7YZ+7uWif57Yngc5N//7p14+aJQPFZ/q/q3P5azcZcSmt85vTzcibSzOZ/+2LEJ0r6K+IppX0rbTk2PPvz2VRM+W3NvYmrcTdrUdAAAgAElEQVTq9vOnt+Om8J59k+GPoLwwKaVXAP4IgO8BePgIQx4A/CqAf9F5/uojyEAIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyG74IygvQErphwD+GQC/DuDvgPk7bh9eDPFX/izQl59AFkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCwvBHUO4kpfQvAfhXAbzGp/nxE48qy1/5pFIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEENKBP4Kyk5TSAcB/CuDXsf3xk/JpJAJw+yMsBcB/8ykEIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEkCn8EZT//AYB/7Pm1/uET/WMkHxMpy1sA//6nEuRjkFJCSv3lLqW473PON33eI89I+b28RL+ttYnUl7KUUi4yyddeu1LKzfrXeqWUzeueDHotqjz6dc55I6McX/Yrn+lyb/x1XZsy6XLZl67rjZNzxjzPpsytsh7eWJZso3qndWGkvLf3lr5o2aPy9/TVqm/tnyy33luvo+PJvqZpMvvs7U9vfG+NR/bd2j9Lx2W9Oh9tE1ryy76tcr1Glgxatuj5adnC0TZeO63Xer9G/d/t+AXbsKGglPMeVFtp7Yc1rndmezLV9yM63BrfG8vbe/0s4m+s8137kPZZ+wRL3mmaXBvVslWe7fBimpa9terqvlq21xpPv27FBK39jsQRrbIRvWzZqGi76DpFxu/13eq3nqkRXbLkbelwD3kWPGRM5mGdEYm3Bj1f0qPlt3t6lXN2z+aeGK3FiI7L+j1a+ib1ImKPtR3unQsZu0XvKa0xPV302ugx7jkHL4Fcdx3rVr2Sr0spF5nXdcXpdAIALMuC9+/fAwC++uor/OxnP8O7d+8AAF9++SW++OILALjUAYA3bya8f//5Rp53797iq6+25+vVq1d48+bN8/N3+Oyzz57bv8HxeAQAPD09bXxfla9S90n7np4ds56N2E59V5AxSc4rnp6ua+nFmvM8X+SX/Vl3AtlOlvlybvWylAxt3loxzl79Pa/D7Tite81LnZVR3ytlifgLa89ruXcHt/qpdb27iVyr4/Ho2su9d4fa3npf18Kap7wfSRnnvH0GAPN8wOEw3xXf6HG8WNGr3xqnFcd487ww3co1TROmaULO+eZu6o1jzce7G2iisYJn47W9lzG8rP/4WPDq1bW/lBJ+4Rfe4DvfmS9yHg6Hje2S66df1/ev1oJfevprz23Oz//4r/4A7w9bPdL7rPdGv47GERpPLy2bn9JV5so8z5jmdLOv3jgtWbz6LXpnw/Ihcow9d+j88IB3SkcfHh4ge4/cQbbxSUEpW0e1rivKus+P94ictQMyUpqEnOOx3p78z0si/Y2U19r7EV0CfL/Qk8eilUOQY+g4aGQ8/VrHx5I6jj4zFtX278lJWkTnFpVtRJ5WTrYlfyTuHqE3Nyu3Btj+cCRva52JKotsO03TXWe7p3+WvHvyYl5/kdxET55RGVr3Gy/Wjrz2ZLH8zd5109R44Prevye0ZKzlrbi29T5Kyx/3Yievj5GYxvIPVuwLXH1yq350zXQbiffZpSRyNnp3MqsfPXeZD/DaSBvn+d6ILNHYuhcz98q8mKC1b57d93RtT+5WjqHjv+j6W2ibEKElv7w3eZ/XjNgHb58lrbXVeQzgnCe09qbmtdf3Geu7adPm3V9bgHdtO1z1uO6PzO3L1/M8m+XWnC3k89ZeRPXMihunCUhpgrw/WOdU35nlmN74UkdeglZMMHLWer6h97mAN7YV/3t2KrIu98ZRHr29a91L9Gt9Jlu20Dqjutzqv2RgWWYA1a4A794teP/eP2PVvtf5yXqRnJ31zMuTeURicO9up4nqd28/W3Jp2VpzvPdzSYk1Z2mDrPikF1O/RP5e6pUlB9C2fVZf1vv6Wn+OHPGXWqbltGBd88bfr+uKsthxc6+s5mGvMdy5bFna7Xtyj7RtrYmOL7161WdZutRbk9G7RE/+aOzaG8uL2yMy9RnLCVt1z69jbb17XRRv3ctUANzqgmVzdBzX6rvSi7tl37VeL08YPaOeLPp1hGj+wiu3zuFLzKPHdqz+fcP6nKEy6jOisW3L9p9tKwDxPcZ1XbGu/n5YfcmYpLXuUd8v5bNe9973dDsti8qrbz/ni8rnySLL9Rz22rMq25pXLMtZV+bpLPPpdMJUzvfBp/dPOD0/b+UIdbxa0eXW6xY9fVvTipxvPy+actvmeTHLWfeu9UZ1zDq7si8vF9cimhuzeMnY1sP77jsA5JSFXbjWqfeZiHyjc1iP2daJ9fnz5XWrMymVZzs1NfP19j7cxmHrmt17d9TG6XGv8Udt3z//VhwyGpvsOaN6LP06yki+PtKXV9a6G1vjRvyPJ2M0/vCwZIve+6PxnSdXa771nJ/HvNa31ngkx7dHb/awN5aT876UCbv2sveYGBF74n2fKWKXWj65Vd46Vy/FHnvVt6F9G+v1U+8SY3GaPcb2b9nUl/9GaETmvYze518CS+/0dlf7PHJviOaIr7Gd3b6XI7Vk8v796MeI21q098/+fq3nk/beUUbR40dtQc+fR0WK+mGPVg5M+9GWrD15dQza77Mda9yTn9Hle8YayWVHZdszJ0vnzvk5v6/ev6X6NsEfQdlBSukfB/Ab2HolS6NK49lLo2VZAPyzpZTf+ghjE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCyG/4IyiDp/H/58W/KIlXF+vmd6I+lhEQIlP9FAP98KeU3B/olhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSTwB9BGeefBPC34vzDJd4PoNTyE4D3AL6j6uh23g+baIoao4i/fw7A/wzgvy2l/K/B/gghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+eTwR1DG+ReMMvnDJP8ngH8XwH9VSvldAEgpPQL4BwD8aQB/L25/yOS/APCnjH5nAJ8D+BsB/DEAvw7gb8P2x1AqnwP490opP9s1q68pKd3+fkwpemnaz2UfpZRue2/cEVpjeH1H5zoifynlpl/5zOpXr9covTbWPFNKl3alFEzTdNOXJa9sExlP9qvXxhpL60utn3NGznlTLt9b4+v+5Zzl8yqjJZfs05LLq2/NRbe7B7mWpZTLWkT613uo2/T0Ked8sx6VlNKmv/pal/dks17rNffOr7c3rfF7Z2TEhnjyy9fRc+7JZfVrve+V6z71ekXXLzpOrTNq52R979wD57N8zxnTclljebKnlHDAhMPhgPWQL3ZlPhyQ5hmvXr3GcT1s+rDOkecvvHIp11498/qzXgO3NlPKJ99HYodRnT0ej64f6p3XiMxWX/M8d2Vu2STZd8vetnTbYp7nru3qjdGzMRZy/2V/XvkoLb0Z1ekRvfRiklFa/qIVR1hxkHzd82G1ntRXTy5tT1r+Vcp87x5bMlhY627Favps1n7l+u21B1Es29uLTy3q/GTbvfoX0eV7/HCvnhdTyNeWH2mNE41HIjGxlHGapkt9eR+qyL6qvkndO51OWNcVALCu62b9T6fT8Dofj0d89tlnAIDXr1/j8fERAPDq1Su8efPmUl7HPx6Pl9fVJ9T3h8Ph8nqapsvcZEyu5xuNd3s+pvZ7yLdjPDw8Asfr2fV0wbPXOeewj7Ns1jqtyNm/434M5HKm/5+9d4u5bcnuu/4151yXb599TtzntEmcBtzGFhCckMQiAQdxMUKAhLhEEQ9cHkhicQsSEhIWCDk8AK8oCJHAQ0Qk8kCEkFDsKMhYCiJGYC4hXKwgRY3bwY2Vxr3Pbe/vW2vNWVU8zFVz1axZl1Fzrm/vc7r/P/XRnqtmXUbdRo0xan2rVZMcg/F9+txKncGunENSPlZHCecThm3U6ItY1pTfmLOFw3Vwr/M7diamzs4YS3v+1j+JrxVbm+5zeF7E6gp1b6quteu/xu/2/bS2bbP5U/s6tI/8z74uj9UT5g//9c/hrusWcoZjtN8bdF0/SzscdlCqmY1/St/6/er7HsMwAABOlwFPT08AxnPFWoNvfeuENzDY7XaLMTsej9jv9zffs20n+f0xT50Dsc8p2y/HuFeA+e+Ru3kq+10lH3iNPZfz22rrShHbU1ovz5m+79H08/US4uYrai83Sxul61o0Zjk/kj6v2fNl33u0Qdp2KVN43kj99lhsOUXa/gaaJh2/jD3H+rrFV5T6/KlYavhv6rxwNmmJUmwplAWI21QS/RDmSfmTvl8n9TNz50jsTNhKaV3cK95fK0cJ/xyolTcX58rFzFP7KRePkqzxLZT6K9nXkrOzxjby8/n7sub8CffzGptcunalunte5lpO6G9JzytJnCO1LqU+r5+Wi5NJ5M1RI0+YLl3XufTwTljST5+YT+r045a+Sc/OsG1HeCbW+rqSccjNhXQfl8a45qxO+VpbSNlAjjWx4dEvUWiaufxt26Hp5PovFf+O5fXxZU7d/aXsaf+dH3cI/dEp/qT1lGf0EQzM3qDpj67S8d35NP5fP2EeM23bdrZ2/c++f5fy9WLrcMudjWsrrDvnT/p6dK5nbr7i7f1NRmXmsWOl1OTnvgtido9Er6T2z5Z5CO3p0MbzSbWTkr1WrjW2QaoOR84nqq03ZR/F4mp+vsPBYrebnyMPD92kt/zxC9ep/1wrtzROH8PXPbF3qbokayQnRy6uH8ogpbbfpXpydofEVkrFrPzya87rVLk1Nox/3uTalr5LEX4Hx8C/ixvTLpcebX+zCavmczAYhgF+kfP5hN7uFjLn9phLD8dyjb22Nr/uNfp+mJU5nU7oTf4sS9mXNTpli92by1Nrw5cY86bjLK7atbGXtb5SLfN5msy7Ir6NeE/8+kp1hzaNsytS+WKfc+O4JS6fInanELO3cjLWxgqW+PXVna8p1sa9pajrPROQ7mdqn0n81kV7GV1Waq8kV03MzPcxHOH3zmOEMuf8w1ibrp0tuHvGhe1hbrrD2qW9Fp69ku8srY1tpHxDABgwXL9DcMuvtUaj8zom1p5W4/odh+J2xvt1ldaFithKqbWw9ZzZ4hvdk+wajIZTlrH53N4v+QsLf6AZFmlN06CxzRQHia2/0pqM+R3F9ZDRgzU2tVHL76PE1lXO78jVL0Uy/j5bzmJJ7D33rhR/L8kZmyOtdZU9tcamrR2z3DhJ7SOpjZ57F74unemlNmvOtlqfJEQSj5ek50jHLNfLF5NnulP37BK/mZzeldhLNTKv2f9rfDG/bI1fFsu7jOkt3+fuL2L1+VlGHy7+N35zn/UWz5Z8r7ukhyXxpC2siSfkYmQlHenGNdbMWr8wZd8C8/jUbV+V+7lmvGP6bKut70jFrMM8Ln2ww/Ve6va+73tAz+uTxnBin+/B2jM1dWbGitTu/Vh5CUk7MFgDxsS/25v6XnX4WaKj76kv1tg6OX23RrbFWrz6Bj65+w6/nqUdWvYrYnURYJsF9z2GUuoHAfxOjNaCW2H+858E8GPW2j9urz+AAgDW2rO19ucA/L0AfjFS9h8GoKy1vxL8939ba/+itfZPW2v/sLX2twH4BwD8H5E6fgLAn1ZK8YdtCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiXCv4ISh2/N/jsfoDEAvgfAfwBa+0lVdha2wP46cirFsA/IxHAWvvzAH43gP8Eyx9C+XsA/EeSegghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+aLAH0Gp4ycy737KWjsI6vhvAYQ/lKIA/BNSIay1F2vtHwTwJ7D8IZTfr5QKf6yFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAvLN27FuBLxo9i/LER4PajIwDwS9baPy+pwFp7UUr9MoC/MajntyqlPrLWfqdCnn8BwO8E8LcGdf0xpdTPW2s/r6jrS4u1tpzJQyklfiepO1dfqh5JmTUopark8fO6tFif/bTUmJTGKiVX04y/xWSMWcjhP7v3qTwxGWL9a5pmVldOXlc+1UYooyPsS0iuPolcuc+xdKVUdM5TMpXepdaKtA435yn8+XHy1qxrv622bZP5pftFQm5cc+3E1lisjliereulVnfW5I+t69K836PdXPul+vx0f93VrhF/v+XWX6r9cO9KygBA13WLtJSOlOhAlz8mg0uP6eWc3P64rl0PYVuxz1I51rYTjqk/56n6S2NZI0/tuRHKFbaZO//DsrEykvG/h65N2SdSuVP6VjKua2xNydxubacG6b6vIbePa/RM+FwaB1d3bu/58922bbJOX85Yf2LnQGlt5/wJqa20Zs+UbPi1hHWU5natjnKE+mlrfbn6Y/WuacMYk1w/qXaMMaI5S53jvn9kjJmetdaz52EYf6f14eEBL1++BAD0fY/L5YLz+QwAuFwuuFzG32kdhgFaawBA1w348MPj1LZSDX74h484n8dz3Nkeu90O+/1+et7tdgCA/X4/Pfvpbdui67rJTlJKzZ5LdtjWM8X3B928dWjQdTcZ3Ji1u5stF1v7pTNozdpyY9Hs2kkmF3o6HI5oCvZ8ye+L5XX53XjonUHXvZm9OxwOaANf2l/3Od1QOq99UvbKGvvN90OkcYyYvWB2dmHX73Z7tJnflY7FB6SyhzL4fQ91jcS/T9nsfvnGDLhVVb/vcjaBZJ2k1mKtHGFdsdiMtRZm5/S2Sx/1UNM24nb8PW6tncnsp4fjH7Oj/Xx+ujFmptfdZ2DU8e657/tZHqf7jTE4HCxev97PZP+rf/WMy6W5zb+n0/3ntm1verLr0DQNDocDAODF/ojjUU9joRTwta99hIunN5umWezjtb62k0NihxVtyb1B27bwix8OezRqvu5C3XVve1qqQ0tlQyR1WWvR7HZo23k9h8Nhds6U6oikRmxHC3tdqz4lfe+nl2yCmL50aR30op+7XQfT5eM10nNDmtePE6XWlTF2ti5dv2N7KfZvru2STSKNZdfsW1/HhO2kZKm188LyOrLWYmkhMVkdfpovX8zPTNlJ0nOlJh2oi+e7tNAO3kLOxoix5h4tXL+1dxu1NmiujZxN5pPaT+HZX9q7JXlr7WOJf7XGf8nt45QdEMqV4l53NzE96Iut1E2+Wjsw146f3ydmN4bkznPpWKbmNkwv9TlXb4hk3Uh0v9/H0CZ4W/jtp+a11j/LxQlS45LaR6WxluYryRP2szZOE+q+VLnUvkqtY2n7QPyezq+rg7nGDeZ1qohvDE9/3Et/xfroy5yzdWOk7K2UPxrLbw8Wl+NNPwLA4asv0fbz2Jl7TtlSUj3kp4d+dPg9khyh3RxSE9ubn58AoKAahaYZ62+bFqrNr33pnDme40ys0QEhvr2b2q8Sudx6Tp2dsfXuE9qvUt1bO/4lSnq1Zu2m9KL7rLXOnhFjWza6zlxWf9z8O7UtZ2moT1PndaxPLn8uTpsipidyeVy+8Pk5YzzPReoMLs1jao2V8ufI2QC1vmGYLxUbqnn2948/56axi/nu+x76kl+7YRvAOB9am0h9A8523ZpK2Xzu39Jc+2dfjd2ulJp0jT8XwzCgVzcboTQ2sTYl9+0uVlOSOdV+rI2tMaYY4/qJxDqnPTamaW2gTN5Ovt0Lh2l18aM1bNUJEjtc6ifk4ik1dkWMNTGN2vbXsEaWlO0sjf3Pmxz1oFuja/sZxlif0z/3fZVcn+/1vUNJ/Fj6ffOwjeI49QOM0QsdqbV8fKW+0hr5/edFLNw7E+2szM0/1F6TknhIyteUng9h+dR5M46HxXinNben/TKSOB8ADBjGs8B71fc9oONlojpTj2thVu8wYGiXMcutvqZ0/Er570nsrsXps9s5dv2elHdHHlKKIeT2wmCHxbthGKD01ebSGtYa+Gd5Ku4l8cVT9wextVc6i2N20G3dyOZPGktcQ00sPSZTTVrOhg7TYzHb2FjWxLyX5/C8r5L9tMZf3aIXUuutFP/Jrb/S87y9uIwS3z9Xd2ms30ZcIHoXFJgvTs+FcaVcXT731NGjjHNfJ2aPleKpsXSJnJLY6JZYZ22Z+43tNl/VXyN+eWttoOLr+pHTW+G8x3Rkab5S+kOiVyTy5/LE4se5u4NQ1289C2/nMAC4f6/x9kI8o+S/x8YvlrfGVyrFr1PySeeybVu0mN8tldZSKbYrIZc/54NIYtFhWVeFn1US1yvJKXlfkm0+T06edP9zcrwNvyAny9qxit2jOFL+gYrcY9hCjGJWPqH71jCuJafDrvW8van4wrH9m27fIyilXgD4ocgrC+BnKqv7JuLL7vfUVGKtvQD4FyN1fT+Af6NSJkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3gn8ERQ5P4Lbj42EPzryP1fW9c1E+m+vrAfW2v8B44+w+D/LpAD8K0qpD2vrI4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkbcMfQZHzGzLv/q/Kun45kf43V9bj+CORtCOAn1xZHyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghbw3+CIqc9zPvvl1Z1zcjaQrAj1TWAwCw1v45AL/iJ13r++fW1EcIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyNuke9cCfInI/QjK68q6vhl8dj9a8vXKenx+BsC/fK3L8UNKqd9irf1LG+r9wqKUmv5LYa0tpqfyhG3lPpfazOWvqSdXb5hfUl6Sx7Xj8oZ9ydURG2dr7SzdGCOqq2mabB5rLZqmKdbnvwfScxPKmZLfTw9xdVtrZ+2k0lNzmFqva+Y8hy9XiGRdS9a5ZE+2bSsu58+naz8mh1s/Ujlz7bo2U/XU7JGYfGGZ2nnJvffXXGxN5so3TbNYfynZpGO8Rc/V6K/Y59z+ieVxOiZW1teR4b6WyBSmrd2DoSzhGenSm6ZBp613jmKWv2kaNLb8O3mhPnV1x9KlhHsh1l5sTlNn1Bb8ev26n0v3hZ9TZXJ7VyJb2C+/Pem5ktO3sfJhv2Ljmiufwq3XnIwS+UK5wn9r15VUB6w9t9fIVXtehGkpHZVKj53lsbLuszEmWSYkNn6h3qm1l1L7ImxrjY6R2np+W7V2vK/vw7M71YeUjluzLmvKSM64XH2lMyY1frH+p2xGyTnmt9O2bVLfxcZVKbVY7ynbw8kSzqsxJulf+GW01gCA0+mE0+kEAHh8fMSrV6/wne98BwDw6tUrDMOw6OOLFw1evfraLO0b3/gWHh+X43M8HgEAH330Ed5/fwydvHz5Ei9fvgQAvPfeewtZ/X+dLvfXrPsclss9S23+cL721tdbY7ndroPdLUNma/SpFL+s3hmvP6NMXdehDWw0qV0itUWUUmhmbY80TTP9F8OlS3yMmLxr9UjOVllTZ+xs0d1yPGJz4fIYs8zv6vJ1TJhniw8ltYdTY9I1Pbpuvt6PxyOa3fJs9uX2+5JaiyU/J5fu3m2xt0OMMdA7g93uES6Eai1wOBzRJtZ3ac3lzo3UGWeMidbr9LZLM8ZM9afsnZx9sd9bfOUrT7P3X//6C/R9E50j4KYPw3R/ng+Dxn7/eM03jtt7773ALtCboU6I6YhYO7H0MK205lPp4/zfxsSf/9TZK6VWB8fKS84ySYwsh7UWZr/Dm+u+d9Udj4esT17C7A0e95dZ2suX76HZp8+PWn0N1O25fa8X+u1wOEJ5+m2rX1ZKk2D2BufDvF8ffPA+mstSv9Zyz/5tLV9j9/vcK9aTa++eZ42kjrWxs9IejdkhtX1L+Uqp/DkkdkDpXcyO8lkb94+1XaNHfda0u0Xf5trMySKJi0vSgflY+XbwGmKxkbX7XmITm/0e/X7nlQGODw9oPD9dej5JbdWwjCQOV7KFcqzdC/eMrb9Lcnphqx31NpDqhxqbKEyX7jXJfY0UiS8vLS/NK5n/w2DQtkt/2B4Vzt28j4fjEU0zH7u1e0d6PtesWYmdIMlr9hafvXicpX3wG16gueT9fGmMJxfL30LOn5Kc936eQ2undWHa671q10Fd59+tBek+vIdNXxMDzcUu7jXeIVvu+kp13NNvqLXjYntFImc43qUYjv8s0l17i8NhHu95+d4Ddrt47KUke+ldSo61dX0RqPVPpPbhPe5ut4xfqC9S66o2jp9jTWxnjc7Inb2puzilAJfV5WnbFk07Poc+tOSOX6lbLG2sv3x35X+u2ZcxYrF4IK5fcvPSag1j9CxtGHr0WH4nJ/UcW2+ltZA6r+9hn8bkk+Yt4a+jZTy77L+Nz7fvZqXq2kIqzj7R3tbwlNS2aE0b/e5ljLX3WhJ5t8Z0tsZZUmyJGabOk5At33laVhaWs6vX2ts8z2O6rW1bmMR9lQRp/F66dqT5amRtWzvdsfnl15ytOWK+YElfpvTCZNcqi1xXx/tNNbWZ0pMSXRCe75LYhn9Ghf3TWkMrDWMs4P25zTBoYH40TvLHZHEYY69n4O28MMbM7nxLNkJ4bwwoWGsW3wuKsfX92ryxchIbU65XLYA6eUqxqrXxP3dff5NrZBgGDO1tndcQrlHrfSfAJ3f25mLhN7ssXFd2Ua4Uv5DGe1KU1kJK593DVvAJbdfaM17iT4e21i1N7ouHf6NQa9PW3iGE9fvtS+ry/66kxs9zelMi4xru6QtI6wyJnQNa6+tev7VvEvvfZ+v9Re5vlCYZjVnMif/9mRK5fBI/Yu098pbzRsq2uupicWv0iKTeGvz2cjomF2Q9f9kAACAASURBVOeU6P61stXmu+kozNZ4qp81fU6luRhAmBazF0rx4tQdjK97czGzEuHfB8ZkCkm10TQN2rablW/bFi1kfxuyps175S8RG6NwnpWC+G/wpHcBEjsst0bduzF2NaVOaSkbNrefU+ulxg4oIY2npN6nfMhYvvjfLhnR2EuZ6RhE9HxEXyzvjpxtOD1+T/I80b/vPSKhjyzf9J791fr9SqnjShn+u0T6P7iyPkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3gr8ERQ5n2TefVhTkbX22wDc/31K+Bs8P1RTl8f/nkj/HSvrI4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkrcAfQZGT+xGUj1bU9yuJ9B9eURcA/FokTQH4W1bWRwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIW6F71wJ8iYj9yIjjxwD8pcr6vgngtwCwQfqPAvjZyroA4PPgs8X4IyhfW1HXlwJrLawNh++GUir62Vo7exfm8+vPtV3KIyXVvlKqqv7a/GHbkv7GPkvb9Mc/R+x9qm/h2IVzG0tvmgbGmEW9qXnI1evqc3lSfUutt1SZUCZfTslcrFmXuf7nkLSVypPri5sjf74cbszD51gfSvMqSQ/bl+DkMsagbVtRXbm1AOT7t1UXScbCrVdJWzm5asqn9HjsnYTcuRCTrzQusfnJzdma9SgpG9ZT0oOuPqUajEnKS7v9V5LL33+SdJ818+fvpRxO5nC/1dgMpfSwzto9KJGlZs5Tn335pPXV7rPYWVwqm5IxTN+652PtpdJj6z61l1I8h4z3oGb+JXXV5knpxdA+ixFbX5I9nls7/hldoqTPpGvUtZWTObbuauzzlFypd6l1kWs/Z+vW+gR+fTXrs3QWxOxJR8puTK2RnE1gjLmrjvDHItauMWZ61lrPdFbbttBaT8/+OeLGq21bdN0Y/um6Dl3X4XA4AAA++OADfPbZZwCAV69eYRiGpJw+77//PgDgvffew8uXLwEAL1++nJ73+z0eHh4AAIfDAfv9fmrfl6dpmqh97/fRfY49+0jHPzxrm6aJ2m2pPSLdJzV2b1jGNjZoZ1k2dnbWEOujJM7ij9+9zr7YGbxGX5T849R8xep1a1R1xluX47vdbocWTXSswrPDWjvTXVKb1pHyKcLx8feOS4uVj8m82wFN0wZpO9jdUtYtcy7Z09IYR2peQz0aytu2LdCq63jd8u33e7RqnFOJ3+7vlZxO8Ovyz962baM2ja/TlVIz/aSUmt757efGQqn4OeefEbl97T/7a7ttAaXm+wJQxbpiZ/Fam790FsT2u7UWujGRedKAtrMzKSdXyqZdYw9JCOtNySPRLy7vcD2PfXa7PZpCF7L2YePPuTtjW3TdrZ3S2ZGzN1Ok9qy1Fp1VC73cdR1M14rnS4rUjnf4cptuaVtKztmUHStt1yfnN6bqdXU9x1huibOsiaek9pk0fizVGbE6Ujpdil/GP1/C9zGb18knsa8lcZq1dsKacX4upLKssb1Lz1K5Un6AdE5S55ikrCvjzhBfjpwOCvsskTVmK9SQGjPddTNZrb36qQmdkIpD5WQLbbitvpOkzXvELGNr6W3su5wsIf4ZIfF1YuXvLdOWNtfExkp1ldK21LlVzq1ntLSPMZ8k1fbuMmC/383iLg8PD1AvFJ52/ZSuFPDixQOaLh4LWNunHNLxkvjXKRlibdiDxWPXu08AgOPxIJLnHmv5Xvs0Fyf2iZ1fh0FjtxvjQnZn0TTjWaGaUbaHhyOadlmuFE/OUXOOrqHGXs7ZptLvTUh8k1R9Yewg5x9skbGGkk9UKrtFpphNs98bdNM+HTkcD1CBnCWba4tNX/qeTkhpT6zx6dbynPGArUjvS/00SX9y47vFt5G2CaT3S02fa7DWwh4sTrv5ndfxeFjExKRreN/r6d7AcTgcoHZL/0hSb81Zv9U/CtkpHYyDwn5/QHPYZduXstVuSL3z11G4dnJ+Z63fCwCqNWia8H6hCeodYzGtycdlQx9xTGtn60kio8TuS8bHm6X/7+Lh/lqIrbXSuV5ja0nskNr5StkKz+2Hrym7JgYTe06V79thFo8HgMPhiM67D8rVJ43d38M/9p+7c7+4p+y6DlawR94Wz9H+Dm7/3cZzt9sBu+Wf9UjO79y81NoLpbNy6DTatrvmHe/Xuq5DZ8Y9vz8c0F7nr2TnbfF3JHZEtM3O3cHe0na7DrtmeQ6m6p1ol3K0bYvWLvdd6rlpTKSO+R5Yy9oz+Z7x/2jsoajvl+e6goJqGjR3jKe5emw7nvNeKvb7PXa6g1IKHZrrmp9/v6DZ76p1YtuaxR7rdh3Udf1J1ozofGnn3wFRCtjvd9jp+Tq/l83quGeM9t6xqHv4GDnG7+zNv0PRth2wYS/f019K6ePntKOSLPbceAbu231SJp+aO6Y1lO4ES99pSO7XRi18yv3+gL3Jnz81skqIxRO6nQ3W23gXqHZz2dbY61J519S7ReessUFy7ZkmHMOrTaCWNkFKllgdo4211CO2jX/Xz8/bdnMbw1r3vbnrd4qbmN97kzkm41rufd7UYBqL299MjaTG1WdtvLLV9qrjbmX2+z3M9fvauXa2PMfqrZG7lL8Uo7fN0o84HI5FHVcT4yzJtPU7HTnCs7Npm4j/fVjYWjWybP3eU8pvbNHMzh9r7fgdwet3+mNI/tZGqoPv+R0cSV1b72Gdf+tzfDhCJ+a2ps2+bZfx5eMRXebvNtp2EMUQvxeQ3TwSWGv/CoBX7mPw+u9bUeU3E+k/tqIuAHiRSH9/ZX2EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLwV+CModfwF+D/HNf4YigLwjyqlan9s5BvBZ1fX37VStq8n0uM/F0YIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyBcE/ghKHX/ee/Z/DOVDAD9VWdf/lqjrNyqlfrxWMAA/kUj/eEVdhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS8NfgjKHX8Z5E0i/FHTH5KKfWPVdT1FzPv/vkqqUZ+Mvjsfljl/1tRFyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghb43uXQvwZcJa+5eVUv8TgN+F24+f2Ot/OwB/Sin1r1pr/6igru8opb4B4G+4lodX5z+llPqPrbX/vUQupdTvB/BbA5lcfb8s7d93G9ba7OdUWg1KqdnnVH1b25Hiy+O3GcopqSPXl1h9pT7G5AnLpOTPPafazc1N04y//2SMmclSM0452raFtRbGmKTcOfldmi+Pe37ONRdr16XH5iaVLiU33m3bRp/DMqlx8cmtk1i6P28x3PrJ4ddRqs8R60OpX/esM1aftP3Uc2q+cm3mSOmMNftA0rbkHKkpv4bUvqxFKZWcp1heyd6KIR0zrTWA5X7y2w7TpXPmyvu6IyWTdH/6SHRAqf7UXliz5ySkxjXcr+HZFdtjUltjzfr35zl8DvNJ68vJU1oLLi12HoefY2eNf176+VNrXNIv6ZkmWS+lOUrJk9K90jZj9cZ0Qam8v8dzfQ/nNjbXTdOI998avRG2lSOsv2QvxsjtnXusDb++8Llkz8dscim1azzEGDO1GZYv7T/pObT1vA7nO6Zn27aFUmo2fl3XTfndGrLWTuft4XDAw8MDAGAYBpzPZ3z00UcAxjP5fD4DAM7nM4ZhuLYz4GtfG9t3df6O3/79uPQNuq6b9qD/fDgcsNvtpvT9fg8A2O12U56mGcs7+f0xc31z6bHnNawpW+tDbGnX37PzPt/mWCmg61q0Nu0b+TRNM1sLNbI2O422ne/P3a5Di7ltJbW1U/vHT4+t/ZJ/Eu6D2Pu1zOTv/HbGsFvbNmhNG9Vtoeyl87TUflgmpU/D9JKvNK93/M+nadSs3rCumvkvlalJl4xnyS5N2W0uzV9X4bns71HJeLj4UJjP19Ft2872qz93Lo9r08mmtZ7KGGOmev1nay2MNpOOd+mffHLB6ZTTPbfzxrXndLd7Nxig7y9OMjSNwvl8xsUMM/3udL+rN6b7U3MqtZlSNmk4LtN47Q3O58us3Oefv0ZzmcvRNM1MhnA8Un2otW9yvo7UL1/re91+Qz0tT0i2f62enV0uf41uTvmtMd0XvvNx8z3uleWZ5O+1Gn0Z5qtdv35ZXz9YNepdn3Df+P1KtSlZM6XYgBTfto7JtyUmtn5Nry+TO19qzqM17d+jrlgsxU8P2yylldqJ1R2rLxc3SJVJxSWlPlmszpBcP1JjFvarlC5FWmbLWITlY5+dLLnPpfJSav2TXExk6xno7GBn3+fkTdn+qTZS/mxuLqQ6PybfWl8oVl4697V2zxpi41CKLcZia/dgTUy61P7WM8C3YyT2x1ZqY5TSvKFeS63nnN0mOWPS75XnE1tv387THf5Y18R+avdpTi/7z6FvFNs3Yf6Z3+iVt9bCXCwuF+dHjmV8nynUa37ML7RffR+wZPvkzkRpbCFVPrwvlMSc3PyP/7n88zGomdfUnWWM0r6q9WH88ZfE7GL6pLbNkjzPyRoZ18S//LiHv5dCUukS2ytmN4z7DIu4nR/HiJ3vfvkYqXOk1t6V+lb+XYBfLiWj01ElOzBla0nPjlBf+t8t85HYQRIbPJcu9RVysqT0p3SdbyGUXbLG1p6VsX4qpaCvsSq/qq7r0Jh5jFISnx733ng/EMq/Vq9JfPZU3lL+VPl0GbuIR9cS+go18xmud8m63BqHKslnrMUwzMfjcumnMXJFLpce3bD8jo0vWzOYhR7p+x4X3L6PIvXb1/gl7s5wHCeXPteruTbCewqXL9We/05rPSsTe87h647UPPtjG/MNU/Z7Kv50T+6hbyXxvFLdsfNzS79r/KDY5/SZGC8fs1tr5F/jS64l1cdYX25tz/frPeItEr1bkx7W3TR+fHR539i2Day93anF9uO7YG5zTqmzd8CWdSGPH4blwmy+jn6OWGzKfoqVq9XdqXNdum9jumP6zyzP1HtglAnuE0e7qNFXOYcB1i6/fxj7bukacn5QjFIMZRwvwI9nWQsYYxcyx+qS7IfaGM7bOmtqbeoaOcoy+brlPtSu9y3fxXzueE0s9pZ7v9beceW3xOVLsZBaX2xe3/K9VN9vtVtyfvr8bASA63fGCn3PxaAkMkhlfa4yDokuKfn/Nz84iNdBFre5ffb3QrmOXL2p+mziu08SmWvaL6U57mGT15xXSi3nU3IO18o57v/bc+zvc0JZa8cpZ3fWyr9Wd7r0NevJ15H3jXPF80vfleZhnKtlf5VK+3NbbHup/KHvO58bX+fb8Xug3fwnJWLtdF23aS/4f7MdstX2kMpRGxdPrWXn40pI2cQmuBdxdefuEE1rpvmLmFDfU7zbiMKXk/8w+OyWkAWwB/AfKKW+oZT6w0qpH1dKvcjU9V/gtvxuEebxx2n+lFLqrysJo5T6XQD+CHxrac6fK9VBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsi7hD+CUs9/CuCXrs/hD4+4n8v+IQD/FoBfAPCpUur3JOr6z4PP/g+h/LUA/lel1D+plOoQZhz5SQA/B+D9oLzPf53pCyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh75zFj2uQPNZaq5T61wH8DOY/gqKun633GRh/aCY6ztba/0Up9YsAfjduP6Di1/MhgD8J4N9XSv03AH4VwAXjD6T8/QC+38vv/4CKS/tFa+3/ua3HhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ8L/wRlBVYa/+MUuqPA/iDmP/oif9DJP4Pk+T4aQA/h/QPqigAXwXw+4Jyflsp/m1B+9+1WJsbmvu2o9Q4He7fED/9HnLF6sjVK22ztg4/TSkFa22yDqkMqTF05V07sfdh+7F8qfKp9DXyhnUZY6Z8voxhe+F4xsj1MazPbzOVZ+t8ldaFvz9i+O+apommS8pL5j2WFsvbNE12nIwxSXlCSuO49X0sX25OpWOZazem73L1lupxz/4e92X2n8N3tet3q/6NrTcpa3SgUqp4vuTakczjLE1ktuTrk8hprZ3td39PldZfiDFmVlcpLzDXNaWysf0eptXK7OPWvr+2JLbEmj3nE9tvMZ0YayenH3N7L9ZmDn/9h2MkaceXJ3W+hn0OZYuNear/Nfut1o4r1efSSjZU7HNKllAvx8qEOjm1RiU6OZUntwaleyV2rudkkJ7zOf0R6jX/2X+3dS/XlF+rq2rPn7C/Ev9CsnbDumrsMZ/acql5Tp1jayntn7D/TdNM7abGSWsNrfUko8vv0t3n8/mM8/kMAHh8fMTlcrnWdsLT0+FaXsNa4NWrz3E6jzIeDuO7w+GAh4eHqe4XL15M/XBtGGPQtu2iX35/Uu9cWu4cLK3TGh3jv5Ocg/dkOZfztaW1AfS6ulNnR6xtY8yin8YYKDM/C3N1+mdHSheU9o5kXt0az5WX+NlhPh+t/fEYQ3Wxuaj1u++hO3zcPsr5aylb09rxv1v++LxJ7NGY3xa+T70r4dv+0vGLta+VWeyvcY3X1Vd6due+b2P4z279+vaBr69dntg7f35C+2KermHM/IweBgNjmmksm6ZB141XBG3bTvo6fG6aZprbB2Ox2+2uLY5ph8MezX5X1DdOlpJ/rbUWnXHDMExn1+Vymc60p6cnnE4nAEDf9+j7fsx3VHj4mz6Y7ZVf/aUTcBr7dDweAQD7/R77/f7atwMOh8M0Hrvdbhq/rutmY+nkcnZo2P9c/DHcd5KxDN+V7N7J1p/WozfG3hqrYZqXyN7SWgO63lfwKflTMb03zY9VC3su9DX9vbgFSYyzrr5mIXsphpHSC7m8qTTJeITn8D3jFs+B1CYIea6+xMZ4bVtubZTs5lj7Ob9tbZxyi79fa1OtIYwn5sasdl+kxij1Weo35+oq5c+lrymbO2+k1K71Le0tfButYcxcf10uPbphmKVJ5lIaC1+zliVxr1T6lnWQQ1q+tEZKskrO+lqZJLLU3sWkiN0fhOT8ppK9l6tTSq58bcylRg7pupDkWbOvYn1sPZ/LYYyG1mph27r9XGqr1t6V5pXERkNf0X/2bbecnhjld/thTG/bFt2uvaappC4M7xVScubs2rV7MDd+tX7O6I8aWAsYc42bGANXS9/3aPp5H1Ixl7XE/Bi/rdiz414xpzV3qI5a/Zy7b9pix0h06tq6Jflj9m1s3EplQobBou/7WdrpdMblko4Lhp/9OI9SahbPSJV9GzxnmzkfKNVvPxYXS/+ic0+/812wxq4N50nruZ1/Op3QXOI+dKquqb1BL2IhfX/BxbZh0UU9/vl4L9+2RNZ3HDSGwAc6n08463xfSsTioSVZ/Dwpm9QhHbtauzMmr9EGfd/Df3V6elzo38fHN2j727jFzk/d60i5R1w8+ypsf+teDfWa3hlcLqEMT2j75d3SlvZL5Z4rJrfG9ojFhu5xDtb688B2X8lh7PUO06Pve9ihXZxda76nGyNlt5TOytn3A/rBi9WM7Q/DAC37OmBSnjW6aI2OXr1WhmEWo7J2/O5Gb1d+IUCAf0+5Bb27nSPubqnveygzTtr5dEbvnTPSfVHKJ7FzS3UBwGCXZ/r5fIHR9eMymJh9MMAOy7UUOyOUUkDfB/FKhWHoEbidm8+Gmtie5N0WeXLn8dAN0HqAsc10z621hjUa58sFehjuek4CwGCHhd14Pp9g9Hgfrs/9wnY6nU4YbPmOMWyra4eFXfD0+IRB99V7IpbHrbO+HYK1qcZ2tTyuuGa+7+lT1sYGamwYib1ZK3/XX4L42/j9hUFt33vS8ltiuxJ7PFZGQjiuvQn1Hq7rUyjsBlnWIv07hRju3O3bPupTxvZl8szYSHLtD0PUjtTt0oeN/S1Grp17zs0XOaYxzu/8rEjNb7mOWz/P5zNsxHa7NMv1dLlcAHOLdbSXixfzczKN8woAfdNH513y/TmflO65h+2xJc7sGJphYf+6sSq17/dFek9ph8GLKV5lGAaYyphLbWzEj31Ky+Ty1I59bJyHYUBjns+3f+56c+V0O1y/C3pLG4YeauVZ9pzxZrPwN64+95D++xqfXCxdWrZ05+HvsZp72FSd0u/5xP2S5ffnx++qymyB3B7tI9/NHIYBKvM9+MG6u2zrKhLJ8d3IemuM/EsAfhZY/PAJAPlfEVtrfx7An7mW8VdiWK8K/ou1Z713f9Za+2fl3SGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5N3AH0FZibW2B/B7Afy7GH93MPZjKFL+WQD/r1fecfu/WbnVG/74iYqU+2UA/3SlDIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEvBP4IygbsNZqa+1PA/hRAH8CwBvcfphEZYqG9XwHwO8D8IlLQvzHUML/4OV3+X4VwD9irf20sjuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLwTunctwHcD1tq/DOAPKKX+EIC/E8CPA/gRAF8D8BLA54I6flEp9XcD+K+u5cIfQgFuP3wSprt3fwHjD6D82pp+EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyLuCPoNwRa+0TgJ+//rem/C8ppX4bgH8TwB8CcHSvgn8d7kdRvgPg3wHwR621/Zq2v1uwNvb7MCNKqeS7LXVL6s3Jtaaue7aZaj9X3n/nnsP81tpkHZK6Y/WVyqba98sYY6JyxNL9tJIsxphZelhfTG7pmgzHuzQGSqmFDFvWTJju6kqll9JS79fIKFkX4Z6pXZdhetM0ANLroySPT6zPflnp+KX0QkwOyfqRzmVMF4T5JHPmy1+ST6p/tuBkSY1/bl5yZ4VErtRYGGOKYyuVx+mHmz656jxrYK3CMAxQeszr1nusP7F2cumpPLl+lXRETL7UumjbNtKTeZncvs4hXb9h/txzyNZzPZYe208+a8cjVqfUxvDzxNZPSNjH3JooyZUrVzP+W3XQc9dfWq/heK+x5/x2UmmpNqTjnnq3dd2WcO1qrYt5wuc1+XLlY329p98hpeYcltoTQNpud59jezm0iST9zOXZsp6kc5pbB7HxCM85Y8z0Tms9W6N9P4YH+r7H5XIBAJxOJzw9PeH169cAgMfHR3z66afT82effQYAaNser159bSbPX/l/voXHx/mYvP/++3jvvfcAAF/5ylem5xcvXuB4HEMaDw8P2O/3AICu66b/xnba6YxummbS4zn7IJyXmO1W41uM68mVg5dWtjVDnVljP4Zy531omS+YouSPhvrZ2ttYhLLlxqU07mv0+hrueUZomEnnu/5prQEt98FK7UrGLteOUqq6bzM5ew1j5ufa5dLjYvPnTK3MKd9CKru1dnb+SmMjYR2xveTmNNTJfqwnrCf2Odwrrg6/PgAYhiGqx4dhmJ6NGdde+Nk9+/reT3cYY7DfGzw9HWayfvrpGeezmuleX0fvdrvp2dfVMx2tLfp+mMYZAE6nMy56mOm2lG/dNE2VvvDHwP07DMPUf3feaa2ndH+8+r7H+Xwefd1OwWgNde1L0zRjvWZu44V6UWs99b/v+2ls/P0bnmOxsXhXLNa2NdB6gL+Uz5cLmqu9kLOpUs+mNTDG1xGAtQbhFpfYQmvjPIuztdfQeoC7RlFq3GeDkseeSumlMzbMG3tnlIHWBvCufy6XM5rLXG/eYx1J+hDGcFLzkiLl962xk0I5pXMgkS1X3tenkljwFsLz8R6xmOfSOTXrPVZGEue5N6kYiGScpb5arN416zJmK0nsyC0opZI2mi9DTE84/PISnyzUK9J9WfM+Fy8xwzDZC47T6TSdgU7GVL+kMoUxjdr4cQxJHDQkJUcNvh5M6SyJLO/CHlobb4/ZcVvPoJJcNTGzmvhAbgxKMfuaNnJxmxpS+qZm/dbokEuvcbmcZ+8///w1nrTC+ezrhTG9ueTvt74s5HS0ifz/MYX++HNRe48UkvPVpWUAoB/MNZaq0DeA1g0ufQ/djPK9eaPQXNJ+Xmk/1XzXosTWNZjTM7F8tXfn4d5N+QeSdCn3sI+ktqPUd0zFOPw1GsY+gHm83+dwAN68mdsqr1494XxWs5hLLDYTi1v471MxjNhZX6ujU7H0e/gGJftcYqu4/KW8ubsLab1bzsrcXEjkkbYdxu/CftfonzXne41OStVheovLpYcfb3nzGlCXevsC8M+HG69fv8G5y6+ZGn+05IeUbFiJT2atTfblsot/p0Z6Xjhq13gsXlyam1z+LfctDrO3OJ3O1/rGtI8/uaU5Pv7YLmzEUIbDYPD09Dh7/+rVq+R4A+m9Xupnal+YvcHpdApkf7WIP+ZkybUvHfOYvqq1L8J3qfuG0pqqXSdb/OktdZRk8edF93q2t5UCHh/foO3bZPnnoib+t++H6Z7H8fj4Bpd+/Z+3PGeMdA2xsdj3w8zvBIA3b17jcuk2nbOlvGH8f01dene7mzOtud7VDVBmrO/1m9fo+7SOc0h1Ssn+kXz203z5HafTU1LmnH04dOPdpN/c+XyG0fn164/17jJcbZYbr1+/Qb+f11ETi5fGnmLptfG0NXst5w/rncHl0sM0zfQdhr7v0RiFx8dHdEFs9x64Nn3evHlE249zv7uE+9Xi888/R3+ez5EkvtZ1enEmf/LppxiGVmzflPaIUgpDNwTtKHz22eRU2QAAIABJREFU2afohi5aRw2ltVRztq+xIdbmq7U5aseoO/eR8+wRg97N0qQxX0kMOOb3++kley1nR6XWY2jPrVlLfevf04zlz+cLjDZJWX05tt7lp+qt+ZwjNS592y++m9X3PbAy7Lpm/FP5u/Pl+r0KwM1J318wRI7At3XH65D4Hfe2+yR7L6Rv+2sM/faudn5701+/N+Kl9RdAR2LYU3vpvO1sXkdOpxM0zFRHeGd6Pp9gvHqlMbUYa21NSX01e3SIjNUw9NPfSq1p3xHrU3u5ROamh27LcY7aMSqNcUkv5tqrje3E1uTlcobV6Xru7bdJxu9eOizW3/Fv8O7/XZic7SCJsXf9ZaFbhqHH0NfZ/TXU3sutLZPKu+buweVt2yGyhwfUXJOm2h0i96395QKbqbwP5Hm7p/AXC/4IyhcMa+0nAP41pdS/B+AfB/APAfjbAXwEwEVYNIBvA/gFAD8L4L+01n7+DsQlhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWQz/BGULyjW2l8D8Meu/0GNP0P0IYAGwK/bt/0TeoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPBP8EZQvCdcfPfnOu5aDEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJB7wx9BIV9qxt+GuX/eLwopmSV9UUpN+ZRSm+v163DP1trZs/svzO/Xa62FMWbxzi8bfvbTw7KS8n6ZsM0cqT7E0sPx8cffGDMbp5gsUsK5jBGOhZMhli9XR6qtcJydXLH6Yump8Yutixq5cqTmPNXmc+qLkvy5vZNKC5+l7UnmWJKeypdaF2vbTO2fsB9N04jaSa2LUrqU2vF1ZWrHX5Ie01FKAWOymqV3XYdOdcm6pGmlteyeY/rpXZGb83vphZLuLaWv0YFSO2ANW/a4ZD+GaTX9j9kra2WNtZ97fs7zJVbf1n2U05tb616j3x1OJ7rxTc1jqDvXjHnKVkvJXaOvS2d4idQcSH0Cl7dWf4R7r3YvSvubki1l2wPr1uW79gfX6MuYr+POzvAzAGitZ8/DMCye3b+73Q4AcDwe0fc9AKBtWxwOh+tzj8PhCABTe8fjA5Qa83XdaCu8ePECx+OYr2maWfuuXqUUtNYAgK7rsNvt0Lbt1KZ7bppmWgtt20b3fsymkYxlCqUUzGWYxgUYyzw9nXAZ2mL5VJuS8yKHtgZaz9f5MAyww01fx3zgmCxhu6Vx0TszzZ3jzZtHtP38rAj7kutnyS50OqZmn5bGMjU2vv5InX9+3VqZqYxSgLXA5XJB2zfRerfazbkyuffhOSZZay6Pvgzo+/keeHx8xGXXis6CVCxA0nZIyQcrndeSdWT2yzX+9PSI5hJfD6XzJ9TR4bkfWxuxfMBcJ2qtJ13r6inZFH4eADgcLF680DN5v/rV93E+z/Wna1MpNe2LcI78urW2sNb1CwAUhmHAoObrI6xrWnN6LpNP7HwL+x175+r3x8y1fzgc0Pf9qOuPQHs8zspppQA19tHVez6fF3L5Z5l7Ds8uCVvOiDX+oM80h8Z4Z9/I+XxGc7msls1E6nx6ekruLams0thMzKY0g0HfD/CTn56ecO7LMtXERXNI5De9Xeil0+mM5pK3c1Jnmm8jpebxnr5pSu/FcHIaY7J+qCPUa7H2c6yNoUj8vreF1FetqQuQxwG2tFvrN4aft8bQfBl8HVEbJwifY59r5ZXGydxcSPZLiZjMuXjKu4jZpuwQoC4GFupE/1/bNDBmPv5Ga1jPPlFKLc60GCn77t5jJ92vEh27xZZYc9e0lq06r9afConNYWkfbo0DpJDqxZr7qJhOW6OzU+1K/WL/ncTXW7v/s/kHvTj3LpcL+p1a+C3n8wnqnI9TS2SQrol7xEMlhLpDWx3xFW59/7KS2kvRWN5gpvnXGjBmB601tB3z9P0FKmKrb9nva+yTVLmUPRQrfy9q9G7NnUXpfUo35+zZNfHH1DhL42QlG6FpmllfXH4Xww/bPBws2tYEdSg0zVyfx2Rxa9uP2/jyh8+OGh2Uu8srscX/y1Ej/1Z9mxpL6TkmiV+HpGJtW/zm0KbM6ZZYHkkMojQmpT0ejtdCnnZpP2ijoXRZtlh6MxgYMx/rvu/RW7n9UXpfcycc6qFUX6Jtemed43K54GKX8c2ae7jSmkvZnfe49727T6LGePAo85hmhmHhT2qtYTzTKWozR8b7dDrhfL3zC9e6JAZRm26GMf44j5Oe0FyWcxKeETFS38XNEcalYjGAWLt+WipOIrW7a+1ziQ9WOkNr1mas/6l2YvVqY6D1bUFaO85zJ7zzTskam6uYXGvR2sAYO1uf/n0NsN5eLqWHeaTt1NomqbURJkv981TdJb8nfE59Fz98FzJ+l8HptbGcNhr6esZeLj36fmmf5GJ2uXuNmK0TjpNvF5R0mFZ60b/xuxjys3Sy8RGzDy4wkf4n6+2Hax23doZhgPtqyHP5cTnuEY+uwe/jAA1jNAzspBuMMYDR6C8XmGvMIuWDrdEDrk2fvu9hr/pTDUOwZuxsjmruyazRk43hMFrDLfPaewl/j8zG0S7X+eXSwwxmUT4WG8mxdX2s1dVb7tLXlK3de+YyBPrq+h2KNm8zSG2KEil/LPdecqeboyYm7dObYfGduL7vAZ3vw1q21rXlbmS215WN+BMGTXDOrYmBSPuY3CPav5N33wsa9dW97spzcU3f9vPvAoyZf7/L32PW2tn3g/zvn/oxNd+WDe2OtXolpjdHWwpw4xf2S16vqydfh4aG+96WsyHCvI01WE5f+H21pV8/+z5V5vtdKd6F7ZKjN33U9vPjQzVnW8mHbKxdjHtuLeSoifWsGfdc/C7mi5ep89vW+uNbY8ilsZLcu9g7znOu3Ryh7ZAvn9/rW+/WU3LVkLtjqamzZAetPWfXyhDaYEq5vXU9S5oGjfAe/Hudt+ulEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCSAB/BIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJO4Y+gEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3induxaAkLUopaCUSr631r5Fae7TZq586p2kzbVy+eVidVhrk3n8d366MaZYp1SWsI1QHr+tFLG6UnWHZcK+hOlSmUvyrpn72jkP84ey1dbt9qa1NrlPw77HxjVH0zRVc+yet+zTNWWlZVw+f7xi4xfLFyuXek61s4bYHq8pu6Zcaj356ZKzIaeXYuvKn4uwjtxcSJCu5bsyDDDGLPaeUQrDMEDpfPHcGkvlk9QVIpnv2j0G1OvbVL6YfDXzX7tW/LbD59jntelSGaTnkFKq2Fb4Prcnmkb2O461+8rVG5Zbe96EOiP2LFn/Of0Wm4vQJkqV921preeb/t5rRkLOLoy9W6s3U/MsJTUGkv1cqyPD/qf2SbjfHP5eKZ1VJfnD8crpophca5Huma36WFpnTLacT5RKy9kbJR/Cnd3+Z7eHjTEYhgEAMAwDTqcTAKDve7x58wYAcDqd8PHHH+PTTz8FAHz88cfR/r140eB83s/STqcnPD7O5X716tXs8/d93/cBAD744AO8//77AIDD4YAXL14AAI7HI3a7HXa7HQCgbVvs92M7TdOg67qpL/4aduk5/yJHTp80WsPaeb/Gcb61n5rXe+z9qH8JwBhfN482mh3yZ+A99KVpzWw8rAWsNQirqfFVfGK6Kbe/SzEEyTtpmZjcutHBGFoMQw99yc99SS9J/GT3eY1NXTMerTGLPRBrN6eTJWMpZU08I2Z35fL72ay10FrD6vJ5ViNb0zSw1qJt2ynNt7mczOEad3ncGPty+M8xuUK725jlvCil0LbttBeVUrN9mXqer18AUN7zrW6/3rCsZF34c+nqio2FP36+jnfni19X27boum4c2wNgdh2mRaAUDu8rYDf2183XbrebnruuQ9M0UT/EH2+tddb+ipUJ06XnSswnrlmf4T6Ilc/5MTE5jVnqDWMs/ANkq30mPVPnn+d9HWMht/e1Mm3NH9NXtyyhnk3X5/ZyDEn8Iydrzj9P6RtJvbXyAEt/POX71JKLK63V+/dkjY1ZKhe+c+fN1hhxre6JyeITnh8pv0vSfuh31ay/UOeX7iNr5ArJ2Y2pfS5pf0u82T/33DxI4++u/TXv/Dxr43pAvXzGGijPpvBZcw/jy1ITZ4zZGv7ai/XLrRF/j/jrRuon1NyplOYmtn8kMtRSc5cYUloj0vizT2gX3gupLKX1G67X2ni3lNo4Qal/sb2ViqkB6bFPtW8Sez9Vh+QseK77vpQdltvXEnl9H1RrDdtYWGtmtmjf91B9XBf5OqrmrKhFshdyNqpJ+CWy+bfj/6xXJigWa/ue94Upv682ZuSfF6HMNbZkmF6SP+4HlefB2SClec2d11vv8f0ykjmO7VGXL3dGSmIITn+3rYVSc1natkXb5tdhGLe5171Kbl1K91tuDUjkeg79489lbh3m9lFOX9f4njX9ryUlv1Lqrmda7fxba6f7rnAuHFrrTeeP1Mec+6V+HGdbm/ewi1M+tHzNxL87ECJZo348N1X2Hna4W5cxf7nGVyn5QLa5nUGuC9qE90WA1gOUlq0ByZzH5iFmB9TuT6vswlYehriNl1tLEr0oOWNCWVJnba6Okn0SsuYcTr2T2hfhmpPu0ZKcKdnH7wq4sbUAFPr+An1J7y2//BpfWNqXXD7Ta0/nj2mn0xm9Wd6phZRiED418dRwjLfaGqnzZUye7+3c/o61HTtbau5Stp73TiSFm63Ztg2s7SaZc+NXOo/DcySlL3Jx4HAvjnXk10q4t1LE4grGGChT1h1+rC21FlL6NuYr1dj3uXW8RhfUUvaBpydYe/OFtNFAJPbjy5w7S1JzqaGh9fzdMPSw/TWtH4Lv74zfyYp9fad0lsX2qdZ66lZ8vS7r9vdCrM0h0qe+72GHpR9de76mxvFePuY9qDkfclSV6/vImF/Qq/n5H+oYSbv3GEdpDCdkzT2g/+zWaN/3AMb1/mge8dnXPsMwDFP6p7/w6zh98gQA+PVf//Up/fXr17M23n//fRwOBwDAV7/61en5ww8/nJ5fvnw5+QuHw2H6vggwro0t8UypjozV1ZthsX8kf68hqTtMl/p2k32ql77OMGgM7bAplhZrK2WHpJ797wC55/B7SX7MK5Qjpkdj+zA1fhIfCBjPkvC7d1prNDp9RxXWN9hwjaiofbgc39x9+nLOwzhH6v0aau5bcp9j6WvlGsulxwG4772OjnwXeTzr73d3KGGNTVcda1jcPczervJvUvXXvs/FLO4Rk0u1+Zx1l9LT9yjx7/M9V+xXGv/cOlZrbZRU+jQeC11c9tXr5IjLsvXvm74XeH5PlRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQjLwR1AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHvFP4ICiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5J3CH0EhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS8U7p3LQAha7HWwlo7S1NKRZ/DfGE9a1FKzcpL21zTdipvbgy21lVK99uz1i7Gw89Tkx62WZPHGBN976e7Z38NxZ5TMqTaSpUPy5bSS/1O5Un1V1K2tl1gudZya29LX8JnyRqX4uoO69w6Nvda17G+lvRMuK8kzxJcu2t1TGzdr5Gl1L61VrT+AaBp4r8F56e7umLnS81azPVxGIZi3i1nVaJRGGNgjLnNjbGwjYExGlqn9XMNa/oiOUtr91jJDkjNZamOtfoyVU9KF6XG5O7rItL2WlJnRKjjUn1v2zYpg3SPO1L1hG1qrRdy+em5+mrWh5/u9E2t3iyhlIquO8n6ka7XMG+trSo506Xncw3++vH1vdSOKa2/Gr1Q0j2xfSNdPyXCftTuqxxS3yFVdo2eew59WKpzbZuS8Ynlc++apoHWemaPuLXg6yut9ZTe9/1U3+PjI7TW+PTTT1fJX+KTTz4BAJxOp2ldvXjxYno/DANevnw5yXM4HHC5XAAA+/1+sov8c6Bpmpm9tMYfiNl9c5su79uU7HIgrdekfp4v42AH7xwAAAutB9hh3W8Zp8YsNi5WhWd03F8dZUvvZb/NWDsxvePrv5o9dq/9mO6jPxfX/qH+vCzZpKXnXJkU0v0SVmWtgTFyvyfUX1v0cso+9N/51J5hvg90rTUqc8zvq9kHTq5UnMpvJ9VnX9a+76e6wmeXR2s9a/d4BF6/fgAw7sOmUfj4VY9Bd9O+3O1203PbtpMMu91udva492PdFta62BoAKGitMai4nSj1oUt6I5amtZ7k8ufxeDxOz873BQB7sHh8b+6Dv/xr9lBndR2jZpLFyePqT8WdJf1xOP1YWktrzpSaWLiv2/x0f72mzr5ULEUpX2YLQKFplvlrbOuU/LnP4Ttrx7PsJqcS7+8Y97Kb/fi0aZaxLK01rL5fDLREzlZIzXlIamxyOi5Fyb/cGh9+zniKlBr7zBHbo2FfcuO6Ze37eXPxZ/+zxKaJ+eV+32J1SGyNWF+7Ln4lLreX5LbXmruSXJxAiu9D+ed6TMZYeioWVbtncvEcaSwp3As1+tc/00J/2bbNZMc4tNZQQfwvVqejtH/9986OiOULuWdsJtdWyheLzU3MPpOeCyliNlW4ryU+VOweJ0YsFhjGe++NxLeVxodK52spvUYPxPJJ/dNUzLfU1j1iA77+LPlnYRtaGxgzL6P1gGFQizLDMEANeT0vuReRlknlK82x5F5AMq9+NU3TQDXlOIg//7VrIScLINeRJXtRZrd4d6cuFoRgzBZxlOW8PIdez1Gzt92/tbbHmvhVSY7U55p2wjNEogtT5NqT1pM7K2M2rbX2ZqsIxlKqU2L7PXbeSu7KcnbuVhs2JBUzkeree8pVuy5zui+35mtijlu5l19d01bYrtTfSI2f7BxTsNrFMNV0rvk6XHJOz9sZ/9Pa5be4XC446Xg9uXsp/32tjpKs+TB+sBxzcz3j5nG6e5rJa9ZYjZ3u583toXBcpPaJfwe0db8s7ySW7x25OQbmflmNfWWb+N2KMvM6mqYR23Qpu1Mat5HovrC9LTo/nIdamz6FRIcBsliA9IwP5989m8Gi73svHXh6ekJzaWZjXmvT1IxBau347xayD2ax/8/nM3pbr5RiejZMj31em156l8P2GlrP76sulx6XIG6V60e4X+9FyW/UjZnia8ZcY3HWTGdk3w8YhqU8sX1Rq2PC9xJfOVxfWumoz2+HdDwsTM/psJh+DesK60shuWcO36dsgpJOd58l35NMtZcjN79+G1ppjN9VuPnkxlg0Nn038Jz+9+1sm6XO7p/D/LlnlVh/g7f+kvryisSHW+6J9Fm61b+vRSpzqkxuza2pI+fv1qAGDWPm+6fvB/SFanP2SSkWv3btb43xS2RwumT0M27r/nw+Y+iG67ofJlk++OADfPTehwCAH/iBH8DhcAAw3rHs9/tpbB4eHmY2Ssw+Dte6H6cLfQI/T+xz+G/t3YJf72CH6xrx0oYB6hmvK8Rzff2bknnSgKGV2eC5PFK94svq361t3Zu5cyxnu+bqiuXViN01GDTe3yWUMCo85+ysDp/B6kh7Go32zohhmOVRav79KaMMgPkZN/t+1cozodTXmthQCUk5Db3IF57jNfNfyt9M9wt+nvV+8lr875g/F0t7cvZ2po9j9kZsHdxD5nvcNZUwahnrCWP+a+STENNFa2MmkjsXiSyl9kr1SfZHLE16l5CSKRqrDfxUay1swvYvsdA9CgvdPf7tZtoYuMWlFRaXk99j3M+CJYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkBXwR1AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHvFP4ICiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5J3SvWsBCNmCtRbW2rvU41BKLdL9NGk9ObmkMsfyKaVmcq2RLZcuyRd7Dv8Nn40x0TLhc+5drrz73DTN1J4bm/C51CeXx89bKmetFdWdm3snY6q/kjocbhxi8oftSdNzlGSS1Onn8eX117y03TC91H5sfFIyrt0jueea8Ym1X7vGcm1aa0VtrVnXObl9pPNRorQutdbiMrHxSo2hr4dSebeso1z70rWn9ACtDbQ20zttNIy2uFwuMINZtLFGN8Tw19i96tuy50J96efx1+/W83ZNWX+/ldZgaR/W7MHSu1wef92nxlbSRq0eiO07R2r/rTmrU9Ss6dS45M77Lc8pQplDfV2yE1J2eE5flWxu9yyd/9hYlvRWSubcei6t5VS9a9JLpHRB7VyE9UjXZSmPb3fX6h0nV0z3lvatZK5rberUHgk/p+zOLedBjOm81nq2T4wxGIZher5cLtPz4+PjVPaTTz6Zyn/729++u3yOr371qwCA9957Dx988AEA4OHhAcfjEQBwOBzQdR32+z2Ace113RiaUkrN1mLqHK61o4H4+eTqHeuzAOb6o9ZekeSXjrtSDZRqrs/jf123Q2u3/5ax9Pyf20st2lbedqjHU3pd4g9I7ejcO4ktLfPJAGBcp6HelOjV3DjkzsUaSv2Ive+sWsxv23bounZ2xuTGV7JHc3bLmjPDkbPnQxkAwHQGTdPAT97tdmgi+yuMC9WcN23bzv6V+oCHwwHAzV91Mvi6P2cv+eNxPABf+crT7P1v/s1HnC9lfZfTg431x0JN7bq+uvK+TNJ4ROw5LOe/a9t2GovQJnLPTdNMz6azaFt/7BS6bofGqEWf/f7kZM2l1TLJucEeduT8xXHfLduu1T++nNrebBLH6XRGc8nPvcTWzo1HTs4x5mFg7a3dYRgwRP6/AVI2XYgvbyoWnCIVi1CtRdPM5yu2B2vs15JfFyNWv7M9S+XCPR5rv2aP3DNuJKlfEksH7mvj3zMm4ePrvLC90pkuRaovwnyS+xOg/i7B4c9jLJaW2hfS/bJ1XUrH7B7th3Md7kVpvKRUf6pcTWzHITkPcqTaM8bM7fe2nXwtR9u2UG1bffbVvJMQ84drKMUjfNsoRs4PA8r3KSWdX/LLUvb7PbnX3VPNek21ubWf97jjTa2VlO0uOdel6ZK21/igqTaMMXHfqtfo+95rf7RhT42C1vM9qbWF0gqtpy9iZ4qkbyk5c/2RkCubinUv5vga+xg/Yyqjmu1rroTkHj43jhL7SmLnNw1mcTkAUFDwY4c5nCy18ecwv79mS3WU4lQlYnGymF6+R/xzjS4pzX9pLO/lw0vWmDGmuu57+EoxP1+Ks5dcPbl5loxlbr5i6ynnD0j8hlT70nENdY+/9v2+rFl/Odtjrf6M9StnCztCW3Orf1RDbu9I48qptZNbL7d9Yab9MQwD1HArU+P/D9oE+RWa5navFcZAc3XF+pmL05bK1tLCzGJRAGZ+U62dGKN0/sb2dMpnkJ4ttXHnnI9irnHFMV+2+Wx77nNYR85WkNh00jKTTmwtgG0+bw5pjNdfY7UxcEn8KGVP5eoNWeOb5vxxiS2aep/6nLI3jLUYBuffjHmfnk5Q53zd99L5yfh3IV4xDLfvODjevHmD8zkdJ/HnKTVnpTl2Mq2JCUrtnBy615E7lRMuOn03JaVm3a3BqPE7p9fWxj2tNbQe2+ovF/TDsh+xs7Lkd0jlL/q6HlrddPyUpg2UWbYV6pFFXY2GMTK/PqaTrLVo9ABj5nG3YejRq/L5t8V2k+jukl4C5Ge6xE8G3JgaGNzqMcYAxmAYNGywbyQyltLHdmLnt59Wen+/GE9sD/v6SnKGmus4+mitoZYhXvH6uZc+WeMD19jUknwxeWJzWtNnrZf6wI9JSmQK24/F5O8xD/eKk/uEOiWlY16+fImh03j14jX8rvzgD/712OndJhlS8YCta/xea3/QQ3D2K5zPJ+hh+Se9knPxnncMtu8X62IYBgzturGTyLb1eyK19a6x+STlHBo6Yl9oNFo+T4Mdrn2+lUnVEW/PoNF6klkv4hhA3w8YrvGA3gyeTXeVYdBQkfZqY901edasZWkZay2MMgv9PI5rI/IHamVU1/NAebac1nqm05/DRpdSE8+peT+uybK95MuQ86FzckhsCantICHqf6ulrej2YEmGrfcssfHLjaXyvvflso1rUn7fHbNJ18S11uZN+VLPUa//ddG19rxjcT5CIZz+Ma18bzb63pCE975r2f7XE4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELIB/ggKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkncIfQSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLxT+CMohBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQd0r3rgUgZCtKqdVlrbWiOly+MK+ffm9SdfvpYZ7S5+eUxX12acaYaLpfLpae6p+kfKrNnFyx/rg5Tq0Lv16/vlTdknnJ5Q/lqJHvbbFmH0rXVa4dSbu5sY3Vk5sfa22yTT899Zzrc2ld+Osr13aJ0rpIyb62/tyYp+pvmttvtKXqC8dDMs+pd7VzWqozN1d+/hp9l6vHl80fu5yO6AzQtg3a9pavUQ0SFQFLAAAgAElEQVTQNGjbFq1tF+Vcvpzul+zfmjM3V48krwR/vlJ1l/SyPxexcUrlj5Fqt7SuwnYk4xSbi5RtJN07bdtm36faCz/7aznVd7+s1jrbTmk/r52jNaTGeI3O9dfbFptY0kYpPexXrb71y/vrSHr2ppCMc2rfNU0DY0x0DeZsWEk/c6TsDmkbpTxhXSlyZ3Vu77rxkvY3137sWSJPLC2Up7QWUu9yazxVpkafx85Lf401TQNr7UzvdV035dvtdlP6ixcvpvSvfOUrU/tf//rXp/JPT0/T8+PjI4ZhGNvHGR988PJaRgNQ+E2/8TfhfFHoum7ap/v9fmrzeDxO6Q8PD5Ncx+Nx0uvH4xFKqZmcLl84DjG7xl+XOdui1ge7pkxP495fthnKmKuz5vwt5bH2tg4ke2ONr+XqG+tU8Ktu2xatacR72p87qTwSmyx8F1Jje0jPzbksAHCNA5h0PqVU0TbxZcmR8o22+A+LNgbtjf/YD38PSKhdc+HZX6Nbpe3EdPCtXQtry/1L+Vc5H1AaAygx+WmeDO5ZOv9KLe2oUKeFn1N99p9bu9SLMZ0c6oKYnJK9aIxJ2l6p57D8VLax0Np47Y5nqtVqcfaEcsb6k9PJkjhRinv4HKlxdmdJKEZsbcRIzXGzs2jbyyzvbrdDk9lrkj2SGvuSbADQwSzKtm2Lto2faffwPXP45/g8phxfuyGxeSzlvUfcpLRmpXZSCpmdtr7+UpvW2qieibUVe77HGOf8Swlb/MOatkpzVYoLhr6+hNp4jqSs1FeutbdieUr+n+TcLSGZ2613C/66lMQoc6R0eqn/0rMgxWQvLN+M76zd3DefNfLm7i99nisGWCJsN+xjSS/ea3y3+NqpeqS6N3aOA9vXZ46YX1MTd83VmdKrsfc1vk3sHM3ZMWt82jVnpX8OOY6twW7Xz9OOR+BB4dT5dp/CbtdCCfzk59ijW/rucP3PzaW1FjD+uhvfaa2h9Lpzqia/JJ4XptfG2VJxplycMEwfz41isyI7JteXrfbAWjsq1Du5O/lam3gZ80z7rTkZYzLX2msh0nPYHxdXRms9+YrDMODp6WnK8/HHH08x91evXkm6U+TFiwZ/x9/2w9P4HA4HfOtbTzidxme33/04ftM0M78/Fm8ClutGGieInYW5+FmKmjN163no1xMrJ10TufdS+2erLeG3E5vb1B1HiCTO5uqTUMqXsidj9ayJh3s1ILz/SZXPxThbKCjVBHcnHbouP3/3jJFI7LOSDLlxTtluElkl51hu7u51Joas9s0U4O5LSpTWpLuT8OuT7kspqTmb0iNN+TbNVlmk+q7GL3T98OOx9xwzJ8sa/1uyrp4rfpKr26rx/sOn7y9Q/foY+73IxemawVy/j3Cj73sMmPtw95JNUo/0jMpRWlvDYHC5XOBv0KenJ5z72/mdKnsvcvcMOd1mBou+H31pY8Z7tmEYJr/xdD5hGG7fAfHPF6m9mbqL8vHLa62T7YRoZYK7wquuGcr3AiGmsbB2vu+0NsDVB5CgtYExdmZjOH8j15etsYLa+6573DGk6sp9XzxFrZ7Nfa9aNxrGuHbHf4dhgL2uif+fvbcLta7Z8rv+VXOt/ezn/ch5D9q2pj+MnQ7EGBskEVGQNAQFESW5iS0qaq4ExSAoEgMi5DJC3wqK4I3gbUyIiRhR0Fwp4o32VR+jtv2h55z3PB97rTVnVXkxd81Vs2aNqlFzrf3s97zv/0e/veeqVR9jVo0aNcaY81nHTFPy/XMbNy3LrPWX5s9uM/eX8YJxHIrrXdoLmr1T9kmu74DsjePvjeZ99xav8ZyxhM2eNQIxX/Cyc3jLeXGPZ5y9YwLAFFxy9s9txjHZc3eMB16C1nsjpc8A4IzLbMl8noZJvw7audE+C40cLyPGcX12nU5PGP217Nax791e+j71CfbKsIfRTwVffATcdb5z3cnPstHH8ybuhfl+rNvK7Y0vnE1ZXecKfoqDc3bpo/R9Pt6nYE/+Wstsc9b3OU3rZx6tMXvqGTfPayrmNDlMQ9k/vLeNk3yBl3quE5nfuVmXpflFzRqnOcA8H1hq18oX9j4n0OYms97EMfY+223Nfe+zkPx9qJJ8mrH2fL+He76zoWU1X87tnq9Sf+m1M9v7m9wETHJs5p/9h2+YO/QqvNwbGYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKKAP4JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5VfgjKIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkFfl8NoCEHILIYRvxJjGmO429+beY+T9xc9peXrtvV/9lWQKIVTL995HOm5NTolSfaldXG9jzHIdQlhd1+4z1ZeaPsXvpPrSGtVkfy161yAnn5Nb+6lhjNn0IY1/qzw9spXk6umrpJO36Emub5q5TUn3bL5/pXFqY8TvrJV/3007Ti/52kh7Xzt275kijd27JjDz/8ttWySdv7TvtH5NzuKQO9q1zhmpf2k+NHWkcUp2uqRnPfrVs24veQ70tq+t5R5ZvPfLfpb2dW1P30r3/uno417nQtpX7YyQ9qvW1rT0P+83fhfXLT9/Wte5XLn8kl2S9EHSH2nvp/XT+yjdS4o0/h4bn69RqU3Ln8zLe86mkl7lMtyqx/f2VVtzVEN7RmvmWZIh3SPDMKjkSfXNey/usfh9Xu69X8Vo6fU4jsvn9+/fY5omAMCPfvQjjOMIADifvsZPfvL7V7L99u/8Nj5+XOv64+MjvvzySwDAZ599hrdv3wIALpcLPvvss0Wu4/G4zMXhcFj5blGW3JaU5i8tz+cspWZLcoYhwJg4n2GRS7PPatT8Uoll/e1WZmstrLUqmyohzV3c71e9CwjhWtc5B7h2/xpbrLG/Up+pvuRttH5B7xlv7ZDo4lw2DAPsYO9qy3ptzB6bBJTn39o0n3Htp7W3NH50L3vPK21f1/q3y6vRudq8tHyKkq9fOiNqdsD7sJHTOQfnZLnSfRWvox2O9yPde76ne3VEqhPlcM5t6qX+ihQPp+eJfwi4HE7Jd8DxeIQN23O6V/7cTy2tcRrnxH5LPl9Lr7U+egljDEK2PsD1nGn1W7u+fgwATFZWRpqnVC4N9f22Hk+ap8PhUCyv0bMmKeleL81Ta+5qeTApf9OKGXt8l1ouvpc9trKnTitW6Mk71/rvtdGSfBo/Vnv21XJotXO057zv8QE0uTktpbnd2qTbc1ul8TTt436S4r+S3tXyfBp5evJkmlyJ9F3etmWz49kn6U9pLkpxS8ue1XJj6z51flB+Dxo0dvSeccuemLNGSbY0BmuNl+Yw9tA600p1NPZQ67fvfTYAXP3UWv1b46dajrQ2bun7fN9J+6uW19yTY67NZe35QouaH57qZdQF59xSfrpM+PjxjJgPAoDf+70TTh8NDk+fLRbDWIvxJw7mvPYZo30rx9pWzIeU5K/5lT2573R9e87ueB/BBFyrJLZfWGrNOknyt/a4JHMaq9bqtZD0PdWjJU+Cdmwj9a15Pn1rXqWmC3tonasR6RlN7b40cWde1vvs9ZZ7z8++/L5Ke9xau/h9wzDg4eFhafPll18uffziL/7iIndqi9JzJCXfx8YYWGvx+Ah873tvk3KL3/flEQ8Pa/8zv85zEK15qp1dmrxu3j6VR3OOlWSU9KQV17XyJT0xfd+zh2080BODaeVKn8lKaPrS5GNKfkTvvEvrpX0mo4ndjDGAmXN/IazPZ3PY55fZkJ/5ur1Ukm8v93guAADO+Y1tdW7CVPjf09TmCGrr2WpfswlSDqq0F0tjpjb21vN2zewbeO9hYTdyre3ktlzKxbbOYO2ZuLlXs/y/VR2tn1Uap+bjpM+r93Lf9eofpxUDv+T7Sq3+pTgj2ABr137FYAeYQZ//1MQjtzwDz/uz1mKYUps0y+qcg7PXthp96Dk7WjG69Iyn1a9WrhACMHlM03q9TqcTzgc596HxjWrlpe80+YRcBu8CpmlEfA7kvcc0TTDPzx9PpzMul8tSX/OuQH6tzY315K9jv975Z/mBqHNPTx9hL/q4anl2Ofnnd2yu9U6nE4ZRF/cYY+BHN89fMtT5fMHFb5+LlmQoydqTi9fGf3vR5CbSd6KcdfA+IBiPmK8JwSME//zeSjl+alGLu7wp+UYOeG4yeIcQ0thwnWvK+9tLST9KOUjp/F7Jbxy8T+/ZYJomhKnPb9T6gik9c+Ccu1tO5KXP5ibjtMz5os/Cuxm33rM2dnpNWufXVew0f9uelz26p8mTtub0lmeO8Xry+b7E7AtM9fYaGW72nRP9jf05518wnqqjOTu0Z13vvO29T3d0cG69mON4QZhk25SPNYXpuY9r+eVyhp+2Z1hpvLyuv0yb8+9yuSx+9jiUvw+u/L7JPanFFHt9msgmdk18irROz17v0atSLJH7Da9px7U54d5Yw2HrG02TW2KEPWvZojcfVmunfb9kyelj7R8Csn9Yk6U2xt7nR/V48FpHe7/3iBc0fpo2x3zP/GqxrzB1v28r9Z/jnNk8a2ytxfxdwGu7ut8E7vt2DCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHTCH0EhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYS8KvwRFEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyKtyeG0BCHlNQgiqsj11etsaY1Rlt46/p59avfidMWZTL5U/rVfrN37vvV++T+t575dr59ymr/Rv2q4kp7Xr34FKy0MIy/fe+9V1lLE1LyX5JblKckj9p3NQIr8vqaynz15y2aV76dXl1tzlSHuoR5YQwtJP3l/vHpXk75kHSWekvZWW53Va+7E0juYeNPZMkkvTV0muEj16XRqnZ40kOdO9l8sjreWt++WWOQPW5ZLt0MjYs/9SWu1KulRaK61+1sbT+Am3nqVavyC1Q6VzbK9PI1E7N3p9pZqtkfZpCGF1zmv1qaWDue3TkMqosbUtWvam1iaXf+8+04xZGkOyUaXydN7udWbX7LKks3t8nB5/vUXaRnMOlNa35W/U5qU291K/JV83hNC9pnvptWcau75XXo2/svfclc6uml2Mf9M9l9pK59xSPo7j0tflclnknKYJ1lqcz2cAwPF4xDiOAIDHx8el/fHLL3A4HJ7HBICAh+MDwluDYRjw2WefLe2/+OKLzfUwDHj79i0A4HA44M2bN8t8HY/HReZhGJbr3N7Ee7PWFveDMUZ1jvftadl3brFHF0pxdFI7afccizZMmjRPGuIZYw4exqxt6jAMGLxVxbMloi7u3YvSWqb6n6O571LMn+Mg5wBquYEeP/IlbGqPPpbP922Z5HeX+mzJ0qOj0rkkyd86+731q9zO0qbQrGWTa9ct2Vp95Pa+1H9Nxvm7rb9qrcUw2FV5y/+on7UGeRyZyxXzbLfGiPFcqtnOWJ7n8qy1z+sOWLuWfxgG2KE8D3vkBOrnm4aaT7fHv8v7SvOukXkf3Cc/OMthYK2FtWajVy37MQzDLtuY+mfreG0tWypHWq92rtTkTfuukZ416bUZwrNernXIDuv+Svv91txXqy/pfIx76h6k9imXRdrvLZvSuletf67pP9fvVGZtbkojy958VJzX3N6X1jYfKz9vtfK35Lyn7yPZ7rgOrbi3ZxxtPiSW18bRxCi5vWr103oGJKHR91rs1Vpj6TlcvNb4xOn8S75Lfi3KuLkXg8EOQGX+8hxsa12ke6jJKMqbkNvd/DyX9E67di1fM+8/n4tb8pT5WJJM0ll9q+9WGqvVdy1P1LvH93BL23iOp/7yS6HRv3pupNynZBN6beGbyeOzH79blf3Mz3yJ0+cGp7drfXv8coB5KO/lVtx7D1pzVNvT2lgnhICwxHfXWC+EAJP4qqW8ZMs/3vP+gtR37Zxt5Qdq9irKE0J9T4QQljC41Ve8Lq2BdCa2aNleTb60Vl7LZdSee2tkCCF0xV2l/u7pS5b6SuWbpkkl0zAMy9zE3IWmXa+M8frNm4DHx/X8f/7FGxyOeSyse950T3tVW/t6DmurZ3mbXP+k5+SteyzmQzJZa/TMVy3uavVdO2u0PqWmXs1Wl/Qv7hGNv5PGo1K/6fepzDVd0vixIQQEf82vxmUeRw8zXsdzzi06kF7nfVpr8egCzufLkls0xuByueDir/cp3XOJW/PmrT5rNr/kixpjizqb96mNhyTfoDdPsHdOSnMhyd/uN41b2zmlfP9dY7fr/Xvv75WKvbvfeY/4oKePe77ncQ80Pqp0Pu0l9qfNuUp1Up89lmzzIDOpLmrR2PX0XlaSCOeN1net2f6X0JV0LWpr3Jv7A5I5mjy8X/vG6bkiP++4357Xxgclpsktz15CCJimCcbNBaenJ5wvuril9DwtPadqeRlt/jfXOT8GXC4j0qYfPnyEvehj/oh/8LhcLquyd+9+gmEcNnWHYSg/TxjdJk46nU64OPlZ2T38eslvyPtp+QeltWrJUvo+juOCn999QliedTvnEbyf34N6fr+p1ldvns5NPnkuheuY09zWTm5ja7yvxzi5LNd222e0zjmkKtA7v8XY1rrVuwLAczz+PM7enEyNfF/eI2esQXsOtGTpzcvU+l37fPWY8yXnqLS383XRnAU1/ZPO9dp8OuM2+TfnHKwvP3uQ0ObuJbS5tRBCl89Xm9OSTfB+q1O1XGtvTKVhjofXNmMcR4xmrQd79LWWy70Xtb7v4a/nYxTtbtie55fLBX7a2ihJ3slPmz7O5zPctC6L+Yw8d3k6nXB01/dy/WXENOUynTE+vyA3HaZNH+fzCW665jdfat00+7dnj9fkrN3nvXOlxhj4y1jUhSnZT9r8kSYO0PqLt9rMVltvyu+htc7pW3VM216jW7W4M7dl81+DVp5IM46mzi15iJL/KZ1Jr4nkU/WeP5rccRyv1G8at7Xqtp6N5szvUMa2YjVB3r7630buc6ITQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELITvgjKIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkFeFP4JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5VQ6vLcCnxhjzN19bhk9ICCH8ydcWghBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQGt+5H0EB8KsAwmsL8Qkw+G7cJwAghPatGmNU9dN6t9SRxqm11dxH3kdsU2oby6QxtfdhjBHvxXu/KhuGYRk7/c5aW5QzyhBCWLWx1q7uLV6n5cMwLNe5HCkhhNU4ablWd9Lx41jGmI388Tqtl46bj7nnOp3jlDheay5K1/n9pn+B6/ql95zXkcZIP+ey1fS3JlvrHjRIuph/17tn87LW5145S+QySjLneloqvwfOuWJ51KMoY0mX0v36kmj2Qo52nlNKdiBet/agtlyDZAcLo2zWpjR2bv/ysfJr7T7Q2MGU1DZt7iSx3el1vr+996Itk/qt7bHa5xI9/aVtNP2X9lWtT83+27OWKbUzKpenRGpHSn235M+/r/XXYs+e1Oq41hbWfD3pvC6dd9IeKX3u2S9a8v2qqVeTMf2sXeNUNyV/QxpHkqtVT2PvNTHMLXpcQprjdJxcf1t7O5ex5k+W9kbsv2VzpPO1R0dbvq7mu9L42j2WzlVJL3N7nsZEh8MB0zQt5fH6cDjg6elpaZ+u2TRNePPmDQBgHMfl2pi53TzW/PntZ29hLPDmzRs8PDwAAB4eHpbrx8fHJVZ58+bN0v7h4WG5r1g3fmeMWZ3npbhDqy9S3Vab+XN7D+fXud7X/KeaXJJdntM6sU3Y+Awau1mTvx7jh9X46fc1v/1T+PESWt+jZDOj3pZI1yLenjF204/Gx+mJLVuxcu3ckdZF9q8CjFnfzzAccDgMq3G08mvinFyXtbY3bVOy/el51VqTzX725e978jbe+811lMM5t3znnFvi5lR+7/2mvnSfK9kL8wIAj2+A9++Pq/v6rd/6IS7jVYeHYVjm/HA4LPvBWrvY6mEYMAzD0ubo57MBmO2TRJ4DaF3n9O4LaWwAq/n2Pm0fME0T7CTbM2ttNW4rtduTc9Cg3ftNn3p1zvTtWUmetMpc/Kz/Xs4lau2CVN46o+c9cZUthO2e01A6O7RtpXalPkO45pzj3LVkkeZDykf1ktquGj37I1KLY9KzuTR+am/v5X9odL43H9MT17fGbrXTtJX2Vf69Zp9JNllaZ43fGPendAZr8gH5GJIvs2df3LNNK48T20ryp2ulydHWZJGe3UlyaOehd2/WdETKQWhsca6DIfhsXp/7b/i9rfi0Nd97z42UUgzSsl0lf0yzFyTbm6LJ56T14jnesy9q5Sn5M9kWWjveQ4+N2eMDa/qNfbfOyKg7pWd5e8/V1vpL1zXbrtHP/F4lf1G+rzwnVPeja3OqpbZGt65/jZofmsoSfeh0brz3MM++ae1epX1QG1N7VrfOzpqdrulSSXdscEl/6XgxT7rNW5bWrpWrqvn2NaQ90BMza+pFeVLfPJ/ftd7oc1U1efbYoZ6zpXXGaXNh6feSjreea2go6fScy1v3eTgc4Fw75irt4T0xn3TPtfmrzafUn5S3reVzS/KU7E38vPcZ262xaCvXosl53GO83I/S5lY191/qo+Sfas67mo1o2fvZXs3Xh8MAk+yV+MxK6jvt983k8eaH71bfHY9HhGP5Hb5SH+l1Kf+lifX35OlzvfLew7n1+njv4Nx2niUZNXFtqby0XnvuqWdeWrK2/Q79fo/nY9qHtffLX6X02K9g8+cwwGAHmGEbo+XPqrV2YTVex9mi7fdevkarfW/8Lr0juXfNpecqEul9Oe82zz+cm+Cn++qfZn175jHmeuf7vdqrUrz3qUjlv0dOJ1LPd5qlrMfGSX3XrluxilRnWYtxftYWz9g5X4dF/+bnndeYqbZ28Z2Wmq9SkqHki0v+f7pPQwjwYd4bKafTCcO4tautvAZsfL/i+p1zHiiYhlJuLYSAMHlM07iR5zz1+ak9Z3OKxv/Iqc27FDe28piLn/LgMY4XBD8s6zSOZxgX8OHDe9jLKMRJffYzxTm/6OLcfl6DwzS/LxFGl+nR/P3F1eOS0n6e/bC1gozjhHHc2prWnEVKz2Ec/ErnjAGmySFMYZUX3Ks3veS+V4+OteTqPR80PoH0t0T6vGJ9Dsf3QuScomQjW3FhiTxuzD+v5by+kxJ1P3/XJZUxfXckfafkcDis3jtpvfO3yGNzn2WOR5JtqNrTmvyxJuYqlUtxzy15qym4zVngnIMpnBl7xnnp/Sz5KT3t70VrXW/x7zWU7mUy6frO40+TA6ZNVZEpuE2sPo4TwlQYD9t95JyHSc+zaatz0zRhsvMedabUh1vlTV6Cmh5JsXpqL2u6XtqzU5iyeQ0Yx7E4r/fgeBlXfgUAnM9nTLi+D1RCG/fcc1+3bJzWjwOAcZg2Ps7lckFw9T2ozW3c675b8YmGEAKmMG321ziOgHv5uHVP3qLso9ib57X3uU7vc09tvnUP0jwabN+TS/2npd4OXSo9Swuh77nUd5nv4o+gRL7NWvHpsn2EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhNzId/lHUPhDIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfAP4Lv8IinltAV4Q/sALIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPmp4bv8Iyj8oZBvASHIy5h+Z4yp1r3nuMaY4rWmL2ttV33t/d/z3tO5DCEs95iW7ekrEufAey/OXzpmbG+tXX323i/10/LadU3OtL8UqV1t/lP58/lL5Sr1nZdJcuVt4ji9+tkzTksGTVkvUV8069BTT9NeI3+rjmYNSvreGkuqJ62/JMfeNSrZsnyvpffTY6NL9Xr2Z+9eqM1rrf9Wfc1apvNSkrFnD5flmf+7Fsj1b92vuaz5OrRsRGvue3W+JpvUb1ov1TlJf2+RaQ9Rjh7foya3NMdamaW9oPF1WmjPJI3MsS9rrdqW3LIfevQ692VK16U63nuEEOCcK9aL1zU7bIxZrVXJdg7DIJanWGubei/dU153z9xLe7THt9HYj3vu5145gH5fSxvP5OXSGRXXXbJDNftU2xepvmratO451dmXWDOtryD55/m9pPMq6Wzc8wDgnFtdT9MEAJimabk+n8/48OEDPn78CAB4//493r9/DwD48OEDTqcTAOBwmHA6vVmN9fXXX+PjR4/D4YC3b98CAN6+fYvL5QIAOJ1O+Pzzz5fxox1yzuHh4WGRN14Da5uR2uLclkho17Gt8wZSmqhnr++xC7LPsFwBmPeZdVfdrcUHkg+T6r4o32BgjEU6H7FdLU7V2uj07JWQfEcJrZ3Pz0cNYQgIIdqi2LcD3DaGb6G959xm3hqHtvRkcL7Ypma7e9eoJotkk2s+g+askuJSMxhYa5b1bPntUg6ndF06K6McqY1L79l7v+hlvu7e+6XNNE3LdW77V/eXyDIMFt4fnsc3i483DMNiZ40xOBxiHbvIm9vhdE85t90X0zRhMmudSe83/VvyM6XPpfY5ks3LdWG9/2Pc8yyn3/rD6RrltjT2mZffEjfdiibWWGKGYdjYLucc/LO/IFFbw/WYAelv0PfmrGrU/Hj5jFq3j13ksYokT6nf1E9rtUnLy3FWuZ61a9lSm1CidUZIcmzWgBwAACAASURBVKT9t9ppxyqR76XeM7mGVp6SvuYxY29f+XUvvXFerU3LBpW+b8Xd0nnXS25zNDkPKT7M9bd3LfbkFaW+pb7yWDa9/9QnTcudc0u7eF3al/k5VDrHY5ye+iG1+9hL2u+tz5B6+pL8lRL5GTjP+dVHCQHwwcOE8vO6vEx7btQ+57JpyfsYns/zVj3td9Ie3SNb6Uws2ZCX0scUaR+l1Hyn2r1oYnJpTG3ZXpvbKtOu8UvY2FKfe3Uh3+MaucpjpWWz/7jucrbdxsnvDAC6WKfH7+jNh2h8xTR/mJ/P8xnl4cb18/fpg4M5z3XSe0z96RhDlfbMPf2+HGmObnkWdfAe3gcYs9aD+fp5zrKcQkkOKS/ROr9qduAeNkJC65NJ+lPSv/zZm/QsrhXDlvZwrm/pvEq2RaMvGn80x3sv6lx6z3vyeto6s++o8+2jXBr2+BUavczjsBKluO2WMaW6NTlqfmGrfqu8p25KKSeVIvkuNd3W+OJ78gAlXvJMSDHGIPht3j6e5y1Kc3Jw2xjNuQkjfLGdhpgDLo2f208Nkn+Z20XjS7H1Naas7bdUdk2ZJu9yq37V2u+1GyHJgV/HuT5XeC5Z/IJafsA4j2la6/75fMJpKq9rLpuUx0vfsS1dZ5LCOY/U7z1fzjDnrQ+Xf9a+m3ovcvnz5wylMTUx2K0xh9THPf2xW3Mre7nHe1yALH+rf2vb+YpUL++pb730PANq3fcQts9HSzZb45vXZM2v02eMmral8uDxHDcHWBvPs4AQZpknN8H7rX9eopUjyM/Dmo8u5d/yuQh+lje9J+8dwlS2N7W97y8x13utc7lcMIz19V/d9+Q3PtI4jhhDvQ/NeX0Pem2ENh6QPnsXMI7Tap2mycG4CafTGfZyuct9r/y9B49xHFfff/z4AfYy+2RvJofz+bz6/v37dzgftvF9a389PPhNXx8+vMflcvXzW/m4Vh1jzPM9pXNlcDqdMIxWNUaJdn5NT0mvWvbglrzyPXSm1YdJ3ufA87Ny5yaUHr9L++qW+9oT8/eOET+/hO1J45GUl/CPWvqXf75V3+Jna8NzfFRvv9fX2Xu+A7n+zkzThDRkecm8pJZ75IVeok30N65TXM6f3nvOSn5Rmh+c/b48j+GXZwRTcPM7kAnjOCFMfc8ev6nEvT55t/K1jJl9rdJ93oVxhHMe6ZRN04hp6H/G1huD3rJH9tqe2Pd0uL6jHjmfT3DTQd13jx9+L7T95fWmw7Tx4Z2bYOqv3d09nlXJ79zKFoTwbOMVOtnK498rz3ePnM292hrjNrmo+O5Onntv5Sm2dtpu/AApPxxxxi1xETDn+L6rfFd/BOWn7wQmhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRbynfxR1D+s9cWgBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQcuU79yMoIYR/9bVlIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEXLGvLQAhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeS7zeG1BSDkFowxCCEsn9NrY8yqPP2c99Ei7VfbptVHbx3pO+meazKW+uoZW6qbjzkMw6a+936pV5MjX9t8PUvtNHNcI5c/lTO9l5L8zrlVeSpPrqMlnTXGqOYlv7bWbspDCPDeF+9rzxzt0Xepj3xNS3NUqpe2v4c8knylz9L89V7XvpdsWV4u9ZOXl2Su7SmJmu70ylX7zjm30mVJhtJn4GprSmOke2EPe+yqxkZK9yu179m7LX0MIcA4V7RVIXh475d5K91zS3duOVclG6Hdo71obU9OzceQZK6Nr9GfklyleenpSytnXk+rj6V6rT1Z2hu5jKU6pX5T2yAR29Xk0tghLVrbWfu82suJLM45ANf5SfdVy8amfeX7Mde50v1ba3ft09bez2Wrzcut9j5ira321XuW1tpL39d8Qm0/Gkry99qjvN4e38V739zXNXvXsw5S3VtjNYnaeS/1XfLpc7mlmCIt994v1+753AeAcRw3Y8ZxQgi4XC4AgMNBln2aJpxOp+d6Bzw8PBTlLJ1X2vXS2oF77MN0rtIy78t7pLQePbJo/YuSTCbYbtugOePK8eh63Wq+US5vOqZUXpMr3Tu1/X6LT5Ij+erO+GSe4vcDUlG0+SetfLU9cw/7nzMEV7hHq7ZhPfTY4ahXmnxQ7ft8/Lk/A2Ouuh7vt6S7mvjslnMktUGXy2Wx009PT7hcLvj666+Xzx8+fFjaaPjqe4/40Y9+DgDw8PCAw+GAH/7wHZw/Lrb7cDjg8fERwLzux+MRwDxXqX0fhmHRiQEBxkSfE0s//rD2v3vjfClvUZtfbdwW5fHHgGG4IO3y4eEBFuUYS6Inbu/N0WrqSXpf0o3SnKZ6F8ustbBJDNWbA5n/pnLGs0EXT2l8SOl8kXDOZzJt/SWNDC+NtwHer8d2ziG4Pr1M13LVf0EvWnak16e/Ze/09KHJE2l4iTzTLfrT2zbV41pcV4vPIjVfI79u2b49cXmur9JaGGPEnFEtf6mJwaXPved96rcMw7BLJ26Zw7xtOl953K0ZJ9aPOZ+WT56vT82OtPy7PB6oUfOxiuXOLX5AGjPbO+SVbvGftXZN6wNIsqS5hk/FLblULTEvWuLW813j92ny198E8lxwb6xTs7elHJDWDtTkLfVRskklu68Zx5iY105zAgOGwcDakMQNc0xkhue/iny19hzRxjPSc6j0On9vYM9zHTwCp4e4p+b2j19amId2bK69lxJ7/cRb/ctaPyFc/0t6nc9Gq/fVa/uolg+R2rTKS/kMyfZr/ANNLjKVOT1rYuwZ7fTlclnyz+/fv8f79+8BAD/60Y/EMXr5hV/4BXz++ecAgM8++wwPDw9LriPdv4D+2X3q45XKpfr58zrgOmd5fJuWp3MZ5249v8A4rsd+ego4n2V5o0+X5gV6dKvkt2v8sNoYUg5IymNI42jWrgdNvl8bQ5bOx/i5J6eZ9lHLWabz1HremaI5o6ScQ62NplySJZcpvzfNGGEIMGY9B4fDAEyyTDX9H+Bhbbqft3n0WkwrIb3TUHrnsiW3Jp9zzeHldeX3GW8h9xEknyaXM6WlV7f6/MU9arf6s0bn9w3DABtSe3AtH4a2/ZJ8rPRMS9/VkPRp3g/rMsmn0fo3tXiiZ03ysXtjVulM2hv77tnHGmo5t9K11kbVnpFoeek8Qat/+Vm93EbjL78EcY+lfoiYg1Lct0TuX2sp+eSlHK/kx6e+Z6l84REw5zfPexZwzmKcHMxztaenEeN49YVTn6h0HSn552m99B39UvuefMy1ad8+l+tccwjee8QjRKOrzvnNM6JpmjBBzrf2+la9dbU2qPW9NueZ4jHrXAAQwjyRzk0wzuB8PsM+x5SS7HtwF7/EqpH37z/AXp51b/IYx2n5zhjgdDrjXHivqpUPci4s7wPMfRl8+PARl0vdnkvflXxRYwz8Q8Dlko4DvH//DvZS3yd73uOvnZc9uqTd09o8UU3G1hmvedaa40YH56ZV2eUy4hLWbXvOrZ74qhY3SP5CLS9yq39Qe87jjNv0P00jwqgb8yV8H22fmr0ojeXgnt9fuOLcBEyv845CinUOMcZJnx/sfaZ06/OyVjzaWi9NbCz1t1cXnHHP59a13Lmrf5S3LckywcH7dYNxHBGm7RpMoVwX7tqvda74Hopz13yb9giVYsDILfZK+qw9eyTyHPW1/9n/MpVni5JsEit76jxCWM/tNDmMdiy0/DR8iueWk3ebuOFyGeGn+jm4x19s0aOre/3qyU2bc/98PsNNW726xz3e4u+GcdyszTSNGBO10DwH2ivTHh93zzi9yHbr+u8tou0bpxHTtM3R1fL/sX3KbI9yX8DBVM7a+d9/fNr3O76pfDPfwCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxn4I+gEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCXhX+CAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRVOby2AITcijHmpjohhLuMUetPM8YeGUIIatlaMhhjxDr5d+mYsVySL29vrYX3fimP7UIIy3/p57wvqU7evjVOPie1vjQMw7DU996v7tl73+yrdL+SnPG+eiitXy5Tj54D8xxLSDLmY5R0KUfSvXwcSV8karJI47f6rPWjHUe7r/M6pb3YYyO0aO5fM2bLpkScc8t1TeckpDZ79lFKzV5qdUkq7z2X8nVO97hkm4fBw1oDa6/yGmtgjMUwDBjCUJUjX79bzjnN/dfsgHT/rT6l71vr1LPHNfMi2eKaHL3zXauv3QvpfWn2Yr4uUYZhGFTj5X1Fevburfu8h5reSvZaKuvZe7V1WfZ2Y3+Uxtyzp3v9bcnXqfWbX6ft0vuv2egWIYTNXKa61HuuatezVl4a855y3FK3JEuvH5DaBWlNI6W1kOSV/MQSNT0rXe+hts+kNY5zk9pU7/3GvpX2ezqvaV/DMOB8PuPh4QEA8PbtW3z55ZcAgKenJ5xOp7meHfH5558v43sf8NVXX+HxETgejzgejwCAw+GwXD8+PuJwOGxkSfdrjGek8zquez4/pfOj5IO01qlkb0vxmva8TW3xrXuh0Huzfd5H6zypnQO981HKE6TxeCkfIPkBe+eutkdb/kravn0OpX1f7zGS78k9dlTjX9V8GymevKffnvdXK+u1n1KdPbqRy5Xvi1If3nsgm958b7dikvw6zneam4ocj8elPN1fn3/++arce49pmhYZY3w8TdNSL92z3vtFl4wxePvW4md/dv4cy3/+F76HaTos8gzDsHxnrV3KrbWrvtZ/gbgX4q3P59Nax6K8efvUFqRj1vZCbc9FNLHcPFT8e+3bWr1u3eKHSXrZwy02p2Tr499pmjA8r1nLTynK5WZ/IcU5hzBt16vUp7T2eczTk3MZwpznWJUNA4bhNpurHb9Efj+zX4SVDkZbpYklSzjnunyiHnr1Pz177pGjrPVxz3u+JbezJ2dYenZR6qt0vrbO3D1rJvHS+b9YXvNl8rKePFnJBtf2emqXNDnvHr9FklnrL5f0JD8r83uLn9MzPu27Ja8mhyPJ2Ht27bEX+T1JuYZg1n5Aa7xWbkJT/pKU/DiJXFdeQ96ce50RNf9A2/c986Ga+6rZ+z2+WEuu0r5Px9PIrLEXElrbnZ8BYvxW6Lf0uS2X38jj3IRpMps94hxgXDlOlM5oTd5Blq3PDyjV20MYAoxZjz0MA8xw39xozh5fruY31MZs5ZPneCnG5gAwx+f+eaxx9DCjEX3dPJZO0foL97BdUq5YIs1F1+jRu1rOqDaO9r5apDFwqe9SDuMe3GK787WKufeUN28Cjse1vJ99NmCo7NM031P7vtU+/dyT/9P6kveIG0vjtsYs7WFtn7Ux9jyH165FaS/l+pPu65os0r4s3Vue7wNku6d9XlG6/3wd9tioYLdnmjEGpiMPWB8LMKYcX+Wy1vy7nv3XiqWlvjbzCb8ps1aXM8vHbcmWf6fxaW71N9PPe56LeO8RfCvfkOS0G/M2hG3eexgOOBxkHz1F+1ymVL7Y38L9eO9hvFHPkWZdWmvZY+9yJH1rPTvrGae1DqXvtXZJe+97YofluVJlne/JLetYIxV9T84vL7vV1y6xjROvPlkthisx3+O2/5JKa/RfYxd6zlHJPzLGIByB8Hw2W3t9vmeexRkGwLn9/xvNeZ6rZNNLsVjp3wuUCH77PMt7j+B2xO42wLlcLyb4sb7+qf80yx2Ke0CbR5eo+WetuqUxS3V7bJpmXzvnn/M16b/BCDDewzuH0BG7Sfef69dcnu6V+P6AeR7/mieYvzdwzsGZ+v0U7ZPfPgdy05yL6j23InkuyhgDjwDnJiB51+V0OsNe9j8z0uSVNe+95PkUrS73nD+5rJp3DfJ6+TjSHojlj87jfD6v2n/99de4HNdxWn4fveeqlI+q3UetrjT+PXx0SR539BjHcVX24cNHDKNOf1rX6eeenHYaG2visFq/JZ1z3j3vy9gvcDqdMIzDZq/tiZU0Off0cyuGLz1r1KLNs7V0+d55olup2Thn3LN/cZ3HaZqASbcusY/1OhrRHyj5knHdYv303bJUJvecQ5xlnt9X0cicjlPjXvFCuhd7fe20jwmuOA+t+yyNK42dymmdW3zNWFW7nzT3uScn+yly36V3juO7hMB1/+x5rqPxIXvs1a3v6Vpr4YwvvCPnYRRzrdHf1nMsSa7ieFO6B573v3O7YraaH5PSG8/X9OBTvNOwtjfTZs9M04RpKrVs97vq53DANK37Pp/PmDK/KGKMwXRwa3n6w9ZvDfuzDOQbhTHmTxljXOG/f+m1ZSOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghpAZ/BOXbw9/C/JNM+X9/8jWFIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGkxeG1BSB34/99/huSMgPgH34FWQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIUcMfQfn28EtC+c9/UileGWPM3foKIRSv97TXlN9D9rzvltz5mDUZWvLFsaR5S6/TvmK5934zRquvEMKm3Hu/+U66jnVL/Xvvq+PkbfJ7Sf/m95uOG0nHK9XrGT8nLy/JVapXWnNrbfX7Ur3S/fbIK6HRtZ6y9H6ka41srXXRyichzXssv6e92iNHT/s4rjTfwFqXJHrkj3U1/bZ0t1evpPLWXmyVpXN5D3KbVyIdM4RQvM+999WyPTU0spfQ6LO0x3rHy+erdy+1xiudtxo9LH3Xq2P52NI5Ku2tXjRnzaeitgdyPyRSO7tqZ9Kt9lezltqzT+svt2xETcc0/qq09yUfTpIh/tWcRVq9rq3XMAzF8po+R1nyOqmOlXxITZ9R3pLt2Kt3+fyX1qPXV9SOKfkaObV6UgzTGju/7mknEce31sIYA+dcUa5pmjb9TtOEy+UCADidTjidTnj37h0A4P379/jJT36yXL9//x4A8NlnFh8+/Nyq7x//+Mf4+HG9XsYYfO973wMAfPnll/j8888BAG/fvl10y1qLt2/fLjJ571Vne7y3YRjEM22PnubzfTik+yAsY0p7VBo//Sz5R632i4w2/27uT+sTrfqq+C65vTfGPI8ty1vzhSVa50pJxlv8W8lG5rJI8e327E37MpuzIl+X2vglQgirPb0n7kzl1cbaa/82ruvWf2n1tSdflLer2euWzuzZ+8Zc79UY4HA4wHq7246n5Ouf5qnidVzvWB5tt3NuVcd7v9RN26c25nA4LDqY2gljDB4fgcPhKo8xBsfjAGBtV0tz6L1fxotnT6znnEc6PbF5bV3Sz845VQ4mLUvnLB+rVFYafz3OWn6Nn62Jk7XlUp6vtF9SnbLWLuvRkjXVl7Q8hICw5CGTcZyDH8elXs2HL62Z9+v+5t9n39Kb99GeY5K8c3H8Lmz8XWldUz+gtvZxnjV+Q94uXdt5/q7Ma3W9j/TvPfgUcWWsdy+5a31p83zaM7bnPNiTy9SyNwbpnXNt/T05rN651OQA8jE0SHa+tndvyTG2dH/PvuiRp6SHe+fyHuffMAw3+fd5v6mut8bf5GKHA4yJ/hIQwnPMmelCTd7WPt8bm7b62Ot3S+zNrfbkMDTxXxxf8plKcWs6Rm3Mnr0mxuc74jNpLbS5yVvOklqeVMPes0czZm/fGnrPjRy7ifEDrB0wDAb5Msy2Yl9+/p5+XE5Lz1oylPOhhT6D3EbDLbZRkyeq+RFavYp+wQCT5DWv+9I+xxfH4wDj9+lzj+1vzVl+Jpau45jpXm35K2le4VZq8bDGV+qJO2q03nHJ2+dxeP65B02esLaPS98NQ9jEkNMUME1tG9WTu+j5XtMmX4ceXYj1aznZvXJq7WjvOHvsniRLb44mtk33Um/eoiaj9kzf49NKY+7heqbd5hPGsvlMsEgPxby+9J7gVq5t/7kfW1r/PTmI0jma5p1qskllsVwb9/aeib3xaZSl9H3tfN0zTslPyvP9OUcfEEI8D2Iu1SMeEbns+ZrfEh8un4cAa9frbq2FsX3nwkv6tS1qe0HSsVo9OZ8s32PLNpX2d+s9Xcl2l2iui1k/+4jfae+pNlatj5It2vMOVzpETe58vHvm2Vpya+1ZLYZZ233dOZX78LHv3FeVxq/pbp7Dy+sV3+uHbMNr8ucySmU9Z3/JP2y9A7C25/d4VtLfV3xnJq5VvkbTNGHC/Z41aND+2wBAF6fvJcR4x67/rYfxHuM0wjw/y7wX1loEv46xjAEQrmWl50vpWX5t137XQ7YZ83X+TLyHNJ4PNqye3Roz9x3c/lgmlU2qU7OjmtxOq//43T31T4ozu8+X0WEcp1XR+XzG2dVj15fYSy3/UTvXe2m9z+AfPM7n06rs3bufwF62OSnpeUCNVs7hGuOV5dT4mrU20rV/CBsdOZ3OGMb99r6ks3vW9GF0uFzW9vXjx48Yp0NVX14i5y/1r/UBe2xEz14wZvveUoq3Lon7ZpybYCpmfZNTsC7L+QU4NwHT9n6ccYnNnb+fphFhTPKYriSTwzSZxY/M8wPOuUVmKSeavvubvldW4yVyj0D5OWKOM9t5mKZ5Xu+R89yMl8x7nMJxHDGa/T70Pe22tq88t9iiNM9Rn9LYWCvbrVTPoRv/zVF830u6X40MvZRinRry2DHm6n9XYenhDnnbFqnu9T6T2eNn5XF2KQcrxd9aWeLnJYWTPPOo3ePcx+vl475J8EdQXgBjzFsA3wPw8AmGOwD4QwD+feH7zz6BDIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE7IY/gnIHjDEPAH4NwJ8G8I8A+NnXFAfrnxw/SRUJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPkmwB9BuRFjzD8H4Ndx/eET84rilPit1xaAEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAa/BGUGzDG/DqAfxPrHz4JryQOsJbDYJblv30lWQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIUcEfQdmJMeYvAvhzzx/zHz4xeD1SWRyA/+i1BHltQrjf79Fo+zLGFK/zOrfKJrXPx5RkuOeYeXkcM4Sgmo/YfhiGVV95v/Gz917sJ/6Xfs7ba8rzvmpjRrz3q/be+6Vd3nfaX7wehmFzL2m9tH3etjRGXlejcxp9Sce01jbr5/XS9ul4qXy36m2r/b1sQ+/8ArNsJfk09yzpbk2Gkr255f7TfZ3Lk45Z+yzJ0ZpPaR8CW12szWfpu3y82lhpH9p7k9Da1ZYcNVlK/V71MP4XK8z/L7eBGqQ52yujtrw1Zqs81x1JD9P52HvWxvbW2uo4LWp+RH72amXK+wfmNU33e0vGfOzcrqd9pWdeq18tcS1b+/celM6skvwtG3mrLrXKpfNGsmHa86LkZ+SfUz2VdHbvmvfsmfzcrd2TtMdrY9yqb865u7TJ13XP+bTHP9HoQq089l+yCXmd1LfO++q9r1o9aV9aa8X9W7v/ko609kMtPkn7leqVGIZhmefj8biR7eHhAQDwxRdf4HQ6AQAOhwlv37597hcwBvj+97+PL74YcDwel34eHx/x+Pi49BP7enh4wJs3b577OuBwOCzXqTzW2sWGp/OcXtfsZf6dJkbJ12XeN8unzfiST1CTLbeDEhq7FNM83nvkJkDj99b2yNY/lOuVfMT8WtqnaWwcr1s2MNWRko3T+HaRVK8kUnmdc0td56aNznjvACfPq6Q/Wn843eOSjDV6Y+prbADM+mZU8UDL9pRk0fjqkl1N60gxoNY/qd1aaR/nn7X+Tc0up/3G+8n3iPcel8tl+Rz3zTRNGMcRAHA+n5fycRxX+vrmIeCHP/zeMo4xBj/4wXuMo13s8jAMi0231i52PNrrWH44HBY5Bw+E4JO5uM5HaZ/Fe5T8lVaMXZvLnjjzurfCSgec8whOttktGxmRbGBL5pZ/nucMJTQ2ora3A8JiCUr6n45R1H8X4H3aJsy66W1Stp3HqL+1PZ6i9cFj7B2ecx2LnBXfSeo7lSe/h5ovm49R0pHr+l/bGGMwDAPsYMT90hqr5Qe0dLQnXuuJmW6J/WtnRepX1GKFez4vycfQ+F6t8bUxbOu7XvI9IZ1xrbixpK+a+FR7fpbGbfXf4xOXyjQ+vdSXNGd5f5rxc+LeqsWqeX+aHEpJhhatM7q0Vrfqb6kvyVfbzMlGTwMMtrqqWbuc0rrlcdKnxlp79/F7bOmefFNOfg63fPKaT3aL7pXapjam17+Vvt9zVt1iR3Ok57j559o9avwPrX8TkZ41x35bucL2eVSyxWVZ9upR79pqY6C9Z5T4/aGsU+aGV6D2+DRava7plRSDtrAhbXstj9chhEVlXsIn20vvnpXOfk2+p9a+FU/03qdm7TQ+Z0k2aV7yOK8Uo2pzrnlMr/GJ0lxqqe9hCLB2fd5FPe+JhzR6kdevxcfSuK06NXuXn0vafGWp/JZ4MG+v8a9a9npvbqwW42hj8N44ReODaZHs9i20+9HJ24qJSnHVNfdUnz8trf2Yy5Dbi5Zuxj18cH5T17kJDu09nstT+9xDKx+5p23tuvQ5jmeMQTABWD03KY48219bXzc7eRizfaaRPheQkOa4GvdWuPoz0vfbPf4S+TRg3zNdvQlrbwAAIABJREFUCSm2utX+A+s5v6fd0saNuRz3Gr903UPqM9by3q3xY5v89iSbm/5tjVOLIzVIZ19u76U8lcR67bd2qXdN9j6jyL+rlW/8kDfAeIjjB1gbMFiLKMrhYOHcbXrWalN6VlyKAYv9mOX/3UxpHSW079vHurV7LKHxsUts34XQP4fT9hnra57DAfN59ax1z5/n+TgMB5iDb+pHai9qe0Buj+fnplLM4+dn96bfNju3zRfP78Tpz61WXDb7MvG6Tz7Ns4TauLeijSe1vmI1B1ZAEytJ2GnrY0/ThAn6vf/TTjpPUU9L9jiY+R2NlMtlhL208wzaGEQbE7To9dlq+Ae/vJcZ+frrH8Ne6jqiycVIaHMPbyaP8/mc1AXevXuHy7HuZ2jGjeQ6UbuulUnj7YmPNLTeRYzX7uhxuYwru3s6nZb1rfmUEXd0mKZx5Rs/PT1hGLfr4J3HNE2rsvP5vKobximrY3C5nDE9n1/OOzg3fx9lO52u49XOpT162bsvtb5Nqy9n3Opdprm/+ezVkt5v6+wpvfdZO1+lM+3WPPo99oJmX6Y5qVzm6OPca+x0vJ622hyXtBal/ub73fah8T17c7a1vjRtrbg2n+YdhtyOpu+6vOZ7FFEGQL/ftHkG6f3ZMAyrHKG1Zv73FXm91P4NATbJPb7qL1a8MvwRlB0YY34VwL+HdYb7tdWoJMtfCCH8L68hDCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghWvgjKPv4S5h/aCT9ye9I6+d/Sj+W0vMTXdKPraTlvwfg3woh/Ocd/RJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8irwR1A6Mcb8swD+GOo/gCL9UEkQ2kn1pfaxTUj+/k8A/mcA/zWAvxpCOCn7JIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkVeGPoPTzbxfK0h8m+V0A/zGAvwLg/wLwBOBnAPwJAP8OgD+I7Q+Z/DUAf6nQ7wDg9wH4RQB/HMA/DeD7WP8YSuR/A/CvhxDcnpv6NmKM/NsyIYTq51v6vmd7Sa4948e+Wm1bY+bf5/1pxkn7SOsZY5rtrbVFGWOZ9746Zto2hLAqz+vkdePfOEbaJpU3lrfaaGTJ2+eyaORv9V0ql+YxRVOnhGa/lWRste3dx9rxtXJJOqstz3VIkkVaPy3SOCXyvZrvV2ttta9cd6W+c7nidVqWjqWVv1Y/tTc5pbEAvc4Pw6Bq09KNW/W9rUdXd8IYwFgDYyyGYcAQBuTcusc07aU56Tm3pXOkdna0qOm6dr9KZbnu957T99KXvF6Prcjrlz6n5ZLt6j1X8r1qjFntP4leXc7lKt2btuwevp12bSQfpVdncnuZ2ui0XLKduQyS7Jq91KuXrb5LOlfq91bfX+JT96s9n3rHkXQsfm7JJfnE3vtd9kfjO5b8jppszu0LsyXbYK0V1yDdo5I/PwxDMf6x1i57MdaL8h8Oc/rneDzi6elpGedwOODDhw9L+9gm+KfrdQBC8EssNk3TMs7pdFrFOhobk96/tbY4T3l5ycaUzoHSuHv1XdLx0nX8LJ1xvTq3bn+Vo9ZWOotrtjMfr3Z+5/NbuseoM5o50+7xkix5X7Es3w+19vl1+nnlTxzMai8AwOFwhPVyLqRm+6RzaI8fWZJd+lxjXt/lE4CrPWnt5U9B6/wwxlT3uXTO5HWiDZN0tvcsiH1K+hDtsrQvDocDvPc4Ho/L+G/fvl3qRXm89ys7HK+dc3g4enzxRTwXPEIAvvregNO5LLO1duk3hLBcD8MA59yy5tYHjOO4avv+/TuchqtOpDmDqE9xL6XnlWTb8pxDOn9pG42vkd4frEf+e+SzPO04rLTPa/mgVj+5/DWbsIda/ijmBOaPV3/HKPU8Xb+FlS0BALOslTY3VvJvpLFL7Uv951Vq8lztfX+eL6d0tg7DUGzvD+HZ5i6tl+9S27Mn/yfto5KsmnFqsW+pXT6+Jk8o+XTafEh6ft0j5uqJ7TVt947dk38q3X+Pr7A3R9GiFav16l6rXHtGlOY516/a/Gn87ZyaP1KSv8aeeLWVa9fkKEvta/tl737Yo7v1M3AbhwSEq7Pf6HtPfFnLAdyCxg/JYySNHb7HOahFYwtSmXvjnj1xUq9/t5daPKV9rtbb70ugHc97L9qIXl2O7dL2rbmR5nSOp3Kdc3DOIASflRsYv9UpTc6nFhtqzjIp51TqU3P2lMZfykz8f+tx0rhT6rdG655b+1W6P+0+l3J2JebYPLZL+0j6KnSjyfndSq7LtT3Y62+l7PEjpTbaeWn5inso+TSavZKfPa2c8y05zlZ7ya8p7YU8l7LX56/1sdfW5J+l9nt0T6tHveuUy6LR/fxM680hSGWle5FsaWvM2rnZ47NKOa3S97U+7hWbFvsfwuacH8cRg5vzP9LZJmGdL/gkHiFcn8u1YsXW/fb6t7meaN7huvaV9213+5Kx31t9UY2P0CqvoV3r6z4pzeHq0+zn+ross28RdedqR3v9fu3ZUZybxceLdZ6fxdqtTtX0rFavl1viHu3YL5UblOjZAz3+qZZZ1vb5qYmhpLatOtJ4eXyTf4/sf3+25seV+i/V0epY7xpo95/GphuTxxzttUn3n8Yny5/J59c997/U9wYhmKTs+vc6RhZrZpSeYWzi00p7jazp39V3PuYi1vWN+n/P+Cp3sCGRe/5usAPMUL//dV9AbqMjLf9M8t1b9iidl/wdj9Y7ArW+WuNr8mHBP/tw9mobYk7XBw8j5Ji0spXGjTqRl8czfu+7LSV55GcD1+vePFlKXL/rf3O5MUDwHr6Q2+r5LJWl3Bp7SePU8v6SXJLOaXMQN8ckYf3c5x70+LQlOVJ6YnBtbj2SP7tandE2wPv195fLBfZytZ1SDlDrh8a177Gji3zK2Di3wSUZV3Ni/Oa+p8nBTnUbsyfn1osf3eYdoI8fP+J8uO85rfGXe3ITpf726G7vfZTmIrwJuFwuq3rv3r2DvbTfX4z4B5/1YfDhw0cM47YPd/EYx/V4ed1xdLhc0nUNePfuPS6n53eKjx7n81nsQ7PWmvdRWmifl2j7Su1uCAFumvU77eLp6QnDuH3PVStn7b7DZdrYwMvlghHy886esV+yzS3tHRycW+/faRoRRr8rX+T9up3GNmjH0ehc67ydgiuus5+274XdM4elObs3bS9jJqvBOI4YTfvsac2Dtt6t9M7hLTmP+TmxW9UbxwnTpPfpor7mPs0Uyj6Qnyaxr+mQ7a2XnepvNPwRlA6MMX8XgH8Ma5WJ2ZoA4L8B8GshhP8va/pDAL9hjPkvAPyPAP5w1vZXAfzZEMLvNsY/APhXAPwHAH7/c/vYx78I4AHAP7/r5gghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeSU+7f8UzE8/fwrXOYs/fBJ/wuc3APzpwg+gLIQQvgbwF5I2kbcA/oXW4CGEKYTwnwD4FQB/I+knyvFnjDF/UXcrhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8M+CPoPTxTwjlAcC/G0J4r+jjrwNwhfI/oxUihPBDAP8MgP8K2x9C+fPGmH9c2xchhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIa8NfwSljz+K+cdGkPwFgN8MIfyXmg5CCE8AfpAWYf7xkj9ujPlSK0gIYQTwawB+M+vLAvhPjTFHbV+EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLwmh9cW4KcFY8wDgF/OizH/8Mhf7uzuBwD+INY/pGIB/KMA/oa2kxDCT4wx/waAv5r19UsA/hyA/7BTrm81IQTxO2PM6m9PW833tb5jeQhhVSf/LI2lGfuW+jnSfZS+l8Zq9VEi9pX2GUJYPhtjEELAMAybet771RrnbfK+pM/xr7V2ufbeAwCstUsd59ym79K8pGPUxs/HjOVx7Nq8lD6n7aRra634nYYoL7Bd75Je1PrP10zqa+/+lcYs9ZGWp3Kl39X2qLQOWhlzuUq2q7a/clmk/Vq635KMmvuXbFwvrfuS5rbWZs9YGqS17e0317FSn6320tjWWhhjnv8DAAMDvX2v0SOztk/pfCydDa0xS7TWKf9eoz/SHsvba871W+2ghtoerdmCW/ySXEfTs0PqK19/yS7WyqR+a7LnstXGK/XdQ6tPyd5pfLC0jbZ+Xrel19r9WPN70zVO/aB8zNZ+a1HyG3PZSrJqKflsL4H2jJXkqN2T9jtp70l7J29fsnG5P6qVS+sXfQokOadp6oohS3Ystk/nyXu/zLlzbqmfxirWWrx9+xaHw5wOOh6PeHx8BACM44hxHAEAh8OEr77yS18hAD//c5/hfDFLP/Hv8Tj/BuswDMu+Oh6Py/UwDEudw+EAY8wy/jAMy/2l1/n8lexdjLtK1HSvVLfkK8U+JFvb8glK1M70lV2zZf9Nc1aW+pbKtfYtj71bfaX9STF41I9Sm7307HmNDxG5ipWedXVfvXUvrbOh5dO0zq4e5rZlfXwJX0cnT7vvVBe1cTAAmCHWv5aX9le+x0v+SKn/1Neq5SlKcWOe85HWOZc1zRmlvHkT8PBwPQ+MMfjq+59jHIdVX+lcxr5S+fP7eDN5PDxMq7IvvvgSD8frvs7zQvk4PdT2Q80PKq2T97nf/7wWvm4fpc+afVKyoaWzoGQXW/eV0sqtxTr5/a/0L/Epan0Vz8YD4Fyq/wHeOcCFor6ViHOgsdGaWHSe+1JZ+Syujdczbs8Zs64XryyGYYAdzEovWrF5zTb1yCvV6/HNNedhzddN6/TcS0+5FM/U1qsk863nYG3dNDq6xydt5UBK8pXycXH8PTov9dVLbc40e7k1ZknO/HNvnk8zXk22PNYuxT7avZP7JCVS36AllzRO+jnXmdY5nv+tyauZi/l6K1tNE3IfrVYvjpmX1ern1/n87DmvIvmcSOeKRsb4+Z55rlbcswftvpPGkXyynvsu5RP29LfnTMt5iTxZeiak+af8O825dqvfVdPR9Np7v+S8nHPLtfl4wo9+5JZ6T09P+B/+7x/i6TODn/mVvwcuWaff/pt/G/6jxxdffLHktR4fH/HVV1/h4eEBAPDw8LDk2dI40xiz8nWlubglz9Rqq43Hop1Mu/Pew/g+/dHYrpId7PFDa/TkBnNC8MjPCmD210Mor2GPf5Wivbd4P2n+VJsP0frXKbX1k2KKXv+8NqZkR7Qy1tCc15rxtWNqdDHXg5qPXMqzSrT8EEnu/L2hVI7W/N0ib97XS+Uca7FAz7lZ2mO1/aa9n1JuriaP1t/UUIs1a+O3nqOnffXkAKRzQmM7rbUINsAYjzT3PQwWZjLP18NmjlI/Yjv2fEakTS6XEefC7ee51Z44WXNvUhvJluZrUc4FeaRTm86FNobPbUbtvu6dD6j119u/MeZZbcxy/gPRv7vqQywztnUeG2ATdYbuOZDqq/zmTV786uPtiS968y+lz3tycz05x3vaxz3tWnp4z/hsfZ3KKM/rvcavyZOPJa2zLTwX3zNOzSff039PbHsLaXfpmVHT95bvXXsvuaYL2ljBF+Klef6xjO9cOReY9mOM2eQVSvUiUu6vdC3VuZYtV9W2Ess56dPnbPN3zjsYp8/bbX0bs+QUWu+HaPLUJZ+gVCfVuZ75qNW9NW6Zv5//8z7M7wgVdGaPH7X6tx829Zfm7wc7wAzm2d8tyy2tRy3fMQxh87z2Ml5wuWx1XfIptfe7rmYAhV+qySFocxnS/txrRzX5tJY+turdEofOa1Qqu/e5IcdUeZmkMy/lB9TI90VrqiXblfcltdX+G514Dml1Iq2XvqeZ2oRa/izGGGlZrifbuZJzC61zvDQPpXs9+PT7+ti37pN71NP6Ry071OMH1WyItRbe+I1fczqdYC/6PLV3HpfLuCr78OE97GXrE/iHbd2PHz+sxpsmh3G8rOo8PX3EeRxWfaS38/T0sSjzvW33nr419Uo5E3ecnw+lzT9+fMIw1tdmj1whBDyMDufzeVXn3bt3uBzLz2hvscn5O1i1fu81poSbHKZp/S7h6XTCMOrehYvU8k21Oq1+7nXPi14ZV/AFPXzns7RPwjRt/LdxHDGaq/wlP7lF7dnHrfqX+3cv8e9wJLtfemfX++va1s7TSM2vyIe993OQbzP7n/x+9/hlANH65tr4tzr7+oFQ/g919oMQwl8D8N8nMsXM+Z83xnzW2x8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ8a/giKnu9XvvvfO/v6TaH87+/sJ/LrhbKvAPzLO/sjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSTwR9B0fNl5bv/p7OvHwjlv9zZT+QvA/jdrMwA+Nd29kcIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCfj8NoC/BRR+xGU9519/SD7HDD/aMkf6OxnbhxCMMb8FQB/9rmv2N8fNcb8vSGE/2NPvz8NhBDu3l+rT2PMpsxa/e8J5f3Hz5qxeyjJWRq/9/tbSeXSjpXWM8Ysn40xm/7S7+J1uj7ee3FuYnleRxo/bRNCWK6tteI43vvVmkvkbdNxSvfovRf7SknlzMdP7z8fs5dUnnx/SLKWxokySGum7Sf9rve+0ja5HFIf0j5PSfvqub8Wt8hUk0c7b/kekfrM9aI1B619k7Yv2WTtHGvq5bJo7Jp2j2rkudd+yGoiQH8e1WQo6Yo0Rz162SvPnn2l2T8lOyKNr9Xr9HNpfqTxpbFrfZXGrfXTora3b/UpSjLX5MzvuaWLKbX1qtn+9HrvPi9xi19YOztz/dH0I/Ul1dH2r/GvYnnJ36q133MvvbYpt2u1+8590Rbas7xkW/fsZY1NL8ki+QYaX7f2vUb39+jZHlo2p4fa+kn1Un2pzXOsl14755Zr7z3GcVzKx3FcPp/PZ1wuFwDAx48fl2tjznj//ri09z7gd37nx3g6BQzDgMNhTic9Pj7izZs3AICHhwe8ffsWADAMA4ZhWK7T+04/p7rknFvFVLktyOctrRs/l+Y1Ha+EDdPzGML3lT28x6fX+EXzdfx82x7VlKd9zX+353st76H11Vv2suVX77H1t8Za6VrMw8/7zNx47LfySK3zohX/SP3Ic1j3S3toncu9fd2C5F/Ml9d5G4YBdrBNX1ySsZWHKPVZsuOpnNbaTQ4otet5vZKsxwOQmkBjDB6ODwCsaDtLPt3W5y/HATX/yHsvxuq37N9eO2hMqgMAYHA4DLD+5X4rvmTbbonJJJ+gpgvOuXWdZb0MjJnrDsMAc6g/LpLylQDgh4BhSG2OgR0GDN5u1jXVBc19a2OtknzGRPudrn/5XCqVt87Ne9i7KJfUlbSue/zp3v2W2qFhGIp9l9ZH6q9kB0rtNTa4N26o6a+WVm4llvf0fQ+/5Z7npdR3LqcmbtHmWXrlr529Gr2oxbOt8lb7qON5/HKLvPn4tfJefQohiPGSNq9YitVq+yD1Y/K+NM+OtPalV69qMmvPLSlu1eawNH5n7XOrr1K+uDTntfgij+k1SPeVjx3HrfmNtb7zZ5vxe208mvbTim01fdTQxtASPe8l3BNN7HmPc63njJdyQYBuno6XCX+n/3pV9if+vn8Qp88NPv7StCr/lX/yD8Ocbztzb+HWXKRUXrLF17LtPNdsXC+aXFOs1zoLWvqmyTld7bhFnhsziPHTc/xr9+tCfm+5fNr2Uu6mdF5I8yed4zVaOcc9/k3eZypXLS8u1dP4SHlZbV5KvlAaH2nihJx0vGEYuvzG4zHA2mlVNufjt7kaacw9SGuW79EStVxvj3/UOmekvnpzXy1qMXTpugdNDkQbH2hz7C2fvjY/tTGle5HmXpOnAbZxV2nsNdm6VJYm+rq5TTHG4Dh5DMMhKcf8fOxQfj9CMxdpPW2sdY9c1OT8RibnHJwwOSUbm+eDa7Z0j41okeuexvernQ+aGLgUK7R0aq4f/wOuPsY6R6mxd7X9ll9v5HQBIazlH0cPM/bNo9b32Jsb66lb2iPafvfmBTU+pfR9bY175RL9I5+vfYBzDja0z+q9smhoxcDpew1xjzg3wZm1TdbM2S3zmnLLvweIZS1f8VCwxd47OCfPV/peSE0WKf8Tr1s2r6YvIQQYZ4Dx+PwZ8N7CeQc7P4rC5RIwjvW9WYuFcjtSy9mm/Ug2KtUhY0wS7vWfJTnBbvNNacy4J25Ou+vJBy4y7YhJtL6fZpya31Ob48XHs/k6p//154Ek/Ulzkan9nP8ETG6Cmeb1G6Z831z3awhheQ4LrG1a/t6Wcw6Pb4APH9b51d/7vSecTrNM6btW1lo8PDwAAA6Hw3Ivh8NBfNYv5VZLc9Kao972ve3yMfP92ivPS/icPcy2f1Xy/L5df189c6w5+7Sx054z8552KZK/P9Pbfs9a78mHaZ4drc+ztY2P4+ZD98gf62pizvzz3r2ryYnU+tHkKlK7qqVk+3I/J88zaPNReVnpXnwIcG79TGEcJ9hRzkPlZ7F321jO+wB4v/m3ib7gS06Tgxmvc2cnD+fWdcZxwhiezyYT4L17Hn/+/nQ6w17aObOaHtyaZ7tnLGKthX+4vjsdeXr6CHtp+357zqJH53G5rMf7+PEDzof689XaWJIPpD0fSvqr6aPFSicfPE6n0+r7r7/+ujjPvf6ctr3m+3vFkO64vd8f//hrDON8Dy3fdM+YLaQ+Hka36GSs8vT0EZfpULRHt8q1973o2rnaI19L5ua+DgX7Oo4Yp9v/nVgwWOzu0vc0wp0vYht3dJim6WpnaonIbzmv84bETye1N4DHynclfiCU/93GmGNnX5H/Tij/p3b2RwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIJ4E/gqLnx5Xvvt/TUQjhtwCcC18ZAH+gp6+E/1Uo/2M7+yOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5JPAH0HRU/sRlL9jR39/Wyj/pR19AcD/KZT/kZ39EUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDySTi8tgA/Rfxu5bt/AMBvdPb3AwB/CEDIyv8IgL/e2RcA/CT7HAAYAL+4o6+fGqxd/45PCKH6GQCMMdU+W9+X+k/HKY2pGatn3FvYe/8991VDs0a5HLlM8XNtfaV+U53x3i/18/HyNS2tcVpurd1cl+p571f9xM95nRDC6l5a81S6r1KbvN/SdWm+0zLnXLHfdLy0r/SerbWbfZuT1q8hzUlNV1M5pTnaI1tLltK+6pU/XaOcmv7mdSSZ9uzx0n7L9SVH0kupvKcfQK8/NVIdTe8lHVM7Tuwr36PW2rvIWqJkr3LbA+fgfYD3AXOV2R55Y+Ccg3HbNZRssYZUL6U5zevl91TbT9IeK43VM37vmam9z5Ksre9bvkY+ruY+tHOpkWXP+Hm/mnr38J167Y30/UvtYaBtS2tofa2U/GzuHXvPmBI1WyNdS/v9lnFTWjoj2Y78bwgBwzBs2ue6pNmz+bmikf2e8UZtL94rbsj7kuxPyTe9RY5bdUnTv2TTpRgCqPuhaRspvojl4zhiHEecTicAwOl0wsePHwEAT09PeHp6eu75hNPpy+f2c78//vprPD15HI9HvHnzBgAwTdOyBiGEoh81DMNyPY7jKkYYhmEVR0Wcc8VYJ7WPJZ2OdXv0MsZfGvbay9b4OXO/+/dsz9nf6sOYaxynzRe81BlZk6EkR48stbg7xRhTjGulXISUD5DkLcmVj5Ej2UEtWv2XfF3gujdirFNiz/33ookhr3UyG+vLfUj+bc+8la5TuUq2P9r09LxL7eI0TYvsaZ11DgaYpqt+GGNwOntcLmu7Gv2T1Mam65jb1mHyq3GMeR7bbv2ftI+0n1K9dI9r/eFaPmEt43Nf1nfZwhK3+M6SPdC2i/cb22vOsFaOMX7M57y03yU/FwBg4+OIWFe2jandSnWupj+lfvL7zD/P/4lNRD2T/MF7xxlpv7W+Nee61u/vlSffS2kdaX1rxLXvyZVK3LqXaz75rWP3xGHSubMXSX5JplI+pjUHPTa69LkWE+XjSP3W8oRS+d5cZq1/bW4ifX6UIvlNLZ9Xys1pYkgJKSeel2l8pfyzlM/I7z/6JDVutXF+OGzGPQwHmEN9vtK4tbSWrZxz+p3Gfmvyl73+aGl+Dof6qyK1Me8d96X+QXrd2u/5d1J8WtvXtXykxC05t3xNWs9NgX3zfY8zpiRbHhum+SBpnnvkv0dOQzvm3ri0t92tOdo98Wf6uSeXbg8Wo51WZcMwiP/zWppzQCuzJv8vyd+yFZJdLcWgxnvEbua/Zv6/52trLYzd77OVZG3FOtL9a+k5Y3r0W4rt8zoaW66Rd+/9p+33xOU9sU/LpyrJYowpyiPF/M5t47T5GcDaT4+5o3zcOKa0LjVfUMq/p/VavlKk5hdKtHS1R5dbcmp1TaMXPWfyrTreGrOa29lBb/s96yKNmfvmm1hzCMjFy214Pmc1G3FwHt47pPmvaRoxhu2+SO1V/jxhzxrs8VlqbQ5mnccPYY4NDsP/z967xtq2ZPdd/6o519r7nHO7+/Z1W3G7G78CwQY5Cv6EpZgomEeAJEiEKLxiiZBPiC8IISMhoSAUARLfkIiEiBAEJBIiBUQAKSDskEQoWDRRUBshheBX1L7u63Sfe89j77XWrOLD2jVXzZo1qkbVXHufvrdYeLi+AAAgAElEQVT/P/t6r1mzHqOqRo0aNeY803nfr3QtUerztdDEQErpJTty/lvT14d8vjzecYzSmFC/Q1CzUpws1ut0H9TYrLnsw3q4ZPPY7UYYV56Tnr27RM5OaffkFj+vV6ZcurQv5vwVKWaQa6u2j6VtaObbWYf5YVeUVxunKPld2nhgjpovZS1gjE3ShqJ/kKuzdu651lkzbTeXlp418vqUX/veL309rW+VpsflpJhbyS5K8UcAcHuPaQjvxPoH/bCwD3vsOAIhtCPpckiX1pg2VilRXzMGmP+Zzblv0nvxpTpN8lzs/NcufJDaueDh15zmnMfpdMKp8v/nWvtMXlteWqOt7/NL/lU8xrGeH49HOOfme8fhCPvxDTCOMG/fwnuPT37zN+FPA15+/evwb+8WZyhjzOK9o/1+P+u8tRa73S77O8zLOI4wJ4vTcemv3N9PsAc7v+dd2m/iGGstxn1z4/HixeWsZozBl7/vfdwfTHFdBLk15GzN2Q/I190bd5LSWu/l/B4tsY4Bsr72+rQtnMd3kaL6NzMlcusqva+ZF80+/lRx0kwNcz2bq3okRN8r0Tdpri9+r1/p7Ol0gj3p9VG7To7H46r93HP6+d+4ODycdy/tpHtRTYdqzzxbYnG5ukrvo0loY3O98i19A+Di3+nqTfsTdCQuP00TfObf9Djr4X1c93lvtL4ec86fES73NGevLXtHrl5trLy1/Wma4Ixf6DcAHA5H2MN19oLURzydpod/z3nJc15PZZuubSN33crWfSWHc24Vj767u4M99Pm0ufq1bNl7Y0pncrd3C1sLAG/fvhH727oPX9NX2R8n3N/fL9JevvwYx/22T0qkMmrO8D11t57ldecvmf3ez/++IvDtly9xPK77J51bpXU0HQ64vz88XJ/TX716jSHRpRi3dzidwv12f/mzxHVW9ncB3vv/F8An4TK5/dMdVf6SkP47OuoCgBsh/fOd9RFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8iTwIyht/J9Yfn43fAb29xtj9o11/c3kOtT1U52yfVVIf9ZZHyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghTwI/gtLG/xb9jj+G8v0A/pXGuv66UNcPGmN+e6tgkD+e8u2OugghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeTL4EZQ2/nQmzeP8EZM/Zoz5+xvq+muFe/9Sk1Rn/kUh/aOOugghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeTLGdy3Apwnv/V8zxvwigB/D5eMn/uG/9wD8j8aYf957/z8o6vqGMeZvAfj+h/KI6vyjxpj/yHv//2jkMsb8XgA/mcgU/v5qQxc/tXjvV2nGGBhj5vvh95Y6c21sqc8511V/nK6VIde+Nq2lHW3bab09YxmXCXMct5WrM85j7eU7UPFcxHqT1lObs7StuJ7QZq6tmGEYFmXi6zjdObe4juWV8llrs/333q/qSusI6cMwzGlxX+I8aZp0rdFxia06o8mvRVqTaT2la02bUh6NjdPer8ksrSvt2Er5Sn0r3U/zSetaS1o+vpbyxdR0vlW2nr0op4+pvKMDhsFiGEIeg8EOgLUYxxEjxqou9Mqf6mtJ/lw9Glufa1tam6V12LMnlmyApo2WPb42J5p1ucXelerR6m5PuVbb2bqnaMc17Ie1Nkryam1BWMMluyTVm8pWs7c5uVr0RLs+UkK/WvzTkk8old/i08a0+BTxHlvzyUI+TV0tcqZttNqHnn2rx76mtO5xUjs5P3WrLL3le2SI/XnvPaZpwjRN8/3T6TT/Delv377F69evAQDH4xHf/OY3AQAfffQRXr16hbu7u2Kbz59b3N3tFml3d2/x9q3D27dvi2UD77///vz3S1/6EgDg9vYWt7e3ePbsGQCc/Y5xnH8H22qtXdiFeL7jsYznP763dQ88n3Xqcy61o/FJJRvWiyRX6/oL+hbnO51O8Ce7srGas37pdys9/n3alxI52ZZ6BXifz1eb51BXrd0WX0FTn4bRm/V5YRzhxmGRVpJN+l1i6/lc0nnd2XeZJ9iclr1WijmWfLXYlodxMsYs9qlgx8NaDPdOp9Ncfpqm2fbHeeK94VzmrLOxzOG/YG9TnzZcp32Kz/074zAMoZ/n9JubG2Bc2mHJJku+WqtvHMrEvnKu3nXa2i622N9pmq7mU2pJxzKeN6mfsb7FugPEI3AZj2maYML9qExt/ub5GOK9DfDePNSzll+7ZkLeXDnNHOzMhGGwi3VwjoUMciHIfuw15r28R19+O+cAJ4/91phNbSzjtDBe0vkgnO1z9jN37u+Rt4VS3Rq9vsY8185F12zvGueulNL5PFd361lHa3e3nIFrssRz0aqjUpm4XG4uWn2atE2pbG7vBZZ+bA+luKiky5qYUElPpXmJ6+2JWS3s52CjMpFMhbWkaa8Wr3wMu9dzPgLKcZTeeoDHiUXn0Dxbz53JSz6HNrZbkqk1ZqtJ7yF+Dr11j5H6NE3TfC89g0h1xHWV7GhMaVw0+5/m2dM5/7rus1mIb/gHf7lcpyZOJN1rsW+SvUz9+Fbd8t7DD35VbpomGHc9/yXn19b0IjfnGr8z12acJvvCcbo//68//3bOLcajVL9W/prfc81zSe48lsY2pLbTa+2e1+LTXXsfldap9llWaWwk+aQ4h3SmKtEaO66tg5azYEzOjuVkK/lKUjxIKqcZ+1zZVv869ak1aPzgVptUQrsGNM/LcnXX1miarlkj2rNNqW4N8fh7v3xm5IzD+ZZBiH9Za2Hssr/afgcfYRFZW/kMF7aum1yZWl2aeMM5b9jrLrG8VBZNnEfyu9JyufRe267Rt561nKZ562FMiNuv86fil2LhA2zmGcwOu1H3/79Uq6Ol9OAnXuYas09TGr9r2OLevV1rW0ryauS/dsz3qZ8dpHJc2r+sz2D3pDK53yneL88J8VrOpWvqm/NNDtN0Wtw/HO5xPy3Pkem5MvyV7NWW955itGfYtI26vcv5zXYV02vxB2M/VHPuiq9z76SIbY4G3vedj1OZYtniuczFG2I9aNk/09/Ls7N8fknbzO7jiV9w/usA32YLevw97VlHW3c8/nEduWdEMWkcqjT3u90um75YOzcebz53AsYBp9tbAMD4xQ+A04Df8tv+bpj7+8U7U957HI9HHA6HWZ7wPtTpdMKbN28AAG/evJnbefXq1Vz+eDzCPrf4vp/4gYVMv/6//gqG4wBrLZ57g99pv3ce/91uh18dXuKtPb9XEd5/GoZh8d5TrNfh7zSt4y6Ho8fhUB6/9Cyfs4OL84ALz2jDWgOcm+AnU7QrsV3QxglK56MeP7FGz16rOYNr41JS+0Nmbk+nE05oj6Nfi9aYggZpH9Ha/WU+XZxD65Nq0IxJz3neGFONlbvJw7n2eSj51kHnjsfjnHZ/fz/bPu89Xr58CQDz+56xnMFufP8XvoiXL891DcOAm5sbvH79Gsf9xaaF9ztLzw1Seuat9O92euJkW56/9DwHe8g557dDvj85W3quPpzZ4/TcOQiLfLm6Y58n4JxDmCrnQpxjWfZK5mIhSy1tK1tshCRPT6zhrHN+NY7O5c9NLXFnrZwaSrasFhuSOOdZ9xuVNajdfyV5c7+3/js9zZg64zLvaZ5gT7Z67uph07+RPE35M7c7ZbNrz/VaNLa0xy5o48+ta/l0nBb7qvcer1+9wuG4PotKZyipLbffz2cVY84++re//W3Yw0Es7/Zu8e89fIcv8VlBF0klMf8xlt5C/FTgCwD+O2PMzxtjfsYY8+VKXX8uqiuu8xmAP2uM+VxNGGPMjzzIJGnxX6zVQQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIu4QfQWnnTwD45Yff6YdHwmfXfgrAfwrg14wxv26M+Qmhrv86uQ4fU/EA/l4AXzPG/KQkiDHmHwbw8wC+Lyqf8j9L5QkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+U5gfNcCfNrw3h+NMf8WgP8My4+gxB8wiT9G8r0A3hOq+8sAfhHAj0XlQj0A8FsB/GVjzP8F4C8A+DUABwBfBfCPAviJKH9oM/79i977/72ro4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPBH8CEoH3vs/ZYz5gwB+L5YfHYk/RBJfS/V4Y8wfA/BnkP+gSvj92wH8eFI8bWtVPYA/Xmr/s4Qx5+Hw/jIc8e/4Ok2/RrsteeP2W8pvJdeWMWbzeGztQ2nOamVqZaW0ON05l20j7pf3fr4ehgHTNGXzpGVDmrV2cd9aW5UlvpfmC+3H9cZlQ/shXypTThfjPKGuOF9O5mEY5nTnXDaPNL6PSU0na/drdqSmp7lxDWlx26kcGh3WrJFavbn+S/0qtS+V6bEJvWVK6w64rLVaean9YRjE8mnfJV2X5ky7F5TmJSd/vMZj0jTnXDSHD/WhrCslOTVt5tZWz3qV+pi2oZG3VFep7lJ6bS1p7EgqZ49crbTMd5xHmkvJx6jt3dp2S3WU6LWjki5K9V5j/8vZsGEYqn0Ibcd7dIw0xpo1m/4upeXQ7je1OlI0e2qNVhunXfutOpfz1XLj36pjwe7XZC7Jlruu5S/l0+wF6Rho+h+vndS/jn+32qNw3eO31NqWZMn5+LFvDpx9/vg6lB/HETc3N3Oe999/f07/5je/iXE8h4NevXrV3B8Nt7e3ePHixfw7PsMMw7DoWyx/+B37YeM4Lsa/5OO1nPvjM0xKkLNEuj9IbVprV7Y5tJ9yqe96dqx1HXt7zhPnG8cRg7dVH6xmm0p2Ma07Nzc9+2val57ycXjPmKAfdT1Mr7XpsW6W9H0tp37vicdymiY4t/Sjp2nCZJdy9rDV19aiPV+kZ6Bz2sN4uH4fouQHhLGO52aaptkuOufm34fDAafTCQBwOp1wd3eH4/EIADgej3j9+vV8L6Tf3d1l4z8A8OLFgN/9U18GcNYlaw1+6ZdewZjbeR8YhgG3t7cAHtb6g+0bhgG73S4qe7GLcXfPa+z8N44ThXKpTOm15pyVrv1pmhbrJ4xZPN5pHWH/cDbkuewr3l9sukZntesyJj2DXitulq75WN/itHx8CwDO8wc87L1C39J9LOsXDQbWnh4uzJx/t1vu41vtctwHTZ4e81KK35XbutiilnjQ+c9lLoDLmi2VlWIg2rGRYsQlmWP5cr5q7vpasY2aH9Iam0rzPUZ84Zr1aHw9zdk1TWvxz3KUzpnpeq/t16Wx0MZPtX3R6IvUTu/cS/Xn9pVrPzvU+KHa5xjSdc3uaeJBUl3XfM5kFo/uL7J5wYdYle/YxyR7nbsulU3T0jNrbt5y59aeNZPWmSuvja1sie0C+ec2Gp3p1aPcc9BA6EssU2lOJT9SWqO9YyXFhUs2O6enpWfo8RkklTVGO+6tMeNU33vtZjjP1IdX9mO18RgJzbsKLf2rrdE0bfV+wuSRinQ6nWBO9b5ba7NyP8WzLmlvy9UvySXLac7/m+hKzaeq2dgWX7UuY7keyQ8r+Wfac0VLOU3Mvbam9bGftUxaP0azV+barRH7W9KeIMU1NHXXxk4Tz2iJMW99VnItWuNO3vvVPibpSBwHKY1Nz3lyi0+kGfuavrf4hOkaleSPx2LL2ayXfN0hbRmbktouzcX+5DCO94hjy/v9Hm7oPx+05q/tbRou9gLA4tmHxTiG+K/OLqbzrfH9tGfglrNSyQ9I9bUmS1znubq0nTie9xDDKzwvOpdzcz1BxGmaMJnrxZZ0diHv92p9mHMd9XFN446539o4TSkeGrdXWg+PsfdIaP22kq+yJYawzHt55m4a7FQpznON5xm537uTwzDcLfLudnu4cfkORK58vKfX5jo3ftI5v5SmiZtp4p/Wr/2Lmk9X8+fimFH8vCj37Chcx/oXz3/RRu6A04NeWethDGCNmR8xDYNZPd8IbaS/a2MuyZHzSeJ7cf0ru2A9jHGLNSetldpcOBOeL8b3BljFurucDZb99P78zHYa259H5mSu2dit/ljtvZoYTVzRDx7WOiCKMQyDhcGAm5t9+R9mVZD8P3/j8frvOi7Sf8fv+Xvg357lujk5fPX/e7m4/4M/+Hncj1a06dLvYfCwdllmHEdMU71nYS2n9jjoT/xvW/zgMU1uoZunk4E55W1Prj5pTyr51K1nlZpPq0lriVeX6tL6n1Js7XiccDqFfensS75+/Qp3wzJW65xT2S4A8zsddrEehqqdDPYxllnqa6sN6PVP8vn08aD+Ntrz58ZUE8eptwekTUr91r6TEtoPugIAz549m98TBYCvfOUrYvnQzu5wwvvH31zce++99xZ2ruQnSrTECQOa94I17yfm2ov70vPeT6k/53ttsTw5vpym69oLZ9alH7Ru93I/tGXmuqT2SrTGAmqxPCnmJOWRkGJU3l/62XNuq+XNvaPlnFs9d6nVleps7axxDVr6nOKcX7x/ek5zgCv7/T2x+J780rj1xmhza3CaJvip/CymlFZqP/dvmOPrUtl0bowJabp/S11Co49bYgnaMSqdb9rXjFs9Pziejjge+98XnWs2Bs4ldR+PsMflWWRRxrvIx8Tq33x+N9F3QiYA8C8A+AVcdvzYgqlXiPf+zwL4q+EyumWSNJP8l94L10GeX/De/1daOQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeVfwIyideO8/BvDTAP5LrD9M0vpZnX8WQPhEaPohlPQjK/F/uQ+iAMBHAP7pRhkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHkn8CMoG/Dev/Le/2GcP4by8w/JBsuPk2jq+SUAfxjAMSQlWYzwH5L8BsDHAP6A9/7XtO0TQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIuGd+1AJ8FvPc/B+DnjDE/AOAfAfCTAP5OAF8B8B4uHzcp1fHfG2P+MQB/DsDnsfwQSu6DKrkPpfwKgH/Ce//15k4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKO4EdQroj3/lcA/CcP//WU/zljzE8A+PcB/IH4llAkfBzlAOBPAPh3vPd/u6ftTzveS0PUlkfCmNx3aMp5pfbiunplypXrqSvXr1pf03a2jGvaXtp2rZ+5srn7UhnvPay18+84n3NuUSbcc86J9abpki6kdQPANE2LfN77Rb5wr6RXoa4gY+ibcy7bt3A/zWOtXZXJta/JE+qqkasn/JZ0UpNe0yFpXFOZJR2K03LpqV6VyMldWqPSWozbvJatiNuujYWU3mJHS23n2pd0zDm30POYdI1p6JnLVv3tzRcTr/1SnoventswMDg3l7dnpf5rdK20ziWksdSuf60NaCUtl5NNkrHWvmRL4jmp7XXX4Bp+jCRzbU/LtdUqZ2++XPut69h7j2EYsu3X1lIgXr/xb8mmxbJIeUrUZCrZ0tC+5Dtp6mq1L1pyuibtsVI7rTqW2gPtnMdl4t+SL1Sak1x7sQ+ba+sx6PHVY3J5pXUp9Vlzdim1L9m8Vj80N/alM0pIi+c59dXDPWstTqcTAOD29nb+fTwesd/vAQD7/R6vX78GADx79gzPnz/Ht771rTnfq1evAAAfffRRtl8tfPGLXwQA3NzcYLfbrX4H2eNzWOh/fHYYhmFxVort6jRN8xjFY5f6PqENSfettVH7IU/dT4jL59JzZdN9QUqby9tY3wHvMY+bZu9v9XOzMmTsWm1MSn3S1iFdA5c5a6F21tOUv9Rx/jtNEzDpz3oBrR1Odesa81lqx1oPa4Msl7kM8xnHQ7TzV/NH0j5pfOdam1JaGvuAzc9F7lxfiklo5Iz9wliXrLULuxjSnz17Ntu4kD+M1TRN82/nHI7H46reUDZwc+PxwQeXtWyMwQ/90Pfg/t7McgU5AuE6Ho94zwGAG2+i9X4+R47jgCmy73H5ml+dG8e4X8MwLPoW76Mte/00TXDz2g35QqxhWSan070+d7rnp3tfQBs/K8WD0nak8pOb4L1b9P3u7h7uzZuVPGmcLx6HcRwvujBcyoS91TmXnTtpLDVnsBbb69x6vKbJYbqiG9yyX0r5ljp53vedc4Arx7ZLdZdkBer6VopNAlj4cynafau0jlrjyblrKU1T19b8vfHAnI732s6cnJp+tvh+mnvXjAdpfadc/jS2Vqs3rbMnZqCJTQJlfdeshdq5pyRnLoaRQ2M/WmIONbuW8/tb1mlxXoRH7rW9vabLJb3Vxl+08ZGWuHNt7np8GikGUyOOA7SQxkYf63wUSH0VKU4b5MmVr5Ha+8fuU9xu6bqH1rOfhBRraa1Hsh2SH3k+j61lya01ay2MLT+jldJa9uDaWbc31izVleZxg4O1Doj+/zTtdgOMqz8H09r+XFqPn/tY8e3z/GOpG/5y7b1HbjspxUZysfKU1M7WbLk0/tp4SUrpGY8kf9xmzS+qpcUxk5LsNb3p2XtL8qf9rcUjeu37ljijMeYhlrfWgdYzQEk+rYw989LjE2rsrCRLz7PUuLzWxrfaxWvbux6/pJRPkkdj47YivQNT1BGXxgHP8UEjBIZ0+1quvXr/W8fl2nMup4f2zn+lfUYTF73G3LfKr7ErJR3JvZcZyvoorhiaOdcZ59Pt67n4s5Rfug7y1t4Hu7R3ad85Bz8Bx/tlvvuXR5j7dd/jOR6GYfF8IOdvxGWkcc/1Szp3pXXk6iz5XSU0tkTro/bEiiR/TXq+WrLRsp8R6x5wOp1gTvK8aGNDpXiwVN9CqmTtLds929K4qHa/TmN+PbaoFgvvJadLYU5L585WP0XS2ZxebfWtAtM4wdngvxsYc34P/yEJ+/0O3uftRc98SX67Zt+VzyLrfy8Qn3slwvzM76zs1s8ZvXNwQl252PBwWj+Dd87BuX69LJ0P0zxaP/9a8dmSLJfrYM3MvN8aY2CNham8w6htZ6FXWJ93nHMwWL+zHteVruNUr+Oyl/Wfl0vjU2ueBczzOnpYe1rcG8cRZlq+y/gYfmdrbEsTMyjtV9c6j/TsI7GcN9Zht1v+08zPf/4LuBn7z59Smxr/SEp7auSY7HrNIRN/3NpWT325etJ3cXrInQuks4LUXuvemSsf3wvtjMnZ+SJb2T/Y4qv3vA+wdR6kM4jUbs+5I12jl3P32g6mZ1I3eTgnrw1N+/EYnU7Tqp+n0wknPJyLbGgv0QmXbyc+T8WytPqvtXnUPHuT9glpT8mV977dZ0mRzsjpUm2JWdf2tZrMrX1qfUaZvje2/L3MG/dbs0+l15r4qfa5RO0ML/mJUpmz/qTp+ecE2nhhSY9r+lMbl1xxyffp9ftLc6zx97aux9Z6pZiL9G9PeuYljX8s94WLzlwjtvHdAD+C8h2G9/5vAviD5vwxlD8E4PcA+PFcVgC/AODPA/hT3vtfejIhCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgi5IvwIynco3vuvAfgagJ81xjwD8L0P/1kAHwL40Ht/X6iCEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBPBfwIyqcA7/1bAL/y8B8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ8p+BEU8qnGe7/4W8IYo65Pm96Cpo40j0bmnrw9aMfgGmPVS9p2Tj+kPM45VV3xOHvv52tjzKIOYwymaVrV5Zxb5JNkLMkT2ozbj/NYaxd9stZm+5mTOeSR9MkYM9c1DMOi7dw4e+8X7YcxyfVLai/0J5Be5wj9ivuUtifJnJOhtr7SunL3NWkaWuxdSfa0HmmMSnW/C3LtSjoR616OWIdrSONVIyebtmyp/VK/cjYGWI6dc66qt3GZVJe0+l5aV+F+SZdi26upt0RPmZItrOWR2o77ol1Hab7cXJTq6m0nRrLxUh5NPbn24rqlOY/1J04rjZNm79BSs+mpvtbK5rDWzvJrbFWp3rjvkv2prW+NH5KOcW6eJNIx06wxyYaV9q4SrXMmtZ/KHuumdk9O69P0sybLMAxd49C7/2nq7Tkf5cqEPU1DTn+1+5skR095Tbm4X2kfnXM4nU5z2XDv/v5+/n06nfDxxx/P+Y/HIwDgG9/4Bg6HA+7u7gAAv/7rv66WWcO3vvWtbPoHH3wAAPjqV7+KTz75BO+99x4A4P3335/7stvtcHt7O/cr2L9hGOY8wzDM9ib0Pb4O4xrbpDhPTFif1sb27GJ7JftbmjtpX66t8xRrLaw1mbTyfhafCaX9sspgVm1rzkTSPqzxL3J/pbO6RGlscvtVbY7iM+VSP/xqLmq2ShO7yu0fgaCLsY7HYxTvFZI9SeuK2xyG9Xjk9E3jT9XOCTn/RnPerqXl9KQUh/AeCM0ao1tfkiylvJKPMwzDYr3G5/EwNtM0LeJD6fn25uZmJVM6lre3Bs+fv1mkfeELL3A8Xvqa+gjSGonHZzxNyXiZhX2OxyD+m5tr7T66JTa0SNs7vB1Oi/Z3uxHW5/eJlrpbkGx/iw+dkyO+zsX8Qr3jMM46FfLtdiPMwz6clq2dvYL8wBTlu5TN7c9pXbX4QCx/jWUsA4iLSfL37GOxTKVzYBW7jMVe7FJZH3raK+mu5C9p2pZi2aVxie1zyebEeWr7XE42zb1mf6mSr1cXes9NqVyS3W2NZ5XO6po2ekj7XPNpW9rrOVt3r+tC2dTeScxaAeYAACAASURBVPZGG8vS+IRan1yzL2vWdAmpXzU7LJWrPW9zzi39rWla2Y3TdIJ5ODNLcm7d+1vsWi6flC6tl15fooS2XmmNlnz2UnqsC9p9rNavkq+u3ZNKdUvEcl0zXv0uadWhGtM0NfvEMem8xuMc25Pwe2dc9qxhbfmZmHb/i210a5wmXnMt8aeWWH+ZpS01br22S31J/e7cGsv1P64zFycqtSHVqSFtd9WcucQRrLUwVt9Oq3/Zcy7a6pueY6Ttdqn1mYMmZpa+q5LGw2rltfSeATVx/Thv2reY1rmMy6T13t9PuL8/txdi6XF7h8Nh4a8dDodFPCo8P0j32zj2nsbM9/v9XCak73a7+f44jgvbG8eOpLN5GpNP7bjmLKDVh5o9Tu9r/OaS39Yq0zXySfmldVUa39qelCujib9okd6BKe0Rl99JLHRYx0I1DH6tt1JcWRPnKumdpry2TjmfQZw93QtqOtJyhmzdC6Vzs0RpTfT6Cs46GLM9vhNsV9qsJFcpli7F3xdyP6yV2MZffJvlmIbScYw499w959PGuh/b+7BXLOOz+TUnrV3J/l4jFpeLR2r1TatnJZ8ifac3sDXmkEgTydLuu0qE+EouPUZjV9M8w4Dss2kN6dhr9KVURw8a/dPEfb0P75avy5R86pjaebqma7X4W2l+43PUNE2YJl38uUWWdL5jG6OpK+ixHzyMWeuuHRr8ggdb54xf2XljLQZFXcHH3pn0DCTHEaS52OIba9eNZt+vybMVDw8IvoUmnpTraz7/w/7pLr6Zc8t803TCCctnrZd995w33le995imCYcDcDgs5/vjj+9wf7/sRyCckWJfLfXb0jwXe7iMb6TxnYBGn1r24ZbzSrr3l9qI5zieS22srUVHSvWVYhPhVkg7Ho84ers6Z/fEzHJo5+Wx1mQvF7u59BNTf2ALPbGiVoZhEGP++T3XZ88FLXG5a85lPEaDP58Rc7L1yKV5Fhi/NxXT8i6w1H4sh8aP0dqiWEbt885Arv70DO7G9TuuwzDADjnbnZ8zO1zeLTu/D3iJ7YU8874x+Gjdnf+O4wibeRaQyl2yqaX4QNrvlK06rvVXJP2+xhoLMZcHKVbttcQw+tvXI70nqCHfl0vfc+N87bNaaVxb40mpr1jS5eBrrdO37+M966vczuJqTqvFaFrJ+R41fdeU0fg0NflzvmOLLkox6Fa9W6+Hi30oxwCCv6kW+TPJZ+PtCkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyKcWfgSFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyTuFHUAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIe+U8V0LQMgWjDHw3sMYU8znvYf3XlVfqQ4Nmny5PMaYVfuafrW2ralXW1dve7n2a32Jr6V2NeORpjnnVukhLS5Ta7+UJ+6vMQbDMMzX0zSt8kzTBGvtKo90nZPZOVfsUy5P+J3+jct678W6NMT9cs4t+h3aS8dL01Zcb+5ag0afc+NcywPk+5T2TaOvkl5JbZVIxz4es2uusVq7mnY09Wrq0erptfDeL9ardm409ZaoraFLevhvcSe7H5XaKMlZy1daqz361qonLXOizbvV36jVI+2pJV+nZDt6bIa0j6d7iuTvtLada0tKi//22I2YXvlya+gaNqxUj8a2Auc1t8UWbbWr2nnZMnctOiatDc1+K9WTppd8SG3dGj9YI1e8J1lrF/MX7HFtTnN2u1QmXZsxPfYgNxYlHyb0WfJzc+VCfb32soe47jCe4awb0uI8p9NpUf7t27cAlvry0Ucfzf13zuHrX/86AODu7g7OORwOh0fqTZ5wBvrGN76BL33pS9jv9wCAN2/e4Pb2FgDw7NmzuW/jOGK32wFY+hTxfBtjRF8i1e/4Ot47Q96cfXMur6O5c0sun+T3x0hrfJ3+oAdOZ3vTcWrZ771dy2yt7TpjAX1ni7j9tF2p/zmbFtLT622s/eWt9qElHpKez1fSZWSJYxC5epdrYO1banVZylO6F99vIa0r9FHjq5znT9/WlnNrqtexXY5ljPMdj8dFHelelpbPXYf8Bn61Z9zf3eH+cIlNxetjGIbF2MZ54r1obTfPZ18njGvwQWNdqNnQ9HrLOlvsqXuHcbxb3B/HEdYtbU3LupTazNHikwRa7Fbs04Xf1tpZr8LYHx/m0PvlvugifzEnS6gz3BvH8dKm9bB2eGjnkn+3G4tzea04dcplrS/X/DBY0S72IPWtxUY4tz4nhfmptZ2zDVpfQWNL0jJp++GvdNbcei5P65D2Oc0ZfJqm4rkvty5zPpFG3tbnOhKatXMNv6ckjyYGrYnFaPyAVKfT8rk56jkzS75cy16jseNbfJ80rhxTig3Gaa17Vy1/7bmMtD40e36alpvjnL0rrcl0jcx7WMZeWWthovTcPMb+pjYOF8v7FM8m4v0tp9e58ZL2K9mPvm5sZOtzrpiWMa6t+xZ9Dmh0IfbVep6rankMfeuNCbSisZ255/jx79q+EJ9thtN6LqZpwjQZeJ9pJ6mu51laS4ymZBvD3/A7Pfsdj8fFeTLcj/eX3F5jnhkMr8+xOvMw73cvjzD3Z1niM4AxBuM4LvqVO59ba8U9sjQeW+PHUl2atsKlMQ//zc9UfVYXWtrKxZ9rNiQX29TS8xzwMdspPTOQ6pTsdhxnkOJkWn+z5N+16I8VfIr0utT/XCwtXu/D4GGMW+QbxwHTdM4f4urnvGv/QLoukcor+aqS/ED5TJmTqWRDe84w2nzS+OfyaNu8Rvwz5jH3ZY2eauxzT7yn9zwt6ZK357XSixQ30Uyndn/T3tPMeclHSt+NPMd3c+8Z6uezZFNTWvfnUpyndG6rtZ/KfI24VUru3GTF527956uSD5y+dwoAfu9X/1Jg/2KEGeu2UBPn1Mqae5a39sPa7EfvOVX77KdXT3L7yTXPavK8ZOTf4LvGaGJVUvwojVvG5J7V95KLmUpyXYteHTyvr3Vaa6yytl7jPOkznlweoPw83nsP7NI71/V1pHy1ZxC5+7X4Zbw3Gp8f+6Lf+LDu4iH1zmGa9Hvf2reUdaE0h1KdPedpyadfyinHqVvORCsfxnk45wF7Gdsw1ou/UbutNiSW8WI3gszn/4wxMDbcS/vrAeE969impf8OZBgG7Pce1l7iUZf5vtSRxljC7/S5fsgr2T6s3g2/IO3DJZ98S5wrpuU8tTUerbGRrUi6H+tJ+Lvb7eDGsi9/7Zh7Do0/XttDes9+eb0BSvp5DXriihLSuij5N7l0M1oYs0wfhgF20NtpaZ563ylpKV9bQ1v93pb6tz43uUacZh0zWM+Pcw65F6nK8q/3zrAvpek1WZdx7svecgp7h13rdrq3ac9N2pheL6W9vxQbBvDgU6zHLxSJy2ufA5fOsdaGaw/ArvL07Em1OGZJVi0lG6M5q0t+bqiy5XlAL63le+Pll7WVxnrk99kDpXhO6kPX1pJ2fToXXwddX+u7Jvbee6+FeI0E3dtad65v0lllmtYxiniutsjirJ1jsudqzu8T+8Lzltz+8t3K07ytQAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQL8CAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSdMr5rAT5rGGO+D8A/AODvA/BDAH4QwBcBPAPwHE875t57/z1P2B4hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc3wIyhXwBjzeQA/A+CPAvjxXJanlWjGv6N2CSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghRw4+gbMQY80cA/HsAvgfyx07excdI3tWHV54cY7Z31Xu/+Nta7hrk6orTNP00xqjy9ci9pa9p2VJdtXGIr7fW65ybf5fGTdPONE2ruuN8Uvu5POFvkC+W03u/aivNI8mTypGWka5TGXMyp2V76FnLod20v9r1EqPR8bTMMAyrPNba5na894t8IU+tbEl/pLY0bFnvuX601p2OYS9pW2m91+pnL7XxSW1EoDY+ufvpGl3L78//4x2cmzBN+v6ldYVrjV0t6XRaPtevmn2+5n6Xs3PX9ANKSGNcS4uR9E1jMzTjWhuLnHzaMiVd2OIj1PRPkjlO1+iFdh8o7aU5/ZfmvEcXrrGPS8TyaG1nSS81cyzlyflQrWjmQuuPt66lVC819jYm9lu899m+lNaXtt6Sjx2uNX57j41P/eZULzS6nstjrS3uUeG6xYeR7EdcR9DZeIynacJ+v19cv3jxYr4+nU4AgC9/+ctz2t3d3SLPJ598gg8//HC+fvXqFQDgN37jN9TyS9ze3s6/w7j86I/+6GKMvvzlLy/6+bnPfW6+F9jv94txDmMQp1lrizZGuzasjW37xQ+vrbEem6atZ9238xgMzmbPILU2tfbGGBP5oKH/slya9qV9UHtuSc8Xof+lNV07616DdL1vaaOmu9fyvaS5G71Z9WcYBgzDsNmn0siqpccnzvbZGhhjozzAMIwYxrwN1/Q5Fz9Jr51zszzDMCz8kpAe5wnlY1skxQpydsEYg93Ow9rTKq+1lz0mliPdw9PrcTw/Sjid3HwvjKV2HQPr9dNz1tO0k90jLJCGza21V40XSPLU0PqHqf2sxQlL5z5jgHDp/dJXy9Wb6qAxZs7nbeoHnv0Sk1QT9Cig8a81PlYuz+ABa+O6zGzfgOucD3pjX0Aks3ULuwQAw2Bhh3K/Jd2IbYIUM07TS3t3rq7YP07PyTGlOGGrfx/aLbVRSovHRfscJaVnH9Sg8SNqMWdgvR/EZUpzrkmX2ozTe8ZUZbtR1jMJqS8t9bTEmWrtXEvntGwdr9QuxPrUs+a3kjsflpBsvI9i7pq49la9js8wcVr6W7Mn1fbD3JiX6pXqe8w44bVpfZak7dtTjEEthvzYsmj2/q1xLg01P7xWrxTbCPekWOTSvl9iIElNq3pb/NRrz13c9m63W92P44U1WUrPi/yNx917S9tx+8X3YO7bn0vluMbz1aesN9PSOT5m+9tr9f0+TXZZQ8131NrH9F7pmZ5mb5fWRWsstGbHcntznOa9x/F4LOa5vQHu72P7Y/D27RH39w9XDzLvdru5XOrPpUgxailfer6S6tHEOSVye5Xkx22lti/2tqft7zXb3ELL+qvVUVoXrfX2+OfWWviHZz+leeixsUGEniNP77ymsb6U2ll+FY/1a79Gs157zrnX0OXaWVM7j01r0iyfj4X0S5qJ0vr6uGVsSueH3PN+v/OYhgmxj7vfDzC+LIPUv5ZnZC3xNClGHmQpyaDNk1J7n642T7UYW+vzPI2vIuqdmf8PAA/vH8plRJDOSrn2crK16G/uHejHQprzp/CvW+KFQdfjYQzPaEpzU5LdJTEvTcwpXXPS++KrcgaYTvGYApNzGB7EO508Tqe8nZR0R/IvAf1zgZxPl30vx63zld6DeMoYrbb9Fr+4VX7Nexypj5Vea2x/7mwBnJ83WjvBG4OLTTv/luzfNX1nY871DXYA7EWHlk2E543nZ2VBR0ux4N1uB2MMbvYeu91hkecLn9/j/qB/zqLqr1nnzcUzcvGz2hhL+/iW8/tj0PNcKVdHitQXKXb4VO8hpHudZs7S91G0beVoP++vZYqruKae9Ix56XllTMv7Bu60fs9tmib4aa03qvo6fJq47uXvdVw9p789aM6aNZ1N07T/bkyS/7HtUOxfWGUc+eKXGeQc+K163HuG1T77zZ1/0rKte5zUXu690JwPLfnVxqznpsUG1uK/8Tt1YS6nacJkdGfd3vmpnfGkcprnhZo9foJD/lnb071bIdH6rkdundR108M5fz4cQe6PtAZLvnV8X3uGX9vedX7pPFhD8h1a//1Jqc8afajFQ1vS43vxnhi4mk9nLZC8lx90QpTNuquuh08z/AhKJ8aYPYA/CeCfw9JSX/etLkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPuPwIygdmPMndP4MgN+H9afWvhM+r8MPsRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQTw38CEof/zaA34/zx0bCB0dyHz/hx0gIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCKnAj6A0Yoz5MQA/C/njJ7kPn+Q+kEKugPe678zU8kn3jSlPXXo/vdbKp+Fafd2aX1uXMUZV95b24/FO6/HewzlXbS+XZ5qm4nUoE9flnFvVFd8Pv9O0XP819dTKpOR0WdLf0EauzDX1RYO2vVQXSmOYK5Ne19Z+KV/NDuRkkXShVq4mS2892rpa6i3lK7XXI8sWNP3I6Y5Gztb1MwxDlzy5Mtba1bW1BtYanIsbWGvhjYW1A4ZhUMvZYxek8bqG7rXKk7aZjlWpXo2tqaGRX7LxpfausXZCHZq6anm2jM3WOQZ09lpDbi2l5OSt7eXpHFtrs/vSVlvjvc/WIel9iZrvoWHLXJb8wHAvlVFj22r+/bX2Jc3eX9PbFv+yVGdJxpgtc562W5qLHh9e6+v16LqG0H58btDuL6V9XFqvcf/HcVzUHX6X+mqMWcj67NmzVdvjeIK1Q1QG2O/2MC+GuV0A+OIXv7iQ5Utf+tJK/g8++GDR/vPnzxd92+12KxmHYVD559L6r6XF96x1UR7z0JcB7qGP2n3oGvZiXtf2Yq9Dc8bkz9nS+aKGJO/5r4mu8eA3WnWfamd1jYwaGxn0sIXWOIW367MycN19sOYn1OxCjli+mu/tnIvauPQ1t6dcy4/QULP1mnNPyqVMPObANJ3gT/39yLXrnFvZsXj/GxU2RvIj47FZzt9yTxp3HsNwWNS/2+/hkd+jUnml6xHTqswwDKKdqJ2ZW2M2WuT1tJx/5xzQsKQfyz/U+volvyrs73Gac67oo4R1H/aZXL0aGc/zv7YZj+Vfp+tOExvx/jwWk9HVoZEvtx+k67L1GUOJVl8/TdPsnT1zdI2Yca4d6dxQ8hO1fmMrtX2ox/8K9Oylre21xPpa6s3R65/2UPIXtsTLrxGL1zwve+wzau5aE48A2n16qY+pL61pW2OfU9J6U3s3tz8MMCbUL8catuzvPfoTy1uzL1vOIiWd66n3WjqsecaS6m7uuayWa49DD5r96pr7Ross2vh1TG6f0az3reOtjfdJ7Vib9yWks6+x+Tm5lt5IZ8BUL3L2qjSPTc/bH54ZrtIz1M7tkn9a0vPcfD71s+K4zdB00IvSWGrjvzlq9u1a7wm00Ou/bT3fXLMvLXXl4n89fm9Np3PtpGf4XLw8zn9z47HfL99hevZsgBVslFa2NI82TqlZ+6V71zhb9ewFmmdRmmcUmv7G8vXsGdeKGedkq6Vdo97SntQar9e2OU0T/OThfXi/75zunINxed2t1XmO9ywkK56vtjynaaW1npy/c36H6Kyrmj5dQ19a9aH8XCtP7/nSDx7GrN81SOOfko/4VOeKIEPud4zfeRzscoyD7C0xhDB+5Xjzkh6fUFtPyjXPz1pq+0Pzc0lhL+qz9bIfq1lvj+WHl+Y+3Ip1r8U2BN2s+TSttI5Fjx0G6v0unfskG5n6mrU1n6al784DgJ8A78Nz5lDWzb+ds3AuL1uq08Fupe3U5rBl71uNm/MPz3EvadM0wZ3a38E/1+UX9z18GnZUydnSbkiTnlHFaM7ZrXLVbIrG1yyvTXP+n/lM/hADMhamIS6miXEDgM/EQmDO7Q/DgMGbh5jych9N39+q2VvnHFwmxnk4HnA45Ocg91wvXtc5n84YA289rJ2gMYFBnpa9Ky0LlPfdpzhraK6v0b7Ul2lycG5py47HI45e749q1qYUn4rtqMbWl2iyqS1xx8VvXUy2hZZzQStBv7U+Ri6fMRe7liN+12cL2thUmhaSvT/Lco5RynJulS9+96UnrhPb4FL5Lc8Pmuqy+XfzNaSx6Hh9hLWR1u2MX+hT8CPj6TmdTpFPdu5jbJecWf+bu/P7U3l713pu09iiljh4z/haax/qjNs2q7HaQm6cUlHjObxWLEgrD7B9X1A97xvWMbIt49yzv2jztO4JwSamaaLTL9SR/m6No5fu5foYZB48Vs8OhsE2jUMtPi3lKbHlTFeTpVWm1E8pxU178d4DmXdrHzP+8lmDH0Fp52cB7HC2VqmWhdUR0k8AfuXhv28DeAvgAEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyAw/gtKAMeZ9AH8I6881xR8/OQH40wD+cwB/xXv/5ukkJIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHk0wc/gtLGPwTgBuePnpiHtPgDKN8A8M947//SO5CNEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBPJfwIShu/O7mOP4DyGsDv8t7/jacViRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQTzf8CEobP5ZJMzh/DOXf5AdQnh7vfT3ThnKt9XvvF2WMMeqyad7HkvExSfuQ639NXk1/cnnSsXfOqcqG61K71trFfWtttkzcX+99VoZSO6ks4W9aj2aMjDGLfC1jJsmRqyf0OYxJWlcLaR0tdfWsA81c1HS6V19z1OxFiz3ZiqQv6XUtX07meJ6lscnpXI89SdGMoTGma6y1Y1Yrc421o+3ntTDGzDJo5deMRUv7petWeSRZcvUOwyDWI9VV2jtK7ddk6Wk/V49mrWnHOLd3avPH15r2rzmOJbkk21erO74OelOai7SdWpvadZD6B49ByW7n5LlGnrjdUlmNT5XqqrV25ePl2tbMVzrntX0y5JOu4zUS0lv0RpItbitOT21eS13p2Lfud6ks1tpFHZKeXMsn7dlrJJs2TZOYL603d+5I+562E+/J4d7t7e3crnMOL168wP39PQDgdDpht9sBAN68eYO7uzsAwLPbHcJ3X0N7h+MBb94sx/Tly5e4ubmZr1+/fg0A+NznPjenTdOE9957b9HPZ8+ezdehzbiew+EwyxX3K9bD2AdJ8+XGJpDqxTQ5eO8QZz8eTzj4so7l1oS0RmsypZztiiqrSmc1Pkko561P+lHf/0prQlo/vefcVnr9ziBfztZYa8X9oSZjj43U+my9nOsy0fVln3qsc2iP35zSc0aU+jUMI4ZxuZbSOS3JXIpBhfLpXhanx8SxmbiM1Lc4ZhW3NwwD9nu3slU3N3sYY0X/vKRv4e8IC2uHhzQAMBjHHdwu7yv0+t3SvVbiuUzta6zvMTU72rs2av1qPeukOhLmNfY3jDGzHgT/IKz7pR57+NNpvg51lHyVdTxguW6kuGFcT+9Yavy8nD0dhkHt1wL6M6DGdkv1Oudx+d5+ud2eWGTr+tHGReJ53rpnaOK0UlpurHrOWjlSP6Ckd1v6ry37FPFhKW5Q2vd6zl09hDnMxVhqpH3SnCdbeYx4S69sT+k3a+qKZdKuRU08rhbnzKUbY1dp1liYwlmyx462xOpK93N1t+xjLXXHbeSuS/5xqY2Wc3BaV+8zFE0sWpJZGt+SHdG2mZLrS2l+pbNJT1ul+EmPnyURt7Nlv4jr0Z67S+3Fen3+Ga7PfvA0GXi/LH88HmGOS5+nx972xFBimVOfZNmX5X7dqivGGJgx7vslhmP82l6V5I19CinmKZXtpUffpP3FufN4ThPgvcXkJjiYWUfMtB6P0GaPPajxGH6g5jmG5jpNq52x03PEFlmlNiTS2HqtrpwP0vIMLJevFmcq7QOXPB7Wrt9NS3352nk2jEVpXafy9PguufxSm9LzLqneQMs7RT2+nsY+l+pLnwu1tKWhRS/TcSjJr6mvNR6Qi5HmzpunKEZ1tseXMQz3jsdj9ho4j/lpnHD7t8/PqoKEf+tvvATuzu3Fz6AAYL/fL2z4fr8HcLHrt5PH4XBc9PdwOODgyn5KzY/pec6gzVMiVVXnHGpLqear59vR+yOP0W/nXNezQ+/WNjT1r0qyxG1aq/OHgny1eGxN9my9q/48XPtLu6kcaZul8/u1/WKg7lO1nqdqZQOtdrDGtfS65JPMNt2l+rNs4zFiYNc/E13yxLrX6pPWbM+1nvH0tB/uTZNbPRuYphNOkN/DrvmzGh8/d3YM6bnfwHpf9vCwp9vz/uoB5yym0wTzkO3u7T0Ox0ssN3cGCM+Xwh4/DINob3J9TmPFki3K2lGzXB9S3rjP8V+JOB5h3KWu2j60Pr+bxTzl1nsJzbmnJ7bUEg9psX2r9R0VDbe8P/+fyU0w0btP18IPfnU+8t7NwpxlXK6jku+ksQdavy9ef6W0mGEY4L3H6bS016lupoR3YJ7SJ91K7XlDdr8s6L9UvpQ/biN3ph6GchxMGxeP7/XE/HK/pTy9dWvxaLdBqnoL49JyLr8Gkq+SJufSrtF2bq8P5OZsOLnse3wtZ5Ncn3MxgNzvHpsez6lmfq9hr0pyOukM2aB6zq7//eHpdII9ZWLRmbzOOcBJtiTnj+X6sayjFWkd9sZSJbTvvBljALv2E8/vfpZjkNoYoizzUt9b3tOr0bqnaWILPbIs2rcuKe+r59CSjNo4cQ+SvZKI+3HZt9M6lzb9Gs80tqynpY0MZ08s0xTTXYsXaWVsOUto5NBS00Fpj0p9SE3cVKp3nb4e062287uF6z99/WzzW3HRtljD7gH8yacXhxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3zYYwgAAIABJREFUCCGEEEIIIYSQTz/8CEobX0iuDc4fQ/mfvPev34E8hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR86uFHUNp4IaT/308qBSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghnyHGdy3Ap4w7AM8z6R8+tSAE8N7DOQcAMMas7qdp8XUuf6izVYZau63la/daZdSW0YxhrW7vfbYtrcyl9kIdaXsxQR9qZWryGGMWdcW6FteXtjdNU1aeuL20jJQnba9UR5on1+9U9tDPOG8Y/5AWX5fGXZIpR1o2nnOpjrRMTpZSHi1pv3P1SDKW7E0tb0jTyNzTr1IdtXnNEeQ3xix+S22U0kpjnVLTMalNzdz0yr91PtI1BwDDMKj2lnj8Ja6xLrRobUBAmhdr5e/zaW1ELT2+J+lwjhZ9zZWJ07S+gsbeleq+lt72+k2tfoRUPrWRrfPVQ2t7JRmkOYn7lebR7gtbxli7x7XSo9+56zhNsou1ttL7wzB0+eqS71Vrt7a/aNZ1yXcqta1pP07X2sMW30vyzXPXGjuj9WE085X6vnH7sU8fp8d7lGbMpL1OOy8xzrlFPmstTqfTXN8wDACA4/E45xmGAff393P5kOeTTz7BNE2zHB9++CHu7u4AAIfDAR9+eA5vPH9u4dxXqrIBmNv5/Oc/jzdv3sy/X7w4f0f2dDrN8j9//hze+3mcb25uFmMR5IxJ07b6C/m5MYirHQaLcayHzEqytPgZ64rX5ay1xb1+q28fpy2bNrDWwlqb9a8lJLsuyaaJ2bS2F+rq2dfnsRltdi4km6CVq7TvpnoVrq+xV+d8j3TOjbEYhmG19kr2NpW5JmvLGTqHZk+r7VXxpaSbJb3M7RG5PJq1EO89YdzD/XCtiSet/QbZFrToUzq/3l/2pfMfj2k6YYqyxfYqzEur73Zpz69sX83HlebfWQfvXSTbw1hkhkNjS9OxyelMy9lc4x+m93N+TKp7qR7ZYYC1Bs75eS3sdiP8aTeXCftgzaeedfYGOJizT2HteW/d7Xaw3ohrSToTxZTGuMbgAaBsnzXxpmueL8v52stK/kY8bq1739bz8LXOlo9Rr9Z3avVXSvtPLn9JPo1cpT1Ju8fm0mtnNskPTf0iTftxfm18QqMDNZuiKXtNNDHPQHrue2pqe3WLbNfoR8/5QJPPPeyBDyUAAMM4wmaeAcZo0rboXe9+o/EZeurNjb9GjyUZemXL+dO5uEHcjuRf1Oxja5w1nJHTNnO+qySLdI7ItZfWFd/r2SO1ZWoy5mi1AT26tTW2Hfpz9m2BYA+MwcN52KzOU8MwwAzr/b7nfNoqZ0pu7w15w1jEzxtDHDHkPxwOcj8mA38YF20cDgbjdFl74V7qc5Z80q1ofCxtrCXOlxvjECcx5hwvNMbAGgv3kB7rwlY0urH1PJJSm5fH8Odr+2hrLDP9rUXyt1rO7fEZbGtdOVIfPGfvnPPZ5y9pUyX/7qzf63WxjgHl5Un3O81vDdqy0rm1Fi+Sym+pbx1n7V+z2vO4RkelMune1HuG3NJPTVnN85mAFAPxe4/XXzrgvM+f+/sDP/plmMNyDLR27+bkcPPtl4u029tbmNHO9bXEBq5pL2rk97vldfrcY0v7Pb6PtH605+kt93vx/sEeT8u0lHHycC7jv0Z90z5jkM4B5ecEoQ6PS6zULMZcY3OkvS9t81q+S2neJDmk5/wpqd2I7UFaTtN/Sa5r+nElOzzH6EePYVjKMA4jzNh+hiyd2a/tn2ootanRYwltzEKj41r/MJY3Po8CBsMwYhz15/B07dfmOecPh/Uw27SkfPyuyewL3gD+Ya8ehvNYDeMw/4OkcWcwuWV/A9K7H7H8Jd8yXId3XmL7mSuf8/tyvnPa/xxZG436nqfZp5Y652c5U1td8jVyMfv03yJIaJ4p1Wygxo+W7q/3Mb8aW2MAayxMJiaRr2NJfRwuZx3vH2IpD69g2ZPDNLk5D3DWwcmsn+mk6yw+Q4W+nU5LWQ6HCQ+hmiI5XUjPdtJ+YcyDLH6Zp3UcNeTWsMb3rZ0Hc7a45HdL9re0x/XEaZb7kG4v6n0XVbquoelXT2xGU16eS9mOafsn7YPSnlCqu8XGSek629emY7nzkMauP4a/Fu9N8XWu7S3nhl7bI9GjTz1I/oVB2bYB53k+n0Uwx6UfSmAYBthh7e+awcOYpX4Mw4A4yRiN37+OD2xB80yjlO8sU3kuWvyb89681tVpmuCn68f4l/2Kz+C6OGMtNlxqU4r9ldquveNfI+6vg4f3DmmfvS+flUp2ofVM1HKvpY20TmOW79vFdeVjcH261lKupC+Xs2eaVtfP0nlbuze2xlO27mG9Mdct+aQYQtqX81lhzjWnoWDTXBRXfAfhmO8orvfU+buDl0L6J08qBSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghnyH4EZQ2fgP5TzR+71MLQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIZwV+BKWNvy6kf/VJpSCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5DPE+K4F+JTxNQA/E117AAbAP/huxPnuxhgDa+38u4b3vik9bUtK15TXoK1H09e0PqlMnMd7v8rX2jetbFL9zrlq+977Vb5cHWnf0utcnrje3HVNxjhPqf2c/GkZ55yYT5IxJ1PuXq7/ufZzxOnW2uJc5GjVkRKpjmt0XlNXiZ7119PO1jKBnLwle6ZpL85Xq6tE2k6w57V8veORrsP0XpDZGFOVPx0rje1s6Ye2j637V/zbWgtjLM5J53RrLDBY7HY77Oy4KKPpUy4tlye1G9Lcl8qU6peQbH+Kds+slXkqe5fqoXYN1/KW1niurpZ7Wmo61rtWpHKpzK02TuN7aGS8lm8Z27Ua3vvFWry2D6ixF60+hYbc3PeMb8tYSu3myufq06y9nra1ZXp8mFTm8Hscx0Vamq9lXaRp2nODZjw0uui9xzRNANbzlu5jW+ZP069AGN/Yj9/v9zidTnOe29tbAMD9/f2c9v777+PNmzez3D/8wz+Mb3/72wCAN2/e4IMPPgAATKfXeP782SyH9x5f+MIXsN/7Rd03Nzdzn1+8eIHnz58DOI9DyPPs2bO5vXEcF2Wstdjv97N8cb44T24dbrXb4d7gPKxdz6sUb2hdV1KZUj2TdfB+qQ/T5IAOU9nqm5/nGwjFwrnTOCOeu7T+x7XPUyV90JRP/cPYXl/qW9tla4249ks+Z3rOl/QibS/YH4kWuyP7MeE+4L3DNE2YMm563O9hGGaZYzR7eovt1JwpcvWIdQ7mYY6X8gSZtpxBU7mkuZP23njvCutN0qVcfeuYzzq2dDqdME3DIk2ysfE8xevCuLgMABgMw7jY+0u0xlNz9r5mV3O6YIyB27lE/wyGYYAdHu9b8bG8pT1F8lVTvcjVH/7G6zLMvTFm1sUQy/MP/sO52nPd0zTBRX5E7FPEbcX78jAMFx2zsY6e6z2dTtj5pU8Y5MiR6lwJje2Zpimzn06YGty1dC2k8uX82xa77L1/0MsBYS6Asy9kXfnZh3a/bLGjpXrTe5IvVjrTxP5VqZ0gX0/8uYT2OY/k42j2GUm/H+PMq6EW+yrNw2PHfUI98XqK4xOlmH+rTyqti3heSmc959L9Y9kHqY4WWbT6romlBq5RX4u92Boj7bGj10S7Hlp0LqfHW/vXcr4s2e00TbvfbIldau1wrkwav9RSGptrxWE1+2Muf+senRLGQzsuPWfyrftXLFvJ13usNiVCG+uzVTi7r3XSew/49TpO96fS+k9p2UPSfUkql+v/brdbXIf4XQ5/4/HmdnkWeP58hLl/N7Y5sDWmJMV2Yy5jt91vK+lhaf5q9PhurbZzi28gseV547XJ7eMt8d+WeETuOlempfwwDBgGj2FYlh/HEVPLYTchfZ6TQ9u3WK7Snlej1F7rs4AenzQul/N7e32yrfL15E/LaM462j0qHQtNLFND6fyVzlFu7z3Hvzyc84jjLZObYCbdc424jdZ8W+coTb+2DuWIY+TXYItMrTYjjlfW6qvp49Ju5c5C6zRrbOU8G+5dnsWktK4T7XzN9Zr5/zST022trjxWPEyK2WrbbJEr7n+Iv2voib+W4iylmOv8vrTzKx3z8DBYxrKls0UqQ+0800poN33/OPa/YxnjGOGW80AtDp0bj3iue9uOn9Hk8p3TdbZLE8+VzoZx/lz8MRd3qe09/sbj8OA+jiMwDA7jYOZ/kPT8+YBhyL8f0PIcKM2jfV7YxsXum8x8tPrAmyRp1F9Nvp5nLFJd67V7SbfWNs1FVcfmW37+672Hh59vluTM2ZsSS9unKgLvHUL16b9bWfik0e+zbIBzJuobME0e0xSea8bpl3cNhmFYrNHwe7fbLZ6pzX6RAYxZ7yupDl97r451QTqDxGz1c0t7qib+qK2/9nwqhzGXMdeU0cYRtfF6yXfYGouS4urauQzj4f15jBbyou2sFqN5hpfSEhtq3bPy94Hl3u/nsUjbDnXl3jnSyKI9UweGATDGJmkDhsp7NLV3t7Qx0lzZHCU/NtCyRjRs2fuNubzDk9uf0v0i6MNFtvM7yz4T83N2/e8IT6cTbJR3lxZ6YB5He3lnNvUZYzlztK7T1I8onaEle1eSp6Tzl7VX93Fy7WqI+zFNDs6FdRzP8Xov0dqoUntpmsaXi9tI/e2cvy75xIu9dfQPNkbXdg7N+i29t5GiOUfF61DzPutlHzvHiOJ6T6cT7Cnv/0jnGo1fUEKTT9pr0vN/qz5q2jbGiM/ENPY5l6dlTy75cpp6Yv9e8oFK7efSL7cue6UUb/LeA9bP5TYffz/lPN7bvZ9N/tvod6yRv80Y8yNPLQwhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ8F+BGUBrz3vwzgryL/GbB/7eklIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHk0w8/gtLOH0+uPc4fRfkjxpi/4x3IQwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIpxp+BKUR7/2fB/CXcP7wScwNgP/CGJOmE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCozvWoBPKT8D4P8A8MWHa4/zR1F+J4B/F8C/8Y7k+q5D+80Z7/2mdrz3Yltxems7xhh1mS19uEYb8b3cWNTayN2P08Lv8Nc5p84bfof/wnVcR65e7z2macrKlau7RRbnXDUfgGL7cZmWfuWuW4l1U6praxstsgTitRjLmK7RnrV4rXxp25Iskl2J09L72rql8lJaafxKbeTKSDKHdMkW1NpM7aXWfsb6ksrW+t2y3JrMXdfKl8jJ2VqXZHsWtuN4hHPTwlZN0wRngOPxCEzL+q29fDcvHtNQd25dpnk0dUl9GYZhUUfoS2msJNuRyqMpn5bZqksS2r2nVLa2LrX2cWufSravNZ803iUZe+a4dE8zhrG+W2ub9qJ47dTsm2Zu0jqk8ZRst7YdDZr9znuPYRiq5dNxqfkiLWtVY1fTMd3ie0jU9n4pXy5dK6NmXGrrZatePgaxXNo1ZYxZ6KLG3qT0nIsC4ziK+YK+pz56vK8657Db7eZ8p9MJALDf7+dyb9++xX6/n8t98sknc5+fP3+Oly9fzuVDnmma4Nz57HQ6OYzjONftnMPz58/n3/f39wCAZ8+ezfU65+a+hbRwHeQN9yRbEBPkapmfkCcdr8s9g3NoZ02PDxD3o3S2FRkAY5bfLR4Gi8HVxydFspWpDxc4rx1E1+tyud+561Cfdl/WrJ8tfo3Gdqb1nu/FfQac8zCZc7kkc0zQQedcUd977U7vOV3bXGx74nhG3C8tcd7c2rwGOR09n4GA5bwu4zA1JH1N502aY23MK/WDpLGJdTwey/3eLfYWALi9uS3u3VJMIi4z+AnW9p+JtvoA6ViE32FvAoDD4bC4Ph6PmKYJ/sbj7pMJ4fvmxhi4D+9g7g3GcZzHyxiz2qvC2KbzmvM3WuI3sb+Vs3Hp2SL9XYttOufmPCH/wU3n8fCRj3F/gHvYx+NYgXNusfdaa+cxmKZp/j3sBngf5sXM+1hq7yRdsdZm7YJkK1LbnltvI+yiDACM4w5uN6xk0fq0KaW50eSV7E+cpvFlW9dVOi5x/zXng1xfNLGaVhtfyn/ts4V0btXqRTqmtfu5uFq4ztG/x5flz/lBUvz4Gu3Vylwrfqtts+SPSfHM0lyU8m2NVWnQ6kl6pirJoo1xacc+fXaWK186gz0m2rh8i83Rxmxr5TX3cvVeY6/Txklbf7e0WUMbi5bSW+3Q1n5o+6cdx9LeEdul1v0yjZNp2szVkSuT+g/XJFenNGaSTUqJp6yWP+5zi39QG4vc+wHamIuG2c9zazvnnINx8vNWIO/r5GSr9bM2ZrX6JNk0unZNfWytS/IVc/TMeSk+WEOSRWPft/rTOT1qGdt035b2cWm/bJmH3FkpPo/n5G89TwZ5nPM4Hpfy39873N+b6t6fs1HxOJd0Mc7X+kyo5k+07v2aNVPT71qcLSa3H7ac40r9S/eC3N5Qs41bz9pb7J8k/1ab2lI+tLk6w1nA2uUaHOwAM/TGUnTzXpIxRdvPa8UmLvnWNtY5h61bYdx+sH+pTK3nVi3ScxKtH5C25wcPY5blxmGEMfn3BbQxOs1UpmfinC29ht9irYWxa4EkPS/5nmmcS9pXenwSSf81seRUZo1fUxrb3D1JV6X33EpyXCMGkvOdfOEdwDBOtbo0z7WAct9y41eqt2ct91B7BlGipLs53XDOLexG2oTGf9bE81IZY181jvVp9rLs/m6wsIfnZ0JAePZa2i9zz7Ry8mv2gZ44h5QWr4XSc6xVPN36Jn9Do8dhvTi3HIfcWlvqU/ndldz5qCSDVI82vYb++ZaJ/luXT0ltXEzsX6/tchhLAHjY4025rbSdEGeKnz+E/oXf+73HMCz14ObG4ryO1mc6yS6V9Bk462a6Tq9Ji1zAddZr7n7v3qm18bV86zUVX5vs815NXD/eL0r5gHa/WUNtb88946yN1+KeXeeV4g/pvdJzTMmuaONfT/9sar3ua21rn1GV9tt8fofLux5n2a5xRuw525fODHG/ameTWvo159haCzP41XtU8fqM98thGLLtu52HtYco5fxevR2WvnQ+vrn2B6yN45yXtk+LtKU9HYYBZrr4R7NslTi8tC/UYoktvpIUP9aRacfVdUXy6VUtruLE6zpLzyu1daflNT6hlrZzg/TeU7lcqx+heW6Zi1/k2tHUK8mcrjnvMa/XnGzSc70tz/iW7cv7w1lnc3NzneeLJbR7co9eau/HY17Sk8vzl/Wz49p4tewpcTWhmKb/TzBd3/Fc3+v9LsB7/8sA/kkAd3Eyzh7Av26M+Q+MMX2nekIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCvsvgR1A68d7/FQD/OIDXcTLOH0L5VwF8zRjz+96FbIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfJrgR1A24L3/iwB+F4BvxMk4fwjlxwH8N8aYXzXG/IfGmH/KGPMj70JOQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK+kxnftQBPjTHmf3mEaj8G8P24fAAl/DUAvgLgX374D8aYI4APAXwE4C2AwyPIE/De+59+xPq/I/HeN+U3xmxuL9RhjMm2L8nUKmsvUh9b2o/r0PYxTsv9ds4V88f3wz3vffa3dJ2mp3VKdUmylfLFeVr6Kcki5dP0t9T+tYh1/7GRdDVee5qy6Zjl8uTqitNq6ym+nxt7aV2U0uJ647+SrCWbo1n3Lf0Nv3tshNSGVFcpnyRjbbyfEmlcU7nCvdIa05aPGYZh/m3ttNahwnDGumytXdSf6lxtDdVsd639FKntUp2hD5q8ubo1tk9jx1vaabW3qX/SSuvaSfPUrmtINi7c08jQimYv0fZLWpe9smjsamlN1vRKa7fjunv0s7bH5fKl7cT34rW81d8p9SF3T2t7pTGrtZlrq7THt6LR5d62tDajpH+tMtTGMoxdrk1pTyrpW9peuOecU8lSItdn59zCt4/PSt57TNM03wvp0zThdDoBAE6n0/z77u4Ob9++xf39PQDg5cuX+OSTT+Z7H3/88UOZV3j16isLOV69eoU3b9yiz+M44nC4hDWCLNZajOMl5BT8kPh++Bv7KPE4xXlyPnCLbQ3jF9pvLZ/WU7t+zD0pbkvyF+O0ku6m9V3yrHU81LPlDNhzTtH40Nfw+yWf9ly3XKYkV4nUH9XuEbXxH4ahqKd5+aasXavJmFu7ubS4fNx+bCPi9LiO2jkjR9rH2EcwxsDb/HiX/M8cmnmX8pR8mFj30nzxmOXq1ZzNPDyMyc9tTQ9rNq6WXrNXUnrOv4r1JPze7XZz2rNnz7L1ur3DNz/3cpH2vb/lC7AH2207ar+1SHGWVC5r7WJMQ/9Le1KsZ8457MYRbr+Hcxf7+ezFC/iHumKfIvWP0j06tG9uLE7j/SLfzc0egx0We0gpntWiI+k45fpu7VrfY/sm7SWtOt7DYt3Z0P/L/XEcYV3f/w+DVv867Xeqf9pYZGkPaJG5FEvPobXf6b5WqzNtu3dvDsQ69ljxeqndGiX71XPulnyqWt6WWFJu3GNZc/5lT2wqdy3tjxpfKSdHGNd0rKWxzz2T0hDLV5tL7Zldqh+Q15zk60nkxkcTf45Z6FnmvBPsSOt6uUa+LfVo7VJP3KU1/lqKherPoXm0MYBa/Dae49L5NtWl5dlwvWeWKJ1nNWOkOQ+XrmvnM4lc/1r2Ls28xv5kTM9eIyGt63xavY1pmmCm8pmp9Vy5tb/XjD/Num49jFnKZa3FMOb1Sdov0nNIei+ULZ3hr0VPnUGsKx4BZjR+aRzDLFGKc0vk5r1n39LYsThuXqOkL1v2VW3MTWpbU7dkb+Lzc6hPsq052yvFPM/NtsVSc8R+VsibPuOQzkSlvSyNIdTomd+nPFNJ7Unnntb+5N7DCHXWYoHhumWtxfMdy95CyReRziut8X9t22mbi7zOw7lkP3fr/VxL/KwOuKxxya5r5qPkr/X4Yq3np/ie1A/NvpWzg63xhFI7W9b8lrELSKoZdMDYsk6NCHqyfEYgjVG6f8TpvXjrYe2U9W1aYnG1PT+U1+SL2996hs7Nc23upTHeEuPM1ZeeQ1vL566lMXaDh7Wh3w/nQjvADLr4XMtaC+339CsuDwCDN6s4/nkulmnxs5DcOaRF/tY19hTnFg2h762x1vR5UXyde5YUl03PJt57uKMHDjvAe4yj+f/Ze3+Y2ZJtsWtV7d39zTkzc9+9T+89xLMM7xlkCBwY2SKxJWyRIEghIEIGAiQkDEIiIAADOYmRMyQbEgiQEBERBAgSk1gCIxkjEfhZsp59ub535sz5vu5dRdBfddeuXatq1e7+zrkz8/tJc7/dtevPqn+r1lrVp68si5Pnl7OEy1dS5NtvnuXj862M5S6ttFHy9Dy/dl+hlb/X1mnFVGOMEqet76vZG9r9e20PTNO02QM1GXs21p54Zy22LmLXq3lseyTmtR73/NSMUvo/rbub1pzX7pdFbufkpe5XW3yaxR0u+22WsJqPGKPM80EO8/q+0RKzOx6jTNNplf50PEoes+7dy7XuEq5tzVGc29pnpd3yiDj2aB0WW6OXx3J/p9UzGjOxtCMi4jZ7ZP1vgXr7wXq3Vuazrr9W2y35atTOX+fcxqbVCEuUGMPKNl2WRXx4zL2KJmsPLbaxp3wrrRbTacWDLDLt9acTa3/XiUh8/c5It9omI+NnjYf22BNLv1cXLssiYanEIJZFohKDqPnjl/IVuzPU9FG551Mf67bL5XxLz6U/Ua6/bfkcza/L60hyajHTFlqca68NftE57btSTRfXYgW9mMsUnfjivJ2maZPWqkOTs4Y1rm79DrFW/t77qLztPfcaWl2159rnXjut8jUfvBzC1pC+lb3VO8dv8QgRUb4fYW2rrHO03N4yVr/Gagf15nmEVl1qvyp+a/8e5XYv9BZ3lt8nfnQ/giIif06028D7cdnfWEkXETmKyB99/e8tl9/WsgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPg15Mf4IyiJx/9UYL3+7c+x3d6/lQz8+AkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxv+DH/CMqjfyhE+0GTMj0WfwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH7U/Jh/BEX70ZIfQrv8wAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxv+DH/CAo/FPIDIcbPO5XO9X/XJs+Ty6ul70WrQ5Ox1X7+Oca4+Vw+hxCa5RMhhOq72t/8Oa/f2qZWl5anTK+Vr7Wr1dVrs/au91z7XJLmtfxbo1ZXrX853vtrvvTco1enJste9oyZtq7KfJY932rPUt5St6ZLWm1Y93xCW+uttJH+tdZ5DUu/ynSrbCN9KOttYe1XylfWXZtvy+e3ILWxLItpnlv6IZUv5bboCq0ua/qevJqctXK57rXWm//VxqYlj9Z+L09vP4+0b9VDZT3aWh7ZZz0sstXO555ecM5d13lNXs2OsMppfbe33rJ/ljVnWaMj86aNcfncm4sYo0zTVG1/j16xYLHvy7TRedRsyT119MZvTLysAAAgAElEQVSxJXdePq+vJ1NL7vLsa+WrpXvvuzZ5S7ay3bwdbS3W5E2MrDOr7tXGIvU96Z9c5mVZVjLl/Xp5eRERkfP5LM/Pz/LhwwcREXl5eZHn52cREfnFL35xTf/ii3Y/Up9fXl6usvzyl7+Un/zkJ1c5U7r3/irLPM+r+QshXPfvsiyrfuXjWttH5VmrPbe4yJbku5WZpvkqV9nv3B8q0XSU9lnbl5Y1ZfVNWrK069+2ldt31rY1X9qi2y1puXwWO2qU6HO9cNMDmq1r9Tm0Pd6rZ8853Nsbh8NBnMv7czlXp2m6+7zX9mypby3lWzJY40QpT2387z2v03Nrz2t7oFY+Pef6MvfJas/lWX08xquOT/369tsPcjr5lY6r+TD5OCQ9ntJCCBJCaufWtxjrelmrs0yzjFv5Lv/ci7/FGCVIWJ2XIq9n2YtX92Frf+6JzVgobaXR/ZLvsZp+TOexc7e0py++WM2x1rf8jM/1YTgG+TgtWZsix+NRvHjTWGr0bLu+HzMeoxvxRzW9NnbmOlmLoo+TRS+WeWpzuUePj6z30fMjL1/TTy202FkP6xmTp7VstF6cXOujtf0ca1w+9wm0+jXfLK9jlJ5/qaXX/NbeeanpyJTeW/8jNtnePd4qo8lfrpGWHa7Ncd7/0VjJnjPMat/l5/DIOOYy19a/Zd98Svb4S3ve19obPYNGqe0l731Tl7wVtT1u0TfWunp+6yhWO/aRbWjvLH3b6yfVZCj3YPpcxrkece/c8zVyGWcJG1vsFgPJyzuZpkncZLfLrXNp7XOPt9Zzj6y/Zd+24m4lb/U9Bevc7dW3n2osc7T+5fedLTts7zlT+t/3cq/fvVeXW3zR1hrS4kH5OZDyxBiv45bbvS8vL9cY0BdfiHz77SzLcr7m+9v/9z+Q7z7e7gFE1nF57728e/dO5nm+fv7i9RIg9/MvccKb7k/5a/HhEd/NameP0Isz9uzT3rz21no+To+KRz9SP+T3MKW+fKTt0WJURz3Sr99DPk7Ws+MSJ+3XbdWHuU09YouW7zX58zu41vsWWt2t+bPM1b3r33p/Zd3bl+fa+1TPOr0l/7IEiXFrD7e6PDIerf2eiBI3Mjup3/21xkiTyyqvFht5tO8lcjsHtf6UPkl61ujF0EbYWz6/L6oRpyghJH1zaWMJi7jlZg+05NHuBVvz+4izK+2R0ubU1oX2PCK/9fvRNR7te+Ui9+4Z9/j8tXvRRDmWNbs/H4uUFg5RlhQLchfd6L2Ta9bMp9ZssqR/cnu1JktZthU37bG2OdJz9i7e2t9H1ufK/1+ytnZq58SyLLK47RxcWzLKOHoPV8O65vN8o3tMl9MVf+v5e/c3tTZX5Ytz8rIcbmsitdHD6huMxC9r9ZXf326dY6uYl7TvnEf8Ns237dWZ0mr6pkzbs34tNoXle+2t8q2yNz91m6bJrLU/KkM5fjX9XcvXk+0RcbJSr7spyuW7erc80zSJq0xNT8ZebMB6X5in99JG4kSrM3mJr3e3t3zLskhc7Gtkj99ssWHX9kK8yhY6x+yIf2WRtVa/tmZH92tvXPfejSZC2NpxIQSRYFtDIiJBUlyw0PFqHdt1V57H5fl4Op1kkYs9Ffwtf+p+bU2WjMY4rOmj9VvQ5vVid7dlytPy7+b1mJatXXI+n2WRse+a7onZ7bkvSPS+m1dr55F3einfyB1Rq65Ranq8p3/KISrXVcLy/Z6Re+xWml522z/LeWM9G1vlLe084uzrfS83yZOw+yRrWSz3wNq7tS65nbdR0Xu38Utr69N9D+PXkR/rj6D8uGcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg14gf44+g/LXPLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADc+NH9CEqM8S98bhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgxo/uR1Dgh0WMcde7HOfc7nZTWWtbI+0554bqjTGa667VG2PcpKfPeXqMUUIIap3539pzXjaEsMmTt5Xylu2Xn0fa1+qq9Usroz3XZG/VVXufsM6/Jk9NhkeR17ssSzd/a1225B+pN38u90L+uXzuyVmbB4vMo3qlNd+W9kb2f0uGVto9+iWl5/20rItyHi3tlGjt7Dk/rHtytM1WP2t5LDKUhBDEe6/UfWvDOSfee/Fxm7e2j8rPrf731piIiPd+aPzTmuqdx1Y9JFLXnWX5Vnv37GXtXW2ceuUeYSNp7dfGUzuP92KVX9s/97ZfjrFme2j9bek7q261rCXLvrLU27NDenpq73j39EXLPi2frXaPpgs1tHpH1ltPR7ZsyjJfbf20zh2LfrbQOr8t9ZZ5ameJli+vI99z+VymeUpn2Qi9PaWVuaed/LPF18jJfahW3tIHS8/LskgIQT5+/CgiIt9++6386le/EhGRb775JqvBvldSXSIi79+/F5H1WM7zLE9PT9fn4/Eoh8Ph+jk9e++v8+q9v9aRp5d7wHuv7tPafs/XSL7uatNZm+Npmpr198pb8Qe/qX+eZ5nirf1y3+zxB6t9mES839oerbMx0fOppmkynxmtuIOW3tOLe4g+3++Xv9PkxS26virR5Grt+d55qz239LRVr+RVWH24Fj17zWJrtsh1cnk21M7N6OttjsbhyrIWOWv9DyGs1ntpB6U+Wea/lP94DHI8nld1f/nle3l58as0rV/l2rqt5dImqeuJVhsjMSvrvJRnXx5XTJ9DjHI+n1ayPT+/iH9xm/Mm6fzUd4uO2RMrLstqn/N6tXbS59K33tiE13M2yk23TeKyPlt9shQbjGFr35xOJzmEQ9MHstirFj2k6T9tv/d4VJ6c2nzd+p3XtY6TW+IhljG2yrZXH1rKPyK+2CtjibPV3o3Es7QYwUgbo3u81Jv3xP61NZJs61G/WWOPP20ZsxH5LH7nnrqsdSRZ3+quRqTvD4ps96XmKz2qfRH9jswyjqV8LTu6do/Yl7e+7vJ2chlG9eKesbTUn/anZW89Sq6y3nvPG82/eHRsMSfX03tsiXtZxx7GYsH3nMdWucrP1vPQ6p9adHdpu1r6Xe7RUXIbyjkvSS+kdXKzz5IsNrvBkiePebUoY7v3YqmjKbO/fz+U1PRZ77sHuYyPPF9L/ZY+tqbqkTrCmse6V1r6tow7lFhjcqUsLXl6tkfrDL43bjS633LK/dqLcYnU7fYUXyj9vLTe83rzPRBjlNPpdH0OIcj5fJZLdbMkP9I5kacvvpAoUd69e7eKDaTYe2rjeDxu+nY4HFbxkHmer89rfVkfixH74BH7JtHyxco81na1vWORY7R87Y6rTC9lS+3l7Wi6MF9LpW4tZdPuXzS0Mc/vT1rzUspsiQ3dR7FfC9FSm9ZzpdRZFh91T90jY2EduyRH7a7x8m5/PMDSfsvX29t3S5lRW985J+EYZZrWe2c+HsX79VweDkdxYbvmc11w9GG1P0Re9fFhnVYrb8E09/O2P36axE/teGyJ9l0layxwNE5pYcQXrtkczjnTd7DK8q3zv5an1fdH6pF1nLlfV+t7enketbWGD9mK8fZszsudji7PW8baWjjnmufdHrnSEMa4tRcttO4PROo2h3Z/VKuzZt84d7MPvY/inIh3XlJTx+MkMd53pmv9yu2a1jnS1Dfu+j+yMQxkPY/33htYytXScxtj9Hsf5R6vlW+dyaXfqNWt1TXKZkxeYzJO1r557wjZe2+walYuezGR2045Md70VDnvy7I075Cci3I+r7/HcDqLnE6Xz9M0Vf0wqw/d7Kfbfl9q3a+tPWOx1WvfZ2ih2Q7W+6Jevlq6dobv8Xu0PGsbe98dQa5vH3UOpM+t/K18j4pP5nshBOU7wXErR6nTtZhpq4+jsfBWWQ2TfvdR+T7eY/zg0TnKZZtiipPfmKapel486o7nbfz/sTO4F3ft9XG1rpewsbVOpxdxLzZf2TknMZT3u69nUBj/TnTJ7UzVfMB2eUv8bUyet/MVy3m7/KfX2dKZozK+1mrMd5NhFE2Pteqy/LvP0fbzOsNy0e9lm3HZjpt2z5PHzLUyLfvgkX3sEdzWr9X6m96J3K/7rDbv/Tqjb3d9Kr/cYofmz+V3hlMd+V8RfU9M07bf5/Mi5/Pt36m05GrdcV0+J5m2dn4pY4xRzucl69M2tv1j4jHfZAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYCT+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ8VfgQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiv8CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8VubPLQDAPcQYm++dc2/Sbqo3xrirjZ7ctTz5Z0t5a11lWuudiEgIQS0XY7y+T5/L51qZWvmWfFpdmvzlHGl5vPfVPlrbL9NrMlnm0Tm3eZf3QVtzZXrqj3W95eW1ubCuPeu+sO6lkX1W9qMcu9SHMt8etHkZ1Qu5nHtkeYSu2zPflrXYmg8LI/qrfLa2ZSlj0SMpvVZHnl6ba23+W7qtJV9ZPumDHs5d6urtR23MWvtK60O+9qxyJpZlGcrf456ztodVR4zMtXWM723LUm9aF+U6L59HZOq1W67De3ThI/VT75zJ32t2T04p16Nsz9745vtR2/O1vlplGdHRtfGzjF2NWrlS91jnpaaz9shlteFG5760ex6h43r2k9XuLXVET//X9lvvHN27RixoNmWO1qeWbm35Wnm95dim89B7L9M0iYjIPM9yPp9FROTdu3fy8eNHERE5n8/yG7/xG/Kzn/1MREQ+fPggLy8vIiLyD//hP5QPHz681nWSr756JyIiy3KWGEV++tOfyldfzXI8Hq/tPD09yVdffSUiIsfjUZ6enkRE5P3793I4HK6ypPR5nsV7f32Xz385ZvnYprEpx7scs/x9bifk6Xk7t/Njq2t7dmG5Blr2YSu9tlYXv0iMIct7mbt41vdSOX5pjkap9TuEIC7Y7OGeXDUbYST+MTrOZZuPQjufa/s2n2Or73KvTaVRGyfvt3ZQqWdTmlWuVtzGItMI2nor90CS3x+CTJOXvNnD4SCTbPVrKd/o2WLpm/dePcdaMahcx+WxuPQcQpBliXI6nUTkNk4fPnwn5/O0msvac5ItL9tjr58z6rvn/czHIn8+n8/X/Ofz+ZbnfBuT19bl48fvxD271TnqvZd5nq/P0zStzqvemLX619Mfrb7XPms6ppZ2XVPTJM55ce727nA4iNvhn1zlOIZN/+d5Xp0fLR1i8emsa2w9Pvk+ivL8/FGel6lpn+b6I7dVtBjjXq71Tk68z/vmLjZT0G3kt4xZ1D73sNr+eZ5WXNgan6u9G9lLe6n5A5rfP0LpC2r65ZHx4zJ9mrb7Y4TSd+lhPVtHY7E13sImLCnlTD7Zo+pL9Gyxmt9oiQnsGaNaGeec6o+09OeetdfzezY+5OEg3ud6/uLLukac79Ex15Z8LTTfucUjYiPWuxFL2dH4f43RPt0bS22dL62zrNV+q66cci9bscSqevfx92Dt36euq1bnLOHVDrvVeTweZTk4maYoIimvk+PxSbz027bYtK14QE/m2mdLmTy9FW+/fF6XXZZF3DJun2l2dCK3OyxxiVpf9tiNefkaU8zjlTef4LJWokx+Ejc9bk2LbPdkGb+sPY+0c09sQ5PFIk9qN49fW9q39H+PPaG13bqj0H3NcT2q3Yu02qjZdE9PUb76at3+H/2jP5XnZ7fZF5rP3fJ1a+P8CJ/trdjbpnbGP8om7qGtobU+3t/WiEx79IKl/nvstt4dm0a+ZoMP1/ufVGyeZnHz+HkeY5QpOnEul+sSo3zD60gRad+xtNJqpPEp++LcJY63GGIPZdwsz2uxg+6982jFmSw20p74Y0q72QM3pmmS6dD2c44+bHzX4/EoQbEnLN+h0vqRx87ztEv2rX9W9udT0otla3lG69To2Rgtf6yMbda+c1zaPY/wh23cfJiSR8rT00WWONReencipSwlFptUe1/aTy29NmqDO5f25XZurLHRXjwj6aIRu7bmm+n25q2dadreB9U+P2ot5nPRu2+KPopzYZWndyej1jVF8T5Ivues9kZiiuu4RIl296iNbZm/d987cofbivk+iii6PN55cQbbaFWfQQcFHyXNQarOOS8pjHyxnfJ2orpf0/1y2X76+3SMMs8vqzzHw1Fi3GfjafGEyzj25/be2Gnt86i9pemuUb+zPJ8t73qy98677fP4PtPaym2R3NbVZG6N2SPOYosfck88LsYozjh+vfP/EXrhnvLlmXRLFynXSO/MarVtXVeW+vNzvFd2xA7slRspX8PiU7Ta12Jge/zWcIgyTWud/PT0hfiR+Mwhivfru+Xkt23sPrmdXbmsufwptl3Lc3k2i9ZdS5b7p3tp2nfdfbmtS9ur997z1s4DLeZqrdOaxxJD2BM/f6RP14r/jca3cnrr7tH363vN3xEdtddXKuVfliAh3L43J3L5HstZ6jHe1ncfSx9qlNZassYXe4x8b77W5jStfUXnnMzzJKHiL46eeVu74HZXU5MlxijT63c8X1P6nfoB86kiaz8YnHP/mnNuqfx33zfZ7pfr31fk+rc+p1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9xn92B0RaP7n6+fgHUpfrT39qQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbgR1D2E7PnX4cfRYnF38Q/86kFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIEfQbkPJ9sfHflcvKukORH57U8tyK8TMY5NT4xRnBv7TZuyjV6be99b+pLnKZ/zzyGEXXW06m21EWO8fs6fy3rLOmpt9mTRyi/LorbZ66u1/dqz5XNJ7X1Ky9fnnvWq1V/W470X7323nlpdrfWl4Zxb1bWnX6Vsrc9let5e7bkm2z17tURrv1dvL60ly71rR9tvvbEcaaNEq6PVzp79V2vHOq6t97nuKPeyRso3Ml8W3XSpL/9PxImT+PquNwaaLtL6YtULZb5cD9VkmqbJfL5ZsK7ZPft/j27Isa6ZWn5LesmevjzqTLLW13s/qiNremwPrbMjT7euCct4l/0qz9VeXb12e2d0yyax2ktWOVM70zSt0vL56+mkHuXY1nRLaV/W5mPvWhods9Z+33MWW+Xq9bl3lljSW2h7LX323m/mbmQMe7bwXpIMvTOr54PU6innfJ7na54vvvhCRETO57NM0ySHw0FERN69eyfPz88iIvKTn/xETqfTa+mP8pu/ebqWDyHKP/HHfkO++3gbXxGR4/F43Y/H41GOx6OIiBwOh2sb8zxf80zTJN771V7On1O9eV/K+Umf87y1fGX+fNzq6LbuKteAXVgSQrjKPWK3OHfpRz5eVjQfXGNxi4SQ76vbeJR7XLPVrGfCHptGm0/LuLTy36sjW/XsseV7cYey/vKdxW9d57nPDyvTLH7MvbGVGuW+qu2zRYIsyzr9dDpJOG31frnGc/ujJ1cIobkXeusinWPaeZdkCSHI+XzetBnCpZ95PC7GKB+/+06eX9zGlhKRjY7Jn3PdHZd4bTPpp9PpRc6+Pve9/aaduUn2WvlUJsa4ek79mue5up7CMcry9O2qrq+//lL8k1/1MX+u2VS986oVm8j3rBZb0bC0ZWHJzubE4TCLN/gA2nwthyDz/GFV9nA4iI+6TVXWpdndtecWqV7v4+u6vr378suv5HDo7+VclrewCy224L1xhBqPOu/21KutqZaOKMdeO99Km/itYqb32js926V1fu5dD1oMwlpfr5/3xuK0eu/N87nQ1rPV3tljo9b88Vq9vbns7Z1aPss+sMo8wp6Y4TVtdcanJC++YufVaO0layxuRC/06uvZ6pZ7vlZaTx/VdEBpQ4/qzp5ce8/l2v7S9o81vpX/tehDq+zluZa3VZNJq7e1pnJbsOXTfG4eabvUzlnvRZzLxy++3pGntbu2S7zX7fz02aIDR/v1iBhGTffkad77i381efF+PffzfBAf7rtz0sqMxBwSrXNkNAZTyz9LuK6L9Pqmz5z4aRI/1c9NjXvXck9/9s6jvHwtttFqa/Tsq5HrqTKmO4I2Zxb7ROQWL091lXUnWvrv5m/e+lTT29rn2vhpdlzal3meGKMcj1Hm+byq94ungyked6/+uaeue7nHD+it6z3tvHX/9573o7b2aMw1j8OV7x5JeZdStttjbTvZ2uyt98t/eRvu9V7rFo+10PsOzK3+el/z++m9LEuQGPN7o8v94Vna9mq5Dsv19insR6vfpMliGX/nnAQXN/cIL8/P1/FP0/P8/CxTdrdQPavOQc7n9bx9/PhRnufbum7Fukbk1/oU/HZMzuez+PPWZ7Pe3Vn1zaj+vjfuY437jfi+ZZrW//I7bPk9w16Zc2pnwapPPor367U2+UnKrd2yVyyxjZZtuqcv0+QKv+wyltP0Nt/XSPWXtHxjTf/lz61xTe1Z4wclo3aH1pfe/jDvhTlKeB2Si18dVuekJR5U8wssem2PD6lx6dulf8uySDhv56ZVr/deosTXMyFbExJbV+8r0n1ufi6n9LRUNN1vjfk/Mp6+x97R7ttSem1/pblZ+bwxSohBXAiPvyMIIptJi1Fk9f+Rna/V9b+x0L6bluvFq/1cO/djkBDa/lxvLdbzPO4MamGR2bI+Szukdf5oekWLIbfO/dq70qaz3PHk381I1GxsTUfW9F1NHou99hb+qiW2r8lV9te5tp+2J/a0h7eKeejrZdufEIJIGIsz5vTObmu9IZS6yV112D2xpNZeyvO2vl9lbauVtreuln27nctt3kv5ftm0ry911PfHyB3B+uzR7zBqsZNc97TutEp9d0+swurD1dJbfun1fJy267i872nFd7V6tfxTdJu7pNy/0XyC2ryM0poHrV+W7zI759T1cN3Hc3z1gW/vLt8ZG7uzaX1OcmqylH2x3Mta4i8lzjlxU9zkmedZvUsbnVfN7rHEtUt/d70m3VXWZfabsiOy1D73aNkxrfuNR9oGI2Oby2S5f6lRyl420zprtnaTt5j4P1jeLkoEn5rfU9J/8imFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIUfQfkB4Jx7EpF/Weq/Hfv+E4sDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBD+C8j3GOXd0zv0pEfkfROSPpeQi2zefVioAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAx5s8twOfGOfcfi8h/tKdo+dc5tzxGqt2UP4AiIvLzTy7F94AY4653NZxz6udaXc65aro1rZc3f5c/hxCaddX+1p5bbZX5Upt525a6Wu2Xz6nu/Lk1Dta+lIysi3KOtTVSplvarI1T+qvNsRXvb7+LFWMclq+3xqzp5btcjp5MWj5ruZpc2voZ1RVa/TXSWJZy5/Oi6Zp8/dXyWNd8T9ZyjfTWdatdy3pL/dLy9XRvLZ+F1ji19nktrSVjrsu0NjRa7WhyXf4TWb12l/8p9eRI+9r4TtOklm/pkppeKddBbx7uQTvHLetQK99739uPrT5q7Vv3h0UXWJ5bsmk6aq9sLawy3VPnHn1jmY9WWcu6KufGanuU9fTkser0vP2evrTqXa2Omg7bq9NELvZRbiNZ7KOyD5ou6z1b5CvLWPd7q45a+h65rGkWOVplNfteZG3f5u9GdUrPzi7bEWn3NcZYLZO3pe2jsr/e+6odke+3Wp7z+Xz9m96dz+dr+jzf+uWck3l28v7LJ5kPXg6Hw/Vsn+dZ5vkSWsrT8+dpmq7PaU/ldVt0RJ6/HJMR3abbRiIx3t6Ve79VPqd3tuflp2nS956P4ty6/WmaxIX22WnxCS12d5mlZf/ksrR0cdl2z4bU9oi238u+99pv1Vt5u8n7SDuvR68ua1ulHbF+Tnm2ZXrPvRiL1n6+XmqU665lO2pjUD0HJifer+uapkmm4LvnbGvN9SjjCXnMLKWHEFbpy7Ks9PXpdLo+f/vttyIi8vz8LC8vLyIi8qtf/Uq+++67axvL8kH+6X/yt0XkMn7T5OWv/+//QJblcNXdv/mbvynv3r0TEZHj8Xh9fnp6uo7f8Xi85hcROfiY6WURESfeb30+7SwrbSttnq1+ZG3d5eOaE45Bvj28rNb6+/dfynTwzfV+r685Wp81TmOJp9TwfrveJz+Jn9p2a4t1H/1rO5NMk1fzWezgPH9N7rSeanVNQV7P+FRXW/6aHWkd39FxWq1v7yrn/izTrI/dHlm09EfbumVbe/RlYllsV24tX9lyJpX5LWdrfo49Ir6gpfXa35NW2m1lG9o9Sw1r38t1tN8us7driWVo7d1719KSZa/eTjxStnL+rT75qL8/Gr+20ppL7V1uI8R4ORtCCCIhmORq9SVhna/W2afFT611jcZX9pz3Wl1a3S37v7QPRuqtlR8p2/ts1UnpbLfOWUvmmn1jlUVbc7X4Zi+uMuqXp/ZH62thXQs9/1KnHK+xtdc6n+/1IbQ1bsm/F+ecxFcfL2/yEifbrpc9e9dKa/23zqF744Qp/Vbf7XPu05ZxhZrMFu45e8v00jeu+cqW9mpj2dOzerxpLD7Xk21PHmv/cx+wjEf0+pfH30fkrMVJcrQ65ylK+fXEfF2O+BV75G2h2f2PsLlH23+ETqr5SFas5551jDW9OBoDSIz2KfUnhLDqW6ufvfvRkpYNMTqfzjkJrnI2FXE5iw+R6rv4TCL5fcElz20v98Y1jwtbKcd4VGfc5Lz5fcsSJIQ8Xh3k+fmjfHjZ1lX6irU1O03T6qycptl+Vh4AACAASURBVKl6D/joPVr2L8eyBzW/K8b4GlBMc57SL+OWl12Ws4RT2y9cliAxpjHd6sUyXly72xBZ3x+MEqft2luWs4TzvvOzpbtGYkBa/T32joMW87X44KM2RUkrHqm117ovqfr2Uq//EfcRVl9zX5w0iAzcxWp6fCTOPbqGUv7Re4NEeffQ+p71SCzA4g/na897r8YgNJnKOxqRi07xPuW/nIUX3+lWpjdGlrv9kpFYdU3uJFdcYqaXb/Kk72JYfF3n3CXOmJ2nV19KbHshxni5o461O6Lb/ZrlzmQ0hrCH3tmaj0NtPVltmksduVZw2X95nr2xoC2xOPNTmkRtPNdxglxH5/ZeuZZijOIrNqor6rumD/pj1thML8Z779hqe+at1marbS2G0YstW+Pga10j9e+hTOP+TCnjnjixJmetLUv5nk9Q1tk6o8M52bVunSeMrflSxtbn0XOm5XNb1kOv/jwtJVtsH+seH63LFfPxKPbspV8nar5a/m6Fr39vvhXL3qQN1KHZ/lYu9d7st4QW+86pnfMjc9jyh7V8Wls1fzT/3p01PjfiK5Tva99N3NgVmV4ckWuU1h7rxfV7lD5RniYiEl5t7Hx4TqeT+ErMpGarW7HEIm8xm/73jbQ9npetrbP4GjfKqc29JmMN7d/zWvZC7fM6va1b9urh3hrac0dUu3sdXTN7bKerP5e1V8ZUR+qxpffrTevqUvx+3+f7zI/+R1BeeZTV9Dmtr9utygX3mvZ/fh5xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbPAjKDdGfg5H+7GTz/mTOppM//MnlQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAQfgRljfZDIp+q/CPIf4jlVyLyX30uQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACz4zy0APJT0Ayjpx1j+wxjjzz+XMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbmzy3Arxmxn0VEbj8ysrf8W+JE5IOI/Acxxr/yuYX5dcW5yxTGGK/PLWLUpzZ/V+ZrlRtpc+Q5hNCtq1YupWvvauXL5xDCKm8uy0i9ozLnbdXetcZCwzoWFrQ11pPRUn+q2zkn0zSp7SRq68Py7h6cc9W+WPZeyT17qldHnm6RrezXvWsjf/bed+XI2y/z5TqulZajrUUtf5KxJ6emY1p6RaMcr1q7vTHrvSvbb43baPuJkf2Qp1vXlWUtXsZcZPU61s8CkbZ+yNeCtcwovfN1jz5p1dcihLBpb6R8La92XuZpmr5o5euttXvPMYtMo/Vpeq1WtnfO99J7et+SZhnPlr2Zn+N7aJ3xNV3wiLNXG7e8L3vWhtXetuQvuUdH3GPfp7y5nkzztGeMNH3bwqqL79WjFvK9MGKT9561dy19W45lr/9l/hCC2RYqZenNSao3z9fSR2Xd+X6v5ZmmSZZlkXmer+9SW/M8y7IsG1lDiCIS5ePHKM/PIt99993V95jn+Srz4XCQw+EgIiLH4/H6fDgcru1N0ySHw+FaJqXX+lnrd8sGsO6reh1O8iKlLhvx0UqsNn1F0lWby7KILNnbjiy1dk1rfxJxbp1vmiaZwtrf7K37kX1htVlaa6T0h7Xxqe3B1h4Pbmv7ee/N/W/ZGyPrVEvT2rW2IyIyxVMxBlG8d81zp2eP32vj9IgxXuXTzpeaz37b205qYdwQgunsbJ1PqfyyLLIsi5xOp+vn8/ksIiKn02mV/vHjRxEReX5+lpeXl2ueDx8+VPVy3v95nq/r/+npSb766qtr+tdfH+V3f/eiZ733Mk2T/Ok/9ftyXm5lpmm6jt80Tat4RLnHrvN6Wgqde8uvzb1zrhrrKMuM7ou8vtyXzddvGsPc383rOp1eZHnxq3K5LGnPa7Gat7ajWjFSLd+YjP3zxFJ3rOjL2nmq+UdlbHP0jK+lTyHJkNrXbSSRur3d8r819vk2W/u2zJvrg1Y7tXOrla8WU05153rxXjuoF0ux+Ah75qMnm9XWzj/n6d57dY+UZ9Q962mPrrHul7Jfe2OeeR1781l92Nxv2uMr99pvxeetsSCN0T5a00vZNEb3V6vc3vhvvuZ68vT8qdbnaplpEu+3enLPOtJoxeiasu2Mtab8e2Kd2ru9vkdiJGZibfOt7jBb7DlfrOUtde9ZlxbfOJ1JFhl6/nq5V1t2x1v4wL02exyik2m6lY/xEsc6H5xM04vkIszzLD7UbYSRNjVyf7JHK+Zgiadqca6bX3dNuab31qNVJ1vnq5QtP6NrMd6y//ka793B1cnz9W24Vr2tsdmzZqwxwT1nyV45VD/RaF9a72FGxy7FT1q6sEdPf/Xa1z6XdpC2/6368VLf5dkSl9TSrFhs0l772vebRtkbpxmJrzxK1pzROcljoXvoxXOt5UfsE2tei6/cs0mqZSvxFsn2Sllv7xxeliAxrvNc4ibNYit6496LTWnn42hdRx826/r9+y/FT1v53soOL/XwI21FTebR++FLHpFaU7n966f2vHmfbJN1Hk1PamfP3rWgy+XF+f1ngdbmW62ZvX675p/uiaHc4yNazp0Ru7Umf5zWOi5ladmH1j7uGf+ejbhO798tJMo4uZVHrM1769jag/0y98asaneluU/Y8+dF8u+NXL6PEpd4Pf8uxeKqPzXbtGxjxBYZiWmltOa5MkVxbn0OHQ4HceH2ec9cp3FdwiJusfdvWYJY7ojKe7Ra2ylfWa6FNU6U/KtHofpAIV6+o+STPPFig8WQ2XhjdlyPGOrfl05romYHLssii9uWK+eujMEsYX1X7ZyTEIOE0PblW/NaWyuXcSxlPks4u9X3XfK51/R0rR1LHGR0LWr3a718tVhQjUf6yNY2a21b2qyN3R75e/HClgyjecr8LfsjHKJ4v8hF913ez/MsbvCIvzf+Xq4li47rxXpabYeKLtHsgXzuRtdbXr7HWub+WVS2YTk7HiHno7HKbdl7iRDyubrVU7OJRmWtiavPmd3XqdW9LIvEATumtu5750mtfC8tr7dVT+0sCRJffYjbu9PpJP70mPW3LOvv0M1LVO2G/POjuXe/tfyC3KbQZG/5N+29c993JyzvV98FbrRXyjli+8b4anuFel8t81PK1mu/nAst7rXWF+27uF763pibxXZpyXLveaNRu28s/118zj3+UL3O/v3T+t72xw0/gnLjEUvicy+r/1dE/hsR+S9ijH/3M8sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABggh9BEfnv5fLjIVb+rIj8G3L76cH877/+aOE6RBH5RkT+PxH5mzHGv/eJ2wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALibH/2PoMQY/4aI/A1rfuecyOVHUGp1/bUHiQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCj4Uf/Iyjw4yDG2HzXel/y+kM45vp75GXLZ+1dCKFbX16+fG610ZKnlqbJEmO8jlUIoSpL3peU3stXtlHmt/ZT65/2eQ9a/fkaSs/5e+/9avwsbVjXx+dipC+ttNaYps+ttnq64FHppQw1mcq0Wn35XKb8tTWTf+7t4VqZ1phpcrb2mIVyH1hk0d5r639kX3jvq/WX467J30Nbr7X3o+mWPe+9v+bz3ouPUUTy/0SiRHHuIl/6Ly/fk6lkmia1zKie6u2Xt9B72ryOzJ+VfHzv0Zd5We0c2WPztM6kPXpktJ4RvWYps0fPWCj1s1XW2nuLjVLqIU1PWea8tq5rdZXPtbR0JtTsQG0vl+3vOUdr9dZkqz2XZbWx641Tj3t1VVneIkutDyXWNd+aI2v7e2QeSctlq8mY9K11HrW68jNOW2NaO/mZXKPlX9U+hxBkWZbr8/l8FhGR0+kkp9NJRES+++47+fbbb0VE5Oc//7n84he/kD/4gz8QEZFf/OIX1fbev/fyJ//EH1ml/fW//gfy4UN7HT89PYmIyO///u/Lb/3Wb4mIyNdffy3v3r17rfe9xBivY1g+pzlKPpGIvt5KfbNXf+d6qqy7x6gN1yP1wXsvzqWxuLw7Ho8ye1sY7x5bc6uD6+eMpa56fWPzla8La3nNVynrSvuttu+usQofpezaiF+5x15pYdXjtbq18/wyvymviMjWH2i11ZNzxA6y2m2aD9nyG67rwKd6U97LukhrI9dJWl2tvqS1czgcNrqkd57l5TdyZ3Xl+r5MT2dCjFGOxyjv3n27qu+Ld+/kdPLXfuZ9z/t/0UO3/ZaviSc/yzxPWa1Onp6exB2m5rppnc3a+3wMLLZUbselcqlPIQQRL8X8X977aR0TKOXSfK1S5lp/evGeVj9qbVhorV/nnIRs36excNmcW2VYpU/uenZdk6ZJpmCLJ1j1YBn3ydfHpt+n5bonEqfTSU5yq6MWuxjRYbW1kK8DrY4R2zq9n6bJFA/R9lVvj9U+l32xyJyXL8e/xb3rfoRRHz1hiRNq6a0zauRdD0t8xhLn2Zt+79y14ok1ypjlHlslL5/bAdaYa42ybHnWWuyse+OPrfhGrd1R31ZE739ObRwtNn3Nbr+Ha33FeSfiXm2B+trT7iZ7fEqdtrcdq9+rtdHSlfnd7175apRrbnRt9O6BErX4btmuRZaRNT6y5mvyaXMzap9rPlnvrNt7trbOEes5Otpmi3UMJLeZk+/khs4bi1wt22ukHatcPXsyzFG8P63Scv+wJ+OjxqZc03m7tfPHenZZ5LvNv3t1l5w478T7S/o8z+KDGzovHrlmerrYEu+zyKTFZi22gzX+l+fbq9M0GXpyWOtqxeut/n4ttlP6s1r7ioRyPq99reeXIM/PegzXObeJ9WjnosXGK+vuxXzyvI/GEmso11ivXGI0Nmkt35LjrXyyR+nrdN6Mnv2jMSFtXfXK5d+JibKN7dfaSeT+aI0prmNfzonM8yzhUC9n1dE9uVr+e3nvafH7Uz7nZDM+Nf1rtU/2rHcrNZuzdQ75RpyzJ9dVT7+un/JMqNlScWn3azqHqq7X7g7e6nufGz2g3AVZ57L1PbI9MfGS1nk04j+t9IIy5jVq49I7I61+tnaOzPO8K4ae91FkyfJf1nIIoWlv1erfExvT1kHr3AghyLQEiTFs9vVIbDnJYl1no9/Ty+XKuSd+OMXkY9zq3nv+1dJH1rtI2+/e3HlMUbzPdaJ79advddX6kY9XzRa1+hE1GbV4Rk55npS614Wb39vb79e6fBTv12t18pO4yb6upnjxNUXu9WO3tPSSxdd7JOUcqXfyXl+vl3mqf7+n9lxyT8y2rDaEIJoKaK0/7+r/vsDi69d86GGbJ27v7qwxTIuPX/q95buazLX8tTnu9dV6trd0R6t+rf2rPgtBROpza/HbrDGUnJ4NVvs3KK22xvdFfb5rn1dy+dzOuOQ7n8/il/E9+siY2yPt8OqedknfX9+IxK3fqtlOrThES6drc7P93kVe/va8Z1xa622v7TViv1v11UhdXbl9W79b26u9q8+5iKZz9pDbcb34SI+9d6tvhZuilN9lSvc93bKD4+m9l0nCtb183+61863ca8NpsWqRtn+e8uf+wKW+bd2j5H2y/lvA3rsyZlQj+cO1++6rPEuUELb6tdZVy75qfX+5Jl9ed5m/jBeu5bqc3efzWc5iG7O8HevdgcUusJwPe2L6I+y5wxiN3+fzGM7nzbyez2eZG7biJh75+dTpZ2fs5goAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgwfAjKPfxI/79HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMcwf24Bvse4zy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADADwF+BGWc/1FE/vznFgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCHAj+CMkiM8e+JyN/73HLAmhhj9XkPzrlmG736Le3X8sQYN/3IP4cQmvXUytfe9Z5rdZRta+Vrf1uy1fpYa9Par1bdo88laV1o6yNP1+bX+lyWt67pJMM0Tc0yaWy999X0mjz37DFtzMo8e+rN67a0oxFjNJdPco7InJcZabO2rkbGaaT+0TpLOWrplvXdkqm1lyzjkM9Rud41LPuvpg/ytNpzS7aeXqvJkvfH2retvPl/Ik6c5C1qa7Q317ku0WTT0mtnXY1Srnv2v4WWDrScHY+WQUvXZCvnfo++07Dq4V5dpU617nEL987D6BllGYfyuYW2X0b6tWc8tfOuVle5d61jpq2fcr3kdfXOiRLLnu3lsaxzi+0lsp7Pns7bs+5K3a3J2zo7NLnusRvuzdPzNSyU68iiVy11abTmwXs/7HdpTNN0nc8YoxwOBxEReXp6utb39ddfy7IsIiLyu7/7u3I6na6fX15e5Hw+b56de5bf+73nVft/5s/8nnz8eJE/tTlNk0zTJCIih8NB5nmuPqc88zxvyqdn55z63LO/ynGynIl5O7X0Wlst/VBrb5RrfVNZd98+tOhHu29pkLGS3tvPljhBW66+P16rS6s7X2Mqs4j36/fTNIk722TJ29d0Ty1dW3O1eq1yaGW3cyESQuye75Y9YmHUntQ+a3WX+/+yVvN6Lp979ktvnaU85Vk/OhepfAhhExtLn7V5KPXZ8Riv+jelf/HF00oP52U0fVvKuizLZn2cTic5ya2/+TikerU6rfaKxfdtrSfnnCyHIMfjh1X6l19+JdNxXbflnO7JpfnJn4Kez1w7+7z31/VSYvdH83x6PEGTeSSmWtaZy57yTUHEufX8JNulpbe0/vZ0vFa+FVsREYm+LF8/V2tp5V6ryZf31WojWHwViyzJHkxp2niNtl+Tx0Ku41p+Z03mPbRsxdyGv7duzdZtnduWtWCJv1nOxxa1+bfYuJos1hiWVmc+lqV+t9qiWv33UOrCtzpXRvSftay1fIl2R2ip2zp3l7qDLMsi8dVH7tGq+14b/pFY1ojFhxOx9Uera8/ct9iz9nMZa/Z0ma9F3p8lWzP3rvHaZ4sce/TS56KnX0ZltsZpRmLcbdL3KMZlrMllkcNyDltp9T3Z0Ve/Z46vsUuRZN9ffMh+HzR7r2UvjO49LX8IYePn5P7pyBxMcbn29xIvEHHZfWpNLs2XalH6jI+4C7K0ueeM3XNXobXfS9+79lvyjto4+VzY/eFb2TyuX8aGav6Z5b6gNwdaTKeMf/b0bs/HLNtsUZtXi00/Sivm1JLrXl/sUXtzj01mtQEsdyat+qzvH1VmlN5eD1MU79d2/jTP4oMtll2+99f4jW3stLViHRvLvcIenHMyRSfOecmrmOdZlrkf59SeR/vZmz+L3sv1qEVmzXas6c3go3h/lvz8n6ZZvC9tqVn83O7rFJdNjLI1PqVd0dOXlvhVmKM4V9z5NGy8xF67rTa2eUxWa2NPm3m9pU61xsAs7Y/GH7XPe9M1VvdKLkpZ3In9O2Ll+JVr8VFx0ryeaZquOqnMP031+KnmP4/41W8RW9PGZ1FiTssSJITt+reMc2+damu/ZmfW6ukRzlFSFUnmy73mJe18jnI6yVUWjXK/9vy51v6yPN8SG52T7fi0zpko21hBlPjqQxbNNvb95dX6PLJ+J7iF5YxoxUz22KAtLLZDcK96zfn1Oohe5mkWN4+t39L3rvbBO1VP3eST61xfYgXte/VaXTHe9PTK/nA+i0Po67e3JlZ98FG8X/d3ng9XW9gib03+Vru9OJ2lTu1Mb8k7Gut9hH1eSx9ps5a39v2clhyt51odvTOix4jf2MvrZ3m1tdc2gZ+2a2nUb7OU0+zr0VhYSy9W7058eb/uxGf9rrHHF+zrM63/qUz6b7u/LGu5lV6uP0tfamu3to5H9JU1j0XGVFf+7yATIQSRjt7NZQkhFuOT5qFbRbW+Wtl8XstnEZHz+SzhZdnUlTMyRpoPuFcXf2p666pMW5ZF/DlICIuI5Puqfl5ZdbLV1ngEtfo0n6Y992sduEfOkTKajFZadletn+kuLWfq6HSRfb5oywa07J3afiv9jXvurRMj+r3G6PdCrWjrSPu3PdpeH7U5yzZ25zvs30M/NO73kAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADugB9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM8KP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn5X5cwsAsJcYo8QYN+nOuVUea12jZfbm39NuCMFUn3PuWk/+XMs3Itto2716U75e/2vvy7RWHamfrfFLecox0fqSp+dlam3sGUOtnfTZuhZERLyv/86Vlq7JYx2bFr0ye/eRNh/pOcZoWu+aDD0dU5uzVntWWVplLfunJss9bdfq7qXtbV+b016ZWt579HOtfOtzT+7W2WTRN613zrnqWLf2rvdenBOpDXHSrbm+KfVGWXe+PvO8IzpLa+ueuh7FyFqu7dHa+/zzvWtVQ5N1j32kpZX61jo+e99bKe2SPbaeJZ+meyxnwaP0ct5u63OZ1tMxmi6rpVttCwt527X9pOmClF7KEkIYku+tdU2qf2Stj64Vy7lc9rNn8/SojXHPPi7nuUVPt/bK1dDa13R+6+zT2m75ZjV7dZqm6nrPy6d6c/8gX1d5vmVZRERkWZZrntPpJOfzWU6nk4iIfPz4UV5eXkRE5MOHD9fnsHyQ776bXtuIEmOQP/zD7+Tjx4uch8NBREQOh4PM8yW09PT0JE9PT9d2jsfjVcaUJ8Yo8zxXx817v0pP8jvnrmusZ/Ok5xFfaJqieO8267Nn07V4tI4XcVeZLPay5p+P+XbrcbWc87Z613Xeg/Vcs9hyNv1yW3Plfk209KvVPnzEOuv1pxyT9WeRafIyTZOprlqeEb+1Jk/tudUHrQ2dvI24WuOlP62dQa0YTkrz3ndti7K/qa6kE2t6PcZ41cM12RLHQ5DD4eMq7en4JM7VdWRLp5Sf8zqcE5nnWcI8mW3I3jrP9fWI7qmtuXxuL2n5eN3StXHszeE99qO2Rkq/umbjlvlKmuM2TZt14L032c1afy/t7dfr2h4b0XWlfXUQL9O07tPhcJB4mDZ7e++Z8rizbK2H8/lo6TuLr6TZBC2bYsSH6ulqbYxze7Yn74iMljXTu8vIZWrF9Hpy7bEL8jrLtkdjED3ZtTKf0g7WdPeeui3x0VqZkRherU4tXeT+eIkW29HqLc++nHxMrH3W8vTsIGudLftQ24dlvtpz62yO3ksI9fisZf2WMXNLmyW9dfGIs2XURmidaZYY6x57aE/stXdP8Yg2H3GnMeo7t/blqDwj+j5Hs79rzy09YIlZtOQtP1v8qct9V9uPLG2PW/woytqG1e0Q77dt3cuj40dWH7wly+WPu/4VucQC/TRuH1j0h6U+Szyrp/csdV9jtCFe/aX0Oq/jYqu37cnRd634wb32RNnHFO/pydc6i7UyI7Jo9fb6m8tlWUt77OiWPFafIuXJ7QXt7NR8pbztPM88x1f9deMwHySEtQ1cW9+5n6nZBKO6vFaHlvYovTd6XpQyPFr/9ti7R6zv9tQ94l+9NXvjvK0+OefEXe9+1nn2rscpXuyB3HaYpmkTexrBen/Qs3VGuYxDLa19XrbswFr+ngwl9vi+vc7R8Ur5wxzF+9OrXJd30zyL98sq/zzP4kO7DS1GGea6nm/Fqmuy7uXSzrquXlxmT5ujNmHZ3mjca6SNWl17/JhenbUyuX1gGf+8TjVG7bf2jVNs1z2xoZ7f2vKNLbZTWdZyT7Q37vSI/WORocUUbbq4dj9UWzMtPdKKU2vfNWnZrjGIxHP6/sflvyUs4peLXKdTlBDqdmdpk/V0d8/Oq60TdY/IvrlvxhrDVmeHECQu/XWRZA8hFPaK0tbAWqvl/ZzfvU1oPk7++fr9Jl/cL8UoIQZx2feotLos/55j9XkRibGyT2K5niR7Hv+ebM0GK9+X5Uf2g8htjKOkmPeqwtc9O+5P5XXvKduqs6Xje2ekdV/k+dJ3LjR5RNo+bOs8LNfRsiyyONt5NHL3YvVpeuNmjcWN0rNnY8hlaLe7t4+WeGL5XjuvWnZcr431+SwixXdVetT60Zu/kX2R77Gbb3BruxenGLXJy3U9Oi+1eh71biSPXq68bxj0NTb2/O37bNv5Su2tZdDEr82rc7lM9buAnt37qNhh3sbonH+qGFZrLnP5vB+Lu2kxFwt71mvLhhr123prIt2laFhi/Y9gj59f2gtlfF3re+2MzvPm9zO18bfQ25elfbYsoWr/lWbcnu9q7sEy15/63yBq/9bo5qMEWTo+XrlGRGR7H5fZvtZY8MU/erv98X3icf9aDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAH8+cW4PuGc+5/+twyDBBjjP/85xYCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgBT+CMs6fE5H4uYUw4OT7IScAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzI4UdQ9uM+twANfnQ/fhLjpcvOrael/KyR50t19drS2hgtnz5r6T3yfDHGVX3lu1qeWtlee63yWju95xDCqr4QgqnNnqwilzmy5NXWkVbWOmcWmfP+1vDer/6OYFnfvfa1+nJqdWvre5SReW/11ypHXof2rMlY20t7xyHPX2vbsh5aY6DNmVV3jsyLiE1HW9tuyWJ9Pyq/lnf0HNDKjbTfarO3bso8Nbmcc831tSyLVdwrWn2l/tH0UV5+RGe12Kub0riO7i+trto87dVfpYwt9rTRW3u1s3TPOmzV0bNvenWOymaZ13vnqyVLmWdPJrn03gAAIABJREFU3bUyrfa0dfkIRuTvyZHXNU1TNT3XHZa2p2ky5Sv1kOWsz/szskf36qp716XWx73cYwektT+if1t7955zJK2plqwlPTskTyv9oPK51He5H5WXP51O1/SXlxc5n88iIvL8/CwfP36Ub7/9VkREvvvuO/nlL38pIiJ/+Id/eE1flm/ln/uzf2Ql39/6W38gHz60x+53fud3RETkq6++kp/+9KciIvL+/Xv52c9+JiIih8NB3r17J8fjUUTW4+W9V32y1C/v/UaP9/R6Pl7LsmxtufO5ao+ktJ6+rPEY/2e7zvfECVqUOsk5JzKJOOc3+cr915JH8ylG03PZauktvaLpAOv+b62r1Hatvfw8arWtjV3ZVlnfHvn35NXiMKN1Wf3pe2jJp/tG7fO69rllH7bONM0P6p0NIYTmeuidEZfy9n620ss+eB+lVvyR891a69qY9vZt+nuxK9bv9vr1LdnytdMajzSvWp6aPZvK7NFvIiKL9xLj9uxzr3XsibHkNknqyl794b1fnf0aWp/LtdDyh/au1VzGe3DOSfRbObz3zb6X9nHZz3v9jdwm27Me8nfaXrDEux/ha+dY9VR5/vbyi9TPHMuZotWR8ud6vZW3h6Xv1ruHns/Sa79cC3vv9VqM+pu5bI/CYr/3+jpqI5fv9/Z5xBbcK2MvT20fJnlqesW6bsLxIPO8rvvp6Sj+wbZq6ds+Irbbi5H19mNPX+89/0W2+uOedWHlEfHXWh0WO2Tv3s3bLefrEbGq1HZv/fTWZy29N3ZaPKdG6xyo2UR70dZIacc5Jyv/4DI/IrnfGKNICFFkMFb0Vn7wm7btt76o9+07QwsjtlT5uVyLe/qm6cXaeg8hPwdf88panrK6R9gz1jHu6Xvr905E2udNzVe1xugfSdmfe9eipY0cTUfmz3vGohVn6vn68xTF+/Vd/cWHbO+Pcuxy3V3z1dK72nOLvfZPq66yvj17zhqneYu1vFcna/Oi8ajvUPRkKanJpuWvrW+LP6210VoL4RDF+xfJz/TD4SAuG6bWfnsrvZZTznHvOzWfQqYWj/Tf3yJeN9JWL4aR2wPrMrW0ffJqY5DHg6z2dU9HuCnlubU5TZP4qX7XtZee3J/CPh6Ji46+09q4t83Rcpq9EJetHRvCInHZ3qffa6/m7VvPgZSv7JO/xsfv85Otd68t+6YXt63Fy+8558s7+WmaZJra+7n8/qTWfn525HZQ/p3P/F5He07l8r8S83HYjuc0OVmW2/dqat+xydPTZ0s87NE+d6rDey/O7/A1fXyV/ZY2TbP4ud6XeixKi02M6aORsWnOr5LPakO39m7+Ls2/fa+vv6MxekfaWkvRbc/znq6szZHlfCltjBijvJxe5OWlf3bme0mb7+t8LlFiDBLj7d0SFnHL1s7uxQlaMmlx/FIeS/re/W69p0r0ZK7V3YqHJNa6c60XHnEO1+Taw972R8r07Mvg6t83eUTMf28+a7y3tL01+7fWl8UFkdX/z336t3dt2a1yjpbd+qNpjV/OpaQfrPPyFjbxvf9uboR7zl2Ri89V2nbl91x7bW19TnddI1s9cnlfylfPV2+/5uOWWHWxJQ6k5cnvbPb6kp86XrLn3rcX53y0bn7Enc5IP4O3/xvEhPVMLuWo2X5vcW9Qa/P2N9latzzn81n8eTufe+LtWmyoFdtO+bff85Srjk/UfM98nFv/VrAbgxqIvdfmco/P3bJnW9/n7nHzcf11vDSZU72tsQuV72u2/IrPHQv+dYMfQdkPKwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAB8CMo+3n7n6XeDz/QAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3xv4EZT9fKofGrH82Ao/egIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9b+BGUfVh+mOReYvG31fankAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBN4EdQxvlrb1TvFyLyJCLvROQfEZE/IiK/JesfOIlS/1GUvysi/7aI/O03ku3XEueceO9XaTHG6rOWZ6St2nOqy9JWCKErSy1PmS/GWG03hLB6V9aXl6mNU9l2q81WG7V8ZZ5aP1NarW/5s3NuVV57zsnnTMOydnp596ytRLmWR7H0sYY2ZhqWPtbyaHvIUj7GOFQ+ryPl7ZUZkSnl1cbCObepr5a3NZal/FqZZVm6dVnas+ZtjVPtXTl3rXa0PpdtWPStta+1dZXL3Kunl0/Td4l832vjV2N031Y5nzM9HSVGkRCDhOBkWRbxi12n9PpRI++b935Yh03TVK2rpDdWe3VnXr7UD7W1PLKnRs+se9ZD2VZrj1nqGC3fG6NRu65VX89ms8pZnteWed6jo0fr6p2dOVaZtbGtpfXe987RUvdqdqil3T3pPRlr4+S9X+0/zeaw2nitvTx6hmtjXDIyhyP60nomj9hHZZ+suqecw/Q3n5eevWLhUXpZ5CZbCKFqn5Rteu+vNmGZfjqdrmlJrmVZ5OXl5Vrmw4cP8vHjx2v55+dnERGZd0SLjsfjta4vv/xSXl5eRETk/fv38s0334iIyE9+8hN5fn5e9e14PF6f59eGY4yreUpnf25r19aFZb+U66dmi3jvq/vXqq8tWO2/lJT0YatNbd8+wubRxj1/rs1F+azpG+2dhdoeGT0HVV9r3o55CEF89NWx0OoTWZ8d1r62YjUao/tgm9+pe+CtyNuyxMZyWn5zTT+HUJvTKK5ot1avtn5ba6kWGys/53so9/NTrE/ksiZzXZ7Sz6++XZm+LIs8HaN8883zSta///cXeTnd5lfzx6ZpuqbneS+yRzmdzq91iog4eX5+llNcqjZRGcMtfch79JVmE7TmQdsimh5pxZZG5U3ryGq7JB4SB8i4zftN/mmaZKqsyxq1OVsOYeWri1zO9Smu7a4crV9avNcqU+td0m/3jmluf/Xo2eIpNlOWGdHn99goNZvqnlhuqx2rT9aqw5I2imW8rTHD1jmmyaqduWX8bBSLfdQ6w6z7z9qe1ofWuFrsglp5a3x3r16x0NpHVvtx1Ncpy/V0nXVeR23tEb3Qq7NGLTag5SmfQ4gSQi5flPN5EX8+D8vZ0pelnrf4IXv1YC3PW+nLkvXZv23HGnPR8rTOt9a67O0xLb6USPqqN9/aHm3FFGuyi8g1HmJldO2MxOG07zRY9LT1vBqVv2TPes7LpLU7RRHnvOTVHY8HWY5us74Ph1l8XPfv0XZ6ziPOqD36JixRYgyS+wra/Fv35B49oO1/y5naq78nzxRFvE/+8MXv9c5JcJf5nyYvfvKmWEB6rukoa196vmpZfmQf1uLPLd1tPetKmXq0dHjpv92z7+6J5baw2koWWcq1k3RRHhv2fhtbyM+p2hoo46+PiMfca9+PzkerzVFyObT7PpF9Mub1WvK12hnV9/eOz579pbVpiZs8ws/Nz6hyX9TiwDFGccX/16D1u4ZlLK2M5eyxT1rfPcjT9thYLWYJmzrneZZl7t+L7fHhazzaP2n1XYtNtwjz5Z6yjM3UYh21vuTtzLK9b5nnWQ6v412Lx/R8pHFbK/2XyTXP4sO27L26WmOP39K6l9HK9/yxGtY2LOf3o2jdS2iEQxTv1/r3cDiKC+s6R9oXeXz/SjlqOulwOEio6KTvK7UxrPV7miaZprpuyOuqnf2af17al7lui/H2PZKRPRqfRE6HJPPFPp0nJ8mLPhwmCZl+yf3rVqyllqf8XIvZtKjpyzBHmab1vYz3k0w71lyY0r6r2+YWX+Hid27PF20Oe+yNufT0jjVON01TM15QppfnbZxEvA8izq9kcs6Jd15c5Swv69BkznlkTKc1NmV6rNiQ8zzLstTj8JYzv/rdpimKc1u94Hz77G+Rr8nRuwCNnu0wuob36IZaWqtd7d12L9e/B3VPzCCV79WxR/6yjZH2rHVlUlTlqol2r31ppVxvmh9U3gvsm8/t+LbW3541ZGGru9bPo3swxxJbfET8+5FlH+2j7mnrklyPO1jPmpH2t+3tRzv7LX5VGUPq+di1PdE6e90Ur/H+a1q276xxuXvGvLWfHjGXNe7x7fcQlvIO/vV7jAP/Jk2kvxe1vrRikTVb24LFRsqrvtqslfrf6j7RHjMsP8dNzKW06UfZo0dr9+Mj90p74lY9OXv+2WhMexWvnudqjNBn3xEuCYUO+zHDj6AMEmP8C5+qLefcexH5kyLyp0TkXxKRPy8iB1lb/lFE/lER+a9F5N+JMf7VTyUfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAI/jh/FTuD5AY44cY4/8WY/zLMcZ/QS4/dvKXROTncvvJtfQz81+JyH/pnPuLn0VYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnfAjKN8jYow/jzH+pyLyT4nIfyuXHz+J2X9ORP5z59y/+fmkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGP+3ALAODHGn4vIv+qc+5si8p/I5QdQRG4/hPKXnXP/a4zx//pcMn4qYozNzzWcc6YyeXovTy1vq3wIoStnjFGtK5Uv8+Sf8zby8q30vHzZF2t6+rwsi9ovrY+WMS/x/vZbTuXcanXV6tbK1upKeffIW9JaC3nfLHLtbSeVt/YnH6vauDnnVumWPdaiNTe1uWilP0KWWt7e2KW01thZ1q/2bF2/Wr21z1oerS1tLbTqr+Vt5dPelWuuNR6Wfmp6sva+hff+uo9rMmnzaa3/Xm7nxi3NOXeRO3qzHOn80NpI9VrStbScUu+38k/TpMqUMzrmrT1vXevl8972RvWdte7WfsufR/b5SHv36jirDKP5y/5b7UVLH0b1X68fozqmtS+tMmlY9npuE1rOyNJ2aclmWc8tavvMojeSvrLYYfnzHjus15dPuces6/2es3+v7q21adFjvbEe8Qus5adpqvp2SffkeyattfP5fH0+nU5yPB6vefK+Hw4H+fDhg4iIvH///vp8Pp/lu+++ExGReTrLb//2lMkU5Y//8S/l48eLHIfD4SrP09OTiFzW/Lt3767PX3755fX5/fv31+enp6frGX08Hq+yzfO8mas0Fq3xqzGie0t7KE+/hz17a93/9HzTzz3bR6OlY2vt38JMt/K9MRmNDeSUvu+orhsZE6v+S+tucXps4941YmW0ndFxuqyrcg78UEzinrMkxtj1wbRyI3J57y/z5mu2Rj9eaPXntTMqtZ/LI7LW8SGEa10pPf2dpun6zvubvzbPs2prfPGFyBdf/HIl52/89DfkdJpW+qb2rPVPROR4WmSe59d3l7Snpyfxx9tVgyVeV8vbKpPLOWrfrfNvYwCuMoSlvqjZy6M2RWpPl62O1a6slSlxzslyPWeipPNmRK/VbJc8NrA6A5bH6cpHxL9CCBJC2ya8V5aW/ujUuiozItOeO48yvdQ/I4zGBvIyNfvP0s4e7j27Nd88T6/Foh6BZc31/KSa/K3zreyLJRZ/zxzV4iw1/Wc5A5IsPR/wkTGQt/AfLPbYW9mko3pE5DZPrfhhzt71YomHqvPsnXift+tknifxof2ViXtie601W7NvWraOZV9b7aRRfb3HTij70rLVtP1q1X81+6QVryl9BUsbGnvWx0gsydJeTRfv0Q+WPVvGbPbo0j0xOK386Fpep3nZJrfX3b13eCO+tvU7JSJj9mBrXccor3GyfC3V27baxHv2TysemNe3Zz56ayaPFabxeB2x7H3b5r/Xbr03zqKlaWPZs4+saVq799ormo29x4/bY+No+bRnq+3aa7O0D9Jn7+NGX8/zLEvQ7y3LudDstZG10Nt/tdhQiid9irhqq41yTaXPe22+R+35vWfaSBwuUWurHBeLjnhErMayL/foITeFwvYXmSYvfvKr+i3fKXHOycGFzTl+OBwkzHoMrpdmiadYx0tDl6M9frXxb82Jc65q5+zVu9q6s8aPev5VdxwzXZuyXmzf1Mdb3L9cZ7W2yuZye2LEnkn9H72/cVOU7T1QPW5S1j3yvYgevbpGdIqlTa29R+nNGq193fuujlbPqAyWukby3nvO7SFfn49aX3vXzMi4PyI+2IqXJ5/fco7X5Orpw5odW9qUMUaJhyiLT/eXUZy7nLnT69lyPBwlRpt9aaH2/dtWzKlrE4eYnRPb8kP2zvXeeR0r8ZPlvjKv363iE9M0yTQ95v/nes9ZXBtbLWa0d1619sMUxXsn0adxTWdyu558j2s+sCb35fsD6++FeO8lijZ2t/2Q348uyyLLslw/n06n6756eXkREZEvnkS++WbK4g5R/s7f+bD6LlbuP6W9Pc/z1Z/K43HTNFW/Tx0X+73v6L1WL2bbigH38j86Hthb/xZ7vCfjbY9EWdvY9e9ZWeP3Wpm9cu6lFk+457yL8XKGhFCxk8JW37RicKNrrUXvDNawtHXdo5XvKmn+hFWGe3zybWxoW/db2oH3xvX2xnC0fJ/D5q2xFsNV18hF3k8hy2PP+HvKW75/KlLX62GJG51T89Mtcvy68X2QcZRHxL16vt+Ib25pr1Z/KUP++V6/sxej7/XfuTEdb7U9rP6Fte4RuR4Z29F8tr1n7tZ2SZ91+279feL8XndYhB8Uj/GQ4bMQY/zPROSvSOkxiTyJyF91ZeQaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg1xB+JOP7z78nIv9PJf1Pi8i/8ollAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIYfQfmeE2M8ichfEhFXvHIi8u9+coEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4UdQfhj8dyLyq+xzfP37zzrn/sRnkAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDM/LkFgPuJMX50zv0vIvIvyu0HUBJ/TkT+j08u1CcmxrLb9jyW9N7zsiwPkat8Tp/zZxGREMKmTMqTf87zaWXz/Frdlr6U7Vv72KuzldcyvgnnXPX5nrVT1tXKX5uLHnvK7MU5V+3LCNoaLd9pZVP7zrlV/tZ89dZI2afy8z16QaMmk1ZOW5fW+rW6LJTjmj73+m6Zm3v60mpfq9cyLy2ZrPOQ2pmmaUj/5GXzNjT9MU2TWsZSf86oHklnh6Xc6PzVPqd5tfQ1pWtnbqvNXp2PmM9eW7XyLZ2mpVvPUateH9VDI+d4rz1L+j08Sl9a50mr36JXRt+leu8Zt0faWb12Ul1WG+weG7rGp7SprO2O2pcj9Y+ei/fqtNG2y3ofvf9HdWZLL9XeledWqw4rvfKl7RFCqM7h4XColjkcDivf9Xw+y9dffy0iIqfT6bqWXl5e5Hw+v8r0Ij/72TfX9kRE/vF/7Hfk4/PaXhEROR6P1+d3795dn7/44otr/1Ie55zM83yV33vftI2SzN77a1/z81uzaUfm5DI2aXzrc26vR/88Wl9W4lqutv6s8ljkWscIbu9CCOJCe2zy5zRfVkZsotaZoslTex7RV7cy27QeZTva2LTOjD06Jm+nd15cxnWdJ4RFlsWp86r51qmtnn9ejkP6XOo3TeaaDK28dZnW8oysW6sdYjnvtXanaVrp77y+Mk2LxxwPQQ6H71b1Ph2fxLlbm7kezuVqPT/5INO0lnueZwnZ2dAaz1YbtT3aSmuh++HrstM0yRTu/634kbWw1xba68Mm0vpYvL/ue6350fhpCGEo1tviLfzDklzv3FtHj14btXWZ9FIvpl3q31peS7oVi31hjcG1YowjPmrL/rPEElvx2/LMH40htp5baZZ3NRmtNsqj/P1afRa7zqIv9jJqh+a05vfeeJhIXxfsia9reR8xvp8ihjcSMxuZg/a+yu16g5CVOkf0Qu1eo6cLyjL33Iu0GC3f0++PWou98RqpM/ehW+fEI+QcOYdGsPgUj9jzI/uqNyfaWGjxHOs4ab79nnFe+8N1fVDWm+wzq6/Ta9tSPo+/3cNIjCgcg8zz8yrteDyI7/z/a7VsKpFxu7vMr417mW5pR5unVNf0uiacc+J9vDxfSl7LP0LnaXG+Mn10jVv1XdnGqE0/GntM73rnYCv+VObtydyz9VtltXIaeR21u36RrR3cu3+oxX9ijBLC9rtgp9NJTqf2WVTG4jU/whIPtNg3NT3aev+WjPosLaxnvmWMSh45Rpa19paMjHNvbPbaDbd4Sz7//TNLazOdDTneu9W8jdhUtXPgkXPVuku5nG/rsRmNkVvs4bLdHnvPv5H1tc/2v8l0E+sW3/e+PW9TdJs80zRdY+y5zVdbE60Y2kgfyiEtzwK97L5Y9p66Wv0bsaNT/vKOfe/4aW3U3rXyaTbCnj1SlWOK1XlO7Wo+lbU9zdau6Y4xnbCtN7cbrb5Ez460oM1Rzp473facp3NJXr+zqZe1+sCa7VPe4+bv8u9j5s+5DXu1SYPIcr59fyMEkfM5iHst9t3HRZ6f63Zn4uJvredM0wv5mFtjltqZdssXRcRd44QhBHFx+52UsbW0jjXUZNNjJrIqk+8B65yPxnOtfavp0beNP4tczll3fb766NMkXomV9HzNVn/DHP9/9t4m1LZlS9AaETHXPufce997WS9NsvSVYoJWZYoKgogUCpIq/iDYUxvayGpY1RA7NmzYEkFtaCM7IpYg2ihFUBB/GtUQQawClUIFW5qlnSxeWi9fvp97zztn7zVn2Fg71ooZM0bEiDnX3ufe+74vuW/PGTN+RvyNGGPMeVZKCOfnMpe0ECbxD5cyD34pbL7Lu/F58qv1md7t1/TXPM8SY5Q3b6K8e3fO9pXI9773IM+fVxVjcfm+SmRtq4UQrtflXrp+WxWieL+IrL6JCOLDnrV9k+ceeXJasYWWr3qPtvei6fS1rSgi4kw29j1trRLLXrX6Yz05rXoh2SY1+zhfn9o439OHGolt7dWluU64/N32q2zuXr5QjdZ5e9MXL/u+4ei5ZGljtF4tTnsUbbxF6mdUT1SLjNu+bH33dHa4EJt7MWckvj+qIzQ/bU9s7SXmcbSd2r4u4+Ja+Zc8EzT2tFP73irFHbShGdGtR2UcWa+ja6Z8v9iSwfpeSyvfY++3MSk+mvsQ99SpR+uy+r33ZO0bb/8t5ePjkzw+OlVftUhlvPfVb6VijJt/taB90/jKw/K14/jXvfB14X9X0v/BV5UCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgEH4E5dvDDytpTkR+67UFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIEfQfn28L64j89/v//aggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwwfWoB4G78DUr6t/ZHUGKMEmPcpB1hWZZqXdp1nr8mU+86z18rmz+rpdfa75XPy5TXMcZV2jzPUsMyHpaxrN330nvPEs65XXXfI0/qu/f3+Z2pvevaOXeX9u/R3ogsMcZr/rSOtTHI8+Xla9ejcuylJmuelsvQ61frmbaXeuulJ5+WPjqHFlKdWt219NG92VoPFkbLHO1LrrvKMkfPuLKuGEVWVcbL/7T2XKu+GrV+H11L9zhHLHlLOfP7Vh+0+bOWr9VlPUetfe6tvdqz2r1Fn43IlefNz4JWHa09VxtzLX+vPU331mS3prcYncuRNdXbV739oI1Tay5G15xV15e2cEmyxUIIVTmta7iXp7Wu7k3LF7mHDJ/67L93ey9Vr+UcsF7vkcF7v5p/i45KpHJ53uT3xRjlfD5f6pQneXx8vJY5n2f58Y+/lJ9/+SRPT08rX/F0OonIZa99/vnn1+vvfOc7IiIyTdP12nsv7969u8r88PBwlSXfq7kvlev0PWunV8Z73zy3yzNCI4Sg+oItm6j0fUREFher81qLG2h6TfNHe35q9CLOebn9tu6lb2EJeqEXQLODWv52PqZH/IZlWa71p1jJcwvi3G1Nautyjx5orZkjOjPGuNpbeZ3XvbekOc/lCRJCMLed8k3TZNZxlnOspNaXklSvej777Z6urfFyHWnylvnKvVub9zJmluvmlGee582zpKNrdaS/ed/evXPy9PQkIrc19vj0KOfz7ZVAqW81nHPXvP5plnlO43x5fj6fZc6WUS5fbb+mtDIG1ELbF7W9qNqm0yzeu8wXPhYzsHIvG6gXJ+jZG9dxr5x9JbX12sRwTNwzLtc6BxI1/RZCWOmSdN2a/3z+LP5EuT+7sgYn3m9tkZY+KSntGYuPYulzq/wo5VoaiaGNYhmzcl/ec33uPcetMS+tXDpHWueSSNsetMirxS+tevzoe5M9czU6tq14Sy6/Fmep2ayaHTMamyjzWfS0NmYWv2VPe712eizL0vTJRvbYJsYX/Ebneu/v9j6vpDw7ajLleVto8co9MrXkuCe99wN74la98+Oe+jy12UvbE++3vj+w6mVr25Y6Rt+XjLZV6tEWuT4eXS+WcfRzbNphtfTWmtgT77bE2y19v/faz9HOu5Yc5Tq3xOjvccb37HvrWOZ+hHNRXHZWhBDEh5tPmxg9I8uzpxbv3Ust3inSlrfM3zsbX8pu6LW9t86XxrJ/W9e1eH2pc+Z5fo7PxF16sSVzLrs2h5o9q603q311dJ2M2sM128ziQ+614UbyWfZhmiPt+7w9slnmyjpP2l54iXPKdv6WdptuN2q25jq99C3771Zbfd/jh1jnovdeyjmRGNO9iPdOladmk+2dU8sZ3dJxFhvJ4jd08csm7+X+NmYil3HT7MdU5qa383Tbemn1ZWj9+OUqe97WEX+jtRasfRu5btnpo9xjLb80e+KELmzfCT48nMSLb+4p61j03tFZ/c6yzQdxWd3oJR0XAAAgAElEQVTxWe4HWYK+362+ZNm2lZauKb/VsLRfqz/p4lyvXN5f7I9Rtd5NiqzfzaW/tTjmNNX/adG1rrciv3i4vLMMQSSEWU6nIKfnKt69fbj62r24XmrX6ida31201vxyfVe89ln9fFTH9N8lJVZx43jxQfNs0zTJPG3HpqxT88FHfOK9fkVrH1je4WnMYbm8y/VpjuLz39uZa4ld1dLSffl+fDlF8f5xlfd0OonMz99TRCfe5zowXr51mvr7tdyPDw9R3r5d//+9/rVfeyePj/XvT/aeU5c+refoEs+wnf+Jo3Hznr60xMV6aHvsHvGDkf6f3CL199L6OVxy1O8cLTcaC0rUxnYk/izT1veYpkn84q715/qtJqu1rZY9rXHPdyfr/SxitcmP+pG174nKMdXbqZ9nPVl6eY/aZy/xTiu3g7TrGtWxDNt3DZf3j9t+lu9BrWzX0/q6PEfy7/7SXkjvRJdlkWXZxv2XZRFZ7u8j3SN+Vhv3e3Bvn/Bm55dp7fP9qBx7xmXvOVDN/2xj36p0K92uybfnvUptj1r9hpw9seDbd6nb2E6yte4hg+UbWSvWNWldg0NnfqO8JY6sxWpH2i1jED1fYpq2e2GagiyLvj8s+++idxfVtqnZxd77694CkZf5ogc+BX+Tks5KBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArzX8CMq3h39ASf/qVaUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYhB9B+RbgnPs7ROTvEZEoIq54/P+9vkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2pk8tABzDOedE5N+tPZLLj6L8368r0evhnBPnnMQYV2mJPD0nxrh61rrO75dlUeuq1dEqP3qd16XJqD1vXZflY4zXdnvttPKUz/J5Keco3ZfzVc5trV7LvVa3hVo+S1nv178vFWOUEIIqX49lWa51lteW9mv1vTStcaqNQT7fvTG2rHErWltl+kg73vvNOk9zoq3rI7KOyjfaVkuXjuRpYamr1n9L/ZqOydPuMWY9Wn3M93WJpj8t7bS4nKFy/U9ExHknznkJIUiQsGlTq3tZlu78tPrf6uMePVxrq9UP7SyynC8t+UfWZ95+r8/J/rG2YZXHMlbpeauuEZlqfdHm11KvxXZp1WW1D3r5re1p5WpjbD0j8zzaWtL2SKsNyx4ZtS+0/Naz0jl3ta9yGUew7ote/tyGrtGzzUTq4+G9X6WX9YzUW8vbssMtjOiiln63nHUt28yaPmJvWjhq/9TKtM7aVjt5+dyfO5/PIiIyTdP12jl3vRYRmedZXUt5eggip4cgb98Gefv27TV9mqbreL579+66L9+9eyen0+l6nep68+aNhBBkmqarPKmMc27VptUOqsnf2pPlGC2PT9cxScP68eMH+TiHa/25Pa/pWc2fL7HsnVnmax2pmZTfsvdb9PR1jMsuO/4ouR2Uj3PJEVthxI68lpkuNnJZT8++7NbbOO80nVfuiSN6qIw51WSw2OZl+b1rorWuLfZxTm4fVGULUsxpXeZ5ns0y1fZ1mZav8fyML/2pmz6K8vHjx2v6hw8frnXl6bmcefxBROTxo5MPHy55QwjinJMvv/xKzudwzRfC7TqPZ5S6r7R31kPgNmumtY9Tv0ew6D7L+pu9ruPKeE7iHnbmqI+g+YYtmcoyNT11XZeVvuZznstXjr0Ww4h+3CfWsMRIepSx6l66SN12Hom/Wuzr0o5wzlX0kkgIXsISpMfoWXDU9s77eNQnPMpRm8hKzxYvab2zqqHpnlpbR8e4ty/v4SeV7bxG3FVrW6QeI7mnTaOdd7k90pOxrM+aN2HdC6P2dS5DnqfVN0udlj4lfzHlt+4DzZ/M23U+rHRu6t8ePyMv02q7VafWn6N75+gcvCRH2h/VUz2bam+9e/XlvfTsvdq22AsWW6NmVx6Ra4ReTM2+3tZ6LoRtLCCEID5U7GDlHZOIPpajdnPLn7jnnho5/2rlLfOpjVfvHcTR9zq9mNPqrItOvE++sWzKtdZCS9ZUj/YuqOaPaW3U5LaUKc/0e50JLT+7Rc9Gs9pZe9/L9WSq1aed4y1fSWunFvOL8fZtUWkneO8vZdy2TFqjrbHI68vfC5Qx7/w6lzF/r5DH8vM4QV5+nufDNlbed41a3MKSr8Yen8va/h5qcYrae4KRs7e2rjTydV3au9r61dp5CUIIsixLVS/cYq7bs2rUN0r1h7gdr2kKMk/19muU+qTMd6/YpMYtDrz1gy42UN/fa6GdcTV9eQ80G6wmk1a2fV/audt3hCEE8VNvD87PZdb1a2u3JVcNi99TW/veu3qct3GW5XNsXa+WPfeSvpIWI86vtfdkrfujstT0aK+Mxm1djp2vqf6aHXrP/vf26OVxsqXL9DqjPsloes++rO3fVl2lrxBjlBDXfmeyA0PF12i1UxvfZdHfhbV8rt5+udYfFnHu2U5xyTZx4uNFttPpJFFu9mFN9j1rSrNByvvu9/MPUT6EZNveZE7yj6z/5SFKCE/PdxfZHh4exG/+/xlvz8fEzQe9lUk2Rm8eR+MDmp7e69+37lsyNc+L8CyPc89n5+W8ctE/z9M+f6/tg5R27bPP87wf0xzdqnDX/Vqe3S2/3XsvIcSKTTnJshw/Z1Y2e4jX2EbiEs/Y34513+b7dERf5mUt9fcY/f6sdU637K2U7n3NX5hk7tqK4+x53zeyR3t1js5r+XwJsRp7TUmt9/B7GT0XNVrf8vZkXKb6/veN/T8ar02Mvqf0flvHRWcd8xFz2bRzsCVXL4ZxdF1osRXrGlzl81s9cfkGRy9X5l9OUUJ4XKU9PJzEy1ae+bRs8ub2jIhIOC+r8XdOrudXCEGWUxTvH5+ft9vL2Rt73WN7W3zMXr3LwyLvr/bahdxe2/P+pXWunNwi3q/3zsPDgyzKGXw0Rm8t34vV7fnmYNX3yh6o2Zl7+lt+w6XFMjTKZ0fjlt77Sn9tZ+8eWvFMuw+Ql+/HfPr12WSp1an581qdrZhzL57T+x7LSv5NZa19LUaeE0IQ9/z9bo172sHfVl7nK0F4Sf5NEfnH5KKFajvhf3tdcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaY+lng64hz7m8VkT8vIr8t+g+giIj8968kEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwC74EZRBnHN/yydoNojI5yLyAxH5O0XkH3n+z8vlx09ilje//qGI/I+vJCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAu+BGUcf5fWf/QyKfCPf+N2XX+LIrIfxBjnF9VKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEH4EZR9lD868ilIP8TiKmkiIj8UkX/n9cR5fWKM1//K9NHrdL8sy6qudF+2k+fT6tLy589qeWpylvXm9ZWylOOhyVmrq2xHu261l98759S2ezjnruXL9BqafK0ytfJ70mrkbVqutfkREfHeX59p1yK3taCtNyvOuU2ZfC57c9Ajn5d87+1ZJ6NY9cWeujS0edbS97Zn2fsa5ZzW9tNIGyN7r9fmUVoypD20p809451kKfdYCEE9hyyUusDyzHu/0rMx3nT6siy75CjbXJZFvX4pNN1Ve1bLk89Nfj2iOzQ9by3fSy/bKvfbyNlZe5bXp9X1Evq6bKsl1yhHxthab6nf8/PyHufwyJgvyyLOuetes46ZJZ9lfZf0xqmWf4/tZtWjLZ35Ulj0Xm0s5nlu3ics45VkqOnickw0e6V81sqX0kp/QhuL3ry0xtA6p+Wae8nz6AgWfyzvR7ku0rN5ntXr8/lcXU/OOZmmS5jI+yjT9FFELmMVQpTPPztJCOszwnsvIQQREZmm6Vo+v44xbmyCNP4hhKssIQRVd9XOgXRdW8+ar1Q+CyHIyYVM1kv6w8MbcQ83+e+JxSZJtlr5vGXb7DlvWvd76jiC1T864je07LYyX12viYg48d7vPk8scRZtX7dkPsKyzBJj2iPumjbP4zZNrhtqz3L5k+7o1bX3uTbfFznyfO4q25E4kCXvWobbWOXlTqeTiFz01rt376p1a+dCGVs5TbN88cUfrWT4le99Tx6fbvOjzcnaXyzW6mqNXsYz5S91WdlGi5bdUabv1XmXMarnKest+z+6/+4VV7TWrZXR43ztc6ZWb4xxs3fXY7YuF0KQsPjh+RKp22ojujfFNm76rX721das1mZv7VnWSk33z34bhzmfZ4nn4zbIPW3e3IZ7aSwxpPJZPld7fFeNPb7vkXpade6xPzQbqza26dw/av8eGX/LHmullXuspRtbafe2la2+dZmmzfmec2LvGj3aliVePtJ+HksvyWMfpU191StxKc4uJ97pe+sl7O+a/dXrU4176r098d5WzF/zB1rt1t6T9+rI7U2L3Jb39VZG3/GVZXLy8dLm/N6xiZY8o3mO5LfGwffoEsu+CEtP5tSu7R2L9Z3Q6Jqxnkv3OMeX6ba3U1UhBPGhv6+P6Mw9dsievLX3amVdlzlK15ua1Das7zV6a+bo2bPHDtLqKK+1PK0679Wf0Wf3lGVUt5SMvJew6MGHh0VOp6dV2meffybTaeuzlfaCplfyPFb5jtgfmi9u0aO9esv4llZHrS0tXtmLxef3lnM9R/O1j/p/tfu83jzutScOa7GFjpxJWlza6id770V8fpZe0rUzray79l1mGXtNactiX//3jFeMUM67FgeszdnIu91a/eW+tPqrIz5S711DKZ92nzOHWbwv/VG/SdPGspTPFX5nCJPMlW/WSp/XokfuvZYsfSrR3svmOm5Ur90rDpm/i9Hq3zOGlvOrhbbf9uj//P16vtacu7yz94vt+8jWN8fWd6w1eueI9zGbp8vfELxMk76397632Yvl3BxJjzHKJHMx35f3L0E5p/KymmyJUu9a3lnkaP8+IjFPi4QwS4wi7nn+vPfi47Pub7xLt45TzV60nqNd39Jvx2TkbMzzOxflVix9q+LM/ffeV9aCPK+FcFgXlrbmkW/mSlleyte7jKl7NuDWtoXljNL8fq3tyx6Ra1siIt4/n/vP+zFEEee85NVNU5B5ClVd2bKPvV/UNdrStfk3RKWtVevnclrE+1yPRpmmUD0TRnWEVqbmJ+2Ne4y8C7fKZ2nzyLoOUar2o9VWbfESseGSvX3fFZt53gc53jvVV9vTfhkL7J0/e+Kcw30Py/OeTeXXusbaXi9ut8fHD8FV1m/o2rwvEZt7ibEfqW9vjN1l51ae1rJfNn31S7eOa1afp6f1Xv5bw7iZ15WdUtmLent+5XfU0luUNogWV7LEm3JabScb1YWtbZbOxL3fpbdsjJObrzb97Z2/q54HR8+7e3LE5xNJOq60acd13AgtfdiydbT4cZk25lPY7NW9+mvvtx7pWX725LJqNqn1HO3J09KpFns07WPt+5mXsBmrtvWyyLLYdFR/rlZ31W/R13XY7PZfBvgRlH28vCdhI1+9+RcYs4j8izHGr15fJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDH4EZT9fJ1+Pif/AZQoIv9KjPG//YTyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmOFHUL65xOLeicjPReTPxRj/008gDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwC74EZT9lD9C8ilwz3/PIvKfi8i/GmP8/U8oz6szz7OIiMS4nY4Y4yo9XS/LsslXK9O6LvPX2smv87S8/Vobe8rkecq8VrlqY5jjvd+k1fquzUXCOVdN76HlTel5vdY28/SeXNa0RFqbIvWxG6FcszUZyv7ntJ5Zqa2Z2vPafWsu0r1z7nqdp9fq1uatJY8Fy1rqlR3JZ7ku751zpjnP81tlsFDWl89fjZG2enX1ZDnK0bHQ0i3rNZ/XFvncH1mXMUbx3mf7zolzIt55Ee8khCBBglpvb+zT8xBudeTX0zSZ+qLthV4ZTWe25M51nGXOWvVo+87afi29RUtnjazrXA/Xnu3Rq7V9bR3TfMxa42qpVxsj55y6Xizr0jqvrWuLvHmadSxa82llxPYp56tVp1WHjMiV07K7RnV0z2Zu2WijjOyNWlotvVZnbqOm53k/yvHL89+Tckw1H8bCiIw1O8p6Do3U38OiV3tnQs/v0+zGdCanuXbOXa9DCNfxdM7Lw8PHa50xRvnOdz+X0wdRy3vvr/WHEFb15u3m8izLcs1XW5+1Mq29m8Zlr3+UHuV6tJTF4p/10mrp+f08zxLjup15nkVeZkteOXJ2WM5Iq69lOS9a5WttaXL22l+Wpbr/3NKuv9aOtnZK3Zvbzi35E3tttfp+acfBUl5rnCPf45pvr9ktZb+0+JPW97ztMv1SJrV5i8e1YoY1GUr599ik+XXer9T/fJ56532po7Rx1Wyi3tmSnsfHszw+Pj4/uzz/yU9+Ih+n23jn58DDw4OIXHzBJGc+N9oa0WjpYW1tpjNm9stz+duYf/z4UcKTV8dl7T/r51DL1hzJ02NPPKDWbkqqVdfTK7V+R1+24yQEL2HZ6jTLedlbF719F0KQk/jNmihjkD0d3SKv+6j/lRfXhv4e/kdtj4zI3jqjEvfwmfaUGy1TWxstLPuqVaYVs7LKqLXVOgtHsMZne35/r36LDL1nWpzQGrMt67GmW6nZMSPxoNIHasmn6VSL7aCll/5ky9bfEz8dTW/Ncy5nrqNynzX/O4VJQljvLR+ChNPJJI9F7j32ees8s7RvjT1qsQKLLOWzfJ2O+jApvRavaMlf6jWLnhudC6se26ML9+jrI7rz6PvpnFJGre49trq1zdE6LfGb/vqwxbIt66x3zo7o0z26tNfOWr50fXmW+3DWtd/aLy+tO3t5Le8objHCzdNd7a/rHot5WcZmrz/S8re08+Lo2T9aXut/eY6M2D1WemfmaDxDZH3e1fSUZa2GsH0PeInB++aZfMSGq5Ur7a17tlPjqI6w+FEj73hy8rWQnw2aD17ms9hB96a3vmt5y+uSPTH9nu+hlUlotkCMUWQVq+rriJ5PNokX79d7bJpOspza83fPfZBT+pm19xgi6zFarz1bO1YbrtTJtfhbmS9Ps9pTuZ47un41uW469mYTiFy+qartf+scO5ePux4nqPlJWh8S9/xuwYLVDteuyzpqZ0caW01HWGjFY3pr2xqXye+tZ2BpxySsMYCSa198zX69ydNbq0d9yNYctXR5iG7TdgiTTFNdv95zH9zTb87pyWL1C2ocjWtr+8Iavzb5hFldR+Ov+Vj1bNFSf5Tpt78ipb+vzUnvPVDuQ1tI9W3fYzu52Ss3ez//zrZEO/tLubU8VnlrZWrrsDenZT2t+IRzXsT5LC7hxMWLHeCfdaVFT1u+I3bOSXRzV3+Wz1v7WIsXOefE+23Ziy/nq2t9TxzJe1/YwiIil/XkF13v1eawt2Zq9tQ97N+XsKFfQuf3xqf8LmK0fKIVGynz1a5fkpf0dyztWNJzG+ulvvftfU+Y8q/nyGYTlPbw3nlu5XXLvg8SR/bVntidtg5een1bYyZ53CIq/7zYcl5Z+7Ma75Wev72r83P+LdbW71jppc1Zsf7+t9Txmr8SQhiyA7z3q7Nai1u04japvOX7lbUNeEvL+6Ttq178uYZf5GLLZG3m8SNNvl79R2KZLe4WQw9OvK+vN0sb1nEYlavGPc4CF5brPCdC8OJDXy/umeuRMUx13PyjuNkH6V3CPfy116BlX49ijXWX7Vh00kjbzynVGO9rjes3DX4EZR9fh9X0XkT+soj8RRH5C/GX7MdPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg2wM/gjLO73yCNqOIfBSRr0TkpyLyV/nREwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+LbAj6AMEmP8jz+1DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8m/KcWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH65mT61AABHWJZFRERijNe0/Do9L0l5YozX//L78rpWptaeRY68fJm+LMuLtFNe9+qp3TvnpKRXpkbZZqq3VVdLzlK+9DyXt1wHWpstWbU0bY2N5tlLbV5qeH/7zauePOVaydvI67HIUdbVmudUR1lXeW9ZD6Ppo3lK2XIZ9+wrbYydc4f70lojvfVj0QMtcvmdc83yVh3V27/aXOzlaB0WOUeepTqtcrXWT4wil8fPYy+XtHmexc9OvPdXfZGvy3JdWa5LrPm0Mtu+jM1T6k/qn6Z/8jb2yJjKee+rdaQ9krdfW8P3Xtc1GXvplnnSdN6IzK19X9IaK6tdodVbnne1esvrUdulrL/cFyNjXuuvtd3es9pZ3aqnZZPtkaOUQUuz2BpWO6Q1dnn/NLsot7U0Xdqyb7S6auVa6a01Wj5P5ed5btbZa7+sc8867O232r1VLovNZtERe3Rnz8Yty+ftaD5fj9SG9341tzn5GVXmSW0tyyLLssjHDx/l48e1DCEECSFcr6dpul6fTqdqH2OM1zJ5+5rum+f5mn9EV47arla0vZ+Tj9EuOYKIc+t2QggSlmAqPmovbGWsnyu9tT9ix+zxx/tyt9N7z2rtb9dZP76S35dxmhql7m2dF7XxbMUp8nOozbad1liVdWq20zRNQ7Z/Td9ZdK42zjXdN/tZliVKvs6XZRG3tMfe0p7lvkfZbi2eU66DfC3kZ18I475Eaq+lb9+cFnnz5u3zs0va97//fXk8hU09L02M8Tou5/N5df3x40cREXl8fJTz+SzzPEt8E+Xnv/Vxtcd/9n/9WNzHy3pN583bt2+v1+/evVudcXm+HO99td+t/WSxO8v8VhurZevM3j/vA5G0F+Z5FnneM5ru6c3rrZnLHpvnRWTOn7fjVD0sOjDnEmvf1lGToTanVllq5Gusp8dSjCZPv+ilvhyjdknrTLDG5srrWp0WHy5PHz2fa+T6b8RG6LWtnQ3ldSvu02qzt4b3yNxjz14s11rNz83TLXVYyuTcK85hzZ+3ORobfAlfRIvPtPzxnhyW86k2Py/1zqs1R6Nj244PXa8u/5u9m23JUiMf/6Ox0LzOURuyJ18vTZOlJVfPD9Ha681l3k7LNu7J2mM0flurd3SvH4lZH6Xct3t0quUdcW5TWdfakb73/MYa99TRe9dOq65a3tba196JiOzT1xd7uZZm08NazD3H+t3CS+8LjXV/RZyLqzTN98vL72nzKHvGq2WX1uzrPWu+pQu0ekdiSS9Jz68ZeV/SKmvRi7mtEYLbxPzyddnyR4/6PyNzY32u2a012Xu2U+ts3XOOW8/qWj4t/lCuj3usd80naMk7os/LevfE5a1t75FLHUufp93i1X7Zxj8tcntfyr4+H1rx5D2MjrOl/ZTmFxHv3Soe5Zwfjo9ZOeKPv0b9NZ3sgquMkZP1uxTdfsvLeB/E+/U68T7cbbwv7wLCSv6SZVrEe7+y806nk/h4PI7f0ze16xbWuK/FprR891Ni0Q2j38+28lnix9b6XXAbvRdCEB+236wd2WN74m/92LATkXqeWvu1dtI7HI1en+/pV+b7W6s3RCch5GvJycPDg8hprRvKmJPFv+/Nd89/zNss/02DiEj0SQ53DbRdnj2PS+E/XXtYmTstX41yLbXsEo1Lmbjxe73ffivY4prXb+XNbfNyvnQf2KYHWutUe8drHdseR+M51nPvqssKOyv1pfR7qnW4mw7M5VX7PznJv89JeXV/9rZPyj2a79O6/xIv76yzZ4+PT/L46DZt5teXc7zul5Vypm+8yvbneZY4x2t9FrR1dRTL+mnFnzW0s791PSJDWTZvL8TaN8f1NVvTfSPtjtpVFkbGymLjtWKJy2kpzsC1bWr1ba3k9bXWfm/ce/T21cUmX9eXbLW8Latt2GJ03Ca5+C05p9Mky2TTo9b3DXvfxdXa2PN+2dqe+czK6quv68nscznnrn5bTh7HSNzOqTxtK9fWh72dG7e4iazyaOdNarclf+06r7dWz4hf3NI3rbhA8u9LefLvlrXY3p7YzqXM1m7q7e1ebMMSPz3CXj/5+qxjF1u5h9/emzuLPdlr27JfLWvJIkMZAxklj2la9XBrjC3+RaKnu639qn0zO9JuTn/9bL/Tqq3lPeeLC2Fon6SY381XiaVa/6Xidb5GBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDgR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgk8KPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAnZfrUAgDsJcZ4/Zuul2Xp5snTl2XZpNfKlNdlO7U2yzRLvTUZe33PZcn7Y62rJ3sL59xwfVqZWnpKK+vRxrhXj0W+HmVdIYThenvjZkVrp7Y+a2mWcS3TLdctyr7vGYu8TGstWNrv0duHljHI23TOdWWwjlFrHEbHpdWP8n5kj/VkyO9Hx8XaTqlHarpC66N1zFptt3RTrVxeRqNV15jM8fk/kRi3a7rUG6nd1hrVzlRNNq3OXl9a+bxv/8bfsiyrvlnasfZjtHxvvvK1OCrnHvas+fL5kbnU0OyuEXl7urSXP1+rNR1j0e9a26No7bd06pE5OHp2W/TlSJuavrSsPe2+rP+orZb0UKlv5nlWZUmMnBe1dC1/rYxFr48yYp/0ztt8LizzXStfXlv2Qu0csZ69mr6OMcr5fB6uv+Xn9nzV0k9O62+eZzmfz/L4+CgiIh8+fJCf//znIiLy/v17+eqrr1FdC/gAACAASURBVERE5Onp5/K3/8bF17nIHuUv/eUfyS9+EVf9+Pzzz+Wzzz4TEZHT6STv3r27pqfr0+kkDw8Pq+tUfpqmq081TdN1LLz3q/nP90+eJ7+3rPGarXbzo51oU92zL1r5e/GD2prJffsk04guP6Krt+246zl3L1/WIkctvecL5nrliN9Y2sTrvPG6p2pz672XZVmuayBfy9oZU8rSWjOjzPO8arO2lr0P4n0ul5MQpuuerJ29Fr8lYdHBrWdpPNLY9qjFafK6LmtZNuNSjk1vXno2fu0c7K3LXvua7s/1fV5u9uv7tI/zMSpjFtp+WdU7zxJjOm8u43lp+7bel2W5tlPqkD36xOpH9ZhPs/y1P/7Xs7pEfvB3/ZqEp/W6qbU3Gg/R6rDqglq7LX3cGpfN3g/5vr/8naZJfLbOW23U1vm6/fVca7GZFlbdne/NvJ8t+8riYx+Ne2vXZf60HvIsaZ+GZauzS/tw5Mwo14E1Zr5nLCxttGQv7bxaXXvOJItslvp6vs5eLDF8S3taGc23tuhkbb40e8jKyBq2xMlH7XaNe9pjIja5em3W+t/yO8q13FtLlvGt1WvVJa1zsSVjSrfE7FtyFzU+13WrP/nsGr05tMZcrGj7tWTvvLbK9+qt9c05V9XdrXotc9l636mtf+t518Jaxqq3j7ZTK2f1L2rjVbavrd/W+tDmUvObSn8yR9tfpW/X6u/eGIA793Tvuo3RmGS9zratUXuWx8Vq9Y3I0bP1LvO7LbPH3mnpL0tZiy68x54vmaLL4jpRnIvivZf4nBbCJGFqxxA0Wt8zjbLXDt7jj9XOFqu+z/OW9WhxjqenJxEReXp6WsW2P3z4cD2z89jc4+PjKv6e2nt6elrlK/dxmueHh4dr/DqEcNU/p9NJTqfT9T6PH5Wx7LLOWnvlmrbornKNXMZjadqONblGsO4jbV9a/WEtjzUOM7ouLVjn5UhcKzFShzVva7ytPskR3W3haL09/2811r6+Pq17oxZXXVe3tQ2OxgdGYks1XW1p/6abbv1xbq3/XhKL35fkrF2PslenLW6Ryxi1/Cunril9LrZnX0uPtvqg2dqazqmt39ZZNYJqbzf2yOjctJ5P07F/BqHtsZfShZb2R8pc7YUQxbn1eqy9//oUtPzOsMjz+4pbnmmaZA42ue85T1Y9OlqX/s4pr2v97kLbyyGEofOmtBu1byaHYroPUT5OF7vB+XjVhT5e+hNCkFRda7z22Dha/GnUtkp7JRULIYgPt7pH45d5XblubcU2rnb7IuKcX+lp70N3ru/pD1r1eO1Zz37s2fUb/PNY3mFrW/yO2/PV3Up/eh9Xe9a5Zz019f/9SLkHHx4WmaaPq7TPPnsn09TegyNnqPe+agunPu2NZddk2HO2a3lbNm85lz0dOypPq57a/WgbljhL67r3TJOxZyNaKctb7MfyPCvH1xp/3Cv3qI2rvYc6qofrMYa1bHv9gVFZWlzOobLdtR3ZPgPre7S1dkZlLuU76r/ew8/c9i3VuT8OZMlW9023et65rU+Tz2tafzGu2x0508dl3Vf2iK+q7bOaPz/6HrMmXwiysTWnaZKlYjdobfdksJzdvXdBI1jKuuCKfZC+Q/NVeTRqZ/9RfVGrf2/5ax0++bE3cp9iD7X3JSLjcf6NDbjU1uRJ5ob9OaoHen5Tui+/pdbyl+kjOr919mjk+adp2Yz5aTpJjCPxvzrL6STer/tyOp3EN+pZTouEkPbRUHPfOj59dAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+qeFHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCTwo+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCdl+tQCfJtwzjkR+XtF5B8Skb9bRH5DRP5mEflCRD4TkYdXFinGGL/Vc7wsy+pvToxRYoym9FQ+T8/z1eop66yVGbnuyTnPc7NtEZHLEtw+c85Vx6gkL59fxxg397V055wqT28stbnqyVam9eop7zV5am1Y2Vu2lKXVpxqWOS7rs9bdGvNWXeWa0ObCKodFxt5a0bDIn+cr6661VasznydrGe15L29ev/f6757l+kbb+6291dpjNVla+Ub6VEsr9VKZZ2QtW9Z4r6407poeLWmdCxacc+q6z9eA9z7L68Q5Ee+8iHcSQpAgQWKMzXN2lNoa1M621yTf56NzfOSsSLT0Yu/MbLXfenavvdd7nurU9E+pz7Q9kpdv2T0aVh1lGbNSX+Z7ozVfWt3WdEtfR9vI0Wzg8plIXx/snZda+j32mIWyTxYZ8jzlOmjplJoOGelnfi7v0UeWcbfa6/ew30Tq9lbZhvbXKkc51nv2WE0uTc5anhCCqb28rtxP1c4HLd+yLNf0p6cneXx8FBGR8/ksHz58kC+//FJERP7oj/5IfvrTn4qIyO///u/Lz372MxER+ewzL19++YOVbD/96U/l/fv1fvnxj3+s9iXx9u1b+fVf/3UREfne974n3/nOd+S73/2uiIh88cUX8ubNGxEROZ1O8vBwCZt4769j5r2/ngX5epnnWbV3Lfbhdu1ESUktfd9i9IztnT95+WVZNrbTHj05XiZW7ZI9tsNef7DnG/faqul16zhc5iiv113nbZqmLP3WxjRNZv8yMWpvj+jgXmxpns+yLHl9Ueb5LOfzOl9p02nnUMsmyeey1od5nk1jlPyZFvneSWW89xK9bpvV2qld5/lKv9lqt9XWdT4uaa7yfZLPn2aHpnovetRt5PYhiI91+7zUSdr1FN3qXBNxcjqdJE6huRb2xoAstkIrPZdjWeJqvTsnEuPWx6rp5z1yl+XKOiznQNkHTZZ8nFr13tapE5F6LLIld60Ptza3MtXWRCtG1WuvpFVXS6ZRn9kiS95G7bqsa489nfrbG0OtzVr7tTNI88MT5XrT8rXWy1qP1GmdKdq5ZLVZjszzHn/Csq5782q1F2pjUZ499/K3yzPZsubvEWfUGLXbtTPGajNaY3eW+FGPmiz3itHU8lrjB9r5Xo6B1pZmy1vjea376rNsLyQ7wHsvftr3Ov2lY3YlozrK6qO61bj052cPtTNh5MxP+WvnR+tM6a3BFnv62hr/0tdI9v3oub7nvUqpL7z3G9/DihZ/KZ/l7Iljtuoo6a0lzc8LIRQyX3yb8+QkhHVfQpgkTHY71kJPVkvdrb73fLByH1r0aCs20KpbkznVN3Km5XHC/Lnma7far11f4q3JbrnEC5dlkSThPJ8lnvv79sgZUbLH/h/Bur8stlbL1rT6wClGbGlrFMsa6ZUdwboWa+nlGo8xyjRNMoVlsyZCCBu9NRKXtpyXWv5WP6y2y9E4d83XucccH7Ejjpa5d/1H/MmvE/cYy3v2rRafSOlH2BObEKnHs5dl2Zy33sdNzMzCnnjpUT3Qsil6dVplK9tPuuSS5CQ1X5NTe1exsjkXEee85LHYi97ux8ZajNjYLmxlt8bALf649fnXUYeK2PrYO1e1cq/BVXfL11N319jGl9bPL/rK5nuMtDXyvBXnzK97dpGm43I985xyfZdp9acslLF+7X2nRj2u2/cje3ZULa48YnuN+FIb/RfKsd+2n3/z23wPFZx4v64/hCDO3+JsrTjprW2l/o59Ovpu4h75rO2WdfZ8y3Wd9TPL+7rtNRJjrLV3uc7vi2+WltIHqrf/ku8+WmNei9WUOsa5y3csftkfX+jZPCXaO8KjbR7Nv1ev9N9Z53Vc/iabb9Tmssbqc3p281H/dtRXrPUhsYRlozvzPbdXxq8jK903LcW5/ByfDn6TdxRrbE9f/9t4Xv69plafxY5qrQUL1r7tKT9ST5lP77tI0gHaui7ruMrot/KqayTU7YKefZXLdLGJ/MoOmaZJ3Ly1bzWbt6Z7Rud6j91rWRdb3avn1eKxe3y9y37SZba+r9HatMsxHsPRsPtMumz39JuPfutzdI3ujWensiPpmgwj+Lmu44/GpVo60fousVfv3nxH7BX1/cuin9eWb1tSO7embmdF61vopKsv5UVcY5992/lW/0DGa+Gc+zUR+ZdF5M+IyB8vH7++RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8c+BGUgzjn/qyI/Fsi8j2p/+DJp/p5ZX58BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvhHwIyg7cc45EfnzIvI7cvvBkd4PnrzWD5N8qh9eAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIYfQdnP74rIn3m+zn905LV+6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBbAT+CsgPn3D8lIv+StH/8JAq8OPM8S4xRYrwMd/qbrrX0ZVlW9aT7Xr78mXad7pdlWZXXZNGe5+2XfcnL1eqqpTlX/32elKf2vCdrrd2aHDmaHL32tbRUrtVuWXdeJn+m1dHrU6JcL977bp4a3vtNvtr6EdHHs8S6ZrR6a3JbZBlZH3l5y3WrviPpe9d3Tc7e/Ozdt6N11tK1fdGqQ6tPy9+auz19s9CaM+teTrRkbq3F/Lp2Doy0o6HVNc9zt6yISHx6up5T13MrLhKjl3mexc/3n59cttY6763F1loeXVe9+ntz1ltT+Rk7qofL9mpj1ipvrVubi9YctWwHbT5q8rTmyzl3fe69X+nVmk2k2UepfI09NkUpd63u2niN6Ng9dt4RXVdyVD+X/R1tZ+9Zr9lKZZ29dbtn/PJ1sCyLhBCu1xrWcSrLaPfW9athnbOenbLHnj5yJuxt05LXeh5Zz3fLs7KutLaWZVHnOMZ4XXO5DznP87V8CEFOp9M1/d27d/LFF1+IiMiv/uqvytPTk4iI/OZv/qb84he/eK7rF/In/sTTc/uzPD4+yp/8k5/L+/eLnM/n67l+Pp9X7UzTdL1+eHgQEZE3b97Iu3fvRETkdDrJmzdv5M2bNyIiMk3TajyS/N777hinfJodbtWNlzNERJuy1hzne/mea8F7vzljpukkk4TrveYztuS22J2XtG2+kT2fP8vLjug97Yy37O2yHct5rbbv8zm+rJNy3dXq09aF1m7ax6082hz31kJrnYmI+Dlmc5SeBQkhqHPfY6/tG0Iw+VOab9Ei6dLZz7Iscfts2fbT4s+Vz1rrvbaWc32Vl5mmabX+l2W5zplmB5djN8/zZn3M57M8PfVjU6XceTuPj2f5+PFj9lzkpz/9iTw9nK4y5mtnmqbNvtFs9IR1j1lsytWZ/ryn82Leu418Vv/Fsv7yvlp1j2YTt/wei67e5rmNhTUGovq3Psr2/Bjz2Wv9P+pPX/Kuy434fHlbe86Tsp587V7PCl/anu06au1q95pPkufPbcle3lZ6b1/n1Gyoml7UzoSyrpac3zR6Ptco+ThrNlVrLnt2Seu9QdmepqOsa8wiu3XMRuOJozL26jpin1reMeX5U92jsh4Zl6OxqV77vdhOS6a1vzMup3UsLT6MZt+PzJXFftFiDZbYaGsuWzG8Wl17Y3I13zKla+Vr6a2ymkytPlrSy/Kl36fNRa/eUofsiTvk9edyaWWs+/oeZ9fRWF9NhhSv2pK+xbi28hz3cltfaj5LPPtqTKDW9p74hch2PkbLj5SpyXgO82aNeR9M9oH1XK6l187Gnh+Qx0J77PVBr3ES5yX6yxkSwiRhatdX6qTRs9GqfxKW71S0vDW08q110Fpb97ANam1a2jiil8o6e+98RunZpNqZ7H3ljPFBQrDtIyuteWzFDGrXNbQ4kXWeLd/zaTFaTZZy7Vtjg69Ja3xae3/EbkrplvG2MBIvuBcpFlzGvbwPMk1hlZbo6d6TePE+SO5HTNMky1Q/u0fi1iXl/sjfnVmoxX3y67CIOLeuK4TQtUPubetZ6pvneZd9OhY7bOf1/rZ+0vXtWRD7sKx15D3PtT06qvZuoRbTqbWdy78n5tCSSWvzJRmNgWj6otSdo/GDsj3tW6myXNIRud7L69mz1kYYjWeUPnkudxKn5x+MtNnLuyfOVMvXmv+1LXf5DsL7bWwi/0ZgZDzLNrQzfdTPSGVyWynGKG66xTRSP0IIEp713Ok0SYz1M0vTJRq1b+nL56029P4UPl/l+4yy/upaCW5zpnrvxWe2eUu3WrDo5ta45n2w/puGo7rhUGwpPMtfOWtCCOJD+9uIPSzTUozN5TssP/urztrajv62Jwp/orYfR+zpmh6w+l3p/tKntW2nrfMWo+9ULc+09KN+w16fRWvX4nOu6llyH3RbZs95VGt3ZMzvGRPJ67S+r1bT/VZXTdNJgnJ2dOtryFv7N4IarXN871iu1pcv96++L3v2eFm39YzX1nVYtnuh9He1f29Z46gd34sf793v5dodtSlr5+5Vps1ZItezxIwXkcY3m6t2/dqvd+7526zltqYe/LKJF55OJ5HT5Xu0OWxl9j5IbtpY1uJLzPcRNnvjqnNueS42RfsdXUtO7exwzskUt98CTNMks8EOs7axh9F3DFaucnr3HDOp6/ZR/2YP947ftmIwc8XWGjnLWlhjI9YY0WTQ8da6tXZ63y+P1m3hpWJGWoygdQbkNN9z+5pfYbODXylE9rWGH0EZxF0shd/Nk4ossfEMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvgRlHH+aRH5Dbn82In2AyhORL4Skf9ZRP6aiPyRiMwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG/gRlHH+2Upa+kEUJyJ/VUT+NRH5L2KM59cUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JsIP4Iyzj8qlx89SaQfQIki8n+KyG/HGH/0KQT7ZSPGKPM8S4xxlZbutfRlWVbpIiLzPFfbyPPW6rK22ZKlJk95nd+X+ct8zrnNdZmn1YY1r0befi19pP68rvS8rF8bJwtWWfIx995X0/NnKT399d6r81xDW48il/5rY5yTt9EqYxmDGGO1fG2t3ZvWfrtX/a302vqy9DXNd2/d5/XW8tTWWN5+WnPOOVV/lH2pPevt23St7b/evmzJ1cpX0wG9ekeeadTmbc8e6M1J7b527ohs576c8xqtfXxU1+8hhLBJK/tr2eO99X70HNSutTq0dVDumd4a6slXmz/LWPWw7v/as717vyV3re5lWcz9HzmbRs6ukbnq3Y/o3laaVcdoaUex6rWjtMa+Nt+5rdbSlZrMLdu6TNf0t6bLLfVa9VJ5P7KeUvqoDrLYQfn412S2PhvhnnaoNnetvh9tv2bvlpTjmstZ6seUN4RwzTfP80a/9vaGd17evHl/LT9Nk/zqr34m794tq7IhhFWbDw8P1+tpuoScpmm6pk/TJNM0Xe2Ch4eHq0x5XaXtk9sReV9a57CVEKJ4vz3rRs/RMn85bwmLjhAp5yjKsszScBW78rTrHycfo95er5195drVbNWyHYv+tJxLmn1Tl/96t6pvzxjmY6GVb8UEEvn6qvkKtTa1tBiXrE+XtMt6256tFrQzsoyn1Opt7Q+rPzpKr7glbmD1tSx+f6JcB3l57exYlqW5F/J0i61c2lWpzJtpkdPp4Tn98vyLL74jj6ewKVPWWaZrsozsrxG/K/oozonk1S9LFDdov2lnkQWLfVSzw2rttXytnh1dPi7nvNVGXa+IiMRNmjUW1JZ12+earOW55P1SXYejdl1qayQOM/L8dta0fWctRi2yXZ/a2deKbYzGj0s0fVZL996rvpcmS62MJmPP3mqtn1bd++y4dv0j+Xr7qWXfWNpv6YBW3622gnX8RuandQa/ZJwz0fIhLfcjZ4hm0+3xVS26ea9/Zcm/J6Znscm09Bjj7b2dxKudldpZlkVcrMeVrePY6o8Fq01Z1r1n/jQ/rpZ+j5iLRXdb/DnruajZTkf3hJa/9szqH2jvkROabd3rkyX2o5239xyLVpnRmEt5r+nRUf+iNpaXuFVpGzuZppOEWD/zRs7+3pjdM9ZZa9cWwyn34SLGY1xlj73QK+Ocu8YMrb7ZHnvBORFx8vw/a58oyVtbexYdnb/rt8SqtD1qHd98zDS/s2zfci60fI1WucTRs6fVthZn2yPvaIxMpP592h56Y9wqd48y5XroxRwSrTjRHkp9XUvvncM1f1sb29r3DWWZ2vcOR9D84V6eo22U6aVeymWwxLZG274HpV6MbsyeKHVsmV47I8s6W+VF9sUrRNprsSaD9XxrZevFWS0x3pKRfIkQwmosrT5wb//34hyzS3FFfV+kvGHSz4cYo0xxG3edpkmWaXsml/ej8Rhtzc/T8ryObs/fvHkroXi/VJOnlz6ap1dmNEbXK2/bD2O6N/fnymea7tTqstpJ5Vqo2c1bvefE+yAhjNswedtWrPHrknyPpCYv3xqETb1WRuzLe9p+GmUfrP6LhZ6+bpHrxfK6ts9ucbbkF4k4lz+75L/8u4i+3OU41Hz0/J1yGefZE7dzzon4vK21PKUs1fLPeO9FvHv+1iS3U2/xg9L2LMfVOSdhEXEuX2+X7372vKMvsdRR/rsH7fukVl3WOLlJ1ucxjc7LbVy9OOfFO7+Rd0+/63syySwi4lZr1PsydnzRU6WN1jrT01qYwrKxrcv5ru2FkfVflh15Xn7T0atnZJ1aYqY5rW/pa/XmdmMPS/u179RK8vQHN2cxl+e0hweRU9uWz+s64k+OxCf31LWXmgxztg9SUyNno+XsS32oxcFG6t9jW5b5Rm2Znh2qtWexQzXf/nIW5fX15SoZif+N1NPS8y+9Vlts4rTp/DLGUss6bufOOl+y58u6limu7PwYxWz79+Ki63rvp1v2oMm6x0fIcU63tSx1a75POu9LsbV+jNosLfaeyYla7OmILkvlLe+mXgJLTLCWL6dly1r2wWgMrGYD9uqytDFN2/WRx6VKWazvunPbpWcX99h7htzT9kvk74jz+HEtJjgqyzxN4v16rE7TSXwrRjv5tW5/PRX8teN+UZpfApxzPxCRP5ZuZf1mYxaRfz7yAygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABD8CMoY/xtlbT0Yyj/dYzx/3hleQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL7x8CMoY/yxxrP/7NWkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+BbBj6CM8Xnj2f/yalIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8i5g+tQDfMD40nv3Bq0kBV2KM1//y+9Z1uhcRWZZlU18if1bWpeGcW1332nfOife+KosmV8o/Qilz3n5JSivL1PL2xlQbq1p6Pl5WRvPnbeV/y+tUd6o/hFBts5yLVEeeP5HSYozqXO/tT41af3rtaeNRm/vas1Ybvb7t7ftL1ZuorRUtX2tf1WTKZSv1RS29LO+ca+qNsq6afJqsqd4Y42aOe7qgdp+n9eakbK+U26I/LH206Jza+Gn3Fixlcr3SktE5V+1nqX9q5ZdlEefOJpnzenprWyuXmOd5k5bq1dan5RzR9J22R1rro7WXW/OnjXMP65hq4z8yJ7V+5/Vazv2ejK37vN7Wfs7L986Ylo4U0efg6Fha6rScnS3ZW88sZ5KWT7NJ8+vauPbGrHZW1PR+a84te6ZF0p/aWq/JUGvz6F4oZbLqkiRLrscv+tqtzoaezL29mI+Jtq5qetB67lnn28pL1afZG1rbI2eCBe2Ma63P1t7V/LL8Op3D8zzL+XyW8/liCzw+Psrj46OIiHz8+FGenp6e6/nF9TrV9fS4yIcPl7S0VpdluV7nZ+/pdJJpmjbXDw8PMk3TtUwI4Tq+tT1TG4/ct0rtfgpqayeXJY15Waa8tvlebmP/HeUedVnsI62d2tq1zKnlHLfYEa32cxa/FPpAFU1ta5SjcZ/Rc9z7UKzDS1rpW+z1B7T+WM7hFjV5TGMXRLxfrw/v/SY+V97vsRFa/k0ec8rtprKdpEtyXR7jLbaUp5csD8tqnJ1zMs+zxFjO+VYP13zOa77lthfysuX4a/58vkfzejU9V9qVVt+stHu089f7i73Vi8e0ZOrJ1eqjNY7Ua6NVLk+LMcrsvSxLXOm0eZ7FdWzyET0Q43rsR7DYoclWXrdZ2sKX/3QZ1w97MYRa+Z4f09oXua0mks/zc/+WdfkyZtSSq3WvldF8ydp8WHzvlmw1vdXzSe5Jy9Yu73u22p5ze0Q2rf6RmJJW90gb+XnVire22rfaBEfjAzXKtve0oe0lLWbVutfqOWoH78Eq29G6tLNzz1rO03rjn87eq20XJglhvR58COIr50qv/RF5e+W1NTNiJ9TSa2Oc1r8l1tGTe0+ZHE2vWvxkLR7Sip9YzrqyDYvcrXOjpRtzn6v2brnVlxaWdbMsi+kMs8aFLe8ZerFIi+xl/tpeGx8ft7KLb/OW5zvm6x+143P2xGytlH1PTYUwiQ/9fbJXl+X19OyJMo9Vd1v8ybzOm8+7ebra27W9W8pmWePW89CqH1v3vTKvZcfk7R61aVo+fGuOyjpqch3RXTHGlR3d+pZqr++fl+nFJfasM+3ZOrZo81W159Z9qZ39vfotdWt7qzX/eUzs6PyN2nzWMdOuj+iS2n6vjdMeXWKhtt9zfbvq23Szd1IR7736DaDWjq5j3ComqsUWy3Pj3ud33qb1eopOnPOrc26aJpnDvhjHiH4ZXb+W9JE9YjnDb2tpu9bXdbtNfLDcA2n+b6Lr8fSa7JZvwMZYx4nc0tf7tfO6pTct47+SqBOXq7Wfj53WZunztPSSZc3l7eRxBmt/9+rBWh3JxtgQLns7R1trNVr6VZMpv+/tK+368p8uV/ktOeaYRwAAIABJREFUkDbmtb2Y11GLB+bpe+KwFllqbV7+xqouXqb2vtdi2601blmnVvs0xijzaRbv0/ceF50ZQpDwrOPevn1b3X8tm8EST9FkH8UFt3pXLLLeK9q/C2jr4CjluZHK1vRXrt+m6CQEv9oHp9NJ4qm9Fo6cCbWx0/awxaey+l2aLHlfrrHBwje//Je9rzZ+Z22RN7p8LSY5wjWOHBbZ6NcQtt9TJFq+3zRtY3Kn6SQx6t9L1dDOxVtibZ3f+mRpK+/fvez5kfq0vdiq615yjtozIkmvlzE1fZ2M0vt+NKcVB3uJ8bLIskrz9bO69v2vVkdCsy9L3a3Ffax15s9GfZrUrzls938Ik4Spb1fW6tVs5RxrrLn0f5y7zckeW6iWXvsm5wiW9zcjPuTRWEta13l6CJOE09p30WSLMYr4tT2fz0OlF7lk1by5Xkr5VnqpYhOFECQsbf+htg+qe/2OcfERWUoZ5mm52q7PqU0/qRfr7O+r5fkcWOuBPd+V1GxHTa6ezTqavl3P7Xja4ur28ChH/ACrb79nXsv6buMTq+m1s0irp0YvVtKj985Ga6dWf8u3tMSKeu1Z2hlh5L1BzR8N07JJD9MkU+zrxm7aNBW6IIoPQULLtqvEen5ZYRTG+Fnj2cu8oQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiWw4+gjPF7jWe//mpSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfIvgR1DG+H9E5P3zdSye/alXlgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBbwfSpBfgmEWOMzrn/QUT+Sdn+CMo/LiJ/8dWF+iUmxihPT0/X6zy9lrYsi1pPTspXpmtl039lO5b2y7JaX1rypnvnXFfeXr1any1jUUOTyfvb7y/ldbf6UBsf51xTtry+kfHZk78kn3Pvvbr+7tnmKOX4aWupNca99dqbI00uS5pFplZaK718ruWryaXt0RH58rnQ+t7aO3l5bV7z+xjj6j7fo3l+yzj21kSt/VYfSzl77WtttNrd24Y2B9qZVObJ9UJtzHt7T2uzN7beewkhiHNenBNJWdJ6896Ljxd5kozWPWiZi9p6TWnl2FnWk/W83oMmd23tpPuenBabpVW+JVeLml4QGZ/jss5UrraGy7Zb1Maup4NTOS3PSJ8s53Sr/nJPWijn1KoXremW9VVbV2UeTZZeusWmzdNDCGr7NTl755qFtG7z+T9qc+TsWVfzPK/unXPdeiznfWuNlOW1MS73ec+/6s3JiG4u67T4di07reaHtWiNcZmmjV8pR2tuNBk0ebR+pXE6n89yPp9FROTx8VEeHx/l48ePIiLy8eNH+fDhg4iIvH//Xt6/v/zu6+k0y/v3l325LJe6/vqPvpSnJy/eezmdTs/5TvL27durLHn/03UIoXlO5GXyfHn53plcMqKXL+Mmkod5lmUx6YZRXVSz72u6qJBwVZ/V3tZkbKXf1tD2vBg9ay3jr/kxrfOqJcdIX1t+b97fWr5lWcQtt/R87np2S22N18pZzhCrv9VjWunOW/meHqvZlCO6PZ39qb1aG3ndZf21tvJz1GKnpnz5nKZ6yzPZ6ttrdneLVr/SOHnvZZqmTTv5+JRj9XBaxPv3q7QkVzoXYoyrvqbrp6en6/U8z6u63y0iP//5z5/76SUEL3/4h38oTw/TVd5pmq5jn/R4ui+ve/ZdbxxH9OLsF1mWXM85medFZD3dLxZP0PRpjVG/b8QGjt5nfbikhxDEG+3X2tx4X/o0IiF4CUvYlM9l3mPH5zK0z6JNi822Rn06772q11vtpPS8D2W2sm5rvSL7/JCy7R7WNix1HcVqd7fy5CzLsiuesNcu663F2lh776u2StKpmq+fn72afHvs69KG08Zi9H2JVteeGJbVXtPasMZjtDGwxnlGY5habKrW3pG9bT1rR23CPXrfgmYfiYgs3j3bAlnaPIvbsSY122UkRmCJn5Xs8bVqzyx90fKP1GWRs4xn5NctP69nL/X26MjZ3aKle7X8ZftanK4so92X9fQIIZj2tsWf1p614m9H4/FWeXr7almWLC50YZ5nmWcnMa5lnOdZZN533lvnb6TOhPUsseqYPC6UHi/LInHeZFXfJ9eua22OxHs0vVTqEa1PLR1dXoeY+6kiIu7yf51ps8YNan0ciWWOktuOtba1+73U2trro9TGxXLmjMYXtLVTyp3iglbKPeIzX7yUZyS+GMI6xphs/bD4TV9GYws9avE2rY1SDutZo53TPX9lJH00zwiWeNayLKaYZaKX12KH1Oyush2LLiplGT2H9+TbE6cWETm7eesPLIvMhjigTb74XN/2kNxjx90D69lzGZdj/qi1/ZdEsyX22I15Pc45iW65nv2p6lKPpzote/Qm3tbvyWXr2U+W9arr3DJ2ezk7tLZabZbylzKO6LDWGWGJr2hj0ouDWdrbG+/T6j6yNi35L2NfS2vHuUb1sOb3WSl1pPfbsQkhNOdwxJ9P6fl7qbItK5r/b5UlPUvrIS8eo208rWdx7Xys7anc9rKuxfBwm5/gl+u3qOFZz5ymk8TYj0XujSdpWOKfzjkR78S50lYPMk3jeiOr+XrVsrc2sqz+rp/1bIgje28vI/GjEVZz55fns9jJZVzjdTxc9u5sNAav+Sq3Z7r/UdOvNVKcSePaj4avo9nn+XsV6/dXUsQyeu8eW/VZ8+5ZC6050mJAvbrS9Uh8tmXDW+Kouc1XG4a9sdhEze9otWGhtE8sMoqM2WR63rXua63Pe8ZSR6nFt/fadNFv9U3NJm/Jcu++XXXMHIs9cPve80ibR31Eq61l2VP3iF80xyJs7YsQgvh5YPzCwBnh8/vbWZHvo9zObndxPU49W7s2/rUy5Z7esx6OnCuNWjf9vGcMdZq2fW99P33vOJF2Xo7+WzWr73Nl2sZHpmmSYPALrDLVZByl7JcWi+7Vf7MPU//iag+OxgPvraPKay1W8JJxyhohhFf5t9WttavNeavMRe7j379t58JtdPfmvYov5lNed86+Trz8F4jfPv6r4j7K5dT/Z5xzbz6BPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9o+BGUcf6CiPyskv43isife2VZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvvHwIyiDxBi/EpHfFRGXJz/f/xvOuT/1SQQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4hjJ9agG+ofzbIvI7IvKDLC2KyBci8l865347xvgHn0SyXzKccxJjvN7HGK/3MUZZlmVTpsxT/i3ry//W0pdlubZTa69GWV/Zp5QnXVvKl7KPtm8te7Rcnl/rX4uyzJ46arLk92W6ZV69X/+mlHNOQgjX+tJz6xqpydFKr62XlM86Rlr/rXWMzkVtr4n0x0hrJ08fGbseln6VesXafr7f87Ramy3ZtX1Vpmtj3qu/9/zIPhyRxZJe9jNH2yNWrDq5li+f17Rfk17I18yIjjjEPEuMy/N/spIjP9csZ+I9sOirUs/es13Ls9b+sdSZ9y1dl397dbfYYwPk67LcO8uyrOa8JmteX23v1XRcrY5anj1j3Mrf01Mt3dFqv9X/URnza+uZVts7LZuglabpnzx9xA6rrfm83dZ51ZKzpouWZVnpiKO61LIeLfaIyEV3afLU9phV9tYaObJHWmtxnmezDCMyW+3MXB7tTOitpRF7UaurJ29tXlt6qLQREt57de8uy6LOWb6G8v2Wxuzh4WGVzzkn0zRd20z5nHuU0+lS/ny+zP00BZnnS135ekhlTqfTNf3p6emaPk3T1TdalkXO5/PqXMn7oumI2nyU66KlP2y+0e1ZPhZ70OyGWj9qevaSr627R/TpSAzgMt61tLE4wohNr81h+bxHz17TfKKeDls3f9kDaU2LrHWSdUzK/arl28pi00e5TJp/cs27nM1jXKs/xrjZL5b5T/3X9F2p83PdZ5WtJPk6tbOzvw7WY3/EdtTylOdFuUZqOr5VV96v9HdeZplnt6orH7O0th8eHq5pSVenfG/Oi7z7g/Pq2Xe/+115PIWqfi/x3h+O4Wh7obtHgoj3TtY633V1/pG4WK2ve+y1VNfR8bqtiyTLJX1ZFnEdW7S1dxYfZVnWz+d5EVmbkIdjSLW2S9mu6/vpEvtY/579TQ5rzK8VD+qd+ZZ1UZOlZ4v0fDOL7tHKlmk9myPd71mbIuvzoCZH70zv2fmlH1O2VfY/P+NzqmuskKnWjqZvc3t8lKM+r8WfSmjx6165Xru981prq9XeiG9s9et6+yM/H3NeK8bb8odE1naU9r60Vbfl2cqurOytmk3Si7NYz05tf+Vs0p2XcqhK31Jrr5RNw6qDWzGY2hocsUFHdUzvvCvl1fKMPrPka+3Hlm6q5W3NTe08GvFRa2u4taZqZ3/KdySW3dKFe2JzvThGr/1EGb9t0dOho7Z0jbwvR+uzxsgTe+auFf8e/Qaha5uFRZYlinO5rzCLj9vYh9VP7+kXLd8tTulWusCiZ3v2dou2TtPLlXbTqJ2nlbPohVZ9lvEasV0s/vMRHZOn9/Sttd5avy17v+Z3aXHA0bHdq3tK26rEut41G86SX5Mr/5tora18j+ftaPK0/GCLbt0z5nv8XIsPnvude9a09ixfG1Y7xrpHLXlG9XOv/cReHeX9Vn+OngmpzO1vu749/oLF77bWfyTu1tItRzlyjrXQbHdNP4zo/ny+r9VV0izvE9drsX4mWe2H0Tiebl+057ynY8u08nzM29X2cG+dlzbQ3nV0T3vfss7K9lv3qZ49cSTN1yib6M2xpoesbY7o1bb90i9v9cVH26/V1zvfLLqllmcbL+uKJCLbmMWorsi/Yy/fNY6MWyo/u1mWZZZliRJDvH4DIpdXh/KLD7+Qx8e6js770DpH9+z59C6gtCnLOM263bqetPoiIYg4l/p0SSvPBk0Xt2wMC9Z4RM3G6O0HzQfP67mX3VD6OLO/xCWiW0QkZnlExKDXy/72+mw/K/LxjlX9t/ddQQhBwlJ/R1bm6+VJadHX4yz3eCd+byz7zeo33luOMj7XK98avlEdV8YCLTFAi32i5d8j4314GR/kXpRnyPG6bPVYYiOWOS7Xi80+rbfXknHU5u9h2eO998kjvOR6t46hiIiErX7TdPfaZ3XVvBdfdG2nTNMky3Q5T9y0XJ8f6Yd1/FrxyJ4OPsKln/Uz8R7nyeg3/3va1N6xjeqE0TI9O2o1riHZ91mSYuNYsfgqLRk1O7ZXl6VNN5Vz4tT+Wr5pKPNpMu9ZP9sY6bOsyrdRIvb1tCee0fNrW2vUapuVfbPMbcpzOs2bcZ6mIDHq46WxGccQNno3hCC++K7t1f5N6TeM+3sAvwTEGH8hIv+cbD7hlSgivyUi/6tz7u9/dcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+gfAjKDuJMf4lEfmztUci8gMR+Z+cc/+Nc+4fds5NrysdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADANwd+nOMAMcb/yDkXROTfE5GQPxIRJyL/xPN/H5xzf0VE/oqI/KGI/EREfiYiyyvI+J+8dBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABH4EdQDhJj/A+dc78nIv+diDzkj+TyQygiIu9E5E8///fa8CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwtYYfQTmIc+43ReRfF5E3sv7hE3m+v2Z9Tbkq7X8rmedZYowyz3P1eYxxcx1j3FzX8omILMuyKZPSyuseeZsj6enaOVfNl9LL61reMl/eL+ecOg4WWnJZ0lvt3kO2vN28fEpvjaP3Xq07rYGRtdCSs3Vfk62VnsutjV9t/dXSauOU16/J1Zqr1phb0NZcbb9Y9lnex9E1VtaVxqasyzlX3X+Wflnlb5HLU9bb63OrfsvarZWp1an1KcZoWnN7ZLPomDyPJnt6VjtHctlb+sJ7v1oj99Ato9TWQ2+t7dnDGrXzrqfDtTV3ZF239p6W17Kuy/uRM2ekXmv5cl3XdES+LvNnpX2kybPXJtDyanPTs6Ws9e+VxdqWJpelX2V7lv14ZFx69dWul2VR17Hl7C/HwbIXNR1r3U+lrrWMs5WWHq/ZVyEENb9lj2l+Q26DlO3X6i6f9+TZs65qfkhZT+mD5TbWHvtzBE0/1+w7y/hpZ1bLJtTWT82nFbn4x6nMPM9yPp+v1x8/fhQRkffv38uXX34pX331lYiI/OxnP5Mf/ehHIiLywx/+8Frms8+8/Om/7werdn/v935f3r9v2yZffPGFiIh8//vfl1/5lV8REZHvfOc78t3vfldERN69eyfv3r27+vDTNMnDw8P1OmGxndL51PNbNFprxWIfj9Zpybue10ta2ZVWH+/hh1/2l6zab+05DU3HpLntxRB6doQmf6tMT1dpaXlyqlqb6559mujZ+ZZ6Ws+0OFmtDT+fr/KktGVZZFmWw756S8beOV2eAa12csr8eTvee4l+a7PX1nhL9prtW5ZpxVtKOfO8eSwyxT3LNtP81Mok5nmWaZrlw4cPq2c//YnIh483mb331zHy3l9tkRDCNX2apq4PfD6fZQlutcdzfXVkj5d9q93X2inbuIzVek/X6rDKMCKvtYzF9+3FJCxpZ+c2e2WeZ5GO7ijryuuYz0s25nZ5anslv2/ZsKXfmsqkdXwSL86tdY33bmXX1epqxRi0M8cSl2j7fNuxdZ2QUEvfjfBasadSvjQeab6s67eWXurXUveX6bW5t9hLuV9iGbcyz5GxHpnflv08iuZ31trY64tpYz/q099Lh2to+z23u0ZtJ8v5ltK1GJRlPeexBs0escpYPtPqsNpWe2z3PbGfehu3+l3WTku/Ws7hvXEki32pvcvYGxvKy9RsypJW3M5S5sg+7ZXtnRll/8uxtLx/2mO7jpwzVlq6w7JGrbpHxPZuxuqb1Xygvf6ABeecQUfMUtphl/iak2Updc8sMkd1j9VkHolT1eRft79936hdl5Q+7Dr+tL5e3CLLMkuMt3wfPnwQ/1ivv7Sv8r81/7BFucZ651Srz9Z1XSMfr639v/aj8/bydZ3fW85ba4ykJlMudy9Pkq9sM4Swaz9a9mbLBtDim0feyZRjX9ruo3Z1aQdYzssRWUuZW+Rxu3K/tPxVre28vh4tH0g7Q51zm3delnNFk3dUR9Tk6eXR5NJk6uVpMdL/FlZbSzuTRn2Qkbq1Nkb1yEjdI/5hre3WOk9771b1WL9r5DrvXnbzXnJZWvbOnncXo/s1r2PkfNJkGx2zm86J5YNrWox9e3jd/jouXdoO9TKyel7ThWXeGmluXfbur9Wepc495Wtn15E2tLpa8eReXbV8R3zV8rnlukzr+bp6u/26LXL02jqiAyu1NZ9q68oSD9hDa7/1dKQlBhCWy/uKnBBC9Zsh7Tsii91yxDdKefJ+e+/Fn7x4H8R7kRCieP8k0zTJ6bm+d2/fSQj7Y3YWGWux/l6Zrd8qInKpJ4QgYRn/ZjPp18v61WNQtXJrmyRKbQ/cI55gGSOrrmnFlvbG08p5iV6yMb3murYzcmZpe2QTI/SlnLFip23brdk8vTGb/bKxjR4fH+XxyW/GonVd++5mu9bW66pnf5T11e5bMt2b1venI7a8iG5HlfWOypXL4r09ZmhpN49JlDGcHnvs8RLLv526D/dbQ6NrxsJe3+zoGN1rzizrRURkim5jl6QYqPZ+XPtOXPsmwGpXW22X8t819Nijr4bWTdiOYQhB/DzW7lpMJ9M0SYhbnb89u1L5tY7Os7T8wTxm3Ir11a6PxIut37xY7OsWZflajH+kfOss9PPWLtLas67Lci+3YlujdVtsOKvtaGlyxG8Z/ZbBYgdr1OanZwfVntXGTft3vWVbe/7Ni/3f69RjI5qvYh1Lrf0j8cteTKnXds4em2+v7Ba51/FGfY+t9nzlfPllhR9BOYBz7l8QkX9fRN6mpDLL899KVPz/Z+99fmVJljwv84jIPOf+qHrVrx+NGJru6UF0bxjBg1kjjRBLFkjwByAWAwtWLEAtIaEWC9YjWMCKkVgghFggsWLBjw07WNCIHrUaqRfTDDNNV/V7VffeczLDfRZxPNPCwszcPDLvva+qvp/Rm5vp4T/M3c3NzSyyTn90oOEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HsB/gjKTlJK/w4R/ae0/kMn1h8e+dR/kORT/8EVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2gz+CsoOU0r9IRH+blj9uUv/gyKf+QycAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwgwB9B2cd/TkQj2X8ApRD46JRS6Pn5mXLOVEq5lPHnsr7WR/2f1p5/zzmr7b0y3q9Wtwerr5T0v7+TUjKf3Yt79C/XpfZp7Ys1rieLtWa8fJ7nVZthGJqyc52Q9TV9qWNaMkfXc8+68zZa+5Yut7DO2169751jSukylvxs9VtK2XzXZJZ72ZJtz3m3zqsmnzeurCf7lHNuja+NYa1tqy9Nllvw7H10DO1clFLU8x+V3yrPOV/6HcfRHF/2xeWy7Mp9KUS03eePaZ/29OXpX8XSd22PWnK37pgeubiN0uSJ6HZUNgtvDSy91GysVj+yHpos1XZ4Z6iX1n546yvtnXVH3LJH3F56/fTaz6hOWfsVkcl7Xm1dy8Z5daQM0bPMx+f1Wj59xO+TfBqbvKbXd+zxSVo+h3e+vTvRk7l13/J+691p6WzL17fk09rz55F9HoZhlz7s9V8q2vz5mpZS6Hw+Xz6/evWKiIi+/PJLOp/Pl2en04lOp9Pmc8nv6a/+1e+IaNH3ec70N/7GX6Ff/OJpVe/5+Xklc42rnp+f6Re/+MXl8zfffENERA8PD/TTn/6UvvjiCyIienx8vPQ1TRMdj8fLXOq+D8Og2pZ5nimldHmmnX+JFlsuZVvbWfeV63LrHHq2TKvfkm8puz7z/IQ995Um2zzMlDMfZ9GBlNuxhWW3I3eqtTatOVvlLVm0Mn6WL7mC87w546fTifLpWqbJXvVRtrX0tZJzdn2iSIzD7VLkjktpMNd/nudVH3zNPZ9BK9t7d1pzsHxVKYccN+e80vFaL2J/W+dZi4dbe2n5KjlnOhwOq3Leptpb3l6el+Mh0+PjvHr21Vdf0ek8uvPQnm3r8Xmli4xc96z2Vc9luddmNbLYV2sttfXKx0xPTx9YHaJvvvmGhudhY++lLPU7l5N/lvLu8TH5eN53C+kLWG3HcaSU1vLx+7Ylm7ZP82G+3N2Vw2GioQwbHW3F5ZEYXNoga++37ds5NHmubolT5Z5I+3wdNxGftrYfUg653hGivubHYM89oN1B1netDZ+vVd4Tj/N94+sv+7Pik+gaWLFSxF/i7eV4/B3ILTk8a/1aZ7t37Mg7Fvn9nrlJb0xr7Ig+RfM2ERm4Xmj6ar3XbPlvLTvcs+be2Y3mGaJ3rOYfbOqM23WZ80xFvCOUvos1fu/8LZ2J5A+1Z5r+WOVyTbx3nBr1HQf3gyLI/IWlf5btlGX8u6X/2vhe2a05Gq9eXeeor7MnNo48j47Teiafe3ncPb4K7+uebWUOY12v7+6QMYylpzK+0cb27JZlC/n7xh69iq7rfMg0Te9XMjw+Pt4U3+zBuwu8PEHErmpj+GtUlv9XrnuQsi5nRd4drfWf5zmsv1xm7fOeveJ2OOpPRWwn11de5mHloaRsETtWz6H2fsFqw+tVf+pWuyr7lW24/vHcCo8h6udSCp2P+ZJTr7x7/46en4eN7eE5dulXRPac257aT3S+2px76kXuV6+e9HWsfKmlVz1z7L27IjZKG0f7dy+tO0p+92SL/J5SW/+IDB4tmdbnl9sT24e0/Je1r3X59PL+bN7Ut2IIaRfl/RPxgzWZtO8WV798mcNL6crmWHeqZ0e8XIF1//b6sB5erNE6c+rZH/KmXRoGavmOmk+x9GPn/rS95GvbOmMR23Xdc/2Zx63+uaZLvXdyT53I+Ymeqx4/OjJGj78gdToix/o90lI2zzPRvN6DaJ7Vku2WddGoZ0SWeb7gtv1W1qietOZi2WptzJ78muZnLveX//u5XqSN8N47cJ/UY6m32JU672VOS/vz+UzzvL1TPXsVPZcV7f7Vcla2v7G+C/lZiaLfqfadZOn1VcY+n9hiz/3q3f2WXkf1PUJb5kLa+uwdW7cJbVvAGcdx4zsu71/933ocDnnT7ng8EqXYO1pLHl6WUqIy2PnUnjVr1fV8W+8dT2vPNR9o791a692qpxUZj/K4+V75A6L4f5f0sfB+c2S9h7TY3D2Kfo7jSMNs55176X2Pf+88h7Zuct4pvdiSbOcpemSI5lass7S28dcybrPGcVT75POV+Zh6Z2v5ci03FvEJtNxI77rtzVtY5ZZPq+UZrNyO5be0ZK/NpL+/Xe/1Xmv3guYv1nJvD2Sf2py09upZaexrJH+2qjcmGob1/kzTSGPZ6nPUj+J6LvV3rQuazxefT2/93lxRz7sEbpc1HSsDkRfX8TLPNrXyZHLcW8pvQZ75lK65nr3j3XLHyPbyHEqRtLN+i6/ljd97l0fyXN7YXnmkv6gtls9bZ+T6fW0fWn2DK/gjKJ2klP4VIvoXaNE2TfvXb08AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAu+CMo/fxbRjn/4yffEtH/QET/GxH9CRH9GRG9J6IPrB4AAABkgcTKAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDwR1D28Ddp+4dMCi1//ISI6L8gon+vlPLdJ5UKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDvKcPnFuD7RErpt4joH6tfX/6tfwClENEflFL+bfwBFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4kyfW4DvGb8jvtc/gEJE9H8S0R98WnFAznlTVkq5/Fs/83q8vJSy6aM+k6SU1Dq8P6s9b+vJ641/r3LrmZyHVd9ahxZROa21quWtfng9a180vZF4dbS94vVTSqF1usf69dKz3pG9sHQpAu+/NVYvnr60zqtX3jN2pD9NT6ReebahtrfWyZtrVBdkm5ZuSxsbHTOiD15fGq2zyOXU1lKuX8SWe0i7Mgz+36Lj4w3DcKkv7Z0li7zjePk8z2yvCpVCVHKhMqznUdu39qRlF6LIcW6xMbI/7S5r3b3avLletfRC60s7B5rvYsnlnZvI+ll9SbyzHOk/ehdq40XZq2va2fd0zRtHnksifa+1spbeWe2tu6O1H/xfWe49s/r2+vLQ/CfP7xqGwTyLWp/WWLy/KBGfsUWPnZBUWSNyWLrVuotb5ZaOeDqn6Zt3Bix5uX306LXhtU3LZ0sp0TiO7hiVll7xPRyGgXLO5vgt/7Cufe1T2mtePs/zpvx0OlHO+fJsnmf68OEDERE9Pz/T8/MzERGN44nO5/lF/vml3jOdz0s/Dw8PRET0+vXri8wPDw+X8sfHx9Xn4/FIRETTNF3+t4wzrnRGW0t+p2j+kadzHmufamvTNBtv9aGVW2cg7u9sz6+0B9a57LXRW59i9VT1M7R58P3j8+Jrqc236qOGdb6kLsgxWzkE7Rm3u3aMetVJTbacsykzL9f8dH28ti2UsvK+eUxpMebZrMPPaBSrr547uOLNv5ZH83r28+L6vtYdFtEx77l2XuW54fvn+T5cltX+l7w5F7Vu3Y+IvZB7N2ailIZNHVmPyx6Jr7ktkPbCyu3mnC/P5nm+9HE+ny915nm+3H/lodD7X56p2v2UiPI//EDpaVmbw+GwzHEcV5/53ZVzvvgIcs34urbiyR7k/u89l/zOlF303H3a83OaN+fxfJ5pEq7srf6pdddJrs+3eY6c7ZjL72stB9eDiN/K/cvaZv2/tZxJrF00PpFnseUjTdMUjsmlX8vLrXsuCm/fmxu0/Oie/LMWl1g+CvdBtXW7NZbU2g/DYN4J0fGsNbDuBAvLPmvPtbKoHWjtWW3bGwfswfNJese05Jf+tIW1fnIvPB/b68+S17KZLXst5bDOa498PXeH5itf661zX61cMu9DI3KPWnAda+VfWnehFatI2Sy7Ivuq1DusleeU8sp3DC0bUmWz5OJlVvseHZNEz3rEj27leVq5qT1yyn49XY7a2dbY0fEic5O6ZN0zrTtNYsXGo5J/qT67HGIYRhrHbb6WnzkvJ6Dlr8ZxdM9SHSdyP0Ry7XIc7w6zYsk9Nm4vrTu2NVdt3SK5PO6bX6qXy/8XwtuzvWdPYtnbHr3ZO7bXht9p2vsdfp9Yd7eVo9H8iqiMmjyRvbBsZ8Sn9XK51pgybtT6Px4yHQ5Pq+evHl9dbFTEP43GwPJO1myZhWbfIjaqd18id0Ip5ZLXkbJxeF7Yi5NvjTsi+mONEY3fZV/rnNA2V1efWXe/lluyZNfkj9hkmTfrva/0vu4TI+r+QVJzokRb/atoeaGIfxuVT5bVf/W1JipFjz2ieS7ru/XZi+EjeTrPv+TxjaQVa2nj5ZGvx0vZvH2XUnN4bT3d5v60HKU2Nw255y2bUWW4luv5x1upe7xHh/bWacnT028rBm31q9W/ZQ49chIR0ZhoGLa+1zD7sdktcbMXH94yd0+myF24J4a3ZNDWS96rkX7kuGOuNnotV4+/5Y0V3Vcr58/7kfd+vWNTopf/1XfnS71pmiiXdm7q1jMe6UOuSbVRcnn2xLrcvkob37Kv3CeTuUqi63vXaC51bz6r9czKwZSyL5ftPeNnrhSisvm9jH7+vfdT0bh4rRPX2KXu4/Ibq3WscDqd6ETX32dFSZTVXP4878u38LzUqs9Ux1n7mnVOER87Ehvv8V8jttOTS5PnU2C9x6yfp7Ldi3EcN3l1on02Z8/vbTS6/YsdfcV82Vh/e/fayj/1xiCyrtz7SN/8eWQ6e98RWO+XvXa1zfm8/a3HPM8030HtrPiYf4/GEB6t3Iq3d1zOqK9vy7z2Paz3tZpsWh7DivfLoNvmrT+p11nLbr+XiebJWn5o697Zcx5bZev+ia7zLDTPmajxKr3Xb+LPlpwLEV9/vpY98Yj2PZKDacmpPffGtPLfrRyhpCeerni/JYrcRdEYODqH9ZrH+mndP1G9sPry2g7D9rfQwxD/b5693B4fP+pjfIxcz739m+16bXPAe2xEmqZNP4fDgfgboY3uyv379G7wrwz38YZ/PHxllBci+jullDunhQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+OGDP4LSxxvn2f/4yaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAHBP4ISh+/cJ792SeTAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHxDT5xbge8b/7zz75SeTAhARUSmFSimXz1pZ/WzVISIaBv1vAeWcN+N5/Wryteq0nrWQbb0xU0rqs1ruycHbenWsMUsp6jia/LWMr7+1RymljWzWPlXkvlqyaPOQ33k5l1GO4a1fdFyrD3kGIuPwz1xWb4yInkTGtsql/kh91WSzyrUxoufRk1Hr01qXyJmR9Wsf1r7LufA2li1ozdWyC626Xv3WPkbWRlvjloxWv9Z5tORsPatllizes5ZsEm5XPF2UfXo2s/671EmX/6XEbWq6zKNHRzw8Wy371sq8M+LZglttlrfP3vfW2K27SraX553rceTOsfaxpeuWPBGic5Nl2j73yBo54964LTmtMbR21l609qj2oe1zz33We369c9mjV60x+PrUPsZx7PaX53kOjfmx8GKI+iznHLJP0TvMw/IfPB9Vk0WWc33IOYd8DH7fWOfFmr/lE0qbYtnFFi3fV+6rpq/eGbfuznEcV2XDMKj7Yc1f3oOejahz4J/ned7Yj/P5TERE7969o3fv3hER0fv37+nbb78lIqKnp1/Qn//5gYiInp+fKOdMf/iHf4/evbP18uHhgd68eUNERF9++SW9ffuWiIhev35Nr1+/JiKiN2/e0MPDAx2PRyIiOhwONE3TZZ3qWg3DcJGfr//Vj1nmMc/zypbwObbu59rvsj6Zqk8k60Z9WAs+pmY7tL7HcaSUhk3ZOI2buveQa6Vfg9RjX9aKZRcj4w/DsDnXrTtP8zUidk6zkTLGH4bhKstYNnMbx5HGrO8F10M+hoTbAc/v6bnDW2Ve+6sOLGU5zzTPts/L5+XFQHtyMB+L9R12Wy7Gik+08axn2p3K16vWqc/P57Pahtt4eT9o4+aSqZSk3onWvGpd3YYREaWV3ZbtI98r8lxqc5F6JddNlvPn+ZjpH3zxzcre/8Zf+SmNp2Fj7zWfxpJXyuzpxT1jKwtPlkh81KpT6+WcL+s7U2a6ovtwLVlb5S0dl3qz/I9W+133M7IO1jiaPN5cWued+9m8LMXDASLafxfz/az9RGIR6yy27IElS0/8I+F3t9WPtT6ejfHWNOqH3AsplzZeK7fC4Wepxte3+Lxa360ySU9uIXL2OJHYuEUkvxaZg+X7aT5VKzcl6R2/ldvS6nh+X88etvr28g8Rua19zkR0Pq9zSh8+PNHw/Hz53ooZes6Yh6XH3t1tvTPwbJcXb/CyXvvZGreO7c2n5gM8ojrIn+/JG7bu0VZuq5XP4eW1feuMt3Rsr22VsQZR3/uqHloxoZZv42NpPoUmdy3je+/lGddrvD5/NUcRzYHknFfjShlkG+89njWO1B0tL8ife+NLZDy1+Phbff/UcXxE9ug69vo4y/7Xz9vndT2sWPRWGaSvY+0pEZnnhWh7PvbixcMRe8XXypqbzPl6tqPlB7ZiESsnqj1vxdOWjdFkIbJ/g2bJ6qHJttcP57JI2+nZtHv6+K02Kem5LK1etNzSxUh/e9to7SNtZF15DiL+caV15/fqkTc+rxPJlUXjbO3dUUtWb4l74pj1Hbm8azunspKrJUsl+r4oKmuP39wTv0WI3AcSzb+w4gvLj9N8Sd6/VU/rf7se/Ny9/KvYPpkH0+ZWc5SyXzm/Vpks781HrPtpn80e+Wr9mqNr9RuNgT325MytOyba1x5d70WOwde2Ytv9TPLRUjd+d2iyWN9bbM+Bd1+tn3nxwD3X3ztHrd9f9vbHy6598N8nFNNmRYjE+V6+LaWk5lO02Gc+zy9lhVK6xkc5L7Kfz2c6n9vxWvwe78sFx+LuugbX/iL+pkWvWvLfky338lWmlGi1nnt04SpXLBe1h+g9pN3JUjb+vQwvn0XdGjfy90FE1/clkRyBdS7KVGj5zRAvz5SznpvhsrTGkTkkuQ5yHbmNlr5PKy+9qjvIetf3oz1nqsffuNU+9/ofHxvr/tF8PSLdx+Z1q429x/sqS0Ypq/Y9Ej/utRXxfWv3b8nQk1ut/dzzHa6lF6ZNU/V6a9/2IPdV/l5Nq891MqV0aTNmIvV3io0++fjaOve8u7qF3jxR5P1MC5mnZz2s+rLWUIubNH0YhrS5+67y6zaH2yWrzpq1793Kx2trtDfPFW3Tqs9zy7xOXed19e097vlPGi3fR8sBtO5xidz3PbnYj5H7aUhAXJ8i7SMxgXdH9eT15GcZG++xSzIGS7m915FcTO/Ysu1aj0nJFcRkkvTmCXpzhb+qaLG6d49YsaW03aVUvYn6Kp/WH/5VY9+vFX68/CFdtU1q6z/+iWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAHAf4ISgellF8S0f9tPP6nP6UsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8UMAfQennvyOipJT/q59aEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfghMn1uA7yH/JRH9Pl3/EEp5+fxvpJR+v5Ty/LkE+zFyPp+JiKiUcvm3fpblOWe1PEpvm5RSs672PKXkPuflvK72vWd+nryyX20M2ZbvRUQOWWcYhtWeVXjZMAyXdlrd1lh8Xt4cPTkr8zxv6tU+vb61Z1KPvXF79riF11dkHGueLT1tlcvxLf2PMgz+3/+SY/GzwZ9F5ZV16+dhGMw+vHNVkToftSetc5lSMvXSQtsfiyq3tQ9y/Frfs1HWenuyeGtv2eFa7tkba0xP76z+euxaqx2fV8891vPdw7ufpUz8jETliuigd3567FLLRnvzrJ8j94K0EVabuk7ePaz5QLLP1nnh+qPJpc0rYm+0zxLvXFrtW/Y1QqQPz0ZxP6DH3te9s/TKWjf5uWevo2fQuhOtfjWievexafkDESL221qniE8R8SVlX3I8y971+sF171vn+ZZ4xJPHs/Xe+fJs/y0yeuP2sneNLPtb+5vneXVH1M+Hw2H176tXr2gcRyIienh4oOPx+NL+kX7yk/nS1+l0pt/6p0b6+pv3dDqdVnLX9o+Pj/T27dvL59rX69ev6c2bN0REdDweaZqmi8zTNF3a8/JxHFU7Kj/zs2ydN2/vU0o05JlyLpQSUe1inmcqk37HRrHuq4jvOqeZSskv5UQpvcSc67Bz1f4WGb27KqXrc8uPqeetVxbLdkidbvlaVT5NTyzbVUpxY6qL7z/ky15U5F5od4p3F/QQnb+En39tn7d6qI8f2VOZD4nA+7XyP0T9eYqWr55Sopyrr1XLaLEBOW/mm3MOxReWvfHa8ja1HS+vn+v6Sp3ibbjcNVf6MrtV7nQYBnp+fqbz+fpKIKV0scOSqkc1NtFk4cizy8/kdh/ypg0v72GarvPh7bV5zYe8qk+03IkjDZuzHPXFKj25kd56Eu3uj+Q5qu7Mw0A5r8c+n880P/uvNuoa8bWp65wmew092SOxnjXHVkyyfL+ed6J65tr+ZotWbqiVW9KQtrEnZvHWVZOjddb42L33u+eTWXdmZL6ezBHbsce+WG343cVt5Z5x9tgB+Y4kUk+OZeWvenJk98bLXVqyReWy9E/evR6RfJTVt+Xf7s2RROpG4o7o+N69zn2SqDw9/lX93IrvrH4jd43XRhvPypl557E3l27J7Pneli7zXJ/nK2m+UyvPVOG5bEv2Oi9rn6S88pm3vrJ9nYu139LP1+JDLnOrPCK/F3dbtPwT6Tu06nh98fb8jqufe3wfrV/vnYzcC03PPZ+QSNffCMNQaBi2OYlljERE2zXj8vE8loa2ll45R66rtpZy3z3/mMeGMu7k85rnmc7n04sPvTz77rt3NDxv88nSh+O2wHsPHiHqu0Z85t67YLEJSyxRcwi5ZMq57sFMNLf9glv828hdSaTrozd+NB6JYskpY33Lz+N+RDS/1No/2U/LPnn9euu9N56P+ORWuzqXeVhySXxuS6y7bqPlY7TP2veW7FJ/rRiyN7Zs5fWkzfKwxtbu5F5fTbbhZa34aq/uVFqyWuNHfJIeH7xl43p8H8tG8/u1Fa9oZTUvRJRWuaHe3JSUlU9rmibKU0zOiNytuK01xq2x+y3veLjOcCJ2rRLx6Sx7Gcm/RXS/1rv6g0QXn/CiU3TRqZwzDSWZdmbdd1m14zlKz0Zbsvbsl+ff2vVjPok877f6G3tyeJFzzPuVd2hUvr3r35LNwjv/rT16aXE5m5H3OpvW4s7r8Ve0cax7cfnfIm9lnmeajavG8y+jumj1q9HKaUVti/58/f7CsqUWlk9TSlnlRry4079Ht8zzTDld322mdNWxatfO85lOp9vOiOVzeb6Wtv9cX2oMm3Om83le3evzfKYyt31aTeaeo63lz7Zn3d8b3q5ll/g63eonWLTyVxreuVp0q6yurFJo9X+9WuaJZH6lFTdoPmAVQy5TfZev/WbEslOynhw76ttG3l3L30xxv6wUPp/Cyv3f9kTjSKvMYu97Tw0vVumV5Zbf70f6IbLfH9zj96saXj4jihVT74nNOMtvFfLmtwrL77Bs/W+Vc6S8kTZRXfLyIZYMXJYILd8j8t/h8Pb1u/beuJbN87zLzln5f+ts7D2z96B1Z1r/LUalJfvM/KPK+XymFDh+1XbXnN+6j5nKuS/XwPdVkymPid2l2zOalKla9/2eHEXrfLTiHs/30MqlzUnpOk9+d7Zonb21DNuchRVPReKJPf6W1d+efJ1VvpVrnXfw5t07vnUXcR3x7qt7+zc1liil+mfX2KMnp9J7hlp+nN7P1seV3/fqVytG9p63cvYa0fMf+WzJ1evreOP4Z3fRoRqnauOrenybKfhe83E85x8wpZT/h4j+K1rH00REv0lE/+6nlwgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO83+CMo+/h9Ivol+7782Xii/zCl9M98HpEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh+gj+CsoNSyp8R0d+i5Q+fXIqJ6Esi+u9TSl9+FsEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgegj+CspNSyn9NRP8Rrf8QChHR7xHR/5RS+s1PLhQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9Dps8twPeZUsofpJQeieg/IKLy8j8iop8T0f+VUvpPiOg/K6X84nPJ+EOmlEI558u/RHT5l9fxSEn+DZtrm1LKqn2tq7Wp48rxeF970MaXcml1ZRur3HrekiUyhmzbWgNt7cZxdMeX+y3rtebfwzDofzOKy2CNbdWx1sRbq5RSaF6WLKWU0Px5HVk/os/ePHvPRUrJnY8sb52PyB7IPrU143JJGVv9EfXbK6+vUspFR72zKvc/en5b5db5kOvC5YyMKfXd031rX+s6D8MQOjuevsvPns5JNHt1K3UtpY2x7i5bzkLrv+lWVntQ++V97rGjXEbvOy+PyB8903wurfNSn8l18Pr0nssyz45p9701f16/1tFkjuh11LfQZPC+e3VatlObi1W/+oS98rbKNSJ2jMj2KeVzrdy6r73zZ9kZ7+739oLL3/JDvb55X1r/nuwVbc3Hcezqo45Z5YquV9R3svqykHOy7r5o3y1bKG1ELWuNEbkHrTF770oNqXu9MlfkfkfPsYbW1y0+Vc55JY+lm9FzyNvXNvK8cD07n8+r8uPxSERE79+/o9NpeTbPZ5rnmZ6enujp6YlOpxO9ffuWiJb5176HYaDHx0ciInr79i0dDgciInrz5g29evWKiIiOxyMdj8dLrDeO42X+fC3lHcfXiM9L+uScWs7jSo0xV524+kQ9/o6VV+gpl/2sP/vjt+Jir53mT85lpnmeV3Wfn59pPK3XUZ6jPbayyunZcC/WsGyEnL9236WULroh/SE+l+Ew0DCML+VL2fF4pDGNqo2ssvTaGc+mWjmF3n6t8pR4/9dxNHtT20kdiYxp4flx3j0Uief9+GA9jnXXeDooZeNyRWNAK56b5+Usct+FP+NUWz7P83rcstju2ndKiX7xl5menq9rM44jTdN0mWsdb5qmix3fPMvyviE6nU50Sutcnm3XbBtb11ur39KTvf5GReqip8uaXnj1W/P16mt+3y0+3bXPdXnOmbil77Vjtc/l87XPct6eBe1et+yNN9dIrCjh+sT1eBiGzXetbUXzL1q+byt+kc+reeb3tbUvModiyV3x/M/IvdPSu1YMx8+0XPs9RM5SVF8icSYv3yN7dPyIzss7wYsVI/3y7949HJHfYm/Mbdl7rVyeh5SSulcy7vDGbNlFLYbWdFDO35I/ktvzfR19XS2/2fNBtT56yi3Z5Pw9vdbmHMlNbGRk931tauU0pKz1u7Y23JZ5fkxL51p487VyiXJdLZ/euht4eY3DJdYetXK2kfu+IuWPxKSW3ynv8YhdsWJo2Ub6rZZc2rhWn63nKaXN+vQQeQfeksd65sWORPvyL9pYfJzI+vJzIOd5Pp9pnhPlPBN/d5bzTDSXVT6hjtPywywd4zGfxMpncXsTfS/CZbHGq/FfPmb6dnpePXvz5jUNh/v/39da5V+cM70n1pNnUfPxPD90GT9RSoVSWvyA8iLjOE40Ttv3jJ5fzeXYEx9G1kD68ZHz14u1ZtH947lk3m6P3xHBm2PPmPxe0Hy0Hp/Waq89l+WX/BUp91TJJKfUs8ee7xmhFTt6vvTH+B2F7DcS87fay2dcfyO+jJbzkm2snKc835E9kueNt885q/pnva+KvgfTxuqhdwzPjxelbh3vPuL1h0GuvZ5D30tk/imlkP62qHPhonvjW76ufB4hGg9FfDovNr3Fl6jnxIsda5mU04/T0qXdMAyh91+abPJzNOaS8vOy3juzNzb15OTz1eypJaNV7t2lLRl7uNfZ9/qycjhWm6VMzwX2zrknlu2R0R8n9h7J6tsbP5Iz9+5YS/+8epou1n9zzi//2+bjcm7nKuszK0/d2osaK1Q5KqfTiYiWuJjLWt9DXmLRY6YP72cqpdA4Ep1Omd6/P9P5JQT5+i9mej7V+Glc2Tv+2xCOjLXlM/6v1j6Sr1z/dyZldQ/mnCkVPyelybXcF9m1i3Iesmz5H1HErEi73rK50XhSa7uXW+3N3pwp/+1HNPd2Ybje0faabeVs2T+tfB62uZzlLF5l19pLu9iyyXlcdHOd21rePbbizhaevkd8t3vcwxE8WW7JpXJa+VNu1y0iuZGPhbf/8r+N61krac+l7paBmrbvc6zHHqw8meXXLsXXOIP/JiBK5Hemkbb8+xIj1mfl8qz1Hj/yLn2vrJq89ySSy90D1/dxHCnlto+gxZq8P/38FdLuJp7DGQ2bX+c6D4s/usdf4GN6OVONnrWO+P2t/qq/dm3/cg/M/pyl/lm/h5Msv8Os/uu1r8hvWix6Yh1brq0utPwwa/39Mbdxnb9esVjLa1PLvLba79Qi/pyGdmZl9Wg+4h6xuidflW1dVCjnWE6zFSdH90LzMWSb6JhWm1Z9orUeWPlDbeyIT9eS5fJ+5/L4apOTY8cWcZhN+TSu9K8kH88r+JFQSvl9Ivr3lUdfENF/TET/b0rpv00p/a2U0j+Xlj+aAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeGH63AJ830gp/TfGo79PRP8ELX+Kp/5dnkREr4joX3v5HxFRSSn9ORH9AyL6loieiehj/anCUkr5lz9S3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3AX8EZR+/nW6/pETjfTyr/xjKPz5b7z8z+vnVtJH7h8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLuAP4KynxR8zv8Yinze6mMvP6o/fpJSonEciYhoGAY6n89ERFTKdRn4Z04tT0nfCqvcqsfrl1JC7asMOWdTTl6PaJnnXlm9dWmtk/zuyesh18lC2x8+95TSLhlyzpe+6ueWLLyeJmOrXNMRKX99pumOVq8lc2Sf+JjWeFFdttrKZ5pc3hmUa2+11/ZI2we5By28Pbaeefsc0VlN92U7y2b02C1Lr60xuS7ItdRkkJ1PRKQAACAASURBVM+HYVBlLqWoZ7G1Vtr4Ul/r/VBKoXme3f40NHsr5ZS01lW27Tlf2ji8r5yzOs8PHz7Qt99+e6mT3r2nv/bN1/T8UOjduw+U0kBff/01nQeiv/t3C42ngcZxpLdv3xIR0fF4vIyXUqLHx0c6Ho+bccZx7Lqjqh5Fbaks67kDvHaWzvbIsvdZRC6rvXZXWHbdu2Pq8z3zkbpsrZNme3vGa92DKaWNjWmthWzvydwrl/ZdYq1X60y0zoA2l2g9bfyo36HJ6mH5d5Kcc7cfdotcWp3W+ff22osPrH4jvptXznWf36kRn172Y/lNER/Ik5f3EfH1al+t+I3rkhY/WX3z+EBD8y209bDscMs3iPgOfCy5t9rdz+to/T8/PxMR0TzPlznN80zv378nIqKvv/4LGoa3L7UnKoXocDjQNJ3opz/9KU3Tkk5KKV18gp/97Gf0+Pi4tJimS52Hh4dLnXEcaZqmy1rL+I6Xa/eztsfWvda6R+Vn/t2yPZG7wSrTsM7Y8nl7nqL3VeTs1f3Z1B+3Z2EcRxrzqPbDv2tr5tl4r07tS+q3t++WXdvj+1RmmjcyPD090fA8uOt8C9Z94dlxz35F/EP+iE/Lu7s83YvsO9eXyBi9vlaVQeplmmZKaS3fNI00Fl3HLb1q+XGyTs5Zlcny72rdOs9xHC/P+OdSyiUXKvtN6ZkOh9NKxlevX1Ma1rF9hcdzcg/XusT37lqHy5JSWp0dbtf5uLxfnqeQ9t7SZcv2WOs6D1v7fj6fqZzX6y2R5Tw+1tq08pe1TdQH8M6eZhdbflO9Zzyf3JNNO+NrGa/jjON2L1tE18WyNbV9aw6yPfcZe3w5KUvEjvF8VRmIhmG9LsvdO6ht5BgSLq/la8syzw5H7ztu4yyfoDc34MnO++rxpyN9t2JQrb41j9Z9x9e/nl3r/Fq2R9pbPga3q3zNrRiIy2OdMa2NJq9Ey01F84gRn6TlP92if1IWS165l1Z7y4/w/B1tTtY9SKTf5Z5s8u6wbE7O+fJM6n6vf8zH5P1wX0c+i9hoGTOvnq3qreu3YlD5zIs1vByKdv6tMfj3Vv4sEpt6e2S9P6nlsm3E5/fGjvoe0XGs3EhPPOPB8y9Vd1v3PCeaY+iVqacvyy5Zex/JBbaIztGKo/ZgrYuXD9LRZee+zj3yAt6+RHJb3rM9e7jUs3M+kbtKq9cq740/tL74+PM8m3kBbczVGJezvvzvuiTrXHvE19Zkbtm1mj+wfOre9/u31uO07op7oOVfrPuSr2XktwatWJmI1D41u85p/dbLwvMXW5/593pHzbP+vIXl+8g1jvpBvT4C1+tb7wApixwngnbGNP2yYr0W9by0bJSE12/lQ3h9Sd07LTfnxRBa+R5kzCt13BpT9hEpr/kvWeaNYcYRL3Zfyzn2+mTWelo2yjr7sky28eydZresdY3sf0+MHfVjLG5ZYz5GK7eWx0w1D16r5jxvzn7OmYayHY+P0/KvtPEtGyHfG2jzjeRgS7HzE5EcV5SIH9caj+tXS95oPGHpf0vf2+t6m35LPN/Fshd1GF49et5beYreOUTXb7HN27Le32x68ZOs34rptDuq/svvEi9PpZXLM6ytkadn2l7UMumzcp9F6gn/nQDv6+HhQZ2XtGnn6Uxfv/ruZdxCh8MTvXo10WFexvm1n35Jz8+DKpeUu4dW/jTadz5mGob6ux+6yDnM+jtSj5J8n0KWaWfZupe9u7wl4y3+2j3zVfK7Z2/35Jat7y2fSvMb+e8HFhs00jguv0UdBv9ulWdT8+80+1GZ8xLPyVjDeo/Zcz+t552pmikr1pPfNXl7fGDNXnr3iRw74qtosrT0Y4+et3Ju2n2jnWXZz63vOG/hHjZVo5UnykONrbq7/l5g+vlDFmfp5Z7+hCogcwr8dxX8d0C1LGd7/6283KdEy4NEciPeMyvv0vpN5Ezb5/M8X+JFK7bzkHHbytectvaw6hP/zWWvD59zppFue//XGvMe71X4WN7vs1JKROM2tqi/x9H688aSn20/sBBRuti5e8SK1v28J17zfArej/zdvUQvr2XXvrWYhI/ZouXHyX4831L6JFG/RI6vyTGOw+U31hF/pYU1lqd/dj98X1Iz5pZjteTq0eNW/jeSM6rPIrnkyDhevb05VO25lf/w8llL8Q/UaeoEfwRlP5oGaRory4r4FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHzX4Iyj72fvnx+73Z8ts8AdWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD3BvwRlP3gD40AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAH8EdQ9pE+twAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxQwB9B6efvfG4BwJVSChER5ZxX/xIRpZQuz0spl8+yvVaukVJSP/NxZX/WZ9lePvfK+Lyi9Nb32vA1zjnTMAyb8ha1jYfVnzcXbV174O3lOFWelJKpC9Yee3JZOuLV53od0aV76Eurj54xqsxyLVv15TiyvH7fc9as8ep3q01E/h470+pX9sXXUmvr6XREf7T28l+itS2wkOvI998q589a58g6Sz22SWs/z/NKtlvgc5F31B40eYZhoHEcL/3Wvl+/fk2vX7++1Bs/PNMXX/xDenrI9Pi49PPll1/SPA7027/9WzSdp9VeSL3i8stne2yIN6dIfU0W7+6X7NETKYNGxHZ4Nob7OdZ5tc65dY9ZcrX8i9a9duv58GTrkaklm+w/aud4nda4rbNt3eOWveP15DPN9srx+d56us5thzaWJZtGKeUy1jAMN50xj5beRfZ0b/+t/Y30wdtYdswrs/q21tuqz/VI2gLLr7R8EsteyXpyjKhd0dpL+azxLT++lLJaAz7HXt2Va1mp50uOQRS7g3j9YRg261fHlftS/ZiU0iqeOZ/P9OrVKyIiOhwOKxvx5s0bIiL6zd/8Gf3sZ79c9fvX//pv04en7Zzr+NwPGceRpmlJOU3TdKkzjiOllC7fD4fDysbxepWofyjXJXrml3rrPsdxpPwii+W3at8jWH7zao6D1OWtbt/r7pV9LXaAiHev2Rzpz6aUNvsm6cmRyHOj9bXHTmu4ftBINAxbn1OeRc/faKGtS8SP1WyJp/uWPzfmbRutn4jO1XuAx1GtmM6K7bV8Ez8/VrnsW/o4ZSg0DFx/1/WtPJd191nlvJ0mM7e9fN/r2tV+tbvX0rdqd2u/x+MDTdPacD88HGkYRrW951us7qLzTOfzefk8JCJKdD6f6ERXP6Da+9pvzvmyF715QXneONL28HnJPaz6qdkzq5z/22IYhmZdLTfSose/adklz97lnImvpHUGc86q/zLPMytPl7JyXufrOZYuyHLLX4rkbOR853mmua2C3Wg2oyVPlXketms6zzPRvC9f5CFtLC9rIWW37Ps0Teadz/es0rIJ9Yz3yGnFwNE72oq1B+YfRom8P+m1C3v77c3PtfwtOca9iPhBVh7G8w8svfDOg3YXhPx5x7eSuXTvvuFxnJXP8/xmKwbX6ngxs+lHjqMql6aXLV3xdNSLhbR43hv3PI4X/3557t/hkXcfmowcT8ciPq8cX9M1mX/j9kraglZuk6P5oFrMMs/zJl6Sc2nB14L31WvLW7mtvchYQZ49LmfLR9Huk4jvZu2F5F65WBm/RHJ+Est2WbZoz13lEc8NXT8v/m6imiuqz3PORHmbJ7pnfmYtU1HvgVZ+yLpPrHMhz3ROmeZ5rUPn85nGvM35aGP1+g6RvdR8yAhWu8i9vsh01Y3FHtbPmbRjZs1F2ovWGlV/mreT+WGi7b5a8nC8dwG32o7IebNyJpY9rN+tO76lG5rd7L0XuJ/Azzzvx9orbY8i/grP92sk2uYxDtOBSrHzJ3vQ9iXiC1f2xGOtvEGvnloxgEWP39e71tI/4Plcq0++HvK3eprMll+rnb2WvyTlknUiPr8mS+9dT+TrnSdXHjOVIvMtZyrn9Zp58moye3a87rPln/f2J9t4dXv7lVvh5VMi8sk9478VaHFve7GnPWccR6IhUUoDEVm/O6KXZ5n4daTlspe86fY+2HP3Rt6LyHr1uzwP3Kex4k7NB4mM14p1pc5EfAJvX7U4dQ9aLs2LT3ux2lu2yIo3LBu++Afb/r33EpG8pJTbe1/hYc2/+kyl0EX+nLP6rrE1rnUPyjXz8niyTPYvn/E7vaUj3DZq9+stttibgzUGr8fLrbnUOnO62pRaxmOmJa6+ftbw4kru00i/9xbWfdbv1c8daRy3Z5HrixarpGmbuxvHkcbcvv9q38MgdbI9b7mP3jm32nvfNbz8LR/Ty1NEcpBVlwrFbLq017JfLpftU9nnxYL/Vornb3g7mVurZ0vKO88zzcY7Qe0sWDatZds40TtJiwV79au2scqtOvw3iPyZ51NEZLyHTYnnHP08hPU7y70yej7RPcf5VaSlox87ByZ1sXdte3N8t6D56PIu4s8i/UTqa200et4rtfreu9fRdqt6L+lBay8jOa7Fh9rmOZIijpZ3tOq2iOR8Pia3/DcG8n2bHfes20m/uxXDyv68surL8jH35gA+hj2z8ic1trH8idbdtzzndba/e7TbXWmts/e+wPveSyvulXtMVJZ3a/O2ridbxMZbv3uJwuMeTjTW1/trl/Fy7odresXLIzF7lD1tW/5bT85b9mXbbv+/vQEL+CMonZRS/s3PLQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8kPsL/zTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIgz+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+KxMn1sAAG6hlELzPG/K+L9ERCmlVZ2cs/mMU5/xOimlVd9EROM4qrJZMmvknFdyWe2s9rci58XnzMuHYWh+rt971kDOT/ZX18bar1IKlVLc/ZR4663tMx9Hyi3bSvllH7yuJo9VR87PWmOvTRS+J7363DvG3ratPar/ttYjpeTqVgt5XmSb+tzaY4/aJjqXHr3W2nPdtebRaqPJqp1Pza5FdU32ZcnG7XMpxV0fItv28PKcs3suLFmiMmt4+uKNp91jRETTNNE4TjSO+TK3cRwpTQM9Pr6iwzw1dTSyV3vtT+1Ha6+VW3eWZWMlLbsQ0V3te2v+rbtdOxueXFHbb7XnZXKdI+fUo/ceiZ4XS0b5/V73WFQXIn0MwxA6v7z/an8kcq6yPR8zKuOeNefl0zRdZO7xlaNjRPDOgaUv2l1hxRd79l+zRXvOl3Xfys+9d4+3p9L+WH6w14c119a8NZ3m9kobX/bZ8gFkv9ynb507rTwyXgvP17WeSd9RqzMMw+Vcns/nS0x9Pp9X8p/P59WYH54+0HffzZs7on4+Ho/08PBARIu9eX5+JiKih4cHenx8JCKieZ5Xa8Nl0fz42j//XuvL/Ynou+y37rPWtmWLWnas97zx75q99+zWHlqxJf/q6ZzWV2TMVgxV8c5S1QFvfJkz8mIazfdfdHa79jKvdK/7StPFe8bjuu3OJJellKvt13IDt/j5mkyaf5pzDsVnROt9bp2VuWSa53ml4/OcidaqYvbXqmPpZfWNZH2pT4fDoTme7IPnHHj58VjoePywavf2zVt6Pq3jWy47v0e4D8nrPc6FHh7+ctXv4+MrGo+Tqs9yLfj+RXIxXvxiod3j4zjScMg0jjyHsaz52Pm34iOxEtdX7XPF8tHl3vByq03Lh1/7EWvdHseRRiVvJX15a+xxlPmh5fs0XdtLm2zNUcoema+29lq9YRg269lDNI6J5oauZTH95jatZwwJ1yNvTnx9tLiutrf0WuZCtT2TeiHRnvN99HwmeeYi+SOLvXefd/4jfVtxF1+Xj5GLjNbXfMqIv2Ctvxc38rLI2eV6zsewdFnzu6wzZ+XsZFvNLnCfQI7vld3if/G5RfM60oey1jyy39KOR+7/ipWj0eq3chpEROPDkcZxvQePjw+b9whaW/nMivu0Muvu0WyEnLP0ga15arqt5U/4nrXiSl5+Pp/NuGkcx5BdjeRqrDF60N7FaT6p5otE/JPaltsYy7ZIOXqee3k0K08cofpXkTuKt7kXPXO1ZPFsQ+u+5zauxvy1yToXshphGTO310LLn8o7xopxvNiitUZLnLu233Wd6rPaV/UjeJ6ulpeHQs+/rHIu/z792S/pMC+xKvfDeF5P+1f7LYn17sL6915EfeT6r7SPhQqVstah6HuMlr8bla81Do/ho+NoPpK3B5GzKn213rubx4BVX3p8wtZ9pO0bL5P7Fdm/HrT3Ghx5jjWfbBjyRq7T+USn03rved7biyG5XK1yzXeQ9u6eaxax9725O+177cuT3Tpje34D1OPHWngxemR87gf0+Of8vUr93iOHjPksrBimNcYqN5U0H3Bc5QYjtpzbRSmKvNf4+66WL9tj+2+5FzV7WX0DmY/Ped97ZCmnlb+0bLrUJ2scL6/am1vh513Lvdb8qa0Xuhwa9ZzxNikl852BJbMkmtcspVAe84t/W+34ix7M+ntnLW9nxcrauxDN32udsUqPLxNp09p/Wdcbw4phNbR+rLi9N7bzclRa3F2ne0usHX2vYdHKBdbH9d/z+Uzn1NYZz/fz8lH8jrF+K6v5ZLWNtWeRd9fb83Zd23meaR7WtlvKreV6ar3ofWGdS95ey5PUuV/faUj9o0ub2ozLJWWUfkjvZ+17i2EYmI+w7jcaP/DP85BffktQLv3lnCnlbRut3xqLy98j8HvZOrvWWkTW5GPkeXr8c0+ey16syl6+KvtUddLyXb3v6zG3Zdf8R9X77ZmTfp/37mbpc6tvh+lApei+ky2vfy40nU5pCNkpDS9PaaHZL61fzyZxW8zPjSWbHDuS24jGwxbrOHmtt/K9tGQcx5BP59lrjb15pt52e21J9bVlmXf3tfI9e3MRe+bQui8+lRy3wtd8uXfqvtKljIT/6p353t9dWP619/uCnr73yHQLWn5lHEdKSpxt+m1jomFIxJe52hHNH9f837XNuW9e0yIaG1j7ccs+RX5X2vJNIr/ZijIMA53P58UfZP6m3PN7xvx8bIvIOdLyvl69nr4j9eT40VjZenewh8ia13Weh/xio9bj3kN+r07PXmpyVZa56v/N9z38I08Wq79Izqf3Xmj5gtE2e8aprPPVW/tfbXdMF0i6UD8q9v1yBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO4E/ggKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgs4I/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPisTJ9bAAD2Ukqh8/mslmuklC6fx3FstimlUM7ZHPse5T11uPy1bqRfr5/oM1kemadcO6vNPM+mPC2GYf13nCz5Synqs9YeWzLLcXvR9lL2y8fnMqaUVu21vqL71XpmyWyV956XaL+RtnwMbTxr/yPc4/xWorpT17KUsmpj7T1v01q7+pzrUqQvq26V09I/jx67V+u3xrf6qPOt6xm113z9vbNo0dJNTV5LT6wzlnM29d6zvaXkl/+92JqSKedEpWTVhntr7OmmhuyrtpHlt9yrEmljI2h2+J60zpV1/qV8Gt6e9dpl73619tLqw6vvnZeIfxd9xvuK2izue/XY2Rae7vMxtfl7emmdSylT/T4Mg7sX2n3f2iN+L7T0Ss7Rm7s1vtZvJWJXI+dFyhyxK1Gdt/DOsiWL1r/UNaljEZk8/d9zD1gxmMU9bbEXt9yL3vu80tIlb91SSpdY93w+q7Zrnmc6nU6XOIzH1e/evaMPHz4QEdHhMF/Kz+cz5ZzpL7+Z6dvvzpexiIgeHh4uYz4/P9PT0xMREX3xxRf0+Ph4mfP79+8v9R8eHi7rM8/zZU0Oh4O6btZa1nn1+J/a3bro47pezvmyRlZ8JX0tLovUcV5u2YGtjV59o2EYaBgG1z+JxkKajLzfxUe81j2fz1TOcf9Ljmmte8umy2eyX2uPLFksXap1ZK6olg0D7z/RNE00lm1dKW/lVjsT8aO88VttNIZhG5dI/Y348FF9t+TW8n5Ey5q27qR6Rjf1RqKUhtUZ4/O17kUpf8vO1zNm2QVeX4unq33Wzom08bVOznkl1/GY6fn5eTXed+++o+fntexV92WOqvYlcwSL7V7PZSkbVuvP23EbyXOB1hnlc9F0vzcGtkjJz4/E+tB9Xb6ufG7clns2WrNJsq8ltvfzgdoYWh5hnmeiG/K0y5jr8Zdx1nOv48sy707vzRls5Vr7fjm3YwbNdg/DELbpUVsY8fc5rTyCHIN/33OPavW1MaJ1PZ+2EvHvWvug6Zgst8bw8rfWuNYYkbYSy7+UaHq1xw5q/mk072E925uPkW292IjbyGhMK8fSiObvIz6RFSffM3/u0ZOXkuNxPdB85Yhc0XvJyh/V8nEczfF6/OzL3Ia1H6jJxMu0XJqVe/LOK5/DNE0XmaT/RbT16Xrznz15nlafXPYqU+SdlRa38ju/ovmhkojt5UTeO3tz4XvpyeXlBbUcgJZDsNpHdLtlU6WMUj6uf7e8q9fkacml1e+Je7XyVvuWz6X5iz22zrMZ2ueIT6TF5FxGWV59VS3Gkja8tpd7n3Om+ZDpu4enl36Xvt68PlB69t83VH2vfeacL/ZOiw+ljDXO1u6LqB7w9ZBY50qLT5e6tZ/CPm9jSEuuiI5HfQLPdmhrWefaemfA6/L6Ui8i/rGsw/fVGtPyO0spdDqdVHnlWN4dHiHie0b7t3I7kRyYlafVxl3yNb7s2p5JvbX0OLp+8h7ck0/R8O4Baxyep+M615JJs6uRu0KeEc230ZC2u3V/e7+/4nbVaq+1s+r15pT3xGC8L68/zY+KjhP1obycr9WmvjOSOdHz+Uxzx08Io+su7acW98v53prbGobB1WFNZm/NI/th5YMj9bUxWu35GFbdGg8s+iD9lpFSknfeuPJhJNcc6dW34uUa3K55v+OIlFX/8NpH9ePW7wAsjsdj1znX7FskXuFrEbHJsn/P9rfydtGcs2X/pT9l+Ue9sX1LHu25NpflN4DrNtY7GiI7hx/JmUVzY7LO8r/1+4VxHC82aY/PYtlRrb2mcxG/yeo7KmudN7cr0zRRnuxcGJdXkyMSI0XiK95Gy83lY37Zn0LjuLy3mqaJ6i1yPB43eidZ21s7no7okTcf7e6qv5fl3eWcKeX4ONv1jskmfR1+Bnhf/NxF/DsrZ7DXT++NYaP7ZOmZ/Kz5bDkXyi/vMlv+aU++gKjmgtZKO89nSnm6POe5AU7L3stxD4e8OVfTNFEuW38iMi8NbQ335lasHBY/o9G73xrDKovm5qLvdSI5p0jOjrez+1p+h8bfS2t1o+84vFjF29u9sV4kl6GVR3W0+tqyzMpn9PTdg5Uz5uuqzbGVd/BzR5q/tu9doNxjLnNrXvqz2Jh7kfEoj8/kZ208LR6MnP/WGD0ye9T/Loez/N5y+27M7GPIm7wD91G4XDPFYm7N37/8FmvY6pH0/a272zojVWbenyZXL9H434odZLwh+97734dq7cZxmzuw5PTsqJWj6bEZLRvq3RVWubz7t/f3ug/vbtXuxqieeX202ljUd1qR9poP78U3t2Kto5Yz5DJeP69l9eKxlk/aos8f0MutcVrvvitRnbHqe7bTwrp7+d4tvmHds6XOYuf1u++qZ9d8XjD0/EFy23/JDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeCP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4rEyfW4BPTUrpX/Kel1L+11va/6rRmg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ+bH90fQSGi/5mIivGsUHtNvPa/akTmAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAZ+XH/Acy0mduD+5ASuttKKWsykopq39luUbOefWvHCultBnXk8eDP69t5biyrtWnJZM3Zku+VnuOJTcR0TAM3c+s/nrre1hz0cqj66v10zNOLefjeXrl6eU8z7vG93R8j870rp1Wv3WWW+dCWzNvLvJZpE2kH96Xta+arFp/sp5m+1JK5lysMXv0Yu++aGh1vbI9Z57oakNk+3valhatudazS0Q0jmOzP7k3kXtsGIZLu9qUf26N4WHtf6S9rNNqo+neHv2zznjPeZXje3LKMVr6p51lS17rXrBsi5wL/7dl+/bcCRatvvb4Obxtr6w9Oq+1vbWNZeMtuSzdk8+kvdfaeHbvVtvLia6T1FetL89/Timtnu/1z7y63nnbM47lB0b8M6k78ky3zkgrnuH93RqX9NBjWz/V3a2h3ceRvnvi1lKK2XfO+fKMtz2fz/ThwwciuvoZp9OJiIi+/vpr+u677y7t6/P/7+//Kf3z/+zjpT0R0f/+f/w9evduO3ad9+/93u/RV199RURET09Pl/P605/+lH7yk59c6j4/P198nFevXl3qlVIu44/jqPpB1YfRxpdxFF8XL8bgPhBfcq2NNnbkXGjntOXrr/t6WZuZNrTsGvct5fiaL5FzJtlVtXOWryRts2dXeB3L17X8lmjOxbNDvTaK65xlCjTbq53TvTmYnrtEq2/5tN5aeON64+/x2fbsl5RPoCUWbgAAIABJREFUswPt9a5nx56v9MMi51erL2XjyPPDY4DD4bCKgas9nqZ1Sr+WS707nZ4uzyofPjzRhw9FncswDHQ4HIhoHYtW2eu4w3mmnOdL+zpXbm+maVrtBffjpN9Uv8/zbMa21vpbOmLFWIss67LFvsZzRJx7+j1SZi+fatWJ5qzTNF3sW53eNE00Bu4r7m/I8ut4Vzuf8vb+6LX/tXyeZ/PM3Mpy//n5DHmn8rpSXuu+1cprfb7Uso8I0f3X2BMzR/dC2hlZv85V86nk+nEbK8ez1rlXRyIxsVwvTTckVszo1bVyA16cZo2pfY/W8fBitajv5sXQ2rrJGFz7HLXd/B7yYoZIrNbyrbQxeTttvXr0RhunJZ/UK288rV5UPstGWnJ55ZEzPQyDmRuPWLvWOdDk5+NJ++jpj7au4zia+s7Xz3rHYZV7fUn5euMZuWZ8Daz18N4De+1bjONo2lGPllyeLNZZsNaldZ4j76vGcWyeh9bz6pN5+huB510itoePoT237tVe28HrD8Og2shhKJuzMU0TTdPW15mmiYbsr48V91nz4N9b7Sx7zW3yNE1u3keTRd51+ZjpdKzfl7I3b9/QeBpV+S25Wvusya/925I/6stE/KCrXgxEq5+DpeX/iS7knWj5DbysJ4Zt2WJpx+vZqTrdOktSFllfu+OsviL+sBzT22O5HjyGtHJAnh+ovSPiRPJgcnzrjGlnnOuGzJXINvyzFfPMcxYxeGJxpR8DWX4B76vXxvbEEJHcWKXn3V5UBz8GfF89XZNrZs1J7q387MUtROu16FlvbXzuu1j6KG1/5B6U59U6A735kE2eIhVa7Ll9viO/G6o5I343ciy91OTPOau5Ea2v1pnz9rLm5WT77XjX7/M8E08lR+4s77634h6OlKcnhyPjBokmP4+1JBtZxrxan6XOvCqrZ7kl9/o903Uv6nHtsaO9Obzedpp+RfZF2oRIHCD99ahsWv/R+WnnQhLNO2jIs+fRuts0eVq/u9FyZuM40TDG/CR5viNrEcmHxO05/+z/ZqvVt5eLW4+ZTL2N5EEiMaCsX9epxqMt5Bp77xV5PT62vAe09fN84s3epvo+I60jJ7aW47j1O7W7Lerv7KU399jb7zK/7bPWXPjzqC7IPYrmsCLxcO3fk7kl273qXddUxOUp0TCONHa+87HmJX2VlOR72lH47dt+I7GkjBHmIW/Kzucznc9Ds6/ovg7DQDRUPay6drUhLfsW1Rk+hwg9PoUc0xtDe1b3rpVP09pp9XvGfulptebxdno9Tx4rhrTyEbJOK8aUbe6BFltF9zhy98vv1jz5GZf3qGcTW7Gat1/WNL15Rde/pS+yzDoTpaz9sqjt1urzcu83JqUUM7fj5ShbOT+idZ6E50+J2jnZnhiV21xedsv5WfwE3Y5oa55zpsRE1nIOy+99ru8/pL7wPiK/R9LifUveyO+ELLyckzzvct7L3bvNR3hrVcfkrP0/J7edt2ul5QV4n/xzaz1km5b98/qM3rUyn6W1v5atn/fYMF7furtkG++7hbXuVn+a/dTOvGxr3Qst/1Tb18hcNBnqv7y7lOy5yj735KGi+V0rJ8y/Sx2y5PH68tpp8N8P8rKc7blE4s6UEhXjv3+wdGGxaWK/9qUGfxD8mP8Iitz2Xu/iV11t7httAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwkfgx/xEU/kdC9vxBk1/lPzLyq/4HWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuDB8bgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/bqbPLcBnpHzm9uBO5Jwp57wpL8XeopRS89k4jqu+an+yX/5M9lP7kuPtkc2TuRdvfO+ZJkf9Pgzrv6l0yxhaf3WPtb3uxRo/IhevZ+090bIuvXrhydGS+Z465c3Lg/cXkSeq07wva4ye82HtC38uv3v7rCH1tzLPc1OH5bx4X5ZcvM/WPvTov9Rj+fnWs8TH6bVx1hpHbQRvb90je9lrR6P9tHSy/4wRXaumSx979nfP+L5scR2Wz6LnWJZz+Xv30ipr9dPz3LIJVYdbd09L1l4b5fV3y7ytfWmh2UBp13v6sORplbeeRce9ZfxIvxqafdX8Y6LlXiNq6w1/3rpTtfF7bLTmq3vjWd9b7aN1+Hx6zg9vo/l7nq9p3ZHWOJ5+7bHl1hiRu6vVpuqchTd3iz33yj2R8+f+nVUuZbRipQ8fPhAR0bt371bP3r9/T3/8x39MRERPT0+X8tPpRH/6p39KRESvXw90Pv+ToTlU2f7oj/5oVf7zn/+ciIh+7dd+jb755pvLfN++fUtffPHFZczKOI50OBwuc6kyp5Romq7pK8s/teSS6yL1ZJhnyrm8jHVtW9unlDb2r+LpZM+dLOXMOW/a55wpZdt2WHYhei5q+zIUGgY+zjL/MetrYPUVsaterMrX3xtH6zd6b1r+E9/zRRdWvYR8Sxlv9OD5Qb22yJJ1fb8QOUdpNfae8e9Rp6ePuA9a/f5lvyJnxfI1Lb22clsSbu+sWHUYBjoej+qY1XbKuR8Oj/T69dVO5Zzpq5/8hJ5exXTKenaggYZh3NQdx1Fdo6o7rZiklWPx/EU+jkTuT0pXne/xp/f4Gb3Iu0DSymlFKKVQTmnT//l8pnI+b8aJximLXla7unx/fn6m8bReN8+WWPunxb5E7bM7DFt/NnrePZm4bFrdls+66WfQ44N7+Z+RHJqXG7WQ92jkPPE2dQx551vyWrGRdlZa+VFPB7x7OKI7ET8kGg9afUTz1bfesdK/jOaW9ryP0OpF4/vIWHvX3JJFQ/M1I3abxy3eONL+aX3xMbyzzMurzdqzvtYYLf8isv5WXs+KzSTyHe9VgIFSGli5f5ZaNsryZaK5Bu2z14/ME2tr6a2R9S5E9uX1weVs2SKvH/nsY+TavXz1nhg6orvR/dvDJp/x8t2KM4ZhMPfbqqflnW5B249bcr21H2kHW7po5QM0f9Eikuvo1RH5PZrP0OZVy1oyer+tSS9xgoybp2miIW/fTXk+bNQfsPSY6+Wt74Qt/PWuz5bPhQqVcl33Hh/YskVWnEMUj1t6fyelyWOV7YkjWuy1KVqMJce27tGoTxvJj3i/AbGI+GRcRnnXa/ZZ1i2l0DzPNM/rcjkvL++i+Xfautwap2o6EI2hrbt7j0y9uniP+Nzai4hPtWcMIj1HnXM2fQSi9dpE90Z7F+rNy4KP15OPMevla67q2jYTn7rlU/Nx6vzGTJdYojKO48WvrWsrkbFedF1bfoHXTyvPevWB1jEAfxdn9bfH3lttPH+25V+1YmTu+1iyeDZluVvUodU21hyr7+WNxfWwx+5a7364blx0cljy4tLec9+ay8yxfqPkoenpPM/NO1Wj5V9G5Yrm0+qZvod99s5ONE/WyoNE7npP3kjcrvmzvXvZypPUx97SttY9movhfck8s5WH6L3TvDi9MrPfKNRx5nmmeYjFQ63xvXtE0xuu85pPXT9XmZb6S7QkSbRuH82Naz5x1A5a//2CZudK0u6qTPX/rnQpJRRrpZQoz9sYe57PlPJyp1r+QW1fx9Luzvo/a7+sObfuOlmunfGePIc2Tqu9pgehc+acx16Ze3LUWvlyx7ffH1hrI/XX8ks1f0F7vikb08Z3rXd/r28n61ntpa3w4pN74e1Rz770to/l8/bLEc3zefmMVq5D69PzK/bm4bQ55qHavfU6RsawdHFP/sLK2UT3Xrbhv/vpkVPzS1pya59bZ7PK1Vob+ZjXlzkkDp9/L5ZP6t2jHpH3IkS6rJYsTbsxbO0gz/HuOUNVr5LSdJ7998q8Dw3+nmDxg2LxyV68fu7533DdE0v/Wmti/e63vl+w/J5WzBhp05KrhfUePHoupDi9sdTH1DfLRu61+Us73YePjhPx1aUcnt9s2cv1u9C1TJZc0XvVWmvp896S57Zye5ZOn19++1hZ3p3Mar+az/VwLJu86/PziU6n2XxXb/ldcr+k3pRS/7uAvGnHP6+6vv1VxfeWH+sfQbl1y3/EKgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwH35Mf4RlL/5mdsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYP7o/glJK+V8+Z3sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCa4XMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+HEzfW4BALiFeZ4p56w+Symp5aUUKqWYfWrtWvW1Njlns12tL9vtlbkH3g8fr46hyWDJFR0nUu6Nk1KiYdj+zSZvXSy9aI2j4e2jJVdvXy05evfAkiGiS7Jd715qY9e6KaXLZ0sXIzJZ41hoY2rPI+PyNlq7Ugqdz2e1H8tezPNsjiN1uTWXHlp9SRuhtY2yx47s6U87ky28Np4tsbDuBAu5lrV9j+239jJy32zFTaZ9I9LnUsuseVpyeURtUetZa0xrnOja83N9bz3vkUvbL2tfWratp5yPe6ud4LJJ+9N7Fnvv+k/V35418e70yBj8u7eO1pnnd7fVb9T25pybayZlHIZh1X99fqtNuEcbrf099tjzkVo+hWx/T79ByhHRf2/81pylXnk637qHZF977KDV1qsfvRe1Z5aM07RO45zP58v8+DzneaZxHImI6IsvvliVPz090e/+7u9u+v6TP/kT+p3f+R0iInp8TPTVV2+JiOjbb3+58W85fNw65s9//nP69V//9cuYlS+++ILevHmzWpva5ng8qvOepmnlH3nwevVz7Z9oWS/pe08lM11dynKeqZTx0heX17NDlv5WNL9f62ce5k15zplSTpf5WLGoJlOPX1OGQkSJiGqbsvJLvTuxNwb17iXtWeu+sdrUdtLuePtUdX5O17zTMOhz18bttSW8XW9uKJJ/8spT4jGBfc/I8Xt9eu1+knjnSj5r6YMl/9LP1l/qvSuttbDWxdqnUoppG2R5bW/lEJ6fn1fPjsdMHz58WLX5i6+/pufn9t6N47hZ42p/5jnT6XS6lKdE9OHDezqXtVx1LeTdRUR0OBzUcSM2Jhob2LnEdb/S35Rj7MkzeHJ6fje/syr39uNehHDPMM8JDEpd9S4cE6U0XMrrfMa8Xd8IdQzPJnr5NKLtu4NSiE6nE53I77v1rI7vfW/B+9fsw3Lv7+tPYtmYW3ziVv09ex65O7V7Jerre/PtyYHdG2/enr34mONbcVzvu7g98Dl7uenW2N4Z7fGPLSLtpU2P5OK9eFO7I1ryWf5KLc85d9+rnoya3+blmXtyui3/sSfHey1r61UrT27lRnvjJk8GrzxyTmR9K48czSHuzZvIculjROKFXnszz9vYutWPNfY4jl2xtTaOp88tv0bC99G7d71nXM6eu1vLEUXW5l5+bcQP9FjPV/bj5+wsfbrHXej5Z7e+n5B5OH6nbHz7oc5J70uLD6osPfniirWXvNw6y3Xce/FRYi/yf1Ng2UjvXUrvnCO+T9Qu9eastHLLp7hlL1v6F3mPq9nBugatfIwkoq+WLPx8Wj7t8ZBpmt6vyh8fHtW7tffOs9bSW+N7xpY9fX/sMe4Rj0XfH/X6RFKeiEx1Pq0YgPcVjZW1PJqV19R8wgrXf2temvxmnj9tbWnNXVlzaeecr5/r9mjvouT8PT8w+v6rB6uvKtdyt+bNM+dV4IXoGdj7jkR77vno2phcf6Rdvb7v2f7+QI6viWi9B7NYxvHvD+t3gZGxr2PY37X2MjfZkqk1ptU28l7OmpfmA1rvYS15pY703Cu3xBw99Jx9bf7y3pDdeX5aj4xeDqQlr7wD9tq7Vt6lZTd631NGfDcLyz7x/jR/mMdrnl9YucfvWnmeUKun2agyFso5ZudbPmRrLyNjeMgcwhIf6evW+/uElBLRcH03VnMK3N+wYugqW/1XbvE8zzSLobUzyNdR+2yNac5H+Rx9v33r3X/pZ1z8rLLK0Wzf78uxW/n3lgzyEc8fDUPZrI/Mr0QopdA05Y1eTYcDlZ3/d819e3b7byJ6x+yNZ4j25b167qE9baK+aivu7h0/UteL228Zs7Vee/M2qlwDL7/6NxFfw9IxK4dyyxrUskhsEs8Rx86lNjdv3yPnW9bhOUOrbeu3ibe8S4+8k9j7W509vy+8lXv85uOK9PHjtobjvYdbc78c+6bngNy3+L0RHSkBNQr1Y9gc+x6jVR3NV2vZsZ78QMsGRHOde+7ya1+rb+rvdqN99o9tx2/WndbjK+jPtjFd5H2MJkuU6Fy0ui8tVvVv/W1XxI+79T2eXNOW7NrvVC20O/ZwmGkcv13VOxwmIho3daWcVv8WKUXe08tEj9vlD5p9XgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcCfwRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGcFfwQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwWZk+twAA3Mow6H/Lp5TSVd9rY5V7TJN+vHLO4XH4d61NSskcv3cuKSW3P6uvPWvj9acxz3N3G0mdm1W/Z18q4zi6Y/U888a32ljlrX3R2uWczfoW3tmT49cxvXF69a9nneu43v5Hx6h97LEXvXustbHGr3306Evr/PTqEVGfLlkye+Na/e/R4V6qzt/rvFhnqPbfeya8vrz7RVJKdue4Ry+sPfbutl4d78E7v/e81yxZrXvNG7/3LiDq95Gs/vacSYs9fQ3DoMrl+S69e+yt/T1sd6RNb197bJHlu2h4/tfeMVp2r+eZt/c990ov94wXKlLeiJ5YNtLqW1uTe96pXoxlPd9zHrR+PNthsVe/78U99IjXtWy3FpM+PT3Rq1evVmXffvstERE9PDzQw8MDERE9PhC9erX0++HDB5qmiX7yk5/Q8biM++WXXxIR0fF4XPX19u1bIiL66quvVutc9+Ph4YGen59XbR4fH4mINuUtm9XSOw39PtneMykNl/F77ppWHkI7i1qb+TBv5n88HmlMY7f+9N5x1zN1lTWSL+i1HSkl11fR9r91Rnh/VZ55ns0zH/Gv+Oecy6VPapiRvfeC5x9b8vacBa0P7mt5YvO2nl7t0QVrjpbuRdbXz7GtntA8Z3VPe306756S61L7tvTz+fnZnIPVV855o79Vpvrv69evaJqGTdsIl33KhfgSDMNI03SgLObvxXaWnlj51HvEgT3suWM4Xp7vfD6vvrfmNo7jzf6tPGNFibEOhwNxy8vj9p6cAh9nGAYznqv97M3nRHRC2pCUlvXsiYv2jt/KH8qzuny9ltW1+1jcO7ci7wgv76Gxvov8dyJyTNluz/3U6yv01N2Tz+rNP98yRrTc639PzsoaOzp+1A5xWu8ItHW1zuGedxm9OSx5r7fqe1jz8GzivXIp0ibsyadF5JG2w/Mvh6GWLf9O40Tj4X7vqDSbcs9cId+zyLvjPfmfW/a/x75Y8kfXpfWOaU8uNPruy9tTK57tvR/vEQN6tm9v//K5Za+scffSK28kZ1h9kKuc6aKDKfkxsieTN66Uy8sZWXOI+jv8jETXLx8yjeO6bJomGoufJ+uRc4/ufeyYkK93SoW4b06Ulv+XrrKs9Wbbl6TlL/XkGXu5Rz+R+Ebz1TTd+xT2wsKTXztvPfHwp/KJrTG0GLI1tvXu1ZOtp7yn794xe9kz9qf4/YnkHnawpaPST9kTq0RkifhhPXkhfl9Kf9j2d+dLTp+XDaX//WEphYbzvOSRGafTiZ7pWnaLLYjm/+5xJy77vl4HLQcp+Zi5ql5y9n/XxJH+X4TFHuvl6++ZPDGs/GhPPL7nLrHh+cfx4vdF46Bb8N4LcCK5AZlnuDUG83yy3vXvPSf39XNjdkP7TQ1/ZsH3z4pjtHHl+urvAs1umrLwsr3vTiT38PVbDOeZSlnP43w+0zm1c5StPGcPmo/A+9XK83DNAyTa+v7eu1+J9y5KyijLes/b5R3ksL0HuU3U5NO4ylxjyO38rXmt3+Fuz+Q0TZSn299lRZFyWvkEfo6td7oSK8dtre2c/JylZsOlnL2/NfTKdTkN2QP/rcs85E0uLc8zzXM8/83x/ImoifhV8vE4t8Sa9/i9Tq9d2vPeqqcPLTcj7Y0c75Yx73Wn2nXt+lGd/FjvOFrsvfu1eVv71PNOVJMpau/W4/Dy5d/oe5HeO1zr+/vAnnx3z++dWY+rvrX+ZZypybbHP659q1LtyE3dehZbaxXRI+0d1jiONOb4/dfzDrv6h7x42YvBqX87Pbnee5xlWV4uPlyf7xflXrmRXvtqjR+JhSN1I/W8/Wq9u7k+0/Xu1tx+7zuIW34Pcm+ivpJEi5uscl0X2vqx9Um7xfxBgj+C8gMgpfQbRPSP2HvXWNuW7L5rVM219j7n3Nv3dneuabBjoBvSkMgBImLA7vBQyMuygnkEk+BuIhCPLygChCIEQorCB0BBQkJ8QLJkiQ+QxEYgRUgIIUVgjME8RCeiUVBkS3ZkYeFX3+57z2uvWcWHdWqtMcccY9Soudbe+9y+/5/6aq9Vsx6jqkaNGjVqntV/u/as1vrTDywOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABD4EdQBkkp/S1E9BXl0S/WWv+Hh5bnDT9ERD+hpFfCHAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAtxz8QMY4v4f0HxyhlNK/U2v9Uw8rzrn5R2oXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICLyI8twCeUZPz3b6eU/ouU0rNHkquy/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+ESwe2wBPsFoPzSSiOgfI6KfSSn9SK31rz2wTE2GT82PoOScqdZld9t3mS6fjzBNk5peSjHrK6WY7WtlrPStpJSG8nttW33RyvXaTSmpeawxITrOsyXXaD8trDa24M2lpxeRNI6llykld8w0tPy9NbRljVlyjeh+m3Nr7rX0libbb+2O6FGvfa0vPVmtcTkcDqu0S3T1Guul129LL0fGxStjsWVcPNumtT/PsymXpRfeOhlZj5E6NbbM+TzPlOb4OrLSiLbZkWvZdQ+vjV5fNL9jdP8e9RGsvdOTy0rryTU6J1YbXpmRvZDovPa0Nq7p71h1bdHvkT1iKyN7fcs7IlfPFlnzaM2X1Y7HFnvg+QH3yTXXoscWW+Dl17D2cq/cqM57++BoG/M8q3WVUkw9zjmHzyStLost8zvqt/R8Fg3NjyQi+uijj+j58+eLtF/+5V8mIqKvf/3rp7RnzzJ95e/7nkW+Dz/8kJ4/P8ryzW9+k4iIPv/5zy/ytL7d3d0t0ptejeybPb97t1uHtKy14NWVy2GVnnMmGpwnr2+jfkQphUpRfFHbxG7ar+261nVHzvojbV/Th9rCaFziWOZclpfX7GZvPKw1OmKbtvjU2hjOc6FRU+bpxBb/zNOFa54Zjm0RydCp1h/Pp/Pm14pTWnVotsxqw5pzy/+apnmV92hf+v6hJOd80vUdZcp5Ys8STdO0Wgvtu2zDi1ttmVtLRyz/QBuTVK4bGxz1NTyu6d9yHZKiHMehb2dH1msbWwuuVyPtaFxzj7gGkTla+if9/CM6umU8RtflQ81RdB/o+Y4esu9NVimz14bVv5Z+jXPhteZiix/mtb0lxhk9D/ZiNVv8ESt+q6VbPlu0btmGhjVO3tncaiN6DurN/5Yz8H3quOU7eLFUyz8qU16ftcpM2anLYsRu9nTWu++LyrQlZtSzXZcyEv9p3625u6aOWT74CNM0Dd8tjt7dWmxZo55vKp+N2nXP3o/axdH8pRT3/mCcevKVIyo3opfX9BU0m+HFQkd07BhrXZ85y939+5fXfPfDIqJjx8/t+/FzpUq1ppOcpAzHJf6odm4eYcvdsTU/2pp6iDsWj9E9Oipv715l5B7Si/+Oxvssu3ZOX9u+V69f0evXyzkd8WMs/fX05SHv3qJtXiuudE2ZRvDuWK/FqE5reO9QjtQ1srbb2Fwj3rbFxyci2tWlP1drVWOiGlvOhBajenJNHZVzvCWeumWP885YGlLO0XfDmv3XRF3bydyVRYtJz/NM8z3935eqZ7/peO+Y0vlZKTPR7K+fUb9dWxPeu3ZaXaP3nVviN5F6I8+0516c6b5odZdUjvN6ItE8H6gqvvzouhp9b8pbd9r7u7KaLfHLa97LjDB6prflSar/OXLmvlZfU0qBO/43/u8i/fi51ONdpCZjQ/NHr3lPp9FsRcllNW/zfKB6OLcf95nKYjyIlvbVuwM7rd03+8S5ycvm9b51frRda41Y9v+8B8t4VaW5zFSFLzSiN9cam1KqupeP1C/jEFtl08a3559ascBLx8crf6lPusXnv8ad2kh8XpvHpifRuxuP0XPVtc661zhPaO8QLO3ecvyiZ54tsaFr2IGtdcj9oqVF3zGSjMStfJnWstXaYu+xNu97D39bGB3v3vsyl+D9O9b7YvRMF/VVvbtEi6jOpZSIJv18r8loMb53xM+5137PktdrnaGvxfpehWhpS8Z9nC3nwJH0a9yBW3GjS+3yqGzeOwP82VQqpbQcj2my39cj8tfrNfwXycjYWb7rlneHoljyjdqGqN4s7Oh0fDf32B5FXi/8juXT4W3cH0n819Tp7yKi/y2l9IOPKBvBCDarAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ8I8CMo16X9EEolor+OiP5iSumfe1yRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4u8GPoFyf9OZvJaIbIvrxlNJ/mFLCWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLB7bAG+Q0l0/BGU+ubznyCi35FS+qdqrd98VMm+w5jn+UHaKaWYz3LWf9+mlEK11qEyVn4r3XvmyezVp5FSMp9t6YslmydztI3RvkXw+m/lt8pY40U0PpdWG94YX1PHtrClrmvqq1WXV2Z0/rV22ndrXg6Hw3AbUq723ZN3i16M6mXOWZXBm8fRtX9trqGX7fsWHbPq8tZ4JI2j2Z42v61oLZVqLq4NI9L11bNtRGN96aHVNarbkfqtNaa1MWpbp2kalsuiyTXS1zZeskzOebPN1cbrWv7OFlvk9cOaS88Wac88vbfa2LJHjbLF1/B86mut02vl79nbSNmoPFv0SEvv2ciRvmzZZ6z8vXavIZdXRxsXLnvPJ9WeT9N0sqvXkLl3xtTsnWbXPZ98lJzzqq7enN/c3Kh79gcffEAvX75c9P+DDz4gIqIvfvGLpzK3N5W+/OUXRHTc++d5pq985W+mV6+Wdl/qd0t///33abdbh5ymaaLb29tVGhGt0vnzqI5resXRzunH7+u0LT66RZs/ufYsv+uYtpaJlx3dmzy4DEcZiXpDfum+5dmhLfEMa849v8taV7ZNO8vA8xwOh03+7ui5yTo3ROsm0nVkKvU031qV19rXPZ9utI1I301/fiKSv1Wdkp5/1D/dYvu9cbH2JCu9lLJoP+fz59bGPM80z0s5Lf+Fp5dSnLk91u/pXfR8tQVrnattTIlyXqZP00RTOerENX3y0TOBp1cWo7HxZgOWe58/F9G1wfe06Dh68fM2r7L9XoxN41xHWviOnqxe3Ova1BzziUf2x2uusd583mdcL6Wk+pQcKZ+lV1tipiPzHTn3ST+wh6X/nk9g6ZIssyU2ZY2rV9e1YoLXuDvqPbvGHrClji33Ze0Z1zvPpo7irSEr5uefbfT6ZR+9ubHWmJVungmnHU3Tssxut6dc764WB+rF1zXkns73bMsWWFwjHuGdrUf2Ka4v0b1q61nR0stoPa28d+8flWXIP3Xyc7T9zqrLmreoXvbPxuv0a9rpaxE5Z83zTLU+zB3lffRZi2to7UR8mpN+7Nb5d7sd5TdnJm/fujR+sMU/8thynxqhZ+evcQ+0xaeNthu905Z+hodl47f4ZFF/wmLL+I/YyF5dUXlSSsPvAUXeB+GM9Ktn8zW95888eSPtWPT2Z8k1fWILbywsrnFmH21zJD5swXWUt3etdzV747DlzpVT0znuHW1zJD5wrXt/azx7ayvahh8zWM5rzWOxgia7927INWIuW84HI/Vo+Y7/EfExOsbfpV8+E81+vMe6h7zWfYlWXp7p5qmsxjznaXU+jp47tLxER51Yt+P7kTzPVrR14flskfhD1LZ7Pu2l/oLXtjr+zjxHx8J6n4yXt/xEnr7lfSp5D16K/j6CbJe3acWcvPjRpX5379046wx9rGfsnN7oxRGsveXSM9JpXbE7jZzOdifXY9pu2lHZncdldM8avV+7BpbN6MZscmL3zk3+3PUdmu4dx06P/0XGbatPGM3ryRHdh3vv8PC2zm0SVbF35pxoyhPl6fI4zlqWsTuDnNf3jS2/F/P27oJH1yIv6+mPNuzWezIj/rdm49o6usa9kBfzisaTInfaPflG15Bmr0feeevJ4+XTYj8j7Vr2bsu9SS/f+W68UtsL5bsGli9yX/GbkfJbZdH2fk1vrnXW1LDv2tax3Zz7+9mlXNqf0fOx1f6Wez05NjM1u6Xb/ch7Auez47a11eZM26Nb82uZ6uJ5KeX0zuw1fbKRWHME745MR1973hqPzJn2PHXiUSPn7tGz8ugdy4gPGhuDtOi7ZkesGGd075LjxWNTI/J69OKwy7jROl1ixelHZI760u0zH6d5Lqu70HkuNOfzuXH0rkI+23IPzRn1h3uyybp7/mlkfLW8I3rW5kWzAcm515jT8n1g4+jyqeD6b2x+uuGqlFhaIqLfR0T/S0rpyw8uFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbzH4EZTr0n6SkH/nP1P4ZSL6uZTSH3wE2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeCvBj6BcTmV/v0HrH0IhllaJ6H0i+q9TSv/ag0kIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBbzO6xBfgO4weI6D8joj9M5x9CSexv+yGUiYj+TErpdxLRv1hrvXtoQT8NpJTMZ6UUIiKqdfl7NV4ZmbeX3qtvhJTSSeaR9r36+N9L6mpltLJb6htBG1+elvP6d56sceyhlau1mn1MKXXnP6p/KSVzfL0x0MpYdY3K+pBYMlvweYnqeG++tGfe/Fvpmk5GZLNksLD01WNUB3a7nVnGG5eta1CSc75aXaO2uqeTo/V5uhRtP6InvMzxc6LmpqRElHKilDJN00RTncx6cs6uvJfai1750fEissdl697F6/PsB98j1+N/3b7weqPpOedVfb115e1VEsvf8uQa9Xdau559teqSdbY6tL5Mk70mtmL1aZ7ncBlvbHtjJrH6n1IaGl8iex4tn9ZbB7LtLfsibyeij9yPGNF5rS7+3Wq/Zwu2yGDJxdvh5Uf1JYrnlzYsnffWgqUX0zQN23ZN51sZrq+8TanHnqxafo+ejmq2S2s/53yS+XA4LJ5N00Qff/zxqsx+v6e7u2N44u7u7iR3Son2+z09e3pDRMu+7HY72u3WoaVa66l9/vxwOFDOmZ48ebIqczgc6ObmZpXeZOB/tWcyTRtL7scszwxnn6jl8/aFhnUm84j4JTVXSimzdL0vo21YrG1gJT58pRRKZT0HW22xLK+dE6wzndf26H5lzfFCdyainJe2zNsfRmTo+UoNrv+WHY/C+7Dcn/plLFmj5+nI2V7zOyI21LOdcr/T1lTrg3bOivinUTtv2XJLFw6Hw8nG82fzPJ/sNd8DSin04YcfEhHRq1ev6PaW6MMPj/3/9re/TfN8oP/5Z79Jz1+c5a210tOnT0/tNfb7PX3xi19cyNPG8gvvvrfaW168eEGFiuo355zNGMI0TRf7GyP77JwLlbIc53meiea+nz3iR2+JTVn0bI6lV33/Jzbu3viWUk793xoL4H5cRBci5wHpG53HqNDd3R3d0drHk+fj0T2FyB4rq66Wv5RycSzlGvcQ14qzXYocry32tnGpr8LrGLlLsmS51vkqeh6NnPmssr200bpH7iU0+xm9I7hkjHkb0Xo8ubbEZqJzy/fblq7F+Uaw/BONkdhM8/U1f8eKOWlttzTrDBzte8mJ5nlZ/+FwR+XufFUv7x627AkPhTZWW+SVNqoX5yC67r1htC7vXojrCK/XihlY+metXRlzsmJTkbraM03+S+H+mdXmlrZ6/gzPt0UvR2LGI7Yutv/xuu18kbughyK6Ri8dq1Y8pXTae7y7Es+v3XKXMyr/qF89eqc2Uu/o+w2Sa/iOsr4oTe6InvXa8u4HRu5Yoj5H+xup25sfq30rLhqN1/EYqCzTO4/WWk9x9t20tvX73Z5qtfcmK1ZutWf1ZSSv5+t7aHm8vSs6l9c6j/Xa7JXdymibVv7e2u6dVaL+u+e3Rc/dsr5Iu4tY9rSOe2v+maWrPL2daWRsuRc719rw7JC1xqx0az7jOhd770XDi+X1zq8Nee7a8q7bKL0+nsY6J8o5LXToeO5e1+fVmXN+M1bLOZymaTE2np0bvXeqta50o+RCpfC0RPN8oHro193bD7QzSO/MIee1ySvb4vVad/pWmncek2W8WNSWGE6v7iaf9tmrq9f2lpihxBtzDe984PlOa19omUeukVZOysnHuBfL2Xo+2nKGvjSWLO8Et+CtkZ4+WPdNpzuN+XjX1vbFUgrN80x5PtZ1mA90ONjvoPXkjcS4r3leknVz5nl23xUqU6Fay0IXay2kqY1WT9v/tDGP+BaXxsMjeSxf7ZrvUkp7cfzK5Tvea47GZrxzP5/L4z4p3wM7UCrHM9jx2dK3bHM08q7tMR6pr4std05Etr07z1tL0++ve/GLERu4VR+1vXLL+1CjsQcvr9R7b5xG7+48/0LaOX7/o+WJtj8aJ9FkjJzbtHo1lnbvvMfkeu6L1V7v+ygRX9ua/+gZcJmfl7H9Q6suy6eKxs4sv2JazL8vD2dL3J+z1W54e5B17tT8iEjsq3cndRbqVPuindbGNE3B8dge0z++32nVvZaJt9eet/e7elhrNLJv8DttbX01PR35twNerKWtFf7scFieh7Xzhbcme/FI+fg4LmMxH63dSNpI/FWee7y7z7j9X7Yj95Son2vtl5F41IiOeP/exau72XTL17Lat9J68Yct+92ILkT90UtiJBE5rO+XttUbC2/8rbpGfa9zG+3ZWFxoZH/4TuXtfWvnE0it9aNa648Q0b9HmlYu0xIR/TNE9N+nlL7wcFICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB2gR9BuQdqrf8mEf0YEb1sSeyx/CGUHyCi/zWl9LseTkIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4e8CMo90St9c8S0T9ARP8vHX/sRP4QCk/7XiL6H1NK/+SDCgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFsAfgTlHqm1/h9E9LuJ6Ofo/KMn8sdQWtozIvpzKaU//dByAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwmOweW4DvdGqtv5JS+geJ6MeJ6Gt0/tGT9CZLEmn/Vkrp+4joq7XW548g8ieGWiuVUhZpKSX1u0yfpomIaFU+2q5E1i/z1loX5Vp+rS4tjZeRbfH8sixv35LPkt0ipaT2RWtntO5pmk51jM5NzuvfdNLa522MtNPqj/bdw5uPXhk5/h6envXak2jjG6GUcpX2G1GdsvruledjbD3rlb2E1q7UyVa3NwdS5paX1xUdO2tNpJRM+2PZXrleUkpdXbrGWG5hS7uajR21ew3Nxmht8XZ6e4/FeU86/zZbref0Uoqph+s61nVbcvH00bU80ler/569v9Yat+aF636079zPke1b6Vb73rqT67i3t23dB3v7rSyfczblHl2v1l7Ax0vLs0WXeP09ea305qdG67fq6vlUch3z/N6YRdI9evZOk3OrbfXaie53nq/d88+36JGni5eMgyzv2fHovhaZw+h60OBrQSunjeE8z26d1llOq0s7b2pE9r1ev0f8Ty3vbrc7leFj0NKnaaK7uzsiOo7bfr+n999/n4iIXrx4QS9fvjzV/ezZs2O++TkdDsuQxKvXlV6+nOnVq1eqTDlnurm5OaW19CdPntDTp09Psrx+/Zpev35NRES3t7cnOed5Psm53+8X+wBvQ9rJkbXB19Tyb7OBdBonbf61val37o760LLM0sZU2u12lEsesp8j6ct21+eLkTNhREZt7/fkkmW8NRbd+yKUXKgU3Re2bFO0/5peS72Qdq13zrfakmW8/U22x59b+7hVX3Qf4896tlxr39IHzXc567gf3+udxflYWHmkLrbv0zQtnlm2pdnHVlbTbalzn//850+fb/aFPvjgN4iI6IMPfgsREf2BP/B5en2X1XHyzux8bG7uZnryZLlHvPfee3R3s1vkt3zHayLl9fzTnDPN+3m1j+z3e5ooh/0zC8tv9XQy4utq9mbEBnjnnje1EdGbtRdYf5I2bsd2zm0SHXV9KvH9g8/BJbHh9jnnc8zjjWSn8Wj2qY2JZXv4/OScV3aiJyeXK9qnthYje++W+41rI+386F4r1wDvk+fPROK+co1F7JCccy6XZ++tOOFo/M7yMax+bPFveB3Rs0r0bGidgyO+qWbroj65rMOzx5GzmjcuI+uuFw+89MztlYncJXl96flAsj3+XfMB+P7b2y979q8XOyM6903eleSUKWdxZ5wnmnZLXbTa2KIbl6xRy9dpNDn5erFi+9Y9Usuj5evZzS3+nXWG7vnH3L+4BjyGYtmb3hmU21I+ZyNxHqK1T3/JuS+lFPJrvLq1MbZsijZXIz7MlhiHFz9t36P1aXbs+N/62TzPVOf4Orn0/LPFdkTb5/2XY3GMgyzPny9evKDdYXeqV4vZEa3nXps362zb6tLkHvWnrkGr+qgL9ObYtB43jcge3G+/7+veJ5f4KNfou7SDI/5XdPyjcape3vbcO8d460Tmt+pZ7pPrdXSYD3Q4+PZXts3P85qsMkYt9xjr3ML3pEvnwmpL2hft3CJtSiRGGZGrtXeJrkfiQTL/FkZtRyS/F7v1dNnyb6L2JhIz3kr0XFjPG0KofMOzKXxf9eyIt3dq8PLaWWwqduy/le/FJg6Hg9q2Jn9Et7hPbNkly45Z7UZkkzRdK5N1N9TksuuwY+z883nu5RlUiyGv69J9YMsfm6dCOS/9/JwnmqZ13MI7N2hrWTs/aGMg32GMxI8iZ5sRevtw73v0LkqrZ55nM1YcSY+coUfiQJG7IJnWs5eW7kb8R5klGvPke8w0TaqsPTl68Ue5PqPxsNP6m2fHLupn0h6jfoS3rq21GPGd2r0Qv3ex6pTtebHzXruRunvILFYZGedZ2bycKKWlLeX21YLra85tjvpzb63j0TPMFqJ7BcfSv558tRLVxXgc/bDoGuFyWvkXNjZpYyj9jrUdLmX8XLClD43ev5NZx3u4LVzei0bXogWvx1v7I/FlzXaPxFm3nEF7cT0t/uuVE5Ka8z3qt1rvIY3G0jS0OdB8EKsfW2KjWgzdiqtv0aEt8eJe/dewq8c6xve+a8VAo/tu+xixD717lWvIpsHvdqL1RtvY+u9LtZiBFSchMs4mb5Kk7bfyauuIr6Xj2Z+XrYv6quGuRM4N0bgFj3lEbEvknSHvHZzov7fjY2XZsp4da/JLW990YUu9Vt5o7Equ2148jqfvdrvQediW3z5XWP5Cz4fV/IFaazCGnrsyp5TMO9Hu/rObKaXMzhV1tQZH8M6w0TiFVzevohXZUq8XI4mcB7VyWnuX7ruje+qoj0501DdLr7X5JNLjA54/1eoj413nTxvb/lU7GKLW+rrW+seJ6E/SWeu49vGIViKiHyGin00p/Y0PJyUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8DfgTlAam1/gdE9IeJ6FstiT3mP82TiOjvIKL/PaX09z+okAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDD4EZQHptb63xDRDxDRz9P5R084La0S0QdE9N+llP6FBxUSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAHZPfYAnwaqbX+lZTS9xPRTxHR76PzD6Ek9rf9EMoNEf0nKaXvI6J/tdZaHlret5laq/u9kVKilJL6rNaqlrPye3LUWqmU/hR57bW/sh5expPNqrvXH60c75cna08mq36NVs80Td0yfIxKKZTz8nedRsrLclZ/UkrD+mKN30g5bcyt/DJPKcXUH2+M+DNetyaDt/as59ZY9rD6qaV7bVjjYH2+NtZYcj3WbJy1VrW6enNtrfF5nlWZc85DttFqV8oXteWaPI2I7fUY7Zcs07MLUVk9GyPny1oLPXlTSqe5PP5HVCtRouNni1Fb5tlRC2nHedtRexWpOzpmfKwvsVfRujx7pdnhkX1Y1hd55tnwlh7dx+5j/EfmZcsat8r3xl2zrb295VIbNsI1bSeH66hnL0b63/Td28O0Ml5a+2zZG68dvv64/vMzQFQvvXwRH8WS09J1bvdlX2R73nyNzB/vo6cTI2htlVLUdE/WLTa9N7ayXssP6NVnIcey9WWeZ7Vfr169opcvX57ytmff/va36Rd/8Rfpww8/PJX56KOPiIjo137t107lnz3L9Ld+8XsWMvz0T/8yPX8etxtf+tKXiIjo5uaGbm5uiIjovffeo89+9rN0OByIiOjFixd0e3t7yrff70/9auM2TRPtdrtTX5qvevZl+mPJz5ky7fg3rdabNp9c10b3M6teVVfzWa9bM6UUSlX3CWQ71rqU6Xw8en2I2LdRn9CyEfIMa9UnbV+vjBwzay/geebdLPJVmqaJprIcO74OvbmxsM5gvPwWvyfid9Zq26/IWXPkmUUv5uDJYrWv6Wzbs9c6Vyk5+1lUfkuWBtelni8i5YzsN9IOaHGTeZ5pnpd2KWozGreHme7u7hZpL148p0O5Ue1KSol2u50ZA4n4Mfx55AxixVPmXIiH12t9M1aFVuW2+Mq9edX6as0nT5N7ieaHRuUrpdCcM9W61pFReH/nWqgUJb40x2zXaHsRW3vMkxexjmmaTnpq7Tdyr2hjzOPPnv8p9cjSC163rIfrJc8v56y3l8uzikcvTjkC75dWR1Rv5Rx762U0RmKddSw70GxoT06rnWj80zo7WelRf7gn5wjWWS/qM0qZZDycy6npuLSD8pkls6Z3Uj8jPo5XJuKfWuOnrRtrLbV0KQtP5/oqx9XySbb47lYfLdmtM5DVnna/NRITkmNV6Lj/c1nnMlM9HLp7csvvPYsQ0SWrfu/coBGNR0Tjb/L7NeSJPONtbYnpEK3tTUtrf7V4AV+vEd1tRPM1eax7QWt8Pf9FOwNE5OL9HJ3Xh2AkXqnZK2t9rf3BSvN8oMMhUa3lZC9qrXQ4HCgf1naX+2jePcLo2XpU37xxGfGNjn/rSue5Xec6IvcUa1/p7e89vP3Wyq+NQcQHO85X+/wmNpeI6M09quynV+9WruG3bY0/t8+RPm2Rs1eGz10kDnDfWHbU8wk8W2zV1YtHyHejZJm7uzu6u8vmuiM6rl3tOd8jR2wHL2+Vi5xbvPIyrbf+Pb29ZE3I9Gickrcd8aO1eB6vQ6sroodRH3Zk3WtnFq5L3t1hT/aoLFF4M1wXe3G6a2L5utYdZ1S/Ivtau49b1H83UykzEaVFvpKmU/uX2N7RstLeWzEzz0/lPr0Xj7PO3qv8OVHOMr4/rdJS0uNe0q/nviXRcbybayn7a/VfwuPmvfx27HTtI3nj3Du3eXu35QNK2WQ8TtYtn43o22jMP+rzRWyH9Z6ObCNyd0mkj2c6O66LNM92e/Azgnc+0Mpo+5DVvn5vV6gUey/Txkme4RuajvB8bSyt+KtWLhJDaeUt3c+50vGMEb/7W9ehxzm8dSUZOaue7vRyy9OP0VnjImXSzgHe5+hziyZWr4g3dl6cSfOvuY4u7MChvfOztMVz53qG+/cR/7RnX6wztLUWpM236omsF17++Jloac+O9u1SH0XDjqsUatPk6YEX4/D+HZBM9+yLVR+RF+tdx7ysuiJ7jxz76PnCmuvIHYFnF3p3BNreZck4GnMi0udiUvYz7fwYPcNZz6NrLDpmWpuRPbEReY9OzmWLPx7bOteTq7338u+9+YnGj0eI7Jc9fStT04fl8+jcRM/2loyjcYyR9wRGY9EakffaZZ77iBlGzpKSs41c++IW8tzDz3XS75bvjbT0nv/I15onO4fHvq2YhYecIxnTtPL3fGciXc8jd60RPRm1C9EY2mjcbbQd2Te5LiL+Bc8r67vmGovssVY8wMunEf03j1Yb5/e2bZs7p+X7h62ctl451v6s2eueHx61vZoPvdXOc5ktP0pr35OtVz5SVuLpSP8ssh4v7V7Qk8X0+/PyHUZeVrMX0m/6tLPtDUZwMbXWD4noDxHRf0Rnb4drJU9LRPQvE9F/m1L67IMJCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAA4AfQXlEaq2l1vqvENE/T0Tt/z7T+yGU30tEP5dS+tseTkoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO4X/AjKW0Ct9Sfo+AMnv9qS2OP05r/2Qyi/jY4/hPJDDyokAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3BH4E5S2h1vqzRPT3ENFfovOPnsgfQ2lp7xHRX0gp/esPLScAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANdm99gCgDO11l9KKX2FiP5TIvojdP7Rk/QmC/8hlImI/v2U0u8kov/pEcR9dFJKlPP47/jUWldpKaXF3167Hk0mrZ2Wbj3T6pF18fa9umqtq7xaHlmv1T+et3322i+lqOnenMm2e2M9TVNoLC3ZuCxcXtmuN8ba54geaeWsMeN1Slm0trQ8LV8pxZR1RO5WlydzRN5om1zneFpEfms+I7pjjXu03MizqDwRexWxP7y8XJdbbCvH0gvLLnl2xJIlpbQo1/JF25bPttiSqM55cnnte3JZ9r1n95d10+k/IqJKlXgRb71GxiwypjKPZ4t5+qgt4fVK2UdtvIfUy155bz1b9lOuY7knR3RDqzeKpcsj9fT2jh4j/stWND3T2vfSrT1Ks8PSp5F1Rf2FCJHyo/tAKWXV35F1ZtkXbRy0cY3ap55di6RbdfMzQGRty/Hx9sRef2SbW/yrqF6P1MtlbOmX6q9Gzlk9O2n6M03TSa6ejeTjKm3vFiF/5vEAACAASURBVBsxcs6Sbc7zvErXyt3d3dHhcDiVaePy6tUrev78+enzd33Xd9Hd3R0REX3jG99Q5boGv/ALv3D6/KUvfekk14cffkif+9zniIjo85///EkvXr16derrfr8/zVet9dSvnPMpvT1rWGu8d7Y+pkl96Z91Wr3tr9SL3nlRW3tLG9fK0iJ/xEblnBfP2rjKMzDXrVPePFOty77P80y0zrqoz9oHrD1Njm/U3nj5tDmXz3n7ERnmNK/yWePB6+ntcZrclizW3qCVk3tQxG/eVT5mS1tn0TsPjPienh2U4xex17I9qYvHP7FzlreuLUZ13vP7rPaaTfTSj3IfTmmtL6UWKuVct7Sry/LLz+3vzd28KrPf31BladM0uTaC91HzaTgyjhf12/hne00s9dmy/TyeZvkRKaWTXZXtSLvU872i8bZR29n0oaR0aqNV8fr1K8qv79zy0s7yfs61iP3j2EYq22LuWhvaGdgbq3le72lH+6/ro7V/8JhTb6/pwfV5Lfvy3CfHTubPOXdjlynF7lC8s07vbCu/83jelvixTPP2O+v5CJ4/NnIeuiTuEvFpZdqWfkfOfd6ZVrM9MrYh6cVs5X2F9DE831nijV3k3Dgyptwutr55PjCvX85f+6zdd/XskpSfp+92y1cANJm8eBSfM+sujT/r2WMuZw9u36ReRfwACbdFZbVf6frl6bnWbjTewedJ1iPP/tH6Gla9Mv9I7EmuUa/9CDJO/5DwMZb7eeROOyrvSOxLy8vb9O6xrXPQlnH1yvd89RG27rGXoMU9uC7c3M00z4dF7OXly1f0Mic6HGbi/tnhMFM+rOPg/K+kd17x40L+mdySIbLGPb/vWE+ilM517vd7ylU/38l6e/rYO+dH4iY9H1grr9kfqx9n25eo1vOZ6Vg25pdE5OM2ube+ovlG2u/R08et9iZy7rhPRvZBr3zEb5fP5NrlvmPUpltxx2maaJryyn+Mnl2t+fbsnGWLPBvRS++NS09PLJ/8mudGzZ/q6ZC0d5Y83Nf05i7qb1zqIzS0cdX2WC+9J5/VrmRkXI76KO247/t7srQ9Uk/3dXxkXLTynlwj6fy5FovTxtc7D245t0Twxisam7POHny++PlgHYNen4V42tlnSpTzsn/auxN0eu2b16evJ6v/1hnSi0U3v6ZM5Y1cXM6ZaK7u3uH5apfe+0fPY9Z7vta9v6R3DrHiHLJshKh/G7Fl0TuFLbF3L9bC4xxc36U8WhxQtmXt3/Ksnef1uMn25DyPvPfUiy97aRYRf6dn+893NEsbpY23Vk5+7vkrPa7lNxARJerfS0T3+Uvi7j24n2CdVbTYm0WLOcp7KF6Xto/taqJpWta93++p7tfrjPtkcp1q+ThSJ6UsvXURjZ+OotVbK1Gl1teW582doNhnR+rWOI7j2J7W1qnUCfm+u6Yz07ReH7vdjkrN3VislMFrpyZ/Xrz9zjq7RM49UayzprRF2vlOK2fVy/9G/f5eG/IZX4eySFv3IzGEHtoeGSEST7PO/jIWMTrX+vy1uTmm8XuhnkxbiNxlbaFnCxe6kpr9amX8d1C9eq+NNf6andO4hoyRdwoiZyUOfydjJEYW9eG36pMlS83b71Gab5CYSEefpK1dnpZOn2UbpRSa6PxObM/eev7ByL8bteDnkwjqnriyQUv77Nm1qC+hncO99b11njX5vL1rZB+M7BPac7uP51jT1viRZVet86j0G3ifRnzXNq5WmZwzHa/M7DihJvdIuvSJrLGw0rf46lHfJ9KmVdZba9Z88TosHbHyb4kDa/pi+aWj/tUlYwyILvtXzuDq1Fpf1Fp/lIj+FE9mnxNLS0T0VSL6Mw8jHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1wc/gvKWUmv900T0R4joeUtij+UPoXxGpAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8IkBP4LyFlNr/a+I6CtE9Et0/IET+UMoLa2uSwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Mlg99gCAJ9a619OKX0/Ef2XRPR76PyDJ4n9/VT+CEqtlWo9dj2l1Ml9RuZtdcjPW2UabV+WbX9LKcP1yc/te87L3zvibcn+W23yunkeKz3nbMpm1ethyVxKGZa/Mc9zSJZoutV2NN0bi/aMz6tVd0ppld6+55zVMtE03nbOeaFbW9ZPbz1o6RFZ5Xq6b7x+jMom5ziCVVcpZbFGLkWua46Wrq3VpjOansq88nNE36S9a+V762t0zCXaftRb+5qNtOwrfyb1issf3Tdk3Smd0/na9vZZq02vDxEZ5Rxq5b02tbblZ2v8LPie7PkNXF8jOiXr9MbG6o81Xt4a22IbLV24lr1tuue17T2L6MQIUf9wdB8byac9u6ZN99qL+kgekbGJrPctvoKVFp1Lz9ft6QbvUyklNHaejeLPI3q+RUe22Iv71MVL4X5zJJ9EzmGkLotLzpp8f9Jsr3ZuzDnTzc0NER3X8eFwICKi3W5HT58+PaW/fv2a3nnnHSIi+sIXvnDK9/z5c/rWt75FRES/+v/9tSF5iYiePn1K7777LhERvfPOO/SZz3yGiIjefffdU3v7/Z6ePn1Kt7e3RER0c3Nz6t9+v6fdbnfqC+8/9yH5GMk0Pn+Wr2Wv93Nfcp7UujwfwjuPcqTc2lkv7RKl1PpMRFRpmiaayqTWpWHZW64vapnJr9caF6nvmp2wxmeapkV9sm6edonvIcekybjVb9gS54jak8i5wiMSt1mmbbdRkbxe+9Z5Zn1m6Y935NxSc6VzWLXl0W0KtxmRedD2amvP5PrHbbpM59+1s7Lln5RS6OamLvy6lBK9fPmS7u6mRb/aupZ2Qaa3MuuY5dqXkGcjPpbymTdvvI/e+VTS7EorvyyzLN/OwKWURV/52MkYmCerRJtXLf+IPyb99Zav7enyeUtvY1Fvb+nly1eLuj/66GPasXx8/nnfuf1c9H1a74OlFEpsCURth9T3no5EqbXNR3Ljp15bUi842nqXaa2NeZ5Xa+rcTHJ1zmvvGkRsXy/2MyLbyPxG9efSmEBDzkF0Txg9B2yJBWtzEJXLOnNq+Sz/22uTl7f8LU1+zUZw2z96viZa3x/JfllzrMk84ot4vo3la2iMxL0sv7mHZWuse0W+x/J0z2Zd4h9besjb1tL593bOJCKaxVmPiGg37ShN+p2ERPpWDS2WoMHzyf16xIfXnrX6oudEC64/KaXVnFtlRtogsscpuvastmT+3n6qoZWJ2mp5Zh6NrVl3Yp69kkRihnydROzSNE3hMejJwuVpvmXPrllIeyv1t61/2f+Trzs3v/Ys12/8xq/Ti5eJPv7w7pR/nmf6xs98neqL4x7c4lqtzHd/93cTEdGzZ89OdU/TdIqT3d7eLsavrauRebXyRM/ODc+/SylRmhLlvF5HEdmsfJa9lHm8uLjmU2htabpgtSv93vOaKCTPjfLsTmV7zLih+SmyD40R/1gbxxH/tX232ozUNRJLicroybFlH7p0v9nSjndW4enNRlh59/v13ZN2htxiYzSZe3VoMZxee9JeW23LNc39Y/k+g9VOy3PJmtVk1NawPLeMxLJkGS32E5FTu0vh3zU9HFnvvbi/1X/PJxu5S7B8JQ/ePXmetfqu1Z2zr0dbbFGkrt74EY2N4ShRv91jZD/gfxvxue6f9b20ZZsTHe/p5B7Z/h7vVeb5QHXuv/NwrGc5r6M6E40f8zj3aSxyItnllM5x8Ui7I+slUqdm53gb0bP1iI3X8ln6FW1fMnoGtNDO+Obd7uJz7J6qZ08j7/JE0zUdjbTTnvXe2eD5emOkyeDlu0+s+bLmzK4jnu5hxWW1tCa714xlO3pnup5so2cNj0gVvB0ttlLm9fvZpcx0OOj9l3rd7HApfFzOd1kWnn9gvavm/ZuOLXcU3nee7sXK22e+L5TpOKY18TJHfbPuCbbE4CK0MZsKLWIlsil5h6+dqU5+eC2rGPM8zzTP23wr65xZpnW8rdZCpYzFSy0b7PlXvfU5cl+w9Ry3tFfb2oj4wbZ8/r1Xz7/ybGf03O2V558jPinvh7UOR+S5JtGxGLEFvfhNpP/WGjmmt7GkN+8C6vdxo3Jfghaj1/ai0bN97+5s5CyxRb+sf4+0hS13TSO094oiPk7OmWaK9ac3bKqvwo5qWhzsbWP039HU+ua8NZ/vuC/tX6+8ZzsjRMp6/vvW8hHkGaHZuFqX74xF947InUePnv9pjYsVl9LkOe4HPG3cVx3xiSJY/k9KZ1sQOcP14ixePN+rt/dsNDYWHdfIXQT/rvldvfNZVOajnV8/f+h4xCeV+92JwVWotf4aEf1eIvpxOkfDuYY//IkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIArgR9B+YRQaz3UWv8lIvoTdP5tNfzUDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4xIMfQbmMB/8Rklrrf0xEf4iIfvOxZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JrsHluATzDpsRqutf7FlNLfS0R/gYh+Ox1/COXR5HksUkqUkt3tWvXfh9HSrbyX4MnGn1lt55xP+bb2pX0upSza1D7XWimlNDQ+vXGzZLHIOZ+ey89eGY5XvyZXw5uvkXpG6o/ogVZ3y8vnS9blyaaV6cnQk59/9+qROhHpt9TXSDte36zPWlqk3175qIxt/clyPF3WFdHZaZpomqZTeT7m1lrx1puns725bGtaazcyTrVWmud5UcYag+h65uPca79X54iuWLZWy6fVcemeVWt9Mw+V2m+p1XrWET5PvP+8XUtPoutaluGf+TxrOteznVo+qXc8j2VXLBunpWvrPjIW1/BlInlkG9r8Rfd/ufdE1lukj2e9PFJKMfsWbXNUFy27bPlQ1p6q+VSaLPM8n+ZC6qHVx2maFnVF/B4Lb0+29NfSq97aGdGT+/TLt/pevXq3zEnE3rR56O0FUd/rkjwSqYscbQyk3YnqheVv8Db4uSFa3tNluQdq+SSe/yTl1eSKyCv73rPFOWfa7/enPE3G169f0263o5ubGyIieuedd+ijjz4iIqKnT5+e8r333g29++58aquUQp/73Odoml7T4XCg9957j4iIbm5uFrbsc5/73Kne1v7NzQ3d3t4SEdGTJ09ov9+ffNScM+12x9BUS2t4e68Gn4eon3gev3U671dD7g/Rfdg6g1n7irYParZ5dB/otUFENKeZShm3kbJv/Bxiyev5lNwntMpssbmavG2+1X1iIsp5rQNSXz00uzJie0fOoFpaz/b19M06q2p1jZxfeP1afb14T9R/lWPR028pS8+eeHt1rfXUD+98wMdC+sSNeZ7VeZXzx+fo5qbQbvdq8Wy/31NKyyuB1s40TWq/5LkppXWf23PvrNHWNc9j2Yjo3jrq05WbQq9evVo8++ijb1N+vW7PstnSXnjt9eTl8+fFiaQc0l9sNNu02+0W48l9glorlZsber7bEbFrhSdPnlB6MzaW7mvpJ1loqYeW/NZZi9Ob/2i+nGUs7ViG7/Ej/rKUt5SykKF9jury6eyY7bGQ8ll7iZfPqtc7c1u+ZkuPzpHXflTWUbx4mrV2riFDT5e2nLtGY5zRPJYPGq3Dinn01lTPJ9Ponecj8Qv53bO30XGKzDc/X1plLrWD0g559idqZ7bm0WRrcvCxkHL1zkpb1qfnny6/J6IL/r9G+LhY5xfJJWcYieyb5qtrz7V4lrfGon17DCL6EbkLi6y5yJq+NiNjb9lCbz1oOsDzWHEW75w/Oi5WHM5Ka3JF/C3ua1tn+JvbdPKViY5+8/d+799AL99J9Gvf9eEi7/f9/i+fzg1eLDvi62rya2dzK+YXjYVq9M64vTjZFt3fYi9H29HGvTcX1hk258LKrs/E/Ewx2gfLd1meuWP3GZ5/4vm7Ef/LshfW+YATidFG8fTAO7d63yN13xcRf9JK78VBNN3qvVsR8UU9XdDqtnRtxM5Hn/d8n/s651n+q5bWi6tq+SLxVU+vR9/HieazZJT60tPhKJ7f0mg63vNvJTJ+c0mMY5om8y6pscVf8tbzQ9Ebl+h8e76LhZxLbgM92yXtXivfQztXl1yo1tbuWi4L2V7OmaZClFJepXvlRtBiIFJnyqTZhkLW1ERiLY0R/eT7hbbf9Na+JsOlZxJLxoa1FrjticyfPJN4dkKTI3I+rzve9+X9jmTE9sn4kyWrZxf4OHnvmkSxzhjeGPX82FF70ejZON8v523GY49b6cU4NX9F09WSCs1zO8/z902P/TnMB7q7030HLz5l4emw5ZfwsraPaufTuPQ8TLT2X9p7ussxp8V4Wljr0tpjRmLcl7yP2JOntS3n5WQn83GPqOw+1psf2S8Zv4vYwJp0PW11zXN7h6a1k2ieZ5oDplTucdOkn7mj+wmvS35u33PORDkp/sdE02T7ICN+9ch9iVe2Z5t5vogsXmxlhNZeL+6xLFNJxtS0s3o0pu2Vi5ynt8SFrPiPzDMS0/BljcWyInhlt9hvy9fjYxuNs6xlafvt0ZbQ7Mc3vPq3+CZaeflexVLeM9a/77DK9WS55n4j2x4hui6vxZa65FxH/q1pr67KquRzlso6PbomR/YzKU8jEhuLxHS8vYrH+CPvs3p3DLLuFgPwhuGa/n40zjTyTl5jJLZ+Tms2benjRPd/LueILvG9q9Vp3WtF6u3FedfPl+Wl/m1dr5osERmX6YXOMYK2pu156PlnPR8jsoZbPsvGRGILFr1zjyVn+57z+r5jmiYqxY7reDJfwlmv01nHLr/2+MSCH0EZ52eI6J99bCFqrT+fjj+E8meJ6IeJLnhLCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACARwQ/gjJIrfXniejnH1sOIqJa60cppX+EiP5dIvqTjy0PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbwI+gfMKptVYi+jdSSn+OiN5/bHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgFP4LyHUKt9euPLQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFvAj6CA7whqrUPpkpTS5jasZ7XWRTr/zNvbUq9GSolqrWpfuCwpJSqlqDK2dI2c86l8a4O3JduVcrbv0zStZObw5/xzRE7Znx7WvLc6Rsa/x9ZyRGt9seTz2tDmTObnz9p8WzJIaq2u/mj6H1l3Wj3e/GiklFb98erdSk+fiI66G1mjXv2R/su8PJ2Pv7auvHl8KLQxkGnye5vjqB7yOrbo4ig554VsvXnW4DoS2V8szmsivfnPbs9qMyqbNcZRO6t9tvYhT85pmkJrnNdt1avZXks2XibiK0QY8XkiuhFN9/b8HiO+Tqvb2oekTlj2zpNTm0uvLj6XUkcsfbfqK6Wc+ibtQhQ+Ntr+Fq2T90urp7d3jsBlithri63rRVuLW/b9qO5766r127Mrcmwu2Zs9fR3ZPzTbp9mFlNLCh9+CJpd2ZuBpXF+1/bbNvbavRHxqa39oz+Z5PpWNjqV3rpOfeZocX+6Hy77z79KOtXpub29Pz169esXazPTuu8d+HQ4z1Vrpgw8SPX16TNvtjuGk/X5/+nxzc0O3t7enenn6fr8nouW5Uso2z/NJLmk3RvcxS997PqVWh6UjXlm5xj35bb3k6W/OEiW+B/fsnLYPLcdNL6MR8d+J1vrL25Vj0duHpH7Lebb2bq3+Uoq6XoiI5jxTKWsdmOc5vJdE7K13Ph+hjYVmP609odbjf5xS6un8qq0Fuy7bplpzYZXhsSstnyaDtqb0mEql81movhmDvp99qR+hxV3k/sR9pZzzwl/rnZU4pRS62ZeTLW55ntw+oddM/2X7PdtmtVlKocPhYNbD56Ltm1r7Wvo14hSnvXKudDjcLdr51re+Tfm1febt7e/WetP89qYHll3iZwVeF/cJ5LPeWUjb++b9nvb7djV0fP706VOadrtVOa3/WpvzvlBKrZ/nPnl+lFVX1Cb2dCOiO96ZUqbLuF5KaaH3vTZkWsTWT9MU7od1btY+a7rEGdmHZd1SLgtpUzXfV/qBcj56WPZti15qMnt5o216e6dlI3txuohuRfvf66t2tmx1W7FQGTOJ7quRfnm+utWXto413dP0Un7mbUq91GIgVh5tjHo+nVyr3trt+cdRnYrYSymLjBWM+rqRNq11wc/MREQlJ+bfFyJKNJeZcinDPt5Wn320vktjdFyP5LrsnfE0feG2MGKXpY5rZSL7SCTmImXkdci+RvcyTZ4t54Fo3RY9+bV4Sm/MPF+gpUX3vAiejnt3/xJ+niA69lmbc9l/zSb7ftraj7b8rZ4fxtuS8svvEbS+RPxqmabZTjmerYzWN2kjIvt6T9d755tr0uI7kukUN6A3f7fpfi8epX3fStS322L7ZDsjMkfP855PPIqlq/xvr31Jr5wl/xZ9t573zgC9OkbOi/weyzqfRedMi0lo6Vb+CNesK1KHNhc9/3rkPGrJcR96Jb9H59GK8z0WXmxRPpK239rjiNb9Pt4JLO3a4XCgOenvNvb2NM1XG9GNLTbBq/94T9I/+22pd8t+p+0h3tmUz+voOpvneWXfNP051t3aP37utdXun+R8l1Iov7k7bd8vIXJW0dbDfZxtPHh7Pfvh2b3RWGavvJaurU/Pz2hpmn8ty0Rk8/ok19XpbE28/Xa/MtNE4+8DcVl779xZPpFXJ+e4jtZpPJ4Q1VVtLV1DPqv+0TU0Ele23oGRZUdiFc1mWfrbO/M2XSg7/u5bPcmb61l/p2ktv9YnLWYo47K9tWnVLVn7Qctnvfi35RNpJmUkll0XZ1BfHs6oHzZiO633EbX0iJ1uRGIXpRx9rlqX7ymUUmguM1XlPQ2vb5G5kHGg4x6fF3r+5kmT2uyD/LyOpZbV3eKr16/o9WvdVlv/difm69STzCkt67sEa/ylvyPtd0/mLbHfkXIjZ6nevhfTK33MLR3p3cNEz2tE23xLqWORfCMyLWl9Po/NNE00FVs/rfuF+BpnrXd8OllW020Na96Wsp/XZU9OWV5jZK69dzYtRs5V2l58zXfQJVbf7yuW7HFey9eJccp4XG8cuT9k/XslS5azP7OsIyqfVh8noqNRPe792wkPS+bm33h3+bLN3r+5bbrgTf8WPbXmUPv3GZZsnhzR/XUk7sDLRG3PqI326hy1E3y99OLf57iR2JcM9RjZ2z2sPc2LMc5zWcU0+bvBI+1F6MX0GlHfS9bD+zzia0bb0uLF8zxT9PjV96O0tH78X4R7PpXcn1cBHpWU0rsppT/+2HIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANADP4LyHURKKaeUfiil9J8T0a8Q0U88tkwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTYPbYA4HJSSr+biL5KRH+UiL6rJRNRfTShAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIgh9B+YSSUvqb6PjDJ18loi+35MeT6OGptVKt9u+8bHnmpbdnKaXVM5mm0fLUWqmU0m2f1+u1wfPIOtqzlFIoPee8qIfn09q02tXk1/o5z/OqP968RdDGzKrTmgdPpshca3m1Onp6yHUuMi4R2Ty94m3wufF0IdK+147WL21t9+ag1/eR8eN6oclu9SVCxPaUUjbpbM55VZ+mO9b8T9OkpnuytDY9uazyvI2ofljz3GSXn6Uc0TXPy2httnTL/vF8Db6mejocXfvR9SMppVC9u6NSykLfaik0E9Hd3R3Vw7qO3p5iydTSe7av1RVZ49peLJ9F9cdqy9t3vf3a2m8jttfTq968yrHrjVmkb1r7Iz7UFtvc85FkmZbfSida2kculxwvr44tWL5jqzfnvLBZ0fa1dN5H2V+vvGYz21hE/dUeUue1ekd0xfM3tDTZvrYue21bfY6OxYhd0ers7aV8vqz51/wcLa9lS6LjZfVB60cv36VrkCPl9+y4VSbaTjSPZTd7+4D8K31Hbhe1tbPbHcNAbf1P03T6vN/v6fb29k2Jl3R7+/JNeqVaC332s7c0Ta+p1nqqJ6V00qWbmxu6ubkhoqWNm6aJ9vv96fNutzvJs9/vT/lyzqd0/pnL7/kAln73zhbH75V4tuO46mskkuale3LptozeyKfbuZFzu8zTxonXk/eZpikTDzHt93uaaDL941a3JiOPM0jZpayRc2crZ51/ZN2yrFa3tIcyViGLjNqHqB/Y/o7KL/XA1iXPj+PP9L71fIxImYguyPkcjUdIPeD15Zyp5kpEfA4T5Zy6ujrqn1v1SGQMgqfLM2XET+DpOdXFvpBSonmeiW+xW3zgqRSS3enpN183lr2y/PboucGbkzae5abQNO2o6XytRLe3N5RTXsXCeH18X+J9maZpIb+1TqL6Etk7rPgC9+3lePN8OWdKu91K1mmaaGLjqvmanpyabcw5036/6/qgUUZjucd5XD/rnV+9/VW2EYl1RM4z8lnTJ+5rReZBpnO7avlHln8g2/T894iOR30jL85kyR3JF52jEVl79Hx6q62evRzdgzw830PCdSPi31gxD8s/iPhyHp5OeHnb2UZrL7oHaWVHz5NcLm3uezECXk5rX4vNXBLL0PJ75zOtvoh/FdXRiK+lSH20s8new6/B7dlrjAAAIABJREFUaHzD8omI4rFRrSzfW1qZiL3z1mTEJ+vdjRCt/Rhe1yW2z4ohePHJyJ7gjVtUl0bv1bQ79chzb8/pxZmj60r6DpG7w54cDanDvTpyzqfPsr9tjLbZZ1su6/M1iOiCtK/aOPHzpbc/HCvQ80T7GbFHHqNjGNlXIvtdvL3zeHh+kIX0ry39v7YuXQofS2uNNUb8S4to/zW93romt+jetc4NsgzvF9+72vhr+/88zzTPekyt5eXny1E0/6S3R96nfZRxPKv+yN5BND5XvViBl0drLzI+1/JX5Rp9W+0N0TVls+MZ0Xnaso/1ymj+50h8JRpjiul3WtmIaAwm0sbhcPBbV+KX/B02i2vdJWt71/neRJ4plp8jcbFWl5zrno/P5TvX47Vhlz2O8fpZpG5N1+7r3NNrt9cOPw/0sPzjhlfXNWJzvf713qvWZCuLu5uzD3F3d/dW2HtLl6w4fuvjlne8r8k14xF+3c3XO5blZ9jIfjUiZ8+WW/H/tRzru0AioilPb943OKLFlZud1/Y1Kzbk9cU6K3NO8afct4nWPr3Vbnr5jm3zMTrGrMtuusraHY2tWnd6XsxyS5sWKbX4ZfuP6JI47rgs6/jrcUzWfoGGp8tERLuprN7XvNnfEFH/Hb4IzccoU6FSKqV0vhM/HO6o3I2Noabzno2zPqeUQvEEL826R9Ta1GJbPVvs+byyvHduP+d5c1YPDrc3xqPnazlvI3Z1hEg99p6znLt5nonmMdu61RZvHc8trNvaHvu8FM+nusbZSotXeWfBbpz6HumdBUY52+vr9CmyNuZcqFY+b0c7m8RUyr5G9vNrvrfNGb07kmWj7x1p+Xq2b2Rv7I3hlrVO1PdZeuO2JXZo3c17ePu452P30O5crDZ7Z6BYnEaXQfvu609L33YX0Ij+O1Grjq37e8QPsspsaYezZR+wxix6L7VlnFrMlNuT+yAm1/20/UkBP4LyCSKl9D4R/SgRfY2IfpCWJ3wiCvyLBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3jLwIyhvOSmlHRH9MB1/+OSHieimPXrzV/6MT1LSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4a8GPoLylpJR+kIi+SkQ/SkSfa8ksC/+hE54OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAnCvwIyltESum30fGHT36MiL7YklmWKos8hFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwn+BGURyal9FuI6I8S0deI6PtbMssy8sMnMu93PLX6Xe497+VLKamfZR5ePtKmV9c10eTvyafJIMt4/S2lnD7nnFfpOedFHo6WP0qTo8lvjSWXV+bhZSPzGNUvS56eTkXmT0uPznU0D58XKZdWvtZq1uule+vN66eEz58mizVWvIxWl/a9J0s0H2/f0z859pG5lnki9spKl+uSfx9ZDy1/b11Ex3We524ersdcBv5Xaz8yRtH9wcNaSx698ZF6xctN00Q5J8o5nW1fzrTbTbTf72mXdkOy9+yVlNVal1G9lli61NvTpA7IZ9aeotkOrU0rn7XHeWMmbbFVXrPRW8fVIrr3jO5DfPws2xv1obQ175WX811rpWmaTs9G/JLWtuYT8bSeHmiyTtNkzjHHk5eXafk8e+LZ61Hf1dLxkf3Is9kyLVJfL4+1/r1y0XXG62o6MrIfcF1p5aPzYu23lh/XWwdW/7mMnlyWvvfmQ7bnrauILYzoj7anWfo8ms6/e3rk6YS2xkspJ39pnmc6HA50d3dHRESvX7+mV69erT5TfUkff3zMc3d3oHk+0C/94jfpo4+PZfn57vb2loiInjx5Qk+ePCEioqdPn9I777xz+vzs2TMiIrq9vaV5nmm/36/6k3Ne2O/ePtx0P7L+eVujvrtVZsRGWe2XUtR6DoeD6ntv9RkjNpfri7avpJLMPVnOgVyXo36tt14uiZv0fNJG8wGOX3Q/w4ttyLyNUorqo0T9jJSSmlfa6Igfvh5HfVx5vVtjWVv2Nv65166071G/ULY14m9GdLHVqdn16J7K29D2Ra+uoz9bVj7GNE00l6yuV96mt26nOlPOy/5P00Qzs8kaPR/dKsv9nC3wvsz7Qvv988Xzd955l6Yb2xfT5LV8KWv8Ivu7hXbm5mOmjYs11qWU03+6rY/ZEq2dmm0fR9vfNVoZy6ZFZOLPjuOzftbTJW+/2OLrR3V3oavzTDSPxUV69jYaSzgcDm47/C//rOm5FVfm8rb0Xjyp1mrqtiWn99w7a/TiHdoZKuJvRWXUbPuITo2cdzRfMRqD0j73/EXtu7cHj7Qvz7PeHhm1ndZZtSdfa9+68+JxIutOjbfv+SE8Nu7d5Wh4MQ55toyOjyZLq4f/bWjz5OmgzN/z4VZjmifmWxDVuj6Lbjl3yXkcveO06uJocxC1iw1p/7Q1s8VficL10hony4/iMrbyWjovs8V/1OJ1VjucyFyMzG2kzYY3Z1v889G7P3lHF7mz41h7R6+drXnGfLtmu2Lnxmsw2obsQ28MejHH81nhnO9wOFC6i/k6PGbYkHaWE/ERPKQf4PmrWr22T0FEVE+fz2f84xjXuYZ11+rfSLz8mrZ5xFeMPIvU34tBeHKNtLOV6Flgq7yWbzES82prKOdMu2ntmz25fUI55/C5WWtvNE+vX/LzlnatNq29n9fb84ejsT2rnHW+ui+2zK1lo0bl9Hwiz3fT0rSzzZYYylhevf7eGUdf5+uxjMjh7Rdbz/jXLePHLi+1uSNjRDTuT2rtWet3LLaXiPtE93lW8rhkH2q27OjjEcn+RPYoLc88zyE/SPpLPB4S7U+v/7L9yDlHq1/S9LAXG/L2JI+orztiI5fP/TuEXvuX+hHaPqzN5TzP4r6intLnvC47wlYfx5M3mualL9tffHPPTlrdEXrri8tpxe+8ulod8zxTno8dujvc0d3d2X/1xmvkTLXV12rl5nmmlBKV3HRuHeeXcvZs4vn8qCPjX/YY8jzHc/gh2e/hW32Un6OxQxlzs3zqsZhKDN1XTcf/pXMa/2+kvp5eH3W/0HmPXNrPaZpoKvTmvHUqtdkPbOXkXjbqE3fj4Tkt5j8lomna0bSzdSJiEyNEfF7N9nj5R8fbkiNavjdHGss5jLW3Jf5n+XBevbIv9+3X9vT57Gvb9Nau1859ns09ejZSe0cjMp+cS8/zdr7r/RuDLXMxekfSu4ez3s0bvVMjsuOalmxyHx59T1CO2XEfyquzFU0zpbSsW7Y3Ke88WvCY20Tj42ShvdcuY5hRnYvr8/L9JH4W5Xn4ePXiWR52DNK23do60XSNf77k3TmvL1Ifrfe34+OxbNe7E5DfR8+hlkzWOxdaPQ8R67F0xHuXzjuTWf6+18+RmKZ8b6I3h3p71yHqB3jl5Dz35jy6X0fa52VKKTSzfxfQysv3NWXdxzr8c+enBfwIyiOQUroloh8hoq8S0R+k4zxw7Zeq6VkAnpfn+z+J6M9fICYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CfgTlAUkp/UNE9DUi+ieI6DMtmWWxftBEYv1Iyl8iop8kop+stf78dkkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHg48CMo90xK6XfQ8YdP/mki+q0tmWW59IdP/i86/vDJn6+1/tULRAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FHAj6DcAymlv56I/hgdf/zk72zJLIv1gyYSK9//TUQ/RccfPvkrF4j6HUOtcqj89Evr9UjpPJ2jctVaT+V5PVb92rNemyMyzfN8+pxzPn0upazSGtM0qfW3vK2s1v48z2b/euVbudYPORaRuWx1p5RWcmjzKvNcqm8cPra8Xm/+JXJMvDwarVwpRR1Lrq/8syb/Fn2W7fXStXxemtSRJoum1732R3WthzZ32hq22rLWKF8/0X7yOZqmadEmr8+aS288LrWxGjln1U5YtkPWuXW9jJaJzGNkffbKaXWcbVz7j9drVhuWr7ff8LK9PkbXtTa/lh0fmeNIXyzZvH1E2s7I+tZsl8xj+QER/0Ar05NFpkVtvTZO2nxr+02v7h5b7Y7l33j1NjvLZdztlscvz2/R5kCOk2fbLCy7MAqXxZsjqy1L3639Webj36VPosk6wiVnC+5Haj7jFj9y1C8cbU9+tspYaLZIfm71cv9SI+qf8HZlXZ5N5f6+NpaRebH2J1mXVV5Lt+y65+tZsrU+zvO86PfhcCAioru7OzocDvT69evT9xcvXhAR0evXr+n58+dvyjynu7vdKf1wmOnbH31Ev/7rH63abvN2e3tL77///kr2eZ5PZ8tSCj158uT0fLfbqZ/5up6maeGrc72y/Fvv3CnnOc+HN/n53OlnIG9/lzLIdnufF33ZZ73ueZF0UfxBlm/fz36ib0+3+Ee8j94ZksvmrQuvbq0ujqcvC/3N86q+UgpNNKnzLevqfdfk5Wmje0/73qufk3OhVqRlTUmPjfA2vP1am9sRf2EEKUt/DuobWZZpyZib6HnRorf3SfiexO19rXURp9P8w1rryd4T0cLeN5v5zQ8/pJcvz/n4fiH7Kz83n/hZTfTy5cv2hHJO9PHHH9P85Obk73L9aZ+1WIU1vp5OjerRoq5MlNJy7U7TRFM56+lonRH/uhfXbG1H/DitnPzMdUWrs+RMpaxtWzbOk1abPJbL9bXNubZ3yf1bw4pnXdOGyPM4x7Nx92HHNNoYjtida531RtuVbVn+0mg6Udw/jsQ2rPy9Pbe3FresUevcJcfEmotef0d1Vo7BlliDJ1ePrWdPor6skTPmaAxWtmm1IdN5bImfb7y2tGcy7sDr9dbM1nnVGLlniPq/l5YJ16Wc6SPnB8s2tc9yHGRccMQeWVxjXCw5cs6h883WedDqkH7EKPJOOWIv5dobbddbbxpebILLU0rp2hItT6ufyxWNuZVSFj4jh49rr+4tvopnN7yz/eOw3FPv60xLFPf/R/OOynL8j4jfIU7TRHm3nrfeHPVs4OgeHGlLKx89U57l5eea43c+/5bNtGS3zhaW/L0zU29co0Tn7xpoOtuLs/e4r7NZ9C5F+25hrdlezJiPUdOJoz6vbfir16/o9etlbEOzW5b+cN9FxnN42dE4WXSerNiDFR/y/Gjef2/99WTbqmNWnOHaRPRn6xlRIv1//k5Ob5xb2n3YrEt9hW3l1/o2Us81/ekeI2Ne6zpWEfE3vHhuT45o7D2ST+p6JH40Yp9aseVaOt+nPBSXxF3Osre/1dTfS2y3hhYPke8fNrQzaC92wsuUUobll/eF/AxmjZF1lrLakO1YyP6fYux0/bPS1rixlCEaz/LSj98fzjf1ZInmGdmX7vtsu6UPPd+zh/a+indmssbLi4f04nNRP8cuM27rRvZHHv/i5bU4iybP+Xyu+8NePJO/U6Plle1rZ9zInUvUv7bmn4/RIo6dy1HHEtfPs03u+QYR2T1qPY5LKTPRfGwvH+bVO0UNL6aq/7ubtX/sxRl6e7Vs43x2LFRrYTpDizG0iOiOd06Ust+HHy9lsGSxfD95hrFkG4ndtzxcLKtI1D/26OWL7s9ePZfsvb02RvZ+u7xdZgueje2Va2339qSaL/e1R/sevQOx3kW9Nta7eqN3NV7+6P1DpIyXX+7rNB3fnZL5tLpzzro/9iYrn04Zq1umL+tteTVffRljXP97iEjsOzJPcv03X8iLRWrPo21I2bTzndyPUhrfo0Z09OjbrN9dLEX3I6L7spfGGVnLvfceNF3y/eCY/kbw/N2YLGP7OK8v4vOzlhblo2cSL8+p5sH9yBoz7ZmlkxG5RmSJ+hq9uODIWGh78si+Ks9TlsxePVa9NWeS763y2I/d5trmfxrBj6BciZTSMyL6x4noq0T0DxNRJtr0wycyf8v3/xDRTxLRT9Zav3GZtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvD3gR1AuIB1/Tuf3E9HXiOgfJaJn7RHLxn/8JPozUO1nXf8qEf0UHX/45C9fLDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG8h+BGUDaSUfhcRfZWI/hgRfaElsyyjP3zCy6U3f//uWuvXL5ETAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBPAvgRlCAppd9KRD9GRF8jot/eklmWKosYVYXy4QdQYtRaKaVEKenDraW3Mvy7V/8l6a0dK12Tt+XlZUbl0NrR8vL2NJlzzmq9VrrVTilFzcPzWmPVmOd5kc/Ka/VT++z1XT5r37m+RedV5u31Vbbfm2evrR5ybiy4zO0z1x/52ZrziKy9vo/0T451Smmhv736W15rbqPzNDqHDa1dT896eaZpWsgUsYVt7W1FmwOtzUi6pM0P17eeTkfsZmSMo1g2PaI7XJaeTJGx5GnzPFOthWotRFSpVqJaKtVcaJ5nSvN6HKQs/O+IfCPPNKS94X+lXvM2trQTWftWutWmrFPOXU9OaYcjROqVssjy1riO0vPZtH1lS1tb7a6UZyQ/X++WTyfL8HaaTZPlpTzaPsXR9uCt+0kvX3tWSgn5TjI90kZk/Xo6LvsfsVfRs4XWF56uzc/IuSXyjLdnfY/mkekRG0ZErm8l13QrL8em6W3UN7XsrWdjLfmlfvbybPUTInuENX58XKRtmed5MX7t8zzPdDgciIjo7u6O7u7uTp8//vhj+tVf/VUiIvrN3/xN+vjjj4mI6Jvf/OYp37NnmT788HsW8jx//rF73nvx4gW9ePGCiIh+5Vd+hd555x0iIvrggw/oM5/5DBERffzxx/Ts2bPTs9vbW9rv90REtN/vT593u91CT5ofW2tdjAe3MfM8mzrG88s+TNOxrVqJ2vTmPHXnvc2jpTMRXbH04pAO5Iec1uVl+yPo/Wj+Rr8/3p7nrWue/5JzR+/cp8mjyaWWmYhS4ulvYiXzuY6o3xHJZ/ncvfoiNqZX3/G5nd86H/RsbfTsM4q1T3XlnORcV5qmTFOZFuU0m6ydO3qxJW6XuM5o64bbcfmcl+G+l7T9fC3tdvPJrjdZDnd3dDgs1wD3Q3m98szX6n59KCxOl6nWRHd3d/Saysle73a7Rd9TSqdnlh2Xa1Du0RGfsJd+rMOuJ3rW8vaZczvr9mWcyeoTH/8em/yUaaKc9bWiyRKBjy33U2iO2Qi5Fqw2ZH8vieGM+P68TI9rxpV4fZ5Pb8WaZAzFO49dS+5r1GPtHZ7ttdadVo8kbj/68nrpvTPApXEWzVZGz3U8r6YTkTWhxelGiJ5bOTLezbF0fks7nN4eEP2ulY/onBxzb41Y9tS749Pg/ob2TMrWix14dr79lfvniH/Mz41yHOf5sGr/7nBH8+u703dt7rj8vbmU9R/Pm/6cRONakb0rKisfp626Yo3zFr/fklv6CD276Y3RwkcJwOMMnrwczfez8kRslFVX9F5M67MXS5UyaPfzXB4tLjwiy2Mhz1a8C8dzVaLjHdoyvc7rvTJi7yM2MOpDeToeoRvjSZWI7D556330bLLF9/G41A+V83r873jOySlTzc3OTjRN6ztqbx8ckVmzHT1f18vPv3P92Xqe6vl60TUQ9bUjsnAu1Ss51tc+32ntyO+9s0v7T8ZCvTspz3ZYdzxamZ5P5sUFPaK+b6ReLmNkv/PqvWSN8Pp6vpLWTsTvlXktP6S3VrS9ydJJzT/S2h31e1s9vbh+r45RonPeztuy6WvvZREicSLtuyxb6/k+ICn3QBH9H42reXmidV3qB2n4toJoGfOsLH2LLPezr4yTFnN+bd9NO59vnbvRe4HoXmSdTy45r2jrsMnj1ev18dLx28rIPqQ9680D15Hj+w6t3Pn5Fv9a45o+45ZYq5cn0pYW87XkuW894XEk6efwffIYSxyrk9+j8liahxX/1b5H2Lp/yWLcvnqxtfYs5/g534sNW359zy/rxXasM54c+8ia1dqR/uNpTBf1VKq10FxmqgE7bcns+xttTyQiSqezf62VpkJ0vBOP7Un8/aZRImW02B1v3yu3Na5knZu21OfFuyN6ZN2LSNk4kRiGFWuWbUb8Vm8arTG7ZgxC24e3+u7WubZXV28OtfhjNBZvnWEtWSNjG5Xd23t7Y8TPEz0uibl6dVq6YJ13vX1niyyXnu0jbUbjEdZeGWlD8+3ntL5Lvbu7o3IXv5Od8/Hf9ZxFS+o7N0REhzSz9tiZY/b7Je9cPT9Gstsd//m5tw9Y81pKWez50feQomg+1/odtHU5z4fkfZmmKayzmm9nxW49eazYnOfnWe/dWXM6TZP5zLJ3I/vYJXvbpfviaGyAf+7tfWd7eL5P47G1Lb79iE3UYoN+vDat3hGcprx418aT4ZL4pzeWW8bJYzTuN6oT2tk84l/11o4ny0PHgt528CMoDiml/5+994m1rckOu1btfe597/s+t9P/sNQNGBFFWA0DBgHFGJFBRgZBJmB50ImtSJF6EHnCEE9g1AMmEUiRoCdIxHRsIRIJMaBhgAQoLSEEKEKyHGKEJXc7jtR299f9vnfvPbuKwbl1Tu06a1Wt2vvc73X3+/2sr98+tevPqqpVq1atve/2Z0TkV0Tkr4jIX5STdVqfqqsiRlXefAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO8dfASlIoQwi8i/KSJ/VUT+bRF5nW8V2cqPmox++ORBRP57EfltEfm8iPynUn7+CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4D2Dj6A8E0L4CyLyV0TkV0XkCzm5yLLnwydHEfkfReTviMjfSyn94LnNX98jMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE8D7/VHUEIIf1ZOHz75qoj8uZxcZLE+aiKOPIuI/E8i8tsi8t+klL63S1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICfUt67j6CEED4nIr8qIn9VRH4xJxdZPB8+qfPlPFFE/mc5ffjkv04p/ZN90kKPlJKklCQEa5ouWHk8ZVNaq0VZprwXQlDrK9NCCFf1We3soSVzvrb64ZUrxni+nqZp9buF1n6uo9eOVo+WVsocYzT7oNWR82plLH3p6WGrzlE8dXj13aP/Xkq5ahlHdL5cI9p8bpG5tWbrtHIuY4xXa7acS2+/6v54yuT8tS5blOtHW2O9cStlLK/rdenRP2u+RvW/Z1M8NqfV5h79b829dq8nh3d+PPd643yZ13D+L4SLHPm/2q6Vul/qiXcfbsmj6Uw9LqPrrVWmhWe9WtRl9tiuLfZ6VBdadqxu21pvnj2znkfP3uu1NZ79ztvPLWj1ev2hTwtrjCy/q6Y197nuVl3WmvTuoy3f2ZLRa/stn9SLx6f1+EdeP9KT3tP3PFbTNJm+tOU/3NJvLO3KljVjyWX5dPm35dN52tD8Rs9vS97eubFeY6W85ZjN83zWuRjj+V7px5XyhxBknmd5/fq1iIj83M/9nDw+PoqIyOPj4/l6Co/yxS+eyi/LIjFG+Wf/mUl++KPj1TlwnmcREbm/v5dXr16dr+/v70VE5PXr1+f2Xr16JfM8y93dnYiI3N3dyeFwOPcl11VeT9Nk9iXf1/DavxCiZH+oLNvTs9Z+Vl975CrbPK3R1d3zOHhsglevy+vrMlnnRI7Ho6Sjfy9tnQc8/sHovp3Ll3WU9q6k1CVPH07xhPicdrq3LMvp08c7sey4tfdZdqm8t9fv0Yr2xmrkLNPzKfeci3L5VjzsJEM6z2mZFjqyedLL8S91yJK1rqs+g+eYRN1evS9o1zFGubtb5O7u8XwvxiiHuzu5T5d92OOT1TLM6fqsdtqD1muwtOmHw2FVX2kLWjbewx770arHs494fNXRGEHdRs1LnTes2ESex275w2W/zt2b51nmeB0z1vrXOk/fqs8pXXS+XqNaPDJfe31irV8t2df2Ion2KKrVtucMUevyqH8/shZHzvO3XuOe2FSrHs+5t67Dc16w4meW37Zlz9XksObC2m8te1/nKW20Z++2ZLHsTesZ07Isq3yWXFqdWpol92jcotX/1vovfVUtX+2z1nuk5yySUjLtUjmeGq04R33fGqP63Gill7+1M17ps4jIlezevX991rruX3nu7PWn56vnOjW8+6rVVsteWWNUYs2d5QeNPvcVGX/WW9/3+Pw1W3ynVvzRs0959vhPC49N86S3qMtkPdNsUhmnGm13tC91udE+Z5tQNnuKSQUJYbpKn2Zd18p9QWurZ3dvSW+P0H6P1NubI23vt9aXR9ac5p1bj7/riT1kHz3/G2OUeLaNi8ji1+fWmHnsTSv2qY1LGUuwZOrda+nIljNwbw/wnK21drzxJG999XV5Xsxs1au6but8Z+lFGQua53DlEx8OB4nRjh3XZ4VaBs9e7uljLy73abLFpxito65n1DdtlbdsX0vvy3253ntuFT9rySbi97002VJKw3vmXp3z5s9jW2dv2QePX3yrWGb+vcWWltcen3jUb65lzNTjc6txabG93nJP32vXPt2zgpdbj/lL2f89vpNI3yfZOw5eX6t1zyOD5WuX70jnKvPaHvVhWmu0Fcv3tlP+nqPINOXfl/hNfodAk0Fr28ITx3lp7HOOlna9t+2Vt9aZET/o03oHrmynjh+O+tr1dWYdO7h+JrM1XtKax9K30fbqEIL69w1arFINRRi6AAAgAElEQVSbi3Js9uylrX1/NM7Rmi/vu4pKrSIS3OvB8xyy3daJtX0rdWg9Rx4fuEzT4jS32IuvfTuR7HtY8d8WVpmWTR/FqkuL9W2JKWn0bMVomVLWfCuL13ue09pTLTwxios8/b5690lvu542Wj6Lxqh926IfLR3v1e1FO0/cYp8fab/lq5W3QgjndzdH4ycjz5V6drTV3t7z/55x1/boW8xv78xZtjvPIiHk58nXe1POo5H38WWKEqPy7McR+/aS5SmfCbf8gVZsQyvv3c+sbFti3Vr9Pep36qwxsGyRtV+0/MVpms5zPfqMwWrXSrvIdFsfx+vfe8qPlOvtI7lfKYmEkJ+Jlen+eKXm6/Sez3ji3mu7XJYJcnrmla5s72jMb0R3bhWLvyXWupim63VY2tcROXvPsfIZw1rjKaXm38O/b7x3H0ERkT+SS7+zltTaYK2upORJIvJtOX345HdSSt+9hZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvC+/jR1Du5PIJV+2jJjXWB1L+d7l8+OQPbiohAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAe8T7+BGUTP4QinWvJOf7ByLyd0Tkt1NKv/9SggEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALxPvM8fQbE+gFLf+10R+W05ffjkd19WJBglpbT610MI4Zw/hJYaXO6XZbR2tXt7KWVryTk6BimlVV6r7lZ9MUZX2iieOmq5vP3uzbVWl1YmpXROr+d9y9y3dFFrp87r1eU6v5Zet1fW7dGZUZ0t85Xt98pbdZZyj6yHXrqVJ4SwshFl+h7dKMvX4zJNk2suSqy6rLXUW4fTNHXb1OodIcs5z/NwvbX8Vp9HdcyLpRdl+5YNsdI0rL547Fgp5+p+OP3PNE3nebbs4K2o10f522Nr6t+WLWnZ7paN8/S1ZbssWUbTyt9evbDK1DLV+qrVX5f32nirX3mdWmukV1erTC/dYoseeH2f0m5usT3LsnTz9PqrtbvFd/P6YZYtaq0XS/fqda2V742rR69b8nr0yes7aPd6+jaq5629z9pbezamZd8svHrZ2u/rujS99ehI/m2Nr3Xu03R3mibTFtZ6kOXV9rtWOZFTX60yrfLlHl7aj3K8Hx8fr2TP9ZzLpCC52hiTLEuUp6cneXo6yvF4PJe5u7s7z2EIYWXjX79+LSIiH3zwgdzd3Z3bf/Xq1ep3KVspv3dPzjKHEM7lLRtX+wQhBJmWY5E/Pdd5lKKbbp9As/l1X0rZzD1mirK+ddKnEMNKr7ZgncFyfUtYTm0VKq75aHv8/F66x8b0ziU9Ocs1WqZd5ZuSjHb1lnEKq94te79db1nuktY7y/ZiJlr+1jmjrGMrlq1fyyciElZ9DUH3TTy2t3fmKnXVqq9lszR5yut6vyjzH+ajHA6HVV0fffShHA72+HvON6+OUT747mORLvL5z39eHu9mNX+29R6fUGNkTbX25zxuVnUt/zDv/1a7dR09X1vTH8uH1tZVT/+2UMYCNDk0SpmXZZEY132IMYos1wOunXFa7ZRyec4xOf80rc/8qxCIYi8s3fT46LXv5eWit7eNU1mxqcxLxMhuVc+WvccqN2I/tHXV0omWr275IZYd9Pq93j6OzoVm8+q6673HW1eZ7pHLO/6eeixfRvNtLdn36HWr7tKuWb5CSasvFpaPYMk4Evf3zEF51tfOrN52vflbOtLeO9J5fPecteoy2nlc5Fr+kecxtW9ZlvfqqjfG5LEtliytM6/Wh5zeG/fWWMUYTX/BG+vSaPkKvbyfJqNt3/I8r9W1xSdq1TdSzqPLJSdbeV3XKa3cB5/1SlHD2v7cau+YpsmlyzV7dDHbQs2mJcWvr/H03VrLrX3Y8iMsH+4WXFUX8v9c9o0evTw9+5T/3bOmWu3U/fDE57bYwV6sqFePR8ZbnG+0M/hYfM3nx/fie5490WpDK1euuZbfVa6lMt6uyWfdK+uxfnto+dHa+NVj5vGBW/X2ZBpNG6UnS31eGz0rtfLtnb+t50GvPKMyxSVKStnHP6Vpe5o1l7aen68kxigx6vk88a+9a2nLs5WcL8fJ12nt8j25RsqXzxotGbXy3j1lr19ZpKzuaefNkHwxj7Lo7eTrs3dePXWN6F7dzogd86yF1tlxiw/nOR+3+n9rP7Wuc1X/pMvWs8Ha/ZH3iaz6PXF9a82llFx+sHd86/NVWwY7fWQ+vXufls1b1rte6+uRWEn9Pk9KSdJdknk+ze/8/BxmmiaZ0qn83eFOUtr+vMkjX+2Xjs/NthiPbQf77Q75MYqPMbrverl1TKt1PvPEX3NcRo0rhutnmXVc0CNXXT7OUUSu7X9+7nmaj7UNWZZFFqXZ0b0sx2Jy9XvjfHnMT77wel3FuKjPbeuy1jsd3mczI+mtebHyjsYyvLJ45Gq1efGxRbKNacW0RtvV8vTk1OImrfZa+S2fbTQmk/eMLT6Lt41aLk2GOk+5P2r+0R5/58cJS97W+zB5XEb6p9nl3t8femx5+Uxsz9i32hqpS8t7a/+/PIeW7ZVx/KzKp3dLL2WXZVHPsKK8r13uAZ53Mj3+Wr2Weu+u19cjf1vayrtcvYdrx1JF2rHJnhwXW7YuN8+z6z157x5l5avbsJ7Xt9J669J6JptmMcd5SyxhT8x/5IwwGn+83vf7ffPu714/cEucp4xnau21fJaR5xtamT2+15Yzr1aHFWfUWNvX8jwQdu/1yzSd49Wn+k8x0lTESUf/Xvd94n3+CEpNkvzUWuQficjvyOnDJ//gnUoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwUw6fh9H5QxH5fRH5/961IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/t8BGUC6G4/osi8g0R+aMQwm+HEP6dEML8juQCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4qYaPoFwTiv9ei8i/JyJ/T0S+G0L4T0IIf+FdCgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDTxuFdC/AOScV1cNz7ooj8DRH5GyGEfyQi/6WI/FZK6fdfTkToEUI9dRdSSuf7KaVVunbdwsqX01tyeOuor2OMLtlKpmn8u0a5zVZ7rXHK9+o83rEtxy6EoI6pdV3/9o7xqGxW/pZce6jbK8fFyqfd78lU17tl/Mr58oyrd5w8OmfNvbYOtHa9dqE1Lj0bk+9rslrt9OxaeT2yfjVZrba22BKNnh3borelbFreeZ7V+mOMV/l768rLljIlpVzW2JfzXepefa8l27Uenv4LQSQlkSBBQjjly/+11kmp39YaK/WuJeOtxtDSH8tet9ZdPc4WIzbDk7a1rtY9z37VqrPUhXq+WmPU26NrG+HZkyw/wLKtI+T1p+3DGqW90dBkWZbFXOdW3w6H9ZGtN05eH3KLfnnsaH2vNZ7W2vXqWKbuc93Gnn3N8n08snnXak9vb+Fz9mQZtXejtnuL3HX9lm637FprnHs2yrJ9mk/RkrtO9553LP965NyW7UeMcSV/jFGWZRERkePxeK7z4eFBjsejiIhM05N84Qsfr8r8i//Sl+Xt23Wb0zSd7eE0Tec2p2mSu7u7qzzzPJ//y/fyGrV8onL8a7+j/D2qlxcZZpmmXOf0fO9w7ou112tzUaZZ+0pJe19e62+MUUK07cEWP189885SjIeISJDD4SBzsvc977hviXNYdWcdHsFzRs7ksYohSl2sd770tLUFz9nUW+7app+uczX5XGDR2ptqXRzd1z3+qlc27V6aUiW/fQZqxWM8Zw8PPZ/Y2ovy9bIs5zqOx+PZjj89PclhPsqPfvRmVf6P//hBHh7CyvZme3d3d7ey1znP4XBY2dvTtb+PuW1rj9PGrG5Pq7O+7tmivJ+lFIsyIo+PDzI9tvei2qfco8vlvVvEX3q2VWsjTVNTvi32Woxt4hb+66g8eY2c1kepF2mlj1Y8wyNTL99IHE6pQfVrvL5h7edaa2lU/7xnGO/ZYqstr2XYW0+d13tW9p7TRuJBWhseHbL24lb8cEscZUucrCyr6Wv2czPemEmZ3rrniU1o4xJjNH1nD9q6u0XsqlV/3VYt/0gcYoQ8f2V7rTndqkej7ZTtzfN8qTNM1+ed+SDTwR9vGx2/Mv/oOWbLuceLx79pxWas/bkXg9rkZzjayWPliStb/qdWt/fZwR4baWHt6XvXcK//Glvb7JXbOpat+kdiqdPU0teyTrsNTzun+saeEdXrf8sZVDtPeuMXZXJvv/VgxfZa+Xvx4E8jFnMR6Pw/l6RO+yNxqBH9KPvvsd11mrZGWrH0UX97ZBy8/knPj/LY7R4tG9srb/V5xHZqMWctZnSa93iO/+T0N28+kcfH9nxMRizAirf3ym4d6zpfq96WTe/lK88DI+txlBH98uTrxRPKmEYtw+jZtMYbJ3ips4WnPs1/NctMOc8lljnPs0zzWD+zLpVx9GcJhuZWux6Ro1Xnlnq3tDlSbnTdteJgvT1TpB1nH/Fjznp13vd1G5nJ9tFqYy1Hu+1eeW9+La4Yp7gaoxBO/mZa6ucl4zHTPfK2yozsM7e0RbUt9NjGPLZb9sGXIg9fOZ9bn0fUMcoaK+ZXn2ksP6t85pXXnKbHpTytOq02enWN3PPg1we97Gg/W+3Xe5o3v9Z2jFHiFGVZ4nOdpe055VniIssyLrMV8+zFQnv90e/te8ZRyqTFDLzzd9H1Ms/YcwDtXj8eYr9jv0XfrDW2ye5MQaYpSAqTXMbC3rO3vL9Zy5iK6i/nzyhh9f9rPEhLb2q5cl31esrPq8u043KU47H9bKTWq9K2qz7NvH0/L2Wr27N+e+55zhGes83Ic6Stsfwt8cn1eeFyxo/Rv7Y8ds7jq7Xa2uPr5bq3lLfLXMcve+1vubc3hqW1EUJY+TsvGpt0cH7PrfEMxrq39scuaTGubZpF3XetnXrt1nl6zwE1mbey5e+bSlqx+56fMYq1ZjX7X76He/o97lPGGGWW9rNDK36l0XuGk39r+Vo6U9dh/f2YiEia2rarF5/wlNmyb2T2Pjet177l53llzGNZymmt1zpN61uIazlLynnZat818hq1noNr1704kjbn6/Vly9yKeXnabOmMR1YP1vOu2jeybMpIvHhE5j1rq2RknZU+yeW5ze3ecSgJIVzZ7p5s7zO3+Svnnyx+U0R+T06n0bwaUvGfNO7l9D8nIv+hiPzDEML/GkL4Wgjhc5+K9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9lvHcfQUkpfT2l9BUR+SUR+YaIfF/0j55Ikd76IMovisjfEpHvhhD+bgjh3w0h3H8afQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhp4L37CEompfTtlNLXRORLIvJVEfmWXD5uIrL+4ImI/UGUnHYvIn9ZRH5HRP4ohPCfhRD+jU+hKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/RHN61AO+alNKDiHxTRL4ZQviyiPy6iPyaiPxCziKXD6GIrD+EIso9EZHPishfF5G/HkL4AxH52yLyWyml3719D6AkhGCml/dSSqv7Mcar9Lqu8rfVjlZ3Tstlyvv1dZZDRGSapqvfPbla5LZCCKoMuf6yTU8b3vYtmep50eorZdbKaPJYc9kq20vP91r3rTZHxin319OO1aaFpX+tfK028u+R/llrpNS90b73ZCjXeKlL3vHotdEq67UlWt2ljLUeletinme3LNoaKMvEGFU7UOfzrCWtfe13tj9aPo/OeeStbWpdRznOVh3W/Jfyt9ZurW+avbLk69kRS36L6RiLOoOEkJ69mPWYtNaIZ961da3VY9l+L1tsRq+Nlo7XemH1rZxjr73U9rtRW9WrV5O9ltlKK8tYPoWX1th5y9fXe/ySWq5eXb3+a+VLe13jWWMtX3GUlt9syVLrT2uMsm0c3Ts029OyH3W6NiajtrzO29u7R/Z2i9Z4ePa8Xj2aTFreeo176uqN/0vj9cM8dt1jizz2oSVjvl6Wpdlm2Uapn/W5zbJDMcbz7xijHI9HERF5fHyUp6cneXh4EBGRTz75RN68eSMiIsfjUR4fH0/ty4N8//s5ZHT6/us/+eNHeXgMcnd3J4fD6d79/f3Ztt3f35/lK2UOIZx/z/Ms8zyv8uW+Wun1eJTU7fTya/MXQpR1mEeq+/qZNffbstee9WDN/xIWifFaT737paWnLZmu7aDPZynr3XqGbdng8qxY5tPiJb09wErX9r7zGp2S5FvlkFrnlJGzUesM4vEZvX6IVlc5lnPU1kW46tOWs+1em1nW5zkP1WU1nVjCen2GIBJjklDp8V6/u3W2LKn12qNLpR+Y7bHIyQ6X3N9F+cxnvreq75/+8ufl8WlateM5m5e/76flyq+9v7+XcD/+qMHjp2ljasVQyut6LmOMEuf4fE+u8lp2Nu9J2n5V+8Q9O6XJb/ko2Q7tpfQJznVP09U+E2M8r4OSck+u56K00XX6XrbEncqyl/9Wd+RwOEg82OcyL6091TpDW/Wc6irzhCvdquvNddYxqZYs1l7XwmvDPflG4kreWJmnvMeue8a61UbPfmntjcbCPHtcC6tPW86tHr0WudZPTwx3WZau71L3RZOlNV5eXdDsZyt/KeeIT7gFK05j1d2KWWa2nue1udHiX721WLdvnpUq29WKb5V15fqXuFy1dVyOMj2fmVv1iOhnl5q6/pZ/4FkXXnr6pJ2bemujZ097sTGNredGLb0X2xppz2PvrfSWvb+FX+TBuxYsen5EnV6vBUuXeu331tQt51LLsyzL83W5Fx3leAySUtmn57xLWu3jrf3cI0cvxu7ph3eMrLG+spchSgiinpm0Nlr7zwi3qmcPZR/X15d/Rez3OEb83b0ytmjFeLzxU6tOTx+3+pqajFaMpUUdi6p/bzm39sbN8k/zPpBtZG0ry5iq9rygjDHn6xijvLpP8vbtw6q+P/mTt/LwcP18sxzXHJsXOdmEMhavxfXneV6Vr2P2GSu9pYsttJhVL7/Xj9HwnA9aclh7Xav9LXuaNzbbSvO000or06029+5rvTVa5vHGZrQ6rDZ6McfnlMa9tiw9/3DErmrnXu/Zvz7vZl9nGfh/p7nF7x/pu8e/9TCaf60fSU7Pyuq0nPdZDxvH6RCCGl+w4qqlDC0sm2D1Nx7ilT84z7NM823/f6husQGjZ7GRtrbEZ+oy+Rn7Fh9n75nQuxde6+3Fny91tBf7eUkfvB8nDVfnkNG66nuW/S2v6/wjZ+OXII+HdQbbEqeq66h/a+eg631inef0rHU5/44xytPTk8hyku/Nm0/k8fHaV6n9xvK3lV7L7T07ts4wl/PdhRijhDQe37Js/L7z4LjvOtpeGWMt50fk1KeebtXjU54dPPLsPS/XMo69B9PmopPlOSmd08p8Pd+xzpNSkmm6lukwHyQeruWs/eORGOwWynhZr43RcRXp70P1M6XR84XmT97Kd/SkT0v5jvhpTyvP2z168Yw6b25/1C604lre/pftazrqO6OP2YmReEKvvl68wBP76bXh1b29e0YdR9paflmu31NclkXirM+xyLVPZc2/5wxf4rHpL/GO8ug5rNYjTa9H5nfUXmk+yOmdn3aeHtM0SYh6P7Vx3/I3YJq+ePY4zZ7WPrMmY/1eq2XTRuifSfy64PVprDKttLVM14ysJevvmTPhcL3nHQ4HmdOYzzAyH5Ys+V1KzS639kGvXPWZrcwzcmapy7aeM4zU1+pLLjriJ7X0tzdu2tliS9xrhJF+ZdbvT1w/4xmh5XPEq/c1kxyfniQ+PalnYyuu+L5y2yjmTzgppe+klL6eUvqKiPySiHxDRL4vsvrwSb0jafdSkf7Pich/ICL/dwjhfwsh/EYI4Z968c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8hMBHUAxSSt9OKX1NRL4kIl8VkW/J5eMmIusPnohcPnrS+iDKnxeRvykifxhC+O9E5C+9fE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+vDm8awF+3EkpPYjIN0XkmyGEL4vIr4vIr4nIL+QscvkQisj6Qyj1/XzvICK/XJUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4L+EjKAOklL4jIl8Xka+HEH5RRP6aiPyKiHw2Z5H1B0/Kf0WuP5YCO4kxrn6HoA9rCGGVN6WkXpe/6/RcdwjhfG+aJrUtLS2XsWRMKck8z6vfWv0ppab8lixlvywZRPQ+teS2qOWq58qSz7rfmluPDNY4tcZPa2d0HHpoMo7McS1ffd0q71kHnvo9MlrzW66LXG+p+616vWu39dvqV71etbEq5S/1e5omVd/zPc0WtPTbWie1ntTlPOR85bovZUwprfpS12vZi4w1Dlq+sq5R/W9Rylza2LpuS9bRNd/Kv8V+jPbf6sfVmo7xrEO17Ykxuudui5z1OLT2xT1tbdk36nYs38GLZS96+99Ie97x9Lan3S99B2vdePeGvfNXy+Kxpb19QWu7tr8evfHsvy3bbVHayNJW1nvPSH2aXNr1CJ41Z8nvqaeF188vqf0Br9/o1Z/yt9WOJXPtK4zaZEuW+p5G66zg2atr+7ZFdo+e1O1aaXtsjtenLvNa9r1OL89+Hn+kTp+mqTtOtb7l/Pf39xJCOLf/6tUr+Zmf+RkREXn79q08PDyIiMg8P8kHH5yuj8dFRJK8/mAWCev94ng8rnQ1yxJjlOPxeG47py/LciVnaddzvlIXyzz1vCzLos5fOT69uTz9vk7r2YUt+r3Nxtp79C3bynOzTIvEmCSE8X1c8xdqXdTWSa0XPRnrurQ14qHly9h7wf4zSl2/92zuveeNE+XrZYlKDCd1/da9fl0Pr76V16W+5diCFt84/XdJm6bQ1ZvaD9ViOJbfnNF0veefa3MQY1TnvJTllGc52+Kc/vbhrTw+Xo9LjebDnXXmGOXp6VjkPe0hx3Sn1pH3nNHYUivmoY1Pnaeer2maJA2oY33u0Ma5pd91nDez1bfbg3ZuzEmWKmgxrx61va/X1Rb7nOtqtTXCyV/x19fyj70x9t4YXtfzbIMHVWXE3mpnk5b9Oktm3Cv3DKveuh5PbGRrGcu/13zKXr89Pr5HjpF4lFVXz6dqtT8igyVPLzZU04qRW+yRuT5DtNq04mDlecSL9zmhhtfXulWMsiWbFbPoofk3tR+h7Qk11hzla20MSpm9Z4pR6jHZ0o5VxluXJ05To62/LbKP2LEtZxIPW/Rya4x8tB5Pvk/juVCrfGte9oxT1qdWHVYstd7T6+vWPUtGq52eXqYUn/+73FuWRZYlrPzkEPTnBhpb4zeje55W/hb6dhq3dZ5WbK7M4+17z79otWPVc4t8a8LzvIuEkCRMQUI42d15nmWabRu8xZ/eyl5/03sO2ir3lnIjz1G36IlHptF6633X0ud5nk2/LMcQ6uf0Wswy26TynZrTM4NrX7p8vpj9MhGRw+GwulfKWMaBtPhQbzy0mG3rPGPFZVvnVqtt7beWNnruuHVcVItZ1nVv3RfKNO85oFVPK3/+rcXM6jw9n6F3PUpeS6c6kohc9HJK61inNeb6vJfytftsyTXqO26NS1jl8vlqnWb3ZYssll/Q8vXqOnvtb6GWuWUvLj7RxZbV43bJd70n6bL282yxAb11rM25SJJlWSQtt/VNXuL85vEXW+M2uq9viVPu1U2L0TXyXOqqDm89I37syFx756WsUtvHPPba0ouXilm0KHXX1mO93945sn5v9ZVzmV4c73g4yjSd/Nd5TjJNixwOBzk8l3/9+tXQe2x1mx7/MPdx1H+x/BKrTav+6/yX6xijhNS3EeU5O583M/U7QWXdtYx7yfWUsfFe3Kc8Q2hY96x1ue7X83vNqz/JWvd16/PHEq3N03W+v4gsl9hzvTat540i47bEo5cef1qv47qdW7z373n+U/9dQGudi+i2y7sG67Stfm2dNmJj5qjp0UVPtvgkVgywJYenbgvP+4etNkdidXVWa0/qzcWtZNsyrp6YhVFyVUernl4/NH+jxiPXtFyXr229Fh8e9b9Hn2tZZet6bvEOzhbbff3bf073tmH5BGm6rq/OO039GK8m08jzxK1j740zuv8uamMcbev77Vv+fsMjYx0/ztRyeuXuvcfQ+tu6Vjk9bZ9vmvebvWtRu1fa2lvY+x69uKx3Txu1sa090SrmiaVv4ewfVTpmtTMao27hjW1Ya2Ger/3Ww2GWlOy+eGRIKclydydz9XzxcHcnZc1XczyHq2c/7yvjpz4QEZGU0rdTSl8TkS+JyFdF5FtSPjWR8+m71Nyg3FcJIfwfIYR/P4TwpVvLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8OMEH0HZSUrpIaX0zZTSL4vIz4vIb4rI74n+wZP80ZNQ3ZciPfMvi8h/LCJ/EEL4H0IIfzWE8NELdQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCdwUdQbkhK6Tsppa+nlL4iIr8kIt8Qke+L/kGUFqH4dxaRvyQi/4WI/OMQwn8VQvi3QgjMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/FTAhzReiJTSt1NKXxORL4nIV0XkW3L6+En9MRTrgyjl/fwRlQ9F5FdF5L8Vke+EEP5mCOFffbFOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfAoc3rUAP+2klB5E5Jsi8s0QwpdF5NdF5L1idF0AACAASURBVNdE5BdyFll/CCVU/1r3f05EfkNEfiOE8A9F5G+LyG+llP7fm3fiJ4iUkoQQ1HTtupem1aWVy/m0enL61jZa9cYYu2VvjSXLlnuevt8KbY5qmTzyhxDcc1bma9Wd75d5yrIjbfbaCiFc6W193UPrV13eM5ZlnlqXe+PVqlcrP1pf7k/9r9XmNK2/KVb/btmGEflac2bZoTq9Zw9jjCv587Vmb3o2yLvu6/HS2GrvtoxtiSabJktvjsu19y6o+3fqV/7G2nMeCRLC6V5vTvbY79b49daa9buX3mv/pdD6U9r0lh+w1UZrOlfvMZ5xGp1jzdfZq/O98fO239pvtqCtD8sma/k8fmMtZ0/ukX107x7rRRuDVj88e8EoLb/f46e9hN3ura2en2X5cdoaL3Vpi+5vnZPSf5rn2cxn+SHefXbElo3Mpcf2eHTGq1dlvdaYl2OSUpJlWdR8df2WLztN07mOZVnkeDxeXR+PD/L0dLp+enqU43GR733vR/Lxx0+yLIs8PT2d6z4cTqGlw+Egr169EhGR169fywcffCAiIp/5zGfk/v5eRETu7u7k/v7+nG+e57OeTNO0urbGpuxXrf+azvnOYlqafj6zzgAil7kq75Xzp8mn6ukscmkySEove36+Pn9e93mrTfT6OyL7zgWlfFmPR7FtTbar/jP+1vZqPP5xy6600vPvaQqyvhVkmsLQPrAlHuaVd3SfbvmkeW+s1/2yRBHbtHZpxSJrG57/La+zTS7TY4zy9PR0vhdjXNnuMt3iow9neXx8XKW9efOJPD1NqszzPF/Z2JKLTpTzJyJyscdavcuymHGSlm3bek/Le84/B5mmtS2+v38lc7D1vRUbaq2Tcr9uxVZeglKXtD0sr4OSGKOEQj7PubVus/4dY5RZ9D1xL1v2xZSu15+vnB7fatlfz36Vy5zKXa+3lzgj1W170lsx65fAs3e0ZLmljLX+W2cFK+5S2/VM7evWdfUo7Vrr2YF1hvFc15RjUcpp9cVLL5Y06nNZ+TW7t4feeveuX69M0zSd22mds7cQFdu/F63/nr5aMTzP+t8W7/LLdis8a64Vg6jHaCTO1Mpb6lhLtj1tbYlx99prjWGu5yXP0rfilvH6kTN46xwz2oYVs+zJ0Yrre+uq5SnrK+1RWW/OP6fT+aCs/tWr15JeB5nnBynPPvM8yzTr+97W2KPlP7TyWe2O+LjWeeyyrtp17B2Dsoxl471+mIdROxBCWunEZUhOsYRlWSQt13rrOcPWPpVPHv1s7j1zlGmWHaj1zbMPeXjJPbbcB+o9IY9Nz+5tPev2ynvbyXNZn+Gzv3d3d6e2f38f5fXrj1fpX/jCR/L4eKnPkmnPOap+j6RXVovpl/0YX5v23rM3fuhpz/pdr5Ge/Q4huOIjHl3z3ve2syX/nnXes+3W9di52R4bLTbWk+9Urtt8s67ReJRXx7fGykZkqffu1nyN7iW38FV7fqRnHa/jLSKlDpUxkPTsG1iy6XuvPx4zsrZq+e2yth5Z87XXVnvz7onntfaUl/Rd9pzjbuEjWXpz0b11WmuMPfLsiXVZvmgpT31Li4979HRPP7c8v/D4g/W1HZvN78v0zxXWvdF4iHYmq2XT3kdLcz4k2X7urZ5vlH3R7NV+n75d1nPOq6+9MfP1/lqOczg9Cx4cQssXfynq95a2ttlfe7pPt3fvWsWMQukD5PuzHA6ns9khXb87cTgcJB7moXfoax+pl35rQmivzXO8rHgGodmIVjyiPDe2zoS99Fb7ZfqWekvb19obrHmxbIp1/ts6t97Ygtf2W2dY7bon12hsqyZNerxLW9dt/3bbmjflUtrc0nZbpvW7SnVMqNfmqCyt+vbaHU8MpE5vPZPsybP1XRPrHc7Rsj0WuY5HzvMsc/TVYb0zfXqPR8+vxTXK93PWhHPc8Wzn52s//JSn/Zz3Fu/91HWMvlPl9XtCCM/9bMdnLbksyr3y2p6VayOc2/GuOW1dtd4P2HKG9rbfk+taL673yGwrerGPrX9fsuXcvy2G1vc3rfNVfaYZbbN+16jEf+67TnvJdxi3PEdppe+NgZZle7qoxT9bc3sLrLmYpkmdv/eVlz/lwpmU0ndSSl9PKX1FRH5JRL4hIt+X9Qm9fqsgGPdTkf4viMh/JCL/TwjhfwkhfC2E8LmX7g8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAt4CMo74iU0rdTSl8TkS+JyFdF5Fuy/jRu+bGTjOeDKP+aiPwtEfluCOHvvnA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdsNHUN4xKaWHlNI3U0q/LCI/LyK/KSK/J/bHTjLWB1Fy2r2I/OUX7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBODu9aALiQUvqOiHxdRL4eQvhFEflrIvIrIvLZnEUuH0IJRdHyWrv/U8s02d/xSSmZvz3X2u+cFkJYXWv5yvKeNmKMMk2TxBjNPt2K3GbuxwitMlvqq2Wy0np11/OQUlLH3Zor7Z7WZqt8C2vMLR3xtqPJ2Borj36FEK7qsMbCastTPtfRu9Z+t9K1NK+cPTwy9uakVcdI+5YuWWU0W6XJejjorsE0TSvdLHVpRGfLcqUtbcm0h3meV22X+4ZnPeQ83v5ZelGOUZ6LrXqptTGyRkRE5OlJYowSY1zNaYwix+NR5NhfxyNztXf8eoyM2Yhtt+zJXp31tFfqiKWrpSy1HFaZlo5atqpFWWaLjnj35dJeeOfrJXyqEV+t5admXsrvs8beqxf1vObfLb/X034LTbYtftct7M0WW2Tpa8mo3dfGu9Qrz1kj1z3Ps1uesq4tOpplvKV+93wGr0844oe17JuVr0SbKy2/p0+lP2P5Yr06Ssr9v6wrxijLsjxfH4vrKDEu8vR0lLdv38rbt29XZcq2X716JSIir169kg8++EBERD755JPz9evXr+XDDz+Up6enc767uzsRWfuh5b6U/dDcRmmTarLM5T2PPa6x5qk+K9X5tLa87Vs+xtYz6AiaPzESN/D2sbcP5fnbi/esVOdX+zrV43KdZeQ8pDFS1nve9czfxZ4kibHUvSTLEmWZFveefis93XPm8MhxWcPXfmMwtq2R/VuzD9r6qM/W2f7V57P6fO6JP5bXd3eL3N+vz7QffviBPD6O2cXch0v/LmOYUpAQ9DVQ6mF5Hq9tubYGy3Fr6fiIv5H3lpZaNe2Bgrf9Ol+vfzUt3dZk0GJ7ZVtpmtQ9rBe/854HXorRmE7mInLaZLNbeqH5VFYerXyMUZYpVmWTHI9HScd67fl9lFY/LDx+iNXfW5wTPXucx0cfjZm2rr20ZMl6q/n09e9WvLDOl+mthZG9tJW39MlbWOdObyxt1Ca25vsWOmr5uXt9lD0xkNJnbsUGLX2qx2/E7/fKfCu/vtduucby726ZaZYQcplTWr0H9vyaPVh2zNKRLbazvu+RecuceeNno3Gy+p5lo1v2b9SnK9nq6+zRDY/uaum9M8lLMdLuHnn22PTc9uiznJTyuUqkPjf22tpCax8biV+Xab3YYX1urPPEYzrH7TI/+tEbmR71eW89Syjp2eu9PkvPJo34GOXZ/PyvpOfzr91uvVdoNt8rR0vPeza71X59remCVV++HtkTR2zqreyX98znOWdpdY/6t5Y83jNI3V5eZ3Wb8zzLPNvxnpEYnyVvCEHVP2u9N+MS1T62RZ888fNb7UPab8sX0exva0+y4mFeuep29uLV8TLfaHzb8vWsuFOOLbbq1KifhY3Iq+XbW19NLxa+5dmWVxfmmO3Jun2PTzdiT1q06mzpwuia95xbtDRtvrU0q3x57+JfrtNb7wFp13UebS/x7Dut9kTG3sfW0nq63Wvfc9Yrr1sx7V6821tXXc4af69P0ap/NE55bVOzLpzSYowiA69taH3J/e2NZ+0rWuuvTl+WpXhOefr3eDzKkyG4de7Yey7z+iM9W5TzOVuX3OcQ1n2z9mIrvV47W/Y77Tx5JfFZxva5zrP+rHZqO9TaRz3nyzqvtudp59u6ba2t1rO17YzHpuq59OwxLXr5en7KnnfNUpCzjl3m7HqN1PJaNsYTU4pzrN6XEEkpyvF4OQdp9cbYt4sjePyWmt6+m6uoRdljP8vnXaPytdI1W7f13DgSP+zVVee1z3Ppapw95wXL9rT2G8tf8OT3ytJKG/Vx6jKWr229s+ORqb6/pc+9+NleuZ5zrfRknmeZY9umemNQvbLavfXeWEnaOCNqsli6Mno+uDV73mFuvedTs8cnuOV71mVd9TsoItfPB8r9T+Q59rzoepP7vyVe0aM3BnWbdj/XZbx2OOfx9q1le9cxAP2sfst1sMUmW4zsi1vLWvW0YspeWUbXUj3fVuzaigeODL11braoY8Zb4gu2H3b9nOEWfqhV3qv7o/O69e8Cev5OPS7lf6PyjPzNmZa3/nvP953b7z5wE1JK304pfU1EviQiXxWRb8lpB8wrKxX/lXy6XiEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBO+AjKjzkppYeU0jdTSr8sIj8vIr8pIr8np4+d9D6IAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8GMPH0H5CSKl9J2U0tdTSl8RkV8SkW+IyPfl+oMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzHwEZSfUFJK304pfU1EviQiXxWRb8npAyihWRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODHjMO7FgD2kVJ6EJFvisg3QwhfFpFfF5FfE5FfeKeCfcqklIbuhxDO6fm6Vy5fhxCu0lt11GVCCKv8OX2e59W/Wh11mVKOGONVmWm6/s5RjLErr4ZWV12vh3ou6r6Uc9OrozcX5b2cXpcpscbFqyN1unbP0pcybZomVfda7bVkao152W459q2x3ILWB2uMRurSqMe3lV/TW01vPPTWSF1nOcb1WGS5WnV6x85Tl7feGOO5nrK+GOPKdnntQU8Gbx9b87Qsy6ouj2y9NdorW7bRsivWGrNsR6tNz3qtdTsEkVa36rHaMx+arRnJ27Jr9foZsRH5utRna840vcxte8Z8NM2Su9zHRmTx+CoetuyJ3nwtn2rLuFl2z+NraPnzdTkXZbrXJ+jtPVYddZsjaLputdHSpdre9NZzj9681rpurfW6ba9cW/wqi1G/yWu3LL+mnosyv6YvnjNL3WZKaaUzLZlLvR7VcY/v5l0DLRnrdThiL7W147ElnjEf9Yfr9VyPd/6dUjpfL8tyvs59L9vNftz9/f3Zdwohyf39o4iIHA4HWZajfP5zd/L69Z9Z6UYI4Xx9OBzkgw8+EBGRu7u7Vb2vX78+Xx8Oh3M/DofDOd80TSsbq61lTfdHztD1GImIHNK1PlhnJav+LWg27jxnYZEYS5ls27x3jyjLXvaAdf3Lsogs123UZwIPrfVUtqnVu/Vcas1fqcc15/OD+M4PtU0YnY9erKR1bcnkvZ5jupqXeZ6u1lbLrvZiMV5a+4vFqJ97ma9L+uEwy5x0W6LJ14u75HasdWv1q44NWftwz/fMbdwd1vOYUpL7u3tJyfa5NXtb//tqTjLPh+c0EZEgr169kum+/ahB0w3Lp6nL7Y0ztNrS0kfsjdd3KBnpT12XVXbknFXa+vKWZ8364qe+2N+ojRiNP9d7Wrnu8zrq9WfEb9+8F89BpqksG2SeZ5mjrUct+S05e7bH4+94zuweG+ltvxX/sfa30dhCizp/q96tfkpZb6uPvbK5fE3270X8vpvHX9Oo/aCe/+pBW4t1bMzShXmeu/EYi2maJMboKuP1/8pxtfaJUd+3Z6M8dVjnqa2xYSv/3vOT1Uap4y1y+1E5/9XM83wT36NuW8OK8+zZP/fYoxG8e8QWm+yJ2Yy2J2LHUraeYaw4Zm9tbo1l1mXq88MIW5/rb80/cobV0lrjssc/ufy7vpfSOu2SPr5Xa+2P5htJ154FtHS+fI6aUpIlRFmWdfzwzZsfSXhon/tzXK98jpyv53m+yleT0z37aplnz9haenGKn+a0fPP0PyfdaPt+tX55+9WTS6PlQ4/4BtZ53dOOR86S3prd6tNoY9yK4d/CV7XwnNvL9svr8tlFnSffe3Wf5OHhYVXfD76f5OExmDH2fD0SJ22dc1u6bL2fYq0Fjw80sg72xDY87Vpxll47VpytrM+6ruusdWnEfxnxJVvrcqROK28vHtAbi65tnfRnGrVuevy1U9lrOUbjQSM2ZmQ9jJ6z815XxwVHz21eGXtj7G2752dvpeWb1GkibR3I+nota/7dj097/KBe/MC2jfnf8fOYJZs2fyP623rHrjUuL3H2rW2Pdr9X3kpr7amWvfWeddb5sm09/dLsXl2HJy5cl+2NT6v+q2eSUYr4+Onfw+Eg8U6PWVntWHK15lSkfz4eOaePcFo7IqVdyPNl6eL1WbYfl96yT+fY6CiljToet8VacnnrXU6Pf+qzqdd7Ve+dX22sT+/ipNWeujV2sIcteuo511qU55Zsx7xx2lqO67av97g8P8flKNPxuLl+f/+f7auUz/vXz1a1OFGvXhHd5pyeRejly3Hecj4r+xTjIrL0Y0mln97bQ7Tf3nujjPq8e/H4ZL196DS34Xyd6b3XrLW/JYbcyz8Sb7HuedbVrc4Z3rpHdHLLO0mjbbb2ojr205PD++yuFd+zfIu6qizbHj9c04+XPsuNMOpHtfRFex85xijhdo8bN+G1Sz1az6Bu+Uy11VY5H9Y7jdp77Ke5Wct4ehdWP6uNPm9rxwAuaS8R09gy9q2/mdqzpvaem1o2orZl1hxp8WirnREZ6/c3Qwgic+2bpbO/puljj1688lZ7f677tC6C+T5RWc+WWLrlH7T6ZbVjvc9itb0l39pPi92z4Slf31bUeRZFhtNe8Y43i58Qxqwz/FiTUvpOSunrKaWviMi/LiL/+buWCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEf7/z0j/MSSUvr7IvL337UcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPaZ3LQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC83xzetQAAe4gxDpcJIajXGimlc758PUJZRmurvF/Xb/VtmvRvF03TdFUm/7ZkTymZY1CnbxlrD9Z8lNf1OOXfMcbmvFh1WHmtPLfuu9ZOORetednahtZmPT5W/0dlqefLM8dlud6c9nS2XnfW3NZpuXyZX5OxN391Oe8a08pobW3Vx145y7Z489xqnbTspseWefW1pWelLlp2umffPbJoOr9lHXrW+7UdjVX/TmkxBlmWRcKirydNptH+1/auLmPpUs+O5d+t9WO1r615z77fszFeWVp7Xn3t2c/yv55+7dlvWrbPI2MtT21jerrsXWNW+ta1q8mvzdWIXRxps8Szv1lpvfa0fnpsUc9292Tp+QGaf275Tlv0uyevNtcjZ4WsF6W+t3wCS+c9+1gvvfzt0deWzPM8D8nSatPy6bR2NXm0NZh1JN/Tzk6Z3M/avnn8WK1dC6tPnjVsnYOWZVn1P8tyPB7leDye8zw9PcnDw4OIiDw8PMibN29EROSHP/zh+fr49EP54z9+JSIib99+IiIi/+f/9Yfy5o3Pp/zZn/1Z+eIXvygiIh9++KF89NFHIiLy0UcfyWc+8xm5v78XEZH7+/uz/hwOh/N1qW/zPK/Gq75eluX8u5SjZ48v9UzF9aX8qH8p0t/HNTT5Tn1bpcg0Tat+ZfJYbYlZ7KWW3bNPj/h6rfRWG71y+X6WpVnPlORS1fqc4LXFW87Uo35gbaNG9u76XCAisixRlmlxyev1yVuytM4Hrd8a/j0y918kxiRhwHfznidFfHusddYp56bU2Vo/cnqM8WwTRUSOdyebn/OFEOSTt5/I4+Pa79ZsrMh6Tyzt4vEYJaUsi4hIkOPxKMus75f5XyumoOl72Y+yDqvuuh6LUx5bZzO1rKO+Uk09LmXeUftdlo0xmu1a6yrGqOwzbcZtcZC8xlrlvX1vzXOr7tI3OtVzXe/Ws9gIvvHz2VJrT9i7J9b/7jlfbYkTaPJsbd+qw7MP9fJ5Yk0j7dZlb3Gu9fqK1hluSxut+6Pztvfc6kWznWX9vWdrmXp9tvRAiwfke7m8ZdNbfreXsp1STquvVn5vW724qIZHdzRfJaPpiGbjyj0qp5Vt136I1b7FyF6l/R6JeY7aOw9b5rw1d5/2WbXVXmtuLVpx2VvFI/eUy5R927L+rL2o3C9aa6yu5xZ41lJpX/PvUZ3T2jkllfGA5/4PbkW38Gvquqzzf4v6DFHO6+FwWNW/3EV5e8j6dEr76KMPZbprx6xb53fruvVMSDvHtPqlydBLb1PGSdLp/9JFNs1vscag1S+vvlp2dsveUdbTKl/e88Q8t8SvWja2V6enrt74esfNY+/Ltuo1Z8mslS1j/1b63X2SeX5atf/q9WsJk1/XW2vxVmx9P2XvWvacG/a0UZ+xPLGF3lrx7LFbZPXorqWLnn712BMP2hPnyOWz72/t5611rLWhPZur94NRP6zXZl1v7/7YfnA9NjHexr8t947R81Crzd54WXZ7y5rX5vu0Vsu063HX1s4cT88iS8p4eyl7fV3T2/vr5wq5zKk/spK/9Gm8Y9TzSXrsOUN9GmfLvXHNrXVq8buWD9Y6B1zW3ikeHmOUtOhniRYjfuueGMJFD0VK/TzprP1MybJ7Ldtg/faMi8e+j8bALuvynGra4rpuj//WGgvPntevuzwzafd9epH70nrepZ1NNHurzZ/Wl7WNL2KgMm7XLvmHsp9aXumx/Yxo3c7t1mKd3xubHm3Ps6+LXGJbaU4SY5IUynbT1Ri3Yi49W3AVDz4uRT9PbT0+Psr0eHq3LB2X8ztXp/Kn96gejrO671r9DSHI8T7K4+Pjyq6Uz++98ZT823q3ab1ORaw12dIzqy+99+JK2SxGzwSe83R9xqp1oXX20a69crby5rUcwvr9gFvFlUfk2+MHWPVsJU1lPdd2fST25bWVo2eFFreaP5GLftQ+ucen8bQ7ds5Y742ecj1uEdvYU/9e9pxzftrY+pxe2wtuYkeMubHisl5fa+szh/U+fX3Gzu/9turS7FTPFnjfU2vVe6v9J59vrOp6PmG9B2yJK26JJ3rWuWajPXKMvpNjnVW3xlLtcrp/4pVrhN7e9RJ2fItOz/N8lkVbwyWe5xojetqyDyIXv+k92Gq6vMyTLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnfAQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3il8BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeKYd3LQDAXlJKzd8aIQTzd++6Vb91b4tM8zwP1RFjdNfdS99Cls/T17qMhmdOUkpX7Zb/5jFp9b/VTq7LM04j/dbKlO2JnOaz/G1dl9Tya3LX49dLz789uu0dp16+eixa67UnY9YBbfzq8Z6my3fB8nUtbzmurTEpdcczX7V8rfVcyujJp7VRty/StiFWPaM2xCNzXWerPc84e9vR5tVb71bbn9u0xtFbb2vNaHbsdH35LwSRlIKEMMk0BZnnWeY0D82vtQdY7Vvyjuh0q70WtX2vbcFLM02Tub9oNqemZa+1tup8PZs6os+l3dTsu2cftWyqZbNa8vbsXE2d/yXnXxu/WvZ6bresQRG/n1tTzmdNHptWnjpv2Wav/zVb5cz1ev1SS388/qFVV2/eSh/fc74o77fWiUdfWjrmmVuvLmlltthrrR1Ll7QxusUa12xPzzbX5zhNFute2ZdaXmsMy3NDSkmWZbm6Ph6P5+unpyd5+/atvH37VkRE3r59K2/evBERkY8//li+973viYjImx99T96+/ZIpt0WW+0//9E/leDyKiMgXvvCF8xjd3d3JJ598cs4/TdNZ/yyfXMSnf1v39JTKMTylLctRYtTXxZZzdEtmbf2lqVyjp3/neZY5jsUJRmQ61zWLTNPaX9LablGfZz0y7Ilb2D7viVLHenW0udgE68ztrdt7VqivPXtGyxbq5+YkIjl9Wx9Lyv2yXseaH+6Nv1jn/t65TR//1a9z3Vv8k94Y9fSv3sfquFZp73MdtV3P6Y+Pj+frp6cnub+P8vHHT6v2vvvdj+XhIZz3q2ma5O7u7nx9f38vIs82p8gzz/O5L4clPuuNSO5+jPEskzVGlr9R+gt77IJrLubrPOVe1Cz7jDWXvb1bY9TvrddlK35s+RQeemd7n20Iu2yJWavzDCsiMseso3bM1LIrXiyb64kHZvs1sp97zo2jfnvtS7fiJp48McZdcz4yxyN45iTns+LPrbo8e5R1vmidDUd8hp7MpT3wjkfGc2YUWducaZpWe4PHlo7ilauk3FNLtuhay55YOrPFV/ak99D8rZGzak+Wei7q53N790VNllK/LD+4/jeGIMuynv+np6NMT2ufqWVLrfh7y6cdGQdPjKqVVtfVimVZcu05927d116KPee2Vvot8KwzjZG4t7Vft8qU7Vg+vofRNT2Sr2V/rDWqMU3pOQayLn/Zs6/TtXVp7eEjfpkVA67Lt2LXrTrLc3pr3Ke7KPM8rcbk/v5OxNi6vfZDi/ONrM989rlFXE6zs9dple2Xy9xbZ8iXtCMjfsGWMSp1pGcv9jBq91qyjNSl+X4jfqTHjxodM0v+Vnwz5zsc4pX8h8NsxrMtGT32xBOLt+psMRr777XlkXOvLt3CXxqhpaOetq3zaE93vf3qnZtbefaOXav8tV6EHOHOnAAAIABJREFU1X7uiQPWjKzv0XPPLfa1sl1PDMeqp7W/eXx9byysl6dVr/fc5WWbLSvv6c8V6t9aHOCUdj2uPZ9Qk7E1Fud/5yDTVO5j6zm3+uDV/z22o5zXVmys5Rds0dGePtp+4nV9o+cay0ZreUfihdfPKJ7XsNjvSI/Ib+GJi/bL2/MzMgYeG7HVX+6VHT3XX9dlP0+x5mzLWcc6q5b5enFc7czUkteibEd7l8p73ULNN4mEMMlJ79rnvF7dtX3Nde3Rt5KerSjnr6enPR3VYkAhBPN5ZV2v9fzBsmdtny7/zzlF6uye9ejRn5TS+R2Z3FZKIofDQabnM9ZdWGSa1s9k7+7uJd3NTT9A2//r81wIz+/jzPq7UmU+rQ+a3bik+dapdT6z0N6L67Uxutf05rcXJ9uCtZ9Z9/rYdv1WcZee71PKv6cv3jOYF80/1vzq+r433VtPfb7w+mo929xuu7QRl36PnE1G5nLkrNWyGXvaabVvzd9ofZ78rfHy7p0tPcx6/cLhoiFOY3z+JSL5OXk4X5f+0B4s//Gl/y5n9O/pWvXU1PXWfzNjodm44/Eox6CXGX13v/w9sseUNs6r871zc21HLP0fPx/68rRst3fNe+2Nbg9uGzNslfHE9mp0f3GtB3v9J01W7Xemta5uRdn2FvsQ4/X+FKPvb3z7desxwtCoO5e5kfv4E83ttQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgAD6CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO8UPoICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7xQ+ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvlMO7FgBgKyklSSldpbXye/JphBDc6TmtbMMqX5NSUsvX8sYYXfXVdY+kl9TyW/225N9TryZnzlfmb7U7Ot8ipzHO5cp2PPPqlaWnv1r/ttLS1V56Oa/5d523t/a2zIHWXi2Lp4xFWc88z2r5rNdamZH5yXWUdbXWcS3PSD7LXuzVIRGRabp8O82zfrV5yDJ7xsJr5/fqyJ79IWOtsda4aHphyVPrYqvtcl2WbZTXIS6SUnz+L4lIkCRJYkwSY2zqZ+6XtgZqWVo6U/ZxZO/Qyrd+t9K1tN7arudii8yanbXa68lS12GtrZ7Oazq2xaexxiPLMk3TSi6vXen5AXUfrP627I0lRyvvnnyWjdDK9nRkxKcqx1yjtf5L/0iTc2v6SL6R9debS68v6WnPsvfWem9db8Grw15bYslk7V0Za31vOb+M+C6aXahlnKZp2Ee0rq012pqHUsY6n1ZunmdV3nosS38wpbTytUq5lmU5X//Mz/yMPD4+iojI4+OjvHnzRkREPvvZz8rnPve5UzvLl+Rnf/ZU5uHhrTw8PFzJ0uPp6encp1x+WRZ5fHyUDz744Py73COyzLUu5fT62qJ1tqrznP69nlNLn616PevdM6cieVyy7U/nNFl8a8trU7Rx0Wx9jFFCDM0xr2Wx1rBWxxYboWH1O+u/lf8WZ6W6zp7vORInGkmv8fgI0xQlhKlKa893LUN9Pbqv7ZmDUX8ghDotyDxPMkfd7vbqb81RS7et8a3LePzanF7r+t1hkc9//k9W+f7sP/85eTrqfS3rKudxWRZJKV3s+tNy3keeS8kPfvADeThM57Gdpuncx2maZJ7n1e+y/3nv6tlUT8xU60uuL8YoS4hVeravfZ3d669lOTwxjCyvRn2mGmWaJik1RZuzlswWadJjAvW+tVd+Tb7WPc0Oan0a9fW1e70zes16/q/l2Xresc7G9e/R84jHv8rp5XrVrj31j8qjydZqs547yy+wYkfeZyYW3j1+6z6kydLb21vPXbzU55iyzTLdE/+u+6bZjtp3zbT62xsHi178W/OHrfmxYlteGa2YX0s+T34PtY3RznBb/F6LLXGann1YixTUPbBeB7c6M3hjExq9+ezpW31t6Zl3f9g6Li8V2/Pogyd/XdbrI2zZB3p2pVXWI5MlY25bm4teTH5EttZce/yrVuzc41Nbculzdbk+2YRr/bZsRd3+rezFrc4f5b913dp8T4frft7d3cks81XeVt01t0qvqfvo8Z186zUV/6bT/z0nxRhF4phe99h6HvHs9S2fZIuv4Bk/r16M5vGg1eP1g+vyW54x1bJYcX4R+z0O7TxX227tuUJrHfR8Nq0f9TPcso29/lEr5mHJU6eX4+eZN4+8t1wrFvVYeuXZMt6lTnjl9ezl3rq8zwyteJR2rf0uqc9otazLskhaxuz3eq/xyzKSp5d3Szw0U6/7lJLEuFzNw7Ic5RjaczsS09PeA7H8ppH1NLoWvOu63gtO/12X0eI2Hn+0RXlObO2htYza+Gn2XkQkTvF5TeS6xtdDSzYrFlmX2+O3e/Sktq+tM2BPN15SL1tlrP29LqPNfzgEmaZ1vfM8yzRPV3ktWnMwcobt6cJ1+jpOrp37LLw6tsff3GKvejJdx6js5xeZi30a35e1vLd8VlNjxX/37HXaXG85j6/HUNc5bz3lex2ZGOP5DO2xa6d/yzrG/SCvTbFo6Zz1rsUoI7YypVqmsbkZ9b9qPy+E+ln39V5vPVft+Wp3h3i1Pu4Od5LStEuvPVjnkC3vNNT1ivT32jEd8NW11w+r2xjxhfT7LxMb6rd7zeizMO85w2Oje2XyWa0s0rPDvXhUb/565/qevvZ8Hu8ZXxuLUC3Blg/bksXy1Tx7R8svuTW9WIM3zuOpc0SmPef7EILEkK7GsJ7zLW2Y+81k29+yrkt14Vzf2eecLul7eQm/0mPHbtVu+f6yp31vbLNM3/qOgoj/PGvRsyuednr61oqjeM8h5ftknvGy/NRerHH0bGzVM8It7akWt8jv49XX+XdKVZwoRolxu9/TkqvF1ncGt45f670kq87DYbnSoXmeJEb9b457rGL00yT1e9rzPMvcGpP5OtbzvrLdigIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcAD6CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO8UPoICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA75TDuxYAYA8ppdW/IQQJIVzlq9PqcnW61U5dX4xx9bvMl++9NJbMvXsZbbxa6XX91hh62/aMuUeWXKbM653PEaap/+0oS9/qe7WsrXKj7JmXLdSyl2uinueeDNpYWO1YddVr0tNvLY+W5rExdXqvjGVjWlhjUddb66x3PdXU9dd6vUW3LDtZplu6M6JTFtp6DCGsxqw1Xh4b05JN04+WHdPG3ttmvT9OU5QQJjklPcshItN06v+I3nh0sSe3NecWt7RlXl/As79Y+W+B10Z5bGyJtS9tqb/lh5U6pe2lWr09X0q7P+JXtPKWdq0eI62PpU+k7T3aOGt+1KjMW/Rs1Ecd9Y9H9nFPO617nrm02i3lvPX+oslQU8tk+Zgt2bS5nKZpWO4RG9/T/2maznLFGHfZy3JM6nNXXd7rs5Uy966131rdW9ZhS+bShmh7Tx6XPCYtn6ysq8x/PB5XeV69enW+/uxnP/t8/Uo+97lTvmVZJKUk/8qf/5J8/MOnK9nv7u5ERGSeZ7m/vxcRkcPhcL6+v7+XeZ5FROT169cyz7McDoezzOV17l8I4VymTveO+dr30ddYjPE5n63r0zSZ9qbU/3r8Ld/B6/do3az7oa2TFj0dz32oxcr9XJal20aPrH+39pVKvPvlNhnS1R5u+Q1ae14bXZ4VenLWfkhtBywdzcSYJKW1/hyPixw7w2PZwlrmvXM9EkPw+K9adVnmkb3DGtfyurVGy/U0era0bEqN5m/M8yxJDqbv1rJX+d7d41Hu7+9WdX/00Udydzertvf6PKqfuS09as3LsB2cdP9GiyO1YkujdqXu255z2xZ7X7Isi6RpkpROe015Lg+dultxUc33O9V5ne9W9NbIsixX7R2PRzmG1NQva7/02ONR8trae/Tw+u1aHq8v7T03tM7C3vVspY3GEj3j4rE1Gt6zw0hdo+Pek8lbVyueoZVvnftHz4Ca3dDuec591h5U3/fEMr0xsbJMPr9o+S3dLc/QZRmv312uK8+zqxbeM3xut/w3t2/1c8/6uLUvGedJsQ3XOtbqi6Yr9ZnA0+fWWrrIZvst9X1P/GtP3GurvfTiXXeaTHva8ObX9peRmKJX1tb5pmWntDJ7Y2OjNqF1zytL+bt1VunV0ZKxXusxlmN2ssHLcr2Ol2WRtOh7dtlPS/6tso/i1YGcV9uLT2nrMdtj473nu1bdt9BH7f6Y7VnHalr9svYC7/6wpdxIfSLXZ2GP7fHKZ/m3VmzFy0hsTWvfwhtnKbGexfTKj/oLddn8X+1DPj0d5empr/+emIxVVpPHe9/bTtmveowtW37Ls1mr/KjfYcWCtHWxZ91be9LIftCbv1rGlp63nsVY5Hvls5hSrp4foelDjFFiiFfPF2OMIoOhqcuYXp+ZTml2fCVT9rHXzgijZ/AsQwhJQqifN80r+bS663PvFlrrd8QuWXV68ddf6L6iA1mn2nqq64529O+dAdd12Hb2yj+dcl2+ulsyjZRtydubt73xsi2+hibXiE/a0mHveLVsn3W+10jP8f9RGbx5cvut91NG+pyzZpvqrW/krKmlW/5Fy4+9VSxCm8dlWWSZtp2Fyrw9XzP3oRXPzNz67yA8++UtsPbcEILEJcr1s/GjzIu+z7V0r7atVn6Rkbm8fh9hpI797ffR/AuLkfc7Pe2+dDxQK2/NRc/OlHnye1ciUZ6ens55Y4zy8Q9/KI+P12eG8gw3zxdfrXy/24pNtGSu4/qZ0b2qbmvLOVeTUSPGaPqqrX3o1nE3rY317yzTtvIlrVjLlnhC67eVVuKJM5Z5WzGzcIhXdmOeZ5lj//3Z1j3P3rf13GXFzbQ8bdb7xujfa5R4n8tZ17XNWHctPceJr9ddL4bYGovajm+ZD4tSvpfYK1r98sRfNeq5z8Ndx2Dqd25y+p791MOWGE/NHj/60/p73Pqd9z2cnjkZsQPxxVRGZajfJ/+0KdvX+q3pr0XZh9b7Fdr1renFoq/t5j5qG9OzpTXl2a4+553yt+NNt7DHVoy5Ttfii7eI3+wt3xoDzZ73nn9Z7Vxijf24Pqx5uRUPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ICPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA7hY+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDuFj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAO+XwrgUA2ENKSUIIEkIQETn/q+XTqPOXdbXK5XStfGaaLt8YijF25dJk1+oo01p1W3XW7ffy1LKW+bXrLE9drzWWtbzW2PbqyX3pzXXd51b/tbrqNK18K095z7puzam3zd44eer1tONpP6XUnX+Pfnjxzq/V/ogsPT1t1VWOS2/Ot9LrS5Z/miaXjZmmSZXZa+9qXdDkq+1wWXdrjY/S0uXSDvXmsJRNu26V89rFuk6vTFb65To9/1f8SklijFfz2LIPll3x9K/O41kLvX3/JXSk7q/Xxnl1YUR/tq4Dbcx6e2C5d+6x4609wmv/atskIjLPs6tsTx4PI77cqG9Rl89offbQKze657T8Bu9Ylrpe6pXWjrU39ORptev1X7S2ev76KJ46PG2GEFw6MtL3Vr7eWJWyaGuzrifvNy3q+1Z/Y4yq/mzx78o2ev6t557lL5V4bUauq3VGacmR2z8ejxJCONc3z7Mcj8fz9ePjo4iI3N/dSwiLiIgcDgdZliiHu1k++uh+tUeEEM5zPk2THA6Hc11ler7Oe0puP+fP+XK98zybdrV13iqvrX2i9mdPv6/ndNRXb/kDXh3s7SXLsrjq6dV/qzpqXz1jrYPabxzdk73yj8Z2WtfLFCWltQ7EmCQU/Wrtb5psHvmt9b/17Frnv/b1yvYvfdqiMy0bqdU3Ej/au68VJVa/6jkdrbflq+Q66nNz7yzTsu0xRnOdlXYixqezjc/5f/TmR/LwENT6rb7UfscUS13M+dcx2to+1PtgL75Yn80tLBvditec9F9Ls3Wxpceec1Ndvre29vr0nnPlli2h2e5q273o1y1jfhqWnzpNk8zxeiwPh4PEg+2vturd0peRM6A2JyP+7chZQ/NPeuty6xrRymhta30qbVpvfVm2pOcTaOVHYyCt+JblL3nqfUm0tlpr/Jayjfh01vh5fT3Np2/pfoln7rx+jJVu+fdbxrt3VvDYDe/zrnIt5zLWGT77PZ+2fte2S4tNndJ1X8XyQ7zxLI/frvkfGj2/pkcvPtYq09sverTyetfVnrpasSSRsTG5xXnaU1frbOEZG+t5nXdv6/kDL4FlI6z+l/lb9sWzDk9jVOa7nJFbQ1avK+us6znT9GTUym9ZD962PHjKt2zXiC9Ql7n1fqLJclpHQerYQQvPeWJUppeOp/Rk7u0fnrm8RZzMKuPdAz2+uRVTbvn5te/TiuP0bIH3GUHOq8UVPLGGlJLqM9b7SCtGPbI37N07erGPLc9cSvbEVl8iv4Z3vHt73q1tZ+v9IM/zFGtNLMvimj/P89FpmkSm2/gw5VpOaR3X9fjkIYTms1Pr9ygj712kpD33WOR4vM27a95YcIuRs05N3d7oWSjvH1vOUHX7Lbx+m7Una3OurY8QwlV/Unour0y5V649+7i3nZ4MrbQt8dOeT75H/lvsIz2f4jTPZf6xGL3Xd2v5555zWFlXzpez5uRpmtzvTI3qQuusaeXx2mxL76xYbL0uU4oSY9tule9+tBiNJ7X82/r6mBZZluNZx2KMp/dQllObn3zyVh4fdZ8y/85+p2f8vettJBavocUarLN9Xgea/o6uucu//TK5j629tteeyLX+jdLyAW/hf4UglwE9pTz/t6UuPW62YgoyTev6p2mWeT7lP6SwendeZP1OVOs8XevS4RDlcDic0w+Hg3z00Ydyd9c/r47E7U7rS0tbJ7Z8SGu8bnm+aK33erxHYwyec/Jeyj1Rm5M9+1kte67H64d59uFb+uatfae8f1kX1+tmy7MMjwx7uKUexZCu1qWGt/91jGfEP6nTr+fkeo/W1ljP96nzjM7tiH9m3fPMn6furb5FS856DrV3FLU6LrLo6yjnP/09UJ4LKdLC+bq1Fq1nzyPPPl7aDt+C1jve2hmoRQhB5igSwrqeeZ5lcY5F729jLJ0q/x7Qui9inye2/j3juZwidrkP3urvJV/q7y5rtvwNTxlT2tvm7eNn9lr31OPp054zvMjLxPVH4kCl7dRicNl27qesJ6m2u2SZLrb8fWfbX9YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Ag+ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvFD6CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO+Uw7sWAGAPIQRJKQ2VKfOHEDa3O1L3NOnfG/K2n1JS64gxusrXsnnSS9nKPL16Sjmt8dDqSCm52qnryb+3zqUlS6vdXl5v3Zb+zvPsrrc1TlY+j9545q5Mt65baSP3PbLtoVVPqZt1vjyWrfLWPIcQhvW3rmfruGWy/KVOtPTDulemT9Ok5sv97dnsW+rKlnqsdaPpnUcWz3r10LKRy7Kcfz8+Pp7TP/7443P6D3/4w/O8/OAHP5D7p6N8+Q//sTy+Fvn44yAiQf7oj6Kkwyx3vx9kfprk7u5OPvzwQxERub+/l1evXonIaY5DCGd7X49DL72+N7JX1PTsjdde9Nry2G6tHku+Ot+obuR6vXvY/8/e+/XIsiMHfpHMqu5z72hmZAkejWzD64UXC9hY+NWAn+1P7Jd93f0KfrH2STa0sr2QVpo7c+85p7uS6YdqVjGZEWSQWX36Dub3A0Y3i8U/QTIYEYys08r9Za28rJP68viQlm+xYqF5nlW5S1lafib1oc1/WZaqbF5ZvXj8f+v5I7HW0aqrPefk87L0pMc3HPUjLXpju9qY3jM6Sm//Xt3riYW1NjW5enXAoz9W+3KOvX67ZodKctnyPrz3QI9eJHuZ6qcxS1ve0ovL5bL577qu8vr6KiJXe5ls5ou8ZrHi1S5cLlHeqt7GPJ22aaUk5zzP8unTJxG5rkOKI6ZpkqenJ7X9+XxW55vjuWdfZY4b+5/q9tyhE94YvJR5NMYXEVnDqvp7ba+tcTw5hLruteOdXh9b8p6+r/feO0LPfvTIUbOpPfa4xLKLIawSQhm7T7e4v9f/eaj5zvRdbuceNUaKc9ZVZER8LT7O8foqy2/kZ6plz7XnfP1SLjG/v6ayebbtp3Vv29jfS5Rput/7pknkdDpLnOdbvTl7HtGVkdySp44WE3jLjo7dQvPXZXlPfJK3z3VkXVeJIrIs8a38+t3Xr18kvLyqfeTj5P5uE6vNef6sT0Yv3phT5HrOYoyqje3JdXux5unJIaR9uFeb1HtZbwxvjeep74nbyzpH3oFYeYt8/Wo5VktO7/22HKfVv/WOoiWTtX5lrNpay57cVE++xpsPsfxYi1YsP5rr9sjQujtY5UfmZ9lOz9iePLpXllqZZ89bOmTJmfsyL564s/eetTt7S5QY0+frf5clSnyt+0ArrhnNYafykfh+JG9j1X1k/HJkLco+PfP22PieuXrudI+Ka7Rz5fFDlj7W7uleW9KaW18+ob//nval3rXuSZ0j3c5mKbJ1byjHqsUmtfLWffNIbtcjY1m+i1ui3r/33U2vjEf3stfW6TmTSaZpFZEoYQqyhpRHCTsf6p3jUax1GfEDrfbf+r1HLeY48t4u/+2CJ28zaq9qsYJ11tNzHneu6zb3n+fxL5eLxBjl+XmVH3+8xy4xrvKf/tOP8vXrta/8XX2KQ6dpkvP5fJMvfz6dTrfnZVmynOE+R2TpyiPji5xy772/a+ntt4V2fxuVwzu21+5bPCIH8B5YuUeNo3Jrd7rcpyV5PPPXfwMz7fR/hEfpsqVbZf9azizP6WpYMYLmU1qM3Gd6/cwj44iWLKVOiRz/vYlFKVf5jrbddpJ0D56mu/3W8lWtNazZpTInUpfJpjVuy3eP7EMrtm7FTEftdY/u2brdf3fWeOS59OTy77HQtWxZFlmyLTwa31uU9vDIXddqa+fa92MvyyJLp1vxxGf7sfey1nxiWT4/zfLTfI1H53mVEBY5nU5yehvzu+8+bd5Fvpdd7CWPae/rc/eBQXl/6rk3afkDDcuu3eVqt8nvEKM5Cuu70Vz4I/ut9T1Nk4Rpfx8X8b+zyPNm2/Pri8da+ZTSN2n1z6frnS2XM82rZi9zn1173rZ1Tctk5J7ujW1T+5avPXLX9PjOR9xft/f8W6mIpNh7LHdfjuHJGXrKR2Q5mvPT2pVVe94LWHJqZ8HrD2v5Z4tynFYsEEP7twuecbXxa+Uj97brbxfWTZ6qd9yeMT36uq6+f+/wCI7am7zcm69Pa30t967xfq/zfOBpnZTfA9596RrsPlqM2Jgj+bgjY6xhL+88zzLHPnk8Onbf87F7WS0H6WlzpF5rvOaez3t96+m/h5H79reklj8u71153UflaI+udf6O4RF99sQHmiyPxHNXCsEnr7ZOJbXY9q1kZ3d37x9DPc74U+LnkVkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAP1n4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwofBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBDOX20AABHmKZJpmm6fV7XVdZ1VevGGEVEJIT73/5ZlmVo3NRHPnYavxzvW6HN21oLjdpcevrsGTMftxzf07+3Ta0v77r1zsuDpSPlWK3PFqlefk6madqUW/JYa5ufnxyrfj6eJl/vutbWolcfamOX32l9r+u6sz+tvmrrZLUp+/XYFmuPvRxZ11y+Ht1N41h1SjlCCC7ZenXMa7vLsS1dyMtr+pI+l+eipguJeZ5vz6fTPbT7/vvv1frrusrp66v8Nz/8H/L1Ocr/+cs/iIjIX//2rySegvyrf/Xfy+lSDxF79aJmb8o5anNunR1rna2za+FZ79Z3rf5admPU/5bk4+S2u5Qp7UWp+6W9b6215h9Gzl/qp4yp8tgrPy9aHyWW77LOeyr32CNNxzTf9yh75elHi3l74lJvTFjW9cjmsZXa2J6z2fIjXmrzeER83LtmPeO0+vSOp8lYs8cee5na5T7LYuSO1ppb8i+aLpXlmo+apsllF8vP3rNv6W/trpTby9QuxriROT2HEG7P8zxLjFGenp5u7T99+nTr9/X1VURETqeL/PKXv7vViTHKX//1L+TlZSvLPM+b/U3Pp9PpJmMI4bb30zRt6lkxXYyxuX7Lsqh7U+tXq3utt99Ha18snc9196jdX8IiMfrGtWyMx/bX45Jj9+0RHmXL876835vrG/IzmtrWz76HHp9ixT6t/FeLdB6WZa9vyxJlCcvQXb+spz3XbJ9WP2/XGq9mh9d1zfZ0fw/x3vNyrDi6pmPWus7zvNvv/L/WPSqVT9O0qZP7hbyPXORyXpfLZSdXua5zXCXGJZvLJJfLqyyZidVsohU757bZuneMnDnN75drksqmaO/ZSG6l9De1c6npViuX0IqTc33R7txxEolxkXzoZYkimS617ns1Ur9W7m/k/Iv4Ysmc0zpt4qDUtydes+T25Dl79VWLRVoy1fyFN/9Y2wdPH2k/evz2yD3bymmU/fbIYdkjq++0xsorAAAgAElEQVTyuXVvtO4XGvn88ji5B+94vWf5vfvppZUH6snFeOOYHn+T9zn67vEotfOjrdWj5ey166P1evrZ2e6w39cQJplP23y4dd4tPRu1hd58dD7W6Dq14mtP7Hs0Z96rI705Kq8cPX6gpw+vDD1jWXG/1V9PbveIbEdynCW9uuOdv6ffEPR7oDc+K8c9EpMczTMcbSeirfP9vPXESo/Acx/xzrW2L1r5NU+S3p2tIrJKXKPEGGSa3s5i5Q6pfW7lf0t6y2uUvlDLH2trZNlKjz/y5rByPPe9ERu3rqsrfn2P33fV1sG6t5dy5PeudF94flrl+fnLrc40TfKXf/m9vLz47rsl1nnT+mr50EfahGmabvGqNm7v+9/eOhY1mTy03kMnjvrXntyUp4/3OiO1ebbWQMvDbmP/eryev8PSxm77jlWWZZGlc6vKc5a/P7Pw2jutD82+zqvINAVJvj7ZJO2OWBu7V0+td60tv9HrF0f8UE6MUeSsf7e1jW+5nLD//fJ+/H2ZNyd35O5Ty4trMnh/i9eS5ZFxYR67aHeinjjPo0v5eFYcZY2Tx0otG9fqq8V73fVq/Y/6rppNTWtWNi3Xshxfyw2Ue1G7RyZqcaJHt/JxrHyUvS7rmy1On0VOp7PE89Zuj54nT1xmlff5fV1X8n3Lz65nX2rU9tKKhTV/c3/c34mse482dpyiePMH/vlO2dnw+4DW2j76zj6SP/Rw3Yuyn7f3m+v9XWZNtt53GFE0P3l/p578aHl36r1rWns0z7PMMSgy2P/GpT+XqZd716q0C9a7hZpc9u+1bN7TN6Y2Pfmlkr0fSnXuNqTnHYI3f/6ou/fRHG/NrpcylrmPUu70m42WPJ41ra2PZ841G1rOMX3Of+eo2QsRkTXs+27Z+1Gs+MRCy5Nbdk7LLZYcuevX9rU2nhV7jcjoaZ/3cd9Dew1r9iZ9p+lITu33YNN0X6Nko5dl+5ugNFb+70bu63b/XjvXPfbSyi9qa/nofJPWX+8YtVytVwbNxsXYd87zsWv+2vqdYsljYn+bJcTd70+TbbfyQY+g5p/fe5wWafwyN2e9C+n9TVx+LmtnVLNPNd+jyTF6fmu6q/lET3vPXceTp7Lnv/8u2fO8n5H98uYItX8L9uhY4Y+Rj/mlGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAb/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FD4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwofBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBDOX20AACjTNMk0zTtytZ1VeuHcP+bP6nOPM+b+jFG19ipnjVWjVLmxDzP1XaWnDUZ0pytOnl5evbMyZqDxbqu6ljeMXrHa42Tl2t6kZd5++mRozUfrb61Px4ZPGs/TdNt3to5avVR67f83trb3nXuWQttzHKfvaRxNPujlbf60co1eXO71erDY8tGz3rP/pd9HbUdOcuybPq22o/Io+l7Wbfs21rzER3P97ymCxYeG3PV/0lEJrlVn27/pyqz16ZZc7fOjkd2DcsWjNjumn3qPduljnl1qcdfevciP0veuCfGaNrJ3r5CCM31S35I0/Ncjvzsl/LlMufylLJZe6HJ1MLaL6/vtT4fPRejPq5n/JGYxBqjVsc6f72xZa1ea4+s2MGyyzW7ntPy1yN73xtntqitsyfesHSxpldaG22sHj1P7Xtjhtp6jeqT9bnWz0j8ZfmheZ4lxnhbk2VZ5Pn5WUREXl9f5enp6VovTLe4M9nXT5+ed3eFfJx5nt3Pqe/yOSePe3v3zhOfJEKYJYRrXJSXpfG956a2p1oftTPUY3tb8Wb+vWXHNu1neVuPO/M8yxy3OQtv/sSSSytvxXHec2PFni37rNWNYX8nWVff2tfk996PLFtQy3/V5NHmOsfc572VzWFzdnvk9Mhfo9detsbU2k/F3Weeg8xxrspb7l9uV2/6ktlXby6sZq9K+bVYt4zJrTg69VnG5n328tpfuCwyTSmHJHK9V4adXntj2jQfLUfXS2v8NexlCSEcjp9LLBuZ9vRRMZn1XMtRTNMkotzRQrDvsPk9LJVd29zXLcZVRJIM11xDK1fWa2OWZXGdpfRcnolkv3tsU83We/Yi32/rXnP9ft93za+P2ufa2dZktvrqXcca2px02+3L5fV858ETV9TGaNmXVp7I+5023oieWDmU3n5KGXpya1p7kfvcNnGMkSsvz78lX9lfrf6I/KMc1dtEab/LvntjWC+te8uRvj2UdiyEsLHF92Hv/ky762rkffXIU/vc4ug+jdyvtFxW677W6tebC7X68J7pkbuaF2/O1Jsz1Pqu6WHpM1u6VOq1Rx7vncjLI/Jb5fNRX+nJo2xtxZV0b/DEd61nD95cytF7e1nn+j8RkXWzBpreafb9yJnrXbuWHdva/rZtuo9Tzun6f9LaLMsi67LXAc8YIzayhudcPSJubZ2/0nbV5vNedtnq3xq7bGv9Xqsm78g7nhSf5Tmky+Uil8tFLS/tzTRNcrmscrls36XEZZFl2ed9arJ48OQzR3JBJa13SXnuLdGTn/a+U661b71nyuXs4WhsaI05op9lWc8aa/JoY+R9jsTWo3LluSxPHlC7S2n3TC/amJoP9di1WnnLZ27H2O5V7zvdFp4553hivNG4w6PveV/zPMsiy+67GMt82FVXQrzPVctdXJ/3vvGRcZxF7j/K4Xpk8I7TuvP0+ihvPqnWr6Y/3ntXPr43jrOw7PcjY6N9X+18qpULPhpPPPJumdvwlnzW3o7EKB6bZeUgPPb4+nnz7dD7Ks/d3rJ5tfxXjSi5L67n8lv/LqJspz1bZS391j7v7/zTptzqI5Ud0R//eU/3z/d77zFCfsYemZt5NOu6NuPF/Xux0Nz/a/m932VZZAl9uR/L5pZyNc+gIx4uff/1c7+Nsc6yb7368zllvR5db+WJNNlqY/TmNu45NZEUayc98divWl65JZvWxuv7tHPtPeOWXazlEqZpUn+z8Yj4+Ei81hOT5muW61Lr3/dpd8oYo0zRPydvnrH37rXV37zMlxcr9ffRuZOS8uz2+OiWHNaat87otWyVPDZqrWE5RmsOm99UOc6RdQ+8/RvTjrPYs74jeZv3ptyHZVlElnWT8/s588cgYw1Lfm9c0uPjW4zmUntiqJH8VS3O8Pi394yvrf49d73Re4M3dmo9j5ydEOKu3eWyyOXi9181fdFjAV3O9L7oI+5/P0ce++teAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE74IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwofBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBDOX20AACPZF3Xoe9GmabpYX0ty2J+55FdqxNj3JWVMqfPI3Mpx8w/r+u6+1yTVZPPerZk8Y53RBe86+TVRa0/rUzrr7X+XnnS92ncVPdR+j1N07Ce5XJp32nPrc/p+ai98MjVwqo7oqPaea8xur9enfXg2YtyjN6zkLfzrLc1F812ajYqLzuqo17Zav1a5dNykRgXiTHe9yFGidMkl8tF5GL7i5Ys+b5a62GVW30/wh5p6+rtd5om97nU5tba31GbU5PL0+c8z+a+1NZG+26eZ1c9bzzQM472Xf5cG6fXdpb02AyNENp/k3JExqPzqnE0pq7Z857+S33tPUe99lXEXtdavFIj7b8le80e5mPm82/FJ9r6l8+tPSrlr+lb7TtN/0fOSoyxeZZa7b1nOccTk9S+s+5qvT4q37MQwq3ffLyNv19XiTHe7p8xRnl9fb09v7y8iIjI+bxcY4K38hij/PiHH+Xzl1Uul4t6hkIIN/t7Op1u634+n+V0Om3K0+d5nm/jhBA2ep1kLOOuclyLXC5fu/ZZbO3jo/IO+/hoPEbK+yrzDlr7XF/ysinu74u9uYqeONcTl5Tl1lk/4hen0yLTtO13noPM0Y5JrLE9cqQz3XuvtPxiWa7fYRaxVMnyERal7D3xdotef5vkKO3iEuKbnt/rvr5eJL5u96dH9tzelGuW73tpm1NZLUZu6U0uZx7fr+sqc9jHz0/nJ8n/LnrtrJV2NH1+el3kfN6+Vnh+fpbwdNq19eCJCy1/XZbl89fylItEiXHZfPfy8lXCS9j1U4uJ8rXJfZfHdnlzXVZ9a845pS7k52F7Rrdzqvk8bczcr8Ql3vT1agvkGjNcgqlb2nxq43nrpD7v8x3P4R317S3fd193O++k2Y5U3hPHevWulFPz/aWuHM3blP5jJIfTis9relhbg3zN8ztQHnfUfK93TA/5mNZ8S9/T06f2uZeajbJ8Yo1aLHtUtl4eaQ+scu8YPffpWr3RNfHmCzz9WL47x5LZeq6d6b0M/rHLsh4/MpIHHaW0fZa8lq1o+RZv7qn2XMpzNJfZe47eS/dH+/fYh1Edt+r12rTaXa+MnXvik5q9sPp69F3j+rj1N8sySYzbtpfLRcJFz+dq8YIlc89dwGIkpmjFSmkO8bKN60XefHDmhmt73BtLtGxLTeb888i5qOn1Xa70vyAhXMvmeZYwh+G1b+XoW7mV97pPPcrGte4HR3yeJ+dk3WF6xq7tR06u75ov09Y15WnyfM3z87M5ftlXjFGenlZ5fv5xU+/89CSr7PPhNb/ck2cpv6v5lN499sqb1/XYd5HMtin70xN/tOpatq83Duvpv7TVPxdyeY7cL2trVLNX+fh5HszSd2tvNNlD2Nu3EMLwPPN8nYaVg6hhxST6OkySx0AxRpHQfu/huY96z6gHj70v6/Xm/Kz8b+oy9X2a5yxXfv3ufD5LWPe55aI32U9Dt8NlH4864yn/mLpb163+en2fJuN+nGO5h5F7SyvWbbXtucN4x6nFcLXyI/fb/RjX+GGS+p6+V07CU+cR97vetuWzJkN5z+2ltf/Xu9OxdxfedkfOtMX23Vi9rvVOo3b2enKLGt7z99ZLsz9rzGmainjjXudoLrnFR8SArbi/Nyay4q51Wq9rOaV3Z9ezMk2ThKkde3neQyzLUsQOsbANWtv8zPbbMesspnteErv3PYLlB2KIm9zWNK2yLNf3tjW5PfPJfxMxev9/pF2yYn2vbCN5NivPmdvGMt5q9eXNpVtytmyflSvpnbNHR1p18lg7Dd/as0T9fc+xe8iReKlmI2++L9zj8sQ8zzLHeo68l9wOanphnxmtTI+Tyr6PxP95nz3tH+ELtXNRi1FaOYYytvPqddHT5pOlI3d98trU9N/tu9m7T3ufO4En9nsvbvfdsNfxfF1r/y5FW9tWnkbLH3nkTLT80iP+fUgrl6mVt+7d5Tqv632dj8bGj4itW37sdDp1jVOzm61+tDi4ZQcf9S5opN8jY/TZqf74RDsP+brW8ur5v7cYxXq3YXHVkfK36LPMFd8t83J7P/nO18yfPcd+zQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwEP4ICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwo/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FD4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwoZw+WgCAUdZ1lRjj4X6maZJ1XUVEJIT73wUq+051Wn1p5P3meOXPZSxl8cjlYV1XU/58nNrYNVnyvq31yGVY17U557zPcmxrX2tyPmotcxnKvmtr7O0rL8tlHu17dHyLml6U+zrSX63vVv2RMUT0+T9i7a1+a+N57IzXtozMe7TPkbHKsnJtrD5zO5KXeeZT1jlyrmptrfNb2kFtLglNJzzypn7vazKlxjJNV10KIZhnubVGSRfL82nZ95acHiwf0dKRWj81PHporV+P7xypZ5FktvbvUT6k1U+Pvnrq9sqd60X+7Ik70nNLl3tiVE+9vE4+5rIst+cYoyzLcnuOMXbrTJpXCGFjM6dp2viY9FzWyfvpOb9pXp5z1eojH1+j9l0vln7WfHg5dmv/W7K2vq/1n++ptn89fY3S02crzkt9jdgya841+67FKDVqZ6LmkzRbVJ7vvF5uf/LnZVnk9fV185w+v76+ysvLi4iIfPnyRS6Xi4iIhPAq//RP8W3MVdY1yt/+X/+ffP683uyNiMg8zzd9CiHI+XwWEZHT6SRPT08iIvL8/CzPz88iInI+n+V8Pt8+n04nOZ1Ot77mea6uSw9pXS6XixpfJcJyyfRxepvzIstyt4s5Nd3NbalWf9QGrevj7qu+eLH8vPd53pimN1aty1WPT3PdfBSe+6g37qzlJo7mKTyxSynXaKxQG79mr8uzo/Vn5YvKcTw2VbsDrusqMqfvUpn/vmjJlM/XYyNE5Gbvaja9tq/aWpc+Ypnjxi+EEGSJiyzLXS/yuef6kutIebbCZdnN83K5yOu0z83d2rzFmLU18d5VRvJMaZ5r2O/3PJ9kPvn/VrxX/3op5+G5q9XyBtrdPOndcj7fnhPn85PMsu/LHSeFsbzLEf9m9bU9RyIid31dlkWWoLcfGVvz/SXWGm7lzdfc1u2WndPqt2xni1YOxbJHIvt1GfFJXrk9Nsab22rJVp4fEXsdNL9Qu49pfeb9ac9Wm1oeObWPMd7kedS9zzoP+TjaGor4c5sjWPPzvL97RCxu2Wtvbq52pzki40g+9JF5xFr+O0fzTT25320+zy/jyLmo3ZVqeQ1v3sDa/5Yu1eytR8Za3yN99eYPveP3yKPpdZnz9NyD8mdPnukRfs/TxjuOxw607uOe+7FGz/vMmr3wzEe3I+kOlX8XJcZJ/a2IpUOWX2vJUeI9Y0f8ktU2jw/KujFGWS/1Mb2624oPe+1M7z3Ss36nNcq6xqy+yCp3/xFjzK8YTRk1ebRy7xoeObOevmr+5JHvWKxxtTLvvb/VzpMzG8WKKT32yRPbJ90NIcjpFHc+KoRJjetrumjdSyxq59XTvpX3E/HvUXm/S8/5bxymaft+s+bLWjqm3Zta86mtzzzPXfrnjSNG8OjB6Jiee8tIvJ387sh7Rs2Ga+/BW/0krvd+/15q/WtlWh7ZkqHVV9l2uy/bcfKxrJz3e7wzLinPrscfeHyfR/ZbTvw1yrJEyePEL19fbu9RRUSmSeTLl68SXup3iHm559OTWJfLq7xK+/12mVf3nKtyzZKdU89fsSQ9593jBzx2vBanHLkftfxIL974zqqfl9Xaanv3HrzH+pf635fX3ccZj9in/Tjtslod776UeR7tDlPeRfM1qOWJvTrRmxPwziv9N79Xp35S82W5vousjesZJ5G/77J0bCy277uPWjp0L/bleb8ltXcEJZqf7PG9o7/V2LXb/Mu2re7HNYo47k8W1n3o+o4zj4vf3h/Ha9kcyzWbdrGTSHsNNduWyrRYoucun89vmiaZZnssrU2i956Y12vtQV7POtclvfva2/ZIfb19so1+n/MoXz+SM/Tm5Xr3qBZ3r+sqS4gS4z42DY51e08b+x59633u8z2PHrOWC9Vi0vy36InWfderL56YpHftvbnPcqyjua2PIMYoUyWPcf18f08xx3tuLIT83aHc6yT/NW/9X+r76G8HPHnl91rv+u928mf97D3i3360/v1Gz2+RvyVH5Ujzzqe+LIvIcs/blozcq3sYyVVYdfScQD2us+h5p6iN3SrX6+3tptcHWbZz1BYfJR/nyL/Vt+6due0USe8ZJtf7jSNYeZryXP0p8747AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCAP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwp/BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+lNNHCwAwyjRNEsL17/is66rWycunaar2VbaZ59nsNxFjFBG5yZE+J/Ly9KzVa7Guqyl/Wd6SuaRXlny8fE619S3lsmTM+5imSa2Xr0VtrtZ4ZZve9aph9e2dr/as9W2tS+37Wt+p3HOOav179qOlJ71o69ZaP61MswFWX1Yf2hgtXe09fzkhhEPtRe7yefvyrE1veQ+1PrxnwGpjlXnkfk87UpPD0luf7ZlkmtL/7uXTFGSeZ5nXeTNGaXtH7F2ub7V5Wf167XqrXJOtF8+Y3r20/LjH9mp95bbQsr1ee92y3T221apTztdji3IdKmntZ89+aza89DtWf/M8u+xhbQ17fL/Idu3Ktj02opRR+2yVWbTmVD7X4iLLt2r26qjctfo1+b0x6pHxSz3S6mn3mdb4Nb2yqJ3JRxJjPBxPWGdBO+fWuo7oVY+/08pjjNW9Sc/rusqyLLfy9Pz6+nqrsyyLvL6+yuvrq4iIfP36Vb5+/SoiIl++fLmVr+tneXk5v7WJsq5Rfv/D7+XHn5bNXXyaJnl+fhYRkfP5fCs/nU635xDC5lzO8zy0PmXd1j05tQshdNxH9nqRr2kuT62vvM2j70Alvf23zuwaVgnBfz9syTEaT3v8lYfRWM/TrnWPf3T7lo9JdTxs44br/7b99MUKpV49Uu9zXajdSUTqfivFbtdm+dqLzHOQOc6b8UZlLddC0+VSTitW0ux/mkv+nOqcTqdN/dMcd/LMYZZ51u1Avq7leufjbuW63ylLGXNfocltlYnUdWokXrkxX++9m6J5ljnuc8y9umC19eakrf5GdbI6l3XdnXsxZLZ0eoextqe1nmNvza92N2mtXwirTJPIutox/ai90vanJ6bRSedCv29qe9rSf+/6eda1tAu1vsvz/3PB814hl7knX1qz8yX5+6Laulr+VvM3PfLlfZVlnnxA2f9IPGrFf3kc7Y07vWuh1YsxHs6xW3KJ+PJ5Wv3cv2ufR/KevXH8oxjxAS3b2mNjRv1oLbfkyYmW8ZO2F5796cGznkfzUo9c89LXHdFFKz5uydaqN7IvPXbRk/NN1HLRvees1Mva+rWevWtl7XdNxzz5oPTcY8t1Wfd5/xDs9y+aXOVnj733ktev+T3Pea/pUQhBJPjzn7V7m2ctHpnrTZ+tvF2uc61xQ5Tb3Waa1uv/ZPues/Y7paSXVvyu7eGIvS3r9+byajKUz977Quu5bO9t05K31sZ7Fqw47Ajaflv2ytKlcl2sfFGMa/fvPVo57DKvb9XLqX2fy9ebS6z5cGtOXry/lSnr9N4jrPzKaEzosSUWI/bCc5/u6S/1Wb4v8uR8j/7O0XOH1Ma4nr28ZJUY2zn73jzDt2BZFlnXuCtbGirk/a1PbU1GztsI2m958/Pemsv8tO7089Pzk3w+vWYlqzw9nSXI/nxbc0hDeWKSvL9EsnO9v0OOS3zzI3fZL5eLhEsw/Y3aj3NvtPX13gnytt4cXl52NP/RiidrsnnvnJY83rL6mPvve+5to+Nq5d57wLXNKvm9bJRe2+SRUcv59O6/Vn9eFolxlftQ19zo0nBT3jn2+vva+S77Tb8fubZbb2uSql1zrnV501pa33t8TpkfKPvWxix62PR1PH86loO7r932HUOM7TyEp2+Nkbj5W5HWw3NHEmnrUqKdT9nayhgXWS9vccNl2Z0Rz3ndj2Hboh4f4M25lF954o/y/VWL0VzsI+/gmu/pydGWbcs+tc9am0KqW7tWPOCNaXpzJb0+sYwZen2kV64QgsQp+b9t+UfkwzQZj+qklcu+ft7W7YnVeuSqraXtV/fj9dzNPHbM8t29tPJV2n4ezUX34bMBu1bOuDi9377rzrV8WRaRZRtP7HOI1xij9v30TqmLR+1BzUbZ+Rz9nlLaEW8ud4Qj/5740XzE+B895xatfKHnHqvlV3r69MT+ve9RRI6v/bIs5r+ZP0LPvz3pGTfP/9ba9f7mSuSYHfPEhVb5N3VhP2O+zb9WAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDgj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAh8IfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAP5fTRAgCMsq6rLMuyK48xuvsIYf93gKZpuvVvUY5hjZmXe+TKx0xylM/a57x9/l3qz5pLbY5lX/m6aGvU6suqV2uXo83ZWgdvP9ZcanLV9iVvm/7XkrO1rlrfLbla7TQ9G9lLSwZNB7WyWr8enffsf2ssaz7pvCYb0WNXNDRbY5V7x6rVs8arMdImx5LHo0/TNDVtgXZGvfbDI0ui1CvrHE/TpOp8bezaGffYixqaLbHGSvXXVW7/y4fN17blR1Jf2lp4fZeHfIxyLUv9Gdnnmj1v9VvzH706WsOrb9qeeWWy1mXEX1rf9djdEbvUWnMtdvS2fTQjZ6K2JvM8u/q39CG345aN7bHpLb0r5+KVt7VPeb+af9Hkqu1FLaaz1shzTjy2uvWdh6MxzCPH8Jxpb18j6+K5kxz1KXn7nr5aMX55vtd1vZUty3JbW6t8nufb2i7LIk9PTzd7+Pr6qj6H6UX+/M+/iMh1X9Z1lf/uX/6lfP68vevkPiKEcBt/nmc5n88iInI6neR0Om3mkre/XC63etr8vfYiLy9tQY05Xuvn25DHHrVxSnptp0e+Fr3noeYLRUSWsEiMq4ikfvtjOo/ut/qp3S9bbTy0ZExl17OT9PUaN6/rurFXo+PWynr66skHaOXpjOcsyyLL2zHy7pX12SPTSA6mlSeo+enrd3cdX5YoYhwNza5777+12MWSP9UPIZjzWZZFjc/z872uqyxzvMma6r28vsjLi+2Tk/1s3YG3318/W3a89mzRE8P025nj+QVrjKP3Xk+59/vJpWMAACAASURBVG7aKlcGcrVv5fDyrkpb3oqL8zLt7GnxldV++7/7d6fTSeJp7rrbahy1fZv68yTTtD2XIYTDubpe8vjM2qtabqInH1HTo17b7z3DtX49984eHcltaY/9a90nR/PhXkrb27uuPTqr2fnautd8vBbfem2nVrdVvwdPrsOq79Udz13zqF711PPIZfVpxbe9cURtjNIv3MvGYuraOHm7lo0sdbwmz9E1yMs9Oa8je9/yt6172cj7hh4f74m/3sMe1GKjfP+Prp8lQxpDy+2Ue/8ea1T6O098qfWR92XFixZ7fdp8evu+bXt75t6bp7X86tE8ksX2vreXJZcnzSWf0zW3pu9lzd6Vz486c/lYPXFg9o2sa6Zjb59F3uYdx/x2mefVx/bZYa/v0fr3yNDCo9MhhG/yjmKEUrY8x+7BcxbneX/3bJHbNO8eTtMkIUzV37+1qN2tR/pr8XPSC68u59T8oOf3gznlefec/zJv2Kpf06VvsRfe9zWWng/nR8K4zmpjhrBKCNuc6Ok0y2LYdo2e30Ac2ZuR+OoRY3hiskfluzQb7hlPi2k0fxUvcV+2xuKM2mPm48zrdHsPmdrM80lOp73utO741u8YW3eFuKxFm1VeXl4lvOi/p7DyhK17e/IdeRst/qnpZL4vvfmBR+h6ry09nJcv2nh9rxbrximqOY9aP56xHlGv1iYEfd7ecY7k9j05g9qeeMfWztk0re+So6rVSeUtH+PNP3imX/6eJVGubzn3lPOt607Y2KUy71G2vz0rMYLnnYxtd47Zo/s9fJtrH5EnMXIP6R1jBK8tui6r745S9mvNpfY7mTjHt9/I3FnXVaZKbkgbr8xT5d/fdTXuZCnf37fyGS1fkXzxSIrF+/ssD5483aPjVk/OccRHj8k1bXS2p4+R93VH8frt0Rgnf77r590Xlmcnl6Xm11rnv8dXe9egh3xe+e/PNFpjPiJGsPrR7Gv+O9DeMbV3D+XY75VzKuWy7jYWo3Hzte9Vcn8+FtP21G+3Kae8zz1uZe4l3aff465v8QhfEWOU6Z1SYuku+3PNweVy/ZxytB9N699m6rkTkdyup/NV+n5P3kAbv3Wujvy28trWl9PM33OMnPXefHlOGs/6Pau3fcJ/H7FzFO8Vl9XzP+/zbviPjW/7K0oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAv4ICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwo/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FD4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwoZw+WgCAI4Rw/Ts+67reyuZ5vj3n5Tkxxs1/Uz8iIsuy7MpSvUdg9RtCcI1jzUljmqbdmN7+yvL8s/VcQ6vXMxdP3TRf7XN6zvsp63vGzp+t/dLWLpXlY5aylPJadbWx1nVV56jV9/br1Y2SaZq69tYzRmv9RvvVyPd19OzXzlzed6rnHce7J1Z/pV71cPS81trHGG9yWfKVelWr55GrlKdnXWrno9Wud6zevkfrrKuIrPe55f+z+urdg9551/xQrV/LTtT2P9+bkb3N7W8+fssWlHa7nEuPz8r9Qe372hi18tb6t8ZvnfF5njdtPXa01p8lx9F46+hZE9Hjk9pzjuU7Qgi7GKUnlvWcj1K21hp59lA7eyMxY+2s1OIr71wSXn/t9WVafU+smdDWuOzLe5Y0jt6ByrF79TLH63vzNa7FjTU9ydt44ut8Hp5YVRvLGj9/Tp/TeJYu5fY2v+9eLpfNWKn9PM+3O7DI/T68TsvtOcYoMUb58mWVz58XuVwu6rk7n89yPp9vz2m/8zv6PM9yOp3kdDrdPqfvQwi3Npbuev10PqfWvoTlstPHUudq97hH33166o/czVs+eU2B4b3EPINH46aj/XnimvIsa36gahPmvN61KIRg5p5Kf9YbUzzqntvyN5XezL7Kc5Ln5GrnTDtLtXmWfXnaeLnr8lbHrfG1zyL13GPpF3JdyJ/z3KRHH8r2Wl95m+t/l92+Lcsiy2KfhTLGzL/fjp/aiiQ7kdvevH05TjlmLvsj78ues7Eq92APlj8/crZr9wFvnsk79hqCquuee2c5z63Opee7TGHt31OPr6vFT7nd0mxSa689uui9M1vk+7WEKOu6P6uy+O8OtbN0xH725Ke9n8t+a/09Is5KY9XypTU8d/VyTOtzS4e18tZdodbe658TLVuT30U0/7wsy9A7l9oa9+Zsteeedkfo8SGeeZU5LE//2n1Y+9za60esyYhPPxoHWHF/KtPIYwGtvtdGWOci5eze452Ah5a/055rOurJxfbazUfh0X+vnfD21eNDWmixfo8/7133sm+tfy1X0hpjZGzvedXaa/eK1rrt71ZR8mrLcpHLZVLvUutSz7fW5p9yYV5GfGr5OX+2YqEyXxuXKDEq91yleVDuFbt2sr8r1WTpeWcyskaes6/WWVdZ17udT//rjQ+958jTb7mOls0q5fTK7NmznNrvoHr6qfWbM/JbK6t9/tkbE5f4chDHcwaWvV6WKMti63C5p9aYuf7lazFNk8zz3LS7Xqw25Zi1+pq998eA9lpoe/zI3wwmRnWt9d0IPb53hDI/470PHY4rQ97uriNeO6ifu1wmkWkKm71snbOeeWm/iS1l9KDmt9er7Juy7H3dSM6pfD5q81t3jyPvwMvxarKW+3X/eH3O321qcm770scYuYOXvq8VY1/1dZ/XTXfi1NeyLJszW3t/kY+Rv0vI9Tz/Hcs0TWZMrO13+duCJLMXb47Ja1+8Z/eo//e212K9ZVlUvxbWYJ5r7zrVYkMr9ijjhtq9reyitCM9a94i/52qRS2mKOfRigPr8rXf0/S8q/CuRSvGbt4tQv5b373sV59y/63IkftcDevddd6/Npe7bfPnXco6H5HzKset3U1619ybz3nEOxtPneSfslKRyu9WvOO9x77lul+zB+m/pznufudZnn1NzvKsW/ch29/55lOLi/LYqfffPnju9iL1vHz52wWrntZfPpZnjiOU/myatjrrfeeQ9+ehpi9H7xLWOCN577Ivbxc9OThPHHN07lbfVjy+X7c+O6TFhj1xzEis65XlaH8j/ffuXyuu6rEh+WcrP3ctv39n/ebDGl/zczFGmWL9Pi6yqu33fnDrKyydbNmOXI70O7Hy92Je3jOmuuVVwt7uzPMsc9TzLkfzbrV79HtS+rDRPXlv8nzGSF7/I7DyxbX8WV5Wu196csBWfNJ6R3fPoe19h9bne+XAPb8fLek9Q1bcP+qPSnt/ff/iy12WcuznUva9iCxLNV7+CJvyc+R4NhgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgAPwRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhQ+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KGcPloAgCOs62qWxRhvZSGEzeeSZVlcZZYM0zS56qZ+k4zTNKnyesa00GTJ++6R1UPqryaT9V1NFqtNXl62L/cir1vTFW95OaYl/7quOznTZ0v+so0Xbb6tddVkOTpnz7g1WVpofZdtrfn0nK1eQrj/LbHeszXPs9pPTim7pvM9eNbc2u9H244kj8h+/jXd9Oh5Tm0+LRvgPSMj+3BkPbXxtHnWxpmmRaZpuv0vtZumSUIItz3x2E7P/L3n3bLhXrtW68M7rjZWWXb0PHj6q/m0sp5F75r3ypiPkc6Utz+tH++6enxWfsbLddRsbozx3WzeiC3J16OURfNrZVk5R2vOiZH5juyXdy3KcUb1youl72kfWraw5lPKNpp9tWxYuW+tc+j5zoqLNB3Jy7R2mr/M5azdsUZ8iYfaulpylpR+0RpDu9N55mWd7bLM0ss0Xr4n+fj5c6qT30GXZdl9zkn7Hqaw04vTSeR0mjZxrMg9rp3n+fZ8Op3U8nmed/PsjT/ztffYgUfo18j9tGV7a1znlsbYf2eNafXltVF1edoxktaXV0YPR+/MrfuU1v8SFolxW74si4gvZeSSKx/buhvW0OydZ7/yMe9f2TbwdLLTyDVdaN1VRmJtz53RkvPa/37Mcs5avyO5htaZLedi2WdrnjFG1Q9on+/1t7Fymou1Bqks6ee1j/hW5+73l2V7v8znkO6aNawYXvusYa3RZl1D3O3d5fIq8TVs5liOafkur/7V4hCPXa/pmzVmK+aoLal1hx+5f7buei35a8/WONtzsK23LIssoX2H9chlyVP63tazdVanuB3D61+tmKTnDtM6c9545Oh9sFa31yZb9ytvPsJzN2zJkstQW4PUR81u1nxW7f42ivdMjowzqht/bGj3xtq59tj+lk207qQ9vqOmh3kcUo7fcz/Wnkd8rCd/dJVNrWa2scbryW0d0e0jOctH5jhFbL3sWYseWvVbdrklV+/3tc8943rXoZUnatmCmiy9MVirvZUb81Ce0R49qdWv5fZ64qJE/u4sb5v/N/Vffq+10b7PZStzf968jLUelj3P68/zLNM8SQj7eFLLFT/6HXz5+57e/FKJdkastdye4dy/7XUjxigS73KW7Wtj9sZw34rWfV37vnZ2yvpH5uZpq+XKNbzno2ZXrLXS7GCSK9dFzV+08lE5MUaJUY+1UpF117y2ra/nNU843ernumu9S83blPMpad3DvL/Ta/WvYe3DI8cQ8f/25+iZ9+SwEpq+vMfvCEdy2xaPsInxLQ+4vw9sz54VU+l6kr+HE1mWi1ymcX1q3bd62vTkT/W5bXO7vXFkLsO6rrf3glbOrsYjfeKR/Fdqn8t/725904FFltelupfb2OJeFqP9PsYjr+fM3Wz6U5R5/rL57he/+F7CeR/LlDGZR5bEt8rreHK0o7l7D1ab1tp5cskW1h3Q037kbneUWnxTlmn5pfQuK6/bk7OufX/U73n3K39u5cXyvss4yZuL6JHZssstu5K/TxS53h1DWG9xcnjbs9PpJOs6V3ryy1jiyev79tj3HtKvL9t9OXqf9chwXOY7NV165Fw8OptsQr6O67rKGt9i2He4X8bl/u476Ua6+6czXIpeyld+Vz7n+Z7yDnt9z35vk85iaUs0O1bPfeVybPMZtfYW+X3Ne3dL/Ze/G7DIf4/We4fS7kjaWpW/edMYy3FG8SynJy+rfbbHteOLR74f2MbEPt9s10lroOt4Gqfex75eXr9sb/m+ll8pbbo1ds1/P9ouv0fb7TxXEbnmgZbl/fzYI+JObz7KwiND35lNtudapr1TqHHVVa1s2t0H9vPd/+5N688rR618JB7NObr3NXuZP+fvMUpffrlcZL3ov90YuV/tc08ytPY5Xt1LjORSHnmHt2KPKW5lXpZlk39+Lx5xvnvsSsq3TvF4Lqrk6DpZd+6Ul/Iw+lt47++nrHM9krPwjmm1C8F6/7IO7UX5ftWTUyrLv1W+7efO494+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAD4U/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCn8EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6U00cLAHCEaZrMsvK7EO5/8yfG2OynR4Z1Xat11nW9jVHWtcbOy2tt0neaHNZaWDJ6ysoxLbla8tb6T22suum5te4tWazy2p6W5fnnco/LPmu01t/zbOmYhSXfyHlY19W9t5YMvfWsfSrPW372a5R24RFtavripXbGj/RtrX1N93MZjtjN2pjTNFX77h1XOyOtvlo2q/xv7fxoY1j9aGO25Gu1t/RnivF2bu9yRFnXSZZlkWmx/avmayxb1ONb0ne1NbOwbIRHz4/o8siZfPRZ1vovn2t66dW/Eb9olY+sea5XNR1JdjnGeLP/+dh5ed6vVlb2qWHpeM0nemyPNYZ37UZ8mjVGqS+959rqqzaX2vq11uOofxqNOT1xmPVdqZderDHfI6apje+9a1j6o/Wp9es5I5a+jNx1PDKWZZ59HNGRcu3imx8vv1vX9baX+fPlcpHL5XIr//r16+3z5XKRL1++iIjIly9fbuWTfJUff7zHCDFG+cd//CxvVWWeZxEROZ/PcjpdU0vPz8+353me5Xw+38pT/Xme5XQ63eqFEG7rl+qI+OyFplM9dmGrw1t9DmHetNP21huz5OfLay+vc3NVdfXlQVsPXa59f6U98NqFVK/X11rjW5+PtFvDPvYIIUgIoRrP9/pvr8wt2+WNtcvnQprbHGvjW3G/J6eSt3nk3dKS1TtOy19YuQZLhy0bvSzLpl5uu0t7r9mQcjxrLbU7kba3vXmTZVl2Mlwur3LJupmm6dZveda98XApl7XOWiyfP+frsAaRacr7XWWeTzKf/LGYpb8xRpfP8dzhy741GVplNb3IY4lbfUPfrLmUn9cgcven1+8sW5KPYfnTWozXIvVr+az8f+U8rP56vqv5Ae35qpft89sjc4529lo2UvMRlu8u/f+I7y7xrF9OHkf2xvla/HJE/2qkdbPORWnnrDPZyi29B+85fivuHuFIXiTnyDxLnWrdVUbPhVXHcz8emV++/zW70uqjpB6ftvuq5cwfYZeseiOx7NHzM7JOo7LU4haL2l5YfVjn5ej7/Fp9z73lyNi9jOSjHmUzrfFrMpVj99ilssyTM6wxmuPLKX1RCPv5xBhF4nbumn3vuXvWbJ/H3o7a8ZE2mr/uiQlad6VyLXv7be1FKx+yX++8r1Vkmm73nHmeJcz1e05579fureW65jGth5Z9beUpS7lK+Tx4zn5vXDZq23pzay0f0WrfKrP6q+lsjWQrQwhyOu3fKWm2q5WzbMmrnSlLl7X2I2VHeaRvFDmmv+X8yjPuOaMaqd3tXY4zz/YtGLmHhRA27fI1PLKf6d1r6zzntrh1Nw3xmlfMu5znk5xOe/s94qPLNp75e86ffZ/fxhTLcpE43+Nwa3zLj2pz0GRIePXFsw61vnr9633g/XrGuLejMUYJElw+1iKPHWpx9ojv2sfg+1i8xsg+eeyPJ4bQPmvlrZi05XtrPtmbI0/M81zds97+yjotfQinUNxX3mLXpT/m896ZR3Nb277reuaRtbeNLke73Du+p9/rc/5Z5Pq7DP9ZH3mvUcbqSWe85/1uO7b3+es7zas8l8tFXl/b+2rJn7+Hb71fKWXL/1s+J+ISZV2TfFkOKup9+/RpK1tue1p3iPs7u+2d+Fu/A9DozeuVn2tzqOvoftxJVlmWKGtx37bkOMb2Hb+2H0nna/cu7Z3+NMWdjl77us9Bi49r7xjKePZeb7831j3OohXTaO+cc3reJUzTZN4NvHh+T6CNW8o18h7suvd5v3a9nEfGxV569aBsO7I25edr0f28xxhlcl4pPb7fe1fWclgjeZ4a+W/aNfvW8z6iVw96cqyl7QghVN/Bv2fewSt3b67c0hPvPaSs44l/j+bPfXUesRdbv+eVpScWLtu6pDLuHrX6vfer3jytNe72Odk5PSY8tt/HZfSU98qwP196zP+IeVk5/rz8I9b4aL/f0s7W8OZ4jua7H/WbHg9JtvzdnaX7eXz7iD3YzHM0T/kgWf7YeezbHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBO+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KHwR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgQzl9tAAAR7hcLh8tgoiITNO0K1vXtfp9Wafnu1r9fKy8zOrviAwxRpec1vx75Mj7sPrzlJf7kj7n5VqZ1a82Zm2+Pftg1fWs58i4qd91XTdrXupPa/zaXEZ1obUX2v6JXHW0RghBfc5p9ZHaavXK+R7du7J9a19q41trln/W2vfMoTbGI9D695z3R5GfmXzM1rxrcnjtW61ea8x0vqdJbv97ayzTNMk8zzKvc9UGeX2HpZce/Svb9JLvhXe9avpjtbdktuq2ZO7B69+9Z2HkjJRr0LMmWj/Wd1ZMYz2XdjnZeMvW18Yv2+T9pnZWv2V9i/ewkRo1OXPKtUufa37Aa/N7YhLrs1b/yBpacY93vXK89sqjx945lWPO89zdplVei5lrOt4TQ5Z1vGtp2QjNv7T6fMS9pdX36PlI61yue+7vYoy38hijLMsiIiLLssjLy4uIiHz+/Fm+fv0qf/jDH0RE5B//8R/l97///e05lX//fZD/5X/+rzdy/If/8B/lp5/s/f706ZP8+te/FhGRX//61/KrX/1KRER+8YtfyPfff3+r8/T0JE9PTyIicjqdbjq7LMvmOZ3B0vbk5zX/b07LryRCCBLCLCFs64cQ5HTqS5nlOlb6JA3t7LxXzNzjn691VsmrLksUuarTkJ07UufonUqLg1tj7Nsnu3Iti/G+Hql9ae+O2BPPnaLUn0P32cuyG+NqT/ZnTXvO6yR5LZ3rucOVeO4NnnzAMsXdd5fLRdbL2N8Kb/lxzS9Z95B875Ptz218+Z0my9bGrbvxL5dFlqXPBpXly+sir6+XN9mvZV++fJWvl9dNfJw/l/mXml23yq3zq8X9udz593G6+8fE5fIq8XW//974NB+zFcvU4pFaW+/Z8OQDRERiCBLj/tyLkdvy2OKUZ6iNP/Jdz1qU9dL/8i7y8lb7Ft51afV7lUc2cpY210OvXbTufbV7kOc+6GnbOiutHGbP/pVxtIfWmpfnPq+f38e865XfQT3+ruy75oePxpc97wK874tqfZQ2WpPDc1e38vWedokY41BOMh+/N0Z7j5yd9nnExmrnb2SNvTmcUsd798KqHxV/5dFzz3nW6vTkDHt83JHvj7Tx+rXaOK1YaDQm6skplfbR856gd65lXzV/58lZWW1HZLJsgDaG1y55+yz7Tc+9ecMarTtafvaWZXnzX/f2Ly+v8nLa3jOu945V5M3X5Xed3vOT618tl9nqp2TU5+v+oh7n9uZwrVilrNMTL1rY8XY7734f5+4rpimP0/WciNaP991Cn1z1dSnXWZPB8+6gx95Z65CPPc/2O+e8fy2XZOU/yjE8d/GWzHldzV4cQbORtXyYZhdKubTvWmYgt1mevavFs9ad1Tofea4/r9tLS5dqsUNvHFvOfeSuXENbi3IMz3l8lJ72MPL+NFHLTZSfj85Nu6Ne81/9fV3veIusaxnD3/PoNTlq/Wo8Imdei7tLfz9N+3v0o3SrnGOSa57n4Tt3Is33dDq5597qKz3nuc70VQjT7X1iyuXN8yxhrueWtfL8Hcy1b10XarFC7Z6v68bWV+TnIfc9tdjJ+zvMlo/w7P0jfIenbSuu84zZuoOUzz0y9NTX7J43Hz4q1+g9psz1ld+XZd6caY2jd/gj/Zb9a22uX9Xfx9TiAK8c5TlO+dhcf5ZlKexV3Dwv50U+f77WmedVXl+jfP78Kq+Xa5t/+Iev8vo63+TPf7NXPudrnsdEWnm+Hj17VI9dtvYvPZfj1WSp4bE9Iezvyb350KPvASxqa3ck1q7Jm3Qxv+Nc3Zhtz8pcU15u5d828kvep/1OKt+S1HftDprfwZPsp9P2nrWuq5zPZ1nX/Vp7fZetl/m8/HnWHOudTU2ehPffVVi5sd6xy98k1GRrMeLftrbLlqlE+9579+29I3vHaeXxj8Yueayt5du8cXuOZXt6ZO31MY+K4Xr687xfHNH7fRy5yrIssmTqOXqevPdbq01e1rr3tPDG5K1zq/mcNezlzm2AZ+zyrp7K2muv3+e2fnPalaV74iMZ+bcUtdzz0byBh1y30uej/ZX7WOK9K7Zyuftx++hZY0+O3/Ndba2P2l8z1nPeBXvujNr5qd2932sP3wPrd5i1et+SVs6tVubZY013rnfha5lH/95jL9/rzvfHxPhbCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAHwB9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA+FP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwp/BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+lNNHCwDwcyCEsb8HFGPctI0x3p6naVLbWOWlHHlfHtZ13fw3HyeV9cqjfRdjvJVP01TtW5OvbJOP4e3PqrOuqypzrdySozbOiFwtpmnajFvbl7xfre+yzLP/5XjlmWitn/Vcw5pjCGGnzz3kejTPc7WP3nM22o8lg2efvWdU24MeXcj71M6Dt33Zl2aTNFp9l+eiPL9a/7UxR9amVrfVXlvTI2tSszetNU/7sq5y+9+18fX/WLbFGtuzlqUslo7V6NnPVtvyjLTOaE3+Gpbva9VvfVfzU6P2qPy+JrMnxvGukYdSDm+M1YrvevUmMc9ztV2rf68t7sUTz3rtZd7Xuq6uGLV3/0u/VbPxWnn5nTZ/6+ynZ0vfc9vgmVfeNsbYHReVc7TO+Mj9wpKjVz9repOfibJ9qS89ul3qXQhhWP+OxJa1sVocHS+1L++Z+bksdTkvP51Ot/ZPT08iIvLdd9/Jsizyq1/9SkREfvOb38jr66uIiPz444/y9evXt75e5K/+ahERkWVZRGSVf/2vfyGfP68bW/L8/Czn81lErrrw3Xff3cqTbjw9Pcnz8/Otzvl8vskWQrjVCyHc5M/nkj5reGy/1468leza185Pvjejdxft83WN93VH9K/XPl/r5OOvEsK0uadpY/XkB+xxx+t47NfR+GSa7rFzPt/SNlnxHf+V7gAAIABJREFUdC0fUstPtHx32Tb/XMYtWl+ndZJpSmfvOsf8PJZzK8esyVYr773Deait3U3meZIQJnmAS1DHLOOL3K+n70ofl599y6/m7fN4o3xO+lj+N+/natf3cyhjK2s9P52inM+nrM0kv/jF9/L0dN7YcWudSrRYs9S/MgfbS1q/tF65Ln/58kXCSzDPocj2LOVrUzvXlk+qxYqePNUj7hlxDrKuUa72vm0nc7ks3xclyuVy161pEnl9fZHwqtuT2hhl35pcmq5peuf1Hd4cYXlX0vrLx/Xc86//XSXGe93L5VXia1DrpzG8eOpaeyxi3zUt+5fjyR9r+9aaaytfma9/S/88e1VrV2Mkt+cZpzZ27UxYY9bOn3dcq45Hf45QW0fNl3jLe94baPqafG3pc4/Qe+4flV/w5vctRu9Jj8wtPgLPPDS90XTgSH6nRm8+qsx7tWTx3vlq95PeObZiSmvOrTOs9WPNufce2hOrHTlfR2LCWt3amtd8Zk/u7egZ12KwfHztfpTuAiLXc5meX76+ysvLS9ZmlR9++EG+LJO8vOTnd5KffhSZXiY5nU6bvGh5V8jp8YOPug9reuXxA2VOKm+yruvbO8T2+arlErTPHjlH4ybtrushhFW2OcJ1899a3sf63GMvanhtt5kTEVHPyxF5NDl6dK5s48mL9cjX20euw7X3gbWcTUktxqph2eAQ9nfT02mWGO/vBrS+vD45fVfm53tyPYnSJpR5s7KvHt+fl1l67ZWrt54199qdK/XVk+Nq2eskY8ve1GT0xFA9d6WWXnjfsz+C6S0PXI4fZvusOHt++6/PxtR+t2blYGp21Cu3dt7Sc8pF5XVjjCKhvj+tsbW1KHXe43se9Vu+I8QlbnJ1ItdYMS9b12tsuS71dSl/P9CD14e14vHrvvtiktKW5jF1C+vdg8j1LGi+zcplJd0Z0buE1y/U+tJ01opdan1ZPtEqq+VMa3fhslstZ23JXbv39+YDyvIyjt3PIc0tn4svB9qSZfSePJIL9ZD2IoR9bK/5FSuW96LZVCte1M6lFusu5yiX8xcREZnnVeb5VZ6egpzna7s/+7Pv5OWlvjaaTubvfbzxllbPE2ulblLzfJ7eu13yn1f9bg75LnjzNj14zk9tDM/e1d61Xdtf/7fNT0w33ajFsNbvjDy2u0WZK+n1MdM0SZj2skxyn5cnN5c/1/1Q20fVfpd1NC86TVNX/F/LebTGtuh5RzNydraxS343vY+/hLH41rMeo7+PPtpvq39POy1mGfFzvb57hCP5+71/3f4esPXbLK8so3O/5xb2+mbJ1itPbz7KM15pz4/mOL19tOLpGn3193lH3UbrseRd5+rx5r2PVf1+hBF71zve+Lnfr2stT+ZhJF/a6qOnr6P33Uf1fe+/rpO9aDbIq2O7eCuzF71x81H/MuqPe/r19pXnlHOsf5/R+rcbXjm19R/lkb5Q25sQ4q4vj0/U+n2v2ORPlfFfDgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AP4ICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwo/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FBOHy0AwBFCsP+OzzRNzfbrurrHijGq4+blI+QyLMuifjcyF2tutTmv67oZSxu/lMUjm9VHLss0TVXZajL0yqKN06MLFuX4rXG8863V0erV9qg2fo++lfW8bbRxW3J5+h8dP53l1vlJ57xmczwctRc5IYRNf737Ua65di5F9jJ7zl+uS6Vclt5bdkGTsTaX2tzz8a09L9flqL2wzl9vPyP1+1llXe15H5GnpfuW/o7ocqtOq69cFy0/6NG5vL3X9udY61Duz0h/vf42n3PNp1h2xepf48iZs+Ss1ffIUhtf0+3SPveO66Vlry1yX5bre8t+amNqsnhtnWc8L167ZcVII3vitQNlXa19KZPX9ln7MmIj8vGt8TxlItu4KelbjNGMozxjHo3Bjuz1t8Sy8SGE6r6mNbfscoxR3Zf03cvLi4iIPD09yevr67Xe9CK//OVPm/a//e2v5fPnVWKMmzVN/Z3PZzmfzyIicjqd5OnpafccQpDT6STzPN/ap+cQQpfvGL3/1dvdz63HfiXZtXESLfus6fca9na59xyM6vvVDm1KbnozGmsdOXuWXo/cW0fGvH6u99vaG+v81nQm9W/d+SxZaj6hFsdu5Urnvp3jyGVuYZ3xXJajdx5t/qVsS4gSo2+c2t625qzFAZo/ss5Wkj3X+byelqeY53kj19NTlNPpnv5f11Wens6S/130nhhKk/8ak1z/uyzLbXzrXlGOOU3TJh9a0/0yb+ol3wvNJ8zzLGEOqr6kdpfL5SZH/jwii2XXyv3V7EXu28s2y7KYbdJzWsP1+Vle//l3G9n+8Ld/K2dljcuzezqd9Dzvs8iXL183bf/pn/5Zwsv+Pp3alHeTXFdG8445z5dFXl6+btp//vyTfH29+29PPiJ/ztfekye3/EWua3GOqm5q/Y/kALTxc1r2zHovcsQv1PrJz/poDu4I2p1ZG6vm30fjwposOUf9ZU+eTqN1t9PkK8e07oqec1V+b/lKy65a/qQsr43diot7Y1aL0faPfA/Rsj2PfHejtWvlrBI1GUt/e3++fr8sUeLlUpVD+2x915Oz682Le+6q5Zp5z1XrruLxVSJ7G+HNFR7NIWr1WmOP3LG08kfmP3vOTOuuUWtnrc1RH9N7XkfyCaVdquUrWjy9LvL9/3OPYddV5De/+Y18+cUk//D9D5u6f/5f/FLCy2P+f0wdycVb32l7qtVr2fVrO5GUIyvlKs+49Q69Zt+OxPo9+tNj13LbuSyXwm9s27Vy+K3z1Dqvo36kVmb17T071p2gNUZNn70+vldfrNxXq25epuVfPG3L73ryXd44wLortuTS4oPeOKSGFdOPxE65zL1x7Yg/6F3PWjxmkedW8ncKtXHy8prttr6r7UOuD6VPbcmVv9sZ4Wgc0Nt/OUS+fyPvbt56UfvzUN6By98VePPsCStva8W9Wzuy1Yt5nm99l+fgyJ0sf0dZym9Riys85UdZ11WmeZIQtv3Pc1DKZpmCLUfa83JvSj2oyeLBk9/z3lvmeVZ1qaznfW/Zu/81WnFGy0+2+mxh5a97xtPG9Mjg2b+rrtnfa37lkXfA2rr05gKsMdJnLfdmrWvp+1r9l32VOuZds9acr/axlHn/frYl70gu17Mf1vsyEZHlHGWer78rmedVpuki8zzLabqO9d13n2Se7z7FE1OV+Ttt3NZdTJNd8ynX/4mUvlBbq5ZOX/+7jTmWZZF18d9LrjZ63/8R2zBSt+euWu5rT4yX6vjuMft2ZV2vb6nJu8a8X/89zpKp1naZ4+5dxGW5yOWiz0OLz/KzUL9n5XLo6629L7F0wLPWI7loT/kovb9VtPDUD+uS1dvarXmeh+4/771+ln/UdNo6s+Oxzyq5Xnr7Kunx495+enJzPX1f+9n6jBijTHH8vUDP+NZno5Xqd732rpWL1WR5D59WPvf2U/ZZxpdl7KTpzhR1Oer74IuxLfI4peZLt77ife7XNfms71r2sPeOZ/lqzZbV+n6ULrXo2e/3youM9T22BuXvqFq+O/epj9gTz29zbXn257rHn3vft5Vy9vYbwirTlJftc1Nl//kaP8oP/lxo3S+tskfml2CMx7ylBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiEP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwp/BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+lNNHCwBwlGmabs/rum6eY4wPGyeE/d8MKsus8Uq5ys85+Xxa5HW97aZp2o2Z5LDWMsZofvctKOdmjZ+XW+sxTZP6nTa/2j61xrfaeGW0xrf2IZ9XOW6ul545HdFJq69RnXmkLC05rO+maZJ5nrtkeA9bFELY9HO0z9q5ynUpPVtnRyOtlyaj1oe19mX73nNY2rVavd7z7tWDI/aypa/Wmfe1j/t5v/3fo3Jra1P6y5b9u8qo21SPrdXonZNHd7TPLR/j6cMqezQtPfbEC2Vfub9alqXZ54hd13xiItc1z154+u+14zFGM6466sdyRvuy5qLFut56eZ+je2rZYeu81M5oufZH7KXn+566SZZ8HWtxuOe5XIvcd/fK2rJPnrNQuzfl7VNZbivytjFGtZ2GJ8b26ng+vjVGSY/el/7M6+88d82yfWoTY7yt89evX+Xl5UUul4uIiPzud7+TP/zhD7fvfvjhBxER+fLln+Xf/A+/EhGRy+Uiy3KRf//v/6P89NO1z0+fPonINe777rvvRETkz/7sz27lv/zlL+X7778XEZHn5+dbnefnZ5nnWZ6fn0VE5HQ63WSb5/m2T2Xs6X3WfE+OtlendZVye2t3g1Z/ZR8hBPX85vtTjrmERWLcyrAsi8zrLF48cbcm133s9N10zQlE27Y80r+1+q6Npdl7KweSk+ywth7btqlsf8/2+K5Sfu25x3Zr86rd27x5kmnqy52IyObOXJNdk7nHxmtyWPUfoZcj9+7evazpS54HyOOFEIKZO8r93TwvO/93Pp9FZLtf1l5bZ+f0uu93moIZi3vXJM1Be9Y+azJb/ST/EOXqE+/fr/L164uEl+16arm0/Lv8Od+j5F+XZbmN+fLyIi8vL7fyL1++yOfPn2/f/fjjjyIi8uOPPz40l10jfP+9/Ff/07/ZlP39v/t3En/66UCfQX77L//bTdn/+7//3xJ/etycfvvb38rT05OIiPzFX/yFfPr0SU6n6yuuPI5Iz8+XKJ8/f5GkGtMU5Icffi9fT+Fm5yz91M5bWT9vU9bL+0mfrTglLrHY+2tMsy5rMx9n+T51nA798sTOvXeDcl08Z9zjx2vtvfTmBY+O4fVRls601qUnH9F7T6qh2VDte5Ht3NJzK8+j3SfL/mv3/568dPldLZ9Qe2fjiUveI5au2YZabq43jqrlka24t1av9v3o2dzl+TZ9y+0u2Lp39OxTOffaOfPMqxy7dW577idHsHSpJ2ZryaTp2EgOxvtZwzNe7a5lnStPPqg191G97FkH665wxHaVd57aO4fWPf0ROrJtvm7K8q5CCO53Xe/JSG6qZq+1/q9d5nfLWaZwj3W1fMAR/SzlbT3nn1N8UNubWo5DO6N12etn2SrTxrTGSvI+Mo7I+/LEpb2+Jx9jVJYjfbbWyFrL1vzXda3mvKw8V/lbCWucmv+zylLeX7PlZVn+jiXVqfmDJGtvLi6NlSjHPIJXx3tyT6Pje316Qlt/z3hWDK8912jdZ1plPXnqHllaaLpU3jGtd4l53UfcdfO+dF+yL2vdu+Z53ulVbmc858/j+y3ubZO/33yrrlvvOSyx9mIklj0a33vsYP5dvbu73SnnuMvlvy47OzVNQU4n/zs/Td4yrq4SdP8+uuc9+/fI3FOLnrj3UXfjkXyC13bkjOQWPX0d7UOLP0T2Pq2014lpmiTG+3vxNDXNj6V597yjzdu15tLD6DnZrlt//iSta298WaOnzd2Gpb2a3p73v+2w7lj5ftbyCy3bMXIH3c7V3h+Pr9ja9fu6iNj21eI+3v7u67UXNfvnvQ/23M889zmtXXquvV+K4frObJ0mkdvvM6Ksb797Whu/CUrytShj9buYmYxvQ8W4yLpGyfVmXaPEWF/D0vYlnS/Lns5P4vn/a+7xKdvyPn/R2lNPrK3lbHrH0Rj1fZas1r3LYln2v48o5cpt+7pu84plXS+etTri10dj/d656O3356dmGzy5uyNr0ZsjL9vV1ugWw0x6nNLy70fk1Hxae522OeXee5e1Fq3cjecsWnVHbcSoLmtzWTvuXH7sf9Pj0YWe+bXeJYyusTf/3tpL7xnR+tBizuN7Y495HW9bPs+z67eVvb8Za/17jvem/PeN3jY5ZftvKb/I+65hr45Z9XvlKWO26/uE/buKPFZtyfqoNcnHz/WnpUs9OZGy315C2NubEOq/+agxsnabu4riX/5U+XYZRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF/ggKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCj8ERQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4UPgjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPChnD5aAICjrOu6+TxN0+05hPvf+YkxHhpjWZbbcz5GifZdXlZr+0jKdck/e55b35WU8/LMszZebcxU3lrrvH4qX9dV7bc1P23M3jXprdsqK/cn1/GWnrbks74ry1trUMrS2tNyjKPnZZqmzfieeXn1sizXbEyyQZotKsvyzxZWHa99s+zlNE1uHfSQ7GUPmm6k/Rtp6/kuH+eozWrpcK1/j4xlfeucWONoez9NInn1Sa7rMM+zzOtc7cNzlq1ybV9bdrl8tsYp10KLCXr0Oo1TnrHePWvh0ZN8bMvXWX2UNs6yybX98/rOvGye52rdmpya3K3xY4xd8V4Iwaxf+86i3ANL5rzeSEyi1Sv78vrx3nGP+mXPWe6JPzVCCJs1tvSop7wn/tPI+0l65V1LS09697Kmn56YpocyJrVI8UI+l3Jsq6+aD87X2Oq71L88vrPOaO1c9fjl0uaXclgye2xqXn+appvvW5bl9jzPszw9Pd3W//vvv5fL5SIiIi8vL1ms+ir/4l/8ftPv//a//o/y+cu6kTOEsHl+enq6jX8+n0VE5Hw+b8Y/n8+bNqfT6dYmL8/J55/PsecsWeUnuWRxgtxklpOeMmvZ8VSnpQtabH/r+zRl31/L5nmWOe7XoZdST0p515Ce7bjqCL0xhceneWxbDS0W26+HSFqTeQ4Slvv+abF2Xta66+X1a3HeRq5KTGfZcUsnr+2THdzeEcr2vfeQEm1fPHdhb7/lvLxrk9c94utr++KJyfPcTilP+Z12V9nLvmzu59M0yeVykdfXvR0Q2e5Fbb/3n9/ukfPs0oXaPln70Ju3KMtTjBhPUUKYZF3v6386zRJi2Mmh7YHIPueR9mBZlptP+7u/+zv58uXLrd3f/M3fqHL+KfDp0yf51a9+JSLXffj06ZN8+vTp9v3z87OIyCY+OJ1Ot7UMIdzigFzHUgyS597KPNfzJcr5/OU21jSF63inbV2N3txOLbdXG+Oud9M2RzOYq0plvX67FoeOyJAYyRH2osXtvbb8UXGOd4yROCWn1b4n1/CovRaRzfnMP9fq1r4r9bIWP6dnS8aRPE/Z/gi1tfPGICN6qsldyx/35pPKONZzh05j5f/tGbO3nhbD5PH9NMlbLHBync1H54W1vr33TBHdR7Vyvh5d88T63vPX6qdV74iNfoR995xfq8zz3BqjJwau0RrDc/5b9/QRGbR7zUg/2vcj9k7e3pNd/7dvN3q+vHdpj56MxDo9XOcpInLfk2VZJMTtfVHDE+/U1sybi839W54z9K5NHmvovjK/L4hM03p7h1p277kraPVbbUo9tc6PR+escWvtj9il946tPbbIysF4qOXparkerSzpl+c9R22csn/Nbp9OJ4mxHbNasXaLkffsNTw5uxDC5k6Zx/RlfN8br1v77LWvpc5r61LKVNv7lp/w6uWRHG2rvceufAvKdSzXefM56DnC/H1V37hpr1Ofq0zTPW/V6wtG/blXd333m82nQzFGbx6rR3ct/a/Ze20u5Vkqc4l5vWseuXhXGWaZpjwmestXhvr7wuvaiqT3MNfyKDFexxzJK3Z/F0RC2JbN8yxhfp//H6qanrf8alk2cv9orUlPnyM5ubKdpZeeeKAms+XH77F8Waafh9b4Naw11H7TME1T1eZOU/13cAnrtzbeHMaj7lS18Vo5lE2sGPfncprufkrTk7T3rTiydsfO1yJ/XpZl068Ww6ay+BTl69dXERE5zatcLhd5eYmyLtf5/PjjT3K57P1jeX+z4qhpmsz4MJfJG8eV9zbPnbaFbsPu3/XoWPIVGjHG6nn13ClSe+9vucrxPXj0al3v/w4nxnh7XpZFLpfL7XdLX6cXWf5hEjmdZP3NfykxRvnPf/f3cvmyyt//238r/z97b/djS44c+AUzz6mqe7unp6dlaXaw9kowIMAwpH1bPdgvBux/YQH/zfsiwA8y9sUGDO9CuxrNR0/fe+vjJNMPWTyHyWSQQWbWrfHo9wMGfTKTH0EyGIyIzFszf/kif/jDH0xyWfnwi4/yq3/zb0RkeW95f3cn/+//8VnO01k+fPggD9MsP/54uc7lOI7yz//8G3k6Ddd35CJbvc69u3RuGXusb88vz/L8vD2T03f3OXJnhXNO/ORlnr1I9N2P917E9/te8bpq9d4qNtB8Cssc5dqISePOHNp9bczhVu0crsm699++7UGTseffvmy+Bx2Dft5Y/GO9jfQMKMlYouX8yJGLHSx93n6vn3nvxXm7LLV8ouVe7vlir7ff7YaY5Sha5bfe1/IsNbvUmyfT53qb+7ae1fO8fBO2yJJvYytj/f1EWiWNhcM5Ecpp/lmJUs4/d6/3rNibR3mLtlvsedhPe/vSfPa95PaRxd5e45dMHi5HKnPPdxh7x33Et6oWtJgm9+9JtfJH97/yMcaxq88985eewXFbufcpuXo5OdLnWg5C239xn97nvjmeD1+fRZ68TGt5/G6/7k+Fr7NzAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABT4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwrvBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBdOb23AAB78N6LiMg8zyIi4pxrqm+tFz9v7aPU71HlWuqn96xjs8gSl5nnuXld4nLzPG+u03Jpu1o/Wju5a4tsWv+taH0Hvc6Vi+fV0lYNbQzp/Nf6sc7rW+0lrf8wjpz+aPL26ISIyDiO1/phDdO1jImfDUP+b5LV5ijIGtcv9ZnOhTZ/tf6067fAujaW/V9qu4Uwj3HbuTXUbE/JDlvu59or2blY5jKLfZmmSdzkim2l1zW7WLLvVjTbV9LLPXYmbmcYho1dscpYK1NbOystuq6ta0lPLLYj1gUrJVtYO0tieZ1zVztcqhv3V7PRLevRc46I3MYS61XLHFrO6tIZaW07ljO+l+s/rKM2jmmaNs8tvk5OvprNKbVj9cN6SPu3+D9WH8vyLIwhdzZZ5jZeQ82mxjpb2qtaPJDWt8y7No8950qqP1adO5LcXuw9B9K4WGTZa+Haey8vLy/X39M0yefPn6/lLpeLiIj8/ve/v/4ehhf5zW+eX9v1Ms8i/9f//Ul+/PFZvPfX+bi7u7vaX+ecfPfdd9f7QZd+9rOfyd3d3bXMx48f5Xw+X6+DXYjt+DiOKx3WdKlnXVI7NUY2P0zh5XKRS7SFetYmp9fpvsztjdt/17rhvRfn8+VT0nbjfnO2IadDLbT4IbmyR+2vWqxs8S2spDYutSlajFdqT5M51qV4X8fUdCtle/bGz9bnce4sSG1vaW/u8XF76qbrmco2nadkvuZsTJPandZ4NOeD1fTROafG9/Gz2MansUrqX7fEm5peee9Xbc2zF+/D/Nzqeu+yelHSx54YQmvToi/+5JPz5fXMkkFdn1wOIEdc54cfflhd/93f/V1TW1rbtdheG0O6tv7uTn7/t3+zuvc///t/L8Pzc1UWzb75Oy+//bc/re79L//7/yTDc9ke9uRELG055+TuZZL7+8+rMh8/fpTTeUyrqu3UcqRhPkrrWhuLG50Mw3ovjONJxlP9LGnRy1I9S/68lLO2Uoohc1hi89zcx35lru/Y9uTqa756T7xoya31xINWfYvnd6/PZa1f88lEbrmBWr23QosvauUDPTFooMVP1PJmcdxf0suj/LDaWZ7ry6K/R8fZpf5jW3Z7tvx3miaZp6kYq/Tk+1rLHpXLruVzWtuzkMZHFjuQyqaVK9lIy9h6xmK5r/mxe32Yt7SF6dlnWaecjcnlb0vnqkWmmi6UfHWtzVqfGiFGTqcnHvceH7YnF1iaC81OWXI1OT3I+V/WeLbWb4l0T7XOcUmfrfqj2/xYLlscW4sjNJlzcm1zOPvyyW9x/mrxZ8neWGQqzWHLPLTYipz+a/Ut/c7zrL6/7H0fNY72XEpqt2p99sQTVl+xVC6eo96cSWsdy3lh8S/icpa9L7L180N8lOby4vUr2Xurjc5da35IyzpY7Zmlbktb1dhqCPXybebyHGWdnZP/ru1ymsvV5C/p1VvZtrTM9tyeRWTfu3eLHNoZ15vzLK1XTs/neV7l8kp9xD5RaGpb57Vv0f2YRbYg300fnbvt91weS6PHRt7Gv31mWdOjYpTSGuXu1fZ4a1xgiYFKfpdGLc/XspdretnSbq3P1txYTZ5cH6mtqdsSfYzWeKEkT+naSi1WasH76fVd263+5fIiL+Krc52za3HZkn+gyavZotxc+btZXu4+iYiTcfQyjrOczyc5D0vZh4d7eX6uvztJ5dH8oGu/iQ9Vyk1ofYR20rW7XC7iX/LfWpXk95OXeQ5yRT53g6ufxuHzvOhHJoW+oien0BqDWG1PGgfG35/EvlLudyh/rTPMsmyNWeKZn6ZpqXfAd30pT0+P8vj4KCJy/e8//p//j/jPXh4eHuTj7OS/uP9G7u/vRUTkdDrJf/7PP8mXwcnDw4OcTqfr/dPptDrj4++TnHNyfzfL8/PzyjZ++fIoz8/uWiauk/sOU4vb4hh8mWORnO9qzSG15Jq0Oi11reyNq9M9bnlnE76XSLHElbUYce+3qqXvS1on7jkXAAAgAElEQVTra2y+NWjMLWzOmMGJc0NSxvZuXGRfPizdS5pP1OKX1dpal9vWq+lIfL61jt2io9FVLEFTPxZqsltyMCV6bFTrN8vp/XjNc3n15VvPbVupf5R+t3lrpqyHcXda3PoW7I1NjlxTSxvaHovPzV564qpazlHzid9ibUsxcponC2j+ee3bHs12HvFvNmqk8rf2af23mhas/47JKk+tj6OZ5zn7rY+IbR9Y/A7rfH8N3XlrnHubd3Z/qrR9kQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwMPwRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhX+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8K7wR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgXTm9twAAR+Cc+6r1rMzzvKt+kE9rp9S+tY5FRss85dqJ6+WeW+fHOdcsQ884c/3W+rHqUK5/733xWpMp1+cw6H/TqkfPrfO1p9ze/WFpIx27RZeccxtdapW/tB4xYc0ta38Ue+yeVje932OzNN5q787zvOvsKNUN/Wiy5+pbdOwImx/fn2eR2+M5upfX+dK8lsaak6NnLK1ltHLxfivJHtNi6+Mx184Lqy6l91rWx0qPnc7ZS40eO6fNWdxfen2kPW2Z03guevXzSD+mpFututK692trYDmHaz5wLEPLfYsswzB02dS4zb1nl2Y7rO22+iFa+ZIeHrnXjohPenQlN8/x+rXEIJZ1suz5tEx6ZuWepesyTdP1+nK5XP8byj09Pcnnz5+vZR4fH+U3v/nNta3n5+fl/pffyfPzz17bXfb7H/7wB3l8XMb78eNHEVnP0/fffy+n05JmOp1O8vOf/1xEFh0bx1FERD5+/LjSubu7u9X8nc/na7sBbS3CvdC2hXTelzm7XOdTO8dLtOwHa1nvfSJrXiaLvXDOmfsNcx1Pd9xlaU9otqTUt9Wu1gj70HLGtJLOx+2ey+peOt7SeWn1e9P9ILLM91E5rWHYxkbDMFzXNLaLmlwae/3+2v639LG1n+H6dn8cRxl9Xodbc3OpPYnL1WxMWibeV7HOaHYvbfN8mjZl7+/uxbn1WC3xRXx9kkHGcd3GOI7XM8BCGFtOv1OsvkJLXm01ntNZxnm7/qU52ENrO9aYK/VjSv6PP5/l8/lu9eybjx9FDGdqau/DeKazlz+cnlbPHh4+bHSlRM0upGusyRI4y7ApM45jk++Q6yf0dVjOdXCbfWmNi4Lvp82FtsdKsqf6k/OVS/TEMN77jc2zyCpij39qe0mzIdYx185Lay65pte5vltkTcu2xLA9/nEYT7rGJd+xJweSkrafttuTs9zL1V5OU5ffGsd64flbvlc46tzbk6M5sq+1XQx93XLkLTFgbV9rdlS7rt0PWPW11nfujLBgyRVr/R7ZT2vZeL2Oyovm+n6LeDTXT0ud0phL9625hhyWc6xlr+2NO+1ltOdr/yGXw7POs7b3Upui+Sy1Pd8bv6T9hzyINmUtZ4/mR+d+7z2T03nQ1sW2r+fX+stvXT/a8x49tigm3RdHnV17z+vSmajV68mpa/V6z1ZLn/HeT33anjZjmSyxaZr/155N0yTTZN831jmL3yNpecpS/dzeTOnRyzRmrulmKa9Z6l+Lm6zzp+2BVI/ia4uvWbpn9fUs7ZTWSzujar5Drw70+ER+8jLPYd/U9bXuzzqZZ5HwaBGpnudt8ZNbbXxPrJF/n+JW7wRSava2h9z6av3k9khu7EfIeZ2f0ckwuJVPtLQbZF3uee9FMu7R2n746PpaYjOmdDz5tsp6odm95b5+xqX1Axbfr3Y27snBWHW8xbaEZzm5en3qXLs5GXp8VUuuID/Wrb3OyaWtcSmfUJMn7SPIaD3DRBa9St85ta7zXix+Zyn/a9uvs8RnlOX9RanPmh9R29PW+Hrp5mYTw/3YNl4uaz8ylTH9nVLTtz150VwOWjsHa3Yh987esl+2+lIVu1g/J1uuTpyvt1DKYcRxksgtf63ZmNRehd8hX34tO4gMzi2HphNxg5NhdHJ3fyfffPONzK/fHz0+PoqIXL9xeiseHx9lECdf5Is8PS3vQR8eHuS3v/XyZRD58OGDfPjwQUSWPXx3d3e1X/G3UvHcxbGbc06eHh/l6fmmN3Gd+J26Fk+m/pFzTrybk3cKy1wNz9t39IGgz3E71vgileVrodnBntg9Jc4BDMOQffc1z7fvlWM7GMtXs63avmx9Xyhy04sjzkfNTpT+7VP6jZFG7gz03sswt/teNWqxaIuvnbapyVLOM8QxwVaGUh/Wc7Pmk+jjjO9vv6spyVDqw9q/xUcN1Pa41n/r3tD0Ir1/889sPkGufvjv2m/K25G8DubP2tvlsufiMus4sS/uCGPfE4+Xcnt70eLh+Hn8X5F63FZq59ZnufxR47XoRqscaVxWIr9Xt7Hge6PlrEtlYko2ae9aWs6hdI99zX97mpMlJqcjJfmOlt2qXz0xKfzxsd/DBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgBfwQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3hX+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8K6f3FgBgD8Ow/js+3vvmNuZ5Ll6LiDjnitcacblcuxZ5cvcsbVlk7ml3nmfzWI6i1J+2Fj1z39LvnjKajsX6bNWxo6jJaJnn3P3QjlZO0/ej9liPjufasNiWeP1C+dRGpYzj2CyPZW56xymytaOWOUzvaeMuya7J3FOnJGP631w/4Xfat1a3hFVGy7xa+im1G5dx0yTee/H+pt/T5GUSkaenZ5ku06qddC7O53Pxec8YWsr3nsuhbOintEdzc5frq7bPQ32tPa1P51xWLy19HUWrjdWI7cowDJtrjZY+c3a6x1/ag2Y7NDSfKnd21tq0ntsttNi80p5M61vO1L3yW8+O3Fxb/c6ST5z6QT1yWvq3yB37JNrc98RQKXttT895kZu/lv0Xr5PlHLX6N9q6aP5xWibXZ2mNnHPX5/M8X+tM03RtaxxHeX5+FhGRy+Uid3d38vj4KCIinz9/loeHBxER+fTpk/z4448iIvLwMF7bfXpa6v700yf59Oki4zjKTz/9JCIip9NJfvjhBxER+fWvfy2n05Jm+ou/+Av53e9+d+3/+++/v/bnnJNvvvnmte2n61ju7+/l5eXleh3aiuc09p/DOk7TzW+xnMsxwzCIc4NZd/bul1Q+TV/mob7Hj4h1cix7Qn+mEa+DhdTXseZ3cvuq5J/1rllsF0KXqZr0+B9xHe28sK5t65qXffZtn2GP1eyt1Tc/8qwo+dY1v3tZg/p5b/WF0r0a7FQul3C5XDb1Y3ud6zfUidtK28m165yTu7v5av/Dvnh8epTn5+FqY2NSG9tqU+PzNc1xtcZwpdhIIzemlOnsZRjiXIyu5zEW+eMxa75aTl9j3yDWv5yNK8mZ+hHFsqfTZn3H00nGHTH8PGztpGVurTKLlNc4t0ajFxmGbT5jPi86kO7RPf5lTK/dznUVz2Hu3MntU4sdrp01rbnQUr8WFp8s7/NZOMIPqtm8Us60FBta1qh17qxnYq3f3v41WXJzFPuI8e+WvZ+W0+K5mNBXr78UbOpbvKc5Mmdjfb43R7ZHd1rO2L17uf1dghPnlrOi9R2WVZaW9W71P3vXpdfmaO9LjuZI+Y+UsWQT9tjxludHxYBpWz25Ua0tzf7EvmrvOWgZf4u/IyLi/ZTcX+Lj5dY6PxKfOek7jlzbqX8et5Ob85o/33pexm231Fv+61a+6TAMV5/GGidq8x/fT3NJFv+ytg9zNtL6Hu/W1rzxzedIH3L+xxHrs8dHLO0xS/974569+zqNh60c6atZbJTVX7DkNVM9suyR8HyaZrlcLquyz88v8vy8tTup/Lk9Esfa0zRl90wtRsx965TqmyXPWELzRSxrpNnkuJ33omQvS/OVi49a+tN8z569mGu/xXfMyd+Tm9y04WYR6fct8+d7+rvtmw4thu3FGvvl1qMmRk8cqa1l/Lx0Xll0WfOvSvkJazvhvnNO5nEW78O7k1tuLlQLolpsW/weMtwehvGa/0ptVM2Wl0ifX33VIf/MkreyxMV7/YqvgWW/5Gyqxb+27r1Ar33L2ejtWX+9uvZlOU9SrLaq9wzS5I59bus73tweqa3bXltszQ1rLGNO9c2Jc9t9mfZVsgm1ddXi11xfgdx7lNlN13NwPaab3p1Ow+Z+TrbW/WD5Lrt2PvmT37w70ux5rn58b169c77Nv+VMvM3XLMPgVmdz0IUe/dL61eLknu/F03bnOf+OfBzH1ZoFGbz3VxnO57O8vLzI/f29iIiczl6eTl5kHGUeR3HzLOPdnVy8yC9+8QuRDx/k8fFRPn/+fO3vxx9/XH179FYEmV9eXuRymeUyLL9D7PbNN9/IPM/X757u7u5W4w+xVzz+MIZ5XuYyfT+WW+u4zDiO+T02+I0unk4nGXzfO6tafKKx991EK7ncXbhf6ye1KyU7k4vXl+8+/Obe9NpMzS+o2cPaN1mt7zlrWPJ0vf6Cln8sxaNaDrWGtezRbVpjzTiW2WPze2LN1r23t49a3bhsfKZY67TKY61v72NO/rudM80nuup+Jm4r+yhbWXV5a+O46WGLLoY92WvLc/pfi3vi/iw6mcuBxOO0xfX5/nPX67jsVib3u9Rn7vpro/17n/K/S8jHCH/s9L6XsOpg7f6R74sCtzVr+667Ru0dhsh+3bW+g+vJ2eTmvXVNe9i+E1r3V8qZwsK+twUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO+GPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC7wh9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHfl9N4CAByB975aZp5n032tXGsZ51y1jLXdtK1huP39IossGmm7Fpnnec72WZJDq9Mqn3bPIkfPevRSG6tlXBZ5U70P/e7RCY1cmz0y19rYw5F7Lm13HMdiHe991g6Fe/Ge3Uvcvya/xSZaKc2rZgumaaq2Y1mv3jUt7bEWG1+b69a9FmSo2YCwfvE9q11J286NYZ5nGYZBnHPi3G2+hsHJPAxyPp/k5HQXcalXX09Lmdq4es5uTW/i+6V5spS3ytJSJkfrHujtx0LJxu1pZ4+9im1rzc4eaRfjPq3tttiQ2rrnbINFp1tp2bPp/dK8WHwKSx3v/ep+6LNkuy1znrNxsR9QsuUpqV722AuNljm3PA8c4bP07Ld4jlvbaVnzlr0R9++c2/g3Fr3tiS21cae+Qs1PuFwuq+vHx8dV2X/6p38SEZGnp6drmb//+7+//v74cZCffvrXqzY+f/4kX75s5fvd7353/f3dd9+JiMjz8/P13p/92Z/J6XTzLT58+LC6Pp/PIiKrOdZsbHrmp/u3x/6NfpJ5Ts+nSabp+Bgy5ydnyw2TeF+2WW9h+2u8ZR/p3OyxkSX70ReDzq/tLlfTNIkkS2nNp3zN3ESJra+79d1rfr91LDl/5agcUU2OrB3ZHHXrsWq5lbgt7bws5e+89yvbF9ov5fjmeb7ayFiG9OzL2ZZ5nuXuzsv5/Ly6v7Q3VmO43PrnudmkNH8SSOfriLzm0TnDPbFX+J3qW6nN2Jbn9lWPTFqfOb1a7mn3be0qEmzqlfzL1C7W8jGW2D8uu8QMIvFYlxxeXn+s83cE2/1Wl6fHV7fOWboOub2stVu6V+KoXG6691Lbm6NnLtM6lnglraONOdb91ng6R66fYRia121vLsWqc9p6WGKjWs6ux3epcaQfs7dOSwxs0b9WOUpzsed9Y63OXnI2t2YXLO9lrO8V9tAb91pkqflXPWdiKm/ve+lavxZd7PEVa33n3jvV9loOi73NxSw5Wb42Vr1I98XXiA+tOpqy2CaRtHq8BjVfydJP7pkWkx0RN+X0NCvXEN+/xfM9MXkLJV2yxgSWc6Vkh1I7HvRgCZ9mmeelrPdepLBte9+jto4lLZ/+rq2Z1V712P+W2K3U7t490Ht2adfaOZze02KSVN8suZkc57Pf+C7n80nmeSjWt+QaevZ0ahMt+m7pp0XW2trmYq3e87THP+7Rq1ofNZ/Tupat9r1FR/b4wi3zrJUN38S81rqWteYEtnmZWbQ8epDLcg7tjVN73j3mr+N7rvnsseTRas8t53KpvmXPWcrkcnB+9DIM63cn4zi+3rv5ipa9ksv9xbJZY0htvkx2d3Ti3DZPn+aLUj3Q1qx0pr1VbNLj61mflfrQ/BprrNlKaYw1fV7+m7dT2rh68kE98Virf9hzjqU2duvf789p5/qxvPOy9TNfdbAUJ1qoyaG9V4yJv19Nn02Dv37L4NxtfkMx771cLuVvPUrXJV85vr/Y5WH1XKT+PeG639v+adnPYX7W365F85uJGcvtr8+KYKNLWOLo0h5P56vnbG+RK9Wl2D+P7z8PL/Ljd59lHkd5ur+XeZ7l7mc/F/fxJHd/9Zfinp5XdZ+enlbfR3369Gk1/s+fP19/h3ovLy/X8s45GT6O8vH7n4uIyDgMMp5O8sP/+K3Io8jd3Z08TLP8d/98k/F0Osnf/Pc/l8dxmbv7+3sRuc1liJFSfRURubvz8s03n1Zz9PPvfybPz0OT7c3px8pejFu/N6dXvf69NS/aqsclSn5/oBT3aXGTJT6wfAcQn8NxDrE1j6iRs3c1mbT6gRbfs1amdPZo8Uj8Xdw0XcT5+j9t7Y0ze995Hvlduh+9xN8ntvj3Fvbm0dbc/BJLe6V5sPhKpff9gRYbafE9rXmH2pm6LtcWE6fP0m/iRV6/E/Zbmbdrs43rc7G/Tt0nKvkVvXq3N+6w2qq0WBwnWWxhyb9ptZctOc1WLPFki42Jyx7174g0udL+jmozd12jJsdNb7b95MZT0uU9ed0a+e/vw3/1/E8tl/9WeZ+ePixr2ypvzi4s3xq2t1fKWYSfb5Vf+lPkuH+VDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANABfwQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3hX+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8K/wRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhXTu8tAMAevPfmss65zb15njf3tXKtbefupXjvV21r/cRt1eTV2qiNoQXLeOP+emW0zGFaJ9e2pR1rW5Z2w32tfk5va+uaq3PkmtboWQuRrdzzPL+Z3CW9DH1a9ntKyzpq5MoOw1Cdi5Y+0rZTavuwpy+LLejdf7l7rXvU2k9vW9axpaRz3TtnMZbzI743DIMMg5NhcNcybhhkGAY5nU5ySlzEI2Q6au/XdKWln9q507vGrTJZ7KcFq7xxOet85do+ndpDidoe3Gtbj5DHOo97/dBaPy32KvW79uhurf8WWfZytU+Z8eTOuhpf2298SxtTakvTt1J/QdYjzl7L2qT7J1x/Tf82oK1Tzx494uzLzV/NdxjHMVsn7v98Pq/a+vDhg4iI3N3dXcv81V/9lTw9PS3PH5wMw/haZ1Ll/f777+X+/v56/cMPP4iIyM9+9rPrvW+//VYeHh6u13d3d6szJMjfEvfmaPGH/liw6cgs87ysnfP6Xo7v5+KwWn/BTgTduTVXti8WrLFiKk+NI+2qhdB8rh+LX9B7tvbQ6nukj5ZYoWzPjzw7LFjWO72XjiHkAdf+cLm/IH9pPiw5G+06jRvitrQ6cRnvvUzT1k5778W527NQ9/HxUZ6f12PJnX0hbgwMr/GiiMhwmcT7kGe59TfPQ1aW3L2Y3DnW4+tZWauJW43NVr+sZyJ1m/CeOT3nnMzDEOn47X7NjtbybDl64uG43SP8fmu5Uj77a8jz1u2+5fsBS56xdtbHc6vtIcsYLGfyW+UTUlL7tze21fTScvbWbLHI1h4PK1th058en8gi29fCMs4en9NydrSgzXOPf7zXh/4a7yRj9srbW7+Wd0nfN1vnpXb21Na0ZTxf8x3InjZ634O30hNfxD6Q9r6zlsPJ3bPYhJ616Im7y3HjMe9L0usj3/XFmOZ1yn0rMqzend3u9+fdLXlZ6/1Su3vnOc4LLdfVKoe9y6r5k7FPos1n6su06tY6Nnbi3JIfWy7d6nlr7rg1LrLaqFbd6vlWY2+eR/P10j1a0ouj9l6vLd1z9gzDoH4rEtPyvm0Y8meJNZcX0N6FxO1oZSx+Tzgvc1hsR83/irHou+X83etnaHa5JU/U80651maOo3L9e/2LWvuWPlU9m7zMc5j72zkS1qPV187Z3Xjv7dWfnnzWnm89erDs/Ra+Ro60J54I9iPOm97+G34vz4ZhkGEsf/938y3W93K5sJa1snx/ei37uh9iMadpknlqW4Mjcmo5WuMm6/uWUnu5c8bin7TS65Pmri22PRRPi7bGej22uxaDauddvN/iez2+XOl9Q08cYqH/u5HtuJd7x9tGy7cC2vPYp1r/92Yrw/nq/TLHl8t0/V3aixb/LJezjuu36sURud3VvYxvPo6jDFPdN0/ncw8WXz+dL8sZebQ+xu3l3g+LiJzuTvLl/CLzOMrltczDw7246Szf//BnMjw/r8qnMacW98Z2ZTP2+1l++99+Wj374W+/leH1nfr9ZZJf/MN/WdX58z//c3k65b91Ks3l3Z2XYfiyHvPpJN7fYkfL9/+5tVzdG5dvw6Mai26OX/f/P/1IHdJyBLHtbsk1WOrX7q/LxDp2699qd9Kz8Ujf23IuvdW7lzint763npvwjWJr+1a5whr2+FolHzO2ZZYcyBF54pzOanps9W3W8c/6mWXu0z1Seo+Za087E7T+j8h5tOaMau1fhinS91u53B7Q2oz9+fR+nXlzBm797LXPts57Lv+dpklEiROPylmV6re2Z89L2d737M2FB784t2/DvJfkrecW2uh5zxRTsyEt55y1/72+e1yv9/1CqV4uRxQ/a+3rqJydvb9bv3HfJTscc1TM/Jb0vG+Lib+TCv89nUaZ5/Ggb83S6/J7DLjxdSMZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAT+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8K/wRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhXTu8tAMB74pyTeZ5X99JrERHv/aZeXDZcl8i1q8lUu1fqLzxLZc71b5WpJI9l/rT7tXnrke/ItajV9d6r44rvD8P6702N49jcV2hjj+xHM89zURdEbPrcW8cyF+k+qF0fTbrWFv18K5nmeW5uu3d/W9YmLdOjKz2k9jvXV3jWMy7NXlv6K/XTI0tOntu9+H+v96O2e8+M0pr12C9rnxYb0XM+7B3znn4s+zU9X6xzbLHX1nGV+tT0r9S/dkb2zNEf05nZg2Y/SmW166P6P1Lf4/s1uxP3G8tlkeeIMpYzao+vnRtfrY1WG6fNcYtsWj9H+le1caR2L0fcv9ZeOhc5mY84E0ryxnvB0n/pefgdtzPPs1wul+v16bSkf56enkRE5Be/+IWIiHz58uVa5q//+q/lp59+EhGR+3uRX/1quT9NSzv/9m//TB6f1nI45+Tjx4/X6zDmb7755jofwzDIw8PDtbxz7ipPzDAMxf0Q19fKtNipUPbmG339c0M7F5d7a/s7DIMMw2Cyy5a9kiPY1nWzi446H8/X/vOhZ+1q+1LL0eR87zaZt+1pc1yyL8451Ub2xLclNPk0v3ndvxPvX9e9wyfU5t8SK5TW+Ajfbqvfkrmux3SW+DrXTm6e0nGla5frZ5qm6+9xHOV8Pm/KzPMsd2cv5/Pj9do5J99+86083w2mvaA9O81OhiGs6yLv6XQSP45Z3XvLeL/PdqyfLzZOr9Pr0+3N8WqketSTg8nlNC3+4hF71OJjpXY7tiOavcnlwtPztNRPTU7teW/OMh7XIuv2eav/2ZN/L8lXasOqyy35r1I+/Qh68kRp/dazqGdexnE0+Vm9ulcjbSM+c/ZQWlNrDuytcttaziF33csR89qSZzua0v55ixz+e9CjL6W9+hZ2bC9H5PX2tre3Tw3N99rbdk33LfGVFvO3nktHxN05OXL3tD2+5/2D1YYfqVfaHi2PI+Rftusb8jK59nr8Csu9I/XaMgepDx2Kee9FKkvYMgcWG5v6RJZ+rDmXuq9/i5fmOY4hy/vWkrNsiUF6z3jLd0IpLbmBVv/I+m3MW50re/2lkr0vXVuI6+T09+XlZXU9TZPM8yzTZZaXl5dV/c+fPsvTc952BbScZpqrT+vE/82VyT1P6XmHZj0r4zUundWW90UWfbGOpcWPsubTau2W6lnLt549Fjl79ou2drnckPpeYHTX3GUuP5T6ZKnOWPJp3nvx3p77LOmYde5LMWw/synv0fLOoEWXavvlLfTattfX8i12eG2vp2mSedrqe5q3TPN/rbpTe5b2n6+7fj8S+7dvmVvoyY/l7lltR8++KOlizuaV7ODRPk2vLxdu9eyhXL+WuCd9j13Sr639XT8v7dvSnJdindJ1qW7ad8+a5Hyqwafl2t+3lPrMtVWKzVv8XjfO4twgzs0yDItujOMo4+s79fP5JPO89Smtch+5r7z3K19LO+/i8Wu+R07Xgn1tpeantr6P6Nnr6bgsa1FrK3fdauNv5+bt7JznWZwSk9diTn3dov7Ps4xj7JMv3zQNfrk3zttYahhGte/SeTG47XqdxpP4Uz2f3FJnj5kAACAASURBVLLGi+7Gd/L+Xk7HazavJ4/Zmi/v/fZQq1fq3xqP1XKesa8Yil4uF7m4vN6lfe/1x1ryr2+Vc7SUc87JPOTj4vU+bJNDo+YD7Mll19oJbHPJ6zOytiYW30fTcfPei95bxrbXIk/unmVfWXI2Ma1no9aG5X6tXLCPq7hvyH+DE/TJYjtTv8K5ddy2anuQqGxJ3q1M4X+5PMc0XWS+LP1tz77b+xEtB2dZI2vO6Ig45nYvPw8prfYxF0vGPkytuZ64tdUfqNXR1sC6R9dzkJ/nXn++RR9acgg1O2aX16ZXsTypf2W1tXtiojQnFcsa+tf+zfwRWMZ4ZH+9bd1snp7/TP+NQyCXM9blS6/78jb/Evnj+wIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/kXBH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAd4U/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvCn8EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN6V03sLAHAk8zwf1pZz7vp7GNZ/LyjtJ1xr9639WMt477PlLP0fMUelNmJZ43K5cVrna6/MWn3L3JdwzqltpPctfR21fpa5tvZnadtSJ7St6Uf6O+3nKPlTGcZxrJbR2rbORVzXe5/dv9pcxP20zL1mI1op6XFtf6fM87ypU1uznC5oclraKl1bSM+CGumYrf3n5rlkb6zt1nHi3DJOy1hb5bHqcI+d0c7h2n7r7a/UXs7epf3tPTt69nhON+J20v2m7b8Wna7po8XWlhiGoTgXof2e8+GI/rU6OdJ2SudCQDtf91LTQ6sOtJ7duTHU9ot2Rrae0ZZzpFZfk7GHPXN8NKGPmq73yNJzrl0ul+Z+LH206l+tvfR37l5qg/cQbItz7tru+Xy+yj9Nk9zf31/7enp6kvP5LCIiT09P8unTp2tbj4+PIiLy+9//KJ8+fSMiIpfLi3z58ij/8T/+o3z+4mWe59VafPjwQUREfvGLX1z7fHh4kF/+8pdX+Z6enq5lhmG49vPw8HCtc7lc5HQ6XccyTZOIrH320nlVWi/N71/qDa92IL5nW3/Nrqcy5ta7tKcXP3L1VLz3Mszl3IQmS5+OrXMi6Vhz54Pl7C/NqzY3pbKWZ3v2svc+aW+WafIik72d2CfR9NVi41vjEU2e+r1UF9v0xxrH5frP9RdsQYnSHk+ZBv+6L2/9XC4XmS/DRp4SPTmBFh0P5Nbd6lM69xL9vuleuhctPlnMOI5Zm6DZm73nXIuvV5N/kVMkJ5LFB0/btNi03D0tVvka/t1rR9s5MO737Xy+jmUQSacjp2vpdc22Wdd/GIaNLg/DLMt51mbXtD5zdXvXLK+rtnK1Nq1zZo3hjtTLvf51wBqLl/yXuA3v/bWs1nYpB9Ca8xTJn125NdTGH48tliu9H8cKNXK6E+r3+FdW3QlzUSufsxelfIp2P12jI3JaLfd691TPO4rWvIU2x3vO+LRuT3zSk0NstTcttrN1Lo7M25V85555yckW60F67ltly93L6cLXpqRLe/zYnhhiGAaz3cj1szduTv20FrveEuPkzrZSv9oZ2Dr2XDl9jbfvlbxP9VX3BS12zZrvXfrazkHOj96D5XyKL+Oxa/GA1q6VlnNuT9yitbNqc0pj6+svccl7VMt+6MkftL7z0HQzrbvX9r7Vu5c0f3ZEuVje+Lp1DnrO/pSSjxVIc+AiIvf396sc5TiO4r2X03mWYXhalR/GUcZxnZup7YO4z/BM8wNy8lty4/G9VMdzOVNLW70clfMrnS+W8671/D+KktwtPlFYyz0yl/Jqtf5b8jK3c95JeN9h/Ram1rbIcj602pW9ccNen7wkg+W80Mab5oatMZxVD3P7rKQ/PbFSTBhLqJafDlseLsxN7E+IrOMBq5/X62NYsPpdtT57bZx2vh+Zl0z76/Epc79z17X7JXrmYK3722elWE4jN8ZaTK/JXtNrTW5LDtji96c2ytJWKouWI82VLZWL7y/jS8s5dT9oWN6j5vrPUdvDwQdwbn6Nk226r8V71n1Y0r2uPNYgIqLLWPpt3dc5214bc206Sn23xmq5MfbmiWpoc6HaztGJc8tLx1BkKetW+zkei8VexLqSyu4nf/12IKzz5XKR4fX7gXGaVt8WaHmilFwMO8t2DZZcVNnPaV2f3ByX7KR2rfnOFp8ypvTuLUfpHVpLnq2X3H7PjS2WfxzHRXcjxnFs+pYlpmTfc/NmjRVafaAaVl1I9+zNHtyeH72G2v2aj3fEt1lZWQa30RHrvrQ8s+6NXLn1mrjrOk3TVJyPmh9cOjutvulbxQQlauPK+spD/r51/kptaPupFGeG69TnidsL52vMMIwyjuX8oHW/9ub8cvY+55Na282N00KLvVzPe/4Mad3rPfGVta0SLT6H1advyYf15jqOaqex102fFt3s2Vdazs3uF+bu9f0biVasfWjfQLXSq++hz3HMxAveFnPUyH0fUMpXH/Xvgv9UONZDAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiEP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7wp/BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeldN7CwBwJM45med5cz+9lytTq+Oc2/wehkEts7c/C/M8r+ppbcT3NRktfdWwzIf3vrhGLfOQtq+NTdMLrb8eWUr9a22W5NLqt5TduxfCeKzzrLWb6qml7/iZ977a3xHE+mvdsz2y9c5FrUxJ/2v3rePtqVOi1x6lbWt6XWq/dF5oNjNeC8u+SO+12KHcfU0XrPZhpa+XF7lcXuQy3vT4crnINA/y5cujnC6jiIiM47gZyzAMq/lzzjXr3x5q44+v03MpPD9SXst6lPS1tK9y9Vr3Yalcae00tP5rZ9oeWx6vYypv0NGUVJZa/9pZlRKPc5qm5vmzzkPJpwzPLD5g+rzlTOi18z2+Ri+h7dK8WvZMrx8e95GLFUpnRY8tarX/R9i0wDiOzeeVyHZtYv2ynGulObScvTVZa2Ws+0GTJdYFzS8o2avwO9e/1mewmfM8r+xnaOvu7k7meZbL5SIiIt99951M0yQiIs/Pz/KrX/1KRETO50n+1b/67ar///V/+xv58sVv1jXuJ9jl2D7f3d3J6XRaXcc+Rs7fGMdR3Vc1PcgRxpjjNG9jVOeGrB9hRYsVrPo9D1sbEXywXFu161b7v/xc72Xnt21Yz07NLqZy5J6/RczcXj6/B1t9h7jflnM8JuhVqp97fK1pmjYyTNMk09Ae/+f8lNK9cL+0x63+Xo6s/OOyx2/NznI+n2WUm/2s9dfia9ZsVi0GyPWb2rTQfyzHPM9yPk9Xex94fHqUpyfdJ0ljv/Df+IyZpvgscFc9t9id9JnVjlt1UVun69w5L95v57wUp+Vk1sawx9+M5zimFA9p1PJqc3KmvDa+y3+8nR8i26bXdr4lvo3Xp1WvlrUSEVnrde2Mb8mFtub5tP5yc5aznyWsPmNrW61yHInWZ87PzdUr+YA5eyey9mNz/pgmmyarJl+PbDkZc9dBlvh+SywU+xua7xHvy9Ie3aM3Fv3Vxi6yfhdVsje1eK5GaYxvvW+ssar1fIr11TL+lnM8luUtcsahbe1e3H9azJoXDLTK39q+tT+LTcrNt7YvwrWmB6GMNQ+pXddozQXtoWa3ajm61n1S8vVzZbQ+aj5RTr6aP1OTpeQPl9qt5bJz3w1o82uZi1a/bRjSd5+38ZWGGPZJGgtp8pTWosfnq82rVs/afqnoNE2r/GOgZh8seQst15H6fjn/SLN1NdnyazTIMLjXvm/l0txFnH+1+s89uYy9dvFof2RPDKTZxB5b35K7bTk/cjaxJ3eXqx+3nfajvQtIz/QlltjmYJZYd2ufw3WaW9ZyG1oMVMrfpvL2xcT59kt+fEvcWpKp1b9piRMD3vuNr9V6xmt9WM7CWv4xh+XsyrWhjcGS09FihV4fcKkXdKuljmRtfPAPwnDnWdf53hybNv5cDJ6rr1235ATS35oulPQgjSn25ExzfVnq52TV/KhcvbU/GNuodh1d+1e33Ms878u5WfZvplYilz2vb5GjdA702KtSGzV7YV3rUhnrPrKcST1+oIU0ns/mehL3xHr27iGWq7ZWo5er/329N44yjnV/r0VeS+ylxXa5/FKunFWe2/w4kdV76LIvmmtfe49a6juQvlcsfZ8Sy7Ccgdv7se9pWb9Qbw+W/HV6f3kWBnBb05yflp7P+fXZ3ivl/2NueYX1/SBnLYaK4wVrf7oMdX8jR83etfoBiy1bzsmb37Uo3WLT/Ka8RbZSOe3ftaSE6VuKbtdoW77uBznnZJZ5swbxf0P5lhxSGFMsXk6vSljOSq18CUs8X8s9WOIG6/rn5ErzT6m9zLF8d+M396ZkuNo8pfOSxvGWNlLWsUybH3tkPqlkO2OfWFvjkl2pra32bwhq9feOP5Zf0/nSMrba91quQLsfrk+n08ofc869+mNbPyO2RbW9Wupf08u0jSN1MSdHjtx7stQOW2xkLh9nY+2npGzn7uZTbtc4X9c5J/OQxr6vfri3512t691TRt87vf5jW25Eoy0GudVplfutYrWYI/bX2m/ZyrxHbosfFd/b21e7j7Q9n6xnWVrGahO1Z6nf2erH/TFw1L8bbo2Rj+6/1kcub+O+0r+Z/v87/f+iAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAA+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8K7wR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgXTm9twAAR+OcExGReZ5X99JrazstxH3Ev3PXvX3GZeLfpf7mec72n7unyWCRbZ7nazmt/DiO19/e+42MpTGl93JjzvWbltPmMKc7R2DRxdr6aZTWJfdsz/qmWHS8JrvWb1xvHMcmXS2hyeO9v+rjMAyr37myreTa0bC232rTrPtFo0Wfcs/TPa6tRbpHevTfsi80WUp1Q7lcvXjdWudKexbrjbVNbV+m90+zk9PpLNPJyzgu/ZzOJxnGUT5+/CCny9ZF3HuuaTYivd+zxyz9l+7F8sS/LTqW6uxb0bMHW8vFWM7k3JnWOxeletM0qc96xlZrR/ObwjNtXnpssUUey+8Wgm0p7bXURrbs99RG1vQo17flnhXNP03vW/ot+brxeGPba/HXrWeEJn+ubZHtGvfY8VJ7NVrWMtabnN8U5rV29pV8iNb5S+u0YrWP6bMw/nmer7GT5nPk+srhvb+WmaZpta+naVJ832nVv/dehmGQ02lY+c7pWGKZTqebPxHKn8/n1XVcRhtTGjeEZzUf22q7lnKpPzLJNPWvf8mHCHKXYufhPCTjW/Rh9OOmbC6OiSmdafHvm+1a+ourzXN+T6Wy98abPbbf2re1vtbnMs61ro3jIINf3yvZ2FwM0kLORsT3Y70q1dfmdBi0cdvPJ22MljGXcnat9rl21s3zLNPgZZ7Xe8V7L86X+9yLZS9a+x/H8brf47NzGIbVeo/D1laO4yin0zrWzNmj0h53br7ui9K40vMld95ouqb5Wtp1rn46duecuJPf3D+dTjLO2z1kiQ8ttihXt7YvtD1dio1aWOZ926c1f1Wb/+W5u54vrX5v3EfNxuRsXLgf/J603Zw82hql5Uu6mIsDSj5NuJ4H2Zw1ufUo+bole9t6pqb3rHaxFi/ENkrrNyeHdj4HUn9SO4dSfYnlPWpvWUnHnvqHcbmecynrXyr7u6RXaRxR6yPXT06XtHHFZ1sJqx4551bvo2qEmCf9rcnZSo9PfBQWP/0t+y+1X/MDW/aB5tOkZdLpqPm+msyaH2s5K3LlavIEm1bz7zV5S1jiiVJbpbnQ9MzqH1vkysnT8lurW4tHSnF9Tl5tnvfkn0LbufYscWpJHuu4Svd61rlnP1ra1er3mD9NT9JvH2p1c9ct5Uo6Hfs+6f2cvNd7Yzj/b3Pz8nIR97z8Tn3snA+cky2OW3PlnHMbeXI+0ul02r1njkKLp8N1jz6Wrkt1SnOS+uFaH5a9a0HTvRLxfJV0PT0HNXu3F+s+zfUb+5+9OVEtxxvK3915OZ2eV/VPp1G8L7//K53LWpkQB+RimNxebvkuJq0bZM+ta02ves+s0v24XS2et7aXyy1Y5r91jq37OM0xazmMXFuW/Fi4t8eva8kflNc25Khs9Uvx3i1GDnqRf+djlbGUy0n7rclXayt+97jIvC0/DEP2vWTaT+53wJIb1crE/031x6IjFtttOWvDHMc5kXX5+J7t3U9sM0OxcRybchahH80PS8eQyrOM66a/iyxupcO5ttL+c5S+bTsi71DzV2rtfg3f0WIbrXJYzxeLH2htu2eOLHkbaw5t+V5h3tybx/Z9XXpmOc+0vGrP3rCwdHfrcxjytqFkE1v6D2W1bz2sujC7SZyT1/M1zrnf2s8tfy1uaslrp+Wt8jvnRIZtX+M4yjDWfdmNfR22NncYBlNbt/L5c9niY7TuX812aDlHzVc8wqZr9y6Xi3g/y+xu5+48e5H59Tulgj+UYpmfYRiyOhHX386XiEhd51L91vTdKW3tyn9mxlTbJy3PtG/7Ykrng+X7Va0fCz06GsuS9pvGwLm9dJq33yfkfD5tzLn+LTGaBWs8XOrDssfa8py6ztfiybi9WgxTw6Jje3IO2zKxLdXzA7l2S/Pdco5r353d7H2+v0DQ1b2+pXXN9vqqWlvHxwnhzLrFfXEOIZYrW/uaE9zmw+rn59JPWMf1+F1SLtd3To4tR87ZUfvKwjaWt+WwjxhvbQg5W/sWOe+esaRnwlvE1rUxtuaGeuLkuL7WV87HSfd3KBevX69/2kPt3L7Z9uV3Txz5x0huPo/8t4hHMgyDlL5M26O//1LoiwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoI/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvCn8EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4V/ggKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvCun9xYA4K1wzhWvv0b/8zxv+p/neXU/RruvlUnLW+qnMlplqN3PtdU656U5y5XpWdPS/Kf9pvV6+yy1n2t3nudsmfA7J39O3+N74XfuXnod2g//9d5X+6+hzd9Re0Ejlt3axjRN5vpWetuxrH1Ki462rGXQy14bEQhzoeliqv/aeKz2T7MfpTo1avYu1+5e299zppXG6v10lem6570X70Sen5/FX3Sdza1RTZ6S/OmzcRyzMmvjyZ0b4b5me1KbqK1B0Nea3rSegUf6KJa9YNH7nEw13czNsba2w9D2txdTmY+yx5b+RMo62tNeq71J99mRfcbnXEDzG9LfLX3H+6vWRq2Mpj/aHtbOFYsdKbVXmpdS23vP7yP87LRej44F+xzqB9L9mfqSuf5jrPZBO2u19S7ZMS3u0OQuyZJeW3yXUh/a/OXOpFzduH7sz4f60zTJy8vL1Ra8vLzI09OTiIhcLhd5eXkREZFxfJGffnq8tuX9LP/1v/4kX76sfTnn3FU3TqeT3N3dvdYfr32cz2c5n8/X/pxz13VPz5JwfxiGlW7k9mFNx752DiBG0y8Rfc/ETDKJ92t7fblcZL7o7ab2vTWmus1xOBeuT2QcBxn9uG3A0HZJjlbbl7an2e/SHt/bp8jrGm6PU7Wt1rjLWt6a0+mNeyz9hfvl2GMbA1rbTtHyFGlfJabBi/drGadpEpn2x2u587XFP09td8/are3z9pw9n84iMqr5KAtxm8Owts/xXMS+g8jNl7DoQm4utTyXJQYP15PzMs9rPVns61Cci9a1KO0XS7nS+pfyJprfmNuXy718DB23pfnTcT1NTu+9DPOtD4s9qLVf8v1jhmGQ0W+fBx9Ds1Wl/mvrl/NXar5unJvRpiXXrpXcXkh/59a3FjeU9kQ8Zu99dg5yuSRrfJfeq8msnRlW9vqUJZnDc03/cv5wrS3ruRja1tYo7ctiF51zzfOd2y+hjVSX4jpWXzeXA4llS+fycrlc72t1e7H4Kdbzw4J1jjTbfoTvZsEy5iP6y8XKyzm47EFXsPelNi2xfjqWFrta66MWw1j9m17fRztDtP7jfX1EnGLJPZXW05qryfWR5jNKZUv9tvZd6y8m9nk03au1+VZnZ2sMWGvLshY5hkH3wayU9njud8/6W/2m+F4si+bTp2fq+qxy4tzybBwHGU7L/j2d8p+Ypf5Ej+3eG0dZ263VH6YQK9XXJo5xrDkrq1wt+zK1Sa16VbMRtfZq53breanV1+a1ln8sxQ81rOelJabUZO2Zk/R5nE9P8zFx2aPyhBbftpbfD1jt4l5f2VKu5gfH5XJzYD1r99i7sMfjNc3paas/V5IrJpdLaPVvW+nV20WufWdGfH/xG/Sxtn7P0Op/lu7X1i6XJ11ure2YFgdr/Rwdqx4dB7a0v4m1RifOBTsW6/1WrlJeZd3uLEFNpmkSP7blXHvjl1B+qXOrd7lcZLisZW/R4zDu3Lz2rmVv/GGtp8WqPWdMz3q02NmetoZhSO7PWV/IKrvVd917Rq/tqx7b7fVjNFtWOztruYdeezUM63c0zq19Ou3dRGkerGPQ8q4W1nLd/O3lrHTX9nPjyLVVm7/SO4a0rZofGfpr8clL3PbXdn8c5X+XxhX62kstZ2iNB1viUE2/RZZ4ZhiczMM2Zg26VXuvEUj1u/S+Kp3K3rlN5y+VYZr85t7L5UVeXrbnaixzrLtpzi/3O7d23nuRwpZv8fW0709L8UF83/r+RevnLbC80xVZ26XtfsnX7fn2+S2/l9bGqu1jqyy5vZ3TiXkUSfNuS926jdBI3//vscPpWdEaw6v5qyFfxyprrl3NRyjZWz1PGc5xkXl+/d4iyTG15hxL+Yu0vZ4YeU+s3BpD1J7F36KF29M0iWvYyrc5arNzIb733q/6S2PAHLnzr/Xfe5RlOy4/1JsDrPlrcR2rvCW/cz3vuv7XZC/p91E53p7YolQ+53uke6BF/lq+ISfDEdh9ja1eWGx5qy+z1/dJfd0Qx32t/mOOiutL1N5X1mRIc8CHvlPJvLsJvJWP+6fEcacTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAf8ERQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4V/gjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCunN5bAIA9zPO8unbONdexPOup45wr1tPqaL9rbc3zvKoTX/fIr8lWm6NUhlbifsJvy7q2tt9KGEs6pvh+KnvP+GMZQ/1hGNR+UjlCeQ3vfbZOjd6xBDTd1tpPy2jrlpNrnufVOFO0+Snpbq69eZ7VNdAojSs3xtrzFlJ5e9soXac45zZya2vW0m5ouxXrHNTatoyhpd2S7u091yo1X/8nMs/h123dUv3T9Le0D8K1914dp3Ut9+wHq42xnmF7/QWLjbFS6jM3T6kNLJ1rGkHeuK1c+Wmaqv1b17J0tuWIz2HLGZI7Hy1z0aO/VnvRs096ZMvJ1ar/Fj81/Le1fmkce21B7lnO3uVI922u7T17W8Ny9sbEe0fzT1vmMaeXcR/eexnHcXXd0mZPGc2O5fadNlbN17OWDQzDkD2vSn6e5Xxo2WPxvcvlIiKLPX55eRERkefnZ3l+fpaffvpJRES+fPkiX758ERGR3//+9/Lb3/72dSzP8jf/w7erfv7Df/hP8vlzeU2///57ERH55S9/KQ8PDyIi8u2338p3330nIiLn81kul4vc3d1dxxh06HQ6XX8Pw3D9He/Lkk+SzsEe/znup+UMis/IFr2qlZvnmw2t6XP6rNWOzsMsIvtj8BY/1ipjmveI95F2rqf9aL/jcjHe33zmpcxyzxn3pVUPS/7lW5wnMev2dXlLMlrWsJQnsbRtyb+lZ1J6T0RkHkSGYXteBhtuzQdoZSx6pdXx3m/8plDOe7+qE98PdWL/e55nOZ2mq40P/PNvfiMvL0P2jBrHMWtvY9ssIjJ4Ee9DX06cE7lcLuKH26uGFttZi1tq+0izBQHv/XVu/Ohlmtbz/Pj4RYbnYVU3tTWpPJb4PjeW0n6J262Vi39r9iang6H88kzPz8Xt5ua1dt6GsZxOJxnnsi5ocZfWh+V+uF72h0hsx5e9tF3D1I/L9WEZR+m3Vi/s41vRxY+bL3mZWuQqkepmuM7pTFwuoJ1PsX/XMq8WXdDk0HyvuGxvvr4/71ZuJ7a3rbkSaww9jqPpHLL4GlqON76fs/097yPimFK717ouqRzaHFvOr7060ZPzOUoPNXlK92v5jiPs0RFY/YXtOT4sPtBlm8e09HXU+Es62RNHls5nrd84Bi+1b8lVWPJPPXm99OzP7VntHCv5DT3nrRarls6xUkxTa6vFv7BgHfPe/Gur3Nr+su5xa58lG6f5+7mcTO5M2btWrfPUSil/PAyD+JPf7K1xHGUYt++DSv5Ezzi03Gpu/7eg1a/HVuG/s7jX2Dc878kb5uTqeVYr36t32p6z2DirfxpfW/1za3xsxRKj9dzTdCHdGzX7UpMtjiG1NnI+QZjHVj+mJT9To3TG1PyP0jNrzlLLn1jbtcRWJZtQGq/Fj2hlb166p59Sn/H879Ulay5puS6PL5VH2++3/8mqzZBnems0n8Xi1+bmfBjm1xx50L3lHZ0/jWp/uftvtf9KbcWk+nekjyTD1ifYjd/8VgAAIABJREFU5rnKvuD6XpgDubaV6zvnb+bKtYzVOff6f5Ua19/6eCKLHpTGU4v1avHEUTG09dx8K2J9axlTzWfbK7Nm90oxQHv75fi6pZ3QVuzb5KYz2AHNx9Gw6l8uL67JW7rXSrpe83w7V3pyQfF1fL/lPbNFN27fgN7ipVz/WtzV2p8Vy3pf+1vZxK381vjjNs4w7uW+917EMO0W+2GNmyx1UhtUitUsaH7IkT7tqo3XWEhebUZ495vqfSkXFPZDqpd+8q/fhdzu5WIsbSil/EJqY8Zx67OM4yjjmPcNtHWpnb853yh39h9Na84x931HjMUGW33NPX5I/O5Ta3OZ83z90nvMuEzpWpMrRvMdS+1a4vEeex1kG8cxI2cur+ElN0W1ebfGhzVq50hOF1u/5Uq/+RERmablm4CYlvnWxlnaO6FcLMs0TTLP4d3P7d7F6eMu6VIu/7c3ZnsL/77njC09C4/jZq02SiOXN9zqqy5fOsT0fEvb9t6La/xMUdM9a866Z25qaxH/tuSHWvPr9Tg4nwNuJedf1drp1bUjztG4iCZmyzzU/LtUrp73CPEebV2j0v4q9f9Wa6j1cctpSnKv7aw8gj22MP5viWmaTP1ofqj3+e8kv8a6QZm3jWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvBHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBd4Y+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLvCH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAd+X03gIA9DLPs8zzvLmn4ZwztZsrV6rb2qdV5vh+bqx7CG05564yzvO8kTfuMzyzzuMeuUI/e8fcOv/xXJTK1dYsN5c1rGMdhqG4ZlrbsWy5sXjvi33GxLqg7RerXtfKhLaO1P/SWEW2403vhfrOORnHMdumNs54vix2JS6Tu5eTURtful49tsj6zLpeWjmrXvfI0qJLmhwl+UpzbJGhZY1q+1q7LyIyPT3LNE0yTbN4/2oHJi+TiLy8XGS+LPdi3dfOgdK1pY62R47Y91obNTuQaye2vYGarh5pu6xytZ4/Wv2S7Dk7WSsX5rx17lv6EDnGXwlnj2UuLGucymKdv961TOWyym/pTzv7tTZFtmueq6+tY43c2Hrjgdx6x/Y0Rzy2mv+Qlo/pPZtK/kJgmiZTHzUfJYwl3mN7bGyrfSzty5ZYrbampXkI18H/q5H64Okzi55r9iKe47StuK/cOX46neTu7k4+fPggIiIvLy9XPXl6epLn5+el3HiRv/zLL6/9zTLPXv7dv/vX8vg4r/qMfeJhGOR8PouIyP39vZxOS8rpfD7L/f29iCzzdzqdrs+cc1c5h2FY6Vot7ihh8anCf6fJX/2hgPc+ej5d28utSayX8fOavS+e4adt/fP5LKOs9c9qV2q6H8u0lNnWz7VRyiHsuW+Nm7SzuuavWsrd9vwszsV7aZZxHGT0t7VosbFaDqKks2GP7YltSuWHIb6/jSVa8mQl/ymNT3LjL+lXKabN1S/tQW3qrHOaypGTq8VP0XQ+HvMwDNlzPZ3XUMZ7LzJf5HK5rMp9+jTJ42NdF2P7Hn6H62e/nBnLs0GcE/n06ZNM093Kjsf2PR1LLfaz7M9cfUucHLfh3LLHhnGork/uXE3vWePmGpqvZbUDcX1tL+VE0vZwqi/1mEBEZBbvvbiCa9gTM2vrn9oSy77S9lLJz8/5xTm5NI6y3TlZWyjZyJKtjZ8Ff64Fbb00GSx+c+yLBnLz8tY5mhyxLQzXJXms6zkMQ9fa9+Qw4j5r1GTKxVK5/mpzU9Ifi15Z8jShv9qc1eyyJseevNWRWPzkHllb5s263+NnNX1M9aXMa4xbKfU12GMXYlr8kJwf2cKRtrWma6UY2hJzpr6upU8rvXumlDcq9VG617sm1ryB1nevH5zr15J/sM5zzb9dfMCtTPOsx42avKX+rTKnuaUaudi0FMtrfSpPVmVy5Wp5fW2/7jlb9sZaqd8fn/nh93Tx8vKy5EhfRhHvnby8vMhlWs7wx8dHGZ6Hla+Xnu89Y7SOLacjLTkI7XmPr2ixQ9bzXWMYBpNex2VS+5GzJ1rc3XOOlmL4WP5Yz+L6mk1J2w37R5v33Nxb5i7N01h1uWZjW/a+5Uxstf3pPYvvWyIdV7i2xMYt46j5OFqOy9rWnnnUqK2fJZfTQ26/5m2ZE5Hc/eUs0PJE6fzdnufzTO9BKnvNRwlzNE3Tqz26yb6ci8f7x7nrkoy1+toYLW216P/SXk6n4z7z9res22V5emKV0tlxZRAZBrfqP+TFa21rMbxW3hqDxrTuI0v53Fzk5G85BzR70dpWWrbVpqsyullEbPuvJsumbWMMpNUp9bnYUnv9Uo6opqOtctb6742h12eKbq9z/ZT6rMVt3vtibjnODZXOdz/c/Frn/NXPnWd3bSfuImeLnXPquxiL7d4TV+ZsfImSPMt1GNNyL/3G39bHtk/LmdCbT7T6x9a4sTW+tNu7MAeDODe8nl22b7ZacKN7PSfXctxi/jlZI1ecw7iN9PfgtrbrNJ7En+r5oJYza6vn+/4thu5rl+vk0HJfLTmxPfTE/fH7Le27wVyeMfjY8fdwGsFGp79L8sey1Nao117s5ah32aGdOM+inSPp/FlyVTU/tuf8z8mSnhvjeJLxVM6xWp5Z7LB2tufkElnmNKfv1m9n077S/PVeLLmsXGyvtaFRmsttv9s5LH1rGl/P8yzzsJx5sf2Oz5t4DXM2Z3meth2eFYfZjGZLe/dKa38WbvO0Pf/ib5n2+JU5ndZ8zdYc5JG05Gk1OWpy5XTyqLzZ3jYsc6rbRr2s5sO/Z64wliX+XYo3Umpz0aKjLXNR+vewvfa6VC4X/4b7OZvhvc1vrJXJ2e66D7e17/8S+TrRAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIACfwQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3hX+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8K6f3FgCgF+dc9/N5nrO/c9el9pxzpn60Nud5ro6j1H+pj3mexXtvqqvJGO4559QxpDKWxlqSJS2XymbpP5Ul97skQ5ivtP/ctaVv61hzZUvP4vuldavJFzOOo3mMNb1u7dvSl0a8ZnvaiZmmySyn1n9J/yxo9qbENE2bsj36UevXqpu5vix9x/u9Ng9H6qDFTuZktPbVohPaGEvz2apz51lkHE8yjl6GYfmbeONpFDcOcn9/J6fxlO2zJq+1/0CvrbXUaznPLf3k9nvaR7oOYW6tsmlo9j637rW2tbkrja80Z9oYtTaPpqcPi75YbF1Pf5rvV7K1JfbKlvNZgr7l2tb8s5pPWWOP35XW2WODAiW7Ftc5nba2suQPj+PYJVNNz9NzKWcPenyLFhlaifsu2RFNhnSetd/pXFj99JrM1vKavbH48aXYJL5X2pe5Ni6Xi3jvr77jy8uLPD8/X38/Pj6+yv8sl8tSf5qWOp8+PcmnT9PGXwu6fT6fr/vifD7Lw8PD9Xfo4+7uTs7ns5zP502dmFQvrLFTXCa3d3MxvHPL/zSsvk5JRywxXbov0jrDMKzmxeprpHplixediLTlRrRnXwNrv+n5VpqL9R6zx9i1vW05M61xk/V+LS5xzsuy5vW+aj5nyT9e97n1PUrlS31q5TVbsdgBkQ53o9pn7jonQ/w73Zclu56b/3Ecr/eHYbja1Gma5Hw+yfk8rdr65uMHGcdbDuFyuVzbm6ZJLpfLpo8wrmBz3HiS5+eX1z6Xc+D5+VlexF/7P51O1z7GcVzZq5yNS/vQ/NHaM80ehXank09s57zIN5b9kdT+5vrUfvfaxhbbVrqn+Zc5H1zL+ZX2XzzOm8g3nYznLm2/tMd7Yozc/ll8otv9y+UiFzcX9SiW2fu1zoQ9UqOkM+FekCG1S2Ev5Pyh1A7kYowenWvNoVhzY5Y+c33k4o9aTJLamdB2LcbaG3+n65TKGa41fza2ibFNL8k3z7M5jop1xpKT3DMfsQ1P0eKTXnLzWqMl/2utn9qx2CbuHaOl/xiLb5vSEuvvzSto9bQ4WPMXRdbvQixsz4fV06XfwlxYfFdbnFVmr/3WznFLf6X5zvUVyllkbj3He/KEqcw98/0149n0HG09h3vq7fEtS/ePaK80F5YY16qLen85v/h6ldwvx7xaX5ZxvfX7lHBOx/3k/In5tJ2TnG/a0qdGj1615HY0Yt8r50/fvUzX3OV8nmUYZjmdT+Jex3N/fy+D246tlDPpyfXs8SVK+ZGaT2QdR6/tai1njQ332JWSXLX8RIuMcS5d84FK7d5i3K29iG1hLU+RotkFa46jdA6X4j4Ni8waWqza4yvXyuf2ijVuTNtpyYHEeUBLOa3fWn+1My+3Tq1zmerVket0a3fdR5x/LPVhtylevI9zY3n9LelJj563kOsvnpu43RYb2es/5+Yip5ea3dnjt7fEJsEnLHXnnG4ft3PlrnVaZbXkc0rXqQyvPZjk0HxtS54plMtdp/ujdF7syYdolGKI9H7Oj7b2b8nzpeW0ObOcFXp8s9/PtOtZGzddclLSy16dOwJrLNTqg+bWSyu/x8eO2xqGwex7xr9DLi7cn5wX76frtfdeLpdZ3LT0//z8Ii8v22+Z070Xx2MWfzal5rvmKO392nudmPW8rfON8zyvlrb9rL/t3Z48szVm1myvxa616GirvXDjshZz9O5kGAZx8yDjOMhg+PbOKkfAn7wMw7rd8/ks7tXPG72Ic4PECxvrbO+ezWE5O9O+bGf/PnmsdjituzfnGmzW0d8o595fl9rsyYuFeta66ftCkfK6i7Sde7m2Yjvce4bGa1TLO177cnl5SnVyz7Tylm90Rfr2amsueiXLuO+dSu5MaNGRkr2P/ZJw2/tbvNvSZ889DWtcVPLD9uTdNR84txYWXzxeF/283voV+v4s9xfi2nXb+ndBQcaaT6nVzdWp2Sur7WnRO6UF9ckR8VGN0joeFWvFvrn2rNZ/yaeu5RoX3amK2c1bxHrp/uzJZZfa7W1v777ItZc2ackD9si0p17rNyClPltyNem93O+cbeyxa3Pue83Ct8Mi8Teer3plzOn9KdLnkQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcBH8EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4V/ggKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvCun9xYAYA/DsP47PvM8V+ukZZxzpjYsbWvtpn2E61ybtf7T5z1jLpWLZUvlDoT78fNQPr2X1pnneXXfIlvaria7hbT/Un3tXm6MuTX23l9/96x1jbjd2vzU1rKHkvyldrVnubGU5s05d7UBveOozXVYwz3tWNd5z1qkWOXWZLFQW6fc/XQvhPXL2Ypwv6TjNV0qlbGSnjNafyW7XrofqNWPy2jX4Z7WRtCLeZ7Fey/eT+L9fL0/XSa5eC+fP3+R02VU+xiGQYZhWJ0FLfOcno+lurXzQjsbtXvhvtUm5s5y61h7zruWcq31SueViMg4jqY9VerLe7/aM5b900qPXe61cTXfq6YvuX6tc6zR4wfG/bbYKIuuW/dFyxrs8dM0NHtZO1tSHbDoVct+CWh7Jewpy17K7Y0We9VTT6uv3df88FLfVp+yx96UzpBwPxfD5GxA697W9CRdR033S3oWfk/TdL13uVzkcrlcfz8/P8vj46OIiDw/P8vnz59FROTHH3+UL1++LLJMn+XXv75/rfMi0zTJP/zDf5LPnxcZT6clnfTNN9/Iw8ODiIg8PDzId999JyLLuRLGM47jtXz4PY7jRuZ4bOmZotkb65me05FQJvZrcvXj+Z2mqfusrhG36+/8ag1FnLy8vIh/0c9BTS7Lnt7qUNyWa/b3LLTag9L9YRhM+6fkK2t1Fr3M3cvbzlqOSTuTLfu6RMk313yXddy0bi+cP63xTToPsTyWGLLWduv+y+3tki5b9KjWR8pqb0ft1+YwzbOl8XGwa7G99N5fywzDIHd3/mpvw/27+zsRt7av8RqFtkox393LJN/++h9fn4mIOPn+++/l5W79qiGXNwxt58rVbLxWrmTjU6azl9NpXO3ru7t7Gd22jb15u5qv0UJvDi5gsuE7fbV13e3ZXqvX4gfG9TR7ufYVb7/HcVz5ITXSsuG619dO5Q05mrjYPNtz2KX4xUrONmprZDlT4uvWHGUgt6/jtejNQwW5ajrQIn9aJueXpHKk9ePxrn1AG6V4qMWWHeXnamffkf205ulaydlXzcZo93p8l1J7rW1Z/ZhWf2fvnJf6a+0njdstbS02b1Uy6/vW9Lgmp8Xftfg6NR86Hn8uhi7J1TvG1v3XKktP/jPds7XcTY8e52yAxae3oM1xq93JyZrLuVgpxeU5n8ZKWre0NlZb0NJ/qc2lmTn5r95Pyfa0ymD1UVv0N+fH5XJycdvz1Ze/5QpyudGUYEdq8Vkag2pxo2VuW+Lx0r2Wdp3Tcx1xfU3PNR1qGV/PXGho9iIna6lOidK5pufibHFij523nGMWP8xyXpVi9j3vU+/OXk6np9W9h/uHYjv2eF6y91tsbc+ZG+ezWspb5ejB6rda2mjJhR4V45TWrCdOyZ0pPW3nxleyhaV6tXLeealVK/lzaS529KmOzjKOJzmd6mf4nnVt8Y+sNnobF61zw0dwlH92ZNzf1NagzX24l/fV6+eoTa7SGZ0rU9OTpey2vjW/bJHZUq61L4stPlpH0j61XJ01Vk3bt8gQ12/y/QYRl7zrGMdRhnHf+RrkaI1FrOO92SR33SMtNqnVr2mlFMNa1kiT78gzP/fbmpu37KXwrUfow995eTwt35+M4yzj6OV8HuX8+i7m48cP8vRU9wl75kDLfx2R99G+9y/l7MLZEHeZ6m/9THbZ86FW18KRNlJr94g+yuOco//1U9oTy3u6+Pny7z+GOf6+fZabHxCVzNjHUqyb+unzPMvkJ5mmvH2w5D5iv1Xfb3ZZ1/WO82M1u16yo7k9n8r8Ft8oW/99Wsse1XSwlPfX5OnpK/d9SQlr3KH1WcoVam2Vvqetnbep3a75Nbk6tf5yfbXqQFq8lAezyNEqS2lebn6YrY1We2It05v/0+YiXu/W/i35vxyhWOxfWJicz+4llzSx1fF8vn0b+9/eiYqILMdcqCvZNuK2YlpjNU2XS3nXlrjTtjZvn09Uezbm6SyxTU3GnB9amv/SOrXEsOucye2ZNbar7ZVa7uSt1i6H1ZZY1lOrG/83pfRvTnRZyvLF7R7xb2it9MZuR7eZ1m/N31jYyn3L95XWLrnT1OefGsd7/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4F3hj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAu8IfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB35fTeAgD0Ms+zeO+vv3PPnXNqXRFRn5dwzq36K7URnqXyBblLspXu5crkGIahWr7Udq5eOn6trnMuOzfDMJjqx9e94w+U5ruEtn45uVJ9i681eTXdCffj5z26qqGtca+cpfvaXFnlE1mvX9DpUpu9653rw4rFDrwlJV1My+WetcjYYhdq7dZscbre1nG12Lzac4u9mee52S6V+t1rI3Ok9mQYBhmGUYbByzAsz8ZxEBlH+fD/sfcGzbbkyGFeFurc+15Pz1AUadJ0hLRzhLRhWA7ZXshr/wH/Ra+89tobb7VUhLRThC05KFMiNZyZ7n7vnlOAF+fhHBQqE0hU1e07Gn6fYtR1qoBEAkgkEln1Lr/7LJfbZVO/9vGjffb4g5bfs2zXmv9Sx5Z9lOVaY+/d+3v0fJwmu2WXoz7P8nF5HLQxqNtoxV3Lsqxkno3X7s7cQ1s+ZtTfjqzX99j7rX20pVvrvnf/G5mPEV/jjZt75TxxWw/L31hrrjUXZZnWGByNeTJHbW00VhRp7wXeuLE3V7XdteKgs/y6N85uzXmpV1k+z3fPJrKMaZrkdrs95M7z/JB1uVzk8+fPmzY/ffokb29v3+5f5c/+bH3e/h/++X8jX77e67y8vIiIyDzPcrnc44aXl5fH9eVyWZUpr+d5frRb7n33+OSpf+kPvf5mVyx/W0Qky+jHita5r1XHU77sZ5pSoZNP9pEyWx18a8KbG+idFVp+2nNOzfFH7wzv0b0mxiRPu/DtZ+XeczSfUeKNla0Y2z53be0t24J37Xn89R5/eQTN9vLc1M3EGGVSttUz4sjyeiQPVPr+lj6tMXt9iXK5/LS694vvfiGXy9pXevfy/HuO8jhHfnvy8OeaH677tyd2KKnH0hsTpZRkmaJ6vtnrT/eeTzx91c4d3hi8tyY1Xz8V+/BInmn9e/vcc57cg2af29xH2thqjkVqXbzn7NH1UssuefjHIFJW18ZR02vU/qxY0ypfU7bfyueUbXnOPR55Lb168r3ncK1c7dO8a7eMaUfIdcu13PNxKaVNLmbvOtP0bfn1UgcLrf7o+zENbxyyl/JsotF6N5nvj/r6kWeefcFrf6Nrq7VvWnH/aF7Vyutq5bTrWsf6+vl7Wt3bk0/0nFdG2RsfW/U8NuKdF2+bXhln5kFHxirG6PYjnhi8JWtPDNmrszeP6ak36rv2+OCjuXttTWtxSnl/WZbHfnm73R45s9vf/Vb++q9/I7fb/dnXr1/l//i3/1J++sUkf/xf/1eyFHL/w//+/0j88f4759V++ctfyh/90R/Jn/zJn4iIyHfffSe//OUvRUTk9fX1EXdeLpdVfODNX/XigDq+s2Ky/FxDt+dpFZ/WeTpLl5ZP7OVJavv0xBve/WXUTsu8wTY21/M+I3vXqI9uyTrKnnNBSc8ftM5JVp263J492eOnjvrylp6WXXtk9p6JiMQUN2ViilK7jPJ9QUv3Fpa9eudoz/qz8La/J77Vro/aXkvG0bV3lLO/ifLgXQfeHJglp44DtPku99fW/mifMazzhb2PaYzabot6X+r5MW1sYtzmTVu69ex4NJf9czB6ZuiNWx0vlf8tmaYk9e1yjLz7jlW/vm+Vt9izJx09U5Tl9pyPPPVa+oysfY9c73ntPdaAvSc+/UGv3V6sX/epJXNvXtczNGeN6RF/u8d3W+OV+62JGDlTWG2W+/3ot0VWLi3/d7nFlU+MMcqyiMzx3ubb21Wu1/Z7iZ6tWHaZ+9I6g/pk5mt5yOu9G9Ge53EoH8UYRQaGXIsxeuy14zP893uwnadyfp7fLWh5e20f9b7reLQ5TzJN6+fld1ZzlG/P0+p5bYctP2XZdCtm8qz3UkaZ596Oi29PaOk2eo5o5UCscTvrW8gWe8/Je/ace4zdnmOPDq3zvUYIYTOW5W9tnK21VZety3neA3revU+T/l4u29FIHLDH1+2Jyb2yy+dlkbqJ97D/Ed/+3O/vv5dlkSXYa2bk3N7Dk+fRzt+jeVZvbrInR5UVsr2u44v19yptsoyjaDFP+ax83mvOe0bIWHmSmlb+ZNRurXPcVs7aFrQ+jK79/t7Rrt/zPXty7haesW6diY/Y5rIsu/J8GnveHZRyy/hkb5+e9mOvL63OWbzHfpHS+rujI/mL9z5X7Nvb/P0p/Zg3Hrf02tyb52JfuP93vlwktL6hCqXPdanyB8v4Ww0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAE+GPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCHwh9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA/l8tEKABwhpdT8bTFN0+526utaVvk7X1tlNP013aZpWpXVymiy8r3y2qpjtavVsfRv6ePBK88qZ/WzrGPNfT3GFtr8anq1yu2hnMvW8x61XuXvEMJDVktnTRfP/NQ6WONXz8U8z90xbM29pZMlM8b4GIvfNyyfNzL+nrWgXff0Kcu2dLBkjvQhy+m1Wcv0tuFds5Yte/H68rp8vleu2T1tT5PIXeRU3JtWY9uyB89e4Oljec87lq25tcq0ZPXatexNGwPLLssxLetb/sY7rvM8q/dHadUNIQyv0ZIYY7dMPQ91G9Z6y+PnaWMvrVgv47Xrev5bbfbitB6WTkfjHa1cS2Y5N1b79fy15r8Xa2vzNRIftuI7bzzq6YuXun45ViP2n8vujVG1mENr1xqXPA+WL6zLtnTw3q9tr35m+V/vuaiU7dlHrN+eeUgprfb9eh60OLr2IcuyPMovyyJvb28iIvLlyxe53W4iIvLb3/5Wvn79KiIil8tNvny5rNr4T3/zg9xus4QQ5OXlRUREPn369Lh+fX2Vz58/u/qlPQ8hrGx1T1yQ+znCnJKIbNeutbbK8bZsubUW6mvNt6SVTu092sJ7Lqjvjezz1j5g7ddWmRCCuS57e4T2zBNf9fy1Xvb+32WJIreba6/2+riWLpateOOfcjzsOMbOKfX01NZBL04u69Tz5T1netacep4KIiGsx+Fyucic1ucrT8zSoxVXlPc8bVkxTS9Wq5/P8yyXNLvyHtYan6PI2jelRz+yHy7POq290rMmND20fb4cy3J/LMvHJcrb21VKm//hh99JeFvHSuX41HFUCEGNT629qx5rrx2V/W7Z+56cQG+f2RMzpinKuujdBuY5bPzFSHy+R6+1nEmefU2r9i09zt5HetT2er+3iCy+HGumt9+22vcuU1K+AAAgAElEQVTm9Tx6lHhzG1b7pf2Xa2ckPhgp08JzNq4ZzTHnfh3R9Wg/PTp7zmB7ZXhtZr/vs2XWePrTywOO1G/VO/q+Ys+aael0JAfppdzTtfu1Hr3cZiYq+3Xr/NnK+R1db7lt7/33HHfPOUsr1zoT5OsjubByH2jFCaPt7DmnaTpattDzB732ejlILXawZO/1R626Z9uiN45q5XJ7+QQrR/36/a/kT37zsmrzf/kn/0x++sUkv/mnP67k/Yv/9X+U8LZ9t16fHTy+yYr1y37WjPocT9yr1cn2Vda53W4Sbvo7ydG9y7tevX7Junf0DJqLtYpbZ9QzqG1DizmO7udam9r1EXrjUueRWtc13rVyhi+z82nt8l796/Vq5WNa7Vk5oNG5P5rjrG111MdZ5bW8mJV/PHKmHdk3Pb5Iw5N3zeXcORmHvCNnF+88tuRp7bfOOa02PWeCaZpEgm67I2tTKSH5tiamN54jfu1IzNW30Wc/iqdD68ezV1m/NX2PPO9hzavme71Mk0hKzzXdOyuN2M0eG+2NcVzias7LJrw5L2uc9uRFPb53Tzxyht88kucty+e539s/zS56e8/9enx/8pxhW/uwtV+35O7Zf37OfFR5PZpT1OrYc5ckpf2xuscPHM3ZanvndHm+AwzhbufzPMs83e+9vr5I7/9Gc2+NZFrvufeec/K5N/vyfC+kts5t37HWa5+9+uuMrOvyXiv/08q9edv1lhvb+76Nb1r7HKv+Hru428R6rSzLIun2LW69LZu1FGOUGMfOH+bZLcwyz1v7s846njP0GT6z9vHa91h1O+WazWOryd3DqO+1KPtR5/laPrMnf1mWwo6eOUvtm82y/dGzpaVjfb5avRfpfP+W9ffgLZf7m9su9VlEs4so1vCf+W96LLscofctQSv+02KEkfzPmeXqOvV3VPM8r/59wp52enu9ltux4qheLqKXcxrZP3rnHu0ceJu2e8WyLDIlewy1NlLantfs3Eb7rKGdD0rdtXdNdb/2+uxS11FGcxNWnTr2e+q03eM0ztA9i7Diw73r9b04Em/37O0sX2fJ8uZ2Ruy7Hxfv8+k9f1T3xZJ5pu325n7UF5yZyzvSnvfcWdep9wTPGU+bM93HinLPnnOtzt9Xfj//lTcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8vYE/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCn8EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4U/ggKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCiXj1YAYC/TNMk0TY/rM0gpqb9H5Jcyanl7dPBS61j+9upk9d+6t2fcvXX2jENpE602tT6klEzdvLrU9mjV691vjZH1rDeulj1o7aeUTJvx2FLLFktijKqs8v4IIYTHf3tz0GunftZbC/Xv0Tls2ah1r6xjXdd2ba2RVluWXXjrtyjXjKbXiB/ojaumf0/+nrVYyy/Hz9LF6xfr8erVa6/XqfhfX/+9eMd4xP+Wfc82rq35aZpc+rd83ihe/+fxUZac3l5X7iXe/vfuW9d7/XVJ9t21LO8aW5Zl9XtkXdT398Q1Hn9tYfnuXjujbY76mN7at8p5+u2N1UqZ3hit5VdHYjKt/6V9ZpvdS2+cvOuq1KPWSZOh3cv1RmODlp4je2f52/IFlh6tfdWKMWtK/9HTtxzjVsziHacWmo31xq5sZ57nR5lcLsYonz59EpF7vy+Xy+P3999/L7fbTUREfvWrXz3GZQ5X+Qf/4MdH/Rij/KN/9Mfy00/bOKaMw/Oz6/X6aP92u610CSE82tT6l2VpcULPd3rseY9f1PDGlpZP6p3Nn4/vFzFGkbbZmm2O73HbvnnPI+4WCpnZhvN/PWOp9bF3pqjjI+8+VssNITzWmlV3NMaqORJntfYqLe+wtrdn+zGOnx9jjM0z6R6OnAu1XEi2vVLs7XaTdNuOWz2W2ti25qo+E5bXmr3X6yKl9PCXKSW5Xq8PffN1Skm+fv0qIncfX/b506ck/+wv7+3M8yzTNMlf/dVXud5muVzurwUul8vDnud5fvSxvC59cm5Hox7vemx6+6k3Z2HVL++Xe1KpzzRPMs+huC/y8vIiIdnrJsvU9thaF81e6/Hac15o+TLP+XKzZ32zr3tOID3u5Tnbnw/p5y1bsf2Rc5GWgwm3ZTP+1+tVrhKb7Vm2ql1be4AWx5T32+euSUKYH7Zq2cKevdmbf7P2C68cKz4vx9bS3xNj7TmX5Ti0p5f3/GfpGx/rq3/mqGVZv3sczd+V7Xny4i05nvUz4q9KtD23Z5e1fmdxNNazdBrJX2j1PXVa7MkvnZUb65Up/dKes2AvD11zRq7tCF7fXPLeNt47r1l1vWebno0dP+eO5+WPnh/P8INH4+aejh+NNhaesfLMYSt/mnmdltX5XkTk8+dPkj5P8uPlrdRKPn16lTCFpi2Oju2IPxs9n3ttbkPY2lh9ZvKcF47GJy28Pn00t7dHD++87MnB9/zOiL319pD6WX3u3IsW62jzMhpDWfI1Ruff44frZ5as8mzQqm/d8+YyU7q/L10Wu63e+6CR87jINgdo6V9fj9ptKz6wzq173xt49MmyvPG5Vudo7ksrd2Qv2nPWaO0xvTXc8p2j54ieXd3v52f7fU5v799j33ux/GjGmy+5SKjKJpmqOGfk/OE927bw+uXROLDWzTtGMWz93DpPnmSaxs+oWX0rN7h3/+2el4KIZaLaGJd21ssPam2P+jyNjzi3aGvMyoN6Y00rjhvJiVi/9fLbOtnu99pX3ZfW+j/q4/dwRHbLx2g27s3F1fFC7XumaZI5ikzT9n4vFh85h9Rt177H+ramZ9cxlnLGzi2enLuHc+K7Y/KnaZI4xY1/bb//GW+nlNval3u5cq/91nKO5j08cXRbRvk//Tthz3difd3L55qM7ZkoxmlovkVEQoibfOkS9fOcN0em7dsjNtja80bPit73Yi19LHpx3JnfMu/hkib1+5L83YIVU2jXOZ9gjYc7pnV+QynSn+uj38xaeGx1z7e7rf7U+eBaj6N7jPWOJF38eUKPPWvxhdb+vvNZfz9rnRuOtl9inTtG5Y6swVYd63n9XZV1r6lPqO/rc5lS+uYnqv1kWUSW57da85Ikxq2fXsLT/9fdjjFKSO9zFmvt0XvzZh67uMcPPr08e6+fdQw16kfPyJ972mit45G9VbOn7Ee8c+w95/xc+YKeD7T6e0ZbHjlH93aP7HrerPUyeq45m73fOVlxtDYfpT1r+OfM9u3Q5n2iUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FD4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwoVw+WgGAvaSUJKX0uBYRmaZJpmnalNXu1bJa5fJz67dX3/embMPqSwjh8UzTydLTGqPyvreP9bxp7da/y3at6yO05HjbaOms3e+V18Yzxrgq3xrznl2X9WtZ9TNPHW1etd+9NTrP86ZO2W8LTxmLlt335jGXC8H3d8U89tQao976KXU+6rta5VvrsGXjPR28Oh71Az1ft7d+rU/LLjw+2Gqn5Qss35H1upePq320aFHtx16O7n2lzppczabOatMjq/aTXrso73n0rf3bWbGOFjdoY7vHJ/f0yCzLsrt+7e9ae5d2fRRrj9Dm9Micta5bjPb1iP+r/Yl1be0XR+OwET/g6WfdpnePt+pb9zVd6jjIWm/edZh118rvWcsjPnbExkd9QWtdz/M8JKvWpXXPalO7n1J66JJSeox3zz73rMXSX5ftWNel/5qm6aHny8vLQ+Y8b+PbeZ5lnu+ycpvzPD/KXS6Xh4yXlxe5XC6b68vlIpfL5VGnbKM8q2bdymf1vXyd9W/ZRcuPhiXJNIWNv/L4KIu6vVHfreU2QghN+27Ft97YN++l5e1SjTP30Za8M+P78tnRdd1qz3sm6pU5I3fU8u95LW3bLNudXGtgNL7Z27eePfTWez3/tY2L3Mel9kG5bDmennxWS7dyTMu5aOV/Xl9fHzqWz7Q9vpbz+hLlH/7Dv13d+4u/+Ify9e14DmxtM1t6+3HPL5U2qOVctPisNRZ5X14uUUKYH74tJZGXl1eZd/6teKsfnpyJV56Vr2u12b0/zzJN6z5P39ZBSxeRdnyaUn42Pe5N+4+PLrR44RGnxGyLz768vLxIennaZ2/Me+t95Kxf28XDxoNuJz0/W5exzqfa+UKLT7X6pW/s7XXWvuY9T+V6tY316nv9VumXNL08Z6ayjnWGGV2jIzK8z/fkIEbaabXvPdsdiSuP5nU97Z8dt9RnxdH4xtKtPJtpvqfOm43gLf8eMWGtr5X3GRlXz5mgxCPLm9vtyRvFs0d7ctyefFydP2jpZJ2BjpytW7TOPb33Cvnayq1o5VvtlNet+p64sI6DW2XPorfmenVbv7Ux0taONm57cslW/ZYfuZfLzyeZpiAh5PvrWFM7N7Z4j3nz5sJHcuYWe9Tfk3+37u2Vv1ePdZ3yWZJJpsd4jOYNve84Rs6OWn0Plu9szYkn52bh2Wt6lD5jz5oKIah6evfHI/3P8np+3eMTy7nT3jXEGKX1yqc3huVZp5Wj7q3fM2P13nnXqntGfrVmb/7Ws45abe5ZQ9Y6b9lZLybRnu09t1q5UE2PPTZgs83LjtpLCOkhJ1Pnn4/kBLznqFbOyTsvdzvZxm29/c3ru6x2W7TmX7NXr29vxbp9WVof83zbbR7hrPixf5aY1HVer4vemcoqN9qPI3v9Xizf59VFWy89+xr1Bb9v9rV3XlvXIvd84vPdwvPe7Wa3PbpHjOT8s8ztudEXt/Xaz1j9XpR0eJ2LquPAlj6tXEiZW6zrtPsjcrstjzNSSkmWZZE53pW/3W5yu+nfd+T88dE5rfP7QzmXkK/X8rR3EZ69NRfRzow9Wb2xLhl5VzLqP6z3g7V+nrNwL470Ue+31Sm9k38azW3V+35K2hhubawej9EzYg/rm2HP3mLFMnv92F5G82j1Plzq5Hn/1GrP877S8y1lCOFRrl479RDez+p3nUbfK7aejX5nWbLHxx6l9k9l3jU/C2GWed7mJsp6Gt77vX2m7vNobrX1PL+jXqYo5Tca06T7hJSSmqfJ13VcoOHZV7d91OV44mOrvd65rXW+bZXRnu3NWfXab5Xbxou5br+t9jk0y9G/38vr6Pn7qdM0Pb8FnuIzXiv11sfq+dynp07vTKlRn9t7c9nSxa77jP1SGtuPvTrW7X2r+ajf8917zmtn7N31+WA0rtneWz8v/9fTY7Q/e/K0e2Vo5429R+wRG9fw6rw+322fjcQgvZzbe8SRImM++SxC4xu+0fzDCL399uGnd0n/w+DcCBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgEP4ICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwo/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FAuH60AwBGmadrcSyk172l1RtvJv7W2yjL5eXlt6ZWvLZmlDvm61iulZNYv5bf0LtvQ2uzp5ZVdl9f64qEuV8rRZGtjrslpyd1jQ6PUuvXGQ9PJ6rfVRl3PO+eWfE+7PWKM7rIjOoyQUlL7ad0vaa3RkbWiyfI+q+n5ndZaaK0lbSx6PmHUPno27W3DK2Ov7VhjZs1Lz//0dPH4wRD6f/eubmFv/0f8Qm2DHr/TKlc/8/jO1rx4ZFk+2trX6r3PU841f859otS39rEhhNW93O6IL+7pc3Q/O3sPbvm/kfvefXjUP7fat9rqMSrv6P5a2rK1R4zEp2eUyfT25Pq+tmb21BvFYw+9+M3jR3rEGLvjO2q7GWvvGN2L9voI77lSu+/do2ufatUr7aVlo9qzGKO6rmKMsizL4/p2u8ntdhMRkev1+rh+e3uTt7c3ERGZ56v89NOykvW73y7y9e2+d10uz3SS5adzn+d53tigVq7cF+trrV4m920vc1wkJf86HfVFdUzhqZdCkrKKZWaeXIcVa2gx/H2uRUTSqs0Yk0yKL6vre3Illm5H9/ve+bYlN9u4pvd9XZU6b+vvzWdo5P2xXDPWPrKnHW293G43ibGUlWRZFlm+qaCt0bL98l7ph/boGWNc9b11Dth7nrP85xT75Y7EKy3dtbVTx+b1/qDNZa2rZjvTNLnPF/We8pjz6+3Rfr739esXuaaXlb3UtmP5+3ocLH1Kyv7viSPyo2lqnwstOZpd7MlZeNus7XHkDG3rv23jaOwvUuqTNrYzJquQ2oh1W/FSjHGzDkr/dsb5wrv/9lirn1S/5MWa/3q9zfPskqHJEnn6Je95x+vfax91ZD1p8U6mtb9a85frhBAOnbF6Y9bLIR71W972PPfL/Spfe/JJR856nvXV8pOtucs673nvUdKaoxH9e9Tt7GnT8qNem/H6SU9uzJK5J5/mrb+HUXvsvSc50n6m5buO+CttT9mbwzw6BntzfiO2p5UbneNWHNY6O/fyy+/NyN5xdE/RzkPlmPTiEK19q0597sv3H/7+epNlua1isa9fv8qXefqWL8tx6D1vFt7u66k821h6tK7HY0X/+tHGyuvj13qu75+p88h68aLtN9b6H43xp0m+mcI2b2lxht8fGfMzc2n5tzaWe9o4kvOz1rFVNrcx6vt7ucRefN7SpdWmlaPqtWX57Na5vtanzs2UMb2mY2vv6o1ffd3qh0WvX0f83R5G7WzEZ3jljq7Lo+8Jj/rSFp6+7MktlbnqrE6MUWQw37KOU9bPjuYHslyvDkd55mm3MddoX3o20Yt1e+yJlfeOky1rkmkqc8mPoOBhCyEE13rYazt792B9fvr7mTf/3JLR0uPnPDfubeuIX9fGPd/z5KNaev0+4c3TtMapLKeto3qNtGLS3nlWk92jXhe92FlrqxcL3X1xqUtSfUOd467tvMzFWv6sjpXzb+t9dG8dxGIfyUXLOuV7Z08eVetbj/qdsofax3mWW8/2NB/fkqXdC2EbY2T/cWZesbUuzoybvfq2xjUlba3Z7zL35PNW5eepWI/3+ZjnWcKS80C+73dqyhxUZlm27y6v16tcr6HrX7Qz6t2G1u/g12t97TO0vNzeHEx9vad+TevdZWbvd5j1u6x8XeL1K3vOAHt9rpe9a09rvx7js+OTWKyD51ltEVnW8cEItS174hWv77NygVZ7/b2vLXvkvK3lZjw69PQqZe9Z872cWmYkn9Obl5E56OnkfQdh96/f/3bsY8eiamtFPBbCcz+p4+yUtvtJa4os26/7odWznlnt9GQe8XH3e+tvYT3jOmKXts37bfSMsTzK6Hpfl8njPD1+7/nuae++2MsdHs0j6e9Q2nX2ttnbpyydrPvLUn4ff2//njfVv+HyrP2WDr13CCOyzoqTPG3ntqzvn73vXlpo+bkyhrfq/EzD8HvP8X8JBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAA/ggKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCj8ERQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4UPgjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPChXD5aAYAjpJQO1ZmmaViGVn6PHpbsaZo29+t7+bfWbutZfp7LaG3V+ozc30Otbylbu2fp0euLVqclw3PdkrunzZLSNus569VvjaVXxxhjs3wmBP1vaVn6jrZxhq21xviILGseWjp7bKmmtQ5KGxmdY69elk8ZtRlvf/fMi8ffac9Gxq/Vpufa0sHbxmhdrdxoH2u78NRPKe3aO6y9z7L/3v7gbfuoj6ltzDMvLb9dPj/brsp62XfXZVNKj2cxxu66tvaAjFZ/j93/XHuBNh6tulrZ8vdIXyzf22p/xBYsG/PsZdb6b/mX2jZ6fahjYK+P1captDttPXlibWvuL5fLpkwu15qPeZ7NZy39ejbYi/vrZ6017Ykv9/q4XL8XS5zB0b23luH1v5otWm3l9THi28u5q/dAa45LPx5CeLR7u90khPCwy8vl8ij3+fNnuV6vIiLy8hLl++9/eLSRUpI/+7PP8vVtWvWjlD3P80NuCOGxZqZp2uw9mn3X5cqxLP3KnrOfZf9P217PWwjzau226p9JlhdjdK2ZI2ca8yx3WTbP5jnIHNu+rKa3D7b6Vz/bM+ej8aKVK0lB5PkzP+/LGtW3vOc9j7f8zEgs8ZKmzZxfLheJl/Wce/sVQhhaGz1dy3VRt6Pd1+qW18sUJcaluH/3jem29c+a/x2hbn9kXWi2YO0H2hillOT1NcmXL19WMv7zr38tb2/rMS99czkH5RivbGRJsix5DCeZJpEY1/pq8U8vxmjFemX91vnQGs+sW6zmX2Q9/578SKsvGr04y2rDul+OTUvHfju5bN+26/btODXLussfyXOX13vOYHWeR0QkhHzGfZbN8coZ+YCj9Ut91/KmR4zlzcfsGbPWs5FY1coxtNp4+hD9ueaLevuZth9Yfq2nX6/Pmv5n0vMFIYTm/nfk3DNKGbfmcbHGR1vvvfzB6Fmp9iNa/db8ef3qkZzrCFbs4D379vzwSG6jp+NI/mq0nZZN9/bkerzuNlvWb8tsrTdvP7znoCNo+2CWf9Y+Upf15oo8be3dx0b6NprH1+T8XOt99Dxr5Vb3xhEjMVlPVo+ejXpibC9lv/L1JU2bs8unT58kfZ7kh8vXsra8vr5KUP5vTHl0OWPte/akuo3eXGr3l2nZ5EGyPKsdS6aV/ztiYy1a50utTM12LfRzQBZ7+tayE8+7gFF9LL+Yx6jn70fOulqdkXK9tmp/Nzr+3rNMXU47X1g+uf5d532sfUCrH8L2Ha51VrfWn0WdA6rtYGQ/rXU6w/e1+la2W/63vtZ+l/c9sc57nQfO9Isj8blVZ4+MEaz4tdf+Ph/7lO89B9X3l2XZnCdut6tcJW708qyVbGNa+3v9qveseO+L0r95rA+eto7GQR7/cXZMUeJVtxfTprSOK0biYM9ZqLd+vWv/7D29budoTNPLQdTtfTS9fOgovw99Emn7aitubJULYfu8/AahJdvSq/c9W48zx9qy920bkxqv9WLx0fZbZ6VM791rfI3y0+X+XUmevxCChHTXdZ6D3G5tXbx+rBWDlrFrKzeixcT1sNblLDuv+7D+ruPp47x7Vy5b7xNae737PX/eO6eM2P3ZOTL13FLMUz6fe840x/Xc2t7WjtbfR7Xara9fLnGbi3r9JNPU9lve88njOujrqmcbnvu9Zx6suXnv92+5jaz/md+CLcsiKcXNvUWZ2t74Hd3HzqD85rC+b32ro91X+xImCaG2z3W5s2xhr62WerfswfN++lF2jiKSVmeMGKNM0a/rEf/bl+/zGRaeHFBrvy/ljM6btfd6x8uT8yvLabkn7VvPGKNMyfd9Qv5dq6z1LY9xvj1N97NrnW/c6jRmY57vF1tz5f02Q/tt3avb1GK9eu/VxrVce7XMHr34/H69btOy0d7Zfc+/wxkpt+dc0c6LTqtry4+0YtwjebLR8v6zmhVXbcv47GOM0f5sv/1+7rNZ1DzPslTlNN/W0+G98tm1Lufmif1zYJ0HvHL7+qXCT+l6PX35tz2oq/UfLh8fIQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDfa/gjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCh8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4EO5fLQCAB/BNE3qtYhISkmtU94vr6dp2sg4opfWjkens9rXftftaPdHxkDTO/e9lJ2vLdl1+3vGw6O3Nfcj9c4qk1Iyx6+2a61vnrFMKck8z0O22JJXE2M8VL/HWeuxxLMGQwintO9Zb1qdspxH33LNlPXLNsvrbFMj/ugMH2Wtv9a6tNZI63fvvrfsHrmW/mUdTx+9PG2k/J+IpCQp6TbUaq+1p2rlvLbi9RUpJVfZvEZbenrGtZ6Xuk6pS6/N3niN7lFerDplmyGE7lx5xn2k/SPlezHDUUZ1tuJLy49611xZ3/IRPfmjtji6LrT6nlhqb7zl0WXUN3v23pLWfHnq1HPpsefWfm8RQjDX7TzPm3tlWe+YtMbU6mdJK+5t2bF37S/Lot63fLeG18asOfLGyb3Yz/qdZcQYH/eXZZHb7fa4vl6v8vXrVxERuV6v8rvf/U5ERG63m/z2t78VEZF5vspf/3fzQ36MUf7Vv/qNfPkq8unTp0efv//+e7lc7qmlX/7yl4/x+/777x929fnz50f519fXx3mjHqcY4yqm9vp263lvLjPPuEgKXRZZlr7vqNvObXrncqvH8TK9Or044G47w82o8jz3PM+8/e75lZYsXxvZTto6WG16+1H766P7jMX6rLd6osaiR89KFt69RdurtPs9P5uCyDSVcbrI5XKROa19xtH8Tz3vKaXVPqTdL69jjHK73R62UPvyt7e3x/WXL19E5O7T8/WyLDLPN/nv//KX3/o5yTQF+Tf/5gcR+SwvLy8iIvLdd9+t/HW+zv5a5Nv4zPNjLj5d5OH77/Zy3xvC60X1kSEENW/VorWeW7G2FSNn/7zMsdofJpnnWea4nv+9/qpHyx94xifHUFZsti92X+d9rDa19rdyyz7c72n7ce980ipf3+vFTNoYefJGHv3qsbHKtO7nOOsuKz976tmbY0+c7olV632nNy+tOOLbjb4AACAASURBVMszvy3fXetixfAlta311lMdj5btjo5lr86IHO3Mpsm2xqT0u1725Hb2nt+9ffH4hdxHq6+9uHC030fyFD1Ze2SXcZy1P3rbH9XDs1+9V37OS2tc7r9LG/5mDzGqPnXkbL5tp32/9rd74v5euZEchkbLXmtbONpWDy0G9Iyf9tzaT1ttamc0z5yNntu88Vwpd8Tvj7Yzcn8Pe2UdyaGs869J7jFsnZOsz/7f3kNFf/s1dUxd3vPorclqPWutD8uGnzHo485TZ9HtelQXTQ+r7ui5oaVXuS9Ya6+MC/PvGL+NSUySpuf5PC1j++8otc/yrMdWHmd0/2/tpfm+9R6x1573XUOtTwuvXx9tq3ee3OOLtDi0lmnlBZ+5f9uGW7ayJ49+dP+06lr3LHtrMZJvsmT3rkdz3XsZiS8tWy19/J5cwc+JZnuj671FmffO1Vr5w55PvaR7frVU+3J5kfjyzHGMxHdZlyM2vHePDWFbd55nWRxxpRbT9MqfkQs8s7xWX/c/OVbs04uJvFPb843lPuyltQd42j+L98yteNjjt73tnJlTOaOdooYrx9yjtY6990f9gIa2L/fOVz1Zrft7cjs9+VtZW9k9efW1J6Yp8eZFfbGufj+EIPM89t1NnefozWt9rvCcjfSY6f77drtJuIXHs305kXYc2d4rynil0UQlazQ3bOlyNLYdydHtJRV53BFdXGtZUvVsvR7v/13nj9a6JfW/WjnNL8cUe90yc7HeM2BK63uj54a6/Z/j7HDULls6vof+TztZ32v5dauP5fdz9e/6+ii9sdDe41nvKbX7WUdP/Dqa596TQxiR55E59J1p2NpICKGbl6lzQ0dyalZbqm+KUWL8OWLWcxlZF3k86v2i14f37KMnPmzl+7d7X/bjW3n1PqHJ03X0vffy1K91Gc1ztPax3Nf7d4LbHEj9ndhIu63y9/9lHda65GsLK47Zk4dutfEeZ+pnHmV974xztSemO/P8bp09SzR/HGOUaeA9ovfMcWbOIYsayRV4+2LltPbkIOqx7+nmXVf1byvnptXJffH4ufJ5e+1YPlmT+7H76+8D419EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJwIfwQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhT+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8KPwRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhQLh+tAMB7kVLqPpumqVtWI9fbo8toWz15R+oe1UWrb8nUxqy8N03T438tmSml1fzl67rdWrZX/7qNVrmWHVh9qeWNtuO1vVqWNU5HbaBcQ625K5/N89zUN8bo6mdr/mr9zpClyQxh7G+JeefFaq/uj9U/zbdZc6TptscuPGvcg6VzrX+5/q37vXbLZ9pc9MbEar+89oy5Z7xbc9/SWXuWUpLptsiyLLIszzIxJolTlGVZZFqmZt+0fvTKtepoeOTkMtmvjLbd090cP8MPTNP00MVjS961P8LIuLXsuvbLZ6Lp6PWnZ+rSs8Oe/Xvjhbp+bTNa3VZM0PO3nhi4x17709rx7l09Ob17e9aTZ21aNmf1UbNlj8+2ZHvxrA1P7Nubn6O2Ucqx4qxSF49fFun3P8vR1pxn7Dz+wEsIwbSJEMJDnxijaw1YfSnr3263x/X1et3M+adPn0Tkvp9mG56mN/nFL7KsRVJK8qd/+iI//hRX9W+326PNX//61/L582cREfnpp5/kV7/6lYiIfPnyRb777rtH+7/4xS8e9V9fXx/X8zw/xqYcJ28MW2LZmFZXG+sY42M8a1ssx07z6SIil8s63Ta63lPYxu4hhFV79Z7d8oWan2r503u8o4oy5XpozUk5D3vPer3zUXnd0z23FcIkIvVeZseNI/GBVcYb71i+21M/hOBYA8f83YguGe9ctfbW2tfXfjYFn48Y8T1ee6x9gyYrk+dlWZbVvVynnL9cpiwfY5SXlyh/8Rc/PPSZpkn+8i+/l+t1Xp2hymttPuq+vNyihLA+g728vEi6rPM99TyVOls89yHfGbjEs0fGEL+N7bPc9fomy9u23XosRnMcLXs+ElOllNQx9J7fU0qSlHWfir1Pq1fK9eZdLDzxVG9P84zl6Nmjd+7TfMfR/MY0TQ+/9LyXXGe/Pe2VlDGBdSb3xN+92MKSa9msljs+Qi++qO2+t36O4Mkrl2eCUTQ/a7VTxt2ec++Z9HxI73zqySGV+6dXB8sPiKzPKl7qNeM5d3tzG3vy7j3OzAXttZ0j+4NVT+/XNs7w5r697NU7ly3t8qy1OLKPnxGz1G2dTb0vW3nWo2u3JauXB2y14Tk71nmyWkYrzz+K94x8VI4mb4/+R2Kibf5RJPuFlJ4+oa5e+oqj55Ne3d4zL3v86u1229j+9XqVcL3be2sf9sbmrWvr2d5ckXbfyvOt9RARKeygsJOnjYz7yD1raXTfH7Gd3hlIk3ckn+I9t3ra8sy3d93t7dMeG8hrqF5n1rmlzAWVZev6MT7vWftTPf6lLp58UC3Pw5Fyrfh81DbOiMHPZk/eONPKbWrnGytuGuFoLstz/8ycx7PsJCLP9x31exYPdez2VDt9O+vZeRFdJ/2eJ/Zv7Wme+1v569i3c5Te+BHPOddqv2WT77n2NOx5udvPKPVcet7BHPWXLV1EROISJaUoz/Pwt30jttvfc556zzyFdu89c1uj/mJP+2eftapaatxax0u9s+We2Ne79z59rF2mJbO1J+5BG4varq04zpLVYl01me9nW/q28vOajtr3BvW19f32du9e61LmnI+snzI+bb1L0H5remqxtDZcZ+XDahme/FupT0rn5gSP4I1vfg5dp6ltW6N75LZcaSey2ie1vXwdH+px7dF5tHJRXr/cavpMe38v3is3dnR/P/oOr75nzUFtd+V7L+sdWGs+rX7v6Y92Duid+1bfvcxRYqzj40VkGZtzb+w5evYsn4/Yi5aX6eW5LD9RrtFan/fwuWU+vBZ/9r8fsOiNdamHN5dz5r9L6I19vZfke6PvB8vifhf9PLuW+3Kdy0gpyfV6leXbsCxB/z752b5vfR3J+db+ZK999+LF8lariaP5+/vvuFlPnhzAntxKr9yR+KhVp51HWd87O4/cqj/at5H9oL5Xf+clcvwcNKJHxnMOtGLdkbOnpY/n7O6xg94Zbu/7oNZ969nttvWN+d9dHj6PGt9rtnTXciZ/Xzl/dQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwB9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA+FP4ICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH8rloxUAOMI0TZJSMp/1yHUtGZYsj+y6fG7D0rmlQ9me1bbWl16/RvDK6um3R2arnmf+PWVac2zJaunfKufVxzPvVnveNkOw/xaWVcfqW2s8lmUxn9X1e31t6dwjxqjeH13TGc9YeNe2p3z5zNLZY7u9tjxr02Nj3jV+hi/w6LXH/7bwzJ/Hrmu9PHPrab91/ZJELpeLLJco03RfU2EOInOQl5cXuUyXrn147Mfjiz3jP+IP8/O9PtrTbnld+hXLx1gyzyiX6cUBHt3OxuvXRcb086yXPWuqJaNHuW/v9bfetXMkJtu7343i2avLeGVkTfb6pcVBo/Zfypvn2VXOG6+XduKdjzPi+z3jerQdr79u3a/1fo+zhtdeR+V6ZLUIIai224obQgiPZ2X9sszlcpHb7SYvLy+Pe6+vr49y2eZDCPLychMRkRiDpCTyi+9fRaZls87KMfz8+fNG1jzPj/ZCCCubGz331GVGzv3WdUr3/63rrOtr8zZN02aORs+q1v0UkqKTrUf+78j5wlxPIX2TtS6r7XNH4n0ttt27N/d8gLZmWnXKsb7JsjnPvr1dZb7aZ9xyTbT2CitPVPuls+K4tr/LuiURSUP7aS3X2kdbObwWI/Orla31jjEO2a4Ve1jj2Zov3QfZfSlllXNyvV4f979+/fq4//b29qjz448/yutrlF//+muWILfbTf71v/5JvnwRud1uj77kPoYQHnvCPM+P60+fPsnr6+vDl38vQb58+elb/SAhBPnhh9/J28vlMeflPqC1U/qusoxWXkMbf2vs8/jEGGWZ42q/tNqy1rGGJz6x9m7PPlbv6Xva29h84edHlmXvjLe+PR2KM/fkY2u2seS+nOvonFnlrH0677vr2GTrh1vjOepj9+aiMvM8u/MuPblaTGD5/j22UPobrc+9vngZ2a9be3LtP604RmtP21s8eXlP/q4up/WhF4uWvswz5lYZT59G0GLA2t/V473Ht3nWRS+HrGHtWZ7x2xufjeh3NnvzfJlF6v1KH3uPvzniB3O71rUWK7U4sj96y7RyNHv2Sm/7o+vCmsuRfcOb1z6Sj6rl9+b8PdbYSA6j51884+zt22guvSWvJ+t5PrTGd2xtjs7TWTmWXn2rnXJ/s3KRNTHGZhzgyfkdtedWrKi1Y53tLdSy6fH/Pdrac1ZolfHMbYzR9H0t+xzZl+r/Wv6/lc84Mt97z+CaLkdjtjPyWNY5xDrrW2NZ+tl53q7DEKZVvqWW2/NfR/OPnnxoi6Mxaa/N1j1v7qLWcTTv7inXirdKRuerpfueOTrqx8+MCVrcy+Wyvjm2YpqUkizLIilt3wlp7+JKtLyHp1yPPfOwPQOW7wXG1m8pq5fr7lHvHZ71tdcOvXalvUdY37v/d1kWSUu7r3fbsp97baRVvzVm0zTJNE+Svw379kRCCIe+wSzxxgUWe+MXkW9zcOL+b91/r7zH++ZT9HfLVvtnrysPe+LjERl72TsuWj6hbV9jY7fnPF77iHK/q99Detq974lRYsx9Lc9J8pCb0rHzUdatfqe3xy60GPl56xmfj+bj7hV1Pz7qXz35yr6McVs9U+ZRWY8xC5OEMEmq9i2p3jt643OL+qz9XEv3e+Uer8WBy7LIokxzba917B5C3Ky96/Uq12vYyGjlVvJ4WfnFuMRv+7A1Am3dNV00PfZwRv5wlPIM7j1PefXMcxFCkhDWes7zrH57etZ7mZJev+o8YKb1bWzGOxbes/XyyGs85YYwyzzbvtPzDaWl35Gc7Z53kladOMdNP5blJul2Tkxu9dP/Lbf+rPUN20is2WtfG7c9PqFe71n/3rdcmswR3xHjIjGu/e597xid33If+ZYPVpq2YkmPf7Fy/Ln+nj31rL3hjH2gjo+1832rn57+t86KeT1N0zPGs87fWpx75h5h6Tm6F/t86dYmLfttceT9QL0naf0cOYNq9bMvWMLzTPSttNxuuk+3xu/nyp1r7e7NCbXyP9p1fc/KgdX2uSf2tM4JlgxL7jzba+BInv3pd9r+qD6nxDk+ziLvm0P6/eeciAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJ/wRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhQ+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KFcPloBgKNM0yQppWaZEJ5/76cs26ubn9VlahnWM+teXafWsVW/19f3Iuvca7/sm3adUjLHyNs3bfxqGdaYlXU990ew9PKU69lNvvbqWbfR0y2l5KpTlvPYZYyx2a7WXmst1LJz2fK6R1lHY2T+PWPgtQtvecsveeWVv71jNorHr47UsZ579K/nqOfLzvSxI7Le0zfpbdl2FmNU10fthzy2rencqufpY2sPbsko+1SuoxE/1WPUJnvlRv3HiPyzGVn3ozqO7mneMmfI0Nao5mes+GikrSxzTxxhyRopr2HpfWTvK9eRFqv39t5pmpq+3tPPkfloyc33Sj8zuve2zis9/+U5gxxB64ul00hZT3zlsd/eutOe7Y3nrPlv+QirXMk8zxv59bhZNmWtq+v1Ki8vL3K73URE5OXlRd7e3h7t5ftzmGSe06r+d99dJIT7Gsv3QghyuVwebebreZ4f1yIinz59WpXRYv/W+tDGKI+PhmVfqpyYJIT1/XkOcjNsaOQcZt3rPbu3sbVzLZ7xtuVtP5+rS/HLsogs++SWfrl8Vvt7C0+8tmeNtuSsyl/u9vCUJXK5XCTESfXz2u8eZ8xlC9/e0/d/5dq1ymykOs5jPV/fizcsf5/rl74ipSQp+HKJrbZFjs1znb/K18vyXGjX61VSSg8ffbvd5Hq9Pq6/fv36KJevv3z58ij/008/SQhv8p//p1+t2vn3//6v5YcfbvL6+vro469+dS8zz7O8vLw8yucyIQR5eXl52NIlXCSfKVt50TxG2Q/08ly1nFaZvfmmPP/lmfhyeZE5hY3+tT7ab68tWXjq5r3ZWz7rlWmNVUoij6LF/r6H7Tyl1TyO0KrTin3qeiEkmSZ57Gl5T4lxf66ltcdZvq3XxhKixLi1MS2ebMWUGpYedUxRjt9k2MLI+W/Ullrj1RvLkfjYc0aw/HWPst2skxXvjMQulo1pskfkts4YnvrlnvWHQm+ORtb1HlpnQ29Ov56XPTn3HrW/8Laxd8z25AVH5JV4/PiZ+TNP2z15I+PRi5+99Us031fSy815zkKtXM1ITL+nry07ODqvHts+O5dX6+KxNe8cefImZ8eFGp5xLfXdvi+rcyLbuEAbl5GzbsvXj56bvVjrvt5TQggSL9t37vc8SGjK0n6fSe/sr9llL49mtRFjLM4Q7TojOUjPs175PXkKry229veej9oz954c/1n09qO9aGPQ8ofePKdm1/l+CEHmeXtme3l5kZTC5r5nbrzz5zlD1b+tNdo6n3nb8T7r1dmTI6z1P0snrw7e9af18Whc3oqtvDG0ZRcxRteZSM3jd9nmYlvtaHrMUWSatntnLwfS83ee+dxjb/05eJ/z4l6O+iKL0bzOIx4LZVvpUeZ57/7feZ4lzG0bCEv7/DAy1nviY93un7nb1tlqTz76yP0WnrW7B+usN3I298r2yNqzd9uy9+9X3nPviOx2zjM/O9c2jmDtV9Y9b9m1XF+MUevSsy2v7YUQVu/yrDqbuLTwkZaZjJ6Ja7165ffsG3YuYB0jWLY60r7Xrz79dFNcl1aMc0Z/zqC3VnNuO873d2Zpit/qffNJB9479tov9/g8FPM8y/TtO6L7+8ZpUyeEYM5pvt7kWOa4+dbp86fPQzFlbdeq75nbe0ArP2Rx1nfWll49PTQf6MlJ1vL9++ga7d2fpt9d5lN2Lb/1XtOKQzzvQkfyAb19ojXXdTt7zpue80g9t9a7CO++0pu/96LUb5m3edcQ5tU3aSPyWpRzUc+nNk/LskhKudwzRxpj+xuSs/aPM+TkftXvSvPv2j97chWtf59m5Z5T0uOjo2dC7xi1dM770vr5++b4j579rLHx+MXSp1rzksuN7C11WTsGE8m+zvpO6cz3CD07OnrGHZVvFbfy370z6Gg+sHUe8ciw9CnPFOvnk8zzLHP0xAl6/7192FNmXez57dweu2jlT7061WW9semRM49XN2sueu9Byv3H0ifOYeO/bstNQvFtqN52vo69EOoPmp83igMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo4I+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIfCH0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAD4U/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfyuWjFQDYyzRNMk2TpJRW9+vfIiLLsqgy6rLTNG3k1/e9aHp4ylv1RuWV+lv1R2W26muy6vHsyRit25KTUjL109qMMXbb6OmT5Wp2OSrzLDvw1m/JHRmbUUJ4/i0uj43UupS/vXrmcpbv0PSwdOutsVY7lqzy+Yjv8dQr/cKovl7b683jyLpsybPq1DJbemt+xjPmR/YGjb37xWjZ9XUsxiflm2KJ9uwpVj1PmSyv9AktRu3S2u+naTLb3OuHR3xIT6ZHlncM5nluym35Ko9/bfmWlNLu9dbTbQ97fPce+aOxjFd2T7ee3yvXm7Z3nDW+nrH1tDVafg/luNTXLX1qGRa99WdR61G3nf2XtUY1f2G1r/nCWq61x9Z2pLWxN9b2+jyP3Xlssm7Pu461cpbceh68sZEVw9b3ynL5HFxexxhlWZZHuXJuynGKMa5kpZTkek3y9Wta2cs8z3K73URE5NOnT492LpfLQ9anT58efX59fZVpmh7rIoTQ9ZvW2FvnfI0jcUzLflp2MRpjbOVu7bEXK/XsvB4He99etSwhhE3brf3ZE5O34pxynVhxRKsdz1lPy/lotphCkmkqz61J5jlImJ/3tLatudD84ch+Y1HLyPPlWUshbPcHbc4tvY7EJrmtcuzrud97/tGYpklSyO0878/zLHNcx0Z7cyEtu7T8tVY+hCDLssjlcnno+PLy8qj73XffPeqUsrJPFhF5fYnyj//x2+PZNE3yP/+L/1berms/nsc8t5Wvsw1cLpeVD/p0i/L58w/fSt7rfvfdL+Tl08vhXKp3PbTiNU/Z5+XTx7VipZKzYnsNj78cbb+3jh6PClvyxj33aufH6K3ckuVv1djpusiyRHX/22OrWqxr7Vdle3ntnOlDW/ujpl9NeUbpradebsK7drx44vY6hi1ZluWhT7mX1XrWfngkttTonYPOXiujcah3X9sTN3s5006suLiXmxaxz7o9/Ubz6h69rBiu1jWEsDrDec+3Vt/K39ZYtmzGM86j566W3FHb8badi/XOfK32tX1IO4/szQ9r+njQ8lyaLt6zmlZXpO8799jEGeWO+C/vvubJE/TW2hG/4uXIumzltno2n+tY53Ev9V6u4YmLLB2fseHz2Xrd63kETU4LT+zUijVH2GtP5VxNU3FOUMpZMbBlMyO69my2Nde1zfVi9brd9Xw+Dkoiku7/L91lxBhFoq5D3XZdph4/L0f8wRn7qDUvVl88tlzvUXvyY2eNyx79R9oox6k8H+Z2rbhLG/dcr6wzTZMsyyLLsr0/omeLOtfYWost323lyTy6HD1PeOL1o3FAT/7ZZTVGx3U0RzJit6PxfWvt7dnf7nZW5gHXdUbG+mmz5brM79L09VCO69F5Hc0vWPv1du9e1zkaR/c448w32s6eXKpyt6vTaM60tIuR8+Le/jzrZVl2DLfnDNvKK2vxQqtPLTvZEy/0sOzljDxWLc86P/TOUDVn5uw863IkJtP2iWVZJKXn+6vyO4QYo7y83eTHH3/KEkRE5G/+5m/k7eWew87vsfI7rPIdZvmOy/oOee+5qjUGpc3vnQ8tx1fvK5Zu1v3y2dFvvjVZj/kNSVJa38v7bi6fz08lvTxVvq511+Z2Twzf8m/Wu3E/7fxBS698Dj+C15da35mN2vGRvalG032a5BHETVMuM5ljW9uI1p9W/Jrl13qs3x9reurfVLfutczMm2fS9V9z728p5/i+NrpGvL7YE+uf+e9YjsStmi7rc36u/5RTy2p9R1rbS/49z/Ow3lZ5S/8Y4+N6ZK5H48Y9Mut+7fHX1rvTPbLKMdz7HV8m24gVa3hkZDmWTp4+zlFk/W3ct++oCnvN7Xj67Fm/3rH35B9qHS1aOVtL7p5vCEoRI/4r/9ue+p4mIs162Unscc176trm1ntPjItI3Mpo/Zu/s2OB3nshzQ/019pWRi9P6Zm7Wo/n2PrfGXmenZ030coePWfezwC+Nvf0sZwvK+ellT9C66yu2U2MUSbj3VFvrI++g2jRGos937gf2ds9cd/ZbVuY//ZG4ubZcrvJ7Wb7Hcsv1nZSxovf7tzXTmOviUt8nL/PiOn/S+bIiR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgMPwRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhQ+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KFcPloBgDOYpuld66WUhuVYsktZ2nWvLS+1nFG5rfLas9ZYppTMfrfkWjLL+2Wdlg7ls3zdm39NT08/rPZ6bXjnLN/39re+3xuz+p5nndRyNX17enlkz/Msy7I02/Haequfnj57baHXrvZ8xKe02tfuxxibz0f83Ui/Q1j/3bWyboyxu65H/Pyo/2rd3zPuR/aWPXtAvf48e8vdL4vUzU3T0wZb+1j9zOuLrfKj/ri2l/xb060lz7vWvP55Tzzi0XmPv8+yNUo/YFGX6e39eY2Xc2HJa/nrUf93FEvflq87omPpC2OMm989PLaY19SInXr3wJZf6Pkh73Wty+j+vNcHe+tZNjO6v4z4e49taNR7r4itf/1c5B53laSUHrociZuO0Iu/ejFAb78YiSF69Vtxt8cuyvHW6lj7vTbHKaVHDL0si9xuN3l7exMRkev1KrfbTUREbrfbo80Q3jZy7/9br80QwsPWlmV52E2M8XF9u93kcrmnn97e3uTl5eWhW9nHEIIa+5XtjdpeXa5eF9M0yRzv98shnufLQ+fWfron7hznOQ97zx0e3/+Y75BE5PgZsOdnWmu4Jdfql2UnrXXRimHzb22eNX9Qt7E3Xsz1rPXvzRPUa6uua8fgk/ncEyN459Vzrd0bjQsteXe7yL/96+usMqVdxRgf83W73R73b7ebLMvy8NfLssjXr18f11++fHmUu16vj7bz9TRN8vmzyG9+8/2330FCmOQ//se/k5he5fX1VUREXl9fV/4u++4y97Isy2rNlzrnObnvL+t1WJ8RrPO9FrPUWPFma3+38wm+2MUzl3v2ola84MFbvrUP7geTqAAAIABJREFU3H9PMk2pvLnrbPq8V87PU9cy5zNyZrdirXJee3vda8ixyVO3Mnax5rnl/zw+WdO71j9ft3TQ9DiSf+nd13KuIYTV/XpdH2nXs6dbckII5jmplDVylrL6VPqonl4a2hnKixa7ttgbf1p+uMxb7MlZjD4fwXpHcIQ961vE3m88Pr5+bvWrvu+JmVr9KWPHPWOp5Q7qHH9L1/LZSFzo1clz//7sWcZzhvC2PxJH9+idRaw9RPNd1rmoh2cfHNlvLJ3rM01Lj/z7SH6qdWbbY09WO6PlrPzTnrNSq7+tfdiS6d3HrTbL+94x9sQ+PZ+nlX/mtZKEsD2f3O/ZufCWbA+avdf3LFkjfR1ZVw9bm+55ofvPZ/3SFku5rRjBMxet3z2ZtS0diTVK3znH+xn6fj+JSJQwBUnfbGWeZwmz///emJWP2nMetMas5yNG5sLKr7XaHPHHml71PlBfW2ulfUZtt1nXaa2Xkb18JI54+qL1+aacA02vEHI+uz/vo/vdup1g9t0aU8uue77tWD7CRrPTen4s+/PmDDx6985TvfEp9a2vy3qtWNGqsydW9cYVR+WO5my0svXjlJJMsrWBx7NGbiCEOvd43xPq96kae84V2v2WjmUb1jl/O37P6xDCob54crxn4Imhj8YETxlZzjEfpdli69zhkX8cX0x79GxU1zkau52ZW/LIb51HvDHP6Ll7dGzbe//9G4G0HNvPRshyS3+S/UN+L1W3/Xpd5Bd/9XV170//9E/l7aXvkzzsyfNZ97XYbCT+VZ52derl1kpKXfIceG3Xsv+U0iaWiS9RQrjLv++Pt/teme6y73M99j1ciZbXytd7zpEWmm8el2HnDz4Sy25Gc8Ge9dOyQ4v+uqnl3vdlK0Z/j/cFIk+bu9u5/qy+J7JeP9q9ug/3d+9bOfW11pb5LIi0bLPU4cg7Ai0+1b5P0X572xDZfsN4Jt5zmEdOKSrb8YgfL6l9p/ebiqcuun2WcjxnCA3vXmKVf/rOc/PHHkbtSpM/evbJc3n/TqjaU+MiUsVq5fcMNUdixbF6W/vVcj6eeSpjkj36jM7T3m+tS7znFu3cVxbv5eZGWa3fSVtbtu3c9ennu3oy7nLafm00l+qlZW+tPFd67IlJrWPp3LK91vuv+/985b1jNbKnenJIXkZyo885WN/T1r53XfWeW35Fi7U0RvSo45t13ugpz5ML0HzM2fmO7TiW8p/PPN9d1b/3vHsa8c2azDO+V/KWK7+LzSzLIouSW7FkWm3EEJRYIEno+NXn4/fNi/2+8/NknwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KHwR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgQ+GPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCHcvloBQCOME1T815KySynkcu3rrXfXvl1+WmaNjpq+h/Vs9avpa+nLyE8/35SXV7Tx6tvS65GSulRLqVkjleJZ3x79b39iTFu6pd9HG135NqqW45Zq0z53xLL9ltjOU2TuS5bbWmklB5jWI+vtoY88nrXFq2x99qvdd3SxTPPredWud68eOfKep7l9tZgaS+9ORkdC8v+rfsWe3xHrVdrX+n5zp5sS67v/tMGvW2Wc+bRQ/Pdvb62xmt0D9bk9GyptcZH4oVWG9bvnqwR/+nRReuz1d96T2zNRem7R9dhuXfWvn90PVpxS2t9eua71Cv3RZNdlpumSY0VvH3o2Z7Wfn1tzUXr92g5T6zSqt+rV9ft+ZA9PkOrU8etlh+v7cdjc3vsQqMVi8YY1evemrLiMI2ROMKz55V6WvetMiLrMS/L1OWPnB3rOGo0vhRZj63lO2vbytcxxkf92kfVv7Psy2WdFlqW5X5/fpEQ1jpfLhf5/HmWEILM8/zQMcu4XC6P+/M8r9rIOubnPVpxmwcrpl2WZetHr7dv/X62d7td5TZ4dNt7vnSUepT17r3TNJnrJdO3T/uMorXfyg3sYTQmPBoTWX7tmm6PdZF5e7vKyzK+pmu0GCeEoPqBXCaPs1Wubq/l4/JY3H3E466I3NfKEtZ1RvzYaO5Dk300p1LrvbZXWV1r66se41qGt13tWR0rlv7Syg/U61cbn9p3vr5G+fM//82q7X/yT/+BXK9PX1zHhNp13e+XW5QQ5tWzl5cXSZen3HJPymh5v2maHmuspUuNlQ/U9uStPDt2LsvuyTPVclu6W7/3tjFin8Wd1bORuFt7lh9nMdqc7vHXWv5Bb39tC8uy7J5bz1h4xszDdNmek0fnYyRGKv9bXls+1rp/pH1N1kjOUGQsrhzV02JPfNrbu6z4TEQ2MYhHJ6u9crxaORjr3NSK9XIfPHkhD9YeN4p3ffbi5r3tt8bZq8voXlSfgVr2dYT6jNV63sO794/qZbXh1WxUL2uP6+UGRvLSWtk9e7cn71ve88zn3nefGq3ckZWDa9UbbefMOkfzkHU8ZOWGLL168+I5d3vqudaesdfXtl73q9fH2u+NrjFLZmsY9sSQ3ry4d8159gdPbs06i6v56mjX8erU0rFlV61xHfWx2lqqr+//zffLXK8U18kdU1k6e+e7lNdbC2XZ3ll/hJE9qNcnTw7COkd6xrxn41qeSPtdlh31/61Y0op1Nbso8z+l3S1Lkuv1upL7048/ydc3e57yuGrjHEJQ79fj3TofeNaC5zzvzaXU9zxzVa8Na115fax2XdPKDWtj7t1jev5Pu2fNq6cvddt7Yr+R/W2E/phtz8yl/rX/tPSMMcqyLBLj9twe53Nzh6U+2rV1b2RPCmHrT1vnfu8+MtInbe/32MCIvdfX/yXRO6vV9GL0OsbbMyzec4CXvfPtlXOGXdRxyQgj9c6007WoaeX33qsvXlto7zPH403Lb43YqhZTtM62Fh57u/viIGW2SrO5EMKuMbbiI+39XU+W/mwdv97v3XW/75nbeiPxpNdee/G9lme4/+9Rcqi9mizLM0Ut27Xq77E5b7sejvqnPfV7MX0rZjmbbd7p+ey+ltp5F4u6D/M8yxz7/35Gj+v072o9ORGLM/6dywje7yT36OXZS1pndk98W35zWRfPduL5lrHGeg+6Nx/j2T81RubHWzZdROq3NVo+yMMRP3VGfOtp/zGXYfq29z8JYZZ5Dof9rUj/fZCn/BlYZ26NXr+9+lv5q6N4zlk1pcp5fp/P2ntYmrSYJjj69Ixn1vFW3Jz9tnkoOwbz5qmOxOEjNuo9B5TxYUpJlhAlpfVcxRhlGvxM38qtaeXy41LlXj4jf29ZfkOqtd/D+j5gJL7I90f8xDrGFhF55qPPjN9a5wbrbHA0hlDjqsv2+9jL5SJz8p/f9jIqf73W7Zyx1dY0TaZdeb/tOSuvMCqjlX+01rIlZ+SdXivHXJ8xbrebXBoxVK7zqOf+4uUPj/N2eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAd8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4EPhj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAh3L5aAUA9pJSkhijpJRW96dpevw3X/fktH6XMr33RxiVkVJ61KmvvbJzWe15+UyTmcfdarO8Z11r+tW6aOVbnDEXFpYuPRub53m3bM/9eo5aY9Yaa08dyy5aY5OfZ3sZIQT7b3TtkWfRG5eWjaeUunbaWyO9el6dPM97897yJZqMPTZlYfnhll/wjr+nXyWevrRk1np516jV53JP24Ol691/iWhiPWNb+gLLL7X8hdXPWucj+69nHuo+WDGFp40Rav+q+VtLfnlvxB+2/GopW5unUsd6TEq5li2U90MIqt4tuSXzPKvj0hsLa4413evf1jPLRrPu3jG39LLWTLnGtLi3Z1O9sajbs3zxGfav3df86KjOI8+0sq3ymi4je2/vXkrpEUNmuXvXes/XZvnWuix1sHRvYfl2Ta7HnqzYuuxzCMG13x45a/RszTPHVrxQzkNKSZZlUdup14V2XZ6Vp2lajd/r6+tD9jRNK7+V71/mICHcNnJvt9tKlxDCQ3Z5Pc+zen25XGSe50ebpW4hhM181jq27LpG27s0mw4hDMnttTeKZpfLss11xBhlimtbLG2m7md+1orJ6ranaZIlxGqcbL33rKXWWaeloyXPU65Xp3Xu0OwjhCCy+PpQ2nTta+s1LyKyLMuq/XLNteLAOu7o+a3SX80xSkq6LZXttmSWvy8XPd3sndeM5vdH50/7fS8/iUhfB088Z1GuwVqXcv2U60Lbj8ty+Xnp45dlefjuek9Ylq3f/vHHn+R6DSvfX/rD0t+Wupfl7m2U/iPr9pyzcv68MVHZ33o8rDPUiO997sEi5fzf/atdr6W/1f6I7XjyFmfmwlqxa0+XHGtp/Y5TeuwZufpzvNtt5/Y9OntkbNf9Uy9r/bXaLO+1zkfe3Fstr1xTPTx5Eo+Prdd4q19arFLa5BFfWWLFvkfJ+rXWkXWO8oz30dxRLw+u6Vba28/lO7xY58v6XZ6Vw7DGw3NubOVDWryH7WV9R+Plck9v5Q+9jOQrzuS95Wtt7R2jlsz6OmPZsiVLO+fWsrXzn/XM0uUoWl96djjafi9Wb+lV//aeLy05Law4wKPXiPyez/KewVrn/vKeZa97zuDeMuV8tc5zo/237rdiOzuu950PW+0esS/P+HvWTuvc0mqj/n2bboUPeuYDp2vf39b7uJbP81z3sM5jXhm9NV6eY/L5MUmSlLbvMDxz1stNjujuGXtPzNSj1tPSe0THveWssvU8aHOi2cpIjkJrs3e/9retfJ5HB+190TynzXq7vLxITPvHtGcXOS+lxevWntQaV895tKfXSKzbi+lGZbXWnGe9ePJi3jxJWdYba43Gzr5865Y9a8/jo/foYuHZS/J4hVCPW3scj8Tqtf8YtaVWrPiUv7qzyZkdzXd4ynp9wWibo+tbu37GibXcUvY3316593qNad83xxglRnv+RvZeT2x4n9Ntmdp/9GKcVhseXb1ysg5HzvlW3+prrz5HOUNud8zDtkx+72ONp+d+z9d6vpGOMTblTZNIPS1H81qtmETLJ3lj+NZ49GKlWq/7o3X9Vr44+2rLnsuY8Sit82SMpQ7b5ykl9R3fsizDa6HOpdUxvu3DpfP8nLW+3VNtrP31HmPYdTxrYdSv1XZW28zIPp/lj7wr2mujtf2X9zWd9vNca2sbepbQ1qtnz9HkavdqNP+eyeNZv5+ZpnoNbHX22tiR+y1S2p5vrXJnYuWWjrzz1NZy+b1cieUvvf3s7T0ae9ddz1/skZ/S+pvGe/1FQiOvYcURHjw224p9zv53UBotv/Fe/w5rr469XKc3N9F6dnTNe/xRKx9Q9rXlI1frO0wyTVsfO+LbtzGK3bZWVvMppfq5ufV+tZ2vGO/3enGphTcn+17U7WqxnzU3Hnutv5Wpf2vxoae9WpYmt5Rn4Rn/1hlwJB+htN4tMeIjND3Ojgmsdkqs+DN9e3/0rfbq+8OjNr9nnFqy1vtMlNvtJrdp/HuWIzqU/62vtbIWvVxFr42ej7fn21/WQ+scVfuCn2ueft855+tEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ3wR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgQ+GPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCHcvloBQCOEGMUEZFpmjb3SlJK6nVNKcdzvyXL22bdhlXWIyOEYLbb61tKya1zCEGtU8uz2uzppJHbmabJ1K2U1+qvp5+esfPoe/R+fmb1TdPNYyut+toYjcxrLSvbS0ZboyUpJVmWZfV7L7kve+awrF/fy3qNzEsLbS1Z98u14NW5LO9Zl5715vUXe8pp92u9j9hFS0Y55qN7Qn6m+Y/aXiy78rZTj2v+fbvdHmvser3KDz/8ICIib29v8rvf/U5ERP72b/9Wfvsf/lpe/u3fyfW7Sf7ff/6dpBTlX/5//7fEOcj/9b/9nyJfkvz5n/+5fP/99yIi8qtf/epx/cd//Mfy+voqnz59EhGReZ7l9fVVRO77Q17zIQSX3dU2N9L/PK57907vWrXk1P6s9ndlO5otlP3w6Ku1abVdl+v5Xi9WH1vU4zzPs1mu5zPK/aHH0f1Duz6K5dNb5Vp+xapj7Stlfeued9xa89Xaez0xVmlnR2Mqj79t3bfKece7Lttbi2Xfc1vamtF8SatdEXv9lL675ojvsPZZ7d7e+RS566jpb92vsdaYhaaTNk7aXLZ0EBG5XNYpmnJ/yG3kuS/nv3ym6XW9Xh/PlmWR2+0mX79+fTzL11++fJG3t7dvAr7I3/3d3fbucpL8u3/3o/z0U1rF+K+vr4844NOnT/Ly8vK4n2MFkbUdhxAev+d5NmMH7brGEyt7/UCLo7GnFl/XepT9nOetH63Xas8H1LK1a5W5rdtofN7aKzw6jfjn0T2jdZ7LdUq7FHn23buuy3KWT7LWbq1LiRVP1e177D/GKM9id598u93kNiVXX98bbdys+fL4cOucncd+NN619kotxrfu1XOe70/TtJrrXO4+Z88+5zLl/ZSShKDv/WXepexzjNH0w+VauCypWsPbXI6WDyqftfIWWvsl3ril3B/z/5YQNzHR9fomy9sz16npYum59hHPZ8uyqPq3bDSE8NDZa4ejOZw8x/ff67IxRpmcsV//rC0iMn3b8+2+HMkTaZQ2kNfWfe6f97J/02R5zidePL4zz8W2T1NzDViM5vNa/qv3jqWkdU4vfUGvH3UsrLU/crbKdXp5hGmaVrLKdT1yTijbbP3OeM9atW49uS3ZR2PaEms86j1Kq9M7K+V9rZ7vXj5EW08jcbAWt42cD2sfdIQ6BvPYX29v9dR5r1zaEbkjeVOr/a0+2zZ6e5L3TNp7Xvuk0TzVkfzJSM7P+r1nfy7l9OZmRC9v+1Yuz1PO20b53JPD6OVntTbPiJs8Z2NvG6M+ymq/pWN9bdmiZx21dSzbufvzGLfxVIxRJLZjrRatHIR2Xfex/D1yXqjp2tWllH9/Ps+zhMvz3Kih7Z0j8WzP32tj41n7uVxvLNZy47f/JYnxbhcpRsk9v91uEm7PfGbdXq+dXpmWrHr8R/d/z3lc083rQ/NzT95y5MwzYh9aH3v1euNvtd8/G08rfcocjxVHeubi5SVu8hGfPr3KNPnPrt5cS2vvtvYzy5e1/LqWj3ovtHnz+FXr3OGNg0rqtTx6/h8td3RMR2Pe1v0zz6UZy+by+bTsfi/21+SUebWeH/Ds6x68da34smejWm7QY9c9H9DLB4zgjZl/Tu7tl2PQfs+eCaH/zs/CY7PePGSpu6/8sTY1tL5oa6vXhhXfte6dqfNROXt08ew/KZZlpk291r48qkvJyHdcLcph2RMT7PE9o367lzOp35Pl+9r+EW6LLEtc9bt8f9E66/byDvM8N/fhXk6zto/6921aivfLz3fL03LX66cff5Kvb+1YO787yPfmeV7lj/N1Kz9extr1tdam9vs9GLHf+36QpPbRI+elGs+5Zc/3lz27075bGhmHh7wgEsIkaSq/H7rvm5f5IuEy/q5oXK+pO4+Wfy3la/uVJjfLqu1ak5nR/v1U/e8u8hp93ouSh6v8d0BWG1rf6ntnfF9h2djId3feMhre/JKvnfxMPz9qsrR3YiL+b9O9jNa3fOnod73qeIVpk8Oof9d+qvymxcLzTdYearl78unPe+V9X767zj9aMXUpy+PnyzLLskhKWcZzD45x+92Ppeve3MEZeN4RlL9bZ/m6nLYWtL3WOmeP9FuzEWs/0trry7fmYd3H1jc+tuytLz9y5ij1Gblvla2LW+Pqsekyx5tj2rL/0xQ37bXklZTrrVzXe3xfi5FcXsY35s/vs0Tyd2htWWfF57Vv2mNzWnzVKvv0myIi6dHfvf/uotzrRv8Nbkue5vNyXqr3jYvm73rnAi+tc7d1phm10V5eVT0rzdtvS2/LTW63Y7GYyDYHZo3lyhfIPnv6Q+T4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcgD+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8KfwQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhT+CAoAAAAAAAAAAAAAAADA/8/e+/3IsuR2fozIrO5z7p0ZS1pIK6xhYQ2vXwwYMPz/v/lvsF/tF+8KsLSSZubec7qrMsIP1ZHFZJIMRmad6dHq+wEGNysyfjAjGAySmacHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwq82cLAMAZct7/HZ+U0npda92V8XIN7Z5XP4Icn/dr3fPGb79le/lbmx9PRtkXH5ePqZW3Pqy+ozJov+Vz8XIJlzM6jmwbLff66skX6Ssip6bjWjtrzXgbay29NY7sMd53KUV7pPC8RHXJai9pe8SSq7XX5Ms5d/V/xHZo7a116BHZG9ZzcUopof0mZbbKvfaWLrXfI/vDGsuzl1a5Z4es+bPOoWfaS9mm9X25XNby19dX+umnn4iIaFmWTZvL+43+1//j/6T310r/39/+SikR/e//w1/TMmX6n+jvaL5NG3lSSut+aeeFtjbWeeVdW1h1vP1qnXvefHvr0lsPbTytP3l2WuNLu8Lrtb6maQrN6zRN5rOM6tkRP0jK5a3bs/B0rPcMmk3QdDwyd97Z4ukcr+/JEvUdrb0ZteejfpHnR/R8Gj4v8lr2p41h0caO2N8zz8v77Z2Blp3i6x/ZLznnnW0fgctxZH9G4pgjZ5o3hrUWck5bG22urWftxZXa3pP2W8Jtv7SDlv5Y/fPfrV8tPiulrOMsy0K3242IiG63G72/vxMR0dvbG33//p2+fftGRETfvn2j6/VKRETfv3+n79+/ExHRl1ei9/ffbmR4f3unlF5omiZ6eXkhIqKXlxd6fX0lorsf0q5fX19Xv2Se5831NE3rOZVzXucv57xZv2f5/tyP0epMpZ3Bj7Kcp91ZarXXdFOud+QssfwFayzNvz/D1mbWzXxosvX8plG5jvjH0dyOlSeInDeUF1aeiKiuejvq31pyEe11RpNZjmHZriO+y6PaYw/K/vm+9MY4Eh9Y7SVae3keyrmTbZZSaFkW4sNcr1cq17zr78gac6y4MXL2trbcx+D2svU7z7Mp58ul0OvrdVP+m59/pvcXPe6Q41s+TK4LNV25963bCbk2mo33dNayK96ZypE6XGulNBea54mVEb28vNKU/DmJ6nwPzYfiuqw940jfGlr8fv9vk6O2Dkx76fm6jVIKu3+3l6UUSsqjHIlPRml+kWY7e76f9rtH9BzT5nbf9uHvSTswKkMkNvfOeM+H4uWRuKm3x87YpdEx+TxY8YTWr3d297D67b3Dsc7VSKx0di95Y3uxb2SdeL/es7R5PhIfRNbf0hcv3o7IEYkZejzDFja0XIu8Pju2nMuz8ltn0ijSho72J3NLkfmL7E95X+6rqF9ixV1n40Pej+cXaNfPxospNLlkmWWvLJ19lu4ebXMkTpL3z5wLoz5N5AwfxVozLTby2vB1tfYY98E/RlrHklMR9SMjRM53y/Z49jYSE/B61h5P6R4rtZiBt7fyZd4zesjn/xG25Fif93lI6TFXPKZV483BuDHiq1htPTw/jcsZ9QOi66L5ytHzzBs/0uao3ozuMa2tV96Lv/jZMxLHpFR38e7b2zu9v+/1znq/38pk39Lv9vzaiB8Sae9dR/DySpGcQ9SPsvbOmfP1CFHf6NnjjI7nxXqje/mor1tT3Z3n0j+w+tXGuL9L2pZP00RLID+h5XZGnmvkHInc3+YG++P/KD0b5Uhu7Gi/9zJtv/2YPWjZwdEz2K+zl30kfo/GBEfseCTW7skjGbFXZ8ax+nhGznSU+3quv4jo49vPOvYOY1S2I2tm2eJR/hT2Scpo5Tutb/443P/LH+cKbxLxvb0zVsttHPFPOVymNS58nejX6f7+cZoq5bzQ5TLT5eOc/Onnn2i+5J28UV/fmnNNFg3Pptb68KV/UCrL9Te09xF3v52vqZ2D4JRSQnUieP30+ojK4OUsvGepldZ9wufW+s7yaG5NjLrLF8p+7+8h4z5a2wtaX61Mnh0Rf1rahP24+jjauo78myPO6PsyzpGcQ2sn77X9fQYv56jZss392203ftOTyDvNniwa3vvOSBtvzF7+0CO+3+znt3KQ3nfxm54HZe61H8V6X3Gfz/Zbz9f0+tLqHt2/jQtlynk7t/M8U5mn03NxxKccHdPyN6JnQiTXcsRu1lqoNYv4QbUWYdfjMdu93mO8JrN3fj3G2/Yj++Uy9p5FGy/CyLsXL9Ya6aP3TJHconWmy2aWTfLO8ei7mAjPiJsisY41H5Ij//Yh8u0SHzeCZ1+1OELpYdc+pbT7t16cyNmtlWv/NsnzO2ut6zyn60KlLB/37nXe39/pvcZ1zPMLIu0i+ZHGEf+G93XWHxxp3/v3yDKmKMtCpfBnrnS9Xmn6+LceDW4jSm59/HnkZz+Tc94OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnAR/BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCp4I+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPpX5swUA4CgpJUopUa1VvV9KUcut+r2xRsq1sbRxufzyv7KpgP0FAAAgAElEQVR/69qTKfKsR55N67fWaj5vrVXtT/YTXZsjazjansubczbvWf3LtW3XKaWQbkrd7ulCTyY+hrV+Xj1L5iPI+YzQxudtLZkidYjuz7gsy3p9lmfqJdcXWSey1q2OpUMNbS16NqRXZs2DpnvR/lv5iJ5HyqNz0uvXI2q7rfGi89GuufzeeHO+0uVyoXIpNE3TvewyU8qZXl9faJ7mdRxrfO1ajqnZKE8PrL54eZNXG8eT2aL5E9q11j/Rw7b0zu4ech0tHa21huywNbanS5xn2PqoDdbqW0R9Om/NeuP0zgutnuX7ND3qnd1Sb6RuR22ZVh7Rqx4jutzzGz0fUdY5ep5qMjR/iq/NyDjWeSzLvL68WIXrZbtOKdE8b8P0NlYpZe3v7H7l43v7wxpH81Gse1o7bv+sa95vby289edoZ4gkEuvIZ7Hacrnaumo6qM1zSsm0qbJt+51z3vjN6xk/z+v15XKhr1+/0u9+9zsiInp7e6Pr9br2+2j/Tn/5l8tGpv/4P/47enu726sm2+VyWZ+Nj3m5XNZrXn+eZ8o5d32WUop6Plv1NfhcN79fu5+X5WMe+fgL3W6hYVRdkHJG/d5tX77vPBoLRuo+9mAiXtXaZ6Pjej6J3Ae9XEVPHktnIvbKr3OfG8vv1frgutiz39LeeXkvPnbU99Fi65xlrHXf59M0mb77yHk9GsNGczYRXdDOleVSdvMzTRNNxfcXpVzaWnL5uX2W97gucPsk7ZWs12svZfnySvTLL+9EdF/zlBL9y+9/T7fbtM5Ls8tE23nlZ2bTw61d5qOl1bbzvjY1WN9R38naZ17MYdn+NmeFCt1u2zl7f3+j/K7LbZVZ59hobCnp+SHafrf2grZf1zKhn5Kjvp6sX0qhVLblPfvuXUfGbOScaa6JcrZ1sWfLZb9H/H5Zx48Nff3jehe1w3I8rw8t1pC2zIpnLaJ65uXfI2f6KEfyf3L/WbHF6DnWfvf6iu4fT7aenJqf0BvP60den6U31hmd6I3Jn5mPecZHbu2fsZ96jORAjiL1wjv3I+dtL5dk9a3V8eKZ5tufjT+s8aP3o+eNvD86l5H+j9Q9uxdG+h71RaJ5m2eudW9djuz1s35kZIx2r+cTaeXP1IGReN8r885Om/oxb0S10ibu0eYzEq+PlEvfn5f34hIN7Zzs2Zv2/FLe6LxrRP2jM30c2cOyfy0H9HGXaI2Dkxv79hj1AXttImfhyFiROiNn1oi90+LpSD8j4/d8FE026a9F7GG7lnu0lMd7eZ7/9vJHWtw0z/vc1svLhbT/H7wze+PIORnN2RHZfqI1x6N+uJzLI/6uldux1kxrK39rut87Tz1d7tXt8ax+mlwj42nPMeJb9HIO9z62/cj3U5H9/Yy58PaFdkbLts+OrUdjgtH1sGJ1r59ILuiZvoc19lYHmS9wYrzmX3niH3nOEbT90PbJ2XPW06mzZ/oz9t9oTHRkLc7Us/Js3pk4quPStnr78qxfHWXEp4iuFyfqsz77HOzlTfn8tvezfKj2fla2996F8b5769fOQGt+oudN7dhFSxZvXr3vRyLr4Y2za59/vI435BrxOc45rzZUqksphUrp+9O9b+jlO9X2W57V1vtmjzaH8vs3WYe/rzhqv4gqlVJpKQvVgKwjuS2jB6MPT8b+OLVWdf/UNR8VzwccjfGerfva2j/Ldx3tR/r6ROP2g+Odw1oOg3930Zjnmcrcf2fXG9OS88j7Tu8b5ZE8znM4H/dF5fox8sf8u9VepuaTtXux+OzsvvX8ovXd8G1Zr7l952fRiB06Mt8RXTwbd2q+kIbWh/YNXY+U9nbJoyY5th2zyZj1Xi9vvh8OjxvwY4/m1SLfLVjjRHO5vf4sXysdPK5iscz6i4j0M0r2FfVfnpm/4v0dyeUqUuxksvZTu38k7j1r07U94q2PP94+TyzfT1tIH9zKk0bwdEU7ax57Y8weyjY/4nw96l9GcvTPRMZR8bncr4X3b+XKUqlWplM/xqX5V8H4v0QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJ4I/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhU8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnwr+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBTmT9bAACOUmtd/zdCSsnt0xtL9lFrPdSfJ5f8b7v2ZLPkbNeWjF6/npz8+WU5H1MbX5tH7V5PhlGZI3hzbD2D1779luuSs/73p6LzoZWPrqNs02sflTkyVqOUEmrL2y/L0q0bqSOJ7jeLqF57Nkuby+hae3vcotZqroHXn3ZvZC+P6J03TnSMSF/ab68fa697WPa5Jxe3I1HZ+LpqdqjWSpf3G72/v9M11XXPvL+/U5ky/fLLrzTfpt1e8OZMsxGWvnCsdiN9ybmQ+zmCNc/WGJp8XpuejbDkPLJHR4mcT0cZ7W/kXCAae15tX8jrSP+efp3xyXr2/sh9DW8f/yibbLWTuq/5l71+I3WjZ4KnTz3dPKKLOedhnY/Q61fbl8+QozcHng57PnS0/96Ymn716lr3PTm9vqQd6J2jR21V+23Z4KYj7fyfpmnVgVIK3W43IiKapxd6efm2jl9rpS+vr5RSopzzZhxrL7cx+B5blmVjI6dpWuvxvjwbcyQG0dar+U31uqzP3fq+Xm9U8kMWz/5HZNbwbPL9en9/ZK8d8V+2Zfq5FolHrDk7mo/pyd3ro1c/PkalWolKqVRvN9d+jsiixYm9tbT8EL7XvDZc9v1zHPcPrb0WbdejPUMppbsftD2TUqKa9881zzNNdVvWizm5LDxnodmZVq+tiyznSL+1jXO5XHbPIq/l876+Vvry5Q+bsp9++krv79mcP2vN/TV96HDUr+DjWM/C++J1lmXpxkQpJZrneSfTcilreePLl680TXn3bKMxfMRO9/qYpsmtG7UVvfxNzXsdSDlv1iXqS+m+G1H7OXoeRMa0xpV6mG8LlbJtvywLLR3TFrF9vWfR5q//3PH456iu8XmzfBGphxH/I+ITj8Rs2jk2es7zsYn2fqtVL5qzs+rzebZyET16sYLXzlpXuVe08jaWZT8smxN9Tq1f6zzw+hrNl/U4kxs6i1yLI3rucSTXMtKv1R/XF2kDo+tq7YMj+R8+t8tSqFaus+lexuxOdN2P6kJvLrT54/RiXa/vnkzWb152Roei+9yq08vH9trIa61N5Kzw6snxI/cjcmlnt8WIzxWVczRms36f6esMlh+UcyWZf8k5U87p41yV5Vt/YmSto/GF1f/ZeYvmr9pz10rr82cRK2g0W6vZCm8tvZyb7N+T28tb8b5j85jYfH38b1OWdmt19Fk8WXttR3NPvbGie27UXp6x9XIs67x7tg/lyWdhydjL+1j9jGL5kiO5Aikfjw29s+WZtt8773o5kxHO6kzO+XDO05vLaDx6xk5E/XOPyD7nOtk7e6L1eug2Yl/GbceIH/3IM7U6KZRn4v329pBmD60cqfY7Gi9pz15KoVJiuQ9tbM4zvzvxfGfP3xi1p57+tFv3edu382zXw28YEufPBiufJHn2t0aNI98xjMS3P5rRcWR9b17V/Z71PmQ/kXNkNF/2DPiQnk2KjH/Ez/VlO3bua+NH5LFsXy//pf2WeQavTdOV3t7b2sjK/kdr+1rHchOR/a7lkkdjUCKishT1HEx1XFcecxHTV/4M/F0xz1e2fs/o3WLkOrV59vL2sr7la8p3OpHzwuq7TOX+PUbi9/d+3SO3E9NbGU94PpYsv/9XzxONMk9l/63CNFOZj52l1jl3xP/o/duL3jueBp9rTUflWnnzeMaGe76+l3vw6mj1rPjinl/zv7UqZa8P2hhW+6iN9+pZMWo0nzca97W6snsrZ9GTJUI0vrTsSNQn498Fq3WnfTzRsNZIlh+ZC+/9Q9uvUzkXQ0X1J6qzPXs0YoP97+Me/UWwfMyUEtGUKKVM/Lyapony0t/Pqz+j+PN8b3C/Z7uP7uO2eWnPc6G8fgvVuFwu65mzKGeSnNtIriZiI702FryvUZm8+/ec/+Pfvkbs/cg+bH5Dv078XYFn058Vw515bxEdY2TMZ8hsEd3zmo1ff0+aD1+oVTuS57TWMhoHHtlvZ/NnFs/69zFe3u1oztwrI9p+C8zL5CNZc+/NUZmmjS9giczt/j0u+tedX3wWPyb7CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHwR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfCv4ICgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FOZP1sAAM5QStn8Timt1znbf+On1qpe8/aSdo/Xb79bWa3V7KOVy/v8t+y7Vy7be/JbfY2OGW3fmwetrSf/WXl6jM5jrw9Lr7i+pJRMXXwGvec48syRdZD78hkcXZMe1jqNjmfVbzYhsrZH7JJW32qjlXE7ye2YpaNn8friY2r1PVk8uxqRodaq6q0cn9txb829sUZklOdLY1mWjcz8upSyXi/LQrfbba3Trt/e3oh++Ub/yz/9E71/qfTt232cf/xHovda6df/6/eU3xNdLheapmlt366/fv26uTdN03o9z/N6zfUr57z+zjmvz78sy+7sfqbO8XXV+o3uFWvNo7rWu+49s2efZH8/2h7/uXFkn7VyrqPavPbsgjfekXMrYsvkGkfban6stLejMp+1cdoZpLX1fA9rjixZRs8h2UdkjnryS9vocdQectst4XrN7bKm75p8o3YlMuecXqxk9XfW3o34zdo9b29J+Fndo6cj3vjSj+C+wvv7++oXXK9Xul6vRET0/v6+Xs/zjX79ddk8x3/9r7/Q+zVvzv5pmuhyuRAR0eVyWcfJOa/lbdxWf5qmjTztOeW+bmNYfpg39yO8TDea52167OXlQvVj/B6RvWrlEzilFFGP14092zPi2v2Ydpxi+TJyLc/G82f9w5E1kiy5UJsD3g33aWX/+7XUZdHOl8h5FJHfqqvZlbuqN1ke7Ud0SMqt6WLk7I7GoJZ+adf62Wzn9iz5LNvN5+pyuQzrq5SZx3nyv9r1sixOv8f3Ts9XbGJ7atL0zdNPby092zkSb3EW2p/D1+uVynW7N3pnNX+2kRyopmvRfLasq/220PRpZB9447WykuRzjcXXI2Na92WsMdck5rSuvog2l6P57IjNkvNq6XOt/n7qyRKB7yuvn+j5HOFIDEX08AP5/RGfm+OdrbxOL+4b8VN6NmRkD1h23rId1vqN6C4fk/vqEby+VbtsPF9vDCmfRjTu0vorpRzSfbm2VlzNx4m0PRrz9tbCut+LKyxbFolHIvrfs51HfOX1/pQppXaOfxRNmbJid7SxeVnPvj+DqI2TjOa3ouvC60Z8aE3Go7rhxRoePX2XRPab5jecicGt+ZI5kDP9niWagzl69jeO7isrz8jX39KhrThpnXcpZtN5L6dpxTFH81eR3GC0394cbftJlNJWfsunkG1HdFaz9xFbMLL3e7Jo9+bKn4OIqH6kTRJZeTIJzw15WDmTiH214nbPzvM5l+vv5T16soz4mhH/XNbt5XuiZ0jUT/X8sl4fMmco48/eudQ7Q1NK9HIpNM/fN/e+vH7ZjC2fZcSni/weiQ9697x9HR0v8izauL02/PeITW79nz2/vefv7SVr/BGZRmK7aD8jMo3aRa8vfj9yVmkyP86HxxnB35f1ZPNk8saNErHXzUZPhSjnbX3vWUaJzu2PGseaU29s3X5yf4BUO8u/hYrQRJB+0Jl4oofm30aXYTT+ejZnxzyb53zm81u+m5TrM+aZj302tj2z/3nT0b01OpbV5kfFunKcWquaf7x/S2L3o713GzmvNduj1ZumaS2XccK9D92OcN/FynvKc1j7du9oziWS85R63i6je9I7LzyZGi0fvn+mH7f3e7lMbd4tOS1fQeqzlYPw8m6j9qeNEX3H4NWL2AwpXiSO0cq03NJ972tjnvOT5S1tbG1/juajRuMG+Z2itzZcPk2ukZyPlhvhSDm8eejF+W3+l2WhJe/7au3lnor6BJFY2Rqz16fVb88viuSC2vVWP8dzEz2OniNHYjveN//OUSVXSsk+QyPPaeWfI3ahh2bn5L/psHKJnu5Gv3/l9GJTzZZ5NkeDv6+VffXsu69Tcdsj97LmH7Z2fs712FnA7/NHGvGJm2yWXkb334iNkr/H81T7cXu5ol6eQe4Nud7Szz+aq/Vk0+KZ3nnh+Waj8dh+jO07Ne3fLoz+O50fSTQn2yh5//3h7XajfDs7b2fsuPUeZG8L2vqcHZOP/SPWztsrUX/B29fR+fds+Chy3u96c7PlnROR8v36v0WOZ4kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgCeCPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4V/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAp4I/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhU5s8WAIAz5Jyp1rr+Timtv0splFJa7/F6nEh5rXXTFx9P/tbqcUopavvWticzf0Ypb+RZpHw5638LST5/+917Pq0PPn+WnL351e5r62K1sebAmjNtLK++tSaaTJqMsr2l170xe+NrvyN9WfW4Pv8oLB0l0udPrm8pRe1D2gjeJkJkL7Q61jpb43p9j+qCdW9UL9pc9vq29qBnLy0b2xvLklOTZ2TeInWt+fNkieLpPBHR5XJx++f2SrNdtVaavr/Tv/vP3+nttdJPP/1KRER/89d/TcuU6D/9b/+R5tvkysftUkSXeLnX9ig9Gx2RS2sfWU/v7O+1b3PB91Zv/Uf0yuorOp61fzTbf1TftfEknoxnziGrrWeTZHl0z0dt8Uj7kbPC2iNnzzzr7Ij02/N9tDoRn8oby5uX6Ji9Mbxrrw0fg8czRNs90NP5kb24LEv3/lk77bXv9a2dL9a5Zp3Dnh9g2ULpv2nyWHru7XV+b5qmzTrzc5HXs9aI1+HtSynrc5VS6Hq9EhHR7XZbr6/XK72/v9Pb29v6m9+73W5ERPT1S6JSmj9QN/MyTRNN0/3ey8sLzfM9tTTP81puXeecaZ7ndc75vE7TFIq7pb2I6Knle4zmCc4S9aH2z1RVvYvYdSuetObtrkN7W6jN9cjca0RjkqY/UVJKq47xvW7lOTQ5t/f0MSx5Za6K79FR28fby7WM7BeJdrbc+2z2lYgoDeWBRmK5Nr7lg0diw6gscf/Htgvy3NXOCwvp51vxGf/NbXqrz+16OxeWZVmveTk/B2qt9HIp9O3b+0be3/9Lpe9vj9/c9vK90+x9e+4WBxIRzdX23UbPfnkOyjlp5VIne2e7ls+otVKphW6367qva63066+/UH7P63y0MZo8/Nk1OUd9dU9ufvZr+7WV9+JGLoP0iVJKVNm8NyrTH60f63eDz1OtRCk9dCfSPnKm9cq02FWu0bIstOS7bHwuI36/pqO9Mv7bjJ+yvHcsf9jzX7yzryg6IenptXb28vKjjPjdjV7cJGMseXb3kHNh2R/ZpqdvvWeNnMmRmMSqo82bVibX1Frj3rNZY0R0WWv7DB9exmCjfUo7YMV0vXg8Wkdi2R/tLGmMzHeP3lnd6y+i7yP5sKNE7WF0f0bjDm8s7Xc0L+2VR+Ysspc9ubwxR2IJ2U/UxlgyEun+faSvnj21xo2UR/dItM6RvTTal9fmTN4lms/gOhfNM9hr2PIvra4+jnwOblc1G8vHsfzjaAwh4y4+xkgf1vWyLFTr9mwupVCq47F6L29xJM/Vy1f01jwCn4OWM3n08RGnCxfJ61/aH8+2We29fJH8rdUfOfu9OEPqWW/vHdHJaD8jNsnTmRH5vLPXktGzOV4bT5ZKe50utdDRV6bWc/XylEfGOHP2e7L1/DOZG7HGkv3yGO5MzlKO590b1bdnyGX5QZ7NPrsvrd+R8SJ5ulory3U86vAzbTSPeS/nMu5zwD2Ze+d107kjfvqor7j1c+J9HFnnKCOxgsTbL1rOynr/3sqXXChnze/k8tryyH2t1eV6ceas0vxDTT+eFDIPy8Y5a7NGifookfwlzyUfyUdFY+OzfssZRvxEbQ+dyQe1220IaZNGc+Ee0VjTkvXs2rQzPueP9zXBuJPoMdc9n+lZOTIiPa84z9Na3p4j50zTdJf9/m2r/n7/mbod8YnU8vWdTD/PFSl/3H/Us75vsN9dxHzfZ60t3wfRuEn6WtG1HIkBzvAsP0brd1RGz1fOu3eC+vtUrX30jHjEX3p5e0eq0XJDI8jzwZqvyDfLkdxe9Eyw/BBr/jzZvdwOL+d2gIg239f15OV+q8TSw2gM18s1aLJ4aGd01I9IKVFNhennfl2iaxyJE6NyeuWjtsM6p2+3227vlbIQLXX3TYonS08XIvtI0s7ze1+Pdp6OWWddLwbw8k0e0TWO9se/35WyRHzFo7kxOdbmt3JGNPa6s/++o5RCuW6/P9fq1MpluedNWjWe59DaaljvPM7YId5Pr05kX4g79/wQexxLp6xyS8/lM/NzIbrH+/Jvaef2M+080XjcW/L+m7NluVG9bb+RsXJpvTEiZ0Gk3OrriE8qmzzyL7H8Z49n/Vtd7b3fsiy0HAzNRnIHvfrcv43mz0eQe1PGQdq7gpSW3dzfbgvdbvvvNSM2wnqHbMWAO9u7FCrlE5J6f4ac+/oQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAToI/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhU8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn8r82QIAcIZSyuZ3rdX8za9TSmtZu+blVn+9fmutapuUklquyRQZ36LXH9F+zqLjaf2llNw54/McxZK7V7eNYa2NJuPIWCN9yTLv+b322jNFkGucc96U5ZzNus+CjzGKJqslv7Wv5HO139G5tGyJXCdLh0bX7CwRG+Pp06iONqx1juwtz456eyeyx7kc/LmjNk7bj54cfBzeNud8Whe8ObBsfrvWbHTjQonmeaZlLus6zvNEeZ7o69cvNN/mXb+WXGeuSynu2eWd0VY9Po5lm/kcae1G4X33dFQ+f8ReRs736H0iommawnU1WTTb3LMRR86byNxE6vT8Ra0sMudRv9ND052jaxxdz97ejJ4T0sbKfWWdnZG58WS0/ADtuuenarbAk9eS39IX71lH9sRI3SP7+plIv5MTmUtOby04vTFbX01/UkqmLbT8kIhvHo37uP5JO9bzPUopIZ1dlmXt++XlZZ2j6/VKy7LQsixrPX6vXV/mhX7zm2+bfv/qr17pepsopbT2nXNmvsS8Xk/TRPM8r3Ws55XP2PNpjup4zL/byqLZuJ4MkRjQk4Wvs+wi4s9GzojeXIycJ5G60f6s/WPZcs2m9HIEUbn29ma/Tm0PabJH7XY0DrPW70jOJcb9+RbHzZJ7edQP4fM3Ah+3p++m3ZjanD7KpynTVCbV77DsujXv1vrztZTjtDbtbOLlsky252PK8nm+0dev/7wp++/+4nf09T13fXkZ225s8a3Q4/ZWJ3t2vv1X9q+Na+VvPb+gF0Pf53W7r0upRB/n6+1228kxTfuzr80fP+NkO44XU1j3+NpHyrW+m4xyvCrkJiJK7Ezn7a1+13ZsneRZWkqhJLaEXL/RWNGyP1r5XPc6+fLyQnTx5zBiV3v7JlLe7j3s1VrqnusazzgLvPy2hrXfPTswMm/tXi/Wk2UybrTgumfpodWPnO9o/kPLcVt7ymtrjd3O12f6Blq8K8/xZ8eh0bg6cn90POves/2tiI/qnavW2W+VS99Vu5ZrHTkHojkzq4xzJK8l82mRWIv797XyMywW3xyRWbbpzWH0DI6shZXz6LXz+oqcEZ6O9/IuvG+pr2ftjXZmNEbfI3p5x0h5rz+vzohN0mIIb4+P0jvbI3bCk+XMe0iv760Py2UhWpYb3W6JloXHPUS3243yLbu6aN3z9MXLX4ysU8+eRH1cGeMQ+T6Rta+kjY7KFMkNcRth2ULPxvS4192P2XIJ0zRRnvqxryWzJi9vZ/1XXnv7i59rUi+j33E8Ix55Rv4wkhu0ZImuu1eP69kRfyk6TiMSIy9L2dW75/z3/fN3IhIrd+adN1oOZ8Qn6K1fr71GZF9ZsaVsF+nrLFq/vbPziL71xrXKj+Q2RtBst2U3rbMtGk9R3svNzzkt52j1t5VhK492nVJa96l1Jup9x23+WZ2UXUb3cmT+e/3ZMh3XM28+tPcRLQ/cxm3t23vYMpWPPPJ2jOi072OZ1sejjmbzz8bO2tnb9lNKe/3l/xsZ8+haRXyZZ44RqVPr/jtTS4beuy3NxvW+feXI7wCkrJHzQtvbI2daZN5rrepc9GIli5z7PuOozXtWbOD1G8WKe+Q3k7XedaAU255Kn8Xzt0f3QuRe02MuO/9va7IsC91ux9eM472T9uKc2FrF8k78Gf3z8lFf2yP9+NWXZ8SGjsTWGtrccjs2TdMP+7cHR4jmDa13OdZZzfvelld1v1qybVo6vq9vK/v/DmTznjdpa/54F+zNhUXEp/XeZR35TrqXW4rKJf2dnv5q3/J5sT4fOVcAACAASURBVPKjnj2uFndGfZIROTkRmXtoffCyo7HO4yfzw+sjh+HZvF5u9aj/eqRdL383sqbaM/T8v6ic1jg8DrLOo1GOtIl+pxKdAz5/Xg5a249Hco4tByDL+fcykbO57Q3tMfVzXD/bH7a+Us7bOtM0rd8cVSVvso9lx/PKFtFYQ7s+MsZqq4z8kPY8Xi4zkrPj8XcEmcc/8syRdYnEad5ekWi2Tcs7aP7NkZjRk8mS+2wcaOUNI2er9sxHcruj3z1Fv1tquYronpZ9WXMwmvvX2mpEff0z8DXKeT9ezvtvdzS73+NeP77XvDb/Fjl3CgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBJ8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnwr+CAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBTmT9bAACeSa21e01ElFLa3Gu/a61rXV5H9sHv8eucx/6ukJQrUsbl5aSUzPEt2WWdUfnlPErZtWex+mh1I21G+vPw9ELOk3xWWZ5S2pVbutSTh/d5BLmOtVaapmkns1bXkkubz1KK2ca7Z9FkkTKllFb5ozrFn1e20WSznlG298Y/ul6jnNUPba/J59d03NPnER3v2Ti5lzx64/LxvP2uyTByLX/zudLOlxE0m9bmyLJLHP78vK+8LFRKpVIqET3q3MvKuk9G9UyuHx9fWwupz954fO9Gzgw+/0S6vYuePdbZ25PZ2i9tvGarLBtt9WXpq/ccEf9CMmLLz7bX+luWhYh+nH092y9fy56N6d3Tyqw1s+x4r21ENosj+sP3tWc/W/vIvIyeD3KuLJlHdHXEX/bmmu/7kXbeGa3VOeOTcaL99OpF4hKvvtV+nuddeTTW4udeznlzrTG6PlZ7S5+b7evJrZ2xpZS1Pbej1+uVrtcrERG9v7/T7XZbf//666/07ds3IiK63W50u92IiGiarvQP/9DmtVJKmf7v/+dXentLdLlc1jn/8uULffnyZb1+fX0lIqLL5bLO5cvLyzqfzSa0eZimSY0DRmzVqI9l+320KT/id5/xKSx5vC6jsUqkThu7lLob04r3I+NLn1gbMyq/55t7Z4Z1Xltj5pxVn/7exs+/EJEZj0obOeovcBtljedRSlHlvo+11b3L5UL1Min17oz4GtpaaHG/VTf6O8pdd4laHEREtCyFaInlDxqWzeLlMobpxUdyPG9fcTSdSynRyyVvzkgioi+vX3Y6E7Vd6/oVoqYzXBTLh885h2PrqFx8nrV8BZ/jJvs0TVQuheaZP3+in376Snne62RET+Xvo3op8XIjo/68FkuXnD/yAazeshApfojWn+ovTv2zgstAtM/haVjzENkv+bZQrWVzrt1uN7qlunsObZ4kUq8tG9HL0fDfKaUPH+5G3BZfr++0vOdDOWZPBo/Wv6X7vN9e/HbEP4v4Xlqe7WjuYfRdSCnlqXvc4p6fi+vWsixDcYjE2gda+yP5qBFkzjPq357N75yVf3SPWnZRm19+rkZiTGsfybNqNHawcuHRfJgnf6S9Nlbvvm2LN7/Wur3+z+hZdP564x3J9/XktvyYyFjR9ffyK7wPzb8byXGdOSejz/JM4jqr25jRGJr/PpLv4GP2bIomm2UHevbB2gsRX1DKqfU11b1ePXJXRNtYOe3klesT8QN7++uonxW1797Yo3VrrW4+r9dn9HyQ/oFmOzwdiMwr/z2VR6w7sk28vXVkfqN9E8XPiMhZ+wzfatT38M4xy0YfsYPe/Z4OHenf65uo/90Kv+Z5/1LqmsdvfPv2nd7f93rSYu6W59B0ycrb9PwRy95797V63r3I+XfE/kXsz0ifETsf8a+tMi/u8XJImlwj+/EZ6xmpf9Qnidd/XJdSKFX9uXo5v+XjGxvOPVegf4cStb8W1vxrdvBZ/utZexchmjcbkePs/B7tI9L//hzb1/FkOWLfeLtmI0suO/1t97hNlP+N5l2ico74G8/KN/V4tn5L26Gd95F8Zu8c7vsxti/byxuNIM+hP9W6SRk8vHcQkbU4+0zafD/2XaKWn0qpH7t4+QvLJ+qVWT6p9/v+PYGfV4vsLe9dRK8fbV65jbHiwWecGUex3m0+dEEnuq5n2K/x49th7Tti7bsmi17OcOTdCz+7jsyBJffefn/Mwcf2uM+BPl40rrTG4mXeOSll156Fv0+4vx+V4xTqmb2j321xzsRa2j7utTkii3U2HPFRrJypdd5qvlcj8u/AfiSjedojeSql57UvPi8RWeQ887Wwzvjo+4ozaHkZIqKaiFLi41fKeaJpst9ZP3PtR332+ze1z4+bNL+Gr6VcO/7be7//rHhR+3d4PZrOprTNQfTQ7P5W3Hs+r+XuNnOWeTvd77mfLY9+a93nHu//3T+PlIvXl2WRuPFIXimaP/PyDM0eRM7j3jgWupx+fX3tY+9LOCP+f8TvPwPXt4+SnY/zI8aNMnpmHckbafur8ax/y+H1GR2j6YPl0kdzQZJRP0KOGSHiR2plvZiaP7NlA2R59JttzjJNG1+gjavFio+xiR65g+fmL/+1MfaVHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwZ/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAp4I/ggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhU8EdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn8r82QIAcIaUEqWUNmW1VvXao9WTbflvPo7VryyXssky736ttTumLPOeNyJzdL4s5PNY8nvPNSKDN57Ujd78eXrktWuUUkLtPR3R9OGILFyHtH5H1/msXkTap5R2c0hElHMO7StrzNYn3+Nnn8eSI7JHvb5Gnkvr29PnqAzeeCmlzfxFbKI2hiWb1Z+8bvW8/c/re7JpfXlycD3S9HWU3hlhlcvzQcqqlbf108ZoTT+ejkopVEpx23hj83nt6aLsnz+bnP+c866OB5ffO9Pl+BbWmlvlTV45njYv1jP3xtFsp/Usozob8UP4ePJawuejycLLeu17chzZk9KmRM5ua+2O2F3P74xgzb2nz0f8rpTSbq00LHst742cH5q8EZ/O2nORs2ZEnl6dplc9GyPLl2UJyRNZF23v9YjUi/rR0WeOjGO1i5yd8jfXpZyzabOj45y1AbxsnufdfX7d1ofrlfYsy7KsdaZposvlQkREr6+v61lPRPQXf/EXq87dbre1r3le6G/+5o+bMf7n//Tf09v7dj9N00QvLy+78adpommaPvqa1/o5Z5qmaa1n7dFnwu1Y83GMmps2PXl4n5LIuan93vbd5uVRFtn3rd+j8UGaF1XO3p6K+ATRnIH8HXkW75l79r9na9rPlNr/UniOR2N+zwbLexHbxfu2zoRlWahW3nf6sBNx+zYSE0bryxg0iswHcHLOVEpxfYzoedlsp6U/WrnMUTQsOxLxoSw/NqVESy5qXc8W8nJuqzkv6WHjPySieZ6pzI8yz7+28M4EOR/WXGrtm6y1VqKcNrmmNuZILBK1Q14fUl7tvrZfPDk9XbDHeNi4EbjO8lh9O27//NDayXrR+db29rIsH7Lu+2r2ICILH6P1cbed/Zytp19a3vOj9arz/Izl8o7GGCNY8UgvT6DdG1lvbc5GfIeI/dLaarqj9UlEwvb15Ro51zmWz3fEX46cvTyeiPTV60/L+0TPV8t30vZsq3NG38+SUlL1wtMrTmRdtN/aHuFxj2cjrX3Z8y8sXdLKo/knq83RNY3moh73muzx3FxkH2p1omXRMTyicxnVMc8/09D0z6JnVyLx1Ag/Kh8YJRo39/y/aAxuYe37iGxSRimLVr/VG9XNiB/gnXNH4sl7d03v06Zc8+t6Z6el115sYT0Lb2/Lf36fyGdvZdzvt3Ir0bxXb900ojZCs1+yn975M61xBFEplZ0ThWr9iAWW/T70dHf0LLSe5Vln1Wi70bhD7tdefCfvHT1vNZm839q15wdFsZ5fk0eWcx3ldadpeujoVHb2Z54nKmUfB7VrLUbSbJjcO9a+9nxKa79GbYRF9Mw5wsh5MeLXWWN44/H9/sw94+m41Y9ne6NnmCdLD20uvDyL13dr0tPD/jm8vTdNEy3B9zZaf9HY6Yzua2PsY9ZjuXhrrLOxesRXHtn3llxH7Htr0nu83vN7uhw977X3lHJ+1mfOe/2NxnvWtWcHIjFFjx+Z7/HGH81neT7cSDtZHrUPmzpF+rofz1DiZ48s4+W9+DQyBtHeB8ll3/c0Tbt+LZ+qNze9XH5PXvk7qiM9m67pSu+c653jI+sm5ZHl2vuIlVyY/P3zdZTIOaA938iz9sb/ETbIz13Uzdni+dXtvvU8R/Ly1jjPwJpLS8fW83Yjwz1XwfWcP6dc5955tIuF8jbvkdLdDuXp/h4vZxnX9ffrCPdvM/byc569zxpWXNjQZIl8L60R0QXeV/T7mIjNiMgidcfyj6y14HqiiaS9X7fQzoozcWfEFj5z38ftbbyd5m9482i9043wo/zQnLN45rx+CziyLpq/GI0hrH3BZWhD8m8/e+N4eSJNBq+NnA9tnT1/wBqv57f21iCey9DHj+STaiYi0uXQ44NI3Nnq63XuZ5rbzaY/ifbvQDTd5L7N0dyaxjNyGVqf59u3536UWfviyNhHYtXRMSJ98/V+xF0ipij2uJpN6vkhzySqP7Yt3sbfXn/R776JiL2fOv/vFT2sudbsc6+utcdH1vDI3tD8q1L2708i+6H1tSz794i320K3m/5v9kYo7D3PR+8DdqyN92P3xZ8zY1l4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeDL4IygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBPBX8EBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KnMny0AAGeotVKtdf2dUtrcb79lOW+j9anV0dqklHYyaOT8+HtDtdadPNoYURmtvqKcbW8RkZ+P38r4msmyUZZl6Y5vyWmVp5Q28ljXUfhallKIaKsvHlIW7f6oHES0yvEsIvrOx+R6fVbHW3vLFoz084z2ll3x5tzTMUtPtf6ie9IjsnesOeJ7ekSGyB7j+8eSs/eMvbWVffL61jnknU9W/17fWt3WN9clbf2v1+um/OW60Nvbd3qnSrfbjVJK9P72TmXO9Msvv9J8m+71Xl6I6G6X5L6cpkl9lpG5lOeoXMseno2Q/RzRX8t29NZIlvfqW/p7xB63M0TuOV7uycKRZ7TXvpTinl/asxx5Ps8/s2yk98xR+2fVj54LmgyWXnl2y9N5OUZvzKgPFPF1ed+a3kSutf2m+Tqj/k0pZW3zbB9Hg+89bS0jutDs66h+NqznjOgvt/dSxojfMaIv1hnv6Saf03YtfX7NFlkxh5Tfk7fVk7rK24/YWM5I3ZwzlVLM86TJw6+XZaHr9UpERLfbbXPv+/fv9P37dyIien9/Z/2+0R/+0J6LiCjRP/zjr3S9Znp5eaEvX76s8rS+L5fLxj9oY9xuN5rneX1WvmZcF7jtkuuo6euID2vFho++x/38qA9/Xhe2eh+xg9z29WRttH1+r7uVo5RCqezttGXHRvIpnjzy2rIx3jk3EvPbZa0vIqJYHkg773oxi4YX90fWle8l3g/fq1MhSonX08cdeW5LNu6TcnvqxezaWsprLwbmfS7LQksuVCtfi7udqrf43wqXc+GtMb/Hy5pdsvq63W6bPR+1JW1t72fXPd5rv4mI3t7f6HabzbXg8yZtZ6t3uy2757vP7aMu9ymkfxGxY9LeWXsh6t+3/prN512llNfzlcvPifqkvWfr+cq8TPMhLbtr9dOjVqajtVD9WPOejeY0PVnyInSm0tvbd0pv8bhE2y9yf/Pf0ieSvuLrrdCvv/66Kf/7v5/obdb9KV5P2xdyTfg6Wf5tSmmz37hutb1RXiq9vb2x9ol+/fUb5fe02z/PRLNT8jktv1PWi+yJI7bA6u9sP9JGyb41X5/b7p5NsGQa3VdHkHPOy3u2R76fkHaR6wrvm+uOPHdH5fL8aE0uDys3Es2taP1pZTJWbNcRW2rpctTOy3jUik8jMvTySj1bEM0HeHUsHfXWvGeL2rOsPgttdbPWe1w8fcS1Es8fl7rs6ZX2bJaOyLKIjZGxdQTrHPTWPqpnvRhO1ovkiEb8k8h4no3ote/F5tZaRH1X2Y+Ftv+sPrnt9nRKxgSjcvXiO+8ZRvDeRfTk3/RTpM5t7/e6GJE7ut9756I1ZtRP8nxgoruN5DHzWrbs5dLOPstGWXbQKpPzEM0h9GxhpDyXpmOJcq6U833/1A+9u1wulOteB728hZRvHeujz4jt4fVHiNgIrU1EntGzP9qvV9YbI3rPWyMZ52lrGJmH3pmu+dSRZ75c9u9kL5cLVUUvPTQfy4tBrfMjqhORc9DyHY761bzMqzMSVx49v58d24/Mk9RhK2f8LDl640t6Mhy1BXd9atd2nd5Yj/xBJXLeJUViW82mHNWpqE3V9D3nmD/roY0/EuMexfMDInmDiM3y5rw1aVWaffHO6HQr5OlOj4i9PDPHI22jNt8610bj1h+FN340L6fpYs9Xi76vHSknYj497e2UpaO9PcyJ+KyyD8/eLsuyGUvLQZdSiNj7Lk/mnly9GD6ClH9kLmR7nmPldqX1veTxvF4PK3935NvKe7v9tzv8WZZloWXRYxC59tZ54X33E/1tlfWInOntN9ffVjXiX+hjjclmrZH1fteTy4tVokR8luPf7dWP/+n9WuXROSpToVI0X9LyFfR8cCSXp7Wbpomm8mP/f83v4+bQ2o68o5Lv2Im2ds6qJ9+XNhk3+RnjvWIktkwpufom/12X7KeXs5P39m32eaz23dwIUbvcI+r7PyNvNDK+7OZIfqc3ZkRfzvQ3gh6zVtfeeO01+bx2mh7z59LWIxpbee+N5G9Pnocs+/xxTwYNy/fp2QfN9hz1KTzbIediX3erH9Im8OrcD+F2uJ1vrex2u9Etfdz/+H6u1sfz3b8Rfcho5eu5HJYuyHujsU40lyiR3zzc69jnPH9/JnXDOjctm1BKoWVZdn7FfS2eFw8/83yI+FSRcXq2LLqHRv3FP1U+pN/XvuzMv1k54o97Y2+XplIpvo2Prn9vXz4rFud7rhc3TtMUPke4nK3uNO3j1GnKNE3bsSLrq8/jWRvw3PcM/5r4sRETAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMAfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwq+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATwV/BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCpzJ8tAABnSClRSmn9XWvd/eb/7fVRa920KaW443v9auMcLePj8OuU0k6Gnkyyf208b3yvX6uviIyyrXzm9tuSn9fR+uDtrOsoliy8PKobvI9pmtT2XK9H9HJEP6Us2u8zcJksvbd0X+7LyL5pv3vPYO0ta+742kg98uY70ndvDKnj1rNF92KkL629ZmN5H15f2j5t5VyvI3s3avukXFE55bVnNzy71LPplpytXs5518azlznn1ZaUUuh2u61t5nle69f3G5VSqZRK9+7qxzpUut2uVK+FXl9faVkWIiJalmUdt43R7sl54uWjWOvI9SPnvPvds+u9Pdizq20cibffvP6j9rmNGdHXNsbRZ/H65nbJ0mvZ5+gzR+3QyFkV9bP+FPTO5p5/Z9XVyrkN8vDOXm/sXr+ajlgy9fyznq2P7qWeDZBzflZPInvMO1OlXJF9bcnB27bzoWH1a53VkXGsMdqcWOd9K5c6FtGZaZrC/n1k/S2sdc05d+Mbb4/LtnzO+LxIuP3n1/zsvl6vRER0vV7X67e3N/r27Rv9/ve/JyKib9++0S+//EJERN+/f199h8tloX/8x78kovscz/NMf/9f/kCUvtBvfvObTd+vr6+rTPzssq6jMWiknpcPsPrVyyrxWxF7J8d/Bnp/Dz+xZzci8Y3WB/dF79d8T911YCqTuyctvDyNtPdcjsh548nR60vzqdVzMRM91uDRtvfsEX/JW0NrnSLPYpVZY7c90K5rJbrdbnRLYzmFHtJvt/yj0VyGdZ5pczBNE9GUKKXM6hHN80xT1e38yHnJy7X/crt+uVzW69GzN5q/eLkUmqZvm7LLfKFabV304ll+3pTS4r5ERJWWZaEl7+s2pmkyzwLLtlk6ciQfstaZC+W8tXN3G5d3fkxvPI1o/icak42O2ZNjjRtr2bXLKVNmc2D5bfK6/V7ysmtzvV4pXW2bXkpx15P/t/XJf+ecNzkInrcgIpqpUM7bdf369Svlea+Lsu9IfKLJK6892pjlpdC36ba5N02Z8rTVEy3/0cuz9nyAVu75Pkd8Iu08035zea02Eaz2R2JGr52lF9b8yfoRX82SbdQ3JiIzR3fEZ5Z9WX1H9GgkdxjJW0i7oJVH9ELay1Hfl8c9Gs1GHtFRa3zPbx7NJWj+OS8f1d8j4/Ozfz1flsVdG62NJ0v6+oXe3t429//4xz9QentX22r5Wa2M217uU7Ry7Vw7Yu8sHYvkT6y6Wj0rBvHyNlYMZsVBvJ43hvUc1vwdsbWRddGevXfeRctHOdLem+PI3Hrz6tm1I2dOxPZH+vTO93Y9lYVKsfbE5pfqe1k+a09u77mtOevFEFYsKq97uTSeF2q3cs5qPKf50BHfpeer9tprzzbi/3oyba8fOUO+b0opRCX2jD0sO2rJPLLHRuciaid75Uee3Rq/t769/abpuCZnJJ9gydauR+xUQ/NdI3FbzjFb4e1JyyeXPpxne7w9rPXL16MXf0vkNxOjZ5f8fWS9PI7oXzRet9prv8/6GHJ8b0zPX/T60uZlJP/q7Vd9zVtZP56y4qvtXuL9b8eNzpHcVyPrZu2jER55jH25dt3rq4cXt55B61OLuz1Gzrf9+A85aq1urmPa6OJjjKjfG5PHP8cfZ+m2zdHxrHrafhjRrRGf8E+Nd640OaM5r6jvIb/3sGSJ2IXIPnzGXvV8Ot9e7uc3Esc+015ZnPF5ZX1px2U/0zRtviEfZSTnQ7T/1oXHPN55m1L73vR+Nmr5r9HzitcbOSt7dkzeL6VQWfa53xbnRcaUY7WqrctSCpFhDrR+774yL6kf72JtWzHqP3jtNFuj2Z5oXkJy9F37lvv7/SlPlKd9f0e/ze3B7ZeqS+U5friXZzzTnzz3S1mIlnjsH5lHfvZ55yD//pxo+21cZI+XUjbfHo7OV9Rv5XCdj+j3sizsG4o72nc3nr2LErEN3h6zvgOIjDmSZyR6nDVn8i6j75u8eT0TR51t99jr272QOnnGH+nHbf00Hj/bua5R38jyXSNxQjQXqp7rnb6tfuW/T4ns//t3K7ddTCrtu1bO+9q/n66rjuhys5qVVv3a+mSt7sc3NPNMS/sOJW+/n5NzEfXBvTke9U+j7Xk/nv0mIqpKLrW986i1rv++SsrljS/PvL0++/GNhxdT9eQa2bfRsY5Tdz62179n67344GxMePTfZ9xjim2Z1McW2x05047KZbFVgUQ5+9+2jOR7PaI6NtJvJJc1GodGx/9RcUeMKv77b4/nfW0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8AfQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwq+CMoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAT2X+bAEAOENKiWqt6+9a6+a3Vi7rpJQopXRYBm08SSllM54Ff55a61pXPifvo123+/L3iMyRZ+Gy8LnTxu2txZHxpSzW+Hz+rDGi48n51taF14nOvbaOkXvTNHVlPvJsEaT81vPw8lLKbp2iaO1yzmu/ozKfGVeOL/uN6gDXVWuPWP1YY0TGtvaEJ6M3jldfW5ves/Z0pDcX0fnntLW0+uV99eTXymX/srzXXjvjLJnknpPPM8/zps7l5YVeX1+IXivlfLuXXS6Up0y//e1vab7Nm/byWv7uzXnU9spn1nRJlvHfOeeuXnn72uPI2WXdi9ivyJ7lcmvPoI2Tc97NGZG/vvx31I5M07SOsyxL2K70dEk7Dzy5JT39supa+zLSNlLe+ubXI3Pu2aiIHef1euNZPp+1z3u6pfVryeL57c9cryO+w2h/UT+GY9kqbU83mt+o+W38PLJ8Wr4uEZmtOl5bKzbTzvfI3rLiIct3HY0Hj/hT0TO01rrx9ds1n3+5Vvzss8bJOW/64uO8vLzQt2/fiIjol19+oWVZiIhonm70/fuXtZ/X11f6l9//C5Xyjf75n/+ZfvOb3xAR0V/91V/Rzz//TERE1+uVbre7X/H161e6XC5EdPcxrtfrvd953pxF3hncs1+9PT5qC6yltdZcyi71/Kwt6WHNyXOoRNT2km0n+ByUUja/my5ZeqnlPCJrLseUcvByOU773WNTP1fKeStLzmm39zzbb+WjrLhJytzzX0diPa39NE2UUvMJ72WXy4XqZXLPe+85PFkb2rpoPlDv2WSOxIrhju5JKwdhxfZS/xptydypXwAAIABJREFUT7S21jNH/cie75ZSonkuqm/wki7q/rHGl2PMhSjn7bw3nZH9Wf1E8gtSLu+M18q1vbekslvLZVmIFns+o/6xLPN0v/22zo5o3CDp7VHPXpRaiIS/oY1nnd35kmmeH3pRK9GXL1/CZz1fJ3mtoflw8vfLdaHX1z9syn7++We6XCYz59KTc+Sehjb/5VKELav08vJCmfLQXhmtdzbuPzKml9eNxPPcvz2LtIO9XIkXm5RShnShF4OMxD3yehTNdkZ8srNjjeYsIn32GMkZRetGx3/Gnj1D1Fd9Ftr5pp7Ly6KWl/I4r9v+ar9vt9umDc8/cn+L97UZ5/WV5j/88X5N97J/+i9/T+ntbW3LY+ic84dfdc+X333nh73Uynn7tt+1PSttmWWHebnMs/6p8eL5ng7JueDvDiPtNf/3WWdXZNyjbUdlSymZMZZ3Poz4DCNy/Yizh3PkTPfiVGu/We1zucf4fGr1c7qquZERG9rTV9nnmVzGSL1dfDWlXR7E8l1G/AQt7n2GHnl5Vl5nfKxEKdHH/+qmj5zzsO56sll1rZx3RDdGyzmaLmpxt1d+xnZ6OmqdnZIjOaEzsVd0vGisb8X2PP8q55zrZfT9E497+B717JWmn17czq+5bli2/Mj5ZF1b3w1Y8rX2vbPTyktpY3jP9cxzVVuDyLNobaM+nVZfztPo2RTJAUXnrdZKlPV19/rQZNleP3Lo9zMimWeCl1PQruXvXvujevPwy7flLfYZ7euZPNNHGBnDzo1o68PL+ueQd1ZZe5e3O5s3kWPxLjQfKZIXGi0/o6tn8rLP1iNPHs8O92ISD57niKDpVSmF6rK3/b34xLLv1jiyXu+9ANf1+2+7jjaXZ3w0zycY7dMqi9S5+2x2bjbib0XHl3W5jbHmxTvfysf7x/u5uI8b5nmmUnTf1PPpNT8i6lNE4qTHGdjvr/dvPryyaZooT/GYMef6YZ8TK9vHnUfmwtuLPK8aYdQmafJY5WdiSKL997DP6luLk/iYMuaIjKnZUGvvcxlGsXwZz9+KxqwcOfetzMPKDfXWqrcvve+n5TluxSD8t/Xuz9pj9728jdl7voAVv4/E9z0ZpZzyd+/fe2jn5mhezLYD2zrWWW99d2HJPCbD+B47a7NqfejlmT49/1R7j+PZ8ft7tFUaVybNR7F8TU1mrR/5u/ceqj27VS+io54sPV+ZaPutWq2VpmlmeTt9jLYG1r992I+39V22zy9tVNx32p9v+zyj1iaqpz3dsWyyJ6tV5sVda92pf45rskmf1Ht318ttPQP+/bi2XzR6371E92TkubRz04odPVkjRPvkNqJnL+T3QvJb6L3Ae5mWZaG66LK1viL/DkRircWZ2LbH6LkZPZ97v+U4Z+JdXh7x/RrLstflUmr3uzArl+fHBvt9oo29uW/29t8+578UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBPgj6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FfwRFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKcyf7YAAJyh1rr+r1evkVKilNLmt4V2j48n+4rA63tyy3q8rtbOmwdLRlmeUuqOw8trraHnj9bz1kWuoSWLVY+X9Z7raHlPDzWZnqk/fC48SilDY0bIOZvj5vz4e1ullM3vIzJpdaX+t3nqzYVWT15H1vUolo6OYskp50TaL3lPa2f1J+u0/iwdb2NY+3e0X63OKMuyqOVH1rx3rvDzQluvyPxH5sKTnd+7UKKcJ8q5fMhGNE2ZaJpomiaa6mS279karmPac8m5snSm1krTtJdD092jOvCj97hm74hofS5ND0bPctme159n3dVvcvHx5Lje/rBkkc/b6k3TZD6XZ/97a7Msy/Daj9q6qCxafevM7tkL60zz2pwpk/e8Pc7X0vPVZHlk3psuaD6wdV731r/nX3C7atnYqF31yjU55X6J+ELLspjz336P+FRcBmsu+bPknDf9WzaOr1dEHt6P5ru08tHY6xn7wsLSad6X9exHYjBpky1/le+LlNI6t/w8+Pnnn+nLly90u93W37/97W+JiOjv/u7v6Hq9frR/p//wH+793m5XKqXS3/7tTO/vefMM1+uVvn37tsrZ2pdS6PX19aP9bZWhlEIvLy+rbKUU9byX8+rpUsRHamNo8WBeKqX0OBtbvV5MYZ2VP5pezCvrePV4/W2dmL8p52BkTrz96PlEmi4c9SciuaF7uR3jyDE0n7ldW3L2zjfN9nt9eeut2f57/03eR/+l2Gvkzd2ReMXqL7IXR33oFv/sy+I+gFePy8ttzjRNm3XTfEW5rvd1uJfx/cXtbbPnrX77fb1e6evXRL///Y04/+9//ka1vq52mT/7NE2bM4PLOE3T4/dSme9GRNTs9NZXlLrLf0f2g4W3Vp4vb8XipSxES92cnVy+9uya/fXiWQu+T7Uz0GpjYcUU3u9yedmNfbm80ES6HY7EJ+VSWazL+4z9Hf7RWM2z/W0dX9IinjPRy8sL0eVRNhLrafPQax/xh8tcKOftOTxNE+Upmz63lR/1eIbttmIbvkciMUNEXjlm7xzU9m8kL+3JKuNR70xuuhY5o618QcPSr2g84/XZK4/4IRaW3dfq8bmwco6a7y5lifhzo3K3a8/X1tYwegZ5Z4cVE1vjHH3XI/dGr5xjnTFWefNhNLll3oDX5f3ebje1Pc+TcJZl2fXVfpecKZWPe+Xe9u3tjej7d/V5p498OdfZl5eX9V6bs1ZPljcb2Xys9lvOCdcLXsfyQXhdWS9yRrY2kX0j5bXyOJaMWq5PtpeyaPvFshXWOFq/npwRej6eJ0sPGUdofZ0laqcj43vzf8Q/9Wyp129b4xGfjutFzi3n+Lh/389pzRU1ctZ9s4jvGin38lsjMdCofyv7LqV0+4ic8Zwje8LCW28tDm1jav6FlU+YSqFaC9VKVEqlWu9nRk13+1pKIRo8grU90tN3rZ73TcbZue2d6Wf6tHQgGkNHOGIvR3VT7r0f8d2NNyZR83PKrs69vO+7WzFRb194MZgF1+O29zxb58kVjYVkeS+2GOkzekZ5cYH1O5pj0MYbmYd2PXqOW3W1/iP5Cq5vXnw3cu5q7e+/+zHv6BzK9iNxsybnnxrdRx7//pUT9fVG6K1Lr8+R57FtjKY/fXvE9TdyVmg60fu20ssfcLblezl7eaFRRv35M2OOtrN86F7cfVSuP5f9nXOmPGXzGY/sz54P4Mlnlctb0o94xnjPtHOj/Wp1cq5035etbzvus8q9c8yTuXdey2+Ddu2XQqVoeZq09j/qKls5I4nUixHbwn1Sda8c0G3rbPDrP8YkIpoKiT6SaaMjsZPlm3lzFXl2aTu8M9m61+TxvpnzdLrUQmT0oWHlu33b95jH1kbLlWjfU0RypaP0fE3ftsb0vPf9Xw/+LjYS6/Br/g3E6Ds8ou26au8Be+/ij9j3aGzp1ePfsHljHz1ziex8tUR7xxCNYb0y105PiXJOdO/Wt/2jeV9PRtnnEZ8oUk+eodZ39UcZaT+Su3o82/2/91zT3o6ckc+LoXnf0XF6ea4eo3FALy/finhX2tnvjbkt2voE3KZKO/8Y24vvH//2tp1zte7zjNoalVKG8x7R/NOZuZc5WnkWpJRoSUW0+Th/lnheIaVkfuMc2Wcj+SPLxlo5uSM22pKR/5efC1o+rTeGFuN57Z/5frv1z/+9Vs+uyHf4ve8mIu/SLPk1+PeafI/KNvEc0Lac3+Ii9OKukTGscm+/9/J83lpHc7qj/kHO+3/3KefQa98r28q61+m9/I81O5DC+W+K454xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAH8ERQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCngj+CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FTwR1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfyvzZAgBwhlorERGllNYyfq3Vbf+NoPXFy7S+NJmi/cv++G9vLE9eD288r01vXrTfvG9tDlNK5vPIMXn5kfG1Otr4VtteXyNY6+r11+5Zz+zpSq2Vco79/atSins/5zz83NM0dffQEVJKIb2UjO4x3ufI/nvGc3rra9lAb49I+bT71t7z4G1qrTvba8kf3X/ePGgye3JG8PTK6kPbO1H9kuWj+4XvBVmf7/37/qX1f7USfayQum7eOLJ89JmsNp4d5/JF9dyTyzqXLLl6tsO7p5VF7C1v16vf68uC92vpgdQjq31vLK2+RFsXud7RubD0dVRnovPHkXoq71llkf2kje21lzZC88Nke75Pl2VRZfLklfd655Q2X+35Rm2Ptl49W+rplLWWcv6lPJbe8Hq8jrWXor6Gp4t87N7+6c1V04ejfnBDymGdQUdiH02fZftoTOH5RKOxjuVjWec41w+ph6WUzZzx/cKvW53b7Ubfv3+n6/VKRERvb2/0/ft3IiL6/v37uq7zdKNlaeMmmudMry+vH9czzfM9nfT6+rpez/NMr6+va/k0TWt5qyPjAfms3jzKcu23Rq3VtV9TWajWvR6O+vCe3xRpx9fpvnatPzvus+Ymui+57uWcqZRixgXaHhyNlXkbbS0jZ0SEZ9bje4yXparHMD0/2qpr+ZejOq/d5zZEyyfcx2/3fZm19pE9HS0f8XPbc1nnplX+mPetDNv958up/Zb9tN+tP2uNNbvO63B5uF2/XC5EdLexzcbVWunl5WW9vlwKXS6/ru1TSvTTTz/R+/v2jGgsy7KWXy6XTuzW5jERUaFlWeh2s321dibwMjm+ZQei+Yxa9ZzXZq2mtBtzni801W07rR/NJ5P79UisOHreSBlGqbVSWfZnX1kWSob+R+LzUvZnRdNvzw+yxuudKc230O61tjlX2p6je3ms8SPlkWeRui9lJCKqShdNTs+H8eTTbL+85mXWeWOdUVw2zc619vwc9c40L2ay1kvGYdpcLcuyeRYthimluPmNaFxpnR9a+5F8XzTPaPXP20TiFgvvHI/GTVZ5xPe39psst85ryyfV6mr9eM8V9Y8isW7EXvIyy8b0sPweLb/k+aqWH6efE/v7pZSNDWnXslze474P74vbJV7O6y3LQrX4fqlmF9tevlwu6/U0TZvrdjblnNfyds39iNY3j495uZX/ks/s5Xa4T2zZOM/2ejaCr2/kfWPP9mj3vH5H8kFW/Z4NsPr0xj4jV8Q/kW08PdHG9M57KZvlh3l1er4b/x21t/y+N0fR5+L3t3aobmLhe9n+rCilEBXfPzmyjlYfR2KGnv3Q+uX2lYiopELL0mzLve737280XR8xtaZXnj8h93fU/mjXEd3z6kVsTy5EKTW7Xem+8EQyR+fRWwft94iPKNt4PlkkbtHk7LU50u8RPD/KIiKX3MuevvX0TO6r0XWV57W2rny/9s4jaz/yPoi2ubKebdLy+j08+9zGlfTmuhfHHLHPnu2MxtC9Nkfo7bHI2euVR/dTD+u8OhI3WX334j5eHunT2rPSJ+fcz6/9XpnnmW55zA/8U6P5cXt5/PzdqPze/j+zR6SOWfbuT3E+WXJZMXCroommze9ITrDnpzf7f7/X7qf1Xs9/s9DexXi+4RG9ipwdFj3bz6+fpTNerCA58vxniJwRI/I/X4ZED/3c4sUaEXpxZ69cu/eMebrrHhGPM5o+9vbKmZi0jdPrx/uGycKK4fnzSH+0l8PR5B5F+tePfnrn4/PPFD5Gs/X3/+r2e4QRWWVdGZNYud5on1bcHykvpOnb/Qzj89L7vo9oe556z7E9I7dyPc4vPmex9418XC63bLeUhZalrnaY+6RafDiy1paImi5qaOt61NfT5mv0/Vyvvexr5H2pBj+Djtj+lgfT8vS8f63cOnsiZ5K2xy16Z4Lsz5qLaM6OiGjJ95zsvn7MV4ys32gu6Yiti7Z55F8XZZ4KlRL7vnjkPn9/GJmvuaadDJfLhepsv4eM+kdRX6w3n17cYo0hc2tWf16ecKSNbOblwjXuny3tbWz7H7cDJVXVxku7vX2WtJVpSvTIg38UTRNNRX8XoOHlnI6ufaS9dlYS7b+zfswdET/rS1mIlv65FNnzzc7L+rKfSM6Kr3PUrsq8lhWPa2faURtpP6f8vc+18VjD8x+t5+d+y8j+ivDseFiTWXIk3hhtI+1TrQ+diNrukRhUa2v5YUfPBA/+DbzWj/WtxOO83sez0i9/prxR/gRD/Nnz3B0PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg+CPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4V/BEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApzJ/tgAAnCFn/+/41Fo3/yUiSil161u/tfKUklrPatu7x+XzZJVje7JLGVu/sjzn3B1TwsePzh8fw1obLpuUicvP+6m1qn1bcllyEBGVUlTZrTGs+kS2no7ooja+lEX2p/Vh6avEeh75LNbzt3oppfV/rb42vuzXm09LroheWeucUtrIMLr+1nO1frjOReyRVt7G9u5p/XAZPZvRe0ZPTksPtXlp9y1dssbs2SbLDlv7P7IPovWsdbHKe32P6n90zXpzfCe5eqZdW2veO5d4mTVP/H5kj3Nyzt25kHJYzxg5z7R7msyarZ6mqTsWJ2KvZL0eKaWNHFwWawxv7FrrzgbysVp5xO8YtX2WPBr8GeR6aX1H96flu1hz0SvT8HwoefZaMmo+oedfSLvKr+XcROyydo70fvf6jdr3KJaPw+WK7rVR+36k3TRNNM/3MN+zw956WetylmhsYI1v+VvRvqUtORP3eH53L9Zoz9GLIfka9epa97kdbvK8vLxQzplutxsREX39+pWWZSEiouv1upZP+Uq//e3bps9//+9f6Pvb/dmans3zvO4Brn/zPK/nSs55rdP89nZP2iJtj8lr/ozR+OaIbejZUa3vM+MQ0WYu+VzwWMCKLawzTfutydvW/t5PJSI/vuiNMxLr9LB0/MwYEV/1Xk50nw8iPic9uyPXj4hMn4/bhCNnhdw3fP/zPi2Z81JYbLyViffD/euenJFz2dKXaA6Fz6u2frK8yX3/3748dabe8+8s2289o5XzsnIWjTY31vxLGbU8H58frX0rb3PF77Xft/cbvb9fP8qJSqn0xz/+kcrX11XGeZ43Yy3LsskV9c62iG/esPRd83cKFVqWbfntdqVytf05bWy+Fvy5NJk1H+SMn2XtEW9fStnKh254tlBr29ro8u/PDu1ZuS3xcja9eNrbL9szfD+G9pwRv18Szfn0nkWfp4mmyY8zImdGRMZSSiiv5NkkLyYajXFlf54t5deW/lq+Ex+Pj3kkL+21ab529KyTz8Hlipw3Fp4/GPEVrf6O5mWsnN+ojbTOuRZbWHHVaGw4GnN4vlAkN+SNG5FlRI81feR2QcZF3lpaRGNd7Z6MoeW5z8/+tt94/WVZaFmWR38vL0Svr49BE9Hr735H6cuXjSzcj8k5b3wnHs/yWNeLc7X5icyZrCN9OG0v8nltMbrWh6dLXgzR7o2++9TssOZTR2M1a8zeGazJYtmenn2I6H/E/mt9Wr9bn15uyctJaXJZeDGQN7dH9P1ofO/NVyRfM33kQPjtu21JtPUj025vW/L2fOooMqY425+053wcooe9WC4L80Pvbb58eVX1V+qh/K2N6cVNEu1cGPUHNbk4vI82Hve7rPU8GtON2H7PX5LXWp6hF0dFynv09pnm90Rs5+g4Ev4NSHScSK4lIgf3DyTSR+Fja2evzDk1WWReQ45hxaCeLYnYWy/Xwfvx9mKPSPzn9W3VG3lnHpEt8izPwLJFkRguKu+oPdNk0Xw6a4yReChyDsb0Spe313ePWj/2rpJnHZnzH61Pml70nvMZvseIXLJM2rJn7m3LJ7KROc/W7oheP/zOh8855vP25sXMk0xN9/s5GMunk/CzjNeN+F2jZ/sRfoTe9oj6VD0/+Cj3NeXj9Nv8yLXw7B0/u+/X9vnybDkiePZF5tMb3vxpcRiPO3jfpRz3p3j+LPptYS+OVnNDuX7MwzZ3Z4lnyW29hybq2zspX6Rt07fH9xC0ufdMnYv2lXOmqRC1vENjmib1XW4079t736GtifYuYwTep3ZGSMw8xXTXpW35/Qyb8kR52j+Ttp8k2vcbW1mMMzSlnX0lSuYaeWchEdE879+pzdNMZX7+/6+5FEPGmK1s1NfycoO2LHZulqPNqdefl4vz+urlMNrztTmI5C9TKjs94T6f5Ttp89yea+S8ORuzRmz1Uez3vrQpj+YBRp5P0xGtb7kOkfkc3TtpzpRSFnUf3wT09uXIc0fydJzb7Wb6JR7Rb8c4vXMmanv4+D3bK8fVfPHemms5j807y1w+zqPH/ev1nZZ3Xf81nWvnmTZF2vhyPrR/T8ebtFtb/6ldP56pfT/H92U0j8BltP4dT1S/j/gk2jw9fvP1zqaujej10X3p2VxtziNnb/NzR86D6L/h1Hxqr8597O16qHHFye9kNdm2MsTipx6qzzclyjlt9lj7Tv7/Z+/O46zL6vref3/7nKp6xu6mu2m6UQQDKoqCEFRAgSBGRLlO4aohEU18aZynXIfoSwRjcm9UHHJjvNE4YRJxHjA4MWpkEESibUsjiYrK1A09PP2MVWev+8eufWqdddZae+199qlT9Tyf9+vV/VTtYa21117zPmeX3zatU258UiJc1+06Nowz9ywiPC88Jvw9XW8bq4xHUtc2m80SY4LYZ/gOPn+0Sp47xcfoJdpoLfK5/mvF+DMmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiBl6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2KjpphMArMMrXvEKnTt3Ts65he1nz57VM5/5zA2lCmN51atepXPnzi1tP3PmjJ7xjGdsIEU4Tl772tfqgQcekKSFNuLs2bN6+tOfvqlkAUmve93r5mXWd/r0aT3lKU/ZQIqA4+2Nb3yjLly4IGmxHzh9+rQ+4RM+YVPJAnBEveUtb5m3GVLTbpiZTp06pSc84QkbTBkAXH1uv/12Xbp0aWn7yZMn9djHPnYDKQIA4Opxxx13RPvZEydO6CM/8iM3kCIAAABci972trfp8uXLS9tPnDihRz/60RtIEQAAAAAAOM7uuOMOXbx4UZJkZvPtJ06c0GMe85hNJQsAAADACHgJCq5Kr3zlK/Wud71raftDH/pQXoJyFXjNa14Tvb+33XYbL0FBp9/7vd/Te97znqXtt956Ky9BwZH0+te/Xu9973uXtt9yyy28BAUY4E1vepPuuuuupe0PfvCDeQkKgCVvectb9P73v39p+0033cRLUABgZLfffrvuueeepe0PetCDeAkKAAAretvb3qZ77713afsNN9zAS1AAAABwaO68807dd999S9uvv/56XoICAAAAAAB6u+OOO5LPwHgJCgAAAHC88RIUHGuz2WzQec65+c/+2z79n/3j6rpe2O4f54eViqOEmS3Fn4qzVdf1fHv7bxtveHwq7NQ1lwrzpm+cqbxs/8J6TEkaw3vchlVVVfQ459zCOZPJpDO+3P1KpSeMx9+fy8uUWDpzeSfF0x1uq6pq6X7kVFW1kP7ctaSuv7Tsxo7z24JU+CV2d3eXtuXqSCxc/3j//uTk2pGwjqTyKSWsb7k61ydc/5wwnNj1tGWq3TebzXq3N376SvMsTGsYTi6OlK4yFsuXobrSGbZpKbH74tzBf+2Gti3y+5dYWkryr6Sv7MrrWBjL1xEPO9d3l8TXlY6Y0n4sd/6QvqAVloc++dtq4x+SjjD+NozSMYi/raRd6VLS34VK61RrlXFgrlyl8r+0LUuNdVNy9cpPSyr+rnFsSup+59Lmn5Nql1J9hZkl++5UG5M6p67rZHlJ5cVkMuksG7m6F463Yvz6UlqPwzY/Vn6GjBNCYV6O2Xf692KVNIa60tPVJ5ReV+pexcpYXddL5d9vu/1xcfvz7u6u9vb25sfs7u7qwoULkqTLly/P9+3t7en+++/f336/nvj4k+3VaDab6c1/9H7de+8lVVU1P2dnZ0enT5+W1LwYpk3zdDrVmTNnJDUvL9je3p6na2trSydPnpwfF7ve1LwtVtdLxm65PsGslrQYVlVNivqEXNwl6xV+2sIyU9fL7WGuLOXS0medoNm2fFxpfodpLUlXLD1dfVnXmL9vu5LKm6pa7uPa/EjNh/rEG0qNp2L7YvmVK3ep+enELc8r2mtMta+l404/n1Jza78erFqnSsXWQKqqyo4ncvOO1PgkjMsPq72e5bpfR+ML60TqnvvbZ3v10v7dK1e0txe/f36bHNvfps3PKzNpMjFtbW1p1ysXdV0vhOdf82QyiY7XUm1AV3scK5vOuWiZn23VS9u3trY1Ub5+pcpvybpPSZlI/R5qy0hqTFXSXi7GkZ7np9rZ5HETU3hK25aU9h1dc+/cODXWXsb602bNYzk9/li7ZBwSxpmTGsfMr6GSzKqF/JtOp5q45bLvtxd+OsNxQqot6csv44t135a2+/fCz8uS9jscB+bmoX3l5oe+VJyrrNOk6mpXnnSto1RBexuLo68x1jFzSudpqXlUqi3xxyvhvUr1kbmfw/TG2qWSdcKucXsqP/quSw1RsgYTu0Z/na9rbSUWtt8uxcY+ftvhb9/b21vYV9eWGEv9AAAgAElEQVS1rly5Ikm6cuXK/D7XdT3/K48XLlxYGGtdvHhR58+flyRNTp/WB33ikxfS9K43v1nbda2dnZ35tWxtbUlq5rM7Ozvz9rCqqvlcdzqdzvPKL2/T6XR+L8N77berfvktrSNhOY+N10vLUckaf0xq/JObH4U/57bl0lQydvSlxuq5dUX/91TfnYvXL7+l6UytW6TWAdq8SK2RpMYu/hgpvDdd67Rd/WGq3B1GuyZ19/ep+13NnMz8NLr9+eHy2oh/fm4MPtbaZKq9ldS7jPnHldYj5ySz5fY6PK/PelEujan+P/Zz6vxUnoWfe+hKz0Fcbv+/9h+vT6yHt6Ol63Sp9YRc2kviiYXfNQfuOj8Vd5v3uXWTUDjnLY2/T3nx09h1TJ9+rY07tYaTOi/VVqbiKG1aY229Xy5iP7e/h2LrZH3au7YfHXJvu7Z37WuNOefpml+WbM+tcfSJP5WvqXFELC1d60klzybbf/u2HyVzktQYLHaN/rHNZ5JqObd4LW7Wff9i25p8cPKjDNeZxmx/UttL0psaBx78vjgGasMtHVekxNJW8jw9vO+lcftzyFwbM2Re0mxzWh4Tlq2/Ls8lFs/154NdafbH8V3pLm2bzdJtc6oclLR9JWnsq09/s474Ssdc4blD2vTSfak8adrF+W/etvTae8kcomTc13dfyfj+sPruWD+WWr/tWz5SxzTzzvC+HDyvDO9Ramyfuq6SzyaF58TCj3HOySb1/rx5sT0paccX5uSJ59CpsEr77K7rONhvms/5PCX1uqtelB4bOybM0zas2Gfk2/Ny6zJ9nxfl1oly/XfselKfc+tfx5t+eVbP5Aqer3TNh2NpHcvQMVTpfCmMI3VfwrFreJmxviDMi/D5UyqvcuO91Dir67OxQ8eVObG0hJ//TLWzufZ38eflNPf5rEOuTc71/7GfU3O91Pmp5+Ol34NJhRu7jnZ87OeX3y501YU+z25jn20qmROUrJWVzG19bb1c3DaTZi67flkiTEus3KXadqlsHT+WB0PLR5eSuV2YptK6FAundHwcxt1ev5lpNvHbkyZO/7NIfeJI1Y3UdbSXGB57MK9t1HUznqir9vflddi6rmUFVcwfl5S2w7l2vGvukbpnXXk5m81UT2o55/dpB3WvT5yptIfnpPLVX5/KxRG7ttzYMlXeU+kPn532lZqfdM0BSutA7HNbuc/X+2OfVBkr+UxNbqwT6zvqql5KV/vsaAxh2Kky0PUZDkmazZbLZFMP4t8dSa1dh8el8izWbqWOK/3uxNDnzbG2JRbn4nehl9Nf1+Xf8es3F3RStO0++Nm5g35h5KnLsXM4nzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAReggIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgo3gJCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICNmm46AcBhc87NfzYzmVn0uLqu5z9XVf/3Bfnh+nGWpq30nFy8feMMt/dNQyo/c3HkjvHvgR9HVxrC4/yw/TC7rjG2z8zm20uuK3dcyC9nfe+jf054biqsXP4756L5n5O6zlx6UnUrFXdJHYnd+9L87KrrYZx+uCX5XLovdZ25n4fEn5LKh5Kw/HYgdu/9+jOkvQrb8DBtqTBjaYr9XHK/wjhS11LXdbZNjF2Ln0elwvhT4YZ1r6pMVeXdr6rKhpOqy7l+NHW/UnL9csrYbXGXXP8elqk+fWIrVv/quo5uz+VXKp7ZbJaNuw2vqqp5W5y7zjBdffuOrvTG4hxy3JB+taTMpMp4aXzt+bF8i7U5uXBT44hcu5K6x6V911j1KhfHqsfl6mxp+5HqI7rKe1ffFKvXft1blR9+aRnzt8fKdyzPSseA4bY+/XDfMV3K2OU31tfHrqtrbjiZTKL7/HwJ76HffsTyZ29vT3t7e0txXbx4URcvXlyI+/Lly5Kk++67bx7P2bNndOrU9n5YM5lJN90knT4t7ezsaDptlpPOnDkzT39VVdrZ2ZEknT59WltbW/N42uOn0+nCdufcwvnttcxms4U+yT9+1XLgh3Xw72K5r+uZ6jo+Jg7TE5NaT8jVxcX462ibU7kq28b3zZtYuWq2LbeXuXlw6Ri267gx62jXWLUrfP9620P9oFL3IWzPSvuaVq4PKO0fStawFudtbn5tYbKqYI7Q6nN/SuZoJWW3qy71EatfVi8fkxs7pPrEkrmlLzfWC9u89me//5lMJtG8qapK29u1TpxYvLDrb7heu7uThfbGP7/9OZzb++nY3p1pe/vcQprOnDmjK1uT4mvrqqOhvuO+XLlLRdlnLlE6vy05ps3zkrWwrrWNrvGdt2G/vh9s393bVRUZO+RMJpN5XHu7s/l8c75tb09ub3GeUjrWLlkD9o/x09KaOpuPMxpOW1tbclvLYy9/TNKn7R66huGP72qr5Vytuj4IP8y7Nq4wv1J1qasvyJXrrjVzP/7YtmbNqZpvW7wH6fj9vPHbolS8qflsSVpLzut7XInYdefmgEPWdsbQZ96X2+e3cbF97bkl/W1u/aXNj646mvq59PlfV30f0vf75/VpI7viH5LWrvP9uhw7v3SNxP+5ruuFeWsbxt7e3vyY6XSquq515cqVpX1mpt3dXUnNfPbChQuSmjrywAMPJNMRS+ulS5d06dKlpe133XWXJOnkyZOSFue6N954o86ePStJOnHixDzftre35+VqOp0utd9+f9NeS6wfk9Ljcf96wrBSa9S58Vd4/pC2z5/Dr9r2dsUR29533hKWSf98v4x0jddz6czV6VzaUmO+cNzn94Ul7aV/j7vWqkLtuk4qvSVren3HUn3a1TYvwnjC8Wm4vaqd6vqgX3XOaTbb096eLbUVs9lMbhbvs/q012G9zN2X2HFSem0qNl6MxZ86fjGsxeusbHmu2HWdvtJ+Opae3PpXyVpSyVijrut5n+L2au3t7aqunXYraW9PunT5kmZVE+8999SqrjT50NaNcF7tr3/6afbb9T5zoFSZSQnXJ2L5WlJG+mwrGXeVrAXExmZdac2VkdKwYvtj5b1knBXmcexeTCaLazMxffq2Nq25fAjLftf4LRyH+OP70j4xNlZJpT8Wrh9OarwT9uOxcHNhp9Icpr/0nFQblet7S9qv1LXkxjS5uU5X+eqqC+sSayNT99hfewjPOQirLVvLccR+z93zgzLYHr8cX6qNLmm7feGYuu/YLTzGX0dwzqnam8m55edDq47XY323v/6cG9/6Utcb5kvJWCxVlnLXW9e16qpeapuqajIvS7msyvdD3cfE0hM7p3+9PCi/znWvyfTdVpKurrFbrC9btVz68Q0Zh3UZu30c63oP2r/8eCa1L1yzTH2GbNX27rCUjLVLDF0vidW1XDvUNYYpmQf5wnW9kno97LPj6XInxT/Xlhv/hftj8+QhbVRzniQdPCOv61rm+vW3pXJhzWbNs7XFe3pwn8I+PBV27LNBuXR0je+6xqel5+eeZfQd30i2MO8pqbtDxk3p4xZ/r+tadd293hWW5bAtzZXlMKyS/fPfK0ky+VOCNv9Sn7to2/quZybh59T89bfcvSn9HEsrDMv/HESrz/OyrnapT7tX8pmKpo1Znqun5Op46rOBuecHYblatW8eWufSc6vFbf7z5dL4StLRlqOhY5Tw/FQ8YbjRz/tPK5lVC3OK6XRLE5d/DhSLL/Z7al8unYvlV8l9JXGm4gi3l9yL2FraEH49KFkLk5bHK7E5RFgmwn7cbHk9rOt+LY7/4sel5rML82+Xy9fldmt/j8I1jsX9y1LPjErmirmynKqvXWPVrvxN7R7SB/cdi/c5tnSu2jVWi/3eNf7OhdvnnPbXeZ2LVLuSMUHf+Uj4uSS/XuW+61TSJqW+E9goa79za1extITjiqFzR0mqKj/+9tjF+lbapyyGG/9cf5imXLnMPX9OxV06l2x/DseLsfHfkPnf8PF7e74k2XxD6lprd/B5fudMLtJeXyv6v9kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbES1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUdNNJwBYxWQykXNu/rv/c4qZLfyeOic8Lnd8VxhVtfi+oSHpLJEKN9ze/t7nWkrSXHKMdHBtXcf7eZBLs282m/VOTx9D8id1L1Pbw/JSkp7YPfbzovSclK40mVlxme0Kq67rUeJpjx9TaXir1pfSMhMLw8x613H/HEnRshNLU5+ymgqj3d6nzW23t/vC8/vedz+s0joe5pmflpafP34csXSW/BwTXrtzrigvm/RIB5sOfqmqap52P19S+Z3rh2NpyZX9WD7lriXWjqXi7FvGcuWyzZ9Yf7ZKP+rH6ZexsK6lrnFvby8ZdhuGH1bX/UnVcb+d9n/uO6bqe0yXVPkZ0iakhGGN1c9MJpOVzp/NZsl+P1eOY+UtbN/8MFJ5PCTfU31arL625SyMp92eKqvhtZTev7CNi11fri7lypB/n2Lj1lga2/JhZvN467qOjplS22Nhp/aNPX4qEUtzrn+u6zpZ7mLlod0eu85cuc6NS/3j/HTF4k+lNxZG6l4s9+PLZcYvU9PpdJ6WS5cuzfuInZ0d7ezs6MKFC5Kky5cv6+TJk5KkkydPand3V5K0tTXTyZMH4ZmZbrvtejm3s9BmVVWl7e3tedh+era2tuZpCdu59nd/u3NuobynlIw3SvhtoJRvH3Jj5dS9bctP6djeHweE5TW1LRV+ro741x2OZeLjH1s6r+R6UmLjp9LrCoV1tGutIexjutLgnbl/vCRZdmwf7iuZN/jb+86xhorNDXyp8pGSG4cOTVdMSbvsi+Wnq6SqWryWyWSiSV0ttP1tHuTGKO322D2O1cO2/djd3V24lnb75cuX5+1wG1b7eyqPw3T57ciZ01NduLC7sO+eD9Sa1VsL58TaZP93f44oSdWslnPt+Mzm6duzYfU61fbH2qtcOE168mPVsLybped+ffuXkvqba6eqqorOr7rGpqn2ORdXs21x+3QylbN8XY7WqeK2ND83T7WXUnzcH8uf1JpMGE9Xn1ai7zpSLB3zOldZtJzn5uy5+Ie2lSXrFm17VXJsTlc97ruG0yf8XLy5c0vnnVJ6rSSW/tRcvksq3JK11Ni+WL+Vuw992+Xc+Dp3fqze+z/n0lIaR9/yXHLtXePS2LFD5uW5+WzpHNSPs2vck0vfZDLJzrP9tZ32OP+cuq7nP7dzSSleR9pxUTg+ao+9cuXKUtwXL15s4t/ZVvVBD212OGlWz3TTx3yM7PLl+fHT6XSelu3tbZmZptPmIxVVVc3n0JPJZGmduN3eatvzkrFGrL747UlqvaPdVxrHkDLTJTy3az7adX5OST9eUv9z6YnF54cbq+ND1g9L58epdKXGZl1rXrGxQixfq6rKrln6affP7xof+ceUjB9zx3Wd39bHMC/avJvs1TLz75NUVRNNJsv5O5lMVE2W63wsveHvJWPG2P0q6Udz21JxpuYadV2rtlqz2WIZqetaVsfbmJK05dJaMt7oet6aCyeML4zbb8fb8rKzV2trq1nvtB2n6bTWyRMnNZs0cdx443WqrqTb5NLtXXnl36fUOmNJe5uq17m0laSrdLsfz9DxfGpMmJK7xpKxY67M+Nv9Op6ql33nZ/7xufTFxlrtqalnZ2HfkUpbbHzTJ32p7Tklc+jw+JI+JNb3lJTV2PbS+dFYUmW1z/Om0v62RMmzxzDu0rFOSfr6jmnan8OgY2OoWPrKym75PDNW/mJlp90fjsNWXYeJp3HYeX3Gq62+baGUXhtdVUkbLy3Wtfbfup5555SPPRbrrS1sT50bW6/Lzbty86Q+871cv+nHmWsTh/TDuThL0lrSLpbMVcKfu/JjLH4ax4sjPU7Jzcna7eF6TGk9To0fwjZveVzVbi+KZsGQ8WnquFXLZWncB23D4jU3Yzpbuke5sliyvh9eY9fakHMu+8zLJubNpZfnKqn88j9P01UuU+tgy319fg2ki39Kn77noG9YHpvVdd1my1L6wzgOysLiCeFz11hY4b9d15+7p7k+puT4WNpKt7f7uu+fm9/nVBmRmvz312dL2q9w3BhLSpj88Pl5qfaUdc0hlu9lu+9gWypPStv6od8B6fqccWocE5rNZgtrRqXp7ltHuubM4XFhe+Bc8z2eWUcx8T8L6m/rejbgx5PSlTd+PKWfK4+13+32WP9Uks42rVY4begzx+waJ5fG1TWmzPW18/HVXtPe+6fPZjNpNmzuXrIe4feVuWOrajmsqqqWPtdZujbZlab239x8J3ZMWN66zg+VfBcjtb17btDex2BrQbqW83X5mHCdK3Z+6vPRfrjhmK/5N175UnUtVw5S7VXJmLskrjassM3KhT+btGNQP50TTSbxz3nH0lw6N2/DiG8rW3Pqqgu5+Vzq99h9jylp49rrCdWzWnUdDzu8X7Hxdldb5afB73tz8ZV8Fif1/Z3cOng7h22S1N2Gl67Ld4WRk2uj27rvhTb/KfWsOVVOYnmRSk/sPP/+59qLkvmJ/32Z3Nipf96n5svRU6PH5vYt7e/IxyZtXrtYloyr0uF8sh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEngJCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICN4iUoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaKl6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2KjpphMArMo5J+dc8fGz2Uxm1jus9hx/v5klw/K3h+dUVfz9Q6n4nXOq6zp5Th9+usK09w0rFkbX9r73qw0rFV6ozaeu+zjWvjaeWF6m0pC6l225CPeXXntoMplEt/fN/1R6U+Hn5MpyV76MoevaS+pEu23V+uL/nGsTUuq6nocRpjtWZtq8j+3rU8fC8ErT7JzLprM0P9vj+raJQ+t3V93vE96Q9rJLe25X29fNJDP5Selqr8O+zf+35NiScKMpjZTXXLnLxRmre13X4OdLGG/fctxVx2NpzbWV4fWkrmU2myXjL8mrknzLtfdj8u9x2KYMaa9T7f6YY6QhaYjJtYOpMCaTSXJMm4q/5Pq7+qFcfxqeE7uPsTJX13V0LDKk7OXGGmOUYz98P81+2Lny0tbZnFR5z4XrH5sqD33b2zHrSuy+tOGH976rH3TOJfMxd41d49CqqpLjKL8shunNjVdSYe3t7UWP293djV7bpUuXdPHixaX4Ll++rLvuukuXL1+eb2vPP3/+/Hz7yROme+89K0maTifa2trSfffu6tL+aTs7O5Kkm2++eX7+hQsX5nl25syZ+XX76Z9Opwv54ad9Mpks/O63C7lxVJ9yF2vv6rre//kgnNlsplmVH9/E2q1YWQzHlKk21/+5SdNi+zOb1dIsP+7qGnP1GX8f7N6fR9Srrx+EVp3r+ecf3MdFYT+W+jllVtVeGyeZufm9KA0ndi9K2vYu4fXH9g1d9/HzLVWW/LY/bOe6xkGpsUOuvk0mk2Q/6vPzNnZMXdeq68V8mM1m0iw/l8yt8/nb2zjD8u2341tbW/PzZrPZ/Nitra2F4y9fvjxvb/3ruXDhQrK8++nZ3TvoI6qqatrj2Z4uX57N8/LkyZML80o/LdPp4qOD9riJKkl+u9bsC4/PjaP8/PHLkp/fJeOLkrXZhXtUxcuffz9iUmPi1Lmla8Y5sf4l3J6a94T9YzgHaH5fTkdqra98rt/mebMtnKcOXZvx01W65tzU9Xpp+97envbMzdPXp73qMzfsWy7DOjWZTDSpF9uR9ppixlhXLSmb/r3oWqOLxV+6ftVnTaz0/Ny4sWRu5NfxoePPVeXmaq3cPc+Vy+3t7fnv7bWmxhF9t4c/9x0n5I4Jxywl9zgX5ir3q2v8vYoha14lzwzGlOuH/LY8bKvb7ZPJZL7Pr2/T6bSZn3nrmfMxyWQyn8OGc+b2+Nlsprqu5+MUN5nKeXkxnUw12d6WS6wzSc24yN/Xxrm1tbVQd3xh39WmuXT9Nlff+9QRqaz+HXZ5GaJrfbGk/qfWGXLhpPq5MIzUekPqXP84f/0zTMsqfVoq3q75V+yc1PGxsFYtP7F+Zei8vnR/G1Uz7/fv7fB+pQl3WF53xde3XJSkpW2r661ak0klP6hw3JwqC33vfdfa1pCwUnmTizO+3S386+TkXP76Sse6qesuXXdIhdl3jb40zq60p8LO7cvt9/t0aXGtwv85VeaGjNVTbXos/NR9jq1ntOtZqXNi/US7fhNL68F4Yjlt0+lUdZ2f/6XWD/30x+KN/ZsKJ6dvOQ3LaF+5a+pqM1PpiYXbd26a25crV+HPsXnQkLY4N29LrTn5//r7u8Y+MaWflRoy34qtf5WGEy/r8c88DetnDsTWRmP7S7eXiD2D2tvbUz3pbgtWfTZUUvZL94XHpeZdKbG1hVbsmVOzrT3XLZyba9+a/fPfvLDK5oPt72Ed67Pu0qahTbef9ljcfccVKaVtecl4x9/Xpyz2mauUtD1j6zO/8XWnLT7OKT9/UVhe+vSL4fgm3pZ2x18yXildgxy6/lyab7n5bHp+V35OX6V1umt/2w6lnsvHlK6F5cbKsfyMjelK+6tYmTNLf68jZzGsg37IX+fJtUNNvE6KPHctG+ukf4/JzSn9Y9bR/pWXmYmqyuTMfx7d/OznS+7zFn0/i7HYVy+neXm/239m173uU9oPDl07SpbbylRVYRlZ/nzxGMLPR6wjjrAe+eWp5LssufKXSm9urhJfQ1j+7k/7GZfw3sX61HCO7j8z8a/Zbx9zddpvi3JlLLamFrat4bzTP65rPhjjplIzLh7W1qTWcxbiyKynDulXY/d87Lla3zXF3D1N9f191xxL4uvaVxJmad8TlsOSsX5q3FoSTyytZecfhOMH1ZWHuXFx7n41vzZ9U+XCOtqevxxWu26SmoPm0lCyPZf+cD5eWpdjuvr9erK8BuJcrbru/6wn/DlmOpU3Fmy2hZ95PEhH+Tp6+3N4vbHP34X7wvuaOye13f899p2mtt/xs2dra0uVW17vjl1X13zc/z31uQNfrl/yz2ufR/QZj5mZVNVBnpqXB4vhtJ9XaI7rP04aulZxsE62fG1dfVlJGfHzrDSNublurI/KzRNTafY/WxfL7842IzPfLRlP5MpurJxZ8NnKMB9qc51rJteK8WcZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANADL0EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsFG8BAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARk03nQBgFbPZbGmbcy57jpllz/H3tz9XVf/3BaXS4ZxTXde9w4ulIXYtQ9PVpikWZiq9ubxMxVNVVe90D7nOvrriiF1P6hrNbP5fbN9kMilKU64MdcWfE9sfq0tdwvjbclJV1WhlfGxdeROmIdfGdN2fWLhd9a9EG1aqHOXSNUZd6kprKo5c3GGau9rxWHjtOWO2i6Vp8eN1ziX7lNI4usqYb0jdbcP2//O3tcJ2rP05lvd963xbjmNhDW37cuekDM2/VcPo2377fWefPiQWj5lpOl2eAjjnstcypF0/DKk861NOSuLoMz4akoZYXUv93tXemdlS3Kkxrd92lbbfY+atH1bpWKtrfN6nH2jvYaodHqPcV1UVTevQfOw718m1N0PGXn37+b7XmSsTQ8ZRQ9Lbtwyl2s7JZBJNWy7fU2HVdb10/e2x4Tl+G3Hq1Kml7VeuXNFNN920cM79998vSdra2ppvO7EjnT5d7ae5yZOdExPJmmu77rrr5tfpO3nypCRpOp0upLkNe3t7e+H4VL/U7svpmtuXatp5SToIL1V3u6TO6ZuuJk2LYU0mlSZ1fhyw6ni/JJ2ptnmd9a2r74uF1bXOEwsj3e+04+CDbUPzuqtvSfXVXfy6mEtfen0n/D29riGl8zcnlcdD1wJS54Xbw37dVYtpHt5uLIdR13WyLIbtSpue6XS60A76ayt+m1nXtXZ3dyVJJ06cWNh+7tw5SdLe3t5C3BfOX9DFi4v3/H3vu6IrV6p5e33ffffN91VVpRtvvFGS5nG1dnZ25uWs2ptpNtvbP2cyv+awT8rNb2JS96WrzvVZs5tVtZxbzJPZbCbNXK+2bEgf1aV0baCkTetM137f5wc9pG1LpaUNt633pfW1K46+x03qpn3z900mE00mk+I1hlX3l5wXjvWcOyiXobCedPUrpXOaqqoGX0t4H/04Uz/7hvapYXpT6yW59SypyetwX1dYXWnxt8eue8x5daiu6/k96bNm1fWsLXX/hqxr91lvTbcz/deC+67TDn3+0kffsWnftIy5bpaaf/V5ThKG49c1v76Ec8TUc7W9vb2FeWwrV57r7S1dOHXaC1s6dcstsitXip8Pt+kL97W/x7aP9fxr6DPmdelqY/uE0zUOSz1zjUmND1PjzSHrV7kxWkzX+mDsvpaOT/usE/vxpebAfctrqr9JjaG7xp1d7b1/XaX1IRVnVbkg7PDYcT7TkLsXoVXa/9I+Kjcnc1vLY6GtrS1Z3d0P+L+v2sf5YZT0KSXPTUq2SQfl4iBaJ9PBHCrVBpQ+v1tFbs08zI9VxgmrjomG7pPya2PT6bT3daXywm8H+5bJUKpcp9raWJyp51WxemBWL7V/V6406z259JpZ7/6mLde5fm82m/VeF8+tLab6/iFtbO7e9mkXYmGtMg72f+9bX3J1dMg4MTWOS93z3H0Jx/exsMLz/fXUrvlfqGtN0K+DuabjMOZ+OX3KfK7dzx3rn5PqMyeTiWYd17zqekZqXT3WhqQ+x5pLQ26tJ5eWaNmbSOFzuthnXttwcun0x5zz4PfXKPvw8ylXL3Llwd/VHhsbQ/Qp/33WT1ddpyiZB1UbCaIAACAASURBVA1Rus7Ulc6+fUts/3jrhk7+fCbVd/jtQmnbn2rjY8e2x+Tm47PZTHW92F6HZbnvul7J76E+c+EhY4/W4txYcq47z1q5vj41vuwTRkw+78PPn+bTHHsO0bfM+OPjkrFzLOxmjLA8PvDbgtI2pjku32eXtDGxtHTN6/quM6waVp81h75ttB//TM0YzsmpacskqfZ+7tdvrNKuhvXV2zPqmm/fvlfq/k5RrGz68eTWDEvjC49PzWu7tGkq/axMn7WlkrD8cWdubtA1h1s8ptnml5Mhz0ljY59w3lVadhbqWcfzw3DcOcbn7P0wZ2rz4qDvSM0VQrkxTer43H1dx1rseOO58rURP94wj0r6/mrvYDzWms1mmlVl7X/fcVsfQ8aBqXlDv/693730212/DZhMyvuKrrbb3xZ+9k1q1qerulro+xevf7GfXu7fyvqkkrXjxWtavg+5uUZXnLH1jNixJWV/yPgotubrh7O47nywra7j49iSMuq3911rCSVtU65d71qn8tPij+9ra8ZrftbMZjO5WTqvStPrS91XP119vu84pB+N/V7X++1tHU97myY/73P1LeyjVm0LD46JHxtuS835c0rvZZ+12Fx9T42DYnWkz/Wk5qjhqbl11lR8brbc39azmZy3lhne96XPFHZewdVr/d84BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAMXoICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYKN4CQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjeIlKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2arrpBACrqOu69znOudHiMbPiMPxjY+fl0pXaN+Y5sWts0zmZTJLxpM5Jxdsn/4ec08YfpqPrXvW5l60h92UMQ65lHWlN1Ys+9bIr/ty1DCkXXWazWecxVVVl4w+3DylbqbCksjSWhpW6V+01hmn3w1hnHUulK3fP2zSXnuOc69Uedulq+2LHr1I2uuJtpcqLc05mmv8nSeb9P3WO/2+4PXV8zGHkcd9wuuJIxZPqI3NhhfclVedaqftYVVXynL7bh8jFn6qTu7u7o8Wfu/dDr9Mvm+3Pfdv1WJnoKr9j9J3+GKi0vrTxhvEPaaNS+eWnLaU0rly6cmH0rb9927Wu9m5vby+5f4x4qqqK1rm6rge1a2O2E30NibvPGKAr/FRYKWam6XRxWWVIve4ak8XS1V5LGH/bzu7s7ES3nz17dmH7bDab9zOnT5+eb9/ZdtrePifp4Jq2t03ONdfcbrty5cr8nOl0Oq9XYblv0xNe62Qyyc5FY9p9sXs85rigr1SbkquLKc7Gmzd3lS/f4rrF4va+fUNXunJzja4wu8JKbZPS/VWqXYxtr+taVg+bA4R1tj2+rYexOjLWuM7MouV0UrulsKrKsm1in3lW13pYLjx/f8lcOFbe22teHCtJQ5ZDuvroWJ6l9qXCatvr2PHb29tLx9d1rZMnTy5tNzOdPGG69dZ7FrY/7rEP0t4s/kjALH7f/b5CkqaqVFUHZamum/sz807NrSWG96lrPhQzZG2oPT51ShjWYaSrpH6E23NjjNT4Jx324i9dcwrnXPGaTbPeEG93hoyXUnJ5PZvNlu53206tc/22d59Ztfd5cd2t/S/Xr6TmATG5dnToemMfffqzIXOVrjFPbj4VxjH22kmorutBZbD0nL5z0FzYbV6kxgV95lCpsVbf52+5Niql73iqWTstX6sY2xjlMHd+33KZ2jdkvT4VhnMuOQ5JjaNiY6Mu9fa29ra39n9rxoWnz5xR5c1tpeUx5Pz8THlNjQXruu7V502n02QZD8tGqk9dxzPP2Bgu1caOuWY9Vp8d61OHjiljSvuZME3+v+HPob5jp9w97fP8IsZPe6wvHZq2UqnPMPRtx5rt9dK2ul4cm7Vhd/UPqz477rO2X7J9yHPQ2mrt7c3203MQlkWeH8bS22cdqg3b/9cPO2XIs4s+48vFvNtPn5ycy8+XSuto3+clQ+vLqmunsTaqz3mxeEvC6rtG34afu7Yh191Hqn/OzYd9fhkN42/H9v55s9nyGHpvb6a9vXohTv+crnz1j/XnAKm6GW5P9R1955q5Z88pQ8b6KX3Wc/rOSdb5TK4rjD7pyo1p+0ita/e53lR/P2QNo73Muq4l71LGWnsfYsxn6n3TO4k83xhSrvsqHY+n0tKnXpeMMfx9S8+BZsvjxGatsd3WPmdwS21omH6zev5Moj3UP6/PGkTX/Vh1ztVnDNanfx8qd89XfSY8pGyPOdcuPT7V93anaXF77PmkNOwzmmG8ffMlLHNVVV4H+oi1c+sKu2t7rs33T+laEyzdl1pny+nzXGG2W6uu23njQVvWhrG7u6vd3YP42768dN4XG4emtqfa9dR8xsykKng+Fpxf2i4eHNsen68XsW1VVe33y4v3azqdqp4ujoH6Ph/MxRubq6TGgamww7KRuhddx4Th1JN6v89MX1OY/tz6dXn72X8dKBbO0Gc/fc+L1U0/LU0+hmteM2mWX9NPtR2pfOizNpeKMyVX3/u26X5+Df2cYdc98tsDf/5R15Zdc021DaVy86PU58JSn2/OPZeIKS234TMS52ov3IPnD1Yw7ew7bi6dyw5Zj0hJjUEOPhOwuG+V55Fda8ax+x07ZzJZDj/XJqzTGOP0vmvpY4j1Raly3ee+t+Lz6XjfNZbU2n9qfTOUWqfMPa8LrXI982eYmaweEn5YL3LtTJuFuf4ktTYxZD0u1PczHuFaRSqdrXi7FE/LWGtOfdqlPnH2Obbr8+Cl4+8+a7Zd+R+WMf9e1vXBZyX9MpmbM4/xHXo/LeG2PoauW4ypuY78/tzvi9v9ffHPCizMZyfmzRdd5tueV7/DH5UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMcO8803wBBmdr+ks+H26XSqW265JXrO+973vuhfu8udc61Yd51f9W2fJe66667k/X3wgx88WjzXgmuxD7j77ruT5efmm2/eQIoOxzrfjDokrJxNl8sx/9rDGH/R5+67746+rXkymXSW2WT8zunkhctyJp0/27wdcW9rKmfSzqXt8OWwGFnpXzZIHV96Xl+r/qWUdcSxDh/4wAeSderGG29c2t73fh1HY1zjOvqI45L3h1WuD6stOKo21X7ce++9yTbjhhtu2ECKGn3ffp56Q7eU+gsh0pnTi29Qvv9c86bu3NvoY2+sltJv4D4K5dcknb64+Fe/z5/c7j0cGvNanJx2Ty3OWbYuTA9njGbaXNxHkJPT3qnFOjK9MJHcuHOATbbx5pxOX9pd2Hb+xJbcwLhX6b/vu+++aJtUVZWuv/76QelZmtdm7ulhWvWv/5Uwk06fXrzW8+cnCv8CYN/4zUlnLy+2E+d2pgt/PWNI2T2UMahJe0GeTM9Pon/V/Dgq/ssbZpqdOrWwbXLhgmyF8ZaTO3J5m2vf1jm27P2XLyzSLq2Qd0dh3n3crfqXl46q+++/P/pXUqqq0nXXXbeBFA3Pu75/KegozDuOs02W8dHjNtPszOmDXyVVD5xf+rNUmy4z6/4L7EOsc53usPJ7k3k4xjWONW9c518CPKrSz8oSc5tKmgXrYpPz1WjzxlHXkEZvJyPXfqGS5f5cYkF6+j4HO4w8Sv71dud05lJTLlwlXbjO6cq0UjuXXrUsHOn7f0jOnTuXHJeePbv00bCrXp+/+Cjtr92fWcy/Bx6o5mv3Y1ln37XOOHE0bOpeLpS5WJ8WtOF90mnO6UwwbnhgZzp4HX2Tjsq1rPO5yMp9ZGJMNDvVf5w0z28vSQ+cOMhv51zvv2jfW0F9kGiHjztnblAZ3TR//N3y68jVKnbd505M1/64cow5hDOn+nT7p8Sl7W2nk5cPnj4+cL6SW6HcrXtMm6orivyB8c657Aj1zpx05vLis6wHdrZ02FX3qKxHzvPUpHprW5JU7e5IMk3PX1haxx01To9/H8ccO5k5nQ6eCZ6/MFmpzsQjij8Tv5o/97PpZ2Am6UzwXPqBE1vHJsuHfJ5peGTXVvls8zb1eYrS615nOx0rv6t8bmwVm/6+02A9ynXy84axz41cmETHFSWfz+n6PGDfz/iMVt4Oe8yx5jZn6dmGpLMjjfNXzZdDneObNDs9W7jOyfmjPx8dwjnXXG+wRj95YLzniGMyJ529sjyWjUx/jqTDbtNzz19W5SS5s2f82GQPPJD/vKZJ9Zl2v9OF912Q24sef845t5kPfh0SXoKCI8/MLkna2XQ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANuSyc+7EphOxTvE/xQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh4SXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYKF6CAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCjeAkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI2abjoBQIF7Jd0Q2X5F0t8ccloAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADW5WGStiPb7z3shBw2c85tOg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmHVphMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4NrGS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUbwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBG8RIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvFS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUbwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBG8RIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvFS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUbwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBG8RIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvFS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUbwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBG8RIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvFS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUbwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBG8RIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvFS1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbBQvQQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwUbwEBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBG8RIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABs13XQCAAC41pjZVNKHSvpgSWf2/6skXZR0XtLfSXqnc+7+jSXyGmZmZyV9mKSbJZ3e/29Pzf25R9LfSPpb59zuxhIJHCPUKQB90GYAwOGi3QUAAAAAAAAWmdmjJP2xms9yhF7knHvh4aYIAAAAAAAAAAAAuLbwEhQMYmaVpI+T9ExJHyXpIyTdJumsmi9LXJR03/5/90p6h6Q/2v/vrc658xtI9trtPwR/pqS/L+nRal5wcJOkkzp4wcG9al5w8BdqHpi/RtIfO+fcBpIcdS3fXzN7gaQXbSDqO51zj95AvKO7lstPipmdlPQsSf9Q0jMkPUrSVsF5fyXpTZJ+R9LLnHPvXWMyr1lm9ghJn67m/jxJ0q0Fp10xsz+V9HpJvyHp1c65K+tK42Ezs8dLepqauvxISR+ipg6fknRJB/X37Wr6sjdLeqVz7vJGEowjhTqVtt8fPEnSJ0p6spq69SBJN6rpFy5KOifpXZL+WtJbJf2hpNdSv3C1os1YZGbXS/pkNe3ER6gZN96o5oPW25Lu18FY+v2S/kQHY+m3O+fqDSQbwDFCuxtnZh8t6ZMkPUXSR6tZz7tR0gk147P71YzPblczB/rvzrl3bya1AIDjysy+SdL3RHbxJUoAAAAcGsaleWa2Jem/Kf4CFAAAAAAAEGCtYZGZTSR9QNJ14T7nnB1+igAAAIDjyY7QexdwDOy/5OMrJT1fzZcBhrgi6dck/bik3z3uX9Iysxskfcn+fx85MJh3S/ppST/inHvnWGnri/srmdlLJH3hBqI+9i9BofwsM7MPkfT1kr5YzZfcV1FL+lVJ3+Oce+OKYUGSmT1L0tepeUFNtWJwd0v6EUn/3jl396pp2wQzu1nS16hpAz90QBD3SfplNX3Zm8ZMG44H6lSamX24pK9Q0x/cMCCI82r6xx+kfuFqQZtxYP8lgs+W9FVqXkow9IW175L0U5J+wjn3v8ZJHYCrBe3uMjM7Iel5asZpT+x5upP0Rkk/LOmlzrm9kZMHALgKmdlvSvq0yK5j8QFQM3uhpO/cdDpy+OAoAABAt+M+Ll03M/t/JH1L5hDyCQAAAAAAD2sNi8zsEyS9IbaPZ1kAAABAuVU/8I5rhJk9yMx+RNKdkr5Bw19wIDV/vfr/lPRbkv63mT13hCQeOjObmNm/lPS/JX2fhr8ARZJuk/Stkv7CzH7IzM6OkcZS3N8Fj9p0Ao4bys8yM9sxs++Q9DY1ebLqC1Ckps/+XElvMLP/sv/CCgxgZo8ys5erKWfP1jjjoZslfYekt5vZV4wQ3qExs20z+05JfyXpBRr2AhRJul7SP5P0h2b2C/svRsI1gDqVZmY3mNmPqukPvl7DXoAiSafVfEG3rV8fNFYagcNGm7HIzJ4k6c2SfkNNfgx9AYokPVTSt6mZV/6GmQ3t0wFcRWh348zsmZJuV/MS1r4vQJEkk/QkST+jpt39zBGTBwC4Cu0/93nGptMBAACAaxvj0jwze4akb9p0OgAAAAAAOC5Ya4j6rE0nAAAAALga8BIUdDKzJ0u6Q9KXa/wy83BJv2Bmv2JmDx057LUxs4dJ+n01Lz8Z4+UGrW1JXyvp9v23f64d93fJIzedgOOE8rNsP62/L+m7JJ1cUzT/RNJbzGzIF7WuaWb2OZLequbLf+vwIEn/cf8lBafXFMdo9l9U8keSXqjmJQtjea6kt5rZF4wYJo4g6lSamX2amj7yS9V8SXYsz5X0R/t9MHCs0GYcsMaLJL1O0uPHDl7SZ6iZV36jmU1GDh/AMUG7u2z/pcY/LOkVGm8N6BGSfs3MftrMTo0UJgDg6vO5knY2nQgAAABc8xiXJpjZjZJeIj5PCQAAAABAH6w1eMzMJH3+ptMBAAAAXA14aIcsM/tcSa+WdOuao/psNV/o/9g1x7MyM/soSa+XtM4vnn6IpNfs5//acH8X7b+F9pZNp+O4oPwsM7MPl/RmSR93CNE9TNIrzezjDyGuq4KZfa2kX9K4L/tIea6kl5nZul6Es7L9l229QdJHrymK05J+1sz+3ZrCx4ZRp9LM7PmSXibptjVF8RBJv2NmT1hT+MDoaDMO7L+U5L9JeoHGfUlS6JSkF0v6JTM7scZ4ABxBtLvL9tvCX5L0lWuK4vlq5uk3ril8AMDx9hWbTgAAAAAgxqU5PybpgzedCAAAAAAAjhnWGhY9S9Lf23QiAAAAgKsBL0FBkpk9Vc0Xsw7rrZwPkfQKM/uwQ4qvNzP7UDV/KfaDDiG6E5JeambPWUfg3N+oR206AccF5WeZmd0q6be1vi+8x1wn6eVm9ohDjPNYMrN/LOkHtd4vGoeeIelnDjG+Ymb2GEm/KemmQ4jum83sRYcQDw4RdSrNzL5K0k9Jmq45qjOSfsXMrltzPMDKaDOW/HtJX3CI8X2WmheTsQYEXCNod5ftt4G/rKZNXKcnSXq1mZ1ZczwAgGPEzJ4l6RM2nQ4AAABc2xiXppnZl6n5y9UAAAAAAKAQaw1RL9h0AgAAAICrxbq/mIdjysxuUfPFgNIXHPy5pD+U9A5J90i6LOkGNS8DeLKkJ0raKgjnJkm/amZPcM5d7pvuddr/a7a/qrIXHFyS9AZJb5L0fkkfkHRS0o2SHi7paSp7u+eWmi+rPck592dD0h3D/U3iJSgFKD/LzMwk/ZykRxQcflHSy9W8gOJPJP2lpHNqXkz2YEkPlfR0SZ8q6ZMLwrtJ0i+a2ZOdc7u9E38N2H/hx0+q7AuAfy3pVyS9Wk3ZfZ+k85LOSrpZ0kdIeqaaL859aEF4/8jMvsE59wMDkr4WZna9pF+X9KDCU/5CTX68W9J71Ywfb1Fz/c+UdGtBGC8ws791zv1Y/xTjqKFOpZnZp6h5uUFJ3twj6VWS/lTSXZKcmpd+PVTSp6gsPz5E0vdJ+rIh6QUOA23GIjP755K+svDwS5JeL+l2NXnzgJp8vFnN3OWpKv+rEZ8t6dskfXef9AI4fmh3k75b0rMLj/2fkl6nZh3jfkmn1IzTHq9mvn6q4/zHSvovZvY5zjk3LLkAgKuFmZ1Ws1YAAAAAbAzj0jQze7Sko7ieBQAAAADAkcVawzIz+1I1348BAAAAMALjc9iIMbOfk/R5HYedk/RDkv6zc+6vO8K7Sc2XM79BzZf8u7zQOfeikrQeFjP7QUlf13HY30n6t5J+wjl3qSO8j5D0LZK+UN0vJHqrpI8f6wUH3N84M/tWSf93ZNcVSaecc7NDTtKRRPlZZmZfo+5FvJmk75f0vc65uwrD/Vg1X9T6jILDv9M5910l4V5LzGyi5strH99x6N9I+r8k/VJJXTezqaTnqbk/D+s4/JKkj3XO3dmd4vUrrMMzST8u6cXOubd3hPfxkr5D0nM6wrwg6XHOuXeUphVHD3UqzcweJuktar4wnHO7pO+S9Ku5sZ2ZPU5NfnTVLUn6ZOfcq0vTChwW2oxFZnabpDvUvBAw53+qecHRLxbMK58o6evV5EfXCw+uSPpo59xflKUYwHFDuxtnZs+W9N/V3U6+VNK/ds7dkQnrjKTnS3qhutcw/qVz7vt7JBUAcJUxsy1Jv6DmhWI5L3LOvXD9KVqNmb1Q0nduOh0ZP+qc+xebTgQAAMBRc7WNS8dkZttq/sjV43ucds3lEwAAAAAAPtYalpnZ0yT9tqQTueOccyV/1AgAAACAeAkKIszskyT9fsdhvyvp+c659/QM+yZJ/6+kf9xx6P2SHu6cu7dP+OtiZh8j6Y8lTTKH/b6kz3LO3dMz7KdK+iV1f3Hia5xz/6FP2In4uL8JZvafJX1JZNefO+c+6rDTcxRRfpaZ2XWS3inp+sxhd0n6TOfcGwbG8U1qXtCTa4MuS/pw59w7h8RxtTKzL5L0Ux2HvVzSFzjnzg0I/2ZJPyfpkzsO/U3n3Kf3DX9sZvYcSS/rOOxOSc91zt3eM+xnSvpZ5fuzP5D0VP4a+vFFnUozs9+V9CmZQ5ykfyPpu/q82M7MvkDSSyRtZQ77Pefc00vDBA4LbcaizHyjtSfpX0n6fudc3TPsp0r6SUmP7Dj0Z5xzz+8TNoDjg3Z3mZntSPoz5dvH+9WsY/xaj3BvVrOe97TMYeclfRTzdAC4Nu2/3PRHVPbX3q6ZD4AOZWaVpF9T+mWxL5X0T/rOpQAAAK52jEvzzOzFkr6x52nXXD4BAAAAANBirWGRmZ2Q9DVq/jhi9gUoEi9BAQAAAPqoNp0AHEnf3rH/pZKe3fcFB5LknHu/c+55kr6n49DrJH1B3/DX6NuVf/nAn0r61L4vQJEk59zvS3qqpPs6Dv22/b+8uyrub9qjEtvffqipONooP8u+XPkXoNwv6R8MfQGKJDnnvlfSV3UctiPpBUPjuBqZmUn6po7DflPNC6x6fwFQkpxzd0v6NEm/13Hos/dfIrQx+33ID3Qc9mZJn9T3BSiS5Jx7paQnKt9mfqKkz+0bNo4G6lSamX2m8i9AqSV9oXPuO/q8AEWSnHMvlfQ8SbPMYU8zs5IHSsChoc1YZGYPk/SFmUP21LyE7PuGfGlvf175FDVz05zPM7Mb+oYP4Oij3U36BuVfgHJezTpG8QtQpIW8eGPmsNOSvq9PuACA483MPsjMvtTMXqXmxfrM1cfzb5V+AcobJH0xL0ABAABoMC4tY2afqmbtCAAAAAAAZLDWsMjMtszsaWb2A2r+mO73qOAFKAAAAAD64SUoWGBmj1HzAf6Ut0r6Iudc7kuYnZxz3yLplzsOe+4qcYzFzB4s6R9lDpmp+etyl4bG4Zy7U1LXX+O+TdKzh8YhcX8L8BKUDMrPMjObSPq6jsO+xDl3x6pxOef+k6Qf6zjsn5rZLavGdRV5lqTHZPb/raTnOef2Volk/4UGz5X0ro5D+/4FqbH9U6XbOUl6t5ov/909NIL9v3D+WWpe/pPygv0vaOL4oU5FmNmWpO/tOOzrnHP/dWgczrlflPTijsO+bGj4wJrQZiz6Wknbmf3f1vcL+CHn3PvUzBlz/fCO0l8cBHC80e4GzOyspH/VcdhXOudeNyR859xFNXmRe6nMc83so4aEDwA4uszshJk92syeY2bfbGb/1czeoaa//VFJz5DE+tdIzOx5kr4lsftvJX2Oc+7yISYJAADgSGBcOtz+Z8F+WvH86Vr3AgAAAADgqsRawyJrPMTMnmJm/8zMXmxmr5F0r6TXSvp6SQ/eaCIBAACAqxgvQUGo68UCX+6cuzJSXF8rKffikCfvf6l00z5b0jSz/+edc11/bbuTc+7XJf12x2GfvmI03N8EMzsh6aGJ3bwEpUH5WfZkpcuNJP3O/hfXx/Ltav5KdcqOpM8bMb7jrqvMfrNz7t4xInLO3SXpuzsOe46ZPWiM+Ab6msw+p+YlRoNfej/1OgAAIABJREFUgDIPyLm3qVnUTXmspM9YNR5sBHUq7nmSPjyz/+edc/9hhHj+tZoHJynPGiEOYEy0GYtyL9a8Xd0vOirinPs7SS/qOOxpY8QF4Mih3V32RZKuy+x/uXPuJatE4Jz7W0n/JnOI6Qi8EAYAMA4zO2tmd0m6KOnPJb1M0r9TszbwyE2m7WplZk+U9OOJ3buSPs85955DTBIAAMDGMS4dxU9IujWy3alZUwIAAAAA4JrBWsMyM/tONfnxHkl/oGYt4RslPV3SqQ0mDQAAALhm8BIUhD4rs++1zrk3jhXR/pezci/9OCXp740V3wqe3rH/x0aMq+uLb09cMXzub9ojlX4r7Z2HmZAjjPKzrOvFRN87ZmT7XzTranNy9+la8+zMvndK+rmR4/txSe/N7N/S6i+zGsTMHifpCZlDfss597sjRvkzavI4hQ+OHU/Uqbivyuy7p2N/MefcA5J+KnPIbWb20WPEBYyENmOfmT1W0odmDnmxc64eMcqXSJpl9n/MiHEBODpodz1mZpK+OnOIk/TNI0X3/0k6l9n/+WZ2ZqS4AACbNZF086YTca0ws+sl/bykE4lDvtU59/pDTBIAAMBRwbh0BWb21ZKek9j9Q865VxxmegAAAAAAOAJYa1j2IDV/oBYAAADAhvASFMyZ2XWSHp855BfXEO3LO/Y/fA1x9pX7gtglSa8bMa7XSHogs3/wSx+4v50eldn39kNLxRFF+Un61My+d0p65Rri/I2O/U82s+ka4j1W9l8E8NDMIS8Z+cvGcs5dkdT1IpGnjhlnD5/dsf8Hx4zMObcn6T9mDnmOmZ0dM06sF3Uqzsz+vqSPyxzy3c65u0eM8hc69ufGM8Choc1Yknux5kzSr44Z2X6784eZQ47COBrAiGh3k3F/RGb/bzvn/myMiJxz90n69cwhZ9Q9JwMAAMt+VOkXSr7MOff9h5kYAAAAHH/762ipP2Zzu6RvPcTkAAAAAAAAAAAAAEjgJSjwdf3l+FetIc6/6dh//Rri7OtDMvv+2jl3eayInHO7kv46c8h1KwTP/c1LfWn4fudc7i8bXysoPwEzqyQ9JnPIq51zbg1R/w9JuXbntKRHriHe4+axHfvX8YKaknAft6Z4u3xKZt+7nXO/s4Y4c3lxQnwJ8LihTsV9WWbfByT9p5Hje6PyL8x7yMjxAUPRZizKvVjzLc65e9cQZ24sfZTmYQDGQbu77DM79o89Tvu1jv1d6QEAAB4z+xeSPi+x+z2SvuQQkwMAAICrgJmdkPSzap5Vhy5Let6YnwEDAAAAAAAAAAAAMNx00wnAkZL7Mv9M0l+sIc67O/ZvryHOvs5k9r1/DfGdy+y7uEK43N+81Esj3n6oqTi6KD/LHq74h2Nar1tHpM65y2b2XuVf0PQISXeuI/5jJPcXv2s1LxJYh9yLrKTm3hwqM5tIekLmkD9YU9RvVfOyhlQ/+g8l/cya4sb4qFMBMzNJ/0fmkJ90zp0fM07n3MzMPl/SjYlD3jJmfMAKaDMW5cbSf76mOHNj6U2PowGMj3Z3WW6cdk7Sb40c329JuqJ0G/ssM5s65/ZGjhcAgKuOmT1G0g9kDvnnzrm7Dis9AAAAuGp8r9J/AOjbnHN/epiJAQAAAAAAAAAAAJDGS1Dge2hm3zudc7triDP3AgFJum8NcfZ1Wem6ct0a4ntIZt8qfyGc+5v3qMR2XoLSoPwsy33JTJLesca471b+JSg3rDHu4yJ3f/7OObfKS6Vyul7es4l78whJpzL71/XCnj0ze7vSL2B5yjrixdpQp5Y9XtJtmf0vWUekzrmXryNcYGS0GYtyY+n/taY4c2PpTY+jAYyPdtdjZh8m6cMzh7zCOXdpzDidc+fM7H9I+uTEIddJepykPxozXgDAoduT9NoB592q7vVkSDKzqZo1lZOJQ37YOfebh5gkAACAo4hxaU9m9hmSvjqx+5XKv4QPAAAAAICrHWsNy96hYXnyJEk7I6cFAAAAuCbxEhT4zmb2retLUg/v2P+BNcXbx12STif25b7M1puZXSfpgzOHvHuF4Lm/eamXoNx5qKk4uig/y27p2P9Xa4x71rF/a41xHxe5+/NXa4z3KN6b3AtzJOlv1hj3PZl9jzSzB/NXW48N6tSyT8/s+0vn3J8cWkqAo4c2Y9FRG0tvehwNYHy0u4v+Qcf+V60p3jcr/RIUSfpE8RIUADjWnHMPqLufWWJmXyzpJ8dOz1XqW5R+qfJf7u8HAAC4pjEu7cfMHqL0dd8j6Yucc+4QkwTg/2fvvuOsO6t6gf9WCiEQIARCh9CR3kFp0psgUQGRKwoXEEGqKCJdEBFRrki9AoJyLwiCUpUiIi1AkksRCT1CKKGGECA9WfePM5GUd/aemffsc+a88/1+PvPJZJ519loze+/n7HPe86wNAABsK95rOK/uflGSF232cVX1lYyvgwEAADZgr2UXwLYytDDrxIly3nRgrJN8bqK8m3HMwNhBVXWTOea6a4YXiBy+G9u2f9dRVftm/SYBX1hkLduY4+e8DhgZH2r+sLsuPTL+kwlzr4qh/bPT9s3FRsanXAg99re++YS5mS/n1HndeWDMHYnZ6cwZ57TQa+mq2jvJDQdCjpp3TmDpzLvndOOR8cMmyvvxkfGhuRkAdryqunaSpw2EPLS7vfcNAMCGVVUl+dskB68T8rDu/sYCSwIAAAAAAAA2QBMU/lt3P6y7a52vW84739rCrEMHQo7q7u1wh+qxu8M+cI65Hj8y/uGtbtj+HXTFJHuvM6YJShw/67jgyPhJUyStqotkfKHZsVPkXjFD+2eSfbPmmiPjy9g3+4+MnzBh7pNHxq86YW7myzl1NmsfmBxaxPrBRdUC25Q542y6e7+Ba+mXT5Dy9kkOGhj/0AQ5geUy757TjQbGTkvynxPlHWuCcu2J8gLAylv7N4FXJTnfOiEv7+73LrAkAAD2DI9Lcpd1xv6uu/9hkcUAAAAAAAAAG7PPsgtgR3tAkisMjL9jUYWM+OckzxgYf1hVvaK7P7k7SarqQUluNhDywyRv3Z0cC7Yq+zcZXoR/jiYoVXVgZh+QuEWS62TWQOXiSS6Q5MzM7uT+rST/leQTmd1d+N+6e8pFR3uiVTh+3pfkUesNdvdY84etukfWb9pzli9NlHuV/GmSi6wz9rkJ895rZPyLE+Zezxkj4xeYMPdYA5ZDJszNfDmnzulqSQ4YGP/oogqBbcqcsVxPGhn/54VUASySeXdNVe2T5LoDIV/o7lMnSv+lzJrOrPc66GcmygsAe4JHJ7npOmPfTfKEBdYCAMAeoKpukOQ56wx/JQOf9wAAAAAAAACWSxMUlqKqrpzkLwZCzkjy4gWVM6i7j6iqf09y23VC9kny5qq6fXcfvZUcVXWzJC8ZCXtVd5+4le0v2irt3zXrNUE5trt/nCRVdfMkT0xy96x/J8KsjR2Y2cKWu6397CdV9ZYkL+juw+dT8p5rVY6f7j4yyZFLSP3AkfEvdff3FlHIdtbdr1l0zqq6UpKfHwlbRmOEn4yMHzhh7oNHxjVBWRHOqfO4wcDYj7r7K+sNVtUVk9whya2SXD3JlZJcOLPFsicnOT6zD15+JslHkryzu4+dQ82wMOaM5amqx2T9165J8p7uPmpB5QALYt49hyslOf/A+GRNQ7u7q+qbSa6yTsiFqurA7j5+qhoAYBVV1aWT/NFAyBM9fwIAsBlVdYEkr82uP99zZpIHdPcJi60KAAAAAAAA2Ki9ll0AO09VXTvJvyY5aCDsld19zIJK2ognZ/aP4Os5JMkHq+rOm91wVd0rs7/H0AKNbyV51ma3vQwrun/Xa4Ly+aq6XFW9NbOFO4dmuAHKei6Y5P5JPlZV/7L2N2IXVvT4WZiquluSO46EvXsRtbBLf5pk35GYZeyfb42MX3bC3GNNTq4wYW5W33Y9p5Lk+gNjnzv3D2rm16rqg0n+K8krMmtqdYskl87sWmGvJBdIcpm1nz80yd8k+UZVvb+q7ltVe8/1t4A9y3aeMxaiqn4nyfMHQs7M8MJCgM3YrvPu5UfGt9TAeBO+OTI+Vh8A7ER/keRC64wdnuRVC6wFAIA9w/9Kcs11xp7T3R9aZDEAAAAAAADA5miCwsJU1YFV9dTMPrB4pYHQLyV5/GKq2pjuPizJk0bCLpPkXVX1hqr6ubFtVtX1quoNSf4p63+4M5ktVHtodx+34YKXYJX3b9a/Q+9lk/xnknvOMdddk3yiqp5kIfNPrfjxsxBVdfEkL95A6OumroXzqqp7J7nvSNiXuvuIRdRzLl8ZGb/pFEmr6qIZb4JykSlys/q2+TmVrH/tkJxrYe3adeHHM7vb3K22kKuS3CbJ65N8uqrusYVtwB5tBeaMSa29tnxHkhdl+H2e53X3hxdUFrAH2+bz7uVGxo+dOP83RsYvNXF+AFgpVXXbJL+2znAneWR39+IqAgBg1VXVoUl+a53hI6NZOAAAAAAAAGx7+yy7AFZfVe2b5KAk3+vuM6qqkuyf2cLmKye5bpLbJ7nH2s+HfDfJod394wlL3pLufm5VXTHJb4+E3ifJfarqK0k+kOQLSb6f2QLWiyW5YpLbZfa3GXNmkt/u7rdvqeg52CH796rr/PxqE+XbN8mzk9yqqu7X3SdMlGfpdsjxM7mqOl+SN2W4QUySfNwdixavqm6U5G83EPpXU9eyK9397ar6VtZfbHeLiVLffgMxF5goNytsu59Tay4zMPbfC1+r6g+TPDPze911zSRvq6rXJnlEd/9wTtuFlbUic8aWVNVBSU7r7h+t/f8+mT13XiKz1zA/m1mTxZtvYHNvSfLUiUoFdpAVmHcvOzL+rYnzf3Nk/KIT5weAlbH2GudFAyFv2FObWQIAMI2qukySV6wzfGKS/9Hdpy2wJAAAAAAAAGALNEFhHg5J8sUkmfU32LKjkvxSd39hHkVNobsfXlWfS/LcJPuNhF9x7Wurjkvym8tsgLJmj96/VbVXxhtLTOVuSd5fVbfv7h8sqYap7dHHzyJU1QFJ/jHJbTYQ/rSJy+Fcqupnk7wj4808vpb1P2y1CB9J8kvrjF2jqm7S3UfOOefYneGT8eZH7DArdE4NLa49dq3p10uTPGyi/PdPcpOquld3f26iHLDtrdCcsVW/m+TJu3kdnczmo8f4YDewu1Zk3h1qVpfMGhVPaaxx64ET5weAVfLQJNdeZ+y0JE9ZYC0AAKy4tc//vCazG1TtyuN34mdOAAAAAAAAYBXttewCILPFAc9McuNV+Mfm7n5BkutmdiftqbwjyfW3QQOUedju+/cKSc63ycccm+SNSf44yWMy+6Du7yf5syRvTXLCJrZ1gyTvrqqxBUQ71XY/fiZVVVdPcliSO20g/K3d/Y6JS+JsqupBSf4tyUEbCH9Md580cUlDxp5PHj7PZFV1lSS/vIFQcx//bcXOqUsPjB2f5K8yXQOUs1w9yQeq6noT54FtacXmjGX5bJK7dvcjNEABdtcKzbsHjIxv5j2brTh5ZPyCE+cHgJWw1vz76QMhL+/uLy2qHgAA9gi/n+T264y9vbtftshiAAAAAAAAgK3bZ9kFsON1kpdk9mHGsUUC20Z3f7GqfjnJ0zL8Ic2tOCrJ73b31+e83WVYhf17lQ3GnZHkdUlemOSI7u71AqtqnyS3TfKHWf8DFmd3kyR/k+R+G6xlp1iF42cyVfXAzBbRX2gD4cdm1oyHBaiqAzPbNw/Y4ENe2d3/NGFJG/HmJC9Ksv86479ZVS/r7iN2N1FVVZIXZ2PXma5FWblzaq3e9c6lZNYA6G4jm/lBkvcm+UKSbyc5MbMFsZdLcs0kt0xy4AbKOTjJO6vqxt197AbiYeWt2pyxRN9K8owk/77cMoBVt4Lz7tB1WpL8aOL8Y+9fbLYRLwDsqX4vySXXGTs5ybMWWAsAACuuqm6S9a8hv5PkwQssBwAAAAAAANhNey27AHa8SvKEJMdU1euq6orLLWdjquo+ST6T+TdASZJrJTmqql5eVRefYPuLtAr796obiPl4kpt09wO6+/ChBihJ0t2nd/e/dvcdktwuydc2kONXq+rXNxC3k6zC8TN3VXX5qnpHkldlYw1QfpLk0O7+zrSVkSRVdc/M5v+NLgD8YJJHTlfRxnT3cZk1clrP3kleXVUbOebGPD/JXTYYu6y7w7NNrOg5NXaeDDVA+XCSuyY5uLvv091P7u6/6u5XdPcLuvv3u/semTU3uUeSwzZQz6WTvG6tARHs0VZ0zliWSyV5fZJvVtXjqsqie2DTVnTePf/I+KkT5x97jbPvxPkBYNurqksmefxAyCu6+1uLqgcAgNVWVQckeW3Wf9/lwT5PAQAAAAAAAKtFExS2i0pyvySfq6qHLLuY9VTVpavqzUnekORnJky1d5KHJPl8Vd1rwjyLsp3371gTlFcnuUV3f3IrG+/uf09ywyTv2kD4/6qqC28lzx5uOx8/c1NV+1bVE5J8NsndN/iwk5L8UncfPl1lJElVHbI2/781yWU2+LAjk/xid4/dCXxR/iTDC/6uleR9VXXwVjZeVQdX1T8meewmHnbiVnKx+lb8nBpbWLsrP0xy7+6+VXe/q7vPGApea6j2ju6+ZZJHJTl9ZPs/n+Q3tlAXrIQVnzOW7aDMGpR9sqquvuxigNWw4vPu/iPjp02c/5SRcY3rACB5YpID1hk7LcnzFlgLAACr76+SXG2dsZd199sXWQwAAAAAAACw+zRBYbvZL8nLq2rbfcCxqq6V5PAki2xKclCSN1fV0xeYc0rbcf8ONUF5aZL/2d1jC1gGdff3kxya5MMjoRfPbKEzu7Ydj5+5qKq7JPlUkucmueAGH/adJHfo7vdMVhipqv2r6mlJjsrm5v93JLl9dx8/TWWb191fTvKXI2E3TvLxqnpwVe2zke2u/Y0ekdkd4n9pk2VpgrLD7CHn1GaboHw2yY26+01bSdbdL8rGGpz80UbPW1gVe8icsV1cM8nHqupWyy4E2L72kHl3vTv+nmWsudzuGrsem7oJCwBsa1V1ySQPGwj5u+4+ZlH1AACw2qrqPkketM7w55M8foHlAAAAAAAAAHNikRzz8O2c8x+Uz5/kQpndxe0KSa619rXeXd125feq6tjufv7cqtwNVXXdJO9PctENhJ+U5G1r8R/NrFHB95LsneRiSS6Z5GeT3CrJPZJcYAPbfEZVnd7dz9589bttT9+/JyT52C5+/tkkj+zunkeS7j65qn4xyceTHDIQ+jtV9ZzuPnMeebeBPf342S1VddUkz09yz00+9ENJ7tfd35h/VZxl7QNTz8vwOXtuZyR5VpJnbdPz+GlJ7p7kOgMxl0vyiiRPrap/SfLezBZBHrf2df4kBye5QZI7JLlPZk2c1vOtJJdaZ0wTlB1kDzqnNtME5dtJ7tbdX92dhN39uqq6bZLfGgg7JMmvJHn97uSC7WIPmjN2x5uSfGnt+8rsmvlCSS6c5BqZXUdfJbPXmhtxYJK3VNXPdvcX51wrsOL2oHl3rMnJ1O+Ha4ICAMN+P8n+64x1kj9bYC0AAKywqrpCkr9eZ/i0JL/e3f49GgAAAAAAAFaQJijstu7+UZJXD8VU1V5Jbp3kl5P8j8yagYx5XlV9pLs/sttF7oaqOijJWzLeAOWkJH+R5K+6+7vrxPwkyTFJjkjywrVtPyzJEzNbyDbkmVX1/7r7nRsufg729P3b3b+5wFzHVdVTkrxmIOzSSW6f5F8XU9W09vTjZ6uq6kJJnpLksUnOt4mHnpbkj5M8u7vPmKI2kqq6fpIXJPn5TT70v5L8Znd/cP5VzUd3n1JVh2bWpGuocUkyW/z422tfW/WZzO4K/4R1xn+0G9tmReyB59R+m4j9ld1tgHI2T01y/ww3DrtfNEFhxe2Bc8aWdfcnknxiKKaqDkzyi0nunVmTzRrZ7EFJ3lRVN+rusUYBwA6wB867Y01GNnMttxVj77dbeAPAjlVVByd5+EDI27v7C4uqBwCA1bX2OZP/k1nz7115RncfucCSAAAAAAAAgDnaa9kFsDN095nd/f7ufkySK2d2l9iTRh62V2aNQpZ9nL4kyZVGYj6b5Obd/dSBBijn0d3Hdfdzklw3yftHwvdK8n/XFrltKyu+fxfttUn+cyTmzosoZLvYScdPzTwwyRcyawqxmQYo/y/Jzbr7mRqgTKOqLl5VL03y8WxuAeCZSV6U5HrbcAHgeXT3l5PcPckPJk71nSS/kuRSAzFfm7gGlminnFMD3tbdH57Xxrr7O5ktUB5yl6qaemEvTMKcsTXdfXx3/113/2KSGybZSNPM6yZ5xLSVAdvdHjzvnjwyPvW10gVHxn84cX4A2M4eleQCA+N/sahCAABYeU/O7GY7u/KhJH+6wFoAAAAAAACAOVupxePsGbr7hO5+WpI7ZXwB9o0zu6v1UlTVLZP86kjYfyb5ue7+9FbzdPcxSe6Y5O0joQcleexW8yzCKu3fZejuM5O8fiTslouoZTvak4+fqrp5ko8leVWGm0Kc2wlJHpdZo6VPTlHbTldVe1fVo5N8MclvZ3PXRx/P7DngUd3940kKnEB3H5HZQsejJ0rx7SR37O7PZ9bcaD1fmSg/S7QDzqlTNxj3xxPk/uskPTC+f2ZNEGBl7IA5Y2G6+1Pdfbckz91A+FOrat+pawK2nx0w7441GZm6CcqFRsY1QQFgR6qq/ZM8fCDk4909drMAAABIVf1skqetM3xCkgesfTYHAAAAAAAAWFGaoLA03f3hJHdOcsZI6IMXUM56njIy/p0kd+/u3V7A0N2nJ7lvksNHQh9TVWMLKpZuRfbvsrx7ZPwaC6liG9uTjp+qusja3bUPS3LTTTy0k/xtkmt0919299jfgi2oqpslOSLJC5IcuImHfi/JI5LctLvH5u1taa15142TvGbOm/5AkhuerTnYNQdivzrn3CzZDjmnTtlAzHem+D3WGueNLQi60bzzwlR2yJyxcN39xCR/NRJ28axQQ0FgPnbIvDvWUHUzv/dWjL1n9+2J8wPAdvWAzF6HrOdFiyoEAIDVVVUXTvLaJPusE/Ko7v7K4ioCAAAAAAAApqAJCkvV3UcmeelI2F2r6oKLqOfsqurSSe40EvZH3f21eeXs7pOSPGok7MDMmkNse9t5/y7ZkRleQH2xqrrAoorZrvaE46eq7pDk09n83bU/mORm3f3A7v7WJMXtcFW1b1U9K7PmNDfcxENPTfL8JFfr7peu+h2kuvv47v6NJLdM8s7Mmu9s1eeT3D/Jbbv72CSpqksmudjAY76yG/nYRnbYOXXSBmLeN2H+946MX2nC3DAXO2zOWJanJPnmSMy9F1EIsHw7bN79/sj4pSbOf/DI+Dcmzg8A205VVZLHDoQcn+TvF1QOAACr7QFZ/9/C/qG7/26RxQAAAAAAAADT0ASF7eBZSYYWUeyT5dzR/tAkew+MH5Pk5fNOunZH3beMhN1h3nkntF3379KsLRr63kjY2J2Dd4qVPH6qaq+q+qMk70ly+U089ItJfrm7b7PWBIYJVNVlk7w/s8XBQ/P8ub0xyTW7+/HdffwkxS1Jdx/W3XdLcrUkT07ygSQnjj0syWeSvDDJrbv7Z7r7dd199kYq1x7Zxpe2WjPbxw48p8aew5NZw7OpfHRk/HIT5obdtgPnjKXo7h8l+V8jYTdbRC3Acu3AeffrI+NTN0EZ2v5pSb49cX4A2I7ukOSaA+N/u3aTAAAAGLPvwNh9qqrn8TVSw9M3sI0D5/lLAwAAAAAAwE6zz7ILgO7+TlUdmeEFWDdK8sEFlXSWm4+Mv7W7T5so95uS3Gtg/LYT5Z27bbx/l+27SS47MD70wY0dYxWPn6q6QGZ3rbznJh52XJJnJnnJhPMKSarqJknenuSSm3jYR5P8bnd/ZJqqto/u/nKSP0nyJ1W1d5JDklwxyUWT7J/kjCQ/yuzu5V/o7p+MbPKmA2PHJ/n87tbMcu3Qc+oHmS1gHXqu3kijlK0aax50wIS5Ybfs0Dljmd6R5HkD41euqgNXrLkBsAk7dN796sj4MpugfGmtMS4A7DQPHRn/64VUAQAAAAAAAAAAwErQBIXt4j0ZbnJwiUUVcjY3GBl/94S5352kk9Q645efMPcUtuP+XbaTR8ZPXEgVq2Fljp+qukiSdyb52Q0+5LQkL0zyLItPp1dVt0/ylmy8QcBXk/xBd79+uqq2r+4+I8nRa19bNXTuHt7dY3fRYhvbqedUd3dVfTfJZQbCvj9hCceNjO8/YW7Ysp06ZyxTd3+2qr6e5HIDYQdn1pgM2MPs4Hl37PXL1aZKXFV7JbnSQMgXpsoNANtVVV08yaEDIUd291GLqgcAAAAAAAAAAIDtTxMUUlXnS/JbAyGf6+5/nbiMr42MX3Ti/Lsydpfcz0+VuLu/XVXHJbnYOiEHVNV+3X3K2Lbs323r4gNjZyY5YVGFDHH8bFxVXTDJP2fjDVDeneTR3T3ZXMJPVdWtkrwtyQU2EH5Kkuck+bPuPmnSwvZ8Q+fDRxdWBXPnnMrRGW6CMtbsbHeM/Q1PmzA3bMlOnTOq6npJbjMQ8k/d/Y2JyxhrgrItrqWB+dqp826SdPfXqur4JAeuE3LdCdNfIcl+A+P/MWFuANiufiPJ+QbGX7OoQgAAAAAAAAAAAFgNmqCQJHsleeHA+DuTTN3k4Lsj48s4VtdbLHGWsZp313ezfhOUrI19cwPbsX+3p4MHxr7Z3acvrJJhjp8NqKpK8ndJbrGB8OOSPKa7/8+0VXGWqrpSkjdnYwsAP5Tkwd3tDt27qaqumeEmEZqgrCjnVJLkc0luNTB+0IS5xxoW/HjC3LBpO3zOuEWGr6W/m+T1E9ew7a+lgfna4fPuWf4j6zehulxVHdjdx0+Q91oj44dPkBMAtrsHDYydnuR1iyoEAAAAAAAAAACA1WCxC+nuk6vqjCR7rxNyhQWUMbZY88SgEK08AAAgAElEQVQF1HBuY+fH1AtMjxsZ31CTDPt316rqHll/H3+ju4+YMPc1klxkIGTbLD5y/GzY45L88gbi3p/k17v76xPXw5qq2ifJP2S4qVSSnJHkGUn+pLvPnLquHeKOA2MnJfnAogphfpxT/+1zI+NTNkEZ2/Y3JswNm2LOyE9Gxl1LA3Nl3v1vh2f9JihJcpNM09D15gNjHU1QANhhquraSa4zEPLv3T31DQcAAAAAAAAAAABYMZqgcJZjk1xunbErVtVeEy+KOHhk/HsT5l7PiUkuPDB+sSTfmjD/UO4k+dEmtmX/nteLkhyyzthhSW45Ye6fHxmfrAHLFjl+BlTVVZM8ewOhL0nymO7eUAMj5uaJSW48EvOjJPfp7nctoJ6lqKrzZ/3rvtO7++QJ0v7KwNi/dPfYwnC2J+fUzMdGxq81Ye6xbX95wtywWTt9zvjmyPhVFlDDtr6WBuZup8+7Z/lgkt8bGL9rpmmCcouBsU9393cmyAkA29n9Rsb/aSFVAACwJ3l3kgctIM+fZ/1Gw29J8uaRx2tADgAAAAAAALtBExTO8l9Zv8nBBZJcM8lnJsx/6ZHx/5ow93q+l+FGJJfJtE1Qhharfbe7T9rEtuzf8/pq1m+Ccr2q2re7T5so931Gxv99orxb5fgZ9pwk5x+JeV53P2ERxfBTVXXJJH8wEnZCkrt290cWUNIyvSbJvdcZ+7ckd5hnsqq6VJJbD4S8cZ75WAzn1DkckeSUJPutMz7W8Gx3/NzI+JET5oYNM2ckGb9OHWtUMA9D19KnZLxRC7AizLvn8IEkp2f9977vmuEmKZtWVQdk+DXQu+eZDwBWxK8OjHVmi0cBAGDDuvuoJEdNnaeqnpH1m6B8srtfPXUNAAAAAAAAsJPttewC2DY+NTJ+s4nzjy0U/Y+J8+/K0SPjt5kqcVUdmOEmKJ/f5Cbt3/Ma+psckORWUyStqmsnueNAyE+SvG+K3LvB8bOOqrpKkl8ZCXuBBihL8zuZnc/rOTk7YwFgkvx4YOzyE+R7aNa/zjwlydsnyMn0nFNruvuUJIcNhFynqi4zUfqhpkUnJfn4RHlhs8wZsyYoJwyMX7eqxprpbVlVHZxZw8L1fKa7z5wqP7Bw5t013X18Zo1Q1nPtqrrGnNPeLes3yEuSf5xzPgDY1qrqBkmuNhDy8e7+xqLqAQAAAAAAAAAAYHVogsJZxhZA3GOqxFV1wQw3hfhhks9MlX/AWGOFX5gw950yfH4OLbrdFfv3vD46Mv4/J8r75JHxN64trN5OHD/re3iSGhj/QJLHL6gWzqaq9k3ykJGwR++EBYBrvj4wdpWquvC8ElXVfkkeNhDy5u7+0bzysRjOqV0aWshamS1EnququmGSGw6EvGsbXkewA5kzZrq7k3xsIGS/zF77TeWeGX5d+eEJcwMLZN7dpTeNjA+9ZtmK3xoYOybj70MBwJ7mniPj71pIFQAAAAAAAAAAAKwcTVA4y7uSDN0B+q5VdZGJcj8mydDdr/9lSXenHrpjbJLcoaquP1Hue4+Mv3OT27N/z+tdSc4YGL9fVV1rngmr6i5Jfm0k7KXzzDknjp9dWGv08KCBkB8muV93Dx1nTOfQJJceGP+H7n75oorZBj43MLZXkrvMMdcjk1x2YPz5c8zF4jinzutNGX5+fFhVHTDnnGONVf5+zvlgq8wZP/UvI+P3myJpVe2T8WZ875giN7AU5t3zel2SkwfGH1RVB80jUVXdJMkdBkL+Zq0xFgDsJHcfGf+3hVQBAAAAAAAAAADAytEEhSRJd38/yfsGQi6QWTOCuaqqyyT5w5Gw18077wa9N8lPBsYrybPnnbSqbpzkPgMh30ry/s1s0/49r7W/yXsHQvZJ8uqqOt888lXVxZL875Gw93b30J3il8Lxs67bJxlaMPVn3X3soorhPIaaSZ2a5AmLKmSbGLvj+0PnkaSqrpzkaQMhH+ruw+eRi4VzTp3L2hz/1oGQi2WOTX+q6kYZbr71rST/OK98sJvMGT811jDpvmvPn/P28CRDTR2/m+HXQ8BqMe+eS3f/IMnrB0IOTPLk3c1TVXsl+cvM3ifcldOT7LQGNADscFV18SQ3Gwg5NclhCyoHAAAAAAAAAACAFaMJCmf3ipHxJ1TV1eeVrKoulORtSQ4YCPtSkrdvYpuvrqoe+PrKRrfV3T9O8saRsF+oqkdtdJtjquqCSV6W9RdOJMmLu3toEd167N/zeuHI+E2T/P3uNkKpqgsneUuSQwbCOnNYfDMhx895Dd3J8vuZLYJiCapq7yR3Hgh5ZXd/ZUHlbElVPXDkeO2quuJGt9fdRyf57EDInarqTrtZ84Uze9688EDYn+5ODpbDOTXouSPjD62qe21hu+ewdi3y0gy/fnted5+2u7lgd5kzzqm7j0nynoGQfZK8tKqGXgNuSlXdPsnzRsJe1N2nzysnsDzm3UF/ntn7Let5dFXdYktF/9TTktxyYPyV3f3N3cwBAFtWVc8Ye56dIO1dMvwexpHdfdIEeQEA2KaWdF0KAAAA7KG81wAAAHs+TVA4uzcm+fLA+AWTvLWqLrm7iarqYpk1OLjRSOizt9jwY17+LMN37U6SP6+qQ3c3UVXtn1mjjJsMhP0gyUu2mML+Pa93JDl8JOaXknygqq66lQRVdZ0kH87wgpgkeXl3f2wrORbE8XNeQ01Q3tTdJy6sEs7tFpnd1Xs9r1lUIdvM/xkZf3VVXX4rG66qiyb55yQ3HAj75+5+x1a2z9I5p9bR3R/N7HpiyN9X1dBzxqCq2iuzv/HQHZSPydavEWHezBnnNdYw6c5Jnj+PRFV1uyRvTrLfQNhxSV40j3zAtmDeXUd3/2eSNwyE7JPZtdpQ09p1VdX/TPL0gZCTkjxzK9sGgBV3u5HxDy2kCgAAAAAAAAAAAFbSPssugO2ju0+vqqcl+b8DYddI8tGqun93f2QredbuSv13SS47EvqRJH+7lRzz0t1HVdXfJHnIQNj5kvxjVT05yfO2cjftqrpZZr/rz4yEPrW7j9vs9hP7d1e6u6vqkUkOy/B8ePMkn6mqVyZ5WXf/x9i2q+r6SX4nyQOT7DsSfnSSJ2yo6CVx/JxTVV06yZUHQk6tqgcuqJxdef0Ov5PmrQbGTkryM1V1jUUVcy7f6O73LCn3/07ypMyaFu3KZZJ8sKoO7e5PbnSjVXWjJK9LcvWBsFOSPHqj22TbcU4Ne2SS2yfZf53x8yd5c1U9LrPriDM2uuG1BkMvTnLfkdCHd/fJG90uTMyccS7d/b6qek+SOw2EPXbtGvO3u/v4zeaoqvMleWpmz/VjDW+ftNXXlcC2ZN4d9oQkv5DkgHXGL5/k/VV1z+7+9EY2WFV7J3lKhhugJMlfdPc3N1wpAOw5bjMy/uGFVAEAAAAAAAAAAMBK0gSFc+ju11bVgzNbyLmeKyb5cFX9Q2Z3j/5Qd/fQdtcWZN0lye8mue0GSvlhkgeMbXdBHp/kjpn93uupJH+S5KFV9dwkb+juHwxttKoqs4Uqj07yS0n2HqnjX5O8dIM175L9e17dfURV/WGS542Eni/Jw5M8vKq+mtmHdD+f5HtJTs5sgfPBSa6W2V2Yr7TBEk5O8qvd/cMtlL9Qjp9zuP7I+CMXUsX63pnZYredamj/7J/kbxZVyC68K8lSFgF29/er6k+TPGsg7JAkh1fVi5P8eXd/Y73AqrpaZs+RD8n4c9iTuvvLm62ZbcM5NaC7v1JVj0ryioGwfTN7Xvytqnp6kncONS2pqgOT3DvJs5NcYqSEV3b3P2+ybJiSOWPXHpnkP5LsNxDzq0nuVFV/meRV3f31sY1W1SWSPCiz15WX2UAdb0/y1xuIA1aHeXdAdx9TVU9J8pcDYYckOWLt9dILu/v7uwpaey/vbpm9prrRSOpPZPi1FwDskarqkpn9O8mQwxZRCwAAAAAAAAAAAKtJExR25UGZfVD/oIGYyuyO9PdN8t2qOizJF5J8I8lPMlvoeVCSi2W2KODmmTWJ2IgzMmtwsC0WS3f3CVV1zyQfSnKRkfArJXlZkpdW1aeTfDTJt5Mcl+THa48/KMl1ktwys7/PRnw1ya9395mb/w3Ow/49l+7+86q6bJLHbvAhh6x97a7TM2uAcuQctrUojp+ZGyw5P8Psn/X9WZJfyfDfaN/M5sNHV9VHMnsu+0pmjXUOSHKVzJ7DbpjZ+T7mtd39/N2omeVzTo3o7ldW1bWTPG4k9HpJ/inJiVX13syeH7+d5PjMnhsvmeTaSW6X2bk45hNZfuMtODdzxi509xeq6vGZNUQaclCSZyb5o6o6KskRSY7O7DXlyZk9F18syWUza774M5so43NJfmM7NKME5sq8O+6FSe6Q5J4DMfsleXqSP6iqD+an7+mdmtncfO3MmiRfegP5fpLZ+3in7k7RALCibj0y/sXu/t5CKgEAAAAAAAAAAGAlaYLCeazdIfV+md0h+nwbeMjBSe41p/RnJHlQd79tTtubi+7+z6q6a5K3Jbn4Bh5SmS1yvd4c0n8vyV27+9tz2Jb9u47uflxVfSfJHyfZawEpf5zZgpi3LiDX3Dh+/tu1ll0Au1ZV+2b8TqM7VnefWlX3zWxB31Azo2Q2F95y7WurPpbkIbvxeJbMObUpj8+scclGmpJcIMOLcDfiy0l+obtP3s3twNyYM4Z194ur6iZJHriB8Mpswf2155T+6CR36u4fzGl7wDZg3t2Y7j6zqv5Hkg8nue5I+PmT3GntaytOTfLL3X3UFh8PAKvuZiPjH11IFQAAAAAAAAAAAKysRSz0ZwV193uS3D+zD+4vyo+T3Ku7X7PAnBvW3R9N8nNJPrXAtMckuVV3f26eG7V/d627n5PZXQo/PXGqTyW5RXe/ZeI8k3D8JEkus+wCWNcl4/pmUHd/Mck9kvxw4lTvTnLH7j5p4jxMyzm1QT3zqCRPSXLmxOk+k+T23X3sxHlgs8wZ4x6S5A0LzvmxJD/X3V9fcF5geubdDeruHyW5Q5KPT5jmlCT37+53T5gDALa7G46Mf2whVQAAAAAAAAAAALCyfEiedXX3m5LcNsk3F5Duw0lu2N3vWECuLevuLyW5eZLnJjlt4nRvS3Lj7v78FBu3f3etuw9LcqMkv59k3ndJ/1aSxyW5SXdP3WhlUo6fXGrZBbAu+2YDuvsjSX4+ydETpXh5knt0948n2j6L45zapO5+dpK7J5mqQckbM2umdsxE24fdYc4Y0d1nJLlfkj/K9A2Tzkjyp0lu093fmTgXsBzm3U3o7u8muV2SKZrSfi3JrdfeLwGAnez6I+OHL6QKAAAAAAAAAAAAVpYmKAxaWyR9zSQvSHLqBCm+nOQBmS3K+tIE25+77j6lu5+Y5DpJ/j6zhWXzdHSS+3b3L3b39+a87XOwf3etu0/v7j9PctkkD8rufSj3tCTvXtvOFbv7L7v79DmUuXQ7/Pix0Gz7sm82qLs/leQGSV6SZF7z0peS3LG7f6u7p24WxmI4p7agu9+V5FqZnV/zOheOTnLv7r5Pd58wp23CvJkzNqBnnpHkpkkOmyjNm5Ncv7v/sLunuFYHtgfz7iZ19wndfWhm79PM4323M5L87yQ36u4j5rA9AFhZVXW5JAcPhJyS5FMLKgcAAAAAAAAAAIAVVd297BpYEVV1qSQPT/JrSa62G5v6UZJ3JXlVknd299R3v55UVV0ps4UTv5bkqlvczGlJ3pfk5Un+ae3u4Atl/w5b+/DuLde+bpDZB3kPSnLRJJ3kpMx+928k+WqSozJrnnJYd/9wGTUvkuMHVltVXS3JI5P8emZz22Z9LLNmD6/v7lPmWRusuqo6JMljMzu/Lr7Jh5+Z5ANJXpnk7/eURmrAOVXVrZP8dpJ7JLnwbmzq6CRvTPKK7v7iPGoD2JNV1QWTPCKzOfjKm3z4CZnNuX/R3UfNuzYAAAAAAAAAAAAAgJ1KExS2pKqumVkziBtn1vDg8pk1hdg/yX5JTk1ycpLjMmsK8V+Z3d3tyMyaQpy2hLInt7aI/OeT3DDJNXPOv8s+mf1NfpLk2MwaZXw6yRFJ3redGmXYv+wOxw+srqraO8ktktwms4ZPV0lymcwWZO+X2XPYDzK7Y/qnkxyW5P3d/fmlFAwrpKrOl+TWSW6X2bXi1ZNcIskFk5yR5MQk38/sefFzmZ1f/97dxy6lYGDh1uaJWya5WWbzxCFJLpfZ8/D+SfbO7Dr6xCTfTvL1JJ9P8skkH+7uLyyhbIA9QlXdMMldMnsddJ3M3se4cGZz7wmZvQ46Osn/y6wJ5Lu6++TlVAsAAAAAAAAAAAAAsOfSBAUAAAAAAAAAAAAAAAAAAAAAWKq9ll0AAAAAAAAAAAAAAAAAAAAAALCzaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAAAAAAAAAAAAACyVJigAAAAAAAAAAAAAAAAAAAAAwFJpggIAAAAAAAAAAAAAAAAAAAAALJUmKAAAAAAAAAAAAAAAAAAAAADAUmmCAgAAAAAAAAAAAAAAAAAAAAAslSYoAAAAAAAAAAAAAAAAAAAAAMBSaYICAAAAAAAAAADALlXVwVX1pKr6YFV9u6pOrapvVdX7q+oPquqgZdcIAAAAAAAAwJ6hunvZNQAAAAAAAAAAALDNVNVjkvxxkgMGwk5I8gfd/bLFVAUAAAAAAADAnkoTFAAAAAAAAAAAAM6hql6R5MGbeMiLu/uRU9UDAAAAAAAAwJ5vr2UXAAAAAAAAAAAAwPZRVU/PORugHJvkkUmukGS/JIes/f+xZ4v5nap64sKKBAAAAAAAAGCPU9297BoAAAAAAAAAAADYBqrqakk+k2TftR99Ksmdu/s7u4i9RJL3JLne2o9OSXLt7v7yImoFAAAAAAAAYM+y17ILAAAAAAAAAAAAYNt4RH7aAOXkJIfuqgFKkqz9/F5rcUmyX5KHT14hAAAAAAAAAHskTVAAAAAAAAAAAAA4y13O9v3ru/srQ8Fr428424/uOkFNAAAAAAAAAOwAmqAAAAAAAAAAAABwliuc7fsjN/iYI872/SFzrAUAAAAAAACAHUQTFAAAAAAAAAAAAHalNxhXW3gMAAAAAAAAAJyDJigAAAAAAAAAAACc5ZizfX/TDT7mJus8HgAAAAAAAAA2TBMUAAAAAAAAAAAAzvKus31/36o6ZCi4qq6Y5L5n+9E7J6gJAAAAAAAAgB1AExQAAAAAAAAAAADO8tIkp619v3+St1TVJXYVuPbztyQ5/9qPTk3ysskrBAAAAAAAAGCPpAkKAAAAAAAAAAAASZLu/kKS55ztR9dP8smqekRVXa6q9l377yOSfCLJ9c4W+8zu/tIi6wUAAAAAAABgz1HdvewaAAAAAAAAAAAA2CaqqpK8KslvbuJhf93dD5uoJAAAAAAAAAB2gL2WXQAAAAAAAAAAAADbR888MMnvJTlxJPxHSR6lAQoAAAAAAAAAu6u6+/+zd59xc9XV3savlQQICSShQ2ihiFEERBAbQiiCAmKlSdAgRwU76FEsB8V2wIYd9YDSRJqIPhRFkV5EqSIgJbRAQOkEEpKQ9byYwcMJ9+w9Ze+ZO+T6fj7zwln/vdaa6gvu+WXQO0iSJEmSJEmSJEmSJEmShqGIWBl4P/AmYANgPPAocDNwDvDTzHxocBtKkiRJkiRJkiRJkl4oDEGRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNFAjBr2AJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpMWbISiSJEmSJEmSJEmSJEmSNAxFxFkRkQvdPjrovfotIkZHxL0LPQ+PRcTEQe8mSZIkSZIkSZIkSaqOISiSJEmSJEmSJEmSJL1ARcSkIX48/+ztzkHvJ70QRcQxfu5UhYjYA9hpobvvBX7Sxx0OL3g/P3ubHRHj6twjM+cAX1no7nHAd+ucK0mSJEmSJEmSJEnqL0NQJEmSJEmSJEmSJEmSJGkYiYgJwHeGKH0tM5/u0w4jgaltHB0NvLPmdQCOAu5Y6L53RsTOfZgtSZIkSZIkSZIkSeoDQ1AkSZIkSZIkSZIkSZIkaXg5DFh1oftm0AgC6ZcdgIltnt2nzkUAMnMe8JUhSj+MiDF1z5ckSZIkSZIkSZIk1c8QFEmSJEmSJEmSJEmSJEkaJiLiVcD7higdlplz+7jKtA7Obh0Ra9a1yHMcB9y20H1rA4f2YbYkSZIkSZIkSZIkqWaGoEiSJEmSJEmSJEmSJEnSMBARI4Ejef7fdd0HHNXHPSYAu3ZyCbB3Tev8W2bOB748ROnjEbFx3fMlSZIkSZIkSZIkSfUyBEWSJEmSJEmSJEmSJEmShocDgE2HuP8bmfl0H/fYCxjd4TVT61hkCCcC0xe6bxTwk4iIPu0gSZIkSZIkSZIkSaqBISiSJEmSJEmSJEmSJEmSNGARsRLwpSFKDwI/7fM607q4ZsOIGCrApVKZOR/42hClVwMfqHu+JEmSJEmSJEmSJKk+hqBIkiRJkiRJkiRJkiRJ0uB9FVhuiPu/k5lP9WuJiJgMbNHl5ftUuUuB44AZQ9z/3xGxcp92kCRJkiRJkiRJkiRVzBAUSZIkSZIkSZIkSZIkqSKZOS0zo8Vt0qD30/AUEZsA+w1RmgX8qM/r7NvDtXtFxMjKNmkhM+cB3xqiNAH4Zt3zJUmSJEmSJEmSJEn1MARFkiRJkiRJkiRJkiRJkgbrCIb+W66jMvORfi3RDDCZWnDkHGBmQX1VYPtKl2rtf4Chnpt9ImKrPu0gSZIkSZIkSZIkSaqQISiSJEmSJEmSJEmSJEmSNCARsTOwzRClZ4Dv9nmdHYCJBfXjgFNLehSFqFQmM58EftKi/INmoIskSZIkSZIkSZIkaRFiCIokSZIkSZIkSZIkSZIkDUBEjAAOb1H+dWbe2cd1AKYV1J4AfgOcXNLjbRExtrKNiv0AmD/E/RsB7+/TDpIkSZIkSZIkSZKkihiCIkmSJEmSJEmSJEmSJEmDsTewYYvad/u5SERMAHYtOHJaZs4GLgfuLjg3Fnh7lbu1kpn3Ame0KB8SEUv3Yw9JkiRJkiRJkiRJUjUMQZEkSZIkSZIkSZIkSZKkPouIkcAhLcp/y8xL+rkPsBcwuqB+AkBmJnBKSa+pVS3Vhh+1uH9VYL8+7iFJkiRJkiRJkiRJ6lE0/pu0JEmSJEmSJEmSJEl6oYmIScAdLcp3Zeakvi2jRVpEjAFeBCwHTACWAZ4EnmjeZmbm3YPbUFr0RMRU4PgW5Q9n5g/7vM+fgS1alGcAa2fmgubZzYG/FLR7BlgzM2dWu+XzRUQAtwDrD1GeDrzo2b0lSZIkSZIkSZIkScPbqEEvIEmSJEmSJEmSJEmShhYR44DJwMo0QicCeBx4CLgxMx8f4HrDQkSsCKxOI5xjOWAsMJtGQMe9NMJehs3zFBFLAG8EtgY2A9alESoylsbODwL/AK4EzgUuzwH8CzcRsRSwC7Brc8/JwMiSa54AbgSuBn4L/Ckz59a8aqtdNgW2oxHosAGN98gyNB7Do83bw8ANNJ7rK4HrBvFc16kZDrE6jQCbZ99nT9MIrrkHuC0znx7QbusCOwFbAS8FJgLLNvd7FJhJ4710JfCbzHxwEHvW7FMt7p8DnNjPRSJiMq0DUAB+8dwgkcz8a0TcDqzX4vxIYC/g29VtObTMzIg4Hjh0iPKz77Mz695DkiRJkiRJkiRJktS7eIH97YYkSZIkSZIkSZIkSYu0iJgC7AbsSOsflwMkMJ3GD7tPyswrhug1CbijxfV3ZeakHlYdiIgYA+wBbAO8luLn6Fl3AJcBZwH/LzNn9bjDFOD8FuWHMnPFIRog8loAACAASURBVK5ZHvgMsC+wQgfjpgM/BH6UmXM6XLVjEbEOcDCN53h8j+0eA04DvpaZ03vdrUxEjAcOAPYD1u+ixe3A0cAxmTmzhz2OAd7Totz2566kz/sy86gW140BdgfeDGxLI/yklQU0gkZ+B/wsM1t9X1QmInYCPtHcrV3zgHOAL2fmX4foeUOL6/6Smft2vmX9ImJb4LwW5dMz8x193udwWoeyAGyUmf/neY6IrwKfLbjm2szctIr9ykTEi4BbWpTPzMw392MPSZIkSZIkSZIkSVJvDEGRJEmSJEmSJEmSJGkYiIh3AF8CXtpli/OBgzPzyuf0nMQLJAQlItYAPk4j4KIo1KHMU8BRwNcz894ud5lCmyEoERHAB4Gv0Nve9wIfzMzf9tCjpYhYAfgvGiEiS1bcfj5wLPDZzPxnxb2JiBHAx4DPA8tX0HIucBiN8Janu9jnGAYQghIRywKfBj5MdwE2C4BTgYMy874uri8UEesCPwW266FNAicDH87Mh57Tu9UfQF2YmVN6mFebiDgB2LtFea/MPKmPu4wE7gYmtjgyZJhJRGwMXFfS/nnhKXWJiFsZOgDpGWDtbr/zJUmSJEmSJEmSJEn9M2LQC0iSJEmSJEmSJEmStDiLiFUj4g/AaXQfgAKwDXBZRHymms2Gj4h4N/B34BP0FiQCMAb4KHBzRHyw192KNEMp/h/wA3rfe3XgNxHx44hYouflniMitgSupxEkUnUACsAoGuE110fE66psHBHrAJcC36aaABRoPAeH0Nh3i4p61ioidgZuBT5HdwEo0Pg7oj2AmyJix6p2A4iIPYBr6S0ABSCAPYFrIuJlPS82IBExGti1RXkB8Mc+rgOwA60DUACOH+rOzLweuLmk99Rul+rC2S3uH0nrwBlJkiRJkiRJkiRJ0jBiCIokSZIkSZIkSZIkSQPSDFi4Bti+opYjga9FxJERERX1HJiIGB0RpwDHAuMqbr8M8MOIOK7qUBGAiFgBuBjYueLWHwB+FxFjq2gWEVOAcykOQKjKKsAfIuK1VTRr9vkz8Ooq+g1hA+D8qgNBqhQNXwfOpPH8VmEccGZEvKWKZhHxaeCXwLJV9GtaE7g4IjarsGc/7UTr5+OazHywn8sA0wpqz9B4/Vo5uaT33hHRr79RO6dojz7tIEmSJEmSJEmSJEnqgSEokiRJkiRJkiRJkiQNQDMA5Vxg1Rra7w8cUUPfvomIJWkEO+xW86h9gF9WGRoTEcvQeG03qarnQrYFzoqI0b00iYjVgFOApSvZqj1LA7+KiOV6aRIRrwf+AKxUyVatjQFOi4i6XsuuNcN7TgD+s4b2o4BfRMRLemnSDEA5DKgjlGkC8PuI2KCG3nXbo6B2bt+2ACJiArBrwZHzMnNmQf2kkhFrAFt3vFh3LgBmt6htHBEb9mkPSZIkSZIkSZIkSVKXRg16AUmSJEmSJEmSJEmSFjcRsRZwFjC+xjEfo57ggX75EbBdn2a9A/gS8F8V9ArgOOAVLeoJXANcAdwJPAqMBlagEZqyJbBiG3O2Bn4KvLuHXQ+nvRCRy4Df0wgYmAE8BDwJjAWWBdYDXgLs0LyNLem3KvBFGu/RjkXExjQ+P2PaOP44cCGN5/xfwFxgeRrP8auALYAlS3osA5wQEZtl5txudq5BAD8D3lXjjLHAkcCUbi6OiL1pBKC04y7gcuDvwCPAAmAisCaN99RqLa5bgcZ7YZEREWOAXQqO9DUEBdiLxndQK8cXXZyZN0fE9cDGBcf2Ac7vYreOZOaciLgI2LHFkbfQeI9JkiRJkiRJkiRJkoapyMxB7yBJkiRJkiRJkiRJ0mIjIpagESqxeRvHnwJ+BZwNXAvcQyPEYVVgDRohIbsDG3Wxyl2ZOamL62oXETsDZ5Yce4zGc/M74AbgfuAJGj/mn0Aj6GJT4DU0AgdWL+k3H9g8M69rY78pdP6D/meAnwBHZOZtBb2XAHYGDqU4VOBZ/5GZR3e4CxGxDnAbMKLg2HXAgZnZ9mONiPHAgcDBwFIFR2cBEzPziXZ7N/tPAP5KI3ilyD3AIcDJmTm7oN8ywIeA/6QRqFHkoMw8oo0djwHe06Lc9ueupM9twPotavNpfGf8DrgSuJdGGMw8Gp+LjWiEQexLeWANwBsy84/t7PysiNiwObssqOYc4KuZeWlBrxHA62h8JrbpZA/gwsyc0uE1tYqIN9A66GQBsEzRe7aGff5MIwxoKE8Cq2TmkyU9Pgt8teDI48Cq/XhcEfFV4LMtyn/OzFfXvYMkSZIkSZIkSZIkqXtFf8giSZIkSZIkSZIkSZKq92nKA1AWAN8B1szMd2fmSZl5c2Y+mZnzMvOezLw8M7+SmRvTCDS4u+7F+6EZePD1kmM/B9bNzP0y89TMvCkzH8nM+Zk5KzNnZOb1mXlsZu4PrAu8l0ZQSiujgO9V8yie5z7gNZn5oaIAFIDm63sG8ArgS230/kZErNLFTlMp/ruRC4EtOwlAAcjMxzLzi8C2NIJqWlkG2L6T3k3fozwA5WRgcmYeUxa60Hy/HA5sBtxY0vfgiFiy/VVr1SoA5UQan423ZOaRmXlVZt6fmU8131sPZOYfM/MjwAbARW3Men8nizU/wz+jOADlSWC3zNypKAAFIDMXZObFmbkt8G4a4VCLstcW1G7rcwDKZFoHoAD8uiwApemkkvo4YNe2F+vN1QW1VzaDlCRJkiRJkiRJkiRJw5QhKJIkSZIkSZIkSZIk9UlErAN8vuTYQ8C2mXlgZj7cTt/M/C3wUuDsHlccDran8Vha+U5mvrfd5wYgM+dm5s9p/Nj/+oKjW0XEZu32bdO9NAJQ/tLJRZn5TGZ+AfhgydHlgM90sdcbC2p3A7tk5qwu+gKQmZcBHyk59qpOekbEFGCfkmNHZeaemdlRUEZm3kUjuKUoKGdl4G2d9O2j2cC7MnPvzLynnQsy8z5gR+CKkqO7dBj+8j6KgzWeBLbJzNM66AlAZh5P4737RKfXDiNFISjX9W2Lhn1L6se30yQzpwN/LTlW9tmtSlEIyghgqz7tIUmSJEmSJEmSJEnqgiEokiRJkiRJkiRJkiT1z5eBpQrqDwNbZeaFnTbOzCdpBDT8usvdhot3FtTuAj7dbeNmOMRbaIQwtLJft/2HMA94a2be3W2DzDwS+H7JsfdHxErt9oyIUcDmBUcO7SUA5TlOAIoCOdbrsN/hJfWLgf077PlvmfkAMK3k2J7d9q/R08CumfnLTi/MzDk0winmFhxbGmgrHCgilgA+V3JsaqehQM+VmRcDOwHzu+0xKBExguLwn6KQpqp3GQlMLThyP3BeBy1PLqnv2Mn3VLcy8w7gkYIjr697B0mSJEmSJEmSJElS9wxBkSRJkiRJkiRJkiSpDyJiA2CvkmN7ZOaN3c7IzLnNGVd122MYKPqB+qnNx9i1zLwT+EHBkW166b+Qb2fmXyvoczBwZ0F9aYrDDBa2FrBki9psoOMwjaFkZgJnFxwZ326viNge2KLgyBxgWmY+027PoWTm74FzC468ISJaPXeD8h+Z+cduL87M24CTSo4VBXc817uANQvqv8zMM9rs1VJmXkIjVGpRsyHF7/u+haAAOwATC+ondvh5OgXIgvoo+hcidE1BrSgASpIkSZIkSZIkSZI0YIagSJIkSZIkSZIkSZLUHx+h+L/T/7yXIINnZebTwDSgpzCIQYiIUcD6BUdur2jU0QW1yRGxTAUzHgO+UkEfMvMp4Eslx/bpoOXqBbVLM3N2B73KzCiodRImckBJ/ceZOb2DfkW+UVAbC2xa0Zwq/DIzT6igz/El9XXa7LNvQe0Z4LNt9mnH1yl+fw1Hm5TUb+vLFg3TSupl74n/IzPvBi4vOdbJ91Qv7iiobRoR0ac9JEmSJEmSJEmSJEkdMgRFkiRJkiRJkiRJkqSaRcRSwLsLjjwKfLKqeZl5Ax3+gH2YWB4YVVAfX8WQzLwVuK/gyMoVjDk6M2dV0OdZJwAzC+qbRsSqbfYqCnm5tv2V2tJzoEpELAfsXHBkAfDNXuc8x58ofq43r3BWL+ZS3ffGpcC8gvqksgYRsQawVcGR0zLzzs7Wai0z5wDfr6pfn5SFyRR9L1UmIiYAuxYc+XtmdvNdcHJJ/ZUR8eIu+nbqnoLaeKDd70pJkiRJkiRJkiRJUp8ZgiJJkiRJkiRJkiRJUv3eBIwrqJ+YmQ9XPPN7FffrhyVL6lMqnLUPsFuL20MV9D+ugh7/lpnzgFNLjm3bZrsrgW1a3L7b7Y4trFRBj52ApQrq52XmvRXMASAzFwDnFxyZXNWsHp2amZWEZmTmbOD2giPtvI47AlFQ/2VHS7XnBCBr6FuXohCU2Zn5aJ/22AsYXVDvNkTrVBqhREWmdtm7EzNK6mVhNJIkSZIkSZIkSZKkASn615MkSZIkSZIkSZIkSVI1di2pH1P1wMy8JiJuATaouneNHi+p7xgRW2XmRb0Oysw/9dqjwD2ZeV0NfX8FfLSgvhlwYlmTzHwIuKCincpsVUGPN5TUSx9zF04HVmhRqyIkpwpnVNzvLloHvIxp4/rtCmqzgXM73qhEZt4XEVcBm1fduyZF4RuVBNq0aVpBbQHwi26aZubMiLiI4sCqvSPikMysM7zmnpL6usBlNc6XJEmSJEmSJEmSJHXJEBRJkiRJkiRJkiRJkuq3bUHt9sz8S01zf88iFIKSmY9HxExgtRZHAjgtInbNzCv6uFqnzqup75XAPGCJFvWNaprblYjYBXhNBa3KglQuqGDG/5GZv6IROjOcVf298URBbek2rt+ioHZ1Zs7ucJ92XYIhKG2LiMkUv1YXZOaMHkacTHEIyjrA62i8bnUpC0Epeh0kSZIkSZIkSZIkSQM0YtALSJIkSZIkSZIkSZL0QhYRqwNrFxy5ssbxl/dycUR8MSKywtudbYw9t6S+EnBxRHwtIpbv5fHV6Oo6mmbmHOC6giPr1jG3UxGxRkT8F3BaBb2WBSYVHLk3M+/sdc4iaC5wd8U9nyqoLVl0YUSMpfj9V8tnoqnoMzFsRMQIYI2CI//s0yr7ltRP6LH/r4BnSs7s0+OMMg+U1A1BkSRJkiRJkiRJkqRhyhAUSZIkSZIkSZIkSZLqtXFJ/ZoaZ99YY++6/LiNM6OAzwAzIuIXEfH2iBhf816dqDOU4baC2sQa5/5bRIyOiBdHxI4R8YGIOCwiToqIKyLiAeAe4EvAUhWMexkQBfWrKpixKLo/M7PinkX9il4DgBeVnPl75+u07ZYae1dpGWBkQX1O3QtExEhgasGR2TRCTLqWmf8C/lRybLeIqOL7oZXZJfUVapwtSZIkSZIkSZIkSerBqEEvIEmSJEmSJEmSJEnSC9xLS+rX1ji7KDBjWMrMKyLil8BebRxfGnhX8/ZMRFwNXNi8XZKZj9a3aaG7BtR76YgYm5lP9jokIkYBk4GXAy8B1gEmNW+rUh6KUZVJJfU7+rHEMDSo93YrZQE899Y4+/4ae1dpTEm99hAUYAeKX6vfZObjFcw5CXhDQX05YGfg9ApmDWUOjVCfVt9TY2uaK0mSJEmSJEmSJEnqkSEokiRJkiRJkiRJkiTVa42S+sy6BmfmkxHxFOU/vh9uDgBeBmzUwTUjgVc2b58EFkTEdcAFwPnABZn5RMV7DiWp8TUF/lVSXxroKgQlIsYDbwF2A7YHRnfTp2Jl4RqLawhKz0E3FVutpF5nCMqDNfauUtn38Ow+7DCtpP54RJSdacf4Ns5MpaYQlMzMiHia1t9hy9QxV5IkSZIkSZIkSZLUO0NQJEmSJEmSJEmSJEmq16ol9cdrnv8Ii1gISmY+FhHbAb8FXt1lmxHAps3bgcD8iLgcOBM4IzNvqWTZ53ssM+fW1BvKgxI6Di6JiOVoBMd8lOEXDrBySb0sFOaFav6gF1jIuJL6YzXOnlNj7yqVfQ/X+jgiYgKwa8mx9zdv/bBzRCyfmQ/X1H82rb8Px9Y0U5IkSZIkSZIkSZLUoxGDXkCSJEmSJEmSJEmSpBe4ZUvqdYYDADxdc/9aZOa/gK2AQykP/mjHKOD1wOHAPyLimoj4eDMApEpV7FqkLCjhmU6aRcQewB3AZ6k+AOU24Poee5QFRzzVY/9F1YJBL7CQsvCdOgM+hlsgTCsDDUEB9qKLkKQaLQnsXmP/ou+GpWucK0mSJEmSJEmSJEnqgSEokiRJkiRJkiRJkiTVq+xH57P6ssUiKDPnZeYXgQ2A7wOPV9j+5cARwD0RcXhEjKuob91BBktUMT8iRkbEkcBJwPiet/pfTwCnAu8AXgJc02O/ss/P4hqCMtxU8r7sUlm4yHBR9l6OmudPq7l/N6bW2Lvo+Vwkw8EkSZIkSZIkSZIkaXFgCIokSZIkSZIkSZIkSYO1dM39qwr3GJjMnJGZHwVWB94DnEl1P2IfC3wKuC4iNq2g3/wKehRZqqQ+u80+RwL797DH08CtwLk0AmoOADYHlsvM3TPz9Mys4rko+9uWrGCGejevpL5kjbPH1ti7SmXfWbX9f0FETAa2qKt/D14XEevW1LsodObJmmZKkiRJkiRJkiRJkno0atALSJIkSZIkSZIkSZL0AjenpD4OmFXj/K5DUDLzi8AXK9ukR5k5CzgOOC4ixgBbA28AtgM2AqKH9pOA8yNi28y8uoc+dYfarFBQm5uZZe83IuI/gfe1OW8+cDVwGfB34CbgTuC+zOxHAEk7nx8NXtnrtCxwf02zV62pb9XKAorq/O7Yt8bevdob+HINfYtCUJ6qYZ4kSZIkSZIkSZIkqQKGoEiSJEmSJEmSJEmSVK+ygJNxwH11DI6IJYEl6+g9aJn5FHBO80ZELE8jFGVK89ZNKMp44PSIeFkzcKUbY7u8rl2rFNRK30cRsQpwSBtzpgPfAk7OzIfa3K0O7Xx+NHhPltTrfJ3Wq7F3lQYSghIRI4GpdfSuyD7UE4KyVEGt7P0qSZIkSZIkSZIkSRqQEYNeQJIkSZIkSZIkSZKkF7j7S+pr1zh7Uo29h5XMfDgzf52ZH8vMTYAVgd2AnwAzOmi1NvCpHlZZLiJqCTNoWr+g1s7j/BywTMmZnwIbZuaPBhyAAjCzpL5SX7ZQmbLvuTpfpxfX2LtKD5bU6/re2AGYWFC/KDOjrhvw2pL9XhQRr6ru4UJELAGMLDjyVJXzJEmSJEmSJEmSJEnVMQRFkiRJkiRJkiRJkqR6lQVTbFLj7I1r7D2sNUNRTsvM/TNzTWBz4NvAI21c/oGIGNXD+DqDbV5aULuz6MKICGD3kv7fycwPZOacThdroSiIoB33lNQ36rG/qlEWVlPn67Rljb0rk5mPAEWfqzE1jZ5WUj+hprnPugK4u+TM1Ipnji6pP1bxPEmSJEmSJEmSJElSRQxBkSRJkiRJkiRJkiSpXjeX1OsMQamz9yIlM6/KzE8AawE/Lzm+MvCqHsbVEj4TEWsCqxUcuaakxabAKgX1m4BPdbpXiXE9Xn9DSb2W93hETIuIK1rcDqtj5iLu9pJ6Xa/TKBaREJSmorCYlaseFhETgF0LjjwNnFr13OfKzAROKzm2Z4/BUwsrey7vqnCWJEmSJEmSJEmSJKlChqBIkiRJkiRJkiRJklSva0vqW0dE1DT71TX1XWRl5qzMfC9wdMnRzXsY87oeri3yhpL6VSX1smCXozJzXgf7tGOtHq+/FZhVUH9JRCzX44yh7Enj+RrqljXMW6Rl5sPA/QVH6voueiO9B+300z0FtTVrmLcXMLqgflZmPlrD3IWdUlJfkcZrWZWJJfU7KpwlSZIkSZIkSZIkSaqQISiSJEmSJEmSJEmSJNUoM2dQ/MP31YHXVj03IlYBtqm6b10iYv2I+GSL2541jPwkMLugvnYPvXfq4doiby+ozQOuLrl+5ZL6uZ2tUywilgZe2kuPzFwAXFxwZBTw1l5mLCwixgCvLzhSFmy0uCp6/60XEb0EC7Xynhp61unmgtqqETGq4nnTSuonVDxvSJn5Z+DOkmP7VDhytZK6ISiSJEmSJEmSJEmSNEwZgiJJkiRJkiRJkiRJUv1+X1LfvYaZewIja+hbl1WAb7S4faXqYZn5KHBZwZFle2i/fkS8sofrnyci1gLeWHDkwsx8oqTNSiX1GZ1tVWpnYMkK+pxTUt+tghnPtRcwpqBeFMqyOPtTSX1qlcMi4sXA26rs2QdFISgjgIlVDYqIycAWBUceAc6qal4bTi2p7xoR4yqaVfY8Tq9ojiRJkiRJkiRJkiSpYoagSJIkSZIkSZIkSZJUv9NL6vtGxIpVDYuIUcD+VfXrk7sLapMiYpkaZv6roDavx94H9nj9wj5LcajNb9voUfZ3InPbX6ctH6uoz6nA/IL6jhHxsioGRUQABxQcuTEz76ti1gtQWdjTeyOispAP4L9ZtIKeAG4sqa9Z4ax9S+qnZmbVn/kip5TURwPvrGjWagW1OcD9Fc2RJEmSJEmSJEmSJFXMEBRJkiRJkiRJkiRJkup3LlAUnLAs8JkK530MmFxhv364j9YhHCOBrWuYuWpBrSggpR17RMTGPfYAICJeAexXcORp4OQ2Wj1QUl+j7aVKRMSewJZV9MrM+4FzCo6MAA6tYhawN7BZQb0s0GixlZk3ANcVHFkW+HYVsyJiKvC2Knr12V9L6utWMSQiRgJTS46dUMWsdmXmX4HpJcf2qWjcegW16zMzK5ojSZIkSZIkSZIkSaqYISiSJEmSJEmSJEmSJNUsM58Bflxy7IMR0XNwSUSsARzSa59+az5HFxccqerH8QBExFLAJgVHbupxxAjg2IhYspcmEbEccCIwquDYSZn5zzbazSyp79j2YgWa4S9l7/dOfb2k/raI2K6XARGxMnB4wZGkz8ERi6CjS+p7RMT7ehkQEa8DftJLj0HJzIeA2wqObFrRqB2AiQX1u4BLKprViVNL6ltHxJoVzCn6br+0gv6SJEmSJEmSJEmSpJoYgiJJkiRJkiRJkiRJUn98D3ikoD4aOCUixnc7ICKWAX4DjOu2x4CdVVB7R0QU/bC9U3sByxXUL6pgxsuBEyKiq7/PiIhlgd8CLy44tgD4Vpsty0IPPh4RS7fZa0gR8VrgPKDr9/FQMvMS4I9Fo4HjI2JSN/2bYTW/ojg44tzM/Ec3/RcjR1EetvPjiHh3N80j4i3A2cCYbq4fJq4oqL2iohnTSuq/yMysaFYnTi6pB7B3LwMiYgywbsERQ1AkSZIkSZIkSZIkaRgzBEWSJEmSJEmSJEmSpD7IzMeAL5Qc2wg4NyJW67R/RKwInEt1P6IfhN8ArX6YP4pGSMyavQ6JiPWBIwqOXJaZ9/U6p2k34KyIWKGTiyJiPRpBLFuWHP1pZv6tnZ6ZeSMwveDIusBR3YS2RMSYiDgUuBBYsc3LRnU45qPAvIL6asCFEfHyTpo2PzvnUf5cl31+F3uZORv4r5JjI4BjI+L45nNfKiLWiIifAWew6IY8PeuCgtrLIyJ6aR4RE4BdS46d0MuMbmXmNcCtJcf26XHMRhT/TdxlPfaXJEmSJEmSJEmSJNXIEBRJkiRJkiRJkiRJkvrnh8AVJWe2AK6JiGkRMbKdphHxZuAa4DVDlOd3tuLgZOZ04NSCIxsAl0TEZt3OiIhdgMuBCQXHvt9t/xbeCNwSEZ8sC0OJiBWbYSLXA2VhHg8An+twl6NL6u8Czo6INdppFhErRMTBwG3AIXQWbLJeJ4ErmXkTcGjJsbWAKyPiWxGxetHBiBgdER8B/kZ5AMoJmfnndnddnGXm0cDZbRydCtwRESdExFsjYnJEjIuIJZqfg80j4v0RcSaN8J59W/S5s6LV++X3BbXxNMKIerEXMLqgfnXzszQoRd/xAC+NiE176L9RQW16Zs7sobckSZIkSZIkSZIkqWaR2eofUJIkSZIkSZIkSZIkSVWLiLWAq4AV2zg+AzgZuAC4kUboxWxgGWA9YCvg3cArWlz/F2AmsOsQtbsyc1IHq/dFRGxIIwCkKBwjgV8D3wSuzMxnSnqOBnYEDgS2LlnhGmDzzFxQ0G8KcH5BjyeBsS1q84FLm3PuBp4AlgTWAF5J4zVdsmRHgHnAdpl5cRtn/y0ixtAILFmt5Ogc4EQaz/PVwIM0Ak4mAC+mEdDyJmAKsESLHvOBg2m8Tq18Afhec966wHKZeWnB/iOA3wFvKNkf4BngyubtDmAWjc/OSsBmNJ7rMW30uQfYJDMfaeMsEXEM8J4W5bY/dyV9LszMKe30aVdVezd7LQdcDGzY+2aFZtL4XJ/Uol7581SFiLiB1s/Nnpl5cg+9/0wjTKuVgzLziG779yoiNgGuLTl2RGYe1GX/nwPTWpR/mpkf6KavJEmSJEmSJEmSJKk/DEGRJEmSJEmSJEmSJKnPImIrGkEOS9c45lEaoRqHAe8Yoj4sQ1AAIuL7wIfbPP4EcAlwM/Aw8AgwFxgHTAQ2Bl5NI/yizFzgNZl5dcl+UygOQdkdOJb6Xt8EPpCZ/9PNxRGxG3BKtSs9z1xgH+B0Gu/FVqEwCzs2M6cVHYiI8TQCNjbqZcE2zQK2zMzr2r3AEJR/95sI/B54WW+btTQb2I7GZ/13Lc5ckJnb1DS/axHxVeCzLco/y8z9uuw7Gbip4MgzwBqZeX83/asSETfTCFNq5X4aexYGXLXoPQNYvUV5u8z8U6c9JUmSJEmSJEmSJEn9U/SvJkmSJEmSJEmSJEmSpBpk5kXA24E5NY2YDeyambfV1L9unwSuavPsssCbgAOBLwM/AH4KfBM4CNie9gJQAD5UFoDSpr8A76QRBFK1Z4D9ug1AAcjMU4EvVLfS8zwAbJ+Zp2TmfOCCKptn5mPADsC1VfYdwsM0HkfbASj6X5l5H7AlcE4N7ecAu2fm5RSHDc2rYXYVTiqovbGHvvuW1M8bdABKU1kI06o0vrs7EhEvpXUAyv1U/F0kSZIkSZIkSZIkSaqeISiSJEmSJEmSJEmSJA1AZv4OnS9HLQAADktJREFU2A54sOLWjwJvzsyLK+7bN5n5NLAbjTCNfvlMZh5VVbPMPBt4G/BUVT2Be4E3ZebPe22UmV8Cvt77Ss9zGvCyhd5/Pe+7sGaQw1bAGVX3bvojsGlm/rmm/ouFZmDNzsDHgVkVtZ0JbJuZZzb/95iCs1V+/iqTmX8DbmxRnhgRL++0Z0SMBKaWHDuh0741KQtBAdini747FNROzcwFXfSUJEmSJEmSJEmSJPWRISiSJEmSJEmSJEmSJA1IZl4GbAr8qaKW1wGvzszzKuo3MJl5B/B64NaaR80BpmXmYVU3bgahvA64qYJ2JwIbZeYfKugFQGZ+GtgdeKKCdlfTCKbYLTMXDvY5Hfh9BTP+j8x8IjPfBrwX+GdFbR8CPgTskJl3V9RzsZYN3wUmAz+h8ZnrxjzgKGDDzLz8OfdPKLhmWIagNB1XUNupi347ABML6k8Bv+6ib+Uy8wZah8A8660RsUyHrXcsqJ3UYS9JkiRJkiRJkiRJ0gAYgiJJkiRJkiRJkiRJ0gBl5gxge2BvYHqXbe4DPg5slpn/qGq3QcvMW2mExHwXmFvDiD8Am2TmsTX0BiAzrwU2Bg4A7urw8rnAsTTCT/bOzEdq2O9UYH3gG8CsLvY7A9g+MzfLzPNbzEhgL+CiXnZtJTN/DqwLfBq4rcs21wD7AWtk5o+aO6tCmXlvZu4PrAV8lEb40+ySy+YBlwKfB9bJzPcN8TlYoeD64RyCciwwv0Vt5y76vaekfkZmdvoZr9MpJfWxwNvabRYRywPbtSj/A7i8RU2SJEmSJEmSJEmSNIyEf7MhSZIkSZIkSZIkSdLwEBEjgF2AdwE7AMsVHP8njRCP39D4cfu8+jccnIhYG9gfmAqs0UOrWcCvgSMzs6sfxUfEFGDIwI+mdTLzziGuC+A1wE40wl1eQuM1XoZGWMODNF7XvzT7X1BH8EkrETGORojA9sArgZWBFYElaTxvjwC3AH8HLgH+2EmoQvP9PZVG4M9GwEpAAo/TCCm4FDg5M6/q4TEEsHnzcbwSeDGwGo3nmOZjeITGc319c+almdlpQI0qEBFLAOsBk4AJwCgan4UnaIQGTc/MVkEhz/Y4ksZ3w1C+mpmfr2zhikXEacA7higlMCkz7+7zSousiPgg8MMW5Y9k5g/6uY8kSZIkSZIkSZIkqTuGoEiSJEmSJEmSJEmSNAw1wxzWAdanEZSxBI0gioeBf2TmAwNcb6Ai4mXAVsDGwAbARBqBHUvTCOxYAMyhEXYxE5gO/A24DLgsM+f2OH8KXYSgSKpeRPwO2LFF+T8y8+h+7tOJku+Sz2Xm1/q4ziItIq4CXjFE6UFg7cx8qs8rSZIkSZIkSZIkSZK6MGrQC0iSJEmSJEmSJEmSpOfLxr9qMr1503Nk5g3ADYPeQ9Kw8JKC2rD+/szMCyLiGmDTIcr7RcR/p//CVamI2JyhA1AAvmsAiiRJkiRJkiRJkiQtOkYMegFJkiRJkiRJkiRJkiRJ6lRErASsVXDkln7t0oOvt7h/XWDHfi6yCPtQi/sfAr7bz0UkSZIkSZIkSZIkSb0xBEWSJEmSJEmSJEmSJEnSomi7gtr0zLy3b5t07xTg7y1qH+7nIouiiFgZ2KtF+euZ+UQ/95EkSZIkSZIkSZIk9cYQFEmSJEmSJEmSJEmSJEk9iYhVImJ+we3AGsa2Cr8AuLCGeZXLzAXAwS3KO0XEi/u5zyLoAGCpIe6fAXyvz7tIkiRJkiRJkiRJknpkCIokSZIkSZIkSZIkSZKknmTmA8AcYGSL205VzouITYE3Fxw5t8p5dcrMM4FzhigFcFCf11lkRMRo4IMtyp/PzDn93EeSJEmSJEmSJEmS1DtDUCRJkiRJkiRJkiRJkiRV4aqC2nYRMbmKIRGxJPBjGiEhQ3kYOKOKWX30ERohMgt7d0Ss0u9lFhH7AisPcf9VwHF93kWSJEmSJEmSJEmSVAFDUCRJkiRJkiRJkiRJkiRV4dyCWgA/ioiRvQyIiFHA0cAWBceOycyhAkWGrcy8HfjvIUqjgY/3eZ1hr/k++kSL8sczM/u5jyRJkiRJkiRJkiSpGoagSJIkSZIkSZIkSZIkSarCSUBR+MQ2wC8jYlw3zSNiDeAsYGrBsSeBI7rpPwwcBtw8xP0HRMSEfi8zzO0BrDfE/Sdm5iX9XkaSJEmSJEmSJEmSVA1DUCRJkiRJkiRJkiRJkiT1LDNvB04vObYbcF1E7B8Ry7bTNyJeFBHfBG4Edig5fmhmzmin73CTmXOB/YcojQc+1ud1hq2ICODgIUqzgP/s8zqSJEmSJEmSJEmSpApFZtE/viJJkiRJkiRJkiRJkqTniogpwPkFR9bJzDv7s400vETEesDfgKXbOD4buAa4CpgJPAY8DYwFVgA2ALYA1m1z/EXAdpk5v8O1h5WI+Bmw70J3PwJMyszHB7DSsBIRbwV+PUTpk5n5rX7vI0mSJEmSJEmSJEmqjiEokiRJkiRJkiRJkiRJHTAERSoWEfsCP+vz2NuBV2XmQ32eW7mIWB64CVh5odIhmfnlAaw0rETEVcArFrr7b8ArFvUAHEmSJEmSJEmSJEla3I0Y9AKSJEmSJEmSJEmSJEmSXjgy8+fAp/o48npgmxdCAApAZj4MfGyI0kERMb7f+wwnEbELzw9ASWB/A1AkSZIkSZIkSZIkadFnCIokSZIkSZIkSZIkSZKkSmXmN4DdgEdrHnUasGVm3lPznL7KzJOAsxe6ewJw0ADWGU6+OMR9/5OZl/V7EUmSJEmSJEmSJElS9QxBkSRJkiRJkiRJkiRJklS5zDwNWB84Ani64va3Artk5m6Z+UTFvYeLA4BZC913YESsOIhlBi0idgU2W+ju+4FPD2AdSZIkSZIkSZIkSVINDEGRJEmSJEmSJEmSJEmSVIvMfCgzDwJeBHwBuKmHdk8DZwNvBiZn5lkVrDhsZebdwOcWuntZ4DMDWGc4+OIQ9300Mx/t9yKSJEmSJEmSJEmSpHpEZg56B0mSJEmSJEmSJEmSJEmLiYjYEHg1sCmwCbAKML55Gwk8CcwC/gncAvwDuAK4MDOfGsTOkiRJkiRJkiRJkiSpfoagSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSRqoEYNeQJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdLizRAUSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSQNlCIokSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkgTIERZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdJAGYIiSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkaaAMQZEkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0UIagSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSRooQ1AkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDZQhKJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIGyhAUSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSQNlCIokSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkgTIERZIkSZIkSZIkSf+/nTsWAAAAABjkbz2MPQUSAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADASoICAAAAAAAAAAAAAAAAAAAAAKwkKAAAAAAAAAAAAAAAAAAAAADAKrho4DjP7s8FAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 973,
+ "width": 2208
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,3.5), dpi=300)\n",
+ "fancy.plot_diffcake(ax, model_dpp, dsp_ticks=True, dsp_step=0.3)\n",
+ "fancy.plot_jcpds(ax, model, \n",
+ " show_index=False, in_cake=True, show_legend=True,\n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'],\n",
+ " bar_alpha=0.5, bar_thick=0.5)\n",
+ "#print(ax.axis())\n",
+ "#pressure = model.get_saved_pressure()\n",
+ "#temperature = model.get_saved_temperature()\n",
+ "#ax.text(0.70,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ "# transform = ax.transAxes, fontsize=16)\n",
+ "#plt.savefig('test.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[5, 20]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAEV8AAA3LCAYAAAAGFDVrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAABcRgAAXEYBFJRDQQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3VuvJEliGObIzDrndE93z+xyh7Nc8QLaAiF7Se4aEPVAiyJlSjJFXSFfnvWsB0OPAvQLBBjyq54FGIYBwoABSlrrxqUoSg8CZMCWZVA2aUqUKK7I3Z2dnZ5Ln3Mq0w/VWRUVFREZWef09Oye7wNmu05eIiIj455Ztd00TQEAAAAAAAAAAAAAAAAAAAAA4KHpX3cCAAAAAAAAAAAAAAAAAAAAAABeBz++AgAAAAAAAAAAAAAAAAAAAAA8SH58BQAAAAAAAAAAAAAAAAAAAAB4kPz4CgAAAAAAAAAAAAAAAAAAAADwIPnxFQAAAAAAAAAAAAAAAAAAAADgQfLjKwAAAAAAAAAAAAAAAAAAAADAg+THVwAAAAAAAAAAAAAAAAAAAACAB8mPrwAAAAAAAAAAAAAAAAAAAAAAD5IfXwEAAAAAAAAAAAAAAAAAAAAAHiQ/vgIAAAAAAAAAAAAAAAAAAAAAPEh+fAUAAAAAAAAAAAAAAAAAAAAAeJD8+AoAAAAAAAAAAAAAAAAAAAAA8CD58RUAAAAAAAAAAAAAAAAAAAAA4EHy4ysAAAAAAAAAAAAAAAAAAAAAwIPkx1cAAAAAAAAAAAAAAAAAAAAAgAfJj68AAAAAAAAAAAAAAAAAAAAAAA+SH18BAAAAAAAAAAAAAAAAAAAAAB4kP74CAAAAAAAAAAAAAAAAAAAAADxIfnwFAAAAAAAAAAAAAAAAAAAAAHiQ/PgKAAAAAAAAAAAAAAAAAAAAAPAg+fEVAAAAAAAAAAAAAAAAAAAAAOBB8uMrAAAAAAAAAAAAAAAAAAAAAMCD5MdXAAAAAAAAAAAAAAAAAAAAAIAHyY+vAAAAAAAAAAAAAAAAAAAAAAAPkh9fAQAAAAAAAAAAAAAAAAAAAAAeJD++AgAAAAAAAAAAAAAAAAAAAAA8SH58BQAAAAAAAAAAAAAAAAAAAAB4kPz4CgAAAAAAAAAAAAAAAAAAAADwIPnxFQAAAAAAAAAAAAAAAAAAAADgQfLjKwAAAAAAAAAAAAAAAAAAAADAg+THVwAAAAAAAAAAAAAAAAAAAACAB8mPrwAAAAAAAAAAAAAAAAAAAAAAD5IfXwEAAAAAAAAAAAAAAAAAAAAAHiQ/vgIAAAAAAAAAAAAAAAAAAAAAPEh+fAUAAAAAAAAAAAAAAAAAAAAAeJD8+AoAAAAAAAAAAAAAAAAAAAAA8CD58RUAAAAAAAAAAAAAAAAAAAAA4EHy4ysAAAAAAAAAAAAAAAAAAAAAwIPkx1cAAAAAAAAAAAAAAAAAAAAAgAfJj68AAAAAAAAAAAAAAAAAAAAAAA+SH18BAAAAAAAAAAAAAAAAAAAAAB4kP74CAAAAAAAAAAAAAAAAAAAAADxIfnwFAAAAAAAAAAAAAAAAAAAAAHiQ/PgKAAAAAAAAAAAAAAAAAAAAAPAg+fEVAAAAAAAAAAAAAAAAAAAAAOBB8uMrAAAAAAAAAAAAAAAAAAAAAMCD5MdXAAAAAAAAAAAAAAAAAAAAAIAHyY+vAAAAAAAAAAAAAAAAAAAAAAAPkh9fAQAAAAAAAAAAAAAAAAAAAAAeJD++AgAAAAAAAAAAAAAAAAAAAAA8SH58BQAAAAAAAAAAAAAAAAAAAAB4kPz4CgAAAAAAAAAAAAAAAAAAAADwIPnxFQAAAAAAAAAAAAAAAAAAAADgQfLjKwAAAAAAAAAAAAAAAAAAAADAg+THVwAAAAAAAAAAAAAAAAAAAACAB8mPrwAAAAAAAAAAAAAAAAAAAAAAD9LmdScAlnRd97UQwmcyu65DCP/2E04OAAAAAAAAAAAAAAAAAAAAwKvygyGEy8z2b03T9H2fdGIegm6aptedBqjquu7jEMLV604HAAAAAAAAAAAAAAAAAAAAwGvyYpqmR687Ed+N+tedAAAAAAAAAAAAAAAAAAAAAACA18GPrwAAAAAAAAAAAAAAAAAAAAAAD5IfXwEAAAAAAAAAAAAAAAAAAAAAHiQ/vgIAAAAAAAAAAAAAAAAAAAAAPEib150AaHAdQrhKN242m/D222+/huSc7+tf/3q4vb092T4Mw1nX0nXd4jHTNDWfWzr2u8nrvsZS/PP2dH83TeGNj27C1E3hwzd3+24uhhBCFy4+3oRuOr2PtXLRUmbu6hvf+EbYbrcn24dhCJ/73OdeefzfTT6J8loqE6+7rnxarcmXu9S3k7ZgIaxaut59991infzsZz+7Kp5Xab6GT2P/dJ/1ZE2//El63Xn83eI+ysT89ziO2fC2222mjZjCm8+6EMJh+3vfDmE+rO/7kzI2DMPLc4+3z3+XyuRdy+p7771XbJPeeuut6rndNIUnH98cbfvg0WXIDId2x99jvare2y6EmzeOx/gXH27i2/FqnBnv2nz5jmkf7vk+3Od131tZnKbw9KPjOvD80UWxDpyrlt61/dhd+r0pTOH2jeP2YvPRkJ0DrYn7vs+5j7C6LoQnT7ZH5fWDD/sw3eHm7tvzaQpPP74NIQrq+aOLo6rxSY1D3nvvvTCO48n2vu/Ds2fPTrZPYQrbp8fHD8/70IX1fdTrHmuda+q6sH3jjaNtw4cfhu6uZbULp/Xrw6HYZt5X3a8maZrC0xfH7fjzq02YPk33rgvh9kmSbx8c59snNv5IfNf273wqtZaf79S293Wo5emnNR/Pausbr2WaphC6LmyfPNlve3H9Itx8/RuHie5LpXHEXdKzdl1uDe3vq3HOPXpda++fxrnmd8JziG4K4dmL2zCFw9Tm/atNmPoQtk+SOcMH/atfk/kE1fJo6qYwPknaxedd8/Xf5/rffM4n2c51IYRnHx/mEFMfwre+5/j/e+i7rTzc5VnRp7Wt/DR5FetCXRfC02Rt4/nzfj+k+W5cy/i06bqu+Ayy5Z6vGsO+Yq+yTLzK55cteTN1075Pn2Psn5+24XFYH3zwQXGt8ekbb4Rn19vdOuLLAJ9fbcJ8dNd1xbHaq7rn5+blXdbMHkS/0BXGg6FtnHjynPSM/L6vfNmPp7opbN9I0v5hn302Uiqz3ynznQfd12XW6Ev3+ZNW6xP2z5wizx/l60hrGxQf92ktE7nrfv/R5pVPNe6lLndh/6ytCyFcXE7h8XXYl7XnH/Tpctv6KO7pvmXblRVt4pL7CGupDnwnlOf7tM/TLoTx4jKEEEJ/cxXC1IXhww9C9woqydJ9vM/6un+GH/ngg6FaZ84aY6XX1O3GLZ+GPuG7VR9C5v2zizs/l34d4+Xaumuuv11TRnfPapafj5/j0/KOcDH/usz7Sh+2v690jlXvBoQQnq4ow+fc/1fhvvvJc9d1pi6E7Ru3IX6Rqva+TDbuMJ3WjUoZOcR5MHy42feV+fdiD/c0WyY/GLLvT30q5+4rxOOL2bntTlMZefn8Kfb+1ebs9zFfVf7fa/09WUuZwlDI4/fff3/xXb9Poo25c75G86LZkFl7fN26KYRn10l5vDy/PH7SXk9fXn8Gc66p68L09OnRtv7585P3VY4TE8KYpCW3xt1NU3h2fXzc+5fDp+I+79J23N98+2oI22fp8+h+9XzvU9E/dSGMJ9fS7fvvT0Uav5t0IYxPk/evnodP11y368L4LKnr7y/U9TsovY/WTVN4M2kXvn3Zh7QH/vCjD8M0ZtN2fX+pJObHV/hO8G9DCF9MN7799tvhr/7Vv1o86ZP6otWal8n+2l/7a+FrX/vayfa33347/JW/8lcW4yht7/v+ZN88yVnzkkRuYlRzzoP62kLffQ1UamGtvcY5vDXba/FcX+f7s3l7+mXkzYub8DP/7DfC9dUU/vF//SKEEMK//v7PhnEYwn/8z38gDDdD2GyOm/K5PMxfqp51XZctK/E5qdJLJzV//a//9fC7v/u7J9s/97nPhb/8l//yqrBKzn3x876+jFR92fUeB1nnlNe1Sve+9KX/T8qaL/0utcO17eec06rWRpfCKv4Q0x1eqP0bf+NvhK9//esn2z/72c+Gv/SX/tLRtlpbkEtHS11ozbPa4lupLpzz5fBz+oeLi4vs9rnNXlNX117LfS9GLl1/6SWXNdZ+mWIcx2K+lMpkKZ5z8qsUd2nBuCb3oyJLx6Zjg3n7e++9l/3RvnfffTd8+OGHR9suL8bw3/5XQxjHQ/z/8y/chOubXXrfeuutk3HBZz7zmRBCCFdXx79xOJf3x48fZ9M9DMNJPs/5Uvohl9jf/Jt/M3zzm9882f7WW2+Fv/gX/2K17l7e3Iaf/ef/5mj7V3/ih8P1RX5auzTuWdOm1e7teDmGf/eT/+Fo2/f/03fCcDMUzijHl9tWKtfbi2347f/8eMwVx3tf7co5feLadmBNe1PqL3b58Xuh6w5rXt//T783DDfD0Y8ataZ3PnbteCxX7kr5sVQW07gvrm/DH/vf//XRtr//n/1QuL6ol7XWdM4+iR9fqcU/n7O9GMPv/NTvxbGE3/dPvjcMN332+Fw4rfdvH2fmB65KlubcpXZjHMeT/Lq42IY//kffOwrrH/zyW+GmUp9LdSEtV5c32/Dz/9fvhPmwvu/D3/3SDxyVm6UxYOv2OF2pcRzDL/zCL4R33333ZN+zZ8/Cn//zf/5o23a7DTfDTfjWn/jgaPtn/v6TcDleZtOz2WyyaRuGYbEPb72Ovu+z+9aGX4on/Xt7cRF+72d+KtrShXd+5VfDcHP80sXatn17MYav/ZFvHG37vn/8uTDc5K+vVJ5L84Ra3Svl7ebFTfiT/+Lfh/iJ41d+7PeFm8vNYv8Y5/99z2XjeMbLMfzeH/3Wy+27ON/5R589apde1xf0S31K6V5M07S/r61z7Nq6Ui2eWhypUhxL7fnaF7XSOJba9DXScXeLpfxLxV8eTLeXfBLrrqX03Ge9OOdlzHO+YNnqPvO15L7XC1q/3LI0di/1YbnyXPrxz5JpmsL24iJ882f/6H7bv/pXvxZ+87//H8KYzIefPXsW/tyf+3PFsM4Z9xYfdt/DXGqpzJzzxaTaca3xlNqU1/0ibqv7/OLo2jlPzdo2a22bkvux3XOs7YdK+9f277U5Wxr25c02/On/+2thmsJ+bvO3v/h94eMnXfjGz75/dOznfulZ6K/Py5v7WLeY1cZULXHE7WppjL69GMO3f+64XXzyd65Cf91V2/jZ/Hwx95xx7TxxPj53HWvrVeu9u7zZhj/1L39nPitcP5rC//jfPQnbYc77EN7+6puhe3F+PbnLvW/dt6ZNv8uzolf5Jfv7alNf9fr+uWG19ulxuzb/e3k5hZ//Ex8cHf+Vv/8kXF/n1zLiZ4tr5xbnjNNby9g5c5M14/S5rbjrF8NKz41KYbXkWWv858zr1sZ3H3XnrvX1nHZo6dnkOI5hvBzDN//Y85dx7Pa/9ffeCP31cX/08ccfhxB2/eBXv/rV8P77x+OAEEJ48uRJ+Lk/8jPhL/z6u6Hv+7DZ7OrS3/pP3wkvXn7ebDbZOpaWw5qlZ+G5vDunH9it7/77o+1f+bHfl30u0DLOL6WvxX3Op9eEX32v42rKjgdDCEfbuy6Ez/3SmydlKh1T5/L77/zoF6rPYc6d55Xq13g5hq//F+8d7Xv7q2+dpH0Ou1SuWut7PG5d086cs0aTWvMuTU2ufr2Ksf19HjtejuF3f+ZbR9u+95fz9/lVqOVD2qfFY4f5mVPsf/vxfJuUhhOXsdb1qdrfd22T1oxVLq5vX1734ZyltiEXR/x3S595zrOWdP94Oe2ftQ3DFH7/f/Qi/MFf34TLcVfW/u4/fLp/HtkiV8ZzzydK/d7SWOfkGUf0XGb29lff2r8T0TrnPoR13L6urXeXN9uXz7IOvvJjh7Kw5lnFmnFf6/OApTH0fa+Nz33WNAzhwx/+4RBCCE/+9ZdCt70In/vqL4f++ubO15k6vo+74+N+staX1+pkLp2XF2P42Z85frb9S//os/t3sXLXsnb8fHpNu3FLfE1LYdTWwHNt8V3Ec9aW+ErOfbbeovYO4pz+q9sx/Jf/x7872v/3vvwDi+360rPx1ucmfd+vmkPm1leXnlu0zrFrfevuWc0YfjepB+nz8fsYu83h3HUddqkMpvlYWmPfXozhP/z08fuNn/+V7wn99at7ZrLm2i9vtuHn/s/fPtpWK8Mt9//ctJTCWRrrrB0n5MJoXddJ7/vu/n4jhOjXPeb3ZeZwl9K/qxtzGdmF8/lf+Z4w3NTK1PE7Op//lV2c4ziGy5tttl26udxE58dlcgrv/KPvOXmHLk3nWuece999zdwvxtn4vb/8meo6f+v8L7eWMz9/iv3tL35fuL4YjtqXWNd12fZmmqbs+1W1d+TT8jKX11x7lTs+3VZar4r7jfFyTNZSpvA9//BZdlz8i7/4i+G999472f7s2bPwZ/7Mn9lfXy7Ncdxp/V+zptDSvi8ZL8fw7h8/fgfxs//gSbFcnbPeepf56nz81e0Y/uyvHb8T/ov/yTvhxWbd2Km0Pr+2DV2yZg7bcv6S3PxhfgYTi5/BpFrfP5suL8MHf+pPHsX55Ct/N/SF74OGsJt/P//5j4+2Pf3Ko9C9OD7u6nYMf+HXj8dX/+uPfE/xPr/q+V3c7+XS9r/86GfCN//s/K7qLi1Pv3K1OC5qfWa89PygJeyl59fzv+PlFD74U9cvz9kdMz9br6Wxls610r6lNn+J9639LnAcx5LSu8Gldzhb53Pbi2348E/fhng97fHf2txL27uk9VlP9/hR+OhP//zRtsd/+yuhe3Fc19d+F6F1fzxH/W9+89vxkeEXfvjNk3bhV//pr4YP3j9u8176t00JZLVPZrUeAAAAAAAAAAAAAAAAAAAAAOBTxo+vAAAAAAAAAAAAAAAAAAAAAAAPkh9fAQAAAAAAAAAAAAAAAAAAAAAepM3rTgDcVdd1i9v7/vR3hsZxXB3XNE2v5Jyu68IwDIvnTNN0tG/+nLuW2r4Q8nmylNb0nDmP03TFYaX3Z95eiyvdF8fTsr0WfpyelrLTkuZxHKv7YnMeptvj+x/bbKaw2WzCuJlC39/stg2bsB36cHl5FTb9UDw3t710zbX9S3m5FGYuTbUyfl/WlIul+pJTyveac9qdknPzKr1f4zjuy2W8bxiGaj1eupa73ss1bURrO5se23Vdti2Mj6/Fn0tHqQ6tuZ4Q8m10TS29tbZubXuXOyc+t1Tv1pSHNW1K7bxaOnPpytWD9Jx0X60dmOtI67XX6tu8rdYP19KQiyeV6x/PaefjOHL9dqm8L5X5XBpa7nHL8cMwFK+11D/E5SfeNwxDMd/n7en+ruvCixcvTs554403wnvvvRdCCGG73e63P336NEzTFD788MOjMLpul5dx+PPn9957Lzx79myfxhBC+Na3vhVCCOHZs2fh0aNH+3PmtEzTFK6urk7yZZp2Y5N42xxP3/cnx8ZprJnbl7i8n4yXxrk+TCfnpfHl/p7F+Xkf5rFgHN92O4ZuzNfdWa0dTuXK9S7OOazyOXeVm3/M1ub9Oemq9a9x3Z3rwcu9YZpCGMcpdFE5WtPvt7SBrddSKnMtZbHU9u/+7cLFxUWYLurj0pY5WElrH3BOn7E+Xbu2tBvbx9W1cVtLnxi7vb3NhjWOY7i5ucnGHbepsY8++uio7b+6msK3vz2+7C92x/7mb74b5kMuLi7CkydP9p/jdF5dXe23xXGdrjMc0nt7exu2UdGay2Lajsda54rztlz5ro1Znj9/fpq3l1O4vd2Gvj/EfXu7DeH2OoQQwqNHj7J9VC69d6kHse12mw1jvt41Y5Z4X64OrUnrXKbXxX/oR0II+/pVm+91XXd0b+M1jrVzmNz46tDH59uUljamNq4/1xzWdji9zqU5Unz+2nZnyfHY43Bf8nm7PtyW+U6q1te2jg1zc6PaelLL9dbWQuJ0t/QvS/kZtwet9WJpveyctJXGbWlexGlsLYu1dbS1c7tSu7oU9xq1MfZd24pa/W6p+2l5X5uepThy7rouW+qzSmsXLfGkaxJd14Wxy89zcufG7VVu7eGTyNeWcHLjyJbzW47PjSHiPipNS9/3q9bPc/vOGV+tGWvWtsf77mstcY3Wtbha37c2/bm2N7fGFB+/VJZby8Ca9eWS2lppXJbKaT6MXQ//jmEcT+v8OI4h3PFRTK5dyu2rnVda762tneXyJ35Wk24fL8cwDNdH299443HoN4e2uOV5ZDpuaamT8bPRaZpO5oBLeRbPy9MxTFw/av1o+nx2DjM+ZZqm0Hfr5ipr15fPCbs2/y6dV3senbOmH7kvrf1I7bjWdeRZKS9r717U1oVKcabt8BznOI5HeZvOSYeX88g4vmHowzD0J2mL49lut0fr7jmt843cmKDknDIW58WacJaOaW1747CWwrzP+URuX8u6zNq+PxbncalNrsUfH9NaftJ5U64un1tu5nra930YN6drLhcXF6GfDtumado/z6rN57quC48ePQqbzRBC6KL6OBzNv0vreWk9j+Mv3eO73Nc0rPjY477tcO44jmHp8UKartJ4vqb0fOK+5cZNzePMTNmZ14jT7cMwhH5YnrMesqZexmtta6m+tv8dbzuUhVKa03BaxrBpmPcx/4rH86U442Nq44Ol8XSujq7Jo5pz6kuavqX954TZes59rf3kzt+FMdeN3fZam1QbhyytMZXSsJTeuO63ztNzfVrcv/bbbZim8jsjrUr1It7f0l+P47iY/jl94xjPvQ5z8/j9lXFsv0e1dC1dW7xtKS/i8XeazXH60/Ny6Z/N9/Sw+dw1pdN4cm1S/Ll2v87tX9eMU+O0nhNe7vyu60I37N73mro+Ki/9/j2wtKzcpX0tpOiQlu708y6Ow7a0ji2N7Ybh9DnPMAxhGM/7/z1eauPiNKfn5dI5WzPfb2mHSlrq/prnxbm5dKotv47zteW97rg/i7ctrbfGSvke1+35uua1i3Q9IxdPLqzS3/O23Pm1sXzLGs0c7u6/EOI2s/au59rxSpr+3LintkYYHxvPM9fM05bMwaRrqOfMiU/DPr72deO40zI59+lp2KU4W9JVjr99fy7cc+5PGk/ufizFcygb6+dc6bZ07ji/c5OL7/j4OIzpZZ3Kvxd7XEdO16Fq9X8+Ny6ra9cl1raDLWtluePyxxwf31XGbqU5U237vO+Q9/u9u/WDzLvQubYr/hy3E7m2Nje+bq1vtTnzOetN4ej9rPVt5txvpn1Crn9P05e+d/aqvl91mkfxNZ9K60sp3PScpWNa0poJOaTtwd3DPK/spcfcfQzfHt8sl8/xOGVN/rSOV8dhOHpnNU1H/Pdh3BTC4d7F7cLyfDgOMze3b3Xu2tHxHPy0vd9tO5TL3fP4+tpfLvxcHrS+a7iPN7Tf8/S847Z83rcN07Ye3tzerVmji9Mf9ztpHtTmL6U5w9r+NTfXaVE6p/aucP6c4/laNyyPU5fW8OJ05OJsLSOlMt9V1hTvoja2SI7MrmPwyTtvBQgAAAAAAAAAAAAAAAAAAAAA4DucH18BAAAAAAAAAAAAAAAAAAAAAB4kP74CAAAAAAAAAAAAAAAAAAAAADxIm9edALiLruuajttut9nt0zTdZ3KK4bWkMz6mdPw0Tfs4xnE82tf3+d9S6rru5Ng5rDSe+e/cvjT+3L7S9tb7FKcjDq/lcy2stc65zjSeYRj2/+bSULvfcRwX1zfh6uoqhKsxDMN1CCGEy6vLMA59ePToKmxuN0dhxOd2XXf29ef+rm1vrUvzcaW01cLKleN5e678x9tz9SUXXqke5cTXkruuaZqKaT5HrezV6v+asNI0z+GW2tCatB6f45zzl8p8rX1pjbtl33a7PamPIezyNE3jnM+1tqAU17npTOX6g1zdT+NsbRPXtkVx31G7jrhslvKxlI7485oyXqpvpfrekhe1a4yPv482ZU07l1pbJ0tjkHPCGsexeG9LfcqacrfUp8XtfBp23HbGZakU1jiOYRzH4/7+4iKEEML19fVRGE+ePAkhhPDxxx+HFy9e7M9/8uTJPg3X19chdLchhF0+DMPuHj96vAmhO8Qxn//mm2+Gi4uL/fk3Nzf7ccvjx4/3n0MI4fb2dp++zeYwdYzTHpepNWOCVHpuLi93besYQpjzfzo5b6me5OrkUllZ6it2aQgv0zWXlcNx6f2OtbRdLfvn4LfbMYSkSSu16XGYadtwTt0tpTHt+1ryO+4HWtvRcazX31z6W69nqVyn5SjN57Vtb/k+pXOrqTrmnPM+N89Lr6ml303Tk2s7l/I0bU/nz6U56zgehzeOY+gWusPavCENv3Z8rezMbflsbju32+3R9svLy/3xcRjPnj0Lb775Zghhd/2Xl2N48uT5URw/+IPPwu3t6bJdbjxZqi+H+hTCoe0s34t4DrV2bJqmZRiGfV4s9Q9d1+3mveFwP8ZxDONmitJzHH4Iu/4xzo++78PNzc3+uHh7HFeaX/E1rxlTtI7Fzz1uHMcwdiGpB1PY3t6G6WUf3TremY+by+44jUlf+7Lv3a6bj8dhzMfU+rZa33MZ+qNxSAi7Mch0cbwtDqvU7qdlrjaOXLO9ZGm9IpfOePtS/7R2HtC6Xhbfg9xaQJqGlvlfab1y7q9yYZfGcrX6UbtH8bg1d05urXIOf7PZZOMtjf9npfWntF6UtMxJz5mP5drBc+PIjeeGYaieUxuj5D7X2tvSWKElvWnc58ytl+byrWsRa/blyl8ab9yO3Febdo4164C5cWf2/g5DaAmytlY1p+uc9b80vblzz+lfcvesVpbOWfOo9Y+5v2v5UKqjpTXWlvKahtd6j0rlrKX85dJVmqfmPteOj8XPg9Jz1pa3UpzpMaX5cynu3LijVAZLcaaW1tVK5vIdx1Oes8b5MZe3PvT9aR3p++NxZalcLtWjpevPlb2WelXT0q7EceTGaOM4hpA0q6U1t1luzFqaZ8b7a/duzVpQel21feXjphDCFKYwhcP8t/05aa0dWLqfpTpCqHGOAAAgAElEQVQ0l6NcmuP17lo/cM54p/X8OJxS+1oK55wyfpcxSS5f1qy35e5Lrh8q5UX8zG8+Pjd+iY87jMWnk3q33Y5huz2976VxcjqXar32pTFs+nduzaR0Xk7alpzbFqZa2sZz17FqcbTMge9Srpfyamm+kZ6TlotcHS6NLePja2OFlvYiZ2kOcxgThBCvYQ7DEPrh+LriOX+pLvR9Hx4/frxfmz2cexHGaJ1p7RgyVVozqI01SvmcO39pW+keL6WxdlwqbevWlvm15eVVzl+7bhd+uv6YjqcOZTGEuTzm1uSXnPtMfq4P6flzfVhqx8+Nc832XNy5ba3zvNna9aul9qo1zbn9S3VmaXttPnic/rZruEufGrfdLXW/tt5xCGOuG4dt8TpwLszj89fNfXLXUiprXdftx16lOU4tXeWx0en7Krl+dancl8pvy3ples1LeTinb9wcxpK7OfRt6Ps+9NPuuM1mE8axvc2qPadMt61dCylfx+m+pbKU1a9fU8sdUztsaY1mad99jaFLzmkHa23d7rnjFKZuDIc2bQzTNK5eJ0rDLrWHc98dJyteCzldKzldN7qL0ph6aW0gF84hTUPo+/iYLgzDJgyb8+d+S2lp6adr22pan42l47JU6zytZe0uve7jNrUcdi09c/pL7V26LV0biJ+p5+ZJa/rPnNZ7nJbR0vwmHrek9btl/LJ2nBXCcVk6Zy7e0r+2r691xfWg+nmn8dTGMUvpnMvLPCaLT4nXxWv9cEucaf25r7lauXyV1Y5pTWMcxjiOYdvPfUWyXrtwe9e0h/l6Wx7/5+YH6fnH+VdOV/yuVvx3Se1ZYK3u1eYAcdru87s0S5bKdK6NPR3fzWOc4zDW9ofpe9Xxv63fN8jF31ofa2O442s+pKmf1q255+YGpf69de1ptva7GnG65vjKeTVf8xT6Ql1a01+d297W5/2He3TaVixraevPGauX3oGb01h63yznrn1LnCet19I6bgshhCmaV8y7x+029Avj0ZdbivEf/zvHnz9uaY2mtVyUxpWlcpKbg+euaW2/WLqetH1O++01anOQcRzDNE7ZdOTqY7wtbdta1u3Svqb1+2ql8M5ZR83JvTe3di4UQlv7PZ1856F+7tp2qevK31VbY46263afp93/NJzX0h7U95+Wt/K8i9fjbqtIAAAAAAAAAAAAAAAAAAAAAADfofz4CgAAAAAAAAAAAAAAAAAAAADwIPnxFQAAAAAAAAAAAAAAAAAAAADgQfLjKwAAAAAAAAAAAAAAAAAAAADAg7R53QmAuxjHMbt9mqbs9q7rquHF++MwcuFN01SMpxRW6fhpmsJ2uy2GVYtnjis9Zo6/7/vQ97vfWSrlVy1fpmnK7q+lqbRvHMfsvjn8Ujri7fPnpTzJ5XntOpfKRqrv++K11MplLp5SvoQQwna7DdOU7H9Z9sZx3McVhzvf7znO+HOpLJfSm15LHPZdxGkpld308zAMR+fn0hSnN96eS/ddryVXFtNrqcUxp7WW/6W6l7Yvc/uxthwvxV8qyyUtdbg1PbV0pWHP29K2MN6eC2Op7cu1H7l6lGvDhmEoluXStcR5vtTG1eJeo9TvpcfEZSE+bm0Zaal3Xded5F2p7d9sNvvtcdmp5X18/+d9cfuSi2dJaz6sDXc+59z7uzae+N90e6pW39O6k7t/adnL3b9dH7gu/lIZyx2/lK+3t7fFfaX2vtSnx9c4l5f53xcvXhzV/ZubmxBCCM+fPw8vXrw4Cfdb3/pW+Oijj47GjsNwGz744OlRnF/72vNwe7sr22+88UZ49OhRCCGE9957L3RdF54+3R3/5MmT/bU+f/58f9z8bwgh3Nzc7OO/uLgo3tdaHW8px2kZyZelLoRQrku5NNy1jSydvy+3fVxPD+1Kv+33x8VhxPe7tQ/Plqsh3j7t407jTO9RS31I28XccWvmA0v9exp2Sxtz2t6HEJePrtsdH5eJ3LxpDqvUv5f6lVpelMaH4zg2tVO1z4d0HbbFc5NxHPfHpP1T6frTdC6V+fTzGqW5XS5fxu503LsUf2vZS+tFyxgsbcdn6Vx+vpbSeDKXhlz/MY7jPuy47s7xz+OgNMw4nuvr69DdbsPNzW2Io//444/C7dVlNl0XFxcn4YZQno/FaUrvUZxXtX59HMfw7rvvhtvb2+M+cbgNt8+P0/fh174d+uvdts1mc5SuYRj2/VdcpjabzT6/NpvNUT2O739cl9Ixae7al+YmLWplpO/7ELr+6N7FUZ7Td3Rdt8uzvgtdF7ePh2vOXfuczy1zodzftXHgYftxX9Z1hzWtUr6W1kJK85eauL2otSWH9vc4HeeMN5f6mjneUr/cem2ltZLYvL3UB7WuodT6kDTsOP21ddFauDm5cXw6JojTU5tzluYyLfmx5vpm8b1eU69y29M2uBROem7rOsGslhelfWmZXBp7pH1vqU0otQPxOaV7kRsz1NZYU+fMOVrWiuZta+fstbha1u/ScrBmfFiqT61qY9aS2lyyZXxXqm+5tCzlX9qPpGOiUvlp6VPj9KTjx1I/VBvbLN3XWhnN9ZdzulrKWMv21mOX1hJyYbSmJXe9cxxLbUGpLKb3Ojdvy52fS1cI5ba2pb3I3etcmkthpWPHUrvZ0obU4j98LtWf3LYum/7SPc7ld6kfqo0bcuOLUhpK5SgXdml73I/O/242m9CPx2shuTDSa47Hg6U8S9uzUj3I1ZlceLkymPtcGnv0Y3r8HO7893TSj5bG3aX6uqb85sJK48nlZyl/lvKiFEdrOuN2qDYfycXbOlZoSctSXEvn1OZvufDXPtdKpW3fUpt8cTGezOkuLjZhmurr2OnndI1zzedUSz+SHlfbvzSfKqnNcWptaMvYuKWMtsx9UqW2r3bttbFm6Zh0zlqKpzbuXdvHlNKfnnvOOH9pDDePmdOwx3EMYVzfxh2n9/D37e1tuO3q57S2vel9WSoXuTFkqe3NlZmlecKSpbZ66R7Ncu8nrZ2XLvUHa/uB07JzePZ2XM52awLj9Wk/kPbPu/Pa+7alsUZ6Tq38TNMUxm4Mt7c3cQrD7e1t6G/7YrlJw27Jx9pYp8VS3Zi1tl1r7n8a33xuS3tTC6uljV6TrvTvo+39aT88DJswbDLPy1aud9fajJbjY2m71XXTybi7FF5tXhtfU2lslUtX/AxurVI7XNt+fH4+vKU+Pd6+NG6qjVvj/GwZH+zbye0Upukw9zj8tzt+u92G7fb0+kvlKH6mltPab+euJf37eN/x9qVyXR+b5tuFlvnrXeXapNLcuvS5lHdpPLn0t661T1P++X3a1+zOj8vUy/o0nTd2zOVJ2tdvb7cv57GH87bbbZi20/6ZYhxtbm1g6fqPr+/Y7p3tVZfVMG5N13rr6y5rwq/1taXwl/rLJbXnynGeL6WlJb1L6UvPj9/ZG8e2utQSdumc+Nh0baDUD9XiLOVfy1h7VvruQ3r+vs/tQzgeG5fLZa2vOqdNzT2/Xjp/aZ6Vu4/58OJt+XY4F2dpe+6+tta3+tw/SXXU1q1tg+P0tIyhW/OhFkbp3LXj2aU5ebpt17ccN+bjOIZurI8zjp6B9PG93N2L+DtbeeXxSNp/hTB/T+gwBpvbrTTNxdhepq/0vkmL1rKUGyPW1mHb2oTj8UA3La8X1tJer3Pz9rb2prQ9rUelNj1ui2t9QHrOUlpq6Tr63J/Wq+Xym3fOOLk2l1gKr+X9xTmsJV23fs6/5nrXrFHE7clcDufT+355/lOrby3ltdU548TSs41SeLlrib+jsWbc05rO3LYx8y5TF22Lx5b7c6L592w3V+mSbePLOUB07st5RjpuahW3Kem4p/Q+c86uXOTCPtkY5rJaG+uV5rO1NYPcOlhrnpTqwr6N60Po+9P3xu7S3uf2ldKwlM7S+em9S999W1Nm0ve4a2OflvsV/911yfcOh7ie7I65uQmh2+bLS0mtr7+rbTi9H7e32zBdX2ePj983z+2b1b4vEpvDuph29ya+F+O4W7M7uv77WZ5ihfv5Fj0AAAAAAAAAAAAAAAAAAAAAwHcYP74CAAAAAAAAAAAAAAAAAAAAADxIfnwFAAAAAAAAAAAAAAAAAAAAAHiQNq87AXBfpmlqOqbrutVhz+fEcXRdF7quK8bbkp6SWpi59C/FtZTGdP98bfPnlmscxzF7fpzmvq//3lOav7nPpW25a8h9no8rlYNpmk7CyuXTdrtdfU4Ih3y6ubk5yrP5uN/6rd8KH3zwwT78x2MIT//lb4SbxyH89h+8COO4Df/sd/6/cNt34Vf+p18K4eMpfOlLXwpf+MIX9uEMwxBCCOHp06fhzTffzF5rei/itNTkjlu6r7Fc/sflpXZOy/Y0nLTuLtX/3L2ctebRrO/7bNmL98/hlsrLLFee4/PXSNuRUp6kdT+9ljhv4/TnrnmapuZystT25Op+6Xpq17a0vVQWam1imv6cNNz0uDif5nubtqm5sM7pc6ZpOmnL4nSV6k3899zelK5nTVpK5ShNW+6cEA75lZa11jIfa2mTSnUv1x/NaSq1CXFYfd+f9A+1vKmFu3QtuePie5+r07WxQ2n7Uvks3Z9c+YrLZa5fTu/LXcZpa8pznK5SOxgbx3F/3NXVVbi9vQ0hhPDixYv9NVxeXobNZjdde//998NHH320j+Px48f7a95ut+HiYtgf23W78vaZt94KU7gKIezK1bz/0aNH4fHjx+Hy8nIfXrxvzve+7/dldxiGo7qVXmfL+HRtO5VrK3fxhhBCeRyRtpOplrZ+KT3p520YwzhuQwhz+kK4vd2GTVQc43hzfWKuTTm+7tM83g7bk7CGoQ/DOBTzv9Sm32WOVNqXy9tcG73mcxpv/v7F5eM4LS1txHx8y7yhtL10Tjw+rI0H1oyN03Kctp2t6S7F3dL3xOEujbNy9zbN79L2tN0pjZtqcvF3Xbc/P83PeKw06/s+bLfb7L7tdrtv0+Nx/jiO+zjm7fF1Xl6O4eOPb47Ceu+9bbi5GU6uv+/7o3Y53rfZbLLz774/nuNfXl6F7mLX9pfGc/H5pTqZm5vEn9N+vXR/hmEIn//850/iGS/H8I3PvB9CmMJctz/3w89Cf33cluTGWrV6lfZppeNq15x+bp1zLqXzRJJvXRdCPwxhKPQbS2OffXkZutD3x3EPwxCG8ZCXpfqSE5f31vFqvT2fwjTN4ZbLYq6+luYOtfSXzsu3dXPd3W0bxzF0U9/Uri+tf5TSdM58LzbX86W+uxR//HdLWtL5TU6uDa2lKTdPWiOe/6ZtV20dKJf+aZqa01IbE5TizDmnDCyt65S0xJXrQ9ecH6cpzeeWvE3HCvO1peVqqf3ObWtZvyrNf9eOwc+dK9/VUvxpGQ9heaxVWrvKhb0k3x6Xj0/HhWvGg7Uwl8IrjYdb5kFLYZfGwPE5dy0TLXP23Jra2vjPWaeqpaWUv6X6VlpHyoVdS2/uPpT6kdK62to5VKnfTdu2tL6umZPlzln7vCed25TCrV1vy7PDfns6Nz3MsQ/rMfH20vimND+Ny0ntc0k8Ji4d2zr/r5WXeN+4OR2vzGt6tevMxZPex6X1i9a0r1VaN0i3zfdl92e5DU7n00tpXrrf54xDc2HH4be2jbV7UVpbbGl7am1k7jrmv5fqWO68nLVlZo5jzbgxlpaDc8rsdrut1p/a53JbdipXZs+ZU5bOW5ojLo1Vakrjhtq8fm0cuThzn0vHlMrxUnitaS71j7n7UkvLOXPO0jnnlPfWeU5LfLVrydWFecy1NLeqpOBkjLDUF6zJozVztqX1qtoYbVefTvfl4m+ZR9+Hc8Jpfa+lNGdPx0P7/X2a/11xLazv+9APfUO92uX50mWmaS21FbXykR3nDF1xjNeSjlocub9z6Wwdn9Ta+Np5aRy1OV9Jbjyw1P6vme+8Cml603qx3d6G6fb0eUd8TqnvqJW5u9T9XFi14Jb62tL9zx2Tm7+sPb9Fadxz2vbkz2sdA8fH1fJpPj/3buea/mauI/M9K50aty+18NM13PgdraW8XjMWzd3PeN532FYfe+fK3i7N9T65lL41/XLtmta2tTnnjMPmv5feJchJ0396Dd3LsVwIuz50N67bDJvQb07XiuLwWsYHaZkYLoeX13HYPgxD6Id8OZ6m4zLTOm/b1c3xZP63e0/guMzU5nVpmnLP1afudDw3TWOoZc99jOty6aqt77XGX5qv58ZmuTSl92WpnKTt6PpncLvt2+02bKNTl9r20viipT3IjW+X4qyNtVrHYbU0pea0pG3nfHjuvDSPW97jaBmrLs+X6u1iLc7S2kRu+ziOoRvr62pL5aZ2r1rWMpaOjcNemifG+3Jj8aWx5n30aXdZOyyNDZvSNOz6q6NN0fsytXIxO/7uR3g5h5yKz1R3x04h7N9r7E7q//E89LD/OC1xGrYhbNvGNrOlOdFd3skIYdeW1upE67g5HbOlfW1LuLVycRzW4b7Mm7vueF6eH6NO2c85tXcqSmW1ZZzdKn2PYuzHk7I6jmMIUTJL78vM5vJeetcj1TIfb7ne3LtGLeO7aVNe51lqw+L3lc5p7+Iystx+hxCS99K22zFsu/iYtjWnWnrScF6lu7xTNB9fKlu1sWptzJILJ71HLesfaV87z4mO2/vjdOXTlB/L3vVeLc2BzrPct8Tx1t4PXPo+ZO57lvO72Wk8ubH1/HcI0fdghl2d2u07xNON+blRqfzW+rDSGkXLPKE01mhVGufmxjatfdbS+ek9mbdvt9swXU1h8/4bu30vw/3d33oewseHfInXmOL4x3Hchx3nXfxd7LnuXl9f7+OP6+WLFy+y1xJvH548CV/40o8d/h6G8B/+ya+G8cOP9ttub2/D1dXhO1lxuY6/jzWO437dZbPZHH0v4eLi4uRapin6/nc3hG8+vzoaq/yb7pvho/64/NzcHn/PgFfv9T5RAAAAAAAAAAAAAAAAAAAAAAB4Tfz4CgAAAAAAAAAAAAAAAAAAAADwIPnxFQAAAAAAAAAAAAAAAAAAAADgQdq87gTAXU3TtLi967ri8bV9qdyx8bbSsbVt8/a+z/8WUnod899pWqdpKu6b403jn//OXUscRmsex/Hnzi9d/1LY4zhW9y9ZuketYa2517n9cR49evTo6Jh5+4//+I8f5d/w8YvwxQ8ehRdXU/ja9z/fhfND74Tt0Ifff/lDYXM7HIXT9/1JeuKyVbrHw3AcTos193PpnNw96Lpu/19rmLWyGud/emyuvZimKVv21thut03HlepoTZy2XN2frzkXbryvJM3LXHxL6YqPb83Lc+tZS9rSY9J/W8tnfFz6ealc5cKL48+F3RLf3G6saW/j+NL2cBzH1XW8dnyuva31SWkfMLdjaTmK27e0HVvqx0plMu2PS21qfFwurHjbUlxx2z1NUzHs1vtaU6ojpbJXGp/EStd3bv/dUk7i8jtNU9hsDtOaOd5au9PSvyylJZeu2ngsPXbO29vb20O/Pwzh8vIyhBDCixcvwocffhhCCOH6+np/zAcffBB+7/d+L3z00UchhBA++uij8MYbffj6179/jiGEEMK/+Be/HT74cNcPPX36NLz99tv7z5vNJlxdXYUQQnjzzTfDkydP9mmZ69Ll5eU+XzebzVG64zIb50tcXlrKTilvQsjX4bR9CGF3n+d7XSovsTTcUptc6ivTsnf4O437+JzS9aRpT8NO0xwfs+3GME1xOc/3Ebk0x+HkpNefy5fSuCM9J1Wqx6X+LhdXPs0hhDAd/T2OU+iTenyfY9j5/pXKUXzMbK4b6fXWxm1zGNvtNgq7C7lkxXHn5ga543J/x9uW2vO0rLS09aV8KZX3XJhLY+1cuSq1C7k5Wy3+i4uLpvFx6/bLizE8e/bu0bYvfN9nw4vrfH1Lz4/LVTr/u7zZnoyT+r7fb6vNH+M2Kld3c+U17tOW+sQ4ncMwnPQd4+UUNpuPQly3r64ehU10PaX2YqmNi49ZWhNJ26vSNdSuc6lPqqUlF9YcX0v7GNu3J/2Y7VO7cflalu5rbi7RMh/cbuN+7ZAfpbq+Zq0g97nUj63J0909GEMIfbFPaOl30nqblo1ae1wLK01Daxt7l3l5PJ/J1al0LJxTml/V0rk09sylvWXNpnRfW5XGgNvt9jCmO+rfD2lN54Lp/Srd65a+P703ufsSz8Vraxq5e7MUZ7o/vhe1MWG6fWkMeRdr+/Y57+O8nO9hmq+lcjGHkws793druSyN7Uty47KlvC1d76y0r3rOxcV+vDJNU+hCOQ1936+up6350roW0DLPalUa37RcYzoXTMtWLp1r1oqWrBnPl9TqwZo+qnWe2TJuzMXVkm/ntCUlpTxoja/letMwlq51aRy9tMYy192l9ubQvs55cDi/647XYKapft9KfWDu76UxfLo9nY/V+t5c+KV8CqE81ik9E4zr/5r5f5yuWj6Wzlm6jlq8LdvjfYeyM/89rw2Fo23b7TaEFY/61rR9ufJeuh/zvlwbXUtDLc7SOWvmD7n4SnOi1uNKcaztI5farqVtLWnKHVeb6y6lMxf+3DbE1zKvsS9ZuodzuLkxyZo1ipaynF7PGum9jD+n92ypXLVeVzo+y7WJpXuXC7d1nH7uXOXcOWfJXcekcXrSsXbpukr1oGVe0XVdmEL+fsdzqDX9y+68McTJGsdtmKefrW1ter0t49Gl8UItvlz8hzxoW2NqncstzTPWtCMt59fajlJ9r403S+sqIeTXc7ruEGbLfDDO8909yKc/Dqf0jkVrHU/rzPzxeLzb1m/V0tkyHq21kfc1l146bq1aH9OatllLvt712nftXrkvKcV1Oh4+PbY2b8wpzeVzdmnMbSvPC5fu+Zq2q5TmND1rtYxBpimcXPusdexdq39p3Eth5spC/HnuP8Y+fmdvt3+73YZ+u0vDixfX4fr6kJ74+WFpLpOqz+Xzxy71P3Oc8bxvNo5j6KZ6nNmx2nD6Xt4wbMKwOayD59JVWwOf01ybCy/Nmc95t2ZO1zlK7+Cd067lz31ZzsZtmBrfna3Fc5pfQ+j7wzpRCLty2w+76xrGNE+nMAzD4vvRueu/2Iwn9yeez7WkufTu9lB43t11fUjLfC2NuTBKWstay3sQtTWsWv6smbfHYabpqqUlPi59j20+dldO5vN2/242mzBuju9L2ibl2rB0zlnLs6V7sDRPbbnPa/N9KczS3Dd3LeeModK2N35GNW+Pxwq5sfyaNapWu3J0OvZeCn/p+XOtT8jNBXPnpce+3FJMX2lsmBt/lfIyt66TpmfteG7NcfHxpbnsmrlt2rfH88VZXBazY/R+eW0oTcdu0/F75d2YT9PhnDT9cR8zhGEoPyNdeq895z7qUDoeK40jS/PPXF5st9swbZefPdTmgmmZjsfN8TOFeds41ucxuXFnSztRCm/p+NYxWS7+kzY7+jMt4+l3H5aup3VMetfvZJW+b9Eaz9ifrtm05mst7S1tX60fLrcVx+fnnj/W1npq8ZSOabnfJXOYuXFg6fs9pfiWxlNp27HU95X6rsU493PR5TblOIx5+6G/Gsfj9uf02qdwc3MTbqbT7yjF4ve4Yum49S718vY2/V7Crg0+XMPu3+24Dd02v8aT+7v0/lQqvhe5OpqrC7V5Qq2Ox21+iIZwrd8BzY2VWt+h28ebbE+vpZSWdC1oPi7dHscRHxN/9+b29vboOwq3t7eLn6+vr7PpSvVv9OH7fveHjrZ97f/9rTB+eLc+4T7lxhzX1zdhTK5x/t5W6uOPP76XdLwRuvBe+NzRtt/41jfCh+n6wP0tp9PovFU7AAAAAAAAAAAAAAAAAAAAAIDvcH58BQAAAAAAAAAAAAAAAAAAAAB4kPz4CgAAAAAAAAAAAAAAAAAAAADwIG1edwLgIfnDf/gPh+fPn+//7rouhBDC06dPX1eS4N795E/+ZPjggw/2f0/TFEII4cmTJ68rSfCg/cRP/MRRnZypk8Dr8OUvfzl89NFHJ9sfP378GlIDwCfpi1/8Yvj444/3f0/TFKZpCo8ePXqNqQIAvhO8/fbb4emXvhRCNJYIIRhHAADAA/UH/sAfOFprnF1dXb2G1AAAAADAd5cf+ZEfCS9evDjZbv0NAHgI/PgK39HmHy8JIYRxHI/+jj+3nD//QET6uXT8mnhmP/3TP32ybY5rmqZ9WC3X0XXdSTpzx5auJbcvl5aa+ZhaHGn4LddWO650z2rnL6UvTUct3JJSXubCr5nPG8cxhBBCP4UwTeP+S2nzvrF7+e+4C7vv+31c83Fd14W+7/f7amW8Jb1zOEvH/dRP/dRRmLl4W8vMnA+p1nucXtfa+5Jec5yueF+cznh7/DlXZ9Pz+74vXnOLtK7U8qWlzSvF0ff9UTlbSssaa+rfUhytdX8pnNr1lvKxJX9z23PxbLfbs8rFHMYf+kN/qFgPb29vQwjHbchSunNxpMd3XZftI+I60Vo/S3UqVeoT4+2t+RjX8e12u3h8qT3IpTEdu7xKtXFCui9OS5x3cxlZOj+nddzUMu7Itfu5+tJ1XdhsNvvP59TL2rXl+tT473g8msY3/933fei6bp/nm81mn+ZxHMPNzc3+uDfeeCOEEMLt7e1+AfvJkyfhnXfe2d+bm5ubMPQ34fOfvwxdd0jjl770uXC73YX76NGj/WJ33/dhGIb9F9QuLy/35wzDEC4uLvafh2HY5+V8XXP6l8ad2+02e8yXv/zlxf6wFO445trNdWP3ePu5fdWJ4Tb0fRfiZEzT4XrSeOK8jPN4zZg6hBCmfgohHIc9jlPoxrEaVqlu1vIjt6/UpteUxiBrxiLL47n5/obQ96f7l9reub3J1eVavxe3SbU5T3zN8Rgwpz5+nfblbJ4TpPHP+b3Uftf65Pj8Up8e76uVpbQtjO/F0n2J6818bi2e9Frmz2vHbnO6lvJtPm4cx6OxQ42NU6AAACAASURBVO5+58K5vZrCzc3N0TW9uH4Rbm52bcRmsznKg/maaumPrzlOftedpjN3Xem9n7fP/dRsu93uv+RQStPl5WUYhiH84A/+4FEZubi42F/Priwf7usu/SHsynp93FJam4i31+plaS1m7RpQy7h/qaylxmgusj/vZV6lYbSkrdQHzv1paYy1Ri7vcu1ceWyWvz8t8eaOL/1da9+LY70u7nuPxz0t0jWC1jTG9T8uK7kyt5SWXD09517X5mYtdSdNR+660na8dP48Po3PTc9P86U2B1kal+T611La4m3xuC8Wt/G1ONPwc+lsmWPm7l2pr18qb2vUxuy5e/4qlfK7tVzX5jO5Mpcrf3OYcds1FsbxteceLeWwZS2rNl9eGt+GUL/e+Jy0jMbjgPhzCCFsx22YpsPxb3/v2+FzX/5S6K+PxyK5NJfU+s3WfiSnlse1NLSElaatpe1uvf8tZWmt1raxdR5fut6We740TqrV+TXWzr+X1sGW1kzueq9a6kGq1gaW2q7S2DxXjlvn02nYuzlEfp0unTPk2rulfqfU/+bKZRp+S5+Wht9SLk7nBvn5Uj/lx525v1PntIO1tJbG1qXzanGmfWffx8/WQ+j7efvh+odhCP12XX0v9Qml9JfWTua/l645va77movO48/4/LXjgPT8ljFJa77F+1rXXUrhLa0L5M5tmZ+35E3NfD+Xwin1d6U5ZLqttC6UO7a2Le2jSu1d7nlSLZ40fWv78TjcOI2t8/9aHLU1m1zbX3OX9rN1zlc7Lz5/bZ9+zjWeM45YDrsL8XpLbmwQ//3FL37xJJz5Ovqbbei6PsTRbzYXYbwY9seV6mPrezHxOXF9KY0zS+sfpTjm9mP3Xwhdt7zG2DrfWDMOSa+hdfvSnCXXD9bqfmkM+TIF8xnJ+SHafrzmEaf9uL2dQteFME3HZa91zNs61yldyyE/uqN7XoqzVn9b1jJqSm360niodG7O2nTV+sp4Lav07lVre3fXdKZK93/evBT82vFhydr1k+X273D82rnVXdKV0zJWqFlKVzz3iM9Zavdb281c/PF4Pj2mNjdNwxovx/DxxfblnGkKfb8NFxcX4eLlc/Q33ngc5kuI19pLcv3G2vLYOv8PIYRu6ELXHedxbZ63NDc73jyFadqtLYRQXis66idux5D2N3EcpTTV+uuWZ0xr+9paWlqfaeXiyrX3XRde3qPD567vw9APoR/G6jPy0t+1NaHdelDp/s7jreN7vd1uw7Zvq5dxX9J149HaV9d1YTtuw3Y7nbQ3aR7Nf5fea4i3jUMcR9vaadrv1ezX3BvufRpHaV9JWtZL97/2jkwpvmEYzur/yvHEYdXHXfN9XZpz18aDaZhL5WJpLNdSTu5jDHE4fnnO17IGkmqZm9byrfZ3rS1ZTFefH3vWnrOm44L7GkOW1mqOk3f6fZFSvuXK8dxu5dbN1qa3Fk/p+NKaVHpsqU1N13FyYdTE/UguDbmw5v7mNB35tnNXpkKI61LcX7S0SyW1vLtrObyL2r1YHtvP17TuekrXv9z2rVvjrKWlZWxfO37N2kstvKU8Tt+rncvj/C77rLT+dl9l65y1i3RMk/ueycn4bDhccymau17T0vdHctvy87wplPrdkngdMafluXitnMZpjD+n8bW8Y1RaD6vtr4Wzm4PUv1vbEmaaR2NmfnzabidpGqaT9nyz2YR+PD72sh9P8vvq6iqETV+9j6V7lFsLiNNc+nsOLz7/ohtD38/vt+2Ou7i4CMNw/J7OZnNxcl1xeua45s+5Mrj0nZxY7jnhnOaWd9n3Y51+Cl13+t5SN7StVy2N52v3qPR3/HnpeegapfFV7t9cPHFbG88/S+stuTRvL7ah+8Lxj3V9/sufDdNH+XljGnb8PbZS2mLxu+1x+Uufa87n397ehu7x4/D02dOj+N95553QvXiR/T5h/J5n/K7bvKYWl/ncd9rS5/fz9jemLrzzzRDi9uPHP/+F8FF/vIb2a//Pr4UXH53+KBqvzv28WQYAAAAAAAAAAAAAAAAAAAAA8B3Gj68AAAAAAAAAAAAAAAAAAAAAAA+SH18BAAAAAAAAAAAAAAAAAAAAAB6kzetOANzFNE1hmqYQQgh935/sS3Vdd7K9dFzumHEc75TeWhxpWuL98edcetdsi7enx+Ti6bpuvz3Nv/iYUppL11SLu5T/6fZcHrZeVy5/StuXzsnJpa2U3twx87/DMIa+H0Lfj6HrdmV82AyhG/pwdXUZNkO5GW/Nr9b0pvm4VO5yx+TyMlcvc9trdaJUn9JzcmU1TU9pe1r/l9qD2v64vYqPK51Tyu8Q6vepdM9byuKSYRiq+1vby5Z6tZTe1jZwKb64jOTKz1q59jJXJ+I4c+1d13WL+b2Ujji8tL9cq1SPSnHW6lF8fBp+6e818c3nl8YKuXTNn9f0+a3HtrY9reevPX4cx8XxR/p33/er60JtrLGmbsb3rtZPlfI1rlPpv+M4Lub/0rXG9712zfO20vHjOO73pe39YTwwhKurq/2258+f78vzxcVF6PubcHHRhXHchhB251w9ehSG2+EkrEePHoVhGI7y7+LiYh9PaVw3t0NzW1nK/zXjnfnz0nh8ruObKbwcDx2OH4Y+bDab/XFL4cZqY+O4XYmvN07baXsTwpz/w9CHYZNvu+9rvJnTdYf01upPLv5aW5qmc2n7mvuav47u5Ng0jFpa5lOnqTw3qOX1Up3OHXPOvSuNCXP7D+ZyeThmGIamclVqz2tlpO/77NwwDjcOo1av0mucr69UXsf+cC/jeLquC33fZ/OsNhdM09lSr+c05trw3Pgqbi/j9j3Nt3Ecj+7vZnN7cr/jc25vb4/2xe113FeX+st081xuSufkzNd9eXm53zZf39OnT0+OL4271sxfposQ+n5uS3fxbzabMEz5sFvHuS1j0pa1k/uah8RhtmxP2+zScbl0Ho+Tqkm6U5/Umg/x39vtNozjFEKY9uU2d3zr3PjcY2pp3H1uX9dIjyuNB2vpvetcaSn8JWvnj61rdek5c5uUHtdSX7fb7VGbmEtP3FfOYW6322x4S+PcuR+K2/7Sdbas+aR9be4615admvi65zjPDbN1vpfGl35eagNbxvX3Ic2btdJxQElujScdG8SWxs2pNJza/Lc8drj72mFpfHg03ivUkdOyddi+5n7fR7u5dl2jZb5bk5adte1qqbzkruM+7/859TQXT23tqmUOU+qfc/G39DE5tfxpzbvaGuFSfa+V6zSfcuWydn1pPWwZb8Z9bGkMXQqnlN75uDjc7XYbpmleP5vTuw3jGB+3myuP4xi6KZ9PcRuZuw/30f7V3H3dJ1nv7cbsvPmcsEpa7mst/LV1Zk27m85r5uH6OWkuz5vq49g03DVz3lL8a+9Nqb+prV21rH0t9aNLYSxdx9I1n1NGzz0mjitea66V0dxYvRTnq5q75drfludV6XpXbhxaut+5scKa8UqpXObCPKdctJTtktYxd+3exnm5ph/O5cu55aY2/m5p02rb03QuzdnW1L3SvKXWltXa4dyaaCn+Un4trYnU6kUqvb6l8p+PLx9//ZzjOOJ2Y00Zay07rW1yqSyVws31dfv9fT4Pj8cJx317bbxxfK/a1l+XlPrhUpkfuzGM4/bont/c3IT+5vR5RQj5MW7rGOS+xo4tY7/7Umrr4/lk/EylNM9YUmoj7mvOnI5l154fq82zSse1xFesd/u/D9vXruPF6bzPOczSmPuc9YsQ8v3U7jlgd3L9tbzIzTVy4ZbknlvW0r1rU6aX9SOErovj3x2zm2/nw53F65m5scpSHx5L69Fdy2trvPljj+9Fuj6c66uHoz78cFyt7t1HP7o2P9J8jvuK+DpL4abP4nPvNfR9H6buZdu6v4aX6zNJWLHc8/OctnuZn78ffz4c3dKOx2tdfXd8Ttd1YeiHMAzHz4fS/qXlfrXMOWvlas17jS3P+lra8dI11sZtafuxZGlOt3b+m563XyO83R6dfxg/lvu+u8w316azFMeaOUgpjPn8+PNSn/Vyy8u/X7Yj27b1pBZLY+01/Ux8fu6YtE6nYR2XldN5Rus8sVaWanPA+bzSM7M5/WvWiuK/S+PG2jypNn9qva4lufFB6f4trUEs9add14WpP037MAxhGPvFsrVURnKflxzyv37NuyCP+/dcmdz3Yy/3lcv46Tk1a79HN48nVvf5R/dn9+8wDKEfyvXvLu3yMB7GdbN9WamUq7X3u7WOpWlIj0nrQUtbf7pz/z9tx2f2t84BU2kZnKZpddma5caZcbmP29RxO758J63sPtY0SuO7XFufm0v2hXWu+HOpj6zV61q/0hJ2btvSvc+9F9My/zmnPKxd68mdczLPzqwDTNH7wDnjOM+1D236drsN0/Y4n0/XGI73554z5D6vnYOk9mPjKL5yGZy31dvDpbiW2tOS3Dt6ObX5Qt/3YRva3wtbGqMuqc3nWtTea0jjWXKf34WvpeHkOcjVFD5+PK8B7LY9evtp6F60lZm7zHlqY9jYeHkZrr/3naNtP/CjPxq6Fy+Oj4vWQtY8i10yX+Oj7Rie3bx/tO+dd56Fj5Pxz6//xq+HF+E4bbxad/v2LQAAAAAAAAAAAAAAAAAAAADAdyg/vgIAAAAAAAAAAAAAAAAAAAAAPEh+fAUAAAAAAAAAAAAAAAAAAAAAeJD8+AoAAAAAAAAAAAAAAAAAAAAA8CBtXncC4C6m6f9n7/1+ZcmR/L4gs+qcc7vv7PTszmJnNSNoJWttCbuWHwx7IUuwHwzrTzYg28LCftGTDcsWJEuWYGAljWZHu/Or+/44VZmkH+qwKjIyIhjMOne6R/39AD03i8kkg2QwGBGVp6ZSrfV63UgpmfX5vZTS6jNvQ3tGtis/a8/Lck1e2VZK6XqfX1vPaHJpfcpra55k21K2HrVWKqVsyrWyVl+uDb93b7kls1beyqx5stY4Mi9STn7t607dlJVS6Xyeqc76c0REOefV+nnjiMxl5Bnen6xv7VfeljePWnuNpltS9znLslyvc86qPuas/yZZSsm8J9vR2uX7Wdbx1n5UryRc5sg+4HLJcUg553l2+47uw2mazD57z8t5lfW1udXstqbnEbunrVHPxvbsyciayzFKe63JJe2NvI7a+F5/su3IWTtKb401OT07EiFqB6x+IueJJ5Onl5rfoNW15mzPWa999tbXGhufPz7HpZTNnI/absufyTmre6Hn21n2WxujtQ6llI2v1M6oUsr1ep7na53z+XwtX5aFHh4eVvUeHzMdDgvlfLy2+VvfeaTzfLGxh8Pham9zznQ8HulwOFw/y7nRxtX60/wLfu3ZZg3LDtl+hO9DjxCxm/KzpselNNnSVb5SCqVi65/Vp3dPXq9l38rV2tqzpz2fytNzXq6tjaUvPdl6Z0drK2LWI+eQFZvxupovKmk+p7WuvA/Lb9v23XTsMsfcbrRnPd+6tVdK6erG3nPT8+ki/fB2SlnfW5aFaImdlR5WnG35sN4ach21Yo5m+znNn77s/a2eL8tCbSq93AVfSztu2do760zVbEfEx2z/9p7T/G9tbLVWWubyMj667u95nqnO/bNflntYNr7nw1h2Tj4jryN7pK2DZ9tG/GpNt9dFabX+kTb5OKLzbq19rZWmaaKc/bWy1pjvw16up+f3ebHs5Xq91jlPNE3Z7d8aiyWjdq3Jr+lZJN9gyaDB7doerD6krll+e/NhvTOJ7ysZW2h7stln7h+PzJvsk49HrpeMbzSifUdyZ1wWqw/Zz554XPbV03/Pvnr5qmjexPN5tM+R8Xvz7I2T58usetJ3I4qtm9Wn1b4VW2loNmU0vpLteW17cP3wqt4j3z14OjtSLrFyR3LuovMn+/f2SfSskc96vpBkj5/OZdT6tOTy2rY+32MLLf/Xk9WLQSPP83a87ydG7MBI/157lo/q+Te9dm7+QbOZ9PLvRNOUKKV2Dl/shqaPa9uyP6aMPiuvo+d4ZD5kubxVa12liSy/V96TNmE0L+Tp/4jNHrEXOTd9arITUVq3IXOfmuyeDNwueTFEZM9ouSytLv/O05LLG0v07G/0ch695636e7438dq2bEdEZ0b2npa358gcj7QrWx+ubto5nc50OtnfPUu8fIe8p7VpPR9de2nHPXvRywXtPSu1PuTc721bqy/3aNTH0dq2/PqovF77UX+ht39Gz3aNvf5M42avK/Hci/V9nnem11opz8smt3zJN9/a7tl3zR5bc9bTF2+/eXp0yS1UdW4sX0drxyOii5qMWl+WTd+zP70ziPe/9ocuczSSE5PytPn2mojETF7fPd+wHAvlPBF36o7HI+WaXd3jbVq2Vz7jxVyaXvfWr2djvec9/6jng8o9MdJnDy9m9urHfMhWtn5+j73fU1fKdJNLj98ibeyJtUfs1Ug/kTM/ev9mi3lZvp5fra+ef2e9i8GvuV5L+x7xK/T5qC/fLddrzNHOxHmeaVmmazvavop+T2Dl/eX1RjrH/pelUK183Jfvx1Pd73tEt4m9z7f19uw9olhsOhr/NLTvJ3p5GW3NU0qr53mbtb68/1QL3c6ti54tZaG6LO55eY+9e3li09bt3+udzT5r/3o5+Jzzy7jW8mptcdnbeHvnxMoepO16N72y1t/Kd/ToxQDS1nprpM0Dpze/nnytXW+M/L1jDU/fp8nxxV7klrGIJedeRvM38nMkzovGjNa1Huet3yuRz3llI4z49JHnNd2XOsx1XnvH5/J+1r54XvsbB28/eu1eznGZn2oy63kZ7dqLiyNxC9eRno9s4ckWjU+lLBG4L87b6LWzvb9dg1R0W2at8+2/QkRrufh7ujUT8XPPkysSm8vnvc9Wu9IvkOXLix9gyWnZrtfC21t7bfBI7KHtEau+pdeR+GdXDLh51/hF/0l/n/I14Ocr0f3vIrU2+XnE3/3ZlNPY+6y8jei7sFrMGOUmtxZ72u+NjsTT8trLt1jycXrnl7YWMubVxjVN08pX36OLl7FtZeJIX2/z9yrTRO076Gbvk/Fu5a0RK3ewnnMuX2v/cr5vbY1nk621tJ6NzGV+eV+Xo/lFfAyRc1hrQ97vca9dWpaF6qESKX+fm4wzVjKyr/eivQN5L9Z3h0RKHuaOfjff5+RLLurS36VsmiZKU+x8jPgkPd/Cq5dSoqS8s3yRcXLiyVsebdQPtupNtP1bk/Ze8rqBUDfgFfn0ux4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+geDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9K8OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbyWHr1sAAO5hmiaqtV4/t+uUklouryOklIbryj54OW/Pk9GSk4/Rkk2Onz+rPeONsZRiyhGdm1YvZ/33npq8vTH3yry+5bVXzxobL5f9R2S3npHt8nq51GvZtX6pVJPe3zRNm3G1trleeHvE0tEIvN2N3MYaS1m4vNq/mpw9aq0b/Rt5XqvfZJbtansmqnu8PdnOqLw551Ub1v6Ta8KfaddSVyL7ympX1uf9SR212orsV6L1mEd12drvvbH3bLy2DyKyRdff6rPXl2XrZd/e2eOdfVa/1v7m7VnPL8tiyrwHa49INL3gz5ZSQutl6eeIvbDu8bNA6qS21p4d8PQzuge0c4gj/bmGtGOtTMpYSlHXz7NdlvzyOQ7vh68zb9s6K7ge55xXz+Scr+3O87xqi+t5q9Pmpd07HA70+FDpcHhe9Z1zvupCzjlsR1o/0ofg5doY5VzwulG/MSajX2fU3kef5+u12bMTUUprHeRzztc/pbQ6Xy29jO73dllr62tr/yMxg9Zvbz282CaCZS81PYro0jRVyjlRrZd5af9aMaM3rtc6e0b8wojvc/m36eLahlh7z+pHzivH0h3vGf6sjElauZwPz/8gIip57ScSXdZzKtldR0uvev1FafrB93KTp5RyLV+WxSzftrnQPM8r+U+nM51Ot7I2r20duF3m1zJncPm81WnL3kfsQCS2knPUxs3nZVkWWpblWq+UsrJh5aHSx48fKaVbH+/efUWH+bAau5Zz4DJ556C19+TzGj3bYu1BbY+YcuV83e/Xe8x3MJ8TZbpdSUS0P98SGQdRLNbIOVNaKslz3vPfPB+MI9fVsmOW7q/antJ1PdrjWazHXl/E0ifP3vb68uZF87VH2rD2m/eMJ6+Wi4gi94O2HtKXl/c43If28OJYeV87H0fic5lf4/96/vkerJhOu/Z8DaL+HMqxevrOn4nqHL8/6ttG6vXGH4Gfifci125UF7y9G5lji706eVk3rcy3MV5eYlSepu+9/d5rwyIqn3be3ZOvGSFybnKsOG+k/2hcqt2L5PdkHimaB/NsvLY20TjU0+meXfTmILpmEUbtbus/YtfHZbn5YZc+iLhP22IEmZfpydHzO3n56HNWzN0rs1jlmJZCtW5j7Vxj/qkny55cUa8fK48Y3V+yLo8hL/fW/xK9xKWKe+nlAKO62/MFNNm9nEv7d9SOyjnjdiCivxEbNbKfrP5G4tioXD08Wzzij8v6np5o32Fs1yi5uQrtOa1Mu9/6le17Os/Xtxdn9/aohRdDWLJo6yef5+O1ZLXG1ZN99Hu8Pf5ZxNfybGRPpp4so/5oryxyzzoT1mcai9eLvm7W+bCWf7vveb2or9ubd0svPXk12TWanlweT8Sr9vxNbge8M8nrWz5jtdfTIa2/iA6P+x7j54P8LP2Ldp/vl6h/rNk0qXtaX9LHq/Ulr77E5zHqs/LPXswdaTv6voXWjmaPLLm056LvV+2Nk6zzI+rba2WX7434XL6sf/B9kz2M+kaaz3PbI/F9ED1beljxRFT35V7snYP8emLfZTXm+UxnKqb/KHPoo7FwNF/Y2+8p1es+ypkopfkSN7+8X3A8Hikl/c8IRs/7SDzT8yHlfktTIu9djD3ckZZ4Fe7Jq3h2zLPD1vf3HCuG8WS06qeUaMoT5en2HbDW5/7YTrcrFz2/2Khb04kOhwOVw/a9aquP9vl42L6Pxr8XHM2Z8HVdloX5BH3/QxKxPZpskbie+yre9ziaXLz/9q5Or/+R7wW97yclfR9oWz+lpL532cbRs+XevtqDzDFEcitcbzwd4nh6cfnPftbzISP97bUL2vP3+lB+zHMbq5R/5IyX8YDnZ3q5nJerqx6nZL+34Pn/I3Lbctz0LVLvNdbJ6yPyrKfX3tzb5Wsd8WWz/eYW+9v5jK0frvehE4kBtLYjtqTZThlf92RoZb2zXlsXLS8TtdPWM+2yt/8itkvOXdRe3efnxuwRn2M+Zmv99rw7I5H+k6Yzst8IVn2/nVhu5d5z3PKBtX7bmVDKVtdLqVRzPzbo+Y+eLA3rudF4gt/jse3FX/e/w/RyPFEd98bf7vXeEajLQvI7WM0/buW1Vip5e/+S0/PPXusMac9EYkPPT+7lPzhTXdSz7JK3Uh9x27P2lyc/r3+vP7upN1VKab1Gh+lAlLcySlk+FXKNI38TtcdWynZ7c+a9Ix6d7yUvm/m22tQ+e/JwrL9V7VFrfXGt2h5tfSVKwlZFdcPyNXpzNi2FlkXaj5lmEjmwrzmn9W1k7FsPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+I8E/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgWwl+fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCt5PB1CwDAPZRShp+ptZrP83sppaFr715rN6W06kP2aV3zNnPOq88WvJ7XpnaftztNU1feVl+Tp9Z6rSfnu9X35iQit0dvTqUsUaz6sg++5nL9+bzxOms9amW3+jknqjnT4TDRgQ4bXZNjtuZA2z85Z9ZPHp6XUoq7ftoe8fYUfz66lvfoS2+8WttROyTlt/raY9c4be+XUlQ7QLS1T1af1vOje1TaLgs+L9b8RNfoHj1oz0faisip2QVeHp1nWcZl7NnhXvvNDvX67O1XTTarPe1M5O1qNpKXezoVXX+r3j37UJMrord7+uT7nWO1Nbp3256MrLu1ltLeRdaG64j0Qxq8PNKH3HeW/vG6sr5c28hYtL0pbcuyLNd70zSt/Cau7+fzmYiIzuczzfN8fW6eZyql0Dyv1/3jc6V5voR7h8PhOmc5Z/McSild9Yevfc75Wi79A3lttRuht5Y323IrX5aFltzvMypDpJ6sI2W6lfmy3DNXet2q2l/LJvD1knPfs/Ht38iesp7fg9fPRZ52bfenxSDRsUf8GSlTZG6ss85vm4jocn6U4uu7tc4RH8GTU+vPk53bOM9XaCy01V0vvhyl5zfJvqx7/Hqe51Udbqv5fimlXO+llOh4zBt/LKVEh8Phet30L+dM0zSpcZu2FjlXSonnES7nQmVnqWWXrD3OZefwPSLXp92T8e/hcDDzDOWh0IeHedXOmzdvKJ9ucyFzJL3909uTPR3vtaXtt9eITVgPVEu5W/+bTt+GpucqXoNJ0TWirU2apoly5vdva9zz23trH80nNLh/xnVsmfncp6sMiS3HyLxF5OJrbek775PX8eI7L063/GFv/Xi51W/Eb6y1qmPw+rf2NY+zuD8rZfR8J92uXuxus/ne+cCx1smqo7XB60T26h77Y825de3FmXwvcUZzPqMxpawb9W2i/lgkXyT7sdqJ7Cut79ciGqP3zsfo2WrFHdrYuX+vtReJ+XpnsWcnveei/UfaIdraHamLI/6J1a9nk0bkjfha0T56eRnPX5f5i4Zld+Szy7KYuhTdF1b90X3q7f3ROD1aRUiOAAAAIABJREFUvqePCKM+lyeLdq/d9sW85Ub42a+NMxI/aHLdE1f39D7CdizxfWn11Zv7CPeMWfpG0T7zwte2KrqRrjH0N5k9scxeG2+1rZVFz/poHioCP/dG8vFa/qJXfzSu7uVO5Ocm/+FQNrkQy9e2YiYr96M9oxG1PXvWy+rH82cs3ZJ5sV7MR3TLOWg2/Z6zyIttR9qxPssyLS6IzFlkv3l7WXvey8N48bQ3N9F3nC7t3M76UgrJFHEvbuN77HZ/e/Z7sRi3I57+abbHqmP5nt5Y2nPrXMOl/JLb030arS3+nSOXR6tv+eHy+Xv2iOzHit329JESt6vXUiLa5pNbez3/is9xNI7kMYuk912+9d6Vpkdy/a1z1GPEj7dsrTfeaFuyPUtG7blmu0blj9Jrd8TvWdsFPve374i8sUTsYO+eRjQ2unznlFb2Wsol5e3Zy97e9/af1adVbumdpns8d5DPC5WyUCm3ffrVV+/o+bB+Z6fWuvo+rDFNEx2Px6F10fZxJMct56uU9Tmizc+93zlxma0zKRpfbGRbCtXK5bvYm1RtXf86GckrRWX35o5/9vJi1jMRn4jXk/23M+vy3+25WgstZaEalKm3z0fO6stnu69ezKjljayz12prVC/5/Gnyv0Y+yepXw9OlEZsVic+Jtu8ARtkT8/Fn2+PWNMp153skuiZtbJ6snm9ovRMazZnE99SW1kfN8fxoz0/pycXv7Y0tRrHiKWvcF39ofdZrMkfk7/lm1zVQ2rrIsi6zfBqJ9/1tJP8k+5TP9rDWeHTOrJjBs8nSF7fsQGg8ubD5eiliMacuR2SOrPVOm/u92HzPPvTWwct/8DoNLy/P25ExcOSst+xNT1d1Wfn3tLd7Wvyg7XO+DnwsstySVfrQ3MZE9hWXM7JGEj5m3l97Z7H1ofXr3ffkbf1pjL6f62HHOTf7rfm3mnxWLiLS955zyppSb715XteKf/k6y73nxYXWWPkznt/B5eLnUPTc9/RtynUz38uybN6p7rW1sTHX+UnUbG9ZFsrmuZyIsvZd5bbvbU6IXt4D7+uLdZ/7JXtsPG9nne/h92S9Mfu7x3+P5BI0v10rJyIqSdkbKYl3Vsdi9t7Z2avvzRFfV773rfdxvXZ7utPqRb5Xt2ykp38anh2NrP2ev+XlbaeUiBS/2pOlx97Y5JAKTRN/Z5Zomg50OAjf8puVBvtW8HqeCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwGgR9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCvBj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+leDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9KDl+3AADcQ0qJaq2b8lqrWi7r8H+t+155SsmVrddOSmnVhteedr+1Lfvi4/ee0a6lzCNzad3jMvTmvWHNhTavlh70ZOHlkeetfrRybV1l35Ys/N/D4fCiJ5VSIqqViNgcSNkt+bTraZo2ZXyOZNuefu6ZP01fOaWUbps9ctZ/Y8yzHRb3yhPd65bM0f55Pe+ZvXtQu6fpkuxDytKzsa+x/vcg7fO9bWnI/e7ZMqvcm3Nep2cb2ufRcygip3e+aOvc9sCoDvC9E10/zd6llFZtlVKGZGp1+DPavh4ZnzWvVhuezvV0TLNV2j2vHXmvN1bZpyeDJnP0HNeebX1o/kkpxT0H2+fIWcPbauVtXpZluV6XUmhZlqss8zwTEdHpdLpez/NMz8/PdD6fiYjofD7T+bTQ6TS1nomI6P27ZzqdL7I9PDzQw8MDEREdj8fVnD08PNDxeLzK1vqfpknVJblH+Jrdazd763+5fxtjrfZ+lzoxqiOejLrMfT8vco8Ts/1t7i/X05RpKtPm+dFz3/ObtWe08tE4zWo7Ml/rNiu1j6VUSkEfxKMXm/Sei4yB7ytr7bbtJDemHOk/cnZYeiF1wfI7vPNZXZdj2tjY1kZ0Hb0z3DpHrLabz+vR7KnVl1aWUqKHY6Gnp7WM3/viC5qXbdou52zOpbYvH9KymcfWhvac1Z7WtpxXeXby+lpb8qyRzy7T1o+apgNNh61etH95e9YZHYGPLefc9bui8eU9PstLSah+bN9vnx3JL/T6iegC34ea/njnhlzftb8QOzs0H7DWutnv+ry0fbAQLfUqDx+jZodHzruUkmt7RuNHay968DrRuF57XvY1Gu+Nxhg9mbhPK3UmEv9E1tGbn4hPFcXLSVr6w20Xn8sR/7G1w8/lSI6Cl0f8+HvoxZaevZA2Rpunng9t2RirvtW25YNJXkN/OHvjPC+XELnmZVrXPX/SivE9WTmWX95jNP6xKKWEzo1Iu9qzvfXUzjGtPzm20VxORGY5F1Y/llx77Un0uZH1kDFM1F5G+ibq+73eOTZq+0eI7kFPZzxyzpTz1pZH4x3ZpxcXWXkPLy/Yo5cjseZFju328ZarjPrEvL9IWbQtb/61cXk6Kp/dPnfLA7183LQ1ajOjz9/jW0d9TV42co5GZND68/ZBNKdzz3eTVp9a/73zUp4Jcs54PGD178neO29a+fG4zW0cDgcqJas+p2VXtP68HJnnZ1r+2miML/vyYoOo330P98a8VnnEH/PO+lHd2SOj1h5fZ2uNI+Pk96T+jMYKlly38nUM0Nv7Fm3/azmcl6/Awu1Gxjlyzmg2stf+JWdGJA85yy60Pqx8R6/PXi59hD1n6KjOV2Ve2hikDizLQrQzpTQSU2ky984L2Yfm42o2s+cren1rz/Twzp5Rm77HH+zVaWOR32VH2+3NWc+Hb22EYtlMlNL2u5vR+E4r92zayPNa3cu7DewdRmp2Ss/tSHmsHBCXw5uDkRjW6yvi9xwOt+/oHqaFDof1d4Df/e536XTcfpcQifM8WTWby21bq6+1pb6bdCyU8/TS/77zu4eWT/N8Q142Hnuuz3nPDnplo/D+pMhcnnv6smzsa+dromct718b383n0p4Zk2lk/nguJNpPk9XaO5ptafvOW1/PzkXeNbzunZwo5/XcjuZ2orZzT1vafrX01fMVtDYjz1v+acQOWmdQzjIeiZ3DGnvGu5bF/s7bazuyb/j31712/PvrvV5KoVT7PkvU3mg6Js+W0dgm6gNafuhF77hteBm3sqW1vIhsc09sFHmmVUlpXb7ne33Lz4rsaznGaPwZ0QXrGelrRHIxXswVGY+c41udm9yW3df0oOlUrfXqZ/M49nQ60ale/M1ChZalXM/ANn4vLvLY45fyvrx3qjxbar2bMErEn+/FmXy/a2ujxThaW1yWw+Hwar7bnpyYVc+X6bYvRv7uaryfdR1Nn0b/7os/6/Xl6Tt/pyaiV7xPL4cWLZd1uH+tidPTC80/lfbM0l/rbwakjPya+7xaLqth2YhIHlL6AfI6T9s8wjRNpKmT51NsSJd8tZWT5ddXm7wodtmMIUVXAZm8ODtq+3rY72+SWcbliu6Be22lp2+8Tk8ur23N7kX8s3sYjdeJ9sUjXr1eXkJ+lyk/r+3KgXJe7/MpT5QmfR9aNt17h8+C7/dPkQvz+vXK/dyL3e6vcwxgzet9kw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/QeDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9K8OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbyWHr1sAAO6h1kq11qFnUkqrfyN9aM9r96zn2jO8LGf/t4+0tq3+tHlon71nuFxyPjSZI7JEZGvtt3JvLeR887b4GFu9nHNoLN46RtfV60MbG5c/pUSlFLP99m9eFiqlUilErevLPV0vU0qmjvN7nozWeOX16N6T4+X9tv3Ay6ZpGlqbEWQ72lrIPTpNk9oW1+V7+uvJ0rMZ2rPtGa1Nbd9F1lh7blkW857WrleX6y/fD5Yu8mc0W+bJrZXzz6PnxF599fZsFDmvsu+mC9YcRc8cS3ejY5d9a/tqZJ9bOl5rveqltXeia89tEZe31hrey709ci/SvnNyzldZRvuXe88bb0++1p7VT+86KoPUcb7+ERsl++CyW/K39fXa5c+XUmhZltXneZ6vbZ1Op+t1K5/nmZ6fn4mI6Pn5mZ6fn6/3zucznU7PdDq9Ie4fvHt/otPpMv6PHz/S4+MjERE9Pj7SmzdvVvrcxszLLL2Sui/raT7JCD1/d327rubWsx/WHo/6oRxpV0oq1KpyEXrj79lO7flem54vaNXn8LG1dbZ8aNmOJ38khorYf9nP2kbJfVrVvRtd/8jZqMUjvXFo69M7k/g5v65b3b3W5Nprv3tyWvUt2zEaQ2zX88XmLn4bmh5rPoPld2ry8zY1PdD2C//sxexERDkVKqWs+p7nmc7z1nf29rgWD1/OnLUOzPNMc/L9tej+8HX0JlevHa1eOmzjoGmaaCr99rg/6PXZ5PYopZhxTPTsscp6/knNmYj82D7aNy+vmYgoEa/W4s7R86uVyfPY8uU0fUgp0fKS/0jpcp6m1Pym2Pkn5YnEvFH4vrjFVpd7OU80Tdms35PVk2e/zVyX93JBUSLPSF8xer5zLB3hSL+1J2fP79L01or5vLWKrkNP3h7RtdDsINdjfi2Jxv/Re6P1I/m2kbZHddHzn6Jr1tt7I77oa+VEvf0WseNaGyNlsn1vXLfz1/5+QLZpyd2b/5H9afWlrbfcX5FY6DVzR9Ec4J7YcU+OST5nyWKdVfJZS+8ifsNr7SmJ124kvx/tY9RG3GtTonGuV87XNWpvpAy3apeLi/+YN/miZVloqtvvlzxZb33oumrF8jIXsNeni+4puf48VmnzUkqhXHX/1Oqrd2aN+NFezKStv9dXdL+2x1Oil2OjPRPL1XAZevk5bS56NtLyNTWivlYk77bX1kV8FJkL661n70zq2XRNL0bm1cN6Xra1N7+23qfbe5EyjhcvRWPhnp7LMk8nRuOx19DRCHvjrFGbHRlbz+9tbUZ8nYhMHpFY2Kqr9bXHJ5Tn2Lq/rW5G41/9OamfsXcueu17WPLy7+pH22Stb3J5IzKM5DWtZ+7Jd0aJxg68v3WXPNexla03bs1ut+92NVlHbORN3k5+MMty235b8x+xPR6j4yLad1a2tjbfDQTXX9a/x1eN2murXy/fEY3PNTzbPZJr7hHN7WjfIfB32jS5RmNW7f2fPYzYE2uNtmt+u27j3hPDcFlqXX/P6O2lXtv8PZT2b0mVSlmoVqKc67WP+hI3LstCyxLPnW3elXDyyF7M0IsN15/jZ43n11g2PtX4+bY9d+I+S49I/qZ3JvbirBH4mLX9lFIiyi/3aR2b7+16b46o6ZjnB+05s3PWdSEyt9a7ZFqdetDzfdp8ePtR3vcYsV3aO5hWfT5u7Z3wCDLGle9ram2OxrU5238zIfvSyiL20qOnr1aZ5Qf08kzR84l/l7+2nVt5emP18kUW0TmxzpFI7mysT96G7gfxfns2uoc3Z3K9b2vbyvx+Iu/QavJo11G/8R5GdIFoPA64nXH08vy6fuS9GZpkLkfvi/dpnSk5Z8rL9h3A4/FI9XixgcuhbN5L0dBikZH12xNLSn8wGhveGyfdk2dcP6+dwxd/2Zo7Lw8Y8edHzwFJJIaO78ttXCLbHYnzrPKIXlh/B7Usi5kH8+KTVc5B8eskXmzq/U0WJ7Kulo9xiTHbXO/LGYzU0/S7d6Zpc2J9tuYq4id749rEvMv2PbXz6UTnc3LlsHI5La6u5zPNp2dqeTkiovOvfkXp5W855PyllKg+Ep2fb2VERPXdmfJprRfLUuh8Pq9irtPpRKey9p9f+3yN5JOtuPliB1hhrUSB72EjNpLPP/+bmvP5fL2utb68G3B5/nA4rOapxQzH43E1nsPhcB17SonqdMmRcD9vWWaiYv+tqDYWb5xaGT/j5XkfyQVE+5QyW2X8Wf7eeqRv/rdpvI12j+/xumzXfCkLpaXvs0pe6z1GP6fEnhM2IjJHUZ/fLtfzAq9tC8AYr/OmFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyGgR9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCvBj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+leDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9KDl+3AADcQ0rJ/Syptbpl7VqrJ+v0+or0y8t5e7XW1ed2Lcs5Vjl/Rhur9tnrJ+ds9ufNm6yTUnLXT5tnb8752nljG5FPIzJu/rmUEpLDuheRXcrE54LPs2xLG0vO2exTWx+tT0v+pjsSvmaajPfMjQcfzzRN3TpW/3vW6HC4Hb+vOT5rjmW51MuRsRDp+7dXX9oYqae8rvY8f9bbnyNy9WS2iNpSq11rL46uudb3PXoZscnSRvByT7ZeOe+rtaXtS2u+ed02x9a+tuaI74tPhac7WrnUl4gdluu4LIv6/Khc7XlPBq/dkXuyT461rpFnI/vV04PImST9kHZdSrm23a7neb5+Pp1OREQ0zzOdz2ciInp+fqaPHz8SEdG7d++u18/Pz/Tu3Tv66quviIjow4cP9PRI9LOf/T4RVSrl0ue//lc/paUciYjo6emJ3rx5Q0REn332Gb19+5aenp6IiOjNmzfX66enp+sZNU3T9TrnfJ37nPP1v+gcvYZtbvq3biqZskQZtVfauVVSeakfG2cvJpFlvE+uo0suVGv7fLufSrrKJuntC24zNKw9MhqXSaLnKd9jI/ZoNHazfGiu45bPH8XSW0/WUgrrl9sX2zcqpbyaf+TJZSHXqTdvvM5cFlqWedNX6kx3r90mV2Qv8vVu7Uod4OvC7T1/Zp7nTVvN3tda6emR6P3759Uz//bffUWlPGxkyTnT8XhUY3Nur5tcj3Oh9+/fE7dRP//5z+n8cLHxsi3ui2k+mmdH9vi51r7iY7jUu/Vh+UcRX0crv9cPt9DmT5ZH2tjY2Jezr2cHtfF5uZPI/rL64uXemcB9OUt32mWtfrxoxZjR+bXk1OyDred92Xr9evVHdHPU996Tc/D84Wj+S8OL8602eX98f1lnkremr3FORvIxUrY9a0B020f3yB2xf1FfhZ9dVptevsKz6RF/1mLP/Mg1Gm3Dsvu9fhoRvbTO2teA28HRZ4jidigyT7VWInHWjchm5RKj+T6vnvW9TUTOSHk0Noy2PYrlm2l7V6vH966cK+tcj6yz178sHz1TIs9E+ibyx8L3/h77EvEXvDWLtP2p9avJFd2L23LrjLnFC0S6vnGie3zdx1jsEKm3x3/cyJd1vbPitlG5JCP7xdLH0f3W+7xZf0rU/PSU1vMRkcP6DkR7TouvvO+AvH699jU5pD9h5Wqt9jy7oiFtX3SMkXjO8iX35rSi8Y8VU2jyWnVkO78OvP6k/vZ0zzqzifz9t0cXrDoee2Mm+eze/nrnKt9jTV8jMczoWTJiQ9pzPZuhIfXBGos1Fz2ZZD15plTznO/HkLbe3/JM7d5onBn1O62z1ss/9WRobeVcr2ddT308fbPyZxFZRv0njRH/1CuTY9B0R293nf+2uMz39gxoz43Yl715BamrKV3yQXnK4TN8JJ4eiSN6fuvomOXe4Xa194ynF3vyB/fEPSNjt+e70rIsVBf/bO3p8L0x7x4sXzG6HnvPyh4j9r133b6vardSun1HG43nvHv82vsexfKjvT7TVCil/GIH61WPUk3X/qap/76FJdfhcDD9A0svZL6u539ExinLeB+9vIc2l1J+bp9u5bf2e3pr+S2j5+Nrnz1RPrUd2c9FLn5WX2TVcyUj9qU9Ex37Pe8tzTS790d0t8foeyqRsyfSvuynl/OxZIrIMq6va3/EyyvcsxfuidOicUakLU8uaev3+He8P88/0GSI2HyvbjQn4dkC+16z9eN6GdF3WS7zVu19vtbXxQ+5xYq3sljegMg+67TPVl7PKuvFpqPwvTCSr5D9rcdBpKmJFaNI1j7B7VlNxpuvYMt42W/bcV1jUeW7gHb+2WPc+rzWPEVskqfr9/rwWx25+d5EL/I5Ilr20qrHdSZnYjF/i8EPGz/X2weeLdX+teSS11Yfspzra8Sn1urd8x52r38i/91/bWzSDvby+fKePubWn96Px6jfFdkT2h4tZexvIaXuR2y09nyrp+0RIv17HP6u+UX22DtR2jnE50K2Zdmx299iVDqd5lWdL7860/v35Son//uN9rcb5/P5OoZlWVZ/x7EsCy3HI33v7/7JSpa//Kf/lOqHD0S0fk93miY6Ho+U3iR6+8vfXtnv85+/p/R8ef5wONA0TfS0VPr4sVDObb4z/epXv6KPU7rkAJkeS3+8rRF/d1TaEOtMj+ixPN/k2Xm9pvU6WbZHnuHa/uXfB+acr3+78vj4GNb/cI4vXf6H15Hv4XIieRiJNkYtp6Ot6568rydbJKe9J496T/zrsSfGjf5tWSz+av/K/HzsnB7JYUkuU9o/r8Gvn0+j7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPANBz++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FaCH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8Kzl83QIAcA+1Vqq1Xq85KSX1GVnOP7dr2VZPBq2dXhu11rCMfIxWu69V3pOllGLe0+YypbQqz/n2m09chuj6cSJj4/1bc87rc/m8tj35+PrL8UvZvHEQEU1TeWljOybZttbW6DqP6L6FNUdy/rW+tDFF18RrV5Zr/fTajRDV4z3rJNdIm8tSymq++H5t5bystRPZbxZyH2t2gF/3dJaX87E2+bU9ZPXf0wUpk3emROnZGM/uyWdGxuLJwdvy1suz71Z/3nruOUs1uax2pS5Lms54Z9Vr2LwI2vx7ct2LpcfSj+B7YOTc0j57tt+61ua/Zx9H1k/e7+mMh2bDrLnk9/0zfrpeH49Htc9W5+HhgU6nExERnc9n+uKLL+j5+ZmIiJZlocfHSt///iMRJSK69Pk3//C3aJ4v4d7T0xM9PDwQEdHhcKCHhwd68+bNte/Wz+FwoMPhcO2z7aNpmlZ7KmLLpe15LR2XXVl6HSXqj/fb2M5JRMej7ev6tmpZlUE+c89cEcV9eWv8lh3p+Xtau7XW1b4upWzs37IsRMs+Wx+Rv8kt5X9Nm85lufzrj0f6X3zPRuw4H3cpZTPHPeRcWH4X0doOqvtlIkpp3V7O+fpfBKn7mr8j94U2F7xPTb9bu3vi71orPRwLff75z1flP/rhF3Q663su2n5KiR7OCz08fHm1nykRvX37lk7H2/xzG8/n1tKdCBFfp82lNue1VlpyoVrLqvx8PhEtR1M+rR+ZF/Dq8v6tODkSP99rB9Y5le29yPxaMYDV7h7ZenVk/1KGbZy+aoVyzqpd09qN9G9dW3tfa/dml9bxajS3ZPmNWlw6El/K9ntj4XWl7bfkt3w6aTssefcgZdPuLcuykUfCz5ze3o8QjZkb3E/x2vB8iqhd6cXPe/1RjZyzmmeS/VjjqLWauhMZ72vmM6N9cryYc1mWXevX41PkDkbbtuwV32dee/v08mY7uQ/e0wFt72l99nIRvLwXZ62kDp6VnJHYaLRP7/neGlh5ttfG8g2jebRR+0xEm3Nc0/FoPx6j509kjTwfcK8N8vKKlhxaP1a+0cpxePLXWmmapk18OE0TTVOinNMqX+T5Jrxtb969XFa0vOe3Rdvde85FfcFoebu3J9+lrUfEt+/pXcuTlHKJdWutVGqhWlu7RPM8U5773xVYeUxLTitm1J7XxmSN1avD2/J0nM9bVA9Hc+eW3zpib6zYRbMXUZtm+Zfa2LWzzbL9nt/H78v5vshTNvXneaZ5zuq8aWW93OPovEt5IzoX1b+Gd45F+uNradkeK64ekSvSnmzbGkv0PRqrzMpTROXnz0Z1ZPSs8vwjr7/I+Clvy2ReyGpL08mcKxGtc03a3DRG83yyLc+/4eWjZ16t9SWuaW34fYyc/1Yb0TOhF/+PyNXrY6SNWi0/L6bDzb+QZZE4ZdvOPi79aWWxPShlkLqnna899sQZEb8nEg9E0PbOSDxnzZH8HD1r4mfSmJ5E9Y/j2T6t3THd1X2gT4XX9mi/ozkb7UyS3x16aHt4z7zd886LpI3nElvrPrR3BkbPvl6d1pfW580mrOtr6+G128OSsxezens4GnN/6lzbKKN7qdmyzVkZPHcbmp/k++BKjFZu12v9HJNF9u3B25TfVe3tp81Fz35b7wiPyKm1H/Uno/tQ0mSN5ktk3dc6c/K8bOZtWRYq0+udma+xv719MdJn1G+18jNet3vOhFE/cc9aW/siHlds7UY0b6QRORO93Mv28/ac3nPGvGZME+0/urYje8iK2WRb3NdY5wtuPk5vTtZ7I+Yf3upu5yjqq2/jxNv5K/fxqP5L3ZN/e9I+R77b/VR2so2zF8/tiXMv7dPq+paPieXLtGsi2xbJd/Pu2a8jsSGX8SZqvcnKxLXynhpc76N++khsI+vuiYvKUqiUtZ6MvIOq/U2WV8fL7476M9JuRvaf14b3TPMVR85LS7ZYDi5Wl9sh/p7uRZfWtrCUQs8fF/rwYb5+nufL9TzP17/FWJbl+ncYp9PpWqddl4cHenyebzNiAAAgAElEQVT/fiXHL3/5SyovZfLvLR4fHymlRG/mmaZposrmvL1LM03T5blUaZpmaudCzomOxyMt0/os0r4bst5/085Xue8j+9PKyctHU8qU837f2fueLaobvXylNpaaK+Us3jOkmB2N7H352fobTl4m31fpMWJDI+fQnna851f3Mm3me8oTpWmrrx4jPuueM0KKUGulGmhH+nuReMY6K2919sUb4NMxtlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgPxLw4ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBvJfjxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLeSw9ctAAD3UGs1y617KaXVv6/VJ6eUMvxsSqkrU0rp2gZvSyvz2uD/9pBtav2OwPuNyOCtY3ue12nl1px4OuPdb21H61ljGx3zRZeqrEC8++icejJH19JqX67BaD/WvFp76ddFzuvfKOP7R7vmdTiaTXqtMXMZc86r/qdp2tSfpolqrV07tddG8nYtvbCu5Vzwe5q8UtaIHa21bupoco7sVf7vHrto2dWRtjx55XyPrrFcU22N29g1vS6ldMciZck5X3Vbyr9H7k9Fk7GUsrEXWv+j9jE6Vqtvyx7J/uTaaeerhte+VsfSRasNzz5oe9mj1rqaJ69/y45ZeG3xOt5ZwZ+f55mIiM7nMy3Lcr1u5fM807Is1zamaaLDdNODnC+2//PPjzTPl+vD4UAPDw+ra27v2nnB56iUcq2zLMtVRnnWyHE2pF6+FrJreSY37vVTpY6NtjfqC474ltc9miultJ5nbj8/BaO+tVau2RjvDLX8Cbmvp4ko50S13uodDgeaamw+7vGBorrj7X2vTKPVK6VQKbrM1lnqtSexfEsrHuu1G4l5G4fDgY3hUnY8HmmirR2y/DHZv7Rznkwy/uPX1lnhna+yvLVx2bdl4zuUWqhWO+aI2plDTRu7kHNerWfPbnj7UOtTPqN9tsp4P5d212PNeaI692Mo6fdGYwZrPbVn5LyN7t9Incse5/UrLfNM9cUv2JN7WOumXi7bivhnmvw91vHs1r/T9nrEXlnle/MV673s99+L6UZjPulrbnNGa6w8hteul0fYmz/UyiJtebm3nPNqzFrOQ/YzKv+9cUJKW5vbZPXOTc3eWPo+4rO0OvL88/Jdmkz8M5+HFq9E0OTt7XlLFlluze2or2Ktf9TW3rNfon2+Bj0d6vmsmvyX86qfh4nGE0REtUwv9xM128v3haV/PX/wUzDi4/YYmaPI89EcT6TPyF7a45tYdfec29ZzI22N5vT29mM9Y82lZ6stP6RX7tHLZY2wxyfQ98K6bFkWWpbE/OWbfaiL78vL8jbevfvV81N5X732R86h2712f3yetb6jdsiLsyL5Uq/tyH5Zn+GbmtdymSuL+BvWXHhYezOyL+Xzo3bMqtvzVXpzYeU1PHn3nsG9NnpzF/HnZV/8X8v28txRVC/W8XyhZdl+J3s6nel08vMUKaVNLk6r7+mGpvu9XIc2lt4ce7kx7ZozEtdEZew9Z823JaOXNxvJI3nPem1F2o3mgbz+I21F7vO29/pzVn+ReF2LqVsTXu7r3hhsdM0tP0Jfq9s7Q+12rfr7HlEbaJWPnE97975mhy16OfzWB+8mJd72tm85VnnGyPZ4uZTF03Xr3NXyEJo9UOMUseR7fVc5Bq2dvbH0aGzi674uM//uy1uDe74vjaxf1I5a63T5zn0t4zRNlKfs9hPJv/RyOyPPa3uEaL1PLj7Psnk+Gn969Sw75OlxxG8bjVcu70us535ZFlryVh6vH21uLPk5/DtF/vkeWj+X2Hp/DMTfH/HO1HvPWtZSrJZhm2W5jBl7eZntd1nJfEdjJE751Hyq/vVz8/I/y1KoBr9DiPrzt7PTbufyH/eb+meOxaJ8h8/3jCbvnvNZOzdTytfvxbS9b9kBTRdHbEZK+vdcsq3IO8I9tH60M4zH2Xv9Xe17Mc1X9IjGnLy+9CFG461o/K/16bUdWbOtj6rfs2JbL+b1ZBsds9X2vedRTYXt60vZNE00ldg7ItHx7sU603guqad3Pf+jpyeje6YnwyhRHbPsSq3rmNHLGfSue7Lpct3WMZJvtOLEpJh47d24JnNvreX3r/zzqF57c+SNWzvre7kbK66NxATyb7UuvsP2fcxRf8rL22jxU2M0lt3zd0frsfR9ec228P57Msh3fbx6e57vzZl8lq9DXcb+FoG395q5k7Vs6z2wLAstqZ8X3bZj902kz5sVc0bak/s6att6pHT7rkTqYq2VHh8qHQ6nVVufv800HW71+Jq1a74PSynXv9G41n18pMMPfo+oEtUXG/G9P/ojSs/P1+fk3/HRE9H0W09EbD+l7z7Q4eVvOZqv/bRUOhzer+bveDzQMmU3xh71k3blxqI2pVbS4nNrTZss7X7PrrwG2vtxlbZnzFIWSkvMDkTyMtp3c9Y7jhqvFb9z2xn5O7dIe6Nt1FLFu89E8zJTmmP50277Hb8mVL7c4swmRq1r7R6JLSIxn2f/b5/bGRtrF3w6Pt1fZQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA3GPz4CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FsJfnwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwrQQ/vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhWcvi6BQDgHlJKq2v+uda6+rdXnnPelEXbisqolfO2eXs9WaL9yz61Z6SMtVZV7tH+vP6lLFafFj1ZWltSR7Q68jqiM956lVJ2rY1GzvlFtytdqiRKOVPOiaZpoqlOQ/3w+ddk1+paaxaR32oz+vw0rccX0V9erum215YsK6WobXNyjv2OWUTOWqvanidHVEavXmQuPHhdb89F+9aw2tVsCdF6Xrw+pIzWPPVsebsetZ3S9kXOjNE59uD7nM8ll5mfjyklV+f58xHd1IjuKY43D3vmSMpg2c5WrtmqVsbrWbpQSjHl9M6k9gw/dzT96JVZaGfdPX6I7NeyHQ1Ph/buA23+pL7y9bdk2DMvrb9pmmhZFjocDpv+aq308PCwaav5A1wubu/O80LLMr3s44vM59NCSzmu+iQiOhwOIZ92WZaVzLwutwX32iHZv7dflqVQKc0nulBKua6T5+vtkaOn42vbWYlof/9eXd83bfcSEVVTbs1GyLaj9yJ+eMSWR+yjJldD9nH1lVNrc91XtJ+955fXppRD3vNsGrdXKRVqenYpu/iOvfkesd1RvY3aaEuWyH69+FarEkopfu7LGE2WWXtF0xcZ41n2gl83u9vKNRlulKvdbWOY55nmWT8H+DVffxlz61xiyUU81/611oLT82/lM5Zt0uaVz+VSFprn+aW9S53z+UTTPKlyWfMiZeYy3nN2RH2hPT781U+5rv3N3qeXfS9tSiTH0sZcM1FKebXHDocDTXVrT3o5g0h5JO+wLIt6ztdq66WXl4kQXYtrvSzPZD322eMnW/mOPW3toWc/5bX0p739NwK3A711tO5L/zry3Ei+amR8fI7knpXnRCvX7KiWt+bPy3Z6yGet9bPOLvlZ5rm1diPs8Qk9v713Jmq28jXiG9m/bPc1+9hDr3/Pjkdj32gezaMI/8eT09OD0TWO+ssj9nnExmj3P4XOePtmz/pFY44RP2gvPVmkju7RkcgYpQ2wdGc0Bh2J76z7Vh7FqsfZYzejfqM3nmkVO6zjl5sIl4uc8yZfy+W18lDRfe3ZAcs/arxGzqG3R734UcrFxx/Nv9zLHv/W8slybrk5VpdkLsHu/7V82BGsmLmH1B25xqO2q5dDtOSybJxWp5dL4GOKnD1WuZe/sZ6xchbe9wHW3vdynBc9LRt/Pr9819+Ts/ntMsbxfARe1ouZfl3xpkck/pO5L68d7b5l+16TPf7L3r2j3bPyXpE2rDYt9uTOerra9tGta6YXTDX2jqNdRmzfCJHYINJ27zy6fOexPt9SSld/x1rrns/q2fmIrFq551PsYfR8aDJY+YxSCqVq+7Nb//IC/x5Gy8neq1f6HtnW2ZtnsfxuqcOWf/EaeWDernYdbd+6v3cN5BitNjUbHTmfNDna52VZqH2v36rM80x5vv87+JH4RntWuyZ62UPzssktLstM9bD/3ble3m9PLmZPfe+5WgvJ4loLlXLfOjWisWKvnrZ+pWy/x+Tn7uW7mcv1nhzmqB8XbXebW2/P2e9ESDQdjpwN7dmYzH15oroYaUP7DmE033aPbzx6vo3YsmiO6SKDEl++qGL7vpGzLAstg2G/5S/JOvxfWS6JxKuyHs/zRN5nK6VsfMrR95GbnR+JTXidPfmWiN/3GrkbW89SV2ej/Xv7Nfpsux71Bzy99XI5Wvlav9c+ssw/Wm15e2Fr57dyjr6XdE+u2qsnY8rIebkndo4yal8tXbL81Kh8slzK1etT639v7nHEH7/JqpXFY5Stfvp2ZGtTX/yQcmtby4s0f/N2/vnfO0RjI89GWeWWjdkTf3jPtLHWeouNpc8m/RkrZvBiPp32bmLe+LLenuHta+sxkoNpz2/fjdX3gvU3kJa+llKoLIVkft7LmWi5kIZ1PlrvGnlE68nxau/O6M+s99CeXEsUy/b2/MactzZqmiaaJn2erfkf9UflPfm3Z709ptXrnQNeXOLZB7n3DodKKZ1X7R0PR1qO27asvKH63t/TEy1PT6vyt9/7HqXnZ3UMKSWqj5VOD+3z5d+nt4+Untdz8bCUl9xuutY9HI50PGRXL6O5qFHWPrdsO6m+X2JlUb/3nhxPFGuO2nVJTYZKVCv9zi8K/eiXlX77q4Xengu9mQu9WSpNpdJUiQpVWnKic8704ZDo/THTLx8m+sXjgX76NNGzyIdZuhzNnewZqxcbatd7ea2/rXhN27s3JuCUnDbf2eZ8eUd7FC+20djq6Dbu8n7rAPx6wI+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3xL+qz9/R3/8Fx9WZdM/L/RhKfST7x/oH/79z78myV6P3/uLmf7mn53or/75TI+nQg//fiJa+I9g3OrmSpSXSg9loc9nIvp4u1cr0S8eJ/o3bx/oz37rgX71oP+fwwAAfrPBj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgN54ffnmiP/7Fe/r8fCKi+iptfvG80BfPH+g//8sP9JPPj/T/fPFIP/78+CptAwC+GeDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAby+fnhf7rP39Pv//+THUiOn2ifn7w7kw/eHei//DmQP/7735GP3vCTzYA8B8D2MngN5ZaK5VSqNbtL46llFbX/HPO2WyT15N99a6jbbZn5LPyc3uOl8uxRInIKfvuzWv0mZE25Fi1+r010uaNU0rZ3K+1mv1E587SOe/5yFxc6rT/tnVG11a2L+WIrIHXVo8R/fX69/Yh32O9fSbbt+ZClvF6TaciaPaH9zPS1gi83b062Whj4G1+CttpyWXZVK/dnu3q6Rj/7Mki62vyRNeCaK0vXK81PY3u10i/Wjtau1G7H+mfz5e8z+eMz4l31nt64pW18nmeh9bKQ/og2lxO02TaAmstPH+G49kVbw40PD/E0kEuZ1SWyL626kTPGakv1nxa54L0QbVzX15LHdd0nstyOBxoWZbrdSPnfPWDiYiWZaGH4/SiR4X4FLS2z+fzVcZ5ninnTNM0Xeu0tvgaT9Oknnc5Z1qWZfWMNWcavfqejk+lUs5bHbPsZW/vSps6akO39Stxn62nm9Ezmdvb3pmrjVv6ptExj8rM61ixjcSzZSO2d4/P3quj2WUpb8QHishg2Qu93pi/Mxo/jpyZHD5Hls89ai/kWC/2qlISNpjbsZ7co75js8PeGcD7l3JYZ7q2F735KaVc9U/6YKWU4L7uz3/EB9bqafcs38aL0WyfsFKtaVPHGoclU7uWNtHydUfalWURO8D79nNHoq2XOfD8rhjbtRj1myPlvfwMkfQZb3rXZOrF8vLznnUdHeelvW1fe86kcft46af5c716vbyPrG8R6c+TgxOxW1p/I/vfsvkt/orkNax9xe3ynpgrKnP7LO3onvxwVP/b2ec9a+U9X1uu0ec9e9Nbi3vl6K3Lnrh1tH/tutentpae/ZR74p58yb2MxnJ72pWf5Txp577ld2hE5s/Lv71WHpC31TuTIvkbrc/ms46sVbR+zycYYa9OR3Thnn56Y9wbP/dyDZpejOZgZb1R36Qx1YVSajbo8swlJ7TVE5kr8uSRcozMpfTnLRshZXsttnrFyms/X6l95oycHZpsI/511Ffs62pbl5uucH3oxaMRWe8hapMiuQsZ22p99PJ+e+cl0r71rCarpy+WvRiNE2utGz/Xst28nOeF2vX5fKbn52f6+PEjERE9Pz/Thw8fiIjo/fv39O7dOyIi+vjxIz0/P9NnbzL9wY9+n5po0zTRP/7HX9KHD5Xevn1Lj4+P9PT0RERET09P9ObNGyK6fCfQvheYpukaH/Hvmdp1z15z9tghL+aJfLdilXNbKb8/2xOjR+6N+iKyXc+/4+OJrMVeGxPd5yPxvzfGPf1ZZXF/cJ07G12/216O5b42vXfsZ69sj72P1V8/e8+7JZ4ue/aVr4WmQ549j+ydKH795LY5EjPzZ6JxWW+OIuy1dffCx2nN4Yh9GIkZNXpxw4jPEtX33phG4s3evuBnH/cT8rTvu1NrLK+dhzqmZZO3PR4fqN6RO5bcG0M3vJh11NbnPInySs3eeD6Mpae/jndnWj8lVSql+cL16tvm5SL3PC/EXWXLt5Tlve8L+Flj+ay98TCpzDo9/0x+Xhcl8z2u10TLW1ho7zbLNu6VN5oDiejikheqtdDte9yWl9C/33v9ub7pVZvXnLfvFR0OByqHcTs1TfvzTr3Yi7e75MJyGUSaH0sUe7dY+ol78pByDJ86x8q/cxvpr1fPiyUun1vZJXboxQvRHMlo/jTiZ+7dO1YbUV+56ZN2vqTiy9bTg8j6fQr7PKZfbQyX62rYtkj7ET9kX8xk+wHa+u+Rfc+ejPhE2rgi82Tto2jMdqsfb8NiXb1e94bWzsU2R9vn+tcvt97R7uVT9qx5L056zZg1pW0uxELzb3RfUJO/0Nrf3O71aHxcazXz7hFGziFbz7bIczZNaeMvjcbaFqP5qntzIFY8INebn/3c14n+jYNGb6+MnPs3mYnJSS9y2nHn6Dk8kpPpvbNFdN/fvln7rJfX477xJb7dtnOez3Q+b+WUNpK3Jd8BqzkTLct6jpeFJsW2XvUtEV2aucWe0zRRmtax8SFt/d/j8UjlkFXbIufAmpsekTx2Uv5utcfIe3OWnNZ7pBG8cf3g3Zn+3o+/ouNSLido3X5vsH7W/8zuUEpc727lv/thpn/wb76kf/HFI/2T77+hkvS/UxrJs0r4/ozOV3T/v+ZZXrP+jnPLf+7JE7v9BXNve9re05Z2tnr+lyXKp85bAR/8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+4/iDXz3Tn/zkHeVawz9/9lrkWulv//wjff/jTP/b77+l58N9/wctX3yc6UdfndR7tVb6p9//7K72AQA2+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/Ebxwy9P1x9e+Tr53Q8z/ff/9kv6R3/1O/Q87f8Blu89L/THf/HBuIsfXwHgU4IfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBvDL/1vNB/85OvQj+8UinRTz4/0s8OB/r504G+fJzolBOdc6I5J8qVaCqV3iyFPjsX+t7zQt//MNMPPsw0ldgPu3xxWui//fFX9L/86DtUU7p3eACAXzP48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8RpBqpb/777+iQ+eHUeZDon/+1x/oX/zBA9GfPlE6XX4UJYkfR1kS0ZITnQ6ZfvlI9O/fXsoPleiv/uqZ/tbPP9IXz3NXrt/9MNMf/+wj/d+/82bfwAAAXxv48RXwG0tK6fpf+1yNXybj5VYdrf1Indae1W4pZdVWzlmVN+esytnqa31IGfn9dq/WGhqLhD9jzR+/LqWYcvI2LVn4fFh9R9bYWw9vHBG94HJ547A+yz4ifV7qXP67VK9US6GSEpVSNvrlyeb3sf3Mdchjj355ezK6Ry0ZRnW/1rrS34hcEZ2R+ppe1syTPYr3TLMZWl8WfN9odoSj6Vyk/YheaXMm6/J1lXJY9tKyHU0ua/xWW/x6dC6kjL35lkibYs2nZa882y7l0a57tq83Bm++IzpbSrnOYc92RPe/rC/9C15vZF9p3Ps8Z1mWUD1vHiL6w4nqGUeOuTcHVh8jZ5E35t4el33KdlvdaZrU50sp6t7hZ027bmt4Pp/p48ePRET07t07ev/+PRERvX//nn76058SEdGPf/zjax2Nzz7L9N/9/R+uyv7Pf/Lv6P377Xw/PT3R7/3e79H3vvc9IiL6zne+Q2/fXrJBb968oYeHByIiOh6PdDhcwsXD4bCyX3IO5P4ZIeK/t7m/zK/fXsQecZs26ndqY7x87ts/rSy63zQfVzu3atWf7Z2pr2XnLdm5/FobWrkVG9hzRnTxm5vMum+u7cveGBrzPIf8kEbb53v8Mw1pY1pZKWkVZ1p7ctQ+euWyDrcJvNyz45FY2tOnRkpJ7V+TRevLi2WtcUm9bmvNy5dlWa295/flnDdzdVnbW30uJ68fQ4+XNrUMf3wEbS9oZVb7vGw5FvryYX3+vXnzGU2HvKn7Gnj6Hu2rNyarPz/OErYs582cevkS3hfXL29/7Yl7IrG91K91vqy+lJFZR8oWKe/JNFJnfS8RP3eickTP9NaWZyOjcH3p6eje9Y7U4Z+teMZqt8nUG4uFpkeWbbLgsvFn+bVcF+98em0b1uiddb1xa+eEZjO0Z3j7vWf4cz2ZrLZ0f9jfl3tiFt6u9AG0+62fyP7V7Lkmv+aDRsqtcUgsnR7B86k0eWQ/ke8XIrkrDc0njupBpN3RuM6SyWo/4qtH7LJHJF8S7SOy3rzeiA+jjTm6L2S7vXn19rHnn/Tia6LtebY35u7pp6VzkbWM+FxyrBH5tRjfW9+G5b+Wsl3LUgrR0l/LnryRdW22S/ZhxcNRXzayL259ViK6+dEyRrb28h67wcfpyTwaW+3xoYm4Xlzm4Bavl1WdVMdiCE937o0penhn+h79GZU/6r8Rjee5LB8lmruSe8ryWazxW76HpwdtL/Fz4/Hxkd6+favmgrS+Hx8q/eEfrnMbf/Inn9HptP0uSvrVmp/N60XPml7dkbhzr68Y6fceX6PWupFN28sRv0q7Z52jlj8j1/VeX03KI/vYQ3Qto7qzx7/eXtu5ql4f8t5UiFLKqzzT4XCgctDzvd7nHtb52POxo/2s6+3z47QxRmy+ZyN7uSy596yxR/3OEVmajyBFtOTmZd73MD05vXv35LGi9ySR2Ga0/REd3nM/ErdYsaCH5bf04karb6+dnkytDa5rtRKl9CJn8Z8f9QlH/CsL3tblmZYbT6Lcl9Fq15JrtN6npH1/sS67fVezZ79ZaHMp42fep0Tm2DR76PXNfU1vjrUcP/dhpT8bXa+Nr5vp5TzXfeVx+3qf3qzn83KxLAstQTc5pbSZuz1jsWS797yxzmjLPte2N65juP1nybjHH5Kx6OW5Zotajqhc90n0LO/ZwdaXHH/PNyGKv9dHRFRyYTFqa+f2roCF9v2UFUe2OqMxHX8m8l1Tz3Zocx397m809yhluccfio6p6WJU3ihezDny3EidNn+X/4ikHR55B2SPXLJNLycZjYG89o07qzrWuHv2wKojcxVenKbnGW7+mD+Ofh7M496Y2WPU55Vs/dRYGzW3++s1eq0cTsyfXecG175TJaJM0zTRNE0X3bjK7O9Fz+5Fvovdy572/Lzazbcgurx3kSc99/c6MrZ7l76t80zmD/bKIon64FZ/Ws6cy7d5j38pVK4/THD5d55nynM8p6zhnQ+SiF265yzV/c613V2Wheqy728t1+3an0fbujze8gaX8mUptARygkT9ObPsU/Nh9uZ6Rp7TcvXch4o+f3tOe5e30jzfdLu1vSwLzfPlhzLa32K28kazx3lZ6Hg6r+Pk04mW85mILrnm9h1S8xNqvuiZ5ZP2fEoZa0R9QM92DOu3Gs+lzbXum1yI+F2yDo85vL/t1PSH85/98kTffX+itqJyLLUS/cVvTfS//pdP9OV3Ln8j8zlVKktZydHjRET/+jtH+tdvD/Sf/vKZ/oufvqdDZx/87b/8QP/v2yO9P+bN349ztPEvy0L8+++X0bFxfXr/bM+zJW1tbEr73v0czb1579jz5+OR+372zOklt6L4uHfmtcA4r/fNOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAnIpdKf/yLZ7fOX76Z6H/8e5/Rr976/2efYVKif/nFE/3PP3pLHyf/JxqmWumPf27/HzEDAL6Z4MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8I3nD96d6bO5mPffHzL96Y8+p+WQXr3vnz0d6E//yuc0J7/tPyFwvhsAACAASURBVPjyRFOpr94/AODTgR9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDeeP/jy7N7/P77/hp4Pn+5nFH72dKD/63ee3DrHUumH73w5AQDfLA5ftwAA3MM0Tea9Wre/BpZS2pTzz/y6lO0vnslnE/tVspTS6nOrm8Qvl1n9a/JacvT6kHJZfXvtWfPCy6z2+FzIeZGyav3za1lmyeKVWX228pz3OVDReeFj6a3Bpt15oVIKFfbrdu1Kzm0rk/TGL/uU5T0diozJw9OJaPtWHUuneb8ppasO9NrRnpf1vD1r0Rtjb444vH9rH1ltazo12j/HslFem5G+enZTthNdEz7+iA2J1vPk9OxPxA5G7f2efcrnone+RdbE64PodqbLNuT67dljexgZS29ffWoZon30zvZRGbT2NHvL62g2agRtrDnnITvdk1Orr5X3xsL3q7yfc1bPoaenJ/rud79LRETLstCPfvQjIiL6O3/n79A8z9fyUsq1zVIKPT0R/Y2/cV7ZsX/wP/wRlfpARJf91fZYSmn1eZqma//tXivXZOSyt3uROfOI6HAbm1eVtyPta8R2cL2I6v7ts2937z1fuU1ety19Qb9dPkZvj8jrqHxaWcQmer4ah+932W5JhW7zsd1zst1a66o84gdyPdLabNcyzmifD4dbCiYSh0q/ZJqIUmr91msfMi629DgSO3jj8Z6JEI2HrvUzn4O1PHL+entcnhWaD8LbI9r61TKu0+rJWFgdl6LDjw+VDocPq/LvvP0Onc62rxg5h0op13ODczqd6PySErTWl9t+q9wbp5Sld93a4rLy846XJWO5R2PfEbm1tjyb6vnjljya3x2NeaQ8Vt3rnsr681o8pH3W+rfaspBjv/kYiSwbF43TIn1qn2P9bPdDJK6T7UXOPVnOdSQ6/ojfK8ernUW953prI8umaRrK3UXyG70+JffkuKJx6bIsoXoNz5/1+rf2qFau2VZLLyNyWrKNxFuWj6WV8brNPrQyq57sc08Mba3HnvjHyt1Juz+a/5AyRv3w1n9UD0ZjG6mLre7o/tD60cZ4j786wp7YKZI7jM6/d4ZZsd7o3FhnUK9/T95eGz1fsbfmrzHHfC/x7w2iPuXo901y32tnnrQHXswW6WcP9+Q1evGAVbY6H+aFSlnbjfP5RMsyXb8/a+KUUojYlEXWf0/O2bO7vC9LdzTfv5ersanXuHlZFirnsXNwJPa3/A4rVoogYysvTpLPEd3yhS2ckD5Vb196tmt0LPz5aHnvXkP6Cvfu6xE55H7dMyfRGEjrt3dv1H/heUFr/0u91mLYdt3uaf7NdNjq8EUvUzfHEtmvrT2rvkQ7X6w9Yr2LE7ERlg8o2xmVube/7s1djpTze57tKqUMydWzO3v9Qdm2FVd6Z4I2Tu1ae1aTU7Zb6+08b3WisYqUZVkWqrUQf2SeZ5rT2PlsjcOSq+d3985be063OS1LPmueome91scIoz659Psa8vtIX+evvV+fXcuy1u+RGJg/Z92zYpvR+I5/vpTFc8Uee87gvW2NtN3Lqb5WnOOt32v5VqO+L//31sba7t0rz6jtlPLxz9sYlEjmybf6G+uv1z8vk8/vyceMyLDVQ/5sTPetvqO5Rn5u55x3xa7lodCHw+UPe6apUs4LHQ4HOrzI9vj4QLfvn2/0vgsczRNE/BubRHz+edwv18levybD2r6Osm7zdu7sef/4tfOYo+1F95R7hk/l5Sxff3eeSqF5nim/vOfUiM6Tt6daLkCT8fKedRFyEi3LxQ+MfLey9vHLKs5LKdG8zDTP2/emLPt+7zpH50yrp413JC8vY1brvQqtryaTNze8n5E4w+tf2i7Z9zqvsbbrkfyYVua9d7TnTIzEt/f4hlZ/PbmivJYPY7UZ+dueRjT+sm0B18U0PO97fJiRWO3SzHpuSvGfH8lR7MlxavUi6yo/R9ZUfrba09pacqFa+XuGt3eRRmJ6WZXHnFr52ofu5ca23x23cj5GT5/k2XDP91deGderkT1i5TVu+YD7bSrH12lfr3v7OBJzcpp/79Xz9F3qvjb/3t9ZpilRzq2NRLW+vEc+xXIxPVl71NrPz9/bvz5/erzr5QAjfWu5xf3xL13lbLdzTrvijR5cdzR75OmvrPPasU3kjGg28OGh0jQtqzpPj8fr50ue+Hbd5J/nedVWK7/6lQ9HytNElIhSWxP2HmPPhsu8iUTGllpc+RrzOuybVaLtI9s8da31Oi9EY3nvVkdbV+u9r56PnEul338uYg5vdX/1ONG/+95nL3mR8tLWy7N5onzsy+zR+v1X3/+c/taXM709y7jr1v4PT5V+YvwtgdXv1oZJXzWWh/7UbOTYxF2tbNxv4ETG4+Xto/m1yFkl63J670Oun//1rRMY49P9ZBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAK/A7zwtNzg95/Nl3Hn4tctSU6F9+8ejW+d0Ps3sfAPDNAj++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG803z0t7v2/eHP8NUlC9Gff8X985e25EDk/FAMA+GZx+LoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDefz88L/fDLE/3280JfPM/0OFc6lkpTrTQnolPO9NVDpl89TPTnnx3oJ28OdJryK/Vd3PsfDulV+onw4ZjpF48H+uJ5Vu9PpdKbudCH4/RrkwkAsB/8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABM/spXJ/qjv/xAv/NB/7ERIqJjrXQsC30+L/R778/0h78gmlOiP3t7pH/222/olw/3/QjLQ6nu/V/fT69c+NnTZP74ChHRw1Lpw3Fb/jQX+sFXp0359525JSL66798Nu/9f999vLbxg3dnt51/9jtPVNKnma0vfrXQX/vxmd78h4Xo3Pq4rdsvHyb6s+88fJK+AbgH/PgK+I2m1qpeW3WIiNLLQdDKk3EwyHqybq1103YpJdQm/9zKrGciY/T68eSX1/xfXleTzZI3er/HyPN7+9LWuNGb6xF9662xx6FUyjlTzk23iHJKVFlTKSVVnl5/kXFH95ilWxE5tH3B28k5q7J466fJGCnT+ucy9Nq/rFXelMs1isgcsQlEN7vj1eP9c530+uFtyDXW5LDKNKJ7ITpnWnuWLlv7xWu3p9M9Xco5D59RWj+9/jwZ97TTW2PrfIk+zymlmPtMlu/RH2ufeHh2zaurydE7l0fskWxbu2/pkadf0X1h1Y/Y5JQSTVP/V1qjflQES2dHx9t7Tltjbm9rrVc9zDmbOrksC83zJUHy/PxM5/MlyXE6na7XHz58oFLKtV6tlR4fKr1793DxE172zM9+/p6W5RLuPTw80MPDJSHx+PhI0zTR8XjJ2pRSrtdcNmu9NB9au36NM0Heu4xN9xtkn8uy3HX2Rs4LvgdrvfhpnvxeG7d29ukm79Pz3WutXb/Gks275rK3vrieR+1d717UH7ydwbbdsdryZJ2mKWTHo/6ZFifI9VnPbWV6lq8yLcE13WNHI/vC22t743QiopILratVdZ+klFS95uvg+QLRs0Keu61Nz+/Wntf34LbfZVloWXR/a5qm7pnazp5DTSvdTSldzoLH4/WzpRtc1j3+lCa7bJez6WNKlFKmy9rf2or6adoee01/gsvrySHtlaUjvJ02zksd3na6trHnrF3PyXjOgLdh6X7kWa3e5bqu9j33oSSyfDQXYdHLcaz360ssU8fncu8aarlHb574frPyL15/Ebms9ff8Kekra2j7ZSTXJX1Day4icZIcS85Z9fWl/txjXyP+hIc3r1J/RmPe18pLtHmI5D80m7ssy6q+jAHuyavI+tozvVxIZP3v7TOaj7Hu9+I7qw+vTU9fUkpdnW9jL7Rd048fnymfLi8a8H3ojcG7jvi23ti4bdp77sh+vXiuJ2sjGo/02veIniEjMf+oLNr6RX3WXi7Pap8/2zub9tprzUZM0+T6J5ouRObCG0MktvPO+tE4S2LrMVHzx5al0PlcqZT1eXA6nWk66znlno5p8+/pdWSdI/GvtCPWtZzLUoqak8g1b8qItt9VeG1rY4jky6w29uDNy7ov9m9VbOLiP9/zdTQZIrHoHkb8Mi3OjLQh2+HPeLEFkb1HorawJ+e9MXvUh/ZsFPc1+TXP28/zTM/Pz9fP79+/JyKijx8/rso/fvxIn73J9J/8td9d7cP/6R/+lN5/uOTl37x5Q59//jkR0eb68fHyQuTxeFzl8Ns69PyhqO3rnRkylvL8Fi8GleWazxs5V7S2IrJ5eOf/6Fkny0b3FFE/z9+uR8fr5XIiceJoHmPkzGh5oVKImig9v0yT6xbzavpVqBT/XPHGHfWhIzbZyj/pZ/M6X3a5tx6LJpemL691RkXGKHU/nBNm5ZH4uZRCpdzmKqWL3d7mVW/0Y+BEKdFm3oni524kzvb3MH8+Hnfu8U97dUZ0Z8QH7LXby79b516PmH855lt5bchxrvtsZ/XlUzvbLX80GptYeydik+T3u1q8oZVp9tXzq7XPPe7NvXhtxHzTMR3rjX9EvvY9X/T9xVWb1+/aiFK62Z3W1uU7x34s7MWJvCwyl722edlF5wrd5n/rH/z/7L37ryTJld/3jch63Fff2z1v7rCH5JIUd7nS2loBkiwbEtYrw5AN/+A/0tDPFiwYhiAbhqDdhfel1a60kpbkDGeGQ85Ms2f6dR9VlZH+oW5URUbGiTiRWbenZ/n9AGRXZcbjZMSJE+ecrBuTilnl8dblqvIx37Bezv+p8a1S9mJM7lETs5b8mdCOSXaxbVs416EzOltZereXknPALJzzobzDdgBj7OB3vaX+jDFYzB2a5rJ3vbHpNeNJ+Xm69Z++rn0fHfYRrm+pjNReKG9pPYXXU79dOIT/IOWi4nWR+o05oMsTdLf5xng/i/urpeQPpuIdSV+kfGINtT6NH7v93t9f+0aRis/JWIp5gen5RY0OizIG+6cnZUekvJJUJiVDzXXtfYlcHkJL7fNI++RY3zC1J43XFV/PDPRBJ0/fP8nV3bYf9R7oTGqthXZpuyaH/WjWUolcvJ/y/w+F6JsH8xKWTf19zuFkGcqWs905e6XR81zMpo1ZUv2MyxtsdTNl46S/4crJIjHmN01jSMlSyn9P7fcQ6zCst/dxp0hVnhetHY7bSelvyh7X/Na0tH/m2vc6GZZZb9ZYr7ffN5vN7v1O27a7v8WQrnvbh6Ml7j1/Dpj92Fx++inmwbse/3cZ/m8yuiVgVoveelqtHJp1s6vj39X217C3+dPzztv26vfY3X7UDeet69JZ1tN1i3/48+d483ItlkHPpvdLNF2H7zy9wbeerfAf7i/w568dyYFRgabrPwfQb+po1QLL/hEKXVCndr2VcsJfLuL4KFpHrUuukbPrNf7Bz59n+9520R+nf/TZVdBP/96Hr50AANrG4rcfXydl8o/zy+MZPjmpO2pC2hP7cTHwGz9Z4QcfrDD/fAPT/3kHAOAP3z5V9aeN+bT1c2uppu1SWc39u/K5yDR4+AohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJ6vHm5xj/54DkW7fTDImzX4W8/vsb9mxb/5p1TOFt/AEtbqPLW1Qa/uLccKWE9P744wienC/H+5Vz3H1w9JE+OZvjyqMH968TJJ7c8fLaqPnxFg3EdvvXJRry/MQYfnsnjRchXyctfrYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHllefvRBr/702cHOXgl5Jsv1vhvPrscVfemyZ++8p2nK9jusPLm2DQGz5aN+L92xAEzh+D98/wBNN98voK5g3H6tc9bHK2ceP+jewtsCnNIyFcFD18hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIAOC1L1v83h9eonF3c5DJt5+t8N0nN9X1ns6b7P3jjcPfHXmwy98kPjhfosuccbJsO7x1tTl4v9/5ZJ29/+PzxcH7JORQzL5qAQiZgnPpk6+MMcnPUhmPtdvziLrgpC6pflxOwhijKheW0ZQv1fffa/uOr8XPnxuPnDxj0faX619TRjNeWl0YI7Ov4+fOt+ecu/3u++nPja8X/hv3n5vfmjLxtbCf1PWu67JrMTVOqT7Dda7Rq9rxj59DMxa5Z0npUtu2Klm8DUr16ZHsXowko++jNE6l/mOdjduM51+ST+onpz/adarZCySdyvWRk7l0XTvuU+zm2PqS/odI85Ca71Cfa9alxj6l+s8RypIita5Sc1EzRqmxkuyzdL2k6y9Ln6T+4360cqUoyZga+9KeMbXPMaT2cH/dy+acg3MOm802ObFer7FarQAAq9UKV1dXAIAXL17g6dOnAIAnT57g0aNHu+sxJycWv/uP3+1d++M//hma5hQAcP/+fZyebj9fXFzg5OQEJycnAIDFYrGTcz6fF+279NypzylC3zjlJ+fs/fZ72Ne4PUE796Xn3o2VHdpA7TrI2c7i+NvQ5uzrW2ur/aSp9qamvUP5cDHW2qCNel83XK+avafG3qQYu08C4ZwbWGuyc96rqZzLeCxqY7uUn1fak2R9H9oI7XhZa1XzpM0ZxLKn8gdxmVz/8R6Rrpu2CW3bJnUotnvWWsw6E8WOQ99IWiNTci5aHdfZZDOwc6m+NDZOMyc52XK+/Vg/KMe2vXQ/h+1r+Kya9lO6kFvvkt+41dfu9povm9/XcvM9NrdTYrhWTXat5PrW2O7Sc/fHT455auMxrd3XxPUaWUJdGBtb+HrSODRNMygb/qvZC0IZYxuX2hNS3+M2vcylsQx1LOc/asm1V7PXT8XLccjYrOZdQIqUT1Kzjx1qbLT6n1s7d+V3T0U7R24+g7UNwj1qPp9X/9doJJtWs+6l9sJrJR9hjIzxtVi2Q83lIWMJbR+lMZOul/wLyQ6X2inJkqs/Zq2N8Y9z9snvBeGeIL1Xib/HvnJNPrGkF6k4pR+75wllmJt2t5/7y8vlEm4JNE34A6wOi8UcFnI8Mqb/8Fo4FzUxdvw99EHuei+U/IXa/PGhZZb2sZSMqT67zgXzAQAdOnQIY6g47pCozX1IxLlPTX9axqxL7frXkop94thG6l9aM9o1KsWc4ZiHfn+MJmcTlpnNZlk74O/FtjP+vFx0+N73rnpt/e7v/hZuVmZX36/R+HOIf9ccloljwaZpVPruSdmGnP74a162XCyiiZNLuS2NXLFNTenFVJ8pJ1POJkp6mZIxVbdmjUprM5T1EOT80dwclXw45xxc6+Ccn899Geec6JdL4z/sM58/kWxlzTsAKT+p9XMl+5jzNaXx19jaEG1eJxxzzdzPZrNk3RhNXqOUb+nr3N5mtm1/DtfrNex66Dv3nyG06/trzunkL9nR+Lo2/nDOAdNeS4mUdEkTc40hpxfa+lpZwmeZEg/k1m5OnlR85qxD1/nre7+gQZPVq5Kssa+iqZ9qI74WPsv2ev/ZNX7moeMezZ46pt0Uqf0sNdaHQNOexrfd3WuHsX7o07Vtizb4r1VLue4Qja2T5K2dr+0YA0Bfxwzye1LtfjhGztBnicvGOlrjp8fylPSs1pbm2krZjpzf0cwbzGbX6JoGK2MBdNu4BM0ul6vdR7T58Na0tzkAOfaP20q9X875WbXU5J7G6GZtOU9p35PyMrX6Ks1rHJNpx1z6LuWMxqyP7XXf7vZ/TdNk8woSko6nPpf8fsn2TI1va+2f/9cYAzQGxvTXT9M0sK7u/eSYPKp2LdX6SiHSHtq2oa/mr7UwGZ88Zy8lecYytHVd4poe7d7g+65tp7RetX3k7EOVnDbdVs349cvKe1C/vEHo04Tl9+9Ogn321i51XZeUObW/heRjZ91caH+LoM2h3IXfLu0Ph+y3lMcLP4/JK3nCXLuUh0vpbsqOZ+WN9CksqtGTGhvsycUZNXZ8TDlrLVwmqVLzm5sx81o7pvtr+3u1+bNc7lSSJRdblXycnN5r3iOk9DiVy0npum36v+Hqug7LxWKXa57P57tcYRgL+7/l8J8HNnOxAM7vbWPP2+G4/+67sLd/7xG/j2maBt2yw83SAcFvXReLGUzXX785uxU/b+wrxs+f+5xDmn9r5Pk6unb47//wBWYbX3eoW88WDT49meFyZnHdWMxdh6PW4WLV4u3LjXhoSyj27zy+wcfnS9xEj5Lb1z5f+HEKf3salu/w/S+ucL3s8AeuAcy+HHZ5By+LnG+o9cslPz83r5qmh8vat7X/HMsAANeNwScnc7z7YoV+TL1v51svNvj8bFm0V6kxiGPQzgC2Bd77xXrXnQn+HwCezy0+P5mrxzQmjOE0+apYRhesZS9X0zSAYLum/u0I+frBw1cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCCi+fpQyecMfjxxQJ/9eAIzxfyYYaztsN3n97gv3p0JR7CAgDL1uE7T1f4TxcLtWzPFg2ezRvcW+cPxvjbn1/j4t8a/MkPl3j0+q/mkQrvXyxuD19J8/DZCn/81snB+nv3sw0Wa3m+3z9fQnXiDCFfEb+aloIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFFPj+e4w++cYrnM1ssu2kM/vODI3xyOsfvffQMxxv5oJTvVh6+AgB/fb7A7/zyuljunV9u8D//mw2+uGjw/rtzPLpp8My8GscrfHYyxz//weuD6995coN/+IvnYr1//oPXAABGcYjJz04XWFmLhXAAzlHr8NbVBp8eH2ZMvvOztXivM9vDYAh5lXk1rAMhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJeKf7qwTH+/M1jdMYAXfogjxTPFg3+7TdO8XsfP4MRqj242eB443ClONTF89cXC/zwyQ2OW50sD562ePC0xeLHazy3DX5+OscvTub4/HSOVaPv9+uGswY/PV/g+1/eiGUePlsd5PCVxnV4+OlGvP/Z8Qwv5s3kfgi5S3j4CvlaY4xRncwl0UUbvP8eXjfG7L7HfYXfu67bfQ/rS59rZYv7GyOL1MeUMdSgaV8zF5p2a8Y4xNqyc9R1XbL9+Jpz+xP44jkLx1wal/Cetfb2ewdffHuvX1fS3ZzOhHVDfYl1RxrTkv6U5kczV/EzaNZWrV6Hz1yqE45JSf6wraZpBnKmCHXnrsj1oVkHMeEchc9nrd19D/uMxyA35tJ4xfo6Rq9K18OxkHQw7nsqGntdU8eTswPasUuNWWnsw7WokXNM/7n7pT5jfZV4GesyRBrHVDmNzYrlj3U4hWbviMtPXQt+DmrmLezf0zTNqH0gZ6fGItmOmKZpdvvEYrHYlbXW7sbl5OQEDx48AABcX1/j+vq6tyedHFtcXNyDMWZX54c/vABwtKu/XC4BALPZDEdHR5jP57s+ff+hLE3T9PyRmLH2VvI74nZ1ujc9HtCSW4vOuaQ/aFzedpX6Kfnz2+teD/Zlx+hwzRhq/OFce7U2Ruozvp6ah5QdlNrU2l+P5CuE33MxW852yn0PbZVz22fU+lR+PCQfLqdDufWmiV9zcWpo03K6v11bSREGfQL9edLqgtSuJFcc54X3vU3N9emcQ9OYXeznmS8WwNomn0uSO/WM8droOqBtW7gm7weUYlaJ3NpIyZ7ztUI7F16LbaXGX8vFt7V2LfW5xr7XUIoRDrcHmt6cT2l3jG0P99PwkZ1zaFt5T5TihFr/QBvnxetU29/Y/Fsufkt9L/U/hkP6WeH6lfKY4b24/Ji4UrI31trd9zB/EaLdW3M2TbKJuc+SvZKev21bUc4UpTk91JwfIs4u5YVqmLrfa9up2TtrxqhWntp1X7sGDkEpJ5XyA3wMeGgZaubtrsblEHPm0chYEwNo24zbLtmxVN6ktKdq8oFTY9ZcvbAPTY5N267Gv9T4/9o9QRPzlfI3cXltH6V7mvK+S2MMmsbC2lAGg9lsBtPWxzLSvE6Z61yd1BrQxkq7Mq2Di/6rVG3bwrr0HhPvPVNsWq6tko2Pr0uxSMkeNJ2J/K0O1lg4yHpZo38lfdH4Dbmx0PgVpT5ycgFDf1SSJ9TBnI8yNqbJjb3WRud8aM1+FT9v+E5CWnuSXudyQb6+v9bMhmM6XyzQJfTUmFindTGE9NyaHI10L9SlXL7Nl/X/SrZL0ivNfheXz/lo4b+ltlLrODWvuX1gTLyttXM1SDlIQI7FS2jKavYqyb8Y6HFjoj09vxdL4+j1sJ8T3f7bti02FUM+5rcTpbzE2Da7buj3he7OIePnqWjf+Y4l1W6sO/4dZzzes9ls4CfFNn372ywDYP8bLQi+BTBcB7W+ffIdY+tu10u6z5xdGuNTHco/qqXkm0r7U833+PpU+XP9lfbLQfnGIKVbKb9J8km0SPZaE+flxtQXC32AsbnHMbkMT+3zafsI2fYhv68q5bH99bH9x/e0ucP9vf6eGN8P6/vcQs7HzO3pqc8huRhHGrt+U/I7GUlHSvmmVBua+QrzE4fUt7j+y9zPa9diogV422YKuVyNnZfrjR8TaVxT8libLjdmvj2lPNNevv1vxg6lA/Ea0eT1NH1rxtJfT+3J0v5ashOSPdHFjLEdzce0uWfMxSZapsaJNfFvqf9wjoax1b5Mae/X5M7i/nPlxuQPSngZpf0ntjWSHkg6W/qN0pS17eflkFuExk+bmiuv7buEPHeaPWgb92nbjZF/L5qWx/tkYZWhP9khpXfGGHQW8r1Czjclj9a+a22ZNt+hsVew6RxRTmbt/prC2tBekYmkCwAAIABJREFU9cuH8yflRKVxyuXrcnKm8mil+mGdkg4ELQT1+79Xz9XX6kTNPqj3Afufa2QJf+8V1qvN1dWUT+2VJf9rO4fDe1P+lqXGn6sd27jtkt7H7eZ+25vaL2N/0u+F8XVrLWYzs2t3Nhv+6XzRNz5a4vr4uHfp9P4FzM1q1088bm7Rwc37B1osl0ewUdvLxqFp+jLN53O42dD/j32qu44PU7+N3F4LcwvAf3njGP/+tbMgAtyj0Z9fni3x4fka337qx8u3sl8D79w4vD9Lv+dKjcWmMfiTN0/w3/3iRVDHj+m+m8EYGoN7mw73nqzwg6crdDD4ctngs+MZPj+e4dHxDFeZA0K0Pmwsv+RD6tbs7cNsW6iO2356scT3v7wWyz58vsKfvHUCM+J9Rsg3n60wO4n8myDP85OLpaodre8/9feI/j1M27YwB/672xI+/3BX71XIeHj4CiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQnZ8ed7g381PgPW0dj64WASHrwx5cL3B+6d1xx789N4Cr1+3+M3MwSIlDDo8uNng/vUGf+uL7bUXc4tHxzM8Op7j8+MZniwbdC/xoNRD8+h4jqeLBuer9H/c53jj8ObVBo9OF5P6+dbTFXCSvre2Bh+dTWufkJcBD18hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkK+Y5cbdafv+DAlz+6Hrut798Gt8T7qWIlfOuf4zSmXD613XYWE7zG5c7/py44CNSbZ7M7MqWYnMn/3mEdyfGUwdyUfHc3QGMIJanI7U+z994wgGHX7jS/lgl1pO1w6n69X2MBEA68bgl0czPDqe4dPjGR4dzeDs1+swlg/Ol/jtR5fi/YfPVpMOX5m1Hb7xfIP08S7Ah/eWaL9mY0Z+NeHhK4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyFfO//KfP7riH7QEI/hCW4bkn4YEnqfraw1dy9+Kb0uEr/TJNA3x/s+7VX/zoGm2bbvd/+/4DlawkzdWRxUfvzHB6gLY21uDF3OJslT5k5XQ98tAhY/Anb57g8XKGv//La8xbnX7WMG87vPNijXderPG30WFjDD4/meOjszk+urfAqnn1D/n54HyBv/PoCkZYaw+fr/BnXbc3DJU8fL5C03Xi4Ss/uRh/sAshL5NXfzUTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkpfDhN+ajD+NIcTlrxHuLiYemvH++wL/89gV+fLGEO6DMKWZdh2+8WOHvf/oC/+uPv8R/+8kzvHa1udM+p/Ji3uCzk5l4/2Tj8Mb1+Gf41rOVeO/posGj4/notgl5mcirhJCvCcMT7nQYY2CiDdS3FV4P24/7qu077q+2rLa+Mab3LNIzWFs+fyn3jNK9+LrmWaRny415bm5K7Y7tR9NHrs9wzMN2fZ14vm7vwp8mGfcT1ivh3P7kv67rivMnrY/U57Bs7nNKztLcjV3jsVy59rV9SOXCsQ3x8+2cG6w3qc4YpLVc20esI6XPKUrjqrVtNetKI5tG9+LnHKt7ObQySs8v2depOuzbqrULse6l6kv2osa2SrYupZt+7g65xmoI5Yiv5ZDWgWavTvUP6Pb5uE5qHWjmKreONWMxZr5q13VcJ9Sr0lil9Cqnf/HnEN/XfL5NGmw2GywWi93nlKxN0/TqG2N2srRtC2MdjDFoGrurt5gvsGntoL7vy1+T1mW8j4ZjpLHR8fNLOlLjH6eo2W/ieyWbpcFai84OfQ5rbZWvnVtD0rM445DyEeP6mv5rqPE/axizl/U/A/Fp57km430vjgFTepLy6eLyKVlr7GFqXfjv4Rrfzn0HY4ayS3rlnBN9tdT+lfouzXtJH8bc3461vLY08uf2l5q9OjUuqT6lfaLUnnNuMCftZoPNZvusJR8sJN7rrI3jte0e0Apt5HxS6VnCsWhv/7MB8fpK6WW4n6XqtMbBua7qfY1k20v5HkmG+HPN3lXaB2L9TOnrVp5QTtkfTn2PGdoj/68+Vk+hLVven01vvq21PT9mTB/a3JVGTi9jfC33XJp+DuEPHXLf19pHaV3V7hW5eEKySWNyFrEu1ehWSq9yvr6vo/GT4/ZLtqe0/2gI5ZT8m1iWEM1+6/eDGjS6o41ztXtyiMbvKe0j2raBcWM0Bs34jfVhUn3E1zR1kmtlhM2V+hk7V7X7rKa/kvy5+Fbrm0u+cY7S+svlh3LrokZnfHlNjlrb3tQ9Vqo/JV835v5YtOOSGufcGtXoWFw/t6dr9nUfM22v769tNm6wD202G9jWquZf4zseIi4u+aQ1sewYUnm9Uk43dU2jq1p9T+UspP4lmtah6/o2w3UOXdf3dZAYTq0PLSHlBWJKfp4WbZwT3otjbm0/Wtudy4WV6ubK+usl2WttsYQmd6TJQUlyNc3Q324ai6axyb5T16y1vXnV+q2pdZXKMUn+R/isY+xSao7GrLuaHJ6GnO9yqDWrzUWM2atq+xybs6gZ61xcGbfj4yDtGq6xS/6atRZNZ271G/D5L02fNXLV4PfdcE+VPof0983tOwFgm9Oo+Y2ItWmbM5acfvg5zo3RIX8749w2h5ySIeUnzlz+p7LOtTv/wj9n227QmrocZWy7q/Ji1o9fXve1eYupuduxuZASuXnXylIrW36N1cmSK5+LoftlQ1n07dfeT9mY2L7mbG3YZtMAxthb2ff2NfXuzn/P+TGaZypR2us08Yw0bkM7vGtZrK/dezV+b2wvfdthbruUJx7KPrzv2526D+bGe8o8xO+O/H4/FWNSOp6392YT/kZjmk0cs55z3FV+Kaa3D/k9y+znyI+r9jczHnUu1g7Hpmka2NvfR1k7Lg8nvfOK0eSoq3OK1sCY8F56LLQ+k+adT02ckfJbU/Ll2vB9SmUPGXPG+50kY/woKZ9dYoxPMYVSzvaQ/cbtdgXfdExcmfPjtPnKUn+a/SblV+/m3zhRR3LylZ5F6i9XJ/Us8e+AYvmm5lLuStem5oUOVW9/L/0eI+fr9Mv375f3iOHvYbwtk+Y0IcXuk3MOxg1ly9fXc6i8UXKNCXZ0+1vcsM7239lsjqbbx9lxzOX3kan+0N6fSfubpfdZklye0h6tiZ9S/Utt5u1QKP/wXYrGhpX616DNo6buVb2bCfazXlx1wLMRpuS3QvtTb1vqyKmOfM/LJ+UydDGS9Bhdl9KZko+5/dfbz7D+bDYTx+z4+DjbrsctFtjM+odDzOcLGJeRy3aI4+/U/JXmeeCP3bGvqcfgF2/MAPh4L+23aPJ1/vq6idvYj83cmN3f2uTaynEN4I++cYa/fNPhu19e4zuXKywg/1ar30W8Vw2vhXLvPnUdHj5d4eHTFX5xOsefvH2KZ4tmMK9hLq00t9aGft6wb8lHLeW7Prx/jG9c78cjbNsY4L3nGzw+XQ7aKL2zWWwc3rnawFiTzEh9cHEkyjfFpxmzRpzZ5838PmGthcm8w6jJ5fl2y3mErf3Yl+uq8yrkbuAMEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghBADw+KLugOoSm8x5FE3uoJtKrmYWf/nGCf7F9+/jX/7jU/zF95f44vywz5LiG5dr/LMPnuAHj6/uvK8xfHRvgU3iEB3PN5/djGr34fMVrHTwjjF4/3wxql1Cvgryx/kTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCLlz/o/ffOtgbXXCgQgajOkf0hC3NbbplEwlOf39xcLhf/jdF717/+r/OcVqZccJQ0ScBZ6dHnZcnZEP/rirGXz02gyPXpvhT3/L4PjK4dcvDd55usEbVxvcW7UwhzvzBQDQdB1+5/NLXKwd/ujtUyDzzC+bTWPx8dkS3356nbx/unZ47WqNx8fzqnbfeyof2vKL0zmu5nd/8A0hh4KHrxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIV8zN7HAHFdzt4Svj2p5y+Eo3AzbL/jEdNzOLlROO7nBulIwEuF7aV+rgkENwdWzxwf0FPjw5AgAsWoc3rrYHsbx+tcbr1xvM3GFOY/nulzdwxuBP3j49SHuH4oML+fAVAHj4bFV1+MrRxuGty414/yf3F1XyEfJVw8NXyNea2HnzaJw2rWNnjMmW9TKEZbquE2WTrkvE7Y6pJ11zkeOo6Sv3XFIdrdy+XG6MDjWusVwax1/b9xj92zn/iev+f2PIPWNKd3Mypuqmrof3pM9SW+Gzlp491JdU26Vxq9Fxfy0cM+nZwnbDNRavt7FYqz/D0Zct9V3TppZSn9L9eKw9U+1L2N+hAv0aNDZKs16ldrU2eOyzatZy7R4izbF/lhq543attWiaRlV3CpKMzjnRLpUYs59JbWsTT2G/mrmulSnVTy3aPStcCyl7XKMPNft7atxCPXDO7XSybVtYa9G2LQBgNpsFJzAvdjZ5sVhguVwCAM7OzrDZbHb127btPdNi7vD666te/2+9tUTrtskOay3m8/5nXy78PJvNdp/jvSHn66Z8uJwuaX29WAbbdjDGHtTXz/Vf0juh512dqWu+ZAe318LraZ9q6lrOyTfG9mh8KGlfO8S8pq6n9DtVx1orypzrqzQH4+fI7PY9DWPGT4ptw+uafXtMTDPU8Vvb6g7nW3tCex3uI76f8Ppms4FzDjc3N7tyV1dXALY22n9erVa4vLzclfF23LdzdLRN2FtrcX6+xN/5oYUxW1sMAB//7BLAvoy/bozp2e6maXqfPV4vzLodjNd6vcYablA2NSYx4Tz6vWy1Wu3G6fr6enfPP/9qtcLTp08BADc3N7vr19fXePHiRW9sQp/k7I0zXLz9Jqy1ODk+BgB8+P/9GPeP7u/kvn///q7O8fHx7lnCcYmfJ3zelB+ZG4Oa9Vqrp6m9d9ufvs/SvPXj7VC+bjufbafOaR3Sb9zL5uXby9RG6jmmryl2uGf37bBsam/I5XhSn8fKraWkF/G+q9mrU+2Uyo3JPdSOU82Y1eQZwj2hBs0zS+3m8gKxrSrFv865Xo4o7tN/z8UAOdkPFXdr5sTvPSlKefwSkv5o5/Fl5JfGoB0/Tf2Q0no7RD7qtnavnZq8va8z9p2CVu5SHq/GNh0ydpj6zqTUlrTf1cpQm2/Rtq3dH8buzxr90Tybdp60uj917Wnk8XaxZo1oY3w5nhza2e01g7iK708zZpo8vGYfKM13LgaR5NHMpZs7NI1ve9vWYrGAzfy3wCS/rx8rlG1vjDROtT5gne3tevMvVR0b22llqck7SW1P7UsqU2v/wpxYKa8v+bEp37LGl/b1Yt3J2c3cO4FUWe34a/a63O8tAKBth7HEZtNis3G9cQ//9Z93uZ1gXuK85dS4MZQtHPP4OUr5khQl3b+rGCvF1FxiOBe1TH3mHKnxOHQfWmrjw0Fc2jo4F6+fFl0r5xhSffl2m3aYE3XOATb/hwqp3xQcKm6I0erTPt7sx3YuUT18Rx7LZq0V43+NTJr3Nlr9y5VL7R/Zaza2n9vccD/XvL3XNA2Q+N13/LueGn9EGjPNWIRz0qtrh7kbvx5Stnrsuj/k74Ry8doh31OOiT+1frqmrVzfJd+pJI8xw31+ilyl2GJsW6k1Er/bGRPnaMevVl4vc3wv1lFtfLpH94xT9+Up9fu+rJdpKOc2X9y/BqTfhYR1pbhBisXH5hi3ZfrxXi5fX1p//bka+hu+XamdJtqTNeR0KbeXaNeFJsd0F3nzQ7Qfr53U/jHov7f3D+2RnFvKr/O0rRzuyZvNBpvNMD7QzEPbtkJMGz7L9t1wyp6Gfl4NmthWU98Yk1wjNfl5cW0FzyblU3I2Jvddlm0oa9xv7ZiVyh9yjyvZiKn+mJ+77f+AcO/bxh1yDmEstXmvu2TbT9rWpMvKNr20D5TKhbrfXx9heZ0/Xpd7LdeZ8j5sTH50Sn/DfnR7SL4tqe0+e5s+9FON23/e26HttbZt4Rqzux/PubW2GNfVPlPNmIa/P9D8vYpWl/rrL10u1mtpHDTPP+sMjPF7++212QxtM8xFlPLI2s8x0pqdYvPKsvZzKSl9mpIH1iLFj6X3ebUyDe1mun+prZr3p56vKk9bonav0txPtV3jU6ViTO1vAazit3whkk89kDFoQ/K7xu6rqdyKj81T+/6rwvWi3lcrPcPW9oRj2qs9KC/FA5p3wcYYODtcz6EMbdPg08Ucn17c1uk63L/e3B7IssZbl2scbfyeID2VrBd/68trPD6e44OLZTGG7O8HNig/LFuT543H8OfHDV40FiebdpB7AYB3n1zjT18/yupleO3h0xug69Al+rpZGHw8WyRz9Km2pqC2WzDRmBpYY2Hiv2HKvEPVXNfZ2cPEVeSw8PAVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEoB13FuTXms4YfHE8xxfHc/w1tv/xyIubDd5+sca7T2/wxtUapvK8jN/59AU+OZ1jPX9FBtQYfHC+wA8fXyVvn61bPLje4PFSJ+97T2/Ee++/O4f7mcn8Z2QIefWgvhJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQTOmq9ahFeCJ8sZ/strx/i/v3WBf/G91/Dv3j7F84X+IJWFc+JBJ18VH1wss/cfPlup2jlZt3j9eiPe/9F7iyq5CHkV4OErhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQmuZxb/+bVj/Mtfv49/+8176kNYvvPkBtZ1dyydnqfLGR4fzcT7D5/rDl957+kKRnisL84tfvlAf0gNIa8KPHyFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghJIcx+PjeEv/nr9/Hj+4fFYsvW4d3XqxfgmB63j9fivfOVy3u32yKbXzrmXxIy4/fW4ySi5CvGvlYIkK+BjjnqsobYybd67oueT33uUTcpnQtd11LKFfXdeJzxWWl54mv++9xP6XP8TXpOeP+xrShadcYk3yWHJo508oUj/1eHuMvIidW2E+NLkryauQOdcmXN8aMeub4ekpPQ/0N60t6m3oWzfPV6n782dr9GWfadV2ya6X7YZ+5azVtjiHsMzWOTZM/tTAcF+ecqAdSnVLZULapNjtsq3Q9pzvx99q9QKqrabPUX8mWp+ZHGg+prVAPQ/3J6acvN3V/jBmzJqbIUGura9uo1Zmp5NpKje0h/KlUe6EcTdOI+gbIdjIsp/FvnHPJ/aVt214Z5xw2m20SYrPZYL3eJlBubm52n1+8eIGrqysAwOXlJVarVe+z/+6cw+lpg7/3X78OYwxms22I9x//4zMsjy52sl9cXOye9fz8fPfMR0dHu8/z+Xz3eTab7Z7ZWtsbo9jGl/bhkJLe+TFP+RGNa9F1DjufKNH2XehyziYMn3M/FofaX6SysX0GOrStA9q+bJJtPqTtSfUxpf2a/V6Q7FYG/X6U8w3HzuXUWEJbTusDjfXNa3yS6XO3X3OtdZCqxHa7tHfHPktoryUZjTFJn9Vai67rdvbWOYflcrn7fO/evUF7KR0L/z06Mjg7u+r1c3p6ivV6/5y+v36MKMf5Q7n312ezGbr5vj0JKY4Kx7vrut04GWNwdLR9edC27U7mtm1xfn4OYLvv+fp+z5PWzfzeHFffaGHMPn64961jHGG5Kzufz3v7lbQnSfFJTt81uZIp61yzJrZlhmtpuAfk57/ct+npVrzGSjElMFyHtfH39pm87d7KZK0txo5A2d5q81G5MoC3S6H+b3W6aW1V7iSFZMfisU+1UdrrNL6Axkfw9i9FrY+h3av062Q8sbwpfQ/3hJr1rJFNs75yfq6mjzAeqt1DY0oxXQ2avThFaPfjclP0T/IPwngulq/W9xuj44f04TW+ce5afF/jO8f7ZZ1PO803L/VZaquUx0u1P2YsDx2nTeEQ/U+1y5LfEI+TRkfDz4fIWYRo7OEUuyDpVc17kVw/NXLm8s61+1NYJzVeUj3rAGP8HubrW1g79MnDuCDHIddbvL9q4vTcNa1s/b1r+2/btujaw+Wqc3Y8zAtJsud0Zop/sy/Xz42hG77PSOV4Ne9mxuhISo9T+bNUvZjU2JViq7t431dLyr/VxHU5NM9equ/x6ya+lirrP4drzef3Qx/R5zcA7PL+Xddhs9lguQSePzeB/MAnP/sC1zd7+cLxmc/nANDL9TdN08sL+c/e3oV6ncvjx8TX2rat2gvvEmlPeJk6HvYfznfImH13KmGfr8Kaj8nZzpwtMI3Z5S/98MXvpsLnfRnPrt0HNPn0sfGvL7ct2u3Gpm0dWjOsK73XzJWroZTDsNZOnptU/dy1OJbvuuGa9be7roPB0H8Mcz7WDnOssS6OycFKdVLrwjSy/zVmfKV508RVMZrfbsTU+XZDxuTztX6XNEcvYw9M5VWcczCdvGfXPFfpeTQ541z9mJRuaPJG0rUpaHz9kNr8XljWr6PSGpfikJwsOZ9VqpO63nWhHRzGO7E/KRH/pisX28ftxtTmE7RLMif//h1Y+rqmjVo0seWhc3E19mvMfpa6V+oyN9ea91T5vHFf37Yx0XBNNk2jjkvD2HPWuKSOp/R7zDr3bOPMOL+zQbcZvgPxaN4t5ZiaZx+z747pJ3e9pm2NHqU49Podm3OaaitKOV1pzfm9yMcjHucczMSQTLtmYsLfFeY4zHsKnS6W5lWbLx2nb7o+y+3kmWJzJB+m1mdL3ZPyheEek2qrtW4g12azt7sp+bQySv7mNnZNVkn0k5ahvxa7bezb5m3jXfk5gD5PU1qPeRudRvNcOT89Xof7cunYILUGUjkYbZ8vg+x8m72eheVL+amXQWpuc+Oqbrcx2L5n3D9H0zQw9nDrQvtuKLVevI6V8lLavFDt7/xKcz8mlq/JL2jj8rRfPPRvwnclU/NF4b04Rzhoo+l6v9EFtnpmZ9trfsybzutjv1zTlHOvJaT3XTliexfrrkHOYx4fW6be14V5Cwezy/P650r9Tqwna2Ef3H7V6Xtp/KS/2/zzhw/QNM/w3S/2vwc3pp/b6LoO71xt8IuLI1WcVYq9D7HHf3hxhL/7+SXsrp9+m9++dPjLU/kYinurFq/dtP1qt3I5a/Djby4ApONpidS8avcE9Z5mQg2vXzPxdW0+NMbbsr2M/fuv4vvAXxWmZV8IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCfsX49++c4mqeP7Lh/s3mJUmjYzWz+PnZQrz/8NmNeA8A3nsq3//ZWzNcH/EIC/L1RD5yiBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQr5Ie/vMKb1+3uuzEIPhv8wbvn2FiTqHm3bKzFTx4c47c+eyGWOVu14r2vig8ulnj32Sp57/ymxcXNBk+W6aMoHmYOX/nRe/KhLoS86vDwFUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLySXKxavPsiPCxkf9CKMcDxusUz4bCQu+aTs0X28JVF271EaXR8crbAzcxguUnL9s2nKzx5czieF9cbXNykD5O5Xlp8/A6PryBfX6i95GtL13Xour1BNyZ9Gpl0vdReLcYYUZ5Uu/5a/G9NH7VI8llrVXXi7865qj5ryqTmLdeWL1+qJ7UhzZd2XuLyOXlyfXRd1xtX5xy6zvX0s3MOnTVwzu3KavrJ9a8Z21pyuiO1m+srvKd53nAc4741ugv010a4/qauxdyzNE0DoLzWpP7bNu20auYxZwtypOTTjjGg19OY+Jk0tkyjh6ly8dquIVxjpb1BI0uK2OZIOpbrP3622mfuuk5VVirjdT+WLbyulSNuQyNXWC/UJeecam3U6LwWa+1B2tXscVp91OzPY/frXLvxXhXvl1I9yd9pmiYp53bfrfNdpLUU7tNt2+7KrVYrOOfw4sWLXbknT54AAK6urvDZZ58BAJ4/f777XGK1sri6Ould+/hnP8Pl5YfJ8qenp1gulwCA9957D7PZNix88803d2vu7Oxs9yxHR0e7uvP5fLAufB1jzK5OaBMkHUzpQW69bcvHtr+pthMhmjUm2af+teE6qLGjNb5vOK7DvdAMxnDquj80mmeN50W7LvfFutt2OljlPhrqbs4PqBm3lA5oPkvXrLWIi0n7t/+s8aElUnuqxm9LUdpPQ9l2a65J6bjdtZPyFyQfOm4nnvPUs5T2M287u67bfY77zRHKtJg7HB319eX+xQXWm2ZQfqsHfbuasr3+86wzsL3T24c6U5NPMcYM7KIUe4Vj6cuEayy8lqJbdsDxi9vn3spydnaK2Wa2kyWO2TyhjKV1ULLXU/NNYdnYz5RkCT/Hw9MFPoZUP37mwRg0Bsb012S4vmLG+KTaOMRf28rZf96czzeGMT5v7E/uv2/lnc1maLr9uOV849ze7sd+bA4m1Udq3zpUXjHXVm0uLVdmjB+Vy9Np5YvbyuV2c4R7Vs7XCO2hZKeksdDEr7l2JbskxaPa3FGtn12Db7u0j2io1Y2cvmnq1OZw43tT19eUdVvqS/JLtXnngdyRz5PrQ5tTHkv4LGPGsORLxDaiVC8ll0aWqbqkHcspPlUpvzg2ptHuKXFfqXnJ6XZNTrkkT00sVxv3166lXJu19mPMOnLOwW5aONd/97Fer7Famd47EWO21+1mb0OkmCFFal+Q1mhJdklX/P6V2lPH6PggXkiMcW1+XJIrXqO1PlJcv2ZuUjRdPya0toOxthcDSzmfl5EXG7Mn58rn1oiWQ77r8G2FPqhD3qwYAAAgAElEQVTLxKuHpLRfxJRiLmmvD/3OuEzoi87n8175kOWiw9HR/r/21nUd7j+Y4eYmnWcM5QznK8w9hWU0ehb7/eF9aU1r7N0hdLwmV1rTrrY9TX0pzs7lZcf2KbWlvXfI/jRzrcn1h2U2m41Y17UOziX2TFd+ZllfhrJN3Qdy+2ROljG/wxj2ZXbvB1LvguI6uTU+Rj+lZ0jl8Eto9grt+wTY8L3Z9tL+veX2eziUpb5T74q3+1vdmOXyLSVS68jnbrVzp/Ebwv37EBxyXsfEnyW7XKqfoyb+U4/nLG+nQhk161cbq2niy/I+pO9rTH5Xk+/JMToXlWH4LN3uWm6OpHmp1Z9UPW1ezJhuZw/D5/D/Nk2DpqmLT3M5I02+Vaszxpienffk3meVGcp+iPxhsqcJ7Y6tO/ZdyNg+tuMHbN85Gmztg8HWbxmukZw/PY5hLLfPlfjnN7v7NTZpu//m9W/MPjLmuVNzGf9GONVuzd8F5PLTGl2a4k9o13Nuv5im7+mcQMn3r8mp5u5p8+ZS2Zq8nySXbvzS+baxMpRis5qc+F2gybtKeV+gzj7Ujl9fvn4ey8ctU9+z5J5N286YfjTtHMSONsOYOv7dR7Ef61Q+Srh+4yaHvlm4lw7v78vcPkbToHH6GPOQuauphLZ7MGaJ/bfGZ9PqVd8W+7rDsZeQfuugtU+H+DubGI0vaIyBMw41fnFoq8bYb00OUeq3dL1mvFO2zXZj4wp9/2NyZ1IbU34rHyP9HUWOsT7fod7NSX5Mep/M+3K5PvaxzLB+1nezw309rOPH/FBxRiy3bydXf8w7FmMtYByM2f+Gt2ka2Gb7eczvpf17q6FfCXj71FiLxWKRbbNbzGHtRrx/2nZ4rvBZxtiulO8XxmlfzA26zr9LHOYBjevQtm31fBuTzinG8mn3/fC6MwYf3lvi+19cR6W2bT18doO/fON4UP+9ZzfhlZ6s7z9coGssDEKfqC6GKuUrJerfLcm+dLgPpmLlMfGfxp/2Psv4PBiZCkeeEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghrySXs/yxCPev5YNZ7hpnDFaZAzMqz/p+aXxwsRTvXdxscO+mHVx/7+lKrPOj9/IH6BDyqsPDVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJK8nzRZO+/fvXVHb4CAG3m1Ia1fTVPX3l8PMfTpTyuD5/d9L4/uNrgbDU8kAUAHh/N8MVFfo4IedXh4SuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5JfniaJa9//aLNazrXpI0Qxat3PfV7NU90uGDi6V47+GzVe/7e9FhLCHvP5DbIeTrQt7KEPIKY4yBtfvNpuvKG2JYxpjhKWFhe5q2wvaccypZ4n799/C6VD/Xbk2fvry/7pxLlim1JdWRxjm8npJXuq/pU9OONEbGmN09Y8ygj5Ju5Z4lHGeJ3PPNZh2stbB2P0fWWnTGomkaNF1T1BeNPqVklHQ112aufjgW0ryE66im7dR1Se+B2zEcoW+pe1OfJSS2Qbk2pqwFibbdnziotQla4v418oRIOirplUQ8xjk7VrJToQySbKl+DvHsJbk0dr1mjrV2NfVskh7nbDLQn6uxspb6yvXvaRrdaZu+XKmvmvFo23awR01Ba2Ny8526l7OVqe8xmuca8+wlG5hal02z31dDm5irK/kN4dw1TbNrz1oL5xxms20otl6vMZ/PAQCr1QrHx8cAgKurK7z55psAgBcvXuDx48e76+v1Ov/wt/g+zs7OsFgsAAD379/HfD7H2dkZAGC5XOLk5GQn59HR0aB+13U7/Un5NmP8Aqlebq6292J718K5oQ+f8+tj3a+RX4ohtvPdL1/ywbV9StfMLIyHttfn8zkayHZrTPxSS+n5NOtRivPicrEPbwxQepSaOATQ2crcM4d2JSwn6WhurWyfWZYj1ZY2TszpWyqukHwlqd3SfirrRdgnsNls0G3q4nbpe+rz1DUijVHYlv8c97XZ9E9Zv765xnq9Hbdw/Jqm6dmYMDcSX9//m9er1HXnXFJPnXM9ebbx6r7/MUj12rnD1VF/XE5Pz9CsZR2o0csS/rnGxHaSXPE8x2W0ftFY/8vrpXMOXRfqeP36isc0J7vG97e229lyT9M0an9c27cmTpaub8fN3+sAmG3spVSRnH8yNudXYoofHeukdu/T3qvNZ2l0LpevDQmv1+SDfd2wjtZG5PqR7G1oh7T+7ZR8lPdrge1YptafVh9rx7UGTdta3Z/qB0uxxZj+pfUhPW9JD6c8m9aHrL1W03doc704znVA8Kyhvkr95fx5Kaco2Zux7w1K9k7y20vrudR/LK82Lzo1BzOlrTH5Bql+HFtqKc1LLj8Qt1OK71Iy16L1yTQ5mDG+dDhOGn9mzByHvmI4rrNZg9ms/67YmG0+y7TlcajJ0Yxdx/5eWD6VRx4bc7jGVT1HTjZNTDHVtmvK1KyDvn++9wXDJnz8I9WvRXpvoY2Hxtj7QxHLLsms+f2F5Kto7e7UZx6ji7kYwN+T9pHUuxFtDmmx6DCf95/3/PwMq5Ud7CmavTnlP9b6oBLS+6ip7cbU7ndj/YxaX0lTV5NTiO+P8a3jfWXMGEi+bor4txOltv39nK9UIu2H9G147P9LfUl7oTF9eTR5plJsNcWHzulVebx92XwfWl8rl/OR6ufem0r9T8ElYr9kObvPc3pxN5sNjDFbHYranNnZ4JqGmveO/pq075fsdip3u15vYNfbdefnYu/7dL3vMXFcG3727xviezn5pvCy/B4tU/NXqfd+YX7Nk7LpTplUlvYD7TsBqb1YVzRzs90vUrotvzPUxp0pcj7SIWKT+tjDIXzfllpzue+5eL00/qmx0MT5zjk4193aw+3//DtJHzdfXl5htRq2H+6ZKdugsRe5+ClVPzV+sU0EtnuS26THLCfXdpzrcy/DWGB4f4rvWerzVSM1Hts5Ct+fdao1oiFt74bX+vsZemVK7zFr5dHEYtJ68oTvfTrTIW6iVubU2PrfHaaI98CcTdHEXrW+Unw/ZS9K45qLj+PPJbZ6PIyJxvj/mjxoTk7New+p3RpSec18jNmXcYpsY/0YTR81sXTO/3XRukw1Fcudiq1T5XLya3NDe1vXLzMlZtWW1+ZxU+Vyc5/zlXLfJXQ62m+3xoakYj7nHGyXfkbt/tV1Q7mn7mOS7dT4qoegVi9LY+WR9gHts/hy/v3T9tr2XiqHpM0XavsvxaNT7TuQ/o1iUHJQT2O371JXYnlS38fkLsbYTa1cMWPj152M7VCHjBnmGcI6khyp/V1ruyVq8iip3N5d6I+1w3a3a7jub41jTNPAGN9Gd9uX7b03Ctvf/w+9OttcXn8ttm06zm1N3i/I/d5DM8YlnQEAYxM6DG+Vg0/B+tHqRUoXt3m0eK7K+Q7Ps7nFZWNx0qZjjnnr8GvPbvDR+TJqf5wuluxPKOe9mw2a3l7VL/t8ORP9x7iP2IZJfqrWPpbW4k8vjvDbn1/B7OZiX/7BTYt7a4fniwboOrz3NDx8ZT+2zgAfnC8ArBI+V7b7rMyH9q0h7Q+K3+ql+ixdL6GJO8jL5dU9JokQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCG/8nxyb5G9/5u/vCqfan4HfON5/j+0/Pho/pIkqedq3uCzU1m+h8+2B668cbXByTp98M3PzhZYzXhsBfn6Qy0mhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIK8sH58vs/QfXG3z7yc1LkmaL7Tp878urbJlPz17dw1cA4IMLeVy/+WwFAHjvqTyu72fqE/J1goevEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5JXl0ckcj4/yB5n8zmcvcO9m85IkAn746BL3Vq14/+lihifL2UuTZwwf31tiY03y3mtXG5ytWjy8PYQl5mpm8fPTV/twGUK08PAVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEvNL8hzeOs/fnbYd/8tFTnN3IB6Icim9/eY0fPrrKlvnRg6OD9mldd9D2AGBjDT66txTv/71Pn+No45L3fnqxRGfSB7cQ8nXj1T4miZACJjDG1vbPEuq6bvDZFIx3WCfXTvhZatt/D6+nymjkLMmfuq55FunZNEgyauSI6/vPJZkBwLnh5hyPo4QxZrIOSNdy7ca6kqvfdV2vrbZt4ZyDc/v5cs7BGWC9XqPbdMVnSskYjoVG9pL84Xffnp+rsP3SPGllCfUg/Bzagdza09xPrZGU/h2C2H6VrjvnkveksRgjd26Ow+/x/Gr0sdbe1LRTmtdcG+Gch8+S0m+pT+m69plr7PxUtGs6h7T3hUh6PFUeyfaPXadeTq0ej0UzHvEzTJFHO/61/XVdp2o715Z0L7QvWr3Q+DTaPUYqH+8x4b4cthNe95/btk36AwDQNA0Wi8Xu+7179wb9W2t39WazGS4vL3F9fS0+DwAs5gssFtvkzPHxMS4uLgAAy+USZ2dnWC63CZHT01PMZtuw8OjoCE3T7Prxzxx+bpoGxpjdd8nuavQo5wPWkKrftnefIAv7Tz2Cxj+u3StCG7X1E32d7b+bzQbd5vBJtBq0/nR8XaMPuXUvzUOMxgcO2/drItVv7prUV8m/SO1jffsxtIVaHzvnz+X8nXCPlOUaXs9d09TxcdAUJF8l9vVK8xLGArH9j+/F+0LcbuxrSLFZ3H84D2EbuXi4aZpbefbrwxhZb0JZYt0P25QIZblLfyruM/d9CpJfqc2l1OQfUn4FADhrEa97qQ9NbiTUm37d7VqX/Dut7fTEsVX4ObVGAMCtW2w2/r8wsO3n5uYGrVkk5R6TC0mtv9JzSG3dlkiup5yfK9leLSUfuoQUy6c+x/qo2StKY6rJ50h9xLJoYj+pjdlsVrRX0pjGso6JuTRYa3eylXJAuTZKbPdbfRyda3NM/AfoYkDJdozhZexV0phq8z4a2XLzVjtGuf7HjNOUOQr1fm/zt/eaxsJmfJFcey+LlJ8r5f5DanKOUj/SvZQscbkxeUyNrFNs9RhKedxSnRCNL5irL62r3Huq0A7W5L1KsU0OrU6kbLXWdkg+WE4n03LGPqy5/R+w9R/r539qPDGlfDiWmtxDEotgDPbt1u7JKVtVk/8I70nta9uS3n8JvfZyQakm4zymRj7tOk+VKe2hqWtS3rkkqxRnScT+d429z+WrYl627yCRk2NKvN91nZjvT+V/wnf8nrZ1aNv8+El+Q6wvdXY0f61kPw7FXfaRm7e477F6V2sfQ+Jnl3KiNT5j6V6uz1Q+qpQrLvkaOV8ld32/1wN+TzdGzp/E+ZjUHru93Y8rU6+OpFxpDmlcS8+aGr+SXnQdBnly57rBvEn1JTTlNOs1NxZj4u9SnmaYO0Dvs6++LTPc070Nz/mkqaGR3jseYl0KtYPyPh7ev7cN5a1pW+tnHeK3UXeVM8tRyjcCaX/tEHtTKh8eXk+V73drerkQbc5WQxhvpPIuPSkKNsk6wJj+2Bpji+8S4/anrY/D7OOafE2/LhDala5zcE7/jiEnszb/q8kVpOegv7daa2G7reyzWQPn0r+3zF3TkFqT0t4ey1/yOXRzlprvsA2dHzDMRQzvv6wc5F2vkVeJvL/Z36+dc+huY6z+72iwu9bael2W1mFNnsD3n2J3vfCXPFPmU7LD4W/aYjS5u3gsc/u+v5fL+UzNJ6X2l7yf1iH2t6S9MYXmHWrNeKXGeej31tkrLZKf0X+OcM0Z9TqolVHyI3JxpiZHrc1pD6/7e91uD83JHc/5mDEa7+PkdWSM7kjXNPqaa2dKTl3rt8WkdEu6Voqx+jomyxrbAilG7ccR3j+R+u/brjFIdl3rt2ranYLPdUvzI9n5UvyZi6OGMZCsD5r6Wmr92dw1qV1JJ9vGwdrwvVSHppmhmfXH0Y9b7m+SNL79ISjFB1J5/zm1z2v3/jF7V/hZG/+MyU/m+q8ds7CO1GZN/dRvTKfmN1JtpcZ5+zuofP26tbv3KVI+yK5vG+Z69vkXO+vr48K63vh0HTCfz+GiNahd72NsuOh3JX6v3XUdOgz3sViOUj9xXLS3+dJkDd9/pnw6Yww+ubfEJ2cL/NrzVSTb/vPZxuGffvAU//qzOX7+1lyUOfU8mjyn7Tr81ueX+MEvLyNfsi/75dzi/Qf7w2I0urixudgGeLBq8fh4rm4vJVeKDy6W+M6T/t8r+ebfeb7ufb+9u613/wjWWrjbuCssk8uhaHLduTKj3mck5mrg5EX9313OxdzGql6Ml5dvIjIv/y0HIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCSCV//M4Zbpr8MQnHG4d/+vsv8I/+9BJnLw7zH/m1XYeHT67xP/7oMX7j0SVM4VyOP3vnDG3mMJUUqyZf/rc/v4Sd+B86TfHZyRwv5nX/gaxfHs/xdFk4YZSQrxHUZkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLzyXM0b/P679/BPPnoK28kHkRgA3/twhe9+tMLH78zx6RODzxcLrAoHt4RY1+GNqzW+8WyFh0+vcbx2qnr/5fVj/OzeUt2Pp3SYydsvVvhnP/kCH58v8WLeoLUGBsCidfjPr59U97fDGHxwscRvPbpUV3n/ov75CHmV4eErhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+Vrw2ekCf/hr9/APP3mWPYAFAEwHPPz5Gt/76BnQGjxbNHiybHC5aHA9s9gYA2cNbNdhDoPlxuFk7XBvtcHF9QY23/yAn14s8edvnY56ruuZxYt5g9N1K5Y5W7f4jV9eYnu8zJ5Jh68A+OD8SH34SmsMPjzn4SvkbxY8fIV8rTGmvyl0ic2x67rkdamNUn++LV8vrF9qK5QlbEvTr6+v6UvTbs1zh3UkGaT2JFlqnr3UZ9d1o/pP1UmNdVhHK7e1VpTXf/ZthW36Pvr9GADBd2NgjIG1NtlPrb5rn6t2vnNjWZJJKhevP2A/1jXEY+5xTnfiYC2peZKQxiuWrSRreD+c43i+NfqSmvtw3MfYE0n/a+TKtVtqo1Q3tj3+s3OuJ3s4zs653fe2bQd148/OucHaTY0vADRNs5MrnBfNuozb0ui5Zl2N3Uc092rbrp3r2vbuyjak+ovXaDwutWMzVfbY9pb8mEPPRU4vanWm1naE66D0XCmbFo6RtXY3F+HnlIx+vR8fH+8+z+dzzOdzAMDJyQmurq5weblNZKxWKyyXHZbL5W0bW7kfPHgAY493dY6Pt5/Pzs6wXC6xWCwAAIvFArPZbCeb/+x9Df9Zs35fztrtz7u1jcoPyvkoNT78QBrFuMR1pTraNT5lnZX219p1nfMJtf7p2H5ScYIxwP5SN9ira6iNEzXXS99L16ztECdGtTFxjtw+FN7X2OTaGNfXSdVPzV1KPu1c5fzOlH8XyxKX0cpX6j/8nottfX8pWxHOUXivbVu0bXtb14+xPE8aXS6N95S9IOWDpa7ZLq0/Y/ofg5SX0JDzL5JjkfDLY531/9b4Sts2MChfGr9Q76V1nLrvn7vrup1/E5dd2BZN4/2Q7fXlconVrF9eim0lNPou5WvS8zt8zjE5ujH7kxSnjiGOR8M+pLhUs+eU7odthHFuaq/JrRENWtsQ6lKcS0n17+WVxm9MniqXf0nJI62llNwlrLU9Xdf4cKm98lVDMxfxOjzk82jzHyFxrq3GfoxdL7XxxyHG6FB79djYSfMMtbGMVq4xeZ2YXM6oJJfGHx2Th9L4vzX1U+OfWxM5/R8bq0lyaOuWyPn9ku2akofL9TeFXP+SrzEmx7C9ZxP3vY7W5QW1dm1sviuuP8Z2an17N3O3e/m+7Gw2g3XpuEP6PCXGicmtSe27iTCPGtMfG7N79pS4XXfbp9DtmFgyNS6ST5FrU1rrh3gXUR638vrVULM2SvqkaWvMe8mc/k3xE5qmEduO27CVv74srVPnnKg/0t6tsQNhH/H3sXtd2I5mfy7Jl6qvzVEech+UxqXWJ8rpm7R316zdUkxeui6V1ayd3Pjn2/U5H+z+1e7bsd8YtlGqH66dVH9T/LCwjzH39mX8swzzYsaYpO2O8y2H9gelHF3KPo6NUTU5lg3ayA4Dm01727/vd/vvZtOiafNrIxznfU59nB1NoY+xhuuqlIMNyY3dVH9j6p6skeMQayzlU9bYtlKdmNyYJ/P4FkjFMjnbA0DMr8f1w+81cYAkz65/16Lr4t+vtfA/kdKOVzz/qfzkdNsp72+5dZ2ag65zg+du2xatked+TF5F8iv9+7Iwj12qty/b3f6GzQDw7zgNnNvKttm0aAPbKK2ZeF5q95V4zktxy/BZdfm6nO8lvXdMxYzSuuq3sdensXmwuC9NfW3cXpsHrSUe09D/Gtuq1tfs79e34wJTnIta3zz1m4Dt+/d0LrX0uVYuT8n2x23dRR4wR6k//3zSe6276j+3XnL+lgatnk3xlYb5hfr3j6U+YmS7XxefxmWknL+W1PuBGn9xTN3WDvd+5xxM15+HMfF7HL9qZJbtip8n9P6mREKbk6ktk5J3zFyXGCt/Ko6KdbtpGjQu/fsc6XvcZcrHzK2llL8otblvO+27HopafY7L1OyBoh99+94jtqe59qT4sjbWi4vXxh3aPVHLmJhG0/d2PP11wL9vi+21Js7NUbv+NXvoWJvSIS2vJhbW5BTj9sb6ZNYO62nseyxnbo+R6khoY3PNfhvKNda3iftsmqH+asdMYih7Pg8q7c1bWYa/XdoX92W7rD6VGGN7xDVm03bHwACB7RgjWyoeaJpGnCvb2N3fztTwyYMT/OGswT/4+Clmrj9fxtyOf2zvAZyvWlysHYC1qh/NEHQd0JntASh/8dbp7VjKv6XI8dHFEX7j9hAUbZxpjPzbuVKO2OvNs4XFo6MZXr/a3PaN3r89Gc8WWNndy4xezkDzuLW2robcvhLfSvtowz2qJEuNX7Uv2/crBm283HCf4DaNTwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJ14ZN7S/zrX3+Ap8u7OQBSy/NFg//3W/fxF2+f6U4fyfDXD47QJg7HeRl8cLHUlbuvK0fI1wkevkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCvHU+XM/yrX38N//HN05d+aMn1rMG/e+ce/q/vvYbPTxcHafNq3uDP3zo9SFu1fHi+LI7hi3mDX5zMX5JEhLw8Zl+1AIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFjcNbgP7x1ih8/OMIPPn+B77y4vtP+Hh/P8ZMHx/jpxRGcNei67qDt/+i1YwDAbz+6xLw9bNs5Vo3FJ2dzPHy6Est8cLEEzMs95IaQlwEPXyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQn5F+NNfO8e7T2961/73v/MGPvufru6kvz969xx/9O65XOBAh5dczxv82Ttn+Iv5GR781pd472drvP1og/lmWvsdDL44nuHnZwt8fH6Ep0d3f0zDj147xsf3j/HtJ9d468UK5zctFq3DzHXYWIONNbhpLB4vG3x5sjhYv7//7jnwLmByB6wc+LAZQl4FePgK+RtFyoiH10qnhqXuG7M/bSy3SXRdl6zfdV2yXuq6/x62E7erOflMaje7yVW2lSOUURr/1HVpnKy1g/qxTPE9aS5y98O2Qln8Zy+HBt9+bi7jfsPytXMm6W7ue67/VNuS7LX6mas/pg3puUprP6WPTdNU9Z1rM8Y5V9WWtbb3DF62uI9cu6lnPIQdSMmaIyXjVHtdkqtGr2r6iu1N0zS9NRLKpJ1zaW5Ce1CSUbve4z1NWr+5/jQ6FLc9dp1qr4f9lfRR02ftei3hZXLO9eTz/aT2nLuiZA811z0puWvalxijl1PI6YT/7udKer7QDviybdvuyjjnete7rtvdX61WuLnZJqqur69xdbVNUD1//hyPHz8GADx+/Bhffvml+AwnJxY3N/3k06effYrLy6Eun5+f4/XXX8cbb7wBALh//z7Ozs4AAIvFYrffNE2THBuvx/554jWnWe8h9fPa1wnnWnSdzi5pZUqVy62T7b2h7oxZW5q4YwqldqeM05R+Y7Q+dLovADAADJrGonHNZLtSa6fH+vSl9rbrztsb3F4bjk+ufynmCu9P8cMkfyb+Hs9rcu+NXHNjDJqmQeP0cVncbspeO+eSsnh77T+H5cN7MSkfHtjbS2PMYE6aZjh21tpkHf+5NL++buMAY3T+UejPHto/kWLWXD/bcbHRtQamlfUs9Vnq45C2tkb3U9dFfz4ao64bjluqfky63/Ca2a1LKY8V91VjW0q21/tKqXjXOd18p2TMkWtHmk9pz8+hsZdaPyknZ8ofz/nomnydVF4jq3RNirU0ea04T1JDaY69zZTiyVLusbSnHTqWMcb09oj4nv93ao5NGm8pfzbGt9JQkwuTyk2Zg7E5Esk2Su2FMWQt2jyMdC+XSwnHsUavNHYh3AdlmQ1i2yu1r6FW/6bEsqU9VcNU+zHF99HY5tQ1TVyb01dJL3J6MiUfNWaOx+6XJWIbUXoubQxfymvcBVPywan7XTf0FbfXLPY2oh8zlWTL+bA1cvoyY/Qit0brfGzAj4NzDl2btrc1/Yd7wxj9Sfmi8X4j6XhuX8rrRezzDfVBE6fUrmVtflRD7OA2LgMAACAASURBVGdpbGq8xlPjOsXPKCHNV+xDxJT0Kq4z9b2NRo+lXH/Kh0mVC8vu6roOm81md98Yg/VqhdVqn9/xzxqOpTaujXU3ta7H+APanGxtHjdnK0Nbqon9S77KmLVY2ltr/eyYGluj8VFq/ZXQXoSfp/pNuXgkF0uHa8e1HZxLxH6uPK6p/tI5nDq/UavPWh3JtVe6t7+d9ncO4Xtp2/FtafoP9zVt/6W9b+CzLCysXfeuzefbn8PGe9R8PoPtbFYW27lbOWQZ4881OlTKUW3LQOxfG2dqcyJaWxn+3uHQv6VIEcqlyddp195Yn6jm94Ix+VyzXL42vojHQhqbkr6W8nBSHt+/1NPudZoxrbUHuTbi75p10dex7Tu7sFrTNL3fjMWU9C21p5fkSulH13U9ezuYs3kHa7f+qLVml1u2t7+xmM0adF2T7SMmztWP8bvUcar11/bXm6aBbYf58Zx+G2NgGgNrZRufqhPLFcsiPZNko7T7iMbej7k/Ng+UWtv7eCbIzJjt/8aiyWv5PsN5CGMrazuVDKqYI5GXLsmdy0uJuRdrEL8Tt7ZB08i/m9fuaVP2sBQavZLGM7ZPKdm0fq6GfN7NBWsw3XcK/2zbPaGc29TGSYeKJ+8iBzyUFbu9pFw2b+dqOJQuhN+zPqSN52yvI7m50MhZ2hc07Mv2bdlUX33s3hGPqRT7a/qr6V87ZvL6679bkOrK+2C6n7E5qVR7OR9EY7fGIOn11PxRSNftfz8dt9uabdwZNjPWjmllmWAmVb+BkXwcLVo7qt0HUnGdNtcs/T2TVm6NbGPrj9ETKWYeMz9T1mMYE273HLlsztfU+h6ltmrR+oNSnzVzpykb/u42h7R+w1jn9krveliuX8/HcdrnqXu/IqHNi+nbS7U/3BusnbaP1yK9Q9LoOrDVi03T4cffWuLH31rCug6vf9Hi4dUcD563OF23OF63WLYdGtehuW3LGX+gicH1rMGLhcWzxQxfHM3w+HiGTRPomvJ5a+O0WFevLfBX95f4q/vLQVlNXlUjQ8mvLL2j832k/Iq7yiPdFdq+S3nVUv3+PWms7v55SR8evkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJC/cThr8PnrM9y8cQx7zgMtCCFpDnukLSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxN4OErhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQX0lmX7UAhNw1XdclP9dg7fCcImOMqs+wXHy967rdtfCzRtbc/fheStac/FJb0nPl2hvTT65fCUkezVyU2grraJ9Hqi/1k5dn/79UsVB3vF7F7cffc33H9Wr1Px77+F+p3xLh+Gv0I6ev0jWNDKn64ZiHMoZlUuMYt6kZo1jupml25ZxzqnbjPkrrtzRXYb9SH5prNfelMlqZU3XGltfol3bPyF2Lr4dzF8+Bdvw0z57TS19fu8ZCG1WSUzMGqf60c58rF65X55y4fkOkddB1Hdq23X1OlSs9k/Rdey8lfyhHOC+xbzIGyQ6G1O7DNWMh9SN9DsciZ8/Gjoev6/WgbVtsNhus12sAwPX1Na6urgAAz549wxdffAEA+PLLL/Hpp5+O7lPCWoujoyM0TbP77p8tp+vSmDvnkrYg/lyj+1KfzrlBHefcbmw17Uifc+h8inE6KlHaW32ZvmxDv/AQjNkrpvatsR2pWGr7tbv9H9C2DsaNs52pfrQyS/6w1o7r+pNjg/jzFPulpbaP0G/23wc0BtYO11bN2pXsmnNuZwfjOqXP/nuNnsd6FPvti7nDbHbZq7OYLyCdmazd34wxaNsWXefg7ZQfQy9/OEZSLDjG3w+v146VcCe4L68Xybc+lE2U0Ma7OZ8mlRfqnINz/eubdgO72QzajvU9Z1ekPdW4st8ltZvTg9J63+pkh/BW16VtcGlfju9p5CrNX7ofORaS2qkt5/300NeSykr5gPB6TkckWbR7oEauGMn+aMc01WfcnyYXo6FmXHyfWh9Uk+9KxZLS3IZthXZ4qj/g+8vpUerZpHZyZe6C2n0g50OEjMlrhPdzOTkpJ6vN09XkVcbu9bVlpT2lPD99PwbQ2bRYntT+p5E71Y9Gpw7hf2jW1SHaHVumVE/rK9Rcz5WN14gmRyUxNg9Xq0u5a7Uya9ef1p/S9FPrq43Jy9yWRlzcGNvLyfj7NXFjLNuYHEjqutZ3qPWV0jYhEa9CflelJVxXU94haXLrNesmlKvp9vtl12EbU2CYb8jlbOJ2wzKp/jVyS21r2tX6FpLuSD72bKb/WZAmjx6iyWOm0I7zWGr8tFTZ2B8LfaxQr2J/Pp7vphn25ZyDS+QsrbW99Z76nHu2WGbNXhPLJlG7b8W6r1kHNTGURG0ed0qZVL81eamxa0ATy2vr1/i2uT5L8afU/t6Gd4AdjpO1NpkfLsky3Lv2vkLtupCYWsdaq47DbHJsTDL/kKpfkqXUf6otbe4zvD7G1835EX787mr+wiKSP6Txc+I+cz7ITiesS45Xaa6nruVcfY3vIdWpySWl5Ep999fG+iGxXNqxy+WUc3Wk6/u5G16rbU8qI+WStD5oPH8pm9Q0DTaKec31OSWWHpvTDj+XdMC6TWJd2t5vLQZ1Euujdv7ivL/Gvxp8bzoYY29l2u+TKT9Asv3xGMW56THx1JR4IByLMf5f+HXrb9TZ82F+wiT1SGtb7to/mZoHytUL8zLbvm7j81G96Prf9+l/H+L73utErBZeZ3LvXVK2xBg32Gs27QabjRXjt5Q/KvkB+zjTYfs+f49zLdDm9wWND9C2bZUfk9Lj2py0JM9sNquyg9p3GfH+7D+nfBDfZnP7Dj7sZ7PZYGP6fWrtg7SOD7H+UtT6IVNi0s727SaQtnk1/U8Zl1yus9a3zPlIsS3x8aT22TXU+KDx91JMlhsjrV0ZE2fU2ov4N8zh5yk5ixz7tvXtan3nXJnasRnLVLtTkrMUD43xf9J2Z5xfVUP/GUIfAbv8bU7Ou9LRFCk7WuPDxtj58O8iZrMZmq7+9+MxuXySBv97zlwsndNDyX9oTYvUutfmMXPU1pF8QyCMucu5hBqZJDs2Zh/W9ldqe2qeP9ynap5jSi6p1Nf+Xj7nkLrWNLao/+m+8tTmW5pu2La1JtBLs7s25R2w1lZIdljyL0vjsr0dP1//PUSt7dKWz/2msRQ/hn8zGren3Q9qdf9l+S5aXsZ+K/U3tm+tXwXg9ncPKd2M4tpRkpApjPe4CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5GsMD18hhJD/n71365FltxL0FhmRVbv2ufWRNGpdALuNAQb90C9+MOAxYP92D/w2jwMDBgz4ZdBttdTuo9aR9qWqMkg/ZDGTweBlkRG199Hs7wOOdgaTl0VycXFxMSoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8k/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJHMn1sAgD1477PPxphs/lJ6T/n0u1iG8DmXFj6H8qnsab05GbTy1+TKyVgjbrPVfg7nnLqduP54LnKylvqqeW7JUaOnrp666zp7+8+Y21hN0ySTn4ry1WSNx7uk06WxT/Olbbb0MNdmbWw0fdLqpmb+tHqoqatWRrs2eqjNRSCd95xdOwprb7/xVmrDe58dC+1caXS0p75WutZGpO2FPo7Yo1KZ0hzn5GztT6P2aWRN5tZYy1616k770jtmo+uxVq62/tLPJeI11GqvhqacVjbtHqHN02pPuz/EabX5b417OuYxzjnVvIZna+1q7OP0ZVlWcp3P52sbd3d3IiIyz7N89913IiLy/v17eX5+rsoeSSQiIm/ffiXffvuViIg8PDzIV1/dPr99+1bu7+9FROT+/l7meb7KEmS21l7lCt/H/QpjlY5Zyb8o7a+qHq3q3NYbZBjRJc3+3rdPXso758R4c/3cqi+3P5e47g92q9OxDpbWSO77EV8g1f1ev7EkQ803idvJ913E+365RqidC3vmPHzW6F68Bi7nApFpsjJNtzOB1mfV2MRcmRYtu906D2/92XXby7KILP3zltqqkr2P7Vtp/0zte0zN/4z7mLY/TWabNs8ye91vJtfG/SRBR2555nkWN03FMoERP73kU7T22FyZYFNv/27bqvW91mau7T1o9r3cc+2zc07cZMV7tymfm4fYv0jHvmZPUkLbR54TW+eG0GZurFrxs1KdAY0etGRdp7XHJd3TWn5ry1a39LSkfzl70/L7W9/nZK7Jl8YFeuOdtfnPldPGIXqp+SCavfcIW1Pbn2p7VpAp9vPTsnFaS9b0+15bqx3/Ub8jPnftkSe2qUdQW+cieb3S+BtHcWSdx8cZveRsr9b29NxPjNLjH+1ltK6ROW75gqU1WLLVWv9IE6PN1dGqVxOLKO3PLX+kN+YX16mNi+7V0VasuUYrPttrs7V7f/zZZmIg1lqxdutftOIKvaT6GY+lpr7Up43nvmavNHcK3npZlnW58/ks9lzeB0t75OgdQfp9mqaN1dfWRDlmEOIGt7OjFx/FhnyxnVjmdOz37oux36WpS9teLPM0le+H9/ieR+5pvWcxEV1cJqVmr7X2qUfWm+7ddDa3XsMZ11i/iSU558Q5s9HP2MbEn6dpWsXA0zWnOQfV0nvOWTWO1L14bNJztbYvmvhLqc5aXETb/pG0/NtWu7nxa41J6bvWuuqxoSP2VmtX13tEiC07cbYdC3mteYzpubtdy3f7rjdG1suo/1by02t3IiX/Kh6nYozf7o8H5mjdL6XyfU60cfhcfpHjYlmpDS7JorE/abyqRLw/7vHhNHtDmqZdY8V8Gd0dtUE9ZbR9LbeVOwe1/YlWm3vOjL13CCmaWOHkFnHOS67qvfGKVIYStfNorc9udtFa8dd6Yl9zmvrtZo+trZ0ZS/luDenXim5vPGbdiYh4LyudSPe2kXhXri69PPW7uJTWO2m9MsR+SrALIzGkjhavbVprxb7o8eREbOTzeR/0vHyOTtPD/N2dnEzTh9X3p/kk3tvqGqw9Z99vskaMiefDizF2c5ZMY3wjPk/vmTu0tZG5UG8tX8lXbFGLh6Tfa9ezXW5jGf6d51mWij3U2IvanqKNJb7GeaQn9pQ/n8cp7nJm7nQXazZRG2ON8+6xJ3o/rr/unthazofJrbc0/RIL8kldOh2t7RWpXdkz1hqfvxWT0uyjrbbreY6MX2zjeZsc1/T8GTpea7rubmPfObm1fkBM7/vmn5IefczJqPGXjMn7Dj8ljhn/4/zitJ7c537fUr83xM+5NqdpEsm8mznPJ5kK72aOnNnicqN7/mUeROL5udyHtv0+bRy3dibTcNT6H9GP3N5gMu+SpOfnmNgfzsXdc+8Gh7qac2Hr+2ew285d/ovzPD+f5dm7jVya2HVtTo611/3rslhTwdfpqaMn/3XsrI/W2YX0fYPSHO49v2vPb5q4Uq2+kpzafa0Wry2Rk8UYI27enlvneRbrxvXyqDvxwDpWdGTMoh37OjZGAq/F/tsmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL9C+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+CLhx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgi4QfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAvkvlzCwCwB2NMM4/3fqiuXDltXdbaVd5Qd05eay+/geScy9YV16P5nCNuP3yuldH0s9W+Ji0ej3RsSnKWZKvJ3NKTtC81OVt1GmOq5bXyh+fLv/F/67pCvpyO1XQ6/pzqnka3SvMV61irjtG1OYK2rVLe9XyUKa3jQFjv6edATVdadaflR8Ytp/+pLD31lmRO10mrzjh/SfdyZUqk89maV629K81fOi8a2VptpfX2pPXsHy1KfRndr0r19uhIWkbTprV2SJfidTxiO1v0+B01NPYjoBlrkYtsubwlO5LWXVoLrT1Ds25zttB7v/HPcvlr7Vtrr2NZyxfnWZZl8/l8Pov3Xp6fn1fPIiIfP36UH374QUREfvjhB/nw4UOxn2Uudb1//07ev//z5ts3b97IL37xC/n5z38uIiJff/21PDw8iIjI27dv5e7uTkRETqeTnE6na7lpmq6f47GI5zKd19a66tGBW/25tOPPBLEua/b/W55t3niN7t2re8jZwbjNlu3I1VVi5DzSoseWGmPE261dstasdFcjay1fydanvkoYW61N1crhXKyXl7RlcbLYZZVfuwcetV/VypR0Prd3p8T7cyg6z7NM3lb3mxGCTYvtWytvD6mObHR1yqRZu9HfUL6HyYX2b2m18dPoTW1eS8RjnObP9VNExNuQ51bvNE1izlURN222aMVlVjJVYhTa+EUpz3o/ufkV6Xw9P5/FvvgRgZz/HNKcc5t5cpMT79fpzi0ii7+OR8tv6tFFzVkpKSHxntpq91Ptqet28n5Cut5jvUrnMnwu6V7wXzUxn9y+nvNlRs+ctfbS+S2dGTR+gCYm1yrTKtvaJ+Nxq8XPcpT8K20cILUDNUKdpblICbY2nePUBufypcRjEc45RxDLn8qVG/+avjjnivZdM8Yav3lvHK/Fkb5OD73ntKPbzLeVX5cljtLLNOZXs5E1uUZjq0fS026QNxf3GomfpXVoyx/ha4zIUYtZaOpr7S81farpitZ/b81VLqbX6+P12tFS+Z6xu/yXbycXKyrVN3qeK8k4Yh9zOhZij7l643hjis/EoXKU7qaOmvucj9ny0XrWW8tvjc+MRmKduJyr7ZT3leP10hvfr62j1J/S1K2pN/eckuqSpl2tfS7li/2ulow9saB5nqu2rKQXmncuSja2pAuttJzfOU2TeO9lmi5zEo/Rw9u3Ms03/d8bP275Gq04TuvMeIRvO0JO1ppOxP/W6qrVv5eefUG714us/du9sds9dijnR2jq1LRl7bZta43Mc/u1xpyOTv5SPt4j5nmSpRCHDIza7JwP1nu+r+dRVdU9vyLbM2/vmk9tpyZ2rL2fysWY9qyznnuxI8/BPfcZ3ntxixfv43kw4pwXycxN2sfceXjPmLXyjuwRmnlI398o7dXx99rzasmOtc72tfK5+mrP2zpvddfkKMXCtOfgY857ubNZ3rfuPV/3yyLV+mvta+c7MHmz0d3Uxxulpi+pj6M558YyHeXH5fzVEb+zRWl9p8m188Br+HgxlzrDGNzSNPcfOV4r7lqTRXsvOu73eQl24aj+be+aJBsnukqg1JmaHl/Oats80zTJ5MbXfvauYxaRQoznCDujqTd3lx/O+xpbMnKHtjcmnLON6b14va1Qzzpf2Rb1+QmpXejde3raKVE73/TbrHVdubpfe8+P2WPjNe1t59xk9aBXjlr5Vnwm/py7U67pqXaOcme7kXW5dz/Wlsntaboz9jpeMCJPbx1RyVUd63h5Xz0j/seR75qPoNnXwrti2r1bpB2/rflrpXfWjkDT388Ve/3UpONcOs/u+XuH6j1jNva4PdOV7GXpXbranqK5qzgS7X1S+86tjjZm8Vr91GCkfQdZ802naRIzTWJM238tyvCSN6dnsywyJXeX9/d3IvNlnXwqu/Aa8QOR8vrW6k6N/fes23OA97fdWXufqo1Dar/T1J3WVdr7NHd7vfF5kbUdL8Via+Md5xmJ9efy9vw9fo5tHy6yXd4vyO9brTZaa6l+nijr1ee0qV86rxOVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiJw4+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBcJP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXyTz5xYA4EiMMao0TfmecgHvfTbdObep03svxpjrd5o6S/JpZS3Jt/d7Y4xatlwd3vtNevyc+1zqc2ss4vKlukp1pHLWxqPVfqne8G/QC//0LMuyyLJ4cc6LiJfz+SzOW/n48VHm83nTprW339Uyxqyec7LU+p9+zo1fSiiTq7+kz3sptZF+X8qX+xynhfkIY9latyXicrl58d532YRaWopGz+O1XNKbnHytdVmTRyN7sJdpe7XyNRuR04dcm9r2cvWl49er77U2NWMW06OvOf0vtd3SKc045+rVfq/Rg5osuT1Z02Y8nqO2YA85uZZlWT2P+AXaOd+z3mt199ZV24dybYS9tiV3XG+6D5TWYm0c431jmqbr59PpJF999ZWIiMzzLPN8OZa9efNGvvvuOxER+eUvfykfP34UEZF3797Jn/70JxEROZ/P8u7du2bfReTaxsPDw/Xz999/L2/evJE3b95c89zd3YmIyOl0kvv7exERmabpOl6n02mzjkJ/Urva8sdL+0tKbs+0ixdj7EYvj9SxXL1N+ScRa8O+dttHtX19bdIx0siV2rc9Y5myt66avbp9FdZnv61r5Y39wpyepuU05yTt/jQ5f9W1a9pkr+uxxMi5JXxfs309djiX3rIXF90N+bd+hnYMS/Ln8sRz2vLBSn5Tqb4a1rhN3vPzszw93/b49JxX8rXK43LLM03TSm96/TVNv0pz3Cq7x3Zq7UsqV49Pd0SsKPhuOV/jGgt4+ey8l/M59vW8PD8/i31+XskTzv49cbE03dpJpqk9/rUzUSpTq93Yt4zlvySbq67H58dWrKHVnsb21b67fX3b82txsNJzLEurjhIlW5bOgcZXqp31U3lzz4HUVtXq7CFnazVxKc0eq927Q99yZ8eWPvbEEnrHqNeG5848JTuoOf+9ViwkJbc/tOYi0PKV4rZzY1HzD/5b5Kg+5nTDObeayz1xlR45R+PQtfhlzXZo2+85n7Ta0OQv2WhNTPoIH6g3b89dwp59tNdXSGXLPeco2UhNTLKWXouLjNjh3phrrf1SG73yXXzFuk6XyrXa2RO7PlLHc2mpr59ijBF3chsf/nQ6ifW3tJKvotW9XN4auXHP1e2cK/ptmna3fvbLudds96CWrozsfdoYQSprbW/J5W+1W0tvtTES6y+x56xf0pVW7Kn0Xa6tWN9aMsRx/JpsOXJ+592d26Tf3Z3kyP+frNY+2JrjnNytMfupobH5PYzsVzVfK04v2Yk0XeMr99zn52TrReNzjMb2nN3qXKuuXh823hNKZUf8ylLedA/XnodSXZq8iDHrsYjju0ft4XHdPXVpfYpazKy0P+Zsb5p37Y96ETFRDGcrg3m5Y/kU9/zafbvX5vTqqSYu0tNmCY1P1XMGKD2PnI01vlIa/9kzF5qyObs3csbKyTSyj8XU1tvkt2tsnk/iTvv17LXp8TXT/Ln3RZxz4lyfTrfmYyQmFK/xkTtKDfEeFtZHbyxHs66z66gQD/hc72Jc+qi/r9DVV+fouFz6jtlrMxJHK/kXxphoPdbOeHHZcvyspcfltV+3+7375qXOtJ1FZCnvRyP3MZpzcSzX9V2twnrridlq2Xs/oY3F59Zt6+5xz/68x06U6tPEmFp15Ejrvdm9tc73+kE9schaPUdSjeNNZnMOK+0/uf2v5w6plS83diYEQpN8mvEfuTfoRRMLSanFUkqM+Du39di/n8d96a3jp3LH3HrvMU0fQRMLrp3Hcvtvq+6c/mj78ZrxAW1871PEKFZjN8XvHV78pVEf+8hxjtsfGZeaDfSvdK6orfncWa115zG5fBxQG3/VjFluHWrvpVpnviP27157OU3be9RpmmRy67vSVv0b2TPvYabx3g1XPVuPU/68UB6/I2J5LUqx+MlvfaBpsmKtkXjoNPY4tc21c16aVqL07p5W95xxEsb+Gnaw63ntjbcfHZ+Px6VmY3Lx8bi98LdJrXZ6ZOrNd5FzG6cPjLwnWapnR+HVo/cv708p7m+038e2ue2v9935w+vz0/hrMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBPDD++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8k/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJHw4ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwRTJ/bgEA9mBt/+8HOedWz977TZ5c2h6MMZu0muxx+8aY63Mqe41SH47sW1yXpl5jzGoswufWWIS647HIjWlOjrh8qVya1lN3q0yprbgvNWYxMs+zLLO7jtM8z+ImK2/e3Mt8nrOyvQbOuav8sS6mfa/Johmnkl5576/la220dKTVZg5r7aq+aZqG6gnUZGvVnY5BTz9z9cXE8+qc617jMSNyldozxlxl09abli+VK9mfVMc1dqhmO0KZmh1Jn3Nt1tqp9bG1J/Tobq5MrrzG3ubK711HufTWXp+bB43O5PSnNceB2p6e1quxfdq6c/Wmn0uk46KV57V8kh5Zcus1t5bjPsa2ozbXadth/ON055wsyyIil318WZbr8+l0koeHBxEReXx8vH7+9ttv5f379yIi8vT0JD//+c9FROTDhw9yPp/l+fn5WvdXbyf57rtvxBhz3Uf+4R++F5E3IiLy8PAgd3d3IiJyd3cnDw8PcjqdROSy78zzfJUtlI/rSvfBeGw0trC0twVa83cbU7db70aI9SLdH0VEvPWSNlfae1r7zmudTeI6gu6NlI2fS31s+bmf4vwlEvQzSS3YjZw/W7KLsT63dDttp+bPamy9XZw4F8b/kuacK9p97dnpaB2LKe01pTNEOl410VI7m/vcS23P2sqWb79UX2vu6pKNuwAAIABJREFU02dr7UrHevftWM60Wxe9qduoklzGmGu+mhzpGMXpYbxaMZ1gc9O4yMnOqzwlmdN2c2m9ZVrppXmKy4R+x3tK6rM79xIDsFaMkeJaKOlhvHen/k1oyzl/tSUt333PeWSEWK6W//0piG1UOhexTqek/lIqf/yssSO557St3NrTzF/J3pQotdFaN1pb2EJri2rlS3ahtS+2+lJqrxTPqfkEmrprOtgi2IpwHkjl0PhtpfNQbNc08fhcumZuUztR8n9acbCU0vps+X+5Olv7Ta7NlJK+xONd609vHPFo/zy396f7Vni+nkntJMbYlU8/T7PYue88Map/gVpcsZRfQ03m0nxr1kicltOpeDy09i7Uq4lj1uTp9SFy8ZpSm5r2Nd/VYhy1/VQbj8yhzRfms+e8/Rpx1pT43mjEf9bIFfa6NP+yLOJc0ItkrpRmrGYfY18uJ6sm7p5+ztUfP/f6YZf8oYxONzQ+SE0ntGu2Re2upRaL2sojEs+/EbPy2ZdlEb/0x441+VpUYzyFfb9lt0p+d25eW3PS259SzCD2JUdjUPHZOE0r5e2RP/bhWn5D63yXftbYstp61/aj9zxc0+PaftFztijdZaXPR/uWGnp9Mq2s2r2rllaSrRYz6KW0XnvP8rk6WpTOLDU5Sz6qc05EoZK587Nz8Vn5Iv+yLOKsbvxfg5E5vvXNr/bouM/XOGKhfI5amRzBduRssDZ2EdeV1t2qSxPbevm28HyJ6XnvxYhR27o4phfHofb6BC27ayYnxqznZ54nsW5rd0fieBpqe3rJ79DGcUbOB5qzZW/5ms3u8aleA73O18uG59HYfS6mEp/NQlPpnZN279Owd8z3lD/izkOz16bnx5G7gridzZ5ovDi3iIgRY/w1T8hWi0OX1km65jXrpJRfd4ZY382kPsLninmK3OxJeg+kjcEdoWefmnT+LqGJuB+XWEVpb9gzX+u08h3Puqhf2alWzCZOWya3in2JBJuXG4dtLLPGOo47ibVb21mLl5RsRe2c1or5hH9LtkvrQ9XimC1b0Op3Ka0VK0jTrd2ORezz9aCxLT31an3uWrws97mU1rLb3ubbGD1DHXn+1NbZkz8+Z+XWgPW6u4Aj/aFc3be46Db9aGo+fIlWzOhTk95PruPqF3rONLd/9XXkvgt2R3PHG3yio0jb3POuXavuUWLd04zVa/Ka/lzv/pq22RtXCc85sWvrvdTP2vsTubpa/S29I7b3bB7vZ3ttWko2tjMYr5mcbPzCyzv+9buT9I5l7z2XJpY1uiZfMxZdqi+e+5E1E9dVu98zk3mZv1sb0zSJnZK4sMv1s+99fK0e9+rCdr/ycjvjrfPF/WrGO3ecDXuprlnb9m20crXex+mhN2ZyBC2b2BODLY5n5tyV1q1tJ7d2w1xq6ijNzcg+3Ivmb1Zv3HzNaZpkmhK7/tcXRvqr5/O8sQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwmeHHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCLhB9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC+S+XMLALAH51w23XufTTfGqNJK9aX1ltrRtNFTVyif1qNpPy1TqkszDjViWUqfS2XCv7EMuXJxWjr3pXa899d60zy9+lD7TqsL/Zjov1vK4a0UxiiXJ/2cEtdhjMnOb69crfSWbLW1E8tYypPWU9O3+LN2nWnaT9su2b8WQa6WnUzlr/U9ZyPTMc59bn2noTYXGrmWZRluX7vuazbxiDUXf5+rL9aVUj3Wrn+Pr2aP43GN13f8XJKlJX9NxlqZNF2jF2m6Ji1Ob+0XrXzTNKnai8un8xSXfb19KK/Dmn0/jEPLLms+H4F2/nPrKadXLb8lzRvmPIxJeJ7nWc7ns4hc9OL+/l5ERJ6fn+Xh4UFERM7nszw/P68+B/vlnJO7OyfffbeW62c/m8W5u2u9p9Pp2t48z6v253m+5gt6Zq29fjbGbOamZ08L/SvlL415vu6tTcqVM8YU10xMj09Zku0yHs2msu2laMei1G5ubuJxqJ2ftH5Xi1xdrf4csd69jdu92eB0rfbY/FF6fOWWDOu1J9Gc33S9tPft3VN7aJ15w9i3fMTWPvDae148lqk/GfvhvbGBtN4Y55yczbJZn4+Pj/J8nlZ1hH9j3bbWqsZPM83OuavN8N4Pnzm0NOt/6X5uzGKCzLX6RmxPyy72nI1i2TRnAGvtJZ+1YowVY0IZs9qjU+L0VGe238d9bMet4jpLz3F7ufXeOhulTebOGHv2Ea19zq19kbD+w1xe9uEgd098McgS/LnWOarU55Hzl2YffC07Wzsnac5Zrylnbr2k+nZUvCtns3Pf1/qXfqfxezX1pfuVZr2lYxTOGbWzbM1XzH2unfOdc1n73zrPtRiNF7Xmonb+iNvspSVvr43SkttfapT26jg9fHbebWxsLhaVfm6114qztMYvt9dr9/m4Lo292xsrzZ3FW/tzyb7l0jR9KbWdkptjrW83GkvS2Jje9JSj4lxpPbU116OPR/CasbwY687ZeMclqd6uVvfS9FF/uJa+l/qcbv2Zmiw1P6fWbiuu0RNj0spWkvV2hnDR83YuW/aq5meWZKmll+z4yH5c8/lzbcb2Id03NWhlrvlm2vy1/aYmW+/+E+qtndNz7cd+ZhwLCrH54H89PT2tYvXxZ2ut3N+L/Nu/3WI31hr5l3/5KI+P5hqPD/H5+Lwfz2Uct9eu8Zg4dpSuqbR8eneVjkvrXN/yH2Jac9+yN0fEAlJ9au39PXr3Wj54bxuadlo+8J59bZqm4p4a2y5n3Ua/53kWs6znPufrxGs8fF4WJ875l/hXyH9rP14XJVoxyRxpbE4zjjkbFbcZbFDJRufWbamdnJxaSvtQ/J3WB+iNadXKv6Rsvr+Uie3IbU5ivdzYQb/1t43Jx2Nze1LLl4qfS3Pq7pzM88co/2U9WKeft6PiWL1lRuYzlz5qd0b989b+OCJXM6/d5qnF/gOac2rvWKbnn1qZyV38mRiN3KNofcUctbNJqZ1SG7nzZ+i3JsaT+1yKteTGsnZOaL3v4OZw92fEvtynx3vUNE0yTfX5y9nhnM6UdCnt45herr8b0Tltu4FcG5O77AtBJu/XupA7m8W0/Ime+HLPmij1fU9cN+iB96ksbZ+hRTu2UP5uW+6m83G9pTPiOmbvNvp+Xs5yPq/Xfxp76N17b3ePN6zNr83ePWqPL5/OV8nvLM1r65xRigtoY7Kt9Vojp0c1+1TTXW3be+aiJcOe9lr5tmO1viPRzv9oPCf3uVSPdu1pdMfbUjy6rtefk9L+fAS3uFbfPehPEWut+E5fPPRrFXut1JH1iabye57TNIld8nG1q+2dzNUHCUzTJFPlnJiTo2VLRmIhoxTP2ZO5njnS/VUbA2mxjpHk/QNr7bX/tXb3jlHuPa8Wqa7kbGzp3iLXToiZlGQo3b3U5MrJIyKr9+i1/RppJ5U/lz8Xi8/xWusg1795nm/vDL5grVXp/t54W6m+1IeOZYnvLbSyaeh5z7Kki706usk72U38Y5qs2KVud2s+ZumMK2Jezub1edbcodWo7QOxD5XKZjI+0DRNYmx+7Wn8vlqcI9C6x4tlLul/ye+L+3lkXCveOzR/u6Gpr0SunZhRv7vWVqneYlsv9z4xrXXUQ49tKeV1p9Pm7H06ncQqdDRFE5Mt3dPM4hKbk39P3LzKX5RDjdeJegMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8xOHHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCLhB9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC+S+XMLAPAaGGOaebz3qu/TfPFz3E6pzVI73vtieWOMqu5WG715e+ppldOOb8AYky0Tp5fGJB5L7/31v/g5bbfWXolSmRGcc8Xv4jasW8R7J947EYn7dOtbqi+9pGOUylGqOx7z3Oc0X4la/nTMNZ9rY5tjZE571/vI9739yGFt/jfWaroc2m3NeyttLyXZY5xzXXLmKOm/tr7anGn0tSZXqe3wnFv7vfMT11WSIdWXWpkeavujZu/N2Zs0T65sXD5OL7VZ2m9qfRmxK0es+ZQRuXL7c+551A62aI1DS8dH9apXFu1YhnzOuWt9y7LIsizy/Px8fX58fBQRkQ8fPlzT379/Lz/++KOIiHz8+FHevXsnIiJ//vOf5f379/L09HRt6+1bK//T//hbERGxdhIRkf/8n/9FpumtiIh89dVX8vXXX4uIyMPDg3z99dfy5s0bERG5u7uT+/v76+dpupSfpknmeX6p017HeZomsdZe7bTGDtXGK84f2/64zcDktvuDtdNVZpHbvFlrh9ZVaLO2h6bPZjbX/KGr8zzL5KeXtLLulWQ0xjT3QjPVfcDQzrIs2Xxx/bl+9fpavXvd0VzarLdb2x/idM0et9cHGSl3yZPPp/GdjqSk1y3fqrW2VnNhfZLfyzxP2bW1OkNd16Ov6m5O5to+UkKzv6SyaM6WsR3MnYXjPSbuc1rm0m8v3ut08zV8klFy6zo3bkfKrDmz5fzJ9LkW48npZcn2XMpKNH/+ug/n+h3vg7Fe587Zl6+Dz7tus8Soz6w9c136OtZmWleJnO2olV+dIayIMXaTt2Tb0vpL41TTl1o/tH5wjpIPlpOzVV9tT63RO5e1WGlvPEa7fks6krPrWlmOosf2af2EEb+11M6yLNm60rnTyNYzpho/vhTvEGmfJ0b2nPScU5Opl5w8o3WV5qbm/9fOHLm5SMe11kbsB1zbcYv4F90q2YtaTC21nameHk0pppaTJU7fS2m9adO0sb+WDz3C3ruO3rZE6meY0likcubWdmvfyo1fvBZqe/0e3Y31suTXlsqV+BR7X/AV0zRrtzpjrRU7je19ue809jo3lprPe2IL2jV6NK12SzHDo9sPa+TyGNZdvWxp76itV61MR82rSPk+pJQn/VyzTy29Tj+nflNrj0jb0MaFNZT8thGMMauYck7OXMxZROTNmzebcUrtd1zm7s7LN9+8W9X9/fdfy9PTNu4T7y8a30oTX0rlyqW3dLZ2ZtS0ozmv5nSztg9r6Dkz98hdk+XImHGvLai1tefclfpKuXhTT1ym1V5KqhOlM1Uqy93zIqfTSeLY4ul0EjfZVT6NLPFaaPnTJZ3QzF2ujmmaZPL5eJSmvt6zfK2Nmh716r7WfqX7fg4/+c34BBt+S/cicrH9NT/x0s4l761cuy9pHel3NVuRW0u32G1exrSukg2N0zX+zhE+/2v7gK/FyPl9hK3tiZ9f1mxl2WrszQjOObVdqunnUfSeZVq25oizUS5eoYlh1OxYz5zV+pHG2/JyhnParYz1Nxt11D2zNmauubdIvlHmKxPmKy566fsk8zwVywR5b/6Az9Rhr/dyOdsf9zc+Z4xQKz9yZorj4bnnWj2rMb38z8s3F5/JGrupV+sDtPyOXIxovfdt64vvTgMt23d3cjLPH1bpb+7fdJ2RjqYVfxiJPeSeNRx5ZtOUrflQrTNfK55RK1t67jkPjerInnk5or0Q86iNxajOacrl4hIj75bWKNZXMLc1+xS/uxPXnZbZe9d4ec77Fj37TEuOnP6V7iZ6zo8ajtTj+L3dOC2Xz7xk2473NuZd249G+mBWe6mItUbmeRYX3gezJT+vfCbVxo1qpDq15z6pds4q2/Hb93vabpVN94vUx051qPSec+v8qInflOLAtXo0c709T9b1SWvrR2O1LT3Zs2fn6iyt2akQJ4p9y/AefQ9aPdjsj24RkTAXl+/i9/VF6v65pv2SLCVK8ab0u17/MnevopEl5999Sn+8l9zeUNrHtTGGlJpNjcdME/vpGUutvU9l3UNJz3OyxLY8fI59gCBKKx7XS+ldqTHfII/3vuj3aeY7JvVhc4z+Tc5rc0Q8exvrfLn3Vfa3pO+amHK87i92IfVBTTaWAZ+WT/vXOQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EfjxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgi4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IuEH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAL5L5cwsA8LkwxqyevffZz2k+a+3quzhvrn7v/aqOkD9XNv4uTivJlpbNtVMrU5K5hqaumoyjdQZyMhpjrunGmNUcpe3E8zIyRqMy1vKkcmjKx6Sy13Q7l5bmj8eyJEtJ9+P0VJ9LfWvpbo/exPVox1G7pkrt1OrTyp6rb5omlV6mcxGPt0bGtO1pmpptxnU451T5a+TW7BH1lqiNTa8OxeOf6r+mrpKeae2xdr2U6o3Xe/p9rEvxHMV9rOl7bb/Lpe9Zb7l6WuM/snZybfdQ60tYezUbXhrLOC1eO7n5LpXPzaV2rbwmub0klaHHz+kpX/InAvFY58bPOXfNsyzL9bNzTs7ns5zPZxEReXp6kufnZxEReXx8lD/96U8iIvLhwwf54x//KCIi//iP/6jup3OLiIh8/PhBnp4eRUTk+flZ3rx5c82zLEuzn7FexG2HsvHcxOtOs941LMuy3aPcIq1qQn+cc8W+1WxhS86SDqXFnHNinLl+btHaC3NyLedFnIvTfXEvyJ0z4jEq2fBAbk9oramW/EdzaX87t621HCjtabXPrbNg+rmWb6/N1c77iP3uOU+0zhC55/SclrQUtZm3TbU5qq2/nM+Ql2Hdbmnd5OrSyjXPl/UYlz/d3YmY23obnUdrvYgYec2t+zXO0+s6633XrnORtk3uGdvcvpFb1xq9DHWlMYuwx3jvXtJFzuez2PM5G0vIratYt9YyefH+lu7cIrL4a/7esdbYzhrOuZe8eVuRfs4999KKUeTs6K2sNP2Slnw98Y60Pu1YlPb43jnS7lMtn6IlS1pvaQ5aPk+LXv+sdm7XnMVrjMavNLbvqFhv2l5t/MJ3qXylMnF6rU/aOFHI16tXaf74zFTzKUfmT+Mna+xA/NyzF2rtxd49UzNnuTzXvthJjFn3a7KT2OlWJjeWWv9by54Yc84mluzv3lh2XE9vrLFXD38qHGV7a2eYWnvaeNweuQI99rEnrqHRJ21dR9Aa4/yaEonPjXG5PfLFPmFcV0+cP+ebp3Uc4c+mVQSd7q27ds7fy2vMhUg+FiQmHvvtGm+tgdoZr0fm2nMprbe9Xj9eG4fKjVH6r+Y8kmt7T/9Ka2qkrl6dTM/Vqd2v9f902saprbXN80Y6flW/qVBPbtx74pbacRrdT6y1K53S6GhrLrVxyVreXJvadazx9UtnpnRu4rHZE+fNxVN76I3F1Oxsrf14rw9NtM7b9e+cpD7CpW69ParFUDR7i3YdaedlLbJp9qUVuyyla3WrHNPP19tzbtVwvXednFi7ljncu9/SzTXd2Hr/JrctN8+zuM73aLR5cmOf8/Fy+Wt1lPbLnjX1mmdojQw5O7i33ZJdOjqW0Gr3lt6bvz+O0EtOd7bzso0heV9e43tjlHvP2UecbW/nzzStz1+K/83peyue1nPmDzh381+Nuey3y7KIXS7j8vz8LE9Pl1hozm+9lCvHUXrnp/dssMePi/OHMV8PkRfvnUSh4CazW9dhTP4djSN9gBq1uSi9A1obv9w9eFzPJoYscTw+fHcZD+edyMs7KSU/oBTX0ti7NN1ae3lPJxMryMVKNGfLkv7l4vKjenmpKBPf6Ky31+ev+fl7z9+1/XWPTdass5xe5NjKUX7fKuTvjYXEzz373B7b0HOWz7Wf66O3+XHdsz9rbUIr/XOQi1PHhPvFeHxK8vfE/UvPG7u8c6w0+qOZ+71y1OxrK97Sqk97f5mbH41dLM3JYl3ynueLvry8o5P62d6H94/NtZ7UTp3PZ/HnY8/a2nhjjdG4Xpzu/SUOEppL9/LavUGO1pkvvZM2xqj/niYnfy+t/WrkLFgf35u+hbG++cv12Je2Ha0dSPuu2d8/BbGOjcxpzadoPd+Sbj5nPE6aGFspXpnOS83G9sTac23mdCj2VaZp6tbxnB2xdr8PJJKxfy/vq8R90d5jaImLp2uwJmu+rpvfWZJRP05xez77OZW11uaq5oIPPXJ20IxLnGeaJjGTycaSWzHjkbbjfHvtSI+Ot3Q0Z597fbdw/g6f43pWa6lwluj1zUbQnP9Denr3UotjpHXHdWnS0npua1ckjbl6f0zsCPZxrLcNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8FcCP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXyT8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8kcyfWwCA18Z7X33OpRtjxBizydNKC3V471f1pXXHafFzri5NeznZ4uec3LV07ZjV2ivVnatXU3+tfK6u0TprshtjVPqTzr9zTkRElmW5pi3LIn/5y1+uz8/PzyIi8rvf/U6enp6u5f/tn34nb//rO3l+EPnD//xW5nmS/2f5i7hpkn/+T/9VzKOR3/zmN/Ltt99e6/r6669FROTNmzciIjLPF1Nv7e33tuLPJdJ+aPQzpqaT2jpy5VrpvbTmPKCde22buedSem5NBr0aRaMDOXrajtsolfHey/l8FpH6Gotp6Vbadkoqy15d0tjbnG1K7X4uf6utPbLn2sjZLi21dZT7rtb/2hzH+2fuc8hT23s16bnv0vFP9/JcXbn+pKSy18Z+ZI0ESmuyJH/O9pR8Ia0u5taCdu33kvPHSmObsxm1eXXONWW21l7rsNau/IFpmq778+l0uvoIb9++le+++05ELr5BSP/7v//7q6/gnJOnp6eVX/Hwxshvf2vF+5vc//E//neyLKdrX4JfcH9/L8YYub+/FxGRu7u7a/+ttXI6nTZjMk3Taq8asT2a9Z7OQ1rGLl4uSesyrfkT2freuXw1Hz7HWp/LeeP5L9Ubz+cIYVxy85O2X9sjS2eTHGk/Sn0YWd+a9iulV/Vo2m/tiSW0Z57SPtjaM9K9aK1rRozRnV9a+3utHyNnydo5rUVc72KcOJfaXy/mpQ+aM/s0TUU5S37Aur18WzW/Q6NP8bq82LH6PGh9SI2fHMvwUyP1Ty7yt9fZnrOR9sxSew5oYkne+1Wb6RpZ64UVN08v+W/6ejqdxGbWdjqnuRjAVUYrEuzITc7bnqo5/45S19/2fB95fuvNs55LERHftAG9fnKuzZ79OVfXa8YztPX3rNOaHrbkjNfCSJsx2jjWSJs5O1ArX4sB1/KOfB+30zpX1/xB51zRJvbuQakvqxnnXv8m5zPE7eTatNZW9SIwYjtH1r7W59fK05qndH/Txrhaeh70yE1WvF/nXdwifufZSUM89iW/MT3LavpfWhdpPo1svWjrr8V+Sn7TkTGd3Hk2x97YeC8j8b44T8/459gbMxjlNeJ1NWrnGWu3ulk6M5TuW46SpadcmrZXF3L50qw9sZCaTdLob6+/lp6ZSvF9bZ3bmFw4X5XLtva30X279qxpZ+9608RI9tQV2Ctnj19bWjuj8vXEoUNdJd9Xe89ujJG7k9v4mm/u31z9h5E46Mjc5tZbKWYef1d6HqV2zqjF29I6SvTI2TrvlNJy45ZL09zVxZTK9va3tQ72+J218hp/Kd0HVmN48jJNYWwu6fM8i3Xr8VKfZ1zet+w557TQnNlq8XGt3lgnYq2+L7n6jjhHaOMk8fdx/1Oftje+UYq5LedldY9gzO28sC7zYnMr8ccg862YX6WnjO6/uj2wPOca+zjij6RpI7a/tWdr9UgrR8ln7b1DSdeqpj6tDtdjVKsnlZ3aS2uvS+NdW1u6tXm1uIiW2rlJM5YaRnyLWp7UzmnKa84jNf3v7YP3XtzJXffYabro2TRNMr3YmdPpJN6374ZSfSmtC42NS+sbiZ/U7HncVipbLN7lWbfuwt6Svivk/SVus+xYukf62j3ttfJr7lCvec3tLvNiz4xMdhI71d+tGrJ59jJv63ou7zRN0yRTxg+MKe1/ufRcv+OYcXyv23PeLcmxJ18vGh+2dH6r0crz2nFdrd3cxpTq9ivnG7xWX0Zici2faNSv995n35F0zonJdL/mQ8Vnk9caO+0dYkyvjvfka7F3HFr2YeR+5ai+7eVoHUnvUH3mHa3YF3fONd8zTmPz13NvJo6hsY2lteacuX5O6/pc54eUkf1C0146vvF+ndqSViw5N7aBZVlkcyed+HfaM0/JH27tMS3bf+RZ6FLXOo7SaivVM80eFY+Z9rzUSttDLtaiOb+EfEf5bq3vc7ag5KvGaSN2c6/96GmzFbMajYd778VkbPo0zzK5Y3SoNP9H+Onb8+m+vw0L9cSUYgy9fvKl2vIe1LK9mji5yFav0nKlmHzvfUzK3jh6S44eO1Kqq/ecWyqTG5OWbrTeTc6l1fwbUZoP7ZiNztttzdX3h5ofUZunHjtrjEvkeJ1YAPTz0/tLCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBPAD++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8k/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJHw4ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwRTJ/bgEA9uC9b+Yxxqzyx89xHaX0UlqpXIu03vg5rktTb8iT9qs0LrW2S+XSNG1/S/3K1ZX7vmdu07ZGxiOuK6cnuXpq8xU/W3v5nat5vplyG3x3AAAgAElEQVRc7708PDxs6v71r3+9ej49Pcs//Kf/Ux7vnfz+l+9EROTf//e/lGWa5D/8b38n83le5a/J0ZqHUnpJL0bqa+mFZt5bdZU+a/S9R4ZSeyPrr9Wmc65LphxBD9O6evsb6tLIpMljjFHpaZAzrNHcd3HZZVmKOqyVq0XLZubqSPs6svfk8vTuRRo0drTUvtYOa9Da3r32riRj/F3J9tTGvzRnNaZp6sof2hGp63ev7o/oldbWxt/V5niP7sR1hX9LY1vyCUpp0zStxjxn0+O5T/XAOSfLslyfn5+fRUTk8fHxmu/du3fy9PR0zf/u3cUPOJ/P4r2X8/l8LX8+izw+Psg0TWLtRdYP7x/FTpfPd3d31zastXJ3d3etW0TkdDqJyMV2hvZjv8U5d91HQh3xWO5ZfzGxjlprV2MkIjK5RZzzInIby2U5y/Nzef22iPtVWiMtPVxskCtKWxaRSPzWGGn88JSLvEHH1r5sKkvcpqafqYwlP6JH3h7G7U+QwUisJ3G9rX205eeOzFXP2NR8ROe83JIun5fFiZvy/l1tf9PK17sPx2tK206x/Smni2bTRmsfzj1rzgylst771VpYlmX1HOzz2k6fr3Y41BHbuIcHK+/efVjJ8sMPP4jI/VXG+FwZ+5HxdyLbObjJHfp7+TfIbK3d5UvWfKhetOeMIxk5G+R0JueLlfQp5KmdU4I9d9aK9y5Z+36jh2Hscr5O6s+W+hj/N0JpnLT1TU6ufsw1bZpkqdiVmNJ4a3yTnK+W1iMisliXtQ0tf7bl39Z0LC3TE0tI62udR3P0+Pe19oJuls7ppf21dGYo1ZXaEe0YpX5njSBXyddvnc1ycRnNvJbmTzOXtf25JmtcTrumR2IWLV9Z48u26m3lGdl/tGVKvvXR5OarRs3vTe1oywfOjUWpn6X0VMfcfBJr1/vaPM1iIt93ZL2n7QWZem1iHAso2RBN3E/DkXESTRultE/hp+XOs7l07f6kvcOppZXSe9dy7H/nnuO0GkfrgMZXfM32S3Wn++Pl3LXVj2Ux4r0TESPGXM49zjmRaChr/er1fXvOn3va0677ix+QS9PvgT1yaeoI+4smVjIiw9p+p3Vs+5/uj7063BtX0fZpJH4ywmvYjJ52emJOrbY0dlzbVi3mE6eVzi/atrz34jMxSuedOHfTyT0x9VLbpbpa5+VPKUv8OV2fNTvYG/vs0Z3Ulmnqi9NGbWvN3+71wXrOX9oysUx79o9afmcu+3maf3Ttp3vEJc12+XDauH8uNpRDEzsrn6lDHv2+NHqO0Nh0ra8RymjHvdZGqc31eS4tv+9snCu/J5Ye2tPlie+DdHpWiy+VbG8pz2v6/aU2Nek99ZbWU07PWntyjh5fpmx7Y93tf6+k1W5KqY97/KxQb07/Rnz8kfa17Ner9XNuX2nFeXv2dc1dRCDET1p3qN7H8e18vdq9Pt4Hcz5U6Wxa8r2PJheXy4/pxTcX2cZoNO9IxPd2R/Ja6yCuuyWzNuZ5S7/dR6f5NetBewZzi9uUXZazyHJ5j8uel2us6KVm1RzF8x9kqbkwadyqFIsQyY/Ztr/lNa9Zl3t0pvd8vocjzxABbaw4rm+dJz++I3tqSY6c7cvJlcpY84E1tO52tLTij62Yw4jNH9E7zX3vp/I7SvScSffeyaTvk4zIcBS5+5Bavs/NyBhd9o2bf7jRrclk34eZ3CX/5ESMsdvvwztASfnSUqrd2ZZsXGmvrqWNnB+1sZPLf9v03v21ljd+t8ouvj72nYzY3t6YS5xPsw/m/eBtHm2cv2ZLtfGuVls9+9WoLS+dWVJZtG1o4tU6v6uuw/E6bJ2/RmTQlk/XZGx/cucxrRy976jndNctizi3teU1+56263x4H6R8f60hnpvQfs7ma+dwpP2e9FxcvRWf1qyjUjxy2345zqJJb/romb8x6Fk/LXrlDdTiJ0e032q7dQ6y1nb3zVorYvf520fNS+1c5Qt+R2987AgZ42a8vzx/6vMKbPn0pycAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnwD8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8kfDjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBFMn9uAQD2YIxR5bN2+ztDzrlVHd578d5fvw+fc2lHyJmmGWOa9affl/KPytmiNUalfsbpmrFI03L9aY1Faf40deXmJiffyDhr2t+2Hf8nIi9jOk2TTH7a3X5YC73E897br1BupL3aZ235nnKBVJdH2kzr0zJNffO8py7NuIzoTM4O99QVxqt3DnJlesezpG9ae6atu4TGJtXqHbFXe9dLyp5xqe0HI/1qyTIyry25SuVL6bV+lb4LdeX0O5QZtfet9nvmIfa7ese1VFes4yM2Ii1XqiuWOZbNWnsd27Rf8ZiHz+fzWbz31+fHx8dVfR8+fBCRy1yG+Xx8fJTT6SQiIvM8y/Pz8/U7Y4x88/VJ7u+Dnb20//U3b+T5ebrK9fDwcK1XROT+/l5E5FqviMjd3d3VXhtjrp9jvbLWbnw7zbjX9C8318uybOq91LHNG+cr7TcamXrKxuUvY7CWY5ommVx+v8mNRdDj0hrJ6ehlXnQ6v3cfWJZFnT+37+T8xtI5IdbBnCwlXbr5zdeUgg61cc692pmqB60PUJJ1r93Ptdfrh9f2wNx+v9J1u90rrLVXHSntSXF6bJ/j5z0E+xjqnOdbaM17v3rOtZeT++7k5OHhh9W6+Nn338vT83o9pHKU6ovbCv+FKpy7rGk3mY2MGp3L2cpYllyf4zXlvZfz+bySMdiYuC/Lsoi7c/Lx48dVG3/+849in277U2p7Y/lSe1LrV0rL7y9Rmpc4PciV2hpjzGr8wtylY3o+n8VGYxjqittN98a4zbid0PxlHs7iz7fxy+2vNR9AO061WFb61U1/23X3zqvmnJfTnZpdapXXytZbZiQu0oq7lfL3nm3iurTtjMZ5AhqfLl1Xmj0lzZsb/9RnCu3E6S0/I/WJQtqIbmn925ptz7VXa79VV8xI7HD0zFfiSJ+vtK5SvW751to2ahzty/baWJFyP2Mdj9di0J1QzlmzWauLW8S+pKX2t5e9upTKH6cf2Y6ILqa/d85b8Z7XOB+N+Fg5Ul+htd/U4hg9/Rxdy2m53npq8xKPhXbfeO15rrWnbT/MmTEX/zV05zaXwdeWa3xm1CeryaqRdyT2HNfVew/mFifO3c57Ii/2ITIRmn18xKaMrKOj5qaXXJs1/3RPG3t98yNpyaLxxbQ+QOssPLo29lCyN9pz1NE6EmOiuGUcYyqtj9daNzU7d8R5dkTWnnOu5lzVkqW1r/aQ+v2afaI0B2kcvVZHKW0PPWN7RL0jdfbED0bR2rCUlg+RPpdiX3H7t69vtqPnPNQzVnvOWSm9YzeqC9FTdz3bOGo8H7d1WLqXyMUKRcr+lT7OGc97/zlGewaI84bYsRbNOayHPXVo7Gsu/bXsXT9j9ibHpzjX3dq6/Fvaq/b6EyN7fevOrHcfjX2T+Dxaaqa2h7faKD3HdZfqjG13fizz9aX1auL/Pb59+n52Lt/I2ajnrLJNE5HrOydm5ffH76iUYn8ZaVTyxHox4uum+1UL59wqX+kdlVKd2vuBZXZi7STeBh0SsdaIcUbsNMmUuQ8Jz/FZKKU6RtaItbd40KWu2x3x5ESMiftjVu9f5YjHK94PbzGpW1uXd4HKf49Qm5/SuF7ewwrlbuOj9ctqPsKe/boWr+rxxz/Fntprc9eyx7b+uD71+GMtf270bLKHq522ItJ4Ny2nI6V7spEzrdYnGDn7f1qfb/87S8EuhHOLVmePeFfqCLTvj75G7CGwLIss1on3TmLdds6JicRrxTByd/7OOZlkbbtLPmilB6uy4Q5psZe7gLQ905ja9F3fuO7W59BGXFcpX4l0jfbvS3n7V/Nbe/2LyxiFPPl7phYjMVVtna22Ru5z1rGmW5rW99Dc9e2JDYfymjuM9Lk+bv1rqAeNHdOcp3Jz06qjZ0/Yq68l3audoXJrv2QPajEebT9t4rOX2qyes0ywn9FZwE5ip/I5d5ncy1klqsbo/Pr0/c4SPXY0jFd/vK9mM25nZo0fVpNXE9PsiRNo0t3sojjvWKw90HO+asVFRmMcmnZ66b3HqbZpt9/P8yw2WZ8954HXiH327KmlskcT+yOfMt4LW467MQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4K4IfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAvEn58BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5I5s8tAMCnwDm3SfPei4iIMeb6b/hcyhv+TdNLz3H9pec9WPs6v59U6lcsu/de1Rfv/ap8boxa7efmL6U0zjUZS7LU5jWnC3EfR2Tp1Yk0d1peo5dpWk6GllyldaGpsyWzyG3ew3epHuT0wlq7qjv9fOT6S9dD/G+a7pwTa61Kl48itQ/p2GvWYqAlt6auZVmy8miI+6Idw9qa7G2npFM1eeL2S3Oxl9T21Oah1IcePQhlS3YwHYuePbG1Vksy7+lLCY0NTdtv7fUlO9yS+TX1XVNfbSxaPlPpuWe/qc2vZvxaY6HtQ5xW269ydc7zfM0T7OA8z7Isi5zPZxERmaZJnp+fRUTkL3/5y7Xs8/Oz/O53v7s+h/J/+MMfVv1/fHyUtw9W/tf/5VerNv/Lf/n/5OPHS9nvv//+mi4i8stf/lJOp9P1+Wc/+5mIiNzd3V3T3r59e83jnFuVj/1Arc7V8mnqMMa82NPUXtiiT7x33019kRKX+VjnW5ZFZKkUylDbb+K2cp9HSNvQni1y49o6J/T0LfUZjkR7fkn3Io290fjcGnnae0jbHo6cU3No/O+UVI+0flDOljrnkr2nbP9ze1Rqq7z3Mk3TpozWVsT1avZI733Wv7zZsxvTbDdnGTtNMrntutTYpO3zxU7FsoS1Fut7XDYeK5G6jWiNZVw2nYd0nle29OTk3d3TKu3+/l6sqetZSNPYnlw/0meNn6vJk+ZN943Y/gVfwT0/y/l8jubPy+PHj2Kenja2yhhzHdv4u/gsau1W1y7pRqydZJrstXxc70jMoDcGcmknl3acf1uidM6p7ZXhq9qeUbNX2hhZiXgee8Yol7cmR2ld9JybQrsaOxLLqPH5R0jtTtq+JvaX+isl/Ql9medZvffm9KnmW7X23lSWVn095NZIy4eKx1/bbjoXe+xCr48nUvdnRs+zOfbqe+pPHbV+Rs8NMTkfIV1H2nNAK054RL9TP6hkb9N8LTT3Hq9h9zTkdDk317FPcUTMOEfvuMZy9bTfK5/GJh9B6fyW2ytH2q6VGZkzTRy0ll8b/wixl8tznC5yOyeba3wm3i9GY6e9/mxJfm2ekh9Rk8/Nbnu+nCaxU9lWlnTsaF3+qVPqs3Yd7NGPXD5NfLOk17U2tPdGtbQWWt+g5gPlzsla21ebC015zR1GbQ8vnVtCnmVxm3V4Xs5yPt/i2qU2NXasd4617PVJ9u4pI/tF/JyeG+J9vDdelJYfobR2f6q2t3SeKcVA9vbjto7C/F3SnXMiBZezpCOluEWpXa18pXZzcvXa11bs5TY+x5yFS+0G4jh2q47eNvdQiqkd2U6qi632c2u7546r6A9YI9Yaied8mmaZZqs6V/ZQsolHrqG07lIdn8Mm1uzyaP/G9sBbPUfGdF6beMr2zt9RvmmtzJ760vuLUlUlm147x6f3E6X4eOw3x3W3zpbO+Ciecytz81cXWRb/8n3+bq3VRoneOKqWkbuDsL4uzd3mI74bqxFstLXx/fPlu2maqvGsWkxbs9/W7p1K47C+z7rdH7b2/1BOG5O/7ps+Tnv5z23PQim987+W/7h4ukh+D7/FpG5r2TknuW613tVtc/OFe5dFbZyPPoPsjbdp6h2JrfT6Lpo1WVuPR+7Vtbpeo72UkbNV6WyYqy9FG7fvOa+XZIzzlOazZhfX/drmP9p/Td/r0BDLEN4FSfmUf7ewB814lsal+95jurxzGutbGL/SmTiVwdvCmW7ZtlvStTi9dBYttVdbS+k4tdZILX2apmrsc5TUV9nKMG5Lcnak5kNt31uTl/3ebNZka42+po3QxM6PbKNE7T5Js4/X2oj1Kr2LLulMKbaS94GOja3V0nvzBKbJi7m+FxnOaeX3rWp6MdJ+i1Z78blI027JNvZwOi0bWzXPs3jfHrNqm9P0Ep+7cXmfd3suD+T0LLdm0hhDmq91vgy03pHY60sGeXLvmhpjr2fp0l303vjyXrnL363P9LEP9Sniga1x2eP7H3FXMzIWdT9nuwdrYhs9dlfjq2jfW/0p8lO9S/xSeJ1fbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4icOPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAXCT++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8k/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJHMn1sAgD1476vPIiLGmGYeLWld1vb9ftFo26VycXopTyqzpn6NnHvGsVRXrk5N33PPcb/Dd5qxMMao8vXIMjKezrmLPOezOOfEOS/eO/Fe5HxeZPFePn58lPl83ujhNE2r5xEd0BDq7Rmv3Fx776vth/71rrdemUrP2nK5tDA2YU7SuYnzpJ972+6l1FYuvTb2QVdLz4FY5lLbI3OssX2leUltQ0n2mozpnObkadXbY/ticvaq1u+QpllvNV3MrWPn3KbtXL81Yxwo2ZicnqRpPfqdotlPSs+jlPaeI+xeKuOyLJs8zrlqX3rsfc2mlXyy2rhq9WB0HbXKlOqIdbk0xnGe5+fn1di/e/dOHh8fr88//PCDiIj86U9/uqb97ne/k9///vdNWURE5tle6w///vjjj/L+vXv5/nbs++qrr+R0Ol2f7+7u5P7+/vocxnae5+xchH4F+xf3szXncbk4T0u3gu0yxooxZqU73rurDCNznlsTKS35Ln3IpdVtcorW9sefrd2Oufb8U7MPvf5wTE43WrK8JrW+aGQcmbvaXlJK0+yRl3rrc67R11y9tbNleI5tb0neVj80sob2nPMiEst1STOJ35GTOZdWOnPVyNWb2o30WSNL2vZkt77T89OTPD2XfQGN72CtzdgFI6fTSfxpezYp4b1f9fOIPXa0LmOs2vfTnEHqbbV9oHR9aHQmx/l8Xj0/PT1d6nvx0+I6np6fxLx8H3N/f7/So7C/x3WfTidZlkXcctk/wz7inIhzi8jis35Xbu2m41tb35qzybIsm3V/Pp9lSZbBnj2qxEgcIHxsnbFSWmOpZeRslbal2Z96ytboHafRdlJy6y+3T8fttM5hufNT7z5UGucj9FuzP2ja0diulFQvc2PZiqPkdLt1HuzxOy/ninW8rtROyW+qtV2ykfHnXL1pXCUd/9xYpvWMxKhqeqlpU3NmTtHGOs6ZtHRP7EW7xmL5rbXd9ktro0fGuMf+5+jxydKx7r0fq+lbDc0ca+JYLXpt7mv4IGm9sY1K8+xpX3OXmMqyt529bOMfNquD1uZj5HH8qCTbyJ2vJoalRbPv7KF1N1q6p3ttuX5KtHy4VI+O8o1F6jZy5Pw8sv6Ounfdu/b33s0faXvSu62991wtQl25mEKqfzmOsEm9+8JrnVl66h25W9+Ltp3R+NdP2dZ+ivG+2YHLXUuIV83zSSY/Zqtmf6nvQvt9gpZ8Ijq7Wbs/TGMjWr9vry9YYs99uoaSbztKSRe9+Owd3eXfch0xvfdzufd+WmhiF9c75unyjpgx8fsYl9htrXyp/iP26tznHmr3yaU2W/5sDW2fj9R3LXEcsNS8Nv7SaqNGr96v04yUbGuPHFod3sORc5yKU4p5a2JyrbYCaawx7EVpjFo3n+2205jYunzeFtRshMbva+6vtrxWcpTm3For3vT5oqX3PHvVSrvnjtw39droUv3a82HuvQLvL/txlEtEfLE/mrh7/fzrNmsy3ieXZVGNYzy/pfzTZLL37+n7lTVbUIv35ejRr7139q8Rh2y1Wfq+ZNNqsvScs+q+6fqOrtZmz9gc4Y/snYs98ZbwnFvLzjmxfszG1/bEkTOERmdHzj7e5ve11zibxeNUsse1PVpT/15d6I2Hae6me9b3iN9Yk7nmSx0VM9X6RWvbE+dp27iwJ13e/cnLfcRdWC4uXttHtXcM9ThaPaaioeaHxDJZ65M+3uYm9Qfj97Bz9Y5Q0nftfcCID5j6UnEVLV9NO64l+WvyxuMddFzDaLw5d58Y0OqbxtdL89R0f1mceJ/+bVb+b3K0aP1y7ZjF9e6Jm5f21drdSE73Qz3r2J0V5/Lxu1BHK1bli3fTeb303ou3t9h2EDVXxlovIv1rNyZno45g8svm7xJyXP52I//dUXGpI8rk6yiPv3bP2iNLa+2UzplHnf/3fFei6IdMRowJ391iW3H+kX1w007GxqZ/76C1o973+R17977b30vn39t+rb+jBj38+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdPE//N17+Q///n3xe++9OG/kf/8/vpfnyv9BJQDA5wYLBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd/PZXj8081nj51d8+fQJpAADG4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDN33z3LF99tajy/kbxIy0AAJ+T+XMLALAHY4wqn/e++V1cl/d+8zzajrZsTKlfPTKF7+N82vFK8+XaatWlGQuNPCVZtH2J8/aUSdsrPedwznW3EwgyTtMkIiKn00mmyco0OTHGijEi8zyJmSZ58+Ze5nPbjI/Oxch4tdopjZ+m/ZG1pCFt51OPRZw+2sce+Xra0ORN2w6628qn0UvNWtozNyNl96zvHjlG9F9rU2v5NPNS0l2NLltb/t2/8F2aJ33O7WstW9OjS7Xx0diLnCyaPVuz147soym1OSgx6t+M7KEiYzJq5yImpxfaMY1lXJalqf9pn968eSN3d3fX59PpJCIi33///TXtl7/8pbx///76/OHDBxER+ctf/nJtV0Tk6elJHt4Y+e67b8SYWx/+7u/uxLlLvd988821nmma5OHh4fo8z/NKvty6MsYc5jsEuUtlNPMflzHGXsvEc1qq5zXsq7c+249YLo0frxnjVNec67c5R5JrK53jVn4N+jWuH49RWeLziNa31ewxOtvnsrbMub69PZQrtvLyXbrnx3Nb0tfUnqTPuTFI/cf1eglpRXE3ZUpp1tqVjdPoVU6fW/5vbszT8b6s31uaMa6qU7l2w9iubeJ2jC/PW9u352ymsfelNlI7lurV8/Pz9fn8fJanp+fVWP3444/i3t/KGGNWcxDG5f7+fpUnfg7UdK/Wr1oZjc3J6dWyLKt+fvz48TKGzsnz81mW5fxSj8jy7r2Yx8eVTgfiNTfP8yYtyHz5TyToRvAhwnj2nhnS9NJ6r+mS3eynF1mWjJ/yuXDGX+1Rabn2xOG0Ma693/fECGt5SvPaG3fVckQcL6yDnnpbfts0TcNnnV7ierXxiJHz1Gg9LZly3+dsUm+7rTq1soyQ7tcaPU3bzskyct5vlWn5XS0/sTRme3VMPxfbGGMrrjVKbQ2Xzjcje2VaPneG/RT2pOe7QKr7tXPfpyD1gXtJ9fgoGzEyf73rXxunO2IfzdETO91Dblzqftj2XBTP88jcaGKHn8o/rd0bp19p70Q/VV9G9KrlL4R6J3eJDcbtGFmPSc2H3XP+rZ3he/VtJI6kbfNznKE+RWyyFUPZI0tuj9mzj5bsdsvXr8XYcrJq6SnzWnvJUW29Bi35S+u15iPH8/spx6dXN484g+TQnh/MFO5U2rHVnCwpF3/1GHuUi4+XSG2IJl6Wlk/HLN7vrmnTVHwvQ0PN/z3Sjn+KPeFiU/Pt7rlfSP3L2nno6Hso59ymX845kWTatP5eax1+qr27N8/I2ei1OeL8GfAm1+eLLdy7dxw1NrXYbmyXWncKPXLV7KiW9b1D+50B7d3guotm9T5AL5p+1WKKJf9wJeGLwO7kZJqsXGT217LTy/9v62k+ife6dytKaZrvAr3vc3mfP5v3rMftWO2LK+3hNffZI9596S2f3je+pIqI6Z4nvQx2syanaZZpvszz7I1YW243fRciR/jOGrfR0WVZZFn8xtZo7EHp3bL1vu+jtLWMrXcqc3zus1Yaf9G8U5eWz9HbryNiLL311fz113gHWaTvnjpHbo17m4/djdyPpTKmbY6eMVs6NkLc79f2O8M41daC5t2W2vtjcd0j+qf1O0a/F1m/X5m+U6Wh1sfNO+hWNntF775Vis2ndcTvaqSqtCyLyHKLOaR+z6UfZVsS2tPGB3r9MBFdrP5Tnt0092G99i83N632S/PcKtfDXr+7epedse1Bn3K276g9ZQ8j85qWL1WxV7acXmh89dIcyMs91y2ulZevZ45K92S15yP9yJLtqPl6fWO2zde6GzzyfYHtWLa+19mEHvs6YtNLdabihVillt/8evuDKqXyf/Pds7x9WOT9h6mar2cMS7b6tXV6Tzsafd+zn/befdXy5Oai5Pe7xeX9m87lVvNhNL5K7R3/VBRj+v3CWtst4nf0cv2s/X0IfBqOeRMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6bx1ovv/rl9sdXavz6V335AQA+Jfz4CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo+Nt/9ySnk+8q85tf8xsVl0gAACAASURBVOMrAPDThR9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVv/n1x+4ybx8W+Zvvnl9BGgCA/fDjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ5P5+kZ//bOxHVH7zq8eDpQEAOIb5cwsAcCTGmMPq8d5fn+PPMWm6pv1SXb150rZaz711t/qS1uO9X6WNzEVPGU0/RmiNo0YXpmlStZWryzm3el6WRZzz4txtfJ1z4oyR8/ksct7KaK1dyR6eY7S6mq6DWL7SWKTtxW3tWaOaucjp5d52tG1pCGXiNrT25Sj22kmtXK350uj/UZT6nFsbMTl5Ruz+CKPzv3e9hTKpPW/Jo103mjnO1dXqVyqjtXbz3CK2sblnLdbajTxBZs3ab9XdQjtXtXzhuyNsqgat36WtK/c5PGt0NTfny7KoZQvzVBu/0+kkHz58uKaHMs/Pz9e2rLXy9PS0kWlZFlmW5Vrf5dmI9068v7VvrZGnp/M1z+l0ura3LIvc3d1dn5+fL8GukBbKxM+B4Ofk9rSUnC/Ssq2h//m5clV/M/XBRuxgaL8kX7aMufhrm3q2VVXZ5yfd6jDGVMe81B+t39tixHbk1mvv3nN5NiKiKxe3UZPZOdfcC1L7rPEXtOe3NE/O96+1XxrLtEzcx/BdSCvJVuqXxh/pPTOELoQzilY/NftL2nb8XDpLpToRP+fkt9ZuysT7xTRv53E+nUTM9mzZ2jdTO3bZM7byen9rr+Sj7D2/acqH/Slwf39/lWM5OXl//7ya82+++VrMXVsnNXtCbm1r/M4c6b5YW4fpXioi8vbt2+t+LHIZl6enJ3F3d+LvTuJ92MedvP32WzFPT2KMWfVzmqbVeAadivOEPcJMRoyx0f5hZZpmmWa7Ktsi7u/Imb1Qa/GbkT1lTIZy2VbxVPfTsWmdE3LPubJpusYni+uojUNJj0vleuxyTqbccy6ttF/XbGIaIyu11ao3J9trxHZKZ0nv/WYt1+popWvk1cxRams1fqDWVyztm/F3LVuV2xdqY5eLhR5BKXabUvM5NX0+6iytjW3X2s75Pr11XJ7H468xLf8uRXOGqvn8tbh8qb3aeB2x/7XqbI1bbq/p2XNL9k0jW0+b2nq0+vkasbDSeaGWr2Urc3lre0pJFk1/Xys+2EMaAyn5j3tl1a7hmF4/Tktt706/8t6LEZ3vo933eu2oyFo/W/1P9VK7Ri9n21qc+xhftTffa90bpeTmQhsH3KuTR/RxZO/plUFzn1SztyW/KNW9ms7Os9vGfOZZnOuzMa0YRk/aa+rokXVr9sy9d8ua+jT3abl7hZ64kradGqV51t4HjKCJ4S/Lomrrsq7Wvo33Tpzr35Odc1cfoRb7bdmhHJoyNXl7dDaOG6VilWKvWtsUk563g+37VD7za+3T6zZubZlK7LHlX7ZkSn2rXN9ae7UxRtziXvT4ln4+n8WebfYOpmVvanbgtWxE7Q6oRk6HtTpSWovp/VdJt0trd0T2lDiuU9trgt3TtD9yXkkZuRua3OU9hEuZS5pzTiTym0p1lc4VNV8lXUu5PTclPhdr3nOsyblOW+fJ3dGmlPQvHYucvqfvPU3TNOQTuMgftfb2LoHx5lrv1OmbHkkpxna9RzXb8bd2knmuxzDre3b4rq57vWj97tZ9yx40NmtvDPw1zhO5savvUS2fbf18ib/W5ye3nnPnuWmeZfZja6ZkM7yN5bn4fnvWZq8efMozYs9dVc7vOYrwfmcqWyuO1SPD6Hl1z3niU8WkUnruvfbK+KnGtRV31LSx996m9l0u7x7dyd2p9/S/tu+m/pwmpmqMUd1XlmSsjUXpDLWH+MzZM26xP2ntNhYa+4mpTgZ7Neo71O7i4zZKfKp9JKV0/o458pxbunPTnrN749uafe+Ie7p1O2vfacRH7fU9eknPdjV/umxjRFIfMpyPcjLuvSfSUnpHIu1aSV/2+P+vHctvcYRe7SFer+GcHOMzfw9Uq+v27zqWm9Yd7r7S7oU9oWetxGtBu2+2xjUn2zRNYkzoQxiz2x4W1udvfv24KZuTNTzHff3V3z7J//V/eymd9Vqx8Fp/ts963TrqbNBCU1eaJx7LNC1Nb+05OVI/o7b3FW3vyzvKMdM0iZ36z7ppjCyk7bU/8zxnZTQH3fMEWjHEnC84TdMhfxsF+/h8UVMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Kvht796LH73wx9P8v59+QdiTicnv/j5c/F7AIDPBT++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABV/ua7Z/nqq6X4/f/7z/fyz3+4q9bx21+Xf7wFAOBzwY+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECV31R+OGVxRn7/hzv53e/vq3X8u188yTy7o0UDANjF/LkFANiD9774nTEm+7lWV6m+kbpK+UvlNfX2tFtC206oyxhz/ZzWr2lPi1b2IL+1tnsuRmU5sp854n5Ya4vfpTI558U5t8kX5E3rip9H+mSM2dQZ6orrK+nLCLXxCJ9La6yn/VJdMSW9CHOgqT/3XJKz1J7W7uWeS+VzaSUZtXW2ZNWMW1zPiI1s6cCyrH9dc6SdUdlajMiR+zf9vqfNkf0qpytxWs6G9LZRai9N1+i6Zj1N09Q1H/G+2Wo/l95aG2EMe+xVz3pr1d1b/ug1ktOxHj9NY0tzeprW65xrjqsx5mpnjDEyTZOIXGyPtVbevHkjIiKPj4/X+r/55hv58ccfr218++23IiLyr//6r9f2Hh4e5I9//KOcz+drX/78l4/y+PhGRG79+v3v/yAfP16e//CHP8jDw4OIiMzzLP/0T/8kv/jFL0RE5O7u7tr+z372s6tc7969k6+++kpERE6n07Xe/5+993uW5Fby+xJAdZ+ZM+QMyUvODO967+7VeqWQf8i/wqGQHXrwn+0Hhx2WHba0kp/klbSx67VXd0XOcLgkh+ScOd1dgB/6oBuFykwkqvrM8JLfzwb3dFehgASQSGQmeupeXV3RMJzDyBBCc23X9taCpDst3ef2r/J6z3rj2lzr39zHfnYscy579BPjvcnaiplqO7jUBtyX7bD6QhnvPetHa/a+V/bWHnyOgeLsnvdHH13bgyX/rbyebVT9vCRLbyy2NP6wDGW9DyyJE0t7sMSfyjqi2RWtDOe7pBhpv2/XRzSdl/p6iG0d61mzLZsvjYG29jhdPc+lu/t8LBPCQGHDx7ZL/FmpjMVvLfvaajuvsRjj6XO21/n+MAyTOh88eEBxu6H9dkvl8H34+DH53Y5tr8yZlPe4fnp/HN9WuZJ6vC3rvL7O+QXjOFLajzSOh8n129tb2sXA2ihpjmKMoo222mfZDs9zUa38VCmLNsb8HOk5Iq6Pmh2S2q/9BskOanouzYeW21iThy37YrFpmq7WvqJlr5fktcpvqa8VSy3JxVhkkvwGbQwlv73lT2p7g6RTZWxVt7/G/63lXRtXW57hcrdr8p2a78LJIuWKs+4vHdcyn2KRM8vH99m2hqw5dYssdX2lbJpeLmkvz4v3vjlH9fe1+Vhr7maJHeP8XkuuhcMSw2v+iebrrZWvtTZaNqDcb5bkTVpY4hmLPb80S/LWuVwu+g7EXMwlzsWWUI5J3tM4va710mLrubxoZm1/W/GEzc8un0vH/0vrlGRNvudd6sAa21HHKS0b0ZMP6pGhbusSOcUWnB3qyQVpfmK9Po57bDzGvMVzt7e3tNudz3q4GKKOt7jr1jxIfc+qp+9iX9Dg5BzHUYyfaxu3xK5ouYYW1jNQqU4pxrb6QOWzFt1o6buUw1xCb5y6JB7jxyOvb36/s+Ri6vYt60LbK61tls8ec4jz/NooqFyuj/N5e2Jb6/Ot2J+7bs39WODOEc42kysr69t5Tzj7nkQ5d8bbUS33xV23+FLRx4n/O5Vtnk/nco+tvFKGy3VmOS8VJ5V1WWy11mbdL20uSl8pP6OtgbrPLd206nJKaZIjyW2MNLctzvnu/URqu+XrlzrVYxvGcZzZJKL+M5WesyQJae/szala1mUde8SYVFvMySH57/l3H1z7lvHQ8ngpJYr+/NsW586/Jcji7A972u30nKR2TfJnW/Vk7Dpf7osjxWi3cXI+Wj4ruIQvbM3fWeKOTGuOemMqbi+5DGl2rnCfWOM6Td84u8T97iaOI41jUuuy+kdyOfkZCz15nrq8db0uOTMp29L0oyfWvQ9a5wE1S8eCo/S5tfZ7fXtLuxzWNnrOw+5jPi3rZMl4cb6ytg6WzskSv5s7Q/PeUwi63rbGqvQPrWc9vW312jUtnrDQ619rMUddrrzlXPv3IMd7+SE30SnnItVzOjkXD+7uNz5cnf3jumQfq30+iz5Zc1S9tmGpLZH9rvI679su+fcPvWfIrTOTHqxxkaUZa955TZmzPPbzGZut1MfS+lun1vWl6PbGnjOznafp7fX2TYtFubJL26mpfaXss9d9a52BtWLZdJdnPz5/vBZCoKDkzZM/t5frCyGQK34OeTyHmNu92s8o6+1dQ0v3BiIiP/K2+3zp7CtneUMg+vXzvSjn1393RSlt6OaG6Obtlh5dH071Ttr2RH/w+Ui/+w8brprV5N/+WHLGmTKnp/khkr7dZyyzxC4SnXXEcm6zWn7f9qmt9naNLKo/4uc+Vgie/DCIfsOS/K0mDxGRj8fccO2TWOYK3C/rZhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/a55+dkvDIL+Y5IsvH5w+f/niSq3r8+e3F5MLAAAuAV6+AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJFfP38r3tvvPb36env6/uKl/vKVjz/a04Or8WKyAQDAWvDyFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBcXY30q0/24v0vX15RSu70/cc3A/3ww6DUmOjz57cXlBAAANahWSwAfvI459qFOuri6kspUUpp8n2pXJeUV6vfIiNXjutnjNHcbquullw941PPy31SyrWkXxyaTpXfAxE5d/yvEIi8dzQMgYbKjNdj6L1X73Pta9e556XxsXznqNtotVmj9ac1f1LbvWsrl5Wes455r44tXRM9z/WsU003at2sKW2P1GausxznsqxV36X1WNcvPX9J2y7NRatf9bNWG9mzfrX26rVSt8HpcktGy17KzZH2TClL67k1673HrtaUayPGqK4V6xiFEFQZ6r3+ErY701rr1nouhaSrvXbZOXfqW4xRlHsYhlkZ7/1kzK+vr+lwOBARUQiBPv30UyIi2u12p+tPnjyh3W5HRES3t7f0/Plz2u+Pyar9fk9XV4mePSMqxf1H/+gZ7ffHud9ut6f2h2GgBw8eTL5vt9uTbLlfwzBMZC7nMqV0+p5SonEcT+WWrNEWuS3nar9Gn8uWH8v5SS2bn1Ka1Nu791rtnmntBCLv575LbesuLZskZx6Xcm30tNEL57cdL7nTWsjj0fLJ6nnX/P+WL8GNP9e+1IY2f1z7MabZWNe2zrIGy726N/6V2ij7ssSfLqusH2v5bxItu2CJGTg7UH7Ptjv/JTra6vJ7jPFkO4mIrraJXr++nYzjl1/u6TAe95F63ZX7ULnPe+9Pe0/+HvfjpK0sz57ipFzdTv05fy/rstp3ScelPMyp7OBn9nCz2VCo3iVtyVv0ItVZyqPZasvz9X7qvZ/o3DiORHd78HkIj76dD2Gir9l25e/jOE5sAPf5WPY8FzFGcvE8R635ree1lY/I48Jd32w2tA3jRH9TIrq6uiIapmPGocVLmm8gPSftFzFGxg5HcknPvfTEc+X9ch5ruSz2ytq+tBZ78zHc/SV2gruu7WnWHJuEZO+k9rQ9bWmM2fKhrf6FVr9lPnvzCj15K9XeM3kdba1YYmFJLq1fpY1q5Qi5euvvLZ/eom8ttDko/fNSFovt03xS677L9V+KueqyljZK+Wpf55JY9c2y/qV8jaYv5Vhw+9B9s6Q9bj6WzJE2ptJ41borxe+1PEt8XIm1eQJpT1gz90vGsvUc0dRHKr8vlU3L25Yx//Ravj6PG1tyW+VagiXH05NfknQh+/Tl4zFGosjbUs2mSXuFlZ6cXN1OnS+1jNn5eUc5rrlvLGcLFn9kKa2cUS1DK66z+r1l/ZaYzIqUO16rfxKWsSjHWPKN6zxQuT+XufLz88drZX273Z52u3Pszc1FCGGyRsp1UfoQdZy/1r8sac235ONcom2pTSI+j0VEs7Mwzs7WfZJ8gNoOcW1qeeQai12UbF/ZLws9Y6/Zbik25dB+k2KJv6TfBTjn1XMnbcy9T1T6DVa5Lh1baGOW+906pz3KNI85e/sg6WEdZ0jPS9elPoYQJnFp/pz9jvpMyVpvnvvTunZyjoQ7V9D87/N3Nzl/G4aB4jBfi625s8DG89tIw7CbXNtut+SF/41Fbqx6z+itzy9dI0vn28raWKSHNefEOnz+Tlq7kq93ibHgzn9z3WebcV5P+/2ObhOvG3Wc0cqxLZmXWq8sOS1rrra8Vv5WwbmjnSttXQtp75LywOUcc+cBdUxe3iuJPtI4Zhucink81n04HCjGtr+h5Rfrs69c3hI/tHQ8pek+leeiR1ememfLdUi50uPYT8uP40ij130ia2zGtWkpb7nX217Ltz+vaccM6/l3GrUu98rLtzu9lmMmzjZmHZXiiCxX6ZtO53u6/sZxpHGcxnmtXH8Z28m2O7cxX/fWuEOiNc5SLFxT/t6hrHepTK1cRI2kS5eOPzOafbXo8hK56nxDibQ/W2jJK+XlvPeU/HodXHOutJQ1cTgREYW5rdF8Jq1Na78u4RO3/CDreUD9O6S6Hg5rPzVZuDGoc2Ql0rrU1hIR0egjxTjP67R8tfp6/5SVfkQ6/UbnLP90L+ih5WefWu1cw1ruVrINmg9h2W/W0LJ3nN55z/sPPfGWxW/qySVaWJqHPfpG3G+8nLiOLyVrbr8l3yXaqv3b40f+9yM99a5F06F536c+KVE7J9rTZomk8z31Wv1+i73S877T2DQEPp9vOfe0jmV+vJnXCG42lt578qE6y4hE9b+HyDmGtWh2RjsPyMzz8USeicHzGP/B5zd3eVR+7r988XCmF1++vKL/+INpbFHK+PzZDf3VXz/o0vVWfvThw0j/9J98TSkk+vGP3k7KPfofIv35v35C/+HLB2wfuPpa7f/6+Vv6T//h68m1st7/8X/6VKxrCdq/26hZYkcuSe1zrckRXnJ/sspwifhTb3dqL5fYZ3BZLhelAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GfF589vxHtv3gT67vVmdv3Llw/UOj94NNLjD/mXswAAwLsGL18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAjCePd/ToehTvf/GCf8nKzU2g19/PX8pS8uvnt6tkAwCAS4GXrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDGr5+/Ve9/8eJKvPfipXyPiOj5s1tyLi2SCwAALglevgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAJ3iV6+lR++cp3rzd0czOI9798eUVETrx/dRXpV5/s14gIAAAXQbZkAPwe4L2nGOO9tuGcI+fkTf19kVKilPg3uaWUTjJLZep7WjmLLJZr1nG0lNP6X9ZR1iXVW49DXS/3XK0XdZnWmFjmjuio47mtsk/1NQltfZTPrpl/jVq+Ui+1MajL1nVZ9No5d/rM/S3r4MbJ++n7yVpzXl+ry/fKXNZnXTu1/mhtS/JY1x/HWntcj3mLWtYQglg2y6bNm2UdSDrdAzfHVllato9rQ2tTk6VFXY+kv+VnzW5p66VHh7n6LNelunvHpbY3GuV8c+u9d01IbXD9Ka/V/hQ3tz3U+13P87Ws3B7Alb0kkg8j6UU5T7Ud1HQ31zGO48RG3d7eEhHRfr+ncRyJiOjm5obevn17Kr/b7Wi3253q2+0i3d5uichRFu32baIxbk5lNpvj52EY6HA4nL6XtjOEQMMwnPqV+zYMw0ne0jcpn9PQdEDyj2KMp+95HEIcKaVYlCcaxwPFMJ8P59zksxWLvZmtzUDk/XxPCjGc+tJqq5bR8szoR4pxbi/vY21I64KTM1+z2DDNd2j1g9srWl1fYt8s/WjFEz37mKYX5SPOkdjfum7ND6qvcz4st0dL17n6pLYsY5AT7MfH0iQO4uxHfb3E4qtaYizL/PZcTynRdhPp8eOvJ/eePv2Ebndn/6DUxWyLOZlzudzf7X482fbM1dUVuQ1vuzmd74lHLJRzocVmo4unPSCLsN/vicZpfzi9uq88TilfOVZabKLFnvlevp77m8clpUQxlmOUaL/fk9/vZ/VoMvC+1Hlcy/ZqLDEQdy33pSVn5rz3OyI62vTjNT4Wt/oXXGyvlS+/139L/6SUm8apP1/roUVmy7hqvr0Wc1nnrIazs72xmaXP2h5ikdOS7+Pakcal1wep70l7nSUvlGXQnq3rseYpuPZbe2Nv/N7Km7VYkjuT0PJ4kh5LtluTcU3uoa5vSb5HmsMynpPqiDGK8eyac5f8bH6+Nz7RbJZ3/jRPVn/esg9bZMjP5zGT8hc9rFmXWpxS+1pLZeHa7vG1uDKS3Jfy3eq1ruVsLJS+dV1XK1aU7I6mh5IurY3zbT7Yu0FbLzY9qONvPjbu9UGs9K4DosuMsbSnHT/PfYFeXTrGHbbzxPugjh0Oh0PzmZyXOup3cePC6lzPueQX99i8jBRftspKcvZeW+L3cjHIUtb6jlJdGS3O03J5ms3O98t1fTgc2Jgx+0MppolOO+cojiON4/ys3zl38nW0/LbkG0v6et9jvea+pPuazms+sPTdmrNu6dI4jhfbN61nAr305Pa0XIJEK36tv2u+T2n/z/t6+exINC4b72Pd+Vnd9ln1kivLoeWn8z0ub5br5+N8fr9vtWmRq+cZaY1w18u5r/XAMhYSc5so+1pl0aNdDeScPsfe2/e42k735sclOcYQq3NHRyEMFIblvx1Yc25CdJa1PJvoaSfTsw9ZYmZJRyW9LMd8qT23rD1LzDjnfB6gseQMp9XXelyldTmt52yHQhhoGPgzp17fo2dect0tv/osZxBzmVKcl697P48Djv6e7I9paHundF3KA3vvxfgvxtjc50u/s76u+ZGtuc1tc/2w7C+nHKDjy0hz1s6PT33/2t+Qzv7K8a6vD8NAcQizZ5agzfl9o42lpGPH60mNxevxWtuvPAelSLneoz6nyT6a0jRf3vIHJ7+hGub2/PhboD4bL+UYp7FkluVye2mL3hh/7XnIWi4Z276P9tfGkmU8apkLLV+gofnuHKX+rM0X9fqmRPK8tM7I6s982Vzv+ZqWN2j5yj1ossUY7/Rh7sO1zNOlf+PfGxtocaLWjkV/yxxHc/5DLnPOG+S9Qht7q6+nUetTKXcd+ws1sM/rbS7PZdTr2nK+I/ltVpm4seB8sJ6zGs0+9eRd1vymv67zEv8+oMYSZ+Qc3NSB68vpSmuhHjNuzDU7qq0x65mXpIvHj+/ef6iR9PCcd4mzMt7Lds1SfztGWgZ3PtFqU+JdnlVfqi0prq27zu1Lx/wjUamTrZjFKk9rHyvb42L2eW40sXby2Wc72gzyGnzx8pr9DVb+u9t5ev16Q0+e7CfXy7b/8A8O9O13181+aSzxzbR1ZM4rMc1KcedSpHOY3rHS9tTLnYedP6/V9Wm9/TlRvk3dD5CfW4akY87xv30B75fLe2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4vebXz27Eeyk5evHyQbOOL19eqfc/++yWQsCbKAAA7xe8fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnHoRIn3y0F+9//Xdb2h/aryt48fKKkvJuleATPf3sdomIAABwMfDyFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJz4zaMDOSe/NeWLFw9N9dzuAn373UYt8/mzt12yAQDApRnetwAArCHGePqcqleeOecW1+t9+71EZduXou6DdK2Fc+7Uf2kcUkqTeymlrvbLZ1ttSWh9K+9Jn6X2tD632raOwZJ50eip7260J/O8pB6ubFkftw7y/Z7x66WuI6+1GCM7h7Uul/pY62bZp15Zy3a0/lvrXTtXeVzqeeL0v6etcRybZco2y3HWbGc5X7Xtzs+vtava85Z1fOl1LdUtrVtOj2tadpari7P3ve1w5TRZLGMrrfW6/lr+8r5l35Ger8twY1fL6ZwT56u+ztkLy7jWz6y53mqnJK/f1jpask4sOsfd1/TGMv9cu+XzvX6PRedDCBN7lz+Xe5j3fmILvfcUQjiVy2y3WzocDkREtNls6OHDYzJqt9vRfr+n/X5/+h7CgYbBE1E6vQXYh0Tp7l2bIQTabI4JqmEY6Orqiq6urk51D8Nw+px1IYTA2vd6HLz3k72j1KX8Wdqruc/lWNaEmMevuBYGindltXYuRb1GUko0+pFinOrOOI5E41yOtT5U3b/8NV8PIVCI87Fr+TBE8vrX9pG6XC2jhnOO9R2yHFybdrs5X4dcWW6vqe1DOS4WX4Wz9db9ylLfuTyRc/m/y+m9tlellCbrem2bkl5O/fnz9ZTcqb9a/C/Fp6Vdq5HiDO6+5LNwfbGs+RjjaZ+Yt3keI0n/6r6XNtk5d1d3WX76vGbje33Aml69rp8dN3G2fBw0/wAAIABJREFUH2w2G3LKUmzFtFz7S+PcJfELP896O0fxzjKHEMhX41LbGmleT7bXH/+ebzkahoFC8rNnJLz36hj06s9Rnnz/uN5DCKxPwCHZJUtfrH66G87+TS6z3W5JOU+cyKbtw722tJxzS8xTl7PEqOXnJb4Kd31NbGnN61n8HmtcvDb+6S2T7bYGN19ln3vjwyX7uGYXuRzPJdqw+h4tHavXTl1maTxexj8WmaR6e2JmIj5uslI/W3+3nJFIlHvEJeKy0zinSFT4OlycoMkt3bPGQi35siytnFf9TAtr/7gy1nyp1T63xqPlH5T3LLkoK1ycIpXpaVOLB7m+lEjjW5fVzjkvSW/d1n1Qiu0teQQux9JLHTeWbXN5QMlPXBLL9ayh1jpeOhbHcnPZe2OxXvkscnFtWfzhMvdgeaaOl446WfYnUAhze7Nmn8u0xqV1v9RLy9lcLtuC03fNr18SS1l0iUi2vdY1J9Vr9fvL53vOFnK9XK4/f8/9ybl1ie020oMHryfXPvjwA9ru5jo4jYtpFn+W/dG+XwJtLtfUZ/Wvlvi5lv1GW5f57KZVzpozsbSZWboHLolBrO23ztOk52o56rnknsmxJLen98bm0/yDnO/QqH+Hsdaft8DNmeZbl3ZJsmuW35GU9XFY44ne86GybCuG6GnrPP+eUpr7VylFcjRvr2Xj6jFekksqr2s5+fO1/vlaQr33SFjnVvKxe3OMEi29bsnZmh9Jfin3ZvWTOf1Jvrx+/BtCID/Itk/yoUrfpF5TFlvQk4PfkD/515nNZkNpI9exdN5zvq3lx/ee5db0/JZwaQ5Rqic/Y9G9+nlLTOq9pzjEuxjJkffxdN2ns96N47wdKbasc/3SOuw5p2ntI85N5917L9ru9hzU8WOY6HQ7vp/7s5w8rXxhj8yajkh13UeMkJnPrZtsW87RzK8rWbN+8hkKZw+lWOMoz9m2SuuK9X8ZmXwIFKJ+nipdF+1tmPvCuU+WXIpVFk2XtPWulbHca8km2bMe3beyZm0ssfGXantJHZqfZPHBtXo1O3zJf1tzX21YzubGscxj8XbN4q9ptPoh9f84/u12LpXLueTzpR1sjZVlnrnfqY7j2Oz73L4e/Wntt0ht9H+7xcV5eX86rivdxzj+lIefE4svMZXDRrbDLf+i5TfW9bVk5s49Yozkkp883/LbWrL0oM3tErh8c2/9PbH8rP+MvvXkjWrZpZjZIttSGax1aqSk92UN1vHly9me5XylpeNUr/clWOxFrw3SrpX+shQfrOFYB3dNjme4WCXGeIq/p+WISlvXqttyrRebvhz/jYv37jQef/TBgdz3V6yvfjh4evXqiqnHzXTWOUcvv3pIn3x8EPXy018d6MGDRLe3fjb/GS1vJPbRTb84L5+31P3g5Cw/p5QoRX1sl8yftq6Wyq5dl9DyvNxv63NMrrUtjYdVtp7nZ9cmv6GelunJbVlpx+FTOe4zvwNsrP9VCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH4WfLId6YON/D8o8fKrK4rJ/rKIF1894N55WZDo82e3dgEBAODC6P8zLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7p0N87KLlBI55ybfLZTP1HVZ65Dqzc9zbWjXOThZymv582YzkvdxUo4br8x+H8wygDm/+WCv3v/ixcOu+vZ7T998u6VPPt6JZZ4/e0v/79/01QsAAJcCL18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPfMf/+Pv3zfIlyEtS9f4e6HkOg3/9GPVTtf0Tjybf3P/+zXZhnAFE+J/uBafvnK29tA33636a73xcsH6stXPvxgT48eHeiHH/DiHADAu8e/bwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw/vn19YE2Xn4pzpcvHhCR/QU7mZevrqjxrh369fO33fUCAMAlGN63AABcip634LWIMU6+l2/Nq9+gV37PMtRluOucvFw56Y19KSW1z603/TnnRDnL573n39FUly3ra7Wdn5fGq0S7t3bOrfNilYe7L9VXXy+/l2PpnL/771zm+N2R916cn/ug1ktOT1tzWfez/Ftfz8/09LFn/lr6Z51LrY6yDa2fSwghqG1Let2yHblere66HUs5id5x4Nrqab9sr6Vb+X69J2htW+13lqUufym7tuS+Jq9Fx9cirRHLmFj3CqtNlmycpQ6rHbSuL01+Tpc0fS0p9b+sdxgGUa97/CMO6/hb6uj1Hbg+ab5Y/Zy1vfrzOI6zezFGGsfxNJ4xRtrv96fPh8OBiIj2+z3tdrvT9ZubGyIiOhwONI4j3d7enuoNPhFRopSIchdKX8s5N5m/cRxPbZayjeNIw3AMEUs/o/yc65Xmouxz2Wapc5Y1xa2X49qclotxpJTme5dkU3rXYV1XCGEmvxvcXf/O14dhoJDOe3WvjxljbOrydDzO+uWim+1xlr7Wz+T5q2UvfQWJGKPZHtVtc/tzq66zXp6unOqy+GDa/JQ2NoTQjCEscVjP9ZIQE3k/LcfFBJId1/Q/X6/HujU2l6aOK6diJooxkTPoQ4+M5b4v+T09+tySo7YJKSUaNnE2j5vtlsi14/GWDN4n0orXtlqy3fk6t644lvpnpY4mP7/vvScf+DVXz5M0b0tsZE++xArnW9W6GIcNeV/uPYk2m4G8EodwMrdJs/Z75F8aZ5TPT/e+Qg+MMbskC7fmrFj6FWOk0Hi/OVePZqutdUm2S4o5LfW24jJOTst679Gt8tmyL1LuTOuL5BvWtPJFWl1LYnnvvdjmmnxVz/7Qc11rv36+19dq1VnfX1r/2ryFFrcQzeMEInkfukQOpZZJ25OkvV2qa0mcxN3LbVnt8Gz8mHa8a+fDreugbO8SOXZtPqR4uJVv0fqi+XDl9Tq/adEBC5qecDlVrk8tmWq0NWX1+7IMdVzbuy7X5PrrPay0H1ruzVofJ9PSvcoaB3FzabWJJS1bK90r82Fcfb05TE2W3jIc3Fgs3RuOMsz1cc2aXqKHXPtS/rlXnpp5HFL5ZlTGNcfcIY3z+sZxXL3/cbatx5/Pny+xD0nxmdWOLNFnSx6+zBVbcgFElxmPmlZM1tqzOKw+zXYTZ/vOZthQSn6Wa5fkXpqHXEO5dyydE4vvrtmfEkvOuN7vyvMNibKOOiff0gHJz6jR8unW/rfaLWnVs9b3asH5A0vryqyNKct6JHvArbfShvVgsanSPNQ6KdUZQjjpVm8OvK5bk006NyrbrX0tSR6pLktsE0KQzxydZG+48yHdLpzt8unK5PqpTWUPsPZfozWnWu6od73VOSpJhrX746X29zr+WeL3cOU5+cq8Bve89FxLltI2lnn/lBIdDnvyB1lPrT5UuZZ6daK1F+YY7Hj/XE6L51r5Tk1Oi/z1Xrv2vMJCjnl69mUtn93KT9d11LZXG6foI8WYiCiRc+lUPsb2OYx1v2jl5LnPLR8978MxREopUiniOB4o7uf12OPQ6fhZ8tPlvJz7qNchneEsoXUeotGTL7XkUmqfgjujKv9bcm6h6eTZfk7L5/+439pknbfoerah4vpO+nkqlyeT1sD0cy6fTs9b98+1Z0NWrPtgyZqcoDUH2xPjnMv2+fqts7G1dVjKrznbK30DS6w8kaMqlteZdD7e6/epe9jKWFJiyZyldLc3jfN/09B71mGhFTNKZ0Ll51Iuy1lhWa/3fhITX+psqedZy+8TubLlb/skxN8iKWccRJw97z23nu+plv0rf5ae76Enp63l8VplW2Va58yWcw+pL/2y8GUs+e8e2n2WZWj5ztZ68ucYp+coRETjGMml/ljKKoOFS/vMU7+1vV5q/+w+6KtX9jl7WRNPXOL5Vj29ZdZgXdvHa7JO1bRyI/wzfD31s62zySVIvnaI5T1Hx1zC0S7/0QcHcnS+V9v1l68esb83Lstw8u/3nr7+ZkuffrITZfz8+S391V9/SNzeayGE8egTuTiromcoy5iZ29fydef1s9ceP6cHa96rJ69EpPuPZT9n/fI51i3zXraztVrOd80l15iUb53mtOY+DJsXuJ/tCSi8u3+1DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ8kD0Kkzx4cxPvf/7ChN282i+t/8fKB3v5VpI8/2qtlAADgPhjetwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Evnf/s/n616PqXEXnfOvZPne5Dakthsxtkz/8effUb7fVhdNzjzm0d70mb7ixcPV9X/1asritGR9/Icff78hr75druqHQAA6AUvXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9wz3IpEefs4vXyEiitFPvu/3AS9fuTB/eL0X76VE9PLlg1X1Hw6evv67LX326a1Y5umnt/RvfaIYL693AAAggZevgN9rvPfsdecc6xhpzl1ZPsYoPifVUT5flpGua7I5507f635o/eLakhzEnvFpOcX5fv23bkca45YT2zv+0j2pHqteWKjHPaXE1i9d18aS6K5OSsf/n5JYD0cuX36X2p+3faReG63navm4NqU6l6Dpu7YuOR3h6rWsG27uOFvF1WXVt7VrQqJ+ZolNkMbqUsGqtm56kfYQrpxF9zVZclsxxkm7Fv3vGUvL+Fh0z7r3ZPmtc2DZB7X11qNH3D7YsoE9tHwNzq70+gSttcbdDyF0920cx67yRPP1c0lbbkHbW5bYid4xq3Upf48xTnQ4j0uM8TTOKSU6HA50OByIiGi/39PNzQ0REd3c3Jw+f/vtt/TNN98QEdE333xDr1+/FuW5vvb03/3jP5hc+7M/+1t68+Y8Lx9//PHp75MnT+iDDz64e/aarq+viYjo6uqKNpsNERENw0DDcAwXvfenOQ8hTHzV+rM0Tr16Vtcl+/389bX7kFS+nOPM6MbZGjgcDpQO7Tat8UGLLFLWx3q8W34JVy6Ec/L5vn04rS5JXm6OazGteqDtOZLfpcWivfT4c/mS1ox1/ZT+iYQlzuLatNTV8hujP8Y9JdnmWOM/qW9imwvGwmJfpH0jw9mW4zXbnibFnOf/pveOdc/1orYd5ffcxjiOZptSt5nLW/WquEpE87VY93sYhsn8t+Zm6V6xNofQaz+PzWUfk18H5X5MNJ0XNt8U3N3n053Jfr8WTs9r9LaOehtjVA/MOBstrYfyLydjlkezocyyEdtqXavhfCtrO1oexiqnxaZb8mpr41fp2aXrU9KL3jHSxrXW5VZOlpOt5XdosnF1auVb+cFS/jV5oZKW3ZP2Nss89cqyNjfa0560Nnry4hqteKuV253Yt2K+JXvItav5R61ytV7M18H8xzAxRaLOfbTM62k5uUvlLmsstsN7b7ZL3HrifDYifu1x16w54V4/oddP5ORqnS301L1kL+H2x9ZZQkmvvSbqH2et7iVjVvazN4+9NLYsy3C2I6VE/nDOveQix/zaMe4r/dpxHIli31ydnl6w95Wy9sDtOb1j7n0g7/nYoOXfST4M0bw/1ti6vJZtk+Zfl/a5p43pvfJ+bc+mPoX1rEcbG10WnlbfpLzp2thTixMvjWWvrVmbW+v1O5esUy13ZfUrud+dhBAoxPZ8LI0vrVhtG5e3kp4v57XU7TVyazm+upyUF+T0zTln+r3RknyvlZ58PFHOk1j2B/4MT7KDnN1bej5QnoXn/pV1yUK72XmP94FC6LddzjkaUp7fs+whhJMsS3xD7QyMu6bla6x77bz8ee+IYbluLt0TuOesuc61/qS0Px//Snmf+fU+nTrvA1adkeJ/7n79PbcTY7w7R87tE/344w/kd37yDJcDl2yzlnux5KO4fJfVPmr+YK+N7ck9cnMh5Qgu5c9ntHOQs2+aZnWEMJBX1rZkS7g8Wj7n11iSf6XJ/n78K+Xx69ysNt+XygP2rNe1tM4varRcWysPl9e7lFNWcwGC2bOsfWkP157l5nuJP1XX431ZnxftuZafn8eQcyS/95yTONdRrwHtHMKSa+XabZWx0PO81P8l9r+3fet+lHw5NjaZStswncu5jOXvvLyb+9/jONI4tn+3bcmLnNr057xvLh5jJMe4RlybPWeGlzh7632+h55zRSnu1ugpW/oNppimk1acdslYtKy/bkuLDbQY9L5/K9qKWTifrmTp+J18Cj9fT3XbkkycXL3jJc3T+e98fccYie50VZtzaezqXED+zMUdFnpshzXvtNRn5OWX832lf6XtSfWttnzl/cT68Zdk6bmGlBPrjQHzPtRqp/4s/YbOJ95X0OIkjbNvMD9jaOn8kr2xdx1J46PNS0+O5lzluc/H8zZ93C6ts5Z8m/V+yx9viW6JJy2xkCZryxeLMfuZuqwt2Xru/dTolTXbUi7HtqZNKeeo5cpHFyubchcXjMdree/NcWVZFZdjuI95s+2vbvL5yeM9fbitz7rOn7/59op2dy+7WZr3SynRV19f09PPdpNrJcOQ6OmnO3rxVf+LXhyd93XHzKtl7xfrdvPzpLW+6BqsPlQrzl+6vwpSTb5d+sx6TWxyqXXWiv1r/yh/zoRIVPuK4KcBXr4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8gnn+7K16f7/39PzZGyKSX17XJCUKoV3++bObRS9fAQCApeDlKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwC8Vn+izz97SD0qRZ09v6NnTm1XNWF/U8qtPdrTZRNrv/ar2AADACqwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwC+X6DyMNQ3zfYpxwLtHzp2/ftxgAgF8QePkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwC+XRb8f3LcKM589u3rcITTze1gDAz4bhfQsAwFKcc+K9cZxu8P5u50opmeoMIYj3pTpSShTj/I1umpz18+Xn/L0lcy7jnGPbkq73tGmRwUIpByfTmnbq+sq68r26v1Y5reNXfi6fyfc0GTNZh07PjAeKMVKM8Tw/MVJ0jsZxJDfO5bPqXC53iXnR6mrNRW9bkpzc9XLsSx2X2qzv1/2yji1Xb8t+lOW4Oix9XvI8Jyv3uazHsn4kvWrpmGWdWvWEs8na/bX6Z22rXOfSePa20bNnWNBsH9eupT5rea9Em5b1yrVdjg83Vpx9kPZUrn1OxyW7sXaOarvGIcl5SaT1o+lNPbelXrTWa92OdL20g5oNtMwLp2/a3s21mX3KEAINw3Aqv9ls6HA4EBHR1dUVPXz4kIiIdrsd7XY7IiL65JNP6ObmmCB68+YN3d7eEhHRzc0NvXnzhvb7PRERHQ4H2gwjffDBB0RE5P2xzT/+4y2N47HN7XZLjx49On3ebrenNodhoM1mQ0REm83mJHNpB6w6Ve9D5Vis5egLtfVkSfuSbeF0KYQwH4NA5P20bAiBQuRjCk62JWvVOXdqt5TP0m7dPkePvrfq1mw714b3/tRW/l7LUMZsMcY7nS3l12VqIelSy14sqVfbU8q++zFNvmtxoETZVh03t8rX10vbX8cxLTS7fOpjmJfz/jgmLZ80yyLZe+89u3fU10udr9erNb6s+5e/W2N97lp5vV6XtVzjfqTDYU9EZxl2ux3t0nH+QwiT/rdinyVrm/OFuTrmPlXuy3Qfyn2s65L8CckH0T5z32usuROrn1Ou51NdxfzkMsEH8iGy7Wl+6bzsRPrT2C7Zt+vnrLapnJthyN+z3Ec/iYbp/Enzr7Ekps9o+lvLVLcnfb8EUp1STpNI9uFrm96biyjp2fNbz2lzbF1/1lznkrhcijvKsZR8PcmOW9rjsPZzab2t6y09WbImpDyeVUaJVo6Ka9+aa9Pqs7bbU5c23xYd03RPi98tdVj2E21/JiJyPszinSEM5MK8Ta2/pc9bfrbO35K+1HX2+AiaHa3jgxZl/fVzdZx1X2QZyhivlkmTg/PHNbjYkch+HtSSp0VPPrVnbfbItCYXqOmFRYal+faM5kMOaa7/wzDQMMyv57jmkj6Y5CtI8cwlyH6dlO8kIhopztp2zk98QslGrp2vul2pntqOcjqu6Z5mn2u98P6YN0nO3z1LFMJAYSjL2H4z0EOrrl67wo3R2tyTVO+auqdj79k2an+K08f7OsOQ0PxMS/xT67Tkk+W8kvdx5oPs9jva7XT7UduxXn/S2h+ito7m3GtGOy9p5RvrmGkJ2vPcNal/tT7WeVfuc9lGjz5La8cyBpaYkfOt63MN7rMkbzmPvTas58yvJIb5GVC9XrU9gZOh1lVrnMnVRcT7tJIMEtY+zO8lOubMznH2kjikPHfhaOlnzxorZWidN0l1SH5D+cx5fEpfe5yUzWLHOJJPy/OENa1+SeVseZxE+etRDxNR9duxcRwn36WYq9SXYRgmsdgwDJPzgUxv/Fm334r5a3p0RNPNVs40pfk5m4Xe8yhtH5naJK4d/lyL+66N61n/bedRrXpy2+M4zuz18XeN83OmHrTYokd/6pysJf+zJKe65BkrXF2tPU3be1t7V4yRWkfG3Bps+afSOtDWa+0zOeeIvCPn7Dalnb+dX+PWr+QzO1fr1fF3QdzZzNr8vFTGmsds5feta7W0naK/S9MxIXLkvF/kSy6htp91NdlO1XrJ7cnl59HPz2OPdenxlrZvsevFRZKmo/ecroQbf4uOrGWNn3UfZ6pLKe2n5bc1ROvPot8H77v9Eu4cg7teX1vahxzjcXmt0s9uyVmy5Ay/tMtr1qXvtLvWc0LtnEyTvdWX1rxxtvRSZ8cW/75Vdpp3OMadMUZyic/RzOuZ+xqc/zH1nRwR2XVkaa6i3PeX6KVl/DQZpv0+XgshkI/tWEPa63tklp61+m2X2l+XnFda96HjGJ++ERFRCH72u2Nt7S3JcVlYspeWPt279EOsdk/z5+oxdo6IK97j5/e0L2HNPVjaf1eUY2ndE+02at5OSf53BcnzNrX2A7JNL4tqMrfmYK0PLY1DeJjo6rm0Xy87i7foacu+fPRkpMcfEr250V+JMD0jOepFdLHego9tdvanVTYwv30vqeea86la52lr9ucay1mAtCdo/Tzauem1WtfXnq3kOrm6WnU75+5+m1b9DiUM5Ad77o2jzm1L/pF8ZuNmOau7q11ygPXgXUoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAvkOvfjuTc+32pjsSzpzfvWwQV73+a4wYA6AcvXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH6BPPrt+L5FEDm+fOWn+4KTq2183yIAAC7E8L4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLtl+2mkzWP5BSI/vBnoX/3Zs+56U2q/MMU5Rx882tN/+19/JZZ5+OBATx7v6bvX224Z3gV4+QoAPx/w8hXwe41zjpxzp895Iw4hnMqklE7Xy406Rn0z896byl2K3I/6c43F2VjSZu6vFW5cS9ny57KNlJLat1IGqZ/W/mvt1GXqOktd6m3D+qxGObaWfkjtWZ6tn18qO/fcJeaqrkPStVrPpHqtYyK1z7FknKU6SpsmrZesH5Yx18ald41Z+8nZzLXrYokdXjJ3vfpBpNvOltz1uEjtX0LOFrVOcd9bz1so+yzpBaf7rbGp5ZWel/YkydZon0tijKIsFrT+SX2p5ZfsBWcHsswcFlvVe6/VZg9Sf1pycHPcs5Y4Hcp475t6UupI/lv6mofDgYiIhmGg7faYCNrv93R9fU1ERE+ePKHb21siIjocDnQ4HGgcx9P37TbSp5+Ok/p/+9sNHQ7Dqa1hGE5tDMNw8pc3m83ps3NuUq7sY2nvJL9V82frfpfXLWum1B+tfI9P0vIVtHnP18+65Mi5aT9bvm1K6TSPdTnLuCSfKMZpmXEciUa5fzV1zNOKCbz3Tduzdp/KMkiy5Ovl+HjvabzrODdsl/LpShtvsWlTHZnKIq2XWtZxHE/3YxwppdzuVF5r/FXGyhz1WrP6J0uQ1kXp85+LJCJyqi/M1anZ59ZctmKR8n5ey1r7GXbdUJzsFUREcRxpHI/P1+shxsiuEefcZI6dc7R1I4UwUNns1dUV+S2fEpTWHjdO9TXJh6yv5eda45OuiA6HPWUbS0S02+1oOIRZWY1yHfVg2fvq8lz/Qwhd+aiyjXKPyYRhoNDpb9a+cvJEtR3JvmdrL5Bivgy311vIe0zdNSlu4tYFx5r8klV2yY632riP2I5bly1bfon8Ucs/yCzRr1zvkrzCmjj7kvPTaq/H9hLJeTEtL9QjX6tN6d7amNFSfmbPjDGs1c+W4jkLlr1CksvynPRMq31L3n9p3k6q+z7sG9Gdvjfaa/m7S9psoelIOUZluTpmzLTyhaXtbsnGjUV+xnoexO0rnMyZ2n8qv0t7t6ZHtW8rwcl1CV3Qcum9e4clNpHq0/z/JUjtee/N+Zf7pm47xshei7HMNxPVPu5SJL+4lSPKWMfOssbU50Oc5YZiHOlw6M/x9vjtGi37xNlMLkcmyVXn28qmUiJKMVFy8fR9HA8U97Y9Otd5SdbGohKS7rTaW+OPl3+JSJwz7fnWtRqrb9Q6N6jrtJ4jcNfr3FSZ57CQy/ccl2hxdv3ZssY5e8rJeSms+clev7v39y0a9R5Ycomx6M0LlSzNs0jtS3XV+XaLXJqvlLHPq7+Ijc7tTX2H499xHCkGe8xVyyP5ZBJajNgTl4ZEuFRyAAAgAElEQVR4HB8pxyqh6bWFcRzNZ0jc3Fn1vvQDJB0ox77UvfMz9RlsYOX1PnSuoXO9Vv+fi9l6YpmUEo2bSMMwTO49enRNfrPc7ll1V+qTZY9ckyPgykgxrVW3pPz+EnryqK1cVfP81+jXtcpa8lSt80vu+5DOsVLuSghBPRfv6ZP2vFSHtkata7EFZ3uGYaA4BHV9LNkrpVy7pP8ppdN6ae0PpS6XPlUr/6LpheaDanVacuLHvTvS+Xw8lxmJopxz4mScyprH0U1ydCkl9rcINdN7x31sZLpzX+cOUq7bYmO4eiz3pHV4HFOiVHTLuZyjWSeD9kz9WB2jSXXXNkHyh885VJv8dT2XzOW1zt165Vsjj5TrbrW/tL37oNQPTY8yPT7AfbLmN8q99a2pV2unN79fP19S27vec9b6vvX3G9K5TkmPXattxbr8gzPtyb2xP5EeC3O+Rf7eygfWv6Mp65PasZ4LS7T2vt59dJabbtYx319zeekMJCU3K6vJ3PLnW/T64q3nNeT6yj35XK81D2vd987+cCTv8zjT3TX5HPcsm+yT1WV6ZG7lWJYw7zuR5TzNOv/v8jyR8+HWjNklc62W8lKOcOpzzHVV0hHrmUb5mbOpuQ3J91lzpnLffhQ3PpY9u2bmOw/DrI4QAgXmd695XJPnzzW58Vw7LFZbp9l1jUe/PZ8Bci29+Ooh+5wlh2Phhx839OObQNcPD2L9Tz/7kb751vZahNmeaVzGlrMV7vvDh/Yz1Pp5S07PEie2fISle3bPmrbYNImlujttu92GNTZcciZpiTemOYy2r5esygsuxuVOowEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDTxye6/o3y8pDk6MUr/uUrl+SrVw/U+08/e0vO/fReROEo0aNHh3ZBAMDvBXj5CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Avi+g8j+a38UpNXt4Fud+He5Xj5lf6Cl80Q6dNf3V6krUu+xOXRowMF/9N7KQwAYBl4+QoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAL4tFvR/X+3/y4eSdy/PDjht7cDGqZ509vTHXF6NT74YLvkvn0V7vLVQYAeO/oVgiAnzgpJUrp+EawGGOzvPee/dzTHve5xjk3+ZzLlteXcok6OLz3zTGU+p/7aJFNGzcLUht1vT3tcHW2+lL3V/qsySGNZ63X+XsuElOilCKN40hudLO5yO3nz/X3Vv+sY2fVRa4+ab5aZXOb3DXuuZ51Wn/W9KKuW2qn93rrHtFRJyT7JfWJK9NrS7Q11pJZsw/1da7esr8tO7XEtlv2D8uzWj+5PuRrUvvlurCsS8v8l/XWn7VyrXp79Gnt/itd12SQxlibe26tSPpa2/3S3tayc9e1/bV+VtpjODvK2Yv8fFCyBBZ9q8eOa79Vj2Uf7ZVxyTqwymfZt4nOY1Ner/f2cRxP38dxpMPhcLqXP4/jSLe3xzfy7vf70/XdbkeHw+HUzuFwoHEkOhyyvMe/t7eRxvFYZrPZTGyOZK+GYWD9Ze/9qXz5mRur1hq37rlE0zXmnCM/cn7CcTwvQS1Hr72q9cAxybpal6S9QLId9bX68mmsOmXXyvfafske1fd7sOyvWTdz0dIeSzZ5iRyS3pb6uradGr6+Y3yQ1zRXdsneWNIaN8mHXxv/nuslIirrPvaZa88ag3HUsTBnu7kYTZK9tdfXtPZ2SWZJ/lqeYz3neJLITfqj2fDyXuk7LFlTkk3Q6hmHuS9T7kOXyI+s9U2tuieNpVY3EVHynryf709L5M7w+pLu9q7z/db4Svkurn4pppvYkd2BDodyT0/09u1b2o2hay/S/BTLdR1+jdf1WnxVC62Y0cIl84jW3Jc4x0J91rhAyx9w17W+W2OO1l6n1d0z9j37ci2DNfe8RBd6c4SXzINbxrwV00uyaH4s1xeLzbXuAa17S3KJXNm1PqnmW1h8c4k1PhtXR4t6DUtxiRQL1nkYSa+kvmu5kp44lhu3pWtsjQ/R++zaWL3WkSX19epZPa+annB1W/O4RFOf0HImwK1LS+6g9cylWWP/6/Gu47FzjMj5gEREx5xAXrtcDCO1Zx2XVq6X8wOkdrg5LfNvLWKMpzxILX6vr8rlknrjPqvP2quDmi045lintj0xOnKJ/YejHCPuc4vS37fkVEvZQwisPrXO+8vc9Rrue0w5rHtgT66aaKq72hrpJdez3UQahunPsq62V+TcWTZL/VqZHj9Mmy+LLi7J815iT8/05B96sJwXrm2jp80l5UqsMq7xleqYSfKNvPemOT/6O3UcGKnuPuefaT5b6dMPw0CRycvV9lTL3bVonZtIbWpw53ohBLYvVn21xJ7cntKzj7RkaflnZXvl51rf7te/nZ8PtOJtLg4s10BrHM46Oz0DdK6dE75EPNC6z8XJlvYlG6Fdk/bkci5aPr9Gj9/Wg3Weki9lPvfJmsdq3ZNo5cta7TsXKfvb+RYnd91e/bluw6JLlhi99lMle9trx/JZW90mlwew5IdbZ42W61nXpOv5ngvudM7k3Pz8XJu/ST1KnGs5q6mRfLn6DDQ5Tg/7zsmmtrkcr8vYpla72rXedVzPg3Utt3woqUyr3Pli9dU4TL17R34m50Ly46XueJ9meh1CWOTjbTZz33Cz3RK5vphgyRopWZsT7n3esr4sv+e1tndJf05bY3PbR7Oykg9b/973PuHGc81ZsbWNpVhyitbfh5TPa2305uBb9o3V1WL/LJ9d6z/WMVcvUzvfb0NLrL/F534rKrXXyj/V8dQl7YTWZv05z2X5iPV3OGVfLXZk/vy0Lt5P4evQ2rP4kJbxXht3tmJmTi6uDqmvrTOYHviY8/yX68t0/tsxTO85i8QlY9fpeVt5fbnfm9HiyUvmD5bkpdzdOWJ5zljGtBY5MpZ/x6XFUEuw5qU4WSzXcxtSbN2LFo9I19f4upyOLG1Tjh/lek/xuedjNNkWzH3VS/oauV7uu6RLDx7s6cHzc+7nrvDp25gcffl2Q8/c+WzZMt+aryDpm3OOvnp1TX/8m+/F/jz9bE8PHng6HObrciLHnbzxLi9Sdi+EQI8eOdput2wbUp+ke58/38/iyLqMdM5rpTtmr3hX+1LLX9Js5aXXgiSfxNqYyfob/56xJCJySgwA7of7zwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgJ8GzZzfa+93oi5uBDundvfzhq1cP1fvOJXr66U2znnGcvnSt5tGjQ69oLE8e39KHH+wvUhcA4KcBXr4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8Qnj6TH+Rye/ebN6RJEd+fLOhN402nz1tv3yFyNHN20G8+9HjHXmnvJ3FyG//6PvVdQAAflrg5SsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAvgMcf3tL19UG8fxs9vVReYHJfvHz1QL3/5PGOHjyQ5c7c3ATxXgiRnn5meYmLzK+f/0gff7RbVQcA4KcHXr4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8Anj+TH/5yN++GSiRe0fSnHn51cNGiUTPDC9O+e71Vr3/J799TZvN2CHZmY8/uqU//ZPXi54FAPy0efevnALggjh33rhDOL+FLKVEMcZZee6a9/o7iLz3p+fK9nI7HOX1lNLsOa5tqUzJOC7byLM8zjlR5t66S3m5PubvUntafUvGWWpfg6t3ibxW6rqltpxzp/pDGCgETyHk60dddyHQdrulwctmvJz3/D1fs4zpknul7Fy/yvJWHeHq0+abK28de+n5/Iw0fpKMUrtL9CcTQjDrKUfuR68MS8css9R+9VLa+dYa18bAaoe0ZzLaPsPtS7m9lqyt/aveizi0dVjea63Xem1oa3SJ/bFgnVtOrtZ8r7GZUl1L+lv7N5L+ZLKOtMZD8pt64MZyid2osa4fix3S2rfIY90fcrnS7pV7gnNu5l/mfo7jeHq+9hOzr5s/Hw7Ht/QOw0CbzUghTNffZjOQ9xsiOu4dm83mVG8IgR1byVbHGCe+drnf1+PSo0u1DJL+aPuvc34iW3mPswv1Hmj1GbU95fjXtqbr9WbV0Uw5ZsnP93PvfXN/aLVRs3QPLMeck6nWlSV+aKmzox8pxkRat7R4yEo57639weLHamjyWrrBPXspn8w6jtL+rO21+XOMcVZuHEeisX8ONdtUt53LppRO41VejzHSOI6z77XMh8NhUkbyzZxzdLVN9P33+9N3IqIvv9zRbn9cO977yf5Qfh+GYbJHDMMwecYfjrI6l/2CJPqa5ThZbImmz5qOWO0UBXeS+3QpBArxeG2t/5LlyPWUcq2tu6Y37jWP0QK895R83aajzWZDgWz+Yy9l/7OOltedc7Sh+Z5+dXVFbhMmdqFVf2ZJDKW1obWltV36fRJL5runL0vyLj0s8a3XtlFe03w1yz5kyTEtzQmXny35siX+mbbHtNqrv9djJuluGWta578nR2G91/LtpPnrjQEuma/Q5LDkVTUdy9TzJp1BaHrNxViXpjeOr5+xzKuWr9JyIZJP1LPWJPLYLvE1rDndtX5cSZa3p7+9PqWFMi/C3WvJ17LDl1rnPXEuV85qB3vzoGv7Z5Ep0zr3tJzfcHC+4mazocPgKAR+nZbxnAXrfi3ZhaXzX5Yt40mLzUku0ThO2x3HkUIK7D6o6UseLymn1pJFQhq7kqXx17Huaj9QfvRXx3x1TNh6rnzmkqyNRet8oPX3B/dlGy4JdwZQ20xLHpVbB7me+txViqMsuUvOVnPxSoyRcte0NWc5b3HOsTIv3d/qc42a1hqw6DBXx5K4grtuyb1zlOc0GnX/LHkKyQ7Wv29q1cnVIemI1Zb02jRLPFLKdT6v2jTrHoc42dOJ7n4rM3hTHr4e8xCJvO+3ga0xWZvz557xnu9jvuY9nztv5fpr30Y7k5OulXk8Trb6swVtvOqxsJx1XyIPVetS3aU6R9Arz/IYe7onXEL/luSeyjUm5eF65LDqjBQ7SOtU27uX7k9Wucrrrfhu6vu3x3LJnm6NbbQ2tXrz7VKs3pi7tiO9emGJi1tj2esr1LFH6Ye3+pjR/FtObik/qe3JXNl8KSW7rP3jI3+ubVg5F+V1OeaS86itGJaXk9d5iy0Lkag8u3TuuF/GYWrrpTlryWfJcVnvWebQUkY9U3CRiNxxIOg8vnmOWn2y5oLn18+2KF/L/3nmdzQhhONvrhV5uPXG7b9lWz1ya5Rn/+U1bW9asqfX+4M0Fvn3aC0uNQbW3JOl3iXnDhIppZnPzfngl/BHM9q8X9Kf6WH+uwJdTm6se+SynNtotHIOrVzpfeTLrPnZ3jrrqjTbxJHtYl2H1B7HGt++J++8Zn+s23LOUfKJ6r3Ee8faY7HOYZzp2zAECkk4y6rKp3Qun1Ka+RhHmQp/k1mLIXgK8fx7sfug3Dus+VFprzHHHW6k2l/T5JL8QWtc5JxsX6wyt7jk/CzJS9TP1787Tunozkn2qjX3lv6tySVdnuz33X1rxBP1WFj7ItWl+aMx5n/ndb6er7W4ZI6s1x9bEosQyT6CxW/XKOeptktWvyTd7Qllcz37RKaOW85/HZ3zQv1+tdW3t9vCRE8/vTmHd2W5u///uzfb87fOmMgau3N9enOzoR/fbOjR9Z59hojo+dM39P/9+w/FfAMR0TffPqDfOvkFKZvNSP/JP/iG/u9/8wkdxrae5HaeP3tDf/9PviXnjv5FeV/KN9Rnk1p+SWu75vg78cv7BEvyRpq9WGozerCOw9HfKss6CsNAwWiDNNml83vu+WGYl8m5DKLL/54d2Lm/X/IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgJ8Fnv7qhYZBf7vDDwdM3O/5F3e+Cl189VO8/fHigDz/YqWW+/2FDP77R+/DxR7f03/xXX9HHH70l7qXJZxJ99OSW/sv//Gv6h3//28kL1ImIDgdPMd7Pi9EAAO+W92f5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E54/uyNev93bzbvSBKel68e0m//6LVa5tnTG/rhr6+UEo7+/ReP6Nf/4Du1nocPDvRf/Gdf0+1toL/75gHd7jztdoGcSzQMiR492tNHj3e03Y5iHf/uL5/Qn/69bykE7QUuAIDfB/DyFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GfMdjvSxx/dqmXe98tXbm4G+v6HDX34wV4s8+yzG/p//voJaa87+eLFQ7reBfpIeXFK5upqpM+f/9gt65cvH9LLrx7Sn/69b7ufBQD89MDLV8DvNc45Sum8NebPzjkKIbDla8rnOVJK5L2fXY8xsvVxcM+3ZIkxmurmnuW+S9daMlnr6L1e3ivnrX6mlqku2yrvnDtd4+5Jclr0oiVXTd0e1995vZFSSsVYER29wfYb8Frzyd0vx0tjib6VfS7bkD5z9bT0rLYJLRmlNlvUc9nqf93vciw02SztS7TGzaKza9qvy3F2UJLJev1ScGuxpMfeS89brlvGqGdvaK2tEkmPa2oZ8zPS9dy2pW5unXDPr9EHyfZKsnDfy+fKftf1tdqpx7zeE8vP5bznNrlrEj1z2+t/aKxZNxmtn5deM0S67tafW7bfe0/jOE/OWNfE4XA4PT+OI+12OyIiur29pf1+T2/fviUiov1+T8NwoJubq0l/v/zyLR0Ox3BvGAa6ujq+zffq6ur0X/6+2RyTYpvN5iTbMAzsvm3dU+o9wGKTNJ+uvOZ9Xl9sNaycrbVV06Nf4zhSjNP2xnEkGnlZOLj+ljLI48H7vj02jrtez4XFpvWijXE9NxY/LoRw0o2yDe/9vdm2S9g5rf78net/Ltbyf3v9Nmk/q+tbMg7dehmInJvqSQiBQvSz+rh9lGiqS9reW9oFfrzdSWe99ye72UJrr/y+3Ua6vp6+Uf1Xn35Eu52ftZ+/c3NQ5kFyma0fZ/kRLZ7J98o9TJtjycZbYktp3qZ94K7N+7uGetyIbPsAkbzf1Han117k5yWdrJFyJz1kXeDsyhofXLMX9T3n+P1dmpc8Tr2xp0b5/CX2D0vc19KPVp8kOS3+kKX93nIaXLs9svTksqR6e/ZHqxxSPCXlrde2Wa7T3vo0vajH0qKvkg/ZE8e3/FPNP1mrv63xaLHWP9bGn5NDmvu1vpl1z17qC3M50SV7Te23raUVc2nXJbg+cvuYlkuzXLdinTPJB9ZsDfdM7btweRErkq3l5LCs8Vp3uNzjEp9iSfxa199a+zUWfbHoriVPam2bY8n8S/X7caSUpmN9zJ25ag6cOdddo+lRWV+pQ5KNzve5ZyQ7ZtGlur3oI8U4Upkf2u/3lA5z2fLfVsy2xD5ruUPNJkhjbs0ZHesu20vH/0vu/L0Y87p9KXertdmz/0i/L2jRssk1Uvwu5aelNrg6yrrqe5fSH42e/CF332IXpXMHKa7X1qa1v3n9WX0wrR4pXyeNHTdurX2lx09qxdQppZNeantjK0cpsSamt8TvZR4sJf53RFxdXO6xlW/LddT57SV+cKnX1rxEzxrX9jCLT5d1OSVic0OSLNqexl3z3nfnEy25Fcn34OZqSY6n/K1CGVu09L3OKddwvooEtw/U97j2uXHR1vAl4v+y/PQRNxs3rv3yOUnUHnvfW85q+3tlsbS9Jreg+eDzHPB83yrryp97fxuj2Zu89q17r7T2e/RwzdxY5ljbn9fkPlvx1Hkv629D0rG1erxkTWjjxO+LiaRh1dqvv0v7kGSTrbGWqru+2D/c3Bf1TreNnCzc99b1uow1L5I8zcbeOi6yLNOxk/xTW3vTddPSwZ59UCpjibske7vk/LMVPzo3GdHTf1nWJTZNs0XzXMC5fIyRRiaHNI4jjVXXLXuCNN7cdS4H3tdWWb5PVg3t2UvlxC/NfbS/pM4QgtkfudRvGNeee2i/s1ySb44xsr9XiDGSi/qzl5zHMpaV4lruGQ5rrmn0Ufgt4Ly/0p5mObco0fxjuVz/Ol4TT3A2zlKPRbfvy9bVnG3uunO52nafr/FxcIzcntI7B47Oci/Rl36scaIU50myaXtQ8nM9C8FTiJf5jRgvF59Xsq4lyV9ccg7XoienrPlTPSIt8SeW0Hse1dP+Od9T+sZ6XNjy8TUdkXx2i2899wWX5Wxa+mfNCZdoddliMTnH0htz5r8hzMse/bjAyrzGzi9l3jea6WM9z1kGqa6lMTqni88++5FO+0ua50S/e72hHz8+1XB6/pK2jaPUK+ccvfr6mh5/+Fosv91G+uTjW/r6mwena7P5J0f/19cP6Z8++5E2vk9+iy386tVD+ou//Ji8d3fnSbwPZLUfkl8hzeslfk9tPeuw5n/qPbaVo19Dz/o+MesHn88oseY4pTW8ZO3c15iBNhh5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgZ8zzp2/U+y9ePnxHkuh89aotx7NGX4iIvj8E+uevrmkfL/vSxy++vKY//7cf0/l/JAQA8HMAL18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+pjz+8Jaurw/i/RSJvnr14B1KJHPzdqDvf9ioZX71yVsKITbr+vp2oP/1xSP6bhdWy7XbefrXf/4J/bu//JgS4cUrAPzcwMtXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnynPn96o999+Eehw+Om8euCrVw/V+yEk+uxTvU+ZHw6B/pcXj+jf/OUT+vFH/aUuHG9vA/3VXz+mf/GvntGrv9PlAgD8/jK8bwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwP/zFX31Ef/FXH52+b/cHGv7l7bTQP3nHQin8ze8+pL/53YcXrNHRFy+v6eXffkgfPNrTxx/d0uMPd/Tw4YGutpFCiOQc0eHg6HAI9PY20Hevt/Td6yv67rstJXJizf/7P//8gnICAN4XePkK+L0lpUQxRooxEhGR935yz7n5JpZSMl0jolO9l4CrS2q3dU+i7i/Xf+5aD9K4cnXnPljarPtbtlO3mT9L9XJ15WvcPQulLC0uMXfV3eI/W13S2K+df62u8vsS3S6v1/PNzbmkb9K1Wo/qexa5NKzrQrq+ZG5KvZbW+5p66zbKa/W4aHPTasOCNt+XsNWS/pWUe0zJmvZznbkOS13c/NSfa6z6Jq2R0q6U9zgda61FaX1z9OzZ3PXW3qHJrn2W7nH+iNQWd7+UsbbjXJ2STpZYx/CSPg/XVmvNW23VfctZf+/xGzhdqHWlXOspJRrHkYiIxnGkw+Fwund7e0xaHQ4Hevv2LRERvX37ln744YfT59evX9N+vz9932xGev36UyI67wnffvM97Q+BiIiur69P7WVyuWEYaBiGU/shhFm/ajtQPi/5bWX5cRxN9rWcY07Hz3Mzvd7r9+Z7ZV+tlP3KMrqNoxD8RK5hGCikef31OGp6zd0rx2UcR0ppWmYcR6Kxfkrm1Ie7OW752lafT+rXEl9Zo9azGKf1j+NILk77Is17KfOlfEMtfirLLWlDqyfXYdkrLDK17lnsZWssuGePH+X4ziJbnu/8DKebdV4h28vSdtdxpUXHpdjMe0/Oucn6227OsuayD64eTMpIfW2tV87n8t6f6pbscA0nC0euo+x/T96lzu3Uj5ZzUT+v6XxvzFbTaxeWrD9WnhDIOT8rY/EvJVo+4jiOJvmttt7iA2R94Yaz7G/tX3F+i9auRRe996JujdQXs3Fy3JdPy3GfeaEa6/5Vr/H62iXbX5p7XbIX98yrto9Z9tTaX+udV85v6InZtNxrb71Snb0yWOKBVr5Uy2UvyUVwMVT9XH2/jNnqdWHxw3r3tHpMtTakmE8bt1IurtxSm2TJa2g6Itkcbb4sa5yzb7ltaw6vhcVXK+k5V7Hofp37uFR8Z7V9McbVPp30DPd8S696qdcBF4NqfpPF1q09N7FQ67Skl2XMUctmHcuy7uPzjsoY8ewn3p+PQ6T7KmWOf40PXWPde+I20jDcTvzo7XZLnrxpj7DYcek+58/fN865SQwwDFM5vE/knafks7yOvA8UQn/OPqPFEPUZjyZ3po79tbLW/LSUky3b09rpgdvTtLnv3ft7/HRuzWlzIfkHa/OYmj8s1ZPt16ViNK4NLSfPySPVk69z49Wye1IuaUnOQtp7pL2mzL1Jbbb2yda4aLbPsie05qdcv62zjJ6YXFqXrf5ySGctS/Z9rnyMkVzUz2DzM1qsm6s8nsfp7XP2XWq35W+39KC1v2aGlO0F5wfdlRlsP/+U5mPJeZmlrUv6B7p/NN8zYxwnuWqiu7PZUfeByxxlmYeOkX9Gm2eL31zXEWOkGCKV538pEY3jgVLjf2WWOwdoldf8CAnNLrY+t+TRvvfUVdITk7fKWnPfluvzWIb3362xAZe7WUJtXzgf7Kg7U1ks+mP1G3ttR09/Sx/Nkm/Ln/M59Pleot1uRzvm9wCaXBYfVvMfe9o6xXvBkc8xElNFHb9b6Y0jrfaSu1ffPpbnc13tcZruqdoznE9/zInl82Mi5476MTLd4/yD1h7E2eRLnvW04tees4Jc/vjIdD8+bs/y77br9so9t0UcY7XHT/fJ43qd5t1ub29pFwPFGMXfauXPx9/hHGW/2iZ6/Xp/qst7T69eEe127viboDsfqvyc7WSWTYtLpvpSkpUAACAASURBVPOdx+hoY7MMWtxxqZjypwx3bvuu4PJ9a8bc4nNb57o3rtYo9ZXNK532kdzm8Yw+xHXnuxY5uX5y42jdc1vtTn574Pm9rLVn9tgzjda+eT6jme5RUtzSYqm8lzjnJzrHJr3nnktyGbl8/UiMiZxyDjWvgyiPf64r12FtU/Ojncv/udP3uzsm+co2uM/3xdo4bqrfZ8Yxzn4T22rLmmue+vnHsc5zsyROXhPb1M9LbVhlsXHWYy3mtZxBSizNCywp0477y/Wk19+771vHxF7vOZ5YM4bS3FnyHvdBr463zsqcG2f72DiOVP6Tida8Stfqy/W5Qy3T+Zlpjrh+hjv7Xxqb1zJYr2d5c5n71EuJctwkO7qmDWu/sv37/oeBfvhxo5btzQWu3QeyTrTW6yX3+x7fWiOlVMQSZ39J0/WlPul92a7Wnm7NodTzw50bHA4H3pYxcQl4t1wm4gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDfM/DyFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwC8SvHwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwi2R43wIAsBTnHHnvyTl3upZSYj/HGLvrL5/XZOAo5ZLq0WSy9ElqW6NuM9dXy1jXXX6XPte0+s/1JV9zzon9bs0Ld5+T0zln7kur/vp+LX9PnbUcR12i03/HQnJd0hzXdff0vWf8SzgdkPSivJ4/13+tz9fXiI7jWPeJe6aud2nfORmke5Z6S3lbdVvr474v7a+0djny2pPsHHetvm+x6eWc9+i41I7W5tL9YsnetMRuaUj7gLYvSDaV09NW29IYSPXUuiPJW8ti0QFJJ7V6ynIhBLWNHjR5W+utvC7NVX0vhMA+k1KarcUeva3b4uor/2p1WK9rWH0qboxa+l3Wl+1PSonGcZxdJyIax1FspyyTnx/H8XQvX9vv90RE9PbtW7p5c0O3tx9Mnn/x8gW9eXOer81mQ0REjx49oo8++ogeP35MRETX19f05MkTIiJ68OABPXz4kIiIttstDcMxXMx/y35kXbCsNW3sJJ0qxy7rdYgjpTQtH+NIh8NcBmkfcM6p/lKLeu3l+mr9HseR0qGvXm3v4mQMIZBz/q788dpms6FAU3u0xJdeE0t572e+V6bXT25RynbcI+btldTrUmKtjJYxXzIWcztKNI6RDu4wqbekxyeywNksq5+qYfMnHXnvRP3i6rTUW/sXeU8fx3Fi8/LzMUYax/Gkf7WNlj5n8udStutrT69f7yeyvPwq0Tie7XCWK4QwWWdl/qH8nP+WsudxLIkxnuoqfYKyDgnN16j7aLUrtQ/O+XX5e8v/ssTAmh+41hb0xiHcuIzez/a+cRyJBFtmicdyW634uSdmrdso158lV+ecI384rqty2MZxpMPZxL0T6nkobc5x/U3nNYRAIS57v7l1XazNB67RZWt70npcm29bE4tL8WP9vEVfc33Wui1YbKhV/lYbWhlL7lZDGgvrfn1faP26jzGzzIeGc+7Ov1+Wv9Xkq/tsyfGU9dTle21Sva6se9Xx79THd95P7E2uq9S3nnVs7Yekzxa/wZrzaNkETo4efYsxXjyn2srv1mVLu2bJy/TQ8mvq65rsl4pZrfqm5VKsMbx0zRK/1feW9F/LAWjyafC5G0se/rw39e5FZZv1s712wppLWRuzx02a+WHb7RUF17ZbPUi5Y+4zN3eWvtVxSP2Za4vFnf7fqY5WztK6LrkccP7c63to/ei11yVL/QdJrjU2cckZWI22jrn+cX7CUnkkm1j7feW5SZkLynMfY6RDFdjevL2h3c6zOalSL7nPXN/K65fI/+U2JSw2UvOTuHMTLha3zNkl9KyWhcPiF1lzwlZ680oZbUx6zyCs13v8Qq5cjJHSQMTt9dY9nY+D9Ge4MebOwyxtXipfI1/r9wtbWGIQS16i/LxkH5HsbWv/zhxz4tO5Ou4HgbwPs+utPN40/3f8u9lsKG2OdfX0kTt30EgpkfeexhAnfXKOyPtAIeiyL42tLPNkjeXL8q0ciyZfax+2ymVpa0m5pc/N103+nnMgc5t3qRiVwxIny2uUTnaWO5uS2rPahVqO/L281ztfVv3hxiX3sbyn2YZW+/Ozu3OZJXuplpuMPt61R0R09lGzS3a7u6XDYf7PCCR/1LJ/1HB7qqZz8z4lqs83pWd79hSpTu25nLM8fj5f49ruyeFr3JcduF/7cvx/td5oPnOvb591OnM+O08znbu6uiK3CeJ4S2Ox2UR6/PjV5Nqnn35K+/3y849efdR8zrX+6KW47/OgntyjxjSvM99Hyt9fENlz6muxxr/a85meXLP1XOscW8lnPVpelZOtd/23dMzyO7B3fW5pac/6u5meuq1xVO99ibVnC3U9rWvWXEarLs4XizGSi325Yj4Xwa+P0c1tyuFwoHQ4/v7rmFfM9x2ldPxN4Ojvfj/sI01/O+QoxkSue//sm6feOLM3F67VW17Sfi+4JB6b+vzTtizUOt8bc67N4/z/7L3Nry3Jlti1InPvc2/Vq+d+cuP+wNjY3XYDNmrLCGQxQCBhJGCExMcUMWeGhISEPPSAASP+ASQk20wZ8QeAZIFtgWWB+LJsbLn7mfZ7/arq3Vvn7MxgsG/sHRm5VsSKyH3uref7+0lHN3dkRsSKiBUr1lq5a5flU3njiXXV9beGPX+v74P0jNGa43zM6VZtD+Vr3Mp9as+Vn1sxcxl7lvdaOfgk71Ef/2h80nMO9eR0ajGjZ35G5mUJIYulr7y8vEg0vsgYQsj07F5pWVaRpXxOP4c8PqEVpx7Zi0f9gJ52R8+JEbT+tT02z5PM6+P+O7BH5eq99i6/Hn1POPo+qnVvm0Op71kR289t7Q1PrG/mQRWdqP13MLU+RvLg6b3Bk0zK9z6eRD7kHm9tfMLY/3Pl034DFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOATwY+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGcJP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnyWnTy0AwGuzrqt5L8b4an1qbXv7CyE069TG5W07Xad/876050rS8yGEnZzps2fMpRy1PrU+tLa0Z8pr616tvbx8ZD1r868xTZOEED48c38+hCDzPMsc56ocHhlb9Vvyl22U7bXGWVujlnw1WuvrWfP8epq2v1fmabM2hiPjKufSs0bW83l7nj2hydPqQ6uj2RvPfMcYb/fKdjx2sWVb8vZyGay2a/PksWMfizSWchz53OfzWepISx80vWxR0zfrPOpp17Inmr5r/Xh0xbt3es5CLyM66alfPjNN0+bZcm962xKR7Dx7LF79K+2jtVbpOWu/eORJaHsvleVzma4vl4vM8ywiIqfTSc7ns4iIPD09ydu3b0VE5Msvv5SvvvpKXl5eRETk+flZpulZfvmXv/jQ/7XN3/qtH8jLy7Wt8/ksT09PIiLy5s0bOZ1O8uWXX97upX5Op5O8efPmNt7T6XSTL8kYQrj5J+mzNjc1mz6iBzFGmZYoIUzbsmm+teftp+abaPanZpPSuZTmIT06z7NMc/u3TvM+ame4tvdk8s1lru9eX/kImk2w+q+hjrnyTJzSHKY+4kZ3k2xH/bJHnXcjPtSHJ7Jno4RQn6sj69raI0fKff1vPpnPefpO/ozm36XYKn9O5DqvuQ+Rnm/5GpaOleWpvWma5HS6yJdf/mwz57/0B/6AXJbTTcbSRrT2yNbWBampVussz/uq+Yl5O+X85PNXzqUm9zRNsobrs9eia/nLy4vIsk1nWnPh3WfWOaa1W8sF5PPhjVU0f6BVp4Z1/pb6E05rcX973rfOvrL95Dd65NLKY4xyivmc3/so/dGj9NqlZVnu15dVlmUry8vLi6wv9lx7sfStZOTM6s2xeeNsa809+Z+87dE19sxPzc5o8/PIXHHN76rVyf2mR8VPtTXpyXFaePyr3ryghXdOvPPfozOePo/U9+RfrHZrtqfUpVb+tWc/em2X1reXTZXoy+l7ZRmNTb39v0ZbR+IRT4wlUo/pcjla+buWrvXgipEVNP9UyyH0nt8j5701B1d/V89XavUtOXoobULuA3rP8Rwrd9i73mU7+edtvH8vu/6VZZNbR3LyPj3+u0bu32jU5jePlWoy7uvtZQjr9rPVhuYPpf3d40OWsXTeb4q3yz5bZXn7GvfzLY0h/e3j5573QmXev9f3aO0V671TPm8jsZXV3xFqPoRHlnm+v8PW3jUkSp20bGxvjs3KUbTw5pm0a21953mvg/k48/p5/GlRy4Fb8+fJ4Zd49N+TX9Eo7YLI9d1EOffp/YQmm3ZtnSM9Z0KPParpq0der23q9U16ffRW/54+a9e1/Fy6N8+zLGEVLQfc609s9V42bc7zrOpfaWs8Nr3sy2rLwopFtfWbplymfT8t+Xpka415VC9affboaOlXX9/7bM+XZE9V37txPG7fI911wZtr7j2vrLbKdk+nk8yx/Z2lEawzojdHMXJ2lIzueU/bj+AR+2jb1mPyv4+glpPcnjMxs3+pzI7BjuRRNDk8udPefHhNNs3W53W0dnq+P5OwvtPVK6/mK67Z+6B5vj4zz7OcPujf2zdv5Xkghrbk6V0Xyzfez31blyw7tM/JbG1Hy18s5Sq7uOcnxnWyfK625vk+GD1He2SpPXObj2z8aU4t22DZBc1P01hOq0xTejb5kyeZ1vRdrCjXNd72E2OUZVnMnKV2vSyrXC6XzZhfnp/l+WXarXkuvycXkVN7djTuEvHHBl6/rXWvh0e++xXpzxdrOYN1XUXm+eGyeWTqzWVavtqIf9Kbl0tn3Zz9/7898tdk6Bm/FutrebXW910TvX6vJU+J9ztvI/2XedG8vKUDnljeqlteW8/U2hzNhfTEquX5WJ6V22dTmd1mLfdY3tL8w9v5MAeZpnxcYRPnTbvvPRbf4VG+J9qb+/ag6YV1dh7FWpd1jbd3H+mRdY0SnPbZo6fbvvN8iy1j3sbRXEaJN59k1fXESXn72nPTVPdpyz574i7vXHlzLyN5sTjt12yaws4HtfVkP5ay7IjftvVF9/daej26J715UK3P3ntlnz199OTV0zNH/ZNkk/PurBjnNo+KnoVgvdexbbpnjkfshsc+nmKUPJbScle3OwN5qd46nrH16F3cja++x3rxng9HdLwnfnwUNX2zfNAQQrEnrv9q+6h1XvTkbbpz2tMk9/826ZpPmOdZZuO/N6n992Varq/GNmbRzqn9XL1+BhxKjmVNAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH5B4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LOEH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzxJ+fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+S06fWgCAUWKMcrlcDrURQpBp2v8GUQih2m/Ouq5m22WdvK+ynbxMu6e1n56ryWvJ1Lrfarss9zznGZfWliWLZ53Kecpl8M6b1m5Z39tu/px1vfl8uci6RlnXeNePNUqcoqzrKuu6dulrXu5Zs9r6jaxLumfNV2tNavumdu2VxWq71J1euWr9e/eYNf8xxo0dyp/Ly0tb55n3Ed3S7ms6os1/ed07r9M0mTJ77U+ap/L5fP7yeT0yR542WmhnmMj+bLLOqlKOI7KUtPajd+97nsv1pbZfy7aOnMVW/bLcuvasSVpfbQ48up6uW31ZepTKvXrmwWrrSPtHz3PzDB6ok5cvy7K5X65H7semsnS2l21N03Sbu3me5Xw+3+rP8ywiQUSCxLjKslzrv3//nbx/f98Xb968ERGR0+kkX375pbx7905ERH74wx/K6XQNC9++fXtr94svvrjJcD6fb9en00nWdVX9Wsu+L8uyWacePdBITaX+rnPgQ1tHbc3LMWrc1mre2qD0by6Xde6Vtis959H/ZVokxu1zy7KILNs+c2p+W68/4D3njlLOheVjrOv64d7W1oa1HY94YyvLPxmld/6vOr+5u7EPo3jsXo2aD3HEt4hTlBDysUXVzozEnL1n2F2/dLS1LPd4KXduIzQ/Nko0/c5pmm738rbned70s50b72jveHQr73+aJnc+4y7Xdk/nny+nZWfjT6eTTHHa1NGuj+Ld771xRkmvLqY8VmttfPOS28tkM3W5PPLXxmLl3rz60nPW1/Dm9GqybOcz7spG9VDzAUfb8uRvLN+stFdlLJw+1+bOa5/ztj32xhvX9vJon+bomag91yNjTy5lZOw9+WVPHe+8eGJ+T16p1X9rP4/mYT3PPeoca+V9WzqW/InRM927Ri2sJy0dt3K9nvOp5s96fcCarfWs7SP3ac6IXqVzt6fvNM/WuaHJZbWv5bQ9Mbr2XK2OZ797c9ctXWid763cqVWv1k4td2l9tsZsvX/QyPNhRyhzSbmMiRRHbZ8LzTx36x2DRp67q9XV8rl5n735YUuOe7sipcUsx1/zpWv62Pt+Zp+/8NvAFtq8pbj4Lq9c36WuUWJo+wSePTaqR1YbKQebyjV72/Khj8QLls5Z8UBJzS56+qnFma39UPZVyqjt3bKsx5a1+m/1JXJf76fzutuHb9+8Ne1Nvgc979asNXtkPt7C6+d6SOdH6/s01h6pvRe18sten3cEax+V4/Ps49r+0Opr6+2x6SO+h9ZWPq+ajvS0W+p3bc3Ld/z3Z9tnQk/M1ns+9mK1r8c59b3t8Q1LWnpgne89bZdrpOXOrTpa3zIH2b5HuPo/V33by9DSwXuufmtHLZ/qqC30xoLX93/6e6zeXFRvjqrH72k9W4vfe+1Qa+4fmfeyZD7yDuFavm9vZL5Hx+rN4+Zs35eFrOzA+8AB+XvmyoNlb7axYJS7bbDPCs1eJN23zjLt/YD2WZPZl6+ty93LkTy8Zou1sdyu5/33u0+nk8yx38e1qmh7IWeba9q/f9XG5ImdLDm8z2g2oBUbjKyd59yP8Z6jiPHD95qXRaQjT1STczPnU/75/o58WtL76r3POc/z7a/HdpzPq5xO327Lnp5Ewl6ZPHNrjnEn8/b9o8d/KfMlImO5p09Bb5xQUot5PbkQkescv1bs3MKbwxap5+3KOo+0PRra3B6dwx6dbT3r/X5BfS43n9TvadS+s271V4s5vfUtX9JTv+d5De86lTnH1KfH3luxgtfW1sYWYyzOEpEQ7O99+OLdex2znUkkjzNvsmxygSJpXUOw7uv187K871bcVaOWmzvajrPmLc54hP8/kvtq6dJo34+mZyzTNEmccj25t1FrJ98TI2eM5XM/Oq6z31vkct/HcsRf8sxXDzX73jvn3pxQbU8fyXn0yODpy2prey7eWZalJxRRyfMfqfv8v/HI5UrPXfVMl7P2uXVvJL+vlXnf/xU97c4oke13860ck6fvFr1xlu/Z/by8tp2+972//r7yiHPuOrfbsmkai728+6bX381lLPOb2rjyOEN/b7O/tniEbw6vz6fJFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8YvjxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgs4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LPk9KkFADjCPM/mvRCCiIjEGKv3PVhtrOvqqq/15S3zUMrnlTc9Vz6fy+GVKYTQrFeW5f3m19a8xhjNsdXksmS0+rDKavNsXVtzEkJQn0vl6fM0TTe5b89MQaZpknmeZY7bPdCaR4/MmrxamTYvLV3qXT8L71rU6jwSzd5o89cjQ4++aXoWQlBtZE0Ga39461h6rbXR0rl8XCPz1rP3rX3TsvGtMYza9B5yGUtd+NQcnYuaPe6t62mrlNEjs0dH832RX0+T7zcQrbPTkk+bd29fZR/pX4+/47G9IQRZlkV97mPrbjlPaY4sX6m8rrWXOJ1Ot/GWerAsy81GXy4XVZdeXl5u8rx///7W1rt372RZFnl+fr7JPM9RRKKIBJnn61jevn1z6+N8PsvpdA393rx5I+fzWd68eXO79/T0JCJX3zqV5zYll/fa32zaW8/8WDrl1dU0TS218frEWr9WnJG3meq9rC+7ffPy8iLriy9WyNHOTmte13XdPeM58zz7rWZHvTFQotcGafVrPvXtufMk0zSLSLzpyDzPMi3TTeYeW/Madsnrj1jlr+XP9viAPfFErQ/P/C7LKjFu9W1do4RM91t99/oOZbt5edKjdV1lXdebXc6f8/iS2plzOi3y8vKykeHrr7+Rl5frs7lvH0KQ0+l0a2ee59t1jHHzXC5fPuVlbF2zM6XcXh/NGr82R9Y6LedVluUiIuEm/+VyEVnuY/TYmJoNy22MZy9YdrRsw3quHGt53nhi+nVdJTT0q6X7e194e7+WbxuxRZ7Yarosm+dCkM1eS+RrPhJ3b86ORltle3Gnbvtz17O3SnI51nXdfe7Fa3OTrMuyuPd2vh7W+ar1V57nZdsfw7+w+nhEPtaTF7T69JxjtZya195oaPPYinOtfGYN63xNny276vEBNdm1fr30jmWk/SP5kh4b48ndevrppVzjRxJjFG3UtTxgaX/K9jxlHmr7YdTXb+X3Pwa9Orosy6ZOnhfJqelysk15ecpDtGyUJ5YfOVtb546lS1476W3zSH3NJnix9tHRd355+9pz+bxPkzf3HW926JH+hXUv9WGNYRRvnLsu667Py+VF1hfb9vX6w1Zdr4yPPDvLGHCrFx/iXud228Yeuq/Vm+to1T+Sq6ztQavdsk5uIy2bWp7jpY57+hnx1WsxqIXn7PTOTcvHyvWwV4+nye+/PmIuPdT67YkHamW9+N8N6OfBaIzYu67e/O4+7xJufeZ49nuvH1H24YmrNPvu3T9aWU1m894cZJr2e6CcoyTXNE3Vddv2Mxb39+jaaFyuoemPZtOXDllGZbL04eie8ban2edSpqvOp7JrTnHf/r29e75c1+XrffnQ5j13drmYw2zS40Pd/ZLre1/rOe1z6dN4z5+aPF68vkotJ9LrN7bGoc27tRatfdNjE73PaHFWbvcekbMclc06x+57Z2/3W+9GRvu2ykbnp0WpI9u4fqu/+XppOpZT3o8x7vzzRP7uLH++fL+2tYM267pe361l7SzLItNybfvl8iKXi+6PH8nb9uTkanq7TKus6/b+siwSsmF788jamar5Gx657m3q7Xp0dMS39saLj6RmA9PeuM6DSHpvFkKQaZ5ldsZorT7LPXLdH/czfl1XCTHfj20/sWX7r/t873dqe9+LnTuLmZ24y+ld2/LdYi898V/iqJ9xtE4rV2eRxrQsy822JP9xXVeRgfzECKX83jnwxB3a+VD2Z+mMNn/5mdOiNv+ja9aLNu6RPq7jzkuuOjLFsXdAHjx+VMuGHT0TRvL6Vv+jZ+HR51vP3P37Y3Ht1k63c+WWT5uvaTpL6/f39b2xjSXHUVr62LpfyrSGaM5FTy7PG4vn3G1o3OQOy/u9e+0RcVovNf9065PcyzzvfV4rP1zKOPJM3XcRSTpl+Vsjvo/V/0heI/ev9fLH2vnWmnsYkaeVf/boYX6dvsubsyyrXC5+26ixTJOk7y6nbpdlkTxJWJ6F1/h13djrZVlFlq0cV/9//73oXp/F6w/06GOug6mZbXx/t4PeWPz7Tk/s1ZrL1xr7I+xsr2yPGItl00ZksHyA0ofu8ZNjjCLznOn/db/XckW5DFqOqXzGqpuoff82l+PRcRP4eZ239QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfc/jxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgs4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LOEH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAz5LTpxYA4Agxxua9EMKtTLvO28ivl2XpliVv38M0TaocpazaONd1Ndu15AghbNpq9dFDjNFs27MGuWylnOUYPOW9c1Zrz7Ou5TOj61c+u67rbW7TvbhGWddVLpeLyKUpmip/CKFb98prr8706JmlQz1Y/Xl151FYc/ca9VrP5WOcJvt31x5hB3rb67VD5fOe9avJVbM3Hlm8OqvN+7qum/LSLmhy1fqojeWI7e+1h6+N137mJLlH9KXVpqfdmi31tuFtX/uc45G7LLfsxqidS3jO5aN2yUvL77udwY21TOd2Ih/j8/Pz7fr9+/e363fv3t36/+abb67nu4j8/Oc/l5eXFxER+fbbb2/PfPfddxJjvH0OIciXX0zy8nKW69KFW9+Xy923yp9PfZRyhRBknufb9el02o3VOyepDat+up/7w1rdnOuzuQyymYsauR6na81/G9qLZ5FpmkXkPs7T6SRznLubas3ZhlkkBN/vqVrj8pwbJTVfYhTNHvTu/yUuO124XC4yL/3r4Ol/xAbWYoaRmMOS56gsiWQP0vpYfovnnNP6aY15mlZJNu1DixJCe6/W9DrdS2NL5Wk8pXz52PMx57qWt5ufA/kzy7Lsyi0/IM3zPM8S490mp/LShpVznsuZ7PiHXjb99do7bZ/W7IGlL5rPaunTMi27fp+fv5PL83YO8rHka6tdT9O0ka1cc0tvtRxTLq92LrZo+WzzPIvMs4SwPf+uZ4weC7nX9XaG3GUo58aS1Yovj8YKp5j0vD6XuU5o8rZiXstXq/k7aWzLhsn3EAAAIABJREFUpPuvua7lz1vtlX2Xet6Tv6r10XM+vXbcNzomawzevG1vfrH3ee2+Jz6sxf89OdVPgdf2eMb02vT2Vctva+2OjGUkJzXis78mvbmkYUKQspncJ6ph5Ulqc3lkv7XWqGetNL/GOj9yRs7klo638k0jutCyIbW5tMbYuxdeI6bNyWMI77kyOp7W/B7JPXreB7X2jhZ/lW3XKP0l7/uARGutj76DijHuxlZ+1jiaRy3frW7j5r6YOfepPH5+TXbLP7PWzbsXy/h7I+flGjPe50Q+hBN97zNHz9SRerX8i+dZz3MeubxrrJ1FJTVb4MGzRhqteK7VZ8Ir72gubAqrGvOlopod7f2+ikXrnU9r/lp2oCfee2QeoYYls5VDOuLjH6mXaOlkj6+g7SnNL9XOFk+frZxvq7yeu9XKxvLe2/Pw+q+V++qJuXp8YO0MHMnb5DnnVGVZFlnntu21cpqavN5yq4+ee954uIa2b/dl6fP1U9IBf997ferZ79Z+aa7HvI9953mWeZ3UdnvzBqPvtDx1W/b3SN9Hnk/zOeIDPEJfy/auPO495NHcW6uv/f29DtZyF602a/7QyPusETTd3cZIcZenysetnbW1dfPMUVleft/B01eMUdbTevuexTzFW35tih/Ox2C/G+p9D5WffeV34qz6zdzGtC+b51mmdTRHmJf58/6PpKYbR/JWI35Gjdb4r3FN+d3mIDHKh7/Xi8evdXuetX3kWp3yO2AlR/Kwm7JpPaxvR94tHvUHPwXleMvvUojUfZl5lZ1dH6XHhh6NqVv957bX+10OK06+FwaZpn1ewWOvPDrUmzseiW1GvjMfsyqpWWtNe9fQk0Mu0c7Lrf/iex9TUvpkVo7YK1erj5748TXPYS0HUdLq/3q/N59g+9F3mbZ+9bqGW0ySN5uL14oHHhnPaHhzpTW/Xyd/pm7jvfFvO9ej5ZWyux/hbKzlUh7RTvZE8XxfPyPxtSbX0XGNxcDXf9c1SihseEtPe3zDlmz1trbtjMyTz47ZshzR954calmnzMO09oQ2P9MUzPP2qO9ltVXzCbVcRxmPajHLiB3qeZfQajNV186w7XO6rR3x27xYNsij+1pb2vfHXyuPOcL3OTYbscteH9JrS0bPpP1+9P03CrX3MZr+1/KgyXak705v/b27HCMxBDyG1/2GGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD3FH58BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5L+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Cw5fWoBAI6wrqt5b5quvy0UY1Tvp/IQgnp/nueD0l1ZlsW8t67rTc6aLKncGksIwbxXq5fjkSN/JietQ96P57omo6dOkjMff15mPV+2qelRfj+f/7yN1nolrHnT+ooxbj5P0yQhhNtfaj+ESeZ5ljm29dQjs9W/p80W2lyOttvShZ62ep7z6mdrrj1z65HNI3PtGWudH732tbbTZ89eH5Gldq+1J8vnShlzm+Gxl+u6mnamPCN69EkjPZdsRwvrjLLO1549mCjnotWuphsWnjkq51RrV2undfa25B7dY6P0yplT86c+BiPz4tl7NTtcjrk1R5oN8/gSuQzn8/lW/oMf/OBW/82bN7f6X3755a38m2++uV3/9Kc/ve3X3/u935NlWeQf/aN/JCIil8tFvvn6vXz7bZAYRVKX/+Af/J7E+HTr+6uvvrr1n/fz9PQkp9Pp9lySc57n2/U0TbdnQggbG+M5q8p1qZ2rCc0+TctlN9frukiMfeelZTu8traUd13XIR3xnkdW/9d/6/0mLHvv3X/5+VK7P0oee2nza9372NR8ZY9spV04eu7nz1t7LkfTVU2WRKk3tdg2l0W7Hvc98+f19jw2pd5HuOlguW9z3czndZ7npv9izbf27NN5lTdvLpvnfvjVV/L8Mt1kLGW2xpLLm+vsPWbe6rJX33ptVt5uK79iyXA5LfKzp3ebsh/84CuZn2xZWudTyUi+olVe9l/u0Z62rnX9dVr6n+4v0yox7v2hR8ZkWr81H2y6LLKuqzpey8fTfPaaP16uhXX+JDm941uWZegs1PahlY9qyaPt0dHcTc6njhXKMVjr2opVvWfFkfO4hXXuxxi7bexr5m/y+i37l555pI/W8h/K8h5bXF57c2e1/o7ozCNi4dfwj71nyWj/rTzudn0KH8jId9XWxVNu3RsZn7YnevJsNb8+91tr8nlsevIVtf6tcyc/R8vYpkXrTPPmYlp1Wu/KarI9qk6+bl5ZrH3ljYc98WAvj8id9L5rLOOszb1VZJrGzrbR9yzW2e2tr7XTU8/1vmkKMk1hJ2vK37X6rOXUb7FDJReQ95GuH+1DpZyk1vZZJpnnSdLwQ9BzJC3ZevNjWj3PPi5p7Vfv+yNPu0d9iNK+5t9xKMfozR/2xiBWf1rb6fkj8YxnfWty3POp+3KPXh6JMbX6Wn8tv9jra1j2puZTlNfeHIf3TPLuF0+fI+Ulj/Y3arJo/pA2z6092Zr/1rM9bex15PpvvldSe/5c5n7fXt/Z+3OHI/5ub70SbY1O8fr9oGvZ9d7pdJLV8Z02K8b2nlVaO6NYtqCUsdfH2seOeUym6/VRn90qG52nci7UeNjIMY/EZqWe9cRWNZvuYSRe8eSeeu4f9Qnz53vP8b2tqMfdI7KM7KMe7nK3z41WHq0l51F963mHUnuvIJLe+eWybMfgySvlnz3fS9ZstWfN9LFEiVFk/bCf8jNxjauk0ONoLqDsN49prNxFzW8JIdzet+YirOsqYd3XKdHLx2x1Pq9bkbfz6bE3R2KAmg48MifmsZX6M/H2l9vvkTG3xpNXbe3H3vaT/lm53nXts1Ete5R/ryA145m/1+BobrHMF9Ta643Za/mGHpuf1yvb7xm/x0569qWnT68OeN4f9OaI9nbPd45bbWv+qCafta49/XnOZ4vrGH39ttaw1+dJ1OI2z3cVtbHW8m5enWnJOspr2rrcnt7/RJJfEIJtA+qx0V5/LX2IU93uTFPy41Nf9xxi6dddx3T3iUbyUyN7zGqr1keJ5qtqZ+2+bP/fW/hyTO3zepq231OypuWI31LWPzr/eXu9eexr3yJ7/a3Xy/HmXnvyi7U6j5FF5Lp/8nXw+z6982LVafngrfPHyul4fdMjsUgPHv/Mm1Me2XvrGg+/H9J8oPKszWVL/71YqpfulfGryDVWrunUkXzII/KVZZVWDutjxitbmfzlI+3VbPWnGPP3Ff9c5HmVtp725rxH2drd60VvbJjT6xOk5+c1SgiThJDnD6f9d2jQvY/OY76BBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPALBj++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ8l/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJacPrUAAKOEEOR0slU4xri7Xpbl1eXqZV3Xruenadr822onxighhGqbMcbNc1adso9ShrxOfq2tRXldkuq3ZO8l7zMfjyVXCOH2uZTXki2E4JJbG39tTu4dtB9JcqS17ZGlvPasWSrXxv3INRydV63cM64jstfa96xJuZ+sObb2a6nHVtsivr2gyZI+e9a99jkfW962ZbO9e1Fjmqbq3m2Va+NtrWdpKxOa3dZkyOvX+s7b6z1byrYs29caq+fs8NK732u2q7cP6zzzkObOsy+0fa3t3SNjEdnqkDZn8zybbVr7zWN7yjJLFx55Tnj1zWuXR+x3Ip+/dV1vsi3LIuu6yvPz8+3eu3fvRETk5eVFvvnmGxEReX5+lp/85CciIvL+/Xv58Y9/fLt+//79pq8vv5zkcrl8WOvrej89nWVZrr7yL/3SL8nbt29FROTt27fy9u1befPmze1z0pHctw4h3GSepulmk+d5lnVdN76atmc89rx8rty7+XouyyLLyyKXy2VT//377+R5udzkTP2X17kMefnImVLWWZZFYtzq3rquEtZ6W9b5W8phnSM1mcq2tH1e+v9lv5Y8Vp+tvS5in2k1X8dzjk7TJDKLTNPWnpb62esX99Sz9oT2TG//RSvNNr1x74g8vX5zPi/W+vf4f+saJTR8qFos2ePX5PLmdq8mf/4533eteTyf190+fXrzRsIHGVq+SW2s81qvU8sZ1PzQFpofUcqmfd7Y/rDKuu5trixxI1+PDxpj3NsPQ35Ll3rtSllXs3fafG31dVve22/Z7vVvW5bP7Qg9cU8i1/t53drx1Kblq4r49vRoPKJRs3WaLK396t3Pnv13dJwtnerJiT0Sb/6z1W+PXEf3V37tbWvEF+uRpUatbeusGImZrRzTqGyjWGeOV45Hy1TL82hztq5rM2/wqPyst22tvJXLLNHGHW9jjZJ84JjF1rU2ams2nJM32qs9U2vXM68972M88ln5oZ4x5Z+P6JVXNsuu1ta4JVeyaUfeCdSeOXKOlG3X3oF65UnU5jWxruttLWo5Qavd1IaXmj+vr2uQq024l93Lt8/WYhnLn6+d49494zlnanmefJ49tj2Nf5tHmmWet320YrPaGpT++Gv4gbW4VHs2v75+TGVj+/o1z/daPNPqV3uf5bFx2nWt/x6/0cq9jmDlMqw8ZqKnv9zOPDIPVsvr7mXwn6MeGVv+gNVuzQ7c/C/n2WitwSNy7Z7nrdiix5YclSORn5u1ebb66vUpLN+21ClLL6znaj5ybV+09LgV6+bP5bFO6uJyuUi8tPe81v71vU29Xi6fN5fj7b/WX3ltPZO4jmWfI12MqXmUP9qTwxodm1buje22er25k73/02NVX5x718XSv2zV1cZi1dH8x2VapXzveDR3a8nkXRdvPNC6V1tH6zmPrez1mTSsOp644DG5mLjTz9G2PHnJR/v19Zilzoh9aPXd24+mi3X9vs+zZy57znztfJrneWcv8n1pXYuIyCQSwiQiUaZwt2nhg5kJor8Py9fPq+NHc1c18mkqc0Q1/3DbRso16m3tn9XkyNu4x+TlXPXax1R+xO84mu/yULZzOp1kmiZZizlIelZ+1/3ou6wQgqwhSjmcVlyj2aPameyh50z0tbX1hR91JvTiXaNpmsxnj36HtTfPMPLfhZTvWlKZyD0nYeUtWtevQat9bZ6989h6Lhp5DQ8eX0/k2Hsbr0+j+Y196xZctmSk7Z7xb+f0HgvFuLd1Whvl96C06/LZmizlvLbOwdq8PHJu/Tmqu+0d8Qny+fc8X97K+9y/A97HB9f+8ncBU3MPe/NVLfkfhSd3mfTbU1er3/ITy+fWdb/2mj681tz05gcTad9a46+1qfvFY2Mcsdc9tuDx5HO1t3+tGKZ2hh2VPa1NbUofkf+w+s7/1e59LDwxVf6sdj7P8yTLop95Xhn2OUd/nkOkfn5afmaKCWt5grwdq/1emfJ61nkl2fd2PhZH/cFH4N3/vTxyX73m+B+7Bvp7ql9kamdG79zdbU7d1/vHY+Z+sRj7JgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADALzj8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8lvDjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBZwo+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGfJ6VMLAHCEGOPhZ6bp/htEIQS13rquA9L5+yrxjKusP8+zWt+SPX9Gk8Ujw7IszWestvKyWl/lvVzW2hxaa5mTr4dV36obYzTHld8rZcw/1/pP9adpkhBEKkM15zJda2XW3IUQTJk9c9pa69qaWfT01XNf0yVt/K32yud79HmkPMbo2gctvbCw5sWLpneezxraHgkh7PR4xGZq9bw2zdq7Hruey6+1k2x2eV5456v3vKq167W3R2jZDOuZWrnIdi/X7HBedqTfnj1mtanpSO0M9JSXbXvtWO3eqG0R8ftBVn8en6Y1Rksvcj/Ks4/KPtPYSv8g2ZVyXZ+fn+VyuYiIyLt37+T5+VlERH7yk5/Id999JyIiv/u7vys/+9nPbuUerrKvtzo///n1+uuvv5Yf/vCHIiLyox/9SL744gv58ssvRUTk5eVF3rx5c6t/Pp9FROR0Ot2ul2WR0+l0e2aaptuYr77Kfl7z63x+R/zOVOf8fJGnp6fNva+++kpenk67Z72M7Nmyj9PptLPpp9NJ5tg3bstnsvyT6TzJNM2bsvP5LLPM1b1f8x1q/m2tfi5jzcfV5BGp7zvP3l+WRZZpkXVNZfFWN6z6/PWs/aPOwRF9U1rZtTnqb2uxQcsHSevhPSdLOz66FqnePE8yr/POJ/ScBbW9oLVl2bGafGVbeVntHD+fl5vNTbx9++bWr7U/a23fbKdMMs/5vgxXW3re2yhPLNPjN2j1yzLrTBURWUTf/55YuuYD5vM6cm6M+nv5v+W1VXYfz72sFrfW+q61r5Hm2eNP18qnaXKN1cIbA5f3U/ut/VuTp4zPYqF6IYSNX2TxqLziUbzxX04a28ccg+ZPa/dyjsSvnnPD22ZvvuYReGyZFde17L8nLzSSB/PeP7qu1vjycT0iV6cxEr/n91vne49sI3a81P9WXqGUt9felHXv522UGEVivNqgdV1FMnvU2mfenFoPmq9R09UY48b3yOnVa08e2ruvevMyR87yVjsWPWdPb86p5V+3qO2rEdvVeq4lq8feeuSy3jO2+sjXKl8LbQ2tvFlZX7crWjwst/JUJ8bo0p+aX53fG9EVq/9SV3tt8gitePRReGJGq06rvr3H1g+xUrJt6bItg7WPW77N0TnrnaeevVi267UtPbJoazbij/Y+d/QcavXTMxcpd2HZOC2XpvlW+bOa/pVracXoJV7717q2nve2a9HS6dF11fSwx59u+WkevzP/dyT+ruHxx3vn7ogc1udW260zqbyVci4jMcy8itmeJosn1rL2qDdX0YobLPK6qdrpdJL1VM95Hclhpn5rdqonR+O14yMxb832auUhTrv126+ViMhdJ3M73JJJ05PWvLXXKlR9x7K/GiP+TE1fPddWXS3fkM/ZSMzZygUdpcwz1M7wdCZbuYnSR0jtPOoMsfZir22wbF/uc3tjm7K9nr61tqz17j2fRuKvENpxYyu2yPG8D/e0ZY9dJNm1JPc0XWU/nU6yli8/dvX3c2fpdc7Id4TKunHa152mSX334/E1vfvOklfzTbQ9MHKmteq16va08yjutizthfzvHvdoOv4IfzRv6/4dpv1Z13qXl5+PeX5JW9u8rV7/3xrzMq8SwlY+z/tHL7Yt92F9h9f7DrYlUw2PvL3/7USNR74PzXMH3+d3yb3npna/tZ4j99P3E7X+PLG953zUeKRtOtJnPnbrnMqrab5JayxH9nDJ6J6urdORefXpda5Ttk9b9+nsPnZjVc+ncPs+zd7H2M7N3WcJu3Kt/0SvfRnZA1bM09OmFpeXTXrizJH4+zqPWpkv39hzX8MTp3nznJ7cgchVH8v3KGkfWDLW+jX7Mea7N05srUNP3qqFR2+8c1DmKkrsNXQ1/9DzrZbfbu3xFr25KG3eanNpxWP5WdrjV99yVUrsV8aipe2azmvxPd3reTuvpa+/n5N51uPcXsrvaOfXnnlI//2qiHbO3e1lLZb25EM8vt3Himu9HPX5ch4xtjKv+si2a2315ifLx197XT1xeqMF93ma80j9gO8Xj8nMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyCwY+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGcJP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnyWnTy0AwGsRQtj8KyIyTZP6jIhIjNFsq6xnsa5r835qq+wvlyW/zsnr5NetfjWsPo5Qm8Na/15ZeuokWcrn0mdrLmOMu3FYbeVt5s/UZLPWzZq7sCyZTHEjoyZrrqvaWC1ZvGj7KsbY7Kv3OauvHrz9lfTup3IdR/rMyceft2Hpf3mt9avpe0s+a4/UyPXfkvHovGjXozpS1pvnWW23JXOPbbL2TkI7b5ZlUduqydVrV2t6Y+nVI84RzxyX/Xt1uGcv9uwHb51SjhY99luTwXOdU/NJehk503Me6dNY/aexenysmt+X5PP4BPlzMcZNu2/fvr219aMf/eh2/Yf/8B++7fnL5XIrv1wu8vz8fLtelmXz3NN5ld/8zeeNLH/+X//n5OVytWun0+lm46Zpknme5XS6hoLzPO/uadf5HIYQzHnS5sZaV6+Pne/7Ul3XdR06s0R0P3FkP2hy5X5a6SvW+s/rW21tn8mfu85HWNv+blkmsl8n7/o8gnLuPX5yzv6Zuz/i8aFy0rg1vbXihPxa06Ne21jz37V1y/eBNkZv7CRi+x0t2bz019/vk5a/aZ2jIz6pNwbv8VW08svLIi8vL5uyb7/5Vp5f+s/qUheeXpbbGZL4+uuv5eXpeg5M07SZU+26hubDaNeWP2nZwhCCTOdJTqd5c//NmyeZnrf2yeMfeuywNwbQ5sWbByjLWzZ5mSb1Xih0sCaTuj+mcv7j1SdY9zrX66vVcm9le3m75Zl+L2/HTDktO9ZLjPE2bm3vr+sqs9T3gSWzFWeM+MQa5ZlW84U9/sFRv98j60jbXhtpzetr5EhLRv0qjz9i+Zo1avGMB+8Z15MHrJXXcmRaf71yjtJ7HrT6PrrHenOpVsxR5qtaZ2d5XdZf11WVqXyutEMpztqcQ3EVacSXo3NX05fWOwVP+1bbPbL1xDNeGXrRzoueeemZC20svXnYVn7TS1nX8jemabrZbk9+Ka/XQtNDzX9q1df6bdmzVh+W/K01LGnF3OljaiLlp0r7l+exajzCJlttPHIv5vpry7y36bkuWueo1d4Ru1W20esHaLkPi2lZZF3zPRElrlFiWLOyVdKW7Z3/ntzhUf8qZzQ/Wda14vAe8nW04vxH+tOPOF9bupd0LN2v5Xh60fIc06TrkpV3sdbSiuvyz614XCv3+MytGLUnnrP6e1QcrOGV75Fx0pHzuVbWm6/Syo+ccd4xjszl9V6Q/EzT6nj1+lE5l3K+enS8vPbIXteJuz+Un29WvVo/3meszzW/LcfKK1l91HyWeszvsbNxU5aPRfc7t3YwjwG8emnhiWVEguSPJdm1uW/tV6vvHntj+QSlfKPnQMtvGcnB9PZ/JK/WKtPigzjp+7tGzVf22PSaHfeM/97/Vt48j1+um8fuHj2DR86KXuZVZJp0WzPadr4G+Xd3LD+sFTPXnktx0xTy75ze+/Acjx4fwrOXHhFH1M70fE126zMHCWG7H705hEfi3W+v3Zb3rPWc1fey/M93NtRktOXW9/11PX15iJZvW8aOqZ9UVssRePrM5R6NQ3tyiq1+euOeEd/a870Cb//ldWI0tgzB/h7cKJoseVnen5anHY1FW35bWac1Z0tYd3799fsKLvFMWmMt1+NIzD3iV0Yjn5P/27KTvfSMMT/LNerxU/v5Vt/ldU2PanmZR54RPTHQ9Xzqb28/9n1cqvne1zNDiudFYqyN736OhhAUnQwyTW3bZZ1XtdjOwvJHPfqqtW31NU3htkap6XKs2vnsQdOHeY07X3+er9+d7tW/URvQa/97Ymv9OZG7Pvb55S1/3iPbSDyqtTU23/lcH4tt1NYfEOd4cz89vsKR88nq65ExS+35fI9r+72Wp2rJUJXtdNrZ2NPpJLOiy/fzRUQkv97br2vZujuLRt5ve/TCer6m+3Ufw+6rVV7es87Mj403brV4rb3Q47+N+nIj9NTX9Olo/54+E5550XIMPX3AP/583KwhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwPcEfnwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPkv48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4LOHHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCz5PSpBQAYJcYoMcZNWQhhc78sK+vXPrfK13Wtymb1W6vXwzRNtz7mea4+q41hVA6trVSWz7k1bxrWXNX6b7Wf2szH6V3jUh6PfPkznudLHdF0916e/4mED/9qe6A1Fo/8I3jntrV+eXlrD/f2X86rR5dS3+lfTaYQwqH5K2XM+/LoVV6/Z1+3ZLZ0ssd2lvM22p53T1qylPNY063WvJSyl/swXa/rKtO0/4272ngtXZrn2WVTR/ZK0plH2+Ej+7bVnnatnbu186pVXuqJpStae9M0mTqu2W2t3dL21J7Vrks0eWpyerDs6LIsXe1opL2T27RyP1k2SpMzf0aTb8Qn2p/Vdp+pzLKJ67rK5XIREZGXl5fb9fPzs7x7905ERN69eyfffvvtrfy7776T5+dnERG5XC7yxRdBfvKTH0gI4TZXP/7xImt8EhGRp6cnOZ/PIiLy9u1bOZ/P6hhy/zKf81z+/Jly/GUdbV7KOSr3Ums9t+3GnTwtyv4sOUsd88iYN1XzDzznYOu8usul3trVa8VJue6UdWprotmBmt+kfdbKS1laNn1dV1nlvpdTUyGETaxkrYu2DpotqjHiV1j9l+U1ez9Nk7l3teeP2HsRfT4856tHn8pnR/yTHrS9mO/3Ed96XddbvRjj7dxZ13XXR97/6XS52fXU1nfP38nLy7zro9Tj8nPSgfTvvKbr+zNPT08Snk6bNkpq9t7C4/e0zvD8/jKtsq5pH1zL1jVKMGKoUhZN7x6lK5rcR/zj8v7Nds2ziITb+GO87/uaPDW577K8OEadAAAgAElEQVTmdYPph+Z1rdiktq5HYlYtpmq10bKDrXuWzyIiMp1Xmec099dnTqeThNUXP3uo2VlrLNo8Wfe19nv3equP3jYsnXlUDnVEhhLLTmr3PbmQVl651u9ors/SE8t+1WT0+HOechF/Xqmmp0d1rtV/rS/P2ee1Ba22PXXyspbfW2u/lYep9e/Jh7XaitcD73Y2pVun01lmYzpH59nsXyn32MtWLGfpyJHzKv/csiGaLFbM61m3Wrstjp4/rX7KMZVz1LJ9tbOt9k7udDrt+qzV96zZiN3z2Fdv/RGfRmTcr9DaOcW9b3g6nWSeg4SwLZ/nWea1/f+faflQ3j0kIps4sCzLy8uY0/IXavsyz2+uT+stlkz8/OffyvR8jxlKP1/LH5S+d81v0faG196V91t+X8u3z8+I6+d9G1oMbbWnldd8uhatOFHDcwZptGLE2jg8dWpr5YkFRvztUTQ738pntc5abf5aZ+fdH1h39uDl8iIvL/u8tpW7rJXX6MnZ1fq0+m/JYPkSWnltv4/EE96zsxVv1/ro6d97r4XHrmhxRe4Hef1RbQ20HGQPvTFO6/1PrT1L/zxyW3G9h5quWfPfamOfx6v3ZTHq02kc9U+98aivLLdp23t5tRi3+c+8na3e6fthJB/Tey5u7fO+3R45vH0+8gw+wmgO7FF63dLpoz5d++y9+rV57v81GB1H6VeV7VzfjbXzR0dzekfpOQdLrPjtiG54/VYL7byy9/qH+9lz6dHr2OoxU2t+rDhTu9buVc/7ae93nM9nOYX696VV5iDTtM/RWDkEfT6PfyfKwyP3R9mWZWdK/RuLQe5/R2S8tlU7L/X9uCyLLMtS9B93dqps38rXTEU8JyJyebnGc7nc2verenIR+zKf75hyRNa6lN8NrJ1vHl+hjC1aZ1Y5d1aOaTS3r9kc739LUeYaY7y28cjv6Zb9pva1tqzzqRdL17Sz22L3fa1JdrbzEX6pFo9bMWdP/sMbd3jkVOdttfd3+dkbW3pk88S83rxgzsg65uPy7r0jeR7Ldo348Fb+XeS6vsHYGr55uttuLc61/OjUZ8vPvt7f9reuUULDf+zNdY/kw8v19eTbam0vy/27YonaWHtz9mU9zXeJsf3dGq18dB/qeeW2fWm1bfV3rb7NnTwqn1n7XopIn/06kqOziSKiz+WjY9Se9pJNvdbx1dNszWv4MT3t5Prbe755ddCTt3tEfiWtRd50q91o5BVv9zd+0Pb7//n3jq36Pfdeh9fbL4nW+5iWHR7t84i/5u3bsu+jNq7l637qvO89NtbLR+mZL78dOp7zew3SXH0fZPmceb1sPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD3GH58BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5L+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Cw5fWoBAI6yrquIiEzTJDFGtTwRQlCvS/J2cvI6p1N9+2htxBhvch3lUe1YWPJb98t72vzW5tz7XLoXY2zKqNG6n/rIZUh1vPKX/dTmzSrPxymS/4UP9/dyau14dLn2nFUvX2OvDNaa5c+UbY3ojFcvLPktO2Hpdd5+TQ7v/vHiGXNt3K0y6/5WN/d49L1mi0fGpdn7vC1rHbV91zOutAe19Z/nuXtfHXmmR6e850fqs5zXR50/3n1b23e9+71HlqPr4tkLR+pZupfXa+331hq05NPq5/rSoyulnqUya2yjPpUmn9a3hbY+67qqPqj1fIxRlmWRZVluz6fry+UiLy8vIiLy/v17ef/+vYiIfP311/Lu3TsREfn93/99+fbbb+Xbb78VEZHn52f58otJfvrTXxeReBvP//V//38yz1+KiMgXX3whX331lYiIPD09yQ9/+EN5+/bt7d7T05MqZ/J38/2mnYeWv22VlfPi1fvy2RC2utA6p0cp9412dl2L2j5sST535dxqdUpd087EsPr9p3xdyz69fnP5rLamVrs9/rXVt8iHc3eOMk37fry2oldPNF2w2mqdV9a6636Spn/3smRPPgatOTsSEyq93frsifk8caoln3YOtfosz5nz+byTO+lk/vl8Osnp9PNNm0/nJ8l/M7n0zXJft6Y3pxgkhLwde2xlee96lf50z3yXn0MIEqeY2dgr8zzJvM63z544q3bW98buVr5AG0+r3PNM3K3JVobRPRUnff5rMVFL1vK+pWMWpxh296dpktOpHVvl/sC6rt3na07py+XPa2fv9bPtK1h65T2fvL6qd4xae4+IJ0vb1mon58jeGcUzrz16k/tSVsygPa/16Rm3Z83KPjUfodyv3hjXWzaytq18Xa3PHv+1Vf5I/fPmHkXs8fXkhcr56J2Xoz7caPxVjwXvF1aObiSv0brfstWtd0+t+LY3N9bKa7b6sLBsT89ctWRJa/Qomz9iK1vlIvWcbo9dKqnpkjX/I+dQq6y8dzRfkhiRT6tb0488LtCb2+clWuNblqU75rOuk594NDdlnYP5ms3zfLteTksWI16fPZ/PMsusthVC2MSUnrO/ti+sfKH3XC3j3LJdP6U/fm9vnmeZ17H8by6j9rnl+/bkr60cW2997/2RnFYZa3nzElp7tT3VmrdHzUvr7KvpfW5jyni0LI9xlcvlsin/9tufy/Oz/xwJIdz2fr6Pp2na5HLS53J8Zb4rp4wT0v18Haz3r1758+d6fIEj51RvXW8upIx3yvJeX+dI3HE05h5p3+ODjvZ1bTtuzvllWUQWX5+2neuP9XryJDVZtHra/rFkv+9t/b1cmf8q+/Tq9Yj/Yr0LLW2PdVb0vJut9S1i5zk/XGVl+3nTyP3OXN5U7zX3nic/M8pr5tlaeGOs8jnNJ7B0bITyfc40TaYfYvVjnZuP/k6nJ749onM990+n/R4+n88Sz/Pu2R68caP1/KgfnZ732OzykVY9TUYt7+RZXy3O9Y7z7qP6zlCrD09sVNvvI9/hDiHIuq6yrluf9eXlReKlf58tsup58w/+hnVGHP1uksjx89bTh5fX/N55COnMDZvzU/t+VkuOut+318et37G52/QBLL0/n9dbLJY4nc8SHf/fY68vZtw1z7nWuufzWs675c978og7CR3nsFdHe/yrVo7Oi2bX8360/sr65fOpvCd3pLVRK7Nk6KXU6742g5l/KNs4Eps/KnftaVeLzUZ92Na92r6u6Zsu297X0L5D2eMn9jzrtas1rDxLjdY6eeZd68sbL976UWLRlKez93TP+aWth+3TWRzdS7351VYdz3PTlObFrx+tcaZ9ZOtMKj+2dz5W7D26x1LZtTj58Nf76xolRN+73JEcoTfuya9zmTW7VosV9/szZPtw+4zVz8ektAUjW9ejF1YcW2sr3zt1G9d3/tT8phqvlVO3Y7Ztfa+PoN2753v33921zqGPMS9lO/p5dKz9ls/kyVF9jP35Mfp4hJ+bz8cj/eZHcs9l6eWPpGfdvm/ztbUP+Th833mB12f8bRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADALzD8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8lvDjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBZcvrUAgCMEkKQaZpkmva/IRRjlHmeN8+W13lZqhNjbPbZI58lc6vPdV3VNi35euR6FGWfXhl6x9Bb7u1zRF5L9lb76TrGaPZbtrHt9/4nEj/ojU9nazKne625yOU/wjRN5r6w5rnsU5vX8jqnbMsaS/65pnNH5ruGZpdq6+KZrx5ZRvZlLnNeP9m42tpZeOTXbE9pV63nauWprlbf2mvLstiDyZimSbXrqVw7x0bIZbTOkRZJllKufO9o8qb+8vlr2cZ8T5bleVneVrlHWuWpvVK+9Jxlk0pG7F9rP5dnQs0Oee11rb/y3sgeLZ/rtXm1edT202v4N5ouWHPfOiu0vZDXX9f1VifGeBtjuZ6Xy+VWdjqdNm2cTtdw7YsvvpDvvvtORET+4B/8g7Isi1wuFxG5zt35tMiv/drd9xUR+VN/6lfk5eUq4/l8vvnGb968kdPpJOfz+XYvXZf2vZy3fC6sc0CbC5G7fRnxIfO+rpfb/aW1ba1reW3VKa/ztSzHe1/rrR0Oq8/GWBz1vVptee2AZZNqz3jsUK1NbY5r/YuILGGRdY0SQvKb7+vVo2cj8z4SR47buNRX+KDDV/23zm2vD6b5Dt65+Djx6DEdK6nFUlr9UgdLG5+fL7m9z8vL57c+7Hqrl58PyzLfyqx1LXMf+Tlz/9uOJ8+l1Oyi5UOXtPz4o/sqr76uq8hiP6vR8o21/f9I/a+1ddQ3G+035RX2Z9d4f94Y1rqf76tUdrlc5BL0GKTUVSsPWH7u0dedD3Ta6qPVhsVIXsEbd37s3GAtjq2dqdZ+tNa4Fpv3xL0138Lq3zofe6j5TUfWrKbvLVlqMU9tvI/yZ8q59syxN192JHfXM/ajudLcJ7DkKvOY3vxt697ImtX8plqdFqXfouVyynYuy0WmD7FwmQ+0dLSWo9DmJs9hP8q2Hsn9afG4lyNnc6u+tmaeOpYMrevXPOesfGVOuQ9aMWyLaZrUPIM3x9J732sbj9jRETz9JabLstsPl8tFLpdwK0/ToPm1R/LAtXgsMc+zy+/34s1XXk4Xmedp46PO8yzTotudPGb15De98o+cNZ58U1leng2lXqxrlGVdZMninJeXZ4mX063PWp6wJUut/hF69tVI7l27780D5rpf6nkeq3jkGomzj86xp8+e8yhd1/zoJPM8z7Kuq5xO+/eAb9++2ZwFGvnYS/+kzAP2nAOtdzGaX1z77oonJ5/GoNWp8Sgf2KInp+vNd43u0bI/iyPt96L5xL22o0apL2uIUuaAUw6zNdeaT5FyXyHofluP/li5Qy22s9qy/n0UI3lcb5ta3V69KO1Ib77l+Nlw168eO9SSZdfLwLnnlceKzT1183NjJJ/Wiq1bz7Ta73muzJdYfAy9zOu0zlqNa537O78aVuzyqHzdo7FsrdfP9jBy9pT02cRVvF30+HglpV/5iLzIel5lmmYJQWSernozn05y+tDm09OTSLh/V8xDLb7Q3llreGKzEILEKZXdy+d5lrAM7JtJpLbfjr4P6G2rlTNM7wFqfndvnz1Y8uX93GKVcg0LEfPvI35KrPcTlg5O016XrrHeY/+/x9r3qud5llnpp2W7anrVO//WuzON2jvB1vfFLP0eycH2+Wpbf35ZFilTah7dLedpJP/heYfnbatW1mq79q4qKzXjoVqu3XOmWWs+eu6PxH/b8qSj1zLrv1nqaVfTcUu/rDjvmhvar01NvlZ+e4RH5MM9vr2nfm/f+2d8Mae9d/L7+/W66+JejtTfNO194mkKt5xsVM6kVL/mZ/dyVD9aMYBl5/V+83Xp38ta+9pz07Qqc2t2VZF3DCver/VdxsaeGHj7vMhWV+vnUK5nWn9H3i3afljdnlltW3Yl5QpzRzXNfUsve9a7J2esjSW9B7vmNfX6j8h9tzia780/954JZVstWXrWx3uOb8ei54Q1ebe5Hq0tH7Vc6Gu8C/CzP+e8tGx4K69a2p5RO6yt0f7+95vR/Tni43wMe/MIWj7F0X3o6bfnWZ/9uH//Hz4tj80AAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyCwI+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGcJP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnyX8+AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8lpw+tQCfMyGEJxH5gYh8ISLfici3Mcb3n1aqXxxijHK5XDZl8zzvngshSIxxd609p13HGG918ut1Xauy9ZL36X1mmtq/n1SORUMbS6qX1/H0p5G3obVbylk+p81NWd8am2ctrLWvPVcj79MrZ12m+9+1QEQk3vTRmrvadUvOVJbrfE1GT7lF2Ue+32rt1mS2+tHaGl2jvC1Nr0t7U+tHq18bR23uU71yv1p2sDZebS1qdtSqU8PS33xe83Jr3RNp3J511fru0WvNJlry5c8mm1v+22tjc9td1rXaqp1d5f3Wsxq1s7TWX81ulOdwy2aXYy/HYenoyDmS76uy3Bp/ruM53vMn7/ORdli7rj1X6zNdH/UbvHbE0tWe/lu+htfvy58rdbfsL/U5z/PGdudtLMsiIiKXy+Xm93733Xfy7t272+fn52c5nxd5//4HEuO97k9+8k7W9UlERE6nk5zPZxEReXl5kbdv397aTv+Wc3G5XG5zWLOXtT2Z++b5PeuMyq+1+dvrRDTnuXZeWn3nctb26G7vzyIhbMc0z7PM67yrk9er+TpeH3hb3yqv29heRuKWXlnKddXivB2zyDSl9ftQVKxDTrlfexmdO802teb0ZiOWuNM1kf2eSvt6mqadjUrPPiKezfv1tFvD69vnMYrH18jxnLXrum50L42n1Ml1XdV7ef38GW2saZ1CCJt6t+ck7u2NMtbL5bK5X9reZVlkXWNm35Js+nmdn0leH8yynRZeX30Vbf72/bb88pZ+tOxtTd6juucj76NP7y1Zrmf5tr1pmsx4qtWehrWuVvm1rdTe1d7N87zR6TK26um7vOf19SzS0Gt+ebqv+QGl35ff7833ifjWbGScNVlGbb7IXt7SJ9Uo/UnLV83tsFZXYyQu98Tdud/niXO89uLI3I/gjRM9PrS21lrOavRMsWidVV7fu/RPrP57bb+VB2vxCH1q0bJzR6jO5Tx/8O/vfZ/PTzLFu1ye9i0bke9hKxbR6nrWvLxu2bge37bXD+nVkZ78VEtnLX++JWcrP+yllhew5tHr242cw1o7tfKe8Vr2ytNfea+Wh0/3vXnNEdtRy6WJJB/2ytVXDDJN4UOcECXGbdyYsM56j455daRWX4sZrT60z9Z+jXOUHvUr/SmPHejNr/XonkXNpub9hMsqeQxhyZbH34lHxz+PeL5Wz6M3tT5H7Jbmm9VyvLX+W7TGl+doRmMUj69fntm5D5u/08vlWde1etava9zkbpJvsCzxtg/z2MbKu3vPRG2NPHsqH6/12dN/DzVfreYbefymUhc0/6K0g5ZPaOGdh1G/VWvDei4v1+br4+Sv+tB8y1KEml/UkjdvLw3/un/3tn/U53yU31bT6WRvvOd9LUa3yjwyHt0Pj4x3dVvlsV/pvUL9PLjuf9m0ebX11+tH+8L2Oj0uLzCaR/Ks25GY7ftO7ju0zp7x79aMz9nIfGvfW2rRsisaI/F77bNV3rJzNTl6/RwtfirfX3j6sWKn1La3Pa+vEmMUmfZn7N3WbfHqSOlzWr665tu17GiZK76PM/3rO3/V+H8Oqm+Uv/PV5NJyIZ4+LcrvC7bqt/p+xPsC632LRq6nS1glBCsiv/Ix3mfkMf407X3m/P73hVyeRXknbuHNGVh9jvqDLTm0+W3lXVq+sdfOj5wbuZ5c7ULdrs/z7PYDe3PFrXiwVq/V59FzfJomuYZQ+7Mkf97K6Vpr7D2HR+yiNWbv+0c9Hrrf856PHnpkeVTbnpzKI/sr6XkfVtZr9duKrcvP26Lr97vCetdRX6yX7Mj10zTpPsN1L8Xb8x+k2MizrsnvycdRyh6kfupqMtrPjMT/RxnPH/e3OaJrnnbLNr252rL8SP3DTHnbV71L+tuSy/vfzuR489u977578lWaH1T6iEfsbq1ej+1NcubNeH24lhy18lFKH+BReSKvTa+N82huQuvDiitaOfj2ObSN80ffR7eeKZ+3nvvf/uU/K7/zG3/09vnv/JFfkp/90+82z/y9+Qfyq3/jb8nbn/602ZeHHt35B3/uX5LL2zfqvdP77+TX/+r/1Ohne56WOZZH6W4PXl91pE0PR99x9FDbn1ZeyvqerSZPb87vyJk06gP7qP/33PDx4MdXXokQwiwi/7yI/LMi8sdF5Dc+/PvHReSX5fqjK7ssTQghisg7Efm5iPy+iPwdEfnbH/7+nw///q0Y47evPwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4XPnJn/xN+bX/+a9L4MchAOAfY/jxlQcRQvhKRP61D3//ioj8tog8aY+2mpLrD7P8QET+kIj8pvLMEkL4X0Xkf0h/Mca/PyQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMLlyy/kZ3/0j8gv/Z2/+6lFAQB4NfjxlQOEEH5ZRP59Efl3RORflfuPrdR+YKX3J720tk4i8i+IyJ8Vkf/4gyz/h4j8ZRH5KzHG/72zDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAdX//Rf0q+/PE/lPO7d59aFACAV4EfX+kkhHCW64+t/Ici8m/IfQ7LH0nx/MiK9sMqZT2rnVDU/2dE5C+IyF8IIfxNEflLIvLfxBj/vkOOX0hCCHI6nSQE/bduYoybZ1vkz5efp2naPT/Ps0vOGOOubUtG67nEuq7Vzx7SWPK65fjWdd2Uaf3ksmpyp7J87q3rGtZz5XzVnuvps7YGZZ/adflvTR4P0zRJCOFDvXBrI4Qg0zSpuplTyqjJZc1lKetdjj6sOevVDUt+q80YY7Xdlg57+yn3R7pXttlaq1b9ck9pe6ynH2surf5rcml6b9XX0O559rRWZs2LRaknVp+tva21a+E9P6y2NJvcstN5mWduy+e84+5dN6082b3a3hbZjzmVL8uya9NzDlt45qFmm0bnUutf+1yWaf6Epb+9el3itaMtfyW3W/lY8vKWn9ZrG8ozJdeb2jqPnIOlLGUfy7Lc5ii/XtdVXaN5nuXp6UlOp2sY8vT0JG/fiLx9O4tIkGm69vUrv/JDWdfrb0OeTqfb82/evJHT6XSzRfm9aZpu5fM839ZgnufbGLa+yXZ81lqWY0hj1Oa0pY/X223ds3zrnvOp9cx2fezzsex3dM/p/eftbvvVzu5yX5T7TDtHe8/Ksi1Lllp5r91e11XWaS1k+LC398fCwxnxx/I9nlPO48YuLpfb/knF67rIut77q8UIeblXxlob1vrl8mvXJTX/YXvLjoFaZ61mE7R+a35aLebLy/J5y/2W/Jny3Hk6rzdbnDjNp83a1uRO5GfiPW6MylzeKXMDuY22+rVixpwyTqj5A5auLOdVLpfLh76uZS8vL7K+TLvxanLWyqz+NbyxsNd2tWyiIoEpl1eeUm81G7Suq4Rsmbxxg9WvN87X79tjy3XJ0styzSzfPGH5kyUXWW66mIbe0u9SZoteu5zv1x5SP639W+u79lxJT4xYUstNemyKJ2dc0jOnvfNf6qQ1z5rcPf5jr99m1fHsYS2nrNHKF/Xmb0dyzF6smEaz3T3rMrJfW7T89FZexaJ17nnGbcVDtfhNaeSDrc18KyNOtmSuxUSeGCTNseVftsbg8Zk0an52fs9jL7x+m1W/fM6ysSM2VxtL6UNaWHlBS6ae3HzvGL3te+Ne7/0WVr7Fq489vqC1x47mQspc0tXvupc9Pz/L80nkctkG/stykXjR16TMHR85R7x6VdY5kosqWU6rzPNVjjRd83yS+aTnVbX8jdVfj5w950ar/9p+zu19CEGeYtjE8fMc5TSfJMxJD0XO5yeZJc2RPhc1+Y/4s7UxjewJK19Xy0G2cjeaXCPzYbXlKbPsbVlu5WzytZznudv2WD5TTZayXi1X9HRe5Xx+3o0l7V0ROwen9X/N9ehxXX5Pq2eNwTp7te+TlHak5Yd58dojby7FY5dafk8Lbb94/DNv/shqt9fP77U3PTbrSL5Me0571GuTrHW9ftz6FC05an0f8e1reYGaLlt61Vor79x748WRe5od8+p6Oe7S97q1fVolhO29/ZmxlaM3pxXC1ufw7AnPWW21tUyrxLjPhYXB1EJPzFxro6TlN5TPamWj+mCV5fT667W4toxNPByN6V6D8v3V0dgkDbG1lp62Rp47grePpEfpXVv+7kJ7Z9n6DqHXP/PI3bIxKf6Ncb2v1f3BW9myLLIsfTkDEfu9s8c/8/pwd/vVrxPaXl2m8t3YVXenUH9vkuv4NT+h39e+r1Zr1yNzal9rrzfX0+p7mqYh3zHGvR6u64f5UObkNfZ4fk5a70DXVc+VlddJxlE5W3Fvup/ryzrv7eh1/qJ5nll7aiRu9+ZBrVxKLUYp59KTF6jJO5pv1MeYz5uet6vlXEb6teb8NfyG2rp6YpFtXfve0RxXra3796O2uufNDXjiWyvuiNPeV5qm0Pzud03OmlyPojcXmKjFKZaNae0Jjw8/Km+q45lvi60o2++j+ddPy0Gk9lt76/o9rmQnp2n/PYF0fytv2N3Pba2WfzAleKB/XpsvbZ378yt2H9Z3LMbZf+co0TuGI3agx4706v86r8VY9u1Y/bf68sg8ml/zltv97+dt1LdoyTHaVvKvP0JYfOsvMZrTH6lba6ssq7V99fNLfe4/E7R+rnagr/7dx6zbXq3tkRjk9fZVMRcSdlH5tXqQOM3y09/6E/KH/pe/2dX/p2fr32h57BKPXh318468i2m18X3JVdbyiMuyqGPVvpOfGLE/j7D9vXUfaTPh49L/raDPlBDCHwsh/Bci8vdF5C+LyL8lImcRyU/H/E+ye9af2pWzXtlfzO7/toj8RRH52yGEvxJC+BcPTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8lrz/0Y/k21/9lU8tBgDAq8CPrzQIIfyZEMJ/KyL/p4j8JyLyT4j+gysi9R9X0X4spedvI5bRVynLSUT+PRH5qyGE/z6E8OcGpwEAAAAAAAAAAF6AnP0AACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Y376G39cltPpU4sBAPBw+PEVgxDCHwkh/CUR+Wsi8u+KyCztH1wRaf94ivbDKbW/ROuHWfI6+b1U9udF5H8MIfx3IYQ/PTwxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8NmxPp3l93/jj31qMQAAHg4/K1UQQjiLyH8qIv+ZiHwh2x9VuT2WleXl5f2cKCL/UER+V0TeFX8//1DnrfL3KyLyqyJyNkTWZNDkS2X/toj8myGE/1pE/vMY4+8Y7QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADc+PbXfk1+8Ds/ljc/+9mnFgUA4GHw4ysZIYQ/LyL/lYj8SbF/dKX8sZPyh1b+roj89Q9/f1tE/l8R+Xsi8vdijM8HZPtDIvJPisivi8hvisifEZHfFpE/LSI/yB615Mt/hGUWkf9IRP6DEMJfFJH/8ohsn5p1Xav3Q9B+C6ddLydG7Td26uT9WjLU+uiRT2uj1ec0TbuyvM+eedX68syZZ14sYoxm/Rij2n85Jq1+CKEqlzbulizW5xG9EhEJcpVxmqbdOpbtl3J51qr8nNfRdMzSu1Se/i379o4/b0erY8lX1h3tP/XhmUsLra9yflp1av0f2UtlX63r2rzl+ljKl+uBZx/0lmt49V3T0da+8PTt3SPW55FzIKHZeA+tOTsiU9lW+Tn1vSzL7p41/17dH7W3rf5aa+ytX8OyfbU94tHfUuYRO+LR7RCCzPM81K41dq8snnEnkow1fS/tV2v98+fXdb3ty3SddD2fn7yt8/ms2qdpmmSeZ3l5eRERkcvlIvNJZJr8/ss8z/L09HTr/3S6hoWn0+kmT/I1Up8e/S3nLNW3zizLFxPZnt3p3yTHvVqQ0+kkUVm//PMjzlqr7C7nvu7ReECj1Nuy3dw/PHK+HT0HrfYsf6zcXzml/mt7b55nmc6TTNMsKfSN8YNOx9l1ltXOzppdKVnXddOHd+5yfdf2jojIKQaZ57S+Se55t0et69rZWtPRfDzJdvUy7q/21+v1AS1yO1Tziy2dKvuo+cee+fHa4Z08L8tm3UII8vLyIi+y3j7ndqO0vRqpj/RvPiepr2VZbvcvl4tcLperOC8vt/JlWW7lZf+n00nCF5N8++37jT/xzTdfy3m5/j5x0v10jlnxiOWLpHVozb9Xf3v13BMbXcui6GnK8rn2mTviX1njynW3lgsox9iTuyqf8+wX7xlm7cPa/Gzn9F5Wm6OyniVbb6zV87y1N/Ky1rqU+8g6u4/GtXn92plT8x1a9jlvo2Rd10M5lppcZb/WWnj0xapfYvk3R2P73nZafnEr3+elZm88bYcQNnr3iNxUq++jOT1vXyN5xJ6YWuvb41PUWOZZpilIjJnsSrxTk7fEqtM6X1pjeWS+p5RLK7eer8nSsk+vtTdrc1OLVbXyMgbsjaHLsiMxu+e6ZSM96+z1e3rXJc9RaeW1/lt6kbepzbG23zxrOa8p93Wvez6f5XJOsUJqI8j5/CSz6Gdgjw1v5Sw0H8qynR59r8WWZb+3e3N+v22jPPFPLZ/2iHMr97trMbfIfU4sn2ZeVokxzVu42db87ND67sGaM6u8VWbplZV3sHTHY8M8Z1svPXvIOz+jclj6o+mY1UaSyRPbeGy/xS7HN59kPdXf49V8uVrM0Mp9am1Z7Vl7L9dRz14Y9ZW0a4sRfWv5RpYP6NGrWrkn5vPuFW29PfkcTVbP3qnNRa3flr2/f96eaa24rnZWXf9N75OuZdM03fKI3wc8Mdf9b/uctXeP2tmjsbjVRm8somHZt2XK/YHru5OUc9byVKFopjw71nX9oHvbeilf4NVx7XN6trXfk/5auWCrbu/6jfjGI23UzoTR77V4KN9f9PKa8znyvMhj58ub16vnHO7lvXvf2+cR+1GzT722J9mG1r7sycda71Cs65H3z9tno0hHPU+OIJX3xI/ePFyvfGV99Zyd9nowz7PMa3tvpXpn2X9f93Q6yXry5aqsdjW09qy8y1G0+fS0n/yUELbvoaYpzW39e1eJ/DtVLRbR91P6u74vv+/XGOX2brz3uw7rcq2Tz8X1vbfvO1SpvL1H9rY2ffenN36q9+O759Uty5/12F/vuDy+Zq+MxpPVdToqR8+4PX6+pVcifv+slgMs29MeaY3lkXlEEdl9p+XI+D3PX4tL/77Phzq6x47SyivW/bx27qL1fM84y2fL+bNyFq1x1WRuqUpr38awSJmTv56J+ly0Yvt7HLiXoSajtnbe/OhtLI73HOVz3vK8vVZeczuG7f2rf6H/N1OWTpT3LPbP3P0K67lanx4ekb/pzSXu5yuPN0TWNUrozMmWz43EXB+rDy3XUq7zI+XX7FqJXZbO3naOtNanRU/89oj+PG1otse7f6fJfo9n9ddD3kwrX/3hqUZ7ycbo5Xa7tT4fR4z73EGMUeIudy8SyrEGkZ/81p+QX/1rf2NjTw7Jkpr+SP7T/8/e+wdLdlz3fd++d+a9t29/7wILCAABggAoUiIpimIiKZFLlp1IdkpWOXE5UtkVuRxXbOeH7Fiyk5STSiWR7UrkpBTHJf+j/LISxUmUqqRiSU5Zsi1VZCd0StZv/gJIkAAJAgSw2B/Y3ffezL2dP+b1TN+ec7pP35n3dkF8P1XgzvTtPn361+nT585r1r6bCpy0fmNjbBqbvgfQ9qFaPWtjIpvks7GySZvu9WuST2kOk+3z4LxVvI845x4B8OMAvh/I/jXDcLcAZgB+BcDfBfCrAP6J9/76SejovX8dwOsAfiNOd4vV9z4A/yyA7wbwzwG4Jugc9I7bcA7AXwbwJ5xzf9Z7//MnoTshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkK8NZmf3cfuJx3Hh5S/db1UIIWQrvOsvX3HO/WkAfwXAReT/bwPChStfBvB3APw8gF/03r994kpm8Ivrkz53/N9PAYBz7psAfA+AfxnAx0JWDNsWX8LyDIC/7Zz7WQA/5L1/6RRUJ4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyANLMDwCcVZ/feupJ7H/1dUwOD09PKUIIOSGa+63A/cI592Hn3P8D4CcAXIJ+8YoDcBfAfwPgO7337/He/0nv/f9xvy9e0fDe/4b3/se89x8H8I0AfhzAdSza4tLsx/85AN8L4Hecc3/BOdeeps6EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQh4Mdt/6NJz45/cLfNvgreeePUWNCCHk5JjcbwVOG+fcHoD/GMC/jUX7pUtXwgUln8LicpafelAvWinhvf8UgB9xzv1FAD8A4IcAfCw8jrNi0e6zAP5TAH/UOfcnvff/+DT1raVpGni/aIb3fvk5Jk5zzq19jtM04jxpHfF37XOcFmRJz2Oapsnq55xTZcTpfd8PnsXfSzrkKPVbqZ05/a1IYxvSLOOa6hPo+360btZ+AVZjHJPWu8gj3Zs0nPPxfA5pqfzaNuXyO+fENZSOa9of0hrR1q5E25bvhZJkBb1KNiLVWbMTcftz7bXqWGNHauuy1J+zMzWycrYyTre2sUTOjudsj1W2lNeaFuugjXdJVljD8d4hycvVHUj3gpMgHdsanXPjkrMRFpufjqU2X9I1bdlja22KZSzHzLvSmi61v4TFdsdzTNqTJD0tPtq27FPNXhOI99HQPsv4SPXEPmvaL23bLutq2xaTyeKItru7i67rAADz+XypQ9/3mM/nSxl932M67XDhwvC48thjFzCfT5b1hz20bdtBnU3TLNvQtq3Y/+n4xGWk51K/aHO2Zi63rUfTOFiGMjd/LOvbWjbUk2ZP+8hCbX7vYts11CeWl2tLzh8r2Y7SHFD1FuqM/e+SLy7tlc65ZbnF48WYNE0zWH9xGUknTV/puWVvtdqd0nwLdbV9J5zvOnTdeL9Q0kHqIylfbNe0Mrlz4bbOphakc0qsm2WvS8cjplTee7+06Wl+C6Wzr2TTw787rsNkMjxHTadT+Gm7LBPL1nwly7qMy7dtuyyzu7ub9bG0vaeb9sC5N0MuAMC5c+fRzlY65+ytxa7m5rvlzJqzfzVxJ7XuZUwg6LKYg06wlfE8t+1jcZ68HZS+59aRRsm/CzY8hCml8S2NRc4HSeXkxl+qb9HO9ecW30LTNzA23mFhG+dBKcZk8Y1DuVSH1PbEciVC+VhezdqXxrq0NmvP4bXyNdnanqn1rUbf96P8lW3Gm0pySz5YrU6bnn3T+sfoXLsnWc/MmpyxPnlaR06Psf2qyS7FUkId/bGPP8iXzOva2EC6ri37QMq25lluT0zR9nctzhA/r12XMaX+0eaNJV5Wq5PUXycR77LKstRt2dvTumvzW8/fWoxOeg+5ab+W9s/cOTC3b7lZh64bPp/NZpjNMDhrLdKP0B3lz6gplnOBlK61J45txGux67q1GF9In81my2ex7L7vB2e+MLem0yma/Rb37t079psXeQ4O7mHaTcVzVtrmkK75ZjVo+1jJPkjE58pUp+F5ZHFuGBauUrtKr1RHa7zIssa0Np4UVn++1lcs+Tylc/Ym+5Yko3Zsa3yDeL3G9dXUbxmDEmlcrsaHtcY7as/hKZp9L/m7NXGVXF9a2ijpVDrrl8bPsmfn2qbF0qxx3LGU5nFtW6x2T4oB5eLOJUKcSYrjjJF1ElhsfxiPxeOV7l3XoWvq9LOcOVP90jEba7e22YeSDxmSnAv/ueX3VI+SbWl7oGnW43aaf1+7XixnQd8E3YMdW5Ubc5bMocWbas/b0r6YPgvPrXP/pIj3h23OTYtNF57EEop1jInzpna0Vka67zTNer+ldcTzyNrP1phoDSfpTwMh/pr/TUwtuTO59Xeg6brq2uhM2S7GwzUNGr86d7m5XEfpXGnRO03b1nlnzHpIf4eQdmF8/k6R+7v8HnGsrtLvlU6S9B0MYJvP636KW/4XzxvNt5V0CGjnnMXvnYbzZzKZoOnd8Rh6tO3wNyLh3fh0Ol3TX2vXoly/5qe2bYu+l9eKhOldZCPH/nPxUGv9pXO69H3btqzm/F86J47VU45D2stbbVZpjMbGgmviC5Y+svjFeln7nLPGsq32xpK/Ji6Sq2dl39Jn9v2rVG9NO2pthLb24nrHnO9Oyr/app1Iv4tzQvBpw9zOrY2SXx8/rumrTWLykh+S+16K04x5x1ezP9X5F8NzvTbOlthnrt6u65Oxk+tL0zbpqzHndS3dEsdN80k2pGlscbhc7MPqu+Tk1a7xetIzrnzO2va7CqvN1WKk24wFSXlL57TTtP/bYls6p3aoLNe2Z+filvcDk995fPZrDt7C/iuv4O4jT6xlCU04uHoZdx+6iv033hyKqHhfcz/740Gofwxjzn9j2Ja8dN6d1LsGu376e7mTtFfkwWb7b2IfYJxzvx/AJwH8eQBTYO3ilRD5+wUAv897/43e+7/h36EXr8R47w+993/Te/9xAN8F4GePH8VWxx//5wB8BMA/dM79V6erKSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQ+82FL7yIyeFhNs+NZ59Bb/w/rCGEkAeVd9XlKwB+DsBTWF26El+37AH8rwC+2Xv/Pd77v3t/VDx5vPe/7L3/PgDfCOBvAphDvoSlBfBvnr6GhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELuJ03X4dLzn8vm6XZ3cPPpp05Jo9PDA5jv7uLg0kXcfegq7lx7GHcfuoqDS5cw29tbXlRACPnaYHK/FbhPxJeuzAH8TwD+svf++fun0unjvf80gD/unPsPAfy7AP5VAHsAbT0hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEvNs58+abOPPGm7j30FU1z9uPPYazr34VO2+/fYqabZ/Z3h7uXXsYB5cu4ejiefimUfO6rsPOrbeX/TM5PDxFTQkh2+bdevmKA9AB+B8B/Cfe+xfvsz73Fe/9ywD+LefcX8LiEpZ/DcD+/dVqHE20gXm/foeMc26Q7pzL5pfKWD5LMtL6msxmm5MX0tPnfd9n5eX0ytWX6hx/jz+nugV90jya7FSHUt+meuT6P9arNC+ksUqfaTrl6iiVS3UJdS360SO+E8nDL+sp1Zej1K9N05jbGcpJ+S3jJ82TdK7H8yqHpIs0roF0LebmrFZfrKN1nkjfrTbF8txKrLNWf852pt9zfZ3Wp5UN+UrzKXyW5oWmb834Wte+dZxzebcla8xeUENuXgD63lbq95ydyNminCxtv9T0svT9GB8grkfab3J6aLYip6NW91jSNRsTxjvVues6U/lYTtwv1n30pOf7GNK+kMaz67q1dsTPQv/NZrPB58Pj4MtsNsN8Psd8Pl+W2dnpcffuIm/o7xtv9Zh3i+Pezs4OptMpAGAymSz/C9/jtdu27VKONE/btq223TlyZSSbI2WttbfSOpS+m21v20fpKx/O+fyeKDHGXpawnlMs/ommY41N1PRIfQjNLsRrP6wR5xy6poP3/WCOzGYz9LNV/niuW/aAlLjupmnWvqf5LHNKSk/lBtlN0yLMsSC/adq1/SXkL/lIWrrWrrSNcfu0MtZzq+bDp9NNOztobdHSavfU9CwS2674c2rjpXTpXON9v7Trgdl8hu7Yjuf87dQu5/x2iVSXUqwilhn2DO15yQ/P7fvee3TTfq2O6XSKFnkdczrV6BDrUurLkm2U0nL9E4/zMN+i39tj/0HTK7fHee/hJt1x2mr/atsGbb8+plpbSu3S9tuyXL/8t+TTW+a75oOn61ijNE/7vofLuKWWPWYbPvuYfNr5PWcH4vGt9c3TfUTal3Nnj7i+tm3Vdsc6WuJNVv0tc7qGTeXV9vlJypT28XSMJdm5uLsmV0qvOauX7KbF3mvzymqTrdSWs/jkY2IOqS5SX1n93jhvqc8Wz0JdywemsbLUkWK119I5ZVt2YROk9VJrA2I5FvlaP28yd8fol4tDa99ze0iN7SjJ0/KU4u25dGnuWfq/9gxU8oGkf8cQx8XSOmL5bhknW6UfHNzDQeOWZ6lwhpzNZmjn7XINxLZb0zWOZwbi+LS2R2rytPUX+zDpWTKuJ36WW8v9To+77Wxwfm6aZvEriIKeaXwl7q/43/SzlTE2KKW0HtO4weqII8doLX5vaU8r+R+xjNKeJclYO7tl4le1tmls7LOG0t5b0yelerRxrU2P06T4T42e6TlJ1T9516/pZLXvkg3LldnG+qyhZp/T1pZVhuSr1eiWW3PhuaRLGo9N2xGnb2pn49izxb+plZ/K1toc11lzlpDWYur/x+TOqdq6HtYzTB9zVojrk/ZxSQctLdXdUmaRd92m18Rxx1Cz79TsH6W+t8R74u/SHF19X08P8yNvy6W0sk3YdK8dlh/GhON3Ram8TeMRsU61e4olX8m25tJzz8fOcct8LcW0aurQ7Khm93KyZBn59Zp75xeeWdvb9714huv7Hoje5TyIv+MI1MQRY9L3f4BsS6w2Id1TtDJp2Tiv5LdK5fs2/PYUWDNwSznr75bjmLwU+9HaWvLxSmlyv62fyyz9ZiF9x1Oav4u5MMyzWBv1OmTHbUPbU0vQYfx7h2DT/PI/6/lIl7liff0M07uuA/r83w7k0kuka6/v9XhTOp65Ps21O3delOoqxdek/KW1O8Zn0+Io1npq1rPFx4ifbxJDrdHDage15xY9tTNvjQ9f6uuhvw2s/JZ6v82avom+ab6cXGu8IC5mmRo1c3JVx9j5X6ePpFutvhbGxGLitDF9qKXlzhDp+K7SZD+6XHeQq+u0nu4GZ9RV3uF8s+g81hcac2bctI56G2Erq8XbLPW3/brttpyza+19TSwoh3geU2RtGi+Q6rTWYUXbR3PntZwfrZE7V9TamzE2fl2XUh3rem6bTffd2njgmDrG5E3rHDu+Uvxjm2dRCyXdLfVbffrBe+K1DWfxPyG5cW4Zq7zyuc/j1SuX0Au/Iw5l33r/s7j2T359cWos6GwZLyl+O/Tb6m2ExsGlS7j11HtweOmisYSDb1scXr6Iw8uXcPPZ9+HMG2/i3Mtfxu6tW0u9trGmx5w7amSehN0p1WuZr6el1zbq2Za9OGlbQ/Kc7lv1BwMP4KcBfNB7/8f9u/zilRjv/ave+z8H4GkAPw7g3n1WiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIfWRydISLL34xm+fo/Dm8/fhjp6TRdpjv7uL1D38Ir3/ThyouXlnHw+HuQw/hq9/8EbzxDR/EfG9vi1oSQk6Dd9vlK/87gI947/8V7/0L91uZBxXv/eve+x8B8D4Af+1+60MIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5P5x7pWvYOfW7WyeW+99CvOdnVPSaDPuPvwQXvv4x3Bw5dJW5d57+Cpe/fjH8Pajj2xVLiHkZHlXXb7ivf9D3vtP3m893il471/z3v/w/daDEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsj9wwG4/NnnAe/VPP2kxY1n33d6So3k1pNP4M0PfgD9pD0R+b5tcP39z+H6+5+F3luEkAeJd9XlK4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCKln585dnH/5y9k89x5+CPeuXDkljeq59eR7cPPp9y5ukzlh7nzdo7j+9e/nBSyEvAOY3G8FCNkE5xycc8vPAe89/PGtaT66PS3+HOeXvsfl42fx56ZpBjKlejTGlOv7vig3R9Os7ltK2xunaXrE/dr3/VJeTq+4jFafpI80rpsSz5egm6UOaS6lzy1jbsEix8Et25K2aS2vc6Z25taGBW3upOtH68tc38Z1xHPYkj9uu7VdUj5JP2neW9phJW2rRX9rv6ZyNdnSuOZsl7YW0rWe66eQN25/LFcqr+mv6ZrOi9IaGbu+rXY+zKWSjc6lB9nSGtFs9BjbVdo7U/lpPm2N5ojnRS6/dV7E+WvXSLoWJPsm1S3NsTF2MNUr/qytU0s9pXZY5nK8b7dtay4nsa09dRukY1fax9L0rutEmX3fL9fmfD7HfD4HAMxmM8xms2X63bt3AQC3b99efj46OsKdO3fw1ltvLb+fPdvi2z7+EJqmRRjOT3/6DtrJWQDAuXPnsL+/DwA4e/Yszp07N9B1Op0udYvbEnQMYxq3MdibnD8nUTO+qe1ffM/P6ZyPW6ubZrvWyjmPXLStxt5YbEH43DUd+j7WbShrk/GIbVyNH6Wh2RPrmSQ9g6U6AoCbBF9xlTadTtH44d6onfM04n20aZrl93R/lda7xCZ9mdM5Tk99C8s+GstJ64htQCD11aTPcR+V6q49/6U+T1zXGL9Dqz8uk9pCyV5OJhMxTywrnTvOOUynPXZ2DgY67O+fxdHRul7SGGn91jQN2n79edM04rhaSOvfln2Q0n3jj8cuTh9v18fokEsv+Tql+iXfUm9bSLed3fu+F89Qocxq/8jPrZzO8Xdt7af15wg6x7r2fY/5fHPfMN47Ut3if9P09Ltv0vW4sA0TP1xPmg8p5Qn5LLZ6m76W5ZyRI7dXaPYunpfAau/cZuxvDFafwHr+re1bS/1SvKDoo2bO0toZMPZ1NFLfCND9IEsse5M9Jec/bLoH1FLjb2lxKMscG+PPaHWk81aLu2b3amUeWuIiJXzTHNvHVVrTNMX4cFxfCUnnXBwl9e+080xtjNG6DnK2prQOas7icV/k/OMxbLrmamNNWhwsF6NL82pppbkQp5fO+5I+ub7PPRsbj8uVqY1bloj7MLem43buNBNMp8OfNZw9ew7uDHBn52gpzzmH3d09ONjfiUqk/W2xPRra+Gv+oJRP8u0BoJv2uLMzO362SNvd3UPb6LEQiThWKSH1Ze3ZwZpe0iOuf+VfRvuFW/4PnNP3jty4WPZq6ZyVtiXMydoYl5RXshW1a7B2fyz5kDU+mOW8mdahodnNVMYYP187m1l/F5HKW9g54fzUtGjbet9LSrO8WyztdbU+TSp70/0g1jHnr2r1p+Vy+dP605hiLK9m7whyNH1q43BWX0UrM/ZsLz3LrbE4bazdH36XfTerzjX5rH5AnNe6LmrR9p5trK1NqJFjyRvb0dh2SbHEgNQHY35Hk6KVCfH0pllfw9IeLiG9qygR+w7e+7UYWvwspbb9Vt2t5bZ1xsvJ6bquup7aGGnqN2z6+0zrmljZl0Va27Zoe32Mcu2y6Bzn0T5Lem7aHw8SWixIsz0hvWkW544a+aksLa91H03901L+OC28E3JuYUt836PvV+2Xymkx37SNmj9a2sNrfC3vV+uklFdj1c64T/Ux0vabxXvX8Mwv824SN6ihdE6M820Sx6st732P0B/SnJJ+GzkGzW+Ix2CxXmVqfMnQv9Kc1+IM28C5xdwMDOJAXSeeTa39mtvvLPFJXWf57zhOGsnmlPz8YdtC3hBbcoP9OUfpPUKow2Lfa84A2jlNyrMNFmMLDPdAu3zrPriJLMt7lzSfpR8lW1byyWt9UKmMtpfaYlx1MdtczNqyD1jP3dqesCnWvSrOt4pBS3uVhxN009bowr+KZci+5bCf9Ljfar3ppM0txeVy68Dad2OIx16zl3mfBkhjRGF8SvFPrc25vU3q+7ExIEusbduMlxuXs78r0XykbbPtvhzu/au0MW3ZdB/OxcAX/4V8Qz0fNLYdO9wmqR0eo6sX/MIxYyGVWc3HzfZaC1a/Y/hM8buifyVZF196GfeuPYz53p4q68Zzz2D3/7uBRvEHcn28OvMNz2Spdt8qvwAAIABJREFULqXfH6Q+U9u2uHftMdx639Prm23SjmY2w5k3r2PvzeuY3r2L5miGZj5HP5mg293B7OxZHF65jHsPXUXfalc2LGTdffQaJocHuPiFl1R9c2i+3CbzZox92yT2cJKytkHJz8+tKem7Vi6kxclx0QetX95t8PIVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEFGn6HleefwFf/fCH1DzzvV3ceu+TuPT5L5yeYgWOzp3D9Wfel83juh7nv/QlnH/pS+LFMe18jnY+x86duzj3+hvoX/g8bj/+GG49+R74zGUwt558Ers3bmLvxs2N20EIORlO57plQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEvOPZe+sGzn71q9k8t594HEdn909JozweDd587uuzF6RMDg7wyK/+Gi5+4SXx4hWJputw8aWX8civ/Tomh4d6RgfcePYZ+FrFCSGnBi9feQfgnDvvnPuQc+7bnXMfd849db91IoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDy7uTS515EO5vpGZzDW889+0BcOHJ48X2Y759Rn++8/TYe+bXfwPTevVHyd+7cxbVf/020R0dqntnZfdz5ukdHySeEnDyT+60AkXHOPQvgTwP4AwCeFZ7fBfArAH4GwP/svb97uho+GPTRrWHe1229aX6tvFWucy77PcgK6c65gWzn3PJZmh6+N8ptaqEf4ue9cKNampbK09oqyWqaZqlv27ZLXYOcIKvv+0FfSHXEfSLpFsuV+kjTMS1vSZf0y+mc+1yqXyPuv0XZ8N/xc3ho0zLuI0n38D2dY1KenO7p/I311eZvbo1p9WhzXiNte65tko45PUvPJB1ylOrM9UtcxtJGScd4XLSxjPNr8tfnq01/DWm+lD6X5qz2XGt7QLKtcd+NaZ9k24INtchMdY7Tc3ZQIt53JN2kcc/1X0xq+2O50vd0rafrUqsjJzvGsvZzeTU7FvdLzV4jpUtrrsaOlepLicev5ANpz+P9u7TX59I1uaW00h5h9fVicvNK299y9QcdJbnx/J9MJoNyocz+/uJm38lkgr29PQDAwcEBzp07h6tXrwIA5vM5ppMOly5N0TRuWed7nrwK73cAALu7u5hOp0tZcZ3he6qX5pt2XbfWllBesyNj5mjMWLtrneMluTnbP5wXenntu2a70/kW+jaeV27i1tZB0zRmH99iB0L9tWctqa7wrzQv0vpyz2OZg750PWKfOa07lanN0bRcvE/H/Z+Sro2c3mmdqcx4XsRyJ74XbFsP67261j1J84ly5++adWTJrxHmrbW/Ux0s9UvzteQvh3kS+2SafxDPqVCmabBWVzefo+tk+yr9m35umgZ936Pv1+dN3/eDPpTmdap/rv9K8Y8a3yCNK+TMTzoWmu3M1ZHTp8b2WW1l7mwi1RnGr7RkpDWp+ZeyLkDX9UBhaWljb7HZpfQQZ0rn8XQqh6+tdsQSI8npGMtY6BfyD+XUntNK81OSHdcRy41jdKX2xufc2jOkVX/prCvpU6IUx7SW24TYT7b5g04dpzEs9wTBB9d0kBi779bG5XKUzpXbZlvxuZMkZ5PG2tvaOqVnpflVE2MpYR+nVd219dT2WcnPKfmFVtm5eKcmr2maYp3p/q/57SWfJP0u+V2SjJz+krxSG3Jp2nPLeOT0tPg16f5c6zeGchKlvSPe90vt0GyHZYws5ORY6sidxet0WPhocaytnayfoVL50ny35k3l1vSpJMvyTjct65xD3/bHcYGVrez7Hi4qajmPS35bjY9fswZLz1NdcsTrIdHuWMf1/oj1kObiGN8g17+WeTVmDx3rw5RsrFWWZcxL+5tUb5pm8SG1sdTiMpp+uTzx+Uk7+2l6lvSwyMr5WqWzAlA+f2qxsJLtKNnxUpnceOXWjlZXTfwJkN9lajGyWFbNHJCwxtu0+jf1b2ux2oi47yz9IduE9TSt/8fuQxolH0HXeR1pHll/zyTV0TTr467vgcM8afzIos9Jkf72Io4f1diLwNJGT3u07bDPp9MpvPdommG5tm3RdBZfZX0cNB8lnS+lWIpljjbTfk1O27Zoe1s8UdMNGD/22u8GpXi2VZc4fcw5sCZutYktzMV4NyF+dxO6p+s6oDvd+FQJi/2S3leXyo5hG/HF0rzJ/dYpTbb4ebn9vdRP0m9uQx+0bSvGoYt7sHIeqdm707y5d7bSHOn7Xn2nIbFom4f3IZ8/fv+5Xr4Up0htfBxLkOtdZ9Fe/Z2ehdq4WEzNb0FKhLGQvltiihb5rvI33SX5TdOgw/p8j8/+uXHIxWQlpPfsm5wJ0jbHv8NI9wQtnhHYxj5oOZuMiRlY3zVYn8WU4qJpum2PKOuprYmA5b1v6bwspW/z/Dc2/rQopsdGc+8aYlsvxR4kvUp9Y82vlbeWXewbqU/eoO3tsctNkezUGL82HQtLvlr9ap5b539NXaXyafv98Tk7FpvzC2I5qQztuaUv4z0l3XMWsW0f7RUe6Vr0fvz7lm3+DsBaJyDb8XWbGv9ueZWWnkFr9qht20cLNWtq0zleyi/LL69RaZ7k3mvkYrS1bLPvVvk80n1/U7m5cpY25MYpfLWe2WrPGduIo+ae1cjfRJdtxAryZfX3GLEeNTqu5uPJssnZc6x85xza2QwXX/wCrr//OWhr7ujiRdz9ukdx7tXX1Hh8Sog/LPo0PSytr6WS7e+bHRxdeC92b/tBvCTQzGe4+tufRJO5OEWTHdMeHODKJz+D17/pw6oJuv3E4zj7lVeNFkrHepaznmdiNvn7/bg6SzxtE2rfg8h+f4v2+Lf3IY823zfRMbWZQ3GbnQ3J9jgZr/ldjnPu4865v+Cc+1+cc7/knPs9FWVb59yPAfgdAH8OQNht0v/OAvhuAD8J4AvOuT/juJIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJwC5159DXs3bmTz3Hjfe9Ed/x8L3w+OLj4N7+T/U0AAuPqZ5zE5PNxKXXs3b+Lsa6+pz+f7Z3B48eJW6iKEbBfdSpBqnHN/DMAPA/hQSMLiOrJLxvJ7AP42gN+D1RVFueugQp6HAPw4gO93zv1h7/0rlaoTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC7iOWCyq81//02DlnSrOQqyd+ViN/E12aaYOjZmeQ3k2n6NCKZdrZbFRdpJ7Lz7+AV7/lY/BNIz7vJ1PceOZpXPnUZ05ZM8DDYXbuCfX57s2bOPPm9ewf9Ndy/qUv4c4jj6xuAki49/BV7N28ucUaCSHbgJevbAHn3DcC+EkA3wrVDJr4bwH83uPPsY2WZHohz7cD+MfOuX/ee/+pDfQghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEnCKv/DPfZsiVuyZCunxlnC6Zu1dQ/jNomU10adsen3j87UH6y5Pz6HtZ6Ht++VfGVUaqmd47wIWXXsbN9z6l5rlz7Rr2v/Ia9m7cOEXNgPn+I/DJpT0xF196eet1Tu/dw+6Nmzi8fFF8fnDlCoDPb71eQshmyNdHETPOue8D8AkML15JL0axyPlDAH4gKeugexwueR7KPAbgHzjn9N2JEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjZAhde/hKmd+5k87z13DPwY2/gGcl8/1H1WTOfYfetk7kMZv+NN9Rn8zN76CaTE6mXEDIersoNcM79QQA/A6A9ToovTam6fAXAj8aik2elK+jSC1iuAfg/nXMf997PKvX4msBVbLxxXi9cwxenSc81+r4X07uuW35umtX9R5ps7/1SR61dbdsOymt1p3XG8pxzSxlpPXGZHLEOoUwsNyano+X5WHL9HJP2TZoW50/bmMpK86akac65ZVrbtmgah6ZZpTWuARqHpmnRtm1WXqpXeJZ+1vL3fW9aT5KsUjvj+RaXj9O1cUnne0nHnF658dHWhIY0llq+GnsS65KTHfdfjayczJBfs0M525EjV1eJtL5cP0tlc3Y/nmNhfeXGVftcg7QGc3NEq0ez1WPsqTaXuq7L7gmWukL5OG/f92L6GFkStXMkZ8eltNK8Lc0Nq365/UbbX7Q5rtXZ972p/XG6Nl9Sm21ZI+kazeUrPdt0XpWokRn3Ud/3mM/ngz08yJrNZjg8PAQAHB4e4ujoCADw5ptv4rXXXgMAvP322zg6OsLdu3eXZfb3G3zndzyOpmkxnS6OeC+8cAs7OxcAAJcvX8a5c+cAAGfPnkXbtkvZ3ntMjoM10+l0oHPoi9jXjPftVP8aGxBkxaSy0/m6+NcNbrlumkYdM8nel9aNRNwu3R74wY3efd/DKTdna7pq81rr177rTetL829K+UrpY6hZ36W2yfNn/Wb19MxV2rvDPNTGWrLDsd8A1O+9cf7cnMZ8dZZcrYth3qZpqsdMs/vSnmCVUcpn2Wv6to/y43h88/5uab2WzmOWz7k5GtvONG/QLbQhtm2x/Qv/7uzuwglzIT5rl9rXNA0m3qFpmsHaaNvhWVJqX852bHLmqDkHda4/Pu9FaV0PPy/bMYufXnsms6D5lyVdymfakG8oN503dT4qEEKKzgFt26Dt12MMQz3y5ym9LnkNpekrcR6AG6ydIMcSf9Dsda2uafm+79H38XiuykhrMzeumr2S7IOkf85njcun8y/uP4sPJclM9UzbEKPN/zS/Ze+M/ftUXvzZ6s9L1MS1tPRSW2rOKNYz61h/rWmatX6tocbnqdWxRidpPdXaJ+tZVCt/moyJwwVOS1/N17P4gEM77+H9cK3X7uta7LjmbLiN+F9aZ/zdembbpD5pDGpst2R3JLtes7eUdJWe52IGWlmN3F4s6ZzWrcXYxvhHMaV3a3F6aU2UbGJpP7Ge4aU+S324OH8uPqnt9W0vn39X785WZ8fUh0xlhc9j9r/cfNtk7KW+1/QbjGvjjvvF9g4s/S6t8VzamDmSyirFpUp1pLLiM4T3PukKl4+zKHVo1MbUrFjs2Nj1WUupr3I2OtVr/bxXvwfFZ7Exe4xlveXInZ9ydi5Xn3NuEZfpF/Jy7drEJ6iJP2i+kuW3LOmzuM/EeF/ybjAlF/fK6T0mXpHbR2MZlvlrXaPW9Nq4Ws5mbzv+pcVEY7Qzejrm6/2a31tTG6PZpE3PSlb9Nca8m9f6M8y/tKmaDxaXjX+bJn236JJSc67QZG1jTsZy576L2rZIn80WP5WM43jAcR/0+b2u6zp436+ldUbXseasqerQ9Gtrous6oJPfTWzqi4yZ50GnXN2bxOissUKN3L6g7VXWs9ZJEc4ApxGnA+rm6lCnlS2JfTVs8J7USmqfLTGiVJdt6RbOnrU2TbPTlrak81rar2KdQlsHsgsxrty82DQmHfSR5njOnvkm3evkmFT4XHsGSPWx2ETp/Yb2/6peqm8baP0xxpaO+Z3Dot+H8RznGtWmbboOa37DkJI7s0r+c9Oszx+LrU6fF9dLu/h9+CApOjda5Gwak8xRGw/JnUVKelrX8KaxnPXzh/0dQU09cfnavk/ju+kZSJvPuZi+RV/dxg51G/u7yVL9pZj4pljHYZhtGHs+LbS4inMOfS/9xrkcNyitZ8u6Lc09qYzlHYxlXm7qjwxjPYMng/7T2pWXvZrr0pyV4h4xi3rienH890PHfl7jgbXfzervEWQdbetwqFOZ2jhY6VkpDiKVt8TB0jPfUH6+vhw5G7WNGOVYynWv96Fl7pd0vR9naXu+su7aHDkNwhg4tz4nberkMsn+lD5PcmtJk+8B6Oc9oGwLa1mIPun1sx6rXddjdaZN++ek5pIlrjPGDktrxcGt/dG6Ra/jBFz+7Av46kc/og7VfP8Mbj35Hlz84ksF6dmas7oM5iGA+ZmHVEm7b91YLEJn+51qDbs3bkbf1jtkfuE8Jidw8Uu6DtP2hBjVpnv/ml/SYnnW3SSGVqo7/i1mHH+y/n2lFOdxmd+b5Bj7u9Cw9obxPvlvxsnpsv1I3rsE59xHAPw0FhevBA+g7JHJsn4fgA9EMmLCCnbKf1r050MA/v1aXQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkBp2b93Cua+8ms1z+8knMDtz5lT06afn4Zup+nz31u0Tq3ty9y6auX5J+mx//8TqJoSMY3K/FXgn4pxrAfx3AM5geDkKsH5dluUylj8hpMWXuXwZwI8C+DkArwN4FMC3AvjXAfxurF/aEr7/iHPur3vv3zToQAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCLlPPPaPPrFReefW/6y5aRr0fS/m9z79s+iyfO+9Wk+g7/tq2SWm0w7f+i3JxR6/+ihms3ar9ZDNuPj5F3Hv6hV0uzvic980eOu5Z3HtN3/rxHXpd85nnzez2YnV7QBM7t3D0flz4vP5mb0Tq5sQMg5evjKOHwTwzdAvXnEAXgbwPwD4JQCqp+OcOwfgezG8tCVcnuIBfBbAd3rvvxo9f+n4v59xzv15AD+G4WUtQdY+gD8F4K/UNpAQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBByerQbXgahXYriTvnyFXcCl6+06LDTHw3TZjP0M7lt5P7QdB0ufe7zePMbPqDmObx8EXceuYazr31VzbMNuql88UngJC9fAYDJvQP18pVuR76chhBy/+DlK+P49zC8aCX+fAjgPwDw17z3c4Os7wWwi+GFKwEP4PuTi1cGeO//c+fcEwD+TCQD0ecfxNfw5SttO/42utRp05y9OG/8XMsrEfJ67zGZDJddrEf4nOpWqivNHzuoqRypDVJf1Di14cZDSf/4s9aOVK9aJF0t+lvGMxwEAKzd7KjVMeZAoNXf9D28BwYi3eJ/tH6LxyHWfyA3M0diOWn5Uttyz7Vnmo7WtLh8bh5p9cRyNx3TtP5UL+t6kOoNY1bSNZTX5JTSJB0l25HOM0mWpMOmusRIa6DU/qZpsjY2HjPLuKfro9Ze16yvNI+kozTX4r3SMgdz+mi2Q7v5tiZvSM/Z2nQedl23lj6W3NjEdcZzxLqOc7Y6lRs/02yKpp9WRzwvSmMVtystr623kj5jdJXKxXbBOudy+QYBPcNYauVzcyeuP7WD8b9B1pkzZ7C7uwsAODo6wuw4gHPhwgU89thjy/Q7d+7g4OAAAHB4eIimOcK1a7voun4p69q1veXNzXFbu65byg3PwvO+75dt7vt+0Ma0LyR7EM8fq5+V9pnEep8Nn0n9LJXXdNDmeJxnTDBZ2kdr7FWxziaWNy4gHcpr9j3VReuL0tqV8sbzqhR0t9iIku7p9zQ9nkdN06hzWPNJgrywN43VMS6f1td6jzDWK3vYARiu47gdObZ1c32qZ0yt7zDY69wqxBHEl86Omt+T0ze3v+bylXzY+Kb+rusG6X3fYz6fL8tMJnMcHByg7/vlHHjllTnm83ZZPjCZTNC27bIPJ5MJptMpgPW527YtdmYdjo7iF0wOh4eHmPlVbKJkC0pzqYYaf2Ix3roMbT1a6gXks0GJnP4xmg+bs5G5M0/8KN67c2fY/PkYWIUQV3O3dN6Mn5X6QjtnaUx6n8w1j7Zt1mJ/JX88V0etz79WvgGaJuxjCx2DnNIZPdU5Tk/XWDwOFttTcx6L0fxhS79q30v7vranp/9PJxo1+1xMbq3l2h7rb91X0tivVL52zNK2Wn3K0nwJ+0vYk7QyWp016y0nU5oXsU419Up5NDucG3tLjGcMOV+jlDf3fEwcMKW2X3M6aOVy+6Z0Tjh+uvzU9z2Q+MupHlLd0prLzYVU39L+OGaulPxaSc9NqF3DNXqkYybNx037UFo7mh9v7bPcXlyrX1z3mHNraR8do49lTdaQG0OLDbL2i9YX/vg8HCcvzlwNYjvhnEPTNGjbYUzB0pc1MUxNlqUvrHHU0jgtnq/voYv2y+/PrXbHsnduyz6l8tL6ataRc0B4hxro+x6u4HpZbdNJ+AZWrPNGY8w+kCsTz+Wcf2CVra39QBrvKOmZYt0ncvFCa5k0PfRV3MZFbGhVR83cyuWN/58qc+8/rOusZPPjekv5xsZyUx1r5kHJLy7ZGMs5ObcOSvO6pKumkzXeYh0/S/2a/JKfD4yPWZTkWp6HZoVsuX1YS4/138QOWeszlFyW3+ZebG1DKa5lHe9Nz6jr5bezR69ipMsUACGmr4+/Zi/G9E0iXawn9vU2nX9peekdS6q7xe6naaW1t425k45D0LPGV5Bsd8neS4wZ7+AjlHzXQOwfxfHV3P5msWlBnlYuXiOSfT0tn1nr43R+5n4fWWNHmyaNfSzWS3r2qnn3mj//rpe32H7p91aDMooesX23jqHl/UL82fI7b73tq/nmnBy/G0vf92gh2+sxdlyzPbG9i9/rb+N3eNtEarOlH1bnH6DvPRDeeXfdfTtLS8slF/OQ4hLSugvnuVy7OqXd+d+pyTHxVP8S1lhG2s5cv1hkWOMOY9/tWdHav+bz9B7ODd9LB/ti0SkXS8qdz7Tytf64RUctvTYWv6p7qEfct5v692MYex6yxycAbS3GsrYRL605aw7n9NBuBH+yJEuyRaEtkl206mc9b2/7DDNGVml8LbHEvl/fI7yX947Qt6moOG94B4LoTwHTuKJzw/1N8xGtfWTpV8sZbJO431g03TeNJWn11MUo9Lot6+R+vofQqNHvtM+G22TMXD6tdsa2YozfIJVPf6dco0dOv7TuMfXcT2r6OC4T/pViJidBbFNq7FAgP5bJ/ga/tmta4gdpHfuvv4E7b17HwdUr0OK5N595GntvXkeb+c1YiZLN7tszqhfgnMObH/nwIL9Fds07FsnvCn3eTacnMmekeFHQSfpbjRTNl8zlzZ0rLXGGmjrjfNoZMNYnxKi89/DCO+j499k5HWO5QYYUS8mx1Hfer80T7/v7Fh8iK7b31xPvEpxz3wbgufAVGFy80gP4Qe/9f+FtF68AwB+QqjmW+3Pe+980yPh3AHzl+HN86gKA55xzzxp1IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCRnP5+c/BZS7k6aY7uPm+956oDn6yd6LyN6E3XFxLCDldePlKPf+SkBYuS/kJ7/3PWAW5xZVE3w396sz/3iLHe38E4L+E/n/l8LutOhFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWOZHB7i4hdeyua58+ijOLxw4cR08M3kxGRviuflK4Q8cPDylXp+V/Q5vjRlBuA/q5T1MQBXjz+HC1wC9wD8nQpZPx2VTy9z+WilXoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCjOfenL2Ll9W8/ggLfe/yy8cydSv3cP7gUnvuE1D4Q8aDy41zU9gDjnJgC+GcPLTcKlKT/vvX+lUuR3SdUcy/t73vsDqyDv/SvOud/A4qKV9PKVD1Tq9Y7Be5/9XkrX8uTyu+MN3Hu//BynS7IssnN1hmdOcR609FK+vu/NOkik5YN8iz5N4hSksixYx2yM3NCGvu/Vcba0s3a80/S+7+F9+M8v03rnMJ/PgHm+3en8k8bIOn/SOa/JTdNLY1PSRSqf6lLLGNuh1Rfros1JaVxL+jdNM1j7lvmesxHps5o2p/PIUj4uM2Z9SjqX9B1TlzZHrf2Tq1+y3bm6+r5fs42hfO3aHWNTY5m59W6R3TTNMl/cplR/aY6E/FJ5re4aO2PJo62XnO3R9mrrPM6t3xo/Il07Ut+GdElunJ7atpzfkPMBJBtZS1rWMi9KcqRyNfuLZuOkvszhnFvq0nUdZrMZAODg4AAHBwfLz3fu3AEA3Lx5E9evX8etW7eW3/f3G3z1q48P5H7yk1/G3bsLubu7u7hwfAvwpUuXcPHiRZw/fx4AsLe3hzNnzgAA9vf3MZ1OAQCTyeqoOJlMln0e5mS8RrX9W7MpaV/FfSGVj5+nYpxzou3cNmU/IDwv+wLS/h7kxP1cmovS877v4Xqn7m+W84v0fUy6ZhekemPfqLQOtb20c93xvFyV7fsezss2PbYBTdOo+1WaV0qLy7Ztu2ZrcrLTNMl2hLqcW7UvjHEqL96Dc2x6Fkyx+M3xM23dLs4/43WJ537tPErLxLYu9W3j/ot17vt+UCb+3HUdAGA+n2M2my2fzedzNO4I9+4doeu6pawbNw5wdLSyCaHP2rZF0zRLe933Pebz+fJZsN/t8S3oC5lY2s90X47tTcknkdK0NW71bXK4Sbc2VyaTFq0fvgDZ5Gw45jwgtTGk18QpSnvj6rlHSPY+2Pp+LX/6XTtPAkDfe6ThQ+91/0bCPI7Gs2jTLWIfx6XWdErJnQ1y+2hpvsTrcE12uxqLuP9ybbT6hFYdpb18rC9k6aNN4ydpX0hnA2kvS5/l/EYtPXc2ir9LZ6DAag/W5Ug+XUqanraxdo5Y9t20/eFz6qvkZFv00taiti5KvlAubRtY5Wo2veSnl8amdK4o+fAWauode7bOyS3tq6V5VbKbkt9Sir1pfaLpavEn0zK1sbtauXFaKtvSX2N0kuZzqX/T/tPqr9G5pHft+VWSPWZ/s4yF5dxhSS9REz+o8U20+ay12aJ/yR7kfDxJ7fV0f+wvy3pa7cXYtpRiQTkZkh6ldClWFuRabbT0LB4H7/1yv0jLW/1Qq82ylI/liO1PxKcxH4nSOFj8O6vN1OrX5mM6d2t8Bc2XqXluie+l5S022+KbWPKn7dCoXQ/huWWOazG2uO/ktTvO5sfjIulXM9/H6FAzr0vnOWkdSWOe81NjWdYOd8yjAAAgAElEQVRzkqRjnKa1R6rTKqvkI9eeHSx5NzlH1IzzmLqkOhefT+YcGJqTzpMxfkxNW+P3Z2P2vzgm0TSh3tX6j9/jae8rrO8BrPtQTs8aNj0rrZe3+eEWucG/yImI+6V0Bgrpkn3W3lUv5Hloa8LS57V+JrD+zjeOJZXqKNm5EuHdltZPY+KfNXNT83dDmrbGYuL1ntN3ma+p9xtjxv4myII9HhJ/Xj8Tjd2frONden+7TaT3l4t3gra+att28D489540RurX9FlM+ltDAOgmPdq2OX6+sFNN26I9tjHtZIIp5HVuiQucNPFaieuP06xzRpIVnxlLNnLxr4dzoT6/JmNZl7Ku4/i89b3+abLpunIu/q987tFiaZrftfJPhvGgEAsKnxd51s8a8b4d23f1Nwq+X77jD2UODw5wNGvW2hf2S20/DfVIe44UFwhpaeyypk9zcc+YsTHk1CeylNfsWu6cY/FJtXO/1v5u8F56Qd/r58pSm3L2WitTil1KZUr6WOq39LVcLuRdl1Pry+TOGtb5p8UWJLS4RJZm+PuzRblh+TH7YS4uUbNeg61d6ejQtsNzooY1hm3p41z6pjGDmG3GHwAALaL9fEHTOPVcINqYJh2/1f6XyljYCQBrf4KY1VrYSx2cW8mIfZAxsZxSzLRkq0sxKuv6LvfVon+1uWi1fdp+tTqDA/G41MRwNRttsZVjYxibyBi2eZWmzf2atXeaZ4VtMGZctDHeRrx9tQZkauL/2jl9E52t/tg25vWmjPFP4n9rysTfV75SuXx6psn97arE2Pef2yC1GTUxLgfg8mefx2sf++ixQxO3c1F+dnYft594HBde/lJB0qpMrFuqV0hfxn/XW2TSf/W8PE/i9ZbfQ6N1W+lzSUjzQovv1mAd4/gMHc7aazGcbvU8Jf5bwjEx4aBfrIf0fKlv06ydDbuuA5TyOf8mbmttvKf163GJ3JmWnB68EqmOJwDsHH9OLdevjJD3XZlnvzBC3q8l30ME8XEhLyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQciLsvH0H57/0SjbPraeexHx3d/uV+wfrEtQB76z7qwh5V1C+3pLEPJV59v/WCHKL6zK/A+kVWyvGXL7yvJJ+bYQsQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkNBe+8EXce/ghzPf2xOe+bfDWc8/i4d/+na3W63yXfX7lM88DXvtT/2MZrnxLimsa+L580YuP6yrUSwg5fXj5Sh0XM8/yV26t880AzmNx+YrD8BKW17z3n6mUBwA3lfQzI2QRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGjafoel55/AW98+ENqnoOrl3H3oavYf+PNrdXr+ln2+ZnX30DT5S9osVy+0jQN+trLVwghDxzN/VbgHcbZzLMblbK+U0gLl7D8cqWsgLYD7IyURwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEjObM9bew//rr2Tw3nn0GfdturU43P8g+7yeTrdVFCHnnQ4tQR+7KqVuVsqTLVwK/VCkrcFlJn4+U98Cj3fAVpzvnxFvFSjeNbev2sKZZ3XHknFvKDfVL9Xjvq+vX2hO3P5WZftf6Kc4Xf47blkO6ra3v+0F5TVZaf1w+1tdyc5yVNnHMgv65OizjlcujPVvUufgvVL8Y00WfhX5L55WFeF5Y1lJOz5DuvTfJtYxdWl77PBap3lh/6ZlWv1UfSYZWNp3jKTVjLemb2sn0c7r24jza2NaMt8UGb/MWx3iNxHK12yQt9lGaL7V2KZaR2h5Jn1Sv3G2YObuqYbld00IsJ7b32jqK86e3fFp0qtnTreNSS24uxHItayyVE9tV6xoKNE0zKC/taVZbm/oxY2zf2PxB33heh3zpXM/Ns7jd0hqx9qtlLcZ2LP7cHd+GG773fS9+bppmaRem0yn29/eXss+cOYNHH30UADCbzdB1d3DlytlBG97//rM4OI4P7e/v48yZMwCAyWSC6XSKvb09AMDe3h4mx4EirX/ivgvzMDdO6ee4vdI8sviqqzxYy2OZY2PGVtJLWuvxOgvE46ftKdv1ZVdrJIydts5zaQFprUllcnt/zbiU+kJ6vqZXCzjXYHGf6SqvZp+bphHbJuWXdNJsT2xr47Wd6hzmTpqettE5t5xLTefX+sK5ZuBDeO/Xvkuy27YV2yztz6WxTH2iOH+XuQFcm/dB/971qF0aJZsg+VSW81Df9wNbH49zmn50dAQAmM/ng/IhPaTN56tQzc7eBE0zH4zdpYtn0PVTAIs+Wc6DY/uSfgeG8zX8uzPpMJlMBn05mUzQT1blt2WXNP/OcsZK8wY7YrH7pbOVVkf63XKekb6X0qyxF5su+Xq1M8BanzUeYe84TlHlWvb0EnGZnN+7upd63abmkPS1zEFJR0DfB4f9pI9ZzZhb01PZljblYnpaXECziek4WGOCKRb9rfanJq5gjSmle1ruzGDxI+Iyuf1eIj0nW2yXdQ8+bUrzxbLOczJC+U1i1RJj9sWxfn3urL/tdknzpOTnW310S964Ds2HdM7BD/YFmU1jh7E/nmtPbVwprSNdzzmktV6KC256nrTGhUq6Ark9tFw2TS+dY2vjEhrp+Mflx+7XObljZAV5FmrnQ+ksZHkmzdGcHjkbo/kkIWbm/Wo9zedzdJ2L1oK+ZjS5mm9bs6dr5bcb91mx7tOV82lIOgbda+eG5ZwQr4vcGtMwxQHd+rmpREkPLT4Svsd+V2z3cz5iGreX9Inbq53LwjNLPGfMHrYehyr7sLn1sw37v41nOdsvfc7JjWNsgD2eVkOqS+59YiDna2nySzHKXF2SzJrzay6vdVws8acxfmucXtsuq27S+b0U77LEq3KU9vOxbTbZasi2S/J3XeaYUzsvU7s2JrYRyqS/d9LOY7Vnc80G9v36eEl1pm2S3hdp9QDr7dimDzMGae7l51c6b/0gvYZFlYtyTdMs36WO+X2GZkcle+69B9rFux8LtftNzqaPif9t6/clJXnbrkeSn7Y37idtrKxx9FJ6+By/5z2JNlv/H3ctxM1yzonzZWxMa4yO246faaT7iHW8xrQx5/PHutj9fjnOljubSL6Kc26gf23c1OorBIKPsKpmWF869rm+tfgb6W+908+Lc81KF+/ls471TD32XctJY/WzusyfVJTe0UjzzXKe6n2P+bwb2KH5fAZ0k+X8lMa57/XYTdu2on89nfZre8DemTNoJ/qeUcISK47F1ZztUkrx0zGU4gLxs2A7LGev3Jkp9x5BSs+1O/03p38uLXdOqo3Jxd+tMeUxMYdcP+biouFrbswknUs6amcVC9p+lSKNt7QPlfUPditfX0mmlG4d7/U2BH3ic7XttxVS3aU2WdZera2qmTelvPHnnF8f8g7PizjuT/vf0qzkxPUM95b0fZlv/No5L/Yng0+W77r1uV97bpbseG49p/ZOqmdbe8uS5W9Ao6S2Qdu3xTGyxPbStKE/vC5T1VN5VjOPU9J5KI1TTUxTY5F/faw3HUuLfd6G/rl9qxarvT4ppDWXVl0zNtvo37Fs852IpZ7wb+r/S+fnkqz48/DsGmSWy6dlLMRy4z1Bz1/vJ9b0Ry3bmm+XX/g8Di5fRj+ZDOx/8IH6vT3cfuZpXPnci8s6hvvE0LZLe/GSBmi6g4EJXJN3Zg/tfF70q0r9mr4byNmbbcYGtL9p0uov/c17SmmMB2doYU9Pz+LamU+LV8Vx3BrfV+3jthX8jhZt4e95JTZZa85Jf4vUDv42IP6XnB4PZuTuweWtzLM9qxC3WJW/C1I0e8EvVegUc0VJz1/LRQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEnBDtbIZLn38xm+ftx74Oh+fObae+o9vZ57OzZ7dSDyHkawNevlJH7vKVSxVyviXKn14p/pr3/jO1ih3zmJKe05sQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDlRzr76GnZv3lSfezhcf+6ZwR/fj6U9upV9fnh+O5e8EEK+NpjcbwXeYbyRefYBAK8Y5XyfkBYuYfkHtUpFfAeGF7kEma9uIJMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCNkIB+DKZ1/Aa//Ux+BdI+Y5OncOtx/7uo3rarp7aGb30E/PiM8PL17cuA6NbjLBK9/+T6+10TkHAHjkN34Te7dun1j9hJB6ePlKBd77F51zNwBcBNYuzPp2AH+/JMMtLOIfEcoHfnGMbs65JwA8fSw3XLoSeHGMzHcyYePJ0fd9tTzv/UB2rh7v/VqZruvUfNb0uO60fqlMnOacK8pN6fte7aumaZZy07riMiFfro40X834lCjVL+milZeex+323q/1cfrcQsjXdd1SZigaPq/SZfnS/IjTpLxpnpJ+EtrYxbLT8pJeY+arpmOQX2pb+lzLb7UDOZ3itJo5IukY25uSHKkvpHJN0wzyau202rDS97QtqY5aHTm50nyzzqmx46q1S6vDYsfj9DR/27ZiPZrceB2W9jBpLZdss2Rv43Zq7bPa2ZINk8qkadY1JsmsmRea7Lit2noMOub6u2Tvw7+pjPjZmPVgsX+W9W5JH9vfmo7p/NTmiNUHKfVf3MdSfwfdmqYZrOXYL5pOp8u02WwGYLHunXPL7wcHB2iaHt73gzoODg5xdLRae0dHRwCA/f19AMBkMlmW39nZWeoU0oMPEoh1jG1J3/fLvrX6yuncL80ly36Q5hvrR2h2JpfW9/1aet/3cH2931Vj58agrf3S/mXxiXLU+k6aHXHOFdfoqn/X99pc+602rWQTvfcDe2OxiTn/Oabp5vA+5A319YNzZtM02bkf92XpHGdl7PzU9Azt8c3qDFSq1+IXaGfjpmnEMYvXdm4exXtH3/cD+z6fz5fpwb5679F13dLGO+fQTvza+XoyncJ1k6WsWG6sf3HMZt1aLGI2m2Hu1ueC5vfH9cek+XP7bqAUo7DYbun8UyJ3/rHI0fxcSa8U7SxuOTvEsQCLzvaYA7AKIZby2upK21jy0dPPC99jOJ8X87sx2d5UriUWJMnKnUt75xE3K+6CnO0v1a2l59aHdR5YbLRl7QZfsORH5PTKxRY0feK0MWtXspXBpmlzNJ5XVr9JKi+1wSon1jNXVyrXMpYlHcbMX+uZPKSnazfoao0na3tfWt4a0y7pvWmcOteW3BnGMhbb8t22dd7YRA/pnLj46ESf0GJTpD23xnaEz5uc09Ix2uZ7j5ja/VqzVzVnN8lean0t2cAa21HST6pX81XHzPcx8QXtbFZa65uevyW5ku0t1VF7jpfq1OaAZX9L863271V8ajKZYDJp0LZDO5ue8VKkZ7k9PGVbe6/UX9o4aet16C/Ic9/SDklPTRetndY9zbJeJX20etIzjcMwLSe7dk+Q4kxA2W8bW7fF56qtJ+erh+e5eRi32XKmTZ+NnZtSO+L5U7vXx2W0mE9u3sT7eamPNf+y7+3rMCXEeaT1WPMez7on5PJa1teY2I/VJsT5LXY07dfa/XGMbpayVlsb59Xm/pj9rJRe8iHj9Nyen9vfVv4/krR6u7Hqi/Bdrr/WXgDD33yV1pv07mgz5Jh0XEdOp03mRq3NryHda2vX0WKerPuDi2er95cp0jt77z2axot6WM5y8TtTfV7W25Cx80iqK7UvlnHc7jy2x3xKvyFJYz+5WJCFtKz2TsDi58ZY0uMYphOaUPO7x9Leps197Yyd0rYtmmY4b9LfO1hIfSpNV+uYnlS8JdYFWLe5fb+5LSydE8NnzQctrdEe4V2yA+CXsoLu89kM3fH7SIuvUppjlnhSOt+k+bceI5T1ya3d9DfJvrCUrL8pyvX5JjazdJ7K6ZRiWRNpX6VnBdO6yiz9eKw1/yKe4yHOockKdNP++HdTq+fT6Q5aLMq2PdZ8g6CLxbdf91Fl/6Q2jhOwxY/W67LIrqHkm2vPJJ/GWvY00GLC6/nidSXnzfXRmBirhZr80vzL2XFN53itS/N99dVm3zS/d4xuEmPkbjImx6WOy9r9eWubtDKldbXQZahj08h2NOdfaFjtpSZbK5PTaxNy69Nio50rv1dI8U3sw+T3Yi1fOh7petOfL/L0vYer8IO1vsmN90na8fxZKTyzrXmrjZbqT/s2rHVLjEJCOjtYud/76Kak46DFojdplzVeGDPGJpd02Aa5ObZIXsUKtvmbXst6GdPHNfuKRZ70WZM5dkys5eL4cm0c/rQpnXEs5SWfOt7KnCBTixvU1D29dw/nvvgSbj31pCgXAG48+R4sYhvxmpDndNd1g/pjmzS59zqOJk+u9Iykzc6cwcGF89i7dVttZ/w78RruPnJNvVzG9T123r4jP6uoq+TPBNsj2YJcLCCVK/0deEq8pw/33eG4au89S3F969+qp5+tWN69pL951HQq1Z/+blrTxRvPZWR72E8IJPAJpF784vsPGMv/iwCejsql/MJIvf5Y5tnvjJRJCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYRsjQtffBmTu/fU5/2kRX/8f4K5CdO7r2Sf33n0kY3rSOmbBrefeFx9vnfjBpoTvlyYEFIPL1+p5x9GnxfXgS/4BufcH8kVdM5dAPBXozI4/hwuYfkt7/2XahU6lvvDidyYT9TKJIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCto3zHpc/+4L+1/FbYnJ4A83stvr8ziPXcHju3FbrvPXUk5jv7qrPz33lta3WRwjZDrx8pZ6/hZUZj/91AP6Gc+5bpELOuT0APw3g6ZCUZPEA/reROv0EgMuR3HibOQDwf4+USwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEbJW9mzdx9tVXT7ye3ZufV595OLz13DPwLv3T/3Hcu3oFt9/zuPp85+4dnLl+fSt1EUK2Cy9fqcR7/zkA/xdWl6eEfz2ACwB+xTn3o865DzrndpxzDzvn/jCATwD4F7C6qCWUQfT5b9Xq45z76wD+aCI36OUB/Jz3/rBWLiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQclJc/PwX0BzNTrSOyZ1X0Mxuq88Pz53D6x/8+sEf/o/h7sMP4Y0PfgAe+kUuF198KfOUEHI/mdxvBd6h/DiA3x99jy9T2QXwF4//g5InTfcA/t7xxS4mnHPfDeA/AvCthaw/aZX5tYT35e3NkqdUru97VY6W7o5vPnPOLT/H6WN1SuuT6vfeo+/7ory2bQd6pd/TOuI2BZpGvtsplJF0seimtUvTySI3lWnRIyYdR+fcQGbcP0F2brzjsk3TwTlgkN0v/qc07t77wTxLP5faIsmM80n9bimbpsf9kubX1khav0SpLdpcHrum0+9aek4Pi965Z6ldKeUvEa+F2vZo+aU1GtsFSVdprsd5YtlS+632tXZfyK2nNE2aY1JfaONf08ehTNwvpb6stXsaQU68B+TGz0rNvM7VZVlvJXLr11Km67q1tPi7No9DfVL91v6ttReSTQxl+r4X668ZC4sdtrbNOkcs8sL8ldaFpa2arxOnz+fz5VyIPx8eHuLu3bsAgIODAxwcHAAA3njjDXz6058GAMxm68Gk/f0Gb701vBH3pZe+jLt319swnU7x2GOP4dq1awCAs2fPLtt89uzZpZ5nzpxZKxvKa36eNq4pY+2tNCbOOVEfi2+cqyv9bJMrr7F4XTdNI9r/nC6xHc2XsfldUhutOlnJ2X5tHHPfS/5oaFdcLMyNuM+1dbutfRAY7oGp3HQsSzZ9zHjUtEXTNU2P529Mrd+V7nGlPcVNHJpmeMds27Zo+xY5NB20Mbf4+fHaCfpKtif19SaTRdhtMpkMxr5pmkGbd3c9dne7gaxzZ89i3k1EXeLy2jkvfN5pO0ynE8T39Z45cwaTnXXZ0nctLUY7p2tr1yLbOQfv/HJdB1GxyNXat6+V0plZy5uWsciP9ZQ+pz6zRVaOmvPsYnwAIKwF27jnzjlavrjPcn038et2ZjJp0bdtld9qGUfpWS62JNfv4Jxfm4M1PrfmQ+bsUslXkeTXzKVt+UySPMs5J22/5nv1fa/aYalsbDdLusSftTNXrp+Cb68R9C6ti7F+Wc1419j3Tf2lks0LeSzt1nwY6ewdiOXm2iLNqzg2HmPt6236mpuSm8va+V9jW2eHVJa014avwb9P0XQf68OkcrQ9phQ3kBjja9VSa+9iLDY4Jy+3J8ekZ+NN4j/aOUPKBwzPHxb5Y8n5Gbm+lfpS022s35OTI41fTbw1TrfEVTR5uk+k+bUrW5HWZY1X1ZLz22Ksdcf2LTcX1/2V5bcqvXI65nwy6zqpscFjYyGLcsGPPNYdQ937vocrbMXW/s4927Yt35Zc6xk89Fk6D3P+wWnsaZrcnI20nIu996pPYdkjLYR11Pf9ms/Q9R26rvxOs7Q2uq4bFdcpneHDvzV7ksRJ7beWvcfSxpJM7Uyd8yEtY1rrh+X6XjqzhrlX28+W/NYxHeODLp6F5+vxO0lW7N8FwrlyaK9WZWrOnJbf9qRlUn3Kba6xL6t9XzsbnRTW2E8pb0DTXfPVS32UPk/jRkFm0zRoj2ON8RqPYwjx7wBXMWn5t3bS3NdiAEEfa9xokzNSjlKMIvcOWMISM9H2kdRni+tOY0ShnrRfUn3TuJukl/SblqBD7vu2yf3mVMobKJ0bQn9L+3haXzwfc+83S3p3XYeu274fmOqRm5+lOTa2zlL6JtTGcdu2Vctk9WtWcRhtlLR1YdVN6nPt7DAu5mjzNTSbkJa19mPpHURJtzF7WkmWNfYW22dLnECaX7nfToXnvjnWYy1WsfqtRk1MRqsrnVsLkXKdbQ80zXCcJ5MJ+kk7+nfh67GYuvfTgbH+m0VvaX/I6RnPi1IcSDonxvVs8p5B000rXxNvkr4H+l6O0Y6Nr8Z5SmfsVJZml7YZYynZo5ztSotK3aCdk+M5Ursvl9ZL7mxuTU8ZjhGwOpvqZ1zLWFrrzZUvx2XW17G2j2hzS/qNm/RZqiP917oWtT1tG7Ejy3650mPdLpZ0iWPTmg4h3+q/9TUV8q72NyDMufh3j8PnizxN49bOQLVxq1y6JC+OlWjjmpNn8QuHMaJ6JHub1rW+X5VlWRljB06b9fm0moe1tnRMvDC3xkr1jO3f1Zq1zc9tINlRaz/E/m4cB0zz5fbLkm9d8hVrSGVtsg5qfe2mkf0oyZdf5Lf55G4yEc+YufK5tZWm5fwLi67W/rb8TroKh8F5L9QhxQhr9pdA0HfSdbj8+Rfx5gfev6rYIDu3z/R9j67r0Peruvfe+G3APwLv5fVy5/IldB94P64+/zm0R0fLNmu/bxuse+dw88n34NaTTyz0V9q89+ab2HvjDeROfaWxk3Sx/E23RDyu8ec0dlR7vnVuZcdq1+VY+yzNy9T2dms+2PrvgTUd434J/tr4+HvonzhNsB+8pufU4eUrI/De/6Jz7qcA/CDWPbCcR5Z79ldzdTrnPgTg+wB8CMB3AbgWHiVyfZT2j7z3v5BtDCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQch84+9XXcefawzi4cvnE6mgPb+D8Ky/j7cefUvMcXL2Cr1y6hPMvfwnnX38dk8OjrMxuMsHdhx/Crfc8gfnubr7+2QxXPvvCKN0JIacDL18Zzw9hcQnKE1hdeBIuPdGulJIuafEAfsF7/4uF+r4HwF9C/rKXuN4jAP9GsRWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsh94vLzn8OrH/8YfNueWB3nv/gFdDvncO/hq2qevm1x871P4dbT78XOnTvYvXUb7XyG9mgGeI9uZ4p+OsXhuXM4On8OfvBn/zLOe1z91KfRHh0BrpyfEHJ/4OUrI/He33bO/UEAfx/ABQwvYCkWjz7fBvCnaquPPqf1hQtdfsh7/1uVcgkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkFNjcnCAC1/8Im6+730nVocDcPVTn8Yb7Tfg4MrlYv6js2dxdPaseF+K9+tpcp0eVz7zWezduAljEULIfYKXr2yA9/7XnHO/F8DPAngU+UtRlsWi5zMA3++9/+KI6mP5qcw/673/r0fIfMfho53JObf87pMdyx3valJ6SHPJzhfnTctJsiUZFpqmyT7P1R3Xa627FW58k8pK9aZpqe5WXcO/obz3Xi3b971YPh17C9ZxtKTniMcjblvcljh9NputtfPu3bsAgO7W27h9+zaOjjyOjo4AeLz99tvoJy3eeOMNtLPFeIa+3N3dxf7+/qCeQNM0Yr+l80fSPZWn9aX3fk1WqQ+lMlK6Fcs8jPNZ109sL3J5LHrEdfZ9X1yD6fOcviUd4nHPkVuXaT5pzmhzJ/1s7dfYXkg6hHxa+Zz+gXSN1JLbR6xpWv3aHCm1PX2m5Qv9G2xRapM0fa31SuVzdViwjne8V1nqzM0Bbe5a59iY/tLyWObNmPmc9pHFFqR9kbMzpXZq9q6kQ1x/rj9q+iTno+X8k1iX2O/qum6ZZzKZYDJZHMXatsXh4SGAxT6+s7MDADg4OMD169cBAGfOnMFHP/pRAAu/4fr163jllVeWciftBE3TDPaUy5cv48KFKQBgb28PFy5cWKY3TYO9vb3ls+A7TCaTZbun0+nys+Q/WtDsTzqXS/YilFnkGx65asdV089K27aD8XfOwTehDSt5TdOoe7PT8LUAACAASURBVFft2aRGT2kv1uqX0Oykxd5ZKZ1/JKQ+894P9O2aDn0ft9VjPp/Dz+X5EeshnWu0/apkczXfLm1L+jmXluQY5HNuMddq/dnUB47XucX3TNeutC+lad77pS3UiMv0TR/JAoDFmLvetu9ayfmwEuk+N51OMZ0u7G3fr3Te3d1dfu66LusfTyd+bR5OJhPATQZ1AUP7kpKmO+fQ9lizUenYSftoLCtna3M+Wc3ZI/4XWPRl3/vjujFId9GyjM8KaV1a/MDqu+VkamWtsSTL86BrXGVcRJpT1rPRSu74eEqurVZffb1vw3fd79ZiFmN88tL5WY6LhE+rs5NLts9Yx9K+EPJb5plmr0r7jjVWYXku5bPaTk3neE8p6SvZKEmelB6n5fTR5Gh7aKpj2FPH9GWaPmZf24a/JskK7ZLOXCU9Fza9PgYg2fe0rnAOSvW1ko6zRU8pziDtzUEfi/87NkaSq1cbl7iu2AdMdUhjRSU9tPIW+r5fy5/3Godovk34Hucb44+X9jWrTY6xxk5zeoyZ87k5E+qWbFzpXGTxp9N9XNrTa/qy5GtK55ESWozC6s+m+bQ60zi0JX6g+SrbjDemsrXv6dy37r1SujZOaf2L92jd8VxcyDo8PMRhC8znczi3qns2O0I/W9m3EIOz6lVibBwq1Gl5nvZL6l8GumZxbpLESuOivde1noOkMdMoybSkW2Qu0nE8B1K59nGWbF/JpqVnWC2f1pcl0vHW9LRi8ZnH+LAW/92ql/TdUr/mq2tlcr6C9iyMRcn2xvOn73v0fn1uaLEY61yttV1xO7quWysfbIN1Tymf7W26jEUao5wPnI6Z1U/d1GbV1rGJ3Jp1NMZ3lZDOAFIdVhZl4lhwSCvPt03HJBdrTc8qWputZ7rS/JPkpPHBBw3LO8S0Xbn+im2SaS41vWgDpDNM3/covKIYEPo9d5bM7Qvxudo6R8bGUHL1W9lm3ZouOfnxs03jJLmznTRnvfeqXSv5hLn6xpKrU+ub9FxZOk/GZdL1lps7TbPe1rZt0QllcnEzjZr4Uix/098CbXP8rGjzx/I+BBj6p+lvUuP03veYzeZLm+a9h+97eL/+u93YVyy9f9Z0ltDOuHbituu/Ecm9hw6xX6ufos299fJ+oE8pNivppdUj7Wtx/ty8z/mZ1thjILab1vhamH9ui3HvlUIOzjUD/6hpmsE7DGDoP4X1lMot/T5SO1+EeVxzlktJ/cyhCDf4TYDlzKYx5lyjx1/G+vkyJR8ql0+LP1j7aJhv+I7SYvtycdxaHWriazXnOUvMNn0m+bnrvjDQNOvryUppHlnichqWmMk24hLWOVIbb4yf28/5ZXtvfT9i0cW6RrR0be2MRZNbimEv+mRoe7V4XY5hFr+I1Sd79mocFnm8d8v8oc7VfytZwecJslZ9lR+PTeLHkoyc7DFx/dLYrPq+Ps5ck28bMbnSuo77KNdf24hB5uLdqSx5vh37Jl7+W7MafSxzcIwdiZ9b3k9IMXBtP9xkb8j585aYdBovCb7ssRRR7v/P3tvG3JZkd33/qn3Oc+/t1+m2u6cHMzM2xiAbbDzgICdS7CiBDw6OkCwRxZGIlCA7QiGRSCKEiPLi8CGKlXwgJLGJYmyQooASCCYCAoEIR04gYGeE4xG28QtOPPbMeDzucfd9e87ZVfmwnzqndu21qlbts5/n9u3+/0Z37jm162XV26q1Vu17Oqf0gXrOwS3ORI019xiJ3n0s2SvTe/7yuzCt95dPZYahy05LaSm5p/tlHyx2lhYjyMv3xGXOa9AjxqL+Qi2f/b2lf5q3lY+11XaU4nav/dJn8fStt3D90ouZDHodtbaGYYD3y7PTA3jjU/8QX/jNvwkP33zDJKvENIWaXr+Rbwz40p/8R3jwK18AKrH1Wqy7ZK1tvpRxvo+kNVn6w6Wsy7OjvRlavlHL7ug5b+q6qc9/1eLMPcx1WVdRckdss7s+wMQY/28Avw3AX8CkEXJLR/qDmzxfAPCtMca/vqLZso2U9v8B+KYY4/euqJMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCLlzHIDX/9HP1H4XY5t2YsSX/MRP4rWf+dnVPyTaYv/wEd76sf8HL9z8x5kJIe99+OMrGxBj/OUY4+8D8I0A/hyARzj/EEv55zGAPwXgt8QY/9e1TSL9pOX05xGA7wbw22KM/9cFXSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQu6ce+++i5d/8ZfupK2XP/2LeOtHP4n7b7+9WZ3D8YgP/dzP4yOf/Ae4evhos3oJIbfP7lkL8H4ixvj3APzLzrkdgN8O4KsBvAngCsCvAfgJAD8cY3x8QTMu+/xjAP4nAP9VjPHzF9RJCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQDwlf/nU/iq//OJ0/fwz/1cYzfVP6T9VfuVigAr//sz+H1n/05AECM8Vbb2j9+jDd/7Mfx9JVX8M6v/3V4/CWvIzrfVYdDxNW7D/HiZz+Hlz77ObhxvHng6gUJIe8p+OMrt0CM8Qjg79382YqfBvDfAvh/AfwcgL8dY/z0hvW/L3A3h5DLDiPn3OlgzdPLwzbGOCvvhANNStMO7dZhnp5L+WKMs3SpXStaWe/94llqM4SgytXTRqtM2ce8/RZamz1j5f3Z+Elt5mnlsx6kfmvrb7/fL/Leu3cPALB74SW8/PJn8fRewNXVuwCAl19+GWHn8eabb2J33KntlW1a5S3rKveTta60jvPx0/aoRZaaXFZyXaDtca3eXEfkddVk1GS26o2aTtJ0RD7eVqdCmhdA3g+J8cb4L9vo3S/5uGrj11qDPbq5VrYc5zVOmSZrbe5b+r5nrffKXI5xmvP8jMjPpFxXS3Of0tL60NopueScK6mtW0nva7K09HhOeW5b65TSy/Mxp7a/tH1ck01Kl+yDHmprvLa/1uxzy7N8vZbt9+4XTcb8rHPOzdZZ3n5KT/nTPtnv9ydbYBxHHA4HAJMt8MorU3DqrbfewsOHDwEAh8MBH//4x/GVX/mVAICHDx/C4SneeOMKQETq1sc+OuJwHBYyD8OAF198Ebvd2RVMbQ7DcMqXr7dhGDAMw6mefDzzMrVxWkO5n6XzUDu7LfutpZsk1tiFFt1Xs83rMizPznJ913TMbQQga20458y2vsVPKp9N42G3f2v9l+S06PoyLV/Hlv1R6qucPTyGYb4vhmFAGM57vTWnmi6W7JFyj/T6qdo5Y8aX59ukS1MdaY561rHFvszrS22M47iQXbOJpD4Ow1CVc78PJz2b2O33gDvr3hJtLMs15317TdR0ZPm5lKfMp9lQvWfCJLu7KXtO3+93cMFmU7ZsIIt/Wpap9TH/W/Mfy/Zb46Kde5qPaBnn85iWdcv2ft5W/lzbEzVqZ8Bupsfn7bXiRfn50vK7pTpaa0De79M45nqpzF/W16UDO7D6I7XyEuVYafJL61Sq22qfaFjqDSGc5MzrbfkC2nrX2i/LSPT4YZZnOXk/tTq0+ZPS18YdrH6ztY1ajMni62s6wrL3arHhsm6pHckuafU5HxdrTNp7L8qSp7f6m2wOiw1TSy/7l/uYml7K1673fnamlPVNvmZq227vtfbubXCprg9haQvW8pZYYqo1uXIbooxp5OlSnF/7Lsml5V8zR73nxhp7tAet/1KMSCrTihmX+dfava30nrRae1K6tY+qP7zfw/thtlfu37+PeN9hv39c5L3CAF13WX0dSzynRmv8a2n5/rOs3xiBMovUF4s9VrbXK8tStstiTzUfBEg+gNb2Mnab9zP/bI35pf6XOrE2LlabuEzL06UyWp4a2vncqmvt+ar5yDX5tD1S05vS+LV0n7QWyvnJbbw8zziOs3vSlC+EsChzdRVxfX09k+XRo8e4vnYYhmFmB+VrSUuX9nbuA0njIj3L+9nK1+NTtvyFHvm02Jtm42jtlXW34gI9z54Hyjlp2SA18rKa3rx8v8t5pc81HTPVr58ROa0zYM290F3U1SIfF+tca7GURO5/975bZfG38+9rfCvNx77UHrG0mZDuhPL7AWkPttfF+e6vRyfd5Xoryfe4c27x/khKr9GzBvKzuFZ+y3veNZS+9Zbt1+rVzlSpnVp7Z/vEAdmdbG6r5G2k/krzX/oZWnsarVidxLM+02s2kzZHZcxRO8e1eB8AhKsA79NYY1FPjnPy+y7lu8RlPklm7Y68TNNswvnzpZ2rxawSUrw0+qUswzBgCHVZ522HhTw5+Tiltd+Ky/VS3olIWPRNOUbSXs3zJkobzDkgzu72PJzzN2MbzHEsK6nNMk3ImVqcfLjGsdJjL1l0pkRpQ83f883bsN0ztO4jyjjYGnrjsPn3VgzMco9m7YPkG7TiLku52zHb8j66Jq+0Vtb6z1Iey/me57XECEK2Z9P5FEI6p+ZnSV6XZS6t1OIX+fNLYuKmONcw6bOshlPZcux7Zcmfl+OXr5naHjo/Sh+cuObKcjV5S6Q10/LPW2dPa71YdFkrdmWKSfg4nV/KUNjty5v6YrKPljbSaex86l+Sz83eNXEuZPurds7IdmQNyRZpxaGlPGvPFG1dW3Rznm7xia3nZplePspjvmUfamnPip49sHw+74e1Pz0x49bzWoyvzCPtMcvaHDGK+S17oYX0vkrNZ9LqWOqepc+ttZ3oiTlsGZfpbVtqI5VP/m3rvYj8HC714XSH026/Oq7COyxzvS2cRzt38r+lMoDtfY/efw9YyiK9R9Qqf5Zx6cNJa9AS65XyXKLHy3xb2aDSu5+JB+++iwc/8VMYdzs8ee1DuH71VVy/+AKO9+8j7AZEP8CFEX4McOMR+8dPsH/8GFfvPsSDt7+I4ebf59wIvehDTd58LFrvn2vlevNYbUirHTHlW9oTWlzDEj9p+Wy9/a/Fndbcebbe58zz3ua9BdkO/vjKc0KM8QcB/OCzloMQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHm/MRyPePGXP4+XPv8rzbzvhR/lIoRsx+385zYJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkPQ5/fIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKBhD++QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+UCye9YCEHIJzjn1WYxx9ncr3Xsv1penlc9jjGKZsu48XXtWa/cSyvZSvSGEWXr53fpMakOj1qd8/IdhMNVfk8v75W9LhRBmdY3juGijrNM5d/FcpPLl/FvqTeMy/UkFp/87p5/riTGe+pDas7SjjbFW1rL3Ur68/1p72j7T2qmtudqz1lhY13JeVzn+Wnva3Gsy5eu1Z49JdUvrIK9bqt85J+6j2jPrepPkyOVdS62u3rW8Vo9Lz3rWlSSXZYzW7oneNdbSx2t0hrUNaz2lHi/XautMq7VVWxe1tDW6Jf8u6Zsa+TnQ2265xmtrPqVr+qVWxppeQzpfWvpV03eW9mvtpHUWY5zZF/ncHY9HAHP7A5jm6/r6etHe06dP8c477wDAqWxK/4Vf+AV8/vOfP6W98MDj4cMP3cg4yflLn3kbjx9Pn1955RW89dZbACY768mTJ9jtJlfw1VdfxYMHDxbt7/d7XF1dif0t+5w/k9Z+zZ5aY2vl05XbPvUytnXZWguSrKWNmdJ89Kcy2trL89fal86FeV4HIIr2YcmWtpLl3CvrrNkXa/He47gbMQy7mQy73Q5DHGpFV1Nbd7XzVXsmzXF9Lqc5L9HGN9XbY/fXziRL+RaaD5YYxxEhJHnjKQ2jru979rA0zvl+DSGc0ne73UwX53XFGE96PB9jLT2R69Grq4AnT57M9OuTx49xfTjPZ/KTpbEufWjgfN5cHcbFOfPo0SMcrpYhwWEYTvXna8k5V20/z5eQbAopPX8WQpith3EMOByON3VPaY8fP8FwOOvXMpaTz6W2rsv0NFY1HWc5a8q11KNTNf9Fqsd7r+71HltrXq1b1LuljXtu06IrzmtkHAOCb+/x3Bdt+Tg9vnzp40rz4Zyue2u2tbampDGS6q/ZvRa/sWbDJXKdUDsnWme/hd64VD6W2hzl/WqdFZqtVfMpev0tS37r2NXO+1YeLZ4D2P3lsr6W3JY4WCmbZSykcdXmR0u3xMhrercs17P+14x3CGF27uftpXRrbMrqM5TjnMudxkU6j6W9VJ4zmv94ftZ/1uR470V5Uzs5rZhXLU/OOI6r9KC2HiwxSu0cyMuWsYg8X+v8T3ktuifvh3Uc1sSvLo0j3wXW87n1bE1bgN33713jZXmrvq49s56RqZo8+1S33Xct5an5ADV7XcvbssNa9nrP2eC9z3SlQ20YLXtTm9fesbzN/Vmu1+EUk8vuUOPp/zK5lvZ9zd+z7F9LLKJVTy6L1ZezrsWaXDW0dd9rS6yVx7I+pX3b8q+kc79lN4YQZmdfigvFGGe+0uFwmMWP8vq897i6CtjtrmcyvPTii7i+8gt9Vdoq6bslxlD2uUSb29KOa+m+njYv8Q01e1SzOaV6LPs0f271bSU90jrPeveLVnZNG9r43RblWFjiL845RBcwxafm6/N83s3rsJ5VeZM1G9pKvi9b1PRTel5SG79eJH/RGuMsOcfqznHU9NkiY+mbSXWXlPm1M2V0ATHO8y7jvf2xnBLrXKzx9Q2td50FW5GfSy3funbWlnpAi72We8YylnlcIqe8a7gNWvabNl+nuyG/zKPFoFJfLn335dIzP4SAcRyzPXfWDWMlZNCyp2vt3RbWc7wVy6zpN6munnNImqO0BvI7zLKNxRry5zTvbvZdxWaUYkjS+EjvxeQylunlOmyNwdwu7L+/k/SJ9F5H63tLnqS7QljuZ+n+1tJWkrUWywemMcx9k5xaLC9fh7lOtsT+yvKW+G3P/pJsbTmPHgta1juNkxQ/b8VLWn695UzUdExedvTlno6ns9Rqv6yNTdRk1PKXz0o77RKbq1W/9q6a9rm8pzjP06K1hb0ljYvUliW+KOWxxhMt/bT6Rz2cZPfxZixSej2u0qrPahfU/bz+fxfR6zMvz5+lnkn+as9aqK2hsn1Jfn0Nx+55WRvHkMptse81faWNay3uWNN98zmf57HYJ+fYYSxiDu04byxi1yEEuDC1O7dT5nHjllxr9r2ljNVe62nfft6u8yFyuXpkKquu2VK9dfew1Rl6CXchs7bfcvtZiwtJd/Fa/GJeeVvetXFU7a615w62pz2LP1SuXykeYN3jVrQ9U45D3q7l34NabPZSzw/DgBBu573xRO4TSzaqJt8wDPBjvImD5770IPqQNVu9zCfJ0PJLy/LTZ9zUtciFdI6lcU6s8Sc0tDVqtQGltq3r+VJb+lI9LsVL18pQ6rSa7XRbtPx3oL5GrbqzZutb6pHiTlZ/zIrd59F9PfJs4I+vvEdwzg2Y5mMA8DTGuIxiE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCNoM/vnIH3Pywym8F8A0AvgbAVwH4CIA3AbwM4CWcfksPAPCvAvizQj3fDuDvxhh/7rZlJoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHk/Q5/fOWWcM7dB/D7AHwbgN8N4EGZRSkaK9X+dwCic+7HAfwpAH86xvjkUlkJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPkgwh9f2Rjn3MsA/iiAfx3AaylZyV7+0IqWr8zztQD+JIB/3zn3xwF8T4yx9qMt71uck4dMSwcA61ClfHn+suwldbXkavXNe9+sw0oIQX3mnMMwDKoclvbHceyWQepfSZ4nlU8y5G3mskpyS23VxkTCMvbOueraLPNOsoWsnMvqAYBzffkaS2mttizP837VxjHPl6+XGOPpmdaeNnZ52TKvtl9622ih9d9Ka+3V2tTWS23v5c8u1VchBNPera3rLY+mS/V6bZ31ymGZy0vXjlUWbX9p7ec6olXOkp7KS+dETz3AWe9uPV6lPu+d87Vj0tOPEIJYn3MO3vvu9VTKYOlDbVy0NSPpnHKNAcszutVGntarO7X0HhusJpNkZ9RIfc/ze+8xjuPpWQgBu93uVP+jR48AAE+ePMF+vwcA7Pf7U/rTp0/xxhtv4I033jjV7dw1PvQhh7wrH/voK/DDC6fyOQ8ePMCLL754+v7kyfR7jrvd7pTuvcfxeDzlubq6mo1Lkj+3o3rPHus5l/DjiBDy/SCvuVY9p/o6bMDaOol+KYP3XtwvMUaxjd79kWQ9Fzuvdamu1l4o5zVPq43lpXv3EvK+jOOI0R1v5J+no7JdNdtpjW2j6QdtjQL6/tHkmuY35SnT+9bQGvup5qP2npcW3bvb7Yp9GjEMA4Yw2R35+SKt19Z8SfsiL5+3XdP73nvcv39/0e7Tp09x7969RfqjR49wOBwKeZZtvPPuuxjH6Xy4d+/eQs4kn3Nupq+TXZbOll108H5A6ppzDvv9HnF3tt/yuiScc6p+6NURUnrqW6mXx31Y2Jn7/R4DvJjf6ptoY1k+y/ucy9Gr40q58jOhXIel/ba0E6e5cMVZ0joLF2Puy/0RT/KUOsXid1j9itqzEFK78/hHqz6p3vIcPrcRxHO4pjvKZ/PnEeMYgGwP9siZ96+2rjT7xHpeteyAWkzOaiu39G/tLLrEp2/lta6hNWt57fpck1ca79uwt0q9ehdxnZodY4kPS/XV2i7lKM8Z6z65hFq/eue1dr5J9a7x/ctySf5cp1p9nDWxktI+a9ktkryanL1rbK2fqdHrf5ay9MSea+fblut7DXfhP65Fi7vfpsz5+Sjta6v9bZWx5n9a5e3xOaW4SP5dKjcMA3A4THZXA+eWNr6FWkzLYh+0bLncvs/r0eKmh8PBpFvDVcTTp09nfX78+BH89VlflmddHtOXzoeajy/1rYc1azTPW65XL8TkJldi3k7Ks4VtseZ8szxfG7sp27g0nl7L31v3mvj+Fn1ea/u36i1j7In79++fYjpS21f7gP3+8aKuiPZ6lOISUhzawppzoYV0VrX8VOu5U/M5pTK9PmotXSovrYuWjL3voPTa7OX4t9Z2Deu6sur93pjguS/zPk0xsHXx7fN4zNu/1I5bazvX9mpZp9XvWPOek0VntGJn5XctDgesi9FIVG3g3Qjn5v1a6kx363a8RO4/v5fR5NTkTuee1S+v5SvXZO+YrRnbnv2Y6PHNWu/O5DGKhX1/o/d65VuDZf6k/Tpm9/WpirWxvS3tE4s/K91zSfmluqT5Oh6POLq6brHE6GrnZhrD4/GIGKPpPZU8T4wRwSfZM1/vdBejo/nWtXPZuq60taHfdbVtw3XcjOmx7ueV7yiXPo92Lmt3jlK9Zbuaz15+ds6t1g0tG3wd8fSnFvuX2s8JIajr5Gw3FvljOV7zsWrZIJYzSIqTS3k0HWP3X12X7doTy2n5Zr1xPkkWS5qFmqwWvb+F/W+xn2/LxuyZV43edaE9Kx/HKM9Pb0yh1b7Fz1iD9f73nG3SO+MYgExFaO8GpvLaWSLp8pos1rVQ03VW20ND8xN7138r1tq6u7KOqZaWGP3StquNn+gD+BFl9/MxKc9xq/+kPU/2nNZeq3xLBkmWlsyW+FteT0/dgDw/lj5Y4sbzvRtwHtt1dyVSG7fNpfvvknyl7ttqnLR/S9Eqb/GTpPMsYTnLet/xWMQ4NzzTLHOf69Dy36Fobdfif624Xs13scSaJd8plcvLS30fvCA72nNqvauoYbEV6/WlM0vXc5rua52pFnS7Yfo7NTv3y3Nbqd6m1Teo+bxaXimmVlKuHefkf++Rv5O+di3k7bSetc7MXj1ca3eNrW7NZ9LXLi7spTKGkq9xi/98qf+1HDvAYmNdujbs9MUyyO3T/4YJUXHO/SsAfhrTj6+8Dpz+tUBU/qwhlXMAPozpR1j+vnPua9ZLTgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIBw/++MoGOOfuOed+AMD3A3gDyx9cAc4/xKL96SGv2wH47QB+xDn3+y/qCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghHyB2z1qA5x3n3H0APwjgd+H8oyunx0X2WHzv/dGVslz+4y73AfyAc+4jMcbvXlkvIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfGPyzFuB9wP8I4Hdj/sMrDssfSCmfrf3hlVSn1I4D8J84577jgroJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPlAsHvWAjzPOOf+GIB/HvMfQ0nEPOvN3wHApwD8BICfBfBHcP7RFAu/DOCNov70AyzpB14cgP/SOfeTMcb/3dyZ9xkxxtn3EIKYHmNcpCWck6dFS69RK5Paz/M459QyKX/qk/SspwwAeL/8Habe/rfa7kVrZxxHMV3qQ0Lrt/ZcWxe1eVyzLjTy9qfPwFmceEpLn1O+rUhjWY5pbRxrcmhjmcbs0rGr9V3aX2vbbK2j3rp611hv+7Uxtuyvlk7K5d9y/UloOrHV7lZjXGtHq28Yhu66epF0VWtt9zxPdWt6d0uGYViMWavdNXuyZ++37IOeulprqzaPZdn0rGct1c7IFlb9Uevj2nVflo0xds+71vc160fryziO4nqNMeLp06di+he/+EVRhp/6qZ/C5z73uUX6pz/96apsL7zg8U/+E182S/uR2EIBBAAAIABJREFUH/00Hj2S+/nWW2/Nvl9dXQEAPvGJT+DJkyeL/C+99NJC3rRn9/u92MZutxPXS83O1Vijhy22aWsdtOQcxxExRowYEcI4KxNCgAtLnart6Zqs5fra7SY33nuPsrj3vrrntWdb6EeLrailS35aL3HIf/P0jFUHWsag1g/t3KqtUWuZ1Idp/+R1rPNpW3KVeXrnL6HZvFZGNyLGoMrb0vGS/do6kyXfMJHbKrW6UnquH2OMOB6PAICXX355kX+/G3Hv3nw9vPzSS7g+yH3UbE1d9wIp9JTWTSIfR2n+y/SWTtZ0fw2tTPRRtEW0tXmpre2cm42tNDY9sY9WXMWkd7wXdcJa+y6t3dEv9+c4BmCs98WyRspntXL58yl9+axc72vmWRvzlj2+yO9jcfa603zU5OqdL2uMxTIWlvhLKV/vGK+Nl0lyaW1LY9iKd1pt/rzuNXHHu0Bao9YYHLDO/+mJtaZ9WrMvemKGteda3L+HWsymJ34ObHdXUNt3tfiIJpdWn9b35NtodUtnYit2nPcz5S3z5HZuKb90Bkp1XMKWdW1Z56Xxcu0+zKJvrbKskXEL37633Uv0dwhhlW3bwmpPr/FRWzZXDz3rRWq3tnbyebHKeQWP3W443Y1pZZO/Y9mLVhve4nf03LPWSHK/8MIL1fYSx92Ip/fn58SDBy9gt5f1fY01NutWd6Nrz1Nf+IzO1WOP+bpY2+Zt6YCWz9lq12I3XXLPbe33FmuiFUctx0q7w6jFzNbEslJcp6xDS0/yX12F2T2Bcw4PHz3E9fV5z+Xx3pz8zr5sB5hsu16/sEzPZdael2jnTe8as5atyWjBund7bX5JpjTvWl2aDd17p52eW/ecJE/trLT6RWvPWwkpLiTFwOx9LmM4Oj3ra62ek8ZKey9nmS8u4gAhBAThDkqTVfPF0jPN/9PI67sNv6qUo3a3F4Q4Z21v3RXe+1sbm1qbGjVdlsu51oeSdFLvOQz0r6ct4zXAPG6y1h9u+Q+pjej1+8BnTc2vG4YB3l/2Dkliqz26pf+r1Vf6HlNa/a5Get+llrdk0vW6D2PxAZIM57vTeLqjHsIk++F4wOFwjtFJ8fJavGIYBtXW691Hkg8w9eny96Occ8DgivXrsNvtMET5zGnVn/xii12mxWVPsgntt873njuWrWJ8sp85H9P0Z60fAizv5UsZpKJzX7H/rkSyl8q9X7NJNJnz+Mmas7FGK5aQyNdKT7xT8rs1X7x83qrbQuu+2RKz1PbUOAaEkPoypYUQF3pXk6H3PeOeuMpt72OJ2j3sNA5lfifa65odtGZdtGIMlnVriZdr6ySPQ9farult7VnPHYBUr5wnyTxvQ0JqvxUXt8RwLolRpfKW+HxZnyZT7Rx1uxHOLeNwLXs8l1GKY0j9q+ngvE0v3IvWbLAeesqujQNfuq+X+eq2t21f2Ozv0nZwzsP7YRE7sa5x6bNFpl5641mlbKVfNwwD3FGfo177Zk28d834WGyCWtlcztq7qGveP8rTzDHNMS7mxvvlv7FZS69fKj2z3gO0/L61cd88v6brS9+2Z73N9fb8Wam3F3UqsQNZZ+Zjddn7oGvRfXkt//mzJu+WNmvPOwo1ezb/LunzcRxn/97DQvkel9UnS0zxtfZ8b2HrJ6y6csuzar7Wz76B5f0L7Z7XYhvWkGzOsphzcx1jPet6z6R63nNc5VnecxDgvRGxfw5xzn0dgO8Cqj+84gC8C+D7AfweAB+KMX5djPFfjDH+0RXN/joA3wbgR1Bqn/n3PYAfcM49WNEGIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfCPjjK+v5LwCkn4/Lf/gk3nx/CuA/AvCxGOMfiDH+tRjju5c0GGMcY4x/Kcb4OwH8oZs2Uru5HADwcQD/wSXtEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyfoY/vrIC59y3APgmnH9oBZj/AMo/BPD1Mcb/OMb4xduQIcb4XwP4ZgBvF+2nzw7AH3LOfeg22ieEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5Hln96wFeE75t4vv6cdOIoB/AOCfua0fXZk1GuPfd859G4C/DmBfyAEALwD4TgDffduyPCucc6fPMUbEGMV8Wrr3flaHpcwaanVp7YcQuutq4b3t95acc6pctXRJNuecud2c2pxJ9I6X1o/0rPZ8KzTZ8r6EEE5r+5Q/Tv+Xp/X2s7ZftLFcMybaWKZ+9bTTu79rbFnXWh0ilauN8TAMYv298xVjrJZZM189fZHabq3jNWj6fc0Yr1kv4ziK7Uo6bO16LNtYQ02uxG43NxfTHEpz2avvUx1SX1rjUj6vze2ac6h3b6e+9MhVrjlLWymtrLe257ZYK5cgyda735Ou6dlDa+jZj/lclPsEAI7HI66urhbp19fX2O/3s7Q0RzFGfOmXfumizKc//em28EY+/OEP480335ylvf766wCA+/fvz9LTeJfp+TNtzZfrLuWXbMZUpmV/lrrdueU51LtHa7TkSXvY7Vw2HnJdKa+276W1rZ3XKe/Rj3DOF8+Gpm7JqekOrX0tXaPmc/Xal9W2fekfTt97+7HG5q3p2XJuW+On2WLApFfGMczyTs/mc17bU6090jO/Ft+slKFXZ59coJsP4zgCK4+1GKM6JtqYafIeDoeuNqSzIrdpetbdOI64vr6epT19+hQA8IUvfGGR//4Y8YnPvYv8N3s/9alfw0sffgMAcO/evXn+G53/4MGDRR+ApW0ItG2tHt8z19djCBjHY5IAwDT24XBuz3uvtq/Na29co1ZXkrdnDlv6/TYo19skbi5zPJ2prX3Q6muvHwZM5+MQj/De3bSZZFq2vyYO0tL5PbZ/mdf7yQ6o2ZFbxSBqPntv27U5kcpI69Nqw1lkbdVVo7R9ev2fEIJqq/XGzmr7eKu932uL9dLSqYBu02r7Vatrbawxp3f8WrFqqW+1MV+zjy26JUc6e2ty1eI1PfvjeDwu0mpjt2btSDo9xSFH7xHCfKzGccTQOX5bsOU+vYu6trpDqbH23kWrQ9sXl87tbetMYN1Y9NpXPXO65fxfoq+tWNffZNekb2e5zratHpPpaaOFti5rsUNL+fy5lKbVNQyDEBtaxmHWnMm9dlAva/yvkvm6uFkDN75EXtcW8WmpzJo9slWMrIZ2h1Drs7aGe+M61v71yrImvSZPqStTHTVbRYvrlJT21tU+4OpqHsd54cEL2O3aNoEmf0/8t1ZPbW/0xE5bNol1/mv65bbtvVb7ObV7yiRnWVfLBrzt/vXo7pqdYu3XlvHh22TLWFyvz6+l6/7i/DwbBv0uqLWPpWdbne9b3Lto+8hSJpHGN8UaE8MwYAhejclveafeowekvkp90vRqYgv519wBAvU45G21LZVp3V9b7wr677J0f6B2Z142P90lLfd2rx205lyx9tn75f6p3dMAuu/aK+eaONxWdVv7XTsDe/vbc07V7KtxH7DbTe+nDEOE9wfs9nvsxkme+/cfYBiS3tTje1vZK2UbzfjJ4ES/t/ccT3oqxvl4TXfPrfn32dkSxT5Yx2etT3Vp3Zfq6Loemu7zkujp85oYiOV59Po5eT7j53egx+MRR7fsQyteFot37lIb0jlT0/etfk1py/uVrW3nss4kS895csmdqoWan2oZS23cyruhIbTf0Ygxmu2r3jO5d29o667WtpVW+RCWbYcQ4Yp/5yChrSGrP7Smb3ndefu98SPvlzpMSqvVYz2r1pwNU90uy1OXr/XOrXWsrT5+bS9q9a6xDXt1T+tdkxZ3EZ96nmiNYy12ZqGW1boWtdjJ0m6f64sYl+/O9sa4rP3vvdfbirkOSPfw8juo5WctTw89+qpGCGFWl1p+WMaJet/r1bC8J2Eh91mk9EvQ4iLWete879SzZnru1UuZomBHhxgQQn+MEajfv+RzYZU5hAAfpTsp3f632BsWO6dn3czrXQSsFjpZW5e9duFtIo2R1D9rjCrX4733dGu51Ha5TSzrbhxHxJjWxNl/uaQ/tTssiz9RvqMw+TtlG/Oyl8Z8LPqwtO8t5cndcHtv9b9Pcc79JgD/HLD4oRMAeBvAt8Y7+OGVRIzxhwD8O5B3mAPw++9KFkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnif44yv9fJuQln6E5d+LMW73n6W38z0AfvLmc/mjMF/jnPvoM5CJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJD3NPzxlX7+hexzzD7/MoDvu2NZJiFiDAD+OKYfXZH4XXcoDiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghzwX88ZUOnHMewCcw/9EVd/P9L8YYD89EsIm/DCC1H4tnX3vHshBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8p5n96wFeM74zQDuY/pxk/SjK4m/+UwkuiHG+K5z7v8E8M1Y/vjKb30GIt06zjl4f/79oBACYiy7fs4rEWNUy1jaL+vqpSZv3jdLmVpftP6vke14PIrpmrzANDc96d57DMPQ1Y5W15q+1/qi0dvHZ41zrnu91NakVldtXKQyzrnqfu1p33uv1nUbOkFqY6v2Y4zdazzG2L3+1+gQ7Zkmb218tTVW25O1dWFNX7tPa+NStpO+S221ZO3dXxJpDHvmSyuTvkt6OtVj3Uc1nd5av737awvW6oit9mKtrpru1vRKb180vVarq9eeWcOWcz6Oo/qslDm1W9uLUv93ux1eeOGFWVqq4yu+4ivEsXn69CnefvvtWdpnP/tZUa4WNRuglDftc6kfvToipUvzpT1r9S2dj/kctMpI8q7VJ2kMogem3+kEvJ/K7PdX2LnzGGg2dKKmh0sOh+k3N0eMCOG8Zp1zCGFEZRlfzBpfpKbTe/dvze6R7MuWfrLanem7piNqNpT1vE6ySPM+P1/L34Ktj4tWl4bUfq99nuqQ2tL8PJHhvKfy8kMYqv6/xpp1qI3XbieH047HozrutTNG0kW1uICmY19//fVF3nvHgAefG5Gvnddeew37m7Oo7Ium+9P3njls7XGprnyc/D7A+3me3W6HIZ5lq+lxjdo+0M6pNeun17+S5JrOuXk94zgiKfs1tiEARL/0F73X19xd4xwQoxPHvlfGmj/d72dPf8r6Wz57T5yldnb1rqk167NVzloHIJ+ba/3bnnlPeTU9JvWvNy6wxs/pOgNvqNnOPe3XfIAtZOqVp3YmavTGhGv19JbZMg6w5Zj0sCb2tdWYa3WtqUfTqcMwbBYb0GIoElvG/jX5a7qjd22umVNrG0n+nrPqNmN4iS3vejRqcyTVtaX92rM+ND9ty/vDNVjbn8Yt2WLnuLlkn5V1W3Xyludlrz1XQ4tfxBgxjiNinM/pOI6Ix/57WUsa0J4zax9rd1hr7oSmdRGn/0V3Spv8p3OZtfcONVm23BMlt3m+XfJMi5X31KPpyJbuLtvSYo+12NGWe1STTxsj5xyG3Q67IrZRq0uTs0eHavVs0eeWjbuVjylxF/aE1mZP27335nfRry3aXmvTKxItUqT3hmp37r1o99rPcvz1/MvzfvRyXc9iXyR2u92tnV09fkvKK8dVo3p/7r2HF+KmwzA0Y9lWrHehNVup917+Lthi3reMQ2ho939ry9eovVdzU5vahnX9P4s5l2ysST65n8657rjobb/zU2vztnRq+/53SU+MquabzO6XpfLZmkvvIZSseV+k931Ca7uX1Nm6X669P5CYnud5bs+36L3D6j03tFhDTx299NSj+T1pTefn/PF4RDxO60WKlWjxOOnOP7/zc37eftLRZT8kPdevP+R3mZ6Fz7DVe4636W8C/ff6eV0W0aQzoTfOXe7j3ljSmndZeutq6z1guT7n5XrP+i3WzFbvm/Vym7pzjY68hDV3zj3pt2WrronLaHVolLo+78sW7d81W+n13npvY4x6177Fb5+/j9lnT5Ws6fOl7wlYYuo5PefHFu8VadTeL+1pTzuDrHPWq6u2WNc1/zPdh65t87bOu9ZZ33M+StT8X82eSng/Lu6Jpvct9fexa+mX3nNOxc/peZ75GSLb/2tl6UWLkZV+s3O4iRvMy/faxrd5T2QhH3vrNpHG6NL+9WJdpy0/49L3ImpzXe37AKR/X5OYYvDr7cSetWTp45q5u107MPdbY3XdkbvhvfFG/fPDl1WeferOpND5ZPE9YjqRP/4MZCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5D0Nf3yljw9Vnv3inUmh88tK+it3KgUhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc8B/PGVPq4qzx7emRQ6n1fSX75TKQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeQ7YPWsBnjPerTz7EIAv3JUgCg+U9NqPxjzXxBhPn51z8N4v0tMzKd17v0gry1jaTvm1umptSM+0/K1nd8EwDOozTTatTJovKzHGZv+lOkMI1bzl8xBCVz2tZ9pa0tJDCPU1gIgYbeNRQxv/3nmpUet7737pJYRQXa+SbDWdUJNLqqs1P726R5sXbe3FGKvrUmu7pfukdrS6JKR+pLxa+1v2RZI3l6l3/W2Zv5S3NRfDMKj19Y5XTx2pzS3asKCtfW18xnFcpK3RK1L9tT1yie5aa4tIdUjzku+xnrrLPGv2Yq/ubJVde3ZIz1v2gYQ2vtK6G4YBx+PRlJ7Oq5deegnvvPPOosxHP/pRPHw4/dZjKvvhD38YAPCZz3xGlVfiyZMneP3112f9TO0Pw4D9fr8oM47jIj2NqfXssJyJrf0+tTV7gt1uh7hburVr9o+GtlZSeoxn2y39PY5H4GjXC5IM0roCzuMUfRT3aYzz9DX6qWbHaPoxyWU9f2v02iOp/cnGXKZf2r5FX0nrZK0OLJ+lPbrbAd7P7VvvPeSVotu7Nfl6/VOgbTPkpHVdyiatn+nzci6ccyY7qKcvrT701CXpsta4OyfbqFJdu90Ou93OvE+uDiNe/cw18rH82Mc+huu97itNMuk2j7XtNfpnNlaCnhsGjyHUZb9EjpbOL0nylXNlGSctdlWmTelxkXZJ7Gh6vmxfkqFnj+d19bKMhcixvNq+7CXpV2n+JJnm52M68wMw1vvcq3t640i1tnp9jfxMt9QDTLpd1m3ympZIc1Frp9cXKfuRytfiEtb1pu0XzefaMtab9n+Pj7MG771YXy3WVqKNgRaTrVE731t7Q9vjViyxAGntbOU/13T+Gn0rUdsXl9TRyl/Tg0v/T0fzndbQ6kc+Lj37IdGKa6zZx71xY6tMNXrj/tJeuWT9WsveRfyy1saaO8Oecamt/TXrUzs7t2CNrZSnz+2y+X1CWXU5jj0xDkv81HIftOauBZDHPISg2+RDhNQ1re2dEENrlWk9uySvhkUvncc86Zfpz/RVfn/A0kaPz5u3UZPTwho/Z81dhWb39tQP4BSHs9KKUeX0xvqdc0191bobtLZdtpv+zsuV+nfYCe8dFDqjZcto8QNpHraIza4td2ksybKXSpnS3Evj0NojUmx9jWwa+bz3+v81eba8y9fsNqt+adl2/fc0EXkMM4SADU39qk2wlGWbM22LuJrF37Hu/bV9q+2X0mbb8n2j26L17lc5duM4YrywW3mblrhwnk97LvWj9123GmtiMBbWxA+s7a99l0A6N7T+9/rvW9hNW8YfepHuLJ3zyG3u2pxaY2TSmbJGn1jP91JfWeI1kh0SwvI8lWzucRxnsuV3gJp+qNm52plc5o8xIgxnn9JhOgvjjezA9P7J8VjfZ7V3MK13EjmaDVumJ39Y0svuFkI++fhZ742AOI2hcNerUd6LXxJHLuMfmk0m2dNrYtgl4xgQQkR0Yb4Ob+bObRBbqvUrke8p72X9bdXF6V0EABiGZblzPGput2qUe0ez0SQdU65zbb57fBvJjusp38sltsPWvuyy7/n3s15PSHFCyQet+RkpXX8fxi5/iTb/WvqaNlI9PdO4lf/fU0fN92mV1WTJbbhUVU+8uMYaf1/WRXmdtrq2iD1emreXNf6rxT5r1dF7N7wd8/WZ7+nanNe4NBa8JRbf7Jx3Xm7rMZ/ry7z/sau9S8fuNuNPidy29d7P3sebbIq5DdTbhiUOKuUFdH93ja1q9yHn94wttDhYqiN/1ltfS8bURqtvPbGmfO4tY1b6H73nbu+4WONdqc7dsByfwQ8I2drqsZt7Yk/yfcU8xt2zznpi15dSs2sWjzrswbWxOYtsvWjr1craOLdlXVntQeu/U9buLPPnpf+3xp+Unvfathb/qVbX1v7qdAamum3lND2wxl+Ylwdwemd6aQuSZ8N7/8brvcWvVp595M6k0HlDSX90p1IQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIcwB9f6eNnKs++9s6k0HlLSf/CnUpBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshzAH98pYMY4y8CeCd9LR7/3jsWR+KbMZfL3Xz/6WcjDiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh7112z1qA55AfBvAtOP/IScT0Iyff4px7Lcb4q89CKOfcVwH4jZk8+Y+w/NizkOm2iTEihHBxHc45ADj9nT/bilobZdraui4hhLBJf1sylc/T9xBC91x672f1DcOg5k3Pevo4jmO1zBbjVavDe3/62zl3+gMA3nnAO3g/LPpd1llrIz0r89TmojXHUnutsdLWhdSW1n6rjbJPMUa1/1r7lj2n6RFJvt493JK3p05Nf9bGRWtDaz8vL8mVP9c+S+1I7a/dpz3zYh0PC2vWsfastl+1Z0m/SHJp+06bw8PhoLYvtbPm3O4tI52t+Xet/5faFNr67y1rZc2arJXp1XG5vpCeWWRL+bSxr41jr46Wnqe1oJ2dmp6U0GyN1EZp69y/fx/X19cAzjYHALz44ot4+vQpAOCdd945pe92O7z22msAgJ//+Z8/lW3x4MEDAMCrr746k+1XfuVX8OVf/uUA5mPz8OFDfMmXfMmpzZxUXrK5tH3Vm67Vn9ou7b9Er33Su+Zs54nNBmut655y5T7M0zQ/QyqT2s7n5VLfqGw/fbb2T5MzRz/P8s91/VazeyRd4L2f7VkrqS6LrRRCmPkCy3rktab1s6YvNblqdkePbqxRtpPXm+QZ3bho73g8Ih7t7VnPxfxMuORcGobhlG8cR7FfwNQPC9I6CSHgeDw2YwNLfzvln2Qbs+WV+l+uBSm9/G61gaT95pxT11UIAWMMN3vuXObp02vsx50ol/de1A2a/DV/oNemqu2Nmp1dwzmHeDr7Ut6o9tMSD2jpvZY/aPWfpTw1GeT2YlXH1dq02vb5fpX6Up6PGADv03OHGIFh8PDjfD56dbKme9fEZ2p2VknLz+zRob1rJ0fTKdIe18pL+7olv5ZXW9d5rDA/L2rzZNGja9D0Sj5GNZ1g2SNanpYtlPtAl2KxW3Msba6xc2t2S04pV89+LOuulS3t01Z6L8kv2WrN3BZaez1nUiLva7nGLbGPNfHZtfSeFzW02J1177XWq1RX6+zriW9fgrW89Uy/rfI5Fpnzei2+a7l2amvp0jFPSGdYfxy/3H/Lc1bbl2v8vZ68vTGq2nfLfp/2WUCedRyPiMdzDE2zD2q21RZsVU9tTPL5dy79ma8Jq60p0brbauUt03tsVSlPHm+zrtnSTs9tXU0PX6qLpX5upUM0tHbyfWCxA/Jxac2X2bc19F2z6Wrtp7xy/HCdfXLpuaXFpNeUrelHa99ac9Ojz/Nxta5n7Szu3Rdb+I+tZ9Lctfz8Ne21y92uLV3GD3rvLbaSIf+7heWupGfv9pxtrbpbust7v+l93G37Wj1Yfe41fuuZuQ4LIcCFedta3Ckv10N5Xkr3ZFtwaX21eJt0RvTcTVqQ7OwWqe7lXew57h/j/I6qNU6XrsO1jOOIGJd+SQi2u6IenWWJk0mU7ef1pHby+zwLNRnW2Py5nVCzoSx9z88KyTYchwDvh5vnYdor3sPHqc3dbocQlzHdmg3dkgewx8RrNuA5LULz87ZAimnX4uPlHpDqslC7l67VX4uv5bq7FauX7ht7xzb6mzKF/t1ijtQ58AEhWOyjswzD0H7PutVuDS1uCkxrpvYuzjm9/H4ex9YdWI+9+F6yqSQ0v156bolraGM23ffm47LcE5L/1zvuVp9VK299nvtvtft1a93LOmdPTnZLns/K1mvQcvbWfPyaL3xb4aw1sTdpXmM8644UF+1ZN5fI1uI2Y4HWuO6aWE6vHOfxdyebTtPZef4yPX0GXFPeVlfK8mvmtEdH9Ja1zp80Vtq/FauNWe4LlGf82bf0xbw5035qxUVySvnyvlwy3hKaLKWtW64T7z3C4ZxnrZ9isXs0yn62bOt870nlKy2d8rdsjySH5Xy1YrsjP59DtfigdPdTo6Ufe+9sa75GLlPrjM7nsddH8V7wI5V3rHt0Vxm3aeU990HWYbX2U56a7WuVe1tKefLP7bg1cHk8pX4m1vdl+zxsr9G8fG/scE3MtqeN3nszbVy3tOfLes8xncvrltpYW0diimnq/xbHare0qJ018/IOabzS2XzJ+39kGzgD/fzN7HO+wl8G8B/esSw531l59kN3JgUhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYThDHbpAAAgAElEQVQQQgghhBBCCCGEEEIIIc8J/PGVfv4cgPTT4zH72wH4g86533nXAjnnvgrAv1XIk3gI4G/dtUyEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLzX4Y+vdBJj/CUAfw3Tj60g+zsC2AP4n51zv+Gu5HHOvQTgz9y0ncvjbmT6CzHGR3clDyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghzwv88ZV1fFfxPf8BljcA/C3n3CduWwjn3MsA/hcA33jTdvrBlUQE8J/dthyEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDyP7J61AM8jMcYfdc799wC+HecfPUk/fBIBfBzA/+Gc+3cBfG+MMWwtg3Pu9wL4EwA+Kj2+keN/iDF+auu230s459qZivypTFk2xogY4yzvmjbKuvI6pe/WZ2vz5/KXfSzrCmG5VL2Xf6Np7bhodQ3D0CVXCEGVTcq/FuecKLfWdqsuDX2cj3AOmBV1p/9rtlHOf69c5Vj2rrn8uzYvIQRRhhgjhmFQ5ZP2q9aONo/ANPbWdZ7XIdVX22M1esokPVbby5Y0aVx7x7olZ0Kb45SvpXvLcd9yj6+Zs1pfLPnK9nvSy2e1Nna7XTVfjNGkI/Ixr41/uY+kNjVdr7UnPauVs5D3pZc1638LtD3caqdXt2jk85HPc+9Y5msub8+yLrT6amk1HZ4/0/qe91Wy51rnTd7fYRgW47Xf70/lrq+vT89eeeUVAMCDBw/wa7/2a6fnH/3oZPZ/2Zd9GX71V38Vjx49OpV58MDhwx++AuAwDJPc3/A7PoInT6f6r66u8Oqrr57qTTKl7yktZ7/fz/RIPi7e+6513mM3jeN46teinnG8GUc3y388rrfbc6z6fSmYg3PzPno/nPqt2a3aGrLKEH3M2o2nfDX9sPUYpXnSzhmJls5I+yjXFxa5pzx5vstsxXz/5s9yndWrh602TJ5Pb2O+7iX/M/VL803bbSzL5Ou6R3+37Nct7buy7vR3r32lnRvjSRedyx6Px0UZAKf08lmM8TSW03oPpzpTW+M4YhzPZZJOjjGedKVUd844jjgeRhwOx1n6kydPgOGs+1PbuW/knJvJlO9JrS8W3SOtKc3PGvfjzTo7p+33ewyotye1K9XfE/fR1kivD1DbB2UbaQ4kXeJu0jXdpZ3VJ9l9CmfOn2n+mKTvNf2i+Xhav8+fpz/z5/r+rdVr8XM0vVOWne1/HxBCOR9x8evmLb0rySbtsdvwP3p8hDX+l6bvL4mzau205NF0i7aea+WlNvP9ZqGU4RJ/ztL/Mr33rLXGytb4UyWtfVrzP/Ky3nvVf23JnOakV2dY8+Sy1PzR1npK8dJc5rJsj22utQG0+9zS9T1+YGlrWVgTny/LlfaXJtvauIxVxp67ji1jTpazMFGz2Wtr5bZ800vZov3cN+qhduZcst5627LU3dvH2v1JTX7LXvFhXfy91lauR616sqdNadwsPnrZVj5HpR8+7gK8n6ft91cnn6lWr5a2NqYsxU8vpWcdafm0Na7ZY2vWcakje31MS3qqt9entY7ZWnut9dziG0pxhh4026plP2o6Ukofx1Fd49pdev48jw8BU7z/+nCOhyTdZLVfa3rTGguRsI59r89qrbsWZ7jUp7TYyJrPpq3PtedzTaa7QPNNEmv0t1U/1pjaXc7JWv95KjtPm+Js699/svjp1thfre3SBrittWK5t8p1Wbn+k+9W6l5pH1vmsVZX/qxcFz3xkxT/vvQ+4rbuM+bI41W2ncfXt+xXvj60uEwZd+o9n2rpGj3x9Zbd3bKBLbEoDUvZUu85d973W8b61sxLvY/tuE3pt1jOmzwOWPbt0rjm2ndfJX/A6sdZ5EqUe6+8g5RksZwr8/Pk9DBLu4lvDwP8aI9199ib1rOzZsdP3y87C1vnUM87094v65LeobH4yz260+oz9fSlbKM3j3MOwwB47xAKm12zY3psTUlu5xwwOHjfuuN0yHWstGda7ybW+l0+K+dS04PaXpHWeVpX9TIyl8RoWmvCojsvPd+19b4mTqT5ks4t32f2fjm35dzl37V7MGu8MZfN6mfX/FOp/CWxz1PZk95LdbjZWPXOdyuOZY2Z5WPWinf2yPisfPUWch8vq9Nyf1Brv7fuHiw6zmpz6H3aXjYpXzqDpDjFMhYWF/t8aSud6x+GAUPQ393rtQtq5UpymWp19rw3K5GGI8b5u3K9a1L7t2hT3cv3skqsd741m1+6o57av/wupYUUS5DGsJRRtceMSD6sNS6z5bg4V3v/ru3ntepOrH1/AZj7fjVdUba9xt6u5bG8r5JjeX+4JqNFp9f+HVp6vmgT8/p6bKy5/XS2fxZtVH2+ed2W91LWoK0L652QlKfmg5frvfXOsCRjPue1mIdW19o7jWWeuc8oIc2x1f6Qnq/xZyx1Jx0n1anZyTUfxBJ/0Mov6vLpXbxl+2vZch855xCFfwM0DL5qY/XY0akdW/p87EMITR1Ibp/1pzv5NwF89uZzeaJGAPcB/EkAP+Wc+wPOuVcvbdA5d8859+3Ouf8NwF8E8DGcNX6p+b8I4A9f2iYhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIe9Xlv8pc2IixvgF59y/BOBvYBrH9AMo6UdQ0vffAOC/AfC9zrlPAvi7AD4H4POV6t90zn0dgA8BeAPA1wP4BgDfCOCVmzzzn5E9k9L/YIzxMxd2kxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQ9y388ZULiDH+kHPuOwH86ZSE5Q+w4Ob7gOkHVH5HUY0T/v5Pb/6U5D+yUv7wSmo7AvjPY4x/vrc/hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8kOCPr1xIjPHPOOcigO8D4DH/ARZg+SMsblHJEi1PVPLk6d8fY/wjhjbeF8QYm3mcmw9nKhNCMNdRa7O3fF6ulC3hnBPrjTGK6Vo9FhlyvPcAzmNTfq6Rylqp5S/7I8lVKzMMQ3NeanVp41J+zuso+5Oe1fppGWexdDz9XxflutLGKB9L59zpezkv6btWZ20cNcoy+bjU5rS1B8r9VsppWed5mXwsQwiLZxa5pGdaH6VxXbvvW1j7ouVr6ShpLlp98d7P8qS11KN/U941OrRHV1vWorXufI9p68U6BmvOy7xsrgfWrL3y7LXQe67k41XqZ6ldaz80vb8F2rpcY1tI/ZH0dKud2rhoOr61pzU5WrZOrU8aWtu1smvG3zmn2ifaft3v96fPMUYcj0cAwNXV1elZCAGHwwHAZM/cu3cPAHA4HE7px+MRr7766qnd4/GI3W7Ea689mrX50Y+9gsNhADBfx/fu3YP3HldXVwt5d7sdhmE4pedzkafn1PaqtMZr6641X5IOKtMsduPWxBiEdRQQwlmuS+Qpx/i0pzzg/fk3PGNs6+kQgnlfaHtU+lx+r60TS/ulXmnty6T7z/nO546Psh1RlrfaOtoel3Rdmo+Upo2DldImSvVo+zC13bLVpDI50l4u+2LVnTWbTMq/FeXe0HwVy5mZ/M08LenrPL30E7S2Y4zY7Ubsdg8X7bjjOc/19fWpL7nMeVr5ebfbYRfdja6Y+8yHTC+lMiGEk77S9Em+DlOecRzFMi1bpCV/cAHT13wP1/WcxefN27KuM4tdUq6LvP/a+af52/M88zTvfbetfAmlb5KnB2Ed9dhW8rjMP2vrw+JLSmUSVp2sx04AwC3WpBY7kL63ZKyhnVtr/VsrvT6vZf57/GQtT28cVdv/llhHz3rR+niXtqrUfqJlNyby/ZL73N77at0tHSc9k/apptvLcbTox3JdlHX0nFlSW1vukVb7vW0B69ee5Ge12k/2QY7mJ4jzfmNzrImR5JTlc7tFkiUnt4vK+iQdr5W3YI2Dt6jtydJv0c53rbxWf638JeeO9azvxXpnUyPGKK7xNbFa63kjnfXWtJyWv50/z/tYm4uW7tX8sTKOmz8rmWRdpkG4Ltfsckmu8rO2x1vyWeQv27p0v5z7mepun7dr9lRtjeTjdRv7tRajAM5+97npOP3vJNdc5lyv1NaFZS+XdfXsw7ytGmVcQYvxaGt+7Xxbffmyvd42e2JE0jps7beWXFo/pfWy2y1fq0rlxnGs6ovdEGZ2c4rllWk1ypiudAbldZd9aZ0pLZ1Zrr3yc8vP7Tl7W+uvFvex+Ixr16vWjjaWlrpvy9bR2kqk9dPj+7TqtZy1rfJT3svnJE+TYmr58575amGJSdb20W20p7Wd0HwQSbZ0R2ihpnN70efWNn5SPMaF+vtd3tf3Zs13tOSt5V+LNJeajrTORe87VFKZMp6U2tds7kv9f4t9t0VcRPpcYo13amhn+qVjlJPL3+ObDMMA5+b93u12CDtdT0jjrs3FFvvDuhZzWror6YbzXExjUb6jWpM/t++19V/G3so9XdqUKU2bM+89ok91nX2kss3Wew013VeeIRYbo7zz7vWTtThwbe065+B2y3272+0wRPn9gR6fyLrPy/h6bc2sebdAOrN77gd6fboUr0l/pvT0xz6GPXt/9AEhCDHfMffR5vWV61zqi5TWo3ct74tra1yyXVvta3uvPEOs1HwwLX6Z02tr1Ppm9S961rBUdq4T8/S++wBNB0g6UYvrlGk9WNZqSz9q7SedNY+/9ctpjTdZzpQ1cS/rfp6d6UP57wLscecSyx6qyWKlFkdtybU1W/qAQPtuqrf9mq/ZY8uXuiDZKPm5djqbh9IWU2tdyCSR9qe7Od8ku2G3283WrXUt9vqytX9PJb3rCMxtlsW+GnDjc5x1xzAMGMIwz5eVv8Rnck56H7P+3kGZvxU3Sc+TfPk6WXt2t6jFvkY3ArN/7nomn08tDn0J4zh27XWJmp+QkPxCaZ1sMfaX6NOy7FnO+b5Y00bLLurVrT3cZrxncd4p/65Ssxla/c7vfkKIi/nQ6knzNNkMSmcg3e9O5O/tln3QvmvPan3um/cIKP903TLHkt10iR+6xqbSmctvGRfn3Oq4VW/coIdaXMjSrzVjaX2/SXqHvmab35Z92l47dhnLfGv8E12WfB/P419bxoVJH3f3pv77mBjjnwXwewB8AdNKz0/C/IY4Fn/UKpU/ZX0o0v8EgO+4oCuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxg4I+vbESM8W8A+AYAfxvLH1sBzj+akv/RkPJqP+LiADwC8B0xxj8c+VNGhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSY4I+vbEiM8edjjP8sgH8NwKch/1jK2h9HKcunH2P5qwC+Nsb4fWvlJoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkgwh/fOUWiDH+AIDfCODfAPApnH8oRfsxFssfZHUEAH8FwD8dY/zWGOM/vu0+EUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyfmP3rAV4vxJjvAbwPQC+xzn3DQC+DcC3APg6nH+EpYdrAD8M4K8C+PMxxk9vJevzinMO3nvEGE/fNVKesnyrnFQ+5ZfaldrR6pLabcninDPJW8vj/fk3lzR5h2FQn9X62JItxngqH0JQy8UYF+NsqT/lz+sG5n2W0sr8zrlTmvSs/OycwziOYp6y/Ca40/+JWNYhcPl6a7VjmS+pTKo3rRdpDUhzWms/1SvtvxBC95jlY5ProbKe/Lt1T+VrP2+vlF3KZ+1HrX2L/OXaSPNR60uZpqH1RRvj1rNWW6U8Wl9y3VWbZy091wXa+s3lyedca8O6x6xzbK1Ty2MZh1L3Wvdy66yPMc70cE6ph6X1UtN3+Zxbz0DLmi/n24J1vmr5tP7X8mvrr6X7anvFej7W9ouGRfdYzurSpujdL5LNkNeT+jaO42n9eu9x7949AMDhcMDxeAQw2WYJ7z0Oh0NTluvrA54+PZzK73aT6/f06dNT/QCw3+9P9R+Px1NdeZlhGE5jkdZukr9mK+Uy5/XW8uaUY57Xc1PDJNtNnZIdqNWVp9X2qVSm18bx3l+85nPSegl+RAjLfZZkbJ0dtX4Mw6A+z9drrV+WvmiUvoJVD59FPttpkq/RonamWey7GpqtU7PnTnpjPM956lYIAeM4irZhadfke6TUkdp+0NZ8rx9clqvp5RPDch0Nw4AhDFX9XEPz7aV51cZLSkufx3FUy5S2Sm5fXl0FXF9fz+Q6HA8A9gDma1myW9pxEVk3S6T08rnmi9XsKItNsJB0YYfMn4cQ4ZT+WnXcGiz2eOkn5mdnrZ78mbQ3Q4gz/Sb5tjU9qZ1n5996BmKc1qIL7fND68slvsV8P50+IYTJzs/722trW2j5MvO60lhPz4/HEfEYzfqt13/X/BarP6PZ89r8bbmPrDGlXv9jbfv52JW+fdqvuY6zxsXW2BqaTWyxD/Lzo5RZs81q/Vjjcw2Z/b1mnss8PWOZ58nHsSZPzRct+98Ty7XEekq5evxIzdbQ2sjrWGOnSjIk1sS4LTokt5t0ne6Rn1k9aDpFajONrebTJnlvw95YY09b7PTas1o/tHND04tWPdDKW6u3Vk/NN5X6Uu6jsq48/ZK9VFKTsWUvan5o2w+A6XmPn7uVjuipHzjbr7l4IQQcj6GIISS7Vvb5yvHW9tSa+E9N/kv2jt2fOvexPHtafWnFcG7lrtNIbV7OvrKm68/l8jrKeq30+Lat5xYdU85d/bxcfz5Z410W38aqTyy6r9Z+bV1bdZ5kn9Vkqn3X/Lw0tuUYT3cCUdyvGpKc5d8xxplNk8cGNTt5jT9To/RXAMxilzktX3DNfrWsS6tNlKdL9V26xyW5Nbn64hY2fbE2biLJot0TJftZ2lvWuFFZthUXTvnHUyw9IsVGQwhIxfO6W+ecZcyks3TL81NaAlZ9raH5Odr937NEikmf9qLP52gaq577KefcKb4w6c7l/tntdgi7cywkJ8aottc7hrl+KdtJNq7Uxto91itXWW+rjZ7+S35dvhYtc2rRuz1xMGlcyzv7S/bJ6MPinnccR2DU+2EZBylmaMnbE7tKey3Z4ZN+lctp86rdQUlY5rY2F2vnqYy7lufhOI4YO6/DW3ZILf6R65v8TMzPfWm/5mttbsfIsqR3REpK2crYbJmvZd9In6XvEiEEDMJ/d7YWjz7rVtlmL8trTPUuZdZsRul7Hl+36iWtb5rMa84gbexr+iTtjRgDznGJ8+dSXuk7UI/1L/o4jPDezewj7/1Jlw0hxZRTezfvGBTvwFj812GYvxs82Q0eISzXf6+P2mrfEs/R2tnajrvEt6nlU+fY0L5lXMsxKb/XfPgeGSw+d0vP5OdwT6y2hnUuameP9x5RsI/TnmvVm++d3tiPdV2siS+ZxsbL+stiK5WyrJnHNfb8mjP1vcaaGKWWXr279bZ3K2syTvaYZM/P8+v/Hkm2IXpIe7H1jnzrXJDi7lp7Odb9l8vR926CPR6ct99vBwVRp9TLrJszTTbNj1sTx5PKA3aZc188j5fU6rbQim8m1tgxrX8rCAAjlv/Wz3sPjO3xr1HaDi37QCq//J728LKNrcYnUatPs6vK+/SUt+bnWc516zm20PfOXrZ8Vtsju93upq99Nsz0ff6svKtZ+pVRta9yHXepjtJ06dIGLj7H5Tu8tXZqMrX0kjX2WDs/LXLlWcp7B22MtGeWs7y2xq2xhBIpLrP1OWbZh627svNavxubWCIff3keZBlbe0/aU2vvbS6NjZLbgz++cgfEGH8EwI8A+GPOuZcAfD2A3wLgYwB+PYBXADzANB/XAB4D+AKAXwDwjwH8GIAfjzEeFpUTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJWwR9fuWNijO8C+OGbP4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkGeEf9YCEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyLNg96wFIOQSnHPwXv4NoRjj6W/nnPpcq9fSdo0QwiJfKUtNhp62ynpq9Vqe1dqrjWXqc/nZSj6X4zgu0pxzM/klWZxzGIZhlu8SWfL2tbFrzU9eR5LFe79KrrJdbQzWIvUxT7OMf55XG7PWsxb52OVtljLleqA2f6lcS1+Uf5ft5mtUmh/rnq/l12SQ5Jf0Td7XMo9FljJ/bV9Ka6ele7W5rSGNfwihuWel8crbl8rn86rtQal8a29Z8rfKW57VxmTNeVnS0mve+1Mbkm7sIa8r6X5AllezFXJq8yGd6RplXyz7o4XWbmu/SHOaj5kkS64v0+de3V+mJzkt85yfj+W8lfq6haSfJF3kvRfltupwbfxKfZJsm/L7OI6zMofDAQBwfX19+pynP378GI8fP561u9sd8fjx1HYat3ffPWIc9wCAq6sr7Ha7LP8O+/35WW73pL2U7zEAp/RS90nfreRjIlGOuR9HhBABnM+kcRwxjme9kvczr0dbO702Y0//0rhadVy5TvL0vP35GuvX9xYsMrfyrLV1vfeLM0I660v9NJ7WB2Zp8WjTF9LnWr7yu+Ws18ak1ENl/XPbQ5ZNsiPSepL6Z7FhJHl711ZuQ5Z6JVH3ueb9CiHABafKoWGd1/LslOyL5G9qZ0oat1K/1GIXV/tw0l+p3OAH5CpBWg+pzTyt9KGvhhG73TDTg/v9HlHwefPyPefgJbar5lsBQAj1ujUfp1VvmWetXabZz0D7jNPalc5Y75e6J+lDi8+r1T+Vk/NY40ya/lzjZ3qf9H3qk1usaQuS/C0bMh+/mm3jvYNz+Z4BdrsBQxxMY5TLINm6pfxpjUnzbFmLUl+kdV8bl55zsYY0J6012zqrWv5rax1rtq5UR80GsMhdxovyumvx1FJHS896ba6az5WfV7XxqtkT2hy04kEpj7RftfG27O2SMia7Zvxq+02Su9y70j7cIk5c+/5eQVpzgKwrz7G9vnhZTk/sTkpLc5fO9XJ+pb2wZuwlHWGR2aJHe8/0Ur9eupbKfdATY5LklfZVGW/RdJTFFxrH8c73z5r9a8nTu1a2aNOC1baTzsTSJx6GAbvd0l4chgFDeO/892e0uajFkQF9j8x8aC+voblfFRbPS6wx7fL7JTq2rNOqB3Ofe4qrhlO8cBwjwhgQsrPjcLgGbmKkef01+0I6t1to/p02li1bW2tDqq+cc0ubmr60+jWS77oF2n5ZM3ZlXWUdrTXa2qPSM8lPH4ewuCsIMSCvvowtAfoYa35Bnrcso8lf23eWuFDqo9SOti60uWudD9azTOqT1mayOaU8Wr+kNlsyWZ5rY9iqax6zOPuIlj73yCM9s+xRKe4t+ZznvZP2D859CXIML7fTSw6HA8bjiMPhGs6d7//ffvttHK52J5nz+q6urmbypTy73a4Zc8nb0KitcdvdlN7+WrR2L/VPE7U+rzkDbc/na/UcV53syP1+j0H47xTqcYXl89r5XubVYjetMybd/5Xnkgv1uHMrZqHRo6/WzmtrDqV1l8evtHOw1As976vk5bWYa0v+3tj12vdipPcttLZb7yOmPqZ4aJ6mUa5FyQaQSHLkbWn1rrHBc7S7La29Ne2skWsNNduqJ64ytwuBpAvz+oD53bxl/KT90rsXrHjvET0W92TDMMAFu60J2O6HLCzzLmNeNVo2npRW22/aWi51Qe2uIbWRk98VVP2/4ea89cNsTbngTmvLeu7L56GOc+ezOq9jGVOWY5OWtkKIC39uHAMM18Az8rHUz5q+Oku0tWXxha31Wp7Z7TbZzr/Uzyrb0s7zaV2U+euxE20vluOd2sn9oZZ+0nzOreItWrt5W2Vasq1GX76HfX5vR5JZiwus0dG18e6JOdwm5Tj2vGf8PNGzT7fiUn1Quw+X/n3BGh1pYR4rXD7T22zLk79DJ72rJtHaO1KsUatT+rdepXx3Ra7HrH7ryTcKyz6U76+mui+VUYuLaaRneSxgy3hLXqbssxZ3LmXrbaeVbrEv1sQ4ol+e48lWlcZUe3dHsrGlNrV5asWcs5wz/036t40SPbZYXp/Vv2zRsvVyyvdptTM15U3ylvo9RP3fjEn1as90dH9IXr/6ml766ec2JL+/lLEmb+981c/2og8zv67PJtD6k4+lZmf3+Nm9tkp59mmxKyuSPd3Ckld7h69W55r7rFp9Wl0WWy24cFrrMebrf15HLWZTa0s6H7QyUhuTDbUcs+QbJrT3LWp2Uk+M8px2N/Yp6eO98+YRIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE3CH88RVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgHEv74CiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5APJ7lkL8EHCOfeVAL4GwFcB+AiANwG8DOAlAA8wzccA4LtijH9FKP+RGOMv3Z3E721ijBjH0Zy3N59zrprXOafmyeuJMZ7ylfmdc6e8pYyt9vM8ZV7v57+rVMpTfs7luIRcjmEYmnlqlH0A5mNZpueEELrrL+vN60z1WWUvkeQp08o+pO/H4xEhBIQQTmkhBATnEMKIcZyvw9q6tLQnIdWXp7XWl9ZOqqO171pr1rJ2Y4zimkq01kyPrFLe9L1Hx0jtS+VKHSP1RWrbIovUbrnGtPEv92s+LrXyPeNSW2O5nDm6ZvYAACAASURBVK010lpLpbx5vRZ9o9VVtnmpHq6tE4my7bwv2n5prcXdbmlaWtaXNA7aGbVmzCx6uMS6bkpqOtOqr8rvWp0t/VzWZxk7qb1c/nx+pDnq3RPAcr1J6y+EMEvPZczTS7lKW0mynbQzonWOSWnlXsrHS1sH3vtZmZTPe3/aU9fX17P89+7dO9nBx+MR3ns4J+t/ABjHEU+fPgWAU535GKS03W4njm15vkztyXs4H+OUno+vdk6V9QDA4XCYZzwcb2yicx1Pnz7BdTjrnv1+v2hT00PlvA/D0OxLyTiOcM4L++Zcd9mOtk+0/avZPfPzfblPLefwXWDVfbn9W7NvNR8oDhHe5+tyGnuLXyL5b706W8qf5lqakxo1/1Hy/Wp2riab1qbUfi5/0j3lvpb6WK43TY/k8s30yzDfS85NemqI8znN108uS5nHQqnv8r2X0st5Tf5a2X6enpcrZQwh4HgVcDgcZmP2+MljHA7DSa6UPgzD4ozL9fXC1z2MN22n/LK/W/a5PHvz/Jo/raVr/kca1/zZ8Xg8f8aIEEZMj6c8jx8/xu44H5e8fc1GyPtXs09bNl7Nn9HKr2kPOK+hKc+8zVY7ms9/nt8o1KvrK4uvrtnvNeSxSesmwrl6v1rp5XPrXGj58mZSlnIdSvJoZ3KeX2vfEueptS3pNInW2NbWXM3/19Ks/ow+F3pcS/pcG0OtrMVHtlLOkdZObreUYyrZ1ul76+wr13h+buSkM6ZWl/RdozXHNftJa0+yLXrt29p8turSdLB1TKz5LHW0zh2LXttSFgu1mMFiXgR7cYt+rInnbNVerT7JnpLGq0emWownl612jvfYBqX8wHyf1mJWWlptz+S2phZz6Z3D2rlzV760pqNr+lk6V9bIW8aoWqyxLaY4St2GkOoaxxEhpDrP8a5xdFmcyJ38nZp9VZNZ06FavMiCRe9IOl3ai6WfOcYRx+P8rvxwuMZ4rcdRpb1TW29WW7nWP0td2j7W0s7yu/+fvTeLkS1J7/v+ESczq+oufbvv9DIbOdRIM5yRhoRoUpYl+cGLZHkhLEo2KPhBtuRFhi0TEGDABmSYNkDIBEybHot684NgwtaDBWszIUiwLAkiLMoWSZsjkRRJS9xmeqa7p7vvXlWZ50T4ISsy48SJL+KLk1l1+07/fxeFyowTyxfbF198cSouui789ugWHRDpotXqBHatt6dzcrX6VaTwUh/X0ntfPuecI6M030s+Hs3eUCODpFclnVDa55TyiMNa9++xbZzzBZR8KzGrpZvY+avlCi3/T1YqVy68lEaKm4sTry01H0uIJ+V5TPuqdexp54Rm7qbfW236uF019Q/xW/Ydxuz9tiWbS7Pu5vI+JHyOfkwJ4y8dl/G5dBx+cnKC1WbAycnJVbpt+CuvvILLxby5p30uzYk556cln8xNM2dPNqfOc8j5vva++LH9uNls4DblMWD7YSL7MAyI3NYjSr5a7b5pQpf6G83V2YjNvo9Ry+9Qu3VOvjW/NzCWW+t7k+ZYsJXS9wbSNLVxGdJr/BeS7zBXv1w8b+O9xf5cU9sWtbrEcsydj2ldNefvaXrnXPb9Xo1tUWpLrZ2tqXur7yYQ91drG0vnadLcye31W/ZOgF5/a/ONw2I7ZI69IZ1H7n/G5Q/DAAz186K0/MGO8wrytshs7fbsak+bTVXzdeXW3NoedfZ6k8kj/JbesYjZ+1+w+w3sfTLOORjl3NC0Tz7dPv24Djfjx9NS0xGDcZN5vm0/Xf7GmKyeiJ/nPufCan3Q4gPQUrKb0rIlPVfyZcTxAta6pMzpuXTIIydjyY9Zk7eWJka7h5wTRzNWvPfwGb1Xao/Wfb/W957qibn+hbbzvLqvQbsHPib5OTPtFwlprcz5v3LxUllay8k9n4M2fc4W3a9bW8L8N2b6ztX2eWad6jB6TxHYrp+d6/J7hUz88vo1fhdqOxfr/VNqa8340L5fIqUpIe0nyvaRnF+rTzzVy2MfQtg/YheW1iv93ro/0pwVpeEhTWybpf2pWZPS8FjHxXU2bvqeeHiWhknU2mKOHq/Zwxr7ZPx+4n5Op3Mpnnc5GXN9EX/X1l8iZ8tqdO2hvt7a81o5pT6R9r8tbTnHh5SWVyNfh+nZVLzHSfPOvbvsnIP18t/3tsg7x1aM45XWZmnsGxOHeYTxKc0RTdkp6Xtvx7Sn8jpz748LYa32bKtOT+Ncp88/t8YeS0fE+Uq+onhPO857X4bWhq6Nn5BXbfwU11qb9j/QdRadk3WUhlKa3LqV2qf7sJv/ux8yhpevXCPGmE8B+B4A/zKA3wbgXi0JtqvRR4TnXzHG/BqAvwjgf/De/+yxZCWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5MPGYf9lI8lijPk9xpi/AuAfAfhhAL8bwMvYXq4i/Wj5JgDfB+BLxpi/ZIz5tmPKTgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIhwVevnJEjDHfaoz5awD+KoDfi237hstVfOWnqairn+8G8FPGmC8aY86OUglCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQj4kLJ63AN8oGGP+MIA/DeAM24tRgOmlKgYyLRewhLgG2z78PgD/ojHmD3jvf64hH0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5EPD+myDy5fW2NzqsTnd/riFg7cernMADIwzMAPQbTosLjssLjqcPF1h9WSJ1bMlTPHqAELIiwYvXzkCxpgfAPAnkL90Jac1feGZqshMPp8F8BPGmN/nvf9bM/N94TBm34Te+9H3GGvtJI730/tucmFSeWk+zjkxn1q+c0jrHpcRy5LGzaGVL24/Y8wunTFm91PLMw6XPqfyt2CtRdd1o7Bcn5faxDnXLEMYY8653ec4v5R0vKbyhO+LxQLWWli7D7PWAtbC2m5SVy1x/+XKDzJKaMZMWoZmXuRkkuZsbVy3xM09z41pqZ2CbN57sb+lsLScHM65Wbqr1MfpOE3jSGlTfVNCI1fpmWaMlMZy3MY50jEWpynVUxteKz99ph3TmvbT6ONUj0u6syRzXEYaHrdlTcfk5nfLHM9xyFoSZEiJ500pf6nO2n7RzsUctXrnxn1KWmY8TnKf4/p2XaeSzVo70mul+RjylYh1ZJxH2haxjo77Mm2LYRjEsmJya78xZhSeWx+GYYD3Hn3f776HMjebDS4uLgAAl5eX2Gw2AICLiws8fvwYAPD06VOs12tcXl7uvhtzid/+na8D2LflT/3U29hstu1269Yt3L59GwBwcnKCs7Oz3ffbt29juVwCAE5PT7FarQAAy+VyF951e5sj9H1sl+TsQ8nuzo29uH/jNIvFYpTvsuvRdRbAvv9WqxOY1WKUNi0zJe6vOK6279N8vHdReSGvHujz9Z6j3ySdNA43V3bjdI1/nmjqe6jOT5G6X9qzpTa8ZJun1PpVo3Nz8khr6vaznE4rVz7f6ed0vgP7+arV0ZoypXVn4zfw3o3iOOdgnFwna624Fmpt2Hgs5HSatXZkK8Z2VLo3yK0DqZ3pvcdyMWCxuBiFn6xOYEx+XMb2QtrH8VrXalPFdU91c7xHlcZYOl5ybR7WwSCr9z6rf733GOCu1vm9vuu6DtZN192cPLU6lsK0zNnn5mz23L7GGAM/0fU6W7m25w9f07GYjm0pb014LZ+pL2u6B/Ne739ofSbp+mLbdvFzve8v1xalcaepc06XBGIbJzeu0nhS+lJ4/Cy1AaX4JfljWvb14VnrWiuNdcmvo91favVJanfU2i21W+J4mraM2yiNq7GBJX+BRvZcHQJhTc3lnabR2OxS+5f0UEzaz7n80n1trQxNORLHsusP9Y/EpH6RMDaOUUaaR7ynPia1OZZ+P8RHkyunNh5jWymUI+0HS2dSJRnivMPvmn1S2qPEz7X76lK9YnJ+nDg8l++hSOtrXGZpTdXkX+qvVM/n0Jan1SOhTM2Y0tg8OXK2VhqWritxvKkPJJ2HAODh/dU4HPJ7E23bSWVJe74cLe2aK1c6wwn+MgCwy+k54WKxxAL5ffqcOaLZ87SUJdkkpXSS7rbWX81H2RdUkiXem8ZxtX6hNJ/aszl7m1I7afcNUnqpL+LwdOy3rM0lPSnVU1orazpXsx+J3xdJ02p0f/Dnp2WlNss0fzeJs+k32GzKek3yAwU5QniqH3P9KtntuXbL1aPk+ymhnc+1tK3+iRTNPAx55Wz8ufZ8S/klNPt4qbzcM60dewy7Sst+jAebYBteOu+Q6hLyGrfbvpxcfi1rUg2tHtfmofV5XDca2z2NV5s7Nd0jlftBI7bFcu+LAWU/MCD5fabnFBI5vZQ750hlKckprYelcjR5ldKU0Og8afzEskjnWcEnWPP7aHSydv86fpdgH2YalhnNPicuJ5U5tivi+OE9hPhcC9i+s3A6eDx+/BjG7P16b775JvytUwDAarUatcdyudztYeK26LpOZSsYY0Rfg8aeLZHrV4mcn2o7ZvR7Bck/XUrb6vfOfd/KHvoyLn//PDdM5+4fW31UcR/H617JBizpkVYfTfAhAGN/tZRP+h4QcPXOjx3XS8qjtk5oZJ67T8/RarvIvpvdp+hHz3X4gWNye2CtbaKZi+ma0Tp/zMLB2pBmeq6jya91f6TZC6R1n1M3aU7UfDW5ONqz1ZKve9//fqcbr2LA+7I9el3jVKvrNW1WSl8qU9evIY7OhzDHBtUQ+lLjR29lOkbntNOWOWNJ0sm58Gke7b67nCyHpj80Xswh86/WV9M23bdrbJeUyh7sAOfGz7Z2xbiM3DlBIPZ7xO9F7eW04t5OQuurTsm1WekceI6/S3uGOJghmuNR2rZXewHIa0dcJ+eGSR2dGzAM8rqX5lub19KeTAqr5Rs/k3xkJVvHdfl9ojEm+y733PcWyn7zNn9cyYbRrD05vR7C47y161eL7FJ50nNjymdeJZ/anD1k7tmhdk/ruM71l+RrSfvImvrfKUnlaPyTafrcWVPNbm/pn1xayS9Vk1/rH4n52mffx1//9Pko7Je/+U28/01PsbjscPft21V5c7LX0tTs+Ro1H1G+XMDD49ndC5zfv8D5y5foV7XFxgMWMB0wrAask+boNh3O3j/FnXdu4ezBSfYiljnzq3UNrz1L52htrMzxsZXKLvdLm42hlbl1nyLFO9R+ltoo9z7MB/Fvgj6M8PKVAzHGfD+A/+zqa5gx6ezLzaRDdvseew+lj/K/C+DHjDH/vPf+/zogf0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5IXFw+Py7gaXd9dA52GG41xwMSwHPHn9KZ68/hSLiwXuvXkHd792B9Z/8C8ZJ4Tk4fU3B2CM+VcA/BcYX4ASa8Q0PPy8C+D/juI0FZukM0nYLQB/0RjzTY35EkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghLzQeHpe313j08Sc4f+UCbuGuraz+tMe7n36AL3/n1/D0/vm1lUMIuV54+cpMjDGvAfgfsb/4JL0ExUdhvwLghwB8N4BXvfeve+//qRnFfjuAPwXg/Cpf6dKXNwD8TzPyJ4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCXkj6VY+3Pv8unn3kAm7h6wmOVe5Jj7c+/3W8/Zn34Oz1XfZCCLkeFs9bgBeY/wrAfewvWQnEl6H8LQA/4L3/m8co0Hv/DwD8cWPMDwL4EQD/elReKDPI808bY/6I9/7PHKPsDzLGbJvf2vxdQuF5wHu/ix8+58g9i8O897uftBzpcy6/OH1JnhA/l58xRqxnCyVZ0+dxmaGsWpuV5Irz7rquSUZN26Xx4rbPIY0n5/LGThwuxUllicvSpBnj4b3bpSu1vdSvtfC0f6X8a3lJfVYjN65axrV27s2Jk4bHbRbGTjrecuk0cqZ51WSpxanprEA8B2LdU+rPtM1ycVv0bqnMnGzacgLOuWLb5tqoVJZmHSjpRI2+LM01731Wd6VpcnM7tGNtrKTpNHO/FF9TRvzdOberY0lvSmNpLtKaUCpT005SPqX5Lo0ZrX5s0b+5cE16KY61VpxLtbWitCZp7LGAZGPEcklzREpTWsfT9T7gnMNyudzFCemNMbtw5xzW6zUAYLPZjPJ59uwZ3nnnHQDAxcUFbt2yWK/vjcp+8uQJnj3b5vvw4UOcnZ0BAF599dVRnfq+x71727Rx+3jvMQwDAGC5XO6edV0Ha+3u+zAMo3RxPTV6XIP3Hs65qr2kmfvp+hbnWZpHubyCThowFOOXbH7N+irJtn0ut21Nd7Xbn4fnf0xdlU8T2nMbFusdYDt+c3NbO261e5s4L0lH5eWfjssY51wyfvbxpbxT3V3To2kczThJx0JJf2tkyeUb2tI5B+PMpMz4e25sxjotLSe3zw+fg7xp28ff071gKKfv+12cYRh24bFOD+UsFgMuLi52dQWAR48fY72e7jNSmZfLpajvuq6D6wf0fY/9/DBYr9fozb5Pcm0mzfGcDpP0Wq6PY19MmJOLxdQ96b3HsHTousWoL7quQ+f2ey7JpoifHboOlUjHdIutFMeXbMBtOBC7G7V71dp8AwyMGceX9vC5PFueSfFj3WBM0Gvh+V6fpzLmaN0zz/GbDXaqh2PZQr7S/kbji8jJdsgY1vrCNPva1rbU2GKlvEpzJM471sPa/U7rWqcl3rOmZUr6Qus7K83pmg8vjRvHz+ngmixpXi1701rcWvp0X5WGpfK1kMs7910jQ2lvWvJ91yjZilpq8ufGcW78xbZ1vC/W+ro1YyWNorWttWVIcTX+K60fb44vRRM/bWONj0Iqr1R+af63hGuRfH/H1NWl/kx18pz61OzlNN9D2izd88ZlafwoufwkYt/VHDT+zpKtku7J9nmO/QDAdn+j8eeWZJFkT5+nbaxJH/dR2l+5/vPej9aO0Z7rZOsb3AZtw589e4pu043OqiS7I44Tc8gc146RFj2uHxc+6ccrX8Cgt1fj8tLnko7V7pM0NlOqQzT7n5LvR+svysmc7tmk8qX0tfKk/q2t37nxmqt/qb019U/ThXkYxl289pZkXy7cxPeyXCzhfV1P5cqIwzX7iBDWEl6iZI+le7hj+WNa9pyaNKV0x7Q54jJrlObBHP+FVK5W32tpsc2PRa5t5vjnNAS/+3WP5Ziy/2WcV8v+u1bmHGJ/ey2/mh+05iOJme4XxrbAuIzp3DrmGAGm7RC+H2t+zaVFn2nHZms5cV9p3vH4oFGTVesLkmwFb6c+5bCXaW2n3L4q169934/GbCjn6dOnOD8/n4Q/ePAAwzBgtVrtng2PHuPdd7c+xeBXfO89j2fvb8t76aWXcHp6umuHy8vL3ffYDxnPxa7rsvvn2jxq8XUHcmOx5BM8FMk2ktZ6SV/OaYusva1YO+b0RWs8YN/uJb//fl0ct5FzDt3V/zur8Q3v2sJO11rJhyCtc93kvL7dD5G2cauffI5N1xonrWPaZgEXvStjzHiItdhRtXij5zaMjWlZ2/4I4zjfrrl9luQnXCyGiT/f2unZesnXp5lL2/A4j3z7SXZv6x5dS+h7TTlSeVpfgGRDxs80NrCUVxoe+9Jw9f8gl/Iura+pjDU5Ss/n2IDS3NXmp+mzbTbx2aqHEfzFcb9p9+259iutSXP2zNq9+XiM5vcTc8rJpZszRo6NZLceA+kMdY691epbad0vS3o3V/bOnjQOafSWcQ8g+w7cuB77cwLpPcxUV6Z+SImWsZqzl0t2Qy2tRrZUvBb9qDnr0lKyx1vmaIsfN/6cszFq61Wof6kdhsUAa8c2Ttd1sG6cptVOLTHHLtSuKZoycuMqtiHj8rT55tbQFv0jrYXeQzUHcvZULs+SrVrKP36mrVfrvGi1Y2s2siZ87lqePsvbTKEdqtvvZD8jxyvN5ZoemTWHs8/91mL2+8da2zy2rUp9p9GJtTJK8Z69fIG3v/Vd9Kuh8FcXACZ/oi+VmQ+fzt395yevP8X61gYf/fmPoLvUvTdWmluPX3+K/iT4ovfleXisnixx+72zRLa9TpDarDSfDvVXx+3ZMnYkeWpxJV9cvo6xbr6y0Qq2ZevY1Niph7cvuS54+coMjDFfAPBHkDvB22qDpwD+mPf+R6+jfO/9WwC+1xjzfQD+u1i0SBYD4AeMMT/qvc97ggkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkBecR288wdd/4wPAPP/LLdZ31njz297Bx770Khbrw650ePL6M5zfuwQwvnwF8Ljz1u3J5SuEkHnw8pV5/McALPaXnMQXr7wL4Pd673/6uoXw3v+IMaYD8MOJDOHzxwD8QQB/9rplIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCbpqHH3uMdz/9oCmNGSzOHq5w9ugUy2dLLM8XsL2FHQy88XALD9c5DKsBl3c2uLy7xuXdNfrVoMq/P+3x1S98HR//0mvo+m5OtQghNwgvX2nEGPMqgH8D+wtO4ktPegD/2k1cvBLw3n/RGPM5AH8U+8tgYv498PIVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHfYDx+7Sne/Q0P1fFPnqzw0ldu49a7p7DOwpj0z/MB4w3sGgA64HyJs4enAAAPj2f3L/D4Y09x/spFtazNWY+3Pv8ePvYPXoXx03IIIR8c7PMW4AXkewCsrj6b6LcH8Ke993/7Ocj0nwJ4/+pzfCmMAfA7jTEvPQeZCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQa+Hi7iXe+cz7gPHVuIuLBd74+Y/gEz/zOu68cwvWtV+1YGBw+70zfOznXsNHf/Y1LC4XdRlfusR736K/HIYQ8nyoz2aS8j3R51gLXwL4kzcsy1YI7x8aY/5rAD+I/aUrQbYFgN8N4M8/D9muG+999rMxZnfLWBwupdXmmysjvs0sfM7dcCbloSGkSWUu1SEnS1qXObJI6UvxcnJpyzbGVMtxzhXLLMW9bqy12TLjcOccrLW7z7H84fs2bD8OtlFMtp9L7RmXoyXk55zL5i2Ny9oczDEnbmmOp+NfM85L8zitW6tcof1THRV/jsvI6R9pTuXkyOXVonck/VFCqlf8XMrrkP6qkSszTavRS6lccV+W8sv1n7SG5L7n+i+nx2vjB9jP/1ybhGdhrErxWpDGUam/pTHbdd3os1a2WOdp+zn+PAyDSmZNvq3tWSonpraW1sJLfROHx2O51caaY3sF4rXyEFrasqSvSvWP51g89sI4SrHWYrVa7T4vl0sAwGKx2IWfnZ1hvV4DANbrNe7fv49PfOITu+8nK4+PfnR5Jde2zN/8m+9hvbaTfE9OTrBcLnffV6vV7nMc3nXd6HOYf9baUV+k7RjXOXvrr8KWyBHaM2d3tK5xOVlD+lZbyTkHdHHIfvzkxmxt3LTqlapsBWp7i5qO6Pu+mLe0H2mxJ9P0ErU4GtsjjSvN5Rotej4uX5pXaRxrxzKnczKWobb3iuNJbZHqwlxbpDo6Nyfn6IOSbZSu7Tkdm+uLWlha15we7/sewzDsvg/DsJsP6/V699k5h4uL7S3mDx48wPn5+S7+5eUlHj16tMvvzp0Ffsu3vgZgr9P+zt95AGPOAIz18NnZGc7OzrBYbF16i8UCp6fbG9RPTk5G+nq1WsH07qovQx2n7ZDT3Wlfx3uZuL00drM0xmoMy2Fk/wHAcrlAFyleyQbXlFfbW9XmcxpfY6tI+6SQX97vBOzvf9a1p2SrTPsszreed0u7tvT5vtxQX4/g8yi1q2a9KO2NamnTZ96mc2na1jWbv3Vd0+ZV0rM1favZp9TmS82GTtdXSf50Pcn5GOYi1THWMzVbLciYm6+5PGL5pf2AhMY20CLZMrV9lqSvavHTNFq/UNrONUpxpHXsmL7hOK/r9jm3ztGYdMzEYzFe92P9nfZFPIdDW6b9GuaS937iE8/1VdUn03UT27frOnSF8awto5XaXCjpyEPnb5y/Rvekuqa0BtZs9GO1X67sklw5fVnaG2jXTSkvKWwux8xf0nPx2VIJ7Z4oyJfqhzm6Z+7+PJd+Ok5yPqGtTRaFbnWVH48RaS+stScPGSOS3RX7G+KwNF7OHxbCsYj3ant5g71Skj+OE5OzIWt+VFG+AtV1ICNLmqZL1or9nmYXMqp/yaYs+UUCwzBU51XLuJI4ZLyV+ltC6iut71BrK2r2Hbn8pe+SXFJeuf12La9jtKW19T5tLSeQG9Na3V8rvyVcWtdb+rtEqo9KNplmbxrr2jlzVItmjB2zvFI5x84/LUPSF6memNveLT7d8Nn2w9WcHPuUnWtri5KPLfc5tTmktazkr0ptlZwMcVjJR3Mokt0koenjQ22rso1hRvvTuP+PUXa2xGuYX8dG2qNrz99b1mDJV9Lq84nTpPFLY6DF/3Do3qW2z5X2IDVZavXTjLlUtpBnOPtPuXv3blaWHKvNgE/9v782ivuFL3wK62Unps/pPkkHpu9QArox03S235A2J29Kbe8O6HVFbR/WYmtldXdOjmT/mSPnq56zT8ylq61j299y+7X4ZcP+ep+3vDZI76RZWz6r0OgWjb+8pV4a3adZx1vtm328nH+mLE8aXtOT+bTTMsP5/ri+Y3tK6+OV7LDUz5Ci0SkhH00aaY5ozk9Lduxc+67mV2vxEWhlzsmSjkXteh/abbymbn93ncUQnYek+Uh7U8mfKYWX0PpCpGdz95y1dk+Td51F57p8AgU1nxMgn5Pmvh+TVW0HFwAAIABJREFU3Vg2Hq37CY1P8Bjk94jy/lUrc+tZtpbryveYaF1Y8bhMbfNWP5gxJvvO31jX7J/7jA2yPTeV52Jp7ki+o9z6INmK0jogrVXavaBUV+vk82dJJ6Zype+gbfP2yXsqgLXd7r28GnPme82XBkz3E5r9RZssOttHomXt167v2vw0cuXDDeJ6a9cXrf14TLzfb9+Cviihte3m2moau0tKX/Kv5sZRya8wlzlnJLW9aC7+3m7a20+prh/XtZ7v3D6bzYy2Po5O2qI9b5L2IwDQdz3e+tZ34eFTVQdsQ3ecPFni4z/zGlbrFWCOY8PdenCKT/4/b+Dtz76HZ/fPs3FCMY8+/hS33zvD2aPTTJyyLGPbNKwjAGBgFXojMMeG0aYbz6P6ni/OP/2sWUtKukTSQ87p96AhbE6b6eoinwOR58fhf8H44eN3YjyagwX2l7337z4fkQAAP1p49h03JgUhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEHKNfP0zD9Cvype/GQ/ceu8Ut947g3XHv1rBDhZv/MOP4NZ7Z+WIxuPrv/FBciUMIeSDBC9facAY880AXg5fk8d/9YbFGeG9/yqAv4/0Or4tX7h5iQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkOPy9P45nt4/L8YxHjh77xQnT1bXKovxBm/8w4/g5PFJMd7m1gaP33h6rbIQQubDy1fa+HTh2c/cmBQy/2cmzAD4zE0LQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEHBNnHd79DQ+q8U4fnuDk6fVevBIw3uD1X7wPO5Svb3j4iSfw8DciEyGkjcXzFuAF4+XCs1+5KSEKfC357rG9fKUk9wuLMWb3E4fl4gW8ny5GcZj0OUd4HufvnBPlqOVbSiPlE8vgvc+2hZSvtXaXPs4rlTH+HMrJyZ7Gq9VL20a1fmjNu+s6VTxJHik89H1KKTxOPwzDLs9hGPbPhgHOuaufbZgbBjgD9P0G6Mfj0Fo7qVc8FmJ5NG1b6ss4X6n/S22Xm0PpONbKluYNbNsiJv0e5xPPBW2ZtTTavKS2K5WtKSvVjyFOqqfS8uPwXB/l5Jd0a+v8Ted+SRelYemzEtJYPpR4fmn1JSDXLZde0ikhbTzOpfGaCw9yhfSaeZwrv0UXlPq7VM8aubkewpxz2f6ujdfamqqtazrHavmm6Uv6Js5L0t3p+NCU673f9Yc0duP2S+OkfSnp4lyaOG5pfUs/a8aspGNSeTXjIo0X90Vch2CDhDYNa7/UF3Gd4zjWWiyXy1G/LBbuqiwP57bxVssVFovVruwgy2KxwK1bt7BcLnf5rVbbeMvlcifnYrHYpUll0dBqp+cIdVyv19uATT+yk5xzePr0KTabxa4tQprlcpnVaV3X7eqYq9Mh+kdDOm5Ka2072/obN86r1ebLpZPGqJZc3JotF9D0ybSO43Uvp3vT9Gl4bX8U919qA5Rkk/oj6IRcHvE6FvYEcTrn8uu/ti4l0rkcZJHyad1vlHDWJeXobEyNfV7KJ56X8f4xfA6/Q5+F/VpIGz7H4W+88Qb6vgcA9H2/+wn5LBY9Pv7xYSTX5z73UVxe5u35WF/HsqzXaywWW51orcVms0HfO6zXaxiz1+nn5+fYDJtdfWK9GPo7XjustaP1OdWfkr6v2bY5avpQ2rOkz9I0OTs5N4db9HKtXpJdqNn3hbRD5LsJbHV93j6r5VveV87bx0llSd9jpvbp7lsUJq8XpTEm9aXUFpKuj3Fdrpy6bpX2YDVqa8gcu0Uzx3Lfc3s2aazUdEMuTOOXKdnfUvraOMiVkZMhp0Nq9UvzjfcDGmq2Ui0f51zVXkufH2qTpjK15lfy3UlIz+K8Yrni8Np+Nc47rK9xXl3XqfpT0xdSupwsgXQ/MdfuT5/Ftmcqh1SPmk+npq+07ROvgRoO9fdI8Wvh0lxI1y5NeaW8WmUutXNpbrQilaPZN9X6S/KX5vryUJ2UUlv3rgNNX8S2eko6r6UypP5vtRtKtOqoNO/FYlqPxWKBrgOsHcftug5m0PlG0jmlnectlG1w3ZmIlG+/GLBcXl5934afnd1Ct6nr65pMGllK/hZJxx4ybnL28DYs3ksAYT8BbMdNWMe1lOZUTf7cfJPya/XRSGnTMnJzKfY7afIr5VX6LOV7DF15iK1f8v1pfZRa/5e0VymRizMMg7iOx/1ZsmFr+7BWWyiVN/W9aij1Q81nIuWRyqRN27LO5cbLHP+J1sehkU9izt5Di9YPXvIdtiLZdLW+XHgzaYvYr1nyDWvXNA2l/tTq1e338VqXOze9DlrmTI5jzpOWMq/7rO8QtL6vY5QT8kvbI3cWP0eG3PjInSGl36Xy073JnH1qzoeRzmvNvjpe33J+0WOQnoGFvJd2oX4HMfXh5MKstQetDdN+Ka/X0rmIFmkMtKRL0djjtfCpj8nswtIz3lbd1+IjkcJyddydgXX782VjtjJ753bvlQzDgGGYruNz5NeuG4fqO2vt6Jw0oF0D9m18ZVsP5T6bng9M1+qabyp+ngtPv8fvds+hdZ+Ws7mksRiPeb/YtiPgr34A793VT/5dspIvQbNPy51Pxem2P6PaiLqw9WwqDS/ZeKV+TsO8BaQu07yPqpU5faaZi9I6qklf8s+m7de6fqTpNe0+/R6XNY1X8y/n6h/P3bi/Uh2h3f/u5Ttsfa2VV/fxHU+nt9b9WNyEf1+ao8eub07/GKPzXR6r/Byls4pATTfeBNZaIHOu0Go3p3U1ZrzeaNoifs8zrJ3XtS8M33Ofc9/nlJV+Tv2bQLvfamfTOocOXcYum5Zfk6sUJ+Qb/C5a3/Hc8LjMFMnvW8qrZe+c248aV3/nO0Ub55Ax1rK+S+m3efjRmu+cg/H1/Fp8wsedw/sya3bydfjCjuULLM2lWntry6gxx99l7VRua6c+51iusd2011/5d/qn4zH398ha2VvGaSlfbUu19mvgkLNRKZ/A4zeeoj/tozpM5bj14AzGBd96fl4duiamLM47vPKrL+HdT8sXw2zONri4d4mzh6e7sNrfDY51Qz7eddhe2vM4AFd/8zP1TYc5kdPpuTEinb2W1oR0TojzqrNJ3L0tUEs/d+w8LzuYzOP6Tl2/MbldePboxqSQeUcIv3OjUhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIUfEG4+Hn3hSjGMHi4/841dg1FfMHI+7X7uDbj29RDbmyWvPbkgaQkgLbf/NDylpsjMAZU19/UhXJN26USkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHzDsTnp8ez+OdZ3N1jf2mBYOrjOwVsP4yxsb7C46LB6tsTpwxOcPjhB19ujlP3k1WfoT/pinFe+fBeLTfkClOvCeoN7b97Fe9/yQIxz/vLlDUpECNHCy1faeFx49jEAv3RTggi8LoRTAxNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIImcWzV87x/jc9xuXd8KfrZhLHdw6uA/qTHhf3LvHoY0+AweDO189w78t3sTpfHiTDk9efFZ93vcVLX70D3/mDyjmEO+/cwnufegiYvAz9SY9+1WOxHl/1cHH3Epuz8cUyxhgMq0Esa3PW4/HrT+G9H6UBgOX5AqePT+ZWg5APHbx8pY1fKTz7NJ7/5SuvCeGPblSKG8RaO1oMpM8SmjhhgUk/5/LKPdeUAQDOOVW8XL7hcy7MGFOVKzyvySrVMc4jF54rK5dvLHNOzvhza3sB2/GSlpuTMSUuK+QhlZ/ri/RZja7b36bXDR7WdrDW7MruugVMZ7FcrrC0C3jvs3mn9UrjSWk0MmvnTmnO5Pq5lkaTT9rPuXhxmTWZcnHjuSDJm+onCWns12hNE9ollJdLn45r7ZiNidtFmvtz8tXK1TKua/pJiheHS7qgpBOlsVPTRSVCn0rjNidPqU9KcpTGfi5PTd5pXl3XNY+fuC9a14g5uieWxTk3Wkvj73G8UJZGHk14zUZJx0SpXTT6Ps1PUxdrbbVvJPvCOTfS6Wm8eIxp2jsNj/ssfF4sFtn4aVhaD6kt4vixvMMw7PIYhgHDMOzirddrAMBms0Hfb50lfd/vPj979gzn5+e770+ePMGzZ+/hwYP7WK/Xu3K+9KVfx5On2zjL5RK3b98GAJycnODWrVt49dVXAQCvvvrqSLbT01MA274LNom1dtcXIbymAw4lLn+5XMJ7j+W6x3K5xN4x53H37l1sVtNtbYttXtO9x6xXmm9uHLbRtp8Rc1HsA0JeWpnjPMMY18iV2nLpmhAT5tE4rzCe9zpZkqsUXosXP091XVyHeP7Hskr2WK7s0H6dG7ejMdO0sRy5NTv3WTsHJP2q3TOn1PZ/sGUZW+VJ49f6OF2/4nEsjZc4XhzfOTcar8vl8kqfbZ+tVh6r1bORXK+8cob1empbp2MqltVaO+p3ay0WcDDGjvYDy+UCZrXapcnp+7T9pH1WXH+pXUs2zCFo8wlrbwvaPUfJTm1dK2OdFXTEkOgXYGsX+L6vtmupDoN18D7Od79PnNM/2vWgJNd0bJusHm+VqWRr1vYZ9T2ayepiqc7H3Bencmrz1fhCNPmle6jaeNf6VKV97Zz2Ko3n1nFeGoup/0fyi8TxS+VoqdUtXhNayij1eXiutS9LvrUWWv1AOeK1MiZeH3O/0zJq/gPNOhjHLeUV+4hz9kltHpbGWomS3p2rk3OkNnOurJb9W8luqfnytUjzqpZnft9S9++Wns9ZUyRbpcVW0rR/yKtF19bmXq6cOKy2Z6mh0X1SGo1eLD1Px6t2nwaM9xm1fLXlt+iOVLeWdETJpzy338Z5AFt/QFh/ZX09x6el6Y85ejjV6y16L4y9VPSSXV9ax0pr/TF8S1q0Y2C75w3ny9j9wI9lcc5hs9mo8y/VXTPfa2ulpNslG/JY9myN6/R/asrR+uvifFr0ZU223L4j3aNLssV2b2oDh3OA4MsPPH32FOt1+Tw75yMN4el4ydlB8ViS2l06r0nTS2j7t7S+a30GObRxD/VdpmGlNW0uc2XMcUybPXCov08zlnxQ4pN0h7dNbp/cdd21tJVU9uH5XF/eErX9T2nvE7huGaek+nw6pjQ+3G3cfLpD65RLr7Gnj1FOINSl5ewuJmfnpn6L9Nwsh3Sulns+h1z61I8nydvqU6n5OFpoSS/5u+IwaR3WlJOeGU05/po4yj1jj+TqI9ktsc7PpU/zCZ/zYye/T5qzvyyR2hqpbKE/0vqGOsbyz7VZWvfoGh9wauvM8QNo4hljRm0RkNYnY8bnpBr5t4R403ON1v2JZA+n5yYlcvFKabR+NKnNY70w2Kuztmg+WGthYXc6ROMT1babtRbeTmVL90laSnGD30EiZ1dI+eTaOu2vNKtc/qU+lvSjFEeixTelyaN1juf2snGb1fwHWvs11+Ypc89YpP2dtMa0+JePZZPWyom/5/yP6Rp4HXv5nDxz46RtPB0L03bd9lUs6/HWq1JcrV7ZptXZJiWk+Tp3/NfSaX2nqTyHlpvKIL13ZdxUB4lztCvPycnfLGXsydjeNsZO5lvcp/u0Jvt8V84BvjagvE+bOy5ay5XOiFPZpLppzoXHOsHBuTgvj2Ho4Vz+/blSvhItdorWrszVp2R3T/OTdH6bHmn1+Zf8zjXbLJdv2g4lW8F7TOZY67ieY19N5Sife9TWXa1cLWOo5bmmnzRIbaHVW7EvKjcuWvVfanM6N83DOQ9T0DGS/sqPG3lNKKVtsYe1umekK4oxx2nWqw3e+ez7uHjpMkkcZKnkYT0ev/4MT187x72v3MUrv/aSKECpXftVj/N7Fxn7ft9Xt9+8Db/xGDBg/87svs+1/ri5drj3Ht2lxerJEpd31mK8y7MNustuFPb4o0/xOLlcJoiRk8Z74PzuJc53l+GM++LuW7cPunxF428IxHv1kKzub6znq+mH3N9SBDR7Q40OadUz5MWEl6+08csANti2WzpDvhvAX7txicZ8V/LdYCvnP34OshBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeUG5uHuJr3/mAYbF4ZdJe+vx4JseYX17g9d+/j6sb7vg5OlHLqqXxtx969Z8AY/Iy1++i/OXL8Tndrjpy8wJITV4+UoD3vvBGPOTAH4H9pevhP9q4/cZY/64977tv9I9EsaY1wD8NuTv+fr5GxaHEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgLyuakx1uffxfbP6U/Hs/un+Prn3kfr//i/aZ0pctMAGD1ZIXlxfIQ0Y7G7XfPcPvds+ctBiGkAfu8BXgB+ZvR53il+ASA/+CGZYn5Xuz7M13BfvyGZSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8gLSLwc8fe0cvvPXkv+T157h8RtP1fE9PC7uXRbj3Hr/9FCxCCEfYnj5Sjv/SybMY3vhyX9pjHnthuWBMeYegO+/kgPRbwBwAP73m5aJEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiLhe88nr7+DN7KF68szxd46Wu38cqvvoRX/79XcP+XX8a9L9/FrffOYJxRlfPepx5i6Jwq7uZWD1e5COb04UqVFyGE5Fg8bwFeNLz3XzLG/DSA78D+0pWgqe8D+DFjzD/jvT+/QbH+WwCvJfKE33/de/+1G5TlRvHeZz9LcbQYk1/UvfeTZ8cqVyrzWPHTNGnbpfLG33NlpfHTOPF3SdYQXqqL9KzrOlEWKSx9rpExLUtTvnNuVv/ksNbCGCCXXeg3qa5BjvBcM1Zr7aZtMylOyL80Xkryaco7dE5K47I0R3Jt7JzLxpXKy8XLtUsqX6tOMsZM2inXL/EcqfW7VGaI26IvJDT9mtYrll+jJ7RltM4DCW35LUh1lvqtNP5q1ORvnYvxnNFgrRW/d123K8c5N3omlaOZ4yUdEwhjRJqjqdxzKbWXpo0lPVAjN2bSOoZytH0qzaPtGijPN824lsZ4XP+SnSL1feuYstaOxmTXdaL8i8V+izYMwy59sD1u3boFYwwuL7c39XZdh9devYuXX+7Q9z2c26b53OdvY7PZ2yur1dZ5dOfOHZycnGC5XAIAFosF7ty5AwA4OTnZld913a7M2O7J9UPN1kvbQ1ofYkLd4zTOuas09fF6qC12LFuuBe08DPGGYYhskO0z51zRQSmtY7k+KdkhNZlrtkGJ3JyS7Nn4+2AHeO8mz1vbNfddsutq+nbOPicOD7omhC18Ot+mspR0b6xX07VKspU0+4lYxtIYKbVpbWxs5d3qrM53RVk0649mXMS62xiz04XDMIhrfdzGsT0SdK5U9snK4/R0LPcrL7+M9SZvN2jWRGMMrLVYbQacvXkZ7SkNbt26jc1qUZRfKiOn91ttSs2YAhDp/XGY9bI91SrLob6VuKw5OjJui3jtC/prMAbD4BDP9816jWGzUcuW66/BODgXy7z3L4S6tO4DS+2t2Y85l+psj2Fw8N24vzV2RPo8Fze19XI6cVJvO1RtofhzaU3TrhHp3vxQv422/Wp5a5izZ5HKO9Zc1eRfWhOlOJKOlPZ/mrUvl2YuaV3jcVDyq9TyOka8mFbfZRhjmn12HCfIFodp16aav6XVj5nue+J8am2Y1ru2hkvl5OTSxDsmuT70iU8gxAs2WWkvHto19JfG9taQ+pikOBriuajxMdTykgh5p/nOLbPWZukc1frFc+M3dy4T5z1HvoC1duInK6GxsaRy0riltTjVy3PGwzHSzkWaH1pdKY0Z5xyGYYBz42dbP1jYt5mrn6kfINXdks6XdLyk92vrZrxOHeInLY61zsCY0O5bWbb7ZlutS6wf47GXxi3VU7KnDvWBa/yt4/rtfWM5WbruOD75Y/gLg27T2F0ph85rbb9oy6nts8L3FrnisrVzR2Ona/akuXylNkvfBZDGZtd1WC3dyEcEBF+9FdswFya1ZTp/0zYsIdmPWub6XePyD5lXubSS7RP71KX0Gl+IZIPPtZc16Y+5t26ZIy35zbGl8nHKfZK2f25PGGx2a/PzMo57qB3+vNHaXoHaeYY2XEtJB0l7q8P7Ya/XtvmXx1RKGDvbePvw+Mz0OHKOmZtfbr+RI91jaOakpC9CHqH8NK+4nWrv9cX1Tt8v2PZFXqdLaOa0Nry1T449JnJ+rBpau6cma64d474Y79v266tTmJraepXW4xYdlzvD0J4PTsn78Erlx8zxt6V+XGkPkbZXKv/Quei9j20+tuvQXenI5WoFH+nPVvTrfJ28j7DefjUbOISleYUstDbNnrb1JaVUXi2s5mPRzPFc+SW9X5uvxmA3hq5CAZjJGM6lLZVR8p1tHyXrm9v7htM9Wt/36I18rimdeQafVMxm02OzKa+nrWM+1q0haXxmm8tXs8dvOSvIoT03OWa5pbEYf5fGbxpeOhvYt/X0mUaWViRd0aJH5+5Bc2Ncc24ynnPheTlNIPXrlGy7Q86gjnHmnZM/926nMSZ7biH1yzHPe1Kdtf1etnVCXi2+2lxdWvwSc8rMpU8p+eji37W0uz7scOVXH/sLcuM0tq/ivay3+vP+qR29Dw/veXrvJvPNuQHDsH2+fS9y3O/DMNTM1F3dUiTZS2dzUvpjnCOP9o+7tt2e+eTIvVucku5tJDtqOp/kM725ejwt8xBya6FmXRzFsX6kz2OxNOdBMZo6lewuKd6cM5SaTZCrwqF9ItVNe0ae5rXXFdP1eK5ch87X0tmihkNtqDl4xd8YTNKIcwejz6X5lhtnOd2z1zv1fpbWd6n9S+OwZAPtdEs21y3DMn7nGzBX7Wy8xd23buHeV+5iebEQ93euc3j8xlO8/6lHcHave9NlvF/0ePTqY7z05p2RfKkN673HxdllYSx6wBssHy5GNkPOrwWF2RbrJU1bljhc9wDSGinH3+KudI3EnDkr7R1r9k8Jje7S6qOSHh2sxfhvT8z2vWrl3xxq0I6JNOucX4DcPLx8ZR4/CODPYa+pgmVvAHwXgL9gjPle7/2j6xbEGPPfA/i3ka68e37kumUghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKNyemjE7z2i/exvKxfT2AHi3tv3sWt907x1W/7OvpVL8Z98tFno8tXJNa38/+BYWBx2cEOx/lPOp4Xr/3Sfbz2S/cn4W9+4W1c3LvMprnz1m289kuvXLdohHwoeLE1yHPCe/+/AvjJ8PXqd3wBy+8B8JPGmG+/LhmMMZ8wxvwFAP9RKl4ky0967//KdclACCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQbl3tfvouPfulV1cUrMcuLJV77hfuAN2Kc9e0N+tVQzas/LcdZPmuTjRBCUnj5ynz+HQDhiqzcBSy/CdsLWP6MMeazxyr06tKV7wfw8wD+1aRMH0V1AP7YscolhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPLh4aWv3sb9X7kHA/kClRJnj05w552zYpzLe+tqPkPlgpbFOS9fIYQcBrXITLz3f98Y858A+CLGl57El6AsAPybAP6QMeZnAPwfAP4ugLcBfF1TjjHmIwB+K4DvAvDPXf3Yq3KA/cUrafn/jff+J9tr9uJijMl+TvHei880aaTPqSwlGTSySOlDeCmtVt70WfjuvR+VE8JLMsV5xd8lOb33cM6JdQh0XTcqNydLLGNAk/dNoB1vUj+ZYYBzHs7t6+i8g3MGzg0YBjPqrxzhmWaOpOHSGJnIKeSX65tcmdoxq5lXkhyl8jXxpPw07WDt+K4zbftrytTopFw7xuMiN0ZK+qIUHs/9UhpJl+XGqTFm1Iat46A2R6Q0uc+leHPQjD9NX9TkqI2ZFj2RyyfoXM18D32Z5p/OE0nmUFaLnq/FrekIqV1ybVSa7+lY3On1GWtWaVxLujwNb7VVtDZQaANr7UgXtNYzFz9t37jc+HcpTvpds1YFWXL9F8sUyxyvb8653bNhGOC9xzBsHT593+/irddr9H0PANhsNri8vNyFP336FABwcXGB8/NzXFxc7L6fnho8e3ZnVJcnj58C5hQAcHp6iq7rRrKdnJzsni2Xy11dQh27rhulCZ/TttbqjRb9kmKtHfWBVl9qns2ZF7FcAOCMvK5pSde6mHQuxH1kTNCpAOBhrRXzyaG1tSR7PBc/6Cdpb6EpLyUei5Iu8TaUs98q59pDs1al8ePypXU4F56TVbNmBxnS9MPQT/RRquNrsgbdIxHrAY28oexcX5b2bJq+H8wANDrnnXNHtc9iXRfr/XT/vFhM3Wvpulmq83LpsFw+HYWdnp2hW9Tnc20PsrIDFosF9tG2a4BZdpM0cV6STRPrZOCwPVstrjMOaZTanqnmv4if5eZuyxwvoVmrSjpiKldenjiPMDZzpGM5nSthHsc/ufJS2WJ9VfInlGTKPLnqd4OusxgSvVSj5I/S+jHK62H8bG4d9XFLtkpORwE6X+CcvWirvPGYLI2POf3bImvueanNJFr2hZp8W/RKLq5mDySlT/ctuXhzdJ8kY06GWvy4j3J6CdivVYfY4JqwlJoub6G2x82F19aqdN5Jeq3FVpH6sqRLA8f202vsXmmMS0j7+hySPX3InnNuG2nW2pB3aufHY0lqy5pcNX9tbR05RMeU9s+7vXpB/pI9W0O7Pqbtn6Zv7feWvX7gOsrI5XksXZjuNQJd16FzgLXjcbZYLGBtOv6Mel+bs3k1/t5WO+bmzivH+5ycbPE+fb1oAAAgAElEQVR8l8j5QVtJ9ynHorxWXfnH5oudpWWN0NCqf6RzlDmyiD61GXJIYaVwqcx4bY3Hbs2HpUG7f6jJnOqLruvENTONG/RUHL7oFnALW5yvkly1MGl9bu2vOet0Wpc5+7QcLfpIGuc5G7KFIOswDKKv/CZo2T8csu/X6phavdOzAk2alNI6IunE+ExuW/S2/L7vsUHbXkHikLOlY9GyFuT2iTFSeAmN3SQR231xmlnvhHTpWf5+rsf2o/eYfYa2HVM338c5cvLPXTNb2uI69gFaGdI4UrnxfjDdE+Qo6cmSn2GOfZuVpTOqMXpsH0tOfqktSrZnan9I7wFJlGwQrU+1prNa/Bo52dK2KPnlamjPLdL6p+9i1eqfC3POYbPZwBjAu+350ND36IdtPdeXl9j043dJgPK7T7F9mzsfCrJI/kmp/yVdU7Mlgt5vtWG3+0hZF8RrVfy+T3w2FPpMa/ekewNZNt2ZW9quLTpqjv2Sa6N9G1zty+EB+NF4bj1fScdPvv7TMbltg+l4WywWcIv2vcByOUx8p4tFB++3YSU9U+uLVI/m7MvSeGn109fkLcko9VnrOVsqszaNdEZWG0uls8Dt2NWXl5P/EFrPY455Xlcrv4b35fcHJP93yeeoqWdJ5tI5ao2yTTINy9nec/ZTN0Hsy6iRq0Pr2WBrmVqZgLpPtSRTTvcNdoD30zFqnCnuG2vvIIY85LPcXFg8/uMIbb6e0vgrjdtA6z7n0DVGYizHvoyu62CHsc+g5tfSvn9uB4/wDu4+//x7CHN96TVa9Meh+yBg+05m7l33ks0p+UE1bTRnb1bKd854S+sMXL273+vaXqN7SvNII7P3Hp3b/u1gPP6HocfVnxVUZcrJdsxzulq5tfjXcWZq7ZDVSX2u0aBrm2EYMERn/YH1eoNusxHzzY2zzWYDtxnPt1o/l/pMsrU0/azZVw5u2p7eecSLWLexuPfLd5rfy0m5/dYZHr/2DBDev7y8vcbtqwtapLO0/OUrY1mPRWlvcch58tw56sfdAiDsyTVp6763Fttc0v0a3autv6Zd037Q+EGnNpq/sulctsx0LKZnGi2+w5HPOfr7kEDfb7Ax7bYIOS68fOUAvPd/yhjzeQD/PvbaObzWE1bC8P07sL1EJSWn2n7YGPNFAC9lnofvXvjuAfwNAH+iqTKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQ58awnF4wob0YwdsPzh/qX8vlK8sB66SOw3LAILTPouef0R/K6YMTGH/4RdUnj1YwHpCyGk7rl7m5rjy+j3n5CiHkwwlXjcP5DwF0AP5dTC9cia8iq/1fSyb6fb8QL3elZVzGTwH4A55XGRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPLC8OXf8dYkrPQXw9HdK6OLWJ431/FnztZ6uE88HYX9evcOhiFf72/58Y8fXYYPE3YwWJx3x8nLWSwuO2xO++zz/qR++UrtciHb8/IVQshhUIsciN/yRwH8yTgY40tY4rD4R8y28INMviHs7wL4F7z3jw+oEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQDymLZwsYHO9Cn+5yIT5zS1dNX7t8xbgPzuVDhJAXE16+ciS89/85gN8P4F1ML1wxwo8GKV16Gcv/DOCf9d6/f1BFCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8aFlcdkfNz/byn9Z7U75YRYOp399CCCFF5CuiSDPe+79sjPkcgB8G8IewvRQlviQF0F26IsVJVw4D4G0A3+e9/3ON4r7weO93PzmMMaPfaXgtb0380rOcXCV503yleJr0aV6tdS6Fh+9puCRzqf27bm94xWlLfRqnD/FyYR8U4nZxzo0+bzYbAMD5+TkuLi4AAMMwYL1e4+233wYAPH3767j3q4+xOQXef3+FzWaNn332LtZuwM/9pZ+BuQRefvnlXRucnp7i5ZdfBrANPz09xXK5BAAsl0ucnJwA2LZ9PEdyn+M6xL9zlNpdSh/3n2aMlsqsjd/c+MyVWZMjpxtK81Wbb8A5pxrP0rzUyJuGl9pFo//S+Jp+kZ6VZJHy1dRRKiPVZ7H8c8bLHFm0fSmVr5mfkmxxmHNukk/LHLHWwnuffX5IH0llBZlLedTapFbXeI2S4kk6xjm3kzOVcRiGolxapPppbY1culpZcT0l3ZfOsVY9UOu3MFattSp9dSx7Kk0X5Ahhkm7JzbMg72Kx3Yp1Xbd7tlwud5+HYUDf9wCAzWaDe/fuAQDW6/XuJzyzdo179xyGwSFsGd746F2s19t2sdbu7IHVaoXlcjnSBaHMkryp3RV+x32R9omko8L8SMuRSNtbIi0nN49T0vw08qRxvZf1UY5Yj80te1vudHtorR21bz6eHJ6zr9O40hjXrmHx2JPW3ViPG2OqbeO9h7OhH8bj2DidrVlaozTla9DYFwAmfbgP72Ctfn+bexZ0TwnJTi/p3dxYSNutpBdzDHaA92MbJbe2tMyd3JhL9WD47JzbrdvDMIzixPFi+WKkfU5ON3rndzo/sL68xHpTvzPZGLMbM7EOiO2RbVFm93n7U19zc/Pi2HZGKe62rXfforC6fZHaoDVfQhy3LlN+HJXSBXLzIs03xHPOwRnAuWEUf73ZwF7ZAZLsqR5J1+2gL2MR+76H7+0oXppvqT6adaD0uXMexkzH/KH7PCmelHdxPbDp3Aec8zDJfCm1nXZvLoVJSHlJOlJaa1I7X7vvyO0z47mXtm/YQ+bKyYUHubI69EDbvvV5aR8vtVdp3ZTK0tpWreO6JGdJd2qQ6lVau+OxOKcuUlgtH01azdia49OcQ8s6HOZLy9zQ+DdzaeY8y2Gtze6PcmNH41eRdJxWlphS29TswZo8ko5u3VtpKNnM8v7DTuZPnE/rHvY6ie3hNAwoy9o6XufM+1z5mvWjlsehaOfKdff1Iflv2246NzQ+oX16vT2R7pMkDtFDtfIPiatJX9I1ab2ksV2yR7X2Ulxm+xjR+6jTstO48bqjHSfaOpbatkarfzWlVQcdul9pOcPS9tchdtjcOkvPSjZtt3CT/l2uVoCxWTla/ZgSkl+gJS9pbEn2vHa+S74b7R7xmHZrrow5ceP9akt6rd0XOMaaXPIHBJk0+l7DMeZrav9rfOrjMWp2/i9rrdpGiGnVmXOQzo3moPWdavfcLWjkz9nuLelTBuuSebUfN85l/BFDeb5vzwI8Sk1RGhOaNV3yEY+/T8O899k9cctZ05w+zukF4Djj9dh7jUPPWiW/pFRG634/ZrAuO0ZLfxQyxw9akv8QpucZe79viWP2ea2s2l5COt/ItbPth0leod4lP3J6Zqrx4+fOjUrpS3aIMQYOLsp/f8YZ+qwfevT9fh3IveuU27vkZNGcH7faTFvZp+e6tT+g0vgbd2uGmz9ugx89Pvso0bI/1YQfwlydMh0bZnf+nOZf82uX/DIln2y61x+dcWbma9/36Bv+cG+ft5vkNQwOwzC/T/JnpWX7rWVPXSozLbvW7nN09pzzu7nnfIfMF+/jcre/h8HBd7q99Jx9aWmtOZbPKR4vJZtVW6+gc3NnNcbNG5fSGXNKyxw7REdKfTG33jmZameRLfPmuvakOX2t8dOUwnK0yJ+zdSSd2Dont+MwFzbdc2l8NCGv1vPZipSTtTS/fxjreO1ZeMkPfpDUB+r0YRgw2GFS177v0Q2H/8F/rp6d27+fGHBuwDDczHsAz4N0DuzGvmIYaP24LVz331UA5Xk/l3SPUzr7P5bfXytu2r/58nR5SUzljb/rz3y2caZy6bsmF9En8sRl7eO3+NnCM+06JMl/6LjL+QeAI+rxZA8eytqN9wsL56Y6Y+6exW+m61tgMNP92OQcoAf8Yrom7+szfcelZuPN6Z9a+5f0gKbvsuPOucz6FfLsd3+v3JJniTntotG9h4zdXF+WvucYzPRvVPq+BwpySfIf8g5i7kyAfDDg5StHxnv/HoA/bIz5IQDfD+D3Y9/Ox5gJYSa+C+CLAL7ovX96YJ6EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQ58gnf+INAPMvuMlx6IVepQvgWy/0y13oo63rcunw278zuRj+p17HRvGfHpJGvIHtj3sxVemOTK+4QLN6IWDDJZyEEJKDl69cE977nwXwB40xrwP4t7C9hOWfBJCu4CVNnq4CzwD8DQB/FsCf995P/5tbQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyAtHt+kAvJiXr9Qux5jEb7x8pQOwSsroNhbuqs3I8bDOwEz+zP35Yip3+3jewUMIORBevnLNeO/fBvBDAH7IGPMKgN8F4LcC+C0AvhnAJwG8BOAM2/5YAzgH8B6ALwP4FQBfAvDTAH6CF64QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCLkOzPDBungFAGxvAQzic7eo3M5CCCEVePnKDeK9fx/Aj139kAMxxqDr9rfRpbfdSTfdpTfq5W7sS8PCrXyl2/PSZ/GNe9JNfFJ+x7yRUEOuDWqyadotl9ecuoU0mrRBhnhsHFL2XJzbG2mxTEGGrut2Mp6cnGAY9gaf9x6f/OQnAQD2/ALf8rd/DpcnDv/o3lMAwOe+5XW4zuLz5jdh0S9grR21fRiv6W2SsSwSuTaqtZsxRn3zZTx+5tyWWZMvN9cCaTtpymjJu1XWHCXdNWf8luZpbQ7X9F1tXrfUI57jUh9pZZPS5uptrVXlpdWHpf6ryRXyq+nj9HlJJ6dlSXlI+Wj6MHwOOizuy7ljRJIxlyYXL53rmvkqtWsg1ukauQCM9Pp1UGqL9LNGd7bYOGmatAxpXKZtX2vXEmnakLd2fanNiUBcF428tbbMxXPOoe97AMDl5eXu82azwbNnzwAADx48wFtvvQVgO7YuLy/x6NGj3bPbtzr8E9/+CVi7l/Pv/b2voOtuAwBeeukl3Lp1CwCwWq1wdnaGO3fuAADu3LmDxWK7LVwul1itVrt4Ibzrul07LZfL7DwK7VRaZ0LdtfPj0Ju1a+XUbEytvWuMvao7ELIyZtxGcRmpzqyVrVkbc0hzV1OvUv/V5NG2W2qvl+ZY7WZzYwyccQCm9ZDGa639a3NZaou4Hi12gbQ+jcfCvo5hvGn0Xk1Hp3LGcyOuTyxj67qT1ifez4vxFyaaS9M4uTGjtWHjuqV7sfB9GIasbRN+6/qsrBMj6ZTxxmUFOXJ+hrB2OeeuxmuoozzfS7Zpy748R2mfJY253g0Yhv7q2Tbs4uISdp1vV2k+xG2UjkOt/qvFkXRTWkcJrQ0BbNebMNck+zuVLa2zg7sa63udstls4DY2O46l/VRsg2ko7RGGwcH7sS53rmw31NYHqaw0XKrjZJ+Q/HcJ3k/HbUyL76wma42SXm6JX0ojofVxxmtE6jfL6ZhYDx3qE9HuibVlSevoMXw62n1+LX0prLW+MaXxIsmcrpmpDSD1c+t8kfam2vGZUhsrGpkA3d5XsllLaPb7ubA5e/Ga77PUV7FPPEba1+/y363f+7y7rkPXIP9cnXqIvyJHbi0rtZnGLzZHR0jtMQzDta1PWv9VLW1YE6Q0h/RZaf7l8m21fwLaNjz2+Gspq7TnPyat+r6Uzzar6TqnGddzyywRytT2o7RGa/wS+/gesa4Mc+VY9c/5tHKU9lm5vErP4vQlP0sYA6PiPLBvj7EtMHe/p3l2KMea+y32aGyD1eqmrftN6JCAxi9UsnsPtdHU61hmvzT0Pfq+vqcu+Wxqcmh88Nr+kt5FAObpu5K9OmcPKxHk1Mh4U2M3nW9z/PBS/NJ3Sa++CEx8MwWbNo239dvs67v1leZ9eJrzmjTeMcfNMfvl0PVuDi37hbSvbnLtaCGuUov9KvVlTidZa+GcE3wtOt/3WObU31peC0r5afwUtTgfJH0jrQmSn0tat9L4N13H65ovx9qjAfPeralxHb6AUhn5c6bp2hzOSEp2Tu7cIRdPe74s+T5LZ0WmM1m/afg6DAP6fn/2GXSHdJ5Wm0e58PQsU8v+LCzZ9ylwzk3PtjsDa2O7enzWFdK1obNVRnJoclXaQIdQs9E1/vHgl9jaXbj6PP4ptWna9nP85DXCWd6csVdCq+9yuiMtQ3vuoD2/qp29aPPK5Z373CpjTgZpz9uaXtvX2/6L49XfG9D6HDR7C214+rzmCyntOefsq5OSdp+c8zAN+jItW1N+bXzMPd/Ujy9gX+d55zGt58aa8RHShveAYobBYbC6dyUlWs9G5/i0Ws5yc3m1psk92/vVgxzbNjVO39eDHeDc1KaT8pjqnZwdh8pzOb2Edu04FnPPL6fjItR7G1Zq20PtprTttVVonctzx2ya9nr2hX7SD9p6HGqntrbjnLz2dTuu7C35tNk37XNdW+Yh4zBFu3fK2ac5uVJ7TrsmHbsfp2vtPv9hGADh3Y+w98nNkbSttvHGYcMwYLjar8b78vj3c6fQ1HPHaG7M75nuy1J/p7208LflMvrlMMoj10fOud39Ldp9SalPajag9j2AWnnOT+sSl9Vqi86VpTSvW9f0OL9D5desY957DNYm89GM/rYrl37OGUwuTTwWavb9B0YPfAg5vqeKEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghLxzm+HeCHszisis+H06u9z/TJoR848PLVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKBpKtcvrK51d+QJISQb1QWz1uAFwljzGcBnBai/IL3/vKm5CGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQr6RWT578S5fefTJp/BwwlODl3799o3KQwgpw8tX2vhxAK8KzzyATwH4ys2JQwDAGDP6nYbnngW89/Dej77n4hxLxlrYMfMPSPWr1XtOWa2EvNLy4zK895Pv2nxz32vyl8ZA+iz+ntbFWgsAcG5sFMXxQpy4jmn8brmCtRbWAtYaAAad7WA6exVuYYzZ5RXjnIMxJitnSqldWvq81j9xW8ZzV9uvmrkk5ZXOd6kM6Xvcxun8ieuVKyPVU5o2LdUj/S7NpRLpWNOSa6PWeXWIXk11Qk6mUjklva+ZK6Vy47aQxvUc3TtH75b0Ztz3mvkj9Z/3fpRXOhdy4aW8JZmDnkvRjL2QPpdGqnupvSRq7XiI7kkJeWnHRam/W8pLP2vihLJzbZimyemxXB+H/pTW9ni8ldYM7VxM61Ora5p2GIbd57g9hmHYPev7fvf58vISl5fbuxwfPnyIR48eAQAePHiAhw8fAgDeeeedaVnwADycG9fl8ePHo985Tk9P8cYbbwAAXn75ZZydnQEA7ty5g9u3tw6ck5MTrFYrAMByucRqtdr1Rdd16Lqt8yqdbyE8fI9/a0jHb9oHwFQXpeWVwlOZcvZUTWbvPRxCP4vRsjqupKtLYzS2G8dz5sr+c1OdkssvZydKujBOW7OtpXkbKOmGVL5aOVOdEeczzi/NP823tN7ViPOJx32aPq1z/CzogTS/GDv0kVz7PHP2kSSf5nk8N7quO9hGism1a2m+5sZTaQ8UrwPTOZK3AyS7JU6f0zWSzojJjfOQb8g77vt0vAzDtJ1KNpC0l07Xx74fMNi8PtT4WOagHRehzbz38B1gjL2qy17+dL0JxHZj2j+lPUPLHCnZkHP9LCFf59yo/s45uMFiGBy2bsdt+Hq9gV2vRVs85Jdri3jdBvZ6M7RriCu1cfost8cvoWsXeS9R0h2lZ4eM32leobx62uCXiZHWudIcr+15NXZDjta9fEn3SD4TKT9pjLXKVEo3xz/Uaifkns3R0bX0OVnm6Jnc51RftuRbiltqh3Qe5Hwp2n3xIbq3NG6lvaW0/8jlmQtr2Zdr5kNpnEosFtNjwZwe18yTOCy0S64NcnWJ5cjND5/xB9X0oYQ036S4Ya2s9beGuD1a85J8/jmkeVGiZX2cs5bm7LGabJIf61BbNMfcvqnFjX1Xmr2stGds1WktSLr2Oto5lFda9zR13erlWqz6nimmtKeT+nluG2n1VG7cl9dbINRbS+te9tA6H3MupzZM58LZ6dVzAMbG/b/V6aZe5WtBY9ccm9Q2D31Zs5dz46zVn5Rjji6TbPKSzorbWmNna+yckq9Qo69DuDVTn/b2fGBqZ2j0snRmJsUvxSnp5Dhe7LvSllMqV7vXas03pdX2OmTt3dmwirmkLafFLz13TW/1fR/KMeybdt0zHnuadfAm0Oib8Nn2w9V43tdl60e8Hj+uVs6W8lpkal0/t/GlNsyFl/ff27VEfl5CM77SOIfsGQPHmstxPsMw3KgNcyjpO3rW2lF71t5XyH2X7Kdj6Vhp7Gr3DsdA419Oy8yd12/DZH+Q5Euq0eLP0aTT7D+lcTEMw+RdjGEYMCTVbs0/h7betf3j7rPd28nW+p3vq7vSh8vFctd/aZ6STk7Lydkkku9Su2cf1z/2CWzP06yv55HasYNxE30wDAMw6Nee7X4gls1hs9lgg6ltf8h8nXsOPbcM59ykzLT9cgzWwTkPb8ZnmWk5Gl+3Zk303mOwDt4fVvc4vxzxe9elPeqcPs7VbduO4/C+7+H7D4btel1ozha1tKaP+zb8zs1lidL7ZXPGRc0G1tgIufLnrsGxLM7pys6hLf+Q/tfuRyR7J23bMBcHuKv3NPZ59P0A3+fXPa2Mtf1fvKaXbIJcvxxiS6bzQXsGWfI95spMdaqm73PvXOTyjqnZ+nmbwOHqFVDVPnubZci3Xv923eCzuqpUhvR9l2NhHrRSmketcqX5Bfvi6gmA7Zg3hb/JktD7imM9sB0Pgx3bQsfwW2rHbAhr3RNpz2PifV0cbU6ZrdTWgZwenJN/2sfbn2lcrU2tGeNzmJ4duMneM36fsJaPRncHWvzWcf6H+tFrsmh1RRw2bcdh5zuV5r8kSxh7wzBM9h3b9/OnZ6ghzXicRfprsi6l68g2XrrmzenXEpq2dc7Hb25uw7zH7t9Vm8TrZi3PXNn7tsut21cfnEPf99l0ge6hLbSJR790uFxeYnGxfT/J2el4cc4jWPfSHrBmW2jpT3u8/+mH4vPFxSJ7+UpunJdsvxb9BtTPkTXhOYLN6v1+vcn1uZT/nL3DIetYmJfOOUi78bm+4Zr+2+uFcn7XszqTEt/Ynpnj8yqu3tsRfqZ/CUkIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBZLC4WsJVLKy9f3tyQNHVqsiyfTf8zLULI84WXr7RxAcBnfgK8QIgQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDkiq8flC0vOP3J5Q5LUuXh5XXy+fMLLVwj5oMHLV9r4avTZXP3EvH6DshBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIId/wnL53Unx+cf8SrnM3JI2MNx4Xr5Yvgjl5tLwhaQghWnj5Shu/gOmFKzFv3JQghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIh4Gzd8uXr/jO49nrFzckjczF/TXcQr4ExjiDkwerG5SIEKJh8bwFeMH43wD8S4XnvwvAT9+QLOQK5/KLj/ceAGBM6b6c/fMQv4T3fhcv/lzKVwpLn8ffNbKkcpXKjp9r5K/lVwvP5aGJk5NTm1ep/eI65+Lnvpfk1JQ5F2PMKN+u62CthbVAuPspxOm6Dp3vivmV2rg2N6Q8auFSPGlcHqvtamj6S2qf2nwPWKu708x736x70s+a9ivN3ZqOivOujZXafE2fG2NUc3zOeJXSx6T9JPVF69iM16NS/aS1oKS7NbTq0LQfSvlJYXFbOudGddDMhzn9qqE0psIzyX44Bi1rTJCr9L2WTsq/RV9IxOMk1YtaPRbGQtzmpXkg1ctauwvTzqNY3pKsreM9xjk3ehaXFdc91D9uu/B9GIZdvL7vR3kDwDAMu3wXi8UoTisnJyd45ZVXcOfOHQDArVu3cHZ2tvt8crJ1Qq1WK6xWWyfOcrlE121tjrCGhLppbKi0jyRdUeu/hcvPL+36W6O2r5DwncvMYwcgb6eV1uAWuzeeEyG86xZYVOzDQKq307zTuOF5qvs15fz/7L1brC7Ldt/1r+pvfvOy1l5r73OOfS4mdmLr2Ca2hAKRFaygJPIDWARhgsLlBYx4iZB4IVLESxQhHhCxkCPBAxKKiFDygGQggILACBBRLKEowYlNLufY+NjEx8fnYu/LWnOuOb+vq4qHntVfdXVdRnX3nHOvvf8/ae3VX3V11aiqUaNGjerVO0TiK0iZ+2vpPGt8jdp6GZdTomRHUvh5Nz5v6usbINu/LV2Dc2OV0uGUfqXyxfL7a6PN/Vw60fc9XD/cT/VnWEfcf7lxivs/XGtKexnJ2uFlqOXd7XqcnZ1N0i6vrrA7q9s3yX61dC+3T4rXq9qzJaRxGWA6rvpMz8bx8vICultu91tsUC7vEj899ANGHTdmlu5/WzusLVbr8drnu729hT4cZukh4VwIbbePMVjr0Pc9tD7lORzuoA96XF/Ctb42L7TWm+zf4q71/RLWv3YP0brOhPVrHfbFkKfrNLpdfu2V1tc6t0JdkszdVLktfVGLPUhsUc3X89ct/lBJvqX+hSflK0lkyZHb90n2gzXdT93Lra/xc7W1u0Su3lT94f1S/KnmF8fytsbYpXpRmkfx2rQGaUx6iQ5L64nv+zHKjUWurN1uJ8qXIjUPUuuCtRYqSMz50Tm/W2pfS2X5OiV72bjM1rPefnIAACAASURBVP1Aab8lnSMl/7117W71O5fG3kpzt0XOWl4fi5GWK0Xa7pq9LMVScmXF17ny1sRRluzZa/6AdL2Ns536ZZm9ecj4cFxXyW8P0yV+XJh32DOnbWiOVLtjndD3+5CYFjuwRdyhhDHmfk8VjOm4fkzHuRP8/4iWzIuaDm1pW1qQ6nZOr7aktbzSfkaqG5I1Mv69JPYnkccldLKUntt/h9TGN+ejSHw7aZ9I+zhHKEtuvVuiO0vlqdXXsi9cOodKNmitT1XyCT01P6PVV1yyfxmeaVvTSvrry3PuFMMJY28tY1XbZ8bprXpQ0z+tZWOQkmUNa22ClNy+vqV+f3veTbKYwVx/gEEfVZBW74OlfRE/F8Z9wzSVMAdr+r/mw62NHbbKJpnvubXS7+/879x7CSW2iD2nZA4p65EsNrrWJ0rRsv9cUp9EPyR7jbVx79K8zzGd39NYVTheOV9AMg6pOR+Xn/otaYu1FlbbYP0byjDGQJtB1mN/xPE490Viv3KJ3xbP0ZDUc3Gd0za3nQmkSPW1ZN6VUc3zRlJf3GdSn6hFjtjP3DJO4v0utXHspRQLmsbagNC3HN7Zahuj0HcM04ey0rItZahnGx9OSsl2tJ4VheTey5XK0hKPWkMcU/L1tMSlUjxVLOghMcrOxmV4byd4r6MSV9syJhvXJV1rt0Tq/0visKUz0zgtzhcmh/veErm5n4pTt/hnrfFo/8yacw9pjCxl06T1lojf13HO4XA4ojum7YOxFsbEc8mc3oHrTbSPAawN3yHy786EsqZ9xlJ7WuNC8bNLfJ41MZPSvlzSFsnewPdtfL/Fdkj9sdb4mbTvWuMSVofvGw1pxlgg0+R1Yzgvo5Ulsdv53mg+ztY6qGiP8HFcy51b7yNJ4z3S9x4k91veUYnLkOzT/VqltUmMrc36a6Wywufd/buQYfrgA+X//YZxc7/JGAOYab8Ma0iYTzXvWVp8domuTNZ0FeV3DnCndQfIxyqldfv6TutpfS7n9Eu/VuiuNfqr/r6ceZ2vvnSNq69fZOOuNXVZM29GGb5wXSxn//4Z3MHBoK67g86ebPgUN/EhALm92NoGTv2lU5rXnVr8dIm/3Yq5n5OTNGOAFf9WawnqaGCtmfSJMQbmfvswyvgA+2NSZpt/pfbp4ecAvL6/TmnrP/+IshBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ8Krr55Ubx/fN7j5rtuH0maRP2XPW4/eyjmufpWuQ2EkKeBH19pwDn3HQA/g/kntfxntv6YUurLjy4YIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyCebZb11A2fif+k/56Puv4ZR7JImmvPq910ChbmUULr91/ogSEUKk8OMr7fx5AH/7/tp/dMWzA/Czjy4RIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyCaY7dNWPl/RXPV593/UjSXTi7uUBN1+4LeZ59o1LaMNPPBDycWT31AK8bTjn7pRSPwXgbwL4Ak4fYPF//6RS6k875/6TJxTzU4O1NpmulIJSarxO4ZxL/p0qK1Wufyb1vLSsEjm5wt+1ttWIn/fP1WSL86TyS8qIkcq9NG88din90VrmsFhrRXml5YXllsZYKQDK66Iey1/S31Ikui0Zj5Yxqz0vmUuluSMpd4m8OZuUqqcmz9J5LKm/ZKNS5aXy1+TL2c5aWS11lex4aJ9bkNizXJ+3pqfuh/Yq12fS8cvZ9FR/x2WWdDmH1nqy9qbW4ZLuSyi1RZIe0nVdU/7WelL3Sn5LKr9Ud2p+Ry1f7V5NryQ6lisHmPdLqt3xeto6ZkvnYdyW1BjG9kbiw2mtRx10zo3t2+/36Pt+vPbpu91p2+bvt3JxcQEAePfdd/HixQtcXV0BAJ4/f4533nlnzHN+PgSfzs/Psd/vx/q9vF3XTcZDKTXxR3K6kRuDuE/DsmL98f7PsPWa5k8R3gvr8empulNjHNqLVFt6baD1NE3rbvacp6T/uWeS/depqP1u7CfJHGnxe0u/JaTWt1x6y55kUod2wTPTMsKypfuwkFpf5eZ7yYcIbUdtTQrtSix+OAdrtPqNNV0K+1Xiw5XWq2QbOtzP+RO73Q6d60T2GcDMXqVkCed+i9+San+uj7XWM5lr63PYrpq/7MsK/bHpfT3RnXAdKumFxHdfsybn9h/TuhzCKoyxgJ3KUlt7pLEYia8kfT4ev5Lt93mMMeM6b63F8XiENWb425pT+ocfQt3dwRgz05FQF/wY73a70Zfoug673Q7WOVhr4Nxp3TXGwBk3+iZhmaHfkurXJb5srK+DPoy/xjytfmCLTkr3cL5Max2snZZvjAXMsnJzSO1nqtyUD1XKW6u7lDeXr2SzlqzDqXulvVXqt3QvGT+7VcwzVWdrX5dkDvtDIvNJp+f92NrmJfdK8Zzcszl9lejY2piktKwl++TW+F/On631YUsfx+mhHc7pcTgWrTYrVaevd0if+m1eHufcZH0K8bod5k2xZG+zxbNb0GKXPbn9JiBrz1L718oS25vaT5T8+aceP6Cs/0vLim1Eyt7UfAVpXTVazsZax8OLP9geILQTp/S6fd3Cb2yltm7mxibVR9ZaWG2TNlAVujQlg7VW1MbcfiCXd819CX7PGKQk91+l/gBO+6FUulyO/L0lsekWlszpJT6nRM5SzEDi/2691kj3F55wrrU+K8XHwXI+Vs2nKvWXNDa/hW5v9XxJRyR65qm1ce1eVOrjLtXh1LlPLXYY3muJV9XqaN2jbIVf18Nia/NBtrdPP5Mb1y3iAK1zp9a++B0if0+6B2utXxJ/CSn5fVL/Yv3zvi+mOp30k9xc3rjNpzKHdGMMelWfb62yp/Bx5WGMT/3f90fYY7qvc+cgcbk1OUN/VBrXqJUPtPn7tbZIfX2pbNJnWmId8e/cmOTmdk2WVD25vV8Nqd8R3u8ScltrYRP/d+HUvrwWO8/FeJaylQ0/7T/jtHIf5uRfE58ulZXSKXtm0XUazgH6/jxdaw19bzN33Q52l46rSP3LJaR0NfX+xqmf6/u8JXJ5u+ufT8kV7utSc9fPgVIsqpUlZxot+XL5W583yg59okLfxQHWwRoDJPbaIa16Fa6TEzmMAezpPSDn7GTOhnZKuu8DAK3sLF5wPBxwSKzJa+aFU25Wz+FwB33Q2bVx7TyU7iFSv0vlrYmv1MreksHGpdLWnQGujYdtZUMAeYxgC1Lj3lJXS7tzddXqk47R1CfxedVof2pxxhpbnU0YYyb7BeeG2IJR+XOgrWjxN2OWvANc6rPUO6D+HbDSc8P6NfUv+r6H6+vnGqO9G8vwzGPTYX5g3l5jDGBO+87UmPq9qF9zQ47H+T4x977sQ9JyHlSaw2Oeft5WYwxcLzvHaEX3Junf+RiDhFb7LdHrJaTekfbEuth6thQ+m6Ok74+hj6W+C8/T/N/xvI/f75w8v6H8JTnDdwTDtB4Pb98fm/Cd3bhP2mJJKZtha1uRKql9h4Ta3Err2cPMlyX96pzDTDqf5jCufeEatqbOYc2ersmnm9Pz29p4XH7tHK+/6w2g8vk++p5rmL3B7rYDEOxhEm2REsoVxxVs5/C7P/jh7H3TEOWAq6+dJ9fIUpuN6Wf2wmOD95Bn9RXOnkrx4SUYHftL6/s7phTLk8YZTkUM19YYqA3mYUsfejnC9hhjwG/yPD0cggU4574O4I8C+LpPAiYfYPnzSql/92mkI4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPnmcvd7h6usXxTxOOdx+9wF29/AfhHJw+OCHX+F4Vf4S0LN/dInu7pP3gSVCPinw4ysLcc79CoB/BsA/wOnDK8DpAyx/QSn1c0qpzz6RiIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCeKd37tCvpY/lSC6xzefPHuwT/A8uEPvcabz98V83R3Gu987epB5SCErIMfX1mBc+43APwhAP8thg+u+D/+Ayz/EoBfVUr9R0qp73kyQQkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkE8A3VHj5VeeVfPZncPNl27RX5rNZXDa4f0feYXr77kt5lMA3v2H70Cb7T/t4Dq3eZmEfFrZPbUAbxtKqdiq3QD4V+7//AcAvnyf7j/A8hLAnwHwZ5RSfw/AXwfwmwC+A+Dw0PI65/6rh66DEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5LC6/eYG7d3vc/GNvivlc5/DmC3f48Adf4+VXn6M7rv8IyuHlER/80Cscn/cYPimQ59n/d4mL39kvrkubfPnH59t/VIaQTyv8+Eo7R0Eeb8Fc9PtHAfzI5hKV+UR/fEXr0+Lm3PTLXP53mB7nidOUKi9uYX6fN/67VFecJ/eMUiorv38mvC7Vk5Ijdy9XXqoMa63oWUmfpuooyZ2qIx6XmgxKqYn+lPKm5MrpXihLfC+uJ1WXL9ff6yyw23Uwu5O8ne5glM6WUZM9JUuJ8H5LfVsT63xNR+KxWDNf4rLC53LPOOfEupD6Le33uF+kOiyZ72vsaMsczpWfKivV1qXzYEn7cnlSSMdC0qclPQvzxbY5JUeLrS+htS6WXStPWl9uLqXamsPbz/CZeA2I77WUvwUpfZf4EnFa2C5rbbGdIa22rCRnyd6mdCReU1vbHduFVF5vKyV6l3seALquS8qZ00v/21qbtY9KKex2p23Z+fn5eP35z38eAPDOO+/gvffeAwB84QtfwKtXr/Dq1SsAwJs3b6DVsdi+i4sLXF5ejtdaa5ydnSXbG8oZjncun++TuC9q/lmO0tzTxiT72Ln0epArK04PdTD2xWr4fvJdf9IFA7MgdtVie2w3ny9enrgc6bxK+ceptFEGobwte4V16/ppLHxay3qz5F5MyUeX2M7YpoXzbxiL+VzMrb8lXwNIj19pvGNK9jJ1v+bTxs8P8zut47HMS/Z2cRmxLCl5ctTW8fDZuA3Den1KO9lXjd1uamNTdYbXKf3bqx5aT9O0Tu+HS3XkaPUJ4jWl1K/WludwSQdzcZWc7PHv+Lpm7+K64udDXyHM48t1zqHv+1m+ob8A/y1orYHz8z1UoqyQMOahtR7X691uN6RrB6V0YF/UOJd8Xv93qFclGyedc6n55sfr1IxTP1jbVmdtHyl9PpZxuDf8SeVvnS9L8pT2iZL6c2tGzm9bsq/PzZWU7oR9J5m7WutF/qUvK7XGltpSWs+XrPW59JwsNZsqiY/UxrCkv5K2SOqQIN0Px/n9dU1vW3z7lvRaPC5sV0ucr0RJd1vjGC1+39I6UnVKx9loDefm+z9dGWPn3Cw28pQs6ecQyd5uaVlrWRpjiWnZc+bspc9X8lW2otbuNWPU6meV+k66ppdihS1+lbTcFuY+tZfhlGeQRwGQ2//Sutsak5Ceh9TKXXp/2v58HslatkY+KVv4DZ7TfPf+jP8ztQO5mIFEnpQet+pK67yW+gmtfotkv+7TJWWU9tM5UmdKsSwlXZXIFZdVKjslS9d1Ir1omRNdN4/BxHraOsdK+cM4QzwXUs+XfOvaPiF1L/V8aeykdmGtP71kXVoap06Vk7Md0jhBTZal9lVqM3z/tfq2JbnTfTGP70vHLiXzNNYEGGPQY7mPkmt/Sxw8JGVXU3YrbgcA9H2PXrmkXNJ+T9XfMldan5H6lGF7zP1BW23PcCrbTZ4L95RD/PUIG71EH9tHr4v3KWN6SgZpvKTVNtnOJvdCa2xc+L7EEt+o1d8N80vevajZl1rsLFz/UvJI65T4JSmbWPONUu23ygZyD76sMT3cMX+OnSurJC/QvqaXnjfGwNpwnkxtUq6+EjU7lvMpJPuxlJ6U8uTSdT9/TyFst3Stntr2+XV8nhhex8+E7SrNEbt3uLsb/h+hXedgjMHh4AA79Pub2zc4Hk/nkSVfMfw75V/Wno2v47ak2nCyiaEe9nC9/Gx47AtlYUw8jkfoSllhTHOJrZTGQ0s2Opc/V5d0rV3LdN0cUzH4dXV/X9KvIdbae/s5fRnHmB7K7k557Pw82tr8OUQsq7/War4mG2NgjJvsn0pndqW43lh2ZY/nxyyORbXuK5fEFSRzOdd/KVrlDH8v9btTTM/ZhzRjzGQ9i1lqy3K0rsWxjtXifbUxaYnzJn0bUy9zbSxwiX/TGmfN6W92n5Fod4uMqdhVaz855wKf7IQxBiZh4rc8M1kbx6n5Y1Jb4stN+tmC/ZH0fbScnABgtI32nCcdSfV5nB+Y6tRcJjXKVPJxYrlL/4agVNZam5qTL/xbWmfKv/CxkZyOLInFeIa1fdqG4/GIYyWGVJvjSzGCl44lfZorxzkHg7mP0/dpH7ul/liGJfdrz5XGvXSufJqD9dj6QzLEp/rs/S4RB5TYp5b6pWfID03Y3xK9z6H13KZ7nz2mNV79EN0z7E0yMkdTcMn4pOxAy7yzzsFFNtgOBhjWWXj7nNPLcCwl8juXjmkM9+a6IbEFAPDiq1c4Pj/i8HI639ysfQ6vv3CDN5+5xdXXL3D1jQucXbd/auHw8ojr33OL28/fDaWf/hPIebo+/84ez3/l8r5Pl6EOKqujx6ser79wg6vfurivW75OtvplpTVp6v8MMuT2EqnnpXMgtWeU7HmttbBwkZ45HPsjzCH/+YjSPr9G7lljzP18mKZtYRfIOvjxlXZavD3/tpMLfm+3g63DGUUIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5BOHsgqf+Tsv8Lt/4CMcXuQ/eORxO4fr73uD6++7xdl1h/37Zzj7aIfdTYfuVkP1CsoqQA3/41x7YdFfGRxeHnH3uSP6S/kHhPYfnOHdX34Hyq37vMDuOv8/9gSAD3//a9x+9wH7D3bojh3gAKeB3V2Hi9/Zr6qbkE8T/PjKMkofNYmtX/j7MT+G8pgfeSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQh4V3Wt85hflH2DxHJ8ZHJ/JP6bSwv79M3zm776E2qD4sw/PqnnuPnfA3ecOCD8x8OwbF/z4CiEN6KcW4C1GZf4seWbrP4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCce3Wt89m+/xOU3z59aFFx+4wKf/Tsvoc02/+x//8EO3R0/C0HIQ7N7agEIWYNzLntPKZW8lpabKts5N5ZVq7tWp68jLCe8Tj2vtWxhLMkWy1lLj+Xzv5VSonqW5mkds9K45MrK9b21tqnulF7k+im8H6YbY8Z0fw0A6uYW19c3OPQOh8MBAHB9cw3bdXj//fex6ztorUfd6LpuvI7/jq9DmZfMl1z/tRL2UarunD7mZErpQvxcrpyWdqT6LNePLXNyie1I6Ww8rnE9a9oaly0ZF2n5Xkel9lZyP84j0d3SOCyZOyWdy603uXJTdabKydmbnJw5WyGVK0csl3+utqbV7Ghcf1xPOC9Sc6Rk68N7WuvZb0kZS0n1a4u9DdcQYC5jq72O7VLYfsn6Fted0/c187zFP5MgkTHs15yvFK7p8Zof3/PXYbld140yd12HrusAALvdDvv9Hufn52N5cBZKaTiX/hTu7e0tbm9vAQDvv/8+Li8v8eLFCwDAixcv8OzZMwDAy5cv8fz5cwDAs2fPRrn2+/0o236/h3Muaa+BtB2P+yBnOyVjlMri+2YJsa0I5U/lSeGcbZpbJftXryuUy8A5n9/PAQtr8/5UXHdcX4tdK/kaj0HcFqcBpfRER7puh5076YekfSW/UepzSPZZOb8vt26enhl/ASjbv5SPGtqolC7WfKDafkviz5bqmvS3drM578tfspeN08JnUvdztr5UplRfQjmHPVzbfGrZd5yS2n3V1H2Jn5x6rnXPvda+WGtFc6x0X5K3tJ8I/dZwPvr0WEat9eTefr+H3e9xd3YWjKPD8+fvQO8PcM7N9DS092Gdfr4rpdB1Heze4rYzkzxd10F3eswf3qvteaWE5cb9VWKNDyvdZ4fXeX92VhOUmrerNR5Qi4vkytoy3pnLL/PP5LY/pGYLUuuONE6QKstTWhNCwv5KxUVa6qylp+SrxTNre94cudhgjYf0+yT6L50btTVLGiNcut9P9a+U0jjk4hLhGPp9Uev8iMuP6wjpui4Zr6m1NRVLk8oZ+xBh3OOhdLc0jjn5U3PT/5b2U44lYxo/VytjyfrcKkOuzNx8k7Y79KEkz61tl1TfYyQyStLD8uM44JI1XRKjWWKDt47XhXPJ/933PQ4HB2Om/6eq4/EAc8jHukt9kVv7vZ7Gz5Zir6W9Qnyd27/EpGLgp7RpfFbS/0tscVh36r7UZ127tzj5ar7d92nWwamTbH3fw/XpdU0yX0v1S+zBlvvfNePVspZIxmbJ2hTvR9b6YSl/JYzvtsRZlxDapGLcCXZmr/u+R9/r2V5KuocozbPa2VvsV7bO2bU2Ze26H8oSMosVJ+zl0jpzfVKLrab0osWXXeuztMZ+S/Lk9GrJezU5rLIwZlpe3x9hj2nfvNZ/ujcz+fq+h1Xz8yRpX8dz+bEYzhXnPofvg6eSK5Rlq2fitVNi0+O+CdNP8/BUb1z35P0spQY9ieo7Ho844nHeC9Baw6n5eWgq/payM7lYSNhOqc6k9vIttOjGU+hx7QyoxlKZ0/vv03VJR9fWs3Ttm75L5PXhlGe328F0+bWiVm+8PrbqmzReG9MaK5eWVfJ5a+dG4XsPNfnimFmcPsaq9g5vuuN9+e50HoTy+wOxTY7PicJ8KX80F19r6UsAsMbrkE+/l8suLTvMI/ONQh3tewNrw3k5rB29GvLn9ime8B20OG/tXQ4JkvlTsn+157P7DefX22GttdbBWAOXeGdqLcN6Pk/z4zT8PX/Hy79HI40pZ+0B2t77z52zTs54TGgrT3K2+HuttlP6bxGMMYvflSzVEc/dNec5cXmlZ7z8nRn0NKx/WLPqccOaLDm5HiuuIx2j2rlTmG/oIy/LffwF873VlnO9Rsua3eJf5GI8PvZYqju8F+pMzV9P3Wtf0/xYzefdkphL3GdSvWw9A4zz156XxNwlpHxUay2UrawB0doS2+4wX/psdF7e6LPNynPj+nWyUWmZa9R0d8tzs5Ku5PLFfW60HW30mGYMYPNnPWv2A7Gvmasj93xIzganfIEtabU3krJK/SuNEUvW9zXnIy3jfvIhp36+stvFaaW+QslvScUBjTEwCbeqRT/XzhdJHa3llmSS+Irh/ZQskj11SoZxz6v1bCysMUDBNx/s1zyu6GPc3t6po0nEwk/7ypjW9TV+rgVrDLCL+/N+DXIY7bMxBjDrdcna+Vid/E5ZbKvaLwZ495ef4+x3O3z4w9exC3Vfhq+7VNYyu6qMwotfeYZnX78Y6koJICDWUQWF579xiQ9/8LXk6fHKOjfT09ZYjQR3X8/p2eHvvj9CZ87ul9S7NC44raNtPUldp363kDvT8nbhoXwIUocfX1nO40UICCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQUuTqNy+w+7DD7efv0D97nA9BX3x7j5dfeYbubvn/ZLjE1W9e4M133+Hw7vFByieE8OMrS+HnggghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkI8Z3W2Hi2+ew5wbHN7rYa7s5nUoAOff2eP5r19i/+HZ5uVP6nIK7/3iO/jwR17j9rsPD1oXIZ9W+PGVRpxz+qllIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBClvDe//MMf+SX3p+kXf/B92B/4qMHqe/dv/8c7/7955M0pdSD1BXS3XW4/O0Odmfx7GuXOH7miONzs6rMs1c7XH5rj4vfPsfutttI0jraaLz3Sy9weHHE7ecPOLzbw1wYuDMHAFBGQfUK3RuNs1c7XHxr/2iyEfJJgB9fIW81SqnJwuqcG9PXluvLKpWbygMA1ta/fhbml5Krr3avVp5zbtK2sF/j9NR1a71xfl/WkjbkkOiAtG0pWcIxrvVLDl+utXZ23fc9AED3Pay1sNYBuB8v62DV1LEL+zCUoeu6SR6JfNJ5lKqzNG658mrjniszVV5N5lz5NX2XEvd/XFZu3kj6Oh6XXJ+H+XJ955xrnmOt/ZHry9DuxGml67WE/aV1+jtqEh0Nf/s+DstuWYeUUtBaJ9uZe742rqXfpTpqc1g6FpJyUjogra80X+L03S7t5tbsQOp+Tmdy6SHhetGqe6F8cVmp+/F16netDimlcYjn/NI5HtdRWrcl60er72StFY19aVx8PmPMmM9ai77vx7W+73vc3d0BAI7HI66vrwEAt7e3eP36NQDg9evXeP/9IZj1wQcf4Pb2dlLX1ZWGtfKgz5s3b/DmzRsAwM3NDT772c9OZPOyXF5eAgAuLi6w3+/H9LOzs9HH2O12Yzu11jBmkCP0QeK5u8Zndw6IH/N9q7VOzrlSPfEzEj++lVi/1tQxnwdtfbhl++J+jedLasxb5KnZCK9rY1nawLmwPAXnLKzN91HJdjy0rwRM2y+pb9grjE+Mz6X2c4+JZE2P/abwXmyP/W+jzWzfZa2FisZU2o9h3aG+xnv5lj2JL6vmQ4XtSum91vNxLBHWF8+FWX8eDfp+mufu7oDD/bqhtZ7sMWr7LKmvIV3Hy/4dMNi5ZX5jqv7avji3n/LrWpie010gb9/idSosq+u6yTrqnIM920HrDuGc3+120FH5qbU1XAfja3tm78f+1D9dt0O3m+pDXGbqd1xfnEcae+k6Da2nCFpClQAAIABJREFUa9tu18F06cOoFj+3tv7l9CX3+z61Wl5t/1ubb6WxkM7F3Bxreb50v4XHiPW1POt1ttRHretrvOeVrEs5najFKkO9yM2/MP9D8lDlr4kRleInEuJ9gpTaM+G6C8hjkV2jLYzlqMUvUvcfYm/Ugk34WLl5tbX/u1XbU+vBkpi2NGYZ55ecc7TW0TKvluxRcrq6ZO/Ykt5ybtKCNI6Zu7dmX1ryOSTjLR2zlnh1S7n5tk9lHOzqVG+07tB19bhtSb/Xng+V9gZLdCm3JhprYEw/iZcdDndQd/n5l9sb+WtJzBtoa1dqn5LzwVO2Mlf28XiEMXbMb6279//D/jeAaevzUh+kzoOGeuprR1yuZJ+yZo1LtSPVz5K4SJwvVWYpT5yvRO2cyRPHQzy+X2t7IWk98XP+WmrjUnGIME3q80rPR3L9ksLnrfXBY8caa6Tk7ftetAdYu08IaenrJayVc6l8Uh8cqMc1auXP7YeDJN4iKX+QGwh9h1xb1vpNcb0S+VrQvY+Tn2QxxsDosoxSJLYnt8eoldfq+8WySNbX4X2qaT5j+mR5W43PVnYktVYZY2C78CzolLdlfgL5Obp07Wtly31Ha/3W2qIfsJSW+Varyxo7+q2+WGstdMP/F7Lkz9TsUos/PjnX6M1szh2PR/RIx65a7UZNr5fWkaqrlJZ5ukmeuC9Tv1OyhP5qSbZwb5WKHfpn7c6O+2al3OiLelm6rsNulz43LbUvR/hejJcxPu+V9LmX0a/pYbW1sz45fg9ZXm/K4+Ym41bzsUP79ND+ZAspm5Hq49k7Gt1gy5yy0zJ8vyb6Nt6T5ajtX3N+3skPRPJ+rb6wzljXnHNQSO/x4vbl6k7t7VJ78dge1JDasrBOaTlLdfUxdTy3JubSS/GP1v360vMEybuHqbwpedLvoKTf4fLPhjY697y19t43ne5HrDXo+2k5sSy192RbfbW1/uiymOw8Le6r1vEvxR1bZEzZOkkZLXv2VrsZ/r32nE2yZ8i99yUvf9pWH0cW75d2YV7fbgPt0uu81X4uBWlB7DocU5+v73v06r5sZWGtmfTH8A5dm01P0XoO+dBYnd7nu16+VwLk+4Tw3W7P8Xgc+95Tejc2Zdukdq7V9pXmV0nGuIzUWqJs+XyrJpuk7rWk9qw1tNYw93Mwbl/OXan5d2tYEhdJ8Zjvc6yx70v7S7pmaZWwGX2Pvk+/R1VbP7z9tp2enDcC937T/b+xSMlj1dzWD++wT/Pm5mDpXfetqI1HKu7T3/+b1hCpXX6o9zCW4tcYL5Y6Alf/7x76H1zAnFuYzxjcPT/CPLMwlxb23MJpB9c5wALKDh8y0XcK3ZsO3Y3G2Ucdzj7YQR+G98EcLI5YvkeQ+PYpdh90eOfDq2q+OC6Ts/tbjIuPGYSU9ucte+1c+pI48rQ/AGMsXOG9/CVxd9lcyKUHMQ9hfJJsBz++QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkE883Z3G2Td32H/jbHbvqT5IRgh5eto+/0cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGfEPjxFUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyKcSfnyFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyqWT31AIQsoau6+CcG38rpcbrMD13P/wdEt6Lr3Plh2XF5eZkSaWXZC6lS8qKKbUhl5aTpzVPSQ7nXLavU9epcc/1R6tsAKD1/DtVqbRcvak0a62o7t3VEVdXV+jOLc7OegDA1dUV7E7jvffew5mpm/ElupF7LjffUsQ6HrY5nFclHVuio5JylvZJilzZKdlrtiAnV8n2xPlytkhqb1LP18ZaqvdxXVK5cs+upaYXEt1aYiPD+uJ50UKp30tySda0ki6V2u+Rtqu1zZL54utP2elQLq212BbXqPkcNblytlIqY8u8b1kfU3arpj81X6nVLuX6Jsbfy63PMXGfpfowLCs1R1LyhOVorbO6obVG13UABn/W17Xb7XB2dgYAePPmDc7PzwEAFxcXePbsGQDg3Xffxe3tLV6/fg0AOB6P6Loeu90ZAAdf5cXFJfb7oaz9fj+We35+jmfPnuHq6mq8d3FxMd67vLwcZfH1K6Ww3+/HdnVdN7Y1vPZtK/Vr3BdSu6m1vv8zzd91Hex9X/rfUqQ2qLRvCAnnjFJ6kr4lvo+tmsullK7Og61s3xblbumTJUof9xUtfkfs/5T2jKnrUpmlfBI/V2uNMMkXF++fJGW33D/VV/dVW56trUmDjajb9ZLOt7YtXntze07pnjVMi+fIOJczfpMxFn1/8nvivVgoW05fB7vpEHdDuA6t8fla+jf04XybS/6wUgrGWRhjJmUZY6CCrozbX/N7t7DJEn3O/c7tC30f+f6w1g5/dmdR7Mvh4uI8qfexH5JK97/NzqLrNADfd8Pa3zk9K6M0/rn9R47SXLHW68l0Hljdrn+puSB5rkqHmV3yPookZliqO/V8zZ9O1VFKXxOvS8mU0mvpuLTupUv1x9db3c/V60ntQXLtKrUvns8SGyPRpRa/p0bNz8jt89bGfGp+bdzWNTGaVNm5+iX7z3he5OZOqw9dyl9a72r6OrfJdbla9lO59oeyxDIPz8lkkPrj8fVWSP1kyd6idF8qe2r8tt571XyfGq3r1pL4dKnskvwlX61W7kOx5fjV+nXtWErmQ6yjufhZqPu6N+NzUz//5M+Gz9b8s5TsUkp9FO5f1o5brs9C22e0gbXuPs/w9/F4hO5le+nUXspft/ZPq41a2j/hc9rayfy01sE6C+emcd3WuuJ96FYsKXeNHsX1SWLXubhI/HyOh9pzt+Qr2Rt/PxenCJ8P040xk+u+78ffd3d34zPGmEm/d12H83OHDz6YzrHf/uYt7u4Uuq6bxNf9/jJ1nTq3qMV2cv0T2tH42VIsTFpHLZ9k7KS+fc1Wtsgnlbe2Pyql5doYj4WUln1tTr4apdhjqm0t/RWP3zwuZOBMvW/ycvjr0z2p792KVOeW+GJDPoWwb2I71upHS/SlZZ+1hpIdKskzrv/azux93/eDr2S8/3hKt8dp3lkcMfA7T+UdcYTNPpOSS0qqrFybcj7e0r1mnCcXu24ts4Rk3ZFSs29rys6VJZkj0j3SMMZTO2WtBYShImnMYYv02D8a7M7p/nCe8fB745RMpfTauixJD9sex6pC25CLpeV0Zm0cMy43F8sAAAsX7KftOI5+zI7HI/q+G59ZqzPh79A3bm2j93v9mn5qohv8834aI5DUY8c95CnNGANt63toX+7Qd+FYnuaA1KeTxhKlMqV+L6mj1cYppWDu102nTr6KcxbOWvS9ge77ou4smcu2z6+Tzrn7tXy6Hz4eDzi48rtEqfY7Z9H3/STf4XjA4VDWmdZ5hA6BXgXxnWP+rLYUX5f0+dr4bunZ3PiV9hap56V7r5Iu5d/FMHAuvDf0+RE2ij3O6yvJXELqI6QY5G2b18aYotypdobp3oZ7u3nK5yY+S24N3PrdtNa9eJgu9ZtC5j65Q99P4641fzOVvjbuGK5HcbuMMTCfwP8te0nHW/awQNB/s/FVzTGD1BhYO6wbOZ86zB5nSZUX1jmfixjWO7NujxbW0ZqvZpdKNv/jdLYmta8PdW6wJVIZU3EHY3o4wdlSivjsIU5LIVm7a3XFdZbWJOfmc8w5i/CRtXFBSVzF58uRjkv16NX6uS6pf23cZ0u2lCX2A+XPRHbAGuiCr5paS3Jp01hvOray9NygxGPY35DWcZTaZOneNuZk/055DocDdGWPF1Paj6/p45x+Ll2Dtjrvb/HF5/7Z1Aey1sIJ/JeWeM8a+z34V/W8retay34WwEwvfZq3C489d8mJT+AWixBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQurw4yuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBPJfz4CiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5FPJ7qkFIGQNzrnsPaXULE+cv/Y7le6vffm5usNnwrwlmVtlkaRLcc4l25ZrR6r9pT6J64jLLqH16TtRqTqW9GlNjlw9Kb2qkSqr67pJGdbaqsype6FMLfVLWDpfcvdz+lPS6XgupfRxre7HdZauW/pSKZXNH7crTG8tqzQuS/qm1t8p2VrSU+Uu1WFfTqsuSuou6W+cnpKjZRxa9Ku2tkjbkyLsj9J8TbVtbR+kZJHcK5Xr7Wq4hqTu18g9v0Qmab1hnV3XJcuWrBspWVrGoiarxBeI5anJFD+f08U4n++n0rqR+i3Nk7oXjlPYV6l5pLXGbrcby3DOoe97AMB+vx+fN8aM6c+ePYMxBgBwOBzG67u7OxhjcDwex7p3ux7f+739xC/48R//AfT9bpRlv9+Psuz3+1H+s7Oz5LXWeuzXrutmehm2UzpOa7DWJnUyp1f+GWBoS/hsPK9T87xlTdZn3X1fOQDDva7r0O30KGMscyhfK/4552yibAtr83uREnE/LJWvhVYdKfmNwx8gLjLe57SuSVKbkENaZ8nPzevjcE9rLZalpf6W51PlLFmHrLWjLg55w/wq67+1ytaaHuqRv/ZzJJwrYXp4z9r5fA2xxo7233O4u8PhmN4Lx/M1peNeL4a653MjZcclvnlYX9wuyd4k7q/Ucz7Nlz+IpII69aQNqfqWzPeUDEvTl/rF4dhqrWF2O3TddLzPzy/Q6S5+tI1OQSk96cOu69DZet+W0kJabfyQf+4LlvxDKS1rWsmXmdul+byf55/a9VwsQBLviJ+X9EW8V5HsGXPjnZvjJX8sJ0t8XVt7SnvOlN315Py8LWJJ4V4tLj+WUdr3JdbGe0L5cnKtjSOFbOFLptocyr/UJ8ihtRY9X4pV1+IjD+ljS2Qv1b92XrTGQUvP+Hsp/yVlS0qyr517W+4hWuMVkvW49kwt/SFp2Uul9u+1cyHJeVTpd6g/LWcNqXlUk7VGqt4l9qIUx2w9W5P6HLFe1/rS72H9dclGzn0ob2OH+8YYGDOPF/X9EfZgsjLX2tGCNJZZq6fkb8ttiveNHJwxVd8h3nt4ef11/DvVplQbS3oYx1CX9Hsoi9Yu6nNAYb5+bEnNd0r5xg8VL12zPi2xMa175BprYjnS5yXlhDoe7u/icQvXp3AvcHFxMZbvY/bAqY/P9w5ddzfR3f3ZHs6p0SaG5xvhdc3v6ft+HqsO4vshqXlc2m+VWBrzaGXJGLc+k5vTEl8tri/ea5XkrLGFrajFcqR7wS3GVbpXSfX78nMUA2vj8obzkxQ5HZLuJyR749KZtb8XXp/uGzjnz4WGeozp0atTHHgtrb6i5P4WSMbfGjsba3+mepqTp3RnynJ3xszqNcagR90OLCG5F1ApH7eH7uVjLd2H59aLpdT0wo9NS/0tPsNSvVyyjqSeb2E4+w7t8r3OW3m8reWMu0Tsm+f27ACws+7enp7WUWsN/NCujX1Jz6tz72qsrTdbXz+3DcMYlvs7jj3kYocpXy/eWyyJ6ymlYI0L1pHT+uplN8ai79tiTnEcteZXlPZ/cfv9tbcXVnubeKqj73toU7aJqflhTdrfqPlu07GzQfrQp74/H3JtlMRES2dVa/ZfsnjP5Ne415me+9frS/mrab/LjfoMTNf42L76Z+KxDn+bII4S5jXGzc7w37y5xeEwfW8h5UOG8a8wX+qZeUwsnbe0F5Pun3Myb0nJJiw9s43T1u5L18Tal5Tl87WeyUn3olv58+U2y3UuxZLzjqwkka3ItUV6hp/PU5bR1/0QsZGa/pko/uvrTvkaS+Owa2VsyStdJ0rlt8Rgh/tznVwzL/26lCtn/n7VdP0axtTrrAqeCe1eesyX9C8giwUs0Z3cfI9tYOtaJJ1rufhXTsahH8N7TWJl69963knbJbH/g188j3040z4uMfG+PydnKM9Sas9O/K1M/KgUJ1q71qXu1WyNtxVhFmMMUtufh/TnYhmXxmtSZW3phwFp/3LYE4iLAJDwW02X0BkLF+h4as8/FOOCZ6Z65pxLxhhS41yb06m9dKotNcJ6cnH63BoUypFizdpaotTe0p5HdQpaT/2A4d971N/FbZWz1ZdZSqkvWuebdH2V1pHTJ4X2dUyS/hB7uBSSelpliW3/KW3+76rJ48KPrzSilPqLAH7fU8uRwQE4ArgJ/vw2gK8B+DUAX3XOfePpxCOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5OMDP77Szo8B+P1PLcRSlFK/BuD/BPDzAP6qc+7wxCIRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIk8OMry1AA3P3fbxs/AOD7AfxbAH5XKfVfAvgLzrnfelqxCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5XPRTC/CW4oK/38Y/6v7PZwH8aQD/UCn17ymlqA+EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5FPD7qkFeMtRTy3AAvwHWDwKwHMAPwPgjyul/mXn3PtPItkCnDs1xVo7/g7Tw2sA0Pr0jRmlVPI6RCk1uReXF//OpaXqz+VzziXlidNzMufI9UuqvvC+vxfmS8lSk6fU3pJ8kjKk9Uquc/Uopcb02jjkyjbGjNfW2vG+vzbGoO/78Znd3RF3d7e4g0Pf9wCAu7s7ONvhzZsbHPvBjHu9UkpNrnNylvQ9l6dV30qk9Csly5Z1xvXm6nzIulK6Li1L+mzrmC9BMl+2oCZ/be6l0sK+BKZrh1SWUp6c7SjJ6O97OxDTIl+un2r9V2pfSf7QJobrgrV2sf6F60wtX87WhmttSJwukSsnR268cnXX7rfqmNY6KYO036XrXnivdV3w8y3Wk7hOiY5JkdrIFp3PlS+Zs2Ge2B/I2fWU3xn3XWi7rLXj79CnOB6Bw8GMzx+PRwDAxcUF+r7HxcXF+Pzl5SUAoO97nJ2djeleX0P/RSkFY8woZ9d1Yv/II/FVUpy5uT2TzJ2wLTUk602so8N4WoRDaYyBSqhITm9qpOS3au7DK6Wrbc3JsFS2pWzpP0znTb6O3D4rLkNK614wJrU3TOlbq+1a0rehzZf6ekt869Qzsa30NsdoA2vD/MOeyPXpvlpKqR0lWx3aMo8xBl3Xjb/9ddyv8e+uM2N5oS6EZcdzO9xPhmuCt/fGGNzd3eG8t3j16iP0vRnzf+Urt7jthvLOz8/Hsp89ezZeX11djfLv9/tRFq315Drsg1y8RbI2pjBnZlyXPBcX59CHdD0huXTp/CjlW2NHcvPLz3X/u+u6yfobP1PbH9b23MM4uJnNXLpnjZHYq9S8iGWy1sIYme8dX9f6oLQmtOQpUfMrwrkb1yuRITdOS9YEiS5JfOEcsQ2L949b1FGrsxTHbF3TJT7p2rhWaZ/QsteL01O25THjZVJK7c+xVs64b2oxnofolzX74VI5uX1mDmkcWRpfb5lj41qk1MwOmL4HMuujlC39/q3GKyZsd+xfSWIpYTn++ZZ9cUqOErkYVSxfTuYwPSwn1w/x8zFSuSVx3BS1fpToQixjOE5rkIxzLF/JD3lscnPK7xNP+8PTeZoxCs75NigotXxPLHmutl9uOS9cooOxjzv88c8Nz56d7aBdWww6Zfcla0GqPX49bRkHiU1L5Y3Pd07xaDVLK5UtlVW6hkjiDJI2b+Gjtfr5a6nNiVC/anOg6itk2iA5YyrtpcK4TjImm7DVpbr2e4urq1eTtOfvPMf+IF/b4nulsffytazjKdbGGmMZUmuddM1qWR9b/Z0Y6Rmlz1vTw1z5EhlqablY45J+W8vS+HGIVQ7GWIRNPR6P6EyXfyggFXcY4kwnGYwxMI+/vZ3U70n5OnE+v9aHflDYP+HaWxuDJWf1S4ifbfVzW3RpOl/nPtq8HdNz65IMcZaafW7ts7pv4suN5WqPlcT1pPYDUrtTKjdVdi3d1x/WuWVfhjqy5dlgK7kYZVy3tfdnzqauo6dnltv60vurpfcgQpsU2iGr2/oyF0uQtql0ZlAqozQXyvXN56C1Tuwb1uxIKkYeznu/98mtJWFavJdz1uF4HN45dfcyG+PQ2UEH+uMRfT9/f2NWTrCmhPEHqZ8aIo1vT/P5fhn6HtUxS+iXHvyNU/nDOzK6n553lvDvhnhZhrQevVq+VtR0Zsk7MiWkPrNoPu7uddWe1k83LGTD88F5tqRcyfxxOpwzOfse/1azdSYsN9wHhuz3Fmdn/STt8vICXde276jFWKYx4PnzEr86Fz9du6aXxi5V59IYTyktpHXtC23XtF02iDX69Sw/l6WySs8et7CXpXrWMFvvtJ31+zC/y+XUdGFNbKo1ZrHkTNgoU1wzavWUWBq/Dhl8g+gMzRiYQLy1upGbP2v2D0vIxRHXxHQlei2J1ZdESOt8qPenOn0bT4+48awj57+eZJC/51drz0Pll+zHJutNYnz6voc27euvRM55/8199FS+1jpbdVYaK14SkwzPlMI0qX3dqo1LabW3p3ly2lMA5fWs5IPn2rnUTwnrmJ57zX3IXEx4jV8iQdK2reIVHqmvqbWdxEeVUuhNP9nn5p4vnX+mYo7hHiclmx+/koqe5lp5DkrIjeGaOZZa31L/3k7iD0qRnBlKygDqscLc+l2rX7rWLtG3uFzJOrCl75Wbr1vsWWq6vuQ8LPW7ll4va253c7LkkPodZbnmss18vW23f0TAupNn4oI/0nxL/rTIUStHBX/CZxWAPwrg/1JKfY+gTkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3mr48ZV2VOZPitxHT1r+hOXkPsSypByXuAcAXwbwPyqlnpU6gRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQt53dUwvwtuGc+9Hwt1LqywD+GoAf8EmYfiTF//5bAP4GgL8L4KsAfhvAdwDcAugBXAF4BuAL92X9EIA/fP/nha8ep4+m+L8B4GsA/n0AHwK4vC/rXQCfBfAlAL8PwD8O4HvDpiD9ARYF4J8A8BcB/GvijiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5C2DH19ZgVLqDwD4XzB85ASYfnhFAfhNAP8pgL/snPtGpbjr+z/fAvBLQR0dgH8OwE8D+CkAXVCH//v3AvhZAH/COffzBXk/B+AnAPzrAP6FoAz/8ZXwoy5/Uin1l5xz/3NF7idFaw3n3Hgd4tNDlFLJ9Dh/Lo9SKpleIyzPWlvNX5IzVW5Jrpa25MrJpcd9lmpbqb/jcmttju+X8kv6L0coV+46V1eq3jDN66m1dryO7+92u5NeO4WzszPYM4uu0wDuf+80Li4usOt3UEqJxk7SJ0t1vKWOpfWEZUvGopYuKS+k1Mep8kP75OvzZUjsTWt6Sd7WuSbJV5sbkja21L+knx5SH1tkkdYXrmOh/JJ5LLWfrXOnhTXra0hqnpTypX5vud5Lxitc/yTrfKqMJfrTdV3y+RYZUuW23Ivvx+1Y4tPEPl1NhiX+wNq5BMh9uvhZP7/988YYHI9HAMDhcMDhcAAA9H2P6+trAMDxeMRHH300pr969Qp93wMAXr9+jYsL4Md/7D0Y04/1/fIv/w7evBnqvLi4GPXl5cuX6LoOL14M33fc7XZ45513xuurqysAg37t9/sx3aO1numuZH3L6UmYnhr7EG3MrN+NMbBd3Y4vmRdSrDawNvZTLazdZn0B0vI7ZxP+8aneJb7fVv5ibizDdnRdl2yX1nrReGmt72Xzc63t+Zxetq5j0vyhfWyzweHv8joW1y/t19IaW0orpXtS/RP7zSMdoPW0vK7r0NlunjdDqc0tNj8er9R+FpjayxbdOTsz6Lpukm9/fg5VsIs1mwkM7d8fDV588zhJ//KXvxf9+dn427cl9oFS6anfvp/X+pTpPb+bzGdrLZSbztHafqTlnif2YVLXS/Y8OZ3MlWm1vl9jTrbteDzAHI6pYkZi/Uitt84BuSkr8YdrtO7Phz9pWbwf02J7cvorIefzGW3HNd8Xa62DKuw/JXvTUhwqN/9a5tuaPW/u2dhmScjF9XLlLPUJavVL17XaXqbVBjykP9pCaB9SbXwIOaXxJUl66V5LHDpVjsQHytW3NCbUqpe5Z0r7rxwlmUM9qMVf1tQjz1O26VvEIVPk9ispJP6IdH7l6mhtZ1hOyXeUypWr08cnPFvE7mOMMYtka10DpbK0nrvU5Kr50y37zNR4bhH/Lp2xSM5apHoh68+TTRjKDcdj7n/l1oEaa2IAuXhxKFv8rDEmWae18/jPeG/vcHd3N2nf9fUNuqMefehTvGS+L0j5lqmzyxwl27elbc7NuaHPfP+qYF9hp3lM21iWfO41sTNJ7ClOl9qbVtsb6mXurENKaY3x9besqSnW+qg1W7OljUit/6mYtqnopeRMJPbnl7QjXmO3OjONzxE84blWzBZ+3JoYldS3lZ6D1MqV9rVE17aO3ZRI2ciaTavFwad9ism1tVa0N4vnWdfP55616XeaarTYKy9P6rqUL3ffWgtjTr6A/7vvDcIjKEkft+55W+VN5VnS31K9PK0x89ibj6eGPsGYXrETQ39bhD6mta66JynJWLID0jPwUPatKM3nLWNiYb5SXCT2lVvtZymmn4tzxHKt8WFbz+asmutobr/QUn+yrkT7cz6AvN6p7W7fV58hAAAgAElEQVSd76F9l9jDUMYUuXbl8knOyNNpvpx8+UviZd5Hyumtb9fZ2dmYL+VrJ2XWDloPz2utoNR0bV0a4wj7uvbORy4OUssHANa44Rxmtu619/Pw+/TsEEPIz/0tzsokz7b4kFuw5Pw8J4+PWZz6FoNtc/Z+P962fkr6wiq/Tp/qLJGKFZXzT+dXaT8nPcfI7eE8tj+tCf523/fQfeY9ikJdNbk8YVwoJp4H/nd8bpfTpdI5da2+lG//EAw2TG7zWvxcyf5hiW8pqadFFyR+EwBYPZ8HXj9b5ZPg65LEm9YS/juOGqEtyfkRS/fYrfG7oa7yO4NbUFvfU9R8qtr8rtWzlX1I6bU0juz7xY57x3oZzjlYc3rXxKeFc0n3BtZObcPxeMDBDX6ihUXfT+9L5uLHgVb/wvsVzp387lJMLh7LVvuzS673PYySv58omcc52Vr12pchOZvO1dEf+nEtGvYwJ/2t7Q9SaS2+a80vq/ngS/fNLhE/Ksmy1VojLTe9HpzaWdOT0vpUq7eWXorR5AjPAST77xSSWAAAdFrN3j/WKu3r1s6K4ntSNZjW5Z+7Xy+sBaLhG9YPmT62xpfX7iVTPgYa+qJ2ZiJpY2nsW3U5fjZ17p4ao1JdqTolMa54Hree7T4UOX+0tPZKy7WdvL/XsMaWT3Vi+NvHM1riQk1rUjLv1PchHx8+/t72xxSl1I8A+N8AfA6nSK6PzBoAfw7Al51zP+PqH17J4pwzzrm/5pz7kwB+FMBfDeobxQHwJQD/u1LqJwtlfcc59187534KwB8E8LeAyQdjxqz36T+7VG5CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQj7u8OMrC1BKfQbA/wTgXUw/n6wAfATgjznn/kPn3N2W9TrnvuKc+xMA/g0Ab8Jb93+uAPycUurHBGX9IoA/DOCvYPoBlvDDLj9Y+pgLIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFvM/z4yjL+MwC/B6cPlgDDR0uuAfxx59wvPGTlzrm/DOCfBfAqvgXgEsB/o5R6KSjnCOCnAfyvmH6AJeTfWSUsIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfU3ZPLcDbhlLqnwLwr2L+4RUH4E855/7GY8jhnPsFpdS/CeC/u687/HjKlwD8xwD+lKAco5T6twH8PQDPgzJ8mT+hlLpwzt1u3ITVKKWSfwOAc272O0UuPXy2di+XN1V2rr5anbVnWuTNUZJNkq+1L1va68tWSk3q8WWk6q71zZL+DuvJXaew1hbLk+vFVGbn3KjrqX6Jy861WWudvKeUKvZTrg+MMU35S7LFebQevhmW69NS20t1SvQkfr42frEdyl1L5l6rPSnJkmtH6TpXVsySeZWjpNelOv0zXlfCtJi1/bp1mUvmRcySuZx6riTzmnWgpU01nc3ZgbWk7EULoe6FZQL5PqqtE3E5LTJI7GWOcP0tyVayK+HztXw+Law396y0L9bYpVQbW/UutT4652CMGcs6HA44Ho8AgNvbW/R9DwC4ubnBzc0NAOD6+hofffTReP3BBx/g9evXY3lXVxrX12eTuj/44APc3Mzl/fa3v43dbocvfvGLAICu60bZdrvT9rDrulGXjDGTsQh1LBynnE8Rzwupf5EiflZrnZx3OR7KdsTEupxCa/2g8nRdl0xv9RVLhM+HbZG0K5dH2iexrlhrgz73f+ZrYIv9S9WzJD3VTy1661F9D+em/WOthbVW7E9LfJVWvWjxbVv2UUO5vuxla7Okn0Odk6zVfn7n1oaWNnqUsrNyhrHNP1PaB7ci0eclcYdWedLzVSFMTtn9pXsqaXrJz43jFSl9CtPja5/HGAPn3OgHOOdwPB5h93vc3FzD2lO4znzrW1B3h4ndS8nm+0lrPa4JSinsdjvYvcPd3S2U0mP69fVr6IOe2c5wPYl9gNp1idBv8HXGj/p0yf47fi5Hqy7M83hZhjRrLbTLrzWt8udiKp5Wu9ZaVsu6mfN1WmMspf2o179U39Xa+Vh+30P7dDla/WZPbDu2jh23ItknPkW5kvwp29dqD1viMTHhOtL6bK7+VLokJrrFHEit787hfm1wQVrd345jyJI4Scom5vZUqXpz/bEkxurXgpoOpexwLSb+ECw564mvU+XV4pMS/V2rm1JbUIudtZYZ5yu1NewLaYwxVU4LpfJa+7zkR8z1JfbDDIxRs32yMQaul611y/Zv6Rh8SM5vjvcMISWbk92r7h3udtPyzs/30Gq5z1jzRyVyAdueF+Xq0b2BMad2GHOvF8H/f6jve+i+3B/xeEnalYpLLaV0ntU632q2JzUu4ZjXbHPq+aVxkVpdLeRsZi59iV3I7etysYBTXfN53/cGfW+DPPP4emmtC+sK8y3p77B+aXp4XxJLW4IkDlWaL0tsuqTP4/qlseaWmGk833K+RhxvKMUeHtom5/QwNUbl8ZunObf2HCOc++17Nsm+SzL31tq2VHxc6i9Kyl/iu9b0OtybxbIs2Qvn8vS9ya7L8SNep3Kc5ptC2Ofxc5J9ZTh3l9lZh6n+qqzdXbv32HI/kCozZ8dCUv5E7pnWfW5LHGBpWanyUvZuvjeYtsUYC2dccd9QqlMi61q7pIyb7RmMMTDqVG5tDxvLUqqv9DtXR+n30jXlZAdO+9LaOV6uXk8tfiTtq5ou2y6YT/6vcJyiMSv5FCG52Khvl9T21d7v8z6CvzXOD9Me6zjFG9M2vhRX89fWpueuKaiTNMaXy1uzhy3PxPW11hVfW+sSYwTAyfxgKek6MUnzE9Lfn67dbnY2ItnLaD33BY2xMGY6T8KyfbtTdjjnKziD8b0xfzZ+e3sHfSjb1LDcVj0IbXnL2aAkz9ZnZkvsv4T5XDbFuRzTsh+exwry+zxpXbUY3tJ9YKzztTmX05+1McawH6Vtke7xQnJyWmNxijsH8feNj4SlNjn1PlFqH2St7Dx+SzklSGJXQJvetNZdozS+of32Mlpjk3bERWuEl6H0fs9SUjK37AO3GtcSsa8qeqc06FsvYti3tfpa16Hhfa35OVO8JizZQ5bemw5jwqk8a2IyErmme4CTD7Ok7JYYVYuf2rInqeEWvnuaqnNN/5fOQYd74d7T55WNi3T8JGcorW3c+iy25Xnr5vbVRXG1EIl/rZSC6jS0nu9f/ZxN6Wsunpvec8cSpMcv1LncecYSfz5VDwBoi1m7VWK/IYn3lXRScgbUei+VZyZ3p6C1mvR/y79D2Wr+r6XVz9ui7lyMrTZepapT+yRJ/dL2iGLpWkNF71Z0XQeV0QmpDmzhi0vmGXl42j1A8mcxXYX9idv/4Zz7K48piHPuvwfwlwIZgJOX9dNKqS8Ky/lNAP8FTu0K23cO4I9sIS8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR8n+PGVBpRSnwXwk0j9LyWAP/fI4nj+LIBjIv0MwE83lPOfF+79oRaBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5G+DHV9r4FzF81CTmG865X3hsYQDAOfd1AD8PQCVu/2RDOb8K4Nf8z+j2Dy2TjhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQjy/8+EobPxb9Vhg+VPLzTyBLyP8Q/XYYZPsxpVTLGP9NzD/iogD84ArZCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5WLJ7agHeMv7JTPo/elQp5vzfwbX/IAwAnAH4fgC/Kiznq9Fv/xGX714l3QPhnBOlAYBSKnm9pJ74t7W2+oyvUyk1uS7V6e/n2tQiY64MSdlbkGprmCYdS8n4Sqm1vSaztH6lFLquS9abuw51ameBruvQdSfd0VoDukPX7bCLzLjW8+8t1fo6pcOl8lqel+pYKV8of6mu0nOp37W6nXOTe6Xyajq4VsdL+ZbYCKCu49J5tcSObGHXJM9JnqnN31pZkvTada6eVptTSq/1xZJxjOUO64nnT2s9YVkS+aXENsTbuFj3W9cVrXVRxty9mk1bsr7F5bbOJWmd8bhIxzv0byRrTE6ueK5IdLwk89Ixip+P13P/O7z2Mvs2dV03aZ8xZsyz3+8BAOfn53j+/DkA4ObmBt/1Xd+Fm5sbAMDhcICzb/D8+XM452DMIPPLly+x35/m0fn5OQBgt9vh8vISu93gQ7x48WKse7/fj/WfnZ3heDzO0n17/PjF/eh/h+Ob68fQ55VwKic9ZyVltczXFr8jJpSrRde3xMsf1792b7CkX0IZJD6ZpI64HK11lJa2S6n52kLLcyndDPtCYjvn/pkv81ReuN9IldWyJreMb2odTctc77fUfWMMnJvKY62Fstv5BnH9sY6E175vfHp4z9vIOJ9Pt9ai7/tJun/eGIP9mcWrV7eT/v+NX7/G7d2pL+K5nIoz7Ha7MZ9fX857i5ubNxOb9Pr1a5h+P3s+nEexfS3Z2NQcl9jnmj02yt73ySnf8djDHE5rpZQ1PrRSKulfxWk5/Yl9Av9cqBfGGPR9P+rM3d0d+r6HOz/H3c2bcS5Ya/Hq298Gbu8mazPgYwfdeO3X+rOzs/Ha+xZWe/nsfRv1KHOoQ779rXGtHLk1yTmHvu9nNqjve9iuPRazdq3L+Z7DHJ+WYYwBelm58VzJrRPSOZNrT25dKJFbM2I9S/k1Jd+8tN9dsqaG+HZK1rRY7lY/v6bvLf7eGh8zZG2Mu5YuLWtp/MYjjbeVYjS1WIuUNTrqn3+I+MsW5a05H9kyLlMiXldtp+GcRVh1b3ro+7UzR7xuS/emsb3bglJcRDIOpb1B/Dvn8+fGrhRneQhSskhlC9Na/ZC1tiAV+6j5IKk1NRUTkvjKubIeY04ujUt6SjIuWQs7Y2bPGWNgjEr6Z848XB+l9j8l/Q7jaPHzMam+KeXvdT/br8XnktL+ltjLmJSelGIRS/UqV8/Q9jBfKhpUJ9feFh9yybz07YrXIElZS8/wltoPa+1kjZXsWZbYK8ne3fsmJf2Lr5eSKiOM+2xFGCNqRbKfTNmJWlm5fLnYh/8d5/XkYtU1mVK0+BAlUjod7ifW7C1K1PQ0jC96au+ApM45W3Q0limuP9UX8Xq4xu88xdWA0JL3fY+dncY4Sr7ivExfnp9jFkbl5ciVlZK/1ObSvmMJXW/T/k4QM5PIsmR98eMseS8uRWjXtp5LJVl8PDaUWynvJ5bPLHRvYe3UHvd9DyP4/xtK2ivpN4vTea+X/Xg8Qh/b95FbsdY/WRNLlpwzt8Twwvh8WNZaWtdxqxziM7BQR0VlLJybLfnSz83nnBeldhb/EL5UjZRetL4POdiG6XlV3/foC7Yht+Z5mXI+Qeo6PGNKkdunKqXgzOlcQ8GOcTB9r2v98YjjMb/G+79L/qTE18ztFUv7LKUUrPH2fPpOTW2upOSwxs3jjX0PdSwWNS03sU4cj0cc3dQXl56bhCzZly+JD5f0v9VeW3vvx9mTbXDOAs7ej5P8TFe6fz2N4+n+8XiEOty3obczm+zHqFR3vM9xzkHBje9NeW6ur3F3mK4/pXFI+eqz67O5b3nyZ8vxF2C+BpV0rHR2lnu+xWbH+i55N33JfnBtjMkYm1iHT/sFX1erf/NQ63CtvbkYZS5dyuBTz+M71lrAtp07leLlS8a1ZlclMY7Svs45BOuFX4cdMNljbPO+ypZx1K3KaI2xSfp7jUxL4jUpG7fknbhsui6f00naqrUey9O67d+O5dhCL7ek9Txo+DdS+fhES33SZ7Su93ctNuepxZu2jF/XfPDcfMn5XINtn5YhabfUh1syR1p1VL4OT59ZOvceMm58n5JJz8sgjW2m8m+xbuT2wbV1Yel8UEpBIaH/aP+3QPMYefr9htI8H+r0/v6QHtp6n69zaja/um6H3W4aC6/1y1o7kos/hMXG57Cn61Mb1syjlCyl9Kda53wbH2PtzFGquzb31syxNfnCOeGJ58QS2aTrqaTsQefnMVod+TC1c05AHnspyTddoyysfTqdIwNP86/A3l6+iPj0YOC3HluQiF8v3Pu+hnJ+J5P+vKEMQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELeCvjxlTbezaQ/dT9+WLj3TkM515n0Zw1lEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyVvDUHw152zjPpL/3qFLMuSzcu2ooJ9c+01AGIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFvBbunFuAt4xWAdxPpP/LYgkR8qXCvbyjnZSb9w4YyHg2l1PgHAJxz43WIc25yHf9OEaanyozlWEKu7tr9UnpOFkl6TR6pHNK81trs/VCu+DpVVpzW2pZc3aX7JVlyOlbSq/B313XBtQ10HXAOQEHEsF/jOpdgjOzbS6269zYQj7G1dvzd2q+lflgyp8MyQzlDm9giQ1hnTX9rcknqyM0f6fM5wvbn7EiuTa11hWWn8uVsV9x3W9mrVLtDtG773p7ErkrHQvpMiVRZNT1M1dV1XbYtoT+RK79F/pwOhvhxiedebMtLz5aw1hbXmxzSdVWyDsZzpKarLXJJ9CIeT8m4hPWE/Rzbj3CcUnZGaz2p36+pNZ8t10d9P7j1d3d3uLm5wevXrwEANzc36Loed3dXsNbAOwp9b6DU4FNcXV1hv98DAN555x1cXl7i6mr4RuP5+TkuL4dvOe73e5yfD99j7LoOZ2dnY1t2u914rbUe5bPWjv0U6pwxptkHlevn6RljDIwpPye1gZK5t4Ql5a714YB225+jJH9pbxWOp9f/JTYoR7mstv1BzlbV65mXL9lvSmTK5/P+y/DLWjsbo5ztj+1PSoZQb7aw1a3jObGvp23R2N54nVlKWE58HebxrJ3HcVnhuFlrYYyZ1dF1HXa7oV/2+/1ML8P1InXtbfUOFuFQOmfhnB3XFaVU0o6H6aHdL+05Su0u7fNDfD94XYjHvO976H7qt4Xk5PRtWbI3y9UR+pa+78Lfub1HmMe31xgz0f/5fuLUrk53QNdNYgdeHt/OruuSPoVfn611MMYGc37QQ2dOfkxou8P+k4xlrp+XzCXJM0tjbJ6aXpdso/eNPCV5H8rXqBHO8TjNI5XtqdpQo7SPA9bb8Zo/1LJmtsSWtljzJGUtjSVtEZMt7Yclczcm5QPnxi+Vt6XNLe1NydDSvlbffosY8UPEdbfU6VIdYT1xfDvln8TzuHbmFOZJlStNk8QlcuWUkJyvSHU5jpetiaOW5KxR0+lwHaitCaXYVGlc4z7I1ZmqP95zxnGlh6bkA+TavGRMW9vUUscwt4GS2oR7oS1iIpI1obWf1vrD6X39XI5SXC6Fc271eaD0/hJy9tRa33aFoR/m+a11QMK/yMVOUvunlCzxOLSuA0vio7WYTur58AxCUoa03Na1SqoXuXKMMeJ5LdFRyXpWm6/S87ius7NzhtoetMSS2F1t3V8zb6V9Vhu/mg495BqzBbm5t5Tc8yWfSKKTLfutWv3xupHzraR7Zqvn/lFtfSrasd7CmOnrcsfjEUfXNoekPrsEqY2Nn/HrfZwuXbtrdaTrG5DOvXjfkKp363l5irHO1+FUXHlMN3PZ4nJbRF0Sb66lx21y7j5+bNL+y0OQ85VqbLVnjHU8t88t+SQpmZfaQam/1spUBDfR0VTdJXJnSDI52vdmiM/rlRuva7LV6n0oe5FD4psbM5ythYTtbqkvlU9ie+P8uf176rcxU9239n6vBODYH3E8pt+nSe2TSjHZJfOjZm+smeuctRbKTfc68fOp9NTaYIyBttvsc6U6Xdr35Oot+ZcS25aLl67xdZRSMP1w1umiM1Jl7f2Zbj97pqWOlFzebwwfN8ZAGX9tR/0O7xs1fy82lDmWyzkHreY64+dG7iw6zBP+LmG1g1K+r+Z5W9ah2t5EeqaZQmu9+tw2lC9VVm3PK03LyZGOj6fzV8ct0xfSsW9Zn6R2KBV/WINSCtDzcmIdl9qMlJwPSatck3bq+Xu3WquZ7FIb3+rTlcZviH+vew8/LAuYvv8Z02Irwjm2pd/cMh9Ktmpso5bH9nLE7wTF1OLQJZJnHQWZSzK0PhP332PNVwnxO1ISluynANk5U67srd7/D8tK5a/FfIGynp/0bPj77OwM2qXlSp9NlevIydpyf8m5QyptvsbX69miXRLS60jeJ1m7N6n5JkvsTK381hhs6/mTw7JxkPnVPk+9jjiO68W21gJRqKSL3hVW6n7P8gAmt6Q/6T6IY/QnvRzadPJVWuJsuXUxlqXVJ6/VmYsb+7Pl2vO53+F8Kc2dUv+3x+Pytnfp3JPUmyMVM0rlUSqOgdb7disZPcX3ee/f257lz5zH1db5+GweaBkL2V6aPC4fH2/47eC3ot/e4v7TTyBLyA8X7n3QUM4XM+kfy4+vEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsj/z967x2q37Xdd3zHns9a79z57t+ec0tPSw00aTKwSkWJzBBtAUJSIxYpCFWIwXGIUMZrYKEgUI4jhoiEhlpBKQwBNUCEhJcVQBC8UxAJquVhL0XBsS+k+5/Tsvd/3XeuZY/jHs+bzjDnmuPzGnM9a737P+XySdd75jDkuvzkuv/H7/cbc8wAAAOyBj6/08Vd1+XRZ/Mmgn+ic+9QrkGfml1Tu/a2Oer42+T1/yuuHegUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4sMPHV/r4s5V7v+HJpIhwzn2ZpG/Q6SMpiv6VpOeSvs9Yz9uS/qGk/Mxf2SMjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhxE+vtLHtye/nU4fK3GSfqFz7p99epH0uyS9HckTy/XnQgiTsZ5/SdKbST0zf2mXhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9CDq9agNeJEML3O+f+tKSfq8tHVxRdf5tz7v8JIXz3U8jjnPsVkn55IkvMHzXW846kb36oJ8d3bRLwCQghKIS12HFaej+XP8U5l/1dq8tSb43e8iGEhZzDcPmWUir/Fhnm6zStV86SLLG8PXLlxiJuI+2XreNSKrdl/szUnrk+T53mJe5c3/haZSnNce+9qXyOUtkWpT62Pnc8d+O6tsrT0+aWtVear3G6c6465+PrvbqoxTAM5jZy+dJnmdOsbOnjeOxbeq7VTk5+y5xryVCSI5XFOZeVbV6T8z1LmRq1/NfUj7UytTFold0io0WWnn7J6Zxr6sVpunxfr6Xr53Zj3W2RJdfXlr6Ny9XWi7X9HLEuqs3xdOy2zt/ZvojbTPs3ldk630IIur+/lyTd3d3p5cuXkqTnz5/rxYsXkqT33ntP77//viTpxYsXev78uZ4/fy7pNBec8w8yDmcZhsHp5ubmLOPhcDhf39/fn+sex/F8HY/Zzc3N+fpwOJyvh2E4/82/5z6Ix2Icx0W/lNZRjw07jqdnjN2WWJbSvH5MG8DC1r25d3+02nE1cjbeOI7nutM647VVk/ex9/pMLee6Uh2Rs9ti+XN9Gedr+Z9mCTtt20v7bZniZ9ziD2/Ju6dcba5uEWGvPRzvsXGds5whBB2Px0X++d40Tefy9/f35/Tj8XhOn/PE6+rZs6D7e7+YFy9eBh2PJ919OBwW+jXWffN9aa1vnXM6aErWgdMwjGc9HdczjuOifGpjzpTS4zRL/KS23ub2L7Jf9qQxXO9b0nt8qNrcnWWfr+c24rEfx/G8V8/zaJ4n3nsdj0f521u99+yZQrjMvzc+9lG5l3fZuFC8P6djG8vlb4NeHpY2TFwm7ZNZrnRe5May5r/GXEPfW325nrZ64lW9pP3S8pmvsyf2+yaW8evFun9u2R8t6a18e+ZsvEdY27xm/C2WzTp2e/s5vV+yFWdin6FWvkZO5pav3KInr6XPtsYcSu3FZXpkzdUV70k5vPeb/AlLv6Qxqpb/tteWs8b+Snlz16X5Z4lR1eTs1Vm1vSMm9tEt8UbL3G35FaW40JazGut6n4nnUjzH43UTp/eMl2VPsMR9a+3uPVOwEPv1KdZ9bC9bnn/Zn5K09Im9D+f0S3530mmTbU9s6SQrrfFu1W/xn+Z6lvvDyW+IdcrnP/95hedpLKG9RuO9IvYNUj8zF8vba4PHWNdOCEHT5OV90DwHvH/wrYZL2/f39xru6/tgSsvXS9nyrJY9aCtbzne21NVTf07X9MpSOxOpxSlKMuZs2J6xKPlt6XMOw/rZvffyfpsdcTweVzZIbi0/hT+Q1pWuj/i599izW2k9Z0sn1HyYVv3XtnX36IZr9n1uruXojUn36BprXad/53q3xR9Ke6gV67hZ7IScbZErVotd1O731GGRL5YzrdMaIzL7Sxk9Oz3E79P04/Fe7uhWc3ktX7m/09hd73sgNZ293KPW62iu5lp+h3VOW+O912CrvnsMmfbGaFvlTv7Mevxc8gpwr/9eu7bKWGszF0Oq6YE9sYBrjeu1zqn3mOq1GJU1Vl8qX1ujzjmFIci5eT5LkpNz87U0DqPGsd3/e+OjpXpS2fNr7+Tvx1jiX2kbfqrH4yzzeL123XkN9PZRTfY0vWTTWe2zUt1pO9e0y/aWKeqFITzs35d1OQyDhod5PAanYViWHcdR47i0/y3r6/Y26HBYrtE33nzz3NbW50gZDtIw3C/SxnHUMLqV33LNPW8+P957jtpj7/fYfb3x81q7aVrsL5weyelwGDVF76XQyc4AACAASURBVLo9Bo9hU1n289y1VXdm7qxs6FIs4qnPmVNa7ad7zpYY3Z5nztkHJbsgXUen90uC9naxJS5eOufN8Zi+wowlxls7D53/bfmxe7H41t57yV+u876/K95P3wsq0fNMuThmi5IMe3ypeJ+f2RLbtsRIT7byfH1qt1TWsueNmb3ksfzKFha/No41WOMNZbs9n9+i51Jqc/spzkB6bPXHihnG+XN7Rs0XuEYf9cRFanl7+6dn7RXTlff9SnapZU63ZD35KrFdcUlf1+l27+EpW2zqfj3XtjtL9bXa2huHK8mSjvny3KDeViveEMts07fbn7EdZ6zbkDV72hJX2Yp/OMuPxY/jn3PbsZxWf6XZtjHeFsfdTzLly1jHLfff7dViRkv93r/G4PF5vLfJv3D5Hcnv+LT2bUn/g3PuFz22EM65XyXpW7U8bYuvX0j6rwz1OEm/T9JPmpO0jFb/tRDCX9srLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIcNPr7SSQjh2yV9py4fKdHD9fz7bUl/1Dn3B5xzP+Ha7TvnvtI594ckfYuk+bOI8SeMZjm+LYTwI426/l5J/72kX6Lc58FPac0PuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALyO8PGVbfwaSZ9/uA7JvfkjJv+ipP/bOfcHnXO/yDn3bE+Dzrmf7pz7nZL+uqRfqstHVuYPpsRyvCfpP6rU9eudc98h6a9K+rlafnQlruelpP9yj9wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfVg6vWoDXkRDC33TO/RpJf2hO0ukDJvMHUebfB0m/7OHvuXPuuyV9t6TvkfTph7/PSXrx8Hcr6R1JXyLpyyX9VEn/oKRPSfrqh7ZyH1tRdC9I+o0hhB+oPMJv1+nDO3Fd8QdY5np+Twjh05V6XikhBIWQ6wYt0kvXKc45U/r8O4SgYRjOdZbKp23W5KnJl7aftnetelt5rP1koSRnCGHRz63ycdul8cqVKY1dfC+VodWXObkt/V8nViuSk9MwOA3DoCHUv6GVPktr/NL7w5Cvv/R83vtivpqMud+ttdOac6ns4zg2Zdk7blvK7F07W+frVr3Q0nmt8uk9y1jW6rTq2Nzzttpt1ZXuQ/H8L13HZbz3CxmmaVq0P89h7/35Os4/DMM5fZomOecW8z4uE1/n1nttrNPrEpZx3LrG4vmSm4M9e2Cqp56anF7tWQOt549Jn9X67LW9NNdubT9P77eetbUntOZtqb6WrsnVm3uuXH3DMCz6tmQLxP0xTZPu7+8lSXd3d3rx4oUk6f3339d7770nSfrhH/5hvfvuu5Kkd999V8+fPy/K/9Zbg47H+0Xa5z//eX3wweey+T/2sY/px/yYHyNJevnypd5+++2V/DV9keqlON+835bKp2NRm5exHpSkYZoUQqxTT/pvmq43F9I2U7z3q7kxDbFcdX1VoifvjHODyWbuYX7u3vpa+2yPHrgeYbVXW55rLjPLWZujrbrT/qzZ2iX9lu79uTpaejvX/1v25C22fkmuXpw7rflSva05lpsLOZuuZLeFEM73cuM6tzmO41kPWvyPmdtbr3fe+dGF/F/1VR/V8XhYtWHtx9kGvL2fdHt7qzjs8+abb2q8WevrmHR+WuaoZLNVSjZEWv50vQxZ1eISuXqs6T2U9EJpXcXyxvMinlfjOGbnpb+91f2z20V9X/IlX6rh7m71LHHfxLohvZYkf+v1wc3dQrZnz97Q2PAbSmxd3+t1ef4lya3Wbm+dW2Sr6f2cHeC9lzO6GK2YVSu9xrVsgVK9W/znVnzvmvHKvc//2HqllaflJ9bsjN56a/Kk++C1SOMdMRa9vlWW3rGprdHWWsjtdT1xqd59vtRm7nct9mSte2++mNwzlnzyEJZ2YLpXluRo/d4iY45SvbXyrXnRSivZuq3YXm+dFlljLHEq6zlALj2n63N6cEvcrzeGXbNPeuZaay3UqM3xXB9smavXxuIflfyxy29JWj7rNDl5HxQ/ivdBo2zPttfPTcv1rJvW3hCnpfb8nO5vg56PR8X98uabb2kYXXNebOUcp4vOyK9pN9TWRqoXTn/LeMHStjjFKsdDX0w+nq8W/ZaOe83Ot4x7SUdb97fcfm8dI6teKNmZMTn/6Vqkfd4zx3viKnEMKBdHkgzrKwQdj8dF0t3Ll3p5Z9fBafyvFvvbo/O3+Khxe1Zbcy+teFItX0x6TrulTasvuSUWG7PHZ93CtWwEqz0aQtA0ecXnP9JpToXC+Y/FZ87VN7mni2m3aNn+8/V49A+6ZunbWZ7FGtNtydVKn+9Zz1NaMrTKL8bfB3m/rHvyU6bN0/ns4Ifqmgz3k+7vl3r7+fPnurvJ27O1fs2dAeXshnxMYZGi4L28L9sMki1u3ToLiPPl/KGta8J6nlnyu7bYndYYTi/XimOFMaz0lJ8myT/d/5fmtWyIOF9trdfs2Vq/tfznnjhQr72z1G+xvKc0qxmaW0NnPf9wPnRppyxXT/znnO7m/8n52JIPa/1ieYb431hui6+Qq3e+Xj9zvh+Gwa6jzu+2jEHOLeVLz8Nac34Iaxvy4p/W9XROxl7/0VK2xVPGg67RZnuf3Ea6HnN7ULofzfPd+9xctY1tLk/I/ucgJ/acBeXe/2mtk1qedF5usQ96dMQ19+zUf5tjSlFrZ93eis+1ZN2yv+5dlz0+sdWXLeMWuvlasmdbqrRxDV2W9ltZlrItmuoPC6U9taeOS/65zq5i2bbiuI41DvEq9pTHev87fh/fViDvA86x5XR+ufFkv8TdvmyzL652bd27p1/jd4ml/TZsaa/fMt8ssamTXzZfL+Uo0RtTtMRNZnrt6Zo8NT8nG1NIxKs9Z4/uivP2vE+5hZxcl3181run+7l1bzmf2RJrt4xRCEGD18pnGYZxpVtStpw5tuiJq9T2wq02nbWfndzCTnXOaXB5nW4955vPnU57Xb9cp3yRjNn5sPTTLfXXYi5WPdwaj2EqPXNZrr178zXtiZbujv2AXNbe2Hhcd6tcGmvdGqNq1W2VO/WPWu1ZZMz5YGl/W88Tau2keXI+mHU/deN4jjHNdNuFBVlicj5b/Pvy7+Jul96Gx4GPr2wkhPBfO+d+kqTfKi2+jDDP6Hm1zL/fkvSzHv56iVdJWu+cNu+8fyKE8LuN9aZ1xSv8s5L+4045AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXhv4+MoOQgi/7eHrQekHWKTLx1DiD5ps/dRQ+tmj3MdYJOn/lPRNnXWnMs1y/+oQwmc66wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhtGF61AK87IYTfJulXSHo+J+nyQRQX/cX3ev9ydSm59z2S/skQwue3PIaWH3H55hDCf7uhHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNeGw6sW4AuBEMIfdM79ZUnfKukf1vpjJulHU3Y3mdT97ZJ+eQjhszvqcjp9QOZfCyH8/n3iPR3e+2aeEIIpPf7tnJNzLttGnK9Ut6Wduf753/TagjW/RU5LXda+3Fqm1Le561jedOxS5rQQQra/W/1jGaNaHT3jmuad5+Ii3S3vpXLk6mjRGg/Jtt5y5Vv9W7pfk3vPurlG+yWcc1Ud0epna5tpvmEYmu21dF6rnXjtWfRgK90yn1r9YZm3tbpyayiXP33edG737gstudJ7PXXWdGAO6zrdK5dFlj3lU50Q68J0fMZxXKVLlzk5rycLpXlcm4e9uvSp6ZnPsS1T0stb7LA4rbT+StR02xY7JiZ9Rsv4z2WGYVjMyWEYdDicXLFnz57pjTfekCS98847ur+/lyR98pOf1N3dnSTp7u7unD5fH49HSdL9/b1ub7w++clBp6ZP7X/tT/9Kvbxbt397e6txHHV7eytJurm50c3NzfnenD6O4zl9HMfz2hmGYVGfc+68buK5YNE9NdI+Tts95TnJ5h9kS8mNUWteTNNUlTd+xqVd6iRd5ug0TdK6qqYei+vcYkM6d+onq66xrIt07+/da0p1W/RAD9MwKQSv2PXO6Q2LrLl9xVom3oNybeXq8t7b2jge5f1yYh2P97p3dftnXqPee9M+l669+NriD8Xl99hJy7K2fGl6bR/ZarelayzVC/O9cRzPOiUe4/v7e3nvF3Xc3vizzp/rev/9D3R/P5zrmvWwc07jOBZ1b7r3zDrqMnRuobvnvOlzppT6zrLvl+pp5Tv9SXEYzHsvZzSnLOtyq98Xy3mWy6A74vTc3En72Y3DYnxCOO3dg8EuKumgS5tS6fFr423VbaXyubjOJfZxTqm212pzr99RJw6ltmXZ4zft3Rtz9MYI99jzLXp9o9oelqtrqy+da6emO64dl9riM5ZiNjnbdiu5tZvS6seZkq1wbSz6I15vlrhaKc+Wcdzif6fXtbpL+WIbIq6z5OPH8lnW/t543jyPgz9EtsAJ74NcpnzLlin1tTXG0BOL2ELP+Frs7lYb0jpOYfXlP+xxrRJb5a7pspJv99Ts2ZO3xMRyv1v1hxAWe1JPDN/Kpcqw8hmsa8zqz5T0SMmXLrVvjUOX5Dr5lbE8l/5e6s5tNlcr/mOJ1c/y5LDa8xb/07l83CAEr2maFI75sbkWW5/5WnqkFAts+Sm9/nzMNe3MGi27IUfLF671cWmNp3tgnC9nR8ZlhyGs4kjTNGmaMu8AFOQvyZzO51pdtfhuyQftjaP17he5/Ft0Rm++a+W5Ruxhryxb45u1e9Z1l8Z4LDqtNmfDOK+lNL6fl7fVL6c4Wz49Ry491a89Zy8W4rh9jUvMcOnvh7EdP5tp+byldmv7Zs4uGKPzui1+ck+cun8s8meYaTvjKA3D2n+q9UXrnLT2LOmeMv+bPt/kJ7lpm95pzY+cHVva36w24FzHfK+2D6X5a+mPsQZzMu3R8VviIj33e9pq1W2xq3Jr+WRbLevZezZdaj/+t5XPUs5i99hkW5/x1JjPkGr+XUpqi1niW7n3nIMLms33k+902iPnYvF+W9JdPXZmr75PiXVHfJ61eq4orUc3PdSQrSuW37K/LuuwxRHrcm3L11tmTyyzNo+tbeZk7Dn/Oa2/07yYq+rpq9ZaWjxfRlf4B38upRRvj++l6Uu/8vJ8JXpjGjn7e+8+s2Ufzz3z1r22Z5/N6dGW3u49i2zJ0JtvS8yjpK9aPrZ1f3XJ+0jz+rtWjPfa56w9ctX2t+W9tm1Rut9L7x6R2mR7dHxP+7159/J4NnLiZ09tv2Um966f9/78vmj633Ws7Zfl+s29kzf7oiVb0XsvfUiO7Z7ifMyyvq12ay97961LrDi/z/TsuXN9uT3N7NsO9bPjGjVZr23ntuLTOfutdHbhB7+ap/f39zpMT/OfVFvjwN7P70BL8/4Tgpf319lfLfGZWt4ttspTkLP7emyttm1Ut+eX7Z5TJCmrq09+eSpLXm7LurbaAI8V/9qia1s6bqsstbou5wZl+9EaX9jrF9fmXO+50RY/3TJmVn+hpasfcp/t1jTW3przuTy1Mr3xgWv6LzUd0S4fvzudrw9eDdd/u+SLlBDC90j6lKR/VdLflhYfXAnJX3f1yd9c9w9K+lUhhH86bPvwSizjfyPpp4bX6MMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe+DjK1cknPgWSV8t6VdK+jMPt+KPnEjrj6m0/uI6nKS/IunfkPTVIYRv3SCqk/SBpD8r6TdK+ikhhH8+hPA3N9QFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwWnJ41QJ8IRJCOEr6Nknf5pz7pKRfIOnnSfo6ST9Zyw+xWPhBSd8t6TslfUcI4Xt2ivhVIYS/s7MOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1xo+vvLIhBA+LelbH/7knHtL0k+R9FWSfqykL5H0hqQbSfeSXkh6X6cPrvyApO8LIXzmyjLx4RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiih4+vPDEhhA8k/ZWHP9iJc04hhGYeS3paT6veWt1x+VjGuM5cWq7eUhshhKqMvfL31tXTX7nnyT1XrU9ydfWm1/oyxntfvG/pVwstueK+CEE6/UzTTnPA8ozXlD1Xb65d55yGYciWKfVxPK9ba6NErT9Labn1mquzd11Zx6Yll3W9Wdb0PF4WeUr9VqvbSqtPe/pxr77O1VVa99Z5mY5Fb3+Xnrn1rKUxi/u7V4+W2qjJdU19Y22npctTSvdb5UrM+s57r3Ecm/mt/R0TP+NWOXN1XbsOS92WOWOVMdbdpX2nNfdLuiWdYzmZLGMRl52m6ZyWlg8hnH8fj8dz3mmadHd3J0l6+fKlnj9/rhcvXkiS7u7udHvr9eLFW4t2fvTzL3U8nty9m5sb3d7entu7ubk5z9PD4aCbmxtJ0jiO5z48HA7n62EYFtdxn82/574sPX9tzlvWg/de3vvsWt+zHrbaFnF6GObnc5qzHg4HjSGvCyx2t8X+nKZJIaQ2lZf36z3WuldabaZS+RK9+qK0J9banMegRsuH6pGxp0ypjnjuWuzN3DO27LoQwlmXSFpcl9vIy7iFrTbnNUj7JqfX539jPbZV1+fqjcvXft/eeL311ruLej76pV+qu/v1vpb6Welzptejn/Mom2eWZ6a0l5bK7rEH0rpWdQ/rtHhPqrUbj3dp/OZ6cvtYbe6kbc11pe3k1nXLtsj1yVIu6XAYNfhtId34WUvLM+2XnFzXIO2L9T7vqnr7MWTKkfpT0Z0ozbYupOv2a8lXsvqzvfq3JvsWfR/7TVtiJnFarBfmtVirM9UjLb873T9TPVyqK05L94dZzmvug72+WM845tZBLX8tvlqTaS+t+EdpHbTWR6+Mrf00xxa7y7IPp30xz+eeNRLTWq9p3KisR8sxWedc0f9znWtni76K81p16jx+sU1g1TW9Ma2SrCnXbiMmZ/tcg9a4PpZ/UZqjLf+pR5a9spfWS08dPdTi25a9Nr5fW4c9/r9zUgguSVvbtTWfpdU/vbGUmJw9Ys2fksYLi/mGsGprmiaFyRbvsvhWVlnieqW6vVRqq7e98ZjEBYMUfFDcI6m93lrXe+NA1n2mtpZ7ZbDq45p90+t3lXSEVY/X4sgl+yyVtdSmRZZ0zCxyp2s8bideL+na8X7t1/oohhvLnHuO2vU0Tdm4Se65LGdttTnSklHaPhdL9bdiqr16d2aLrW6lNP+uZTeVZM+tSYtvu6fNVkxLkum8NFPzqp3e+ElqI8SiluZy6TmHYVjFAGf2jmtv+Vj2cRx1zKxr69wr7dPxdZzHaidv2RNjcn5gyvZ42oM+DksdueecMMW6xlptB7++PwyD3HD9eKh1r4/Tc2N02ffqc857b5p/ubLSUq/stdus+bacdaRpubXlxyDnlrpnGEcNo93n26Ift5C2uSes3bIHr0lurbXs3pINdRq2WOb2PlhrJ6Vln2w5pzz/fhbkD0eFII1DkHOn5xkesh3Gg6ZDWxeU2BJH7ImRnP5dn8PUfIr5flzH5feyf07njvmYsnWviM/yep857b9eHzxlz7lP7/nCVmr7iKWtkw82X1/SnOJn0cIWPL1XtKzX5Ae79dgdbm7kQ3lO7NVvtS5O+ym3/qzxOpss5b7aq/dq723WbG6LT1QjfqbLc110QOm834o1RrL3DCous3Xd2+2i/O+utWSkp64efbsc73J7a524HqctPmqurVKaxT9zzmkMaZp0ONzI34yruq1+YqmfSvLlyl/D3nyMcum8X5dzi/08Jad7vOr2WdrPqb8bwhzLX8cV4zJxDDEnV0+cq+fdsFwZC9eot9QXtS6f290bl5jraPX9NUljT7EcJWqx31wdqU7wk1c2Bqf1u5YptbF7Cj+v1e4cN1jJnnkHcRxHOcN5mqXda3CKUWoVK5BhXFIssdv03eXaecIeP6MlW65szaYy+ZNqnzXFdbXlPdUxTZPC8ViVO11b67pKMrX9yl7Seq45Z9c+WF/Mbcvev8UHWZUpvI/comcebok/7qXXz6ut617fytjq+aq1p++ZI3G52vxfrLVhWOndcRw1jGNTht5z1Fx6y2+85jyBbTzeqTIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhxg+vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABflPDxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPii5PCqBQDYi3NuV/kQQraeOb3Vbqn9OL1VV0mmWnrpOidHLEutv6x1zvXEfWfpvxBCVxuluuN7pbrm373tpfXGv0MIm+ZbqS8scp3uzX+2+r335+thsH1jKy7Ti3Mu207vmkrL1PrNMvY5GaxroVR3PBd6Sed/rR1LXTn5LfUMw7BJ/phS/8d6oVV2zhfPnV7dl+uDvWu0pDu26JJ4vlrHvqUvapTmezrvW/tXTuacHsyNfeuZt+jR3rHw3hd1X9z2OI7FduZ6eojz79GpVixzah6Hku6yrtfS7z1y7rXfeuvLzcn4dzxmpfS0bKwv4utcXWmeaZo0TdO5jfv7e0nS3d3d+frFixf64IMPztfvvfeeJOkzn/mM3n//fb3//vuSpOfPn+uttwb9yI98ciHj937vp/XBBydZhmHQRz7yEUnSRz7yEX30ox/VO++8I0l688039dZbb0mS3nrrrbP8IQTd3Nxkn30YhvM6i9dcS0ektPbVnC2RZt2qo3NtbLENLmlrHeL8tr26lnfdJ+sy81/reXp0gqWPt6zrkj0Tzxnr+E7DpBD8It/9/b38/dI2to5zSS9YiNuI96S07XQvKslyLj+VdbpFFksbvXvFlvas9S7Xls2PTX+3fOX431r5nvk9lyn5ZTl5D4dJ4zgu7o2Hgw6hbdPUfOZLnvK9YRiK+91T2DS19ifnV/eOx6PCcdmfW+2Kaz+fxTe16ubzPDrcPPhw832fzZ9Sa2cYBgU358nrYcva2Xo/bmfdbpziTzZTtAx6xtqiL61rvFzXev1Z4xot2eL7dp1ZJ5W1ZcPV5J1tWSux7Zim5dotkVu3qf8X76+leveu/5qf8GFhi37YEp8q0eNP9sS4WuuqNbYlOdJ5tGVNpX5PSdZS3T22aist/W3xe0qyb1kvtfhjLj3WKXMfeefk/bTYG+7u7jTc3a3qse4PVhvKsqeXiJ+lpit7xjo3Nlvs3DjNYvfX2jgej6s6c21tGaca19SzPWd41jF41ftAaV5bbVDLGLX8j94YjXUclrZiWKTlYyPXO7/13j/K2KY6Yo8NbiXV73v1VFxvql9615VlvMp1XfzeoLBI994rHLfHeHplsZYvrZUe+Xpt+JIsNUr6Ia13Txyt1XaOnnO3UvlSfqsPkdvjYptyvj6MQc6V7SmL3Vwb0zR/LGcpVl9rK6bks1nXe+9eaznnjOVaxNEe/MCanHNaTpb0PM1aPn3GlswpuT6s2d/pvVxf5H6X5LDYcaVYfSqP5X2RkmzeewUf5P3y3jQd5aZtunc8ruOK0zRpco9rr1nfz+mrcz330mcptZumz33yKs+ypf4YwXVwZ1u2thbG4OTc8n58Lipd+i+txzr+LV80DEHDkOjETBwyLtPTTly2N8ZXYn72OC6Xa78Wf7G+bzHX0RuXrcmVEpe3vHtSKpumLfb0KegS7z/V5b2XfN3n6pV/a6yp3n7fGbSlnd61X9q3c3XW9m6rjKWzgZxtkGsvZ4O07JaYkj7PUarrNHROzunh7yJba73W3sOqUbNxSraD5TwthNDcy3LjsowtnPohTcuVj+fbKUawzmv1gdPnmqapOS9T2yyVa48P9qpjWTPXliPuZucue3kav8j5Wgv/1q/HdjoedTzWzwfTdWU5h6xl6Vl/W2MsvfGya4xZTp70HZrD4fKfOW3Z00prz7KfpfVZ11tuXrXKxvPSOnda+1wPtT3RJ+tg1p2DW89Li2+b87/T+5a0muxpmVZMu1TfsuoHn9X76hiV1lJuvHI+fa68c27xPqckjcfpIe1S9u7uTi99n+1aYkuft+7V6t06d7c+16WcrbzFh559zaLOvkK4YMvz5uJnMy0dtSV28BTxhmu3+1hnQLV3RvfQ8i0s8e3Upo3F23Jeca1xv0ZcLRezsfx3ADV6/P+9dYWQm4/L/z5ni47OnRuk173xj572e9Jr5w7xnjj/DpX/zrKFxY6I94qand8zl07/Bi33obB6dqtd1Bq7Hhu2brMu6y7ZsFt4Kh8kFwPw3muI3tMuzb20npZd81j+djo/LP6A5ZksZXLlrf5Irbpr9lUphl6MQ7vTu2lx+WmaFAxx814dUM+bi0/Z9il4XPj4yivAOfdxST9W0ickvSPpbUlv6jQeo6Q/FUL4G69OQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC98+PjKI/PwoZVfIOnrJP0MSV8j6aONYr9S0urjK86575D05yT9sRDCX7qyqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9U8PGVR8A5N0j6JZJ+raSvlzTGtxvFQ+XePy7p50v6951z3y3pt4QQ/rs9sgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyxMrxqAb7QcM59k6S/KekPS/o5On3gxkV/ofJnbkbS10r6I86573LOfe215AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhi4fCqBfhCwTn3FZL+kE4fXHHRrdxHVVwmrefjK0GXj7l8naTvcs79Vkn/QQjBd9Tz2uPcEyDYcgAAIABJREFUsitDCNn0Wpk4fS5fonW/lG9u01reIuMwDOb6YrlyZWpptX6Z09P7IYTFM+TGJc6Tq782hha5e4nLxdepHLnnasmQy+f9ZakOw7D4nebzPsj78DB+kp+8vJOOx3vpGFbylvo5ZhiW394ax7H6THPduetWP5SezVp3bmzSOi1zyDKnrHKm/bql7to8S+/n5Ngz/y06cutaKpW3jEdtXrX0VK2utHzputROqY1a/lqZWp7cvLLKWKu39syt9ktl0jprfVyqq1fXW569plNzeWcsZdK65/LW9q5JzVawlrHO65zutcyjeexL8yc3x636dMu6sBLLUNsfW+Oezt05/zRNGsdR0zRJku7v77P13t7eLvr+7bffPqe/ePFCd3d3kqS7uzvd3gZ99KNvL9r8CT9+1N39aY7e3Nzo9vZWkvTs2TPd3NzozTfflCS9+eaburm5Odc9Xw/DcO6L2L5wzq3siJm4zJw3d53ambl1nuvzYZrkvdelqmX51A5K68zVW5p/PWvslLZMH4ah2E/XIgxBqThxf1j3vmY7G32gmGvtozUdceoPt8h3OBw0hrFYptZ2PH65Pi3pgNq4x7qgtF/V+mT0U1TmlG+aJh0L3ZL2x1Y/2Spfi1rZ0l5xSb7oQ+e3ydRjX6bX1r3estZyNmxujGp6xPIsS72rlb6Y8d5n23HOnffBUhs1rH1W8u3m9XL6fWl7miZpup7u2It1Xtf2t1p9c0zgMkcGjcOoYbyG/RnPwcs+ao0rLGqKbD6rf5uugeGsx+e+ushS6j/LeFt1X83/im0y7+P7Xvf39xqPtj1/a6wr3jtK9eb0iNW/r9lApRhNvI9Z9MNs+8b19ZQvyRfXE8v52KRyxL6hxQa0+FbXiAVs0X+l2FePHLV8j+HL9fRNrf09cbWc79uz9tIy1rpqMYqcPStd1mMNqy9Ts51Kfol17fuFrKe+Oh6POjyU3xI/2LKOVnJ1xIAsdvhWauc2tbOGHn3V0q+9cdRSvlSOvbH23LqI6031QW97tXGt+qzG/tvis/fGcS1YYiy1+qz+VBqXKY3LePSreo7Ho45Ht0h37qQ7wmQb12vGbnr7+Rp74BT1y9xlx+NR47T/uVprJLUhc75MrUypvV4Z52IhnP40/6uLnzMM2/Rwyxcq+Xw1/bhV9+Ta3mMfpmPWe21tc8uY5/qoFdN9rJhFjVK8O5Vrnocxgxs0DHk9u9d+KMV4cjTtsQ39VLJBr1mvFYvd+2Fmq5/ZY+PlzjnT95BqdlaprdIYV+2IcPqfOGmOBefkmaZpEa+Zx3t6OEd6Ywp6773nceX6oR96oZeHk8yHw+Es/ziOOhxOr0/mzsNyZ2Xz7/jf2rP3nF+nXOKDlzTLvlujV57avOpt+zFjtVZqcz5HPPYhhKu+I5Cz58MUkhikNPlJLrFxrzkuc325cuk7FbW9ptdPKt1L2+jd6612hIV4jLba8Fm7UbEt6x9sBy/v7bZAT7xoZqtdMDNNXpfXky/9co2YS0/+nL/fIpazJHPJB4hjXXFaa6lZYn1bziBrrNajO/+PXMcr6qlc1neqSjLFZ46lPTVfVkrfxbDGwdf51uelsV85/07Lpue3aR2lGEqOVtwm1+Y1Ytp71uhsE0nreTD36eOfylyH2rzL9dF4CKt5PYyjxnG5zq7j489yre+39udcfT3pKZY11vPMPXGy3LiU9uGec+JUH4c5iJS0VZN1T/tWLPNyzrfVLsnJVLUrD2v7rxbTsMS+evul9qx79G+tvrVudxrHQcPYf35Wan9PWizXzDC4TTZSrg2LHtl7lnNNnbSdWYb9dZ7PQAsmU8uWWr53e/p3HMezDeVGd9pzk7hJ2l7LrnjVmGJ8w1rPbX0X12pr597/2BPL6Wm797ni8/atWO0Iq1+aq68mY+8z1/ZHy7n4MAzypcWptb2QtnnNOHeLnI1ynTrzv69xVrmVa/XfNPmH/64gia/t3LNOtkAurT03jC0sfsUyz22s/a8+GzDNb13TqznzEBOJk0/n8eu6986pkv3fe16bEvfpfHZX4tr25VOW3zrvt57Tp9e52FlOB221A3vlmln7M1G8+3CQc+v46TX9GRtP3R5Yedz/GuyLBOfc10r6y7p8eCVEf3pIi/92N5nUP0r6DZL+hHPunSvUDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AUPH1/ZiXPuZ0j6k5K+QpePokjrj62EzN+uprX8CIuT9PMl/Unn3Ns76wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiCh4+v7MA595WS/rikj2n5EZTcB1ek5QdZnLaT1jmnOUlfJ+kP76gbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgi4LDqxbgdcU553T6yMkntP4QijJpPyjpf5L0XZL+uqTvl/Q9unw0xcJ/JumbJH2Fyh97cZJ+oXPuN4cQflPfU71+nIZh/TuEsLgXQlhdO+ey6a18KaV7pfRYRiu5vHFa2g8lSn1Se8aanGm7cZ+V8s3XcdowDNlyVmr90yO/RQZLPznninNxZn7m3O+4rmGY5Jx0qsKdrgf30MagYRg29Zv3vthmidp6sTAMg7z3i985udL8lufbIk+ubG6uWsrn5tuWNZqWi0nnVG4t1XSfpY20vd5+tT6zRafW9FWaXtIBLT3eKm+RwTJnrP2Y5ovXQy+lPS29Lsncmy6d1mxpH3gMSvpVksZxzPZ72qctnWQtv0cH1bhGP/bosha1MW6t0/m6tZeUxjVnW+TWn8UGtFKzlUII5zlTW6tzGe/9QufEfRHP13Ec9cYbb5yv5zZubm50f38vSbq/v9fxeNTxeJQkTdOkmxuvd95ZyvxVn/xS3d8Pq7oOh4Nub281juP53rNnz8735nxxmZi5L3LjlI5xayxz86mmfw5eGse1DdVav/H45faE1j7eYhomhTDPg5P83ns5v2//b8kwuUnez891afv0u2yP56j5KOkcb9kqrfZa9sk8v+J2LXtiGMNqDh6PR4Vjew+0+kYWpmky5+u1EU79MPeTFv/GlMaipCO3PPNWG92yzi5zQUqf1/sgl9l/rfZtr8zx3CvpcWk57j3PeG5n8me9Pst59/Kl7o9jU+YW4X7SNB0XaS9evNDdNJ7bm/eE1M+w+LKbZEr0bkkPT4NXCD7p66PCMe9Pb/HncnK1qK2xXL7a3tjyAXyY5/tln/HBSwa9WNrHnXMKw3x9uTeOo0a/LmOZx+lasewV8e9LmRDptbBabxZ/t8ePss6Z+d46BuPO/WaxJ0pzJL6urbta3+baSGW69t5X0gelMbDIn5MtTmuVf0xftDb/4n0gtyf09K/VH2/ts1v1YG7vq9Erl0WGXL0l/yOtf2k3rYnnbboGrXGd2rjuiQH2rsNajEMq2ye5tNRnqunS2li06pbatsScf4j805lxHDU8yLblTCQnW0rtWWJ7esu8Tq9711tNzpha35T0laU/c2c6PWV67qX06P/ZtrXWVat7j29YI44T1YhtkDittg/V9tFceYsevzY1+7Kkr8ajj3zik8yn+NhSZzl3Sh+Otjmd+vB7bAnrWUHJF7f6kou6H2zo0+XFniyNedrHc9+lazreF0MIJt1tnUutOdraU5qcz1Tz9NoqW+Iltb3iWvZqOq4xlj2iZgeVxru1R9by52JSrTO4ms8Xy2iNxe0hfZZ4LaU2dMowrHVbePB9t9jONV2T2nGWs5Zrs+dsM6UUe9tLbx+sdO8T0Rsf35J3pmVr5PL1tG+KE0Xvw8TtuSHf94dD/XXHZ0evtz87x1NOaZ/4xJfo5aG9pz0GuX6x2tTDIA1JP7Rs3l55SnHE9DrXP6VzebM9Y6Claysl1zKFpQypXzRNp5h0zDRNmtzj2MnZ+EdH95T6chzHTWcirbkQ19say1aMJq27lt7rv8dlam1Y/bJSvCpnD5nrjXSec4Ock4Zh1DD2nfHmZEl1REn+njpnhiE/Pk8Vl82x1f7oOVMax/Uzxu8ptGz/tI/SWFnLtmzN96pPMy1t15MdulyjvvBeg6WPLPtZ6zyiJr/36TsoD/pH+f6s1ZvWNeeJk1p+6jT58zsal7TLPtGaS1tjZbWYdItaHLg0FqksrTjiMsnpZNf164Ye33AtQ1v/9sbkS7GqWL45355nzV177yW/3sss+2tOxi35Uh1n2Z9b9bfsiPwazceGLDGj1B6Y/z1oip7vlHcch6Jtm6PXp996bteT3lNnvzz2tZhLu1bcuVXXHj0Z133S9fX5mGvPYiuX5rFVR53kVCLfco736ruajKV6rLFPq81fqrO2j+0jLK7TmJ9NX5XnSNkOmdPdaZ496PPj+Qzkwv39UfcP/ql3QdOUng2H1btDuTnZ02dbdGCPX1d7l2TGR375nHw8ThqOy7LXjH2ux6tsI1+ba8ZTe9pcrueHd1mnx4l95NqPKfkUJX2Zli31obVvH+OMofReSgsXJqUx0tm2Trn2fmiNf8z0zN3e901z55YlxtE167fowfQZj8fj+RnncsfjUe7hv+XI2SR+8Aph6R/l/aI5Ldal6/8WonSm15I/1dE9+nIY4n3v9O8wjuf49Fx1KSayJY5VkqtVlzWul/6ek3LFH8uGeqxyNWrPUhqza/h8cZobT//dc0wtnmb1rWvP1ruv+mFQ7jzAVeZ1T5zCSm6t5vQCPD2MwHb+FUk/W1p9ZGX2ipykSdIfeMj3yRDCvxBC+J0hhG8PIfy13gZDCP+WpJ8o6ddL+tGHNtIVO7f9zc65r+ltAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IsFPr6yAefcO5J+i/IfXpl/f6ekvy+E8C+HEP7HcKVPtoYQ7kIIv1vS3y/pz2n5AZb4E0c3kv7za7QJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwhQgfX9nGr5X05Q/X8YdX5uv/JITw80MI3/dYAoQQ/j9JP0fSn9b6Ayzz9T/mnPtpjyUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA6wwfX+nEOTdK+nW6fOBEunx4JUj6HSGEf+8pZAkh3Ev6Rkl/PZIj5V9/ClkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABeNw6vWoDXkJ8n6cdr+cGV+d+/EEL4d55SmBDC55xzv1zS/zonRf86Sd/gnPvVIYTch1lea5xzcs6p9Gje+/P1nsffUjaEIOdcNU9Odktb1xzKWl2z/NdoL66jVF+rv2p1xuXn9Fx9aVpOlhBCUUZLX7TmZa4v0vzx3HXRddLSua1hGBZlSgxD+Xtbcd/UntPSjrVsq66etqzyl8pa5l9pvVrWsVWmdP7l1mFrHpfWQFpH7/xP24/r71m/Lf2Ya7/0LBY9W5Nx7ofcvXStzuun1j8942y519Ij6by3jkNuDOfyj20upHPMuu/Fa2GPHtqi32LdOY5jU+Y98uXarNVnHa+4/1rzPc2f+11rO82TrsNefVvTsXv2a0u+2pqI76X7cLw/zOm5uTuPs/de4ziuZJqmaZF+f3+/yHM8Hi//hknTNCoEr7mKD96/0+RvJJ3m7tz3t7e3Oh6Purk53bu5uTnXOY6jDofDOX1u/3A4nOWfpknDMJzvOefO9+IxrtkdKa2983x9f9Q0+cXcPB6POkZN5XRc+rt0r3dPj22xS52X58/tHZY5tYVT0dM8c768v/Xa3Ke622stlb9mu5TqSK9z66rWT9M0yfv1GFrlt2Dxn3ro3buXc00PaW613qx6NE7rte22ztdcO+W64jGa5/m6feu4WOzhVFfn/LQ5bZqm8+9YN8fppeu0vmfPpBcvXixk/tyP/qju7k7Xh8NhNQ9mPRzPi3guzPpp9JJzcfqDXj+M2T4r+aylPipRs2diXZ3aegtGJ+cGxVPycLjR4Mu+zp45XkrfErux1ps+e2wfRDk17y8xOZ3QIrZT0uc47SF1meM6Ymr7bo//c/lZ3h9KlGyAWpvLttvjOg1eIcRj4xb9lqv/Gv7BY/HY/t8WSvtza3xLfrKlnVL5nvpabVhjhfHvLeMT2+PxvO7RFSV92et/pmkt2zr9vXftpPaRJfZTwurXxn1ujV/Eer/mQ23pj9xYWuLI6Rzcuw/G7Zf6L5U1hKBwOEQ+1eneOI5yD75wSe4ae58ltbVy1604Rpw39qtz9PoLrTLXGMtW2ZrP26tjrT6b1Z+2yLxX9/TEsXp09OxLWPOX2rTk2dOX6Vi0fT4by2e2++9bzzD2lInbL/22xoks7fsh9ikudTrl11e615T0UOt3jdz+0ROb6W9rbm/+i/0Kl/wutx+z1c+q1dnTfonSuGyJ46x9sX5bz+JD19rZqhus5+K5cjElHdWqu2UPpteHMUi6W+SbpknTtD7jT/38vTZCSSdby+diOz1x/xZ79Kz0+P537lm3xMVytm6NdIxq+XPjkpOxVEccr7SMx9Yxm/ebGpOmZp6Y1t7ivc/qvpwN1hNLasUtekjXv1WGuWww6AiLro3P+UrM8vXsOb2x+Zl4Xu9f1+u902pnzflnWXLruqWHrGf+FoZhkBuWY3Xt2EmJmi9T89ty9Vt9Se+96f2N3ji2lV5bKZ1Xlj3cu2XcP7ZlY71c0zuWeFvtXs4+yJVfP1ufv7BVz9ZkttS/19ZI5Uiri8e91H+l9ZLWE+eL3xGJ38PIyVSSNf09+06no/R5np3uT/5km6bttOZ0SYdYx8N6Jre+b2uvXlc73pvuY6X4pnMnW2cc7XZy7dlLc2nPfB6GoRgbKMWnzHb/Q1yiNmo99m1arger3WOJObZ06UVn284V4rTc2lpmrcfSr+mT7aV0hhBjWaO1/W2P/5uT7eIvhPP7RXP2eVxzpHL0+NalOnJcc+23xiW3R9Xby+tOS3x5Swy6x27vqbfUVr6+xa/TnOmwwVt79dz3pRhfbi6v9UZ53+2xFVvr2WrvWdqsxTQtabGs1lhjWof365hxaofXZKrR1g+XMYzf+RuGdbnFO4GDf7gf67s+vVmSbW98IyU9/y75duU48unv9HyzXI+7B+ZsoTSetcfHnLHGX3Iy1bD4rIvfo9MwLNPGcdQwlt9Ds+hyqx6z1FWLsaRY5oZX9N/nJY9oKd/y0XuolTu9J5mPZ12rjZ48NXL/TU3POinFjGv7RI6hoAtb9TT3tpsbDcNSxpubG5Ui3SEE+VuvYXixaqe8Nvpt3Xw95evamV0p/+XWMtYei+G9lwvruFKr7pL8FnvUakPWmJ8j3mPS8hZ/oiTPVhl7bDDr2rhmXMxKPqa6HnfLOq/ZrbX9pqd/JcmNo3Lv1w/eP0kflmzbk/8xaUqOzkI1AgOPwYcnCvP68Isr9/7NJ5MiIoTw3ZL+iC47b7y6Py7pU08uFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIccPr7Szz+hy2eX4k/Q/8UQwp9/NSJJkn575d7PfDIpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXhP4+EoHzrl3JP09mVtB0h97YnFS/qKkv/twHZJ7/8ATywIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCh5/CqBXjN+BpJTqePm8z/zvwvr0SiB0IIwTn3pyT9Ui3lcjrJ/QVHCEEhLL8z471v5nPOLe7Fv9NyaX7n3Pl3fJ2Wia/TtPR3Wn9NlhK5vijVVWMuU+uXUvu1/HG9rXp60uP60zylMY8Zhsv3p2pt58a1RG7exHKUxjvuo3Ecz+nj6M/l5uzz72EYNAT7N7Ry6+NVEfd9iceWt3eOx/9a6y1dx2smnmNpnrhsTXfk2mjdy7VVGpdenZDW21pDufVqWcO1OmtY9G5Jv/f2e0u+Wt/k+qI29r061DqmtT6K647XbE0nWyk9Z6wjLXJZ5Gjpm/n+MAzNvLl11KvP0vyleVLSTT3rp9VG7neu3pL+2jMXttoNVlr2SWvttuzOlnxzee+9pmk6Xx+PR0nSNE3n9Lu7O718+fJ8/eLFCz1//lyS9PLlSw3DvZ4//4i8DwrhVO9nPvOeXt6dnvFwOOhwOLl+b7zxhp49e6bb29vz71nW29vb8xxO59HcX8MwnP/me3G+ON2qY61c7KHlfOux1Xraaq2lue1pmuT9nPf07/F4lL/3xbIWbGugreP37OF70yWd53GuTE62eQ5Z7MUZ7300Py7UfLZ4jK3zxur/lfSLxd+r96WP5prk3GUe5sbcqufSsjX/OVd+qx/XYrm+TyGYnO+b0rvvluos6Rfv/coGyrUZp8V55nrj/gt+3V+n/OM5T23+5Hz5WT9N05Qtb7FhS/ZoXEdpnqdrv+YH1Gy0yzyNy+TjNCnX2oe22Jdb882s7c51bCmdd7HetPs5c/pSnzyWb1Gjtq+VmOfZMAxmnbts70JJdyzW+7jUw1LQNB0Vjvk9K7aNatTs/y9ULD5Mbkxbc3NL3231hVpzrBYHip8l1WO59B4frzfeZd3fS2NkiYNZ5OhhT5u1vrTEb7baIS1dkN636KSaLKW+KNnmtTrSGHrL/7+GjRhCkB8GTdOyH47Ho4bCM1j2vi1nMekzWmIkJUr5Zn9mbsN6nlKSOa3bmrcmZ26OzmmpfWyts0XNtkltocfYO2v7joXW/tKasyXbptfmqcmVK1/zAVt5SvZVK75cirnE+Wo+/8VXmP+CFPLy13TCnlhKa670xDhydeZ068mXzKy/EFQSp+Y/1thyLrJF5+bSavMwRM/q3MOfnGKfsVZHKU9pH7b4nz1641o+Sw8WWyY3X1vrtJT2WGe9pTVVO7d6zHPn2EeI7XlJGoa1njuMB02Hi621x6feo7vSGH/NPracfaV5Wr5Ta69t2b7pfLXERSxt1YjbqM2pa8632hyJ7bEaOdu+B4uOs+r60j4UP+dWm3V9f23ntOZlrY9iu91yZtzDlvlkmeetc/VeSmsxR7omrfqqtK5LMvjBr+rbMz6XubiU17I/lt5B67EPhmFQyOwdPeVb9J4VSP32VJresidrdlapL3PXPeMer49UN+yNd5v2t2xczut4XKaV9tceOffY7mksZI7jx6J77xWidwxKsUOLXLV1tWXuxpTiOrX1Gj/L2vXKn1uW2qj1h1W/tmK0W+JKaf258rX4fc+YldKrvvq47rfT+yrt8V+tnzHIuTgtLPSPJQ6yXiPt8V3mL591741F1dpsxXvSNGsc2U/h9J7S4tFnPWF/f+oxuDQZHs7q53S7LD3xEut8b6df7tfitJZ603Va01exzrH6PSVKNlFpjrfWRSm9pId667pszfl3AZ+Ca/hA12ovnUN+uLyLeEqTjsdJ47TtbG/WSa1n3nseYylXk8O5EMWjZz+w/e5yr77bZ8+t96SeObw1pmS1NXJrtLbereTskvQ6Jpue9SNt73ac9fDoErvi5GMMh3wd/rBuM603b/Ok/u3aj6rP5by+bJ1hxeVz16mcpThsbU4W686Mz7V0YG6MT8s6396eeHeuLUtswXpusOVcJ3/v4gf32KM9fmb62zKepfVoHYN0TdXWWA/X8sPbtN9R2Ms19tlr+OmWe7WY0zTm3921lG3LttaPrbZKsYOZSx/Znr3nXkpPvGupW2xnz/G7AK1+tvihubRYdosesfZPnO2p/YDSM5Z+t8qX0qxcY4+tjX9rTVxLhlpdtdizj/aHOcsw2GLVPffbz5iWu9h5i7mv6/UV2Nh2svrFy5dV7v1fTyZFme9Pfs8r7xNPLQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCHHT6+0seXVu69+2RSlPnhQvo7TyoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAawAfX+ljqtw7PpkUZT5fSH/7SaUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4DTi8agFeM96r3PtKSX/7qQQp8PFX3P6T4pzblBZC2Fx/XNZaTwihWi5XT9x2Kkf82ypDrnxc1jm3kHP+nWJ9jpLMpXpzstXqq5VtEdfrvc+mp3LWxqNWf8+9LWW894tn2IplTFKGYWjmS+uNZS3J3bOuWlh1hIWcHmmtxdY87l37tbLz763zb8vczOGcy8qdzherHryWXK16Yt1nLRNT0yW5umpjW9LRpfI52XNY5CrJUkuP9bsFy9jX1o5lXCzrQSrrobTsNF2+vWfRuXOeUvulMbPo0bRvSmVr41La6+N5sXU8r50/LVt6zppO3tPmlj021oPxeHnvz7pwmqZFvlR3ztfjOOp4PH3fcRgGPXv2bJF//n13d6ebG6+33hoUQjjL/bGP3ejFS53LHw6H8/Xt7a1ub2/P7cz3DoeDxnE854v1d0nelLn9YRi69+ua7RBC0DAdV+Pi/aRpquui3HPE11vtg7MMziutwjm32v9alPaLeI6v121b9i1rorQPx+npWFzL1o31bm9daXUlvVlq29pOz/UetthDNZ1o2XtS0nVYsiOsz29pc1l+zl/2T617ekk267Oke3zpOeO1H++7s36dpmlVrxt81l+I20z111xfrJfjtsdxPOmi46QQvEKYdZ50PB517+o+d83ns1ynlGzY2rw6Pdv51+p5W/GWvfJb5kupjdK90nxL+0J6GMNhfBiLS/rN4UZDQQyzHTekefOxklTmmj1WbMuwDqXT2vA+rNM2fjq81+ee11RV7w5Ow7AsNwzjwg5I5+Rsz+XatNLyIUo2vLXv98jWQ+8a7fFNevaX1tq2+tet/WCvbWTVqelvawwk99uyllP7JLdXln5fi8eay3ttO4ufdM21Fo/FFj/eGhfq0SVzuS1zdGUHjKOGwS1s/GEYis9amou1uFzJVyyRPltpXdSo51fwAAAgAElEQVRky8mY1hVT8iut/ti1dFHOTyv5brl+6Z2rc/1b9oFr+WNxvTX/vqTr4rhAnGcYBpMPY7FNa+2nsrSuW+VyctTWl4XcXlqK1SxjIO35VNNDvXqklCdXT6nukl7asvcv+v3cL1GdCisX2qK7anOuFSO6Zjx5S72LbJUilj2tFfuM520pXrdF5+XayO0ve/VdSZ/Ndc1+0R5Sv7Z0r1W+N15zbeKYQ9p2vAem99Z5g47HZfqLl5NevlzrpdQ2mX+n87Kmx6xxQSnfd3Gbcdmcfk7Ht9QX6Xj1xs1jWeOytXpSOyWWpbR2LLHTx/Kdc/M9Z4dtbT83rlZZSmm1tVcam3ReLeaoTnHAEC75xmFc/F/KlfaqXPoY1mc0p/Owfj0X68hY5txzPpZO2soWeSzjJ136Jc5fs6H27o8l5rmTpo3DqGFY6oJxGOXGhg0cvHIGRcl2Lenakh7N1TljsUF7/NhWfNRShzVf7b7l/bIcuTnTstNKtkxLt231I0v2YEnOON2PIdLPp7TD4UbDs3LMvSaz1dYuYdX/p/W8rjdnK9TSSvJsjcNZn7/kG7Xq6fE/rfly+sMaX7LMhbU/4eRcvv40bpGry2qDWt4Xsdits/ynvHHpus+W1tPIVZy/6e9zX/j4TLfdPy250lhla+/u0Vel+V5bB1ZdsLx3+jvZcWbxqtTa9N7n91DvivdjttrEPVj2rmUeZc4fBw2DK/pQlnhwaz5Z/Cur/2Z5N7wU37euoZI/sWVM1/0326t1Xd3Si1v2uVQn1spbYiaWdEtbc/rp1iX+OMcrturiue8s42eV35Kv5tfmx0qRzRPOad6v3+2x2qslmVryl+yrlR/kbLGMmg3SI3/LHtsbVynl3RO/PPff6FZ9mL4rO1M6/y7vR/m2Wzq5VJ/3+3223rEo3avtCa33c1Oqemz1PlP5XeYarbW1fA9wLU+ufGtftOyHNWIb2rLXpNT8hJL9PV977+WP5T3cUldJlh4s/WaxT/I6apZp/97TW7YvFrL2u/fI0BMv6PU3anGyWr60ra19N68Tq07riYtNzimdK5a21vtzqUy57i32Uc3ObJ0VxekueW7nJJex/YZh0DAOVZnK9ffTiqP22FM5SrGQveyJ113DbirJco246FZy9tLW8dtie9fKz1lCWO8U1jm81TdR5pwjjls99TjBhY2vr3/R8oOVez/2yaQo8+WF9M8/qRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvAXx8pY/vrdz7OU8lRIWvTn7P3zz6gacWBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4MMOH1/pIITweUl/a/6Z3P6Gp5VmiXPuIOnnaS1XkPQ3nl4iAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACADzd8fKWfPy3JPVw7nT5u4iT9I865r3tlUkk/W9I7D9cuufcXnlgWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACADz2HVy3Aa8gfl/QrM+lO0u+S9LOeVpwzv6ly7zufTIonJIQg7/2uOpxLv1OzrL91XSOXr1V2lqe3vTRPqYxz7nwvffb4t6V9a11xHWm9tXbmOuK6auNlab+WFvd9SU7LfBuG5TetrDJbCWEtY0+buWfZIuPetVeiR5bW2gghZOfRlnpzayzXB635apE5h7Wu+JlT5nmSW49zGeu4ltpI52YNa75Wm+m9LTqzVGeuj3JlW+Pemn85XVjT66U8VraUs6yhtB9q82RreppnnrOpHrRQKuO9N+uM3vkW90tpjFt7cGm+WW2amXi9W/ZjSztz+S12U0m2Eun4TdNUlCfHlr0vrst7n33OUr/G9+ayx+NRknR3d3fO++LFC33wwQfnfJ/73OckSe++++45/+c+9zl95jOfOf8+Ho96661BP/PrPrlo73//Pz6tDz44tfnGG2/oy77syyRJNzc3euONN/Sxj31MkvTs2bNz/9XswXiOjuO4WH9xuXls0jGZ88Rj17JH57zzujzdX5dpjWc8LnH78765VZ/G9aRVxH22Zd8srYN4rz8ej+d8cxPH41HhGLr3xi15Y65t8/Zy6ct43j7MHd/XFz37dk+9tXzW8qfxTp8xmHVvS8db8vf0Yc1+qen6Oc/k/EqX3N/fy98P5v0pXQuxbDmdXdPjcR7vL7Idj8fzvePxeNbP0zQtdPWc5/7+ftGO915vvOH0/vsnHTfL+NnPvtD9/ShJGsfxrL+cczocLuG8WS/PdaW659nR67333j/rCecGvfvuu7q7OZW5ubk51+ecO9c1/yu1fc4ttliprrV9U/cDanMy7gtrnKNFK0bS0v1pXel6yetv2/yuyZdrO9Ynab0139Je/4WcrZbm2ROkLu31M1vHNrX5/Ojl/fz79D1u76fFXrOl7VK+1nyq6axWPekY5/zfFlvshl4faotv0bu/tX6n6TXd07PXtuw1q1x7YnTDMDTXT02u1n4c71218et9hlrsN9aHrTmzJYaTtldKt/ro8T5Q820s63VvrK3kw1rLx+mlukprOm0rhCCv9f5xf3+v4cG+2kqt3Z7yrRhsi3T95eqLfWKLTDlqMU0LqY2Rztlam+n1nvZb9cX9XvOn4zpafRLfL8WdWuT26pZd1Ou3brHF03FttW+ZY618pfzpmObGL4SgafIKYXlvmiYFP9vhcX4v711TttwZQG8MJT2Das2/nAyt6+r4ZOx6p3qs7Fo2VZynZlv2tJlS0zWzb34Z/yDvJT95hXGWS5qmo9x0GafWft2aEz3rJY01lNZr6WylNQaWs8N037PI8Bh2Z8pen3Ouo5WWsw1rdkmq+2edfdJDlziQ9153d3fnfHOdx+NxoedDCHrzDafPfOZLNPv2w+D0Az/wXC9enGIvNzc35xjMMAy6ubk5X899NI7jYl6UYuzxvfQ6ppRemgdpHMtKbr6lNlAv1rK9++O15rel3WvFW3pkzumhml1l0dtx7DCtrycWfC7jg7xP9hMFObX1UxrrndsMwSuEy/mJ917HYzt2VxvH1vjF67Wlk6+FZd7V9oD4Xrre0zO1mdR/zZ0B1uiJLdTKSlJw0ip+6py06v/TnCqERJP6e2Ksy98959y5vN57BR829VFv3C2Vee9cuuZZYfvcYH/bubiIxf7KxQWs8cKlHojP309p0zQpTNv60eKLW2OVNQ4aVnNgHEeNY15flEhjdzWfzWL3PtYzL9fiSrU0602fsbUX1GLjpXhnM240xbbwgz4M4XzWcbJfL+8U5uqL7YOWTor942vEiII7xQRijvf3csd+f8kPYRVb8N5LlTOetL54HK6h9vbGn3rOK0pptfS5jfI96bQPu6v0h6XN2Feasw3DoGGY7ZG8D2S1c+f2nXMax7UOitva8gy1OHCUK5JhLNbVep49Z/iSon6ux69CCAv/oKbfe2OPqTylfTgnd6uuS74gadA4Dis/Z2tMa2/ZXHmrrVL73SqTtbPGWZ/HMWlXnF+t2Fvr3pazrseIMTkXVnrNuXY8rnWG1Gq3le+yp6/fVayVL41Lj7wWGVvP1NNOyT7s9afL/ktXNZs5tz/0n0Es6thR/lpY/d10zvaOWfqezrntSjW1mEcpz/m333YG2JLjWr5riVb9m+daRxvz75yOaekdi5xx/KTXrqnvm1HMsjKveser1zY/y/DAaf2s579k/++zUnnif2t5avT4Cul/r5bm2WvPZfeGzHuVpbPS9P2Mmn7y4/gwjy6xgJJfXuvHXJnL7/lf2xjV5vUe/bI+p1zfT9NmHyuWLaV2ZmqRJX7ea9oYOfb4KbX2retvb/utNnJz5zH6rJY+E8+dXHzWWs9W+fL54rW4/G+mavX1zEtbvDRvo75K+w/mqCn08Mcl/cjDddC8sk58yjn3Hz61QM65Xybp6zPySNL3hRD+t6eWCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4MMOH1/pJIRwL+lbtPy02PzBEyfpNzrnftVTyeOc+3pJv1fr/9uFWabf91SyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvE7w8ZVt/HZJn3u4nj96En+A5Vucc/+pc+5R+9c594slfbuktxMZZj4j6fc8pgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvK4dXLcDrSAjhs865b5b0X2j5sZP4Ayz/tqR/1Dn374YQ/sw123fO/SRJv0vSP5O0mcrxm0MI712z7Q8TzjkNw6AQLkMQX1vKp8Tlh2E4p+Xy1toslXHOdcloZW5rrrsm70wqR02utP40PVf3fM85t8gXX5fa7JGtxFwmLmuVo/Sc4zhm24rHNe2TnnYkaZqmNEHee3nvF88Ugpf3k6bJyXtfbDP3O0dtHZX6cE97W7DOvzh/Og8s88F6v1feeF30znHrGrDqqtL1NceuVFfaB/E4pek5WjrZQumZ07VkKW+pN/e7VG7vPrY1b24crP3Ry7y/xqR7RXqv1C+5uraQPmvaH7EsLWpjaBnf3J5iWSMW/Vy6l/ZxSVdJ9nVSqntrPS2sc6HVbm19b7Fb5vbiffx4POp4PJ7zPH/+XC9evDj/fvfddyVJn/vc5852wac//Wl99rOfrcpe48WLF/qRH/kRSdInPvEJTdOkz3/+85Kkw+Ggw+Fwzjf35TiOur+/l7Ts32ma5Jw720Xe+/N955Z2Sc4OsticM3O9wzCcbP8paBic4iqs37sszZGSPNY5evFH8j7B/G+uvq1+Qd7/kKRTO87XdVVNX1zDFri2LTgMQ7P/LvtIrNtC1hdp9XtNB8b3S5Rsm7T9WLZ0fpZkGIbU9b+OPVDTY6kN2zNvW+M2X8f5Qghn3eeDj/yjU967u5ca7obVs+R0knVvsNjmubS5/sPhcH6GcRx1c3MjSQtd770//573hFhHPLsNevbsflH/W2/e6v5mPLcV6+d4/hwOh8UanvtiznN7P+kjP3RU3GUf//jHdXdz8W9zc3Gv3ZPWscUfj/fPOG0Iedli+UMIi7hOro00fZqmR4nZWKiPwVr+3HrM9VWOWa/m8jt/uS7Z7akcaXtb7OGLfsw/aw/zOLZiZFv2q9O6Ov86p6V91Svz1nnXim225ojVvu1JK7HVv+qpb2v9VvvUEtNJ145lPWyNq83lZ1s5bc/qY4/j2D0Hcz502n4tBrfFJrGQxoxKdm8uvWY3PFZ8JKerSro0zmfx363nELX+aumYtF/m31tiNXHc/dwXNzcahmU8/ubmRi7jc1r1WWnuxpT80ty9UtwmtW+3sjoraMhaSpvTt6yxkq+4VYfvjX2W9Eypz68ZR0513V67scdGqdlgW+SorR2L7iy1b5HFOg/ze8d6fbphrdedGzQMtv5Nz4Jbz5A+r3VePNpeMgZ5n/g1fpKbLs9ZiqvM92b54vhejXj+xDqitvZqPmCp/pIsaVzFuTkuFrdxyW+JlUlaPH/cbvouQi1m36q7RI9dHtNar7FfLNXtPovujPfr3riZ1V+N2RLzT9vPjZO1H0rUniVX/tmzoI9/fLmn/7gf92V6+bLua5T6Mrb/03yW61TmGrkxyLVfmosl3ZjTIy0fPibXT9M0LfTdFr0bP28pLlKjpQtz7LEn4rnco2dz+eLyJTu/RU6P9sQc/SFoHJdtDcOoYbT5Num7PDfOZ/2JaWzbNCVqeXr7qbaW07TcsxwOB02H/BzN1TXPl9K9lu2d/t6jR2tyWusu2WSXNC+ni/3o3OlvnlM1mQ5ar/9xHDWO61hzzhaM7asSqf8c/7acJ6ZrP+e39fhC8/rZG2+zrJGWbi3tibm4iDX2YZ2XFv9/SzvF9of1mjydBbXXY296K66U5q097zR5hTDHr05px+NRR7X7zxqHKo1/7tlq9KyNeB3n2psmv1qf0zRpcvV5X5vzOX1Rm+M1+zBtd/1McY7yuUt83pHaeaUYUU22EqX1lqvHj0HOLfveJWvFKpMb8+suTrL4xDvDTZsoxXD2xqf2cu6PRZ+sYziP0/aWMvvlKvlAW9o/64HVfwKyZEt8IJe+Re6W3dVDSa9spdf/Wra9uFPJ1yfjnrhpDqsse/vSVt42F67x3HaZ8jHaXHmrHbJMW+frsUEtvnrL9irL1xShWj4nx5Zycd7as+w9V8n5CSVSOY7H4zo2NnhNk1/04zRNCpM9PpW0em47lXF+1zb3jo6V+L8jSmPXvfGra55V5OxZ6/vZ19iTYyzPFedZ26P59T6zZexCWL8zfK3/5mFP/+X34/V7tjHx3Kv9d2vWuHFad3ydO4fY2m+t+VZbQ9fYuy2kMc3cfNzbRkxtf6rFAmP2nu/sjZuvzmhC5h3I4HU8btN3y/dNl/60914qPH+s69dlomtJ4zTJ++W50fF4r3v1vXNj9YV7/Il0vwpB8tNxNe53d3ca79f/fe1WnyPe6+O1WzsD7GkztlVy2XPrIo3RlGSOy6TU6uo9ay3lq7WdW+PX2INrc2oRPxri36f7Lfulx+7bI2fc3rJPnIbBLdK3jlVcvp13nWdP/AGux3Wsty9CQgi/V9J3SOcPnczMv52kT0n6Tufc/+yc+3XOua/Z2p5z7iucc9/knPsOSd+r5YdXzmJFaX9B0u/e2h4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAXOodXLcBrzi+T9Ocl/RRp8enh+AMs80dYPiVJzrn3JP2wpL9bqfcbnXM/TdJHJX25pJ8m6aui+3M7Ifodf4TlXUm/NLzqz1oDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8iOHjKzsIIXzOOfdPSfpOST9B+Q+wKEqTpHce/n5yci/+9xclTbnkd1pv/Pu5pH8uhPD/dj0MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFxnDqxbgdSeE8P2Svl7S39Dlgyvxx1DitJDcL+GSv1zZ3IdXXkj6xhDCn931UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8EHF61AF8IhBD+tnPu6yT9fknfqPwHWM7Zo3/jdGXyxOTyxm38HUnfEEL483bJX29COD2+c5euia/TfOnvNL1WLpc3hFDN06p/ljcnf/oc1uey5KvJsuXe/8/eu8basmz3Xf+q7jnXWvvsfc69l3t9CX5gwNgoQYZIFoodsELCK8QfUEiC8iGRAkIhQBASBEwCUkAkARQrBgkpCEXJB4SsBALCEcRIQZGRIguUQPKBYMcyuciP2Lrncs/xeazH7Co+9Ko5q6tHVY2q7rX23Wf/f9I+e3Z1PUa9Ro0xuncfiVybtTHb0nZabzyW8T2pvjitNo85mXNy5vrrvYdzLpv/nHeazuM2J83lnDGYpglmMqu2rV1+Vyu3rnJo86ft5JD6mfIU60Ka19wekdZISY50XZXaTNvSpLWypQ7NWLbot9r4lXRwqhN7xqtn/dRk1VIaS82Y1eqo1Vm6rp19mn26F1Jb1triPg3k9p62nXRM9tqTrefkHvVr1luPHtpDJ8Xk5CydIWHuaudMz7qN65TKl/RDvP7S9GmaRPnidX06nc73hmHA3d3d+fr6+hoA8OGHH57levXqFd5//30AwO3t7TnP7e2tpqsrvvSlLwGYx8AYg89//vNnWQIvXrxYjNHV1dVZ/sA4jos84zh274FauXSOBjfBufWZHctTqzNd4/E8xeW1ejuWUWPr5erpYT43Q3sAYGCtFfeO1JbWlkvp1a8amSSk/VWmz56P7/f4IDG5dZTrS2kNr22j9Husenp8w5ptViof6xfpDI+v43V1OBwAANPBYRw/WpS5urrG8DheW+1YaZ7iucjt6dhuCffCdaoT4jmPz5C4jPce4zjhePx4ke/mxQsM9/JYDsOw6H+4H9vT4ffglvqi1P90f2+xi6RxyrWTa89Zt8o7TSf4h7x+rflp6XU85zk7YU+dViJdMwDgrFmNwWk6wUZ2RSvTNMENbnGmAoBzEzD5Rb69ydnzzrnVmXxJz/tLuXHvtZVr7VxiM8v6cvGuUhsaP7TUX40fqbFrtLL1+k6tMSktPfXF86L1LWsxxTR9GIbsGm8lreep/c60zZKf2BMfXe6ji59UWsvas14bT0jlj/sxPcZg07pLskh2o8Z/l/qc9kET025tN25Hus6No0b3eO8X9orm3I/P3Wmaztfht3QunE4njA0xDMm2afEZS75Nzp6Ir51zu+/dPWKjAY2tH49hj2/QQ+/5lZbvjdW21lsaly3nVSlNe4ZpnlsBbb5Viw0Vp5d0tabPOVvRe3u2z+aqQ2ykLeYuxZjidmp90eqWko7ZM0afxhlin7GWX0uvbd7SVq8e2KKjtHEtDblnIXvRas/G1xq9n5J7/lyqL41R5OqK6wm+aO+eCOVaznRpL0o6J07XxA2MMbDWI+6KMWbh62psaG38u1VH96xH51w2fqads9hW2ronWu1OLXv4drl5q50fvfZDfD5p9EPcl9L+TuOQOTlzcRHtmHnrMU1L+9m5CX7SnbeynZDGFSecomy1tZHz1yR5rDJmnbN7Svp5mkJfls+mckNbkiHMR6rDtT5nLZ6lqatUj0aG9Lcz/mz7XezCMLd+ke6dQy3kOU5eiJvmxzuWJ95/sY+cI+RNY9Te6sYx+M9b4rgaHZnT1+mclGTOnR05cnZGy1lX8zOkPR2v9VyMJldfq982rzOpjP5syO3NnO3T49vIdYe8lzI9MfnWtQCU7UhNmqQH02upjcGbSLc8pg0DhsFm2yqNpeY5WXo+pOdq7uxd1TEA3gf7a56/eB5THVfrS3jfJL4nraE9YmJz3Ze19pj6aGfr3olY3p/Lt5bTyamLK2yNd8V1aOLitboCqdwl2zp+Zu7CmWUMwtiG8RjHEbbBftb6Fus1cWmz1U/OxWvCGE3T+r3ieP/E6RpS+cIZ7h1E2zW2haW6NHPZE9PVrC3tc4Q0T02GFpu/dA7Wys/6MPQz3N83LiTJqrmvbT9XRhqXmv2v0yc62693P2yh9ewptX2J+8RrYf57mhz8JK9D6Toe19bxalkzUpo2drsnW+LAPe8q1fZA7vqSvrhSxS/z55McA9USdE/a7fU4LHXUfFbU7dAWYluv5lP0xG97Zcu9E9srR1xmfk9gfQ6nx7DWf+653xq/zMWutczv46U6boLxunNY+xyhxyaoPWso1VuqR9pjzjlgw6O5Hl3b4xfX6tirvGaMvffqGM9TnT1SzHZ1BhmLcdz4PC7xfeekvC66yBbe013LF+KFg4/jlzjfy8Xi1220IZVpW0cXf0/qV6692vqQYqOpvOm9mu4ord112rq99Fpjq6UxRU1de8VMWura2/6u1XfxrZIYveBz9fZFkqO2/jRxVOc8Sg8EtLaqRt+u5V/ma4l3kKdhv7c73nK89x95738LgH8ewNewPFniFW6A1QdZUozw59xU9Cfc+x8B/Gr/Fn14hRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQrfDjKzvjvf9TAL4LwA8B+ATrj7DEf1RVCmXCR1d+EsBv897/gPf+F/aQnxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQtwV+fOUJ8N5/zXv/+wB8O4B/C8Bfx+WDKSbOqviDpKwH8D8D+K0AfpX3/r954u4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKZZHzdAnyW8d6/D+CPAvijxpjvBPAbAfwjAP5BAH8Xlh9iyXHC/PGWvwLgLwD48977rz6NxG8e3vt6pkJ+7/0iLfyO04xZTlO4Nsas7rUSl/feq+oLeay9fDup1K+0jVKZ0rUkcy7NOVetqzZ3oc40X26MNGOXa1Ma+3ieS/la2onLGmOqcwgA49FjGAYMQ1hvBsMwwAwDDocjDrasxuM2cqTzpWWapmoe7R4p5etZPy1t9u7jeI1KuqNHxlQWTd97x0JTTpNHI7NURhr3Utkt49lSb27MNXOR9knafzld00NOv0vXcRnpfBiGoVuOXJstusU5p9JXgH7M4j5J41E7q/bQM1r2bmvrWaU5e3N7P9WD8XVuTeTsLil/vE60a2YPUn2S7j9pD8X9mqZpked0OuFwOAAAXr58ifv7ewDAzc0NvvzlLwMA7u7u8M3f/M0AgO/+7u/G7e3tOR0AHh4ezn9fXXl827ct5+17v/fb8PAwtzmOF3thHEfc3Nycr621eOeddxbXAHB9fb3of5A39F3aYz122hZbZV5jTmWTaInbysmd7pFpmuDcMu10OmFwQ7GeEhqbYrLrdp1zMK7cXhjzPcat1U5LbYBc3pKOzo4HHJybonzAw8MJw+myxrb6bz2Uzttt8lz0bq9vV5MlPRO0Z720r0sylG2Gte2U+lK5Onr8f+dcdbykeqR6c3tMsgeH4eJrhr/HcYD3w6qcNFehLWvt6v4wTfDeIe7WNE04naI8Cluwdb1qxjIgjZ9zDs66cz0h/fb2FvbeLvJKsqVjEdaMtXZRbq8zpKb7ar6B936xjp/TFt2LnA1ZG5vwt7XrmIu1NmsrpL64pp1amlRvzHSaFmcNMNti9iFvz7TunR4/T9ueNta3Zxwm3tNPRW/sQmOTtPa792zXxElLZ3LLGte2q43dlGImuTFOY2q9svas1d61XDsvgq6qxeRTWbbujac6L7bYqWEsLjbNMn4tyZz6+s65yJZYrv0wF08ZEw1odWq8PvbwObQyavxXLVp/vnWN98i3VSdrbBBN+VKaZlxylHSXZh60Z1iLTZHrc20semyV1nkMZWZ5lufO7NfM9llc7+2tO/sMUl9i3yDN03qOpHZjbd3v8Ww5xnUyteMAACAASURBVB08hmGpK8fxAFuJDUnyaeazZ1+12mrS+izZEd7jcW2EDIC1USzGDt3/O6Ktzzg1z4gkpDHbGl8M17EPJumeVGatTtbEUbXrJxejiH2LYC9IbHlukNq2oQ3vL88Awrkfrkv28CyPhzH5vufs4fRZSWpvpu3MbS37Xls3e/tpcSymtEYuY9Mmb62uXH+e0h9NbV8NuTOjNGZ7xa9Su7vV7inFTCTmuGd5T5+vhbhQrUxr3lmeso7oeZYv6Y2SHFKbJRtCsh/SmFkuvpqLo+f0fa3/8bW0358yLpKXA4vf56qUcTBBGlG+nlh3Tf9I+9AYA2fCfrgYOMZYWLtcK8MwqOVKbd/471w/ajp2q81SOrN7YnJ7xE738mlq+zpTStxjuTZLvmCuHm0dJQZvFvY2UI7jp+3FukOzFjX+b64OaU5b7NaW9ZzTibXzPldPrf2cnS3FG/2Vx6cmPEc0MMadfew5rW4TpHOcK1MiZ/u170vfpJdrbaR7ptfvjWMVpTa1+qpEj93c6ifldH+cNsdw4/kIdqIDvMPpdIKNH0g3yl+STbaNzPy+jDFI3zGQ2i/5YiVfOMQi0vRcO+lvURbknpHuG/NN5dT6Srn3PzQ6NZfesw9yc5OLcaR5coQqW3RLj99QqqPVbtjSfottoKm3992dmmw9fnaJ9jnS2x09667auipOne5pD2/1PnvKVnnT8lviMa2y9OWPy6z1k/adLw3WWsCW9Vhsn81yLOWJY+F7yJRDO29Ps+/6yNk5e8cE0/qkdks6MbWveuPY0rjW3l9fETUd6muJc2plr53bErnzMf6tiZXmZFzGkdYxty3xR02sP3eGXOoKz0PVYlTp8U1ytskeNpDURg9nn1Kw/T3ycexcfDRFevfVOQc8lpds0OX5fPF51+OUn2edDZDUttEWXacnsVdzkTfWGbV25b7PlPyJNJ9Un8ZuzcXTJH+uJ95XaqdG3KYmjtgS79PI1RN71aTl6o6T5n20rMdF+6pFRu18lGKuUgzBGPl976fgEh/zop0HJPvlecwrEsGPrzwT3vufAvBTAP5TADDGXAP4VgDfAuBdADeY5+MewKcAvgbgZwH8nPd+HYEkhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYRsgh9feU14728B/I3HP4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkGfGvm4BCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5HUwvm4BCNmCMQbeewA4/x1Ir0t1BKxdf48ovq8lbds5J6ZrZWwllVnqQ0+/cqRzEPfLGCO2lY61Ziy8981jlsvfMxeaMrm5bymz4HSCc+6xnsv4eu/g3IRpKs9j2r60xnuJ5zXXr3QttNajnXPNetbMhZaePdazxnra1rZTmz8t6bi2otVFzXsH22WL6ZnjaZqKZST5NTJr93Fr/9N6g6yatSL1NaZHX2rY63yTxlSSJ5Y51U89dodEz1rXluvVMZox1awXzdlfWxe1eanJl0OyYbaOX2ynDsNwTnfOLcY1rnccx/O1MQbH4/F87/7+HgBwc3MD7/15LIZhwNWVxzg+LMbncBhg7WEl1/X19eo6Jsga1zWO42Kfx3ICbTZ0TVeW7EZjrLBGLcZx7dZqdEyaR7veU+ZyUlq/vZ2uJQln3KpdDZqxkMYmlcVaK+55aW3HeTS6s7TfJFkAwBkPIB63WcZ4fZbqfSrfDOi3SdK95ZxDKmaPj5RSk++yB5djrtl7JRsh58vHckl72bi67SHV26MXtPXGaZJsUr2asymWMc0vzYvUp2maVvXM/uRlL8Uy5+Z7qy8ermNZvPeLttNr5zxOjz5x4Pb2DsPDcm/EazHIHZ+9cXpOv0lo9Lh2zWjWrKT7578NQjyg1L52zsLaWt6fZfSTfp73jCv1ENta4bqFXlvvspaWadIaS2XMtbOHbyRR69NTxAb3Lq+xCWppUj0lm2TLuLSMQ87e6/E7WmXTyrnFz90jbl9ro5Rvb9sunI+SfQKUbZPcGZ7WG5OTP60rPe/iuraMwZY4ZkmHaWKqQqlF/viMzMXINHtqz1hxqZ6eGGwp/pRjL53e83wj1UlPYSO0zE/sm7bqd+0a7fEtNWX2WIdSn3vPjZ6+SHl6z510/3i/XGPjOOJ4HHB/VoVz+aurK9iNey+3FkrrSvPcpbanW59TG4PH2NDybEmL9D6LKMmX9lcjb4pmjZX00PzbL2MlHotrDw/vynHMnNxae7rVZi3lyY1rj37QPmvItSnJJqWXyvSc/TUZrbXw3i/sIM349Dyzj/d+rHviezWujh6Hw90i7cXNFYahPU7RQrrWS2s/jeuW0Nr2JX8nt8ZL86iJX5aen+75zPg56k3RnA+t+60WR5L8ih67VKNfgDm+f0l7XJPQ25bp2RH7brG+jtO2xv5yzypKZXvWzDTFfmi9LyW5gu4s2f3SMxVpvHrjTkEPSDZwz7sS3nk4l+qmsH6DLGvZWnWf9ryPf0s+e65cJkdVtpr+S5H2dM6mS58JSnWU0tL6WnmO+HNfnOJCyZerPgNK7Vg8PhNy/THPXJp0T6MHpXN/mtx5z4Xis95dly+Nbxrj0cqskVNqo0Ytn7VrXVKTIdUdsTzDMDSfQ+HZTipvKfYIAH70CI/RhmHuyzgC42O5q+MRafxtD0q6SWMfXtbHOWVxr9X3LK2fePp0fv0iJbsHpDql6xqtZ7C2jVqems81TdN5PGoixf5cToZ4jcek+yi288Kt+Rln7GPFe+eyH3N7JzcWw7BeO7X1V4uViLb9AKTnfs8616TF9cdzvNfe33u9t5Kz21K7Zx7fddu97W+N22x9brbHuOXSnVuPqXMeQfHt6Rf3jEmPz6ird30GWZt/LtVWt872yaVd5mWdr8dW16CJA6f6utVH2GL3tZKeFSW5Gmpd+eqBNE6hYV6DJtFb286KHjRrfuuzBk352VdqbkaNZFPHMtb2QG5u0zjMHjpkr31gbdwnU4wvlOxpQBf/0/qqtXqNuejitj21Pvu1bW6lbc7W+r0Facw1z+KKEhXO51xMMSeTRobm2ExGn+eoxeuWchjkzgtpXJb+4vxD0l/er8+EWvzxIlNZFs2Z3cbs8IUmLn9v00VaW1ajH7TPrbbK0lNfT72aPavd13vptFZ9u/xtEKuHYRhgh/x5I9XTK2etDmMMcm/7tZxNLZTmrqQXzvf2MQNIA/v9K3xCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5g+DHVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIW8l/PgKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkrYQfXyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLyVjK9bgOfGGPP9r1uG58R7/+OvW4anxHsP7706vzGmeJ1rYyu5djTtx3lysjjnite5ejXtx9TGQrqfzlFos6cubXut9UjjoBlDDcMwVOVJ28qva/P4X/M4fxbWzt/Qap3LrYR2S9TGMPSxNEfpOt2yH1OZt+gOTT2l+nvWqTbvHjoLyOuItP40T2v7W+SttS3J3yOvMUalb1rPGOm+tLd610tcl0anTdNUlS/Xfrqf4zzee7H9tD0N6fhI49Vz1ktlWucvXNfGWrMupXMhped8y63lEtr8PXtZeybWyuyh97S6XJrfUp5wL017eHhY5P/4449XZb7+9a8v6v6lX/qlRTsffPDBOf/1tcHXvvYSwCX/3/ybHwG4ArC0R169eoXD4XC+fvnyJY7H4/n6xYsXALDIk9ZxOp0W10HOdE/26GFpLoK+GNwE71O7d8Lp1L7Pc2m9a/lS7DLnxsk2zF5227Jd+X5Leq2ttGyPvaw9q+P0fp/NV/3F1rq1c5fm05xXUnu5fkW1VOXy3i/u95y/0lxba6trSXOeSSzXW/h9qdN0umqaedHILNVTWyc1XXc8WgzDsEg/HA7wfts3k621sNaLuje31sLvnnWs2W9xPVL+xXkznmCtXaS9eHGD4WHpZ2t1fE+elJovrLEVWso655Lyj7a1c11nakiP95eGWlxHsp9rvnzqJ0zTBOeWa/N0esC9r+ut54r3rc/ey1mTi3Hk9MpW26DXt91Kr+1dazvnS/bUo9EJGh2XsoftE6fl+qeRJbXJavOi9e97/cxaHVvXXuszgBJ7xHxbY5Vpnh57LFfv6XRapad9bNUXWnv8qXVKOKviLOEMXFxjrVM1fkdKT3808699VpO73jLOqU7V2Gppe5Lvv0WW3pj8HvOTs3M1ZWpprbKk9K5RaV5bfZMenkr3l2K/I9zq/sWHSta6c3Curf3Uhtjr3EmpjUvNn1jFkScP55ZjME0TbCYm1StbS4yvrtvb0MW0zeKntZdrawfYQ90Wkua/1+eK69Ts0ZZzNxdT36pntDbSVl+r5zyQ8u9t00lpOd+iJkN6/g6DXz0fuL27xd2d/hlcKlvOnynl0cyd5hlcLa6z19kZo5nvvd7taOWpfMlSHaHN2rjuHXfQtCnlKcmRl8uEDKr3RdL9OsdE17rTOYfcdJT2Ucsz80UvKu8CtKyNS1vz36fTCSfo3xVK+1ey++sy6CnpWuleGiNXtb3yYefzHwCsXfrMxtqznZBbV/OaW8u81a/MneH5vB4LG0fRRu5+S1ygFFNO62t5F6F1Xnufx7WyVxxZcx6sC/loLOekYRhgB12faj6Mds5SamMy+GlhbwNB79bPJ409vddz9Bqt9uU0rW1uTcxy6zPvNI6o2UtyO49rQHgupDlrS/TO2V7xL039Lehip4uUxR54ClrWWc7n2ismvZXUrk3llGyllrm8PLPL35euc8+mBrt+59FNE6Yp/4xJ8iVrz77mR6Ft53OPz1eipF80/q/0LkAql0bmvWNy+TMQSG2tkOWp4oJbqNmSuef3Ma1rRB6zy2/N2aHxS3vPoKd6H+BSFitdMqfpYvKpj7on4ew2Zi2jJFPO7qnZbbUYVc2vbLU1a7q0pXzNjzfD/G9w9t3v6xjGQi67liu2IeJ3u0L/FzZGpXxWqsa93+K7bqFUp7U229fniAF67x9jSPnzXvfcQk9rvzTvadfL68toz5Stcfwe3V6L4wutLNrb6rMVW6rUlz9TljbqNE2YhKqewgfR9C/uV6z7e2KoJftA86wEAIwUP4PJnlda2eLa4rZrz1M1ccX5ehnPjP9t6Dpvq8xLWsp4v35XNU6LbWaNz/ZU9n2pjZIddDqdVrrp4eEB9tS+n3J7cKvdLd3rHcfcM++nIqfTvF/a/C0x5JTaeNX8b8nPuazravML9ljfpWfnmtgjeXreuo+vAPiLKEWpPlt4vJ1zTAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEJIlbf5wxzP89kmQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELINyRv88dX/OsW4Inhx2UIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCnwNn985bP8cZLP+odlFhgjT6WU7v16aKS0tKyUp4ecrKV2NG2n9dbaydW9tZ/adkNbpfZ6+t0qQ6k951xXPRLW2lVaLKe1dtGeMeZ831q7uJ4zzP8ZhgEDhmLbe/ajVG9uvjTzWMujmdPevaNtby8dkGujZd1KcxrL17sH0nqcc13j2jtfPfX0tCPpHmn8eub8KWWWaNnfmnnLyd+yv3N6OejBuMwwlPVX65nSSlx/73mY62/rWkjbS9ehdI5o6+rRw9o6nuqMKcksjW1ufOL0ku40xlTHqTQXzrlF/fF6D/JO07TI8/DwgGmaztd3d3cAgNPpdE67vb3FJ598srgGgF/+5V9elPnoo49wc2Px0UdnaQEAv/SLv4jTNLt7L168ONfz0Ucf4XOf+9xZtk8//RSf//znz2Nxf38PAHj58uU5z/39Pa6vr891GGMwjuP5dyDd12Es4jzSGVjbM/GeSKcqZ1Pm9tUeSHZji/6O0+Pf6frSjEuaJR7Pml6v2eJPYY8bYxZ7ISeL1p6I14az63nQ+hy1NSqVSe0mDVvX5bBaax7TNCFSHWp6zs5cn7V6VGtrhLrjveXc/Pc0neBPa7tComffe+/FNXo6nRZz//HHH5/zTNOEjy5K+Jzv7u4ua/t473F1dXW+vrry+OCD5Rj9/M9/hIeHtb10PB4XdR2Px4X+OBwOAGadMk0Tpmla2bsaXdGaLt3TzFF6dsTjPI7jSjcGH1kji0ZHpde5s176XaJ1j+X8FOek9Ev+Vrs1txfjOjWyxn/n7rfi3ATvl3pumiY45VZusZlLpPul5idL45bGfCQ0a6l2hpXOr1z7kh/UYtf32lS1+Qn3n8rHSGVI29k6H4GSjpHsjrRerW3bKssWH7e1bo2tlJNnqy+tpdTOcz0H2KM97Vn3JiDq1kedG9/yif8dyK3JNL6y99ho4sjpWdISO926HrXlNbqnZexK6/IpffNWmVrq3fv5QK7+2hmhYS+bKEWKm4f1vWeb0vnhvcc0OXi/3P+zr2PgPaL4iAEe9WNuLrW+ae3ZnpbcPG71yx8TgPS1AO8Rvwbx3M+MS/ZQj5+ZyrKIRXoDY2x0bx99pbUVcvo6TtfYmbGfW5Kv5Kts1a/auZFi6prYW0/bpTzDMIh17+FP1OY4PTdrsWFr1+sg2DhhHKV9Ej9bi9Gesz3PqlJy4yk9D9nKU/qCKSWZtXs2oDlT0ndBttIqYyqPhHbtWGtVceBc3bW8kly5c6WmE+d84Z2b+e9xHDGN8vyX9vEWu7N0Hc+TpF/D7+V5N98bhgHD0Lb/NGd0bVylsWjxcaRrzZlWWpfO+NWzslbWY2EQ21i9sWYJzXpy1sOY5YOfnAwaG65lX/baa8D6uVHcfo/d9TqJZe6Z19zaWKTb5dq9xOj72nkKv1tqU5IxtY96ZGiNZfb4K6XzribzCPd4Dl7SrLXFM9cY+bl4C2ncvKav09+RZNF/L+st1O2cqZQvP0/T7PFY9tyZItcBQHjVf1u8L4k9VB5EpeuztAc0Z2Wrn97iM7eS2ibSXoznK7VFZz8c0hRVZYzfmWohPwdLuZZymtX+iect9etCPwfBn3t4eMDDg1mNXbonWuJKc/xg2anT6QR7aj+zW6jJWIr9OefEdz9b1vueMVdtvO8y5+uYuHMe3j5tHLiFHh//KePYpap77JCcvtTaAXs+95HPsYutFuLPIfZYOtPSe8DTxjyWukh+Tzu9lnzRFEkn1uqN33vN2VnpWRP/ds6pbMLcnGvPlWCjLeu/vH/TtqbW4yG9h2CMgROeccx2yOV3GoOM7TQpBhmXfxPJvktT6NSWWGQu1m0T3R/O8VJb2th/K739y9lqUt0XvRX6nX8OUUrbky26XOvXxbHCXB0lnaiNl7T4tnLsc/1e5DCMGMdBbC9tq9aXXDlJ/lKaVLakt1t9mpZY1hZy6yfMecmvEGWysu+8Pp/1MbHW87B0T7M+rR2S8gbGDucY+yVfWU+mbab7qFevaGyXUt3SM1lrrcq3Se+12KN72Mk99W+N0ZXkqtnzl/0S9gyS9H3kLdWh14Wh7OXvmh2QtiW1l4vjSXmsXZ81Yaye+hwmZd7mj6/svfK0O7y1XU293EWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDTyNn985Tk/nZ9+HKXlQy2ast+Y/xsAQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK+gXkbP77y41h/0GQrNwD+ocd64w+hhHbitE8A/BSAnwbwSwD+PwB3j/feffzzCsC3A/j7H3/H9UkfY3kA8IcA/OVt3SCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5O3hrfv4ivf+1+1ZnzHmSwD+h7SZcPvx778G4EcA/BiAv+q9dw31/90Afg2A3w7gnwBwwPIDLP4x7fcD+EHv/Q+39oEQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkLeRt+7jK3tijPk7APwvAP5ezB9BMVh+eOUnMH8Q5cd72/De/wyAnwHwXxtj/jYAvwfADwJ4kbR5BPBDxphv997/673tvel475vy5PJr6jHGrK7jtFBHmpa2L8mjab+HWr1P1W6ufmkMU6Q0qV5p7NM60vTSWrDWZtuqpTnnxOtcncYYjKOsjsfJw1oLay/9sNYC1p7X3DRNVRmlNvckri/up3NudS2xde3l+rOl3tJ66a27V57evdvaXjyOqU7rrTOttwXNfutpd6/1r5WvND8lWcI9Y4xYh6RTcnsst0e1YxG3H9pIy8Z5cjJr5kQ7x7X29jrzSmOk3Xtb1lxJzq17JJCOX+7czK2vWvut/Zfar42D1MY0Tap1kcsT9ze10XJl4vTT6bTIE6699xiG4Xx9Op1wPB4BAPf39/jkk08AzONwd3cHAPjqV796rufnfu7nVn0wxuJ0elik3d7d4pNP5j58+OGHi3tf+cpXFtfX19cAgO/6ru8664jr62t80zd9E4BZbwR748WLFzDGnOU/Ho+ijsnpnfReiXhcvfeYJof0O5bT5DDZaVM7Ehr9HNv7aXZjTNb2iyn5Brl8of3JOji3zD9NDliahk3s4Q/UzrcwLjk9XhqH1LbskVfSZTWZ90Lr25Tuhdtbxe2xAXLn9Vb/I703DMPjDwNj7GMaAHiM4wGDX6+hmixh3nPrTLJ10npjv2sYBtzf35+vgz8Xp1lrz9fe+4XeBy662XuP62vg449fALiMx1e/+ilOp7neoKcB4O7uDjc3Nwt5wzkSy3/eKyeH0+kU7R2D+/sHTJkpCfnicSj5CVq/IbYh2/2UpXwafz2e4x67r8d+abUBNfGg+XqdpmmrHqNay1PSwVI7uXZ7/GfnXDIm5TMhbTte+977pviDVl5nPJwLumBu/3SaYE/LtraeKa06OpdfsstK+QCdzd9CkDGNXaV5Wscsp8PTujS+ZulMk/dO2z7JofHBSvs4J5v0u2VeW871UlzCWrs6f1vb1salWvRtizwSPft7Dxs7rqsmQ89Zu5W92zPGRPHvS7odBthgK3bIorn3FH2J96v2XAtpPT5ETT/0tlOiJ46cO5NL+rHWTq7Pvc+ecnlze7HFp2+VQ5OvJZYhySZdS+m5unLU2pDqk32Omr6vy9Iy7zkfpsW/TdN6113u/JsGd/abz+mP+rNFF5TmSOsD5Nhi52muH1OTPMv86XUJbV9yNmE6dkN0bmn0rbb/GrsxTq/ZWdp51azn0rhoxqxVL8blh2FQ2cFamyD+Hfs0qc8p9S/8thaYpmVsY5o8psmc+xvvV41NUJo/zfhpnhO2xnclanG6lrLxfGttHAljzGa/N1c+9oG2oj13JJ+sx+6R7teeb2hsUC3GGDjjo31yeUYu2WFpO5JttvQl5Pp6/MtSWYkendYTl+zJ16pvSvuvdS9qnuep7Qu7HrMQH1zajzp5pXhs6XzSxl9abPWL/RLJ7BycW8tRkm3rem71AUoxSq1e08hVajPnW9R8cU1MqkcO6VoTf8j5xj1tluKoLTGKkB7r11A8p6u1dcv+n1yfJsaSo7QuavWmzy8AI8pau9b6ZGn5dB+luqdoD5rzf2AQ+rms29pLmUGIvfXGVXLjumXPBdl7fe11fTofJORZ2hjrOrbIEpfX2gQ97eXmovQcp1SX97qYTI2S3Zff78uzM/hq6/doJkwmr3/TtsM+GAa/slvGccTk1jo2jSPl7OOtayUup3knKZYtJvVza22l7Wnfz8qtt5ZY0tZ9Fddx0X2SDVn3P1rPHqku6VrqY6wHntJPKMl4SVuegWG/pe1o4i0lWbU+fy6Pxh6qyRZ+OxfbSqHPeTlKMra856b3eWe54uTW86gWh2w7n/U2/pb9pNlHoY2SHRLmVxK7LX68XnOlfyuU5tcy/7uhrqJd+uO5yPnQ83vfDvF4OeeAKLvmDCzpky36PJWhNx5Y60NLvaGuvven1/HwlBafL1f+qeICaX7p3+0554BxXV+6rrSypHpsDzvhUo9fnTdzWvnZUHq/1d+XiOt6qthTjpY157G+55F/b7AU+0zbTJuN90luTaRlnHPwU1q3i94/DHtkjv2VZExlyfVvS9zWufW/vYGPYyJxX+vPBLbI0pJfawOZwSxiIMCsL1rPytYYh8YPjeXJlcnRY/vF6VqbfossodrSeVOqp6Rrt+gYTXyvVF5zvvXaYuFd+W9ke+5toNMMJ2b+EMpfBPCduFj2YcdMAH6f9/77/IYPr6R479/33v+HAP4+AP/9Y7uhTf94/XuNMX9srzYJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPmswo+vdGDmzwX9twC+A/NHT+JPeDkAv9N7/0NP1b73/me9978ZwB8AVv+bBgPgXzPG/K6nap8QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkM8C/PhKH78HwPfj8tEVYP7oiQfwL3nvf+Q5hPDe/xEA/y7kD7D8sDHmVzyHHIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEvImMr1uANw1jzDWAPwD5wys/6r3/E88pj/f+Dxtjfg2AH0hkegngDwP4Xc8pz+vGGKPO471f3YvTQr5anaGM937xO74v1VuSzRij6kvah1z7rVCzxwAAIABJREFUGjT5NLLX6t0io7b9Ut1b+6nJPwyDKp8kZyqfcw7eA4tkf1lX3ntYK39Hyzmn7cKupO1O07TKo53zOK8xJjtOe81rr1y9dZTQ6p6Svthz/2/pV2ktlvrZoydq1HT/UxO39Y2yRwM9+yoQ9mfLOVyrS5JDo9975rhnLnK6N5Drp5Sepm2xAVrSSjYRII9LTvfFdebsoNa9pj2PtWtEU0fa57QOyT6M1773/lzHOI7n36fTaZHn4eFhUcft7S2AeV2FtfXhhx+ef7948QLvv/8+AOC9997DBx98oO5bynvvvYebmxtcX18DAL74xS/ixYsXAGYb5r333gMAHI/Hc/vX19fn39ZaDMMg7oHYBkrPp7j/6dmunbc57zotV7ZHv0v7onZWLeUKa8nDROup5VwvyZWmLZMNrDXi3GjHWOsDSXX2nHGSrCUZSrrX27SMX63Dku2co+eM0NpWUh9re2D526jbqqFZe+k8a+rq2YfLcyP8BoBZxxqnm5da27nxl+QfhmGl066urgDMshyPx/O9WPfH9aTnYVzf4TDhvfeWZ8O3fssXcXe/3g8l/zNe88u+GDgX2l2f1yGftVbcg+lvyW9N86b1l/Z7lvO+Xq790F5Nd0oyl9ZnusdyfZHWljbW1KIrrbWPMQFhvB/LpvNds+/CWpzbjuVartMtejyWK70urZ11He3xmVqduXHJybtKHxyMWfY5d/bmqOWV9pMGqW9SPKbljC+d9TlbrySTtJ5L8sX7MPU5c3rJWrtrLCFnj2j93xy582YvXzAg7YeWNVijVn/8e8t4AbLPlq7Vku7ei1wbqUwapJji3vHL52LPMQ6EXsbdzdmjNX0k+aOr9pT7sFY+bdc51zw+2n2+Rd+V4m+9deba2aNMzUZtbbt0xtXq0z6/i9vR+khpva3+q2ZNtPqhUl5N3drnebl0eR8s40KzbRFiS3FeB+f08RWNXLkYVwmNPunZx3G9bojjbO3t50jXniamnUvv0U+yXyvkde6x32F/AgbLeFkp9p7GKKV07bqQKOlWrS7QyF+qL9VD2jMzV08uTWuDaX3ItK4WG7jWnvZsTteFVienY3B19Dgc7hd5rq5GzLGa/POIOP4Rt5/OYWlOa7GY0vrKyaW5BiDKLqXn/I9YltK6ya2Fp3oGW1sHrWd3oOec0dYnXWsoPSMs0eOLee/hXXwuPvp/0wQ/tfclnLHez2dDrHtrdoxWt2ttilY9ntPNl+Tls7oS0h7RxA5b0djTPTZYfK9U/9IWTGMH+fkur4X1vJVsgtz8ac5F6awxg4e1Bt5fbJxhHGEzNm6LPyOVrY1zbk236Jbc2m+tr74W1vadto97xltKZ+UyRiGXTW3iVNaUmt6RxqXnbAj2iRj3jWyVLedQTafU4kJ7kNuvUr+kecqdO1v2argXn8/aZ6XBn75cX54JAfNzhGlqW28aG1Sz78N1fc7jcQzPydr1kXu0N1qXTK++y9G6xnvrkojnryd+v1oj4cyyl/PTGAtjHt8rGgYxpi/JVUpb/g42Hs5tznt0zmdX740s+53bt7IMorir8lqbL1feu9gevPRLqk/jc6TyxHZjzX/T0msPS2jP9x5C++t32h28j9Pm9ym8Lc9XLpakoed829L3WlmtbyStydiOaY2vp79TWVr9Tm09Wl+1J95Xu98S99XE6y7j788+w/y7/gwtl57qwbSuljhiidw60PqU2pgeUDnn7Do+WPL79sMj3k9hnGvtOudW7/jE5WP2iAm9biS/PCV9F6bWz9T/Bi5nQ87HyT1nqqHdh3vGL1vrcpM7v0cYmKYJflqmae0OTZ+XvnD7+VaaY419E8+zRi+W7uXqaT1fSuNwsXfXSOdd6G/tmUC5zWXMoBRLqtXXqnu08bU90MZkNWjPpfVz1/Aee2znD2K8t9WGlM7vNp92Hf+Y5Uz/vcK2M6b3vOpdD3K5i83Q+2xH31bUasV/1NrWub3YquP23nOpvSetm54Yc01/aZHjdXUbq8ZWm0uyf2I59taFRM9+2uHt4TcD+BVC+j2Af/WZZQn8XgAP0XXwzH67MebLr0ckQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEK+seHHV9r5Lcm1wfyxkx/z3v/sa5AH3vuvAPgzWH/i8QDgdzy/RIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfOPDj6+08+swf2wl5U8/sxwp/10m/Z9+VikIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCHlDGF+3AG8SxphvBfA5zB9fMVh+hOWvvRahLvzl5DrI+L3GGOO9lz4Y88ZjjDn/bu1iXDZNi+vy3ot1p2npdVx/+J22aYxZtRVwzp3TJFnTtmvy1NJzpGOckyWuN+1XnB6PcciT1lmSUdOvNE8YSw3W2lVfamxpr4ZzDt6HP3M7zjt4X5fLWpuVZU+VUBuj0l6TCLKVxlUjf0k/lNZLra5wLe3xeI/U1nWun4GW/ubGszQGsY7JyZmbO838aWmdC22bWp24FeccrG37lt2eOmJPpHX+FGyZi/h8qZ1P0loutZ2bx55xSc/lp57zYRgWbYe+lGRPz+FpmlRtafqf6sfcHtXs3VK9tXLSeqmtv3gdpGNSsg8lne69P8+9tfZcX9Abp9PpnO9wOAAA7u7uzuVvbm7O5Y0xePnyJQDg008/xfX1NW5vb4t9OYwHvPvuFQDg6urqXP7ly5e4urrCixcvAADX19fnNXR9fX2WZRiG829pLOO+hXHLrb/S3Gn3mDEGg/OLOTIGOBxG+LHu1mrsy1a9t65TZ8PmzlqN3V+RKHsnrjeeL1WtynxpG9K+a7Gtc/u6XC6UvaRpbK0U7dker51Y7pINlrMV0/tx2fjv5Xj6ha6Rymt8Zo0vVyrXso5bbL9pOq3mybkJmLbbdWk/c3ZvnCdeF8MwXPwz5zA+6qHZf7vMV9D9qV0Q92uaJoyDgbX5s1gatyBzfF7FcsX7EPAwJujnvD+e2xdL3bs+50vrVqpX60M7uNV5PE0TrFvKU1tLzrmiLZBbs/E5XPPfenRXqx+Rk6+r7OTgXH4PxGspvl8a671tXmMMrLULW3dre8MwPKs/Jo1XsAFby6X0+m85PVyzzaVYQG1fpNTiCVL+XFsle0qSsVfeFl25hZ46gw6Jy+b0Spwen1Ut574WrW8JtNt7NUp+R6ssW/2HnH1U8wt6fZMSPfqhJ5+mfM42TtOCrXLJfjbwm2IJLXFpbdygts40a0eqsxbX0MqS6q4t81oav5zu1cqs8VPie2Ef1fSlZi20zFsub8m+0+5jzV5q8Z9KeWo+29bzOSfLXjr9cm0QJ4/jiEHwpYZhhB3zz19bz75Uj2+pq3Z2tIxZ7uya4wTy+EvxIW390n2NraSNU/TYJNPZr/GPPvhsi0zRM9TT6QHmVB7X3Fj0zLdWd6bzXTvfUll6n/+2+qfa5wEa/7l0Rmj6n2MP+1ySucX/Lz3TtdavZJymCdNUt1OkeYnXQvqMMl1X8byU2ohj/TXdIZ37uTUek/MT4ucJ2phiKS2ut9fuAAqxqor/1WJ/1mzjnjhy7lraoz1y5+a4xZ/K1e9sfEY89t1aWFt/HhjXF9ZkvKZCtbl1tvU8aqkvN66leZ6X2rIvuXhtTa5em1J7vmnqTddhj/+dL5PKtB63sKZya9h6J+5HbQwg14/SHEtxr6VOmvWon9Zy5eoqnbu5vbw1lqKlpBdrMmj93JwerOUrtaultu819lrcz9bnCKW9rvV9S/0dBmB+3hTtm+h9gVK7Jfs2Tn+OuFjrOfZwcqt1dDqdcBL+36c1e7GXeMxmv8+d65b06vlvBzw8PN4bAec8TicH6+YxuH/wuL+Xdbr0fKak/9M9WprL2to+n+0ujhHOOr12dmbTrRwTaV9ze9TxvEjyTdO0sKFa8d7DPfo7Ppp75xysd49nl+55QUv7815Yp9fOvp54mB386n1yOwwYhvxa77EZXLI243We7hWN3K0+dE8sQTtnW2NnWpumlCalWyu3lWtP6/Ns0XsSvbEoTb3tdmC73/cU+Wt7OedDNPu9VvIL+se7dB2nt8j/WOr8y7l1DKpevixrLb1Ht/bIoYlVa+M/AOAmD+8d4jO9NP6FlqPfyzM1PWMvMsk6Jj7fjAG8j9PnmH/arZBHK2/674qk9w20pO8faMidnT0+gHRGthLKW9vn22rs2S1xphbbOqD1haU4cPDrevaxtP96zkptG6V78bwsxm8wqzhj6K/GJt5q+2j1uzFxXPuStuUZjkauWn1bbVANvW0brO8bmOxaeCouMelluhQzsTv5ptqzr1WXJKWrbffOXS1G3HK211jGMvrtlZqtkJtH7bi3zE+vPq2N5dbzNUYa794Yyl525mrvDQPCu/WBYRhgh/Z/J7pFngMshiFuz+Dq6grmMCzyfaPHnz6LPP0q+Gzx9xTu/dyzSSHzC9HveCcdAXzHM8tCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsg3PPz4ShvvFe598GxSyJT+t6nf/lxCEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDypsCPr7TxsnCv9GGW56Ak27vPJgUhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIW8I/PhKG7eFe9/xbFLIfHvh3tVzCUEIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyJvC+LoFeMP45cK9Xwvgf38uQQR+deHeJ88mxTNijIG1y+8Hee9X+aS0HCGvMWaRFq7juowxq+uQLy4f/47r8N6f/5RkjvsYp+fK5tqtpefqivuf5tPWlcpda6NUd06WNE9uDHM457LXufLSfHvvF/nTemukbZVkd85V67fWnvOkdeXKpumaPSTNV2kd5MpI6dI4p/VKayzuR8t+yfUlTnfOiXohR20sNPdi3ZGucYlan2rl0jHLpefkTNuV9KtURlNXTuY0LR2z8Lt1XwLyXjTGYBgGMX/u7GhpW2rTOXdO7+lHKo9mbUo6WkKTp3SOaqm1E+rNrYvWOuM1n67/aZqyZbbQsmclOXJrI11TcTu5tQzI/cm1UbOVpN8aHdCiR2t1SUjyxGMS9H5Jl5Xacs5hHGfX63A4YJqm8/U4jjidTgDmOQrt3t7entsZxxGffDKb9FdXV3jnnXdwezt/F/J0OuHmxuDFixcLe/TLXzbwj99gfPHiBY7H47n8zc3N+XoYhvPvcRzP7Q/DcP4d67u4jbh/Qf6c7tVQs6ettWjcHqs6UkpytpxD8+1LHmtN1o7vsXNztk6ab5ocMK3rq81Fqt969IhUZ60+DSV7NpZj7sOyfeccjLLpnLylczDnJ0p5Qr6a/1c6H9fr4lKnJIu0jnLnY83m1pLzWdO/NT6HH5Zzuqc8qUw96zUuH8pM07ToY0g/nU6r9tIyp9PyPL+9m/DwcDmLwtwE/Rz0srX2vDfiPTIMA4wxGOFg7RDpT7PSURpKOkUai1ieNK00xvFZO/8Oc2MudSn3taSHS/5IyRet7Y20jq32oIZavKBYzqZzuuxnqlc0e6THT+yxzxf9iNDIFdvNWj9nXZfeLq35JFpbIy9LX9lQviVuoLWnW+y+nCxSm7Gdmd4vxfQkevZOS79q+nXPmASQ9+XSfZuzQXr2giRHD5Ls0vi0nllSXS0+oXQtobHZw2+NL5mToTW2LcmVntlSvlbScyNOz6W1xIOXlpEJN5riPSm5uajp1JqOK+nT0vzXZMn5DyUZanMctxm3W1tntfNOWmOlenriPBp9pfVZW/yuXJ7e8iV9UFpLcd9KMY5cW5p+lc5nqXzLGbBF5zjn8PBwgnPTY11z+qeffopba3A6TYv6P/nkBHtvq7FP6Rlz7VlDqS89dlAprW3MFgERAPKc99iQrXHcnK6r1SG1qR+D4OcGHzme+xF2bLN10+stca3nJjevWntKa0trxyQXH917TGO5wu+tflJu/Umyl3TE8eAxDPcLea6OR8Sx5BhJbs0ZkGs/lVk6K2Md2aPbNXtV0sM1G7ymG0t209Y1lr7vUXv/I+QJcYfWZwNSvnh8a/NSG7ucDLWzokTp3GydyzkPkO6LUJfm/Mn5QXHTWhuuVX/EMpb6nruniamlIuXilS2+b81PSWVs6Vup7VDX08RR030TroFgH4XmSno+vTdNEyZTjwG22tzSdcyiOr9+XlKy2XM6pd5meY/k5r1VT+Xaeyq7a884j5ZaLMi59J0snNdoziYprZ8e+XNrt+S7D6fLs6/Q/Pw87FKnJv7TY6v1rF1N/tweWfcfiH2vWtym5JN6n393LR7/9HcoE9+L9ZZzbvUcxHvAh+eN3sA5g9N0gplfUcHtLXB3V5c/trPjOHj8nDI3xzV7tpTm7PI8l+yFUj1PQz7+qqEU83ld9OjfYRjgxvldaW8vcRhrLYyf332yymcAe9kDsg7yq/1Uaj/+Pdj1XvXOwTmdvZ2XqUw4C7zPv5uY0tpGaV9u2UuamGKtfCpH6RlZqY1S25LNF59nrWhtjV4frMUG0MYN2uc51usGdpB1V82fCL9bfBftcxuN/xyXKc1Haqud06Zp83lTKq+1q41Z5x0GqzpTnuK8lMZya5wy0PoOl9T26npwMGYdI4ttHJ0sdbvmMmdmlT8+I+bf8b3LfWMMYN2q7tZ3v3r+rZQG7b+bytmH6T0zmEWMH3i0RzN6R9NeSrpeluvBL2zcHNL7rE8V9wZ0sau1XrjYYovYqfbFuw6Wa15GEwtrKSO1r8F7D4P2fxeQi2WU1oxWrrnuvL+xbxxNF7vsqStHr/ylM9tDuAf538GVWOWxVtC7F92Qi0enoqbvugY7yPt1zFeSSTsPe53vg0Oigw2GcVyt7x69nNIic4v9VPJ1poN7fK/6knY4HDGg7HP0kPONSnqyt83aem+pV3rmWnuXL9fmdHD44PjpIv2dd15iOG5/dz383jpP0+GAj66vFmnvvvsehoeHrrprcdiYeAyPDxOur78a1QO8evUKD8cxW4Y8DxzxNv6fwr1/9tmkkPmnCvd+8dmkIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkDYEfX2njZwDcP/72mD8/Gf7+PmPM97wOoYwxXwLwzyD9xN2F/+sZxSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5I2AH19pwHs/AfgJzB9bSTEAftgYI917av59AMdIjvBBGAD46977D16DTIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfEMzvm4B3kD+PIDvj67jj518L4A/BOD3P5cwxpgfAPC7H2VI8QD+3HPJ8tx47+Gcg/S9G+999jr81uRpxTl3/q2RK4cxZiFnqCst3/qtn95+SeWktFjOnGxSepoW9z/+nWvfe7/KE89FC1I5Kc1ai2maxDqsteLvnrY0/ZD6H9JPp1O23NZvRWnmMkcqc2k9aeqP0+PfpTZa94OmfMser91L91Hv/pXK5tZMCzkdJ81FSSds1WtxHbnxSmXK7cuta6JX78SUdMZe7eTmSLpO85fqypHWVVsLuXO6lZoOifdBPKa1/aEZ/9K45OZYq++l39J1SxuleQFkma21Yn3SmS5ROruk3+G6dc3l6N1HOZtMats5t1jP8XrLlU/HOrcn47EYhgHjYGGthTEW1s7p4+EAY46QmKbpbMcMw3Aej7jeeKylNdAyF7l1L+kgSQeEfJexu7Sdjmdt/iXbunZe5ezRwDQ5OBfqCnJ5IGMrlupqsXW8Xee3NqwFI45hri9pejxn0vpr6Yv3flFfbv+FPM65bP5cWe89Tpii+7Nc0zQBkyxjzn4s5ZPalfLnfJnaWgp1lvPIdp1mXmvtAusx1ui7tFzPGS7qHGvOOi3se2sHDMNSp5TaruntkKem89IxTn3/UCZnaxwOh5V+i3XvYZxwONwu2ri+OizaiNeVMeZc3jmHYRjOv1OdNpzcIt0YD+d8NX4Rp9fOzdz4hrMm1q/TNKl9K2f9Wb+GtX86TbAnd5Yv3cvxdc6XT/tXQ7sP4rQ9fINQj7jfEl0ZCH3K2RSxjMYAoWrvdX46gPN6y9VfIjf3ku7x/tFmMfm9nJNRI4/G317bCpcxm5PMyjYryaf1xVvPHm1d2nq3+h2aeE5rvZLfn+tPWKPxeNfOxHAvXd89Pq9EnD4Mg3q/SeW1+y0+n3rmUYPWbpBki8vH56ik20o+VMnWeurv5Gv9315CX3Ix6DiPlprN08uWOLHEsl8+vtEVN2p9hpSmS+dQLr1EzueOr0vraq+9m9al1UmxrZXaXZJ9kLbXeoak56umvGZepbO7R89q2i+lS2NeGqct8tbOxJzdnxs/LZrnAyXiuNI4jiu9dXV1BXc0eBjuozaBm5srGIWK69XjLWd4rfyWeh4L4qInH+WvxHpz7bba1qW4QMkfyaW12Ochvz/33yxs9bRejT+hmYM0XhXHsvYi10aKxu6MCfuw1s9gq9ZotZtLdpr3fmUXSvk0OkX7/C+N8eTmUvtsJCfnfN1mw0vU4qlxeamO3DmdnjstscQ4f69dWTrr49iXVC4nTyDtc2u8Jl4XId4eGMf1a3Yhb2msa+klPRjbCjUbtBSnSNuRnhvkbN9aX3L7OG0zh588vE/elZkm+Emn76RrqVlNX2IfTHOm5eYl3VOt9u3SRlzec87BNdrK8b5qtbNz/opUR6utU4rvltqSbOi46LJNXZ05wrM3SWZNnbGMks2fnkveeEzTcj9MboLJ7IdU1iCjxm/QxlJa01Ok2J7mWlNn+rulrtxclMq2xp6z2LWuluP4undIc+R0T4+P6b2HdXEeeb/vGb/Qrr2tcVzduM6+R/g9P7/Yp6/aNRzHvjU45+CvPO6vQvwbGAaHw3jA4bH6m5sheh4ryxDbQ9KZUDsnSv5i2p84RmGMgXey3oyTcuewhrguySYql43r6Fv7qd2r8a0u7e+311I0dTvn4If53Rhv3KO+wWzTeTc/Ey7EtmPSfpferZt9rHUMIMzBPJ7xGpnT5serTnz/JD2rQ/o0eZxOyzP57u4Od/dm5SfUnnOU+h36FKcPwwA75PeWVg9uiXXWyvba/tp8qd0HyD5dTx9Hv5Z/HAdMYznO/TrRxL5jeteELg6v83NLv59Cvj3XH+z63ydZazBsXCMl+XNx+5b4eq/PtkVX9JaXYp9xbKE15lrqu2wjyD7jNE2bx2NPLu/Qyedl679TionHJcRCevtei43V5EhlubwrJufRniM6nSbEpJyDc2X7ROprnFayLVt0QVxf6TpNz+kUAMl6usi4xUcv0VJvLq5U8tn0fvoyXhjsNk2MruQ3a2w/vW/rkMax4rlpmZOcDSnFG1pkjGnxn/YmtHk8uFXM/vrquvoMr7hHAOBwWO3z4+GAodDX6eAwjp8u0q6urjEk724dzbSq+3A4wB+G1XxrYzY5Wp/fHB8mHA6HKMXgnRfv4Hi8O18DwDvvvMRw1D/DLMV9n2v9GGMwHSZ8cPXxIv3Vq5cYHsrnV6uPl/5ukbGWXrMNn2Od5NpL2z6NE752/cuLtPfeew/jSR7vPe15bV2nccT7V9eLtHfffRdj4d9iPwXj3UOy94B33nkHD8dxGXsY+ueK9MERb+e/AhAigvHbTCG6/m8bY/7N5xDEGPMbAPxInISlJ+gB/InnkIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkDcNfnylEe/9zwL4s1j/bxHiD7D8x8aYP2WM+fxTyGCMORpj/j0A/xOAF1H7qSw/6r3/G08hAyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghbzr8+Eof/w6Au8ffPkqPP8DyOwD838aY32mMOezRqDFmMMb8iwB+GsAfBDAm7ce/TwB+cI92CSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5LMKPr3Tgvf8ZAP8B5o+spMQfYPkSgD8J4BeMMf+ZMeb7jDFXLW0ZY47GmH/MGPNfAPgFAH8cwLdE7YQ20/b/oPf+J1vaIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkbWJ83QK8qXjv/4gx5vsA/CZcPrYSSD+M8gUA/8rjn8kY85MA/k/MH1P5EMAHAD4CcAPg3cc/fyeAfwDAdwIYoroQ1S2leQA/BuA/2tzJNwTv/eJvTV4AsDb/7aHWujTX2npb8u1ZlzGXJRyXyaXX2srlLdWxpd/pfMbXuXrjvpWQ+uWcy+Z3zp3zGWN2nc9ZiFkO792irVTWajUdckljVmrfe68eZ6nedC1KMufqT9PTtZxb2/Hctchau9+zFjT5jTFVWWtj2bMWwh5oHddSmz16o7QXJT2/57zW2otli++F9NI5lKvnqQhrQpqzrTosrbNWnzRHLWdRyFPTV5p0SQ7NvNXOiF7iPsX7uKZfNDqqdPZLMpf2eytpv6Tf2na0584wDCrdmV7Huk+znkIbNZ0X77dhGM7p4zi7azc3N+c0ay2urq5wf38PAJimCcejx+FweGxvbvNwGOH9cO5vWLvDMCz6b4w5t1ka/3BtrV3cS69rc1gbB2nMLuMz/zGmfqaU7mvOJCDfF1mvBRtxTp+mCXBWLK+RNc0f78OQZ7IOzi1lmaYJmPL7QHtuSzIBj/1S9KHH/ov76Jw7r9mc3o3zB/08tzu75/NaMSt9qWEPfzCWrUb0XInbAAAgAElEQVRuXnptyFQmqXw8xrEMLfo9dz5oZYj1kLTO3BCv8bDH5jVeGv9WvzQ963Iya+uV6pJ+S7o0HotxHDGc5PMjHft0P8R/+5PDNJ2i9gzu7u5w78q6Pz6PUp8jbUNa51pbN5V/kT66VT3jOMA6WT9o1m7NFmuRO20zvo7HL0Xj157zPK4NzT5O64vnJ50rd3BJ3GRec9ZZ0S/IreWcb1Oai9wczO2cr85ylXyImu+gRX0+mAk9IY7WcyU9t1ptrb3GoFcPSkjz3mI3ttruUrmwTktnU5oWziRpjUt7TCNfj6+9NYYTUxv3lr4Mw9AsT7oWzjbsBlp9kFzZIM9WGYDyeaKxoXrb3ZPcHtk6xtoy8x8gfvRmrG0+q4H6fs/t4/QMbu2LZM9vmbOtzxpKurJHrvi8ao13lWL3mvylcWh9XqCN8aRpmnOkh5axaNHjpf7WfObcObRHTLKUL7Up02ze+0ezMZYP8M4Bvs//l2zdHkr2sWbetPt9Mg4Q/18xMrnYW06uXrRj1/rcRN7HiX7Acq2cTg8wD5e4Ziu5vsQx0dT/K8WEz3Iq5rdkg7Yi+fFbY1mt8ba0TPxbMzd7+yOa+2X/Vbbxw+/Ls4TZ3o37e3d/h7s7s+p7qitqPmGPnmrVT3H/pHTNOs+dwb3v62jPeskG20PX1fqlkU2qU+sr1vZuWo+mz5KfliMXR9bMZym+4eza1zDWYhjkemu+iXRGlGSI03J90erNklzaeHWoJ8SCpXiFM+tztEYcG2mNN8WybbF7S7ZQSxzwoksMrJV9cqmMdE6v9S8W9kQpPqpFq2+ttXCDh7XLOR2GEXas7+daDKpXdo1OKeXT+E+t51qL3ai9FyitRcmeKZFbu3PZtT9iUvu20X+T2tkr9rqM1wBBz8a2cerHadk6Z5K8NTlqsaD1mo7zz+dF6T2xrTKm9kF6HoS20j2+qtsAp5OJ6jE4TRPMab5/e3vC3d0lf6xD43lNf8c2nWTf5fwXyfeT8p3PrCQ+eOmHfi+G+p2d37eN7iziDZo1K8UnSv0opfewR+xJW5dKboNZJ6x0w7Z9W3pmcJmD5X6w/vLuY3o/pKe2Xs0XvTp6DMPtIu1wOMAV4k5hvwY0vl26rrx/9COnchyg9i5Ny7uzvfq7VKeEdI6lZ1VPvKEV52J9mbdFczEe7RilfWntm7Y9jZ+jsdNqsY6Acw5w6zMirr+lj1r7rLXetGyt/bLd1B+Xk9qKqfWt7KMt6+k9J7a+o97iF8c2TE7fT9O02/lZmtO2/DNn3WrTvff4TrLNPHMcjKjraoTxkmID815UVSMS4trpu0e5f/ugQepXqz+Svo98linpa82ejPPU4hmSDKX3vrT+S+ns16DNV4q1SG3n/DrNmPagi+P1odWd7uBWccbD4QDr258bBWr7o1WvG2NwHCYcDst/5n1zc4PhkF+PLW3U7uXY+m+yarScIymHw4TD4aNF2ot3XuDwsH43tqXu6XDAh1fHRdrLV68wPDxk65kOEz68/iS0BAD43Ofew5DIcrg/4ebma5FMwBe+8AU8HJdzX7IbSmyxow/3J1xdXS3uv3r3Fa6uPkGc/d1338Vhqn+SQKN3tXPUY5OndU0Hh+Px64/35rRXr7b1ZStPYd9KdZdilHvu5xg7TtF5Ost8OBwwGlmnPZUcJfwwrJ4vDMOAITPGWtuotS8HGAzDch0ej0eYVC80xlvIdvjxlW38NgB/DsA/CmAZhcH5Ayxp+gjgVwH4lYr60x3hM/fiNv4PAL/VP5VWJ4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkM0L/Z9oIvPefAvhNAP4MLh9DST+QEqenH2Op/SmVQ3Q/pP9vAH6D9/7jjV0jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQzDz++shHv/a33/p8D8G8AuMX8EZT4YylA+YMqtT9SeQj3/zSAX++9//qO3SOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5DPL+LoF+Kzgvf9jxpgfBfCfA/jHQ3KUxSR/dzeV1PkhgB/03v/xjfW+kXjvF9fGmHN6ei/N772HMWaRFspLdefS4rK18tq60npb0dTd2r9UllSutKy2f71507mLfzvnxLLWbv/eVOj3OJbVZ218czLKdc1/SjLF46KRS7uucvP6VPOrrSe3b3PEuqEkV+2+pq1cf3Myp2tZU6d2v5X2rNQXje7MlQ3p2nGV1mLQyyXZ0/zxvs6NS0neHLEsub7UyOmckN6iB7S0rPGe9lvOCc267Gm3Zc+n5VvTU6ZpqsrXsl96yM1rj65t1YPxminNSem8lfRxyR5Lf+fqbp3LHCXbQlNXSfZQ3loL59z5vrVW1H3X19e4vb0FMK+9w+Fw/n06nc71nU4nDNY/yniR5e72DvcPDwCA4/GI6+vrRV9CW6fT6Tyu1trzOrfWYhiGc5l07qT9ntoktb2rtUeXZ4dHrL6myWGy06qN3PlSI7cGJBso7InJODi3HBfnHMwGNR+vi5i0j3GW4I9I+yztR+66RlgTJbkknSSdObW2w1rMzV06P+t96s+y5HRPSZYt45f2t9celnRaXJX2KJH6n+rT3BmXtp9bX7U+ls6Gsv0c9t6c5pwDXLmMpIekNZnb4/HveFzCvDrnzn+AeeweHvWt9x6n0wnArF9Dnvv7+3N6qDdeJzc3Bu9/z4vFnH7l/73Hw8O852KdMI4jhmE478dhGBZ6PPiqqR4J3TXGL/oZxirIJv2O0erTuH85nRbayRGvgTgtlNGs25Sa/EHudM322m4tMpTG4lLGzHOe6OOab5PqJWcdpmmZdjqdYE9lXyVdO5q50PiiQqnHvO1jL51DNT8plqtkN/gxjc94OOdhXFkn5vZS61lU8vHjMiVfT2OTtYyXVq60rr3ntVavMabrfK75H+l1j7+qzauRV2v3ttiLQD1+EI9T7eyo2QS9dpNEy1iHvVMaG6n+nK2R6sU4X802bZU9J1sO7Vqq3euxCTS0zpumrhabRvL5ajGLWuynN15W03uSvu59PlAbj7DeW+LjJf8hblNTb4t+qI2F5Gdpnx/E5ffcpznbXLqf/i75RrnxT8deE3/Iscdzt7JPeJHBmNQWkzBA0qeS/KW1X3r2kEuL/UYNqS8a29exDgrnSvArQx5/5YGPjos6P/7FB5h7c/YZ4xjfOI4L/1Fazy2xXm2+nJ8VtxnHnHI6KtUX1qayhxjyJW0cDxh8uQ8l/WqtVZ836XVJt2vWZW3d9eihnO3SU08trtBCrUzNtumxYXN1SfWmbeRsPUlmyY8OujeNl0hnVK7+XBmN3aPVkTk0vpmm7h6ft1RHq8/Xcz6UaPXFgba5LaVL53nL+Me+jXSdKxNT8wtL6es1dUkvjWtJni16rnX9teih2rnaEgeI84ZztNcXrOkbaX1JZ1qPv9k7V2F8zWBwOi2fJ51Oc7x+Hf98OMc/c0zT5ZlfLKMmDqUd/+oYSO35y/OhXvsWqNs2Wrs3VzZnE0jp6TrSPEfSjvnWuEjpTNriCy7atvF4XepuiWGU8tT2aOkcLqXP1yGtbJuG/uTmb4tt2xJXy9nXLWsh+KTpvbTu8C5IShpjSvWKFINK7dH42Wb8O87nnFvYqt574ATY+6v5/ghM04DTwwPMY7bbTx9wd3/pZ85nDL/Dc8lwPU2TaAfkyqfrvN0G9I+bphzzkNLSW2HsUr0v1SPXe7m3NU7UwlZ/Lmar3P7xfFqK5AG0ydjSpznvet7T/er9RVel+iglZ3M6t/bnpmnCNNV1tRRXkvQGAHgX55H6u24njhfl0D5LX8Za8s/1U3l63gMqtSvVJfkqUjuta3n5vkiIxzkIU5ul5cze6kfvsVfT35qY7KX9tTytPr8mb4tf1+qHaNqPfy/3vwEe3wuIX1rU2okt9nSNdZvLe71rpWaPB1rj3rm24r+fk3MfLRYxZODRxhlsVs+kSPZhSJfKS3ortAkAgweMsYjPuD1i89ryrTEGzfz1+v/S2KbzU5Kn1acacXmGEkQcxwPcKL8nq6mzdj83Zy0x7ZZ5T2VxR49x/CTOgevrGwxD/V2559q7ves6txbc0eOD4ydA9M95X716heFheJY+SW1I7yYe7k+4uroKKQCAd999Fw9H3T/9brUlXocuDmjfzazJOI4Trq6+vkh79epdnE5lXVbyDwDgNI44Hq8WaS9fvsQYPatdl5lwOCxlubl5gfGw1CeH4XT+NyGXfDcYk3mWZGy1e1pj3YdIJwbC8+W4qnEcMRp5XW5dV0+5Ls04rdbeMAywlWfJmufgaT7n3Oq6VtdC1te0P/d65poy2znzeI/R5yxabeiSL5h7Tl2MFUbvTwTGcdz9gxs1G1Oyf6wVbPTXp7bfWra/EUXOeO9/2nv/T2L++Mpfwryk46cN8R91tUI5A2AC8CcB/Er/ln54hRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQLfDjK0+A9/4veO//YQDfA+C/BPA+Lh9iyX2MJfcHSdm/BeA/AfCd3vt/wXv/88/RJ0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPmuMr1uAzzLe+78C4HcbY/5lAN8H4NcD+LUAvhvANymr+SqAvwrgLwH4MQA/4b13TyAuIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFvFfz4yjPgvZ8A/K+PfwAAxpgvAPgWAH87gFcArh9v3QL4CMDfAvCz3vv3n1faNwvvvfhbuk7TjTHw3sMYU8wf7qe/NW2UkNoNv0v9CuVSWTQyaOSq1Rm3G9eXyiPJl/Yr7Us8Ny2ypP0ahqFaviRbjHP5bx1Za1V1l+polaeWt1auNrbadRX2T4tsPW3mxth737Rfwm/NnGn2Ttx+Lp92DjXrvSZfa96t6bn9XtLDmrHJ6Zc0f8+eymGtzbYrtdMy/q1zm6NF1+TalPZLvI+lctK45M7BUvmeccidL61nfY3SGS8xDINqXWvXaG5uNXvMe79oZ6/1lrazJU+aL9Wde+7lQGlM0/luWeOh3tqc52yltN5YzlgWa+3ZjjkcDri+nl2Eh4cHnE4nAMA0TXh4eMD9/f25jWF4wHvvzWsitPnFL17jk08vcsUy3d7eYpqmczt3d3cAgKurKxyPx3Ofwu9xvLiNQd7Qh5reqY1Fi00x/1mkZm0CLVr5A865c9/P8zgYWLusZxgGDK48Rlp5cmO0XGsXuXvG4Sn2Y42Sb6X18+Sx1flBNfumdv6mYx2vQ83ZnY55KBOvsRWP+/ZSh8c0TfDjMn9uzVlrs2MhtZnKWNqvW86hVG+GNpxzcC60N/89TRP8VF7nob7SOZkb47TPh8NhJVc4g2Pdv5TZLfKF9Lj8NE2LPlxdebx6tZzfL31pwN3dRe5wPgQdLNlawzCszruDcTDG4pJsMAzDQo/HPrRUb6vNlJLTMaW9WWpnT7snJ8c0TauxDW2XxqhVB6f9XemVx7mOq5V0fW+78bVzDqgcB6kN1dNWXFeq00PVcZGS7tli9+f6UYpnOeOQ3jamfGbk5iqex5xvlq4LTSwiLaeZr579pj23c+ddiwy5fNr4oSRXa3ktpfy5sWlZP2lZKX/r/Kft586XnEyaMYrPR6mspANrPpQkc65+jbwtdk9cV902Xd7TruH4nrU2u15y49rjE+Ta16bvbSeercDkDJT6rF0TGrbaPbVypThXa72a2FvPGaq1A2u6NbWbcnpJq1e2jF1cRtv3Wj0a3VXST5qztNbPkm1Wi/3m5JJkLMXz0vh6S0y4Nvfx9el0WrU930/b8Y+Kw6jGUrPeSnHE0ti0zGXaTunZWJzfX3l8erP0JW++8BLmTl4bpXhBKU/LudCjk1pIx3w5zmHtLucrzE2rzdmyh/ayZzW6tpSey1fbmy12U0Ajf88ZnYu3aeXSxjm36Ng4Xl4qDwBXR49xvFu0exgPcG7bXmtB+5yxF40PUutD6WwE+uLXcb9fR/xbIqdvS+eOVq/GfeyJl6RptbMhbWfLuRvuacTOjY1cd0i76MDWsyuuu1WnpbFaTRmJEW71DGocR0zDem9r43CaMrl60t+tPkNK/NyiZXxCrGIyLop1hzrnsbd2WqSP4wFmaToJcTUvxP/ktdMTI0n3iujXu7VfP7kJZlrHSrTxWu3eqe0RbbypVY5ana1tavy+mk4K+VrPEK0tqdV7cV1b88T0xD8u5/VS9lK8Zu84lWYvbrlXih16j4V+SOMeJRm177KWfMz4fste9Fcen746ATAYB4+rqwkv/3/23i/klmfN7/pWVXev9b773XufOWGOx/njnCFqJIkkRnRgvBIVnIgkqCEhhoDohTAiQkbEC4k3CYaguVJBEmK8GESJNyI4cyFGQY0ZQzLIkMk/Zxxy5JyZOXN+//be77u6q7zoVWtVV9efp7rXu/f5zf5+4GX3qq4/T/176nme7rX2w4D+rFO+/vUDHp+ex96U2obFfDruq4I2BtqU7YB4jOb5msv7ZKXO7+h0cntZ2fVzomzeDbrrlv5nipa5kvheSp33xaL4nCA9o0oypGTy8xiX9X9zF1UwT/Oz9dI7oqnPAND1DsaMi7R+GODQ/rw0xeWsSdgfuXOi5XmX1JcIr6fonZRSfZJ3TCSUfNaSPGG53LiUbGB/y+eZpgmTSudPPUu7hX1dK7PX7irJWLP7rmecr2uZr+6PtZOzG1pi+lvtzRit1/vcj0WOPb54KX1r3tZ5Ke231rZj22dPXKYU30npj9SaWNnm57MizufzSmIzyigotWzfGANt9Gr/OeegEu+X+vNpbiNuV6HrehyHOQ5pB7uIMQLA8XhMjoHExw7vSWJANSR7T1r32E34fFj29cWLB5hh23eAcu37z0M3reK9d3d36A/9Km/N/t8yfrewKXJ1Zd+PHCw+ObxZpL169RLmtH7vsLXNVm7Z/5B4XY/dhMPhE4R24suXr9CN+XdhUtxa3ri+vhvP76te0+/u7tAN8mcSt0YSO9oiizQmW7tvzHqtz9/3Wfvh8XPWkgyx/+DTSv69M2G/rrq45gN7G6Nmn4WfbxF3TtFZrM63znTJMdbumnar51DF9+cjWuyhS7zOuPN5fC1rjIZJrJdUPSnC75eFMsXvZJdihLX0km5unfvn0hWpurU5rfaMMXqxdqR13UqutB7Ixxj2yCWJeXt5Orv+HkfXdXCRjaJW78eQ54Y/vvKBcM59B8B3APz8h5aFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCPkef9L04IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkexT++AohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSjhD++QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+SjpPrQA7xOl1Necc9/+0HJ8mVBK/U7n3P/9oeXI4ZxLXpdQSiXrUEolr6VtSNvPyRGmxffCzyV5cjKk+lKSJyVbjVzduXrjPuX6FV5L5XLOwVorltE5lx37Eqk2WpCsmbkNd/lzzpdzq3EDyvKH61oik1JqNU9a68u1ZKxyazRMj8cxbrPWjnTttq4LKVv3Tk23tO7vW5HTTSV5w3FN6dES0rWUamsroYyt9eX0celzPHaScyU3Jq3ptXz+czwPoZyhLpDq5Nwev+V6bdF/tfZvsa62kGtXst9zazE1x7ewUWpypdZ13L+cnP5sKVGqK2SapmpdtyLVH8kY+fPI92mapsv16XS69GGaJjw+Pl7ST6cTAODx8XH1uetGvHt3gLXeZgA+/+ItHh9nubTW6Pv+Io/W+jLuSil03ewWGmMWfQrnMhxbrfVCR4TprXuxpEtzOsr3MW4/9bkmR8kmkTDrSABYy9G6l2r34vvWWviP4VypD6PSskhtmi11rc8Yf/9q2+f8v9x1qo2cntpzLof7TZLu641tz67rYDPyxWs83Mdb5qF1XZf2umTsZl3l9YAC4C76K9QLkvPRf26xBcL8836br/04pvqnlFrMYaz7w/bCe31nYcyyTmMMlHKXsQjrjNdlSl/6+br+YZHfyxnOa2qNpcZFssZL+6a0/sJxmtup6/maLVGKS2yJf6SQxpDi+7Wzx2q9ymOtBTbar6V58ftry3ko8Wlr9631cQ6sztbcvJdkbdFzJZ8tvG8nd7a3AH/mjOMEPbaPWclPKtnKEp89ztsS85L6D1J/JBdH2hrjqN2X+qm5ciUfPWX/SinZMOGZ0FKHJJ5Qk9nHReJzxv8riQXEazR3Pvp80thcnPY+fb1U+ylueY7ExGskdV1re6vdvXeN79krYTlvB3h7yKeFeiVssyVOkpK/pgdq97bkk5TZE++Slt8655KxjG0kST+fw5euIZn/XJs1+y+sv1ZXKU0SL8ntA8l1KS2kZpvU5lrSRq7da1t12yY3NqUYQS69JG84HmG87H3gnAM64Mn4MZ/Tu66Dtm3//07Nz9tqu7W0H1Ky8yWx5DB2CHe14Ut9zNnZq5obx+J9rglg+/mbq2uv/FtsWEl6XJfEj711X2pc4/9pHzNVXcmGSVGLkUjOH2m/JGe1ZL5ytlnNZpPsx9J5F8bBWpHaY619azkrc2tjiw0l3YfhnLXaDNt0kVtfJ/ZKbS0tP/u0q30isVX26lKp7pKO6zSt4wbzc0a5TCU/rbSOJOu0ZJOWzm2JzpPGoVPzP9d/jumdx2qaJmibtyW9z3ndp2XZpftrliH/DOISezw/j3XOYRyX7YyfvoV6XMeRQj85jFOEz4IBFJ8H5M6TlN/Res7UkOj7UrrUbk/VI7XfpfuiFDNLyRmuUX97jv3L7NKSrbYlLpKqy7eRbn+ZL1yHcV21tRL7svFZuWettfrJufr8fM3PK69pqbG75ftHpfXWFjO6bQxT+uxcYquUuI6v3J7O2WDLfF6mrXLl5Fyn12TJlaml+fR4z9WeD7TEl6XyOhePid8vcn/jWlddr/vnicBVF4VrYl1OdlZI9MU5Ac7J34lr3wfLc1pebk1qjSxaEtbb8izeGFOYu7R+jNPjeNtWnMs/i4/3glKz7MbI3nsrtVmiZo9LfcFanaV7fl3cKoa0Ja4gyddy/rf42dK+L33Ka1po9wDLd8r2xzSv1OrS2kGpZZ3GdOi69Ttne/ytW1CKy0j9gVSe0Gdp1bVTb9H37xY27f39C5hergPmOt4u0u7u7tEP6a9nTr3FZ8NjICfw8uUrmNM8j8NpwuHwGwuZXr58iafeXMp/Mizbe/HiAWbQ4v7fYi1sWTct5wgA2MHiu4fPF2mvXr2EOS3Xd4ufUbrXP404Ho+L+69fv8YpmMs951FKltZxbIlj1c4aABi76fI+ub91f/8C3Zh+b/V9P+dI0RqjXfmyndffS7ul2/GV6lZbF6jHGErnj4Tn0O3PdV7sXVfXMyB1r+4b1eTJ+aKlM3qO2y3vT9MENV3LO+eA0whrp0Wb7969w8l2q/MtFctb93ffHMX2t39n269FY8I0XNKMy7/rLiEXk2zJ35rHmZQNZbJ9+V7ZUyndkdV3Fbb4LFvzu86t5rTve3SqTfeW/Nq9qK6DMV7G2Tc8HAZ00XeqnoNw7joLaL1ch30/QA39Iu192fDkyj4r8MvH31VK/Sml1G/50IJ8r6OU+q1KqZ8G8Nc+tCyEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDwHH9uPr9wD+CkA/49S6k/yR1jWKKW+oZT6swB+AcAfwq1/9pwQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkO8RPrYfX/E8APj3APySUupPKaW+9qEF+tAopX5UKfVfAPhFAP8agP4Di0QIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyLPSfWgBPhAOgALwAsBPAfi3lFJ/DsCfds79ygeV7D2jlPqHAfz7AP4w5vWgzrdccP09i1IqeZ3DOZdNC+8555J5pXXeupzPG/ZxS7tKqeIYtNS9td+SunJ1l9L92NTkiuc5V3fL2orXS0kGX1dcZ64NrTWUUuf7Ckrh8tn/he2n1m5q/ZTav+UYaa0X5XL9L43ZLddaSk6JLKU1KpnvUvuldCmte0ZSV4tMubWQWld+zabq36KLtlDqm9bX36Wz1lbrkZwXUn2SG5ctSOvJzXfuvJDqDqm+Sclyq/Twfm0uW+r33GquWureqkOeQ9baXgcAY0zxTPHzEs6PdN/HfQr3boivu8UGDK9bdHyKsI2wn9bay+dpmjCOIwDgdDrh3bt3AIB3797h7du3AIA3b97gk08+AQB88skn+Pzzz/H5559f6ru/1/j2t39w0fbf/Jt/D2/ezG28ePECDw8PAIDXr1/j1atX6LrZFey6Dn0//+6iMQaHw+GSbowBsB7feJz8WMR7zZeL10jp7C3piDnfcl6maYLV1/YkdYX3Q33n+5tqOyyTWsvxehnHEW6U/9Zp6QzM9cMamc8irfu57JHWPC15lzK71fWWfVw7t3x9ft5jSr7BXv2uxwnWTou00+mEE2TnXDzfOd3piXVoq20WtlfSI5L0uapZZl9Xzo4p+c85vzE1Ftbahf/iy2itL3rb5wvPtGmaLtc+XypPKMPhADw+Lvvx9u2Ip6dr+16WpY84665wTHw7xhgopbJ2UNi31HU4LjV7f4sPkcPrYuccbGdXc9P3PbRbppX8jhIlHdHal9I+2WqXevniKkF7SH0AACAASURBVFtiVrn2rXYrWcZxgh7tah1IiHVKuH+kdF1YhzqndZiC81kylhI/pnY/t46UsdDa51Vw7rwHTZv/BSztjlvHRCQ6Nt7Lkv2SsoNqhLorJPzcYkOk2m/1J1JnQSmu5fP6dmrnZ4rS3m+tL2dzt7TbWqYUE5RQWnslXy41n7F8Utn2yJyr6zlt263POraWqemhlnHdco6EMpTs7dwZKNFjuXbi9Pi6pW6fP55LyXg8Z5wp1144FjX9XrP3wn2xxTaU6B4JpTZDGW853vFYpmixAXO2+ZZnG7n9Eo+FxA6Q3JeOa87vLuteB/+MLFdPTq5aWiut9lBIbc5a49h2sqsy0zTBTWm5SjZAqH8l9smWmPstCG0yHytc4HDxofxwbz1XW/V/Kk0SR48/S/a7VNZYP2090+J/W2RL5ZPaJFKfPedfbInL5XyO+KzLtbPa1wn7xToLa9c2QmmMtsRxJesqPAckZ0+u/hoSG0JS/xb/uRbXKskX19vSfqs8JUrPTfx96Xzs8Y1afYNUek5OH/M8l5rTEjGXtj5v0+05nbll7+XspBa7df681nu587q0Zm9hC8VySuZe4mP7a6nuqfVlWW+5/njMUrbElr2ba6OUBgB2cMDwFLQHvPjqAfrpNn6MZD7eR4wiLr+KxWbWWM63a9XlqRiDxNbJraGS3k+Oq3Gr9K7roKa8jnuuOJhEJ0m5xbs5t9JdUt0r6aNxCkpphGeLn9uSbepJ6a7aWOXWbel+sh7jYO3ZrtXelr2usWmaYO1a5tK4lOLO0rhGbb9d+qS9frjcycqVOxsvsujbxITiKnL7PMXeeFeo+1rO4jDt9nHl+c+59dhI6/GyiWx344JndTPz2gvrWdSc3Kui/ZSy5c51xettj46xKhyX8Jxay9TSTuodqC3PuC6SZfSzdE0tbf73Q9jfsO1Zr4c50+uklZptUqtf6j/d8uyuoi3iuKzW+ed7tXdM/GdJTDkX366Vq1Fq26fZwaLr3vlUAMDxeCzuIYlNIKWmD4fThGH4jUWZ+/t7dL1JylKSMyS3Z6Tla9Tq3Ot3Sduc+gnD8Nki7f7+Dua0flc2J9PUT/iNg39/d35+8erVy0sdcbmpn/Cdw7LNly8fLvn7pxGHw7C4/+LFCwxDF8j8yeL+w8OLS/mQLc/pSqTWcsm229vu2E3nd5sV/Ll4PN7BGNmekrQf6qFBGRjjv1Z7ThsG6MNt/y/7WnxPmn5rQnvjfbUZsudMa1lrOuMLSGNW6Tq363nfdtzG/B7oOs1m3m2XtpPj1nbDnjUk2Qst8m6NA1+eC03TxZf2umGaRtinJ+SY3IRpWr4zOb/3sjxXfLw3nOuu6+DO3+uI/eqcn7333E77EOvnxPN7yMu0ruvQZX6SYIsdLKH0fCLH6rzq1eo86fsenar/vMKt90suxllr87l9qr1xjaX/rld+ad8P6PV1vLXW1RhZnKfFJq9xMgZd15/LzmmHwxF9t/yuxpZxbzl3OmUu3+3yHA4HmMgeed8+NQH2nfZfPt4G1z7qpwDcAfhJAH9bKfVfKaX+0Q8h3PtEKfVjSqm/COAXAPxRAD2uHkq4k//KBxCPEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBn52P78ZXfAeBngMV/CRH+CEsP4F8F8NeUUj+jlPrn37+Iz4dSSiul/iWl1P8K4H8D8Psxr4H4R1cUgDcA/hiAH/8QshJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8tx8VD++4pz7Jefc7wXwhwF8C/kfYVEA/lkA/4NS6heVUv+2Uuor713gG6GU+kGl1H8A4JcA/LeYf1DF9zP80RWc034GwO90zv0Z55x9z+ISQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJe+Kh+fMXjnPuvAfwjAP5zLH94BFj/CMs/BODPAPimUuqnlVL/glKqe5/ybkEp9XWl1L+ulPpZzD+68h8C+CGUf3Tl1wD8EefcTzjnfvn9SkwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyPvle/5HRJ4L59ynAH5SKfXnAfynAP4JLH+MJP5hkiOAP3j++0wp9T8D+FkAP+uc+9vvRegCSikF4McB/ASA3wvgd4W3z//GPzQT3vvzAP5d59x3nk3IZ8C5VJfKeeahyn+upe+Vy99TSonkb6lb6/TvKaXKhGnx/Vwbt5ZXkie+Z61taj83JrU6a3Ln1pVzbrF2cmMrHUs1jrDWwlp7KWOdhbXz+gnXk/9XMp+5PPG6l4xfro04PbwujZEUSb8k9yU6IJzf+F6p75K+lXSNVN5UWrwWa/WWZIn7En9u2Zdaa1hrL2srLOvv+euUXMaYYv2pvrXI16pjgPX6KMkS5k+lt+6H1jku3cvt1y3ruCRXq84N13J8LSWly3JzLa23tMdq5VrazOnOkFY9IimXK5s7L1J1psYoLO/3s/SsL425ZF3lxiJcH6UyufWXkz+UyZ/lADBN02IvjOez3l97jDE4HA6XNrycL168wDiOOJ1Ol/oOB4evfvUFZvFmGX/bb3vANPUAgGEY0HWz63c8HjEMA4ZhAAB0XXe5Nsag7/vLte+vMebSfmhzlJCOa47UnIb2UNhOiw3ckqf1TAjHJJarVpdUjy6Jf0/zirU2acuU2thzDiSlazw/WvSvZ7HPtF2N8zSNcKMW6VJPaI+U2s7dK81lzj7M6beUb+GLS4+g0tk5TZOskgolG+biwxT2gGS9++r9GEps7dqZG8oUyhnqa880TZfP1lpM05TMl/MTtdYXPayUgtZ6oU8Pg8Px+Lgo+5XXd3h8SuvceH+n9rv/t4NdrRfn3OXMyfmAYb25NlKkdPKWOIxvU6nr/HvZW3VULk+rH5OSM2wjrq/VH4jbAQAVnMGeruugG/RUvNaVUoD254TPr6C1EscAnoPlOT//O00TpsT6LV3X4i65tZyycWI9vF7LZX2citmkZMnp0Rafo9Un2OL7bmm/NB9b/Cm/RsOxKdkTqRjDViR15PoUxzJa9VJJ10nO83iN7bUBpLZV7SzOxQhSZVr9YclZUTrfSvO9JSaZix23xpS2xiLC9m4Ve/LyxPW21F/Mm/D/4NbxcH8tjZFJ5qoUC5YQj0uLPxLn3eqP+bq2+ONb4kyS/V5qo+azbonXpfypLfXF1y1nmiSGIrmX839a4qyp/dqCZD5az5fa2Rr2z0wWztmFbzCOIyarYO1yrzo4KNTXWOq+9PzIpUmf36TqD+N/JVnCcZnrrvc1tEVq55D3V1v05Ra27PEYYxSUCn01H5MLznRjoE16Xvbo2BiJfZCLNcdypa63yFKLnbS0JfV3n5Oc3ZjTJfGZntNRJb2ZOwdScepcfcasbd45zrQe/zj2kIrRxPm2kIsFxWyxe3Pn5N410+rjS+vcI1dL27VYhhRpHLnVT0rVm6qj1U+K03MyXufC77M53VoL2HyZkvypPmitYUw6xiddP5K5zPl5ObbYkrMekse4UrTY9lJZJeVqfq1U98h80PW6rtnfPiadK7dVb2xZY+GecHZ+T6xWby32GdqcW+Y6xxb9UCOn71J7rzY/tf2esttq+W5htyF6pde52ZeR+PJbZUnFOrbMUVgkF+NLrc/bjNu13Vuky2PwWOnelJ2T00+S2G98HX/2dZTajK+dA8aTOpcHpknh8WmCPb+a8tnnj3g8P6LMPQsrxeFKcyqxJ8L64mtg9vGnKfSDZ53o3FrvlGJBAGC1g3Nr29xN1zZr8UA/pjme21eKx6/VN4jfI/FIYgBpec77AOvzs5WSDMu4SLg3Av3vrnnn28tYit+CqT2aa9vatX4bTyecTmkfLkf9fF6VENktKeL3XeL3dCW6KOd/tsZ0V/tZsD+ksde950mHabV/jNGXd+ZqMmxps2QHS8dI0m5tbFplt4NF1y3fZbm7u4M2a/0Tr5e9PlcOqQ2cQ/S9ksHh0+GtrxVKAQ8PL2FO22IyubmQ2yHLfMNpRN8Pi7SHhwechi5bpkQ87q36p7ZHpLbnXvswpBQzHLtptd/v7u7R9aYoR5g+dhO6bvkOwDAcYNSy3cu5o7GIWwOAMR06N9fR2bXMXdfBnd81g/Hvml3v9/2ATpW/UxHLLYkZtdyTsN0HkT9nTLXXKt+55kX9Nduwpe3Wta+13j32uf3qTHq9daivpxbC8Wsdy1szt7uOFUrt6ZJOkSCdSz2t7QVjNGzmOd8ettodEjtaskdjuzRnD8V+d2zPL/2DOX08jXh8vH4fI3zP1z8rmqbp8j2M8DsZp9MJp9MJj0rhi2/8MKbJwtq5zLf/ys/BvnmTlB8A3AEY//7ZbvBr5pO//qvoz9/l6LoOXdfhMFr8jt/4ziWP1hrf/va38dSb1fc4uq67POdV6vrdm/D94/hdZE/K/w6vU+dD+N2R853g2es1fdYZ3aJsfB1+rsWEc9wyjgQAJzNC6+V5PwwHDF3aD8jJsoVb+BSt7byPNkrtjN2IYViO7YsX95c9seWc27uOYjpj0Pfehp7z3d3doS+8+7Ll2Uotn5lc8mxGt/zpjw91jn7MfLQ/vuJxzv0cgB9TSv0bAP4EgO8Hgm8eYPGNNr9CXwH4F89/UEr9MoD/HcDPA/jrAH7eOffN55JZzW8R/XYAv+f8948B+N0AHiI5PbFHEPbnbwD4N51z/8tzyUsIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyPciH/2Pr3icc39WKfXfAPjjAH4SwID8j7D4NM83APwIgD90uanUdwD8HQDfjP6+DeDd+e9tcK0A3EV/9wC+BuCHz38/dP73HzjLF1L6wZW4D+rc9p8A8Kedc6fMsBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8psW/vhKgHPuUwB/TCn1nwH4jwD8y/7W+V8VfE79uEnIbzn/xfn2Erfjycnjgn992l8E8FPOuV++sWyEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxp4I+vJHDO/R0Af0Ap9WMA/iSAf9rfCrKFP4KS+jEWnyf3YymbxSvci2WK038GwB93zv2fN5bpg6FUenjD9PDaufXw1dJy17cglt9/3tKOc04kt78utZEbP631op5Y3luOVWv5XH5rbbaM70/YrxK59Ra3H7bZOi+lelP3JPNZG0ulVLaeW695Sb1791+4LnN7TCJPvHZS9cV1ltZIqb1w/KX9lOgzL08sV27Nx+MtHf9UfaWxMMYky4Zjntu7Wuvivg5p1XdSfH3h3onvldrJzUupnrBNiWwlmXP59+jwlLxSmX2e3LjGYyfZr3vItZFCqsdz53vruZ8bl7ANqd7LtbtFP9fKpfK07uOWdqT1blnntT0T6zH/eRzH1fW7d+8u+Z6engAAj4+PePPmDQBgmiZ89tlnAIAvvvgCX3zxBQDg7du3ePv27UK2+3uN73znBxdpv/iLfw9v3sxtKqXw8uXLc957HI9H3N3dAQDu7u4u14fDAYfDAQAwDAP6vgcAdF130d3GmIUeN8ZcdLlS6rLm4jkO80h0Uny2+PpSa1xyvpfOlRy5MyrGWrtaT9ZaqEyRW9q513vzGEzTBEyzToht0lrdEt9KKm9uXkp1bbGjwjmajF3NpzEdTKebz7jY3mjxGXN5/OdUudLZFzLL5O2ba5pz6XXs56HlTG4hpfty7dXaTtnwy/Lr/GG+2rym5iJ1DiulLjqu67pk+dQZkhqLks0f0w8OxoyLNNN16KxsDEv7d/7TizHs+x6204t8tesUWutV/lZ7tXS22snC2uV4j+MIPcp8eEn7YVrJjgrnNnd2SGMLz0Fpn4fntkcZP1fLmI/E30qNoVJqPoOCz8/FLXzwVFrONl/v/7DMtaxU923xwXJnqvT8qZWX2ACpdZE702ptl9gSH4vbS8Uyt8yFxJaK6471YiuhHqnNS21dx3Pmy8U2rnTfS/ZIK1vGSuqz52LaJcJ+xvaNtD2pzRO22YIkptdSb0luie5sbUeaDgBOqZUN2Np2rBOcc6tnHCVZavOVG6NwHeXqKNUlWXNbYkk5eyYcp3iN5exgaYynZf+VZPb1SGyyHLEeyz07zKVvQRovu9U5GpcJ+5wbr9b+tsa543qlfjKwtGONm/2aub05bY5XKWgdn3nr83jLXJbsiJhaTHXLOZpr14+Lcw7QgNbeDlfn+x1Mn7ZJcudoah1InvtI1s/WdZUqvx6/a5wkzBNms9YCdvvz91v7NumYh8wnL41FrlwtnuGp2YOxLPH6qD3r2KtPw3hNSp5au0qprA3gnEv2v3SGG2PEfRp6B2NOi7S+62Fteo9KfN5c7L0kf0gse+v8x+u4drbeYv5Ln2u0xG5j2wMo2x+3OLtjauer1L6olQnPJ4kvKq23VE7qF4TxFuk41GwMwD+3q7cfp9fWeE426foI5yJXd1xUEn+IbRCp/KV8t9Lzrf5PyGqPaHcZH6kYublZ93f+N147tTUdI4nVhfeut1V4I3tOSHz68ByTyBPPkSRGIF3ze2K6pbr2rKtS+1JbTcLyXYL0sybn5HZfKk+833NyS/qSigEs7e3wfptvIF1XOZm30urfxXvH31Iq78+n5I1tyPBdEqlfVbLZivqgd3BnU9oYB60dOmMuXxwYBgVAbk/GtrVEN22dO601nHYApoVuVME52LJHbeegVPQ81hhoI5dPWbs6lxf3bxjXk9D6vlwtntYSe7PWwsHvAVn7t9nHAKKvZTjnAHfdK87Zha46nU44Ob3Yt6l3g8N05xymyWEcp0W+xyfg8VFl35XydlrOxk6OQaJPvs6c3VfS9aH/HL7zkG2/QFM/KqTOqFK9NZuptpdK5YfTtBqbw+EI1S+fq8c+094zqda/W+wRSRxY2qZSClNv8enhLcI1+vDwgG6UfwXtOc7wVOz2lu1M/YRhGMI7ePHiHua0fvcilkmKVIen9mH/NF7e6/Qcj0eYYZ6XrWdNbl3uObtuMUe12GOJlO7R2sE/b/AYY2CcWdl3OT9jvl7rYj9fYT1XGcr7LXcWLO3T6/3ZpqzVuZQlt+5yY9uqO0pxBKlvnBoL/z6ThFb9mjprfVpr/2vtpLjl9x/Ez2VNWq9usTtaadnHe+MKIbobV+/PDUOPTm//SvUtzp2Y3gFam4V93fc9EOn8W3HruZTYZ7VyqVhErn7nHLpuXK39ru8wuOv7BbnvH/j0aZoudU/ThMfHR7x1Zz/iNGKaZj/y8dd/HdP5uxyx72SMAY5Af3oBY8zCjuzUvM4OhwOGYTjbov1lTWqtcX9/h67vFt/X0Fqj67rF917D69gH8X2M/ZQWe7tXBsZ05/tz2nA4BGlz4jAcMHTXdbn3vL9VmZocnRnR97EfcEA/pXXB3n3+XDa/pI7aWd0qxyZ/wihovdS9fd+j10ud1voMplXGEi7w7T3GGOSt/qh8wzPIUh5jUvaIWvs9tz96SIUP962ALwHOub/snPtnMP/4yv8ELH5MxQV/KvEX57nVnyfVZpxPAXgC8BcA/G7n3E+430Q/vEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyB62/0zbR4Rz7i8B+EtKqd8D4N8B8K8AOPrbWP8oSvjvs4qWSPPt/g0Afw7Af+mc+/X3IAshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIV8q9IcW4MuEc+6vOuf+KIDvB/BHAPz3AE6Yf/DE/+iJy/ztbj5Tpwr+vgngPwHwTzrnfrtz7j/mD68QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEJKm+9ACfBlxzn0B4KcB/LRS6jWA3w/gnwPw4wC+EWeP/t2Dij6fAPxlAD8D4H90zv1fN2jjNwXOucV1+DmHUmpx7cvk0qX1OecWdaRkjOWM5Zdep2ROfc6lpQjlT8ksKd+SvySfcw7GmFVd1tpLuhRrbXP7sSySepVS2bWQqyNM11pj+ftOdXnjeuM1nLqWENbb2o9a3hwlecP1npKtZQ5zazzOW1s3pTaeI78nt8dLY9CqZ6Qy1sY9Husw/7ze14Tj3jIH0rWQI6dnU9c1OVKyeJ3QMs5x/6VrZuvaSiEZz5y+k54buX2daz+1dmprJVd/ro1a+a3rrFRvizyp8qk12qKzY+IxTY17ba5adEyrzVVqt5YvZ4OV5AnHI6UXrLWYpulyPY4jAGAcRzw+PuJ0OgEAPvvsM7x58wYA8K1vfQufffYZAOC73/1uvtONOOfw6aefAsDlX8/r16/xfd/3fQCAr3zlK3j58iUA4P7+ftGXvu8v1865xfz7fiqlLuk5GyjM4wk/t+xd/zlnt6faqNkwkvbjdTFpC+cswurGcQSmtX2a0xelfZ675zSglB+7uXGtNbTWKz0sabNkQ+7hFvaQ5BzxazMsM00j3KgXaXts4PhzTtacreCcS66xeE+E+6U8fmkbY5WrwXaX+gvxOdhy1qfqSF3Pc7ouU9LHMSXdH+ooX6fWOqvffXq81sLPOb++JBMATKNd9WMaR4xjWneWbA+f7vVBBwutNXx2pRSGYYAauqQ8W87nsM+1NVmy87bqi5axTqW36oVWvzDn58iJddsEdz57t2Inm95Lgq5JxzVEYoNa6/ePQlyVxFcs0XL2GmOSegAArFv+xrZzs9zI5K+1lctTiym21NtKab9L7CtJvaky0hjOc8UyUrIYY5rXtSRO4HX4Flu01n6qrZgp0h/x51p7JfskF1PP1VVCYpOU9OvW+EmrbZVDovf2rtWaLDldItUdrbGI2LaK7SV/T9qes+mzSiX2yXPowxZyto1fo6n9k4oRluqt3cvNcbhPSs9QQhs8VY//nJIzV2/tTNzip+ZoeRYg+RzXW5L7udZf036p6JOS7m7V6a22sISwnZLOz61JpZD0HUttSdJbdWerX1K6J93/Dg7O+bQ5fZpG2FPbupT6m1vHrwVrrTiOMf+FafOYRBkveXJz2qpD4rRb2g0tMY5U+Zo9mtNrEhsoFeeqyZmzIXMxMiDvZ0jaTskcX6fsxFS+nLztZ4rDOC7X9WkETqd1zCeeC4l+TPUJkMUiUnpVYqNK9V1rHDysuzTf0v1Xw8fRQ1LvosQ68hZtp9gSXw3Lbol7p8766/m67qu0jS19QOMrdfXY+SL3pUzot1xaFsZCtoxzSGktl+Y/jkf7fDk9mjtHJb5hiy/f6tvn4gWlcZXF1OJrlT1L5ph5/ny5rhG/ZuZ0YwyMKT8XT9WXS5edp+u2cmejJBZTklmSb4tOb81XKtdqB7Tu1+f285J7T4cyXucw9ZxXQqvulbSR0v/GINhH879d12Hqbv9/gEpirbF8W/Om7ItwjGa1Ej67SOtESWzY/5uKp9Tem6jpkpSudsZB67kuYxSUstBaQZ+zHoYB13cO1rLG1yWZJbTaFVa5le7O2Sq1dpWKz43zPKiyDbz2udZ5/XpJraW9zwmlsZj4OXeuLi+PJK+vt522+Sm1EZe3nVvl7/se2s3jP2gLrZf763g8Qm3QU8PgcDx+sUh7/foBT0/rZ/fhtTT+cJmLweJd79+7mu/d399Bd+l4WCuSc7yUJ2VbbdmHtfZySHwySSwp5DBaDMPhXHZOe/XqJZ76rtnuyc3rc9gTrfHHLXZ2fG/qJ/T9sEi7v7+HOV3955SfVWunplukPt8tbdKFDu904v1Gszi/Y3uqxb6a6yuvlbYY93rsW8/cEreqa1u8YJutW/scp1lrYa081jCpCc5F73lNE7Rd68fZzl+vj1rML86X9nHXZ0Wpnr3cSrcV9VA3rfafMQba1vuaOzP855T/3Lm1Tuo6A3d+X3pLH1rYaytuOoO7dJ87pM/Blvb3xA+2IK1b93rlgw3DgE6391nKlno7aHSdQWhPD8MB+lBej1vbi9n/juOa53i2HNKZEcfjcZH2lddfwThdvy4veQYUpltrcTIGf+sbP7p4Bvujv+/3wZy/+xGXAYCxm/B3/8FfAXC1MX/rP/4j6Kfre7paa/RPI776rTE4X4Ef+IEfwGnoF3rdX6fO4TBfzUZu2ZedOV2+L+K5O96h75c/P3A4HDDY9LpssTVTaa12W4nYTp1jJAn9p9LvUkvqbi33ZaflXb0tdaTqk8Q7trapdWhjzf8ao1H6hnpu/ZXet6qVNcas4l/GGDhjFn6Gqny3nNwe/vjKTpxznwD4C+c/KKX+PgD/FOYfYvldAH4UwA8DqFs7Zd4C+FsAfgHAzwH4PwD8Vefcu531EkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyUcIfX7kxzrlvAfjvzn8AADX/NPgPYf4hlh8B8BrAffR3BPCI+UdW3gL4NQD/H4BvAvgVAL/stv7cJyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZAV/fOU94JyzAP7f8x8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeR7AP2hBSCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAPQfehBSBkD0opOOdW6XFaKk+tzN57YbpSqtp+SJw//BzWG15ba5Pt5OSTyuScE9fR0s+4TmutuCwAaJ3+7ai4npLsrW3mSK231jnPzet87f/WZWrrP5bD35PIV9pHcdu5NVqidYxiWXLrvdR+rc3wfqpP5Xla1+XriP8tsUdfSXVfTXapHNJyoa52zt10792iL6l5yc1VDpNbDQAAIABJREFUao20jHNtjZbaSclVWlNb57AkS1hvrEclc2Gtzepvad9SdbesqbD9XLlYv+XW9RZ8+7m24/bCPbNHv5XKS9dKbu5ydfnrUl9Taa1zVEKyl1vqlZwDoczTNK2unXM4nU6Xzw8PDzidTgCA7//+779cf/7553j37h0A4NNPP8WbN28AAJ999hnevn27WZc+PDzg4eEBr1+/BgDc3d3h4eEBAHA8HnE8HgEAfd9jGAYA89x3XXe5zq0F59ylX+EYa60XuiO2R3xfSvpubnd9/ltrYW3bfozlD+s0xlz6ErYR5l2tH6OglEaY3HUdjNv+W6cSO2/SFs4t14G1Fkq4NFrWe2t9ufO+RY9J7P3FPBkLa/3aqtdTqisnc8n2kJ7vfo216KerLRm34aq2VcmmqPmscZ9afMhU+VIduX6HyXF1rXZgbl/H+VN2W2qcc2eez2etFdmASikorHXh/Nms2kjNXdiOL+/PEztaPD6+W9Tzq7/6q3jqr2vR6/hwjQK4pIdypfycEL/nYp9NasPVbKX4HMrFQj40C30d2AMhKb232rOJtK7roIP1Fba3x9eKxzbl70j2gS9b85dKOHfV5fH+a7UDc35yyX+Wran1nmgl1WZKX+zx7XL+zJZ6wn9Dwv0ubas1LlizIVr8+lR9tfN9j3wttNhDuf6lyrSsU8nZKYlVl8Yk9gdqcuSI9evevSPdL88x35IxkdzPUdOjtZhMzYaLz6o9Z7OPC7jDAU9dB69vAeB4dwed8Nnitdq6FqTyltZILg4YsiXGEdtUoSy58S+10eLDSO35LXHU3FiG+i3X95R8rfHWUl25Mrl1vlX3pMpL+xHrjJo+Ka2jmNxaaR3jUkxZIkeq7K1ojRfurReoPzfx1xIZ9tjZAJI2f4xkzmsxgy3ncK5s2d6IgwWriqsxj5r/WtMRpbmTnBtS4nOkdj60IPGTcsRx4BDJMwWJXHFaSXfm9GBOptL5LvWxc3ICwGFw6Lqnxb2+65MxbcmZnqLmA7TU22IPx7ort5dKbZZ8oJqvEcfuSm212CsxLT5PLRaWI967W9dC2G6LDVyz/2u67BZ+zJynra/1tbXuVyrGmUMao5H6T1I/OW3rtdtQpfw53Rf2ubaec3EtSTmJ/Z36nEpb1+UCOdbz51x5L6d8yjnuv5ZBus/ifLXzURkHpcI87hy7vd0ekbDHnttSf6s9vIWWsjX/NcyTaqfN91me2VvOE+m+CtnyPOG6R5YypnTCXmq6ekufS22V6lynq6R8UnkltknOLorTanE/1zmc9HiuH1DKQWtAu7ktYwz0tN32lNowW+2bWSfmz3RAdk4552CtW6xf5+b3W/xYZGVYxYTW92troTUuExI+u63VnXrfJUcpPiC14e1g8cac4Iy51Nd1HZQyOB6PyTOv1U9c2TAHhze997Hme/f3d9DdXO9wmnA4DJcyzs3vSQ29fGw8Q28xDKdF+w8vXuBpWO+DWIen9nNuH0y9xefD0zl9Tnt4eAlzKo/fln11C9s9lW9vvG1v/MDrQul7qcNpWrwLAQDDcIAatn2tqrbHb3U2ppCM3Z72ncbKDtXarHRTS/tSWye1n26B/HlA+fypnU9SOVp9bt/OMjltm8T113zcrXEj6Xvht/BRJHqspqO0dqt1bYyBcet1ndVvnYbWy/x938NAJ8us21To+x6dmuvonYIxyzHs+x7ou6C95RkwDAM6nd+LJXu/ZNPF6VufRdT2TK4N3Y2BjpnTh6FHp7tVuRoS2U1gx3i6roPrut1rdqtNWErf075PG7sRXbdcO4fDAZ1Zvyd46/afo0yOcF5PZlydXX0/oNf1Pjf5L5U6avHBzqmEnD1U36/qb7HhU3luOdatsfA9xOWNOc36MuD+xT3GsSvKVvPRT8bg7u5ukfa1r30NfeY90LnMiF979d1F2te//nX003KddY8nvHhxv8j3+vVXMB6W/ZDqjL22eZjeOQTn0Zw+DP1qXQ5Dj35ayltqR7pGntNuBubvGSzjrmcbAGXbdqu/UvNTWpD66ZJ0iQ0ujdWGhOvEOQdn3Pmd6Guevu9hpmu+uI1QtrC+nP+x1x6wRgdr4mp/52ygMG1LbLVsW4U6GlDqav/d+p0ZImf/7iWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAvIfzxFUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyEcJf3yFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyUdJ9aAEI2YNSCkqpy2fn3CU9TPOf/f34upQmKVeTK0xvRSmVbTPsl9bX31IK80vajPPkysfjYK0t1hOXCT/HZWt9jInLx589xphkvnC8SuVzlNZBbsxK5Uv5nAPm2+6SZq3FOI7AuJTdWrsa47Cv/loptRib8Do35vFaLOVLfZbsnRS5cmG/U3u0JGv4uWVfxusmRXkuy3pHui4ka0wqVyu18ZKsi9w41nRMKl9uLnNyxPOwR7+nzpw4b6r90hi2rJHU+VDTOVv2Qq79kt7M1RXr5BIta7ZFp0v0fWmcQqQ6vnZPOo/hvXj+pedS7n6pfOsZKZUpZ7dN07Sr/pSOiPeedH1J90Xq7An7EbZvrV2s2cPhcPnc9z0eHx8BAHd3d5fr169f4927dwCAx8dHvH37Fm/fvr18VuoRh8NxMVfH4x2Gob/04+XLlwCAruvw8uXLy3589erVpf3j8Yiu6y6yeJmNMZdrn9fnK41TSKttHK+7aZqgThOmaZ0+Nf6kqHSN1fBnwjzvDsCyP7nzrtUnyOlep7Fqs+aHbNFbUh0Y77cWnZ+qr6Z7wvFVSmEydjXmWpuszwgsz6XYhk7pqJK+rNmjqXs1vVSaN5/UMnexjFvtutK90pkm9SXCfi/Ln+fHlm3Fks3ecqbFZ1VY7zRNyTMm9sf89TRN2XUx75erbvJ1ncYTTiebbF9rvdoD/l9/7fV0B7vQ2YDCixcvMAxrPS6xrUvrojT2qXKxngjHRmsNi/V8+TXwPpH6Ca0+V7wnUuvTar1KH8cRehyrsu3Z47W6U3W0+EWpe1q78zj69sv6tEarDVs6Py97XFkoFZ81ShQrAPJn5x4Zb12udjZJYjS1vKm2pHZ3fE5LKcUsY31f8/UB+VmzRy8AcrtV6qvfmluvyVLssVUnheezdF5z9dXs3hYZa2213k/ZA7n4u+dWMcJcjG3rugiZpgl2HFd9OJ1O0KfTor2SLDm5U3K26oEcUt1Ri/H5PLk1tmWvS84rab1b/d0tezlVb+zn7fGzgfReyskU15HzgWprqeQD1ijFt3M6SkrKN2iRJ0dtjGv1K2sRF7uuAwWllntK63R8JG6/NSZ+Kx2aq1fiN8fM2ZbPXxzScmqtm2N0ObnicZTG1FN1ltLjtbz0IWI5cFkT4efW9Ryfqbl9kRvLPeun1IakH6X24vOyJtdzxoVKZbbowlx74bPy57STS/vK+7rxvdTcSmy+OP9WfV+jtC5ScahQrhItsYNc3bUzWErKHmuRQ8qWvbSlHd+feL1Ix+XWfcuRs4Hmv2X6HAOVxdxS/qBS1zg6MNu6W1TB8uwp29Qlnbb1XZP4vPN1tdZXshulsoTkbAJJXdLzTqZX4rauZ8BVX8z3pmmCm+rPxa82wFX+km2fG8va2Oby28nBucQ7cVb+LmLJ570Ve3VAi37aYq/sZe8eaR9zd15reVni+ksxqnCd1eLscQwyzB/aUO/evcNxcnj79i2myV7u/dIvfYI3if2itUbf95dnVMfj8fJcaBiGxXsHJXuoRUeU+pvz03NrLNbhcXvGGBiTP3clY19qMyznZczVU/K5nXHQ2sI5QKtrfVd7dT5v4/I1n6+1P/F1Tua4HTs4GHNC6PceDgdoQfxiXZfFu2653o/HQzZml+LYxc9d5zpUZ8TxshYfs4W9dquk7tX7eYPDF8MJzmiM5/3d9wO06fHw4gX0MIjjM1KZp97i0/7dIu3u7h6mm2UbThP6vl/cf/HiBfp++Vw652eF9P2E43HZ1qvXr3A6mWQfavXl7k/9hL7/PLgH3N0dYTqTlFXKFp8tlS91JqZ8tNZ2PLX+tfrzkmd4xmKh+4BZr9uG95z2xDtDSnqntH+2xBGl7Yb1hrG2dbqs/pqdLKlri85siYO1ILX7pfpPUiZuq2Vensvfv+W59ZztJOkU4vc+jDEwbq13s/G6Xq/eeRqGHkal9YjqvP1zra/vO3Tq/K6u8+85LutTQz/vgU6dbc9rhq4z6KKvg9bWVO0ZVmm8S3rnpvPUhd93mpP6vkeve7GsHsme75VB14XzpnA4HGEOfbaMtP29bDlrRPvXaBizXDvDcEBv0l8vbtH5tXJbx601xrqKpZl4nme/op+e5yvVW/vZufX7lMPQQw/D7rpLvI/1DMieg7ae1bXzNme31soZY1b2Ytd16DLrzTl39r+X89f3HXp9/S4HAHR2nc/Pc8tcPMe8GdMl3sPX6XMTmTPvPcTrtuCcgzU26Qfk+iKRoyST5HsUrf7ALXXrrYn3mFJhPK09xtraL8l+T7e37RxriSfV0Kep+Dzse2WOP0a2RWQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkSw5/fIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJRwh9fIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfJTwx1cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfJd2HFoCQPVhrN5dVSsE5t0rzhPfC9PD6lsSypMjJl0rLXUvrz5EbF+dctZ3Sfem4ar3vN6PC8q3rJye/dHyBaz/j/ubqMMZAKXXOfy2rtULXdejQVdvfumZb+nXLdsP2r31f1xnOZWq9x2m5PWGtzcoat926r+I8t1hDkr3myY1XLk9pjFLXqby5ukM5cnMa5zfGJOsN223dx/GaiutrrUtS7hZ74TnylvLv3f9bykvnUrKWa2sH2LZ+Sm1K0lMy+Py583VLvbl2Suml9bz17Izljeeupa6cbq+1L9FPJV0t1eMpjDGX/GFfjTGw1l7GwzmHvu8BAE9PTzgcDgCAx8dHHI/HSzmfp+s6HI9H3N/fX+rW+gkvX94BcLB2bvOHfsjg8VFdynTd7PoNwwBjDO7u7i73hmG4yObbUUpdyiilFvtKKYVpmqr9TxGOfXwGy8+3ZX2hfSVZ71v2W6peP6+Ttudxv+YZxxHutF7jtfZa1pjVdtGmL7/VVsjJJxmjFt9EosvCPZPrS7wGrbYrvTJNI9x429+crfmM3oYNaV1zJVslNRy3PjdKSHRvqi8lPR6n+Xm0k8U0hXPqMI4jdGFOQ/1U639u3dZiAc45dN3VDzPGXNoMdV/JB4nbPByAw+HtIv3ueITWbeeV1voiS3jOxORscqmdHtYDXPfsFtsqtg9qekhrvTqTPK22rVTeLXtJeibFe6S1rdb8l/HWa1mstYC9prfGqfbGdbT2MYDleJTqLZ01LWdaqd51ufVe3OtXSOXYEocIKZ0XEp0IXPeNJD4nOc9TsoV1x2ssZ2O27vNSG1JybabGprZGJH5urd09PNca9myJnebmqFav74vUz87VmdsXc1w27SN7Xy+m5AuXzgrJGZfzy7b4Wa3kxqi2nlrtjbCJ3PlUOy/C8rcamy1lW2PLpbiKJPYVtuPnqzZOUj1b8iW36K5tsYG1H52TQzr3W2KluXUZ7wXpmOV8JkmMS/IMozQuJXlLvI9nUEt/+BpvsxPg3HKsnbWYprpcW/r4XONSi33mric7XWKBHmstFPL6I2f3ldZoylYpxT6kOq5Vl8brXWuf5ucnH5eIuVUMuKXeElvkzOXbkx7nka7jPTGoPc8vU59TtsgWe7e2B1P71lqblG8clzbb45PF42PZb5X4LLV4Tkgcw4nTa+U9LbHnGi2xu1pMdmubW/zB1v7n9lIt3tGiT0LdF7e3ZX/utXVj2VLXqb3ik3w236+tvvp82RYnKY1di2+almfbeRPqFi9Cq83sr3P24dbYpJTntBfXvkp+7WitLzH3fFwnPfcSnduqR7JnoFnrjVD2VX5Bu3t1XGqNlOLc0nrj8rfwT7ZQsk3fn0wynZeai61r0ePfFci15Xl4eMBhtLj/zjLfN77xVTx28vhmiZy/4uuSrKVwj4XnYu5MlujnOW15xkzThEnJ4iW1PVLqT65uT/heSlpuX36pH0PZWu2yXJk4dprTnaV++fI+3Q4Wxiy/5jAMPXTm/50t1W0Hi657BwQ+8/F4FPkkPs9htBiGTxb5Hh5eYujXMbXcGO3VH9LnCa02YasuUUph6id8d/gCzmg8nuOKwzBA2x4vHh5gTqdqu1L5PFM/oe+Xa+Lu7gjTndvvRvT9Uq/d39+jH9q/LtP30+W9Kc/hcIDWZtN459KnTDtGm13v2t2a1n7F+7mEJL7a+mwvVaevI35fwqe1PK+rUZJxq1+7td9S/zIl5/UM3Od/S+WTpJfOFUm6BK3dyv42xsC4pb7f4ifmyrecEb1TMGa5Xvu+hz6k7TpJ+3t4Dnu9VeeU0mMbeuzGhd5Vaj5LulF+VozdmJyDTqXr0J1O2DQDOj2ndW79LkTX9VD+vd7OwJgOYTcPhwM6U5b51mtUUvcetNY4mXHxXh4ADMMB/ZTu61Y96ukQvoemzu0N0EO/yFd7VtoqiwRpfc3tdmkd0uvbfr24FAvM5aulbx1jayyUWva56wwM6u+5b6Umf2pMuin8bsGcZoyBq7wbIB2rLXu/5V6OWrul51ElO8GXS41r6jl77jrFOE2XZzu++qenJ6jgTInt0/nvkgLg/K4rlu+6am1WdoZSemGrbmWvz2kmt9or2qzlNSa/fzx7nuXsLZdj0mtdoHW9L9IzsGT3l5CM1d6x2DsfkvhZbDcs/S6/J+rj3dp26pltrQ6fZtVV355T5/dQntH3TtadeMYM3O6ZLNnObb+FRAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIV8S+OMrhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQjxL++AohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSjpPvQAhCyB+fc5Voptfgcpuc+x/da2vPXqbQtSMrW8vj+OOeS/SyVd841yxDnT7XTOsY1rLXNZWpzVFojW9NzbYby5/IsZBxHOGfPf+c1Zx2cdpimCWrKj+/WsZeug9p4pNbUlj13y33n24/3R06u3Nzl1mFpXOJ2t3KLeW3d67V9F8qktU6mS8Y4lkuy33N9aenvnnMhV6bU/h6Zt6x3aXouT06nx/VIdH+pX+HaAa7zH6dL20itn3iMU3WU+nWLedljK2yhNGc1+2CvrHH5aZo21+XtvJp9U1rf8Vxu6Z/kfM/l93nis8xau7gexxEAcDqdcDqdAABv377F4+MjAODNmzd4fHy8fH56esIwWLx581UA13598skneHycx+N4PF720v39PYwxl7EKr33btT4aYy7XOb0/jmNyPrTWorOybLcuZUzZB9JzR7IutdaL/sd6aa7TAajr15Y1VNubFhbTtCw3jifYU/k3VnPndkgsj88X2k2lcya3XyVyOedgjBHZ0O8Dkc0ekOq3xG6u1evz+6qcA5RK173XBiul1+ayZY3n5Lxc63iNOnRdB211se5QR+Ww1jbNS4l4vafKhbrKy7vQq3qtj06nE8ZxvUe9HvVt5vRwQWJYa+Gba7W1QrzMe/ycnL6RskUn5M7trXanr1MaW5Cs0UuMK3Fuaq0vskpskJBw/bX4SbX6UjG53B7PyTxNE6wN63Cwdr03WudcMi9SH8Ca0O7wcltomx6rlE+Tsilqa1Jydpd019Y+p8r59SvZF6GstXmTzmvNV5XGMqy1F/luFdtNyeiR7Ps99Xtqe1Waf2v7W+qX1CeNSwD5NSpdg7HfFt93zmXzxPrKyxCPf2tcZgutcy6N4bbEu0Jdsqc/Si19wJxcNTs6hdTuaDkzt/CcPs6euOfemCmwXAdlP7++R3PySOZRYtfE+UqytJZr8aNS5WrxvT3xy5w/E+8rSbw49Vkqh+xe4r5SWMVjlILW9TnP+W4lbvGMR2qvSNaa0QZaL/2yvh+gXXuMW9q3VByuVG+tHt+2ZL2tz1579iH8OQ5YZ+GC/ltrL+Mh0SO31MktdlvJBs/V2fIcJp631meZLc/BcjF86byG6a32pMTuiOvM7cOaz+Q/hzZgan9Pk1u1YS1g7XVdhvo+VW/oT0j7F+dL9TPlc74PW3VLnVvalOh/qR0syROv81wZSZ6UbC2yxOX3+L3S8ZLqp3LsNI65THDTdn9i9iXSOqIkS053ydpMz6PUBkrZVuFzgVy+PfduERepPQsptSm5V85/XTO55ud0dY6rlmU0Tq3yhPHYWyAbp22+SascW2JyrWml9D0opZrnRfLOXkzJTn2OfqXaqqXH8WfJuITPCHJ2TpwPAPR4fT7tRZnzrG2bUj9iGXO2Yut7ou3PzGQM2sKY5av2x+MRqluPdW495d5LKPlGJaS2gu3d1W/U87o1xqBTs+yH4wE6iKmGOj3nN9XiFCk5pGVi23fqLfr+MdDxCi9ePMAMeiVXjam3+LR/t6qrO8jt7f5pRNet14Lul88AWuMl0nyl+3ue+bac5Qud0GsYo2H19b0jrQ00DPq+R+rJyF7/Y+qn1X48HA4wem6tVyb5joGL5q3kp3qMTsdi7MZnPuWzo+35zl5aY6px2hY7ROpPeML32UpssT+McVBKR2nrud17luyNw21hjx5JxnQMFmOl1DxWxq33wS1997317p67Vb8V+r5Hp2TrskWGkk+YS+/drG+v94Fh6HHqyl8N3BK/L51pe33m1j2+PT4Q+XidXj2/7/sBvZZ/tVKZsI65/mE4oDfpOrQxqza7rkev5vwDNLpuWd/xeMR46C/lr/fzMt9Sv7Q8LymdGbV1vWrHKBiz1NF934vnp3UMusmt9lPfd1B9v6udlrNS+nyghWLcMHkOapik9bavrdz9W/S1ZY1aY5PxHum7PO8rJq6UDvbOnNZ1fXU9xkife9yK3HeApO22yBXvF+9vxu+nhPdT8aCwTGq87DTBOZ+uLvmmc15jzOK9QOccrLJwbhmjbPKFE+txaxx4Sz6fNx2LXq5LpfbFS0vPEFryl0j5H6nvsBhjYNTt3uuL27xlvpYycf9bn4fX7LaWc06p+ntfqTpz765I2RY/X+qQ1nokc5k6e2b/Nz6bO6B7PluPyLjdkyFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5EsEfXyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHyU8MdXCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghHyXdhxaAkD1off39IOcclFKX6zDdfw7TlVKLzzkkecI6W9Jb6i6VTfUv10Zrm6HsSilRX8I8uXRjTJMcqfpCrLWi/Kk18hzE45ZC0hetp8u4X6pR13pzdfv6S+u8VLYmY7ivpGVakc6VpB81tuyLlHxbZcntma3ylcjtiZJMW/ZruEZy+1MiXy1dMuaS/bhFrpTu3bIv9ujluA6J/t2zxqTjt/fsAZZnfMsa8uXC8iG+rrAvYf0l/Zbrv9a66SxuYeucptJza7V2hpb6vQff7pazJkQyFqUyLXla932YP1cmbsePq7X2cu2cW4x3qJe7roPWY1DP/K9WGl1nkmWMMRcZwvWbu1ZKXebLy+Hby50XW/RFvC5X904TxnEMS+Pt2zd4Gq9ubThOuTELka7jkk5xzq7meJpGuPFaxo9HWE9q7MKzM2cLpcY+vFezD5dyTtm8YZkWPZyiZc89t53eSs6OaNFdredKyU+43lNwrj5eUtsvbKMkZ3xm1trL1ZvbU7F84UfnZP6LZF1LbOAt9lOs+70s4T6y1i7mcpomOOcwjtOizrfvJjw+ruXx+9yPYddddaAx5pIv1Ctzvct59FMS6pt4LGKdH7YfpofnRc0uCfOs51st1kp8FgDzeNlTXSe12P0lO66UfwvxGo3Puniv2GnC6XQ9+5RSeHx8hH56Wun81Ny0ylazcUrzG7cpsZdKzGtQbY4f1WQp6YHsPWOhlPc35jzD0ENHv29esq8lur90btTmVjoPElu7xabI5ZFS08stdrinZOd5XbxF1pyMpXZT+i5FPK4SGVv3eyxfac1I2DuOOd8ot4+01qt7kj0u2fs5Wz1HLd5Ui0vE3NIOzp3J0njwlriO5AxqidHNcgCACxOz/WqNx5f02J59ENcjXUupNVrbn7m1X4o5bLUVtuhhSX0xpT0qPStrdZXk2RIv2mp35dIlvkrJz2u1NWIfpiZjqY3W9V5rK5TL+wZh3nEcMY6AtRPCKk6nJ+hTWqdrrZP7oBQHlKaX8uXaCuOAYZnQFwr9hJXPebIY3y3tpcdf/wLurV20EfuTqfTQ/8v5FinZY0p7RHpGSNL9fglvKwUoKIT+b1ymVJeEPfpHYnfl9sfeuJnfe5J6wjVWik+mdEbOlgXysWOpfRJet8Yqtz5v8pR8sTAuk+IwOAzD0yLt/m6AMfUx2GOfSkitg9z4lOzznAyt/mtJtpwNKDnDt5zVJZtqrx7I2XDhGEvt25xMree4NP9eXVmsV6918XxWtbWxrGN5Tmitq3GmW8Y68nLJ70U5RblabNtYhlvv9s6XAAAgAElEQVSe1TlqccQUxRhPYu3E9kxcfc5nLrFlXPdTthVadUPq/q3m9TmQ2OPx+fQccsc6ObcWJG2HNrjtHIxZru2+76GdKsYIU6yeKwjtnZTMsc0W9/8wWgzDF4syx+MRqpM9c2/xeWtjLLGVcnW0nlXDaVrZfYfDAao3q7paZWlhSxk7WJyO87UxDl3ncDgM6Ke5rlcvX+HptH7PquQX7tlrpfdNUtdTnxr7AUabVZkaUz+dn6Vur6uHjuRxGIYBauhubpNuIdVOq8+V+hyyOJcNoJSG1mG8QUFjfsa3572yPWO2LLrWZbX6S2dQ+FeylVvmYk5f7ol5XPe9l1eTad8Y179LEMcicvlqaXG7pTRpn1K+xh5fKZcmORNytmnpfNn7PKlJr3frvWyMgXH73sNLySJJL+VtXeOl5zJjN170vb99OAzoTDkO1Nqfrc9/O7d+j6LreqDvk3XsPYekOu054jRbbL4ayqzjA13XoVPp+U3Wb9Zz0Pc9ep1ZI0Yl7X+f39hZ98/tnYsYA3duwxq32l8pmT+ULxfa2c3zEekhG7yX4zFGZ+enhMSHNmaqxhVS9aVotQ1KdWwZS2n9zrjLO08eYwy004v2U3JV626IW2whVX/bexH7fJva+zY1arbF7K+s26idr3G9W97lr8lXI2xnrx3b8izW6HV7x8MRU3AmhkhjJidjcDweF2kvX75Ef37vM3U+daY7f2/jOhZ932MwwyKvsYCJbIq+76EzMu8hZ0PmdeJ6DRpjVjpDa716X3KPbO8LH5sLm94b53gutsR+Qz0cf9++pW5pe6n0xTMw7QA4hNsufGdzy3sXJVr9MefcIl57bm21Jrauj5YzMV6X2ToTzwzI87JP0xFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsiXFP74CiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5KOEP75CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5KOGPrxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQj5Kug8tACF7mKapKb9SCs45ALj8W8ob/psqE37OXW9B0k4oV0zYz/B6ryzW2uT1+6TWL2l/w/ErjWWu/fg6TpOur9S11tffxTLGQCl1+XMO0EoDWsMYA+OMWPYW+VKySevPlQnbzOWJ032/Je3GbcSfc31uGYsWWaTX0ral7eTKpHRaiyw5XZCrQzLfLUjr2NJuTX5JeqnN0r6QyBXrNem6Lp1fkjKekuySPfdc50WoK0NK7W3RfaXzIrXeUvPl7205j3P9CW2g0jyU2LNHYhmk5bburT3naq6+1LyU9lepXmPm8zg3Js65S30+j//XOYdxHAHM69pfHw4HvHnzBgDQ9z2enp4W134PzNcWzjlYOwGYZZvshHF0F/m8jMYYDMOAvu8BAMMwXO4dDodLvV3XXfppjLmkx//mxiZOk6y3mr4ZzHSW+zo3d3f3MP3aHirNXy6v9OwMyxljMJrpMh6+WWM6mO79/tapZEsbYxZ6xcud0jUSv2OLHZEjZ1/Evo0nrZPX+rBlLaRkbT3HSzJK7OSUfkqPn4NzgHO2ePblxq81T+pe7nyT2gCpOY5tzmt6XhbvM/nyqTmo+W6hrKl059xCxy9lu+aL68nZRrmxadGd/p61drGX/fU4jlBKYZosrHVQ6irLNE2wCRUVt+n7HPqpuTEO+xhfS/yH+J5zDtPJ4nR6Wsz/F18A+umqn2MfOpTLp8f9yo2rtXbXeXULvyfGDgMe+2X49nA4QEdt7be58z7lVt+u1fa11p3Xly9/u3hW6jpnD5b6OMvo9cL89/R0gn5SkOi+cK3mbKlSX/bGG1u5ZXtxXVvWbDxmrTGaXF0h0rM7rruk83KkdLdUzpBcezkbKLYFc+dg3PdQp4Z4XyIun6qzhiRfeB7H/neLHZNqu/VZQ1w+puQfxmW2+rx7qfk8KZ5TN4fXbprgnF3YAdZaqMA+85SeFaT+rVHSBdIYW0t70rUQy7HHJtkan66txVb/q0WWvXEFSfst41IrV5vLPXup5flK6ToVQ675eVJa8rfETkN5tdYwRkEpi/DI7Lse2qVtLUlMsMTWftXOR+9jhvHClA85TdPSF50sMPawQV2nd4/A4/LsTvlGoS9tjFnoLq111l6t2bEtzxj2nGlaaxinoFQoD6C0WsmrdT0OXDpHQnK2RyrGEefLxQni6xSps2WLHtlzRoXlSnENXya2Zbfsudx6im3Qmixhm6V4aEzYB0ksJ30/XaZWTuIL1Mit0dT9Gl2Xf7Ws5Rws7YHauZWixYfz9yUx2pZ7kvZz/dkyzxLfoXWPP0dMS9q2v57/1nm0kvnvqXprzwtazqzU/VuNXy6+Ccy653reLWW/Rbvhvy3k4iCt9lzLvVZSayq819r+rXybtj62r9Ew357x3GtzSOoF1nowXE97bcVSu4A8XinR1VvsYmXWfr3WMjunlVofpGtfKYVBTzCmW9g4x+MROvG8vlbXFmrn6K3b8Bx6e3m/wnN/f4/u3O9brtcSW+LqU2/RdV8AcDDm7Et1HbqzzMPhAJOx9XLxoFDHSOM18bmZm7+4vqmfzv7rNW0YBnR6LXNNFl9XiDEGnZN/jcKYtd1qjIENfOwvI612tbTO9zUmoZ2XsytrtltKf2i9nu++7wGV13mxLyqJA1olj/VK47S3YGu9W/ycUnxwSzwuLpsaR7XwNdw51lg+z7b4EBKkdWyNFZTWS2mNKqWgOgVjNLxtqhRwOAzouz5ZX45WW7nFZm+JPYrTuqtd5m/3/YBedyI5S3KFaK1F7/HFz5U76PO8XDkcDlBn26RkD9/Kt0nR4lO3yNTyHFVyz5n1GPV9jz5hX2RlMoj0yPkdXaT1iDUOcSy76zp0al5TnXWrOe06A/h3eBMyd51Bp5Yyl8ZiyzO8LezVC1rr4Lyb04wx0JC/YxPn87HHVBx/fjd6WZ8xBq5wJqTs21KeGKlOlNrarcxl1udBy3tMe+SRnmc3jRMZd273Wqffg9kyG3TPHn3m5yCuw8yOXLHejxmjXVKna9tnSqxJzZvRevVc5Hg4YCiti0Rcp+t6mGmZNs/zWoaWNb9975frSK1BnxZ2PSdvi11W45YxyVAOpZD0Gd8XLefklnh1zrdqPZNuMSalGD3Qdp63Pncs1b+MHzjEz5JKbUjJ7ZHcvKjgOwnhvQ/5HI/M8AQmhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8lPDHVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR8l/PEVQgj5/9l7u1jZlu2+619Vs3vtvc+Hbnx9ba5tCMjXQnacTwMilhxBEC+WTUgiIV4STIR54UMCKxB4ioLjF0AQgZDzEEBIIcZEQAgiwAUMQRCCLIgSW7Kw+bAhDsp17uc5Z++1umcVD72qu2bNMapGze699tnn/H9X+67ZNetjVNWoUaPGnN2HEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn0qmNy0AIdfgnDPlSymtyqSU4Jxb3JPKlG3U7ZXlteuyLqktrf1eX0bLWajHpm6n7H8IYSVDjPHmMmmklMQxkGSQ9KRMk+qx6FZrjHr1l7R0xc0zYkyIMSFny33XxkDrhzaXmozSGijLW8aorre33ppjYVivtYwarXXdYov85WepLa3OWkZr32+1DjX9sthGLa2VbpFHutbytPJptMa5zle2YdFRbe6teuq9/Ht5o+uwlLeWtd7HtPJaG9IeCZz2i175LWzR9RHbPlqfZmNb+4E2tq1xsuxz5Zhb5NXGsp5X6/xJe2GvjhF/bITRNd1qp7WWpDGs7WiZ53g8nj8fj0ccDgcAwOFwOF/f39/j1atXAIBXr17h4eEBAPDy5UscDgfc39+fy6QUMc9HxHhp71TmZDvmecY8z+d6Hx4e8OzZs3P5u7u7c779fn+Wd7fbiWMRQjjL770/9zPGKNqren1Y9aCej3mexTwjvl49L1vWaCaPwYwZ87zUgXk+Ih0vY2HxVZxz5/Hz3vfXn3fwfu2PqvmBsx5onzUkv7dMvwXX1nUqL+9Fpfy9+Zd0tKcLoz5vbqeUT7JF9XqaklunTTvEaWn3b31W7J1BNTtanxmH59gDeU5z0TxW2pi3zkit/a60Y/m6XB91evk5pXTOG2M8txNjFNNzmXI8YnQ4Hk86nNf1PCekFBb9ztchhIWelNeljpzsCh7rvLQ3TdNZb+r8veuSkXOARH2uLccypQQEB+c8gKUeZZm1tVP361wf1mvc4nOX5YG2H6rZFameFrnMRXcudczzjFTZb8uZdFHvnJDSpd5y2lqxL+l+Td3vWiZtT7nkOV89xkP08e7ZJ0lmSf5y7iX7crERCVJTpS6Wa9I636181vjLaN2WudjSRsteaOtNOxtLsauezJq+WvZvYO1vlvNa+r8ltQ+cr3u6W+4zkk/Wi1FI63003jXPs9pOnVbKqM1lOc9bYgHaeaKmNa+9WEFvTF+H32s9l7ZseG+dbTnXAsvx0uI6I/VLbbT8M6nOfMZMizPRo71HKjcKtc06XRtbi+3R1kgdR7PawhGktkuf0Hq2Le/35sIanxqlFSsaiW/2ziTanmKVydLnVqxqi62w7skj45TR4ohanKa191js860p58j79Rhkv2s1Ng19084/NVv8OMv4L8Vcnp+B01kt12XyX54BL58v/YgXn3sf7r7vQ9ZzukV/t9g7LUYjUa/ptX8SH881+T6QYkLyua3HeYjtvrV0v5ZhdB8s01o+cS1PXVdtB63yanVb7kvrK7fbsgkWu7rlnKJ91tpr+XMpJbEP9brNn2t9tehvJoT1ufZwPOBwcGJcI3/Ovnpur2XTpDHrnSfKfNJ1WV9KaRXX0sqUtluSq3ye0CtvYXReNB3bcj4ejYFJWJ91jqzda2MRt/QBgevOUsCYf5fbW/ZhbL/v2fGynVtRxghOfs8yxpDjuynpNtrqx94qFlTyusblTZDtSB6e0e68zv6PxghvIYvVd7ZgiTFo+/NoPVsYOYtJ49LzoSTiPiKE+8cyp7Rnz54N+enavTKWWcs8gtS/uylit5tQ2tcXL15g2snvqNRyjbRbX0ufW2W3lNfYH46P/T7XhBcvnmPaTep4W55ttOj5w5YyzjnMu/l85gwhwjmHKUyYHsfi2bM7HA6X55EWtLms47taTH1kLZ/2xvU63KLXl/WZhDSddkx53EbX9Mbs2vV87bukzeenj35KdA44P3P0cM4j+IAQbM84JEbiKt6H8/PzKQrvWUwT0rT+usyWZwynZ7fusV15rxyNuXhfxx5OsaKQlra1ZdOse9k1++foOXOLz9mL511D+Qx3l9b17nYToLwnp8lWp2/Zh7R5HN3zRu9b84UpIITl+tnv95iO06r8VltoKffk8elQvpdySpqmCZNrf/WuN8diU8K7vmWaVH6a06rcbreDu9N1GLh+XV6rV9aY/Oh5d1SuGOLKvwjBI6Dv02bqOlI67Yk+LeN1Wn5Ayr+2Gcv433Kv8N7DJ6/2vxVT0eKAPbbow8hzYgBIYX029H5sfrQ2JPlPvks99n1/09L/LWtBovYNr7WJJ3+6XgOhOca31qVbYTkz53iDtC9vOXNb8ms2rdemJmee8y3Pkrfsz7d8X6as75bjnfFesBkhAK5tM3rtzf50rqnr9Y3zgjR/2Va3853mODXed91Ka4/Q0d7JWNY7Ilfv+eZTUcZ+S6R9Qro/iqVc7z02LW3k3Z9WusWujDxPW6SHhLU+2Z+xatyib2WeOtvIc+BWvRZauld/7+BU8VVikQ08/ZtShBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8jGAP75CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5VMIfXyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHwqmd60AJ8WnHOfAfB9AL4HwHcB+DyAbwHwHoB3ATzHaT4CgH8qpfQfCHX8dgB/KaX08qnkJoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkkwp/fOU14pz7AQC/B8APAviClq36nADcKXn/RwCvnHNfBPDHU0r/+U0E/YSSUupet3DuMjW5TJkGADFGsc2U0jlv2V5dHgC8903Z6jSpjp78Wl31uEjjpPWlph6LVru3IsvlnDu3UY5nD4uOWGRvzYlzrjtnvTacO/2rUhd1a3W05lxKq2WV1oFFZqkuS95S31prqJbFou+3knWkfLmOpL8t5nkW9bken1L/gcsa0OyTJKM0/hq5PU0fyvLXjmvdrnRtnefSjlt03iJ7z+5odVlsr9ZWTT3Pvb2n1Xdp/dXpZR21TPM8izJasOjeNVj2Vy291pmRNiQ0Xe7ZkZwnhGBqxyKTZVxG+1XrtFa/Vffr+keox3d0fY3II9nesk1Jr3LeGOPi+v7+HgDw6tUrfPTRRwCAjz76aHH94Ycf4uHh4Vzfixce9/fvL9r44IMP8PLlqd133333nB5CaM5TliWldF7X3vtF/hjjos+W+c95vPfiXlYj2cryX+ZwOOAA3Q/NlLbaap8zta3NdXnvz/2vu1D7gJp91s4ZLfmlMpc++SF/uOXDS7TG7JZY1/yoT9rz23ttbD1LSvrkvR/eO9NxXpU5HB7wkOS94VZ7q8U/1NKv8g094P2yTAgBPnjRRtS01rHaZGHv6nnMddR7cXmvlKVMr/PXMu/3Efv9YWEXnj3bqeWPx+P5s3NOtHH5Oh0jDodjYSeAh4eL3pTzpNVVp2nnh3J/G4ldlHnL8Y37iJfTAeX0vnjxHP5haee26vq1fo+1bu1s1lofy3Ma4Nxa5+V9YC2bmBYinFuPY8t/acm/1d9eX+fPul1pfc71WGx6Sc9GnNeAX9dd+jYjWM7odT7LPmbVY81u9OoY6esWWVpY5rWcy9JnrWnNuWb7avtf+oSSjLX/luW07km9eZDk1Lh13LYsY/FntLmTzlHlnvrUtGJPI3bOmk87V9ZlWv6o1d5Jtr22L609vOfTWWNfmm8s9sFd9Gth4wz7aJ0+InMteymjZfxbPnBPTu1e70xitdujsT9rG5pfUl9by0vkcdBsXk+vpP1UO4+P+npaest21HpiwTLPml1pyWs581rt2LV7SosY40re4/GIeXarOZ/nI+JRt7HX6KtVX1r6quVvpWn2MvkE59bPCDSfpCXvNfPXGsctts+a53Tf4XKOyOnLPOUa6fXTuk9p67hnT8v9dvT8PBoHG6mrJWum1ulbn7taSG1L7bfWncWWhRBEfZZspcW/Tykh+ATvlz7zFCbMk70P1tjclv2llrdVv/TZsuat9tDqA1v2rtY4tGLy14zfFqQ9fMQ31LDs6SP2eat/tO1cV/tTci6bH7LWT0l/WnGYW/pKLUp7U5+z5zmK8cVrxvxN7D23Xl/ZtriQFs8RlueetQwtObz3mJIz7zuaTKNI505NdikWad0ntM/lWujN+ZbzUwuLf3Gtn96yd9bYq0We3ntD9fW8i5imHG88pe/3d5h8WLWxVbekdrX7rf2xzLc/zAhhevx8St/vd8BuWuTbIkcv37XjYGlDm68d/Co+PE07pMd+S7Jtlbdl3y0+9cp38st4UM9P6p1p8lnmbIcrf7rMZzmPtmjJO+JnrOvYHgs4ySTna9m01plLmldtrst07R3RLUjzmWmNUXQJgDv9z+X8j/+8/O6KxVcH1s/kz7LuwurebrfD5E5pU1zPRQgBUXjGL12XZcO09gum3Q5wy7q2nsXOZSaHEJbt5D7d6pmdlVva2vLdmBprfO6a2F0r/5TWz/12uz3cfqfWe61sWtmtPNWZNoX18/Ddbo+dl7+CJsVStDw9RvNd+2xxYbdDHVcFpmnC5KZVma3tXjNf2rnAsoZfV+zjWh+wxnJOGY1RZU7jVJY9pfmk74c1sXjnJmff7XbYedmOpJBQv6MTQkBAOF9L78ilx7mOIYr3c3kLpa9Xj+kt7X/NqH+f9bt3Xuv5mlKsX/PbpblB5dvWtOJJdZr0WeJ1xh7WdazXzLXx5VvHDK6paz0n+d9lzUrvWo/GWFrtbkE6b1j9ppZ8vfQ38X7Oraj19lbx/3IuyuHpvTeh1VX+rffxutgW+zEqky3/7eO+1/oLWpzCSvDKfurk/fRWz2Osdd5yLd7iWYEWo9r2XoG9DXud28qu4wHrNTdadys2k79v1GSe32pb/Enm9XnJn1Kcc94596POuZ8H8N8B+KcBfBcu3lr9DzitUusKeQbghwD8WefcX3LO/eANxSeEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5FMDf3zlhjjn/h4AfxnATwL4blx+YCV1/o2Qinp/E04/wvKfOOe+9QZdIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkUwN/fOVGOOf+MIAv4vKjK8Dyx1Vc598Idb0/DOCvOOf+3o3iE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyqWN60wK87TjnHIB/B8Dvw/JHVwD5R1VScT36oyt1ubKdbwbwXzjnfiSl9Kc21vvWkVIaSgeA05T164sxnvNL9WnpAOC9/rtGdZleH8r79XWrLxbK8tp1ayzLe3Wf8/jV9fXq2ZKvNy5a+1vSpflIKTXnNddnHcu6TEpA6liOMn+rPalvo+PQu1djnd+6Xqmcth56bdXppX5q7bewzGWpL1adLAkhiHrUkyHnCyGIeeu+12u/1aZWRqI1FyM60WpDymfRG8s+YJWxNbeSjZCutfnJdrWlS5r8dZplzlr7nfS57msIwTRXvXV8C1p6rtHSWUv5pd1e9rG3J1y7T2rrWNq3yrG5Zi1a/RntnnOuu3dJ1z1dbtk7ba9tpVn7qdnenO69P8tT+pgAME0Tpul0LNvv99jtdgCAd999F8fjEQBwOBxwf39/vp7neXHv7i7hc597tmjzu7/7fRwO4dx+biO3l9vZ7/eLe9n2TNN07o9z7nwdQoD3ftE3y7y00nvjmq+9T1091NaTtPeXdlars8yn1ZX9tXVaX2/Lz3U70hoo244hVnmAlCJitOm7xIhdGLFNWlruc22brt8f5L1Wm2urvdFshGYrWj6o5o9K5HHyPqE+DJT2tMeW8+OWs0JJa9/vnUdPf9c6I523NR+ongtxLcXYPbNJc1zWmevT9treHizpjIM722drHKMeG+ccQnLwvr0eNR3PxBjPdZd9L/tdyxNjxDzP5+u8bx2PRxwOh/P1q1evznvcq1evFvfSXcL7X/jmxRz93P/wFYTDZU/a7/d49uwZAODu7u48Znd3d+e9rtxrSx3K60fSqZa9HvENpWurH+icA7xfzZ+0DlrnhXqvBgAXTnohqXyWccRmSPbREgspdc97fdx79lZK0+ystP/3zkjL9iUZbhdXGYmL1HJa2u3Rm7vembmWQ8un2cS6/62+SGtXm/eRfbdXJrebbRygnwelum5xDi7rKOUo0fyu8l5LFovMVh3VZCvtu5RndKwscvb85J4POzIWvfu1jms+SZ1vS1u9vb4Xq7G0qemVdf2t9jZh/9Jk0tZBr42M9Zx2rQ+s2Ygt+m6l9hFG9aenG5Z7I/XV+3Opu63z3Mj+1Gu3V0drjGo5NZtyTayyrte6Tlr9vqVtk+5t2Ydr5nlGjGv7EmP2XZdtOyzXcZbBEnupsfqzLbSxtq6xUu7eeHrv4bysZ5qu984/vTVWUsdiLDKv5DfE0i5tZNke/2EZp4txRpq3xTZa93t+TI9637f6+dY5kNqzcolDLfdAzVe3+vB1fa39spa5lr8lm8Q1OqnVJcVEYoyrOXMuYZ7nld8Xo2w/es+wW35+Pf5WO2DxE645A245G9d5WvEvSb6te5vFTlr9nl7sU6O1jra0bUmv67aO5yi2cVz7g6WOSmMpjdnlc90v2ddvpd2CLWO4PGet70k6ek1MSOKW9d3yzOOcO58Dk/BMTG7/ogOtdXbSuWXaNE2YpzHd6LVRUj9fjrsE7x8WeXa7HXzqnzd6SM8QttorKc9oGUmeXhsZy5ky/71Wl8vnmaN2Qjvnzrt4fm6RbdOzZ3fn5x/XzvVWpPkp03buiGkKizK73R7Y255nje6p1/S9pU+tWFaLMqvkx1vPWXXe0i9ryd16VjfaFwnNPmlrq5VWylvLOS7TeixvtS6uGbNyXno+qiRvaf977dS+e3ltraclnySjxSanAHjvEP1lnk7z48VxGTkbqGs0zOqz07y2l3EiWWcs/Z2m9V4VgkdK67XRq+siz1ovpPdAcp9a5+Fe26NxK+1zr/6W3zOKVdZrfZBdcqu1s9/vEe72VlHF950s+VtyWcfxKX0DBIcQlrJ77xGwtj2tNbHF3t7aDxghhiSuf6nfWvuS7d6CtMZCmOHcUr5pCoCwJ4y0f008xarL0rjc0o5IstWfY6j9+tN8+2S3seJ7OFUMoydL2aZzUn2+8sltY6TZJ22OrPv163qWWZP38lKOEAImN/bV11YfS05zKcmwbX/U0m5p463PELW02UfBnwpNG3cLWybVc+36b41zOU5B7LOHS3rsUaqzJ+u159zTd3Hq/Ue279b26nyj5/It3DK+vCVWddqH+3K1OJ27z59W5aW6pDjB6XnQ8ru1rnqWpJUty2xh9BwAyDq43PMu59DgLnq5JYF03vgAACAASURBVMZScu2zD6sPE7Ee+3meMUevlpHSnmpPfB3tjD73rxn1Let1VK6JlgyjZ+FbcXoGnG7yjkvmlnWRp+dpNO+TzU8C+P047SD5DZ/ydJOqf6jub6GuJ9e9A/DvOed++Iq6CSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5VMAfX7kC59wfAPCjWP+wCoS0/O8bAH4WwE8X+awcG/XntADgTzrnvnegXkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPnXwx1c24pz7WwH8G1j/wAqqtATgZwD8EwC+N6X0mZTS35VS+oc3NPs3AfhnAfyq0lb+/C5OP8ASNrRBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsingulNC/AW868CeI7Tj51oP7ry7wL4iZTSL92iwZTSlwH86865nwTwRwD8WNFu/vGXLMP3AvhnAPwrt2j744pzTrwGgJRSnV1MLz/nOlJKat05v1RPWb68r8lS3nPOdWUu83h/+e2k3G49Bi0k+cq/+TrGqJZrpfVwzg3LXY/Rljku62q1IZWpx0Kqf+v42MYgISUgxYTkI+Z5hpvb5Vr1bpm3Xtl6HdyyTa2e+lprvxyLcv1YZKzHsaU/1npLfRqxA5oejuC9V+sZsSNa3UBbTq2N0bVXlutdW9rX8pV6VdouSd4sq9YXSS+tummVt4XVbrbyttrX9siWXciM6rZlb+3lk6jnpKWv2udry0sytfLN86yWbRGC/Dt9kn3S2rbQ081Sd1p2sKaXT9LJsoxl3Oo12etLSqmry1nHct0ppYXtnKZpJWuM8Txfh8MB8zzjeDwCwOPfI+Z5WrT94Qcf4tX9pR/7/R4AsNvtcHd3dy5f2qtSrrK/IYRz+/V6Ltv03i/qqsdGGgvtcy2XtMaccwvZrFjXryZX3V7ygPfLct4H5GL12UJrr9RJy1o4jZGUlkx7glSf9Lne07Qzk3S//AysbX3uc2uM6jq08YsxPtZzvnteb715ldq0+BFSvbXd7OlXj9pGrteNh/deleUa3663127p24jfFl1EjHORB7i/v4d/0H3ZEbQzsbRX1HljjGcZ5nk+35/n+Vwmxni+PhwO5zyHw2G1197dJXz44R4nvT2lf+lLX8PD4WSTp2k62+cQArz358+lXoQQztelXpz+5utTvrkoL41LbYcs+2Zeh/k69/N4POJwOJz7//DwAAB49eoVXr58iQ8//HB17+HhAcfpiOmjF6fJf5TzK1/5CsLhZId3ux2eP3++GPPnz5+LY7blXC7FLKy+XZnWsoOa/5zLxUK/HlObZw3N56nTY0xnXyBzPM7wx4t80hmoRWsfkfLUY+GPEfO8bH+eZ8xOPo+VMkrtlr6WhKVP0nxpe2+r7pFz2Ai5nRhj85xatqftiZq+j46fNd5iPQOUZ2ztXtluvSduOev25mterUvZdlp9De0MUc9l62wjlW+dZbR53hLvukUcaaRda5pGL3bXsssjWM7S0tj3fCXrflaud81GaTahpQ+tPaG0v5qf2NL32tdI84wYT/59ri7GCNewC3V6LavmQ5ax0lr+GONQvM4aR67l6q3pjMXetOg9V2rpWMuOlNfSvWvXVK6j519IZXr5evt4nS7N8YivJK3RUdtW92tknHvnxLKfrbXck6ssb/XHW4Swjr1M04RpcvC+jAUAU5jgp+W6LXXfqjMlFv1v1aX5NJI/02unjEulHRBCrjPb4QAf+ucWS5xTktlKqUuSHd1yxmjJ41z+Vz9zuYzHaF9G7KvVLmlltPuWc6ql/np/s+51rbWv6YhlL6n7Jl3XMq3Ptfq+LrWrrqOGXWy1JbWzihunhCkkeL/ea7b43qVMOe/qbK3Ee6S9YsRvkfq71T5Y/B7LXgnY12lrH++1X8vca6OHFgPqnQV6bbfW4ojtqMu0ZLH4MNby3q/Xxem8uMw/ck48JZdt+Jvq8ghbzs5L27i+d+15fKssgO6DSnOo3Ruh1Uaa1jYqP2ut03e7HULnv1PoU46zlfuGF59FSvpkeXZR2+p6H4z7iA+n+4UMz57dmfbra8bZOn+l3Fa7OvoejHa2bF1b691Cz05siZ25aV6NSwgBIQbTOwrX7o3X+fm2c3FtJ1o6JpVr3bOcS6V9Z4vfvqxjWV9rDfT8iV6MQ3tvpy9j5U+HIn7uLmc0/ziPU5gQ4/hcWBh9nivaVbf2Bb1fr5MWee6jS6vYQggTQlq+C9O63ruAEJZfu9jtdsBumXbtWfra9FtgOncGwDn/+O+U5r2Dx+O7PDfws1bnrHObl7RpCpgwnc5gca1LIQTExntFrXiQZLvKZ1Jl3vJvnV63s9Cxya36udtNmNxSryxz0tubr/UbrpHhlvq6xc8s801pPeb7/R7H3c5ch8atzhdb/Itbtls+83FuvaY8Lj5tb1+2PneQPvfyX0M7DuJQ3275qKNpI0jjJz1fzXt8q/1eDGyrPK26n/Lsuh39/cJRtNhcCpIfEhAQzuWkPScp70HkNJ/0Z+35bJzZasNG3iVo+cNWol+fy72/2J0eI89BgPyu3drOYeOzLasdsMQIJT/iFnbmpKe2c53EFn/gTbDWzbbd3LpGeudUSx3W9ltlWuVHdfkWzwZ76dZn92WadK5OaV6/l348Iqb23I75xXIMT7LL67hiQHBBybdMS4PxMwtb9ueVD4RLn/K9VixoNPayJcZjfTZZ2845nd5DKinf8x6VcStb3nep2Wpn6/U48pzXcn+dN6/fS5qlDss7oDWtdy+kPAAQG+eZUUbsWo1PUZiLOBxbI7fn9pb5U4Bz7vsB/G5A/eGV/w/A70wp/YF0ox9eKUkpvUop/XOPMtxX7edrB+APOeee37p9QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+CfDHV7bxY9Xn8odXfhnA351S+u9ftxAppf8UwI9UcpQ/XfXrAPwjr1sOQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELeRvjjK4M45/5mAL8Llx9cKX945SWAH0op/cpTyZNS+mkAP47lj65kHIB/9KlkIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkbYI/vjLO78Zl3FzxNwH4iZTSz78BmX4CwF99vK5/FOb7nHOfe3qRCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5eDO9aQHeQn5XcZ2K628A+GNPLMtJiJTunXN/FMC/9ShT/jEYPF7//QD+/Tch2+smpYSUknrPUt4518zfqyeXz3/r9Pq6rk/L10OSy5JWfi6vY4xDbdVye6//llOr7h6t8ZfGtTWGlv626mnJYtUfi16WxBjPen4perou9X+0Xo3W+DnnFu1Ia2dEh61ofdPWnlTWOg/OuUW9lnIjY5/zWteEtK6ktNE1ds2aHKnbOjbXjGs5ZyP113VY8/ZkHVmTPdkta0uz6XU7UplbjMvr1KUePXvVw+pDWP0JLb/ma8QYF+tZs2mlnHlPkNrR+qzNPwDM89zolZ1WG3V6ry+1TtU2b8RvavkvKaWm7yLR8x1a1zHGc/mUEmKM5/E/Ho+L6+PxCAB4eHjAw8MDAOBwOOD+/h4AcH9/v7h3PB6x30UcDndI6SLjqd7LGOX2Y4w4Ho/nsTgcDotxybLsdruzLCEETNPp6OicQwjhPH7e+3P5eZ7P1625k8aoNX7SOJb9PLrb+EFbiT4ixrovEUh9O3rNWabFlvK13ZfmspzvkTXYk2dk7UsyAsC8iwghoDymex8Qglf9E4uMo/58XWftU16zp87zjBgvtts5hxhn1Oa85c/25Jbk1c7MUju1na7rtehNuT/kJhd+dFyXkcpLMpfppV3OlHZGu57neVU+Xx+Px0V6KXc5x/U4TI929ZR+urfbAenxt38tPm+L3thL+6u23q3+a32tjWtK6bzflP4BABynIx5+PVA2+T0/8AW4+6WM5R6V7Uc9ZpLfJY3DiP2UdF/y4UfmT7YhZY6TD5Ee91yrT7iyqyHBOV+MrcM0Bfi4/Xe6r9XRvZ8f7TiQbXkIJzt+jRza/qbtDWX6qL9Yl2+l1bTOBtJa1Ozz6FrvYfHXRtdOLmORpxyXLXu1NPatvnvvxTJ1uqYb18Z2AYj705vgWn/y2rYscRCtbK+u0Vhiy2/IbLEX9Tqu18Q1+mQpa40jlGj2bCTWKY2V6O9PU7Gvn9KmMMFN9liUxf8sZeulW54BvY74eA+LfdxyjrP6fdo9q162/HdtXbTqkvog6ULrXk9Orc0t+/AW/9oqm9RGT6e3xEulMi2ZLP3X26t1wj/+vdzzISBE2Yfo+TaaPevZeakf0rjX7V/8320+1Sn/et20xlibL+ta1NIs7YzaSC0eoeQ21We1cxYsuj/aRm99jax3KX/W8TreJ1E/w9jC1r2kLlvPW0p6fN/il1h0qo5R5bj5iM3La/R4XMr06j7i/r4dMwghiHEFaY7LNMlH1eyLZW0v+9LmlmeYlm88ZhtO9PRiq++tndOt5Uv5Rs82ddu1P9LKm9O0vmyJH2j6ZN3fpD0tpQSH/v6iyZGz5iRL7NiqV9ecuV4Hr6stzXe8Vi8saTVqHMXHovzpb44nel/6WsB+v0NwoWlX744Ru91umXb3DG4X0MOy79V5pOdh8y5imqZFXHi32yPAN8dvyxz1ZNHakj6PxF8sjJSX8lqeCVzDNesAAPzOL3QUOD2fD1jr2i192N65WozRFO2Xz46y3W7FsXrnkx6j/nDPf7Wcs1t72qWsrV6L/JoPX54Xe8+iNP8i/83vkcSUzvthLjLHGeV/w9UyX5bzXys/sPRVW22nAHi/tp3l+GiyrOQMOe2SHkLAhEnML9Xj57XPp8U8tzC6RiztXmuvtHwpJWB6lKGwDd57eHhM07T6gsot7HEKSdSJPBYhRDi3HJfdbjo9fMdFRyz2IIT12TOEgJRCU3dbtk+0MZOr9i08jt900712xPb32OI33JpRO15/rrO19rMRrON8zXyUtt8q85ZnuUDe+9f3LPtFGRN9yvMRsH288+co2JIQguirXSvbaH7nHLwPgi0MSBv3o1v63nW+3jNxrfytkOSNIa7Gb3R+TzqSfetLHW6WbVDtgyzTaz87n20D8OjzWGXu+Zs92zliz1+X7c/PfUqyf5FpxWNvKdfoWaZn73pnu97ZqlVOakNDaqce448TvbG3zM1yjV3Sar0a0ZVrnwfVXPxIOX2LTFIbt6R15pX2Actz6Fy29HVa60Ka2zBNwLw+c9ZlLdTZWu+LWfQsp8n+6fXfi7OizZ1L6+9XxVR+5+eUNs8z5ig//+61IX22xu2t708Asg2PWD+LiXFGVN4teNPcas3W43ZNH7U4FLB+FjdjPn+/5jwHwneBXgcjbUhxvvq5mzU+a/UX6usyVlfLsUjDx0c/Py18PL2jjzd/J5ZPfN3j5/8opfTBmxEJAPDTuHwFqV5Jv/mJZSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5GMPf3xlAOfcdwJ4N3+sbn/xicVZkFL6MoCfxVouAPgNTywOIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfe/jjK2P8+sa9v/JkUuj8L9XnhNOPsXznG5CFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCPNdObFuAt4zONe//Pk0mh89eV9PefVIonxjkHAEgpqen1vTK/dM/ahrW8RKuc1pdW/rpM+TnGCADwfvl7S2W9IQS1vbIuqd76usyjyV7L3OqzNlZSei7XGzPvfTdPLadzTtQbS3+t9zU5879THR7ee0zThKlhxq16X/ZR0iNN/1vjX1/Xab11aaGXt6Vf2pz15vJae5Hvlettqw0p11yJZVxbetiSv9VGr8w19GTpzZXW35aOlnWUaz/GaFoLLbS5qyltdk9WCcs+V+4PVrk0GS3lrx27Gus6HbEXVrlqXdH2wRbzPIv1aWzRa23v12Tc0g9pXUh1tOyypD8ppcUYjcgErMeiNcZ5nFp6PLp3lfKXZY/H4/kfALx8+RIfffQRAODh4eF8/aUvfQlf+9rXAADf+MY3VLkA4MULj298Y9m/X/1rv4qPPpL78/777+O9994DALz33nt49913AQB3d3fY7/dnmfN1yTRNmOf53LfSpyr9lfy5/Fsj+ZyteTq1mX9fso1V96xpmo9z2SOWcqWU4AxyXsNpvKU0t1r7EvXabfU517f0SfX+WXytLIN0r177FqKPqzUc4wzMut1o+a6lHyDJqNkEqX5tXYycIwAgpNNZoJBSzNcaP0ub9Xy3+tFro/ZHLH7bea9ytvEpx7Ker3otlPly3nmer/JJyrIhBPHM471fjEWpq7XM+WM99rkvuQ3N9tZ+6zzHR1niY/5Tn2ePVd1lPZqfItmXnk/pvV+Um6bpXK72eRdr5C7hq+9+uKjrM7/uHfgHv+hryTW+Qpa1VU8dE2ntcdKcW2MCui/vFuNpjYGs5bvo2mOLiDEBik+2LNvf1+s9fSxuAqTkzteWvlnPRuW8lLpXrtf6vL6Ifc15z7/0sd4PpDWi6ZVku1p2cvQs3vOtLG1Y27wmljByFpXmUqNnuzS0s3grdtqjNa61LbScTZ6C0T5mLHbYEqe7Rf+1WMrIWSGnS/a23N+lNkfP+a30kT2vF5OV8vXq3xKH1PwTi70AgOT9yZ8vOBwPcIeD2IeS2sZL69oaM7g2jjpS30hdta5pdm40zmNd+7UP2qPVtlbPFh99RK7emW+kzZH2rmnLQs/2WezeCNb6WvNsiSVN8I9295K2XOtA9tNijMCs+0Hl2q2vez5DvW9r59m6D9fuj2qeuI5NxHlGmnU5eufyrVj8wK3taD7gyRc/f0JKdZqrPvefU5ZIPufoGrLspxqt5/qWdKmO0qcdbd/iw7Vks8aSLOlb9g5LG7W80nmg1ueeTux2CSEcq7QJMW7bR6U2NDta6pxk3ySbII3HFr/Jut63+CeSTZDO5yNtSH69ZX+y1jlyfrXet86L1n5tk6zjpMnSOjP05F/fb8c9ezJe/ubry73eGpLlWWM5i9yKkBzyc4Hc7DRNOAa7Pm5Zxz0b3otfWN/JKuuv915Nd0rdiPuID6aHRZ5nz54hpYQQ7hfpu90OPi3lWu2VaRbHO+0mVSapL5a8NXnM5l2s9myHZ8+eIQS7ft1Sr7fGiEbb0dbPiFy3Ol9u8c21Mbf5OW1/eWT+erKOjkW77f7+qNkIq71pxfJaaT25Wujxs2W++tmXVL6+HpnL1tnNssbPz5EmB+9PNiX4+Hj2dfCP/93W3bQDIJ8TrrEdtSxW+7hl3qx+m/cJy2ftj/OY2u/nlYQQ4P1yvWnxKEk/rrWp145PL32kfuccMD32s5hj7z08Ana7HSaDPg8zrce2fI86zOt3BEKYkCZ9L9f6PYXj+bl25m5/hxDW72yP+gAL+xLWMexp2mHnlu1s9TWH5/VGbPFHAFu84Vp5TmO5lk9bz1vaeN2M2Jh6D7Lunc45xBBXtjMEj6DsHRqjvua15+iR/JoNX6anrn5oY/yUetFjix3pxZcAef/t+cPXrreSW8S3WzGI1tn0dH1KK/2K9XrK3wfK9Z/S8phKZ+ilTOvxKstLcmv91PrUK3NLWnWe3osTfDb4rl71kMpJY++9RxLeBZAY8QG2juXInmr1Q+psr0t2iyxb6T17umavsMQFrvWnXwe9fXVk7VxrW0ffodjqO46cx6z15fKSbXCv4V2ucqgszy8zvTGyPjNb5Jvn0zukpzsATt97ufgDp7TD4QB35VBY4lWtfcuyJ9TrOqX1d55ivHz3YMSHu2aN3MJW9Nov32uo43Nbvzt4Dbd8bmjNbxnndfm0Wofr76aMf2+yh/R9vFI3C/HIE3P7p36fbJ437rW/Efk0fElJf+9JpSCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5C2AP74yxoeNex+HHzhZ/5zyidaPxhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8qmEP74yxtca9z7/ZFLofE5Jf/mkUhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8hbAH18Z4/9s3Pvbn0wKnW9V0r/ypFIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIWML1pAd4yfgXAKwB3AFJ17x8A8GeeXKIl3199djjJ2frRmLeWlBLmeTbldc5101Kqp/R2lHXna+fcqs0skySvVJdUVvrs/eV3lqTydVpKCTFGVYYeZd9a41rKKI1HppS/lLFM1+RNKa3aKe9J+Xty1/JK/bWMsyRTTYwRKaXzv1xPjBHH4xE4tmW04JwTda/Xh1IeKR1Yzl3ZTk8nc7omj3Zd9kEqW86Z1q9WG1nPJJ3M9bZkG6G1JlrrU7N3rXG2ytNqY7S+kfJae5LtGpHJap+09Fr3rXWEEMT2W/Oa97tS9+o9UFtvrfmqy0j9ack1ulfUbWTZWnZkZB/RGLHJ1j7VdqD+fM0+OrqOWmvh2nVyLZpe1ftoXhctWWKM5r1tFGm+JF2V2q/HO38u12jtW4UQFnXu9/tzmffffx8A8NnPfhYPDw8AgJcvX+LrX/86AODDDz/EBx98gK9+9asbenricDic/IhH8vU0TU1fNffFOXfWeeva0/bOktaavsi1rCeEgGmSj7XX6ovVdhz98XG8xtso7eAW+S7llvZUOydZfFwpb+kD9fypum1pLfXYsr8WpRf1XGOPW/JY7GleL9KYjdjj3IfTvb6ulDZVa7/8bPUbWrL2dHnLfiTl8d6f7Ylmu+tzU85b63S+dzweF/5+tonzPJ/1+Xg8ntMfHh4wzzMOh8P5s1Tm4eFh0X5Oz3LlNkMIePHc40tfWv6e7v/+i1/B8Xiyb+Ve+ezZM+x2u/PnaZqw2+0AALvd7jw+u90O0zQhzBHzHOF9nlv32P76PF2u8dxuljlf12u81JkYY9fel/frvLVPGI+p0n/g4eEA/2DT09rXra/rNVq202LkrN277tYRQjF3J8p1sJWTDHW97qwDW87M1niKxjxHpBSL/dQhRrsd12IDWlptHzU/bxF7mhLyuGl2U5Kjp2Nb4gjX7qmt81e97q6Rx6Kr3ntTf1pnaMmHLfPP87zah1/X2SJjXadbz5Kt2FTGcsZ/XWdBC/U6asV/LHHIuo4tfZNksM6lJa6xNcaxRV8l/0zae6X66zXSOye0ZNXWbs8/TPOMGJdpDw8HuMdzstQfTQYpXXt+UtdpjUtKdV/rY9e0+tWLa0h2r9e3ssy168k6Fj3/YlSOXhxHyqPJWsZBWnJYz0lbY3Qjz3B6WHw+LW/O3zpzWuyf1R+f57iyCTFGIOVH4YuGV3l7bI0daPpisUM1W3zCZfnHv0hAkvukxXU0f7gns5VeHT3dkc6myzFKi8vLrYR5PiIe+32Q9pR6XOrPo/OknVG3xM7KvNaYy+i5dMRml2ktP8hil6+hftbQoufTaHl7673uj3frfnvnV2f9Gs2+Suu1jgXW11vWcWtetjwbvPbeqH8H2PZabR1p+31ddkvftq75p8Li59b0xmKDFGdZUurrsuTbT4gre7Db7RCntb0f0elrziCj5HGdMCOEZbvTFLCbwlmmLb5M6d9qsdOWbJnWM17NJlnOZoD+fk5ZxzzFYnxOabvd6bnrNC11YL+/w+TX+0RZ/12Iq+eOd3d3cDvb/lLLOZLnfB3WfZ6mgJDCUExLGtteXGgkLtKLtY2eTSzryHoWa7VjSdf8zlvEa84E/dypYYmdtcqN+oO5bguvc4/YIreG5pOXSH0OIcHa9K3GWUrr+dM9H30k5qDJnuP5ozZ+lHPZyQk2ccKEMNxGUtZdgOxPS2k+HlZrapoC0jSpNqLn/13rR7xun1Jbx845YHpcVz7ncfA+wMNjmoL4BRVrbESVZTq1UbLb7c7zOM1p5Tvtdju43W5o3TvnMAl78n6/h5/7X73R6pT0Ifp1PD6EsNDNHprPfEsbbMHiW1jb23Kmte5b9bNJ54AQPFJ1hhgdzy2x2S3PLG95/tDmLMslPcf13sOnsbORFUvsqHXet9jZbTK6Ib9GO+fcymaf3j0t5+D0XkMafI/EuvdvoefLtPx8S+xki89xPkf6iPodVOf80FzNfv1+lPcn2631vazSueUem/fRukxuYz0Psk5uea6t3euNwa30WVqjWtXXxJLbZ6a1TOX497DEUt4ksh2Uxv22fsTr5nXKZxkLy/s4WtlWnXW1vTO/JsvI/dpPHWXrXNzizJPtaYn3DjHKPsG29x4u5duyrNeWtf71nnBh5L0CKUYwoh8uJdTP3tM5rX+esvpt5T1r7M9CPXZyLLQdQ7PadCmfJU5fv6Pd4pq4f/0eVFnXLb5XUaL1J78n71zxLsNAnKrXRqseq32ZsR6PeZ7hlffkrc+7R3VZ0s2tY0Vuy3Vv6n/KSCdN/QtY7hh5B/lh59zzNyIYAOfcdwD4jZB3tJ97eokIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPl4wx9fGee/La7LHzn5LIA/+MSylPz+xr0//2RSEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDylsAfXxnnp4S0hNMPsfxB59x3PrE8cM59HsAfepQDxV8AeADwxaeWqto33QAAIABJREFUiRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQjzvTmxbgbSOl9H845/48gN+By4+upMd/7wD4c865708p/dpTyOOcCwD+OIB3K3ny3/8spfTVp5DlqXHOIYQwXC6lJKY757r5nXOr8uVny3VuJ8aotp9SUuXxXv/NJK1vZXou3+qXVk8PqZ8arX7UYyO1Ucuc23PONefS2rd6Puq0Xl7pcz2vWl9KvPfnPp2LulMZ731zHCV5bkVrri1rqaYsU85/WSbGaJoXqR1pXixjo+linV6uq/KeNj+azpS60JLPe99cJzW9McnyWMakV5d0LemElGbVEYuttbTXorWWrXWV+SxlWutZst0hhNUakfJdo+u9OkbHtSzTWoeWerXyta2t9wXpuh7XVvvaGq0/l/M5sl5LJDl6dr+2lZY6W35Hvj+CRf/K+bOMz9b9zKpLvevevbK93OY0TYs+luuz3C+maTpfxxgxzzMA4Hg8ntOPxyO+6Zu+CQDw8PCA4/GI4/EIAJjnGVM44vOfn5ASzv7Cb/ut34qHw6lN7z32+z2Ak47vdruzH61dl35GqXeSr1V+lnR0i62QfIDLPrm8l8dMa1+rW9I9be/S6o0xPs7pup6e3rbWnn3MdL/Luv9ubb8c95G6erYtxogQgugTaueWZZ1LO2/RCQlt7++dubaOe+s8c16XhxnOLfvjfcA02UI7lvOidsZqyVyWG/GZpDEr5/h0FirzX65b52nJ1/DeI6V01tsQwlk3Sn1LKWG3253byOXneT6XzXYn2+HadpcyluOi2VLvPd55EfAt3xIW577v+Z5vw+FwkbHsYyl/WZdkj++OEbvdA/LacO5x7yniKZr+SfX1/KzeedB6NgEAF9JZ53PyNE1ws1y2RtKFWm9Le1nqX+ucea2/oMkojX2cZ8SYFmshxggoPl8vlmTxu6z1WvcU6/l1wvy4VnNKWunUyJlPG9uyLkv8wHrPWmbEV2ntobX8kmwjc1RSxlvrNmofrUfO09PB3v4hjVtZpzTfI/pS1mVZLxZdsPpKo3Vn2Ufq742vdZ1Z6u/pYjlHeYx767WuyxqLLdPKdWWxaVZb35O1rtvqH7X8M4tPZ5HLmg4s41LlfGV7UZ5xa3lqubR9d9Xnwi/KhBDgijZH+6HlLeuq11Zrb90S77HEi7X0LevTsl4seer1aZHFas8s6SPPQazxmx7a2sv7jnY2HV2jo2tyi03R0qX5HvHnR86MPZm2YI2BatelLK141uhZWvosnU16fZBY7Vco63r8q8SKgOU5dQuaD9U6C7bKl7T0sj0H+Z5cd/ABLrTXTcuGzPPctUHXxj6lz5a2JF2q08r82vNXrY16fx995inRO0/UbZTnidF999bvItRoumQ5j5xi720bWucfkcGS1qvHamPLNToSB7HQsgu9ult7k6az1nqlMr0x6O2ZVix2VMq3ZU++xnepdbbXfowR8Gs/JK8V6ZzeWxeaT9mKL7Tqkz73/FYp7+h5FAB2bob3YXE+2u/vgF37fblRnZDuWZ+vWHyvOm3L+Emf511cPSO5u7tDSgnelzFwYL/fY/LLcavXdY5Rlux2E9Ju/BXbrf5w8glYPOu62K/euPX2S22MRTk6Z8beeUKLi1xjC1vrpbeWtLQyvefX3Hqvs5S/lZ9trcsiT13N1nnV4rBSrHYEbQy1dMu8hrC0KcDp3Qo82gaLTyHJkPP3zuI937TV9nGazzG8EE57YQgB4fH52/7uDkF41my1w9JnCek5Y4+UElIA6ufj0xQwCV996O5Bk0MIaxs/ze26lm2nlV5O04T0OIbXrNnRcb32/pb8tY55H05nm8d3nHM93jsEH7Dh9X6DnF4YK1/o+foZquYHSvZfovZdpfigdf6ynKXtTAGFbrqLzGndV4mReKHELeJ1o2eea/e3+r51LjPe1+85rPXkFvvmNWVa82KJV/ZsTW/OyvtlltPjG33vt/rA1/hM5TyN9PkaTrbttC6vYatv1vfJHs/OynP+Eb/H0v415Vv6sNU2bHt+tq73Wjla96V1c/LJwvk6xwtzd7z3SIu1WI6j3K5Vx7bcG9UD67zIzwSGmjK3r8cp+vNVltfG+Rb2ZgvambY1l9IayO9X9rCukVs+E7TU2zuLZbEtYm2dy9utk+UZ0xrL3bp+s85b4yM9rrUj1+yRLUbG8mR/c9z/dC+fBTQi1s9hpTJOeF5b5ht990Hrg5W6jcvHVKXJevmm/AuJEVkse+lo/SNxrPqdylZ9I89It35vrWbrvMoxVSDrj6brW9myJ2wpf6tx1eVYtznPcfUO2+13VtLjuhPgp5d/qfpcWvwvAPgvnXPf8bqFcKcfXvlpAD8EnH9wpeZfe91yEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyNsIfX9lASum/AfBFnH7spPzPKeX/vNJvBfC/Oed+8HXJ4Jz7bQD+AoB/sBavkOW/Tin9T69LBkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC3mb44yvb+ccBfOPxuvwBlsxnAfxZ59zPOOf+vls16pz77c65fxvAXwTwfbj80Er5QzAAcA/gn7xVu4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfNKY3rQAbysppV92zv1jAH4qJ+H0Ayjlj6A4AL8DwH/lnPsygJ8B8D8D+OsAfq1RvXfOvQ/gMwA+B+C3APg7APxOAF8o6i7bRZGeAPwLKaVf3NxBQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+4fDHV64gpfQfOue+C8CP4/SDJ/UPsJQ/jPJZAL/38V+JE/7+icd/NeWPrKQqLRV//1RK6Y+N9udtxDm3+JxSUnLK93ufrfVK8tSyWeos02KM5vbqupxzYv3OuUW9mozOOYQQRLmkNmOM8N6rMkuyzPPcHaO6fFlPa64s9Y7qSk6zyFBTytObd0knL/9y4un/SnksspR6oY1Ra0205GzpvqanJaXulH1qlWnpr5am9V/rW14HVr0qy0j05suqUxb7UNIaEy2tHpO6Tcv4l+O+Ze1Y2qvz9HRcs4+tNrV1IbXVW+9aG5LMmr609opR3bBi1f+M9/58nfeIfF3W2aq3N5dlnjqtXrPlWGp6WabHGM/3JPsklbkGq00GTvtnq4yljpw+unfU42W1aZrOSnZhRK7W55xmXRO5fE8vRyn7lWXJc5jXxTzP53sxRhyPx3P6w8MDAOD+/h6HwwEA8PDwgPv7e9zf35/r3u8jHh5eLNr5+jfucTic9qTdbodXr16dr+/u7rDb7QAAx+PxvHcdDgdM03Qei5xe+4blGHnvF+NX5tHGtR7j0mZI5Pvep0fd0/NeYwdb+33LFkhs0aXaRpV11fks7bc+9+oq7WBJ7cO3/AlpXlt9Kcc4r5OevLdary0fvfYdRs4JW/WxHruLXsRKN2Q/rbWH9nTBqjuW9N7Zx7aPZjty+ue9P/8r65R0SZJFO+dKdZVjW49znc9ylm/1826f8OLFwyLt/ffucDhe7HBtUy3xB+cc7kJECNMi7dmzZ3CT75bVPo/acaA9L2W9i7p9FNpy8EGef4vMvfUu7Wk1ub+STevptbZeNX/r9E+Wo7eeyrRsVy/2KY/bJf88R6R5m1/bOrNYdWyeI2JMan8B3T6OIJ0NzHX6tXyjMvTictazc0vfc7l63lvU/l2dVu/vKaVFzCSj2UDNt6jRzgMxru1Bqw7pukUp90hMtkXpJ7fKaOtHsxdbZCv3v63+ieQbabYr/x1dY5Jf0yrfGpN6jV8Tr5E+j6DpdW9Pktp2znX9bKk9aa4k/0aTrdf/umz9udyTpD1LshEphJU+HI9HuMczsyRnLatku7Q9UyrX6ncpW73eJVkkLP6y1SZpOm6xiSM+vxYLKm2X5htq50FLek8ne/ZWklfTH81v1fqsyTlir7T0LXEFCS1es6WNlo+tnY17Mlv0/FRVrq9o13kAS5/Zeb/4XMrV0tEWo3GVVlxI0o3eOULzt1JIiHFZZo4zXBzb92q5Ssrx6u3jvTatdkDT2TpPSA7OXebb+xw3KMoXnzW56hhDeV0/65DK9LDYqFvFuGr9qmNspa9v8VXL+LAm54gdK/NKY9jy4VrPX0fiUSP+pnRO6lHXH0KCc8dFWstGaHW2xssaIyrLldfa/q4xavtavq3VN9f23S1rpzVePXk0P7f2O62Mnk2unaMRRnxEzR/O+TW/K6d77x9jLuuYY2nT6+dUkt+eryfMq/kIwZv3tVoOS5tSndfad+ccpnR6RldWtd/vgd3aLm6RRRuTnu3UYqQjutNKt+L92vac0ryoAyGFKu/yXTcfsy7a15FlbIcIWOh+rqu11oCl71L7LZIfU9vWev4lH6lnN63xD6kuTRYtbyt/q91WntFzs1RO2p+ktXX6245r3AKLfmq+hlT25NvkvJdnb7Hhq0mU46T5eSfbN74PlljOMFt0pdWOpU1r/lE/T2Ryhc2+xDwu72B4pCTvBaP62HqGs1X+FJJgzwMm4asPvf3ZTQ7er/fU6Titymj1TulURyEhQpiQpvZXMa7ZB2+5h2pnXCvrNuX3Oizt1/VZ13i5H+rn0frz+l3Cun0JaZ/x3sOntZ9xjU+kpfV8T2v9PW7x/HVUltGz663aP58XYlL9LYkRWST9rM9FlvOTFq+S2mn5RNdyqrPUwXZcQzpf9GJEJdk29XxpKY5/S12OIa50pBf3aOmJZc6t8lqfN2jn9xH5Wu2NzKvUljSeks5Y+jsy1xc/aPlcwXsPD/v4+Oo5RM7X0xOgL2vOut4LlmtRk3lU30Z83S2M2tBZfFds2VftuWEvXth7tqylt84OlhhlvQ+0uGb/0/aE0TUyirReLc+7trRp/T6T1O7yWaP+vFgqa2lziy3VyyznT1uzdb2Sj7811rHlviV+covYdVmf9/PqvZfDwwHHx3cg53k+Pysrv6Nxf39//o5G+X2Nly9fIsaIuN/jr+3CQt5f+IVfwIsiJpq/b7Hb7TBNEw7hiI8++9EiXvnBB9/APu4BXM4y4dXDWY4TDvf395hd356Udvza9STWK727I8aw9PctpM+9GJzVZtxiT8pV5rrneYafL3uM9RmCZa5az5Ylv+zad/qequzYntb2kTWbdss4YN+fzPv8Kc36nmuvDcsZUCtfflzeu50NJTb44ytXklL6CXd6ovBHgNUPsABLrbZaeS1fvULqNhyAPwfgR4ztEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyqWXjT+yTkpTSjwP4UQD5P1Nc/jRT/UMsqbovVqn8K+uTfnjlPwbwe1JKy/90DiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZAV/fOVGpJT+BIAfAPCLWP/YCrD80ZTyx1MkpLx1mVy3e/z7R1NKvzeldH+L/hBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8klnetMCfJJIKf2sc+43AfgXAfwYgHew/AEWoP2jK90mhHp+DsCPppT+4hX1vrWklEzpUr46zTkH55x6L6fn654MW+SU2mylSXl6cnjvV23nftVpVplznRqlnFLeVj9SSogxnvPl9mt56zLlPctYtsh1tfTCUl5LL3Wvlst7D+8dvC/yeAfn/OM9v6pTm0fL/Jb3LOuoda83xlvWRTlmWS8s5VvrvZS1XOM9HRqRXZLVYjtG2x9B0oeWjtTj0ZNf0mXpnta3Upd7umjVbUCeC6196XOvfO6nls97b+q/RmtcR+tojZV1nFrly/kr6xu1z3VdPXuT17dWd1nXPM+m/lxjr7Q8pXy1f2Hd36S6RuitnV4frJTyhRDEOq/VOQnN7kiU8mj6Wn+W9FLT1xjjud4YI+Z5xuFwAAAcj8fz9atXr/D1r38dAPDVr34VX/7yl8/XLV688Pgbf+PbF2m/9Et/FR99pI/rZz7zmfPf9957DwDw7Nkz7Pd7AMB+v8fd3R0AYJqm89x57xFCOH8uqW2c5Ovkz+Vf61qc5xkplX1az+uIXyr5wJlyLnv1nf4Bo0tF8u0lXdX6NPsI7+U6tDJlf2OM5/a89wvd19ZMnU8ij2vP9m+xLS258OgzX9agLl99fYs9UfInNZt3C+qhkMZY+1vn20I9Lr19LNtELZ80F8fjcdXO8XiEPy71u9Z3Sf+leRzZG2rftPQjSl+n3k96+0b+7Ny8soX3D/c4HC62tpzH0t6W58IyPa93aS9r+do9enZqi15pe8fpuvxNY3lPsfjEZVyh1b6G1MY8z13/P9M7m2vr9FHClbxSvpZ/VbezjpvktGU7Ur0ardiZJKckb5Yh3zscDjik/hqX5B05h5d6pI3vRcZzbee00Ph9c8sZrpyPnj5a9LWtT8t26zItXW3p+a32utZetcVelbay1U6J5huW9PTQWm+rjpZtq+Xpne2s/naNVK/V3q3tjDw20nneKtMW3+ZaXZX2cemvRm8cWnEyS/2tsj1a8arePmaNL5T+0TXrW5OzTmutfS0mv8WXaa0Lq59UjpH0DGekzRYjsUTJj6x9zUx9BirTRrCuodazAcv5U4vLabos2aeR/kmxB2nOpf5o5XPZGktcRJvHLbFH65iXMtcySmfnum/L89Xp7zzPmOconBsPcEdd5lbsvsS6d5W0bGArvedDa3Im3y+n2cWWHS7H6NZx25Hzm9R+WT7GfL7Nn9fnmpMfOx7flyjP3NqclemtvmrrDdB1rFVGq6deXz1foyWvlk+Tq17vLTva25M1Gyrd6/kHlrOj1IZlLci+eFqN0XE+4niU+6rJb2nfsr4s85CvtT2htvtW/amvtTy5Xou+Wua/ZeO22Hot3bInbvGBW3uElm55PmCpp8VImd4Z2jmHuIvwfvncabeb4BtxodZ6D+n0Tk2ZJYQJu93lWZdUTqp3NHbYsmmjY+2cw97PCGHtP408DxuReYusW2OurbzWs8s8zau80zQ91rHct0MI8NEvfMs6ZqLFpPOees25YNmGzqnOdUxxZM7r57jSc11rXeVni90fqXe0nCXWNNKW5s+PyimNr3Y2Wj6rWK4379fP4FvnpFHqdV/6rVY/bJn3Ul6LZYzuYeW9LTGtspxVRyzzvYdf2eLdbgfs2q/fj+hsr+zWtZfCxR7m+fPew8Ucy/FISbYvlji4xVex7omiHk5Z/su9aZowufXYW/a++v2KEAJC0tewVMelDwDgTvvO9Pq+ilGv0RpN5y06o9mFXluZ4OOjz1X6EB4OHj4EBEEuDW3vkc8KQEql/fRnv1Gb5yTs5b3zgw9ptQ7CNAFuMp0ZJDS/x7lyLh51EzbdvIV/0kLaF67d0zW2PmOx1rd8VrHOq9m01hhr9rpeU1adGfWtW/dG3y3WfI26jXLNtbDEA+q6rX7rqH+rtdfOt573lq281i5YbH3Ol/eGnOzcaV7Sle/utOSzpGt96cWDWmvMe7/J9rSer+S9pM5viVtZfFV9bNbjUsZdyyq1rub0lrls9WPU1x7Ney2XMVnbb8v7KteeWU919PdWbX/Zaq+35JNkafVf9xllfbuljmy1j6N+QW/8s/+e8d7DpfHYgcao7o3Eh6376JYz+Aivu36g/TxIalc6L/kQzmfGEMLi3d5c3/Pnzxdxwfo7HvfO4cvvvw/gYn/ef+89hONxJdc8z4gx4hCOiHFGSpczyTzPiMX3HvK+tlx79mfGW9dTq57yc71HjprUkedFUlrrec4tiOh/NyTrxa3t1cj3X+v02r5b7P0tsD7f08YquvJ7Vae0eZ7hZ9s7C730LfKuZZTf5bm1/yPJVs7j+ntL2lq/7Xmf9Bn/xi5pklJ6SCn9YQB/G4B/GcCXcdLsrN3pin8o6vp5AL8PwG9On9IfXiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5Br44yuviZTSr6WU/nkA3wbgHwLwUwC+gsuPp9T/SrQ8/xeAfxPA96eUfmNK6U+mp/wpSUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPkFMb1qATzoppQOAPw3gTzvnHIDfAOC3PP79WwB8B4D3ATzHaT4eALwE8GUA/y+A/xvAXwbwv6aUfvmp5SeEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5JMKf3zlCUkpJQA/9/iP3ICUEk7Dauf0Gzjb6hpt61Z15bytMlq/tHJS/pyWUlpcW9v03gMAYoxqmXmeh+RstZnb69Uj1dtqS7vnnFPHTStT61V5XdallY8xIsaEGC/1pJiQfHy8F1d1lXjv1fZb/Sz/5nwtHbNQjkWtY615LfOVskg6Ws6FtKYl3SzbizGeP9f91dqs65LG2HuvrguLvta6cu1c1HXXc26VRZJNQ+tn2Z96LVn72bLrddtS3pF1EUJotp/LhxBEfWnZhKei10dg2c+UUtOu99rQ9LdMb811rRfWMZPmv77W9pGSGONZvtZa1rDqsXUP7I2btb0tfcnlRsnttOZCy2O1nVq9rf2xls/ShjT+Zb5yH5jnebFv5TYlXyjnm6YJ77777vn6xYsXAID3338fL1++BAC8fPkSH374YVdnHByeP38OALi7u8OzZ88AAM+fP8c777xz/jxNE+7u7gAA+/0e0zSd07PM3vtzuvd+oYve+8XeWa7xLTo6ZhfTyq62fM1RentG/nz6Z6tzZE/KaH2K4eQnSvJoZVo+l9Um9uRtpffu9dDKzvNcjIe+79aUemy1K5It650fLLa5dWbJ83myK9le4jHtiKNb7mm1nuV7lv25vqfR87tznpYPpfX5nD6VennxsXxY96dEsuvS3I2cE2OMTX9WQzs/1OO9mzy8X5677vZ38D6c08o5tszXcl6X7c/zjNm197lyzqx6rNVV25dyjlrzEkNajfM8R6Ca4ludWVtoMh+Px/N1KzZQos2feB7yHs5d1nyvXm2dr89xckzHe2c+l2lnwV4cQttvQnDwPtfpADjs9zukaamLUr0t2Vr7mzSvrb1jORbLc2yuq/YzLftLbVO1M3qrDl3O5X4npbf0sGzL6itI+XL66BnE4rdr+Utq3dHiRVqMqLxXxuNq6niXlqfF6LyX/annUppjySZbdMnqz0j249a+Ycsu3Wp8NR3R6pD8rZ7fWOtRa43d6hy1JQ7Qal/rt/a5ZSPzdU5PITxeA9mXOb56Bbx6tZKr9lss8mtrpPS7JB/sGn/DMk/5zC3JXftq0trX/M5rzmFS+1lWqe6RM5NUt8X2WOI9GlaZWv2qKdeWJENLd1r7ozbGua4cq9Hk7K0Hqd5Re3PLOdJ0/FRuu79v8Q9qWj5h6/xR3uvZXIsPVtbZI1cXfIALsv2wnlekM7yU7xrqWESJ5IOJMsS4Oi+dfPMyVniEm+U4Zlkm0/L1Snksui89w+3FTlu0zv+9PJKOSfZw67xK5aZpMtfdixG1ympxvbJ8a06t9t6y35VtXfyfdaz2eDzieFzrRcsPsJ/327rZi4eNnmfqtTzic1hl18qNxPZKeuvYysieKJ3LR85bPX2r0XwTLcb4umJqWhxC+px2CSHk/Kf0/X6P4IJaRkv33mPv57OvlG89e/YMfneqz76/yufs8l5rPxu13dL+sIM/x4kz0zQh7pbP8yXZe3W35K/vbXmGVGIpfwtdzHG61nrTfJ2UEvyc4Fytu8vnL7XdG11L3TXvaz+pHVeR7GLL19LkuIUdrmVrlRmZb8lv0fS+Vb+mF7m+rXGT3rtoZZtZ/5JHEQ/XZdb2ES2/RM8WWe1AlqXO3oqxWGTZsvZf19410mZ5vrBQ2yZpv27FIEf7fI4phJMdcw7wPp79AY/T/dN+uY4vaPveFlmkvlh1IYX62YTDNE0ICGKZ5rkjLG36Kf/YPNZr4DyeDR+z9dzAune2YvgW/0gqL9nEnm0tadlk50qb0S/fakdae/U8hBDOOhFCfs8vZ0im9VraxPYzSNkPtMjf9hub4onltTORdSyt93r7t+XZmFTXtXJZ0GzEcszXcaO67Mi4PtUeteUdzox2ZtTe65BsV/lstXUG7V1L9deMxB2u9TUutqDWkXS2+Vr9W595WmO2688XW3ja5z2S8kxBq6dmazlrPVvyW22M5tu2y+CxjO772Ppy2Rf6Y3Xd87qRob3WHo3a7NfNLe3t1uemlvO/Ra5bPLeV2rPEdFvPv7R6Lem9drfwFPp2S/t2y3kt0WzLSHtbfLQt3FJvLGW0GEUIHs61v/PVk+HBe7zzzjso7fa3ffu3Y1c876nX1oM/4Ffe+dWFrX7nnXexm5dn7jAnMSY0GsuzPu+RGHn+fDlf2WyMld4+k1IS4yVb6lVynvNLZbbGCbfIdM27K9b+bvGjLDJo/ux6376kl36W9TmtxrV2p36Ok5LVp1uz9bnT5e+b87OIzvaTNyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLzF8MdXCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn0r44yuEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBPJfzxFUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyKeS6U0LQMhWUkpIKZnySZ+19NH6RvL32nTOrco758T0uh5tPGKMI+Ku8N6f27eOmfdebbfVl14/yzadc825kO618lvbLvvnH1jLAAAgAElEQVTVmtteG5r8OX2pp/nfuTWklDDPM9wsz03dniaDlK/+LPWzTivTNX2p65Tmsmy7bqsuI/VPazPn996v5CzL5ftSnro+qV1NJ8q2gdO61MZfGstaRq2MlF9qw8rImpRklvIAp/6PrCWLDazz9WxEmb+cm14bvbTe/VrfpbGxUso9Msda++W1JkdLx1s6J7W5tnVYlNdkKNPrdaWl58+WNV3rUwjhnFbWVbcptd1qc8SfuGYv19qZ53lTWa2cNJe9/UDSp7qvo35Xaw8r75fthBAW+fO9retKqhe4jJ33HtM0ndvZ7Xbney9evMDxeAQAHA4HHA4HAMDxeDynv3r1Cg8PD+fP8zxjt5vxzd/8fNHfL3zXCzw8+HMb+/0eADBNE3a7HXa7HQBgv9+fr6dpOvdhmqZzH8q9p+ebarpQ6oNlbKWxnFLeTy/3pmlCnEJdfCWDRF7TlrWslbf6o5od1Mq0/DPZx8tyB4Rg/41VbT/WKNvWxkhah9IYj65vOw5L31lniw9vyW85A474gHmsQ3LwPjyWP93f7fbAXg/ttPxj6br2uS1ofdbsgKU+S/va/Wwzapte+x7Z9tbp5XUuX6+Vcv2X+Vpno5av5Bwwz8t18uo+4f7+MhZZD7JNLsep9HVqe722VbqfnFJa7F89HyqXkfpVph+Px6bts62tS731Xt2znSOxg57fv+VsZT1XamlLkS7xH+t5x8qpzn68TRrXsi1pf7T4emFOi3XgnMPxOGMuumE5i1v1tZZF0ve6r6e+Le3KPM/w0Ynlp2lpn0d0sUfLVxity7of1vZOq0PLU8ZCrLTOLZLc9bxuaa+c97J9yxlKk6uWqTVfLXvZqlOSoxcvujVa36ztX7tGrHHnLeOi1V3HEuvPEjm9PjO21lUvtiD5WlL7ZZta7Cz7MJLtrn0+yR/KSLagLFPvF/n6vNa8Byr/CMoY5fNx7lfZ39qu92Li9Tmntl3SvNR1aT5US8+02E8d/+udzet5tcSUtLNBK75a2xjtPCPVm/Npn6V6W3WM7GNlPRYb0Do3len1em61L9WR59nyXK2OsWj5arRziiaTVl4ayx6WcazTattzOBwxzxExzmdT8PLlS3yYEo4PbnFGOH79JfzD0haU6/J8xi5sRKsvlhiRlHc0FqbRmvOEcu2c/s5xRkjyHmPR+9rn0Z5DWPslre+6Lcn2WtjFss7yjFzO/wQ/rfutrZ96TVvWWc+/k9Kt5xZL+ZbtbtmLlh9QX7fOH5qcko3R+qbFZ3N6HZ+W2quvW88y6jJa/EfKU9sp7dlU/hxCWrgw9XxpsXdtjiUkH7TWSc12XxvzqOsoGanvVvGWkT2q9vNG9HyrfFvLWvRhtL3e80yLT9eTa0SmNKWVTNO0w4S1T29pfwePEPxi/YUQVL9NktUSGz3Lb1hL1nWt2/tLnhC8KF+9P1+rx6VNt/rdku8k7Tu3shHL92ccnMP5uadzeYxOvlIIAT7qvl0+10tnPKlf9Z63JXbR8vVacrY+1+m9mEL5eVRnWrL36rqmPWsbNfX7HiXlPFvnQvIBrTJ6nwDo+qCV79nbelwt+tJa4/oYX9K1NZLL98azZ7ssdsWiC704R6ueECLW8zW2/9U+m7QnSTZoBHk/i+czUtaxUtfK+bvWH9DKSPet+3sK2Z5fzn7O6To3ivcePo2d+8t9J8vZGqtW/3oxpZpWXKcntwWLH1GeiU59v+y5rfw9RvqjUev3Y2rTTuVypRz5cwhrH/U0Z+t5G4nn9/K18vTmSLOZr4Mt59dWPZlWfHjU7260KuTT32kpbWamjFnUaddgWa/XzmnL9pQ2ZpomJGEdTNOEyV2eg4/YZOvZopSllbYlrmE5Q9W2JCWH2hfYghavkWQp0+W0sqwzjW3PV9Rk7eVvnXP+f/beNea6Zcvr+lfN9TzPu999ztnn0B4aug+2NDcFRQLdBFQMERITtRPjNSgkBNOaaKLYxE9iglHhg3LpeGtAjdd4CYqBL4ZEorQflI5yp+WiDcjl9DkHzm2fvd/nWXNW+WE9tVbNMceoGjXXet93797/X7LPu1bNmqNGVY0aNWrM9cyzl1ZeuXefL18RqnO2/axie99axunzJT/fj3/XMsp/WhxYj2PZc63rGteca7Rr9fVWP61YxRs31mPrqd+i1UbdF61a6xnW3jYtromD9uzD63vser1nCNewd0/3nDGl/PI953Z/PbI9eQCtntf3WvTGS647T3vXxnAtHeV3Ta89/kVrU6uakv6b9Za+snw+P6O65G+WZcFkPEey1lXtq9dtBvT2n1bcs6fclVNcFqRUyk//LvO8Gc9lWRAXPQas4+TWPFh7vTfXOpKTKetwWRaU337W+r6Ov9XqcatzmnfNXBNH7839amu0F7OO+kuPrNa5chuv7I9lR3NkdfuHQ8lbX/SZpogszm6v53RPWtwmA0kIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfM/jyFUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyCeSw9tW4E0TQvhP3rYOb5Ccc/5n3rYShBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8FPnEvXwFwK8FkN+2Em+AgFM/f0K/fCXn/lTKOiEEtZ5V7mmjJS+EcJYh25Cyy/e6POeMlNIuHTSs/lj9v2XbFppOdVnRzRovr8xWeemn1VYPj471WFrjLe/LOSHn/Pz9Yh8pnexC0zvGeC4r/9Xfe+167FJSt+HpY92OtS5keU9eT1+tzl6dLbm3WC/aWPZ0q69ZfsTbTrEfQO+PlG+Nc8un5pyHfPFeW9Dq9eawJ3MPe2ykngfA7suozVlrrzVv3jWiyZPf5dxbdghsx0CWyTbqa7W8aZq6vq9FPWbTNK36Utqs56E3J1q/5H3WOrTKe3ue5Q9avkH7Xu8jUk7dltfmR/TWdLF09lLkz/Pc1WmvDq2+TNME4DSv5XNKaWO/ALAsC47HIwDgcDhgWZaV7MNhxsuXQM5Auf0n/+RP4/HxssaK/RwOB8QYN99b+qeUVvGF7EtrLY9g2dWyLKd2jgtSSijVQjjN3xz6frrWrfQlxrix0brPlm6dXpzrx6D7pdHziOQ8XzEgxv491jqUe2bLj2vly7Ks7u/dK+tpc1L09Z6T6v0rLQk5l77qsblnjKUf85yfrP57Y5a6bn1+3H7fxqMppfMaKXI99taycets07Jdq33ZhiduP+s4JVzWlC5P08t75i0+to6pRm1Pu6bt0bVdlzrrMbdi1LC5v/RFnvvk5xat/b7Wv17nLTT7kXtL62xhfg/Asqzvm+cZcfb1Udu75Bh5zhojsZTVjibfIystS+XbACCcbXD0XFWXh5Ahq8QYzHi7p2svrqzjjvp6fd/dccE0xWd5l/vkmGnrCliv6Rq5JrW9Xq7r2o5XPm4Cgtjfp2lCnK7PKbbOOtaY93IBGqN5L29M5DnL93QC1vGZFqvVevRi8D2xqbQFKXNP2V7kGmnV09qX5a39Xbt2bWxvyaj7Jdu1ziVefax+ys+tddAb81acPLoHd/dBI/Ye1a1ud8+eZunVyktosY8s30POeRUYWvt2KS/jpsVNOW/z6LIvJZ6obVa7p6blz/fkBaUv0Pz9SKyj0Yp1Zb2ePG/7Xvuz7qmp58iqtydua9Hqo/cMqdWr85iesfPmVFu61DJbZzZLrtUXax+Sfai/W2vkHHPFgBgv8eQ777yD8G7AB/fzqv7LzxwQHvXxk+vLcx4YobV+em1YttjaHyy/eotnVR5bsvLinntb9aw8ZE0IAXFOYm0BGZeztHaPVV77+mt9p3dftcZsT+7QWsdaWxraXOyNW1r3W32oz4o9vTS08beep0zTtBmP3llYxgqtuFP28eE+43A4rspfPDyYY9Gzf82GtLisJ9+Sre1DPV/ZizVb7VlyPXkVL62xaPkuq/3Rs4lXn5ZcK8fV+jwyft7zZwstD9Rrs2aZ0mYOpmlCTHHVJ0u2lHfIYSPv7u4O+W7a6NLap712OZqXGYnZD3lrnzFG3N3dNe+z2pbsnfvRc8fo/rovLpPzUL4DrfhAnvlObev5+Fq+PIs0NWvEiXJfKjGeNQStNdYbN6+NepG/l9D2X+tZQcvveu21t5e05LXil9Fx0M5Mo2e6EE5+b8prP3Xt2vHsqSP9nZaMkiMvt9W/PdDYE5eU+zw+uldexyqj41mYprR5Lj9NE9K03Vc8jOTZW+Wutqb6jOSXY+V4RvYy60wh57b2w/Lz6bt9zhuld87s1T3tE9t92Xt22UMvd9fzXXvtxzpblO/TNOHuAMQ4AfFiLzFGhHz6HZS2QvbEHut1nHCxh7GzfN2+5+ye87LZp5dlwbJsff418X8Isl7ANEXoI9jmFrmuVj5gjw6juoycR29FifeyY28qTMoeUJfJcXxduks8c+bxhfW/p4/1vLw+vzdqc3vG1ZPXOvnbup2+rxnVpcjr9Vk7i2i6yHOLhfcMbOnsqSv39J4esm7rmcTr4fL3NiO+qq569uV5/TuX+vwoRY+0N8Lec428R/NdIzKv0UOV5XAPvedR/ft1OWMy9DV2be5Nk3kNUp3WM2JtTd/SX4/I0ny4Ny9VqtXz3Mvve3Xo1en9bnI9rtvzT+9cP1pW2hqdl1ac583l9K6VefE8b8g5Y4rz5hnJfDxiXq7LMy65/lvNk6xlmTEv9vO2ZZpXf+MAAPN8RExi3Tz/HrSudzpnLF2/MfocBug/I1zJWWaktP590rJsz0XzPCMs7XHd8/sg+Zxqr/1IzjmGUGK8yzpr+b9b4fETGq9jH9mDXENvak8b7f9oDvISc9b37fu9x96Y6fI3TcvmnmmakOW5880cK0nFJ/HlKwWaGyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn2A+yS9feXuvfHoz8OUyhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ0+CS/fOUn8stJfqK/WIYQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkKv5JL98hS8oIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkE8wn+eUr4W0rQK4jhIAY46os57z5HII+1VZ5C02+VtZCtuu5p+5nSmlTVpePtu9BtmW1Z41PXa6139OpbqvUbY1bCKFbz5o32a+c85ANyXZDCKYt9vpQ9+X0PZSLiDHgcDjgoLhxq+8553P/PHbQsnGrX9ZnKadlr7Lv9f2e9VbfL/tQ/vWul9dFbVeyH14b713r2Zs2FvWY1XWkLDk3Vht1ufQJWt3WevH0RY6rVq7hWeOavlpZPZ6a79TKtPs1X9SjNece/a159bZnXdu7X9WM7LXFjqw+a/toSsncqzxjL9tojc2yLKrONdYYjdpFGQvNN9flPV/rtX/ZBmDbfEppyI/Ia3vjOE2Gd+9q7UO9GLG2sZwzlmXBPM/n7+Xz4+MjjscjAGCeZzw+PgIAvvrVr+L9998HcLKhp6cnfOtb3wIAHI9HvPtywi/93m8HcFnHf/JP/g3E+BIAcHd3h/v7ewDAixcv8PLly/P3aZrOnw+HA6ZpOutVPscYV2snxqju19KPjMbhvXmNMSOEiLraNE1D9tDzw6XPLT8g12KME2Is9U//Hg53mPKlLc32emu45wtyThsZOSektO1nr98j7Xv85agf7e0NVnyzaiOW62sfJGNCbY229JTrW/Ojlqw98X9L3unf8rlcS5hn315V24Fcq62zzd74wIr3vHURgTKfp6p63Gzej+1+r81Z7e9qLHuRcUN9XYt7gfX+r8VgD/cZh8PjqvydFw9n36KtYcsPy3mecnj2nZfxmqYJ0xTP/RnxEb39u6znZVnU8a7Hb1mWzXiWsVqWBfkh4+mxrKeTjh9+mHC33K36XvSv9ydrr9L6MmLj1tqXMddoDGnFZZru6zxBX6aHnMt/WY1nNd9Xvmt6e3zstg3gFMuUz8A0RUzT1N1H98SGe0j3CR/Ep/P3nEtspJ+lJVZMMXL+763X3lhYbWln2ZZ/sHJve3IRlh7155E1dY097I1TPWczD6/Trmt7q9euZ2y9Nt2SZZ3FvYzGs94ck3Zf73rrLDlqK96xrc9pPVptWHlAzbdrdlLnVVrn5ZTSKsflySvU/iGEgLzMiM/35uc4MM1H5KenjSyZh5Bzoz1fkPfX8URdLuMr7R4p19pHZVnPXvbk0LxrZY+Pkb6/dx66Ba2YRGvPalvasaw76iesuM/63JpLOWfX+KzWPlxfs2IQKw8IrM80tc7X7BHSdx4O9s8WDqjjkkv9aQqIMZ3jx5yBaTogHnzn8dbzkfpsoekt8cTKstyySyv/sNHnuf/1eXmKE8Lkz2tpWL5kWRbTrjw5h2Zex/je8pcxlnEE1jmDS+7klCu7Lq4ajVlexzPIkfNfmYvadrS8x5vSrejSKhuNw1vncW2vGDlHee209qWts0uMebN2PnyV8Piot1nPmZbj0NDyIp55aeVK6s9W+1qOy4O1j7bu79mIdr2Mi7Vf9vZRq8+t/M/es2FvLkbonfO0/U362lHf7dVVi9ULy13CNB2ey09lDw8POBj+q9f+KT5Yr/3DYUJS4o0R/a317l17mr+W+Rffb2ns56+W7iP5p1LWivV6OZ5WTslTZl2XdVOQz8+ttTj+zLtXrxU/Szw+7lxnQvXc8YR8PtvTc2+OS8rp3SPzPXXdOv4w49mqPWueW7p462nj0vN1Vjyutafd2zqfAsA0SX1OYyPjNm98WfsUS087rvav12lKpn16ZbTKtXoev9GSp53VrXltycj5skddynz5xxF9ZbuavnJetT5aeRtNN20ttM5iXrm1LnUb47mPdn3rPCpJU8b68im/F7Oe+7P1sXX1+OHR3Nn4eN1GlsXW3jLWXcpA4/8b9xodiv1cRHhkjc9FaSdG+zlt+VyXj3yWMqW+Xv/Xl+ejlWO9hd0Uudc87xvdxySt/bSc7WVsPjp/1v6yJwbr3T86L9fl7W9jAyuJA352j+7X2u3a17zeNkfjKKDE2tuYLDv2f+/51aPLrXySrOMZk55d9MYgBECr0nqWMUL/t97r3/20dOpxKz89KveW+8P2u/78qpe/GDlnrNst87CNX2sdX8c+7NlHJNc+ix29X8vHX2sfr8tuNbaxzUWHEZuRn6+JazRyzs/PBSLqNTB6hiqyenpauRNNVv3ZyjNYMWQrh96KQb36pHjc/G3OPM9YBp4NauObsM2n9uLZkjt4/nYuk/oF8RuaUkf7G6MWmm+61j88a1i30m3fKtubN9VyCcWmr83vanvMCLcZ3y3WGr9le5586cj9PXLOVT677dNG91dPvqrVRqkTY8SyerYKAM9/q71jn9pz7iv3XMbqIqPOuZ515Osw3jifxJev/CFc4ykJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCE/IfjEvXwl5/zL37YOhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQt0982woQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELI2+DwthUg5BpCCMg5r77Lz/X1Gq18pG4IYdWevKbdW+sr//XoAQDTNKntxRhNfTS5OeeNnvX1lJL6uUU95uWz1KnVN62erC/7INuQNtHSVbs/xu07qep+eW1k71hobeR8+u8sG7qty34V6vnTxlXaqFw72ji1xqG+vx7P+v5pmlbyNXlF77p9yy6WZTl/rtssMuS8avPco7UOvHbdu6ceCznenvG35Gv2WdulJluzhZ6eVh2tbW0OpM49P+Bd77Itqx2vr5PyrPu88mq5Pfvt+XkLy65GdbTo7UH1GPf8aJlXzz5QI+3V0qfeR0vdGOPK5/TWT6v9vXPUYjSWsfaImpYfbLXX20e84yXnoYy/5ZPk59p2rXhGti39mibDiis1ejYq7b3sVTlnzPN8bn9ZFhyPx/M9pd7xeMSHH354rnN/fw8AePXqFY7H46qfpa1lWVDUfnx8wvE4AziN9zvvvLMao6enJwA4y5VjVK8LbY1bY9Vbg0Wedq8lq3yOsczvelxz3MbHFnXMINeLvF7T6ldKCSnJ2GRGnvV11oo9a7u01qnHd1v2txfNLqw6gM9vtWxkmqZuP/UYNqC2D22vs2IgTzte/9g66/X29Z4fk7qklACxBkobI3uSZ+160WS04raWXay/BnPeLNkte+3pI+PEVhvW/Jf2ZR3JNJ3qeu3S8slav4rftPboaZrMOMaaSym/ll32eM3H1rrKzxrpPuPr73ywKvvMZ95FfFqvY62da3xoD895ZM881rKB5z6IPTjn9lmtluPxJSe/CYSQEaN+TrP0q7+3zpyyTTOezgm9YevF6hatc6uUm1IyfXWe6ntwro9kr0lLjxDCKibu6Sj1tOrV+kt7t+ZX6lI4HHyPDkbzAi1d5PjX54QiU2vTOkt7xtXjF3pn3jrW19qxfKKkFQtb++Vo7lXzmyNxXG8NWrppc97L1+zBms+e7F57mu15fNsI3rN/b3/29q+1Ri3/0Tovtca+1k+rJ3VZlgV5WYCc6vAeKWXkzhy3cgH19ToGqvWSdev1L3OqZTyseKQXo1hnE6/v09rp5bD3nBF6bUqsfaiWafnLXnv1vx4/4Y0Tu3FptT/t8emtPdUbT2p+zOsrrf1V7m+tvml96M2jFbNatu0bi/UaPf13ic1C8J1jNF2kXZXPte/b6++v9cPaPTlnpJwwz8VnnOo8HZ8QnsJm3YzoL/NTlu+sac3jSI5H3ifXbN3+sqxzclLMyT4ipmnsnCOvlVjZ63vq9TLqe/fg2R8kVmzUizs0exrp4+haqOt4chY9XQsxRnf8B+Ccs6l12ZzfYT+Tb+e+wmqNFVm17Vu5G5kXacXfLd/oiXH35A4991zzDLS3h7XG3Srv6dAbVyv2uNYPePa20b5IWjFcTyc5j15dVnMYs7qv9/SV7DlLeuNeuT/K37OU+r19pVDHGNpZS67HdRyQ1OdJWnynIe/trRe5z/fmfC+e54d6n+qx2vccvLRR8ule9vRd87/b6+2z7a308fx26nXGMtpZD7jeh1v3y/3imjFtrTWPL9reo8dFp+f/fT2tZ8ye/ta+q7Wfnq4DQFj56Bj1/LLXdnqxyEi86/GBrWvmmTiVmOxSdn//gPhw14yHvbkdS689tiXbD4dwPhPF5zPzNE2Ywqns7nCHGO+a+vfKr/ETPT+kxVIxRkzw/0YEqP3o2n6lf/XEg5o+8vl8S451zYopPP6thWftjyDjwHL2xvNvNUIICI3n+h7davRz6qmtsl/GGBFzHQ/VdpVXc9TLn/diBXkOG+mTtQ9pe7+2J1hztncNju6Jt+BWscqeNbY6Zx+2OafD4YDgfDZac62vBnTf0cu37H2O1mpflp3akD5/XFbdFy233VtPr9s+vWf5GCMi+vkWLyO5Ka3N+vxc6r9uu5B4nlXseZYz4pf3tHsaq1XJefxuse589dZtbnXqc8vz+B6utTdrjWvrr9XXa3NBMg9gnc32xC2jusjvVi7kFrnGno/zPrt90+wZ44tN9f36SPt7x6Dl3y/50bApb92ryfb60mvktPYBjy23sGKKOoYr370+YySPu77vcn/r78bmPG+uL8uCmET88PxbYm0vGuFW+/C2fpFb4o1tvlTaRS9H09LFW35NP9fP7Ip++nO8Ud5c7LBPh2vu2XPureto/neapmZOx5NH2LuWtTbWvwm7lMUbxtU18u+zKq0QgtRt2uZc317o94ll/K/PCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5CcAfPkKIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkEwlfvkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPlEcnjbChByDTnnoXIvIQTzu7xWt1U+55xXny0da1nX6NxrqyD7oekOACmlbltae0V+q1yOXymvr9X3hxDUe/bg0dc7lpZsOa5WO3W5LKvt51R2+u/cFi5jVv9X7pd2pfWlrhPj+j1ctSx5jzUX1ngty2Jea60rq8xqr/RBlk/T1NVTlpXv2joYWWNeYozntqz7rXWjXbfmr3W/NS7WeqjX6971Wfrs9UPW2Mt60p5b90qkvfTmo8gtbXrWx8h4SX16sntzWspbPr6HNr6FZVnMNlv+VqsPwGVjrTXdW+/Sp5Xx1nydZ08vaLZttb+HET9m1e/dU8+XXO9aPcufyz0KaMcY5Z66Tu0fW2tyZK9tldcy5DhasZPsXy82lGOQUjqX1ftmSum85h4eHjDP80ruw8PD+fOLF8CLF+8gpQUxnmz5J30u4fHp1M9pmvDixQsAwP39PWKMuL+/BwDc3d2dx6PWX+os13/5Xpe39vb6u2edaHN08jMZwLqdUrfeUzWZ5bO0U08c0oqdwhSfy3JVZzrHb631ZvlOwF4v6/7o9/biBK3cWhd1f2tb0OJeS/derFETQmiOS5+1fbT2Lpc0w67leinU7ck+5pxXa7nUteKZ1jjUdr+xycE9xrNvSLmt+ffo0rpfL1/3V9qvHPeCPCfUfq03TrWOUt96/q19qNZLs/d63g9TRow+u2/5LHu/DLj4qNP1Yl+ts7iFtLnSl9oP13u63OseHx8BAMfjcbUmHh8fz3qFEBBfRsS/8YB65L7+F7+C+3QH4LS/yT2t9lElvrPifDlevTOqVu49F9hA4PgAACAASURBVHliuFY7hRhP/YrTpNqoN9Y/ya/b8OnfOt9fk7u5xI1AsdWcgWVJWELfxnvnVwtt/g6HS7p8IzOc/+e8z8cYMU1x0Kdtr7ViGO2atb/VPnKapuYef+2caZ8taj8hy+T9njig5VPrsj1xgNafVn4LaK3ZuPks7c6KiYB1v7znvFvlUSXes7kW6+6Zhz25iz3nX1muXRvRxZuDkvWtfwH7LC7reWzEsqn6e0pptQ61mLbUOx6P57J6r5/n+XytjpuOx6N5lpa65Pt7fP4rX6mPWfji//2jyB++Oo9DvY7qvI5ce+V7ff49HA6re+7uLvFFKT/5+Gklq1DikHJ/TS23ppWH9+Q8PIzEcBZWbNdqR5Ndz6v3zNLrr7VGrPy4lmPwnLM06rFojcct/XBvzrT9dUTOiH+rz6/WfI7GHCPPGGSsCJzmMqWAlHKVgwFySkC248bW8xTP2UjLlXrjfdm+lYeu1588A9f3pvuM+fC0Kr+/v0fI27qWTuW6tb9YtM5So+vYatPym+u22vmxZZmBZfusxdKzl68YXePe/Im8x2L0bNlCs/Oev9ZigpFckmfMvT7BKh+1ZQsZT8j1Wed8rDWWc8bDfcahWqchBLzz4gExtvvZ8u2W/9RicamjJke7X173Pgfo6Syp96JrcwuAPW6ajdV7ujffVo+ltT9oumjt3PKs3tNF08m659pcc33PyBos+3zOfVttUT+7eh3HY83GPM/0ZQylfe9R9r2THpPabm+srHnu1b+034/7rL1qNK8i/eue3Ns659k+07Tu9cY3XvbkmDRa8+ixKS3Pb/3e5lY+yyvH69f2ypN459DjX3uccwmHU175WTIA4P7+DtNxMvX36Nna2yTWXt/KV5zyIevnC9M0IVc+ScZjo3mNVn2vn6tljfgPK5cgz2Uh6M8s5X3WfIzGrdfEuXnKz/EsEOLzuMSI+Pz/2zpNExD0vawVO1jcMi9SdJBjP03TWf+RNq35sp4zewihv0dacXYvv+SJ4W8ZP+85v8YYzrqeVDmNZ8wRh8MBh86Zo/Xd6v+lrctvdLQ5uNweEGM4n+u0+MLy49Nk/6Zg9BzbknH6187ZeOS0zjktX6SVX2NXMqflxYpdrBxza/y1fo3sjxp77/fW1/pj7Une9nr7aS/HtL1e7PX0uTXOLXml7d6+tscnjVL0UMcilHx00ceW0aOXfxmlrPOeGE98UfDsXx6uXWO3ZKxPz/sXtn+LMpoHs+zq4vPXZeW/sNkLfG297nVya7xjuLdbe3yHFR9mZe57sq89O8t93Gqv/t3jLXOMnvvlc4Fbx/+vg1v4XY+sW6xH+TcIRe6+vJhex+qPbKfX715sX7jm75Y85Dhv2liWBUsa+5syacsLgJzXcud5QRDPXmpSSJt7lmVBXETOPS1Iqd5rbj/Pe9n+HYxul9bfm4zgsaua1rnFc66/Jra5xdpv5QCsMu++eStG9hRPjm6dh7HzjSNytTqee7TzaQgBedr+DcY0RchM2S3HWdPFylltyhwxIrkt1/0VEiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxM4ctXCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn0j48hVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgnEr58hRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8onk8LYV+LgRQvgTAH7u29ajwRHAB9V/XwTwYwD+XwB/BsAP55z/yttT73bknM1rIYTz9ZwzQgjd+6x6rXZ68rSylFJTXosY1+9LqvW1qPXotd/rawjh3KaUa91fl7X0ra9Zn6+lJUv2odVPKa+2nRACYozqWEi7rNuyZIcQz+Ne1C/fY4zntrS+WTJ7yHqW7Lr/mg1o7Vtr0bOOtHFq0auvtd9bn6P2aM1xLWdZlq4crV1LF6uu1KVnM3KOJWWsvGMyMnfAyd/V68or1+Nz9ujssdeUkjlmpTyl5B4LzR7lPuC5x0O9jrVrtf7W+LVktNrtlXvWft1vbYw0nT1rT8rzjK/l/zU9evPZIqV0vr/Wy+v3POtK+u3W/Ndy5V5arwtrPLW4Tda3dPP2y4s1Xy2/WOypXgcppXMf53k+15nnGU9PT3h6egIAPD094dWrVwCAH//xH8fXvvY1AMCHH36Ix8dHl84vX0Z861t3q7K/+tf+Kub5dNx77733MM8zAODu7g7vvfcepmkCABwOlyPhNE1q/1NKZ/3LHGvrrsiU5SGE5voZi/221621VK+RMi8lfirlUs+C3Cs1n3G2w1jqBgBVO5O9j9bt1/r2/Nnq/pgRY7sNeU366tZeX67Vfbfmcu/aa+0p2uf+PaXueMzm2ZPk2BVdevF/Lyax4uk6HgKAcFwQwtouYpw2a68Vz1v99NSpacWTWr9691tnq9Zc9mLtPWcJTx0tDq73gdr3F1+/LMtZ9vF4XO0LIQS8eAC+9a2TP47xNJ9f+/orzPN0rlPm+e7ubuUfYowrG6jH76Jj3a980qeypd5eKmNzy2/nnM+6XHtOSCkh3Wd8/Sd9sCr/zE97B/Gpr8tIvqRn/9fGF94Y2atzSgm4IrfUkm2t7VZ8pMmx7peftTko6z4EIMaw8XFWO57zo6Vf7/rZr0Dfa6z9wSu/d/62zjhWX4p/KffVe7nHHjWfrGH1xYrzLV+jnSEK0ud68zfAdh+t48FWnqbVv7ovls1dc07Z42/kmd2qU7fRiq+sudDu7+lrxbMePbXvpUzGZ155HrSYzIrV6rZlW1b+Z1kWVd+cT/uztl5rWXU8Ps+zev4s9YusWmZdr56/p6en8/nzmucXtyS+fIn5OK/Knp6OSM5z8tuk2P7hcFjFatM0beK4Uq/2KXU8FUJYnVmterXcUqduT4ub6vOMFuvJ+rKN+rrVTqHOY2nt9NZ78XXWPtk7c/XKLCw/5j1f1HuCd21p673HXj9oxf7e6712eme+FtqZMQSgbiqEgIBLefk3I6+PQIJ6vOS+3Ysp63LLn1/01e3Pa4P1WJtx9yoXcr4AwLdGtVhNjoUnL6Pt4VY7rT5Z1P5qVZ4SgPL8NCMEPNvEpe1pOmBK29yf1RfZj9F8Ua9fLbtpIXVt5Q29PtFzhrJyLy2dr4l9W2PukWM9T9BstJcTsGK9Uu49Z4WQV3VjjDjORxyPem6jsCyLmYuRscK6vf74t86fPTlarKDZhmUz8jxhjX9rXr36WrHGqI1aOQ1ZV8Yk1p6659znoRWraeWWfx+JH/bEWub1w/ZZzTRNmNIlL1Q/Q2nZxeV55nZ9aHuK197k2Iw855X2JMehrGs9L1XHBFtd5JxYufI9Plb2YWTOvT7G67csn76tW4/z6srqGaHVjna+6MVwtzhj1KSwjZlDaOsudamf+bbq1mNbn033+ghZ34vUpcVoTOmZu9flmyW1Hzvlb8qVkt/JiEoedWQf8/qmVgxh7c9r9Dxea/144paR5wvWXi/Z+7ucWu6Ib9B02XsO8Na3xv/i/zc3uGRbv6saOZ+M4MsXlH/1uLN9rzxDb3MCvb3uVGd1tat/S+4ev9pao9f4sz1xQom56mZLuqIXe/T2V9uvoGqzxHYBIa33/7rplLa5uTp3YT0PAJZNH+QzIinL6ofGOlZb98+6v2cLml4e+/PYjoyh9+RALH9RPw/22LX3LNwu98d8e9fW6PnzVu0C++yyHQOE1edr5mXP38LcinpcWna8Xfvt5929Nl83mirefEYPy1+29bndnHpiINmmZ/9pqTiqv4xPbLuq29Bi5duvhdFYwbM3t8o1P2Dt6S0dRqZgz3OHrS7tuP7avPXI83fvObdvb/a5folL9ZuBk23O84yY7ByTJV87g2jlWh/k5/G1558T7fcb9W8nPorUvqWeb4/NazFs657eWF5zXf4uvodm2+32t7/BmZcZy7Lf352kns4RNT2b6c1HWVeXs2lZl34/s2f+6nq9fm9zCJe8grzVcy5v2aIHr1+ofwflH4+LTqP7R2vvu+ZZl9XetXW0em8yBn9u8dxuaXvkXGDNkfybut44e2Lk1n17x8337M0Rm7d+CENeC3z5yj7etIcZ4f75v88+f/8ZAP7uukII4ccA/AEA/3HO+f98s+oRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPLR4DavnP7kkT9G/wXlv+8G8M8B+MMhhD8cQvi+Ww8QIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEfdfjylevQXmzytv+T9F7K8j0A/scQwu8LIXznLQaFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCPA4e3rcDHnFx91l584rlPY0TWnnvLC1hK/QDgHwTwh0MI/3DO+UeuaP+NEUJAzuuhrL+HEFb/ynKPPK2+rGPJq+vX98Q4/s6jlNLq3xFke/V3Ka/0RRuHVvutMQghqNetNvbWs3TvfR9pryVrj11oyDFOaUFKGSlllFtyzs9lCSklc4yLTWs2J+1S0+3a/rZsfWSc63JrXLV7Wutlz1pqobXfG2NrXfRsR6M3x5Z+XlmWjfVkaUjfLH2vNS71nJX6Ra+6n57xK7J6/r0u946h1RetfNRuPdc1euNbylvrqx7jVl/Kd2v9y3t7fqhQ+u2xW22MRmy01q/Iu+b+FkXXGKM5t3Is63raPZrdWTGRrKfJqNtp2Y8lqyVXm7feuhzdu2T7oz5Wyi3/yrGvr9fXSnuHw2E1D4fDAQ8PDwCAeZ7PY/Fd3/Vd+MIXvgAAeHx8xDe+8Q0AwAcffIB5ngEAH374Id5///3z9xZPT08AgC9/+cuba5/73OcAAJ/+9Kdxf39/1u3bvu3bAAAvX77E3d3dubzUub+/34yl9dmKHfbsdbWc+vacM5ZlUeuW8mmaVuVSx1KvZaOt9lJIm7J5PiLO8SzX40ekDKtfZ11SVvzvhGmKzfYsf2Pdc8187aVus56Hvo+5zra079KO6/EruvXOnCNj2zo7nf4dO9/IOrXNaJ9b90o9e+dn77hIWWu52/7KefDorN1jzXH5viyLGgPlnHE8HlXZx+NxtVfU5fXnrW6XWDbncv4HihsovrfWt9ifXCOynjVPxTdKny5jbe1eC+/539pf9c/tc9WyLENnGK9PK2dtqVPLxgE9vpH7kDemjzECMYp2TnMXhUypZze2jGWMyr3j+ZvWuNzq/Fjqy/1Oa9fTRquPmh3KM+bWP43nu9r2vv0s952Rfbz2Yz20MW6Nfev8be3dKSX1mrWOZR5AftfmJudLHsyq712D3hxDTwawHr9yxvSco7Q9qZT3zr6ttdjaky1qnzi69uQaa5X3zlx78MR55Xudf7DigPpzidlljLIsyyqnb5XX9x+Px4084HKuIx8fyhzfau6KX7u7u8PhcHqsO03TKh4s5/cY4yrOk5/r3J0W19R1rHOZJlvK0b57fWpdT8ZRBc8Zq+c3tPy01FfbX3q5A23c5H7e8s+9c1ZLT48fL/2xqPOVXl16cyv3JyvW6rUDBNTDfYqLA0KIz3HtKWcU46nciletPQnw51s1ObKedR7x7EO17ct69V6VYsKyFJ1P9b71wbcQHu29vpZdbLT2KbIv8n7tWY22DrTxv0WOab3G6u+n802IYbMOtbOd9l3K7+nrPT/VZVa+sUdvnVt99MR9I+3Xckfm03tGbMWZrTxHr82e79Jkann+QozRXDOy7sN9xuHwuCq7O9whpfZ5Svp3rT0rH2LJ1K575lH6NE8O4Nr1bu2ve+KJWkfvGu/t9736gO1jer5HjrfMBVgxiWzbOo/uHQNNT49P8fqh03/rOvLMuCxL92xf1ucpPrDz3vXz31qX+rmMFTNrePI6Raa8Vrdj6Sx1lWvPit2t8e+VedB0ru13T+7B096GqeXb9PJRHaTfvxVl7PR9alt3T2zSq3fL+KgVK9f3e2y81ZY1F97+t+aylzf07k/1fFn5ujgdhbyMaYqYsn4O1vCuq5aerfoaMSaEIMchmud3zzx6zlItuVa/Wv6tFXdqn6saq+s9223l1z0+2RMrt/b6SzvnTXbTfp27tNrRfJA3FpXXvGebddt2PW+bJaZWY/vcj6/WMut6us1446zWXu3xqy253tyYJt+TU7m0kZGzz25a670XRxYu8+iPYSy/bD1nkfYlY62s2IzHL1llp7zMOn6pbXNPvnCvXi32/ua65y+u1QvoP2fbtF/7xqpuPf8jcbJnX/HUt9gbs1treSQG2BubthiNR0fkWXI88ZBc61q/W7Fkq1+98p487VoI560dPbEjufKWHtfMe0un1ylP229u3XZPF2+MYa21a/S95ZxZulx7TpQytN/s7503f//Hzsajbew5r/fQ1rV3jKaYqtgDCOEUj0zBfx7VuKW97W2vtffuVW+P7Xnieu3z8vS0+d3409MTFmX78a69Vrn13et7rvmbvJZ/aI1T6wyllbfitNa5fAFQfsdbWJYFsfG7/gWnv/2sfco8LwiLiD+W4ufWuW8597daU9Z4+ven7fqRz+2uyVF5c0GeeKa3B18T28qY6Jp9oaejxq32wdfhq60YuZzfa93rs65ktI8hrH/7YOUn5T3yeymymn/T+1ur/XDVKyfIHm7/ZOiTQVD+a5HFf5Ycq37Pe2j1W//VbdZlPxXA/xJC+GWd9gghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+dhzeNsKfAz5EQBfEWU/E8B34vISk4J80UrhEcCXnuW8AjADeAngXQA/BcBnhfz6BSzai15GX8lYywqi7B0AvzeE8Etzzn/OKZcQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkI8dfPnKIDnnX1d/DyH8YwD+c6xftCJflPJnAPx+AP8bgD8G4C/lnOv6K0IInwPwcwD8PQB+OYBfCeAe65ew1PJ/DMCvBfB/4PTylJc4vcDl2wB8B4CfDuBvA/CLAPzc5/uKrFDJKmU/CcB/E0L43pxzskeDEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCPL3z5yhWEEH4dgN8JIJYirF9o8nsA/Ns55x8ZkZtz/iqA//35v3/n+WUs/xSAH8DpRSrlBSzl378FwB8E8AM5538XwNcB/DVD558C4FcB+A04vZhFewELAPwCAP8igN8xojshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR8X+PKVnYQQ/gkAvxuXF5dkXF5k8v8B+DU55z90i7aeX8by74cQfieAfwHAvwXgnaLK878TgN8RQvi2nPNvasj6IoDfHkL4IQC/GcC/hPULWFB9/40hhB/KOb+6RT9uTc65eU273ioLIayuhxA2dT1taLRk1TJSSufPMcbz52maVJmW3FpO3YYs19qyZJQ263tKnXK/JV+jlqWNpTW2vXlpjUurjbovOeezjBGbsBiRIa+HEDd9CgjnMqnn9v6wmv8RXTS7KPf31p9Vp9e+1ieL1Zh05kvaWG2/I3jXvKafZ+w9Nqatl15fYozqfO4l57xqc2Su5P3WuqzLW/PaaqdXXq557FJrs6ertS6ttq8hxqiOc2lnWZZzvVHbb/nVFpbvkbI95cV+PXtv2TM9Y1vGReOauQkh7F5zst2WjntljtbvzVO9b9Z2Xcq1/dYbkxS5rT3JKpO+aq/9l3/rfpZ4ATj15XC4HKvKnEn9im2mlFZ6LMtyvv94PK7G6FOf+hQA4MMPP8Tj4+OqX69enUL0b3zjG3h4yHj33XdXc/Xi4QXmeT63/fDwAACY5xmHwwF3d3fnvpV6n/nMZ84y5nk+9+Hdd9/F/f39akwKh8NB9ZPWOm7hjfM8sUItS66j+poWZxesvUpyun46QhXRlp57YksrBs9Y61V85B4/ovVxb+x7azxjFmMEYkCM4XkM1tette/xCdKP1eu9d+5o2awVB2hlZf1M0+l8UNU+xwCteORW8UbRW2vDe682ZnJcSp0UEkqqIgQg5/WY1rpodlKXl725nnPr/kLtt2Q8U/sOORZlzdVrT8a/sr2Hh4yXL+dV2ac/fcDTU9zoUua7yJDtXOzlpOM0p9UeJvWRcWQvHg4hbHynx1/02pDknJHuEz68O5a7AAAvX76DeLjEhta5r7X2zjaW0nCsa8VJ2v5nrY1WvCrjqzBNm3Wv9a3MaZn/a89/1v3aGtL6Iuemxiqfpunsx626Ml9jrekWli1a8eYqvq380nONZz388bN1ZrT0lnrV66/nU1tlQH8frM81tX21ZLXO2Nb9lk+Rvq9GnjFuuddp9M7vo+17dJb2ruX8tPZrH6e1oZXXvqTnz+SZz7INy75uMVdyHVlrQdvrrZyaHJf63Gbt6cuyNH1aQdpPneMosuZ5xrIs57aOxyMIKRQ7eXx8POcGAJzP6Xd3d6vzfznvT9N0tr1zbFjlJuq4oZTXeeQ67tNyj9qeKn13LUvGXVYMb9HL8Uo9ZXveNjS9enGPdX/hcDiYfkiTIct6e1Avhq9ltOahvq/2fb361+YUrGeMdflxTkhpnd94enrC8S5s8h7zfEQ4hmYs0dMF8OX3LVrX6n1Ajq2Wp5Lju8qV3wFP0xNOcenp+osX95v92lqvrXOaZoOeuFKzCW0uvOdCS5fS7voakFNG0eaUS9jmiYqcXjzdyql4ylt+0yq37r9Vnq6Xy/LeN6rPSF7ec6ap9zHL33vbqedZPvvs2X5pzzrnafeW/XWa2vYg+2T1sd5v5TVNrlZurYWiu3WWa9mF9azHYq9Ptfb90bZqe2ph+VRNh56s1rjKe7X9yULTY89eNpJfsMrL+hj1MXW5ZVf1HuC1rxBid7208hqt3EBti7VeLdvScoS1jdV79mnfvtwr93Fv7Nij1b899t7aF/fqoter6/btYe/vhTRZLb/Quq9FjNs4RfvNTy8O1/JK0m727Bsa53z2oB/1yvfgtTdt7otNePY8z/nLuraKL6K0XV+bns+e9bM31iz+p75lmibkRu54ZPxaMbo3lu3FYy3aexJQ+5iyLlvt79mDLVr5CE1u+Zzi1geEGBHS6fM0TciwfzOh0Yr1/Puyb2ys2ChmfY9t2ViaEk7P3MrYnX5fUGR5CAFYN/Eso7EGZDxk2fTes43VZut7D298dvpcr498GiND7t7flxs1VnXr332fnjeWq886CdtrxbalzjSlTfx4iuGmXXNl2auVex1dL6PXvWjPCnvPDXu0nvNco3drPxyVK2N7D96zz7XPyjzj1Tq/ePJivfY9cYinvx4/vgfvuNTft/na+j6c61jccl6t8voMou2PeSB/4KV3Dr6FrGvXq7zXOgPdQr7VJvAco+CSv5d1Ws3WeewQnnPdm7iyr/e18773ec8tx1Trq2bze/ZH+xngVva1v7vS4rFbjNNIfNBev9f5X08cMmqP3jFq7S+jZ+OWLiOfZZk3Ht/4irMvyOitea/vHDkbeGIM7XlKT+7IXNxiT6htyZM3vTYWvcw7IHM9Wn5cK0spr357Z9W7Rm/tWdvm2rwg5/I759OetCxp89vIWt9WG1I/bV72nKf2xupyv+21M3KtVb+3PnrxdOuzlLVX11FG9sn1GX3L69DVe+ZZj9lFn9cVL7auyyqvQw8yzu3+EvsTRAjh5wP4T1GyhZfIJgD40wC+J9/oxSs1Oec55/yDAH4hgD8v2i86/GshhO93yPow5/wvA/jnKznAOkL7HIBffbseEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDy0YEvX9nH7wbwAusXlmQAfw7Ar8g5f/l1Np5z/rMA/l4Af0ZeetblB0MIP9sp64cA/DasX8BSCAC6L3IhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeTjCF++MkgI4R8H8L3YvqgkAfjVOecffxN6PLfzjwD4QLn8AsC/NyDuNwL4i0W0+PcXhRC+bZeShBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8hDm8bQU+hvwG8T3g9KKS351z/pE3qUjO+UdDCL8FwL/5rEOo/v0VIYRfkHP+ow45r0IIPwjgtwk5eP78KwH8t6+hC1cRQkAIYVOmkbN8V86lvL5W31/KLZkxxlU9q43WNdmHul5LZwBIKal6t9ouOheKjFqWVbd1T/ncGoOWXiPXRmXXcyzlav0u9bQx9ei1R3dpA7WMu5yqstKPhJwDUkpmH2rZmo1bNqOtq1o3j87lmiz3kFJq3lO3W/rutf/6Hsu+W4z2s+VPpI3V5T1kf6Ws2t7r+bbmT8ry2JRHZ6uN3hxr90v9C2UetbbqfvT8aa+elPdRRPphT581W7LuafkMTUbtS6Zp6qnf1NWzV3t008rqvVzK6tl4aw/JOWNZFlO3a7h2j9zTlhWfaGOkzVftN8qYT9OkxjT1d22Me7bY80ml/ZSSay+Q8ZY2JtrepOla2osxIqV0tpEQAh4eHgCcxuXDDz8EAByPx/O9Dw8P5/JvfvObmOf5rMOrV6/w/jffxwcfPKz0evX4Ck9PJ33u7+/x/vvvn9v41Kc+hc9//vPn74UXL17gs5/97Plz3Ze7u7tz/bpvMUZXfFHj9cvWdTn+PT8jbam+v16roz5F0RBFREoJednKs3xqL54p12VfpO2ntABKuxq+Po37Ha9cL62Ysh6XFOvYWF9/Mqao/YAVF3j3QS32KPdacZ/n/FdfW5ZF2P9Wl9Z60ZcuGAAAIABJREFU8+51rTXdW7+t+Mo6m8m9/TyvMSHnEuMAwOkMhNSOabT2tT1F89nLspz9Qt3GPM9nvyz3+tony/7KvEFp63BYp+OW5RSHt+J06XutWLjeb2KMuI8JMU6VvQS8ePGA6f5u047cG7W9UrNnqVurbgtpC8tdwuHwAYBw1v+dd14iTvo5xyPbsncN776klXnzD5a88zo4TM9jeknTHQ4TYtJTutqaV/1oBGKs5we4u7tDzLpfrGOpPX3UbEmLAa2zdT1/1nqWc2ydyXufZdt7zoK9c5lVf7Ruy8eNyrWoY6X6s7XurdxjD61fe89UHt1ke5qeo/u01r5FHb/W56RWLsMTq3riHLkfWzmqVu5PW2eyHU/+Z0/cKPW1fJGc0549FTuwfLtWLmMzObZa/ly2Mc/zWVb5XOqV2GOe51Xc+/T0BOB0ZtTaeHp6eqO5A3IbSnx4OBzOn6fpFAfU34v/iDGan+ucXL2Hy/N7HTdaZwCZT7H8qifus/yzdb+lS6+dHlb8LLH2MHm/lZOwzu8aWmxv+WdJ64xmPQ9pteNhT31PLqgeS2t/lhT7Lf2Qe5HWzqj+9fh5c4oetP2s12fZ9rIsXVtt2Xwr71u+1z6irmflO3pnLK2vvXiqlr32JeVaRjk3nvybzF3a+lht1u1p/d+z13rsUI7pSEzoud/K9Xjyu61cjlZPk9s6R7fal9ek7x05t2n2Ve9z1pmrjtm9vtPq7yn/dNljR2T19jHrbGuNs+fzCFYuaXSv99iVl1YM4tGzJc+i9neWzNpuW3nqPe17+9Faf7fa7yx9NnvatJz9tzzbWuc8S9bFf5c665hY3i/HweuLtNybFWdd46c89ayzfE2tj2VnMg8nuWYtWrrXjNjd+vdCY7rI+ajbPZ2jyvftGNzydyNWjv+SOyjl+fn3Yfo+rmHFBFp5Pec9G+nFFtZ+Zel1K3q242nrcDjc3AfL76uzRayfCZ1iWumn9rbf8mXXjrsWu1h6a3tNz7asuFzWs+pq5ZbvvoUvaulxa1r9KtjjW27Srun7mIX0Xdeu696+25M5cmZaUJ491/5Vzz/ccl5HxuhW7e6R09oHfPbWPyffYh8ocV5t0DHG8zPO03nx8mz5fL3z3Fu7Nk1rv5dzfpa/77eQknU8Wbft09HDLXxanSPS5MqzjTenZzHyTE7SGq/VOeNUe3Ov3Ks8sVar/BqbvyafWe735AIkWh96/bLGyft3Lhq3fM7V20PrNW7l/nIeywv2ztwjaDa5fXYL19+UaHq2vo/SGxvvvLbGzjp/yzqajPo5glRlO6bt+GgtIyME+5nyZR2d4n6Ny/62bUfr41ruuky7/3XTamc0/rnsvev8UMS+v/3pXTv927YhTc8e3vXl2Xes+pps75yXW9YxSH+vaJ2l5DO6kXyDJqNeh7Z/7ucvcs44xiOWZe0jj8cjQhpfJ1KXkXNut61lQfm9bMHy7z1Zo79V9ODNFwH9NbN3z9hrA6NtWXtFa1y1e/Q6p3r1OrTiEG98e62/18/4l2unfQ7qXjWCtT9bc3BNfsvKX13KL2u05/+0mNfKt2o63Dp3tCfOl/TOij0f4vExKST3ugD8+u/JD3pjqVZ9Txs9fSw7auUFyNvldk9LPwGEEH4WgF8MnF9QUvM73rxGAIDfDuBrz5/lyv41A3L+i+p+KecX7tCLEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJCPNHz5yhj/UPW5fgHLn8o5/9m3oA9yzh8C+L3YvgwmAPj7B+T8dQB/RJEDAD9nt4KEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxE4ctXxvgepSwD+ENvWhHBHxDf8/O/f2sI4cWAnD+mlAUAP3OXVoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfIQ5vG0FPmb8fFxebFLzV9+0IoL6pSkBFx0DgJ8N4I875fx58T0/y/jcVdq9RkIIyPnU3fJvQX5vyeiVa7Jyzuf/RtpblsVVz0OM8dy21DeldLVcABs5nn626uy9Bqznu3y37tVkyfvrflpy62uWrWj3Wn2x7KXcF0JYtbNuM5RCGKps9LXaaZXX16x+eOZC9qUlzxqXa+xYa6PoU8tt9VfqX89TsR+rjta+1U7Rx7q3hXcdtHxlzy736GPpIstjjKrNS1ts6eKxWQ+tNqZpGtbFU35rGy947dKqU/fXQ9nbNHuUc9mjrNWW/5GftTasde5hZL/R6r9ORtflLdZEby1a+5YWK5XPLdvX9t3a7xZqGfKa1kZKaaXL6Prz7GkxxrNcyyZTSpu2X716BQA4Ho/n++7u7nA8HgEAX//618/3vPvuu3h6esLXv/71s16fee8zeHh4gRAu6/c7fup34MNXl7F89913AQDvvffeao3f39/j5cuX5891/8r3u7u7Tf+1OErGpPX1VsytzZ/GlPT15plLz1qw1nptu1p8c/p+is9COPXlcLjDlC+xevGTI/uE5zySUr0+1/rVsYo1L5b8+szi2VNehw+s467emaus6cv1jJyBeZ4RZ92+POfA8r0+d1loe6e2P/X2t5avOcVNevvec6nlx1sx7Eis2NpDLf28ceNpXttjKtuu14PUpcxZvSfEGHF3d7cpl/5xWRa1L3W51Kvlqx7uMw6Hx1XZi4cXOBy2absYI6ZpUvdfrZ8P0/Jswxd9Uspq/Cb31p5vquuWa7WMXtzS8ichBCxhwbKUs9Lp+vH4hMOyHpfR+Mjqcyum08prv+ONH3u+XV47/evPo4zE4PKylQ/YEzdJ6n2lNcaXSyVm3OqkjWEdS7Rs1GrfO+/1fJRLOWfEcFl72nyPnhOt2Miy0ZbtWnPnjb+kLM3H1fMr856jZ8v1fu6j5QPq/rdysr250mjlWXp61p+XZcE8z5t7W7q0fIlnf5Z17VzkpaweI4/9TNPkGk/LRr1nRmt/r9vPOa9s0fKVe9ZYy64sG6nPhrJc63dK6WwjUn5pX943z/P5PCn1fXx83JTP83w+ly7LKXZ4enoCAFUOsXn33XfPdnk4HBBjxMPDA4CTXdZxU4k7ZWxXymX+ucSBBXn208rlOrd8Zmvvscp7+SJNL+2cJz9rbXifM1h1NH9Rj6+V46nv97S9J7/q3Xv2+EuPv7bO/J5YtUcvDm7lG2S+6IBUnc1PZae1Eze2NU0HBDH8o/kq6x4rruzlqrS50PZfr63Vck/9v4xLjBEhrmV7zkxyXjx5k1Yuwtojy1i0xsg6Z9WklBATkNJSlT3vp2c7Bub5iDDrfbnVs/SaVv7cG+tZ1Dbbur/0S+4v9X1W/GfVt/6V9aSM0T7LM3orXm3lsjS5ls6teM76zcQ0Tab9bPcfXW6M235oe3ctS/tsnaFk3LHWSY8hirxanxbSv8g129vHW2cZOf+ePJhVz2rj1lgx2agO3rm/RV+uldHK7ZXrte9q+c5TnbX9T9MELNu4WKPtY8ZyXHWuWOqpfa5tsZWTs+IIT3xRmqvzUVpfrDFKKblieKmvN/fYs3fND2j3tPJYt/pdRcu3bXXy5eBH8PiAGOX4hOe9Yzy+b5Vr/qa2ZU8/R+u/LlJKzfGx9qSC5qdG+iPjH4+/rv1e+a7Ns9f3e87N3r261Z4V31j39L4XvPnq17F3SbTnZyPZ9Fa+oRdD1vfIOK/2vd41l3PGfJiR8yUfmXNGTglFlVZOvuWrtd8te3ImLd01O14/O7qUe/WtyzUf7okh6zZz1p6v6bHtaDxqxREj58feXPTspucXRmSN1GvFlXZuwF4fQvqu+dB0sfD6OouWbY7usdpetufZV32/52xY3+89G3nqWOdGa1ys/VCXv411e3kMz9qybNcTP3vyK16sWL53jpPtJ8h9Yv2bkFaOyCof7f9I3b4f9+9DvXZ79+15Hj+Se+9VHfVFtc1ea3+1jHrMbym3/tzzw3v2N8/ZrVWl7l9KCUtezjFZXV7O6638ZVVSXbOfLUs9W997unu5Jk6X6/LU/iX2Anx9benUX/vlmr0PtHI+b+Kc4rm35YNlvV7/WnbQGosRP7b3s1XW2gMStmtwWWbMy+3WhGdMrPxFuhzQqvqXZxjev0EdXb/XzmPrPs8zlFug2WPLZ7jnMwTg/CfV1lljLbP2X1Z7Jc6vzTUE/QzpyfV4rllo/sNaazmf9Kwv79lTRs+81nNDz/qX8eLFVtpjZelozU8r7vDMi/ds49F3ZD+55d8xjsS99fqU9+WsP/eQ59w9+6Z/PPtrrXXW7vmJUT3Kf+c2O/ZLbs/4qe6Tzd9klH/pjWqx5a81rn3HgJyvG+WfGpBBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsjHAr58ZYzPGuXvvFEttrzfuPbugJxXRvnb7h8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIITeHL1+5DZ9/y+1/rnHtxYCcl0a59VIWQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+tvDlK2N8wyj/BW9Uiy0/tXFt5MUp7xnlXx+QQQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIx4LD21bgY8ZfAPB5APn5ewYQAPxdIYS7nPPxLen1vY1rf31AzneL7+H534/ky1dyzliWBTnnfmWnvJFySQhB/VyTUkKM+juPUkpqeYxRlRdC2JTXuk7T1NW5vq9u39KltLuXnHPzfu2aNf6Wjtq4FKyxb7XTKi/XtHnQdFiWZaVnq721PZ3+O3+vZIzOx8h41n28pg1LR23NyDJpx73+WmOv9aPXt9Y9KaXmOhnhFj6sHj+vTZR2rfZHbKseF+u6Nsetdqy+aPrunYuRsW+1UXxLb117ZFp+yhq/3jxa7fSo/ZUHqXdrjVh9kdcLco/yyGr5gt54aL7P8geljVvFIpY+Fp51Wtfx7HV74h5LllzHKaXzd+nfPWu7/i7nuL5W7FHapaXziL3L/rVkSf3KtSJjnmcAwIcffrjSv9T74he/iA8++GDTxpe+9CV87WtfW5U9Pka8evUuYryM65e//GU8Pp10+MIXvoC7uzsAOMv87Gc/CwB4+fLl+Z6np6dzvRcvXpzHsNbv7u7OPbY9G9V8nidWrOu04ruitxWbeOPSEMLK38o1s8xLNUanfx8fX2E6Ts32tTZb/WmTkfNzn9NFN9neLWK7XlxV1v5oW9fEJGXsZAw9TRPiFLt+rnW9nDu9etXzKMfC6qN15kspre6R30tZSmt7bZ0TtfJWDCe5xp689Ys+p76t71mWBXnZytH8lbcd2SdrvorfluXLspyvSfnFdqQNzfO8kvP0kPH0hJU+33z/m3h8DOf+Ff8smaZJPf+fy+e0aX9ZFszBHkepc8s/TdOkrhG5V0tbdpFPetRyjscjlqfLnjpqh3tyGnvieXltNBdU2k3LguNxbV+vXj0iFoPZSYolXr/07Xg8Ih7juW2t363zyjV5FQBYloScy3hc4mwZA3pkF516uo1yklnknspijKtx0XyKtRa0vIjXrlt7lxUD1Vhxa90XGWN745SR/J6k18bIntWj6KmdZ1vIGOsWfmVEljevspfe/HnH2nuPXD/aepGyWn2+RZ6rV9+KoXo+XaNer9YZRMrR4g4AmzNn3Ua55s0RHI9H1V/N86z6j3me8fj4uGkDOJ15a8qcf/Ob31zJKuXvv//+zfx2jBGf+cxnzt8Ph8O5nfosHELA4XB6XPrw8LBak3UcZvn7OhaznuWUf63nSK37rLOz97mRRW+c9+SH9+YHLL2ukbd3T7mWXtyn5VR6ufNWXmEkPtJo3T/yHEujN39yDlpnhmlOz2fiS9k8z5jngJTkeeuIMI/bzmis24ozLb9g5RgA2yZl+aoPqcSP6/oh6f1s9XHUd7RyZ7Itrd1pmsy9zjqXS98bcgJQryEgROlrI6bp0n69j3tyk601Yekv17tnXVmMrvF6T+vJ7cV9dT6/174n9vM+Qxv1z1ZftrlC3afW9ax1rY1p77cYRebdfcY0zavyu/t7ZPhtQZ4TrRjBWsvW/MicSy1zmibX2S7nbMZI1vNTax+p59ITj7f0t2S0nm1YsixdWj7Es9Zb66a1XjRbbsWSlq6Andu6Jk6S7crfIWm6XGy87fOkj9JklRx6XOZNP5ZlxqIMhcx9WuO1Z84s/1J/r/1tz8+Wy/Wz+Frf+v7av8k+yb5YfbPWq/VMQ6trMZLT32uT6zUOxDiZcVKpf/rvMtZ1uZSpfR/Ryx+77ztPtdq2vvfKW+31cjaF0WehrXi8dY/2vRX3emOVveegHjnruWHpO3o+v+AZ59H9CqifVW7z4OWz18569trKrUv5e8fdkmfr1L7X8snAeu9qnfNKnKnt5a3nJVZ5OFz2uRiexytGRFzivqz8f7iO/CZkdF2NzJcmP8Z4/k3ELecesPe+1blTNBnCPr85cu110YrNCz1/e7occPELp8/13I2ud62d9eft/Kx9vabnVhfPc0atvHVW0vata+xU8w8aVo7CQ+vvGjzr2OOrr7k2ooslU9tTZJPaPmzptzcnW9uhtafXe+o1OaWRe1pxw1bGs+5Kl1tr2RM3bufIfq6+9/ytlau+qhJbmhiNOa7x69Y+1LJT6etGc9oy59DL8bX8TqsdL56zzbVr5HKvv93zGg26H9H0KXkHLaaJiKLNgHqB2bnyy/23pLeHjZ5nvfG8fb+u3y3Ptus6vrP/rWPQwp4xaq1X3/1rOZbNWd+lrXtjLQ+9eEPzNZr+OWeksP3dbc7tvyl5Xc+Srb/be/6knDt9f/siv++xU28sJMtufZbxxumnfupzu1endSwGSJ/cmr+TnW2vyd8p92LR0f2td0axyuzzoHZP0Vn365rOZf/z6N8/i18XC8t5lXu/1X6NZVPyeeqoT7biptY63pNr855T94y16aM6f9bu+RtNSW98R333rMjs+RDtmrfd3nNMjVvE1mQ/t422f+LzJ6rPtYV/DsD3vWFdav7JxrU/PyDne5SyDOAvjalDCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshHH758ZYz/2SgPAP71EMIbH88Qwt8O4O/D5XVq9auMvpJz/stOOV8A8PPE/YU/epWShBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8BOHLV8b4nwA8Pn/OOL10pbys5OcC+E1vUpkQQgDwHwGYSlH1bwbwvw6I+35c7CGIa39kr46EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHxUObxtBT5O5Jy/GkL4PQD+aVxeulJedBIA/KshhL+cc/5db0il/wDAL67al/x3HiEhhJ8F4Adw6VOuLicAP3yFjq+VEAJO76DxkXNGzpfuhRCwLItZF4B5Pcbtu4ssXYqsum15j5RXylv9k/I0+Z7rKaXmfSOyWnWte1p9lNd67Wp96bWrtd+zK0umVl7KNJux2mrNidayx8ZMeY0xlfdaetVjKe+x2u/pNTL3df+9tmnVK2u+NZdevTw2NuLDNHLO5ry0bF9rf48s4GLb3rnvXdM4Ho9q+R7/ZY19ztnUy1q/8v5r9BptQ/vea3/Edxc8cyXbizGq/UkpufeCUq91j4UVH1hzvCzLrjbeBNa4jPg7S5ZWfm2/WvMly/esk8I0TavvtSyv3MPhsPq30NpTyx4hx6mOF2vbL+XLsqx8zzzPePXq1bmdWt5XvvIVAMDj4+Oqn1/96lcBAF/72tc2egUEAAE5X/q+LAu+/du/EwDw4sWLVf1PfepTeO+99zZyYox4eHg461X36+7uTi0PIWzmo0crJrJs0LKtlBJgtG+1c40vlPtmaUfqPU0TpjQ2LhYtm46xfv8mME0HTAd7P7HONiGEzXiNrFE5LiOxslYeQjDX4p4YqufnNF9b+u+NSa14qL4mKfPRirHre2Pc7mPWnutpXzuLtvperltyenjq5ZzPPiVMobLxE9M0IU7r/izLMnQOlNdkDGf5f2sfm+dZbaOOX+UakXMSY0II2zivNJlz3sTDZZxyzqYOAHBcEp6eHquSgG984xt4fPYVMcbzPiHnqPh+YG2n9fpstS37M0IIATHFjU+Z5xlx/ui9S7qVQ7LOWZ4xkTYZwvNcKPLGz97ts6y2590ir2TlwaYMhBBXepW6o7mgGGN3HxlhrUftP57bXrY6a7T2QSvO2bV2HGdLD9aZ7tbsic28MjzzYcVH3jZaeM6l3v1R2vSeHKnVXh3HaHvkyPhasYIlS9pZL9bozalXpx6t8Stt1OcgOXZ1u5aslNLmLGWt31pGfYZtrfdWjrPorOkr8cT32hl5dNzlWswPD1i+67tW59y/+Zf8EuQPP+zKsny/PP8XpmlSbedwOKjxt0Zrz7LsejQP+bryjV68e5wnJ77nzKjFJhplnEaeuY36jtF4wvvsrrXePG2O5Octyvhp8ZXE8gGyfcvfFJl1/zU7P517y7q5lE/ThGkKCGF9zzRNCNPY8+OR580e/2adOQF7XdblXn3SlBHjuv+Hwx1i0vd0qaM23q08XyvvXtexrrfWcZ2L8NhyjBEHRDFuZU8+twKIPIe2j1vsWUN1XqMu29OOtnb2PhPY0xetH968mtXmNT7OI8czRpp9abGqlvPtydRtdTtuJeczMqf1WdpzlqnPhlru2tK34D0nxRjVuqM5Cm1PsOzN0n/PswoLmS+ty60+eOdzdN/cg9TDO58jdb2xbD1mrbySlgNJKSEkezz657b1nhLjdDMbke3V9M6CLbQYVuYGS71eX7Rcwl7KmuzZqXcdxBjNuG+UBdZzL5lvsPXT/U37+klmNv2VRa++fi032xptX/u8R9bePOQ1+cVee625qv9t1e3J955/ezrK8w0QXM/8NKRta3mqUT0vOm7zIq143Xt2b7VZx5OevKD1jNsbl48932hfTyk159DTlpbTSym5x2O777aVbo1L6/m3Ntets+y472tfq9eSN/d2+rpeezEGxDz+e70ePX/0OvCs8Xovae1J3vI65iqXQnj+BZMSO9yy/9peXceBUs8RXXrXtPyzZ316qM9+MY+fS/fU8e49rTjCsw7r79fagnWWL9fqf+VnQN/PYozIxlmwp8votZaP0PTemxPy3tOKkUoOoyalBcui7xHeGKT3PNG676LTfr/siZvW7V3ua/5th5BrxYqePULGAZKQEuTvPepztTWOvWcznrxaa+5umdvo+dXWPrann2XO9uZyvW1fvltnytYeVOtxfS5q9FnH3nt6yP1i7XfWz8+svli/dfT8ZiKt1lPb7jxlVn58dK6s/u7x7ZtcYd7+1nJZFsyLT+debmFUv9dRX96j7WfeHN5ITKDVbY3jaKzXW5O1n/PsyV6f1bu2N7b21OvprN1X8s3XcJJbxvMitx/DZNS+RM5FiSe0flhx7VYvu2zvWlnbWC1D6tC2MUu3ETto1bX8cG8t2fm4bfvX4LVj656RNTqaj/TW9/ThdeY2Ct64u/7ujVvq8mNKmOf1M4bHxycs83xVPGphjePh6QnLMqOsuRCAeT5iPgr5r3/oieCj99cKH31+M3B+cldH2WWH/A9DCL81hPDwuhQIITyEEP4zAP8s1sum/vwlAL/PIevbAfz3AN4tRdW/GcAP55y/eLXShBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8xODLVwbJOf8ogN+F7eu76hew/HoAfzKE8KuC/L9SuJIQwj8A4E8B+NVYvyhF6vHbc85PDTkPIYTvB/BHAfy8SnfJf30LvQkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+ajBl6/s418B8P88f85Vef0Clp8B4L8E8GMhhN8aQvhlIYT7PY2FEL4jhPADIYT/C8DvB/Ddoi2px18A8IMNef8DgC8C+CEA3471S1dqOT8O4L/aozMhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIR91Dm9bgY8jOecPQgj/KIAfBvAprF+CUl6KUj7/NAC//vm/OYTwowD+FIC/8vzf1wG8ev7vHsCnAXwGwOcB/B0A/k4A31nJg5AvvycA359zfmx04fsATIasug//Rs75g4YcQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEI+tvDlKzvJOf/x5xew/D4AD9BfwCJfbHIH4Ofj9FIVL0F8116WUrf5W3LOf9AhN1ef5UtcMoA/DeB3Dej5sSCEgBDWQ3d3d6fWzTmr10t5SmlzTykrdep26381edo1TVar/b3INlp4+iLp6Sqva/MkiTE29fPoVcq16717vOWArWtL1qUfofqvj+x/ztkc/8NhfAuw+mKRcx62C2teWn2xykfspJSPjsuePpb7RspbOvfWi9bGaDtW/Wma1HtSSsN+ytJr7xi/bmKMw2MPjPvKGOOQny73jLSh6eXpm6XX8Xgcqt/zoSPjrPkKa38uTNOklmvssbnR+WvR2odvjaZ3r//SJ91yH8o5Y1kWlx4eRmUsy9KNGbR9GNja2DzPeHh42Mh6enrCpz/9aQA4/1soMj73uc9tZE3TjM9+9lOr8p/+3Q+YpnfVvrz33ntq/x8eHtR5iTGa89WyRW28WvXneTavAWUOrp97a572yjnZ/blUbWNUp1ovM5YM2/0xpQVY7P609LLWhDVee8bNG0uu42Efp/phUxZC2HUeGDlXAOM+ZX8M59eptGPJGilvyWvZzmgfVzYSL+2sV6mZAAAgAElEQVSd1NLPxiP0zhPyeuv8XfYkSblH+s1SPs+zshba5xk5jtM0mfGLlD0hIca4Kn94eAAO8SxLW5utGKx1lmidWzSscQwhICXNz2VAySG02tgTG49yy3NBq27Oz/uhMW41rfPwaWxlG3Z+xNLVmr89HHLY7PMpJcA4c1r2VseM3nv2+rEQ9PhX00mjd04Z8aP1nuadl4uPHT8LWu1bbXjr72XU9+zZB70x5J5YqXcm1WyhZ1eb/aDRhmaLdZtem2itJc0ntWy8lSOy2LNvXSujvs+ao5EY2JK9Z41pc77Hp3vq13VSSsNrXMvJhvt7PE0TQrj04/7lS8TneiPr/k3kUKw1NhoTt+ZoJH/1JrGeYe3ZX7zz2pI1Ok6WzY7mO1poZ1xrzRX9R+1G02vPc5PSfj2OKaWbxX3a2JV8kGyjlD8+PuLFkvGtbz0VKQCAL33pCR+8kxHefzjrf39/j29964gg/i9K3nnnHQDbvltnLqusVX6L+KaeS5e8fPo5Ql01pQV5acWwp2vynNjSybIxa/z2jFHrWap237IsmOf1c6iUnu0+6vqM5gS1670x0/o++mz1VjFsXe61z/b5x5cjHJHR0290HY4+ky/XrLOld3+wzlan5yP2epb6tuLmUayxGLVH7Z7aj0hG58bCGovW8+cY4+pab9xacynbKLpY5ZqcUXv35ue1tq2znJeRPcyy98LemMHKfXt00+K/EMaeL7fsakROPf7W2hlF08Erq3Wu94xtfZ/HJ3v22lucz1bzZYT/OW/j/JwTUur4hnlGSunZhtp69ObF2iv35DZG/UrL7/b2xR61Htrv/Xr3XMNITn/092K9a8D+Z2u1/Pq50+W+gPD83NcbW1071qO+rfyr+aQYo5mH8tJaL5YvKXrUe0+t2y2fX2jyy5nK+n0SMB7n1te05w6t36a05QTI56w11hh7f8dWt3WLdVKTQnqO2c813HK39gRsz9CX3zR5fPBlPE+yWrpr10bPpdewJx4ueM+TC5bn/bW20/R8FkrdsfXqqtWr1drmU/q+pDUXrfim2MPryjnX+4S2Bq/JMXjsbW/85s2t3dLmr50Debuc19Gx8+i1dy30zmG3ojWP9aUQfHlFjWtj0T1jsCcutNib99prT4Cu/6nMPo+M9m3vemqtmevXaP/8492vdB9f39vOOdlrc1uvHQ/19aukbWIQa0j3jPW1/uQWOWCf3nX/x8/L47GX7xmNZ03vyc+37hvJLfT0msN8+v1dxbIsmNJ1v2uw6o3W99LKEXj3qT2/bZDsyf9YdTR95nn+/9l7m1hbliwxa0XmPue8V4/6gS7a1d1CYBuLCQxANrYQA4NHZmIBQjISlrAsJowYICFZ/BghMeFnjpAxEpItWUwsxARZxjYSI4SRsMEguXFborvdXbi7qvq9e+/ZmREM9om9IyPXiliRe9/7qrq+T3p1946MjFgRsWLFWivz7JJl9j376PlyR2T09PeoOeyV6TKsO11Y19uz7dE8fS5f3mKast5yPos0cg3nmPfW7Z51XWWqntuG699CbHMY69rPJ3+sOKR8f3qnl0qetT43tbzAI/yBGu1Mr2123v8jObZHyfkx8nIi9riP3N+TYXTP9Pttx+ejc6Hlo4/GJiIiMs8yVzb26elJng60eY8tvPxd7vaZxD1xFzwOVuAOUkp/UUT+sIj8Vi4S2fw4SqjK62ue/1L1X9muyNYK/fmU0r83OIw6ggxv4/mjKaXHP4EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4MYEfX7mTlNJfEZHfLyJ/U/Y/tiKy/SGV8pr3P60NKdrK1/+siPyxo8Mo2vktEfkjKaW/cbAtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnwj48ZUHkFL6myLy+0TkPxeRVfQfYRHZ/ojKyH+b7or/goicReTfSSn9ayml5Yj4hWx/Q0T+mZTSXz7QDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE8Up69bgN8upJS+EpF/O4TwX4nIvy8i/7KIzLL/AZZM/aMqarNGeb73L4jIn0wp/Z+D4tbt/JKI/Kci8l8c/AGXH3tijCIikpI1pXtCaC9R77rW/yOZpv1vJ1n9aHV79GQe6T/PlTX/I3PZY2SNrf5TSsPtWGNIKcm6ruq11nzd2it/b+nt+tv/lvWs/o/Mbesea16ssVj1W3PcmntLtnmeh+pb/ffWXWsvpTS8x4/o2JH5eiTWXK7rqsrQ0iPLJh3ZR8/Pz0NzcET3WmMZ1clH0tI9a74stnbn1n75b02M0W0T8ppba6+VH9XtIzZkdL5+HKjH2VuvR/QhMu5TtOQ5n89DbYUQzP5HfaAY40PPLosj9ZdFd8fzfNX6uiyLTGEvW6tvaywxRnM/WO1N02TurVF96bUzR5EQpt21R/nFo+d5bmud4/XzEV/Cc5/ahmK7e4ycgUfjoSNtedvp19/vg5HzKnPk7B/1L1p9t3zbuvsQwkPjl9YeGR17a+4tynkp74/x8u+6rpLW42eddV5m21evS65X28bSXtZtWXa8xfPzs8zzUpWdZJ6fRGQ/99M0mXpSl78sUU6nLzdlp9NJ1tPx32POelLLdWSvt/Q9TlEZ+3gfHyMn4+njSAxXX8v74Bb7X+Zsepu3Xk6gLeveZqa0l6Hlg7VsxvD4l3GbbLVl6ZVll7wxavk1N5PnrSdT7l+Ts+7/0b79x87H5bNopO9HxmAjc56x7NeIrvfmb2TsnyJH1uJROYxpmkxfcDQ2WNfV7Xvck8f37rOe/Ef8+Y/5fKEljzWWWg96Y2rlV0fl1eqHp5Os81bW02mWOen+UWteH+ULlGdyzWj5SI7SozOj4/bqbKtv69qIr1O39bFozffomTTPs1v/WnNxOh17RD/iq43Oa0uPH5UT1Mo9c/GyRPnih7+ZWxERke9+91vy/osgX31xi6VCCPLFF08STr6x530ysnatebpXl4/6F+VtQdpyHNGL0RzCI2xfr9wcR7rlEERE1rhKNGIN67lFzzcckbN17VH+/sia9vqsz45H5vQe8Qz/aP0j70qMcCTHqNF6Hqq1ZeXGc1ve8lGdb8WsrXhcoyX/yBk9z/Pw+wKtuq3nId52HvV85FH1W/dY70BojMaPLZ90M0fzPu83z7PM8daf1Zael/PXvdS3fcXRuX7Us8zr9XXdnG1ZrnW9ydWzBSPvxjzy3SOrHcuf/ph53Eu/tt3MlM89t/m/4+eYNXePjFXvaXs0T/FI/+BjP2MexTonrZjYes9l/JmdVvaY/IOFJWfrTAghyKrYJOvdi0f5YKP+7sfMMZRz1nrnJGP5WaP73/IFNR5pS7158Z5ePiJmuRWnzdy33lcZxeNDX/T//ud/PUbGNBoTjNLy/+Ic387X7XvMQS42cjooQz+voD3jTMXnzVV1v/rmZ93dtyzL1Q97VL5EY55nmWUsZ6/xyPcIvTzqPSatrXueB3nrjebOj8pwpP2juUPvmKy44dLtre/SPxrJq2r1f9zYxlCpKNfPfu94Hrl/QwgSlPcejsYt98pild8ry6POzlH/cMxv2ff1ddjdR+UmLT5WOx/bh/Pa0UfapRE73Kur7fFHEGMUmTWfdq+/Vnz4sfTc+35IpvXeeL0vYtjbzRijzLJ/7pv79MbMj8A6f3o8+hw6+qzO6w+M6M+oPtT39nL9I3KM6LymZzt9vJ7jxfPMdZV13T631Pbkx3jfYu/b5c9v1+VWlrnEe4/7+69Rjr6/sI8X92t05N2fEUZ0yjo/vO/NPTIv4+WR8eA993vjTE0n8hx/iud2xd1qjjjLA18f/PjKg0kp/R8i8kdDCP+IiPzrIvKvisjvqauJ3yOqt86vi8ifE5E/nVL63w+K+X+JyN8Wkf9FRP6HlNL/fLAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAn1j48ZWPRErpb4vInxKRPxVC+F0i8odE5J8WkX9CRP4xEfm2o5mvROQXReSvi8j/KiJ/SUT+WrrzJ4tSSv/4PfcDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8doAfX/kEpJR+US4/ovJf5rIQwuci8nMi8i0R+UxEnkTkLCLvReRLEfnVlNKPPr20AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx3w4ytfEymld3L5QRb4CKSUNt9DCHe34cHqp9W/1c+6rsP9Z6ZpUtuy2qzrexiZn9y+NQ9aW7msvmb1m8u1Pnr3HFnrEaxxz/PcvSeESUIIb/9dL0oIQaZp2q1day69tOrHGIfvGe2/pSdH16puM8/pI+RqXbP2nKf/em3z3Hv3xNFrPbmO2FOt75F2QghyOukuS0svLH1t9TNKqw/t2hF7G2M09/bonmztrxEb3SoXse3bNE3ufnK9GKNp2zUZtDnuzftR+3LEJmpkm+5t32oj923ZiSN7xbpm2ShP3UzrHLTI99Q6kftflsUt1xHdHvEzRG5jr+Wa51k+fPig1s/3vHv3bnPt/fv3IiLyS7/0S7v7vvGNSX7wg1/YlP3iL/6/8tVXl/F//vnnm2t/7+/9Pfn5n//5XTtPT0/y3e9+V0S2Yy3nsV63lJK5xkfOGu2e0pdNKe6urUr3Vh8xxmEb1VrjdV0lzlFi3NswrR/Lprcwbc2adv1a93yK873FI/1t8xwRW99G7dCRM9YihKDa4dac5771Onu/dpqmQ3KNnv1H5mTU9ynPsYt84a0dMfV9hPK8LOmdSeU61vVrnz/7refzWW1LixGWZdrN77qusiwXeZ+enjbXSlvWizfnFCSE2zqEcJFxPZVlx2yAtvZH4hzb1937NTEmmap9UO4xrf8Rmcq4695Y9hbXj89vlik+P8u7003f8rmr7a2RWPFNwqrP0PTXNco+LH/em6PT+s7jtMZyxAex9E3LK+X5vq1lKj7fdK68x+pDkzfXO5/P5n5q2SftHm1PteZ8FEuvR8+Olp4dkWuU0TOtlaed59mM/7VxWj6i1r/Hjlj3aH67SPapx2MhrQ/tfsufvifX3aMndytn77V5uY9H+YgtuVrXrL038jykN2btPBnZy608XmvOd3H+87Oc55NI4ec/Pz1L6Ex1yw624kRP/BpCOKTLvecjVp/aevd8eG/MYa2F5QO1yo7spZpeDkw7G0bOpPp8LzmdTkP5iyOxlNVWq416LawxtNY8f/eera39bvXRqvfIZ7MXP+z6TUQuazfPQaapzoFM0uraY7NbOlN+H30GUbdlPb9dlkWNKVNK8vr6eiv4TCT86GVT57d+7Xz5v3p543Q6qXb56elpU176ELXOWLrU8inauQ2buv48z6a9ynqxESNcYpvr/dMsYb7Zi5H9fiSPp3EkN1L+mzlie1p9jNg4rbznU2r748izK+u6dQ486vnvyJlbXtvlMVatbJV1Deq8juRxW/usFU9aOnnkuerIs6J8T0lrjUfIdlRrx8qjtLhXHo9/OdLH6HOLR/gqLd+51daRubvthb0MZXutHInmp+/P8CjT1H5NcnQfaP3kNmq9G827ZS7z0K7TO3eP5Ey97Rxtq+ReW7DX3+nNRpXleu6z9oFv+/e2ruub3e5h2ZrRmOnyn15utW+1463bk1Pzj4/qtIcYYzMO1GjFzKN7wDOuls9b5xI0Gffzp/sGWr9W20cZ1U+R2r7qsaT1rk+rz3vPxyM8IpbPeH0O7blULveeReNnVhDtQCn1zooF6zxEK0dp6eVoXmxffhvHNE0ypZusXv2/2ddtXD8Sv27ta56fvgzWWdfy27z2vWeLvDlli9ZeXuXyDk+Mt/cVLs9ykypry1aP1iubLvva26mx2Kt35l7ezWg/vxw9kzTWdZVJexmqQ+v89O7JVi7Mwrv3R88rSxYrx+Od95Yc9/49xaOeF7Xa8TwrqBk9N8p5KG3nJRe33XOjsjwi39Zr18qr1frZtgXl/cdz3jWPiMUsnXnUO/Ne/7buX/vs7dPCGwc9Sq9G/ArNL+7Ht2lXX6+bdnvNEyc+Ij5/VJsjdrokTvu8WumzjaDt/Vq+tCzXdxKzeFp/o36udoZpctz7dyC982IErw9wJEfxKI7owZb9HrR09VOeb9m30fb6SJ+PtIUf+xx/tOzl/euyyHLnK0oplO99v5VJ+33S7dmg609+XlHrl/YcY8T+3nP2Wmd49gFj2tvldV1ljv33V0sZ7vHVtTq9d3e0/mLIZ2/Zlj4Hj/Rnasb8jTHuzb/03m/y2vkQgqyyus5Yq+3RnO5IniO31fLpeu3dO9fb9vfxx2g/8HH4+G8yAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwYwo+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE8l/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/FTCj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADATyWnr1sAgHuIMQ7VDyFISsldN2Pd421La7PX1jzP3bas9uq2pmm6tmnNmTWWVh+j41+Wxd1W/m717x17WXZkHa1+pmlSr7XWxaIl86Wt8j+RIHb7ea177ZflrfHX10bHdvQekcv+PqKX2netndzGSFs9na/bKvdxfW+5F8truY3WfhlF00trbnp6odmQe3TeO/+5XmstLdvXOiu8NqZnkyzZakbPLUueXKbt+R69tdf6ac27yN72WG2t69qVuR5rWd/SnbLcY9s0Rs/HI7T0Z13Xh/UxckaK6GdHeU/rnMpke9eaL8uuj9iQo3tII/drtdk6U62xLMuitpdS2q3x6XQJxb788svNPc/PzyIi8v3vf19++MMf7to6nU7mGWGxLIt85zvfuX5/9+6d/MZv/IaIiHz3u9/d2NHf/M3fFBGRb37zmxs7muV/enrazU2+vy4vfVBtzx7xEeppTyl19aLuJ9evy4/Y1bznQti2F8JkytXy87V7LJliiFJPYZbHM46Wve3J1KrfuueI3+nVk5vfLCLiO+M8/bfGMhpbajqX/23ZnFu9ftzSk6k8Jy25Wrau559bY9TGl+fW8pMtm6ph2RXLL5gmfY/O86yeySGEa7l2XetnmiZ1vk6nk1K+93FCCJu5yOdGJstR29h6XOtar6NtJ47EszUe+5NlzHVtn/zyn6XWR33h2qccPVfLtu6VyfJv8xy14uKa2m9vrWUIaTe3Kd3m5xF5jVIOK54pmdKqnE1bXa31u9z723PYnotyv2p1NJt084l8tn/0DGvlDqx2tBhIRJrzVdct7ZnlnxzJC97rs5fnQysvV+LJ43rkOupHWfOX53jEB+rV6elVrluurze/17YbfV/DOoe9fXgYOas8etG6XtsVkWP7tdXnkbXo2TdtHUbzBHUf1r4YtXcern2nJNlH2thuI54rZdLWTmR7rnrzT0fyNdZ8HYl5rLG07hvRfZG9fczyt+715gLvsT9WLN/r09NXfY5a82zlxLy225sL6eXsjtgES2atvjZ+69zsjcnjd1nttbi0Ibs8yK2dbZvTNJ7Ht/Lg5fNAb040xmj6Ylp5jFHO5/PmWo5TXl9fN+WbWCGKPJ/f9CSPY1lkirc9+vr6epX/6elp007uo4w313Xd+MAlnvy+1xcs57XWG8/zmXw+5bzcpU2RKUwSr/UuSqPpmeVPjuxRDU3fS/92dC94yluxUKutkWdFeV1G5OnpivfsaPWl3eOxi96zt3W9ZVfL7/Mp7XJEYZpMO9Xz9cry+syu65d+jJU78voXJWW/67pu9o8Vn5ZytfbbiF/pyaeKtH3AVr/anJfj1WTw5NI9cUT9LsrovhiJ27x9eBlpp9TROEVJKW5yVcuySFqOjSUV8URZfu/zWEtvvTnBI/75HFeJsR6LvY/L8ntiwSPXLUbOp1YbGqXflavEuF6vlSzLWdKyz+HU58jR7fCo59hrWJU8/yLyth96MXr9vXdOHo3TWnFVeX0kFi7rlnPQ22OtM7Fsq9ZFTyw4kp+3yrVrF7tXtv1mo5ZxX+XImWr54EfyXfWc7veU3qbmQxy1My27Njo/lm7WXWT7U9avfYVRRvTeol7bOvbK/+X2p3mWWWb1/lZZq08Nr39i+8PXT+7cjC5DeV8w96glc6kL+dm9pgu1/FY+pZU7O3J22vrbzuGM9rOtk+PyICKX54+S7P3fOh88ceoy53NyO1e2HbnpjCWTlcNJadnZtHVdZV31d8c1eS3/oNSZ87wUz6uTiAR5//7D1Xe97tcqTlDPl6LdI/FVuSdac1XbqFrWurzVp5WfznjjtRa6Lm6+mfk87f4jeYWWTzzio1ky9SjndcQHt/5WwpLFY2e8tq4Xy7fabZW3bEyuO09xl7uZpkmmxv/vudcu1OXWnmvp/r7u9p4jslhyHbm/1/Yj7j+Sa83Xat9uxH3zyK/peO2HpOqs3PubaeNj3O7v78fRPdmSfxStv9H2LmfRvqz3nnurL80Gl+82a/s9Od+NbfkhR/Mvrfq92MmVewr7d9Hq99Pujc1a5972PazH/U1Aa060MbfsyOhz6brekfys0tqbLLacXpvu6q3Rx/H460LLv9TKR/QiyD6P9khSKs5Zab+vlOOjFtm2a2N+9DhGfSkREVkWKXPPIuUZdPOhU9o+8/b4DUf0qKU7npigPpfyWMrmrLlvxfj3ciSeuEeWo7KX8380BrrHz/LkKT353VZ/2zzP1kfr7aHWvNyb77zccsz+wmM5lqEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Ann1K8Co4QQfoeI/H4R+Z0i8o+IyD8oIt8Qkc9F5Fl6P2X2OFJK6Q99or4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+ouDHVx5ECOF3i8i/ISL/koj87q9ZHJHLD7ykr1sIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAH1f48ZU7CSF8V0T+ExH5Y3L5wZPw9UokIj9FP7oSgj7dVnnrWkpJUkrXz/W1Uay2Wv33iDFuvk/TNCyX1V9KSZWtNS+Z+r7WPbluWR5CuP7n7d/ThyZnnrN67vI9Ld05ogc19RrWbdd9xBglpfxfrhMlpSDrukpY/SbnqPzWfaPtWWtstaXV1fSnd492TdNZrd3RMaaUrmvc25/ldW1c5XVLb46Q+yjnoN6P+V9rX7R0Qrtm2ZdeW3nc3j1uXZumyWX7WzJb9qlmdK1aetKzF95rrfmq63n2lrZfWuNu6VLvvrrPZVnM+qOUZ4LIbS16tseao3LvX2y3rldHqM8/L0fONG2M5ZqXa5bnrKf3mr0b9WFafVhtafdYe0SzN60+67ko2yrnJbc3TdP18+vrq6zrer3ndDrJD3/4QxER+fLLL6/1Xl5e5Nd+7ddEROTDhw+mLB7O57P8+q//uoiIfO9735PT6SRffvnlVeaf+7mfu/ZZ3pO/n063sDGPe57nXT8xRnl6erq2m+nZVGsNa9vxJJPM861uShfZ4tNNFm1dera21PFybTS0tY9TfCsLkoe2rotMcW9XLH07St1Ey07VxBh3Y9H8gH2f6Xq/htdvaNGye5advtTLdf3jqNuty0v90XymXN6y+z29qvuxZJ7XS1xQsq6rrIaKa2uhnWktH6DVZpa5dW/Wk7zXrHkuy/PneZ5lmnJ/Rdk87fZivqfe0zWWrNYalX1kuzfP86af0h6u66r2sa7rxo+xfPHye0pJpunWdr5/mqaNvqzrev0+z/PO5uSzqVSHcm8c9TMstLm0dNqaryxLnMu9lff1fbkQbeyl/lgya/reixEsXSgpfUhtXLFhP+7LVVlniB4zantU07VtH/u5aJ1TpzVJjNtr6xolTrr+WOeNJl8vr9U7E2pbVhJjFIlh+70gxwf5c28sj9iHmdomlO3Xfo/nrKpjqMyIr+6J80f3eEv23p6tKX211v2edRqJ3a1cTStfecQGebDiv1a/5b2WrD0foCVLr55Wv/w+ku8r57zXvzff0utLo3Umjbbn9Vs9elm3e+RZhxWXa/2ndDn7N3GKYSM8Ou+1L2Vb1nOEEstu5O8j+cKenbVyxtp9Pd3R7JrnPKj7rPux4kprLjzzcyQHVfrJI3s493FE92uOnBejPlSWSWurZ5M1WXr+Uq3vMUZVLy0foLUPW7JdrqmCiUj2Yy8yLctZwvnjPK7v2TevjRW5zEnec5f47+Y3ns9nOZ/Pm7oiIl999ZW8f//+Wh4+D/LN97PEoo8f/vL3ZXqdrvm85+dneX5+vt6T830vLy/XPN7r6+t1bU6nk8zzfJWtzu97zqjWHrHyLCXes3tetrmtGN/yXVLanigx6ra71OuWHe3t5d4zqxFf9945udd/sWy61n4vr9SKyazx9M62TGvNtH5b/mhNb25H/ey46n7Wxc/xrVE9x95zW4vltRi1lbvPZZodaD1/Femf261+Pedta/xWXqdVpx6nZ328fp71bK3MN5V16rFpz2PK+ff4E1l+bd57c22db0fOgVYfuRvv7ZbtGfHXPH308gH1+eh5bunx2257dL/XQuifp6U/7OXI89ieDfFcK+uM5gJK8q1lDnR7Pam6u937samDlp9bX2/phGafN3JO+3vm+SSntLcFo/F32b9W3sstWWtk+QMtubTcl9cuefuo5Sw/t2ynV69b9rYs166Vdq9uo9aNnjxW+y35W/bNtw768wH//VVrB3zX0TXz2JeRmNR6ruOlt2c0X2fEJ81jWWWR/Hw5vcVBpe8R11XWgfdPW7Sed3v0ol6jGKPEEKvy/XsO3jNG6XGzR3tnfq6Tq918F/u955YseR+OxFae8nvrZvx5rWzPtnms1vsolv1+iGUAACAASURBVEyemDnOceML5bY8OmblJKx+53nf3sU3n925gpYfcC07hY3PH4LIy8uzPK1PZrtH8dit1lxa93t8RRFdr3r5QqutHi1/IOuul5afZI2xNXbPWEbzDyNYNrT0D665GlnfzhHdv/Gs8RHq+a79TitHpd1vnUn3ytW71utHOz+854nmm4QQNnkGq01tno6eE55z3XuOeee2vM+Ta/aQ0k2ve+Mq+yu7vPkHdhuWiDed7vsB5TjLs9aSOcZoxkDecVox7GgMWPdp3r8PfdV2rHyVl9K33t5282Pq9sp3h8p2tL9tKG1VvTdDCGq+L197FK1cdy9nMhKPHfk7J+vdIcu+j/jJWj3LbrbuOWJXrDxJL9+SiTGvw9ZmbPX1cT7Co9rq5ZS848+M/F3IxyLJbZ9c/5X2OG623M4L3cr293rPIC/e2Khdnpry9hjJY/RoxQYeHQshyCqrxJg29uDev/sazUkdYSRv5vEnLV1rye9d77KNOqcjos+35Wto8h/xGXsy3/IZt7L6nHvk2mpt5b8dr8tqu5d+en4y4scGfnzlDkIIv1dE/oKIfE9upyNaDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BMAP75ykBDCPykif0lE/r63ovJHVx73U2PH4AdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOvDjKwcIIXxbRP47ufzwiudHV/gxFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB8z+PGVY/zHIvLzcvtRFe1HV7QfXLF+nAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Mfz4yiAhhJ8VkT8h9g+vaOXvROTviMiPROQr0X+YBQYJIcg0TRLCZapT2k5r+b2+1iv31PHcm+VslWvXU0pq+9M0ufosiTG6x5C/W/2nlIbkFbHH3xpL2VYIYTNXvfnstWeV12O3xm9Rr2euG0K4S4fymLfjCxLCZQ57OlGOpWxjRPdbulr3YY3BartVrtXpydLrt9e/1Ya3vshWt2OMQ/23ZG6ttdWPxahNONJWea3eB/U4tXkOIcg8z9fyIzJb91jzNc/zsL621tjS4bI8xujSa239tb5H9rnWX1nW2vNWH7059+zLlj6X99dzUt5Xy6HpWEpJ1nU1++rh1WtNniN91bTO8FGstnq2ZdT2WPcekbmcE68crfXK9qasV+tLua/rPnvly7Jcy06nk6SU5P3799drLy8v1+u//Mu/LCIif/fv/l15fn4WkYu+v3v3zjXOHr/6q78q0zTJL/zCL1zLfuVXfkVERD7//HP51re+JSIi3/jGN+TDhw9XGZ+enq7yl2Mt/ZEQwma/53mt57s8HzznZr4nnNddnXVdZTWOyCP7wtpvpa3OMl/HMQcJYStEy0/znmk9mzxNs0xTLt/6y14/s9R9Lx4/rK7vucfao57z6FZva+9jjCKFytT6U54PdT+WPvbOjjJGzWtR7hFL/hLNf3+7Ivvb0s5elfuzNRaLcu+WelzqlrWvvWdjWbfW2WufU7lGImUqpdbfvC71vmudceXnUhda54A2nmVZrv2XdZZludr/vg8SZFly7JfHJHI+p+u4St94XdfdOtdjyXYoxijruko5/efzWV7TTYZeXNmKw+s9Xvbvaa+1x9enVaZp3ulVyx/V+q397/qax2bmNSv3RWsc9d7JPD09NeUp5crXYtzKt66rpHXt+vMaN/uUZFs1yDxPMs2T+9ys61ljiTGq1+p4alrz3ri1++HDB3mNNx0obWzW77q8Rb1mvVhMs09bW74/50rb1NsPpR30xIXWXijnsbVHrFi0xJL1po/x2lZvzkdirlI27z2eOWvlde7JLVlnmlWnFz/20GyV1l7Ln/Rg6XOr3SO5JI9PVPvgLayzW+uznktP3vlR/rsmS6/OUTw+mce3a7XtGaNXRq2/S9nW/00piRhjOzJnnjyiVe7R46xXpW21x7pvN1Puxd6Z07LPrfkqz1rPOSKin/29sXr8xtF1tXJMtSwbv2Oa7soLlnie2x3d09792stl5O/lv2UfnjNKs5cppWueK6PlGXr+jSV/+fnyn8iu6jUXcPFvQwgyT7OIsSwxRles4vWJS9k9OlXqYmkf6pj2dDpdc3GlLF988cU21/5ZEPn206aPn/md35Kn9bQZZxnDlHtPW9fe+es5B2qsOffOtxb/esgiavfX6+XJnfTGIaLbyt5evKfv3L9nvVp1rLVonQNlPGLleOvcVG8N53nu6kMI4Zqj7sncKuthnUfZbo7ai7pta028MYhVR8tHWD7EyD4udTffV+ZKvNTy1fOozWvLN2h997xH0fpu9eFt37Kn2n6o186S1coFeGMLa16tdWm1ra2fJbfH116nKCnlnIMev1n31/LW/k2v70fGNiJtn0Dz77Q2ynbmuF7nJhPjKuvatxej76u08D5nsPKiFt4cQ8s+bi+Fa1xzK7/5P0feuyupzzmrPe/zT7WPSXseuogs7XVr+SqtM6d15lntZXr7vHd/6z0Sq0yzPcuyDMeSdfxr2Q7Pua/5P5Yftp2z/PnWTm3HLLnuzYnUMmpYz1Xf7j7Up9Z/r0zv/1juc6S8lCfHpPW1eg+M9HGPP+khy3d5RvPWx/QWX8coeXnX9XamjPqoIv3nH/n+0bnKe8Gy81Py2/P9PsoN2rKM5Nda8VZPrlZfR2zsaF9animXe/2l/fVQrN1YTuhj7Qer/Z6fGsL+3fv83LP1fMArw9YOlL6h/XzV6tO7XvUzxVabj+Be38vymY/IuRn7bg3DLv7Q9su983PPvu7ZiqPtePeFdfa3nkk8ktbcjepyK87tnf0jjL7f7YkTezwqL9ZqXxvDEXsyIqvnHBrxrfb+xbE9XsecrfzOrf3tc6xJpmJe+/5uWeSR2WuHrfkr46aWf+S1bx5bru2/1rnozR2Y92zOhFverc7vlPpfx2za8xzt+z20/Bavb12Xj/RjceTvCI7kZY/k6MryNGW9KvKR6ypT9P09qqe8Rmu39znrY9lF7XvWeYcRLB/Wsu+tsZTfW3P3SB1R/QBZ1fxsjMef4V90Zmuzc7k1nlbOxJo/rfujObZH0fr749Y9Wi7U+/eP5TugXjzPbGtu/n6S/AxiW36MI+eQhbUPH+k3aff3/ChvLKb5s558Wt2Gt//WunnXNE1TU8aR9lo5Fl9bpd35+DEW+ODHV8b54yLyLBdtrjW5LPurIvLfiMhfTin9rU8nHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHjgx1fG+ReUsvyjK0FEflFE/nhK6X/6pFIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEPz4ygAhhJOI/AG5/NhKJv/wShKRvy4ifzCl9Btfg3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAD++MsbvEpEn2f7gSuZVRP4Vfnjl05FSkhjjpiyEcP03fy7L6/vL8pTSpn7+Xt9rlT+SWv6eLPV3a160fizKtrXPKaXN51Y71rpYsrTGWc6FJWNLFqveo8o1PLpSr3H+vq6LxBjf1jRJSiIxRVlXkfP5LGnZyzFNk9q/NceteSllqfeMZ13L+zWZtHJrja12rba8etmr2+qjR7kW5b480l69r0t6e9E7vnp9vXqu2YWyvdoOeOSz9LIsr/dLa44syjWq+9Tam6ZpM4by/nrO8v3TNDXXX1u/+rNnbL29WLfd2wOj+mSdXVZf1lld27C673VdRaS93q0zYp5ntU4mxuiyEZbfkOUr61lz0fNPat1o7dFyj7XOSo9/Ua7F6FmrtZPJc9/Cq+8ltc5Y94/sj7p+nruyLK91vca5fF1X1T6ez2dJKV3nI6UkX375pYiIfPXVV/KNb3xDRER+7ud+Tn7lV35FRER+9KMfdWX38vT0JF988YX81m/9lohc1uVnf/ZnRUTk888/v47xfD7L559/LiIip9NpI28IQT3j5nlWy8u5q+e1XC/r3BzVvcyR81azydZ+u9qTedrp4TTNcjrd5kyj1pHy3xCCqsvlXF58xNz2VtdG/JySkVjHu1ePrsPI2SQiEtcoKZV682bTV30+eme+Z960sR3xR7xc7Espl77OtT6W9rcXW8YYd2eZ1ofWxggePyNJknXdzue6rpJW2/ftxTaZci/VtqdcQ2s913W9Xosxbs7uco6fnp5MWUteXpKcTtt5n+dZnp5O17ZKap+0tMOljOu6yrTc4slL3STv3r2TD6e9z1W3W9o7bb3zeaDFhi2fsaRes3KPxsL3y5zPi8zrtOmv7L/2zzWatsSxh1v2qbTRvbyKp+39vrPv88Rwt71e75XLfsv7y5KhlS9r3aP5+DHGa3kIQaaU99JtTZ+eniQ92T5k6Z/UcaEnF6HJ1RvX1r8TWZZFpsXWfc+6WHNU78m6f0vGVl7NsvHa9dZc1L59K+bX5GjNS+uMHolPSlk0O2bFg972PfTivxpt/TJWrFzmHDxj1MpHxlr6qa0xWbJY54lWT9tXWpymXfPMd09fLb1u5TW17/fMd25H0/2y/N4+akZzQlkeT3nvHLnO29UGFus67WOvFt6YojdeLcdZlte0dCvL710jr70sfVuvTbb2lsVUzL+lc1YO1OM/aXXvtVe1/Nr3+qyxyi05yrOzJW9LX0ZjK4+Mn5JRnypzxKaUt6SU3sKcJBcf8u3eaZJp9sXLHpk8uSsvIYSND5upyzT/VpMvPic5P23t09NnTxI+bP2zjd9trFc559Y8tXLP5fMQLx6f3WrTp2MiQYJM8/7+0+lU1OvbNO17by9q+1uLn+vnVL24WsOys4+yE9pYc1n9DEyLy7VnA5aN1MZ/ZBwjvrWVuy4/e84trTzGtMsdrcsiixFHWs8mtc91XqTMa3l92Nae1XwgzU/2+ndZRkuOlj9txQyav6b1penl6Pk7co+lS5650Ch9ME2G3h7Tysu2vO8X1fR8495cb2ScRUKYZJv/tvuz2s379bZv9bxK3X9LRo9d9s7ZaP+3unZesNVHSZ0nsbD2zr0ciZ8s+9KeL+0ZwT52bu2R+pKlO578iE/mPq2zKGOt3ZH80FF5PTGzR0frz729c2QPfqx4qvaLPbp2Ef/teUvUz9nyPo0jtrt3XfN7bs8+tmfa6Hy21vuIXfDIb7VVl2lz7z0DeueGVabFgi1a86TN5zVe3pQdm6u6rhUnlXW1ObLymvVYYqh17vLscFpt30PrM/97OVOP76vtOXE7D6x3Ox5Bb628uc1c1svZaeU9W7a9XvtjfSxZNVbJ74UE0dagfkYrIrKucfOOl9W/1lut/5dn8NNuH9X1POeVliPIft80TTIlPXbN/T1Kxz4mo75lPXcWIzmTUSw77pUto93v7dtbfkQuL7c+g5S514uO+v7G5VNx1I9t+ZmPmNMRm926Zo9pb1M84x+zg1sZRvyHIxxt85F7wDuPF5tW1muffZfyJPW65T73ubHt+8qXf4+tuUUrl2OVlfu953vdE1fWt07TJJPo58jIuaHu83WV8p1TkZs/4fFZW3hySrWcvbras5g6T9FjrXycfO8j42Svn9mq68ETP4roPmJdz/Lh6rqteF8r0/LYVvnNFthyfCxfyRuLWvvCut/7Nx51P63vJfO894unaZLyteNWHlkrv13Xr2ntZjt/qVLamv372Dcbo8vT6seKda36FsuybL7nNk7r3j4sy1LkQS9lZVwewvbvHUZt0hHbc9RerbJKjGlzzrTemc94/XFLdy3bUDPi11px9MeNDfS8gjXOGPby5OemFj35Wz57b53s9nI74/bWgycGWN/8kTLntCyrLPNS3fAQkWCAxz0l++ngH1bKsmfz51JK//cnlgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwo+vjPHNxrX/9pNJAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfDj6+M8Xnj2v/2yaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAuzl93QL8hPGuce3XPpkUcCXG+En6SSmpn0VEQgjde6zrn0r+lgzlvx7yeMtxp5Rkmia13jRN3XHWcsQYVZksOUfk75FSkhDCps08liP91PpRjlWb/xijrOt6/f70usi6rrKuSWJ8m581ShSRZVlFlku9eZ6v/eX5DiHINE2mjpYytsaoyWzV0dpu9etpq7X/RETWdd3pn9V+qb/l9d4at8bu2ceP0J0j97TGU475Y+w3q93WuEq5WvfU9id/z/ugJ1eL3nqW17Pe5X9rW5jlqcstHbf6rm2SRTnnnv0VY9zNpdW/9b3en6VejehwSmlj+1rytGTrXSv7sWxL3W/LjnrP0d5+K9svdcUaQ0+W2r7la9ZZ3RuLdiaO0NNxq99e3/m71a7mg4zYY80f0fSnlut0uoRYtU3K97y8vGx0cVkWeXp6EhGRb37zm/Lu3SXk+PLLL+X5+VlERL73ve9dy3/wgx/ID37wA9dY8v3f+ta35IsvvriWPT8/X7+/vLzIy8uLiFzmLMvy9PR0/TxN01V/5nmWeZ7Vc7TGKs9taT6Xpa83m7Xtt5Yj32f5k15655XITR/iGne6tq6LpHPfRyh9k3L/ts707X7N5XZ9T1taXe1Mser37H7vfNLa6smitX/7LiJysblBwmbOtLO8JU+rr9bZPUJrr5TX5lT67SJ5jB6Z7sGaJ4/fVtKy9WUMk4khStbxfGuMSUSpW8qqnWm5D21+tHr5s6U7ddxW3mO1W+t42fayRIlxW74sSV5f43VcmRCCzPO8saW5bSs2utTLdjzJ6XSS+HSLIUtG1rum9ket+SjP01p/81zGGCU+R3l9Xd7qXup89VWU8KHYF2/nUi17eSaUc1SWH6Xlo2nxc31W1bZf42oL51mmKUhZbZ5nmeZZtb1evy3M8aoTb3fKPE8yzfs9ZOVIWlh+W9lOvQ7TVJ6L2/usmF2T5XQ6NX2T3lja/nCSfOaGcPlvnmeRoLdZx4I92T2yWPdb+83Sf0++oK5X+lelDWytixXr1HbVkr3Gsv0arTlqxRC9OnVbLbz1erF5S1/uPfs9eaER+bT9Wp+D1r3ad6ssl9fntYWmi62caMsX1OLvWqe9tnPj+xjxq3WOWLFU/b2V7xmN5axro3mgWkaNVMV/bx0N6WYtm3edrTqez0fx5EVG22rOrzEXViyWP2u+socc21i+ek9GK1auy+p28/cYo2njrXPEyjWPxkGabOV3a/wt+15fK+1aKVNPLs2H9fTvYWRc1tlSyjUtUWLMccSlzuvrq7w+hSK+uPhnHz4kmc+zOX5rvjyyWnOvtdObg1bMtMkFVHm4TbvPInFer2MXEXl5OW1yIXV7HvvV0iWPH9WqZ9XPjNiWoJ0V4TYXrbY9/mj9vZ6vrHvec2Capus9dc7Hir8svPmXUdtXUtvO+r5aT3OZJn/9/KeU8+g52vPdLVny2nv03xNnae2X9WLU83cxPiZ/2PIBLb+xbMt6NjfqD9bUuqLZnlqOkb1U36/1odkuK0709l3nleqxHPGvPfRsarmO9fy0zgPLr2mdUSWeOl6WZS3Gma5laemfleW1PP51jW/v19z2Qox6Hto6E7yU89WKcb12RO/j+umwnLV/7Olfs99e6ji87LtG29fldy3+yNfWdb2+S1XKfVnXvC5y7XtZFvOMuNjt+GZDb35nnet9RAyY29XG1MLb94hOj/oLj4qNrX1cfz7S1pEYbZTeWdlbgyWsG5sUwuX9gbCGjZ5557WV/7HqlXvMyp00ety0OZrTLPvqrf3ROLyFlktr9aGNMT/Tss7NozrWiis9+b6aNdzsZJhuvmnZlhWPHNnjLTuvteP1rcV4L6Ku388DJikvWe+V1Od7vn+aar9TZJ4nSVUeyeNPjfiiXr3S2rT0qBdXevbepakkKd2eZaaU/xt7j1Fkqz+2by1y04PWGLb9tOJ9b37byj3We6Vur+dPp6mUL+zmr9dOLcPHpGc7W/Tyala7R8c2Mn8ie/t4T9/53kfGTCX35o68fWz1eHvNm+ftcY8/mSmff/di4Vb/nvISr+1otevNBVr9l5Tv2zzaJnhlfJSeW+3kWC+Tx7ssy7Usz+n5fBaRbX4933uez3I+3+65tHGWsLb/DmGTy0qramf6OZS9T5P3VKu9y7/6dW9sWfs3R3x4r49ff/bS80+sz9q52/OHdPlucZiWR/PkyDRG/INe++XfpuS2M968/xE88h71Vby+olbuXRNtD9Xvkj7yrPa0p8m4tQXtGKA+6+6x1T2/6Z4coVeWUfmv+0rWXTuXfOGYj6Gdq1qZNhe3/PMtr9hq26OPZdujOQfvXGrzotnHci7ypRhXWVc9ZhyJdTWsOKvFWP5sO8Z1XWVSxtJrX3sH86gdeZTvVp8zXl/3yPmu5RXrNi3/xjqLPP61J9/Ro2wjhvLd7MsHaz/2qO/x6HC5tx58DMGDuO+vDX76+EHjGnMJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwEwQ/GDLG32pc+/YnkwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuhh9fGeOXROTLt8+puvY7PrEsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAf8+MoAKaUkIn9VRIJy+fd9YnEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgDk5ftwA/gfz3IvKHlfI/JCJ/5hPL8lPPNNm/HxTC7TdyLr+bcynLn2tSSuY1q12LVjvltWmaTDnLshij2lYuz/V78tfzle8LIexkqetocuX+vP3W4yjvL9vQ5iSXl3NkrYV1v0VKqTmH2rposlkyWH1q31NK8vT0dP3+FCaZ51nmOco0BUlJZJonkXmSp6eTnMJp11Y5lnLOW2tZfrZkq/u4Zy0smWv5W/UyLTvQopzz3h6q53KaJnNf1u2L3ObLo4/a/bkNjXL+y7GU93jWtFVer3cLz1x6qHXHo2Oe9kpbV9uwck3neTbbrnXH0m3LnlhzNM+zKkspf2u/evdYa0y9a731K88VzUZacoUQZJ5nV//l3JSfW7JZbZftePRfu2bhPX/yv9Y+1mSt26/v8ZxbFi2bUss82ra1DqPndquepR91X9acleXa2d6zq6UuhRCuMtS6WvuDT09P12un0yVE++yzz65z9vLycq2TWddVRESWZZHTvO7Ops9ePpPz2/2l7PM8b9oqz9F5nq/fLT3M/dZ+ZDlP9bzU5bmNUax5L9uubXld1uKoTyFTkGnaztc0zVJOoXUmtPw4i62OjscmHh+u7McqO3K2jJ5PLbn0GCLPTZKUwnWM5ZjnYl9keueEx/bd46v4/aayP9mMMVOOpb7fsxd6MbbH17H6tHzoaZpUOxLmICHk8vRW92Zzer5WWae2VSXrupp+i7YnY4ybcSzLsrH3uW7Zbozxavuy7pa28OUlyfv3Lxu5fvjDs3z4cPNh89qeTqe3GHG+Xstnx+l0usqS65wkvvnAueVJXl5eJDztz4jWHvf6i54Y0Gq7Pi/jc5Lz6b2IJMm3Pz09S4hFnRjl9fX1OhdaH3W5pQv1PT0fRfNFtTG38gWaTdr0sa7VvnnzLyqfUPO/Ldt1kb22oe3cjEYrNqn3urY29TpMU77WnutMy5+w1r++Zp119Txo8WQ+c+Z5lnCyc3rW3lnXdSNbbS/LetZYelixb91n3a6lu569Y1HHcla71jzU1G2VcZImj7U/yjKRvV55fLMWrbmx8qU9jsZMrbi2F8sf6WfEJvX68+Rnem3XeXRL/nIuLBvhOTctWeu6dWyo1WvNy0juRbu/J6tWz5Nz8MjQ0+Wk5GpSSiLGfa3+rX1mjSXTygl59q4Wj/T0pzsvhg/stSWantR71MpDenTJWoeefL39ltuzzluLMsdRjquVo7LWqBcL1dRzVs9rL+Zu+aPefe6xEb0zskcZ2xyJ8WvZ2rqQ1+ZSfoklg4QQi7r7uasZPXtzX6WsWd4ay0ft5RW0sWu6WO/RHINe/rvUeX19lfAadvpU/pvbtfSxHkfPXrawfDorZvCuT0pJTmuSlKozXjkqLF9Hy6G09qa1R6xyrSzH7zXlPLXyRD3/1HtuteZZ05dM2b8Wj46cSeX8l7FJ76zyjKGWt2yvPp+t+qWMMcbNNSvfX+/ly5mTdvcv6yLLovt6pb3R9EI7A7TzpnW+W76xB+9Zsa5rMzavZe/FItb8t9q3sOZL+7euV557vT5ae8j67inX7FVvfjL1HrN8q5ZuePxV67xsjf+iDyJSPPOY50nmOJv3tMpP6XJ/yTxPqh+YUjr0fMhj+0d9LW3utvccy09o7fcYzQ9oaPOanxOU7Vv7Kver5RZ7c7m1oTcfsrUOrXLtGX2dW7Nsct/P7TNSV8PKv5XfrWc1tRyWfCWW7rdivNZ+sc50q6y+tzeWkb3pobV/LNuRksi6RgmNc8brz5e04gzrnUKr3cs9q8RY27o4nJfwyNii1J+R/nr7su5j+/kWd4Vwk2E0jtZksfq3cgEjfa5hvcZNMcWrTctLdvFNtzKJ2M/cNH+pZxta/luMsXkO387D3OZ+Xjy+h7VW3njuOu7lNp9ZrnWNh3Ijlo+vtTNyXozKcaQfkTz3IiLZj9tc3cVKrT5qua31SilJmi7tb8tv91yege7b782pJqOWY7rk8fu+44ivvR1vEpFweY64TkM6Xpfndo/EHR6Ze/db8W6m9EEsO9GyEZ7+W/usRy8u8uyX2lY+yuew6tX20ROPeeZRq9LTC8uOjoxhtMyr654z7K2Xor/9u0KaHPf4jZ77a53O1S8xz30xg0eW3rodp/xORQAAIABJREFU7b/Vd3mtfMe+rFO/Vysi8vnnn6vtiYi8Tue3vxG4lc3z5W9ycn3rTGrtjfK+ng2sz8p78frQ2merTt3uqKwj+qDblK1crf61a62/L9jby+u36729v0+w5OmdHy1Gz+wj9eZ5lvj2d2l1+ZT0s9rb9iPqjOajvHoZ5yi391AvnE63fZ/bss633ueeXL37em2V9r8nY6+/I3Yn51S1vNgILdvTipHtXMrtv619ts9Er/2rrr7Vact3e257u7auq4S4HVtYL7mVUkTNz9AY3Wej+huqd6lFRH13xyNvb101eVvXRm2hejaEfV4rxlXW9bgP5Ymf6nqecm+fLQ7/XcwDZAghSJS97lxi3eNn5RH5WnFZDOGa58nFy7I0c7Rau9q1kXh0cu6zx8wOjPDxdtFvX/6siLwrvl8yXSL/Ygjh7/96RAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBR+PGVQVJKvyki/7XI7v9i/DMR+Q8+uUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwCH585Rh/SkR+VHxPcvkxln8zhPAHvw6BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYIzT1y3ATyIppV8PIfxbIvKn5fLDK/L270lE/nwI4Z9LKf2Nr03AnzJSSu7yuiylZNaz2m0RQhiu45FzmvTfSZrneVO/bFsrs2Sp+7PuKeuVn0MIklKSGKPZV77HmtcQgtrv6Dp466eUrv2V/WpltZx1P3n8Wv/1mK31rteubC8luf4nkiTFJDEkOZ8XScu+31LGEMJVf+pxWuUtuTS0vstybS6t9e7V2c7Lrf2WXvXKy/ut8YYQZJ7na1lL1/O8lnW0Mo3WHNcyanoVQrj24bE1Na01qfXF2q89PZmmqWtLNHktfbLqWbK29uM8z5u6eS61tSzb8OwTTcYYo0zTdG2/bLssL7H26wje8/EejqxfS8fLOmUbp5PuytZ2oaev9Xzv7XB7PrTrpf71zharPW2+vPqslXnO91b/Ndpa9ezcvbTmWqO2XT1ZLZ+r7qvuM7dVnhXrum7qlzoVY5R1XUVEZFmW6+d1XXe6KCJyPp/l9fX12tfpdJJ3796JiMiHDx8kfGNvM95/eC/n87wbV0pJTqfTdf98+PBhM75cN8skctlreSzZVubv0zR1dcXyh7JO987XLEtaVlmW83ac79/Jkp43Y6jHUpbXaHbfGoNFnKPEuL0e4ypT8ulTr09rj6Z4zFa3+h2NjaxzqdQRjz/ck9fjT6aQ5PY1SAgXfZ3m/dmtUfuWpfw926DJ1uqrvmbFAto5YOpDcU99X7lfNb0qdd+7D7zraOmBZ+/FNTbX60g8ockzz/NVhrLdcr5KXyGltLGRpe0v213XVY1Zcp1SlpeXJJ9/vh3rd77zxdWOl7LP87yxvTlWKevUny/9XD/Juq6yhP161Lo+Ehd772lRx1whiIQgklK47u9pmmSax/zgnq/Q87FbcWJZXp/hmr5ZdURuOZ7cdghB4jRJOc2hWLd6vcr7S9Q9NkUph3rLO6Tm+rbOg3KMtb3Q4tRady//iZS/FT7Pk6IX+z1at619945Fm69b/6WNLq41TKIVA1lnixabZErbY62VNg9aX+X8122UZZYsdVuemMmK+c1zwBlblPW8srTQbGI59yN4fKiWz+rp1xqzd09Y8a/nrO/ZTO1z7SfW9Xq+Ws82WTbM2nOaXLVMFh5909ob9W9Gy0fyRVZexooBLN+8vt+ay7o/a11vc5tEZCx+KfvMc+SRWbtfu2aNxfJ7W21obfXk0/ISvfutNq1zRJPXGxN51j5f88g9os+tftt+sk8vS3Jet9W31X+PkbirPqtF/GuVOZLLG+2j7Kfl69Tf93mGbZs3fc37YnvfaP6hbluTv4cWA1rtlrYj/2v5oj1dCuG2JqfTJFPsx3Yt37+WfyTH0xtT1p/azy9j7nq8bT/m+u0a05RyLesi4dxuxxqLxhG71MMTl9bnvuVbi9yfo7/nfo//2+rnYz5fsGLmklr3LXnqeLRkWZbr55SSzPPeVq9rkHXd59dD2D7nrWMdD1qsMZKrKfeu576Wr1WiPQstc2zac2iPDWjZTw+9OEErt+SqbfxITFXKUdrDnlzlvHliQO+6tvDMmdc/3ccgImWSpc5V1fc8yiZ72/HkoUo7ovmGPb222vzYePxmi1Y9TZ81P6lnuzT/I7e9TquktM09answ+8752V0rN9jzUfN3LS9v3WflQFrxcHkpxigh9ve55d+VOSYrbmnVOULvHNJkKLHuq8+S/K/lg5dr2jrDWrHxaGxh+f0lt7zHtqz3nM4Ts7fGZfmQvZxbvl/bI+u6yrrqMXJrv/dsTs/Wj+YPrDG7zuzdc49tHHOE3nlZ5yhG8gUitzlZwyoxXp6je9rW/ME6frRixrp/a2/Xvm5rHmPYvouR0kXnlnV/dtSy1Ht/G0PKZk6se7XyfCkXe/NJI3j3Tut+K64vy0ZiOK08+28pBZHNn1K0ZbPKemdqb+y63UhqruFRa6XJYJVZurJKbVuTxJh2vlQ9Ps2HsmSoaZ17I+08gjLXWuddrfijdU9rba8xd8M/KDkyl637P9acjsYOI2dKbTs9cmiyWH6w90y5F2vvW3MRJe7ODCv2tnx9rU5Ptp692+ZNtvJ5OGL7S+65tyeXVdaaO48t13xo7X3XXnyQy65rNJV192tg69o9c7UfxyTjz2u28rTr3LvmXp+93otat6190fPFPLZmlJE2evrc89s+Brn5MidQP1v6FHhiU+/9TR8g7GNZLaazYpPRdfH709v25nmVaQpv6xPeymaJTl/H49/07vWivXNW/tv7OyhrT7ZyCZo/ncs2/vW6Xp/BWPRsUvmOYI5xyr/90NrY5kxueyus9brHna2LcZ9bacWFHo7YkSmu1xj8FvPq+8d7ltxTZzTW7s3RGta38dzKlmURWfb3W35efe0RcnnuabVh7S3rvUOvPJ56rTpLWna2YFkWCW9ijbx34vUjWmW6jNpz3FUm59x57b1G6adqe0rNPX5k/wD2fHrv6LcJKaU/IyJ/VrZRTBKR74rIXwkh/LNfi2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADggh9fuY8/LiL/o+x/gOUfEJG/FEL4j0IIn30tkgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEATfnzlDlJKZxH5I6L/AMtJRP6kiPw/IYT/MITwT4UQ5q9BTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA4fd0C/KQRQvjnleL/TET+IRH5R+Xywyvy9m8Qkd8hIv/u23+vIYS/IyK/LCK/KSJfisgiIvEjiZtSSn/iI7UNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwEw0/vjLOX5TbD6xohLd/U1Evl72IyO+Ry4+0fGzCW/+/bX98JYQg0zRJSpdpzv/W1OX5e4yxWa9HjFGmadq187GZpun62Rpbr0xkP34PdVshBKOmqOvSu99zj4bWTi6zZCzLW/Pm1Qurfmuey7q1nPn7NE0yTUGmKbyVBZnmSWSe5OXlWU7zSUIIqpxWeUvmUg5LpnyPNsdlW6Wuau2Ve9FqY3T9WuMt7ynX5egeyeOr62n3xRiHbYyImHMcQriWlWtR1vXaxFbfnr1R1ytltvThXtk0WbU2SlmtcqutfMaIiMzzfEi2ni6fTqdNP+VappQ2OmbpW6s/a5zW3vfsvRF6ulheq9ew1mtNLs8ZVLanXcvz2dKFeiza/E3TZNrM1tnXO7ezfL22LPvc6rO1/nWdkT1b234Lrx9i9V2Psddv73y29E3TzbrNsry29+V5Xq+tZmPqMzF/nudZXl9fRUTk9fVVlmUZskshBHl+fhYRkefn543teX5+vl47nU7X8mmaZJ5ndS5K2bS+emWW7Lm/mtPpErY+T+v186UdkefnF5HTTU4PVj3PnNY6cNs/ScrbY4ybn9jsydby26y5X2Ut7OhNJs22ehhZ09F2Lf+g3CO1rWvZaFvOUlbdxnpiJssutuTRbG1rP3j837qvaZolhNLeJQlhMv2sPI4jsYqGtX61HbTaL/d4rRd1mzdqmZNIpRutc7+WpbeudVm+T/P5ezFYOd7yfk0v5jlJCOvm+tPTk8S43yOlndbGqdvcUtbQnafcfstXG6Fe4168fpXnOcpX83lT9tlnLxv/ue6nXEut/Z7svev1vJf1T6dT1wfv9VfOTQhB4vOzvFdi6zzWcozruqpt2ZTrkv/T44jempWyZN3X7EJZnlLayLzGyx4PIV8XWZZVFtnKUfrIlu3t+ce5nse+l/Kv6yopZXty+e98Psu07H2lo3j81FzuOfPreba4R37PeVLrUKs/Tyw5ek/tI7X80/y5nrfavrTa69FaF+tMymiyH/XBNR3Kdu4RMXfvrNT68Z4RHtk85aPt1Nfu7c9ap1bMXs5RnTe4R8b6DLJ8+FJvLH/iyHzvzot5/+zlvJwlnLe+QU3pN+U56uVFavl7eW0NzxnZ6rdFzwe31sJa454snrY8ePRQu0ez6T07Z9luD1ZOqeW3lr6+Jx6pddzqs7z36LPHfF8rV2bJ4u1zVLZ6XFpupXffZW5v+Q8PvXa9Z4111rViI28ev9dHRoubQwiS5iQxioSQrvmC2jcpv7fyD14f+t557emPlR+s772dV7n/t/+u//84e9ksG1Ni+SYa2nMb7d0BT878iP26h9beuwdvm0dsj/fZg0aM8dC+PFK3jokvOR+779r3KHW09s961H6QlXPz2N2RvWDtf0/uSSvXrntoxRbWmX7kvNXWyztf9TpYuZOybsuPsuS35taaU6//W8YgvTZ67bXzAualK70cpRaXWLag5697fFkrD2mdr61zaNRXeQQenRV5TKzQ8nPKfIkV53js0e15wC2PJ/J23i62bJc+s+70c+Lrum7y6B6b3juDY4yyTuvlWUhVHuI+J9zCsv2eNTvqK5T3jNrY0o/ynAG9HFkvpuy1acXivbYse1C3admpKdm5MUsXtWdDj7Qh5XrMhtxHbOWRvMaR/IRXnhY327At650rvrb7z91aelV/rvdRjOWz4vF8bk8Wj59Zy93LWXnbynjtzZKWarwXWz5Hv82ZUhKR23zm/rV92Grncv/epmh+gJUHHPEZLJs2imZrq2Nz04+2b+89X8bZ5rvLNnu2R9PX3nq35tXaP7d3w28yz/Mks8zm+Ta69+q6o3pzpK+93bR94M0z43X73oRF690Ujcu7+Ld3Lbbv3rT3xpGyo+eWZ95bfvo9e9yQaKz2QI5AK9f8piN4+2+30a/jOUd7fR+Js0bz5dq8HvFrLRm989vy2b1yjNo/O899O8uzLNqYrL28f9Zxqdd6dntZs3t0e79fHrHXH2G7LDTfxSdPP6cz6tOa/TtzSOX6Wn9D2PK1a3q6fNT/8fiI5XvHvXY8eM4ey96P2oRWm3V7dXm97616vb7ukbO3b8v47VZmx9xef0u7PmLnj5T3cjst/23E1yl9vMw8z5JEf97oiQFyPzcxst8+NZ9jbv+eKFxlmdNc1YsyTaEqm5ttW7J7GLnvMoayJMglptrWe3Te+J49psljlV1j2Mu3XZ+tmOXRjMT0j46jPbkIb9vNXHe4vWt7LYurrOvlHi32650PrXPD+5xjK6Ncc/G5Wuo8V34UG70/LxLj9n2B8/ksS2VK02B8BvfDj68cp2dR8vW999+/FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4y/PjKcbSfCtJ+VKUsS9W/HxN+4AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKABP75ynCM/bvKpfhDlU/y4CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE80/PjKcfiBk6+ZlJLEGCWldP1eX7fu05imqVu//GzV97Ydwv63eHKZJWMLrb2MNYayrDVfrbbL/rU2ynu9c1bL65mPI+O35LX697ZTf8/jLucyhGDqxVaG/tzHGNVya617ZffMd1ne6qvWC6291v3ltXIuy/XyylLPX26rXp9axnItrbbKvlr6U7alUZZbctRtldfK8iP2pe6vnv9yXaz5t8bvsS8WtT5osmmylHNhjUVkbG/V9adp2nyf53knS2stW21bWGtRtp1SMm3x6Fr07Olou15b9ChdFtHPpTzXvTOiHFdrfeo+LHuk2azcn3UOtXS5LO/Z2FovLZtk2VXLB6hle7R/U6KtQT1HvXOhvlb3Xd9TzpO2FjHGjT555qE8006nk6zrev38ne98R0REXl5e5KuvvpKXlxcREXl9fZXTaZXn5+drfRGRz14+u35///69nE6X0O/p6elqk2rZXl5eVH93mqbdWVfOkzYX9bjusf21fbv3Ny2P6GJL/sv3IGXxNE1de9vSUdcczSLzvO1jnk8yn3w+d7lvvD63F09sYfnDuUyzRfW+Ktu9fO/HgK04zCrzzE1rj3vWtiXD7d8o22ph50v3fNhaXktmrdwbD3n8llY/W7byT9PW9xe5jDH3WdvkTLZ7lt+u3VPqa2kH13Xd6ceyLCIisizL1fau67qxw+/fvxeRi92OMcr5fL5+f3lJ8gd+73clJbmu8V/7a/+fnM8XuU+nkzw/P4uIyPPzs5xOJ3l6etp8F7nY+NJ2z/Mscb30FULeWyIfPnyQRZ6u9TRbZM1RjVVu+UCW36FR7uu8NDEmkYaf7omtPL6r5Qe0YhsPKSV1j9R6XdaNsdz7QdZ1lfSmWy3/zOKyZ/Z2PyVfG1acVX7W9l99T+1bT+e8t3KZ3z6X81rHYqUuev1263ye5/m6l0SShHApm+aw6d+izGO28K5raaPKPmoZRmNbjdxm7T9och1Ba+My38fiSZGtrFo71lpZMeH+XH7M76z3+rHQzq6W/+KR14ofPXKM9OOpe8T/8uq05ZuNytPylUbPzRpPLqG2Kff68608QU+WmlFfWmQfB6TC5ubm5nkWqer1+rfq1bZR8y1r2eo+tPlvnfMtOVv05rN1DrfyomW5Jbc1l951LeuNxglHKc8s7XzX6NlSb95SO4czvZjk0bTa9+r7o2RsnRWteKI+yx909DbjZMv/POKTeM6O8txvncNm3P6cZJ3XXU7Ke+6Xnz167lnLet+M+iDrujbP1LLdi9wilxii3LvXT5d4KvmV5xJ/BfV7LYu2R3pl5fxo9mZE30p6dtnqL/dZUsZwVj9e+9A6A3NbLZ3Vynt7qydba66O5MK09S1ZV31/lUVlXj9T505LPdQ+t+Ts5UIsRnMO3ryER49CCOa8WP1ZY6xlseZV+1dr497z0fPOjDdOKevUZ0rv/rKeNqZejqzux5oXr11Lc2kjL2XrukqItv6bbVnnZtKv1bGV1ybde95aZ0Ldx7pGiTFtznsrHrxXdssXzL7Zo3IhFlb8kr+X/5bl9bLWuuTt8/J9fy5Zelyfma1Y3nOOZNZplZTiVf4Q3s6KdfusYiRH5bXR1j3edrTr3nxTORePiEU89rZ8ttTq14oTvHWt65ru9s7sniwfY5+W87KuUVLaztPFTtlnSc/X7eWeeuPr5Vc9sck9ue4jOdWyT29+z5OvSyntnjdtq+r7uhf/af15bYDGvTpbyjx6fz3WGKPqd4ps7UjpN1l715Nf1c6xVmytye+1/yNzVPt23rgphSQitY9z+a98t6Mc1z1nxa2NrW6X7Wo6XcpSMmLfNTk0RtrcypzriuQ51frwnG/e9fOOtaXDI9y7X4+0UbLJNcYopU1MKW3e7/hYeP6W5KiPkblnjUryfMWwP/tjXGVd22OxnsG0ODoXmr07Er9sbaGWz9FtibdtD95cTniLCev80j06bNmHlt34GHnMXv0j8U/9PUqOqfv+inVGXcrymSyFHW+1WcqoyazFu/uzImOdb/UYRvCuj9dvKOUYaXskni/XqP7cyiVc2zHmvrWfvO/devJymnz1WDxteq/r2L5HKY/Vx6iNPzq2e+rnPZt9rVxm2duWztyL9o5gLacWu7Xa0uiNayT/4D0jRuap59dq73yVfeQy7RnTNE0yJX2eNfm1smnK+lG228513+S085K3+NGOae5l1CZ1WpOLjSi/t2PpVt+tOR+Rs2nXG+dOmVfP3Xj7b8XpvXtbeNZ9pA/Lnzzij3vrWfctsux8lWVZJKx9fRi38f2yug8RkXNKEmOpy0HOy1lktd879ea8RnDnMh53HIETfnzlOI9/UgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfDH58ZZy/KvxOEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE88/PjKICmlP/h1ywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3w4+vwG8bQgjN75mUkvo9xigxRvWeaZrUdkMIMs9zVxaLWhZPvfw5hKCWi8hmHKXsJdM0XeuFEHYyl/1keuPyjlujNRe53XLMdf08Fmt982fr/vJ7PR/58zRNw2O0+rHkr5niKjEmiTGJSMqNSEq38Vgy5XFoa3lU/pF61ljrsnIMmow9Gazr5Zy29kvrvlZfI/Op7TFP+9oc5nLPuL1417kkj6fWwda6l/d692Kr716fPd3zXqvHZ5030zRt2sjnQ8v21Fjrd2Qfa/uq3gtaH1Y7vXJND7Q+PO1516nUw1a9Eu2MjDEOz0tJay6O2F5rXEfOIQ+WTanLvXbH8kmOytaTU0SfZ6/t957VdVm5TlrddV3VtnL90nfJnz98+CAfPnwQEZH379/Lu3fvRETkhz/8ofzgBz8QEZEf/ehHcj6fN3194xuTvL5+e1P2/sN7+fDhNv/v378XEZHvf//78sUXX8i3vvUtERH55je/eW0vpSSff/65iFxs2Lqu1/Knp6dreUl5xpV+Z7n21hzn+paN075vbcXm8q4fr+9q+fpluy0fZQmL1JdrWUt7k5nn2R3DaP2moM1tlNyFNa/3nvuWrJ71r8/ErGNlvVrucv5baxHX+OYzi2S/eVkWmdd9vKbJ3xrryJxpZ22ejxjjdZ6OnKPTuuzs6rousgTf+Xov3vPNikFbsbiPpNpcSy9aul/LWMbG2t4p+811NBt5Op1kWZZrm7ndzz777Po535e/v76+yvNzlG9/+/mt/NLPz/yMyLt3l8+l7Q0hyMvLi3z22WfXPrOs8zxfx5b9hss124bVenkkB2Cted1X/Vmj1IcoWzshcpmv+XwboyaPJWevf2897Z7eXJX608oj1e3E06kaZ5Jpmq6xxxEf9uJ75Htv9c7ns0zntr0tsea/1guPvdvagdzOpY15butXbqeUR5vjXD4SO9Qx3lvtzX0xRpF4G5M3p1DSOlNH7bh2Hnv0uReLr+vaXMueHSjl0fq2/OlRPOdTafc0uY74SqNyWbFdyw49Mg9U47HTrfPBm4fPZS3bpemSlVfz2uC6zuiesNpp5Vha7R7JGVjyW3vPI5u1761cX0sW7zlolXvvTyldvZqje6L0lTItv9Gy0XWd/N06g2osvdbyiNo8WbpYtuuN38q9t4+79dimHotVv76vZX9rjtbNeNfCa28zrVx/3WfZVn2uaf0cibM81PPX6sd6vuh5fuo9k+rYSpPtEedbq2+NI/FzvT+P5oXrvJEVs+76n5KEsF/f0RxBS9ZebFHfPxojifRjO6vuZawiZQwRpBx/kKenJwlRl0Wb155ffC/W/LRyj/Xn/H1E7+ry2l6Vc3HED7eobUp5Rn2sfd6zS611Le1SKydZx5+tffJ0SjJN2+un00nWte3jtspb57rGkbm2/MkQwiaPNtJexsq9HZFR+9yjfofAatPKa7T69OTScu5wpI2W3y+yt13W3JT7+0iM55GlZcPr6xtf6Rwlxq39WZZF0jkOx3wiInJelVz6Kmfx74fW+eTNSbf0pzeXmTkmmaaweSY2smaavNaes86AZVnc+2zUzx1tq27z5g/cyvM5N0378++U2q/KhjVJS1zNPt6TSyrf3dv3pd9T+4yW/3Ik5zCyVt4866i+Pop7fI16f2pzHGPbPvXGGacoZa4591PnAuq2tPKezz4aB7Tam9a1eB57Ica4Od9a7d+z/vfkzY/cs/ELinc/MuVzwEfllC37knXD835sSQhBFlnf7t/aFWu/9mK6LIsnDmzl/jz6e7u+9ycs+az8sohInJN+NoT+n1HoY0kisn2PUxtX7zzTYpC6TtmuN6da9n+PHXkEPZlH8hJZJ8piy36+XTXbbeWoLuX79wlbzzjK/ntzvr3nJmeuenlnPJqyefgUtnL0/nvbf5SuzpJ255lIe21FtnvGM5a6vexve+71+CNH8ObsjujevbnXo37jo3yO0fEeXQdPbNlrv46DLud8/xy/F8/z0yP3t9rw6uKxuGZ7Xms2vM5pln3c6qVrnD+J/XdbIrd1C0E29S/vkW7vnedZ5C2+nad9/NHq72Nh+ZAe3fCui/YuRZ7vkZxD7WfV5DKtv2ma5HTa+4g9H28kDv1UsbGP/t85jcp7b77XasPjh9lt6T6kdp/HP/Weqd53OvZjC9f7vfGwNT/W8zzPOo34Pb38Y+vvXMt8V2svPSrP5NXRVn+6Tar/3efrb3bHN/8teTwy99pu6UJK23jF6qene978tEdWb/9a7Fb+zVi+tK6rhPV4TtXax70ciTf2qPHOnS/f4r/Hu35lvfUtj1gOJca4effekmFkr4/MVV22pPKZ9WVfLssqoXpW8jFjMBGRdD5XMWqSZVlkmSs9ctgNeCyf1tsGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+DGBH19bE6r4AAAgAElEQVQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAn0r48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4qYQfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICfSk5ftwDwGEIIX4jIzyiXfjWl9Pqp5flUxBg331NKuzopJbU8E0IQEZFpmmSapmtZLs//1vVHaPWvtVvXL7+Xn/M9df15nl2y5Hoppd1cHhnnPVj9hRCuMqeUNutSjiWvnXatHJs1l3WZtf6WzN410/oMIZhrNk3xTTdFRLJMk0xT2OisRU93NFms73VbrfnL95ZrllK6ylvfW8532WctT2+Pl/2V9Vt7sJ5Da24snRrBkl/rs6VTIvb+9+hufV+vbr2nWnrR2hfa/V5bU65la13rPVz3U663V15Ldo9+5Xus9aq/l/KVelber62Fd91bdTx7vNdOT456/qx6/z97bxdry7Ldd/2ru+eca62997nX99oYdIHY4EQY24ANSeSgEBwhQEJ8GIsHIBI4sRIgkYIiYUDIyQPkFYKAmDxERCIPiRAS2I4SOZaCkiBwQkICMUFKjK8tB8smZ997PvZaa87uquJhrpqzunpU1aiec+19Pv4/6Wj3rK6PUVWjRo0a3atP13XZuZSQ5JV0JtQNHMdXGuM4j0RuT0lp1S2prGQDW9auVCYni2RHtTpQ2oPj/a2m/1Jabo5K8mlsTy69pf/Sfedcda8KeaZpAgBM04RxHAEA1lpYa0/ph8PZjd9utwCA3W53yr+G7XaLu7s7vHz5EgDw3nvvYbfbAQA2m81pzoZhOF33fb+w3dJ4OueyvlrJPmh0ue979A4I/tCx3NyH16w1aT20rtFz++W+SL5DnGatzebX2BDXOaS31tpvCa3fHAi629J2yQdq2QeCTp6znu1TqotpO7U2Svu4VJdUX9DRvu+b/I3lOuoiWQCgbt9TeVrOedIektXHJx3vum52rZEpzZf3tY04H61nhoCks6X+xroZl03PrHF6sKPW2lm8Id5vbm9vcXvb4cnMn/T4m7/5FoeDHKMwxmTjFwv98wZdpz8bnMpVzpoxtTlv0bvYdzC9hzGhTn+637v6GU6z72vPTLk5jn9Lvm2rjkp5j2O7bDPNX7IB+TXhovaO+tr1y/16Td3Sv+f+yOW7ycG5+bo8HA44ONnXjNdBiZzfkvNtpDPuvJ+hnD/J0HX5dZiOZc0XSc8pqV1p2edjOyHV1xIvK6UDWNjFVIb0uiS3JK+0jnJ+hPb8XZNLE3duaSem5De12Mwakh2T2tDYw7U+c0q6dnPjl9peKT1db61xjRaZc2OpGeNcGWCpZ5r9K0euDY3tSM/eki1M603b1q4Fbfzl6Pudr0PZWlxLiq2lcYv0urZGcmWlukrjULK1Ul3hPFPrcxyL8H75rCfOK9UV2gn5pLGo+QM1HdX6lrl84Zwh3V9jN2vnmreB9ExIG7tK02tn3tIzQw2x7S7psfZst/aMem73XL/3HYK/7P3xPOW9T13oans53U9Jbcwl+7Zkm3JzJaV772Eh+2C5dkqkNvM59qRSrLeEPja0THfOwbh6ee0zgbdJyQcujUlOl9O5yPk0JRlaYgUlOeOYSWpLrjne0jqTxjXnn5fOb6X9di7Dcm8exxHjaMQ9NHd+LcWBgvzXPEvk5rrlTCqllfaRkk/REsNpKVuL96Tla/Ol93WXlPouzXHLWOVse66+Ut2ta1Srl/5prRzzH8s459D5+nlG4vi8zc32Bmst0C9fk4z94aqcSnuZ5pfSc/oqxf1KQ5DWpW3z2ntxQKv7l5zZY98tHZ/YrjsXr+WjToVY/VqbGfuApT0hRRt/Oss7l+8YFz8/t43zSWMp6VJgTSzrWueuWoxi7byUzthrkeYmfo8lblfrm6X1S36Qq/iuWvtfO0em6do1ecyXf2axzKut80yuL9oz2CX6mi07Tguf8XAYMcKrno2u1ZE0X+s4O+dgjX0au6NdDHbSPtnIw+EAa6NnNYrnj+k9ScdSXSv9Ls9Zqm/l2K/k24f6Lexsbwj5J6s/M87XQD1mmVLzgS9ZS2vOiaU9TKovldeZoy3zCPvx8fmj9097bjIfl8QaSvlS30Brp079yD6Xk94xcAs9k9ZHyz6Y+jNxNzXxqhwt/lYuzrimzTV+XineoUkr+cD1+k9XWnEv1tlLid8/Aerva8Sy5HQzdx2f0ZbpejR6oT3btLLex0x/L5/1r/HNculav/ycL56rdfNSkqd2/xr6fekeJ/lwUlpqA45rpazXurnxs2vpGd187c3tffxuiDmdD87zG+5772G9nbXn/bn8c9maFi49Z8RIZyVpf6nZ/tZ75zzrzzhr3rX7NFDzR7Q2/hp5tGXS8Q1+a1pWo1cl+1Ait/fmZJ7Xe1lMu8S1860tm1sD2mcvl/pjpbjJeY8PeS6za3L7gPfmdN33PXzmuVnNrpZ8krIMtTIm62Okf7shrZHaGmuNT6fxTs1akOSW/LRLY58te0ZO7lTeXL+uFaeV2mwpp8HCPsUIzm1Ya2Fsfv1dq23t2XZ+Hj/H+9O/8cmhPZtW80zj4t1paydMU6Kf1zFBpIG2p73kk8xvBPBzwn//xrsUihBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQTyr8+Mpnh7+I42fV0v9+87sUihBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQTyrDuxaAXI2vP/3rozQD4B99B7IQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKJhx9f+ezwnZn0v+utSvGW6bpOlc97P/sXAIwxs3/Tayktvvbez+rLtZPmKcko5c2Vr9Wb60suves6VVvOOQD6sY8JZaV0Sa6aLLn0NE9tjmv1a9oM9Ya0XDuX9jOtS9LjXHupvLU2JH3WyJSTMa4rp4vpOshdl/olkfbFOTfT4ZxuatZ4ej/Xr5weanVCq1OxjCWblupsidw41GQp9U3T79rcSn3I9avVlpbkS9e5dg6lNku2NNwr2bRUlpwN0+p43EbrOqutP+m6ZHNL/WxFKtf3fbMehnJSeiAda60916DJF+fpug7Ouea9rTTemnnJ+UulNnM6mpJbM2v3hZRYDsm+Su3E6fH+aq0V04PPFXQpJfRxGAYMw/G4tt1usdvtAACvXr3Cfr/H/f09AOBwOOD21mC328G583i/evUKd3cbAEe93WyO17e3t7i7u8N2u13c2263Mx0v7b1x33L2MKdDGhudpk3TBIz2yW+cp09GllO6lmSU9ErrWxljMHUWxoQ6wrroZnJKfUzXq1Zfg54exz7kWdYttVlaQ2vsVWktrT3HaNoV07o4zQDw6Lpucc6J1258ba3Nth/GLdV3Sa9K/Uv1LWcfS3ZznmSyfrVUX02+Wtl0TcX+R2zTantluKe1/Tlq6zSVPdZLY8xJzjQ9LZMS0uKzRUiL9SjWqzhPSJ/dsx6Hw3Ym89e//oiHh+X5JYx9+N33/akv0zTN+uK9x431eP/9B+z3+1P6X/3wq/jITQCO+v2FL3wBALDb7U51bTYb3N3dndJDe13XnfKENRbGLe5/PJbpniftjynLdN3ZtnRGSIntaVom3utiPYjTS/tZWmYtDljYp3Ec0Y3jTHZgaeMle3X63Xt03XxejvNZt7easU3zadJL5PwmjQ8Y2/tL58V1S9tlrYW38/GN5yIdf8nfjPOnPkFO37V7T4pku3O6q6XU35L+5PbhS9aMltK+L5Hue+m9ltiK5D+0nHVzZ+lwL1dvzg8s1Zez1y0xpVQO6Z7k++TkKvmZab2580DNB0up+Xe1NtN5yZXPtVk6i0l1pf0rxSlqc5PmSX3Z1rN4nK+m984YhP0/ZO1MB5PYnBLaOU7r0vjnpXnVtqc5s9bqAZbrWzrzpPVo4lcaG1KTL/Zh0zql8uk5reRTSnKW6r30/BGT7n25dgOlc8XbIsictqt51vc29uZaW0fdOF6fbMLJb5rbivTMFNKkNtIzwby9pV2bpikrX04Xcuf2a+hA7DuWYjSamGpYY2tsm1bvc7TEq2r1pvJ3XQePc1xWKl9aB297reZI9ai0D+XsZUr8zL+1n3H+S+ONKRq7lNPr3Dos7Xu5/TK1FWX7JO+9xhhY60U/XYotpmVrY1HydVr9zxSNTkjyaWQoxSov3XNa5M750ylrZar57bn0VL5cjGqNLLW0kJ6zMbkypecbJZlm8ZIpxE/PaeN4gBvl57m19ropPE8655umCVOktlJME8ifWUrnv1O7K2xiSUeOMRMH70Ns+ZhnHCeMWK639MxY8k9qZ4A4v7bMNe1QiTV1eH+20+mcz3wiZ+Fc6MfxX2snSG5gLl4iIa3fnF8VP08IHA4H9GO/WJ+lZ9uacSrpiJRH8rVybbXGLC/VDW15jT+b2o81drgWZ7KwQqx5gimELXPPAKT2auPfGo8MnP2iuR627lEtNiLnO7Tu0emcamJUyzUS0mWb0hp3rnGpb3T2OwE8PT+P08O1tJYlf1WSS4qX165z+SWsyayVSS5ftMXGCmtFp7+nPNMU5T/HCqb+cju2BundA0AXn62R2/eX5ykAxgOo13vpM4WwT0o2L39ONtFayPszqU041iftfQbe6961f07elr5pfI01PkgLub27Zsfr+2Q4y4c0V11HrfOrfR4itVmzTRrbVRqDmNKzg8lPy7RpgrHLPpXiGM+tJ5o2JcrP8Jb1rfU5r2Ub5vKW21jjK7WU0e4716DFj9D4LRq7UhuL1v1UP7bn5x3x/nVcX7Fv9fSOD/JnMq1s2vTavU8yabyr1I8w9tLf1mnOK5+UZwo5zroe903e0093G+1Dro6STFrKczf36eI2pfhlza7X1q9GP2plUo76t0zToN331+Sr5Qnrq2ZH1/wNaox2fcVzq9Gvso7r5jm21XGW8H5tzDlfOV5ci9PVZNLUnV4bY5vqk+qVfATpzFbbj3N50rpbKJ0na5T8xlr+S87hUp5cvjV/j2Wtzb5L0lpXyjEmD8TryDnd3zZee0/K6dU4jnBu+X62n6aL3rGRyhUZp0Vccb8/YPTzOtyn1Bf7NMOPr1wZY8wNgG8F8AUA27fQ5ADgVwP4PZn7N29BBkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPnXw4ytXwBjzdwL47QC+H8B3If6s5FsUI/o3/ozRm3cgCyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn3j48ZULMcb8+wB+BMAt3s1HV3IEWX7xnUpBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgnFH58ZSXGmAHAHwPw/Zh/dMW/G4kALD/+4gH8qXchCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn3T48ZX1/CEA//LTdfrBlfQjKG+TWJYHAD/6rgR5bowx6Ptelc97f7qW0qXf0nWclmsrravrOrHOWBaJWvupLN77ap05eaXxker13p/645xTyx+3J6WHOnNySOm1uajlK41Vqe7cGKVz0zLXaZvL9j3mS9vD++McOOdgjBHnQ2o3nXOtTOF3S79K7efays19ek+SLVdnKBvrcmw7rLXVPnRdt5AtXu+5sjnbkc5XPC85HZPypnXlxiVNT21hnD83zqX5rq1Nzfzk8pXakmReI6PWxkvt1+ou1RvWVIsu5eQt6XEJzT4a7EwJaY3E5MagtpfUKO3bNb1yzon3cumX0KLjcf4aNX0LeqGxx7m9trSP5vql3XvjNnO6mCuTtrF2DVyLII+1diZb0PGwZ4dr7/1JZmstxnEEAEzThP1+DwC4v7/Hxx9/DAB4fHzEmzdvAAAffvjhKU9gmjrs9+/N0j766CPc35/X2M3NDQDg7u4Oj4+PePHixen3ZrMBABwOh9neF4jHt+/7xd5Ts2O5e6W1ke4Tks557+GcxeFwHsucrxl0rO/7mbzSmSAul6bl/aPUH3QwOI9hbX9fo8PHtudpUp+usV9IrPEFNft2yCONe8m/SusI/+ZsWapTYR1IPl/L2U1qR/qdWzvxmSvcC/X3br42AaDvBwxDn11HrXtPOket/kmp3vTftJ+LerqlXF3Xoes6OOfEs2nuXJaOde5skKL1FVIbD8xtkrX2tP6Otuu8L3jvsdt57Hbzdr7hG27x8mV/knsYhtN1GIvTUAnXwT/bTQ5/x+E14qn89b/6y9gPZRslzU/cfkzLmV3SS8kOH9sBUtH6vofp8nJLddbWQYvvV1of0h6SttG6V7rtFo+Jjm63W3RJvpo/lo6Hcx7ez31xay28za95TVqtbGm99d7CmO60r6ay1VgT/7kmsX2L5c3tfVpdAuT1uCauA5RjCGkbtXNerq3S+VU6AwbbXiNn+0uylGjRjZp8rXHSUuylJr/GN2mh1Ldc7CanR9rYbU7nu66blUtjxrV6cvJLZ7Rc3jVxsVx9kg/bUn6tHKUzTs4Hla41MUqND7pWX4MvsEzTx+FSm1nybUu/NZR8n5azUW0Pz5HbH3J+ft/LZ4j0zKUZs9I5Lay5NXHDtL3WOmK54thTLRYRZM6dy2qyaH3rks5o06V1WJszye7n9GxN7DauX/L9ajGWXJuSTahRkz/2QaRnNq0+cO4MFVMa39h+eu8xTdOiTDxG3nvYvYN97GZlH19PwGPeDsd2PsxR7PeF63jNSDGytM8p8b3aXGh1LfUbu1PcwCA+Q5TklOY8177WT9VS8gm0Y6DZF+LziGZPi/3stEyuDc24rPUHavtCHIOplS9dS+uxZA/j9ZmuxWI7DpimHkBYe8Dj44T9/hyrjteY5HenMe1Ay36k2d+l/KV60znI6YVWvyW7qJUrla3Ux0ufTcakfY7nSbN3S37BNWL4aeywFh+IyfVJ+h2u02fJmv0ylWkaJ1jrZnu+tRZ+0vmkaVqIzR51/lzf0/ZalVOSudZ2KY80jtI5RdrDpHi0xldpiY9qYldaP7U1Ftsyv3Xqz49qMkmxyVq5S869UprvPIClLki6mPpxpboDpThdWnfIl/MHS+217jet81ZaOxp9ldbhNfpRY95WPR6Re9YAtO8ZWt+2ZPuPthVA9C7j8RlYm4+Si1GleVtijKFe6br2u6bbZpqSmOj8HRCtfDlZ4nSpD1odk3xc6yym6agrfXeUeRxHdP545jvsDxin5btF6bXkswJzOxTfq8VPpHbS3957WGPh3PKZUefKNk/qS+obhDStbOe0/Jk/F4sroY2NSVzTt81R8iudcZFdOOcJ55m1Z4ESduNknbBP7xXZuc4Y45/sVLeYoxh5HpZ+mLVuYX8lv6lm45Zth3YMvF/aA7nMsv0W3VuzRqX2W/fwUOZafmBLbL5mVzUxkZKMNR+k1rd03rXnfq1/l5O11Newzs/tLp+BnfI2xPjW6M1aNOOekvYbWO79a33HS6j5F/F7Sem9UF679lrWaM1mXcoae1W3oTobm13XZtnn+jsD+fZSmWJ/8+wX62S+BO3ec00k3UunPI11pfdqcUTJ/tdsc0mvS+fR+NmY5J+/K8rzJ79jW/I3rte2rpzWt6rFZ4/16trXtpUjFx+O72vGVSOv5INqYyNa2Wvt59JK7WnjjZesn1psIVfmbIvm59+uK/uIpf10qcfluIaWXLyrlldifub1Qto5n7QutTqV0/9Y/jiP9BxvKXf5GpDfhdQ+D9bqa9z2pfFjaVxK9WnfhY/Lx+8OtTzf1+TLvWvv3PP5zM3PKgtznyuz5r3Vmr1PYytp2ZMuZFsmzwU/vrICY8wPAPhBzE8wkv76wr1rk8oyAfgd3vuffQttE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyqYMfX2nEGNMB+P1xUpJF+s6Q9iMtKhEU6X8NwO/y3v/ZhnoJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPlcwY+vtPNbAPwaHD+YkvvwSkgfAewBvEzypOVyH1RJ8UkbPvr3fwTwFwD8ae/9X1LWRwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELI5xZ+fKWd3y2kxR9E+b8A/GcAfsJ7/8sAYIzZAfhNAH4fgO/F8gMqPwbg3xXq7QG8B+DvBfCPAfh+AN+B+UdYAu8B+C+99x+v6tWnEGMMttttNZ/3PnttjMn+LuWLZSjJJ6WF8rn7JUp9iX+XKLUr1ZGrt9aeVGfc/5wsre2EPNr+S/U657L5uq5TyalpJ9eWJHtoc0CHYRhgB4eu6wAA/TDA9D1ubm6xscOsjnSM47q06bFca/UsV590DeDUN0m++Het/ZKMufTNZnO6l+YprVcJSea4rvC77/uqzCWbFNed5tHqtkTf91XbVWtjjW2L5z+uL5feSklvWnW6RS+lMVuzhnLjV7KpsV7lrmt7WMgX62tOrtSelPbXWOZL51iSQUIa99TupP2V7GpuXdZka0Gyvbmx0aytuOxa/dPo8iX7sCZfSd+NMeI+UmpH64+EfM65bL5YL+Ix996LcoW6Yl0L1+M4wloLALDWztbWOI7FPklsNhsAwIsXL3B7ewsA2O12uLm5wd3dHQDg9vb21P5mszldx3tC3/cYhuF03XXdqW/GmFn/Y0r2K6a2x4R6N+gWbWy3O2BztlM5Xcj5Pc459R6X1h/Kus7BueWauMRvaiUMqTHLMZrny+9buT04lAtoykt11AjlS35HieOYL9NjHU3Tc22kerB2LiVdl9ot7ZU5uY71n/uXO3+l5XN+p7RflPzOnC5dqvtauxGf0/q+r9r12J6naTlfqWQf0jJSerwnDMMws/vpGG23DsMwztJ2uw2MWdpaad+L+xX2i2maYK3FjfV4eHg47S/eO/zCL7yBvTnHU0LdNzc3pzhL13UnmYdhmNn9cB3mQfLJNP5fieO6AM7fKz6Pd2fqNiqnozmbIJFbr6mcrXXlkOp2brnHjOOIbpzrS0q8RkSfuVv6KcPQo3PL+dH0ec26z5U5ynhe332f1/e4Ls0Yx3lKupj3v4Guk88+ubNJbvzWxltazvypbKmMtbhCsBs1NPEayY4HnHMq25DmyZ0n4zOs9pxZ20cu8Qdq7cW/teeUa7ImLhLGviVulssbr9/cWs6tqVJMSqPja9H2t2VdpPtTyT/UPEOoPYfIlcnJ3zJmWt1tibHM5Mjsydn8hd9xeml/y+ml1neN03Oxs5xcrbTIpI2r1eRJfb2cvmr6k55LNTE5TXrL/intSeme2HrerY1DbS406z5Xd6ndWptpnPQScj5QzJr48PlMck7rux7doD93APkYeJovJZY5lb92hpDOn9J51DkXnef86do5B7d16MabUDEAwO4fgf15XuOzXay7IcYX0tPreB/N6eAlz21ieWp7YnxvaRcMAH+KC6XxIeccevSzOgCcYp1vm5zfo7ErufWzdh4kfzq14zG5dnKyt8h1LT94GTsrxyta6k3XdPxv6fn/buex2cz3kdvb4XS2jMcvvi6tCw3aWH1O7tz8lfZkjY6U5KjF9lMZa6zyNSt1afy8Ur3p+Ucq37Jnl3wM6UyvsTXW2uJa0silIX0Px+G8lkLy4TCiH892qaUdPzlM0zTzEfb7R4x+s6ir5ttLY1maCw0t+e1oMY7TrMzj4yNGV97LSjZQ2/4lfm8pT6sPX+KYr/ysIlQ7T9PPgdYfv5T5nJ3cuyqtsTwtcX21umPfE8jH+1rsWMy1YtKltlNbrjm/t8YLlsT1Xcfnrq3bS314Yy28Pz/TlSjFBdbEImvXWl8yzdcSC0nPGcDTmUwZow/XOV2WdO8aPn+ubWMMvDvbDu+X/lrq92neWyrFNzR+oFR+wvT0js05v7UWnS3bGKm9CRO8d9FcmkVdVb9H8JVyuqC1Ba0xr7dNUf/EcMoynlBb+5IOnGpLzwPdtEjrug6dP/qX0vve0pqv/dbEr0t2sBYDjHFm+QxK0qvSuaPWhpaWtXvJXlyy3Rpb0no2k+Jz0pi3+FNrfNrWMSuNU4t/dMmZLo29hnYu0cVr+zc1WsZlzRqKbV3reUOjE+l+HPTce8zmJthAqV6Nv9Qq8xobsDYGqBlXTd0l3y7nk5Xai7PE586Y83yFs2uQzc9svTSnpb6kMl/rXJqyJkZZipHVzoChT9JYaGJvOcI8SPLHvkOoqtbXNeN9jTh6jtp5Ik2f/BTp3vH+OI6Anecv7bvXsqElNPqiKTsvs6yjZe23yKCRJ51/55Z7bPwMoubraGzCNe3FGl+nti+vkW/hMz6dDwKl5x1pHfN/6+cKqa6afMe0+e/4WW1L3dr2SvXk6zehQnF/WuNT1NayVsa1eiKdF9OxL+loa/xaEweS2mm51sqiIa4n97d2Elmd6z26zsxsb0nXNdT2zWvsq5eQs2W1GEE4d839S6OKA5Dn5bLT6OcMY8yvAvDdSE8+5+s/CuB7vPd/2D99eAUAvPd77/1PAvgnAfy0UPafA2C89z+f/Pf/eO//ivf+x7z3v9d7/10A/mkA/6dQx/cB+DFjDD+oQwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIAn58pY3vT36HD594AH8BwG/13h9yhb33I4AfEW71AH6LRgDv/U8B+HUA/hssP8DymwD815p6CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5vMOPr7TxfYV7P+y9nxR1/FkA6QdaDIB/RSuE9/7gvf9tAP4Ilh9g+TBRK70AACAASURBVEFjTPqRGEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCSMLwrgX4lPEdOH7kBDh/7AQAfsZ7/+c0FXjvD8aYnwPwa5J6vtMY82Xv/fsN8vxbAL4bwD+U1PWjxpif8t5/1FDX5wJjzCLNe3+6J92Py4W8Et578X6pTE6mOK1WvqWtUn7vPbpu/feYWtuW2tfUF6eHcSrNXQ5jzKmuvu/V5WJ9SeWolQGAYRgWaanueO/hnGuSKafbxphZXdL4pcTjek2dyM1pTY617aRjGs95rv7aWLbIU9LvErG9kWxBqa5UxriMZvxb15FEzg5q5c7ZW824ttqhoBMta3hNOy20rH0tpXWsbU8a99o4hLpLay+e72CLpXpjOaX+SPtATbdz6yUng3RvzZpZ4yusrbc0v2ttVCC1T5fWV2sjrXdNG865rP7k2gljWLMDkmzOudl1qMs5B2vt6be1FtN0/Ibj7e0tXr58CQAYxxGHw/Gbjfv9/nR9OBwwTROstQCAaZqw2Vh86UsvnmzasY/f9m23OByO18MwYLPZAAC22y02m83iN4BZet/3J7+l7/vTOIXrmh926Z7Sdd1pjMK8bTuLYTj7bcYY3N7eot+c0yS9r+1Ba3Ur2C239U9ynfu83e7QP81Fya/VjFNqd8J42I3DMLyZ3dvtduijsQPmdrNmF1p9ljW+cdxefB3k1NrJdO7cxi/8+s1mi77wzVlpvWvlTu1g/Du1NbkxybWf9jeU79yEc1Vmdq/WliRX7l5uLHK6mNKq17m+d5suauMY7uj7Hl3fqduJfY30zBv7NJIM8ZqIr4N9j38Hmxzbe2vtKd1ai3EcZ3mC7XfOYbfzePNmi3jqf/mX9yc7Ho/3MAzoum5mo9N7AI72oO+xmxxubmxkt4Ff9au+EfvhmK/rOnENp7ZeQzy+JbugibEAgNu6p33nnLbbbdGZ+TyuWcstaO1oqZxErS7vPUzfo+/n9ex2O3QN+6zmbAUA1jp4W7a36bxKMbWSXcqdcwFgY9yir5vNADfkYzaa2FFrunQ2iefKudDnc/l4jaZjVFoLtXNWKm9pr4jT18TIanqe25u0LPXNFn9LlPbanP3JnTNzvlLL3lJLi9GeMePfufPLGjS6E2jdx+PfmvPypWfilrO+xg6X+iLZvhZ5W/fReP3WbGmrLDl/Onddst0S14wpzudg2U7LuKZnBqmdOG9K6YwC1Pdy7Vjm5jf1mUp9brVNGt2pjVE8F5JP8LaI28+epRrOaJKvWlp3uf1e0r+a/CVK8kj9bDkrSrYvV1aSN6fD2vYD6Zk+rmuAi9bkOb+BgVS1Noar1ddcH2OZS76uRGpDcmfQ9Mw6y7/zONwcfdPQ9u4bX6If+6xe1uKjubhHmjeVK9Rbs42S35wijY3EMT22P4DpDLou8ge7vrjmU1ku9ZXW2sBau6X7fd+rzmwlUl2W2i/lkXRBa3tbxl9DLeYg6W4tFib5E+EMU9ojjm150T6ErLHf75xr9iFTpPce4r1K8kekNd51XfN8pPVofP/SHvMcMZ7nIhcTqJHTsVr+EiW/sOVsKOVL9WfNdajPWjvTS9ct97txHGEPdVuWpnddB2udUN+EvW/Xq1rfND5wiMG2+u3GGFhrF37aNE0YzTl+UBsbyTfUPHMPtq7mW+bal9q4NMaUYo07xetOaXb+fDc0aa2DceU5OMcK0rS2+NEaLrUJGl9cq4OlmMoa3z5mTVyjtf01rJEld+7Q7GHLuMfRDgYdXdvPNM76nGf0OI5Z6vO13j3UxJBLvl2pjeo4jROcswsbaa1+fDVyrZU/vl7E4rvzuyl+Vubs99moSU08JBdL1O4PafncfnMcj+O5z/u5Px2XqcUyAhOm414Q3RrHEbByGdFm2qMuzOqdJky9ycaIgsw11o5fLf81kc6CwZ6d97FjmouelUuU9L10b/LT4t40TTD2yeeyFt47xHt5GmfJ9SdFWlMhTXvmAfLn1PnaaYtRXeP8LJHrr0amWnrOdtTKxeeBWhxYG19Z7sPLvtbW1Joz6yV2Ief7aeI/tZiuxpbkxC3H7WRZSr8lnjs+IL1HlL5qFuxcLlYr1RVzTRt91tW5Hqc+WevcqHwi6OLtGv2+1P/WytRQ+2wMWuuMdSQuv5Q53wepyZLdkvzwFltWiheW0qV61+hOLi6RvscW37v0PCnJM/dnj/f6vodP5NP4yWl+jd3XnpdKMeycnxOn1+ay6zr0mL+brdGlUnxXQyl/6QwS32+xPcbM9zRNXE9b96UxjvM8hbRy/0syvI2zQakd7bxK6dJ85p5Bdl0HIzzL8JU4RSBn+9YQ5u74b1xH7m+c5na/67rsc5maLdHKrDmvLm1wXi8lSueHVjtS6pd2f0rTpT0mjH0J6QzY7iuseyYj3U/tei3mq12T6ThcZ68Nuh7W+GXn2pZ3ubW2u3Y2XMNaOywVe1s2nchc5+3dzwHGmDsA3yrc8gB+vLG6r0KOlP2Glkq89wcA/7ZQ1zcB+A8bZSKEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5HMFP76i59tw/shJ+rGT/62xrq9m0v/hxnrgvf9fcfz4S/wZMQPgdxtjvtRaHyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghnxf48RU9Xyjc+78b6/q5TPo/0FhP4A8IaTcAfmhlfYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfObhx1f0vCrc+5XGur4qpBkA39ZYDwDAe/9nAPx8nPRU329fUx8hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ8HhnctwKeI0sdXPm6s66vJ7/CxlG9prCfmxwH8rqe6At9qjPl27/1fv6DeTzR938N7L95zzgEAjDHi/TQ9V09M182/VxSXMcZk6yjVLd3z3p/ki+XM9SXUEeSL64zrStvK1aeRMSWuK21fQypLTuZ0zKX2uq4T243nKB4XjTxSem7uNHXFshhjFvWGuRysP90PWcLvruvQ+fo3tMJaiOm6TkzXkq4FqT1pTuM+X4t07UlrR9umdg1rdLy0djWy5WyK974oj1Rvre/xusi1U6qjts6DvpZk1MiXypX+26pXtfw5O6RljVy1tmo6mrNRufS+76vtxLronMuWSZHGL7U7pbVUs+NSW6HcGhtTsu/S3iGtRYl0LKVx6bpOTA/5a3ufltYytTmp1VfaZ3LjlxuvdE61+1g8d7HfqPGVjDELfc/5HkGWdF6lPTHMaVzGWgsAeHx8xOPjIwDg/v4er1+/BgC8//77p+tpmhb9vLvr8Pr1V2Zpf/Nv/i3c3y/H6ObmBl/+8pfx6tXxePPy5Uu8fPkSAPDixYtFX8N1+N113UxnQ1qunHSdy5+SztfgU7tlsNkM8JvlsbZ1fbaQlpsG+9Snc182mw16lPsppbWcJ7qNX+yvYX5y+65mriTW2J4Wf0lbb65O5xzs4Bb9HoYBvV+OUSgjjVNID2s0zXPJvq71h3PjMXQjhmGu77vdDmYj781xX8PvnC7Wzjml9Pie1u/UMPYTNpv7UBLeA7vdDfrCWaSkd7V9SUqT7Htst9N8zjmxnZIP773HduvxxS8+zO5/y7fcYRyPfU3nCDjbQ2mPjNN3k8V2ew9jzuN2d3eHIdIbyR7k9oG0Le3ZWRubiZkGi83m4amOY9pud4PuqYxzbpUtr8VWtOVr+1ktXlXDew+33eA+WvfeAzc3u+KZXIPbOtxvD7O0V69eojvIe8iafaDWz7Su7WgFG3czs3HX9IHX1OW2DvvdvF+vXr1EP/YXxznW+iWXlpXKa+NdEteI95TauiS2s0aO54ydldZaTa447yXxGqndtXEJYN6vdOy0ZwBNuy12NGVN25fa3DV7YCkuKFGbl8ClMeHYp8n5By11lcq77RbjdjNLu7m9RdcvfRit3rbKW4vDXhKHXiNP3P414+vvijW+1CX6e21abEPrWSSka8/tNVlaxk1zlteW1+bXzP9uchiGAXHyzc0N/I3Bfpj3b3dzg65bxuLCdSva/Vnr/2t0J7Xd2Xxbjw/v7mdp733hDt0hf87X7vu5s+2l1M5TtT0/vr/rPfr+fIZw/TEWZKL5393cAND7N9fw67Vx0JrOXMuvjblW3OZa5+oWWdbYQY2caWxBeoaQ/tbaLgDYbT12u3nM5+WLW2w2+ecfJdlr91r15tPgU2hikoGW+MU1nt9e0x/O7VUtcfwauXNGrUwOTdw/15/l80AgZA15+r5H1xsxVq95pmHMMZaW1lu6jn+v9fMDUuw0d84rzUtvLZyzs7RpGjFCfgYpXUv6VtMFY8xizFv0sebztMQiWsb+qEu558vyOXbZr/P7WSHtmvYyF9M/0Z91+JTU9+hdP/OPWvbGS+S/dC0Ay2foz8ElcUNtDOmS956WlaXl/Gpde5v7uWTb+r6Hyzyz0qCdF63uaPO1yNr3fvacLZRfs7eWyJ0FSz5Ozi6c/NrOo9TV47PN8zlN8yw5bSttM9yX/Btpb8z1z1oLayyc84jPddNkgfnWeJJfkiXgnH/aA4MsT+8ZRM99a3tdv3g2aeD98fmwRqfW+vnXyJ+WqfVVb1c9gHZZSvGqtTHA8Kz+LNeRaZow9ct4hIZUR33mfYDS3luLS6XyHvXKL8pp4heX2qWSLuTqvoavENPyHCwtU8sf15lmq+3DOR9OG0+9ZJyksY/b19SlzS/FQ2oqdenZuMY1/QsJaR+w1kZr/ZiWex8o5tJnGJKNEtedc4t50cgX8rW0r41p1u5JddXS17C+rrwNyPtHUlrb2r70rKaJL9aeOZf6fc2zpCZfsFEhpjPL49v8F817MOcySxtd+rvB9LcUU45t97lf+ZhZDWnfkX6n/cjVFZ6thPLDMKC3ur8PKfE2fNoSOX2P5zk0qf1bPO3zAI0fVtLRo94FPTn72F2X/zus0louj4XMmue8ElqfSpJf8p1DWvo3HXHea53NT3YVgp0XbEUsx5NUT2nn3/K69fC+LV4btxm3e+k6Sm2r5Pcu9TL/dwoaNO9IlNaLhhYfprWua9fxHP60dk/UzIUkoyaeF/tLQd/jPba03jXzn/vb8RKLsej72bslwFMsPsm3xs9vfS+EfDJ5nqcZnz+EUG6Rr0bX8Qr9JmPMzUoZ/udM+j+zsj5CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQj7T8OMrer5euPelloq8978C4Py/b57zrS11RfwfmfR/ZGV9hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8puHHV/SUPr7y5RX1/Xwm/e9fURcA/JKQZgD8gyvrI4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkM83wrgX4FCF93CTwPQD+emN9XwXw7QB8kv4dAH6isS4A+Cj57XH8+MpXVtT1qcH78/A555rLd113Ktf3vaquuM30tzFGLBPS07Kt5MqH9PhfTVsluVrKp/2Of+fGRFNvSc7cde2+VFdJ/lK9GtlL9Uh503RjDIzpcEwyUdr5v5pcXSd/ZyuXHrNm/uK1VCLInK63Ul9qa6zWVusa1MjSMue537F82vpa11maJ7Sp1fecfZF0di01GxfqT/U+t5ZyPIeM16Bl/jV1tebJ2cVYrpzdkPRLs8ZLuhPa0uzvNXvWoqPOuaLMkt6VxvsSXTTGZPWi1H6uzVCfFs1aK1HaD0o+XDyfGh0p+QSh7pwNlNDYxXQsY30P19ba2V4RxsNai77vxXt932MYjke0YRhO17vdDu+99x4A4MMPP8Tr168xTVNWzpRXr17hxYsXAICXL1+e/gOA7XaL29vbUzvb7fbUfpBrGIbTeKf/xnY5/JauY7Tjn+61XdeJfltujdTWaYt/UNprus5H62VZVto7W8j1sTaO8fhda+/L7Q+5dG29tTGq2aFhGGAGF+nlMX2z2aBHJ45VuneEPPF6bEGrh/HaidM1c7zZAF3XJ2kb+I0s69p516xp7dmsdC6rnaX7vo/m6Zh3u92iN8c5rfkIsV6lY5zbL+J7sX1O2+v7HtbaUz7JJlpriz503PcgWixjbPPSfaNke9N9tPeIzpTn9JodT+u5xOcv7Qc5nfHew3VOmCuL7imcme4LpbN9bg9fI3eOtN6cXdDYl5MebTaL/JvNFj3K/aj6h12Y07OMfT+gH2S90LSRyi6RW7feewzeLGzzMAyw/XW/Ha714wOxzG5wok+q8etTNDEZabxqe6JUb6jn2udZTUwqRRNHLZWT2iqt61z+XPsae6WNu5Zk6fs+659KvkJN7tqZtWQfW9HGka8V37iGLGvOwaVrrUyS3pZ8Ze0+pikbl0n1TRtDyemcxu9tRTob2OgcGhiGAb3CD03tZ81mXvP8VGu3po8tunaJf3ZNNHGolrhMXP6a8mjQxoQuRRvLW1sfcLmcl9g9SaaSnmjW3+YwYbPZPNV1TLu9vYW5M3jYjKd0Y4C7u1t0gxwLWNufGtrx0pyxJTmyPsrO434Ywy8AwM3NTiXPNXT5mrY/UDrrp/vCbrLYbM6vu/iNx9D3MNEZ4vb2Bp1wptDElDUypFzDNmt95pq+at+d0JxNpPqkOH6Lb77m3Q4Nuf5onzVdIpfk02y3DsNpnR7Z3exgMs9BYmr6pNWx3DMXCY0urT3XtXLtMyxwXXklXavNpaZPJZ/jOfYmqd7cOtA+J27Few+/83jczJ973dzsFnEx7bOH7WhPz9gCu90OZnOO92rrbelf6ttcg42x0Tgc69xud+h2m2L7Wi71G3L3Yj1KdSe1b5r9MytDD3RdGq+TYujH83HvyrHZONZ3jpX3M31qtds5vy8X7/Ld0v/rug5d183WhKRrtX29xc/R7Bmt85XzFZ7zHL62bGvftGeJUH7sJwzDXB93uxsMT3Nci2Nf4idqkXRs2I+LZ5XDMMAr1sjb4jna3yCsv/N4bjYbYLN8/V6zh7c836nlqe2V02DR98NT3mP8eRgGDO645re7Hfqn+dP4eWv3OY0fIfq8g3myzee0zWbAplvug7l607pi+r5H75frLnfdWS/UMV8Da1m7J19yVtCUq9v75b5uYGC6Dt0V42mhHt9joRPb7RYbO8AYgwHdk8772f1uu2m2iX3vFmts2AwwT/qn0RnV/tLP3wMxBthuN9jYuZ5fO95zzRjtc8SirnHOyHF8/2L+flHfD8CFa/maZybJJr+T53E90Cextc1mg22/zcqUUlsH14ox5uTRxKYXcnRmcabcbnfYuvL+U2ONb5b60MYY9Iv9yGOz2aDbnOVb82yxRdY1+8/aZ2RrYq6ltlwn7ec9erP0CXKySHUcfSzZP/Td8p2/OH8fvfd4lP/JzwvvMXZucfaNZZZkXMvber6Qw3Ue6XtuubENXBKv7K1f7Pfb7RZutyu2c8l1rt4W/V673rz38N3yHLHb3ahsXOkZQIs8l77XUSM9U3d9J5zBdwt/q0WWNc+OS7rqvUeP7mn/ic+eW3RP7/XnqD3b0O7XLe9e1erU1KWd81Ispu/HxZ59c3sDe8HcAsDY98v48s0NhsLfbvT9tJTl5hbDlNh/s6z75uYGkxDvjWmZn5hajGkmG5Zr5WZ3I/ZrY5exhDXvQVz6/DDV/5JPPvbT7NkysOzLNfe4S57fPjfXPA/m6jqO91yv7+5enMb7GjKtXReBaeix2cQ21uPu7hbDZMX6NLHh9Lcmjjv0YyIHcHd3t7AL2uf65HpwxJV4738BwOvwM7n9m1dU+dVM+vesqAsA7jLpr1bWRwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIZxp+fKWNv4z4M83Hj7AYAP+CMab1Iyc/m/wOdf3GlbJ9SyZ9+clFQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIP77SyJ+LruOPsHwJwA831vVXM3V9szHme1sFA/B9mfSvraiLEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJDPPPz4Sht/TEjzOH485YeNMf9iQ11/pXDvdzRJdeSHkt/hgy7/34q6CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5zDO8awE+TXjv/4Yx5i8C+LU4f3TFP/23AfDHjTG/x3v/BxV1vW+M+VkAf99TeUR1/mvGmD/kvf9fNHIZY34QwHcmMoX6fk7bv08jzrnsva6rf1soLl+qK8YYU/yd4r0v3s+Vz6VL9ZVkiPPnrmt9qvWhJmOoL1dPqX5N22meS+VdQ6ijpg81jDHZeZLyhvZa29WOmbVWXEtx22m6ds5C+b7vizJq12aKxgYEcm3k1sKaNachN67pevXez2SW1lhcT2m9r9H/eJ7T6zSftr6SPHGaNFchLa4nJ4v3Pqv/6TjldFzTL6mdtL3SdS5/jpysUnltm1Kd6boq7VXSGi/1PZ1baa67rlPvu2ttR9xWibR+SY+k39K9kr6W6tCuX2lt5NaddN1iTzX11Qhj23Xdonxt/rX70KX7dbrGJTvb9/3pOh7DYRhmOu+9h7UWALDb7XB7ewsAmKYJ+/0eAPDlL3/5lGe/32O/32OaplO+zWDxla90M738nu/+Zkx2OMkyDOfr3W6HzWZzkme73QIANpvNac12XXcqk669uG+pP3LJ2GrmN0Vrby9pN60zXUd938GY7intmG8YevS+r9YfdMM516y73cai7+frc7MZ0GPuW2l97dz6idNzup/z/8N1zp+UrluYyT/E7RyPxn3foXe9KGfal9ZzWVqfVCZtI7ZrmrFf1nvWsThNspc1GSUZamVa00v+Se5+aY7StFivpH0/tkm1PTXYvlz71tpTnrBe47qDjY771XXdKd05N7P78Zr33sNZh2maZulf//oBj49nWVJbG+83YSxi2x3W3jg5jOMB4Ru9XWew3+8xenvKF/oW15va/txa0MZecn5+fC8eJwCYBov9/jAr+9FHH6M7RLaw62YyxPtYSM/1o8XH0eiz9pzQwjF/u30q9c17D/TmtHfF9bXEGHJnS+2ZC5ivXWstnJv7x6n/p7WXaVut+huX7ftoHzHHNTSvoz/ZYqlfuTY1OnON87tzTuxnLOPauNjaeMIaarqZO/9e6vfH9VyrrqDXtf16bYxFqlPjs5TK5+RI96RanbX6SjJoZExlic/cuXQt2jKXjEWufo0tKLVxDV9bU3fJV1xvL8LaP6YF/z7XTnpd8wFz59r0vvRba/dTGS85B6Xla+O61u9Zgza+Xhu3tXtSqc2WfM+xltLy3nuVD3IpLTHKFlnSPSyn0yW/reUMOb83twnntRunz8/gmrol2VrXamm84+v0bJSLMcf3Yju6OEsePA6H/dPvY7lwZpLsWnx+TOM1qZ+a63dtT6ztf7Xy6TPDWswpnv/jz3OanH95XZMhh3avbPUFpDGU6snZkjU+SEme5+LSc4g2/gXMYx8hFiGRS6/Z1JwPd1xny9hdHLNI9/e0vERt7kv1auQO5QPx84A4jySjFBvQ2v3WvSO1mV3XZZ8t1tCev0q2UbNeSrLk/LwWXV9LyWfL5WvZK2txaGMMbG9hTIe4qmEY0LkuOzalNrpuGVNbe7bXnNkvyZ8rL5c5r6s4Jt1KelbQzqckm0YvL41DleSzzmGa5mOx3x9m8flQ5HAYMUzLd0ti2brJLWzJOI444FxOYzO0diEtH2zZPC7sszHXxXgIzypK+1Z8z1o7KyNdl4htR26e47GVzoc5H15zZr+Ua9nbmn7U6pb2z0v63XoWStPye6JcXtrPW+Qv2Zdr74M5eyv15dz2fL1eI96y5syZS5Pq7rr4GeMyXtr3Hbw/P2eU1uO7YO5zzu4070P5vPn3fgq1IM0W2+hLbJPGb5ZsQy6tRbfSutp8g/OeFcbCew/vlnvqNXDGPbVxTrPWorNPck4TvF++gyi9X7qGnE9Z8lPrMRQgjml5DzjnFzKXzo8lOTTnm9y+o2HtXtNyjlgjS7n+1LZchxadv+R9zOeM16RtxPE3qf3WNZHe08TOSv3VxEJadHRe3/K+dh4u9Vtq5/Tc/lhbAy1j1KJna3RyrR5r7Fzt/H8+Byfxusr/1345vvHvfB0aHc/V56P3wSS9qMmsQRsXA67nk+vjhef0kn6v9ZfTvKHaNIbcqmNS+yW/s1X+S2zn8YzQrk+xn9i6fltiJNozc0AbxzrGHdN5zJ/pWmQuyVe6n87jfG7ObQ/DADMs//Q7bSv8bUKrTAHnnMpvXMOa9ag5q5X0OZxzNUh+set7HN+tnO8VpWeIrneQ/pZgYzazfIPz6Lp5PX3fwVeekWptpxapvq6zSH2/czvzNlvjdVr/UEOaX/tsN2v/KvrSMsa1Zxjac8BznJdaubQN3y/7OwzLv3Op0RIXyZF9Btz1yfvABkM/YIDc5rX9/MDGG+FvgjYwT3/v9Tbmm8i82wjpp5P/KvkdPBsPYAvgvzDG/Kwx5vcaY77XGHNXqOu/x3lXOj8xO34U548bY/6emjDGmF8L4A8g3tHn/JlaHYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfB7hx1fa+W8B/MzT9fJT2MePqHwrgN8H4M8D+MAY8xsydf13ye/4Ayx/N4D/3RjzrxpjFp+pM0d+CMBPAniVlI/504W+EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyuWXxUQ9SxnvvjTH/AYAfx/zjK+bpd57y8wAAIABJREFUt49+A8cP3Ijj7L3/S8aYnwbw63D+cEtcz5cA/FEA/7kx5n8C8IsADjh+mOWfAvBNUf74wy0h7ae993/tsh4TQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPLZhB9fWYH3/k8YY/4wgN+G+cdW4g+gxB9EKfEjAH4S+Q+5GADfCOAHknJxWzn+Y0X7n2r6vp/99v48HM45VR1xmTV5NOWlvFK5kGZMXnXCPe99se2QL66rVG+tnnAtyRjScvdycramt8i8tg5tuXRcpPHWtqOZx1mayrSU69PI6b1H13Wn3/GaqulfTCgX19WSX1NOWu9pWovMKUGn4vWXG8NL11yMtKYk/ZbaSfNodC4eI63ssf6nY6RpJ5YnTiv1OZVNGvNc/1vWW8lOaxDXbzRetbo1e0Y69lKZ1CbndFRjk3N5SjqoXSthrdfGPVxr9/mSDUntWnwd37t0LbeUX2urWveftL8aX0eju2ld2nmSaCmbm+fcPraW2vpJ+x/ad85lx8laC2vtKV+QM03f7/cAgP1+j/v7exwOBwDA4+MjhmHCw8MLOGcRmvnb73+MpyLY7XbY7XYAgNvbW1hrcXd3d+pHaNM5N/OvJb2ordXaPljS1RYbE9/T7IPXJK3bWgfv3SINtr3u2pil6yuVxTkH4+Z7YckOp/u2NG6atVOb16DLpfKlvT6tT+I8D+fjtDQP2jNZ4Bq2IyasodxayZ25jrIBsXjhdsk3LNnumh+g8Z8kYn/+knP5ZOxibR11XCdHzd+M04KcuWtr7cwHie21c0604/EajddXXP+5HYtpmss4TQ7Onc9EQXeGYUDf9yd7nV7HOtZ1HXaTxWazQRyi2u126LbLkGDOHy6dseOxSfsVxsVai2maAACHw+G0h+33ezw8PODx8REAMI4jxnE85XNbjxff/sWZvfrFn3nExh5lv7m5wXa7xXa7PfUr7Hd93z/1+zh+wzAsxtJaO/NDa+cuqY+5sdPGdUp1G2OAk+5EYxzpWSsn/6OT9i4L2LNt0JwVYjTnqXTfjn21wZvEp/OLsUr1bQ259i/x+VNfVBPHkOxCLl8tvTYm0j58zdjFtdH6BBLP1RdNHEZL13Uqvzltv7QvS3WV4g9p3dJ1rv44X0mma/jjUkyxNG4t6yKU19jveE/QnJ1LdZXy1+qv5cm1f027qWFtews/3B59wTj9cBgxPPkUqYyls1TLWijF53JoYl9SmnYuW9GW1+hISV7NXr9GLo0sWhtXQtp/c32UxqHWvsafrFEr3+KDtsqh1QtNnjXrKt0re2sXc+achbVGPjd63XPCVp9Xm08TH0339zReWGvvPEbB1h3T+77HsOlFG1iKP+TkLPm2a9ZhbfxazjrWnuMG3gPOPZ2XojzjOKKbzn3QruEW0jHK6dVzxpxqZ5A1Zw6Jmj2s1bUm/qu5r20/lzcXNyrtFaVYU8w0+VOsI/D4uMfhUH+XI/zuum62poONaPF1noPnbLd0BsqNWRyLS9M/DVzz3PkuWOP3pPNk7dzXf3x8RHfoVLZ74dtOdhEPGccDDr5Piy7q0cREr03xmch0jq0G9vtH7G25LzWkmGhNljhPbV6u4VtpnjP63dnOhluPjw8wxizs7/39G/Tjcdxye6cdrVDuHodNL7Z/jbNJatfsxuFwSGV4QD/O5yy0vbb9a+2/rXlb11Ucw4/bukZ8s+U8H6jJr5XF+afnmBHjOMJP/WLv0sbGauT8ltpeGbfvxwnOBft6bH+aJljdK4FZeTTrvVRey2pdmeJ+H88f+/0eo1/xQoCSljkqYTfnfSQ8XxrHEebpGeT+cY8x2me066KWT+Pn1uoCgMkv9/T9/gBn28dkcpJ/MMFPS13KnrHGuS4ABtM0YkyyX7o3tMb3avcukac019MwwVoH5z2ci57lOYv94QA7TVfdJwFg8tPCb9zvH+Hs8bmw3Y8L3+nx8RHT03ptseNDPy38gof7B0x2bF4TUp6gZ2M/Jbr55MdY/TOENfN9LR1Jy699PqOpO+aS54nDeEjib8f3EyZz+drTll+z98X5WmNca2IrxhiMbkzsHp70U1XdRbJcgvbvFVLCnjv2o3imlNal1NY1+lg+J06iLzkJ3XbOVcfjOWJMn+S4xnF+53tFbn51dRz7ut/v4TN+26Fb6tThcADcMc7fHw5RzC/INML2xx9jN4pzrn2HLpCzPdfwPYD1seaYqZsW/m88VrU6c/YxG7uaptlzBuB4xnENcZfW2EgpprzmfYHWs5E0xtM0oXPPd7Z/G/WWytp+eoofn9OmaYRZsZ89Z7zZjct9d5om2Cn/3n5M7X0ibVmNjmpth2Ytat/1kW3Y8j36499f6N7dy6WPzolzYQrvwk8+PM+ev+Pik/3FHSQ/Y8LU6d9raaHl3aRB0kEr24w160cjg8S11t3oZB8q9gGe41nyNXiu94u0rBmPycu6AyEOE7jkHcQ19m6CEKOdRvipruAt+7Ek2yz2tx8xTWn8a48Jc9l88TMS5DlYd7IkAPDvAPgJYPHBFURpVbz3PwXgTzyViVdAWq9J/pPa89G9P+m9/5P67hBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8vmCH19Zifd+BPD9AH4/jt9vlT7CouXfBPD/RuUD5/9d1bne9KMrRij3cwD+9UYZCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5XMGPr1yA9956738EwHcA+CMA3uD8QRRTKJrW8z6AHwDw9ZAE+SMs6X+I8od8vwjgn/fef9DYHUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPlcM71qAzwLe+78B4LcaY34ngH8cwPcC+DYAXwHwEsBHijp+2hjzTwD4U0/l0g+wAOcPrqTp4d5fxvHDK7+0ph+EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhHye4MdXroj3/gHATz39t6b8zxhjvgvAfwTgdwK4CbeSfwPhYyzvA/hPAPxB7/24pu3PAt7Ph6frOgCAc05dJocxZpEWykr3cuW994v8ORlqshljFnXlZInrysmdthd+p2XjvpSQ2sy1sZYgi9Tv2rzk2jbGqOTKjYVzTj3HpTzht3MO3vun309p3sF7g2maYOwxf9B3qT9SvaX0XJ5Sv+J7ab6cbDm96PtezB/nLa3rElr9TfOXrlPW6HWuPkleqf614yHVGcui1V1Jf1I0elGyEdoxbxn/S23Qc9df09d0vNfuJ3Fb0u9cG9pxz927VG9rhHattdU86fWafKXyUl8v8UHW0roPl+x+uveV2pDWcuoTtfhTEpfok3ZOS3ogjUeaP6Q752CtnenoOB5d+HEccTgcAACPj494eHgAAHz88ce4v78HAHzwwQe4v7/Hhx9+CADY7/e4u+vw+vVXZjL9wi/8Ldzfn8fl1atXAIAXL17gG77hG/DixQsAwN3dHW5ujseO29tbbLdbAMAwDBiG4XQd9ue+79F13cmOl/REmpfUh9XM/dwviuua65hmH6ntLbW02PZKuhOSUt3XIpXJjdexjZC+bLc2Lmv9mWvun9fcIywcrD2WC32z1gJ2eQZb27Z0nquR6lxr32ZyjhbOzfe1w2HEwct1tpxZY3L+u1Z2aQ8u6U3Oh5TWUZjTnI2t7XXxupCuw/krXE/TtGgjpKd2PVyHdGvtTK6QJ04PZbZbh4eH3UzWDz7YY78/zl2wvQCw3W4xDAM2mw2Aub2O83VddxzbyWEcp5kePD4+4mCPdj22yzmfXWsv0n6F39M0nfo/juPpOoxjfG+/35/u+c7DWQsT7TtxG9bahV0MdXVdd9pfh2GYrYd0jOL+X9P3WsNCt72DtdNs/9sfDuie/IV0nWvPsK53cC62T4D3DvEyz63L+LqWp0Q63n60sHYCYE772jRNmEz7nqRNr8XRFuNmzntNiNGM4wHTXhefa6Vm0yTfusUHyZ37ajGKWrrGN2uVr1Q+tgtd1z3bWTPdH68Vi3kuu6PV91yZVK/eBjmfoDbWtTN7SXfW6OUaX+laMaJc23H7pbmPy9fOZZJduUbcW5JZKuOm6bSXBx4fH097YCxPrl9aedK4xqW6r42Pl2SQ6tEQ20HJbmlkeRf+0NrnOaFs7AtdEiPVyqWNmZXiBy3tpfcu2WPTMbpmTK30fElbR+7eYbQ4HPaz+x999DEerMF+H9sF4OOP36A7PI9/9i4o6aET/n8t8bnoOWl9lpRSOq9ry4yTO8VSAYOxAw7jCNudZXvzxqAfy88pS+k5u7JGpy7Vw5qtSX+3PD+XyrTEVq8VB20ht1+X/AtNumQjY78xxIjS+ESujd0OePNm7qu8fv2A/d5U4xJxXEby3aQ4Ru2dAW18M9X9a54NSv65xlfR5m+JCcd1AvNxXLtXat7fWOMr59oq+fct9mfN/l6zSZpnQm70OBxGINrb3nwMmEO7fwGke8SRjz9+g/1Q1jGtTQHq5xCtD5srH+rI9eWwkd+r0e4XgVZdk+StzU0p/yXPXADAbT0eH89+ojHA179+vH58fJzl/drX/MJPTGXYTQ4PD/ez+69fv86ONyCvd80c5+LybusE2V+jO9RtZG3vyMkiIdmr1rhhei+1V7nyl9ixNfmDbJfWUZMlnhc72tnaNga4v3+Dfuyz5Z+L0lk6ZTsu4zX3929wGNe/hr7m+etzIo3FdpxmZ08AePPmYxwOw0X7bC1vyYfT1mU35/dRXO+e3k+ZYNyxvo/ffIxxzNu4gNam5Gxiy+84LZY/8Pj4kJW55B9Ogz2+bxs1t9/v4WxZf+Oxng7Tk89y5uOP32Dczutoice3nN1a7OO1zrKleLPdHP0U13Wn9xjGcUTnDO7v7zE8PWu/Jsc253Pw5s396ey/OaTr1eOjjz7CuJ/PkeaMOAx2sSd//YMPME292r/RrBG7Sdsx+PDDDzBMg1hHCxpduoa+PUe+S9ZGjWE/LmzLw8MDRjtPK/nWrXHg9PyvSY8p+VGa9LXPHcZ+Or0381Qz9vsDXPJ+lkQplnDpewal3zW50jalvGM/Lt7PGscRWBl2XTP+pbzD/nB6t+Is3wGTsA2+ree8wDrbcg1qay9l7MN7S/H4tc3v6Mbo3ZFQxwGwsiznNuX8/WlOzzw+PsLCncpPyb663z/CJXW2xNZi1sTRtHW2rtGxOyzGaprG099MtbYfyPWnP6TtmeO7bX3Zvj3H+y+lWPW14ohAXh/9VH/f4Vpr+NL3DFqR+jxNE3Bld7UWl6vpzjAeFvZpmkZMY3ncLx2rlmdzl5TJ5VuzpkL+vp8EfZ7Q8qhUant6ehYU3xsPB/hCxaMoy7jYG/wo+xnpPn7tPVxjU/wo7W+SvAe4cTkWz+V3tMZTgJIPMF/4h8Mebjr35W3FqN6mj9bSbu6+xgdPy07DhGlK/+ZhDzcN2TKXsKauyQ2LfXSaLDBN6n24lkf1XNaGv0mIYlDTiLHT+wPkeeDHVz5heO+/DuDfM8b8pwD+JQD/LIBfD+DLAELE2AL4FQB/HsBPAPgfvPcfvQNxCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj51MKPr3xC8d7/EoAfffoP5viZoy8B6AD8bc9PFRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQchH8+MqnhKePrbz/ruUghBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeSzAj++Qj7VjOP4bHUbY1T3j9/FwaprbXu5e7m6cum5fMaY5jKl9DRP3E5M13WqdsJ1rt5cuhZpfGt1lMbskvQgS/yvMcDxZ5xmMAwDBjNk69Kmxf0vjbtzTpT/XVCa89b517ahuZcbVy1pmWv1paWumr7k1l2a1tL/2J62lCv1Ka6ndB3r9bX1SKrv0nVUspuX1r3GvgeCTUxtWC5fS91SHZr8mj0up8eX6II0D5o61q6DtP60v5q6tP3NyZaWj3+v0ctr2r41rLGXsW2Mr0P/43TnHKy1p3vWWkzTtLgO/wLAZrPBzc0NgKP/2/c9drsdAOBwOKDrDtjtbuCcO7Vzd/cCw3Ccr2EYcHd3BwC4ublB13Wz9oNPbYyBtfZUZrPZAAD6vkff96frrutOutD3vbj20+uSLmrXiB/tbFwAj4eHRxymvlo+165mv6hhvYO1c12fpgl+6k7t1NaZ5C/XxsVu3OI89ObNPfpxvlekfSn1s+YXxjam1W6XqO2Zuf0vrtsadypjDOD9cX30YyfaJe3eoLGpLX6jtI9pz572MGEcwxo4lr+/v8dh04v1pXr1nGdRqe7aHlzTIbdd6vjDwz26g+4cme5BqY2WdDm2o/G9VN7YLlprMQzDrA6pTKmd3c7j7s7O5P3Gb3yF/X5pX4PdDesinaO4/aNdd/De4dycwTRNGOFO5aW64j0hR+ijtK7SvU/S0TBuof3dbnea82maYDcO25ubWVlrDNyTzXXOYb/fL2QC5vNirZ31McxdjUv2iDXnwZjT2Hmf7H3Afr9HdziI7Wnbdc4t6n14eCiur5q82thMLkbkJodxnBAnPzw8YD/WZdL4qDU08RQ3esEuPaI7lP2c3J42j/3IOnbNs2k6JjVfPfYZS2dRoH1/TbkkhhL7dO/6LNESY9XUFdDGAta23eqvpWna83ktPR6/lrGs2eiWeJvGFpT299pa0ZLz00ttv23ic2GKxsaEOgLpPPqTDTqnO2vhI/8klEn3NEme9ForYyva9aqxsWv9iTX+/SVcavda12RKOo+adXiNWICE1v/QnrNyNm2N3b7kbJfeL+270pk+R+5MI+ad7KLOw+GAcbM8txwOe+Dx/LtUf84OaeUKXCMmqiG1HdansTJgv3+E2V9/rb9NcmtpEcub3Gz+rT2e/6w/5xnHAyZhPNau9xabV/NBcrGUXPlr0Ho20j63UK3jjH0u+bNr/MGcbUr7VfNRc+u467pZX7z3pzi61OZu59H36V5l0HWmaE8BnPQ7jt2E39J1Se4cped5NTS+cyut8l9qb3Njqd3HNDHslFy8TfucRCI9i2j8gFx8WpKj1bfPyVaqx/dL/9w6C2PrMRIpvZscnJuP9TiOGH1+70+p3c/1R2OHmmL1yX4HHP2gg1/GOFuexWliNZfamFxb19zjvPEze2kMYJ/8I+fm7Vpr4SZZppNswng/Pj5i//TML9V1rQ/Zku6mYwxyHic9xiCl9rRxu0CrvYn3vlq8Kk7LnXk1sZuWtIDmDNYaQypROstrnpNb52Dt2Zf3/jjPg/K5d07W3POeUpkWrHVwzs/00zlX9OlyXOKHtMQOW/2T/FlcSmsb09qz+NJ1OsbaM+jxXYZg147lrLOwT3vs4TBiHJf+Scn/jPuuebaYjlPLswdrlvGA47sY+r309OzQW8E/OMAJ/c/WO05RHefY5NM28SznuBrXiklrifs44TimDv5kG5xzgLMYDwe4pz05d/ZZYwdCmzHjOMI/2U8zTYnO+Nkc5d4RkPDOwlo7PytYi6DmpX0lZ0tiv2XepzTuNcJNblE+95w1x6X6camtflt1t649d5gSe2UwjuNJT9I6U5t3afwmdx4r5SnZ+taYeK4didFNi3fixnEErP6dpxYureuSc95srRsvnCccumSfWxMH0faxKKsN7+BE79LYZax4LaW4ZtDF+D2g4A/G71LEayzki9+tCu+gAjjF1mJfNl5vLf5sSfZ4Pzomz/uVW2d5/yLsKeU6vPewsPA+ee4Z5e98GM+4rfTdtuW5PtXB2nteEu/Cfykx9elefvS34hiRdn/TnCG7kz6c7hT1oYQ23rNmzEvxO+ksXkcfJ6qdfda8L3LJsxZNPVIcLM2avs/Yyto+1J4LPNU+a0f7DLpVtkvWf+lcfule19pfqd6Wvknr65gW6nlK6zp0Dc/C11Dre82HXvOOQponzub9eSyeUor1lfbh9He8x6U+RUhP/QkpNhnHR9P3mC711WMusYNrytTG8pL2c2fLljb0tqjsvzzH2NXKxNfWmCTGcHy/HpFfXVp317LJS7/ueB5Z2JrLHsOSFbzdqBshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8QuDHVwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ9L+PEVQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELI55LhXQtAyFq89/DeZ++tqa8lnzFG/J3LF4h/x22m11L5Nf2Ky60dlzXl0n5L6bk8od34XwBwzs3ux7/jdGOMOLaludDQdZ3Y5rMyTXDOwTl36odzDs4YTNMEY8vFSzqWy6epK0Uz361rDEB2vNeu15xsNVp1JW47vZZ+r03XylAqH99L145GltKa6DrdN95a11WoNy2nXaPp3KT2XLrW6H/JvklzEeqV9DS9Dr+tnS/6a+uMBqnukq6ttZu5edaSGwPNem61kTV9CX1I11sgXiu1vaomfzpeJVskybUWqR2p3kvtsYR2TtO5Kely+lsa11yf4zJxeqjDWgvnHKZpAgBM04THx0cAwDiOePPmDQDg8fERX/va1wAAH3zwwela4u6uw37/apZ2f/8G9/dnuV+/fj27/8UvfhEA8N577+HVq2PZ3W6Hu7s7AMDNzQ02mw0AYLPZoO97AMB2u0XXdRiG4dTPWIdDemxfWyjpj7UW3s/n4jjO5/Zz83qttZ/6oF3XwcLBuWCfj+1M0wQ/lffBlj1VwvVuNh7eA947pNXk+l8bF8k2lfbE1FfPca2zWiq77Wwyhh7TNMIe6nNfsrW5McrpS6svpSkT6J2rroG0Po3tW2uHW+cy53eV8sfZvPdHO2Dza6fWV4mu6055g60D5n6XMWbRTrifs/3pPhCXTf1u5/xiTRpj/n/23ufXkiXJ8zL3iPsr8+WrqaIaupvpnhYj/gIGwY6RZomEYAUbFqyRQEiwAYkNy1nMFokVG/4CEAsk2CCxArFjOwumkZqi3qv3MvOee8J/sIjrcSw83NzNI+Jmvur8fqRXeU6E/zB3Nzc3s4h7apHHWrvcS3uT71HJl7j5kYb4MvO2az5oizSO1L80F3z+eJl0zqS+hmFYzhHvPfk7T+bubjZwr2UePhiyV7uU52fUOI7F+Un9JtLapTLafZ5fb82RlNfp2TvzPG7bzfVF0jVJzqRz+bV0iBz1z7Rn6vb7et/P+RD9nHN6xyD5qWsffiXx/L+Zrcrr8/2Wo8l/1ORtxV8le6Npd49MpfhNin96qOWV9tj8t2CPn1mrU7rnvT+cIz5ybkvk+RBu43ri6lLcpdW/3N6XcjQ1euel5jdKe13T/9HcCfcVSj5Fq//ee3mZPfaiJVtJjhADGSGXUcs3SPaCy1IaQy3XWNM9aVzDMKz2CNcZbZyg8T+050spdyvlNI9ydE/31NFQ8g3PQCtLTX9L+tqav73rVFpvac41Y8v3V+v5Tmnupf55fKFBew681TM/Kf6VxlCzHZw5N3abv2gjxbiOGaZpIjOV2+P99MZ/PWj0pean8nXp9oEibXIJxL5LeQntHPScXT3+UKkMt+nb2KTPn0zXtbF+LksrnyPJyQkhNJ8PHH2WX5NVaruUsyGqn0maPELKIw9DJGPWsgzDQMOwnau8D563OOvZSk0vtfutpgc9OpZ/PkLSPa2ulvqu2Wtt/Nk7/l4k+fPc5VF61z/GuDzz4nYgf76d6/LRuK3mQ6d8Td5Fz/xL9nwv+di1+a7b/fL7AzkaHeU5XaluSy7NeZ/0shQvt3RWGzsGG1bjipHIvz6zy/vw3pHx5+ULSutQ0pve/RlN3PjKzs0+XuqXyyDpkuZ81pwxuSwtW1tqo+aflNhzDkv3tP5FrnN7ctK8fMvvnt8XSHMbicjQNF3JX+W9xevviYXP8HnD5JnNn69dLi80hfUztRK9Mb/WZ8/n+KivIZ0v8+X13q7t71LfJZ+i53nK0fM+iWTo5msOg6UYx0Xm1vxp/STe1vZ5lJwHzvfi3EY9v5nvrVrZkiwmtG0HX4NbE7drKd6R1q8WZ0nfW9eJ9tmCXvT7aN4nKRbywRMVcj9c5tpZIq2lJ0/er+85N1GcXq9Njr2/k+47Kr2+0zrLSvvUe78Mq+SvtGLqUp+uMKZpmii67XPb3vNVmsc9+vZW7MkJS6jrTlNhzq80mfW6afyBM3IZUru9bfXELtKZlD5P00Tee3Kjp59++mk5/6dpoj/8r7+jy4/PRET0u9/9jqZpIiKijx8/rvrg7yP+9re/XT7/5je/oYeHByIi+u6775Z44eHhofjuRymnqZkbrY0stTUFt9k/mr/Z0LbPr/fEdotO+vwdOSLnPIWx/1llSQbpfJfO8PQ5vQPEP5fP9vLeL+WmpHyTZA9T+dp+8LR9B9V7T9bXn5vxNl3MdcQU/cOt7OX8b+v+zR+l4v09aOv25CW1+cW2XFuf80icXaP0TvJ83p/3/LDFHp+uO9ewefawursrvqn1ccY9bf5hL0f3UKvt1vVSGel9vrfK/Wrz3kfnqbe+Zv6WOdnY43a8rpdBlvut/ra0lPfT7IW3/DvX1lxo8/dn5Gx6KMnF361KuQZr7crv3KOve/x2/s41R1pvbUxy1vmutQ81jvovmnFpbFctZqvlnc5+RlQjhPU+S7mVL/437GDD22feAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BcIfnwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwTYIk/ho0AAAgAElEQVQfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyT4MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yTj1xYAgCOEEIrXY4yq+lI5fr1VxhhTvM+vl9owxoj9aPpv9SnJxcnbbvW7Vxapb2n9cqwt/04Uv57aSv32zgWXS8I51yzbM0cqnKMQAoUQlrZjiBRtoBA8eW9O6XPPWFo6rr2u1fcYo7iWZ+muRm9L5UrX9+7jXo62nY8lfeftcnuVlx+GQZRBu8cTUjt5n977jVz8eq29Hv3g15O9qdXfsxbGmKLeafRHq695We1+5brQ6kvaE0fg+sPtvXbcLf3rsQst21OaX63+tMjH0buvamjsfE1f9ti5t7CHmjb39FurU9tT6Z61dmWvSteJZtuVdGSapqW9z58/L+X+8Ic/dMvf4scffyQiosvlsujVu3fvlvvOOfruu++IaB7jw8MDERFdr1e6v79f/CJ+DlhrV/5Sjw+WKPl967OpfG7V+tSc2/y69L0k4+yjhdc9QUQ01/HeUXT9v3UqzVlpXqLJbfV2by5llTFNqZ9azFXyG2rstQGaMc3fkw1mMlJbDyW/p1W2x49tod0v26bWcVXPmX3Eh+H1ND46Uf8ZxmOg1xaLOi7Ffto9zeXin3t8o1QvxkjTNC3XSp9jjOS9X+qEEOjxkejTpyciuu3DH37vyPlxuXZ3d7d8HoZhkeHu7q64h1OZm51aRkLOObrSOoaufc7h9zTxOtHNV+fnRoyRHh8fV/7bag0eIn1+v47Dv/vn72mYhqUPfsYOw9A9Ful+zcaV9n7PmaLxzdM9btvy61Kb6bu0NvP9NL7UhiFr13V4+3t80N7YPJ2lt6GYZX21c8Y5y2/m7XgXNu167yn6fp9nLy1fobbuHM35rimf6vS01cNb5lN6KI2jNdf5+dx7Lu7VfV6+ZMdK9knj00hxOR9b3o7G15Ds9TiWH13pfSad/1Vrr5WPOUO/07zysz3vR+q/1/evtVWq35NLyveD1gZzH4C34b2nONiizTVZ/q/WLlHdbvJ73I/Iy5U4Mz/T04+0PpJ/pj0XJDT7vRVDcTla85bnA/N871ugiW21dqznmWXpmtYOSPW0MaoU29T6Oys3wG1vqXypnzmGChTCurz3npzb1nHOkXHtcZXmW5MvrX1vtdWqX1pDzbryZqy1ZGz7fMvX7ugzZk7vOaDNK2z9lpB9J4qF+IlfktblbLveond/t/yWEi196kGr+y19LZ3RtTxPjVZf2nZqZyWfN/7Ze39KPjSfA8mf5mVbz8tae/moD5sj5T+0tvdMuXr1smb7ajp/1AfXovFp36o/bV6Mo8nR1upGHynGQHM+iJWP+lzausz8n/e33Nr1eqWLL4+r9myq5zl1LodG51v5g1tud52rO9NV3qNjPb46L1vbQ/m8aPyTmPmIKS+692zfPpfY3udy1+aO5+t6/Ktoy36yCes2rLVqn06K/6XcAkfybWtneM130cxFvg49Pn0NjQ0j0sXo2jgxX//0Objb86T5OtHz8zPZq13Nea9P0zMHku7w+xvZXdjs/5eXF5piv1GSchm9OTLt9da9GnHy5P36edX1OtE1rm1NbRy98bNatkZ+19vwesYShTDfDzG8npFE0+TIubY/neuYxsaU7pdsCr+f65c3vhj3R7fdI9L81/I9Jfuat5W3J6GxEbWcXu2MKX02xqjeleTXe2PRUh3eR1qfQETpcgiRbJTz128Zf9/OttXVzTNoXr722Qj65zL9K9rLVzS+5HZPyGepNv93FlqZpTo1ndPm4ST9P4JxnkJY759pcjQ1mm35J7UcwxHdP5rnb8mRbMkcZ9w+v7y8kL/zr3rvFlm+//57+ufe/4aIiP7sz/5seadwGAa6v78nonl+np5u78Dw+Ip/l/YP37ct30DSld7nC7y+i47pyHzdOUfmDR9ZdK3z69+WrC858sK7ipp9Kfn9Evn7SbW2tWjOMe2ZVivnqfS8IZBl7/q2CCY/5+KqjRwXffEZh/WvPtaypkmf1/sgmEBE6zOO3z9yJrT857NyYdo6wWzj8vws74mxW+Xt6p26pXbzrDvzHPYdureXbcy+ujvbZuYX13LV/P5b7Xuic/3Gkl5p8yJH11ry7eX8vSGiuj3cK6P2eUytPU1f0lmt1SMpBin52SbLu8QYKQr+f42N3TG0sdvz32/KzsAtL31bQ2n/lPK9ku/T82ytR19lHeTfZb2UdLm0Xq3nDKU4p5TvkOIhaY/l19c5x/nffO7PtG+a3ERtvffQiiP3tNOS8a2ekR31QTT+oja23SsDUf08OzPWA28DVggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBNgh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJPgx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfJOPXFgCAI8QYi9eNMeI9fr33szGmKg+/X+pfarfWjtRnjHG5V+urp0/NnHFCCGJ7PdTkIiLy3qvrlOZLmkNr59+f4uPIyx7Ro1r/rfrpX+MdeR/I+7Bc88FT8JGu1ysFFzZ9tPRUC9exs9o7sufSeuUYY1Z7QStzS+966vJ1q+lgq09pH9bqacZRKsP1XppbTR+9dqC07xLS/uvZby16dFqaF2n9j36WyGUu6VNL77R61Wo7l127/qW5bNktSea30ufe6y2kNenZ49y+JbR62SoTQmjappbfULK9tTMt1Wv102sHpT2SX8vb0NrmXpbz2vvlcwhh0VPnHIUQ6Hq9Lvc+f/681P3xxx+X+n/zN3/zJjISEf32t78lIqL379/T999/T0RET09P9Pj4SEREDw8PNI5zuHh/f7/o3jiOZIxZ6aJ0Dvf40YnSfl63G4lobT96/RVNee2cW2uJrCFjLBlDlJoexzsa4rHfOu1Z9zQmawcaBn2/uR2X7LomHtD60a370l6VvpeYi8x6mtvNUv28TG0eaudiD7pxrMuM0WzWdxzvyI+2ee6ne5o9WvNbem00p+bPlz6HMSx10uW7uzuyhb3F1yx9bulk+j4Mw3JtGAZ1DPjw8EBE63g1hLCy/fxzDp+Pxwei3/zmsurjz//8kV6u27kp7YmaPlmb6tzKDMPNVuQxlzYfUfqcy8XvpXku+SDpX2vt2l8ZIw1Dmru5DrevqR2+hi15azL3ctQf5kh+ybzvtv32jonLGWOkECM551ZlLpcXsteyniVa48j7yqnJOec9AsV4O/Odc+Sy3w7X5l24rPn4W4i5iMGQtWt7WdqDvX3syb/kfSRb1MoflPZ47XzQcGbuqNV2SQd7/Zc9tOKcPXBft9RX7UzX0sqr1MpJ+6blq5WoraOk/73XW332ojnreuJUbT+lvbjHxtT6KN3rye9pzoIaUl/p+uLDDwMZs+5rGAYyr+e+Zh5q4zr6bKMUE/egfR4jzXctFis9T8nbrdn9mn/HP7+l/Sc65/lTr75KfR4da89zKwntupQ+99ix3tylpv2eZ6dpDTax1eTJuWnlG18uF7pYQ87d9NEYQ84Fst4ucULtTNHMqySrNB4ttbohBF1O/TX/MX+fr1trydiy/Gfu25Yda81hLffA+8jh8zLHu9weExlax781tH6XJqeddLfVTmtdW0j2pJQzaLW7J27RtCP5MNI1zb7as9daOqZZs1a7LWr7YK/54Pah5Rtr5rLWhhQ/SmU0cUMt/tGQ2x6u+3wsmjHl/dZ8jz32UxpTyx8m2vqardjgTPtes9Pa3HKuO636yQ7Pl8KyP5xzZBzLF3fE/84HVj49P7nZ4TwPWmurNE7JH9bqXg8DhVU+iojFTdTvJ5Zonb+lPS3l6Fr7ubVPNT4Crz/rDs9h9MUSe/OxUn1Ob85q2X9DJKJjMW8NbY6X61hvHlyTP5L8qVq7OS19qtVpnZOtNlvPL9N3Httw5hz9lEoTEdHz84XMS73ts2y+lANv+X/O3d5zSHz69IleXuQ8CV8nac00zxA1eUGtbe6dUz/5wjOVC119/fmUhh6920Mw83unr73Ne9p78n7ua7peaXLbcUhnZX4G7tHP2vP7TZ7LhJWdJ5qfJ5mw7Su3I5u2rKcQdHG9ZJOsdxTCOvfm3EST0Z1/2vz2pl+F7W7ZpdS/JFdeTuOjpzkNdCsfQiAKgZzzFLN9o5GxdX3upyVvezxvlePJYxPNGRqs35Tz3pMppHmP5hB66Z2Xlj/YYzNqOizpqHbM3m/twXxN3muaZzV5bv4su37W32okcpsi2ZjvvvuO3Ojp/3v3M/Gh/L2/95d05+8OySDlA7Rz9haxF8d5l539hl5eLuTd9k/vNOfi2c8Y4jRt9MI5R25q97PnecXR90R629XM1xEd8OQL/oUn6/Xr5KLb5B1qbZT7DGS9J2MMeR9e7dJtT0yTI/eaD5iCYz7dqwzOkyn015v37SmzR5d76sQYRRttnO7ZZK+Mxpf1gdv0t/DTNWj6ra23dG/Wx21MXssx1XIZLZ07er9Xh0oEw+Wc/017sFX36LOWfP6qz9aYPqZisz72PfPOc7J78lpHyudnwlEdkNrN3z06wiZWIUP50s/X2s/N5tibfy7FHvzauiNp/s7077lerOIZr7MPtXxhb76ax0+tZ1ZnPKMrldP6bb3PMPfe20vPs7ajbUjtnTUuScbcf+y1b3n8fqZvI80Df7891/esBUq2wZjb38CcHQ+CPo69JQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/pODHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8k+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADANwl+fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBNMn5tAQA4kxjj8q8xpliGX5c+p3ZK7ef3+PcQQlU+SSapL21bPe1K7Uv9GWPE9q29/X6T1F4+J7xcbYyle71r2mqztl6SnJrPUltcNj53JZlTnTEQDYOlYbiVs8YSWUvDMNAQh03dVK60JnyPSKT6Lb3S6mirnBa+XtJ+zfvKx8DXoiSfVL6E1G/LDuT9aGxPTUc0MpfqD8NQvS/1l3/nuiyNndf13lf7ae3nvWu0B2mO99hcrm976vf00bpeGldr7/DrvD7XI+3ZK6GZZ2nfWWsX/WudO7U9z69r9EfyO7R9tMrkbUnUzura3k1zpR1vrf/SZ408pWtn2WeNfc3v7/Hr8n74HKfP3PaN40gxRrq7u1uuvXv3bqn/61//eun/r/7qr5b6z8/Py+fPnz+Tc46IiC6XCz3cR/r+++8pBE9Eszx//md/TpOb9+gwDHR/f09ERHd3d/T4+Ljs36enJxrHOSx8fHxc7Prj4+MyNi5rKsvnoeTXcL2s6YjGJ92u6XqdQtj2mctYouUX6e01tzPrtrUyaK9v20xjn68Nw0BDsOo9zddOK4/GJ8vvldDaC+063OYjvq5DnGUNpXLrzy3/RDOfUmx0JH7Y9OE8m/+b7KHjZ3V7dS4/+4/6+K1zYPs57dO6HkjxVS0G1OYAWkhxHj8H8ra2+2Wr77lNy22qNOZ8zwyxbRtzW1CSU7MXQwjFceaxqGR/N36cjeR9eO2bnal+HYuU5MzHVJsjTZ5I4qyYo+a/5GKUzrveNQ53kYbhurp2d3dHVthrmj0izb1ELvNIYVN3GAaytixTK/5s2fYafD14PyFs84Il8nXUnIln5U5qfR2J14j22cqj8W9uU9J6SDa1tp/PmuN83/a229qvvX6jRM3P1qxZHu9r0NpabT2tv9jrb+3J6WnP3Rat9T3j+UI6azU5yhqSPdeMX3sWSMQYqbR6McYl6Do6Ps4eeXn/b2kH91Dqs+QbSXKfObfH4+11Oz22Nz/HE0f1s0aeezw6/pY/ntbxSGyT91H2R3XPY6R2e86w0jlERPQ4BBrHK6VYmGjOXdGTocsd9/sM3d8PZBoxZN7fWewdd84wDM01izESBf59vu+9J+PPP6skOaTvpeu9zwlKuaZyP9Jcv+5JxVJo/JjaWPryV339S9dK+lZ7PtLrE9fyuL0xT95Gr8+Woz2H+bykOt578t4v+fXn5+fl3g8//LBc//3vf98cj4Z37yz96//g7y9z9PDwQP/snz3T5TJ/HoZhybnPMfB8TnGbnOebEnmuSOOn5fl8ovIcavyBnjO11MceGyzpWylW7JGFt9HiqC/B+ymtrfScI0fKt+UctU+5nK3yua3pPxtveUCi+n4v6X6SdSBDxthVXm0YRhrH+vr16GUr163x0Voy1Oa5NH6tTdWcY7W1O+NMLLFnf3lzezaqoRVT3J5LyLn6o0hrtlwvdMV9mqOyaO1dT2xYysmeOWcaO38kR/FWOZRa29HMzz8403QlM23Paom3yjnUcnXWhdd3Em5M00SO5PcXz5JFovY8SEvLTj/6SNfrOiZ9fn6ml+l2fpc4c41qfnfNZgcXaZqm+XOIiy+c4sbLy4Wcu70Dws+Xki60fM9WTtEYM8etQj853gT2rPD1mvdErv1coNRWjOt9530geo0BNFgfKIT187sUb9TGcjRf0PvM66znDKW2tu9FtNvstbO1d6u99csapL6dcxRfdcI4x+6/1vFuWWatvzR/95u5v05XmqZBXO88jpP2Ev9c9itv70IdieXPpPXOu4aWD13iLcZks/caiGY9PfJ8WcOR8+Ks55w9fRIRueizs9/QNLE9d2I88Fa0fIWSzN74zJbE2dZMx/aj9hqntPZ314mmaX1+XS7PNAVXbLNX986uL5VJe+6sudIyBVfwxaflXSSisk/Dz7MpuNV5ZMx8XltfnrtgQuF8YuW9L/gpnry3ZIyhUPRjtv19KbQ6ssd2zXZnPVbn1s89an2WqJU1PhT7c8PWR3wLGyfl7c8aX4n5/b71tTy/2Fpj7sfUfJpUVpMv7H1WULMTsu7JvkhNlrPO8NYY83cv070jee/eMj2c+V6BFj4G7z0Z8rvnrNTmkuMy9Gq3b/ecd0RO9hfDq//A1UJe89W3ReYjz/W2fcg5Xa2O97Tf0/+e69q50OYIeLtfY/+8BdpnBZqx7H0W3LbDW3l62LMO7Zgz/76N94/oiH4vrG0qf74Nvh5v94YZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ILBj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+SfDjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG+S8WsLAMARjDHF7zHG1fX8ewlNmVKfmv61baV6e+SX4HVjjFX5S4QQip9r/WjmyFr5t5+0/fRijNnMR0/7+b3aOFtta+eriJn/xxhT1Dk+f7xtXr4l66o7Qb5WvSSHZs1yOfeWkfpK13m9kp716FfPutX29BGd3lO/pgN7ZAkhLPtZ2te1PX2U7v3T0cYZ50LeVm6HpHb4ftW239L/vF1+z1q7aaP1WTqD02fJLkn6IOmPtPd5+Rjj5rs0H1L/PTY+lS+tUW1eNGvUczaV9EryLVoc3QdaSv1o97H2jNbMsyQD3yPDMKjk4foWQhD3WCKEsNLZEMKil/nnaZqWzx8/fiQiIucc/fDDD8u9H374gZ6eDP3007+4ku+v/5+/ps+fb/r++PhIREQfPnygd+/e0dPTExERXa9Xevfu3SLv3d3dMhfjOC6fuby5LSnNH79emjepTE0fhkBkDLcV8zxq9lmNml9aY9EBu5U7b7P37Jf2Mt/v87/p81zee0/kdXNQsodcbo39ldqz1m6+1/ot0XvGWzuQtYZiJEpVh2EgO9hTbVmvjdljkxL5OWPt7ezh1Vu+hcaP7mXPeHvPmmACvQY/h2npnebcl9qUfH1+PtT8rLmtuCnjvSfvZbn4vkqfSz5kaez5nu7VEakMl8l7X2w3H6fUtzGGwn2k63h5/T5fv7u7IxvXZ3Wv/LmfKq1vySZqzrq8D62fnmOMIcrWh2ieZ8kWa/z59H2+lK4bdk1mq7tlW1+jvd/y/srznfwUTZu8vV77xcdYmqPWvNXOUCl/o4kZtfOd24CjeTWJs3KvrTizp61a2z02WiNbT5lSH7melcr35st6/OxWu0faIdrao9r3I7LlfWnq870kxYBn55R782SafEnpXqlezW6ne7lvwPvK50KK+Wr7VfMMZS5jyBgSbezRPKTGjp4Vu+yNOWvksvGYXdNfjPFQzrZ2pkllNDZR67fvfT5A9Bo3V8oejZ8kH1gjZ36vtJdK10rtSbnmGvn5KJXZm3/My+a+ONfLEMJqrS5XR5fLlUK45UJ+97sXev5MZD89zraLiIy1dP2DI3s1K3+xFDOl7+m+lBPJ5a/Hdvty36V5bZ3FxhiKJtKt2G0sUiitWavSGDR7PJePlzuSEyaSY5ubDiW9JYrUjmtq7beeUR/Nq+w511vk57OE9JymNi5N7Jl/733+unfspbNPGhff49ZaGoZh8f3u7++XOh8+fFja+Mu//MtFbu/96rM0vty+WGvp8ZHoV796Ytctff/hju7vb/4n90N5rkPKReS0zq5WLFmqz2VqnWPS+dyKbVp+9ZHzXqpfff6QxQO9MZhWrrQGPTFE6XorJyP5Eb15KqmONkbXxG/GGCJDi//P964Z9/lmNvI9dKu/9/zZQ2/smMhl9D5sbKv3jlzh/29PmyPo3S/afSvloUp+TqlPbmOPnrmZlBTj65lBdnP2re1k6dlMOR/bOoO1Z+JmrGb5n1WZkp9VrF/op+bjlM7RXs5dr/5+WnHwW76z1GpfijOijWTt2q8Y7EBmaOdNljaEZxtS/1pq583guE2aZfXek7e3utr4U0KbI+Yy7rGvPXKZyZNz6/W6XC70Msq5D23s3OMTtMZZsm/BR3JuovQcKIRAzjkyr88gL5cXul6vS3nN+wJ7cg65zdKcPbP84VX+5Q49P38me62fg6W+vUvv4NzKXS4XGiZd3ENEFNw8f3N/87WXlytdg1fJUJK3Jxevjf/2ovGhkw0wxpC3fn7ObQLdYvNAMb7mdQrxk4ZS3DW3HSmYkm/kiV6rDMFTjDw2XL+Llbe3l1beO41BOr9X8htPIfAxG3LOUXR1+bQ+XGuPauchf/6/hzP8jlOY3DLnaUy19zOOjlvzXORr0jq/1mLH1z3VnhNNPChd1/oDe87Xmpzpswv5viSapvK+1PjjrfLdMB1ObXofRNvz1rRy29qzrrVu2nZbuNGR9251bZquFJ3+3TIXeRvz9ev1hYLbnmHGmGKfvHy4us35d71eFz97Gsr3o1/L/BZr34openKTJTY+r73l/HkZrW/cuydL8UTuO3wtO65ZT22+j+Np6xs555cYodb3Xh07ErNJa6+JjxKe1j4ikewj1mSp9bHnGVI9HryV0eYIztJVja+mze+fmWMt6kJ0xfig9t6t1N66DfOqM2u/ox3DR+LieO/JuPVcxGl6/VuMXGbdex5nY4y5xXnevz6PvxG8Z3Nxi3dMKK+x5M9J1/I2em1aj98VLLf5N/n3zOteP1T7vK/nnjR/R2PeWkypz13Wz9gvRW298lu5TuyZx94xfvUYGYic/8YfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/BGAH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8k+DHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8k49cWAICziDGSMYaIaPk3kX/ndVrXpc8aeWoy5mX49byMVKfWt2YMmnmS5Gq1JclVIoTQrFvrp2eNJDmtvf0WVS6PtJYa/dkji66t9XUuv6Z+79qVaNUr6VdprY7oZ6medE27Lr3rKsnJx5vW56jOlJDWXtuuNOd5XWmfxhjJe19sY0+//H6vbnIZNba2Rcve1Ork8u/dZ5o+S31INkq6nuZO01ev7crblHS25yyQ2k7smW9eR3MOSOtb05vavNTmXhoP1zfeDpf/iH1pobG9HI1d3yuvZg2OnLv5GubzLJXln7mt9N4v96ZpWtq6Xq+LnM65Zb+8vLzQ3d3dUv7x8XGp/+HDBxoHR+M40nxpvv74+ETWzm29e/duqf/dd9/R3d0dfffdd0RENAwDPT09ERHROI708PBARPM8pjqpXCK3N2ls1tqiP26MUZ3jrT29vb/t6y3sWF2GdC2NYb4WQiAT6791ms9L7xk6joaMWfcxDAMNwVbjgRo950FNvrw+1/8SrbGnvRBCEM8RT2Fpq2f9Stel729lU1vjL9kVfq813h57XbPVGh2t+fy5rK2zP9iwlEl9hxCICtVaNrn2OZez1GYtjsntvdRHbbwh3NpIY7XW0jDc9D23r5K9zbldS//KcllrN3L0wOuM46jae3xf55+HwS5nWZJ/GAYaxu287JWzdr5pqNmPvfkJXr+0x+d90O8712UwZO083/n5VBtjmr899pH7Z+uYbS0ftyu8XOtsKcnLqc0/P2tW585gNjo5jiOZTBRpv2tjHo1e521J56O1dles1ZIrz6NJ+11jU3rzPfl1bQwi+ac1v2lP/NsbJ3EkfzpfX6nPvP9eG9kTp/ZSW4uWnuzJ5Wj9Oc18aexIbq9qbdRyeS00+l6Lv2rjb+lZ+ldzvnEb35M/WfVrDBGZ1bkw2IGoMX98HABIF/gAACAASURBVEmOXl2WnjOJsmbkdrcUZ0l5Cm2upOZrlvQ6n4sjucq8P0nG0ll91rOI3vO9VL/lq/bkNVrsrSv5yW+Fxnb07KlSrrx2vtV4cIEef/x5de23v/1Al/eGLu/Xuvb4/ROZF9neaPfeEWpzVNvTPTF4jJHiEt8ZuuWmIhkyq3J8P2p0Pl+bnrUqnTUa3Srpdq3uHL+G1zINeZajRW6Lf5Z8FS5zzz6QbO+ec6YlSx7jl66XZJT618ZdUntn+pO1fKNzTi3TMAxkraVxbL8qdcSfTp8fHiI9Pq7n//13DzTelXVDn+c5Ts3vqOexyrmkmv7lPpokQ0t/ND6I1HaLmj/cav9oTrVm76R2W/77Xtvf8rta53teVxNnxhgphlseLC3zNAUy022veO8XHeCf8zattfToI728XJdcF9H8DO4abuOUxpyj8TGP5ihrsWTJFzXGFs/nvM2Wz1vrv+T3HdkX2nr8fCvnDlvtcr2Tz9JSP0SznZnv3cYfQjgrHXu633lGfNDTxpnvepyBxk+Vzqe9pPa0eVepDPfZ0xUSYk/N+Zyjset8LCtJhPNGm8et2Y630BW+FrU17s39Ed3kNS5QCGvfmJ8r3K87kp+tsTdXHmMk58ISN83fHRk/X7g8P9PLdXu+c0rP1Uq5yNqZWctJ1XQuTJGu12kV93369Jnstdxnbc7DfaDr9bq69vPPP9EwDZuywzCUx+XCJk66XC509cPhfFUNyW/I22j5B7252to9ay35OM9HpEghJJ8tUAxhfhdqmlRttfK4vJ53/B0CuvXp5rrW+Y2tCUF+x6sky61e2Mjkvac8VK7lETV5TW/9Mn+vpWY9e+3nSF5GIt+XZ+WNWxz9W4FEb36y1uba56vHnG89P1IetuXXS3ahJG/JR6jNpzeeYlzPi/eebNieHXtidO2cavNrqZx239TmtPQcJoRt/1I8JfVxNF8WYyTrt3ZjmiaazG2e9ujrl7AFtbbP8NfzPkrz7YLfnOfX65WC29ooSV4X3KaNl5cX8m59Le0RN7pNDpOXD9fp9f6tv+v1habXl+TK9S/k3TrH+RZrdyQvsmfvO18ea/B3xfJ7x5zqhetU1Adn1s/RtTm+mlw9/uIZPqRUL5itj1M6B8/sv7e+Rr9q9jWPbebPhvJckcYm78mr7c1FlPzP0pmU9/E1KJ3Brdgwp/UcLO+r1O4wbONY6Rzs8e14Xrn36ObNlnR5lm/drrTOOa0cQFme+nrwvtOz16zEq6yxWKenP40/K3GmXeTjye2f9llNLVbWybDf79LOV2/buX5p96h0L9qo2j97cna96Oei/M42+HY5J0IBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPzLw4ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBvEvz4CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Jtk/NoCfGmMMf/z15bhCxJjjP/oawsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAvkW/ux1eI6B8SUfzaQnwBDH0b41wwxoj3YtxORX6t9b2FpnwuoyRzjHFpj7fLr5+B97543Vq7kpHLmT7HGKtzfhb5+DVo55kTQhD7lPqV2j0yL2le22M1m7Up9c3L1HS8pG+l77W6UvlcnzYjYePln/k1onmNSvUlXSzNjySndv9q2+N1NO2X9lWtTc3+27OWHL4nakhy8HUvtd2SP79fa6/Fnj2p1XGtLcz1WZJP+lzbI5JsPftFS75fNeVqMvLv2jXmuimNUepHY19Ldlhj70vrlXNEj0tIc8z7yfW3tbdzGaUxltomks/T/Jp0vvboaE22Wtkakg9W+s7nqqSXuU4Mw7B8HseRnHNERDQMw/J5HEd6fn5e6vN5TWUeHh5omiZ6eHhg7Q00jiPFSJS6fXx8oPv7eyIiur+/X31+fHxc5Hl4eKBxHJd7aVypfJIrjcdaS8aYpRw/H7X6Is2Vpk4txJHsda73Nf+p9Fljm+fwi8iY27XSma6NWTQ+cAiRbvNR9wFb58+XROt7lGxm0tsS63VI1+ymHY2Psye27PW1pH5qPqe1kYxZj2cYBhrH4bCeSXLlOt9je3kfaY7497Q2mjVZnTOhfE/zmbcjfU5xcoxx+ey9X7URQljkzu9JZ11+RvJ7jw9EHz/ercb113/9e7pO8xxZaxf9N8bQOI7Ld2vtYseHYVhdt9a+ju9mn0pIMZt2vXv3hdQ30TpPEXx4tXVEyd455yhMZbnSGdWSl9fdk3PQoN37LZ+arKW1ja/vW23MmordLr/6iaF9rstn4bo/yT+u74tZtlQk6ZE2PiXa6lRP3ZwQgujDxxgWHYqhvC4137o2D3vgtquGdm/k1GIZfj7n/aexHY1FczT7SJdfq5+9HE3MfWbdmm+siUXzzzV/PMHtqEaW/HzP70nyS+1LY9yzL86so8k15/OQrxG3rb35Eo61tul3SmtQo0efWzpS8rs0tjj3R2IM5XnpyNdI8XmOZLv2Ip1FNdul8ce0MUdJfk1OJ5XT5NE0ubISPTFALpvEnvNFa2P2+MCadnnbtTOS607ped7es7W2/tLnmv5pdLPUT8lnlMfEcyBtanPT++xDkqtmu4/GFjU/NJ+zuavb/IQQyATTHKe0D0r99p7Vvbk3qY+8/dxG2ejJWt7G+t85vtCdw7V8VW1OWuR6wcfZoydam8J985I/ovETtL7xHhvUe66UyvMYo1W/1EdpPc+IyXI5bv3FTU5mHEfyfp3PKFHax3tiPjmuLcf00rVWe1LutpbTzeWR7E36vvc529F4tKWjpb11RK/k/LBdtav1rTTjr+XnNXEnR6NbNXuQqo3jQIbtFf7cqrUmDy7Qw+9/Xt27u7ujeDesytXaSJ9r+a+S/LXvtX7yzzym8n69PiF48n4rlyRjzz6vnc8tXdL4ma12tDGnzPrMa/WT54WsPW4zSvTYr2jzZzFEgx3IDNtx5c+re2Muor6464xYbk8eTqrfG79L70nuXfPW+3A5fFw+ePb8g4gokveOgjtX/zTr2zOP6ZnaPN51jpDoeE5vD1z+ozkdTj2/apZrPTZOarvnc6Llayw2fIgUQlzO2BgjhUCL/s25u3rMxHHOVX2VkgxrO2s31/g4+D6NMVKI897gXC4XGqZ6nFb6HNKzMPbczftAVDAN4jsmkyfnpo08L67fTz2qO9p6NVtVy2O32o8xUrgPNE1XimFY1mmaXsj4SJ8+fSR7ncS2em1owvvb+1OJy+VCo5vfmYiTz/Rovn/19bikZMf4uwOJaXI0TfX8qyae4mU8rXPoxhA55ym6uMoL7s3J9qLP181ocli8vR40PoGkxyXSPM+2b9229568l+vX8kqtz7U6/H2VrYy3z977Rffzd1y4jGk9xnFcvUeSPqd3T1rv/S3y2NxnmeMRvg01+1mTQ9bEXKXrUrxyJHflot+cBc45MoUzY+8ePENeiVosq61/Fj2x9Jm+XK0/b/L1NeScJ3KboiIu+k2sPk2OoivP3axT63u8T+P8xk9xzpGz8x6dZd7aLZ43eQtq54Dk+7eeraQyUvzvomNzO7c7TZM4t0e5u06Zb2Ho5eWFHMl/66KNe87c1xqbkc+r1P80uI2Pc71eKfr2HtTmN84YeyuPqCXGSC66jY2ZponIv33c2mPbvC/vde/lOKqHnmc7vc89tb7PHmpzaMhv2s/fUdmjS+tnsOla/7OpGrx6yS5WY31hLTVxfa39cjmi/Dl973POnv7eqj7R1vdO7R59zt+KEzhn2Me9z2lr7e3lrPHUrrXkS/s9f4am6ttaWut3+W+1S7K0+pL8I6lsjGu7AH4ZfIs/vpL426yOX+bJBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf8R8yz++gh8oAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgG+Zb/vEV87UFeEPwwzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADT4ln98BT9Q8reEGLdLya+V7rfq5xjT/q0eY8zSVq1NjWy8P+mz1GYP1tqmbDHG5TMfY4tSuRCCumwaq2b8eRt5e7X2W+U1a8nnpSSjRn9q8sY4/3e7IJffqwuJXFZjTHWuWv1r1iLvV5ov7frzclznJP09IlMvqZ0Yo6rNmk2R7tV0sSZT3lZuH/Yg7fkcjcypLWut2pYc2Q89es3lkeqVyoQQKMZI3vtiufS5ZofTnKX1KtnOYRjE6xxrbVPvpTHlZffMPd8fHK0eSbLk187az70yJHrsUOtey14mW8P1J627ZIdq9qm2L7i+aupoz9eS7p6B1lcoyZKXjzGu5lXSWT5H3vulDe89OeeIiMg5t3x+eXmhT58+ERHR58+f6ePHj0RE9PHjR/r06RNdLhciIrper/TunaXL5btVfz/++CNdr7NteHp6oqenp6X85XKh9+/fL/0nO+S9p/v7+0Xe9JlobTO4Lc5tiYR2Ddv2w5AUyvXu9T36JenK3ISh9Buf1tqVXkjjknwYjf77IZAx6bxe66rUZ02WHH72SvT6vlLf+b7Jz0cNcYgUY9pnqV1P5Nf7VTN+7ZhLPszRWLR2bfChaH9jtM0zQfreI19uC1tt1s4UbmOl+faDJ2vTmab326U4jcsjlbPWLvKEEFblk5567zdrnu6FEBY7HkLY2P7S3MznsyXvZ58tjZnbEe7PjeO4kjO3w7nf6X2gGMMqpnTOkTfDpk4+l3xtNGvfm7/I/T/e39oGRLavA0V2i+slXzPevuTnauOy2nj2oIk1lpjh1Wfg5bz3FJkv0ZK3tI63uunfrR3T7LkaLT++bM/iSlfnfbSNd2oy5e3yPSKdu9L1bZxV7jO3Y9wmSOxZv1IftbqtfiRKNqH3XJbokacU/+7NgZ0RE+7xcXpsYalMTe7eGEZLyQa08h4lWUIIRf3tWQutr6Q5o6S28rHxMfGYjV9P+yGEsPqc78vSOZTO8fz6MAyr810a1154u715lqNtcZ+mRq5b8/e42gshBjKNHBlvq6Ubkj9/1Jbm9XlsWCvXakeSqWdNNXMi7dO30kmOtI+4fDl57pRfr/kI0vUjsdURuyt9J9Kvce96tfo+Uxd684L1ftbrum4uvsYMco4uUbO5e/yOXl+h5SumMyY/n9ZlAvnJru65T57My3p83K/lsWhpj5zl95WQ5mjv86gxBAoh7f9bPug2Ta9zt1yXY8CSDDzvW6JlB47kZFpo8+4l34Zoq388F8KvlXJ2JVkkGSR94/Pam29Ksrb2aC1PL+kcH/OevJ623Ow71s8oTVxYq6O9p9HL3CbmSLmeI31K5XrkOCs3u+c6Uf2cKV0v5SpLfWj88T25gJy3PA9yjDEUwzZ3770n49v6UpqT0W9jNO8dTRSK9TTkMSRvJ7efGiTbx20nEZEJ2zaNsSt7eGZ8rTlXjqDNiWmuExFFf3s2lEg5/NxPTH6BNK4QAhkfyLm1/r+8XOjiyuuay1Zaf372SJ8zScn7QNzvfbm+kHkxm3Mz/66JHc5Yx4SUF63Fcprczl6/qRVPnOmPHc2v7OWMd7mIZPlb7Vvbjn24HTtT33qp5YdyWuMe4tZnLdnsvTZUqqfxTVt+SgxzjBRjJGvTeRYpxllm5x2FsPbPa2zOKcEGWWurfrrk621yhCEucV+6FoKn6Mrt1PZ+sCnWvpW5Xq80TPX1X7XpwsZPmqaJplhvo0cfj9BrI7TxgPQ9+EjT5Fbr5Jwn4x1dLi9kr9dTxrzy9+4DTdO0uv/58yey19kne3CeXl5eVvc/fvyZXsZtfN+yUff3YdPWp08fl3exSvugZitK94mI4kOkabqy+4YulwsNk1XVlzhL73qe9ZQ+9/Z/1j6pxsjOMZsViciQ945eX/XY0JqDXnn2xPy9ffDvZ9seHo9w3so/2sZDsl06qm/pu7U3nyaZit48RYs953tircMzzjlKYctb5iW1HM0LvVWd5G+U4kXd84n95OvKc4TpfRli78V6H5bn1C76+T1IxjQ5ik737PyXDt/nLtzeZ05DmaapONZTmKbCfprIDf25lp69d2SPHLE9xhhy4+099cTLy4W8G9Vta2Lut9DFvbllN7qNH++9IyOc/UTn5k8kuTZ4v8lzOeea+pja7s2J7xnjkXXdO6f1fKLfvDN6s6nr+rU52trobUwr5YcT3vhV/Er0mqcM6zmb3+XN2w6qHIAEz0sceX6Vn0U8ftb2X2q/Z0x73uvQ+oMp3nptUS1TDUlebX6lt93SewNvgbb92rMkR75wxnqiiu3ltPLoOb1/v0o0y8/3rTHx9dlU+xnZHr1uP3Nd19nkytQ9grP4Vn985Y8vogAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzKt/jjK//t1xYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw9fnmfnwlxvgffG0ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXx/7tQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAr8H4tQUA4AjW3n4/yBizfI4xqj/za5xSWWPM5nrqV9NOfj2XudQWLyNRk6FXrto97/1qzksySN+JiIZhEPsIIYjyaOD91eZM0gepLWm8Uv3avGpliTHedM775TvX2RgDhRCWeSuNuaU7Gt3KxyPpKN8jUh+a/jQylPqX2pb2GG+jZx40+lOSqzQvPW1p5czLafWxVK61J0t7I5exVKbULrcNEqleTS6NHdKitZ2171xvuCzeeyK6zQ/fVy0by9sq6Te/Vxq/tbZqL1p7Sdr7uWy1eTlq7xPW2mpbvWdprb50v+UDaNrRUJK/1x7l5fL1k9rmhBCa+7pm73rXoTVuiT1zXjvvpbb5HpfOY+n84Od6CGH57F/PfSKiaZqK/aby1+u1Ka9zjoiILpcLjeMc+t3f34v2cs+5rbUDZ+xDPlf8WghlXZF0aM+ZWrtekovrhUSPP1yy7+v66/uS7Fz38j6l6zW5SvFYaY73+sglJF/dm8DmKd0fiItS8w33yNbaM2ecAZwh+s0Yh2Egr7RhvWjHtIpfKr7oPv83jTcSkSFr7cYHqLXb+l6idg6m+9frdbHTz8/Pi03+wx/+QM/Pz0RE9OnTJ7Xf83d+9Ui///2fkrUD3d/fExHR73//TD7cEdFsu5Mdf3x8JGst3d3N94wxSx1jzOJbJ79viIaMsau9MI4j+eGmN9o4P13L7ZDGJ6r5m5LfGu4iDcOVeLP39/dkSW6rhFYPtLmEnr7yazW/uOS/5meMMbd9sEf2tW/CZd3KXTtLWtelPVpj3Mh0sy+lvXS2jdUQbKQQ1v167yn6fh8qreWmj2ysGjvS49f3nH2aPd2qfzROf4s8U5LtS9SV8gJ5mR47WpJD3ufl8nvi8loeqLQukp2qrWlvbC2NVdsWPzf36MTeeSzVS/OV7vH50/TDz4YUh0u+XGkta3NYWyPp+YxEy89aXfN+sbk8ZrYn5pX20JOHL+lobf1L9c/Ko2k5Yls1pLyoxNHzXeP3aXLYvwTynJrG1tXyoSVb3Tp/tDm9Vi4ot0l5eU0/c0yT7t/OmmEwZG1qZ743DAOZ4WbjNfN3NGZonW+lueC6l8+Rei88El3u076a6z9+sGTu27G5diw5PXmbnrp747vb9VcdiPGWNHnNIxirjyFr+0iay1qdWr/aWDGh8Q9aPhCXmeenec4j2err9brkOz5+/EgfP36kH374QWy/l7/4i78gIqL379/Tu3fviGiO+VO+YxgG0f+v2e5ULn/2WNP51jsneYzLz2g+lzy/n+6FQDRN676fnyO9vNz647Jyn47nBrR7VvLbNX5YrY+Snue5ZmOMqJslP7fUTy+6M0QXR0p59Xz82rxmqw6fq9YzT47mjJJyDrU6muuSLLlM+dg0fcQhkjHrORjHgcj1yZn6GyiQtUlXb/ek/a7VE+m9Bim23BMDb3VnmzMjikUdO+rPS35b6d5ef+moz7+ZU2s2umOtzfrR+X3DMJCN3F++XR+Gtv2SYnF+pvH3NSR9mvfD+prk02j9m968ikTed2/MKp1Je2PfPftYQyvvln/W+oDSWdPDW+cJWu3Lz+vlOq25eivSHuN+SMtXkWi9m7RnP/E63LeU2s2/J79dur7wSGReHl73LJH3libnybwWe36eaJq2Pqj0OVHyz3k57321fk8+Zl1VH9/JZW55hBACpWNEo6veh81zIuccuez/B3eP3veekbXzf8/8tL6XCDTr3ByOzxPpvSPjDb28vJAtvNd01Bfw17B5X+rjx09kr6+65wJNk1vuGUN0ubzQy9iXFyci8j6u3t0yxtCnT5/peq3bc+meGHtORNcr74fo48efyV7r+2TPu/yt81KrB9o9rc0T1WRsyZz3rTkr/eTJe7e69vJypSmu6/aeW9r5qsUNee62VGbPmGvUnvV44zftOzdRnPR9nu3/aNvT7EWpH0+evF/3670jcl/+HYUS1nvicWHys1vPYMT2Dj4zk2IhXqZGz7PePX5/Sa/nc+t23fubf5TXLcniyFMI6wrTNFF05b3h4ra8czedsuy5KJfJ+1t+UHuEanzTvfZKWqvamaLyKbJ3VW9jmK95H8go9FvrZ6xsqg8FO+dpslNe7YvwJZ5buuA39uJ6nSi4tr3d4zPW6NXTvb61865w9r+Qd+t5ONJnrX91vWnarI1zE01MLVrPgY7I0xpr6/5RX39Pv8bc/t4yyTC5iUomQ/sMgIjbIh4feDIVv2uuk/sPnkz2XqH0Nwea83BP3qFFnvNdV4uVXFCfD7pHP2vPtvbYy/n83r6bmfZd6xxMnJHf2tu2dh9KPkzteU5O/i5b6V5tHaxNf+N4uzYMlmzoW7v8GXnep8a/5+Q+bGs5pWf02nhXc30r481mrfxfVW1wJr/MN8oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgjcGPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5J8OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAb5LxawsAwFnEGKvfc4wxu+6ndmOMzTZK7aT66Xr+/Sw049f0ydvh5fP2vffLZ2v7f9dJqhNC6G6LI81DbfxSnV4dS/3w8vw71wFJT4YhkLWGrL3Ja6whYywNw0BDHKpy5OunkVnTVul7qb/8Xmn8rTal+6116tnjmnnJy+R7uFS+d75r5bV7gY9Lsxfzdbnp3qDqL28r0bN3j+7zHmp6K+1D6VrP3quty7K3G/uj1OeePV3bG9KY+dmnaTf/zOvx8ddsdIsYY1HHkz71nqva9Wxdz/s9U44jZUuy9PoB3C5Ia8rJ10KSl9uAHv9N83kPPXYiXUtzw21qCKFo33KbwOeVtzUMA728vBAR0f39PT09PRER0YcPH+j5+ZkulwsREV2vVxpHR+/fv6cYI4Uwy/rrX/+aPnyYw727uzsax9vnx8fH5bu0X+e2yvuJ77/c3pXOD8kH0dojLlPJDvb4ZCUfsHcvlNvW6Z10jkh+Rql+KhtCUM1HPv98T/J15OUkP2Dv3LX2aM1n4fX71iFu2s735B47qvGvar6NFE9Ka3QErd/QY0Ol+5J91CDuC7OVN4RAlE1vze+o+XfctvN9xevc3d0t1/navX//fllnbi+dc8tn7z0555b6efmkS8YYenqy9Kd/asmYm87+3b8w5NzNVqd9aa0la+0iZ/pemoubzYvElz+EQN7fLqR4Pq/PbQHvg/edU9tzCY1vNfdDRJT+vbVvrU63jvhhWntdozR+bX3p7IsxknOOrHNNfa/K5m8+Q2Jut72XJTuYxzy9OZchzrmO1bVhoGE4Zne1/ZfIdT0av9K/ZMs1sWSJ0t47Im9Oj07UclRv0f+ZY96b32mdi7Uzr7Q3a3LletJznkq0yu7VnVYuJL9e82ckn14rhzbPxO1Sa/2ke3t0Uop9avXzXEYaVz4+7ivk49OsfW9esjbX2lyQltJ6lfIN0ax9gFZ/vc8XvmQ+MiH5bTl5zuVryFrijDOi5R/siSHO6LvHptbirD3zU/O1JJuimS+NvSjRY7vz2DXvr5Xz67NTYSOP946cM5s94j2R8bo4Mc8XnXV+1vwAqdyufodIJoudh2EgM5yfH03syaOVdESbs6jllG+xetINosBidCKiaQpk3Tr/lWjtN20e7AzbJeWLJYah/nxYkq03TtPkqM7wFSRfRLK//L2Eo+y13aV1SnkkzsNDpLu7tbzv3g00CPtU0lGpjOaeNh4h6suBnBU7avtLfWrmSGqv1seeZ/HatSjtpVyH+HOmmizSvsy/831SmjNN3rQ2Fv45Xwc+lhqrc8FuzzRjDBllHrDeT/rXirZfGn/vM5FWjoKfiVJbm/mksLlmrS5nVupbkq10T+PTHPU5+fc9/ljpWVme50/PjowxZBvzNsTtc6BhGGkc635DojevUvoewzamDyGQCXqfVbMuLf3W2rsSkr61np+dlRuT2tLapT3nppblWVFlnc/kyDrW4KL35KGkPfIWMdM2VrydjbWzrsQ8xm37JZXW6L/GLvSco7U4J94RxeUZ46sttJbMqzjDQOT9/v8P1/x5UMmml84W/i5KdZ+F7fOsEAJF37//oo3kfa4XjsJUX/91Pncdg87/1vOxA6MgaQAAIABJREFUWvvW+6xJa5/22jTNvvY+vOZs+PP2SCYECt5T7IjdpPHn+sXzAIn5HYKbbsXI95sh7z35wrsHpf5W18L2WZB3cz5qb640z0UREUUz6+JrCSIiulxeyF6P5RpbuWXNuy98L2vzjfl52qqTPzPRvG+Q18v7Jirvg3Tt0YflnbzETz/9RNe7dZxW84d75qKmLz2xfys2a9XXkMvj7wJN07S69unTZxomnf60PvPvPfMrze0e21nSOR8825ezzb9cLjRMw2afSbqu8S808kl7L7dPs+z7znRtru2t/La3oGbjvPGrM51ofl+GXD1HmrexXsPtOwQc2Z+c6/H3zbhM/jWHOMsciItSk5n32+KMmKEW1/e0GWMkR744F62xcjlafXM5rfeLv5mKS+9+1/oq9dc7tzHGL5L7lnIpIazt255nOxqd63323fJZWu1Za8mbsIkrvA9kFPO9x55r5dr05bj+v+5/73fFbCX9k8bSE9PXcl9f4r2GXC9jdJt945wj5zZVVe0ubYzj8u5v4uXlhVzmFyWMMeS838gyTY5iZr/idSvzy8uVpvh13gvhumj9Op4imseQx9LT5LpyWGfkkDl7/mZZ7uf4M+B1e/veN2jVl54N8Xv8/l7blFjpRWW+68/JbmfrLYciy6NZ1zPfodLmSErnZqu9Xt2ZfX7ef1/OFbwd51kb8FUxxvzbxhhf+O/f/9qyAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwSwQ/vvK3h/+N5p+2y//7R19TKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfqmMX1sAcBq/e/03smuGiP7VryALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/ePDjK397+JeE63/3i0rxhQkhLJ+NMcvnGGOp+Iq8TOu7tt2SPKXrPW3t6b8lR0/91C9vK2/XWttsq0f+VFbTLteDUl+atWytV6mMVkf4/O1ZQ4kYY7M93meMsTjO1rikPkptadYrtflW+iztsd7+8vnq3Uut/vj91LZGD0v3enUs75vrCL9X2lt74HpxVpt7qe0BPn7JhtRsR/75qP3VrKX27GvZxFJ7pWs1HcvrltqS9n5+XTPP0hzndkir17X1GoaheL2mz0mOvAzXMX4vXde0meQt2Y69elea//xfSba9Z1vJdvXYO0kGzRxo90StnkTq31q7fPbeb+Ryzm3adc7R9XolIqLL5UKXy4WIiH7++Wf6+PEjERH99NNP9PHjx+U7EdG7d5Y+fbpftf/DDz/Q589bX/lXv/oVffjwgd6/f09ERE9PT4tuWWvp6elpkSmteet8T20PwyCeaXv0NJ/vIeSyRBqGQdyjUv/8muQfaeovUlh+/+bDav2ipZ2K71Ky97OOyfKWzrQWrXNFknGvHaj58VyW3P5Jn/l8xGg2Z0W+Jq04onTPe7/0tyfu5PJK96RzcL6e5nzrv7Ta0trH2jncstdaPW7JcKuTrs3rO44j2WB323FOaf1DCKtzL60378c5R977pX7+mdfn8zWOcwounQ9JH40x9PhIdHe3lufubiSiYSkj2dcQwspe5+W8D8SnyJg0lra95vpeul+qy+cs0aMXZf9mLf/R/ENv3JXrmyZ+4udA9Qwp6AtvOy7XWT/eU3zVNWlPttYshHWbSR+kNvi4WmMpfdf4ATc7bhbZku63cmncF6itfQhB5TfkdfjaznN3Y16HfBzHYkHOl4grebkzZK+11ZPn0+ZV9sa7vb5ajSMxSO+ca8v3tLt3LjV5AE17mrZre3evL9ATi/ailUnSwz1z2ZtHkq4Pw7B7Tktt8pir1n++FmYYyVpLMd58gWEYyBR0oSZvba/vjU1b7ez1uyWO5Fa1eqHVq9S/lJfJY4eavXgLW7gnRqvlK6U++Xm/9zyR4um9MXytj9pnqc/es61FK+/cwkZDxlgiimzuBxqG2YfkTY3jSOT22e8z/bgS2vXWxix5rLBci3IdDUfsY8u+tfwIrV4Nw0ADGbLWUIpnrH2NxZY+iO7uBjJhnz73+JYaX4Lbxfwz75Pbh1L5hJQv20PLrmrz9i005Vrjks6mVDf/3oP0PKd2rWVfhyFu4kjnIjnXjh178xetez118nXQ6oKks6W1OMPPPuID75Gltd6tNZPyI/l+781dlGTsifNLsu+JKfPPPdzONH2/Nf/CWlp8B6l8ybdt6VjJdkt7ZE8eonSO5rknSTbpWrqutR29Z2JvjJpk0figLbna17dzmfLXUr27ECnGdB6kXGqgdETUYhkpL9jjtxMRxSGStet1t9aSsX3nwlv7tjVqe0HSsVo5aV61+RNtzLc35i3RXJcsjkn39uSEemx4yRbteY+Ld1GTO+/vzDxbS26tPavFMGu7rzunJJ8/91Wl/mu6m+fw8nIhhO0cm9wa6uTPZZSu9Z79eT6l9R7A1p4ftW39bYUQFjlL6+WcI0fnPW/QonkOSdSXh+wlpnjHxrUehkCTm8hM06n9WWsphm2MRfF2LX/mmq7l208Ty8o2Y/5cei6uZWUfB/78MZIxr+8deJ2OSjpQetbP2WNHS32elTPQIMWZ3efL5Gma3OrS5XKhqy/HYr15qx40vlzrGcsR+DsmJcJ9oJeXy+razz//RPa6tUFaveBocg7GGNHmaXzNUnutz+E+FnTkhYbpmL2X3v/t5X7ydL2ubezz82ea/N2q/Zze2KSHWh6opefafntsT81GB+tZ3DfjvSNyeh8/WJ+dR3Fpo4Q36d2y233nJorT6/teviSTJ+fM4kfm+QHvPZnXYUo5Ue7HaPOmZ+bSOHkMJa27N9u5cM4tY+1BI6dnc5+maJommsy+Z2B7bGFvuzncjmr2U2mOkz6lflp+wplnUquto397lN4BlcaslaOH3vfHy32nmKttJ4/kR84g6V7vMxmNTZDqpPIlX2bP8/uSj7GkcJgv1raf7Zi6lO/lcdue3NAR+JlpfX6+yXlW/ncwJVp5GclXqeVuSvqsfS5tjCHn/Xxes3WapomiOyc20pbZc1a05q5UriZDizP+7tObsNGnOT7fF6OewR6/c0/bx32AQ9XBieDHV94AY8wTEf2KiO5bZU9gJKJ/mYj+S+H+uy8gAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf3Tgx1dOwBhzT0T/HhH9O0T0rxHRv/A1xaH1T4pdpIIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzL4MdXDmKM+XeJ6J/Q7QdXzFcUp8Rff20BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4JYIfXzmAMeafENF/ROsfXIlfSRyitRyGZln+l68kCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2jw4ys7Mcb8V0T0H79+zX9wxdDXg8viiei//lqCfAmMaU91jLH4udVuqe1Wf6n9Wp/599Rmq1wPMcZVu6W28rFIY6vJld8LIVTlstaq+pTu9fTH62vHJiGV69Gnlix5u6nc/G/6LxWY/yetbY+uSHO2R8ae660+a9dzvcn7yT+n71odl9q21lb7aWGMqc6TVh6pv1Q/hFC0I9q+eTlu+2KMNAyDSpYe0nq27MUZ5GPLr5XK5eXzz6Xvmv5r16XzZm0H6u3WrtXsOJ8XSWf3rnnPnsnP3drcSXu81sdRffPen1InX9c959NZ/kmtH0lHSzYhLxNCWM23Vg+0+0raF+m7tVbcv7Xxl3SktR/4vJY+83ZrZTjDMCzzfHd3V5Tv/v6evvvuO7pcLkRENE0TjaOjp6cnipEoDflP/uRPyLlxaevx8ZGIiB4fH+n+/p7u7++X9h4eHoiIaBxHGsdx+ZxkGYZhsd/W2tU88881e1la49IZz8nXZd43qyur/iWfQOo/7UPJrnBaNma+fyvjvSfy9f5zWWp9cBlvbZV1tOQjlj6X9irX2fRZYwO5jiQZJb1ISOtvjKnqBh9Lks1aS967jc6EsF4HSYZ8/rX+MJ8vScYaPf7grTxff9m/KclzxvnSOq9zX1OKATX+yXxdFHmlYzX/ptWfNBai9dnH7V6+R9Ln6/W66KX3npxzRDTb6peXl+X6NE0rfX24j/T7339PRLe980//6Seapnn+uE2+u7sja+1ix/k9a+1ix5O9HlygGHnMcBtHDt9/0j6u+TC1ueyNM7lt5U16Hyg6OebT9CP5KhqZpT7y+Elj02vU4v1IcdkcuY5rY8PoI4XA982rToe67fbeV/c4p8cHT/sqvuY7uOzSPEjtcx3Oqfmzkm+49Y35ZzOfgYO8XzT9tfIHErU4t7ctrT+soXZWcL+ipae952QL7Zxr+tfGsNr7PdT8PP5d45tL/5b6bPVXQxv/atal1v+RfFutrjaulGQPIRRtUy3/3Xs+HbUD+Rr16HeLvC3JV9uM69X3Xdld6ntu07LDrTjpS/JWOdPefMve+gnuG+Txdq5LLZ/sjJwkR9I3rQ+5N0fckk9rR0ukOWztiz15SClGa42b64DkX9RsZ13OVLakL+uyhtpnSo3e9dX6Mtp21WfvWL5vDryqsCeW0ep1Ta+4P6KdJxsNGWMp6YQx6azI+ox1ufZw5vmYf9fEFq291OqvljPJy/WgyYFq+5HyPfm/eZzXeq5culdqKz8var5eTeeHIZK16zMvz0trbEhvzJnnWHvPAalMTVZu9/f49vza0XOW19f4V61zvrVHS3K09CeXqzenJrWf5r43Z5Aj2eyjtNval1svnUXla9v6e8eqie/K+c7b9xppD48+bMp678hTe4/n8tS+9yDZaK1vq/E1W/sytTHPE+9XkuH12ZWt72Hrwqt/se47rUfPuVmKh/p0LLUj3d/a2rPzaYnWM10ifTwr+cm9eZ0SfJ7PmovcV+2R46z+S5974D5HKRZv+RR5W/nwSja3dL3WTyuWbCHlH6S8VF5HYr32W7vUuya1ZxRcJiK9r9DKD8cHomlM/UeyNtJgLSVRxtGS98f0rCdXkMqXYsBiO2b5n5NQxpsKu8fL1sYoockF52zfh9Dtl953c6y1zedwW9I6zvMxDiOZMah0KtmLHl9pVZ/kXEiMgbz35E2/bfY+Fuc8BP25pYrLeA68Q921OnQkR6Xpv1Wmx1fs8VmP5LSt2/rYzjlyO/TkjxU+T7VnWIEieb+eq+t1Intt5xm0eX9tTNDiDL8pEe7D8m5m4g9/+JHstW5PNXteoic2up/88g7SfI3op59+putd3dfQ9E0kj6MnZmv1dYb/X0J6F4p/9neBrtdpZXMvlwsN07DI1fJj/Z0n5yYiusVsnz9/ptFt/zzTGLN6hyzx8vJCwzSvWZxcdt/Q9fqy2CUfPHl/ux9jpMvl+Va/4tvu1cuefKQ2V61pK9iwep9pbjOo3+Pn49WcPaX8rhTjSGfa0Tz6mfFrq90UF5ae24awT44juec9cyHFf1J9YwxF245lJf+zN29ba6tVz4pr82XeYSjZUP6+y9d6lyKR/31fq2xiz9+5xmHY5AjHcVz9Ef7GJoxE1q7XdxgsjXF9Nowhbvocx4Hi2P4T/157w8dee2e/LNvc18Dmgu+/nri5FrvkZ0htjEd8rbk+j0+2fWrnV3oGdmYOPu9PgyZ3XTrLjj5PknB+7b8Qze/YB6d7h7fE3jNTOh+cMcXYkDK/TUOvf7t6buDc6/l8uz9NE03mbXQK6MGPr+zAGPMPieg/p/UTu7d5eqWnJMt/EWP8P7+GMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/NLBj6/s4x/T/AMnkbY/utL6CaHSj7T0/OyQ9CMv/Pr/S0T/SYzxv+toFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbwr8+Eonxph/i4j+Far/8Ir0AylRqCeVl+qnOpH9+78T0f9BRP8TEf0PMcaLsk0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5J8OMr/fynhWv8B1H+hoj+GyL674no/yaiZyL6EyL6N4joPyOiv0/bH1D5H4noHxfaHYjoeyL6SyL6B0T0bxLRr2n9IyyJ/4uI/sMYo98zqD9WQgjF6zFG8bMx5d+60V7n36V+pHt5mRpSPyXS/VSH1zXGkLW22laMUTWXpbb5v7yfWhsteHljjFhf6k8aS84wDKo6Ld2ojU8z9rYe3ba8MUTGGjLG0jAMNMSBcnrne099aU5q+0Aqm7fV00ZOTde1+1W6luu+NAe1+tq93CLfIz31azYtvy7ZLu0eS+R71Riz2n8Svbqcy1Uam/aa1Hdr3aWyvXuBn1daG5PrGLfR/LpkO3MZJNk1e6lXL0tt8HolnTtjjbS8RZu1drXnU28/ko6l7y258rVP30MIu+xPTZdKdWrrkOp7v88VlmxD2i+ldeB7lOst/5zWMve1rLVL27yc957GcQ7R7u7u6Pn5eekrXf/06RNZa5c6nz9/pnGYv8dIFGNY2nXOLf1dLpdlLFobw8efPudzZa1dXSvZmNI5UOp7r75LOl76zL/z9crbyj+X2M6dzleQ9K1mO7XxRGqnNv7UzzAMqjnT7vGSLHlbvL98T0j188/82sqfGA1ZO5AxRKnLcbwjG8q2Rzo383K5rBq/sTZfWl9EqnsretN7a61qL38JameIMaa5z1tnQ9q3NT3vPQty253gYxnHUdwX4zgu47q7u1v6f3p6Wq5775fPqS6/d38X6MMHu7Ljf+dXI11eyjJba5d+YozL52EYls+LffaBpmla1f/555/oMtzsetIRfj4Nw7C6XrK1ef38uuSPanTeWkvRBMp/r3iWse0T5GedFH/W2qnZxdL1I+Q6uG430u3rvN6mQ8/zs9oYQ9EQrafCLGvWEzPV9jTXC828r20cvyb7zLV17fHhc984nS95G2GMzIcj4ulZbnt69aK2j3I5a99b9Wu+Rqn/Vhwm+XQluUo5Ee4PnxVzteZMW+9Iv5qzLP+u8Xs0fWtl1NCbR2v1o8k/1cqV7pfi2tb8aXzunJpvromrOHti1nx/SrkfLZLt7D2rc7Q5R35f0rP5HN7GIZHi/8/eu8Xcsmz3Xf+q7jm/b+3L8d7H28aXI9txHLCd2CSGBxxhLgoJiUgiUEjikAtg8sBDJB6tKBIyipBAQuKNSCiAIELCIVKkXIkFshMCEbFkoqBjsBTinWOHc3zOsfdee6/1XWZ3VfHQs+asrq7LqJrzW/v2/1nb3+zqqlGjbqNGje7V5+zsC3TpOWNqra8SiwmR+CGp81HNDtfkXjueJVkzoc4tc6JnL2/17y6hdKaSPltrkfkUSOvz7cnZiNq+nZu3pVhMrbxPtzaOIxkYo05nKI8xgLbpWFRtz62dDWv7Wa6dOXmSvSeuf6WD8v9vXVcultPjG0nWcipPziesyQr1rOkbt9O5Za9wLurjhBhJrPlS4vlcWoevcrxKZaT9UvN5WynFHHJ1+LR476ntT5fEOWvlU/2Si0GH58AWHzimdPau+arSM3WufMkXra3v0u9SnTliXSRzX3IWS1Gaj7l7uT6SrLlcX7T4rLm4Vup+qfw1zqbZOga32eunacJghq41rI3dtHU5Y6RjEak5X2tv69qN57zkPa6zrFi27vInQ5mX+qMta79nfkjHesmXs3OrK1hroWxZl8W/8HPnbEdb/X7p3pHsm5OP5/McY7x6O6cksbBrxN56zz3A08WuLpXRsgak/mkLi6513612hiqVreXJ1Rf6EOk92qed992W5wqp+9I51joG0vUnselKre2KZGzCPUVy/tueceJ4mbz9Pr8zWO1/zp3/nuuQ+1CxD9vjT6V0Df+u7ln/bHidX4n/906DZxE63v+BQQ9QgzzGuohay/BI/LOU/16zR2G/hO9H+DNF67yo6VVKC7HWnsYHgW3wcV3rLJS1F/nZxTqjdL/H977fktInt6+u14887hsTPic7r4NlXjlrYW3ZbktjNDVa+qslnhCv7dweEJKady0xiIvPJQIde+VJ8+Vs4qXxulKdqWdXp+cs2sHa9f3D4QB9ONvOXBxQskaA8jORXF6P9Gycsr9ex1T8xCi7afc0zRjmst3tibm14pyDmbfvAd3d3eFx3MaaevWQ+MvX+LcEpesUrX2Zar/dWxwOh1W+Dz/8EPqQbnOqzq0Mhbu7ewxTWobZWUzTus6XL+9O+afJ4HAIx9Thww9f4PAwnMo/Pj5my0vGudb/EqTPS1pkxevQzAbTNK38rPv7ewzT0KRzyodN3XOHeWMHD4cDJuSfeUrrfcoyl5Q3MDBmvX7neYKbbFe8yNuCsGzNPrTUI/U5Skw2Pc7OrP9J9TVjWDW9k3voYdroOU0TJlX3gaSxg2vGNkr1tHCJj7c8LzarvNM0Y57l7xLY4NzidZld2geyx3+XkWK2qbVlgKiImk20Rhymacakzm1Y5b+SHyHytUwYGz2Xi/268D3jjxPV99OHJbYOnM/z4zhiRPrfNvbEpaRx4ayOwlhTq8zYJkn2dEksK2a9/27j0nHdpXNPqs7UmFzS50Zt540xMxCs9Wu/Q5Yi5Y+k7P+rsOFkDT++0oBS6psB/Fasn9r56LMD8L8A+FHn3K9GRX8NwC8opX4SwP8O4Hujsv8SgB9zzn21Uv8I4N8B8BMAvu1Y3sv4IwD2AP5QV+MIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPmM8fH7zNTHm38d5z7zH1zxn0f6BQD/RuLDKyecc88B/KmgjOcZgD9cq9w5Nzvn/iyAHwTwU4Ecr8cfUEr9aVlTCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj5bMOPr7Tx2zPpDsCPO+deCGT8DQAmkf4HpEo4534NwO8B8D9h+wGWP6mU+hGpLEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPqvw4ytt/CYsHzlB8BcAftE595clApxz9wDeDZOwfDTln1VKvSlVxDk3AfhRAL8YydIA/mul1E4qixBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQzyLjR63AJwWl1B7A98TJWD548pcaxb0L4Ndj/QEXDeCHAfyUVIhz7gOl1J8A8FcjWd8N4D8A8J816vWJQ+v194OcW7pBKXVKU0qd0sN7YVp8Hf621ibTS4T1h9exXjliXcK8KT1zbUqVyeUN+6mkW4laOedctm9LZXrrq5Eb21a58RyL5UnK5+rWWkMpdfwPABQUyvpJ9U/pmEpr6Y94rsZ9I60zR22c4vuS+ZNbYzXdc32VW0eXzLFYTq58zlZIrkvEczRne3N6pnROtaHUZ2FaSfdYt1J9KdktSGyeJ7Q3pXEK8WWk+eO8tXndYwPisQzH2Dm36v+wztp6qzEMQzJ/aR712hbJ3tRLaf2G5HQotUl6L9dnubUTl0/ZOK11l85Sv+hVkNNznufifU/K1wvLhevDWgtr7enaGHPKr7U+ldFa49mzZwCAcRyx2y3fVry9vcU0TZim6VR+GGa89ZaCMQZe1S98++t4eDzL9fXtdjsMw3BaV/4aWNaar2ccx1N7xnE85VFKYRiG7FpO2TtjTHaMS3MvRcpXCvs2la/mE+Tqye3p8Xg7XdYLyM8hyZ4eX59llffJ3LzM+VBxm/1vP/apMpcgXfcS/UMWtcK9Lj3+NR/VI9kXZOOVztvCUnZbV7jXlrh0zNL6yGRL9VzJGcI6zrYxthvxGs+tvVjH0NfK6eXLxGfHcK1Za7M+VMrGhbbec3PjsNuZVdpbb7+OaTrbXi/L6xtf+98xN7PFfj+v0t5883PYj/qkT0pn6bwKKdm0UryhFI+JbZ61FrB5nzfnA5f6KMyf0jOWm7OLpXaFlOyKr2c7r852zTkHHP9KZYVpSim4wcEYG/SLW/wIc55ftfGP/YG43pPmwrPo0rZUmuwMnJJXS5Pon2PJpjEMA/SgVvNCcjaX7EPSPSRn32r5wnSpHc/Jq53DWuJBpbwtZ4hY50v3wdKYSeboJWdVaZnYjqXGqNW3KslqoRRvkPgHPXqm6m6N9dXqS/2O08K9NuXH5OpO6Vqy+/Ge3mI7U32RGp+SHYr1rfnRtb5Y/ib0Kkpd61LSoSVGlZs3qb7p3VtSfmN4Dq+Rm0PXjHP12I8SLWsuVVfOJ2ttcymuJZV5jf0PuH6sLNwTwvhTeD9nO1vGW9LO0hwN16zv62maTjpP0wR194APPlhiTD7P3/3q/40PdjO++Z/+NjjnYI7pX/npL8HeWbzxxhsAlrjW7e0tAOCtt97Cfr8HAOz3+1O6P2v6doa+bq4veuawxO/y+eVrf+1HW2uhbNv8qdku6V7q62+lNT54rt8e5/E63V87l/cJe3xDadt8e/w8kp5HY72kMU3JWTzO22K3anVK9OzdH3Nn9FjOpXuKRzIX43lQ8pNzvnlMTf+SPxzqE5/la/2X0rfFxl2ynmpIziAt+2btLB7XJ21TLo4mPb9L76UorcNS/bVn6V5W7dxQ6rOwvyW2U2sNpx2Usgjj38OgoWaVfU7sZafr9vvEOf/hMOEx0fzYVkvPnxLic1pORrj2ZGNhEXZt2BepdZySEc7fWrtS9qSFkm946Tljye/7bL3/a+37ZcmrtYbStf14+xxm8bfa4iK5/CI/2W59Ru/jtcQyWs71Nd1qZ+GSPImO17SPPeVq8/Aa57NYp23cI9+v16q/pE+qrtQc0okK2ydAAAAgAElEQVTn4j31lM5GPfJzc+nafReKC/eM2nwvnZtL7yaX5oL0rOA0EEcElv7HqX5jznY+53f59FR8IaWfxOeoyTinra6ax/W0T9o4hgkYa6CMPHa39W3UKaYgfZ8y/p2ysaXYZRxjaOmPUl7J2ap+f/nP2uW5o0rMlx4/yvf72W887/0AMOgBalBHfzett3SfC/MOg9s8sz1MBxwO6zaEZzG/XiSxgJB4nkPgl+bmRYg0lpHb3y+xoykb1uJT1frwkrPoMkaptGvvG+k4QS6tZIdfNaGNqnV1znbFsnJlW/6dTukdxNI+urIjQdtyti8+Z/iy8Rjl7EeuLaW9XPpvWvwzjTguGtbfE+Mo6XpJXql/JLFDUl+oZMe01rDKbnyah4cH6IM8Tm2NxeEwrdJevnwBfdj6BABg99v8d3cvT3XOs8E0HVb37+/v8Hh8b8yXD5tzf3+X1PnatrtXdi1vLmZidnZ5LhQUv7u7xzDlx0e+327n0H4yeHx8XOX78MMPcdht3wG6pG/j2G1tv73WfpzCzOb0brzn4eEBwyR7Hy4ktcZqeST3r9Hm1Xjr7fudzm1twUfOPG/8t2maMKmz7ik/uUbt2Yckblkijh1e+9/ilGx+6t3d5Zlz2T8JyfkvcbU9e2oqRp7SObeP1/TspeS3xdWH+vq/8zzDTel/s/EUevXIv7Yd6ZHZc5aRnAOvOUd6dLnkjBbq33IGk/qbzXFFPUCptY3Uejg9W1iut+/8S3Tx9NrEZP+8+qPhZ56+N1k+m3wPAO9NxlP17zTKejeT/lsa5cA599cB/K1AJ/8k8E8qpV5rlUcIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyGcFfnxFztuFe/9Po6xfzKR/X6Mcz3+eSHsLwL/dKY8QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkE89/PiKnDcL977cKOvdTPr3NMrx/CUAX43SFIB/v1MeIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGfesaPWoFPEKWPr7xolPVudO2wfCzluxrlLIWdc0qpvwLgx46yvLzfpJT6TufcP+qR+0lA6/P3g5xzUEoBwOlveC9FnJ7KF8qK5V5Cqi5pWk6f8LpUzueN86TaF/ZxLk+qzlz9YfkW2SU5Ul0k/WOtFetQ0qd1rtTGK8gJB3cqIxnn2r1QRqqPWudlqz4960qypkObkJoDYf0t88lfp+ZYrv5c3SVZqXpLcmrE5WL7eQm19ZbKn5p3ubkYUhqvku0Pf/eu8xSSdZgjt2d5uT02UdI3tbwpXcKyqXHy6eFY5sZVardKayb1O5cW27Vau/3akMwTqX+Rsq09a1li01O6pMYivK6NibSdLXr1yLqknhb5Utubsyu5eenTrbVwzp3KGGNOv621mKbplO5/T9OEx8dHAMDhcMDd3R0OhwMAHNMf8eLFG7DWwtqlnq985X0cpmU+j+OI29tbAMDNzQ32+z2ePXsGABiGAcMwnH6HbQ6vw7lrjDn1idZ6YwviPov9v9w6D+tLsYM+1pG+H+5t8Rru8elzvmN6LfkjWF3Wtmx6D6vZ9OXvdn+PfexUffHvWLbEXpZ8a+kZ5ppnrfM44DhHlnWmLtz2S/3pKe0ZpfNPTUa6H8t+aQu5/eESWb3k/Iuz2KXvhmGAHnST/xzKbdnzwr6N7Xiop9Z6lc+nLzb5nNePf2rMdiMQm8D9bn9qd8p2pmxp+kyfPq/m1rvXOXde7/UrJb7KVncdzIMlzzgO0PZpviUttfuX+DfOueJcMMYAOM8rexp739cOwzBAVfbMWozCDg7DENoddVxfajOu4VyQtF163krPy8WG+1t+rub8izBdcha63OcMbWc6T2pce/1p6ToPZTnnTj5VLD83NqU1KCkv2Yta4ldPETsqnR17fMNL9r1r7pkp2Sk9a2cXaZyllLdUvncNhPrlfFfp+TtVPtzDS/kkuqbqr6W3zClff+7MVItThvekMYrQj0nJKtmEnEwg7RO3zKsW+SW5udjtNeZEbR+uyYrHMPZDPbWzSnyul5BrV6rumt9Ykm2tra7XWr/5+nM6S+dVyXeRnDVK9UjOk0+F5PzZ4s/nkMYHS3VJ+ml3mPG2fb5K+62/7nvw8LrC3a+bV+k/+Du+F+rxsv32Ulr9TkmcO5Xm44wL4Vm67hO0UBujUG5qfw1pPT+WbKRSOiPP98XxXKmvM8fDs3lL+dzenPMPcv2X28dLpGKOqXqkclI6S59B5PKV5kjuTCTtl9CHyu2vEkL5wzA0+Qi7nYPW8yp9icmXY4aXnhtyvma8RmNq7Wppu+ScJy1zyXlM4pv02kdJDER6RmiNJeTWQal/SnVKYgaltZeLNebmXL7Po3EpDE0q/uFtxG62GIbxmLbcu7m5Acb0OxKSvgjz5cYr7qNLY1EAMBu70ckYA5PpnJSNjfewlC316T02okY89yT+X2l/WI1dPGdw7vvkOBWasOT3/wE4PYNbx9Mltqu03uLfGz2Ng3N2lT5NFmpq68dcLCW+7on1tObtiUH11BnWV/ObSvuA1G+T6pK6djYeewdjDLQr79UpLvUbUvrFvz3huw1+jRgzw6i0TS7pea04cMvZOzcXUvY9/D0mbLG1BsbkfUvJOySpOsN4Rxz7SOlXtdsGUNP+eA1Yq2GsgV4eR+FwcJim8tosxduk5894T8rZqNBeKKXOpjjxXkQrTm+fSYZnxtZz0lIm/N1+/pXWl7OpvbbIU/J7an2stT716WnnVOF/Zf1K56BY3/BdvtB++myzmaHmZfyG2UZr5bxenXOnZ7HA+bmstXb121/f3gAvX67jq1/72j0eHhadwnetvI77/R7jOJ7aMo7j6V7cJ6cYXcO7Rq0xnp55mcsb2/ieGEOL/tfwpUuy1+LdcezbZbX0sWTvk56fevf/WrnWfg/tSI8d7RnnnpiY5NnRej9b2/hc3T3tlT6TCNOk493iX5V0l8RnQ0LbKiXeB2I/JxVnkMakcj6pT7fOwZj1c4VpmqGndCwy9dsYu6nXWgcc95G4323Cnwzr1LOFMdv7kzu+V6wcrD33s3PAw8Mj9KHfx66d01Jcy4fPobWG3Z/fofbc399BH+r+X8t+5PPeGovDYV3f3d1LPI75Z6yS9dO7P5TOVDU5JVY+yN7i4eFhdf/58+fZPk7V2eKP9575Je2X9ofZbdv8/vvPMUz59617YhgtpOTsJ3Oaj/72/f0dDvN4KnNNvS55N7p2Tkxx7TOTUgpwZqPjPE2Y5steHHcKK7sLAPM8wTwesmXMzmCe51W7DocDxnk46wtAzXPkQx3jvabeH71xMqmcOdINAIw1cG4bn/bv5vf4gCVd2p4ntGFUui3a9p+tW5+NpWj1deKyl6ylS8sXywyAUhphUH4Ytu9/P+XZr8rpmUCcFl7m46WSuIpknxmGdMxqW/Z6fheR8dG99fXJo/ShmqlwL8W7mfRvUUrtGmV5/mYm/Xd1yiOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5FMNP74i5/3CvbdbBDnn/j8Aj4lbCsB3tcgK+PuZ9H+mUx4hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ9q+PEVOaWPr3xjh7wvZdK/u0MWAPxSJv37O+URQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKpZvyoFfgE8dXCvd8I4Bca5b0L4DcAcFH69wP4G42yAOCD6NoBUAC+o0PWJwbn4u5bsNaK84dpSilxHSVZKTlxulJqIyO8n5OV06eElxG3Nadnrh7nXLUPpfdyY9SC1ufvR6X6rqUeL8v/9eW01lfRNUWop//t6zrdMwbWOljrsCQ5WGthlYIxBspsxzAe19I4p8rGcy81hqn56/OW1kFujZXmvqT+WhtTfZLSs7a+JPdT45q6zq3LFNK+lOhS6l/JXInHK0ds73potTe5+0+1hoG6LS1Rmh85Qrvn63/qOnOUbE3ud269X1JvTG3dpeZ8an8ehmFTPp5LkjUbjllpLrauRSmltXjJ+MeU7I3/a4yplm3h0rkkkZ+z6aGNje1tzQ/1+cM9P/QDfPo0TZimCQDw8PCAh4cHAMDd3R3u7+9xf38PALi/v4fWBzw8jEefYSn//vPnmOdlHt/c3GCeZwDLODjnkn7UMAyn39M0nX5ba1drIixrjDnli2Wm1liI1rppXlprxWPday9r8lPju8juW7cte39NjlJLu1P96onb91R7ZEmHS3WJbUsOpdSpP+L0VPlQbqyLZN5J7HjODkqRzv+wjbEu4Xkn7htPT/tbkZwh13mC85LNy8jt9a19F/+O9Yr3gdCm+3H2cxAA5nne5An7WWvAmLWNe3h0OBzytjple5O2fbarupTy9jRto8OzcWjHU/6NT5eeI8K/Yfpav0CWthf5Rak53rMftNjKlH8Q7u+1uR/OWeccsOmv9BkkXu/x7027tQ8b+jzbNnhC2xXO69zYa62b40TndZUuk/Mpcv7gU5wzQj3jtHVfls/vl8QyUvrEeqVseKst9IR+Xq5uKZeecVI2RKJDi32q5Y/ru1abpPrk4m2lfqj54yUZubmT239LckuxpEv94VyMMs5T60uf5m1cLDPnN0nmTOks6WnZa3Ix8Vgvia8U6xrKzPkYHn9GzHGpjbPDuKl3HEaosd5X4XiW1m5tPpfiWCU5l8TfSr7VOOYf6dbG9dpnv9A/CH+X1jtQ739rbdL2pMqX0mJ6424p/ypnDzw9fd1iW0uUzr/h79CfuzROcI24hqRO7yv2bL8ta/DSGG3reo+vpfuVR48ak55XacMwZP/ndyT7gFTn2jOAnP6SPs7Z0TjeqKxdzQmlzjGyY8pyttX9fltpL6jlr9nEHNI9pscnT53t4zw5v7NV3972h+Vz5xyJPrX+kfhUKV2UUht9Smd+Y7axxiVOcB4PH7tP1evrzI1L6Tq09ylSNiGXt+YbpqjN15b5XNsre+I9PfW03GvRJTUOqfZdeg5tKS+xMdJzeeqcFc8/N7jNPh/b8NzZKmUjRmNhrUEYs5nnCZPbrovQXsXPFHJjUaInLlUqMyob9OExbRwxDvXYp3TMUzbx0vkWI4mDlNJz18tfyXw95nXl/g5jlEr5Oiz8NEv1S8pe1+K1ubqB83o4Z3PY7UYoe9k5uzVfyk5J9+TWmOKldrzkv+T87JY4tiSW0jreVlucHngFeWtxjFy8Lq6zdw3XfF+tAaV0lDYU/YOUzpL4S28MIEbih4S2L11/eu07t/b1WuZ4rq9zMTfp2SCOPbobYB78PueO80NDH/fYcQR8aKfkg+T2h3Cvl7Q1RX3NKJxt/TJGqefuuTl2moM2Xl/LfF6fKyVzLIy5OczzjLnyv4MrfS7fUj4XW5MSn9Hj2LXv43CeT9N0+m2MwTRMGD64hRsGqPt7OOfw4a/+Ktw84PkXvwh3/7A6QymlVu8e7fd7AMu811pjt9ud2hv+9uMyjiPUrDFP6/n4+DhDH/TpXe/SWgxjrLUY982Nw+uvn89rSil867e8hceDKq4Lr3cfKohv5P0OkaQG31B6L+X3SInnXG6+9vq0LazjR4CPIfWP20LcxviexEZK/PGeM8c1yh4lrHzmjxtZ3ysx30q2dfk3G+s9dZ5nqHQIp6hLrc/9+6Fh3vgdjVBnrTUw+zPvOc88z5hgN2VylN6naX1OEMsqvZOWQzLnJTakpNt5fQFr/04md/Uu+BCu9/O4ucS/6wEAqx2cC2Wr1Vo6n223NiEdr6r7/al+qyGJk8b5euJtOYwxsMqt5jcAHA4T9OHy/SDlI86zWY2Nczj6d3mbLq2jlNZC6UzTs29aazcx6YeHB+hDfd1K1/Ylfm4vpXO5u3ErewsA9/d32Ta37MPX9FX2k8Hj4+Mq7fnzDzDtL/un363+amubav5Lazogjz3vdvb07ys87z9/jmnati93dk2tI3M44PHxcLxe0l+8eIkhmkchZmcwz/7+Uuj+/g7DtD537KcZ03QIa8Td3UscpvQ4t6yTHp8/TLeHGcas7cPj4yPmObbLjzBT+TxVQxJDaY3N1zDWnNri5U3TBDfLfagYSZlaHKx1jVzi07fEaC4lF7u/5pkvFy+VyHXOHRd42i8M5eT23dS/OfSs/43A9t9u5GIyYfntfvoxPYh9irmep/Ipxzn3/wL40F9Gt39bh8h3M+m/uUMWANxk0j/XKY8QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkE81/PhKG/8ntp8zUgB+r1Jq3yjrH0bXXtaPdOr2hUz6s055hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR8quHHV9r4O8Hv8CMs3wbgTzTK+vsZWd+plPrBVsWQ/2jL+x2yCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgj51MOPr7Txk4k0h+XjKT+hlPrnGmT9vcK9f69Jq4V/N5P+9Q5ZhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR86hk/agU+STjn/p5S6ucBfB/OH11xx//eAPDXlVJ/2Dn31wSyvqyU+scAvu1YHoHMP66U+i+cc78g0Usp9bsB/HCkk//7Sw1N/MThnKtnClBKbX6nZMRp4bWkzlwe59xKh5J+tTwlHXOylFKiOkq6lNrW0jdan7/9ZK0V6RQSlw+vc/lC4jpzOkh1k7Q97tPUfIz1HS0wDBrD4PMoDHoAtMY4jhgxVudCr/7xfC3pn5KjlNpcS+oO8+XWnrTN0vXWagfi8rV1VRsTybq8xN6V5Ejnbk+5VtvZYgMlMn3eYRhEdZT0ldoCv4ZLdiknN9atZG9zerXMk979yLdLsm7i9Hj8SnZEul/VkMoJ6w33NK11cu8Ky6RklfyMkp5xHa32oWff6rGvMTm/I/wbti1XT6j/NXXpKd8yxz3W2lMe5xyMMQBw+gsA8zxjnudT2v39PV6+fAkAmKYJX/va1wAAX//61/HixQsAwMPDQ7He117TeHh4Y5X28HCPuzvZfHjrrbdOf9955x0AwO3tLW5vbwEAz549wzguR8dxHDGO48m2aq1XdiEc77Avw/H3v6W+adinMdZaWFsf81w9Ep80J6fm2+coycvlSxHPN2CZX27WG92ke2aLf1PTrZXSOKeI9QvnnFKAc+k2SMY5t4eX+rTUZok8CaNT2/PCOMKOwyqtpFvud4kWPVt8gZpcf/4J8Tanda/1+3tYZ81XC/0Ba+2prF973o6Ha9Fai3meT+V9nnmeV3nCfWG5D8TDEdrIYRg2Pq2/jtsUr+edshgGDd+XSins93tgdy6fsgGpa9+uVt/Yt9unSX3YJX1rG6V2wvfztfxKCam+DMcuZ+t9u/y1192d5JxDh8YYKH8/KC8ZPz9HnHHHMl4P7wNv92fpugnb3rOf7JTBMGiEXbTEQ4ZsmZwfe+2zRNovPNcbz+lL9vecDvHvXJ5hGLLng/Bsn4vZXCPGJKUmuzavrzXOpbPRNeu7xrkrRXhmldSdivHU9JLKL8lOIdWltO+X6qv5Cqk9pdbmmq2pnUdz+264h/eQ0jdsf2ou1+JCtTNxblxCn0miZ1bvQcNav1cF9RTWkqQ+Sbzy2rav53zkKcVSeuUATxOPTlFqeypeVIupXhqHl9QR5mtJbyWMI1+6x+Ta431KrfXmDJKTE8qSnrlqfVLbA9vs6brscu2CdO8v133jnL9cInWe8brkyNnLcB9SSjXPLecc3LD1RY0xUPZ6PkwuFlZr80pPgd+ZqzO8TqdH7VttFUv/SPoj58PH+kv8nmueTWJ/IRVfydUdX0v9KOnaf4p9VDr2uTKSeG2qH2rruieGJumH2jqonUda7FhKt5KvFMuWzKUe/0KyXnJjLF1fcT/m4l2S8jVa5r/kmVlKvuScEyJZI9K0kmwJYf87t35uZJUNfP+lHq01lFbF+ZdLD/2Ec1q+fGrt5PbvErV5nJvzZbvu97tzLC8nq3T+L9nIWr/22nbJ3OpZy+G10w5Khc+XUzZsKyun2wCdeA6zw26U/e8btu6POVu8jJe/xsmnKfWfZB9M1Vmb4y1n+Za0WF+J/teIBz5FfLFXj3P9QdxIy/yeku6xfxOu5dz7GDV5p3zGwph5df9weMSj2Z4lw3cC/N+cveqNI8W0xCdTcz9fNhV705uYXos/6O/HcYHcmSO8zr2XklzDA+Dc+p8JtNri1H4SjmUq5qDU+bl2y/4Z/96eKfP+SFhn0v/VDoAJ0gHnLODabIF0jqViLLHuJb+7hu+fUIZ/ppaTEz8zKo39brdLpq/mw43D/Zsz3DBgPr5fNL79eWAe8E/8k/8U1OMjjDGrOTpNEwDgcDic9Hl4eMA8z7i7uwMA3N3dnep58eLFqfw0TdCvaXzLD33HSqev/K0vYZgGaK3xmlP45/U3nfp/t9vhl4bnuNfLuxXPnj079ZV/D2oYhqStMmZ7XjxMDodD+UwSn+VTslfnAXuObSnljnu/gTOqaFfCdSj181LrrbS/XHr279lrJWdwaVwqV/+QGNt5njGjPY5+TVrjCjVyZwapz7jOJ4tztMQIakj6o+c8f17j+Zi5NQ7WJmLZcSyyoE9KN2vtyQ4CwOPj48n2Oefw/PlzAMv7pJ5QT601Pv/5z+PWODx/bk92/+bmBvf395hvFtvt7ZsvkyJuf8+Ylf7tTk+c7FrP04DW9qiTjU69n5LSf5Hv07d2fpv/nC8lPxXHWN4v87/D5yBhuXyrepDGqC6l10bUYtotdZx96+16X9LWZ6fW83Z+3rRTal8pFpRjyePPE0uatW778mK2bPu9nL9x6b/Vk/apVan3NWcMZtj0oa/vWjapSc5s0mduOyezS8/1Ukox0lSdUiR+cy6tFq/Y79Z7q3MOL1+8wGHankfDNVKrx+73p3+74W+9//770IdDtrzd282/93jvvfegD+t+3U/muNefZfzar72Hw264yjjGenkkz4/OugHL/gh88MEHm3a9//5zDNNW3jXstKQPet7JV0rB7CwOhwPCbC9evEi2pSS3J8bdG2OV5JOs3d64vFSHVJqxBvO8tr2HwyPMdI5dpOJfLUje/QkJ3xey1sLAwdpofzAz3Jy2u73U/u2GTwunSRwTWxKvqhYR0DbDCAD8l1iffM5POYFvAPCXlVI/o5T6Y0qpb63I+ouBrFDmMwB/QSn1Zk0ZpdR3H3XKLZ+/WZNBCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshnEX58pZ0/A+AfHX/HHzzx/5MTPwLgvwHwy0qpryilfigj63+Mrv1HXByA3wjg55RSP5xTRCn12wH8DIBvCcrH/M+58oQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfJYZP2oFPmk45yal1H8I4L/F+uMr4YdTwo+gfBOANzLi/jaAnwfwfUE5LwcAfj2Av62U+r8A/BSAXwZwAPAFAP8qgB8K8vs6w98/75z7u10NJYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkUw4/vtKBc+7PKaV+P4DfjfXHTsIPoITXOTlOKfUTAP480h9y8b9/EMAPRMXjujbiAfzHpfo/6SilMAwDnNt2gXMumR7nieX5NKXUKr1ULld/jZrc+L7PI6kvvM6VScmv0VsmrN/LCNO01qLyufqHYciWj9turRXlS6WX2l8bg7i8cy4pL06z1gZjuMhxKM+Vkp6SOmPdJeOem6+5stJ+lYx/SXYpvbaWJHYk1LNXr1ZaxjvMk+vHeI16UnO4p96SjBK9djQ3F3NyczahhZQNy+1Pqbp9+ViXXB+X2lgbN+k4SPebmoyY2t4noTb3evft1jkXzrdUv/u/rXPM2/2aziXdSmmSe3E+iR3OzcFS+8O1E+Yr9adkXvnrHr+ltA+krlP6h/MibKMxBsC53b78OI64ubk55XnrrbdO6V/72tdOv1+8eNHcHgm3t7d4/fXXT79DPb2PFbbP6+//hn7YOI6r/i/5eIB87Vlrs7JCPUv1SPYkrfXGNvv6U/TMsVK51j3e6e18H8cRg9MiH6y0Pktjk5Idj0/P/nrJ2j2XC89xfn7k56F0T8jZoHC+1Ob7Ws+2+e8xxsDatR/tnDut25SOUi71taW0+PbhGWi5PvaH7fchamMe7sNh3y59b0+/D4cD5nkGAMzzjIeHBwDANE2YpgkA8PLly1OeaZpOebzMsA9ef33Aj/zwOxjH3WkuvfvuSyh1C+C4to+27vb2dnU9DAN2ux2A9VwchgFa602fK7XcG8dzSNCXKdkhyTkrXvu+rWEfz/O88ZNS50OtNaz2voQK1k5avxTSdRkSrtHw96XnhpQdif2+lB+4lAG8ffPjpzLnjdQ+ppRa9ZXWGnZw0HpGaDd3ux20U6f8l9rls/4tZ5A22aX4XU2fnD+fyhuun3AsAL/u8meQXFysVG8sq6Znrm6vX8pXDWnpx96zSVxW4veUfP+niDFcS4bE15P0UXzdciaSyA7TUutdGtdr1aUn3tQTC2uJ66XI1RHvLZfayBiJf5raq1K65PpSsqdL4hI5WdeItQGAgsK5Cef57zLxg6SMaA+U0Gqraro455Jn1njsUn5yKQ5R0iu315Rk5ebLJfFdYPvsRjJnLplDuXM9cG6j16nXl0ytj0v6Kd6rS/WkfiulqnGL8MwYpsdI+741dhnP9x7buZTz9RVzFutoTY+p9fUlNkcSh76f6v0AACAASURBVIxjqM44xCrN8ww11+2X1nozNpI2XCsuEP/OraPceGb1VNjMFYlPVbKxUl811qu3L3Oxk17/LJenZe3669Y50/pMIbzO7W9S+1hCeq7x+VJ7Qu6ZhoT43J1CEtOQro1e23uNc1RKl9x1bmzjfSw3R0K7VrL3PefJS/Z6Sd+n+kXqx8Uy4r85/cM6es9ml5CeCz7t3IbS/C2NxX62GMdHhPHl/X4PO/Tv1a35c/3ewrkPgPXzD41xHJI6Sv0Lie8nPQP3xAIk59ySLqG8s6hYdiKOV3hmtJS1gZwlzRgDo65jE0ttDFEq7fe27OeSfo1jj6nfPfGGnL3NxTgk7bk2Ur+t5Kv0xhC2upyf66gGO1WKlV4jPpNar7vZYhgeVvl2uz3sqLPlUnu61B8Lkdik0jjk7kn2Gf/sJC5f2qck70oAy7iHz8tSz878dTj/wvEv1eX2wHycV1o7KAVopeCLDIPaPOPwddR+x9c5PXKxr7gtqf502kEpu2pvbq3UxsIqt4ovLPcGaMG6O58N1u10bnmOa8b2Z5IpnWs29lJ/rPZuTYjEH3XDcXwCX3wYNBQG3Nzsy/+AokLuLO5uHF7+hmmV/pt/5/fD3S963cwWX/jF56v73/mdn8PjqLM2Pfd7GBy0XpcZxxHG1Fvm13Jsj/38WZ1zBsCYJZ9v9jwrqDlte2LCdwLiPPEaq8mKKcVravlT163nnJwsie6p+Jofj2kymGc/Bos/+fBwj5fB+cFae8pfs12ecRxX717EseiUnYx9sNR6l8btYi45123zpedVL9doC5Dfe3LpUh9JBTHGUIfcGpRirV29q/Ps2bPTu6IA8O3f/u3F8v55ws1s8db0q6t7r732Gh6G7Vy5Rrws1/+Sd4MlfZ56ZhWuhZ53f0rtWe7Jzx4pv3st/+z35qot1bk++2/Tl9++Hp/JFevL0RoLkMTy4rTSdY58rDy8Lz+3lWTG91Lvai17QEHhSFbuLH3NWFqqXklaCmvd6h3UJc0Ctu73l+KJrfqWkPgaLTJTa9AYAzfX/+1Rrq5S/cYYUfwkxtrt2l7Gq/4Oe885e1t/fyxBGrOqxavafQS7eYYwzROmqW3viOu1SsHaSO40QU/rs8iqjLOBj7lwOBygD1E8YzYbnQ+HRzxa+XntqbiZl3ejQ+5evtim3b3ctKvGJftBTZ503ti9xePjOq71/Pn7p7ZI6y/FTHKx1la518zbS+uzys062jvc39+v0t57733oQ/v55qnaa3a707v9vp4PPvgQQ2GtX3rOSs2H/bSsPX9LKeDu7g6HaX2mtK8wfk4W+iJ+BAD+CICfBU4fSgm9MfGKds79BQD/h78MbqkoTUX/xff8tdfnZ51z/4NUD0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCPmvw4yudOOc+APDbAPz32H4QpfUzQn8IgP/UcvwBlvjjLuF/qQ+xAMDXAfybjToQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPKZgh9fuQDn3Avn3B/F8hGWnzkmK6w/iiKR8y6APwpg8klRFpX5D1F+BeADAL/POffL0voJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPksMn7UCnwacM79NICfVkp9B4DfAeCHAXwPgG8H8AbOH1UpyfirSqnfBeAvAvgc1h9gSX3IJfWBli8B+Necc19sbgQhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIZ8x+PGVK+Kc+xKAP3v8r6f8TyulfgjAfwrg94W3MkX8R1kOAP4MgD/tnPu1nro/iTjnMM/zJs2j1PabNUqpTbovE5YtEZZ3ziXrCfPFcsP6/H8ppPrk6q71RSo9l6+lXgCbdvl0a22ynLUWWuvkPedctlyOnrGU9pFElhTf5lL7tNbBvF3qUFBYqlObeRaPfUzqXm6Oln7H5PpS0q+5ddC6NlPEZVO65XSstT1VLrQJqXVwSVty5GTGfVwip7N0DCTzX9r2nj6qjWVpjIdhSNYvHa9w/Ya/czYt1CWXp0RNp5It9fWHeub2qpysVvsipTTvcvt2b/0puaF/0LuH5PQtjUmqLmvt1ffnGjm7HbdJ0ve5fk3l9Vhrm/enOD1n86T7UC5/ap+NyymlVuPs07XWp/WmtT7lmecZt7e3Jz92mibs93sAwH6/x8uXLwEAz549w2uvvQYAeO+99zBNy/ccX7x4ga9//evJdrXw9ttvAwBubm6w2+02v0P/TGu9aa9v2zAMp34xxqzsqjHmVCbsu9j38fXk+t/XH/pDC+V9KiyfSk+VjfeFXFpY3mnfRsCL01qfypXsSqufW9JDsveHeUrtksrIpYVzRkqcv+8M4I5jsMgyxgAmf+bKIbXDKRt/rTFN1aO1g9Zel/P8Hoa1DfI6SH3Ykk8St0fiO6fo6VOnt+dtb09y+0ttz6ztZcMwrHwRr89ut1v167Nnz042LtzTrbWndGvtqcw0TSu5Po/n5sbhm7953Ybv+q538PioTnp5++zx12F/hP3n7dDNYI/r3fvMgNZqZXtT/nSpL2PfLey/sG25c0ZKTnxtjIGz57Xt9c/FG8J2x+lSvzt3fov3esk6L7U5pX+qL5xzgHNwzgbzB3h4eIR6fFz1dexP+ViCZxyXELDft51ykd+plj4357mQWldhP6TWYniv1fZaG/eZgzEW5oqusHS/9MTjc56PvvxxPtg2X7R2L5QhnW8lu5pbAy17VstekaLm2z9VzECSvycmmJvjPbYzp2fL3trit5Xul3SUyqilp+ZS7pwl6eNYXm/MINXe3Pk1h2QtxPbZUzt398Q0c/pI/PmUvFQ+3/9Psabd0bePVZPs66W5XJuz0hiMNEYijT1LbH+PT9NzzkrFOKTE8dGnOB95Ur5KLlbr9UmVL5Fam0/ZplTduetWJPNH2rZcvKVFBpC2HTl7ePZ3U/2iVrZCaw2l8/tkad9t3ftK43TNWETuzGsHC60twn7Z7QYou9bxEtsfX7f6F5Iyvfh4HHCOyW1/O6jE/85NyaeQnI1z/lzKXuT6pMcPjWX7/KUYfarO4h4sPL/X/Lq4XG6Ot+69pfNm3N7c2pbuvTVdpMR6DcOAYdi2/xL/O5Yh1bFnXHp8wtr5p6RLz/PUsLyk7lT9IdLz3yX2Tjr+19yrnso+596DKc6RU1xoHR9UmcCQzFdK1Vdvf2u/9PZj6/k1Ph+lnvnHvyXvLPTSqr/ErpTmSNjeVT4b7zfp+pSqn6P9/lBbZtL4Qe2dsHN95/qttXAGmB7X+R6fT1CP2701HONhGFbPdnNx/ziGLj3fhm2L02N/VRJLqCGxJVI/tSdelNsTc89XS/2Z9zXCube8R6DmvJycbxdTignn5K20itbeut7FloZF47mYIz7z9dii3NnoUlJzKX5OkprLrX5Kbs6m5tWlvtXp/t7BanPUWUGpxZfXx2L7/Q7Ope1Fz3jl/HbJvps/i2z99/Dcm8OPz+mZ7rC1885a2IyslD7zPCdjFtb2z8sWH/wacddL86f22OOon/ZbpRS00lCFNVKrM/vcIPGekLUWCmpz1gtlxes4ntfhfuznb2pIUvYgNXa196DC32500HpepY3jCGXUxhb1UNsHW+JbkphBab+61nmkZx8J9bzRFrvd+p9Qvfba6xh35feoWrnEJn4U5MY3+ZzBXjaWLTagR078Tk4rqXNB7qyQq+vSNqRsf/ieUunMW5LZ46v3vA9w6RjkziC5unvOHfEa9U3I2cFQD2MsrE202Z7PZDXCd3Tm2WzaOc8zZhzPRdod63Ob8qVzQfxvtFr9V8k41p6/5fbm3Dzdvjt0Pi9fQjluvs0rXcOlvU3iY7X6bT3v+aR0rLW55u+k+qfkE+Ty5O6V/JfcGi2dcZ1Dwq5v97mWPbo0j1vi617HdZ70/Z45lst/bR+wB6ncWswlpa80ph/Kies67wtbudfw0z+unLtu+TFNBtau94PHxwP0IX2WzcUkPw5YZWGMRbifTtMEPfU9h4rpfZ71VO+g9OoD1N+3EcmYLA6HA4DzOnr58gX0Yf1cPmWbpHHfS7H7/UnHxZd2+PDDDzEc/92WpzUe06rzfjJ4eHhcpT1//hyH6IxqL/SxSTv8+MrHDOfcPwTw+9XyEZY/COB3AviBVFYAPwvgrwD4c865d1+ZkoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfArgx1c+pjjnfg7AzwH4caXUMwDfdPxPA/gVAL/inHssiCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBTgx1c+ATjn7gF86fgfIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkCvDjK+QTjXPu9FspBaVUNX9YpiSvlNaqW45Q55zusRxr7SY9VVdN7lOTqldrncyrtS721zAM4npz/VUj1k1arlZ/qV1hHfFcDvPU5m1YJl4H0vmey6eUOt0rzaUwj0RuiZ4yOd3CdMlaiMdB0vaSHvFY1OT01hOS6v+WeZnKk6ovlJ0bc1+uZqvD65yd6KFm0+P5WiubQmt90l9iq0pyw7bnbFBtfef6v9bHpb4o5ZOssZwNK9mdEq1jlqs/1j1nRyV1hPJq662myzAMzfYqJ7dnL0vJbbUZuTS/p0mJ7bB0f8vp0FM+LpvrZ58et9GPwTzPK7v5+Ph4up7nGR988MEp/zRNAIAvf/nLOBwOAICHhwd85StfadK5xnvvvZdM//znPw8A+MIXvoAPP/wQAPDGG2/grbfeOum72+1we3t7ao+3f8MwYJ7n029vb8J5FPp9SqmVTXLOZW3UkjfeSxWGYcjaX4nNjNeb1OdaXQ8KWq/Tw/0hR9jekn3NkqhXciZK3a+VS/kU4bg657r97px+Yd+kdAmx1h7zKSzZFYClf+M5VpNVs3upvS+247FvnPKVc3WE/ejn9tnXSM/BuE8l/pTknKCUWq2va+xPqXkS5jHGnNMHB39LqeW/eExbdCnly/mtvv3hevW23t8zxqz2gdD2eW5ubopr/PZW4bXX7lZp3/ANr2Oazm2N50NujcT9M8JEads5k5qXtbNNjtT41MYsZz/s3uJumFb173YjtFvLq83N3vN9Tn7OdrfqEKb536m5GO6d1lrsdiOUtdjtdisZub0k1n8YBjjtAJggr7d/absSymqJEdTY+uTAuaiqnh/XZWU2quTXVdE20hkYBg2ly+ujN7ZYmru5MarVnbPDtX7x9lkS78vJiuuu9Yv0zCvhGvO1VKa2v5d0ysWLWmJauX0s1K9WRw+x39QTMyjJLl1L8/TWF6bl4gchLf5JOF5xvZIzREqvFtsT+lslcm2S2OFc2Tgenjo/a60Xf8sYOGcRNmM2M9TxzFzS9dK9X2rXUpTWWm69XOJPpJDKza3RXD2SmFw4F6T7WClf6iwV15OT6/PVZOcI9bpmzPqjonVdSOalMabJJ46Jy4b9HPqkSinslIXW6/jPOI6YdN0eSvxJXzbl95bKhGVz8YTcPhynX7avre2psuv1XWtLvKZS18laoziR/5vb36RjUWIbm9rmCcVqvfbXa0h1ajmDtMiX2u4eu9Sqb2pOpvbunN9ZK99Cau5I2lNaY/F5Os5TO7+09Gcs9/HR4PFxWZvzPK/q8s8EQp/tcDis3hHxzxCUUpv9ytcVx833+/2pjE/f7XYAFnvq7/m5Fcb3c/0dx+VjO95qR0rU7FjsI0v85kvPSD269+QvxS5Tv32+1jP1NWy0J/ceTE6vdVvW8VA11M8ZKQa3nbe52HJur07pF5eTlG+Vm87nn32c0+I1F+oUy6/5Hbl8db22ZS7Z63rmoRsclGq30Sl9vO2Ki+f0KsVJczH4EL9WQht/9m8ify6QE5bL+ZChHQ7n/jiOp3S/V4S+Wu5sn1u7uXPuNWJx4V7YOt+k8yznpwLn9sc+waUxh0ibQJd23zVH+KwqTg+R2NU4zzAg+XxaQtz3kvlSktGDZP7J4pBLf/ouzfnRkrmYy1Oba7X4W2l8w7OUMQbGtPnWEl1yZ8yaLx+uPa310c5v564eGvyCo62zR1mrPVVrDAJZfpx2u/jdpXWbcvHOkEt8Y2msQrLvS3S6BAcHFHyLWkxJGgf36c6efTNr1/mMmTFDr/bR0DdNpRtjcDgAh8N6vD/44AGPj+c2xPj5Fp6nwjkQPvM/pbvT/zutzTi+46mtt5xe5zb0P8eUxgHjmG4pxntJfZI4YM5XCu2gTzPGYIJNxoVjn6HF/5Xka+mXj4JFpbWfGPsDl9AbL2rBr73U+Kb3XJc8F8RrusQ1xzLuo8Et58S4vtZ4madmW8J3p0JS/6app36vg8SPqflQMTnfuKRLTvbqHD5uYwzjOEInbLdSCtAO8ZgNwwA9LLZueSdw/b5ZGMdTg4vWnUrWl4qF1PqslC4Zi15a/JXU/L7WGvNxl6MmQPCuUksM47L65UjeS06Rb4uC90Mu7WOpDcrp0uPDiH1F5xA+Szvnv2wfL9Xfs7+d99yzbj5ecIncFLmYTlqvdOyx1OZLzz25WFBKr1R5id9bO1MpdfbPz2nbvlg/C4r9egcXvaNjjE2cWSyMevp1WPOh1/d9bHFrg4dhfS5/ah82da4uxVvrXFff8ExRrfkV+vvXjGP2yDrHrx2cW9ptjIEzT+//S7Faw5h126ZpwuwP/ugbs9YygzGwdj1/5nnChLb3bcn1+eS/LUYIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEd8OMrhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQzyT8+AohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQzyfhRK0BIL0op7Ha75D1rbfE6l6aU2vwO0wDAOVe8jtPi8rX0Uj7nHLTWq+sUrTpK6u2tR0JcLjU2T4lzDsaY07V0bGoya6TmWzqP/291B0qpqq6StjjnivnCOZcr33KdS8vROh7S/K1j1ConLquUOuWVrKlUeQm1eeWcW9UTX0vlSCiNffi313Z4evVLraEeXVrmuMS2Asu6u8QWXWpXpeNyydi1zLHc2pDstzk5cXq8LnK61mTX1rlEr3BP0lqvxs/bZMmYxva7VKakd689iGWWfBjf5pp9Cq+9vF572UMo2/dnaN+ttas88zxvZNzf36/a9vWvf/3UfmstvvjFLwIAHh4eTnUcDocnaE2aYRgAAF/+8pfxzjvvAAD2+z3u7u4AALe3t3j27NmpbeM4nnzy0KcIx1splfUn4vkdXntZYf+m7Ju16Tnq89b88ZzfH5JaI34cQ738bWst3Ny2TiW+XVw2zq+1rvpuOXp8/rB+qc1J2bQwvcXOldn6y5fah1Y/17ehZltD/BpMyVyvgfP6iMdEMpdzeUpng559P5bl2yfxVZa2tNXXe3ZNzWtjzEqveDynadrUY4xJzoGQOM05BwW32TMeHx7weFh0GYZhtV6GYVj1re/X0I76ubC1nW5jOz2hXQnnQm2vvdY6C/dUAHA3DuP4sMozjiO0zfsUredPyXzP+caX+tzheHn77efVafy0PtZ/1tc5Bxz3n5wusd81juMq3WoHrYfVGtvtdtBOZcc9lxbTaysW0ed1rxQwDDppF3vJzVWpjbB2OxesddCVJsc+zVLOin16aVwzLJOqP/TJrnEWTlE6o8W2K1e3941Lfl1q/4uRxrMk+2aNmh2M/WFrbdIPktBj0+K+lJ7/cvWm5nTqXuqcXTp752TF/du610jsuGRu5mQD63N8SWa81+X6slR3z54Uzrfc2pA+x8jZz1ysL57vuTpiHV3mvKMCO5Ybw9DnlMbiQn1fxfOJcH+L53Wuv/L701pfyRm3h0ufdYVI+1jiZ7bOaUA2F8I9WKpvz3n82vOtNybQQ812ptpW8rNztkwphWHers15nmGMgnPbMxaiIZbM00tijPE6zrXTue3ZD1jOl+F5cmnbeW9J7TMAoJ4pDC9vl9/HsX94PkE9qtUZwOs2jmPWXnr08QwSti31O9UHknwhubXYUk+YVSlArZ6puuR8aNEzjr9J95KWOlp1SuV7qnqkzztS4586c+R8n1R6vNfHsnI+Ua1tcfw6V4/Ub835G/7vMDgodY7NKKUwjgOMWcqE77vE/kFK7xopXXM2JKW/p3SuLKWlyvScYaT5UmfFXB5Jnb1n45LMp9ybJfNUYp9r49C73kpnxlgvp5e10kvuHTHJkEr3Hek9yZinYsTxvfVzgW37nJOPZ8mmxrTuz6UYU86+S+rfxIqFsX8pORumdSpNQ+v+81XJBzbGbOaM27vNG73710eosW4LW+Pjpbyp53k9MZqW8ZfIKKX3zodUnPCaZ7X8uCT0LzShpf+yZ4hKG+PnFjGp5/W9xH5ZSa9r0TsHl/W1TWuNwdTWa5in9H5N7ezt051zcCaup+8ZTms+qf8WIolhuuPzMeXSfV+s97juwu501sJs+igva+tb5ueCb0NtzfTayfjs0eq3hPMwNSdT+/DGh7EO1josD8qWvvV9vfqbqFNK6Hee/67XpVIKSnubErfXAZl3rUO/K5xzxhgMw4D93kFrG8SotrEIX394nks92z/pmbB97qhjjtw+XBv7S2MHQNt5qreOuD7JWVJKrg/CeRLGzXZj/VnGUyPxxyW+Uc/5L20rgNL8vAY9ccUcuXVR8m9SaWrUUGqdPgwD9CDf83PjdMl7JVIZkvVzqe8rjfdc+tykxxbkxv98nXrvwwKZ96jybPdO59Ln5Fp/hfuLLz8MA2a/d+htHCa1t0nPhKV1d6116GXV4gRxnU5ZxHYn7tuwTyX2cetLhHM03Ns1ABeMSfueVPODW+XlZEnbWsqTkpv63SJDSmv5nD8rLZvaz5axl8WKU89KcvM7dS2Na3j7tBT1dab3t5pv3XIO6SVcI71rJie3Nh99mjHbOEW4Rnp1sVrDGAulzjFmYwxc4XlLan9xzh2fXV6fHptfkxXuR7Go1VnapdfIU/nLpedcIbXzSy4eJ/GFSmv8knaX3h+UzF/Js5qPgrVO140Jy+psKbeV8yrfuyEfbzgTCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghn0n48RVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQshnkvGjVuDThlLqWwD8CwB+C4DvAvCdAN4G8AzAa3i1fe6cc9/4CusjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeQTAz++cgWUUp8D8McA/HEAP5DK8mo1OuE+onoJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPnYw4+vXIhS6scA/CcAvhH5j6x8FB9B+ag++PLKcM7BuXTXKrVu/jAMmzxa62KZlGzn3CpffJ0rG1773/HfHi4pG7ejR3bch73EdcVyr9XOXmr9Y62ttiFFKo+1dnW91d8t/+csrDUwRt6+WJa/LvVRbp2FaXF5yfiV1oiUXJm4D3vl95Dr49x1ilx/pexIrWzP2pbYtFyZ0lzI6dajczz/cjqH6ZJ5Id0HUrI8qXWdG/fafEjVX6r7UkJ9pLazNC8lY5zLY4wR1V9CMhbSNdm6luJ5KbG3IaHf4pxLtqW0vqRyw/mU0k0pVZQtXce1uZyzcbX5nrqvtS7uUf661YeJ64rHxc/ZsI+NMdjv95s8r7/+OgBgnmcAwLd+67ee8jw8PJzuA8CHH34IAPiVX/mVU9qLFy/w1a9+tUn/FLe3t6ffvl++93u/d9VHXrewrW+++ebqer/fr/rZ90GYprUu2hjp2tA69r3dar312tuTNMFaSunudLjOl/RhGDDs6vPskr3b2nDtKISqxX0uqT+3D0p8kLi8c+40F0p7Zyr92ntdvN4vkS+Zuz1+rnRNjE5t2jMMA4Zh6PK5e8+BNXJ7Sss1AEArKKWDPMAwjBjG/NqqtdGPfymfz6OUOs3j0DdRSsFamzxThzYpFy+I4xNKKex2DlrPm3x+uI0xKx3iPTy1p4/jEvIbZnvUt26Tame7VNq15/zKh1cWcXhLa93lB7XoU6PHB/K/Yz+35hOd55ZPW/7DcX7l5ObOTD6f07EvuPgmej73hZ9DIbVYWiqP9P7gAK29vOWvt3HXOB8A/bGIk856u5aGQUMP5Tbn7G1oD1L7kzEm6Yd6cnM3LBP6xzm7FMvq2VNyvnmujlJ62C+tZ6mSjteIRQF1X0JyFo33grCMNK7VE9/x6T39Wdrfc3uiFGmMXyKn17/pPaO01iOtv7We2DaEc6p33V9C6oxYImXnXRBzz82/nlhWTk9fV6xvvDdL9iRJzKElFpaT95Rxwqfg0ljMpfkuoRZHfmpdavv/U/VtrQ6JP5DL6wl92lws8mzfzzGQhKSVTMnZRqp7D2H9u91udS+MF0r0KMXd3Y3Dwxtr+3H79htQj5fva9d4vvoq5WZqW2Jkur9Oydyo+XKfZEr+eGq9lsa3tG+n4iolebl10RIPlTyDS+3Pp3P1sfw0TcUytzfA42NogxTu7yc8PuKks7cTxhjRMwypjfP5UmeslBzJc9IUuX2q52xwSX2X1iVtryT2+SqQ+icSGaVnAK1ye3x0rTWcXse6UvTYWKWOsbQOesc1jveFSM7y8ZrWbuvbSNZrz/q4xlyunTWl49iyJmO142d23lfsjYmEMq9Z1lqbjHW7nYMZDEIfd78foFxZh1z7Wp6TtcQFc3EYpk/45QAAIABJREFUr0tJB2memNo7dbVxyulb8g966svF59eFT/8PgDvG/h1SbxmHz51q9aV0a5m/YR8/tW+bG/NX4V+3xguX2HpYfvtMMKaku43iXrlnPbHOqeeZtWf5TgFmDvsUMNZiOKo3zw7znLaTubmT8y8B+XtzKZ8ueSa2W9+k9C7Eq4rR5pDEblvLS/NLYi+hDqWyOZ9wEzvVDlobOKVwtmnL75z9u6bv7EUNegB0+Jx/lev4vHF5XubnaPyc7tQm57Db7aCUws3eYbc7rO5/w+f2eDzIn12J2htkCc+EcTwjfM4nPRf1nJ8vjbv3cK3zY+k8E/9O2a9r/tuFnB6+Lk/u3ZNYj3D8pc9cc7S0ax2XDfVpr1deXxu5cU7Jkr53YOftu27zPGMw0XlNGJu/NCa/OSfqbWw9NYdbkcQAw3eqcnnC67jPc/OlFt96Ss791/q89uzPb++t5Ut0WOSd5facYaXPf2PfsiemJ6krnvvh/JH4SD45Hh+pHZQ8x5pnC3vyOc9+uVGy+Ld0jFpsValsbXwk42awfR+vVx9JnS20vu8h8Tm35Zdrax0Q7cMpuaV5lYtnlmImkjhemCWUlToT1pDEi2rjXjtPXPqsoWdtnf3mtK918fulwbnTiy/Ni6XMdj5pnY/thskl2bn9+VprTyprrW89Lhavw9azSZi+9YXS8c7eWEFPX15yVpCs5Z79paXcJUjavn7Ho0+n1piocy4ZL5vneWVHD4fzOX8eRzy8eBHWisevfhVD8Pz3tddeO/3WWq/eq/ZzsXe8Qt3XZyyROPIK4MdXOlFK7QH8VwD+LaytwHUiLYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkCeFH1/pQC2fGfrzAH4Pzp+YPN3+SJRaww/AEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBSgR9f6eM/AvB7sXzkxH/oJPXRFX4EhRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQjyn8+EojSqnvA/DjyH90JfXBldSHWcgrRKntEMRpzrnitU9LpZfKSHTpkaWUEstqkVvKV6qvR5dLkPRPKk2ip7SPPMMwdI19qozWenOttYLWCktxBa01nNLQesAwDGI9W9uV0rmW3lJ/qz5xnXFfleRaay+qO1VGUo+kvmusHS9DIquW55K+uXSMAZm9lpBaSzEpfcM0yRhrrVf6tYxFbT9JycjN+xK5ednCJWMZtiOW4+/FOkpsW9w/teteant/rq5Uu+P51SM3p2PIJWMe11kai1Q9NV0k/oW/7pnvNXz9xphs/bl6S/t4br2G7R/HcSU//luqM9T32bNnq7qnaYKz99B6OJZZ0l977XUoZU91v/322ytd3nnnnU09n//851f1v/baa5v27Xa7VZ5hGJJ2MKZl7FMopaC1jfIojOMAe+xb6T50LXtxWtt6sdlhdTmRPXtlTl+nLPxRc/FzcfQbtbhNJRud299T1HwdP/9baK3X6aBvgvRr7oM1PyFOl45DqGNpT7HWBvLPbc3tKVL7dikSWx+nyXUJ+xwwZoab+9uRqtdam7Rj4R44jmNx/ebmSNg3/nec1xiDcecwDIeV/N1+D5cIJ6X8z5I/OsJsymitk3u85Myc8+dy1xLK68n315JmrQWEy/paZ4seGTl/Pux3Y8zq2lq78VG2MhZ7X/PZSjpqrY9713Ysa3v6Nc5mKRnb9bUMsjEGRqXXbs/ci+1VvC5rclrb3xILSMmu7Z89Y9RztpPUnTs3lOZUi9/YgmQfuiSG27Oftpz9WmJ9NXpiE9eaIzGl82PL2rrmWJZ06fdd2mj1L3LU/PqUnSvt6ZKYBSCzzzEpubG9c87BDQOU8vLLMbpLz3QlYtmhrhJ7c8l5pDTveuReYx5LYp+puWutvbrO1zjrSan5L9fcM1p1kcy5WI94r5GshUv7Wxrvy9WjddqXWNLa4ujXmjup5wmpeRHbq9J8atmHlVLHptd9LEkcNxt/Ksz1nn3gKTjbpnUfl/pTGgOOScWcWp5BPlX/XPMZsLSOa7alVdYSi22LwUn0z51fw7Lehvpxj+PlcT03Nw77vVmlPXs2QOuyzi3rrSVO2TKOsvN7uz8l2R9z5/dS3ZLnFPVnEGfdevaLa8aMY90kadeQW9qTLn1WkKvTGANn3CkeFMYBlVVdMpdY+kmrk26SMZLW86rGMuU/LO8RLfP1qeZdSV6p3lydkrOEJI4YYwcL/zzU4211nK61hkrY31d5tgjbmH3naedw0Os+9rrX4gipcS89F4/JzdHW+dSzN7+KcajtD83PJjPP5vrsw7lsz3p7FX7m9jx6ziM904Qy/NwsxbV66PEte/LU2l06v+dsZPzMqDV2GK73Uz4DOOfPp76sPf22VsPatG4p26213tRTG8OWPXTTb9Ydn+We04wxsHPZZiTHzLpNWx1cKvRY1bOl3jCt5ude63lYiMSm1Oqorm2o0xh5e6aVhmqIjdVi3KffiVgI1FL/MAwYnDrGldf7aPwOV8rehnVZa2GjvdVai8N0wOGQH4M41h2u6+zZSANam2P9WdEr/XpsZyqmkeJae0ptHvWeOVrqz7XFGAtr17ZsmiZMTu6PSnz7nI8R2lGJrS9x6bleVjYXl+2nVv7S2Hr8HpA0XheusVjF1JxO7b0t9MZbvX6hP7Y8h9nWcem6Cu1lHDvJkdvfrLXF8j2yu2Tp9Ps8EsJYdJB6updbH8v+eL72vqQfnnmeg7Ytf0O7ZJVL+xE2f9ZuOf+VbHK4N6buS+RL0Vof5fq6z3b0GltEaT1t07Zj+RTnLonf1bI3iJ75DdsY2SV93Pxsq/F+y55Qnq9yPeM+b91vS/dzbbTWYnDYPDsYBt28L17b72q1MaV7l8RnU7JrsdMenHNA4j38/phPLCflA+T32KcYv5y8dewiLC/vi549qdX2tcYR1/GNdjsU63BtXzjV1t4zW3osrxPf6Ccfw5bUleuvVLnUe5dx2u3t7em33e/x4euvr+5/7p13MExTVp/WdwEkMfwlKcwH2FNM7GnivkQGP77Szo8D2GGZ0fHs9bPcp88AvnT8730A9wAOIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfOTw4ysNKKXeAvAHsf3kXfjRlRnATwL47wD8b865u1enISGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghRAo/vtLGvwLgBsvHVtQxLfzwypcB/Khz7n/9CHQjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ0wI+vtPEvR9fhh1deAvgXnXP/4NWqRAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII6YEfX2nj+xJpCstHWP4UP7zy6rHWQim1SY/TnHObPDGSPCnZ0ntPQaxzqg3OuWy6J6W31rooN053zmXbL+3bkj6pPD39XesLyTWwzL1Wwj4F5O28Fkqpkw5S/SV90VJ/6bpVn5wuKbnDMGTl5GTFaT12RbometZoKq2mc46wXDxPa/nDa0n91+zHkl4521eTHV77eVMai7ieWp3SdaCUumi9SajNsVifGj3jlCsb26hUmXiu+msvS7InSva33H5Ts+nhdbhGUvq1jHWu/8L02Oa1yIr7vnW/i3XRWq9k5ObJNfbVlHzJvMzZNGNMNl8s1+tSantcT7gn+3u3t7eneq21eP311wEAj4+PmOcZALDb7XB3d4eHhwcAwDiOePniDoBb1Xd39xJ3d+fr58+fAwBubm4AAC9fvgQAvPnmm6c8xhi88cYbm3Y+e/bslPbw8HCSAQCHwwG73W7TrnAehj5Iqg9yayCeF8ZYOGcRZp+mGQdXnmO5NRGvx5516ee8dBnXbIfEJznLUpGtqe9/LWcZfy2xyS315LjE77TWntZSaLe11tBaJ21yTcdeG3kNnzfHIksF1+d96qnOoj1+c4peHzAuNwwjhnG9jmL7XNIxt9+E8yK1V6d08bLi/T2/ZvUqjy8zDAP2e7uxVTc3eyilV2VDar62/z1CQ+sB51sK47iDHbe2sdfvzt1rJTWWPsmrFo+FZG49lU2qrfeU7xDOEa31yt9QSp3mQegfAOt5ba2DOto9jzGm6KuEdtFaC2cdgHQcp7RX9fRlj5/n7d0wDM2+bW0OSmx3LPdsQ5Z+y93P6VSS3VpGkjc3/uH66d03WtskOafnfOtSnpjUmaM09y7ZN6VlnzpOnDv7ru3Ftg961mQPsQ92rXPqNfr1qeItPbo9VXz7EllA/gwniXWm1rokBrW1XXprH5SGqjy36LGjLfG6ljFzzonnfq3unPxUWs4HkciX9l/oz5bKSWyOJB7dctaXnOUkddZk1Ma2N76b6rPS8zpJH0ttf1hP734RypDG5Wp1+Xl9bvo5dmeMgnNx/MjATuvnx09ho2vx4JRPEq7ReM9unS9KKagxbP+5PuXK56Y4LZyvNd/sWj5Oz3xL7S9hPMwYwFgDC2/7lvmgzNYHttZ22QIJT+EHSve82lk2tUeU5nLqLNGja4xEVhxfL8nKnQel+19Or5LPXdsHfJlhcNB6uz+n9C71ne+L0tqOdWo9/8X7e6qelK1rPSdKxjV3fqzVVdO/tkbi50I1LvHnW/yy2hyX6tKylnMx0tSZ0z+/8vnDfpznGdM0ra4BrNKMMZhHg9tfW55XeQ3/8T94Djy41TMoz36/X9nx/X4P4Ly/3BqHw2FatfdwOOBgy75KzZfpedYgzVMinvrLMxF5nS1+vpSnaHe8P0vOGc5u7UUYu5foEtaptSxW5eVLYrI53XNs23S8dud6Yz3iOkvn96fwjWt+Vard0vNyqc9a7WCNa83rkk9ysuk2nj/rOq7lU17aR6Uyqec2Kd+gtqf37O8SSnKl9ft7xtjN8wFjZsxYz/1wvtb8WclzhdgHCO1b6jew3ZehADUf91cHWKthZgN1zPZw/4jDdH7fKvc8wa9zYwyGYcjam1pcw8+R2j57ulbr9ZHLu2oz6vPOX1troexZVm0f2p7f/fPMdb3SuJDk3NMTX2qNiUhjIJs+VACCM/jpr3Mw/z97bxNq27IlaI2ImGvtc879eZmPfCVmVWq+LBRtCEplqyjwryeIILZLLDtiT4oSsaEtsWNPsWejxIbNUmwIgiJiQ1ILSlAb2rCQVJ5mZb377rvnnL33mhE25o65YsaKnxFzrn3Ove9+H9y314oZPyP+RowxYp71/Cwmef/pXgQXbvyjEHwU5kXG7T7q2U49nTBi96V7sPS9hBUrl8tWX+dr86ZMcgejPd9f+96qhybGlPal5hf2yrfyp3NZsvm075dpbW2Nv19rK/9cyzPKaNnXWja9MRn1z49Qv2vpp92j7ZKfnVK8H7n4m7xpXRrfJO93fnbV1uIenZ7Op2Zu76GvWnL6mh/p9fc63t7ebVwuF7GXio1UyB/bFEnPLyPxbN3aY6V+XMvvodbXvbHUGjV/sWoP2ttzbXkHtD4/2jhiXebbPbPnvZUaI2eaxk7eI8umfZv/G8ztO7ejMo7awKOU9FWNum+a2nvXekO4353GkT0VdePV90yfedVW18SLtDKO+hM9WTRo7jNqserchtTETnvy5n5FTDuqO2t4v/XzW7K12hy1kfPnixzbvXO5zC//dvuaOs9ewrx/LGprThvHqsVl87Q9smjGP8/T22Oldnq2/mvEcD8Fe/Z/yW7T6P7WmB45d3sctZXKfRG5tUe+H3P6Y+d13ij5zeXPy/X0THfho4j8R59eHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgLP74yxk+y70aWH2H5r0II330GeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAn/PjKGF9U0v+3TyoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHGb63AL8wPgoIu8K6b/41ILAlRDCTZr3vpjXGNP83ntmjCm2p5FplLSO2ucWUX5jzOZzrY1W3Wm5Vvu1ce+1EUJQzU1P/pG0EWK7aT3OuWK9pX601llJvnusnxqaOUqpzYu19d/uqrVR61erv/na6I1lnmd0v+RpmvbyduLnVtt53fdatzV5e3Vp+tnrT/yb5hudrz2MtteSoTYnab/yPNpz4cgY5+mj+/iITKX2W+u1phd7beXPnXND85m2m4+Pdu22ymj2df5spM+a8y2m12Su5dfMX2/MNPtMY7do1nKt7bjX0vbneS7KlZ5Rafma7LWzTjsvKd77Tb4oy+VyWetzzsnz8/Oaxzknj4+Pa3nnnIiIfPvtt2sfjTHyi18sLsfHjx/l6elp/S4i8u6dVeuGx8dH+frrr+X9+/ciIvL111/LF198scoZ5X/37t36eZ5neXh42IxFlDMlT2vZC7G/Oa31tnw3klbrnJVp6ru1LVlG9lWJYMu2bGkttj63KJ5VJsi22aVNa23Rvm72obD3NL7BnjHr1Vs6c3sYY8RM9mae43ikbY/aS629VVpX1ur3Y4+SLZyKb4wV59zN3mvp25LMLXlHfOgSmjNNZ2tcn/X8sJYvGftf65fGBoi6OY577ieWxjM/H27thrYu0K6pfH6X89O/jNvauszzLLO95kn7r9GJrX1Usqlb66A1/8EFCcG/9GNJ896LZMOh0aWltZ/3ddQ3b+nKWj25LZO3HdfVdt8a8T6OpcjpNInxfpNnmqaiTZ23Ge1sfw7yZD6KtfGZEeecWFeOIZXWSE5p/Y1gwiwit2Vatn4p3z19zHa+/K/OLyzJl46dVv49/nfOvc6r16pXG2sZtVl6vvweX0sb70zr18Q+a+kan60W46jZqK3207zaGIU2TnxPe/IouQ1fI/btNWO4LTRntV6X3acPe3yEXj7v3OacEhFx0yQ2WVvaWJomjq8h3fv3XrtH6s3HX7OOe3KU0jX2YV6+FDvI69PcAezxS3Ldl8eYWvHeUjs1XyJvq1SX1p6pMeIP3Mtna7UxytH4tjEvtqqN5/c1xuacufGnnHNiXPkc7K3xI3pRYyfnayyORbxzvFwuN7I+PT3V+zAbCU/Tpo2nJyPTfN17eWykdo4c0R05GjtLG29J85V0QUxa9J+INVb82sfb9XAErc1/T/bcxx6lZXOP7JGjMcQ8llKTryVTut518Sd9/0o2eEnfeR+KdzBp1p59l5/vsb58feQypfNWm48j86SNq9d8V+0c1Pqlqa/VfuveSIPWJ9es0VKZUt+0NtHRmO5oWc0dTaQWAwnnIN/9zpMs5/zS37/vH/p7xTxt51yr+x4uXh5++c0m7c2bN2Kmpf1WfDqX76i+GM1ftoe33/Pz/Uj7e+wfTYyrRm8OX/N8896LzNfvJaY5rLHYjUxJ31r3DDW7zVd82VJsZkm72r0iZjPmGp3Tsm2PxhRLaOK2ObW7/pxcb8T6vPfVmJnGth+Ji43S0sPr3dIUxLmtDJObxEzjeq/ls9/bPtWgiR/cM65SOzdb7dTWSG1dXH2P9E5lkmmqxwpadefxZc3dosh1P6w6LSufvm+y2oJnkfByVju3jJWb3PoPB6aTkdlv+xspxXVijKVkn9RsrfQ+LMYuanGZtHxsJ5+qvP8livtQsew059RW9rDKmevqnq0R0+O8+uzur4bmTmnUfx2xFcprOd87i39uXmQt2Qit81BnD1zX4eVyEXl5DctevMyz38g0z7PM5vZepxTrv667pV+Xy1aWp6dZnp760pXWQu7b1eKgxrzIFMrxyVTW0udR8r07Gl/vrUON3V1ro3XG7YnTbM8hvd+0531Ubd05mn5p53t07Oqx7/qZqe1b7RysnQmtuo/E6MZ0X2kv1GWs+UOjZ1YP7RopjXHN1tHEY/bKMsK990qrbMm+KMXrclZ7zMyb2LSIWd7bmcvljQtiTOm9xqiXvPSMlRBu4wNH0NxptPJFWnMxat8s5/Ptu1jzPEuYj3e+vq5juj52qYkP53lL+VqxhJSRs6hE2l8vy/t4L0/W+kKo9yXXI3vPu6Mxqj164upb3Nb1qeOoab6a/ZNXk8upOcf3xJE18dL82dGYw5G46958NV8078vV97vGq5f3Vus6zSdxxVid9+GmTEnP5XGClCPnoyYu0o6jmeK61MjVWlP3sCFG4jprPNEE8X7e5LlcZrEHz5hRG94Ys+r1vTG9kTHM57j0vSXDaJw1pvlCrH2evYS5Pk9H1tUo5bjTEiswA/+uovZsRL4la75P2roBPg33e4vmx8E3lfRvP6kUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcBh+fGWM/1fKPyn5s08tCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByDH18Z43+upP+5TyoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHGb63AL8wPibIvKXk+9BRIyI/FOfRxyoYYxR5QshDKXvqatHTdZeeq+9NN9oGyl5O9aWf7Mpz3dkDFvzEmU2xjTlT5/F+vL8pXZG+qHtoyZfKlv62VorxlhZkpZ0a6yIs3I6neRkp00ZTZ9KaaU83vvN99rct8rU6m6Rr4Na+dr8p/nzsqUyWn2hIW3PGHMjS2ld1tDmbe3xUl0jz7T01tjevaKd+1Edl8s2IuuefvVI9VqPEMJmL47K0GtDoy9K+/wopbk/cq4esQNKe6pUn2bvjbSt6a9m/Y3oi/h5mqZNWn5ujuyLPD1fL7Ux33NW1c6ceZ5F5Hbe8nPsyPxp+pUyTdNaJoQg5/NZLpfL+vzNmzciIvL4+Lim/dZv/Za8f/9+lf3nP/+5iIj88pe/lPfv38tPf/pTERH59a9/LSIf5d27d5ux/MlPfiLnc1jrf3h4EJGl31988YW8e/du/R7bf/v27TpO0zRtysT08/m8yhTzxbFc7JZbnXZUb8dnzgex9nZeoywaWy9Hsxd79czWSwjbNeF9EDOoL0dt82W+Y9nrnjPe3Nghoz7Evf2p1nrQlC/ZhblvsLjnuS1tqnu/plPjOKb7XHteiMiqg0qM6p3y+ROfiYTgZZ5nmStmeuy7c26VOUVzpo/qTm0bqjXhTDLHV3miTHv2a02u2ry11kl6XtbWaO2sSssvf/1N3svlIvPsbsrntk6qo+P3NJ8x4eXvmmM5l6bbuktt5f3S5O+VL+mn0mc/+aRvyzPnnFj3Or8lXbKDSjLXfNV8XdTaiM+cc2t+770YY9a1aK1d01J9L7LYOmaeN+s2tStiO+n5GPXAWqcJL2v0Wu/2XNnGJUqU1l0JrV6Y5/nmPJ3nWbxSdab2SCk9/7zHnp9Ps1gb987Sr9NpEhvaYzFiu4/oaq2dXouF9NZratu12vL+ulfv6S+2Yjit+EupfKmu2tp+DZ9XS8uGas3BkbiQllJMNsYoavMS0cxXKW+als5Ly9eL+WrzO2KX1mTRrndNLDVlj22mLd/bI6XvPY7GRY6i3RO9NRfrqq3jo33Uxn9q+ydFs373xJtqaPVw/jw+G90DrXqPxAprbWjuClqxuNHzIo6Hdlz2+OVHz7BUtpat91pt1og+eml9e3+7Nrz3YkM/RlXz6/J8rTpqlM6mUtm8/6fT6aauGMMrER6CvH+z9QXevZvEPH4+/SxyPK5Ui++mLGN3H7tNe77uOStrtGxwLXvvbXv0YrSfkp6dmT/LaflcmnOgVM9IeeecOBfEuW35aZpknvePZX6nU2LE1kvjHHvO295YjNwHHNlnLd9QG0fU9P8eMd6RMvmZUtr72nMqH4vS5z16o+V/1eYo/ey9l+CXcz3GW0REZj+Lmfv2fN7maL6jc5SnH/HftaRx8ntwRK5RvZHGEXr1afzc5W/ND7pNt8Z2/Nm4Rq/3MTl7fIGhc9us/zNMaW1r18prxcTyO4zRNkfkSvsfY+Ia9sRge3G82hpb3xnw4WaNBQliZOvH1HyLXAZNXGGUeE+Rfk9t8FTG9D7iiD+gjUPH7yLbud7bdqyrZmsu6TrdpYnp1nzDNH8+/mm5NEbZjbc+BHl6MR+nScQ5L5Mz6z8cePfOiXO3/nMqV+lZr181e/R4fGexWU1hPo7GO4cl2RmHq+Urzfneum737jW9dddeQhNffZFm/RtCkCBhPUx7co70PT37tcspBL/eiabvbqV1pukxFmWtiPcm6ZvIPAeZ53ivmaZf722dc5s9Gj+fTqdNn9e5MSLG3J4r+Rq+91mdrgXN3fBRf6l1prbuV2s6WlOX9nw05jrmmjLaeP7o/cA97m1K3/foq3Q8QljGKC0f9fAeva65w8sZjQ2Nnlu3z0S2Z399LGM9tfeOerL0xqPUPxeMGLMtt8Sh2rZ/6x2uPXeQ/fhtu/yeO7Qee8//uObjmVS6D87PiyhWPJsul4vYSszP29t3yOZ5lvCS//ZmYGEdR7t9b7ZnN6aM7tPcjmjFQ2N6qY2WTK11f91/ujqPxjPn2Sc2RRKrCjofTyNDS79r7Lk0X373ldvstZjrJt4ypXfj7XZraPy53rsbJTlb9cf0Wr0tHyTu07Tey+Ui9lK2gWq+Tctm0dDLm+qWbZrujqLWjvbsr92JafSz1v+t5Wn51Vo7MP28N560TUt10rJGavGmEIKIvb6nG8Wx1hT27W2f4rvupXjTqI7ppefP0zG+6uE837idmuokjf3Wq2s09lKsx4XVhopVOGfX95H1/m9dzlFG92s+pq2xaNnQ2vWhaaO6h4pr3d6ssfRZj9Za0uikVl0vqd2xacbhFHq+9N08X2SevaT2z9PTkzz5rZ3nw33jAtDndf61wm8u/1nyOd1J/6Ax5g8+tTAAAAAWCcmeAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwH358ZYAQwt8Wkf9Byj+l+Fc/vUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwF358ZZx/J/seZPkxlr9ijPm9zyAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7IAfXxkkhPBfiMh/J8sPrqQ8iMh/YozJ0wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB7yPS5BfiB8pdF5H8Skd9++R5k+TGWvyQi/66I/BufSS54QfMbOCGE5vc0vVRfTCs909bdkrVWb5qe1qttI+bL62/Vnaa12ozl03RjTFO2NF9tTEd/0yiVM5dXI8uovHvrKo1lCEG899f052fxfhbv/ZpnnmfxRuT5+Vlk3tZv7fU3tfLxTOc4n5fS3MW60n7W+hzLOec2dXjvu+OUr7veOmyVz8scXUs1WutKO+e9fanpe15mDy3dN5qvNt4tGffMceuZZgzT9W6tVY91LJvO1x79Xqsvl1mju0fa6tE772Ie51y3fD4uqV4rMbJXe/NV2pN79laPlu5p5Sula2XUjEtvv2jXZVrnvcZMI5d2TxljNmtRo29yNGupxjRN1XxxvefnYXpGe+/ldDqt+S6Xi4iInM/ntdyHDx/kfD6LyHImf/vttyKynLXv3r2Tb775Zi1/miax1i42gl/KXy6zxN/avFwuq1zv3r0T7708Pj6KiMjbt2/XsfTer31Lx3eaplXe+KymC1JGbIn8eT5e12dGFvfrlj02QNqPXFep174TMWb7u6bOWXG+P0YpNV2Z23CRZe9I8v22XOlzLW3Ebq/VWZK5l7dUv/a8y+d8eRx1l4j3QUxqWyvtNJHrGvTed9e7VvfkemEPI0d+1D3zPK9pab9G6snLj9bRozQ3iw+05ljzaf06kfp6zeesNselPubnYypPuo9q4xPXeDqW5/OyzlK53jy8aZ5vNd2al3FexNp9tuJRG6A0Ft779dwTEXl6etp8f35+FpHF7w0PQT5+O4vIVS/4X3yU07ycSdM0iTFmPbvSs8paW5zXlv1d+l7qU2leSr5F6XO6H9P0GAuIz0MIyxi87OFYlfdewuOTmMfHl3Pfb8qnZ2/87Jxb63XOyTRNEnyQELzE35Y2xi51+auNVdNtJT1ira3qipYNl+LCdl+IGJmmk/iTa67xEXrzo8lXyjsSnxvdV9sx2fa/NwYt2TTxmr1nRU2WXIYj7Ik/pOTj2nuWxwJE6n05cj6OxD9aMd57tKcpc48YrrbNlj1WimeK9OeilfdovEqDdq1Ya1V+VOzPEV+3JJ9WR94r7qpFG5vX9rcVk7vnPUCt3nudddpY6ejnkTZbaGPRtfRefGGvTjwacx0Zw5rvI7LVS3v0eStuO1JPXibamq+BRv/G9sv6KF/zurjFNf+1vNY+0IyFz2IRIzL12MyNv9Vz3nsxvn7n2rN10np6tMasRF5naY/lvoW2riOM1FUbvxp75rwVI+xRk6Vnjx+1p/feDbXkq53juaxa3yj/XorT5T57vpd7n9PvaxzDB3kJdazpj49eHh9v92nrHE/9/dhGbR7yfNqYfM3u2WMbpbTkTOtt0YqzpdTOQk2sWuMn5+dB63uNUf2V5z+i/2ryHtWpe/TojR9nRazd7kFnnRg3HktZ6hyzCUoy5mj7eY/YxDbf7VntvZejR2HaftR/uUwjfusItbsSrR2wsZtdEGO2ZZxzYsRs0vO4ru5c7Wa58SVLuvcedou1Vkwhzl/Tb60+5nq/dq7ssUlq678UO87Tcpl7dk1Lxtqz2lotvevWk+MecZCS7RQa7wG2YkStcRmN5VztmPYZ1NrLpfz3QHMPUaO1dktrI7UN8nv5a5rOztI+S+3UeO+Up7conu9GxJi07PZOvWUn5fZxTX7NOTB6HrfWZ7oXWndZN3EiG6r2RklGzRo2xqznci2uk9vpLdmjPTt691SrR5veQ29XmeS/2/I5uY5LSeNlt3o5jmGSln5ukO6R9NxOxz6eC+dzEOe26+DhwUq8uy7FKrXvSW32ng03+/SetO5tS9xrv+bP956dIzpeG6NZPqffTXHf9Xx+kbovWfKfR+1mDdqzPZVd49uvz+1t3lr8IX/Wusus6RVt/OvT30/d7vte29r78dZ5Wy/jZXnf4yrfUT9x1HZr+W8hhE2/er5JL/2ec2ytFePCzXtU1to1LT0v83e51vynINY+JSnL+WGdqcYUU+JdxvX8SG2Ea9uXTdp278X2ovwRbRy+9LylH0ZtJU1MsN5OoS3fXy974xqlvs1z+95uZF1q4tw5uZ+qbUfnN9Tefeq30ZM7rVdzb1mLX7TOmlGbdvEhrno8VpXuoVy22lm1956vFJOq3RkvbW9lusf9Yg/tmbxnXY48i2NUOutLado75LycllxETf/TLCFcJbnOvUiu50LQv1vQytPy8TV6LD9vYtptTKQrVrPN1h6vUTuvRubUmNCUXWP/t9DsV21/9zByn/ca/tltv/o24BEdqzk/8rwlO7MX89PqMc2Yts79xRa9Pp+mSebJDrcB9+X+XvyPgBDC3xaRf05EPqbJsqzwv2aM+feMMfuilAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBJ4MdXdhJC+O9F5J8Rke/SZFl+gOVfE5G/aYz5Zz+HbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCHH185QAjhvxWRf1xE/p80WZYfYPlHRORvGGP+L2PMv2+M+eeNMX/wOeQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAW6bPLcCnxhjzX79Ctb8Skd+V6w+vxL9GRP6siPyrL/+JMeZZRH4hIn8iIh9E5OkV5ImEEMI//Yr1f+8wxhQ/p4QQNs+99818+edWWql9Y0xRFmNMsY5Yd+1Zr72WnCGETb68jV6beRu1ulr5ajL2xvtTUhvXXK74LB/XWl2t8inOufWztfPtGmoMZ7qerbWb+vM1V1uXqbz5vPTmprafUjlK7dSIfdDkLdXdW3uxztL6G9kPo23m7af6YpTRvdPb96P7r6bj4jONDKO0xqk2fy19q61bI4vmvGjtyd66GulHft6V5K1Ra6fV37yd9Fm6l1t6QkOvD705qY1lS6ePrItY/l5nmWYt721LqzN6629EBs381fZI7Uxqrbe8vfjMez+8lnJKffber+m1z/M8i/d+3QvzPMvlchERkcvlsn7++PGjfPjwQUREHh8f5ZtvvhERkW+//VY+fvwov/rVr0RE5Fe/+pW8e2fl17/eunbfffdref/er/2epuX509PT2m7+TORqh8TnMU8cu9ROieMUn1lrizbw6B7K2z96Ppa+x7TXPJNK7bT0S2vt5vVd89yu8VjPnnHL2yila86Imq13D7u/pJOiHqhVV1qL2rZze7RnQ2vSRZa91NPpt8/nol7ryZjv21paXj62n+qIVKa0jp6fUaKmRyOpTknrbtmfNXpnWW1ttGyYtM5SvnTc8np7dqCISJAgxtz+ZnIpb2k8Wn5NbS/v8es1Pm+6Vpxzcjqd1u9v374t1isi4s9e/r+vvtmk/ezv+YmYx3H9di//TaS8T0v2X+qTp2PRmpN0nXnvxZ/P8ng+i/fX+Xz7xRdiTqeNPRFtjVSe2GZ+jjvnxJ+DXKbHjX58eDiLNXbde7VzvJfeGrOWre6cu1nzUfaaz671j46Qn9XX/l/ldlNdp7boydmyZ2r2cG/uYr7WOaCVqeTbtfqk1d/5udZDE+9qpeeka+yo/zrKSNyr1J89vnfrfKrlG40l1fyyWPaon1uzz2rnYym9tCdqtkppnFNfM39Wq6tFKqMm3joSh+itnUjN1qtRikuX2uvZ5OseLPg76byO7Jd75dtbx4he2hN7GYnBltK0tlFt/+R1jfrJtTZyO1uzltK9MOJ/9vzZ3hhp/OFaWgihey735qV3PrfQzGvJ7xxpS3tOaM+XmLw8vy3rvReZt2VGzooSR/t6z/jTZo3ZIMZsZbPWVu3T2nnRsnta8eHXsJX21HldE3cWRnS2aRrHbNGKddfI537vmdWL047akZr1socRPzNvV1t3aR+k/nNaZ02/1s6YcrxARKR9hmv6mdqdMX9+z1Hzi/J5qT3TyLFnfj+lX6V59yfVaaP9adm8rVhgmlbyHUqU4vxH41j595rPMnoHoG07b3OT14c1/hWZ/Sxm3qdT0nu5UoxMK1dKy2bbY4/l/mQqa0ppj9b60Tu3amf66DnQaufInh8Zu5oMxoiYwktVxiz3mca219QkcZ1s7wlqYxTrLbW3l2CDWDsXbZt8jLR2REp+3mnype0f9aFL86zViSnGmN0xzhKpjTAan4zlS99rY+xdEGtjv19ittaJce24R0wf2WslW2eEVH4XzE0cf5mLcmyp5k+MyD+6xz6F36Kh5UvlaTXbMsoe7c/as0jum4QQJFxEwtMkEoJMk5F5NvL4dBG/vJYi3/36UT4+Xsto7tNKd7gxPc2fnmGa8kdtnVZMNYQgwd36vjV7o2Y3OHe7B5a7t/r+6tlZR+KdtRib9jwv+RmtNstxs/TUDJL7P637m9ac5/fLa30v5+RS95I2uUnMadHjk/jNfIQQZJpOcpq271L34lAhBDmfgzj3vEl/OJ+lFbdu3YfUbJgwBTHm1j7L7ZbXjmOX0NgavTyaO7xae3tiupq2zM0eCTf7qVVny//e1Fq5gxu9Z8vbOTKP0Z7Lbdoafg4Sgt/YpvM8i/XH12NLzh69OP5oHe3y6bzdvs/aO+f3xLt6Y3H1eWNd4eX9kW7VVUbHTxsTbbEnnn5UF87zLH4uxCDmWUIlBlHyx5fy/TO4HpO/LRftxxBiTLHkT+Trr9xuLm9Lzpbdqhnv1KaotTGCd/13gWrnS37Wat7HdcGIzc5c59xNWquOlqwpvdhlLfajPT97d5SjlNZF7SzT1pV/Ln2vtakpXzsTgqTrRSfnEVoy1tpYYsflshpbvVTfiIwamvaVcv1p7s9rbe1d4726iv1qvLtcbyfxkVTipTKU/T3NHZB2Lnvyi4gYH272yFLm2N7o7fueHiil9c6EUrkQynNzZGxH9aE2v3ZeNfXt9bNKaSNll3Udy+nb01Kzs0R0//Yjj7dFvPeiNaxr67DWZs42llDWOZs1eXAvwjg/uh9fEZF/QmpvNxzHJH9DIV1E5Cwiv/fy32vJUZIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEn6MP74See2f+rn+lGj5R1CO//RXHX50BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMOP+cdX7v0DJbUfUsnTQ/YXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgM/5h9fqf1Yym9Cu/ywCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIcf84+v8AMlvwF474vpxhgxpv87NyHUl4GmvKbutI28zlobaXouY0nm0jiU8rVkaZGWa41Zr+5WulY2bb74TCOvNl8qZy5zab4131+D2MY8z6p5ttZWn+X9jNT2XovRdbEnby5rlLNULqZp9EU+vyEE1RrT6Ji961izlkp5tHoor6e2lmtrZA8a2XJZ8u+1uY7rvCRvOq9HdFzv2d568/5p1pxmjY7MW22M88+9uQghiHOu2P4evaKhdqa2dNLoPGrOA20dvXFs6bO8fLoOWjK1zvn87GvlK6Vba6t2yoh9kevMvG8l2UpjNbLOtLq3NhZp3621G7nmed7IlPbr6elJREQul4s8Pj6KiMj79+/X9MfHR/nlL38p79+/V/fFe7+Wt9bKr371K/n666/X71FHWmtXWaZpWtO992tfnHMyz/P6LISwGdfS+Zbvq9rnFotsUb5rGeemVa/kfU7lL5G33bLbavtSe24c0SsaYvWxrdS+07adtpmOmUZ3am3edCzuaUOIiASb6oXrfqvZulqfo7bHNXW1+tgao1q9p9NJjEn7E8RaK865w+d9qd0ov2YNjdrT+b4sjbn3vjj+Gju6JUP83NPptX2Ql08/p/oyhLDq+/xzWsYYI+dzWHV+7Nd3372X5+dlvlM9F8egNA6pHo95FpmCpMNVW9e19ZfWqx2zUjtp/1vf418vfnNmiog8PT2Ju2z1fm1NaO3Ae9jwca+M7pd0HaTlV3lfzulYJIQgD2/erLZFut7yukvn+3o2nr18dHMydouOscEW+6H1G0ufa3nKz9LnfXthNPajtW1b5beitMeqd9bUfKaSvBrZanXU8pXy99LT8rlu6jFi/7fabdWbfm/Z/r1YWKRkZ/baT0n9gRa1+FVpLltn8z3idb39lstS+h4p+aal9krl8/U/GuPas8dLsuf15W3ma6Rnh9fmOPa3JGtrXvecYS2fOSU9g0fHMJU5X/+aul4rRlRjj8808qzW1j11Ya9MbCv15Y/YQHvI97hG32jr0vito7R0Wun50fpbz3v9y32AI3KU9l8eY0ntTA29M1njT07iVxs4ZnfOiTHy8l+swyy6uX+EL7kH7Ultn1t8Ch13zzZa9m0v9pbn09Cr69af7Nd5RN9+qrFMqe3/PI6c1nUkdikiN773PTjqe+/V55oYfsvOrMWDNvGKJGY1z/PmWYzDx/Q3b0S++26Seb6sef6P//3vyIePYROzF9nGMt++fSvTNK3P37x5s36OeZZY4VX3T9O0ORPSvaf133o27N556fkzPdukN6+9tZ7HO+/BPfVDfp+UcsSXHmFUR43I8hp2ZzpO2rNjiZP269bqxNyfi4zusZr8qe3eet6iVndr/jTzdXT9a++wtHLWqrjGVLfpLfnn2UsI2+e9tTMyHq39Hglya+MYKd//aeJSe+WtxWJew/+KfkGtP+mYaeJttTjwHvaWj3JW96EL4n3UN0sbs5/FzNtYfk2e2t1ga37vcXbFPZLbnLV1Ufs8Iv8Rf+Pe/lcqcimWpz23WzZ/rVw+liW7Px2L9cw+iVzsy5548aGtNbJmNUasbdtqqf4p6SJt7DSXscXW5kjH6yUtXNvfz8tdeOH/T7W2dkrnxDzPMpvbOVhbUco4GhMrMbLm07wj9yl1OU32t5z/6B1O6ZwMEtJlorJVtb7BaAwzrzN/h7t3jsWspnAH2Wq/Zc/XfFttvSV9k6ftWb8am0J7n7cn5nD1U2/TajLX2h+VIx+/kv4u5evJpvXTNP2K42FckOV9vWse55yYwtRoZIx7rzZ+mthXKmcvTSNXaV/4+fouRqzWey8y9/uoeVZixIa92gxbO6J3DBz1BVv583nV2Ic1NON65I7U+1s7znsv4ssxqxJeQhI/WMo9Pz+L8xU/L5uvvM04p2l7z8/PMr9cdnibv6P7En+c9fe9LWr91Kzje8aWW/s4t8Xz57k82j3o5nBjl1wuF5lFb9ftidmN7IveXZ4mNnqPOz2R23uh2r8R6HHkvq02/y0dVLpPKqVpYw57ZdSVuy2ruVc+eveusY97sozshda7uSJbuff4WbXYbStvynLH42XR8cl9UEXnGWPE+2X+lup6496fl94+qdn2R+4RFp+3VN9tnXv28Z77hbxszqhOFLmNJxfjKZkftce2q30/+k6Htk2NLJq2WvGqtL5b3Xsbm9cyortaz3tpR/aL1s8QGfcfjWnH3ODT8WP98RVWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwI+cH+OPr/z1zy0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfH5+dD++EkL4lz63DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD5+dH9+Ar8ZmGMEWOMiIiEEDbP0u/5s7T8aHu1ujTthRCG2yzJUEsbqbskY0xL+9mqM8/TqrNHrZ1Wec1ctMqOtpnmv8eaKtXhvRdrbaXuaxvGGLHWig23edP5yGWuPWv1oZTPWqse/1Kbe8YvL+O975bfszY1e7n2LG8/n8vRPaLdP7X2S+MZ68z/7kUrf23/HG2/NcZpH2v9bem79PvI2iylt3T3SL2t/ZXXeUQn5/T0RTrGpbbSz6W9W6KmC2vU6h1db3FNtPZP/Kw973vntFY/a2itO029eZ7SWVLLl9cRxyidyzhPqQ2npbenWmXuYSPV1lJtHXjvVfswrTstM8/zOl4fP36U7777TkREvv32W/n1r3+t7k/Ox48fRUTk3bt3IrIdm2ma5OHhYf18Pp9FROR0Osk0Tetna+06r9batY40Pd8DMb20V0v7vWTnL2m3fSrNr3OuWX+v/AjzNN+0MU2TuLDIkK/dmg3YotgHJ2Ltre2hsT+iLPn3mNc5N3Rm5PJrz8ajY7+p26b6avnrnBUz1/VViZJcvT2vPQM1eqzlc+Z6Ja3iXudISedrbCUNqWz52VA6N4Mtt9kaoxbaNVeyG0MI6zpPz7L4LObN/STt2XE+ezmfL5u0L754J09P13HSrpnc7sj7bcxWd+d1ldDab9p5ScfYe7/Wn4/zZZ7lcnneyPb4+CTTZdGvsR9R56d91cz3kbXUS9Po/tROKsVXjDFinHtJi+WX/toXPd3zsfNn8zyLMUa8Dzf2jfdexLdtV028qKeHas9K61K7bzVzPUJNrwcTJJ4xL0+admJse2vLtP3MET9RM/8tjsRoajJp0uMzTZyt9lwb09Lq4V6MZ2SPl3SmVo+2ZEjTrLVrnaO+c4m9/nRrXlIfQEstjrkHbUwnJR3X16KqXwrnQCpXyr1iBikle14zhjVfrtZmzU+uy1rfq2k7qRwj5/uesdTUne5Pzf66h1yleltzqD1fW2tzFK0tronlHPVNWu334ngxX+v7vam1p7Uleudh2uee7m75PK0yLfl6XG2o+Ddf57HORW+EEMTI2DlQylOKcdWIa+dea0FTT9OutvfZE5GaLpvnuVomle+e52uu27axkX6ZI2jmpbQ/NLGo0r7Ofb68npEzJpelJVPrfG+dv/nz0vceI/stpRaTTsvkn2t2e4wxpGMeQljXe6w3Xf8x3/Pz86b+y+UiS3WTRF1ljMjDmzcSJMjbt283sYHT6bSRO8bnU385xuejLNM0FWMhtbEYsQ/utXdEdGtv1AfQxChqcoyWL91z5ekt2VrrTmS7nnLdOrrec2pjnt6htOYllzmPXd2fbL9mosU2tWdLrrc0fuqeukfXoCZ/GictnwH74wGa9lu+6J6+a9sfjZeFs4hz231zWvVnln46i/Ft+/ps/WZ/iLzo49M2rVReg2rup3DTJ+ucWFePx5YorfeSTVGTTXsuj6Cxi0qfU91X61errl7sLs/T6vs99cg21tyvq/WuXpqn2lojptqK8Zb6k49prcufIt5WwxjTPO/2yBWHMIRbe1FDba3G9JrN0YrPdO0bc7UTrQ1ijIg1VmJT57OTEI6d6bV+pXZN6xxp6huz/k9sbfM4HSftvUEu9+gdSck+a70Pk9OyLTXv07T8xlrdtbpGuRmTGK+Rq39uTN0/3yNL2TZY/qZTl9/lR0K46ql878Q1mqdf91GQy2X7LsPzReT5efmuuaPu+dHVfpr6v40opZX8j1a8a0RvjbSfUjpfNHeKtTN8j99Ty7O1sffdE5TGfESGSF6+1v9SuTyftqxW1sUOqLwXHG7lyNd/bYxactbW2z1tU5V+t6HyTt79YyUacpldMGLMVo/mPm/Nf9+zNl7H/x8/g1t3HZo+xnUd5nBjaz0/P4l5GvCVfa6jrrbz8Rhpv1xrGnvxt1FG/fTRtvK5W/4r11c6G0dtwELNynz7dWtJj/Xqat2/7Gk/rc/Pi37P2wtzfyzTd/xactbOx5h+z/5p8ObWt231Ob5fd4QR2/toWz2761P55b3YZzomqf9T2h+p/K11Ns+3tsrlMss8X+3zmlytey4TfR0jq8/c2sfRbrqeA8mdgN/aS9f+pX30Mpv9ulOzhvQx7O33kj3ofZBw2b7vrGmvdpanZUb3w4iteH1n9po+z17CRX+nW/pcy9OSpdfGUdtWW1fLHkv3jsYfa/f9OsaxSa3NtCemmZZr2oo37yxf38/utX9PXCj9m6BrLHzVV68vCmQcfzMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AcIP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0r48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4UcKPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCPkulzCwBwBGPMcL7aZw0hhLVMCGGo7J72Snjvi3Ltabc2Fmk/teQylGRK09LP2rY0ZfL02tjU+hjT8/HI66/1d+9cxHLW6n4Tyxi5kbPUVm3Mav0rfY+ka08rp4jIPM/qvFpqa+keaHXEyFxrx/hoW5p647qIZfbqxJE5yNfhEV14T/0U/9bmKn1e0r05uVx7+tnTnTXinqzt+VJftbKM6OjS+GnGrkSpXK57tPNS0ll75MrHojTupXyaetPxvpeOa+mGWhutvtTGslZv/N47R/euEQ1pe7V5qfWppcdzmUt2gLW2OLbzPIu1VpxzIiIyTZNcLhcREXn79q18/PhRREQul4v85Cc/ERGR3/7t35b379+LiMjT05N88803m+/WPMmXX34l83yR2OTPfvYzmeeTiIg45+Th4UFERL788ks5n8/r93fv3snpdFplienTNK1jczqd1vGw1t6MWTpWcWzy8S7Nc8yT2gppubSda/qtru3ZhfkabNmHvfRSP2Y7Swj+Je+SdrlcJFzKOrm05uJ6GKHUb++9GK+zh3tylbpG/d8AACAASURBVGyElk2jtXf22st7qZ3PNdnjHI/4Lvk6vFcf8rGy9laXldZ0eqZo5Mr7unfuetTWW77+V9/oFMS5eNYuz06nkzgp69f888j5MmJv5WPuvS+eA+lYpnou5o/yee9lnsOiN5Lz6v37D3K5uLXN1H7P5zaVLaWlHzXroVZWQ9r/dIzmed58jv0WWXTnZqzOXp6fL7FlERH5+PGDuOdlXJxzYq2VaVrCm+n5mp5X+fhFWnqv1tfWORL73UpL12VPp4YQRKwVY6wYc312Op3ENvZqS/5VjrMv9r/nJ9byjLRd27PzPIv3sV/L38fHj/LxUp+nVH+ktkou81H9tY6VE7E27ZtZbCZft5FfM2bRSqvR8zVqcbU8lqBpfyRm1ZN1LzV/IB+H0bM73T95+fzZXpl76XH9HxmnkXik9lzt2RF74vmvRS5r9MvuVV+kZY/lcYWaTdGrV0vtrCv5I71445611/J7bnzI00ms3eY/n89iKmetNj6flxtBO+bpntLG0e8VG9Hej/TKiYzdAdQY7dfReGrrfNHEiLTjp40RatDEq2rjeI+z8mhc87XqyuubJNqvQaJvcD6fZT4ZcS7mW56dzw9i5fh5U4sraWVupY2Uy8+EW59iW3aeZzHzuH2W+5Ulu7u2f1qxhLQPe+zGtHyOC+bFX4p9iL5grC+Is06M27cWS+327i32xIdavuGoHq3J0pMn981iXZr2Nf3fszdqbbfuKUZiRCM+ddpmaW/W4okhBHl4CPLll9v2f+/3fkseH299rJZfXor95PGde/psr8XeNmu26T1sYg219Via+z3tjOTdoxc09R+x2zT3bCXS88Fb/5LfrHp9cpOYqS97yYaLZ8RLiogsfXzFK0kR2RdvrBHHJ+3LOjbTJLMi/pDHzkbsmnvce9TsBm28TmWrya1eiPOwjeMt4+FObT/nbP2N73o+n8VX7AnNe1StWHzpznnJfutz5P35lGjO8lH/ZCR/z8bI7+XzdtJzJM5TPnd734k7RpT5dm7vKU/PPtDEofbSuhMpyZKjsUlrz0s+jsZe1b2HVH5vIq8rT6+1WbJ1Ul2U3rfV6o5/b/emSFxj27G4tuNc+d7nNeJFcR5q85ITbBBj/CZP716mWpcLYq2XdM9p7Y2IC0ZKezZSGp9aH0u+Te3ON9Lao7U7hF6+I+TncIo1VkzHNrqpT6GDvI22xNU2MsZKDCUvtlPaTqju13jHnMsQ5Xg4B5mmp83z8+ksIey7q8v38Opnym18p1T30dhp6Xuv3la8dE+8Na2n5ufld5M12TX+b03vR9+jJluPVnw47VdN5taY3ess7ul0zXpqnmkD49dad0fk0NLTneVYjEi+RnpnVqtd7brS1p+e5b3yrbnfY59pytfQ+hAanZLuo1Hf1Z+COLf9ty0PD2/EjsRnTkGs3d4tR7+tvsfLa2qxCcpzde2jWjTV/tLcQR1FG48ulSut79Qn3rMO2+uqvd9HbDBtnj3vrae85t1hSZZezKtFLtPovUML/fodH5dRHbXHV8rln2cv3qf3nst7LBcp+wmtdZT7UKP01lLLntEy+t58qU3n/M05ME1OfMFnHJnTVBdd/5qi3Xf9vvgmLynFdmM8sHQmlmxHzTjXYq0tW75G6e45q3WtO77bXWor1pX3vRSj09KLqeRtlMovc1SvV+vXtHT10Tibxp7TUrrTzOvUxAhH7lS3aWm5fhzoaLw5rbtWV3nvbVIW3Vz5t2Ktto+w1f/XtPjax/pe/X1Dt6DgU90U/MZgjPkXjTFz4b9jb+Yel+uvVuT6Vz6nXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9Xxn++DERaP139+fg7UpbrDz+1IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8E+PGV/YTk8/fhx1hC9jfyj31qQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH4I8OMrxzBy+2Mnn4u3hTQjIj/71IJ8Sqy1Ysz1t29CuE5HTE/TUmrpLdK20s+9OkvpMa0nR6mdHmmdIYSb73m98fNIWy25a/W0xi+vrzcuIYTmHGjmtzVfpXHS9HnvGNY+L/Wl/4kYMRJenvXWYS5/b19471Wy5/mstcU2RUScczdtatup0duLkT37f49uSNGumVJ+TXrOnr4c1Suj9fWet3Rk6Xlpf+6htB9K86ddE5rxzvtljOn2f6TtWl/yNlt1tD6PyBnbiTogpqXz19NJPUpjm+uXEILM89wss3ctjY5Za79r9doeuXp91qyJVlqP2l6L3621xXOh1FZJ1vQMuifac6umo/J5SOvI53yaprWdN2/eiIjI5XJZ98/pdJK3bxdz//HxUb7++mt5fn5ev1v7JD/96VLe+6Xd3/tzX8vHx6V+a62cz2cRWfbk+Xxev59OJzmdTqscsU3n3Dq2xpg1PX5On9XsoPg9txM0Z197/uu2bopWl5Xw3q9yj9gtUUTnnExhzN3O10lP5tnM63zHtuN45Hu8Zqtpz4Q9Nk3PT2vRyn9UR/bq2WOD1XyuUt21td1ax1s92vabSvL30lr7Mm1De+5p1ku+r0r7bDZe5nmb/vz8LP75Vu+X1nhqg7Tk8t5390JrfNJzLJ/LVJaY53K5bNr0fumn936zlj5++CCPT2V7yjlX3cu5fvYXL5fLZdVPxhi5XC4y29uymv1WOnfT/pfKW2s353787JyTaZqq68mfg/iH7zZ1ffXVFzJdpjUtjQvVbCpNnlL76d7r7YOcWhujOsyfTjdr+XSaxCp8pJaNNJ+8TNP7TR9Op5PYUC7Tmvdchvxzi7Te8/n8sravz7/44ks5nfp7OZXl3rahxg44Gkeoca8zb7TO2jnc0hGlcS+db7lNnLeXf79XLKIXP+vt8VbfezHOEWp2l7bO1nl2NBZXq/fI889NaV5H/Pw9dmrNR8/raM2ldu+k+Ub8/p7Mo7TKNm3yzfm9pFtrxWbnYosR/TLqV47q01aZ3GfT1qeRpxXbKNnQI7pTI9eec7nmv+yJcdV0vUYnamXPz7bevNTOzBapPdizhT4n97Rdcrvd2vS+LKZZsTbNZzbpKbW1q4l9j/RL65P3aMUc4hoKIYh1Vqzdzv80ncT6YzGPWpk9sZTWOTIag8nzT+IzXZavHSPWOTGDqujoWm7p5NF7hNwf7LWz17ZOScc0jTGMUpp7jX0SiTHzmD+vO9LSgVH+tE+1GEYprTR+JVss3Zf5WXU+B5mmy6beNw+nrt3Xezaa/zX8yxZ7fQGt/THazmv3P6+/ZkfU1tiemHSNuMZTGWK517IZ8vuUdE9o2NpPujZ76335L9Z/jbFGG0E7Fq33YFJqfU3vqPcyz15C8C/tLGmXy0Uu0j7g8nWY66hPYUNq/aaaLJrxD0Zu7hEeH5cL0jj+cdweHx/FPW/X5029Fy+Xy3bePn78KI/TtVwr3jUif61P3t6OyeVyEXu5jW1r7++0+mZUfx+N/Whjfz0/q+Wr1vrvnLs5z/f4+jV6vl+wQazdrjVnneRbuxV/0vjoWtu0RdoX54yYzMB2zolzr/PORqw/p3XnV9J/+efWuKbvOe7RlaN2hyYmVWpDvRdOQeLVz+Jb+8052bs3W8q1Y0i1skd9wZRr35Z3wPzldm5a9VprJUh4OROSNSEhv35vMs/zei5Hlvd0ru2U5NHG/e8ZUx9Zv6V3Y0p+VGl/LTJnd6khiA9ezMv9913xhXEKQWTz/6GbrukYK6q//5PqxPSzL537wYv3bX+utxbLee53BrXQyKzRS637lLzOml6JZVp6u+Wn12IMmnue+H5GSsnGzvtQ61Oanp41tfucUtl707sz0MSl4nnREnFP7GkPrxXzqK+X2/5470W8zgavoYk9aerwN/p1n1z53unpgth2XnZPe3vrqJVtre3bubzV74v+v22nZl8vcxDT2rKltleJ9Dwtp5fk2OqZ1p1W8Z28nfGK3jpr2Ygt/b6xO+xt7Di/9ym9d1IiH5dSXhfMzZ1S9HFqMbV76L7eHNT6VXvfPi/Xik/6KSQ2yZK+vDOm35O6vVa2IdO00fe9Sn3vlTPGiJnsTb5pmqr3aSPzWvOnenWEEG783e16NKuc83Qb6x2RpZXWq6tlM/TsjVb5UTnyz634RyrbXh+9dC60Yim3dtPV7s91zPXeO02zGxs5rbfW3p58PVLZim6XJHpxbscbWzLulbcX4+ylGxcKcS0rdhqPa5Vijy158j11rznTxoe1zzTntpaSLxFtmB6au+RauWtbtzqjbKeV92Ov/hYa/Xj7vWwLvpbPCDpeL+oNn5rfr6R//SmFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+KHAj6/8BmCMeRCRf0HKv8H97hOLAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8IOAH1/5AWOMORtj/oKI/Oci8gcxOcv2608rFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwA+D6XML8LkxxvzbIvJv7Sma/zXGzPeRajf5D6+IiPzpJ5fiE2GMEWOuXQ4hbD7H72n6CJpy3vuNDGnZmF6T0RizyZc/L8lfk6kla95GSa5W+7kspXJ53a18tf628mlojVM+7r22WjJ677tt1Gi1U3u2rHORzWOz/E+6zjW02os456rla2ORf07zt9b/PSmNQ64j8me98r3nvf2o2SutMr193UvXfG7JFnVUS94R2VpoZTpS5x59o5mPVlnNusrnpqWje3W1yml1+lb3tPWlVu/W6qjpMO0ayuWz1m7+9sawNP4it/rs6F6q1aXd7606Sul75NLqSo0crXK1MRe5zlsrv4bSeZRSakfTz1K52FZtH+Xyxzq89zdrIZax1hZtjcvlIpfLZS2ffhcRmaZJrF3s0mla6vryqzfy7ouziCzn+zRNa97T6bSe+eln59z62Vq72Ve5fqitpdIe1NggpbpKacaIhHB9lsrZK5+jtRmdc+216ESM2cqgOTt767XXhzget2l9/Rfz1nTH6PzV9nDpc81urLXfy1vIscmr0SN7bPs9dWn9uVSP3NYR80ixTOuz9kzL28+/5+TrrnUG1s7+0hoSN4u127qcc+K8ra6RkXVXI5U1tQ9S/Zx+997LPC/hoFQ/Pz8/r5+/++47eXx8FBGRp6cn+fbbb+XDhw9rffP8Xv7hf+BnEsJ1/P7of/y7Ms8nEVl0909/+lMREXn79q2cz2d5+/atiIg8PDys43c+n1d9L7LszZOZX/R4TNXZAqlOT/OU5rrlR8Y+pp/zuamtLX/28t3pabPe3737QqbLtb1cnqO+pjZ+EtHua42fWJMnL+OsE+v6ulRTZ3p+WevEuds5z+vW+Eap7ZBira3WZfz8cs7f6rhSO7mdpR3b0TjKZn1bc3PmW+vETW07YFSW6p5Q6LJcn47aRHv0pYiserBH70zpnUmlvJpzvBXj0DBiK9Tab32vpZfstryNdM72+Gk5e32mFhq7Vlt3Kz55D/b4Linp+N1Ttlpcp4Ym7qwp26tLS28uS3sstRHiY++9SMEX1+6pWixprXtA/rS+UoxtpK6RvTt6jrW+l8j70vLVRvRqKe+9fLWReF2UwTk3tJ5bcuf2jVaW2por2eDp55qNVaI3NrU7zladLUbX2JjvfTte2vhHra176Le8/j3xqL0YY2QJkW3jQ0usrO6nH7GJamhjbPn3I3HCmG5exmD5LmKyvltrxbp2rF7L3rO3lF6LlWt1WisW09JZ2thQqS4tmjKjcZ2c1AfMYxK9PqYx+BE50xh+Tqu+yQXJXyOK+zSXMWd0nY7ur5L/eMQfrcmiaf8eOinakHvQnnvaMa7tvdE4QGS0X+k6T/vW6mfrfrREy4bYE//ypmBTm/Y7YTV541pekvIy173cG9c9ayof49qYa/yPeFbMsxfvw8v3pdzj40d5/3RbV36+5Gs26sz0HHHObe72SvruNe2GvK1euRtZQpA4z7HqOE7eb/fePF/EP7ft6Xn2a/m4XvIxzddl7WzYq5OCu11783wRf9l3frZ012gscY8NdVQ3t+JlNUZsihKtM7HWXipPbp8U782kXP/eOdDEePN9vS9O6kXkVgdr7MnROHT6fsUI+Rk42s/87uGl1mK+0bhxzx9O114p3tAbk9wXEll0irUx/3IWGnO9h9GshVE7QZOnppvyMynMIdHLV3mMv42T1GJ0xpgl1uhvz0kjur0Qyy0xpa3uWN6zsZt8IvV7k5bPfC+0Z2tsP59jrU1zi0n+S1J3xYLKBIl23jZNQm08t+84pTo6ypPHyOL+tgUb1Uj5nalRf0wbU9bEeEfPLW0br7U+a+2KlO382p6p2QSauIy1Un4XxY37M7UYT55Hy4iv2Srf8gvyOltntJ+jbWq2efz+2Kpmznp9Hbk306wJbfv3jjm39m+rruX7fffonr30fSLXXc3z1pbfna/p2BKl+MdeG7tHjIPfdCOJMdbQ2I0tWv5wLV+tnZo/mvrPWptDe8fbs3FEoh4spYVhuUbo7bERX6OE9746Tj6xsWPy8/Oz2ELMJJd1ZCw0sUiN/VyT5RrvmYvPUzlCEj9Ky7eGVfvvEVKbZOQsqqe1dcsRPbPnPmLkvCzZkSNxP42cpbbysdfGdUfPulb84/o86ut99vm9z5GW7VLSN6V3edO9MhJL0Oqtki9WSs/TanX0528bS/Y+XJVhVudRXbyn3Ig9MoJmjHp+Q+t7zrIPb/dMPt61Nnvtl2iN01HbdnTutf7YVZe17dPvqw3+Y+BH/+MrL9xrBX7OlXy9JV4wL2n/y+cRBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PsNP75yZeQniGo/snL8Z5n3U5Ppv/mkUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxA4MdXttR+wORTlb8H6Q/AfCsi//HnEgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD7jP3cAsBdiT+8En8E5t8MIfzp5xIGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg+8z0uQX4nhH6WUTk+uMme8u/JkZE3ovIvx5C+A8/tzCvSQhBQugPuTFmk6/2uVdH6bO1dvO9136eN5ctfV6TrZTeGgtrr7+x1JI1rSP/XMtTIx+vUrstWTTP8vZr6bX6evNW61+tnGbuWm205jsEkc3jcJ2LvJz3vtpeuha0ZUbJ5anN073qb+G9v2lvpHwpbzpWtb1Y0xetfL11u0dX1dJH5qBVX02vlcrWxqpEL692P5f0rabtXn/2ruG0zXzPlXTBnnZa+6+0BnL9rG2ztR5H5rrGPcZ4tN00b9SVcZ72jFFN37bQ6uKjelRDug61dpPW1io9q9Xrvb8Zy17/8/xxXGP6yPnfm5N8rbTqz8fSe78Z55Id45yTeZ5FRGSapvWZ916maVqfzfMs8zyL90G8DxJdkg8fnuXx8eNa1zRNq9yn00lOp5OIiJzP5/Xz6XRa8znn1nRr7Zpe6mep3y0bQLuvynUYSYvkukxjq9bYY4Ne7bGtXTbPs8hc7oembdXadyLGbPM558R51y/baT9FowfyOWitEee28tXqLe3B1h73xr+sjTF/LcrXsjdGfYc9c65py4XnbAyCWGua547GHq/5bPcgtm+t3ayNfLzr9lCU69bv0ZydrfMplo96VETk+fl5/Xy5XOT5+fkm/ePHj/L4+ChPT0/rs/fv3691pTKm/U/168PDg3z55Zcisuj4r746y5/5M0acc+t8/uFf+PNyma9l4t4xZpsvn7803/I391G2ZWrrPd8/JRtyRIen9aS6Ol2/6fjFOcr93ufnJ5mf7EbGksy1/f+atlQtftLKN6pvWqHHni5L00r7PrdJWrEska0+r62Vmpwl7BxeZLjGQKJMpbHU2omj/kvreTzz87Q8X7qWW+2UZC7p9NKY5/VHnZbqnhF69pnGrm/V2curkU9ra6dtlXy90tou+UB719QePTOyX/J+jeuRbV1H8mn9WGvtjW82gtZn3BsLqjESMy31q9fXe8enW2WPxH81dwI9e3LPmWycE2tv/aQ9a6hGaVz2xGH3xFv37uO9urVVp/YOSdvmPe8btOw9X7Tle8/3rEuNb1yL0dUYjcW07I4RW39k/FtttjgFI85ty07TJKeTEeeeXuS4plvfPwOOxqFH4rm1Pa+JqdZ8i6h7r9Vd5661JrU6uVaHRg+lZ3TrvC6t8d49XJmw/ZiJqI1x5/Ll3/esmVZ7R+oezd+ycUd8yZE7oJH+5fGj0nNtjO9e89Tah7X9rx2fpb7ls2b8W+kaejpB037NHx1lr/+ijbHcS86cUXu2tpa1aGK6vfKj9ok2v8ZXHpU/hPBykIf8gaRVafZhZJ69hLDNs8SUm8U29OTu2TUjflmrrrP1N2v73bsvxLpb+V7LFs/18GhceI//MHpHvOQRKTWV2r/WtefN2qgbt3lqurJ29uxdC3W5rBi7/yyotflaa2av716zG/fEQu6ph0vpI3Zr0YZ2Wx0Xs7R8Mm0f94y/xk685qvfLeRy5bHyEY6uz6Pl035M2ZlU42jcKj9P8zublj8fye8KwhzW828pFt85vbaT2qalvuyJfWmf92z44ILkd52n00lM4vfvnesQgsx+FjPr+zfPXjT3RC3b9Eh8P18XrXyvHUcVEQk+JLacyLK+vEjwm/QRO67H2mYmX1wTJTtwnmeZzW25Utw7nc/Zb9/RNsaID168H7sL7d5VTLfjMs8X8RezufOu3WH1zi3NOTXq8+Tta8YiH0ttTHbP/UKprr0x1l6btfnes9dzGff4hntiTC37w09BrL2IJP//0NM0iRk84ns6SyNnml+j40bjPSm+5FPOs9hQ9ydG13heXsN2X/fPo5KMvbpbHIlP7UW7b/M+tmT1Pr9vr9tE95K3Pme68z+VLzLPs4QBO6amX47qxz13MPnZsTlrJbz4Edfnz8/PYp+Pr7/on6RtT3Oo2g55uXtxdL/V7HaRrU1Rk7u0njTt5vW3aOlpjT+TvmNSI5dVa/9u7qN8ub+au51cvlb7pbkoxb62ukL/XkApXRtzi22PfK+1qbE/j8RrSv+upPae3BF/aI9eu+aplzuia0syjN6v1OY1TXeuvLeWtPvF3jT1jMaZRTQ6rOwXlqrV+isaeUZ8mvq9Yv8ur1V/y8+oyaGNybbmcLF1xmWsMXI3oVlDYfNvusp5aj5zb0y1PnnMk4/V3ntvuC/8+MqVe6zGz72i/08R+U9F5D8IIfzfn1kWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7zX8+IrI35DlR0u0/CUR+ZdF1v/fpPTvX7m3cB2CiPxaRP6uiPyvIYRffOL2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfrD86H98JYTwt0Tkb2nzG2NElh9fKdX11+8kFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALwyP/ofX4EfNvM8r59DCMU8rfSXH9NZyb+X0vL6vPfFvPFznj9+z/9q+lCSrydnXn+tDU29xhiVLLXnadvpuMX0NK2GtbZYf/zemtOezKksvfmrlWula/vnvV/7aUMQkfQ/kSBBjFlkjP+l5Xsy5TjnqmU0MqeM7Jd7UZvXdL3W5BklHd+R9ZR/T8uWdFGpbIt0vdbk2qNHRuup6bNWX1pl9ugZDfn+1spaet4qWxqrfM+W5OnJ3srX03n52ktl9N5X5zdNT9vfc46W6i3JVvqcl62NXW+cehzVVXl5jSylPJrx7dW1p0wrbU+ZWj21sztirVXPY62u9IyrrbGajPFMrlF7VhuDmH+eZ/Hey+VyERGR5+dneX5+FhGRDx8+yHfffSciIn/6p38qv/zlL0VE5I//+I/XzyXevbPyh//on92k/dEf/bG8f1+X/+HhQUREfv7zn8vv/M7viIjIV199JW/fvn2p893aF+fczefVVknmqXUGpXn26u9UT5XqbjFqw2lY++JEjLGSmAny8PAgzrp64Ur7I3Le6gjd+Pb2ZP59VI/k9rr2HEjP5XSNiVz3W23fee8l2CB517Q2yEjePTZa7Xut/tp5vsxvzCcicusPaNpr5bu33VazU1t+w7oWbFrGiMiyLuLaiDp+j82f6uXT6aSyC/NnpfWY6qQ0z+VyuUmP8YwQgpzPQb788rtNXW/evpXn52tfU72b9t9au9lv6WdrrZztLNOU6iMjDw8PYs+3IcHWHGl8oVH/N9ps6RmTlr+ugWt7zjmx7qpncrlK67m2T3J9VVs7rb6MxhxyWuvMGCPBWtlWa8S87IOSzafWB86IMXab5Jw4b4tytWSuUYr7pPvipu/P8ybOJ/JiJ8m1njx+odVfkVYMpVbPqG1tjKnqp3wt1faVZo/l30t96cmcls/HvsfRta/liJ1X2/u9tF68o3WGjYyFJuahjcHsTT86d7W1XqIUs9xjq6Tlo28yElPOae3L2D+NTbfHHsnza2IZtbOu13at/ym1cdT4GCXb/QjWWpHExoksdkA5lj3io+d8Kp1Wa7NHyVYdbaOlA3Jf+15jkK+70bVhC2ugtv96dlxPltE1rl3zNf+iNjet/rZ0jybmssfv66WXbNCRM0v7vMa1v1GOJX3xG/X3mSNyteyv0fjJnvhNvt78FMTa501a3Dsl3b833tyTL19fadu5HHvixzW2829EjIixRqy9xhKmaRKTmLqa8+Je45LXpbUXRu9Z0rp68b3aXtb6OqV6tDqtJG8p72j/tfZAzz/L68tjPPHz+P1PkMtl6289Pnl5fGz7K3m8p/aOhMbOy+vX1vEadlHvDKqt1VGbLk/XEQuD3AAAIABJREFU6F5Nf4/E80vp2jjOkZiTxs/YGytP5RvZ85HUVgtyG98vtRNJY0QlXLjGvmKxaZrEn8rlRs6nllytmE4tnteKr8d8xsjN+JT0r9Y+2bPetYycFSK3dr/2zFv/Jmsn19Ul3R/mdr/cxRd1fc22f413oEQKeqByH6Sdy9a7ZBq7s0frPBqJGWz0QmXMS5TGpXdGtnzJvK7SOTJN0y7fauunpu+9LuvZe3+ju3t+1p74WG0dtM4N77242UsI/mZfj8aXe+9i1OTeE0+JHIkhupD6GVfdvcevK6WPrHeRdoz6xgdzQaxNYz/LuRKrqPUjHa/SHJRiAi1qfaydg/l5kute4692c2+/r3XZINZu16qzTozTrysXrn6oyL6Ye8teGPUTXyuWmc9R9V7+5S63JPUyT+V3fEqfc47EbPNqvffSUgG189Wa8r8xaO3B+D3dI6VzZKNHCyMYloPhRr+OxDF7NmbJ503L5fszL7ORNZdd2npi9AxutamxeVNfW0TEeC8i5bltxUF7bbbyjNpgR2IlJWrzXZNllcnmdkaQy+Uidt63R+8Vq72nHV70V5K448uTohy1NdNao634Xa2uso+S1rH83Tsurf169KzvtdlrQxPXyOvqymzb+l17Po08X5L7Z4qWxZ4zKt+nx5733V8T44Lk7zPFe59u2YHxXN+/E7+2l55he2JdWo7acK24RG89LD7nVW8s9ZXrHiXtV0sfaWMItZh4SqojS++Xr/LMQby/Pf9q8bZW7LH1DnNNxrz+mD/307cyLR8ul4tcpD2vpZjgiG7o2Qaa82FPTH+UUj/v5ZdH1vV0udzM6eVykaljK+b1Xi4X8c9bGUvxx9Y81+by6BiX7dHae/jXmIJIXGP6+5w9tsaIbVHyU8rfb/3FJc+4vTOaX6v7a+upZTuN3G/07iM0deS07J/cBmr51Htioi008qdnx7I+gjw/P0t4+Xde96Jnp5982efJi31eK+3HyTFLGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAHCj++cgx+MAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAHyvS5BfgBYz63AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAffnxlnP9SRP7Jzy0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHIMfXxkkhPALEfnF55YDFowx1WchhDVP/NwjLZOmtdrJ85Y+t2jVPZKnViaXo5QeP4/IX+t3q85WXSEEsdZ289barPWz9tkYU/xcky1vI4RQ7WP6Pe2Ttn+38qb/iRgxkrZYW6OtuRYR8d53Zaulp2Vb5HLtWcsjtNZway3eU65aOxrZ8rnXylUqn1PbE6N15TpVu8c1HJ2HEX3fa2+PPq/tl5F+7R3PqAd6cud7t3ZWtNos6f9SPb1zotSH1ndtnlS3a9rJiWOUzmdP5+1Zd7nursnbOjtqch2xG47mqZ2V+TNtHa01umddlWjNQxz//MzPx15j9zjn1jpDCHI6nURE5OHhYa3vq6++knmeRUTkd3/3d+X5+VlEROZ5lqenJxERuVwu8vT0JJfLRUREnp6exLln+f3fnzft/8W/+PfL8/O1zdi+c05Op5NM0+IK5p9jvmma1v6n5a21YoxZn+WfS3sw/zx6JqbtlNJLbbVsw1J7e1jbtmn917VQ66dGP+p9ibZ8rfSRc/BeZ3+ert3b6RqrMsV81/LOOTEXnSxp+zWbYjQ9rbPF/rkQ8T50z3fNHtEwak/20kp1p+fjssfSOpbvvfGu2Up5ntJZPzIXsbz3fjMH6VlR2/u5Pjufw6pnY/qbNw8bPZzrWo3NM8+zzPN8s0aen5/l2YS17lTGWr0tP6Fkr2j831YfjDFymWb55vxhk/7FF1+KO1/r1vi7Pbk05V6Lns9c8gvT9ZCjPVeW72ma3nev6RHNWWGMWdd6ns95EWO2/XLOrXZKr02N/LkN3vInSt+Dzb6H8hzV1na+30p9qcWhWjK31m0tZpTLko5zzWfJzyFN+yV5tKRj25u7I+dbWj4n1hdt+L3ksrdsIu25XStTS9Ocjy00cdDaHGn3SEvemp+Yn+m18r30vI29lHTha50tozqwV05bvkTJFtLUPTJ3IotvHF58Zg15/S3ftMQ91oSG3hrR7JlIzy+p1bVn3nvsWfupjLk9nefrkfZpTtbN0TVe+q6RYY9e+hxodMuozC1fOm+7dPaN7cXwYrMMiajyrzTla9+19PrtnNv6L1N4sVNEon2/+Av9fqTz0prfvTGhWt40/l5qtxT/q7XvwrzpqzEiJrlPzesWkY0/oqXkM97jPkjT7p4zVh9XHLcZRm1QTdtH/bx0LjTnRmrjx++p3Vazx2u+wcg8pfWW9E5tX/T6rhl3rR2stem17ZbKaH2T/WfBta3S5yPU5M/pjV0pvdVfTX3a5/cqM4ImvuFdEGu3tr6bJrFed/+f57FrDEc3dkft5FJcZ089pXIuGDHGSlrFNE0yT/34YO3zaD97ulpjK+X6tydzLfaT2gwiIt4GsfYSc4mIyDSdXmL4W7vduUns1O6rC/NNjLI1Prlt0dOXGl/UT0GMye59GjZeZK/dVlr/zjmVvh5tM60316mtsRk547WyxDZb3/em19jcLZkgeXEj+vfE8vHL1+I9Y5lpG1En5fmdszf5Rer+80jM4DVia7XxmStxp3n24v3t+teOc0m39c6Okh9SetZtew4Si0eZl7vNJe1yCfLyWoo6XlvavyJbe7a1vzSfr4mNzsnt2LTOmSC38YIg4cWPzJpt7Pvro2u/R957rqE5I/I82rO+l15C4w8suizaKsk6CFYmN4mZbvdvL34Zqb4TZ/u60hhZ59qYug/WkmGJU8U6Er/NXM/k1vrtrYmNrrW3dss0ncT6Y357yy6t2Voj9dXO9Ja8Gt+gJdfoGq75XSNtlvLX3tFpldPYKvkZ3IuztRjR6c16XLRftjaBdfviuKNroCRjvuZG7wvy9PRMXvPZfP0YsUm/S4zGtPJnI+XjeRSLhBDLt+d2xN4urb9eX0r2jcbW6fnRo2PTIuqi4r7u6N1UFu9DNjaxbp2cZZnK6fnn+P1yuYi9lPVcre3RuFJJl2rq+Vxo42siV9vfXq7v/cVuldaIxlaL+TTy3Ytav3La+3efbu3JUqMmo5aW3VXrZ7xPS3Edvb7HFx2xAWvPU/0e6+z9m5a99/JauUoc7WuN0jqq/bvHln05anNox7CVz8+3tmbp3jbGrtMhcs6tsRUNLZ10TEf39nF6LpXb1Jwbub7uzZf2LKrZ05FZyvM3GpO8xzmoqbvlx5bGR6OHe3s3teFKMpWo2trOF+KI+phRb156/dbYw3mcx5jlPVp3hzM7lbM37vbii+Nyk3ZYKhjleMQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AcIP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0r48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4UTJ9bgEAjhJCKKYbY4qfY/40rVV2hFI7qXy5rCGEqpxHKY1Lb6xG2k/r0pbL+9uTa48sve89uWPayPi15M/bK813LkdaxlorxoiUhjiEICEE8d5v8qfkdaf9S/OmdWjJ2zpS170Y2U+lPVp6nn4/ulZr1GTVtqdZr+nc52txT9v3GgtjTHWPHul/qZ1SOc1ZcE/dHNttfc/TNDqmtNdLctf27R7S8Svtp5ouiOm5LLX0Gq+ta2L9o2t971laqyPvZ6nMSJul8a2NZb6+NGOxZw9r8ua6IpWr9blVPm077WttjNM175wrrve0fFpvel5772+ezfMsIiLzPK/5np+f5XK5rJ8/fvwoIiJPT0/y/v17eXp6EhGR9+/fy+k0y4cPZ/E+SAhL+T/5kw/y/OxEROR0OsnpdBIRkWma5OHhQR4eHta6z+fzKts0Tatc6ecUa+0mLcpvjFnXmGZ+0vw5pXTngli7naOavtPui3vreJHy2VFrp7a/WvZhr13NOa+vtz7GI4zoht75q9Mt1zry/Rpp6VetfXivddbqU75ntt9FnLPinFPVVXue27ktW+X/Z+9tQm5rtsWsUVVzrXfv/X3n556bc2/0JsFAjPdKFMVgSyVGRVHBVhCbN4gKSlRs2LATFbSjQgjYMAgJgqKQph0b6QSN2FLwB2IMNnLC9d7LOdzz/e39vmtW2VhvzVWzZv2MmnO97/72d54HvvOuVbN+xqwaNWqMMedeZ8T2pozr9NIy6SOsdLzkB9V89tJeK8VGLf8iv9/YV2oT0/HneV4+RxucyxA5n7ycTu9XZQ/nBzGmbCN7NiUvS/sx5noWhGmbEtxjU1N7PWp78r/p+Le5jPN1K+/5mS32+pA1Hcnj6pqv1fNxq3Pn3EYPrLUqn7mvz/tse22Ptda/5V/Fzyex4tz6vk6nk/ikrGev8v7zz/c599d2OF+Plr3TxEuls6aXy9LGUJr4tzbHpb2niWdaMmrOR00skspVys3WxuvlxUZ0TZN7buWkW3K3xi31N6Lne+LXPXuwdU3rT4zmbFt56No4R3MmNR+q1m8qSyuvsycnnV6v6deIf9ab99o+zOvln1tnVbBWvK/nZzX6m+eaemOWaOnFveKkkTFG4qXS572+kDaOS+k9qzg65lG/LjLqw7ZyTCMyjeTNWmdYy6b27MDIftLYX008dX3mVbf9Jd/jmj8Kz/fUlvNa12zGOcr980ftM1Xv54qImOWvyDVvad24f9CzHy05WuWlvGKLVmyR647zYRPvGrtuH5+zthg5A3v5g6P+xOYek5xPS7bWWVxrMyJL6ftoXKrRpT0+XEsmje1OZchzPJHSfaR/03HzcaYpiLXrstN0Eu/X+dxclvR+WvmaXrzYo7XO97J9I+dFOvZ9Y3kdR/aI9tqevkdzry9JbY+OttnkvZfnP+s6vZxTDReuPkGax3HObXJPI2ifIdx7H13noFTWPi9zWUbP9F6dkf2i7XNPTsNPQax9SuSS5fy09rJqM02TWN8eo5qjnMq2vvZMoibvXq7jrPsayVeNjNP73BpP48ftHaPU195YptVnqU167mvmP+1zY+/id7v1b4y1m2fhrbFGczki9fdySvM6siaaZ0V7c0/3yr/0ZGjhgs4W196Dyv22lh1p5arT95hSvWz5rsGLhEt87+P63+xnsfNV9qenIN6X/c5UjzX5aI2fl79PUt0jhbE0NPONfmuzvfcS5r5epLHg2l+pjDWga6W6H/P920grzollyztOdv2ulIQgPngxyR5o9dV7/rT6PovE96Ju161IKOVM4ufxd2VLPlh+vdR+8VEG9kOQNO+9dPi8Z8fjqbz/PW1r/fVsfCv+1u6LtF58H60mTxwzon3ucd3L6/mY51lmU9e9Vv6iF5trfTNtnJH3fYSeP+sz2xmH2+vPl8YajTdqcVdN/2r32LI114/p9fG4qeRD9mSoke+xGB9obV3p3C35JjV/ReMftvJ6vfsavTZSp8T1+WOQ0rqq81Ebf369Rumc3XRwq3OlW0j32U2eXCZTfBbQ8n3vkTssjaW1vXtl2Iv2fLC27tPl7Ws5Fw179LXlQ43Gbb28kH2OR2tocv33YM9ZUvIX8ji1NlZuO9O+e+/kanWgtS9z/2ye/eYdCe+9lNy4Pe9s7kGz3q/5bxFreY21D+nlcunnbdI+Ns/jEt+359+u4+KtfoZ5bUPivyNJzyFtjjEfOx+/JtcRrv3k+Y/yHtsbC4z6llr/Lu+rFNP07F/a771ykblso7mrmt83cia3+i71VRujNV70f9LiUpzbk6VXvkd/lnqV97NfMreujRlr+wxeF1YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfiHZ/t/cQhNjzF/52DIMEEII/8THFgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODbCD++Ms6fEJHwsYVQYOTTkBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCjwI+v7Md8bAEa/ML86EoIt1s1xhQ/19qEEFbt82tHZUix1g71k38vyRNCaN7nSF85eb+lcbRjt2TRXhuVv1Yvl1nb1557jX23xtToTktGY4wYY5r6Nc+zSt6UWn/e++b3UvtanRFG9mNOnNfR/VXrq7ROrb5HZGyxZ4ye7pV0dI8etvoozXPJ9tb6HJVNs65H16slS15nT98a21W6ttcmj8rSkkNz9oqIOOeK5ant0IztnFPVy+2Q5qxP72d0j95j3Uf7qN3jXo74Aanul/ZBzS6UroscO0dSndLew4jtSGXT2LtYP5bH709PT0u9x8dHuVwuIiLy4cMHef/+vYiIfPXVV/LNN9+IiMjPf/5z+Z3f+R356quvRETkiy++kHfvrPx//9ivrWT863/9J/L11/X5+5Vf+RUREfn888/lhz/8oYiIvHv3Tn7pl35JREROp5O8fftWRETO5/Nqvqy1VV8n3pe1tmjHW7Y9na95njfzbi6Xoj8SyzT2Mufofrn1sW8fj/qjq/twIsbYTb3c/2mdvS2ftbZHWvu/Vt7bg6U9NLL/a3oVxy6NlZ5HuQy1/V0bs9Rf3k8L7Tk+6g+N9KWNp4+gjQXX47fP61JZyz/s6WItFmqdZ977Yr81nyfuyVTXjdH7262ykvzWBsmr3nO9W3pem8/W+Pl6XNd0fb1mP0aJ8qV2szcfzjlV7if3f2s2psdsrYSwPftM4lf0KNXx3j/fr1qUhdKe8d43cxO1ey6vd6jW2aOv1tq75CZiX7kM1trmvef+cSlP0buvXgyT6u6evFt6LZc30rvPWu7yCNq1z8/g0Riu5ato44N0/kv6Nhpflz6naHLNInWfphcP5/W0dnsPe3zLXL570MtXaXNBo20169265z35tlEZNddLvnDNrmh1xp9PMk3rfh8ezmJfKAd2RLdG9oUmF6Kx13vsfe283qsXI9wjB5v3ofFDjuzddMx8ve6Rr6rlHmu6WDvr8/NKk++q5QJq7Voxd4r2fOrJl/eXzrcxsooP8pxMCCLeB5FVm2N2+KW4y9h2G49a235uqEGb6y+V5Xqz595aOruOrUI29nNds25rpD3Xe+MMDUdz360cd/o9nsW5DanZjnv6USn5PR3VRc0YKZp4cs9ctJ5r9OL9yQWxdv28/hpftf2ifO5q/lRNR0byjffSh94ZNiJbLTbNubcuHzkLNDnGlHvlKnqy5Gj9QU2+vGbr8zE0fo8/BbH2UdJz/XQ6iUmmqbXfXsqupWjzJH4gb/eS3DN+L93LkbN+dKxm/ONbtr1Uvk/e2hxo7VXaT89GGBfrrHPM1t0vN562f42YsMZoHm/kWm2Mo2OOts1zNouNmEPiT8Rrs4R5+67UUX81HX8kL5C+E3Ari/WPxcna568t/6aXu+09bxjhug7ruXPOiXPt/Zy/Q1kbPz07Ur81fe8zPtdpfY7tVn+9JIH0dj6dMzLPt1xFnrfIy+N3TWz1EjF3lMXYHbGmDc+y38qcm8RO+ucD1z3w3F+If3W52dhv/lmbn2l9zr9rfejW3k2vlXI0bdbvaYw+J23my8z2PO/ZytIaac6Xbd4hyOPTozw+9nNN6V6q7YVln85B4vPgEK7XZz+Lmbd+du9duJo8IuU8fo7WF9u737XPqiIamfP+W+dAZG0713Zhzz7VyLWHI+OP5AUiRTkL75tU676QXHuvRRlzv0jjU8zGy83WXHPQV/3qy66Rc7Tt9ly+5oGjPMaU32U4It/oGu/JA947Tq31vZlPFza+XczXacfJn03Esy/Xsds+vtbJZUz3eWuvbccro7XHtWs9fyL1CY7Ekq+dMxkbr/6+6UvZ5Xs909Hep7f6f4cY0Z7JJRle47lBacx0XP/sb6XiXS4XsZfj+fZ0/lt6k1PKEcWYex2zlGPPdK5b/2aw905bDc1a7om5e/5s673uFmu/1y5z1vp3RK1584V3NmuxXyz3XpfrqJW1ylvUfBuNH5+X5fq3PHvNziDN8/he2UhONa0f27zmWRLH08xpN/dbuN/eveT5ope89158MLpu17rrz3t9/ZZce+q02CPHnrg4uyJ7n1/Ay8GPr+zn4z4lBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEPw4yv7+Tb/lBA/DAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCBH1/Zz2v9wInmR174sRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBB+PGVfWh+EOUoIfvbGvs15AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhOwY+vjPOXXqjfNyLyICJvReRXReTXROT3yfqHVYKUf4zlb4vIvy4if+OFZPvW4pxbfQ/hNj3GmE1ZijFmqVNq3ypLr+V9lNrM89ztS3NdW78kU+ta7T5K48TPvTFqspX66pGOla5rb41LbWoyee+r7a21RVnS9jmt/oa4XCSE8DxGkBBEfPDivZF5nsXO+t9e6t1HifTerLXqdpF0j7bWqTVfo2PW+sjtQ0mXR/aURq60vyM6kY/V2mOaPkbb9+ZIs69L9rlUP34fvb+831Tfe2P2ylt1Rvsqta/p0ojMLdtcsqG1Or1zNLe9+bXaOmvuUVOulTHFWrvaf7FNPkauMzV6e1mru7VzrNS+N5eaue7J2vN3NGX5+Ll+a/yDXKZ0XXr+ioZ72WWRm85474v+ST5urJ/7hdZaeXp6WsqiXPM8y+Pj4/L566+/FhGR9+/fi4jIhw8fdst+Pp+Xfj777LNlnHfv3smXX34pIiLf//73lzHStTufzxJCkGmaNvcmcjv7U1+7phdaHy5+Lvki1tri/tXaaw01vduOsb7W07HS3j2q46V5r+31fC1y/6hmb47IWtsjvbKevZrnWcJ085cj3nuxwXZ1rnV2aO+ztN73iP/a/oBZ9sZrkY5V03GtT11b19iv92HTl/dBTDZurd+eD10730r3lZZFnye15/F6Wu69X9W5XC6rOnH8eZ7l4Rzkyy/Xdv13f3eWx6frfKe2Lr8v59xSlq5PbOMvszw9XeTWzMiHDx/kKUyb/nJ9KsWQe/2OWlzfstfX6+2+tLKN2izNeVWS/265gISrHDf5nXPisnFa9qQ0L/PJZzm18NyvLfZXu6+0PN8nGnl61+9h3+I+1JLLvrXDW50dyW+N5h5bsozuy9FxjvZ1dB+2xtXEL73cR+8cq8nb8z336K3GP2qdYdr9V+u7NH7tPlrzqvENSjm6Ur1WHyWZjtLS+5FckDbWKfXVOkNG1lW790byg3vPfxFdLF/S7+gLpiJeLrPYZ59qRNaevWzlMlrxVA/tmfcS9rJE/jytdJ8j53RK73xr3WPPHyy1yf2FXnydx7utnGZNzpSYE9EyojvauDWS247aWVmyMdoza1T3c/bodNrGOScuiBgTY6Jr+ek0yflsNrp9Pp/EhPWYL+Gnp9zjnNpjb/wcJAQvabzQi7OO5pe1Z6WmnmaMljwuiFib2gMRa4x4k+YqrRhbtzl5WekcGLmXkr3r5Ys1lHJ3Pdtdi8NLbfbGJDn585gje+9IPrfFnnNXozciV3uV2uHrOofN2ZPqRe15Zp6HPeKPtfKHWv9+dD3umbNM5ag98xPZJ2Par6Zea5xRe390fvbsr9qYvdzJXllLc1fzyUq54BCCmOz/i6x23+W9Hcvaz161tN4/SMv2+FgtJvGbPqdpknnqPxtrxagjOnTvGKV177X8dA0/3c7UfH/lctfeeUrHmWT73HGaJjlN9bxpL04ateHGxP8SuaZJrN+2PWqra2j60vqArfnR5Po0/Y34ay/hY+w5p/0piLVr+3s6ncX4sX7yuve+v1yOkk06nU7iCzbpU6U0h6X7ds6Jc2XbkPeV+/+5Dc7tWN4m7pf0eaT2PsKDyNMpynz1TydnJEbSp5MTn9iXNMbu5Vt632v2uEZpPD8FcW79bMZaJ26HznkX913ZN9flzcvnS20NexzJudTizVJftbxAXG9tfGmtXcvsRKz1Isau5tEYI9ZYMYWzvDRXpe8p98zr9OK7tCxkfqQx5uqHzdu5b+WiU4rPmFwQY7Z2Ic1nREbmIq7X6HOLGhrfYSS/sMc2lMr2PFva7mVTlGlvziBvv9fvGn0OMTKvvb5uZWW5SqId9S+15PnPUt/pXKT7oDc/ZTnX9q2lfyP+8AhlO7X+fK2zb6wj+6zWfu+4r9H2HuNci9NrYcljaM+akfG34x1D8/wtrydSziGVfKPatd6ZFEIQ48KS9099lFYe88jziIIU1WeHR2xZS2ePxPZ78HMQ77drGwb+XVpkj+1v5SJ7eZsWGj8p7d6Y7TPGkb72oM8bpp/XOdVIya8fYY8dzZ+Rjz5b2pP/6cnZi9FGc9tRRj9NxRyhbcTl1zzl46rMObf5N58tkTS+Ram85Rv19Hmdryjn6fPbzcs08UBrLXvrfY8c4nr/yOaeRvuvtemdVb011jyz03Lk2WKvTc9XjDqy1Z2tH1J7blRib/ykyVFHvPciyVmlmcfeOuY+TSx7KV8P7gc/vjJICOE3X2ssY8w7EfkHROQfEpF/TkT+cRE5yfrJcBCRv0NE/isR+TMhhL/4WvIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8ynx3fnL8O0gI4esQwv8UQvjzIYR/Rq4/svJnReSncvs5o/h/1/G5iPyXxph/86MICwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8InBj698QoQQfhpC+A9E5O8Rkf9Wrj+6EpL/jIj8Z8aYf/n4NKR1AAAgAElEQVTjSQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBpMH1sAWCcEMJPReRfMsb8nyLy78v1h1dEbj/A8ueNMf9jCOH/+lgyvhbe+2K5MUZCCJvytKx13Riz6ivvu0St7/RzrW2LXM7efcXvtbFK5bGs1PeeurVrxpjm3Pb6yMvS9W9d62GtFWttVabaeo6McYQQwvN/tzJjzFXuYNVyeO+ra1PS/Vg+oksp+Zy26jvnqjKljM55a8/39F2rq9rxNHZpT9+t/ZZ+Tr9rxtSOd9TGaWUYrZ/fv2bOWvqulWvPGo/amNp+HZGpRuuMyPsrzVfNhvZsT69sRLfy9dbYjWivevXztWrNbc2G9O7lNfeYVt+PnP1HbW/t/rW2ryXPiCyt9s655XOqP6n8qb5Ya+VyuSx69/T0JOfzeamXzvfpdBIRka+//lrevXu3fL5cLvLNN9+IiMjlchHnnuTHP37zPMZ1nD/6Rz+T9++vspxOp6Xfh4cHsdbK27dvF3k+++yz5XMcx1orDw8Pyz1GGY0xMk1T8XxPz/MRG6XVxdwfSsuPsHdvrefAiDFrfU1ti5aWja202LTvzUlJj0MIMs9zd7T8nkZt3chcj9g/55zMZpbb75Ou+zmqIyMcPXd75cbka2CHdO3IWRJCaMZgvbZaueL9BFvyNeq+Samvlq9S80OW8ZPr1q7jLu/90ldeHm1hage89zJN06Z+5M0bkTdvfr4q+8EPfyBPT7e+UpuT+/e1+xUROdv52W7fyh4eHsSc3HJvrfY5LTuQl/d8CN1Zu431ja+3Scesrbc2NiqtVU+X0zUfobSPjTEizsnatplhu1ay+zE/kF6b51lkvo+93GNrSjkL771I4mvt6Xs096Tvf70nj8izJ14yxuzKS43mBtJ2o3mSo/HL0fO7FoukfvxLoIn59uR7W/NfupdaHiotP+oH53Oan5ca+5/a61YMeM8cyEvFDxqf7KX80j35qNSfEWnncI/sZ01OtLjWNvo8tzbT5MT6/mPNI/m91tmQ+zc9X6e317U+0qi93pNvLt1L68yq7dfeuZvbjbw8v5b339tnGj9pNDdXkldLy1euzeUILT8kv5bGKRo099xa91p77b1uYzn7XJa2j/e4zQWIHH+GN5rX0YxXy/e09K6l1yHIc64stUnbeiN6r815p7Rygml/e9akl+NKL4cQNWF9P0baPsVRv3Vv+975UZrLvfm3e+mAhpqfvSeWGzmve/Vqn7X+q2ZvlHxb+5zfSu9/miaZ/fr5QUvOfN1z+6vRhdb+q+WGYi7rNXKrrTFyndKeaSP5qBF6PmBvvNFcXG2sfF5yfbmXvdP6sC0/UpVDcF6szWNdK9bZVd+a90qMMXIyfnOWn04n8VP5fNfMlyanop2vGnU59Pqu8e3T3HWtH015qf89+aOeb9wc3+a2N7UT8R5veYtcz0pj5cOl/tiIP6ONY/I2xgXZPgsq59vzvkffjWjR62vEpmjGrI13L7tZorWve+/r1PoZlUHT10jdo+fcHlL9vJd+afra8wxnb90SJb8s77/mN7Ry0yUfMb8mUvZjS/mWcAoyW/88bhBjrmeuez5bzqezhLC9j726VHoHt5X37fnCwYesbVvOptzLmbHOl1hXblPf73G+bn04d5//H9w9Z3EtR3dPG1Eb37sg1hoJ9pafyXO6tX7SPV7Ll0RWOmODWDuvzmtrrYRCbuja920/pM8i53le3pEJIcjT09P1nryXx8dHERF58yDy5ZduGSuEIH/rb329ehcryhfjJ+ecTNO0+h7ld86Vz7VJb5NGn2218ocbOTJ6Z542J3jUNpdiY23+qmYjru93pdfK71rtiSv35NnudX7nY4/Gr6X+/BzE+4Kf5MvPTVI097hHtt4Z3KI33rJHC+8r1eKJo/5bj5KNLNlazX7fy9G8nqb9aL7vY/i9OWsRTFFHbvK+tCz7BzjqF+ftNe+gitTtesnulGL1lgzfRj4FGfdwNPd1JF8wkq9q9V2SofXvSo7cc96X5v5H7PvInGhjjJH+Nf3dO7dT81n3+ghrHyP20fbv4rp6n74Pcb02z7OEeS3LPNf/XWfKSLybXsv1SvNMJcpjw+09oihi9DtykY/GnHvq3iumvX69xSta1e7lf9Kx9ur60RikVp7/G6fRMdI6eexU0wVjQsFn1T17qT0r6MlW42i+JY1v41ym83C5XGSeZ7lcLiKyzjnEa7G8JPNnYuWLLx6X5wLWWvnpT38q752VaZp2v5cOx7lPxg8+CiGE/1BE/nPJM0AiDyLyF03+JA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW+HGOT59/W0T+n0L5HxeRP/XKsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwy8OMrnzghhCcR+bMiYrJLRkT+rVcXCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BOBH1/5bvCXReSL5Ht4/vsPG2P+2EeQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FvP9LEFgOOEEN4bY/6qiPyzcvvhlcifEJH//dWFeiVCyG+3XV6qk9attTPGFD/vkU3bvlQ/hLB8L/Vfu5e8j1FZemPlZbV+e+vSk0e7DiEEcc6pxiy11YxVG6N3DzV5vPfDcnrvVe2061cqDyGs5kRzr7F8nueubPmYpT5r+nu0b43+l+xES47aHmzJbYxRyTJqh7Tja8bTlB/hXvZSu061/nt2Zc+12O+RedOs5Z41LvVRsoFH7j2vo6k/ag/vQWvM3v490r9mPrRn+NH9ohn/3vt/1Ga27FLt/Mj7OnoPvfbOudWYce3zdTydTsU2p9Np+TzPs1wuFxER+d73vidPT09Ln4+Pj8u1p6cnmdxFfumXvlnp2h/6gz+W9x9uY0TO57OIiLx9+3Ype/PmzSJnvG6MkWmals/W2uVzbR7meV7q5X5rSZf32cd0TfftA+15MS7b/v0y4q+V4oH40Xsvxrf9qfRzXK+9crbOpd6ZUpMpfm7FPSWu+iQiYpb5GNGxfJza3PTOqT12Jh2r1H/qk4awvu79LPNsquuayxP7Ssdp2cp8HuJ37/1Q7DPiZ5XX3Czjj+it1g/R+HO1cZ1zi13PxyuNX1qD88nL6fTNqt+H84MYcxsztcPp397ns53FubXszrnlbGjNp2af3iP30LYN67bOOXH+2G9Jj+rCHn/oSBwrctOP2drVvq8NP2IzYy7hqJ+fjvuS9GzkaB89WmOUdDL2X9OT3A6U+n+p+LvnX4zk4Vrn+h7fShvPaGOGEdu4d4yjeyaVUeuj3CPWb/XZu8eory8hh8i4Lxppre3RfFhEmyc4kuvP+zpCL6f6Ev2ntHRp794J4RbnjN7KSNyRt+mtUeneNM8SjjDavrVeJXu5Z4zaOKP52byvPH+Q19k7l71z5177RZNHvFceV3NNk2uozUU630f94VpfWm6xVZAQyjYhj2ONrcdwpTa1cUfap/m3vYzm//3ZyzR9WJWdzyexjf//HY2NHvW78/q1uc/LNePU1slaKy6IWGsW22FtEGuMzFmO7qhtru3fUvmIjvfigNaZox2zZXt6c5DnNfI2rfxTqX5L5p5e3vusTfvIc/qRPG6u2ctW/ucaA27jwKenJ3l6avtvaZyZ6nGu05qcYO/cL81pvl9fI/4XGT/HWozE2nt8o3vOUW9Pv/T83zP+3es33HIu6+ceJVukGdOY7fg28w80djDtU7N39q5VK+9ibfSR1zZ4JKYe8X+1+2zv+TeiX/vilLUePJeKSJy39rq5YDZ1rvl0u3yuyafNl+vuYStjLZ7L65U+76HXV+v+NLFRXj8/k4/k2O8xR7X3DvfskaIcLhTXOY5bknNk/9R87ZLtGLMJ5eeYpWdfLTS+ZA/Nu6H9fP+W9tpFXy8+a6m3beU4Wm0i+bPc9Fr6Tmb6OfVhY5vgRebL7R0O70UuFy/mudk372f58KHsd0au8dZ6zWp2IZVb64/VzrRbvSDRlse5N2H7Xsq4Lj3PUbLkGtsXi2O7dH1G1nzEl9DeW8mO3iMXVZdL5Lo2t3c14llsnRPbyJW07Gvrfv0UxNrLc5trmXOT2PO1zdn6zOcTmaZJ5smu9DN9P+u6N27X5nmWEII8PAR5+/aS1BP5wQ/O8vyKVTYX1/GnaVr5as651XP+VLbl/SoXxNo4fvRbnFi3V7fXMu29ntPKW9Vsx73G3ktNz9K9/CyRyse+p69VQhuj1KjJtyfmje2MkaJ/nOpnLX7v5XhK32uM5k332NNU5piP3l7X91cbQ0vrfCvF0EcY9d9b5aP9j/Z5z/Mt71fjH27jzTIa+eKY67pmc91aK8aF5l5MGc3vj9iIWpy2J2d77zXcO1Zpb9dyvikvfSbU2DOWtTbz0286XJsaTR7sHvLt+Td0e+qW1jmXQftsq9a+xd53Y0S28cY9berRvkbioHuRx83zvH0G8/j4JE9P+jxwSrS7pXcrQwiFtwa3e+zaz62//BmyC9szp5RjSPtfxlf6e7F+63uJ1l7Jn0ftWfeeba2x14fc1t+euS0f4KhsJb+llUM+OuYen26Uo8/uUllGztejfkN1vxR0eeT5S5Tr4eFBNXa1/cXL97767dW1H/3oR/JhWtuPI+cJ7IMZ/+7wv1XK/9FXlQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOATgR9f+e7wW4UyIyK/8dqCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfArw4yvfHb7Ovofnvz96bUEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+BaaPLQDcjd9XKefHVyqEEJplxphm3bxO7VreNn6v9amVr1Tekkc7RonYb63/Urmm77RO7bOW0TZH78UYU533PfLXCCFICCKrLsP1f67XxsYa0eURfdLoa09/946Ty5l+b91Dbf207Ut9tfR4j473dK90rfRdY89G5ErrhhAO2UtjTHHOa/V749Vsb0l2bXmL0bUc0anevurth9o8tdZiVOe0tt5736xj7e33AJ1zGzm1Otyr09Kre5P22bv/PTJo1vToOPn+3MNLzO1Iv5pzQPt5jwxRt1MdaO2plLRNWn+eZwkhyOVyERGRp6cnef/+K3l8nMV7L5fLLCIiv/3bP5Mvvnxa2kROp5M45+Szzz4Tkeue+973viciItM0LZ+ttfL27dtF5vP5vMgS92l6j7Fez4636LUp6WRuHzTjRvm99yv5azLk9ig9A0MI4k3YrGtux0vnQPo5l6NWlhKsiDGxTljuzXlXb/RClO436nDtPtL1HImNSvbVWive++SaEWNuY9T0co8dKN3PHv8xJ46T7q/Y33LNp2se5XHinFOPG+tN06Sed805ViK/l5zYb/V8tts9XdLxfP/V5M3rlfSvpsfptahr8Xu0y+k1EVnsdC5TbJve29u3Rp6erjY76tjj06NcLre0XW5va8Rrsb55mmWevaRN5nmW2W5lq+1Xa+3KjmnOsdq+qPn/RdxFrDXP8fCxnIGWI+dYqZ/IqG8f1yJYq5JF43OPcPT+U1rnQErJxjnnZE7qOee665/b/nysmr2I5U3fwBmxdmuXjF/335Jx2ZuKfaDNId47zinp0tG8UQtNfmvIdgxyJA9U+95rm95zfjal31v+oEbW9KwbjauNMV1/VDv+CJocY+1aPl4qf20/1c7Bmh8zOo95vZ6trs1Zzwctjbf3XBhZ95I/l+vbaK52qevsxuZaaw/rZQ1NzFCqX6KWr9wr10v6Puk4vfI9uSttTvheaOzznvys9hnCiG1ujTvSh0bfRvQ1pWRHW6RrPpqDLH1eyTKHZ71Zy3eN/ct99nLao2dOLl8vvtT08RJofKtclny/pufgEX0vyZYSx9n7/OEqQ2ZPMh/GOSfW2U1/I+dk6ezJ871HsJW4ryVvy+8pMdr/CK2x7xmn3pOaD6nNFeb5+pINiOXWbnPHR2VOZa+tY82fLenbHv9vlNKzkhI9O1OLpUr1ev1r5dDWqeUT8pxNK3epQbNe2nWq7YV7n1Wa527X8tyvqfuNNV9zXZ77hv3nq6173xOLaNeiJUv0gUK4+ULW1mP2Uh736HOLVnnLxmniiV7c0MX6wn6MOeU4h7fyViyytttpuU5fWvcypD/WL7KnYx2JN1q6oL23kc81effo4j10+aXZkys0LmzO6/P5JFZsc09p56L3jE4bu+RjnsUkfYdnuc/iXX2/a59HpuOO0LI18RnyyPi1Ma7D3OyKc06c25+nKvk0tdxw9IFKz9+nqfxPAJb+H4K8P1/fF3FOxLlZTicnp+cu3r45Lzk4TV4v9ydbPoT22UVL5/3yvHgds9r5Hjam/Twpsooxg5H4LCtWnaZJ5mn77KfUZ2kfj8TE93zuk6J5b6bE7Pz13LVxjcLzX7OxITk9fUl1Li3zpyDWPknq651OJ5H5+Z2KYMTa1AYGOZ/PEibdfk335vkc5M2b9f8v7o9//FYeH+t6s+esut7Teo2u+YzxHOrR/HlLV3p5MQ21PXav/IH2/k/GS+m5tHP1czjnaNw52vaesfxIDtO4sBlrmiaxz8/HvfdFe7Yn/m750zXu+fxkvZdFtD55T+beWpXeWdDvt7X9GZFl5LnBx1yXlPRdz9rnnNJcXvV6u6fystj33jhm/X39N697fffvlsc2z3nuaCO93+b9vfcifr/N0cq+t949cqKjY+7tM++25yMelWPPvBw5Bzb1k3cyo71LbXtLxj3PVvI9umc+9+SC189xtvmd6G8dlaMXf48woo9aPWzNnfaeNXlkbfzXqx9tRy1eSttZa2WatmfANDnxvp07bXG1u754LpfkCOHZXyq871x6JlNaZ60vqsm1t2TVlDdGX3Km3nsxYfv8tacTR2OHqmSKfNl2vm6xn/f39+3LY/ZzIpr1Orqve320GFqXZY7TcV/OV9TwmvllzfPMtG5ezfv7vhMO+3iZtxThY/B3Vsq/nU+dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjL8+Mp3h3+kUv7Vq0oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwicCPr3wHMMb8vSLyD4pIEBGTXf7t15cIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg28/0sQWAYxhjjIj8p6VLcv0xlr/xuhK9Ltaufz8ohFD8XGt7nb5b/difMabbvkTaX4kR+UbHq/WnGVMrS6+v2v1r+m/NeSy/x5z1aI3lvd/oXCS9954e1Pqv9WuMLP+JiBhrxBgrzjlx4jZj1vr23hdlq61r3k/rHkv97tkPrfsIISzXW3LW7r8mv1Y/07+pLK0xSvL26NXVzFW83uprRKbSvRzZ7/n61fadZi01aGUdtYWlOe7NT0mumi7V9khrDM0e8d53ZdPU156Vxhhxzm1kHEG7L3r1Qwjd+6/Z+UipvbV2VZ730esz7bdUt2ZLtHM5Yota9l1z1uXlo75Hbuv36It2vD1+Rc8nqelXye7FuiEEuVwuIiIyTdPy2RizfBYRmedZRMo6Mk2TWHsdI263hzdvRMybVZ3Y79u3b5d9+fbtWzmdTsvn2P/Dw8NSZ5qmZS2cc2KMWckx4gfl8rf2ZD5H4emympMQRD58eC8fZrf0nfrzNTubjtkaX7t3ZjM/+1nrcs3eb9GzVyH4XX78UdJzqHeW7ZVljz9tpqtepsWpjKU2GtvQOu9qvnW+J47EYakeaOXQzP1enejptfYcEZGVf1CUzYkYk45XljnaxxF50vFyHUl1PN6v935Zi1g/2qMQgnz48GHp4/3798XyVM40/yAi8vjByPv317pxXr788iu5XG72LZZHWxflyG1flD+NX9fTYDb7t7fnRvxHje3T6p+3oVg3vd+Ue/iZoz6Dxv+v+Uel/ZFfC1nuSmS95qlstTO2tCbBjsfFJTQ5Eg3l8cNqT+bkOZqanrZk7OW2NvtjY5dEnLPivBMNo+dB65ytlef2rTaHo3HhUY76RVry+2rpdu9MyKnZntp4R+dYI/s9uHe+eu/YIts9d0+fprafUn+kJ1+tzxFZtHthZN/n46ex295x0v5axDgzrZ/6Ii1qMWXsw1i3sbktv0W7Z1rj9vrVxPx7OLoOL8mR8UdslTaneq+88Eu3PcKojmt8utZZd9QuadHYbr2+3Wy6c7bgnzmxrnxftedMsb+SLCN+cy+e2Lunen5fr+1I3ibvP/eba/Ohuc/RfHZJ9vS7CzFuv45n7bZNTR9asUY6Vk1nrjmoMX0YPXfy+7jHmVDrQ2MLWn5a7d5yf+ReefrWmDVdTM/xVK+1ucpNvB5iPt5VnxuFEETMdt9EPW3lJNI+53mu5r3T76m+pnn0PMeV9xVzVkf9rHjfLbTPB0aeq40w8nxilDxPUcvZaM/eml7VSPUg93lLvtY949ce0RZ474txyu09lq1tGY2NYv8ubOdrmpzMU3n8Er0YZ8/5OkKU39qwmQvnnCrma1E763N7eS9qPlhJplrb0ve67mxzAc45sVNvD0abuO6vprstOUtonn+XdN9aU87zNnya0vO8nryaPfeSsZLGn+7ldEvfj8qijVnzdiVuejme+0ttfCvOO3L/vT16vRztY15eppaXG7XxWl8l/17av62+Sn6iC/Mq9gwhPNviseemtVy9Jk7W7IVi2RTkw7O+2fjXGrHhKtvpdJIg29z30X1f80Hy7913tM5B3rtLUmLkdDot8o/ovz8Hce4pKQlyPp/Fbv7/TuvPkK5xaKx//Rt9jD3r2KJmp/fseY2+jMbyxhgRd32PWZ7PXpHreWWCfV6nffFeOwaRZaxUlhj7xzW6dWGW/ap5hhTv9/p8PhR8ykm8P37OrHx2FxK9unLNZxwbR7t3U/8kt5lHc9famH/0HbTaXmrZnrTM2lK8MMnc9RX3seeZn3aPavodWde8jj8FMeZxdc05J/FYvNf7Ajk9m6qZj9b7vCKdM2Mq73/b2P+jzywjvdiu1G/Mg+b99HwTrWy1c7AlV25jR+dcQy2/ko9VG2epZ7dx2fU9nG27mn3ypyDOrffG+XwSK+W4rVQ/9WncxS/nV4xp45o658Sfglh7a29Mfbx87L1on0uMxCYamzeffOazyeKz7X0GU4tJREROxou16b9xuI7nC+fw0Rz9SPtWvm7Ps73VvRf2QMnP3HO/pfe4Wv/mM6cWMx3BWpvd83geXEtL1zRjlPJcNTQ5phFZanu5laPN2/dyzq3nZpp3srSk71bm49dy5CnOOTHOZXHFtq8Wq5zyvK47z168z8tmmZeYvf8+ZErvHKz5xSW/OZ5B2/ZRt7djanVklD155PTfzJbtXEjuL8YGpvpugVYeDa3zMqU3l7XnlZq2tXFG7q1ne9bnshT3kPbZbOu79lppzJbO9+StyXXYz/VxXtdjafxyeFle561neEn+IxH5p+W6u0o79X99XXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+DaZ+Ffg2Yoz5u0TkL4jIn5T6D6+IiPyVVxIJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgk4IfXxnEGPOHPsKwTkQ+E5FfE5E/JiL/5PN/Vq4/uhKSuunn3xKRv/pKMgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxS8OMr4/y/sv6Bk4+Fef4bks/ptSAi/0UIYX5VqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4R+PGVfeQ/dvIxiD8AYwplIiK/JSL/yeuJ83GY5/5vy4Sg+60cY25Tmbaple8dq1ZH0zaVJW2Tt9WOEb/n/baojXmUlgzW2t1j7plvY8wiT1rPObd8994PyxLvY+SatTaT5ypTCEG897vkyMf03lc/vxT5/Gv2WVrHGLPSX81eaI1Z079W+155PlYIoTtmax/U9n+qH6UxR+TUkI/VkmuUI3Os7Te37+m6jI6Tz3FrrBLeezHGLHtNO2eaehr9zunNU6m+pu/aHPVsTMtmviQ9uUpzkfsjNf9EM1/p+NbazfeaLKW+S7axZy/iGZPLUpOhJf9o21zGVO6XPJP2Upqz2meRrV7Ea/M8Vz9fLpdiW2OMTNMtlHPWyDRdfQPnru2/97238vBgl/px/p1zMk3T0j79HEKo+gTOuUUW51zVdpXOgfRzrtO5XtR03jknJ+NW9x2CyPn8IOZ8k/+eqH0Su7WHLd9mz3nT+r6njyNo46MjcUPLbyvV286RiIgp6tioDPm+Tq+X7H3P5h7B+1lCiHsk2kq/sh21czsnlS2fo3gt/o37X9PXnjq19b76uWk9s/i+R/1G7RylsuRx6el0EpGr3Xr79m2x75oeee9X9U7TLJ9//rPV+D/8wQ/k8em2NukcpmtSi1+39xjvZX0/Ijcd2OuP9tZjxA7kNqbUNO+3dP978hy9sp682v5rbUq6fa27PQd68WQIobh313O0buucE+ftLrud+2qjttf7aMvK/kVul0pjpN9zP6yEJp7Z+nPbPMzlMku4HPdB7unvvkZeJx+vN1ZLR/bErzX2xL97++j1t8cHqflZ+fwdyWW0xhy9d40v2Kqb77GWfax9v4evnLZrxdb55/x7bc1H/KBeeau/IzmakTG148dzqNZvGnPmfrW1Vnzwm7bW1PfVvX3vUr/p84EcbT7kqM3bm++N863J9Why5bk/WyLvJz7ryPtqyZyPv9fmjTznK7VJ6Z2z985N9OQZrbO3fstnHtHL0h7Q7AvnRYyxkj4K39YN0nuE3xurFs9p0PjpeflRffGTT2LVa5lzTqzr7+u9dqqY+WAAACAASURBVHM0/5C22TtGbQ9fP9/ixuevaU/VMbTn5kv4HWn/vb5Gz/eeb9Hr7573NHLtnrLU1mxPrNA632vznt/n+ezldHpalb/77J1Mp+25nPsMLR+1VV6S5YgPUovFe3ZU02+e46r1Uxqrl/eoldV8eE0MrfWnNPRsSmmuNbkMTc6oxJEzqRajbvz5xjsxYlPf4FpeOtNKfadrEj+X/NXr+zV6/e/twZciz9XWfIzSmtX0uDT3pf7zfal9vjUSJ/WeN+Ty1b4vY0xerC3Ho3l5bS7ztiaLPZ2bZC68t5bHiBo7cm990txTTu3ZbGrj9uR370G8l9bz4z1z2Du/etT22x77nz5jT3XNmOtze+t170iWYuaavCP33DtHbPJcPO4x56xMU31va33Re6E5N0fLp5Dr5fUZjKucU0utylrktiStP5pLTHWheP0UxLmLhCBintfPWis2PNv+xvP0Pfna0jPH1j11Y8vKuxgjvmisb0yQdTMr1pqh+5+mbf2rLrjDtrD3jtgIuSwvFestc2puzzNv890/ozT7Nbdv12r52W8Xv9GFaw4p7W6anMyTq9rKWhxhra/qaMvWpnnQ3Ncq3ac/ebE2taNBpskVz4SROLDVpubn7cl9tPaehr1n8xG9dmHrKzpn1b5qi5fKD6ccuffhdzee90GKtaYaq+0Zv5RvbJ1B99TTGsb5ZO9e847W2u7ZXxrvqJ9Wul8XzEaH03fkNDZ1dNy9de69J0o2cd8Ybf+im1O3vtvHqt2yl9K81M2viH72aojUTynsxdp46XOs/HzS5r828j9TO5P2PPcrjWGtFVPwt6bJiVz0Mtf6T4kyn8y87O1YZq3ZnAlHz7t7ciTmE4k2Lvdprdq279lz2ncuenng1hmgjytuvllLd47mS2v04qN4OXaR7vXa3EXfaG/8HcfQ5P5aZ3T6fm1pbg/rbs82P3PNDd8nJ762y+X4+TbvW7mu9fv2o9R3zNWOxL95v7V3LGo2eZ7LefVbLHbr1yR7qTa+Rm5NDnpPbJHr7XUu4t5Kc7pBpPPv+bQ5WM265H9H6c13zQ5oc/2ac79nxxYqsURPtpZ8pbFK+jyS++sNldrHPfZkbK3Ted6X/4f7wo+v7OPlMyM60t0TkrJZRP6VEMJXry8SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApwE/vrKfb9PPBqU/vBJE5N8JIfz3H1EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbz38+MqnS8i+GxH5QkT+tRDCf/MR5AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPik4MdX9pP/+MnHwDz/vYjIfyci/24I4ScfUZ5Xxzm3fA6hvySaOnk9zef8uzFm+W6MkRa1662xeuR9xu+9sTTj9PrqyXKUo3NRK0+/t9po9Sz2sVcvY5m1Vowxz/0ZMUbEGitijTjnxInbtO3dR3493Ufp52maVPdS2wut+QohiPd+WO5UVzVr1uqn1KZWXhq/VN4i73fvHr/pQ/na6B5JZdszp7mO1OZV029tjowxVX3R6KV2XVufNfKmZdq5aK3nCFqd1Nqn3pyJ9HWkN3/WWnXfPd0srVtaVtOfPYzsjVJZqbzW5zzPq+vpfeTzF+vem3xuUxlG7c2ojLkeas8hbd8atPul13dp3krnZXq/6Zkc/YH42Tm3zOfT05OcTic5n+eVjn3++Tt5fDTF9rGPOE7UJ+fcUp62Se/BWrtay7RO3qa3d733Q+fC9vr6XMxl6e39EdvZ+j7bWUJYjzXPs8jLbMvDlGxmy+7mbUrlR88ErW1vje+9f94Dt+veezF+LN5q+am57U33aW+MKOcemxXlWc/TzZbU7sUY0zxvS2NYa4tyx781/6fnT9XOwDh2Sc64ps+jiEhY+snXqBVTxc81e1G6n15f6f2k95/atdo8imxtVG1ea+W18zj3f0IIEp5meXx8XPZGCEF+9rOfyYfpZvvj/J/P56X9NE1Lebo+JR2p0bPDpXVPz5j54p/7uM33hw8fZLqs9156xtX0tXUmtfz6Vp0ee/IBpXHTorxLja9Suvdg87GMOGfF+a1d05yXLb3QxJnOOZnC2maFcFvH1Jbs8e3Tfo/GX631iNwr/sj3yKjsI+fUEZn3tB1tMzIXmphLk6MZkbF23vbOlMjofGjzNz07pLUde+rksVzJXmnsb0/WPb5Vabw8TtPOTVz7PXmn9HvJT9TktUt5qFLM2euzJ/dIeX4vNV2oxbyxzeSm5/LbGNY5caeTWqZevZEcft4mp2dz4zijucdWjm4kdxfneDSGScvznEVP/ty2aWzdyFqMxJkjeZ1eees+9tpObdymoSRfrf/WvYzIpFnbVn+a/M11PXr6oT+XevSew4wwomO9czIvv36OMdC1LOb+RvyA1vy8pO3U1O/7G0aMiWeQZGrQzwH05NC0zefyqI+lGSfvU5vjGx1jz9rVdLulZ0fjNM3eiXZoRHfjuVmKRbV66tz2WeA1D2+b5/JeH67WR81vvcc4JUb99D356dHnPJFUF1KbVos783qpXrwW2jx8WndPTr7UT96m5vfXxi3pYXGsVa6qbyNKvm7KJFasXe+xaTqJP7XX7577IKUXC6T5+bTOTfd042h9uFbM3rKpI35AHn+Mnqktn2Tb19YfKtUr6UoNY9J5rz/fyO17TeaUe767oEHri9c+532Uzo44t608R4/Wc6Sebo/kx0bzJbW4fG98vdyLXeeaUzR+6NE4srVGLVvuwvbZo3OTTFPZvt5zH9wzdk7RyLL3fBjN8dfmr1SuzbN01znp62gONtXdmg+QX6+9Y3L7K5LH+7U90nsWlMbQGmJ/q2fZfk76CHKNSa//xXdtS7SeC+zJ29Tk1eSFNOd5K/7Zlhsx5pbHtdaICVc/wD7bSo3ua94lNsZIMHPXfubXe3a1lp+3dtv2GsuNvRulsenrOld9sr5u9/bY15o/ddQHfikf+t52/6VzmJHaHmudry81hyVeYizNs9lWec2nfql3flP73qq/XqNn+6Y8y2v5On080nv+o+pmg3Zf7YmZazr+GvrdepaW17vWrdfZExuU2Mz1kvdY6+Ltvaxt3+n1dd5kfT0/x2K9UsyiyWvl76nHuvn7famOt/Z2rKd5lrpuv+7LunZcmn/W+rDWixgT8wjXsjSHtJZJnxfRxkaj3COXbpwRa9f9OOfEKOxcLsM97mv0mfMejPPLOkecs2Lnvl3c85x5zzxe/c+Q2M+bnL29uzdX/lLUcg57xm/lC7X+xh6dvZ4Za1tUy/FqcziLfQ7XPVgTpWaHe89RchlbZ3FNZls5b/I4y1r9u+lRrhq1+xrJL6rv0cb3u9cxXnrGpIzmOkd0fK/90D4v2/uMqLbn9th7Pwe5/fua63jeB7EHjw6tzpT2/t7z+V7xW3svbMd8zVgRyvDjK/v4Nmju1yLy10TkfxCR/zr8gv3oCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFH48ZVxfvMjjBlE5IOIfCUivycif5MfWwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgGP74ySAjhL31sGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA49mMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAxmD62AABH8N6r6hljVn9FREIIq78peVmpvbV2VVbqp1WeX0/7rsnf60Nbv9R/CKF4n7Wx0jFLZb15Ka3FEY72oZFz5FpLv0bGDyFICCLXy899yrVsnmexsxFr7bIXol7GtqmMms852nq1Ntt7GVun9N7Svltj7JExtrPWFvso7ZGSDt9br0sy9so165S3GdXXvG7PjrXmqiaLRh5jzErna/3mn1vXeuRrn3+vUZtj7b7ojRF1tFe/tqdze7FXDs2Z2pqLXptUhvyea7KGEDZ6EkntS6zjvV/Vr9mLVl+ldq3ylo7m12P7eZ53jVXaI725rPXX22+l7z1Za3rc8j9a8u6xna15K7VPx0nLtX5q2r+1drW2KVEvQwibOvM8i/d++U9E5PHDB/nm/U0e59zy1zkn0zQt30+n02a8VBedc6vxa7ZvnudlnBFbOeq7aqnt/ZSSnzGMEzFmPZZzTpx33aaj/sJWxvK5otH91jkwej5q9uNIee9aafxrfSO3ZkFtO0IIK12o3U9ue1vnRVpWO/tq51CbrS1uzVXeX2lfGGMWm6D1/2v2rqd7tbol2zfbWbyPdW7tjW/PvVY2jd/SojQ/qVze++pZlu65EII4V49FauQ5ifg5/35+muXh4Y2k4v7oRz+Sx5PbyPySpDpwuVxWnz98+CAiIo+Pj8u1eZ7lvbyXx99Y26if/98/ldN8O8PevHmznD1v375dPk/TtDrrUuI9l2KJvbFmSQ97eZFS/7m9mq1N9oGIyLMf8Lxnav5Za11vY137u/XrReat/HvYc6bE/Metj/Ka5Os5Iktr7NZ6rffvuvxql3SyjPomrTNBG9tq/FONfYzlo+dzjdSH1voJmrFr50P+uRYPtOKE1v3Eud0jc4veHJUo6Vke56blI/302qQczXXsmcvR3KM2p7OHmt9dy9/09pfmfKqtzUhsOkJrjUbntp0jElny4t4X13gkb537ZCNobcceRmMmbU6sVr8Ui5TGa+Xje/qr9TOP5FZH+h3d7yO5y3tS2rN7Yu7a/Kd1Szmc3rh7710TN+bc00bfc8xWHr6n96185R57fbW3pbKx5xaxXfo3kse5mr5ei9v9R9m3Z5C1dldeqjXmPdgzXy3ftGST9+h9yx7U9FebS3pJRnOhKbX76j2r6H2/5dbN5nm3tXaTby/11ZvPWm6o9zlHs26tc7+mF73y1tm6Nx5oydSqV7KbpXW/h76X1ruXh+2NVbunVt/aPo/oTmutN3Np07Lr32maxPq6HW+Na206b9t11ujxCKPzrBk/llkvYq3J8mZ2OEempeX71ziaVx/pP99D3nqxNpbl/aX96nTaWrf0d8u1urvN9/V5gFvdQ46f/LMPcys7nU5iw/Fcfs/elD630MRqeV6q5lNq3v3JGc0XjrbN67X8+dFz3Diz0VXnnFi3fVb0UrFwbT/288NGRMp1SuOXxonPb1poz/MevbVI93etXxeMOJfqkpHz+SxyWtuGNN8Unx/05Nasdyuvk47pk9zZ8tdGOcxiKK/XnuclWaM8R1TTkd4z8liuiTlbXGUIm7jX2u37gi2WunY7fuqb5+tVj4F1dqCnp3m8OjK3PY7YERH9szjjzNVPyfyseC9p3NPsx5jNXqze/2Sen6uv29fj2ds+yfdoae+s5bo+l02vPT4+yePjNvdSy0XkdUpyBr/NVc/zLGEOS39aSnp1FI3+lOr0cl21d1fyzyP30DqP0/Fc2NoR5yaZs/fv035q61Cbn1YuocbRXE4rr9MaozXX/uSzM3Dtm2pjWy1pf5p3HlJGx2/1f/XJ1/1FXy0dT+sbttgzb5NcY5eU02kSP91iDY0+tGQ6Msct30XbbmRe1OfWc59lvZ6GYi472Y0OxTxGyjr3lJav5br52dvyW95EVnXSs7Z4vihjqZJ/VOpjNC4esTer7042+y8/33K7pokf23JufaeWX67x0+6de9L21Y1FN3m4K9ZaMXbcHrVsoUYmTfvRdypL48ZcS0q+ZzW61JOj9G/6RkhzmiN2uDXHmhijNF7JdmvvK39vtsdRnW7FeXn/6nyQc0Vb1PIJjbnmbZ9LRCT6D3k/23Ph+m87trnwI/5VKdbt5ehcKNmHbV499Ys0+/glGdHrXl7g3hx5X+veMo3++/t7YJyX/N/XjOZ0euzpK/+3Q/GW1/qt83tq+2sU9/G2EHR4nX9hAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAtgx9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF9I+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+IVk+tgCABzBGCMhhGadEMKqTq2+MWb1Of3eq1/6XirPx+59z2ndR/69JE/vnjR9t/rQ9l/rt3R/rfmL11rzVrtWG7t3D2m91rjafnTXwvN/IiFsddp7Xxy7paP5XLd0K98bI/fSqmdt+/e/vPere9OM09vrI+uisRvxWqqLo3LuYY/O59ePrGWNXBc1/WpsV1req5/qf8l2aex7bexRauO3bOqRNdCeSzU09nJkzJq91Ohe7Xve/961iUQ7lNubeZ6rskRGzotSea1+qY3Gro8y4p/0ztt0LTTrXWrf+1yidI60xmudfWn55XIZ7j/2ldvBWJ6OFz/Huuk17/2if/M8L7I8Pj7K+/fvRUTkiy++kK+//lq++uqr5fvT4xfyG3/3D5/rX/v6a//z78o334TlXj777DMREXn37p2cTid5+/atiIh89tlny+fT6STn83nz2Vor03QNHZ1zMk3TMhfW2tX6p/snrZOWaXS85Kt575/LY33Z0PMvWvVr51gqT0lvolx7tuQRW72VxSzze9Q+jsqSl7dsTKTmg4/ESLlPvK4blj1VWltr7VJurV10IcqlOa9aOjNK3DvpuLk+W+vE2lQuI85Nqz2Z+6aamDml58/2+vLer87XFs65dl/GL/sqtSf5vGjWpbSHa/tao5ea8Uu2P37O9XW2vhjXpXOUx2W1cywvn+dZQvASws125nsnjpPaj/yzlpGzvIc/e/nJ7//t576uZb/29/1Y3NNtXmrjjfhNtVzEiD+X243W/LXmJddvM02bfT9Nk7hsrVtjlPTi9n0rcy0/00Jru1M9z/2DbZ+3/dJDu761Nr28RyzzZn3ex33qfNn/yOXXnhsbPej4oJq6tfraMVqyp/5gra89Z1JPvr15waO2SUSf/ziyf2rxb88m12SrlWv951G/R5MrH/XdS9zTHxPRybTHLvXijp7t1cTZtbNP07Y1Xu5f1trk9Uf2Wluvw+IHpDF7i9Y61uzJPXMse+Z5NH8y2m/+N7fdvX41cUCrvBQjjOZ1amjb1HI29x6n1EYbJ6fxVK2v0l7v6UZtLUtzUpM5UpKvFNu17ndPDsBcvFx915Y/c+tfu14a/2jE10jzYq0+NXJofL2rr79tt8ffqcU/2rYaW6j1c7VMwaz6tDaItVZCUubcJG66fR+Zm9Ie2TO3Gl2qcTQe0/iQtT1ays+W8hxPT0/y9PQkIuv89vv375dzO+bnHh8fRUTkcrmscnGxfZrHy/dyrH8+n+V8Pi+2xzknp9NJRK457Vie5pDyfHb6tzZPLZ2uzXmuI9f52OZ8Uowxh/ziUXvXypdo/MySHdK0G9VLDdp12ZvXStH2MTJWa960cckR293jHn3m+y5nNd+2rJ/a/ZHr2PW/pWQlT3H8HYzklkr6qRn/Zguv9xO7ds518+v3oBf3pXKWPo8yYtOWulbktsatPWGqOlVfi6197+Wde/5enneu+XzrbsrP//bOtdbWjcasrb7T6/GZ815aucfX4GjcuvgNLogx+XPA7TOwj0Erx+S8PD+zuNWZpklmp5P7nuuktaOjfdWeGaX3fM1Xrf3j0tjRVmvPnNxvrL03OaIn/hzkw/T8PoMNiy20z88NnXMSu2vN1x5/KPX59/QV66Z7xZhnmd362X7+WaQ/79ez9WZb87O1ZHOtl0We5Siy13N59FlFD20usCRv7VrPtmvLFqIPd4et3Ys7tvUTMRL7aW1Y7Vljnu3UtPWdSv2m++589jJNH1bX3717K9PU3oOjZ6ix21xWvKfa/hnJJ2vXvyrfgF6U/MSejR2Vp9VP6fvoGK083YgPPKrTsfxIHikdqza/rXilNK/X2HNbX5vPHJG5Jl9pnNJ9HrXD9RzDbd/tjQdGZWlxlWPr/xpzs4WavHf6Oc5pTW+OPk85Gr/eK85s+Xaj4wXZvitaswVlfVrb+t6aRv2LXaVVNbk5LXvn+l55gRBC9fzL9WjE78tJ+3du699N0yS+4Dv0xmudQa150TwP0qLyPVwqTxIX7HiW0svRdmUZnJeR9mk/xpns/bt1XLGHeB7ujdVEtvKX4o1pOsnc8T9H/DXNGRr3Yqyv2W9pudbu7/FT8/Gnaft8/TSdJISRHOAWfzqJtev7OJ1OYht9+LMX5+JZHOVzYrP3CieZC/5/OW85+u5Lido7yGnfcW5c2MpxzRtsn/Husf31c3ldFsu1OVmtHL6gL9M0bdYoytLK+2jGb70fO/oM+GicU9uXe2x4rd7mfZfkuU8cRmt7j9iFnFyXVnvCOclztLl+t3LPR/zc1nMWke2/bSnVgZfn42frAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4C/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ELCj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADALyTTxxbgu4QxxojIHxeRPyEif7+I/GER+YMi8rmIvBOR8yuLFEII3+k1NsbIddpFQgira/F7vJ62KdXL8d5X27Tala636qZ9W9v+PaQQQvG+QghijKmOE8trc1SSpVWvVtbrqyRz7XqvfSqDdk1bfcW5z+VqzalmnNb4tflO9cBam9Q1YoyINVbEGnHOiRMnIYRFX1O93Uuuh/M8H+7zHqQ6PrrGtbkeobZ/WrpQ09GU1rV77b3e9dhnzQbl9qy2R9L2abl2/ns2KvalmbPcXqZ7o7Vetb615Zp7HR0jJV+L1lnTswd716VUfo89piG/J40MaZ1cD1o2pWRDRu4z9U/22qOeDdCsTaveKKO+Rk9Ha2Okn/fssZJcPTlTnHOq8dK+om7lelUax3u/uua9X9o/PT3J4+OjiIhcLhd5//69iIh8+eWX8rOf/UxERH7v935PfvKTn8jPf/7zpe9376x8+eVN7ljv669vOv/Tn/60ei+RN2/eyK/+6q+KiMgPfvAD+d73viciIt///vfl888/FxGRh4cHOZ1Ocj5fQxtr7TJn1trlLEj1ZZ7nqs/b8w9jeVbyXN629z1G9krNDtR0aZ5nkcSF2mMnx9uEol+yxzfW7J1WX7V6Glud+0/aebjajLRPs9iRaZqS8ttYsbwUF2niRA2jNnijRwnzfBHv0/6CzPNFLpd1H7lPVzuHej5JnIfSPczzrJqj1CbUyM/q2CbGQjVK4+Sf07qpjWn5fSn5XKQypzauV17yRWPfVztqNnJb58SGsn+en5GtdZ2CWZ1tItc9EZJ9UbO9o/qr8RVa5bkc8+wXnY+Xou2P9WvxwYjspbxSLV9yJN4qjdfq99bOSDz7amNpfJy0TW4zb2VbeVq5qlFfr9VXTSbt+Jry0pilz3lfe/3p1DcaoWZvamdQLRYXWe/LVr6rF3+v7ciW3plSOptGch578iM1uXr7WKPXmnXV+gz5XJTOnnvE3KUzuWV70jjnpdD2n5/hKdp4W3sOafJHGnJZNPc64vfmaPMHNZumzYnV4oaeTRndi8YYkeVcuJ0P1lqx0/5HXnvzdnv3YE+HtM8hSm1a/uCIDNo2JX+4Rrpf8/Nj9Dw5mr/UjlVqn8cb0b8fOdv3PFsp2QtrbTHO6FHLv5Sul+odOX+0Njmf+1qc55wTa6/PySKn00kukxHn1vfh3CRu6q/TiN6M5gg0e7pkO3v5lFb8lNfvrW9erpHZWjt8puWxfcmOtdaiNmdxvtIY0fsgwQfxcpNxni8SLn192HtGlNgTA2gZ8WV7a9XzNWvxdk7ME/c4YquP2nktWl3My0s6HkKQaZpkcn6jE865le3S+Awt+9zzX3pn3mju92iuu5QXucca7/UjjrZ5iTFG4kmR+z0HvDf3mM973tvo+ahlb36ilNNO8+NRD6wNm5yZhlr81kIbw+zxKTT9amQr2aHbVyMh1OWsPXNY+Z1exBgraT72arfbsUyPET/buPIzcs2atnLCGtlG2t2rzSiae9TErKV2r8Fiuws5/28rWz98ff1qr+5jX3s2pBczternflsvJ74tF7nFpGbJ/2vjKQ15rj8/tzQ+fv48Ib2dkf3ei+tGcmgjsdTG/rl87rfjp+/9Np9DOfOcW7jhnBNj9Tn5my6Ur7W+t/qN3CNXMTpmqT9NbNmLJa0t+16jzxbzsa6ft2f88t6Sz2Og8vgv+fyjNefFOTGpv3fVsWmaxPpj+YWSL1Rjjw+hGfNo3SN2paVf1qZ9XP9Gn0/zDKaWo9P6GRq/+WiMO+Kbt/x8P/mN7Uz33BEZv22sbN/ks3N5e99741Vt7rynQ6U9vtfu5jqwdy2PnnNH93atXv2+l08r367V53Ldlu2sdTe/ZDVWJ87b+ptrnbu2tys/JJ4VWp+3ZhdG1nuP36vRi7LtrY9Ry8nuifeMKeddWnZUO5d6GfpnjxZ9zKTPFbxE7mwkn3ZUR40xu2Lwl/JDWth5ux9q5+4IPZvYet9Y2++ReiM+Sy5b9RmML9vjkXxaek6IbP+NxKbNs62+Xr/JYrNn2dbn8f/NF9Xa6SP2pXUtj6dEREzhfExjaS179o4m35Pa5Na7T7d248/oX8I36uWotOO+Rq5Ts49Etu8DlfIwLZ9a6wuvxjD9d6eaNrCg31HGez6f6utYISdm+v4pvDzf6R/meC2MMT8WkT8jIn9aRH5/fvn1JQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAe/PjKQYwx/6qI/Mci8gMp/9DKx/qZen70BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAE/vrITY4wRkb8gIr8ptx866f3Qymv9IMrH+sEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuLvC6gAAIABJREFUAAAAAACATwZ+fGU/f05E/vTz5/THTl7rB1YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgAPz4yg6MMf+8iPwb0v7RlSDw4njvJYTtVJfKIsaY1ef0e43WGJr2o32m5P2n31v3WapTqx/7LN3L3vsbkSv/rrmvlNYc5ddq43jvu+O3xqlR62ue525bEZHw9CTe+5Wu++AlBCvzPIud778+qWyp/KO6mJe11qVFbQ5HdLunU+l+HrUp+XilOWu11/ZdW4vWGrXsVG09NHYovxavW2tX9iT2FUIofs6x1hbLa7rUm7tU7lLfpfkasbFaXanp6qityzlqn/P7HR2nZV9b5akutPrt6e2e+Uv1wHsvzrnlcw3tPOVtat+1+ltjZM1aNkC7XrVre/yTPWNq6mrH1p7vmmt5X1G3vPfVNY7fnXMSQlj0bp7npb1zTk6n01L+9u1bERH5/PPP5Zd/+ZdFROTp6Ul+/dd/Xb755hsREXn//r2IfJA/8AeMeD/L4+OjiIj8kT/yVr788rL0dblcFlmdczJN0zLm+XwWEZGHh4dlzNPpJA8PD0t5rB/vL8pvre3u63SOSr641jZe11GktmStNe6d9bls2mvGGBFnNufMNJ1kkrKNGfWbauNfy7b1RvZ8ej1tu8fu5Xqg2dulcfK51PrcwYZk/131JPVNWv2V9KI2bjw7WnVq+1+jC605sXNI1ihec+Kc2712LXlbRFsWqcVTtdiiRezLWy/eh80147f3qInn8mu9OcttU2rf0zbTNK30vmYfa/6w917med7ox3y5yNNT3UepyZyPc36a5cOHD0kdkZ///OdyeTgt9x/vZ5qmor2u+el5vdL3fIxW+41/aaNtupVZa1b7UGvTNfqX3qfW9tTG0fgeLRnjnN3q3PZ+6fws9dnyO4MNS5+3+v19kcurGW/U702rt+axJmcIoaqzWhuZ+g3pOgSb+57tPks6UtsjtZgkrb9H92tlrX2dUvOhcrtYOxNKfdVk+tR4ifvJcymasTS2Kz2fStdKY+3NMZXajLZr1eu10eYwRsbd65+2cg2l+mnfo/LunZejuSnN+Bo7mHOzMbHu/hyKdrzS517ZkXXS5jtTnzKvP5Jn7PkdGpumzb+U9LiVd9XU69mQo7mvUvs89ou2QKsjIrqctPZamldqtRnZ1/c4v47m+3IZYv5pSxrzPZd4L/O8tbfzfJFwscXYpjb26B6K5Osx2l7bpibfxc0bPbPWqfwDrX1u+R4prTiglhepMRKDpmUxprH2Fkc5N4mb2r5vyyZqGNmHpTlo3a9mzmrtW3rQ0q/X8A/25GdblPrrPfcZpZm/aJzJ1m7rO+vEue267Z373tlUk33E96zlibTrrI0TR3LKue5r84OvRW9etbau5Tel5Zr51qDNF9yT+Gwt3t5tjZ1Mk2va/ki+5iexYq2TNJaYpkn8VD67R3PXNVmstav8sIZa7id+dl7EmHVfzrmuH3JvX0/T3zzPQ7659vpIXWvN89pL4hPEa07007K2l/c81/bYqNZzuF6Mk8qvjZO1MtXGfElGz61WjmtUx1trncYfrZg92ojU7qX97NG1EVpxdq3+Vp/itevfXowwMuaefOLeHKPmjC09o02v9eLOHE3ut5efbZHqUMwpGedv9/H83M05J+7Zzp1Ok4TQf6ai8R3Tc7BVpzZG/X5SOdZzX+u7qCvObM5Ua63YxDdv2VYNvfb5Ps+/p/dQusfS/N7DNuzNLy1zWjhrnHNiXf/9iFH85Ddz45wTO9vFZm1jYHvbE4V4It+To/50/l6K5nP6/XpPa9+upuc9Rp+r9q7Vyo/GDXtjltq4mphz1Y9Pc/LlNq1nANozbXTO75kXSfvTPrMultutrZqmk7jK2aHpsybvSFzfO8f3zOVKv2y+f2+2piVLSaa87z3zkeP8dj+kMW9tLu+dk6u1z9/T3kNpLbXP5mrPqhaZamdJIV9XxYpI473N8l5K9eD5HS1/tfdn6zdx/ul0Ejld30mb3VZm+5xjbO0d7d7X8hJx32Z/LHbnVieuz95nYK3ndVMovfs7ydzIPWr6z+uMMvqcQYu1VsSun6OIiDg3yXTqvxc7IudLtGvRysPMBX9r9Dyr9a2RQZsjmjr2vUZvvXq5470+pJaXzBnVfCpNDNt8zm1LcYUur582K+UO8nzv1c+YZJrc0N6onZWpPKPvgZTeuV+X3cYcfdf220ApL+CcE9fZYyL3t1ujeckWqd+vqXvkWfiIrLX5LvnUIq/nq65YnYlXnLMrGVvzNfJcs0XJLqT2fxnn09hq3yn48ZVBzFWT/1xalFUJjWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwLYEfXxnnXxCRPyzXH1mp/fCKEZGvROR/EZG/LSI/E5FZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FsDP74yzr9YKIs/xGJE5G+KyL8nIn85hHB5TcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADz++Ms4/JdcfW4nEH14JIvJ/iMifDCH87scQ7BeREIKEEIrlxphue+/9ql6pr9543vtNPWvtql9rrYiIGGNW7fPPrWuxfYlYnv/tta/db02OWr3Yr2b+9lyrURq3NEdpWel66X5rehUprbvIdu3zNS+Rj6/RyT3zpcU5t/peutfa3kvp6XtpXXrzXutLI1dND4wxXR3p2ZOaDrb0aaT/Vp2W7D2bkKOdy1rfNZta6qc357W6PUbWqvdda3t7ZT3b3pLnHrTGvOd4rbkvrXc8G2OZ1t7V9Kq1TjX7XbPlmn41ulP6PqJPsXzUBvV0V2Q9/yWZtddGGNnLPWpr1/IBj47f8tUi+bymcub2MdZ1zi315nku2teWvXDOiTUneXh4knmeZZquId6PfvRG3r27tYvnu7VWnHNyPp+X8thmmqalfJqmpTytb4y5jvksf+77pH5Eei+tc1iLc0Gs3Z51o+doXj9ft4jGRoiIhOCTNQrPbWeZ5/0yrfs/tgfTOert9ZL9yHWxppvperf24uhZWPNvyvIv31Z97ZnDdC5q7efeIstav0qxQm3c0vdU12LxVde2saeGkl5471d95N/T8l6/KdoYvYWmecufGI21NLG/yFYP0valvkII4r3v7oW0vOdn5X5V/GuMkfPTLKfTeTV/n332mVweTps2eb+l+dLGFi15a+Pm373xYoxIOoT3QbX3ajHfiB6O5ohyP6ymbyW9aK9x/t0Uz79aPFe2tfL/s/c2sZYsSZ6XuUecezPzfUx1UVRr6FHPMIAaFoD4khBISDBCAiQWSIBYwGI0ix4WrFiAWkKChsVsQYAAIcEghEYIjcTnAhawARagWfAxaKRpWE3TTVd3Vb33Kl/mvSfcWcT1cywszMzN45zM7Nf1/0mv7jke/mHhbm5uZhF5irbpzbXsFrsp57j1YdklaV9zLuKeqnvOW+U555D8R/xf66yR1bm9kPcfyYV453ZPl6NrZ9k0Wd7k12S0ZLHaWGXemeLpj0Ykd9eTKWonRuK0Ef8mMr41L+2MOdJWEp0/T8et8g+Zm7DwYsieLEf8GKvfI/FqxGc4GmNF6nr6O2qLrHyjPLdKKVToeua3cUoplIyY5ZaY6oh/EPEro/V6/pF1HkR9iRFGfOTeWnLaHtT8Vr7HRtbyXud9NEbg92Cdl7K/yH6J5EWteRnx3W6Niz2seIL3E40T/X2SqPmIRC3HlcRZlGieTzRV+7zzfKyILL1298DaS3odeeYUCh7jJkf8Ba9Nm6dpmoZis0M+Q7r8DxHVzVzyWHxM91Z4XieSr9L26GjepuVapdyRGMLbm9GzS3Lr2dNbQyvePyLvyFw3uE4f9VEjc9xre0ubSC7Hqm+dZ0fhfbRnDbI8EidEbYF8x0FrI8/wW2MRKx726tw6hlYufQUux5H8hzfuvZC2sSZbnzXbI/1CWa6dkby9lMXKlXtYdsbTxeM+xzZHGunXy0FFz+HR85qf9V77yDksz3CLnCfW3/ac1vboNPt+4lylf7nasDJvz2RN9tEcl6Xzy1xe9Oh6/fHxFU3iGZMmT698tE6vzWiOrtf+qA/u5adkvsw6hyJ5yOiekLqg+c17u5co54mmadyHaeOOEM1hS/geaUOu7xtMu36jjPiY9/T9LLR7uNe52LPXHjJ/JnNpvB6vU0qLi4hS2j/XKKUfQ2rPAzRby58ryzZHcncpJaIs9+G+v8h5k3MmyunlfRPup15zCDIW1+Z1mohS4vq2vvtzRAcjvqSk9xxfy8FJorlyS86NLC9zWlOm67xmSilTTtd5aWMe2cNS3nX9m8y8bP0vZ/le8mqnpI/mnelNF+ap7Hxrbb01nYzqf6tz5LrUh15fo3o6Et9679NrfXK/sUdkfO1dNQkvf0gLy7m8lD08EJ1sX172dUs8ObrfjvR1BG38ZbcPYnrt9Wv5gHwdo/flnQfRPkbiQEnPD/XG43nuXt+yr6kQ8duVQ0X2+5GzuddHz1f/0PpqsXu21M4v4Ydqe9taU34ete/Nn9fmZY3ztnsp4v/3cjc8h6zV/9D5HYn3jPAWUrL9rUj/mo+09Zu39bX7iOyro+9Y9JDraOWebrFnsv0992uPXpwUjRlvPV9H82DeeTha3pjnvX7wvJSUpffsSI5ba1X1Z2S9R+dptO2oPO1Zsbc2R/L2yzxTztu5Os0nyo5oy1R2dn2a5k0+MqVEc000TXlje9o6R/OLt/hiGm3+Zlo2eZ+UVtmuYze/baY0YMpG7N49zg1r/Joqyem4h090pK9b4sSRXF4beyS+i/bb7e+Sh2FFiv9jxbO35PuiuY/IPR6Js71/U6bX3z9PGY27wIfhflnnnwNSSr9ERL/QvtL2Se1CRP90xQ+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwnQA/vjLGX6+UtR9h+S9rrf/bR5YHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwEPz4yhi/4Fz7cx9NCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwM3gx1fG+My59r98NCkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3M39qAb5jvHOu/fZHkwJsSCmpn626tdZQ3Vav/ZXtZT+8nrxeSumOo42lfea0fmutmzryu9Z/77u8JpHjaTJobUbvUbbR8OTute31Z5Hz9berPBlTSup9TtPkjtnWNqVzTGjWT0+3rXaNZVk2ZVyXtf3j3b+13rJfbY+0+tr9eHvZWz/tmrc/pSw9rPkfWRNNX3i/8h5G1zu6R7ju9uZ0dO/LetYa3DqXkT69/nr2vXctciZZ9Zpd9cbU5rU3Z9ZZ4Y0niewZj2Y/PbmkDNqYt+4FKVPUljRZuB0vpVzat/vryRzZi22NLb3S7GD03Bs58z9Ff60fzd/wxh45EyJE7IBc697elX9LKZvP7RxeloXO59UPOJ/P9PT0RERET09P9P79e3p+fiYionfv3lHOT/T8vO3r/bv39P79OvY0TRvd5Wfv6XSieZ53nx8eHi6fp2m66HxKSd0z2ny0NiO28UNg6U6Tpc25bKN9lrZrfz/JuXaMe/QT8aetcawzoud3Rs7xiB3zxueUXMRamaKp7Y/AY4IoPXvp+So5T0IH1zIZW9wSD2j3FDmHe0iZQnM3EeW81Y2c8+6s5X1xO+iN713XbH+tdWPTLLuyLMtFrmVZNvadl0vKQ6Hz+by5l7X91fZy+bgdtmLOq29SKSWpS9v5t/YiL9fG885da468ceWYGjnv7zcyTtRXseZVXrfGiYzRa9u+11ppyZlKqRubtiwL0bIM22BPtlr13E6PiB/KfWVPjlWGuMzSNkXu2YtlNLvU5mPbnq/zWqeUumkvc0Y9uXpl2vWIjkrdH43laq2qzdLG+VA+nudra2VervHIuT0imzfGSF7J698ag/fPzysv39ob37oXKdetOQJJ1BfpYe2lXi4hsla9s+povxFG5LulL+vsPKLL/Ls3//wMzjlTmeYXn+daP08T5UvefMy+HpFXw7K9t6yN5wPFz9H+PR9pw7Hsqmd7+Vier2jpW3QvWffizZ3nQ2v98rjLe74z6hNGfZjIOebNVy/mkXV6+cie7LKudYaP7jeidLELVx3h9fpxiMet9oNzJGc7grz/Ntw0zZSn/l6x9GVkXSP2KWIjZDvr3JCsc8C/72psbIncu5qcvfs7Ei+N2K5oPHBUviN+DG97q09j2Z+Gt0ZaP1Kuo7arXZ+mSY0fvTP0yP727F90L8r60b6i8ap1PbIvW73RPGgEKw8mx7B0JOd88/rdO86Xfcp1i/pa8ru137V5+pDxi3UuSJuS5qu/05rknDd2wds3/H739a7rfx2jmu35ufEhzvA2TvTzXBOltI2N5nmmZRrPc4yeY7f4syP62uvbOx/OtNDWH7z2u+07veTx9jEl3wtb/2KvO57svffAxtnmiVLp230v3pGfj/jj3vpZ4/O5s8aUMU80trHqSDuo7X2v/S12UNrWWquuw9O6tzmWrml49lUrl9+9feXFuOt/tlzR9ym5r2XlG2ROMOesPhvkHMkXRZ4brM/a9ra4zLH3P+V1T8cjehr1T2utVB4K5bzKOU3r+TtNE00vNu7Vq1fq/vPy7t73nuyjpCltnhcTbfeK1IVezLHSru3XQbNfXJdnWmiatj7L6XSievJ14ZYzwZo7bR9HYqpo3GXJwu/l8sw68XxN++86nz0dG5G3Jm5rmxzTZV2mQjv7yt950rDiv3ne5+RO84lqtd+Z0rDOxWuhpufXe4qMxe/vXv78SH+9Z1da2b3kHM8vNrsuc2q+nowi32Ox8GLUDzFfHmpMm/WzWns+YPXB0epH8jqjcQe/NiJTu69l2u//aZppmre+bbRfKxbmjMRf61/e/z6GHhlDlsv8ya36F3mGMxpDHpn/9rnpNS/31leT7ZyXzXnT1qDvzye1PrdLrd7GLik+0TRNNBV/PMsn78V2Vl+3EMkz1Fppma/+a/PbvLn1YsnYvto/ix2JzWS7nk2T36P70ivXcnxeTq2kSlou5QhHY4FobK/VHfWtW15g7afuyv284lauSK5ElkXmKPr8JRrzW3JF8kVe+5GxIkTOB1kur01z2dv0eaa59u2jO+Y87+xAniaavPeXlFzPNE00162vPte0jzNYXDn6DCNqnyNrlpe9n7z9NyPXGI+fm/eSsdYasr9evtNtM6eX9/Cv5afTA03k+3j3eJb0oZ41WPlZKYuXF7PmPBJruXtpsyeuz2Kl/3IvH3akz0Z7N40zTzPlObZe0XXu5UUm8e8l1jLl34fc6fwGce77xvEffL5yrn0YKwgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgg4MdXxvgN59ovfjQpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4MfXxnj/yGity+fq7j2Kx9ZFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwA3Mn1qA7xK11ppS+h+I6B+h/Y+v/ENE9N9+dKF+zkkpUa3XpeCfZT2JrNv7btVpfWtjyDayDm/PP1uyyzo5Z7WuNQ/WXFn15fjePUo5e+NbY3jjHh3DWgNtDrR7KaVcvss592Sx+tNkkXPQxpmmiVLKlBJRq5JSopQS5Zwp17Vek9Fao6jMnkxSX3l5RJ+8eRqpo2HJbe1PaTs0GSz96MkaXWOL1l7KOLrGss/WTtNhObaHNnfa/GjtrDoj98T3YxTPjkaQaxq1i9HyiH5peiXrWLJEyr01lHt8miZzfE1Obf/JcXs0veXrP7KOvXGO6NWyLJvvTR6vLz5H1rx4OiLbW3Ms97klkyZLxP/xkDrQG1uOL+tw3Ry1UUf8C0tO79yIjCHPUHlvbZ7O5zOdz2ciInp6eqKnpyciInr//j29f/+eiIjevXtHb9++pbdv19+EXJaFcn6it29fUynXvr7+5i09Pa26cDqd6HQ6ERHRq1evdvrTPk/T5J4TvD6vx9v3zmTJqF1ep217PkZsg6cP1tmktck5O/vctt1R/R0pX/vcj3nkrD1y3RrLO1MiOuGdG7Jf6cOn1HTkurdSubbna9fzWzQdt9r1zpHe+kf3wLyxnbH2cp2arCO2vZ391lha/7JcjsfPUS/G5bRzpa1p61OeydFY/oiN531pbbgdnedZtfVE+3l6OBWa57ebvrhc5/N5d7/t7/Pz86ZMxq+P50Jff/01pdRizEw//vHv0fnx4SLnNv68xg3aZ80+9nIRnBHbuORCpTRbl17usRCxLRexJVLmaM5kRC8ifkVvfEnOmSqb+7X/dZ2mAf9V89Nrrkq/maYyaV2E/UZrfO2zz7Fcn0XTccu2e+NwX2WdS7t/q73FkTgkOu7oGJG+biXqd/fqNEbzJFE/oBHVEV5PznebV+nzcru0258v3/n5q43Zy0dE4iw5PqeUosbiHtE8hceHWqdIvkPrr9c+imY/vXW8ZX9H8nStffQeRu6V6Ni+lPdT8ovvx/fYslAasJ29/MCR+FX7rH3v9RWtY+XbrPaebxvpqyenlqeRvrXV1pvjyB6N7vceqm8UWD+5j7WcjyanVTYak0Vsdy+etur38m+35uSjMnn7itusVrwsCy1LolqF/SiFRJgYljO6ftH+JFHbMVZvOy+lFKri/q1zJbovR/RP2+9a/O3llWR8Zck51fQS67b+iRIliixZZI41PyHit95CzjmU27vH+J4feLQvT49Gc4Ge3luxgax3SzyURTweyX9JUko0Tds8Y631Ja7P7ll3jzXmeR1vDE2G6Fkjz0Feb8S39spH64wQyWnx2KjXT8SPj8y3tJeyfiv39ESTZeQcPlrvSK6aiOicln1MoJzpo2ftSynrb+8keHvvQ9l7ovjZs85LzDe4dfwPieVPHPEbeR+rveblxMr369nbp6ueXr6xsr3MPT8/cg92PKLlhLeyR3wGTX4pI28TsXdROz7iW3t5MIuozxwZX+v7qG5G669zr5X5se+oHZZnxy05nnUP7edmmqZuLlMS0SNtH4/oSjQP4s3J1c8tO1sTmU/r3V5PButZroxHwvm3U7nM25RXv2aaJppe7MxpPlGtx3yYW4j4TSklotziPt52onketxtXue190dv72z1xvdbzIT5UftXjlnylx2bt8pq/rSnROq/1Mh8p580zkogcWmypny/7+d7mJfr30cuPX+5DWVtNH7js/L2i3vsP8p5al5nN3wjR9R2xI5zeGll5IK8v/tnTFctvj+a0ZJ12yZqGXj+9+dNiD6v/CNI/idxnIxrn2P7b1vZ5+nkvX+kI94w5at6fG5pP7snyIe6t7Svpk/XWZWSMo0R9rdHnMb3+RuUhIqJp71/wfF2EadL3lhUvXnVqG39d32Xhz528kbfz1PO1rfmX7Ub/fZQp3Q1ni9Hjpd/oOTDKPBPlvI87RnNrR7HOSzl+z2+RdVxZ531+ZJ5nmgJxgeQue7LTRur0Ebt+9RGvz5RazDmSv+hdG9k3mh73cgUfMlcpaXFk5DnLrXJ5umutuddmmiYqwTPbQlsLedbu/OCs29db/KNoW8sHsNbPOgdyLvtrKe908HQ60UT3e28xgufnRN8htHLGvTmP5PJ7439KP9nDewY12sdu/27yafqZLonM/z2f18v3s4lok8+wZLDoxa9aXSKimZadf6r69x/vGAAvfPi3qv/g8Z+L75VW1f0nU0qPn0AeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAfDjK+P8J0T0lVL+h4noT39kWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfBj68MUmv9GRH960SUePHL9381pfQrn0QwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEPOnFuA7yp8hoj9JRL/EyioRfU5Efz6l9A/UWn/7k0j2c0at9fI5peTUvNZvbfhnr1/etxxPjmn158nbK5N9emP0xo/MkUdUlkh5SsmsNzqvvfZWP1q9tq6tbkqJcs6X9q28lDIk02GWhWotL//RRo5SykUOTWdG5y0CnxeLNl/3HjN63ds/kX75vbXP8m9ErpExe3W5vZF7p5SyWXNNVt6ftvc026P1odW5xSZp9Xt2yrMd3vje/Y/KyD9HdILbDlk/Yu9kmWV/eLnsNzKvmnxWmdanpRtSX7mNuNWWRubLundZ3uTSZNL2WFR2T0du2SOeLi7LEpZhROaIH2GdoZKILvXk1nRMs+EW2rp6dojbYj5mztmUr+mJtD38Gu+Pz9nDw8PG72hjz/NMOedLvaenJ5ryTKfTTOfzde15Ha4TOWc6nU6Xsufn50u9eZ5pmqbLmOfzeXfv7V6sddLWQ+qFZz88X+Na73qN3+cRLL/B0ivN1q51Y/5Ib39F7Bovl5esGGfUn7LKInssGnN4Ppu2ZyyZ9uNfPlHO+aLTRFs/NerDyP1q1dNl0f0yCZfLO8NzOQ+f8fKetf3Si9/a/Vv2biNjzhvbF5VNg/u5XKaRuNfbWxqRWKLJYNkGrax3jmmfl7LQsuz9jjZvTbcfHh4u17iNzTlTSokenhd6/dvnjT5+/vkX9Pww79pI2ljRM9nCsh3dPTIR5Zxoa/dt/8LtK1DHus8jcZwXd3j96ecql+XFL+j4op5vnlKiJRcqZVtnWQoRcyNvzSHxsa353Oj2UqnWQm37vC7gAAAgAElEQVS92/CejspxWn3rmnfuR/RCk6Xni0TsdlTforobiUGO6Kdmi6QMXr4hEkPLWMY7I/kZb92DdYZH4kEZux7ZE7fGvJF4iiNtTySvExnb03EvFxHVs5FzxOvL22/8fOR8rByvFw81uB8l5Triz2vXpN/Gy6U/YtkL61z3bJlnP8zylF/mazt2NGcg62hE7W8vZpX2bdQHHbEx3nnXrkfv5cj1Xj3vTO3ZJ1mvp1PeGTFSLvdlL+Yh2sZG3r2Mxvoj+QMNWa9n4zQZePwXwRtjxI/2aPei2xbdH/D6il4b8Ze0+HkrJ13Ko2dPZP7KtPr1KdElR1TKQrlucwHRON2qE90XrZzbgoit7fncFlpObnvdbhvxm3pjW3N1xG+M2D6icd8lEqsctTG8/JY8oez31rwDL7NygVZ/R3OAFtKv0mQc3Zc9+zwy557PJtFyRHKOPTkivtvRXMxIvyPXmsw89hzxLyPxv+dPRMu0viN1evM9On5jxE5t4869LRk5E3ib61+/v1EbZZ1vR23gLbm3nt9/C7ecYx6W/340J2utdUp8rG2eMfJMcauL+pkUiQWs69r9Sr3a+6X+mo/m7+X5yMeN5tJkuRUXj3APvbZkGD2HrHqROKsnF+9fDtFbY8sORccctavWHES7iOTqRsfX+uudbxHbEsn9RNVTiwtHYtHme/BYrn0fzXWVUqjkQqUsVEqlOtXreyDrqyD07btv6elJl5X7gFu7O76ekvYsQPqU2jjb/nWfQaLuu0yUEh9rfzZYttjzMSJEdUDzMaL5PCuessqPIPPG7XljTYXauXnZLwG7Lu+3d8/X8Sv567DXGSuPIenZ+WmaaCr7ttZe9upwWTT57hH/3ZvIfovGjfeWg2irO95aRs6zETun5QJ7ecCIf2LVH5XvvnyYOOQe3HNORux9JDcSyvUGng3KMn6b3j1H3tm+Zc4i73/dY5x7tL+l/819Tnv7Ns8zpYVUmk5JX6v1cY1Fr/Zpnmcq83qepLls/Jij9zAyf62utr77uPV+tqHm/fuROWea59v/6etIPHf0DLOes43ahCNtPL9vM6cT9+9figwfZ4RI7tKTcW/j/PM+Gh+llCjNZZcv0u458l6DVleT+Yj+aDnSaZrM96MaUZ06ktPQfNWGp6NRv4xo7ztHbFWrczotij2eqNaxZ8i7OZymnd2dponysjf0ozlxbvN539M0HX42GKkT0UmtjqcDcmzZ/sg+iNgSi954a14gFmsficdGfD7rfB3J/Ry5/lGZkrqPrPMm6qfe0x+sTL/b1GnrcOvznp5vb+dhZb8fPw/w8879Mxo/B9RavyWif4o2/yRhvUREfxMR/a8ppb/7owsGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIgx9fOUit9X8iol/VLhHRLxHR/5hS+q9SSn8ipXT7zywCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuCn4U5AZqrf9BSmkion+biCZ+iYgSEf3DL/+9Syn9BSL6C0T0u0T0EyL6iojKR5DxP/rQYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F0EP75yI7XWfz+l9BtE9N8Q0QO/ROsPsBARvSaiv+flv48NfnwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF/PjKjaSU/kYi+leI6JG2P7hCL98vVT+mXMr4fyCpdfwWeZucM6WUduUppU25No4sa/W1a7LvHimlSxvZr3fPvb49ubw2Wr/aPbWynHNYphHZ+Lz06mjzJ/vn7UspG9nbdwupO736HwJNH3q6Fl2PCNbekbJ4e6NXLtv3rvd0msvc02v5Xdbnet7jyN6T9VubJrs2v1wv+TXevpRiymPN9YjeaOPzMeTn3rUPIUt0LEuuyH3J8SL78ZZ56fWnfS6lmHrcmztZLveUJS8fj9vN6H6Stvaeds6z461P3vc0TWb9yB7jc2b5IHJ8rW95vSfPEb3i8nNbxPvhetVoNsk7i++BZZ+l3yC/W+21dWnfLZ/Q0h8+X/zzsiyXNsuy0Pl8vnx+//49ERG9ffuWvvnmGyIi+tnPfkZfffUVERH96Ec/ot/6rd+6tCEievMm09/39/7SZuy//Jf/Cr19a+v1559/TkRE3//+9+l73/seERF98cUX9OWXXxIR0evXr+n169cXueZ5DR0fHh4un4nsfc2J+Nwemt7xa0d1KdrO81+uvieRvBXNdmjXe2WWLOv8tfJ1/OicWuPKWEmWWTJavpUnv9WXrBf1H9s6XPv220d9yIifb9mXSP9E6x7r9U9ElJfzRZ5WVkqhUsqhdY+eCb1zWourvDpeXT6W9G2JdB2PrF/Uz7I+c1mb3eF9tzWU5e0z98GlP77a2IXevXu3sWk//QnRu/dXmdvc5Jwp53zxRaZpulyb57m7r5pcMr4gsm1IdI/zcbwyaR+9/Ie3fTyZbrXxkTZe/BvNS/RkWXLe7ZVlWYg6dkP2tesjlZd1jffRyqxyz4eVcWtrw33qiRZKieeTiHJOZpxryejJ6dnreMy3X7feWdGzd1E+Vu5Jky2ltFmvaJ7Dqydzce0zL7fWPrL/ecx7ZI2Ozvfo2no+9ChWbC7HuCUW0+Z+RNae33LPOFG1q8x+jvhPkfONl1n+itRjWc/aZxF9jPijVj9R/+qI/34k/7Pv/9p3ouvnnn31fJgR/8Zqb33X8ijamFY9L5a0fEoNL3cXaXN0r0ba9eJsTRYtXvXGO+K/juYpjtSTcxB9hhUZ2/JhrJxeo3cO3hoP9LjEvK6NaPZ7u6dKWagUaXcWoqWae8yS+2hOpY2xlaHsfBzts0SLYbkuyM8lFSploVqvbd69e0f5SR/D8q9SShs/fXQfpJTcs2okryDxZJG2cB97XmNoWYffJ5/XyPPhHpF8i9xjFnJ/NF/hyJ6M7E/PB7BivqP7RuYpiLbxQPseQYstZI7mVrR96MFzd5pNtmJQa2zen0cvBtLO0PZXPvfyzhVZJuuN2AhtvOj5Hp3H3rnbI3r/PaK+lpejs+SL3ltv70b83OgYvb5lrttqE7GlnGZLrrmv/rxH97Xlq1rcK8b1ZJFnmqzXk6OXR7TG1/oYOZ8s2UbnbJXX6qPZpP2Z78lGtM1L83a9van5F7Lco61tSkRW1VvnLNLeiieOjmH15eWUe31p9Ubi5N71kbxkL2fdlyvWd8T2HPGtj9mq8djZW6MPeVb3bGRkzGmqlPM+j6e9N2S9SxTxW47GRrwOv++cM5W5UM4T5dzu45nmeabTS3+vX72maTqWs4vK6OVxen7f9e+lt3Xuy/h7m82+XvV3nwvo5e7aOfFSO3QvHpH5iOZuLftulUfG8q6nlKjmVsbb2edu1CfxbJ825t5P69sfK7/K6y657Hyjp6cnenruP7/iZdq7N3td2+pVz/+Q/VllUb/1Vrx3UKP5yIbU3SO6qsnFZcnZ9kc1WXrj8rwEH9N7v9Qa48jzyV7+5L7PmO+jR733lm+NuSVef7fOz72eKUf0pTHXtPNNrGfuXEY5pvw+Mv+9OEGzg6O5ixGGdGbaz1/zL0b62Yq5+l7TvLf5tVZ2fvH28vzavguqIX09aw35ZyteGc0XS12P/PuDSL8S7X3BnPP1MVEH79zQruVln1frza2Htpd78eqIzo/EjXz8fZtjY1n9EY2903Cv892TK+LbyrnTnidZ4xz5ty+9fbP3rbdjyv1s6XYkNtP6HyUam0TmqhcbWuPcS3b9+z720+S57HvnfGltr+uWNvvwmhNU7NTgs8ko+lhVjLd/d5PLSxTzYaI5wWjeSD0njL55H/w8bn/neaapxnyVkbzWEZ2WY0Rt5WgbuR5HngNZaGsZPeaiuhQlEjNXpt+t63Xf9v/d4j1o8kyFQrnHDxfVAwv8+MoNpJT+GSL6d4joVSuSVV7+8lP3Y4H9BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAA3585SAppX+WiP5N2v7AivWDJx/7h1A+9g+9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwnQM/vnKAlNLfQUT/Bq0/qtJ+6ORj/8AKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgBvDjK8f4d4loIvuHVyqBj04pZfM9Jf/3cGqtVOvYUqWUdv3y75H+Wp32V5Oz1qqWa+NbY3j9W31ZstwCb2/11RuDy9U+11op5+zWPTJmKYVyzjRNkzu+7IvLJXXxw1CJaL/OEf0YqXdrX57+NSx919aoJ7d3nfcXkSul5OpvRLejsll4c2DpJdcJ6569az1Zmu3w9tAovfXw5lfaO2ljeb1b5IjIErU/1nVLp6z1ip4/1jVuQ3s2xNI3OS8j54i04XLtNF3S7H6Pj2OTt0TOV86IT9Jbd29/e2ei5XcQ6fNu9cvPT+2M0mSL3H+TUasXPXtzzof1wRo3irQjfE5rrXQ+ny+fX79+TUREX3755aX8fD7T8/MzERE9Pz9f/iMievfuHdX6Lf2xP7ZQKYWWZb3Hv+Vv/qvo62+ubZ6enjZyL8tCRERPT0/01VdfXT7/5Cc/ISKix8dH+v73v09ERF988QW9evXq0tc8z/Tw8EBEtPGbcs6Xe+M6sizLRp+s/e+VXfvb2862rlyXI/tQ1j16Nl6/b69ZZ5Kn+xHftbVf8kKl8LNjtXmp7M+jaMwROVOtufF8I+sc5eWRc5SX8f1ca6XlvOz2+PPzM5Xna5klu2Yfmp5aZ08ppesf9PyG1neLQXqklM17aHtanu8yVonIecvZad1Hz2fQzv9SykbHW72o/fX2tBVbe3Nk+SqlFDqdThu5ZZtlWTbt5X55OBV6fFw2/X/ve9+j57Mel0p6MevWdiYqpVzOmJyz2b7di5wvaet7dkHuVzmX/G/TZSKi5bTQ+/fvXq6tZT/5yU8ovb+OK2XjMnE5+Wcp7xEfU45nffeQ/oCqkzlTSlv5tLPUk02bn+W0bPw2IqJpyjSVSdVRrV/5eSe7st97fW/bt/+quZ+1faX1GfUVZb+6fW7zem2Xs3+GybmOMuJv3pMj54AWX3K0Mm3OvfKReLz108q1OEXTGe4DRedB6kjUNvL22ljcHh7N41nzZ83lUZtmzVXPn7tnftIb0xq3p1M9+UdyMVwvLH2V8xjJcUXscLS+t/4jeYboOSv9g931KVOtZRNnLWWhyvaGNqbl12uyeXJzuby4Rbb3bKDUH6vc888jPkCrz+1g1N+R+QtL/yzb2b5b/fb2fc8OHYm9RuryOE8b35NN6z8ib0T2I3LIa9re1c7JUW7xVzw7a9ua2PrI620PWLoq4yJZt2ezNLuv7cWe3JEzirOcCs3zt5s2r169uinGOYIXM3h5AitHIPsZOccrVap1ey6kosvJ62z6cOa/+Wje/vZsWWRuPLgdHvGlonk2KZPnE1tnrLauPb3nMXuzSVH/v9Zrvr2UcrNd5f1qbZru8rwQjyHk5/NDueTyG2+/fUtPT3lnH6ZpMvMXvf3Srml+Q1RXjuTcIu16NpTX6eVLLb0aucfRs6tnoyLj3BrfR/KYUb9f29ea/xnxo6P31VufNQ/M9y+39bYPafkw27knarnR9RnaPp6wYghtHnpnUnSuRuZu1ad2H9cxee7Wsr3SjlgxiFanV+8WrL04EnNdfVkvDh33u9byRLxLno/V1pLPf2+PRWzXdc31ax63+ud9f3xLpJ5XJ7J/ovvKyuVEiOYzLRmO2H1u91r1ZVmIlu0aHM3X8bW8dc/ux9/LFLWJ1pkW1ZPevURyFK2f6NlJpPuZ6/nlv0M3irQR3nsV3O/ss9qVdt/rObK2P5/PtCz7M9WzV6O+gXb+ajkr2+fhdrFu9kqU/Zl67V+TO6bXx853q82obyX3jqf/I/reYy+zlFsrOz62fvYSpRQ7n4hWv3H/XHRycwy1Vjqdyq7dw8MDUYo/p9Xk2ZVlPZcQyae6/Qo839Z7ztPTU8sHOnqGWWfgEWQ82vq8Z/6ASM/xfMx3Vq28TmPkncnd2ZP1PZWXvY4fPQ9Hn+XfO8+hzZu875RebEnRnwsfkSMaJ0bsw2oX08ZmWTk2fr8yj8TfPbNsl3UOWfdife7lVbzvTfaIXtg2WJ/XiP/ljdeTXWt2XdNtPT7f2rpbZ4Xck/IvbyvvRfMf2l/LxnjzEl3nTb0pvbyDcy2b54lyia2NBs+htPrb+29jXXNRR+PEaH3L/7AYfZ4g80Wbtc1EXlzHyzS5PD/T8hUiZV75rfB1bkPIfzM4yi3njGy/3evbeppt4m2s7z16ec4IkTyXN65XHunP2qtWnMfH8fbIdXxuG/rPF0bzdvxrr++rTOPXeB0t97fvR7MP23rW+6vRPGLks0ZER2/Nj1p48Vl0/q1xovvCkmV03rz9Jn0PrU44xzst7L3a9e88TzTV/rMdWX7E746cP1Xxe6V+e/ZW7qkR/eP9zHV/XszzRGWezTbg44AfXxkkpfQPEtHfTsSeam5puwTaDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA72Pw4yvj/CmjnP/oyjdE9F8T0f9MRL9BRL9JRN8S0TtWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AnBj6+M8/fT/gdUKq0/ukJE9O8R0T9fa/3ZR5UKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwRP7UAnyXSCn9MhH91e3ry9/2wyuViH691vqn8cMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8/mf+1AJ8x/hrxff2wytERP87Ef36xxUH1FoPt00p7cqs/njdVqf9LaVcvvfa98bU2ssyrQ+tjSazrCPvJTKm9dmTpUdKyZWXy6nNpZxDT66IPG1NGzn7v1PFx8s5U855M44lD78vPiZfm2VZ2PdKtRLVUqnm7X209r01adc9fY0gx4nobrQ/OXe9PaLJ08r4/Ub0lfel7QO+Zj25tL1i2YLeXPV02trLkf57+88bL8pRXdP2vqdr3jhtH2t7s1fW0zurvXV29NaD/5Xl2rVWZvXt9eXB+2o2RtpHTs7ZlE3r0xqL9xfFkytKkyE6Pxwua08WS7eidjRiB+Wcj/gnns9jyStttcWIDZf9enYzpUTTNLljNHp6xdcv52yer94e52XcX5R2gPuQy7JcPrfy5+fny+dlWS513r17R09PT/T09EREROfzmWp9T+dzolKu9c7L+SLL4+MjvXnz5nIvj4+P9Pj4SEREr1692nx+eHggIqJ5nmme58vnNsft3NDmkp8pmn8k62hzq7HVg71N02y81YdWrslj+Q6an9r8NE4p5bIWvF/ehzZG1Jdrn7fV025+tT7b+HwNZZllO/g9Saz9JXVBjtnqjK6ft0fXMl9fSymmzJZdj5zhkTpa39wmWExlUXRwbcf3aBRrrJEzuNG7fxnzeHXt67Xr+1rxw61nlRdjc12MxOJNls3617KrK/dOxF5oazcVopTyrp62H73543BbIO2Ftmf4/XL7uCzLyzl2jX+fn58v9cpDoXdfL7Tat5f+f+cd5adV9tPpRNM00el0Wu91mjZnVxuz7Q95L21ee/HkCNr6H9mX/DyVzZtsUdupnV1LKrs9WUql1LF5I/78yP1f74Xr34selO19jpyVTQ6uAxFb0PqQPubWBq11l2UhKts9Fo1PLH9K+0y06nUk/pVyaOfaSAyjwduP+HOaXlj+mMTLBVo+CvdBrTm7NZ608ojWmRAdz5oHK/bWsOyzVUd+j9qBkTUbjQVG6fkkI2Na8mv+tIY1f9paeH52r09PXq9c9itlsPbrqGzRcs1XvtbZ57Qj99v60ZA5/CiR3B/Hii15X5YuaXFaZL9pvk8vt9MopZhz681lRC6r/UhumjOyz6NxspdT83JTR2XVxozK3GtvjRv1V0fiJ+uM6/mDVqyujT8puZd1T2TVX+b7gMvFcwReXkDGA1ruUX72+uNouQAPb+9rskRihQ+BJ2PkPrW568UZ6z7l1y6fuuP1xm4c2XsSy97KXHSEozZT85F4GfebOTzfZJ3d0l42LN/Ck48jz5fIWli2s2cfNR31dJrbCG5vtL4fToVOp/ebstevXtM06XNujRe5Zs3ZiA2JnP0R2ax16Z0JbfyW35EycbjfYumhN2aU0fNV1hu1xzzv076P5DvbXGjzHp0jaZOsex7Ng3njr+3uEyNe5/BSQkT7nGjDem6h5YUi/m1PNv5XK9fsbUpEteq+6kiuS/tuffbyNZFcnec/e/FYzzeX/S65iD1Cm+eunFIKpRLR062P0XKUWp9WGUfuF2v8dp9NBn5PTfZ70tb4iA4drdOTZ6TfSOzn9avVv+UeRuQkIqIpUc573ysvfuw5eq54eYB75el6+aLIHhn57sng5WXkXvT6keNO0/SyX7ZyRf2t3ljRde3FEPx+t32uZ8n6X3t+vtab55lK9XNTRPfL5UZ9BW6j5PQciXe5fZU2vmdf+VrLeSXavi8cidmi9q4359pZa9nBSMzZ28taWVufusvZ6Ptf5k6OxMXXdUzUzku+juuz6G2s8Pz8TM/Ufx9Dkmj/PHV9f+tYzoXnpTZ9nvk4q9z8niK2KxIbH/Vfj+7/SIzwIdGeZba/c92vxTzPtEz6888jdufIezeSYf/iQF8xXzDW39G1tvJPozEIJxIXe7HyNqb0x4lg5Qc5vWdFvE0+L7p9ulHtrPiYl/VyDFGivqkVs/Se88XyIlvfo+X5I31ZeQwzP5n1a9s8kH59K/deZqnXXr5AmwtvLSRa30dyQf0Ygmi917XeshQi5xgb9Zvsa7rujcQRWpkWN4zaUS/PopVZOfBoHsAaoydr712iXtw+kneJ3sd23mN9eGfQqI/j5dskOZfd9Zxj/9bLikes8aPrc+98zz39m9ZuP2e5q4u9sdM8787m0+lE/InQTnenvSzTlGkq2+dIU6lKTijvnjcdobdve/Mf0cFWNuLvHs3Peb6hdaa5ck2kz32J/Tuko3tk5KyN4NmiW320Hp5/sS8n0vwlq/3HiB13ucOcyfLBIkT112sT4eKDDbcEt3J7ZP/zxfeM8kpEf7a2f/UEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4fQ9+fGWMz5xr/91HkwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAz+PGVMb5yrv3mR5MCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwM/OnFuA7xu86177+aFIAIiKqtW7+etdTSmrdVh4lpXTpo7XlffD+eT1L1lqrKb8lp1dfu5/e/PB2XObI3GhzfERGIqJSilpPk9O7B6+9vB6Ze002Sc7X37HS+tTKSimbdlK2Jv9aJ13+S4lfT5f7iM5/D22ONb3mn+U6WHtEyinHGcWSi2PpRXRsfo/RvWTZHkvHrTLr/np7c3Quo/cmy+Q6j8oa2ePeuD05rTG0dtZa9Nao9aGtc0Q/tT4j66fNRe9eRvpv9bQzYZqm0J7hLMsSGvNDYdlabodLKSH7FD3DPHgf/DOX0+rP02WuF1wPI2cyX2PNV7Fkt3yJiF2MwOdBtpPrqulrz4fQ9sY0TZsyriMc6/7lOah9LqVs+uafl2VR9/b5fKa3b98SEdHbt2/p22+/pW+++YaIiH7605/S09NX9KMf/YCent5fZP2Lf/Gv0Nu3ui49Pj7SZ599RkREX375JX3++edERPTmzRt68+YNERF99tln9Pj4SEREDw8PdDqdiIhonmeapukyVznni/x8/lNKm3tstiCltJvn3vnc+l3nrtDqFxG1ZqM+rAUf0/PTdkxEKW3rz/NMU532dW+US8q41eOOnKzd0fH5mNL2aPVlPU7P1mk2UtohrmN1qpRz85tXpmmiqejrwPWQjyHJOV9k9fyekTM8Wq7Vu87PtUyetdb54sVAo2fPh2SrV7HY0tL5W2MRKx7g8yX3wvl8Vtu0dWrlPV+11EK1pt14zdZpe4XXkzp9rZZ2tntbr+8D8zE8X1PTKzl3vEzWX04L/c4XPyU+/A//mu/TfJ42cmk+jSardj+eXtwztrLwZInEftEYSs7xksqLP7xdv5HYxSuP6LjUnfW/q662/Id3bkXtsLZfomvP9bL5cZxSCqV4OHBh5DzWzlsZz3hYe7G1t/aHJ8tIDMThZ7fVhzU3no3pzWfEPt0LTS45ntTd3rxzu78sy00+r9a3911jxHeRffb6j8TGESI5tiM2z7NvEXsXqa+1i/iRUXm03JWHdT7IsUd9XcvWXsqoxcjXsnfv3lN+erp89/ze9je6x6LXe/qsyWTdq2a7vJiDfx+1ob2xpV+lyTPP/UfKUT3k147kDqP+gVam5XR6uSRPxyO5iGi+wpo/zz+RjMb8HC8u1GyS9NW8+FOLA3iuiJfL9tf5287hNE3q3MocjTxbuM7xz3L/Npmjc2rFRzIvyLF0zstp87alFCollof5kPRkH9HLET9nXX/+fV9H5k0icxOVQfN1rDUlInO/EI2fzxa9+D3i73NZ5L217znn7pkk23vzEfGX5Hx7c62VeWeBpqPR/RpBO19H8i8Szb4Q+Tbtnn6+16aN4z3f8cojdbW957U92kZrHx2H15P7IOo3R+KhUT3yxud1IjmTqLxc/6Lz7y3LSBxzPSOvz9rOqV7kisii1ckJCeUAACAASURBVI206ck64jdr+aijjMTnHM2/sOILLSev+dzWvtbsvOdn7vXq2o929mjPmPfx7eUbSW61XfJzBH5PGkfPxHae9/r19OaIHY1g2auIHZOy3TOPFhmj1rrRM9vuF5KX1rppN+dHfNjR+9Z01I6v9fOfaMy+juLtoyO2urcv92U8/qimzYoQifM9+VJKaj6F+/OX70t5KauUUmWx5Cr7+Xym87kfs8XP8bGzxnuH9gq//7i/uevlYtdC1S/wd8rWc/kqV0q0mc8jutCI5qKOED2HtDNZysbLan65Juq2nBGPHYnG8i3Wvqhz3dmiWguV4r9XMpo3bevunefcBsi5s2IQLhcfc1vv6suM7qnoWt9qnyMx0oc8gyVWrl2eaTyXofm37f0MojXGvtczK0vGJqf1PRI/HrUVUb/2lnzCaH5VnmO3YumFNee2Xu/jmlG0dZXvrcn6XG9b+9ZmKvs8OH+f08PK6UWeId2DUZvRez4Twcql8WcO/Pzy2sv6nJzT7uxr8mt+NL/W7BLvUr/37fnh7S8vJ3gk17WRYkAntLpynmQu4drkmo+24qxRu+lfq5cxvXhZoj0TPpI3uqf/15e9jTW2J3txwXicZUjn+F09GaP9llKIluM+zch69eblen+k5Api8lh9Rtvekkf4/YaM13u2TIsvNbu9viMY9VXs+V//3n62RnJ3VpmFlWuV8t5jX/T60HLovf6tWMyb+9GYa6Sudy+jRM67D4mWm4rW51Utf2tkbAu5/p695d+3OrD61Vk8c9X6HZsD/Rzb9sX708+njxdlg8bxN7B+Pvk/6Kq9cgf+4keWBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAP48ZUBaq1fE9H/ZVz+6z6mLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNvAj6+M8+eJKCnl/+jHFgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCc+VML8B3kPySiX6PrD7DUl8//RErp12qtT59KsJ83UkqUc6Za6+V7+9z+tnILXk/WbZ9zzmYftdZdH7LfUkp4TH5NuxfZTspl1fX6t2hy56z/RpMcv5Ry+W71bd27J4s399bcpZR2896TpWHdL9F+LXvlPbR27b5668ORc9T77iF1Wvsu+/V0RH6P6KC3f6x70cq1/WmNr+03qWPWmNJGWG24vbLk5Pdr2bHefuH7SpNLu6+IvdE+a/fSkzWqn7fsAa2PNrfa/mrtNbsq+9L2R2+P9D6PrLVVV+5D60y0+tWI6t2HxrPLUSL225qniE8xskes8TQZpU5G7Lm39ryPUR/CGssbX/Yb9aes9bpFD0fOQotb5ojPi/R/lmW56Hmt9fL5dDpd+jmdTvT69WsiIpqmiR4fH+nh4YGIiF69ekW1fkl/6A890LIs9Px8JiKiH/7wmb766mkn+zRN9OrVK/r8888v7Vtfb968oc8++4yIiB4eHmie54vM7fM0TTTP8+U+pmlS7aj8zPeytd+8tU8pUV7OVEqltpy1rvNX57zpZxRrr0TLSy5Ua6Fa6SLbsixEy36so7rI9ce2Rdfrlh/D99uILJbt0M4K68yU8svP3rll+c1cjnUdKq0h+opcB+tM8c6DKN599+ac+4l87XS/RR8/sp7LoihlB+lvHLXR2rp2Y+mpsnlZ772USonFnpe6L3L1YgzL3kTatTallI38/POyLKo+tTZE1zk9n89spHT53uo9PT3R+XxN23G7K2m6zWOTZVnM2NiKGyzftIg55+WjtPOEt9fuiYhoORWa559tyk6nE53yNp1p2SiLkdzIaD0NaSsjeY6mc0vOVMp27PP5TPV8duef2zu+3u3cTnPp+tmajfdihEjM6ZU1G86LSyk72xXJJXG8eerdVzQnMBKz9OZVyhDZZ3K9o1jrYuUESykbe2PhyRy5nyO2xWrT5OSyt/LRcY7YAT7G6Jx5OSzPltwj9unh2QJLr6NyWfqnnbselo3y6lt5rUi+a0SWSJ3RfJHsS571De6TROXp+UnaZ8uHt9rz71zunqi8Tc8ONHo5bV6nR+8c8fxvS5d5/Oz5SrJM60ubk9a3jC2t+M1ap3ZdwvMaGlr7aZpMPZN+fs+ft87UyPnbro36lryut7+8XK5Wx+uLt+dnXCkltPe82NSKHzS5aq2ur2aNY/n/Hjk327Ydax2jFW7njMvGZbHGl3PZK+fI+5Vzqa25t7/O57N69sk5X5aFzufnF3u51vnZz95SftrGb5oPx+NH71l4hKj/GvGbR87ddla0WKKU9fwpxPfIQrnux5X3e9S/9WSU5ZZOWuNH4pERLDllvG/ZNO5HRHNM3vppfXj2yetXG4f3f2u+T/vcW/dLfiaXXV5ltdfXNtqca3kY63tPdqnDVgw5Glv2/IQRfeE+ipThaGzR86dlTjqSyxhhZA4129fzSSyd9HxAT9bovFo2mp+vPdutlTVbTpQ2cYCXV+utkfQd5nmmMsfk7MnMZfN85Kh/eITR9tLGR/J1vFyOF/HppB+vjTOa39DjfV6Xj3l9vkD04tfV/fN3/eyrm3al6HbZW4donlFyvaeYjvbiESlHVP6IzEfyeJF9zPuVZ2hUvqPz35PNwtv/sZz29f0ja14j+ibHGtnXchztnq75mm3+YzGOGs+/jOqiJ6Okl9OK2hb9+jZX5fmEGpZPU2u92FRv/T3bbcmxLAuVdM0VpHTVsWbXzsuZnp9v2yNW/sXztSy/Tz57KaXQ+bywOkTLcqa69H1aTeaRra3thf2+iJ2rUb/hSF5qBC3f18PbV5c4cbM3ticzH1PLfbZ+rbhB8wGbGHKaWm6s1u0+8uyURMaSUd/WykNb+snva39P1zPBs9eaHLfGkpzo88+ofEffs5e5UI3R56lefW6HrPb3xMsfRbHi+SOxGWd9X6Hs3ldY38Wy9b9XzpHyRtpEdSkaH1vPCiL0fI8mR/SZQPtuPQNp5cuyHLJ11jMAKy/+qYj48ta/ySDqy76k/bOU9T2c/rsfl5yfeD9s7WOheh7zQZtv1taU39L5fKYyJXaW7vdoUm7V8r+P5ChG/W7pa3i+h+nDMrvThi+lEC3VvDcNb+/t5ZD5gP2/D1nl6c/HiIw9uY7k66zyvVzbZ2vyfm+JdWSZphO98+re/k3LE9Z6zRdy39SSQ5aP7CMtTurLufdx5fdbdMvTaS8HGsnba+28fq157eUzjvQfGd/vbxuntvH3fez7b+87c5alCB2/xpb83npE10D77ueL9mXyDPL2RTQfc2vurYdtWypto9ZYH1F5I3LeEvNbOcDoOEfHPpK7q9nPB3n0/IuoDK0v76zULvEx+djWvzc5YvN5/b0cafi9ZPBhwAoMUmv9v4noP6a9pf0jRPTPfXyJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR8CPrxzj14joa/a9/ezVv5RS+hs+jUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAR8OMrB6i1/iYR/SqtP7hyKSaiL4nov0gpfflJBAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAITBj68cpNb654joX6btD7AQEf0KEf33KaU/8tGFAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhJk/tQDfZWqtv55SekVE/yIR1Zf/iIj+NiL6P1NKf4aI/q1a61efSsY/yNRaqZRCKV1//4Z/5mW11t1nD95PKWU37gi8r1or5ZzNflrdWmv3viSWXLy8ja2Ny+txOSNjppRC8mrjNEoplzG99tYYVr98LiNrJ9f7HrT74n3XWjfyNBl9Ha20/b2nulmD1i/vM6I7FlIOT8ci8ltrJOH3knPurhufy57uWH1ZtkPuX+2aHN/a214bSw5tzrT+R+2a9t2r07Od2r1Y9Usph+TtlWtE7BjRdm5H5rfVj+gPx7IzVl+tv/bXklHau5Hzytsj0lZ7aHM+TdNQH23MJlN0vnp2oDeehbwn6+yL9t2zhXyNo/ck19s6B60xR89KjZ5968nckOsd3ccaWl+3+FTcV9H6b0T3IW/f2sj9wvf++XzelD88PBAR0du3b+nbb7+l5+dMy3KmZVmIiOj9+/f0/v0TERF9/vnnGx8050yvXr26XDudTkRE9Nlnn9Hr16+JiOjh4eEyxjRNNE0TEa3zyOeS74WU0maO+H1Zfm4ra/U88tJ81DZHKbwXpUx8bK19xCbvy/vjH4ktuO7x9ktdLuvdeHp6oul5O49yH91iJz0b7sUaR/wmXq/phmff8ilTztNLm7Xs4eGBpjSpNpLLMmJrejZV+vxH+rXKU+J9X8ew7E1KaacjkTEtPD/OO4dkmSZHb66aqPx+Nfk9PZTyRPSaY8Vzy3LdiymlS71aqzr/5/Nqqzfj1oWen583c/zVT7+i909Xuds+mOd5Y4fneb7YcT4Hbe/IsVKidaxJj0O0z5auyLNV7neNUT9Vg8+xJx+Xk+PV9+61V9/y+7SzXUObm/X7tryUQukGn+k6TiU+3Pl8pnre9yPP9p4P277L63z8GFd94jqsnYneGlv+RTR/4cUj7Tozz5RzvrTR1qUXT8gyz/+MnDkRWy/l5OeuzNHcmjeL7KWovkTWiZcfkT06fm8ttTMhkn+I5m5657BF//w9HnN7ORZr7vi+kOulxR9e355d1Oyz9C2svKAlv3dmRs4+q1271ltXT78jtq4nm3b/lq+j+aea/nT1k/lF3Be07sXSVyvPYD1bkrHIaMzJ8fwi66yU82r59Nb5wMt5LN6wdFn6V9b9RPwaKb+US2tr7SF5jkfsCj+HI3nFe/gwkf3E9WpZlsN6pdk37T6PyBuJH6Nye76W1JGIjVyWhWotO/91Wdo+r9Sen5WyEC3XNeZ6xNe+d6byNjzm09B8Tm5vIntMymKNxeO/8lDom/lpc/2zz95QPt33/39nk39RdPCYv79tb511Vl5sP36ilF6eK25s4UzTvH827/nWXI4jMWJkDqQv7+2/1u8omh0cWT/5jDYSDxyN93v3N+Lr8LNOO+u9dfXkkueGNW8yD1pp73uWWojf0uj6WvFTFC9+7OUXPsS7FLzfSMwfaS+v8X4j/oz3PEnLdUs52nVvDDmepcvcb7XsIx87+ixMMrp/R8YYi0n0edDG9fIuOfO9rvvAtxC5/8ieitDuhYveyzG2OpZeRYn6gL2csHfNiuei7Pf1vp9W5u1ffv3l26Vdezaq0ctTyM+9mEuTL6Vtmbcemp325jciu6zvxVKWjFZ57zz1ZBzhXnvf62t0761luh7e4hvIMmvNj9gHuUd4ecQueWXR2JzX753V3viynpUHbKxx3f7cL8XPCfL+rVx1ZC3asz7e7vn5mYhenu0wv6G9V3KJQx8rffvtWmeaiJ6fC3377ZnOLyHIj39voafn1cZN07Sxd+2zltfxnr3wv1r7iG/Q5G8xP29SSqFU+3kpKdeaVyiuXZT3oZVfzxq1yq6Png337EePW+3brfamzceIFDxfc+jec6KcUye20+S0/RXNN6i10pL370ese3GfX5R73osnZXmZVt3ksrfnj95ZOWq7R23/SPx8K54svbxclN77WtyuW/RyVB8Sb/213GN0vqQ93+nulLq271PMx1G0XJmd12ml9eKTH7nXyPumvXaybI0T+TuUY/mTXvmt93lvNHnuoXdc36dpoqlc7yHir8ht1vflt9f4e7hToc2acv+OiGjJqz8aib/N0dP2GahWLhmd595ZE+mvPQ9a21/LqNg6Zv3bhYa3Luv7mM2HvfbXy6VbePHPyFkmz/BonDQ+7tV/j8Sj0XjLaxPxY+S7ajzOOOLTXPvan2Uj+YijaxiRbf2+l6+UWE4zEidbeuTNqfXuDq/Xm6sjMRjXAe+5jDb2mi88tl9bufQFWr/ync1tO6K9PbnmiC+xUNH2tL5Oo/7daD5SUkpV8h9NB7dyjcbTlpzyu6VPt8S/fC7Wj0LHjWU94l9H5Ry1MdGz5JYcw61o5/5VnmudyLxGc43e8wXrs+yrXdJ8O08u3qeX+7LuWdpaPUb97sRaf1D5cFHOzwm11l8jon9BufQFEf1rRPT/ppT+s5TSr6aU/ta0/lgLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgEzN/agG+a6SU/lPj0m8R0R+m9eev2k8NJSJ6TUT/2Mt/REQ1pfQjIvr/iOgbInoi8zeybqbWWv/EB+obAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDvNPjxlXH+cbr+uIpGevkrf4SFX//hy39eP7eSPnD/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8p8GPrxwnBa/zH2GR13t9HOXn4kdXUkqU0nUKa9Vvu9ZqXuPtU0qbelYb2XdPhlKKWs7beaSUqJTSlcOSS86TJoO8nnNWZa61bmRpdXpzpY0v526apks/y7K4/WnknM1rlny9eZVto2tmjcP7KqWo9/nu3Tv65ptvLm3S22/pj//kx/T0WOnt23eUUqYf//jHdM5Ef+kvVZqeM03TRJ9//jkRET08PFzbpkSvXr2ih4eH3TjTNKlzpt0j1xNvn1llkb1k9SXbWjoblSVavyeLJZfVXl7n+m/1JfcIv37kfqQuW/Mk7aLXp3bN2jN8LqSN6c2FbO/JPCqX9l1izVdvT/TOFO1eovW08SNnooVXn/fr2dpSimlXR+WJtons96gdl/PXm0/Pv/DGsvYYt5nWPVj3Is/6iC6M7IPWh1xfy8737BjRVpd4e1ku+24yWLoofQtNJimbPJ89Ir5Dw1pXef7za1b/T09Pl3bTNNGyLPTtt98SEdHv/d7v0WefTZRzIqKZ2u3M80y/+Iu/cPnc7vfh4YF+8IMf0KtXry7X5nkNCx8fHy9+wzRNl/Kc82bOmy1v17Tz2VpjTfd656j8zMss2xPp0+pXw9pj1+/+fVnnWGTvtXXY1Z/2e2GaJprKtCmz7lnOm2fje3U039a6Z35d0w1tjiLrtNCyk+H9+/eUn7I7z7eg3WPPjvfsl3a/2/OCl+/tW0TvZFlv7bmuWGeMt0esMm18PtYyL5TSVrZ5nmiqto5beqXNqeVT8bPGi3/bX2kf2/lTa918bvXP5/Ou35SeaJqeN2fX6zdvKOWrjPKM43ZY3hu/r+t9bufsfD5f6vG90/qzfA3+uZSys/eWLnv+hGXvz2nZ1T+fz1TPexnl/XNKKW7+g7e1/PGoD9DzPb2Yy76f7fq3c5nL5Mmn7XFNL9YzJLvySKLz4p0fkbZaex5XjvhzER/F8ilrphefizbXp5LtNs4Z1ltD7Tzp2eHomcd1yPIJvLyphxfXjvjT0b69ONSqb92Ld+bxc4PPh7VfLNvTbK6mi9yu8jGkveVtuG8usfZ/RE/kWRmJwaRcsqyVW9e8PXmvvIJ1vnn5Bcs383x763yz9FU7z3v5Mr6Wmt1pY03TpOanR3xkLX/Bx9XuNWKj3VzIph7t6kld8nLdvTXz8ihyTK29LOvlz6xxLPk1rGcoy7Ko7SLxnjeubB/VZYtI/HhUX3n+xfK1rHObyL63W+PK0fux7J629pFcYIToPVqx1BGseenlhPboZ3H7e6+8gLcu0VyUde3IOq719vbEuueRPWbdz4i/7fXFx1+W5dJO65+Xbfpn+2HNkdDLdGz1R9s3kTmO2nQZn3FZvfka2T9H9pp230eewVtY+ZfI+SjzItY56OW2rP6kXZd48YCH1cayV15+cFkWWpZRO7ei+T+tTOY4+OcjfosG1+tbzwApixwngtxjWi5PlkfPBC1fNpIH6T3PMm2bkNPKy3k5Qa18FC3mlToeyUVE9s61D/05S++M1fZb2+tS5lGfzIshej6s993LOUg0u2XNa2/9R/2NqB9jccsc8zH8/NpCtfK9T7Qs55dr271fSqFc7WdQ17XQdUofv5g2wsqxyb5781SrfV5GclxRIrmf3nhW/kBrH40nIvso8r3Xb/SahecP2Xu/tbXH9uyo58eP3kM0Jljt8r5s9L1Nz7bL+lK/tL6s3JTMsVn+gVZunbX8u6dn2t7Rcnn8uozlWnl7X4DL+fj4qN6XtGnlodDvvv76ZdxKp9N7ev16ptOyjvML3/+Snp6yKpd17xE8H3Sk7/JQKGf+7s/Lc9JFf07qUVM/PuVlI+dyNHbRuCVncc98lfzes7dH8stWmZxvL7ZqfuM2Nppomtbnhjn7Z6tmJzVbIcsaS1njOWk35DprfoD2XXLdw4WambJiPa1Ms4kjPrDuG9l15eeoP8zb9PzBW2MaTT7rvKnVfneg+ZOfioguHZmrXq5oyS22Gu76O4Hp5+ci9tLLXJWxPMotaD4Jz3nzOOhyzTjLrTzax0bmQnq5kd41y2/rPcOqSnfLshAtVc3pRvwNGbfJe7PsTirX9y7lmvZo7W99Bhi19beyntP7M21nr+d9fMHfZ+L99cbjnyPPcNrHaD7LQzufj8Zr/B1t2T/vy/o3gP6YlXhOTou/RnwJz49r7SO5a96e758Rfe3lz6Yp01Qmtd5oDlHKKctH+rjmpa6+UswO2WvfWxcNLSdt1en1y2OLiD8aLYvkyqJ5VHnNyn/097Et0/WM0N4xt2NT7bNHdF30eZXllXLur1uv356MvXhQswFH8ndLuv6bk9b+6emZpuexfz/h5XvH9vu2jXV/I2t6JE6I5FsjeV09dxaXJbp/vf6i7ypcxhAycp/uFl32dERjlZu36T8jAx8H/PjKcbQdrGmzLKviLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BOAH185ztGfDfoYPzeEH3YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKADfnzlOPiBEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvsPgx1eOkT61AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNvAj6+M82c/tQBAJ6VEtVbzWo9aq9neGzPSV6vH62tl2vi1VnUcrX9e1j7zslIK5Zy79yP77pV7ckqZNRmbbKPw9suybGS7BX4vXK9G9cOTJ+dM0zRd+m19v3nzht68eXOpN717oi+++B16/1jo1au1ny+//JKWKdMf/aO/TPN53qyF1DEuv7xm6dvRe4rU1WSx9p5WdkRPNDkiY8k2no1p5aUUc79ae132ye9RG8+TQ5PZu34LI/uhZ/u0erJ/7Zq3N+Wceza3t67W+sl7kLaDo9leOT5fW0/Xue2Q92d9j+huzvmmPeYROR/453udx7Jvr3zUV7D0VZ6Z8rzkWPNt1ed6JG2BtQ8sn8SyV1IOOcaIXenZTa+d7Lf1xeeA76FR3ZVz2Wj7S45BFDuDeP2cs7pGrVzzY1JKl3FSSnQ+n4mI6PXr13Q6nS79lFLos88+IyKiH/7whzRNZ/rBD3626ffv+jt/md4/Xe+t3XPOeeOHTNNE87yGhfM8X+pN03SZm5zzZfym07xeQ/MPW7k1T+N7fqvP0zRReZHF8lu17xEsv3l3P5nrs35234v9vmifr2XamaCdaXLtOJZ9se5F7h3Z18g54OH6QRNRznsbLPdiL/6KyunZYO972+Oe7lv+3FT2bUopVOtWVyM6x88BHktF7LOsx/cKt5VaeW9fTdN01ddcN2vKb53bIWmfNR+v6U5Pny27z8+a1k+bN96v/GzpW7O7bZyHh0ea5/cbWR4fHyjnSW3v+RY7H+e80Pl8vswlUaLz+ZnOaa3H7T0/h6ZpcvMHfMyG3G8bORTb0+5LO2Obf6rZNCmXF2NoZHZuWEh7E/UVR/ybng9pzWUphZKYM+nL8+/aHllyeSm/ynM+n6me9bmxdEEr19YzkrPZ6++6z17cobuhydeLGS72MpVd+/P5TLTY5+AtSH2P6rhm/7T2zRZZZxpfNyJbDzjcpkTltOxA9JyWcnG/e9QPi8TF1nze0q9nD3p4a2yNcU8ifreVB/T8A0svvD0hfeGIP2/Jz8eXY3p2zFo/6xyUdXpxPh/fyltq17VcUpNZw9OXno56OSotpre+n6eJ+S/X9r0cS89W9faup2PaedsbX+qb5sPy+5L2QK6zJX/PB21/uQ/L/fmIjefwueB9Wb65hnbP97BV/L64b8vhcnp+iqUPVmzk5dE83+5WtGcKPV9Xw7Jd0XJvvEjdaH+t2mqr68tcX6+VUojK1h4eOb9HaOcGn5tIHlV+5/uK980/b+LWVGhZ9v7pVOx8nTe+vCetfm+dpA8ZxWoXOduJ1rXnunEtL5Ro3866F2kvvDni/jRvJ3PE2rpq8ki85wG32o7IftPyhZYt5GVa3zyP0pOH76PRc0GeqZq90vwia42se5FjumtLabcPT/OJavXbjWCtSzS/fTQe6+UORvXUigEsRvy+0bmW/oHm91jnI9H23i3/0fJttb3X85ekXBG/35PfGseip3fWnG3maSpU61bOZbnmqmTfo/6MRltnz88f6U+2GTlne/3K5dBi6wiabPz+e/vqQ9iLI+23fU2UUuvPeveoXSvUtneTQdZfloVK2Z8HR85eS6+8eu273A+1FmrVrLhT+iDR8aw49Tp2/32ZERsi49SjaDlQLtut/pLV3rJF1t63bPjqH+z7955NWOWe3EdiAauvVrbO9fX5dCll96zRYtSfjMTW1rxoc8nP9J6O/9vlOgAAIABJREFUyFhb8xWP2GINa87kfuF/tTymJl/J9WJTWllbwyZ7ax55h0mz6Tz+vlfcve2Tj5so54mmab8Xub6oueN5/+70NE00lX5erM239OHWveDft9Qfabf7fkA/TpFE4ndN7t4e5eNzXarKezI9ubT7iuVy/P2iwfOf/J0s3lbb81ebt312tiy+neNza9m0kXhl5ExKafzZ4mhOsH3W4mp5755PEZHxXjYlnne061nvWh6VsecT9fKI32VGY7t7n7PSvozO7WiO71Y0Pz3n/rt4Vh+yr5E2o32M9H/LOkfbyndorLWM5LhWH2qf50iKKGvd/ftcVn0PTeYP9d6/hvWu3khbon7cY+VBeP6iF3NH7ei+bd35BlG8ePDWObNiG8un6Mfl/Pr+3xr0YhQui/Xd8imO+Lcekbi31sL0av2wLIVo2dYfiTk1vH8vFGHtfz+Gpj/RcyC6F6Qu9fxZmYeRdUc52laL1znRnJX0zWy7vd97PWTMusa4sk7/WaF3HxEfPk7rg6+1lFf/9yJEW3094utrMX5bZ83GWLor5SIioilRzukSyxMRnU4nynUfi0Zk1a5F7LInZ2/NRnIIXt7haC6inUERP966LmW05vwW33rkTNxe5rmz6z1Hz8VofCdZ9w2XmXZygE8DfnxlkFrrn/zUMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG7n+M9NAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHcY/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg55L5UwsAwL2otXbrpJQ29WWbdr2UMtRva8Pr8rH4Z17fk9Pqq5Hz9beTrPvotWntWn35XfbPx9HmRSuTfVmyTdO06cebH6LtvRBd57OVt+/aOvdkicqs4emLN167JuvM80zTNNM0lcu9TdNEac706tVrOi1zV0et6z0di1JrVdtr5XIPauW9vaGVWfOn6a72vXf/Vj9af3wfWXL17IO8Zt13G8+a16j94kTuUZPD+q6Ve+sxOr5FVBcifeScQ/uX9y/PBHm9fZbt+ZgjMno6IsfV5JnnmUopG1vcaxsdI4K3Dyx9sc4Kaff5mToio9W3JZeFdt5qn3tr6Mkiy7leSJ+C993Ti+j5L/u17i26Lj0fQPabUrrsmREbwvfrrVj9e+cQ91WsPvnZfz6fiYhoWRY6n8+Xdsuy0Pn53aWslf/s7ZnevVv7kmvy8PBAj4+PRLTam6enJyIienx8pFevXl365XPDZbHuTepVsynSB42cHbLfts5a254t6tmxqB9gfbdsvlb/iK20zrRt2fWaNwdRn8+yV55v7e2lpgPe+MuymDJofZVSNrq16qy911qf9zqvLD0e1UGPvc9aSJsWvq/k/rzFz/fGkf675rto5Xyde7ZzqeVSv1VdlkK07Jq5fVrXLb2c51mtL8+N0+nkjmWNm1La2Y2Hh0qPj+83ZZ9/9jk9PV/nT9pkfo5wH1LWe3he6PHxpxt5Xr9+Q/PD9T4tn5Kvn6VLI3kQDescn6aJ8qnQNLVra/npdKJp8Leke/ESzydonzmWny5zElaZJZcsa3thlXGr19M00SRkq7XufHk3ppiSOJ9f8g91LZM2WfMJLNm169YaaHPM6+ac1TmNEPFbtc9Wnev3eM6orWG0fw1uS7174nOjxXWtvaXXWi5UrpvUCw1Zp8mec3Z9KpnP08aXZRa3nH18vi19G4nTWl0+L9HYb+Q+js5LT0d5Pa0f6Rtaa9zbu9xe8v4tXbb8Liv+1nIxElmeUtr4BNr4XvlRPYzk+zjc7+vZV61fDWnHIz6ANmYvDurlNabHB5qm7Rq8evW4e44gP3u2I5rHtM4eaSO0eZY+sHWfUr+5jJbOevEYL2/5A+nb8HGtfW312e6NY8Vmo8gzSJNH83Mj/okmY0rJtC9Nhh7emWb5m7fkAyJ+qmxzDyL61su5EPn2wbJ1MnfIY/7WZO13Gy8Q1YvPM3I+tvGsPGYvdyXPPG+OrnHuNn4vpWyutb6WZbmUc9uzLAvVx0pPXzc517/vf/NrOi2njR/GbQDX//Z5mqbNPuJnspfH9p5P3ELUT5Z76xpHxZ5HafR83pF77e2Pnu30zq1pmrq+R/Qstt6L6M0dt1HWOcbbRm2BNgavr/nYjUjMMkIk3yf3svTJci47uZ7Pz/T8vN1zbbxI7BONMblcvA4f455zFlnjkdydVebpAK9j5Su9sSIyRc5HiRenR8a3YiavL+0ZWrQtL4vI2NNdq4+N35y03OR0yQ3Kvq0++X1LUeQ5xn1jzyaP2v5bzkXNXi7Lsut3PQfHnm1Zclr+vGbTtXyxNY4VP/C2Ubn5ft+9EzYTtfyprRe6HBptn/E2Mkcw6l9weXvUWqlM5cW/bff1ogcLzxnvx7eev/D11p6HaD5Fb481juwdr01v/WVdb4yR/L7Wj2a7LV/Hw8tRaXF3u93e8wUPb/9F6OUC2+X293w+0zn1dcbz/7znCvyMsXIulj/mrVnk+fWl7SVWu87tsiy05K3tlvdr+clWnGmh3Qdvb+XXr20SEUn9o0ub1ozLJWWU82XFI704ZeS+c87MR7BjU61vTT+WXF5yC9d5KaVQKvs2Vr/aOwn8XLb2riXvSO7iHkT3R1Sey5m5KaNLmRajWGdNNHdr+XnXPEgbY7/npN/nPbtZ+9yv02k+Ua3+s9C9vP19sR8/h+yURi9Xackp6x1ZP26HU0punKiNbcW1cnyvD49tnLPVW/lcWjJNU8in693jyDWv348Zp5B4XyFy9nnn/i25iCP3EbUvH1KGW5F5vPXsqTt7qLWxGHn3wnp+Hnm+E+3/Hu/wjiBlXd/D0e27el9Topybvq9FzY5o/njNug98tTv3zWtajMQG1nPQo0TeLe3Re2drhNbX+lyV+81pt+733E98bI3IPoqe76NnUrSedT5Hc509GaOM/HvDksuLrNuxb5Xfuz66ltfv13iNSD4P1efv1tjL69vqU+tfi9lv1bmeDzt6n736l3f0UrMH22uRd/jW6+vfUirlXT6INmss9XLbz/hzDC+vo8HncSvbNTe5tZPrfSXDH7TG1nJMrZ71jMLKCUXjgv3+bv1d7yWlvm57ROOUiF216nt6EcmxRW1XdBxr71lzUetWz0djoF79iP5rZU3ebbW0iw3t+4qfYbG621wG+P3B8bfhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DsMfnwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/P3tvG3LbliVmjbnWft9zzv2oe+t2dRo6KFaJ1VE6oUsSpa3YYggxQWIjRP1hVBQ//khQkSCKEOIPlQiC+ENoCPhDElAUgiAihCTGju0HtJGGhqaarkiTBsvuulW3zj3nffea0x/7zL3nmmuMOcdce59z7sfzFJd377nmx5hfY44x5jq7AAAAAAAAAAAAAL6U8OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8KXk8LYFALgVKaWb5BERmSbf7xLFGM91lmVCCOrnXEZLr8nPQwirz626Wu2KnPqf5e21X5fzyFrm77Wv1VH2I4+nlb9OL8c/j0tdb4uyPs86KWWsKduv07W6Qwhmm8uySErx1X+nPDFFiTFISnHTlneM8/cedV25TJ3unScP5bh6y5/Hxhj7a7H2YG7b2v+1fBqtOWuV09qx5lRrw8przXGZv7VfWuvPoiW3p7xWxtJDWrueultrv2xT639rXVr7spYpf5+mqTkX5bPcrmeOctneuqr72Oq71b5Wb4mmW8sx9OyXWmaPXvGueYtyLFp5tP61ZK/XmEem1lm/5xyw1ozFLXVx2c7r0vGj53mmt5Zaz0MIMs+ziIgcj0dVdy3LIo+Pj+fPOc/xeJTnz5/LixcvznLO86Mcj4scj8ez3B9//6W8eHlqM4QgT548ERGReZ7l4eFBXr48PXz//ffl6dOn57o+/fRTERF58uTJucw0TbIsyznP3d2dOm7WWJb98upz7Ww92UzrfDHGs2yaTXopt91nOV17VuvU1pl00p/nb2f5cz5rLXnPZkv3nmzLrGtPz47Ho6Sj3/6q29TGPaXU1en1s7pea44sWay1VObJe6j8Pk1l/UEOh4PMaZ1Pk7fkWl2j2faj9mGrnEY9XvU54LHhvevdkvt4PKrpLf+33oubfLNICNOr9FPSNOm+ovW5tKEs2Wo/2dLjZf56vHL/a58vp5dtxHjy40qZ7u/jWS9nfvT8R/LwsJV7nudVG9M0neuqfeFlWWRZFolx25dybsrP5bzkvZu/l22WdVn+e8+3GPEXc/OtGImvnq0Oz/qkttXKfvV8llon1XXlsWzFS7R0LY6wLItIMTejXPq1br9cp1aMpTzfWj6l10/UqO2/GO2zSpMx5xnR5z19uGfN5nIjfnpO33OOavlzfXvzt+IVpTwtuTzzUK8xLV1roxe/tdrWdKanXI1lX2rU66oVC+y1V6/HPfGW8vmemEzPxqjrKHWk16/V2qvxxvBrP1hrV5vD0XNmdE619kee1zaMZSvvsTs951W9rsvztGbUxk4pSTqfOf34YCumZfk83nPscDio9mF51vRiw9az0ThPq75yP2r2jJU/l7F0cb2ueuupp3tLFoc90+pLOZc9uVqxwdof0XRbK07oWd8tnVrLV8uWy+c6POM2Io8lkye/tx7rHGnNhWdP5LWr2Z5B9DbLz5Zc9eeeTSRi++Ui29h2aYvUfpamv8vYV0mMUZa7KD968vJV3lNd775zJ+Fh3RfLxi3jfYfD4ZxeylbLWPrZmj3S8v9rRmMztY+a5/9SfZIkl7EIwaeXe2t8xCaw4ox1PbXP0rs3ENnazdq6aNlHdSyiLGONhRULKfM+Pj6ac9k6I0dtrZYu9pQpsWK/njiYFavV2jzFbNqy13Ni2aUje6umPgf3xFM0Wn232rHO8JGzyBur1vaIZTPX1Lq755Noeqvs24iNVJbV8vXW/16b06qnVV+pO0b3qNeGsuRv7e98dtYx0ePxKMvA/0Vd752lUhZNzjJdi12VaOPRim/VdoPGiN3qmQ8rJuzJr7XhievkPK07yRjKsz/bKfOr71NVZl7ZMDVr+9L2mUpKvdZ6l8OTlm2wSx0Xm6a8B7C4v78fjsN6z2crZufRyXX9Ld1vtVPK3Pqeqc+A3FZtT2l+vSWb51lLpvqZ1pfTe4DrMtY9jYh+DnnWita+JyaW12cI6/uFeZ7POmmPzWLpUa28tuY8dpNVt1fW3O9SrxwOB4mHdqyk9Z6AFXvzyqOV0WI38T6+mp8k83zySQ+Hg+RT5P7+frPuauq7IUt37I2ttvyR/M5sWV2MUUL0t7Mdb59smq2T10JZV7nvPPadFTPYa6f3YllW/pF8lvwn3bVNizFJfHWf6bFPPb5YJp/VZZ5lOUqIh/PzMqZc4tH3Zb13d3Gzrw6Hg8S0tSfqfo3GEjzz54mvaHGs1v5t1avVb6V5bIHSbvJQj6O1Trxt23Wd1nF9L13n995zeGMRWplWX6z+e/fPaEy4an1TVpvLveeAB2u+y3Ftxfj27SvNXtt3F2jpaqvOnh6pz8ZWm3uo/dHSbtY+1+1Z/qDXjyz9Qe/eG82f37nMnN65bN8hlixTVN/FClXzXr1X+5M57RybmLZ2s2b7t2Kennh8Xd+I3tbqa9XRs701cb1rScMqc7KVx3yWnLauY8uozmj5M615tNrR7PStHr2ke/0yqz5tnPbI5CXfa/ltgfO3Is33bw1H8ej39hhf0lv+WM8m7eHt+5516bn/zuyxgVp5PLERa+zy3F38jst8nPS8fvZd1tglnndJ78UL83/tOLunrlquMl/Lnl7bWrneHAvZ9qt8j7vVdplen2FauVKWVvyhldZaI2VfymfWv53Yq58sOVrprWeecdDq0HSup/5Wnt5+rddVec7kv7WtsMcnLcv2fOWe3qyr12TUyt/+/Ni/3uD1MW51AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwB4MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4EvJ4W0L8KYJIfxc63lK6a9dU/6zRq8/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX1a+dD++IiJ/RUSS8SxJf0xa5T9rePoDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwpeTL/MMc4S2XhytJKUmMcZUWQjg/G6lHI9eV/9b589/6eV1n+TmEsMqfUjJlrvO16h2VuZfeQsvbSqvnyMs0TWr5nF6ztx0La0zK9GVZzp/nee7WWc9/lllbxznfNE3n77lo+bnXRgtr/j3l6zytMtb62LP+evtlZO1713LZRm/9hRBc9ZbzpOmFMp/Vl/JvT/eNjHGPXl2j668uOyrryJrXyl5bxtLxllzW2quf1fpeK9PSe9fq3hLvONXrVavLkqtcxzlPT0fsObta+21PO2Vd1merrnrtePZ0ma+1Fsu01prbu3dajOjWW5/drbZqtPPYU3fPpqrTrLpjjJu1LiJyPB7lxYsXIrK2Mx4fH+V3fud3RETkRz/6kcQYz89/4zd+Qx5e/kB+/8/8hByPx3OZv/l//6Y8f75tP4QgP/VTPyUffvihiIi8fPnyvF8/+ugj+eCDD875Hh4eRORk5zx79kxETnoipXRuf55n1Q7KNozWvrWOY4xN2/q0P8r0S51aO9r3ng2i7dPefosxFmmnv8uyiCjT39qT5ZzX7avnwBylTs56zrKVat1cjoulE0IIpq1r2S0eHaXl8z7TKNecpQos3Vvv1T22k3ddlWmWPTRia1v1957vsdn2zJflP3ts2KomSak9bvlva11r/an3jLX36/1T+gB3d3fnsjn9eDzK4bANux2Px82ae3x8uTobRERevHgpL15s7YMsS26z3J9lvtz2dFwkxmXV32VZJB8Zh8NB1ZG1Hi/HJeur2n4r9Xgts7VGLB/rIs86bVkWkeU6u+1aNJlb/bCeu86vw2Gj3w6Hg8yKLaKdq+XfMv2yfi/tWmfI6BmQ7YQRf2CE0oay9EF9ppayWX62ppNyepnvshdkk5bb99A6d1vs8ZlH5qLWNWX+2o7qjV+pk1tnreYPeujlXdtoF6z1kbF8xlZ+z/lS1mnZaq20UftAa9dKb9ngrfRWP8p6W76zV3dbfn0tm8cW88YxNZugFe8ZXTvesSy/W/5UL34wIlu9nz06Tkv37GfrDiCE4Pp/QPDsg1r+si1NP7b8/Xpc8xlprfe8JrWxmKbJTK/r6sUiRvwZbczKcajHxGqjzNsq3yKPn6VHW7RiLj1ZrDNLK+/Zy547q3mer47l5vHqreEetc1e0vKBrHlp2V29spocuc1aR07Tdp8dDgc5HLa2zuFwkCn2x6YVC6ll8JbJWPq61MmHw6Eb+6llqc+6eB/l8T4/P6W/+967Mj/Opq2syeWZ61r+Mq/XhvXaM558p3WxjT8G2d6hamdiK0ZnySsydk9d6++yvWXZ+ukjstT5PfZ09tW8eHx6ke2YlD5kHSPwrPmyDyMxNY2Wbd6ru/ZzWvPZmv9lWcd7siy5/tac5bG1bNCWbWzZfyN+hHcPWHNmzdPIOrw1lv/ptQHrfPXclp9bfkumHIvWOWyh2QWanWTpfs85WO8f6/NoPGQTaw1JRIJIwxPwvDu0jl/4YvWlXHVddWzEqqu351rzWfoWZflte5fvZXzXkr9ut3XeazK31rv2vcU0Td0xqJln3Z6p2z7NeS3baW+V6Xkte/yIegxO97K2rBajcbzRctr68sxLrRN6+r7WAx791LIjvP3T9kXNSOyhpt57LaxzoCVT705As63n+SDTbN+dWf6gFWPwli/b8+vz8nP7va1e3fXZ0rJvrHXriYWM+HM5/yX24Stbj3HrbrHMV7atnQNa7NHq82btTXm+wuqF93Is53lrd/bONq8/OMJI7HFvvXVVrXWlle/ZUJmN/+6w+y0ZWntnz9h49bAn32n8RGS9uiSEINM8yzx4L2jpi+0aDNW8zJXdvq3X60uW95DLFDd78Xg8yvHYjxuOzGuW/9UTCeGiQzz6zRtvyX3w0jtbPPawp30rXuDdm969YMu1HvOxstt8rXPP8iG12F99vlr97MV4b0M/pqI985z99fdeHLEeh3Kf7ImRtNaPpkta7Yzq5TI+1JK59T3LmB97dXcpg5beeuf1EvPaxnd6Mcpe3K+ss34vScR+b6vVps12TK/ZPyEEU4+Uddf2QYiXz3U88vRuz+UOpF4vZXnPO0nW3Fvvk2r+kmeNlTHNVnkr/nE6f7cxiRDX37U2Szx2nojIFPW4XO0LW36u56zOn62YdPnZE7tqtWn5pLaOvDz37oFyLdZn9x7d38MaR61OS6dmG7Ilm2aHtOrN6Xv7otV3+k+XT/vuXRetNr2ytdrJY+GRp1dXK13Lp70blvWnhsdeCCFI0u4gjTWe5y7G7R6u44qaf5rS6bN2VmjtlN9r+b1zKmK9A6v/O45Lm7osPa7RAXvL2fpgbee1xtUry8he3POOR6vtVrr3jCrz99bNSJz0EjMQyTo420xW3d5zJNflydf3X8rn2/O+ZTe12rFktu1/R+zUbB1eF1/mH1+p19uot/RZX6+vI3oCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwheHL/OMr5Y+T7Pkhlc/yj5t81n8YBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4K0zvW0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4Gh7ctwFskveXycANCCOfPKSVJSZ+WMl/JNOm/P7Qsi8QYm23ntnLdZV2WXGWdOY8l80h6CGGVXn8ebcMihGCOpYU1xr3x1crHGN3lPLT6r/XT6rtWT05rrclcn3dMUxK5ZA3nOvbM757227LZY9DL793HdXopf28te+ezV8/Ic00nlOvX2steWb06Sitff7+m39a89KjnPf8dWY8jczjShz3tXtO+p14NTb/mOuZ5XqUvyyIi/XXTW6NlG1r7Izq6rt97ho/o4pE8ZX9G9k9dptZjlo4KIZhnpNVWa33t0eXWHvKcXZ4yed1p9PqusedcuSV1/0v7zkrXZNTsmRcvXoiIyPPnz1fPPv30UxER+bVf+zV5+fLlOf3x8VG++93vnr+/884kx+PR1Y+Ukvzqr/7qKu1b3/qWiIh89atfle9///vn/r733nsiIvL+++/L4+PjOf88z3J3d7fpTwhBDoeLi2nZp5pMua6Sep1MyyIxlnO9Xn8hhI3+y7TW48iZrMkZY9zUEWOUEC/ly7osP8C7L3L543SUaSplPPV/jvoYtOrqnanWWJR9ae09bY/Un622RS5jbtkd8zy/WgurWty2Ze1zeLHWjvbZW5d2Pl6eidRNat3bY+dfe47uaWfMBg0SwmmuRvdKrks7ozMjdk3W+9q6iTGe0+/v79V5vbu72/T97u6pPH261lMffvCBvHzmW0+tZ3cyyTSt9cI8z6q+bvmJnrVd+0DWXFltaHv8pOvH7ek9tsYo5Rqxzv2a0X25KHUfj0dJr859rw2k65Z41iEpJXl4eJD5cevH9s6Aug3N/83z0ZqXadqeJXv3fI2lr1v2gVrPpO+NW9qfPX2knam99rVz1LOnShun9mtae9zyjSy9atkJIu010zuHe2vHYyOMxAe1elrxwVa/R9HsS68vO5qu6erRuGCrnWvG3BMjtGTTbHrLRrZs07q+zDRNV9nTZfqyLLviWJa+8NgXnvGv/TKRbWyqRZn33L+Qx80X+9XWf60HLHvGG2+oP/fqyGlZjnose2OkxQ+0ulr1WHq8pOVLW23cIl7X07e9+NpoXK31/Bo9ZrGJabz6rp2H1jOtj9M0rfyPkmtlrsd89D7O0qO1HmytRUtHa7biXh/Ja0P1ziTvurF0VEuG8ryx5jnP0aXuU12Hw0GmuLbrrb60dL2WVq4/K/3aewONtt1WPkun/6X1PAXRY3Eamp9Tpln99/gte/asd9177uNH7c+9OkXzs2p71TpHW/ulTPPs/9Z7IBYemyzLqMUWtbO79glSSrIsiyzLdiy8sZfahvTEcvagrQGvH23p9D0yjazFW/nn1lz0bKq9bYjY78VYuldkPTbeudHuQ72+VEnZ3mhMRs0XT7GqddkoZddbvlVte89RJIS1Hpjn+WzXlnHckto39I5rL8bQqqen2y920NoHKOO7Vn179L1VxrMWrb5ocUJNztZZadmaJ528laelz60+5r3X0l/lOhzRu5btWK6N85qcTnFxTd/X67blQ4zEsETW63RZlu6ZquGJJYzGGVrl856+hX5u7Z0Rn7flX3vO+pa8rbrLsahlHJ3Lni9/Dt10hnbv+dDa75n6HY21fGNnmqXbyvFaqvcUzjbd1PeHPO33zpF6b1nxvnK+y+en/CePqSbIurw3Pq7Fvr1zXo9TKevmWdDOqij5/3e29J+t9nLdcd7a68tylBBPZ6plH+TyOY92dub/tH2u9assZ8mspWt73BvnaLXjjU+X37t7rbMfW232ZLDqs9JPZ7xPbm1O6vXbi/lbz01baU4b2zXv3VHbrs5nlbd0R8mt79tbczRyLoyWF+mv25T2y+GN9bXiGR4bSquv1e6eeJwaB5iy3luvGU/93pjoyB7X9KBFz4bL9oRXTm+c22qv/qyty95ZX1M/KvOWvpcmq2VP9bBs0tY52sNzNyLiv2fr6o1pqwfLGO/e/XN6X1R/ftlL/XpqyjjRJXbi91FGadVxy3+EKPi7AAAgAElEQVTHdUsse9wzHta7vykF8/zw+IzeeEtLrhbWvyHx7gstljIi4y3WWqseS9/u1funcrod72nHY6vXMvTsD/0euDzj23Zp+d17trbjaz7fTqP0l7Q2rfWs/buH0/3JspKh/DcK9Rjf38VN7PXh4fF8B1Piieutx3qrG4LSl7VM62fzPMm0WO/X6WVa89mz9UfmrmUbb79vdUg5L6O0bGMLS0+19qfuQw81a+LxAyy8OmVUFo8cvTiq9+yznpXlYyznrEy/rJ3R87K17vfEVUrZrHZa8rV0ibVG7PFff8/26Up+tSS8Tr6sP75y7VpjrQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzO+TL++Mo/+pbLAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGeAL92Pr6SU/urbLA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfDaa3LQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA2+DwtgUAuIaUkoQQunlSSmr68XhcpeW6QghqvcuymO3EGDf1l3+voVdXltXqp5feWO7BqnOaxn/7qVWmHn8PmmyteuqxLMfdO87WXJZrz5JxK+5pnVrjovUlp1n9tORqUedpjYVnnKw2rXa8Y1/u69ex1j1y9eaqnpeWnFa/rfSy7TrPHj2ljWVKaXgveuf7Tde3Z0ysM8k7V+X31jha6yiE0D0HvLo3xtgds1rGaZpW9efn1+qEW5TRyt9ijss6LP1t2RR1+VvaDbUcnvXfar/X53pdtdZ87xyq69qjB62yrfzec1F7Zsl4OKxdrWx31ntlWRaZ51lERN5///1V+suXL0VE5Jvf/Oaqru985zvy9a9//fz96dMgH374nnzyyQ839m1Nbju3+a1vfUt+7Md+7Nxm5v3335d3331XRNbjM8+z3N/fq/0+HA5Nu7Qm661cJsskchqv2vae41LtG5EYF0lpPrdZytrTQy07yrL7tbriHDfpMUY5hNMasNrQ7K4RHXCqN89DEpG0skt7Z6K2R6z2e+e7dib0sMpM07TRO715Oh6PsoTlXOc06X3fs9dbOryn37V10fPpWukhlD5B1sFbPV+3P2rTa+dTTasfI3awJt9a/q29dI39sB7P9jqxbLVaP6SUVJ1hpYuIPDw8rJ7d30d5eHiQGOM5/bd/J8nDQ3/u5nlWx3eeZwkhyHJc5PHx8ZwegsjLly/k5TIXaad26rMrc3d3p6ZrY1jqGK9v0NKTeRpKu0OzOVv19PDaJRnt3Mry3pxX82hRj4sV59jINgcJYVrtjXmeZY7TrnFs+Q+tvVByPB6L/XdKe3x8lEfp+yYjNuPoPJV1a2MZY5Qw4Ab3+qLpGE/s08uojt7TphUv8Nr6rf6OxMBuTavPPX3xOtu3zkZrTG4pU+63ZUd42m3t0RHfooWnvKbTe31p+Zx1fR7ZrBiDx5eusc6Eug2Pj1+Xs/Csg1bsrG139tdVS/6Ln6DHR1v6aE983Er3jFGdv+6PZquO3Gm05Mv5tXTNT+u1MaJv8vk3cj9htZv33557gzrdqsNj25SU89g6dz1+UyuWUWPFiDxjcwvb1vKhvKz3te5zXeIiettandeehS1f+9r7iToGV/7Nz1d9m3KftnVp53T5fY+Nac1lmb4sy030Qo/X4n+JfiaVcQrL57rV3VQvPjiil1q2QKuPJb11NIpn/Xny1Hqw7P+o7vGsV02Wcm+27ubu76IcDp+u0p8+ebo6Wz0xPOvuZnSPX3Pn0mPkLurWbWhn4y3vhkv9PGoT1TJ55JqmyeUDlHV5/WUtluaNRZRtlHvA6leM0X13sIStLg1Bt4V7dV3Kn/6WU6PF9er+t3zRW/mpJT3dfjpb4+ZZ5zpQRPz7YPTOtfW8Z6fX+cr1U+tWzZfT3qmpxWvpwn58p31+WO8G1nj1lSemVMcnezL12rTKeu7mrH5pNqDlp1vy1mtk5FzZ63OMMrL3tf7X50ZdnRUfGY3/xhib74i15G3Fjkbx+k69u0jPXaXn/s/Cc9ej2VzzPKt+myXvLd5tzXVb7xdqOipOUWL06XmPDbnXN/Du6XI/n9agPm7aeHbjKlOo7Iu0+m7FVLNs+W89xcuyyFI13YpDluPdsg+953NvP7Xusnt190jzqzFZxW/teG7Zbu/ev29/rPNe3jdJmzVb7lcvKSU5HOJmXR3u7iTt/P89HomB98bnFm2O+jMir8/XHLXbyjLeGL7nznWkfU8+S8a9+94q7zm79tQrIpKmOj1s3tnwnNWt9dY7872y1jp19J5vi29fan1r7RVPf+u2altNK1vPiybf3jt1z53E3vd1emVfx3sAt3jvY836bNuz/1r3cGtuF2NXa+/Ifo3d610ji/QnwlPX2N6sv6/ttNo3GtVjHr1d430HZc95fqpn9W2jQ0b8wVGbpeVfeOPgvXb1GMX19xzX2hJj9v/2vLr2/a6eLXftPZ4VW7Dktt5VtdB07N3dIvP8SZV2EJF5JZMla1l3j1ZfrLZiTBJUnVHu3VM+677xVrFov/9+kWsrSynTWKy8pUutfrfsaM/atlmP/54x9p3b0s1j6cTRuPPefCWWvetdl5qfmdK2fN5H9Rzv2Zd1vl4csi434k+22q7/Wn1pnwPbum+1/2E/+70cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM8x/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCnhx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgS8nhbQsAcA0xRgkhqM9SSqu/1vORZ1ZbWhmr/VyHVlevL962PXXGGJt1anXUdbXateofaXcv0zTtbmeatr9JpaWJXPrSWhdecl3WOtJIKTb7uWddaHPc2w8ja3yU1v7t7YsRLFmXZRlu3zu2JdYaG53DPXvSYk9d0zSZum1Uv1lj3Br7W+huT5nRuvboo3meh/Jba3VvGz29N/KsNfej63iEPed/j1pezzqxdKRVt6aHb3mmWnPber5Xn9d1tXSHxZ61fUtutY7K/NocHw5bt+zly5fy7NmzTfonn3wiT548kSdPnpzT7g6LPHt2kBcvXpzr+uCDD+T+/tTuV77yFbm/v1/V895774mIyIcffrga5zwfT548kYeHh037T58+3aT3dFZv3Wl4z5MQpnP7e86amiyrZfdqZeJ93IzB/f29TA9j5/voGbfeUxcd0tuzo7ojhNC1Ver+e/ZIWWeM8bwOtX3vsa9OfRdJSSTGdKnLoUb2nA0tG8KSd3Qv1PWUtlZL5LJca13tWQvWebXHZ7TylN/Xj5IsS1TndNSma9k62riklMwz6eHhwbRbrbrqWEb+PE3TWbZ33nkmh8O0KjdCOSflMEzTLCFMqzHo+XbWWtHOr1v4gSPsOWNKYozm2B6Px01aq3/zPF9t39Z7KSk+1t3dndQnb97r1lrstSdyWX+tPuyxP71romw7F5nnedg32tO+18df76ftvn0d3Dq2Up8RIu3YR01pK631dXud1+fj3vPJknV0nFq2xWhdozbc3jY8aXU73vS98nj1y97YtXdcy3N0pI1W3lHfQrun2GNjWn3IutDSibeIpdQ6oTdue+5X6mf5s+7rnXTuKf307DAfZL67PPeyJ/Y7Uk+Lcs48MSJNB/bO373zPxrzuPYewNJ/KaVdsdCRuy9LH4vY/uzI+riVD9jSfXva0J557lVvwYi8npjh2h9e647clNdP9mDdM7bsZasfXpun5XOX7a/quIsyz+u0w+Egc9J9kxa3XHuv0y8sfZMQkuQz4ty2rH3gW94P1Tawp65Rbnmmt/RVbav14j2vQ84erfmp94/V51ve5Vry7YnX1H6kp91RO/7atXrLe9IR9uqPN/EOSs0t9GBrjWr20Z47d48sPVtsNC5Uxg5qe9i+81zOcf0ybUrjd4gpJZmOyymWXPD4+CgPckm7Rhd4/b9bnImneV+PgxWHLHmd8apRrLi7Rm0DeqiHP59t23MhSksMKz7ailF63wWwaOvOMnY7n+2+EV9oL9p5q+Hx/8u9aum31h2MNcYjvpnFtfd21+HTG9Z7NfmZRTl/1v231q5lJ5b5RofBinXsvfeqGY3N7uF4XCSlWKUd5Ri269Pye29pK1nxJi09zIWvKdtYnMcXLWndR1l1WOPS4nwHOW3PwVIn1rJZXGQu/ciw6r/Vr1L+adrui8PhIPFw3V3WCLUvos1l/Vy709WwYh7W2C4hSu2Xt8pZ603TE+17HD1dl9OQvfE+2vkMm+ImlhaXRZalvZ+t8WrZE14V8Vmy8Uqu8TVvEd/u+eh77m+uuSPJz+s7WsuO8erhW8Wlxs9DO793Te79tw63YM/5X95NlWm9+MyetTV6p3tZ72V69rv6suyJl72NuMu17Il3j9xfVLWe69bqn6ZJ0tReK9fYi9fekY+899Fjz78xqJnuDL88emMEY3fYms1ymo/JHW8eZTQmNfK+iKfuFLbvHdf1XtvXPbH2Vh3Xn3W+8RqRe8SuKce1v0btdXdtfN8TF/C29SbuiTKWreSRobbHrHR9LYzdmXns+ktbup1xbazx2jW8fl7+Dau0aerHEkZiXBo9O/Nae32krtqOv/aexvZf/Xtv71nSumdqyeVpp0wLIYjMp7XSzHMF2n4Z1U2W3u3piLr9PXbXiBy3jUvDCPz4yheAEMLvEpHfoz1LKf21NywOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA5wJ+fGWQEMLfLSLfVh59N6X0V9+0PK/4YyLy55X0JMwxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACACj/MMc4fFP2HTiSE8B+klP7MmxXn0vxbahcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBzyfS2BficEoz//v0Qwn8TQnjnLcmViv8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgweFtC/A5RvuBkyAi/6SI/PUQws+nlP6fNyxTluFL8+MrIYTuMytPStthsvLm9Gna/l7R8XhUy2h5vbT6dW0dud/zPJvPRuWxymnsGZcY41D7y7J0+1L3ycqfUjLbb/VlZEw0eTwsyyJh2ZZrrVdL5lb/966LW9Bqo9eXWu5WXyysubfqCiE0915rnEflGtFhrTZaZVr911iWxWxjdL20xsSqa8/6Hjkj9mLJpY1vzjsqV0sfWfNozVerHYs9+qB35r4uLB1RP7+W3hx622nl087yXtnRtdU6B0f1yrIsal0xRnMNW3vCartlM+yZ21G7pWezaFi25CeffCLPnz/fpP/mb/6m/PIv//Iq7Z13Jvm5b//uVdrHH38sz5+f5Pn+978vH3300ep57tvj4+MqPa+rkXOzZ3cfDrrbqbXRqmuO2/RpmkQG56m1D1t2hFXmtLa39qgYy2HPeW1RV+U5c/fogVvZUHvwynuSM5e5lC3LW3pTayPXb+3RkXHs6X6rrnoclyXKqCprrYk99llvLVh7eg+nqrb1aWfCaB+tvrTmyNJlo21oNtg8LzJN0+pZjFHyEpimyT2WWb/n9X6QSaZpLp4Hmed5tR/y57qNlm+p5fegrRFLZ2h+T4xR5hv+lrQ1tnvshlvat6XeqEWJMUpw6NnR/XqqV89br6vRtup2Pmt4z87T3/58vgkbcmRfvslz3HsO7IkTiOj9PunLrcytNkb0zl5uEW8Y9R897bZiERZen7AVr9mjI631bPmHlt02Wn8La6x6/rnWhjZ+ozLt8YFf9xoPIWzGqdVnEd0+ivO09bPiIlOnLo1RW6YVnxvxKfakt2zulu66lpaOKJ+X363Y4i3XmGWDjzLPs/vc6dnAI+O9Z4/29Hj9fPT+qqXzR8+uEZ2V5dTWzV6/MdvKniV3K3toj61Q641ct2XXjGDFpOLj67UvRV75D685lt9bY6fPZf/T6X/pUi7GKFPa9m2vPaqVGaln792LNj+tO7m3yej9pVfelm3ci09rdVlxIa9uy2nWPFzS4ybPy4eX8vBwmdOe3PX8W/3V7DBvG7dgNC54i7jSaN5bjkPrnvUW3Eq3WPbryN3fnvtA6/kt76Bbds0hXfZD+Y6Ux3dryTga8xldJ7dco/Uc73lXa88dglZm5F2G0ffDRPS7svLvJX3qyqLZe8uyyPKa/u8Ntf7EOUqMSUK4PItxEVnG4r0Zax61PZHXrLeu0TvPlNJw/MZTr+eZ9tzys275vpAlQwzxNK9ngizLUZJiy4/uq9F3p1r7Tovx1NXsuUu+5d3MCKM+ly1PUH2KEZ/7lvGT/j3/K1t6lX76HNPlPtL7Pl7L7rwVWVfEaRv/X5ajpKPfns6kFFfjIbLWr607sDJ2dtEdIvWd0ei8vu41P9q2tUcsX/j0n0g9DjEmWeIiqbKFRtbNrcYmxqSe5Xt9iz067yKLpYP8PnOu49rxaZW/1ibdY/Pf6h1er62izWOMUZbF9iX32MaetJYe99Y9GhcZqTuPVVl1OX5en2dPbOhWemBPPdu4o75uvHXfao6yDLV8KW39FqvN132Gf1YYHevW+zLXYvmarxtvbGzkjrp3n6gxsuZCCLKEuPHz8zMP+84O3/mx9yzoyZTr3atjRmTZ1lu+n7ZXX/oZ+fdtt3q/bG23btP3MiJfb03lv3NMEsJ6POZ52vXvRayYx0gdGqNn2ui/e7uFPbPn3RutvHfNnNPn07u5p7ZOz6Zp7T+f/OntHWudb1TmTL0ux2N323zWWLzu+6hr74P0fCK1jeept95P19rvLZ177Z717i3vGTVa75ugFQfTaMXkyhiZ1ZVr9b3HL03Key+ntLcXN4ITXw7v6fURqv/Sq78/IyL/ewjhH3qLsgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEADfnzltuQfYEki8rtE5C+HEP6ltysSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaPDjK7cnvPqbROReRH4hhPCfhhAYawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM8Qh7ctwBeUIKcfX0mvPv8pEfn7Qgj/TErp+29Vsi8YIQT1s5eUkvo9xqjmPx6Pw23UcuXvLXmt9mt5y3TrmVXXNE0bGaw6enW9KXryecrk71ZdrXmx6tLKtOaqxTRtf6cpz28ummKSNEUJITTl1darVn/JSF96aHWNrm1P/dYe09oYnZd5noflsgghDPczj1ddbpqm4bpa42Wti9Hx2qOLWv2w5rKli7RnrXVvtTGiC/bSkstqY1mW4TItRs/Okfw9fesp65Vnzzqy0vfMy0jePWPea/cWcrXqyGNSyt7Kb839PM9nvTq6LrT8rf0gous7Ta+nlG5m40zTpNbVmvf7+3v1zP7a174mL168OMtYpn/9619flXlyn+Sb3/xUjsfjeVy+/e2/S16+vOj+em1nmT744AM5HLZu4TzP8uTJE3d6fjayxjV7NBNjNGyvbdoeG90iz1+991o2vCVXz7fo2WUatf+TRWwN+7XnVksPtfbOqB5s2V3WvrJ12kWGMs/xeGzaihajNrLlN4zUL7JdI3NM57m2qhzZg72x0OQePcc842rZ8/OcpP4d2xD0/L3zTZuTUd3fGhfrTLLSY4yr9qcpbmz/ZVlkWbZ6pO5/rUtLPab7l2L6kpZe3hNvsdD2uln/HGSa1s/meZYQ+zagl9ZZNLpHWvL07BZNrkudZb32XFh7ydrLIz6q5ZtmNBugdw5anOrJemBerZmR82jPOdsjTT6bePR8vOUea83p64zr5T5odmWmls1aV3tipqPz7fH7NFvQwrIVtPnQ4ollPq3MnviUNa6tuvbYSTV7z9eRZ7eKy+ypx+pfL1ZVrrmeTh2hZXPn+bR8wZGYqta/1vxYe8xKV+PI8+HVOX1JOxzuZEqPzfat+rR0z11NjXaml7HakTuXvWel1v7o/q3bLNeL96zqxeVa/bLWpbeOaZrM9aSVacli6cU9vquIPh5a+7kea81416XHH/LI0+JWene0/nK/LcsiKb25O8pb99kb1/DYNKu1cdiWORwOMkU9RlnKcm38YI991KJlN11D6y61J+OIvzRq53vvoLwxGs3W6NVd1rPnDmLvuHrztXTbLeNTHplCCOa49sbBI+uo7veMzcj5cgs/QKR9PmtYe+dW9MZC41Y+++h7OFacboRyjZbtjcakNDxjcG0fUrjEvr3temMEt9L3IvZ49nSBtw0rFlHHCJdlkTSNxQqWZTH9xMwt4i5v2gY9xV/O31ZtxVjHohaRpa1ze3d+NdfG9co4fq5rmeNmzKdplnlep1mxNg3rXmPbztSt69q4q7YvWjabJ/7gtWVasZBr7YVW2+r4N+bZOxae+KplJ5bpe96pKts83XnZ+sWK31txkVb86Fq7u/d+nLnXj1Fa9zM9eVqxBOtsudZHOu+r4l5jChe9M6VXMf35IPFwGZfRM+tav2APls7oxtGnUN09n+6itXWxfS/j1F/rnes9Z32rTQ8jcnjPYe39MIvcXkoiqTo7pynIPM0yzdfHcrayjMXBpils7htz/lbcu3XHM7oXy7K9d0/qx1Yc15oj6/3zbTuhW9foPXIto9bfUbvZ2u/X2mZavdM0Db/31pPHymfdC3rbtvTdLXTMRrecz5Fcd1iNn7UnWvadxbUxAs+dmZdT/u369a7pljxeWn7bNG33lxWXueWZfG2fPHHIXvt77vbqcUnnr+u9OPKewNp33Le/8pzVejQ3v5UprfLEGCXEV39vaJN5Y81erDra93Pbvdba46O6dG3r2TGpEb9bZMxfHpdTjzfuORPLMc7ZNB1incHe8dbGq4xPeero4YnDlnarlq6V98h4yzugPFbLEjf3ocsSZZkufuPoXUX9bM9ddElv7Y3KVtO6A/LeD5Vz29pHrfLa/cVJ79rv+ywhbuZnWaJI4faHELrzbO0xj65/Hb64Z/9YMTbLt67rstp9U/T2/qgOaLXhLT8yLtr492zjsm+jfbHuo67F0sk1e3SEtU+SEufxxhO1Mrtid3L6NwSnj7lt31jA6+f2b6F/uSlXcrnag4j8YRH5X0MI33zjUgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAGfnzltpQ/7Zq/57QgIt8UkV8KIfxjb0E2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKODHV64nFX9/RbY/wCJFWhKRD0Tkvw8h/FtvTEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYcHjbAnzB+FkR+a9E5I/L5QdYQvE3/wDLLCJ/LoTwe0XkX00pPb5pQb8ohBCa30VEUkqSUv17OJdnGtNk/y6RVSaEoLbfIsboqrtuZ0S2w+FglmmNSy3bXqZpulldI+Ob87bGdHS+WmvJ235O987j6XOQrEpCEAlTkBAmmedZ5jSb9UzT1JTX25e95UfGK2Pt4T3t1/W19miuq5bZSvcwuldb6dM0berr7SurfS091zUil9V+S0eKtPWrVVddZ65D68s823tiL1aflmVxl2mNbW/Maqz+hxCGxlfEnscQgvqstQ/qtj36zsJ7dufPrf09uhdz261nLbT29pw35d+y/Oh68eI5N60139oL1rqY59kc456M9ffabinbrNdxS1Ytf4veGrV0Vy3DNE3nZ8fjcfUs67Qf/ehHq/S7uzt5fHw8l5nCaQxCCHJ3dyciIk+ezHJxRU42Yfm3lDe3Xz47Ho/n9KdPn67KHI9Hub+/V/vf2/vaPGpjWdox671Qnu3r8fPs9z32pFVXZp5nCSHLq/dltA2LrQ7MY3RKizFKiNs52KuL6/KWn5BSGtbDI2eWNceruZhFpmmty1rnw0j7PVuppGxzz7oryeO6tkn7ZbTPtWwWmvxWPm0Me3q0pzu3Z57eB8vP6tmoo3resoPr9Ky/l2VZPcs6//HxcaX/Y4zy8ccfi4jIy5cv5ckTke9//9SHH/7whyIi8jd+8Xvy/NOLvLneZ8+erc6Lu7s7+frXv76RM4QgH374oTw5xs358vDwUo5hq8enaTqfBfVayWfStTbHyBwsU5QY12O9LIvIYq/zTGvv1+vM2qt7fMCezmnZmY2aXe23xjY/K+XYQwjBvRY8/oBmm53G6CTv4+OjPMraztPOhFE/SMQer5Zu0/b/KNfuocytYm3XoI1VOT4jMl5rq5T1WOmjstzCx/L6ox6fzyrbSh/xKWtZrLNWa1OzO6+Nc3tl9NbRk2tPfMY7v2WsqvS/rrERa1r7zXtvUdpLtb6z4npWuzFG0wf29jtO29jU8fgo8fFynZbbsGICnzXq/uyRVdNRvViHyPV3AXvqad0NlWukrNeK/Wj+hxV/yXuuTLfiU7266uel/NdS22dam3vaserT6tLmyLMuvXeb18Q87Dy+uvbcz7wuvHvUO172eOe/J5u9d1fSsm333DWMyj9iW7fP70vfRyl1zzXrYs87Ar36PGjxh73t9OzFkT3ltTs8cbOefm613+tfT85SD9d2UcsfzXnP8fg5bvLcHe4kpUuax17PdWh7czT+aZ23NXt8k72xwfrZre68em22yl3DqE7R8nv2dctXudYmsGTz+Hxev2EVy563sW/NT9P6XJ+ja59GjyN67yNbvqI1xla6Naf+ded790XjdI/V3+u1/1pS+12j7xLsodXH8zhPobgbWj+ri/fGbZqm851fSW1btXTd6N1TSmmzNuIUJcYyLciyHCUd+3Vr/avvzr17NFPPa5a3bqus13PWePdaXUY7y3P6nhhOr+4sn/a5VVev7T1xw/RCRKMAACAASURBVJrWmGu0fISW7bS1hdZ5LP8jlytjYdp9nddmsdgbk9bKj7Srld9jl1ttem1YKyZ8vtdYTndt+VyMMcqyLDItp7qOy1GOR/s9tJ68njj3Lf2luu6SZVma7wvFOUpKcWXPpBRFWzZWPZexXMvjtS2ujYn38li22i3fp6z7c/payhdEJAzdkWjfy/TVHExReRfsKCGefLDTs7VtmefIoyPW8Uh9X4zOoxVfz8RQnjMnG0bzmz3xC68evPZ+wntPO+pvjt751J9Le6AV3/CuTa/+LdvU4t4j7Y/GSSwbaCTe1fPV189Pe2lKl75YY67Ve63P0LO3R2Spy2zzl2X6Z3Bdl3YueuPAmp+gtT06nK3xG9GRI7TOIMvvtOyIlg9S19FKu3zX/ex5np3/RuO6O5DTe55a3VuZ6vZCuLw/s3dfeOa8fMfK0iu1DVa22zoHrH2ZfeXy+fF4lHm5tFHK1arLE8fK9wxFyqux2fZpxOe/dQy29nt6cWL/GbBuw9JdFi1fuvV+WS9Ob82rtm498cKs17Ot1WqjlE/73pLds+YsvGvBY0+0nl/rn42e73va89wjjMQMRsfqUianj8WFxuO4a//pmrjEnvLrsmu5cn1anNXzHmo5X6M+gD0v27q1NvdQ6pgRnTq6Lr14fBtLFm8eq/5We1aMr86/jqGEV/mThM47bhnvO0V1DDLnH58P/dyr10XLPvWsm3aecv5uv6ZgnM/uW4ifQ1JKn6SUfl5E/iPRTtl1WhCRf15E/koI4SfenJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgwo+vvBZSSv+uiPyzIvIiJxWP6x9g+VkR+d9CCN96cxICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP77ymkgp/QUR+TkR+dty+pGV+gdYyrS/Q0T+5xDCP/VGhQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgSw4+vvEZSSv+niPx+EfklufzYSv0jLDntHRH5iyGEP/um5QQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgycnjbAnzRSSn9VgjhHxGRXxCRf04uP7YSXmUJVdq/F0L4aRH5kyml529B5M81KaWrnnsI4TR1McZN3dPU/j2jXDYzTdOqnvp5i7r9snxdT+53nZ6/189DCN2+3GIs97Cn3VymLDsy1iV5XCw56vQQgtlWqy9rmS+/25TSKS2lJDFGdR3W37V2UkqmXGW6d5ystafJ1EvX1navjPd5xpqXcu17+57nQmvfSrfab+07bZ/Wz7T8nryazD05MtM0mXKP7ldtnPLfWl+VefaspbL+nrxW+jzPQ/VbdeU0S956H5f5W2PmSW/R03eanHt1a6sda1zqfaSNUZm3/Fvn27OOrDauHYdazpYe955rnjkc0d815V7QymhjuCxLt15tjLW6Sj3cwnPu9fo8Mk5We4fDQVJKqzE4HE5u2TzP8vj4KCKncbu7uxMRkQ8++EA+/fRTERF58eKFhBDknXfeERGRTz/9VF4+/FCOx/WYvnjxKD/4wYMq1zRNcn9/f/6eZX369Kk8e/bsLMvDw6n8w8ODPHny5CzrsixnOe/u7lbnQK5rmiZVT47YFrUNd5rny3jHKKo9lNvXsPaUJptlQ9dlpmkqxvFUZp5nmRb/b532znJb3q1/0bPjR9rQ8nh8Hq8d4j37PMQpSoy6LWzpJm//tXVdrwtNr7XOl1Z71pnWqkuzlaZpUv0D7bP3HCuf7dXlrfa3eXO6rx5rfeaxsJ5razHGeJ7v8nldR0rprMfLvHWdtW/w0UcfnZ/d30X52td+W0REvva1HxMRkT/yR/5+eXjc2mNZ31h9qcfy/nGRp0/X4aV33nlXHu4ua9ke/9uhydvyl6dpkuVu2Zwld3d3Eoxjf8Ruze1b5fecCS27zYPm92zbe2VDOPafRl7Xp7bW9c/zLHP0nyHlGvfYYplyLazXxalPp66v41OlTWDpnrIv+WzO9HyuWhZvf7J83rN3ZJxeB/UaHz2j6vVY9qfnT7fOg/L5SEyqnvNarpbOt/ypkRiep2/aOtwT2/TOV0uv1nJY9XpiI1aZeo174sutMff4aq1xGd1zte4oGRlXLyN7stcXbazLtJH4cAhhdf62zkuP/uvFz0RO/av38RSm83l1rmuaZT5s16LVxp4x3btHLVunZJ7n1X6xYhzaPVItX53PY7vtse8s3dWyj2v74hZkG8DSNx4ftPZ5rHsAT/z82jO1nD+PbdOqvx5jK47e8pV6eP3nul2tTCtm0Krz9J8m1yQi62cxxmxabtrYq+c9Ml6D18+obZhTLGStTz799FM5HA+rWIbWjubblp8t37asy+tLXjs+PXL1Kcmr8MG6L71Y4LXy9Wzd183eu4Fb9bve1yP+lFcOb6yqlzc/b/kyrX1S5rfq2NrE2zP/uBzleGzr37rtXIem08q/5efyjGnp5FvNhVVHrV80/6vWKb0YpUcua42OMiLLNe2M6o5e/l7s1lq3ub/WmvHU54kb78XrG6bLoeAqn2nplNKGbOmR1tmpUZbXfLE5btdx7SP05ut4PKpta/J71mJpH1q2lqXHrHY9spXkdRZn/W7o9DfLZbdhx9nLz5e5Tym5feYyj2YDW/bYMkeZprWdP02zzPPWh2n5DZp+13w0bQzqdxk9cW+PbzNC6xz2fB+5j9L6YsWLPekeH9rje2p1l7Ts8Z6+tNZuTy7NN2vZ3HW+s257dU9Rt9nzKXvvBdT701ojVv/L2IPSg00Z79k/Yku09rW1F61+1TLkeyHtPsqS51LWb5N78Mh8qd/XXh3f3ei8KUgIax+51K8W5Xqd0lK0sW8fj/owe/CeFSXW+nPFblZjcbLDRvZIbsfKv9KxQRvD2u7Y6uEYr393w4N1zpfPct3rz+X3sIkH5fLXxnh7e9+71y197Y21ev200bheWe9Y/Ly9Zj3nY2b0nfG9vm+u37JBvGdgTwZNbus+zafT12twT7y4V/e19VzK+++qM7eKg3riW6e/67ReuT1+2ahsNb34lFavt409719c9rpu29WxQxHDNymSSt1vvrM6bfuV84cQXvn+Zdm0qi81zJWe7+C1q3P5+n0Ly1fwvDPUeg9n5N/d5Xc2LV3WWzP5vSOtL6f0bezVU68ms/cssWKknrhCfge91UZbJ9gyevWzpQO1s0qLo2nrtiVz6UvW6a55mo8SwvRKb17O0D132S0f1jMvvbq1JbSn3l6MZI89Vs9xq/0RRs5Ub/yipLxf0cZFm9NTfCBKaQ9Y/V/XF0Q695Rb2dNm/12Dx88v21nbslt512mXMiPnsCe2WMv1Ouo5Ja3nqKyj17Zlr4ysYa/e2msj9/wDr53Zy6OdY9uzTqS2qXNsyqKnozyxMs8zne3ayLL02ujpRs1nLNOtvRdjXNfT6QHcHv8b9bCblNJDSulfEJE/LZd1Xq73MhobROTnReQXQwh/55uTEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4MsFP77yBkkp/Sci8sdF5Ac5qXhc/sRZEJHfJyL/RwjhH36jQgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxJ4MdX3jAppf9BRH5WRL4jlx9bKclpSUS+JiL/UwjhX3mjQgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwJOLxtAb6MpJR+NYTwB0TkvxaRPyyXH2AJxd/8Ayz3IvJfhBB+WkT+zZRSfNPyfpZJKUlK9e/X3JYQgoQQNunTNJ1l8MqVUtrUVX63+pLT6+fLsqj5p2lSZW7RGsdcV53HO/Z5rEREYrxuCY/2qy6jyVw+z7L25AwhmHXV858/e2Uv11yey9N/IimJBDl9tqjlKtvVZLDkaslbzmnddmtdeNZMWbd3zMo9skcnaPPVqstKL9dFOY/1Xy+t/Nq8tuRt1VWWex3jPzIve/a4Vb639jXdan3OXKvDRril7iwp12hLX4z0P693a/6tMq30Ug96KNsp91+5/lNK5z5412UrnzVeHj1o9b88wy/6f6tD6n3tGXtr/so+ttbEKHV7MUZVBmu8Yoy7dLpnbOv1UuYZqVNDG8sY49luq/v18uVLefHixebZD3/4Q/nud78rIiIff/zxOf2TTz6R733ve6s233lnkp/56d+9SvvFX/xNef7cpzu+8Y1viIjI/f293N/fi4jIV77yFfnwww9FROR4PMqnn34qIiJPnjyR+/t7ubu7E5GTPZrHbZ5nORwOmz5b61gjP5/neZN2+hs2+02bz3KtjZ5nrXq1PbKERWKMK/usLF/7E/Xa0KjTy/Ho9cGr31p+SZ1u6YhSp7bq13RfS7fWY+bZm8thqfIlmedZ5rgeu1JmS7+2sHywsvweu8djd6Zk6y/rfPHak16sdW3laVHuK8vu2K65JKFhF/XGfsQuKddTyx6p5cx5a9uopQc0W2pZFlmWrX2h6Y2WrfjkuMjj4+Mq7cWLF7LI/SZvCOGsx+sxKWMgrbO2rKu3BrS5L/XNMkXJYbCcLcYos6zjMXtt5da8euZO229WLGBU1mmaTmfpNElK8Wo/qexrHvcYlRjT4tNfI+21zsGSeZ4lhKk4T096fHk1FlpZK54TY+zGd+r1l/Np6yKnLbKuK/sXIer563lrneflGtlzjnv9Jo1yjOp6vGtWm+PefrGeaWi6wrKpcrp1ZvfiI16/thUX1NJHY0PX7nsRO16zJ46m+ej1mVCv8Vb8oXyupdVrT1vjPTunV6bnV1vjZO2ZVromS5me16tmR1k2Sc9+94y5Nt61DmutESve4ilfy1/LkL+VxZe4SDoeN/W27NKezdrDs5asunu+Q4k3HmGNq2e+R+RpydR7VrZzTVynbqPUpXXMoNyvnrVb4s2X5dHuBq2x7fm9rfze+OLovL5uRuOVVvylRvcPoxyPsdA/p/oeHh7kcDxs8opsY691u9Z57fFtPPT086hddPqcNmdtqVPLNVKfKda50jrfPbTOWyu/Jw5Xp532UlmPyOlti3D+Xvdzj17qcQu7bbSOVhzzVm30ymh3MHvbuRWWHm2twzq9t+5atqH1vS7z+Pgoj4+6Psosy2Lqqfos8ox5Wd7Sux6/pVW+/t6Tz2NnemnNm0cP1e16bK0c07Pq0eryrEOvDdvb91bMpHzeip145PbKMsJar29jpiOx/L1Ytq51z+ldX5a8Zfrxlb+zqv9xkRgXEQmrfDHM5/av0b0jZTW9lOOYNS07NYRwtjEsnzk/y5TrdZV/CjJNdZxsfvW31lG6b17b9inFlS96PB7lOF3k2PivjvhZ6Wv38vdiSx5fpGzToqXzLRtQs8m1Z9b5OrLeRuP+dX89e85TVyt26vXltfEMF+N1lVb7xN5xqM+9lr1Sl7HOIW19W75ZjLYNoI1TaR/1bMkyXx7L1l1BXc7jm2rxhpIpioj0z/fW+tLiHFqZ1pxr/bT21TRNp/mcs9z9GJ01LrVM5Rqz5q9n94zog1KsVrHW2OXxqGXR7Ov8WY2dHpfi+yUGuHSuaMp3Zzw60aNftDistResWEi9lr1x/E1dK3120m/X2igats8XJU9Lax20Yhx1udY50tIvVn0iDd/oUPv1tl7wrI1enOvcijKe2j7x+B6tGEFvDbViui3ffsS+2LyDpZxneW5HdJkmc5nHu8e0Nj3xYS1fbzzyWPT6tparbO+VTZ7a8e3ye0smj/+9x/drxSs8bce5tFUuz3uyeGIRLr06qD/HzlW/v9+i93679vzW54LHl6y56CzbFm/Vd7YP5u0+1N4dKeto2ZA51t+ilq+MfWcZR/wobY7K8q37+tI2t6jXumUP72FUL3jjaK0z6dp26v5q+8Ib67d0zC33WC+masUDenlrvP/u0WrD8554SkmWcHkHsSzbuma1zmevD1Seg17de9JFIqWOKn0WL/Vatvx/rf0We2OzXvtEo2XrZN3d0o8eWVT7Q1mbVv/XsRjd7+zJsIeebVzrlJY9rc/nxa65PM5nXpLJaRdZMnt8gFZaWY+2x/R6RLTz1hOr2PPMoyO2MvrSvWebVdZjq3r3y7VrulyLo+ew12+y2juKvLp/uXA8Hs/vptVy1fTGuc7TSpfq34pP07j+h9vDDLwlUkofi8gfFZH/TC6WUbnLyrQgIv+6iPyPIYQP35iQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX2D48ZW3SEopppT+DRH5l0Uk/98Qt36A5Q+JyC+FEH7qzUkJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwxYQfX/kMkFL683L6YZX/NycVj8Or//IPsPw9cvoBlj/2RoUEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4gsGPr3xGSCn9ooj8AyLyf8nlx1bqH2HJaV8Rkb8UQvi337ScAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXxQOb1sAuJBS+lshhG+LyH8pIn9CLj+2El5lKX+AZRaR/ziE8HtF5H95C+J+ZgghnD+nlBo522W9zzxthBDO5VttWHWllM7PyvLTtP69pPr7KDFGs31tXC15Y4ymLCGEVbmcT2tb63P9fHSOW/Vp6daYtNpvyWWtT++6PdUt5/9ERJIkKYvU/ajr7o3ZnuflOLXGtyWbRllvLXtrv/TyaLJZc2nlL/+2yuQ89T4uv1t7zGqjlW5hreWRelr7wYPWr9F+9NDWmdZ+K70sr81LmTbPc3PNld+vHT9P+dFzIMao9ren57WxqNd0nV9rx6ufenrNk27VnceslLG1t+v59o6VJn/dpnc/lG2OtOutt5SxTL92DddM07Ras631I3Lab/UatebK0r0j+jvj0SnWuliWRU2v8z8+PsrxeDyXyePy8uVLef78+fnzj//4j4uIyOPjo/zKr/yKKtct+PVf//Xz52984xtnuT7++GMREfnqV78qH330kYic1sXLly/Pfb27u5N5ns99y/2apumcnp9lrD2urY9t/nq9xO5aLeudpmmzLqy51daVJvdprV1stVymp7tSSiudJHJZQ6XMMcbV2sos0yIprfu+LIvINuuqPuscsPZiPb5efdPLF0Jw+RAx6nNc17+EZZPPGo+6Dm2+WnPekqV3Jmp1WWdCnXZI5VxudZ0lm2cuPOktPdizoep8Hhv69MfnZ1m2RgvLH7DWW8vus9rKOrGVfpL5KMuyrGy1mKJkUUp9UerWS3n78/3jsikzz/N5a8zz3NURZR/L/VnPcTl20zS57bbys70eL2VbtkpOs9Zb2cayLJv2NL3Usr889pJnH9Zt5TUSQ6j8ZJGHh5cyPTw2y9expLqfS4rVGXJqJ8S+z6Y9r9so10lvzs4yLdtz7XQG6GvSOkOmaVrtpWtiZznedZZ7tZUu/av9rLqfWYaWn+KV19Kj9fNe3nL9ln3sxcV66S1f7tp4QMuXH/WHrom9tHwTq/97+t4bb83vqfNZc1OfC5nVeq8o9WurjZ7PXMtSf897oPYNWuusR3kmlPu1F5fQ5i+EsPJ/Slp6SZO/TD8c1ld1dd1am+Xn+gyu08pnvbMr+x6ecS71W72uPHaARrb/Y4qv8tprrtdWGVfI+UZiHdln0eSv/X9vfRmr3jp/ywYt0fZoq30Pdaz+TVGOcT1m1vxZ8YQWo3Ev63yvP2t3J5ptundMW35Iy1Yf5Zpzdi917KNcC/ePiyzL8VX66fmLFy/kxRRe2c5Bsr54fDyKLH1fqWY01uy1cyx/pH6mfbfS1nWd4lK53ru7O5mS7uPV9fbWU/2sFSew2mvZwBph4wPpcRWR03671B2kOjYkJb8/5tGfLVm0ukb24bX7rLce99Tfs5XeBCN7olW+ZX/WWLGEOo7oiQuVY1jbKPM8bexHr//a0m+e+GVp53ryt+qp+zhit2v+wy39Rssnbq0hTQ5LptLWbM2d1+bwrCkP9byIbM/YXnpLtla7NSPjclqPl3M+tzsyf+u6Tmeknt5e495xscq35BpJL59rMUxtfC27tCfbiDw1rfHyxrss36Ocr9JXrd9R266TtX90sZmCTNM2pr3d8xfbsm6j7q/V/9qWsnztes5SShLn+EquUs5FZEnNs6Nlq11779+KNWjP637lmEHPNuz5IS2/7Jp4UatNjy6r81xjQ9V5WvGWMu5ervdaHisW6LH56702Ldtxq9urde3Iu0+emKuVZuGxd3q6X4u7ZP3sPe9aum707B+xG3rPg7T7IOI/56+Ju/fIVbT8PC3O3CK/a1LeQ5V1aefYIQWZ53Xdd3d3ku62+6y0dbX7yzpfSb0mNVlafk7LhrpmPrR6UxJJ5zuznOdVn6tzdqRujZO+i0N7Ju/Tek3U9oS2ZuZ5uz8Oh4PENFUxib4MrXaW0B6n3nln+S8e38eDdldS11Gu91aMqVevx2bX6vXY1GWd2f+o81h+8t59Y52RHkbspkw5/lpMen+b5Vjr7x9YMu3Fc5+1h5Y+XO2f1b5Mkv0J71p7nZx0mm6TtXzCzK1k7L1X4PGVSso5H42R1evWKr9nTZmyTGvdvceey+/oZNnyuZqrLe0U7dzJ5cu5b+3Nln3QGvPROLd3nD3znJuudbQndqlh+ayX9tpn1jUxu9oOtObK09Y1573e7sVmuiZ+ZOlVzSet48I5v5VuYZ13tf0Vw0mX1/KN+jDW+Vt/tsbCSq9jWB5a49Jaa6015llb2n2AZv9Za8Rqd08cONs+rXuLUf97PVfbGGGdb1tmK2OtFy86fT3e9f1Tb+1bsTNr/lu2z8XnjFKvwdJ2ruP3Gpad75kLrw5q2bpe3Zf7mXXgXllaebX9shddX2zbL/O1dI/nvNHqHbMLRLZxdt+4WO201k29f0qZrX1Vvj+fq57nWSbl3XJNNuvsqc99TS5NnvUeU+wHVSJ4nVz3yw1wc1JKn6aU/mkR+TNlcvF57cmL/EkR+XNvRjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAvDvz4ymeUlNKfFZE/ISLPc1LxuP4BlverdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjAj698hkkp/Xci8m0R+Vty+mGV+gdYclralgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAWh7ctALRJKf3NEMIfEJH/VkT+oFx+aCUUf7+0P76S0ljXQwibtFxHXZeVXtal1ddCqyvGuPp7C6ZpMmVrjUEpwzRN5/zWGJT5tbJl3ZqMdV298dwz5jVZnrIeTcYyrcybP1vP8zNt/ZTy99ZuzlfXHcKlnmmazuOo9aslc68PHhnrOdTKt9rU2q4/W+NnEWNUx75ut1yvnjVV19kaG6s/1ni19tiojivLaOtyb50lee212m4986yJEVrzXGLNs7d9T99KbqnTW+0ty7J6tldH9nSAZ7+PjnEr3TuXlh6r69DqK/vkOYPqNqy9q6Xfao3s0Revcy1ei3XWtfKW1HPorUvDq0ss2ay+lLovy5hSkmma5P7+XkRO+/h4PIqIyOFwkGfPnp3THx4eRETk3XfflZ/4iZ8QEZHj8SjPnz+XH/zgByIi8t3vfldEHodkfvbsmbz33nvnut9//30REXnvvffk3XffFRGRu7u7syxPnjw5yxtCkLu7OzkcTq5kaXeWZ0TrfM+08tZ6Zb3fL32Zpnm1FixbTatrjz2mzfcyLxLC9EquU53zPMsUt3JZZFk0O9rUwXO7XmtctPVe6wprbOZ53tSZP9djfo3tUZ9B5f7Zw4hv5HnWynttf1t1nb7v11He/Fb7lj+z9Vn6493Kc147U5JL6CM/1/dmaQN75sA6q61zs/YzYoyrdVmW1+rS/JQy3/19ksfHtS5/8eKFPD7Om36VfmAmf6/3fQhh1farJ5u+lWXKsdT8ptZ8176wZ+2VeqUuc/q8rqPsYz6DSptYG4uWvCXWvNZ5R+2x2mbP+Y7H4+ZZtgnyWMT7e3nx4uWq7k8++ZFMDw8yTdNmXdTjk/tVj2uc63XxKl+85BnxlVs+9h777FRterV+J3VsW/E6EVHXRUm937X9n1KSZVnOdZb76ZR0ic+0eF02uUf39WI/In75Rs9Tr/1zbVxARJ/jPWeCJ//Imrbig165enG0Ol/LbvX44NszY90Prd463zV+XrkW635Zc1zLZ9WtpVt+QutZq1/WnLViBK0+aFj6pk5PKa3O2DK9p7P22sj1GHnjN3Va9jWXaZZpWtsCh/kgYdbvJDTyWWDFaHvlc976vC5lr+v3xhDL88WTX0Pzn7V518p46i+xzslW/b38vViPl7qMV0/3YgklWv+tO7GWvtLQbDItj7W36rrzGthng9n9L21LT+yzpuW/5WeHw0Ht/zRNMi2xyH9KX5ZFfvu3P5aH53L2p5Zlke/9+t+W3/qN3zq38+TJk1VffvInf1JERN55551zv+Z5lvfee++ct5R3nufhebWej9jKPfsuhCBhDq905YXWHbEnX07r+VTWns4+s8cOtexZ7Vyr853O6ii1z5hkfR7HGCWkfTHjso5alvqzN+axktXQo96zpEzrjXHrmdc+zXl79fba8shmla/l8OQdaaueX4+fNc9zs/67u+39k+W/l3j1eMuf6emh3EePPmvNoRYLqmNE9TsNI+2MYK0xbR9rNv9ou7kuzV70yKrdkeTvls/s3e+WreuxzVs2mdcuLPOO2Hhl9/Ic9daFVv80tedzrz7q1bVn/G4hwy3rHz0TNB03Ut5jzzf1/iQSQq4jr5VJUoqSu3LqU5JlOUpa+u89nOrxxQ/a9fTTS1v7PBZTkLrLIUyr+7JeuyP7xVOnpufKNlp1zlZhjQAAIABJREFU1HefXl074jN6268Z8QFblOPTsqe35/bWtxrxP1tpVru99NZ50mqn9BkzrTks135PppGz53VhzZc1Z3Yd/vQWHt9ibUskaTVj6Q6PX9eSba//oOGpwrL/8rM4x016jIscj3r/tXV9iEliLMcl3y+27Y6W/rL2iuVn7rVZre9lujZnddulDXy6b4wSY1nmtN7q87Ouz7vfveQxm6OsYiV1M9o775ovmFISSXGj45dlkWXZZ1tZfqZ2b5vHdTReqq0pj29oMXpfcG1Msuf/WPWP+j9rLnatpQdbNkxLd3rKt2SuP3vmrbTTLZvdSnsTeMdi5Hz1xFE1euNzST/Z5/M8yxz1uOWIzNeS32vR7LbyPBp9h8Fzf6b92x+NPevL+jdJe9hz1zSKda+uyTLSn9bQ9WKMIrZP8Vlh9N4hf12WReSYVPtsD+3ywbRjPHjKeeyxPeU9XPRmriNIStu14z33PL5JC+ts88RtvfOUy+esuRmtfO8OrNeHEbQzLATZyOkpvycOuucupVfeyjsyrtnn6Nk92v1E/tvz0TxyW3firX737LP199LPatuie9d/S37rbrD0dzVyk6N6sh671r/d8sQSPPG+Uka9rrxm+nbjLXXCLdZQ63nLxh2pe8RPvOZcat2Hect7Yiae98lPHy//Vtszhs27C6U/1vk2TZov//b8Nrjw+j0LuJqU0vdE5A+JyC/I5YQtdyA7CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBB+fOVzQkrpmFL610TkT4lI/inlN/sT7gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8g+PGV63jjP36SUvrPReSPisjvvC0ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvggc3rYAn2PC22o4pfSXQwj/oIj8JRH5e+X0AyxvTZ63SUpJQtC7bqWXZcu/FmU9dXsppXP5EIJaV0+OeZ7Pf0uZ8ucYo1pumuzfTqplLGn1N9cZY1TbbZUt+78sy6rM3jmq2+2176lTe95K662PnLeuw1OuxXr+k+TfWUrpsj7KeSr7X7ZtrZNyjY3KlD+X86ytud4Y1vlEtuu9XD/lOJd11mNvrYV6bLT9ZqHNsdaXVronT92GNn9aPZbuKcfYs988fcxrLxNjNPvmbXN0LVp6uUxv6eq6bG+elmU5z0W9Dq0+ljpdxNblHmr5rHVslbHOBG2PjKyTa/Vcq/7WOWbhOSP2zIlH31hrrC7fktHTzz1jXq/FEm0Mar3jXReWbirbmKbJHHerfGst12eglq+mZT+J6OeQR96eDWfpqizT3d3d+VmW8eHhQQ6Hk7t2f38v7777roiIfPLJJ/Ls2bNzvvv7e/nRJ/+fvPfee6txOX1/FBGRr3zlK3J/f39uL4QgX/3qV0VE5N133z23f39/L0+ePBERkadPn57T53k+t3c4HM72a6Z19mqU8+C1Ey9rcZte6uhMPebec9jay5peKudaWxPXnAP1WlLPJ1kkxnEdqY1579xq2ZQia/tfKzPS/7qv9fluzbfMItO0XQP1eu0RY9x1Dmny1nhtRmu+tLVQp1k2UP3MkrNla9Z7KddRrw+PL+kZi9761mRp6RTLdivHaZqmrv+Z66lt4kzeD/W85jx1/Sklub+Pcji8XLVzd3cnIWzDdjFGmedZtUnLc1tLK8dD2xulzKUNXD+rz/ceLZ+hKcPdIi9frsflk09+KNPD1l6psfRFq70say+95f9qcpV7p6x3nufzWZ/rL22ClJLE+3v59HCQy28vB3n69Ol5rbbOYE/8oyW/x5/0zL8/XxljEBEJZ7tlxAfR9noe31KO2jZtyVjqiBH9qcndymfV2/O5rbWQUnLPUat9j5x7sNavdu601uoervXNakbk6tXf8+dH9Km1Bj17qmWTWbT8eU/8ov7e07ettFFfvPZfvf337jFND7V00Iiu2ZNHky/LkMfCikta58ue/dmyTy/+X5Jrr79qG8fLntiRRs8GbdVn2eB1vpZv9lnBs0Z692GePWfFZV4no+Nu6b7Wnmj5P1acpReXGBmXsvxo/Kdnc5W2tuXD3z8JZ9s588EHH8j9Ox/I9z78eJX+td/3gfzM7/mZlXw9e0rrgyW/5TNoMb+6fMke3VGnt2Jle9f9Hn0y0pa1zltzYcUfpilWdYhMYZJYpLVs+BIrHmLNc332tWJJPftkT/ymlkVrr2WbifhitF4869mjO66xgW5Nz560ZPKcP/Wc1+9WiNwm1m7Zy1rsqNeOZy226Pkzt/D1vL6FldaKq1r5Wud1q+2c95rzuZXPkrFeL5517KE3Dtp7Jd54w0j8pkd51+W1mfb4YG/DJu+Ni3e+W3e5FvVcWnHUWl6P7rPKlnLHKUpKpe4VibE/B5b9N0eREGqbw+eze9B0Vb1m4qzphijW1IycUyPrszwntPOmt/c1GfbsMY+MGWsvaHHUFrVf0vOttLHojXU6lH2373NExnSfFdOpZW3phXJPtt438WLZPb0xasUwR/RFSU/Hte3ysk1f7PEaantk1M8468kQZVnyuzXlO6en/hyXozw+tn2bll9R01vDln+Xn9k+o51PY8+8WGd62VZ953k6dy7jaWHtS+uM6c1/yTXvJPbkyW1r8zLPs8gUJIRp5Xu35qful/VeVUumFPR1lutalvwezeVudVkWWZyqtJR/nvX3wr3nSa5P+1x+n6ZZsT9mmWfbBrH2pRWL1j578MSma1oxnlaM0yrTo5yzVuxjXUa/d9hzN2a9CzES39kTF7LiP1oer73YnjNfLMtDq+we/W3Zej0b0H+WJEnppEtk8e0nTxxHZFyHX+5K+rFM6994aFgxippbnjm53VG8+/JWmHU1XkfcxrEnSVPbBu/VlSp1lucsxG26d0+O+OK1PCW9fazdk1uy5PyaPrdiFl6f3Rr/UxygPOPa8l3DSJxpTzzMG19ff09nmzakST1TWzZA6/6wJafWjnW31au3p+NPdZb9WefVbKU9+7Ulq/ccCiHKJUaQZfHZfj0fv87vsSHqcpaOadkaHnumZa9acl5s6bTJM8+zxHhR1COxs71cZAirNZb1V0mWuVyXe+Ty5i398N68nO5ec/15/YlcbOe+DWitkXJftWx4q55Rv6Z1z9Mq45GlxTX3Kz2/wSPTrda2d/xHbI+aW8eGy7Qx/abHIq45E1o62Zbx9cQY4Tr48ZVx/rqI/ItvW4iU0nfC6QdY/oKI/OPCDgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiCH18ZJKX0HRH5ztuWQ0QkpfRJCOGfEJH/UET+9NuWBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PMEP77yOSellETk3wkh/EUR+eBtywMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/z977xdrz3Lld32re+9zzu9eezyOHQ92oolAISOjSBEKUQZLRCgIMSEQEGEyCdceK1IkP0TzwiPzAk9+4CUCKRKyhJDI5MYOIpEQDxgekADJEkIJhKBhhhnEiLHNTCae69G9v985Z3cVD31q79XVa1Wt6t7n97vX9/vR3Dm9q+vPqqpVq1at7l+bEEIIIYQQQgghhBBCyEcFfnzlR4SU0t9/0zIQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPJRgh9fIR9pxnHsLhNCUNNTSufrGKOaL6V0zqfdl2k5n6xXy6/dDyGc6yrzxBgXf98k5Ri0xgQAhmEAUJe/HBM5Fs/NMAwL2aw2a7KklM73ZV/kdasv+f48XuHpP7s9qZc1nbPyWWMs67bqsq6zHlt6odU7jmNVflm+VW9ZTzlO2hqz+lsbBwurnlbeXp2rrcPeNePRnbLuvKbL9FIntPSWnNpc1uqSc1nqiKXvVn0xxnPfSrvgRY5NOU65DQ+yX1o9tfRepEwee22xZ73k9ebZRy28ul9bV7nfNbuijc3W/bmmrz37h2b7NLsQQtjkR1ltWeuytOtSV7X91pp7zQ63fCjt3jRN57I9Y9myXdo+Wo5vriPGuOq7/K3ZsXEccXt7e75/f3+/sMOfePuAT3ziiNNpOpf/3Oc+hx/7sbnOw+GA4/F4vr65uTnXd3t7i8NhPhbe3Nyc88m5KvVzmqZz/0q70buPWfqu7W89+4X8XZvrco235Nf0Yv6br+d7MUaE6N+Ha7bOsw+VYlv7gnd+LPtg7Zu1fajUb1leu7bOD7kubb0AwDRMiHGtA9M0Vce3pKU3Pb5Mqx3rzGftCSlddEymyfNraS/tumybWjsbaL/LOamNkXUe0cZdrq35PJSexsDns27x4aUMUpZhGFa2RvpK+TqltLi25JLEGHFzjGdbnO/f3d7hQeh/2b7nTGnZx9PphIeg1yPrz/um1r5M13RhK7KO6RRxOj0u2v3hD38P4V4v69nftfWm+e3lmVEizwnlfinLaHupda7S2gkhYDoecTzK8G3AixcvMB4Oq7xW/7V1MB0jQhgW+0ftDG/V5bWJ14ph1WIe5XlOG9vT6eRqo/x9SbNtiuYb1eq37GB5bemSxLsPl3Vrcllo+0tpJ8t6yjlp1a/JYq1Dq2xN5tqe4Gmzpv+WjazFQrS2t+Tx7jeaLHkerViotm9791ZPv2p22+rL6XRa6Z6cM8uuan5nqZel363pbXnmKc9vli5r67S2dmv+cWsOWnqnpZd2Rp4Hen1drX5P/KD0J+IgdXP+O8UJw1Naj5+3xV/fWufeGJ3UIxmbqtVd81vk2vXYZUvHcxnPPuL1V7U2yn3Pktcz/zW/YS+1vnnkH8fRjAV56tX8FVlPeb2Fmo5b+lO2Kc8TmVKPrFiQ/qxuPheu5azHkMpx8YxXeR6q9alF2RevffbYTm1daj6QZiNaZ2bvXr6lXC+5nXL8x0XcAAASEhJKnfDg8bOv8RzG43dntti+si2vzN4zW2uf76F2BpJ/e9trldPWzFZ91+55zgC1ejyxPOv8a/nJnrN8WV7+tsZny3q/Zl2tOjyxmIy2F3nOo5YM19YrLc07j1KWLfvYtbH6Nf+3Ti/jky3bkZmfCyxt2+l0whQuZ53WeJY6ZOmYhy02oVb//KxEtxdb68z1btnvtH3EsmfAUhdb8ciSaZpWcQqr+7nalObrVlv5GVS5hmOMGJ6en+bfe/DsFdp6eK7zjS3Dpb2W/aidacq0Xh3z7B3a+tTWeMsf9vjtmgyt+Kz2jkSCbD/HASaM6IshlbK23rvrifFZtrGcEul39pzFtbXkPdd69sG9/nRPbNl6D6Ys3+MrSpul+YnW2TanZ12IB/n+WzrLO6SL/o7jWn6rTzluqMVka/FZmdYar7Jf8+/lPUs/LXt0SV+31eO3pdU51Geje/2wHttpxaK09B5/3HP+i3H2uVJa7s0xRkxxQlLe1aidvz1zoceChoWeP6Vmqc0+aNcX3zQBiKtni/cP93h4sG11PotZ68LmIncI6+fQW7HGv7Qrmk2pyb0l9ttTrpW3d79otZt9xXLMy3Ysn6Il46WdtRxbfMvaMwGtvdr+3B6bXMdlbMZxxBjr+lm2WT7vaLUnsfa6Wput/aist6x7ae99ttMTC/DOd+29TYves1W5H1/rHXQNq9/PEUtucVnL+n6+J97lsd1l/E57FlKzK3Jd97an1VfS0tEemyX3xh6sd5Clnrae6ed6avLK9/uWY9E+13pojW9rXKx/n6PVvSWWbt3q2evKey0b3aqv11bk9eLxWy/xoyK2bqiIN6Zew9rTarGTaYqrmGaMybWPbtFT75h7fS+tDuv8utWf1O6X8k3TBM8RrDWeWvzD8wygPL/q9QPZ3syxy/Z7m3tp+RGXv/n6cu8i1vLe1nZaaVpd3rGpx178a7nHDnp8T3m/d4xaMrTytHS9d417+htCQAwR6/O7T64Sjy6UcUFLF2S65Rd6/l3EVjz7VpYzz8+b8JvJzPOdksgbJYTwiRDCV9+0HIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEfFjhx1d+hAghDCGEPxNC+JsAvg/gP33TMhFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8mHl8KYFIPsJIfxzAL4M4C8C+P05GUB6Y0IRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPIhhx9f+YgSQvhDmD+48mUAfyQnvzmJ3gwpJaQ0f2MmhLBIL3/31ttKjzGa+WKMZt3DMKhylnXJdNmXcRzV9Josuc2aXFZ52YbVniV7SZa9vC7rqcmpUY6FrCuEcL72zOs0TedyGtoYyDZa9cu0Wpk8BunxETHGhb6lGDEBeHx8RDqt68gylnJ59KWmk2Ub2hiVada8yHte/bHaqs1VqaeyTU0W2a/aGqvpVWvcSplbY+bpm9a+R9+9bWplrHVqtX/WaSMdWNpHKVc5XrU6tqDtI7LeYRgWNsvbvpYu+1j2t1Zes5lyLLS2anZao9R5rc4eXbHytmxiOe+WvbHq1XSwZyxq7Vlrv1W/tCtSr6w2MrW8pZy949XTh1a+vWtQUspfs+NWGW87PXm0vaq1D5Syl3ZQ/tbWzuFwOaqN43i2A+M44ng84vb2FgBwf3+PEG5wextxPCakNNf7Y58MOB7Tua5c7zAMuLm5wc3Nzfl3WXe+zjKEEBbpwzAs6rN0URsX2fdcXstT/g4hPJVLkNlmH0lfIxoe/6WkNsdLPQGs719KG1eTwdqT8jjJNsMxYBxz3+e04/GIEaPqH1ttyTYsG12WrfWlLGfNccuf0eou7WH23SWy2Fb70PIDPfLLvDJdK+/1J+d0eU/vW8vH8JZprUmtn60x1+yFZeuHISD3cU4LGIZg6mou39LjFp5zfi02kPWy7FfNlgxhvU9M0wS5xW7xgbPtLLtUnnu09Jq9svx2z9jV8sm8KSVMxwnjeA9p+29vb5CiPbZZtrIvea+T8nv0vkbLBkobpcV1ZHqWV+YbhgHhcFjJOY4jxmJM85r0+vDa/M57yND0Vz14/cP1Olnfr8UMWvtr2UYrfqPlt5C+UOkblf33+CVyHdX2TonMZ9moli1qyWVR2yu1tJqd6Jmj3piGd023zqm1dmr2ssemtGjZ2hKpH9a+ndOsmIdlJ1tz35LTU97KL89JZR1b9krLb/Ogzb2cJ0/8wWq/jA3siWVoebOMso1Mtmk9a9yqV8PrLxRSz7KFYdf+5KEnxmHFazKaTlr9L32A/LemJxJrHcj7Hp/M8l8ymh8j69pq+7S2LN+m1k5tLZX06FLPszXtnFpi5antO7VYc8+6Kv0HzXepUcur6XGtjty2Nk/TNG20zXU9sK6vgUcXNJ9fIs9DrhjWoPfX20+PTaqxJeZitd2yY9vas+fcY6useO5euZ4bOZZZZk88cive/pd6vWc9bsl/jXODVkb2S455vtaej07ThGnSz7NyT71WjK92ZpF/y+trUcbyrDY8ewfQP1/eeIFFLS5hcQ2f1YrdfZh4HtnWMY0ef7hHFq/uW/tHz3l2S/1G7nMZT/zI++xBcjqdmrKW/ox8j83iWs+T9bNA/l0+k1lee87q+TlMOdcePz/Ld6mn1oZddrbb63ueujVd89qkLe8U1tpttdNzFmnZgVpd14jPtfqn6YcVd5FplywXf/Px8fFDY++1eLQVx8993PJs4JpcIybhi3dmX28uK9833RO/aZXTflvPANZy6M8Dx2EU7xys48rAOh5UO2e19FezqdUY1NC2iZp9tNJLev2GuW05RnPMOh7Gq6xdj27U4rra9Sxne162EEJ+Ppb/A4B5frbEcvvlWMdf83tFpV+g0YoZHMa4emfz5ngDwI4L9+iBjDfEmNfubGdPp0fEx/4xLH2lmo2zrnMZK26n1aula8+TtDZrz1lKas+6auWzLHLMl/efzurO4a6Nce8ZuzVm3np62rGwx3w5d9M0AVOff7jHFveM6Z6xWrfzvPGqGi2f6hrnq3IdeM6CrbTn4Nqxh4sfUY+r97CIHxtrYxoi8nu9Ty3OdraYSmkHvPv5Nd/flvQ+P5LlgPr775LSn8m6WZsP7/7oGcMt673n+YJHrj1temNOZXrNx24h99TaPpipxWN6/d9aWzW5RC6UPqSH1hk/05rb+pnNJ0dfLHHf84/Mln3AGjPPOU3e3/I8KL/L52lnK2251s/qcrmsB1K0HGN4E/urZJrkfnWZq9YwWn5+7zzWniXW2rTSvfrWU3/JFh9iyzz3ni1qe0DteUJvO6182n6zZX1uOc/s2XvKtj12sPd5zLK8Hl/eGksk14MfX/kIEUL4FIC/AOArAL6EZcQSgONfYRFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgDw4ysfekIIBwB/FvMHV/4sgJt86+lv+emibZ/iI4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkYwY/vvIhJYTwJQBfBvAXAHw6J4ss8gMrMp0QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOKAH1/5EBFC+Kcxf3DlHQD/ZE4WWVJZ5HXIRQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIjyL8+MobJoTwGQB/EcBXAPyJnCyy9Hxwpcz7I880TQhhHpKULt0PISx+y3QPVr6U0rleq42yfEpJlVErI+9b16U8GjFG83dNBqsNbTxkmndcp2mq3h+GwZRB/tXa94yRJWetfK2+WlpZf6tOqVfy7ziOGIaAYQiXe8OAw2HE8XjEIRy6ZNfmrTZGZd1yLjx6XWLpkpauzbuVVo5b2Z4cY61NK1+5lko5tDalHtf0srQTZXrvWtWozbHHxpQyyzpatre23iTWuq/ZYTnfKSWM43i+Z82ZRm5bltHSWnqgyTqOoznHkpq8skzOV7MnNXvttdNl22WbPftRzWaXaZ76Wnms9V8r511nsq6sI1vGIoRwLu+dF2u/Le2VTPfolXXdksvSd4/f5bWvvb6WVofVvqXPvenyd02PanqirfEY49lfmqYJp9MJAPD4+IiHhwcAwP39PR4eHnB/fw8AePXqFR4efoj333+Bx8cTpmku8//+5u/ghz98ONebde/29hZ3d3e4u7sDALx48QJvv/32+fqtt94658uyHI/HhezDMCzsd2sf3qL7lk3TkHtSzaew0q0yMj3PUVnXNE2YwrTS6doarfXDY3Olvmj7SojB3JNrPrRWnyaj1R/rDLSFlk+ayT7A/AMYhrWfMQyDyz+QOi3XjMTrZ2T5Nb2wzmYePXzKqbYp6/X6YRqWravl6zlztdar50zY42+28pZ1es8Dsu6yfumbSmp73zjGsw3I5cZxxBQvttPyfVrrdoz62lisH4Wan26Np7Y39FD25XSYcDy+XKS9/fYnMN7U/bFSBq8dlHVuOY9ZZ245Zt7zUIzx/J9u69f2RavfaicNtp8j9+waNZvmsQvlvXmc1vd7fdMtc7glxpXrjzECU39bNXvrjSVkX7HWlvc8ocUyyrO/dh636i7rbMnZulc7/1lxCStf7VywRcbSvvfqk/fMU9oRbZy37NuW7bJkqfl53vbLddobd/HGkuRe15rn0v8rY0XSB7fksPx5mSbj4+Xc9do72YYcV82Xbeniap8wzjPlXNX0T5vXWj9XMg/jkw9z2R/Ks2hPbEaTS4sD9mCVs3TUaxczpU3rPb/tRc6Xdq5qnXm9Y731/KjF6yS1efXMRe/8ttrMtOICFjW/0VN3pnxO13puV2LFG1rtbMmz1v9W/xJSerKDad/ZxItnLLT8mdoYtOYz++Pl2JxOJ4RHn6+T9UfqV2lrJbUYvEf/Sj+gdWYr69V8iktSEmm5jXmMx3Q5p/fog3WOs/Jpcu7F6yt67/XU7fXB97S1BU2+lg/W0761v7ViXvm6XE+Hce2b3d3eYRiGbhviydvjq+d+STm26JyF5e9rc7fVH5Z11nS2dc65Nt64iFamZms9lPpW8xVq/py1rrbEUPr6sK7fsy/pursey55z+ha92RpT7MjdLLfX5vbGMnr9Sa09TeaaTVJqyZKt5Hvd7NmHsi2bfTygnG/PHqXlmabJtedYe1qM0d2fVv974uO1+kuyHmr9k/Ehz7m2p10tzzYfcv0soaf9vfbY2ofL9GmainhEOqdPw7JcL54+1PK09q9aWi192f7iV/XsZMm3J5+0A3K9tvYD7Rw1TROGae7Q4+kRj49zP4ZhcI3h3vnylMvvhcch65z9fEM7Z8p0SW0qyviXZXdTknnmc/gp6HZaw/KnvPpUxtwsn9o6T+9B91XD/H/hkib/66mvpdez7kdc9sil/RzH8enZ+CDm2ieLlEHa8tIn0eraek47z/mwPEuGAIzjAePB1gmPTfTS6k/rzGiV7/Gd95w5tTlq1blchz4ZtsRbWjqt1WudmZ8L39nZN5fefm45Vz4HNbmt9zSGdL0YTknPM6RhSOaa7GHLXPQ+I/G8t6fFMnqfqWVq41J7rm/5djXZtfPNOA56vG0MCGFY5c9tjiOe7vv9xvndIVd2N9K3yOfCrT6Fdw7Ld80Oh8Oq7DAMi33RE+PSsP3+dX21vcXjc5W+tZdWX2rP66Wf4h+TS7u1+GqZ1hvTtuTxvtfwOvZEWX8tflHbu1t1td6t1Pbdmi9bvjvh8dW893rp8XdqZUt9aZ2TtT3bWsO1emT+GCOm02n177e0dzbl/bkO+exSt1fzf7YstfotO6StkS3zq+lgGafMabVzmyWDtZZr9qZVd+0sXOZPwzqmIf+trhdvbORNcs2455YUT1XWAAAgAElEQVQy69hnW1+037m9LfuAZ46Ssl/XYn41+9TbF1mH5jf0xB7J88GPr7wBQgi3AP4NAF8G8K9gnge5QkpLUFvtMq/M9/cAfHOHmIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE/EjDj6+8RkII/yKArwD48wA+mZNFFutDKiXWx1n+VwDfAvCtlNKvbZeUEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJAfffjxlWcmhPDPYP7gyr8D4A/mZJFl7wdX/nfMH1z5ZkrpV3eISgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIxwp+fOUZCCH8EwD+EuaPrvyxnCyyWB9SKbHy/R8A/jbmD6788g5RP/KM49jMk1JqXm8lhOCq32orxohhGNT0jHbfkiUzjuOiTVmfzCepjceWsbLayQzDsJALwOp3rc6aTK22e8p45rHWnlfOso78e/6b/5P1mtW65cuytWRsjWdKSa1DS9Pm2Op7zxx7+mLJZrVfyiLXe00v8m8rf3nPk67VoclryVKmWXNqjau8p8237Ke37hZb7U5rX9DqzXZWyng4LF0kbV5zujYH5Ti17JuGNmZb7JuUpTZHVluWvpdj4dFF2X6vrvfk9dQh7Zul6/K3t+6sTzU7o6V72iuvrTIWmi0qr0t9sXTX65/Idsu6WjY1xmjOh2derP0p4/Erarrcaj/3wcqf703TtBij0+kEAHh8fDxfPzw84PHxEQDw8uVLPDw84IMPPgAAfPDBB0jxJR4fD3h4eMDpNAEAfucf/Q7e/2BayTQMA25vb/GpT31qJds0TZim6SzL3d3dOU+2i/laW9fjOJ6vh2FYzJ/l31o6ptmrMU5P+eXcRVWHavu7JkdZvnZd9iUNbdu6Rd+s8su0nG7r5Bb/SPaxnAtt3DQfxjN+lj8kqenLQn+HCTEmyOIxRowYm2cuz29L3pzeu/fk3942AGAY4rl/MlvNZ/fs1+X89u4vXkpZtDGWaTHKve6SFipz4z0zWtT2vhK5J0l7n9vN9rRMz9fZxgPA6XQ62/mc73ffew+vXqXz/VxfLm/pkrTJ4zji9hTx6tUrZHsxDAH3968whdtzftmXfF3GK6yxLdNbOl5jZfdHIIShSBsxxrW/5a23tT/kPtf0wNI3T39L2yj1RBvjOAyIcdnPGCOC8JOsvmjtyPmVMtfsUW0sLPt6TftRO0PU/Plr27AatbN8rUztd08dW8/Pln/hTW/ZXG9aWZeV3+Pf7I1LWGeult215sLT3167eY14wxadyWw9f3rk9Jwze+KwWptWG2W6jC+FEBb3a+Nn2aOcLuut6cuWebXwPmuonc2uWcZdV0pPPq+99nviLflaGwN5fq3V6z1nXWtcaufYsh8955cepG8r/d5ecnlLNuts6IkfWNTWW4lnziw/WSKfe1lzlOXqibnFGBd+o0SOq+xz7fzsoRx/DSvu9eZYn2uu3kLljG3hPStskWX+D5DPEcdxxHBYzp03ZiH/avcsenSgFQvxnivnvs9xoJRwHoty/ksb35K7Nb/qua1in66lj60xvvYZrKzTG/uyeK41UFLbq3tjpFue1ZRxpVmf1zb8/uEeDw+DyKOvPytdPtcs4zqybG+czDtP1thYcZKaLy3L1tZfT/y9B69/uZfW2VbTg62ylL6I9E88+9g17NbW9eetr6Pkqp6euq7pT7fwn7Uv9Wrrx3tm9sR6y7Iem+LJV+p4ra6WXOW9eSw0G7J8pvI62Ko/yzV4eQZo6e9W221RxkNymta2duZoxU+Wz4D8cWRtT5Fnsxzv1tq0zlJWG2U7FmX/pYytZ6G97IkdSxm8Ma1a+vz79fmmNVm8eXri1M99vt3bB/m3x7/VfB6ps621K/1c612BWpp27S0z/+23ddr+aJ0hZPxLltfiLJo8pV+e67X2utqZ1ZpXOf7lHPQ+h6ilWfMvx2gRxx7ibIOD1M+LTW75Bh7Za6Q0j0uMEzDN7Q2n9XtFGcu+l/G+y3jrcYbaPtGab9nGJbYWz33J/owcQwuP7tTOiZrc1/blSxksWSzfrzzDWLJ5Y/cyjxQrj7lH9kt5/37n9dNr97w+cS++Nnx7f08Mbq/MrfOEp2x1fxjseExJT79r+XuegWT/9zmxns/0Pqvpfd+kVa5my6388mwzXwQMw3p+rWeIaixHZM1T2orTlVOf0y/2fmmL5z7p/yYihNDck1pzpa3/8nkeoP8bC/9ebfs2+t47LPQ7N6PtiS2/yUvp3+Q6YlyPQ2vd9cY0Ab8dK/tlvfvs3TtyNk1/W2W1dkt6xqJ3H5d1evsrWlvkr8lp1ddr9618mt+YbYG8peljj1xeWby+hicu2BsT7fVZZd7BeH+/Z57KtPnfBeT9Yylbze7m/LJpzVaXMocAjOPQ9e+je/XTW68W95lti57fS0uu1lk019ETSy7Lz7GN9X4SY0KonEda8j+XT1azb3vWew0tlmLl66nXOk/U1rvVXpm/N96px0LyPV+9e2OfcoyfK45Krgc/vnIlQghvAfi3AHwZwL8EYAA2fXClzJ/z/Z8AvgXgWymlf7hPWkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCD++soMwf17oXwbwFQD/JoC38i2RTX50xfspvfx5tF8F8Lcxf3Dlf9stMCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5Aw/vrKBEMI/C+DLAP4SgJ/IySJL7wdXZLnw9PePp5T+/h45CSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghNvz4ipMQwh8E8A6ArwD4Yk4WWVJZxKjKlY8fXvGRUsIwDOffIejDnlJSr2v5vFhtWumePOM4LmSS+SwZp2lqtteSRdZttelJL8lzFGM8p8lrjdZchBBcY+wlt2f9rckkZWnJ5BlL+XuaJqQUkVIEkJASkGJCGiKmaUKY1uNQyiL/9sjXc08j65RsM1+X6bKNLe141r6VbrVZ1lnOXUtO2UevrnrqLWUpy1vj2kvLtuU6S5l729oimyZPT365vsvfVhnZTrZpZflSHpku96pMaQetddGjP617MUa1n7ltTX5tDWt41m9Nx8v2PPbKuwdrfZHp2vxs3d9bY1T77c1Tptd0VyL7abUj5yiEsBqbrLetfdySszUXNflL/Wytl61+gja2rXnJv+W4lPVkXy3GeP4PmPf60+kEAHh8fMTj4+P5+v333wcA/PZv/zZ+8IMfAADef/99/O7v/u45HwC89daA9977A0uZVscOnNt/+fIlXr58CQD4/ve/j7fffhsA8NnPfhaf/OQnz+289dZbAIC3334bt7e3AIDj8Xj+DwAOh8NCT7Ifm1JajIdc23ksNB2T+ctxDmHAMAzIySEAwzA2572me16f0tKLiy7mOtprtmy/B9v2BYTQ7k/NdtTWtcy759xhrePaPmnJtSozAsOwnIthGIDpUofX7/DkK/Vuy7h7fBC7/fKvvQ5K/61Wf2t/uYZtzfVYdvycdyznOWEcB4xxXJTx7mlW/0sbIc+v5XrPSDtu7XXSDsrrGOeznFxLh8O8F8jyp8cDnraHxTqY7eAlX4xRPfPlNsLp6ewYsg8b8OrVPU4pPrV9WKzFfD2Oo2nHy/Wn+ZC1ddTnw9Xr8eikd6/RfH4tnySP0Raf3VVmHJ9s27IOrazXPwMuY7uy71M9zqOtBat+ra97bUiPj95ry6+Fpi8t2y/Hy7ou5b2G7Nfqv7V3tGyvJcde++GJ12xJ2xP7ANYyetr0xLtKm+AtI6/3xnI85ct4t8TSee9cWdTsfyvNE2PpkdXSfY9NtfphIf0U7Z6Uz+qnbLNm6zX7nP0JT1xH+jPlGE7TadX24+kR08PlLGzNpeeZUW63JPta1n1vXCun1eyWV04pzx49qcUFLRktLNlLna7Zztb+LmMpLWScoSWvJrfHXpTyWuPWigO3zt6yz622ynuz378eg2EYNp2L9z53vBb5PHXxo+b0+cwTkFJcpJ9OJ4zTZd+RNqll7z32z+tDtXS8hceHTiEB0Pvk3Zs8Mm7xfVrs9UUv8ypjYglDGJAGub5HjOP6OXXNRntltmxHzddt5Ze/pYze829JTR96/ACPPfLKktmrV9o4P8cZr2yr/N06v+T/ytiTtTe1bIf2nMcq0xqXrXPS8ofKuj1nvNa5xPK1tLp6uNY5zePLlXlrcahaHS0fNV9b/pHWbo/fK+ux7KD1rGwvPWfm+b96+deBZT8952pZNiU87XeXe71xop64WiuPt649dtkT3yh/z5dyLUv/cYssz7Ov9BMWc77Fv/Dklc8x9sZxLVo60tpjyjPKnjOLpktZnlq9rT7KZzavi559SLvXmgepI9M0IcZc7nJ/7/knszXWr9HjA/f68FZ5y5/Q5HluPZHPJUu/Ue6Tc7ypr14ZZ5CxtBpWDFje62Hr3lcmSftai6/le8PgP0u24sPy/cNMLRab73v861L23thlKVcpc5ZlHj8UA5uQUsQUJySnndbO23V/I++JOf989k8pYYxACG29lPWP47jJ1njKlLE7rX2r3JbYRVl3eVbYEwuxnuG0nqf0nhU98epa2Zq90esyhIfdx61xmpYstTatNK1sed1qt90Xf/+970mXe1MpS0uvtOuSli/Q9pM0n6juq/Se02rt13TBOvPKMnv9m71ne0+brX1P+629x1RD8+2nsH7e9vj4iPjofyY7Dfnf9lzOnOU7N5mUkmjzIrPMn/f40jdZxoeX9bZs0eFwqO4D1rxKP6/2bHIPpa3QY6Xlb9uHlH2R7y/7ZFnvF1b81tO+dV2OoxUftuY098t7ZqrFmrV29uxte+PzPefAcnw9e99lLGY7LuNr3ncxevZYu/3Lby0PML//XK73cRwW79vU5NgT/6z1ccsZqIU39teqV/MpZIzL02a5f1/spV83PT6Jda5LCYhRl7lVpyaTZS9r+ZbrOKfnNTPrpOZ75L+aHbDr1+WuydgbcwTWz9NCCEiqzW/bAk883ytXi9a41Pbz0t7skcmz7vbUn/H6g1b9vjOfvXfM7cvnCE+xL2d9e1jLhbMsQKjGGcnrgx9fqRBC+CSAnwXwZQB/CvMOsowSFkWMqrz5CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghrwl+fKUghDAC+DMAvgLgXwNwl2+JbPJjKr0fXLkH8N8A+CaA3wfgP0b+HBghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeS1wY+vPBFC+JMAvgzg5wB8JieLLHs+uHIC8N8B+FsA/m5K6YdPbX51j8yEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJDtfKw/vhJC+Kcwf3DlHQB/OCeLLNbHVODIMwH47wF8E8B/mVL6x7uEJYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEXJWP3cdXQgifBvBzAL4C4Kdzssji+eBKmS/niQD+B8wfXPkvUkq/vU9a4iHGCAAIISCly7Tk65TSIl1SpuffIVjTvi6T88r0LJPGMAyLsrKtWruajPJa1qvJWaurbNtTVlLrr+d+q03PuPTWa+lFS46WLLXylr5ZbQFZX8L5vxAucuT/Ukrq/OX08vdWyjWW6yrHpXe91crU8KxXi7KMtRa21NWzjq3fWn7PGIUQzPUm9UArJ//mfFpfynq8tsYal7LNLbrgQavXY5teJ9YYlfbdojb3S5uiY61J7z5a2giPjF7br+loD1Z5OR41m9RjR717i0ffY4wYhkFts+ZD7LH1Wjt53rasGUuucrytfUymWeNVtqH5Zp7fNXlrtr5cY1J+OWbjOJ7zxBgXPmzWRSl/COFc5u7uDp/73OcAAA8PD+f/8u8Q7vHZz77ANE3ner/w+YT3P5jO7ec2xnHEzc0Nbm9vAQA3Nze4ubk5t3N3dwcAuL29Pbd/PB5xPB4BAIfDAeM4nu/J62EYzL6UcljjKSnzZr9IZq+thZav0NrLWntXtnsxRCHTRRda7XrbLq/1MgkpAafTCenk30tr5wGPf9C7b1v1ZnsnkbrkqTfG+CTPPBYAME3T/FnUnVh23LI3ll2S9/b6PbloWUVtvHr9VM3u9/jgrX2+ZYdjTEhpKUOMCaGyH/WcRTQbYO112jqQOmvFJXKesj35O8aI43HC8fi4SD8cj7hJ4ZynZrO0eclpY1qf12KM8/p4qlva9MPhsOhnrlfuddZZ0MMeG2LV4dlHrPUq8eqP1UbJc503rHHP8+gqf4hPfsuy/BiHldxlH2vnROA6/b7YuLSqW85l7czQ0s2yXzW5l+svy2P7h71xAtnPreeg3rXYE2foobXGPftIrY5WzMPjz8t4Wnm/nAvLb9syJ7VzS8vXqKVb55yyDc+Yl7K0ztLafOT9Reaz5Crp9Qe9MSrPWb5mA6SvWrOR5RnIGj9Nr1JKpl2SY1qi9atmt60xkv3S+qqlWf5QbkeT27v357o13cttevfgmq8u69Xw7q1aO6UcZT5rjCSa/2Kdeb37b+t8bsmt5dmyj7TinF4732uTPfv866LlS3nSa2hlpmmq2vSartbo6YtWzhtHBcpzyJw2x6QCQhgW6YfDAUNsx8G1c2lrXV6b2h5RS/PU2xOX0tJq/m1LXq9Oe9qorfFlHGhuN6aIGGVsYQImv17W9Npjb2qxT8u33dJ379l6y72azfScra22PD5ZT33yuvRRtGuJVw5r7qX9sPa6c1xmDCu/+HA4IMZBHUepi9Z+59nPt8TurjU/W2jp1N5YpFZPj2/aKq/Zvpa/Im11uf9cI35Wky3T8r1KWeRvjz9bq1eru4U3fx7bMnvNPnh84z1zUbMjXmo659mr94x3LY72XP709nqlH7TXrr3es4KXa4/5c9n/rb5TpnU23TsOXl+rds8jgxVflOfqXGXLZ/LG1CzfqJTB2478PUZgGJZrbBiG87MlS46ybYuaf/S6sM85Wtp6b9srb+t8Vivzut6Dk+2UMcReX7u8zizPHgmlTd8aM6nNo/RtrL1ai4nJmKXMpyHHJ+fp7Utt37fiQr11Af73FZVakfdjrz54nkXabc0s7ZvUoeUceXxgmab5+dfYi9e+3fnXaq/pfSZVex6zx0ZZdVl7oyfW0qJlK3rLLJ+H5bTLvdr68sTxSjwxCllXq789+6S37VYb67OH/5y5NcbcKivnY6tP55NrrfOvyy9ptVWeeUMIi/d9apQ+qVcewH6e0Gpv7/l/z7hre/Q15lero9Yunp5lXHz/5f40jnh61qE/s5iGiBiVe47Ydw/lnlnzB1qx4rJ8X1xnnb71PFHW7aljfr+7HoO19ltr36v5i/neNE3NeG+tj961c/Gxl2nXiENq1zVZrPLest5nYXnvD+HiA5TPFjxylr6O5xmMZ84uZzo5D+Gc1nqW2yN3TQ5vfZ46r0nNFg1DWq1Dact6fchWXMZa4/I/7V69jrXdqbWX72nXNfzzKvuQ1HOw7FftuYlXlmvGUqy0ec2v5yjGhGHDWeM58gNLu2A9W+r5baVJLDm3xl4y0zT7L7J57d8AbOlnbsujc7W6rHfTShu/Z4w8edb/XiKd7f8Wf5pcj4/dx1cAfB+XfmfNK7XY0sik5EkAvoP5gyvfSil97xpCEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnpeP48dXjrh8Clv7mEqJ9WGW/wWXD678xlUlJIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPDsfx4+vZPIHWKx7kpzvHwD4WwC+mVL69ecSjBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8vx8nD++Yn14pbz3ywC+ifmDK7/8vCKRXlJK6rUkhIAQwvlappflrTqsemUZWfcwDIu65D0Lq65Spvw7xlitbxiGZptavT1kOcdx7K63lN/qs2fstmDpRW7fkidfe3SvvFebV6ufWc7F/TD/v2EYzvOsld8ypxpWnzV9LWW3fpdjnK9letluuWZr49mSpyZb2X5Pmia3hqdMKVOpr1r9Zfna+rF0WNaf16m2Rjx11cq00i226EHLXmak3dxie6ZpauZp9Vdr1yt/rR3v+Fv7ZauubBM0+Wt1eWSq7QmavK0x9voO2j1PO6216amvtr+2bEzNvll49bK232t1lbrr0RH5W9MFOefamJX+WG2vl9dZ1tIf9Ni7GKNZpqYPcg+X9kOO98PDw6p8riOXufikQIwJ0zT35fH0iPv7x3OZ4/F4rjeEsLDxd3d3AIAXL14s8t3e3p7L5vkPIWAcx4X8PWtwmqZz/mEYTBtX+gQhBAzTqcifME0nnE7Lci1k+/J32RfZVmtfv9wWejG1fQKPnJZvOoVJzKOUJa3Kb227le6xMZ5ziWV3geUaLdMXvwc5Dz68Y9PrF3jPCr31y6pykRDaZ1nrrNCaZ2lHdXm2nzdqc56JISKHZ+Z+zn81m+6xva0zF7DUV6vOlj7KvVpey72mLHsYT2c7m++//fZbOBzs8W/5WLlfN48TXnzvQaQDn/70p/FwHFfl8x4hy9faKOldU639eWlf9XxlHbUzcplu2RetvdZel3W6d71tQcYCShkspMzTNGEaImJc9mOaJmBa960857T6kmXzjK3sxzAkMY4Xm+fxzT1xtDKv5/ymt3n9OFXt/F7T971t7qX3fOv1sz11WnGl8tqKacm/NR3T6vX6WN4+9s6FZves/rXWYe185pGrFUPw+kHWOVeme/akPXpd6/fSVum+QpnWq+PludKSr5TBg2ce5Hm/PLNKam2X96y8LR2p6a30r1pjVqujRDuTA+s+1GTT4opa+R499caYrL3Oki/L0jrzhhBW5Tw2sDZO+Z6s13P2bo1by1fw5H9d9LR9zfO8VdcWn6hVp7dcj628rPmlDZmLyH3wSacMNSxt0DX2DmAd4/KOzR5dzHt9Wcc0TeeYVI1W36213NqHNd/W8uGuxbrKnJAWe0eNVuxPb3ftn+xZU7W2yn54YnRb7KAnXlSroyXjtc43sq7aecrCO9+1M8ye2Kull3Ld1fwu2XcZby9p+fZbz2VaG1o72viVeuDxgT26Z8lQS3/uc7F2dug9L9Xy7Z0/T6x0jzy9MsUpIqUcP53TtD2tFgfV5QLkc5sY9Xya/fY+D9l6/vfq4Nw/QPpBHtvnjZF5yp/kgzhDRq38nj2lhe5Tpsq9pzNZ8u0bsuhev7eHvfPqqatH98p2euyYZy20YgAtPOPRs/aex1c19spBl61lg7X7Pe8UWfVb5/Sy/SLlnO7xg73jW3vG0LMP9cynf130le31e6xrb//Kd3pSSoiHiHGcx3R8eg4zDAOGNJc/Ho5Iafszp57zUr7un5ttMR7bDrbb7fJjFB+jd9/1cu2YVu2MZj3bLsunpPd3COvnmTFGV3zbajPGiDjOfmO5J+XnnmXcE8jPRv3tWPdzLCZX3zsfll7MvvByXcWoP7ctywL2ex0t+Xp9hdq8WPl7YxleWTxy1dq8+NgAINP8Y9Lrq3jPv969rhWXsPw2za+ryWXF+jx+q9f2eXS11CXp8/ec+T0+z4cFS9b5fRH73ZQyf29btfLe2JXMWz5r2iubJY+H2r9duhbWHORYvlT3GCPCU7Zpms5xkYW8xjvbZ5+uMQ81u9I689XeXy+vve9eefKnw/JMnsv2+p0tWZaxx2Ud4zg235fv2aM8vnuZ5j3/19al9Vw2jfYYb4kl7In7987f1riIFl/T8vXs715fsCfWurQTSaStx7j1DKbn3NbjH/Scy8t2PG1oelhr82JflzbmdNp3dpqGYWWXT6cTkoiTlmvOEyPX7dnS56rpWMsHLPOW47k9Xhkw6+RF/6w96FrPKnrwx+SBS1/W5Xtkt9bN3jOM9wxh0Xt28bZxDZtn1auNv3dv2Tv+2vsWs4/W/07a1v3Eyq+NTcI+20b6+Th/fKUk7wIJwK8B+BbmD678gzcqFSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5Fno+5/I+/jwmwB+HcD/86YFIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEPA/8+MqFIK7/FIBvAPh+COGbIYR/PYQwviG5CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghzwA/vrImiP/uAPzbAP4ugO+FEP6jEMKffJPCEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCrsPhTQvwBkniOjjufRbAXwXwV0MIvwbgPwfwSymlX38+EUmLEC5Tl1JS86SUzvlknnwt69DqK+vVymltyuv8O8ZYLWP1x2prGK7z/aSaXKUsLZkyUjYt7ziOq/qzHGV+rX1rvmtsKSORclljn+db0xOZXpNtrQfzfyEAKQEBASHM+fJ/mm7n61xfzqu1LddITcZrjaGlP9p6bK2Fcu1YWGu5la+Wd0tdtXuWPfLWKXWhnK/aGLVsaWkjLH2z6pS/LdvaQ15/ZR1WH6W90dBkmabJXOdW3w6HpVvVGqeW7a2VraVrMnp0uDae1tr16lim7LPWxta9rdStHtm8a9Wjty0716IlS6+967XdW+Qu67d0u2bXWuOs7Qnynmb7Yoxuf01L13TIWhe9a7zMn+1HjHEhf65jmiacTqdz+v39/fn36dKM1aQAACAASURBVHTCODziM595uSjzR//o53F/v/ZdxnHEMAznNodhwPF4PF9nmzmO4+I6lx+GwfSJSh+oNV5e3cxyhDBgGOScDhjHw7kv1l5vzUVOt/YVSVt/l32KMWLEqJbd4uera2BEMR4Bh8MBY7L3Pe+Ye/coT93TNHXX5bFFpR7GEFEWs3zHLe314Dmbesuubfp8Lavx+nkeXezZPz3+qlc2jdLe1M5A1j5RO7/3zrvHJ5Z2MKV0LpNSOq+FGCNOp9PZjj8+PuIwnvDy5avFPvBbv3V/tuNyLA6HA47Ho2qjD4fD6vw3/+fro2XHa3Mq83l0wuubxBgxTRNSigvdf3i4x/AwLNrT4g+tmETZh9b91xF/0dpIxTroqa8XK2bgQc5pj0zlGokx17PcV3t9bO9+J+vvPdtkOTWdttqvnYcsHwroPyN5zzA9Z4s99jzXs7eOMn/PWdkTb9HKetvo2Ue1/bgVk94Sk9sSK5PlrH1Ppmu62ep3bU+2+mnFrfJe2yNHLZ83jtuLdTbK7QDrseyNRXgpx6s2n1t1qLedsr1xHOd6w7DyYw7jAcOhPTayvd7xk/l7zjJbzj1ePP5NKy6h7c+eeOG1fI2yrdnPa8eVPba0ZnutfWyPfnvlqe1VW+r1pMv2t+CJkW4Zy1rd3j16GNLTmFr15zraMm6Z/9a4ljZg69xpZ0tfvcs8W9ovZenxwWv2wloL147FFBItfzna9/qqPT5oLmutH09d5RqxfEUtvyZL7XervNc/qcV+PbJ67FjveaAs663LotR5a5+d11I8x4By+gcfvMTDQ338y7iYlkfGfmS5Mp/2O8vioRUXal178uV58NiGPfajVz9aecuzoOec7zlne+bGGyt4rrOFpz5NH80yQ853OQOM44hh7Otn1iUZTwT64kpe/6QmR63OLfVuabOnXG/8tOYreea7Fmv3+jG6rxIq9y621bMHlf6Vhy37ieb3xSEuxiiEpzPUlFb6WevPteWtlenZZ65pi0pb6LGNMibt4dq2UyMPn5zPrc8kWr6N5bdocQ1trcvnWHnN1eJorj1AaaNVV889D3590Mv29rPWvieuYO3vK3sSI+IQMU35nVxpe+Y8U5wwTf0ya7ZW6nDPfto+X+x7ziFlKrNbvppfHv9zAOteqw+1eOoWfbPW2Ca7MwQMQ0AKAy5jYZ9jtrzDWcqYROzncv6MCIv/LeKAmt6Uci3ruvyV72DltNN0wulkj5W2P0vbrp7zxu37eSm/bM/6vWq/4Ru1bFE9pud7/7as04OnfavM8rxwef4Vo98eeOycJ75Wa6cnPlere0t5u4zuw9ba772ntb83xpvzS5/neeOTbYZhqD6Dqb3vuPTJZPrSPmpo/S7bKteuJkvtWWCr/h48ZWv9rcXuL+Wu5/Nr4zsMA9KwvjcMg3gnt9+njDEixPrzQy1+VaPMY629Mp9m761/Fwbo/44s8xhPZpxwa4xza1xGW2d7yOPkeUbvlfH8bL0iY5lm2ZAgslnvL7R80F7/VK5RS5fL6y1xJOmHlSK24qetdWHJllnGePbHCK1nXuW4WDalN17slflacVSgb61p8bX5/cPr7/PSbnvkKq+XurzMb52nrTis98xds+OWnS3XyuUsrZ//97IlhrjlWeL8G7js+3m89TFs7ct7+t+7D3nn2zuW11j7Hnt5SV/rvFWvV54eas8jYrGP5vzDzvie1D9r7NbzKvM9f0ya+LjOvxz4aPGLAH4Fs0ZmrUziP1Tu5fQ/DODfB/CrIYT/KYTwtRDCp1+L9IQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkKvwsfv4Skrp6ymlLwL4EoBvAHgP+sdWINJrH2L5aQB/HcD3Qgh/J4Tw50MIN6+jL4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkO187D6+kkkpfSel9DUAnwfwDoBv4/JRFWD5oRXA/hBLTrsB8OcAfAvA90MI/0kI4V94DV0hhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYRs4PCmBXjTpJTuAbwL4N0QwhcAfBXAzwP4qZwFlw+wAMsPsEC5BwA/DuCvAPgrIYTfAPA3APxSSumXr9+Djy8pJZxOJ/VeCEFNTymp6VoZ+du6lnWmlM73yvw5zziObllkHbKNTIwRMUa1vMyn1dPCGothGMx8VhmZ3pI311/m0/pgzYN2LyPlTymZ4yHT5bxa+ctxsNqvyW8xnKKoMyCE9GRplmNSymz1x0KOuaZv+bcmt7cvXll666/peKkXVt/kHGu6q6Gt/do8eNFklLKXMltpskxZvle22th5y5fXPXrTksujI7X+a+WlvS7xrDG5poZhMO2fB6t/ml5Y+tMao2EYuvcOzfbU7EeZ3toTPLZck9fai620Wls1+az0XFdrzj1rqbb/lGu8t549OrkVrx/mseue8fPYh5qM8nqaJpcfIPVTXscYzbrlvRjj2b99eHjA4+MjAOD+/h4vX74EAHzwwQc4nU54eHg437s5Rrz33g3ktyR/5x89YopHAMDhcMDNzQ2A2b7d3Nyc5ZNyhhDOv8dxPNvCYRjO6SEEjOO4KO9ZT2U7rfza/M112HNa6k7+XfPBaz51KY/FNEyIca2rXj0tZc9yWWh2sDYu1trv2dOt84C8L/W41P+MlV6Tp+UTAU9rdEjIt+RwWueUnrNR6wzS8v9bflhtTcgxG+N6XWhnxy1n295ziixTk8cqo63Fkiks12cIQIwJ4Sltj38qy9XOlpJSfz26JM+4h8MlBJdt8vn3MeLtt//xor4/8IXfh4fHi+2V8tbO5mXaTZhWvu3t7S3C0fZ3NTxnbitPbYwtHzLGiDTGp/vLsrHQgYzck/J+paXL/LmtMk3i8VOmaVqV66X0FwBgGobVHhNjPK8DieynZTuXa0q3qVvYEnuS5bLtuFQz/z4cDoiVs5mH2p6qzW1N/rmuZShYs3vWeJRxKU8ZwKdfXvvtyaeNQW1cvPEyT/mWD9WKhXj9idp9re7aHHvq6jl/Wf3Zcrbx6rWmm5648zRNVd9F60srptLjr5bn717dKWMhnra2UOp1TY9b539g33m+nB8r/lVbi1r7lo9eUotxybpijJjihJTiwg84TScMHc+ErPNLRuuLdmaxnltImXup6ZR1bqqtD+vMUYsRbt0TavTEMffE1D323kqvncmu5Ru18K4FC098W6aXa8HSpVr7rfVUltk7l2WeaZKxl/nvNE04ncr+AKfTCcO0PAO0xsi752zdD7R90HOWtOTI5WOICAGrM5Nlx3t8GouWP/a6uPQTyDqxTAOAp2dIStys5ZNcS8Ya1li2nme06rf0uva7dw61eFRvXVpcpoxrbbHPrXEr6yz95mxTSlspfc7yeYEsU17f3iS8enW/qO8HP3iF+/v1M045rlZ8vrzOecvyZdw+o6W3dLFGLXbayi/xxvlaPn9LBktva+1v2dO88dlamqcdb9qeOa7J0VqjOU/rDNM6Y3viDjJ/kVK5V6+zFTvrGXft7Ou1ozJmmLNN04Sp439urzXXe2NBHv/Ww5a1MP/N8gQAUmfk/D/Z64o6Zn3V9swyrlrKUcOyCVZ/4yGu/MFxHDGM1/3fWNxiA3rPYj1tbYnRlGXyc/YtvsneeLl3P9R0NzcrdXSP7dxLze7O7YbVOaS3rvKe5QPKeSnze848z0keD7lX1XTPc64u6yjT5F8Zx7X8mpQS4pAQ43T5HeP8Hso0y/fBBy/x8LAe/9JvlO+LlOnWnuz1e2pnmOUZD+c+h+SPcWnjVraxnT5foZZuIeOs5diX8X2Ncnzk+cEj097zcu39kRLvOslc9lR5TkrnNJmv5TuW+3NKCcOwlukwHhAPaznlPmCdba+JlF17ViPpHdeMd65kf3tjApktsbdeH3SxfiYp87ynyfN2i3KOW35Auadp92vpmu3q6X85R97z3OVv/1m953zeqtO6rtXjsXE98YxWXVvKb3nel8sv4+WX+lIazvks/6q0V5Kczyubx04813vKPWeQUoc0vd7vE9jkOKEaGxD+f2/72W5ZfS3HvuffgeU0y1549rmyvXIeTN0YL3nKurfOUdvX8emD16epldN+r+VZ07uWLD8dAMJhvecdDgeMqd9n2HKWL9vV6rLOgt42y7qseI9XTq1c7VmDt85aX3KxnjiuNWae9qyzxZbYl5ctvmO5FmJMLt+mVe/KRinvbJ4eHxGf/l1HOS+WnsUYMWK9P6d0mWOLa8Twcz3yd3m/TNPPzWt5n2vfzHjPVF5936PLNf2y2qmvb7s/rbOr5sP2zkXv2vPKu46D63rTOzfX9tcX59mnWKeo4VyP58zSimnVWM+hHZMVv6p1kutz3acyH3FSSt9NKX09pfRFAF8C8A0A7wGLD66U2qzdSyL9DwH49wD8wxDC/xxC+IUQwu9/9s4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKq8OMrBiml76SUvgbg8wDeAfBtQPxPyS8/tAJcPrZS+xDLHwfw1wD8Zgjhvwbwp5+/J4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEI3Dmxbgw05K6R7AuwDeDSF8AcBXAfw8gJ/KWXD5AAuw/ABLeT/fOwD4maIMIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkNcKPr3SQUvougK8D+HoI4acB/GUAPwvgx3MWLD+0Iv8C64+0kB2EEM7/ZVJKq+sQwvk6xni+PwzD4rdkGIZFedmmJkd5r5RD/tbKtsj5hmFQZUwpLfpS1ivLaVjjoOWTdWnjvRUp8ziOi3uybktW71h68vfWBfT33+pHWU+I8axDcr7znHvnbouc5ThY42LV6W3Lqtc7D6X+b9FFy15Y61or28I7nt72tPsppXO91rrR2rXq8lDTCylLy5ZqbbZk0PYBj96Ueaz+b1nX2UZKW1nuPT31aXJp1z141pwlv6eeGtZarfVF3pNrtFbOM3813SnbsWTWfIVeu6zJUt7TKNeVxLNXl/Zti9wePSnbtdL22BzPmi7zWva9TM/3xnF0+SNlessm5DZl3Tnvzc3NWZ5xHHF7ewsA+MQnPoFXr17h/v4eAHA6nTAMD3jxIuJ0mpCPHDe3A56yIKWE0+l0bk/6EDHG8z3pH0/TtJJTypvzSV2UulzOS66v5qe25nL+vU5r2YUt+r3Nxm73h3vay2M5DRNizHaof02Vuqf9Lusr9aIlY1mXtUZabPNl9p9Ryrprurblnmevkn+nKa7KxJiafuueM4AHr76Vf6Vfm3Wh1MFL/jltGEJTbzTfXjtTaX6zpNRjz3nA2l81H0KeO1KazrY4p7+6f4WHh/W4lFg+XB6/6XHC4+NJpAP39/d4iOOqDnkWr/nYXh2zzgNlHpkv1zUMAyJ89ltrx5pvDdlvz37/nGjnRplkqcIWf87SXWCbfbbq2mqLL3EPX32ab27JVOL1a9f1pE1j75FJ5tP6bKUvpKv4RbV6tTpaNrNWplXOipfUzmwtu1PmaY13b1zBI0PLr7La75XDkqmc45qe1mLkNXpjXRmpIx77Y53xY1z7Ri3K+nvj81keTcYsUy1fC4/e9qzHEstPBy5jE0Ld37LmSF6X4yBl9p4petHGY0tbWpmeerR5630+s0XuXjvmPZf02qItellrY0+8aEve1/FsqFa+Ni97xmmaJld5y8+vxVBr9ywZrXbqebLNv+wJ03TCNAXEKGNTumwWvfPXOlu02ijjaL1oY1d2QXtuUt7X6vK06fUha3X0tOdnPjfN/wWEcLG74zhiGHU7vMWf3sNen7N2FvL63p52vMizRase79rZEtPqrbfcdy17Wz4TkO2M47iIr1uyzP1e+lc5DjYMa32Y0y/PFHL64XBQ08dxXPy2YkS18cjPC0pZrL7rfdTtiieO65nznnNHzVdvYdUr38ux6u6x6ZaMPWcBqx4rr0wr46VaHu8Ye33KFvmZVd7rgcvzhCENar998crc10tazz5Wxt095a4Rl9DOV5d5u6T36EArbubRhd6Y3xZfx6pfk3Gpyzl1aZt132m9J+mytvNssQGe+MI63jGfpdN0Xd/k2uc3eb+2J+yJ45Z1e2OVW/ywXrbFxbXnAX3xcM+9nrn2zous0trHtPXWipmW6/2aMYsamsxrPdb77Z2jmh3b4itLH7JGvIkYhvk52DgmDMOEw+GAw1P5u7vbrnfZyjatOS79Du9ZtBZ3aLVp1V22LbPFGBFS20ZIn1ueOYGlHy/ZGyvWKM82KSXzXRwpX48vUrZVe9aQ4zVp8U8nln0tx6ZX36w25+t8fwKmHC+aVmtTe94o6d3LW3rp8adtXVu24xmv1nNKzzOgnKf8NwqWrJbt8vrbW882rTOft65R8bFLPemJd2l2qGbfrxG3tJ7Tt2yht36Zr8xq7UneOFZLtpZ8W8a15yyolD7XUVbTe2aSc7THHx6G+rnGc91qb8+/PdJsiadcD1vPYZff/XvjkvU6sHwCAEjDus5lLLAd47Vk8j5X3Dr23vf0rDb2rL9W3S2y7No+16IlY37XrOyfJqdX9tq7DLV/X6dRX+/7fNOWLeuRy6p36z7a63d74rLePa3Hxlr1zj6gv8y1zhkhhJWOWe30+HEtvLGN2loYx/UZ9XAYkZLdn5YcKSVMxyPG4vni4XiErHU1x2NYPPvJ8gbjLFKLrQC+9zKttGU7fefwyx55Wec5Sys+fc2YcJm+xd7o8eF8/3Ie8I6RJ8a5Zwy8vvy17++JE/fOjXam9vhAnuctVnrbdvbHXz1te2NhLcpnBeT10h/FIgCAlNJ3UkpfA/B5AO8A+DYgngLjHE2UWl3uQqbGhxD+Xgjh3w0hfP7ashNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQvjxld2klO5TSu+mlH4GwE8C+EUAvwL9Qyv5YyuhuA+RnvljAP5DAL8RQvhvQwhfCSG8/UzdIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkYwc/vnJFUkrfTSl9PaX0RQBfAvANAO9B/xBLjSD+jgD+NID/DMD/F0L4myGEfzWEwLkjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWQH/IDHM5FS+k5K6WsAPg/gHQDfxvzRlfIjLNaHWOT9/PGWtwD8HID/CsB3Qwh/LYTwJ56tE4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE/AhzeNMC/KiTUroH8C6Ad0MIXwDwVQA/D+CnchYsP8ASir/W/c8B+AUAvxBC+FUAfwPAL6WU/u+rd+JDTAgBIYTFb42U5iEchuX3hsrfOZ9V3rqvyWXJlH+XdYUQFmnWdSbGuJB/GAbEGFV5rPRa/dpYluPV206vDBrWHJeyWbK05rich9dN2b+5X/n7S095EBDCfK81J9Z4edDGUI6TRjl2rfHubf+50Poj7UtKyeyzxwZpaDqXUmqufY/srXa98+SlNX7e9mX6NeZfWx+WTdbyWfY6k1JaydmSu7xfG/st87J1LstxqPWjZXe2oMmt2Zs9NqWX1tqy5Cr1prQR2hqXurRF97fOSZYthIBxHM18lh9S2ydaaZYsPXPpsT0enfHqlazXGnM5JiklTNOk5ivrl3Mhye1M03Su63Q6YZomnE4nAMD9/T2Aezw+Dnh8fMDpNOf7rd96D++/P+d5fHw81304HHA4HHB7ewsAuLu7w4sXLwAAn/zkJ3FzcwMAOB6P5+vb29uzjozjiGEYzr+HYTDHRvZLm+NS71rzP+8hWtp6LGV9tfmS9+T8WWtC8xVjiJibDSv5rk1pU/JPOb5bbaLX38lsPRtI+bIeb0H3J7JdbduBPW1pePzjml2ppeffw3CZ86c7GIbQtQ/0nnmt9WXJ27NXt9JijEKuOW2aImCb1iaWfyrblOmanz5N0+J3jBGPj4/ne7kOabtlusbbb424v79fyPfBBy/x+Dioco/jqNpYyUUvsk9yHgVznqZpUvWpZh80+Xrvy3yLvIeAYVja45ubW4xB1/na2ay2TuR+nfO9rvOo1DFtLcl1kIkxIhTy5f3JM9aeM+E1+78lLpHFybL22PJWvE2TyxtDmsusbfRznJHW7frSPT7mtfDsHTVZtsZTarJ4Y7Ll/qydzYCLTdDq6vEPpH2zzjFlX7zXJXIsZJ+tvnjx7OW9fpd11txSV43aeveuX688ch+pnbO3IuW/xtq2+u/pb82HktTiIl7kvvA6sexcRlvX2lrN4+P1p2r5NF9ly7h47KUXrz2sjWPrucOHiVZ/vX1o9dkzL544ila2TO8562m236O/1rMWWZ+0STJfCAFjCmIvm/Pc3t4h3QUcDve5FIA59jXEwZTFu2Z69mfPs4TWtYXl51/WTp9O7nnuYNn4lh70rO2+vAmr7On8/5DS0xl+suesJkPu1x75a8/vW/qijaOmlx5dbfHce2x5Zi39iJaPrP3W2BvXquXLNiifH3K+cRxxPB7N9m9uIu7ufm+R/pnPvI2Hh0Et4zkzeexuGfuuldVi+mU/evfo2t7TEz+spdfaq50HZb21uGa+54mR9Pgye/ydvet661r3rB/r2jt/WsylVkc5L/a+32y+Wpd3zHp1fE+8zCtLGf+ozVfvXvJcvqo3riN/z/KfcwFYx3OS8A802fQ17Pfftq7N+hnZ1iNrvvbaam/ePTG92p5yjbjSnrzXkstbh1yjuenSz9Dk8sizJ97V0qnlmru0V/M7vLbII19myzOMLfuZfZbL78z4Yj3aPes8ZVHa9fIeoL+TFqcILP43Q5d43j/1Uvr8rfOLVUftd624d8xlvvJ9l5Zc8zzIcQ7zM+ENQ6j548+F9u7Slnbba0/36fbuXYuYUZB+QL4/4nCY4/GHtH5udzgcEA9jt29v28Hnj2GGUF+bUgb5LKJcM7WYRL5X2gHv+dmq10rbUq+0fbV9wYpzWjbF6+d68cQ1ZJrH9tf3ob745h69TYMe77Js/LXi5y0bpbXp0ZE+eS4xxly/bMLT3942r62bZb2t824Zs6u1X5Np6/sm1nucvWVbpKespS0do7+OCYrfFSOCIbb27o/NvGbHcbzY+HHth+e1XXsH9xrv/mh11OLeJaXv1cqr2R2tbE/f8hjp9UqbHAAkt49Y1plSqr4jsOUM3dN+Ta61Xqz3SCuGX/7e829Mtpzlt8XR2j6ndsbq2dO0+rT3jSSe81DZbFnvc7DVX/PEUvb6V60zohYDtc7P14jxWHMxDIM5f5Jsuy2bLst4x67Wr9ozKC2Ptl9p/bLq2DvGXj/p2j6Y1s5WP3OP32bZni1+rqTnXTOPP++Lr/t0x9N2OfeWXnv0XatbW7c98TqN3hj6nEd/PkHeLM8ftSNnUkrfTSl9PaX0RQBfAvANAO9hGXFMwOpjK9r9JNL/CID/AMD/FUL4H0MIXwshfPq5+0MIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyEcZfnzlDZFS+k5K6WsAPg/gHQDfxvIT4/IjKxnPh1j+eQB/HcD3Qgh/55m7QQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIRxZ+fOUNk1K6Tym9m1L6GQA/CeAXAfwK7I+sZKwPseS0GwB/7tk7QAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIR5TDmxaAXEgpfRfA1wF8PYTw0wD+MoCfBfDjOQsuH2AJoqi81u7/yDIM+veDUkrqtfwdwnqIZFqtjhYyf9mOVVdK6Zy3zKPJejisl28ej5TSuY4Y46INb19kOU0uTaY9jOO4aFvOrZTFIufx9s/SizxGss9WX2tjoMlRG39T7sdHxBgRY1zMaYzA6XQCTms5Wr9r7B2/Fi1ZWjrWM34hhN0662lP6oilq1kWTQarTE1HLVtVQ5bZoiO1drRx7tF3zxrvZRgGd73WXiJ5DhkBe+y9elHOa/5d6n9v+zU02Xr3yZ4yNXtj2VpvfT37biu9rEPqlVy/lpy57nEc3fLIurboaJbxmvqt2aeWzfLaWk+btbGy7mlzpeW37sl06c/I9NIfq9Uh0fyb7BdM0wQAeHx8BNIDpun4dG9Ov3/1Cr/3ey8XZaT8t7e3AIDb21u8ePECAPDy5cvz9d3dHd56661zGzn/8Xhc+KFyXxqGYdE/aZM0pmla3PPY4xJrnmT7lgxle972y71uGAa33d2L5yxRw9tHzz6UdXAPPf5emX9VdijX1bp8z3lIY8+5ELDXQmv+LueAhBilLUqYpohpmFzzr8m0lT1nDq8cc51rvzFUti3vHm7pUrlG5B6e18XhcFidz7TzeW29Sl1MKeF4nHB3t0x/660XeHjos4tS/osdnMcxpWyT7b04hHDuZ7Zty7rW9rVs0+pzr7+R10VNtUpZanjb1/J5+php6XZZv7VXnvcaMQ9SHrnnau2/rn3JojemI5nFXsZoeqjpheWflXlqvsuyXMLj4yPS6eID1vYqWfcWv7WsS+av6YPmi9bYEiNoxVlb91vyec5UXmqyDMNg+vQyzeN7lfrrWQtem1bLJ+PDLbR57ImlXSvOdy0dtXzdvbHRcu68uif95VasWUu34hfXjHFew6f3tC3XWKbl/4ZhRAg5fzqX95yltXP3FjSbbenIteKrrXq2zpk3nm/tKd59y7LTNRvY49NJ9vg6e3Sj97lQTt97htrClhjnFloxsBZajNa7Mo1DSwAAIABJREFUpqTv6GVLP1t+S08MW7unxQCl/2OurdPsj0ref/8DDA+6vtWeJ0hq9rp3/Gr7m5XmnX95Ns9paXH+tdsp16V27fV1arpes9ut9strz/moLOvdX7acu/biGT+tPY9O5fRe+2KNcc+zirItbZ8bxxHjeB3f1bIxIQRV/7T13toXauulJptVl8UevWr5OpYvUu5bLZ2pxRFbMpXp11hHXh2X+bzrXZPTE4uQ8cVavSWlTe+RV8u3tz6JJ6ax5fmWVxfGmO3Jsn2PT+fVM+/+Yo2FpQu9a95zbvHMde39sda57OJjLtNr7wJp12Uej5/nkbFH97b4Xb2xoNZZr7yuxW09MV1PXWU5a/y9PkWt/t5Y5dqmZl2Y02KMQEc4XetL7m9rPEtf0dKXMn2Okee0+e/pdMKjIbh17ti6D3rnH7joVWtu/HMfkPscwrJv1l5spW+JN1o654u59MfvS7msdqxnq962rN/yr5ZHq9PjE10/HtMfnyrPQp49pkYr33O9FzkMA1LAWccuc7ZeI5q8lg+XMf3GMS7emZjzRpxO6XwO0uqNsRGP7tQNj99S4tl3U1rHM/bYT/nMy4PH9y3TPOcnjZ64QKs+y/bY57mkjnNv3CW33Trzan1t5W3hnaueOrUylr9de2/HK1e+1yNfy6/YUlclx1O++df8HNkfC9hrV7R7Mtak6bDnnGilWbbw+nunzZ73mMuyrf1va7/O7fSZV7OuvJbyWpvlWp8Z53Pp2jfHZOtNfrfoOajNVdmmzNvyKb12OKXU1bfanrOMA+jn9Wutgy322MK7z/aW9exVPe/RWfX0rndtvrXzb+1s2zP85f7e2stKObfEGGo2XO5/vbGkUkar/bKeLTrmPTd6sM7/1vmwjLe1zls1W1XD+rc35b/5lOkpLf+dypy2rLcndq+xZc3bupTTg5J2yXdNm9aLx/ZYvk4I87lLxuOGtPbnvf3z2CGvDenJ03uekuVqft9WeXrbz9e9ddfGwpu+rvN8BaDtQ1lrx3NObvPm1hXReR5vmuwmpfSdlNLXAHwewDsAvo15BeUVl8R/ktd3wiWEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh5CMMP77yISeldJ9Sejel9DMAfhLALwL4FcwfWWl9iIUQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGLAj698hEgpfTel9PWU0hcBfAnANwC8h/WHWAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIQ348ZWPKCml76SUvgbg8wDeAfBtzB9eCdWChBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQAMDhTQtA9pFSugfwLoB3QwhfAPBVAD8P4KfeqGCviWmaEELf92aGwffNoVxvSmlxnVI654kxNuuT+Wt46vLWK+uSdcYYMY7j4vcesgzePtbmapqm1dhuqc+rDyGERRtWuRDC4p6UUet3bSxqdVl1zGWAWrfKsdozHzItX9fGprwu2y7HqzV+Wv2yHanPllyaXua2PWPem1aTu5RF/rXqaulwj45beHWkNl6t8e9pz7J9ll5ZlDqp6ZCcF03Olh1qyZLv9+5NUj6gvldpelTKVdob69pLa14tXS+vy7a9cnl0YIue9NbbsvFauXIuZH5NX2rry2ozpbTQmZrMUq97ddzqo5XmndPa3pFl1NrS6q/Zk56+aXh1TKtzGIbVeMu+5etpms7XMUZ1TY3jiJubG0zTJOofcXOTcDgcME0nAMBP/MRP4Mc+lc7tS/tyOBzw4sULAMDxeDz7hzc3N7i7uztfHw6Hc1/y9TiOi/ose2PpvvRFtbGqzf8YJ1VfWrZkq03WZJK2N8/RNEyIMeep7/U9a1yjHCvZREpp1otp3efyTOBBW081OyDr7V0vtTZCCGdZav5HhO/8oPkXPXNizatl13r8R+s6/x1jWs3LOA6rdVWzq9Z669XL2v5i4WnD8ufyd2YPhxFjWtsRS8baWMh2LJ/K6ldp4619uObPSltyPAyrub053iAlW+c1e1uO3zAMuBkmjONBnCkDbm9vEY71cVyfS+vnw1xmb5xBtmml9/pztXo9cZitdtMq13POKm29vL3n7Hi5Z5/ZvXVpeMdsvceeWzzLZvnNpXy9fvuW/XgcgWGQ5WYfaUy2HtXkt+T02J7a2aqWtjeuZdVdOx/K/Nr67YkvWHjPCznvXl+lrKN3j7PaX/r4Pv+ttD29Z5vaPrjFxlr7oDbfZx/nyZdpxWQ05FnLU8brj8txtfaKHv/XY6M8462dp0pZvHXV8u89Q1n1Sx2vEUJATLHZjzwe1/I/ctsWpQ8m07fW97rw7Bu19JqsHv9hy1ldi6Vc6wxjxVU9a2GLL1H6sD3PAoFtvtXW/L1n2PL3Fh/V45/M6QlAWMVCyiI5/xZ92et/9Nr48nlAK14rn6WmlDCFiGmKi/5+8MH7CPf22V/GWOSz5Hw9jmM1FiPTW/5cbr92NrbK1H7ntEv8NNePp2NEOv+u+X6a7nn7VZPLwuND99TfiifV6vLOxRaf2lN36ZO19lVvjGcLnrN7uW/I+Id2L9ebUsLtTcL9/f2ivh++l3D/EM5xdivGY+1D5fps7U01XbbeUbHWgmeuanh9kt48Wtu9Z3E7Lrk827SutTKybW9/es921rluS71lPo+NqY2Fa08e9D2n1E/v+X8Y9Dnp8eH2+gVa+pZz9mxP1nHBPf5wr4xee2PVc82zj2deL3pj59X2/kt6Ustr7XnOfK34gW0b1zFcqw0Nax/x2kUtvfaenTd2eC1afmZPrKZMq+2plr31nKfXNjKvqfmXZvfKOnrP15bfZq1Rez3NjFHGyOe/h8MB0XjmZLVjydXyNVrn42vus2X+ucjybD8Mg6mLWn+vtU/LvFr8xIO0UafT9nhL6U96bGSPn/Ek7fJXSv8/O2+zK0muJOgZ6XFOVldNt26jGxi1oIVGmo02o60A6f30Dnqh2Ws2WgmQgNGMBo3+u3WrMs8Jp2sRyQg63Yw00uNU1kV+H3BvedD5Y04ajWbmnqdpj3IdTdaUtt2ZOps/OMOMnrZ0p6dX5bdHpR0bydXaYx+/a8rrc12vEq/X6TG8z5/vBynf3TzyRSHYe9Azd1pZLrbsa8tX8/lRIimtIqttJ+t9p5VrMs6cj7OczT2M4Mnh9M6hcm3z70zv+6meDs/Y9xpvvqV3r5ene1acYTHiJz7LFxgZs3UWaXrU6sf7ba4WZ1k2cJ+D6vfdk1OTwxrzGZzd7yNr19KV8mwsy8LzXjdOU8p1s0vhfu2l9Q7qme9Ue+PlNdHeb9f+XHl9ew+yl/P2TayeVxt552b77cfz8tn7YGbuW/9u6sx+Ohs3teZGs2XaGo1+m+yVUfuGM4Qg2y73qMf+s98HevOVLXo5/PwNqfVNUe5jNvfZi2k1ObWxrO9ZrHFn6tXrFGPqxoceO1HXyTNd2+UwsZezfPsx2nYn48k9PpPbeOU612X9HFzrHUov91b2dzZOtOK52TzimbXw+jC/1Xp73mfNylHvGS0mPZPjOIsuz/2XiBz3+mh+yzOuft8xLx87PaAw9nUX/K7Ztu3/3bbtf9u27X8Ukf9FRP73by0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA75XLtxYAPoZt2/69iPz7by0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA75X4rQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+BZcvrUAAGcIIUgI4VC+bZts26aWl/Wt63oM63cIQR1HRCSl1BZ+sk2M/b+Z1KozI5dG+dz1HFlzUs6/Nd+tcax79Xpb1941bo3Tk6vVV93G0tH9f1P1fJtsW5KUgqzrKmENh74snR19/rxempwhBFOX6vpa/+Xe7emLNu9lny0dqcfr2YWeLNa42nVPrnJdPM/l3TMaLdvnkbGWp7YxLV32jNea91b7Xr+a/NpajdjFkTFLenPUKvOMV+uwxxb1bHdPltb9Wq/L+bdswig9eS3b4Z3jrBelvrd8AkvnPedYr7z8Peor1DIvyzIkS2tMzXb2bI02N2X/tU3Oz6LJkO/VY7ZksObSY7M9/k5dlseoy9d13T1/rne9XuV6vd7rvL+/i4jIly9f5MuXLyIi8ssvv8jPP/8sv/zyi4iI/PGPf5Tr9Wf5X//nv5XPn3+9j/F//If/KL/8YutLnr+/+qu/kr/9278VEZEff/xRfvrpJxER+emnn+Qv//IvRUTk9fVVXl9fReSmQ5fL5a5Lpb4ty7KzS9r1uq67uYwxdu2x1s/t9639qH+ZGfHxMrWMWabH0LeLUq6S8nl/S7S57Z3VXl+vV2717227bdtdlub5Fjd5dLOPE0bOtBE9snTIOxelvfOc3XVcICKyrknWuLrkbcUJ3jmw/OaZ831sL9zWN6VNwoDv5o0nM55zVnt2bY1SSqbvmVKSdX2s2/Vllev1umv/6+df5e3tGNs/7M7eluZ75XVKSeJ1/RpX3nuQdV0lLUdd1PpsPf+2bbvnqPuoZdb6aHFrc9Tblpxn8yraHi3rj+ht2U7zLetxNT9if8b08cahRUlu2exj5Llb8XXrDCn3TC2m56w/EzN7ZCxGOozbyhWMxvbe+KHsuxWntJjJE1jyzIxv9eNd5zO5hpk8Qznfs3mKnnyWr2jFcTNjtOqM5mvPxq5eWrbeG9f18ouZXJZSUm12aa+1+z2/24uVL6z9i159zzh1ey893en5FfVc6TbuqGNlvdoPacmgcSZf1/PhtbajZ4K371nbo7X7LePV3li99dVo5WZnz8uRcbyUzzaz/yzfqDwvWnus7ucsnn1T2tey7IztudnEII8cwKNcJo6hZ/k2uS8r/m+hxRDlul4ul70dfEny+ZL16Vb+008/Snyx89Y9m+2ND1v2rdY/60zVmNPLR65kkzI/tM8rtcbR1qjl6zSlMWztzNlR9tNqX54J1jOM5K9q2Vs+cN1Xy95Y9ssztx5f3arXGk/bd3UbLeYrc/+aH5zLXl43WZb33fiffvhBQhz32Wp5n8WZXMrZvewZe3YMLZ/T0uWyXut6xuf3zIfHV7HyD73n8tCKoXt457TVPvv/ZfV8pvf8Vm0MLXaq96v3fPaOWffbuzcWrxznJqXxnLwlkxXn67L4cgm9+RrNa3nPIZFyn5bl+ll08KmTSAh7m1e/8/PqQi9my3Nf93fT3738ud5IXqvlk3jwnKkWv0VseTa3OdtnPl/q+bX0ohX3PPbeLSeeUpJtPerNaH5j1kb1+n7ooUipnzedtd8pjfiAvWfxzIvHvo/q6GNf3nswbbGV923Rm4uWnfblYbfqv/U4fr2IMZq501LGOl/psffasxzP9K+xkYzbtXLPjbLX4/Z7Iq9cM3ncEm9+emQsz7meWddVtuVmE7atHHc7zHEv59La+4ec8HU9nPVvb28S3266uV3X+3dXt/Yinz//Kl+uiyt+zeUhBLm+Jnl7e9vJWb7Dt2xSHcPl39b3TdkXLmZGlWvEH8p43qGEEJp2ajQm6MXT9XV+J16Xt8rq6xFZW/XK/ez9ZtTLbA64N94zz321/1j3s/+WvhWnemTq7cNeew/PWD+Rx3c6tZ/v8Wk8Y3vjjMf94xl+xg8/G/8/a4yP7vtZscPvmTPv6evz4Cl2xFibdl6272+dee+wP6uP9ibG2OzfG29beWiP3KP2tYWWN8lFVnctv6M+o2byiqNxrqfP8r43D1LWG/0uR4tXz9jSUf9kpA8PnrPr2XZ8Rp/zOmVZtD1c4nm34dURyzbc+4l5vfbyLsn/7ekzv7Wq8dr4svgW79XxSl2/b3ut3NBjnHZ+Orcd0UHt7EihnwP5CJvWa6M9vyfGa9Fab69PrtF71t1zHWKJY67duxdnz4WejPvyx33PmrbWa/Q8eORcpSr7+Dw7tHn+m3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwP44ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwXcIfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDvksu3FgBglm3bdv8NIdzvhRDuv/N9rf22bd16Zb9lnW3bJKXUlTPG6KpnyVCOLyJTfdV99PDIXPfZGq9cI2ueveNo6+Xtt6ULHhmsedTaW2tpzVOtx4974f6/EES2LUgIUWIMsiyLLNsytL71vrHG78nr1UNtLKusJo+vrfnI+LPEGNV5ybLUc1Vj2Q5rrLqepfu9PrXy3H++39qjFpatrH9b+6W2n1obi7r+R65/T1/r+dPm09t/a41bfZbrWZPnplWnrluOObpfZ+XM/Vo2qSWDNYct+6X11Vu3ZVkOfXvPmtY+8ehLS8c8a+vVJa1Nb497xrTaWmv+jD2u2Z6ebS7X2JLFulc+Sy2vtY9yvdx2Xdf773x9vV7v1+/v7/L582cREfn8+fP9+pdffpE//vGP8g//8A8iIvL3f//38sMPIp8//2TKrpHl+ad/+ie5Xq8iIvI3f/M39zl6eXmRX3/99V4/6172E0tdLK89+nfmTN+vg8i6XiUlfV+M+sCtNnlcbQ9uMe/TvX4tl4eOjfrALZnufS0iMT72bghf/cN01G2LUi+9Mlhz5Jlvjw3vxSK+uXzYhDI29DBjB61n6dmUli3UylLaRCSXzT9jLeu2beo+znqlxXOt8azz3RO3Hed/9+s+bzP+iWeOWvpXPld9ppV7KV+nlO72dV1XeX9/v5e/vb3d672/v8vra5Kff153Y/+n//SzfPlyk3lZlvsavby8SIxRXl9f7/fymRZj3F2HEGRZV0lpk/Lx13WVr6KZc2T5HJoejM65ey3kKGSMsekPlfestfSc3TU9mWuZ6n3Z8zu8OaZWH+XvcX8wnLInao8O/3BXf816ass+Gku2xu/Z4LL/kXhAa2/ZztF1smJTK3fSsuMij70wu+aja+zFk6Mt643kH6xyK9+orZEn3vTI35O5tAlWnlHDEzNm6hxCjkXqfp6RhxmRqx53xm7X9Hw0zX/x+sp1/60yL1r+qVe/Vbd3xqeUhsar++zJVOqWlRc4nIshyLru1/79/Srxq09lydKytZbttPobmfezMVMrR2bZcU+/Fh7f/BnjjOIdY8YOn8VzvtScPd89bcpxyr02wqico/VaNsiba49fcy8hPOLEW8wjcvMfHzGP5td6zgGvb+b1I1u5a6vf0hZo741q4kuSZYm72Pn19UXEOLq9/nSdIxjNqyzL2LvLlky1rT3a3sruSzjoXFyUfN4H2hHvOTAzR6WOzMYpo2N5xujJ0jrnajTfc8SX1OKEmXyfVb8Xd9d793JJB/kvl8XMaVsyemyKJx9v9dliNP/fG8sjp2ePzpyVH0VLRz1ja/bNky/2PpcnfvfG3KO02h/1IuxymL08oMbI/h6Ne87k4LUxLdviye9ZczPrT2rjzMS5lh4/I2aeO+/KMfR3C/XvlJJRpufePLJ55/X+3yXc3//d+t+vufUMz4xTWrKeiV/Lfp9hx1v5W8sXGI1tdB/UltfrdxzzXV/3sNixxIj8FlbMNjYv9vp4zq+6vLW+Z3xmb1zn4diX/T7F0pFerKOV1c+i1fPlcX3ncYtyHO17Ku91C7VeFAkhihTvyGd8hBDCwb6KPN6njshp0bMVuVyL61p9WdR5oBCCOi/WHtXeQVg2vjc3+/t7n87TvpWXOchffCeTdftyuUj8GmO9hFVi3L+XfXl5le1ladpo7fyv47kQvn6TU+UZeu+JSx2z7YZvn1rxmYX2jro3xjPzxuXanvWt634tWWb9xta584zci8f3qW3/zLhj+7WP5h9rfnWNN/fm9QnLM7A1Tz1fzfv8tc+zbbe5iFvfz9XKR+NPXZ667nPyrx6s82Emd+Cp25ov7z5t6WDW6w9OFw1x21f3XyJy07mUwv36Vv4coS0f8iP/fcbIv6nz9FXSyym3dKq2c9u2yfV6lWs4thn9fr8sGz1jrDO01c5rh27yqFVdMXtPDq2OZcc9fcz4ELpNeG7esNWm5d9aZD25VQ2S5S3156wPVcvZKjv7rmZUlln7kNLRL0lp7jvMfR96jjA0+s1tymbruoqsx34srO95eszEyBZe9X+GPnr70va0Z3z9e7OjX3UmVmn5mpZNrf1pLR4r/z1rSY7xZnxS7b/Ws9S/vf5szz+s90jLdnrwnvdtsq97+3Xz++fmt1evvNc7m0vdfEZMCnM89+QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+DOBP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yX88RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4LuGPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB3yeVbCwAwSwhBtm2TEIKIiGzbtrvXu9bIfZR9pZTM+suyuGTV6pVj5HF68nmJ8fF3leo+tTFqWUQeMnvmYtu2Qx9an2VZuXYt6jat/j1oY4YQDuXaWK1nzNdZLz1jl7pbjlH+DmmVbUtf/7eJSJBNNklpk5RSUz/zc2l7oJalpTPlM2r7zYtHR0bq9fZ2vRYzMlt60dJdS5ZaBmtv9XRe07GeHdSw5iPLEmPcyeW1K5oMWn1tX3ntjSVHq+6ZepqNsNr2dMRjkzPlnGu09n9KyaX/o+Uj9Ub2X28ttf3uHdszlnYmPfv80dqPPHf927u+vb0uste1ll555fTUtZ6llGdEb6xra4+21qGUsa6ntVuWRZW1nsvSH9y2bedrlXKt63q//lf/6l+JiMjb25u8vb2JiMgvv/wif/jDH+Sv//qvRUTk7/7u7+TXX/5R/uqv/kq+fPksX758OcjS4/39/f5Muf26rvcx/+Iv/uIuV0pJYox3mWtdyuX1tYV1pml1bv89rqmlz1a/M35fpl7XbdtkjauktEkIjzbrukrc+nvLa1O0edFsfUpJQgrNOddk0frX+pixERbWs2dd0+o+K16qx2/5n94xz56pLR8yE2OSEGJV1l7vWoYRfffK6cUzzn6v1uMFWZYoS9Ltbm+MVpuebnv3g9ffr/X85bLKH/7wj7uy//7f/EHer8e4vO6/PEfWdb1fv7+/366v6W7Pv7aUf/7nf5a3l+X+bPn5Yoz386kuzyzL4rKpI/GYtudSSpJCKvqT+zPK2telsz6bJb/lN2j6kOdt1nbGGGWrdC+EsFublswttqjnBUqZz8qv0Yt/ZnNY3jFaPqPffhzPjFmZtLyQNu5oPOLxr8ryUnfqa+8YozLVcnhj6XLOPPrRyku0fvf6HSnz3NNkaZ3vs7nvmjqWKccsy3s5cE88lH9ra2Q9a8/HadHy+S1/uJWDtObWI6OV96tp+aQzWLlnS56zvvasH2Zxm/d9WesM3Ld73nuWmXXwPG9L3+prS89Gc28z8+Idw9N3K1+jlXvq1/e9Ms6cAy270pOrJ48lY8+3nnkvoMnXW+eef9XLndf9e30M2y943I/xOL5mKywf4ln24qzNFrHnspZ5d3Zfjs/68vIiiyxqfa8eP6u8pn5Gz9727dft/t9NNim7TSnJpsSQs2t/Jh7xnPUtn2TGV/DM37Ptmxerj55/NWv7PLkMK9cv8vDptLaWjbbseLkXWuva8yM1X6GMgbTrGay8gGVrNTnL+fPZ+r68IzHZjM6Ozt9Z37qXI+iN6blu4X1v6PHHrXs1tb7Xsq7rerDhvbnd5wHGfD5vnV7dmZxopt73txhuPazDul7lGtprO5LT0+yI5jeN7qXRveDdw8e8nl5fs7E9f7RHGSe2ztBaRs3u5+tDDiWmr3si9zW+H1qyteKnEV95xs+sx2rlaz39eWJBbdxRPPu9zkNqz7arf7nFMyXLskhcfN9KWOO3ZB49J23fMZc/5n8mfzCTk/Vg+VkjbbXy+lbW4da81jo6IlNd95nvamqs/O+Zs66Xw/buxaNvtCllvn5u39oe5zXH0B67dvtv2ce4HzRiU3r16nLtW4sZzp3hz9t7Wj3Nz9u/1z6e9VZeueervVzSYX+8XF5k22JXx0fYlDmz4pCZ7xrqfkX8OQoPvb4s//IMnr76vtK8LGfPqJrR92HeOMN7xrfa5FitbOKxwy2b6Fm/ll614gOrzsjYuZ4mQ70HPbnOkXXwnh0t3+TZtPINtU0ZzZ/M7CXvWK25vH0vc+z3TL5RxD5vROT+jU5LHx7dPXJ+d58zPsqfwbN9y9F35mcpv2nyjN/6pqsmBPu7LA8jOUtrfE+73jj9WEUr0+1775s4z1xZfqrne+/e/I3EtF6eaU/redX+rVY5n3XMcYtj5v2ellwtznw3OCNP67ukVn+Xy3rQo2WJkpL+rrRH3jvb/TvGx9jLssjSmo9Fz/UsaZ/riXHs/MvP90y9bOc1tbpt367HrP/8W/RZ+3hn5tmb0/SMM+IznX1X4WnvaVuPV9qzfCulJGGbO2NHZdR8O93nnnuv5dVBjx2N1/Wgh9n+f4SPD36ep60AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf0bwx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgu4Q/vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfJZdvLQDALNu23f+nEUIYLuvdr8fS6vfGzH3k8vw7xths56GUr+4/l1nz1SKl1C0v+/Vcj6CtUQhhN2et+bLG9cpWjlnWt3SjNc+9MUMIu35jTBJClFvRVzlEJMYZ1oO2AAAgAElEQVTb84/oTU8XLbnK39aaW8yuuacvz973jD+z11poY3rLWvdbtmq0/1rPyvJSp2r9svq1bETrvmePaHasrlvut3qOtGcsz436v1ofdZtZmWf0rDevLTla5aWMllwzNrV1z7OW1tilnM8+XywZSmp5tH3Rk01byxjjsNwjNl4rK3U5xniXK6V0yl6Wc1I+a13fOh+9+tZac8/6zezD1p4ubYh29tTz0vIVyr7yHG7bJtfr9VDn06dPsm2b/OEPfxARkR9++EFe/vV/JX/910nWdb3X+5/+3d/Kr5+P8/Ly8iLLssjr66uIiFwul/v16+urLMty7zdfXy6X+zPm6/x8IYR7vbrcO+d730ffYymlr/WOelW2tdZMWy/t/Jjxe27Pui+LMYqs1W+lXwuPjt/2tFa2ybquh/qjZP17tq9U4rUJczIc40XLb9DGG7HRpb73bFqpi5YdsPQ4pU22ba8/65rkGq7SwrKFmsxn17vnJ4z4BFqVPNejZ0ftN9b1enu03FM939u6bu197XmWZZHta9pO092evco69vq+yuvry67vn376SV5fHylBy3ZbMbfld7fWZdQOiohsUfcnaj+95yuO+LxWPGDK2PD7Z+x9ybqussYo2yb3cyb7CqHTt3WeZrk0/+/W7/73s/Dskev1ehjzer1Kig9d9cbCHls2E0NYZ+8IXr9du++NWbxxQy8W9u5p7beIrkOWf+WZlzPnlTd+8PY1E0uPjm/1ZfkQWvue39OTo5djK2OXuo03r9U6a6y8jif31xo/xy9afcv2ZTlrHfb63eW+atloD9q898bW5tx61tn98Ww/Mi1RQogiUupX3xeq+6z1RcuL9Z7ZG0NoZT1fXBuj9Oc88rVk+ah4bsaunrXd3rrW+eLNMY3ack++q5VX8ozZk300fm3dG5El/+7lV3p9WPLV+7z2xVJKsq5yiJNTSrKt9vyWNtnK783IPoNXD6y1fvj1+3k7Y+M9cXev75EzauS+bnu0sfZ2sJevtPax93wYbTfTZ5Z9xPZo/Y3EUPWazpxHz9IFTa6RmFV7HzMSs4/mCnPb/L/ah3x/v8r7e1//PXkZrZ0lj1XHG2vW5OfKco6ewa2xvczKbtXXfMV6vBl7Ycml+aOjtrFuX8vY0vXW+xiLct1HcwlWPJtSkhTSve/cR0pJZDA99ZjTY+7rVtaPAWrdbo0zwozPfJvn7WtsVJYvO/m0vrXYdxSv3zxjx0fw97/Pjau2P/X0VNcdLfxv5a6P/drn9sE/jcd3j17/zBObehi116242etnz+hGS86RvNdIflWr13puz7NtxTuAERm8dfL4rW9URp45V8021SufJ+ZplXty2717PVpy1Pdu73DmYqGyrsfXDCEc7LrW5pnvdawxPmIs68wNIUha0yHuv16vsqz6Odfbj9695l9L+xv2M/myZ+YfNP/CYuQbT8+4H5kPtNpba9HLVZW5l8e3V0ne39/v9VJK8seff5a3t2NuLz9rjFGW5eGrld94l/V6ebQsk5bbr9u38OShZ7Hat2LF3jn07NybNsbjd5Zprn1JL98ycz60ys7Yl7q9pZf3e5d0sBvLssiS+t/Qtu57zr4zcVdLx1u+ayXF13q3X6P/ZqOk9W7O2iM9f2f/ePvzqG5rxSMeP3429utR7pFnx5RWXiffs+ajJ8cuDi9UocxvBMNF8n6jrcnlYSbHozHrSz/bD7Uo99LZMVvfz9/u+fIqo3nq0TbPJv/bAe2ZLf3VKJ+h941Fff1sPLnoo92cp7advXOlLi9juzrOu9Vt55ueZYu1s0Xr2xOL9vgIv7P3nqQ3Z57z92uJ1GuS+zzvu+Z+2361RiuO9lCeh+WzWDnVns3o5QTP6u3Zud77HHP5y1qO3nuEXp89v3/mfPEwsha9uLVVnu+NLt0zYx2r/Hh9jLeeEZtmOT3vapYkh/dAszERPJeP82AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfsfwx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgu4Q/vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfJfzxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPguuXxrAQBmCSFIjL6/HxRCUMu3bZNt25ptyzoppTEhHfTGF3nIH2O8y1A/eylbjFGVuWyjPUtuU8+LJmMIYTevZd8hBNdzebD6KWXsjVfeK2W29KJuM7JG+b8evWqV7+9vX/9X/No2SSkd1rF+pvL3tm3qM8/I6tkLWUda++8ZWOur6bE1ZksXyjG8+pPvzzxjrUu9scp19do0773yt9f+aXZ5WRZX2548Hiw5NT3x2oCaup33LKrptRs9c6znGdHFUtcte9aycyN7RBvX6tczlmULZvH04RnT66/0zgVv+95clbJoe1Ozmz1drO9bz5tSUvVn9Mytx2jZLu89y18q8dqM3JfHh9Ha5vGv1+t9zJTSfb2u16ssyyJvb28iIvL6+iohfJEQNrlcLrKut/F//OlHictD9tzXsiwSY5TL5XL/nfuOMd6vax8418/1yv4su+q1E9Y5ofvgxzUd9dVb/sDI2dPSiXVdRVZ3V0N9z/RR++oZax/UfuPomeyVX9Od3jlgXa8xybbtdSClTULxXK3zzZLNU6eex9omj85f/Yx7X68c/yHHjM705roVW1jtR/r3sa9fr+lovz1fZds2NW5uPXvrWjsTctm6rkXZu1yv113dP/3yJ/nyxfbztWep/Y4Yoyzr+rXtvn6ZZyjLtXPQmrdsN7V4qcay0b02tz3wKBuxEVrfpa337oGWjB4/r3U+eeLKmSPBH0v4YuZnYenxzTc5zuflcpFU+Qke2zLzHCMx4K1sf2/Uv/XGG5Z/0tqXXpvlyYV448HSpnliGyuea/kErfxP6xl6ZVYsMJsz+AhaMvfqnmHUp7Pmz+vr1fFnT/cznnXz5kSt+St13FO/hdVXq1/rTPO0qc9qTX/K9w7PzO330PJQufxxBu51STt76/il7r9sP+JLaHL2aMnhmdeZ87iOGXryaHh8Em+bVl/WvVYuKTPj85/F+ywz82O9r/PqSdnXbE52Bm0fWc9f6mUrFvf4TmWsvS8LUjfZtk2C7G2KN04YzQlr/XjKPPc843nwtG/ZrlE70vJhz1LLknOUt6HG8ui9slF5RvIpvTFnYp7eWdPT71k98bbx5pA8vrmWU9b6L/uq/Z/aLmjXM+ecZh+1GM2Ty9u2TfUb65xvqy/v+XD27PDkIGbeu5Scya9+RH0N73x7fc9n0fpGyLN2lv1Y19W1fp7cWYxRJD7Hjynt4balg63uzW8I4fDO6iPWaeTbi23T3n2scr0+5/u1eo1mfMsRH7bGyhF5+9P8RO+5U4/fwuu3WWeyFYtr49TPtG1f2ytLPpJjHOWZccZMHOA5Ky3q83FU/mecIz2f4rbOZf2xnIDHnuV6lk/micXKvnK9XDUXxxjd302N6oLlW7fW12sTLL2zfMt6X25bkpTadsv6zlcbtyVjz6bsz7/9dQqbrOv1rmMppdu3KOttzF9//Sxvb/r7sDKHUc59a/69+82bi7co95h1XdZ97INSVv9+19ai1zQ/Y+us7Y0nop91I7R8wGflkfb9BClzurP9mPsmBomxzg8ssiy3+pct7L6fF9l/F2XZoXKNsy5dLrdvpfK9y+UiP/30o7y89P0na5/YeTStbF/Y8iGt+XpmfNHa7/V898b22PdnU9oCbU3OnGea3KUenvFrcvtn+ua9cyfXeeyN49nay0XNynCGkXnqkcJ22Jca3ufXcjwjsaa2Nvt12eu2tccs3dVyuqNrO+Kf1Yzkoj251lnfoidnuY7ad4paH3tZ9L2UfbTsa+cmt38nFO7Xrb1ovX+2/COLj37HdJbed94jz3vPMyeREPZ9Lcsiq3MuWv9GxtKp8t28hfffDY6SUhIxRO79W8OpsX4DZv8dj5WDHx13ZN/47KG91z19iJzL2esyHXl2bn80TqrtZ0lpP8+j55fz2CVrTJLSXpbbvyU4yqetdc1MLKkxnivN4/hyT95yz/jab5F5e5LnsM4llyKO+JC9f4dV0tu3vXV5xr+X12jZPe+7Au98aT71M312jdG+9zr/KLPi3WecbdZ3b1+vshSnx4HnMOdlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyZwx9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJdcvrUAAGcIIdyvt22TbdsO5SIiKSW1vO4rt6/Lc7tW+5K6n9l2mSx//m99bdVvlccYD/XK57RkqevO3vdi9VPKp12X7TyyWP2NUuph3de6rvffb29v9/I//vGP9/Kff/5ZUkryL//yLyIi8vp+lf/mP/5/8vaDyB//GEQkyH/+z0m2yyIv/1eQ5T3Ky8uL/Pjjj7f6r6/y6dMnEbmtcQhBYrz9na16Hnrl9b3yWaxyDWv+PX3X9Maq+7Hqe/ao1n5UN3K/WjurTJOlLq/r5L7KPj12QKNc/5JlWVS5a1k8e6/eJ5l1XZuyeWX10lsX61meZd/OYs2jVVe7Limfy9KTkf1+9hzp0erf84y9+mfOgrP9e3XP8lu8svTk0vTgjP5Y7etnHD23W3aoppSt7MOyJ545r8n2sqyfUjr4KL35v16vu+t87/39XdZ1vdvM6/UqMb5LSiIpbUW9JLmLEIJcLvvQL8u5LIv88MMPInKbh+xHhBDk9fVVbf/y8qI+b0k5dy17nVLa2f9ct3deaXh98FrmEXukrlvcDn5DqcseP6eeo/r5+7rX1qfRM7bmo8++3nqftcna+TTzTC3fcNQmj5wD+XeMm8RY++7h7vfPyNGjdXbme5ZtfcYYubuZR2j5St6zynq2ck95Yo76upy/bdt2a/hY7yjLYttPK26rr2MSCaHs/2YHU3EOjOY8Sjzx3mjbTDkvVhuv7zAqWwvrvJ71T8r2ZWy3bZskEVnXVPS9yZcvnyW+vat9lOOU512tF9k3KcWamcvWs2jXVp2U0s5f+ipRM8di9dWjp7MtH+3233yty1iPMeNPjuaoevGbdt/r/1p9Wjpe2zdP37Xut9DGaY3h8QFGcyx1TrU1l6N5odb5VI7jzYecOaNb/vyorRjR6d6zaXOUy7zPqD1bLrPiG2ttWms8Kkur3LPmnhjKkrM8z7z08gOjcVa999KaJKXH+SdyOxPTe/8MtGTwrFPLtsz4915b6JHnmT7M7Fxo/Xly6L085sz7nN/iHVXrjO2dQ7VvVdsLLU6fsWMemZ/hK82013SuVzY61u1/erlHLq+daMV3lmy9a+94nrPi4LckXx62N7ZXxlH7MiOXXTfrQJAQNokhylbkTmKMu3P0o98FaP161tOith2jMbh3PUfx+q2jlL52L3dzNt+ltbdi0LI8x65a7r/M41+vV0kpyadPm/zpTw//JaVN/st/+ZN8+XJrW+Y+yhzNy8uLen25XO7X67recj+OHJH17M/M+7Zy3DP5fqvfFr1YbUSOkXE1f3H2vUNvn56ZyxEsvbJoye2R+ZgXepxppUyevo7fwTzW56zOP0uXLf2q+69zZlbur6Tl94yeAzPxzJkxnvl+Qeuv1imR89+cWNRy1e9p+22D5Fg4hIf+avmqkXdVWr7hGbn83rg9X2ZmHXq+tSdma9XV8Pp1fh/sWO/Z+6A9vq9urXcPH+lWtq6rrMUSjs6tt359VpzJd1pt7TzAcex1XWUdPFY8/pk+/l7e1pl4OEtekizLzQYtyyYxrnK5XOTydcy/+Isfdu8jP8oujlL6V/v5CbIsi0TlHaovltbHafVl1a+bWns/pWSuvdeuWPGLh5F+Z/ZVCLU1u5XHELs+eWu8Mne237/5HedcblDL6Vv78OVyi9nKuvm5WvmScm1b1/t2zcfpMhOne33b3P7MWdvDk695Rvy6j/PvpSKSfW//GD370fOPPOUzsjw7R7Sfq7Ksv2atOdD2gte/6uWgNVq5+pJ7XirqMWrc5uyxd+1bsrXZ7v7J7NjPOFfKvnpr+8yc7Fl7k8tH8vV731Q/WxRJ97++nj/LsshlC8czp8htb9Fu32PWxszm5M72v8WjzMuyyJLG/NSeju3t9Xhs5vlmpNXmTF3PeM11X8LhG9RlWUQKE/LMuGAm5v6taOW0tW/Zy/rPyNOenecsQ93PbL9n8gfPzlt7Y6XHNyU21jyV6Gdy2+7W/WX79awzdXZOR78JPPpTpfz1HLT7qvvzlIvYz5qfZeR9j0f/S1FSShKUrkb8l5G9o71Peha1/6XJpb1XaPnFIxz2xNdY4gMe9c7Mew+b43vhPEZm9t8g9WSs32fB74ffR6YUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DeGP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yX88RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Lrl8awEAzpBS2v0OIRzqbNu2K9+2Te2rLNf60crLNnW/tWzWmNZYHjwyW5Ty1bJbc1SOo9XRZIgxumRrjanhmV9NJksXyvKWvuTf27aZ6289y7Is9+vL5WF+f/zxx0Pd3Mfly7v8t//yH+TLpyT/51/+LCIif/df/2tJlyj/9t/+D3K5ts34qF7U9S09sZ5fG8+aW+taG691z1uvRe9ZtH48tsRDOU6Mj7+JVsuU16LW/bJN2Z81v3X9GZlTSvd+yrZleQhht1+0Pmo02ay6Zbklf0/HShlb9Wo88+XpJ8tfPrfXtmljeGy3VzaPrdTG9uzN1jkyQus5zuxPzQaM2tKzOuIdT5OxtV4ee1m2Kc8tjXVdXXKW9J6tPF+0c6e2OeX93L9mS0IITZ/Au/ct/dVsb0mMcfdcKaWdzPm6rLcsy/0ZX19f7+U//PCDiIi8v7+LyG0eluVd/vIvf96dF3/3dz/J29txPUMIsizLXdbL5XKfsxjjoV6+Lu17SUqpO3/rut7r1Otj+Yr6OkYROa6jtS6Wzpe6+wy7v8ZVUhr3Ocqxe/a/H8/MxxSzaOfomb6890wbH8s9mtu24wEPo2dKbatadb3nft4P63rUtXVNssbVfC7vOrXiod7Z3fMPrDY9OxxjaV/2cZg3ziux/OiWjlnPtixL87yqx6vPrxDC7n55LpRlpcj1/ev1epCrntcYo8TrKimVOhJkXVfJzS2baM1xaZ+1dezFhBqWD2nNS9z0NZvJr9TnTW9ftuIHSw89+YP6WXObFERSWqUcdl2TbF/P1toHsWIq+3n2z2blekb3f8+P1LhsYecL5f49Ppu2Lj37beXk+mfSmO/QksObf5y1w7k8r8foud3L/fV8uFYuxSuLd460MXt5V02Wlg0on630p0fRzoneeLM8o49ZWrny0VxMT1968VjdV9nfTFz7LGp5rfzQtm0fIueoTZmt5+3jYOvi0a+IMchyOebDrf0+cj5YjL4DyONo1148Ns7j/57Nm/fOAatck200/z8ynoeZPOLMOJrfb/U5Oycz8p3VyZKejL14qpfPtIhRjwM1/6z3jOW4Mz7JTMzj6XeU41w/9pvXV3oWdRzaut+jtS51+S1PUsbWm6QtSUo53v+6F7f+ftN01+uzPMtW5TbaOuVyy5+29NLjJ3nzWCWemM+b06vreHzYkXdpHlqxS76u30lqMpT5ohwzfHrd5NOnz/c6IQT5m7/5Ud7efOtTo+03y0b17NVofNaTqXwPUDP6Dni0jsboe4DWuN6YZJbR/FSvj4/aIyN5/JI6n1j3e6tk29+yvXXOtM+O2711XWUdXKpa9vK9mYXX3ml9aPZ12fL7sX3uWYsTn+nbat+h9OxlaxxvXm/UJrXi5b1N/Gqbq1hTH/9Y5o2PvM/ZqqPlxTUZvN/j9WR5pl9Y2otsi2bjV48uleNZfpQ1TukrefOIvbKR9i3OxKLeMVvz28oZ3f6nl9fj1r6GpQv1mKP+RN2fVV6OU/tMvbMuhO2rLc6/RS6XF0kve7s9u5+87xQ0xs59XVfKtSr3rmddWrTWsufD7udk/wylzFbco44dRTzveFqyKzWLvTF2BpzNm3np+0rz3Nai7ufrO84tiXT0Mz/7yLuMJMfvRbft8V49n6N17OQdQ/setexrWRZZUjzMnRVf9c4YDav66DNkLH+pJ5f1XXILr07N6N7oXLb81L3P185te/vX+qjrntlzz3rv0DuXa1mtbzZCoWY9v81rh1prNhNnWH5jfdZpuZYtHvvO59fZHIAma5Yn09+fx/1QfvdZ99/Lxc/G+6117Y2l7ekZ+bwy5X4ea3icv/LfRfTOdS0eK3/XtrjeSyE85mldV/WbwNI3a7WvZfDkcUpceRvlmc7yrP5KOWf6tL/Z8+tdOW7rvLa+VdR4jv+vs8akfIO6iiTdZ3qm3Zux9c8Yx0OZ+yux3oeMfBtX7svWHtXsU+vssWSY2b8t3fXkwKz2Hlvfy1W1dGNZ7DP7UWfsO8aHffXlCMt/Q1fLq8Ui2jleku955fbmhOd80XoOHn2N9FfrsZbn9PaT6c2Pdp7nvFYt+ln7Y/mdz4ztPYyui8hef8+eMdZ5WIrUkrHeSx4839P17NNj+W42+Bb323NhxTBn1jvbnLKPdV1l/XaffsJXWAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4LuGPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB3CX98BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5L+OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F1y+dYCAJxhWRbz3rZtIiISQtiV5991ea8frbzsI4Swq1vKZvWRUpoev0R7Fq1dr6/RuSn7tfpe1/XQ/4hcIQRXO2u9676tOS/btdZca9PTBYvWPOf2MUYRCSIS5F493P+vKbMlb0uOso21d3qyW9Ty5N/e+fbIUq+FR55ax7y6pOlfbyxN5rqeNi8tW5FS+qon9rjevmKM3fkLIezqlX2XcpR7v5avlLmUp5bNWgtNph7WennW0bsXZvaFtXZePOO3dHd0jFYda/+N7JVePc8aZR3V7nvmQrPhvfN6Zu1H9Xak7qj8IrYutvRKa6ONNaLnZXuvf9Mqb9337nmrTOtn9kzTzqFlWe7zkVK629VPnz7J+/u7vL6+isjN3l4u4V4/z/enT69S+guln7csy/33metM6feO+nse/6QsizHsnivG5T6+d8941zPj2UNaPz1fteUfWHZsxyJf56MoWhZZ0j5GGpF/RIdbMYDXxlm+Z8vvtuqneJRn247+4aif3opH9mPptsATG3hjziWVe/lr2RLVfTkzVq9Ozai99Ix59LvuVyLy9XnT0pRX84+2bZNlebRLKd33hrVfa1r2SpM/xrjbf7VPXvvRta7UvvmIvcztb//dJIS4m8vaXxrxaev4Y9S3LNFyELv9Go/yeGKWESwbWe6/Z/hk1nUrRxFCEFGeN8ajv5vlLeOwsq96vW/jbpL3VjnEM/b2uq5u3z1T7ovc1Ls/67688bt2rrTyCrf6x75bz3rGPmv6r93vPe+MjdfwxsKt/OLsmejF41u0xmjFLr08UUuW3lgz56dmP87G3NaZ5qU+B3d+jJErr89Ej4yeus88K1qc1dmS2oaP7t1n5GtzWSsX9kys/GKWofYFrZxkyx86mwcbffbeeL3+ZvS59iNnzs5eecu2e+xjq2w0XvPS83HL8UfskNbGmhevn63ptSeP+fCdnmMHR8dvjXkmFtb6u/k0e78119HKanvhyVed8Zm8OnQ2dq/r5HkR2Q4+vba3Rv0Zr4y9uRuxYy0f+vhMt/XfDbmV79lu5+t2PT6/ZwxvbDS7rj29Oeu39vq3bPtvYZetvq2x67bWNyIteVs5UmsNs39W5pGu16tcr9dd7v56vd7Hr3Xoet3ket2/T0nrKusa1BzHGb/Lk9PUdHx0zNb7JCvn4c1RW++dtPfKrfYppSm/q8ds7rM35sx7yLps9j2Gp788rzNzNiNXliXG6HrHqOXDrFjTg+f9jOVfePLvvbq6D7M/y0bf6/bQ+mv11Zrbs37HaMxRnwnbtu1y/4/ym67ElPPmrfz40TY/04+zKO2y7vc+Jzb35L0950hNy+/u9VHL5PUJyjkrxx+JdzUsv+2ZvtGxr/73kVacdcZHrWWp+x/Vuzo/2JLPWltvLO2Vs1w/Tbe8ecj9z+A+pzRZrLLW+dLKfzXZ3W7nL1rfYmvttGurzBOX17+zbPXcWzFv3Y/3LBo504/k2Lx/Nv6WlHvsrGzPOn9a4/e+Z93L43tXvG2PPtd1lTWO5X56ua1SrtY+9PjDtZ7ffo/bmNy23sueOH9kf7TqnfH5rHu9c9Dqr/Xcj5yaSPa187d5Xn905Jl79sh79mn72rvHLT+9lUsIIYgsRx9l1DcdyRfO+pP1WPX6a/6AFjdktJgypSQhjfgOvlzkTP5ir8NlWT/voO2p2fjPQ713PWN6ZWj5mf09essvl2OM7Oee/IdvepTvn8r1t+LAe06m016T0ctM7uYj0fbfuq4St/C7k1Xjz0HGFpb8Xr+kp3/P2Ptn/k1ET57Rc90bQ8/EuWeox/DEemfihl7853mnOLt3YkyHttfrKuvqP79a+lLLGAw583sky3+oy1pofYzIPNpXfd9zVmvP9dHMfP9jUcdfH8FI7DWTh7UYfZ7SPozkhTRZenF0j9FvKR95o7bf17Nv+r71Kfizcz51bvXsvzeF87ACAAAAAAAAAEGkAnkAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F3CH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7xL++AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8l1y+tQAAZ1jXtVsnhKCWb9vmHseqO9JHJqU0VN+Sf6bdbF/5OXvPW/av1a3Lyt8hhO44df2eDPl3WZavLVlbMrbqemRr9WuVh/UqKa2SUnrMT0qSQpDr9Spy1Z/ZI0s539Z8tNb0mTqmyaXJ1qPUI0/desze+nr6tubljB1ZlsVcl9b8aPeWZXHVa+2L2XG0e+V1a5xR21kzYjM0Yuz/vboZGc8+V4uZM6okz8XZM7DW19F9NGpfRex5HbUpmbz+luwte1iOWT6/xz+p58uyj705zfK39K11T9P/mb2SUurupV57716u6Z3vvXv1/HjW0uo3hCAxxnuf5Xi7837b7nXWdb1fv7+/S0pJ3t7e7vWu1ze5Xq+SUrrX+/mPP8ufflkPY+Txs/29XC73eX95eZHL5XIov1wu9/rX61VijDu9zj557XeVY7bI9+v1t9v192K9jpqOn7WTugxW+Zh/WMc5WvsUk/qcIe1tg9f2nvFze76JVmbt99mzMVxWiTFK+ajLEmVJtk9ijeuRYcQOa21E9LOiLD/+dzV1TFuznp84c8aO6PKofRTZ28E1psJW3u6/v18lvR9tsofSRt105Thn5dq37HN9v6zXGj9T+vfbtskSj3vi9eVVyr+Z3Npnmh3NZa/vq7y87NN/nz59kvCyqH316MX6eQ48fva2bff/1X1t2yarJElp3d1/e/si8S3u6vf2Yj778rW1x6zn8uaVrL3capPP13ouSp279bV/nrrvnm9Tnyvp6/56zN3tjN+usbl2Z/Id2v2yv8cz9+dtZtyR9u34u5130vZDT5e8cWkvr5bLrPNlNh7SZPPEKS08z9IbV2tb2uHS567to2e/9vKcPcoxtefVzh5vf9rvGVq2xDoTW7T82bOyjfJMm2CVe8fwxzl7Ru2vRUtOrx6V53MvT6qdr9Z1b09r90ZyM7n8TDzkHWcGzfZp8lp2YjY+y2N71qiW9Wwuc3QPfZTunxmjp7dndNyqN2LTtDPT8gda53Zd3rIXlq/zjLmty2+XD31c101S2rdb11XS1T7Han/Bktnrk/WY8SlavtIuf3FNhxhsXVeR4hhurfGoP2Hl/jQs/Z/ZFz29fthQkRCixLiPv0P062ItSytH35PLknNkfOv+M2ycN380y4iP75lL7zjW3JT6Xp9n1rzmmL18l/np0ydz/LqvlJK8vm7y6dOfdvVeXl9lEzuXo117cq6e80jT8RE0eS25e+/WNPts+RpeH8RTz7J9lv6M+D+9nPczfclnoK3XDK058vrWZS7MsqXWma7JHuPRz4kxTj2ndQ7Xfef73jEsn0SfhyAilRyx/+7DE49696gHb1w26h+17NjtHNmPtSxLlRO+3Xt5eZG4xUP7Slo5PkbbB/KcqSPkHGTubtv2+us9+zQZj+Ocyz/MxC1n4yRvDOMdW2vrHeNMjHsc4+YrB2mv6UflJTx1nhXjjbTz5J4tf9KLZ/1v++85MWKr3Zk93aKMmVrUOWFP/mA0v2jJZv1Wemr2Z42Z53Zf1s43Potv4QN6/P4Rv8jyu7bw9RwO+f3ZJvncjKHve3neQ6zrWvkOx+9kjm03eezZcTtm7cUc52WxR98jWOfA7b1tWW+Tdb29t23J7Xme8ruI2fj/mXbJim29ss2+u9Nig9I21v5Wr5/Wme7xdTy2TzvfRp/ZoyO+OqVc/r5773tG24zUG9FpbT23WJbf/rssiyypnycfobSDll7Y+0Yra+tS3d/MGTXjHz7rLKz3Rcu+9W3fcb7H5Tz2Yf3biaxTPpua/1u/ly3bfkxcUMr4W/owu7xIPOr4siwSkj2/97YDuaPH2Pa/o2rJmWm1fda/ERn5ht+KjXb+SSxtzOMcrP+90gzP8q1bezJ/4z5+Lh7LPH3U+T6PHXzG+6DZfmf7f2a+zqLeE+W8tnLrnn8H48F6H6PxyM896t18gcbZfUn3d5S9KdHfj+jvbmdz97350vpdFpEQjjnlx6PeLi6XiyybLtdHx9gjaLawFu+3yAv0mIkhPPdm/PFn7rP6G+hcFpJe3yOfVqfnu4z5NMdv2lv9tXx2TdZ2n8/wT+HZnP9CFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODPEP74CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyX8MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LuEP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yWXby0AwCzbtsm2bbuyEIJar3Xfg9VvXe4ZK8bH3zxKKbnGr5/TI99Mn71xrLG0eSjLrH5znXw///Y8T11ndm17bUMI6rqWz1hf19TP55G3bJP/JxJyYwnhpksxxsOY2nja76yLZfv6WTw6oe2F3nPVcvZ0pNVPC48eWvNnlffw1rOw9sHI/hgZx3P/GXVH5S71oryu9bJ13dPlbdvcdthTr6xTjrmu6/06pSTrut6vU0rDOpOfK8a404sQwu6MydcPG3JcK8teWHjte6+Pevya1r1RLP1s2Zd67N7692Tt3W/1X66ptX7evmYZ6dPak3VfM7bMeuaWfW/5at425fhWG+256/1d27E8F+X1uq7y/v5+uH5/f79fv729yefPn+V6vd7vxfAm//iPF0lpk2279fV//z+f5U9/Wu/jL8siIg//4eXlRURELpeLvL6+iojIp0+f5NOnTyIi8vLycq/z6dMnuVwu9/rLstz7e8a5lOfmer2q/lUmrtdKH4OktMq6PuxiSU93a7tZ2/EZnmS6RMQ3t/V4mg3z+jQjZ39frr5/ms/DZ3F79rY8Xr+z1qWebWuVt+pZvnEt16yv0Bq/9Uz13tH6q+fIGstjU0tfZcfysAkh3PTdrOug3h8eG3EXZVkOczbin2pjl7/XJe3OBRGRNa2yrvu4MF+Xc1vqiLav4nU9POv7+7u8y6NM0/9WPOmNVay5aLF7rnhc82W5yHLx/S1pr/6Noj1DTzd7dqiO7fM5u7683K8zLy+vssgxBzFkn2J/L/VybCNYfR33lYgUurmuq6zxeTmf+uzX0M6wvf6WMt/2c9zauuaJ51s+0AitdbP0JaWkzsvMmeSV3WNjtLno7etavnr/ZKwzobaXrXis7q+m7Es7c8o2vTxyzh/ksmfGfdaeKMex5tGb35zBekZN3mf48TWWvnt9kVbO5YyMMznRZ8Rsmt/RwvKbrH618pZ/rzGzL3o5hpm8Rs9ulXoxatM88rXGPtPXzPl01s+qZbJiCCv32evbmmfvvMzurRkfayQfa+mN1sdIvDn6PtMbf3t82Js9KGOo7NskSSnbi0f96/Uql23/CUQd3408i4V3j83nmPR2pX+g1U8pyXY9r7te/7BHy+fpxZKtM0RE5HLXi6K+7M+Pm78+FgM8M5YcPTdbbXp2seaZ71m0vq3fnjE97zosu/0MLB/Y8xw9377U3xijXC7pcO7HGNS93FpjKzaxGMnraHhzf+V/e75dfV3mQup43doXPb224qbe87R8iWVZpvb8R+w/jx48K3fTi3O9LMsy3K4806Rqqr0L7/WTucXWflui9d87H2s/o7UeHvn367IfpxzLynt/xHvjmnrvtuKZsl7rt4j//Xxak6xrrnsre3t7l23b7u9SRW7vGD5//iLxLezscq37y/rIp2exrtdHPr1lD8rvN6y62rPXuTDNB9L2w8h+95wDHjve8lNmzmpPTvQZOfyZHFbvfCvveXV/lo+Y/9o/GcvrHv2MZ6yTPpb9u9em3FMtUkqmH7hf17IfX67Yqw/euRiJ58uc90OHHu8ic/N1fbyP1MbsYeXUa708n68c0wcrRtoXz793/gh67wlqrLyAhnZv5nuNQ5td+mWv+2lLIo3zfMQG7OYgBglhPyfLcpEl3cqWVM9ZOPhOIrav0crf5rLaj2jtSU9+LCz2WFYbkfE4saznjd1zbJvbzJyp2vij7c7W19tn2+j3QZ51zvdyXh55Zn0n1c9s1F1jkpSObbT34zNn9ywf0bfdpy9XOTtmLxeq7b3ym/RMK+b16otnD4/OvTf36RnnvD/x8bS+N7j9rmL7FL/a2vI7sOJ+Pr+W4/mXvwPWxh3B2ruemOgM/bxIeT3+Xb+3buvfcYx+j/xbcVaOfYzwKCtdvfrZR98HzTCTr7Du63mBo6578uDe94rauL1yvd7RbnrfOY68Kzr7HtRLOY43tvHcz32V9lMkr6tvbc9g2aV6WmOMBx3SYpaXlxfZXvy5ZU+9PO7IeztbB++/RORrLiXt23rlGmHm7P+od6MiY/bX8y6yZjSuz/Tie82mW3KU+tpa215ed9s2WZZl5/vk/nP8rvV1huesfWjOzzPGtm2ybf/h2/GxpwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7xT++AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8l/DHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC75PKtBQA4SwihW2fbNvW6bl/fy6SUJqUTiTGeai/ykNHbV/kc1vxo5Z659NDqp7UWnjZW2agenMXqqzev2vNrfT3aBAkh/+9xL4Qoy7LIsi27+tu27a7rvltjPvp+6Jv1TDVlv9YaW2N612VGPz1jetey/m3NZXs9H79zWQjh3sYao/UMrfatfjx2oqWvHluUdUijt54j613qvNa+nO+aZVlcdrI1hz19qsvKuavbem2EJqP22yqz6D1TfV3PszauZa/L9s84k0b0OF979tjZ8Ws90uoty+LSnda9s3vymWRZzvoV2npp+9ya1xm96t3v2f6Ukrpu5frkOuu63svy9fv7+73uuq7y/v5+L//y5YuIiHz58kU+f/58v/frr7/KsrzL29uPsq5Jtu3W/l/++V/k862JxBjvz/bp0yd5eXm568Plcrlfl/VCCLIsy9AcWXbYWqNcL7eLMXbPtGrEnV6Uc1rK0+qrbPMsX7jFyBi9PbvFTWLUba1V1pLhjD/ds6kezvh6I3t7ZpzR9p4z3Dtfe7/h9r99P2O+gqZXz9T9UhfK/T1ybt3t+yIiUs69yLJEWdKi9jkqpzYXtS5rcmo+W67XilPLc+tyuezqXpZ0kGeJiyyLbgdKGeoYsBwvhFCcTdm+7/sKIaixX8ufLq9ruXs+9FB+ZLnFvruiZZElxV3/o7pg+YetveDxEc7qZC3P14LDvpevY9XrUq9FUx5lbi+XiyxbbLabjU088xdCkhBEti3XPa7T2byAd719a3nL05T+U29Mj+3Tylp7U6O2wz2/WHuG3wPlOWLdz4zmS73rku/VfmovHq7beGMxy5bU7a018+j1jD9qxT/Zlx7xO71zUdfLa3E2z27JJTKeb9bOYO1Mnsl9jvryz2DG/nvsqtfGnDlHW7m/Vu7Wyiu04tmzcU+vnxndEZnLgYz2fzauqttZuUNLvmfHo6N20StPK9/Zaqfd0+arLvPmcb26ZY3T0rFWPqiWM8coHmw5HzLe/rcfd1kWCetY3vy8b3is283rdNakp0MxRpHo2/+9XEBvLp6Z5y3LrH1Y6mFr7JhkF9eEsEmQY5zU82msvZTSMVY/Oz+jtq/Xj3Y9EjO0ruv23jY9eVttvD6QlQuZpfT7tfIaS5c026u9M0hpG45hWnnsMq8zcl637pfyefaBJrNWZj2TF+/3MnWd0TjCyrHM+oVncrIz9qIXT8/0JyKHd0ae3N/o3Fs2vIU2xm3v3SX9Wtb3G0dzDb8F67pKfvdXlq0dFSrnbtbXmdlvM2RZa9uj2ef6WdIlHXTz06dXERH50+WtKN3k9fVFohz3t/UMeaieT1L3l8l2rpTfNadr+nqOPGS/Xq8Sr1H17a019K6NNr/WmdLyM0dyx7nsbP6j50+2ZPPGeJY8lowj++34OmD/7qfFaP69V+59nlubxzunM4zK7ZGxfiZrj7TWX6u/rKuktMljqNv3HmvnmPLqw+h539rfdb+38y/nVh/fV+RqKSXJ3bXmuJVH8Zw5Vvxl2YJjPz7bNxa/+vbbrkVln0XyHB7PitFY2pJjxm/+rcjz0Yv7Mz1dyrR8wIcdKuP3VbbrV7/huh72iGe/Hsew8zWz54JVJ319R+oZZ9dOeYfVonX2tmyltX9n0M6eOgfvoRWbjduHx3P2/IERn+Yjz/LaZxg9I71yxRhli9kv3pfPrtnMXLVkPKuTdV/73/u6I3n2Eblm8zf1EPk8mh3X8qHP7v2Zdw1n89HjHL9N7rYozqOWb1y+4977EV/P+HXb3a/b5jW17ocPTF08Yx1aNsryactnrfWnnAPNX3hmLmc0lv9IvsX43/qZW3jyhZ5YdsSue/y/Vi7Ca1+y/s/uvzIX9VH7wcNoTqon78j4zzhLHrph5z8sndD8+rLfx5lX1rHPoWe8Axt/j5nra/HQo96oD3PWp/Ds0V4uyVqjnm+e+8156Gc8x7P2aPkexbPWta7NyuHJC9e+j1Z3Ri+s97qjHOdr3G7M5H5G33H/ns/k74Hf5l9gAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzO4I+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHcJf3wFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvksu31oAgDOklCTGuPt9hrKvXrl3rFY9a7wWM21KLHm2bTPb5HshBFe9uqzVZlSWTAjBlLGul8vqe9bYree0xvGS2+Vx6n61+tsm9/+Vw5ZzW//X6kubC23OZinHqOeynteZdbZk8/Rbl4/K4sWrb9qaeWWy5qXUq9bzWrJ46mcbkm1RbYe99OZ8Xdfpts9mZk+05mRZFlf/lj6Udtza+6M2vWVD6mfxyttbp7Jfze5qz99ai/IZrDOiLvPovsdW9+55OOvDPHMMz5729jUzLy1b+KwzZfZ8ap3XIsf9nesvy3K3azFG2bbtXndd1/ucL8tyn9t1XeX19fV+/f7+vrvO/b2/v8tlucof/vAuKaX7mP/dv/lr+fz5IUf5vDHG+/jLssjLy4uIiFwuF7lcLodnKdtfr9d7nfr5vfaiLK9tQYsl5fnb9+UZR2PEdlp9foSfm2mdhSIia1wlpdzfJiLjPp1H9z391OswM5cWXj8v638ID785l4+OaY01a+tHYojWuOUez6SUpFSV1hgzfr93n7Tii97YrXV93Lvp+LomkcbWqP1hb/zbi6c0+XPdGKP5PHkf12dNub+3bZN1SffnzfXe3t/k7c0+k7P9tOY278ujnQxyuVwkXZZDm9a1xagPo81x2788rtXMXvTo5Zm+tHJvbNorVwZSZfDs16O+aN3bORFvLGr5Vy19zXvpUeWmq+uy3wej63/W9u3qL0FC2MsTYzydq5tBywllajvQa1/30Tp7R+yFtidm/Pa6j/p6xqcrKe241wZ64slRX3SE2vaOzuuoznrHq+NxrV7t447612f98ZG+e2No+nJm3Z+hV6P1PHJZ/Wn5l7LuqAx6Xv9YZ9antsbJZS37Yq2Bx88/Ow9lmTXnMzpSt/PEPzPnQ6tsNOby+GDPsAnWs3hzVL36Xjmt3FXtd5VyPnuOtD3QWvtWP2VfvbmrsX3YbBPa/t5MDDEa52hn62y80aPW0XqY2j9NKe2eJ9+z1lKzbV5f8Qwef8wee5Nt+7rWX68zKSUJ21zMW+d6j+Mey7w20Dp7rDE8crTo6XT5zu/3SIzxoMcjc+Bd61kbObJ+t/g3nLIbrdh6pr8evye98OpySesctPrz5BTrfWzNd5077NVv5Sl/i7Wwco41lq5P50jivM5qY8a4SYy5v9t/L5dFVsW2W4x8B3FmbWb8q2eM4fHJnpXz0nwRz3ja94D1mZDWdJj/6/V6OCusaa19p2UL93eRuc2yXORy8fkF5T3rfO3FCmmt321s8vb2LvFN/6aidyb13iGUbTT/p6WT5bq0zqFn5uc9fYz6WTN+bS8vopWV91JIat7D6sMzzrPqtdrEeHxub75G5Fx+35MzaOmhd2z13cq6TeWpzvj2ZXnrnOnZlIeN6Iqy+3bF8nPyc5dl5ftQi7Lfsn25l1Q9VHwEz3sZey+es0f7ODyckiczui88+epn4LVFt2nV57VnJ61naX0rk5ZUfCfz6Ccoa1tj7w+9PIR0kEV7h18/a8umWnnSmRTLM/NRdV5I49l+a++M9uYOtXbjHG2bt5+Zd3Zn8co56+OU17fvlERE8r6w862tNat909H3A3W9mbXy9JtluK1r+x302XdD3ue1bGldviyL6s97xszP7rVlVtkstT325vRn/eZb35uUfsGIT1v07qr1eJ79mHpdrZ0u8yhlPP2MeN+TC3nWWVF/H/lMrLn46Dyc57tpb0zwveH595l6/kSktO2tfFmNZy1a++rM95W3tr6cZvmuY2afj+bLS8rxrJy4t73IWD7jGbmAUbwxZymfpWP3d5wdWVv3vWvUq3eLf8pxsp98rDvq77TyF8+MLXpldXE9971/u9HDu/dG/p36M79N1XxID8/cS2f7eqa9TcV7hDw12n70nNUtet9C5Jxr2V22H9/i22R4wOwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAdwl/fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+S/jjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBdwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO+Sy7cWAOAsKaXptjH2//5QSulezzvWtm2ucqu/EIKEEFxjecb11u+1Tynd5dLky2VlP9ZztJ6vbF/L5J2X3G50TnKbmfn39n2mzraJyHarU//P6mt0DUaf3atHdb/lb2vNrb5DCFNrW+poOX7PFtS6XT+LR+frej070RqjVd6b/97eaO1xEZFlWXZtPXa01Z8lR4zRZXO98zJTp5TZc11inR0xxt24Zb26bk/m3tprNtmq31tHbe9p/fbmtLVX6nnV5vns+VrTsoPaWJbd6o2nzW/dl3cvaZzxhUSO8uX+Rv0fkcf51KOcY2te63va79ympyMi++dojdkayxq/vM6/y/G05yrtbTnn1+tVlXFZFhERWdf18N9te5d1XSWldO/r869X+flP18P4IQR5eXmRl5cXERF5eXm5r3UeI19fLrdw8XK53O8tyyIxxnsbS3e953R+Du2Za+J6PehjrXNWHx4d8TDS3uvfWPTO5C07ho8Scw+e9Zvs8cf6arWvzxrtHGjahEUkxlzvVhRj3Ol1a01Gn3M2zvCU+/xx/Tzetu2wT/I+ree1pys9n1vra9ZP19B03BrfKrPWX0Q/F0pdqG16rt+bN629dj7sfap1Zw9FbvZxXY9nZT5Dah+zrpf9i9vYj30hst36Lsx3z1epfTMrZpnF57s/6rbWQsOyHbP2shUPePNMGqo8Mary9+be8o/2erdJOaTXj7Nktq5b51jtU+/HD12ZPLrojZktyvVaY5Jt26/fuq4iqy8Or2X1+MNePH145mLkTJrxb3p91fbNK4tWx7NPWmU9PfaUec/RkfNZxG9rrPM5nzmjedaW3LP9nbE7szzLHy+p81i+s+2Yt9XGaq33s/yumTP9rB9g5QVE2nbM2iNeG2HtC8tn/q3wnHf1dU9He3HYiM18NtY8e94ZzPbVesaZdyKlXzV6lo/Ofd1/K7bR5Jh9F+SJAWbOOu8ZeIynct7jdn9dr3K9Hn2H6/UqcY3u9z4aOSfmZeYMrH/XvrFG/S4hrUlSUvQh6e1acuYxa/vYksX73mRkj43s/WPeIN/b1yufbWb83h7q9avNYStOHbURWmzVw3ovNfK+qtdvyZl3Dlr9+t2at11mJjbqlWd6Z0JKSdY13XM+LdvXGzPnB8q5yOMvy6Lq6DP9Ps22eM6cGR/QqqPpxkfQ07fWuM+WaUQHZ6jzM9546LRvGct2Dx3x2kE937d/XxDC3j/o7bOR5yrjCUtGD9oYy3aTfVe2LPfcdyvv5PGvy7NyBM321ORxzrwHr8dryZrlyGv3EOt2Xb7f1OTc96WPMROH1zmDXqwSwtEny35wuV753XCud8yvln0+xijtd6nn5bcsIQTTJ9bWWzubR+bK6z967Yt373pzxyPluj4dfb3bO/7juRa3aO5r7zy1fMNeXkUb7xiTHttbOt6SzUP5rapFy6eon2ckJ6yMdBh3NPaZzYtqtsuKcw76FsvvfY+y386Ux/ci3lz4KNb767J/7Vketm0s9zLqzzwLa9xWbDI656N50Fm885zPp6JUpPHtine8j1i3Uvc9OejLkg7fenr2fr3XrXjIPu98z+P5XnHm3z/0YvtML28yEyfUZ1hL5jM+Zn2ehXDU2ZF3BWf8fc/ZMLOfZ2I025f0jVnO4ej5rclw9rmt/i1//Dhn8+d8+dtr00fs3qgsZ/ubGeOsDKPnoyfHlnn4F497re8+tPGtdzUh6fbjUbeO88r3IOVY+7NC08lj38fyUo7yu7T6GzUPH+lT7fI1MT/74/6yLLKkaK7nGT4qn9iiPsNm1uO3oPQhZnP7vzWWfPX3M5men1fX6eWBLf/E855u2zaJ8Wg/vL7ZWay8meesOuP3535nz6Lyf5l1TbJt/dxlLYMu36Pv21lx269WnG6dDbXc9XmQv+dt+bjPeG/X86Fj1J+/lwsqGX1Pmftr93JgxgAAIABJREFU0Xuf5Hm3bqGt0Uw/Z9De7ZV4c5Ce3HBrrkd07Blzku3m7Ltqzbbm9yZuv9GY8xYz8VVPx2v7UdoF+LawBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBdwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJdcvrUAAL8FMT7+zlAIYajtsixqP5mU0qGsHmPbtqExt23rtinHyNejzzYij8jx+UsZa3nzb69M2vPka2sucnlLDkveHqPye8fSnnPbNnOcEFYJIdz/l9uFECTGeF8TbTxrTXpye+qV8pb1W/NV92314R1XG6suO7snPP3V69fT19F7rbG9MpZj5D3l7U/rxzuvrecq9Vnbb9u2mTa3pwezzNiScj5qWbTzoS6rn7F3zsw878x6eeeiHmdWr7xY+l6uQ8v2tc6Uuo1mXy0bVq9bbx9672k6pOlIWaa10c7LUs51XVWZ1nWdOks8tOZVG6Nl8y3d0/aqNRe9MVu21rpXjleuSz4PS1ny/XLO13W9r822bYd1yuseY5TL5SIx7p9huVzk06dFapZluf9PRORyudyvy/JlWZr+pscWl/bdYweeoV+ec7iWxevjW9yeT6QeevS8GrFRbVn6PpLWl1dGDzNr2Zovj6+7xlVSqsrWVUQ3cVNyleNqetPDsnc9f64c83ErFGX7+peLnerx7NdaRsvXGd3Xo2fKrf/jmLWeW/2W5d497dXD0o7X9tnS1yxDfQ7U/ZUyb9vR18n+sDYHtX9yG3eVbXv0lWVOy2Ndy2fIfbR0vBXLztj7cs3Ke9ewHtbuen2XeH2cgfWY1tnlsSNWWa//kp6utXIFlv1uTemIb9O7n+e/F9drjOSo6th0P35ZM918o8W2ly25RnIGvVjI0lGRr3uyWPb6uVrzqd3Le9fqz9uPds+7tjPxYK++5hdbaPanl8uo62qyaGvnlaM1Dymlrl/QOrdqOc76xCM2a2asM/rx54R2VmdG7X9Ldy2bWI7jPTtaelj6Idr4vf3S0yvvOeSxj2WfXhXrze+IrnrjMo8sI/mwZ+Y4M60ckYdny9/Sk7OxsMevmznrvHPQW/dW/GfJ6Cnv+V1W+5m9UY+Z24/mCXo5vp6c3j3aytda5/JI/i+3rX0cb5zfK7dsell/WRYJS5AYj3muOl88kufyUvap+bCjaHOn6dh+/6ZKH7Zbgq5ok1ISSbqcmrxaHkRr8xFz6sGTj2r50576Z56t17bOk7fw7o/W/rLmq/b1NLm0mLUcz3P23PbfMY4s/ZxSllomT8wSQrjXK/1D631qnUv0xJOWvbfeLXnpnYk9f/hM/xlLR+q5P7vnre+VPHFamVe02pyV6SzPsIkppoPearkq66zV9WTb7bd1vco1zPv6npjL22bEf9afbf/90KgfWcqwbdv93eDM3nvmmXjWN6/lf3R3u17XVdb3tbmWR//iVpbSY75H8lMZz5672/DXJMvyeXfvp59+lPhy/H6h9sk8smR+q7yOxzeeySt4sdr05q4X27WwYsCzuV7vPI3Syl3WZbd3V+33WVq/rTFbdc6ee971Kq+97xta55T227te1vh1ec+ulD6iyC12jHG7+8nx65pdLhfZtuN3JSMyevJ8o3FxVWtovD71u6lz8axHhvMyP/DmyH6L/ZNtQh3XbOmrD/sB8WVak2xbvveIfyQ99kotuhV3lfe1unVctm3b12+5jvuxtiVavqt9Jpcy7PMZvfYWOWYbid1C0L8d0Cj/bYXnO9kST4wUQtiNYTGX40zimc5eXtb6bY87nzsepezXm8dt5W5LW1yf0SO2RztDtPatM9l6ntqmW+O2cjzPtssf1fbxrLl92H0HNMtHxw7enJSFRw6PL5f9o8fvY169x20faGVB3dfH59X+bZB7+MO4VvmMP1pydu29713KM+PhXzzaXa9X2a769xszuYReDDSK97zIzORSnhnDW75HSHuZs09Q5qA/gtm9LTJnV3bv9tZx/Wlxdp6smDvnpbzMvPeZ8d3KspmchXfMVlvrHczsWuRxtbXQxq/LtPVb5Pje1pOvmqV8Bgsz3ipkm9kD5bu5mbyQpUd5TbVn096Na9f594w99f6brtoHGM1LiYzbxFk/38oxe/HaFW1PlN/aet7HxRiHY04P+rcDej6yF1fPxaXFtx8d3XzmOz0Yg5kHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7xL++AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8l/DHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC7hD++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8ll28tAMBvQUrJvLdtm6usx7ZtEkLoth/tO/fp6SeXhRB218+iHDOE0Ox7dNy6b09fZXnZftu2w++6fm8MrX0956211GRutdfWTkQkpHR/noccSbYtyLquEtbjOJYeHvou6o3ug1LfvW3KMesyj56f0eWZPVnP10ifHjR9bOmlV/+85Z56M3Ne6lVLR7JdTilJjPEwdlle9quV1X1qWDqu7cO6/5pn6mtL5h49fTlzvrXspdVfS8esvX8Ga2yvHZrZ37VeerHGnFn/mTaWjdHYnze+c857bnv0ZcS2zZ45IuJaxxkdqfdeXq96Xrdt293L19frVa7X6738y5cvh/LPnz/L58+f77+/fPkiQb7In/70KtuW7n390z/9Kp8/3+RYlkVeXl5ERORyucinT5/kcrkc7n369EmWZbmX5zqXy+U+ZyGEe538W7tuzYtVv2d3b//djxfjsmunra3Xny7318g5f3s+d/VmPx6s+TjK1J7znj9f9pXrjZ61rfG13952WtkWj75HjFH+f/bepceSJEvMO2Z+b0Rm1qurWtM9Qz04EjCAJHAIrbgRIIDSL9CCv1QbbglwT0ALCUNuCGI4IsHpru7qysx4XDfTwsPuNTe3xzFzj8zuye8DsuJed3scMzt27JzjHlHW2qY/33OG95xfNdulsTHBHy2fXeZlH+RtWhoHpXrROhPTOOTI2DInZypXT53c9difD3NU0uHURoey8zxvyrooRouvpe3H9j3tK7cXSvqbovVFQt/zPG/kmOeLPD/f1jW28XF9rT+ck6k01zl/Pv4Ztz1NIsaE8v7l2kmmk24O4nVNx5YbRypLy//Q2g5NLFbSi6Bvq7LObeZXc87G17wVWWzI7V5J5+L2S7mTHn9c0+6LtFed0MYnrf57z4FUR73N63/pfOvxwwPp3tPYyFRf43mNdSUd28jZnaM1fzGxH9mb1yi1Pap/LWrxX7oHS36kJv48mtfuv+V797InL5KyZ5zpXNX81j37olQmZ5/26nYpR9fbVsn2a+1I2lYrpzwS62vLjvize/fPyDyNyHJU3qTlt+R0KT1vau33yJLe154brxW31PrU9H+EzSz131rrtG+tXcrtzVK+QcuIrqbE+T1rTVY/0nNcY99rMrdsXxq/x32mn7WM6nJqa2N/tTf3lLuem8uednvO2jCnJf8mmxsz6zhnmiaxUz3OSWP/NG7N+fWxX9tCo/e5Mqlt1e7lEpq93+Ob7bFrWtk1OameeLx0rdReyZ+qEdtLa62cTtu4ItivlpzamK0UJ9ZyMOn10vfW9T0ceTaK9McWufkJpHtcs0dT4jrhec6nnN8WI7GYtXZVL57DPesZzu2WnSrZ5GwO1S15xfWZcJLTaWu/R87ptI5m/Jr9Vspvh9zo7ey6iJtuz21K/ddi3Z68jFZfNPNQa6vnfL11mp/LXF7VOSdWbPOMreG9v/oOtbN55Oza5irL/nmOkXXS2B+ND5H7nrveipFbZ2/tTNbkFGOmaaquWW97aZmWPtiTTWKWF9911j/rju9r51/bZlx33XZdzzSy9tZJ5dFe1/avaXf5HH8XWd7N0O/1Xr81vR7be+1+v9mO9TNf526yXy4XeX5ur2st35E7Z1r6pn2+5GYn3sfyveShXL5tnT6tZYttTyuGWJ8v9XqfGo1drs1Xb+7xdn3brxEv8+zEZ561l2TZQ5q3yvkAzm1tZVwv9+zVGLfR0aWttfypj1w6r0r+7MvdjrJlan5Nzj9K0T5PSHPCI/GA5n2CXL+pXCM5+EVP4nbL5WI+Vd4kpWaHW/VE+s7K3D5ZLt18VOecmI6Q8shcRHyW5eRttdOax/W7P/Vnd602e3WgJ8d604l1vnLOvItfk/EotLL35MxLdnQk36fJMR59npf7Omot8mdeTZbeWKpWpyhVIf6ole2JsXrqaPoOn1v+3Uics5eR+Ecrx9YO58+ao8aV841y+b4ar2XH9rT7qW1tDm2OJ5dz6/FzjnyvR0OcfwvfSwQf96j5v451JE/5Qvo80bj19+kldx37GuG9zSPmOm5j5LnJTf7b+ZFOr2bvamPMHhlzZXtyovG7n73nvvZ3j0afvYyizbX+saIde+4d9xHaevlifzrX8Qi51nHXOn93jX929QIjHPs0GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBPBP74CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyR8MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Ivk9LkFANiDtbe/H+ScU5VPyxljNuVy11p474v1a/da/cd148/x91ybPWMI7aTtH0VuDLkxhmtHy5Fr13uvmttWm63rtXK5PtK1WNZSrv9eLooxRqZpkslPRVlLfaR9leRM62vmaHTvlHQ5vlaStzWOUhslNGPo1dHaWpTmWFunR4a47uh+q81PLHNNf+LPqV0Odj2279r+0zpxu6Feqd20fInXspMpNTlj0rkL32vnQG1fl8qVrmtsnlavNXjvr33EbWnnK0ZrrzR6rB1T2uc0Td11WtdzcoWfNR3X2NJS/9q5LNkIrX9T6r/EiH7HbY/ujzDPcRnn3Gq8zrlrOeeczPMsIiLzPMvT05OIiHz8+FEeHx9FROTnn3+W3/zmNyIi8oc//EF+85vfyM8//3xt/907K//8f/uvV7L823/7H+XDh/yav3nzRr777jsREfnuu+/k22+/FRGRr776St69e3ctc3d3JyIid3d3cjotoeM0TTLP81V/53m+7sHU9sT7Nb1W+l66Z60VY6xYuy5vrb3KpqV0VpVsSWnvHH0mxDZO0/ZSJujVcm2enciiTkPxwOj9XH+9fmFqv3rjtNx8OHebj1A/Z+9asrbOxNqZkOpPr56t6l7mbPvOrfdYPK7Svoxl7YlN0ns5am3lvpfGPhu3uXe5XMRfxv6OsPZMz+lIzp9J7Xruc+kMTnXc2qVevBaXyywvx0O2fmuM4ft8cfL8fJFYzT98+ChP5+mlb7vylWMdje17PP7SftfY+5zvX5qnWebrGRm4XJ7FPa91QBPbpn2W5I7b1PhhtfxPDm2MfZ0Ta8W5jF3J7JtSDFDKGaVFU/0vyVa63zsXadngL8XNxHuqVb+Gdl5a7S5zFMrn647EGen3dMy5feOca8ZBmjG16mnGVstj6n2ahdhv1qLNE6R7Po7HNPFVfM1aqzrvcu3n8jOl2KiXtq+0kItZtMR1UhudyqCJ1XP5ei3xfkj7HmnjiHhgdA1rNql0JrX8MY2/pZFpxG70rkWuvMucVdpcgGZPp2V6c4batR7NTRxRp3U2j5zvcdutM0KTeynVTdtIY5LSWu7xZ0JbmmcMR+h47xmpyZ/0xAmtNtN2e8d/RO413nvzPL/4xTd/7Pn5Ik9P6/PIGLOUi3wKY8wm9tDIH+tfPP6eNnLsOe/z50Xdr+31VXO+Su5+r8+Yo3SW1uKmdT/rs+L2WXcuxbFwr7w9fl8rHgn+ZUrr+UGvvSvNQ9z3NJWfO8dtp7mkUlyf9qHRFa3ty+VljiCn+7WcWEln4znJxUktUxDHHK21C+OvPVst7d2aTzS6twO9sXppj2nfA6p9r/WrITcXaR8aX+tIXdUy8gxVJC9rLV+xd2y5fMCSA+tva4kzZ/E+zamuc+klOWrt5hjNm2vs3W2fhj18k+XI+Q+kY4xzKCN7JyaM93Q6qcfeaktExJs0n7j8XHLd5nrNmGUcdtquY+tMTZ/DlHSh5ivk9KTkxy/f12dFvB/is6bmO7X0Ij2fS2eEZu17zvoSvXnI3D1t3qDnc48MPeVzdi+3pnv7SdsfaSvN9+X8h5a/NILWl9gbg7Taz98TWeKRek4vJt6TWjk2z81e4t9Yf+Z5TuyVW332914+fnwW771Mk5fnZycfPz7L82Wp8/d//yjPz9NV/vi9vdznsNdinyheC21MVKLtu6z3SelM0eSuUjS2x9ptXqQ3H7r3OUCJ2tzt8bVr8gZdjGOc5Rgr27NSjimex/TeSn6J2yzHYut8wfa9iXSMcQweZD+d1s8NvPdyPp/F++1ca8+unF4uY4rHVc/r1sg9t9HImcaXpfK5vafpN20rfS+hJV+NkfNtbbvqMsXk7mvzztpyJWo+a0v/euY1b+NWV9S+Yknmku0ZkVNb5ygfrqeM5vniqM5vfUkv8zzLbMfbTevt8ZtinR9tsyevpD0Dr3bXbmWObYAmHvDGSS43n5v7dK3i6+t/4b5Z3b+1cawP0bJ5Pc9HR+zNCLk4em+fcd6lROn8y5U7wn7U6mjr9uSoSvdq87znbEmvaePxtG6PncjtoVr8/VrreDS598la5T412mdZI7mE+LxJ45y58R793ucfNWJZ5nkWmbe+c5q7TvOPvf3kGBnX2se45R3S91dz46pR8/017++llPRlr22qoXlXU6R9vtZs2Ofcq69BLo84TZPY+Xat9xng0fM28q5qLFctz1DqL66//v1PkdgnycWon//k+fIYe8oKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CcOf3wFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvkj44ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwRcIfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAvktPnFgBgD865Q8t777PXjTHNtmtl4ntxH977bJ8lOdI243ZLfWgwxoj3XjXOWtvhXkmWVOb4urY/7dhK5Vr1gyylue1tsyZHbr7SPpdycv23XFz+U9KfUt+auUxl6ZkHTTnt/Mfl0z1Tq1eTv0a8Fhod0857vI4po/YovV+TuTT+kXXVkMqh6V9ExNr634Lr1ZvANE3Veq32tba4l9Z4Q7saexm35b1ffS/pWO/6p3uwZuNz19N7ufHn9n78uaTv4XMqV2lccV3nnMq+lOSM+xzV/ZaMNbl69n24Fu+JtH5OX7T6nepd+N5qM9d+75rU6Nmfe/sK9eMxx/pqrd3oa5gn772cTqdr/bu7OxERefv2rczzLCIi3377rfzqV78SEZHn52d5//69PD4+iojI09OTePdRfv3ru5fySz9/9Vfv5PHxdj7e39+LiMj5fJZpmuTt27ciInJ/f3/Vjbu7u2u5aZrkfD6LiMjpdLrKO02TWGuv3+OxhO85ctdTe9CyI9s2yrYj/R6vzch61/bWItv2Xq8O9trnpUyQQUTEi7VmpW+1fkb1fm9spLFfe/0TY26+c7wXU7sU78tUFs0Zl5O55o+mdePvOb8lbevkjRgT9t4yxng/prTiBe1+7Y3hNKRzl52nyYi1QV93dZftM+dfxJ9LvlWQt3SuxvVDndzn8D3Wy9RWhXMgHUfqW5V00Rgj95dZzudTVMbI119/LZf782Zect9TSud+OgaNz5sjnb+gx+H6w8ODmMeyvYjXJT6rcrYvXCv5py2/ZDSm6/E73WTFeyc3e1+3lTV9WpXzTi6Xm34ZI3K5PIt7LtuUXLu59msxS03+VJeDT5O2r80FprFSTuZ4v2ji/OVnOFOWn/N8Efdc9kl67WWrfGmNA614q+QHlPS9Npbavsp9r/kAsd9cYm/us4Y2B9PbT63fntgopuTPtGTRlCnN/xG5o9oc5vrNnTG5673PB1J9jc/a3Lk7Sm8eNdgkTb62dH2P7Unrayn5wJ8bzVhS3Smt/54cT42e/EftOULuujbma+Wxe8aoiRlKY67t41IbpTH3xKK9vlprHWqUfJG9bdTOnZp/U4qFS+2P6ntp3HH/cawU52udc9d96ZyTp8dneXp6kvBsTETkd7/7nTxerDw+zlFexsgf/jDL6XK65tvi+C0XL5S+X1vsjJla5Hya2r5trXOcA7m24XVnZG7Mtb3Syt2VxpBjZB+nWBvOz/RO/vmCpv9QZ9XaYFIizfeV+ivmRUQ2+2WPTNo1a+VBQx1NXqxXtp6caqy/reeB6dzFtielxzfP1UnX0tptfHo6TeLc7flAri3tmWxMPj8/YrtSm5DLl/X0oT0HeuXqLVcaey3XY63tznG17HVoSxvbtvyHkg7XntG1ZI7RPmc/ChPlgmMZ7FR+3qFsWcK5oLEx0zSp4/H4Od+qx4H8RS1XHeejYl9JrN725SjlFks5Ne28fGqcddc83fXa1b+M5V/iPj/X5yV9h6AH7RnW8seXddfFEaktjZ9DtEjj4Fj+aZqaZ338OejOiN4FtOdCra2czqb7StNW6UwsXcudAbl1TtcqbbbkE5X8s964VlMmXoecX7K2SfFYdHnQliw9OtCbwxjxVUtneLinzX1ox1WyqbmzJrcv4/W72sI7L0/LI0GZJi/T9Cx3d1bO01Lv66/fytNTfW5yOpl7BteSO5VXROdrxc0sMXD5vdtabBVs/OdMZWpzN1o0elbrQ7N2tedtS/3l3zo/Ya66UfNha88Q9+TiFlnX4+k9Y4wxYs1WFiO3cWni59K1bZ32GVV7N6snL5q7Fur3vG+rWZteHdc+pxnZO2vfJY5Nb33Pdsy/1eirzt7lx7W33Vrbmno5n0WbYy7JsTfHWmJP/n57vobPS7nS+1m967Zn7DffZLsHa++PaWXq8a+099M29+Y4c3VbPkfvnPev0TrXVfYb89eXf8FHyeeNb/V99v4II/aut79enz2pvWpH+55EiZF8aauNnrb2ynt822V9HKX0DqFOnrV/kcuR9bQ1yshZ3Nuutq04Ho0p5X9bv7/RI+cR/njgyPMwtz7W5uPMnndXtb7t52LPu1zpnI3oRi4nMk2TTK4uVy6Pmfse624t116jlScM/Tibz/1q9+inyIXveSfuT4Flv93Wu/dZVN4OtPd77vnfXkbeYy7Z9FH/Hl4fVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+SPjjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBFwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC+S0+cWAGAUY4xYu/77Qc45EZHN9V5CO0dgrV21Z4zJfi7hvV99DnXi6yJbmUttx9dDG8aYjVxp+2n9+H56rdR3rk6pj1A2lSN33XtfLKclNy+jbfWW78eL9/lx75Wnpfsl/R3R5VaZVlux3uV0L9Xjml6W9EpDaR7S9Rlpr1Yn12885lI7Oblyc9Na05xsPWNs2YsRWWr953Q7tc+9/Wpp2esS8VkW63vLfub6zMmitXWa/rRo7VbabqzjvWjtQO5z7nvcltb2ldZlxEbE/Zf601wTWftNQd+cc0U/StPnXh+s92z5XJRsvLW2ua7OuaJdds5l1yXcExF5enqSu7s7eX5+FhGR5+dnmeyzfPPN06r+r3/9jXz8uPX1rLVyPp/lfD6LiMjpdJK7u7vNZ2utnE5LuDhN07X+NE1ire06O7Rrmc5Xu56v2pW4/jRNxX4CGvuc03Fv67ZZw0j9ZV1XV656M+pr7RlHSa+1be618bdr5XY1NqrHLww6Y4wpxnwlWWpnQi2+WssV7Ma6v16fKCXMU22f7415SuOP5ZutE+d0/bTWtjbu0lqnZ33oIyd7aL907qfn6zRNK5nu7pxM08Oq3bu7s8R/M7nXhwryb/VJxLlZLpetf6WJp+Z5Xl0r6X5cTktt38XnkJmWz+m6eu/lcrlcy8efR2TJyZNej9c+9zOUib+HucnZzXDtWub+Xp5/9/uVbD//+38v5vHxek4H0vM53M/phbvz8vDwuKr/44+/E/uUjy1zsUmsX0f4cPeXWZ6eHlf1P378II/PtzNck5MIn3P7MqYUc4hI1gcTEXGTy+7FUlsjeYC0/xiNDY/LlOxWT7uxLGk78T4/Kp7pIaeXpX5K+zm9F9OTHy6t2d7zUiNDbS41sZ0mZxHnT2rzrs1XpOtSsqulsyS9PpLDCtc1OQMtI/WPfA6hsT1H5njSulr/v7Uv4jNxKRp+isyzE/dyvudkKF0r3SvF7CV6c+OteLWU0y71mbad+5z7HtrRnDfavNjePGJaTpPPGomzctc1Z7nm/kheNK6rzSumdWvXe+nZr3tyumnucETuu+dZ3v1/a//117/+tTx8ZeQ3X/+0ygX88pffiH067v8/sycfn7tX0veSzrfaDrYyrZvb46Xcb25/7vX1e/VHa9di2znPlxe7XZ6r2n7TyKitH+h55tR7Zmr3Ti4maLXfsqWluCqlR196/TCNLSzNf2sfac6SGK0fkNMfzVzn+uj1Q2qUfHqNT1KTude3HTkPeuZz5LyM86LxM4Vcu7nrLdtd8kFrdrjUbrq/03Zj+UdzY6W2cxzRR9pNOB9Hn928tLJpT0t6bqbvFvTKVdrLNR/gVmetF+FZXXwtrtOilgvRniOlMhq//UjmaRZr120H/c9dN7YsR1hpVfM4AAAgAElEQVTzdG1SPSgxclaX7mtjrvgZbu1s1T7D713/Gjl5WnHR3pxCrq2aP7fHB+mpk+tv0bXy/dgneI0YsNfP1fafW9Ocf1Oa11aOKXetdGaVzt0crTEv9jGVefuMtiVvS+d68swtP/gq+52TaXoSEZFp8mLMRaZpkpNZ+nr79o1M0+1M0cSs8ffaWmr2WM3uhDaWZtb624ptczItP9c+xzzP4md9bLLY6G37e3VtpJx2H6frOhKv6/Jv23ppWe3ZUpPXu7jdvudxpbUq1Z8nt3kecZkvcrmUx5E+r43XqR5nxTLk57v0zKSkB635HrGzmut76NnbJTTlrZ+jcmu7FXzJ2vh6fYsevStR8vVrdjhXZiwf5SXWS007JWrPBrRzUrNJe5+7hbaXdsL5cWvbuH3PBrT9t65lam7OhR690/q8vTk0bbmSnRxpK7RT86dzMVdY35wc7TVoxx41wvlUO0trZ8Vr0sqritTnayTmyq3P8l0Xz2j6PvIM0675a+VFxtoeH3/8uwbx95xM8Zl61Hpo3tEtyZM7y7T7veeZWypnT7v2+i56Oa9Tiv+MMYedg39MxPqjPSc1NuI1fNmjye231hq3crWl5x7X+07EmFxsvnwO01aLg0eeGfWOa4RpmsTb9XjCdTv16/6e/VaznbnnQEfMT9pG6XfH9tqRuK1Z2s9tR94z38MR74PW2uv9PbxW263cI7w+x715BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAnBH98BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5I+OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8EVy+twCAIzivV99N8bINE2r7z1teO/FObdLJmuXv2cUt7O3zXQcsczhnvdejDHX75qxi8h1vnIy5tpI5zyQ1i+VK5UJ8mvKpd9baPVA01atfu1evE799d123C//3St3bm6CDtfKpNdTGcL30vUWvWPS6E7ue65ebb+VZNuzBlpaelySqzbGUMcYI/M8N9vU2pVcGy1d06yFpv1eO+6c28xTTeZRRtsqjSXdpyVy5eI2R9e0ZIdL+6W2R0tzP2Ive8poygXZ4nksyaz9nM6F9tzW2J5cmdZ+yOlIfC3UD9diW5GWy/lAOWrzUZOrRo8f0qP3NR8kvp9eL81BrX6o45y7zvPj46M8PT2JiMjlcpHf//73IiLy888/y+Pjo/z0008iIvLjjz+KtU/yv/z1n8nlcpF5voiIyL/+1/9RPnxY2n3z5s3V73v79q18/fXX8ubNGxER+eabb+Tdu3ciInJ/fy9v3769fg517u/v5XRaQsd5nmWapus6xT5o+K79nDt/cuUDk5slXd7Sepf2W47QhrU2u39T3z7tc7azOLdd3x4foccHCZ/X/XoRMeKcE+PKtuXI863Vdquv1N63fOZwL1cuzPftUthf6/XTxBO58yv3ucdXyfWT7p30Xun6WpZFb1vtxP3HMXOv3Bo/q8eHPNLvGom7e9eyti/jczAeV2wrU92Lz7tpmjfn3/l8FpHteuX2Wm3fnMRm4jybHX/pc4majmvP43Re4rPByXIuLmWWco+PT2Kf8v5/KceTnrWh3HJuztc+n56ermfvPM/y8PAgIiIfP368Xn///r28f//+2tZrY9+9k3/0T//J6trf/at/Je7Dh53tWvnz//6/W137T//XfxD34Zgx/fmf/7nc3d2JiMgPP/xw9TtOp9PVDllrV5/fOpGPHx/EmKCjIj/99Ad5Ok8rfS2db6lvUqrT8mFKMbKIiJtdsu5LWT97lU0pnX2bfjp1q+U/a9orxeil87lk718r95Or91r5GM0apZR0RjMvqU08Kk6qEcujiV/i8c3zrJIxbjeVXRP/t/zj0r1WPqF0BgVZND7skbTkaZXXylM7s9N2W3ZMc29kf27Gv2q7LkNvLJIrl8sD1WTUtKltT5Nf20vObo+Mp7XHRnPKo7mvFE1/rZy55tmYJrY8Qi/3+Nnx91HblYt5cnNUi9PTtvboSC4n5L1cr4emYt+wt58j6c3LxHOm3fuLTysS//92pmkSY012XaZp6parJm/tc24scR651H/O5y/t0eVzTfb+Z35pv9r8vibH0WsTtfFDz9mT9jEqy2h7PflCrR2N69TyXqU81zRNqmdnrTMw9z3kI1rnSPosJpRpnQm5ddHoWclX3+t39J51r+1ba870QGqftH5HyYfX2oVcf9rzvyd27VnbnrI5XUpjzNLzxLjsEfFu3Nb2LMnrXClmD9fTc9N7v7Ize31AzTkU5N82s/V3Wv1pypXWome/anNJrfFr7GC4nvMTSzqQy1HE8aB5njd2yhgrp1P72Urabul7U+dt/nwfXfOe9Tsy/9QiPQ9bZY+gtUd7cg5a32jveXfE2EtxRrCd6ZlWss/GGHHu9nw6DK10ji3l+57THnmmadsslVn3pbXZ62s1f2Bv/qxFbMuWj8vP9JzMfU/7i8vkxtKyHSM5kvVYy/OnOSvWssdjLdvXEmvZb3tLmy+Jv9d8PE082GOHRuxt+Fx7xuTs8tzMGyO3+XDiX9598pV3gmJaOpH66jcxIxlfunJuFu+dxGvtvRPn6jmC1PYFvU+fn92d70Tz/z3uyb+08xtbNGtaysPk2tC+66Zhz9mXkze3F2pyhWdatfzgUj/o7O1MK5XXovFxR9nj64/48+vv2/3Tev5cOlviNkbpyZHn6tbOpfDZmfKZoo339THf9nvNZ8qdRaFcbl32PlPQ5ORqaPI1WkZ0OTcW3xFz6an/Xk9rHYLPpt0aoa8Rn7rVrmb9a2vZkxPLlcu9C7l/fcp93vzldU6o9Y7lUe/1fIp3z+L+e/pr/R5Kb3tHkMp0ZP+9OqaZnxZpfvX2PGG9x2JfVSPnEfMS9x/rj0aXtHmRXLu9WLu1R9bmc6caRubu+hy9cL6MtFW6pmmv9xzY+h25Z1rb+MF8wu1/1F531l3HE1jGlfEXfP13gUfs6lWOis638i65/kZlGKnfo9O5Z6SfWnf2kJuXdPxHnUtTZq7gj4NP98QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4I8I/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJHwx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgi4Q/vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfJKfPLQDAKMYYmabp+t17v7ofvqfXnXOr79ba7OdQLr0Wfy9RKpP2XSKV2Rhz/Rk+5+73Ms9zd51UttB/7rqmruZe3I9mrCVdSD/HbcVzvEfGtGyuj1o/ubU3RiQubsRc9X/yk6SUxlvrJ3c9t665eqX+vPfFftK5iL+H/dOj16GfdI/1rJkGjZ7EfaflSvqXuxbX16xDuN5ao9y1mi3Nkcqeyt3q3zmntocii06UytfulUj3Z0nmuJx2Xmv95doq6dJeWzR6LuT60OjVyF6z1q7muKRHo9dH93/Ye0GvtHNZ6rd3LWv60vJpeonr1+Yr+AvxWNK+S23VzuB4jkttp/5c/LO0R2v7qudcTu+nYynJrLGpcXljzPXsm+f5+nmaJrm7u7tef/funYiIXC4XeXp6urZxuVzEmif5x//4YdXu//G//4/y8LjtI3wObRtj5Hw+i4jI+Xxe9R+ux/VPp9NqLlO/Nx5/PMbevZS7fha76s+YRWY55cPalh0PZVq6UPLtr+2fwvysz9bJbeeih1RPUnm9jWWvxwsj9Jx9Ob8nUJrfkXOktodz8zFNVux8W7+SjY6v1+K9WJc0/nwoXzojSna8PmfBDi57oBSf5X7W5G6NRaQ+N71tpuPKjWOW7fzEZUfO+riu5uwu2RHv/XX9Sn6Tc27VX/3cnTfx+eVykefnrR0QkcQWls+3/LUlljwVbGepXm7ec2tXipm0fm8Ym/de5mkWa414f5v/02kSM+f1J5Utl/Nwzl2vn04n+du//Vt5eHi41vmbv/mbrJxfAvf3b8Q7J99++61Ya+XNmzciItefS5n7lX8Q9Oh0Oq18iGmaVr5C/Dn2SWJ9eTN7OZ8/vHy31/7M+Xaeas+amq3L5ftKbeWvBZl1/cWUYvsR21zzzbX9x4zkCHsp+e099vwoP0fbR+9ZU8sDldDmfEZzHznSM6U1r7X7Jf8o3WM53y8nY6g3Gu/u9Vdaa1bLd8aM6Goqe8vf7MkpZeMJRRwdyrXGvDfey91b7KvIYneXe6fTJNadrnK1ODo3nLZdi49ESmPqy6Nq9rLG3y/lV2rttmifmXpeM44t3dPkr3pzwlofuIZmv2n2fy1OH5Ej/n6E7xGX2WPvbrai3rd2LXtyhzVdqcWcR7LYIhGJ4ud5nsW6dcyYo9cepdda50gudxjnDWv5urSdUG57VtpkndZ9p8335s1K8W1Kqscl/SuNt2Y7Yj1qnTujbb8mmphn1Hbl/Jtc37l+0u+5d0TSNkbnP6d3p9NJnGv7ra0x5khzRkfQymnGzzfia3H8Hdfp9dlLMcdoTjk3L5r4pdRerm2NXo7mEjT1P/feD6T2L53n1XebzxNaa7PPndr9hvUwEnLqxtza6rE1e87yVHdHbMmtzOrbLrk048/tg556NT1snZ2hfNxWfC6vbPjJbnQr5CxDjnH5vPgixtafGS5zKyISj9+Jc0uftfcGe/Zl9Z4VsXZ9bZomsdPr/D8WNXkCrW844muV7vW0qfEFWvVKeqnxB+K2cu2U5EubK/l8e2OL0hzm3mswxlTtrjE630tk2S8jZ1I893vtcK2/nljU2mmzL42xq2daJfnT+2m5WowdtxXrxzzPxTg9bdffeXl8fBIRkdPkX943ceJfnrW9f/9BLpft+ZjGb6X4yBiTHUNsKzV2P24v97NUTkMpJvNen+9dt1XO4Y+c+Tn7q32fK+1fQ6pX4XOsV+F7aDd8nudZLpeLiCzPsh/Nk/gfT+KMEf+rPxPnnPz2b/9OLg9e/u5f/kvxHz/KH/7wB5VcWt5+/07+7B/9IzmdTnJ/fy8iIn/7f1/kPJ/l7du38mb28tNPl+tcTtMkv/nNb+XxZK/PMEW2ep0+v1z+LWOP9e3p+UmenrZnsiYWK8Y2kxfvw/pFOuD0/lfJNpee/+3NHbbkCZRi715/NJDGnTlq73jlc1j1PpcyZXlH8qa1NkYoydf6nZgcm3dCJxfp58LiH9dlqp0DWvbkAuJ6PTHx+kzf3uuxzz19adqLyyw2e/v+rvfH7ete+UvX0uu1+K/VZ2+cUJdzO/8a+eOz+ibLtmxePk2MEn9OfbB1LryU56qhWbeR/JW2r6MYabvn7Fl+z2V/LHLEGZGjlK/U7CNrrfhCHi6l5edr2Tv2I95Z1VDKe5dyQUeuaa69VWz34sOO9Dk6f7nzN/3dW837z2m9nI7m8hCl/bf9/ZWt/XbOH74+GpnisyG+N4l+DV5D7h5KY8iNfSRHWsoffU6cc2I6fFvtvfQcqOULar8rmdZP90vvWdX7e5ylOqp2Go92tPbpc+lIr/383LoMr8On8UIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/sjgj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFwl/fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+SE6fWwCAPXjvm2WMMavv0zRd6zrnxDlXrR/ft3b794rS9mtyxvVr/RpjVmMLnzXjzZXT1ttDTt4cpfmqzeOI/KE97/2q7dYa1uZ6r+ypLKU+2uP14r2XeZ7FzLdxtuQyxlyvacaSyqulpH81vRzpJ9eOtXbVX6ldjU6lZVprp6E1Ts3eDetYkkFjO2Jd0FKzhSVZYn0LZYwxVztcqxv3V7OXzrmu9dDaqpScTemZw1zZ1nr32P5UpnR/5fqP1zF3f57nzb10/rSytWxOrR2NjoxSmq/4p1aePWPInU2tNuN6qU0o2fLaXo33aCpDXF8z73Ebe8+Vmm5r+j+KVN/3+Fap3Zrn+frdOSfPz8/Xz2Effvjw4fr5crnI73//e7lcLiIi8vz8LI+Pv5ff/vateO8kNP3v/t3v5P2H2z6+u7sTkcUXNsbIt99+KyIid3d3V1365ptvruWMMfLu3TsRETmfz9d5ned5ZcenaVrpcEmXRtYl1nERERvN1dLXMh+XaAuNrE1Or9N9WbPjy8+1zXbOiXFt3yFtN+43Zxv22r4enztX9sj9VTsHNfOllSW1cblzrWSHWzLkZI7XKGc3e2PK7dkb36vbpzD21rwd4efuidlK8pmzSebLZ2Oa3JhbfdZkz/lguf1Riu+vNsvaq+323l/LhzVL/euaHqT3SnrlnNvYTu+dOOclbiLNhWj82xEfuCS/Vl/MyUTztly7u7sT4/M6W/NpSv3/8MMPq+//7J/9s662Sm1rYvuWDRERcXd38vu//iera//rv/gXYp+emrLUbJu7c/LjP/15de2H//MbsU91eziSF9G0ZYyRu+dZ7u/fRyW8vHv3Tk7naVs500bNnw3EOYOhsUwi1q73wjSdZDrpzpGR3FfNp8rVyZ09R+Uwqjr10mcrLsrNQexbpv2meYWSHdfsJw0af6g07zW0flUrTu9BW1+TiwrnWa3Ma9ITS/bkdHO08sg1Srmz+Hyu6eWeedXmWUvnU8t/eo04u9Z/sGW368vPeZ7FZ/JV6Xe1rzGYoxipG8itVS2n09tmi1yOU2MHUtlK5Wp5M83YRsaiuZ7T49E17MlR7SH1RzXzXfIBSudbj32t6X8pdtLYpp44KEcaJ9+u7es7tJP7PFKntZYtP7Gkd7nnI6085l5b1orlW2239n9p3nLt33JykSzxZ6M7x2p+Zk3mlq94RE756DM4liHNYYX+evMqtevpHGrmQKtPJbtY15d6n9774jPM0bzsNOl9qVT+Vp+1mG3U7mpyIfEc9eroyD7QnFe1NS7ljnLt5tpI/fwQH6X5vLi9mr1v2YWaz1Lyp0ZyV61+NXW1baliKxvq1dcg7rvu0/jk59ou53Kjue81veqx8T1nZVpmffaGfvY9f9fIkdsfmrZb/mBuvXJ67v06p17qI/WHjCmdES99J3O33cdBvtt8G3Pb72keq8aIjbyNf3tPs6ZHxSma+Kknh9KyWbn+WjFQze8q0bL7PXu5Vre33VafmvM5pddGlfz8ct3yGNO29uRfRurnZArfR9fCuVmcC/HHwuXyLM/iVHMd5rL0XoUmro4p2aLcXLk7L093S9w0TU6mycv5fJLzy7OON2/u5enpZm+1sXJuP5R82fjZTCpra78EOx9fv1wu4p7z71vV5F/aiv0Ks8jZ4eqn5473i34kKfQNI3mF3hhEa3tysWA6z/E448/e355BOefE25cy3ks88/M8L/cPeLcv5fHxYXlP6HKRh4cHERH5T//vfxD3wcmbN2/knTfyn81/Jff39yIicjqd5O/+7mf5aI28efNGTqfT9Xr4bMztfdbg5xtj5P7Oy9PT08qeffz4IE9PZmU749ggjRNKvnG835Y5DiVuc52zWz35lp7cV0+9HvbG1eke18QWpfcxtf53jlwcMULrHZOe+iVyMrZ+XyVmc8ZYI8bYpIz++bjIeE6sFCdoYnlNfrR17qW3SnnGUtzTO26tjt7ajcsfEwdcWxuMPXrGPGKjet9dTq+FNc+tz/KuZ7lOKkPqD4gsZ6SVaXM/fI8vhdj1qBiuxN7YZG9uoZdSbij2RUYZyaXV8iAlv7g3L6NFk6NKY4uSf557tuSck0m28Ura1hG/u1EjJ39Pn9rf19Sg/V2mHplqfRxNmMv0fZ9Aax9o/A7tfL+23nwqjvSTtZTWQeMPjfWnt2Ovva6972yJvJ5Mrd8zafWby4uM9luTQ4Pm/bVa/0fOsfZ3QV977+Xi9j3vDMI/LPotEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA/APjjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBFwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJGcPrcAAHswxlw/e+/Fe78pk7sWsFb394ecc6ufn4J4bEfVTa+X5qY2ZyVG6pTkjNvy3g/NRahTqxv6ycleqq/Rsdpc9M75otcit9s+upbX+dq8lvoJdY4YS2+ZUrmw32rrlKLVlViv0nnJtWGMUelSei29vmdft/qqYYzZ7KsSI3auNGdxf+n3I+1pz7zGczGqn7W57LWFNd3q1Zfevd9ag1b/seytce89b3KyWGuHbGrc5t6zq2Q7tO32+iGl8jU9PHKvjei71vdo3Q/X4/M5vqbZLzlbpJUhtRtpmXieS/stXZd5nq/fL5fL9Wco9/j4KB8+fLiWeXh4EBGR3/72t+K9l6enJxER+fHHH+XNvcjTkxXnbvv94fFBnp+Xuu/evVvN3S9+8Qs5nZZQ8HQ6yXfffScii45N03StE+vc3d3dtb6IyPl8Xn0Pn1tnQmi/RWprnXMyuXk110EPevaydk/07J14fYMoqVwae2GM6ep3me/b93gaanuiZEtqfWvtaot4H9bKj/r/abWgkzm9S8db2989fm+6J6y1h/iAIiLWbmMja+1qTXO2Trs2I/cCpXXVno+5+XcuLr98nqZJJlc+P2vne8l2l86qmt+YxhPxGsRxTMnmpe2dT/Om7P3dvRizHWsrxkh18CRWpmndzul0Eqe0xyKy0WNNLJ/7HtDautBv3N/pdJbJr8fTOntG6W1DG3PFutOKxd35LB/Od6t7X717J/Z8bs5jzt6H/uazkz+cHlf33rx5u9GVGj1xZU2WwMmbjT2bpkntO5T60vqKOTZjtGazL9P2a/Myz3NxLkp7THNepuexNk4biWFysUnqn5XQxj+avVTSf+2ZVYoNNHFiGIdGr0v3emPRmr2o1dEQz6W1NrvGNf9xJA8Sk7ad5gNDnZF82B6MMdeYbcRvjeO9Xj9/hNfKOb5WX63+brYs9HWLt3rzerV9XbKjuTKlujm0PpE2J73HJymhPWv29tNbPs33aGmV7cnT79HxEbsU5w969S3Vb03eMibnN6WyadDE+do2dX3GdsBkr5f8iVqMrM1x1dpujaPUv1bvcmtuzDonFOg9e2r60PJjenQ/p5sj87K041/G7l9yQl68pHqhk7M0rj02oSdWSOvVZOrpX1u/dS60fFFNu9r9p6U0P9d42jl1DFJqtzevnT4DKN2b51nmed9a5q7HY07nW7PHNM9QRvQyjVNreaVSnNbqK6y9xr8rXS/Z/lSP4u+1vaE9b2pla22l7dR80JFnFb37XZsXK+FmJ96HfdP2ydv+rBHvJTkny++U5daiZ116ffBa+znbebu2/EyfC8SM+NMtcnFYqZ/cHsmNfa+c1/qTEWvDXlz3G8eSIi+2OeMirfNCLvp+LbEZUzqefFs63zetH/yctGwr1tT4f62zsWTXjtTx3rNEa99HYufaPh71VVs+bH6s5VxHzb8o9anNJZT2dml/lmyktfb67kFJ9tz3I2n5EOH6qI7f9uXaP2z5iDWb0PKxW3taM5/LmEUWudN1vvVzudxywqV9tieXsic3mstBl87Bll3I7Q3NftnqS1Psav2SfGmdMEbt/JXGn8ZJgXmeizamlFuZ5/narnPu+r//tcaIGBFjjdjJyN39nXz11VfiX95BCu87hfecXouHhwexYuSjfJTHx+U56Js3b+THH518tCJv376Vt2/fisiyh8N7UKfT6Trf0zSt5i6O3Ywx8vjwII9Pa72J6+Seb8e2IucfeZM+U1jmyj7ZTdlA/Pw+7k97BpTafU1KdnAkdk+Jn23l9k6wb/EzqHRrls/pG6V92fvMUOSmF0ecjyU7kbuePgccOQOdc2J9v+/VouabxX6LxtcutZu2Xc8zhPr5urWYXntuanyS0t5Zxwzb50kj/niPr67xU0V0e7wWc2op+Vapvtz2us4nyNVftxPK5eUur8O6jbVdWuRL76drXqK0nqk/vCcn+1pnSCkmjvtOP4/kGLY6cbuXa+KI8Wp1o4QmBq3tt/I+zev05yI3zp652/u7MS1qcWXcflzuU/4Oak6WmNL7OTleQ26tjo3Epf9Q+dT6M/IemEj+PcL4HbTS9z1y5urnctMrolxyXKc3/n7Nsr18ah1prZvmneZ4vqdp+mx2MpDLs5vPLBP88bA/YwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwJwh/fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+SPjjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBFcvrcAgDswTl3/ey9X30vYe3tbw4551bfS0zT1C2bMaZZxnvf3W6ok441bSvXdnqtNPaa7CWZR+rUZA6f0zJxP+Fz2rf3vntuR2Rs1a211xp7+G7mWZxz4txNv+fZySwij49PMl/mVTvpXJzP5+r9kTH0lE/70+yLuKz3vrlHc3qT60uz11Pd0eiFMSarl5q+jiLuc4+OxnbFWrv5XqKnz5yd1sjXozvatnrWqjbGnvWv2bQ9aO1ebU+m9TVn6l75tWdHbq5r403Ltc6u1tz1jjPtXyN3mO907+XK7GGv7Rk5L3Lz12srw5mgOUe1/k1pXXJ6EfovfQ991tYotOucW51v8zxf25qmSZ6enkRE5HK5yN3dnYiIPDw8yIcPH0RE5M2bN/L+/Xv56aefrnUul0dxzsnj49O1v59++oM8PS19/rxS6Z0AACAASURBVPzzz3I6LaHfDz/8IH//939//f6rX/1Kfve7313b+sUvfiEiIh8+fLjK/NVXX8nj4+O17fv7e3l+fr5+D23Fcxr7z7EezPPNd9GczXFZY6xad/bul1S22j721lfticafHGHZE+V7JeI10JD6Orl1a53vpbM3jc1GCfYhdJmqyYj/Edcpra/WB+pd87rPvpUh3mM1W6f1zY88K2q+dcvvXtagfd5r/Pe4fCgX7FQpl3C5XFbfw95Jz6K4z8vlsmorbSN3zRgjd3f+av/Dvnh4fJCnp+VzsLOB1Mb22NNU5rhuut/j65q2SvVT0vGUuJxmsTaM9eYT1PrQyB+PueSrlfQ13W+xr6KNC0q+RpZp2qzvdDrJtDOG93ZrKzXrp5JZ6mtcWqNp8mJtfM/I+XwWf56ye3RPviGgzQXlCN2l9tcYUzzTav5FqX/N2dM6Q3M2YjSWC22V/L4WR/lBNbvXOvdzMoTxaNaoZ+60Z2KOUj+jaxf3Wcorx35i/Fm791M503gubavWj7aPtJ8jOTJno713RI5sVG97y+zdz33PE8IeLZ9V+2y6zodJ293b9lHrksqVq3NkLjpwpPxHyteyCaN2vLdMz5hGfTBt/FNqK2eDYl/1iJyepowmjnZuFu+dBHuwlHHivZUQK4Qq6f5Mn3OUfIGSTS7lemvnY895mfbXU2f5bFa+vbX2+k9LbuzxtVwuqeU3afZgLpfR80zQmLAeumeuNblqstb8x952W3us1OZef6dWv2df5+JhLUf6ahobpfUZSvFUTY80eySUm2cvl8tlVf7p6VmenrZzmMqf2yNxvD3P82bP9L4vk/oqpTxHTsYaabmcDtbaP+J8fQ00+aJAbqyavZ/rq3RmtuZL20dpvXKUfM3e/OSmDeMlPue1fccybMuvfy5npi5/F9p8DT+19L0k1yJHX9uadltxQyve1uhyyc+r5Sh62hER8ZMX58L9RY9Cm6FanMdrnx+3Z5HhsrXTNf+VnoEtW14jl7f23ovY/D1Njk/jW4/6Rp8SzX5p2d7es6Q0F6P2rRU3LPp4/Xbtq6ajvTmRUjtawn4tyR3HYNrnvK14QKPDvWjysu39mq6NEWO2+zLtq2YTWutail9zfQXSdTDGiFj3smZ5X9NaK6eT3VwvydazJ+L3oEq0zid3csmzo/58W3muTbGtdO/e5uv2LOt2ztjqeo3kokpx8sg742m74fM0TdfPzjmZpmm1ZkGG+B378/l8fVfo/v5eTmcnl5ORWUT8NInxXqa7O7k4ke+//17k7dvV+07e++u7TvE7SK9BkPn5+VkuFy8Xu3wO8dtXX311Hf/z8/P1/aww3hB7pb9jEHwzY0z2+Vi63nGZaZqye8xZt9HT0+kk1ume72nir1LdlJbNPTq2Fynrda2v1K60bFMaty/v6rnNtTlqpmYDNbaw9m6Wpn7PO1SjfmKOvN5s84+a+L03Zj26nLa8JjYUWdbEeLu53tNWXO/IZwi5Pvbk7npjzPhM0dYZKaup31dGl0fO5ngycVvNR1nub+XIl9fMk2+uc06+PXnmkl+dxsmpLo3YgrRoGpto8nBxn6kM5dhs8fE0+3RP7vS1KP3eT+zPbM+X25x+bvm1vKZ90+QSarmg2rUWyxr1vdutQfMsY+/aa+Ykva7N29Ti7Fo7ewg2Z/H71/mPmiyfktfzJ+s6WBpzrq/0mvZ3E0fbT9vN6cY8z1Eu+dbOJDo/v9WnpvznoPc8q7F3TM45MW79vYfR56Il/Ys1PvZpRvqBf5jse/oJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CcKf3wFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvkj44ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwRXL63AIAHIUxRqZpun733m/KOOfEObe5FrD2uL9HFPefkyXtey/GGJUs8bV5nptt1NrtKZPrP60Xfy/NWdpGWrY01h6MMcUxxdfD+vXIHcqm7adjCN+ttS/y3ObLWiPeWjmfT3IyZTOeG4dmjWuylSiVSa/H3zVzrJGlVl4rS0+ZHL17YLQfDTm7MmJrarayl9i2tuzskXYx7lPbbo8Naa17zjaM7C8N2nbT67V5ae03bR3n3Op66LNmuzVzXrLVwRco2dscqV6O2IsSPXOuuR84wmcZ2W+xr9XbTu+aa+c47t8Ys/FvwvWaXCNnXWncvb7C5XJZfX94eNiU+y//5b/I4+Pj9fu/+Tf/ZlXn3TsrP/+89gkeHj7Khw9bGX/3u9+JiMi3334rIiJPT0/Xe7/85S/ldLq18/btWxGR1bXz+bya45KNTc/83HndawMnN4v36fk0yzz3+6ItcnpULGtnca5sM1/L9td4zT5yczPq29Tsx0iM8dK7hGbneRZJxNW0m4tVPhfbvbP13UtnYs9ZGEjHPqJLGj8/JWtHNkfdeqy5eDBtq3ReprLE5UL92PZ571dlSjp/Pp9X7eTOvnQPee/l7s7J+fy0ur60tfZrcvLX4tc16zq5Mz2dr9qYe9DEpSk1f3BP/OW93+ibxq/P7afSdS2t8+H2fXt9NEZJSq++WWuLeyYXz6RylD5r13v5JxKPd8nj5fVHP3/72K55vYzImK+unbOcjc7t51y7muuafrW0/Oec7U0ZmctcnVbMkqtTGnPQ11abozmlIEuPTu/NpfTkN3rmtzdnpy2v5Ug/Zm+93jxkS/96ZdDmrFv1e+b0ODscfzYqu6B5NlM7x47CGDPUrqZO77MVrQ7U9HDEh+s9n7W+3kheKR1jbZ/VaNnc2Fc5xmc7Bq1e5PbFa8eIep3ftnPzIct91nylWr3W/VxscFTcVMurrbBxPd8s/1rna05vWueaJifbsnVL/dDf8k+8F++T/Gxh25Zii177p80vh7K5z601K81h61pv3lurIyUbq+2z1Z6mndYz79KeTK+V4pJ0TK3cTInz2W38l/P5JN7b6vpqzsSRPZ3aRI2+HyGHVkfCvfS8HXlmOeKjj+pVq/2W36ldyx77vid/1ktPLFIqG96Leal1LavNC2xjay+lXHqQq9c3PSI3oimT/x6u6eWP0Z4jtft7YxCNb6wpsxnLaXmH6uWuiNxsXbgemtXsoVL+L+fj1OawNF+a/WomI8Zsc/XW2k3/NXlyfaZn2mvFJiO+nvZerY+SX7Mnj9+SoffeWpa8nSqNayTG1Oj9SI5K23+pXGpjNXtsNB4t5Tb35c79VQdrcaIGjRy5Z4sx8Xspm3uzv77LYMxtnkMx55xcLvX3PWrfc75ykCUXm4c1CPda7xRu56f8bLxEmJ/02a3Iy/vTmZix3n7Yxze5Wz5L7azU7PHcfKUyHhGLxbmg+F7sn8fXn+yz/PTVB/HTJI/39+K9l7tvvhPz7iR3f/mPxTw+reo+Pj6u3pF6//79tU3vvXz48OH6PdR7fn5ejdm+m+TdL74TEZHpZT5++J+/FnkQubu7kzezl//2NzcZT6eT/JP/4Tt5mJay9/f3IrKey2masvp6d+fkq6/er+bou198I09Ptsv2tp5BmWnr9+b0atTHz+Xgan55qz0tuT5azwZbvo0mPsi1m/fN1v7BNE1decQWtf2qWcvW+6y97Wn87rJ/5Vfvxc3zRYxr/wranjhz5NnnqH5ky01O4ncUR3M3Nfbmk9fonl+L1OdA4yvl6vfYq1p8OprXrsVJOZYx9MXEuTZyPpl5mZ7cOb0ub1bX1rH/cr9O2yeq5aBGfeveeyP+cS4u18pdywlr96wx5Xj6SDR5mV4bE5c/8veAUrnSvo5or/S9RV/+YNtX6h+1dFmb6xxhmxPPy1nz6Y7IE4+wN/4daSu0l7P7y/uGfe3lchbh0u3n/pza4udv93fw/527PVOq7dujf+eu9t7XOne/UIuD9/oje2i+H3jOjyX9PQNte9oyr4nmdyU/hR1IqdnePWjf11SfiYW/Q/C51xX+eDjuL00AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/AnBH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALxL++AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8kfDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCL5PS5BQDYgzHm+tl7ny3jnFO3lytrrS223dt+ru2YeDyBtO+R/nLtptdyZXLk5iK91vo+2s9oW9qxxeTmeXTOYkryl9q21oq1Rqw112vGWrHWyul0klNixo+QaWSONe2m17T95ModsRYjMuXuH7UnW+W085Vr+3TqP+5be3CvbT1CHu089vSvsZcpPfYqvmaM2aW7Ghm0suzlap8y40nPOg0auzR6bmnm4kgbU2urpG+1/oKsI+NK0axNun/C9yP1R0tpnTTr8xq+Sm7+0vnKyTZN06ZO3P/5fN609fbtW7m7u7t+/8u//Et5fHy8fv/w/rdi7STOzUV5f/GLX4iIyP39vYiI/PDDDyIi8s0331zLfP311/LmzZvr99BnfI5M01TV45H16Kn7udDJ7CUUc84Vz5+4TlqmtMdz9d10053lUt2+aND4OiM2eeR83UNoOteHxi/Q2ITXOEdL39f3tt9b9vzIs0PDSPyZtanGJ/5wuz/vfXU+cuuvnZc0bojbKtWJy4TP87y21c45McZdr4e2Hh4e5OlpO5bUVzDGrMYcPl9/XmZxzq90x3u/kSMnW470HBvx9bQsY71+u/an7VPjmx5lE44gt0+8tZt9oIkj0n2hiS1TPS+VKfVzhN/fUy6NrVJGdfM11ru3zdc8Y4466+P5Le2j1jg0+++IfIJGlpz905xVNUr7tHXu7LHFxpgu/WnNb64tjXyfitZYR/zNI+1JQBMXlPpu1enlyJx7i72yrv2A8b5LdlB7Npa+a9bvyGcwLY6Kr3ra0Yz5KN1qzWXp2Vq4nvNzRp8BtWzCUc+jWvnKVl9H5gVGnuu02ozR2Fkz+8z62NWzs7i90fEf+Syg1W7Nxmjm2RizyitqhnzE8yyNPxn7JKU5Tf2ZXt26xUUhR/wS92Zi5t51rcky8sxSk8fW5CI07M17l3y91jsNrfisxVG5wzTX3ou1tvi+SEzPPFubjy20+bxASY/idkr63vJ74vMyR8t2tJ57pWj0XROP7fUzcnrcmyc66nnia8Q2I89De/vS9KHdL2524n2Y/5tOLrnTfl87tx/ivbdXf0ZyWnve9xhBE/P08ClypCPxxGI/1m3c2gm2c/lmrRU71d8BDP5FLEqagw+2ometNPHHtezLfojFnOdZ/Ny3Bkfl1VI0ezKer5IdqO0PzTsWmncuexnxSUvXNLY9VE+L9sZ6I7ZbkxMu5VDSoukzCK1cLd+6ZRNGdHzk7Hq5mnlO2e+va9C8L1C6H/tUt7X2EmT1/na+OrfM7+UyXz/X9qLGP6s9Q9TERakMh8cWGd98miaxc9s3X8/rsX5Ebm5yz4Nb7Rytj3F76doGTncn+Xh+Fj9Ncnkp8+bNvZj5LL/44Zdin55W5dOYs6TvsV3Z2IJ7Lz/+N+9X937466/FvjxXv7/M8v3/859Xdf7sz/5MHk/Tpr2SzQ7f7+6cWPtxPebTSZxbx46tMynX5+ratLwfHtVYdHP69P9/5SP1KHc+1OZNpM/2l+JqTa7R2ljHbn1r7U56Nh7pe4/Gcj2U6ufGcfOPb/eszduEvTKu+8jneFu+VisGi+1ZK8854su02kxzT5pn7inh95q83+aENfOueec1bit3dpbQnFfaeqU2ep/bZPXo5BJ9X9sArcy5+dfrvt/4GOtu1z7bNu/58t5XJU48Km91VHtaWxbn/eNrmpxBjw2OY6PceRPmviTvp8rn9bRbsyNaf7y3/yP991JsWUObq9XqVYuj8na6vm59xv3W7HDMUTHzazLyzC29F57BxOVOp0nm+Zi1ikVsPcfQEH63oGZ3XiunN0LIIeTkNZ9ZzJF3uWbZvvN95Fj26keprRyh/T8mfYm57ctj/RFNvwBH8ukzMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/BPDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCLhD++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8kp88tAMAo3nu5XC6725mmaXPNGNOs55zb3XeK936o7VCv9L23XK1Mbm4089VLaLPWf7g3Mq5U5p7+av2MyFKTR8RE/25XQtsaGTT99dYf7TPXr0bHWnX2jnlPP5r9au36b51p5zhXrqwr/W3V2jDGVPvP2c5SP605GtG5PyZK9qNWtvR9jwxx/0fqe3y9ZXfifuN50cjzWmXS76N2M21L027uemsMpTnuka10Ld2Le3wZzVqkti8l7r/UXjoXOZmPOBNasoZ10fRfqh9/jttJfdrTaQnRHh8fr9e+//57+fjx4/X7X/3VX8nPP/98/X4+/3fyF39hZZ5v7fzTv/6lPNyauI753bt3InIb81dffXW9Z62VN2/eXMuH60GmgLW2uh/S+rUyGkK55acRkU9/bpRs/W3Pru1gqlOlsbZ0r4Y3XtbNLrplXDxfsvt8GDm7tH5zTS9yZ4uOtd6V5rhmX4wxRRup2fO99rUkY+6sWfdvxPulvxGfULN3S/Vra3yUb5eKsf3e9mE1MbYmNsz5xrl1S/uZ5/n6OfjP5/N5VcZ7L3dnJ+fzw6rfr7/6Wp7u7PVabV1q907eiLVGjLnJO02T+NM2JVhq5wifddR2pOq02Ll8nVGfTnNG7fWvtTFDzjaVzx59O0fkg3LXcjmTMKcle1Pyp+LzNEXjQ2vuaX34tEy8fmmVHv+9lmPas89qY9Tqck223LX4+x5/JocmF6Kp33MejcxLsOsaX2tE91rk2ojPnVF64rha/R5/qCdOT21467zu5ah51eaeX4OafXmNPP6nZkRfWvv0aDu2lyPyeke0ubfPmhwjvmFv2ZbPV8p9tsqkbdf61TI6H2mc0DrPNe322O+j9Kq0RzV6neaoRJY9He/rtM1eubW+9JF6rZmH1IcOxZxzIpVl3Dv+XDvTNHX7t9q8S93Xd8kevn5qylI7HzW2aiTGShnJNbfmda8PUnr21yvHKHv9uVKMf8R6xXXStXt+ft6Un+dZvPcyX7w8Pz+v6n94/0Een7ayprYr56PkcvVxHY2v06Pbreule7XYKJf31TxPSPtq6UvPWGrtaJ4nafRO03Zv+d6zRzOvI/ultHa1mG0zlinOX7Z9slRnNDk155w4p39WVdMx7dzX5mOM21y02up5bqAdj+aceg29ru51WecUvffXON77bb7ez3l9CgTdibvs1Z3WvVjWcl2zeiYS+7ivmVt4jdxhra+RfEkt99fKyR+R99fKVyLvm97uHZET0MQ91tpsjlczr2nTtfOlNufas7r37I7PmpHzOBcPWJeWK5+dGjRncuvZptbvNZMXY6wY48XaZU2maZLp5Zn6+XwS7/MxtEb2I/eVc27la5XOnnj8pbM2p2vBvvbS8lN7nhPFbYw899DEstq2ctd6bfzt3Lydnd57MYW4vBVzltct6v/sZZrWPvnpdBLrlmuT38ZS1k7VvnN+q4iINdv9dppO4k7tfHLP+i79x1d8Vq9qOl46UzVyaGKeGqPvH5bq1frXxmMi9bznErO7l3LLtcvlIhdT9htS+7QH7Zxp7cWIDdKUM8aIt/m5SPdhrxw5RnyAEf3T5gBu+81e77X8tVYe0ntf1PGRZ1WaKdecF63ckSZns5Zr7B3otA3t9dq1nO2cbfk9HO0zhNSvMGb7bGLVvpWX8rVxlWXK5Tnm+SL+svSX6zc8P8mtn9ZX1uaMjohj1tdzfe3Li9U+h6+1Jnt1WqtLMZqYsBX/aerX9G2PP6/Vid4cwl6bdOsjP+ZS+Zx/VYpPNNe0cqZdxHIGe3BUf7n+c4zMuYY9bVlrr3NRO9s28URmjPX4O/48lrfZw5HvsqQxd76/18s7Hs2IH5g7T49k5LnBnrb+WBh5V/C10a5zy+6G75pc8x7ZUt30folbZ7uu85r6C3n+uN4oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhE8MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IuEP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXyT88RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Ijl9bgEARjHGyOm0VmHvfbachriuc06cc9UyaV/GGHVfcT9HkPYbf4/lbMkXyqZ1cvOa1tOMvdVW7l6r7xzW9v1dKe99sZ9a/7l51urByLiinsWYZZyasfbKo9XjXn2P+0nH39pvo/3V2ovXLEdtLWt7LmZkj+d0I24n3W+l/dej0y19TNvv1V9rbXUuQvvadnt1odV/qU6OtJ3auRCIbd9ePU7brX3fowO177kxtPZLuKfdOyX5NGdSq35JxhG0c7zP5vfJ0tL1EVlGz7XL5dLdV6uPXv1rtZd+Lu3pMK9HrKW1Vowx1zbP5/NV/nme5f7+/trX4+PjtUz4/P79exEReXh4EBGR3//+93J/L/L+/ddyuTzLx4/L9b/5m/8k7z/MIrJei7dv38r3339/7fPNmzfy61//+ipb6Of777+/2sKHhwd58+aNiCzzfblcrn64MUbmeelnmqZrP7nzKpSvrVfcRoox9sUOxNd061+y66mM6Zkb/0yvx99vl3R1SrKM69gyjpx/WDofWn6uJnbQyNvr/4/uZ+dc0p6XeXYis76N0H+sv5rzNb3WG4+0ZCr37Tfr2aNDvf5JaiNzfQV7UKK2xzdt2duaOrf8vFwu4i92I0+LI8dYI117rU9pzHP0+aZ7OT2srVt6zVork9vKUbI3e8+5Xl+vVX6ZA5FULI0Pvm2nLEtrLl5rvlSszpj4mm7c6edr7GVF0imJ56l0jtfsm3b9QxvpHBvjZDnPgj1r78PSPijVO9IXDpdL54WmXc0+FumL4Y7Uy70+tog+L5LTrbj/0E74WYvzQ1ul+6kd1cxZen7l9leurVhe7TVtjjX33Vo75F/16M00Tary6Zpqcn/ptdwajfrZte+l63v200hes5Zjz10vzXHu3OqZp5E9UpN1ZI16y5bq586D3jzoHmq++hG6G+tAyS61ZMt9z639kfOipaZLe3JvIznonH3usa2tPjV6ObLGJRlqeexSP7W919tPTtbWteX79lqaC1jih/Leb+VetPneW39rPyAXrx0dZ+Xna30/PVNyPuvROfGaLW6RyqXe/3PJ1wzjXe9fTcw/kj/osQ8lfT9yjXrrx/1r7ZUmj6lttxR/juT9j4gFc7GJc24lS5oHj3P6wSebpkmcc3I6e7H2cVXeTpNMk9nkIUXKMWbcZ+z/58rm5Nfkx+Pv25g9ny+otbWHkfNa00Zp7/bswU/hF9V8ndZZm/Pn98hc24utOe7x2W5nvZHa8456/TxxDqdnLnpzUr1levI9tbZrulra47Ed18ZwWj3M7bNavqvmt2rwbp0/zU+Hbo+HObvduulibiw9fuWRtkO7J1t99sTXuTJ74rIeNH5HLFftc+5763qNEb9jrfvbeyM5hNwYWzF9af1ael2SW5MHbvn96fURO+y9zz6DKJWtlYuvL+NLy+lkjWk9Ry31n6O1h4MPYIx/iZXHc6I9+7Clezkftrr/rEiwxzkZa5+1+7oUj7R1SNdmz711+3V7UDtnS2216I3NzGTEmOWhY+xzhf0R5jEei8ZexD5gKrub3fXdgXDvcrmIfXmHYJrn6/1FnnKsGJNbe595/2f53QL9WaM9W3NtaM/q+FrOf+7N5bSev6WU3gGp7aMj/YbSfk+vxfJP07TobsQ0TV3vs8S07HvrPa4cGr3VtpW2q2kj9K/Nv+6hpSe1+P2o97M2sliz0ZFUlto1zX2tL7mxgy+/45Tm3uZ5Fn+qz0fNF66dnVrf9LVigha1dcna6Klsd9VnuN3OV65+un9ivyYuH+LOdXybvjeW2rVJpqn9nqhmXUo5gtK19H7JBxzJJebG2mJPzGiVa1mbh9LeHdkTvXW0foc2dhmJP3s5oo2xPnX+VipTaV+37OHofkqLbG3B69HTfu6dp1726HvuXf/bPV3cUSP3fkAtX33U7wa/drut9l5rHIH4nb7Se3OvLUOKxl5/itzunzL1dzTDc5+27dRS81sCfef2Nk9ayp3m8ibx59Fzdk5yGd57uVwucjGfx7+GG8dGnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/IvDHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCLhD++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8kp88tAMAo3ntxzh1WLldPcy2+V7sfyhhjsvc01zXt99bRlCnJpiFuO+0nJ2+u79JaxNfTMZfazvWVXivNh/Z6SRc0ayEia329PMvl8iyX6abHl8tFZm/l48cHOV0mERGZpmkzFmvtav6MMd36t4fSeue+W7v9W2Aj+2WPPOm19H5tX+Xq9e7DWrna2pUo9V/aU4ERexmI1zGVN+hoSipLq3+NrQ39h3LzPHfPn3YeSu3G+lvTq1y9WrulddW2W7tWa2OvjQht1+ZVs2e0e6lUJ91L4XPtrBixRT1zW2unRqnNaZq6zqtAbm3CfgvlavVr56vm7NXIW7tfklHTb6wXJXubsz3xnIXPNTuefg8203u/sp+hrbu7u2t7l8tFvv32WxFZbNrT05P8xV/8RSTbg/z5n79fcuYQvgAAIABJREFU9f/P//n/JB8ftvKEvoJdju3z3d2dnE6n1fdQJowh/pz7XppLrZ7P81y8N7k5cz7brB+hpRQr1PR74zvarZ2Ix9/jg/TY/2Xtr1dFZNEf4/I63CLdCy05tD70iCx7yoe5CLR8n7hc3F/OrvTK4pzb6OceX2uet3vAOaf2dWrxU3y9Vq61x7U+X0pW/mnZ40u7IiJezuezTHKzn62+en3NHh1vnUPe+6xNc86t5PDey/k8b9b34fFBHh+365Tbp0HPQgwYPgcZlv5u9Woxc8yIHe/RxdY+m40T53LzXpar5eu1fM4ee5Hu71o8VKLlj0lyzr40Puyfp2dIrpl0f6f+cGvv1fzn0H7p8/J1rdu1c77Xz+z103Ntl+ast81azqGXnpj/tSj1mfNzc3VrPqBIft/FZ05u/uKy2rVPZYzzCi3Z0j5TGUvXvPera5r1S21H6Dfne4Tysa+jjWW1aPQ3NxdprkBjb2p+t4baGF9z7/TmsjT1Y31tzUHPHIU51fgKe2jlGNbxzq3MiO3ulWuPLvTao7TPnA+a2xfGmKIOxGV6db5n7K1z+GjdqfnnGrumkaeWe9WcJa38Qe5eusYtOVuyaHKfuTZDuZJvXsp9lc4VzVz0+G22kntpLa1zbjXfpf2myWX1+FqaeW3V1ZQrFQ3+S4gNA6V8VYwmd1HKd8R+Sa5cKfca36/lWNdrZFc6YG19HUtzkcpQu9YaiyZGrXG0P7InBiqdLbn7LXryt73x9OgYa/FJ+Jn7HOpqzvQl1tm+07DEuls/NtwLn+PrGvse54Vy92vyaollqem75qwa3Xda/2bELwt6UfO1atdKspTqtGxi+r1mH7V9aPyjER9GU7fGUi/oVk+dRZb4mVu4Z4yI93I9K0s6PyJzbfwaf3xknTXla3m3Uv1U13vi0hwjOYecrGkuo1THGZfoTGwzx/burbtb3sL7tg/VajdHXZ5tTNIb49TkqJ0DI/aq1oY2ftTIo9HR3rNixJ/Yazty/oRzTiRxUbRn7x5iuVprNTkRa9dlpmmSaWr7e73yas/9ko1L13fP/BkTnrPF8ujj80DpOWqJkr323hfj9LXcZnUWxteDfNZa1frFdfeQy2HX1nK5Fw/ArMaf2oeavVjqbNes9XxiK1PuWrnv9PqeMzXeF6HPnrOpZe96/YBgy+J58S9Kt9g0tymvka1WrhSPpYTpW4pu12hbvh2nGGPES/5MLumiRtZ4TDe52zLn5Nf2qW1XE8+39EYTN2jXPydXaldSe5ljeTfDba7NyXBL81R6T2Akxoqpncm1No7MJ+Xbiv0sk90Dtfra9S3pW6v+3vGn+cN8mXaso5UjLdejNyF3dPJm5ZMZY2SaJpkVZ0dNllL/NV8xbudIXczJUSIX15byF7EfERPeTanZrjU++Vxfx22c6jfnx1JuXTf889fc9+3+NE0yOb0fp13vkTLlvbPHd6zr02vEbaF4bm16+zkqXgsctb9uY9ueM3tlrvkENb99tJ8eP2kbV2x9c40/VYvRa/Xi+zk/Mb7mvT4/+jnZ8x50oDdGPrr/Vvu5mNK8cr//0Mn97k3p/qciF8+laP230nn4qcY1loPe32fdn137QNrYtdcHTNurxVPbtuPv9RyzNieuPbfDGLS5Dvj0jP+WGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCfMPzxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgi4Y+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBfJ6XMLALAH55xYm/8bQs657vZKbe1p33t//WyMUZeNr7Xqtdpv1Q/3Q/9xnzmZQp34XqncqFxx/zlZanXTOYvrxeuWa0MjU0qsN9o20/mK5z7m5I2cTmeZT06maenndD6JnSZ59+6tnC5bM15qu0ZpvmqyjewxTf+1a6lM4bNGx1KdfS16xzJSLqam73G76f4ZnYtavXmei/dGxtZqx3tflKc2LxpZtPOT6ljrcw/BttT2WpAzrGnPfk/np6VHpb5b17TEYynJVtLdnN3KjTPtJ3fuldrLtRVTWnPN3KZrPGLHa+21qO2jlPhMzvlN8byW5r72Oa2XtlXzS0bR2sf0Xhi/916madq0VVqH2no6567353le6Wiwsan/e7lc5Hw+yTRN4r2/9judTnI6+aws6RyfTjd/IpQ9n8+ra3GZ0nhy+1ek7WP3+SqpPzLLPI+vf82HCHK3bLo5mWiMi3zTNMnkpk3ZeP1aez93Pbb1y4/48/Izt6e0/slIvFK7nmuzd7+WyufHKRL/jdlpsmKdrdZLr4W9PmpXSnYitK3ZD6X5tLbfBqb6m4uzUhlrbZV8ql77rDnr5tmJ9+t94pwT4+p97kWr55r+w/kQ23drrVhrVzZ+srK6FuqeTttYM93TrT2+3LfVcQV7FOtnet6UfKvaeV+7Ftcv+RTmtM35nE4nmXx5X5d0WWPzSnu/ti9Ke7oWG/WSdh90SEtNd2+fb/FEywaWchypz56zEamNW+2DaJ/E99O2SmuU+vYtXYxlKdm39Ke1VoxZz/00TWLn8j7ojS16ztTcda1trMUM6flV6zu9X/PtU3+ydA7l9CXIe+Te0pAb96IHeRszcjalbZX2d02vwvzEcUOtj1JfpVi21F/uXklmjV0J52aL+Nw6+vlAKlOO1/JBav2O7PM9aPwhrb6UyPk02/v1OhpKsmnPivRaKk9O9tSm9axZq2xPfN3K68TXcudTq62jxjWaX+2NR0rrVZK1NNd7clBx+3F7mji1hHZf/P/svd2yJDmSmOeByHOqerpn9kdc7kq84I3MZLxYmSiuTHoMvaYeQ/e8pJG2tzSjkWtc7ezOT1fVyQiELrKQiUC6Aw5EnO6Zre8zG+sMBH48AIfD3SPqjDfn0NO2JVurj14dGjV/lq60zrOe2KAVf7T0WbMVnjxjnJMP/Zif63WR6e3hN9V8YEu+POaw4s9SprJ+8v2O7pluFD2x4un8fu/5OpIj8OSbytyANYZn73rk6W1v5ZW0Ot447Sje3GM5du57jtjRMlYpy9N/X1+jXC5vu/aXyywx1t8BWnF1rc66rq4YJo9xe8n7iTE+ratHr846t7R+tfO+dlZa61r6kJ7512xpDe8+zvup+bZlX94zK5V59+cRv8Vq/yjf5Jaj8rWvxXyPfOwjrsjXpSfma81pOW5NPk9feV7mJvOzzQ0hqO8mtbGsOq0cn1ZH69OyA1Y7bU9astSu0/xGJaeY7NPeMWifYSJ7m5mqzfPszlnk8nrs40PWfVnaD3fpv85baRNq42vUvm87I/fQ8lda/f4UvqPHz/fK0Xu+9Dxfjx1vYe3XHG8ebV1XiXF7Kttm3zuYloxambVmlt8zsjc83IZ7jBmCbhtqNnE0l6J97+HWhRBlmuTr+frYi2kdY4yiLX8rB27Nv4XXP3tqE57HmudZwtz2ZZ+eYX4eN4Tg6uteP+o5fY+P4bmfY8215adavuIZNt0qW5bldhZn5+62RZEt3vTW8c1jwjM3IQRVJ/L2z/MlcvMJ/X5qaS93+mv0dSj/qTxTa5/03LPexefUzgfPN6y1sVqM6GguSzmmth9LH/CyPcdsl8tF1sIemDk5Y/xWnObBGw97cgZWfe26Xs/WeU88mfeZvm8cpaVjR3IOz3VyW9p+31OLjbW97z0TNB1LNsIzlVrMYclp4V2zUX9ei9NqselRHudlurZjOItH3PaoH2OUsLVihPTfKVvHTdlrli3Y91nTy7Pm7ax95aXcf6nsaL7RN/YjF6DL9Xx9dt575Fl6coOj+G2nXt/ytc56Xu1eXkc7z/I96O3rDDzndq6LZ/gRfyjoObA/PEII0vo6rZVjbFEu1S02b/trP0Xu7J8rj7Mk7fmyfE8tnrAov9nzxrln7QVPnHdUd1tjvldbj33zvvd5/l33pUZyjV57nHz99B7oD92Of4v0ZzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/hnAH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbxL++AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8k/DHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCb5PJzCwBwhG3bJMZ4Wn8jfW3b9vQ7L7OYpmloDE+9aZrMNt7yNBe5nPnvbdvMe7V+PeOX8nufP8eSp3wGTY7euauN61nn2rPGuN5luutXjBInkbe3N4mLrbPaGrXkqclf3pvnWZXZep5yjfPyXHfL8VtrJvLQ15beaM9fm5OR9bTw7AWP3msytXRTm2NrbUPo+7tspcxn2uTWeCJ1HR3pr9felPvszDHXdX0qK/dE7/NbYyc9avXRqmPpT2pTWz/rDKvtC2uf1+al1XdLB47Y0V6861KS7LPI/nnK/dl65nJcr32w7LblR9TsWKk7njPBkqW89vgutTGs+dPOJK1t3j79jjHe26/rKtfr9en3ly9fZFmW+/WyLDJNX+R3v4tf7fCtr7/7u9/Ily+PZ03PO8+zXC4XeX19vV8ne/Py8iIvLy8iInK9Xu9tQgg7eadpuutDCGGnG9o501rfI/vkKJaOiuixgfYsy7ZIjHubvSyLbIvu32j23XOWl3JO0/63yCTzHGSOs9JDnZoPnI/Zc7+1l3I7oD9f/5hlXzFGkefprvbVE3t567bmx1PeQy0Waq1LjLHLP65R+oa1M0ljneLdpt3L1lVkbdtmi1znPOtS8xty230kZp2mSeb52Yd5ubyIyCPmGtHTm43evv7Wz8Rt23a+Q2KeZ9c+tObSikW1ObZ8shg22ba9rizLIrLqvo523cKTO6jVq537mv9S80U0n+gxP3oMXba15rmUSSsv9dqS08Lrq2uEECSsz7oUQnCdz+V4nvUr95zH193H1vm4fbkXq+/8v1pZzc+28iq1PZE/c5rXch6sc9ny4Wu5Q6t9Xsc6N7wc9StrMmv7I6H5wzV5yn3cOhdDCOYa5VjrYsXintilbFPKEGNUdSlv4/V1NT853dfm8hYLTWa7I3h8ld48Yw3vHNXyOhZnxluec/OM8R7nkojIw87GGGWq2Ptaf/l/y985lg/TaucZo2YTar6eJ7byUNoIyzdOdfK9fUac4pmP2pp68zVaf/sz3L9fjsx3a6ycNNdlvqy33/c6O0f9Qasvz1qUhJDmpt8GlOPnv2u++sj6W3rdsh1Jlvza2q+J/Vk1yTTd7s1zkHAJcrnon4FovsTRuayV9/bd034fQ3ydm8pwec6jZlNKHfXYK+++LHOsWh2NUhavvbT68crsOS+t9q343+r3iI/lWVcRX1ypXVtlvbY0z6mXOZmR/E8LT7yhjd+bO8vx2ggLT71a/FbW0+bAe9aO2jvN16rlwTz0+N0ev0+rWyvzMNruJtexMyMvf/gOe2qxvcWZ+Uavzua/97HRjRijGQvXcjm9HD1TjlDrf6ff8yTTlPs3WzbXz3LV8ir7590kqcm6rhJn+9xulfXq0MNWPNotyyJh2cveo8fpubV5HV3L0fjD287KiY6cMUfiSY+MI30957431U54Za+t48i5ZrG3r/XY7qgvU5uPVoxV9qP97uH2ri3vZ+/TWe8nanPQ8wxpnN5v8vb5kMec3s7K6d639hyWXLU5LHPFCW0dW35k2u9n+SnW2ZDr2VGd9cY8R8ewrnvH99a19FvkFs+EMMkW9vvspmPh/m7D8w6u1G9Ll27/02XtRbOxuRzrGp/kui5XuV6fz9Vc7lx38++trNyPtnYxRpHKlu/x9axvUK19XZb3vIMp676Hnyjif6+bv1t73i/P9UXG/h3Je38zrT2vtYe9snhjxhii5H7po23bRliU63HEDlt5VK1eq20uwxb0fTZ6zlu+bV5W8ydKfyadaUk1tu1mk63vhi2scawz5ahfPRov9+iGZ13WsP8ebdse36P15CEfY/XEUfdft3x1zGVrnc3l9dScu17OzBGN5gFbPlu67vGna3HCfu4n2bZ+v6ple87I847EFrX6mu8xFUdIr/y6rbJlOIOePaudZ0djoFF5au2P+LrvbQ968MjijR/rfYx9V1sjxiiifE+bc3yt99flv8XwcFbeuuYn9z7mSEzszXcdHavMC6TbVl6gFn978bTxxFtn5AStsjNzpe+Jx5/3rNlTzKPEhvI1lszb93xjOcK6rlJ+K6+dU1vDX4Tz6bPMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9M4I+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDcJf3wFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvkkuP7cAAKNM0yTzPO/KYoxP9bZtk23bdteevq3rnnu9JNk8Mnr6sa5Lpml6kl1r09tv6ruXcs1G+rbaH+k3Ly/78Tzn+LpuX/8nsm3p12PdSh20dLS2D9J1jNF8Tu9aHtkTrXlN17W1qPXX26asp9kYL7UxtXkKYf/30aw1q/Wb5M370uqv69oc37uWZbsW0zTdZbLGyGXO16Ccg945btXz2ouRfTIimyZXr/63nimfy972tec4agu0e5q90yj3rdb3kb1t4Tl7c/K9o9ltrY1XhtQuHyPGuPOjPHPg2RM9Oqnt/dZ+snw9jdozhRDU86rmA3jOB+8clX0tyyIiN3t8vV5FROTt7U3e3t5EROR3v/udfPr0SUREPn36JP/0T/8kv/71r0VE5MuXL/L29hv53//Xf7Ub59//+/8iP/5oz8Gf/umfiojIX/7lX8rHjx9FROSHH36QX/3qVyIi8vLycpfr9fV1d6ZcLpe7PoUQ7r/zfWntUW29j/jQ+Ti9Z1CMUUIIXXrVqpcut2279+u1j712dAubiByLPzxji/jWqlxb7dlK/bfmvvQPWvbi1le5t25lk3NfevWw5V++x5mS2Pdt262ajK3nzPdUjy+grZfWd7pXnkmJnd8aREJ4Pi+TDfec6TV/3qNXVrsYo+o3xRjvdfM2efm2bTv/e9s2uVzWu51P/H//8A9yvT7bVxGReZ5Ve5vPXwjhdtZfV4lxlYfO3ORJMoz47zmaD9Nqb/nvuVwiIuuyyrrG3Rx//vxJpi+67ZymSZXHE+OXz1LbL3m/Nfto2UGrbukHPa7tOKm0r619W4ux53mWOdb1oWcMa1yr/e1/Io+sR9pHe5lyv0N7lhaWT+c5+/d7/ybrsiyyLcGtZyNoMX0IoTnvrbMp9+9659UbM5bnfhrHkqnU616O5lStPmo+50h+smyXYjPPOdTyNSzfIC+3bL92TrYo8/PldU9flgzWHLfOsKP60LJn7zGmVyat3KM/Z9iko3j9hdv/RPJzcJ5nmZbnPKZ3vDOev6WPI7GkJwdeXpd5DatvT77Ck3/qmTvLz67luy1fyZsb88Q5eZ/WnvH4BqVtqOWMzrIJ3uc+moPtlV3TVe8e7xnzMcf6GX2zE/az1Pz2o+vVM0+9aO3KmC9e4tPemudZwrz3H1u+RG8uO43viXl651VrXxtnmpJv/lUfJZ0fj/qjuUPvM/Q841k6Z+27mj9t+fA5tTPJI68nlu6h5/yqlZdlHn9YxPatvXNR5pC0Pmr2qte+9uZoatTOGI8PYt3z5i09ecxavx7fuGYTas9b22OjHM1Nj4zTimVbeTUv3lySddbnlPuinmPS80wxvn9MZOUVvH73c85y+5onnyR1cblcJF7quQSvjlpn90j86z0HtOfsYdc2lLI+viXcl/t8lFwXU3XLvpZzZcV5Pc86TdPXdGje/tnHE7npwbPs9nVLrqPxhYX33Hwvcn0biW3L37WyHuoxzoOjPuwR37xsM03TzrfRplPzRz35Xm8uopV/eY+1evSR68TjXBnJBeXXWh7Hg0c3Ht+Bprl81uv8rK7ZiFFd1PDYm/t4hU0U2c+bN/54POfzOopj2r35jl598+aovH6Dhdc/OW2/pFzEV5uR3v+Wz1XLBWnf20zTJHGNEmM7xrIepZXLyN+/zfPzHM/zLPNsvyfS1qXlF2httLP/bHpzjtY3HjktnfL6mt46Gto302V/Kaek3W+9y9T69trkHMt3rPXricdH7HWSbZ5nV+5w26Jo02ONXfojNT0Z0Q0rf5PT+y1X/o1PYl1v3wXk9M639qyemPlZllW2Le5s3bIsskzPfeXv6HM022XlpXp5L/++p9+a/KUNyLv15qQsWrF/q+tSFs1nS8QYZer8TNGKD7x565G5abUpddGTI+rNs9diwr2/rI/hpfSvemTrHedoHWsP5PTOQc87iNH3CFrM6ZdNK2vn687eE5Z8D5me7/WelWdw1BZ61ifFCa2xan5o+d24d/yfah7fk7OeoeUnj/b1nm2OtPup+9Tw5ks1mzkqY+/5lJOfbz35Pu0dac1/ab238pS17pX2wZIxFGVnfWtZl6suK/w8vG9mBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAPFP74CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyT8MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JuEP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ySXn1sAgFG2bXsqC+Hx94RijCIiMk2TzPO8K9P6yH9P06T+1mTI71t9aDKWsuRtrD6161b5aBtPvdrcWG29snhls+RoyVabY8/4PWuUrrdtU3XOKhcRWb+8ybqusq6bxHgrj2uUVUSu10W25VaW676mR61rTxtLv3vWysLqQ9snrX6SbJ792Br/LJJcPTKVlM+lPWdJrhc1NNvZO/c9Y4jYOtdDmlPPXHjWuJTFO3+ja1nK5ZXfM940Td16X6651t5axxa9drbWr7berXnMn01b17LM0v/Rs6nct1pf67q6xmj5KOV5UNqeHM8+77WP+Xg9ds/SEY8PYp1dyf9rkY9jneEtXbfsRT7HNfutneOXy0VeX19FROS7776T6/UqIjdd+fLli7y9vd2vRT7Lv/7XUWLcZNtuY/7N3/xP8vnzY8x8XkII8vLyIiIiHz58kMvlFha+vLzIhw8f7vVS+eVyubcPIdz/V/btsT0lHp8q/Xdd490fSsQYs/vrTk5rvFQ/1WnZ+1LGp+vL9NTHy8uLzPLQQa9dsXTRbvvcXutDW5ce2zyyF7V6ZT9eP75Vdov5NpmmfC9tMs9B5vhYhx5/QJu/WvyXmOf5UGxTqx9CXq7HEq0YQCtv6aH2/J4xa2ehZQNLrKnzzmlr/9b6aum9FU+l51nX1Yz/0n2Rr/ZhW+710/3f/36Vz5+fZSl94Dznkf9O9v7DEuXLly/3/TFNIp8/f5JrfHmSOYSgPktNXzxxZk45J7V4OO8ndTXPs0xzW6/Ls9WKmb17xsKyb147YNmXXD5LJM3P0/Zm3Qe7/5IYo0yGezgSM1vrr/mKmt5sW93337at6udr+tvrq/Q8t8eWjMTZNRvZytnkfuUI1nppcnj85tw/1/IQ+bg/NZoPWbN93rWs5YFb9MSG2pg1PPKU8ZQ1Xm1uWvrT0itPXkIbzyOnVmadcUdyV2fh8elG5PTHHY8xPPvdOpNLvOuX1/n5V+PGqF3I8cY+2pjJl+zhTPvqXX9vLls760s7cNZeHN3brdxR2b81rtXuDFksPDGbdq2Nqf1u5R+8c22dC4+4QSsXEdnfu9mK/hx8r75t2zb0DqHlD7fGNO7s6pT1NDktnSz36+j5ckQX8n5yvz/PA8YYZV2ivL1dJT3/dRa5Xq+yrA8d//z5s8zXm19TxryjcmltvL5Zbw7Cut+T47KuLf/M259GCMGlO7UckxXbjOYV8zGtvtJ1Ln8Zc5a218odls/Yio3L9q15zvU4b1v+LqnlL2pnt4bnTOyx/dq19zytyag9Vys+7n2GWtxo+Tfevnps00iuw5JXsxVHzgSrnR0PTiKi27gYY3W/aTKL7PfIzxnflc/syYlu2ybrun61Rw/ZY4wS47n+sXVdk7HVvud5y7Z9a2Xtv3xM3U+q77e6PCOxRe3cuxNEQph248/zLGGu+56188Wq740Bcnr3kdeeWmf9yPli+RojfZV1e226KeO0iYhv/7VkeerbGQNZbWpj3mypv30tR9TS0V45W+OPxtDZHdHOqF77XrtX5s1r+eU8N1Q732N4+LXTFO9+7rZN937y7jVbPE2T+T7GY7uP5C1v//Wve02e23V+f+9f+3XkeUzvmTCSU6z5MF5/tFXutQH6vXQ/zUGQaQpfzy7fd1s9TPP09Zzcy/F4L7gVazRV5zDvo/wdpmfbdZkvEi/tfFC/f5CvwaT6LV5G7Ks3r9EqP5ue/KXI7Znz91vWt4NWrjG3va13G7mNrn2jpslix0N7ecox35vRMbTnz+elzLFY512qW6LFqT172rsXSlkefdz8n3m+yHzR/ZmWDDkee13zJx42be+XzfOs6nzPN7T57xFbYuHJZVm5HKsfC0++yvIJPHn0+7yE25n3dZT7vXLe8v96pnKaxFWvByueHdkno+O1KHOymg2c4nhuKumXvd/257BIX/x5Jr3xpyVDKxbRbp+RNzvah2c+e/MVj1z9c/2fyqdpkdunWrxR4pmL47GwTgjB9B1G7HWtnhb/pt8h6DYjxby1flt5Mc1fbMf5z/meM+n1IWuM52Lr9MSiZ1CLl/VcrJI7yf79+U8l22jbY/H7eN9W29aYNZtWns8eH9Sb+6jJ1Oo7blGk83s2r+5osc3jXl7u6g5+Av4wPAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnxj++AoAAAAAAADrXes6AAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8k/DHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCb5PJzCwBwhBjjoXrTNKm/vZRtPH2s67qrv22bWs8q98qSt7fkSuXlWJ6xt22719P6z8t6n8Xqs1ZuPYNnbE0PPGtpPWNtPnt17mUTmeeLzHOUEG5/L2u+zDLNQT58eJXLfFHHbMnrHd/q27umHt2y+urZk3kf2n4vxyjXIc2tVzYLa09retXq25q72vPV5sx6RqvPsxkZw6MvHls3Mt62bU3bZsmocVQ2TYdyfavJldvrmq3yMHJeWH2M7vGc2hrlbS6XZ1tZO4PneR6Wqabr+VpYsnr0rsbZ+zkfu2ZHLBnKebZ+W3Nxhn/mqW/ZG4+vlD9vza+r7Uutj2VZ7uXrusr1ehURkbe3N7ler/L58+f79TwvsixB1vXR5re//VE+fXqMkZ5lnmd5eXm574uXlxf5+PHj/ffb25uIiLy+vsrLy8u9PP1O7RKlXrT0WTuTtfNRW/9puv3Pwuvr1HTE4zeX8m7h+cwIIdznxutrlHrV9BWmTUTSuLb/YZUdPZtG6PE/e/2mW516PU+fPWemN27qKa/FJtMU5bHmz/XLfnviTUtfvL5Hb/xX08W9HUhlzS67xtSuS0odSPa1piNlnJzXSf5FsgnJnq7rKi8vF7lc1l1f3//ioySXZF1XWZblfr+81p4rhCCvr6+yrVHe3q4SwuMc+Pz5i6xf98vlcrnnKeZ53tmr3I5ZY1h+cy5bzbZq9jOxzGt2vT1kvNg+Sd7eawd78gAWo/F1y9Zo54Hl31t9lHI+/ieS25T87KrFRq04bSRfkPbY7b+P8mVZ5CrRnN98vdMeTWVpj3io6U1p+3K7lPaz5Q9ZdsAay0NvDqX0Q0ep7fUyBvHEJKWtsfxuj69d4tEXS85yz2nx0DRNMs+zy9dN195YqnbWWvW8/ebk8njyT0d1yOPblnhzwN72rZjjjH1SGz+nNtZIrsEz/llnnBULWz6jyP59iIe9X7W/F2MUacyFJssRX/VInRIrL9Azlvbb4w94cyw953jLJ9Dw5sKsdj1tzsAbHx6Z2yPPNrIGvf2V5bW5qMWZuc894jtrMX+yE49qz3GZJkttPM+c/hTvU0IIu3HMvNLleV40/9Q7psWIXmk+zUg/yfcSefanX6+rXC6Xh4/+ssnl5SJT9iwfPnyQMD0/W0/OxFPnyN6r5UhqPtHROK3H3ozv2756PfNq+eMtP9KKp7X+k85ZPlC6V8sRaTYjt4Wtc75Esw09fZS6X+pR7xl7JN+s2d3WuvTsNe05Wz5IK49fzp9XR1t22RNf1sZrnXseH9Irn6f9qL1Peap8f/S+W6nblCgx6j6JZVOP+qFHY+GHnM85dK/vrfXrpZwLSy+t/OoRv907d7ecQxrPrjdNdh74ea6me5teWVvP7Jmj5zX3x46952NZT7su90ctd9UaZ9Q+WP1aOS/LZ+/xLTwxnLUnPGeFHeMc9zP9etbHQ5cmqemlJ7+Z1zsTbyzU64Nq62XV985t6/wv48L8fu3sS7m4VB7DJjGuj+sYZVk2mdbb+G9vV7le998zp//mMubxmMefLbHew7Ty4FZ5631gzn7e9jnHbdt2S9t/1j/2bm/evhzP4195bVVet0dHe+3FNE8SwiRb9p4nhCDTFmSegwTH93deORLxkr6jftR5eXmR6aufN0eRaQqSL2yus0fj45yWb6SN4zv7x2md1bV2vW00YoxVWzySV6u909L6HMmL9bbN322W9lHjqH0oxzlyhqY18uQeRUS2SX+u1lyV9636nu90RcZ00/L/LXayzMfeqVhrXrOztbiiPO+1My3GR8zbGlMr99az8MZFNT/sSO7deh57/9V98Xxd7PM6+Rh6Hz1j3n7v65b3S2oxYO1alczIffX2k/roKdfr1XO8vfTZkM1cS4+v1Gs7LJ/fwuuHW3IknS5vH/UBtHHeqz9rfx7td6S/o/tC66/s0pMHHJXrSJve70BqY/bka2r23qozYtc27ZvNokw7x8r8wbquIuu+3rquu+8jp8k+x8+klmPzsbddk3FsW2P0+uk9euGtp72HmOdZ5ux75Na/BauVn21LNWr67fGlaj7yaL7QV+9Rf+//9L3r6LlnyVjLD9TaaeVH+9rX2V3pc3N+OhUajGcYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6I4Y+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDcJf3wFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvkkuP7cAAEcIIUiM0V1/27bue2X5NE3u8Vr0yK7J4iGXt+cZ87IQwlO9st9t28y5scqt/kZIMtbIZfTORUmrfV7Huk5lVh8xxvu9GKPEuEqM211f1mWVJUb58cdPcllmc4wQgoQQ7vemaeqa57ydNUYif5byuWr3rLJU7tWp/NojbzlOS0arXS+eNqmO9YzzPLv2VG28GONuz3j2Ty9e+zYy9zn5XrKev6Uv2rjeObbwroU1bq+Naum7d1/0rIF3P/euq7Zelh3VxvDu6Z79krD2Sr6nWvtJ2xs99mqkndXeKrf2VG3smiz5vVF7U65reS/fO5r8rT3QOzflOlq6X9sT6b/rut7vLcsiy7Lcf7+9vYmIyOfPn++/f/zxR/nNb34jnz59EhGR3//+93K9/lb+/u//Qpbleu/vb//2v8iPP97kvFwu8v3334uIyMePH+Xjx4/yq1/9SkRu50p6nnme5XK5qL/L58rnIl9Xa669Z7qmI6lO7tdo7fP5Xtd16FzxUOrWuq3ZOt7kuV6vEq/6WThqy8u2t995X1O3v+fBM48tO52w4rdWPOKR66aXz3Us21nKZ9XznBc9/kzLN9d84L3OPfcXQjjkO+SylHKNxNCemKkmT60s4bHDPf1p/eRj1PzFfM1K3zS3X6m/9DvVCyHI62u829pU/vrhVWTS7Wta99S+plev11V++Pv/lunOJH/yJ38iby8P266teT5G+dzemNeyA622ifklyuUy7/b26+sHmad9H6PxfVnvjHOjJYvXb28M4rY12vXeNtp+tNW2d79aNtLKCYXw+H3zRx66WiP3V/LrUV87L8v9nrzatrX91Bx7HXx4YyPNPlkypbLeHGVOua/ztej1S8pnKddVwyt/WSfJXZZbMud2XGTvx/dQi4mOxq8jWGffmeO8h4+asOySZWO061R25Hk9e62G1673+DxH57znrPHmmzx5uL1fs6+X8t2lfDU9tsbR5LPueXwdjw+dP78WR1tyeZ9P66tXH3pkGckDaj5ROcc9ulUbQxtHo3f/a3NcszmtciuveTSeystrudMa2nrX1scbc3nHb/eX8gBpzuwxWranRw6Pf9LTf6L048p8nNb/lj17Gq7M3ZW08t2l3ShzBpa8Wh/WtcaITdHOiv19W/78utT1Wk6od4+PzIVFbS97/Mje3EkrftHyH1Zftb5rc+I5x7wxj+faGufIO9XXlyiXy5dd2ccPH81+PDFfibbOI7a2N372zsVZebvRMXqey+vL9PZ9ZOyROKVmy7x9t3yXnn3pqRenWLXp+dhaP2VOc465jt7uzfPFlWc6sq49dt9ro7XzzsrdjnKWf3Zm7O/uK9TmPf332V/3naM+uTx2uCdPcav73L7mi9QY9XtH/NlW32frSDmmla/z6PiIjdfOaPc8BpFpes6rhvnY+Zr0pGeuvbqV+r1Vne57pMcmeeL0Izk6y7fXrjWZLPnOPPO13978vGcvpW880hjxNcqny1VEROZ5k3mO8vIyy8vXdzG/+MV38uVL2yccmQMr/3VG7ifNmZWXsfKNIvtztdRfTxxqVTmaTz/TRlr9njFG/Tm37H/j1PbE4z37fg+FLc8bb/LwAx5Y9lE7t7X8yrZtssZV1tU+M1r+X35e2PtNv/+esZXWrpY3ssrKfV/K/B7fKZd9nnW+eL5tEnmek95ntPS9/MakRmvdS7nLMb3j5H15c4zadWm3W2tm2Xrr2uqn/F2j/C4gtR2VQ4sTenMQz7KIeLa85QMdGT9xJP9Xe//gfY9Q8y178iHb1s6rl6xTfNpL67rKVGzp5xh0Py/7PPyu5f69aCjb2mdJ7/lR9tPKCWnlvXGnb57bcr8HuT4839NtQC1n1aL0Rb05Oc/aWzIlv1gr95wFnvilpofvtXYWnj2Q/9fTpmxb/s6p/dsTrT8tD2j5aiP/XusIo/Hbmf2V7T05kOM5rsc5bs358xi5fd/rSQjPe732HGfm5C3snOZulPuv/IzS2tXGKOnJQ7TegfXmw0Rue7E8v2v1a+UeP/dsG3h2zN+ixz7m500Srfze3erTs8Zef6+Wg4tb7Bq/lMFLf5u9fTvLjkM/52cxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4I4I+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDcJf3wFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvkn44ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwTXL5uQUA+CmZpmno3lls27b7bY1p3euRMR8rb2+Ve/qy6oUQXPXK59Jk8dzT7rfqpzqeet5xrb4s2Txjp/lJ/w0hSAizhBAlhFvZPAeReZbvvvsol+Xy1D4fx1rzGqW8LZ0p19u6ttY/l7GmH3m92tyXzz9KOUaM8f47hKD2XdPLvL2HtK9K0jxoc1COodVJ67Cu667Ps/HqXU2XRsa0dKjX3o7s1zNI4+br77V3tfKWjNqzeM+GVLfXpnttpXV2jtpzy95Ye662Fnmdmly9+9/iqK5Z7Wv91s49z5nYuleOb50J6fosu+75rV0ncr0odSmtd21fxBjvfUzTJMuy3Pud5/ne1+VyO+c/fvy4G/PDhw/y9vYmIiLX61Uul1X+4i/24/3Nv/sf5e16a/Py8nLv93K5yMvLy73vdC0iMs/z7ndqc/NHHvKW17kN8dqbch49hHUTkbz/ut5ZfketjdU+p7SZt//6beaROs9y+PaE5+zwxApeH8xqX/ofPedDixi3r+smks+LZ801+Y/EDV5f2ZpvO+4q98CjvjfW9cRZI/byCDVdKItjjDIpx+oZfmT5u2YDLNtfk6k2Z68vUV5ePu/q/OK7X8jl8mwnvbmCVDZHuceSX+/INE13G2/1U9Mr73xrc+n1i7Ztk3WKaowzYlOPxCee5y2f1euD+3yoYt9n53BPnikf91a2r1Pur7P2uWUHy7me5znT1ZT/uPkjlv2p6VOP/rbs5P28CCJ5c22KNJvQM5fJ16rJ27qXj6/lVkpy364lb8tXqMnV6qc1dt53WU/zK70xrZXjabXN/eHUV00nU53kDx2JbVs52lq92nhl+5bNHrGtZ/oQIs/6qxFjbOpcTw6k934tzs3rePDGM/m1d7+VOumRyXvuWf6xJuPeRxe5xX1TVvYsX69vUpOvhyP+sdW2dU71rIt3TG8/R/Myliw18hyLp53HB6/1NeJD1tocsX8tX7HsvyXb0fNmZO2tvV36Kvk5ms7JdV3v+bJlWWT5p9/Kr3/9Sa7XqyzLrc7/+9//Vv5u+a38D//qr2RdFlm/9vvf/p//LPHHxxgfP36UH374QUREfvWrX8mf//mfi4jId999dy9/fX2VeZ7v+bLcP/Dmr2rnpubflXPq8QF12z3tfNRWnkCLJco+rbjLm2/z7guNHl0t8wbbJrt04bbtdSyXfyRmGz3Hz7KdI7FBTs0meHINnnN05Ez22KqavF7bXfNHvDGhR7aSuD37onGLkpuMZD9q74Y9WPrqXaMj/kyJd/xeeXp8qFafnn3Q6vus/V2j9z2KyLm5Uu26HMdjU7W+Sv9AGzc/X2vnY7mPH31tRrk/9vHmYz1Yz2/VEdFj2hif86aj8lp+w9nxey/e8TW/Jc3N3k5I9ruW+96kvJXXH4kZrPFG7M7ImeS11zW8Mdlozq8mT8/e9/SrnR+95/8o9pmY50J8cWBLf/b5FX8+xOOve6dmZL/0ytPT1uszW/qwbfJkH1r9evbOtu2/V+r9vqg8W8rzJa77c/YWe4vM8Tbm29tVrtfn+LflQ2r3y3q5n9ubi9r3mZfXc/plLqm8d7MdRf2OKd8/x7ht6x/rvH6P8rxOaa1ERB45CS13b9mFWo7kafx5kmna38+/tZqjfL2/7e6Xelg7syyd9pxJ3nXT9uujP9+Z0JKtJ5bQ5NfK8t9nfQ9Z40icPHLuWM+kxTwtO+Sd/xCCOm5eVt639larnlZWtnl+z72/vu1x/d1cnkvz+gEjvuoZPkat/3Qvv60NcfYe6LXrpV+2rqtsyjdGqe7IGBqePI8Vf7dyOS3/YzSueMpzhqSv6b5+VtRIfeSM5HCSfKXPsy9/1slaX1aZtXda52NLf3pyQlpfdl5prw9lvr537/vOjtq9tu1p5Rt79mBTj425HBkrp/yepcVIjtjb70ju0ZKjtce0Nmdx9nmR5jz/Fvs9zsKzOCN332rX449bcj3JqX3HeLlIqH0XFnKbW5e3jCc9/v9IXtCinn+8/xIR4z2X8ztuT+6u9uzenFYtnrHx5+O08a3z0fKHy/ujnPW+YnTOe/Koa4hP8cS6rrKt+px5qX0b24u1H70z2utn1+fdtgs/9/uab5kxDx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgjxz++AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8k/DHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCb5PJzCwDwz5Ft29TrvLysY/UxTZN6Py+36mhj5XVrMlh99jxD6qc1Zjk/3jFaz13W89b3jGOtcaqfX4cQ1DbesadJ5CbClJVNu7mt6UO67p3L2lp557Jcy1qfLRm3bWuOa+mbNgeWXuZzmrdP61iTX5MnMc+zWt5LrW0IoXuP5sQYm3XKdSjHsPZbmj/PGKNYup/j1ety/WtjWnrlxZLJa2M9Y3vsQL421vjl+tXWX5Nt1FZZa2TJ4tkHNTuu9d+ibJ/PVY/+57Zm5PzSnl0b15qXUvdre8HjK3jKS93T7mk2WBu/Nlfec8S69qzDtm27cz9/nvQsSQ7N75mmSdZ1vddPv9/e3uTz588iIrIsi/z2t7+VL1++3K/n+SqfP38nMcZ7f//4T5/l7e0my8vLi3z48OH++/X1VT5+/Oh+Ls2mp+cs93uL/HnT83mZ4yoiz3vX2lulLqcyjz9srb22x27/3ST5ahqWH9GSo3av55y3bKx1Xlt1QgjmvmydESX5ftHuWf34/Mnb9bpGkWVxndVeG9eSpfQNajqqoZ0D+/Ge56Mntmz5PbV75Xr1xJktX0TrawsiIezn4HK5yLzt4yvP+dKiJ+arnfl5Xz2+hXbmz/Msl+0WQ7RsSG1+5yiyt083nUk2OI91amdl73mhnYGpPJ/L/Owq6y7XRd7erpLr/e9//zsJb48zKJ+bcv9oZ5UVR5ftS1lapL3izX+4edr3x3yVvO6++iTzPMscQ9VX2Yvm05eWf7avN8nteR9j1+zce5wjNUp9TW1bPo02B6XsnvWLMbrzel45vH1p+0ab52madnun1z/w1vHI2nO/ZWdLajGMl6PP6ZH5jDOy1o83JzbyrD3nqOd5WnnAnva1sl5dKumJ3z3y1MrPRPN5a/5ljXsO5X5W7duO5CKO7rd8fE/5e8651/fX6uZnd3mOn5WDauVKe8c5Ord2DK/XORoXWrFCLUbqHa9HzvfQRY9vlcqtvV/zu7Uzdts2ef3+l/LL3/z3Xfn/+b/8G/n0i0l+8z//uOvv//q//51cllkds4wfPPaplh89I2eT6vfaqzyeytstyyJhCW69E6nng0bzI9a9Hrk8fl1e5R5SVGR4j3dUNX0fOYeO2p4RvP6U9Zwtmb1x2Bn2zJPjKev3yF/u1/Ls88hXjpneIfeuvfcsac3rqI3T6rfyYqX8R/ZHz7k5kgto5UXKul55PP0diV+861jrrxzfm5vUxvTEBdM0iQTdx/HmMvTn3GTbRKwuRvIH1nhH/K62jt6eo7jb7TfUzip9XF3WFkd9UGtd8z2Zj+E7w25pVsvnKm16uq09Sk/M0HoWi7jG3Zrv/Z32e4Y0hudM7LVJvTG5t98aR31NT99afr+nX00vWmfP7ff4+aSNa42dn8OWD3M0Nj4S447iifk9cnj0KK3Xto376h470BOvWM/6tH5zzGLim57P8yzzdCt7fX2R1v+Hay0uzqm95x6Nc1Lcm5pv260sbP3fXzz0ZC/XuK6e4/9Zsrb2VcsH7fUVLPrOvq/zu+1tjtV+RC8e7+oe5eu6yrbcrsOyPu2lGKPEeDx2ExGZwyzz/Kx/VqzjiaPjdDxXoflK5fvL8lnyPZvvOa3fEc7Qz/wZylxfy2bWxljXVbYttb/1G2OU8PKijpeue2NLS8YyxsqvW9/AJfk9eOulZ9W+d9WOvm2LYk3/0fdk+3F0veyl9k1Bzf/TfASv7o7m+r1M0/T0PdU8z7IeyK15chs1HzK/9pwr9bNab+/NTWq5vLx8DfFJr9Z1FVn78jta7Gidm5OVvN7JqOvc/vzT2u3LjjCik94xPbojsv8u5+EDblUdPUvu1I3qVw+M8Z4x0WgM5tG3dD0qR96n1pfH3pTtevMXel9jdt2KsdO9Wp6tJdtZetWTEz5LjtHxPO8reuQp96vlx9fksM99Ucqe/fxc17Wp0O3J/h1n/u8ySo7qfw+3ubtf3WSbwlP/3vfsXhl75R/Zu4+yY2el1neuF5oue/Xas5d7YxIP79Fn6kPfR/syTwxklffav7Jt6WNt2+3fnmyd/8bJkqc2fn49K75ejKsMigEncl6ECwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBHBH98BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5J+OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E3CH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAb5LLzy0AwBFijLvrbdue6pRl+fU0TWbf2r2yrNa31kb7ndqU92qyaeNt23a/1uRota+RZLHk8vaT96WVWfK3+u9dxxJt7jRZPH2leq05K8fXfn/tLftfW/5Rau0tHW61T8+e63i51qncI3/5nEeeuXwO67k0eb39amufX+fz4n3+Vrn1u7SVI4QQ1L68e2xd1911z74oy717sdXf6Lp6x+kds8fGpL48/Y3sHct21WxAbW2s8b1nilWmlScdTTo7SmuevPsql6OUSetDK0vten2Dmpw9Z2d+bdkCSxbLVyn7aM13bkNq8uZzXNMv7zzV0HSsZ+7meb7XSfVijPLhwwcRuT3z5XIL1z58+CDff/+9iIgsyyK//OUv73OyLIvM4Sp/8idvEmO89/8v/+Wv5PPnZ1lCCBJCuM/B9Xq931uWZSdLknlZFvMZQwg7v0er1zpnLUbsoobXt7R8/Zp+Jr2+VXnUW9coYqutOWb/Gff8bKW8PeeYOkLWZ75XYoyuubSesRZblf5RzzlW7ru012ptW2fPWWdCSeusKs/Wh67t68QYu8+Iso0Wl44w4l+V1/nee/y+3VuWRbbled60ufScu/Ux97pvnWn5vWVZdvY12c/r9Xov//Lli6zrunvmDx82+d/+en8+/Nf/+kWuy+335XK5nwnzPMs8z/fny3/nNjmhnaFlbFbzP1L9sr1WblE7B/IzKckj8lVHXyaZ5/C1/Hb/5eVFwqbvnXyceZ6b51Opr+VcjeQ6NF+3J/7VzqxbWZJ7ky0774/lQ+rnc8u3r/Vfs6HaHhMRkbfr0xpcr1d521ZzLEtPvWuu5SvK8nrcdWuX9NQaz8qZaL+tOlY/qdx6zt4YLbcH+fxq/oUndhuJy7SYrlbmGUeTN7UvcxYtjvpvR3N4ub8+2nceG+TX5e9Wf7X7tby9Z86O+iTW2FZ5j49Za+ONNbztRtt4c7ijvlurTm6XRvbMwy5PUsY8Gmfk245Qm9fRePjI+N58Sy2v1qKmYz05xdYYXh0diR9HfAdrTK1tfj263j+F/nrx2LeemDunlj9NvE6rXC7zLib++PGDbB8n+fHylksk3333UcLbc2xUytszv717uTdGb+W2TMKzL1vGTJ6Y4ah/UsN619Ajy1n+k3ddRvLwNdsz6i96470ee+npL5ejXJce/8kzhjamt9xjh7V7tfOvx6fQ7InnPErxx7rqY7XecdTKy7ESVu5wNK9vjVnzD7Q62n476+zT9LdEi7nzNmecE1q90bMoydU7vicvUmvnjS1q/fhzII/8lzaOZ8zWXj3qn/XQ0kNvzuQiIaub9lJQ17ZlN7yxbQuvvfb0XbN7njma5mdf4znfsck02X6Jrefpv3p+cPT8bdq+IGKpqDbHlu3S/E1tbI/v0eLniF20Peb1abQ61v1ef9a61us/t0n6O6pf5bPUbPBRGz/Ckb49+RfvOVt7b6PZnnm+2d6cpBtHztNSnjInb+XuPedjKo8x76ferscOv4evVKOmOu49qtjX+jugcWr+pMd2efW31OUjvmZ5JozMy+28Tf/TvxX25C59stfqPOdLY2y983smhPiUL12jHs95c2Taud3jW3v9Pmv8nJ53Y71jidRtyJnfM49w2aan9vM8S8y+XdBiRu13/r2INSdeWb25fc8eOfrtrEVLX3ve3yZaz5N/91XKcPSMsd6vbBdfji5vU8P6znQkhtJ93vqZptn3s+JDTaLwbWsAACAASURBVLba/unpp+RoDjaXT/N7LJ1V5yqU5fpaPnyyKNtWnCnrKrLevtma101ifLbTa3isWzmNMUaZ4vvFYzV/sSd31qsXt/Vpy+Q5e/3YsZkHT174KOU+1ubfe75q+pRsiHeNPet/Rr6hh9p815756DiePkbte49MtTj3PXLSoxz91qnUK20dt21rflvZGvN23/8usN3X83VenD/HSP6mZlNbso7q3s+RD7TG9q1nfu3v29OnFdv16szR/VbuB62/1llx5p6P95j60eeyXCUo/wZAw5PT9fjAWp+P9nV9aI0/gp0HKn1LX14a3pf3iawBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/sDhj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADANwl/fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+SS4/twAAR9i2TbZtExGRaZrUOnn5tm0Sgu9vDln91eqUY+X/1X5P07Qr0+p5qNXPZbLkLdtbco3IWBvfgzWOd3zv3NT0wrNG1jgxxt14lj7k9adpytYm7vQ8G1F9jlF6da4kyVDKkvRcG+OsMT19lXbCqxd5mUfefL21vjxrpdm0fOzyGXLZShlLeXoo+1rXdbh9qQe5zJaNOEOvtfEtGWvjtmSp2XkPvc96xP6V9sT6beluTdYe/a7J6LlXG9N7zlvttXJNlnmed+XWfvPuwyS3Vn90L5+lg3k/vbagtq/nee7qq5SlVmaNqZVv23aXZdu2+3y39LPnHCv3WjmO9Tu3lUnmeZ7l5eVl1/8cNglh2ZfNk4TwOB/SM4YQ5HK53Pt4eXmRy+Xy9Ptyudx/hxB2eyuEYK5tqmfdn+e5qhc1OxrWTaYpPNkrj42y0NbGSxq7nA8RkXkOMkddx2v+bY/ve6ufy7OX7Uy89tKDx28b3dfaLS3W0dp6xhw552u07HsIQRkzH/dZ972+TG3tjjxbj6+gzWe+/qWOizzskdVXPqc1v8cjd25f8rWo+dyvr687e5nuhRCeZMt5fYnyZ3/2D7uyv/qrP5Mvb8d8rwf2s3vO45pt2seves6lLKvNRbqe51nWS5QQZpkmuevCy8urzAN/S9p6Bk/OxNtneT55xmyWz7NM0/55p+Jc1mQRqduYGKNsW5RkR1LZNB5Cuih9hlzu19fpqz4+yl5eXmR7eehobc49+70nL5b/vtcLeh+tNdV8FcuOlTGG5Z+W7XMfzPOcVo7KG0/lcmlyaHjtVm6XLLnKsVuyaHFM7x61ODuu/Snzp974btS3PJrX9Yx/tt+i5eNGcyFazqCWK7XyZR689Xv0zTO3rTxmuu6d14cfdzyvUZvzkf56scYs3xvU6rfkKXXHs66Wr9JqP0rNL7HGrMXrPb5+Pk7+u9W+tV/y8712Rp+Ntac87Vplpg/U8MFa8VRLrtbzPOqkuD/pcZAQ8nEe8ZsWN7Y4e+168pg9eXOLEfHf01cZzZ16ZHhuk+mu7PNDvblDbxz4U8yLZjtbsceob+o5azwc8WdEnuPEhPd8PMM3t+Inq5/SJlqxSukbWkej50zJY52ajnv9XWt8D6W971n3Vk52hCP52yPyWOdh3reG5SO1ck5a/zX74MnJW2W9ORZLxj4eOp2f6T3rc3s/9px70fLQT6MfPC9qetjjx+1z3s/9tM43r+2yxq1RW39NX732puYb1n1T6/nSettjHuEs/7Ft+ycz51dra+ni0VzUkbN+FMv2eWXR9ktLv3ptwR+afh3Jcdbs2Lqucnu3sC9bsk8Vjp4RI3l/LS/S8ts84yes516VdLiWe9nbdFueWu4jvS/Q2tSeJ8ZNlmW9x0nbtsm6rjLHm/DLssiy6N94pPzx0TUt8/tev3WaJpGQfu/7095F+PKZ+Ri+vFTvGEnGFiM+Ttl3TWc8sXCtTr8defx32pXX809aHXsMPW/83P5Zx8pn7Y0RW1jfDXvOFuuZRu3YEY7G/7lcrXdQrbFa+8jzPWX+PWa5d8opLGP6nneLrfu931smRmzsUfT13O/bEGaZ56C2eW7bLm/lfcr+Pd9KjMY86T31OkXJv9OYpufvJVNfZZ6m/J3HOb3PWpO5LPKez1Y9z5rVbHqtD+2+N66s0WOzUr8P2747rartbR3L98g+bivXPN3b+yK3snmeZYoPf628rz+Tfr8n/h+JgzTb740xW/qzL7/5f6lJz5nskdGW4+Fj12z3SLx21tldxhbenGZNl9J9T74pydD7PCO52iP9aHo5GmaflUfx1LN8lF4fxLr26ssIvTb5LILxLZ/HRzoyF2Uecz/+XhbN3mr5lpRjODN31/pOQ0SefOAY97LFLaryyuq3Pa25PhKT9px9ZW4llYWtzw/x5q68MYv3XdGZ9PTd628n4mp8o7yNra1F3aeo92nF471r0vPv/TT7FONz7nHbosRY+HrO7+jgPM6NuAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+SOCPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA3CX98BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5JLj+3AABH2LZt93uaJnd5It0r+011tTZWe62v2n2tfi5D+Vsr067zfj1zMU1T9Tm1e7X61vg1esfvue9p11pHbZzeeSnvafMUQvtvYpUjjD5/bV/k5ZreWXPUo+NePUn1auvi6Svf1zUZ82fMf3vqtdbPs1b5uqT6McZdnRDCriyNW9bz0Fr/lpxWWW3tR6jZv57yltwtHa/J0rO+Hnr7G13LvC9t35flZz3nyFx4n1HbM552WtteWrK2bJrnHGiRnmFEj1tYZ0fvWTRqIyy/TaNHxvyeZlNbuuLR0fxejFHdVzFGWdf1/ntZFhERWZZFrtfr/ffb25u8vb3dr0O4yqdP066vTz9G+fJ2m6/L5RH2aTqYnnmeZ1UHy7r5uVj+1trkpOcbYY6rbJt/j/baotKn8Lbdpk1SM0vNWmeRVp7riB7niCTPMBXHuMmk2LGRGMCS7eh5b9kfrz9u7bfHvkr6+NzemuMRLB9QO0dGxyn3y7IsEmPe1ybLssiabdu0R5OM+fj58+d2aETWGOPuub0+lobHjud2corteq0xLZnLcit+KM+NfN2186Fcy1LOtB7lPnDFh8W+KH9Pyyrruu7GfHv7Ild5eRont+mlLnn3vjZn+fNrtqcd8z/2tBabtfqx8iKesVtYz1IbM6cly63seYyjvv/X0fOW935bfk2z18YaWf3ebNx+g6/rKms4L77wnsE19uJvql3yYq1/ud/meXb3U/Yl8rBL3linZt81H7I2thctx5JTO1+t9cvPqtE4yzNnnnxVj908mo+xyvM4p/zdes6RmLEml9V3Wb+1bjHGw3mR2hr1yl/DGzO1xrTsqOcZW/2PxEa9z+Dx1c7OKfbqZE+c1Du+SNt2jdoray+M+MpHn793DUv/w9t+dN+mNfb4YZ6z2jvumXjPjqNnihUP5bFmzQ/x7nPN/8xj1hijTNfla1yx3f2xL1++yOd5uufPRCaZplv5fH34T3lsY8lRs9Nn5/St+r02fi/rvnxkH9bu+eIWH1pfue3t2V+3e8X9SXZlnvk4w+4fsV0eanFarjuj55g2/yO6X+7jWv2aLTki60jOoMcHy22TZ5zamvX4cLlNSmMnv8E6R7WzSys7Mn+99XId9Z5nR8/Zmo0ZGUs76862M0ffFfb6KmefdT052kR+9idxYowinTmXvW3Z3wshHJ5bz/Oc5RumvR/Cs53qfZaWTtR8XQ+t9qO+u4b+LMmepVxyqvMoF7H9wrK/Ud05kk99vm7b49Keeue010/v7cdLT57+yBnhzQnn521tvVvfEPyh4c3T1OYpr6fto3KPaH6HNqZHjt69V/pYNX+jx5+82eJclk21DTU/d9u2XV7Wso2ab5+3Te1r8u76nPM89XOb/N2z95zr9eHL98oeShvn2W61eCjphlfsWu6uvJXsx5l5xdq+ONNvPurn38qfY5tts/McR/2CaZ6y/Xjrf55nCWt6H7RfZ++SaLHeusan2O96vcr1Gpr2xYq3tPfy+7nSyh7te3VsNM73tGm9vxQ59h1m+Q6rtCM9dmUkDtDs7lm+/uje08Yv5/hs/yTOsTh3RGJcRda9f9BDqcs9eRmtL+3aG/P4zr72ePX2+33ozYf0yGWN5e/Ll1P25rA969K7DpY8nvFb5bd3C/ZZ3o65HnK0c2OP38mfTL7efk6ez5PaElm6rz2H1ta7Blr/ozpt+QkP/2Jft/Ueo1Vm5VsLCSStZ01Hz5jLo/Tu932dTR56e3vm0W+fjvqgvfZ9ZIx03VqakTG9edC6P/3g9o1nWojb+Le8qf4dl2fv18Y7cj56be/ZlDZZ+w66x3ew0PJzlp+/v9/qU7dB8zw/+dcem1uWtd5f6DmPh37NUSSEIjczPeeC5nmWOe7fUWn0nkutnI6Wc2k9fy5Lbgv2cWO/7bbGav0bgnJOjvy7Gq3/n6Juz1l/q7qfq6P/Xu8IpeylDdm227/LCAPrcsa/A8zliDFKjMUe+sNPR/+z47xVBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgjgj++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8k/PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Cbhj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAN8nl5xYA4Agh6H8/aJqm++9t25rltfb57xrbtpl9pvJpmqrj1u615LL6LstijK7+W/TUtWTJ+7L6y5+rNX+tMT2/LRm8Y/S21er1PmOpF572Hn1tjaWNWbatjeMdu3c+NEod86yLVkezJ2frVd4u2biy7rZt93sxxuq+zvux0NqP6P1Za9Uq1+aj1larm1/3PItme617rb60dpaOec4ya//X7EupG61n2LbN7K/2W5unXO+0Pi17o8lVll8ul6c6qV5rPeZ5Nu9518GS2+sD1PZ0a6xyvi1qa63tk7Px9Nljh7z2V9NFa5x8f1jnXEm+dqVM1hrndjyEcB93WZb773me73odY5SPHz/K9Xq99325rPL995924/yLf/FRvrxNT/2GEGSe57uuhxDufU/TpJ492j7O6+Vzmc9bjx+tzY1ep5Rj3u3bdvvzSPMdYzzsT9bamDHPZX26N89B5mjbMYvavu+5JzK27j0+Y65vOz0N+dipjq+vHlnzspYP1hpH2281H/Rlm57W/HK5yHbZp3a8z5X66p372hjWvIQQ3Odb+r1OUWJcs/KbbdyWZ7kt++tFG9+r+9YzlzLl/Zb3Xl83+fLly679r//xH+XtTT+3SrucxwalHZ6WKOu6Sr4v8rPH8n1qflfN18vbW3unnGPzjCx0QGSvA7Wz3BM/aLJZbTRa4+Zz5vFt7THyev2xhe0fblnfPvnKeR2JwXLfOG9/uVy+6u+j/jzPzXi2xcgZXLa313K6ybhOu+c6Kk9v7tDrC3v9tLyPm/2o1yntkSc2Lu2mFtvV1t77zJb8Z1LLY+T2ubd9Tk++ySLJsG3bbl6sObL8f6tOSzbtrH7y54r2rfWr5Wis8veIC6y+PXFkK9+v9e21N5aMvfmr3nFqOl3TmXK+HnGWr7/afut5Bm8sNIp1DnrzDr3nmjVeb/ue8Y/o0kgeX+vDO94oo/Fsqm/lXEbyZV6fzNNXDY+OnmVHRJ7zTZdtknnen0Wvr6+yfQzy+0seS03y4cMHCZPuR7RkaflaXjxnUjlGbS2t8nVas9xH+7yzfPP8XhlnHdGxGpbue+LNXL7HdTsPZDHyfLUz4qgdqsVirZjTmjPN327hld8zF+V1b/yt9dGSp6xX+rNavZo/58n9a+1DeH6Pm7exzj3P3tPyQJav7YkBe8+kkprfYP2u5YjKOlq5x9d5r3jgTNtY27feNr1+fg/WnvXs5TEb++i/HMN7xq3r+jWmeJQty1WuEp/kau0VKy9aa+OR0bvGt2dRnm/2P0MLa++PxINnxzQ9eMVt+bTbtvcrWj5/K29T88G069E8gkc+L6V/MUKP//GeeuHFkxPt4Q/hmUR8vllZv1YvhOf7+bcIrf41uX7udwA5lr4/jzGp/trR87hmh63frfev8TXKp8vt25K0fiEECdtN1nkOsix1Wbx2rOaD5t/EWHkxrf3tf3vZanllqzzZ8v2zTK68Ttlnql7K1ZsX0eI8a0ytv/c8B2o8r/F+nVJ83ptPGJPzWfee9Uh230i1xs5jk5dLfGr34fWDTEbeKe/D4x+n3zFEdV+1dMNT3rrnwVqbn+Id3Lquj3k68XuwdV1l2+JT2WosbW0Oj55jZ5DbWKu8nD/tnYr6LGGSEEr93Nc7SxdGdVX7xtNCy9Fo48Y5ikiyB4+2U9bcm6MawTcXx94VtPJAlg2q5ZS942pjeudLG6vmi1o2vhyvXF+NZ9/i+b7mNz38kIf/sG37MZ+/P23Paep3mibXN4yjtswT53r8aMtX1H22fT+9+69Vz8rv1so8sXu5DkflbI3Xql/Pi0673zUbUtOB1jy1OOrTen0jT1xRjnNGjrzG7f1B+f3345xNXc3zLKuyR2uxzJm5WovnOOm9csX954PnTBzR3dr7IBH9GxfLxojsbZ1dry53Kb+m01oOwXreMhc9TSJxe5xRj3Os/f18j/xerHM9p/YteVTe2V2vb7K+1X36kTzpSI6oN69Qw2vPPPm7Mu9f09Xns+e5brkGli69R6yl57T29mOeZ5mM2KrGkX/HkPbeH0hKGTJ+/ogfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GeAP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yT88RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Jrn83AIAnMm2bc3yEG5/c2iaplPHmqbJHD9vk8bdts0lb95v3j7dy3+n65osWnlLbg95H57f2rW2JtY69azfWf1a8udtWs/oJV9zkfx/IrJtsm26DtXGs3THqufVlRij2VfeZtu2Zl2Rxx6tyemZ13Jdyja5LK0xW/Pl0ccRXbDa5GOGEJpr5Zn3nvGP1M/t1HvQK3MpR76vPXugtkYtG9Hqv1cXe/eF1r4lX1l+5PzoscOtul45auvlaVOupUefa+e9RbJJ2t6d5/mpLK9XO5NyanNqPWdOqQeWXpRte/b+uq5PZZbt1vDqkrVGtfnL5ajVq/Wb+ogx3svWdZVlWe6/r9eriIh8+fLl/vt3v/udLMsiv/3tb0VE5Hq9yrZ9lv/j336/O2v/w3/4rcTt9f7c33//vYiIXC4X+eGHH+7z9/3339/16uPHj/c5en19vcs1z/PTeZ771D22XavTWss9e12LcZV1bdsTa1zvWu4kcNQb2fs9Z4yISJyjnODG7/q0rr33RPzzaJ3BrX58/Sd9rY9v7VHvM2j2Wmt7dM7yPbbvapIQwiFb21Pf62toZ5XI8xnWjJ/DItOU++k3GzZve5vRs9da9j5f//wcKsu3bbvfjzHebXeM8V6+LMv999vb2/3358+f5Xq9yufPn+/9zfMi//avf/j6nLf1+E//6ZOIfBQRkZeXF/nuu+9E5DaPHz9+vM9nbq8vl8u9PK3Fh3mVy+UiIkmPRF5fP8j0+kgJ5rGFZtNHbELNhyjH0HI2IiLrHLPr6f78c2zHjK17LWo+r2duyuccycXofU9mDFrmnGrn860sf47b3GtncitGqdUvr1v+lecsOJLP6c2XleW5jNN0O2dijDJt7bi8Nb71HOW5pJ05tWev+Vmeta3Zbk0WzYfPye2NNrblH+T+aBp7bA/1nRtWH6UfafVtzUfer9cXHsntHInfR57FwrIvtfajea0jeQpPXyP953bbOh+94/fI4Dmv3is/56U2L4+zqtCFr/pQ2tTe2FyToyZfWW8kx1Sr512jHr3Q7LzlH5xhM2t9lWvsXa+aH2aVW/GZZ81G3g/V0Oa7LwfiG+un2ONn+dY99/O9N02bPPzXMobbtfpqK/zja5T5/SN7xBOz1PLctdzl/vkfubtJdL3ukaUcq0Zpk3tzhJat0/znMke5v/5alnW3rqtsa9tvPkJpazx7smaHe32AUl+1Nta7xNZ4Nd206LGlrfrecTx7x5vTzan5/Om/1rnzyP/bstXeYdRiEY/8I2eo1q5W7m1rtelZe+vZRvbfWdSe17vHc33q6a81/tn0xnOJXtuRukvNyjPYOmu0+b5sk0xTkFz0y+VF4ssjz+GN+fb5+XEdHvEnpmmSEJ7bzvMsq8Ov7I1FR870o/mGXvTYIvU5Fo+V97xL27KN+TnspeZ7esY/i/fOr7QYsdvecc7Mq5wxTtZCPQ96+6ntY295rx2w0PZry9ex+mmVe3wAyxb6deK571Z/5W+PT5PjzYv6fF29PIQg89z37U2Z52ita20drL7tubq9gw1LUPuryf3M3rf3x88PWTyq7NFDb/uWbL39vddZsm37XK5XFpcOiX7+7vVwn1fey7Zf9/J3XqbZ5bjF1mM96ZJnj+zn4vm9Qi5Ta+xy/J8idjiql9588Vk89GRfVvPZrXv5N3TpWmT/LtF6r9hLay6sd3la+dHvMnvz3CM5hJ7+vH3W5N71GXQdaeVltNzQiP/ZklW1TzFKjH178afMLWj07os8x+k9z7yx/wge/7Dm3+s5wkdMWjtD8m5r54M3V+tpb51vtX7L8tY40zTJFp7lLr8Vs+hZW80nKOe+lT8o+/Keu7124ey4ep9LeZSdEVdb7ypyuc6M3z1xroj+jVGMUabYn9eulffmQ2v9p66stRm1b5ZejfiNpY3S9lUpX8tvrMU/WvwQFJvRysdbsmnje2UpetvdK8876xvJVq6xTwa9TqtNaR9SbPdY28czTJvfH9T8JE++p1Zm3bds8jRNEtco26asx+qXpVUnjwFqaGtp7cOaHEdjvjPOrdqey22ZyC0OCcWZPvINjcj4v5Pd9bGuT/0syyLz7jvh/ni35idp+rp+1c18qpdllaU8r7slgaOMaScAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAHzn88RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4JuGPrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA3CX98BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5JLj+3AABH2LZNtm1T703TdP8dQt/fGSr7TNfWWOV4+W/tOi/P+0y/rfqlDDV5PHKWZbVxW3Lkz1LORau8NXZ+T1uL1pxY4+e/PXPume/a2tdktq6nZZV1XWVdH2UxbhKnKOu6yrQ+r531LKX8nvUeeeba/Xmeu8fWZCjba3Ob9DKR24Fpmu6yeHTJu/d78LRLdWp6nd+LMQ7J0ho/x2tPz5SlpYct/df2mKevUme0trUzqGZvW3J47fuo/mnjeM+uVj+tsp711Pqyfls6Zz2jpcvaWlsyj5zDnr1RG8/jKySO6kfqw7LDuSy1deuxUzVfwTN3HnvgJYRg7tkQwl2eGKNrD1jPkrdfluX++3q9qmfahw8fZJ7nuw6/vb3Jy8sP8otfBIlxvbf50z+b5dOnR/tlWe5j/uM//qN8/PhRREQ+ffokv/zlL0VE5PPnz/Ldd9/dx//FL35xb//6+nr/Pc/zXZ58nrw+bI6lY1pbba5jjPf5LHUx11HNpouIXC77kLh3v8cYZQvb07OHEO5jWn5ey8fR2pcyPZ5RraL266G2Jmm+azbd4+e3yntilG3bJITpqz7lfdl+Y49/YNXx+juW7fa0DyE49oDP/6/hlSVRi61yavFQ68zN7cuoP+6Jgaz2XvuQr8u6rmr5tm33OV7Xm61OdWOM8vIS5a/+6vc7ef76r3+Q6/UWs+R2N/3W1kOb/5dplRDmJ9sXv8ZDZTtNZovyrLT6KnGfkSF+ncdH3ev1Tda3sBurNRc9MetIe4t877bG09rm/9vdy84+a0xrHUaepRZ/18rOnEttrJp9t/yLozmOUuenaavmlHp0r0buE1hxjCdOytt6Y9tyvrUcz5nU/IvaXir7yP87Sit+TGUj+Q/PGpWy1MY7+qwWHvtR5t9yPDmk/Oz0ylGLi3tyj9oYua/b6sPrn5xtB8/MBR3Rndb50NN3fb59efwjzzIqe66LZ9me1J8mS+28OVMv3oPybK7lm7y0ckZanN47ljd+zOMWKx/liW28jORfevux+hyRf9QnKuf1Ue3hl+zLZVeu9T8So9Taee97GPG7l2V50v/r9SrhGprncG1dPOfY0Xn2+tBlv88y3K+yPNC+Tu93Apq8NUbP/V69qcVAVp+j+ZTyvmXbPONY7Uf25uhYtfIalg9uxS1a7k7Lr8T4KLPOp3L+c1nKPMhZsedovZp/nt/39HWWD342I7njhOX3pHupbb72Z+dyeujN+5wlx8N+b3fbnr9n8VLm027/yfPr9fcuzzLpZbX8hdW+1z4997/3f1vhdGlHPHGuNX5tn7/n3tPQ5zWVPb9XbVGupec9zBG7WtObe25ijbJtUfLnijGKxPr4I7mQs9bPqxv5O3ZNniOM+nw944/4h35SfOPzh2tnS+/43hjzYWPtOrV+a2fiCNpclHqt+XG1vmrsm27Vd7TWGK33/+U9K6df2i2Pvcmr5Hoyct7m5P6pFrOV9OQUky+tTZfmN4/iieP2vlour88v+Cnw+jc/hazT1NYtTx5E41bv+axO56QVl9Xyt2fkd3MdqeVPLGrDnqnv78VZetXK6fZyTJpgcgAAIABJREFU5BtmTY+sNcjfLSXy91/au7DWemrPPvo8peyePMz9e5Y5SozlnltF1r41b+UOarJ585i9+lLmWDy5rpp85X73nPujpLxo2fXZ/4agRm2+czm8uZwz/21C/q2dhnaW9J7npV/sN9GPOC/pzN7P3u7+xfV6lfXrtKxB/0b5Mb7vnZfH77H2guc9n5eaHHnevzbEyPsw3T+NxXjPvn5vDrNXRstGjsyxx46W71FS2dl55Fr7o+9HPHV2Z1/Q/YyjvkZLhpKWbbJ83Z7YsybTc5yoz5k3T1CWtc770fdCtXvT9Gwfb9/nPn/T5tlj92fR4grj34ukdlrORBv3eQ8+cto1GUfPgZ53beUzbNv2dT6Tv3srX5arxKv9HWJLXqteK0eQ8Po85R6P6823zacrxiiz6N9Ajtie3Af0+rZaPNp6T9Q607W8t8aIHfTOv/ffWHm+HTxC+z3q43cSzatvvTbLum/lXJ/6+APIP31rnOspAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyRwB9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJNcfm4BAI4wTZOr3rZtXb8949Tq5/csGVN5ft/qs7e8Vkdr4+mnp56nXU2uaZoOyVniWb90XdOpUq7W2nrH136n/75sIpfLRdZLlGm6/b2sMAeROcjLy4tcpktTPzz6c0QPc/J+Wvsz3ffuJe8etX7HGNXfnj7PqCfisz8e2c7Go/+JHvk8+2VkT9X6aDFNU1X3PPrv3TteubTn69GrI4TQ/jt827ap9qS1J1vPlfeb06NjeX/zPLvqeezUtm07PRnZ52eemQlrXo+O47XXtXJNbq//5J0rr7729uvpq0YIQdXbmt8QQrjfy9vndS6XiyzLIiIiLy8v9/LX11eZpumu8/M8y+trlJeXVWIMkob87rtZpulZH9M8fvz48T5m3lcaK4Sw81dL39Wjiz1+QSmn7h+JlMuSX1t2ZZomdY1a+9Wj+2mdn+WyZbHmsFeOLWxZX8/9j+wHz1726MCRuKb0S2pt8jVcZJV1jbv6b29Xma+rKWduV2pnRS6Ttp9yzvDl6vYuybaJyKbqmiVD2a91jnr8dIuaP+TRydJn79VdS19H1qqUt/YseV+5Xl6v13v5ly9f7uVvb2/3Nj/++KO8vkb59GmTL1/e5La2Iv/xP/5n+fz51nZZlt3eCyHI6+uriKRz4Pb7w4cP998vLy9yuVzkwxLl8+dPj3gyBPnxx9/L8uH13p+2/mmc9Lu2R1o2vpx/a+7LuGid4+7M1Maz9rFFT3zee46VZ7onBvLkQvJuvNvSF2ftrg75mppfeMQX0861cpyS0g70PIsnjyMiEqftLls6/zU7XJOh18aO5qIS8zw3xxrJt+TXlu0f8UUsXybZqqM+fsJ7XtfO5CRnbkOtPV2OZ83Nutp+Szluay4sW1nes+SKMbrHsu57nqeX0gcs59yKzUbGsfDYGeuedW5p4+Xzd8Q/88p2NqN5vkR6+ry6dVa17M0RO5jGrf3uOUN719BT35OT1PT2p84xec5bK5au9efN3Y3mbsvx0u+jOt6L51wt5WrF4F4foFbem0+v9Vfrax8fWnOs78kz1uqsHEurvTVOfr6ls6Tlz6T7NT/AsmNn2oqar6iN493TjzaTpDj61oHsrvOYvfe5jua+cn+q7NMbM9Zks+ZPG6/mo4+u95lzeNRfOyOHleTQ5NLifWsuy/L5a24jJ4TpKf+e912OX3I0/+jJidY46pN64kyrjdfv8p77ffamPsZZ61WTfWSNjtrxM32CGrd6rbN+X9/yabZtk3VdZdueY3HtTMjp1UkvI+vwnCvcn3k9+zf11ZuvL9HODs/+GtVD73mr6cD+eW//XddVtrUdH9amw6sjtfYtf36aJ0n5/K93JITgelfuoaYHo+e7V4due/M8H8Aqf6+47H1zKu14+D33lYcR/7inj1FG56XHpu3Pqb7+tbKaHdD2aH6G1dqX927tbv+79Z/nVW91bnb0mG+fx5+j7wWs37f/7WqrvrSLoNvxXvtaDtmTGyzbefg59penrxCCSJgkhEm24tyS4r3jSM7Wqpuf/ak4P+M1P3BdV1mVZdb0dZ+DiU9773q9yvW67yw/QzXdzN+5J3a2Z94ym/Qsp0bNXr1nXifnvfKjee7LG095z9DUdwibhLCXc55n8/vTM97N5HieS8sH1r6PTXjnwhtbr/e8xqPfEGaZ57rtLJ+xZg/yOr36k/c38l7SahPnZ/1b10W25bz/33PtWb1nkhW3tL6NGtnT2tgiz3M3YhPK/e7JfWs+nNZXjW2LEuO2s7m3Mv8afG2Vtf+aDzaG1vxJzzuxfF60PnvtkzV/vdTix5F97I3zrfaeMSzZ9rGkiBWDH82peLDi2p6967Pzuj6O5J1r43jvtd5vWLRywPnzrCHe46L07MvybNet+fupcucaozkhj856fcpEeVaXe6v3HZM3b1/rd551OVsxSCvH4bHbpe2Kc7zHIqn/8myIMUpY1q/6+Wi/LIss037ea9/cevMCnvKc6bpKjOvX+g/Zbrb5UW9ZFgmdflHt3LDes5V4vjvO+7Xr79t6vjWr2ZhEz791+qn/3ahlY8+Qw1qzGLUcfZSpcMFH37cczTWIiKzTJOu6n4Obfi9DMrUo7cZdDiuXMZ1/rkAf50WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9E8MdXAAAAAOD/Z+/9eiXJlcS+SGbV6Z65u6u7XmghCbBhQAIsGDBg2AYM2B/Xn8Mv9qOf7UcZBtaWZWn/amem+1Qm6Yc6rGIyI8hgZvXM3u3fT7g7WUwmGSSDwYjI7CMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJdcfmsBAM6QUhquZz0zTdNQ3736uR+vjHV75e8Qvs3fSWrJZt078oxH/nqN8viPyDHKSFvlupTPWeVHebZn61mMUWKMu/Lcf27Do9uazK3nPGOs5fC2UY4ppfSop431KKM62as3aj9G2n81I3t4VMaWHfM+c4TRfmrdtPay1q5XXksvtDntzfPZdRGx5T5z9pX7aJqmppyWjWnZes84R9aj1W5Zlm3N6NnbGkvPftXPvGJflGhjsWQaqevxrzz629t32r2j/py1/i0bYdUrmed51349b5ZOWfvqdrvJ9XoVEZFlWR7X7+/vMs+zLMvyeOYyLzLP2+f/6I8+y9tbeNTJ9y6Xi0zTJJfL5SF7vhYR+fTp00OuXD5N06bt1v7Q5ijPj4alX2o7MUkI2/J5DrIYOtSzIyPnVsufufez7SvGKFNs+7Mje906U54xx71sXVeR1d3sbv9p+7G29xYen+2oX2q1tal7ybI+5+RyuUiIkynbqH/5qliyRf/86ctQ7l2rzq5VxabXc+yx9S2fw7L35fOlvUihfb7W7bcYWWttzNv9lu577YPb7fa49/7+/rDPt9vtcf3161e53W6P6y9fvsj7+7uIiPzyyy8Swrv8h//wp7Isy6Otv/iLfyc//XR//u3t7THGP/7jP5Z5nh/nQkpJ3t7eROSuP7k8hCCXy0UuEkVk2s2RdmZZ/lnrDCznxqrjnf/6THzqQKnfV5lT2MlYyqOVeXXJwvNcXu+Rfsoxq/NU2fn7dEy7PTXK/tm0WUsvrfo932fvA0eZpvtYS7sd47F8i2ZzLNvjsXUiIusUJUa/P6ntHY8ttXzKWpe1s1pkPP4biX1GYqv6/qh/3IsTLHvtoew7xmj6O6O+i6Vjdfuj7bbiDM/z5bn1jwHPGnn39RFa595ITr9elyN59xaavfD28Yrc01kf+b5X7PseO/7KHNrR9kdtSuuZI8+X1LavZPR8svppxUze+TqSr+zpwNl17en3q3N5Xrnq/r1r5MmdHNk/r36fUK5fHRfk+3ff8cNPfuQDUtP2WTFPTz7t+bqts2eOtee1MyWEIPESd/fuuZDwsncdR2jF/5Ze1n6vp48YY7WO7WdG8pCee736rWc9OfeWHB4d18qOrrsnz/8qvLH+KK08qNWnJ89Z63VZHkKQeZ52+/R6vUpKwR3LjdZp1WutpbVHW3k9bz/ee71njuQIPf7Fq3X6iD9Xj/GMTK01q/trXeff2vMxRlf+wesHVtI9+vb4QJoccxSZpu0eK9+VmT137J1nPb15eKtcl6E9h98i9nnFs6N9jOR1ct0QQtVPeuyBZ/n9v/M8S5jbOhDW9vc/I3N9xD/W9f6Zu23tqSM56TPlLTx79wjWuXXkfOi17WnryNltt338vLJs9QgtH2zvN+W6r9WNM3jzdb3yVlxaj9fyMex5G8+pl4QQNu/zrGd2OhqeZ7alJt44xJKrV/9MTszOB+zn9Gj/I3Y15yLO4NWHV9rlUTx7dV1XifP9vVma4sdzHzbp4HtHT//l2Z+nYp5nmT6+JQphbxOzH9jKEeXrUqcvc9x97/T50+chn7IVi2bibPvWdRsj7/Re8b21J9fcetaaC49u7P28sXOkfv9Xy/Zs89l23X7r3ablh2jzXssxmg9o2Y3WOmvjH405PfGItrbW+4jeWPNzrfX7VpSyrfO+/3m+SJj9Nthrr8u1aP2bkJJ1XSWl+7dA22ftbzRHZPrWbYjcx1W/K82/S/thxUC1D9z67tv6dym52XpIZ2NCr+1KKUqMuszTNCl5DN0ffaWPfTb+89qplh3M/pYmimZ7W+dLXc9ei8fVQ+b6W6VXvkfwrNnZuHokP5t9OE3Hcn3Pu5762bGzRm+jdb9+vpap9qG0PNEcPb7C696tesZSVyn18YhetPLjo/ajnovWWe2Zp1fk4Oy4Sl+zfF2eQZpMcQ4f3wg+7y3rIqH4PlTr9+lbxo9+FknLdp7q95vPZ7f+6NlvnuvrkpZO7J4x4uCeXnn8ZA3LH6rnJv/W5rOW7/HvfG4iMa5yz8MV/b3on6q2xuj1IV65R0bOAq1M88dGzjwrlmi92ymf9ebMerTkv9vI3IevLc896+yo9TKXz/P+nVbLfsOvx68blQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8A4E/vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfJfzxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgu4Y+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHfJ5bcWAOCVTNPULU8pqXXqcqtebivft/q0KNttyVv345HXqmv10WrTc91rr/VM3WZL9rLtfN2bd+2Zs4zM70jduv72Ohbzk3KhWM2XujMih2eOpml6tBeC7293jeplXbccj9Wnd4/UaGPuzcOI/tdl3nmY57nZbstWxRi77bdsS0rp0H7zyHaEI7b7SPvfwl6U+8WiZ/fK/aadHd96fj22/0z9I5TzUl+35KnbaJH34Igu1OtT953tl7VHLXuhyaDZwrpd64yt5dTa99gRTW7vGnj8G89+r/vz7mOtntVubRO9vlGew944ynrruu6uY4yb63JtynmKMcoii8QYN+Vfv65yuz3PlKzby7LIp0+fHm1fLpfHM58+fXqM+e3t7XE9z/ND92rd8cx97svDGT+mpT8tvRj1Mep2721v2w8hdP2llu2t58E+tzfSqP22zmePT96KWVo2ubd/2uPa6pV1Zm/6CGmzFtOUZJ6DhPk5H5ZN1OTQ7KE1F2fjsBCCay+FkHb3Wrp2xDdr1SnlrGPWUf/EU2/b371snmeZ49Y3Gjm7LBk0vaz7sPZLCGFjU7O9vV6vD9l++OGHjd1OKcmyLI/23q5R/vk/f9/0+z/+D/9S3m/PtS19lMvlmc67XC4PHbhcLpv4aZomebut8vnzT1LaqR9//J3c3i6P9kaxfJXW2efpxzqT75fbcWn917zKt7fQ4tcz/asxxG6O5SMnkLrzavlnr5yXll207K1pc2+rrGts+gJe2S1ftxVDWPGXF6/+e3KXJWWOoOUPW+Ut//YsHr+99mFLsu2cpmlzlmlrVNvhEf9So56HlpyvYMQX9Z5rR/zmEV6pK5av0osjtbnw6nErL9PLx3jLtbUr439vbFjK28sxWnPZ0huPDzsae7XaPZpPadd71u/FfK3+6+c98Yh238tITlXzp1t5iVb71lnXsp1H9GFkLlp1j9qwVv7M04elzz2b1Yrlz3J0X7ZyW712a/07kyvXzvOaXh/W/N7L7+/Gykfuft/jV1Fmt+s9Bywds+zNmdjKW17fy+PXqrdyNlo7Z+Vs2SiPb27podVnqRfF3fv/S1s/UqIuh5VvKvtq+RQ9GY/winPUWhdrLB5dbtmaliyjdSxGzsMje1HTgZTSw66VPoTlo1rXKaXNM9M0ybqusq7P8hGZe3VLW9zT8bq+lUu0fLDRnMQIHlt9JN/U40gu5wyj81qOecR2W/HCkTyDVe6JUXvnW33O5/LRea7PiNztPU7T94OW9z7KaI7B8sf28cD2mTN21fNsLz79Fv0csYdJ6j7aa6jpVE/OUi9G9t5Rm/J8Lrdl+3CePVKPr3X+WLFpfd/6XZb38j5HsPTlFXmsuj0tnip/W352zSvzdh6b3OtPW9vSbq3r+ihflmWT44oxyvV9kZ9//iW3ICIif/mXfynv13see57nhzz5/VX2N8p7ms/SGmNvTK05KHX+6HrU+elcVp4rlmxWuees9qK19VjfkCSlbVk+d3P9MobK1PNV63v+by27trZHfPiWffN8i9Fmq3MjftA01d9oHOjdaUutb83OxKhn7aUm+zTJw4mbplxnMufWoyMt/zW3X8uR3+9Z92t5Wvm0p61Sxdg9P5JP1ebkPt6yjfPnmoj/G28Rvy32+PpnbZqnv5KWvJaNKu1gflzT2da33Fa+LT/j8THrtrzyl++jRu3hq/0WT2x4xGZb70+PtFXOY+t5r761bNaoztbyeMc3R5FpKu3pXV9XZS97xtzKe43I5ck/lHhzS9Z+0do98h1B2YzXhuV/31OXWY9r9VvkM3Wrc9uxx7iKrPs2LV9b+z1K72zX4idNf3q5Py0/VPrQXt/BkjP382zLb7N7975F7qSudzbOvMcA/j6PjLFcrzp+tuLss7TyalZMN0U7HrHkO7OPfDmcJJY/eORb96Pnu8fve3W/Fs3vYSTu7q/LIsui2yYrH1bbl7wW9RmRGudMXOMj/s5rqOVxrbZj9OctvHpYn6G99z4xrpV9SOoZFmMUMabCivN2zxt4dKz+5r4lx6bfOW58qNyHdb547P+oTRvxxzW56pzwkfPhyHuf0TjieXZr5c9rT5/WeDVG49G4rht5Hm0ciGu9Pq9Wb1nW6n3y+fdA8BrOZCABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/mDhj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAdwl/fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+Sy6/tQAAZ5imqVsnpaRen217mqZdnd4zWv+WTDHGQ89psnjHHcL+7zGVz8YYzXa1+ejRksu6Z5W3+j7yTO/5EV0q+7P0MV/X7aaUJCWRurtpes65NY6U0u5evWY9Rte4lr/Wl/xbk81qz6qnlWvz5332jCyedo/oaGkHLOo6Wltl33mfl2thtWfpZd1mq+xVWPK2bN0ZGUt7GGPc/e7h0cW8p0b0tCw7om93m9K2Q97rWhavbCN16j5HnrN0ZvR8GbX3Hv2o0c5fkf25Ud/LzPO8uZefqc/tUbt/lpYN8fgA5fhb55mn7d55aOm2Ry9SSkN+W96Hmo6mlGRdVxERWddVlmUREZH393e53W4iIrIsiyzL8ujzdrvJp09p1272FfKYsp6FEGRd14fexBgf18uyyOVyefR5vV4fspVjDCFs2i7nzir3oJ1X5b053svLKZ7ny0Pm1nl6xO8cZ7/OXrR5q+/l68feCklEfPa2p8utfdN6tnXP0oFyrNp+03zmng87TZO6ztoZYu09rc0WdZyklbfsQdl+vb98Prg+jz3ZR9fVc10/75Gj9ZwmyzTJR1zk31u9ep528tqUtj7GKMuyPJ5fluVhu9/f3x/XX79+fVx/+fLlYdNvt5uklB52fZom+fxZ5G/+5ocP+3q3f//+3/+dxPQmIiJvb2/y9na/vlwuklJ62O7cR76uY64Y151PsCyLLB9mtjwjWv5dxvJbMppd2a7l/ny3bOD9d38vetbyyFmk6fOIbX/FOZDnYJpSWXg4Nt37RM/rGKNM8blGI76j5mtZ9t5q9zotH3qddejpc1jnVevc9Ngsa0y1vvbW37LD1vxY/Y6Ul3tf5Lk3y/LSZzvbd8vHa/kaWS4tTrLOQg/WuEob1ZLLoraXXjTbeCQPdLSvPH8hhEM5i6N1vNT6epaj+1vEPt96+qLd08allbV81NpeWD5RrndkLuv8QdaRI3H2qG/Yk8dTfr/3rOOJIbz9vzK/6cl9WOdYbbssf2TU59GePZsXq33Nngxl2ZkcVStmO6JTVj8j9SyZjsRKI/GpdRZ7+9OuezL7fct+PKjF/BbbvFb60KPn/RBC4S/a8vfa71Hre89H0up5z17PXG9kme65oXvRc71qHzo/0/ITPGvRK7Pa03TpqK9R2s45yiOGvt9LEqYgKWzPvjD7//8j0mLZI/FgKWv522MjvGth6kXD1zhri7VzwLqu+/Xmrzw2cfQcavXj9SNK3Sv3Ujk2Ta4Q9vm+WobeOd3yYbNM5W+rn/paG7tHR9p+2/F1qWXr+X21rfPkDFpM0+SKp3o+SClvfV0+1/ItrGeO+KpH1vhIuz0fptdffc7nNifR3+G17MDdR9i+LxO5nwn1O1WNI7GFVt6Sseyj9Z54+/t5HUI4NZZejvdVHImTvGz3UtnGeN603hd1FcsOe9s/z7hvYNXx0opNvbwyt+RpvxWPeH3X0bh7dG41X7O4K+u6Slr79vRV5HZLe1Lah7e3t13fb7dVfvy3Xzdlf/Znfybv175N8vDKHNMRH7jd/7mcautMzmtwxGcuf6eUdv5MvEYJ4d7+/Xxc7mdlurd9f/849k1cSZ3XKq+PxJIWmm0eb2OS3jnxW2DpzWgu+Eje3zOPo778fa8kxc7defX7gkzWubue6/fqskwpay/OiDFKvU16dqY3h/d95IsvzrwjsPzTXsw60ofI/jvGV3LOjm/bKZtKSV9vb9ua7fR+V9Gyl2UbnhjCope7bNV92k47pzXih35LvXpF/FN+F5RSdabGVaTy1XKOWuOMrzhKrcNWvqu3VqVPckSe0XU68q21hjd2KfMr0ySb9wotG3DE76j1Ik3a/rL1p2eX7mOwn3+207dro/lUL60zsRVnpylKbXdyfUvmnu71crP17ZH9M9KXRmtco3h9va3v8iyz9v7o+yO9n35OVMS2C6My1P7NPn/03GM93bb8xleyH4PehzU/PV9Xu2614bXPVnuv+m7JU+/un2/7W9dVViW/YrWnlUXl+6sYk4SOXX3eTg/5JG77yd/zbtteZdTVf9U5Wre594H0uKge1wjWux6tXqadV/P1WY5lGw/oelGeFWdttGUH6/H3dDS3U7+rbMnZavNV48rX23brXMG933Vt/7urMzL00M6hWud7Mo3K7M05l/5p7Qs+/jvUM7yCX+dtGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA/MPjjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBdwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJdcfmsBAM4QY+zWmaZJvdZ+a6SUzGvrXqvtVp8tWet+pml6XNf/1eSx2tH6Tylt+rfqlvVbfY7ORd1/r9xq4yitsWtzPDLvvXX1lz910NtnuWYeOfJ8l+PsjbU1X961a7XZ06XWHm/J7tEXr/0YXcsj9ay1tMZbrmNdryaE+99lizEO78P8bH6+fm6Euo/S9llteta7lKvW8fL5st40Ta7zxhpDT/e0/utray1av0frec6g1vO95+pne/IetRn1c6Ve1nuhtG+1/nh07oheaFjthBAkxrjZl/nas6fy8z1avo63bknus5z7XK6Npaac87JOXX9ER+oze/R80yjn1rKd1v6OMT6er22UZrNCCHK5bEO3dV0f1/O8SghbuT9/epN5nj/uzw8ZL5eLXC4X816WNd/v0fLbPGg+bR7fzo7elo9xP/tblpssg39S9Iif6NO38bgjl2v7JePTT12ftf7PrJdF76w5ssd6NqbmlpbNvhAReX+/yXUd39M1mo9T21itzjRNZr26P80m1nvgbiPy3WdZOez6rGth2esWWtutc8xDbTe3+iqb6+wXlXJY511v32q+Wn1fi5GzTbZ8Cm3/ar5xKd/bW5R/9s/+biPXf/Gv/4ncbk9bXPv/2r7WbM91WiWEeXPvcrlI/LDz5ZlUUvtQ+fnSPvfiy/J5K362dPZZrtkT3Vd+RcxZy+ApG+3D08Z+TP34wOrPup9Svce2czlyNtTja8lo6cJc+UHlnvfuZ6u/szry4LKXJYTwkjhIox675SfX8ryyf6stT2xe1hnxLY/IqmHlFVq0zi7LPxORnQ/ikcfqq5yrVnxs6UPP17PyPT25LM7mf0TG9mbLbz7af35u1EZoMeponNrKWb2KOs6y7nnw5o5G5dL6GJFsRC7LB7R1sbhxAAAgAElEQVTOJ6ufutwjw5F8myf3W/7urenoHm/hye2N5JyO9PWqZ47ocysXr91vxR+edenl6c4808tl7eO0bZxkrbnVr6WvR/eONQ1HfMhRv86jZ17/veW7tHIkas46nn8PoMlirXEv3tH037P+9dzp81+2k+7/rygq4/RRHcvj9drYur2RufJce/Hqtld/rWsrP1HOV29ue7JY/vCR/WLR8ie1fEnWiXKc29zdtnxdk9xut027v/z8i3x9b+u8dV3GoLlcm6dWjODZC62YvrUnPG179pTlX3niT01m7bqmlR+21qVXP1/3ZNDG1Yu/e3a+1JlRRu2Dl/6c7ePmUv7ahrbOx3VdJcZ97B7ncbnP2EurbORMCmFvT1t20HuO9MbViz88OuDVd+36D4nWXGlY8Vym9vGOTEuvj1GOrre3nVfoxWhexiPX2br9tja/NnbvW41lRBfss94fS3lixNE9VNdtteWZR4++3W1xkDL+0HQuhOAegydOzv5J77ufVp9l3LT1Ze+y38/M/XMj/uSIvmrrUucZyuv7/za1T+3DaRIzj1DLaZVbzx/ROW+/Hs7apyPP9/IyLZ/l1dT7qOzq/j78fFwscn+HM8f+92u6X6d/Wxsn/VsH75oc8fmP6svIt5KvksuKg6yYvdV2+d2lVtX7PWON9R509Hzs1ek9510f7zelIiJxjlK/sbFidg9Hde9V/m2v/8dahunj7H8Swizz3P82wIs3P67VfRVWzG3hzYXUWP7at3xnpY2n1vtS5Ly+z3sdezRpPlFwjGk7/qf/H3ex3z4Ptfehcn7EuzZn/PBRHfXmx2sfcA1RUtquVYxRlOOyK6+VX67r5dv1uwVLds+38F5bYX0jMJI7snKnFpaPbfkfr7S5taxaTHWmH3PeLvt1ulwuEhQf8dWMzN92r+sxeStWyeO39Mr7fc2vcSb17HapI629bNmaEb/VOjPqGGNZFrk02s3PlO0tyyKh+kcO67qq8X8vZum9d7PG0qo/hvae1pf7qX8f0aNXfFMVJe2+m/r69V3mm/7vlaz3Qa29aOGdJ43eeo3OTes7R80Ot2KvlmwxJPVMD4VPU8ZS3n37St3SYsMRG9Kah7P5K83X+8N8g/KHzesiFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/IPjjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBdwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO+Sy28tAMAZQgiSUlLv5fKUklmnrOctr+tM03Toee2+1ZZWp9V+2Y51fYS6z/y7bres15v/XGeaJtecZ3pjKe9r7dZyWdfac1r/+ffRObbWdZommSYRrVnP3JbzWtYty+u5r+tpctYyW+P2zEdvHXplnn5GdMtqtx5nT2fKshiju88Q+n8XrV57bS3qOSnbtXShLA8hqHK32i2Z51mdl95cWGusyV7/tu5ZOppl9865JZe1Z8o9Vq6LtXcs23nE3vdk9tDb15odHZX5yP2yXqtuy4Z4+uyVpZRknuddu979Xupdz9bm9q19WcswehZZeqTZGo8+5XmpKcfc8uGs/j14/R5Lf6zx1/8t1yGlJOu6qv1o/mi+Ltsq7UU5f29vbyIisq7rQ7YQgoQQHn2u6yqXeZEQ4qbdZV3k/f0pV57/eZ4lhPDoZ55n9fpyuTyuQwiP/vPz9Xpm+ctra25rtLNL0+lSDk+7vf6OoNm+OMedrsYYZUrPcZU6o40zxtj0yTSbFkO9R30ye6h9RQuvD93zzb3PtOIOTT9CCCKrz1csdbq2tfWeF7nvvbL/ZVlUueq2NL+jZbtKezXHKCltdUnzf3rtZS4XPSXkXdeMZfdbvrTV9n7v52facnj8OYvW/tT8yZRS8zzO9WKMj3rlWZF1p2x7Xbc6JCLy88+/yO329FdrW1v+LuWu7fC9n9IObNehXL/RuE47F3v+sJfneSlSrn+MUSbD3WrJb90b1Z2ePzQS+/Ww7HcdU2iUvpa293KuoXz8Vf68Nw6x5jLLdf9f2u2/Vp/lb03Ocowe36RuP++n/T3/3hk9E2v97Y2r1ptSJ8/YyhrL/z1LK+bJ9zMe3380L9pak9b8ZZlr+Up9+7VsxwjafJdnV8byDVt+TWu8dVsjvuqrdc/KcXhlscZyJOYYyVm8im/ZttXfmTnS2tOuS7x5jTLuzGjxrfa8Fi/0ZDlLPZbR+MmDdr565NJ+Z3k9637Eb2z9bsk10nZLD3q6aOX6tLZ6Z8eRONxbp/Q7WvHc6Pit8tb49DXzxYe9vo+sv1bWu2+VteZotP1lWgob9JETXBaZbn17W5/jtc2z1nV0j3rysC1ae/wZM+bfuazSX/HHEz17OjJ+ra71rs5itE7rfPDI963qPmN8PW4Z0bcze7gs1+xtK6fnkaF+NxpjlHlOu/12uV4lpuNz6rH/MUZXHtJzPrfWxHsueX1dj0832lZr33n2i9fPtLDOAa+v5fWhrHZGziGrjmcOtLKjslh45MrzFUI5b/0Y5Iyv3rJpPXnrcs0H3J53ezvqyb2OjM+zxzx2ydvn6P6ufZWtn1i3W7b9Ydvjvl7ZfvnetiyL0efDHVkL3S/f16nth3Z+WZw5Uz3PjNoqq11tTGfjnjPyvLqNTVnY18nvflr57V55z9Za7/RKsh+k2aSsn/WynM1rteKXcmzaOK141ZI/0/OVarnut7bPt3LGtf9by5evX5Eb1ubl2WdZrt1P6nu+8hsVL3V+vBVfemNPy84fxXskWufr3cewn/HshVG7VutZrTMj53xvD2gc1dHaRyrLW3Kd6WurQ8/72n61zpp93mGfF+ude5p9z5Tvk7Z7b/vsNO1l9urYmfIWKe3jW6veK9Hshci5957aXp6myTwn87p73wXUaPFpjyN7r2cvjrZdn68xrhI6eY2Wvvae65W3fJ9XzFuPlq/6Lfq3cjwtjvpKvTXz5FePMJKb0spaOlHWfezxMMk07W3seI6srN+2z1r98vunOtedu9r6kVq+IHV1pLc+9di/VZzV6n8vixYn+3Ok+X79vYz2/Yw2973+6rasdrUx1njmX5OlFxv16dc9ku/x+r2vwIqPNZ7rnCSP/f6N9/6b41HO5MX057Y6uSyLLJM/B/QKal/+jP23fIK63JMf9871vayvH9757Ply2QZoeUWr35S2MUur71bOxOqjh1U/xnrtRdY1f7c+bcpLGTW0vGk5llGZWzktry7GS/r4twbP8svlIsHI/Vrtt8bVo5fTHbFtuX4vd1bTihu8/qwnD16fsc/y5+/6O0Cr3da/8bCe9+qFFht6z4ZX+01ac7+2bwZbXvfFNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAfEPzxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgu4Y+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHfJ5bcWAOAMKSWZpulxXVKW5+uyvL729lf3k39b5VYf0zSZMntkK5/X2qrl0GQ8W68u12RuteVFa6NcC63fkfkr69fjaK2Rp696XvPvZVkkxigiIrfbTX766ScREXl/f5e///u/l7/6q78SEZH/+P/+f3L9N38rtx8m+b//2x8kpSj/27/7vyTOQf6X/+l/FvmS5M///M/ld7/7nYiI/PEf//Hj+ve//728vb3Jp0+fRERknmd5e3sTEZEQgoQQHtd5DK2x1DrnHf+onmr9erHayXOdyWPX+tJ0od7nHr2u+7T6retpzx3BGmOLeq7neTbr9WzGuq7ufs/YiTM2vYVl01v1WnbFekY7V+rnrTLvvLXWq2VHtbHUlHo2ur97c9w6Pz1o89+a71qO3l4sx17KVO+blq9S95mx9k9pu2vO2I6RNRpZ57osxmjaQY/NsvaYhSZ/zzZ7/AcRkctlG0aV50Puo1z7UvYY404vS58g31vXVZZlERGRr1+/yu12e1x/+fJF3t/fRUTky5cvMs83+du//fzRzv35v/iLn+Tr1+kxxuwDZN/ger1ufmdKHc5zM8/zozzrYTk27brG0pFRv6vHWd9T81tqOXZ+U9jXKffriO0eOdfWeVVlq21OXWc0bvDuuzP2uSdfL55LKW30Mu+Dlk7W7Zf1LJtk7d1alhLLn6r7741bJNuPhwSSUpJlWWSZ0l4vfyPquavXqxcnl1jxd577UX/XOitbuq/dy+1ocUO53jFG9UyY53lzFtz1d1X1oDwTclshBIkxmna4tD0hBFnXtdrH9/bWILtnanr5Fq3/Eq/fUs5TOS83ue38otvtXdb38KjTspvavq7rr+uqyt/S0dzWiB624sySUs+eOrH3qaYB368dbz+u7ud97Ns/7/3eM6Ue5H1914Hns9nGeWxk5hWxsHU/pXrep90Z4rXDI3FCz37V9632WnF6lmV7ntrU/rDWfylHL14p7V1LxrKdcl+PxAl1n70yEX+8pcnXarfV9lm/tsSak7zvrPyDJ1aa51lda8u/qW29JafX7/TGc5Y+np3n+gzx+jittrzPHJW9N89H2+3lCnuyWGVlU968zkhc2rpX26TRXJV33bx5SE+/vfjT07alz6Mxn4YnJvbokmVjPH3kOr1929KlVpz9Kr/piK2wnjvqq/Ta1ey5FvP1zukx+eq4fG8XYowisZ9/aNHLQ9TX9bjLPkdjhrrN+nrDpWz/XmeeZwmXYPoY1tnpPcu8e7SsM5IP0/ae7VPk2DrnCkRSjFKOfFkWCcv+fajFyB7utdXz0z1xyOgzVi5De77UW88aefNslq9X92/t0Z5e9XJLVv/t2Hifxy9zPJa/2yKvxfUad7r36dObTJM/dvXmW1pnt2V/LXtdX1v24lvmIq0189hVK+4YsUeZei+P5mFH652d0yO+iFb+ypi0xNK5Z3y6lcHr29XX9bu4ul4tS8+PbuF91vIvezqq5QdHz+NWv0f9/t4z39I+eLj3X85B+117JoT9OnmeExn3e9p1/PPnzW2Ooo1F21u9Plq5J6vslTKfbeeILD2fTEQkbWKZafdc61welaVk5FuuFuW0HPEJjtieUbvd6iOltJmL0tfU2gvLIusaN+PO7y9a8rd0uvQ7e3mB8nyry+p69e+45vcvIlK8X57Wu0y//PyLfH3f++b1fJf5+HmeH/dLX7eVHy/nuPS7W+fVr3GWjOrvfVx7OY/aL48PduQbTE++srbpXtk3axtEQpgkTeU3RPdz8zJfJFzSrs+RcXjl6q2jZV/L5y2d1HIU+X9WXFs/o8WR5bre23v8+iiLkqcrz7lnXlo69YpvLCwdG/n2zltHY9TXaveT7/nO2Wz/tHreb8VHGHnesqWj3/aq8xWmXQ6j/q3Zqfxdi4Xnu6wjaO0eyQfu4zBfvtvzrWB9nnvsfF3n/h1Q3Mh1b3f/jZolby9+/Vb0/Kb6tyc/qtnxVu7RirNHxq3piHUeWX2227fWYX9Oeb5N1GTy5AVHeUV+4D4urazt32uUc1P6tOX4pynu+mu1mSntTbmvj9i+Hr14QaM/79nnuP+6f4vWb+sVPnptl47qXPn9ZI+n3RTJY48xSlqO/9uLfNZ5/n2Yt72tX/gsL79VzPRiiZHYoEcv7rZtrY3mZ/f6V+OlOe7OyWVdZFnO+WJWDkzjoQNGl5r9OrqVXpGzaj1/L6pzqpoN9vXhKffSii01fW/FKLUoZ23byPOeXFGr/Ve/m0opvexb/Lr/aZKP/z1lmedZwqzHzC1eldMEGOXcaQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwBwp/fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+S/jjKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBdwh9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO+Sy28tAMAZpmnaXKeUdnVCCJvy8hkRUZ/x9ln/Hm2rrl/+ztfWuEpijM16WrlWvx5bT676We35VpvWWtRzqrVRl+drrdyaF23t6vqW/FZ5i7Lt6/X6KP/06ZP8+OOPIiKyruvmmev7Iv/V//q/y/unJP/+n/0s0yTy3/yn/1TWOci/lP9MLsu8kWeaJgkhPK7LdWnpqrbGWj0Nq06M0Xwmy1jT0qHWuvTWQ+tPay+l5NovtV0p6+W25nl2zes8z+ZYRvVs1AZpcrXW7VW0dKw3Bs0maDrumbusF9qYW7agrN+SxSNDPZ7e/hux8566HntbPlPOS31dt6f1YVH2bZ0zmvxHyjWbot237FS5/p79EkLY2fYRSjmO7M/WumaOnGmtPqy5red0ZK6tNsp28rXlN1jPl7a/toMeX8myY3W7dR+5n3VdZVkWERFZlkXe399FROTr16/y5csXERH55Zdf5JdffhERkdvtJl++fHncSynJD58neX/fz28+Y97e3uTt7U1E7n7H9XqVT58+bX6LiFwul811fn6e58fchRAkhLBZv6M6pNnQco3q+3PMZ/CzLIR5d5Zaz4vs16teb89ZUq5lq05Zz+rjCNt28/W+34zHbxqR64h/7Dnfy2trXzXXJ6xF2SQi6aGvo/6tJlNGsxG1zHUflu064rs8qz33YN1+HQ9YffRst6bD1vMa9ZzU56G1RzLLuj6eyV3dbjeJt/v4yvaOrHGJ5R94zl7LPyrXJqUkl8tl00fZ19s1ytvbbVP+R7/7nby/hV1drf9yLfb6kCTry72tvc5qvooWW+brsk5d9uynfaZuZdTP5+ka5HKZH3KLiLy9fZIgtu719pXX1rVyEXm+jsZPrT1Vz+n9v6UcScQ4Y8rnPHmke53c9n0skzKcM/Gbl+wb1bGKZuPOrGurrsdv2NdJj/1k5ZW8cmjzXOtXS56WD1WWe+Kmns3x1mnZJm+f5Rx4dKFsq3d+W1jtWnGL9Wwr9q45u5d6/bZ0p7dOdbutscQYN2eHF8/6W/rSirc9MrT24givsoetHPer+tXm8qz8mg8/Sq1b9/+NyZDb8eSrtD49fWj7ymMT6+etOkfp7ffct7aXX4nXV7Bik55vY8Vgr5B19LmjcVJdx3M2e9pplVm6+wqsNatjo9YzWp5FiydT0vP49ZDr/JIm3wie8z2Pt5fr79kOzW611i+P/168fTdh5ct6Y2xRj/9b2JJjbd7nYZqSGiOX+uDJMXn9A+vdkpeeHSnX3hOv5HoeGWpf+YiPfOSZMzpTr92IT9Pzwa3Y3upjJJaZprSb469f3+X9fa+DZa69ldfLbde5eU+c2dJ3z/Otaw9Wf1q82rKT1u+y/FV6e5RvEft9q75aZ9hIHkUrd58xU9qd6Xm/9eyJdv/+PmlbPs+zrIaP0IqlR+3ZEd3rxxT+ef1WejbKt9pvuq2w7Me3yWVadnD0DG7X2cs+EgdZNr22t0fsuCdf0ZOnxivHK/TKOl88fsQr99c27/HMB0/pmD95VDc8dV+VS/g17FMtoxUbWt/9lZT3w5okhGmTq/L43qM+bM9H9cSUdQwRL1Hm+f6Ocp6ThLDK9XqR68c5+ePvfpTL9fk+cuQdQH0tor+n9p5btU1N6elLf6NU1sa2evRninHjY6Skv6+vKX34Xp0eZ9rwytmKV1tjSUke+6ScW+tbyzP5tW2/+vdZmft7SL+PVuZSNd+jvK/J3Crv2419P97v5zyMvC+rOZJzyM/V9/L+PoPnm3DTxizLrv91XSUGe25b8+VZj9Y7T88zrT4tXy8zGr/o2OO38pBa+UiOy8tZH8OK+Z5nonzkHqfuPvDEj0f3b8lVgoSwnd/L5SLrr+iveex5qw9vbOLJ1Wp2X6P9LjxKfszjB6UUN2MRGYvZ7nWffWo52vL8yv2V06HlTVo5Hk2GmqP+SCtPdFSv6vLWuCwftqVjW99B1Htl+61zfOR9TI9vkbvQ7lk+jsaRfwPh+YYp9+uhZV9beb1t+T6/Ns92bOg5u1vlHr+r1MN1XWW6rRJj/i7xXuf9/V3e05iOeWM7TRaPvJkj/k3Z1iv+3dpIG/W61PLk/6aUJK6rxLgd7+12k/nj33uUPOLXkPfR87l1jZLW7dzOS1R80SirslW89k7Dm7PY5iJStae2cd4zh5VEivhxNPfnObuP2MNSFq3NuN7P39om9PzRETvW81WO5Oa0trRchjeX4ynX+sy09lLv+RijSHy+Fy3/W9P6d5uvYn8+ePP3x7F8sHv5dj1/jXwqtDkfvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8AcIfXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDvEv74CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyXXH5rAQDOEGMcfialdKrP8vmUkkzTpNbRymumadq0Zz0Twv7vJJV1tTH1ylr363uj7XvGbrWhlWvtaXPSa7dF2YdX/rK/1li0tkv5W/1dwk2u16vEa5R5nu9l14tMIcinT29ymS+Pfqz+teu6z/y7pVeetsryLK/WT0tmi2maNnJqMtfjyjZC0+2Rda7X0dLRlJLLLll9t3Sp5Ijtqyl10NNea8/12mnt6Xouev20ZC37KevV81raqlKXLNlqval122vLtHKPXnnw1m3Vs+apvC7rHD1PNRnK8zDvt5F+PPat15Z1L8a40ct8PU2TXC57V3qaJokxPto7u1/L/lv7w+qnno8RO5jXodwL2nXZbm8teutfop0j1ljKMq287qO13/K6avW1eZ6mybSpml1KKUkI4fE7hPA84y+Xx/X1epUffvhBRET+5E/+RL5+/SoiIrfbbXPe3G43+fQpyZ/+6bqR61/8i1mW5fLo43q9Pvoo+7xer4/reZ4fY8n18vPaXOVxaeezVtei1J91Xc3707J87K+y/1WWxdXNQ6bW+nv93rKt+33bvhyZE0+9NCURyXP/fG7Ul9X6bfkk1j6wyrxxkSZDq32tzjRJoR/3361zQWsnj71nv/d97+WusdbHsu/7M6iOM+9+yTzPQzaxhedsGGnbsg81WiwZLutubuZ5ljm2/UVNrno9S/nLc7t8vq5T2qfaXmn1Ws/Xsnz+JPLTT+/3cX+M+W//7u9kWe72ufQ7Qgib+SzPy9LGlb7udurv51ZurxUb9ta4lQNonY/l8825TKssy3be3t+/Snh/+mOa7DXWOVbHA6P2WouZ6/mvscotXzxV+qm1Z8k0OoYYo0zxWW4934ufRvrMhBBkjiIh6P5j65zR2j3i92t1at3YPjupdUS2Oue1w63ckWXjy31V5z9yO16d6Mmp5bNastfXR+PHI/k/bU202GL0HKvLrLZatlEr78U9mqzl2rfmyLMGmh69gpbMR/XB02c55rLPMz5y+fyr9tSZ587On6YXrXP/iD9tlXmea/mNvXstGXv9e+t4zxutzuhcevsYqXd2L4y27/VHtHOsFbsfiX2P6PiRfX7Uj2yVt9pp+URW+Sv1oNWW9yzsnZ0Wdx/6mQcoHz+yl7zybvvfym6NZfT9ihUf6DLs5T2yF3t9jbTljWGO6KKtL4/kWKEL97i0zOmP0MttWXlo7dqqr5WP9Ner4z23enOjyWjNz5F1tc5ET76tFQO15rxsW9ujMT7fzZc58Npma7ZARIo8e9y1//Z2Fe3/n6wj51vd78gea8XcNZa+e+IMb/vlXB7xeeuxaPpj5TQ1Pe6N2ZOryH2OnjEWr2ony+Xtyxqz9wz39HVvY39+WjmWM75YT76W/e/p6DRNL4+tR/ZDS9/qehkrXvf6ed8iV9iilaf7aPFUf9m/aol/1p/poe2HEZttt9nWqbNn+iv2n5UH9fTp7f9MPSvX1joTR3XcijE0mXr+6qvw+hQix3zOsz7rUd3r5U5r326atu/b8jva+vnW+7Cy7d76aWdgrx+NkfXz7qnW9yOe9Wj1s3s+fHsdz9RrpOXhtTg8xigx+vwhbd2073LK7wTqs9p659wiz2H9/UFdp3xfcdR+iSSJMckaV0lOWb3xs/f5exstGfv9pJQkKX5FkqSep0N67eDMuW/R+i7lLKNt1L5+xmOzNHrncO1Lld/EZS6Xi8RL/51dr09L1iPvPFvfKZ+Nw8Z5TU7w1e88Rmntz9I/iFM51/KRh+7HZ2f3bc8venxvuqybfFW+l9KxfN2R+e7p49m4s/WtRE3djvUdXbsN3S5ZpKnutx2zPeO80i6FzXfErn6VXMyR9yG6fL5vF7R+SrnO7N9njnBbXn7PNILXN31Wu19o55THV/auxRlbcST3o6PnHTTmeW7acU+u5Qz1Hmn5s/2+tnq7rqtLPs0HP+rDtt/5Zf3Xc9ojMbP2zKvP1zP+pffd2CvIfWnfqGpsZdnOX+vfy8U1SUrbbz1jjCKxHf+nlOPKvjxa/9Y3ZF57Ube11Rn52Cfb7zmWZZGwvMIW+Z/35ERKW9b+d1dJpumpF2lt54jK9s/S+/dgnu9Of+s9NmLv6qplWd6TPV/yW3LvZ6vzo+9ltm35y+s6tf3X7IKWp4Bviz9CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhHBH98BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5L+OMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F3CH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA75LLby0AwBmmaRqqn1Iyny3vpZQ2v1t9WvW0ck3e3hhSShJjdMlSlnv6smSv77Xq9eTy9uFpS/ttteMt0+p4xm7NZV2/pR/lupbPlzJc3xd5f3+X25RkXVcREXl/f5c4B/npp7Y7E0sAACAASURBVJ/lsswyTVNTt8vfIez/5palL61ntH56bdVzUdbz7mVrnq0+NPlaz/RshCXnkT06SimbtSZHGW3PGq/FyHi1fVFfe9pv6VfL3udrrx575DxiT1v7+FvZZOu5WvfLcm+7nrreM6GnTy39PKKLIYRhnffgabfem6+Qw+N3WGXWGdeynR6s53v7yesT5PLWGa31q+m9Zi+P2qpWm7k8r/m6rjLPs4jc9SDGKMuyPO69XaO8vX3ZjPPzp09y+3hmmqZHP7nfci9nH6PcY+u6btY497+uq4QQdu1o4x8938vruizGKOm2Psad27/dFonhKUvPv6jrvMIfvf/el43st9FzTmnt0U7LX7LGYv23J3er/Ii96dX195EkJZEYk6Rl6dpPryxWnNhaS8sPKcvzHtSeKWXfj+Mpz6g/Z8k8cqb3mKbpIXNLH6z9EkLYjetyucictmWemDPLkn+XNq6sl21sXacsz2h+6zRNcr1e1TG2xvvpU5LPn//jpuzHH3+Q9/ewez5jrXk/Jn2OyUvZlzaWsi1Nt3u5i8vlosq0XqNcLj9tyj5//kHm+S6PdWZYfdXXR/yW8pl8Nmq01kHzQSz7nIoz93FP2Ru1benZ6mf9XL7VzdF4vc5LaH1q1+Wah3WVGLdtrOsqa8O8eWyfZyz1moyevbUfcNY/LtfRykVM06TqYO8M9/jYozFbfY6Nxqy530ztt1r1vDk7q345z1YuwkMv72Y9Y43PylFYeSHTfhh7zzvWut1Wn1Y7o/kyD0dirlegrcURXW9hrf8r2rXabOV+RtZV2wdH8z/ZVq1rlJQq32CNkgqb4829ntGF1lxY81fSykNqdTzy9MrO5BFb7Xraap2BnhjEOre1/eFdf6tM699zT8urlPW1mK+F3/ewOWo7envF29Yr7W3tB+WyENKHHmzrbnNU9/IcS47uhdE4uZVjOjt33vzVvV725+9lWixdUp5jmh734ndPvdZcjMRv/XmcPsb91IFJ9vlB692odl1zJmd31GcYiWu9bXlt40heyNJRa/2sc/DVePqwzndP7qds4yje2Ky3blm+Mjbs6cmrbH+ua81DK2cyylm9CSEMnwMi/bls+Qm9Mq0NT/9n422rDc2H6fnzZ31O/XzQ7YZlT1v9hiXnmZ55m16eqW53JC+Ry608qfbbGzNpNuOer/blP7S+S1757UlLj1v+xqhN3Y+x3EvlGbx/rhdLZP/qDxFvzPTq740yR75l8OjCK+ONEVlG63t88O0Deht1O55z5IzPepSyy5ZN8vR/xM9tyzZ+7lv9e+Rp5du8z1h54NYzWVd8e++pK8//yeP5lPbvhlp4+my9W/TGoCIicY3qOTilcV15+hs+fS3HkMd8n6/t+EdiHa3eauQ7e3nYWs66vuVr1u90eu1asqSUJM7x/k3GVN7f+3W5/V6bmTqeqH2snAvR+rj/d3ue93IlFpc57r9XmC8SL8fO0rYPMtaWto69/qw5KOdb22+eNqw+vbRiZM2n9ObELR+83rd3nWr/24EY9/qg9WE977XxrXOkzk33ZNDu136iJ/arm2/ltF+Z625h2ZCejpbtW2sqIpLmtLMzGWuNRs+4VttWP3m/znGs/Z5crTKP3rZs0ogNbn8j92zPg+VjTtMkMk8yTUHK82qeZ5njPodk+nqKP1/ujXr+nnspy58ecxNCkKuEx7dQmev1+jhzVuVM6sUPnvxj636rrKZsy/IDj+Xntu147P3oPsy+Q6/OkbxzrQeviuFG1+RIHyN9vkpmC+++r218SZw1Pz7KJOPvE8u6I/nK+r69314T44+M5RX/PkXLMWfO5M213yXlN8FlWTkka96b7c6zew4f9j/c483Sf7L8JqvpI9+69+LIEfbzef83JvU3nWVeYYSRc0bzz3trUs53jHHnA8Q17cYSYxQx8lotOS3fvEcvJrfi77OcbWMklvnWsryyLY8ut957eMo9WLkO+O35Nm9TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6Bwx9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO8S/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJdcfmsBAM4wTdPp+imlx7183aKsU157ZKnbr5+x2gjh+XeSchsppWHZvbTaKvu0yqznveO12kgpSYyxWXeapsf/Wn1Y69iTWWujXIv833VddzKX1zHGx/W6rrIsy6POsizy9evXeyc//SL/5V//tbx/TvLLL/d+/vIvRd5Tkp//j7+T8D7J9XqVeZ4fz+frH374YXNvnufH9eVyeVyX+hVCePwOIcg0TY+xlHMRQnipzpXr2tsnrfJy7T1t1P31rntjLvup+6zbK39rev2PjSP7LJeXOqrNa88utPobPUe0Z6yzRZOh96xmR2t7OyrzWRunnUHas1Y/lsytvT56DtXteOaoJ39tG1sctYel7dbIul3aZU3fLflGbItnzktautyymWftXW9tW/drf6mnc+VZ3aOnI2V/mt9UzlnpK7y/v4uIyLIscrvdRETkdrvJ+/v74/e6rhLCTX7+eTu+v/6bX2RZ9j7A9XqV6/W60a/r9boZd/1MORfZByjnL9erfbDyetRv1nibF7lctiHs29tV0kf/Hrxneatenott3VzfP7az51HVWiHD3l5b+9Lrx1u+ubfuCCP+VskaosSYZJpEyiayT6u1Xa6lNTdln5bdGIlzRnzV2rbcVT3L8qwzoj/aOVpfW2etpVctrDnzxNXbvfUs651Zlu0u7dL1eh3W1VrmMs7T5Kuvc1ylt3t833h8xZSeOqORda2ly621HLEhI3FWnPbrebvdJN6ee8NzVpf7pLcHtfWz6rbO/xG7UFLPyZF90Oov7929fHYbXtlHffCU0mYOL2kqft/HN8/z7uzvydWKqTw+bytfdJ/73KbZ1FC/LVnq2KZ1VrXKPByJoTJz4YuN+tw1vZjXmhutjre8ZUdGfTTL1mu2w1q/Ud0t+xzN17XO87rcGluv/VI2i5E4sW4zxvgyva9lLGOgUkZNL/KzZ2Le1lpY9zwxRS8GsJ4ded/Rsp2jZ+Jjf89Bpin7KPd78xwkVDbH6rcsb8n3Krw2TsPrg2m/e/1ouYdW/d76eeRoxRo9PH5OxrPfLL/hTAyu6b2WCznS5ivo5Ze1ur22LHr+fO+5up9y/eu5vF9PMk3PZ7Ofr4npsZ1aLHMmf+XJD3rbbc3Rvnw7L3nsvbHUuTuPPFYsqDEST3jnvb6XY4iNjz5J/j+S44qejsYY3f6wdo727KtWt2UvrD1R9tPKfbRkORoneXXEuh7Rh9E8Zcuna7VR5kJyvXmezRxBSw4rfzBNk7xdo1wuXzb3Pn/6rOb0RuOcXow4aqe9e7ol41GfqJeD0fNd9vi9Nrls/+wZ7vG3Wvv+rL8yGgv32hn1H0bsYq+t8r5nbTTbdkn5uaevUL736snWkqnVrxfPXs/2aY4iIWzrt8YyiicP8y37sea01fe+rdJe2Pnu8nsoD1kEj2/1Kp56v5fD86x2/Wtxtk9P7tPb/1lZar181d5/JUfPrkzPn8917P6f16N7a6Sf1jNHY11vndyPiKg5yPs3FHY72rduI+e1Znu0evM8b+TU2tC6LX1FK/ep+fG1jT3qw/R8VcsPmCb/eaz/9p972jezHy2ZbZyll2/V1seS0/IVrHfcJdM0dXNvIzYot+99z9CqZ+n0Vrb6d9tmtmIpfe9rfZ7zk+tbWt/WWTeSkxqNG+r3I701bMk1kvMp5dVkq+XozUErB5jnf11XWYPe1jRNuz014hP04mWrz1Z72rX1fN2WJxeUr+9n4KZGs60zPpz22+JobFe2X+eBNoT0sCXa/vT0ZeX1PHbBQy16nWuycokt3R35BrakFZ96c92t/uvvqOu2Wnmjtk6N2Z6y3PIPw0c+wl7bY2dBfb8cltcvLn1oSy+9e/DIuard67Ed89aunckz1Puj9odrX99rR702yIpnWudFyzcbjcf2fezfK5X9Wf92QW/r2+NZ15oY9v8eYFkWCcu5uTtnxzVbofm6r/3eoRefnm23pmVTve1YMnvsdasvD+Wzd51ZTFljSCKPd5P3snVdJa3beutqf+ek7bej8ve+09J8lft/X7+ve7GuFoOVMmprb723snLDe5mebZXXmnwtzuSnjj4zaotGYpcz7M7TNUlKW31e11WCkU9rjetV78x29eb6m0CRuK6SBr+TPGtb13WVGB35h1//2P3uOZ71BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgDhj++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8l/PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+C7hj68AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAd8nltxYA4AwppW6daZrc9/N1q93yXqttrQ1vu5Z8Vp/52fzfGGO3bW3cWtvTNG3mZXTM1v267jRN5vMj5Vq72u+WLF5CsP9+1fV67bZfrlu9hvm/85d3+bP/54t8/ZTkxx9/FhGRP/+n/1TWeZJ/9V//53JZ5qZ85bx6dKksz8/29tAI9fha/bfK6+c961nqsiWX9Xyei3Jvtda/JYeG1Za3P8t21bZgVK5efzUtGTVZvFjPtvSzLvfuea8tHnl+xG5ae8S7bt75yG162m3JYulefcZoZ06rv9a8ePtstd+7bj1T9qGdu3kf9HR+ZC+u69q9f9ZWt54f8aXK3/VaWuvXWtdMns/Szlj+i3ZeePdU7Y/M8/yoH2PcnKllPWuNyjp5DLmt/DvGKLfbTURElmV5XN9uN3l/fxcRka9fv27Kb7ebLMvykOXzJ5EYZxFJm3nJ8s/zLG9vbyIicrlc5HK5PO5Z1yEEuVwuj+tyXud5Nv1Ga/wtf1N7ptWWp/wsR3yoD4kecvVsjNcftvq769C+Dc3n8diIUf/MWqOsQx5yGyGEjd2s525kLuvblg+YUnrYlLr9GOOw7Sufr22aZ/40Yowbu3dvL+uYiMi0m58z9ryUOfdv+eBn44RWu9r1x1NNWWu0M0Oj9vO1OE2rr9Ur7fu6ro/zYV3XTXlZL6Ukb9cov/zyvpH17/42yZevT/nz3so6ncdX3gsh7Mrndd3pyJFcSimvtX5l263zvbXfy37WuMqy3CSlZ72ff/5Jwvt9jPk8Km2J5RNaPsGoHpeyl+d/vV/Lur3YMctRz9k0TZIKXcukQn/qNlq/MyEESSH3metu9af1vOdM85zbml7U++6+X8JmLj1+f0tHy/JeHmwnf6j79OXBWrm81nOa3pZ7xMKj1/XZW5af4Ugs24qdSnnKfXYmRu7N4YhNqRk5k3v9t2J2a87qcm09tTLP2Kw+vLG0ZfvPUMdho+3WdsCK63oxubdOjWa3tfXxzt2Z8Xtse+v+EX/3FXrg9Wm8e7Nuc8SmteagFw97491RH64XX2pytfo8km+rnx0dQ3ld+ymetnpytfrulY/sEe/9kf6PttV67mjuxZOvLcs8Ob2yveeZuJf3Hivc/dncfUpJwhTUtkS2drW2sWU968z0xhCaL1j2MdqOdr2uq6S0PZtjjDKl8Xjdk2O15Gr9buUPrL3lPSPu8UKZK0nV8x8xZjFFXn3O10fsiCevWc6LFX/3+uzZpnruLf09otctWc76BaN7xGqrNS5L30v96dk0z9mWUpIke52OKcrR16Yjud8jc1nqpXfdRvZV+VvzM0qZW/ZPa7eM4c7kLev+WvdG9e0VcnnOXe+Z3OvLU9brrxVXlzr0zLc+6+QzrSerPfe5r2efVjytydk6w0RkKEdRr9u4L5vbed47499a/YwwEmfVtPaL9q69zg+VZescJYTaHsySUpSym9Yw632t1dXOiiN7utYr7bclw7fGYzu+JdZ5odn7HmUe8UhOyhsbn/VbzjBy/mp7qBVXd/2bjk3y+MNeLDm99u3s2tS54lKUnu9vvXvU5HwV2nuq0raGkB6/5/ku+/0bV/39/it12+MTqeWP9zL9WMRTvq1zr2d932C/u/DFaa9a23IftGK+jYSVr+Vdy18jp+tt6+g5e0RG6wwKu/eC+/epVntDZ8T0tKllG3m/tr6dFRl7P6GdD9ac9d51e+IM75lg2Xpr/kIIQzkKzc/J1XKdeZ539qDVhzUvls33xnCefIPVjkXd/kiO6/5+fHOnadNHc0ctOz7qqxw5+63cw7Isu70X4yqyPr81a/XVit9bfpNX/nyml023dMw6647kD0ZjUc9Z3Wuz/IZXk8Wbx/Ni2Z+NvhhnhIjuQ5TfmZXt5f9p9+9lpSzPvElK2+e1OfR+D1Lvt1E7VD7Tq+PZF1vu5TFGmYrheOPH1jmgjbk8G7x7vC3/lnxmj/orvfkdjXtj2H93FuMqaXmWlXM08o1Ir84r8pRH/D0t16LlCs/4u2f+rVRGe++3rqusJ0Kz1phGbXzrfBtppydL3U9p7+u4O4T9Oi7Lqr6D8diI8t92PMt9PsldpzRbbz33vHFf5/N52pI6Tmidj5YdVXp79NnyQzx4/AXLVzuS40spSVrTbo/d3yUft029eErjcI6kuGed3b3c0yv2rjemSHG/J2JcZb35+tn/+wmdUftr/buM++/7e9zJ+Eb7WzGv0bD/Wz1Lne+V4fWc+5oaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4A8U/vgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJfwx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgu+TyWwsAcIaUkvp7mqZNWfm79fy3ZpomU+bWdausvGeNMwT97yxZ9b3y5ed7svbmOc9LrteqX8pcr3NP/nL+y2dDCKd1wbuumvzTNJlrcZVJLpeLrJf4WMfLZZZwmeWHHz7LZbns2vXIMXIdY2yOwxqXhnav1t1yjVpzc2TNyrZH9luM0dxH1jO9/eXZf/M8u+tqsmSZ8xpabZVjK+t68cyNp07dt8cOeubcuz9baLpzdI2969nbm95zopS53G+ts7K0yUdlLNe8N5Z6Tup11WRuyWvJb+lLa6yje8Jb/8i+fiUhBFNWz1yW9NaipNdnfT7n3/M8m2ePtcd7/oRHR0rdq+1Yz/eIMbp0dl3XR9tvb2+PObrdbrKu66NOvo4xyu12e9SLMcrbNcof/dGXTbv/yZ/+IO+3e7shhEcfIQS5XC6P3/M8y+VyedzLcrbsdm0zNJ/mqI77/LutLJqN88hg6YFXlrLf+nZr77TmaMTXHTlPPHW97Vl7z7Lllk3xnjstufb2Zm8P8t7JbdU+noeeHbTO17rs9fFn2o2xpt7LI3uz13aPsu+Wvpv7di5jgXweBJnjbPodI2eCtf6lXFZ8lP30XJ7bqsutfuvyy2WRH3/82035P/n9n8gP731/3jo7n/FUknvRdp57/rm1X7V1LXVcs12e+FO7t66rxLjd2zEmmT7qLcuy6a/0F8qzr4zneudEL6aw7pdr3yqz0PznaZokFWv6kLEYWy1fr6zMv9TnaYxRprh//ojdFNF9CUv3pmmSS9rfe3t7E7nY8+ixq6NxmTenkfdVUNaoxavOAm/uU8T263p2oGVvrLr1Prb8mdLGjuQLLB202tDmW8uVtPrMz/R8H+05S8byfH2lf1DPsXaOvzoW9cbW30L3tXuv97ds2eszxdJD7ey3ymvfVbvWchsjORCrjqe81Zan/1Zeqn629O9TmqryMV0+E5+25tE7f5618PglozFb2bc3rqrb6eVe6nplX2ftTescsfaVxdG187Zn1Rm1SXUM8cpY0qN7HlvRkuXMu8hW208fVmQbG6yyLM+zN3ezrqukRbc3dbuefebNlZ7VH+88l+1ovqi2DlburLQRtb3wyOPJV1m2pHcOeHieFYUeyzaXMM+zhNnvK5aytXSo1oVW/Ntb8/p8tGLwFmf3mfd8Hb3fysuM6rynbqnLVvzhba8nkzc+Xte4q3vP9+uxSs9ea3vMkrWVw9EYyat5ntdonTvlXmjpRzenOCCzV1ZNRq1O7+w+e1Z4/cNXxH2W7bZsv8dWWjJO0yQS9nLnPaHZKG+MXue/tOtpmgp/wv8tQKu9Vt0j1E1697Jn/nvt2TId17PWfGi5jGVZNv3mXKaISJrTRw75SYzrRz8+eWp9zD/L5zW731tXjw5ZvtM07fW3/N9In0fXyhPLvrIPT51y7Xsy9N5vaTG/ljds5Xta+70Xa5W6ti3zn2meeU9Jf9dn2e5euyH03zuP2rxXxAa9dr1Y/dV5iJTuZTHa9rS+1vZ8r19vHSv3WN8v/5sfWddVluX4mpW03ku34hzfWtW22h9nWaRk7xFf/KrHca3nWzKXjJzV2tyW6z/P86HvQb8V3tyh9T2rdVY/701VeVL3a0++e/u279u2lcE8S3L55p3RtD9Tpmn7nVf9fC2rRm8f9N5neb4nqGVp5XTL3x5/Nv+3p7/We/NWvHyvt++3lff2+iSjcpb0ZO5hyVvnS7w+RP6vtqem9Pz+YiQesnLgrbF473vHZcVMo2ta63PP/xuRU+unvH76Jr7z8VWyiGx1uZX/GFnDp/1u5xBrHffkX7T8gfaOqfxexhNLl3vDE7Pfy2wfKvvZ5aPzPD++O0pK3qScN00Pvblli6N5kSPtb+bWyBF5v5OyzhrLXmmxmUY9z0fG7FkTj10czT3W9s3yp7w+qNd29PZ0/u2p5+mnniOPnNaYj+R3R/+tlPffb2n672k/07KvR/TYk6c4kzfsUa7RfW72vnQI29/av4fsca87ppvWM56667rKOulr0vN7ej74CJd1L0NvXD2/2SOTFVvUvr1l41u2f1NvEtmdxzt/ty2T1q5Ga14s//xV/6bhFW14fblmfmYzBx9zJ5PMH98Da37aiK5kRv897CaubtTrfWM6sg5H85QjOgffhnMeNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAfKPzxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgu4Y+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHfJ5bcWAOBVpJTU65ppmn4NcR79HO0vj6EelzXOaZp2vy2ZPH1rc9jqr0Wv39yf1l79rDVGz3X9O7c1TdOj3JKjR/l8/Vvrs6Zc73Juw7pKjEliTCLyrHMvixJjVMfpkVfTpXL89VjK61Z/Waa6vZYsZXshbP8umHdv5/uWbC2Zrf2S+5vnefPfVnvWenv0wLrXm4NyznucfV5rb11XEfl29vVsu+Va1uM/ohc11ppZdrz3rEc2iyP6k/uq96I1Vs+8jJ4P3rNuRFdrW+KRQ6Pc9yPPafu/tf5H9qE2Rm87nnraOdCrW9bXnr9cLma9VptZ5ix3CGFzrTG6Pq3nNRmz7WvJXJaXNiHG+Hi+tKO3201ut5uIiLy/v8uyLI/yn3/+WUREfvnlF1mWZXNvmr7Kf//f/U5EkkzTfT7+zf/5b2VdryJyn/fPnz+LiMjnz5/l8+fP8unTJxERuV6vj7l8e3t7zGdpE6ZpeuyFEMJmzkdt1YifZft9sik/6nf3zuNee/l8ucsg0hraiD/Tq5PlijHt+tR8r5Zdrdu19qXXj9Hq19e9s9Qag0bWxed6TQ/9SOneX+s8KG18yyZ7dEGTq26ndaaUWPYtj/H5+17ner0o9e6M+hr1WugyjPs3R2Ksuy48fomIyLpGkVU/I1qUtq0uq5+3YqOWjrT2VU3Wg/KcfLuGnX58/vRZ1Rmv7XrElCFJuTfyPc2HDyG4Y2uvTLldTcb8u5yLMgYL1yCXy5csgYiI/PjjDxLet+eQts+tnMWoPe7R8mdGzyVND2MIH/mAot66iih+iNWeto9jjEPnRR5Ly45Z8+ndL/MaJaW4OduWZZH3tHb3a02t15aN8PqhD1sQk6zrknsREZH3968S3sNGF76lf5Rp6X7Z7lFf10LLpbVkrH3go4zEd7mfV+5xjcc+depX6f+32rbKrX1gPX8kJ+Wl1vcR//Zsjues/CN7tJfvEdmOZ13XbmxSzpe2jzQ7PBo/aPnwkXPKs79bz9fyeO7pZdmnFynz4qPxyCje+Ws9cyTfN5p78fo0nhivpJVjKduo/bvRHNfRffgKn+sI3hjVsjGjOpTLvP64JYvHpli6oe2FnhzWXuj5g5qcdVtzih/zu+/zWTYVZdv50+zk2XhBs5eeM3fEvlv9jtZ/xod2Ts+ztl5bVfuBmRBCd15681qWzVE+cqH5WSnTJk1a5513jnvPn7UHvbP2VX5VLy9nyaeVWzbliB1s1WnZkbPrOhrb1vmj8r3BPQ5Kj1x+5pdfvsj7+15P5nl+/C5zNL3cjTW2nk17xfq0dNbjT3vw+KdH4trWcz3/WpOxfM4TD/TkGvV7z+SEvX0ceX50vcvqMUaZkj6unj+xfnxnU3LPh+393dqmHrGvXr/jlb7rWXvnwZs7G5Hj7PzWv5N8uxxv2W3PT9aeH+037/0Y4k5/873SJtb/9foHXjlH9PYV+SYPr9bv2nZo8ezRGHckN/fMf/TbHolZtLbOPP8KemvYegcx8o3LUaz5nh7BxjP2sHwUTy7GOut7dlebg16cf/+moJ1b8+wt652xpx1tXsu5teLBV5wZR6lzX9v2x/Kir95r+zV+fj+sfUusfdtk0csZau8XW3LWOYIRLLnv7YpI4QPEGEVicW34ByN5m2df+pncihlq2bWxbGLHi9ZPlJ7ZO/PtVkkv/9C798rzRZPFOhuO+ChWLsQ6y0t/q65j5dL/ofhF3lhuXN5t7tUTs9e2vuzX8sFEoyFiOwAAIABJREFU/O8rzlDnZTJpynnHR4lM0/67npJXrv2ozy6Sv609d45qWHu8PHdKGTK99/sjvoSF1oc3rz9N2xyEh33+YNOyTNP0yN3t7E/I49ueH9s9kSSlp2x13vH+X3tMmrz1b0+cdyY/3Crz5MWyTWjJ7unHwpazLNfzOt6crIU3x2L5/q+2Mdvmnv7Nr+HPehg5t47ak9aYX/VvOlrtjfx7D8ulP5NzHN0rdZ89evVasaxlLzSfwlp/64z3ss5z5QvIw85bY7h3mW29553W9t1P699RtmjZwdEcbUixipv0Pms74rEd3vx++d1faRPvOf/4+K3Zy9pPzWtfXj+/7brXW+Mqc5p3z+ffJd7ztnWt+VAeWms5agtaeWRLfivf1fLn07q/t8ZV4nL8G1K1HyM2LbHGq/kdMUbX99k9yjnz2MS6iuYLwq+P/6tlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH9E8MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LuEP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yX88RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Lrn81gIAnCGl1K0zTVPzGU8bZVt1ez25Wv152tJksPrL91JKuzJNllYflmxWe/V1rle3Y8nfkk1rqyVH2V6M0WzXiyZzb360+a9l1cqnadrM37bOx38//m+MUWKMj2dacml9l/Pqfa4cXz3WfB1C2NVpUcpf64KlPy19sdbcKs/y1v1p82KNudfPNE27cmssozpbz7M1N9b+qSnnI8tSlvWe78lxZE/WNqW3jzQZLZvk7b+8Hjk36j61a629I2fVNE27tdLQ9FeTZeT80OTtjaveY5ZNau03rzy9OrUd9eiYiMi6ri55POui7b0ennqtfeGZ2zNzbp07NS1foTwfQgimzfb2c8QGlHKUvy+Xy+5eeV2uT33WlWNZ1/Uh1zzPcr1eRUTk06dPjzZijPL73//+UX9Zlo2vc71G+fM//2mz9/7Vv/xBvr4/99U8zyIi8vb2tul/nufHvcvl8pAlhPAoDyG4/YYzlHYs+zj1/Y+rTVlPntb+8pyb2u+yPE1JRCYpq9T6atHzHZvPXlZVzt6e8vgEnn1Z0jpbrLYt+9TytzznY0oi05T/N+3sumfMVh1rj9fU9zy2q2zb0tl1XSWlsu1pExN4GI1/vT6ItUYeWay5THPbxxjxK+9zp+uPVR5jVMej2RGPD2X5ftM0yRr2faWUHn31YtKsM9refZvWhz3/aFkul4vEy/yoc9S/1WyONq/WXNbPl3KmlETm+7lQxwPeeGTEDmnPa89Ydby2ptV/y1fLtwaXSkS2Opvnc9+37Z9bMm2fb+eRNPtZt7Us68e9aaff2n7v5QVyG9r+19pqxYwPv01q//+ZgyrPv9oP7Mk8ugczVjzSivMsubzrreWFrPVvjb1eY+/Z6/XdRKSyffoYyrZbtO5bPt8Rn9ljk8vcW6+t8hmLGOOheLTsQzuTvHmwX4sy5iqxbFLNkbxI2bdmX0vdr/2b1r70+hfWHu7lArz+vlXXi89nSh9nXy6zfbheHyP3R+LBM3jnciTHZtnknk3PtGyA166/KmfwrXKCXnpj6sW25b2j82PNgTeuL2Vsxera2o7op6fNlv4ciSc/evlot5wPfR+M5s3vbe39nt4z3pjAc99DPf5clv3+WqaWLnj9+RJvuaWzHtvVOoPmNccQ+RxNkmKUVMRP67qKFKatt67e8VpjrPdeizM60Hp2dL2s/eqJa3v1WnU8fkhr/b2x9YhsPXtVlpd7rKyX/c1cNs9xZ4Mul1li3Ody8v7VZNPsWC+Ot9bSkr31zOi8evIyR/GeF2f6956DnrOi7tPbf8+WtPJInj5f7V+N5At6bedHenrY95O39+Z5ltXhE1jttWxUS85eeavNlFKVD9n7d0cpfYJXxXZ1ecsHHZXriH3Pj/SG5zmzvf6g9byWL6nn5zHmsNffOu6zZPDEEFb/mtyt+5YMr6bV/2hOy3vu9Z6ry732YVMn1r7uxxii/+ypy8pya809vmrLBwlx3/Y8z025RuJ7Tz6/JW/926sjPZuu6UrvnGvZ1/rZ3n7U7lv5nF0bIRbyn/fzajzngKYXPf/EK9fZc8yive/zuJ5lvdybNZ6juXmtn1dgjdvSscd5u5Hhnqso9bwcp2UnPHN0L5gkhHsfz7hrljDfcyEh1HFdf7+OcP8+Yy9/yav3WcbzPqqWxfPNtIWmD1p71rtc7RuGnt/hyRXk+qVt7J17dT+lnljxR/2O3cI6G0b8ixEfztP2CL226nkaea4cS2sOrXe6Hr6VH3p/h7cpuduaaL/Xbp3jI/5QbqtlY7IOl12W34C2+rH2iyffWT9T73Ntna2cniaXdi4cib39uQy9f88apyAiYq95/bv0Iey272tqiX8/08wmmvKK2P8WpF6j0od7pR16RS7Davf887p/12p7pN+en9eLOc9S76lt3JXfr8TNuxTLJrT8nm+ZG7Di75p2TOXz40V8vpLIdm1f8e8WLax5tnJErfrWHh9dvyP7o/avrH+r5tkT+dl13Z+zy7LKsjTiZAdxnhv2vMd2Xqfq9/5M0H3WIzlV7dqjF9v627Zj2n+vd7cZe/lasZCVL6510Zsv8cSTuz3ySWS5fN2UXS5XCcpYemjrVPpHpfz1teWvtOp49sUr7bD338mNEkKQKfjm22tXPTGnh/J8sFpp6dsZmWrfXmT7b5G+5RkLbcbeKgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8I4E/vgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/z977/crSZIUalpEZJ5TZ6obZnr4OQ/sw2iFAMFFK6EVK/57xI4ELyBgFgT38cJoWndmeqa76pyTGe77kMczPTzM3M0js7qqur4PNZXp4T8s3M3NzSzi5AAAfJLw4ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwSbJ73wIAXMM0TYvvMUYRERmGYVN/qX36tywPIZht8zHL8cv+EmV/Vj3vda2e1Uabo1RWG8fTnzX/McbFPZdyeu6vtbblGub18/495a3+rT7K77ksuS5p+nQ4HBbld4dZnp4e5VmiHI9HGYZBnp+eJexG+eabN7I7nvbA3d2diIiM47hYx2EYVvuk917z/vL7r+2HWj8ltX3g1d/03Sqv9eXRC03W/Lp3LnLGcTyPmfeVl9dkydH2rtU+hHAeQ0O7ly33V9sTlo307qkt43vPBU0GS6+sMyOVWWOWY7TG9Ohu+t5jR7UxrP2nrV9p92v7r0VuU4Zh2KRzveR7z7LZtTKRix/Sq58J6z49+pvb+1JGj9/Roy/WGd/SzTRG+j7P8+oetPHyfvLvHr3I9aeUO2/fY2NzeuqO43ges2yX+wH553me5XA4iIjI8Xhc1Hl8fBQRkcfHR3l+fj73+fT0JPt9kN/8ZpTTbZ3u7Re/fJQYT/7Bq1evzvN9OBxkv98v/IM0zvF4lN1ud5Y5X7N87+drU66jpq89PmypJ+t++v18rw+/5axZ3m/bh7FkS/149fxSd61bQ7DtfCtO0eSu2ZVSpry+dT5qbWo2qeccTPNxumTLUeurFbNYWP6oiG9d872U95Hv1SmIDENeb30e5HJ64zpLvtR3fm+1+0z91vwJbSxLL+Z5lhjztTjZqXj0/45wORdabG/JWJ5hVl/H49F1DpektT2dUad4L30XEXl6fpLj8WST83VO65CPqdnOs50+zqt1medZ5pdpzPsu9cnjz5W20NKRlk0oyy76NkjeVb4Hksw5tVyHt7y8VrMDVg7CE//0kJrEGCXEIBLCYu69fSZdDmMo9CbK4+NbGZ/Hqvy1/VLu7/y75hOVOYa7wyxv3rw5lw/DID/72c/k7Wjrylpf1nao9Ptb8Uy5J/J/4/3J97q0H+Sbb97IdBjVWP5WaHY9vOhA/r2sU7avyZeXa/ey5b5qsYSXXJbyrMzXUrPr8zy7bELtTPNQ819raHOel9dsT36/edyR95Xvy7z/XHfSWJrf75GrZoNKuWpYcbjlw2qyWn2W30MI5rnl8fVqn2vja/GoFaPWKPdVa+40uTy+Yu91j29Z1qvlB2OMMst6fz0+Psr0EjOX1PxUTZdrelXem6XrVvzk+d7jN1q2vZXbq+VCSpk8euHNEfX6J57xtPv1xKktO1LWy/Gsd95Hi3yOa/Lntrt1jpU5ml650hz3yF9+9lB7HlGTf9FHEBnH1v6y2/fK7N3vNb/ZGtN7prR8YJF13Hwum5dyWWefpWOWHSzlsvwDK5egjWXdq1Wel1304vTfOEYZp0lipnP7/V7GuNbBWu6ilO883ji6bE9ev5eeszpv45HH0593r3t96lr/Pdc1ubQzwtqXrXnwnOmlT+295/1+/Vx2v99LVPSyhuZjWWeFSN0HSdTWw2MHNVvn0bOa7bNidqt9jV5Ztozhxat3eXmZm7iFXD124Br/YossJ31Kn+06rbEu8xZFKs+TPLkvzab0nAM12a02mr6PY91f6vXlWuPeUv89cdq7fIaXmqRukl9SO6OHY5Ca7njG1WVp5+c89LT1zp/2bD3/fm1sdy218b15OU0XW75azzNbb7lIFhvK2k5ZOurxVRJ5brCFJ99R5ljLvHQqk+yZlyW3x456Y8RWH4n8+V4NS+48p5jbldT3PPbl9TyU+YPElvcrT+3iqs/8XuZ5lnnWY5By7fOy1n7y5shaZS08Z3r6vrbHPv/ColXVs0alHbP2Ze2s3hJ7av2U425/dy++/Kf3a5V75yhMQULQ11djGPTcRGutkz0q603TJFN4t/+7x6dxR/faes9D67lNjFF9zqQ9Y+p551mz+9aZVtO3fHwtZ2Ltl9r5ubym57DS+3M9XJNDLWVsXevpv6eulaMsu9ia46mNuSXHUOvzmvaaLCEEGaOv3568mtbOkj+Vl36JSHoHte2f1p4bWWdDa428Plzr3rVzyGMfStuz1aewz5J1HnJdd+lr1PIepz6X/knub6a2x+NRjsOLPzoGiTFkce7w8p7oUkYrP1rKL6K/O9fKD/TkPbx7uvy7llM9/azPzyYrX6qh7an8ne3St0j76VbxsKUXPdTOt57cY7q2Je+m0eszbo33bpuv0su3+r9b/fHa2PlyhND+uz3vfqvVu2Usnu+5WuyY/x1Ob2yd/p2m9TtA0zTKNC2f6fTIf/l+vQ3QzlrrvE3z0Nq/njJLBs3XKM9f3R4Mks/H6flUdViXbJp82rmrtdnie+c5ki14xryFnS6vW3vKO36rndam3K9lfNg6ky3yv3PZ0r5F7/pu8e09tjM/a7flkOv+KXx7vNsMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAHCj++AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ8k/PgKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJLw4ysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwSbJ73wIAXMM8z2r5MAwSYzx/1so18mu1enlfef+pTd42v162t65Zclj1tfaaXHkftb5ijOr9xxglhNCUzRpb+5630fpoyVl+rrUry9L3cr5acpZ9xRhlHEdVDqvPcRxlmiYREQkhyPF4PLfb7XYXXXo+SghRQohy6jK+rEOU4/Eg8RDk/v7+vBfmeT6PncbI90kun7V/PFjzk+vHOI6r75aeaP1qY+T9WaS1yKntt1r/LTtQjtnS17z/rfdi9Z3Gz+2QJk/ZZ+89e+2Qtd+8fXrHuTWaHdeui/SdKVp5boNqWPrbGrvVr6YjlkzW3rXqe22/JZfVppzza/XEs8dqZ6oml2dva3Lk7dL5kLD6tM5qzzjWGPmcpLK8z7ysZbPLM3OapuY5ULuX1p5LWOs6jmNVznLMcryybT5n2lzl5GdA+pyf3YfDQUREDofD+fPT05O8fftWRER+/etfnz9/88038vj4ePYdjsej3N0F+d//+3dkmibZ7U4h3i9+cZDd7rNVv/f39wvfZRgG87Nnj1nnTYk2z14/r7gi+SWPvWuNtZV1nz5/WCtvxRFWbLMc87TPpjBV7bhFLbbR7H2uI97z0BMbtWS39CeOad+KpEtePS7rlHakZW/LefPeS6u87OP0+bIuMZ5swHHwn7MeSt/WOpt7zncR+zyz7v90boxZPZHdbidTtM/vLWdmOcf5mZ4+7/f7TfPgyTEMwyB3+yDT9HZRvt/tJSr3qvmSlq+YzpwQZrnYiyjzPMs86nIlHyGP31rxvjU3LZ1v7s9plnFc2rppmmTa6zrQa+tbvn/CG5f1jKl913yuEMOqzTiMZlxn9Zffa4xRwhxW+Z3D4SDjQfeXUl1vjqvUyyRvnofI/Q4Rkb2MMo7T4vrDw4OMu6Uu2meirOpYsmqfa5zn7z7K2+m4uLbbTTKG5XqUdtTSee2+ynqWf+rxLzQse+HNo7VsTwurvfdM6YmBLL3Q/MdWnOux5+naFt+jluNuUcqj9WX135rP3tyhJ7+q2YbWOVOTMT+va7Jo12r2PYSwSUet8Vt+c08uIbeDmm7WYtlbjp/vpRjjWV/K/Ijla7VkGR5eyfPz89IOfv0bGZ6e1Xb5epZ6punYMAyL3Ehe3rLfXjQda+mrZx+V9awYpJa7sWIwKxZKetWKY7V7sMq22FnPOd7y82vnm6e8hy3te3IF2vfWvNZs25Y8jVdna/22zqMYo0xhlhBKXzpI+t+ZuYgxqGvnOWu8/pVHD2tnTG2NWz6hfl/JVl3GLuM5y4e2+i3HqOlgq315vzVfVyuvjXW5/3j+r9SpEIIMsb4Xe+OC1KYl89Y91usPlXjzTz02qpUL0eS3Yplae4/sW+xz7Xz0UvoaLV1O44xj21a04izLLy99OK/tqc1f7sO18kJaP7kMddtly1d+37JeNaz9WtM/b8xutde+X+tnlOPXxtwSK1jr15N/re1XfbxU1o6nrPzP8nxLfa/H9c5Rua96bee1651sSXmrW/aIp541r9ei9dnKN5aY9RzN0/BpPmv5jmmhi5exPbarKmejnTZWqbtbx7PqtWKEli5c41u8azy+ijfv5fU9kr1ovYPlsQuefXiLveqJxXR7uZ7fWpzTyot55PLSG6/U+ijteNnPNE3n3NK18b82flmnfN8lfS7zmOUYw5DeOT2djelearmwFnm93rOyFieV10IIEuZ1/jeEIJJttZ75z6vG+NKXYQ60fqcQinM5PYu1bcXW2Mvyt0s7o/ln3vfhSnp8vVS+vjTIMIwyjZOM07o/bYxb2jTtzExrJHL9eVXLM17X5/J7CLPI7I/9PXOYn321czBdS2Pk78d59nj5Pl3vfHn91hwtFi3JdW+e55d3KC4cDgc5yvJ9ypq966F1PrXyP633Eq0xa7GsZWO26HeZi+uhNq/X7LEtdsXOH13kqJ273nGvsXlLPytmsvntRa/8rbyeVe7NB4j06Xjeb/k3Kq3+U73TuXApS/eY63+Z4yv7CmPpo5zs36BsgYuvldWOy+un/9L3073sdjuZp5c9Mg6Sv0OXt8tlbOVOWnPciju3tC/lLVk9m1TyqekMSu9Gl3K1xi/PvbVO12OcGp459paJ9O2dWnkfl3cMPX3XbL31d1ytPlcSbRi73uFy3yW5ctmmaVL3e4vNMlXI1WAch6YfotmAXt3w6ti1/V4Tt/fkLt9V3OGjyK2oCcz1+bzV91nmxH3zW551tbqWnRyHug/e0p3S1621v+TJ/bZTy3cM+/R34MtxynPZ4po1ysfz9JX77HaObt3/lmcSHl2o5X9MGzWKjGN6l+xSd5yWfpuVV91C9xot5u7Shzan71yWQizNLuj2BN4lt/vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICPCH58BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5J+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+CTZvW8BAK5hGAYZhkG9No6n3xaKMa7aJMprWr0Yo1ovlWnXrDFaY6cy6562jFOrH0JQx7fkyvvQxvDMhXf+c9JaWv3mfdXm1Sov+48xLspa7YdhWNQpdcb6nM9/up/dbreos7+7k/v7O5H7KON4PJXt9zJOo3z++eeyO+4W7cvP5ffWnFuylpT3XOqSVpZ/H8exqVeajmm6UOLRY+817b60tq09m+S25NfGGcdxNWci9fXNv3vtyDRN53HmeXbblZYu5fU9e7ikpV9WXWtfetp6ylPf+eeeOfeeJ7W+vGdFfo7lba193tItrV9Lltr5fMv18p4j3v60Mo8dKPHs9bLONE0isp6LYRgWPo0257kd0s73liye8tR3Llc+pmY7WvOr6ahVnsbz2ra8n5563jM0xnheM5HL+uXzX1tHa5xxHBd9pT6maZK7uzsREXn79q188803Ms+ziIg8Pz/LOD7L4+NrGYZB7u/vRUTkV7/6jTw+/kpERD777DP54osvRETk9evXcjgc5Hg8+RUPDw+y3+9F5ORjHA4HETn5JEnmEEL1DG7Zr9Ye77UF1tK24oKE1we+FR7ffDtJ9kFitO1EPgfp/vOy0gfI2+c6m69R6wxpjZmX5/1ZtkFjsUfH+GInLtfHcVj4nZaOaWdlyxex5rqcizKu6F33vP00TTIMySc8le33e4n7ST1ft5xpWhyk2ULLB6rdX243a3Km77NsO4O1+0xrb61rXp7sa2qXruf3W7NXlo7VbMFut7az0zTJ3bA/y5pft8bXfPZdHGQcl3O/3+9luN+b7coyrx3L5arJaK15uUZHmVfrOc+zyGz7oC1a9sryVVp2wDOW1j6n1EmrfYhBxPA3cmpnd9gH2e0uehHjyScYJ72NZWOstcuxfLiy7P4Y5P7+N3kNef36tdzd7dTxLbbE/haljGEfClsWZb/fyyTT1ed9rZ41f9f6Ep5chnV2eGNWTx7HQ2kHy9jKslnaWRNCcOuCJ973nAfes7JGzXZafV+jI7VcwpZ+r91/Vl/eXEzvmt+6rhevr3oraudbrmPJPyrLU/sQwiIWDiGcY868TQjh3Ffuc+V9zfN8anN/L7tfn86F+BL3/PK/fybD09O5XbIL0zQtcqe73e5cntvL3W63yL/k7UtfL2HZstr5lsq1OOvbJLfj2jMQC20uQghmjqSkZv/e9Xxs3R9WjrNGPjc9srRig2vkuvXZk7PlTG/Fqdp+s9qP4RTjn8pT/XGVBxBZx/RlDOLNN3jW6dpcRm+9VR51Gs7zkrfz+gS1ci0evpZarlUbu6NnGQZ5+W/ZvvQVPdRk66lXzl1PHqFWrsmj5Wu0ebXk3EJLR0u7Ya2D5ef2jl0r3zKeN963Yvs8hinnfRzHRe7dQ+7rlGd1a25bNlCzxbm+WP7olvPJ+my9O1CTUbNPnryUNYb3jL7WJnpzh9o89+wXLZ4t53+LrW/ZjlJHSxk0Yowio77utbnXZFl+TmfDpb7l07TyCuXn8nur/Va9uezzZfmW8+3Wvvi197Z1DN3uWmuTl7fPoZo9rcXr1tm7haWdvZRr9t6br+kpv0ZXr8nL3lqPavLU7LDHB7fI8xweNL0KIUic1z5ky55a9t0ap6zXeg+gPF/L7sp8Ue85UN6DdS/evlp9bmln2Rqvv9Uzvlb3Mve67a2db+HlGeTpXFzHDbvdTkLQfdPa+36aH+H1KTxxUsvXzdHewbXGK8unaTKfjWmMY8zs82UPabm33rmoPtfLcqceem2SJo9VvjWGTGix0LXxad6HpjdpjbbE5ZoPqO39Uo4eTv3Y4/SeT5YM1nO/mu7lZ2qvHqSxNHlq71aW+mDpR/5de1evHDsf87SXlzF7K7624nfr+aXVT4nHptdyCJ5Yuie3a9uBZR0rBur524ttcmzdY9uJMWR7wfduY0nNzlnv8dU4PUsTKW2HRstXzOXTZLbkLveg9RwqtyPWO6gtHW3J0vIZ8nc8YowSx1JXl/nTGC/PRj15hJeShRxrH7o8Uy7lNdnX59s65+vJl9So7dUytmrtwZr/7olthmGQqOSITme53pcWs4jUbWYrhr0F+XspNZlyau++1PaBNx7RZMvbeeek95mht9/cRtTsRfm+kPU8fNG3LN/JE3mxpbMum+bj53JaWGtxyxyMRk//3vO5J6besqcs+6fZHmv80/snWn5lnbtoyeyxneU+0cddz2MIml978iusvi2ZPde25mEu7bW+U+HaB/cwDOvcfJJhmi7vv3vPHK8/WfYXhvzvDPKYfn2meGXYovt5394xLB316nKvzbF0srXfF+9Ah4v+59ct2/u+OfmE6fP2mKU9jm7flv79+m8eTlc/zLn7LnObt58BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjL48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4JOHHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCTZPe+BQC4hhijxBjPn98VwzC4ylrk8uZlZZ95vXycYRgW9a17rtVJ/ZXyD8OwGD+/rs2x1m9rTrbMmYjIPM9q+ZY1L+dTu57Pc229rPE9c1GTPb+2l0HGcZJxDC/9ikzTKDJNMk2TTHEy27f2Rq5j2n2VuqLpTKo/TWs5ynalXnn5Nvb4OOq/RZbuS9OD2vq3KPf9bqcfx0mumq2r7Q9LlvJ+U71pmsz7CiGo5ZpMJfM8d699r63zyqLV1+ydSNtelHpg7ZFblZWfUQ3nAAAgAElEQVTXanOUr2XZV20+PfOedKGct3wuy35a61/Tr3ys3L5676t2TSsv+y33S0tWkZPOW/Ofvnv60WSw5jK/l1Q/jWHZuHy9PPLk/ZS6n9soa40srHqePdXC0um8L+vetfFbe6S0yVr9cr8Mw3Ce2/w8eP36tbx69UpERI7Ho7x+/VpERD7//HP5oz/6IzkcDiIi8vz8LLvpKD/60STH40FCOI3zwx/eydPT5R5S/bdv38o8z+fvIQS5v78/j5NkCCHI3d2diJzWPs1TeeaX8+rZz7W1TP2X8y0iMs5RhmGph6UPq2Gdle+a2hmh1anVy+sv69j18761OfDOS22P1vw0TRe2+hOtM/lSrtuN1tlZ+lqWnJ7zrSyv9dVa72QblvInOS/9h2DPSW3utsQsVn/5XHt9jZYsKf5Zl/l9gFo9LU7JY5t87Uq/p1zX9D2EsNhb6fPhcJDj8bion74fDgd5eBjk178+Ss7/+q+3EuPJPu92u8UcT9O0ODNy+XI7Oo6jDIdZQgjZXC73Q75m5X22/JbW3Ft7xGrvuRbCLMOLOPn5JHK6d22/W2dPTV/zPtKce+idk9ociIjMu/1q7P3+TqZiHTV7XMt5zPvwEjOU/bZ/p7s3VqvZ/ty/vBtDdq8n2e/u7kT2l/vfst+teK/E4w+HXZBxXJ7Du91OxjCaPveW/XMr263FNlYMYMnvkbeUz3MOlvs3H78Vx2jXNJtWO5OnaWquTXkvtTPME1te6w96+vPm3qx4zqpX+tyWT1S7F48/56G8x1p8YZ1vHl/FmkvLB9biRa8tbKHtj1p5LoNWZpXnPkwp++UcvoyT5z7yfo/H46p96nt1zr2Ul33N8yxhHGUIL+1e4tynpyeRx8eV/CIXHyj3B4ZhkLu7u/O1cRwX9fLy3PdOflaym5ZtzdtYPkhOzQ5rlPGAZ++U8lq5HKu/2n6xcj7lfrFyIbVxWvd4bU6ods3rK5TyaDbmGvtWUpvXUpbW+F77bI1j+axefyb/3vLBrTbjmOvJ6fppHw+LXFEqH0bfXNTKt8z5NTFQDU3fRJY2utVWK6/ZAa9sFq1+arFo6dtZOjed7z9KjCIhRIkhShwu9jWEINJ5DJdr7InztPsdx7FL53qonelb+0tYtsczF737u4dee13uvWv8MS+arzPPYVXnVK7v6xwrJtJ8sEQtBrPI7a2WL/OuVy0e8ZTXYgtvn572NV3y7KteO+k5qzWZPH5UbW08foEnjijtsiWHpmM9uY/T9/q56tUxT8zn1et35et5Wce8ffuypMfX66G1Lp6zdOtYdd2pxzzpe/ls3Tt++qzpf95Xbx5Gk13Lf1yrkz3+/LVj9razfOhajH6NXB/G/n7JT0yjeY9b9mcr79uSUSsri/N7uaWO3NLW9fSp1RnHKKd9mfpux9Jlee0ca61taZ/KuKNmv8Iczu+QLP2L4dx3r6us5Yw0NL3wrnXa7+Ze2aDb2pnRrn8ZU0RkClL0MZg22hM/Wb5ZzQ577r3Xz9bktZ7VlHIOw2Vn5GOGGEQcz3sSVr67Po8Xnc6f12v3Ur5T4cn7bGFrXOTV89Y7gC3y587aHJS6kH/OnyH0PMNL5OsaQlDr1Z7Jb7Hv3tiyVS9/7lAbe+u56/Vv8mcGVsxoravnuzr2NMg4DnLp1s4N9/gqPbGWN1e+RZ7yDNXW8FY+Z68sLVJeNDHPs8yZ+L3nhd6/bdfy/ltj1WKnfKwWPbFAKy+fF+Vd1WRdjhkLv3hYPAcsc2ylrY9R1PK8/+QrpHMuxrVPqOU5tHf8a1h20OvLrSQ35r7M0Wq+xjAMEsb8mcCpfJ5nkdDOb+aftfecPfssxsvcbokfLJtq5fS3xPpWnGHJXMsvnr7X5fDmoEX0v3fw2BqR5d++eHyNpLut9yZSucfWeP5eI39nM1/X0/uZa13seU5U2idPG0vWnnFTuSd22+JH9+R0vfmFtPbp7yzXz03854T23ZLXmqPT/F3OlOU5Y8nSl+fxxOH5Na8OlvdRVtf2T4yxKb7XfytzHC0fpOzbI8PlfNffP/esl+WH2Ge5/pynpuO5LtfuvaYL1t+G9L7bupXeZzAitt+l6c27fN6r+YS3oHamrf229G/Uc3b96WG4ku3ZdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICPGH58BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5J+PEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+CThx1cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgk2T3vgUAuJYYo1o+DIN6PZX39OUl71vrK7+uyVeTLdXV6pTlrX7KNjHG838t+a05sua5Vt8rp4eyr9ZaiIiEEFzjee7ZM14pnzVH4zguPg+DnP+LUeRUe7lmtX2gzbM199o9pTKrTVle6pEmo2ftazJ55WrpdO2aVqbpTM44jot2rfqtvizyfq05LvXIat8aS6tfoq1LuW7eubD0tUdnRPzzl1PawfKaVebZT9rYtfaljcjrWnOc29V5nlWZavKW1yy7pslV3l+v7dHWq2VLazplrWU5/5o8mix5vfy6JsPJbvt8jZou5mO39k9rrpI+9O6jklIO6wzq8b3KNjW9q50jlu7WzijrTNHOjlQ3/1c7x3P9KPUwzV8qz/dL/jm1OR6P8vj4KCIih8NBnp6eRETk8fFRHh8fz+t6PB5l3h1lnu9EZJDd7iTD3f5OxvEU7u12O7m/vz9/zr/f39/LNE2LayIi0zSZfmdOy1ZY3zVijFX7NYVZYlzrYa8P34ofWm11HzqKiH7PpYy9fntebxiGs56FQfdltTXy+DqlXNY5Ve6Hsq9azNCS4Zp6IQT1XBpi+/5b/ef2zmrXc+7VruV2pDxPT+Ona74xvDaxt7zXzx3H0fRBrfLlXF9kSOWec9Qqs9ay1CPtczm+NS8hhPOc7/f7s32d51lijHJ3d3duv98H2e/fLGT83vdey/PzsOor9ZHG2u/3jjgpSozpe5Dj8ShHxV0ehuF8JpTlmi55Y8ayTvpc+l2rdRrXY+12e5miHevk5R5/VhvXkt1TV2OrDxZjFIlxdfaFeRaZZ7fdKeVPvoe1L8p58diy2pmSdF+7tlyX/CzV7a41fqvccy+a7pcyRqN5y4dpyVjafu1z+m6tu6bPaf6SbFo8mtrnNq2mW9aea+UBS5tZzlces+R1cllCCOr4+X217IrWJqds35vvs2KmGpa+1mIXb8ypldfseUs2TRZPWatu/l2TrxZztnxaTX6Pf2TZn5qfUIuBLBvjIY8fc1r5QUtWyxbU6qTv+fkRQlDLU/10Lfk+ZV+5P5OX57YrBnsP5XNezn3ay/v9XsZxPM9//nm3253rjeOofk76ktrk+lN+tmTM5azZnnRNy+O2bG/NRuTr2soBl/Vr+9U6xywZt4ypjdsqz69ticc8crX8E62NdYZrY1p6Za2HtTa1OrX1zMtafrC2Xi0f23tf+bVkI1JMnJqcbM065g8hyBDsZ3C1e7Jkq+1z7V8PNb2oxayLuHMIMs/p+6nO4+OTTIdxIVOuV7U9l5fldtEjv5VXKu/Lul/te8v2jCGVpfuLLx/7YrDW+mrfe/3E1Kbmk6W+emNIT5st/W7BYwdKPHLVdNdjr/Ly2r71rGt5Npfrmu/Xsk/rvqxYXot1LJ85kfstXjz5Be+ebs1na449ttkbv7R8tda1HrbEaT1xWM/5UsPaK638Q4/vVPNHy/oe21XKnOtSLR4Yx7Vftdvt5Dj2+YHfNppNW8qjx3tbzqV8TOv7NXuk1DHLT/82zidNrloMnC5pomnz25MXbPnpue+b1ltkWMWXOZ451J7HlP6yN7a08MZzGrW6W2IrD5bPqrHl/q/Bc0b0yH9LOS7+d9u33zInnni11fc1uljrcyhijaSP3nPPU1Ybv9Z36z2mmkzlWZPfj+WPlvUsmbeQ26bl/NbOx+vGtMjHSLb+9K9uv3vxylvWK/OIVr63p18t9q89gz3LIpq+nc6wfF48773l52k797e+nt7bzfMESZ6eNSrlLtvNYZZ5jiv/psy9eOIRfXxdpvP4Db+jXNdrfL3y3mvvIHtyz573ebVnpj1zmM/9ln1Zy9X3xjZaucd21faL5960Na7luFr9zWOQELT6fl/Rq2u39M3Kcb1tLs+9ZmWegoTQfl7ulSmRP0P06vsuDis5drudhJ3+PNKba+g5X716WJZbY9T2b0uvW3GSFvuUTfLngx5Ory3p42r5wtO/et00/vI+hqVM0yDDkNvIk+5MYemj1fIttbX0rr2lN7X2+b+W/7Gcr/AyV3ncPovM9XOplFmTKfef7Hlqx56lvvbmTvP+rfjbM4Yl2/qeNF1dt7VizlI/PWdk6d/17C8vt46JS5k1tsQcPW00+5Svvzfm3FpPi/c8/uPWtdD+dkKrU3tXLIR1TFvusVvI2kM5RFuGpczenId3nXv8/mXdpc+XXxrHUcZJt12ecSy5Snvn7c/zd57DMEic07u4l722zAf7ckq9euWNwzz5X61O/t16/9uSdZomdf1acnrK47iWdRonGaa2XbRkab1/16MXIroPNk2TDNm8lPPX+jvGkvIdWIu8SozrvOOLePAtc3sPBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAjgB9fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE8SfnwFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPkl271sAgGuYpkktjzHKMAyL7+nf9DkRQljVG4ZhUS/vK6csz9trbUq58j5y2fLxS3lb91iTM69fti3bp+vjuPyNprye1aaGJqc2fuv+Pf2WWOtilbf6znXHg3fNanN8YajqmfbZWnNr7lMbz16wdN/TdhzHbj237tHqp7a+lsza/s5tjkfn8v1T05dyn9UYhmFl+5Is1hi1sWOM5+vWntZslyWb1/bV5NHI76FcL61v7/6s2eRaPatMw9oHab6sMct66XO+D7x2Pf+szY1mBzS5rfmyZNDG6bXvXsr7yveVdaZ5+7pGDotpmmS3O7niNTtc9udZl2vx2NJc/yx/yNKBVt8tv6WFtUfK8TV7X173nJWaL2nJZPWV2+Ekz93d3Vlnj8ejPDw8iIjIPM9yOBzkeDyer93tg3z++fOi39/93b08H07td7vdWd/GcVzo3263O58r4ziexxzH8SzLNE2LdRmGQd1j5ef8Hlu2zpofzzVv32WdLXYov7/zXO0u86bpVelPWWea9l2TNa19GIKIpPJ1Py0/rLVuW22LpuPeeMrbn9b+VLyeD4/dyfW55vPldmHLWVHuG62vEIIp8ziHc90k/vF4lDjtF33k+uiRU4vHcixdsc5Vyw5M06SuX1meCCFICOv4fWjckqXPZcydy2bdo+UP1/IKiXEczfkvZcxtrlan9P/zmOA0T2u7ksrvj0Genw9nnQkhyuPjoxzC5RzI12Ke55VM/n3Y9vs1fbf80yBB5nl57Xg8SDj4dS/dSxqjnOvSp2n5JD1Ye6S2L1c+/Yu8Hr/KOnts+dc6p+1xy0Z491Rtv6zr5Ta3nccrZS37rJWV92LJpMVwy75HmaZ6nOGxxZ68VAjBlVeyYqMQQjMm6olz832lta/tJ0/+oTyDc3tXs7EW+TxYzPPsPuu0+c/lsvZCa449uTfrWq3Pa/IyVvzX06+1N/PYwoqtemLDa2KC2nnnGd/TvmSrHpfty7Wo2W7vHLZi3fJ6Hj+X53v6nPu68zwv2iQfJJXHuzuRV/f50SD3v/VbMrx6tZIl941SzJvI49k85tXi3FTHG6fl96/V0Xw4y46nGF3ro6VLtRhCs9W5PBqWHS7zki3/pHUm185fSxbLP+uJLWt1PWeAJqdVlstv2YhaXkqTqyV3XtYaQ/dttul7q21tvjy5minT81Tl5BsMLzKdpVjJUpO35lP3kOblVvmVWgyQ24t5P2e+6GmcV6/uzWe7Vo4jl7OmN7WzvzwXPHG2Ri1HkfeTfMOV/sR1m63r2tJpzxxZvpPHV6ytT0s+S2bts/Y99e/1Yb3jaORxjnccT76lJUd+9mvkupj8lDS2qnui+81lXqMco5ajsO7NY29r+Y68n9pebGHFCC1qetXzzNwjWz7eu8ayX60Yr6xTk3frXszb1/yTfIzeeMijuz690uVt9V0jxks8Iso7Zj1z/q71SdOLXl9w67nnlassq537OVv2d8tvWBNlmfNsPzOy5yuu/M56/XX/rXmx1m6Yku63czCWT1eSn2V5XY/f1Xu2b+Fd6G0Lr19VO5+v4bSm+TjtNu9yLSz9yv+96Mx6H91qbrb0U7MvZU49UZs/Kw9Wlucxqbcf7XqZt2+941f7rMo+xpd5uNiM03/tMRb9FM+ie+ydJxbVPl9yjO9W53r6OuX7ljZhmib1PXZv7rf17MJak/J5Ri95v9o5kWOdyXE66dKy/HSGTeMk47S+J+s91Zzy/Y21LMYZOgwr+yoymGvU8jV2u/Vztd20k7C7/f/ucSlCvlesXEJOLbbt9cnLPWrm64y/37D6s/oahvX70JY8loyJ3D7V/K9hCCs9KZ89lvtiGAYzz26N2etrefHY6q3Yz31lUd6TC/DeY01HLBnL6545r/V1rr8bZRjGou60eC8gydvra3jq1tqHEGQ8zqs6edxSa9sjh0h9fb22Jx/fE+e1csvlZy3Xafl0IiJhTPm9y7XD4VnmZ13/tfsMU26nl3J4c0TrPE1+bd2nFO/T5O/QtfKAmiy5jOW7r5bMl/Gvf7ZS82Ffes36H0192+I/98hnta09p0/lVvuLn+s/E6z3BEq0fdJar+TP1e752ndly7FvEadpWD7FMA0yjsNin9XOk1tT80885PPmzd1rPlipb7Xz3DqfPOfWNT6J1n/yyzSfYBzXcf849j2zUOU4y1OXTSMfchxHGaelDFPUn9Fra+Bdcy+t/PMynspiu3HtG3vP5VRWyw1oMmrvHGkyl+8IpWvW+X3y8dZ2Of3rzeO2zrEtPn/r7NDw7L9a7sx71pflnnmKsvSVPPTs2ZbP7GkfVzm/0/trQyNPYnHtWVKeU6uzSq7rH/q5fQYIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CNA/59SA4B3wt/+7d/K119/vSr/7LPP5G/+5m/eg0QAt+cnP/mJqed//dd//R4kAvi0+fu//3v55ptvzt/TLzO+fv1a/uqv/up9iQUAnyj/+I//KG/fvl2VPzw8yF/+5V++B4kAAODb4l/+5V9WZ0CMUe7v7+VP//RP35NUAAAA8DHw9Tdfy1f/9b8kvn1clO/3e/nDP/zD9yQVAAAAAAC8L37605/K4+PjqvzVq1fyl//nH78HiQAAAAAAAAAAAL47/Pu//7s8PT2tyu/v7+WP/5j8GwAAAHy34cdXAL5F/u7v/k5+9rOfrcr/4A/+gB9fge8MP/nJT+TnP//5qvz3fu/3+PEVgPfAP/zDP8iXX365Kv/d3/1dfnwFAL51/umf/kl+8YtfrMq/+OILfnwFAOA7zk9/+lP55S9/uSr//ve/z4+vAAAAQJVvvvlG/uu//lvCmzeL8oeHB358BQAAAADgE+Tf/u3f5Fe/+tWq/Pvf/z4/vgIAAAAAAAAAAHAl//Ef/yFfffXVqvy3f/u3+fEVAAAA+M4zvm8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN4Hu/ctAMA1zPN8/jwMw+JajFH9XNafpsk9ntZPKsvHjzGq5TXyesMwrPqrjeeVu+ynvJ9xHFfX5nlW77tFks9qG2OsrlnZT20Mq/9WuTYvWynXbyvausR4+S8VxBglhCAhhNV4XlnSNUvXPH301BERCSE0y64Zr3Uv2jVNF1uk+d9K2muJ1vja9TT+FjnK8VMfnnkty1p2xUOtf+37lj3msQkWNb2y5r+sZ8mc1/Pc19o+XL7nsnjXodQFC2u9a7Llbaz1s86KYRhMe2TZbquvEIJ5n9acT9PUnMPa3hvHsbk38/3i3celzdf0p1enNMq+bnl25mtxzXlZcs0ez9di67prOhZCUP22dH7nfmz6fDgc5Hg8nusdDgcREXnz5o08PT2JiMjxeJTj8Si//vWvRUTkq6++knF4lr/6v74vIvHc1//7k/+WlyZyPB7l/v5eRERev34tP/zhD88y73Y7+eyzz0RE5Ac/+IHc3d2d5drv9yJy+l8S3+0uoWN+v+W9a/fsseGaX1JeO4217GscJ5ctq+lbvhYW+X2V+jLPs4RQt4leWSxf356Xdb3aXFrjtfyhlo9Ysz2eM7DHh7DmYhwHdWzr7GjFiy0sf0q7ps1VTe+sGHWKw6rvaZpkHgbTvnr9TuvczmUur1nz5tlTLqa1vOM4yjiOpl2p6VJ+jlo6b/WVx8WpPK15zSfKxyvnJe97PobFuSEicnh+luNxbd+GYVjYZEv+5AONY9oLp/JpOu2XvF7eXy5X0sXSN7P0wOtbanKnMydn3ofVftjv72QSXd+tdY0xunI/NftVywdpWDrSYy9jjBLPtmWdM6r1VdPxYRhEpotOlNda54eVB9PqaPUse6mdpye/aW0H0jVN57R774mbtfjlvJdHkWEYX8pP13e7nUxR1/1kL3I5tTOp3P9byHU8jVeuZ24/87XI57JlwzU/cEssalGLBXOsMbfmaqx96jnTamdrPl/XzFOul7fIY9bozTmXZ6/li+Y+fblO2jx7/baaT+DxWzx+uzUnW889Ly1/tXaPpd+T48nx5HapzF/ktiMvz2PZvN7z87M8Pz+LSLL1p/K3b9/KmzdvzuWpr7dv38o333wj0+vX8of/z/8t41DPsTw9Pcl//ud/yg9+8AMREbm/vz/bxHEc5bPPPjv7OsMwLPQtlZf+ZSL3hWr1LEq5S5+9Ny+35brlA5V71xMf9cZsrbxVTp6f1uLvVs5AswVWXFN+z9fJazdqMVMpm9Zm4V8Yfts4jmYsW8vdec5CS/fetV1L1OyTZdfHOd330rfRcgG1cbw5i14sH0akX8e0/tqxicgwXPTBGtPj77fk88Q33tyXNkau+y2ZUqx7Ko4v/0n278uZGLfbUU/+oPxe7k2P/bRygmX/2jieNW3dY/6OgGWfrsmr1earJ4fZut4jo2UjWu2sONTCY1q1MWtnoteu5fPi3fu5rm1Z21Z561rilnFPLYbwlvf4NbXxrXktfTMLy46XOUGPPF698OR/ans6v7faWpxigiAxLu8lznab2pyd5iFKXqXMM91KF3v8Rs+ZUtqZcYznfFQ+5965sLB80Frda/ZCniut2RhPLLzuN5WV99Seb91XX7ZtxW+5TPmZWpNbk8ViGPSccNmHN39i1bmF7e3NK916PK/PULbdYtO916w5OdnH87eszOeDWeN4fPHea6119Z5jXjx6ns+TlcPt1Y9anTInFOPlmWW5Rpafbt2X5/2kso3Wv0aMUYYpnJ8L5vbEY8cXcbnxLNrqy+tz+fNe6V/bdll7p7UvvHW1OuWcpr5yvSz7r+VlrOfPNfm1+bdsSW1drHfd+vf4KT6fwyyx8YyllR+z6t+KrT6UN14qx7DWJfdnTjmeeh9JjhztGdS1/l763no/1loXbaxrfIXy2bDl39T8nuVc+mTOseywx89fj7+2PZ4zV5Mzlff8PYzWXrPRy/zbpX5P3sv7/NZ6v6nlt3rsnSe2Xcu8rjfPs+nzeyllae2VUm9OPkh9bEuXtupIC0/sJtLeQ71xS68PNU2TDMMg81S+azIs3kXyjbG2J60z82Sjlt+Xe+nSNoSX56pj+r5+pySEIINje9X+3q5GTTetHJWIvWae9ZrnWcIUJMbkE53KQ5hFZttf8ObVtDbW3Mao19fGbtl37bsnJtWen/agxU+18XK5evI91nsxObntrP1dh+e9mpoPYskfxrCSLYQgo1z/bNTyoUuZUt3aHM9zkBBKW6H/rZcWC1h2tBWntvJIS791zTqf2T+v1v7Q1i3/HMLa9p7eP+zL/brsY2W/n3T7kutpdbcUOf1t6LJOufe37GNPvmqtS7nwUUIMWXmmC6Euj5b3tvxZrZ88X1LzB6z3clR9neR8xuRy5u9T9/oj+Tp5c0RWWXndsuNl+3LeLLmte7jmjClZ2PGQ3iu8XJ/DLFOcznWt2Mbq0yuHJ0c0DINE6T/7PL6NN8extr/LcVa6J/1rBdfx7bxFBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCBwY+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCcJP74CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnyS79y0AwDWMo/77QTHGxfdhGNTPtTaea3l57+eyn3mezfEtvPevMQzDeS7KORmG4dxHjNGcM4sY40KGvH0q1/q01kn73FovrX+rPISwKrfWLZ8zTQZrXG18q9+8zjiOMo6DjGO2XuNY7UdbT0s2kdP9W+tloY3jaT9N06qsnEeP/nqw5qi8Zt1LSw5t/4UQ1PLafFnj1GzCmOnAOI4SQlD7KnWplHULrXnx2ost+rNVprKO50yw2mvzptm1Wr/5WpRtrHux1thzdt367PGO31uvtmc953DeT1ne0veWDdT2db73riXv36tjeXnrzLW+a2208p5zuPc8qeHxoWptSqzzMf9cmz+Ryzlm2dsYo7mG+T7Oxzkej3I8Hldt3r59K2/fvl2N/fT0JF999dW5v88//1zu76N873v3cjzOkrr+0Y/+UGK8FxGR3W4nn3322bmfcRzl/v507fXr17Lf78/j7Ha78795ebrn1M5jk6IAACAASURBVD59n+d5cSbl9XvOV789W+pFCLOEoPvEpTwa+Xq19mLZT/J5S19KG0/bOz17RJPnVLYet2b/a2dNb70te7Q23pY4La9z+i/1t+w7/6zZ1DJ+8YxfOwO854MVz+Us47Z4vrdSrNRXLa7xUIvTclms2CbG6NpLXrQzfQjrOtp91nQ0l987RzVfz/IH0/0Pw3C242l+0rVxHOXuLsj9/fLGfvv7vy2Hw+Xcyevn/5axfSnb3WGWu7vfLMq/973XsttfYrOWH1vboyVb7YE9rq/ulnLv9bxOzQf0xBzlvvHs2VPRpfxwPMh4ODRlzkn6l+zgLGFxhoucfJJ4HBf1SnpyIfm1/HouS85dHLKcwWmM/X4vcT+p+3mapm7bvTW/ldY8DEFifPkcTmMcDs8Sj8sUu5U7svZS7Tyo6XUr5qtdy+117tuVeZva+ZzajEWeShtb85d65fVwq5ySyPreS/vtGffamDuXxTs3PT5c3r+IrYs1fdP847Lf/PM8z649an32+E9lm5ItZ3/e1vIhvL52b0xQm3Orfb6Xe3MkZZvcDuaxawjh/D3GeI4lQwjy/Py8uJbkPBwO8tVXX4mIyJs3b8575Ouvv9ZliCIh1uUNIciXX34pX3755bns4eFBRC7x7hdffCEip/j51atXInKau7u7OxE56VWSv/R58/MmfU/1cix/vLynvC8rL+HxO7f4sznDMJxlvtb21sawynrjltIG5e1znfbMnSZTy+9p5Zs8OaY8L+Sxl/kat/JVOUmXa/LW1rxm4yx6dKWMk/K2pX+al49hnXM7HJ7leJxW5cfjUaZ56dNo892SuxULa7691reVn7Lql+OXsmh6mU9bjFHGYVTlbN2rJqclS/4512nNB9b63eLb5HvpcDhIPAY5HI4iEiWEKIdR5PHxUebpMuYvfxlkOpzWYLfbLdYjfc5zoLnMyc/dEgOlf7W4T7tnTcfKc8MrQ83+at+98atnbEvW1EbT+a32Reujdp9We8sm52uR+wOaL1WLmzTSXGjnmtY2130NzQ/Jz3rvmdjSubzvltylXcive3TXG7/X4hFPG0vPa/rvsV+evVTORW9uwLKpVu7hXaDtaW2NtbNQtytJt9ZjWN81lv7WICK6DbX2YG1vauR5lbLdllxInkuIMcp4nCUWcZFX3z3j5nORv+9S6rFn75Y+kKanNf/H0qXa/R6no2L/UtyW+lKbruRfy9OuU5L7ut5xjNEl7YkY9TlozWGtzCNXy3fT/L5r9TIfb0ts0uLW9vFW93uxf/Y7f+Xn/Hv53MJ6j+xae/dt4fG1PWzNl1j7qObbteTz+FgJLa/X2v+9z2MvZ6Rt42vvtun92X5fLcfSslGnuRdJ5/kwvDwvjn3nrZdWX2V+O7fR5Rlu9a+9H1STo+XftfxTj39Yyl/S69+IDIu4x+vD3aLOqd7yewhBQrDPKUt3S1t60cltZ6tp40eRtCfT1kvzZ717kdv6WiyRP58bhuG8zq2YtNVv2U7rq3yX2tIxr7255j2UlOPJ7dKy/7jQ2Ra1fWe9H2g9T8378+ZLPHj2vbesLD79XYO+br3UYoDefms+ZG1u1Xf+d6MMQ4qNTnZlmiaZ9vY6WuNp361rLR1Y6vC6r1577Y3zWvfcY+8tyryUZ59retiKU5bjpDpxNX5NzpJ025oNW+Yo/LmsYVjaqkvf6V9/nGQ9N2rpiGYTNR0t197jq7bmWLvs9cmtcXp9xlZ9K0721m2VbfUBe+1/8mdDCCLKtvPMW++5XL6XlPsR1t9n5XVr92jlZS745sfjEyRZ1vvUtz56HJb6zG3U2qa05F/3u87PljpWi4cTtefQtXvu2aOlz1j6gFv8pa375VQniy8qa3w5m5O9v8QUQ1zq9Vqe9jlrt12WD8Ng7klP/H/SwaVs0zjJMCzXJd+v9jlrn8f53/C27qmF59lKdd+8xIt5/VIGbX9o+9nrQ9X2nvW5XFfLV9TsoOfM17DOutqeWuS1xijjaO9pLaeZY8W8tXm17Jjlj5yuKf5O53pv5dKHPtfp+vm5TcNewO3xvakKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8B2DH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATxJ+fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+SXbvWwCAd8EwDK56Mcar6ljjlOWecTzjDsOwKJ/n2SXPOPb9zlLtvqxr1j3GGM/XyvbeddL6qo1XypyX5bIk8vnJx9Dk9Hy2yOvEGF1zeZJH5FJ0+TKO41n2fF6s+dbmoSZ/TW+1efK0Szpr3b93XnJqepnmJ12vzUGr3Boz17Fyr1m24Hg8mn2nPvK+Wutj7fEQgvq5NpctevethqU/W2yCRdnXLeQWEZmm6ar28zyvbHeipseavpX2Le+jtAXWeHm/FpYea/s16VkpVyq3dLW8F+/6aTauHLu2lzz2qvxszWv6Pk2TDMNwHjeEsNh/Catc69u6diu97kGTuXY+hxDM/a7pQ15e3qtlO2KMqlxl/3nbEII6viWv1oe1FtpZU+6XXKd2u91ZlsfHx/MZcX9/L/f39yIi8ubNG3l6ehIRkYeHB3l4eJDD4XCWeb+f5eFhqZv/xx/9rhznS7iXxri7u5P7+/uFPPv9/iyLZuemaVqUxxjP32t6uMUH1ljaqrp9qPnKlkxJf7y+fS7PMAwSx7U99PZl2c3SRmu+zHqMwWXbvbbDN6avT22PaudYotwzHhmy1i/usm43tLOyLM//tXSsN8baihYblHjjDJG6H9pLaw6sc87bVxxFxnF5L9M0yRTGhe0v90ht7TQbbdn+eZ4XtjYvf3p6Ol/L+zocDuYcl3Klf8dxlM9e7+TNm8Oi/i9/EWQO+9W9lDY5laW+St9nPM4SY5AYL30cj0c5Dm1fUSP5OlrdW8T85fdUlLrS+uwdx7N/LRuUty9jrLKN5QNZ92Cfm8vy3bSTcRfNuCKXcdWT057WbEkrvi79LI//pMt7Odeu8XuvzQMMw3DZc+P6nJ2mnQyznceojd9jJ0XW+asW8zxf7Y95fL3ePE7PGLWxW7kga5zaOtTWq7bnWlgxQq2uZRdquYBaX626qX4rB1Vrb+modT73+Jtavy08912z91b9LWedte4tfdCu9eR+tGt5LOeJ5XM7OAzDwgdLsaSIvUeOx6PqH83zLM/Pz6vyEIK8fftW4v2djD/60SkEjCI///nP1f5fvXolf/7nfy53d3dnuXa7Uyw8jqM8PDwsfKXSr0pY/kx+LafcL7ktqdkhLedRG2OLztSw8iqaLC174MGTe/TGnJ79VouNajbek4svbVbP+aXlwTR77/UVtJiilLOsr82zNy5vxZlaG0vmGtM0qXMxjqNMx5OPmYu72+3lOA0vceOQle9kDPU1LcdI3z3+Ys2me/aNdx9ZecU8lg1DkHle6kkIQYZgx2y9snj2aC6j9txSk8UzXrnfcjs+TZPcH4Ps9ztJ6z/cR3l4eJB5uozxxRe/JeOznofW2Gr7clmtXKPH3pZxUl9OzJbLW56Po8lr+ac5vXFL7R6tubFsutVXvr9r52tPjJbXrfmU2nin50OXz61nJTXZSv+mV8Zef7hVz+M3WX2WZ09LnlqOyGOvbok2rpX7L+UpP99CPs/zx3Jsr6/j9Ql65Tn5e+vrtWd9/rnqizPLM8yak1Se2+t6jm87W7v0zpEV23jR5ugW8+Cx8WEMq3rzfCzWwhePxBiL5wXDotxqW/o/5WdLfm8caNGKK1v7uRzLew7XxvTI6rGLrVhF++yJs29BLuPtxrD9lHwurDUuczLefazJX+aEynonGVN71zALtvinVr1r9bJn7NO8LO/55NMNqzWq+SiavajJY/nmpX9be+41TIMMQ7q+jlVqvqQlb3nPlj+rjZPabj0nUrOesyf391U/Rdky1t479bFskD931Vj7PPq65tTWtDfP0Ou/18rza/Vx48LHb73bmvK0Hvul+Y3rOsvv5TN0L6nJu4ohtDnUbI2G19Z77rs1hicXkCjrzvO8sIH5O6Q9OaKS8r5qMbNWr7QHJx9ylrkxXdp7Avl9aWPmtPZrbV3L+Ut4fb28fhkbq+/rVGQ95R/Ny9W+vD7ntXlMLc615NH8y/l4sffp8jzPIvO2XJ0n5s/PiFbfo/Ku4jRNMjeeFfTmaku5ajFPOZd5G0/7Esu/sGTc8l3rzp+Pyu9l2Tbffy2dX675cO43xrXPd/pX33zWPqvtpWvfK/KOp9ms2hjzlPzQXNZJpp1t+y3d8vhNlo8Yoy/HY+2rUvc9MWu+j1o+s8fGJcrzJcxBQtD7LterpgO18zyXo/b3Evl4nndytPfbW3nwFMeevtbzw2XsVvav1e29Vovxk4zW0lu50pa/VqunlZf2qWUvWnqY+2CWP1V+3jLv+fiekLMVm6f1yAqrc3i61j6DypjmFAPU8wlpjN4YrrSJLV2YFPswhzk7f9p6pdmncj09efS8TukH57bb6kedexnOZ+z5PiSel9nS3Xzsa2n9XZ13bM99t/LQZT81H9oat2bf5zCf9cnS0do8tOyBJVNPndU+V54l1PKzFmWc2JJFs1tpz8Z4eT4RpX2vcFu+nb8WAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjA4MdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JOEH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATxJ+fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+SXbvWwCAaxiGQWKM6rVUbl1v9at9Hsf17xW1+g8hnPvI+yrHm6bp3Ffepqxn9WERY5QQgkvuVFaOkX/3zmd+L7Xr1jga1vUYY/Vab3+95a05ydul+diily+9iQyD5KLEGKv95ddauqjV9fTrRdtDeV/amFab1j3k81LK2qvHtfqljid5Nd1P18p7su5lnmdzfKtN3rc2d2U7y0bcmnyNS5vSa69ra3+tze/BO1bNDlp9TNN0lsval5pe995/qSO1s6GUQVtHTedCCDJNk9pvr+5Z9iCNcwvSGLnMed8tfUn71sLS91q/eV1LH7T2tfW85V6p2fZy7VvnYIzRnEPNfmkyWGed5UfluljKa8lZ6+t4PKqyHA4HEVnryOPjo7x9+3Y13tPTk3z55Zfnz4l5nuWbb75ZlD28GuRXv/pcdrtJ9vu9iIh8+eVv5PGlyv39vfzO7/zOuf2bN2/Oc/bZZ5+d7zuXf7fbLeYjl3uapsX3/D57/aiclr272LlLvXmeZR7bvrb2OYSw2l9WXWsfnmQIEmNYlQ1hu9/V63+fqpx0OY3b075Fzf72trfsQGmfanOuMY+XdYhRZBiizHMQybacp59yLVp23YN2/+V1rx3XaOlSPqfamVzbnzXdbMlinaWJfG616yEECaHcb7PIXI/xrP1TlqcxS/3O7XiyqcMwnOUdx/Fcnuonm3x/f7+Q/82bNys50vdcnsPxsOhfROQ4H+Xp6VQ2TZM8PDycZQkhnOvt93vZ7dbpvWEYZBxHmeIgIrltO9n4sKuvT04+R7nPmebb41944v3VWT/Wz3Ntf7Z8rXwtrXG9Mmt1Lb9Ri1PzOmVMvJRfl6NnP+vzscwtjON4Xuseu1COkeTyxOyJ034Pxfyc/JLjELvl6o2Najqw6HcUKffTOI4yTUs7kvTAsm0avWetRz9zH682tjV+6StZbDlfa+31fbCua9n4fI/3+kFb8wOtvnryXb3M82z6Ed5yz7xaeOvke9+7xq0xt67XLey+p2/L9nvGvqUultTOofQ5f1YhIouYObct+X5L/sg8zzLP8+JsS22enp7UmDm1SWPtdjuJ005kHCWm+M+Ykrx/kZNvlH9/eno6+253d3dqH3n93PZ7c7i1/d67j1p70Fv2PqnlfHrq5Gth6WqJddaVZ7oVG2jtyvFSDlSTZeuZ1itzrY1V37p2rf6U54q1Rtf6FCdbevqci5z82pdaaj89zx2uPft68uut+Mnjd4d9kGkaJe+qzDFYurAl3rFk6aGV82rppy7LJYaIEiXG9r15fV3Lb/LmHqz+emOW2l671rdp7T2tjtUmz1fkn9WYf6OvrtlH616tPGTeJp/baZrMNtbz4Fr+4VRvvRa73U5CqMcD1nh53yWes8Mbh3jzPfn1a86U2n7PZfFixUO9Nrx2raZX5ed8jsq8Wg+12K1cr5rvI1L3myxa73pYffjP13Y7b19azt3rX3n0pBZz19pt4XRmLdfreDxKmOryb9k7Jb1+Vc8zDSvusrDOUO1MTe/cXfzHZXxeO4dzvzP5GKc18MWD6Xu5x3pyL0mGJLd1n6VfeYv1viaG1fpL9Xt8cu1zrX9v/VvQG+Mk2rLpfo6//RJtn2j9WL5CTUdPMrbHt/q3bNTWM7rW3jtvtZjWtoP+Nr30+mAW+XMKr0zeXFjNV9bms/S/83otG6HpXDrre1n3NSyejZV20Pan8zo+v26LjlrzUs7xu7B/fp2ZZBwHiUM+L6fP+by03rnoeSdjeVavZV5fjy/PIX35EM/1rfkjU2/HQcaxtLfjzZ4j5WjvSNx6nHIf5fpkvUPqxZLV+1765d+lr5bsSv7OrtZP+reM0fPnJrm9y+1jbU/n75XXcnelLS0/W/mO8h563rMNU5CTX3xdzF+7r1bMfW0OsnbWXHNut86v2ndNtlr81ZtXq9mpa/M33jxQKz9R04Vr8iXb2i/jRU8flo9Stl2v6/nTYrzTvykWtPr050Wte9gS82nxuNdPLPGc+WFa50FiDDJX3hfM6YkrRUR2uzzXeyrLn4lfZOjLo8e4fhe+fP+uxDoHWu1aZeM4Lmz/8v2wU9l+v5cxjs01zEl9tnTNevfA+l6Stz0ej9UzRZNhGAaR8fL3mcnvSmd/Tv7OwhYfSZu/nth0HNf72pOHsZ5XlH1YZ2LrfLZ0PG9fixMtmfO41Zrvmt04+TV6HO7xJVp5i9PHzKaMo7kfT3oWXTmTMmax2tTyEt4zeau91tuI5PlSCWu9ys+NLT6H5avW3sW09oz9d6gii3VVztfENbFSeYYmtHdrtXqev/NrUbPT5djps6ZXtbFrf/+gPqcR3zNj73NSS87Sdpj3U+qDkefp1eeaDbRsj+ZblrIMV8RlsI3bZ2YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgL48RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4JOHHVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCTZPe+BQC4hnEcZZ5n9VqMcfGvdb3sr9YmhNAlm4jINE3u+mncYRjc41i0ZNXGaI1bzos1T7U+r7nH2ngeWfJxY4yLNh55rPvfMi9ekpy5vJrsufzpszb3PTosctJLbW5KGbz07MeEtcd72dKPJZelL/l8efe+NZfDMMhutz6mY4zVe+ld428La8569ai2V8u9kGjNSY8M2l6zvrfs3TAMq7FT3XSGlOUxxmp/2vi3IO9L69fSYZH1vZTXPaQ1tOztLfQ+yVnKu3UeW+286zUMgzmHLXrO+t77rOnEFj/Kq9f5GD1+S812TtOkylabd6uvEIJ6//M8r9rkNuJ73/veqvz5+Vl++MMfrvr69a9/Lfv9flF2fxfl9etJxvEyJ/evJpl2p7Pot37rt1bn0sPDg4iI7Ha7hcyp77u7u0X9NN/a2dRai5rt7OnnVEdE5FJvHMfNe0Rrt+VcmqZRhmHZ1zSNMoa6XLfw+WtYtvld7Ddvfeua5pe37JV+hqa2l7Kt89w6W6yzukW+F1v3qslQVk336LHvXhmtOd6616y21h48n/vjUuYtZ3I5x7nvYOmi5hOEEM72L/2b5BzHcWEzU/nhcJBXr16tyn/zm9/I8XhcjPvmmzdyOIyL8p///Fmen08yPDw8yFdffXW+No6jfPHFF+dxcu7v70Uk07XjLPN8lHGcznMxz7PM2fTX4hsNa12u2XPa2TqPQWIMq3pDWMuhyVYr81yzsPxhy7ffMs5wMWQyDCJ511vm2Ypd8n7TPXj3a2uM3nrDMcgwLK9P07QY+9q80LV5jNLXi/FFd+d67sATt3hjmlbu0tNWG9P6nHON71LKa+VMLP1O/rx2rdaXR5a8rLz3W8bVJfk5cm3uq9TT2nhe8lx1C82nKc+Ka+2WRiv/f0t/u9c33SLLreJ1ra8tz0pKe1zWzf2jsl25L5OPU8aytWc74W4vb7JYeRz0s2i328nv//7vm2fVbrczz7ae8i1syce/S2o2tqeP/F/vGLU2Vl5J8zm35q9qflqJtf41W+uZl9rYpc9QYuWbtuQNtX1nydS6r/Jaae/z+/LuBWvMcVyfJel5zMVfbstrya7J7GHLc9JWeUktLov7tS+03+9lCO1zII9harZhy/NX61p53Ts3dswas3Ff6spwzp3EaD8P9j7Du4Za3rzXV/Ku0Ra/yHOtfJ7lWbvdbtc9rjUXuR3s1UltjLIP6xlU3saSpxxzfeaElQ18fr7kfCxZh2EwcoP2WTtNU3MPzvPsOuuscm1/9uRitDlqjW/1V9Mv73Mr757pPRPzvq09usVP9Pr5nnUpffyyL2sveuK/Es/85/uqZhLfZZzuwdKFlp/d8jFaNqXsf5ommRtnx7VzVeqRlTcUueizpaM1+ax8jyXLag1GkfUzumlZp+inJmfuX6Rq0zR1+w6enKZ2JuX1tdyt5kP05D9aeuE577ecxbfM0dTslFbPovds0a7fziZFEdFtabkmrThXk7EnNtb0LP88z7OEsLTXls9dw3NW1+a3Jxbe4nsk8nk9xZ59PqxXplvldOvnUfkOal1mKz+s6Vgr5tPsnSf+TvmEGNf+QW4L+vIA9TPbY2M0WVpxXW+e4dq+enMOW8+SWV5iKYlysmUiIiH73HduXGNXy/2aXblpzrf37BXRbdb6nLRjrVrO0DteWT//vCU/7H1fxvJ3PGNofeV+Zyueq63V0r88lU3TJHPxjohXNu36MAyruGvzXqs8Ryz9zlu9b39+Jn0WOcmz9qk9Z63Xz2yt6xYfrzXmrfDmNPOxyzlyvzNwvPhkiXmeJUx9ftgt/XRvfzX/YmsMse0Mycfqfz4YhyA1252XicjqHbj8fLrYh8sZlmSyzzffmeTJHdf61OLxVn81HdNia6/ub/GPrLxv3tcy93wpC2Edf3l0NK/rySV47FPNttfygLks+btGYbj4a/k9x9mep5rsvb5Kfib2rr3XNtT0PdnPEILEoy17Pu+1/LA2D1vs4XqP6fW09rfyuXpi89a5p71j4rEJqb7fZuntl3b+skbWfa/yFPP6rA3zLPFFL8qzJ33X4v0han+blK9f/xrW8j0Wnr1UzmnedV6unRdlv949UbbR8qpJV9J36/2+fF7yOmcdmNOZk8VbEs/LcW1cWlI7hz3z482d1L6XZeXc1fwfb8xpnZNRFFmy+faO17rWy7BUZtWOfKhocwrvlttkkwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+MvjxFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgk4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JOEH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAT5Ld+xYA4BrmeTavjePpt4VijOr1snwYhk0yWP3XZNMIIZh9hRDU8nSPpex5P+W12n32zoEll3UfIheZvW1ijN3zUsO6R2uMYRi652WLLln6EmOUYZDzfyIiQ/b/rTb5v2W5VV9jyxzfii26WtOXaZq6+yrXxdpzCWsdx3E02/SWb6E2vrUnD4fDzcav6dgt7E4q67Xrmk60bETPnqjZlfSv1yalccvx8756iTHK8XhU+7PwjlO7t1Yf2rxZ+7fXrnnsXTknNXrHGcdR3XMhhE127ZZ2opctY/f6ALUxevsSEdntlqHPln3d8sksuYZhWI2f7Oz9/b1a/vnnny/K0xkzz7O8fv16ce14/Fru7pa+5N3dINO0F5HTvT4/P5+v7Xa7874qdT7JU95rqm/ZIY10LZertka3PC9qWDalthctajJb9bf6/DXOfuKL/d1yH9696Lnn3n2tlVvne93XjZIXhxBkCNtigHLPpvppL1p7RBtrazxR6uoU4qqvcRyqOtIbZ+X9a3JrbWr6Y2Hp+zRNha+Uxujq/iyXVVY7R7RrWl/JXpf1U927u7tFebrnh4eHRfkwDPLwapDf+Z1fLsr/x1/8QI6znrYbBn3d53lexSQ7GWUcL7oUwkmP55fmlk3MZc6pxRYWSUd69fFUrtcvZRLp32s9utvaG1p5y8fQ4he77+WXMg7QbHUtZ7Me+6QLU9D1/1a5gdp8T8p6b7EvPfTGU3HM68Zz23ztara13LfWvNZyir35xi30xnJb/Pma31OLp7T+b50/ybH8EQ/eNj0xaAvrfBDx+ZQ5lg+mrV1LZ3r8yS3616MDt46jb6WHPfFvSy+15wwtffTqR26XyzbJPmm+UekXeQh3d3K82798q+eZPv/882pMUda35ExtvOdeihksHS/PdutM3ZrXs8otH86ysT37bkterxfrTL2lX+A9azS5vPv+FnnkXJes6x7fINdF6zzdIp+XYRjUuEPr17JxF9t2KZ/nWUJY63XSlS362rtHev2jWz8LDUOQ43F+kefS11A8Q7T0tjcX5ckl9FzTqD0v1+ztqWqqH0//F5fxm/eM8IzZurZ1v3j1sSXLLfwiy/bcwo+y8npanRZb5dHO555nUElHtfGPx+OqzTyvZmIj1wAAIABJREFUz+bjcZbjMZzHzdt4/LK8fh4DWM9J1zLpZ0dvvLklR9Tjd7R0oUdXevt/l8/lrvGnrJxYWac3j5PnZBO3ymlvyWOk2wwhiGS38r6ei27Vh1s8KxARmZRnHFv0uhevP27J0uMnWedDaa+1z2EOEuNS55PeXcpPzxrye1g+h8h9h/BS96KLebuePERrPXpzIGWfPX5KK7a4BbU179XNLc8mvfLU6B3H2hP9dmNZrj2jFNn2nmY57pbnKHnbcezLxXm5lc309l0rr8U8eZNaTFjrv7xmPZus0fNsIcxRQkhx48WWpT4Oh4McDpfxNR+1lDnHyje18lCaPVP9kbF4RvaCdnb4/KxcJjuOsvo6+U3L9drtdhJ2Sx+o5o/15seteEXLb1p9a7phnbO162U/YQoSQpQ4VJ7/Tfrc9OT+9PVY+gaeM/oW58uWc601/2Fa+zMhzCKzPY71DmLZd065Fr25qN73UnpyFdYzqGveNWzHVsmOyHnsEAZT38v+WzJqtOIjK3dbrl0tHujNV5aU7ynHWOZB4vldrBa9frM3lt2Sj7CwYuHlewH9426Jh7x59GEY1DjxlvPi5VZ++rW50V40W27pdcvns/rXy97dcy8rB+619bnulf5Vz/psvZ/c/gXZFve0+hVp25k0jbVnlbXP175b1fOuR+4Pe9bItkuX+vmzpVs8P+yNc7y+Wu9ZF0KQKH19ef0m61pt/jV/Ja1jCGk9h4U+tmKWW7yD4NWlGlvzFrfm8vzQJ4vXbovoa3leozFm8eKprXY+n7778r01rjn3Lfu+lrVf3t7njLW43rILuX3p0tEpyFBxZHueO/XkI7x1LHm8z308drf1vojnTPOedzH4fJ3e89N7xr0PPPtKq3uxW9mzjxDkPf5JN7wwfNuHGEAvw+lkUy2N9bDpQ6X2Mv1ut9vsVN4iKaz10wL78e0whigyiKS/gUrvDA7hw3EQcmoJ4tof9gHAu4E9CfBhcusXIMvtnG/9b+OFYC/X2qQxFA++xg/DHypfJhnityPX+xr3QyRKXEeNL/nv3gcu3hdbvW1uRowyFsOHQfQ3zlzd+ZN8W/rawuLhUmVNv4uUee9bJk3H8qWB95RsriXJzcR/WfypJZNPT7CWZfmb/9dQzu173l+DiAzliwvD8GFt+fWzxE9PJwEAvkVi+cJE5YevAeC7jxnXfOoxwyd+/yu9mAqH/RObD/gwGYuEXvhAn/EDvHc6z7RWrvFDyYnegu/SvbwTLN3Z6Cd9EPP9ift4nwwf6Tp/EHvkPfAx33fMdG0Yls+bPwrf9JZ75QZ9fcy68E44v9P88oeH6Z2Vd/kXQo11vOUavctn+MuBiu8fyZnwMcNe7uBT1c8P/L5LHf7g3q340Ll2fbV3R1rv3FTGdL0v84Hr5E35lu/1kzwTkg/38tX6LYJN7/p9oMRCXM8Pib0PPkl9vJJ39Qwmlj9S4QgGLnr28gMkhiwf8jprssVijj/Uv2X18F26l4+Bj2G+t+z12wuh/31I6VpW/lYjxliedHAL+PEV+OAZhsrPYgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfALE+An/Lzi/Q/hFGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgk4cdXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JOEH18BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATxJ+fAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+SXbvWwAAB1FEhrLw/v5efvzjH78HcbbzP//n/5Snp6dV+cd4LwAW6DnAhwV7EuC7y+FwkP/4j/+o1hmGQf7kT/7kW5KoDTYJAODThTMAAAAAtoIfAQAAAAAAOcQIAAAAAAAAAAAA7w7ybwAAAB8O1rksp99egHcAP74CHwP/n4j8aVn44x//WP71X//1PYiznT/7sz+Tn/70p6vyj/FeACzQc4APC/YkwHeXf/7nf5a/+Iu/qNYZx/GD2uvYJACATxfOAAAAANgKfgQAAAAAAOQQIwAAAAAAAAAAALw7yL8BAAB8OFjnspx+ewHeAeP7FgAAAAAAAAD6+eqrr5p15nn+FiQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4eOHHVwAAAAAAAD5CPD++IiISY3zHkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHy88OMrAAAAAAAAHyHeH1/5+uuv37EkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHy/8+AoAAAAAAMBHiPfHV7788st3LMn/z959R0dV5/8ffyUBQ0IRBFxQkd4JVUCQGl2KIhBBIJQACkgVgRUQEBVXcIV1cQFpoiAgIr2LNAEjIL0kVAHpkASSQJJJnd8fHv25fpHMnbl3JpM8H+d4jjLv9/28EkMyyZn7CgAAAAAAAAAAAAAAAAAAAAAAAAAA3ovyFQAAAADwQvHx8Q7NUb4CAAAAAAAAAAAAAAAAAAAAAAAAAMBfo3wFAAAAALxQXFycQ3PR0dEWJwEAAAAAAAAAAAAAAAAAAAAAAAAAwHtRvgIAAAAAXsjR8pWoqCiLkwAAAAAAAAAAAAAAAAAAAAAAAAAA4L0oXwEAAAAAL0T5CgAAAAAAAAAAAAAAAAAAAAAAAAAArqN8BQAAAAC8EOUrAAAAAAAAAAAAAAAAAAAAAAAAAAC4jvIVAAAAAPBCjpavREdHW5wEAAAAAAAAAAAAAAAAAAAAAAAAAADvRfkKAAAAAHghR8tXoqKiLE4CAAAAAAAAAAAAAAAAAAAAAAAAAID3onwFAAAAALwQ5SsAAAAAAAAAAAAAAAAAAAAAAAAAALiO8hUAAAAA8EKOlq9ER0dbnAQAAAAAAAAAAAAAAAAAAAAAAAAAAO9F+QoAAAAAeBm73a74+HiHZqOioixOAwAAAAAAAAAAAAAAAAAAAAAAAACA96J8BQAAAAC8TEJCgjIyMhyajY+PV3JyssWJAAAAAAAAAAAAAAAAAAAAAAAAAADwTpSvAAAAAICXiYuLMzQfHR1tURIAAAAAAAAAAAAAAAAAAAAAAAAAALwb5SsAAAAA4GUoXwEAAAAAAAAAAAAAAAAAAAAAAAAAwByUrwAAAACAlzFavhIVFWVREgAAAAAAAAAAAAAAAAAAAAAAAAAAvBvlKwAAAADgZShfAQAAAAAAAAAAAAAAAAAAAAAAAADAHJSvAAAAAICXMVq+Eh0dbVESAAAAAAAAAAAAAAAAAAAAAAAAAAC8G+UrAAAAAOBljJavREVFWZQEAAAAAAAAAAAAAAAAAAAAAAAAAADvRvkKAAAAAHgZylcAAAAAAAAAAAAAAAAAAAAAAAAAADAH5SsAAAAA4GUoXwEAAAAAAAAAAAAAAAAAAAAAAAAAwByUrwAAAACAl4mPjzc0Hx0dbVESAAAAAAAAAAAAAAAAAAAAAAAAAAC8Wy5PBwBykoEDByoqKur//HnRokU9kAawBh/nQNbC30kge4qLizM0f7/PA57A5yQAyLn4GgAAAJzF8wgAAAAAf8T3CAAAAAAAAIB1+PkbAADIyXzsdrunMwAP5OPjEyGpyp//vEqVKoqIiPBAIgAAAMCz2rdvrzVr1jg8X7RoUd26dcvCRAAAAAAAAAAAAAAAAAAAAAAAAAAAM1StWlWRkZH3eyjSbrdXdXeenMDX0wEAAAAAAMbExcUZmo+JiVFGRoZFaQAAAAAAAAAAAAAAAAAAAAAAAAAA8F6UrwAAAACAlzFavpKRkaE7d+5YlAYAAAAAAAAAAAAAAAAAAAAAAAAAAO9F+QoAAAAAeBmj5SuSFBUVZUESAAAAAAAAAAAAAAAAAAAAAAAAAAC8G+UrAAAAAOBlKF8BAAAAAAAAAAAAAAAAAAAAAAAAAMAclK8AAAAAgBex2+1Ola9ER0dbkAYAAAAAAAAAAAAAAAAAAAAAAAAAAO9G+QoAAAAAeJGkpCSlpaUZ3ktISLAgDQAAAAAAAAAAAAAAAAAAAAAAAAAA3o3yFQAAAADwIvHx8U7tJScnm5wEAAAAAAAAAAAAAAAAAAAAAAAAAADvR/kKAAAAAHiRuLg4p/ZsNpvJSQAAAAAAAAAAAAAAAAAAAAAAAAAA8H6UrwAAAACAF3G2fCU5OdnkJAAAAAAAAAAAAAAAAAAAAAAAAAAAeD/KVwAAAADAizhbvmKz2UxOAgAAAAAAAAAAAAAAAAAAAAAAAACA96N8BQAAAAC8iLPlK8nJySYnAQAAAAAAAAAAAAAAAAAAAAAAAADA+1G+AgAAAABexNnyFZvNZnISAAAAAAAAAAAAAAAAAAAAAAAAAAC8H+UrAAAAAOBFnC1fSU5ONjkJAAAAAAAAAAAAAAAAAAAAAAAAAADej/IVAAAAAPAizpav2Gw2k5MAAAAAAAAAAAAAAAAAAAAAAAAAAOD9KF8BAAAAAC/ibPlKcnKyyUkAAAAAAAAAAAAAAAAAAAAAAAAAAPB+lK8AAAAAgBeJj493as9ms5mcBAAAAAAAAAAAAAAAAAAAAAAAAAAA70f5CgAAAAB4kbi4OKf2kpOTTU4CAAAAAAAAAAAAAAAAAAAAAAAAAID3o3wFAAAAALyIs+UrNpvN5CQAAAAAAAAAAAAAAAAAAAAAAAAAAHg/ylcAAAAAwIs4W76SnJxschIAAAAAAAAAAAAAAAAAAAAAAAAAALwf5SsAAAAA4EWSkpKc2rPZbCYnAQAAAAAAAAAAAAAAAAAAAAAAAADA+1G+AgAAAABeJCUlxam95ORkk5MAAAAAAAAAAAAAAAAAAAAAAAAAAOD9KF8BAAAAAC/ibPmKzWYzOQkAAAAAAAAAAAAAAAAAAAAAAAAAAN6P8hUAAAAA8CLJyclu3QMAAAAAAAAAAAAAAAAAAAAAAAAAIDujfAUAAAAAvEhKSopTezabzeQkAAAAAAAAAAAAAAAAAAAAAAAAAAB4P8pXAAAAAMCLOFu+kpycbHISAAAAAAAAAAAAAAAAAAAAAAAAAAC8H+UrAAAAAOBFnC1fsdlsJicBAAAAAAAAAAAAAAAAAAAAAAAAAMD7Ub4CAAAAAF7Cbrc7Xb6SnJxschoAAAAAAAAAAAAAAAAAAAAAAAAAALwf5SsAAAAA4CVSU1Od3k1JSVFGRoaJaQAAAAAAAAAAAAAAAAAAAAAAAAAA8H6UrwAAAACAl0hJSfHoPgAAAAAAAAAAAAAAAAAAAAAAAAAA2Q3lKwAAAADgJVwtT7HZbCYlAQAAAAAAAAAAAAAAAAAAAAAAAAAge8jl6QAAAAAAAMckJyd7dB8AAAAAAAAAAAAAAABwp2vXrqly5cqKj4+/7+O+vr46ceKEKleu7OZk2VNGRoZq1KihEydO3PfxwMBARUREqFSpUu4NBgCZyMjI0MmTJ3X27FmdO3dOP//8s86dO6fo6Gjdu3dPCQkJunfvnhITE+Xr66uHHnpI/v7+yp8/vwoXLqwiRYqoWLFiKl26tMqUKaPy5curevXqyps3r6ffNAAAAACAm1C+AgAAAABeIiUlxaV9ylcAAAAAAAAAAAAAAADgTYYMGfKXxSuS1KVLF4pXTOTr66sJEybopZdeuu/jiYmJGjRokDZs2ODmZADwv9LT07V//37t2rVLO3fuVHh4uOLi4hzeTU1NVUJCgm7fvq1ffvnlvnO+vr4qX7686tatq+bNmys4OJjyKQAAAADIxnzsdrunMwAP5OPjEyGpyp//vEqVKoqIiPBAIgAAAMAzzp49qwoVKji9f/r0aZf2AQAAAAAAAAAAAAAAAHdZv369Xnzxxb983M/PT5GRkbwexgJ169bVgQMH/vLxZcuWqWPHjm5MBAC/OnjwoBYtWqQlS5bo5s2bbj+/YsWK6tChgzp06KDatWu7/XxXNWvWTDt37vR0DIf4+voqICBAAQEBypcvn5544gmVKFFCpUqVUu3atVWnTh2VLl3a0zEBAMhx3n33Xb333nuGdk6ePKlKlSpZlMgaKSkpevnll7V27VqXrlOgQAFt2rRJDRs2NCkZcpKqVasqMjLyfg9F2u32qu7OkxPk8nQAAAAAAIBjUlJSXNpPTk42KQkAAAAAAAAAAAAAAABgnYSEBA0aNOiBM127dqV4xSL//Oc/1apVq798/I033lDLli2VP39+N6YCkFMlJSVp7ty5mjlzpk6dOuXRLKdPn9bEiRM1ceJEVatWTa+99pq6d++uggULejRXdpSRkaGEhAQlJCQoOjpaFy9e/D8zjz32mJ5//nm98MILat26tfz9/d0fFAAAZDupqammFK8ULFhQmzdvVr169UxKBsBqvp4OAAAAAABwjKvlKTabzaQkAAAAAAAAAAAAAAAAgHXeeecdXbp06S8f9/Pz0/jx492YKGdp2bKlGjVq9JePX716VePGjXNjIpht1qxZ8vHxyfSfUqVKeToqcrCEhARNmTJFpUuX1tChQz1evPJnJ06c0JAhQ1SiRAmNHDlSN27c8HSkHOfatWv67LPPFBISoieeeEJvvvmmLly44OlYAADAi5lVvFK4cGFt376d4hXAy+TydAAAAAAAgGNSUlJc2ne1vAUAAAAAAAAAAAAAAACw2vHjx/XJJ588cKZ79+4qV66cmxLlTO+9956effbZv3x8xowZ6tmzp2rXru3GVDDDqVOnNGLECE/HsNyFCxe0d+9eHT16VCdPntTVq1d17do1JSQkKCkpST4+PipQoIDy58+vAgUKqHDhwqpSpYqqVaumatWqKSgoSAUKFPD0m5Ej2e12zZkzR+PGjVN0dLSn42Tq3r17mjx5sqZNm6YRI0Zo7NixCggI8HSsHCc6OlpTpkzR1KlT9eqrr2r8+PF67LHHPB0LwB9EREQoIiJCp0+f1pkzZ3Tu3DnFxsbq3r17v/8jSXny5JG/v7/y5s2rv/3tb/rb3/6m4sWLq0KFCqpSpYqqVq2qkiVLevitsd7169f1448/6ujRo4qIiNCVK1d07do13b17V0lJSbLb7b8/j8mfP78KFSqkSpUq/f48JigoSIULF/b0m2G527dvKzw8XEePHtWJEyd0+fJlXb16VXFxcUpKSlJaWtrv76cCBQro4YcfVoUKFX5/zle9enUVK1bM028GsojU1FR16tRJa9ascek6jz76qLZu3aqgoCCTkgFwF8pXAAAAAMBLuFq+YrPZTEoCAAAAAAAAAAAAAAAAmM9ut2vAgAFKS0v7yxk/Pz+NHTvWjalypuDgYDVt2lQ7d+687+Pp6enq37+/9u7dK19fXzeng7NSUlLUtWtXJSYmejqKJX766SctXrxY69ev1/nz5zOdj46O/p9yj+3bt//+77ly5VLjxo3Vvn17tW/fXk8++aQlmfG/Tp06pX79+mn37t2ejmKYzWbTBx98oMWLF2vq1Klq166dpyPlSGlpaZo9e7YWLlyoSZMmaciQIfLx8fF0LCBHio2N1caNG7V582Z99913unHjhkN7vxWxxMTE6NKlS/edKV68uBo3bqzmzZurffv22aY8IyIiQosWLdK6desUERGR6fzt27d1+/bt3/97165dv/+7j4+P6tWr9/tzmUqVKlmS2RMuXryoxYsXa9WqVTp8+LAyMjIeOB8bG6vY2Njf/zs8PPx/Hg8KCvr9/US5ZM6Vmpqqzp07a/Xq1S5dp3jx4tq2bZsqV65sUjIA7sRPuAAAAADAS7havpKcnGxSEgAAAAAAAAAAAAAAAMB88+fP/z83wv1ZaGioypcv76ZEOdt77733wMf379+vmTNnuikNzDBmzBgdPnzY0zFMlZqaqgULFigoKEj169fXf//7X4eKVzKTlpamHTt2aOjQoSpZsqSaNm2qTZs2mZAY95ORkaEPPvhANWvW9MrilT+6ePGi2rdvr5dffll37971dJwcKzExUUOHDlXTpk117do1T8cBcpQTJ06of//+evzxx9WtWzd9+eWXDhevOOr69ev65ptvNGDAAD3++ONq3ry5FixY4PLr7T3Bbrdr9erVatiwoapVq6YPP/zQoeIVR667b98+vfXWW6pcubJq1aqlr7/+Wunp6Sak9owdO3aoVatWKlOmjMaNG6eDBw9mWrziiOPHj+v9999XnTp1VK5cOc2ePZt7L3KYtLQ0denSRatWrXLpOiVKlNCuXbsoXgG8GOUrAAAAAOAlXP0Bns1mMykJAAAAAAAAAAAAAAAAYK47d+5o1KhRD5zx9fXV2LFj3ZQITZs2VXBw8ANnxo4da/rNtLDGtm3b9PHHH3s6hqlWr16typUrq1evXjpx4oSlZ+3atUvPP/+8atWqpRUrVlh6Vk4TGxurNm3aaNy4cdnqRufly5erXr16OnnypKej5Gi7d+9W3bp1tX//fk9HAbK906dPq3Xr1goKCtLs2bOVmJjolnMzMjL0/fffq1evXipZsqQmTpzotrNdtWvXLtWpU0chISHas2ePpWcdOXJEoaGhqlSpkj777DNTSkvc5dixYwoODlZwcLA2b94su91u2Vk///yz+vfvr9KlS2vKlCnZ6rkJ7i8tLU2dO3fWypUrXbpOqVKltHPnTpUrV86kZAA8gfIVAAAAAPASrjZx84M/AAAAAAAAAAAAAAAAZFVjx45VVFTUA2c6deqkSpUquSkRJOntt99+4ONxcXEaPny4m9LAWTExMQoLC7P0RlV3unnzptq2bauQkBD9/PPPbj37yJEj6tixo9q1a6ebN2+69ezsKDIyUvXq1dOmTZs8HcUSp06dUr169bR27VpPR8nRrl27piZNmmjLli2ejgJkS0lJSRo3bpyqV6+ub7/91qNZbty4obFjx6pixYpavHixR7M8yN27d/Xqq6+qadOmOnz4sFvPPnfunPr27asmTZro3Llzbj3bqJSUFL311luqXbu2duzY4dazr1+/rjfffFO1a9fWgQMH3Ho23CctLU1dunRxuXilXLly2rVrl0qXLm1SMgCeQvkKAAAAAHgJV8tXbDabSUkAAAAAAAAAAAAAAAAA8xw5ckRz5sx54IyPj4/eeustNyXCb5o1a6ZGjRo9cGbJkiXaunWrmxLBGX369NG1a9c8HcMUO3bsUFBQkNatW+fRHGvXrlXVqlX1zTffeDSHN/vuu+/09NNP6+zZs56OYql79+6pY8eOWrNmjaej5Gg2m03t2rXT999/7+koQLZy4cIFPfXUU/rggw9cfq27ma5cuaLu3burXbt2iomJ8XSc/3H8+HHVrFlTn3/+uUdzhIeHq0aNGpo2bZpHc/yVS5cuqUGDBvrwww+Vnp7usRyRkZFq0KCBxo8fr7S0NI/lgPnS0tIUGhqqFStWuHSdSpUqaefOnSpRooRJyQB4EuUrAAAAAOAlXP2BdHJysklJAAAAAAAAAAAAAAAAAPMMGTIk0xvq2rRpo+rVq7spEf7o7bffznRm0KBBvD4pi5ozZ45Wr17t6RimmDdvnlq2bKmoqChPR5EkxcTEqHPnzpowYYKno3idzZs3q127drp7966p182dO7caN26sYcOGadasWdqxY4fOnj2r69ev6969e0pPT1dSUpLu3Lmjy5cv68CBA9q4caOmTZumwYMHq1mzZsqXL5+pmSQpNTVVnTp10vr1602/NhyXlJSktm3b6syZM56OAmQLu3fvVr169RQZGenpKH9p7dq1ql69ug4dOuTpKJKkDRs2qGHDhjp//ryno0iSEhMT9frrr6tfv34eLTj5s59++kn16tXLMv/f0tLS9P777yskJERJSUmejgMTpKWlqWvXrlq+fLlL16lWrZq+//57PfbYYyYlA+BpuTwdAAAAAADgGFdfnGCz2UxKAgAAAAAAAAAAAAAAAJhj8eLF+uGHHzKdGzt2rBvS4H5atGihevXq6aeffvrLmTNnzuhf//qXxo8f78ZkyMzp06c1bNgwT8cwxX//+18NHTrU0zHu65133lF0dLQ++eQT+fj4eDpOlrdp0yaFhISYVtiUP39+denSRSEhIWrSpIny5s37wPk8efIoT548KliwoJ544on/83h6erqOHTumjRs3at26ddq3b58pOVNSUtSxY0dt2bJFjRs3NuWaMO7u3bvq0KGD9u3bp8DAQE/HAbzWpk2b1L59e5d/uag7XLt2Tc2aNdOaNWvUvHlzj+VYsWKFQkNDlZqa6rEMf2Xu3LmKiYnRV199JX9/f49mCQ8PV+vWrU0vaDPD+vXr9fe//13r169XwYIFPR0HTkpLS1O3bt20bNkyl65Ts2ZNbdmyRUWKFDEpGYCswNfTAQAAAAAAjnH1h9P8ZhkAAAAAAAAAAAAAAABkJYmJiRo1alSmc8HBwapfv74bEuGvjB49OtOZSZMm6fz5825IA0ekpqaqa9euSkxM9HQUl82ePTvLFq/8Ztq0aerdu7enY2R5mzdvNq14pWrVqpo/f75u3LihOXPmqHXr1pkWrzjCz89PtWrV0tixY7V3716dPXtWo0ePNuXG2uTkZHXp0kU3b950+VrusmPHDtntdsv/SU1NVXx8vG7evKnz589r9+7dWrRokT744AOFhISoWLFipr1NJ06ccOjrGoD7O3z4sDp16uQVxSu/uXv3rl544QXTCrWM2rBhg7p06ZIli1d+s3LlSrVp08ajGQ8ePKhWrVplyeKV34SHh6tp06aKj4/3dBQ4IT09Xd26ddM333zj0nWeeuopbd++neIVIBuifAUAAAAAvISrP6C22WwmJQEAAAAAAAAAAAAAAABc969//UtXr17NdG7kyJFuSIMHad++vSpXrvzAGZvNpiFDhrgpETIzduxYHTp0yNMxXPbtt99q0KBBno7hkAULFujDDz/0dIws6+TJk+rUqZPLxStly5bVokWLdOzYMfXs2VOBgYEmJby/cuXKadKkSboSIHO5AAAgAElEQVR48aKmTJni8k22165dU9euXZWRkWFSwuwhV65cyp8/vx599FGVLl1ajRo1Urdu3TRmzBitXLlS169f16lTpzRu3DiVLFnS5fM+/fRTHT161ITkQM5y6dIlvfDCC7p3756noxiWlJSktm3b6uLFi24998iRI+rSpYvS0tLceq4ztm7dqtdff90jZ1++fFkvvviiV3xsHTt2TKGhoXwt9zJmFa80aNBAW7duVaFChUxKBiAryeXpAAAAAAAAx7havmLGb4oAAAAAAAAAAAAAAAAAzHDlyhVNmTIl07kaNWqoZcuWbkiEB/Hx8dGoUaPUq1evB85t3LhRa9asUbt27dwTDPe1bds2h/5+ZXUXLlxQly5dlJ6e7tJ1Hn74YTVu3Fi1a9dW1apVVahQIRUsWFApKSmKjY1VTEyMjh49qkOHDmnPnj0uvdZu7Nixqlatmtq0aeNS5uzmzp07atu2reLj452+hp+fn0aOHKl3331XDz30kInpHJM3b16NGDFCr7zyisaNG6dZs2Y5fdP19u3bNXHiRI0bN87klNlbxYoV9f777+u9997TvHnzNG7cON26dcupa6Wnp2v48OHatm2bySmB7MtutyssLEzXr193+Vp58uRRgwYNVK1aNZUrV04lS5ZUvnz5lC9fPklSTEyMYmJidOXKFYWHhys8PFyxsbEun3vr1i2FhYVp586d8vHxcfl6mYmNjVX79u1dLhQJCAhQo0aNVKdOHQUFBalw4cIqVKiQ0tPTFRsbqzt37uj48eM6dOiQfvzxR5fOmzVrloKCgjRw4ECXMhuRkpKil156yeWPrVy5cqlhw4Z66qmnVKNGDRUtWlQFCxaUr6+vYmNjFRsbq5MnT+rgwYPas2ePYmJinD5r48aNGj16tD766COXMsM90tPT1b17dy1dutSl6zRp0kQbNmz4/XMVgOyH8hUAAAAA8BKulqfYbDaTkgAAAAAAAAAAAAAAAACueeutt5SYmJjp3MiRI92QBo7o2rWrxo4dq6tXrz5wbujQoWrRooUCAgLclAx/FBMTo549e8put3s6ikvS0tIUGhqquLg4p6/RtGlTDRw4UG3btlWePHkc2omNjdWyZcs0Y8YMHT161PCZGRkZ6tatmw4fPqwyZcoY3s+O0tLS1KlTJ507d87pa1SsWFGLFi3SU089ZWIy5xQqVEgzZsxQSEiIunfvrps3bzp1nYkTJ6pHjx4qWbKkyQmzP19fX/Xt21cdOnRQ165dtXnzZqeus337dh04cCBLfFwB3mD27NnauXOn0/v+/v7q0KGDevXqpcaNGzv8tVn69evr3r17NWPGDC1btkypqalO59i9e7emTZum119/3elrOKpPnz765ZdfnN6vWbOmXn/9dXXs2FH58+d3aCcxMVGrV6/WrFmztHv3bqfOHTp0qGrVqqUGDRo4tW/UW2+9pQMHDji9X6ZMGQ0bNkydO3dW0aJFHdpJTU3Vpk2b9Nlnn2ndunVOnTt58mTVq1dPHTt2dGof7pGenq4ePXro66+/duk6zz77rNauXavAwECTkgHIinw9HQAAAAAA4JiUlBSX9l0tbwEAAAAAAAAAAAAAAADMcPjwYS1evDjTuSeffFKdOnVyQyI4Infu3A7dpPrLL79o4sSJbkiE++nbt2+mBTne4KOPPtK+ffuc2i1btqzWrVun77//Xp06dTJ0c3fBggXVt29fHTp0SPPmzdOjjz5q+Pz4+HgNHDjQ8F52NW7cOG3dutXp/VatWmnfvn1ZriDjueee0+HDhxUUFOTUflJSkv7xj3+YnCpneeSRR7Rx40b169fP6WtMnjzZxERA9nX16lWNGjXKqV0/Pz8NGjRIV65c0eLFi/X3v//d0Ndm6dfSpYYNG2rx4sW6dOmSBgwYIB8fH6fySNI777zjUsGbI7766iutWLHCqd1HH31UCxYs0KFDh9S7d2+Hi1ckKTAwUF27dtWuXbu0atUqp8rg0tLS1K9fP5dKbhwVHh6u//znP07t5suXT1OnTtWpU6c0ePBgh4tXpF+/t2nbtq3Wrl2rnTt3qmbNmk5lGDx4sGJjY53ahfV+K15ZsmSJS9dp1aqV1q9fT/EKkANQvgIAAAAAXsLV8hWbzWZSEgAAAAAAAAAAAAAAAMB5o0aNkt1uz3RuyJAhypUrlxsSwVH9+vVTvnz5Mp2bPHmyzp8/74ZE+KO5c+dq1apVno7hsp9//ln//Oc/ndoNCQnRwYMH1aZNG5cy+Pr66pVXXtGBAwdUu3Ztw/ubN2/W119/7VKG7GD//v2aMmWK0/tDhw7V+vXr9fDDD5uYyjzFixfXrl27VL9+faf2ly9frh07dpicKmfx9fXVzJkz9dJLLzm1v2bNGt29e9fkVED2M2bMGMXHxxveK1++vA4dOqTp06erSJEipmQpVqyYPv30U+3cuVMVK1Z06hqxsbH65JNPTMlzP3fu3NHw4cOd2m3UqJEOHz6ssLAwlwpmJKl9+/Y6ePCgWrRoYXj3xIkT+ve//+3S+ZlJTU3Va6+95tD3hn9WpUoV7d+/X0OHDlXu3LldytGkSRPt3btXPXr0MLx78+ZNjR492qXzYY309HSFhYW5XLzStm1brVmzxnBpFADvRPkKAAAAAHgJV8tXkpOTTUoCAAAAAAAAAAAAAAAAOGfLli3asmVLpnP58uVT37593ZAIRhQsWFCvvPJKpnPJycn6xz/+4YZE+M2ZM2c0bNgwT8cwxYgRI5SUlGR4r3///lq5cqWpRR0lSpTQ7t271bhxY8O7w4YNU1xcnGlZvE1KSop69+6t9PR0p/ZHjx6tqVOnys/Pz+Rk5ipYsKDWr1+vcuXKObU/YcIEkxPlPL6+vvr888/12GOPGd5NTk7WunXrLEgFZB8nT57UokWLDO8999xz2r9/v6pXr25BKqlx48Y6dOiQ2rZt69T+9OnTlZaWZnKqX7333nu6efOm4b0XX3xR27dvd+rz2V8pWLCgNm7cqM6dOxvenTBhgi5cuGBalj+bMWOGIiIiDO/Vq1dPe/bsUaVKlUzL4u/vry+//FIjRowwvDtnzhzt2bPHtCxwXXp6unr27KmvvvrKpet07NhRy5cv10MPPWRSMgBZHeUrAAAAAOAlXC1PsdlsJiUBAAAAAAAAAAAAAAAAnPPWW285NPfKK6+YWqAA8wwaNEg+Pj6Zzq1atYqbEN0kNTVVoaGhSkhI8HQUl/34449as2aN4b0ePXro008/tSCRFBgYqNWrV6tixYqG9m7cuKEpU6ZYkskbvP/++07dUC1Jb775piZNmmRyIusUKVJEGzZsUN68eQ3vfv/99zpy5IgFqXKWhx9+WJ988olTu2vXrjU5DZC9TJkyRRkZGYZ2GjZsqDVr1lj+fD4wMFArV65Uu3btDO9GRUXpu+++Mz3TxYsXNXPmTMN7zz77rJYtW6bcuXObnsnPz08LFixQo0aNDO0lJSVp/PjxpueRpPj4eH3wwQeG94KCgvTtt9+qQIECFqSSJk+erE6dOhnasdvtGjlypCV5YFxGRoZ69uypxYsXu3Sd0NBQff3115b8nQSQdVG+AgAAAABeIiUlxaV9V8tbAAAAAAAAAAAAAAAAAFesXr1aBw8ezHTOx8dHgwYNckMiOKNChQpq0aKFQ7NjxoyxOA0kady4cTp06JCnY5hi3Lhxhndq1KihuXPnOlQK5KxHHnlEy5YtU65cuQztTZs2TXFxcRalyrpOnz6tf/3rX07thoWF6aOPPjI5kfUqVKigqVOnOrXr7B7+10svvaTy5csb3gsPD7cgDZA9xMTE6KuvvjK0U7x4ca1du1aBgYEWpfpffn5+WrJkiapUqWJ4d+nSpabnmTBhguHX/T/++ONaunSp/P39Tc/zG39/fy1btsxwIc6SJUv0888/m55n6tSpio6ONrSTL18+rVixQoUKFTI9z298fHz0xRdfqFSpUob2fvjhB+3cudOaUHCYWcUrPXv21KJFi+Tn52dSMgDegvIVAAAAAPASrpav2Gw2k5IAAAAAAAAAAAAAAAAAxtjtdr377rsOzT733HOqUKGCtYHgksGDBzs09/333+uHH36wOE3Otn37dk2ZMsWh2dKlS1ucxjUHDhzQjh07DO0EBARoyZIllt6s/JugoCANHz7c0E5cXJymT59uUaKsa/z48UpNTTW8V6dOHc2ePduCRO7Rp08fBQcHG977+uuvdevWLQsS5Sy+vr4aMGCA4b0rV67o6tWrFiQCvN/SpUsNvwZ9zpw5Kly4sEWJ7i8gIEDz5883XMRm9HlHZq5du2a49MHHx0cLFy50y/usWLFimjRpkqGd9PR0ffjhh6bmSEpKcur50fTp050q2TIqMDBQn376qeG9f/7znxakgaMyMjLUq1cvLVq0yKXr9O3bV1988YV8falgAHIi/uYDAAAAgJdwtXwlOTnZpCQAAAAAAAAAAAAAAACAMStXrtTRo0cdmh00aJDFaeCq1q1b64knnnBo1uybNfH/3b59W2FhYcrIyMh01tfXVwsXLnRDKudNnjzZ8M6wYcNUuXJlC9Lc3/jx41WoUCFDOzNmzFB6erpFibKeo0ePatmyZYb3ChcurJUrVypPnjwWpHKff//734Zv1k1OTtaqVassSpSzvPjii07tHTlyxOQkQPawZMkSQ/MtW7ZUmzZtLErzYHXr1tVLL71kaOfy5cv65ZdfTMvwySefGH7Nf2hoqJo3b25ahsy89tprqlSpkqGdhQsX6vbt26ZlmD9/vqKiogztPPPMM+rZs6dpGTLTunVrtWjRwtDO1q1bFRkZaVEiPEhGRoZ69+7t8vc7gwcP1uzZsw0XOQHIPihfAQAAAAAv4Wp5itHWcQAAAAAAAAAAAAAAAMAsjv6G9ccee8xjN2zCcX5+furdu7dDsxs3buQmRIv07dtXV69edWh29OjReuaZZyxO5Lxbt24ZLp949NFHNXr0aIsS3V/evHnVv39/QzvXr1/Xxo0bLUqU9bz99tuy2+2G9z7++GM9+eSTFiRyr5o1a6pjx46G9yhfMUe5cuVUunRpw3sXL140Pwzg5e7cuaM9e/YY2hk5cqRFaRwzYMAAwztmlS+lpKTo888/N7Tj7++viRMnmnK+o3x9fTVs2DBDO8nJyVq8eLFpGWbNmmV4Z8qUKaad76gRI0YY3pk3b54FSfAgGRkZeuWVV/Tll1+6dJ0RI0Zo2rRpFK8AORzlKwAAAADgJYy2YP+Zq+UtAAAAAAAAAAAAAAAAgDO+++47HTx40KHZXr16yc/Pz+JE1rLb7YqJidHFixd16tQpHTt2TKdOndL58+d1/fp1l18HlFW88sorDt2YZrfbNWPGDDckylk+++wzrVy50qHZOnXq6N1337U2kIvmz5+v1NRUQzvDhw9X/vz5LUr014YMGaJcuXIZ2skpN+IeOHBA69atM7zXrFkzhYWFWZDIM4YPH254Z/v27YqLi7MgTc5TtWpVwztZuXzFZrPp6tWrOnfunE6cOKGIiAidPXtWv/zyi2JjYz0dD9nY9u3blZ6e7vB8tWrVFBwcbGGizDVv3lwFCxY0tHP+/HlTzl69erWio6MN7fTu3VslS5Y05XwjwsLCVLhwYUM7Zj2X+emnn3Ts2DFDO61atdLTTz9tyvlGtGjRwvDXlIULFxp+TgvnZWRk6NVXX9WCBQtcus6YMWM8UvADIOsx9p0+AAAAAMBjXH3Rhc1mMykJAAAAAAAAAAAAAAAA4LjJkyc7PNu7d28Lk5jLbrfr1KlT+uGHH3T06FFFRkbq7NmzunnzZqY33OXPn1/FihVT2bJlVbZsWVWrVk116tRR9erV5e/v76a3wDWlSpXSM888ox9++CHT2YULF+rDDz/0SFFGdnTmzBm98cYbDs0GBARo0aJFyp07t8WpXGP0hsmAgAD16dPHojQPVrx4cQUHB+u7775zeGfDhg26ffu2HnnkEQuTed706dMN7+TOnVuzZs2yII3n1K9fX3Xr1tX+/fsd3klNTdWGDRvUtWtXC5PlDJUqVdL69esN7dy4ccOiNI6Lj4/Xnj17tG/fPkVEROjkyZO6fPlypgUruXLlUpEiRVSyZEmVLVtW5cuXV+3atVWnTh09/vjjbkqP7Cg8PNzQfLt27SxK4jhfX181atTI0OeACxcumHK2M+UPgwcPNuVso/LkyaMOHTpozpw5Du8cPXpUx48fV1BQkEtnO/N+GjJkiEtnuqJbt24aM2aMw/NRUVH69ttv9eKLL1qYCtKvxSt9+vTR/PnzXbrOu+++q3feececUAC8HuUrAAAAAOAlXC1fSU5ONikJAAAAAAAAAAAAAAAA4JiTJ09q69atDs02aNBA5cqVsziRa1JSUrR582atWrVK69evV1RUlFPXuXv3ru7evauzZ8/+z5/nyZNHjRo1UsuWLRUSEqKyZcuaEdsyPXr0cKh85e7du1q0aJEGDBjghlTZW2pqqrp166aEhASH5qdMmaJKlSpZnMo1ERERioyMNLQTGhqqwoULW5Qoc507dzZUvpKWlqZNmzapW7duFqbyrLi4OC1btszwXvfu3VWxYkULEnlWaGioofIVSdqxYwflKyYoUqSI4Z3ExEQLkmTu/PnzWrFihVatWqV9+/YpIyPD8DXS0tJ048YN3bhxQ/v27fufx0qXLq0WLVro+eefV6tWrfTQQw+ZFR05gNHPYS+88IJFSYwxWsB0584dl8+MjY3Vli1bDO0EBweratWqLp/trM6dOxsqX5GktWvXulS+kpGRoRUrVhjaKVu2rFq3bu30ma7q3LmzofIV6df3E+Ur1rLb7erTp4+++OILl64zadIkjR492qRUALIDX08HAAAAAAA4JrPyFD8/vwc+brPZzIwDAAAAAAAAAAAAAAAAZGr69OkOz4aGhlqYxDW//PKLRo0apRIlSqht27b64osvnC5eeRCbzaatW7fqzTffVLly5dSgQQPNnTs3y772JyQkRL6+jt2aMm/ePIvT5Axvv/22Dhw44NBs69atNXDgQIsTuW758uWGdzxdYtK+fXuHP/Z/s27dOovSZA2LFy82XGDh6+urUaNGWZTIszp16iQfHx9DO3v37rUoTc6SP39+wzvuLF/JyMjQ8uXL9dxzz6lcuXIaOXKk9uzZ41TxSmYuXLig2bNnq127dipWrJj69++v48ePm34OsicjHyv58uVT/fr1LUzjuCeeeMLQvKOFdg+yZs0apaamGtrx9HOZpk2bGi6yc/W5zO7du3Xz5k1DO127djX89dRMZcqUUc2aNQ3trF+/Xna73aJEMKt45T//+Q/FKwD+D8pXAAAAAMBLpKSkPPDxAgUKPPDxzMpbAAAAAAAAAAAAAAAAADPZbDZ99dVXDs36+Pjo5ZdftjiRcRcuXFCfPn1Uvnx5ffTRR7p165Zbz9+7d6/69eunkiVLatKkSUpKSnLr+ZkpWrSoGjZs6NDswYMHdeTIEYsTZW87duzQ5MmTHZotUqSIPv/8c4sTmWP16tWG5h999FE1bdrUojSOeeSRR1S3bl1DO99++63hG7O9ydy5cw3vvPTSS6pYsaIFaTzv8ccfV1BQkKGdyMhI3b1716JEOYe/v7/hHXf83czIyNDChQtVuXJlvfzyy9q2bZtbb86/c+eOZs+ererVq6tVq1bav3+/286G94mKilJcXJzD81WqVDFcSmaVvHnzGpo3o3zJ6HOZ3LlzKyQkxOVzXeHn56fnnnvO0M5PP/1kuDzlj4y+n6Rfy8w8rWXLlobmb9y44XBZIoyx2+3q27evS9/n+Pj4aMaMGXrjjTdMTAYgu8gaz2YAAAAAAJlytXwlq/72GwAAAAAAAAAAAAAAAGRPa9asUWxsrEOzTz31lIoVK2ZxIsclJibq7bffVpUqVTRv3jyPFybcunVLY8aMUYUKFfTNN994NMuftWvXzuFZV387eU52584dhYWFKSMjw6H5uXPnZqm/U3/l1q1bOnr0qKGdkJAQ+fn5WZTIcUZvxI2Li9Phw4ctSuNZx48fd6pcadCgQRakyTqeffZZQ/MZGRkUYpjAmaKygIAAC5L8f3v27FG9evUUFhamM2fOWHqWIzZv3qz69eure/fuioqK8nQcZEEXL140NF+tWjVrgjjB6PP23Llzu3ReWlqatm/fbmgnODhYhQoVculcMxh9LmO327Vz506nz9u8ebOh+YoVK2aJjy2j7yfp19JEmMtut6tfv36aN2+e09fw9fXVnDlzNHDgQBOTAchOcnk6AAAAAADAMZmVr+TPn/+BjycnJ8tut8vHx8fMWAAAAAAAAAAAAAAAAMB9ffnllw7PtmnTxsIkxhw9elSdOnXKEjdH/9mVK1fUuXNnrVu3Tp9++mmmrxlyh3bt2unNN990aHbp0qX6+OOPs0Rxhrfp16+frly54tDsq6++qvbt21ucyBxbtmyR3W43tPP3v//dojTGBAcHa8KECYZ2wsPDVa9ePYsSec6GDRsM7zzxxBNq0qSJBWmyjjfeeMPw21imTBmL0uQc9+7dM7wTGBhoQZJfSxnGjx+vDz/80PDnOqvZ7XYtXrxYW7du1YIFC5wqF0D2dfPmTUPzVapUsSiJcfHx8YbmXS1f2rdvn+Ezs9JzGaPCw8PVqVMnw3tXr17VyZMnDe1klffTM888I39/fyUnJzu8Ex4ebmGinMdut+u1117TZ5995vQ1/Pz89PnnnyssLMzEZACyG8pXAAAAAMBLZPbDugIFCmR6jZSUFPn7+5sVCQAAAAAAAAAAAAAAALivW7duGfrN5lmlfGXp0qXq1auXbDabp6M80KJFi3Ty5Elt2rRJRYsW9WiW8uXLq3Tp0rpw4UKmszdv3tTWrVu5wdugefPmafny5Q7Nli1bVlOnTrU4kXm2b99uaN7Hx0fNmjWzJoxBdevWlZ+fn9LT0x3eCQ8P17BhwyxM5RkbN240vBMaGipfX18L0mQdTz75pJ588klPx8hxLl++bHinSJEipue4e/eu2rRpo127dpl+bTPdvHlTL7zwgmbNmqU+ffp4Og6yiOjoaEPzxYsXtyiJcdevXzc0/7e//c2l84w+l5GcKz2xQsmSJVW8eHFD7zNnS0W8+f300EMPqVatWtq7d6/DOz/++KOFiXIWu92u/v37a+7cuU5fI1euXFq0aJE6d+5sYjIA2VH2/g4VAAAAALKRlJSUBz7uSPmKkbZlAAAAAAAAAAAAAAAAwFlr1qxxuJCgaNGiqlWrlsWJMrd06VJ169Ytyxev/ObgwYNq1qyZ4uLiPB1Fzz33nMOzixcvtjBJ9nP27FkNHTrUoVk/Pz8tXLhQ+fLlsziVefbs2WNovkaNGipcuLBFaYwJDAxUUFCQoZ3seCNuXFyc4f+P0q/lK4AVHCkD+7NSpUqZmuHu3btq2bJlli9e+U16err69u3r0o3tyF7u3btnaN6KAiNnRUREGJovUaKES+cZ/RpYqFAh1ahRw6UzzVS/fn1D80ePHlViYqLhc4y+n7JS4Z4kPf3004bmo6OjdebMGYvS5By/Fa/MmTPH6Wvkzp1b33zzDcUrABxC+QoAAAAAeAkzyle85YUhAAAAAAAAAAAAAAAA8G5r1qxxeLZJkyby8fGxME3m9u3bpx49ejhcGJNVREZGKjQ0VBkZGR7N8eyzzzo8u2rVKn6JlINSU1PVrVs3JSQkODQ/ZswYNWjQwOJU5omNjdWpU6cM7dSrV8+iNM6pW7euofnr168rOjraojSesXnzZqWlpRnaKVq0qGrWrGlRIuR0Bw4cMLxjdvlK9+7dnSol8rRBgwZ5TWEMrGX0uVpWKV9JT0/XwYMHDe1UrVrV6fPsdrv27dtnaKdu3bry9c06t3YbfS6TlpamyMhIw+cY/ZxYvnx5FSpUyPA5VjH6fpKkY8eOWZAk57Db7RowYIBLxSv+/v5auXKlQkJCTEwGIDvL5ekAAAAAAADHZFa+kj9//kyvwYsWAAAAAAAAAAAAAAAAYLWEhARt27bN4fmmTZtamCZzsbGx6tKli1JTUz2aw1mbNm3S7NmzNWDAAI9lCA4Olo+Pj+x2e6az9+7d044dO9SqVSs3JPNu48eP1/79+x2arVu3rsaPH29xInPt37/foY+ZP6pVq5ZFaZxTrVo1wzsREREe/7xnpu3btxveadasmcdLt5A9nTp1SlFRUYb3zPzcMnXqVK1du9a067lTamqqevbsqcjISAUEBHg6Djzo2Wef1cyZMx2eL1eunIVpHLd7927duXPH0E7t2rWdPu/cuXO6ffu2oZ3s8lzmqaeecng+KSlJx48fN3RGdnk/dezY0YI02Z/dbtfAgQM1e/Zsp68REBCg1atXq0WLFiYmA5DdUb4CAAAAAF4is+KUAgUKZHoNm81mVhwAAAAAAAAAAAAAAADgvr777jtDr1Np1qyZdWEc8O677+rixYsuXaNChQpq3ry56tatqwoVKqhEiRIqVKiQAgIC5Ovrq7t37+revXtKSEjQpUuXdPr0aZ0+fVo//fSTDhw4YLiA4s/GjBmjTp06qXDhwi5dx1lFixZVxYoVderUKYfm161bR/lKJnbu3KmPPvrIodnAwEAtWrRIuXJ5121Cx44dM7yT1W7ErVq1quGd7Fa+cvDgQcM7wcHBFiQBpGXLlhneKVy4sGnFEdeuXdPYsWNdukaePHkUHBysp59+WjVr1lTJkiX12GOPKTAwUHny5FFSUtLvzynu3LmjM2fO6NSpUzp58qS2b9+umJgYl86/ePGiJk2apAkTJrh0HXi3mjVrqmbNmp6OYdj8+fMNzVepUkXFixd3+ryc/FzGiMjISKWnpxvayWrvp0qVKilXrlxKS0tzeMfo+wm/stvtGjRokGbNmuX0NfLmzat169apefPmJiYDkBN4109VAAAAACCHstvtmf5mHUfKVzIrcAEAAAAAAFHF/XsAACAASURBVAAAAAAAAABctW3bNodn8+XL59QNf2a5cOGCZs6c6dRuQECAwsLCNHjw4Ex/E3qhQoVUqFAhSb/euPfH375948YNbdiwQTNnznSqxECSYmNjNWfOHL311ltO7Zuhfv36hspXZsyYYXEi73Xnzh316NFDGRkZDs1//PHHqlChgsWpzHfixAnDO5n9XXM3Zz5/RUZGWpDEM9LS0pz6/9ikSRML0iCnS0tLM1y8IEmNGjUyLcM777yjxMREp3arV6+uESNGqEOHDsqbN+9fzuXNm/d/Hq9Tp87v/56enq4ff/xRy5cv12effeZ0lunTp2v06NEKDAx0ah/whEuXLumrr74ytPPiiy+6dKYzXwODgoJcOtNsZcqUUUBAgJKSkhzeMfpcJju8nx566CGVLVtWp0+fdngnOz3nc6fBgwc7/T26JOXPn18bN2409es7gJzD19MBAAAAAACZy6x4RXKsfMXIbxQCAAAAAAAAAAAAAAAAnLFjxw6HZ2vVqiVfX8/d2vDvf/9bKSkphveef/55nTx5UrNmzXK5DKJYsWJ69dVXdeDAAa1du9bpGw0//fRT2e12l7K4on79+g7PXr58WcePH7cwjXd77bXXdPnyZYdm27Rpo9dee83iRNaIiIgwNF+8ePEHFhJ4QrFixRQQEGBo5+LFi9aE8YDIyEjDr0v09/dXxYoVLUqEnGzhwoU6f/684T1Xyxd+c+PGDafKXwoWLKi5c+fqyJEjCgsLc+nznJ+fnxo3bqxPPvlE58+f1/Dhw5UrVy7D17lz547hEgvA0wYOHOjQa+7/qFevXi6dafS5jI+Pj8qUKePSmWbz+X/s3Xd4VVXa/vH7pBc6AUIvAtKCSBMIXRhRqsgoRQUBKaOigOKIUiyvLyKooCggRYovVoqIjSY4AhZ67723UAJJSPn9MT8cGSE5a5+9T0m+n+viAsnz7HW7IckiOevZLpdKlSpl1GO6lzG9T5JUvnx54x6nlSlTxqg+O+35vOWJJ57Q+++/b7k/b968Wrx4MYNXAFjG8BUAAAAACADuvMAjd+7cWdYkJyfbEQcAAAAAAAAAAAAAAAC4qVOnThk94bt27doOpslcUlKSpYPFw4cP19dff63SpUvbnqlt27b67bffLB0EPXLkiNavX297JnfVq1fPqN5kSE9OMm3aNH3++edu1RYqVEhTp051OJFzdu/ebVTvj4dwJRkfWHZ3sE4gsPIxp1KlSgoODnYgDXKykydPasiQIcZ9wcHBatOmjS0ZZsyYodTUVKOe8uXL65dfflHv3r3lcrlsyXFdkSJFNHbsWK1YsUIFCxY07v/qq69szQM46Z133tGiRYuMeu655x5VqlTJo3VN9zIlSpRQRESER2s6wXSoiOlexvQ+BQcHq2zZskY93mB6nxITE3X+/HlnwmRDTz75pEeDVwoUKKClS5caDQUFgP/G8BUAAAAACADuDE3JkydPljWmT5gAAAAAAAAAAAAAAAAATKxYscKo3pfDVxYuXGh8GG7YsGF6+eWXbT8g/Wfh4eGaNm2aunXrZtz7/fffO5DIPXFxcQoLC3O73vTvSk6wZ88ePf30027XT506VYULF3YwkXMSEhKUkJBg1OOvw1dMDwdnp+ErmzZtMu6pWrWqA0mQk129elUPPvigzpw5Y9zbunVrFSlSxJYcM2fONKovXry4li5dqooVK9qy/q00aNBAS5YsUVRUlFHfsmXLdO3aNYdSAfaZMWOGBg0aZNw3cuRIj9fev3+/UX122ctcvHhRFy9edLt+3759RtcvVaqUQkNDjXq8wcpAmOy073PSU089pQkTJljuDwoK0pIlS1SrVi0bUwHIiRi+AgAAAAABICUlJcsad4avuDPEBQAAAAAAAAAAAAAAALDql19+MaqvVq2aQ0myZjqopGnTpnrllVccSnMjl8ulyZMnq1SpUkZ9GzdudChR1kJCQnT77be7Xb9y5UplZGQ4mCiwpKamqmvXrrp8+bJb9X369FHbtm0dTuUc00O4kozfH7wlNjbWqP78+fNKTEx0KI13HThwwLinSpUq9gdBjnX+/Hm1a9dOK1eutNTfv39/W3IcPXpU27ZtM+qZNWuW1z6u1ahRQ2+88YZRT2Jiovbu3etQIsBzaWlpev7559WjRw/jPWXPnj1Vr149j9Y/d+6cLly4YNSTXfYyknTkyBG3a02H1OTU+5RTDRgwQO+9955H10hPT9eiRYtsSgQgJ2P4CgAAAAAEALuGryQlJdkRBwAAAAAAAAAAAAAAALip33//3e3aoKAgVaxY0cE0mVu2bJnbtUFBQZo4caKDaf4qKipKI0aMMOrZvn27Q2ncExcX53btmTNnfJ7XnwwfPly//fabW7UVKlTQW2+95XAiZx06dMi4p0iRIg4k8VzhwoWNe06ePOlAEu+zcqC4ZMmSDiRBTvTVV1+pVq1aWrJkiaX+uLg43XPPPbZkWbp0qVF9t27d1KxZM1vWdlf//v1VpkwZox4+T8NfLVmyRDVq1NDo0aONe8uVK6exY8d6nCGn72VOnDjhVl1CQoIuXbpkdO2ceJ9yqqefflrvvvuuLdd6+eWXjYfBAsB/Y/gKAAAAAAQAd4avREVFKSgo83/mJScn2xUJAAAAAAAAAAAAAAAAuEFGRobWr1/vdn2ZMmUUERHhYKJbO336tNET2Nu0aaPbb7/dwUQ317lzZ0VGRrpd7+uBDibDVyRp3bp1DiUJLCtXrtQbb7zhVm1ISIhmz56t6Ohoh1M5y8pB1NjYWAeSeM7KQdyEhAQHknifleEr/vrniMDx66+/qkmTJmrfvr3R5/L/9tprr8nlctmSyfSw9+DBg21Z10RwcLC6d+9u1OPrfQXwZ+fOndOkSZN05513qmXLltqyZYvxNfLkyaO5c+cqX758HudhL+PeXob7lD32fE545plnNH78eNuul5qaqm7duuny5cu2XRNAzsPwFQAAAAAIAO4MTQkLC8vyxShJSUl2RQIAAAAAAAAAAAAAAABusHv3bl28eNHt+sqVKzuYJnM7duwwqn/88ccdSpK5qKgoxcfHu11v+lR5u1WtWtWonuEr/z6Q+fDDDys9Pd2t+pdeekl169Z1OJXzTp06ZdxTpEgRB5J4rlChQsY958+fdyCJd6WlpVkazOCvB6rh3w4ePKjRo0frzjvv1F133aWVK1d6dL2GDRuqXbt2NqUz21fUqlVLd955p21rm2jZsqVRva/3FcieTp8+rW3btunChQs37H8yMjKUmJio06dPa+/evVq6dKkmT56sgQMHqmbNmipUqJD69eunDRs2WFo3d+7c+u6773THHXfY8v/BXsa9vQz3KfD3fE4YOHCgxo0bZ/t19+7dq6eeesr26wLIOUJ8HQAAAAAAkLWUlJQsa8LCwhQeHq4rV67cssadIS4AAAAAAAAAAAAAAACAFaZPny9XrpxDSbK2c+dOt2vDw8PVvHlzB9Nkrlq1alqyZIlbtZm9dsgbypYta1TP8BWpb9++Onz4sFu19erV00svveRwIu+wMrQjJibGgSSey5Url3FPQkKCA0m869ixY0pLSzPuY/gKbiYlJUUXL17UxYsXdeHCBR0/flybNm3Shg0btHHjRu3cuVMZGRm2rBUWFqbJkyfbcq3rTPYV9913n61rmzAdkubrfQWyp6VLl6pLly5eXbN06dKaO3euatasads12cu4t5fhPgX+ns9ugwYN0jvvvOPY9T/66CPde++9evDBBx1bA0D2xfAVAAAAAAgA7gxfCQ8PV0RERKY1SUlJdkUCAAAAAAAAAAAAAAAAbmBy8Fj69yFIXzly5IjbtQ0aNFBUVJSDaTLnr09+vxnTgTobN250KElgmD59uj777DO3aqOjozVr1iwFBwc7nMo7zp8/b9yTO3duB5J4zkquCxcuOJDEu86ePWupz18PVOPmmjVr5usIths+fLgqV65s2/XS09N17Ngxt+tbtGhh29qm8uXLp/DwcLcf5mjXwBvAlzp06KAPP/zQ9s8/7GXc28twnwJ/z2enwYMH6+2333Z8nb59+6p+/foqWbKk42sByF6CfB0AAAAAAJA1d4avhIWFKTw8PNMad79ZAgAAAAAAAAAAAAAAAJgKpOErJocAa9So4WCSrEVGRvp0fRNRUVFGw2ISEhJ0+vRpBxP5r71792rAgAFu17/zzjsqX768g4m869KlS8Y9/noQN1euXMY92eFBalevXjXuCQ0NVVCQb4+zhYSEyOVy+fWPkBCet+6Uv/3tb3rhhRdsveaFCxeMhpSwrwC8o0KFClqwYIHmzZvnyOAv9jLu7WWy030KDQ1VWFiYUU922PPZ5dlnn9Vbb73llbUSEhL0yCOPKD093SvrAcg+GL4CAAAAAAHAnaEpYWFhioiIyLSGL94BAAAAAAAAAAAAAADAKYE0fCUhIcHt2ipVqjiYJGuB9sClsmXLGtXv2rXLoST+KzU1VV27dtXly5fdqm/Xrp169+7tcCrvMj2I63K5FB0d7VAaz0RFRRn3XLt2zYEk3mVl+EpWr3EEnFS6dGl9/PHHtg8AMtlTFC9eXHny5LF1fVOBtq8ATIWFhemDDz7Q9u3b1a5dO8fWyU5DRZzcy2Sn+ySZ36vssOezwwsvvKCxY8d6dc0VK1Zo1KhRXl0TQOBjDCYAAAAABICUlJQsa8LDwxUeHp5pDd8wAQAAAAAAAAAAAAAAgFP27NljVF+sWDGHkmTtlVde0cCBA92qLVeunMNpMnf8+HGfrm/K9M919+7dio+PdyiNfxoxYoR+/fVXt2qLFCmiKVOmOJzI+0wP4kZHR8vlcjmUxjMhIebHs7LDQVwrw1eyeo0j4JTY2FgtWbJEMTExtl+7WLFiWr9+vVu1VgYc2OnixYuW3neBQJKSkqKBAwdq6dKlevjhh3XfffcpNDTU9nWsDBXJlSuX7Tns4OReJjvdJ8n8XmWHPZ8d5s+fb7k3NDTU8n0cOXKkWrZsqTp16lheH0DOwvAVAAAAAAgA7gxfCQsLy/KpEElJSXZFAgAAAAAAAAAAAAAAAP6QnJysM2fOGPUUKlTIoTRZK126tEqXLu2z9U1s3rzZ1xGMxMbGGtXv3bvXoST+aeXKlUZPYJ86dapP31ecYvogMScOTdslpw5fsfJ6RIavwBeuD14pX768I9cPDw9XjRo1HLm23TZt2uTrCIBXJCUl6YsvvtAXX3yhsmXLatSoUXrwwQdtXcPKQ1H9dT/j5F4mO90nieEr3ta8eXONGzdODRo0sDTI59q1a+ratas2bNig6OhoBxICyG6CfB0AAAAAAJA1d4avhISEZPmNSStfvAQAAAAAAAAAAAAAAACycuzYMaP6PHnyKCwszKE02cfZs2f1r3/9y9cxjBQpUsSo/vDhww4l8T8JCQl65JFHlJ6e7lZ9//791bp1a4dT+UZqaqpRvZVDwd6SU4evXL161bgnKIijbPCuu+66S7///ruqVq3q6yh+YcGCBb6OAHjd/v379dBDD6lBgwZav369bdc13ctI/rufcXIvk53uk8TwFW+69957tWjRIlWrVk3vvPOO5evs2bNHAwYMsDEZgOyMf7ECAAAAQADIamhKWFiYXC6XIiIiMq2z8qQJAAAAAAAAAAAAAAAAICtHjx41qi9cuLBDSbKXoUOHBtwDl2JjY43qTf/uBLJ+/frp0KFDbtXefvvtGjNmjMOJfCc7DV+xMlAkODjYgSTe5XK5jHsC7eMZAldISIgGDx6sFStWqHjx4r6O4xf27t2r999/39cxAJ9ZvXq14uPj9cknn9hyvew0VMTJvUx2uk+S+b3KDns+X+jYsaPmz5//x/mYnj17qkOHDpavN23aNH3xxRd2xQOQjTF8BQAAAAACQEpKSqZvDw8Pv+HnW+EblwAAAAAAAAAAAAAAAHCC6QCNggULOpQk+xg/frw+/PBDX8cwVqhQIaP6I0eOOJTEv3z00Uf69NNP3aoNCQnR7NmzFRUV5XAq30lLSzOq9+dDuNeuXTPuCQ0NdSCJd0VGRhr38BpGeEPjxo21bt06jRkzJsvX1eYUR48eVceOHXXlyhVfRwF86urVq+rSpYtefPFFZWRkeHQt072M5L/7GSf3MtnpPknm9yo77Pm8rVu3bvr0008VFhZ2w+9PnjxZRYoUsXzdPn365Jh/ewKwjuErAAAAABAAshq+cv0LS9cn+95KUlKSbZkAAAAAAAAAAAAAAACA686cOWNUnzt3boeSBLaMjAytXr1a7du319NPP+3xoVBfMP2zPXHihENJ/MfevXs1YMAAt+tHjBih2rVrO5jI90wP1QYF+e8RqNTUVOOe7HAQl+Er8CfBwcG6//77tWrVKq1YsUJxcXG+juQXEhISNHbsWNWsWVObNm3ydRzAb7z++usaMWKER9ewMiDEX/czTu5lstN9kszvVXbY83lTr169NHPmzJv+vSlUqJCmTJli+drnz5/XI488ovT0dE8iAsjm/Hf8FwAAAADgD+4OX8lqQj/fuAQAAAAAAAAAAAAAAIATLly4YFSfK1cuh5IEhnPnzmn//v06cODAHz/27NmjX3/9VefOnfN1PI/kyZPHqP7ChQtKT0/360OWnkhNTVW3bt106dIlt+obNGigF154weFUvmd6ENXKoWBvYfiK+5KTk5WWlqbg4GAHEiGniYqKUsOGDfXAAw+oQ4cOKly4sK8j+cS1a9d0+PDhv+wrNm7cqK1bt3LIHH6nVatWWr9+/Q2/l5GRoZSUFKWkpOjy5cs6c+aMTp8+rX379mnPnj3auHGj7QP7Xn31VVWsWFEPP/ywpX4rn8tTU1MtDSNxmpN7Gav3yV8xfMU5Tz31lMaNGyeXy3XLmjZt2qh3796Wh7D8+OOPGj16tP75z39ajQkgm/O/z9IAAAAAgL/IamjK9eErERERmdYlJSXZlgkAAAAAAAAAAAAAAAC4LiEhwag+d+7cDiXxD+fOnbvhAPR//3B3EEcgMh2+kpGRoYsXLypfvnwOJfKtkSNH6pdffnGrNnfu3Jo1a1aOGExhehA1LS3NoSSes3JAOKvX+gUCK8NXMjIydPr0acXGxjqQCNmJy+VSZGSkIiMjFRUVpSJFiqhUqVIqVaqUKleurDp16iguLs4vhxjY7fpwlVvtKY4ePcqAFQSUfPnyqUaNGsZ9R48e1bJly/Tdd99p4cKFtuyne/furYoVK6pu3brGvVaGaqSlpfnlxy0n9zJW75O/Mr1X2WHP5w1DhgzRG2+84Vbt22+/reXLl2vv3r2W1ho+fLhatGih2rVrW+oHkL3532dpAAAAAMBfpKSkZPr28PDwG36+layGuAAAAAAAAAAAAAAAAABWXLhwwag+V65cDiXxjtTUVO3du1c7duzQvn37/nIQ+uLFi76O6DOmw1ck6fz589ly+MpPP/2kUaNGuV0/btw4lStXzsFE/uP6A8fcZeVQsLdcu3bNuCdv3rwOJPGuqKgoS30nT5706fCVtWvXKiMjw6trHjlyRG3btvXqmnZZvny5mjZt6usY2d7Zs2e1Y8cO7dq166bDVfx5EAHgLcWLF9cjjzyiRx55RFevXtXcuXM1duxYrV+/3vI1k5OT9dhjj2n9+vXGexPTeunf+5msXu/vC07uZazeJ39leq+yw57PaSNHjtSIESPcrs+VK5dmzpypxo0bW/r8eO3aNXXr1k3r1q1TdHS0cT+A7I3hKwAAAAAQALIavnL9i5JZTUZOSkqyLRMAAAAAAAAAAAAAAABwnemwEX88dJiZxMRELVmyRMuWLdOaNWu0YcOGLF/Tk1NZ+bNNTEx0IIlvXbhwQY888ojbBwLvv/9+PfbYYw6n8h+mB3GvXr3qUBLPXbp0ybgnOxzELVy4sKW+U6dO2ZzEzB133OH1NUNDQ72+Jvzb9u3b9e233+rnn3/WmjVrdOzYMV9HAgJKZGSkunXrpm7dumnBggUaNGiQ9u3bZ+la27Zt0/jx4/Xss88a9VkZKnL16lW/HPbg5F7G6n3yR6mpqcbnMbLDns9Jb775pvH7niQ1aNBAzz//vF5//XVL6+7atUvPPPOMPvzwQ0v9ALKvIF8HAAAAAABkzd3hK1m9cCE5Odm2TAAAAAAAAAAAAAAAAMB1poNIQkL8/1myKSkp+vLLL9WuXTsVLFhQHTp00Pjx4/Xrr78yeCUTVoYMZMf72a9fPx08eNCt2tjYWE2ePNnhRP7F9CDqlStXlJGR4VAaz+Tk4StWDlQfPXrUgTT+zV8PkcO79uzZo2HDhum2225TlSpVNHjwYM2dO5fBK4CH2rdvr61bt6p3796Wr/G///u/xp/PrXwu99eBg07uZbhPgb/nc4LL5dKECRMsDV65buTIkapZs6bl/ilTpmju3LmW+wFkTwxfAQAAAIAAkNXQlOvfwIyIiMi0znTSMgAAAAAAAAAAAAAAAOCOa9euGdX78/CVixcvatSoUSpdurQ6deqkhQsX8tAjAwxfkWbOnKlPPvnE7frp06crJibGwUT+J3/+/Eb1GRkZfjvAwspB3Hz58jmQxLtcLpeKFy9u3Ldr1y4H0vg3XruZs/38889q27atKlasqNdee0379u3zdSQg24mIiNCHH36oN954w1L/uXPnNH36dKMe072MlL2Giri7l+E+Bf6ez25BQUGaOnWq/vGPf3h0ndDQUM2ePTvLMzSZefzxx3PkYEAAt8bwFQAAAAAIAFm9uCA8PPyGn2+FF4EAAAAAAAAAAAAAAADACdlh+Ep6eromTpyoChUq6IUXXtCJEyd8HSkgWfmzNf3748/27dunJ5980u36J598Uq1atXIwkX+ychD3woULDiTxnJWDuLGxsQ4k8b6SJUsa9+zcudOBJP7NXw+Rw1m7d+9Whw4d1LBhQ3399dfKyMjwdSQg2xsyZIieffZZS70TJ040qmcv495ehvuUPfZ8dgkJCdHHH3+sxx57zJbrVa5cWaNGjbLcf+7cOT366KNKT0+3JQ+AwMfwFQAAAAAIAFkNXwkLC5OkLKf28vQEAAAAAAAAAAAAAAAAOMF0eEZwcLBDSazZvXu3GjVqpP79++vUqVO+jvOHjh07qmrVqr6OYcTK8JWgoOxxvCU1NVXdunVz+2BmpUqVNHr0aIdT+acCBQoY95w9e9aBJJ4zPSAcHR2tvHnzOpTGu6wMX9mxY4cDSfzbsWPHfB0BXpSenq63335b1atX14IFC3wd5w+xsbHq06ePr2MAjnv99ddVq1Yt477t27dr8+bNbtfn5L2MJBUvXtytOu6Te/cpJwgLC9Pnn3+uzp0723rdAQMG6O6777bcv2zZMo0ZM8bGRAACWfb46hQAAAAAZHPuDl8JDw/PtC45Odm2TAAAAAAAAAAAAAAAAMB1GRkZRvWpqakOJTE3d+5c1axZU6tWrfJ1FElS3rx59fjjj2vjxo368ssvFRMT4+tIRqz82YaGhjqQxPtGjRqlNWvWuFUbGhqqjz/+WJGRkQ6n8k9W/l7760HcEydOGNVnp0O45cqVM+7ZvXu3rl696kAa/8XwlZzjwoULatOmjQYNGuQ3D0ysXbu2Jk2apP3796tLly6+jgM4LjQ0VO+8846l3kWLFrldm5P3MuHh4SpYsKBbtTn5PknZa9/nicjISC1YsEAdOnSw/doul0sfffSR8uXLZ/kaL730ktatW2djKgCBiuErAAAAABAAshqacn34SkRERKZ1/vKNHAAAAAAAAAAAAAAAAGQvWb1u5b/5y/CVMWPGqFOnTrp8+bLPMoSEhKh27dp6+umn9c033+jkyZOaPHmyqlev7rNMnsjJw1d+//13t2tffvll1axZ08E0/q1kyZLGPSdPnnQgiedMD+IWK1bMoSTed+eddxr3XLt2zeh9JTs4evSoryPAC44dO6Z69erp22+/9WmOIkWK6P7779e4ceO0d+9e/fbbb+rTp4/xXg0IZA0bNlTz5s2N+1asWOF2bU7eyxQtWlQul8ut2px8n4KDg1WkSBGH0gSWOXPmqFWrVo5dv0SJEpowYYLl/mvXrqlr1666cuWKjakABKIQXwcAAAAAAGQtJSUl07eHh4ff8POtJCcnKyMjw+0vdgIAAAAAAAAAAAAAAADuMD3Qe+3aNYeSuG/MmDF67rnnvLZeSEiISpQoofLly6tSpUqqVKmS4uLiVLt2bUVFRXkth9OsDF+5/vCpnGTo0KEaOnSor2Nk6uDBg5Zea9a9e3d99NFHmdaULl3a+LpHjhwx7vEG04O45cqVcyiJ91kdIPTzzz+rUaNGNqfxXwcPHvR1BDjs+PHjatKkifbs2eO1NfPly6eyZcvq9ttvV6VKlVS5cmXVqlVLt912m9cyAP6sR48eWrZsmVHPunXr3K5lL+Oe/PnzK3fu3Lp06ZLbPdnlPpUuXVpBQUEOpQkst99+u+NrdO3aVQsXLtQnn3xiqX/nzp0aOHCgJk2aZHMyAIGE4SsAAAAAEACyGr5y/cUHWb2IJSMjQ9euXcuRL1YAAAAAAAAAAAAAAACAcyIjI43qrQzosNPChQs1ZMgQ269boEABVa5cWeXLl1eZMmVUpkwZlS1bVmXKlFGJEiUUHBxs+5r+huErcEepUqWMew4fPuxAEs+ZHsT1xuFTbyldurRiYmJ05swZo76ff/7ZoUT+acOGDb6OAAelpKTogQcesH3wSkhIiMqVK6fKlSv/sae4vq8oW7as8uTJY+t6QHbToUMHBQcHKy0tze2eU6dO6cyZM4qJicmytkCBAsqVK5cuX77s9vVz6l6mVKlS2rp1q9v1OfU+wXPvv/++fvrpJx09etRS/+TJk3XvvfeqQ4cONicDECgYvgIAAAAAAcDd4Svh4eFZXis5OZkXKwAAAAAAAAAAAAAAAMBWpsNXkpKSHEqStePHj+uRRx5RRkaGR9cJDg5WfHy8GjVqpPj4kBcAtQAAIABJREFUeNWsWVNFihSxKWXgyuq1TjfDAfKcJyYmRtHR0UpMTHS758CBA84Fsig9PV2HDh0y6sluB3Fr1qypH374wahn+fLlSkpKyvKBc9nBmTNndOzYMV/HgIOGDRum1atXe3yd4sWL6+6771Z8fLzq16+v22+/ndf7Ah7InTu3qlevrvXr1xv1HT582K3hK9K/h4ps27bN7Wv7415Gkvbv329Ub7qXKV26tNHwlZx6n+C5/Pnza/r06brnnnss/3u/d+/eqlu3rooVK2ZzOgCBIMjXAQAAAAAAWUtOTs707de/ueLONyJ9+cIVAAAAAAAAAAAAAAAAZE/R0dFG9RcvXnQoSdYGDhyoCxcuWO6/4447NHnyZJ04cUIrVqzQa6+9pnvvvZfBK//fpUuXjHvy5cvnQBL4O9MDqTt37nQoiXWHDh3K8vV9/y27HcStU6eOcU9iYqKWLl3qQBr/s3HjRl9HgIO2bNmit956y3J/RESE+vXrp3/96186fPiwZsyYoT59+iguLo7BK4ANrHyOOnHihNu1lSpVMrr2rl27PB4AabfU1FTjYSemexnT+5SQkKBTp04Z9XjD7t27jeqz254vULRs2VJPPPGE5f6zZ8+qe/fufve+CsA7GL4CAAAAAAEgq6fBhIeH3/BzZky/0QsAAAAAAAAAAAAAAABkpVChQkb1VgZ02GHjxo369NNPLfWWLVtWCxcu1IYNG/T4448rJibG5nTZw+XLl43qw8PD3XrdE7KfuLg4o/q9e/cqLS3NoTTW7Nq1y6g+MjJS5cuXdyiNb7Rq1cpS34IFC2xO4p+WL1/u6whw0LBhw5Sammrc53K51K9fPx08eFAffPCB4uPj5XK5HEgImDl79qxOnDjh9o8rV674OnKmypUrZ9xjspc13ctcuXJFR44cMY3kqH379hl/HKtevbpRvel9kvxv6F5SUpIOHz5s1GN6n2Cf0aNHGw/9+bMlS5Zo7NixNiYCECgYvgIAAAAAASCr4SvXp9tHRERkea2kpCRbMgEAAAAAAAAAAAAAAADXFS1a1Kj+4sWLDiXJ3OjRoy31derUSVu2bFGbNm1sTpT9mA5fyZcvn0NJ4O9MD6SmpKQYDztx2u7du43qa9asqZCQEIfS+Eb9+vVVsGBB47558+Zl+drI7ODbb7/1dQQ4ZNeuXZaGCOXLl0/fffedPvjgAxUuXNiBZIB1rVq1UtGiRd3+MWbMGF9HzlTJkiWNe0xea29luMaWLVuMe5xkupcpXry4ihUrZtSTHe7T3r17lZ6e7nZ9SEiI7rzzTgcTITORkZGaPXu2QkNDLV/jxRdf1Pr1621MBSAQMHwFAAAAAAKAu8NX3HkCTHJysi2ZAAAAAAAAAAAAAAAAgOsCYfjK5cuXNXfuXOO+bt266bPPPlNUVJQDqbKWkZHhk3WtMh2+EhMT41AS+Lu4uDjjnt9//92BJNZt2LDBqL5OnToOJfGd4OBgtWrVyrjvzJkzlj4mB5JTp05xaDcbmzlzpvHn6Fy5cmnp0qX629/+5lCqzAXangLeFxkZaVR/7Ngxh5LYI1euXMY97rwe/zr2Mu6pUqWKgoODjXoC/T5Vq1bN+P0J9qpVq5aGDRtmuT8lJUVdu3bV1atXbUwFwN8xfAUAAAAAAkBWA1OuD1+JiIjI8lom07gBAAAAAAAAAAAAAAAAd5gOXzl9+rRDSW5t4cKFxq+diYuL07Rp0+RyuRxKlTVfDKrxxJkzZ4zqixcv7lAS+LtatWoZv2/520HcX3/91ag+Ow5fkaS2bdta6ps0aZLNSfzLl19+ybCLbOzzzz837vnwww9Vs2ZNB9K4J9D2FPA+02GDhw8fdiiJPaKjox3tKV++vPLnz290/Zy4l4mIiFC1atWMenLifYL9hg4dqnr16lnu37FjhwYNGmRjIgD+juErAAAAABAAUlJSMn379Qnb7kzazmqQCwAAAAAAAAAAAAAAAGAqNjbWqP7UqVNeP5D+448/GvdMmDDhjwcj+cqFCxd8ur4p08E6DF/JuQoUKKCqVasa9fz0008OpTF35coVbd261ainSZMmDqXxrVatWrn1+sX/9uOPP2rLli0OJPIP2X24TE524sQJ7dq1y6inefPm6ty5s0OJ3BNoewp4n+kgkb179zqUxB5ZvQb/ZkyGr7hcLsXHxxtd/+eff/arwVy//fabUX3Tpk0trdOoUSOj+i1btuj8+fOW1nKC6fAVq/cJ9goODtasWbMsDWK6buLEiVqwYIGNqQD4M4avAAAAAEAAyOoLv9df4OHONy9Nn94DAAAAAAAAAAAAAAAAZKVw4cKKjIx0uz41NVVnz551MNFfrVmzxqj+rrvuMj4kaLe0tDSdOHHCpxlMmQ5fKVGihENJEAgaN25sVL9x40a/OYj722+/KS0tze36ypUrZ9thQ3nz5tXf//53S70vv/yyzWn8w5o1a7Rx40Zfx4BDVq9ebdzz3HPPOZDEzNGjR30dAX6uZMmSRvX79+9XamqqQ2k8d/nyZeOewoULG9Wb7mXOnj2rTZs2GfU45eDBgzp+/Ljb9Xny5FHdunUtrWV6n9LT07Vy5UpLa9ktOTlZGzZscLve5XLp7rvvdjARTJQvX15jxozx6Bq9e/c2el8BELhCfB0AAAAAAJA1d4evuPOUnWvXrtmSCQAAAAAAAAAAAAAAALguKChIFSpUMDpIePLkScXExDiY6j8yMjK0a9cuo55OnTo5lMZ9O3fu1NWrV30dw4jp8JXsNIzi7bff1siRI30dI1P33Xef2wcHixYtqm+++cZ4jQIFCrhd27hxY73//vtu16enp2vx4sV68MEHjXPZzfTetGzZ0qEk/qFfv36aPXu2cd+XX36pTZs2qXr16g6k8p3Ro0f7OgIctGPHDqP6fPnyqUWLFg6lcd/69et9HQF+rlSpUkb1KSkp2rVrl6pUqeJQIs8cPnzYqN7lcqls2bJGPaZDRSTp+++/1x133GHcZzfTvUzTpk0VEmLtWLrV+9S+fXtL69lp2bJlRg/AjYuLU5EiRRxMBFP9+vXTwoULLf3bRpLOnDmj7t276/vvv5fL5bI5HQB/wvAVAAAAAAgAycnJmb79+tCV0NDQLK/F8BUAAAAAAAAAAAAAAAA4oVKlSkbDV44dO6aqVas6mOg/Tpw4YXRgTpLq16/vUBr3/f77776OYOzYsWNG9RUqVHAoifeZHtb1BXce8PXn2ho1ajiYRmrRooWCg4OVlpbmds/8+fP9YvjKokWLjOrvueceh5L4h/j4eMXFxWnz5s1GfRkZGXrhhReM76c/W716tebNm+frGHDQgQMHjOpr165teWCBnQJxXwHvsrIvW7t2rd8OXzEdvhgbG6vIyEijntq1aysmJkZnzpxxu2f+/PkaMmSI0TpO8OZepkiRIqpRo4Y2bNjgds+CBQs0YcIEnw+7YM+XPUydOlVxcXFG76t/tnjxYr399tsaNGiQzckA+JMgXwcAAAAAAGQtJSUl07eHh4dLcu8b4wxfAQAAAAAAAAAAAAAAgBMqVapkVL9v3z6HkvzV6dOnjXsqVqzoQBIzX375pa8jGDt48KBRvT/cZ/hOwYIF1bhxY6OeRYsW6erVqw4lcs/+/fu1detWt+vz5cunFi1aOJjIP/Tr189S3zfffBOQH+9uJiMjQ88995yvY8BhpvsKf/hct379eu3fv9/XMeDnatasadyzatUqB5LY41//+pdRfbVq1YzXCA4OVtu2bY161qxZo8OHDxuvZafExEQtW7bM7fqgoCB17NjRozXvv/9+o/pjx475/O9XRkaGvv76a6OeTp06OZQGnoiNjdWkSZM8usbQoUO1ceNGmxIB8EcMXwEAAAAAP5eRkZHlwJTrQ1eCg4OzvF5Wg1wAAAAAAAAAAAAAAAAAK/x5+MqVK1eMe/Lly+dAEvedP39e3333nU8zWGFykDQ6OlrFixd3MA0CgelB3IsXL+qTTz5xKI17pk6dalTfvn17tx6uFui6d++uIkWKWOodMGCALl68aHMi73vnnXf0888/+zoGHGa6r/D1nkKS5syZ4+sICACFChVSiRIljHqWLl3qUBrPHDt2TNu2bTPqiY+Pt7SW6V4mIyNDU6ZMsbSWXebMmWM0zK5Ro0aKjY31aE3T+yRJkydP9mhNTy1dutRouGSZMmVUt25dBxPBEx07dlT37t0t9ycnJ6tr164+HwQJwDkMXwEAAAAAP5fV4BXpP8NXXC6XQkNDPb4eAAAAAAAAAAAAAAAAYKpq1apG9d4cvmLlNTPJyckOJHHfmDFjAu5BSwkJCUbDEypWrCiXy+VgIgSC+++/3/jvgadPrfdEamqqpk2bZtTz0EMPOZTGv0RHR2vYsGGWeo8dO6YnnnjC5kTetX79ev3zn//0dQx4gem+wtd7irNnz/r04yYCS8OGDY3qd+/erT179jiUxrqPP/5YGRkZRj2m/+/XtWzZUrlz5zbqmTp1qtLS0iytZwfTjwl27GXi4uJUoUIFo57PPvtM58+f93htq0zv04MPPuhQEthl/PjxKl26tOX+bdu2afDgwTYmAuBPGL4CAAAAAH7OnW+4/PmJGFk9HYPhKwAAAAAAAAAAAAAAAHBClSpVFBUV5Xb93r17HUxzI5Nc1x0/ftyBJO45ceKExo0b57P1rTIdqFOtWjWHkiCQlChRQi1atDDq+eWXX/T77787lChzn332mdHHh+LFi+tvf/ubg4n8S58+fVS+fHlLvbNnz9b48eNtTuQdx44d0wMPPBBwQ7Ngjem+wpd7Ckl6/fXXjYajIWdr3bq1cc+cOXMcSGJdamqqJk6caNSTO3duxcfHW1ovIiJCnTt3Nuo5evSo5s+fb2k9T61atcpoHxUZGWn8/3crPXr0MKpPSkoyHnpnlwMHDmjBggVGPY899phDaWCXPHnyaObMmQoKsj5i4YMPPtDChQttTAXAXzB8BQAAAAD8nDvfiAsPD//j16GhoR5fDwAAAAAAAAAAAAAAADAVEhKimjVrul2/Y8cOpaenO5joP/LmzWvcs3v3bgeSZC09PV2PPvqoEhMTfbK+J7Zv325UX7t2bYeSIND07dvXuGfo0KEOJMlccnKyXnzxRaOePn36KDg42KFE/ic0NFSvvfaa5f7Bgwdr2bJlNiZy3unTp9WiRQvt37/f11HgJab7Cl/tKSRpxYoVATnQDb7TqlUr46EEU6ZMUWpqqkOJzE2fPt14KGC7du0UERFhec1+/foZ9wwbNkxpaWmW17Tq2WefNarv3Lmz8ufPb8vaPXv2zPK8w38bNWqUTwZIvfDCC0YPvm3WrJkqVarkYCLYpXHjxho0aJBH1+jVq5dOnDhhUyIA/oLhKwAAAADg59wZlhIWFvbHr7P6YqTJFwABAAAAAAAAAAAAAAAAE/Xq1XO79urVq8aHIq0qVaqU8SFSXz2JfuTIkVq8eLFP1vbUjh07jOoZvoLr2rdvr6JFixr1LF682OvvK2+99ZYOHDjgdn1oaKgef/xx5wL5qQcffFDx8fGWelNTU9W2bduA+Th48OBBNW/e3Hj4FAJbmTJljOp///13HTlyxJkwmTh69Ki6dOnik+EOCFwxMTFq0aKFUc+hQ4c0e/ZshxKZOXnypP75z38a9z300EMerVuzZk3jve327ds1bdo0j9Y1NWfOHK1evdqo5x//+Idt68fGxqp9+/ZGPWfOnNEbb7xhWwZ3rFq1Sp9++qlRj533Cc577bXXFBcXZ7n/9OnT6tGjhzIyMmxMBcDXGL4CAAAAAH7OdPjKn39t9XoAAAAAAAAAAAAAAACAFXfddZdR/ZYtWxxKcqOwsDCVLl3aqGfu3Lm6dOmSQ4lu7vXXX9err77q1TXtZDJ8IDg4WDVq1HAwDQJJSEiInnjiCeO+Z555RklJSQ4k+qu1a9dq5MiRRj2dO3c2HiqTHbhcLn300UeKjo621H/lyhW1bdtW8+bNszmZvX766SfVqVPHa5/L4D8qVqxoVJ+RkaFZs2Y5lObmDh8+rCZNmuj48eNeXRfZQ+/evY17XnzxRZ07d86BNO5LS0tT9+7djXOULVtW9913n8frP/PMM8Y9w4YN0+nTpz1e2x2HDh0y3m81atTI9oGJVu7T22+/rZ07d9qa41YuXryoRx55xGioRtmyZdWhQwcHU8Fu4eHhmj17tsLDwy1f4/vvv9e4ceNsTAXA1xi+AgAAAAB+Ljk5OcuaPw9cCQ0NzbT22rVrHmcCAAAAAAAAAAAAAAAAbqZevXpG9Zs3b3YoyV/Vr1/fqP7s2bN66aWXHEpzo5SUFD3zzDN68cUXvbKeU0wGEMTFxSkqKsrBNAg0AwYMUMGCBY16tm3bpoEDBzqU6D/Onz+vzp07Gz38LCgoKODfpz1Rvnx5vfnmm5b7k5OT1alTJz3//PN+97rH1NRUvfrqq7r77ru9dmAe/sV0TyH9e8Da4cOHHUjzV7/++qsaNmyovXv3emU9U2XKlJHL5TL+Ae9p3769ChcubNRz7Ngx9e3b16FE7hk4cKC+//57475nn31WwcHBHq/fpUsXVapUyajn5MmT6t69u9GgDyuSk5PVpUsXnT9/3qhv+PDhtmeJj49Xy5YtjXquXr2qhx56yK2zFZ7IyMhQr169tG/fPqO+oUOHKiQkxKFUcEr16tU9Hn76z3/+U5s2bbIpEQBfY/gKAAAAAPg5d75Z++dpu38exHIz/vZNSAAAAAAAAAAAAAAAAGQfJUqUUPny5d2uX7dunYNpbtS8eXPjngkTJmjRokUOpPmPHTt2qEGDBgH/xOxLly5p165dbtc3a9bMwTQIRLlz59bgwYON+yZOnKg5c+Y4kOjfrly5otatW2vPnj1GfQ8//LBuv/12h1IFhv79++uee+6x3J+enq7Ro0erfv362rZtm43JrFu3bp3q1aun4cOH83rMHKxChQoqUaKEUc/ly5fVvXt3Xb161aFU/x4M9Oabb6phw4Y6dOiQY+sg+wsLC7P0OfmLL77QK6+84kCizGVkZGjgwIF69913jXuLFSumxx57zJYcQUFBloaVfPvttxo1apQtGW4mLS1NXbp00apVq4z6GjdurBYtWjiS6eWXXzbu2bhxo55++mkH0vzHM888oy+++MKop3z58urevbtDieC0wYMHq3Hjxpb7k5OT1bVrVyUlJdmYCoCvMHwFAAAAAPycO8NX/jxwJTQ01OPrAQAAAAAAAAAAAAAAAFaZHLRfs2aNg0ludP/992f52pr/lpaWpo4dO2r+/Pm25zlz5oyefPJJxcXFae3atbZdNyEhwbZrmVi3bp0yMjLcrmf4Cm7mqaeeUrFixYz7Hn30UeODsu5ISEhQ69attXr1aqO+qKgovf7667bnCUTTp09X8eLFPbrG2rVrVb16dfXs2VMHDx60KZmZffv2qWvXrqpdu7bxx+yQkBD16tXLoWTwlQcffNC4Z/ny5WrTpo0SExNtz7Nw4ULFxcVpyJAhtg0G8tWeAv7hiSeeUKFChYz7RowY4dUBLJcvX1anTp30zjvvWOofM2aMIiMjbcvz0EMPqUaNGsZ9Q4cOtfz/kJnk5GR169ZN8+bNM+pzuVx66623bM9zXf369dWuXTvjvkmTJmngwIG250lPT9egQYM0fvx4497Ro0cb/zsT/iMoKEgzZ85Unjx5LF9j69atevbZZ21MBcBXGL4CAAAAAH7O7uErPGkBAAAAAAAAAAAAAAAATvrb3/7mdu2JEye8dpC+QIEClg74paSk6IEHHtCAAQNsOSy9efNm9e3bV6VLl9aECROUmprq8TX/bO/evbZez10mwwiCg4M9ero4sq9cuXLpvffeM+5LTU1Vly5dNHnyZNuy7NixQ/Xr19ePP/5o3Dt06FCPB45kF0WLFtXXX3+tXLlyeXSdtLQ0TZ8+XRUrVlTPnj21cuVKo4FPVi1btkydOnXS7bffrjlz5hiv6XK59NFHH2nUqFFyuVwOpYQv9OjRw1LfsmXLVKNGDa1YscLjDFevXtW0adN05513ql27dtqxY4fH1/wzX+0p4B+io6M1fPhwS70jRoxQ+/btde7cOZtT3WjZsmW64447NHfuXEv9zZo1U5cuXWzNFBQUpA8//FDBwcHGvQMHDtTLL7+s9PR0W7IcPXpUzZs316effmrc26tXL9WqVcuWHLfy3nvvWdofvPPOO+rbt6+SkpJsyZGQkKAHHnhAb7/9tnFvixYtdP/999uSA75TunRpjRs3zqNrTJgwQYsWLbIpEQBfYfgKAAAAAPi55OTkLGv+PHzlz7++GYavAAAAAAAAAAAAAAAAwEnNmzc3evL3mjVrHExzo+eff95SX3p6ut59911VrlxZY8aM0fnz5436t23bptGjRys+Pl7Vq1fX5MmTdeXKFbd6c+fObbTWjBkzjOrtYvLnWKtWLeXNm9fBNAhk999/v6VDrKmpqerbt686dOig06dPW14/OTlZo0aNUo0aNSwNMrjjjjs0ZMgQy+tnRzVq1NBnn31m6SD6f0tJSdH06dPVpEkT3XbbbXrxxRe1ZMkSW4ZjSf9+jeWPP/6ogQMHqly5crr77rv15ZdfWhqU5XK5NHnyZHXr1k0xMTGqVq2aLRnhH+Li4nTfffdZ6t2zZ4+aNWumv//97/rpp5+MehMTEzV//nz17t1bJUqUUK9evbRhwwa3+032FT/88INOnDhhlA/Zyz/+8Q/LAzi++uorVahQQWPHjrVtSMZ169evV/v27XX33Xdr3759lq6RL18+TZ061dZc19WuXVsDBgyw1Dty5Eg1adJE+/fvt7x+WlqaPvzwQ1WtWlWrVq0y7i9WrJjefPNNy+u7q2TJkvqf//kfS72TJ09W7dq1jT7+3cy8efNUtWpVzZ8/37g3Ojra1sF/8K0ePXqoY8eOHl2jZ8+eOnnypE2JAPiCyxsTPgFPuFyurZKq/PfvV6lSRVu3bvVBIgAAAMC7Fi9enOXTgM6dO6f8+fNLkho2bKiff/75lrVPPfWUxo8fb2tGAAAAAAAAAAAAAAAA4M+aNm2qFStWuFX75JNP6t1333U40X906NBBCxYs8OgakZGRatCggRo1aqQqVaqoYMGCypMnj65cuaILFy7o/Pnz2rFjhzZv3qwNGzboyJEjltbJly+fFi9erPr167t98D84OFgjRoxQt27dVLJkSaWlpenChQs6cOCAUlNTFR8fbylLVooUKaJTp065Vfs///M/Gjp0qCM5kLkyZcro4MGDbtWWLl1aBw4ccDbQLRw7dkxVq1ZVQkKCpf5cuXKpZ8+eGjhwoMqUKeNWz/Hjx/Xxxx/rrbfe0vHjxy2tGxERoTVr1uiOO+6w1J/dTZw4Uf3793fk2iEhIapZs6buuOMOlStX7o8f+fPnV3R0tKKiohQdHa20tDRdvXpVV65c0ZkzZ3To0CEdPHhQO3bs0K+//qoNGza49dC8rLhcLk2cOFF9+vT54/eefvppt16/GRwcbGnYS1ZMPjdft3z5cjVt2tT2LNnF2rVrVbduXaWnp3t0ndtuu01NmjRR/fr1VbRoURUsWFAul0sXL17UhQsXdOTIEW3ZskWbN2/Wxo0bLf8d7dWrl4oWLarXXnvN7Z5atWrpf//3f1W3bl3lypVLly9f1qlTp7R7927Vq1dPBQoUMM5h8rnozzgL6xtr165VvXr1PPq4VKBAAXXt2lVdu3ZVnTp1FBISYnyNw4cPa9GiRZoxY4bHwxtdLpfmz5+vdu3aeXSdzCQmJiouLs7yEJWwsDB17dpVgwcPdnt41/nz5/X555/rzTff1J49eyyt63K59M0336hVq1aW+k2lp6crPj7e8p9pUFCQOnTooMGDB6tBgwZu9SQmJuqrr77Sm2++qfXr11taV5ImTZp0w+f5nGLkyJF6+eWXjXq2b9+uSpUqOZTIPmfOnFFcXJxHg8fuvfdeLVq0SC6Xy8ZkyKmqVq2qbdu23exN2zIyMqp6O09OwPAV+D2GrwAAACCnW7Rokdq0aZNpzeXLlxUdHS3p308OWr58+S1r+/Xrpw8++MDWjAAAAAAAAAAAAAAAAMCfjRs3Ts8884xbtZUrV77VYRJHHDp0SFWqVFFiYqLX1rQiIiJC33//vRo3bqzq1atr8+bNHl+zffv2lp7qnpVt27apalX3z/1s2bLFqB72CZThK5L07bffqk2bNh4NNXC5XKpataqaNm2qWrVqqVChQn8MNbhw4YKOHz+ujRs3as2aNVqzZo3HB/tz6iFcE9OnT1e/fv2UkpLi6yiOCQ4O1rRp0/Too4/e8Pvz5s1Tx44d3epn+ErgGDBggFeHyFnVtm1bzZs3TwsWLNADDzxgyzXXr1+vGjVqGPcxfCXwjBkzRs8995wt18qVK5fq16+vqlWrqly5cipVqpRy586tqKgohYWFKSkpSYmJiTp+/LgOHz6sLVu2aN26ddq1a5ct60vS8OHDjYdHWLFhwwbFx8frypUrHl2nfPnyatq0qe666y4VLlxYMTExCgkJ0cWLF3Xq1Clt2rRJv/32m1auXOnx548XXnhBr7/+ukfXMHX48GHVqVNHJ0+e9Og6JUuWVJMmTdSgQYM/BllFRkbq4sWLOnPmjLZs2aK1a9dq2bJlSkpK8mitzp07a86cOR5dI1Bl5+ErkvTNN9+odevWHl1j3LhxGjBggE2JkJMxfMX7zMfDAQAAAAC8yp1vMIaFhf3x69DQUI+vBwAAAAAAAAAAAAAAAHji73//uwYNGuTW0ITt27fr2LFjKlasmBeSSaVKldKECRPUo0cPr6xnRcGCBTV//nw1bNhQktSsWTNbhq84xeQwf/ny5Rm8Arfce++9Gj16tJ599lnL18jIyNCWLVu0ZcsWG5PdXP/+/Rm84obHHntMFStWVMeOHXXq1Clfx7FdZGSkPvnkE7Vr1+4vb2vSpIlcLheaLh3NAAAgAElEQVQDJLKZUaNGafny5V75OGPVww8/rKlTpyo4OFhNmjRRUFCQR4OtkPMMHjxYK1eu1MKFCz2+1uXLl7V48WItXrzYhmTmnnzySa8MXpGkGjVqaMaMGXrwwQc9+ti/Z88e7dmzR1OmTLEx3V+1adNGr776qqNr3EzJkiU1b948NWvWTMnJyZavc/jwYc2ePVuzZ8+2Md1f1a5dW1OnTnV0DfjOfffdp759+2rSpEmWr/H888+rWbNmiouLszEZAG8I8nUAAAAAAEDm3PkCYkjIf2ZrZjV85dq1ax5nAgAAAAAAAAAAAAAAADJTrFgxNWrUyO36pUuXOpjmr7p3764nnnjCq2u667bbbtPq1av/GLwiSe3bt/dhoqx99913btd27NjRwSTIbgYPHqyePXv6OkaW2rVrp3fffdfXMQJGfHy8fv31V9WpU8fXUWwVGxur5cuX33TwiiQVKFBA1atX93IqOC0qKkpffvml8ufP7+soNzVs2DDNmjXrjwc9FixYUPHx8T5OhUDjcrn08ccfB/zH7V69emn8+PFeXbNTp05eG/biibp16+qTTz5RcHCwT9avX7++Jk+eLJfL5ZP13XXbbbdp4cKFioqK8nUUOGjs2LEqX7685f6kpCR17dpVSUlJNqYC4A0MXwEAAAAAP5eSkpLp28PDw2/4IuP1b47cCsNXAAAAAAAAAAAAAAAA4A2dO3d2u9ZkeIddxo8fry5dunh93cw8/PDDWrt2rSpUqHDD7zdr1syjw19OSk5ONhqe8+ijjzqYBtnRhx9+qD59+vg6xi21adNGn3/+uc8OKweq0qVLa9WqVXrllVeyfOhcIKhbt65+++033XXXXZnWNWvWzEuJ4E0VK1bUd999p9y5c/s6yh9iY2P19ddf65VXXvnL2x5//HEfJEKgy507t7777jtVq1bN11GMuVwuvfrqq5oyZYpPhnsMGzZMr776qtfXdVfdunX1ww8/KDo62qc5Hn30UU2bNs1v91S33XabfvzxR8XGxvo6ChwWHR2tWbNmefR3ccuWLRoyZIiNqQB4A8NXAAAAAMDPZTV85b+HrWT1TcisrgcAAAAAAAAAAAAAAADY4YEHHlBISIhbtd98843XHyoUFBSkmTNnqlevXl5d92ZiYmL0+eefa9asWcqbN+9f3n79wKg/WrZsmRITE92qrVWrlqpWrepwImQ3QUFBmjRpkl544QVfR/mLxx57THPnzs3yoWm4uZCQEA0bNky//PKLqlev7us4lgQFBWnw4MH617/+pRIlSmRZz/CV7Ktu3bpasmSJChcu7OsoeuCBB7R582a1bt36pm/v2rWrqlSp4uVUyA4KFCig5cuXq2nTpr6O4rY8efJozpw5eumll3ya46WXXtL777+voCD/OtZ97733asmSJTf9N4gv9OjRQ19++aUiIiJ8HeUGderUcftzPbKHevXqefzvj3fffVfffvutTYkAeIN/fZYGAAAAAPyF3cNXvP0iFQAAAAAAAAAAAAAAAORMhQoV0n333edWbUJCglasWOFwor8KCQnRlClT9MYbb7g9KMZOYWFhGjRokHbv3q1OnTplWtu5c2f9/e9/91Iy9y1cuNDt2u7duzuYBNnd66+/rsmTJys6OtrXURQWFqa33npL06ZNy/I1e8janXfeqXXr1mny5MmKjY31dRy3Va1aVStWrNCYMWPc/nvQuHFjvzt4D/vUrVtXq1evVo0aNXyyfvXq1fXDDz/oiy++UExMzC3rgoODNWvWLIWHh3sxHbKLmJgYLV68WM8884yvo2SpZcuW2rJlix566CFfR5Ek9e/fX/Pmzcv0/dNbXC6XnnvuOS1cuFC5c+f2dZwbtG/fXkuXLlWZMmV8HUWS9Oijj2rFihUBtUeBPUaMGKHatWt7dI3HHntMp06dsikRAKfxLzUAAAAA8HPJycmZvv2/h69k9QSNrIa5AAAAAAAAAAAAAAAAAHbp1auX27Xz5893MEnmhgwZotWrV6tq1apeWS8kJERdu3bV9u3bNXbsWOXLl8+tvpkzZ6p169YOp3NfWlqavvjiC7dqIyIi1LVrV4cTIbt7/PHHtXHjRsXHx/ssQ7Vq1bRq1SoNHDjQZxmyo+DgYD3++OPas2ePRo4cqfz58/s60i2VLFlSEydO1IYNG9SwYUOj3nz58vlsMAe8o1y5cvrll1/0/PPPe204U7ly5TRlyhStX79eLVu2dKunZs2amj9/vl8MtELgCQkJ0dtvv61ly5apSpUqvo7zF2XKlNGMGTP0ww8/qGTJkr6Oc4N27dppy5Ytateunc8ylC5dWt9//71Gjx6t4OBgn+XITIMGDbRp0yajf0/aLSYmRh9//LFmzJihyMhIn+WA74SEhGjWrFke/fmfPHlSPXv2tDEVACcxfAUAAAAA/FxWw1L+e+p8Vt+ouXbtmseZAAAAAAAAAAAAAAAAAHe0bt1aRYsWdat27ty5Sk9PdzjRrdWuXVsbN27UBx984NghzUKFCmno0KE6cOCAPv74Y5UrV86oPyIiQl999ZXefPNN5c2b13h9u4cZLF26VKdPn3ar9qGHHlLBggVtXR8502233aaVK1fqvffeU7Fixby2boECBTRmzBitX79etWrV8tq6OU10dLRGjBihI0eO6IMPPlDlypV9HekPcXFxmjhxonbv3q2+ffsqJCTE0nWaNm1qbzA39ejRQyNGjDD6UaZMGZ9kDXRhYWEaNWqUtm7dqk6dOikoyJljnHfffbcWLFig3bt3q1evXsbrtGrVSr///ruaNWtmvHZERIQiIiKM+6zy1iAbmGnWrJk2bNigt956SyVKlPB1HJUuXVrvvvuudu7cqUcffdTXcW6pSJEiWrBggf7v//5PFStW9Nq6UVFRGjp0qLZt2+b2oCZfyp07t6ZMmaLvvvvOq3uv0NBQ9e3bVzt27GB4JFSpUiW98cYbHl1j0aJFeu+992xKBMBJroyMDF9nADLlcrm2SvrL+MMqVapo69atPkgEAAAAeNerr76q4cOH3/LtFStW1M6dO//476eeeirTL8w0atRIK1eutDUjAAAAAAAAAAAAAAAAcCvDhg3Ta6+95lbtkiVLdPfddzucKGupqamaP3++ZsyYocWLFys5OdnytcqWLat7771X9913n1q0aPGXhy1ZdenSJX322Wf64YcftHHjRh09elSJiYmS/v1Ap7x586pYsWKKi4tTgwYN1Lx5c1WoUMGWta/r1q2b/u///s+t2t9++021a9e2dX0gOTlZU6dO1RtvvKFDhw45skbJkiXVv39/Pfnkk8qdO7cjayBzy5cv12effab58+f/P/buPlTPun7g+OfsnH3n3Fbz+SHp55ym7Rhb4igzF1lJ05naBCGCjNAiItRwQokynNG0Uqlh0z8qIZR0pkSuQJrEXFoT9UjmY2rzKctkok6/5+n3xw9lv7lzX9e5r/u+z+V1Xi/wj/u6Pvt+P9PCTc55L1588cWe3n3ggQfGF7/4xfjSl74Uxx9/fEfOHBoailtvvXXC9zNmzGj5daO89zz99NOxfv36uOWWW+KJJ55o+5xZs2bFsmXL4uSTT45TTz01Fi5c2LEdt27dGjfffHNs2bIlHn/88XjllVci5xwDAwMxZ86c2GeffWLhwoWxdOnSWLZsWSxbtixmz57dsfvfdvLJJ8fGjRvf9XzvvfeOl19+ueP30TkjIyPx61//OtatWxd//vOfo1ffu5xSihUrVsQ555wTJ510UtdiR90yOjoaN910U3z/+9+Phx9+uCt37LvvvvG1r30tLrjggth///27ckcv/O53v4s1a9bEPffc05Xz582bF1/+8pfjwgsvjAULFnTlDoDJGBwcnOjfDQ+Pj48P9nqf6UB8hdoTXwEAYLor+uKTo48+Oh566KF3Pl9wwQVx1VVXTTj/sY99rGv/wREAAAAAAAAAAHb17LPPxoIFC2JkZKRw9uyzz46f//znPdiqvNdeey02b94c9957bwwNDcXTTz8dzz33XLz22mvx5ptvRkop5s2bF/PmzYv58+fHYYcdFoODgzE4OBiLFy/uePCkLrZv3x4HHXRQ7Nixo3D2U5/6VNx1113dX4ppa2xsLDZv3hwbNmyI3/zmN7Ft27ZK5+2///6xYsWKOPPMM+Okk06K/v7+Dm1KFWNjY3H33XfHxo0bY8uWLfHXv/413njjjY7eMX/+/Fi6dGl8+tOfjhNPPDGWLl36nvtGfurt4Ycffud/v0888UQ888wz8fLLL8cbb7wRo6OjMXfu3Hjf+94X8+bNiwMOOCAWLVoUg4ODsWjRojj22GNjzpw5U/1T6KqvfvWr8Ytf/OJdzw899NB46qmner8QbXnhhRfitttui9/+9rdxzz33xCuvvNKxs/v6+uLwww+PE088MZYvXx6f/exnG/P/i61bt8att94aGzZsiMcee6zSWfPnz4/Pf/7zsXLlyjj11FM7FoCsg7///e+xYcOG2LBhQzzwwAOVztpzzz3jM5/5TKxcuTJWrlwZc+fO7dCWANWJr/Se+Aq1J74CAMB0t2rVqrjyyisnfH/MMcfEfffd987niy66KK644orS8wAAAAAAAAAA0G1nnnlmbNiwoXBuzpw58cILL8S8efN6sBVVXHvttfHNb36z1Owdd9wRy5cv7/JG8H/Gx8fj0UcfjQcffDCGhobioYceim3btsWrr776zl+jo6Mxa9asmDt3bhx44IHxgQ98II488sg4+uij4xOf+ER8+MMfnuqfBiWMjIy888/4qaeeeuevl156KV5//fV4/fXX44033oicc8ycOTNSSjF79uzYa6+9Yp999ol99903/ud//icWLFgQCxcujMWLF8ehhx461T8tmNZOP/30uP3229/1/CMf+UgMDQ1NwUZ0whNPPBFbt26NRx55JLZt2xb//Oc/47nnnotXX301duzYETt27Ii33norBgYGYo899ojZs2fHnDlz3vl39CGHHBKHHXZYLF68OJYsWTItfq/w1FNPxQMPPBBDQ0MxNDQUzzzzTGzfvj1effXV2L59ewwPD8esWbNizpw5ccABB8TBBx8cH/rQh2JwcDA+/vGPx+LFi6dFPOz555+P+++/P4aGhuLBBx+Mf/zjH7F9+/Z3/l699dZbkVKKPffcM/bff/846KCD4ogjjojBwcFYunRpHHvssTFz5syp/mkA7Jb4Su8NTPUCAAAAtJZzbvl+1wp1Sqnl/PDwcOWdAAAAAAAAAABgMs4777xS8ZXXX389brzxxjj33HN7sBVV/OxnPys1t3jxYuEVeqqvry+OOuqoOOqoo+Kss86a6nXoooGBgTjmmGPimGOOmepVgA556aWXdvtcGOm97fDDD4/DDz98qtd4T1mwYEEsWLAgzjjjjKlepdYOPvjgOPjgg+OUU06Z6lUAaIDmZ8sAAADe44riK7vGVorKy0XnAQAAAAAAAABAp33yk5+M4447rtTsdddd1+VtqGrz5s0xNDRUavaSSy7p8jYAQFM8++yzu30+ODjY400AAJhuxFcAAABqrtPxleHh4co7AQAAAAAAAADAZK1atarU3H333Rf33ntvl7ehinXr1pWaW7JkSZxxxhld3gYAaIJnnnkmtm3bttt3ixYt6vE2AABMN+IrAAAANffWW2+1fL9rfGXXz7sqirkAAAAAAAAAAEA3nHbaabFkyZJSsz/5yU+6vA3tev7552PDhg2lZlevXh19fX1d3ggAaIJNmzZN+O6jH/1oDzcBAGA6El8BAACouaJYyqxZs/7f55kzZ7acHx4errwTAAAAAAAAAABMVl9fX1x22WWlZm+++eb417/+1eWNaMe6detKfQ3ScccdF1/4whd6sBEA0AR/+MMfdvv8gx/8YBx99NE93gYAgOlGfAUAAKDmiuIrKaWWn3clvgIAAAAAAAAAwFRZsWJFLFu2rHAu5xzr1q3rwUZMxo4dO2L9+vWlZteuXdvlbQCApvjvf/8bt912227fnXLKKT3eBgCA6Uh8BQAAoOYmG1+ZOXNmpfMAAAAAAAAAAKCbrrnmmpgxo/jbGa699trYsWNHDzairBtuuCFefvnlwrkVK1bECSec0IONAIAm+PGPfxxvvvnmbt+ddtppPd4GAIDpSHwFAACg5opiKbvGVoriK8PDw5V3AgAAAAAAAACAdi1ZsiS+8Y1vFM795z//iV/+8pc92IgyxsbG4kc/+lHhXH9/f/zgBz/owUYAQBM8+uijE/4a44gjjojPfe5zPd4IAIDpSHwFAACg5oriKymllp93Jb4CAAAAAAAAAMBUW7NmTey3336Fcz/84Q9jdHS0BxtR5NZbb43HH3+8cO7cc8+NwcHBHmwEALzX/fvf/47TTjst3nzzzd2+P//882PGDN8GCwBA9/lVJwAAQM2NjIy0fD9z5syWn3c1NjbmC1IAAAAAAAAAAJhSe+21V6xdu7Zw7sknn4xbbrmlBxtR5Morryycef/73x+rV6/uwTYAwHvdli1b4rjjjotHH310t+/322+/+MpXvtLjrQAAmK7EVwAAAGpueHi45fvJxlfKnAkAAAAAAAAAAN129tlnxwknnFA4VybSQnfddddd8Ze//KVw7uKLL4799tuvBxsBAO9V119/fZx44olx/PHHx5NPPjnh3Nq1a2PPPffs4WYAAExn4isAAAA1VxRKGRgY+H+fU0qFZ+acK+0EAAAAAAAAAABV9fX1xbXXXlv4hw3df//98fvf/75HW7E7l19+eeHMEUccEd/+9rd7sA0A8F52+eWXx6ZNm1rOnH766XH22Wf3ZiEAAAjxFQAAgNoriq/s+sUnRV+MUuZMAAAAAAAAAADohcHBwfjOd75TOLdmzZoebMPubN26Ne68887CuWuuuabUHxwFANDK0qVL44Ybboi+vr6pXgUAgGlEfAUAAKDmJhtfKfMFDOIrAAAAAAAAAADUxSWXXBILFixoOXP33XfHpk2berQRO7v88ssLZ0499dRYvnx5D7YBAJrspJNOijvvvDPmzZs31asAADDNiK8AAADU3GTjK7t+3p2cc6WdAAAAAAAAAACgU2bPnh3r1q0rnLvssst6sA07+9vf/ha33357y5lZs2bFVVdd1aONAIAmmjt3blxxxRWxcePGeN/73jfV6wAAMA2JrwAAANRcN+IrRWcCAAAAAAAAAEAvLV++PM4666yWM5s2bYrNmzf3aCMi/i94Mz4+3nJm1apVsXDhwh5tBAA0yd577x2rVq2Kxx57LC688MKYMcO3vAIAMDX8ShQAAKDmJhtfSSlVPhMAAAAAAAAAAHrt6quvjvnz57ecufTSS3u0DY888kjcfPPNLWcOO+yw+O53v9ujjQCAJli6dGmcf/75sXHjxnjxxRdj7dq1cdBBB031WgAATHMDU70AAAAArU02vrLr593JOVfaCQAAAAAAAAAAOu3AAw+MtWvXxte//vUJZ/74xz/Gn/70p1i2bFkPN5ue1qxZE2NjYy1nfvrTn8Yee+zRo40AgCYoirsBAMBUmDHVCwAAANBaN+IrRWcCAAAAAAAAAMBUOOecc+L4449vOXPppZf2aJvp6/HHH4+bbrqp5czKlStj+fLlPdoIAAAAALpHfAUAAKDmJhtfSSkVnplzrrQTAAAAAAAAAAB0Q19fX1x33XUtvwbmrrvuik2bNvVwq+lnzZo1MTo6OuH7efPmxdVXX93DjQAAAACge8RXAAAAam6y8ZVdP7dzJgAAAAAAAAAATJVFixbFRRdd1HLm4osv7tE2089jjz0Wv/rVr1rOrFmzJg455JAebQQAAAAA3SW+AgAAUGPj4+Mt/wSZiHfHVlr9qT9vE18BAAAAAAAAAKDOvve978WRRx454fstW7bEHXfc0cONpo/Vq1e3/JqlY489Nr71rW/1cCMAAAAA6C7xFQAAgBorE0nZNb6y6+fdyTm3vRMAAAAAAAAAAHTbrFmz4vrrr4++vr4JZy6++OIYHx/v4VbN98gjj8RNN9004fv+/v64/vrrY8YM344CAAAAQHP4r10AAAA11q34SplzAQAAAAAAAABgKp1wwglxzjnnTPj+/vvvj1tuuaWHGzXf6tWrY2xsbML35513XixZsqSHGwEAAABA9w1M9QIAAABMTHwFAAAAAAAAAIDpbP369bF+/fqpXmPauPHGG+PGG2+c6jUAAAAAoKdmTPUCAAAATGxkZKRwZtfYSn9/f8yY0fq3eznnSnsBAAAAAAAAAAAAAAAAQBOIrwAAANTY8PBw4cyu8ZWIiJRS5XMBAAAAAAAAAAAAAAAAoOnEVwAAAGqs3fjK7p7tLOfc9k4AAAAAAAAAAAAAAAAA0BTiKwAAADVWJr4yMDDwrmdF8ZUy5wIAAAAAAAAAAAAAAABA04mvAAAA1FiZSMruQisppcrnAgAAAAAAAAAAAAAAAEDTia8AAADUWLvxld0921nOue2dAAAAAAAAAAAAAAAAAKApxFcAAABqrFvxlTLnAgAAAAAAAAAAAAAAAEDTia8AAADUWLvxlZRS5XMBAAAAAAAAAAAAAAAAoOnEVwAAAGqs3fjK7p7tLOfc9k4AAAAAAAAAAAAAAAAA0BTiKwAAADXWbnwlpVT5XAAAAAAAAAAAAAAAAABoOvEVAACAGms3vrK7ZzvLObe9EwAAAAAAAAAAAAAAAAA0hfgKAABAjXUrvlLmXAAAAAAAAAAAAAAAAABoOvEVAACAGms3vpJSqnwuAAAAAAAAAAAAAAAAADSd+AoAAECNtRtf2d2zneWc294JAAAAAAAAAAAAAAAAAJpCfAUAAKDGiuIrM2bMiBkz3v1bu6L4SpmoCwAAAAAAAAAAAAAAAAA0nfgKAABAjRVFUiaKrKSUWv64nHPbOwEAAAAAAAAAAAAAAABAU4ivAAAA1NjIyEjL9xPFVyZ6/raiqAsAAAAAAAAAAAAAAAAATAfiKwAAADVWFEmZKLKSUqp0LgAAAAAAAAAAAAAAAABMB+IrAAAANdZufGWi52/LObe9EwAAAAAAAAAAAAAAAAA0hfgKAABAjRXFVwYGBnb7vCi+UnQuAAAAAAAAAAAAAAAAAEwH4isAAAA1VhRJmSiyklKqdC4AAAAAAAAAAAAAAAAATAfiKwAAADXWbnxloudvyzm3vRMAAAAAAAAAAAAAAAAANIX4CgAAQI11K75SdC4AAAAAAAAAAAAAAAAATAfiKwAAADXWbnwlpdTyx+Wc294JAAAAAAAAAAAAAAAAAJpCfAUAAKDG2o2vTPS87LkAAAAAAAAAAAAAAAAAMB2IrwAAANRYu/GVlFKlcwEAAAAAAAAAAAAAAABgOhBfAQAAqLF24ysTPX9bzrntnQAAAAAAAAAAAAAAAACgKcRXAAAAaqxb8ZWicwEAAAAAAAAAAAAAAABgOhBfAQAAqLF24ysppUrnAgAAAAAAAAAAAAAAAMB0IL4CAABQY+3GVyZ6/racc9s7AQAAAAAAAAAAAAAAAEBTiK8AAADUWLfiK0XnAgAAAAAAAAAAAAAAAMB0IL4CAABQY+3GV1JKheeOj4+3vRcAAAAAAAAAAAAAAAAANIH4CgAAQI21G1+Z6PnORkZG2toJAAAAAAAAAAAAAAAAAJpCfAUAAKDGigIpE0VWUkqFZxeFXQAAAAAAAAAAAAAAAACg6cRXAAAAaqwokDJRfGWi5zvLObe1EwAAAAAAAAAAAAAAAAA0hfgKAABAjRXFVwYGBnb7vEx8pehsAAAAAAAAAAAAAAAAAGg68RUAAIAaKwqkTBRZSSlVPhsAAAAAAAAAAAAAAAAAmk58BQAAoMbaja9M9HxnOee2dgIAAAAAAAAAAAAAAACAphBfAQAAqLFuxleKzgYAAAAAAAAAAAAAAACAphNfAQAAqLF24ysppcKzc85t7QQAAAAAAAAAAAAAAAAATSG+AgAAUGPtxlcmej6ZswEAAAAAAAAAAAAAAACg6cRXAAAAaqzd+EpKqfLZAAAAAAAAAAAAAAAAANB04isAAAA11m58ZaLnO8s5t7UTAAAAAAAAAAAAAAAAADSF+AoAAECNdTO+UnQ2AAAAAAAAAAAAAAAAADSd+AoAAECNtRtfSSlVPhsAAAAAAAAAAAAAAAAAmk58BQAAoMbaja9M9HxnOee2dgIAAAAAAAAAAAAAAACAphBfAQAAqLF24ysppcpnAwAAAAAAAAAAAAAAAEDTia8AAADUWLvxlYGBgcKzc85t7QQAAAAAAAAAAAAAAAAATSG+AgAAUFNjY2MxNjbWcmai+EpfX19hgKUo7AIAAAAAAAAAAAAAAAAATSe+AgAAUFMjIyOFMxPFVyIiUkotf6z4CgAAAAAAAAAAAAAAAADTnfgKAABATZWJo7SKr7R6FxGRc570TgAAAAAAAAAAAAAAAADQJOIrAAAANVUmvjIwMDDhu6L4SpnzAQAAAAAAAAAAAAAAAKDJxFcAAABqqkwcpVVgJaVU+XwAAAAAAAAAAAAAAAAAaDLxFQAAgJqqGl9p9S4iIuc86Z0AAAAAAAAAAAAAAAAAoEnEVwAAAGqqanwlpVT5fAAAAAAAAAAAAAAAAABoMvEVAACAmqoaX2n1LiIi5zzpnQAAAAAAAAAAAAAAAACgScRXAAAAaqrb8ZUy5wMAAAAAAAAAAAAAAABAk4mvAAAA1FTV+EpKqfL5AAAAAAAAAAAAAAAAANBk4isAAAA1VTW+0updRETOedI7AQAAAAAAAAAAAAAAAECTiK8AAADUVLfjK2XOBwAAAAAAAAAAAAAAAIAmE18BAACoqarxlZRS5fMBAAAAAAAAAAAAAAAAoMnEVwAAAGqqanyl1buIiJzzpHcCAAAAAAAAAAAAAAAAgCYRXwEAAKipqvGVlFLl8wEAAAAAAAAAAAAAAACgycRXAAAAaqpqfKXVu4iInPOkdwIAAAAAAMO9ORYAACAASURBVAAAAAAAAACAJhFfAQAAqKlux1fKnA8AAAAAAAAAAAAAAAAATSa+AgAAUFMjIyOFM60CKymllj9WfAUAAAAAAAAAAAAAAACA6U58BQAAoKaK4ij9/f3R19c34ftWYZaIiJxzW3sBAAAAAAAAAAAAAAAAQFOIrwAAANRUUXylKK5S9L7ofAAAAAAAAAAAAAAAAABoOvEVAACAmiqKowwMDLR8n1Jq+T7nPOmdAAAAAAAAAAAAAAAAAKBJxFcAAABqqii+MnPmzErvi84HAAAAAAAAAAAAAAAAgKYTXwEAAKipqvGVlFKl8wEAAAAAAAAAAAAAAACg6cRXAAAAaqpqfKXofc550jsBAAAAAAAAAAAAAAAAQJOIrwAAANRUt+MrRecDAAAAAAAAAAAAAAAAQNOJrwAAANRU1fhKSqnS+QAAAAAAAAAAAAAAAADQdOIrAAAANVU1vlL0Puc86Z0AAAAAAAAAAAAAAAAAoEnEVwAAAGqq2/GVovMBAAAAAAAAAAAAAAAAoOnEVwAAAGqqanwlpdTyfc550jsBAAAAAAAAAAAAAAAAQJOIrwAAANRU1fhK0fui8wEAAAAAAAAAAAAAAACg6cRXAAAAaqpqfCWlVOl8AAAAAAAAAAAAAAAAAGg68RUAAICaqhpfKXo/OjoaY2Njk94LAAAAAAAAAAAAAAAAAJpCfAUAAKCmuh1fKXMHAAAAAAAAAAAAAAAAADSZ+AoAAEBNjYyMtHxfFFdJKRXeIb4CAAAAAAAAAAAAAAAAwHQmvgIAAFBTRWGUovhK0fuIiJzzpHYCAAAAAAAAAAAAAAAAgCYRXwEAAKipqvGVlFLlOwAAAAAAAAAAAAAAAACgycRXAAAAaqoojDIwMNDyfVGcJSIi5zypnQAAAAAAAAAAAAAAAACgScRXAAAAaqoovlIUVykTXym6AwAAAAAAAAAAAAAAAACaTHwFAACgpqrGV1JKle8AAAAAAAAAAAAAAAAAgCYTXwEAAKipqvGVovcRETnnSe0EAAAAAAAAAAAAAAAAAE0ivgIAAFBTvYivFN0BAAAAAAAAAAAAAAAAAE0mvgIAAFBTVeMrKaXKdwAAAAAAAAAAAAAAAABAk4mvAAAA1FTV+ErR+4iInPOkdgIAAAAAAAAAAAAAAACAJhFfAQAAqKmq8ZWUUuU7AAAAAAAAAAAAAAAAAKDJxFcAAABqqmp8peh9RETOeVI7AQAAAAAAAAAAAAAAAECTiK8AAADUVC/iK0V3AAAAAAAAAAAAAAAAAECTia8AAADUVNX4Skqp8h0AAAAAAAAAAAAAAAAA0GTiKwAAADVVNb7S398ffX19LWdyzpPeCwAAAAAAAAAAAAAAAACaQnwFAACgpqrGV8rMFN0BAAAAAAAAAAAAAAAAAE0mvgIAAFBTnYivpJQq3QEAAAAAAAAAAAAAAAAATSa+AgAAUFMjIyMt35eJrxTN5JwntRMAAAAAAAAAAAAAAAAANIn4CgAAQE0NDw+3fF8mvpJSqnQHAAAAAAAAAAAAAAAAADSZ+AoAAEANjY2NxdjYWMuZgYGBwnOKAi0550ntBQAAAAAAAAAAAAAAAABNIr4CAABQQ8PDw4UzRWGVMjNl7gEAAAAAAAAAAAAAAACAphJfAQAAqKFOxVdSSpXvAQAAAAAAAAAAAAAAAICmEl8BAACooU7FV4pmcs6ldwIAAAAAAAAAAAAAAACAphFfAQAAqKFexVfK3AMAAAAAAAAAAAAAAAAATSW+AgAAUEOdiq+klCrfAwAAAAAAAAAAAAAAAABNJb4CAABQQ52KrxTN5JxL7wQAAAAAAAAAAAAAAAAATSO+AgAAUEOdiq+klCrfAwAAAAAAAAAAAAAAAABNJb4CAABQQ52KrxTN5JxL7wQAAAAAAAAAAAAAAAAATSO+AgAAUEO9iq+UuQcAAAAAAAAAAAAAAAAAmkp8BQAAoIY6FV9JKVW+BwAAAAAAAAAAAAAAAACaSnwFAACghjoVXymayTmX3gkAAAAAAAAAAAAAAAAAmkZ8BQAAoIZ6FV8pcw8AAAAAAAAAAAAAAAAANJX4CgAAQA11Kr6SUmr5PudceicAAAAAAAAAAAAAAAAAaBrxFQAAgBoaGRkpnCkTXymaKRN5AQAAAAAAAAAAAAAAAICmEl8BAACooTJRlDLxlZRS5XsAAAAAAAAAAAAAAAAAoKnEVwAAAGqoTBRlYGCgcKYo0JJzLr0TAAAAAAAAAAAAAAAAADSN+AoAAEANlYmvFIVVysyUuQcAAAAAAAAAAAAAAAAAmkp8BQAAoIaKoij9/f3R19dXeE5KqdI9AAAAAAAAAAAAAAAAANBk4isAAAA1VBRFmTlzZqlziuZyzqV3AgAAAAAAAAAAAAAAAICmEV8BAACooV7FV4ruAQAAAAAAAAAAAAAAAIAmE18BAACooU7FV1JKLd/nnEvvBAAAAAAAAAAAAAAAAABNI74CAABQQ52KrxTNFd0DAAAAAAAAAAAAAAAAAE0mvgIAAFBDnYqvpJQq3QMAAAAAAAAAAAAAAAAATSa+AgAAUEOdiq8UzeWcS+8EAAAAAAAAAAAAAAAAAE0jvgIAAFBDvYqvFN0DAAAAAAAAAAAAAAAAAE0mvgIAAFBDnYqvpJQK7xkfHy+9FwAAAAAAAAAAAAAAAAA0ifgKAABADXUqvlI0Nz4+HqOjo6X3AgAAAAAAAAAAAAAAAIAmEV8BAACooU7FV1JKle8CAAAAAAAAAAAAAAAAgKYSXwEAAKihTsVXyszlnEudBQAAAAAAAAAAAAAAAABNI74CAABQQyMjIy3fdzK+UhR6AQAAAAAAAAAAAAAAAICmEl8BAACooaIgStn4Skqp8l0AAAAAAAAAAAAAAAAA0FTiKwAAADXUqfhKmbmcc6mzAAAAAAAAAAAAAAAAAKBpxFcAAABqqCi+MjAwUOqcMvGVorsAAAAAAAAAAAAAAAAAoKnEVwAAAGqoKIhSJqoSEZFSqnwXAAAAAAAAAAAAAAAAADSV+AoAAEANdSq+UmYu51zqLAAAAAAAAAAAAAAAAABoGvEVAACAGupUfCWlVPkuAAAAAAAAAAAAAAAAAGgq8RUAAIAa6lR8pcxczrnUWQAAAAAAAAAAAAAAAADQNOIrAAAANdTL+ErRXQAAAAAAAAAAAAAAAADQVOIrAAAANdSp+EpKqfJdAAAAAAAAAAAAAAAAANBU4isAAAA11Kn4Spm5nHOpswAAAAAAAAAAAAAAAACgacRXAAAAaqiX8ZWiuwAAAAAAAAAAAAAAAACgqcRXAAAAakh8BQAAAAAAAAAAAAAAAAC6T3wFAACghjoVX5kxY0b09/e3nMk5l94LAAAAAAAAAAAAAAAAAJpEfAUAAKCGOhVfiYhIKVW6CwAAAAAAAAAAAAAAAACaSnwFAACghjoZXymazTmXPgsAAAAAAAAAAAAAAAAAmkR8BQAAoIZGRkZavu9kfKUo9AIAAAAAAAAAAAAAAAAATSW+AgAAUENFQZTJxFdSSpXuAgAAAAAAAAAAAAAAAICmEl8BAACooU7GV4pmc86lzwIAAAAAAAAAAAAAAACAJhFfAQAAqKGi+MrAwEDps4riK0V3AQAAAAAAAAAAAAAAAEBTia8AAADUUFEQpSiosrOUUqW7AAAAAAAAAAAAAAAAAKCpxFcAAABqqJPxlaLZnHPpswAAAAAAAAAAAAAAAACgScRXAAAAamZ0dDTGx8dbzkwmvpJSavm+KPQCAAAAAAAAAAAAAAAAAE0lvgIAAFAzZWIok4mvFM3mnEufBQAAAAAAAAAAAAAAAABNIr4CAABQM72Or5S5DwAAAAAAAAAAAAAAAACaSHwFAACgZjodX0kpVb4PAAAAAAAAAAAAAAAAAJpIfAUAAKBmOh1fKZrNOZc+CwAAAAAAAAAAAAAAAACaRHwFAACgZnodXylzHwAAAAAAAAAAAAAAAAA0kfgKAABAzXQ6vpJSavk+51z6LAAAAAAAAAAAAAAAAABoEvEVAACAmul0fKVotsx9AAAAAAAAAAAAAAAAANBE4isAAAA10+n4Skqp8n0AAAAAAAAAAAAAAAAA0ETiKwAAADXT6fhK0WzOufRZAAAAAAAAAAAAAAAAANAk4isAAAA1MzIyUjjTyfhKmdgLAAAAAPwve3cba9t213X8N87Ze857Kb2FQgoVpZSbVkSeBEpBqYAJBKFBkIpRizwJYkgkDWDEALY8xGIgpBQCakCpiSkVlCqtlZIQTGzFaoOpAYpI4aKSAqEP9GnOs88dvth79+6z7z5rrjXXw1xrrs8nWVlnzzHmGP9z7qvz4nwvAAAAAAAAAADAHImvAAAA7JllYiirxFeapln7PgAAAAAAAAAAAAAAAACYI/EVAACAPbPp+MrQ3r7vlz4LAAAAAAAAAAAAAAAAAOZEfAUAAGDPLBNfOTk5Wfq8pmnWvg8AAAAAAAAAAAAAAAAA5kh8BQAAYM8sE0M5PT1d+ryhvX3fL30WAAAAAAAAAAAAAAAAAMyJ+AoAAMCe2XV8ZZn7AAAAAAAAAAAAAAAAAGCOxFcAAAD2zKbjK03TrH0fAAAAAAAAAAAAAAAAAMyR+AoAAMCeWSaGcnJysvR5Q6GWvu+XPgsAAAAAAAAAAAAAAAAA5kR8BQAAYM8MxVdOTk5SSln6vKH4yjKxFwAAAAAAAAAAAAAAAACYI/EVAACAPTMUQxmKqVzXNM1a9wEAAAAAAAAAAAAAAADAXImvAAAA7JlNx1eG9vd9v9J5AAAAAAAAAAAAAAAAADAX4isAAAB7ZtPxlaZp1roPAAAAAAAAAAAAAAAAAOZKfAUAAGDPbDq+MrT/7OwstdaVzgQAAAAAAAAAAAAAAACAORBfAQAA2DO7jq8scycAAAAAAAAAAAAAAAAAzJH4CgAAwJ7ZdHylaZq17wQAAAAAAAAAAAAAAACAORJfAQAA2DObjq8ss7/v+5XOBAAAAAAAAAAAAAAAAIA5EF8BAADYM1PEV4buBAAAAAAAAAAAAAAAAIA5El8BAADYM2dnZwvXV42vNE0zuEd8BQAAAAAAAAAAAAAAAIBjJL4CAACwZ4ZCKKvGV5bZ3/f9SmcCAAAAAAAAAAAAAAAAwByIrwAAAOyZofjKycnJSuc1TbP2nQAAAAAAAAAAAAAAAAAwR+IrAAAAe2YohHJ6errSecvs7/t+pTMBAAAAAAAAAAAAAAAAYA7EVwAAAPbMFPGVoTsBAAAAAAAAAAAAAAAAYI7EVwAAAPbMpuMrTdOsfScAAAAAAAAAAAAAAAAAzJH4CgAAwJ7ZdHxlmf193690JgAAAAAAAAAAAAAAAADMwcnUAxyjUkpJ8lCSJyT5wIvvB5N0Sd6d5D2X37XW9041JwAAMI0p4itDdwIAAAAAAAAAAAAAAADAHImvbFEp5U8k+eQkH5Pk6Uk++uL7I7Pkn30p5SzJI0necvH5zYvv/1FrffMWxgYAACa26fhK0zRr3wkAAAAAAAAAAAAAAAAAcyS+skGllGcm+bwkn53kOUk+9KZtKx57muThnIdbrt/3h0lel+Q/X3z+a63Vv5gEAIADt+n4yjL7+75f6UwAAAAAAAAAAAAAAAAAmAPxlTWVUj4xyV9L8sVJnnF16T6v1LFX3fDsQ5I89+KTJO8spbwyycuTvLbWenfkXQAAwIQ2HV9pmmbtOwEAAAAAAAAAAAAAAABgjsRXRiilPCXJV1x8/tTl42vbhiIr94uzXFevfS8650lJvvzi84ellJ9K8i9qrb+05F0AAMAe2HR85fbt24N7+r5f6UwAAAAAAAAAAAAAAAAAmINbUw9wSEopf76U8ookv5PkxUk+Nufxk5LzOMrVT66s3fRZ+tqBM67fe7n2IUm+LsnrSilvKKV86eq/YwAAYAqbjq+UUgbfGboTAAAAAAAAAAAAAAAAAOZIfGUJpZQvKqX8UpJfSPKlSU7z+PhJsjiwcj2SMvZzz2g33HdTiOVTkryilPKrpZS/OvKPAQAA2JFNx1eSpGmate4EAAAAAAAAAAAAAAAAgDkSX1mglPKsUsrrkvzbJJ+ax2ImNwVOboqf3BRNuR5MWfZzaVGY5X6zXN77J5P8q1LKL5dSPn/0HwwAALBV24ivDL3T9/3KZwIAAAAAAAAAAAAAAADAoTuZeoB9VEp5cpLvTfJVeXzM5P3bbnh2fe2qR5O8NcnvXHy/99rnPRfvPXDD5ylJ/liSpyZ58Iaz67XvRTOWJJ+Q5FWllF9I8oJa65tuOBMAAJjIFPGVoTsBAAAAAAAAAAAAAAAAYI7EV64ppfytJP8oyZPz+HhJyc2hk6uxlXcm+eUkb7z4vCXnwZX/W2u9u4H5npTzCMvDST4x5yGVT0jyjCS3r2ytN8x4+ewyKPMXkryxlPJjSb6t1voH684HAACs7+zsbOH6mPhK0zQL18VXAAAAAAAAAAAAAAAAADhG4isXSikfl+RHk3xG7h9dufrzpd9N8pokP5fkv9daf2Obc9Za35HkHUl+LcmrLp+XUtokz07yeUk+N8mnJLl1+VpuDsiUnAdbvjbJXymlfHuSH6m1Xo22AAAAOzYUQhkTXxl6p+/7lc8EAAAAAAAAAAAAAAAAgEN39PGVUsoDSV6Y5AU5//O4Gie5dD1c8rokr07y6lrrL+9m0sVqrV2S/3Tx+bZSygfnPMLyZUm+MEmbeyMsyb2/rw9O8tIkX1NK+fpa6xt2NTsAAHCvofjKycnqf5VrmmatOwEAAAAAAAAAAAAAAABgjo46vlJK+YtJfjjJ03IeIEkeH165fP5bSX4syb+stT6ykwHXUGt9W5JXJHlFKeWDknx5kq9L8qcvt1zdfvFdkvyZJK8vpfyTJP+g1vqOHY0MAABcGAqhnJ6ernzm0Dt93698JgAAAAAAAAAAAAAAAAAcultTDzCFUsqHlVJ+MsnPJvmonEdHau4NklxGV16T5LlJHq61fs8hhFeuq7W+vdb60lrrxyf5nCQ/k/Pfa7m+9eL7VpKvT/KrpZTn7W5SAAAgmSa+MnQnAAAAAAAAAAAAAAAAAMzR0cVXSil/J8mvJXle7h9d6ZL8syQfW2v9glrrq2ut9XGHHaBa6y/WWv9ykmck+aEk7829EZbLP4+S5MOT/GQp5d/tfFAAADhi24ivNE2z1p0AAAAAAAAAAAAAAAAAMEdHF19J8sNJHspj4ZVLJcm7kvzjJE+vtf7tWuubJ5hvJ2qtb6m1/t0kH5nkRUnelvtHWL5w9xMCAMDx2kZ8Zeidvu9XPhMAAAAAAAAAAAAAAAAADt0xxlcuXYZXSpJ3JPnOJE+rtf79Wutbpxtrt2qtf1hrfVGSpyX5e0nemnsjLAAAwI5NEV8ZuhMAAAAAAAAAAAAAAAAA5uiY4yslyTuTvCjJR9VaX1hrffvEM02m1vruWuv3JfnoJC9I8rsRYQEAgJ2rtW4lvtI0zcL1vu9XPhMAAAAAAAAAAAAAAAAADt2xxlfeneR7kjy91vqiWus7px5oX9Ra31drfUnOIyzfmPMICwAAsCN3794d3DMmvjL0zlDwBQAAAAAAAAAAAAAAAADm6BjjKz+Q5KNrrd9ea3371MPsq1prX2t9ac4jLC+Yeh4AADgWy0RQxsRXmqZZ+14AAAAAAAAAAAAAAAAAmJuTqQfYtVrrN009wyGptXZJfnDqOQAA4FhsK74y9E7f9yufCQAAAAAAAAAAAAAAAACH7tbUAwAAAPCYqeIry9wLAAAAAAAAAAAAAAAAAHMjvgIAALBHthVfaZpm7XsBAAAAAAAAAAAAAAAAYG7EVwAAAPbItuIrQ+/0fb/ymQAAAAAAAAAAAAAAAABw6E6mHuAQlVIeTvLnblqrtb5sx+O8Xynl45J88g1Lv1hr/e1dzwMAAKxuW/GVpmnWvhcAAAAAAAAAAAAAAAAA5kZ8ZZzPTPLj91mbLL6S5LOS/OANz/9hku/e8SwAAMAIZ2dng3vGxFeG3un7fuUzAQAAAAAAAAAAAAAAAODQia+MV254Vnc+xb3elZvn+tRdDwIAAIxz586dwT3biK8scy8AAAAAAAAAAAAAAAAAzI34ynquxlZuip7s2uUM1+f6mAlmAQAARthWfKVpmrXvBQAAAAAAAAAAAAAAAIC5uTX1ADOwD9GVSx90n+dP2ukUAADAaMtEUE5OVu9oDgVb+r5f+UwAAAAAAAAAAAAAAAAAOHTiK/PySfd5/tBOpwAAAEZbJr4yFFIZ884y9wIAAAAAAAAAAAAAAADA3IivzEQp5ROSfFmSesPy7R2PAwAAjLSt+ErTNGvfCwAAAAAAAAAAAAAAAABzczL1APvgIlzySSu88pkLzvqb60+0kgeSfHySr7j4dU1Scm+E5e07ngkAABhpW/GVoXf6vl/5TAAAAAAAAAAAAAAAAAA4dOIr574kyXeMeK/c8P3PNzLRuFkuwytXnyXJW3c/DgAAMMa24itN06x9LwAAAAAAAAAAAAAAAADMjfjKY8rwlp2es6q64Pl/2eUgAADAeNuKrwy90/f9ymcCAAAAAAAAAAAAAAAAwKETX7nX/QImN7lfZGWVMzbtfjP9h51OAQAAjDZVfGWZewEAAAAAAAAAAAAAAABgbsRXHu9+AZNdvb8J9cr3m2qtPzPlMAAAwPKWiaDcvn175XObpln7XgAAAAAAAAAAAAAAAACYm1tTD8BG1Guf5DwC8/tJ/vpUQwEAAKsbiqCcnp6mlNWbj6enpwvXH3300dy9e3flcwEAAAAAAAAAAAAAAADgkImvPN71kMn9Puu+v8nPpXLl88okn15r/ZWRfw4AAMAElomvjLHMe0N3AwAAAAAAAAAAAAAAAMDcnEw9wJ5Z/X8fv50zVvWuJG9L8itJXp/k5bXWX59gDgAAYE3biq80TbPU3Q888MCo8wEAAAAAAAAAAAAAAADgEImvJKm1vijJi5bdX0r5yiQ/nqTmPLby/u9a6+1tzAgAAByHKeMrXdfliU984qjzAQAAAAAAAAAAAAAAAOAQ3Zp6gANVpx4AAACYpynjK0N3AwAAAAAAAAAAAAAAAMDciK8AAADskbOzs4Xr24yv9H0/6mwAAAAAAAAAAAAAAAAAOFTiK+urUw8AAADMx507dxaubzO+0nXdqLMBAAAAAAAAAAAAAAAA4FCJrwAAAOyRbcVX2rYd3NP3/aizAQAAAAAAAAAAAAAAAOBQnUw9wIF6V5LfnnoIAABgfobiKycn4/4a1zTN4B7xFQAAAAAAAAAAAAAAAACOjfjKCLXWn07y01PPAQAAzM9QfOX09HTUucvEV7quG3U2AAAAAAAAAAAAAAAAAByqW1MPAAAAwGOmjK/0fT/qbAAAAAAAAAAAAAAAAAA4VOIrAAAAe2Rb8ZW2bQf3iK8AAAAAAAAAAAAAAAAAcGzEVwAAAPbItuIrTdMM7um6btTZAAAAAAAAAAAAAAAAAHCoxFcAAAD2yJTxlb7vR50NAAAAAAAAAAAAAAAAAIdKfAUAAGCPbCu+cnJyklu3Fv8VUHwFAAAAAAAAAAAAAAAAgGNzMvUAUyilfMei9Vrrd67z/r4Z+v0AAAD7Y1vxlSRpmibve9/77rsuvgIAAAAAAAAAAAAAAADAsTnK+EqSFyapC9aHYiVD7+8b8RUAADgQU8ZXuq4bfTYAAAAAAAAAAAAAAAAAHKJjja9cKjc8WyWqctP7++aQIjEAAHD0thlfadt24Xrf96PPBgAAAAAAAAAAAAAAAIBDdOzxlethklVjKvseNjmEOAwAAHDFNuMrTdMsXBdfAQAAAAAAAAAAAAAAAODYHHt85WqcZExIZZ/jJvsehgEAAG4wZXyl67rRZwMAAAAAAAAAAAAAAADAIbo19QAAAAA8Zsr4St/3o88GAAAAAAAAAAAAAAAAgEN0MvUAE6sTvw8AAHCPbcZX2rZduC6+AgAAAAAAAAAAAAAAAMCxOeb4Spn4fQAAgMc5OztbuL5OfKVpmoXrXdeNPhsAAAAAAAAAAAAAAAAADtFRxldqrbemfB8AAOB+7ty5s3B9m/GVvu9Hnw0AAAAAAAAAAAAAAAAAh0hEBAAAYI8MxVdOTsY3NNu2XbguvgIAAAAAAAAAAAAAAADAsRFfAQAA2CND8ZXT09PRZzdNs3C967rRZwMAAAAAAAAAAAAAAADAIRJfAQAA2CNTxlf6vh99NgAAAAAAAAAAAAAAAAAcIvEVAACAPbLN+ErbtgvXxVcAAAAAAAAAAAAAAAAAODbiKwAAAHtkm/GVpmkWrouvAAAAAAAAAAAAAAAAAHBsxFcAAAD2yJTxla7rRp8NAAAAAAAAAAAAAAAAAIdIfAUAAGCPTBlf6ft+9NkAAAAAAAAAAAAAAAAAcIjEVwAAAPbINuMrbdsuXBdfAQAAAAAAAAAAAAAAAODYiK8AAADskW3GV5qmWbjedd3oswEAAAAAAAAAAAAAAADgEJ1MPcCxKKWcJPmAJA8maZKUXd1da31kV3cBAADj1Vpzdna2cM824yt9348+GwAAAAAAAAAAAAAAAAAOkfjKhpVSbiX59CTPSfLsJE9P8lFJHppopBr/nQEA4CAMhVeS9eIrbdsuXBdfAQAAAAAAAAAAAAAAAODYiHJsSCnlg5O8IMlXJ3nq1aVpJgIAAA7NnTt3BvesE19pmmbhetd1o88GAAAAAAAAAAAAAAAAgEMkvrIBpZTnJ/mBJE/OzbGVutuJ3k/4BQAADsjU8ZW+70efDQAAAAAAAAAAAAAAAACHSHxlTaWU703yzXksdHK/0MquQyhTBV8AAICRth1fadt24br4CgAAAAAAAAAAAAAAAADHRnxlDaWUb03yLRc/Xo2d7Dq0AgAAzMDZ2dngnnXiK03TLFwXXwEAAAAAAAAAAAAAAADg2IivjFRKeVaS78pwdKXe8AwAAOBx7ty5M7hnm/GVrutGnw0AohSylAAAIABJREFUAAAAAAAAAAAAAAAAh0h8ZbyXJrmV87jKUHTlpnUAAIB7LBNfOTkZ/9e4tm0Xrvd9P/psAAAAAAAAAAAAAAAAADhE4isjlFI+I8mnZTi8UpL0Sd6Q5E1JfjvJHyV5T+6NswAAACwVXzk9PR19ftM0C9fv3r2bu3fv5vbt26PvAAAAAAAAAAAAAAAAAIBDIr4yzvPv8/xqdOXNSb43yStqre/ZyVQAAMBBmzq+kiR93+fBBx8cfQcAAAAAAAAAAAAAAAAAHBLxlXE+L4+FVi7VnEdXkuQlSb6l1nq206kAAICDJr4CAAAAAAAAAAAAAAAAALslvrKiUspDSR7OvbGVy1/XJD9ca33BROMBAAAHbNvxlbZtB/f0fT/6fAAAAAAAAAAAAAAAAAA4NLemHuAAPfPaz/XKr38nyTftcBYAAGBGth1faZpmcE/XdaPPBwAAAAAAAAAAAAAAAIBDI76yug+74VnJeYTln9Zah/+1JAAAwA32Ib7S9/3o8wEAAAAAAAAAAAAAAADg0IivrO4DF6z93M6mAAAAZmfb8ZW2bQf3iK8AAAAAAAAAAAAAAAAAcEzEV1Z3e8Ha/9rZFAAAwOxsO77SNM3gnq7rRp8PAAAAAAAAAAAAAAAAAIdGfGV1fzRyDQAAYKF9iK/0fT/6fAAAAAAAAAAAAAAAAAA4NOIrq/v9BWsfsLMpAACA2dl2fKVt28E94isAAAAAAAAAAAAAAAAAHBPxldW9ecHaQzubAgAAmJ2h+EopJbdv3x59ftM0g3vEVwAAAAAAAAAAAAAAAAA4JuIrK6q1vi3JI5c/Xlt+xo7HAQAAZmQovnJ6errW+cvEV7quW+sOAAAAAAAAAAAAAAAAADgk4ivjvDZJueH5p+16EAAAYD72Ib7S9/1adwAAAAAAAAAAAAAAAADAIRFfGedf3/CsJPnSXQ8CAADMx9nZ2cJ18RUAAAAAAAAAAAAAAAAA2CzxlXFem+QtV36uF9/PKqU8a4J5AACAGbhz587C9XXjK7du3crJycnCPV3XrXUHAAAAAAAAAAAAAAAAABwS8ZURaq01yXclKdeWSpKXlFKuPwcAABi07fhKkjRNs3C97/u17wAAAAAAAAAAAAAAAACAQyG+Mt5PJHnjlZ/rxfezk7x49+MAAACHbii+cnJysvYdbdsuXBdfAQAAAAAAAAAAAAAAAOCYiK+MVGutSf5GkvdefZykJPnmUsq3TjIYAABwsIbiK6enp2vf0TTNwvWu69a+AwAAAAAAAAAAAAAAAAAOhfjKGmqtb07y1dcf5zzA8t2llB8tpSz+38oDAABc2If4St/3a98BAAAAAAAAAAAAAAAAAIdCfGVNtdZXJPnGnAdXcvF9GWD52iT/s5TyJRONBwAAHJBdxFfadnEfUnwFAAAAAAAAAAAAAAAAgGNyMvUAc1Br/aFSyvuS/EgeC9pcBlgeTvJTpZRHkvz7JG9I8htJ/l+Styd5d631bPdTAwAA+2YX8ZWmaRaui68AAAAAAAAAAAAAAAAAcEzEV0YopbzsPkuPJHl6Hguv1MtXkjwtyTfc57xNj3hVrbX67wwAAAdgH+IrXdetfQcAAAAAAAAAAAAAAAAAHApRjnGen8fCKjcpV75r7o2wAAAA3GgofNK27dp3DMVX+r5f+w4AAAAAAAAAAAAAAAAAOBTiK+tZJqZyuedqhGVXxF4AAOCADIVPNhFfGTpDfAUAAAAAAAAAAAAAAACAYyK+sp6bYir3C57sOoSy69ALAACwpqHwSdM0a98xdEbXdWvfAQAAAAAAAAAAAAAAAACHQnxlPbsOqgAAADM2FD7ZRXxlKAADAAAAAAAAAAAAAAAAAHMivrKeOvUAAADAfAyFTzYRX2nbdq0ZAAAAAAAAAAAAAAAAAGBOxFfGK1MPAAAAzMtQ+GQonLKMoYBL13Vr3wEAAAAAAAAAAAAAAAAAh0J8ZZyvmnoAAABgfobiK0PhlGUMnTE0AwAAAAAAAAAAAAAAAADMifjKCLXWn5h6BgAAYH66rlu4von4Stu2C9fFVwAAAAAAAAAAAAAAAAA4JremHgAAAIBzQ+GTTcRXhs4QXwEAAAAAAAAAAAAAAADgmIivAAAA7Imh8EnbtmvfMRRf6bpu7TsAAAAAAAAAAAAAAAAA4FCIrwAAAOyJofjKUDhlGUNnDM0AAAAAAAAAAAAAAAAAAHMivgIAALAnuq5buL6J+ErbtgvXxVcAAAAAAAAAAAAAAAAAOCbiKwAAAHtiKHwyFE5ZxlDAZSgAAwAAAAAAAAAAAAAAAABzIr4CAACwJ4biK0PhlGUMnTE0AwAAAAAAAAAAAAAAAADMifgKAADAnui6buH6JuIrbdsuXBdfAQAAAAAAAAAAAAAAAOCYiK8AAADsiaHwySbiK0NnDAVgAAAAAAAAAAAAAAAAAGBOxFcAAAD2xFB8pW3bte8Yiq8MzQAAAAAAAAAAAAAAAAAAc3Iy9QCHqJTykVPPsIpa6yNTzwAAACxWa82dO3cW7hkKpyxjKOAivgIAAAAAAAAAAAAAAADAMRFfGee3ktSph1hSjf/OAACw95aJnmwivjJ0Rtd1qbWmlLL2XQAAAAAAAAAAAAAAAACw70Q5xvMvEQEAgI3Zl/hKkpydneX09HTtuwAAAAAAAAAAAAAAAABg34mvjFenHmAJAjEAAHAglomvtG279j3LxFf6vhdfAQAAAAAAAAAAAAAAAOAoiK+sZ5/jJocQhwEAAC4sE19ZJpwyZJmAS9/3ecITnrD2XQAAAAAAAAAAAAAAAACw78RX5kNsBQAADljXdYN7NhFfWeaMZWYBAAAAAAAAAAAAAAAAgDkQX1nProMnZYU1MRYAADggfd8P7tlVfGWZWQAAAAAAAAAAAAAAAABgDsRXxlsUQtm0eu378v565fsPkjyyw5kAAIANWiZ40rbt2vcsc4b4CgAAAAAAAAAAAAAAAADHQnxlnM/Z0rkPJGmTPJjkw5J8RJKnJfnkJA/nseBLzb1BlpLkSUl+utb64i3NBgAAbFHXdYN7mqZZ+55lzlhmFgAAAAAAAAAAAAAAAACYA/GVEWqtv7jrO0spDyX5giTPS/JFOf9vdzXA0iT5nlLK5yb5S7XWd+16RgAAYLy+7wf37Cq+sswsAAAAAAAAAAAAAAAAADAHt6YegOXUWt9Za315rfV5SZ6Z5GVJytUtFz9/dpKfLaU8uPspAQCAsZYJnrRtu/Y9y5whvgIAAAAAAAAAAAAAAADAsRBfOUC11t+qtX5lki9I8o6rSzkPsDwnycsnGA0AABhpmeBJ0zRr37PMGV3XrX0PAAAAAAAAAAAAAAAAABwC8ZUDVmt9TZLPys0BlueWUr5mksEAAICVLRM82VV8ZZkQDAAAAAAAAAAAAAAAAADMgfjKgau1vinJ83MeXHn/44ufv7+U8pRJBgMAAFayTPBEfAUAAAAAAAAAAAAAAAAANkt8ZQZqra9O8m9yb4AlSZ6Y5Bt2PxEAALCqoeBJKSUnJydr39O27dqzAAAAAAAAAAAAAAAAAMBciK/Mx4uv/VxzHmP5+lLK8P/aHgAAmNRQ8KRpmpRyvbe4umUCLl3XrX0PAAAAAAAAAAAAAAAAABwC8ZWZqLX+tyT/+4alD03y2budBgAAWNVQ8KRpNtNULKUMnjUUggEAAAAAAAAAAAAAAACAuRBfmZfXJyk3PH/OrgcBAABWMxQ82VR8JUnatl1rFgAAAAAAAAAAAAAAAACYC/GVefnV+zz/szudAgAAWNlQ8GQomLKKoZBL13UbuwsAAAAAAAAAAAAAAAAA9pn4yry87drPNUlJ8scnmAUAAFjBUHxlKJiyiqGzhmYBAAAAAAAAAAAAAAAAgLkQXzkOT556AAAAYLGu6xaubzK+0rbtwnXxFQAAAAAAAAAAAAAAAACOhfjKvDz1Ps+ftNMpAACAlQ0FTzYZXxk6aygEAwAAAAAAAAAAAAAAAABzIb4yL0+7z3P/chIAAPbcUHylbduN3TUUXxmaBQAAAAAAAAAAAAAAAADmQnxlJkopJ0m+MEm9YfldOx4HAABYUdctbiYOBVNWIb4CAAAAAAAAAAAAAAAAAOfEV+bji5N8yMWvy7XvR3Y/DgAAsIqh4Mkm4ytt2y5cHwrBAAAAAAAAAAAAAAAAAMBciK/MQCnlqUl+KEm9Ybkm+fXdTgQAAKxqKL4yFExZxVDIZWgWAAAAAAAAAAAAAAAAAJgL8ZUDV0p5ZpJXJXnK5aMbtr1+dxMBAABjDAVPhoIpqxBfAQAAAAAAAAAAAAAAAIBz4isHqpTy4aWUb0/yxiSfmKTm5vBKkvzczgYDAABG6bpu4fom4ytt2y5cF18BAAAAAAAAAAAAAAAA4FicTD3AISqlfMcE195O8oQkH5Hk45J87OU4F9/1yt7LEEtN8rpa62/sakgAAGCcoeDJJuMrQ2cNhWAAAAAAAAAAAAAAAAAAYC7EV8Z5Ye6NnexaufLresOzq75vy7MAAAAbMBRfadt2Y3cNxVeGZgEAAAAAAAAAAAAAAACAuRBfWc/9gie7cDX+cj3GUi6+f77W+sqdTgUAAIwyFDwZCqasYijkIr4CAAAAAAAAAAAAAAAAwLEQX1lPHd6yNTeFX67O83+SfPmOZgEAANbUdd3C9U3GV4bOGpoFAAAAAAAAAAAAAAAAAOZCfGU9NwVQpnA1ulKSPJLk82utvzfRPAAAwIr6vl+4vsv4ytAsAAAAAAAAAAAAAAAAADAXt6YegJXU+3yS8+hKSfLKJM+utf7aJBMCAACjDAVP2rbd2F1DZ4mvAAAAAAAAAAAAAAAAAHAsTqYe4MDV4S1bU678uib5j0m+v9b68xPNAwAArKHruoXrTdNs7K6hs4ZmAQAAAAAAAAAAAAAAAIC5EF8Zrwxv2bguybuTvCPJbyb59SSvS/LaWuvvTTAPAACwIX3fL1zfZXxlaBYAAAAAAAAAAAAAAAAAmAvxlRFqrbemngEAAJiXoeBJ27Ybu0t8BQAAAAAAAAAAAAAAAADOiYgAAADsgaHgyVAwZRVDIRfxFQAAAAAAAAAAAAAAAACOhfgKAADAHui6buH6JuMrQ2cNzQIAAAAAAAAAAAAAAAAAcyG+AgAAsAf6vl+4vsv4ytAsAAAAAAAAAAAAAAAAADAX4isAAAB7YCh40rbtxu4aOkt8BQAAAAAAAAAAAAAAAIBjIb4CAAAwsUcffTRnZ2cL9zRNs7H7hs7qum5jdwEAAAAAAAAAAPD/2bv/aNvvur7zr8+9N2d/d37wK4JAqIJKkSqCXQMGmgoaHPlRg0VmObR2ibSMMlhmWh2WU7XQNToK2lVwFJtVRwolpi1FbKQE+U1CIdAZw0TTGgwYwEgQ5Vdy7/7Bvfczf5yzuTsn53y/Z++7f5wfj8dae919v5/P/nzeO1kLkqx1nhcAAACA/Ux8BQAAYM3G43HnnkXGV3q9Xuv66dOnc+bMmYXdBwAAAAAAAAAAAAAAAAD7lfgKAADAmq06vtI0Teee0Wi0sPsAAAAAAAAAAAAAAAAAYL8SXwEAAFizvcRXer3ewu7bS3xlOBwu7D4AAAAAAAAAAAAAAAAA2K/EVwAAANZsNBp17tnY2FjYfeIrAAAAAAAAAAAAAAAAALBJfAUAAGDNxuNx555Fxld6vV7nHvEVAAAAAAAAAAAAAAAAAI4C8RUAAIA1W3V8pWmazj2j0Whh9wEAAAAAAAAAAAAAAADAfiW+AgAAsGZ7ia/0er2F3beX+MpwOFzYfQAAAAAAAAAAAAAAAACwX4mvAAAArNloNOrcs7GxsbD7xFcAAAAAAAAAAAAAAAAAYJP4CgAAwJqNx+POPeIrAAAAAAAAAAAAAAAAALB44isAAABrtpf4Sq/XW9h9ezlrNBot7D4AAAAAAAAAAAAAAAAA2K/EVwAAANZsL/GVjY2Nhd3XNE3nnuFwuLD7AAAAAAAAAAAAAAAAAGC/El8BAABYs9Fo1LlnkfGVCy64IKWU1j3iKwAAAAAAAAAAAAAAAAAcBeIrAAAAazYejzv3LDK+UkpJ0zSte8RXAAAAAAAAAAAAAAAAADgKxFcAAADWrCu+cuzYsZw4cWKhd/Z6vdZ18RUAAAAAAAAAAAAAAAAAjgLxFQAAgDUbjUat6xsbGwu/s2ma1vWumQAAAAAAAAAAAAAAAADgMBBfAQAAWLPxeNy6vo74ynA4XPidAAAAAAAAAAAAAAAAALDfiK8AAACsmfgKAAAAAAAAAAAAAAAAAKyH+AoAAMCadcVXer3ewu8UXwEAAAAAAAAAAAAAAAAA8RUAAIC1G41GresbGxsLv7Mr6NI1EwAAAAAAAAAAAAAAAAAcBuIrAAAAazYej1vXlxFfaZqmdX04HC78TgAAAAAAAAAAAAAAAADYb8RXAAAA1kx8BQAAAAAAAAAAAAAAAADWQ3wFAABgzbriK71eb+F3iq8AAAAAAAAAAAAAAAAAgPgKAADA2o1Go9b1jY2Nhd/ZFXQRXwEAAAAAAAAAAAAAAADgKBBfmVEp5emllCvXPQcAAHB4jMfj1vVlxFeapmld7wrCAAAAAAAAAAAAAAAAAMBhIL4yu7+R5B2llE+XUn6xlPK4dQ8EAAAcbF3xlV6vt/A7u+Irw+Fw4XcCAAAAAAAAAAAAAAAAwH4jvjKfkuSyJP9bko+WUv6/UspPllIuW/NcAADAAdQVX9nY2Fj4neIrAAAAAAAAAAAAAAAAACC+cj5qNiMsJcnjkrwyySdLKe8upfxIKeV+a50OAAA4MEajUeu6+AoAAAAAAAAAAAAAAAAALIf4yvmpW69kM8JyLMnTkvxGkrtKKf++lHJVKeXEmuYDAAAOgPF43Lq+jPhKr9drXe8KwgAAAAAAAAAAAAAAAADAYSC+cn7K1qtOvSbPmiQ/kOQt2Qyx/Hop5Yp1DQoAAOxfXfGVrlDKPJqmaV0fDocLvxMAAAAAAAAAAAAAAAAA9hvxlcWYBFeSnUMsD0ryPyV5fynljlLKz5dSvmUtkwIAAPvOaDRqXd/Y2Fj4neIrAAAAAAAAAAAAAAAAACC+cr6mQyvJudhKW4jl65L8VJJbSik3l1J+opRy2UqnBgAA9pXxeNy6Lr4CAAAAAAAAAAAAAAAAAMshvjK7DyT5L1vvdwutTK+1hVgen+RVST5ZSnl3KeVHSin3W/o3AAAA9pV1xFd6vV7ruvgKAAAAAAAAAAAAAAAAAEeB+MqMaq3vrrV+R5JHJvmJJDdtLc0TYpmsHUvytCS/keSuUsqbSinPKaWcWN43AQAA9ouu+EpXKGUeTdO0ro9Go4XfCQAAAAAAAAAAAAAAAAD7jfjKnGqtn661/ota61OSfF2Sf5Tkg1vLew2xTK9NnjVJnpvkt7MZYvnVUsqTl/+NAACAdekKnWxsbCz8zq74yunTp3P69OmF3wsAAAAAAAAAAAAAAAAA+4n4ygLUWu+stb6m1npFkr+S5H9J8oHcO6qS7B5i2b42ef6gJC9O8oFSyh+XUn62lPKoFXwlAABghcbjcev6OuIrSXcUBgAAAAAAAAAAAAAAAAAOOvGVBau1/lmt9f+qtX5nkkck+YdJbkh7iKXsYe0bk7wiye2llPeXUn6klHLxSr4UAACwVPs1vjIcDhd+LwAAAAAAAAAAAAAAAADsJ+IrS1RrvavW+mu11qcluSzJS5K8L8nZnF+I5Yokv5HkrlLKG0op372K7wMAACxHV3yl1+st/M69nCm+AgAAAAAAAAAAAAAAAMBhJ76yIrXWz9Zaf73W+t1JHp7kxUnek/lCLJNnFyb5u0neWUr5k1LKz5ZSvm5FXwkAAFiQ0WjUur6xsbHwO5um6dzTNRcAAAAAAAAAAAAAAAAAHHTiK2tQa/1crfXqWuvTkzw0yY8meVeSM9lbiGWn51+f5BVJPlFK+b1SyvNKKSdW9qUAAIC5jcfj1vV1xVeGw+HC7wUAAAAAAAAAAAAAAACA/UR8Zc1qrX9Za/1Xtdb/PpshlhcleUeS0+kOsez0/FiSpyf5d0nuLKW8spTyV1f0dQAAgDl0xVd6vd7C7xRfAQAAAAAAAAAAAAAAAADxlX2l1vr5Wuv/XWt9RjZDLH8/yduze4gluzyfPHtwkp9M8t9KKe8qpTy3lHJ8JV8GAADYkzNnzuTMmTOtezY2NhZ+716CLuIrAAAAAAAAAAAAAAAAABx24iv7VK31C7XW19Van5XkIUl+JMnbknwl9w6uTOwUYZkOsXxXkjcl+VQp5WdLKQ9Z/rcAAAC6jMfjzj3LiK80TdO5ZzQaLfxeAAAAAAAAAAAAAAAAANhPxFcOgFrrl2qtr6+1/q1shlhekOStScY5F1mZKNk5xDJ59rAkr8hmhOX1pZRvW8V3AAAAdraf4yvD4XDh9wIAAAAAAAAAAAAAAADAfiK+csDUWr+c5N8keXWSN+dcZGUn0yGWmnuHWDaS/FCSm0spby+lfOcy5wYAAHa2l/hKr9db+L3iKwAAAAAAAAAAAAAAAAAgvnJglFKOl1K+p5RydZK7krwzyfMny3s5YmrfdISlJPmeJO8tpby/lPKUxU4OAAC0GY1GnXs2NjYWfu+JEydSSvu/SoivAAAAAAAAAAAAAAAAAHDYnVj3AOyulHIim2GU5yV5TpIHTpb2eETd6diptbrt2d9McmMp5U1JXlpr/fOZhwYAAGYyHo879ywjvlJKSdM0GQwGu+4RXwEAAAAAAAAAAAAAAADgsBNf2WdKKRtJvjebwZXvS3L/ydLUtumoyvYQS9fa9uBKtj0rSf6HJE8spXx3rfWTM30BAABgJuuKryTpjK+MRqOl3AsAAAAAAAAAAAAAAAAA+4X4yj5QSmmSPDObwZVnJ7lksjS1rW7/2B7WPpLkjUnem+QHkvyDJI/Y4TNl27OS5FFJbiilPL7W+sU9fxkAAGAme4mv9Hq9pdzdNE3r+nA4XMq9AAAAAAAAAAAAAAAAALBfiK+sSSnlwmyGVp6X5FlJLpwsTW2bJ7hye5JrklxTa719av3WUsrPJbkqyUuSXDl1Tt36/HSEpWQz1PKKJP/rXr8XAAAwm9Fo1LlnY2NjKXeLrwAAAAAAAAAAAAAAAABw1ImvrFAp5eIk35fN4Mozkkx+0vF8gyufS/Lvshlc+fBu99dazyb5nSS/U0r5q0l+PMkPJ7kk54Ir03eVJC8upbyy1vqZ9m8HAADMYzwed+5ZVnyl1+u1rouvAAAAAAAAAAAAAAAAAHDYHVv3AIddKeV+pZS/V0r5j0n+PMkbk3x/kn424yYlm6GTyStTzycxlJ3WBkn+bZK/leThtdaXtoVXtqu1fqzW+tIkj0jy6qk5JndMnEjyzD1/YQAAYCZ7ia90RVLm1TRN6/poNFrKvQAAAAAAAAAAAAAAAACwX5xY9wCHUSnlgdkMrDwvyZVJLpgsTW2r2z+27fd1h7UzSd6TzYDLb9daT57vrLXWu5P841LKZ5P8wta922f53iS/eb53AQAA97WXwMnGxsZS7u6KrwyHw6XcCwAAAAAAAAAAAAAAAAD7hfjKgpRSvibJ385mcOVpOffXdt7gyvT672czuHJtrfWz5z3sDmqtryylPDfJE3Pf8Ms3L+NOAAAgGY/HnXvEVwAAAAAAAAAAAAAAAABgOcRXzkMp5WuTPDebwZW/meT4ZGlq27zBlT9J8ltJ3lhrve38p92T/5TN+MpE3Zrn0hXdDwAAR8464yu9Xq91XXwFAAAAAAAAAAAAAAAAgMNOfGVGpZSHJPnBbAZXnpLk2GRpatu8wZW/TPKmJNfUWv/z+U87szt3eS6+AgAAS9IVXzl+/HiOHz/eumdeTdO0rouvAAAAAAAAAAAAAAAAAHDYia/M7sVJ/unW+1mCK9v3TNaHSX43yTVJ3lZrPb2IIee0scvz5fykJwAAkNFo1Lq+sbHbP6afv674StdsAAAAAAAAAAAAAAAAAHDQia/Mp2QzpDJvcOVskvcleWOS/1BrvXvRA87pYbs8v2elUwAAwBEyHo9b19cZXxkOh0u7GwAAAAAAAAAAAAAAAAD2A/GV89cVXJnec0s2gyu/VWv9s6VONZ9vz31nr0k+uYZZAADgSBBfAQAAAAAAAAAAAAAAAID1EV85P9Phld2CK59O8ltJ3lhrvXUlU82hlHIsyRXZOSbz/6x4HAAAODJGo1Hr+jLjK71er3VdfAUAAAAAAAAAAAAAAACAw0585fzsFlz5YpL/kOSaWuv7VzvS3E4k+f5d1j6xykEAAOAo6QqcNE2ztLu7zu4KwwAAAAAAAAAAAAAAAADAQSe+cv4mwZVRkrcluSbJW2ut4/WNNLuteQ9KKAYAAA6NrvhKv99f2t1d8ZWu2QAAAAAAAAAAAAAAAADgoBNfmV9JUpPcmOSNSd5Ua/3iekcCAAAOmsFg0LreFUg5H+IrAAAAAAAAAAAAAAAAABx14ivzuTXJNUmuqbV+et3DAAAAB1dX4KTf7y/t7l6v17ouvgIAAAAAAAAAAAAAAADAYSe+MrtfrrX+s3UPAQAAHA6DwaB1vWmapd3ddbb4CgAAAAAAAAAAAAAAAACHnfjKHEop92tZvrvWWlc2DAAAcKB1BU76/f7S7u6Kr4xGo6XdDQAAAAAAAAAAAAAAAAD7gfjK7D6W5KG7rNUk35jkk6sbBwAAOMgGg0Hrelcg5Xx0nd0VhgEAAAAAAAAAAAAAAACAg+7Yugc4gL42SWl5fWZ9owEAAAdNV+Ck3+8v7e6u+MqZM2dy+vTppd0PAAAAAAAAAAAAAAAAAOsmvjK700nqDq+Js+sYCgAAOJgGg0Hr+jLjK71er3NPVxwGAAAAAAAAAAAAAAAAAA4y8ZXZfWbqfdl6TXvwCmcBAAAOuK74StM0S7t7L2ePRqOl3Q8AAAAAAAAAAAAAAAAA6ya+MruP577BlWkPWdUgAADAwTcLQck6AAAgAElEQVQcDlvX+/3+0u7eS3ylaz4AAAAAAAAAAAAAAAAAOMjEV2b3to71J65kCgAA4FAYDAat63sJpMxLfAUAAAAAAAAAAAAAAACAo058ZXZvSjLeel93WH/2CmcBAAAOuK64Sb/fX9rdvV6vc4/4CgAAAAAAAAAAAAAAAACHmfjKjGqtn07y60nK9qWtZ99TSnn4ygcDAAAOpMFg0LreNM3S7t7L2eIrAAAAAAAAAAAAAAAAABxm4ivzeUWST2y9n0RXJvpJfmHVAwEAAAdTV9yk3+8v7e69xFdGo9HS7gcAAAAAAAAAAAAAAACAdRNfmUOt9UtJrkpy9+TR1K8lyd8tpfzgOmYDAAAOlsFg0Lq+l0DKvPZydlccBgAAAAAAAAAAAAAAAAAOMvGVOdVa/2uSZyb58valbP51fUMp5TkrHwwAADgwTp8+nTNnzrTu6ff7S7u/1+t17hFfAQAAAAAAAAAAAAAAAOAwE185D7XWDyW5MsldScr0UpILkry5lPLLpZSNdcwHAADsb4PBoHPPMuMrTdN07hFfAQAAAAAAAAAAAAAAAOAwE185T7XW30/ypCQfyWaAZRJhqdn86/uPkvzXUsqPllK6/1h5AADgyNhL2GQvgZR5nThxIseOtf9rofgKAAAAAAAAAAAAAAAAAIfZiXUPcBjUWu8spTwlyT9O8lNJHjhZymaM5RuSvDbJq0op709yQ5I/TfIXScYrmO+GZd8BAADMbjAYdO7p9/tLu7+UkqZpcurUqV33jEajpd0PAAAAAAAAAAAAAAAAAOsmvjKHUsqnurZkM7ySqV9LkkuSPHvrtSo1/j4DAMC+tJf4StM0S52hK74yHA6Xej8AAAAAAAAAAAAAAAAArJMox3wekc2oSdlhbTq2Mv1sp+cAAMARtpewSb/fX+oMvV6vdV18BQAAAAAAAAAAAAAAAIDDTHzl/NRtvy/ZOa4yeTYdYVkFoRcAANjHBoNB556maZY6Q9f54isAAAAAAAAAAAAAAAAAHGbiK4s1CavsFj1ZZQxllZEXAABgDnsJm/T7/aXO0BVfGY1GS70fAAAAAAAAAAAAAAAAANZJfOX8rDKmAgAAHDKDwaBzT1cc5Xx1nb+XQAwAAAAAAAAAAAAAAAAAHFTiK+enrnsAAADg4NpL2KTf7y91hl6v17ouvgIAAAAAAAAAAAAAAADAYSa+Mr+y7gEAAICDbTAYtK4fO3YsF1xwwVJnaJqmdV18BQAAAAAAAAAAAAAAAIDDTHxlPo9a9wAAAMDB1xU2aZompSy3+yi+AgAAAAAAAAAAAAAAAMBRJr4yh1rrJ9c9AwAAcPANBoPW9X6/v/QZuuIro9Fo6TMAAAAAAAAAAAAAAAAAwLocW/cAAAAAR9VwOGxd7wqjLELXHV0zAgAAAAAAAAAAAAAAAMBBJr4CAACwJoPBoHW93+8vfYZer9e6Lr4CAAAAAAAAAAAAAAAAwGEmvgIAALAmXfGVpmmWPkPXHeIrAAAAAAAAAAAAAAAAABxm4isAAABr0hU26ff7S5+hK74yGo2WPgMAAAAAAAAAAAAAAAAArIv4CgAAwJoMBoPW9a4wyiJ03dEViAEAAAAAAAAAAAAAAACAg+zEugdgcUopT0hy1Q5Lv1VrvX3V8wAAAO26wib9fn/pM/R6vdZ18RUAAAAAAAAAAAAAAAAADjPxlcPnFUnqtmclyT9b/SgAAECbwWDQur6K+ErTNK3r4isAAAAAAAAAAAAAAAAAHGbiK4fLbVPvy9T771z1IAAAQLeusElXGGURuu7oCsQAAAAAAAAAAAAAAAAAwEF2bN0DsFDTfz/r1itJHruGWQAAgA5dYZN+v7/0GS688MLW9ZMnTy59BgAAAAAAAAAAAAAAAABYF/GVw+UHd3n+wJVOAQAA7MlwOGxdb5pm6TNcdNFFresnT55MrbV1DwAAAAAAAAAAAAAAAAAcVCfWPcBhU0p5fJLvSPKNSe6fZGMF155I8ugkT0pSk5StX6fXAQCAfWYwGLSu9/v9pc/QFV85e/ZsRqPRSkIwAAAAAAAAAAAAAAAAALBqohwLUEo5nuTHk7w0ySPXOcouz/9ipVMAAAB7MhwOW9dXETzpiq8kycmTJ8VXAAAAAAAAAAAAAAAAADiUxFfOUynlG5P8dpJvze7xk1Wp22YoW89uW884AABAm8Fg0Lre7/eXPsNe4yuXXnrp0mcBAAAAAAAAAAAAAAAAgFUTXzkPpZTHJLkhydfkXOhknXaLv/z7lU4BAADsSVd8pWmapc+w1/gKAAAAAAAAAAAAAAAAABxG4itzKqVclOR3kzw4m9GVSXhltwDKKk1HYP4wyb9a1yAAAMDuhsNh63q/31/6DHuJr5w6dWrpcwAAAAAAAAAAAAAAAADAOoivzO/lSb4pu0dXana2W5xlt/17+ez2Myb7bknynFrrV/ZwNgAAsGKDwaB1fb/EV06ePLn0OQAAAAAAAAAAAAAAAABgHcRX5lBK+dokL8nO4ZXpiMpOQZbdYi17Cat0nT15dmuS1yV5ba112HEuAACwJsNh+z+uN02z9BnEVwAAAAAAAAAAAAAAAAA4ysRX5vOyJP3cO3iS3DusMkzy/iR/mmSQ5MFJrkhy2dS+yedrkjuSfGqHu44nuV+Sr0vygKnP7RRi+Zkkv1lrvWu+rwUAAKzKV77ylZw5c6Z1T7/fX/oc4isAAAAAAAAAAAAAAAAAHGXiKzMqpZQkP5R7x0+moytfSfJ/JPkXtdb7/IRiKeUlSX4l942nfL7W+l0dd39DkucmeXGSR+W+EZeXJbkhifgKAADsc8PhsHNP0zRLn+PEiRPZ2NjIeDzedY/4CgAAAAAAAAAAAAAAAACH1bF1D3AAXZHkwVvvS+4dXjmb5Hm11p/bKbySJLXWX8tmfKVMHm39+tdLKVe2XVxr/USt9ZeTPCbJP0lyZno5yf2SXFdK+ebZvhIAALBqg8Ggc0+/31/BJMlFF13Uui6+AgAAAAAAAAAAAAAAAMBhJb4yu+/f4dkkwvKrtdbf3cMZv7rL87+zlwFqradrrb+Y5JlJhtNLSR6Q5HdKKav5KU0AAGAuw+Gwc0/TNCuYRHwFAAAAAAAAAAAAAAAAgKNLfGV2/93U+zr1fpTk/9zLAbXWjyf5wrZzSpLvm2WQWuu7sxlsKduWHp3kVbOcBQAArNZgMOjc0++vpqkovgIAAAAAAAAAAAAAAADAUSW+Mrtvyb2jK2Xr9++ttf75DOd8IveNplxaSnnsLMPUWv9jkl+fOmsScnlxKeXbZjkLAABYneFw2LlHfAUAAAAAAAAAAAAAAAAAlkt8ZQallIcmedDkt9uW3z7jcXfs8vzyGc9Jkp9J8sVtz44l+eU5zgIAAFZgMBh07mmaZgWTiK8AAAAAAAAAAAAAAAAAcHSJr8zmES1rt8541h27PP9rM56TWusXkvzLnAvC1K1fryyl/PVZzwMAAJZvL/GVfr+/gknEVwAAAAAAAAAAAAAAAAA4usRXZnNJy9ofz3jWn+zy/DEznjPxa0nO7vD8H855HgAAsETD4bBzT9M0K5hEfAUAAAAAAAAAAAAAAACAo0t8ZTb3a1n70oxn3bHDs5LkG2Y8J0lSa70zyYe2zkiSuvX+B0opF8xzJgAAsDyDwaBzT7/fX8Ek4isAAAAAAAAAAAAAAAAAHF3iK7Np+4nEe2Y8645tv69bv379jOdM+087PLsoydPO40wAAGAJhsNh6/qxY8dy4sSJlcwivgIAAAAAAAAAAAAAAADAUSW+Mpu2P5p+1j+S/o6p92Xq/YWllAfPeNbE7+/y/KlzngcAACzJYND2rxdJv99PKaV1z6KIrwAAAAAAAAAAAAAAAABwVImvzOaLLWuXznJQrfVUks9Nfrtt+ZGznDXlv+3y/FvnPA8AAFiS4XDYut40zYomEV8BAAAAAAAAAAAAAAAA4OgSX5lNW3zloXOcd0eSnf4o+8fMcVaSfH7b7+vW+fOeBwAALMlgMGhd7/f7K5pEfAUAAAAAAAAAAAAAAACAo0t8ZTYfz2bQJFO/TnznHOfdscvzb5njrCQZ7vL80jnPAwAAlmQ43O0f3zeJrwAAAAAAAAAAAAAAAADA8omvzKDW+uUkt++y/PQ5jrxjl+dPnuOsJHnQLs8vmfM8AABgSQaDQet60zQrmkR8BQAAAAAAAAAAAAAAAICjS3xldv9vkjL1+7r1+6eXUh4/41l/tO33k7OeVEpp/+nHne12/5k5zgIAAJZoOBy2rvf7/RVN0h1fGY/HOX369IqmAQAAAAAAAAAAAAAAAIDVEV+Z3fVT78u29/+8lDLLX9OP7nJWL8lz5pjt2bs8/4s5zgIAAJZoMBi0rjdNs6JJuuMrSXLy5MkVTAIAAAAAAAAAAAAAAAAAqyW+Mru3JJn8lGTNZjRl8ut3Jfk3pZSyy2e3uzXJ5I+Pr1PPS5KfnGWoUsoDkrxgh3OS5HOznAUAACxfV3yl3++vaBLxFQAAAAAAAAAAAAAAAACOLvGVGdVa70lyXc6FTZJ7B1j+xyQfLKU8dQ9njZPcOHXW5JwkeXwp5Z/OMNqvJLn/1DlfvSbJR2c4BwAAWIHhcNi63jTNiiYRXwEAAAAAAAAAAAAAAADg6BJfmc/PJzm79X4SS5kOsHxHkveUUj5eSrm6lPLiUsqDdjnrTTs8m5zzs6WUH+8appTy80l+aOpz27276wwAAGC1BoNB63q/31/RJOIrAAAAAAAAAAAAAAAAABxd4itzqLX+YZJrct/QySTAMnn/qCT/IMmvJvnWXY777STjydFbn5ucczzJa0opby+lPKeUcuFXLyplo5Ty7FLKjUl+avuIU+/HSd45w9cDAABWYDgctq43TbOiScRXAAAAAAAAAAAAAAAAADi6xFfm9zNJvrT1fjp2MgmnTF7bAy33Umv98yS/ucO+yTklyfdkM9Jydynl86WUu5KcTHJdkqds27v98/+61vqXs345AABguQaDQet6v99f0STiKwAAAAAAAAAAAAAAAAAcXeIrc6q1fjrJC3MuvLI9wNIaXdnm55JM/tj7um1tElWZvB6Q5CFJjk89mw6vTH/+K0l+YYY5AACAFRkOh63r4isAAAAAAAAAAAAAAAAAsHziK+eh1vqWJH8vyWjyaOo1yzl/luR/z32DLdNxlbbXTp+rSX6i1vqpWWYBAABWYzAYtK43TbOiSZKNjY0cP368dc+pU6dWNA0AAAAAAAAAAAAAAAAArI74ynmqtV6b5ElJPpBzsZRk9gDLa5Jcl3vHViZK7n329udfPWbq/TW11l+bZQYAAGB1hsNh63q/31/RJEkpJRdeeGHrnpMnT65oGgAAAAAAAAAAAAAAAABYHfGVBai1/mGt9alJnprkN5N8JjvHUrr8nSTX594Bl+0Rl51CLNP7SpLXJXnhjHcDAAArNBgMWtebplnRJJsuuuii1nXxFQAAAAAAAAAAAAAAAAAOoxPrHuAwqbXemOTGJCml/JUk35TksiQXJ/njPXz+VCnlqiS/kuRHsxnH2SnAspOS5FSSl9da//lcXwAAAFiZ4XDYut7v91c0ySbxFQAAAAAAAAAAAAAAAACOIvGVJam1fjrJp+f43JkkLyml/MskP5/kGen++3QqyTVJXlFr/cysdwIAAKs3GAxa15umWdEkm8RXANbjzjvvzBve8Ia8733vyyWXXJJnPvOZ+eEf/uGcOOE/2wEAAAAAAAAAAAAAAKyCn+LYp2qtf5DkqlLKJUmenuQ7kjwkyYOTHEvy2SSfSfKBJO+ptY7WNSsAADCbWmtnfKXf769omk3iKwCrdfLkyfzSL/1SXvWqV93r/xPe/OY35/Wvf33e+c53ptfrrXFCAAAAAAAAAAAAAACAo0F8ZZ+rtd6d5C1bLwAA4BA4ffp0zp4927qnaZoVTbNJfAVgdd71rnflBS94Qe68884d12+88ca87GUvy2te85oVTwYAAAAAAAAAAAAAAHD0HFv3AAAAAEfNYDDo3NPv91cwyTniKwCr8ba3vS3PeMYzdg2vTLz2ta/N7bffvqKpAAAAAAAAAAAAAAAAji7xFQAAgBUbDoede8RXAA6fM2fO5KUvfWnOnDnTuff06dN5+ctfvoKpAAAAAAAAAAAAAAAAjjbxFQAAgBUbDAade5qmWcEk54ivACzfe9/73nz84x/f8/5rr702t9xyyxInAgAAAAAAAAAAAAAAQHxlRqWUW0opn9/l9ZellEeue0YAAGB/Gw6HnXv6/f4KJjlHfAVg+a699tqZ9tda89M//dNLmgYAAAAAAAAAAAAAAIBEfGUe35zkAS2vu9Y3GgAAcBAMBoPOPU3TrGCSc8RXAJZrNBrlzW9+88yfe+tb35oPfvCDS5gIAAAAAAAAAAAAAACARHxlXnWH18R4LRMBAAAHxnA47NzT7/dXMMk54isAy/X2t789X/rSl+b67Ktf/eoFTwMAAAAAAAAAAAAAAMCE+MrsPtux/jUrmQIAADiwBoNB556maVYwyTniKwDLde2118792euvvz5nzpxZ4DQAAAAAAAAAAAAAAABMiK/M7o4kZet9mXo/8ZCVTgMAABw4w+Gwc0+/31/BJOeIrwAszz333JPrrrvuvD5/6623LnAiAAAAAAAAAAAAAAAAJsRXZvd7HevftpIpAACAA2swGHTuaZpmBZOc0xVfOXXqVM6ePbuiaQAOl+uuu25P/9vf5qabblrQNAAAAAAAAAAAAAAAAEwTX5ndm5JMfuKw7rD+7BXOAgAAHEBdP4B//PjxXHDBBSuaZlNXfCXZWzQGgPu69tprz/sM8RUAAAAAAAAAAAAAAIDlEF+ZUa31tiRvTFK2L209e2Yp5f4rHwwAADgw7rnnntb1Cy+8cEWTnLOX+MrJkydXMAnA4TIYDPKOd7yjdc/ll1+eq666qnXPhz70oUWOBQAAAAAAAAAAAAAAwBbxlfn8kySf23o/ia5M3D/JK1Y9EAAAcHB0xVcuueSSFU1yjvgKwHL8wR/8Qcbjceue5z//+bn88stb9/zRH/1RvvCFLyxyNAAAAAAAAAAAAAAAACK+Mpda658l+YEkX5k8mvq1JPmfSylPXcdsAADA/nf33Xe3rouvABweN998c+ee5z3veZ3xlST5yEc+soiRAAAAAAAAAAAAAAAAmCK+Mqda6weSPD/nAixfXUpyQZLrSilPWvlgAADAvie+AnB0dMVXLrvssjz84Q/PE5/4xBw71v6f6j70oQ8tcjQAAAAAAAAAAAAAAAAivnJeaq1vSfK3k2z/CcSa5JIk7y2l/PjKBwMAAPY18RWAo6MrvvKEJzwhSXLxxRfncY97XOvem266aWFzAQAAAAAAAAAAAAAAsEl85TzVWq9PckWSTyYp00tJ+kleU0q5oZTyveuYDwAA2H/EVwCOhtOnT+eWW25p3fPt3/7tX31/+eWXt+798Ic/nLNnzy5kNgAAAAAAAAAAAAAAADadWPcAh0Gt9ZZSyrcl+cUkL8q5v641m0GWK5K8rZRye5LfS3JDkj9N8hdJxiuY71PLvgMAANi7/Rhf6ff7nXvEVwBmc9ttt2U4HLbumY6vPPnJT87VV1+9694vfvGLue222/LYxz52YTMCAAAAAAAAAAAAAAAcdeIrcyil3NCyfGeSR2YzvJKcC7CUJI9O8k1JXrLM+bap8fcZAAD2lf0YXzl27FguvPDCnDp1atc94isAs7n55ps790zHVy6//PLO/TfddJP4CgAAAAAAAAAAAAAAwAIdW/cAB9QVSf7Gttfk2ddv7SlTrzr1Kmt4AQAA+0hXfOXiiy9e0ST3dtFFF7Wui68AzOajH/1o6/oDHvCAPPKRj/zq7x/96EfngQ98YOtnbrrppkWMBgBwIHz5y1/O1VdfnSuvvDKXXnppHvOYx+SFL3xhrr/++ozH43WPBwAAAAAAAAAAABwS4ivnZ3vgZLfYyfTzusIXAACwD3XFVy655JIVTXJv4isAi3XzzTe3rj/hCU9IKef+U9KxY8dy+eWXt37mwx/+8EJmAwDYzz73uc/lRS96UR72sIflx37sx/Ke97wnn//85/Oxj30sr3vd6/KsZz0rD33oQ/PKV74y/z97dx6dV33ei/7ZkjwPEpaRcIwtz5KN7RTClBBSk7NoA810mjZtbmiapJySZOXSNpymPRna3N7SdrX3Nm2zkrSh5ySsQ5ukSUkg5x7SkMFMYcbBMrYGGw9gg4WNJWxjY1na9w9DMLa09yvp1dYr6/NZay/s93n2b39t1gJ5eL9vb2/vWMcFAAAAAAAAAAAAxjnlKyMz1NKTpMALAACoUMpXAM58aZrmlq+cf/75p72WV76yZcuWOH78+IiyAQBUskcffTTOO++8+Od//ud48cUXB907cOBA/PEf/3FceeWV0d/fX2BCAAAAAAAAAAAA4EyjfGVkFJ8AAABDNl7LV7Le9AbAa+3atSsOHDiQuTNQ+coFF1yQec+xY8eis7NzRNkAACpVf39/fOQjH4nnnnuu5Hvuuuuu+OpXvzqKqQAAAAAAAAAAAIAznfKVkUkr+AIAACpQX19fbolJpZavHD58uKAkAOPfhg0bcncGKl9ZvXp17n2bNm0aViYAgEr34x//OB555JEh3/f3f//3o5AGAAAAAAAAAAAAmCiUrwxfMg4uAACgwhw6dCh3R/kKwPiXV74yderUaGlpOe31pqammDlzZua9ra2tI8oGAFCpvvvd7w7rvtbW1ti6dWuZ0wAAAAAAAAAAAAATRc1YBxinrhjrAAAAwPikfAVgYsgrX1mzZk3U1Jz+W3NJksTq1avjgQceGPTeTZs2jTgfAEClSdM0brvttmHf/53vfCf+8A//sIyJAAAAAAAAAAAAgIlC+cowpGl611hnAAAAxqeDBw/m7ihfARj/8spXzj///EFna9asySxfaW1tHXYuAIBK9dhjj8XTTz897PtvvfVW5SsAAAAAAAAAAADAsFSNdQAAAICJRPkKwJmvp6cn943DWeUrq1evzrx327Zt8eKLLw4rGwBApbrttttGdP8DDzwQu3fvLlMaAAAAAAAAAAAAYCJRvgIAAFCgSi5fmTlzZua8lOwARLS3t+furF27dtDZmjVrMu9N0zQ2b9485FwAAJVspOUrERHf/e53y5AEAAAAAAAAAAAAmGiUrwAAABSokstXZs+enTnv6ekpKAnA+NbW1pa709LSMuhs9erVufe3trYOKRMAQCXbvn17bNy4MXPnfe97X0yZMiVz5zvf+U45YwEAAAAAAAAAAAAThPIVAACAAuWVr1RXV8fUqVMLSvNatbW1mfPu7u6CkgCMb+3t7Znzs88+O+bMmZM5b2xszDxj06ZNw8oGAFCJbrvtttyda665Jn75l385c2f9+vWxf//+csUCAAAAAAAAAAAAJgjlKwAAAAXKK1+ZOXNmJElSUJrXqqury5wfPHgw+vv7C0oDMH61tbVlzltaWnLPWL16dea8tbV1SJkAACpZXvnKjBkz4q1vfWv86q/+auZeX19ffO973ytnNAAAAAAAAAAAAGACUL4yDEmSTE+SZOFA1xjnmjVIrqljmQsAAHhVXvnKrFmzCkpyutra2sx5mqa5+QGIaG9vz5yXUr6yZs2azPmmTZuGlAkAoFIdOHAg7rnnnsydt73tbTF16tR4xzveEdXV1Zm73//+98sZDwAAAAAAAAAAAJgAlK8Mz69HxPYBrifHMlRE/E4MnOu6sQwFAAC8qpLLV+rq6nJ3uru7C0gCMH719fVFZ2dn5k5zc3PuOatXr86cP/PMM7F///4hZQMAqET33Xdf9PX1Ze68+93vjoiIOXPmxLp16zJ3H3/88XJFAwAAAAAAAAAAACYI5SvDlwxyjaUDMXCmC8cyFAAA8KpKLl+pra3N3enp6SkgCcD4tWPHjjh27FjmTktLS+45a9asyd3ZtGlTybkAACrVfffdlzmvrq6Oq6+++uffv+qqqzL3Ozo64siRI2XJBgAAAAAAAAAAAEwMyldGJj3pqgSvlL+cmmvt2MQBAABONd7LV7q7uwtIAjB+tbW15e40Nzfn7qxatSp3p7W1taRMAACV7Kc//Wnm/Bd+4Rdizpw5P//+61//+sz9/v7+2Lx5c1myAQAAAAAAAAAAABOD8pWRS/JXCjN9kNfrC00BAAAMqpLLV+rq6nJ3enp6CkgCMH61t7dnzidPnhyLFi3KPWfmzJmxZMmSzJ1NmzYNJRoAQMU5duxYPPTQQ5k7l1122Wu+v2bNmtxzldQBAAAAAAAAAAAAQ6F85cyyfJDXx+7dmwAAwGtUcvnKjBkzorq6OnNH+QpAtra2tsz5smXLoqampqSzVq9enTlXvgIAjHc/+9nP4ujRo5k7b3rTm17z/cbGxmhoaMi8Z+PGjSPOBgAAAAAAAAAAAEwcylfOEEmS1EbEb0REOsB4WsFxAACAQRw6dChzPpblK0mSxOzZszN3uru7C0oDMD7lla+0tLSUfFZe+cqWLVsiTQf6rSAAgPHhvvvuy9257LLLTntt7dq1mfcoXwEAAAAAAAAAAACGorSP2T3DJUkyOyLqhnDL3IyzFkREMuJQpZsaEWsi4rMRcU6cKF9J4rUlLC8UmAcAAMhw8ODBzPlYlq9ERNTV1cWBAwcGnff09BSYBmD8aW9vz5w3NzeXfNaqVasy588//3w899xz0dDQUPKZAACV5Kc//WnmfMGCBXHuueee9vqaNWvihz/84aD3tba2jjgbAAAAAAAAAAAAMHEoXznhDyLiT4ZxXzLAP3eUI9AwnJrlZPuLDAIAAAyu0stXamtrM+fd3d0FJQEYfw4cOBBdXV2ZOy0tLSWft3LlytydLVu2KF8BAMalNE3jvvvuy9y57LLLBnx97dq1mfd1dXXF3r17o7Gxcdj5AAAAAAAAAAAAgImjaqwDVJBkiNhvDUgAACAASURBVFe5zinXFRGRDpAljYifDelnAgAAGDWVXr5SV1eXOe/p6SkoCcD4097enrvT3Nxc8nml7G7evLnk8wAAKsnOnTvjmWeeydx505veNODra9asyT1/48aNw8oFAAAAAAAAAAAATDzKV14rHcJVjjPKfQ1WCvOjIfwcAAAAo6jSy1dqa2sz58pXAAbX1taWuzOU8pUZM2ZEU1NT5s6WLVtKPg8AoJLcd999uTuXXXbZgK+vWrUqqqqy/5iztbV1WLkAAAAAAAAAAACAiUf5yumSEq+R3j8a1ytOLod5LiJuGeLPAQAAMAqOHz8eR48ezdyZOXNmQWkGlle+0t3dXVASgPGnvb09c97Y2Bh1dXVDOnPlypWZc+UrAMB49dOf/jRzPmPGjFi7du2As2nTpsWKFSsy79+4ceOwswEAAAAAAAAAAAATi/KVM0sarxavJBHRFxEfS9P0xbGLBAAAvOLgwYO5O7NmzSogyeDySgF6enoKSgIw/rS1tWXOW1pahnzmqlWrMufKVwCA8eq+++7LnF9yySVRU1Mz6HzNmjWZ9ytfAQAAAAAAAAAAAEqlfOV0aYnXSO8fjSviROlKEhF7IuI9aZreOvyfCgAAoJzGQ/lKbW1t5ry7u7ugJADjT175SnNz85DPXLlyZeZ89+7dirEAgHHn0KFD0dramrlz2WWXZc7Xrl2bOd+8eXMcP358yNkAAAAAAAAAAACAiUf5ymslQ7jKcUa5rxcjYn1EfCQiVqRpevtIfjIAAIDyOhPKV7zBH2BgfX198eSTT2butLS0DPncvPKViPzSFwCASrNly5bo7+/P3HnTm96UOV+zZk3m/KWXXorOzs4hZwMAAAAAAAAAAAAmnpqxDlAhvhYnSktK9baI+KOISONE6cnJ/3xrmbPlSSPiUEQciIgdaZqmBT8fAAAo0XgoX6mrq8ucK18BGNjTTz8dx44dy9xZvnz5kM8tpXxly5Ytcckllwz5bACAsVJKedxFF12UOV+7dm3uGRs3bizp6ykAAAAAAAAAAABgYlO+EhFpmu6MiJ2l7idJsijjrLvKEAkAADgDjYfyldra2sz5kSNH4tixYzF58uSCEgGMD9u2bcvdWbZs2ZDPnTNnTjQ0NERXV9egO1u2bBnyuQAAYymvfOXss8+O+vr6zJ2mpqaYNWtW5q+1N27cGL/xG78xrIwAAAAAAAAAAADAxFE11gEAAAAmivFQvlJXV5e709PTU0ASgPFl69atmfMkSWLx4sXDOnvVqlWZc+UrAMB4097enjlvaWnJPaOqqipWr16dudPR0TGkXAAAAAAAAAAAAMDEpHwFAACgIHnlK5MmTYopU6YUlGZgtbW1uTvd3d0FJAEYX7Zt25Y5X7BgwbD/G79y5crM+ebNm4d1LgDAWGlra8ucNzc3l3ROXkndzp07S84EAAAAAAAAAAAATFzKV0YuHesAAADA+HDo0KHM+axZswpKMrhSyld6enoKSAIwvmzdujVzvnTp0mGfnVe+sn379jh69OiwzwcAKNLx48ejs7Mzc6elpaWks5qamjLnylcAAAAAAAAAAACAUihfGZnkpAsAACDTwYMHM+eVUL5SV1eXu6N8BeB027Zty5wvW7Zs2Gfnla/09/dHR0fHsM8HACjSjh074tixY5k75Spf6erqiiNHjpScDQAAAAAAAAAAAJiYlK8Mz7cjYvEA15KxDAUAAFS28VC+Ultbm7vT3d1dQBKA8SNN09zylaVLlw77/LzylYiILVu2DPt8AIAitbW15e6Uq3wlImLXrl0lnQUAAAAAAAAAAABMXDVjHWA8StP0cEQcHuscAADA+DIeylemTJkSU6dOjaNHjw6609PTU2AigMrX1dUVhw4dytwZSfnK6173upg9e3a88MILg+5s3rx52OcDABSpvb09cz558uRYtGhRSWeVUr6yc+fOaG5uLuk8AAAAAAAAAAAAYGKqGusAAAAAE0Ve+crMmTMLSpKttrY2c97d3V1QEoDxYdu2bbk7y5YtG/b5SZLEypUrM3eUrwAA40VbW1vmfPny5VFdXV3SWfPnz4+qquw/7ty5c2fJ2QAAAAAAAAAAAICJSfkKAABAQfLKV2bNmlVQkmx55Ss9PT0FJQEYH7Zu3Zq7s3Tp0hE9I6985YknnhjR+QAARckrX2lpaSn5rEmTJsX8+fMzd5SvAAAAAAAAAAAAAHmUrwAAABRkvJSv1NXVZc6VrwC81rZt2zLnDQ0NI/5v/OrVqzPnHR0d8dJLL43oGQAARShn+UpERFNTU+Zc+QoAAAAAAAAAAACQR/kKAABAQcZL+UptbW3mvLu7u6AkAOPD1q1bM+dLly4d8TPyylf6+vqivb19xM8BABhN+/fvj3379mXuNDc3D+lM5SsAAAAAAAAAAADASNWMdYCxkCTJW7LmaZrePZL7K03ejwcAACjGmVK+0tPTU1ASgPFh27ZtmfNly5aN+Bl55SsREZs2bYq1a9eO+FkAAKOllLK4lpaWIZ2pfAUAAAAAAAAAAAAYqQlZvhIR6yMiHWSWRv7PS9b9laaUHw8AAFCA8VK+UldXlznv7u4uKAnA+JBXvrJ06dIRP+N1r3td1NXVZf43eNOmTSN+DgDAaGpra8vdaW5uHtKZeeUru3fvjuPHj0dNjT8uAwAAAAAAAAAAAAZWNdYBxlgyyDXS+yvtAgAAKsB4KV+pra3NnPf09BSUBKDy9fT0xL59+zJ3ylG+kiRJrF69OnNH+QoAUOnyylde97rXxezZs4d0Zl75Sl9fX+zevXtIZwIAAAAAAAAAAAATy0QvX0lPuUZ6f6VdAABABRkv5St1dXWZc+UrAK/atm1b7s6yZcvK8izlKwDAeJdXvtLc3DzkM/PKVyIidu7cOeRzAQAAAAAAAAAAgImjZqwDjLHkpG8Pp6wkyV8ZM8pXAACggrz00kvR29ubuVMp5Su1tbWZ8+7u7oKSAFS+rVu35u4sXbq0LM/KK1/Zvn17HDp0KGbOnFmW5wEAlFt7e3vmvKWlZchnLly4MHdH+QoAAAAAAAAAAACQpWqsAwAAAEwEhw4dyt0ZL+UrPT09kab6HgEiIrZt25Y5nz17dsydO7csz8orX4mI2Lx5c1meBQBQbseOHcv92mk45SvTp0+Ps88+O3NH+QoAAAAAAAAAAACQZaKXr6QnXSO9v9IuAACgghw8eDB3p1LKV+rq6jLnfX19cfjw4YLSAFS2vDcQL126NJIkKcuzzjvvvNydTZs2leVZAADltm3btujr68vcGU75SkREU1NT5lz5CgAAAAAAAAAAAJBlIpevJANcI72/0i4AAKBCjKfyldra2tydnp6eApIAVL6tW7dmzpcuXVq2Z82dOzfOOeeczB3lKwBApWpra8vdaW5uHtbZylcAAAAAAAAAAACAkagZ6wBj5Ioxvh8AAJhgSilfmTlzZgFJ8pVavjJ//vwC0gBUtrzylWXLlpX1eatXr45nn3120LnyFQCgUrW3t2fOp02bFgsWLBjW2cpXAAAAAAAAAAAAgJGYkOUraZreNZb3AwAAE09PT0/uzqxZswpIkq+uri53p7u7u4AkAJXt0KFDsXv37syd0Shf+eEPfzjoXPkKAFCp2traMufNzc1RVVU1rLPzyld27doVaZpGkiTDOh8AAAAAAAAAAAA4sw3vbzACAAAwJPv378+cJ0kStbW1BaXJVkqOUspkAM50W7duzd1ZsWJFWZ+5evXqzPkzzzyT+/8cAICxkFe+0tLSMuyz88pXjh49Gl1dXcM+HwAAAAAAAAAAADizKV8BAAAoQN4b4efMmRPV1dUFpck2e/bs3J3u7u4CkgBUts7Oztyd5cuXl/WZeeUrERFPPPFEWZ8JADBSaZqOavnKokWLcnd27tw57PMBAAAAAAAAAACAM5vyFQAAgALs27cvc15fX19QknzV1dUxa9aszJ2enp6C0gBUro6Ojsz5rFmzorGxsazPPO+883J3Nm3aVNZnAgCM1N69e3N/Hdnc3Dzs85uamnJ3lK8AAAAAAAAAAAAAg1G+AgAAUIC88pW5c+cWlKQ0tbW1mXPlKwARnZ2dmfMVK1ZEkiRlfebMmTNj8eLFmTsbNmwo6zMBAEaqvb09d6elpWXY59fV1cXs2bMzd5SvAAAAAAAAAAAAAINRvgIAAFCA8Va+UldXlznv7u4uKAlA5ero6MicL1++fFSeu3r16sz5ww8/PCrPBQAYrra2ttydFStWjOgZTU1NmXPlKwAAAAAAAAAAAMBglK8AAAAUYP/+/ZnzSitfqa2tzZz39PQUlASgcuWVr4z0DcSDufDCCzPnmzZtisOHD4/KswEAhiOvfKWpqSmmT58+omcoXwEAAAAAAAAAAACGq2asA0xUSZLURkRDRMyIiKkRUR0RRyPiSETsi4jn0jRNxy4hAABQTvv27cucj7fyle7u7oKSAFSm559/PrdYa/ny5aPy7Isvvjhz3tfXFxs2bIg3v/nNo/J8AIChyitfaW5uHvEz8spXduzYMeJnAAAAAAAAAAAAAGcm5SujLEmSJCLeEBFXRMQFEbE6IpZGxJScW/uSJNkdEU9ERGtE3BsR96Rp+sIoxgUAAEZJXvlKfX19QUlKU1dXlzk/cOBAQUkAKlNnZ2fuzooVK0bl2RdddFHuzoMPPqh8BQCoGHnlKy0tLSN+Rl75ys6dO0f8DAAAAAAAAAAAAODMpHxllCRJckFEfDgi3hsRJ7+LMinxiJqIaIqIhRFxVUR8Mk4UstwVEd+IiG+maXqofIkBAIDRkqZpbvnK3LlzC0pTmrwymOeee66gJACVqZTyleXLl4/Ks+vr62PZsmWxdevWQXceeuihUXk2AMBQHTlyJLf4pIjylRdeeCG6u7tzy0YBAAAAAAAAAACAiadqrAOcaZIkuSRJkjsj4uGI+GhEzI0ThSuvXBER6RCuk++tiYi3RsRXIuLpJEk+nyTJvGJ+ZAAAwHAdOnQoent7M3cqrXyloaEhc753796CkgBUpo6Ojsz53Llz46yzzhq151988cWZc+UrAECl6OzsjDRNM3eKKF+JiNwSGAAAAAAAAAAAAGBiUr5SJkmSTEuS5MsRcV+cKEh5pTBloEKViNeWqgx0vWKwMpbZEXF9RHQmSfJnSZJMGc0fHwAAMHz79u3L3am08pXGxsbMeVdXV+6b5wDOZHnlKytWrBjV5+eVr+zYsSO6urpGNQMAQCna2tpyd5qbm0f8HOUrAAAAAAAAAAAAwHApXymDJEkWRcT9EfG7ceLn9OTSlYjscpVBjx3knlOLWKZHxKcj4vEkSS4d8Q8GAAAou1LKV+rr6wtIUrq88pVjx45Fd3d3QWkAKk9nZ2fmfPny5aP6/LzylYiIhx56aFQzAACUIq98ZdasWTFv3rwRP6ehoSGmTMn+rALlKwAAAAAAAAAAAMBAlK+MUJIkyyPinohYE68tXRmsaCUd5hUDnHnys1ZExF1Jknyk3D9GAABgZEopX5k7d24BSUqXV74SEdHV1VVAEoDKk6ZpdHR0ZO6sWLFiVDP8wi/8QtTU1GTuKF8BACpBe3t75rylpSWSpJTPLchWVVUVCxcuzNxRvgIAAAAAAAAAAAAMRPnKCCRJ0hARP4yI+S+/dHJJysmySlRKubLOOHk2KSK+mCTJ/z3yHx0AAFAu+/fvz5xXVVVFXV1dQWlK09DQkLuzd+/eApIAVJ69e/fGoUOHMndGu3xl2rRpsXbt2swd5SsAQCVoa2vLnLe0tJTtWU1NTZlz5SsAAAAAAAAAAADAQLI/HpdBJSc+gu/bEbEgsktX4pTZ8xGx8eWrMyJeiIieiDgUEdMiYtbL19yIWPXy1RwR0086M6uAJYmITyVJcjBN078e0Q8SAAAoi3379mXO58yZE9XV1QWlKU1jY2PujvIVYKLq6OjI3Vm+fPmo57j44ovjscceG3T+0EMPRZqmceK3sQAAipemabS3t2fuNDc3l+15ylcAAAAAAAAAAACA4VC+MnzXR8SbY+DilVNLV56KiG9FxDfTNH14qA9KkqQ6It4SEe+OiHdFxMIYuITl5AKWG5MkeSRN0x8P9XkAAEB55ZWv1NfXF5SkdNOnT4+ZM2fGoUOHBt1RvgJMVKWUryxbtmzUc1xyySXxj//4j4PODxw4ENu2bSskCwDAQJ555pk4fPhw5o7yFQAAAAAAAAAAAGCsVY11gPEoSZKzIuLPIrt4JYmIPRFxXUQsSdP0vw6neCUiIk3TvjRNf5Km6e9FxOKI+K2IaD/puafmSCOiOiK+liTJ9OE8EwAAKJ+88pW5c+cWlGRoGhsbM+ddXV0FJQGoLJ2dnZnz+fPnx4wZM0Y9x8UXX5y78+CDD456DgCAweR93RQRsWLFirI9L698paurK44cOVK25wEAAAAAAAAAAABnBuUrw/N7ETHr5W+fXHiSnrTz/0TEsjRNb0rTtK9cD05P+JeIOC8iPh4Rr/wN0YGKYOZHxB+V69kAAMDw7N+/P3NeqeUrDQ0NmfO9e/cWlASgsnR0dGTOy/kG4izNzc0xa9aszJ177723kCwAAAPJ+7opImLZsmVle15e+UpExK5du8r2PAAAAAAAAAAAAODMoHxliJIkSSLiw/HaopWTi0+OR8RvpWn6yTRNXxqtHC+XsHwpIt4cEa983PypmZKI+HiSJNNGKwcAAJBv3759mfNKLV9pbGzMnCtfASaq9vb2zPny5csLyVFdXR0XXXRR5s4999xTSBYAgIF0dnZmzs8999yYPn162Z5XSvnKzp07y/Y8AAAAAAAAAAAA4MygfGXo3hgR57787eSk15M4UXjyiTRN/7WoMGma/iwiro6II6+8dEquuoj4jaLyAAAAp8srX6mvry8oydAoXwE43fHjx2Pr1q2ZO83NzQWliXjzm9+cOX/iiSdy/z8EADBa8spXyl1aN3/+/Kiqyv7jT+UrAAAAAAAAAAAAwKmUrwzdFad8/5WykzQifpSm6ReLDpSm6YaI+JN4benKyd5RYBwAAOAUeW96nzt3bkFJhiavfKWrq6ugJACVY8eOHdHb25u5U2T5ylve8pbcnXvvvbeAJAAAp8srX1mxYkVZnzdp0qSYP39+5o7yFQAAAAAAAAAAAOBUyleG7qKM2Z8WluJ0X4iIPS9/Oz3pn0mcXhgDAAAUJE3T2L9/f+ZOpZavNDQ0ZM737t1bUBKAytHe3p67U2T5yqWXXho1NTWZO/fcc09BaQAAXtXf3x9bt27N3Fm+fHnZn9vU1JQ5V74CAAAAAAAAAAAAnEr5ytAti9eWm7ziyTRN7x+DPCeCpGlvRPzPOFG2Eif9MyKiNkmS7I/5AwAARsXBgwejt7c3c6dSy1caGxsz54cPH47Dhw8XlAagMuSVr0yaNCkWLVpUTJiImDFjRrzhDW/I3Ln77rsLSgMA8KqnnnoqXnrppcwd5SsAAAAAAAAAAABAJVC+MnTzTvl+EidKWNYXH+U0P8yYlf9vrwIAALn27duXu1NfX19AkqHLK1+JiOjq6iogCUDlyCtfWbZsWdTU1BSU5oS3vOUtmfPHHnssDh48WFAaAIATOjs7c3dWrFhR9ucqXwEAAAAAAAAAAACGSvnK0M0Y5PXsd94UY3PGrK6wFAAAwM+VUr4yd+7cApIMXSnlK3v37i0gCUDlyCtfaW5uLijJq/LKV/r7++P+++8vKA0AwAkdHR2Z86qqqliyZEnZn7to0aLM+e7du+P48eNlfy4AAAAAAAAAAAAwfilfKZ8DYx0gIvZnzKYXlgIAAPi5/fuzvkw/oVLLVxoaGnJ3lK8AE00llq9cdtllkSRJ5s7dd99dUBoAgBM6Ozsz501NTTF58uSyP7epqSlz3tfXF7t37y77cwEAAAAAAAAAAIDxS/nK0L0wyOszCk0xsDRjdqSwFAAAwM/t27cvc15VVRV1dXUFpRma2tra3DfCKV8BJpIXXnghnn322cydsShfOeuss2LNmjWZO8pXAICi5ZWvrFixYlSem1e+EhGxc+fOUXk2AAAAAAAAAAAAMD4pXxm6pyJioI8Snld0kAHUZsy6C0sBAAD8XF75ypw5c6KqqjJ/aZYkSTQ2NmbudHV1FZQGYOy1t7fn7oxF+UpExFve8pbM+UMPPRRHjx4tKA0AQH75yvLly0fluQsXLszdUb4CAAAAAAAAAAAAnKwy3+FX2Z4Y5PXR+Xi+oVmSMdtWWAoAAODn8spX5s6dW1CS4ckrX9m7d29BSQDGXiWXr1x++eWZ85deeikeeuihgtIAABPd8ePH48knn8zcGa3ylWnTpkVDQ0PmzrZt/tgMAAAAAAAAAAAAeJXylaG765TvpxGRRMSVSZJMHoM8J7vwpG+nJ317f5qmu4oOAwAAROzfvz9zXunlK3lvWFO+AkwkeeUr9fX1UV9fX1Ca18orX4mI+NGPflRAEgCAiB07dsTx48czd1asGL3PNViyJOvzCkor1QMAAAAAAAAAAAAmDuUrQ3dHRPQP8PqMiHhbwVlO9aunfD+JEyUsPxmDLAAAQETs27cvc17p5SuNjY2Zc+UrwESS9ybd5ubmgpKcbt68ebF8+fLMnR/84AcFpQEAJrrOzs7cnbyvXUaipaUlc97W1jZqzwYAAAAAAAAAAADGH+UrQ5Sm6Z6I+H6cKDY5WRIR/1eSJKe+XogkSZojYl2cKFs51f8sNg0AAPCKM718paurq6AkAGOvkstXIiL+03/6T5nzhx56KLq7uwtKAwBMZHnlKzU1NdHU1DRqz8/7uqy9vT36+wf6rAUAAAAAAAAAAABgIlK+Mjz/70nfTuLVwpO1EXFt8XEiIuJvY+B/nx0R8b8LzgIAALwsr3ylvr6+oCTDk1e+snfv3oKSAIyt/v7+3DcRj3X5ypVXXpk57+/vjx//+McFpQEAJrKOjo7M+ZIlS6KmpmbUnt/S0pI5P3LkSDz11FOj9nwAAAAAAAAAAABgfFG+Mgxpmv4kThSanFy8kr78/b9LkuTCIvMkSfJfI+KqkzLESdluSNPUR/cBAMAY2b9/f+Z87ty5BSUZnoaGhsz5gQMH4tixYwWlARg7Tz31VBw5ciRzZ6zLV9761rdGVVX2b/fdeeedBaUBACayvNK6FStWjOrz88pXIiLa29tHNQMAAAAAAAAAAAAwfihfGb6PRkT3Ka+lETEtIm5LkqSpiBBJklwfEX8Vp5fApBHxtTRN/3cROQAAgNOlaRr79u3L3Kn08pXGxsbcna6urgKSAIytUt6cO9blK3V1dXHxxRdn7vzgBz8oKA0AMJF1dHRkzpcvXz6qz1+yZElUV1dn7rS1tY1qBgAAAAAAAAAAAGD8UL4yTGmaPhURH4xXS09+PoqIeRHxQJIkvzhaz0+SZE6SJLdExOdj4H+PP4yIj4zW8wEAgHwvvPBCHD9+PHNH+QrA+JBXvlJdXR1Lly4tKM3gfumXfilz/uSTT8a2bdsKSgMATESHDx+OHTt2ZO6sWLFiVDNMnjw592sz5SsAAAAAAAAAAADAK5SvjECaprdHxEcHGkVEY0T8KEmSryZJsqxcz0ySpCFJkj+LiM6IeF9EJPFqAUzy8vX/RcS70zTtLddzAQCAodu3b1/uTn19fQFJhq+U8pW9e/cWkARgbOWVryxevDgmT55cUJrBXXnllbk7d955ZwFJAICJqpRSk5UrV456jpaWlsx53td3AADlcPTo0XjuuefipZdeGusoAAAAAAAAAEAG5SsjlKbpTRHxf0TEqUUnaZz4+f1ARLQlSbI+SZLrkyRZmyRJyT/vSZJMT5LksiRJ/iBJkh9HxO6I+HREnBWnF6+kEfEPEfGuNE2PjOgHBgAAjNgzzzyTuzN37twCkgzfnDlzoqoq+5cwyleAiWDTpk2Z8+bm5oKSZLvkkkti1qxZmTvKVwCA0bR58+bcnVWrVo16jrzylVJKYgAAhmvv3r3xsY99LGbPnh0NDQ0xb968+MQnPhEHDhwY62gAAAAAAAAAwABqxjrAWEiSpG+0jj7p2+nLV/LydfnLV0REb5Ik2yJiT0Q8FxFHIuJYREyOiKkRMT0iXhcR50ZE4ynnvvLt9JTX0oh4NiLmRMTXkuTnt6Rpmv52GX5sAADAEO3cuTN3Z/78+QUkGb7q6uo4++yzMwtWlK8AZ7o0TaO1tTVzp4g3EJdi0qRJccUVV8Ttt98+6M6Pf/zjOH78eNTUTMjfGgQARtmWLVsy53Pnzo2zzz571HPklePt2bMnXnjhhZg9e/aoZwEAJpaHH344/vN//s+xe/fun7924MCB+PznPx/f/OY34ytf+Ur8yq/8yhgmBAAAAAAAAABOlf3x5WeuZJSuU58RcXoJSxInSlZWRsRbI+I3IuKDEfG7L//zNyPinRFxUUTMixP/jk6+95XzTv5xvPLtcyLi/Sdd17x8AQAAY2DXrl2Z87lz58b06dMLSjN8jY2NmfOurq6CkgCMjT179sTzzz+fubN27dqC0uS78sorM+fd3d3x6KOPFpQGAJhoNm/enDkvqrSupaUld6e9vb2AJADARHLzzTfH5Zdf/prilZPt2bMn3v72t8e1114bx48fLzgdAAAAAAAAADCYiVq+EvFqiUk5r1OdXI4y0G5ekctgzxio7GWg8wAAgDGUV76ycOHCgpKMTF75ytNPP11QEoCx0dramruzZs2aApKU5pd+6Zdyd9avXz/6QRgVO3fujJ/85Cdx1113RWtra+zevTvSdKDfmgSAsVEp5SvNzc25O8pXAIBy+tKXvhQf/OAH46WXXsrd/e///b/HBz7wAb+mBwAAAAAAAIAKMZHLVyKyy0+Gc5X6nIihlbmU+py8MhgAAKBAeeUrTU1NBSUZmXPPPTdzvn379oKSAIyNjRs3Zs6rq6ujpaWloDT5li9fHgsWLMjc+clPflJQGsply5YtcdVVV8WiRYvi2+l3SAAAIABJREFUrW99a6xbty7Wrl0b5557bpxzzjnxmc98pqQ3dwHAaDp69Ghs27Ytc2flypWFZKmvr4+zzz47c6etra2QLADAme/hhx+O66+/fkj3fP3rX4+bb755lBIBAAAAAAAAAEMx0ctXxkq5Sl2yzgUAAMbYzp07M+cLFy4sKMnILFmyJHOufAU407W2tmbOW1paYsqUKQWlyZckSVxxxRWZO/fee2/09vYWlIiRePHFF+PTn/50vP71r4/vf//7A+50dXXFjTfeGFdccUV0d3cXnBAAXtXR0RH9/f2ZO6tWrSooTURzc3PmXPkKAFAOaZrGJz/5yejr6xvyvX/wB38Qzz777CikAgAAAAAAAACGYqKXr6Rn8AUAAIyhNE3PmPKVxYsXZ8737dsXBw8eLCgNQPE2btyYOV+zZk1BSUqXV75y+PDhePTRRwtKw3Dt3r07LrrooviLv/iLkspy7r///li3bl3s3bu3gHQAcLrNmzfn7hRZvtLS0pI5b29vLygJAHAm+4//+I9Yv379sO7t7u6Oj3/84+UNBAAAAAAAAAAM2UQuX0kmwAUAAIyRnp6eOHToUObOmVK+EhGxffv2ApIAFK+3tze2bNmSubN27dqC0pRu3bp1uTvDfVMQxXjhhRdi3bp1Jb2J/WSPP/54XH755fH000+PUjIAGFze1021tbUxb968gtLkl690dHREX19fQWkAgDNRf39//PEf//GIzvj3f//3+Pd///cyJQIAgIiDBw/GLbfcEtddd128+c1vjjlz5kR1dXUsWLAgPvWpT8Xzzz8/1hEBAAAAACpOzVgHGCP57xwEAAAYgV27duXuNDU1FZBk5EotX6nE8gGAkero6Ije3t7MnTVr1hSUpnSLFi2Kpqam2Llz56A769evH/Gbgxg9v//7vx9bt24d1r2dnZ3x3ve+N+66666YNGlSmZMBwODySsNWrVoVSVLc5wfkla8cO3YsduzYEUuXLi0oEQBwpvnGN74Rjz/++IjPuf766+Pqq6+OadOmlSEVAAAT2UMPPRS//uu/PuDfW3n66afjL//yL+Of/umf4k/+5E/iox/9aEyePHkMUgIAAAAAVJ4JWb6Spung7zoBAAAog1LKVxYuXFhAkpE755xzYurUqXH06NFBd5588skCEwEUZ+PGjbk7lVi+EhGxbt26uPnmmwed33vvvdHb26ucowLdeuut8dWvfnVEZ9x///3xta99Lf7Lf/kvZUoFAPnyyldWrlxZUJITmpubc3e2bNmifAUAGJZjx47FZz/72bKctWfPnvj6178eH/7wh8tyHgAAE9OPfvSjeNe73hWHDx/O3Hv++efj93//9+N//I//Ebfffvu4+fAgAAAAAIDRVDXWAQAAAM5EO3dmdz5OmTIlzj777ILSjEySJLF48eLMne3btxeUBqBYra2tmfPZs2dXbJnWFVdckTk/fPhwPPLIIwWloVTPPvts/O7v/m5ZzvrLv/zL6O3tLctZAJCnt7c3Ojo6MndWrVpVUJoTFi1alPvJvY8//nhBaQCAM813vvOd3GLymTNnxt69e+PXfu3Xcs/7whe+EGmaliseAAATzG233RZXX311bvHKyTZu3BiXXXZZ7NmzZxSTAQAAAACMD8pXAAAARsGuXbsy5wsWLIiqqvHzSzLlK8BEtXHjxsz5mjVrIkmSgtIMzS/+4i/m7qxfv370g1Cy/v7++NCHPhT79+8vy3nbt2+Pf/mXfynLWQCQZ+vWrXH8+PHMnaLLV2pqamLlypWZO4899lhBaQCAM00pv+a+4YYboqGhIb7whS/EWWedlbn7s5/9LO6///5yxQMAYAK5/fbb4z3veU8cO3ZsyPfu3r073vWud8WLL744CskAAAAAAMaP8fNOPwAAgHEkr3xl4cKFBSUpjyVLlmTO8z7dE2C8am1tzZyvXbu2oCRDt2jRoli0aFHmjvKVyvLXf/3X8f3vfz93L0mSuOmmm2LSpEm5u3/xF38RfX195YgHAJm2bNmSu1N0+UpExAUXXJA537BhQ0FJAIAzyfPPP5/7a/izzz47brjhhoiIOOecc+LGG2/MPfeLX/xiWfIBADBx7Nq1K6655poR/XnQI488Eh/60IciTdMyJgMAAAAAGF+UrwxRkiQrkiRZm3FNGeuMAADA2MsrX2lqaiooSXksXrw4c75jxw5/CQc443R3d+f+93zNmjUFpRmedevWZc7vvffe6O3tLSYMme655574zGc+k7s3a9as2LZtW1x77bXx9NNPx7Rp0zL3Ozs745vf/Ga5YgLAoDZv3pw5nzFjRixYsKCgNK86//zzM+fbt2+PAwcOFJQGADhT3Hrrrbm/p/KHf/iHMWvWrJ9//wMf+EDU1dVl3vOtb30rnn322bJkBADgzJemaVx77bVx8ODBEZ/1b//2b/Hnf/7nZUgFAAAAADA+KV8ZunsiYsMg12MRMXfsogEAAJUi7836CxcuLChJeeSVr7z44ovR1dVVUBqAYmzatCl3p9LLV6644orM+YsvvhiPPfZYQWkYzHPPPRfve9/7SvpEwi996Us///9yQ0NDSZ+a/ed//ucj+rRDAChFXvlKS0tLVFUV/0eTF1xwQe7Ohg0bCkgCAJxJvv71r2fOq6qq4pprrnnNazNmzIgPfehDmff19vbGTTfdNOJ8AABMDDfddFPceeedZTvvc5/7nN8rAwAAAAAmLOUrQzc3IpKM67mxiwYAAFSC3t7e2LNnT+bOeCtfWbJkSe7Ok08+WUASgOK0trbm7lR6+cq6detydx544IHRD8Kg0jSND3/4w7F79+7c3fe+973x/ve//zWvXXfdddHQ0JB535YtW+Jf//VfR5QTAPI8+uijmfNVq1YVlOS1Xv/610eSJJk7yugAgKF45pln4ic/+Unmzrp162LevHmnvf6xj30s9/x//Md/jN7e3mHnAwBgYtixY0fccMMNZT2zv78/PvrRj0Z/f39ZzwUAAAAAGA+Urwzd0YhIB7hekQ50EwAAMHHs3r079y+ijLfylcWLF+fubN++vYAkAMXJ+1S3hQsXRm1tbUFphmfhwoWxYMGCzJ3777+/oDQM5Oabb47/9b/+V+7eggUL4stf/vJpbx6fPn16SX+x9jOf+UwcPXp02DkBIMv+/fujo6Mjc+e8884rKM1rzZw5M5qbmzN3lK8AAEPxb//2b5Gm2X896Dd/8zcHfH3ZsmVx1VVXZd67Z8+euPPOO4edDwCAM1+apvGRj3wkDh06lLv72c9+Nvr7++P5558vqSD5wQcfjJtuuqkcMQEAAAAAxhXlK0P3zEnfTl6+Tpb9MbMAAMAZb9euXbk7TU1NBSQpn9mzZ8ecOXMyd5SvAGeaRx55JHO+du3agpKMzBvf+MbM+QMPPFBQEk719NNPx+/93u/l7tXU1MQ3v/nNQf9f/LGPfSzq6+szz9i1a1d8+ctfHlZOAMjz4IMP5u5ccsklBSQZ2Pnnn585zyvdAwA42Te+8Y3M+aRJk+I973nPoPOPf/zjuc+45ZZbhpwLAICJY/369fEf//EfuXu//du/HX/2Z38WSZLEWWedFXfccUc0Njbm3vff/tt/i66urnJEBQAAAAAYN5SvDF17nF64crL835EGAADOaKWUr5x77rkFJCmvJUuWZM6ffPLJgpIAjL6jR49Ga2tr5s4b3vCGgtKMzKWXXpo537lzZzzzzDOZO5RfmqbxO7/zO/HCCy/k7v7VX/1VZonOzJkz4xOf+ETuOTfeeGP09PQMKScAlOL+++/PnFdXV8dFF11UUJrTXXDBBZnz9vb2kj4lGABg+/btuUW2v/zLv5xZZv62t70t9/fbv/vd78bBgweHlREAgDNbmqbxuc99Lndv/vz58Xd/93eveW3hwoXx3e9+N2pqajLvPXDgQHzyk58cSUwAAAAAgHFH+crQfS9nflkhKQAAgIq1c+fOzHlDQ0NMmzatoDTls3jx4sz59u3bC0oCMPoef/zxOH78eObOWL6BeCiySjtekfemIcrvn//5n+MHP/hB7t473vGOkopVrr/++txPKty/f3/8zd/8TckZAaBUeV9LrF27NmbMmFFQmtPlla+kaRqPP/54QWkAgPHsO9/5Tu7O+973vsx5VVVVfPCDH8zcOXLkSEnPAgBg4lm/fn3cfffduXs33XRT1NXVnfb6pZdeGjfccEPu/TfffHM89thjw8oIAAAAADAeKV8Zum9HxCsffZcOMP+VArMAAAAVaNeuXZnzhQsXFpSkvJSvABPJww8/nLtz4YUXFpBk5M4///yYPHly5o7ylWLt27evpE8LbGxsjK9+9auRJEnu7syZM+NP//RPc/c+//nPR3d3d0k5AaAUfX198eCDD2buXHrppQWlGdj555+fu+ONJABAKW6//fbM+bRp0+Kd73xn7jnvf//7c3duueWWknMBADAxpGkan/vc53L3PvShD8VVV1016Pyzn/1sSX935TOf+cxQ4gEAAAAAjGvKV4YoTdN9EfE3EXHqOx7Sl1+7IkmS5YUHAwAAKsZELV/ZtWtX9Pb2FpQGYHQ98sgjmfMFCxZEY2NjQWlGZsqUKXHBBRdk7tx///0FpSHixF9oLaUA5Z/+6Z+ivr6+5HOvvfbaWLZsWebOiy++GLfeemvJZwJAni1btsTBgwczd974xjcWlGZgZ511VixatChzR/kKAJBn//79ce+992buvP3tb4+ZM2fmnrVkyZJ405velLnzox/9KPbs2TOkjAAAnNnWr18fd999d+bO1KlT48Ybb8zcmTFjRvzDP/xD7vPuuOOOuOeee4aUEQAAAABgvFK+Mjx/HRGPvvztV0pXXlETEZ8vPBEAAFAx8spXmpqaCkpSXkuWLMmc9/f3x1NPPVVQGoDRlVe+cuGFFxaUpDwuvfTSzPkjjzyiQKsgjz/+eHzlK1/J3fut3/qteNe73jWksydNmpT7l2kjIr797W8P6VwAyFJKiVve1yJFyCuj27BhQ0FJAIDx6o477oi+vr7MnXe/+90ln3fNNddkzvv7++Mb3/hGyecBAHDm+9znPpe7c91118W8efNy9975znfG29/+9ty9T33qU5GmaSnxAAAAAADGNeUrw5Cm6UsR8e6IePaVl+JEAcsr/7wqSZIbxigeAAAwhtI0zS1fWbhwYUFpymvx4sW5O9u3by8gCcDoOnToUGzZsiVz56KLLiooTXm88Y1vzJwfOXIkNm7cWFCaiStN07j++uujv78/c2/evHnx93//98N6xq/92q/FG97whsydH/7wh3HgwIFhnQ8Ap8orX6mvr49ly5YVlGZweeUrTzzxRBw9erSgNADAePS9730vc15dXR1XXXVVyee9973vjZqamsydW265peTzAAA4sz388MNx9913Z+5MnTo1/uiP/qik85Ikib/927+N6urqzL1777037rjjjpJzAgAAAACMV8pXhilN090RsS4idr/yUry2gOWvkyT5P8cmHQAAMFb27dsXhw4dytwZr+UrCxcujCRJMneefPLJgtIAjJ4NGzbklmNceOGFBaUpj7zylYiIBx54oIAkE9u3vvWt3L8UGxHxxS9+Mc4666xhPaOqqiquvfbazJ3e3t64/fbbh3U+AJwq72uISy+9NPfXkkXIK185fvx4PP744wWlAQDGm2PHjuW+4fTyyy8f0q/n6+vr4+qrr87c2bBhQzzxxBMlnwkAwJmrlOL+6667LubNm1fymcuXL48Pf/jDuXuf/vSnc//8FAAAAABgvFO+MgJpmnZGxOURsSVeLV6JeLWA5e+SJPl2kiT1YxQRAAAoWCl/CbqpqamAJOU3ZcqUOPfcczN3Ojo6Ckrz/7N35+Exnf0bwO8T2ewi9iDUzxZL7Q3SxJIoKrHV1gbBi9hLKjQUqX0pitZWFLFGVC21xZYEtUcEVWupNcQassic3x/qfRU5z0wy88wkuT/XNVeZc8/z3NoimTnne4iITOf48ePCTGYbvlKyZEmUKFFCM3P48GFJbbKn+Ph4DBkyRJjz9PREmzZtMrRX27ZtYWWl/dZvaGhohvYgIiICgIcPH+L8+fOaGX2GwMlQs2ZNYSYyMlJCEyIiIsqMDhw4gKdPn2pmfHx8DF63a9euwkxISIjB6xIRERFR1nL79m2sX79eM2Nvb48RI0YYvPaYMWNgZ2enmYmOjsaWLVsMXpuIiIiIiIiIiIgoM+HwlQxSVfUvAK4ANuLVwJXXj9cDWNoCuKQoymRFUZzMVpSIiIiIiKSIjY3VPK4oCipVqiSpjfGVK1dO8zjvEk5EWcGxY8c0j5crV86guxhbAkVRhBc+//7775LaZE9ffvkl7ty5o5nJkSMHvv/+eyiKkqG9ihYtCnd3d83Mrl278Pjx4wztQ0REdOTIEWHG1dVVQhOxYsWKoVSpUpqZAwcOSGpDREREmc3mzZuFmfQMX2nVqhXy5cunmVm1ahV0Op3BaxMRERFR1jF//nykpKRoZnr27InixYsbvHbJkiUxYMAAYW78+PFQVVWYIyIiIiIiIiIiIsqsrM1dIDNSFOXtoTXPAXT85xEMoPw/z78ewJIfQCCAQEVRzgKIAPA3gPsAkk3dV1XVFabeg4iIiIiIXjlz5ozm8Q8++AC5c+eW1Mb4qlevjv3796d5PDo6GqqqZviicSIiczp+/Ljm8bp160pqYlyurq4ICwtL8/jly5dx9+5dFC1aVGKr7GHr1q1YuXKlMDdgwAC4uLgYZc/PPvtM8+/slJQUbNmyBb6+vkbZj4iIsifR8DYrKyvUq1dPUhsxd3d3rFq1Ks3jkZGRSE1NRY4cOSS2IiIiIkunqqpw+IqLi4twePn72Nvbo0OHDliyZEmamRs3biAyMhIeHh4Gr09EREREmV9iYiIWLFggzA0ePDjde4wcORKLFi3Cs2fP0sycOHEC27dvR8uWLdO9DxEREREREREREZEl4/CV9NEeHf7K6ysN1bd+XhVAFaM30sbhK0REREREksTGxmoer1q1qqQmplGjRg3N43Fxcbh16xacnJwkNSIiMq5Hjx7h4sWLmpk6depIamNc9evXF2aioqLQvn17CW2yj4cPH6Jv377CXKFChTBu3Dij7duuXTsMGjRI8w6EoaGhHL5CREQZojXoC3j1PXDevHnllNGDh4eH5vCVx48fIyYmBjVr1pTYioiIiCxdTEwMrl+/rpnx8fFJ9/q+vr6aw1cAICQkhMNXiIiIiLKpNWvWIC4uTjPTokULVKxYMd17FC5cGEOHDsX48eM1c99++y1atGjBG/IQERERERERERFRlmRl7gKZlCJ4vJ0FXg1hUfV8vTEfREREREQkiaqqwuEr1apVk9TGNPS5AC06OlpCEyIi0zhx4oQwU7duXQlNjK927dqwtbXVzERGRkpqk32MGTMGt27dEuamTZsGBwcHo+1bvHhxuLm5aWZ27tyJx48fG21PIiLKXhISEnDo0CHNjKurq6Q2+tHnguUDBw5IaEJERESZyZYtW4QZb2/vdK/v7u6OkiVLamZCQ0ORmJiY7j2IiIiIKHNSVRVz5swR5oYMGZLhvb788kvkyZNHM3PkyBGEh4dneC8iIiIiIiIiIiIiS8ThK+mnajze9uYwFK3XGftBREREREQS3bhxA0+ePNHMVK1aVVIb03BxcYGNjY1mhsNXiCgzO3LkiOZxRVH0GkRliezt7VGnTh3NTFRUlKQ22UNcXBwWL14szDVv3hx+fn5G379Dhw6ax5OSkhAaGmr0fYmIKHuIjIxESkqKZqZRo0ZyyuipfPnyKFasmGaGw1eIiIjobZs3b9Y8XrhwYXz00UfpXt/KygpffPGFZubx48fYtm1buvcgIiIioszp2LFjwnMwKlWqhGbNmmV4r4IFC2LQoEHC3Pjx4zO8FxEREREREREREZEl4vCVjFHSeKTnNcZ+EBERERGRZLGxscJMtWrVJDQxHVtbW7i4uGhmOHyFiDKzgwcPah6vVKkS8ubNK6mN8X388ceax0+dOoWnT59KapP1LViwAElJSZqZfPnyYdGiRVAU47+l165dO2FmxYoVRt+XiIiyB33ucNu0aVMJTfSnKAo8PDw0MxEREdDpdJIaERERkaW7desWjh07pplp1aoVcuTIkaF9fH19hZmQkJAM7UFEREREmY8+Q/4HDx5stM+Zhg4dily5cmlmIiMjOcCYiIiIiIiIiIiIsiQOXyEiIiIiIjIS0fAVGxsblC9fXlIb06lRo4bmcQ5fIaLMSqfT4dChQ5qZ+vXrS2pjGqLhKzqdDocPH5bUJmtLSkrCDz/8IMzNnDkTpUqVMkkHJycn4X/zyMhIXLlyxST7ExFR1iYavvLhhx+iSJEiktroTzR8JT4+Xq/hqkRERJQ9bN26VZjx8fHJ8D5Vq1bFhx9+qJnZtm0b4uPjM7wXEREREWUOT58+xZo1azQz+fPnR7du3Yy2Z+HChdGvXz9h7ttvvzXankRERERERERERESWgsNXMka14AcREREREUl25swZzeOVKlWCjY2NpDamIxq+cunSJTx9+lRSGyIi4zl//jwePXqkmWnYsKGkNqbRsGFD4Z3vIiMjJbXJ2tauXYu7d+9qZtzc3NCzZ0+T9tDnhNsVK1aYtAMREWU9d+/exenTpzUznp6ektoYRjR8BQDv3EtERET/tXnzZs3jdnZ28PLyMspevr6+msdTUlIQGhpqlL2IiIiIyPKtXbsWCQkJmplu3bohd+7cRt33q6++gr29vWZm7969wptaEBEREREREREREWU2HL6SfkomeBARERERkUSiO2NXq1ZNUhPTEg1fAYCYmBgJTYiIjOvgwYPCTGYfvlKgQAHh30ccvpJxqqpi1qxZwlxgYKBwGE5GdejQQXiC7IoVK6DT6Uzag4iIspa9e/cKM5Y6fKVy5cooXLiwZobDV4iIiAgAEhISEB4erplp2rSp0S527dKli/B9gpCQEKPsRURERESWb/HixcJM7969jb5vsWLF0KdPH2Fu/PjxRt+biIiIiIiIiIiIyJw4fCUdVFW1ykSPHOb+90VERERElB28fPkS58+f18xUrVpVUhvT+vDDD4WZ6OhoCU2IiIxLNHylUKFCqFChgqQ2puPm5qZ5/MiRI0hOTpbUJmvav38/Tp8+rZkpX748Pv30U5N3yZ8/P9q2bauZuXr1KqKiokzehYiIsg7RRci2trb4+OOPJbUxjKIocHd318xERERAVVVJjYiIiMhShYeHIykpSTPj4+NjtP2cnJzQpEkTzUxUVBSuXr1qtD2JiIiIyDKdPn0ax44d08x89NFHJrsJUGBgIGxtbTUzO3bswNGjR02yPxEREREREREREZE5cPgKERERERGREVy6dEl4EnZWGb7i4OAAZ2dnzQyHrxBRZiQavtKgQQPh3YczA9GF0ImJiThx4oSkNlnTDz/8IMwMGTIEVlZy3p7t3r27MPPzzz+bvggREWUJqqpi9+7dmpkGDRogd+7ckhoZzsPDQ/N4XFyccJAaERERZX2bN28WZlq1amXUPX19fYWZVatWGXVPIiIiIrI8ixcvFmZ69+5tsv2dnJzQq1cvYW78+PEm60BEREREREREREQkG4evEBERERERGUFsbKwwY6o7DplDzZo1NY+fOnVKUhMiIuO4c+cOLl++rJlp2LChpDamJRq+AgCRkZESmmRNSUlJ+O233zQzBQoU0GsgirF4enqiRIkSmpnly5cLBxAREREBr4aP3rhxQzPj6ekpqU36iIavAMCWLVskNCEiIiJLlZqaKvx6oE6dOnBycjLqvu3atYO9vb1mJiQkBKqqGnVfIiIiIrIcCQkJCAkJ0czkyZMHnTp1MmmPESNGwNraWjOzdetWnh9CREREREREREREWQaHrxARERERERnBmTNnNI/nyZMHpUuXltTG9GrUqKF5PDY2FikpKZLaEBFlnD5DJ7LK8BUnJyeULVtWM8PhK+l36NAhvHjxQjPTt29f5MmTR1IjIEeOHMI7Z+t0OnzxxRd4/PixpFZERJRZ7dixQ5ix9OErVatWRZEiRTQzHL5CRESUvR0+fBhxcXGaGR8fH6Pvmy9fPrRu3Vozc+HCBZw4ccLoexMRERGRZVizZo3w85rPP//c5J81OTs763UzgW+//dakPYiIiIiIiIiIiIhk4fAVIiIiIiIiI4iNjdU8XqVKFVhZZZ1vwUTDV5KSknDhwgVJbYiIMk40fMXW1ha1a9eW1Mb03NzcNI9HRUUhNTVVUpusZdeuXcKMv7+/hCb/ps/JsX/99Rf8/f1592wiItL0888/ax7Pnz+/xX/dZGVlhU8//VQzc+zYMdy6dUtSIyIiIrI0YWFhwoy3t7dJ9u7ataswExISYpK9iYiIiMi8VFXFDz/8IMz16dNHQhvg66+/Ro4cOTQzmzZtwunTp6X0IZIlKSkJ4eHhmDx5MoKCgrBhwwYkJCSYuxYREREREREREZlY1rnyj4iIiIiIyIxEw1eqVasmqYkcouErAHD8+HEJTYiIjEM0fKVOnTqwt7eX1Mb0Pv74Y83jjx49QnR0tKQ2Wcvu3bs1j1eqVAllypSRU+YNLi4u8PDwEObWrl2L0NBQCY2IiCgzio6OxsmTJzUzjRs3hrW1taRG6afPxdLbtm2T0ISIiIgsjaqq2Lhxo2amVKlS+PDDD02yf7NmzVCoUCHNzOrVq5GcnGyS/YmIiIjIfI4cOSL8jK5WrVrShh+XK1cOvr6+wtyECRMktCEyrdffC3p7e6NgwYLw8vJCUFAQJk+ejA4dOqBYsWLo3r07Dh06ZO6qRERERERERERkIhy+QkRERERElEHx8fH4888/NTNVq1aV1EaO0qVLo0CBApqZvXv3SmpDRJQxz58/F15E3LBhQ0lt5HB3dxdmwsPDJTTJWh48eCD8f8nLy0tSm3fNmjULNjY2wtyYMWPxJSUTAAAgAElEQVSgqqqERkRElNksWbJEmGnXrp2EJhnn5eUFW1tbzcyWLVsktSEiIiJLcvz4cVy/fl0z0759eyiKYpL9bWxs0LlzZ81MXFwcfv31V5PsT0RERETm8+OPPwozAwYMkNDkf4KCgmBlpX3JwYYNG4Q3LSKyZCkpKejSpQvat2+PrVu34vnz5+9knj17hhUrVqBhw4bw9/dHQkKCGZoSEREREREREZEpcfhKFqIoSgNFUZa+51HT3N2IiIiIiLKyqKgoYaZatWoSmsijKArq1q2rmQkPD+eF20SUKRw9ehQvX77UzDRo0EBSGzkqVKgAJycnzYw5h69ERkaiZ8+e+PDDD9G4cWMsXrw4U9zNec+ePcK/+5o1ayapzbtq1qyJiRMnCnMXLlwQDpEhIqLsJzExEatWrdLM5MuXD+3bt5fUKGPy5MmDpk2bambCw8Px4sULSY2IiIjIUmzcuFGYMfXXPL6+vsLM4sWLTdqBiIiIiOS6f/8+1q1bp5kpUKCAcFCfsVWoUAFdunQR5r799lsJbYiMLzU1FV27dhX+/nvTwoUL0aZNGyQlJZmwGRERERERERERycbhK1nLQwB+ALq/9ehkxk5ERERERFnegQMHNI9bW1vjo48+ktRGHk9PT83jt2/fxrlz5yS1ISJKv507dwozWW34iqIowj/HIyMjpV9sfPr0abRs2RLu7u5YtmwZYmJisH//fvTp0weurq64ePGi1D6G2r17t+Zxa2treHh4SGrzfgEBAcILzQEgLCxMQhsiIspMNm3ahIcPH2pmunTpgly5cklqlHHe3t6ax1+8eIE9e/ZIakNERESWQFVV4ffExYoVM/l7RfXq1UOlSpU0M7t378bVq1dN2oOIiIiI5Fm6dKnwZgQ9evQwy/tvo0ePhqIompnQ0FAO96dMR1VV9O/f36DBK6+Fh4eje/fu0Ol0JmhGRERERERERETmwOErWcuVN36svPFoaJ46RERERETZQ0REhObx2rVrI3fu3JLayCO6aB94daIBEZGl++233zSPV6hQAUWKFJHURh7Rn+NJSUk4dOiQlC7JyckYPHgwatasie3bt783c+rUKdSqVQurV6+W0slQqqoKh6/Ur18fefPmldTo/aysrLBixQo4ODho5sLCwqCqqqRWRESUGSxZskSY6dWrl4QmxtOqVSthZvPmzRKaEBERkaWIjY0VDn9t27YtrKxMe8qVoijo3bu3MPfTTz+ZtAcRERERyZGamooFCxYIc/7+/hLavKtSpUro1El8L9CgoCAJbYiMJygoCIsWLUr369etW4chQ4bwc1UiIiIiIiIioiyCw1eyFvs3fqz+8wCAimboQkRERESULTx9+lR45x53d3dJbeSqUaMGHB0dNTMcvkJElu7vv/9GTEyMZuaTTz6R1Eaupk2bCjOy/hwfPHgw5s6dKzwp7dmzZ/jiiy8wffp0Kb0McenSJfz111+aGS8vL0lttJUoUUJ4guyff/6Jc+fOSWpERESW7tq1a8KvC6pVq4Y6depIamQcpUqVQo0aNTQzW7ZsQWpqqqRGREREZG5hYWHCTPv27SU0Abp16wZbW1vNzLJly5CSkiKlDxERERGZzs6dO3H16lXNjJeXFypUqCCp0btGjx4NRVE0Mzt37sSBAwckNSLKmF9++QVTpkzJ8Drz5s3D/PnzjdCIiIiIiIiIiIjMjcNXspbBaTyfT2oLIiIiIqJs5NChQ9DpdJqZrDp8xcrKSnjh/v79+3niNxFZtB07dggzLVu2lNBEvuLFi6NKlSqaGRnDV/bs2YOFCxca9JrAwEBs377dRI3SZ/fu3cKMpQxfAYB27doJM/pccEZERNmDPn9X9+rVS3jxhSXy9vbWPH7nzh3s2rVLUhsiIiIyN9H3wo6OjvDw8JDSpVChQmjbtq1m5vbt29i2bZuUPkRERERkOj/++KMw079/fwlN0lalShV07NhRmPv666+FN1wgMre4uDj07dvXaOsNHz5cOECJiIiIiIiIiIgsH4evGJGiKLkVRWmtKMokRVHWKYqyQ1GUvRIeEYqi3AQwDoAK4O0zWzPfma5ERERERJlERESE5nFFUdCwYUNJbeTz9PTUPP7s2TMcOXJEUhsiIsP99ttvmsdz5swp7YIacxD9OX7ixAnEx8ebbP/ExET4+/un67VDhw61mAFfqampWLJkiWYmf/78qFOnjqRGYo0aNYKDg4NmhsNXiIgIePX39eLFizUztra28PX1ldTIuHx8fISZpUuXSmhCRERE5hYTE4PY2FjNTOvWrWFtbS2pEdCnTx9hZsGCBRKaEBEREZGpXL16VfiZZcmSJdGqVStJjdI2fvx45MiRQzNz+PBhbN68WVIjovQZOHAg4uLijLbe8+fP0adPHw4eIiIiIiIiIiLK5Dh8xQgURcmvKMosALcAbAQwAsBnALwAeEh4NARQHK+GrLxv0Irx3hkkIiIiIqJ/OXDggObx6tWrCy9szsy8vLyEmfDwcAlNiIgMl5ycjN27d2tmGjdujJw5c0pqJJ9o+Iqqqti3b5/J9p80aRIuXbqUrtdeuHBBOPBElvnz5+PkyZOamSZNmki9OEvExsYGrVu31szExMSk+78PERFlHevXr8eDBw80M23atIGjo6OkRsZVq1YtlC1bVjPz66+/4v79+5IaERERkbn8/PPPwkz79u1NX+QNjRo1Qrly5TQzO3fuFA6NISIiIiLLtXDhQuHAhr59+1rE50zly5dHr169hLnhw4cjKSlJQiMiw4WGhmL9+vV6ZX/55Rf89ttvev3+Cw8Px7JlyzJaj4iIiIiIiIiIzIjDVzJIURRXAOcADAaQF/8bgCL7of7z+Fe9f547Y+xfNxERERERAS9evMDRo0c1Mx4eHpLamEeZMmWEJ35z+AoRWaqoqCg8e/ZMM9OyZUtJbczDw8NDeHc6U/05fv78eUyZMiVDa4wdOxZPnz41UqP0uXPnDkaNGiXM6TOwTDZ9LhgLCwuT0ISIiCzZDz/8IMz4+/tLaGIaVlZW8PPz08ykpKRg1apVcgoRERGRWaSkpCAkJEQzkz9/fjRt2lRSo1esrKzQu3dvYW7mzJkS2hARERGRsSUmJgpvNmBtbY3//Oc/khqJjRkzBvb29pqZixcvYvbs2ZIaEekvLi4O/fv3F+bs7e1x4MABtGnTBi1atMDvv/+OPHnyCF83bNgw3Lp1yxhViYiIiIiIiIjIDDh8JQMURWkAIBxAcfx7AIo5Hvinw/vwbFAiIiIiIhM4cuQIUlJSNDPu7u6S2piPp6en5vHff/8dT548kdSGiEh/v/32mzDTokULCU3MJ2/evHB1ddXM/Pbbb8K77aXHoEGDhH+Pity7dw8zZswwUqP0CQgIEP49Z29vjw4dOkhqpD8vLy/kzZtXM7NixQrodDpJjYiIyNIcO3ZMOHTUxcUFjRo1klPIRLp37w5FSetjtleWLl1qkq+JiIiIyDJs374dcXFxmplOnTrBzs5OUqP/8fPzg42NjWYmJCQEt2/fltSIiIiIiIxlw4YNuH//vmamffv2KFasmKRGYk5OThg0aJAwN378eNy8eVNCIyL9BQQECH/PAcDChQv/dc5X7dq1sX79euHrHj9+jICAgAx1JCIiIiIiIiIi8+HwlXRSFKUwgDAAufDuABRzPfBWFwCIUFVV+9Y8RERERESULhEREcLMxx9/LKGJeXl5eWkeT01Nxfbt2yW1ISLSn2j4SqVKlfDBBx9IamM+oiFa169fx+HDh426Z2RkJPbs2WOUtWbMmGG2i4siIiKwevVqYS4gIACFChWS0MgwdnZ2aNWqlWbm3LlzCAsLk9SIiIgszQ8//CDMDBgwQDi4xNI5OzsLvyaKiYnBqVOnJDUiIiIi2X7++Wdhxs/Pz+Q93qdo0aL4/PPPNTMpKSmYO3eupEZEREREZAw6nQ5Tp04V5vr37y+hjWFGjBiBfPnyaWYSEhIwYsQISY2IxPbs2YOVK1cKcz4+Pujates7z7do0QK9evUSvn7t2rU4fvx4ujoSEREREREREZF5cfhK+k0CUBTvDl15TU3jkZa08vq+Hni3y04AbfX61RARERERkcH27dunebxSpUooUqSIpDbm07hxY+GFdmvWrJHUhohIP1euXMH58+c1My1btpTUxrxEQ7SAVyeIGdOkSZOEmRo1auDZs2dwdnbWzD1//txsFxeNGTNGmClbtixGjRoloU36tGvXTpgJDg6GTqeT0IaIiCzJ3bt3hV8D5M2b970noWdGPXv2FGZ++uknCU2IiIhItri4OGzZskUzU7FiRbi6ukpq9C597py+YMECPHv2TEIbIiIiIjKGsLAwxMbGamaqVKlikTf9cXR0xNixY4W5VatWISoqSkIjIm0vXryAv7+/MFewYEEsXLgwzfOgZsyYgRIlSgjXCQwMhKqKLv0gIiIiIiIiIiJLw+Er6aAoSlkA3fHvYSevqXh3CMqbj7SGqLwv+/bj7fXf3lMB8BzANgCfqaraQlXVR+n6RRIRERERkaa4uDhERERoZtzd3SW1Ma+CBQuiXr16mpnt27fj0SN+e0JEliM0NFSYyS7DV1xdXYUniK1fvx6pqalG2e/EiRPYsWOHZkZRFCxatAi5c+fGxIkThWsuXboUKSkpRumnr4iICBw4cECYmzt3LnLmzCmhUfq0bNkSDg4OmpmzZ89iw4YNkhoREZGlmDRpEpKSkjQz3bp1Q968eSU1Mq02bdqgQIECmpmff/4Zd+7ckdSIiIiIZFmzZg1evnypmfHz8xMOITelatWq4ZNPPtHMPHz4EEuXLpXUiIiIiIgyIjU1FePGjRPm+vfvb9avQ7UMGjQIlStX1itnrM8ZidJr0qRJuHTpkjA3b948FCtWLM3jBQoUwPz584Xr7Nu3T/iZOBERERERERERWR4OX0mfIADW//z47cErr5/7G8BCAN8A+ArAVACH08irAE4DWP6eRwiAzQCiAaTg3SEu6htrBgAooKqqt6qqG43w6yQiIiIiojSEhYVBp9NpZrLL8BUA6Nixo+bx5ORkbNzIb1OIyHKsW7dO83ju3Lnh5uYmqY155ciRQ/jn+N27d7F//36j7Ddp0iRhpm/fvqhbty4AoEuXLqhVq5Zm/u7du9i8ebNR+ulr/Pjxwkzbtm3x6aefSmiTfrly5cLQoUOFueDgYOHXPkRElHVcv34dCxYsEOb69+8voY0c9vb2+PzzzzUzL168wLRp0yQ1IiIiIhlUVcVPP/2kmbGyskLXrl0lNUpbQECAMDN9+nThAD0iIiIiMr/Q0FCcO3dOM1OgQAH4+vpKamQ4GxsbzJkzR5iLjo7GokWLJDQier8jR45g6tSpwpy3tzc6d+4szPn4+OCzzz4T5gIDAzl4iIiIiIiIiIgok+HwFQMpimID4DP8b3AK8O8hKE8AdFNV1VlV1X6qqk5UVXWmqqpfq6raEIAPgGT8e/CKAiAXgF6qqvZ469FNVdU2qqrWAlAAQEcAUXh3iIsCYAqANqb6tRMRERER0f+sX79e83iOHDnQvHlzSW3Mr1OnTsK7La1Zs0ZSGyIibX/++SdOnTqlmfn0009hZ2cnqZH5denSRZhZu3Zthvc5d+6ccBiXjY0NgoKC/vtzKysrTJ48Wbj2woULM9xPHwkJCfjuu+8QHh6umbOzs8Ps2bOldMqowYMHw8HBQTNz7tw5bNiwQVIjIiIyt/HjxyM5OVkz06RJE7i4uEhqJEfPnj2Fmfnz5+P27dsS2hAREZEMu3fvxpkzZzQzXl5ecHJyktQobZ6enqhevbpm5u+//8ayZcskNSIiIiKi9EhNTUVwcLAwN2zYMOTLl09Co/Tz9PREu3bthLnRo0fjwYMHEhoR/Vt8fDw6duyIlJQUzVzu3Lkxb9484blPr02ZMgU2NjaamdjYWKxYsULvrkREREREREREZH4cvmK4JgDy//NjBf8boqIASATQQlXVkLRerKrqVgCT8O/hKQDwfwC8tTZWVTVRVdUNqqq6A/gcrwa9/PcwABsAIYqiNNDz10JEREREROlw584dHDhwQDPj6ekJR0dHSY3Mz8nJCe7u7pqZvXv34s6dO5IaERGlbd26dcJMp06dJDSxHHXr1kXZsmU1M2FhYcKLsEWmTJkizHTr1g2lSpX613NeXl6oUKGC5ut2796NK1euZKiflhcvXmDAgAEoUqQIvvrqK2G+T58+KF26tMn6GFP+/PkxbNgwYW7+/PkS2hARkbldvHhRrwt2R4wYIaGNXLVq1ULDhg01M4mJiXrdJZWIiIgyh+nTpwszfn5+pi+iB0VREBAQIMxNnjw5w+/hEBEREZHprF69Gn/88YdmxsHBAUOGDJHUKGO+++472Nvba2bi4+PxzTffSGpE9IpOp0P37t1x/fp1YXb8+PEGfbZbrlw5+Pv7C3OjRo3C06dP9V6XiIiIiIiIiIjMi8NXDOfznudeD2GZoqrq73qssTSN58W3GP6HqqprAXgAeHMMuArADkCooigF9V2LiIiIiIgMs2HDBuh0Os1MdrtoHwC6dNH+lkan02HDhg2S2hARpU00fCVPnjxo0aKFpDaWQVEUdO7cWTPz8OFD7Nq1K917XLlyBatXr9bMWFlZvfdCbkVR0KdPH+EeixcvTnc/Laqqok2bNvjxxx/x/PlzYd7W1haBgYEm6WIqgwcPhoODg2YmMjIST5480cwQEVHmN3bsWKSmpmpm3N3d4eXlJamRPIqiYNy4ccLcggULcOvWLdMXIiIiIpM6efIkwsPDNTMFChRA69atJTUS69y5s/CCwOvXr2P58uWSGhERERGRIRISEvD1118LcwEBAciXL5+ERhlXpkwZjBw5UphbuHAhTp48KaERZXaPHz9GZGQkfvzxRwwdOhRDhw7Fd999h4iICDx79kyvNVRVxejRo7F161ZhtlatWhg0aJDBPb/55hvkzZtXM3P79m1MnjzZ4LWJiIiIiIiIyDR0Oh1iYmIwf/58DB8+HFOnTsWRI0eE14hR9sHhK4ar9caP1Td+nABglj4LqKp6E8C9t9ZRADRXFEXRt4iqqjEA2gB4+wzYYgB+1HcdIiIiIiIyzPr16zWP29jYoE2bNpLaWI7PPvsM1tbWmpk1a9ZIakNE9H5nz57F2bNnNTOtW7dGzpw5JTWyHKIhWgCwZMmSdK8/ffp04YXcHTt2RPny5d97rHv37rC1tdV8/dKlS01yZ+dffvnFoMEzPXv2RMmSJY3ew5Ty5csnvHt2amoq9u3bJ6kRERGZw759+/T6vm3ixIkw4COtTKVp06Zo2LChZiYpKQkTJ06U1IiIiIhMZfr06cJM//79Lep9IltbW70u1p00aRJSUlIkNCIiIiIiQ0yfPh03b97UzBQsWDBdgyDMKTAwEM7OzpoZnU6HXr168etUei9VVbF9+3Z4eXmhYMGCcHd3x4ABAzB79mzMnj0bX331FTw8PJA/f35UrVoVPXv2xPz583H58uV31kpMTMQXX3yh19ATKysrLFy4UHi+0/sULlz4vTcWedvMmTNx5coVg9cnIiIiIiIiIuOJjo6Gr68vChUqhA8//BD9+/fHjBkzMHLkSLi6uqJEiRLo3bu38DoDyvo4fMVwLvj30BXln5/vUlX1qQHrXP3ntW/KC6CGIWVUVT0EYPIba70e5NJBURR3Q9YiIiIiIiKxmzdvIioqSjPTrFkzODg4SGpkORwdHfHJJ59oZg4dOoTTp09LakRE9K5169YJM506dZLQxPJUrVoVLi4umplNmzYhNjbW4LVv3bqFpUuXCnNaFw8VKlQI7dq103z9vXv3sHnzZoP7icydO1fvrLW1tV5397NE/v7+wgvpDRlCQ0REmUtiYiL69u0rzLVo0QJubm4SGpmHoigIDg4W5hYtWoQ///xTQiMiIiIyhatXrwoHrdva2lrkRa89evQQDn29du0ali9fLqkREREREenjxo0bmDZtmjD31VdfIV++fBIaGU/OnDkxc+ZMYS46OhrfffedhEaUmWzatAk1a9ZEy5YtER4ernmnaZ1Oh7Nnz2LZsmXo378//u///g/16tVDcHAwlixZgmHDhqFUqVJ63xwqODgYderUSXf3oUOHokSJEpqZpKQkDB8+PN17EBEREREREVHG/PLLL3B1dcWqVavw8OHD92bu3r2Ln376CdWqVcO8efMkNyRLwuErBlAUpRReDUgB3h2cYuhVB9fSeL6ugesAwBQAt996TgEwIx1rERERERGRhtDQUKiqqpnp2LGjpDaWp0uXLsKMPneWISIyBVVVsXbtWs1M/vz50axZM0mNLIuiKOjcubMwN3HiRIPXnjlzJpKTkzUz3t7eqF69umZGnwvC9RnyYogLFy5g//79eue7d+8uvLOfpXJ0dETdutpvT3L4ChFR1jVx4kRcvHhRmJswYYKENubVpEkTfPzxx5qZly9fag6OIyKSJSkpCQ8fPtS8MImI3jV16lTh75vu3bujWLFikhrpz87OTq/Br+PGjcPz588lNCIiIiIifYwcORIvXrzQzBQpUgQDBw6U1Mi42rZtC09PT2Fu3LhxHGpMAICUlBT06NEDbdu2zdCNnI4dO4Zx48bhP//5D2bNmoX79+/r9bpPPvkEQUFB6d4XAHLlyqXXeVAbN27Evn37MrQXERERERERERkuMjISnTt3RlJSkl55VVUxePBg7Nmzx8TNyFJx+IphimscO2/gWtfSeF779sLvoarqCwBz8b+BMK+vBK2tKEojQ9cjIssVHx+PiIgIhIeH46+//jJ3HSIiomxHp9Nh4cKFmhlbW1u0bt1aUiPL07p1a+TMmVMzs379ep5IQ0RmsW3bNuEFxe3atYOdnZ2kRpbH19cXVlbabxmuW7cOFy5c0HvNBw8eYMGCBcKcPie2eXh4oEKFCpqZnTt34ubNm3r3E1m0aJHe2YIFC+Kbb74x2t7mIBo+dOnSJVy5ckVSGyIikiU2NhZTpkwR5tq3b49atWpJaGReiqIgODhYmNu4cSMOHTokoRER0SsvX77E1q1b0bVrV1SuXBkFChSAvb09ChYsCHt7e7i5ueGbb77BgQMHOIyFSEN0dDQWL16smVEUBQEBAZIaGa5Xr14oXlzrNCbg5s2bmDt3rqRGRERERKQlIiICq1evFuYmTZqEvHnzCnOWSFEUzJkzB9bW1pq5pKQk9O7dm9+3ZnNJSUno2LEjfv75Z7Ps7+TkhJCQEOFn4/rw9fVFvXr1hLnhw4fz/3siIiIiIiIiiS5cuIDWrVsLbyD6NlVV0a9fPyQmJpqoGVkyDl8xjNa72ZcNXOtqGs9XNHCd1xYBSHnP85lz/DkR/VdERAR8fX1RpkwZODo6wsPDA15eXihbtiw6duzIO1URERFJtHPnTvzxxx+amebNmyN//vySGlmePHnyoHPnzpoZVVUxbdo0SY2IiF5RVRWTJk0S5jp16iShjeUqW7as8N+Bvv8uX5s9ezYSEhI0M02aNIGrq6twLUVR0Lt3b82MTqfDihUr9O6nJTExUe8T/uzt7bFhwwY4OzsbZW9zEQ1fAYDdu3dLaEJERLI8f/4cXbt2xcuXLzVzuXLlwvTp0yW1Mr9GjRqhadOmwtxXX30FVVWFOSKijEhISEBwcDDKlCkDb29vhISE4I8//sDjx4//m0lJScHBgwcxYcIENGrUCNWqVUNMTIwZWxNZJlVVMXDgQOEFb61bt0bFiuk9hcf07O3tMWLECGFu8uTJiI+Pl9CIiIiIiNLy/Plz9OzZU5irUaMG/Pz8TF/IhCpXrqzX16kRERH47rvvJDQiS/T8+XO0adMGmzZtMsv+1tbWWLduHQoVKmSU9aysrPD9998LcydOnMCGDRuMsicRERERERERabt37x5atGiBhw8fpuv1Fy9ezFbnytH/cPiKYbSGrzw1cK1rb/1cBaAAKGvgOq9erKrxAPb/s8ab632qKEqu9KxJROY3adIkeHh4YNWqVfjrr7/+dUxVVYSGhsLb2xupqalmakhERJS9zJo1S5jJ7hftA0BgYCAURdHMrFixAjdu3JDUiIjo1Ql8hw8f1swUKlQITZo0kdTIcgUFBQkzq1atwoULF4S5q1evYsaMGcLcqFGj9OoGAF27dhXeMW/p0qVGuQg6LCxMrwuUpk6dir///huNGzfO8J7m5urqijx58mhmdu3aJakNERGZ2uu7dERHRwuzwcHBKFs2XR9jZUqKoug1OPTw4cNYtWqVhEZElF2dOHEC1apVw7hx43Dz5k29X3fu3Dm4ublh//79pitHlAmtWrUKBw8eFOYCAwMltMmYPn36wMnJSTPz+PFjTJkyRVIjIiIiInqf0aNH4/Jl8T0+Z8+ejRw5ckhoZFqjR49GpUqVhLmgoCAcPXpUQiOyJC9evIC3tzd27Nhhlv1tbW2xevVqNGzY0Kjrurq6wtfXV5gLCgoy+G7bRERERERERGS4wYMH4+rVqxlaY+LEiXq9r0dZC4evGCa3xjHt2/e+61oaz5c2cJ03bX/Pc7YAPDOwJhGZyYYNG/S6+Gzv3r16nQBOREREGRMbG4vdu3drZgoXLoy2bdtKamS5KlWqhPbt22tmUlJS+DUMEUk1adIkYcbf3x82NjYS2li2qlWrol27dpqZ1NRUfPHFF0hKSkozo6oqBg0ahMTERM21XF1dDRpaUrRoUbRq1Uozc+nSJURFRem9ZloWLlwozERFRSEwMBCOjo4Z3s8S2NjYCIcQ7dmzBy9fvpTUiIiITGn+/PlYsWKFMFejRg18+eWXEhpZllq1aul1wvzAgQNx/fp1CY2IKLs5ceIEPD09031C0NOnT9G8eXP8+uuvRm5GlDk9efIEw4cPF+Y8PT1Rv359CY0yJmfOnAgODhbm5syZg2vXrpm+EBERERG94+DBg5g9e7Yw1759e3h4eEhoZBWFDRMAACAASURBVHr29vb46aefhDftefnyJbp06YInT55IakbmlpiYiDZt2mDv3r1m2b9w4cLYu3cvOnToYJL1p0yZgly5tO+Ze/nyZSxevNgk+xMRERERERHRK2fOnMG6desyvE5SUhIGDhxolBuCUubB4SuGeaZxTGswy/v8BeB9v9vsFEUpbuBar6V1W0K3dK5HRGYSHx+PAQMG6J0fM2YMTp06ZcJGREREpM/JMP369UPOnDkltLF8QUFBwsyPP/6IY8eOSWhDRNnd8ePHsWvXLs1Mrly5MGTIEEmNLN/o0aOFmRMnTmjeBXrz5s3Ytm2bcJ2goCDhyZdv69mzpzCzdOlSg9Z82/nz5xEZGamZqVKlCho0aJChfSxRs2bNNI8/fvyYf4cTEWUBEREReg1UsbKywuLFi2FtbS2hleWZMGEC7OzsNDOPHz+Gn58fdDqdpFZElB2cPHkSXl5eePToUYbWSUpKQrt27bB69WojNSPKnHQ6Hfz8/HDnzh3NnLW1Nb7//ntJrTKue/fuqFy5smYmKSkJ/fv350mBRERERJLFxcWhe/fuwq/D7OzsMH36dEmt5GjYsCH69+8vzF25cgW9e/fm+2rZQHJyMj777DPh5/Zvc3R0RIECBTK8f5UqVXD06FE0bNgww2ulxcnJCcOGDRPmgoOD8fTpU5P1ICIiIiKijImPj0d4eDjWrl2LLVu24OjRo7hx4wY/ZyHKRJYsWWK0tXbs2CE8n5yyFg5fMYzWWU0G3dpWVdUkAGmd0VHGkLXecCGN56ukcz0iMpNhw4bh3r17eudfvnwJX19f4d3EiYiIKH3i4uIQEhKimbG1tdXrxJHsombNmmjRooVmRqfToVevXkhOTpbUioiyq4kTJwozffv2RaFChSS0yRxq1qyJVq1aCXNz5szBzz///M7zd+/eRZ8+fYSvr1Gjhl77vK1FixYoWrSoZiY0NDRDJ60tW7ZMmOnbt6/Bg2MyA9HwFQDYuXOnhCZERGQq0dHR8Pb2RkpKijA7ZMgQ1KlTR0Iry+Ts7IzBgwcLc/v27cOsWbMkNCKi7ODMmTPw9PTEw4cPjbLe66ETERERRlmPKDOaMGECfvnlF2Fu8ODBcHFxkdDIOKytrTF58mRhbvv27Vi7dq2ERkREREQEAE+ePEGLFi1w+fJlYXbChAkoW7ashFZyTZ48Gc7OzsLc+vXrERAQwIvYsjCdToeuXbvqdeOO177++mvcvn0b9+/fx8OHD/HgwQPs3LkTEyZMgI+PD3Ln1u++uY6Ojhg3bhyOHTuGMmXKpPNXoL/hw4fD0VH7spK4uDi9boZCRERERETyHD9+HP3794eLiwscHR3h5eWFLl26wMfHBx999BFKly6N4sWLY9CgQYiOjjZ3XSLSkJSUJLz+CwAaNWqEpKQkWFmJR20sX77cGNUok1D4RqX+FEWpDiAagApAeeufHqqqRhm43kEA9f95Pd5Yq7eqqgbfmldRlJwAEt5Y7/Wal1VVLW/oepZCUZSzAN45s8XFxQVnz541QyMi09q5cyeaN2+ertcOHToUM2fONHIjIiIi6tevHxYsWKCZ8fPz0+si7ewkKioKH3/8sTA3btw4jB07VkIjIsqODh06JLx7lY2NDa5evQonJydJrTKHY8eOoV69enplg4ODMWrUKOTIkQPXrl1D8+bNceFCWnOC/yciIkKvvyveJzAwUHgXwB9++CFdw9FevnyJUqVKad4NO2fOnLh165ZR7rRmaVRVxQcffIBr166lmSlZsiQuX74MW1tbecWIiMgoLl68CDc3N70GgNeuXRtRUVGwt7eX0MxyPXz4EBUqVMD9+/c1c7a2tjh27BiqV68uqRkRZUU3b97ERx99hJs3bxp97UKFCkm72IjIkvz6669o06aNMFe0aFH8+eefyJcvn4RWxqOqKtzc3HDo0CHNXOHChXH+/HnhhYBERERElDGJiYlo2bIl9u3bJ8x+9NFHOHjwIHLkyCGhmXyHDh2Cu7s7UlNThdmJEyciKChIQiuS7dtvv9X7vKCiRYti165dwvdYExISsGXLFqxfvx5Hjx5FXFzcf2/+VKBAAbi6uqJHjx5o3bo17OzsMvxrMMT333+PL7/8UjOjKAoiIiLg5uYmqRUREREREb3PtWvXMGLECKxfv96g19WuXRtBQUFo27ZtlryBH1FmtmHDBnTo0EEz06RJE+zYsQM2NjZ6XWtQpkwZXL161Zg19ValShWcO3fufYfOqapaRXaf7EA8jofedBHA63d/355a0ygd611L4/n0/s/+Mo3nHdK5HhFJlpCQgL59+6b79d9//z1iYmKM2IiIiIiioqKEg1cACD80z47c3Nzg4eEhzI0bNw6//vqrhEZElN2oqorhw4cLc927d+fglfeoW7cu+vXrp1d27NixsLa2hqOjI8qWLavX4BU/P790D14BgB49eggzs2fPhk6nM3jtXbt2aQ5eAYBOnTplycErwKuT/Zo1a6aZ+fvvv7FixQpJjYiIyFguXboELy8vvQavODo6IiwsLNsPXgEABwcHvd4bSE5Ohq+vLxITEyW0IqKs6MmTJ/j0009NMngFAO7fvw8fHx88ffrUJOsTWaKjR4/iiy++0Cs7ffr0TDd4BXj1ffzUqVOFubi4OAQEBEhoRERERJR9PXr0CK1atdJr8IqdnR2WLVuWZQevAECDBg0QHBysV3bUqFGYO3euiRuRbJs2bdJ78ErJkiURERGh13Dr3Llzo3Pnzti4cSP+/vtvJCUlITExEY8ePUJ8fDy2b9+Ojh07Sh+8AgD+/v7CwbeqqqJnz554/vy5nFJERERERPQviYmJGDNmDCpVqmTw4BUAOHHiBNq3bw93d3ccO3bMBA2JKL2WLFkizEyaNAk2NjYAXr1/1atXL838tWvXzDZ8heTj8BUDqKr6AsAfaRz+JB1LpvU7rUE61gKAQmk8nyed6xGRZHPmzMFff/2V7tfrdDoMHToUqvr2fCgiIiJKj6SkJPTp00eYa9KkCT788EMJjTKfOXPmwNraWphr164d5s2bJ6EREWUnv/zyi/COv1ZWVggMDJTUKPP57rvv9Dq57bX4+Hi9cg4ODpg2bVp6awEAKleujPr162tmLl68iN9++83gtZctWybM9OzZ0+B1M5OWLVsKM1OmTMHLl2nNgyYiIktz8uRJNGzYUK/3oK2srLBmzRo4OztLaJY5tG/fHt27dxfmzpw5g9GjR0toRERZTUpKCjp06IDTp0/rlc+VKxcCAgKwcuVKzJs3D6VLl9brdWfOnEGPHj34eSJlC7GxsWjevDkSEhKEWQ8PD/j6+kpoZRpubm7o1q2bMLd8+XKsXLlSQiMiIiKi7Oevv/6Cm5sb9uzZo1c+ODgYlStXNnEr8xs5ciQaNWqkV3bw4MGYNGkSv2fNImJjY9G1a1e9sk5OTjhw4AAqVKiQ7v3s7OyQP39+s9913s7ODhMmTBDmLl68iG+++UZCIyIiIiIietPRo0dRu3ZtjB8/HklJSRlaKyoqCvXq1UPPnj3x4MEDIzUkovS6ceMGdu7cqZlxcXFBvXr1/vXcf/7zH+Hae/fuzVA3yjw4fMVwJwC8fkdOAaD+888GiqK4G7jW+bd+/nqtWoqiOKSjW600nk9Ox1pEJNnjx48xffr0DK+zd+9e/Prrr0ZoREREJNeDBw+wZs0ajB49Gl9++SUGDBiAfv36YcyYMVi9ejVOnjyZ4Te3DDV16lScP//2l+3vGjZsmIQ2mVP16tUxatQoYU6n02HQoEFo1KgRtm3bJv2/NZGxpaSk4NatW4iPj+eJYWaSkpKCkSNHCnOff/45ypcvL6FR5pQzZ06sX78euXPnNuq6kydPRuHChTO8jj5D0mbOnGnQmg8ePMDmzZs1M+XKlYObm5tB62Y2LVu2RKlSpTQzly9fTtddH4iISL4dO3bAw8MD9+7d0ys/YcIEeHl5mbhV5jNnzhzhHUuBVwPs+IE7ERlq5MiR2LVrl17ZVq1a4dGjR5gxYwZ8fX0xYMAAXLt2Te8LdsLCwrBq1aqM1CWyeJcvX4aXlxcePnwozBYvXhyrV682+wV6GTVz5ky93m/p06cPTp48KaERERERUfZx5MgRuLq64uzZs3rlPTw8EBAQYOJWliFHjhwICQlBoUJp3WP030aNGoWRI0fyc/ZM7t69e/Dx8cGzZ8+E2eLFi2Pfvn344IMPJDSTo0uXLsIbiQDArFmzEBERIaERERERERG9ePECI0eORP369XHu3Dmjrr1s2TJUqlQJK1as4PezRGakz+/Bnj17vvO5cJ06dZA3b17N1/FcsOxD4R/khlEUpR2ADfjfoJTX/wSAUwA+VlX1uZ5rVQFw5j1rqQD6q6q60MBuPwHo+c/r//s0gGuqqmbadyMVRTkLwOXt511cXPT+kIIoMxg3bhyCg4M1M3Z2dsiXLx/i4uI0c+XKlcPZs2dhZ2dnzIpERERGd+PGDWzatAm//PILIiIikJqaqpnPkycPOnTogFGjRqFcuXIm7RYREQFPT0+kpKRo5ho3bow9e/Zk+pOyTSk5ORm1a9dGbGys3q+xsrJC2bJlUaFCBVSsWPFf/3RycuK/b7Ioz549w4EDB7B7925ERkbi2rVriI+P/+9xBwcHeHp6olmzZmjZsiVKlChhxrbZx6xZs4TDsezs7HDhwgU4OztLapV5rVq1ymh3f27QoAEiIiKQI0eODK+VlJQEZ2dn3L17VzN36tQp1KhRQ681f/jhBwwcOFAzM378eIwePVrvnpnVvHnzMGjQIM1MlSpVEBMTAysrzvkmIrJEz549Q2BgIObPn6/3a/r06YMFCxbw+640REZGwsPDQ/hBfZEiRbBv3z64uLzzERcRZZBOp0N4eDjOnDmD5ORk2Nrawt7eHjVr1kSdOnVga2tr7ooG2717N5o1a6ZXtnPnzli5ciWsra3fe3zixIl6fb/i4OCAs2fPonjx4gZ1JcoMjh49itatW+POnTvCrK2tLSIiIvDRRx9JaGZ6q1evxhdffCHMOTs74/jx43pfAEtEREREaVu2bBn8/f2RnKzfvTKrVauGAwcOwMEhPffpzLx+//13NG3aFM+f63WaPTp37owlS5YgV65cJm5GxvbixQs0btwYR44cEWYLFy6MAwcOoHLlyhKayfXHH3+gRo0awhtQlS5dGqdPn0aBAgUkNSMiIiIiyn7Cw8Ph7++Py5cvm3yv+vXrY9q0aVn+Bn9Elkan06F8+fK4cuVKmhlra2vcvHkTRYoUeedYq1atsG3btjRfW6xYMdy6dUv6OXVVqlRJa2DUOVVVq0gtk01w+IqBFEWxBXAXQL7XT+HfQ1P2A/DWZwCLoig5ADwF8PZ0BAXAZQBVVFXV6514RVGcAFx8a63Xv4OPqqrqqs86lojDVyg7ePDgAT744AM8efJEMzd37lw0atQINWrUEF6cPnXqVAQGBhqzJhERkVHEx8fjp59+QmhoKI4fP56uNaytrdGrVy988803cHJyMnLDV3fErFev3r+GJ7yPnZ0dzpw5g/Llyxu9Q1Zz7NgxuLq6QqfTZXitXLlyoU6dOujUqRO6deuGPHnyGKEhkeHOnj2LCRMmYOPGjXqfSGdlZYWWLVuib9++aNGihVGGT9C7YmJiUK9ePeFJTMOHD8e0adMktcr8AgMDMX369AytUa5cOURGRhr14r7x48djzJgxmplu3bph+fLleq1Xt25dza9RFEXBtWvXULp0aYN6ZkYvXrxA2bJlhcNtNm3ahNatW0tqRURE+tDpdAgLC8PIkSM1P1B+W4cOHbBmzRp+nSrw9ddfY8qUKcJckSJFsGfPHlStWlVCK6Ls4dSpU/Dz80NMTMx7jzs6OmLYsGEYOHAg8uXL996MpXnw4AGqV6+OW7duCbPe3t7YuHFjmoNXAEBVVXTr1g0hISHC9Xx8fLBp0yYO3KIsZd26dfDz80NiYqJe+WXLlsHPz8+0pSRSVRUtW7bEjh07hNmGDRtix44dfI+diIiIKJ2Sk5MxfPhwzJkzR+/XfPDBB4iKisq2gzB37twJb29v4Y2QXqtduzY2bdqEkiVLmrgZGYtOp0PHjh0RFhYmzGa1YZjvM23aNIwYMUKY+/zzz7Fq1SoJjYiIiIiIspe4uDgEBARg5cqV0vf29vbG9OnTUbFiRel7E2VH+/fvR+PGjTUzbdu2xcaNG997bObMmQgICNB8/fnz51GpUqV0d0wPDl+Rj7cjNdA/w1DW43+DTYB/D2BpBOCsoijdFUV5e6jK22ulAgh/Y6031/wAwGx9OimvzoT6CYD9e9ZRARzTZx0iMp8ZM2YIB6+4uLigX79+qFq1Kvz9/YVrTpgwAXFxccaqSERElGH3799HUFAQnJ2dMWLEiHQPXgGAly9fYuHChahYsSJmz54tHEpmiEePHqFVq1bCwSsAMHbsWA5e0VPdunX1uuOuPp4/f46IiAgMGDAATk5OGDJkCK5fv26UtYn0ceHCBXz++eeoVq0a1q5dq/fgFeDViUZbt26Ft7c3/u///g9r164FB+Ma1/Pnz9G5c2fh4BUHBwd8/fXXklplDVOnTsX3338PGxubdL2+fv36OHz4sNFPJvX394ednebbcFizZo1ef1fExMQIv0Zp0qRJthi8AgA5c+YUfpAAAIsXL5bQhoiI9KGqKrZt24ZatWqhY8eOBg1e8fLywsqVKzl4RQ/BwcGoWbOmMHfv3j00btwYJ06ckNCKKGtTVRXff/89XF1d0xy8ArwaZDJq1Cg4Oztj9uzZFv89t6qq6NOnj16DV+rUqYM1a9ZoDl4BXg2MXLx4MerVqydcc/Pmzbywh7KM69evo3PnzujcubPeg1e+/PLLLDV4BXj1Z8CCBQuQN29eYfbgwYPw9vbG8+fC+0sRERER0Vv++OMPuLq6GjR4pVixYti9e3e2HbwCAJ988glWrlyp9xDQEydOoE6dOjh2jKfCZwaqqmLw4MF6DV4BgEWLFmXpwSsAMGzYML3eo1m9erVeg3SJiIiIiEg/qqpi+fLlqFy5slkGrwDAli1bUK1aNQQFBSEhIcEsHbKSlJQU3LhxA5cvX8bTp0/NXYcs0NKlS4WZnj17pnmsSZMmwtfv3bvXoE6UOXH4SvpMBvD6yqrXZ2u9OYDFGcBSAA8URdmpKMpURVFKpLFW6Fs/f3OdvoqizFAUJc2zXP8Z8LICwCdvvO5t4eJfEhGZy7179/T6AC44OPi/J70HBwfDwcFBM//06VN8++23RulIRESUEampqZg+fTrKlCmDyZMn49mzZ0ZbOyEhAUOHDoWrqyuio6MzvN7Vq1fRqFEj/PHHH8JstWrV8NVXX2V4z+xk7NixGDBggFHXfPLkCebMmYOKFSti1qxZRh3EQ/S2+/fvY+DAgahSpQrWrFmT4Qu4rl27hi5duqBNmzZ6XWRF+hk6dCjOnz8vzI0ePVr4fRX9m6IoGDx4MKKiolCmTBmDXtuhQwfs2bMHhQsXNnqvwoULo1u3bpqZlJQUjBkzRrjWvHnzhJkePXro3S0r8Pf3F/5e2bFjB+7duyepERERpeXcuXP45JNP0KpVK5w+fdqg1zZp0gQbN24UDjSjV2xtbRESEgJ7e3th9v79+3BzczPbyTxEWcHTp0/Rtm1bfPnll3oPQH306BGGDh2KTp064eXLlyZumH6LFi1K865KbypTpgy2bt2K3Llz67Wuvb09Nm3apNf3YIMGDeJgY8q0VFXFwYMH0b9/f1SsWBHr1q3T+7W+vr747rvvTNjOfJydnbF8+XK9svv374ePjw8ePHhg4lZERET/z959xzV19X8A/yTskLDD3kMUFBFEEHHXiUqtUmt99NG66qizj9ZqrVKrVusuaq3VOp66tWpdtU5QVARFZSh77x0g+/7+6JP7EwckIWGe9+t1X4lwzrlfEMLNued8vwTRPkgkEvz000/w8fHBkydP5O7n7OyMO3fuwNnZWY3RtQ0TJkzA/v375U7AUlhYiAEDBuDSpUtqjoxoCqlUijlz5iA8PFyu9osWLcK///1vNUfV8jQ1NXHw4EFoa2s32nbmzJn4+2+y7YMgCIIgCIIgmurp06cYMGAApk6dqtT9j5CQEFy+fBlVVVUoKyvD/fv38fnnn8PAwEDhsUQiETZs2IAuXbpgz549chcQIP655799+3YMGjQIFhYW0NHRgb29PVxdXWFgYAAjIyN4e3tj0aJFeP78eUuHS7SwyspKnD59usE2VlZWGD58+Hs/7+XlBRMTkwbHIMlXOgaSfEUJFEVlANiLtxOdyBKnyJKgsAAMAfAlANf3DHcegGz36bsSuSwGEMdgMBYxGAwPBoNhwGAwdBkMhiuDwZgH4AWAT98M8bXnPAA3FPsKCYJoTlu2bGm0klT37t3x0Ucf0f82NTXFmjVrGh177969ePXqVVNDJAiCIAilZWRkYODAgVi2bJlas/U+fvwYPXv2xPLly5Wu0Hj9+nX07NlTrg1qTCYTv/zyC7S0tJQ6V0fFZDLx008/YdeuXWAyVft2lM/nY8mSJRgwYAC5/iFUTiKRYMeOHXBzc0N4eLjKk/xcuHABHh4e2Lp1K+rq6lQ6dkezZ88e7Nu3r9F2Tk5OKk8G1ZH06tULsbGxWLp0KVgsVoNtbWxs8Ouvv+L48ePQ09NTW0yLFi1qtM3hw4cbvMFSWlraaDUxDoeDsWPHKhxfW8bhcLBw4cIG20gkEhw7dqyZIiIIgiDeVFxcjIULF8LLywvXr19XuP/HH3+My5cvg81mqyG69svDwwObNm2Sqy2fz8eUKVMwd+5clJWVqTkygmhfqqqqMGzYMJw/f16p/qdOncLcuXObnEBVHSIiIjB//vxG2+nq6uLPP/+EhYWFQuNbWVlhz549jbarqKjApEmTSFJjQmUoioJQKJQ7WZKihEIhbt++jcWLF8PZ2RlBQUEKL1YNCQnBwYMHVT5P3ZqMHTsWX3/9tVxtb9y4gS5duuDo0aOt8vWSIAiCIAiitbh79y58fX3xxRdfKHRft3fv3njw4AE6deqkxujals8++wzHjx+Xe91NbW0txowZg59//lnNkRHKkEgkmDVrltz/P0OGDMHmzZvVHFXr4eHhgQ0bNjTajs/nY/To0bhxg2z9IAiCIAiCIAhlFBUVYdasWfDx8cHdu3cV7t+9e3dERkbijz/+wIgRI8DhcGBsbIzevXtjz549yMjIwJIlS5TaQ5KdnY25c+fC0dERmzZtIuvFG5CcnIy5c+fCxsYGixcvxq1bt1BUVPTWPazKykrExcVhx44d8PLyQnBwsFL/70T7cOLEiUZ/r/79739DU1PzvZ9nMpkYMGBAg2PcunULUqlUmRCJNoRBbporh8FgmAB4BsBK9qHXPv36N1WWSGUgRVHvfOVmMBjfA1iB/0+48vo4jNeev7P7e9rKzruZoqivGvt6WjMGgxEPwOPNj3t4eCA+Pr4FIiII1SktLYWDg0Ojm9EvXLiA0aNH1/uYSCRC9+7dG63oPm7cuEazthEEQRCEOhw5cgTz5s1DdXV1s57X2dkZ27Ztw+jRo+WqkpOXl4fly5c3utn6dRs2bMBXX7Xpy+wWd/XqVUycOBEVFRUqH1tLSwtffPEFVq1aBWNjY5WPT3QsGRkZmDJlCiIiIprlfNbW1li9ejWmT5/e4OQe8bYTJ05g4sSJjW4QYTAY+PvvvzFo0KBmiqx9q62txY0bN3DhwgXcvn0bRUVFcHV1xdChQxEcHIyAgIBm+1keMWIErl692mCbkSNHvrcq3qZNm7B8+fIG+8+cOVOuBD/tTUFBAWxsbBq8YeDr64vHjx83Y1QEQRBEVVUVtm7dii1btoDH4zXe4R3mz5+PHTt2tOuNx+oklUoRGhqKs2fPyt3H0NAQy5cvxxdffEES3hBEIyorKzF8+HA8ePCgyWOFhYXhm2++UUFUqpGZmQk/Pz8UFxc32jY8PBxz585V+lyffPIJTpw40Wi7tWvXYvXq1Uqfh+iYKIrC06dPce7cOVy5cgVJSUmoqakBRVFgMpno1KkThg0bhrlz5yq00VQikeDVq1eIi4tDWlpavSM7O7tJC9oGDRqES5cuQVdXV+kx2gqJRIJRo0Y1Ol/yusDAQHz33XcYOHCgXPdYCIIgCIIgOoLExESsWrVKoTkgmdDQUBw6dEitRQrasitXrmDcuHEKbTqbPn06du3aRb6nrURlZSU+/fRTXL58Wa72Xbt2RWRkJAwNDdUcWesilUoxbNgw/P3334221dPTw9mzZxusxk0QBEEQBEEQxP8TCoXYuXMnvvvuO1RVVSncX0tLC9988w2++uoruRKrpKSkYMGCBbhy5Yoy4QIA7OzssHHjRkycOJHcj/kfPp+PsLAwbN68GWKxWOlxhgwZgk2bNsHb21uF0RGtnb+/Px49etRgm5cvXzZ6zzo8PLzRIjpPnjxp1p8vT09PJCQkvOtTCRRFeTZbIB0ISb7SBAwGIwjANQCvr8h4V/KUxpKvGAFIB2DQwBjvI/sPfDNJCwNAFQBXiqJKGv5KWjeSfIVoz7755husW7euwTa9evXCgwcP3nkhffnyZQQHBzd6nnv37iEwMFDpOAmCIAhCEXw+HwsWLMAvv/zSonF4e3tj2bJlGDp0KExNTet9TiqV4uHDhzhy5AgOHz7caCK0102ZMgW//fYbmeRSgfz8fKxduxaHDh1SqCqpvIyNjbF69WrMnTsX2traKh+faN8oisKRI0cwf/78Zk8iBQB+fn44cOAAunbt2uznbouuXbuG0aNHQyQSNdp2xYoVWL9+fTNERTS3+/fvo0+fPo22u3Xr1luZycViMVxcXJCVldVg37i4OHh5eTUlzDZr5MiRjd4sjI+Ph4fHW9N4BEEQhIoVFxdj586d+Omnn5ROaMlisbBlyxbMnj2bvL9tIoFAgPHjx+PPP/9UTexBLQAAIABJREFUqJ+JiQnmzZuHL774AlwuV03REUTbVVlZiaFDhza6OEYRv/zyC2bMmKGy8ZTF4/HQt29fPH36tNG2wcHBuHjxYpNeq4uLi+Hp6dloohcmk4k7d+4gKChI6XMRHQefz8fevXuxa9cupKWlydUnKCgI7u7ucHBwgL29PRwcHMDhcJCbm4vs7Gz6yMjIQFxcnELz9vIaP348Dh06BBaLpfKxW6vy8nL4+/sjOTlZoX5BQUGYOHEiRo8eDTs7OzVFRxAEQchLLBYjPT0dWVlZyMrKQm5uLqqqqlBbW4va2lo6MRmDwYCFhQX8/PwQGBgIKyurRkYmCKIhKSkp2LBhA3777TelEgCGhYVh5cqVJPFxI+7fv4+xY8eiqKhI7j5eXl44deqUQkkeCdVLSUnBmDFjGi0iKWNpaYmHDx/C3t5ezZG1Tnl5eejWrRvKysoabauhoYEdO3Zg3rx5zRAZQRAEQRAEQbRNIpEIx48fR1hYGFJSUpQaw9fXFwcOHFB4XShFUTh16hQWLFiAwsJCpc4NAD4+Ppg/fz4mTJjQoe5fvSkiIgIzZszAq1evVDIeg8HA5MmTsW7dOnKfqwN48eIFunXr1mCboKAguYrxJiYmNroOeuvWrVi8eLFCMTYFSb7S/EjylSZiMBgDAJwAwMX/Jz6p1wSNJF/53zgTABzDu5OtNPaf9L6ELx9TFHWmkb6tHkm+QrRXFRUVcHBwaDSj4pUrV96bvZyiKHzwwQe4efNmg2P4+voiKipKruyLBEEQBNEUaWlpGD9+PJ48eaL0GEwmE25ubjA3N4dQKERCQkKTEx+4ublBT08PFEWhvLwchYWFcm3Qf1OfPn1w48YN6OjoNCkeor6ioiLs3r0bBw8ebHTTuzJcXFywceNGfPTRR2RREyGXwsJCzJ49G+fPn2/ROLS0tLB69WosX76cXMs34Pbt2xg5cqRc1dD8/f0RERFBvp/t2Icfftjo766XlxcePHhQrxre2bNnMW7cuAb7DRgwALdu3VJJnG3RsWPH8OmnnzbY5quvvsKGDRuaKSKCIIiOpaamBleuXMGpU6dw4cKFJiWw7NOnD3777Te4urqqMMKOTSgU4uOPP1bqPYSuri4+++wzLF26FM7OzmqIjiDaHrFYjJEjR+L69esqHZfBYODIkSOYNGmSSsdVBJ/PR3BwcKP39gCAy+Xi+fPnsLCwaPJ5z5w5g/HjxzfaztzcHFFRUeT1iHgvPp+Po0ePYu3atcjJyWnpcBSyatUqrF27tkPOEWdlZaF///7IyMhQqn+PHj0wZswYhISEwNvbmyTvIwiCaAY5OTk4f/487ty5g/j4eCQnJyt1f9vZ2RmjRo1CaGgoAgMDO+TfQYJQRkxMDH744QecOXNGqaQrbDYbR48eRUhIiBqia5+ysrLw4YcfKrTeiMPh4L///S9Gjx6txsiI9/nzzz8xZcoUlJeXy9WexWLh7t278PX1VXNkrdu5c+fw0Ucfyd1+zpw52Lx5M/T19dUYFUEQBEEQBEG0Lbm5uThx4gR27Nih9N4DfX19fP/995g/fz40NDSUjqWiogLr16/Hzp07IRAIlB7HyMgIs2bNwrJly94qPNyeicVirF69Wm3rTnV1dbFo0SJ89dVXMDQ0VMs5iJa3dOlSbN26tcE2Bw4cwLRp0xodi6IoWFtbo6Cg4L1tJk+ejMOHDyscp7JI8pXmR5KvqACDwbAEsAnApwBkd6dk31i5kq/8b5w9AGa/0VcRr/f7gaKoFQr2b5VI8hWivQoLC8O3337bYBs/Pz88fPiwwcVLsbGxct2MCAsLwzfffKNwnARBEAQhr99//x2ff/65UolSdHV1MWzYMIwdOxajRo2qN2FEURQiIyOxbt06/PXXX6oMWSEuLi6Iiooi1ajViKIoZGdn4+XLl3j16hVevXpFP8/IyEBT3786OTlh2rRp+Ne//gUnJycVRU20N6dOncKcOXNQWlqqVP8ePXpgyJAh8PLygoaGBrKzs3Hr1i1cv34dYrFY6TEPHjyI7t27K9W/Pbtz5w5GjhyJ2traRttyOBw8ffqUbCBr5xITE9G1a9dGF8J+9tln+PXXX+l/9+/fH3fvNjh1hzNnzii0EK69qa2thaWlZYPXera2tsjMzCQL+AmCIFRAKBQiPj4et2/fxrVr13Dnzp0mJVwBABMTE6xevbrJC0eIdxMKhZg0aRJOnz6tVH8mk4nQ0FAsW7YMPj4+Ko6OINqWefPmYffu3WoZm8lk4vjx4wgNDVXL+A0RiUQYN24cLl682GhbBoOBS5cuYcSIESo7/2effYaDBw822s7d3R337t3rUIv6iIYJhULcvXsXx44dw5kzZ1BZWdnSISmExWJh3759LZp4qTXIyMhA//79m5wA3cHBAePHj8fHH38MPz8/koiFIAhChQoLC3H48GGcPHkSjx8/Vvn4VlZWmDx5MmbOnEkSshLEeyQkJGDlypX4448/lB7Dy8sLx48fR5cuXVQYWcdQW1uLqVOn4tSpUwr1CwsLw8qVK8n9qWYiFouxatUq/PDDD3L3YbFYuHjxIgYNGqTGyNqOFStWYOPGjXK3t7e3x/bt2/Hhhx+S92AEQRAEQRBEh1RXV4dHjx4hMjISV69eRWRkZJPGGzVqFMLDw2Fvb6+iCIHs7GysXr0ahw4datKeBwMDA3z55Zf44osvYGRkpLL4WqOcnBxMnDixyf+f8jA0NERISAhCQ0MxaNAgsFgstZ+TaB5isRjW1tYoLi5+bxs2m438/Hyw2Wy5xpwwYQJOnjz53s97e3s3qWC5okjyleZHkq+oEIPBcATwLwDDAfQEoP2/T8mbfIUJYC+AGfj/RCpA40lY3kzW8i1FUd/JHXgrR5KvEO1RYmIiAgICUFVV1WC7CxcuyJWV/1//+hf++9//NthGU1MT0dHR8Pb2VihWgiAIgmhMVVUV5s+fjyNHjijc19fXF8uWLUNwcLBcFTquX7+Ozz//HGlpacqEqjQ/Pz+cO3cONjY2zXpe4v/x+Xykpqbi4cOH2LNnT5MXHLq4uGDw4MHw8fFBly5d4OrqChMTE+jq6qooYqKtKSkpwfz583HixAml+o8fPx7ffvstunbt+s7P5+fn4+DBg9i2bRtKSkoUHl9TUxMrV67E119/DW1t7cY7dAC3bt3CqFGj5Eq8wmAwcPr06Q6dOKMjmTlzJvbv399ou71792L27Nm4ePEixowZ02Bbe3t7pKamQlNTU1VhtknybNa8evUqhg0b1kwREQRBtA8ikQjx8fGIjo7Go0ePEBMTgxcvXihV0fpdOBwOlixZgsWLF5MqLmomkUiwZs0arFu3rknjfPDBB1i0aBEGDx5M3qcSHU54eDjmz58vV1tra2scPXoU/fr1w/79+/H555/L1U9TUxOnT59u1grktbW1mDJlCs6cOSNX+40bN2L58uUqjYHH48HHxwfJycmNtg0KCsKVK1fkXnxEtA8ikQi5ubnIyspCZmYmsrKy8OTJE/z1119KJV1vDT7++GNs2rQJDg4OLR1Kq5CamooBAwYgJydHJeNxuVwMGDAAAwYMgL+/P7p160bmLgmCIBQkkUhw7do1/Prrr7hw4YLSifwVNXjwYMyaNQsffvghee0mCACZmZlYs2YNDh8+3GiC/4YsWrQIGzZsIPM5TSCVSrF8+XL8+OOPCvUbNGgQtm/fjm7duqkpMgIA0tPTMWXKFIU2xrHZbFy+fBl9+/ZVY2RtC0VRWLJkCbZv365QvxEjRmDnzp0kiRpBEARBEATR7tXU1CAqKgp37tzB7du38ejRIwiFwiaPa2lpiV27dmHcuHFqS2wYHR2NuXPnNnmvg6amJgYNGoSPPvoI48ePb1eFM6RSKX777Tf85z//QVlZWbOfX0tLC76+vggMDESXLl3g7u4Od3d3cLlckvCyDbp58yYGDx7cYJvp06fLta5cZv369Vi5cuV7P6+jowMej9dsa8pJ8pXmR5KvqAmDwdAAYA/ABgAbwEOKosrl7PsfAN/8r5+8/0EMAPkAFlIUpVxJvVaKJF8h2puioiIEBAQgPT29wXbe3t6IjY2V66ItMzMT7u7uEAgEDbbr1q0boqOjoaOjo1DMBEEQBPE+165dw8yZM5Gdna1QPxcXF+zYsQMjR45UeIKitrYW3333HTZv3gyJRKJQX2VMnToVe/bsIYtjWpkbN25g5syZjV5TKUpHRwfm5uZwcXGBs7MzpFIpysrKUFlZCSaTCW1tbUilUhQUFCA/Px+VlZXQ09MDh8MBm82mD11dXYhEIohEIgiFQvo5k8kEi8UCi8WCkZERHB0d4eTkBFdXV/j5+cHExESlXw/ROKlUilOnTmHhwoUoLCxUuP+gQYOwZcsWuZMcFhcXY+HChTh27JjC5wL+uab/9ddf4efnp1T/9oCiKOzYsQNffvml3H8HZEk2iI4hNzcXbm5uqKura7TtqlWrcOjQoUavZX744QcsW7ZMVSG2Wbdv38bAgQMbbNOzZ088fPiQVBckCIJ4D4qikJKSQidaiY6ORmxsLPh8vsrPxWQyMWvWLISFhYHL5ap8fOL9zp49i3//+9/g8XhNGofFYuGDDz6An58fPD094e7uDisrKxgZGZEFH0S7dObMGUyYMEGu93qurq64desWbG1t6Y/dvn0bw4YNk2vhnZaWFv744w+MHDmySTHLIz09HWPHjkVcXJxc7T/99FMcPXpULb/nMTEx6N27t1wJvrp164bz58/DyclJ5XEQLYuiKOTl5SE2NpY+nj59ipycnCZtNG1NevXqhR9//JFs7nuH/Px8TJs2DdeuXVP52Nra2nB2doaRkREMDQ1haWkJe3t72Nvbw83NDd26dVN4DpyiKAgEAlRXVyM9PR2vXr1CdnY2pFIp9PX1wWazYWJiAhsbG9jY2MDS0rLDJ88lCKJtyMrKwv79+3Hw4EGVJcVSBpfLxbRp0zBz5kyykZvokIqKirB+/Xrs2bOnSZu4HB0dsXfvXpKcXoV27dqFhQsXKlQtnMyHqg9FUTh48CAWLlyo0JyngYEBrl69it69e6sxuraJoigsWrQIO3fuVKiftrY2li9fjmXLlpGkuQRBEARBEES7QVEU4uLicPr0ady6dQuPHj1SaZJiTU1NzJs3D2vWrIGRkZHKxn0fiUSCAwcOYM2aNcjLy2vyeFpaWhg1ahQmTZqEvn37wtzcXAVRNj+BQICbN29i/fr1CiX1bC5GRkbo1KkT9PT0IBQKIZVKYWxsDC6XCy6XCw6HAxaLBTabDSsrK9ja2sLKygocDgf6+vrk/lQLmTt3Lvbs2dNgm3v37iEwMFDuMeUp6pmQkIAuXbrIPaYyxGIxNDQ00LVrV5J8pZmR5CutFIPBMAewCkAoAItGmqcB+BXAdoqiGt9V0saQ5CtEe5KdnY2hQ4ciKSmp0banT5/GuHHj5B57xYoV2LhxY6PtQkJCcOLECZKAhSAIgmiShIQEbNq0CYcOHVK478yZM7F169Ym3wCOi4vDzJkzER0d3aRx3kdHRwdbt27FnDlzyIamVorH4+Grr75CeHh4S4eiEgwGA926dUO/fv0QHByMQYMGkUpzakRRFC5cuIDVq1fj2bNnCvd3dnbGtm3bMHr0aKVeIy5evIilS5fKVW36TUwmE0uXLkVYWFiHSwxVXl6OOXPm4MSJE3L3+f777/H111+rMSqiNVq1ahW+//57lYylp6eHnJwckiAL/ySscnJyQlZWVoPtjh49ikmTJjVTVARBEK0Xn89HbGwsHj58iPj4eCQmJiIhIQEVFRVqP3f//v2xfft2uZMEEqqXmJiI6dOnIyoqSuVj6+rqwt7eHl5eXvD29kaPHj0QEBBArleINu3IkSOYOnWqXIkf3NzccOvWLdjY2Lz1uZMnT+KTTz6Ra3OWjo4OLl68iCFDhigVc2OkUimOHDmCJUuWyF2xy9fXFxEREdDT01NLTACwefNmuZNLmpiY4PfffycbCNswiqKQkZFRL9FKbGwsioqKWjo0lbOyssLEiRPx6aefwsfHh8zrN4CiKJw4cQILFy5s9p8Fa2trODs7w9raGiYmJqitrUV1dTV4PB79yOPxUFtbSx+KJAViMpmwsLCgk7HIDhcXF3h6eqJTp05k3p0giBb15MkTbN68GSdPnmyWQiOKGDx4MGbNmoUPP/yQvFYS7V5VVRW2bt2KLVu2NCl5rp6eHlasWIEvv/xSre/jOqqLFy9iypQpCs+nGhoaYvXq1Zg/fz55PVOBrKwszJkzB5cvX1aon729PS5cuIDu3burKbK2j6IoLFmyBNu3b1e4r6GhIWbMmIH58+fD0dFR9cERBEEQBEEQRDNITk7GuXPncOTIEbx48UIt5xgxYgS2bt2Kzp07q2X8hggEAhw5cgQ//PADUlJSVDauk5MTevfujYCAAPj7+8Pe3h6mpqbQ0tJS2TlUhcfj4cqVKzh79iwuXbqE6upqpcYJDAzE2LFj4e3tDT09PaSkpODSpUs4d+6cShP1NAWbzYaXlxeCgoLQt29fBAYGknU8aiaRSGBjY9NgAV5nZ2ekpKQodO84IyOj0SI1x48fx4QJE+QeUxkrVqzA48ePkZaWhrS0tHc1IclX1IQkX2kDGAxGDwD+AMwBcAEwARQCyAcQSVFUYguGp3Yk+QrRHhQVFeHXX3/F999/j5qamkbbe3p64tmzZwpVia6rq4OPj49ciV2GDRuGs2fPgsViyT0+QRAEQRQUFODPP//E0aNHcefOHYX7Gxoa4rfffsOHH36ospgkEgnCw8OxatUqpSdi3mXs2LH48ccf4ezsrLIxCfV5+PAhvvzyy1aZAbkpjI2NERISgiFDhqB///7v3FBEKI6iKFy7dg3ffPMNHj9+rNQYM2bMwLZt25qcREosFuPQoUNYu3YtsrOzFe7ftWtX/P777+jWrVuT4mgLKIrC4cOH8Z///AfFxcVy91u8eDG2bNlCNtt0QHw+H4GBgXjy5EmTx5ozZw52796tgqjah5UrV2L9+vUNtrG3t0dSUhJZaEwQRIdBURQqKiqQn5+PuLg4PHjwAFFRUXj69ClEIlGzxuLt7Y3169dj+PDh5BqoFaAoCufPn8fKlSvfV4FEpTp37gxvb2/Y2trCxsYGTk5O6NSpE5ydnUlCdqLVoigK4eHhWLBggVwJU5ycnBAZGQlra+v3ttm9ezfmzZsn1/mZTCZCQ0OxfPly9OjRQ+64G0JRFG7fvo3//Oc/iImJkbufk5MTIiIi1D4HJJVKMWnSJBw/flzuPpMnT8aWLVtI5fA2QCwW4/79+7h8+TKio6MRGxvbLInfWoqrqytCQkIQEhKCwMBAaGhotHRIbUp5eTnWrVuH3bt3g8/nt3Q4zUJTUxNubm7w9PSEp6cn7OzsYGFhUe8g100EQaiSWCzGw4cPcfnyZVy5ckUlc9bqxuVyMW3aNEyaNAkeHh6kYmsHJxAIcPv2bURERCAxMRGvXr1Ceno6xGIx2Gw22Gw2LC0t4efnh/79+6Nfv36tuvpybm4uDh06hG3btqGkpETpcRgMBiZNmoR169bBwcFBhRESb0pPT8eECROUKszk6OiImTNnYurUqQ3OIxDvJhAIsHfvXqxcuVKudc+vCwoKwpkzZ1r160FrQVEUfvrpJyxatEihxJMyTCYTkyZNwsqVK+Hu7q6GCAmCIAiCUFZlZSVSUlKQkpKCvLw8MJlMGBgYwNDQENbW1ujSpQsMDQ1bOkyCaFalpaWIjIzE3bt3cenSJbx8+VJt53J3d8e2bdswYsQItZ1DXhKJBAcOHMCqVavUmhTf2NgYrq6ucHd3r3e4ubk121pOqVSKuLg43Lx5Ezdu3MDNmzchEAiUHs/Hxwe7d++Gv7//Oz+flZWFDRs24Jdffml1ya6Bf/YI9+3bF0FBQQgKCiLzSCp29+5d9O/fv8E2y5cvx8aNGxUal6IoGBoaNrhHbeXKlVi3bp1C4yoiMzMT7u7ujf3+kOQrakKSrxCtHkm+0rz4fD6Ki4shlUrBYDDeOgC89TEtLS0YGRm9tZCbx+OhsLAQhYWFqK2thUAggFAohEAgoI+qqipUVFSgsrLynY/V1dUQi8V0BjpjY2NwuVyYmZmBy+XWe/7mI0VRKCgooC9KTU1NweVy1bZYRiwWIykpCTExMXjx4gXKyspQV1eHrKwsREVFKTQp/scffyAkJEThGB49eoTevXvLdS5/f38cOXIEbm5uCp+HIFqKVCoFj8eDnp5eq8zISRDtjUAgQFRUFG7cuIG//voLjx49Unosb29vnD59Gi4uLiqM8P+VlpZi+/bt2LlzJ6qqqpQex9fXFxs3bsQHH3ygwuiI5kBRFM6dO4fly5erNDN0a+Li4oKxY8di0qRJ6N69O9lIqSCKovDXX3/hu+++w71795Qaw8zMDPv371fqWr0hdXV1WL16NbZu3arwYhptbW1s2LABCxYsaLeLX+Pj4zFnzhxEREQo1G/evHnYtWsX+V3pwNLT0+Hr64vy8nKlxzA0NMTLly9hYWGhwsjattzcXLi6uja6KWv27NnYu3dvM0VFEAShGiKRCOnp6UhPT0dlZSV4PB54PB5qamrA4/FQXV2NiooKlJeXo7y8nH5eWlrapIUCquDl5YWvv/4aoaGhCiX1JpqHRCLBsWPH8MMPP6itWlNDmEwm3Nzc4OPjA19fX/j4+MDHx4cs5iNaXGFhIWbNmoULFy7I1d7AwABRUVHw8Hjr1vFbtm7diqVLlyoUz7Bhw7B8+XIMGDBAqfeS+fn5uHDhAsLDw/H8+XOF+lpZWSEyMrLZkkELBAIMHToUd+/elbuPkZERpk+fjpkzZ5LNPC1IJBIhLy8P2dnZ9JGXl4eysjKUlZXhwYMHKC0tbZHYzM3NERISgn79+iE/Px9RUVG4dOkShEJhk8blcDh0MrHXj06dOsHOzo7M/ahAfn4+Nm7ciJ9//rnFr2tbA0NDQzoRi62tLfz9/REcHAxXV9eWDo0giDaAoiikpKTg3r17uHbtGq5du9akOeqWpqenB29vbwQEBKB///7o27cvqdbaAZSVleHy5cu4cOECrl69qnAhHF9fXzpBXrdu3Vr8eq2iogLnz5/HsWPHcP36daWSG7xu1KhR+P777+Hl5aWiCInGCAQCLF26FOHh4Ur1ZzKZCA4OxowZMzBy5Mh2e19dVfLz8/Hzzz9j7969DVaOfp/p06cjPDycJDVU0JUrVzBhwgSli48xGAyEhoZi5syZGDhwIElOSjQLqVSK/Px8VFZW0om1dXR0YGRkBENDQ7LOmyCIDiU7Oxt//vkn7t+/j+TkZKSmpsqV8NHa2hrdu3fHsGHDMGbMGDg5OTVDtAShXhRFoaioCCUlJSgvL0dmZiYiIyMRERHRLHuBTU1NsWrVKsybN6/VXY9UVVVh48aN2LVrF3g8XrOdl8FgwN7eHu7u7ujUqROcnJzg6OgIc3NzsFgs6Ovrg8Vi0YempiY0NDQaXH8klUpRVVWF/Px85OTk4NWrV7h9+zZu3bqlknuVOjo6CAsLw5IlS+R6H5+UlISvvvoK58+fb/K51cnOzg6BgYHo06cP+vTpAy8vLzJP0QQLFizArl27GmwTHR2Nnj17Kjx2YGAgoqKi3vv5MWPGqPXnbdKkSfj9998ba0aSr6gJSb5CtHrvS77i6uqK5OTkFoiofaAoCmlpaYiIiEBkZCRevHiBjIwMpSbKgX+qA3G5XLBYLFRXV6OqqqrVVkZiMpnw8PCAn58fevbsCT8/P3h5eck90U9RFLKyshAbG4unT58iMTERSUlJePXqlUoWIjV1c9KqVavw/fffy9VWT08P69evx6xZs8BisZQ+J6EciqJQW1uLsrIyaGpqgsPhQF9fn77hTFGU3DefKYpCTU0NqqurUV1dDalUCjabTY/Z2IW4WCxGdXU1iouLkZycjOTkZOTm5kIoFEIkEkEsFr/1KEuKZGFhATs7u3qHra2tUlkxhUIhMjMzkZqaipycHJSVlaGiogJZWVl48eIFkpKS6N8zPT096OvrQywWQygUQkNDAw4ODvDw8ICDgwOEQiFqa2uhra0NBwcHuLi4wM7ODiwWC3p6etDT04Ouri709PSgo6PT4jf6CaI1SUxMxPbt2/H777+rZFJn1qxZ2L59e7Nky62oqMC+fftw5swZxMTEyJW91sLCAp9++ikmT54Mb29v8nrQxgmFQuzduxdr165FWVlZS4ejNh4eHvj8888xffp0ch3XCKlUinPnzmH9+vWIjY1Vepxx48Zh9+7daq3M9PDhQ0ybNg2JiYkK9/Xy8sLOnTsbzd7clvB4PISFhWHbtm30tae85syZg/DwcPKaTuDKlSsIDg6GsnOgu3btwvz581UcVdsn79zDhAkTEB4eDlNTU1AUBR6Ph6KiIhQVFaG4uBgikYh+f2ZgYABLS0uYm5u3upueBEG0LbKFnhkZGSgqKgKfzwefz4dEIgGLxQKbzYZQKERubm69IycnBxkZGa2yCkpD+vfvj+XLl2P48OHk2qcNoCgKV65cwaZNm3Dnzp2WDgfOzs6wsrKCsbExzM3N0b17dwQEBMDb2xva2totHR7RjsXHx+PQoUM4cOCA3AuvmEwmLl26hOHDh8t9ng0bNuDrr79WOD4fHx+EhoYiJCQEnTt3fu/ra11dHW7duoVLly7hxo0bSldmMzU1xd27d+VKKqNKZWVlCAwMVCruwMBAjB8/HmPHjoWDg0Oz/g2qq6vD06dPER8fj8zMTGRkZCA3N5dOjMbj8aCvrw8zMzOYmZnB1dUVvXr1QkBAAJycnNrE+w2KolBaWkrfM3vy5AliY2MRHx+PvLw8pd/jqouNjQ2+/fZbTJ069a3vb1FREa5evYpnz54hKysLmZmZyMrKQkFBQb12Ojo6sLW1pe812tvbw8vLC76+vnA4DrjZAAAgAElEQVRyciLJ5ZpJaWkpzp8/jwsXLuCvv/5CXV1dS4fUqnTq1AmjRo1CcHAwgoKCyPVSK1NWVoa///4bf//9N5KSksDj8VBXV1fvkEgkMDc3h4ODAxwdHdGpUyd4eHjA09MTzs7OrW6DqkQiwZMnT/Dw4UNkZ2cjPz+fLoAlW8shK5qlpaUFExMTODk50UmqZAvoyX2kxlEUBZFIRM8hyH5eZN9bkUiEyspKVFZWIjc3l05+JhAIIJVKIRaLUVJSgoKCArx69UrtidAYDAYsLS1hYWFBb4yQ/Q0uLy9HTExMk5OfNcTNzQ09evSAl5cXbGxsYGVlBUtLS1hZWcHMzIz+u63Iuiei5VVUVODYsWM4efIkIiIiVDZH5ujoiJCQEIwePRq9evUCh8NRybgNoSgKL1++xPXr13HlyhX8/fffEIlETRqTwWBg3LhxWLZsGfz8/FQUKaGoAwcOYM6cOU16jbO0tMS4ceMwevRoDBgwgCQIwT9z6snJybh79y6OHz+O27dvK5WkSFdXF7t378a0adPUEGXHkJiYiClTpuDx48dNGsfOzg6ffPIJxo4dC39/f/KemlCZ2tpaPH78GPfv38e9e/dw//79BtfnmZqaokuXLvD09ETXrl3pRy6X24xRtz0CgYCe6xSLxbC2tiYJEAmilUpNTcV///tfnDt3Dk+fPlXJmB4eHggKCkJAQAB69uwJd3f3evOQUqmULhpTV1dH7+1hMpn1Eifo6+tDS0ur0fflFEVBIpFAKBRCIpFAX1+/xa4dKIpCXV0dqqqqIBAIYGRkBAMDAzK30MqJxWK8ePECUVFRePz4MRISEpCQkNCkYrrKsrW1xZdffokZM2ZAX1+/2c+viOrqahw7dgx79uxR2euHOjAYDGhoaNCHLCmLbA+iunTq1AmnTp1SKvHt3bt38eWXXyI6OloNkamevr4+/P394efnB0dHR9jb28PBwQH29vbNMo/WlkmlUtjZ2SEvL++9bRwcHJCenq7U35LZs2dj37597/28k5MT0tLSFB5XHo8ePYK/v788TUnyFTUhyVeIVu99yVcAoG/fvpg+fTrGjx/f6i+KmkNFRQVSU1ORmpqKjIwMOgGKQCCAQCAAn89HTU0NMjIykJKS0iIXsq2VlpYWXFxcYGxsDCMjI/owMDCg30iWlJTQSSkqKirUEseQIUNw6dKlJi36EwqF8PPzw7Nnz+TuY2hoiIkTJ2L69Onw9fUlb04bQVEUhEIhXflWVvVWKpXCxMQEZmZmkEgkdLW5nJwcZGdnIzc3F8XFxSguLkZJSQlKSkreSlLEYDDAYDDom1e6urrgcDhgs9lgMBigKIpeUClb/FFdXQ0ej9fgQks9PT2w2WxoaWlBLBZDIpHUe1RHsiQzMzPY2dnB1NQUQqHwrUMgELzzYy1FV1cXurq6MDc3h6urK9zc3OotVJF9/4F/vp+yzTqyRUvkBlXHJpFIUFlZifLyctTV1UFTUxOamppgsViwsLBodQv13oWiKPz111/Ytm0brl27ppIxjY2NsX//fnz00UcqGU9RPB4PDx48wJMnT1BeXk6/xurp6cHS0hKWlpZwdHREly5dyO9wO1RRUYHt27dj//79yM3Nbelw1IbL5WLx4sX4/PPPYWxs3NLhtCoikQi///47Nm7ciKSkJKXHMTY2Rnh4OD755JNmuU7m8/kICwvDpk2blFrUOHHiRPz0009t+qZ7RUUFwsPDsWPHDhQXFyvcf86cOfjpp5/IaztBW7t2LdasWaNwP29vb0RHR5Os8u9QXV0NV1dXFBUVydXewsIClZWVcr/3NDU1pa/XHBwc4O/vj6CgIHTu3Jn8bhNEG6aqDTcikQjFxcXIy8tDenr6W0dmZmaLzjE1Bz8/P4SGhmLcuHFwdnZu6XAIJT18+BCbNm3CuXPnWt0mem1tbTg5OcHJyQl2dnYwNDSEoaEhDAwMYGBgQD+XPVpYWMDQ0LClwyZaueLiYhw7dgyHDx9GTEyMwv137tyJL774QuF+a9aswdq1axXuJ+Pm5oYxY8bA19cXZmZmqKysxNOnTxETE4O7d++itrZW6bGBf+6lXLt2DT4+Pk0aR1np6eno378/srOzlR7D0NAQrq6ucHFxoReCvX4YGxsrfQ0gEonw/PlzPH78GNHR0YiOjsaLFy+atBGUzWbDyMiIvi/c0KPsuZ6eHn3/rry8nL7fJzvKy8tBURSYTCa0tLRgb2+Pvn37ws/Pr8H7vrIkK6mpqXj58iViY2MRExODp0+fNmu1O2V1794d06dPx4wZMxROvs7n85GTkwM+nw9zc3NwuVxyj7qVqaurw40bN3DhwgVcuHBB6UI+7ZWBgQGGDh2K4OBgjBw5Uq1Ju4l3k0gkePz4Ma5evYqrV6/i0aNHSm0SltHR0UHnzp3pYk4DBw6El5dXs85FVVVVISYmBo8ePUJUVBRu376NysrKJo9raWlZLyGLs7MznZTl9YXzGhoaqKurQ0FBAQoKCsDn86GtrQ0dHR1oa2vTzyUSyVuJbV4/+Hw+tLS0oKurCx0dHXothq6uLrhcLmxsbGBtbQ0rKyulkhi9nlC1trb2rbUnAoGALhwme3zzOY/Ho9fUyRKutLb3ZTJ6enoYNmwYgoKC0KVLF7i7u8POzq7B751AIMCjR49w7tw5nD59uknXeoqSbcIQiUSQSqUwMDCgizgZGhrS622srKzg5OQEW1tbCAQCemMVk8mst5HjzUNLSws6OjrQ0dGBoaEhbGxsSOKEJqioqMCdO3dw5swZnD59Wu2J1xgMBr0B287ODhYWFqirq0NlZSXy8/ORlpaGjIwM1NbWwtTUFBYWFjA3N6eLj7HZbOjr60NfXx8CgQDFxcUoLS2FUCiEVCqFUChETk4OMjMzVbY2lsFgYPLkyVi1ahXc3NxUMibRNA8ePMC4ceMa3FgjLzabjdGjRyM0NBTDhw9vlqJSLYmiKFRWViI7Oxvx8fF4/PgxYmJiEBMT0+RNc25ubjh9+rRSG+OI+iQSCfbv348VK1agvLy8yeNxuVx4eHjAxcXlrYOsM2pZFEWhrKwMaWlpSEtLQ3Fxcb17abK1jq8/ZzKZ9LU5m82Gra0tHBwcYGJiovJ5FYlEgoyMDDx8+BBRUVGIiopCXFycwsWT3sXIyIh+X8BiscBkMunrQNnz1w/ZxzU1NenCpDo6OqAoClKpFNra2jAxMYGpqSmYTCZqampQU1MDDQ0NuhjM64U73yziqaOjI1eCAlWTSqXIzc1FamoqoqOjce/ePTx48OCdczBGRkZwdXVFjx490LdvX/Tr1w/29vZkPo0gmpFAIEBBQQGePXuGmJgYXLt2DQ8ePFD7eTU1NeHk5ASBQIDKykpUVVXJPYehoaFRLyGLbB/Um/t5Xh9PQ0MDXC6Xfj9mYWEBMzMzuuDx63NErz9nMBj0uCKRqN6j7Lls7k4sFqOgoAB5eXkoLCysN3fz5vyelpYWTE1N6ddr2Xllc06yvX+Ghob19gLK/m1mZgYnJ6d2f63fnKRSKZ4/f04nwo6IiEBNTU2LxaOtrY0RI0bgk08+wUcffdTmkqZTFIVLly7h66+/xvPnz1s6nFZh0qRJ2Lt3L9hsttJjSKVSnDx5Ehs3bkRcXJwKo2teRkZGcHNzg5eXF7p3745evXqhZ8+ebWJ/WnO4f/8++vTp02CbpUuX4scff1Rq/J9++qnRNSpVVVUqT5JDURT69euHyMhIeZqT5CtqQpKvEK1eQ8lXZNhsNj7++GN88sknGDhwYLvcFENRFP1GTVbRqqKiAuXl5cjKykJqaqpKJlmJluPp6Yl79+6pZIHyq1evEBgYqFQlFS8vL/zrX/9C586dYWNjA1tb23pVSVoDiqJQU1ODsrIylJeXo6ys7K3nYrGYflP9+iESieolTeHxeKipqYFIJIJIJIJEIoG2tna9yVUWiwWBQICkpCQkJSWhoKCgydUwiPaFxWLB09MTjo6OsLa2hrm5ObS1tekFJbJFPAUFBcjNzUVhYSEkEslbk/h6enrgcrlwdHSEs7Mzna3cxMQE5ubm7fLvW1siEAiQnJyM58+f49mzZ3Sys8zMTPrG17toaGjA1tYWjo6O8PHxQVBQEPr06QMLC4tm/grejc/n48iRI9i+fTsSEhJUNu7AgQNx+PBh2NraqmxMglCGRCLBtWvXcODAAVy9erVFJ3jVSVdXFx9//DE+++wzBAQEdOhFhhkZGThw4AAOHDjQ5MQ7o0aNwr59+2BlZaWi6OT3+PFjTJs2DS9evFC4r729PY4dO4bAwEA1RKY+BQUF2LZtG/bs2aPU4i4NDQ1s3LgRS5cuJYsLiHooisKqVauwfv16hfrdv38fvXv3VlNUbd/evXsxZ86cZj2niYkJ+vTpg6CgIAQFBcHX17dD/80jiNaGx+Ph/v37iImJwZMnT/Ds2TMUFBTQi3YoiqITOJiYmMDNzQ1dunRB586dYWtrCysrK/D5fGRkZCArKwuFhYUoKip66+iI8+BcLheDBg3C8OHDMXToUFhbW7d0SIQKvXz5Ej/++CMOHz6s1srk6mZoaAhHR0dYWlrCzMwMZmZmsLe3pxMy6OvrQ1NTE1Kp9K3E5jweD9ra2vTrAvn73vZVVVUhKSkJCQkJePz4MR49eoQnT54ovTA/LCwM33zzjVJ9KYrCihUr8MMPPyjVX5169uyJM2fOwN7evkXjyMvLw9ixY/Ho0SO1jM9ms+Hk5ARHR0dYWFjA1NSU3gwhWzBbVVWFyspKVFZWoqKiAiUlJXjy5Ani4uLadFI1fX19+Pr6wt7eHra2tjAxMQGHw0F+fj4ePHiA6OjoNndt07lzZ4wdOxaTJk2CpydZx9VRSKVS3Lt3DydPnsSZM2eQn5/f0iG1KgwGA97e3hg8eDAGDx6Mvn37kgJSapKfn49r167h6tWruH79eoMV1lXBxMQEAQEB8PHxgY+PD3x9fWFnZ9fk+WexWEzfd5bde37+/DnS09NVFHnbweVyYWVlBQ6H89b6CZFIRM8N8Hg8CIVC8Pl8lJaWttpEKarCZDIxfPhwTJs2DSNHjgSLxVJ6LIqiEBERgX379uH06dNt+trqfSwtLesl/+NyuXSiDhMTE1hYWNCHst9LsViM8vJyiESitzaZKfOaUFtbi+zsbLpw15vJgF7/GAA6GaqJiQkcHBzg6Ogo1wYUiqJQUVGB3NxcZGRkID09nX5MTU3FixcvmpS4qr0LCQnBunXr0LVr15YOhXhDWVkZVq9ejb179zYpOefr2Gw2Ro0ahdDQUIwYMaLNbs6USqVIT09HfHw8Xrx4geTkZLp4YE5OjlrWzMycORNbt25t0sY44m0lJSX46quv8Ouvv6rtHMbGxm8lZDE1NQWHw6l3aGtr03+nKIqik1/o6+u3m7UZ5eXlyM3NRWlpKcrKylBbW0tv6maxWDAzMwOXy4WZmdk7E+2KxWK6eF9BQQHy8/NRVFREJwiTXdvm5eUhPz8feXl5yMvLU1niM11d3XoJ1DkcDv1cdsiuW5hMJjgcDr0xXVYItKysDCkpKXSh2rS0tA63Vl6210BPTw82NjZwcXGBo6Mjnezl9Y3/ryeblEgkqKmpAY/He+ffJalUipqaGlRXV6OkpIROuJOent6k+0KGhoZwc3ODnZ0dmEwmGAwGeDweysvLUVFRQSc6kEgkkEqlbx0URcHIyAhWVlb0NfXryTrflQhHVphSR0eHTtKvzGuBWCymv/Y3z/F64iGCaIrS0lIkJyejtLSU3nsnO17/d3V1Nf1z/frvN0VRKCoqoucmVJEgl2g5VlZWsLGxees6h8Ph0EkMmEwmbGxs0L17d3h5eal8M31bVV1djcTERMTFxeHmzZu4ceOGUkUVVcnNzQ19+/bFoEGDMGrUqHZRKEYikeDkyZPYu3cvIiMjO+R8jbW1NXbs2IFx48ap9FogMTERp06dwunTp9tFghtzc3OMHj0aISEh+OCDD9rs/IUqLFmyBNu2bWuwTVRUFAICApQa/86dOxgwYIDaxn+fs2fPYty4cfI2J8lX1IQkXyFaPXmSr7zOzMwMo0aNwpAhQzBo0CBYWlqqMTrFCAQCVFRUgMFggMViQUtLC3l5ecjIyEBubi4qKiroRWWyo7S0lK7Woaps/ETrY29vj7t378LBwUFlY7548QIffPCBSipQaWlpwdraGsbGxvSErLOzM7p16wZPT0+w2Wy64ohsUk328y5LEJSeno6srCyUl5fTWUl1dXXpbKiyi73XJ8ykUikqKireSq4iu5lNEB0Jk8mEpaUlbGxsoKurS2ewt7a2pqtU+fr6onPnzmTSWUFlZWVISkpCZmYm+Hw+fSMkLS0NKSkpyMjIQH5+vsoXQLu5uaFPnz4IDAyEp6cn3N3dYWpqqtJzNEQikeDw4cP49ttvVVrpSl9fH5s3b8bs2bNbVeIuggD+qZT76NEj/P3333jw4AESExORmZnZ0mGpnLa2Nnr06IGAgAAEBATA398ftra2DVbZbcvq6upw8+ZN3L59G7du3UJsbGyTF92amJjgxx9/xNSpU1v076pQKMSGDRuwbt06hTeoaWhoYO3atVi2bFmr/r+nKAoPHz7Eb7/9ht9++03pRb/m5uY4ceJEo5OcRMd28+ZNzJ49GykpKY22nTFjBn755ZdmiKrtEovF8PLyQmJiYovFoKOjg169eqFv374YNWoU/P39yTUo0WaJRCKUlpaCz+dDLBbXOyQSSb3nLBaLrtJjaGiolqotYrEYRUVF9OJQ4J/fOU1NTRQVFSE3N5fe/FRTU4P4+HhER0erbKF7R2Zubg4/Pz/4+fnRG/ysra3JfE8HkJ+fj59//hlnz55tFws+lKWpqYnOnTvD1dUVTk5OdMIGJycniEQi5Obmori4GNra2nQCBxaLRW96k22yI5pPVVUVYmJiEB0dTR+qnG/ZsmULlixZ0qQxKIrCkiVLsH37dhVF1XTTpk3D7t27oaur29KhAPgnSffs2bNx+PDhlg6FaEW4XC4cHBzg5OSEPn36IDg4GK6uri0dFtHCpFIpEhIScOvWLdy6dQtRUVEoKCho6bBaFS0tLfTu3Rt9+vSBvb09bGxswGKx6LUU7zp0dXVhZWXV5qpyKkIsFiMlJQXPnz9HfHw8CgsL6cq3sg1fxsbG9KZALS0tUBSF2tpaFBYW4vr163j27FlLfxkwNTWFj48PvLy80K1bN3Tq1AkmJiZ0Vd3XEwlSFIXCwkI6uYrsMSEhoV0mwCCazsHBAdOnT8fUqVNhZ2en8vFLS0tx+PBh7Nu3D0lJSSofvy3gcDh0IhZLS0uYm5uDw+GAxWKBwWCgtLT0nUdDm+y0tLTqVd7W19enN6Jqa2vTm7hkG7KLiopQUlLS5K/l9WresoPD4dDFoQoLC+nXWkIx/fr1w8aNG0mC/jYgPj4eixcvxvXr11U6LovFwpAhQzBmzBiMGDGiRYq11NXVobCw8K2ihGVlZZBKpWCz2WCz2aipqUFhYSFycnKQkJCAhIQE1NbWNkuMFhYW2L9/P0aNGtUs5+uoHjx4gLlz5+LJkyctHcpbGAwG9PX1weFwYGJiQs/jOjg40MkcZI/GxsZy3+eQJQ8rLi5GcXExBAIB/bdV0XtjUqkUdXV1qKmpoZNjFBcXIzExEQkJCUhMTERiYqJC72uNjY3pAo2yDfw8Hk/u/gTR3mhpacHKygrW1tYwMjICg8GAVCpFaWkpCgoKUFxcDIlEQidXkRXLbYgsUZCGhgb9u29sbExfA+vp6UEgENDvrWXJPBkMBj3XwOFw4OLigk6dOsHe3r7edXNrXktHKKampgZ5eXnIzs6miwLEx8cjISGBXudAEMrS1dWFlpZWvUP2OiYUCsFkMsHlcun5hTffoxsaGkJTU5N+XXr90NDQoO9vv34YGxvDzMwMRkZGEIlEqKurQ0VFBQoKClBQUICqqipQFEUn0XrzkBVCKSsro5PKyQ5ZUq7Xk3BJpVLo6emBw+GAzWbTX6NUKqULULeGIgIeHh4YMGAA+vfvj379+rWqvcLqUFRUhIsXL+L48eO4ceNGh0hEvWDBAqxduxYGBgZqPVdxcTEiIyMRERGBuLg4vHz5ssmFXlsSi8XC0KFD6b30LV30pTlRFAVHR0dkZWW9t42trS0yMzOVXlNcVlbW6B6/ffv2YebMmUqN/y5CoRCenp5yrXP/H5J8RU1I8hWi1VM0+cqbOBwObGxs4ODgAB8fH/j7+8PPzw9WVlZKL1aWSCTIy8tDamoq0tLSUF5eTl8Ayy4sX08SIXtsrgltom0JDg7GgQMHYG5urvKxX716hcGDByMnJ0flYxME0TrZ2dlh+PDhsLW1hY6ODjgcDpycnODq6gpHR8dmmzAWi8XIyclBeXk5ampqUFtb+9ZRV1cHPp8PLS2tetmDDQwMwGazIZFI6Eo+Wlpa0NXVrZct/l2PTCYTFEWhurq6XtUhTU1NJCUlISYmBi9evEB+fj5dSUAVi1pUhcvlIiAgAIGBgejduzf8/PyaVMXqXcRiMc6cOYOwsDAkJCSodOzhw4djz549cHR0VOm4BKFOPB4PqampKCsro2/cp6WlITU1Ffn5+dDR0YGpqSm9CEAoFEIikcDU1BTW1tYwMzODQCB4q2q3UCh8a9JdS0sLUqkUtbW1qK6uRk5ODtLT05Gent4sm1Q5HA7Mzc3h4eGB7t27o3v37vD29oazs3Ob26heUlKCiIgInDp1ChcvXlTZIgYDAwMsWbIEixYtalWZ0J8/f46pU6ciNjZW4b7dunXDzz//3KoWB1IUhcePH+PkyZM4efJkgxOf8hgyZAgOHjwIGxsbFUVItGd1dXVYv349wsPD33tjcMCAAbhy5Uqr2QTZmv31118YNmxYS4dBI1n9idZMJBIhMzMTKSkpdNW4lJQUpKamorCwEBUVFUqPraenRy/ckC3meNejvr4+ncSlpqbmnQmPZR+rrKxs9zfvWwMOhwNfX1/06tWLTrhib29PEq0QyMzMxOXLlxEVFYX4+HgkJiaqrAJmR2Bqago7O7t6lc9lc6QuLi6kSpmSBAIBsrKykJycjOfPn+P58+eIjY1FUlKSWv5mMBgM7N27F7NmzVLJeBRFISwsDGFhYS1aKczS0hKbN2/GpEmTWt3rPUVR2L17N5YtW0bua3cg2tra6NatG3x8fNCjRw+4urrCwcEBdnZ25D0VIbe8vDxER0cjJSUF5eXlqKysRElJCbKzs5GZmany9QqmpqYwNDRETU0NKisrwefzVTp+S2EwGLC2toatrS309fWho6MDNpsNc3NzuqiNhYVFvefNUWleKBSiurqavv/B4/HAZDLBYrHAYrHoDU6yIlTAP0m9YmNjcf/+fcTFxeH58+dITEzsEAkAdHV1YWBgAIFAgOrq6g5ZoZRQ3JgxYzB//nwMHjy4We7ZURSFyMhI/Pzzzzh9+jRJBkQQ/9OjRw+sX78ew4YNa3Xv14j3oygKly5dwpIlS5CcnKyWc3Tq1An9+/dHjx490KlTJzg6OoLFYtVbs6ahoQGJRAIej0cXJ5Qdsn/X1NQA+P8N5bLH1zc2vnr1Ck+ePMGrV69a9Rz95MmTsXXrVpiZmbV0KB2CRCLB77//jm3btrXKJCzykCUpk/1cGxoagsvlwsTEBFKplF57VVxcjJKSkkYLFOnp6cHMzAzu7u7w9PSEmZkZysvLUVpaipycHGRnZyMvL48kRSEI4p309PTopE6yw8zMDFwul56HkR2yjxkYGJBrxGYkFAqRn5+PvLy8ekdubm69fzeUKJMgiLbLyMgIoaGhGDZsGPr16wcul9vSIbWY7OxsHD16FOfPn0dsbGy7KmTv6emJsWPH4v/YO+/4tsqzf19HsiVZlmXLe8Z24sTEiZ3hbAgjE5JSEtoEKKXM0gKllBZeoEAX6dsN/FpaWlYLLaVv2SMpI6MhITtxnMQZjh3vvW15SZbO7w/lnEjedmzL47nyeT7n6OjoObeU4/Os+/7et99+O5MnT/aaHVarlezsbLKzszlz5gxlZWVoNBpVIL66upqqqio1Nq65uZnq6upR6cMzdepUVqxYwYoVK7jqqquwWCzeNmnYyMzMZPbs2b2e88ADD1x0gp6YmBhKS0t7fP/+++/n97///UVdw51nn32WBx98cCAfEeIrw8SEE1+RJOkt4MeyLGd525axgCRJq4CnZFle6EUbLkp8pSeCg4OZMWMGU6dOVVUG7XY7jY2NvZaGhgYxEScYElJSUnj66aeHPUgpPz+fNWvWeDUTtUAgGB1IkkRISAiRkZFER0czffp0tS0MCwsjJCREXQRuaGigsrKSyspKamtrVRGU9vZ2bDabut/d69LSUvLy8vpcABsOFGGD8ZJp28fHh9mzZ7Nw4UJmzJihlr7UM7ujsbGR1157jaeffpq8vLwhs9FgMHDTTTdxzz33MH/+/CGrVyCYSDQ1NbF3717++9//8u677454pjmTyURqaiozZswgJSWF0NBQ2trasNlsmEwmoqKiCAsLo7a2Vs0wrghouW+dTieRkZEkJCQQHx/PzJkziY2NHfSiY1NTEwUFBeTn56slLy+PzMxMcnNzh/Q38Pf354EHHuAHP/gBwcHBQ1r3UGGz2fjJT37CL3/5ywE7WUmSxMaNG3nooYeYN2/eMFnYO62trezatYtPPvmE9957j3Pnzl10nVFRUTzzzDNs3LhRLG4LBkx7ezs7duzg1KlTnD17lrKyMkwmE2vWrGHDhg34+Ph428Qxw+9+9zseeughb5vRBaPRyOLFi5kyZQpxcXF0dHSoYxZlfOM+zgHQ6/Xo9XrMZjPR0dFqG2g2mzGbzRgMBrRaLVqtVm3/7HY7wcHBxMXFYTKZvPytPXE6nZw7d04VnHR35JUkCb1eT3h4OMHBwWr21bGK4pRpMBj6bBNkWaaoqDprrZAAACAASURBVIhz585RUFCg9jcKCgooLS1Fo9EQFRVFTEwMZrNZHWMqmV+UcW9xcTG1tbX4+/sTGRlJREQEOp0OSZI8Sn19PWfPniU/P3/cjFUFgyMxMZE5c+aQkpLC9OnTmTNnDsnJyWNOCFHgHRwOByUlJZSVlVFWVsa5c+fIzMzk6NGjZGVliefLAPH391edZpWsh8nJyUybNo1p06YNSZsuyzJ2u71LqampIS8vj/z8fOrr69XMaLW1tZSWllJeXk5bWxs+Pj5qv0MpwcHBpKSkMHPmTFJTU5k+fTp6vX4IfhEXyn2mOA5VVlaSmZlJRkYGWVlZvTqUDDXh4eG88sorrF27dsjrPnLkCD//+c959913RzSIyWAw8NBDD/HII4+Mun5jZwoKCrjvvvvYvHmzt00RDDF+fn7Mnj2buXPnqiUlJaXf2aIFgsFitVo5ceIEx48fp6CgQA2caG5uVrOkm0wmdWsymfD391cFPZRisVhISkrycBaVZZmGhgZKSkq6lOLiYkpKSsjJyaGpqcmLv8DwYTQaMZlMaDQafHx8CA8PV9eAlZKYmKiOO+x2OyUlJep4uKCggMLCQioqKlQxTqvVqq4Bt7S0DEgwRavVYjAYsNls48oJfCgxIDENHZPwJRYfgtEShBY/JHyRkIBWZFpw0nJ+W0YHedjJw0YFou8/XjAajXzta1/jBz/4AZdcconX7KipqeHvf/87f/nLX0Z8jVIgGC0kJSWxadMmNmzYIObqxjA2m40//elP/OY3vxnROQwFRXxlvJOYmMif//xnVq1aNfwXa22D7HwoLIPiCqith/omaG0Hux1kwE8PRgMY/VzbqDBIjIXEGIgcfwGasiyza9cufve73/HBBx942xyBQCCYUOh0Og+BXGW9d86cOUydOnXMzbHKsozVaqW+vp6GhgZ129TUREdHBw6HA4fDoe4r4rydBXrdjymJDZ1OJzqdThW4cd/KsuwRc9C5NDU1UVpaSlVV1YC/k5hzEYxGzGj6eU+67kvlnixn5ONwvI3ZbObqq6/mhhtuYO3atUO6Dj5eUETP9+3bx969e9m3b1+P4vej9Zm4aNEi1q9fz/r165k6deqwXGMkkGWZuro6iouLqa+vp7m5mbq6Og4ePMju3bvJyMjw+hyBJEmkp6erYiyXXnrpuEpIuWnTJp588slez/n8889ZunTpRV3n6quv5pNPPunx/SuvvJIdO3Zc1DUUampqmDp1ao+JRXtAiK8MExNRfMUJOIE3cYmKnPSySaMSSZIuA54CLgeQZdlr3vfDJb4iEHgDX19fli1bxs0338xNN900YsFczc3NPProozz33HMjcj2BQCAQDC8RERGkpKSoTpMpKSlERERgNpvRaDRUVVWppbS0lL179/LRRx8NWbZSnU7H8uXLue6669iwYcOoFSoQCMYqWVlZvPPOO+zYsYO9e/eO6aydERERzJs3j8WLF3PFFVcwf/78LhPiTqeTvLw8jh496lGGOhtqdxgMBu677z4eeeSRkVdGdzrhbAGcPufmLNQA9Y3nnYU6QJbPOwuddxQyGshra+bZ999kf1UJedipHOAEd2pqKmlpaaSkpLBw4UIWLVqEv7//kH0th8NBRUUFpaWlFBYWcvDgQfbs2cOBAweG7F7WaDTcf//9/OxnP8NsNg9JnQKB4OL45z//yd13361m7IPRu4A3nJjNZoKDgzGZTJjNZiwWC8HBwR4lKChIFXlRMrwpWd46O5XYbDYMBgPBwcGEhISoW6PRqAqMdHR0UFBQQG5uLkVFRZSXl1NaWsqJEyfIyMjoV3CZRqPxyOCkZNEODw8nMDAQnU6nFsVupWg0GhoaGqitraWpqUkVd+mp+Pj4qEFz7oF07vvdOSU5nU6ys7M5dOgQ2dnZqvhAeXk55eXlVFRU0NHRgdFoJCEhgcTERLVER0fT1tZGXV0dBw4cYOfOnZSVlQ35/79A4I7RaGTBggUsWrRILREREd42SzBOsVqtHDx4kL1793LmzBk161t+fv6ozLQzFggPD8disRAUFISvr6/qXNpd6U5gxW63j4gjjVarVQVjlPZbr9d3EVxra2tTMwA2NjZ2EQqTJImysjJycnJGRcb766+/nj//+c/DPk4/c+YMv/nNb3jttdeGNTg8ODiYO++8k/vvv5+4uLhhu85QI8sy7733Hk8++SRZWSOT12YijiGGm8TERNauXcuCBQuYO3cuycnJQmxUMCGRZZni4mKysrLUcvLkSYqKiqisrPRKQomRxGAw4Ofnh91up6WlBafT6W2TeiQIDSvxZzn+TMKXcLQY0FBJBxV0cIg2NmPlNP0XhBkIAWj4M5Eex2Tg6ww+gHsSPlyDiaUYWYgfCfhyMVLi7cgco51dtLCLFnbTQh2j9/9U4ElCQgJr165lzZo1XHnllRiNRm+bpCLLMrt37+bFF19k8+bN1NbWetskwShkxowZLF68mOTkZEJDQ7FarRQXF7Nr1y4OHjw4poS3fHx8+NKXvsRtt93G2rVrRT95HNHR0cHHH3/MSy+9xEcffeT1YKfxwrRp07j//vu588478fPzG56LFJTAf3bBrsOw/xjkl7p8JgaLXgdp02BpuqtcNheCg4bOXi9z9OhRNm3axNtvv+1tU0aU+Rh6HS98SjNNw9Q/NiLxOKFdjj/OwAUCBBOXcLQs87iHJSpxqPfwYYbPT1CPxDcI7HL8ReqH7ZoTBY1GQ3x8PPHx8fj5+aHX6zEYDOrWPRmOIsqvlPb2dux2u5oMBly+J0FBQapPOKD6iHTeajQatFqtKuqvbFtaWjxEVTpvGxoaRvUcUX8Ya3MuZrMZvV5PQ0PDgMSOBWMHHRJXYVTvyRnoCWdw4bjtyBRgJ5M2dtHKLlo4jvfXcYcSrVZLeno6S5cu5ZprrmHp0qWjX8iqohq273f5fFfWQJsNwoMhIgTmzXSV4aKtHV57v6tJ111BWVkZ1qxsdNv24XfoFGF5ZYRabUgMfjw1VM/EyMhIli9fzrJly1i9ejUxMTGDtmks0dTUxP79+9m9eze7du1i3759QxbLNVgMBgOXXXYZy5cvZ8WKFcyZM2dMJ+xbuHAhBw4c6PH9sLAwysrKLvo7Pvzww/z2t7/t8f2QkBCqqqqGJInsHXfcwV//+teBfkyIrwwTE1V8RfnSMvAWsEmW5RPes2r0IEnSEuCnwDLlECAL8RXBUKMEaphMJoKCgggKCiIwMNBjq0wY6HQ6fHx86OjooLq6murqajWgXNmvrq7GarV6+2upBAcHM3PmTIKCgjAajYSHh7No0SKuueYagoK8N3m/bds27rzzTgoKCrxmg0AgEAjGJtOmTWPFihUsX76clStXEhAQ4G2TBIIJQXt7O3v37uWNN97gzTffHKiS7ajDYDCQmJioBhspGTZHui9vNpu57777+N73vkd4ePjIXNTphN1HYMvnLmehIyfBNjgHRBmXE6wsO6nCoU5uf04LmQNcYNFqtcyePZspU6YQGxtLUFBQl0VacGWGN5vNBAQE4Ovri1arRZZl6uvrqaur48yZMxw+fJhjx44Nq2DQwoULef7555kzZ86wXUMgEAyOs1t38s9b7iGpvGFMODWMZZS5MnD1Fcab47C7QItGo8HhcNDU1OT1BUjBxMTPzw+TyYS/v7+6DQwMxGKxqCUoKAiLxUJ4eDhRUVFERkYSExMzpheoBeMDp9NJSUkJp0+fJjMzk8OHD3PkyBGys7O9bZpA0C1JSUk89dRT3HDDDUPimNJfSkpKeOaZZ/jLX/4yZPMTer2eyy67jJtvvpkbb7xx+IKSRgBZltmzZw8vvPAC//73v4d0zD/WHKNHKxaLhbi4OCIjIwkODsZisTB16lRWrlzJjBkzRvTvSSAYizidTurq6qioqOhSsrOz+eyzz2hsbPS2meOeNPQ8QSjrCEDjdlx5gnX2bjyDjR9Rxdv0LTo7EMLRUsZU9XrS+Wv7cHpA9fgjcStB3EEgs7mQSXIon8juzo/baeZvNPAOTbRfhEO9YOgxm80sWrSI1atXs2bNGpKTk8dE2yzLMvn5+Rw5coT9+/ezc+dODh8+PO7mIQV9o9VqWbp0Kddddx3XXnstU6ZM6fHc5uZmPvvsM95//30++ugjqqurR9DS/iFJEpdffjlf/epX2bhx48itEwu8RllZGa+++iovvfQSubm53jZnzOHr68vq1au59957Wb16tRr8PaRYm+HV9+GVd+CoW59rKONblLZXkmDZQrhtHVy/Egz63j83RsjNzeXVV1/l1VdfpbCw0NvmDAthaHmYEG4nEEsfAcwdyGylhR9TNeQiFp3HCwoDHS8IJh6+wDexcBdBpNH7s6cSB+/QyC+ooYShFYsV97BgPDAW5lz8/PxYsWIF6enpTJkyhaSkJJKSkggJCVHnBOrr6zl16hQnTpzgk08+4eOPP/ZIeCUYW6zBxB0EshoTfm5341Dcl+53XQNO3qSR12hgD2MvCYu/vz8LFixg6dKlLF26lEWLFmEymbxtVt/YbPDiW/DSW3CsD1+L8GDXWOOxb0JsZO/nDpSKaoi64sL4Blzjpj883uN4yvOpJXcaZvXvmTaQZ6IkSURHRzN//nxVcGX69OljYj50uLHb7WRkZPDFF1+opby83Ks2WSwWrrrqKpYsWcLChQtJT08fM34N5eXlREVF9XrObbfdNhghky689tpr3Hrrrb2eU1pa2qc9fbFjxw6WLVvW94ldEeIrw8REFl9xX5+VgfeB/5Vl+bC3bPMmkiRdAfwIuFI5xIXfSYivjHMCAgLUhnLy5MlMmjRJbSxdAX09F3BlVaysrKSyshK73U5AQAABAQEEBQURGRlJREQEwcHBquCKj4/PsHScWltbVXEWZfEuIiKCiIgIJEmiurqawsJCDh8+zMGDBzl06BAlJSUXdU29Xk9aWhqpqalccsklJCcnM2vWLCZNmjRqO4etra389a9/5aWXXiIjI8Pb5ghGKb6+vkyePJmQkBB8fHzw9fXtsvX19aWlpYXi4mKKioqoqKgYUhu0Wi0RERFqEEtCQgIzZswgOTkZp9NJQ0MDra2tqi3V1dWcOnWK7OxsrFYrRqMRPz8/ampqyMnJEUFaAsEg8PX15aabbuKBBx5g7ty53jZHIJjwtLe388Ybb/CLX/xCBMsNktDQUB588EHuvffekRNFzC+BP/4T/v4BVLmJ5wzBfIwqwuI2iZ2Ljb/RwN9poHiIF+G9SXJyMj/84Q/5+te/PjxOXQKBYHB0cohUnkuuZ9zQzDuLQBKBQHCxSJKEwWBAo9HQ0tKizmubTCZiYmI8SmxsLElJSUydOpVJkyaJjLeCcUljYyNHjx7l6NGjlJeXq8HGhw4doqioyNvmCSYYAQEBbNiwgVtvvZXLLrvMq+M9q9XKf/7zHz744AM2b948YAHcWbNmsXbtWlasWMHixYsxGAx9f2iM0dTUxObNm3nzzTf5z3/+Q2vrwB07h8cx2s2RVQL5/GsZOGrR8afWMl5vrRzTYwiTycSsWbOYO3cuaWlpJCQkEBcXR2xsLP7+/t42TyAY19jtdnbv3s3mzZv56KOPOHPmjLdNGlcEoOFPRHITZmBg7YEMHKaNGykhjwtC51qtlsWLF7Nw4UL8/f3x8/NTi9PppLCwkLy8PM6cOcOpU6c8hMXcA9HcHQv7G4jmCzxCKA8STCCaLt/n4lsiyeVb37mi8xdq0Uq8EeDgCWsBlfbhE0kXuERVYmNjCQ4ORqvVIkkSZrOZyMhIIiMjiY+PZ+HChUyfPn3crGk0NTVx6NAhMjIyyMjIICsri9LSUiorK5loPsgTgcsvv5w77riDa6+9luDg4AF/3uFwsHfvXlWI5fRp7wX0WiwWli9fzqpVq7j22muJjBzi4CfBmECWZfbt28eHH37IBx98QFZWlrdNGrUEBASwePFiNmzYwPXXXz+oZ0C/sNngVy/DM69Cg7Wr/8RQ+V/3VG+AP3xrIzx6F1gCh+ZaXsbpdPL555/zzjvv8N57742LuV4N8FPCeJBgDEj9Hi8o/+vv0MS3KBsycd6LHS+MN5KSkrj00ku59NJLSU9PR693iYq0tLRQX19PRUUFJ0+eJCsrixMnTpCXlzch+413EsRPCSUSnwHdw+3I/JE6nqAK2xDNa4p7WDCWGf45Fxc91duEk79Qxy+pob6bdsVoNLJ+/XpuvPFGli9fPuDg9ba2Nnbt2sXevXvZt28f+/fvp7a2dnBfQjBifB0zTxBKEjqg5/vnYuipzlxsPEMtL1LPaJLKVRLXz549m5SUFKZNm0ZISAhBQUEEBASM2jjLHnnpLfjxc1Be3X+fb0kCvQ7uuwk2PeDaHwrcxVecbs8hjWZQ46mu36ab7yd7HlfWYO0GX04uTSX3q1fhHxtFUFAQMTExREVF4evr259vM+FRxK+/+OIL9uzZQ1ZWFkVFRRQVFdHR4R3ffx8fH9LS0li4cCGLFy9m1apVREREeMWWvnj55Ze56667ej3n7bff5vrrr7/oa2VkZPQZS/fxxx+zevXqQV+jra2NtLQ0zp49O5iPC/GVYWIii6+oh85vlWOfAb+WZXn7iBrmJSRJuhZ4FFikHDq/dU/i0SHL8hC19AOnJ/EVPz+/QTl0TRSURV6j0Yher8dgMKDX69Hr9YSEhDBlyhSmTJlCcnIyKSkpE9aJvKysjIMHD5KTk0NdXZ2atb2+vp76+nqamprw9fVVf0N35/uUlBSmT58+pjuGGRkZvPLKK7z++usDdiIV9B8/Pz/VATI6OpqwsDDCwsIIDQ0lNDSUkJAQnE4nVqtVzaqo0WiQZZnm5maP7M6SJKkFXI5DJpNJFT1SilarpampCavVSlNTk1pkWUar1eLj44OPjw9arRatVou/v7/62aioqEEFl7S3t1NSUqJ2+IuKiiguLqatrU0VX9LpdD3uK69DQ0OZPHkycXFxQ/ZskmWZyspKmpqaaGtro7W1Vd267zc0NJCbm0tOTg5FRUVYrVaam5tpbW1Vf3en00lLSwtO5/jPliiYuISGhnLPPfdwzz33XLQCp0AgGHocDgfvvvsuzz33HDt37vS2OWOChIQEHnzwQe666y6MRuPIXLS6Dh75nUt0xeEcNmch19y208NBQZE8eJsmnqSKs9iG5FreID09nccee4x169ah1XpNF1YgEHSmHw6RSv4E97cuPPq6ewae/4Ts9rrLAp6LvpwaBALBxMJsNpOYmKiWhIQEj31/f391Lk2WZVpaWpAkaeT6hQLBGKKkpISMjAzOnTvHuXPnyM/Pp76+noaGBhobG2lsbKShoQG73d53ZQJBD0iSxMqVK7n11ltZt27dqHweK4H2SqBg5+zYBoOBtLQ00tPTSU9PZ9WqVcTFxXnJWu/Q1tZGVlYWOTk55OTkkJubS1FREYWFhRQWFnoEssNQOkYr62Tn9zu/3cPYxOlvoPDqRRy9ej5VHe3U1dV1WRt239bV1eFw9O6uqtFoCA0NVdf9dDodTqdTfYYOhpCQEGbNmsW8efOYO3cuSUlJxMfHe2TEFAgE3iUnJ4fNmzezefNmdu7cic02dudevc0i/HidaOLx7eKs1h+Uz9Th4P4wO6Z1K7n66qtZvnw5gYH9C6B1OBzk5+eTlZXFyZMnydt3kOffP+nhNNffQLQl+PEKUSSh82ifuvtO/f2+rmf/Bf8QSZa7X1voNAEnm/2pf+hWji+dyblz58jLy/PYlpWV9fl9fHx8MJvN2O12bDYb7e3tXc4xGAwe4jZK0ev1OBwO2traaGtro729nba2NhoaGoY1i7MkSaoPir+/P2azWS0BAQEer00mk4dPnVL0ej1+fn4YDAa0Wi0dHR3Y7XY0Gg2BgYGYzWYsFgtms3nYvsdYo6Ojg6qqKsrLyykrK6OqqgpJklR/n7KyMoqLi6moqFB9dGpra8nLy1OTqyn4+PjgdDqFP44X0Gg0zJ8/n5UrV3LLLbcwbdq0Ia2/rq6Ow4cPc+jQIbKzs1X/soaGBo+/10mTJqnJwqqrqykvL6ehoUH133Lf+vj4qP1xf39/VQgpKCiI+Ph44uPjmTp1KmlpaWKNUdCFnJwc3nrrLd58802OHDnibXO8hslkYu7cucybN4/09HTmzZtHUlLS8AuHfXEE7ngCcgq79GO6oLw/0DFxP/tNmE3w8wfg3psGVv8oR5ZlMjMzOXToELm5uR6loaHB2+b1i8n48k9imIdhwOMF9/PzsXMdxWTRtT87UNyFK5TrDKVwhdlsxmAwdEmS676v9E9tNtuI9pn8/f1ZsGABixcvVsUuw8LCBlRHS0sLp06dIicnh5KSEkpKSqiqqsLhcKh9QPf97l63tbWpfvEdHR1oNBokSaK5uZmamhqPQFVFgLO7scxIEISGl4niOgL6HCO6I0nKnKcEEjRPT2TrfdeRWVmqBucOdlw13PewQDBcDMecS3ef660+pc5GnDxOFS/5WklNTSU9PZ0rr7ySL3/5y5hMpgFetWdkWaakpITjx4+TlZVFXV0dJpOJwMBAAgMDCQoKIjAwEJPJhE6nw9fXF4fDQUtLi1qam5s9Xre0tKDRaHqM49HpXGGjVVVVVFZWUlFRoW7r6+ux2WxqaW9v77KVZdmjLl9f3y5bZWymjN0UsYaQkBB17kbZ6nQ6ampqqK6uVq/vfr329naam5vVtWwlBlDZ72uN52KYgi8vE8VlGPt9T/Z2Tnfn93Re5+udw84DlPMfhm/OrTfCw8NZsWIFK1eu5PLLLycxMXF8rGfVNcCdT8L72/ses3TGfQwzfya8+weIGli/qVsU8RX3a7jbJMZT4wKHw0F5eTmFhYUUFBRw+vRpMjMzOXjwICUlJSNuz4IFC1i7di2rV69m3rx5o2aObd26dbz//vs9vq+0IUPRNre1tWEymXptV773ve/xzDPPDPoaTz75JJs2bRrsx4X4yjAxEcVXHgZ+DBjpXYTlKPBb4N+yLI8mEbiLRpIkHXAL8H3gEuXw+W3n3yQDuEuW5YyRs9CTnsRXUlJS+L//+z/+9a9/8eabb06ozO9arZapU6cSFeVSh7NYLCQkJKiCKlOmTBEOWGON1jbIzofCMiiugNp6qG+C1naw211/mX56MBrA6OfaRoVBYiwkxkDkxXXE29raeO+999TFpNLS0jHpJGQwGAgODiY4OBiDwdDtANvHxweTyaQWf39//P39MRgM+Pj4oNFosNlstLS00Nraqm47OjqIiopi+vTpJCcnEx4ertYREBCAyWRClmV1gA8QFRVFXFwcFotF/D2OM2RZxmazUVBQwPHjxzlx4gSFhYWUlpZSUlKC1Wqlo6NDndxXhG2USaLo6GiMRqPqWKKUhoYGCgoKyMvLE4JIoxyz2UxqairJyckkJCQQHx9PeHg4FosFk8mE0+nEbrdTVVVFQUEB2dnZ7Nmzh0OHDo3q4JSoqCh+9KMfceuttw5YdVsgEHiH06dP88ILL/Duu++Sn5/vbXNGFTqdjvXr13PXXXexbNmykc0s+O//wL1PQV1j75PXg53Ydv+8EkiMrDpWuA/wHcCz1PI4lXhHC3twXHXVVTz22GOsWLFC9KUFgtHGCDtEyuoh+Xx9snpccWp4HjF+EghGE5IkMWPGDObOncusWbMICQlBp9PhcDhobGyktraW3NxcTp06xalTp2hsbOxSh6+vL7GxsURERBAeHt5jiYmJEXNvAsEII8sy7e3tqiBLdXU1hYWF5OfnU1JSos6RFxcXk5ub2y/HZkmSJmTGy4lCeHg4qampLFy4kAULFrBkyZIBO+Z7GyW4z9fXF19fX0wmk2h7ekGWZaqrqykoKKCgoID27ftY/s/thNa3ujmFyr04oUoXAgCkC4HnF97v9qJD6gSoJEhQxFjc5/X9/PzU9YCe5pvy8/PZuXMnp0+fVhMWKEkCmpqakCSJxMREFi1axMKFC0lNTWXKlCkEBQX1apdAIBhdWK1WPv/8c7Zt28a2bdvIzMz0tkljhjWYeJMY9OeFtDo7q/UVXCCff6UGpflokd56Fr687OIMq6hGPp89VJmLkgF//ble+7V3EsRzROA7wO/jfpaE0pR1avMGM6+mfG71pfD6r8HiKUbT2tqqBiY6HA61KP4NERERBAcHe7RzsizT0dFBe3s7Wq0WvV4/qHWXxsZG1a+ipKSE0tJSampquvhOKMKpYWFhhIeHExwcrCYdCwgIIC4ujri4OMLCwtRgoYmaeGws09TURGNjI0ajEZPJpCZAk2VZDbbtfI8qwcatra2UlZVRUFCgCgAWFhaqPjvNzc00NjaOOf83jUbjIQZkMBhwOBw0NTXR0NBw0UHWOp2OhIQEj5KamsrSpUv7LVw1Lqiohu37Xb6alTXQZoPwYIgIgXkzXWW4aGuH17oJDrl74/BdU9Arubm5qhDL4cOHvW3OkKLX61V/V6XtjI2NVUtkZOTI+lGAK3P8dzaBvaPrWL6nsX1neppHHIZ+03hDlmV1jaa7Ul5ePipE0NIx8DFxWND2u3/dUyAMgBUnKynkAG30F41G0+W3GKhwheI3rNFo0Gg0BAUFER0dTXR0NFFRUWqJj49n8uTJWCyWftvnPv9WWFhIfX29KqDeXWlqalKFTDo6OmhoaOgy56XX64mJiWHq1KlqolplO3ny5FHf35ZlGavVqiZgUJ5vijCke0yA+7ZznEF7eztVVVWqwHJ1dbXHe4rApCI04I7RaESn0zHJoeX95mDinN3dw0qA9PlXyjhQls8f6vRcBIgOh//+DZLisdvtZGVlcebMGc6ePcu5c+dobm5WbdHpdFgsFiwWi/o7KMXU3MY3f/wPZLdZWBn41p2XUlhYqIryu4vYCATe5uLnXLpbV5B6e9PF+XxR7kmmXCsXEkgSzpWL0b7x23HfdxgIsiyPmrUzJSlPTU0N+fn56vNNaRPdi9VqVZ+htbW1D1e0iAAAIABJREFUFBYW9lr3Kvx5gxg10UDne7C/9+VQ4N7/eYF6HqCc4Y5SCQ8PZ968eaxYsYIVK1Ywc+bMUfP/PmTkFcPyO6CgtPsxC3Qde3R3vJt2/KKoqIbIy7seV8Z0Yjw1rpFlmaNHj/LBBx/w/vvvk5Ex8qH+FouFZcuWsWrVKlauXEliYuKI2wCuGOiQkBBaWlp6PGf16tV8/PHHQ3bNlJQUTp061eP7oaGhlJSUqEJmA+HgwYMsWbKkzz64yWTCarV295YQXxkmJpz4CoAkSYnA88Aquu/nKMhAKfAn4CVZlqtGxsLhQZKkeOBbwF1ACF2/q3oq0IpLpOZpWZa9OovWm/hKVlYW4GpAjh07xpYtW9i6dSu7d+8ecwtn4GqE3FUolRIREUFMTIw6oTV9+nT0er23zRVcDAUl8J9dsOsw7D8G+aU9d2D7g14HadNgabqrXDYXggfvnOd0OqmurladHUpKSlSHwMbGRvLy8jh+/Hi/suGAyykyNjaWxMREYmJiCAoKUhv9yspKqqurcTgcXZS6wSVwEBwcjMVi6Xar7FssFiEUIBhXNDc3U1tbS21tLRUVFWrWl5qaGnURpK6ujry8PM6cOUN9fb23TR4XGI1GtFotWq2WsLAwkpKS1MySUVFRREdHM3nyZOLi4gY1UdTa2sqhQ4f44osv2L17N0eOHOn3s3Q4CQoK4pFHHuG73/3uqMw0KxAI+kdpaSn79+9n37597Nu3j4MHD9La2upts0aUWbNmsWLFCq688kouv/xy72QefPL38L8v9DyZ3lv70d8xQQ91yCgZb7qKsBynnS9TRNEolmCJiopiw4YN3HLLLcybN8/b5ggEgu4YJQ6R8vl6ZFlGRuYTmrmZEurxvjOgQDBRMJlMREdHExwcrAbITJkyhaVLl3LFFVcQHBzc77qsVitlZWVUVlai1WqJi4sjMjJy1GTLEAgEg8fhcFBSUkJ1dbUqVg10ETY3GAyUlZWRmZnJ8ePHycvLU0t+fn6XNT+tVjus2coEgyc5OZn58+ezYMEC5syZQ0pKyoDaBME4pJcxhNzpda/CKt0hnAAFAsEoo7Kykh07drB9+3ZOnjyp+lqMRf+l4SQVPXtIwIimS9Ciu/ta16yw0gVRLhnPoDRZBj+Dy4l9furgjVOyh7rXK0nY2zI4ffo0R44cISMjg+PHj3Ps2DGqq6u5kyBeILKT9V1xb/HU4DqtBsJDkExGV0Imw/nicECHA9pt0NQMjc1Q2+A63qXiHtpDpZ2dkQSfvnjRSZ0EgrGILMs0NjZSXl5ORUWFWtxf19bWqhnAOzo6sFgshISE9Fj8/Px6zfTd1taG1WpVBUsVkSOn00lAQAAWi0UNvJ40aRJxcXGYzWZVaKW3oGan00lZWRl5eXkUFBRQV1dHQ0ODR2lqasLPz4/IyEgiIiI8tkpG8REXWhgt2Gzw4luuMcqxPhI9hgfD9SvhsW9CbOTQ2tG5rVFwnBja6wgGRWFhIR9++CEffvghO3bsGHX9OH9/f4KDg/Hx8aG5uZmmpiZ0Oh0RERGqn3lKSgozZ85kxowZTJkyZXTNs7/0Ftz9Y9f+QP0mtFrX36boNw0rsizT2traJSDZZrNhMBjw8/PD6XRitVo93m9oaFAFuvPz8ykrK6OmpmZQNsThw2ESCcF173YdM1ygO8GV7o5LQC0OFpFP7vmQZEUYNyUlhenTp6slNjaW4OBg/Pz8VNGOxsZGqqqqqD+Tw+U3PnleuOJCVP6Lz3+XoKAgtYSEhBAVFYW/v/+gfoORQpZl7Ha76i8rGBjK79fe3u4p+FJbD/M2Qn6J68RO48t+Vu75OXAl7N3zOkSEDt7oHsa87v0Qh8Ohiv51Loooot1uVxOO1tfXU1lZSWlpKWVlZR7Cpf7+/mp/1Gg0qv1inU6HwWBAp9MhSVK311JKW1ubeh2l1NXVYbPZVCFOQBXyBJcAjUajoaioiLNnz044/8nxxMDnXC4ckTUS7WZ/JLMJX7MJrb8RSfQdBP2grq6OY8eOqfO6drtdLXHHzvHlV7ehPS/Q5t4n8LxH5R7XvOxAmwTtkkwbMhoZfGQZHRIBaOipRe75b+CCMNFBf3ggQYvTz0BISAjBwcHqVvHtcRfl0mg0qlCN0q9Tnr/gWtM3m82YzWYSEhJISUkhJCRkID/n2GM0t+NP/w1+8OuuxzvP84jx1ISgsLCQDz74gC1btvD555/T3Nw84jYkJSWxatUqVq9ezbJlyzCZTCNy3S1btrB27dpez3nuuee47777huya3/nOd/jjH//Y6znvvfce11133YDqbWxsZO7cueTm5vZ6np+fH7GxsZw9e7a7t4X4yjAxIcVXFCRJuhH4HRBF3yIsduA94BXgM3mM/HCSJBmBdcA3gBW4vldPoiucf+8z4NuyLOeNiJF90B/xlc60tLRw/PhxNZtBTk4OBw8e5OjRo8MyGR4REYG/vz86nQ4/P78uAhGd9yVJorW1lfb2drUTGhcXJwRVxjvWZnj1fXjlHTjqpnI9lI8TpTMrSbBsIdy2zrUQaBiee6uurk4VTlEcp5VFY41Goy4YBwYGqtlJBALB0ONwODh06BBbtmxh7969lJeX097ermb6GU0q5JIk4e/vj5+fn1psNpuqJDzci9aSJDFt2jRmz55NTEwM4eHhREdHc8kll5CcnOyVIP3Gxkays7PJyMhgz5497Nmzh+zsPhw9hojo6GgefPBB7r77bu8IFAgEgmGlo6OD06dPU15eTk1NDZWVlWRlZZGZmcmxY8d6VfwdK2i1WubOncv69evZsGEDSUlJ3jXoJ8/Bz5537Q/EWUjnC1FhLoXzPie3rVBZCxU1rsxo7py/pgznF0CU/J8uSuhgJYWcYfQ4iYWHh/PVr36VG264gcsuu2ziOnwKBGOBUeoQ6QrYhMpQMzeHtbItS2SZFox+fHx8SExMVAU/J0+eTEREBGFhYZjNZnx9fdFqtfj4+HgUrVaLRqPBarVSX1+vOpr1d9va2oqvry++vr7o9fou4sadBY8V59CoqCj0er0aSBIQECDGkAKBYMRQgstKS0vx9fUlOjqa0NBQZFmmrq5OdbK12+00NjZSXFxMYWEhRUVFFBYWUlBQQF5eXk8ZYASDxMfHh0suuYTU1FTS0tKYP38+6enpBAUNPjGAYBwySscQwglQIBCMJErgv7s/Redit9upqamhoKCA/Px86uvr1bXe2tpaKisrVZEA9yCmscLkyZNZsGABaWlpzExJYdVjL6A7nX8h0UV3zugWM6QlQ9j5zO8llXDkpOv53/lc99cJMZDxNgQGDM7YfgSiKciyjHXLfzGt+y44nG4RnrJHFnGQkH19YN4MNOkzYG4KzJzqWg+IDO3qHN8TsgxVtS7H/7MFLr+jA8dhX6ZL5Mz9t3D/DEDqNNj3hkugRiAQCCYiL70FP34OyqsHlgxDr4P7boJND7j2hwL3tsa9LRPiK6OOtrY29u/fz86dO9m7dy9nzpwhPz+fwYYP+Pj4EBAQoAY4Op1Oj2SF/v7+mM1mAgMDSUpKYs6cOap/mzJ3P5gMyqOGnQdhxZ2u8Xtv/UCdL8yfCXOmi37TGMdms1FRUUFZWRnl5eVUVVXhdDrRaDQ4HA5qamqoqqqioaFBXbcyGAx8580DxOZXuN0bdLlPZEnCajFR7+OKxwhsbifcAWoP/HwEsku3UVJft0yNo+D/fokxKIiIiIiBJ/wcwHhBMIH5ygPw7tbex67geqYFnxeGrqnv+Tz3PsNVC2DrKwMXpVaYgPew0+mksrJSXTNXRBLdBQwbGxupra2lqqqKyspKqqqqxuwczHjicoxsZRJaOgtxSR7PeaePFuv0RJg9Hb9L56KbO0P0HQTDw7EzsPhr0NrWe38WICYC5kxHnjMdZiYhxURATLjr3uwlrs5ms1FbUkbD2XO0F5Zgqm7EVFaD/9ki/E7koCmucJ3YXTug2HLFfNj6cv/vf4Eno7Ud33kQVtzhWiPtjEYjxlMTHJvNxv79+9m6dStbt25l//79I57MSK/Xc80117Bx40a+9KUvERAwyDWafnD77bfzt7/9rddz8vPziY+PH7Jr7t+/n0WLFvV6zrp163j33XcHVO8tt9zCP/7xjz7P+81vfsNf//pXTp482d3bQnxlmJjQ4isAkiQFAD8H7gGPfrnHaee3ynuVwLvAp8A2WZabhtvOgSBJUhKw5ny5HFBUF3oS+FXeqwZ+IMvy34fdyAEwGPGVnmhvb+fkyZOcPHmSrKwszp49q2YzqK2txWAwqKp8fZXAwEDi4+NJTEwc+OSbYGJhs8GvXoZnXoUGa9cFvMFOgHWmp3oD/OFbG+HRu0T2NoFgAtLR0UFhYSHnzp2jrKyMiooKiouLOX36NFlZWRQXF/f6ea1WS1hYGCaTCb1eryqFK/vdvTYajSQkJJCUlER8fDxmsxmj0YjRaESv119wpOsGm82mKuf6+Pio6uaKQnxbW1ufW4CgoCAsFosq7tLe3o6/v7/XBFYGSnV1Nfv27WPPnj1kZmaSlZVFQUHBkNV/6aWX8s1vfpMbb7xRiL8JBBMUh8NBbm6uKsSijJPy8vJwOp1qZrX6+vouzkOhoaEEBgbi5+enZrbx8/Ojvb1dDXAbauEvnU5HfHw8CQkJJCQkkJyczMKFC5k7dy5Go3FIrzVo3voENn6/98AecE1kX7XAc3I71DK4a1bWeE5uf7bH5TQIILmcSmTZqf4fSkAhdtLJpxbvZYlPTU1l1apVrFmzhiuuuEJk0BEIxgJjyCGy8N+/4tNdn3P69GnOnTvHuXPnaGxsVMcrBoOh231ADWyqqqqitLSU8vLyUSVmKRgeIiIi1H5GfHw8sixTUlKiiplqNBo145uyb7FYiI2NJSIigsbGRioqKqipqVEdpd2LVqslLi5OFVqZOnUqkyZN6jWLrUAgEAiGFlmWqaysJCcnh9LSUtWB9ty5c2RnZ3PmzBnq6+tH1CadTkdsbCxGo1FN7hAZGUl0dDSBgYEeWSQdDgctLS2cPn2a48ePU1tbO2J2BgYGkpqaypw5c5g1axaTJ08mISGB2NhYIbov6J0xNIYQToACgWCsIMsyTU1NVFRUqIIsVVVV2Gw2HA4HTU1NnDp1iqysLE6fPt2vpBcRERFMmjSJSZMmERYWRkhICIGBgeoarcFgICAgAJPJ5LGVZZnW1lZaWlrU0tzcrM6tdHR0EBUVxfz584mKirpwwZffhm/+qOd59OtXwMN3wPzUrudYm+HNT+Cnf4LCsq5B60o7s2E1/Ot3g/uRBxKI1twCqetc7U937YxeB19ZCdctg2uWgmmYst5bm+GDHfCXf8Ouw11tV7Y3fwle++Xw2CAQCASjlboGuPNJeH+7p29lf/w13duY+TPh3T+4kmlcLBMw6Hk80dbWRn5+Po2Njd36rPn6+qri5QEBAR6lL5+5cY3oNwn6y9ufwoYHe55LmjcTHroNVi7p6g+fUwB//wCeeQ2sLT2PF+69Ef7wxODsE89wQV9s3+eaE+3pHo6JgPtvhtWXugRHlfdsNth5CP7xIbz+0YV7t7t7+KffgSe+PTj7xD3cb2RZxmq1UllZqQqyKPtlZWWcOHGCo0ePjvja0kihJIZRtlqtFl9f3y7zQ53njPz8/FS/itbWVlXoxn2r1Wo9Yg46F4PBQEyQhbt+vxlTdYN6v6o9CNF3EHiDjg6YtwGOZXd/HwAsmQPXXQXXLYdpCcNjx5k8V3/p5Xcgr7jne/L7t8JvHh4eG8Yzo7Uddx9PdacDYNCLZ6LAg8bGRnbu3MnWrVvZtm3bgOPvLxaDwcDatWvZuHEja9euxd9/6O7Jffv2sWTJkl6FcdPS0sjMHNoEjrIsk5KSwunTp3s8x8fHh9LSUsLC+jd/+Oqrr3Lbbbf1ed7s2bM5ePAgs2bNEuIrI8yEF19RkCQpDfgjcCndi5OAW3/d7RwHcACXEMte4JgsyxXDZWcXgyTJB5gJzAHmASuBKe6nuO33JLoiA38DHpZleeS89frJUIqvCAQjzhdH4I4nIKew7wW8zkqH/cW9Q99dfUqdZhP8/AG496aB1S8QCMY1ra2tVFdXU11dTW1tLTqdDpPJhMlkIiQkhKCgIDRC+XZUYLVaVYfJrKwsVUyuL1GWgIAAwsLCiI2N5bLLLuOWW27hkksuGSGrBQLBWKejo4OKigrq6uoICAggKiqqz2xKdrudEydOcOjQIfbt28fOnTvJzc3t1/WMRiNpaWnMnj2b2bNnM3PmTBITE4mMjBzd7VFNPUz/ElTXeU4ig2s/IgTu/Iprcnt+6vDasvcoPP8veGMLOJ3nTZDPj/5lZBm+8IfLm08Nrx3nMRgMpKamsmTJEhYvXszSpUuJjo4ekWsLBIIhYgI7RCqBRI2NjV2yVOv1evz8/NBoNJSWllJcXExlZaUqJllfX09dXR21tbVqqampwWq19lvQxcfHZ0DiLxqNhqioKKKiooiMjCQ5OZl58+Yxe/ZsjEajmkXR6XTidDo9AraUoC33/aqqKtra2rDZbKqoZW/XVsaPSv3dlf4EfvWF2WxmxowZREdHExkZqX5fs9lMcXExeXl55OXlce7cOfLz82lpaUGv12MymbBYLMyYMYMrrriCK664gpSUFAwGEWgrEAgEEx1ZlqmqqiI7O5ucnBxqamrUjIdOpxMfH58ei+Jw2t+i1+uJjY0d9DhXlmXKyso4fvw4x48fJycnR23Da2pq1DbXPYOyJEmEh4cTHR1NeHg4Wq22yzl6vZ7Jkyczbdo0Jk+eTGhoKEFBQUK4WTA4JvAYQiAQCEYLHR0d5ObmcvLkScrKytBoNPj6+qLT6YiMjCQ+Pp64uLiRTzaVeh1k5Xi2D7IMgQHwz1/DNZf3XUe7zSXg8o8Pew6ofOtZWL9i4PYNJBDtt6/A//yu+zWBO66H//0ehIcM3IaL4eNd8K2fQFG5p13KduercFn6yNokEAgE3iKvGJbfAQWlXf0re/LT7O64e4KN//4Nki4ya64IehZMRES/SdBflnzNJabb+Tns6wO//yF864a+66iohpsehv8e6P6e02hgx19h6byB2yee4YK+uPpu+PSLrs8VgEfudAVc9+F3x/FsuPEHcOpc9/ewzhcOvekSsR4o4h4eUmRZpqioiOzsbM6ePUtubi5NTU3dJhZ1uvnwKfMzSuJTnU6Hr68vWq0WSZJwOBw0NDRQX1+P1Wr1uF53++5C/h0dHTgcDux2O3q9nqCgIAIDA3vcdncsICDA+36aou8gGG28+Kbr/7+7MeTyRfDbh2HWCMZmOJ3wwr/hkaddonOdbdJqIePtwbUVE5nR2o67PxPPtyceVOwSz0RBr5SWlrJ9+3a2bt3K1q1bKSkpGbFrGwwGVq1axbp167j22msJDQ0ddF02m425c+f2qSfw+OOPs2nTpkFfpyd+9atf8eijj/Z6zrPPPssDDzzQZ13btm1jzZo1ffrSarVa9u7dy/z585kxY4YQXxlhhPhKJyRJ+hrwCyCOnkVYoHdRkyrg2PmSA5S6lXJZlrtp6Xq1SQ/EnrdJ2U7GJbgyA3BvuTsrMPT1HU4C98iyvGsgNo0kQnxFMGZ56S34ziZXRrXuFvAGkkGhM4MRaFE+t/pSeP3XXVW/BQKBQDAmsVqtVFRUqMrgHR0dhISEEBYWRmhoqAgkFAgEo4Li4mIOHDhAQUEBRUVFlJaWIkkSUVFRxMTEMGnSJNLS0khKSkKr1Xrb3IHz5O/h53/p3gHkyXvgf+7oe9J9qMk6C7c86sr23M3kduPfNvHfQA1HjhyhsLCQ4uJiSktLsdvt5833XKRtbm6moaGBtrY2j8toNBosFgvBwcFMmTKF9PR00tPTmTp1KtHR0VgslombwUsgGC8Ip4YhRxEhaW9vV4skSR7ZfHQ6HZIk0d7ergq3KNv6+no1kFqr1RIeHk5SUhLx8fH4+voOm92yLNPR0aGKsdhsNux2u5rRqD8OOLIs09bWRnNzs0dmbPet+74sy2ompfDwcObMmcOUKVMG5OzjcDjGZv9CIBAIBAKBYKwixhACgUAg6I6TOTDzuq7z6AY9fP6aK4v9QHjsafjVy923N5GhcHqzK0nRQOhvIJrTCXHLoLza87totfDyU/CN6wZ23aGkph7WfhsOHPf8HgBL02Hna96zTSAQCEaK2nqYt9ElCAndZ63ui85tC0BiLOx5HSIGHygigp4FEw7RbxL0l/wSmLyq63hBq4X3/gBrr+h/XQ4H3PZDeP2j7scLU+Ph2HsugeCBIJ7hgt6oqIboKz2PKffI8z+Cuzf2v66mZlh/P2zf330A+LyZsP9fA48nEfewYCwg+g6C0ci0ayC36MJr5fn5k/tc/sHeIqfAJRiS5yakoNi25nL48E/es22sMVrb8c7PxM7iKxqN99px8Uwck8iyzJkzZ9i2bRtffPEF+/btIy8vb0SurdFoWLp0KevWrWP16tVccskl/Y4vkGWZW265hddff73Pcw8fPszcuXMv1twulJSUMGnSJFVUrztSU1PJyMjo1Vf10KFDXHXVVR4iez3x1FNP8cQTTwAI8RUvIMRXukGSJAPwP8BDgAlPAROp02vlWGd6+mGdQB3Qdr60uu1LgF+nYgQCejK1n9ftbLMEWIGngGdkWe5/+lQvIMRXBGOSl96Cu3/s2u+tI9DdM1irhfBgMBnBT+9yNDHoXZPBHQ5XFp+mZmhshtoG1/HO9HRNpdM+Iwk+fREiwwb+3QQCgUAgEAgEAsEF7HaIWAoNbpNgsgx+Bvjwj7Bskfdsa7fBxgfhw/92ndyelQwZ7wy4SiVDhsPhQJZljEajEFcRCMYzwqlBIBAIBAKBQCAQDAQxhhAIBAJBTzz7Gnz/V12DvP7fY/CdmwdX5zcehX982L2w1v03w7OPDay+/gaifX4Irry163mbvguP3T247zKUNFph4Y2QnX/hmGJj9haYMslrpgkEgmFAO0DxqtGCJEHH8eGp+ysPwLtbu/b7O7/WaCD4fAK7mvqez3MPkrpqAWx9ZeDBzgoi6HnombzK2xYMDkmC3E+8bcXwI/pNgv7y/L/gvqe63itPfAt+ev/A63M4YM234bM93Y8XBhMsLZ7hgt746ztw55Nd74+7N8DzPx54fS2tcPk3IOOUZ33K9g+Pw703DaxOcQ8PDNHH8A6i7yAYbRw6AQtu6HpPDmbucTgoLodFN0FZ1YVjyrpc4TaIEjGD/WK0tuOdn4mK6IPy2tvtuHgmjgsqKys5cOAA+/fvZ8+ePezevRubzTbs1w0LC2PJkiUkJSWRmJhIUlISaWlpREZGqnEJ1dXV7Nixgz/84Q/s2rWrzzqvuuoqtm/ffvHGLbu928NHM49SW1vb60fj4uKYmjS12/camxrJzMxUE+X2RlBQEHNmz1F/i/3799Pc0tzlPANS8xKMB86/lJFPLu+zckG/EOIrvSBJUjjwE+BOwJeuAiZ0OkY37/cXpZ7Bfq6na3e22Q68DPxMluXyAV7LKwjxFcGYY+dBWHGna+K2u6wJynNX5wvzZ8Kc6TA3BWZOhehwVwae/mbvlWWoqnUpfp8tcGW1P3Ac9mWC/byuUueFPuX6qdNg3xuuoFCBQCAQCAQCgUAwOD7e5XLY6Nz3f/GncMdXvGsbgM0GV9wK+491tfHIWzDrEu/aJxAIRjfCqUEgEAgEAoFA0BPC8VjQHWIMIRAIBIKeuPlheGOLZxsxKQpyPgYfn8HV2doG8zfCqXOex2UZfLRw9B1ISep/ff0NRHv0afj1y57nTY6FM1tcgQ2jgYPHXYEXCsp3+cWD8D93es+uwSD6nQJB72jGaGLT4QoQ2r7P5bvZk99mTIQrSG71pZCWfOE9mw12HnKJer3+0QUfy84CLJIEP/0OPPHtwdkngp6HHs0MT4GcscJE+X8X/SZBf7n9h/Dq+573SqgF8j8Do9/g6qythzlfgeIKz+OyDEYDnPoI4qL6X594hgt649s/gRfe9Lw/TEbXPRwcNLg680sg/atQ3+R5XJbBYoaz/xlY3eIeHhiij+EdRN9BMNr4yXPws+c978nIUNecz2iJxftkN1zzra7P92cfhfu/7l3bxgqjtR3v/EwcbeIrIJ6J45Cmpia2bt3Kli1b+PTTTyksLBzR64eGhqLX62loaMBqtfb9gfPodDoyMzO55JIhiItQ+oGdcMoysuzs8+OSpEHj9nkZkPv5WdUEjdZDJMLhdNKTlIUWyYlLO0JGPjlKOkxjn0GuXE4MZFmuBO6VJOnXwI+Bm3H9ZjLdC7GoH6WnO7krUqetex39pa/PSkATLtGVp2VZLh5A3QKBYCA0t8Dtj3sKr8CFiRe9Dr6yEq5bBtcsBZP/xV1PkiA8xFUWpMHN17qOW5vhgx3wl3/DrsNdB1GyDCfOwrd+Aq/98uJsEAgEAoFAIBAIJjKffHFhX1lsnTl1dAivAOh08OovYOaXwdFp0u797UJ8RSAQ9M6Wz7seS4wZPQtjZhO89gvPBTyFtz8bPXYKBAKBQCAQjEfyS8au47Fg+BBjCIFAIBD0xFk3B13Fd2XD6sELr4ArwOG1X8Lim6DD4flehwO+90v49KXB198Tmacv7Cvf5RvXjZ4gIID5qS6/pC2fe/Z/Dhz3nk2DRfQ7BYK+GWv323D+Pf/6Fc/ruD8/HrnTJZyi03X9nE4HK5e4ykO3w40/cIl7uX9e2d/0Z1i33LUmLBg9jKW/g7HWpl0Mot8k6C+n8y7sK/fKDVcPXngFXMGsr2yCVd/s+l5rOzz0G/i/pwdfv0DgTlbOhX3lHt549eADtgESYuCPT8LXHvYUggNXIPcTv4c//eji7Bb0jehjjCyi7yAYbWScurCv3JO3fHn0CK8ArL4MlqZ7xg4C7M0U4iv9ZbS2452fieCqYzTNlYpn4rgjICCA9evXs379emRZ5uzZs3z66ac44HJpAAAgAElEQVR89tlnbN++fUCCKIOhurp6UJ974oknhkZ4xZ1Of2f97hXKTpyy5BHODXK/Py9JGqTBXlswZGi8bcBYQJblfFmWbwemAn8EmnHdr8o9K7sV3N7rrnSpvofiTm/19WVDFnA/ECPL8veF8IpAMMw8/6/uF/1lGe64Hgq2wj9+DRuuvnjhld4w+cPXvgQ7X4Mtf4bYCM/FRGX7+kew+/Dw2SEQCAQCgUAgEIx3jmd7vpYk+PqXvGNLT0xLgK+s6jrZfnAMZ7kQCAQjw1hyauj8jBMLeAKBQCAQCAQjg+LgNRaKYPgRYwiBQCAQ9ERxedf2+KoFF1/v3BR4+I4Lz3V3J/Zt++Cj/178NTpzJr/rd1maPvTXuVg2rL6wr/gJdV7TGEt4uy8p+p2CsYIsj+4ynFRUw2d7LvwduvtK/vnH8Ivvdy+80pnUabDvX7BsYVcBFwCbHe54YvQEOgkEoxnRbxL0l6JuxgvLFl18vcsXwze/2nW8IMvw1qewJ+PiryEQQPf38IrFF1/vjWtg/QrPsa5yD7/0FpzM6f3zAsFYQ/QdBKONk7nDM6c51HxtredrWfZcsxP0zmhtx7t7Jo5GxDNx3CJJEtOmTeM73/kO77//PrW1tXz++ec8/vjjzJs3z9vmqcyYMYNHHnlk6CvuNO8vnd/2JAjhWWScsqu4/vXnM4CkUa/jXnr9jGBYEOIrA0CW5QJZlu8HYoBvAlsBJ/QogtLdvSsNonQxpYfrKOdXAX8CFsmynCbL8h9lWR5eSSmBQABOJzzzWtcOsUYDf/tfeOkpCA8ZebuuXgpH3oYFqZ4ddnC9fvz/jbxNAoFAIBAIBALBeOFsQdfJ7SVzvGNLb6xbfmFfGauczPWePQKBYGwgnBoEAoFAIBAIBP+fvfsOk6LI/zj+7l1yDgIKAqIouIgEQQmHCNyhGDkVVDAroGLkxHjmdIY7I5gwnlkURQUTgsgpoogIS1RBBCRJzmH790fRvwndM5t6pnt2Pq/nmYeZnt2u77A9VdXVVd8WKQ6dQ4iISCIbPaauNWnoz77/eQkcuL95Hj9n57qHYM8ef8pxrNvo3tbUp8/ip/Z57m1/rk9/HCKSWl3aQW5OJLlJUZIAldXkROMmu2+YZ1kwuB8M7l+8fVWvCmNHROrS6EQuANPzzY36JHiNGngn9wkqCZDEUr9JimrDJvc2p49fWvf/A+rXMc/j59APu9+fMkTWbnBvO+QAf/b9+M2mbxJvTwH84wF/yhA39TGCob6DhI1X/d68SfrjKEzH1pHnTn9n9bpgYslEYW3HverEMFKdmDXKly9Pt27duPvuu/nuu+/4/fffefjhh+nc2YdkRSVkWRajRo2iQlESLhdV+XIJ+4EWVpESQJSE5SR4kVAoF3QAmci27U3Ac8BzlmXtA5wOnAF0AcpH/yipSx4U/y36BfgYeB/4wrbtghSVKyKJTPkB/lgdOVFxLrbdebm5o1uQ6taCT0fBUWfCgsVmm3NBcMoP8MsSOCiEJ4AiIiKSmXIPCzqCkrEs2K073EoxrfeYANKwfvrjKEzrg93b1nlcMJBgHNg76AhKxrLgl0+CjkJSSZMaRERERCSRRg1g2UrzPH7RQiKaKFL26RxCREQS2b7Tva1OTX/2XakiPHoTnHSZe3H8/MVmcfzlA/0pC2DLVve2ij5O7PWL1/+vVxKcsFO/UyS5Ka+Y7/a4yaa++2p6JNFJou9JWV0Y+u1P7m1VK8M9V5Vsf1Uqw+hH4IjTzTXh+ARftzwGZ/aBOrVKHrOU3u9fQP5C+GASPDsaFi3N3u9AGKnfJEXldb6wT21/9l2zOjxwLZx/U+z5gm3Dd7PhtQ9hwIn+lCXZa9sO97Z6Ph3DDevD7UPNAu34Y/jTr+Hjr8zNesVf6mMEQ30HCZtNW9zbqlROfxyFaeBxo3gdk0UX1nbcq04MI9WJWWv//ffn6quv5uqrr2bJkiWMHj2aN998k2nTpqUthkcffZROnTr5u9N1U2HiNPhwErz6IWze+v/9QMu2wcohPn1D6a9ImLQuVoL+ZGGptktdvLgo+Uop2ba9BngKeMqyrErAkZgkLF2AzoBH7yXy64XsPtFBXwDkA1P3PibZtv1rceIWkRQYN9m9rVkjuO6i9MfipUY1ePk+6HSW+713PgtPnCIiIpL5dBFJssnW7e5t5UM43FKzunvb5gwZmM8Gi5clvzgfVprAXvZpUoOIiIiIJKKJx+JF5xAiIpJIpQruSezbPSa1l9QJ3eG4v8DHU9yL4+8YCeec7D1OXhJVq7jbjbUbTJKQMNm6zb2tUsX0x1Fa6neKFK5GNTjzePOYOhMuvBnmLYr9nkQv8OnbC648O9iYUyH/58hz57P2P650yVEOaAQjboEBw90JvtZvgn8+BiNvLV3cUnqtDjaP6y+GN8fD1ffBqrWJvwO9OsFAJVpIC/WbpKgqlHefH+za7d/+zz3FJCmbNst9vnDjw3Ba73COYUnmKJcLO+Pun13g4/20rzwbnn3bJBiNT0o5/CHo3RVycvwrTwz1MdJPfQcJm8qV3PNsN2wK3w0avcZZy+WmP45MFdZ23KtODCPViQI0adKEYcOGMWzYMJYuXcrYsWMZM2YMkyZNYvduH8/t9qpVqxaPPfYY55xzju/7pkplc83phO4mkeeI1+Cup0xdG5WApcAuwMIkifiO7YynZN/Xli1b0q9fP8rlJq63R44YwerVa1zbq5Gzejh1R5SoYEkqhKuBMpdt29uByXsfAFiW1QhoFvdoCtQEqsQ9KgE7gG17H2uAP4DlwO/AvL2P+bZte7RKIhKomfMiz50BlHNPgSQNX9p1bA19uplEMdEd9mmzgotJREREyqZMW5CvSZhSUjWqmol10Vavhf33DSaeRLwy8FeulP44JLlMqjtVb2YHTWoQERERkWQ08Vji6RxCREQSqV7VnXzlj9VwYGP/ynjkRmh9CuzeE7t97Qa49XF49CZ/yqlT093ezZwHrQ/xZ/9+mb/Yva2WTwlo0k39TpGi69QGZrwLxw2GL7/zTlTUqD507xhMfKn0+wr3tba/di79fs88Ht7+BMZ87l6wP2o0XD4A8pqXvhwpPcsyf69enaDXhSYhj9d3oGUzOK9vMDFmG/WbpKiqVXEvGl65xiTB8stjN3nfwHTpSrh/FNx6mX9lSfapVsWce0Zbsx6a+nQM5+aac97jBsee+9g2zPkFRr4Olw/0pyxxUx8jfdR3kLCpU9OdfGX2Qjj0oGDiSeTXpe5tfiWizgZhbce96sQwUp0ocfbff38uu+wyLrvsMtatW8e4ceN47733+OKLL1i7dm2p93/hhRfyr3/9i3r16vkQbSGqV4UbBplk1scOMuePexOwWFYO2CZR0zS2cSfu5CjJWJbFrbfeSv9bbiG3kPXnT741kjkeyVeA1cPtlXcUq2ApEiVfSTHbtpcBy4ApQcciIikWn4EQoNsRgYSSVL9jTfIViHTWZy0INiYREREp28K+QD+Tkh1I+NSp6U6+Mn0OtMsLJp5EZi90b/O6y7OISDRNahARERGRotDEY3HoHEJERBJpWB9W/hl7TWbGXOja3r8yDjnA3EX03y+6F8c/+QZceCq0aVn6cpo3gUVLYz/LO5/B2SeXft9++nBS5Lkzof+QA4KKxh/qd4oUTcUK8M4jcHAfcx0zW66Hxy+UAv/qvcdvhs+/cS+621MA/3gAxj/jTznij3p14IMR0Opkk/wtW74DYaR+kxTVvvuYGx1FHyuzFsJRbfwro2NrOL8vvDDGfb7wwHPmhqt+JnuR7FK/jrsvMucXOKKVf2X07gon94CxE93H8G1PwBl9TBsoqaM+Ruqp7yBh07Qh/LY89pgcOxH6HRdcTF4+/V/kuXNMHuRj0uuyLqztuFed6Px9w0R1oiRRu3ZtBg4cyMCBAykoKCA/P5/Jkyczc+ZMFi1axOLFi1m0aBF79uxJuA/LsmjRogU9evRg8ODBtG3bNo2fYK+WB8LYEdCxvxkPtCzMN9HCLsFaqdq1a/Pqq6/Sp08fvyMVn+QEHYCISJmxbqN7W9OG6Y+jMO09FoH+uT79cYiIiEjZ1aUd5OaYATRnEK2wgT7nZ4J4iJTGoQe5J/W+MS6YWJJ5b0LkufO9bNksuHgkVqMGkTozmrPN6yGSDs2buI+3dz4LJpZkdAFPREREJByciceVK5rXGnfJPjqHEBGRRLzq2Q8m+V/OrZdBg7ru7bv3wEW3QJIJvEXWOWoBqDNB/oNJ8NP80u/bL8tWwisfuPtj7Q4NJh6/qd8pUrg6tWBI/+y6prRth3tbvdr+7Lthfbh9aOT/M/ou1Z9+DR9/5U854p+mjeD8v2fXdyCM1G+SojqkqXubc6NRP913DdSo5t6+dTsMutX/8iR7HNzU3eZEL4T3y3+uN4n24q3fBFfe63954qY+Rmqp7yBh43VMvv0JLF4WXEzxNmyC5991H5NtfUhCnS3C2o7HH3+OMLVBqhOlGHJycmjdujVDhw7lmWee4bPPPmPhwoVs3ryZH374gRdeeIF77rmHBx54gKeffprXX3+dr7/+mk2bNjF37lxGjhwZTOIVR5uWJlHS3u+gBVhY5OTk0OyAoq3JqFSpEhdddBGzZs1S4pWQU/IVERG/bNnq3ubVKQ6a193t4+9AJyIiIlIaU16BNV/Daw9CtyMig3zJJj4mSzCQjodISXldXJk4DSZNCy6mePN+hbc+dn8HOxwWTDzi9vsXMOs9uPdqcycl1ZsSFprUICIiIiLFpYnH2U3nECIikkiHqLuEOm3EhKkw9xd/y6le1SyojF8cDzBjLtz8aOnL6N3Vva2gAAYMD8f8m1274JwbzALSeCcek/ZwUkb9TpHCDTwx6AjSq1yue1tBgX/7v/LsyM0t4hc9DX/I37LEH+f3DToCUb9JiqpN1OJg53zhoy/h9z/8Lad+XbjlEu/zhS++hUde9rc8yR6tD4k8d47hMZ/7f4PcAxvDsPO8E8K99TG8/pG/5Yk39TFSR30HCZuendzbdu6Cc2+A3bvTH4+Xwbd530y+T7f0x5KpwtqOe9WJzu+FYUxUdaL4pFKlSrRr147zzz+fm266ieHDhzN48GDOPPNMOnfuTNWqVYMOMWJQP9cmC4uTTjqRyZMn06dPHypUiF1PXqtWLXr37s0LL7zAypUrGTVqFI0aNUpXxFJC5YIOQESkzKhaxX1Cv3aDuYN5mGzd5t5WqWL64xAREZGyrUY1OPN485g6Ey68GeYtigwSQuS5ZUHfXmaykkimOf7o2MnaznF9zg3w7RvmLmhB2rgZzvyHuatn/KKik3sEE5N4a3WweVx/Mbw5Hq6+D1atTVxv9uqUfZNmJf16d4U7n4zd5kxq+Po177uCpVP0Bbz4Ok4X8ERERESCc35fGPl60FFIEHQOISIiifyti3tbQYFZHDDpJcj1WDBfUuf/HZ56E76bHTumatvw4PNwRB70O67k++/SDlo1hzl7E8c4+577K/S6EN5/IrhrA5u2wMDrTIL4+Lau8b5wdIdg4koV9TtFkmt1sPnuL10ZdCTpUa2Kma8Zbc16k6zJD7m58MiNcNxgd/sy5xdTH10+0J+yxB8dDoP6dWD1uqAjyV7qN0lR/a0z3Pp47Lbde+CKe+C9J/wt66pzYNQ7sGBx5G/vHJvX/xva5+nvL8XXqxPc83Tstm074Ib/wLN3+lvWzUPg5bGwfJX7GL7kDmjTAvKa+1umxFIfI3XUd5Cw+WtnczO935ab184x+b8Z0PcKeOMhqBZQUoCCAhh6F7z9ifuYrFvLxC5FE9Z2PL5OjBdkAhbViZKturaDmtU9k8J169aNbt26UVBQwLZt28jJySEnJ4cKFSpgJbsZq4SSkq+IiPilTk13wzlzXmwGxDCYv9i9rVb1tIchIiIiWaRTG5jxrpmE9OV3sYkEHI3qQ/eOwcQnUhptWsKRrc0kbodlmbsodzsH3n009g496bR0BZx2Ffy0IDK47Xz3WjaDjq2DiUuSsyyTuKpXJ3PROP9n73qzZTM4T3dSkRTTpAYRERERKQlNPM5eOocQEZFEDm8BLZqZBY4QaSO+/tHcKfal+6Ccj1MZn74dOvQ3ixDiJ7GfcwNUrAAn9yz5/q+9AC642b34fno+tD4F7rwCBveD8uV9+ThF8v4EGPYALF4Wu92J77qL3G1gplO/U6RwnduauyeXte+/l/p13MlX5vwCR7Tyr4zeXc0NLsZOdLcvtz0BZ/SBenX8K09Kr0s7eG9CdnwHwkr9JimKjq1jE4Y5x8kHk+C6h+CBa/0rq1w5ePJW6HlB7HFpWbBrN5w8FD55Bo5q41+ZUvZ1bWcWujt9EefYev5daNsShg7wr6wqleGRG6DfNe5jeNMWM0dz4otwUBP/yhQ39TFSR30HCRPLMjcWHXa/+5gc/xW0PRUevQlO6J7euH6cC5feCdNmxW534rvm3PR+RzJdmNvx6Doxnm3DiNdUJ4qkU26uqTPGTU54nOfk5FC1akCJucQ3OUEHICJSZjRv4l4M985nwcSSzIeTIs+dju0hBwQVjYiIiGSLihXgnUegdg3zWoNqUpbcPCRyLuD8a1mwaCkcdSYMfxBWr01fPLt3w6P/hTZ/h+/z3e9bFvzzkvTFIyVTrw58MAIqVzSvVW9KUK69ILaOi5/UMOI1c/f4dHp/grl4/dGXsdt1AU9EREQkPLq0C/ZuWxIcnUOIiEgil57h3Ua8MR7+crZZNOCXNi3hxkHeY/c7d0H/YfDkGyXf/3l9zU0Foj+H05as2whX3gtNesE/HzU3bkqV1WvhmbfgiNPh1KvMdYnoWJznbVvCkP6piyNI6neKJNfu0KAjSJ+Dm7rrg0//5385/7nezH+It36Tqf8lXLLpOxBW6jdJUeTkwKB+3ucL/37R3Hho+Sr/yjvmSLNINbocMM83boZjB8O4L5PvQyRa+fJw4anex/CV95pF+9u2+1feab2hby/vY3jpSuh+nr/n2OKmPkbqqO8gYXPFQDh8703Z4xOw/LrUJG5rfxqMGg1r16cujoICc4576pUm6fS0WbHHpBNfs0Zw1Tmpi6MsCnM7Hl0nelGdKJJ+6gdmBcvWhScJOcuy8oG8+O15eXnk53ssIhMJyu1PwJ1PxnYcc3Lgh9HmDj5hsGwltDgetu0wr53O7bDz4MHhwcYmIiIi2eGmh+Ffo9yDbUPPgsduDjY2kdI4/Wp49zP3BT/neYXycOpfof9x8NfOULWK/zFMz4d3PoUXxsCqtbED8tGx9DgSPn/e//IlNS6/G0a+rnpTgtXjfPjyO/cFZDDP69eBi06DfseahS2psHotjPkcnn4LfpyXuI5r2xKmvWkyzIuIiIhIcO560tz1O7oPqfOY7KFzCBER8bJzJ+SdBIv23hHTq404pqNpH/5yBLQ4oHR37NyzB7qdA1Nnustxyj6lJzw0HA5sDCvXwH7d3W3Fntne+1+yHDoPgBVrYn/eee6UBbDvPnB0B2h/KBx2sLnBU+P9oFLFon+edRvM/93shfDTfPjye5gx15QVX57DtqF6VfjmNchrXvSyMon6nSLJffQlnHRZdnxHbnkM7nk6ti6uUgl+m2DuYO2nmx+B+551n/NYFrxyP5x1gvfvFbetkdJ7fwL8/crs+A6EmfpNUhQbN5s57qv23twovn6tXBHOPB5O720S8NWoVrrytm6DI/rBgsWx5TnPc3LgyrPhtsugZnXV4VK4lWugxQmwaYt5HX8M71cPLjnDHMMtDyx9eX+uh8P7Jq5bK1aA+4fB5QPN8axj2F/qY6SW+g4SNjPnwdHnwuat5nWiYzI3BzocBt07QPs8c0we1BgqeCTwLMza9TD7573H5Hfw+VTTX4ov02HbZp7yhOeha/uSfc5sFuZ2fOkKcyNQ52ejOb+jOlEkfUZ/YhL8p7Ef2KpVK+bMmeP11hzbtlulrOAspuQrEnpKviIZ4+sZ5k488SdQeQfB16+VfpC3tHbtMpm4J01zD5p98YLJhCgiIiKSavkLoXVfJRGQsmftenM+MH+xeZ3sgl+5XHNhxbm40rwJNNkPGtSFWjWSl1NQACv/hBWrowa3F8BX02HNOu/yHLZtLgBMexMaNSj1R5Y0+X42HHmG6k0JliY1iIiIiEhxaeJxdtM5hIiIJDLhGzhuiBnrBu8ELA7LMuPm1atC7y4l60csXwUd+ydukyzLjNmf3ht6HAWDbyveQrRZC0zSsXUbvd+PnpsZ3xaB+Wx1a0H1KlClsoklNxd27YYdO2HnLli/0VwX2LU78b699u9M0h/3lPlsZZX6nSLJxV+fh7L7HZk0DXpe4K7HLzwVnr3T37K2bjOLspavit1e2HmGFj2n38x50O607PgOhJ36TVIUb46Hs671Tp7oPHf+3XcfaNrQHBvd2sPNlxS/vHm/Qqez3Itso5/Xqm4W2h7dAfoMUR0uyT3+Clx1X+HHcJ2a0KIZNN3PHMNHtIJB/Ypf3tczTP/Hqfe8juHmTeDaC6BLW+95mzqGS0Z9jNRT30HCZuK3cPwl5tgB72tf4D5eLAvq1TbjnHVrmWPz/4/JnLhjcpMZx1yxJpLoxZGsDCeWVx8wyeqkZMLcju9TC069yr2PnJzIzztUJ4qk1g9zoEO/tPYDlXwl/ZR8RUJPyVcko7Q+Beb8EnntdHbb58H7T0DD+sHEtWkLDLwOPpzkzmzZZD9Y9Jl351pEREQkFZr2gqUrzXNNgpSy5Pc/oPt5sHiZd/+6sMFtZ3u1KuYubF6D21u2uQeyi7Jv2zYD/pNeMguZJLPs2w1WRyXXUb0pQdCkBhEREREpDk08Fp1DiIhIIv95Ea590D2R3Hkez7LghO4wdkTJypu1AI45zyxeSFSe1+uiLkT7ZYlJ/jF7YfK5N4XN0/RqrwoTPwco+nM0qAtjHodObQrfTyZTv1Mkuc1boMaRsdsuH1A2vyO7dkHDY2Dthsg2p2587CYYOsDf8t75FPpdE9tmOGXu3wAmvggHNYn9HSVfSb8Nm6B2p9htZfU7kAnUb5Ki+Mf98PDL6TtfKMpC6tKcL0j2GTAc3hhX+DEcXS+V5hh+/SM4+/rI60THsGWZRKjqh/hDfYz0UN9BwmbqTDj9apOI06ued14nUpR1e4l+P9Hv2raZb/zSfXBa78L3L8mFuR3fs8f9+07ylWiqE0VS68/1UK9r7LYU9wOVfCX9ygUdgIhImXLtBXDBzbGDqrYN0/NNYpY7r4DB/aB8+fTF9P4EGPaAWQAazYnvuouUeEVERETSq3NbeOtj9UGk7Gm8H0x/G874B3z+jXcGe0eiwWrbho2bzaM4Cru42LIZfDDSPcFPMkOXdvDeBNWbEqzWh8C3bySe1FBYHRddt+kCnoiIiEjZd0Aj869uBpO9dA4hIiKJDDvfJNQadr95nWihgrOttFofAhOeN3epX/ln0RdxFtVBTUybd8tj8PirJimYVztU2Dh+cRdWeP2cs4++vWDkLbBvvaL9biZTv1MkuWpVYeYYs9DWUa9OcPGkUvnycOGp8ODz7vmbV94Lv/wO91wFlSv5U95pvU1961zDi67vl640N+34cCS0PdSf8qRkalY3N06M/g4c2Di4eLKd+k1SFP++HgpsePS/7uMhFecLPY4y9cSpV8K2Hd7lqa8pxfHiPSaZz7ufJT+G45P7lNRZJ5hk1YNuiyRXia9Po+tOr3NvKT71MdJDfQcJm05t4IfRcNld3vU8JE+SUtzrW4WxbehwGDx/t27K6Jcwt+PRdZEX1Yki6VG3Fjx6ozlvdbRtGVw8khKWrYEACTnLsvKBvPjteXl55OfnBxCRSCF6nA9ffue+gAfmef06cNFp0O9YaJOihnX1WhjzOTz9Fvw4zzvztmWZhn3am2ZSi4iIiEi63D8Kbnw4tr+kO9BJWWLbMOI1uH2EubNaui5Ye2XQz8mBK8+Gu680d4mWzHTXk3DbE6o3JRy2bS98UkMypb27R/x+dAFPREREJLw+mOieeNz6kODikWDoHEJERBL5YipcdAv8tjz5ooTS3sne8fsf0H8YfPtT8vKg5HeyX7gYbhsB73xq2j1nX8nKKapkv+O81z4P7roC+hxd9P2WBep3iohj5RpocQJs2mJeR8/ftCzYrx5ccgac3htaHlj68v5cD4f3hRVrYstznlesAPcPg8sHmuu2K9fAft3d8ziL09aIlBXqN0lhXhwD19wPGzal53zhx7lw2tWwaGnqzhcke9g23DEC7nvWPSYa/3N+HcPjJ8PA62B9Id8Z0DEsmUl9BwmbSdPgpkdg6kzzOtHxU9L5w4mOS2d7w/pw8xAY0t+cb4p/MqEdd8ZCK5RXnSiSBVq1asWcOXO83ppj23ardMeTDZR8RUJPyVck4yxZDp0HJL6gBpHX++4DR3eA9oeaLJPNm0Dj/aBSxaKXt24DLFpm7hj303z48nuYMTc2G6HXyVb1qvDNa5DXvOSfVURERKQkPvoSTrpMSQSk7Fu3wdxZbdQ7sGad2ZZsMDrR+4l+vrAB/b694I7LldG+LHh/grlTuOpNCRNNahARERERkeLQOYSIiHjZth2efRse+S8sXhbZHl+n+zGBHcyk9CdehbufTj5uD6VbiLZiNTzzNrzzGcxaENnuV7L26OsK1arAyT1gUD/o3tGf/YuIZLLHX4Gr7nPfNC/+vKFOTWjRDJruZ+ZSHtHK1KXF9fUM6HlB5Dwnfr6oZZl5oddeAF3aQuu+Sr4iEk39JklmxWp44HkYNRo2bzXbvI4Nv84XtmyFWx6Hka/Dzl3JF1GrDpeimLXA3GxpbFTCyFQew8tXweV3w3sTvMtS8hUpC9R3kLCZnm9u1vj+F7BuY2S7nzdtjK6/O7eFQafDmcebhJ+SOpnQji+bqDpRJAso+Ur6KfmKhJ6Sr0hGmrUAepwfe+IUrbDFldWrQt1aUL2KuTt9uUDwasEAACAASURBVFzIzTUX6HbsNAO66zfCyj8jF+289u21f+eOCuOegh5HFfujiYiIiJRa/sLYCUWgJAJStu3YCW99DKM/gc+nmsnkDj8GuKPPAZo3gf7HwcWnwwGNSr9vCYeZ86Ddaao3JZw0qUFERERERIpD5xAiIuKloAC++RHGfwVfTYe5v0aSowCceIw/E9gd23fA6x/B02/BtFmR7dHtkV8L0ZYsh48mm8/3wxyYvxj27Cn5/qpVgcNbQNd2cExH6NlJCy1EROINGA5vjHMnOXGeO6Lr/dIslnr9Izj7+sjrRDfsc+5OreQrIt7Ub5JENm6GDyZGzheWroytz/0+X1i+Cp5+E5571zx3pOJ8QbLDz7/Bm+Nh/BSY9hPsjqvb/D6Gv58Nj78Kb39izn/Be02JjmHJdOo7SJjs2QP/m2FuUPrNjzBzPmzaUvr9Nqy/95g80lzzatSg9PuU4smUdlx1okiZpeQr6afkKxJ6Sr4iGeuXJebO5LMXJp8sWFg9nChTYVF/J/5CXoO6MOZx6NSm8P2IiIiIpMLmLVDjyNhtlw9QEgHJDtt3wMRv4ZuZZnD7hzmwYk3J9lUuFw45ANq2hK7tzeD2oQf5Gq6ExIZNULtT7DbVmxJGuoAnIiIiIiLFoXMIERFJZv1GWLXW3H2+UsXUjX8vXQHjJsOEqTBjLvzye+xCeb8Xom3bbspYttIsGv1jtfmM23aYawi7dpvx/wrlzc2bateA+nWh8b5wYGMlXhcRKYqdO2HAdfDuZ0Wbu2lZpb9T9YtjYNBtkbthR8/bjC7LEX2nai16FvGmfpMksnUbLFi893xhG9SpmZrEuwUF8PWMyPnCrIWRBbCgOlxKZtcuWPhb7DHcqD707+N/Wes2mCQA474yx/DqtbHv6xiWskZ9BwmbBYvNI+aY3GaO1e07TZtQrlzcMVkncky2PsTc2F3CI5PacdWJImWGkq+kn5KvSOgp+YpktG3b4ZbHTMbBXbsTJ0VJJFkdXZy7vzn76dsLRt4C+9Yr+u+KiIiIpMKsBZFJRwD16pjs3CLZaMtWM7C9dEXUxZUiDG432c9ceJHs8MHE2HrTubgmEma6gCciIiIiIsWhcwgREQmDLVtNe/THapM8/by+QUckIiIlYdtwxwi471n33M34n/Mj+QrA+Mkw8DpYvyl5eaDkKyIimaigAOb9Cj8viZwv3DY06KhEim75Kvhxbuwx/MK9QUclIiIiRaF2XCRrKflK+in5ioSekq9ImbBwMdw2At751FzIA++La9EX1ooq2e8477XPg7uugD5HF32/IiIiIiIiIiIiIiIiIiIiIiIiIiKZatYCuO0JGBt1owOvuZZ+JF8Bsxjq8rvhvQneZSn5ioiIiIiIiIiIiBSRkq+kX07QAYiIZIWDD4DXHoTfPofbh5q7k9t25OGwrOIlXon/neh9Vq0MA06AiS/C928r8YqIiIiIiIiIiIiIiIiIiIiIiIiIZI/Wh8C7j8G8D80N7Lq0g9yc2LmWft7ItGF9U960N+Gck6FihdgySjJHVERERERERERERETSwrL9HDAWSQHLsvKBvPjteXl55OfnBxCRiE+WLIePJsM3P8IPc2D+Ytizp+T7q1YFDm8BXdvBMR2hZydz4U5ERERERERERERERERERERERERERGDXLlj4GyxYDKvWwpZt0Kg+9O/jf1nrNsBHX8K4r2DCVFi9NvZ9y4I9s/0vV0RERERERERERDJeq1atmDNnjtdbc2zbbpXueLKBkq9I6Cn5imSNbdvhl99h2UpYuhL+WA1btsK2HbB9B+zaDeVyoUJ5qF4VateA+nWh8b5wYGM4oFHQn0BEREREREREREREREREREREREREMsGGTbDkD1i6AtZugPWbzDzGXbvBtqFyJahSCapUNv/uVw+a7W/+lZJZvgp+nAs/LzFzRFesgRfuDToqkWDt2QPTZpn6aNWfZs50/brQoC4c0Qrq1Uld2bt2wcRp7u29u6auTBERKTvUhoXPpi1FOL/Ze46zXz1oWD/oiEVEwmXer6ZdW7cRLKBGNWjaEA5uCuXKBR2dSFZS8pX0U20nIhIWlSvBYQebh4iIiIiIZAdNaBQRERERERGRbKMJ6SIiUhzbtsOCxXvH0lfC2vV7x9J3mHrdBipX9B5Lb9YI9tV4elZQ/0KkcDt2wsRv4avp8O1PkP8zrFpbsn1VrGAW3rRpAd2OMI/DW/gbb1nVsL4WeIo4PvoSRo2GL76FzVu9f8ay4Ig8OL03DB1g+nt+WrsBjhtsyokuc/csf8uR1NLcGxFJN7Vh4TDv19jzm3mLYOPm4u2jQnlzbtOsEbRpac5turaDWjVSE7OIZK6yPP74xVR4djSMm5y4XatUETodDqcfCwNPNElZRETKKMu27aBjEEnKsqx8IC9+e15eHvn5+QFEJCIiIiIiIlICmtAoIiIiIiIiItksDBPSV66B/bpn94R0EZGw+20ZjP8qMpa+eLlZMFlSFSvA4YdExtL/0h7q1PIvXgmW+hciydm2WTjz/LvwyRSTuCr6vdKKPu5rVoN+x8K5p0DX9qXft4iUXZ99DTf8B36cZ14XpT6yLKhXG2651LTnfnHa8fiy9sz2rwzxl+beiEiQ1IYFL3+hOb8ZMwF+Wx77XmnOceLP6Q9rDmf0gbNPgsb7lXy/IpL5wjr+CPC/V+H3P0x/eNMWqFUdGjWAzm1hn9qF7/e3ZXDpnfDJ/8zrwupRp/zqVeEf58P1F0GFCsX+OCJSPK1atWLOnDleb82xbbtVuuPJBkq+IqGn5CsiIiIiIiKSsTShUURERERERESynSaki4hIYTZvgZfeN2PpTnsB/oyjO5zxdMuCnkfB+X3h1L+ZO3ZK5lH/QqRw/x0Ldz8FPy8xr+O/J/ELdkoi0T4PagzXnAeDTody5UpfjoiUDbt2wXX/hsdeMa+dOqSw+ii6rrEsOLkH/PdfUK1q6WOKX8Ro22rHw0hzb0QkaGrDgjf5e7hzJEycZl571f+lOcdJtD9nHOmac6HP0SXfv4hknrCOP0bHkZOT+HeObG3qrv59vN//diacfDmsWVfydq3FATD6EchrXuhHEJGSU/KV9FPyFQk9JV8RERERERGRjKQJjSIiIiIiIiKSzTQhXURECrNzJ9z/HDz8EmzYnJpxdEi83+pVYUh/uOFiqF3Tn7IktdS/ECncz7/BRbfAlB/cx3684ta7hX3n4ss7cH949EY4vrv3z4tI9li7Ho4bAtPzveuSRGta4usbp53NOwgmPA/165YuLrXj4ae5NyISNLVhwfpzPVzzL3j1Q/O6OOckRVHUcxuAv7SHx26CNi2LV4aIZJawjj/u65EAqrCYLAv+1gVevi+23Vm4GI46E9Zvcu+nOO0aQLUqMHYEHHNk8lhEpMSUfCX9lHxFQk/JV0REREREssyGTbDkD1i6AtZuMAN727bDrt1moK5yJahSCapUNv/uVw+a7W/+FQkDTWgUERERERERkWynCekiIlKY//0AF/7TLKIs6lh6cRdWOvV8ov05+6xRDe65Ci47q3j7l/RS/0KkcJ9MgbOujSS0SnT8p0P093RwP3PNskKF9JQtIuGyfQd0HQgz5prX8W1mYeLbfed1+zyY9GLpFjOqHQ8vzb0RkTBQGxasmfPglMvh9xWJxwHScX4T3S5UKA93XA7XX5z6ckUk/cI6/jj3F8g7yb09Jyfx70THf9jBMPllqFndbD/idPhxnrt9KmrbFv9/UqUSTHoJOhxWtM8jIsWi5Cvpp+QrEnpKviIiIiIiUobt2AkTv4WvpsO3P0H+z7Bqbcn2VbECNG0IbVpAtyPM4/AW/sYrUhhNaBQRERERERGRbKcJ6SIiUphRo+HyuyOJ90uycKaoE92Luh/LgmO7wqsPQO2axduHpJ76FyKF++hLOPVKU7dC8u9Jojq0fDlzM5RKFaBSRdhTALt3m+v6m7bCnj3ev5fse+iUf0xHcyfkqlWK97lEJPNdcjs883bihX2FrWfx+j2nbul/HLz+UMljUzseTpp7IyJhoTYsON/Ngl4XwpZtsfV+cc5vSqqw5FyWBQNOgBfvhdxcf8sWkeCEdfxxx05ofxrM+cX9XqLkK171Zq9O8OkoePl9OP+mxJ+vOG1b9POG9WHWexpbF0kBJV9Jv3JBByAiIiIiIiJZxrZh3GR4/l1zsXzbjtj3Smr7Dpi/CBYshrc/MdtqVoN+x8K5p0DX9qUKW6RQRZnQWNiFVz8nNEaX9czb5ruhCY0iIiIiIiIikmpX32cmJvo9IX3GXBh0W+kmpIuISPBGjYbBt5nnluUe307WXuTmQv06UK0KVK5oxtErVTRj57v37B1L3wIbt8DaDd5j6snK++R/0P08+PRZ2Lde6T6n+Ev9C5HkfpoP/YeZ65Tx1yid493RqAG0OxTaH2rufNywPjSqb/4tXz55Odu2w6o/YeWfsHgZLPzN3Cl52ixzN3rwrmdtGyZ9BycNhc+fS35nZhEpW6bnw7OjEy/Qq1LJzOk5tiu0bQn16pj3lq009carH8Lk72PrM2cftg1vfQw9joTB/YP5fOI/zb0RkbBQGxac35bB8ZfA5q2x/3/R40hOG1AuF1oeaJIbHNZ87/lNA2hYzyQ6SDp+tNncLHLlGli8PHJ+89N8dzsU/dy24bWPzL40niBSdoR1/PGOETD318Tve8UV33bZNkyYCu99DiNfj/3d6J89cH846wTTtjVtCPXrmjpzxRrTpr053uwnvm4G+GM1/OMBeP6ekn1OEZEQsWy/s/uJ+MyyrHwgL357Xl4e+fn5AUQkIiIiIiIl9t+xcPdT8PMS8zr+nNSPu5Ik2udBjeGa82DQ6VBOuUjFZz/Nh84DzITDRBdcHeme0BgdS/eOmtAoIiIiIiIiIqkzPR+OPCPyujQT0p3fgdgJfE/eWvIJ6WX9bqAiImH35Xfw14vMYpdkY+kVykPHw/aOpedFxtL33afo49u2DavXusfSp870XkATXX7rQ2Dq62bBpgRP/QuR5Hbvhg794KcF3otrALq0g1N6wCm94JADUhPH/EXwzqfw3LuwaKl3LJYFw86DB4enJgYRCZ9+V8M7n8XWA07ddObx8OiNkbY7kXFfwsW3mnkS4O4LVKsCs9+HJg2LH5/a8XDR3BsRCRO1YcHpeQFMmpb4/Gb/BnBSDzilp6mTK1bwt/wdO035734Gr4+LJIGJ5sT0wD/gHxf4W76IpF9Yxx/n/gJt/m6SCRYUuN/PyYEOrUwSqprVTJKURcvM53HKj/48DevD8lWx+3Deu+0yuOFiqFBInfrZ13DxLbB0pXs/ubnw4zvQ6uDifU4RSapVq1bMmTPH6605tm23Snc82UDJVyT0lHxFRERERKQM+Pk3uOgWmPJD7IXwRBeqoxWWkCU+s3Sy/VmWycr86I1wfPfC4xYpCk1oFBERERERERExNCFdREQS2bIVWvc1ixu9FqxUrACn/c0snOnTzdydOBU2b4GxE+Hpt+Cr6YnH0geeCC//KzUxSPGofyGS3LNvw5DbvevWXp3goeHQpmX64ikogGfeguv/YxYpxseUmwsz3jEL5UWkbFu/Eer/xSwUdDjt5E2D4a4ri76vpSvghEth1gLvPkHvrvDxM8WPUe14eGjujYiEidqw4Lw1Hs681vv8pmUzuO8aOLmnPzd6LIqNm+HeZ+A/L8YeD05MFSvA3A/hgEbpiUdEUiOs449X3gNPvGb245V85bfPvff36+/wwHPwzNvenwlitz94LQw7v+hx/f4H/O1ik8TQ4ezr4tPg6TuKvi8RKZSSr6SfUq2KiIiIiIhIan0yxWSDdhKvWFbkAd7JVuJ/JpnCfi56X7YNv/wOJw2FS++AnTtL/rlEHC+MiZ38AZHjrVcnM3lwyisw/KLUTf4AaNEMbhoCC8fDyFvMQL0TS3RMj/wXZi9MXRwiIiIiIiIikp3Wb4T3v3CPRVgW3DwEXnuw8ImJYJImT3vTLMb0mgy4eSsMvj0lH0FERFLoyTciiVei63XbhgtPNRPFX3kA+h2XusQrYPY94ET48mUY95S5W3L8QkrbNncrnTI9dXFI0ah/IVK4B5+PvU7pHNt3XA6fPZfexCtg7rp8yZkw/W1o5rEAsaAAbnw4vTGJSDDGfwW790ReO23w3/9avEXrAPvvC5+Ngmb7m9fRfQIwd19/c7w/cUswNPdGRMJEbVhw/jUq9rVzfnPhqTBzjEnAla7EKwA1qsG/hsHEF6FuLff7O3fBPx9NXzwi4r+wjj/u2GnGqBPVeTk5iRO5HNgYnrodXrw38pmcf6PXVFgWdDuieIlXABrvB+8/AVUqRbY5+3xjPOzaVbz9iYiEjGXHL3KTpCzLKmfb9u6g48gmlmXlA3nx2/Py8sjPzw8gIhERERERKbKPvoRTr4Rde0+j4rPsR0t0flq+HFSuBJUqQKWKJnv87t1mUHHTVtizx/v3kl1gcco/piOMHQFVqxTvc4lEO6SPSerjcI6v24fCLZcGF9fPv8Fxg2HRMndsxx8NH4wMLjYRERERERERKXte/wgGXuceA/z7X2H0I8Xf36o/ofMAs1A/en/Ov689CGf0Kd4+y+rdQEVEwq6gABr3hBVrIttsG3Jz4bm74NxTgovtz/VwwiUwbZb7xgHdjjBJWqL1vCC98fnFAia8EHQUxaf+hUhy3882N0KJP/6uGAiP3BhsbABLV0Cns+CP1ZFtTv2/ZALsVy+42KRsULscblfdC4+/GltHVShvklo03q9k+/xxLnQZaOYMRbNtk1Rv3kdQpXLR96d2PDw090ZEwkRtWDDm/AyHneL+TP2Pg9cfCjY2MEm3/nI2bNoS2eYcG398CbVrBhebpMaFNwcdQclYFjx3d9BRZI6wjj9+MgX6DInEVVAQec9JoFKUOv/q++CxV9yfz/l34otwdIdifcT/9/BL8I8H3Pv+5Bn4a5eS7VMkaCGs+98dM4b169e7tlclZ/0Z1Biz96WNPeei9EZWdpULOoAMdJNlWX8DXgbetm3bfcSKiIiIiIgI/DQf+g8ziVfiB9Xiszk3agDtDoX2h5qMzw3rQ6P65t/y5ZOXs227Gahc+acZqFz4G/w4z0yS/X2F+Zn4RCxO+ZO+g5OGwufPmQzQIsX1/Wz4eYn3hMYgJ38ANG8Kk16KndDoHPsfTzHbNKFRRJLRhFURERERSUR9RfEydaZ7W/ly8PD1Jdtf/brwziORCenxd5wb/iCcdEzxJqSLiEgwpvxgxqTjx9LvvDzYxCtg7lr86Sg46kxYsNhsc9qaKT/AL0vgoCaRn580Lb13WPaD100RMoX6FyLJfTjJva1BXbjvmrSH4mn/fU2SrejFQmAWDI3+BK44O7jYpGxQuxxuPy2IPHc+96l/K/midYC2h8L9w+Cq+2IXDAIsWwX3PgN3X1W6uCX9NPdGMp3Gy8setWHBGDvRva1mNRjxz/TH4uWwg00s59wQ25/btRtGfwqD+gUXm6TGi+9lXt/dqVuUfKXowjr+OD3fe3txj8n7roHXPjJJyON/f/8GJU+8AjCkP9z9FKzfFLt9yg9KviKZK4R1/ykFAJ5J3moB52F69jag5Cs+UfKV4rOArkAX4DHLssYBrwAf2ra9K9DIREREREREwmL3bjj3BpMYxStTMkCXdnBKDzilFxxyQMnLqlwJmjYyjyMPj31v/iJ451N47l1YtNQ7li+/g+v/DQ8OL3kMkr00oVFEyjJNWBURERGRRNRXFC+akC4iIomMm+ze1qwRXBeSeaA1qsHL95kFlfHe+cw7zuibDIRZpvd/1L8QSW7G3Mhz51g+52RzDT0sjv0LdDsCvpoeWyd9M1PXKsU/apfDackf7s/8t86l3+8VZ5s+2uTv3QsZ//MSDO4HTRqWvhxJH829kUyn8fKyR21YML6PSjTgHKMDToQ6tYKLKd7Ak+ChF2Dm/Nhj5OsZSr5SlmXK+YaUTFjHH6fPiY3LEX8D3MJUrgRnHQ+Pv+peR3FC96Lvx0uVytC3F7wwJrZOnDm/dPsVCYMQ1f2F9NrVqU8B3da75CygItAXGA2ssCzrKcuyugUbloiIiIiISAi8MMYMRkYPpDmDfb06wYx3YMorMPyi0iVeKUyLZnDTEFg4HkbeAtWqRGKJjumR/8LshamLQ8quTJrQGD8I+I1HtnYRES+2nRkPEREREUm/oPuA6iuGSyonpB/dIXZiYvSE9CXLS1+GiIik1sx5kedOfX7uKZCbG1xM8Tq2hj7d3H2HabO8f96yMuOR6dS/EEluzi/u70iPI4OJJZkBJ8S+tu3YtkGktIJub7OlXS6uNevc2w5v4c++n7oNKpR3b9+xE2542J8yJH0090bKiqDHwTVe7h+1YcGY87O7z9S7SzCxJHNe39jXth3blknZE/R5hM45Uius448/L3FvK+nfuOdR3tsPP6Rk+4t2dIfY17YNvy4t/X5FghZ0fR71sCHhI/KP+EnJV0rOOTatvY/awCBgkmVZiy3LuseyrLwgAxQREREREQnMg8/HDvA5F+3uuBw+ew7atExvPDk5cMmZMP1taNbI/X5BAdyY5ReupGQ0oVFEskEILh7o4rGIiIhISAXdB1RfMVw0IV1ERBKZv9jdJnc7IpBQkup3bOS5MxF+1oLYnylfznvBmha2pYb6FyLJrd3g3ta8SfrjKEzH1pHnTnuw2uP7LVJcapfDbdt297Z9avmz75YHwrUXRP6mzoJG24Y3x8O0n/wpR9JDc2+krAh6HFzj5f5RGxYMr3OEFs3SH0dhOreJPHe+UyvWBBOLpJ7ON8q+sI4/rt/oX7vdqrn39rwE24vj0AMjz514/1hd+v2KBEl1f9YrF3QAZUD0N8NpzZoANwA3WJY1E3gFeMO2bd0OQaQs63lB0BGUjAVMeCHoKERERKQs+X62ybbsDKA5F4euGAi3XBpsbM2bwqSXoNNZkYE958LVx1PMtv3qBRujZJZMndBo25rQGCY6n5SwKl8Odu02z6Mv5CW7WKCJOiIiIiLZQX1F8ZKOCen3PhMZ24iekH71OXDk4f6UJSIi/lu30b2tacP0x1GY9h73WvtzfezrdVNh4jT4cBK8+iFs3hpZwJaoL6TJtyWn/oVIcpu2uLdVqZz+OArToK5728bN/pah623ZSe1yuOXkwJ4C9za/3DwEXn4flq1yj08NewCmvOJfWZJamnsjmU7j5WWP2rBgeJ0jVK+a/jgK07C+e9sGn89vJBx+/hjGf2XONz77xtzoU+cbZU9Yxx/9rFe86i2AujVLv+86HvvYvLX0+xUJSgjr/kLOHHRikQJKvlI60QeljXcilrZAG+B+y7K+xCRiede2bY8ryiKS0SZNy7xBMKfTLiIiIuKnDye5tzWoC/ddk/ZQPO2/Lzx3F/QZEtsXKiiA0Z/AFWcHF5tkHk1oFD/ofFLCShNWRURERCQR9RXFiyaki4hIIls8JltXrJD+OArjNVE8fiy9SmU4obt5PHAtjHgN7noKtu+I7QtFT6bveBj06Zb6+Msi9S9Ekqtcyb2gZcOmxItqgrJ9h3tbuVx/y9D1tuykdjncqlVxJ+FbuwEa7+fP/itXMn/3AcPdCxm/+RHeGAdnHu9PWZJamnsjmU7j5WWP2rBgVCgPu/fEbgvjAv74cQpQv76sOrAxDB1gHr/+Dg88B8+ONu8lOt9ocQAcpWS+GSWs449btvkXQ+VK3tv9SHDlNc6/c1fp9ysSlBDW/e+PeY/1G9xJS6uSs74/Nd5LWcFZTMlXSscmkmQlUSIWa+8jF+ix9zHSsqwPgVeBcbZtqzURKUsyZSBMJ/ciIiKSKjPmRp47AwrnnJx44C4Ix/4Fuh0BX02P7Rd9M1PJV6R4NKFR/KTzSQkbTVgVERERkUTUVxQvmpAuIiKJVK3iXpS4dgM0ahBMPIls9ZjQXqli4p+vXhVuGAR9e8Gxg2DpSu/FdUe2htuG+htrtlD/QiS5OjXd1ypnL4RDDwomnkR+XereVrN6asrS9bbspXY5fOrWcrfj8xZBm5b+lXHm8TDydZjyQ+R75fzdhz8EJx1j+qISbpp7I5lO4+Vlj9qwYNSuAVu3x26b9yscckAg4SS05A/3tprV0h+HpNeBjeGp281399QrYcNm7/ONv3aGx24OJEQpobCOP1au6F8ClkRjEMnGvotq9Tr3tjAmXhcpiZDU/f+c9j5zNnj0P2B5f3vpBSkrOIsp+UrxRSdViU6y4myL/pcE71cCTtv7WG9Z1tvAq7Ztf+V/uCKSdrooJiIiItluzi/uPlGPI4OJJZkBJ5jkKw7bhpnzgotHMpMmNIqfdD4pYaYJqyIiIiKSiPqK4tCEdBERSaROTXfylZnzoPUhwcSTyPzF7m21ijCW3vJAGDsCOvY3d0nVWK9/1L8QSa5pQ/hteWy9M3Yi9DsuuJi8fPq/yHNnkdFBjVNTlupgUbscHs2bwMLfYv8GX0yFM/r4W85jN0GH/u6xqOWr4MaHtfg1E2jujZQlGi8vG9SGBWP/fSPfGce4yXByz+Bi8vLF1Mhz52/XtGEwsUj6HXMkvP0w9B5kXut8I/OFdfyxRjX/kq/s2mX+TUXC2lV/urdVrex/OSJBUt2fdXKCDiAD3QscDzwPrMMkVHG+KTbeCVm83ne21wYGAZMsy1psWdY9lmW1SvWHEJEUKF/OdELjO6LONq+HiIiISFm0doN7W/Mm6Y+jMB1bR547AyBe2ZdFkmna0N23HzsxmFiSSeeERik+nU9KJnEmrObuHVrWRQQRERERcaivKM2buM9Zoych++WxmyDHY7qLMyFdRETCx6uNeOezYGJJ5sNJkefOWHpR767cpqVZhKXxW3+pfyGSXOc2kefOop23P4HFy4KLKd6GTfD8u+5zxLY+LmICXW+TWGqXw6FV88hzp44a/Sls2Zr4d0qi7aFw8Wmxf2+nEPkdDAAAIABJREFUvJFvwIRv/C1P/Ke5N1IWabw8s6kNC0Ynj/Ob18fB6rXBxRRvx054dnTsd9qyoE2L4GKS9OvVGU7srvONsiKs448H7u89xlESO3bCP86PfQw7z58kKdPz3fE1rFf6/YqEjer+rKLkK8Vk2/Zu27Y/tm37YqABcBwwCviT5IlYrCTvO9ubADcAP1mWNcOyrGssy9o39Z9KRHyxbip8MBKG9DedT6chTTZQluzCXjoeIiIiIqmwaYt7W5UQZjBuUNe9Lf6uiyKF0YRG8YPOJyXTaMKqiIiIiCSivmJ204R0ERFJxGss/YNJ8NP8wEJyWbYSXvnAPS7b7tCi72NQP39jEvUvRArTs5N7285dcO4NsHt3+uPxMvg29x2kAfp087ccXW+TeGqXg9fzKPe29Zvgnqf9L+ueq6F2jdhtlgUFBXD29aavJ+GluTdSVmm8PHOpDQvG0Ue4t23eCkNuT3soCV33EPyx2r39b13SH4sE69Izg45A/BLW8cdDD4z9OUdJ+hXVqsKDw92PqlWKv69470+MfW1Z0Gz/0u9XJIxU92eNckEHkMls294DfAp8alnWpUAP4HTg74CTnis6AQvEJmBJ9D5AG+Ah4AHLsr4AXgbetW17m9+fQ0R8UqUynNDdPB64Fka8Bnc9Bdt3RDrDEHluWdDxMP8vIoqIiIgErXIlc8Ej2oZN0LB+MPEksn2He1u53PTHIZmtZye4/7nYbc6Exi9egHIhGHpxJjTGTwDRuUh46HxSMtGgfvDqh0FHISIiIiJhpL5i9up5FDz0Quw2Z0L6vdf4W9Y9V5tFOOs3RbZFT0j//m1o1MDfMkVEpOR6d4U7n4zdVlAAA4bD169BjWrBxOXYtQvOuQG2bnePpZ94TNH307Ud1KyuZP9+Uv9CJLm/doYDGsFvy81r51rS/2ZA3yvgjYfMApsgFBTA0LvM9yq+bq1by8TuJ11vk3hql4PXvSNUqwJb9i5/cL5/D74ARx0Op/Tyr6y6teDeq+HSO2O/55YFK/+EPkPMHI59avtXpvhHc2+kLNN4eWZSGxaME7pD/Tqwep157fx/vP8FDLkNnrwNcnKCi+/ep+HxV91tQdXKcPzRwcQkwelxFFSpBNs85qJLZgnr+OMxR8Kzo937cNqJMJgxB6bnu+NpnxdMPCKppro/a4RgFKJs2JuI5XPgc8uyLgOOwSRiORVwVhgWJxGL814u8Ne9jyctyxoN/Ne27biUYCISKtWrwg2DoG8vOHYQLF0ZewHPcWRruG1oMDGKiIiIpEqdmu7kK7MXwqEHBRNPIr8udW+rWT39cUhm04RG8ZvOJyVTaMKqiIiIiCSivmL20oR0ERFJpEs7cwfROb+Y107dPfdX6HUhvP9EcEn8N22BgdfBpGnusfTG+8LRHYq+r9xc0xcaNzk8E+AznfoXIslZFlx5Ngy7P/a4tW0Y/xW0PRUevcksYkynH+ea79K0WbHbnfiuORfKl09d+breJqB2OQwqV4KBJ8LTb0X+BpYFe/ZA/2Hw4LVw5Tn+lTfkDJPgYMoPsXUimHlLPS+A8U8rmVoYae6NlGUaL89MasOCUb48DOlvkijGn9+Megdm/wxP3QatD0lvXH+shivugTGfx2534rv0TJMMUrJLxQrQuS1MmKrzjUwX1vHH3l2hQnnYtdu9nzAkYNmzBy6+1TuWYzoGE5NIqqnuzxoBpvsru2zbLrBt+wvbti8DGgI9gZHASmITrth4J1yx4t5ztlUDzsMkeFlsWdadlmU1T8+nEpESaXkgjB0BuXurWzWqIiIikg2aNnRPWhobwvyRn/4v8twZ+DuocXDxSGZyJjQ6x7zXhMaPvkx/XD/Oha4D4Zm3Y7ena0KjlJ7OJyXsnAmr8W2+iIiIiIj6itnLmZAe/bePnpD+2H/9LW/IGfCX9rHjMQ5nQvqylf6WKSIiJXftBd5j6dPzofUpMOI12LUrvTG9P8F7HN+J77qLij822+5Q/+IT9S9EiuKKgXD43sWH8QsUf10KJw+F9qfBqNGwdn3q4igoMNfgT70SOvQ3iVfiF+BYFjRrBFf5uFA1GV1vE7XLwbv2ArM4yeHUC7t2wzX3m/rplbGweYs/5b38L6hRzTyPX8w4e6Hp+439wp+yxD+aeyNlmcbLM5fasGDcMMgk5AL3+c03P0K70+C0q+Czr805SCotWGwSXR7SxyRe8UowUK82XH9RauOQ8GqfF3QE4oewjj/WrQWn907chwiyb7FjJ5xzA8yY664X69eBvxwRTFwi6aC6Pyso+UqK7U3EMsm27cuBRsAxwBPAHxQtEUv8e872JsDNwHzLsiZblnW+ZVlVUv+JRKTY2rSEM/powExERESyR+c2kefOoODbn8DiZcHFFG/DJnj+XfeAX9uWwcQjmU0TGiVVdD4pYacJqyIiIiKSiPqK2UsT0kVEJJHz+pq7iEaPoTvj1+s2wpX3QpNe8M9HYea81MWxei088xYccTqcehUsWhobi/O8bUtzt+XiatPC33hF/QuRwuTmwkv3mbs0g/u4tW34cR4MuR32PRq6DIAb/wNvfwxzf4GdO0tW7tr1MPl7eOJV6Hc11O1i7tD8/hfmumX8dUrbhvLlTKzpvCu8rrdlN7XLwTuoSWwSPkd0/XTeTVCnM3ToB2dfBzc/Av96tmTt7QGN4KV73eU4z/9cD3+/EnpdYBZt795T8s8m/tLcGynLNF6emdSGBaNyJXj+biiXa17HjyEVFMB7E+C4web8ZsBwePpN+G4WbN1WurKXLIcPJ8HwB02i4ENPhEf/C1u2uZMkOK+fvh3q1CpduZK5NOe87Ajr+OPNQ8xYihfbhs5nwYtjYPkqf+Iqiu9nw9HnwJvj3eM+lgWD+yn5rZRtqvuzgmVrMDkQlmVZQFfgdOA0TGIWiCRf+f8fjXqe6D1n+xbgTeB527a/8S/aYFmWlQ+40kHl5eWRn58fQEQiJTD5ezjmPPdEjaFnwWM3BxubiIiIiN8++xqOHRTb9wGTpfmLF6BcgkHAdDpjmEkIE98/+3Ak9Dk62NgkM82cB0efC5u3mtfxE7XBvM7NgQ6HQfcOJvPxYQfDQY2hQgXv/Sazdj3M/hl+mg9ffgefT4WNm91lOmwbKpSHCc9D1/Yl+5ySfjqflDAb/Ym5u0P0BUAdmyIiIiIC6itmu1seg3uedk+Kjh8jObwFtGwGTRtC9aqQdxCc3LP45b0/wSyed3gtoD+mo7ljZt5B0Lin+/09s0v+eUVEpOiWLIfOA2DFGvM6UTsBsO8+cHQHaH+oGUtv3gQa7weVKha9vHUbYNEyM2H9p/nw5ffmbpy27T2O7sRRvSp88xrkNS/+Z/xhjll0Fb1f9YNKT/0LkcJN/BaOvwR27jKvvb4r4K73LMvcrb1BXXNX5epVTXKUcrnme7Vrt7mj8c5dsH6TqcNXrIlcF3UkK8OJ5dUH4Mzj/fm8xaHrbdlL7XI47NkDvS+GidMSt+WO6L/VCd1h7IiSlfnQ83Ddv93f+/jn1auaeRZqx8NBc2+krNJ4eeZSGxac1z+Cs6+PvC7q+c2++0CT/eLObyqZecvJzm8WL4s9x/EqIz6G+4fB8Iv8+8ySeab9BJ3O0vlGWRHW8ccGdeGN8d5JZXNyIs9rVDP1X/Wq8MLdcPABxY/Jy5p1pp8+dSaMnQjf57vjdV7XqQkLxikplZRtAdT9rVq1Ys6cOV5vzbFtu1XKCs5iIVjxlp1sk/Vmyt7H1ZZldSGSiKWx82PEJlyJT8Rix22vBlwIXGhZ1jzgGeBl27bXpeRDiEjRdW0HNatHBmNFREREyrK/djZZ+H9bbl47g5D/mwF9r4A3HoJqVYOJraAAht4Vm3jFUbeWiV2kJNq0hPcej0xo9LqjnG2bO058+5N5ONI5ofHFezX5I9PofFLC7MDGkee6W4GIiIiIRFNfMbvdPhS+nuGekB4/RvLDHLMA3nFC95JNTjyll5nk7ExI9ypz0nfmUT2gcUkRETGaNISPn4Ee58O6je67x0NkrPuP1fDWx+YRrXrVvWPpVaLG0nPjxtI3wso/zbZoyRZGOe9XrGDG+0uSeAXMpHuvsqR01L8QKVyPo2Dii3D61eaOx14LBJ3X0Wzb1Jkr/yza+Vui+i3R79q2Wez40n1wWu/C958Kut6WvdQuh0NuLrzzKJxwKXzzY/L6ya+/1bUXwpZtcMfIxG05xCbZ0BhW8DT3RsoqjZdnLrVhwTnrBJPs6oKbzf+H1xjS/7F333FS1Pfjx19zVCmKooAoYkPxQFHsWLCXGMEWo0bRWJLYY4uJSdRoNJZoLLHGlvxiR+wNLNgLakQFsWBXUERRpMPN749xv7e3O7u3t7d7217Px2Med/uZmc/ns7ef+Xw+NzP7Hkj/u0+b0Rj0N1e5/o+T+PvX1cHfT4ETDm5ZOao+/r9RXcr1/GMYRvPZxUvS80hue9/NhjdnR/vOnpu+bUv97dooGM28BfHlJdc38fMfvzfwiqqffX9NMPhKmQjD8HngeeDEIAg2IwrEsg+wSmITsgdiSU1fB7gYOC8IgruAq8MwfLYYdZeUg3btogt4Dz1dnSc2JEmSkgUBHHcgnHh++om1h5+B9feCS0+LTja2pdffhiPPgpffbJqeqN8Jo6BDh7atk6qLNzSqGPx/UuXMiwiSJEnKxLlibfOGdElSNuuuBS/dBnseB2+9F/9FloS4ceL7Hxr787gvQzYnNf/kcap3T7j7cthsSPP5ZNKzB1z6B2hIqsv6A/PPTxHnF1JuNhsCr42Go86GMeMa22uybNcUW9qPNicMYaPBcMNfYfCA3PcrNK+31S7H5fLRY2l4/Ab4zV/gP/dm758KNaaecTSsuAIce070RcVc7+FQaXnvjaqR58srm2NY6ey9E9SvAQefBq+8Ff+3jUvL5++SKZ/Uv3e/PnD92bDDsJaXoerTe/no3vPk/ze22rB09VHrlPP5x7jAK5Df+fFcffMdzJ2fuczUv8vxB8FBIwpXvlSu7PtrgsFXylAYhi8CLwInB0GwCY2BWFZNbEJjwJWAxoArcemdgP2B/YMgmAxcCfwnDMM5RX4bklJtsE508U6SJKkWHPsLuOluePO99AAsH3wGI46GIWvDUfvDXjsUL8pxQwM89gJcfTvc92TjCc/UKPirrRSd9JNayxsaVQz+P6ly5Q2rkiRJysS5orwhXZKUzRqrRAFY/nwZXH5z9BT6uKAo2caHbOfUcx1Xkm9g32N7uPLP0GeF3PbN5tgDW5+H0jm/kHLTqyeMvgTGvwynXQIvTozSm/syYUuPmUS7z/RFn7694I+/hl/vGz0ZvtS83la7HJfLR+dOcNO58PNd4I+XwutTovRc76nIx6/2hU3WhcP+3Ph0eoMwlT/vvVG18Xx55XMMK5111oCXb4cbx8CZV8Cn06P0TP+HNHc+KZu4e4sT6Ut1hmMOgNOPhK5d8stf1emiU0tdAxVSuZ5/DILoOxGlENffpgaKOe1X8NfjS1M/qRTs+6teEHrRp2IEQbARjYFYVm9m8+QPNkhJnw3cCFwRhuH7Ba1kEQRBMAmoT02vr69n0qRJJaiRlKfRj8K+JzadXB69P1z2x1LXTJIkqTgmToGtR8EPc6PXqU8PhOh1u7roAvXwjWBofXSReo1+0LFjy8v8Zha89T688Q48NQEee7Hp0+YSZSaEIXTsEJ0o3WJofu9TyqSlNzS2VKXd0Kj8+f+kJEmSJKmSPfx09hvSE3YbDvdd0fryXn87+w3pyedUEv9nL3mr9eVKkvLz3kdwxhVw19goCAtkf2pxS78k2Vx+Q+vh7GNh161zz1el5/xCyt2rk+CKW+DeJ+Db7xvTC/nFzeRjYPP14Yh9YL+fQKc8rvkXi9fbpPLz5Etwy4PwyLPw+Zfp63+6TWHG8YQ7H4ErboWnX2lMy/RFQsfx8uG9N5LKkWNYaSxZAnc/BlfdBk+90hiIoNBBaZK/a7tybzhsbzhyvyjQpaTaUa7nH5N/Tw0YlRgLJtwRnfdujVMuhItuappvan36942Ckw3fuHVlScpq0KBBTJ48OW7V5DAMB7V1fWqBwVcqVBAEQ4FjgYOJAqpk+k8hWxCWELgXuDAMwxeLUc9CMPiKqsZrk2GjnzWdbHrxTpIkVbsnX4Kf/AYWLopexwVggfio0CssC717Rk9+6N4VuiwF7dtFwVoWLYYFC6N8Z82G6V9HSyLQS0K2MhJ1ufmC6MYvqVi8oVGt5f+TkiRJkqRq4A3pkqRsps+Aa++Eu8bBm+82phfqXHryNaNuXWDEtnDEz7wxvNI5v5Byt2QJPPc/ePApeOF1mPgOzJ7T+nz79oItNoBtNon61pV6tz7PYvB6m1TePvwM3p4K734MX82EOfNgQH845heFL+vtqdGc86Gn4eU3058g7zhenrz3RlK5cgwrjZmzov9tEv/ffBZzTiBZtiAGydq3gw3Wafz/ZtgGhQ/uIqmylOv5R4Axl8LDz0QBYiZPjcYggFfuLGzwldRy+/aCYw6Ilm5dW1eOpGYZfKXtGXylwgRB0BfYG9gHGAYkwufmMpOPC8SSSHsKODsMwycLUc9CMviKqsbMWbDCFk3TjjnAi3eSJKn6vTgR9vktfPFV08ArcSfj4uRy4SLT/pn2DUPo0hn+/TfYe6fm85cKodZvaFT+/H9SkiRJklRtvCFdkpTNJ1/Ag09H59JfmwzvfBSdY89Xty6w3to/nkvfGLbbzC9QViPnF1LLvftRtHz+ZfRlxWkzomNn3nyYvxAWLYL27aFjh+iBKcsuDb2Wg359YPV+sO5a0cNUKoHX2yTF+WEOvPFu9GXF9z+J+sHpX8OTN5W6ZsrEe28kKeIY1tTMWVGgrqz/3yyOgquk/X+zIqy+MgweEC2dO5X63UgqV+V+/nH+Avj+h6h/69ChdeUngq8krLkKbL0R7LwF7LlDdL5IUpsw+ErbM/hKBQiCoB9RsJV9gE1pDJzS2oArqXmEwOPASWEYvplfbQvP4CuqKpf/FxqSDsH1B/oEHUmSVBu+mglHnQ1jxrUsCnyu/7O2NM+NBsMNf40ulEilVEs3NKp1/H9SkiRJkqTW84Z0SapM8+bD1E9TzqXPhXkLohvKY78807PxXPqqK5X6HaiaOb+QKofX2ySpOnnvjSRJkqpZKc4/TvkgCmzVswf07gnLLlO8siRlZfCVtmfwlTIVBMFqNAZc2Sh5VdLvIfEBWFI/1ICWBWFZBPwpDMMLW1LnYjH4iiRJklRFxr8Mp10CL06MXscFTQnDlgVTSd03Lt9Eet9e8Mdfw6/3hbq6/MqQJEmSJEmSJEmSJEmSJEmSJEmSpCIx+Erba1/qCqhREAQDaAy4sn4iOWWzTNFy4gKuAHwFPAPsBHSP2TY1EEsAdADOC4JgmTAM/5TzG5AkSZKk5myzCTx/C7w6Ca64Be59Ar79vnF9EOQfeCWxf0JyIJZhG8AR+8B+P4FOHfPPX5IkSZIkSZIkSZIkSZIkSZIkSZJUVQy+UmJBEKxDY8CVwYnklM0yBVZJXZdInwPcC/wXGBuGYUMQBF2BXwBHAkOS9g1T9k1+/YcgCJ4Jw/DRFr0pSZIkSWrOhoPghnNgyRJ47n/w4FPwwusw8R2YPaf1+fftBVtsEAV7GbEtrNS79XlKkiRJkiRJkiRJpTBnLnz+FXz7XfTggaW7Qf++sFTnUtdMUi2yT1Kt8xgob34+kqRK5RhWGkP3bvo6COCx62HZZUpTH8k2qVJyLJJKw76/rBh8pQSCIFiXxoArAxPJKZvFBVXJtm4J8BhRwJW7wzCc22SHMJwDXAtcGwTBMOBYYC+gA41BWIIfl+TXfw+CYFwYhg0tfJuSJEmS1Lx27WDrjaIl4d2PouXzL+GzL2HaDJgzD+bNh/kLYdEiaN8eOnaA7l1h2aWh13LQrw+s3g/WXQt69ijVO5IymzYDPvkCvvoG5i+AXj2hd08Y0D86FoqloQHe/yQ9fa1Vi1empNpjHydJkqRMnCsqju1CktRSs+fAZ9Phm+9g1uzoutGixRCG0Y3fXRLLUrDiClGg/kr3/sdw/V3wwFMw5cNoHEu1+srRdba9d4Rdt45uyK1Vzi+k4rJPUq3zGChvfj61wzmfKp1tWKkcw0rv9SmNf9MwjH5ftLi0dVJts02Wr2odxx2LpNKz7y8rQRiGzW+lVguCYAMaA66smUhO2SzXgCvJ618hCrhyWxiGX7WwTr2BI4kCsSS+mZjINxF8JQS2C8PwqZbkXUhBEEwC6lPT6+vrmTRpUglqJEmSJElSjt56Lzoh/eiz8M5H8dss3Q12GhadkN5318LX4cuvYcXhTU90BwEsfrPwZUmqLfZxkiRJysS5ouLYLiRJuZryATzzKrz0Bkx6P7rh+/sfWpZHxw7REzlXWwmGDIStNoQtNoAeSxenzsmmz4BPp0c34c+eAz26w0q9YfCA3G5K/242/P5iuO6u6Eb35u7xTOS52kpwxtFw0IjWv4dK4fxCap59kmqdx0B58/NRLpzzqdLZhquTY1j1qBuU/mXnaU9FQRWkUrBNlpdyHsc/e8KxSKoWWfr+QYMGMXny5Li9JodhOKgtq1krDL5SREEQbEwUbGVvYLVEcspm+QRc+QC4Gbg5DMN3C1DP/sAjwFpJ5SQHXzk/DMPTWltOvgy+IkmSJEmqOJPegz9fDvc9GZ0Ay/WE9OABcO5vYbfhhatL4qR7anlL3ipcGZJqi32cJEmSMnGuqDi2C0lSLia9BzeMgbsfh4+/aLquNfc4pt6QPnhN+PmucODu0G/F/PNN9ek0uPLW6Omgk6fGb9O9K/xkazj+QNh0SPw2Uz+B3Y6E9z5u+r6z3Syfut02G8PNF0CfFVr+PiqF8wspO/sk1TqPgfLm56NcOedTpbMNVx/HsOpkoAuVG9tkeSjXcTy5HnV18ds7FkmVx+ArZcXgKwUWBMHmNAZc6ZdITtokU0CV5tZ/DdxBFHDlhQJUtWkhQbAq8AbQNaXsEHg+DMOtCl1mrgy+IkmSJEmqKJf+vygS+MJFjSeam4sgnnpC+pgD4B+/z3xivCVSI54nTsh58VxSPuzjJEmSlIlzRcWxXUiSmvP0K3DWlfDky9HruPsZc3lKZyaZ8gsC2G5TOGEU7Lp1/vkvWgTnXgsX3gDzFuR+E/7he0fjW5elGtd9+TVsvC989mXTbZt7L3Hb9O0FY/8F9Wvm/l4qhfMLKTP7JNU6j4Hy5uejlnDOp0pnG64ujmHVzUAXKje2ydIrx3G8z9ZRvrkGSnEskiqLwVfKisFXCiAIgq2IAq7sBfRNJCdt0lzAldRtEuvnAfcD/wUeCcNwcetrm1kQBP8CDoupy9QwDAcUs+xsDL4iSZIkSaoICxbCz0+E+8fHn2zPdA4m7oR0EMC2m8B9VzQ94Z0PL55LKgT7OEmSJGXiXFFxbBeSpObMnAUnnAc3PxC9bu4m9pbe55hLPoltthwKl50GQwa2rIwFC2GPY2Ds8y1/OmjiyaCPXAsdOkRpOxwKT7yUPmbmEnwmebtEGSssBy/cAqv3y7xfJXF+IWVnn6Ra5zFQ3vx8lCvnfKp0tuHq4xhW/Qx0oXJjmyydch3HP/kC+u+Qnp4tsItjkVRZDL5SVgoQNqv2BJFtgyC4IgiCL4DxwDHASkTBSgKiACaJhaT01KAsiSV5v8eBXwK9wzDcLwzDB4odeOVHb2RId2YmSZIkSVI2DQ0w8hi478nGE16pJ6ETaakLRPskn+gOw+gpn3sdD4vb4pSAJGVhHydJkqRMnCsqju1CktSciVNgw32iwCuJfj91LEiVaezINqbESd4mUfYzr8Km+8H51+X+HhoaYLffwKPPNa1/It/myg9DGD8BDv1TlH7/k01veE/+uyS/jlsS+Sa2S5Qx4xvY/SiYvyD391WunF9I2dknqdZ5DJQ3Px/lyjmfKp1tuPo4htWubOeWpFKwTRZfuY7jDQ1w4Knx6xyLpOpm318y7UtdgUoTBMHPgcuA5RNJSatTR6u4lp1pm9eB/wK3hmE4rbX1zNOcDOnd27QWkiRJkiRVmjP+CWOfa3qSKy66d5y4G8oTJ7zHPQ8nXQCXnlacektSLuzjJEmSlIlzRcWxXUiSspnwJmx/KMyZlz4+JH7PZczIR9zN8olyFi6C0y6Bt96Dm86Fdu2y53XJfzI/HTSu/nHbhSHc8iAc8TO49P+lr0/8vkx3+Olw2HkL6N83esrtgoUw/Wt4+hUYPRbe/ajpDfWJ/ad8CH++DC48Jec/U1lyfiFlZ5+kWucxUN78fJQr53yqdLbh6uMY1rbaDS5d2cmfYxhCn61z3zcIYPGbha+TSs82WVvKdRy/5D/w7GuZy02tm2OR1Dpl2Pe/0RACA+P2qCeoX5LYg3CyMUMKJAgLfYGyygVBcAZwRlJSawKufAzcAvw3DMO3C1PD/AVBcDJwAU3rGwDzwzDsUppaQRAEk4D61PT6+nomTZpUghpJkiRJkpTk3Y9g3ZGw+MdzV3E3i++8Bey8Jaw/EFZYNlr3+Vcw/mW44xGY+mnmE+9BAGMuhZHb51e/L7+GFYen12nJW/nlJ6m22MdJkiQpE+eKimO7kCRl8/HnsNG+MHNWfNCVxGuA9u1g4OowtB4Grwl9e8FKvaHvCtCtKyzVCTr/uCxZEo09CxbC7Dnw/Q/w1TdRv//RF/Dex/D6FHjjHVj041NGUwOxJNdl313g1r9nfh+ffAH1u8O8BU3rnBivAHr3hLVWjW5Yn/41fPQ5fP1t07IT5Q1cDd75KP3GWoBD9ohuWO/ZI3N9whD+dSecenH03lPXdeoI7zwIq/TNnEc5c34hZWefpFrnMVDe/HyUK+d8qnS24erjGNb26gaVugb58ViqXrbJ2lGu43jyWNTQkL4+CByLpEIrw76/IQxJD1MRqSNIrAgJJzfzVAHlyuArLZQUfCU1QElaQrdgAAAgAElEQVSqTAFXvgXuBG4Ow/CZwtcwf0EQXAX8mvT39mkYhv1LUyuDr0iSJEmSytzhf4YbxqRH8Q5D2HIoXHk6DB6Qef8lS+CaO+DUi2Du/MZ9k/NZYTmYfH/2k9qZePFcUmvYx0mSJCkT54qKY7uQJGWz3S+jm9FT++HEPYwr94bdt4WR28HwjaObtQtpwcKo/DHj4NaH4Ie56UFYEnW64CQ46Zfx+Zz2DzjvuvjxbpN14cKTYauN0vd7/AX4+43w6HPx+0LT9OMOhH/8Pvf3N3EK7Ppr+HJm+vs5YRT8/Xe551VOnF9I2dknqdZ5DJQ3Px/lyjmfKp1tuPo4hrW9ukHp52naQtx3a3Oth8dSdbNN1o5yHceTx6K44CtP/8exSCq0Muz7lzQ0kCn4SjuCBqI4EAZfKSCDr7RQSvCV5oKuJNYvAB4AbgYeDMNwUVErmacgCN4ABsesejQMw13buj4JBl+RJEmSJJWtufNg+S2iG7YTEieQR42Af50F7dvnltfEKTDiaPjsy6b5JH7utyvcfGHL6+jFc0n5so+TJElSJs4VFcd2IUnK5o6HYb+T44OdDFwN/nYCjNiu7W5q/f4HOPdauPgmWJJy43riKZ1vPwCrrtR03ZIlsMr20VNEk7cPAjhwd7jp3Obfw1lXwplXNA08k3rz+5C14X9jWv6+XpoIWx3U9D2FISy/LHz5TGluGm4N5xdSdvZJqnUeA+XNz0e5cs6nSmcbrj6OYaWR+LJzOXzX1UAXAttkrSjXcTx1LEoNvhIE0NDMd6sdi6SWK8O+3+Arba+u1BWoEmHSAo1BV54CjgB6h2H4szAM7ynjwCtdgBlEdU5dRpewapIkSZIkla+xz8H8BY2vEyfIt9oQrjs79xPuAEMGwmPXRyeeoekJ9zCE2x6Gx54vbP0lKRv7OEmSJGXiXFFxbBeSpGzOu67p68SNq4fuBRPvhpHbt+0N2Ut3g/NOhCdvin/a6MJF8KdL09OffQ2mzWh8nRifNhuS25evAE4/Cvb7SeO+qfsEAZx9XIvezv/ZdAicenj6jcEzZ8Hz/8svz1JyfiFlZ5+kWucxUN78fJQr53yqdLbh6uMYVlrZ/r6Jv2UhF6k5tsnqVq7jeOpYlMqxSCou+/6aZvCV1kkNuBIAbwG/B/qHYbhtGIbXh2H4fakqmKswDOeGYbj9j3VOXa4vdf0kSZIkSSpLz8WcIA4CuOp0aJdH8OABq8KtF0JdXWNeiZ9hCMf/LYpmLkltwT5OkiRJmThXVBzbhSQpk8nvw+tTGvvyxM3e++4S3cDeoUPp6rbFUHjiRujetTEtMdaMHgvfftd0+wlvpucRBHDNmS27QfaKP0G3LvHrevaA3YbnnleqE0ZBl87p6U9NyD/PUnF+IWVnn6Ra5zFQ3vx8lCvnfKp0tuHq4xhWGnddCj26Zw4SANG6Qi8JycfaSr1glRWbX/r3jX6qOtkma0O5juNxY1EiH8ciqXjKsO+f1gE+YVHaMo3Fi4BPgI9//KkCMfhK6yQCrnwOXAgMCcNwSBiGF4Rh+FlpqyZJkiRJkopu4juNvydOsu22NayzRv55brcZnHpY44m05BNqUz6Ey/6bf96S1BL2cZIkScrEuaLi2C4kSZnc92R62jLdohu/y8HgAVFdUp/SuWhxFIAl2auTG39PjHc7bB7l0RLLLgM/37VpmYn8fjq8dU86XK4HjNwu/f28PiX/PEvF+YWUnX2Sap3HQHnz81GunPOp0tmGq49jWGnsuQO8Pga2HNr4vpK/9BwEsPeO8M0L0DCpcEsi72Sv3Akfjst9UXWyTdaGch3HU8eihJaOHY5FUsuUYd+/84CA1ZmatvTj/fcIJ6/2f4sKxuAr+fseuAHYHugfhuGpYRhmCCcmSZIkSZKq0sdfpJ/o2mWr1ud75tGw7lrR76lRz8+6CmbOan0ZktQc+zhJkiRl4lxRcWwXkqRMXpnU+Hvixu4DfhrdnF0ufrE7DFk7/Ubx51OefDrlg/R9R2ybX5k7bh6fvsE6+eWXbOuNmr4OQ5j6aevzbWvOL6Ts7JNU6zwGypufj3LlnE+VzjZcfRzDSqffijD+33D6kVCX9LXXxDEw5jEYsic8NaE09VPtsU1Wv3Idx+PGonwDpTgWSS1j31/zDL7Scq8A+wJ9wjA8PAzDJ8Mw9YqrJEmSJEmqCV99k542tAAno9u3h2vPjD9R/v0PcMY/W1+GJDXHPk6SJEmZOFdUHNuFJCmTye+n9+M7DStNXbI5eI+mr8MQ/vd207RZs9Pfy8aD8ysvcfN9qvpWPFU1Yb21G39P1PeLr1qfb1tzfiFlZ5+kWucxUN78fJQr53yqdLbh6uMYVlp1dXDmMfDkjbBSr6aBcsMQPp0O2x8Kf7gYFi8uXT1VO2yT1a1cx/G4sShfjkVSy9n317T2pa5ApQnD8MFS10FSmTr0j6WuQX6CAK7/a6lrIUmSqonzItWSufPS01ZYrjB5bzoEjtgHrrkjPer5tXfAsb+AtVcrTFkqLftNlSv7OEmSJGXiXFFxbBeSpExmfJueVo799uZDGn9PjDPTv266zXez0/frled4169PfHqvnvnll6xnj/S07+e0Pt+25vxCys4+qZHX22qTx0B58/NRrpzzqdLZhquPY1h52HJDeOMeOOzPcPdjUdtPHAcNDXDBDfD4S3DLBbBm/9LWVbXBNlmdynUcjxuL8uVYJOXPvr8mGXxFkgrlpnsKF1GwrYShF+8kSVLhOS9SrevUsXB5nXM83PkofPt90/QlDXDSBfDAVYUrS6Vjv6lKYh8nSZKkTJwrKo7tQpIE0ZM8U3Xv2vb1aE7fXulp36XUffbc9G2WNORXXpel4tML8bfp0jk9beGi1udbDpxfSI3skxp5va02eQyUNz8ftYZzPlU623BlcwwrHz2Whrsuhatvg5MuhPkLovRE8IJX3oIN9oZ//B4O36e0dVVtsE3WhnIYx+PGonw5FkmtY99fc+pKXYFKFATBkCAITo9bSlyvLTPUa3Ap6yXVnDCsnEWSJKmYSj3XcV6kttA15oT0rO/T0/K1XA/4yzGN7TRxA14YwsPPwLjnC1eWSq/UfaH9plLZx0mSJCkT54qKY7uQJGXSsUN62g8FvHm8UOK+SJX6Rf7OMTfefzkzv/LqMty+GXfDekvNnJWe1qECn9Xn/ELKzj4pXamvoXm9rW15DJQ3Px/lyjmfKp1tuPo4hpWf3+wHE26HQWs2HgtBEC1z5sGvz4S9j4dvYv4mUjHYJqtHuY7jcWNRvhyLpMKw768ZBl/Jz/rAmcAZMUspDSa+XvuWsE5S7UkMmJWwSJIkFVOp5zrOi9QWll0mPe3djwtbxpH7weAB0e+J9po48X78ubB4cWHLU+mUui+031Qq+zhJkiRl4lxRcWwXkqRMll06PW3KB21fj+Z8Mi09bZluTV/HPQ30i6/yK2/JksbfC/0l/K++SU8rxM30bc35hZSdfVK6Ul9D83pb2/IYKG9+PsqVcz5VOttw9XEMK0/1a8KEO+A3P2/6t0wcC/c8DuvtCU+8WLo6qrbYJqtDuY7jcWNRvhyLpMKx768JBl9pvSBpKbV5Sb8n12uj0lRHVSkMYc7cKCrdd7ONvp8q7okEPrlAkiTVIudFqhVr9Etvw09NKGwZdXVw6R+aRj1PeOcjOPfawpan0rDfVDmyj5MkSVImzhUVx3YhScpk5T7pY8RDT5emLtkk3wybqG//vk236d83/b3k+5TxufNh7x1hrx2in4nfO3fKL79kb77b+Huivn2Wb32+bc35hZSdfVJTXm+rPR4D5c3PR7lyzqdKZxuuPo5h5atTR7jydBhzaRTsN/G+E194/uIr2OkIOOVCWLSotHVVbbBNVr5yHcfjxqJ8z2U4FkmFZd9f9Qy+0nrhj0s5SP48k+u1ZgnqomowfwGMfQ7+cDHs8itYbUfovD502wiWHwY9NoX268Kym8GaO8Nex8E5V8Mjz8C8+aWufdt7/xG4/I+w8xaNAyVkf0JBtgt7bbFIkiQVg/Mi1ZJ1Vm/8PdHe73y08CfKtt00OtkdhulRz8+9Fv43ubDlqW3Zb6pc2cdJkiQpE+eKimO7kCRlstmQxt8TffatD8GMmKdilsqChfCv0U3PywYBDFm76XYDV2u6PgyjJxnmc960e1e485L0Zelu+b2HZPc92fR1EMCqK7U+37bm/ELKzj6pkdfbapPHQHnz81GunPOp0tmGq49jWPnbYwd4fQxsvVHTuX8QQEMDXPxv2Gx/eOfD0tZTtcM2WbnKdRxPHYsSHIuk8mHfX7Xal7oCVSCAsgm+0jND+jJtWgul2+bg+Ih3H44rz8nE1E/gopvglgfhu9nZt21ogFnfR8vUT+Hux6L07l1hn53goBHR5LAWrN4Pjj4gWj74FC64PropA9Iv5iUmymuvCpuuV7IqS5IkFYXzItWSbTaBy29umjb96yjtxEMKW9ZFv4OHnokCZSYEASxcBPudDC/fDst0L2yZahv2mypX9nGSJEnKxLmi4tguJEmZbL0hXPKfpmk/zIVfnwljLitJldL87u8wbUb6l/R3HNb09dYbwb/vbZo241u47L9w/EHFrWOuPvgUnvtf+nvZYJ3S1Kc1nF9I2dknNfJ6W23yGChvfj7KlXM+VTrbcPVxDKsMK/eBJ2+Cs6+Cs6+Ovt8GjXP+/70NG+4Dfz8FfrNfSauqGmGbrEzlOo7HjUXlxrFIsu+vUkFo5OwWC4LgYOBGoqArQfLPMAzblbBedwD70DQYTADMD8OwS2lq1XpBEEwC6lPT6+vrmTRpUglqlIdKCb7ywxw47RK46nZYvLhw+W42BC4+FTZfv3B5VorxL8Nex8F3P0SvExftEj+P3h8u+2Np6yhJktQWnBepWn03G/psHZ34TghDWKozPH5D06d5FsI5V8OfL296/CR+Dt8YHrwqKjvZl1/DisMbT24ntl/yVmHrpsKy31Q5sI+TJElSJs4VFcd2IUnKZNEi6Ldd9EWlhEQffPjecNUZUFdXuvqdew386bL0J4h26wLTn4YuSzWmf/EVrLJ90yeMJsa7V+6AddZou3pnssOh8MRL6ePdw9fATluUtm4t5fxCys4+KTuvt1U/j4Hy5uejXDnnU6WzDVcfx7DK89xrcMAp8On09PM7QQA/HQ7X/xWWXzZ937pB6X/HaU9Br55tU3dVJ9tk5SjXcTx1LEoEdEioqyv9OO5YJDVVpL5/0KBBTJ48Oa7EyWEYDirGW6l1JbxiqUIKgmBHYE+aBl6RcjflAxi6TxSVr5CBVwBenAjDDogGjlnfFzbvcrfNJnDnPxpfp0bykyRJqhXOi1StlukOe+/Y9EJrEMC8+bDLr+C+Jwpb3qmHw6A1G8tJPvH+1ATY7UiYPaewZao07DdVDuzjJEmSlIlzRcWxXUiSMunQAX69b+MYkdxnX3cXbHUQvPlu29dr2gzY57fRze7JEvU7cr+mgVcA+vaCn2wdP95teSA8/HTx653NqRc1veE9YZlusN2mpalTazi/kLKzT8rO623Vz2OgvPn5KFfO+VTpbMPVxzGs8mwxFN64J/5YDEN44ClYbw8Y+1zp6qjaYpusHOU6jseNRckypbcVxyIpnX1/1QjCUneyZSAIguHA8Bbssj6wB1GgkyDl518KXsHsOgPrAjsD7VPqwo+/TwvDcKU2rlfBBEEwCahPTa+vr2fSpEklqFEetjk4mvyk+nAcrFoGH83EKbDdL+Gb74pf1hr9YOx1sHq/lu975j/T03osDb8d1fp6FdvIo+H+8enRx3xygiRJqjXOi1SNXn8bNspw03gQwIht4aRDYMsNC1PexCmw6X6waHF8eWv0g9svgg1+/FfaJ5dUNvtNlZp9nCRJkjJxrqg4tgtJUibz5sOgEfDxF9Hr5D4boid1jtwOfvNz2H6z6HWxvPsRXH07/OtOmDu/sS4JYQi9loPJ98NyPdL3f+H16MtWqcIwqve+u8CvfgZbDoX27Yv2Npr4/Es4+uzofHJqnYIAjjsQ/vH7tqlLoTm/kLKzT2qe19uqm8dAefPzUa6c86nS2Yarj2NY5br2DjjxfJi3oDEtcWwGARx/EJx3AnTsGKXVDUo/NqY9Bb16tm29Vb1sk+WvXMfx+Qsbx6KGhvR89t/NsUgqVwXs+wcNGsTkyZPjSpkchuGgYr6NWmXwFSAIgjOAM2gMWJLTbhnSS/UHTQ4CQ8rvr4VhuFFJalUABl8pss+/hA33gS9nxq8Pgija3I7DYMN6WLM/LN0Vlu4Gi5fAD3OjPKZ8GJ1cuH88fPBp9jJXWRFeug36rNCyugZpzQD694WPHmtZPqXwyDPwk9948U6SJMl5karVkX+Ba+5oevIbmv7ea7koovHA1aL/Zbp3jf4n3GxIy8u75nY48qymN6Yn/96uHYwaAb8/PPr/zYvnlct+U+XAPk6SJEmZOFdUHNuFJCmT8S/DzkdE9xxBegCWRP/cswfssDkM3wiG1kdPAu2yVP7lfvIFvPFudP/WI8/C5KmN5SfKTb3BfcylMHL7zHkecTpcf1f28W6pTjCgf3SvVLcu8LcTYJW++b+PVFM/gRcnwn1PRsvCRfGBZLp0hikPwsp9Cld2W3N+IWVnn5Sd19uqn8dAefPzUa6c86nS2Yarj2NY5Xp7Kux3Mrz5bvrfKghg3QFwy4VQv6aBLtQ2bJPlr1zH8dlzYPTYxvRkiQDmjkVSeSpQ32/wlbZn8BWaBF+pZIkPMjX4Sgj8MwzD40tSqwIw+EoRhSEMHwXPvBq/fuR28PdTooArLfHos3DaJfBabIce2W5TeOyGpoNGcyo5+MqChdBz88ZIZV68kyRJtcp5karV3Hkw7IDo5u24E+8Jqf8D7TYc7rsivzKPPxcuvzn+xvTk8gf0j57i6cXzymS/qXJgHydJkqRMnCsqju1CkpTNrQ/Cgac2vs51nOizfHTzeO+eUXCW7l2jm7nbt4d2ddFTQhcsjG78njUbpn8dLR99Hj1cKrm81DJS63D+iXDKYdnfx/wFsNVB8Oqk9LrG3ZMZBDDhjiiYTGtcfVs05n0yDebOTy8zLpDM+SfCyYe2rtxSc34hZWeflJ3X26qfx0B58/NRrpzzqdLZhquPY1hlW7AQTroArrw1/QvPAJ07RX+34/9moAu1DdtkeSvXcTwMoVMHmL8wff+47+U6FknlpQB9v8FX2l5dqStQZsIWLIXIo5ALNAZeSXVfrn8A1Zgbx2QOvHLub+Gef7Y88ArAzlvCy7dHEXIzeeIluP3hluddqTp1hM3Xjz/BIkmSVEucF6ladVkqOnm+5irpJ9yDoHEJw6ZLa1x6Gvxyz6ZlpJ7UDsPownmiLqo89psqB/ZxkiRJysS5ouLYLiRJ2ey/G9xxMXRdKnqdfLNptnFi2gx4+U24fzzcdE904/f518M518BZV8Hf/gUX/xv+eQv893547IXoaYKz56SPN4kykstNjCEX/a75wCsQ3RD7yLXRU01Tx5Xk9xF3A3xrTP0U3v4A5sxr+r6S/27JZe69Y3Xc8O78QsrOPik7r7dVP4+B8ubno1w551Olsw1XH8ewytapI/zzT3DP5bDcMk2PDYiC6/z2vOh3jw21BdtkeSvXcRziA68ktnEsksqbfX9FMvhKuiDHpbX7F2NJCJN+PhuG4eN5/B1U7ZYsgb9eE7/u2F/AH37VuvzbtYO/nQh/+k3mbc69tnVlVJrWRgyUJEmqFs6LVK1W6Qsv3ArbbJJ+Yiwh+QR3IU50X//XKPBlXHnFOJmu0rDfVDmwj5MkSVImzhUVx3YhScpm753gpdtgw0GZbyZNvXE87sb25pZs+SQLQ+jXBx65Bk44OPf30bMHPHEjHHdgfL7FlOnG+uQvBRywG9xyYdvVqdicX0jZ2Sdl5/W26ucxUN78fJQr53yqdLbh6uMYVvlGbAevj4HhG6efL/JLzioF22T5KtdxvJRjuWORVBj2/RXF4CvpwhyX1u5fzAWiYCzvA/vl/ZdQdRv3PHz4WXr6yn3gvBMLV85fjoGN141f9+a78NrkwpVV7tYfWOoaSJIklQfnRapmiYutV/wZevfMHNm8kCfCzz0B7r8S+vYqflkqDftNlQv7OEmSJGXiXFFxbBeSpGzWWQNevh2uPxtW7p15nGgukEpzSyKPZMnpnTvBKYfC5Pthh2Etfx+dO8Elf4AJt8Me26fXuZgy/b2W7gb//hv89wJo37749WhLzi+k7OyTMvN6W23wGChvfj7KlXM+VTrbcPVxDKt8K/WOjsu/HAPtkr5O67GhUrFNlq9yHcfjAqA4FkmVxb6/Yhh8pToEKcsC4FJg0zAMp5WyYipj9zwen370/tBlqcKVU1cHfzk68/qxzxWurHK3Rr/G3x0QJUlSLXNepFpw5H7w0Ti47izYfjPo0D79iZuFPOG923B49yE4/0RYdaX0/Esd+VytY7+pcmMfJ0mSpEycKyqO7UKSlM0v94IPxsIdF8O2mzQ+5S814EprJAdbSSwr9YIzjoIPx8L5J0HXLq0rY4N6GHMZTH0ULj4VdhwGyy9b3JvfU99X507wq5/Bm/fAQSOKV245cH4hZWeflM7rbbXFY6C8+fkoV875VOlsw9XHMayyBQH8+UgY/2/o16ew556kfNgmy1u5juPJi2ORVHns+ytCELZFZKsyFwTB8cBvW7BLN6AnEBIFO0n++UnBK5hdCPwAfAtMBl4A7gnD8Ps2rkfRBEEwCahPTa+vr2fSpEklqFEetjkYnpqQnv7huGgyVArrjoS33ktPf+MeWHetwpYVhtB/e/h0evq6PbaHuy/PLZ8grRlA/77w0WOtq19b+fJrWHF407RjDoDL/lia+kiSJJWK8yLVornz4KU34O0P4N2P4KtvYM5cGDIQzjq2sGWFITz6LIweC488C198lb5NEMCStwpbrorHflPlzj5OkiRJmThXVBzbhSQpm5mz4MGnouWF1+GzL7Nvn3ozaqb7Idu3gw3WgW02gRHbwrAN2uZG1pmzYMY38P0PMHhA6x+KdcqFcNFNja+7dIbNhsDOW8Bhe8NyPVqXf6VyfiHlppb7JK+3CWr7GKgEfj5qjnM+VTrbcPVyDKs8382GI06PjpFUQQDTnoJePdu+XqpdtsnyV+7juGORVHly7PsHDRrE5MmT43KYHIbhoGJXsxYZfCUPQRAcDNxITPCVMAzblbJu1cjgK0XQ0ABdhsKChenrvp8A3bsWvswjTofrRqenDx4Ab96bWx6VHnwF4KTzoSGp391qQ9hrx/TtJr0Hg0dmz+ute2HQgMLWT5Ikqa04L5JyU4hj4O2p8L+34fUp8P4nMG0GTP86+p9UlSPXfhPsO1U57OMkSZKUiXNFxbFdSFJtmjkLXp0U3dD++ZdRMJZpM2DOPJg3H+YvjH7/LOahUMlevROGVsA9qLmMd+edEN3U37tn9JCt9u3bpm7VyPmFlF219Unep6CWqrZjoBrl8hldfQZssq6fTy1zzqdKZxuuPs4xSieXv/1lp8Fvfg4dOrRNnVS7cm2Pq6wIP9naNlmpynkc9/8pqTRaOB8x+Erbs7eTys3sOXDfEzDuBZg4Jbph4PsfonXdu0bBRgYPgB02hz22zy9QyjffxQdeKaZN14sPvjLjm7atR6lddGqpayBJklQenBdJbWedNaLlgJ+WuiZqDftNKZ59nCRJkjJxrqg4tgtJqjw9e8BOW0RLJrncqNqpY2HrVUo/3cYv/JcT5xeqdZXUJ3m9TcVQScdArdpyqJ+RWs85nyqdbbjyOMcone02NciFysd2m9oXqLTjuP9PSaXhfKSkDL4ilYvZc+D86+CS/0RPY4kzc1a0vDYZ/nNvFHjl6P3hz0dCl6VyL2ve/MzrPvo8ikRXaJusC1sMTU/v0jl++20OhqcmNJ/vx19AUJ+efsZRcOYxcOcjsO+J8ftefCqccHDzZeRi4G7wzofp6b8dBf/4fWHKkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJBWXwldYLS10BVYG33oORx8AHn7Zsv9lz4Lzr4J4n4KGrYbWVc9uvc6fM60Y/WpzgK+utDc/+t/D5NmfEdtBjaZj1ffq60WMLE3xl4pT4wCsAh+zR+vwlSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJR1JW6AlUg+HGR8jPhTdjywJYHXkk25QPY5mD48uvctl9uGejYIX7dP2+Bjz7Pvy7lplNH2Hfn+HUvvA5ffNX6Mm57KD59/YEwZGDr85ckSZIkSZIkSZIkSZIkSZIkSZIkSZIkSUVh8JX8TAeeAp7+8edTSa+l3L3zIezyK/huduvz+mQaHPqn3LZt1w7WWT1+3TffwW6/iQK6VItRI+PTwxDGjGt9/nc8Gp9+yJ6tz1uSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJBVN+1JXoBKFYfgokCHagtQCv/hdFOwkWaeOsNeOsOtWUL8GrLAszJ4DX8yAcc/DrQ/BZ9Pj83voaXjsedhhWPNl77IVTHwnft3kqbDhz+DYX8AR+8Aaq7TsfZWbLYbCGv1g6qfp60aPhWN+kX/eL78BH8Tk26E9/OKn+ecrSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKKzuArUinNnNX09S/3hLOPg5V6p287aADsOAxOPxKOOQf+fU98nlfellvwlcP2ggtvgIaG+PVz58H510XL0HrYfZsoIMxGg6Fdu+bzb60xl8LCRU3TVhyevt3KfWDC7enp3bo0fX3QCDjzivTtnnkVvpoJvXrmV8/bH45P/+k2sPyy+eUpSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZLaRF2pKyAJWKoz3HEx3HBOfOCVZN26wg1/hZ23jF//8DOwcGHzZQ5YFQ7dK7f6vTYZ/nIlbLY/9BwGI46Gi26ElybCokXN75+P5XpAnxWaLnHa1Q7qWO0AACAASURBVKVv12eF6O+UbNRICIL0/Rsa4O7H8qtjGMIdj8avO2SP/PKUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEltxuArUqkFAdz5D/jZLrnvU1cHl58WH0xk/gJ4+c3c8rnodzBw9dzLBfhuNtz/JJx8YRSMZZlNYeuD4A8XR+kzZ7Usv7ay2sqwxQbx60aPzS/P516Dz6anp/fqCT/ZOr88JUmSJEmSJEmSJEmSJEmSJEmSJEmSJElSmzH4ilRqo0bCbsNbvt+AVWG9teLXTXo/tzyW7gbjroO1V2t5+Qnz5sMzr8J518GIo2H5YTBwNzjidLjtIZjxTf55F9qokfHp4yfAN3kEjbn94fj0A38K7du3PD9JkiRJkiRJkiRJkiRJkiRJkiRJkiRJktSmDL4ildqph+W/78brxqd/9HnueazcBybcAb/cE4Ig/7oke+dDuG407H8y9NkadjgUbrobFiwsTP752ncX6NwpPX3xYrjn8Zbl1dAAo8fGrztkz5bXTZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIktbn2pa5AKQRBcEOW1WEYhlmjYTSzf7lp9v2ohNZbG9ZZI//9+/eNT5/xbcvy6d4VbjgHjjsQzr8exoyDhYvyr1eyhgZ4/MVoOe0SOO1XcNT+UFeC2E/LdIcR28Idj6SvGz0WDt0797zGvwzTv05PH1oP666Vfx0lSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVKbqcngK8AhQBiTHvyY3lywkkz7l5tc349KZdtNWrf/skvHp8+dn19+668Dt/4dvv4W7nwU7nk8CjJSqEAs02bAsefAf+6D0f+AVTIEjymmUSPjg688/iJ8NzsK0JKL2x6OTz9kj/zrJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS2lRdqStQYkHK0tr9y21RuVtvrdbtv1Sn+PT5C1qX7/LLwpH7waP/gpnPw8PXwKmHw2ZDoGOH1uUNMOFN2OTn8PbU1ufVUjtvAb17pqcvXAT3PZlbHosXw5hx6ekdO8ABP21d/SRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUpup9eArYcrS2v3LbVG5W3Wl1u1fl+EQbmhoXb7JunWFXbaC806EF26F716GZ/4fnH8SjNwOesUEMsnFlzNhpyNg5qzC1TUX7dvD/rvFrxv9aG55jHs+vt67bws9e+RfN0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmS1Kbal7oCJRYk/Z5PsJKg+U1KxuArlWCF5Updg5br3Am23DBaEt7/GMZPgCdegsdegBnf5JbXZ9PhqLPg9ouLU9dMRo2AS/6Tnj72efhhThRwJpvbH4lPP2SP1tdNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiS1mbpSV6DEwqSltfuX26JKsFSnUtegMNbsD4fvA7dcCNOfhvH/hiP3g+7NBDEBuOMReOWt4tcx2Qb1sO5a6enzF8ADT2Xfd8FCuOfx9PTePWGXLQtTP0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmS1CZqPfiKVFrt25e6BoVXVwfDN4YrT4fPx8P5J8Ey3bPvc/XtbVK1Jg7aPT599Njs+z3yDHw3Oz39wN2r8/OUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKmK1WqkgE+AsIT7S7Whe1f43WFwwG6w8xEweWr8dvePhzCEIGi7uh04Av5wCSxZ0jT94Wdg7jzoslT8frc/Ep9+yJ6FrZ8kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSSq6mgy+EobhqqXcX6o5K/eBh66G+hFRYJNUX82EDz6FNVZpuzqtuALssDk8+mzT9LnzogAse++Uvs+8+XD/k+npGw2GwQOKU09JkiRJkiRJkiRJkiRJkiRJkiRJkiRJklQ0NRl8RappZ/4TPvoiPf3wvWHLDYtXbv+V4Nf7wj/+Hb9+ahsHXwEYNSI9+ArAXePig688MB5+mJuefsgeBa+aJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkqPoOvSLXmsRfhudfS0wetUdzgKwAjt8scfOXb74tbdpw9d4DuXWH2nKbpD4yHBQuhU8em6bc9nJ5Hp46w/0+KVkVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJklQ8daWugKQ2ttwy8ekffFb8stdeNfO6xYuLX36qpTrDPjulp8+eA48+m5720NPp247YFpbrUZz6SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkojL4ilRrVu0bn/7SG8Uvu2eWICXduhS//DijRsan3zWu6et7H4f5C9K3O2SPwtdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiS1CYOvSLVm/YHx6W+8C19+Xdyyf5ibeV2f5YtbdibDN4b+MQFp7nsSFi1qfH37I+nbrLgC7Lxl8eomSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKKyuArUq0ZvnF8+pIlcPMDxS37rfcyr1tr1eKWnUkQwIG7p6fP+h4ee6Hx97HPpW9z4O7Qrl1x6ydJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorG4CtSrVljFRiydvy6C2+AOXOLV/Zd4+LT11kdll2meOU2Z9TI+PREfceMg4WL0tcfskfx6iRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorO4CtlLgiC5YIg2D8IgouCIBgdBMGjQRA8EATBjUEQ/C4Igk1LXUdVoCN+Fp8+/Ws4+cLilPnhZ3Dd6Ph1uw0vTpm5WmtV2HS99PR7HofFi+H2R9LXbbIu1K9Z9KpJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqTiaV/qClSzIAjqgLWB3sCUMAynt2DflYBzgJ8DHZvZ9lPgCuCKMAzn5l9j1YzD9oZzroFpM9LXXX07rNEPTj60cOV9+x3seSzMmZe+LgjgVxmCwbSlUSPhpTeaps2cBaPHwhMvpW9/yJ5tUy9JkiRJkiRJkiRJkiRJkiRJkiRJkiRJklQ0daWuQLUJInsGQfAA8C3wFvA4MKwFeewMvAEcBHQCgmaWVYDzgClBEOxauHejqtW5E1zy+8zrT/k7HHUWzJvf+rJenAgb7wsT34lff+DuMGDV3PKqi+my5i3Iu2pN7LcrdOyQnn7cubB4cdO0Th2j7SVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUkUz+EoBBUGwC/AuMBrYFehOFBylJXnsANwLLPvjvmGOSwCsDDwQBMFfCvB2VO323RUO3iPz+qtug4G7RT9nz2lZ3g0N8ORLsM9vYdgBMPXT+O1WXAH+fkru+Xbvmp721UyY9F7L6hdnuR6w2/D09BnfpKeN3A6WXab1ZUqSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpJJqX+oKVIMgCDoC/wIOpGmwlZAWBF8JgqAXcAvQ8cd9/29VM7smArAktv1TEATLhWF4bK5lq0ZdfQZ8Mi0KlBLnk2lw1Flw0gWw/WYwbH2oXwP694Wlu0HnTrBoEcyeC59Og3c+gglvwrgX4oOWJOveFe65HHr1zL2+q/aFie+kp+9xLJx9HGywTlSvJUugU0dYYbnc8wYYNQLufqz57X65Z8vylSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJZcngK60UBEE34GFgGFHgkzD7HlmdDSxP00AqyeLyDpK2SwRhCYCjgiD4LAzD81tRH1W7zp3gwatg3xPhgfGZt5s3P1qfbZuWWLkP3PtPGFrfsv02XS8++Mr7n8D+JzdNO+MoOPOYluW/23BYfln4+tvM2/TtBTsOa1m+kiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpLNWVugKVLAiCdsBdwBY0DbySHBAl17z6AIcQH3glJD3v1IArpKQFwNlBEAxtST1Ug5bqHAVCOfNo6FDkeEzt2sFhe8Ob97Q88ArAz3ctfJ2SdejQfBkHjYjehyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJqngGX2mdPwI70hgAJTUoSkscBnT48ffUwCuJtM+B64HzgJuAt2PKS37dHriihfVQLaqrgzOOhldHw05bFD7/du1g1EiY8gBcdzb0WDq/fLbbDLbZpLB1SzVqRPb1h+xR3PIlSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVKbaV/qClSqIAgGEAVfSQ16QkraAuBV4LNmshxF04AtyXk0AKcDfwvDsCGlHtsANwKr0DQATGL/TYIg2CkMw7E5vTHVtnXXgkf/Ba+8BdfeCaMfhW+/zy+vIIDN14d9doKf7Qwr9ylMHW+9ELY/FCZPLUx+qTZZD9ZZHd7+IH3dpuvBwNWLU64kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSWpzBl/J32lABxoDnkDTgClfAGcD/w3DcE62jIIgGAIMSMkrkU8InBeG4Tlx+4ZhOD4Igo2BCTQNwJLscMDgK6U0/t/FyfeQPaOl0DYaHC1XnQ4vvwnP/w8mvgPvfwKffxkFZJm3INp26a6wTHdYphus3g+GrA3rD4RN1oU+KxS+bn1WgNfHwI13w71PRPWaOQsaGqB7V1h+WRhaD9ttln8Zkx8oXH0lSZIkSZIkSZIkSZIkSZIk6f+zd+dhtmV1fbg/6ww13aH79sAoYDc0yqygCAmTEwgO/AQ0MRrUoOIUJYI/NYhKUBGjRnB8UIghmChRiSAaRaQBFRSUITLZTDJIA933dt9b0xlX/qiqvlWnhr5Vt26dGt73ec5TZ699zlrf3f101957rfpsAAAAAGDfKrXW2/8Ua5RSTiW5MefDa1ZCUlZ+vj7Jk2qtZy+wvx9P8uMjfaz0+/Ek19Za+7fTx8OS/NVGu5IsJrmi1rp4IfXsN6WUdye572j7fe9737z73e8eQ0UAAAAAAAAAAAAAAAAAAAAAu+9+97tf3vOe92y06z211vvtdT1HQWPcBRxQT0rSXn6/OnglSW5I8uQLDV5Z9pUbtK30+9LbC15JklrrW5K8elUdZdXuySSP3EY9AAAAAAAAAAAAAAAAAAAAAHDoCV/Zmcdt0l6T/HCt9dYL7aiUckWSBy9/dyP/Yxt1vWiLfQ/fRj8AAAAAAAAAAAAAAAAAAAAAcOgJX9mZf5HzYSmrQ1M+UGv939vs60ty/t9DGenvH2ut/7iNvt6Q5PQGdSXJ/bZZFwAAAAAAAAAAAAAAAAAAAAAcasJXtqmUcirJXVY2V/2sSV6zgy6/eKNhlvv7k+10VGsdJHnLqrpW93fNDmoDAAAAAAAAAAAAAAAAAAAAgENL+Mr23WOLfW/ZQX+PyVLQykb+fAf9/d+R7ZW+77yDvgAAAAAAAAAAAAAAAAAAAADg0BK+sn1bhZiMBp9sqZRydZL7rGxmbQhLP8n126psyac2ab9sB30BAAAAAAAAAAAAAAAAAAAAwKElfGX7ZrbYd2abfT1qg7aVEJa/r7XOb7O/JDm3SfvUDvoCAAAAAAAAAAAAAAAAAAAAgENL+Mr2bRVicss2+9oofGXF9dvsa8X0Ju1lh/0BAAAAAAAAAAAAAAAAAAAAwKEkfGX7zm2xr7fNvh6zxb7rt9nXiis2ae/ssD8AAAAAAAAAAAAAAAAAAAAAOJSEr2zfmS32nbzQTkopVyW5f5K63FRX7e4nedP2S0uyefjK/A77AwAAAAAAAAAAAAAAAAAAAIBDSfjK9m0VvnLXbfTz2CRl+f3qnzXJ39dadxqW8oCR7ZW+P7XD/gAAAAAAAAAAAAAAAAAAAADgUBK+sn0fzVJASlb9XPHAbfTzdVvs+/NtVbSslDKR5GFZX1dN8omd9AkAAAAAAAAAAAAAAAAAAAAAh5XwlW2qtZ5N8p5Ndn/VhfRRSrlLkq/M+pCUFa/dQWlJ8sgk0yvDjOx7/w77BAAAAAAAAAAAAAAAAAAAAIBDSfjKzrw5a8NN6vL215RS7noB3/+xJK3l9yVrQ1hmk/z1Duv6kS32vXOHfQIAAAAAAAAAAAAAAAAAAADAoSR8ZWdeu+r96hCW6SS/Wkop2UQp5auSfHvWBq6s9FOTvKbW2t9uQaWUL0vyJTkfBDPq+u32CQAAAAAAAAAAAAAAAAAAAACHmfCVnXllkk8uv18JO1n5+VVJfqeUcvnol0op35jkd1Y3bdD3K7ZbTCnl/kl+N2sDXVa//8da64e22y8AAAAAAAAAAAAAAAAAAAAAHGatcRdwENVa+6WUFyf58ZwPOVkdwPKUJI8vpfxJkg8muSzJo5PcZ+RzydqQlE8n+aPt1FJK+YokL01yaqTf1TW9bDt9AgAAAAAAAAAAAAAAAAAAAMBRIHxl516U5DuS3CnnQ09WB6scz1IIy4qNwlZW76tJfqPW2r+9gUsp907ypUn+bZIvytaBLrNJXnxBRwQAAAAAAAAAAAAAAAAAAAAAR4jwlR2qtZ4ppXxbktdkbdhJWbVdRr820r76e7ck+YWtxiylfEeSFyaZ2GS8bND+s7XWm7fqFwAAAAAAAAAAAAAAAAAAAACOosa4CzjIaq1/kuSXcj7oZKNwldWvkvWBLCvf/dFa6y23M+SJJJOr+tko6KWu+vm3SZ6/rYMCAAAAAAAAAAAAAAAAAAAAgCNC+MrFe0aSl2d9+EnZ4LXa6pCUV9Vaf20bY24W6LJ67Pcn+epa63Ab/QIAAAAAAAAAAAAAAAAAAADAkSF85SLVJU9N8mNJBlkKPqkX8MryZ1+X5Bt2MPRo6MrqPl+d5F/UWm/aQb8AAAAAAAAAAAAAAAAAAAAAcCQIX9kltdafTPLQJH+a88EoZYOPrrT3kjw/yRNqrYs7GTLrQ1fmkzyr1vrEWustO+gTAAAAAAAAAAAAAAAAAAAAAI6M1rgLOExqre9I8vhSynVJnpLkkUnuk+QOSSaSnE3yviR/luSltdaPXeSQK+Euc0l+Jcl/rrXefJF9AgAAAAAAAAAAAAAAAAAAAMCRIHzlEqi13pDk+cuvS6Gf5KNJrk/ymiSvrbXOXaKxAAAAAAAAAAAAAAAAAAAAAOBQEr5ysLwsyf9M8slaax13MQAAAAAAAAAAAAAAAAAAAABwkAlfOUBqrZ8Zdw0AAAAAAAAAAAAAAAAAAAAAcFg0xl0AAAAAAAAAAAAAAAAAAAAAAMA4CF8BAAAAAAAAAAAAAAAAAAAAAI4k4SsAAAAAAAAAAAAAAAAAAAAAwJEkfAUAAAAAAAAAAAAAAAAAAAAAOJKErwAAAAAAAAAAAAAAAAAAAAAAR5LwFQAAAAAAAAAAAAAAAAAAAADgSGqNu4DDqpTSSHL/JNck+ewkVyeZSTKdZCJJ2aNSaq31aXs0FgAAAAAAAAAAAAAAAAAAAAAcGMJXdlEp5XiSb0rypCQPz1LYyjiVJDWJ8BUAAAAAAAAAAAAAAAAAAAAAGCF8ZReUUiaS/EiSZ+V84EoZX0UAAAAAAAAAAAAAAAAAAAAAwO0RvnKRSimfneTVSe6btYErdRz1jBAAAwAAAAAAAAAAAAAAAAAAAACbEL5yEUop1yT56yR3yFLQyWjgyjjDT/ZD+AsAAAAAAAAAAAAAAAAAAAAA7FvCV3aolDKZ5I+S3DFLQScrYSdbBa4IRAEAAAAAAAAAAAAAAAAAAACAfUL4ys49O8l9snXoirAVAAAAAAAAAAAAAAAAAAAAANinhK/sQCnlZJL/kM2DV1aHrqzet5hkNsl8BLMAAAAAAAAAAAAAAAAAAAAAwFgJX9mZpyY5lqUAlc2CV0qSjyT57STXJ/m/tdZP71F9AAAAAAAAAAAAAAAAAAAAAMDtEL6yM1+1Qdvq0JXTSZ5Ra3353pUEAAAAAAAAAAAAAAAAAAAAAGyH8JVtKqU0kjwy58NWkrXBKx9L8pha64f3ujYAAAAAAAAAAAAAAAAAAAAA4MI1xl3AAXSPJNPL70vWBq8Mknyd4BUAAAAAAAAAAAAAAAAAAAAA2P+Er2zfNRu0rYSw/O9a69/ucT0AAAAAAAAAAAAAAAAAAAAAwA4IX9m+y7bY9zt7VgUAAAAAAAAAAAAAAAAAAAAAcFGEr2zfzBb73rpnVQAAAAAAAAAAAAAAAAAAAAAAF6U17gIOoM4W+27csyoAAAAAAAAAAAAAAAAAAAAOoFo7GfY/muHwUxkOPpM6PJtaZ5PaSdJPTU3JZEqZSspUSplMaVyZRvMuaTTvnEbzynEfAgCHiPCV7Tu7xb7hnlUBAAAAwL5T6zDDwccz7P/T8kTQp1PrudThuaR2k/ST1KRMpmRyeSJoKqV5ZRqNOy9PBN0ljeYV4z4UAAAAAFax+BcAAGD/Gw5Op9/9u9ThpzIcnklqN6VxKqVxRZrtz02r/bmXbOxaO+kt/J917RMzT7xkYwIAwEEzHNyYXuctGfTemUHvPRkObkxSL6LHdprte6bZflBa7QelOfHANBond6tcAI4Y4Svb9+Et9l2W5Oa9KgQAAACA8ap1mEHvXel33px+710Z9N6fpYCVi1Mal6fZfmBaEw9Kq/15abavu/hiAQAAALhgFv8CAAAcDLX20l14VboLf5Rh/4NbfrY0TqU9+ahMHvu3aTTvsLt1DOeycO7nkpQ17cJXAAA46upwPt3FP0l34TUZ9j+wes8u9N7NoPfeDHrvSze/m6SkNfHgtKcen/bUo1PK5C6MAcBRIXxl+z6UpJuknfW/2a+K8BUAAACAQ284+GQ683+Q3uKfpg5vWbVnNyaCkjo8k37njel33pgkaTTvkvb0EzIx9bg0mnfclTEAAAAAWMviXwAAgIOlO//qLM69JHV4Ohdy7VaHp9Nd+MN0F/44EzNPytTxb08pE5egspVaypafAgCAw6zWXjpzv53u/O+m1rmsP2ffrfPluqrvmn7379Lv/l0Wzv1CJqa/JlPHvilFID4AF0D4yjbVWgellL9O8pis/03/kCTv3/OiAAAAANgTw+EtWTz3a+kt/mmSYS7dRFDW9D0cfCKd2d9MZ/YlaU8+OpPHvy3N1t13cSwAAACAo8viXwAAgIOlDs9m/uzPpN/5y6y9hruQ67eapJvu/O9m0HtnZi776TSaV+1yhSW79fAWAAA4iPrdd2Xh7PMzHHwit3/OvtPwwrr8ndHvLfdX59Kd/510F16VqePfkcmZJ22zfwCOmsa4Czig/mST9kfvaRUAAAAA7Jnu4usye9M3prf4J0kGWTtps3ryZvUf0ezE6kmk1a+aZJhe5/rM3vzULJz71dTav4hxAAAAAOh335XZm5+aztxLU+tsNr43s2Kn9322ut9Tb1v8e/amr09n/g92dBwAAABHxXDwzzl3+mmrglc2uM5aZ3X7+c8Oeu/N7Olvz6D/8T2oHAAAjobu/Kszd+YZq4JXRs/ZR20WoLLRa/R7GxkZr85l8dwvZu7Ms1KHZ3dySAAcEcJXdua/J1n9ly0rv/2/vpQyPZ6SAAAAALhUFmd/Iwu3Pje1ns36pPyNJnM2+qOc23ut/v5GVk88DdKd/53Mnv62DAc37vi4AAAAAI4yi38BAAAOluHwbGbPfH/q4Macv45L1gerjNpojn9puw5vyvwtP5Dh4PSlKRoAAI6Q7vyrs3DuZ5P0lltGz89HH3S4+lVSGlek0bxrGq17ptm+T5rtB6XZfkCa7fum0boujeZdUhqXZW344mbzMyvjLX223/3bzJ759xkObt7NQwbgEGmNu4CDqNZ6YynlfyX5hqz9bXwyybOSPG8shQEAAACw6xZnX5LO3MuWtzZbpJWsn7RppzSuTKN5VUqZTspkSiaSMpFkmNR+anpJnU8dzmU4vCV1eDpJd5P+14837H8ws6e/O8dO/Zc0W/fY8TECAAAAHDXnF/8mG/9x3mb3fJKkkdI4df6eT5lIsnzPJ4PUunzPp84th6gMN+hj8/FWFv8eu/wX0mheuf2DAwAAOKQWzr5gOXhl4yCV89uNlHJiqeW2h6ysfK6MbNcMB5/M/Nnn5tjlv5hSNgvQBAAAttLvvj0L535ueWv1Ofro+Xo7zfbnptm6d5rte6fRujaNxlUpjStSSuOCxqq1ptZbMhx8MsP+xzPo35BB770Z9N6dpD9Sw8r7mmH/Q5m75Qdy/IoXp5TJnR8sAIeS8JWde3aSJydpL2+vnAH8cCnlf9da/+/YKgMAAABgV/QWX5/O3G9l86cTL00ElcZVaU08OM3Wdasmgi7f0ZjD4ZkM+x+7bSKo333rcihLsn4iKKnDz2TuzDNz/MqXpNG4bEdjAgAAABwlFv8CAAAcPP3u36XfeWM2u44rjaszOfPktCYemkbrXreFqNTaS7/7jvQW/zS9xdeu+l5d837QfXs6c/8tU8e/ZS8PCwAADoVaFzJ/9qezFEi/ft4jaac99Zi0Jx+R1sTDUhozFzVeKSWlnEqjcSpp3zfJY5fqGM6n1/nLdBdelUHvnVl//VAz7H84C2d/NjOXPeeiagDg8BG+skO11o+UUp6b5KdyfsVFTTKd5JWllEfVWv95bAUCAAAAcFGGw1uzcPbnV7WMLty6IhPTX5nW5CPTat9n18ZtNE6lMXEqrYkH3tbW7/5DuguvTG/xz7P2VtRKAMunsnDrf8qxUz+/rj8AAAAAzrP4FwAA4GDqzP32qq3VASrJ5Mw3ZvL401JKe933SmmnPfmFaU9+YQYz35D5W388w8E/rfn+yvvO3MvSnnpUmq1rL+mxAADAYdOdf2Xq4MacP88+P+/RnvrKTJ14+tJcySVWGjOZmH5sJqYfm17nLVk4+59Th58eqaumt/ja9Ke/Jq2JB13ymgA4OC7sESxs5meS/EXWrsSoSa5N8sZSynVjqQoAAACAi9adf0VqvTXnb/2sTLw0M3nsaTlx1e9l6vh37GrwymZaE/fPzGXPyfEr/2sarXtl7UKypfr63bemt/imS14LAAAAwEG2fvHviqXFvyeu/v3MXPZjaU99yUUHr2xlZfHv8St+OTOX/+eUxtVZf89nefFv952XrA4AAICDYDg4nX73bVk/f18yfeJZPNCxYwAAIABJREFUmTrxnRsGr4xqtu+Z41e8OM2JB2c0wGVJLwu3Pj+11o07AAAA1ql1mM78K7Lh+frJ/5iZy354T4JXRrUnH5bjV740zfZ9sjYQJklqFmd/Y89rAmB/a427gIOs1lpLKU9K8qYkD8jaxw5fm+RtpZQfqLW+ZFw1AgAAALB9tfbTnf+DrM/cncyxUy9Ia+IhY6mr2bo2x6/49czf+mPpd/5qXX2Lcy9Ne+qRY6kNAAAAYL/bfPFvI9MnfyQT048fS13tyYeleeVLM3/LD2bQe282Wvx7/IpfHkttAADsvrM3fd24S9iRkpITV71i3GVwRPW7b87aP5Zcej8x/TWZmHnitvoqjZkcu/wFmTv9PRn0b8hoCOag//50F16ZyZkn7eIRAADA4TXovSt1eHNGz9cnj3/b2OZeVjQal+XY5f8ls6e/I8PBx5Zbl8/9e+/KoP+JNFt3HWeJAOwjwlcuUq31bCnlcUlem+R+WRvAciLJi0sp/z7JC5O8qtZ683gqBQAAAOBC9btvS62zGZ0Imj75jLEFr6woZSIzlz0vc2e+N4Pee7JU49JE0LD/wQx6N6TZvm6sNQIAAADsRxb/AgCwH9TBjTkf9nBw1DUhgbC3lubGR5SpTB7/jh31V8pUZi7/ycze/LSRtQFL/212Zn8z7akvS6NxcqclAwDAkdHvvHldW6N550zO/JsxVLNeaRzL9GU/mrnTT1+3r9+5Ps3WN46hKgD2I+ErO1BKuXaD5m9N8j+S3CtrA1hKkgcm+c3l734kyQeS/HOSW5LMJeknGV6qemut/+lS9Q0AAABwGPW7f7tqa+lWT6N1TSamv2o8BY0opZ3pk8/O7M1PzehtpV7nL4WvAAAAAGzA4l8AAPaXgxRmcrCCYjh8Bv0Pr9pa+jON9uSXXFQ4SqN550yd/IEs3PrcnA9EWvrvstbZdGZfnOmTz7qIqgEA4GgY9D+wamv5fH3qK1JKc1wlrdNq3yetiYel331zVl+P93vvzeT4ygJgnxG+sjMfyNZ3kFc/HmflDtxK2zVJPvuSVbYx4SsAAAAA2zDof3CkpWRi6nFjqWUzzdbd0558dHqdv8jqiaBB773jKwoAAABgH7P4FwAA4GAaDj6d0cCi1uQXXHS/E1Nflt7i69PvvHFV/0tBLN2FP8rEzJPTbF1z0eMAAMBhNhh8NOvO1yceNJ5ittCe+uLl+Zdk5bx/uG69MABHWWPcBRxgZZPXRp+pI6/NvnspXgAAAABs07D/8YzeWmm27z+eYrbQmnrUqq3liaDBR8ZUDQAAAMD+dpAW/55n8S8AwGFTGlfn/LLy1UaXnNdNPgdHT61n17U1m3fblb6nT/yHpMxssGeYxXO/vCtjAADAYVaH59a1NRp3HEMlW2u27r2urQ7XX2sAcHS1xl3AAbbZXeyNAk9Wt+3lHXDhKwAAsE+cvenrxl3CjpSUnLjqFeMuA2DP1Tq7rq3RvGoMlWyt2bp2XdtGk1gAAAAAWPwLAMD+cPLqP8ig/6H0On+V3sKrMxx8Mmuf+bkRASwccbWzrqk0Lt+VrhvNqzJ17N9lcfaXc/6/w6Wf/e5b0+u8Je3Jh+3KWAAAcCjVxfVtZWLv67gdpXFyXVutc2OoBID9SvjKxdlJuMleBaK4ww4AAPtIHdyYrRfJ7E9VpiNwVG00EbQPb6WVcnxdW60LY6gEAAAA4ACw+BcAgH2i2bo2zda1mZz5pvQ6r8viuRelDs9k7dqS8yEQrYmHpD312LHVC+PXTNIfadu9dVgTM09Jd+HVGQ4+mtFn7y7O/mpaEw9NKY1dGw8AAA6VMpXU+TVNdXg2aV49poI2Vg/IPBEA47P//mLkYDlYfzUJAADsAwcpzMQlD3B0lXIstc6uaavDW5LmHcZU0cbqyGRVkqRM7n0hAAAAAAeBxb8AAOwzpZRMTH1ZWhMPydyZZ2TY/3A2erhPo3mPTEw/fiw1wn5QykxqPbumbWkO/0671H8zUye+L/O3PDOrg4+SmmH/I+kuvDKTM0/elbEAAOCwaTROZjhYO/8y6H8gzfY9x1TRxpbCFtfa6CGIABxdoncBAAAAYMRGTxce9N4/hkq2Nux/aF1bKetrBwAAAGBp8e+oQf8DY6hkaxb/AgAcPY3GqRy7/AWrHrRwkB7uA5deaVy+rm3Q/8iujtGefGhak4/I+eCVZCWApTP7kgyHZ3Z1PAAAOCwazc/KaIhor3P9WGrZSr/z16u2ls77G627jascAPah1rgLOKA+Go+ABwAAtqE0rk4dfmZla9WerS4tLKQBGJdG8x4ZDj6R1f8v7nb+PBMzXz2+ojbQ67xp1dbSRFCzdfdxlQMAAACwrzWan5Xh4JNZfc+n17k+E9OPG19RG7D4FwDgaGo075SJqcenu/DKWDMCazVad8tw8E9Z/d9Gv/vWTEx/xa6OM338e3Ou8zdJ+mvaa53N4tlfzMzlz93V8QAA4DBotu+Xfvety1tLAYb9zl9n0PtAmu17jbO02wwHn0l38c8yer3dbN17PAUBsC8JX9mBWutnj7sGAADgYDl59R9k0P9Qep2/Sm/h1asWdy/dXNyYzEeAcWlO3D/97sofuSz9v3rQfXv63b9Pa+LB4yztNoP+P6W3+BdZNxHU/tzxFAQAAACwz1n8CwDAfteefsJy+AqwWrN1bfqdv1zeWrqe63XemOHw1jQal+3aOI3WXTN57F+lM/fynF/XtTLe69NdeEQmpr9818YDAIDDoDXx0HTmfmukdZj5W5+b41f8ekrj2DjKuk2t/czf+rykLmZ0/qU9+S/GUxQA+5LwFQAAgD3SbF2bZuvaTM58U3qd12Xx3ItSh2eyNoDl/KR9a+IhaU89dmz1Ahxl7YmHpZMXr2pZ+v/z/K0/meNXvDiN5lXjKi1JUodzmb/1x5MMMjoR1Jp8xFhqAgAAANjvLP4FAGC/a7U/N6VxKnV4y7hLgX2lNfGQdOZetraxdrI4++uZOflDuzrW5LFvTnfhT1OHN+X8tdnSmoGFcz+XZvteabau2dUxAQDgIGtNPCCN1jUZ9j+y3LJ0/jwc/FPmznx/Zi7/mbGtu63D+czf+twMem/P6NxLadwhzfbnjaUuAPYn4SsAAAB7rJSSiakvS2viIZk784wM+x/O2gCWJY3mPTIx/fix1Ahw1DXb16XZvk8Gvfetai2pw89k7sx3Z+ayn0qzfd1YahsOPp35W56dYf+DOT8RtPQ7pNG8e1rt+4ylLgAAAID9zuJfAAAOgmb7/ul33pTR80I4yprtB6aUy1Lr2eWWpeu53sJr0mndK5MzT961sUqZyvSJ78v8rc/J6gdpJSWp85k788wcO/VLabbuumtjAgDAQTc58w1ZOPvTWXsOXTPovz+zNz81k8eflonpJ6aUvfuz9t7im7I4+0sZDm4c2bNU3+Sxf5NSXHsDcF5j3AUAAAAcVY3GqRy7/AVJmVxuceMOYD+ZPPbUnA/GWvlZMhx8MrOnn56Fc7+S4fDMntVTaz+d+Vdk9uZvyaD//g0+UTJ57Jv3rB4AAACAg2hy5huy9p7P2sW/nfnfT639Pa2pt/imzJ7+lvS7bx7ZY/EvAMBR1Gzde9wlwL5TSivt6Sdko+u5xXMvzMK5X0qtnV0brz31mLQmH7lmnOVKlh/a8r0Z9G7YtfEAAOCgm5h+/HKQ/Opz6KW5jVrPZfHcC3PupidncfbFl/Rcejg8k+78H+bczf8u87c+O8PBJ9fUsvK+0bpXJqafeMnqAOBg2ruIMAAAANZpNO+UianHp7vwyghfAdhf2pOPSGvy0el33pB1T7NKL9353013/vfTnnp02pNfktbkF6SU6V2vY9B7X3qLb0h38Y9Th2eyelHXkqW6mhOfn4npL9/18QEAAAAOk4npx6e78McZ9N6R0acvriz+7cy9LBPTX5n25Ben2b7uktQxHJ5Jf/GN6Sz8YYb9D2Szez4W/wIAHD3N1j3HXQLsS5Mz/zrdhVcldT6j13Pd+f+V3uJfZGL6iWlPfXGarXtc9HjTJ38osze/J3V4OqNrBurwpsyefnqmTnxXJqafnFI8FxkAAGYue3ZmT3/nBufQSVJTh6fTmXt5OnMvT2lckVb7QWm2PyeN1jVpND8rjeYdUm57sO3tq8OzGQ4+mUH/Qxn0P5hB9x0Z9G9YHnd03mWVMp2Zy56TUpoXc7gAHELCVwAAAMasPf2E5fAVAPab6ZP/f+ZOfyTDwUezPoClJumlt/i69BZfl6SZZvveabbunUbr2uWJoDum0TiV0jix5Ti1DlOHp1OHp9dOBPXemTq8deVTyz/XTwSVxhWZOfmju3TUAAAAAIebxb8AAOxnjeadVm15kA+saDSvyNTxb8viuRdmNLhy6VrupnTmXprO3EtTysk0WndLo3mnlDKTZutzMjHzNdsbr3FZZi57XubOfH+SfjZ6aMviuV9Kd/4PMjnzDWlO3H/XjhUAAA6iRvNOOXb5z2fuzPel1nNZe027+hw+qcOb0+u8Pr3O69d2UmbSaJxMykxKmUrSTNJI0k9qLzW91OHs8sMM+yMV1JHt0WvqmqSdY5c/P83WNTs9TAAOMeErAAAAY9Zqf25K41Tq8JZxlwLAiEbjZI6d+vnMnvne1MGN2WoiKOln0HtvBr33btBTScr08h/lNJdf5yeCUhezftInI20bLaysKeVkjp36hTSaV2/v4AAAAACOKIt/AQDYzxrNOy+/22j+EI62yZmnZND7h+UHpIwGsKy8T2q9NYPe2Qx6706StCZu2nb4ytL3HpDpkz+ShbPPW25Z/9CW4eDjWTj3cxGWBAAASbN9zxy74sWZv/U/Ztj/UNafJ6/e3uC6t85lOJjb4LObfH6d0f7PXyuUxhWZueyn0hKcCMAmhK8AAADsA832/dPvvCkm4QH2n0bzjjlxxUsyf+uPp999W7Y9EbTSXudS69wm+zez1e+FmkbzHpm5/AVptu66zX4BAAAAjjaLfwEA2K9K43hmLn9+Us+fVzaadxljRbC/TJ98dmrtp995Q86HoKzY6Fru4tZjTUx/eZJeFs6+IOev31YHsKyMVVe9twYMAICjq9m6a45f8eIszv5GuvO/n6WQ+o3mRbZeI7v5fMuFnm+vnLsnrclHZvrEM9NoXnmB3wXgKBK+MmallEaS48uv6Sz9O2km+USt9dZx1gYAAOydZuvey+ErAOxHpXEyM5f/QroLf5DO7EtT69lsPHlzKRZQjS7MqkkamZj5ukwd//blJysDAAAAsF0W/wIAsF+1Jx8x7hJg3yqlnZnLnpfO3EvTmXt51l/L3fbJXFg45u2bmH5CSuNUFm79T6l1doPxVoewAAAApUxm+sT3ZmL6ienMvSS9xTdk6dw92fj8fTQ88ULmWLYKXFza12zdO5PHvy3tyYdfYOUAHGXCV/ZIKeXOSR6a5AuS3DfJdUnunOSKTb7yrUletkE/P5LkLUneWGsdXJpqAQCAvdZs3XPcJQBwO0opmZx5ciamvjyduf+Z7sKrcz47d6uJoM32b/b5rRZplbQmH5Wp409Ls3XthRcPAAAAwIYs/gUAADh4SimZOv60tCcfk8W5l6Tf+askw5W9qz+5a2O2Jx+e5pX/PQvnfmHVQ7YuxQNaAADg8Gi27paZy34iw+M3p7vwqvQ612fY/9CqT2xnvmXUaKD+SvN02pOPyMT0V6c18fk76BeAo0r4yiVUSrlLkqcleVKSB47u3uKrW8Ud/9Ty/tOllP+a5Bdrrf98UYUCAABj12jeadWWSXmA/aw0TmbqxNMzefxb01v8i/Q616ffeVuSzupPZfv/Px/9/PlbRI3mXdOe+pJMTH91Gs0776xwAAAAADZl8S8AAMDB02zfM8cu/+kM+h9Pb/F16XffkkHvvUkuzXNuG82rcuzyn06/9750538vvcXXJ+ku793JOgEAADgaGs0rM3X8WzN1/FszHNyYXufNGfT+IYPeP2Y4+GjOhynuQJlOs3XPNNsPSGvi89OaeEhKmdi12gE4OkqtW+V8sBOllM/OUkjKU7IUcLPZHbSN/uGX5fZvrbW+bIO+h1l5zPHSz06SX07y3Frr3MXWvh+VUt6d5L6j7fe9733z7ne/ewwVAQDA7qvD2Zz9zOPXtE1MPznTJ58xpooA2I5aO+l3/z6D3rsz6P1jBv33pw5P77C3ZhrNu6XZvu62iaBm67N3s1wAAAAALoDFvwAAAAdPrf0MBx/LsP+x1OGZ1LqY0rwqE1NfuvtjDc+m13lz+t03p9/9u9ThLSOfKLnsjm/c9XEBAOAwqbWT4eATGQ4+kzr8TIaDm5K6mJpOUruptZ9SmknaKWUmpXEipXEqjeYd0mjexUMNgUPrfve7X97znvdstOs9tdb77XU9R0Fr3AUcJqWUkuQ5SX44yWQ2fWzN2q9dwGc2shLAMpXkmUn+dSnl39Va/3wbfQAAAPtEaRzPzOXPT1YFZDaadxljRQBsRymTaU8+PO3Jh9/WVuvC0kTQ4NMZDm9OrQtLk0DpJHWQlGZKWmsnghp3SGneMaW4bQcAAAAwbo3mnTI587VJvjaJxb8AAAAHQSmtNFvXpNm65tKP1TiZienHZWL6cUmS4eCmDPo3ZDj4eOrg5gx3/NAWAAA4OkqZTLN1bZqta8ddCgBHnL/i2CWllCuS/K8kj8n5QJXVYSpl9Du7YKX/kuSzkvyfUspza63PuwRjAQAAl1h78hHjLgGAXVTKdJqtuyetu4+7FAAAAAB2gcW/AAAAbKXRvCqN5lXjLgMAAACAHWiMu4DDYDl45XU5H7xSszYYZXXwSh157XjYrA15qVn69/kTpZRfuYh+AQAAAAAAAAAAAAAAAAAAAOBIEL5ykUop7SR/kuRBy00bha6Mhq2UrA9l2a7NxilJvrOU8tyL6BsAAAAAAAAAAAAAAAAAAAAADr3WuAs4BH4hyRdmbRjKirrq/Ur7Z5L8TZL3JflQkl/N+dCUC/GOJJ830v9KAMtKwEtJ8qOllHfVWn//go8EAAAAAAAAAAAAAAAAAABgj9ThfIbDT6cOz6bW2aR2Ums/SU0pk0mZSilTKWUypXFVGs2rxl0yAIeQ8JWLUEp5VJLvydbBKyXJh5P8VpLfq7W+d6SPX93OmLXWB5dSPi/Jc5J8bdYGrowGsPxaKeX1tdbT2xkDAAAAgItTh7MZDj61PBF0LrWeW5oIyiBJTclkUiaXJ4KmUhpXptG8s8kgAAAAgH2g1kEGvfdmOPxU6vBMUrspjVMpjVNptj8njcapSzh2P/3u369rb08+9JKNCQAAcFi4ngMAgP1v0P+nDLrvTL/3ngwHH86g/09Jnd9mL600mndKo3nnNFv3SnPiQWm1H5DSOHFJagbgaBC+skOllEaSF65uWv65OnTlM0l+MMlv11oHuzV2rfUdSZ5cSnlClkJdrsz6AJYstz8/ydN3a2wAAAAA1qq1m3737zPoLU8E9T+ytIhrR9ppNO+0PBH0wLTaD0qzfa9drRcAAACAjfU6f53uwquX/liuLmzyqZJm695pT31xJmaelFKmdrWGOjyb+VuembXPgCq57I5v2NVxAAAADhPXcwAAsL8N+h9Kd+E16XXemDr41MjeuuF3ttbLcPCxDAcfT7/71mT+fyYpabSuSXvqSzMx9dg0mnfchcoBOEqEr+zc1yd5UM6HnmTk/RuSPKXWevOlKqDW+sellC9Kcn2Sz9qklm8upfxErfWTl6oOAAAAgKOm1pp+983pLrwm/e7fJrWzeu9F9NzNcPDRDAcfS6/z+iRJKcfSnvritKe+Iq2JB15U3QAAAACs1+u8NYuzv5Zh/wPLLVvd36kZ9N+Xwez705n/nUwe++ZMzjz5ElR1MfeYAAAAjgbXcwAAsL/1u+/I4tx/zaD79uWWjc6XywZtF6queT/sfzCd2Q+lM/ubaU08OBMzX5/25MMvon8AjhLhKzv3H0a2V8JOapK/SPKEWmvvUhdRa/1wKeUrk/xlkhMjdSRJO8l3J3nOpa4FAAAA4CjoLvyfdOb+W4aDTyy3jE4EXcwk0IrzfdY6m+7CH6W78EdpNO+SiZl/lYnpr04pbu0BAAAAXIxa+1mc/dV0539vpWX55+3d36lJaurwTBbPvTD97tsyc/I5KY2ZXaxu9fOXAAAAWM31HAAA7G/D4a1ZPPei9BZfu9xye+fs2z1/LiM/V/ez9Op3/y797t+l2X5gpk98f5rt67Y5BgBHTWPcBRxEpZTPT/KFWR90kiT/nOQpexG8sqLW+g9JviMbnyWUJP96r2oBAAAAOKwG/Y9n9vT3ZuHsT2c4+HjOT9CUkVeyevLmwiaERj832ufS/uHgE1k8918ye/M3pdd5824cFgAAAMCRNByezdzp71r+Q73R+zzJ+vs7q+/frL1v0+/8VWbPfGeGwzN7eQgAAABHkus5AADY3wa9GzJ789OWg1c2O2cfNbpu9vZem1m/9nbQe2dmTz89nbmXX+yhAXDICV/Zma/doG3lN/Gzaq237nE9qbW+IsnbVtWx+uzh2lLK5+x1TQAAAACHRa/zN5k7/e0Z9N6V9YEryfqJoAud5Bn9/O3tX7r1Mxx8IvO3/FAWzv5c9jADGAAAAOBQqLWTuTPPyKD/vqy917NVOO5Gf8iX27437H8482eelTqc34tDAAAAOJJczwEAwP7W7703s2e+J3X46Wx9zp5sHpy409eo1dcCvSzOvjjztz4vtQ5252ABOHRa4y7ggPqqVe9X/0b+aJJX7HEtqz0vyR9usu8xSd6/d6UAAAAAHA69zl9n/pZnJ+kvt6ye9CkbtG2klZTJlDKRZCLJMMkgqd3UOr+8vZGNAlnOj9VdeFUGg4/l2OU/k1KmL/SQAAAAAI60xXMvyrB/Q9bf07m9ezwrNvpezaB/QxbOviAzlz9394oFAADgNq7nAABg/xoObsz8mR9M6kLWhq5s9LDDZhqte6TZunearWtSGlel0bw6pXFVSplOKZNJmUgpk8thKYOk9lLrfGqdSx2eyXB4OnVwYwaDj2fYuyGD/gezfq1v1ozdW3xtUvvO/QHYkPCVbSqltJPcL+tj1mqS36+13t7dukvpz5IsJJnK+ruGD9j7cgAAAAAOtkHvA5m/5ceyNBkzGrqyNom/NK5Os3Vdmu17p9m6dmQiaOvbcLV2bpsIGg4+mWH/4xn0b8ig997l9P9kfRDL8iKw7tszd+aHcuzUL6aUxi4cNQAAAMDhNei9L92FV2fjgN2alKlMTD0urYkvSrN9XUrj8iTJcPCZDLpvT3fxzzLovTNr7w/V2973Oq9Pd/7BmZh54p4eFwAAwGHneg4AAPa3+Vt/OrXemvXn7EtrbUvj6rQn/2Vak49Ma+Lzlh9oePtKaSZpLoWx5FiSq5N89rrP1dpNv/v29DtvSHfxz1eFwNzWU1bO/Ttzn5vJY9+wswMF4NASvrJ990nSzuhv/SWvH0tFy2qtnVLKG5J8RdaHr9xvDCUBAAAAHFi19jN/9ieTdLLZRFCzff+0Jx+Z1uQj0mzdfcdjlTKZ0rxTGs07Je37rtk36H80vc716S38UYaDT25Yy6D3jizO/lqmT3zPjmsAAAAAOAoW516etfd4zt/raU99aaZOfH8ajVPrvtds3S3N1t0yMfM16XXenIWzP5M6PJO1y4eW3i/M/kpak1+0dK8HAACAXeF6DgAA9q/u4usy6L09G4WdNJr3yNTxp6c1+YiUMvogwt1TykTak1+U9uQXZer496Qz97J05n83yXBdTYuzv5H21GPSaN75ktUDwMHjUbjbt9VdtPfuWRWbe8/I9spdxc8aQy0AAAAAB1Zv4Y8z7H8wG00EtSYekuNXvDTHr/i1TB77NxcVvHJ7mq27Z+rYU3P8yt/J1IlnJmV6VS3na+rOvyKD/ocuWR0AAAAAB10dnku/85cZva+SlEwee2pmLvuJDf9Qb1R78uE5fsVvpNG6Jhs+v6kuZOHsz+52+QAAAEeW6zkAANjfOnO/PdKyEpT4lTl+5W+lPfXISxq8Mqo0jmXqxHfl2KkXpZSTG3yin8XZ39izegA4GFrjLuAAunyLfZ/esyo2t1kNJ/a0CgAAAIADrjP/P7I2eGVl4dbTMnX8W/a8nlIamZz5/9Ka+ILM3/LMDAefHPlEzeK5X8+xUxaCAQAAAGyk13lLkkHO3/NZut/TmnxUpo5/+7b6ajTvkGOnfjFzp5+e4eDGjD55vd99W7qLr8vE1Jfu4hEAAHAYzJ7+vnGXsDOl5PipF467Co4o13MAALB/DfofzrB/Q0bP19uTX5yZy354jJUlrYkH5tgVL8rs6e9O6vxy69K5f2/x+tQTz0hpbBTOAsBRJHxl+5pb7JvfYt9eOb1Ju/AVAAAAgAvU770vw8EnMjoRNDHz5LEEr6zWbH1Wjp36pcyefnrq8Obl1pVFYH+T4eCmNJpXjbNEAAAAgH1p0Hv3Bq2tTJ/49zvqr9E4lZnLfiqzp78zSS+jT2BfPPcraU/+y5QytbOCAQA4lAa9t2ftQyAOgpVgChgP13MAALB/9Tp/ua6tlGOZOvnMMVSzXrN1baZP/EAWzj4va69t++ktXp+Jma8ZV2kA7DONcRdwAM1use/KPatic8c3aW/vaRUAAAAAB1i/81fr2krjVKaOf+cYqlmv0bxDpk/+cJYWOa5W0+tcP4aKAAAAAPa/Qf+Dq7aWn7o49ag0mnfccZ/N9nWZOvFdOX+f5vz9mjq8KZ25l+24bwAADrt6QF4wfq7nAABg/xr03r9qa+V8/cvTaJwcV0nrTEw/No3WvTJ6ndvv/cN4CgJgXxK+sn03b7HvTntWxebusEn73J5WAQAAAHCADfo3rNpamQh6XEqZHFdJ67QnvyjN9oMyOhE0MBEEAAAAsKE6/FTWPtEwaU184UX3OznzlFX3adY+Lb0z97sZDm686DEAADiMygF5wfiAHTOHAAAgAElEQVS5ngMAgP1r2P9I1p+vP3QstWxlYurxIy01g/4/jqUWAPYn4Svb94Et9l383buLd9dN2j+zp1UAAAAAHGAbTwQ9eCy1bKU99WUjLTWD3la3rwAAAACOruHw1nVtzdY9d6Xv6ZM/mKS9wZ5eFmd/fVfGAADgsGhlKeihjrTXLV5wtLmeAwCA/asOb1nX1mjdfQyVbK05cb9VW0trhOvw9HiKAWBfao27gIOm1vrpUsrpJKfy/9i78zDJsrpO+N8Tey5V1dXN0tqIzdIu3UBLg2wDNAI6OKLoq6KIG4zLiBuDMCC8I+q4O/qCMDiOO8yog4o7bYNssoigwCiLiuy2wNBdXVtmRsZ23z+yisolsroyKzIjs/LzeZ77ZMS5957fL6r7ybznxLm/u3Em+wlJfm33s1rj0VmbVznz/v3jDwcAAHbD6WPfN+0UtqeUzB994bSzANh11ejkhrZa/W5TyOT8Gs3PX/VuZRpo3JdYAAAAACSpljc0ldplE+m63vjstOe+PssLL8u55TorP/vd12Yw+8Q0mtdOJBYAAPvb4bvclEHvHRksvyW97quSaikr145nryPHUYCFA854DgAA9qyqWtjQVsrsFDI5v1rtThvaqtHpKWQCwF6l+Mr2vCHJV+XcLPbZ2bUvLqVcVVXVLdNIqpRyfZKrsnq275x3TiMnAABgxbD/zpytjrx/nB1aABw8VbW4oa2UzhQyOb9Su3xD27jcAQAAAEiSWpLRurbJzYO3574lvaU/TzW6dV2/VbqnXpT5y39xYrEAANi/Sumk2X5Ymu2HpTP/tCwv/X6WT/9mkl7WLgE/VwSi3vy8NFoPmVbKsAcYzwEAwJ5VGkk1XNO0N9eyrh9TJO6XAGA1xVe251VZKb6SrJ3hbif5ySTfPI2kknzvefa9freSAAAAzme/PInIJCJwwJX2mSfMnVNVp5NsrHo/TVXV29hY6rufCAAAAMA+UMpMqurUmrZqdDKp33VC/bfTOfS0LJ34kax/Wvqw/570un+RVuexE4kFAMClodRm05n7pjTbj8zC7c9INfpUNj6DM6k3rk1n/qlTyRH2AuM5AADYu0o5lKpaXtM2Gnw09cbdp5TReKPhJze0ldr8FDIBYK+qTTuBferlSc5eCVSrfpYk31BKefxuJ1RKeUCSp6zL56zbk7xht3MCAADGKftkAzjYSjm8oW00+OAUMjm/0fBfN7SVMjeFTAAAAAD2vlLbOOczHH50ojFancem3rxfzi0lSs7esNc99ZJU6wr+AgBAktQbn525y34q55b3W7sBqxnPAQDA3lWr3yXri4gOen81nWTOY9D721XvVvKtTaigIwCXBsVXtqGqqtuT/F7WzqglK39ta0l+u5TywN3Kp5RyZZL/NSafsyWXf6uqqv5u5QMAAIzTyMrlebWuvTrPBsC0rHyZsvZ3cX/5zdNJ5jwGvbetereyAKxWv2pa6QAAAADsabX63bJ+zme4ZqHtZMwcenrGLcuqRreme+qXJh4PAIBLQ715TZqdx8SaEdjIeA4AAPauevO6Ve9Wbmvudf8io9Ht00ppg6rqpbf0J1lb7LSk3rj3tFICYA9SfGX7fjTJ8Mzr1aWNqyRzSW4upXzZTidRSvmsJK9P8jmr8lg9qzhI8nM7nQcAAHB+h+9yU2Yv++m0Zp6QlE7OXbaf70lF5yvMshsbwMHVaN5n1buV6ZZ+93UZDT8+rZQ2qEan01/6s6z/W1JvXDOdhAAAAAD2uFrjHqvenZ3zef3En15eb16T1szjs3au/cxi46U/yGD5byYaDwCAS0dr5sunnQLsScZzAACwdzWa129srJaydPJndz+ZTXRPvSTV6LYN7Y3WF04hGwD2qsa0E9ivqqp6fynlJUm+N2vvmjx7l+LRJH9USvn5JD9eVdWJScYvpZQk35eVIjDz2Xhn5Nlcfrmqqo9MMjYAALB1pXTSbD8szfbD0pl/WpaXfj/Lp38zSS9rayiefV1Sb35eGq2HTCtlgAOt3npAsvi/1rX2s3jixzJ39IUpZfrTaksnfyZVdSrri6802g+eTkIAAAAAe1yjdUN6i7+9pq2qTmf59EvTOfSdE43Vnv+O9LuvS1WdXtVakoyyePK/ZP7yX0mtfueJxgQAYP+rN++blLmkWpx2KrCnGM8BAMDe1Wg/LKV2NNXo+JmWlXsiBstvytLJn0nn0DNTSm1q+XUXXpre0u9nw4NzSyeN9kOnkhMAe9P07xLZ356T5N8luWfO3h25tgBLLckPJPn2UsqLk7y8qqq/v5iApZSrknxzkqckuVfO/bU/G391EZaPJ3nuxcQDAAAmr9Rm05n7pjTbj8zC7c9INfpUNl7OJ/XGtenMP3UqOQIcdI3WA1PqV6YafvJMy8rv6WH/77N4/LmZPfLDKbXZqeRWVaN0T/18+suvy/ovgko5rAo/AAAAwCYarfsnZSapumdaVuZ8lhd/K/XmtWl2HjGxWLXakbTnvyPdUz+X1YXXk5JqdCwLx5+ZuaMvTK122cRiAgCw/5VST6N5vwx6f5UNN4XBAWY8BwAAe1cpjbRmnpDlhd/I2mvoKr2lP81w8KHMHHpm6s177Wpeo+GtWTr1ggyW/3LdnpX8WjNfmVI6u5oTAHvb9EqFXQKqqlpK8lVJzpY0Xv2o+rPvS5IjWSmC8q5SyidKKX9cSvmVUspPnaf7a0spX1FK+eZSyg+UUl5WSnlfko8k+bEk987aQi+r79QsSQZJvqmqqpMT+bAAAMDE1RufnbnLfirnhmYWzQDsFaWUtGe+NuemW85Nvwx6b83pY09Jf/ktu57XsP/+LNz+Xekt/fG6PWe+CJr7upSi3jIAAADAOKW00+p8SdYWQz/z9PITP5Tlxd+daLz27Fem3rxfxj1TaTT4YBZu//6Mhp+aaEwAAPa/evOaaacAe47xHAAA7G3tuW9MqV955t3aAizD/rtz+thTs3D8eekvvz1VNdrRXIaDj2bp1Ity6rYnnSm8cjaXc0rtsrTnvnFH8wBg/3EnxkWqqurdpZQnJvnDJK2sLmt8rjBKcu4v812SfNm6bsqYn88aE271X/f1s4arX1dJnllV1esu/JMAAADTUG9ek2bnMel3XxXFVwD2ltbsV6fXfWVGgw9m/RdBo+G/ZvH4c1Jr3Dvtma9Ko3NjarXDO5JHVY0y6P1Nekt/mMHym7O2Fu9ZJbX6Z6Q9+7U7kgMAAADApaI1+6T0ll6ZlecaJefmWQbpnnpReks3pT37dWm2H5FSm73oeLNH/t+cuu0pSbWYtXNMKzfsnb7tKZk5/Jw0Ow+/6FgAAFwa6o17TzsF2JOM5wAAYO8qpZ3Zwz+Yhdt/IMkw69fdJqMMlt+YwfIbU8rhNNoPTL35Bak3Pzf1xj1SSmfbsUfDT2Q4+EAGvXdl0PvrjAYfPrNn9e3d1ZqfM4eetWPrfgHYvxRfmYCqqm4upTw+KwVYZrO2AEuytghLcmF3VI47pjrPMav3/UhVVb9wATEAAIA9oDXz5WeKrwCwl5RSz+zh5+X07d+TVEtZv5gqqTIavD9Lp342OfVzqTc/L43mF6Te/JzUGvdMrX5VSmluOe5odDKjwQfPfBH0zgx6f3NmMVeysc7v2bZmZg4/76K+fAIAAAA4COqNq9Kee1KWF16acc87Gg3en6WTP56l1FJv3Cu1xmenVr9rUmZTr99jyzfV1eqfkdnDz8viieetiXN2aVFVncjiieemvnT/tGe/MfXG1RP4lAAA7Ge1+meueudBPnCW8RwAAOxtjdYNmTn83Cyd/C9nWjauu02SqjqRfve16Xdf++lzS+3y1Op3TaldnlIOp9RmU9JJSj1JLckgVdVPqn6q6nSq0bGMRrdlNPzEmTW+WRPjXPyzbefGEJ35/5Bm5xET/OQAXCoUX5mQqqpeU0r5N0lekeSeWXsnzPq7YS6kEMv6QiurjSu6UpKMkjyjqqoXXmjeAADA9NWb903K3Kob6wHYK+rNazJ32U9m4fZnZuXpWWsXU52b6hlm2H9vhv33rjq7pNQuS6kdTakdSSmzKaWdpH5mG6Sqeis/R6dTjW7LaHRs3ZdAyfmnks5U4D/y3DRa95vY5wYAAAC4lLXnnppB/90Z9t6R8873DP4pw8H7P31eo/XQbT3RvNl5RDrD/5Du6V9cF+fc62HvnVnsvTMpF/90dgAA9rdSv/LMq/MtJ4eDyXgOAAD2ttbMF6eUZhZP/kRSdbOxcOJZa8e81ei2DEfHthhts3Hz+rW2Z6/ja+nMf3fac1+3xTgAHBSKr0xQVVV/V0p5QJIXJvnmjC+0cqHlx+/ouPX9/muSp1RV9eoL7B8AANgjSqmn0bxfBr2/iicWAew9jdYNmTv6C1k88Z9TjW7NZpXwN36JU6UaHUs1OpYL+/1+oV8CrTq+dDJ7+Hlpdh51Af0DAAAAkKzMy88d+bEsHP9PGfbfnfPP90zmhtf23DekqrpZXvj1bHbD3krIhU1yAQDgoKjVjqRz6Puz8lzOFfXGNdNLCPYQ4zkAANj7mp1HZb5xdZZO/HiGg3/I+OvjcW3buYbfrJ+144NSu0tmDz8njfYXbiMGAAdFbdoJXGqqqjpRVdW3JnlMkr/N2oIrVS5uFm/9+SUrj1x+SZLrFF4BAID9q960SAZgL2u07pP5K34tjfaNWTs1s1rZZEvWTutstp3v/PWq1Bufl/nLf0nhFQAAAIBtKLVDmTv6gjQ7j8sdz/eM27d1nfmnZubQM5PU1/W5fm4IAICDrj37NWnPPvHTW6N1/2mnBHuG8RwAAOx99cbVmb/ilzNz+DkptTtn81ur198yvdUt2djv6vZWWrNPyqE7/U+FVwC4Q4qv7JCqql5XVdWDknxZkldmpfT4Vu+4Wb9lVR8nkvy3JJ9bVdX3VFV1Yhc+FgAAsEPqjXtPOwUA7kCtdjRzl/1Y5o6+MPXmtTl/jd3V7Vv5AujsuZt/wVRqV6Rz6BmZu/yXUm/c86I+EwAAAMBBVko7s0eel9nLfia1xr2z+bzM5G6ga80+IfOX/4918dygBwAAsBXGcwAAsD+0Zr4sh+708swe+dHUWzdk5Rp63C3TF2Pjbduldqe0556SQ3f+3cwcelpKmbnIGAAcBI1pJ3Cpq6rqpiQ3lVKuTPIVSb40ycOTXLGN7j6S5DVZKebyyqqquhNLFAAAmKpa/TNXvfOlPMBe1mjdkPnL/3uG/X/I8uIrMlh+U6rq1KojLvaLoPWFWFba6s37pDXzFWl2HpNSWhfRPwAAAACrNdsPTbP90Ax670iv++oMlv861ehTOxav3rwmh674tfS7r83y4isy7P+fVXs9LR0AAOBCGc8BAMDeV0o9zc4Xpdn5ooxGJzJYfksGy3+VQf/dF3D9vv4ae7OHJtZTb1yTeuv+abYfnnrzvinF9TkAW6P4yi6pquoTSf7HmS2llLsluS7J3ZPcLcnhJDNZ+W/SS7KU5FiSf0ny4SR/V1XV7bueOAAAsCtK/cozrzabDARgr6k3Py+zR56bqhpm2P/79JffkmH/PRkO/jmpFi+6/1K7UxrN+376i6Ba/c4TyBoAAACAzTRaN6TRuiFJMhr+a4aDj2Q0+Fiq0e2pqqXUGp810XjNzqPT7Dw6w8GH0+++PoPeWzPsvy/JaKJxAAAALnXGcwAAsD/UakfSmvnStGa+NEkyGp3IsP+PGQ0/lmr4qYxGn8podGtSdVNVy0nVSzJIUk9KM6XMppRDKbWjqdXvklr9M1Nr3DP1xj1SSnuqnw2A/a9UlRv72NtKKe9Jcu369muvvTbvec97ppARAADsjOXF38vqL+DrjWvSaN1/egkBsG3DwUczGn4so+GnUo0+ldHwtqRaSpVeUi2nyjAl9SSNlNq4L4LulVrtyLQ/BgAAAAC7rBotZjj4QIaD92c0vCXV8NaMRscyf/mLpp0aAAAA52E8BwAAAEzSddddl/e+973jdr23qqrrdjufg6Ax7QQAAABY0Z79mmmnAMCE1Bt3T71x92mnAQAAAMA+U2qzabTum0brvtNOBQAAgC0wngMAAADY32rTTgAAAAAAAAAAAAAAAAAAAAAAYBoa004AAAAAAAAAAAAAAADYOVW1lNHwU6mqU0lKSplLrX5lSmlPOzUAAADYslO3PXVD2/zRF6TUDk8hGwAuBYqvbEMp5fokTxi3r6qqH93ldD6tlPLwJI8es+sVVVW9e7fzAQAAADgIRsNbMxp9MtXo9qTqpdSOptQuT61+t5RS37G4VTXKaPgvG9rrjbvvWEwAAACAg8KcDwAAl4Lh4F/SX/rT9HtvyWjwkSTVhmNq9c9MvXl9mp1HpdF6SEopu58oTJDxHAAAHAyjwfuTnB3DVklKqgxjVAvAdim+sj1fkOSHM272OZla8ZUk98n4vBpJFF8BAAAAmJDh4IPpLf1pBstvy2j40fEHldk0Ww9Ko3NjWp3HTDyHanQ8p297crLma6KSI3d9w8RjAQAAABwE5nwAANgrRsPbMhr931Sj21NViyllPrXanVNr3POCiqNUo9Ppnv7v6S39SVaWlo9b9n421i0ZDf81/e5NqdU/I+25p6Q187jJfRjYBcZzAAAAAFwsxVcu3uqZsc1npXfH0qrXq/N64G4nAgAAAHApGg4+mO7pX8lg+c25o0WKqRbSX359+suvz/LCS9OZ/8402w/bgaymPSUFAAAAsL+Z8wEAYC8YDT+Z3uIfpN97S0aDD48/qMym2X5IWrNfm0bzurGHDAe3ZPH4szIa/kvWXleer2hLdSaHf83SyZ9Ir3tTZg//UGr1K7bzUWDXGM8BAAAAMCm1aSdwCbiDGbpdtfq/5+q87j2FXAAAAAAuKcuLL8/p274tg+U3JRllZeql3MG2MkUzGnwwi8efk6WTL0hVjSac2dlYAAAAAGyVOR8AAKatqgbpnv61nLrtG7O8+FsZDT6Uc0vB123VQvrd12bh2Hdl6eTPpKq6a/oaDY9l4fbvzWj4sWy8ts0m/Sbrr3eHvXfk9LFvy3DwoZ386HBRjOcAAAAAmCTFVy7eXpoV26y0+JFdzQIAAADgElJVvSwc/8F0T704ST9rF2wlmy58TLJ+EVdv6RVZOP4fNyyCBAAAAGB3mfMBAGAvqKpeFo8/O8sLv5FU3Yy/5hxfPKK39KdZOP7sVNXg0/0tnvyRVKNPZeO1bc7Tb9Ydt9JWjW7Nwu3fl9Hglgl9WpgM4zkAAAAAdoLiK5eWB23SfmhXswAAAAC4RFTVKIvHn3PmSVnrF2ydtdmix2TjIq4qw947s3j8uWsWQQIAAACwe8z5AACwF1TVKAvHn5VB721Ze116tsDKZs4dM+y9M0snfzJJ0l9+U4a9d2TjdesdFaRYW3RldS7V6PiZAi/LF/txYSKM5wAAAADYKY1pJ8BklFK+OMlX5fwz7QAAAABswfLCr2bQe3s2PvFt3FPi1hv3NLmVxVuD3t+ke+rFmTn89InmCwAAAMAdM+cDAMBe0Ft8+bpiKcnGYhKrr03HHVel3311BjNfnuXF3x2z/8zrMpdm+9+k0XpQavUrU2pHk6qX0ehYhv13pd99fUbDj62Kfe780fCj6Z7+lcwc+u4JfXLYPuM5AADYe0588pFTjF6teX3qU0/YwrklR+76hkknBMA+pvhKklLKjUlu3MIpX3Cevn7o4jPakk6S+yb5t0nqWT2Tfs7tu5wTAAAAwL43HHw0ywu/lXFPeDv7utF6cBrtB6XeuCaldlmSZDS8NcP+O9Lvvi6j4S3rzjk3ddNbekUarQek2XnELn8yAAAAgIPLnA8AAHvBaPiJdBd+NZsVgkiSUrs8tfpnpZS5VKNjGQ0/nqo6seq4c5ZO/tdVxVPW9tPsfGk6h747tdqRDXnUkzTbD0p77tvTX/rjLJ3+xaRa3NBPb/H305796tTqV178h4dtMp4DAIC96nxFEHfbXsoFgP1G8ZUVj0ry/Gz9r2oZ8/P5E8ppq9aWGD/XliQf3/10AAAAAPa3lUVbg2ycdqlSb94vM4d/IPXGPTecV2/cI832F6Y9923pLf1Ruqd/MamWs3qB49nXS6d+JvXW/cYudAQAAABg8sz5AACwF/QW/yipuhl/Xfr56cx/dxqt6zecN1j+mywv/nYGvbdl9bLx0fCj2VjApaQ1+zWZOfR9d5hPKSWt2Sek3rw2C8efmWq0/tmfgywv/l5mDn3PFj8pTI7xHAAA7GXljg+ZuHG3hF9oHoq0ALBRbdoJ7DFlC9sk+pjkttlf+irJm7fwbwAAAABw4FVVN/3uq7PZk+Hmjr5w7KKt1Uqppz37/2T+6EtSanfe0E+SVKMT6Z56waTTBwAAAGAMcz4AAOwFVTVMr3tTxl+X/tvMHf2lsYVXkqTRfmDmjv5c2nNPzbniE9Wq1+f6qjXudUGFV1arN6/J7GU/kbW3Gaz02V/681SVm9OYDuM5AADYD6pd3gBgshRfWWsSf5V3++pgdT6bFYX54wv9BwAAAAAgGSy/LUlvVcvKYsWVp2U9O6U0LrivevOazB19Qcqnn4y1+ilcVfrd12Sw/PZJpQ4AAADAJsz5AACwFwz7f5dqdNuqlrPXpddl5vDzUsodP6W7M/+UNDuPyblr0PXnlHTmv21b+TWa16U99+SsXzJfVScz7P/9tvqEi2U8BwAA+8H5xrNlBzYAmCzFVza62L/KO3EFsNWcqlU/31RV1Wu28e8AAAAAcGANxi4aLJk5/MyUUt9yf/XGZ2X2yA9n7VO4zv6ssnTqhamq4bZyBQAAAODCmPMBAGAvGPbfN6a1ZObwsy6o8MpZM4eekZSZsftKOZxG62HbzDBpzX5dUjob2gf9d227T7gYxnMAALB3zR75sZQyn80LhObMvklvZ527ni+1O6XU7noB25UptbtO8p8BgEvAhZf3PTiqOz4kyeYFWC70/J1Wkrw/yddPOxEAAACA/WY0+OdV71a+DGq0H5p64+pt99loPSDtuSdneeFlWfvkrGQ0/Gh6i7+X9tzXbT9pAAAAAM7LnA8AAHvBsP+Pq96duS5tPSD1xj231E+pHU6z85j0l/4055a2n73OfdiWCrmsV6sdTrP98PS7f5HVy+ZH/fdvu0+4GMZzAACwdzU7N6be/LwsnvjRDPt/l7UFWM5evz8ys4efnVI7NLG4Jz75iKy/1Xv+il9NrXZ0YjEAOFhq006AiSjrtuUkL0zy4KqqPj7NxAAAAAD2o9HwE1n/hUyj9eCL7rc999TUPr1ocu2Ts7oLv57R6MRFxwAAAABgPHM+AADsBcPhRze0NdoP31ZfjdYDx7bXm5+zrf7W9nH9upYqw+EtF90vbIfxHAAA7G21+l0zd/RFac99a9Zeu6+8Hiz/ZU7d9q0Z9N45jfQA4II0pp3AHnE8yUe2cPx8kityrrTx6p8bZ8N3VpXkdJLbk7w3yV8l+cOqqk7uch4AAAAAl4zR6PYNbZNYoFhKIzOH/1MWjj0tK9M6q1SLWT79q5k5/IyLjgMAAADARuZ8AADYC6rR6awvIlFvfv62+qo37jW+vX71tvpb2/e9V71bWSpfjW676H5hO4znAABg7yulls78v0+j9cAsnviRVKNP5dz4t0o1+r9ZuP3pac8+Ke35b0spbnEHYG/xlylJVVUvTPLCCz2+lPItSX59k77uMam8AACAS8fiiZ+YdgrbVDJ75AennQTA7quWNzTVymUT6brRvC6tmS9Pb+mPsv7JWb2lP05r9mtSb9x9IrEAAAAAWMWcDwAAe0F1ekNTrXZ0W13VancZ21622d/aPg5vaKtGCxfdL2yL8RwAAOwbjdb1OXTFb2bx5E9lsPyXWbm+PnutPcry4m9l0PvbzBx5fuqNu00xUwBYS/EVAACAXdDv3pT1Ty3a+6okJVF8BWBFaU2sq/b8d6TffV2q6tS6PaN0T704c0d/ZmKxAAAAADgPcz4AAOyyqloc0zjcXmelM765Nru9/lb3Mbbv/kX3CxNjPAcAAHtWqR3K3GU/nuXFP0z31IuT9M7uSVJlOPiHnD72lMzMf19as18+xUwB4JzatBMAAAA4WKp9tAEcXOMWEm5cZLV9tdrhtOefmnO/b88UvEqVQe+t6S+/fWKxAAAAAFhhzgcAgD1hTMGI0ej27XVVNrkdYJOiLFtRjU6MafXsV6bDeA4AAPan9uxXZv6KX06tcY+cu94uK1vVzdKpn83C8edlNDo5xSwBYIXiKxfPHYkAAMAWlH20ARxcpXZoQ9to8LGJxmjNfFVqjXuejbjqZ5XuqRemqgYTjQcAAABw0JnzAQBgLyhldkNbNbp1W31V1XD1u21mNN5odHxD27gCGLAbjOcAAGD/qjfukfnLfzmtmSdk7dj1TMHD5Tfm9G3fkkHvb6eUIQCsUHzl4rkrEQAAuEBVNi50qc6zATAttfpVWf+7eNB/10RjlFLLzKHvz9onZ60YDT+a5YWXTTQeAAAAwEFnzgcAgL2gVr8yG65Le2/fXmfVchrtG9NoP/LMz5XXJa2LznM0+MDqQEmSUrv8ovuF7TCeAwCA/a2UVmYOPzOzR348pRzKuevtlQIs1ejWLNz+jCyd+m8KHwIwNYqvbM8nkrwhyV+e+fmGVe8BAAA2OHTF76Rz6OlptB6UsxOEK85Xy/F8hVl2YwM4uGr1z171buX3dr/7uol/odNo3ZBG+8as/N5d++Ss5YWXZdj/p4nGAwAAADjIzPkAALAXjL0uXX5jqmrrazVKbTZzl/3Yhq3U5i46z/7ym9ZHS63+GRfdL2yH8RwAAFwamp1HZv6KX0+9eX3W3lNRkozSW/zfOX3sOzIcfHR6SQJwYDWmncB+VFXVzUlunnYeHAyD/vuycOzbN93fnv/OdOa+aRczAgBgO2qNq9JufHXas1+d0eCWLC/+VnpLf3Jm7/piLCtf3tfqd0+9ee1U8gU46Bqt+6e39Ptr2hcc3LkAACAASURBVKrRsfQWfy/tua+faKyZQ9+TU8tvTdJb1VqS9LN44vmZv/yXU2rzE40JAAAAcBCZ8wEAYC9otK5Pv3vTmrZqdDy9pd9Ne/aJU8pqrdHglgz7f5/1DxWqN6+ZTkIceMZzAABw6ajV75K5oy/K8sJvZHnhN7L+XorR4P05fezfpzP/3WnPfuX0EgXgwFF8Bfa4/tIr72D/zYqvAADsM7XGVZk5/Kw0O4/J4vHnpaoWsrYAy4pG64GZOfz0qeQIcNA1Wg9I0kxy9ilZK7+nu6d/JfXmfdJo3WdisWr1K9Oe+6YsL/xKVhfhSpLR8JYsHH9u5o7+bEppTywmAAAAwEFkzgcAgL2g0XpwklrW31zWPfU/0mg9KPXG1VPL7azFUz+TZJSNxVeun0o+YDwHAACXllJKOvNPSaP1gCye+JFUo/+blevuM+PQqpvuqZ/PoPfWzBx+Tmq1y6aZLgAHRG3aCQCbq6p++t3XnPeY0fDDGfb/YZcyAgBgkhqtGzJ75L+saimbHgvA7iq1+TQ7j8rawlglyXIWjj8z/e6bJhqvPffk1Br3WBWn+vTPYf9dWbj9WalGixONCQAAAHDQmPMBAGAvqNXvlEbrIRl7XXrsaekv/9WUMluxdOolGfbekfXrWEqZS6N1w3SS4sAzngMAgEtTo3W/HLriN9No35iN1/tVBstvyenbviX95bdNKUMADhLFV2APGyy/MVV18g6P63VftQvZAACwExrtB6bRfljWThQCsBe0Z5+UtdNnZxZTVQtZPPHcLBz/wQx6/2cisUppZPbwf07SONuS9Yu3Th97aob9f5pIPAAAAICDypwPAAB7QXvum7LxIT0lVXUqi8efk8UTP5xB7x2pqsGu5TQafioLx38wvcXfWZfbyjVsc+ZLU0pjk7Nh5xnPAQDApanU5jN32Y9l5tAzk9JevSdJlWp0LIvHn5mlUy9KVfWnlSYAB4DZT9jDeks3XdBx/e5fpDP/3SmlvsMZAQCwE1ozX5nB8punnQYA69Sb16Q18+XpLf1R1i4uPFtN/80ZLL85pXY09eZ9U2/cPbXalUltNrXalWm07rPleJ1D35fuqZ9bFe/c4q3R8JacPvbtaXYel/bcN6aUuUl8TAAAAIADxZwPAAB7QaN1nzRnviz9pT/N2qIOJcko/e5r0+++Nint1Op3S61+15Qyk878d6ZWv3JieQwHt2TYf08Gy29Kf/lNSQarclmltNOe/fqJxYXtMJ4DAIBLW2v2Cam3rs/iiednNPhgzo2Tk6RKb/F3M+j9bWaPPD/1xj2mmCkAlyrFV2CPGg1vy6D3tgs6thody6D39jTbD9nhrAAA2AmN1g1J6STV8rRTAWCdzqHvyaD/7owGH8jGRY9VkjPj8uW/zGDVr/FG66FptH56y/Has1+Z0eDD6S39/qoYqxc3jtLv3pR+96bU6nfb/gcDAAAAOMDM+QAAsBfMHHp6Rv33Zzj4x4wrJJEkqboZDf45o8E/JykrBVAusvjK8uIfprf4exmNPrlurUq1Lv65n525p6RWv8tFxYVJMJ4DAIBLW71xdeYv/+V0T704vaU/yLlr7zNFEAcfyOnbvi2dQ981xSwBuFQpvrIDSimNJA9I8uAk90hydZI7J5lNMpOklQ3lwHdMVVXVvXYpFhPU796cZLil4xVfAQDYn0pppdG8LoPe32b3hgoAXIhSOpm77KeycPvTMxreko1Ps8qq95Mxc/jpqaql9LuvHBPv3IKx0fBjm+QCAAAAwPmY8wEAYC8opZ3Zoz+XxePPzrD/nmwswLLa5K5NR8NbMhp+ZFxGq2Kdi99s35j23DdMLD5cDOM5AAC49JXSyszhZ6TRelCWTv5UqupE1l5/99I99Qtnjnb9DcDkKL4yQaWURyf5jiSPz0qRlQ2H7G5GSSY5a8iu6i3dNLa90b4xg+U3bGjvd9+Y6tBiSm12p1MDAGAH1Bqfk/T+dtppADBGrX5l5i7/pSwe/88Z9t+Zc1/grLbZgq7tmT3yg+nWLs/y4v8cE291LAAAAAC2w5wPAAB7Qa12JHNHX5ju6f+e3uIrkoyye0vON4tz7tq02fnizBx+7i7lAxfGeA4AAA6GZufhqTd/PYsnfjTD/ruy9lrc9TcAk1ebdgKXglLK55ZSXpvk1Um+Nslszv0VX70lK3/Rd2tjnxr035fR8EMb2muNe6Yz/7RNzuqmP6YoCwAA+0O9cc20UwDgPGq1I5m//BfSOfSMlNrRbD79MrmFkJ1D35nZy346pXanHY8FAAAAcBCZ8wEAYC8opZ2ZQ9+f+ct/OY32I8607tZy8HExqqTMZubw8zJ75IdSiue9svcYzwEAwMFQq985c0d/Ie25f5+1t8S7/gZg8hRfuUillC9P8vYkN+ZckRUFUbgo/aVXjm1vdR6XeuOq1BufP/687s07mRYAADuo1rhq1TsTgQB7VXv2q3LoTr+XmcPPTqP1gCSN7OQUULP9sBy602+nM/9dqdWvHNP/uCd4AQAAALAV5nwAANgL6s3PydxlP5FDd/rf6cx/bxqtL0ypHcnOLkFf/3zRVlozX5FDV7w0rZnH7WBcmAzjOQAAuPSVUtKZ/9bMHX1RSu0uOXcN7vobgMlShvoilFK+JMnv59y/4/pZs2lS6GWfqqp++t3XjNlTT7PzJUmSZucxGZ5+34YjBr13ZDS8NbX6nXY4SwAAJq1Wu/LMK5fyAHtdKc20Zh6f1szjU1XdDPvvzXDw4YyGH0s1uj1V1U29ce8JxmunPfcNac0+KYPeX6fffX0Gvb9ONbp1YjEAAAAADjpzPgAA7BW1+mekPffEtOeemCQZjU6kGh1PVS2k1vjsCUY6s0aldFJvXptm68Fpzjw+tdrhCcaAnWc8BwAAB0Ojdd8cuuI3snTyp9Nffv200wHgEqT4yjaVUj4jyctzrjRysnnBFXdPcsEGy29MVZ3c0N5oPeDTRVWanceke/olSUbrjhql331V2nPfsPOJAgAwUbX65WnNPjGrhw+N5vWbHj8cfDCnb/vm8/Y5f8VLU2/cc1IpAjBGKZ00Wjek0bphS+dt5/d4KSXN9kPSbD/kTB8fzrD/TxkO/jmj4b+kGt2W0fDY1j8EAAAAAGuY8wEAYC+p1Y4ktSNbOudCrk07h56ZRvPa1Br3TCluK+DSYDwHAACXpgsb535fSjm0SxkBcCkyS7p9P5/kcDYvvDKu4MpmxVng03pLN41tb3Ye9+nXtfqdU2/eL8P+uzaer/gKAMC+NXPoe6edAgD7SL1xdeqNq5N8ybRTAQAAAGBCzPkAALBbGq37eagPTJDxHAAATFej9QDFRQG4KP6KbEMp5eokX5s7Lrxytr2f5ANJPpLkVJLFjC/OwgE3Gt6WQe9tG3eU2TQ7N65panYeO7b4ymjwzxn2P5B6817bzqO39MosnfyJDe2N9iMyd9lPbrvf0fDjOXXr125orze/IPOXv3jb/QIAAAAAAAAAAAAAAAAAAABsh+Ir2/PUJLWsFFBZXXhlddGVXpLfSfKyJG+uqqq7qxmyL/W7NycZbmhvth+VUtpr2zpflO6p/2/s8b3uzZlpPm2HsgQAAAAAAAAAAAAAAAAAAAC4NNSmncA+9bgxbWcLsZQkb01yXVVV31pV1WsUXuFC9ZZuGtvemtn4v1ytdiSN1heOPb7ffXWqajTR3AAAAAAAAAAAAAAAAAAAAAAuNYqvbFEppZXkhqwUWznrbOGVKskbknxRVVUfmEJ67GOD/vsyGn5oQ3upXZl68/5jz2l2Hju2vRp9KsPeOyaaHwAAAAAAAAAAAAAAAAAAAMClRvGVrbt3zv27nS24ctZCkidVVbW861mx7/WXXjm2vTXzJSmljN3XbD8ySXvsvl73VZNKDQAAAAAAAAAAAAAAAAAAAOCSpPjK1n3WmLazRVh+vaqqT+xyPlwCqqqffvc1Y/c1O4/b9LxSm02j/dCx+/rLr486QAAAAAAAAAAAAAAAAAAAAACbU3xl6w6dZ98f7VoWXFIGy29MVZ3c0F5vXpd64+7nPbfVeez4HdVi+t2/nER6AAAAAAAAAAAAAAAAAAAAAJckxVe2rn2efX+/a1lwSekt3TS2vdl53B2e22g/NClzY/f1u6+6qLwAAAAAAAAAAAAAAAAAAAAALmWKr2zdwnn2Hdu1LLhkjIa3ZdB725g9zTQ7j7nD80tpp9l+xNh9g97bMhrdfpEZAgAAAAAAAAAAAAAAAAAAAFyaFF/ZuuPn2dfctSy4ZPS7NycZbmhvtB+WWu3wBfXR7Dx2kz3D9Lt/sf3kAAAAAAAAAAAAAAAAAAAAAC5hiq9s3fvPs+/CKmXAKr2lm8a2tzqPu+A+Gq0HppTLxu7rL928rbwAAAAAAAAAAAAAAAAAAAAALnWKr2xRVVW3JDl+9u263Vftcjrsc4P++zIafmhDeymXpdF+6AX3U0ojzc6jxu4bDv4hw8FHtpsiAAAAAAAAAAAAAAAAAAAAwCVL8ZXteW2SMqb9QbudCPtbf+mVY9ubnceklMaW+mp2Hrt5nO7NW+oLAAAAAAAAAAAAAAAAAAAA4CBQfGV7/mST9sftahbsa1XVT7/7mrH7mjNb/1+p3rw+pXaXsft6S69OVVVb7hMAAAAAAAAAAAAAAAAAAADgUqb4yva8PMmJVe+rJCXJvyulXDWdlNhvBstvTFWd3NBeq1+dRvPzt9xfKSXNzqPH7qtGH8+w/3db7hMAAAAAAAAAAAAAAAAAAADgUtaYdgL7UVVVS6WU/5bkuVkpvHJWI8lPJvnmqSTGvtJbumls+2j44Zz45MMnH6/752m0rp94vwAAAAAAAAAAAAAAAAAAAAD7VW3aCexjP5Xkk6veV0lKkieXUp44nZTYL0bD2zLovW1XY/a7r0tV9XY1JgAAAAAAAAAAAAAAAAAAAMBepvjKNlVVdTrJt2Wl4Mqnm8+8/7VSyhdNJTH2hX735iTD3Q1anc5g+S27G3NDDqPpxgcAAAAAAAAAAAAAAAAAAABYRfGVi1BV1Z8l+a/ZWIBlNsmflVKeNJXE2PN6SzdNJ2735qnEPatKb6rxAQAAAAAAAAAAAAAAAAAAAFZTfOUiVVX1n5L8ds4VYClZKcDSSfI/SykvK6VcOa382HsG/fdlNPzQdGIvvzWj0cmpxE6SVMvTiw0AAAAAAAAAAAAAAAAAAACwTmPaCVwiviXJKMmTs1J4JWd+liTfkORrSim/m+QPk7y9qqqPTSVL9oT+0ivHtjfaj8rMof84kRij4b9m4fbvGhc9/e5r0p79qonE2arR6PapxAUAAAAAAAAAAAAAAAAAAAAYR/GVbSilPHVM8xuSPDjJvbOxAEs7K4VZnnzm/F6STyQ5nmQhySArxVt2QlVV1WN2qG+2qKpWip+M0+o8LrX6FROJU6tfkVr96oyGH96wr9991dSKr1Sj26YSFwAAAAAAAAAAAAAAAAAAAGAcxVe251dyrsDKOGXV62pMWzvJZ5/ZztfPxSo73D9bNFh+Y6rq5MYdZT6N9oMnGqvZuTHLCx/e0D7s/31Gg1tSa1w10XgXYjj40K7HBAAAAAAAAAAAAAAAAAAAANhMbdoJ7HNlzDbumGSlCMr6bbM+JrGxB/WWbhrb3mzfmFKaE43VbD9q8zy6r7qDszf5X6gabjufJBn2//GizgcAAAAAAAAAAAAAAAAAAACYJMVXLs5mBVXW26wwyrjzJ7Wxx4yGt2XQe9vYfa3OYycer968JrX6VWP39bs338HZjbGt1ej2bedTjU5l2H/3ts8HAAAAAAAAAAAAAAAAAAAAmDTFVy7O+qIq5fyHn/e8SW/sMSsFT4Yb2kvt8tRbN+xIzEb7xrHto+G/ZNDbvBBKKTPjz7uI4iv97uuTDLZ9PgAAAAAAAAAAAAAAAAAAAMCkKb5ycao9vLHH9JZuGtvebD86pdR3JGaz86hN9/W7r9p0X6lfMba9Gn0io+HHt5xHVQ2yvPjbWz4PAAAAAAAAAAAAAAAAAAAAYCcpvrJ9ZR9s7BGD/vsyGn5o7L5m57E7FrfRvDaldtex+/rd16aqBmP31euftWmf/e7rtpzH8sL/ymj40S2fBwAAAAAAAAAAAAAAAAAAALCTGtNOYJ/6zWknwP7SX3rl2PZS+4zUm9ftaOxm58b0Fl++ob2qjmfQe2ua7YePyWs+tfrVGQ0/vGFfd+GlaXYem1r9LhcUv999fZYXfm3LeQMAAAAAAAAAAAAAAAAAAADsNMVXtqGqqqdMOwf2j6rqp999zdh9rc6jU0rZ0fjN9qPGFl9Jkv7SzWOLryRJo/2w9BY/vHFHdToLx5+V2SM/nnrjbpvGrarlLC+8LMsLL00y2kbmAAAAAAAAAAAAAAAAAAAAADtL8RXYYYPlN6aqTo7d1+w8dsfj15v3TandKdXo1g37+stvTjU6nVKb37CvPfOE9BZ/J+MKp4wGH8jpY09Js/3oNDuPTK12ZUrtUKpqMaPBxzLovyv97qtTjY6tOa9WvzoprYwG/zSpjwcAAAAAAAAAAAAAAAAAAACwbYqvwA7rLd00tr1Wvzr15jU7Hr+Ukmb7kektvWLM3l76y69Pa+bxG/NrXJXWzBPSW/qD8R1XS+l3/yz97p9dYCatzB55fpZO/fwF5w4AAAAAAAAAAAAAAAAAAACwk2rTTgAuZaPhbRn03jZ2X7Pz2F3Lo9l51Kb7ekt/vum+zvx3pdaYRIGYTuYu++ldKTYDAAAAAAAAAAAAAAAAAAAAcKEUX4Ed1O/enGQ4dl+z85hdy6PevD6lXDZ237D/fzIafmLsvlKbzdzRn0+9ed22Y9fqV2Xu6AvSaH/htvsAAAAAAAAAAAAAAAAAAAAA2AmKr8AO6i3dNLa93vjc1BuftWt5lFJPo/OITfZW6XVfvem5tdrRzB19cTrz35VSDm8h5qG0Z78p81f8Zhqt+2wxYwAAAAAAAAAAAAAAAAAAAICd15h2AnApO3Snl007hU+bPfzs5PCzt3VuKc20556c1uzXpL/8pgx6f5NR/58zGn48VbWYZJRSO5RSuzz1xuen0bp/mp0bU0pnQ1/zl//iRX4SAAAAAAAAAAAAAAAAAAAAgMkoVVVNOwc4r1LKe5Jcu7792muvzXve854pZAQAAAAAAAAAAAAAAAAAAAAwedddd13e+973jtv13qqqrtvtfA6C2rQTAAAAAAAAAAAAAAAAAAAAAACYBsVXAAAAAAAAAAAAAAAAAAAAAIADSfEVAAAAAAAAAAAAAAAAAAAAAOBAakw7gWkopTxy2jnspqqq/nLaOQAAAAAAAAAAAAAAAAAAAADAXnMgi68keX2SatpJ7JIqB/e/MwAAAAAAAAAAAAAAAAAAAABs6qAX5SjTTgAAAAAAAAAAAAAAAAAAAAAAmI6DXnylmnYCO0xxGQAAAAAAAAAA/n/27jzKkrSuE/43Iu6WS23ddENDs3c3ggKyuLQOqCPqoDPKO8q4jIqIG+7tgjojos6oLPoiivoqqOCrM244is64DMjIqoIgLg2yCy3N1rXlereI+aMzs3Kr6q6srLq5fD7nxKnIyHsjnnuqu+Lc3++J7wMAAAAAAAAAwHkc9vCVgxxOctCDZQAAAAAAAAAAAAAAAAAAAADgkpSTHgAAAAAAAAAAAAAAAAAAAAAAwCS0Jj2ACWsmPQAAAAAAAAAAAAAAAAAAAAAAYDLKSQ8AAAAAAAAAAAAAAAAAAAAAAGASWpMewIS8P0kz6UEAAAAAAAAAAAAAAAAAAAAAAJNzKMNXmqZ5wKTHAAAAAAAAAAAAAAAAAAAAAABMVjnpAQAAAAAAAAAAAAAAAAAAAAAATILwFQAAAAAAAAAAAAAAAAAAAADgUBK+AgAAAAAAAAAAAAAAAAAAAAAcSsJXAAAAAAAAAAAAAAAAAAAAAIBDSfgKAAAAAAAAAAAAAAAAAAAAAHAoCV8BAAAAAAAAAAAAAAAAAAAAAA4l4SsAAAAAAAAAAAAAAAAAAAAAwKEkfAUAAAAAAAAAAAAAAAAAAAAAOJSErwAAAAAAAAAAAAAAAAAAAAAAh5LwFQAAAAAAAAAAAAAAAAAAAADgUBK+AgAAAAAAAAAAAAAAAAAAAAAcSsJXAAAAAAAAAAAAAAAAAAAAAIBDSfgKAAAAAAAAAAAAAAAAAAAAAHAoCV8BAAAAAAAAAAAAAAAAAAAAAA4l4SsAAAAAAAAAAAAAAAAAAAAAwKEkfAUAAAAAAAAAAAAAAAAAAAAAOJSErwAAAAAAAAAAAAAAAAAAAAAAh5LwFQAAAAAAAAAAAAAAAAAAAADgUBK+AgAAAAAAAAAAAAAAAAAAAAAcSsJXAAAAAAAAAAAAAAAAAAAAAIBDSfgKAAAAAAAAAAAAAAAAAAAAAHAoCV8BAAAAAAAAAAAAAAAAAAAAAA4l4SsAAAAAAAAAAAAAAAAAAAAAwKEkfAUAAAAAAAAAAAAAAAAAAAAAOJSErwAAAAAAAAAAAAAAAAAAAAAAh5LwFQAAAAAAAAAAAAAAAAAAAADgUBK+AgAAAAAAAAAAAAAAAAAAAAAcSsJXAAAAAAAAAAAAAAAAAAAAAIBDSfgKAAAAAAAAAAAAAAAAAAAAAHAoCV8BAAAAAAAAAAAAAAAAAAAAAA4l4SsAAAAAAAAAAAAAAAAAAAAAwKEkfAUAAAAAAAAAAAAAAAAAAAAAOJSErwAAAAAAAAAAAAAAAAAAAAAAh5LwFQAAAAAAAAAAAAAAAAAAAADgUBK+AgAAAAAAAAAAAAAAAAAAAAAcSsJXAAAAAAAAAAAAAAAAAAAAAIBDqTXpAQAAAAAAAAAHV900+UA9zj/X43y4rvORepyzTZO5pk6/ScZp0iTppkivKNItivSSXF2WuXdZrW1XldaVAAAAAAC4XJZXarkfqsf5aF3nbFNnrmnSb5qMVl7TTZFukfSKIr0UG+q4V6vhAgAAAJfRybrOm0aDfLiuc6qp02+aXFWWOVGUeWjVykNb7ct27X7T5I8Hy1uOP6k7ddmuyZUnfAUAAAAAAADYNXXT5K3jYd4wHORvR8P803i0NjH/Uhwvijyy1c4nttr5xKqTm1panQAAAAAAO3V7Pc4bhoO8dTTMP46H+VBdp7mE87WT3FC11uq4j6jaOSaQBQAAALgEw6bJHwyW8/LBct49vvAstBNFmc9od/KU3nSuLatdHcdC0+S5S/MpNh0XvnKwmJEIAAAAAAAAXLLbx+P87mApfzJYzunm3BT9S5msv96ppslfDAf5i+EgyULuU1b5/E43T+z0cs9dbpYDAAAAABxEi02T/zVYzh8NlvPOdQ8s7UYdd5Dk1vEobxuP8pv9pRRJHtNq5/M7vXxmu5tusfnxJAAAAIDze3l/KS9aXszJ5u4Fxp5s6vz+YDn/c7CcL+5O5Rt7M+lchnrE6lhUOg4e4SsAAAAAAADAjp2u6/zc8kL+ZLCcOlsn6e9mk3n9uW+rx3nR8mJevLyYz2x38w296dyv0v4EAAAAANhs2DT5//uL+c3+Uhaa5rLVcZucq+M2Sd40GuZNo2F+MvN5UreXr+pO52hZ7tLVAAAAgIPobF3nx5fm8prhYEMN4+7UL5rcGRD7m/2lvHU0zLNnjuYeu7ywV5HdW5CMvUXVCgAAAAAAANiRVwyW82VzJ/O/BssZ586mcrFpSzZOuN+J9auFrN+aJHWSVw37+Y9zp/LCpfmMGq1tAAAAAIBVbx0N85Vzp/LLy4uZXxe8srmOm+y8lnuhGm6TZCFN/lt/KV8ydzIv6y/t6HMAAAAAB98Hx+M8df7UWvDKdnWGzdYfX//aW8ejfO3c6XxgPL4CI+cgEL4CAAAAAAAAXLRfXFrIsxbncnZlsv7msJX1zjeB/6629e/fzvpm+TjJf+8v5WvnTuVDtYY5AAAAAMDL+0v59vnTua0eb/vA0maba7nJXddvs817Np9v9XrzTZP/d2k+3zV/JmfreicfCQAAADigztR1vm3hdG6v67U6RrI1WGWz7eatrf78sabOLQunc1IdgruhNekBAAAAAAAAAPvLi5cW8tL+YpLzN7STrRPw20muLsvcoygzXRTppkinKNJJUufOAJVBmiw2TRaaJqeaOifrOoPznH+7672rHucb507nBbPH8oBKOxQAAAAAOJxe3l/Ks5fmk2z/cNL56rjJnav8nlir42aljlukTrNSx81KHbfO2abJdo8vXeh6fzUa5JvnT+cFs8dzdWlNYQAAACB59tJcbq/r8waprP5cJjla3Hn0zMrCYauvKza9r0nywbrODy2ezc/OHEtRnC9CFoSvAAAAAAAAABfhzwf9/Ep/8bwrma42r+9RlHlMq52bqlYeUrXyoKqV4zucRH+yrvOBepx3jke5dTTMG0fD3NHcOZ1//ThW9z/a1Lll/kxecuREjpm4DwAAAAAcMm8eDfLcdcErSbZdMbqd5KFVKzdV7ZU6bpV7lGWuLsqUd/NhpKZpcqppcns9zm31OO8Yj3LraJR/HA8zWnnN5jpuk+Q99TjfOX86LzpyIj0PPgEAAMCh9qbhIH8xHJy3jnFNUebJ3al8SruTG8pqLURl2DR5y2iYPxks58+G/bX3NevO0SR5y2iYl/QX89TezBX9XOwvwlcAAAAAAACAu+VMXecnl+bWft7c5L6qKPPvOr08rt3Jw1rtXbvuVWWZq8oyj2y1k+5UkuTvR8P8Xn8p/3ulab55PB9u6vzw4tk8f/b4ro0DAAAAAGCvW2qa/NjiXOpsH3rSTvJZ7W4e1+7m5nYn05cYfFIURa4qilxVlvn4tPN5K8cXmyavGfbz+/3lvHU83PLw1GoAy3MW5/KsmaOXNAYAAABgf/v1/uLa/vraQZJ8ZXcqX9+bSXubGka7KPLJ7U4+ud3JV4xH+aGFs3lfPd7w/tX9lywv5vHtbh5cidhge5Z5AwAAAAAAAO6W3+wv5XTTUr2MiAAAIABJREFUrE2SX21MV0m+vjed/3H0qnzj1MyuBq+cz8Nb7Txr5mh+7ciJ3FC1NjTdV8f316NhXj3sX/axAAAAAADsFb/XX8rtdb3hIaOs7P/bTi//4+jV+eGZo/nsTveSg1cuZLoo8nmdXn7hyPH81MyxXFuUW+q4TZI/G/bz1tHwso0DAAAA2NtO1nXeOBpumZNWJHnG1Gy+eWp22+CVzW6oWnnRkeN5TKu9JcAlSYZJfmxxLk3TbH8CDj2xPAAAAAAAAMBdGjVNXjZY2rBSapOkm+R5M8fy2HZnIuN6UNXKi2aP5wcXzua1o8GW8b14ZcUSAAAAAICDrm6a/GZ/acvDSmWS/zx9JJ/f6U1kXDe3O3nJkRP57oUzuXU82lLH/f+WFvILR45PZGwAAMDe9cVn75j0EHakSPK7R6+e9DBg33j9cLBhwa3V/S/q9PKk7tRFnWumKPO8mWN5+vzpvGOlBrE+iOWfxqP83mA5X3yR5+VwEL4CAAAAAAAA3KU3joaZb5otTe7vmpqdWPDKqk5R5Mdmjuab50/nH1ea5qsN83ePR3nneJQbK61RAAAAAOBge+t4mDuaeksd9+t7MxMLXll1rCzzgtljedrc6XygHic5V8f9u/Ewt43Hub6qJjpGAABgb7m9rte+N+wnxV2/BFjnH8fDLcd6KfKNvZkdna9XFPnx6aP5mvlTG+a7rf578kvLC3lCu5tjZbnjMXMw+S8CAAAAAAAAuEt/NRqs7a9OanlQWeXf7ZFVQNpFkWdOH8l2U/NfPexf8fEAAAAAAFxpbxgOthy7rizzlXukjjtTlPmh6SPb/u7/qOMCAADnUeyjDbh47x2P1vZXg2Q/u3Np4SjXVVW+Z2p2bZ7b+hCn+abJLy0v7PjcHFzCVwAAAAAAAIC79O51Te7kzib35014pdTN7le18lnt7pYVj942Gm37egAAAACAg+Sd2zys9MROL1Wxdx4BfFirnU9tdbbUcW/dZpVrAAAA4OD7cF1vCS/6pFb7ks/7OZ1ePqPdWauRZOXPJsnLB8sbQl8gEb4CAAAAAAAA3A23jcdbmtwP34Um9257fLuztr/aLH9frVEOAAAAABx876+31nE/sdp7ddx/3emu7a/Wcd89Hk9sPAAAwN50TVGmSbaENzYX2ID952yz9f/e+5XVrpz7u6ZmM72lWpLUSX5maX5XrsHB0Zr0AAAAAAAA9qsvPnvHpIewI0WS3z169aSHAcA+M7dNk/uaYu+t9fDgamsLdLsGPQAAAADAQbNdHfdeu/Sw0m56yDZ13DNNPYGRAAAAe9kfHLs67xmP8trhIC8fLOWDdZ0i50Ict2OGCOw//W3+zz1e7s68tGvKKk/rTednlxfW/u1Y/fOvR8O8YTjIzesW++JwE74CAAAAALBDt6808vZbs25rfjsA3LXlbe54rT14U5kptg5qSfgKAAAAAHAIbFcLbe/BOu7Rbeq4C+q4AADANh5UtfKgqpWv6k7lFcN+fnppPqeaZsPczfWBCo9ttfO5nd7ExgtcvCrJaNOx3Yxo/Q/dqbx8sJz31+MNc6ibJC9cms+ntE6k3KZWweEjfAUAAAAA4BLtp3K7KYsA7NRMUWR+0+T3U3Wda/fYqqmL20zQ7+6ruzUAAAAAwM5MFcWWEJOzTZNrJzSe8+lvU8ftqOMCAAAXUBRFPqfTy2NbnXzb/Om8dyVEYfO3i/uXrXyB8BXYV6aLImc31QrO1HWu26V5aVVR5DunZnPLwpkNYU1NkvfV47xssJwnd6d25Vrsb+WkBwAAAAAAAADsfUeLra3FfxpvXnNk8t4zHm85drQ0aR8AAAAAOPiObrNK87v2YB33n+utddwjVpgGAADuhhNlmefNHkt35WffJGD/O7HNvLT3blM7uBSf0u7kca3OWvBKci6A5cXLCzlV17t6PfYn4SsAAAAAADt0TVGmydaVE5oLbACwXz2grLbcy/73sD+RsVzIq9eNabVZfv9dWgUFAAAAAGAvu36bOu6r9mAd93XDwdr+ah33vpU6LgAAcPdcV1b5/E7PnEw4IO67TT3jr9fVDnbLt0/Npr3N8fmmyfOX5nf9euw/wlcAAAAAAHboD45dnV8/ciLf1JvJdWW5Vvi/0EoKFwpmuRIbAOzUJ7TOtZ5XV/1482iYN1+GRvdOvW88yiuH/S334o+rtmubAwAAAAAcLJ9Qba3jvm44yLvGo4mNabOP1OP86WB5Sx33pqo1kfEAAAD70xd0epMeArBLHrSuJrBaz/iLYT9n6npXr3OfqsqXd6fX5lOvBsI2SV457OfPBsu7ej32H9UpAAAAAIBL8KCqlQdVrXxVdyqvGPbz00vzOdU0a8X45Fxhvkjy2FY7n6vpB8A+9GntTn5xeWHt59X7248szuXFR47nmnKyq5IuNHV+aOFsxtkahPa4dmcSQwIAAAAAuKI+ud3Jr/QXNxyrkzxr4Wx+6cjxzBSTXb931DT50cW5LGdrHffT1XEBAICL8NBWOyeKIqcby9LBfvdJrXZe2t94rJ/k55cX8gPTR3b1Wl/Tm84fD5bzsaZeq02szoN77uJ8bqxaeaCA2EPL3zwAAAAAwC4oiiKf0+nlsa1Ovm3+dN5bjzcEsKy6f9my4gIA+9KNVSsPq1p527oVUoskH23qPH3+dH5i5lhunFDj+SP1OD+wcDbvWrn/Jufuwfcvqzys1T7fWwEAAAAADoxHtNp5YFnlffU4ybmHh95Xj/Nt82fynJmjEwvSXmjq/PDCXN48Gm4JXrm2KPOoSh0XAAC4OA9vtfPq4WDLdwxgf3lEq51jRZGzK2FKq/WMPxos58aqlS/pTu3atXpFke+cms1/Xjy7YXHNIslimtwyfyYvnD2e66vJLkTGZEw2thgAAAAA4IA5UZZ53uyxdFd+1tQD4CB5Sm96LdRk9c8iyQfrOl83dyo/uzSfU3V9xcYzapr8Vn8xXzV3Km9fFwqzqsidq5UAAAAAABwWX7Gpjrv6INHbx6N85dyp/G5/KaMrvDL8q4f9PGXuVF4/Gmw4vjq+r+xNpyh0VgEAgItz04QWCQJ2V6so8m87vW3rGc9fms8LluazvIu1jM/qdPP4dmfDdbKy/5GmzjfPn847RlvnonHwCV8BAAAAANhl15VVPn9dEwAADorHtbv5zPM0nodJfrO/lCedvSPPWjibVw/7WbpME/jfPhrmF5bm86SzJ/MzSwuZa5q1MSXnGvCPbrXzuZ3eZRkDAAAAAMBe9AWdXh7Vam+o467WTueaJs9fqa3+4tJC3rlNqPVuOVXX+f3+Ur5m7lR+YOFsPljX29Zxb6xaeZI6LgAAsAM3CF+BA+PLu9OZWakarK9nNEl+u7+U/3D2ZH51eSHv26Vaxg9MHcnVRbnheqv7H2vqfP38qfx2fzH1FQ6wZbLcVQAAAAAALoMv6PTye4PlSQ8DAHbd900dyXvHp/P+eryh0b26P0zyimE/rxj2UyV5SNXKTVUrD65aub6scs+yzFVFmSPlhdeJqJsmJ5s6d9R1bq/rvLse5d3jUf52NMyZlab2+qb3ZlcVZZ45fWSXPjUAAAAAwP7xzOkj+fq50znZ1FsCWJokJ5s6v9ZfzK/1F3NVUeZRrfZKHbfK9WWVa8sq3WK7yuv2ztZ1bq/HeXc9zrtW6rjvGI/S5MJ13KkUedb0kVQXcS0AAIBV15XV2r5vFbC/XVWW+YapmTx/aX5LcGuTOwNRXry8mBcvL+ZoUeR+ZZV7lVWmiyIfV7XyRd2pi7resbLMj80czbfNn84o2TIPbpjkBUsLeVl/OV/RncrDW+1d+6zsXcJXAAAAAAAug4e22jlRFDkt8RyAA+ZYWeanZ4/lm+dP5/a63jB5ZX3jO0lGSW4dj3LrNiuOFLlzYn2vKFIlKYtk1CTDNBk2yXKabHcXbTadY7vfHy2K/PTssVy7bpINAAAAAMBhca+yyvNnj+Vb509nrmkuWMe9o6nzymE/rxz2N5xjOkWOlUWmU6RbFGmlWKnjNhkmGTZN5ldCtDdXgDfXdjfXcpsk7STPmTmaB1qpHgAA2KHrVhb+MUsTDoYnd6fy96NhXjHsbwlgWd1PkjNNk38Yj/IPK3PSPtbqXHT4SpI8otXOf54+kh9ZnEuyNYClSfKBepznrguE4WBTpQIAAAAAuEwe3mrn1cOBgjsAB849yyq/Onsiz1w8mzeOhlvudet/Pt8ElybJQposrAaV3c2ZMBe6rzZJ7l9Wed7MsVxfCV4BAAAAAA6vG6pWXjx7It+/cCbvqccXXcddSJOFutny2vO9frPN51//oNRVRZlnzxzNJ1g1GgAAuASzRZnnzBzd8B3l3hbqgX3tmdNHMlps8n9W5l9vFyibnKtNXOoc7c/t9DJskp9YmlurX6wPYFm9VrNu37zwg6uc9AAAAAAAAA6qm6zSBsABdrQs89Mzx3LL1GyOFMV5J9sXu7wlWyf2rza1v7Q7lV89ckLwCgAAAABAkuurKi8+ciJf1p1Kle1rq8ndq8mu33I337f+davvfXy7k5ceOSF4BQAA2BWPa3fz+HXbDeZtwr7WLor82PTRfG13ettaxqrdDED5gm4vz5s5mpmVOXDb1TUErhwOwlcAAAAAAC4TTTwADrqiKPLk7lR++8hV+aruVI6tNKDP1/TebnL+hZzvtZtDWD5jZbL+d0zNpldodQMAAAAArOoVRb59aja/ceREntDurj24dL6VmncSsHJ36sIPqVr5qZmjefbMsVxdepQFAAAA2F5RFPm6qZn8ypETeXy7syHUdcPrdvGaN7e7+Y2V613M/DYOFjP/AQAAAAAuk+vKam3fY+AAHGRHyzJPn5rN03ozeeWwn1cN+nnjaJD+utfsZAWQza9f39S+vqzy2e1uvrDTy3VVFQAAAAAAzu++VSs/OnM0d9R1fn+wlP8z6Ofd9Xjt98WmPy/G5iCWVVMp8rh2J1/Y7eXRrc4OzgwAAAAcVjdUrTx75lg+MB7nlcPlvGE4yK3jUcZ3/dYduaas8uyZY3nbaJjf6S/lz4f9DFZ+t5O5b+w/wlcAAAAAAC6T61ZWbJN+DsBh0SmKPLHTyxM7vfSbJm8eDfL3o1H+aTzKO8aj3NHUOzpvleR+ZZUbq1Ye0Wrn0a12HlBpdQIAAAAAXKyryzJP683kab2ZfKge5/XDQf5+NMw7xqP8cz3Ozqq4d5pKkRuqaq2O+5hWJ53Co0kAAADAzt23qvI11Uy+pjeTUdPkA/U47x+Pc6qps9Q0uWZlvvZueWirnR9qtfOddZ3XjwZ5/XCQN40GOd2YEX7QmZEIAAAAAHCZzBZlnjNzdEP4yr3LamLjAYArqVsUubndzc3t7tqxpabJR+pxPlLXuWOl+d1vmgySjNKkSpF2kumiyJGizImyyD2LKvcsy7RM0AcAAAAA2FX3Kqv8++5U/n13Kkmy3DT5l3qcj9Z1PlKP19Vxk0GajHJnWPbGOm6ZexZl7lNWua7SCwUAAAAun1ZR5IFVKw+8Agt3HS3L/JtOL/+m00uSfLQe553jUW6rx/lYXefkDhciY+8SvgIAAAAAcBk9bt0D5wBw2E0VRe5ftXJ/8+8BAAAAAPacXlHkwVUrD1bDBQAAANjgmrLKNRbhPNDKSQ8AAAAAAAAAAAAAAAAAAAAAAGAShK8AAAAAAAAAAAAAAAAAAAAAAIeS8BUAAAAAAAAAAAAAAAAAAAAA4FBqTXoAAAAAAAAAwME339T5UF3no/U4Z5smc02TftNklKRJk26K9IqVLUWuLsvcuyxzj7Ka9NABAAAAAA6UcdPk1vEoH67HObVSqz1RlrmqKPNxVSsnysu3zu+oafI3o+GW45/S7ly2awIAAAD7n3oGl5vwFQAAAAAAAGBXDVaazW8dDfOP42HeOx7nVFPv6FztJPcqq9xYtfLIVjuf2GrnhkqbEwAAAADgYr1u2M/LB8v5m+EwS2m2fU2R5CFVK5/V7uZLulPpFcWujuFs0+SWhTNZf9YiyWuPX7Or1wEAAAAOBvUMrhSzEgEAAAAAAIBL1jRNXj8a5I8Gy/mr4SD99b+7hPMOkry/HucD9Th/PrzzrDNFkX/d7uaJnV4e2WpfyrABAAAAAA68vx4O8vPLC3nneJTkwjXbJsnbxqO8fTzKf+8v5qm9mXxJd2rXx3QpdWMAAADg4FPP4EoTvgIAAAAAAABckj8eLOcly4u5rR4n2dpk3o11RNafc75p8oeD5fzhYDn3Kat8WXcqX9jppbXLK5YAAAAAAOxno6bJC5cX8jv9pSTn6qx3VUltVrZTTZPnL83njaNBnjV9NNO7WINdPZOHlgAAAID11DOYlHLSAwAAAAAAAAD2pw+Mx3n63On818W5fKAerzWwi01bcq65vbrdlc2v23zO1d/fVo/zU0vz+fK5U3n9sL8bHwsAAAAAYN87U9f5hvnT+Z3+0pbabbK1Zru+Jru5Fvva4SBfP3cqJ+v6Sn4EAAAA4JBRz2CShK8AAAAAAAAAF+0vh4M8bf5U/m483BK4kmwNWNkukOVC7up1m5vl/1KP870LZ/PcxbkMG2uLAAAAAACHV79p8h0LZ/L28WhD/fZCgdfbPciUde97bz3Ody+cyaL6KwAAAHAZqGcwacJXAAAAAAAAgIvyumE/z1g4k/mmWWt0J1sb3avHttuqJNMpcrwocm1R5h5FmRNFmZmiWGt+n2+Vks3WN9r/YLCcWxbOZEnDHAAAAAA4pH56aT7vGI821E4313IvtJ3vfe8Yj/Lsxbkr9TEAAACAQ0Q9g0lrTXoAAAAAAAAAwP7xrvEoP7hwNqNsbGxvt9LINUWZm6pWHlK18qCqlXuUZa4py1xTlGkVxeZTb7DcNDnV1DlZ17m9Hue2epx3jEd522iUDzd1su76q1av/5bRMN+7cCY/M3Ms5V1cBwAAAADgIHn7aJiXD5a31G9X93tJntjp5VPandxYtXKiuHNN34/W47x5NMyfDvr52/Fw2weWmiSvHPbz6P5SntSdupIfCwAAADjA1DPYC4SvAAAAAAAAAHfLqGnyowtn08/W4JXV0JWHV608rt3N49ud3K/aeTuyVxS5rqhyXVnl49Pe8Lt/Ho/yqmE/fzRYzgfretuxvGU0zM8tL+TbpmZ3PAYAAAAAgP3m1/qLG2ql6+u3T2h3c8vUbE6U5Zb33bdq5b5VK1/Uncrrh/38xOJ8Tjb1hvev7v/s0kI+td3Jvcrq8n8gAAAA4MBTz2Av2PpfGAAAAAAAAMA2/udgOe+qx2thJ8m55vRjW+289MiJ/OKRE/nK3vQlBa/clftXrXxNbya/feSqfM/UbKZWRrQ6rtUx/VZ/Ke8ejy7bOAAAAAAA9pK5us5rhoMttdIiyVO60/nRmaPbPqi02ae1u/nlI8fzoLLa8sBTkiylybMX53Z7+AAAAMAhpJ7BXnH5ZjwCAAAAAAAAB8pv9Jc2BK+sNqm/rjedr+3NXPHxlEWRf9+dyie1Orll4XRur+sNv2+S/MLSQn5y9tgVHxsAAAAAwJX2htEg45wLql6t4X5Gu5NvnLq4Gu61ZZUXzB7PN8yfyu11vWXl6TeOhnnFYDlP6PR28RMAAACc863zpyc9hB174ezxSQ8B9g31DPYK4SsAAAAAAADAXXrbaJjb6vGWJveXdKYmEryy3n2rKj8/ezxfN3c6dzR3BrCsNsz/cjTIx+px7lFWEx0jAAAAAMDl9o+j0ZZjrSTfMTW7o/NdVZb58elj+Yb5UxkmW1agfuHSQv5Vu5teUZz/JAAAADv05tEw++3bxup8GuDuU89grygnPQAAAAAAAABg73vdcLDl2FVFmadf5Ooil8u1ZZX/NH0kzabjTZJXbTN2AAAAAICD5l31uYeVzq0S3c09LyGc+qZWK98yNbtWe11fg/1oU+ely4s7PjcAAMDd0eyTDdgZ9Qz2CuErAAAAAAAAwF16x3hrk/vfdPbWCiCf2u7kkVV7y4SWvx8NJzIeAAAAAIAr6cP1eMsK65/c6lzyeZ/cnconrtReN68W/d/7i/lQPb7kawAAAJxPsU82YGfUM9grhK8AAAAAAAAAd+m92zS5H70LTe7d9rmd7oafmyTvWhccAwAAAABwUJ2ut661fkO181Wi13vG9Gza2xwfJvn5pYVduQYAAMB6rdw572PzN53mAhuw/6hnsFe0Jj0AAAAAAID96lvnT096CDv2wtnjkx4CAPvM2abecuz6cnea3LvpYdW5FujqSiWntxk7AAAAAMBB09/mUcNj5e6s2fuAqpWv6E7npf3Ftdrr6p+vHPbzpaNhPr613eNMAAAAO/Nnx+6RvxkN8rrhIH866GcpTYqc+y6yHQEssP+oZ7BXCF8BAAAAANihN4+GKSY9iIu02jQAgIu12Gxtcvf24E3lxDaN94Vtxg4AAAAAcNCUSTZHUe/Oo0p3ekpvOn88WM5Hm3pDz7FJ8jNL8/nFIyd28WoAAMBh1yuKfHq7m09vd/MtUzN5WX85v7q8kEE2BrCsD1R4aNXKze3OpIYM7IB6BnuF8BUAAAAAgEu0Xx7n3oPPxwOwj3RTZGnTXW+haXLNhMZzPoNtbszVlR8GAAAAAMAVN1UUmdsURn22aXLPXTp/ryjyLVMzedbi3JbVov9hPMr/Hiznczq9XboaAADAOTNFma/uTefx7U5umT+Tj6yEKGyeJvKwqp2n9WYmMURgh9Qz2Ct2M/QHAAAAAOBQKvbJBgCX4mi59W7y7vF4AiO5sA/WW8c0U2iLAgAAAAAH37FtaqH/PB7t6jU+p9PLI6v22oNKybkHll64tJClZr8sXQEAAOxHD6haee7ssbUH5M2NhP1PPYO9wixDAAAAAIAdauXOovvmcntzgQ0A9qt7FdWWe9lrh/2JjOVC/mo0WNtfbZZfX1YTGw8AAAAAwJVyfbm1jvum0XDXr3PL1Oy2D6N8rKnzC0sLu349AACA9W6sWnlCu2tOJhwQ6hnsFcJXAAAAAAB26M+O3SPPmzmaJ3V66aVYK/xfaCWFCwWzXIkNAHbqE1qttf3VVT/+fNjP7ePxxMa02XxT548Gy1vuxTdWrW1fDwAAAABwkDywOhdEvVrHfdWwv+urN9/UauXfdXob+o+r1/u9wVLeOByc550AAAC74wu7vUkPAdgl6hnsFWYZAgAAAADsUK8o8untbj693c23TM3kZf3l/OryQgY5V4zPuv0iyUOrVm5udyY1ZADYsce2Ovn1/tKGY8MkP7o4l5+dPZZWcaH4sSvj2YvzmWuaLeErN7fbExkPAAAAAMCV9JhWJ/9tUx13vmnykuWFPH1qdlev9U29mfz5sJ/5dQ9CFUnqJD+yOJdfOXI815bVed8PAABwKR5RtTNbFFnY5XAG4MpTz2CvEL4CAAAAALALZooyX92bzuPbndwyfyYfaeoNASyrHla187TezCSGCACX5JNa7VxXlvlQXSc5Fy72d+Nhvm/hbP7LzNFMTyiApW6a/OTSfP582N8SvHKsKPJJLcFnAAAAAMDB96hWO1MpsrzSpVyt4/5Gfykf32rn8e3url3rWFnmm3ozed7S/IbFKIokJ5s63zV/Ji+cPZ7jZblr1wQAAFhVFUUeXrXzhtFgy1wRYH9Rz2Cv8LcOAAAAALCLHlC18tzZY2vFV009AA6Koijy5M7UWrDYauO5SfKXo0G+eu5kXjfsX/FxvWM0yjfOn84fDJY3HF8d35d2p9OaUCgMAAAAAMCV1CuKfF6nu2GBiNXVm39w4Wx+u7+4q9f7f7pTeWTV3lAvXvWeepxvnT+dj9TjXb0mAADAqpuq1qSHAOwC9Qz2CuErAAAAAAC77MaqlSe0NzYBAOAgeHJ3KjeUVZJsWPmjSfLBus4zFs7mKXOn8vL+Us7U9WUbR900+avhIN+/cCZfO38qt45Ha2NZVSS5rizzpd2pyzYOAAAAAIC95iu602mv+3m1djpK8oKlhTxl7lT+ZLCcxWZ3upk/NH0kMyvV2c0rRr+nHucpc6fymgkEdwMAAAffjcJX4MBQz2AvcFcBAAAAALgMvrDby58qugNwwFRFkWfOHM3T505nKc2GxnNW9t85HuU5S/N53tJ8Pq5q5VGtdh5StfPgqsp9yirtojj/Bc7jTF3nPfUo7xqP85bRIG8aDbOw0khfbaevP2uTpJ3kmdNH09vB9QAAAAAA9qvrqypf0Z3OS/uLWwKrV2u4/2VxLmXmckPVyv3LKvcqq0wXRR5YVXlcu3tR17uuqvLMmSP5gYWzG66z+sDSmabJ9y+czaNa7Xx1dzoPqKpd+ZwAAAD3Kcu1fbNDYH9Tz2AvEL4CAAAAAHAZPKJqZ7Yo1h4MB4CD4saqlefMHM13LZzJKFsbz83KNk5y63iUW8ejJEvJyu+PF2WuKoocLcvMpEi3KFIlqYpk1CSDNBk1yVzT5GRT5466zlI23k/X/7R58szqWH5w+kge2WoHAAAAAOCw+bredP5+PMybR8ML1nD/aTzKO8ajtfd9Wqtz0Q8rJcnj2918c28mP7e8sOE66/ffMhrmLaMzmfZIJAAAsEvuVd4ZhmCWJhwM6hlMmvAVAAAAAIDLoCqKPLxq5w2jgXI7AAfOY9qd/Nzs8fynhbP5WFOv3etWm89Z93M2/XyyqXOySYp6fJfXOd/kmPPdW5skvSTPnD6az+pcfEMdAAAAAOAgqIoiPzF9NN+9cCb/MB5dsIa7Ww8p/sfedJbT5JeXF8/7wFKSLKzsbR4LAADAxTpWlrllajb1um82N1YenYf9Sj2DSSsnPQAAAAAAgIPqJk08AA6wT2i185IjJ/KZ7c5ak3lzY7k4z5aca4JfaLvQ+zdrknxc1cqLjpwQvAIAAAAAHHpHyjI/O3s8T2x377KGu93vduJpvZk8Y2o21aZzbq73AgAA7JYnd6fypd3pte3Rrc6khwRcAvUMJkn4CgAAAADAZWIFBQAOuqt9XhCpAAAgAElEQVTKMj8+cywvnDmWh1WtC64qsv74+UJVzheycr7zrh6/uijzPVOzefHs8TzY/RcAAAAAIEnSLYo8c+ZofmrmaG64QA13Nx8gelJ3Ki+ePZEb113PA0oAAADA3aWewaSYeQgAAAAAcJncpzyXf60AD8BB9uh2Jy9qd/L20TC/O1jOa4b9zDXnWt6XuvrH5iCW1WMPr1r5wu5UPqfdTadwtwUAAAAA2M7N7W5ubnfzN8NB/mzYz18OB/loU1+2693UauUlR07klYN+XtZfyt+Oh2u/s1o0AAAAcHeoZ3ClCV8BAAAAALhM7lVWSbZPWweAg+jjWu38YKudcTObvxsP8/rhIP8wGuWd41EWd+GOeI+izCNa7Ty61c6/andy7cq9FgAAAACAu/aYdiePaXeSJB8cj/O+epT3j8c51dRZbpLrq92tuX52p5vP7nTzvvEorxr28/rhIG8bj3L5HpMCAAAADhr1DK4U4SsAAAAAAJfJsbLMLVOzqdc9bH5jpSwLwMFXFUUe1erkUa3O2rH3j0d5fz3OR+s6H6nr3NHUWW6a9Jsm/TQZ5c7mZStFposiR4oiV5Vlri3K3Kes8uCqlWNlObHPBAAAAABwkNy7qnLvqsqntS//tR5QtfLUqpWn9may2DR51/jO0O7b6nHuWKkXAwAAANwV9QwuJ7P8AQAAAAAuoyd3pyY9BADYE+5XtXI/IWQAAAAAAIfadFHkEa12HtG6Ak9JAQAAAOwC9YzDwdJwAAAAAAAAAAAAAAAAAAAAAMChZGk5AAAAAAAAAAAAAAAAAAAADr2lpslH63HmmiZJMlMUuVdZpVcUEx4ZAJeT8BUAAAAAAABgV32sHufDdZ2TTZ1Bk5woi1xVlLlvWaW6jBNR6qbJbfV4y/H7VdqiAAAAAADrqeMCAACc84HxOH84WMrrhoP8cz1Os81r7l1W+cRWO5/V7uTmVieFMBa44tQzuJz8bQIAAAAAAACX7N3jUf5wsJy/Gg7y/m0azcmdKwF9cquTz2x38oROb9fHcLpp8mVzp7K+jV4kee3xa3b9WgAAAAAA+406LgAAcNDcUdf5cD3OqabOYtNktihzTVnmwWV1t8JR5ps6P7+0kJcPltMk24aurPqXepwPDsb5X4PlXFeWeVpvJk+8DN+bgI3UM7hShK8AAAAAAAAAO/ae8Si/tLyQ1w4HdzkJZb5p8qphP68a9vPS5cV809RMPr3d3fUxXWgMAAAAAACHjTouAABwkHy4Hudl/aW8bjjI+84TxDCdIje3O/nS7lQ+vtXe9jW3jcf57oUzua0eb/iOcqHIltXXfbCu818X5/I/B8v5kemjubosd/RZgPNTz+BK8y85AAAAAAAAsCO/1V/MU+dO5TXDQerc2Vwu7mJbbYS/ux7nGQtn8/zF+dTN7ralV68FAAAAAHDYqeMCAAAHxahp8svLC/nysyfzG/2lvHclNGW7bSFNXjns5xvmT+fZi3NZ3vSd5mRd51vnT+cDK+dY/50o5zlnsvW705tHwzx17lTeOx5dzo8Oh456BpMgfAUAAAAAAAC4KIOmyffNn8nPLC1kmI3N7WT7CSjnm4Tyu4OlfMfCmS2TXAAAAAAA2Dl1XAAA4CAZNE2+d+FMfmV5McvZ/vvL+YIY/nCwnO9ZOJPRuu80z1o8m4809ZbvSbnAebPpdavHPtbU+Zb50/mX8Xh3PiwcYuoZTJLwFQAAAAAAAOBuq5smz1g4k9eMBlua26vON6kl2drwXl0F6Ps3TXIBAID/y96dx1l2FXQC/92319ad7iSYBWQJIZAIhC2AjCwfFxSFAYUZRBExsjMgoCyizCAwowSEEUEBRYwsoqhBJCCMMuwQEMKSIOsESCQEkk531/q2O3+kq1Pd9aq7uupVV3W97zef+tTrd98759y8V/eec+69vwsAAKyNeVwAAGA76ZdlnjOzN5/qdg4Z4yyOV1ay9DWf63bystn9SZKPdBbyb93OsjHQ0cIdDg9dWdqWGw+EwywYM8Gamc9gswlfAQAAAAAAAFbtjfOzuezACSiD7vyzmhNQlt5daPHxp7udvGZuZuNXAAAAAABgmzOPCwAAbCfvWJg7GJZy+BhnUGDKUkvHNO/vLORz3Xb+ZmFu2fLF10wURR5cb+ZF41N53eTOvH1qVy6e2pVXTezM45rjuWWluizcYdG3+r28Yd6YCdbKfAabrbbZDQAAAAAAAABODN/udfPWhdmBd/BZfHyfWiP3rtdzdrWWXcVN94L4fr+fz3Y7+ZfOQq7p91Y80P3O9lzuUa/n/vXmcV4zAAAAAIDtwTwuAACwnVzb7+WN8zMDQ1cWH+8uKrlVpZrJosj1ZT/X9nu5sSwPvm6pi2an8+0DY57Dy3lIo5X/1prIzkplWTtuX03uXW/kia3xvKs9n9fNz2SmLJeV886FuTyqOZbTKtV1rzuMEvMZbAXCVwAAAAAAAIBVecvCXLo59KB2Djy+a7We3xyfzFnV5Ycgb1tNLqg38oTWeC5pz+d1czOZT3nICSyLj39/dn/uOlUfeCILAAAAAABHZh4XAADYTv5hYS7zGTzGObday9PHJnJ+rbHsfZ/utPO2hdl8qts5JIDlW/3esjFOkeRRzbH8xtjkUdtTFEUe3hzLebV6nj29NzeU/UOWd5P8zcJcnrGKsoCbmc9gK/DNAAAAAAAAAI5qvizz/vb8Cnf+aeY1kzsHHuBeqloU+YXmWP506qTc4sDdR5aWkyR7yzJ/ODc95NYDAAAAAGx/5nEBAIDtpFeWubS9MHCM89P1Zt44edLA4JUkuVe9kVdNnpQLW+MHgxzK3BzqsLSss6q1VQWvLHV2tZbfn9hxyIX6i2W+rz2fsixXeCdwOPMZbBXCVwAAAAAAAICj+lSnnfaSfy+ejHLXaj0vGJtKrShWeOdyZ1dr+aPJndl54D1L71hSJvk/nYVc1mkfoQQAAAAAAA5nHhcAANhOPt/r5Pqyf/Dfi2OS86q1/O74VIpVjHEubE3kJ+rNQ0JXliqSPLE1vqb2nVer55eb4zk8ZmVvWeYLve6ayoRRZD6DrUL4CgAAAAAAAHBUX+h1lj1XJHnu+GSqx3CAe9GtqrX83viOQ+5Ysvi7TPLquen03AUIAAAAAGDVzOMCAADbyZe7ywNMiiTPW2XwyqLfHJvM2LLYlZvsLIrcr9ZYaxPz6OZYWgOe/1xXuAOslvkMtgrhKwAAAAAAAMBRfX3JHXkW7wbyo7VGblOtrbnMe9YbeeySOwAtPaT9rX4vf7Mwt+ayAQAAAABGjXlcAABgO/nKgDHOPWv1nHWMY5wdlUp+otE8ZDxzcMxUbx5TkMvhdlYq+bH6oWUnydd6vTWXCaPGfAZbhfAVAAAAAAAA4Kiu7feX3QPoPvW13/ln0YWt8ZxVqSZZfpeRv1iYzd5+f911AAAAAACMAvO4AADAdnJVf3mAyY/Vm2sq6161+sDnz1lHuMOi8w8ru0xyzYC2A4OZz2CrEL4CAAAAAAAAHNWecvnB5mGcgFIrijx/fGrZAfQkmSnLvHF+Zt11AAAAAACMAvO4AADAdjJdLg9kuNMaxzi3X+F9tzkQzLAeS8tebO8PhDrAqpnPYKtY/7cOAAAAAGBEvXR2/2Y3YU2KJC8cn9rsZgBwgpkvy2XPnVQM514P59XqeVijlUva88vuMvKu9nwe1RzLrYdwQB0AAAAAYDszjwsAAGwn0wPGOLsqaxvj3GKFkJW1lrfUzmJ5tMPMgDAJYDDzGWwVvgkAAAAAAGt06ZKJ+BNFGeErAAxPfYg7wie1JvKvnYXsP+xgej/JH83N5JWTO4dXGQAAAADAiDCPCwAAnKhmBwQy9Jc/tSqtFZ6fGMJZoK0B4SuddZcKo818BpthOJE/AAAAAAAjrDyBfgBgrQadKDLoDkNrtbNSya+3Jg7urxYDw8okn+y2c1mnPbS6AAAAAAC2I/O4AADAdtIcEIxyQ9lfU1mVAeOlJGmu8Pyx2Dtg3FVbd6kwOsxnsFUIXwEAAAAAWKfiBPoBgLXaMeAg97d7vaHW8fONVm5XqSa5eb+1eKD7VXPT6Q7xoDoAAAAAwHZjHhcAANhOxgeMcX7QX1v4Sm/JWGXYo5Y9A9o0KEwCGMx8BluF8BUAAAAAgHUos/xAXHmEHwA4UZ1ZqS7bl32u2xlqHZWiyLPGJg+5y8iib/d7+cuF2aHWBwAAAACwnZjHBQAAtpPTKpVlY5zLuu01lTWfMg+sN/KAeiMPPPDzgHojzSFkpHyj1z34eLG9Jxcu4YfVMp/BVmHLDQAAAACwRn87tTvPHpvMvWv1g+nnyc2J6IMcKZjlePwAwFrdplI7+Hhxv/evnYWh3/XjHgdOcCmz/C4jF8/P5itDPrAOAAAAALBdmMcFAAC2k1tXqwcfL445PtxZSLmGMc5EUcn/nNi57GdiCCEpH+kcGghTJDmtUh38YmAZ8xlsFbWjvwQYhkfsvT7Xlv2By6aKIn89tTu7KxuXh3TfG78/8Pm/n9qd06s6cQAAAABrcWa1mkdWx/LI5liu6fXyloXZ/GN7PkmWhbEsTtT/cKWa82qmZgE48dytVs/ftucOee6Gsp+/XZjLL7bGh1rXM8Ym84nODVl6akqRpJPkRbP78+dTJ2XSHYIAAAAAAA5hHhcAANhOzq82cmkWDnnuxrLM37Tn8l+bwx3jrNU1vV6+0Ossu2nfHarOE4XVMp/BVmHLDVvA/rLMq+em83sTOza7KQAAAACs0ZnVap43PpWfrDfz/Nl9mSnLQwJYFt2r1sizxyc3o4kAsC73rNdTT9I98O/F/dwb5mdy51o9P1KrD62u0yrVPK41njfMzx4SYpYkV/d7ef7MvrxiYmdaxeGnrgAAAAAAjC7zuAAAwHZy73o9lbnlN8L707mZ3LvWyG22QMDJ78/tTz9ZFr5y/hDHX7Ddmc9gqxC7A1vEBzoL+WSnffQXAgAAALCl3b3eyMvGbw7ZNfUOwHYxWVTyoHrzkGCxIslCkmdN781HOgsrvHNtfrk5nttWqgfrKZf8/ly3k9+c2ZuZsj/UOgEAAAAATmTmcQEAgO3k1Eo19601Bo5xnjR9Yz4x5DHOsXrt3HT+rdtZdp7oRFHkHsJXYNXMZ7BVCF+BLeQVc/szXx5+L2QAAAAATjT3qjdyv8MO+AHAdvCY5vghBxgXDzzPpMzzZ/bleTN78/luZyh11Yoi/2NiRxbvUTToQPfj99+YrwypPgAAAACA7cA8LgAAsJ38Smt8WbhJkWR/Wea3ZvblRTP78tlOO93jeG3udf1enje9N29bmDukbYvjoYc0WqkVbt0Hx8J8BltB7egvAY6Xa/r9vGl+Jk8dm9zspgAAAACwTo9ojuWj3fZmNwMAhuoOtVoe1mjlkvb8ISePLB54/minnY922tlVVHKXWi23rtRyWqWS8aLI6ZVqfuQY7+pzdrWW3xibzEVz0wfrW3qg++p+LxdO35ifabTyK82xTBTuPQEAAAAAjDbzuAAAwHZy51o9P9do5d0HxjiL440iST/Jv3QW8i+dhTST3LJay2lFJWNFkaeMTeS0SnVo7bi618sVvU4+0mnnI52FdJe0Zalmksc0x4ZWL4wK8xlsBcJXYIt5+8JcfrrRyu2q/jwBAAAATmT3qNXTSrKw2Q0BgCF7xthkvtTt5Ov93rKTWhbvIXRD2c+HOu0kNweR/WitkYsmdx5zfY9ojuWqXi9/2547WMfSk1f6SS5tz+fS9nxuOcSTZgAAAAAATlTmcQEAgO3k2WOT+Vqvm3/vdQeGMiTJfJKv97r5+oHnH9McW3f4yt8vzOWdC3P5Xr+f+YM13Vzn0vHW4u8LWxO5hXEPrIn5DDabiB3YYrpJ/mB2f8qyPOprAQAAANi6GkWRH6nVY5YHgO2mVRR5+eTO3LJSPeRg89KD3UsPRi/+rMezxifzs43WwAPqS+v6Tr93sC0AAAAAAKPKPC4AALCdNIsir5rYmfOqtWVjieKwn2G6pt/LVf1e5lIeMnZaOuZZWucD6838Umt8yK2A0WE+g80mfAW2oC/0unlXe36zmwEAAADAOp1TrW12EwBgQ5xWqeaNkyfl7kuCxg4/gWXpSS3DOLnlheNTeWxzbGB9G3ECDQAAAADAicw8LgAAsJ3srFTyx5Mn5VGNsUPCEY6HlQJelgZD/FS9mRePTx3HVsH2ZD6DzSR8Bbao183P5IZ+f7ObAQAAAMA6nC18BYBtbPGklt8cm8zuorLinUSGefD5KWOTuWhiR045UN9G1gUAAAAAcKIzjwsAAGwnzaLIs8Yn8+eTJ+X+9UaSrDjOGbZBdZRJJooivzs+lf8xsSO1wogHhsF8BptF+Apssh9Z4QKc/WWZV89NH+fWAAAAADBMZ1aqBx+bdAdgu/r55lj+fsfuvGBsMves1VPLzSe2LP0ZlvvVm3nHjt15amsip1eWH1x3txEAAAAAgEOZxwUAALaTc2r1/P7Ezrxzanee0ZrIBbV6dhbFhoawLI5hFsc3jST/udHKW6Z25WcarQ2sGUaX+QyON7ddhU32a63xvHJuOtf0+8uWfaCzkJ/ttHPvAwl8AAAAAJxYTj8QvnI87qoAAJupXhR5aHMsD22OZb4sc0W3k6v6vXy718uesp/5ssztVwikX4tWUeSXW+P5peZYPtnt5IOdhXyy084PyuXHWwAAAAAAMI8LAABsP6dXq3l0dTyPzniSZG+/nz1lPzNlmVsPcXyzeA5oK8l5tXruXWvkoY1WdlYqQ6sDGMx8BseT8BXYZM0Uee7YVJ45s3fg8ovm9uettd1pFrKwAAAAAE40uyuVPLo5lqXT7edX6yu+/pu9bn5p/54jlvnWqV253RAPEgDAsLWKIveoN3KPY3jPWveBRVHkvvVG7nsgyP6qXjdf6XXztV43V/d7ub7fz/UOfAMAAAAAHGIt87jJ2uZyzeMCAADHy85KJTuz+kCU1Yxxntoaz+2r9ewuipxVraXmWl/YNOYz2GjO0Ict4IJ6Iz9Tb+a9nYVly67p9/MX87N58tjEJrRsdX7Q7+XjnXY+dyAt7Np+L7NlmTLJZFHk9Eo1Z1druVetkfvU65kopPkBAAAAo+MZY5Ob3QQAGBm3qdZym2otD97shgAAAAAAMJB5XAAA4ERyv3rTDfMA8xkjwtYetohnjk3mE912bizLZcveujCbBzeaue0W66Bd2e3kL+Zn84luO70VXrOnLLOn182VvW7e1Z5PK8lPN1p5THMst9pi6wMAAAAAAAAAAAAAAAAAAACMlspmNwC4yc5KZcW7IHeT/MHs/pQDglk2w3TZz8tm9+fC6Rvz0SMErwwyn+SS9nwes39PXj03nbktsk4AAAAAAAAAAAAAAAAAAADA6BG+AlvIzzRauXetPnDZ53vd/GN7/ji3aLlv9bp5/P4b80/rbEs3yTsW5vL4/XvyzV53OI0DAAAAAAAAAAAAAAAAAAAAOAbCV2CLee7YVForLHvt/Exu6PePa3uW+mavmydP35ir+72hlfmtfi9Pnb4xX+l2hlYmAAAAAAAAAAAAAAAAAAAAwGrUNrsBwKHOqFZzYWsir52fWbZsf1nmj+am8z8mdhz3dn2/38szp/fmxrIcuHw8Re5fb+RH643cqlLNSZVKumVyQ9nP13vdfLzTzie77QyKbdlblnnOzL785dSunFyRCQUAAAAAAAAAAAAAAAAAAAAcH8JXYAt6dHMs7+8s5Gu97rJl/9xZyEM67VxQbxy39vTKMi+c2ZcflP2Byx/RaOXXWxPZPSA45Zap5i61en6+OZZrer1cNLc/n+p2lr3u+rKfl87uy6smTxp6+wEAAAAAAAAAAAAAAAAAAAAGWZ6UAGy6WlHkBWOTqa6w/KK56SyU5XFrzzsW5vLFAUEw9SQvGp/Kc8enBgavHO7MajWvmtiZRzXGBi7/ZLeTj3YW1ttcAAAAAAAAAAAAAAAAAAAAgFURvgJb1J1q9TyqOTik5Op+L2+enz0u7djb7+fPV6jrt8Ym8zON1jGVVxRFnjU2kR+tNQYuv/g4rRcAAAAAAAAAAAAAAAAAAACA8BXYwp7YmshpxeA/07cuzOb/9bob3oa3L8xlNuWy53+63sxDVwiHOZqiKPK88ckMil/5Yq97XNYLAAAAAAAAAAAAAAAAAAAAQPgKbGFjRZHnjk8OXNZJ8vLZ6ZTl8mCUYemWZd7dnlv2fC3JE8cm1lX2LSrVPLjRGrjsQ52FdZUNAAAAAAAAAAAAAAAAAAAAsBrCV2CLu2+9mZ+sNwcuu7zXybvb8xtW92Xddm4YEO5y31ojp1eq6y7/wSutV7ez7rIBAAAAAAAAAAAAAAAAAAAAjkb4CpwAfmNsMlNFMXDZa+dnsqff35B6P95pD3z+gnpjKOXfpVbPoJKu7HWHUj4AAAAAAAAAAAAAAAAAAADAkQhfgRPA7kol/601MXDZvrLMH81Nb0i9l3c7A5+/XbU6lPLrRZGzqrVlz+8vy1y/QYEyAAAAAAAAAAAAAAAAAAAAAIuEr8AJ4qHNsdy9Vh+47H2dhXy60x5qfe2yzFX93sBlu4rhbTpuWRkc5HLtCnUDAAAAAAAAAAAAAAAAAAAADEttsxsArN7zxybzy/v3ZFDMykVz0/mr2q40i2Iodf1Hv5eV4k8es3/PUOo4kj1lf8PrAAAAAAAAAAAAAAAAAAAAAEZbZbMbAKzeraq1PL41PnDZd/q9vHl+dmh1fb+/ueEns2W5qfUDAAAAAAAAAAAAAAAAAAAA25/wFTjB/HJzPLerVAcue+vCbK7qdYdSz/5NDj+ZF74CAAAAAAAAAAAAAAAAAAAAbDDhK3CCqRVFXjA+NfCPt5PkD2anUw4huKSdzQ0/GU6EDAAAAAAAAAAAAAAAAAAAAMDKhK/ACehHavU8otEauOzyXif/1J5fdx3FuktYn94m1w8AAAAAAAAAAAAAAAAAAABsf7XNbgCwNk8Zm8hHOu1cV/aXLfvj+Zn8p3ozuyprz1dqHCF+5ZIdu1Pb4HiWiWKz418AAAAAAAAAAAAAAAAAAACA7U74CpygJopKnjM+mefN7Fu2bF9Z5o/mpvPfJ3asufwdRwg/aabISesIdgEAAAAAAAAAAAAAAAAAAADYCqQnwAns/vVmHlhvDFz2vs5CPtNpr7nsWxwhXGV/2V9zuQAAAAAAAAAAAAAAAAAAAABbhfAVOME9Z2wykykGLnv53HTaZbmmck+vVFNfYdn/6/fWVCYAAAAAAAAAAAAAAAAAAADAViJ8BU5wp1SqecrYxMBl3+n38pfzs2sqt1YUuV21NnDZV7rdNZU5yL93O/n8YT9XdDtDKx8AAAAAAAAAAAAAAAAAAABgJYOTFYATyiMarby/PZ/P95aHovzVwmx+stFcU7l3r9XzlQFlfrzbzhMyOPDlWFzb7+XC6RvTP+z5s6u1XDy1a93lAwAAAAAAAAAAAAAAAAAAABxJZbMbAKxfURR5/vhU6gOWdZK8fHZ6TeX+p1pj4PP/3uvmqgGhLMfq3Qvzy4JXkuRetUFrAgAAAAAAAAAAAAAAAAAAADBcwldgm7hNtZbHNscHLvtcr7OmMu9Wq+fMyuDNxJvmZ9dU5qLv9np5x8LcwGUPabTWVTYAAAAAAAAAAAAAAAAAAADAaghfgW3kca3x3LpSHVp5RVHkvzTHBi77QGchn+6011Rutyzz4tl9mUm5bNl9avWcVa2tqVwAAAAAAAAAAAAAAAAAAACAYyF8BbaRRlHk+eOTKYZY5sMbYzmjMnhT8cLZfflqt3tM5c2XZZ4/sy+f7y1/XzXJ08Ym19JMAAAAAAAAAAAAAAAAAAAAgGMmfAW2mfNrjTys0RpaeY2iyPPHpgYGuuwvyzx95sb8/cJc+mV51LI+02nnCfv35GPd9sDlj2mO5fbV2jpbDAAAAAAAAAAAAAAAAAAAALA6Ug5gG3paayIf7bRzfdkfSnn3qjdyYWs8fzY/u2zZ/rLMRXPTedvCbB5Qb+aetXpOLqrZWSkyU5a5od/Pl3qdfLTTzhW97op1nFut5ddaE0NpLwAAAAAAAAAAAAAAAAAAAMBqCF+BbWiqUsmzxibzO7P7hlbmha2JXN/v5x/a8wOXX9Pv520Lc3nbwtwxl31mpZJXTOxMqyjW20wAAAAAAAAAAAAAAAAAAACAVatsdgOAjfHjjWb+U60x1DKfOz6VX22OZ5gRKXes1vInkydlV8XmCAAAAAAAAAAAAAAAAAAAADi+pB3ANvZb45MZblRK8qSxiVw0sSOnFuvbfFSTPLo5lj+ZPCmnVqrDaRwAAAAAAAAAAAAAAAAAAADAMRC+AtvYLSrVPHlsYujl3q/ezNt37MoTW+PZVRxbuEsjyc82mrl4aleeOTaZ1jG+HwAAAAAAAAAAAAAAAAAAAGBYapvdABgV/7Dz5E2p91HNsTyqOTb0cieKSh7fmshjm+P5VLedyzqdfLnXyTX9XqbLMr0k40WRiRS5ZbWas6q1nF+t54J6I+MCVwAAAAAAAAAAAAAAAAAAAIAtoCjLcrPbAEdUFMUVSc49/Plzzz03V1xxxSa0CAAAAAAAAAAAAAAAAAAAAGD4zjvvvFx55ZWDFl1ZluV5x7s9o6Cy2Q0AAAAAAAAAAAAAAAAAAAAAANgMwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAANvyWG0AACAASURBVICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRJHwFAAAAAAAAAAAAAAAAAAAAABhJwlcAAAAAAAAAAAAAAAAAAAAAgJEkfAUAAAAAAAAAAAAAAAAAAAAAGEnCVwAAAAAAAAAAAAAAAAAAAACAkSR8BQAAAAAAAAAAAAAAAAAAAAAYScJXAAAAAAAAAAAAAAAAAAAAAICRVNvsBgAAAAAAAAAAAAAnvvlyId/ufSff61+X75Xfz77+/kyX01nIQrplN2XKNItmWkUrrdz0++TK7pxROT1nVE7PKZXdm70KAAAjRx8OgFFlH8iJbrqczrX963Jd//vZ19+X/eV0FtI+7PvbTCuttIpmTqmcfOC7e/JmNx04juzvYOtZ7T689uBWdp11Sjrfa2fhW/PpfK+92U3f9oSvAAAAAFtKv+znO/2rc1Xv2zdPKJX7D0wo3TTJmyTNopFWWgcne08pdueM6ukHJnpPy8kmercMnylsLAfGAACA7cY4B+DE8d3etfl497Jc3v1Cruh+Od/tX5tyHeXVU8/Z1dvl/Npdcn7tzrlr7c7ZWdkxtPayNezr78+nup/JZzqfzbX967Kn3JOFsp3dlV3ZXezKnWrn5H71++S21VtvSP3T5Ux+f+YPD3muKIq8ZOJ3NqQ+ANhq9OE2hvkMtoKyLHNl79/z6SV97XbZzq4lfe171++ZyWJiQ+qfK+fyF/NvWfb8U8eesCH1LRrV9R4l1/dvyGe6n7vp8+3vSTvt7Cp2ZXdlV+5UPSfn1s5ZVTlr3QeWA15VpLAP5Lhql+38W/fyfO7A9/ebvauyp7xxTWXVU8/plR/K2dWzcn7tzjm/dpecXTtryC0ePv0tWJ3tNOYbVh9gLRbKdi5t//Oy5x/RfOiG1cn2tJ59eOO3p3JWzjv47/5CP+2r5zP/jblbXrDnQU9L8pHLdn3wCxvU9JFUlOV6Npmw8YqiuCLJuYc/f+655+aKK67YhBYBAAAwTP2yn8u7X8zHO5/K5d0v5Cu9r6WT7rrLPanYmfNrd8ndanfO3Wp3zR1qtx9Ca1kNnylsrO10YAwAACAxzgE40cyWc3nPwvvy7vZ789XeNw4+P+hCpLUqUhz4ndyzdvf8bPPBeVD9/mkWjaHVwfH31e7X86b5t+RDnY8e8n1ZfLz4uS+6deVWeeLY4/PjjQcMtR3X92/IQ/Y+8mB9ZcoUKfLJXf8y1HoAYCvRhxs+8xlsJTf09+Qt8+/Iu9vvzf5y+oivraaaC2p3zxPGHj/0i1UP72sv2qi+9qiu96jolJ1csvBPeVf70ny9980jvnZXcVIe1PixPK71S/mhyqmHLBvGPnCl8JXDH4/KPpDjpyzLfKz7ybx74b35ZOfTWUj75mVD6Mct/R5PFhP58foD8pDmT+WutTuvu+xh0N+C1dtOY75h9QHWSx+P9RjWPrzf769QQVJUi8WFe5P8bZKLL9v1wY+tudEkEb7CCUD4CgAAwPb0H71r886FS3Jp+/25sdx78PmNmORNkjMrZ+TnGg/OQ5o/lR+q3GJodXAznylsnO10YAwAACAxzgE4EXXKTi6ef3vevvDOTJczy7bZh5+AvFYrlTtejOURjYfmca3HZEdlaih1cXxMlzN5+eyr8/72vyY5tv19kSJ3rN4hL5v43ZxZPWMo7Vl60vzS4BcnzQOwHenDDZf5DLaaXtnLG+bfnLfPvzPttFf9XVz8nj2w/mN5wfizh3bh+fHqa4/qeo+SSxbekzfOvTnXlzcc0+dbTz2Paj48Tx77tRQphrYP7Gf5Ra+VVJKMzj6Q4+/ShffnTfNvydX9a5Ks/F1bj5XKPLNyRn6x9cg8vPFzqRXVdddzLPS34NhstzHfMPoAjSH9LevjsVbD3If3er3BC4qkqBRLC158/I0kr0ryxst2fXD9d88dQcJX2PKErwAAAGwvN/b35jVzr8972x9IP/0Nm+RNBk9UFUkeVL9/njT2a7l19VZDq2uU+Uxh42y3A2MAAADGOQAnps93v5iXzFyUq/vXHLKNHbTdXnoS8rEoUx6xvMUyJ4rxPKV1YR7Zevgxlc/m+EL3irxo5mW5tv+9NX03Ft8zVUzlf068KBfU77HuNh1+x9LF756T5gHYbvThhsd8BlvR1b1r8rszL82Xe1895r/hpa8/vXJaXjH50pxVve2623Q8+tqjut6jYl9/f146e1E+3PnYUfddh1v6+d66cqu008l3+9cOZR84KHylOHjm2uDyFl9zou8DOf6+07smL519eT7f/dKqv79Hes2g16/0usPrO7Nyep49/vTcr36fVbd/rfS34NhtpzHfsPoA51bPycsnX5JTKievqR1L6eNxrDZiH34wfGVx8ZK3FdViaSd1aQFlkm8meeZluz546apXgCTCVzgBCF9hVMyXC/l27zv5Xv+6fK/8fvb192e6nM5CFtItuylTplk00ypaaeWm3ydXdueMyuk5o3J6Tqns3uxVAACAo/pA+4N5+eyrs7+cPuIk7loneJe+/2jlVlLJo5u/kKeO/XpqRW1N9eAzhY20nQ6MnSjMzwAAwMYyzgE4MV2y8J68YvZ/p5vesu3sStvdw610h8q1bOcX33ef2r3yexMvdDHEFvbRzifygukXp5POMX13BvUDypSpppqXjL8wt6recl1zeE6aBzixXd+/IZ/pfi7X9q/Lnv6etNPOrmJXdld25U7Vc3Ju7ZwNq3uhbOfS9j8ve/4RzYduWJ1rpQ83POYz2Iqu7H4lz5x+7sHzdVbzN75SPztJxjOW10xdlB+pLbt055hsdF97VNd7VFzT+26eNv2cg+Gdgz6zwz/jQc8vDUo5PCBlrfvAQfvESiqrLmdxH/gb40/NV3pf049hRZ/oXJbfnXnpwfCRQd/5Yd4M70iWfn8f3vi5PGf86akX9Q2pS3+LE8F0OZ1r+9fluv73s6+/L/vL6SykfdicZDOttNIqmjmlcvKB+cj1h4AMsp3GfMPqAyw+d2pxcv5k6tW5VfXMY1qPw+njcSw2ah9+MHxlgMPCVw5ZdLDa5A25KYSlfcyVjyjhK2x5wlfYrr7buzYf716Wy7tfyBXdLx9I1F27euo5u3q7nF+7S86v3Tl3rd05Oys7htZeAABYrz+de1PePP/WFSc7jzSZtNLk7uHWcheTs6q3zSsnX5bTKj+0qvdyM58pbJztdGBsKzM/AwAAx49xDsCJ6ZKF9+R/zb4yyZG3tytdhLS72JWxYizNopFmGmkUjfTST6/spZNOZsvZzJSz2VvuW/Eu0ivVV6TI7aq3yR9NXiQUdwv6Wvcb+fX9T898FpadnL7Uke7uWB74r0ix7EKYtV5oVE89t6n+cL7S+9ohZThpHmBr65SdXLLwT3lX+9J8vffNI752V3FSHtT4sTyu9Uv5ocqpQ23H4RdeLdpq+xB9uOExn8FWdG3/e/mVfU/K3nJfkqyqv32058uU2VFM5U1Tr1vXRaobeYHqqK73qNjb35fH7X9yvtu/NsmRP9+VLH6+h293B4WkHMs+cKFs54rel5e9flC7VmrrkQJhltKPGW0f7Xwiz5v+7+mmm2R127nD1VJLs2ikkUaaRSO9sp9eburDzZSzA/tuS+saZLH+u9fumldOvixjxdhaVm9F+ltsRe2ynX/rXp7PHTiv8Ju9q7KnvHFNZdVTz+mVH8rZ1bNyfu3OOb92l5xdO2td7dtOY75h9QGWvi9Jzqicnj+bek1OXse4Ux+P1drIffgP9v4g5VhSVAf0PStFmRzxtOfiwPL/m+Rhl+364Mwxr9wIEr7Clid8he1ktpzLexbel3e335uv9r5x8PnVXnS4Gos74yLJPWt3z882H5wH1e+fZtEYWh0AAHCs3jD35vz5/MVJjm2St55aTq6cnFOLkw9M8jYPTvL2D0zytg9O8s7khvLG3HDgjhBLHe3OiacWp+SPp16R21R/eD2rOVJ8prBxttOBsa3I/AwAABx/xjkAJ6bPdi7P06Z/M/30B54ourjdrqeWO9XumHOqt88dq3fI7aq3zamVk3NysTuV4uh3gU6Ssiyzp7wx3+1fm+/0rs5Xe9/IFb0v50vdLy87WfXgew7Uf1b1tnnT1OvSKppDWW/Wr1/289j9T8zXe9884ndnqpjK2dXb5aRiZ5Lk+/0f5Cu9r2Uh7RweuHK49d7leVDoy4dPep85PIAt6JKF9+SNc2/O9eUNqz6eU6RIPfU8qvnwPHns19IY0vZ96YVXSy/M3EoXXunDDY/5DLaqJ+1/Zi7vfvGIf+OVFLlF5RbZVZyU5Ka+9g/K65Nk2WuX/vvs6ln5i6nXpV7U19S2jbxAdVTXe1Q8b/pF+b+djx7xc0pu+ox3FDfdBGdvue+Q1y0GeA5SSWXN+8BBn2+SvHfn3x11H3ikNq20nR/lfswo+1r3G7lw/9OzsEKI7dLv0anFKTmndnbOqZ6dsw58f08tTsmplVNSK2pHrGe+XMie/p7cUO7Jf/SvzXd61+Srva/nyt6/53v965IM/m4utuVutbvmtZOvWHV/8Wj0t9hKyrLMx7qfzLsX3ptPdj6dhSXnLQ/j3MKl37fJYiI/Xn9AHtL8qdy1dudjKme7jfmG0Qc4/H2Lj+9ROz+vnXxlimJtc8n6eKzGRu/DzzvvvFx55ZUpWpXUT6mnfotGGj/cyvidJ68741m3/nCSC5Lc6sDLB22sFgNYPpTkJy7b9cHBSWwcJHyFLU/4CttBp+zk4vm35+0L78x0OTPw4P0wrFTueDGWRzQemse1HiNxEwCA4+5f2h/Kb8+8+IgHKZLk1OLk3KN+t9zhwCTvWdXb5qTKzjXVeUN/T77Tvzpf7X49V/T+PZd1/i3XlzckWfnA0GmVW+Qvp16/5jpHic8UNs52OzC2lZifAQCAzWGcA3Bimivn8ov7Lsx3+9cO3HY2Us+DGvfP/ev3y4/W753xId/xdtFsOZcPdz6Wf1h498CL7BZ/P7jx43nxxG9vSBs4du9aeE/+5+wrV5xze2D9x/LY1n/NudU7HnLie6fs5M/nL87b5t+Z+cwftZ5Bdy9fjZUufpssJszhAWwh+/r789LZi/LhzscO2W6v5pjO0ouuzq2ek5dPviSnVE5ed5u2+oVX+nDDYz6Drepf2x/KC5acs3P49/JO1XPyS63/knvX7rmsT/ud3jV5b/v9efv8OzObuWUBDItl/ULzP+e3xp+xpvZt1HZyVNd7VHy689k8ffo3V/x8Ty1OyX9pPSL3qd0rZ1fPOjiO7JSdfLb7+by3/YG8r/2B9I9wYXw11fxk40Fr2gcey+e7uA985/wl+ULvyNe8rTSmHdV+zCjrlr08bv+TBobYLn4f7lI9L/dv3C/3r98vt67e6kjFrdm3et/Ov7Y/nH9svzf/0f/uin24xzQflWeMP3nd9elvsZVcuvD+vGn+Lbm6f02Slc8BXI+VyjyzckZ+sfXIPLzxc6kV1SOWsd3GfMPoA/xz+/8c/D87qI/3hNav5sKxx65pPe07OZrjsQ9fDF8Z4MqyLM9Lkgv2POicJL+Q5MIkt83NISyLwSuLv//wsl0f/K1jbsSIEb7Clid8hRPd57tfzEtmLsrV/WuOevDn8MS91VrasRxU3mKZE8V4ntK6MI9sPfyYygcAgLW6sb83/3Xfr+bGcu8hE5nJTf3V3cWuPKz5kDygfr+cW7vjhrblC90r8ncL78r72/96sK98+OTWfWr3yv+e+oMNbceJzmcKG2e7HRjbSszPAADA5jDOAThxvWX+HXnN3OsHzgM/tPEzeerYr2d3ZddxbdMnOpflf83+Yb7Xv+6Qdi3+/tOpV+f8Y7xLKBvjF/f+Wr7Zv+qQ/X+ZMpPFRF4y8Tv50fq9l71n0Bze0e4oWxz4b7WWfpdXutuxOTyAreGa3nfztOnn5Nr+95Ydg1npWM6g55feOORPpl6dW1XPXFe7tvqFV/pww2E+g63swn1Pz5d6Vy7b1tVSy3PGn56fbz7sqGVc378hvzPz0ny2e/nA7UUlRV43+arcrX6XY27fRm0nR3W9R8Uz9j83n+p+Ztl+Ikl+pfWLeWLrV1Mv6kcs49Wzr8vbFv52xeX11HLxjjfkrOptj7l9x/r5LvZjvtu/9ojj2qVjWv2Y0XbJwj/lf83+4cB+x71qd88zxp6cO9Ruf9za0y/7+Yf2P+WPZ9+Qucwta1MllbxlxxvX9Pe0SH+LreI7vWvy0tmX5/PdL636vMIjvWbQ61d63eH1nVk5Pc8ef3ruV7/PimVutzHfMPoAX+99My+c/r1c1f/2wP8v9dTylztef1z6AIye47EPX034yqIL9jyokuSJSf4gyeRhry+S9JLc7bJdH/zSuhq1za0t9h+AVblk4T152v7nHDwpoFjy36BJlEEnBJQr/Hf4+wY5vL7pciavmHtNfmP/87Ovv394KwoAACv464W/OxjSkdycJF1NNU9sPT7/uPOv85SxCzc8pCNJ7lI7Ly+e+O28Zccbc3b1rGWTu0nyqe5n8qH2Rze8LScynylsnL9b+MeDB5SXjv0XD4y9a+df5/cmXpifaDxwww4oJ8l4MZafbvxEXj/1v/Pqyd/PLSqnLvv7KlPmn9v/ksu7X9ywdgyL+RkAANg8xjkAJ6Z+2c/b59+5bB64SJEXjT8vvzPxW8f9BO4kuW/9glw89fqcV73jIfPAyU37lj+Z+7Pj3iaW+2bvqoHBK4008prJVwwMXllpDm+lu4AvLXfp47XO4S1dbg4PYPPt7e875ILlQRclD9qmH+kC5u+X1+cZ08/N9f0bjscqbAp9uOExn8FW9R+9awcGkFRSyR9MvnhVASRJcnJld/548qL8dOMnDvkuJTdtO/op87LZV6RdtjdkPY7VqK73qLi+f0Mu6/7bwP3X88eflaeNPeGoF133y34+0P7gwDHkYv+gm15eMvPybPRN7Jf2YxbrX8nhF92Pcj9m1P3V/DuWbeOS5ImtX80fT73iuAavJEmlqOQXmg/LxTtenzMqpy1bXqbMa+feuK469LfYCj7RuSyP3/+Ug8ErS8/z+//s3XdgG+XdB/Dvc6flGTuJyQayQ0IGCQmjQEiAQFkllFFaRgtlU3YJlL0pEPamQKEtdEAh7L6MELIHIZAdsve0Y0uWNe7uef9IpEg6yZats0/j+8kfkc/SPc/5Tvf8nt/d8xyQfLKVxPc0pqn3Jd5XuNHYjJt8t+OR+icRlmHT+/Otz2dFDAAAfdReeL38BRzqOMQU4wFAGFqbxABUmLKtDZ9TOdmYUzn5JQAjAKxJ8hYFwMNtWqkc5LC7AkRE+eqD4Cd42D8RQPJgOVUgDgAKFLQXlSgSRXALF9xwwSVc0GFAlzrCCMMv/aiXftTKupRPYklV3ixtLq7wXY9nSh9DR6W9JdtLRERERJRIkxreDX5gSii54cbE0gcx0jnclnr1VnvitbLn8Kf6ezE1PNNUv1cDb2K06yhb6pbtuE+JWk+qC2MKFNxZfAtOcZ9oS70iF8Zu9N2GxfqypBfGXi572pa6pYP5GSIiIiIi+7CfQ0SUuxZoC7FT7orLZQgIXO75nW3n74gKpR2eKXsMF9ddhfXGRgD72pgftEXYqG9C9wyfBE2ZmR2eF/dz5Pj5Q9HlGOjob3p/Uzk8BUrS3FuEGy5UKVUtzuElYg6v8Bxec5zdVWgRAWAmn7JLbeyM2l+3STnVRg0CCER/ThyMGSsyyDrZOT5xQPNmYwvurH8Az5dOhBBND5TLNYzhrMF8BmWzGdrsuJ8j3/PfeX6Do5xHNGtdqlBxV/EEVBs10UGvsYNlNxqb8LfAP3FJ0YWW1b+lCnW7C8WM8Oy4fRB5fYbrVIx3n5bWOmLbwNg+ZOK5fJm+AuNqz0CJKGlWHQ2pI3GCTwmZNDZKjGOakmzi0MjyWJuMzXkdxxSyJdpybDQ2mb4D57jH234u6qF2w4tlT+GSuquwU+6Z/CfyfZoZnoOdxi50VDo0e72MtygbTAvPxATf3dCgAYDpO5i4LBkHHHALF1xwwS1c0KUBHXtykvXSnzIXmWoy0UhZH4Q+xnpjAyaWPoiimMmH8q3PZ0UMEFEiijGx9EFc5r0OK/SVcTFeJAZ4LzgJZ3nOsGaDc9CV3hvtrkKLCAAvlD1hdzWSyuY2fE7l5JWjasYcC2AWgC57F0vs+ZOeNKpmTJc5lZO32FW/bMfJV4iIWsH88AL82f8kgOTBdyTodsKBgxwD0F/tgwFqP/RSe6JK6YAOoj0U0fiTWyKklKiRu7HF2IoN+kas0Fdhsb4Ui7Slpg5A5LWExCp9Da71/RGvl70Aj3Bbtu1EREREhY435+0zV5sPr/SZYuKbi/9g2yQdES7hwsMl9+By7/VYrC+N3swrIbFSX40V2so2n2k4F3CfErWefLswlg2YnyEiIiJqe201CMtqAgLvt/uH3dXIO+znEBHlrhnh2aZlXZXOuMDzKxtqY1YqSnBPyW242Hu16Xdfh7/Fhep5NtSKIpboy0zLOilVSZ9Gn24OzwUnFCgIIGga+BKGhkdL70Mv9cBG6xWbw1uiLcdjDY0Plom9xnB67bmoEh1zaoAbY9z0pRpAk/1y53ikeLl8T4EB8xOkW0M6609sK5oaFBep93ztB7we+DsuKbrAotpmD8Zw1mA+g7LZEs0ca7cT5bjQ07LvjypUPFByJy7wXobtxg7TIPi3Au/gVPdJ6KTsl1G9M1Wo210oFmlLTcuK4MGVRZekvY7ENjDx/ozI/xIStbIOXumzJJ7ZYmw1LWvuepP1gVOxI47hdZ/WNy0807SsvajEVUWX2lAbs05KFW4v+SOu991qysl8FZqCcz1nNnudjLfIbj9pq/An333QoJmOw8Q+b5XoiP6Ovuiv9kXvvfcVVomOqFI6wiEaH54fkEHUGDWoljXYbGzFBn0TVugrsURfhm3GdgDJH+4W6bve6Lsdz5c+Hr2HMd/6fFbEALE8woNHSu7Fhd7L4Yu51z3yN30p8AZOcI1FO6W8RevPdfO1BabjLdvFxknZKNvb8DmVkzeOqhlzCYDPgLhAUwFwFoBnbalYDuDkK0REFmuQDbjP/ygMGEkH1bjgxBjXMTjG+TMc6TwMxTEzELaEEALtRSXaK5UY5DgIJ+EEAIBfNuDb8HS8H/wIC7SFps6AhMRqfS0e9k/EvSV/yqgORERERLQPb87bZ2Z4bvR15O/SSz0Qp7tPtryslnAKJ+4uuRXn1V1sml382/B0TtSRBPcpUevJtwtjdmN+hoiIiMgeW4ytbTIIy2rZfMNOLmM/h4god/2kr4q+juQxTnaNgypUG2sVb6BjAI5wjsKM8Oy4tjzZoDxqWxv0TdHXkePnOOexcCQcP83N4a3XN+AS7zXQocetR4eOJ/3P49myxxqtV2wOr7PSCY83PBMtKxK/JnvSqoSEBg1b5FYImTtxI2Pc5sm1v1eu9bkoXu7uP/Mg5taQ6sngkXKbKjvx3J7sd28E/oZjXUeht9oz4/pmE8Zw1mA+g7LZWn199HXke368aww8wtPidbZTynFH8R9xre8W0++CCOFp/4t4qPTuFq/fCoW63YVitbE2+jrah3Qd26yB0cnawGOdR2Ny+Nu4ZREGDChI72E8setNlBiXNBXHNDZJXOx7Ur3PjjiG131a3wr9p+jryLH6c9cJWfUQpyOcozDMMTju3icAWKgtxrlo/uQrjLfITprUcY//YQRjJnmOzQMCwBB1EI5x/QzHOH+GA9QeLS7LI9zoonZGF3TGIBwU97t1+np8HfoWH4Y+w2ZjS9K6fK/9gOcaXsG1xVcAyL8+nxUxQKKuamfcUnwd7qx/IPp3jNTDJ314KfAaJhTf0OL154NcadNzoS3PhTZ8TuXk/42qGTMVwNGIn4DlCHDylZSa11MgIqImvRf8MGmCQULiNNfPMandP3Ffye043nVsxgN7GlMsinCS63i8XPY0nip9BPspVXEBeOT//4W+wgJtYavVg4iIiKgQiRz711pW6atNf5efu05otfJa4gC1B8Y6jzElEpfoy22qUXbjPiVqPbl0Ycz0/cqimyEjmJ8hIiIispfduY5syIsQ+zlERLlsnbHB1E4OcwyxqTapHeccHX0dybOs1NfYWCMCEPfk+IgRzmGm9zU3hzfA0Q/ne85NOlHKXG0+pobMT5lMRyQuIvSCyAAAIABJREFUVKAkzeGlen82/6PMyCz/R/nB7vNELp5XmlMXAWEaUB37/QlDw/31j0LK/PpOMYazBvMZlM22G9tN3/NDHYdkvN5RzhH4hesUU6wtIfF1+Fv8qC3KuIxMFOp2F4pk+3eUc0Sz1pGsDTzL/Qsc6zwqru8Y+562jK2bE1cli2Ni2RXH2B2P5lrs2hxr9HXmc5wz83Oc1U50HRf3s4SMi5uag/EW2enj0GdYqa+O+95F2v+RjuH4W9kreLX8WVzg+VVGE6805QB1f/yu6Hy8V/433FJ8PYpQFK1LbJ3eCb6LVXv7S/nW57MiBkhmnGts0hhAQmJS8FOs1tdmXEYus7udzqf2PFfacABvJ/wsAAy1oyK5gpOvEBFZyJAG3gm8awrMBATuKp6AO0r+iPZKZZvX6wjnKLxV9jIGqQPiAkdgT0f1xYa/tHmdiIiIiAqF3Tff2Xlz3gZjkymhNMQxqFXLbInRrp9FX0di+DX6OhtrlL24T4laT75dGLMT8zNERERERNmB/RwiotzllV7Tsi5KJxtq0rgBjn6mZbWy1oaaUKx6WW9a1jnh+GlpDu9izwXopnSJfib2s881vAxd6hnVvbEcHpA7TwWl5hmiDoICJXr9NJ0b/DnwgKxk9z0DzbmnoEp0TLrcqnsSGnt/S47/2IHLsW0NACzTV+C94KRmrzObMYazBvMZlM18SWLtSHycqT8UX4ZKUQHAPEHFU/4XLCmjpQp1uwtFnWFuv/ZXujdrHanawJuLr0UxipN+xup4pjXjmMT15GMcU8hqkxy/3ZVuNtSkcQPVAdHXkWNxdwtjOMZbZKe/Bf5lavMB4DLPb/Fc2ePo5+jTpvVRhIJfuk/HW+Uvo6vS2fR7CYnnG14FkH99PitigFRSxQAGDDztf9GSMnKNA45WzekUolxpwwHMjXkd2bFVdlQkVzjsrgARUT5ZoC3ETrkrGoRHLtRc7vkdTnGfaGvdKpR2eKbsMVxcdxXWGxsB7Ov8/aAtwkZ9E7qrWdm4ExEREWXs8Jrjmn6TRaxONjX2FINs5zV8pmUdRUcbatK43mov07JkCWriPiWzM2p/bXcVWkRA4P12/7C7GnHy7cKYnZifISIiIrJPleiIHXIngPSfIJnvgwcLud/Efg4RUe5qkAHTMqdw2lCTxpWLMtOyeum3oSYUK4SQaVnivmppDs8tXLix+Brc5LvdNIh+nbEB7wU/xDme8RnVP1kOL1akzEKOcfPNq+XPwifrMSM8G+8FJ2GBtjA60Umq/czBB5SJIeogLNaXQceeCaNiz4WpZMt55eOKf2OVvgbTwjPxQfATbDa2WPp9SfXeps67jYn9bOLEXS8F3sAJrrFop5S3aN3ZJltiuKZyIbrUTffW1Mo623MokVwI8xmUzYJJYu0KpZ0l6y4VpfhD0eW4z//nuFhbQmKJvhyfh77ESa7jLSmruQp1uwtFAEHTskqlolnrSNUGVikdcWnRRXi64cXoflWgwIABAYFKUYFqWdPieCZ2eSZxTHM+29ZxDK/7tD5/klyWR7htqEnjkk2Sm2wC3nQw3iK7LNGWY2PMQygj7f457vG4pOhCW+vWQ+2GF8uewiV1V2GnrAaw75w/MzwHO41dWdPna0q6eXsrYoBUksUAkf9na/MwMzwHRzhHWVJWrviq4kPM077HtNAs/C/0JfxoYA40Q7nShgPYlmRZfiTDWgknXyEistCM8GzTsq5KZ1zg+ZUNtTErFSW4p+Q2XOy92vS7r8Pf4kL1PBtqRURERNT62jLxk8lNP8nkctIqAHOS1yGyLxVRKkpMy/yywYaaZD/uU0q0xdhq+XmvLWTjRf58uzBmJ+ZniIiIiOzT2oOwclEh95vYzyEiyl1FwmM6F9ZJL/bLsgfhBaT55mw3XDbUhGK54DINjgzJ+J8zyeEd5TwCRzhGYaY2xzSI/i+BN3Gy+wSUitIMtiA+h6dAiRsgHrlRv5Bj3HxUKkowzjUW41xjsVBbggfqH8VaY71p0obI/h/t/BnOdZ9pc60pV+X6hD+91Z7orfbEhe7z8EV4Mp7wP4cauTvl92WkYzhOdKX3wJw3Av/ABmNj3OeHqoNxuvvnGdV5kbYU74c+Mk3c5ZM+vBR4DROKb8ho/dkiW2K4luZCthhbW6lG6YkcF8xnUDZzwmma7FCTumXrP8V9It4Lfogl+jJTrP1Cw18w1nkMXKLt+1yFut2FwgEVYWhxywxpNGsdjbWB57rPxKTgJ1hnbIjbvwDQDuW4vvhKPNnwQqPxzFDHYHyv/WAarH9n8S3R8tKJY6qNGjwXeCVuPS64cGsjscgibSn+G/rQtjiG131anxtuNCD+3kafrEcVsuuheIm5HQBQobZoXYy3yC7TwjNNy9qLSlxVdKkNtTHrpFTh9pI/4nrfraYJr74KTcmaPl9T0s3bWxEDNCZZDADs+Xs+438Jh5UfCkXk7kNym8sjPDjKeQSOch6BPxRfjneDH+C1hr8hhFDKGGig2h9HOA+zuebZK1facACeJMu0JMtor+wbHUNElMN+0ldFX0eCjJNd46CKlnUoW8NAxwAc4RyFGeHZcYHjEm2ZjbUiIiIian1tOdA+MUGXzsWkxPpF4skXS5+wvH5tpUSUwCd9cct2G7vRScmuJG+ySTncyMpZh23HfUqpZONkJqlk6wX+fLswZifmZ4iIiIjs1ZqDsHJZIfab2M8hIspd5aLcdA7/SVuFPmovm2qU3Dp9g2lZppNuUOaKRTGCCQNydspd6Iau0Z8zzeHdUHw15tbNh474AZd10ouXG97ATcV/yGAL9kiWwxMQOEjthy3GNsa4eWywYyD+Vv4KrvNNwPy9AywTY+QqpSOGO4fZVEPKB/kw4Y8QAuNcYzHSMRxX+27Can1t0u/LAWoPnOo+Ka11vhr4KxTsG/gkIHCW5xcY5xqbUV1PdZ+EGlmDb8LTTIPqJwU/xdnu8eilHphRGdkg22K4VLmQVHkHO3MnsXViPoOyWbEoMg1+r5bV6IrOlpVxc/Efkj5IZLuxA28F3sHviy6yrKx0Fep2F4oiUYSw9MYt2y1r0aUZ+7exNlAVKm4ovhrX+SbExVcSEmvletRKL94pf73ReKaH0g0L8GNcWyUg4mKcdOKYqaGZ0YlLIipFRaOxUjbEMbzu07rKlTI0GPH3O67S16CneoBNNUpuk7HFtKyleTjGW2SXFfpP0deRc9bPXSfAI7Ln/uIjnKMwzDE4OlFrxEJtcdb1+VJJN29vRQzQmMZigDXGOrwbnIRzPOMtKSvXlIhiXOT5NUY7j8K1vluw3diRNAYa6BiASxkHp5QrbTiAZCeJ2javRQ7h5CtERBZKnAkPAIY5hthUm9SOc46OPkEmEhit1NfYXCsiIiKitpOtA+8jYi+S5fJNe+1EmWmijqX6CvR39LWpRsmtShILlyvmGeuJ+5SoNeXbhTE7MT9DRERElB1aYxAW5Rb2c4iIcld3pWv0ScYRX4e/xc/dJ9hYK7PYJ5VGbpzeX+1uY40IAKqUDqjWa+KOn+XaSgx1DI7+nGkO7wC1B851n4l/BP9tGnz2XvBDnOb6Ofo5+mS4JclzeF5Z3+TAPMa4uc8lXHik5F78su4C+KQvpyZTpNyT6xP+VCoVmFjyIH5V9zsE9z4tuaXqDK9p2f6KNW37zcXXYk7tfNMTiQ0YeNr/Ip4u+7Ml5dgpV2K4bL9nh/kMymbtlUrU6Lvjvucr9TU42DHQsjIGOgbgFNeJ+Dj0uSnW/lvgnzjZdSK6qtZNepKOQt3uQlEpKlCXMPB6jb4OBzn6p72OptrAw50jcbTzSEwNzzDt31cCf8UJrjEZxzPpxDEtzWNkSxzD6z6to4vSCVuNbXHH3dTwDBzvOta+SiUxOzwv+jpy/HZTuzbyidQYb5Fd1ujrTOf4Q52H2FSb1E50HYcF2sLozxISP+mrcqbPl257Z0UM0JR0YoBKpcKy8nLNger+eLzkAfzWeyUMGMyBNlOutOEAxsW8FgAkgFUp3ktAzJSKRESUMa80J0y6KJ1sqEnjBjj6mZbVSk5WRkRERPlriDoIChTIvf8Snx6QjLDwnwKlWeXliwPVA0wX1r4IfW1TbVKbEp4WfR05Pg5U9rexRtmL+5QSVYmO0XNrLNnIP0quu9LV9Pf5OvytTbVJLRcGtDA/Q0RERJRdIoOwIk+Cy6fcRzoKud/Efg4RUe4a7BgUfR25EXlaeAZ+0rLnXsztxg58HvrCFFv0V7NrsvBCtL/Sw7RsanhG3M9W5PAuKboQ7UWlabkOHQ/4H4Mu9WatL5lUObxCj3ELRTulHGe6T82rGJ2yV2TCnzKx54ESuXZe6aJ2xqnukzL+vgRgfrK8VYOgqpSOuLToomgdY594PVubh5nhOZaUY6dsieGayoUkk03HPPMZlM2SxdqRyQKtdHXRpSgRxablAQTxkP9xy8trSqFud6HooXY3nXdna/NSvDu5dNrAG4quggtO02d90oeJ/mczjmeaimMyyWNkWxzDPrG1kh2/X4W+wWZ9q421iueTPnwY+sy0r/upvVu0PsZbZJfaJDnJ7ko3G2rSuIHqgOjryPdut6zNmj5fY5rT3lkRA6SjqRig0PVz9MEJrjHMgbZALrTho2rGtANwMWDawQtsqE7O4OQrREQWapAB0zKnMAdndisX5ie+J84aSkRERJRPXi1/Fv9X8QHuL7kDwxyDo8mhxi76NDYApiX/mpKPg2wGq/ueLhJJKH2nLcB34ezJ1azV1+PL0DemY8HKWbPzCfcpJfq44t94u/w1XFX0e3RROttyfrX6fGyXfLswZifmZ4iIiIiyj1WDsHJRIfeb2M8hIspdhzsPNS0zIHFn/QPwyXobahRPkxrurn846cCmo5yH21AjihWbj4/EAPO0+Vijr4sutyKHVyKKcXXRpdH4RUJG2/QV+kq82PBaS6ofp7EcXiHHuIXkRNfxdleBCkiuT/hziuukjNfhgGpaZkgj4/VGnOs+M/rQjth+oITEM/6XLC3LDtkSwzWWC2ns+M6WXAjzGZTN+sYMco8cn9PDs7DN2G5pOe2VSlziuTBprD1P+x7vBN61tLymFOp2F4o+aq/o68j+/SY0FbuN9B9ek04b2E3tivM8Z5v2r4TEl+Fv8L/QVxnFM43FMVbkMbItjmGf2DqHOg4xLQtDwz3+h6FZMLGsFR6qn5h0It0jnYe1aH2Mt8gu/iT35nmE24aaNK69Yp5wul7WZ02fL5XmtndWxADpSCcGKHS/cJ1idxVyUi604QBeAWA+qQCftXVFconD7goQEeWTIuExDZKpk17shyqbapRcQJqD2Miss0RERET5qlSUYJxrLMa5xmKhtgQP1D+Ktcb6uJs7Iq8FBEY7f4Zz3WdaWofN+hbc3/CYafmxzqMsLysbHOk8DC8G9t3YGvn73l3/EN4ofwFVSkcbawf4ZD1ur78POnTTBZJjnEfaVKvsxn1KyfRWe6K32hMXus/DF+HJeML/HGrk7pTn15GO4TjRdZzNtc4+hzsPxWuBt+KWRS6M/aX8OZSKEptqtkfshbHE71e2DWhhfoaIiIgoO53iOgnvBifZXQ1bFGq/if0cIqLcNcRxMHopB2KNsWeyjEg7tdZYj6u9N+Hx0gdsywfXSz/uqn8Q87UFpvN3J6UKhziG2lIv2meUY4RpmQGJh/wT8VLpk1CFalkO71T3Sfhv8EMs0ZfHxVMSEn8P/gsDHP1wvOvYFm9LUzm8Qo5xC0VvtSc6Kfthu7HD7qpQgTjRdTzeDLxjdzVaZKCjPypFBXbLlg+SKhJFCCcM6twta9EFnTOtHgBAFSpuKL4a1/kmmNqNNcY6vBuchHM84y0pyw7ZFMMl5kIm+p9Fjdyd8v0jHcNxUpZMeMV8BmWzw5wj8ErgjbhlOnQ85n8Gj5c+YGlZ57p/iUnBT7De2Bg91iLnlecaXkF/tS+GO9um/1Wo210oRjqG4w38PW5ZECE83/Aqbi+5Oa11pNsGXuw5H58G/w875S7T/n2k/km8Vv5ci+OZVHFMuSy3JI+RjXEM+8TWGOUYgS5KZ2w1tgHYd0z+qC3CH+vvwIMld6FYFNlSN0MaeNT/NL4KTzEdv+1EedIcUDoYb5Fd3HCjAQ1xy3yyHlWw997nRCEZMi1ToWZVny9RS/L2VsQA6WoqBuir9kYv9UBLy8wlQx0Ho1SU8OGBzZTNbfiomjEKgOcBnA2YZsvbBeDLNq9UDuHkK0REFioX5aYg4ydtVdxMfNlgnb7BtKxUlNpQEyIiIiJ7DHYMxN/KX8F1vgmYr/2Q9Ok6VUpHDHcOs7Tc4c5heCX4ZvTmvMgFsNYoKxv0c/TBIHUAlujLo8sEBHbInbjMex3+XHIv+jn62FK3bcYO3Oq7Cyv11dEkauQYOEDpgYGOAbbUK9txn1JjhBAY5xqLkY7huNp3E1bra5OeXw9Qe+BUd+ZPvss3+XZhzE7MzxARERFlJysGYeW6Qus3sZ9DRJTbfuM5B/f7HzUN6Fmmr8B5dZfgcs9vMd59Ghyi7W5BnBKahqcaXsQWY2vc8kj9LnD/CkKIFJ+mttLX0RsHKD2w3tgIYF8MsFBbjHv8D+Pu4tsszeHdWnwjLvJeEfdU+kiZ99Q/BBecOMb1sxZtS1M5PMa4hWGwOhBfGt+Y4kai1pDrE/4McRyMKeFpLf6+VIoK1CUMWl6jr8NBjv5WVA8AcLhzJI52Homp4RmmduOVwF9xgmsMKpUKy8pra9kWwwkh4IYLbqR+mryAwIHq/lmTC2E+g7LZQHVAXDsROT6nhWfiGf9LuLb4CsvKcggVE4pvwFW+G+POKQICGjTcXH87nil9FAc7BlpWZiqFut2FYqjjYLQT5dEYIPJ3/yj0GfqpvXF2mhOKpNsG3lh8NW6rv9e0f/3w4zrvBPRVe2OO9l2z45lkccxnwS8wVZtpWR4j2+IY9omtIYTAue4z8VTDC6bjd2Z4Ds6v+z1uLL4GRzmPaNN6rdBW4hH/k1iiL4tbHqnfee6zWhxTMt4iu5QrZWgw4idfWaWvQU/1AJtqlNwmY4tpWSQnmW19PqDleXurYoB0eISnyRjgxbIn0F3tZlmZuUQVeyb3mRGezRxoM2RrGz6qZswwAC8CGJVYZeyZiOXJOZWTw21aqRyj2F0BIqJ80l3paro58uvwtzbVJrVp4ZnR15FGfX+1u401IiIiImp7LuHCIyX3okyUAUCbJYoGqwNNMWM++53n/Oj2xj7JebOxBRd7r8Iz/pdQY6R+upHVNKnjn4F38Zu632OpvsL0ewGBi4suaLP65CLuU2pKpVKBiSUPRp/+yUR8+n7jOSfu+5V4Yew/gfehSa1N6zQlNA3n112K6eFZccuzeUAL8zNERERE2WuI4+CCyoukUkj9JvZziIhy16nukzDcMTTu/B1ps7zSi4kNz+G02nPxYsNrWKGtbLV61Bi78X7wI1xYdxkm1N+NzcaWuLpEXvdTe2O8+7RWqwc1zy/dpyeNAb4ITcZl3j+gvaiwLIfXz9EHv/X8Oum1izA0/Kn+3hY/iTudHB5j3PzXz9HX7ipQgcnlewr6q5k9qKOH2t207bO1eRmtM5kbiq6CC07Tcp/0YaL/WcvLa0vZGsNtk9tTvjcb8yLMZ1C2UoSCX7hOSXp8vh38Dyb47sIOY6dl5Y1wDsMZrlPjygH2fG/rpR/X+m4xHZOtoVC3u1A4hAOnuX6edP9ObHgOT/qfR0AGm1xPum3gcn0lRjiGJd2/2+UOLNKWtGg7InFM5J8BA/8MvWd5HiPb4hj2ia1xjnt8dELaxMHbm4wtuNl3By6ouwwfBD9BrVHXavUwpIFZ4bm4xXcXLvJejiX6srjjN1K/rkpn/Mrzy4zKYrxFduiidDKds6aGZ9hUm9Rmh/f1gyPHXze1K4Ds7fO1pL2zKgZI11jXaIx2HpUyBrjCe32r/s2yXX+VOdCWyJY2fFTNGGVUzZhxo2rG/BfAPOyZeCUy2UqEBLAGwNOtVpE80XbTVxERFYDBjkGYo30HIHZG5Rn4SVuFvo7eNtduj+3GDnwe+sJ0sYIBEhERERWidko5znSfijcD77TZzRz9HH3xZfibNikrGxztOhJjQkdjcniqaaboMDS8HfwP/hN8H8e6jsbxzmMxyjkCRaLI8nos1ZZjcvhbfBT8HDVyd1zCFNiXsB3hGIYTXcdZXn4+4T6ldHRRO+NU90l4NzgpK2+Wy1anuk/CJ6H/Yb72gykJH7kw9nrg7zjdfTKOc45GP0dmN7CmUmPsxjfhqXg/+BFW6KtSfr+ydUAL8zNERERE2au/2gdTwtPsrkZWKJR+E/s5RES57e6SW3FJ3TXYJatNN3JLSFTLGrwZeBtvBt5GB9EehziGoL+jL3qrPdFd6YZOyn5wC1fa5dUZXmw2tmCVvgYr9dWYr/2AFfpPkIDp3B2rCEW4p+RPUIVqyXZT5s50n45/Bf+LzcZWUwyweO/AnViZ5vB+77kIc8LzsUhfYrpxPgwNj/ufwZzwd7iu6IroQIWmpJvDY4yb/3qrB9pdBSowuXxPQWSwSSafjwx8i5zPvwlNxe6iWlQo7ayoIgCgm9oV53nOxpuBt03t1Jfhb3B06MicvsacrTGcgIABI+6z2ZoTYT6Dstm5njPxbvAD1MjdpuNzSng6ZtXOxQmusTjONRqDHYNQKkoyKu+G4qvwvfYD1hsbTfcJ1Us/bvbdjnPcZ+LSootQKkot2kqzQt3uQvFrz9l4P/QR/LLBtH//Ffwvvgp9g/Hu03GcazQOVPdPuZ5020AA0XYp9n8AqIc/7XrHtoHVRo2prxspJ1EmeYxsi2PYJ7aGKlTcXXwrLvdejwY0JD1+V+gr8Yj/CTyKp3CQ2h/DnUPRX43EcF3hFOZJeZpSa9TFxXBzte9QL/3RMoH4Y1hCwgkH7i65FR7hyWibGW+RHQY7BuF77UcA+/qcX4W+weWei9FV7Wxz7fbwSR8+DH1maj/6qftyptna50uUTntnVQyQrj8V34TFdUtNfzsBgR1yFy7xXo1rii7D2e7xUISScXm5pK+aHffW5hq72nC1woGS4WXFo2rGXANgNIDjAZTv/XXkCxkbnAoAIQAXzamcnH7AW6CElJxdkLKbEGIxgIGJywcOHIjFixfbUCOi1H7UFuFS77VxjSMA9FQOwF/Kn8s4iZcpTWr4g+8WzNcWmDqCL5ROxHDnMFvrR0RERGSHVfoa/LruElN8dJb7F7i5+FrLy5sWnombfLfHJVZaq6xsUWvU4TLvtVhnbAAAU0IJ2Jd0VaGiv9oXAxx90UvtiR5KN3RW9kN70R5lSuMXqg1poFrWYJdRHZfkXaAtxG5Zm7S8CAmJjqID3ih/AfspVdZtfJ7iPqV0LNGW43feK9vs/JovthrbohfGgMa/X3ZdGJOQKEYxXit/Dr2y8KZz5meIiIiIsteU0DTcUn9XQeVFGlMo/Sb2c4iIcttKfTWu9N4Ar/Ql/X3swKJkN1gXiyK0E+1QLIrggQeqUKFCgSY1hBBGGGH4ZD2qjWpo0FOuO9n6JSRccOLJ0kdwqPOQlm4itZI54e9wnW9CdD/G3jif6qnYTjhwqusk3FZyU7PL22HsxG/rrkwZcwgIqFAx1nUMRjgOwcP+iabfz6r8CkDzcniMcfNf4vVkANzH1Kpy+Z6CFdpKXOC9rMXfl+/CC3CV70bTufc0189xe8nNltY1IAM4q/ZC7JS74pY31T/cZVTj5NqzUrYh2SJbY7jYOCCyPFuPceYzKJt9Efoad9Q/EG0rAJhe7/l/z/HZWemEYlGMYY4huLjo/GaXt1Zfj4u9V8EvGwAkj7VLRSnOdJ+GQxxDcL3v1lY5TxbqdheKfwX+iycanmty/5aLMhyg9EBntROKUYyDHP1whvvU6Hqa0wam6psmai8qUS1rTMsV7BuU3VhfN/I+q/IY2RTHsE9srXnh73GD71aEoQFIHn8A5phAAKgQFWivVKKdKEexKIYH7r0xnAoNGkIyDA1heKUPu4w992Q2oCFuPY2VEanLfSW3Y5xrrCXby3iL2trs8Dxc67vFdJwNdQzGC6VPwJEFk3v/yXcvvgpPMZ2rnyh9CEc6D4u+L1v7fJHfN6e9syoGSNeP2iJc5b0xul3JYrzuSjec7zkHgx2Dko4zyccYb5m2Ahd5r2AOtIVasw3/+H8fw9vgg9rOAed+Ljg7uaCW7DlfCVUYMauKSAxKxd5lv5lTOfmflm10HnPYXQEionwyxHEweikHYo2xDsC+QG+tsR5Xe2/C46UPoErpaEvd6qUfd9U/GHdTQEQnpQqHOIbaUi8iIiIiu/VWe6KTsh+2GzvapLwuyr6ZsZMlM/NRO6Ucz5Q9isu912PL3iccRiQmlTRoWKIvwxJ9mWk9AkBRJMkLFYpQoEeSvFJDAA1JL182lUCWkCgXZXim7FFO0pEm7lNKx0BHf1SKiuhEOZSezkonPF325+iFsca+XzvlLnwZ/sb09MO2uDD2WOn9WXtBmfkZIiIiouxViHmRxhRKv4n9HCKi3NZH7YU3yl7ALfV3YZW+JsmNofGDaRPVS3/0ibnJzsFNSVx/bNvRXlTi0dL7Mdhheq4XZYFRzhG4pugyPNPwEiJPD419kqgBw/SZMDR8EZ6M3xsXNTuHV6V0xNNlf8YV3hvg2xtzxJYnIaFBwxehyfgiNBlA/DEV0dwcHmPc/BfZx+kOzCTKVC6fVyJPCm/p92Wo42C0E+Wok14A+67xfBT6DP3U3jjbM96yunqEBzcWX43b6u81tRl++HGddwJeLHsC3dVulpXZlrI1hov9XexgumzEfAZlsxNcY7FYW4Z3gu+aBoJGXu/5H9ghd2GHvgsCokVPVAeAA9X98WjJ/dHBhMliba/04q3AO3gL75jqY5VC3e5Cca7nTCzUFuOL8ORG92+trMNCfQkW6ksA7DkHxw5+IE5sAAAgAElEQVS8bk4bmG7UkmzilfQ/ve99VuUxsimOyeXYNRsd6jwEL5Q9idt8d2OH3JX0uxD5OZbEnuO0Wq9Jaz+kOnZTfVZCwgM37i65FWNdo9PcmqYx3qK2NsoxAl2UzthqbAOwr0/yo7YIf6y/Aw+W3IViUWRL3Qxp4FH/03ETr0S0E+UY5RgRtyxb+3wtydtbFQOka4jjYNxZMgF31z8U3ZbEGG+DsRGP+J8sqJats9IJAHOgLdWabbh6jBsVcO/5wfyWyJJUO04A8AO4aE7l5PfS36LCpt5zzz1214GoUffee+/VAEwjpaqqqnD11VfbUCOixnmEG1PC0+MCLwmJnXIXPgp9jiJ40F/tC0UoTa/MIpHZZCODHRMb7ys9l2CQ86A2qw8RERFRtlmkLcFqY23cDR4DHQPiZoi2ikd48Gbg7bhlg1qprGxSKkpwsmsclus/YZOxOWmSNzZpmYwEEEYYDWhAPfzwyXr40YAggggj3EjGaN8/8zolDlT2xwtlT+BAdf8Mt7KwcJ9SOn7UFmOtsb5Nzq/5pL1SibHOYzBP+x7V0pxQb+r7Fd77lJJqWYMdcie2Gdux1diG7XIHdspdqJG7US/rkw5uSLb+xAtjT5X9GYc4h1i/4RZifoaIiIgoO7mFC28F3olbVgh5kcYUSr+J/RwiotxWrpTjFNdJCMkQlurLYcBIenN1Y/8ak+7nYtuJ0c6jMLH0IfRkHjirDXEMQpkowSxtHgBzTiyZEML4OPS/FuXw2iuVONwxEt+Ep6EBDabyksUasXFYX7V3s3N4jHHzn1M4McZ1NMa7TsWZ7tNwpvs0HO4ciRJRbHfVKE/l8j0FLuHCALUvjncdixNcY3CCawxGOUegvVKZ1ucVoWC3UYsf9UWmazwztbnwSh8OcQyFQ1jz/Nme6oH4SV8V7ZfHthf1qMfk0Lc41DEcHZT20c80yAb8I/jvuHZMQOD3RRdZUicrZWsM11XpjI3GppzIhTCfQdnscOdIeKUPi/Qlpu9esu+kgMD+anec6DquReV1VbtgoGMAJoe+hQ49aXmNxdpWnScLdbsLxdHOI7FGX4c1xrpG92/kb55q/zanDcyEAiXtdrO70hUvlT2FPo5eGZUZkS1xDPvE1uukVOEk1wnYbGxJ+l0AUsdh6WrO5yUkDlL744myhzDCOSyjbUuG8Ra1JSH27OdZ2ty4fS4hsdHYjC9CX6Ob2hX7qz3atF4rtJW4pf4uTNVm7Kkn4nOSv/P8BsOTfP+ytc/Xkry9VTFAuvqovdBZ6YSp4Zlx25BYVuxZJ99jPI/woFyU4XDnoTjCORJHOEfiUMch6KJ2bvrDBKD12nAJuWcKFQHTFCtCEY3NliMAzANw2pzKyVNasEkFS0jJWYgouwkhFgMwTXM2cOBALF682IYaETXtSu8NmK/9YArEgT0NZKWowOnuk3GcczT6Ofq0Sh1qjN34JjwV7wc/wgp9VVz5wL4Aup/aG2+UvQhVqK1SDyIiIqJc8GbgHbzQ8Gpc/HaW+xe4ufjaVilvpb4ahtyXyK9UKpr99L5cJaXEf4If4NXAX1EnvU0miywrN8mswQoEznGfiSuLLoFHeNqkHvmI+5Qa81rDW3gl8Nc2O7/mm4AM4uWG1/Hv4PvQ9j5FKSKdpyU1NgN9c76rsRfGbim+Hh1jbszIZszPEBEREWWnqaEZcTc4dlO7oo9qzc3GuajQ+k3s5xAR5b71+ka80vAGJoenQoMGIPk5ODEPko7GPhP5XX+1L64oupiDeHLM3PB8POB/DFuNbXH7t6mBLy3N4W0ztuM2371YrC9NeQzGxhWR1wqUFuXwGOMSkdUK+Z6CXUY1zq67EH7ZAABx13gEBDqK9hjvPh3HuUZb8jCO3UYtflP3e+yS1XHlRV674MQ1RZfhbPd4KELBLqMaJ9eeZWonZlV+lXFdWlM2xXC5mAthPoOy2cfBz/Fkw/PwyfpGY18BgZ85D8fE0gczKm+FthIT6u/GZmNLk7F27Pfc6vNkoW53IZBS4tXAm3gz8LbpnBv3vjT3bzptoDQNr05P7CDsiFT9XAVK3sYx7BO3nu/CC/BCw1+wSF8CIHW81dJ7NlPFcZHlVaIDflt0Ps50ndbqD7hivEVtRZc6LvRejlX6GgDxfU5g3wTNv3T/AmOcR6OdUt4q9TCkgTnad/hv8CNMDU+HRPJjvavSGW+Xv9bkPdHZ1OdrKatjgHTMCM/GXfUPwit9jPHIUla24bqumxfu/ZhQRGLwGVnhZgAPAnh5TuXk5AEqpcTJVyjrcfIVykVbjW24pO6alEkMYF+D2UG0xyGOIejv6Iveak90V7qhk7If3MKVdnl1hhebjS1Ypa/BSn015ms/YIX+UzTwji0vQkKiGMV4rfw59FIPzHCLiYiIiHLbtPBM3OS7Padu7Mh1dYYXfw/+E5OCn2K3rAXQeFI21e9Tvb+phOto589wWdHv0Fvt2ZLqUxLcp5TMlNA03FJ/F8+vGcqHC2N2YH6GiIiIiHJBofab2M8hIsp9O41qfBD8CF+Hv43eqA4075zdmNhccjGKcLTrSJzhOiXpEz4pNwRkEJOCH+Od4HvYYmwFkHpgTLJJUJqbwzOkgf8E38frgb9Hr1vESlZ2sqdMModHRNT2/hX4L55oeM40AC6xbSgXZThA6YHOaicUoxgHOfrhDPepzS7vR20RrvLeCA17BrMkXlMSEOiudMP5nnMw2DEIv667xPJBy20lG2K4XM6FMJ9B2WqnUY2/Bd7Bh8FP4ceeyauSHUtWDFAFgAbZgJcaXsd7wUkIpxgYmzh5VmucJwt1uwvFSn01Xmn4K6aGp8No5ByZ7v5tug2U0XLSpWDfZBSRc3ViXzPSz2QcQ5lYqi3Hu8EPMCU8A17pjS63KoYD4mORwepA/MJ9Csa5xsLVjHunrMB4i9rCCm0lLvdejwbET/oZeQ3sOU4UKDhI7Y/hzqHor0Zykl3hFM5ml1lr1MXdVzhX+w710m8qM0JCwgkHni+biKGOwWmXkw19vkxZHQM0ZYexE4/5n8GU8LSkZXHyFcqEFW140slXIutRhYF9E65IADMBvArgn3MqJwdbUmfi5CuUAzj5CuWqlfpqXOm9AV7pS/r7pgYcFositBPtUCyK4IEHqlChQoEmNYQQRhhh+GQ9qo3qaKIk2bqTrT8yi+2TpY/gUOchLd1EIiIioryxSl8Td1EJQM7c2JHrQjKEL0Pf4OvwFMwJz0cQ+3I8ViR6Y2Pj7ko3HO86Fr9wnYKuaueM103JcZ9SrBXaSlzgvYznV4vkw4Wxtsb8DBERERFlu0LvN7GfQ0SUH7Ya2zAtPAsLtcVYrv2EdcaGlE96TkcxitBH7YUhjoMxwjkMhzoOafOBHtR6DGlgob4YM8JzsED7Eau0NaiDN+49yQawAS3L4YVkCDvlLtRJb8rJXpKVGymbOTwiInvc4bsfX4QnmwYHR15HxLYNmQy8+l/oK9xd/1D051SD7wQAI8mg5lwceGVXDJcPuRDmMyhb+WQ9poVmYIY2Bwu0hdhu7Ig7no5yHmHJANWIHcZOvB/8CB8GP8UOuSu6PHHgcGufJwt1uwvFBn0TvghNxszwbCzWl0FPuDejJfu3qTawqb5jRGSfJ7aBHwc+x1faFMYxZDld6vhBW4Tp4VlYqC/BT9oq+OHPeL1VogOGOA7GcOcwHOM8EvspVRbUNjOMt6i1zQt/jxt8tyK8d5KfdM7Ve34GKkQF2iuVaCfKUSyK4YF7b05ShQYNIRmGhjC80oddRg12GdXRiV4iGisjUpf7Sm7HONfYFm9jruftWyMGaMwSbTn+HfwvvgpNQQghAKn3DdtOaq5M2nDDSP29FYrYBGA6gG8AfDincvImK+pb6Dj5CmU9Tr5CuWyjvgm31N+FVfqaRjt4TSVnUs2Yl+5nEjsA7UUlHi29H4Mdpq8WERERUUHyywaM2X1K3LKz3Wfk1I0d+SAoQ/hO+x4LtcVYpv+E5dpP2CWrW7QuFSr2V7qjn6PPniSvYxh6qgdYXGNqCvcp+aQPx+0+PW4Zz6/WyPULY22J+RkiIiIiymbsN+3Dfg4RUf4IyCA2GZux3diB7cYO7DSqEUAAQRlEUIagQYMDKhzCiRJRhDJRhkpRgU7KfuimdOVk2wVoefgn3O6/HxuMjQBSD6SxIofX2DoiTySPvI85PCIi+4RlGHfWP4DJ4alpXd8REBk/9frj4Od40P94dJ2x13Ziy4rIt6det1UMl2+5EOYzKJsFZADr9Y2oljVokAG0E2WtMqjckAZ+1BdjRngW5obnY6W+JjpgFUCbnycLdbsLgSY1rDc2Yr2+ETV792+V0hEnuMZktN5kbWCtrMVafT02Gpuw3dgZt2+BPfv3udLHk7aBjGOoLa3TN2C9vhE75A5sN3Zip7ELARlAAEGE9sZwKlQ4hRPFKEK5UoZKUYlOShW6KV3RW+2JCqWd3ZvRKMZb1FoWaktwm+9u7JC7kk6YFfk5lXQmA0r1+cbynx64cXfJrRjrGt3k+psjl/P2rRUDJFNneDE9PAvTw7MwT/seNXJ33O/ZdpJV0m3Dp0+Zjtotu6Ht1qDtDCG0KYjg2gAaltcvD+8IDbB7O/IRJ1+hrMfJVyjXBWQQLze8jn8H34cGLeWgm1QyDdIT1zPaeRRuKb4eHZX2aX+WiIiIqBCs1FfDkPuS8ZVKBaqUjjbWiACgQTZgu7ED24wd0Zm/gzKEEELQZMxFob1J3vZ7k7ydlE5wCNXu6lMS3KeFZ2poRtzFzm5qV/RRe9lYo/yUyxfG2gLzM0RERESUzdhvSo79HCIiosJiVw4v8SmzzOEREWUPKSVeDbyJNwNvm9qGuPftbScyHbQMADPCs3FX/YPwSl+Tk4Fx0HLL5XMuhPkMoj2Tkqw11mOjvgk75S7sMmpwadFFdler1RXqdheKHcZOrNBX7t2/1dhlVOOukgkp3884hqj1MN4iK1UbNXjU/1STE2YlSufBbUDz7y08SO2PO0tuQW+1Z9qfo9bV3BiAyGqDBg3CkiVLkv1qiZRyUFvXpxBw8hXKepx8hfLFen0jXml4A5PDU6FBA5A8gI5NZqSrsc9Eftdf7Ysrii7Gkc7Dml13IiIiIiIiIqJ8wPwMERERERERERFRdmMOj4iIEq3UV+OVhr9iang6jEbO5VYMWgb2DKx6zP8MpoSnJS2Lg5aJiIgoXYxjiIhyw3fhBXih4S9YpO+Z4CBV/rA5ucjEzyZbb2R5leiA3xadjzNdp0ERSovKIKL8xMlX2h4nX6Gsx8lXKN/sNKrxQfAjfB3+Fqv0NdHlLQ2+E8XOnFiMIhztOhJnuE7BcOcwS9ZPRERERERERJTrmJ8hIiIiIiIiIiLKbszhERFRog36JnwRmoyZ4dlYrC+DDj3u90c5j7Bk0HLEEm05/h38L74KTUEIIQDJB8px0DIRERE1hXEMEVFuWKotx7vBDzAlPANe6Y0utyonCcRPxDJYHYhfuE/BONdYuITLsjKIKH9w8pW2x8lXKOtx8hXKZ1uNbZgWnoWF2mIs137COmMDDBgtXl8xitBH7YUhjoMxwjkMhzoOYeBNRERERERERNQI5meIiIiIiIiIiIiyG3N4RESUSJMa1hsbsV7fiBpZgwYZQJXSESe4xlheVp3hxfTwLEwPz8I87XvUyN1xv+egZSIiImoOxjFERNlPlzp+0BZhengWFupL8JO2Cn74M15vleiAIY6DMdw5DMc4j8R+SpUFtSWifMbJV9oeJ1+hrMfJV6iQBGQQm4zN2G7swHZjB3Ya1QgggKAMIihD0KDBARUO4USJKEKZKEOlqEAnZT90U7qiq9rZ7k0gIiIiIiIiIsppzM8QERERERERERFlN+bwKJv4pA9bje3YbuxAnVEHr/QhiBA0qUFCwi3c8Ag3PPDAI9zoqHRAV6ULOiod7K46EbXQDmMnVugrsVHfhJ2yGruMatxVMsHuaqVNlzoW68uwzdiGamM3QgihUlSgg9IeA9R+qFQqWq1sTWqYp31vWn64c2SrlUlERJSOeunfE9PLPTF9gxHAWmM9dstaBGUQANBeVKKD0h4jHEPRx9G71erSmu1lrscxRJnwyXrTslJRYkNNKFet0zdgvb4RO+QObDd2YqexCwEZQABBhPbmJFWocAonilGEcqUMlaISnZQqdFO6orfaExVKO7s3o9nW6uux1dgGr/QCECgVJeisdEIPpTscQrW7ekQ5YaexC1uNbagxdiOIENqLCrRX2qOH0g1qE9+jTCZfGVUzRgHQJ3H5nMrJK5pT/0LjsLsCRES0j0e40Vvtid5qT7urQkRERERkO96omLt2GdWYp32PrcZ21Bg1e2/WqkR7pRIHqf0x0NG/1coOyhA+Df3PtHy8+7RWK5OI8gvzM0REREREbYuDvoiIiCgiIINYr2/ANmM7tskdqDO88EkfgggmXB/ywIM9/3dQ2mOkc/jea0Ttbas7Y5rCEJIhfKctwPfaj1isLcVqfa3pyfHpcsKJLkon9FV7Y5hjMIY5hqBvKw7gpMK226jFUn05thrbUCd9EABKRAm6KJ3QR+3FJ203U5XSEVVKR8Bpd02aZ1p4JiYFP8W88PdoQEPS9wgAA9R+GOsajbPdZ8AjPJbWoVbW4TrfBAiIuDJnVn5laTm5iAMaqS3k+71YvF+J0rVWX48F2o9YtDemX2esR730AwDk3n9NERBoJ8rRT+mDAY5+GOYcjKHqYJQppRnXrzXby1yJY9guUms4bvdppu/VJ+3eRXul0r5KUU45QO2BA9QedlejTcwNz8ek4CeYHp6dsv/oggsHOw7CWNdonOQ6vtUmM2LelXLVKn0NJgU/xezwXKwzNiR9T4koxmGOQzHGdQxOcI1pjWpUAVgGxAW4EpxfpFFCyqY7BER2EkIsBjAwcfnAgQOxePFiG2pEREREREREVuONirkvLMP4IPgxJoU+xUp9daPvrRQVGOM6Ghd5foNOFt/It8uoxsm1Z8VdJAOAWbxZi4iIiIiIiCirZMOgr2R5BA76IiIiajtb9K2Yoc3Bgr3Xh7YYW9MY4paaE070VXthmGMIhjkGY6hjMNop5ZbVNxnGNPlPSonp2ix8FPwMs8JzEURo3+8yOmL3iN1vpaIExzlH42T3OAx1DM543VTYDGng49Dn+CD4CZboyxp9b2elE45zjsZ496nornZroxpSW5kdnofnG17BCn0VgPTOXQICFaIdLvFcgLM94y2rS6TNSiyrUK/nZ9OARso/hXIvFu9XonSt0tfgo+Bn+CY8DVuNbXG/S3fClVRE9B/QS+2JE5xj8HP3Ceik7Nei9RVqe8l2kVrbYTVj434WEPiUk69QHjGksXeSkj0T0fnRgFJRiv1ERwx2DEKF0q7JdWzRt+LP/qcwS5sLoOn+YyT2KRZF+I37HFzoOQ9OYc0MX8y7Uq5apa/Byw1vYGp4OiTS/x71Ug/EVUW/x1HOI+J+P2jQICxZsiTZR5dIKQc1tu5RNWM6AdiSsFjOqZzM2ewawclXKOtx8hUiIiIiIqL8xBsV88cHwU/wasNfsUtWp73vBASccOJs9xm4ouhiuITLkrrEJrojdSmEi89EREREREREuYKDvoiIiAqbXzbgk+Dn+Cj0WTQeAKy5NhQRuUYkABzqGI5T3CdijPMYuC26FgEwpikUnwb/D68H/o6NxiYA5v2cOLi2JVKts5vSFed5zsIZrlP5ZPcCs9uoxRztu72DpXajXvpRJkpRpewZLDVA7QtFKI2uY6m2HPf7H8VqfS2A9M9RAgInu8bhD0WXpzUoi7KbJjU80/Ay/h38LwDEXT9vTOzxIiBwtPNI3FvyJxSLoozrlDhwTULmXJuVbwMaKb8U2r1YvF+J0jE//ANeC7yF77QFAMzfBSv7okD8RCyHOobjPM9ZONJ5WLPWkUvtJdtFyiWH1Yw1fa84+QrlgyXaMrwd+A9maXPhk/Up3zdQHYDzPGfhBNeYpL9fpC3Bzb47sFvWtrj/eIDSAw+X3oNe6oHN35C9mHelXPbPwLt4vuFVhKG1+Ht0tvsM3FB0dTT/Z9HkK5FCBDj5SpM4+QplPU6+QkRERERElH94o2J+qDO8eMD/GL4NTzcl/poSm1AcqPbHo6X3o6PSIeM65dLFZyIiIiIiIqJCwkFfREREhS0sw3gr8A7eCb4Ln6xvlWtDQOrrQ8WiCONdp+Eiz69RrpS1eP2MaQrDBn0THvA/ih+0RU1eA2vusdzUMZNYXjelC24svgY/cx6edv0pN30VmoJ/BP6NpfqyRocVdRQdcI5nPM5zn5V0kOk3oWm4u/5BBBFK+xwFxB+bFaId7i+5AyOdw1u0LWS/WqMO1/kmYJm+IulxkGrwWuKxEmlTeioH4PmyiRkPTM3lNivfBjRS/imke7F4vxKlY7dRiycbnsf/Qnv2Qar20OrJV2LLiPw/1HEwbir6A/o5+qT1+Vw4ntguUi7i5CuUb3zShyf8z+Oz0P9BIv1JSkY5RuCektvijv31+kZc7L0KXumLvi+iOf1HAChGER4vfRAjnMOatT3Mu1IuC8kQ/lR/H6aFZ1qShxnhGIaJpQ/CIzycfMUGnHyFsh4nXyEiIiIiIrv5pA9bje3YbuxAnVEHr/QhiBA0uWdGWrdwwyPc8MADj3Cjo9IBXZUullyYzTe8UTF/bNK34GrfTdhqbIsm+iJS7YvGkolVogNeLHsKPdRuGdWLiW4iSpcu9b1P39mGamM3QgihUlSgg9IeA9R+qFQqWq1sTWqYp31vWn64c2SrlUlERERE2S3f41MO+iIiIipsP2gLcX/9Y9hobEr7+lBzB4cmXqtIXF+EB24c7xyDw10jUSpK0FnphB5K97QGiTKmKQwzw3NwZ/0D0UmCUu2/thB7nJ3hOhU3FV/DJ7rnoW3GdtxT/wi+134AkP5gqV7qgXi45B4coPaILl+sLcUV3usRQjj6vsR1NnVdN7JMhYq7SibgJNfxLd00sklQhnCp9xos11cCgKl9aEricRH5ub/aFy+VPZXRALbWbLPW6uux1dgGr/QCEM1u51PJtwGNlH8K7V4s3q9E6VihrcQf6+/ANmNHo/u/NSZeiZQlIOLW74QDlxb9Due7z2nyWkBrHU9WXAtgu0i5jJOvkF2O3316whKBd8vfQoXSrsXr3G3U4lrfH7FCX9XsSUoiOYVXyp5GqSiFlBIXei/HCn2lqR+Ybh8y8RzugRsvlj2FgY7+aW0P866Uywxp4HrfrZitzQPQsmsbsZ+LHGejHCPwROnDGHrwEE6+0sY4+QplPU6+QkREREREbSkkQ/hOW4DvtR+xWFuK1fpa1MjdLVqXE050UTqhr9obwxyDMcwxBH0dvS2uce7gjYr5o9aow0XeK7DF2Aqg+TdrJb43sj+6Kl3wl7Jn0UFp3+K6MdFNRE2ZFp6JScFPMS/8PRrQkPQ9AsAAtR/GukbjbPcZ8AiPpXVIPFdFypzJcxURERFRwSmE+LRQB30RERHRHh8EP8Hj/qehQU96I35z4oFE6X421ecVKAAAF1w42HEQxrpG4yTX8SgVJab3MqYpDNPCMzHBdzc0aAAa38+pjisHHHALF1xwwS1c0KUBHTrCCKNe+mHASPq5xo6jSPnDHUMxsfRBFFnw5F7KDpv0zbjKdxO2GdubPbAJADop++EvZc9iP6UKmtRwdt1F2GxsadFgqWRlKFAwsfRBHOk8rNmfJ/s8XP8EPgh9nPI4aGqQdLLPRc5DxzuPxQOld7a4bla3WXPD8zEp+Ammh2enzKuk086nkm8DGin/FNq9WLxfidKxRFuGq703oQEB0/6OPU5SxeVWifQ3I2VH/lehwoCR9JiNXAs43DkSrwf+bvnxlOm1ALaLlOs4+QrZJXLsxZ7nMjn2QjKE33qvxCp9TXR9TUnWJo50DMezZY/hk+D/cJ//zynbzOb0IWNfV4kOeLv8dZQrZY1+nnlXynUvNbyON2JiNyB5vyOZVJNJRj5/tvsMvD7yJU6+0sYcdleAiIiIiIiIyG5SSkzXZuGj4GeYFZ6LIEL7ftdEwrAxIYSwztiA9cZGfBWeAgAoFSU4zjkaJ7vHYahjcMZ1zxXp3KjYVILJyhsVY8v6IPQx1hsbeKNiMzzkfxxbjK1N3qylQKBclAMAamVd3PsSLyRISGw2tuDO+gfwfOlECNE2N38QUeGYHZ6H5xtewQp9FYDG23gJYIm+HEsbVuAfgX/jEs8FONsz3vI6xdeB5z0iIiKiQlJI8ekT/uewvJEbqFs66GuFvhIP1T+e0aAvIiIial0fBD/Bw/6JAPZdG4iVKh6IDPgvRQlUoUKBAjdc8AgPikQRBATCCMMv/aiXftTKOtN1onSu8UUGvAURxHztB8zXfsALDa/iN+5zcKHnvLjBooxp8t9P2ir8yXcfNGima5mx17UAoEp0RH9HX/RX+6K32hNVSgdUiY6oUjrCIRq/NTsgg6gxalAta7DZ2IoN+ias0Fdiib4M24ztAMzXNyPlz9d+wI2+2/F86eNQhJJs9ZRDfNKHK7w3YLvcAaB5E6REjoltxnbc7Lsdb5a9jPeCk0wTryQ7RylQUCHaIYwwvNIXt87YzwkIGDBwZ/0DeLv8dXRSqjLeZmp9S7XlmBT6JOVx4IEbJ7vH4XDHSPRT+6BSqQAAbDd2Yr62AJ+HvsT32o9x577IOiQkvgx/gxHBYRjvPq3FdYw9HiOv3wt+iP1ERwx2DErr6e9b9K34s/8pzNLmmtaZKJ12PpmQDOEq340ZDWhcra/Fbb578WzZY/g09H+mAeaZDGgUEAggiFt8d6Q1oJHyTyHei8X7lagpW/StuN53K/xoiNvfsf3RVBN0xh7XbrgxzjUGhztHYZA6AOWiDDp0bDa2Yo72Hb4OTcFSfUX0/cnWF9t+xv5eh56y/pFrAUv05abj20otuRbAdnMkJtUAACAASURBVJGsND/8g91ViFqoLUaZSP94Ge4c2oq1oXyXmF9qqb8E3sQqfY3pvNlY7Jd43pSQmKvNxzehaXgvOCnleropXTDOdRwOd45EF6UTKkUFQghjl1GN77Uf8WVoMuZq803tLgDslNV4uuEF3FkyodHtYd6Vctk6fQP+FvhnynyygPh/9u47zomi/wP4Z0v6FUA6CAInCCi9gyKo6GMHCz+KoiIgiCiIFB8QFFBEQEXEgg3F3uCxFwQVQRAQpEkTUSnSDu7St/3+ODaXzW7ucrlNcpd83/fiRW6TnZlcNjuz852ZRVe+E7pYOqApl4cqZ/phjsnHsVHcjBXBVfhHPhS1H+b9wDJwPayA4dorJFFo8RVCCCGEEEIIIRnt88DXeMW/FP/IBwHoO+jMCF6Fp1mouLE8+DmWBz9HPbYuBthvxPXWq8Ez6bt4LA1UTC+/CJuwSlgddbBWDaY6brb3RRe+I87lmoQGJQiKgE3iFnwR/AZfBb+FAhh2Em4St+AV/1IMddySqrdICEkzoiJige8FvBf4CEDsd8pRz0/5yinM8y3EenETHnY9WK47IUSKNUBICCGEEELSR6a1TyvDpC9CCCGEJMYmYTMe9z4JIPrdTwHAAh7N+fPQjMtDNrKxTdqB7dJOeBUf3PBA0zQ587gFdx5utQ/AZdZeRZuVonbSYfkI/pb+wRphPb4VVoUmopZEXehFLY9H8WKxfwm+Dn6Hx7KmozF3DrVpMoCoSJjufQwBBAwnowBAK64lLrJ2x0WW7mjInR13XnbGhjpcbdRBbbREc81zB6S/8F3wB/wv+IXhIhoKFPwqbsFC34sY47wr7jKQiuFp7/M4qhwr04TT8OeLJxPtwyfBL7As8Jlm3/B0W/MX4CprH3SxdNIsohJUgtgsbsXXwe/wefDr0KJU4ft7FC+e8D6FuVmzzP0DkIRY4n9bc84IP49dZumF+533hOqpcA24+mjA1cf1tqvxk/AzZnnm4qSSr9lffbzA+zy6WjqhNlurTGXbIf6OV/1LAegXYHnC+3To9xbceRhgvzFUz0faJu7AePcUnFJOl6lfBTCu56NJtwmNJL1k4lgsGq9EYvGIdw5OKwVR2/Q1mRq40NoVe8U/sEXaVub6MofNwXl8U9xqH2BYX4YfW9EWeQlnVH+F7xd+nJopnlgA1YvETCPdY00/rmMV2Q6d6JkW874MgLVVVySgVITEbr90AEv970VtAzJg0IJrhoZcA2QxLpyQT+KQfAS/n1k0LPK7N9e7AMeVE6Ht4ekMsw/BEPtA3cKVVliRxbnQkDsb19uuwjphA2Z55+KofEyXzufBbzDQfjOacI0M3w/1u5LK7g3/O6HrMqP+uInO+wyP/8bcOehs6YAR9tvxceATLPS9CP+ZvunIfhjbhBxw7/OQ8kuPdxBzMIpCg7pJxcYwzHYALSK3t2jRAtu3b09BiQghhBBCCCHp4G/pIGZ652CLuE3TmR4toBUu1kEb0V4XmV89tg7GOUeju6VLzOWvLERFwpDCEdgr/RE1qGnWQMWSxDJQkQGDgbabaKBiKcYUTsA6cYNh8PlW+wAMt99W6h2i9kp/4L/uR/Cn/JdhZ6MFPJbkvBC1s70kJ+STuPL0jbrP+GcKehGSkU7LBbjXPRG/S7sN6+doA0ki63D1XNKIbYhns+ehGlu1XOWicxUhhBBCSGbKxPbpJPd0rBR+KPMg9nDhg9jDy6c+dsKBt3NfKfOkL4Da5oQQQkii+BQfBhQM1dyVXqVAgRUW9LJehIss3dHN0hkyJMz3Posvgl9DQWwTwBgw6MS3x3TXZE176C/pH9xROAqFiluTZ2lYFE8IVV/vhANzs2bh/cAyatOkuWWBT/GYd77h8dqRb4cxjrvQlM9LWnlkRcbHwU+x0PsifPDpysSCxdKcxXHF0kjFsF3ciTsK7446ucgJB7paOuEcrgFcYZOl1grrQhMxwvfLYlxwKx5NHmrcdbLzflxlu7zUMu2XDmCKZ0Yoth8ZS38xewFa8S1N/ksQMxXKblx+ui9kyKFt6ud3m30Q7nLcEXNa/8rHMNY9KTTJOrL+68x3wILsOTGl5Vbcmno+vHwqo8UbYqnn4+1XAYrr+faWNrp99ksHMKjgzlBZI7+jDBg055qWOqFRfW115iwcV07oysGAwZ32Ww0nNEYKn9AYmQ7VC5klU8di0XglUppvgisxxTPD8Lx/DtsAoxx34iJLd7gVT1Lqy1gXNgkvb/jxE7k/C7bcx1O8xynVi8RsnfN7a87jlQWd10m81GMeKD7ffZ77QVwx3rneBXg/sMywTdTbchHudY407F88KB3C6/53sCz4qeG+gHbhlXscIzDIfnPM5fpXPorRhePx95mb4Ya/1+usV2Ky637D/SiWTCozv+LHZaeuhwAhtE09Rq609sGDzvEx36B5t7gX4z1TQm2b8O+DLMk4+dFR/DFiZ+RuOxRFKbGzrlN+r1oADqN4mXsGgLK+6sr0vXO0CehWzoQQQgghhBBCMs5aYT1uLxwZWniFCfsBjBdbiXxNSUp7XXhaChT8Ix/C/e7/YrbnSQiKEHW/yujT4BeaYD9Q3DnbkW+HN7JfxOKcZ3CL/f8SFuwHgIZcA9zuGIwPc97ABOd9cMARKkt4md4OfIB90v6ElaOyOyGfxHpxo+7vxoDBJOdY3O0YVmrgEwDyuMZ4JWcROvBtDTvwBYiY4ZkDWjSYEFIeASWIe9zjsVPapanvIwOGRj+AdjCLut8f8p+4zz0JXsVnmCchhBBCCCHRZGL7tFB24wfhJ8N+hNvtgzEza2qpg+UAoLulC17NeQ6NuXMM+xG88OFRz7yEvQ9CCCGElN2Hgf+FFl4Jr7cVKLjG+h8sz30Hj7j+i0utFyOoBDGqcBw+D34NGQoiY3cltY/Wixsx2j0e7jMTsBVFwX89j6BQcWteG0uML7K9xYCBFz6MdU/G98JqatOkuTf872qOEfWzGW6/DQuz5yZ14RUAYBkWN9iuxes5L6AuW1v3vAIFz/oWJ7VMxFwfBv6n+T38nDDIdjO+qPIhHs2ahuGO2zHIfjPGOO/C7Kzp+KLKRxjluDO0YJR63BYqbs15TD3PTHNNimnhFQBoxDXEC9lP4wKuhWaikuo9/0fles8k8daI6yBBCv2ufo4XW3qUaSI5ANRia2Bh1lzUZesA0NZ/ALBe3Ihvgt+Vms4p+bSunjcSbz1vVH9HG+NjVM+Pc0/GDnGXrjwfBpaH/paRE+l7Wy7Csty38GrOc5jumozxzjF4LGs6luQ8j49yluJ669W693lMOW74Hb3HMQJ3OobENM6is6UDFmcvwNlsPd1zChT6jmaQTByLReOVSCxe97+t+V39bK+x/gdv5ryEntYeYBgmKfVlWRaUKCkWEE6GnLJYANWLJFFK6/8x+6c8ZSCkIggqQXwZXGHYJrrNPgiPZU2PusBIPa4uJrvG4SHnxNC+6v/h11cMGLThLyjTwisAUIutiblZM2GHLbRNTfPr4EqIiqjbh2LJpLL7WdiAIIKh38O/Q/8tw8IrANCUz8PCrLmowuQCiOiHYYBq/Woip2f5bspDYsenugCEEEIIIYQQQkgyrRbWYqJ7GkQUdeKFB63CO+/UbUZ48LAxVlhhhY2xQlJkSJAgQIBH8RrepSc8XaNtChQsC36Kv+S/MS9rFhyMo3xvtIIwGqjIgMFw+20Y6rg16eVRByp24tvjXvcEHJKPaJ5XByrOz3o06WWrDNYI6zTfFfXx9dar0dd2TZnScjFOzMuaheGF92K3tFfTSahAwe/SbnwYWI4b7dcn4q0QQjLAfO9C7DpzfgG0AyrDf4/GaD8FCnZLe/GoZy5mZk1NVNEJIYQQQkgaysT2qTqIPbIfoTyD2IcWjtZM5Fb/Vyd9XWbtnYi3QgghGWdk4bhUFyEuDIBF2fNTXYyMJysy3vZ/oBs0z4LFVOcEzSIAQSWIUe5xocmYsUxmiYxT/CH9icnuh/FM9hP4PPh1KOYQ+drw/aOlqy5mEL4ATAB+KCieiEBtmvSzQ9yFf+SDuuPmZlvflMQzw53N1cNz2U9haMEoHFdOAij+Tq0V1uO4fALV2bNSWkZSdh7FixXBVYZx9AnOe9HPdm3UfZ2MA0PsA9GCOw9j3ZMgnpkEa5TWhZZuZT6fZDEuzM56GIMLhuGUcjqUtgIF3ws/YUTBfWCZynfv10xpI2wTd+i28eAw1nl3XOlVY6vicdfDGFo4GgIEXd2+wPsCLrR0g52xG+4frZ4vqQ+kPPV8WfpW1HrdjwAmuKfgrZxXkMNmh8odbULjEPtAjHQMjZqHOqGxFd8SM7xzdOOQwvMvz4TGIQV3wY+ApnxfB1fiAee94BmaIpTuMnEsFo1XIqX5Q/rTsI641HIxprge0Lw20fVlWRZeAYoWVQn/TpdUX6YiFkD1YuLN8Dye6iLEicFU14RypVDS94UWPCGJcET+N9VFCDkqH9Ms2lCa2mwtbBQ3o1Ap1NV33SydSzwfh7vKdjl2SXvwbuCjqNdWw+23l+GdFGvINcBwx+142vecJj0ffNgkbkEnS3vN6ymWnFyZXN8kym/iNt02BsBE51hwZVh4RdWAq48ZrikY456g/V4WBSjQ4LE8bOvxC6JMVSImqvgtSEIIIYQQQgghxCR7xH140P0IRIiGgyrCO/JrMNXRjD8Xzbhz0YRrhBrsWajBVEcNtnqJAZnrTw+EAgWyIkOGBPHMP0ERIEDQ3DUhkgIFG8Rfcdmp65M+SI4Bg49z3zQ1TRqomH62iTt12xywx9xpH8nO2DHb9TBuLRwB95m7UwHFn8Xz/ldxmbU3ctmccpWbkMqAJrSYa6e4C8uDnxkGCBUosMOGK2190IXviKZcXugOCUfl49gkbsaXwW/xq/ibpo0QHoz7VliF9oE2ZR7IRQghhBCS7qhdayxT26cVbdIXIYSQ2G0SN1e6CQ5Gi2yQ1NgsbsVx5YSu7TPCfrtm4RUAeMm/BPuk/YYTr9THkSLTVaDgF3ETVgVX48PA8qjp1GProI/1ErTmz8cTnqdxUDmseW34PtrB+fr0qE2TXlYLa3XbqjFVMcoxLAWl0avF1sB/XQ/gPvck3XdlRfB79Lf3S2HpSDw2CZvhR0B3PrvS2qfEhVfCdbS0w1D7rXje/0rUyVLD7EPiKl919iyMdgzXTJAFAAECfpW2hBaqqiwyqY2wV/oj9Lh40tqFqMXWjDvNpnweRjuGY75voaZ+BIBjynG86n8z6niBaPW8EaNFauOp57tYOqIOWwtVmSoIQsAJ+SR+FX/Dt8GV+EXcpKvnAeC4chJP+xZhqqvoDvDpNqGRpJdMHYtF45XSmxlxhSPykVC/uYoFi3/lY7r0d0l7dK91MVmY7pldpjzD4wrh9WVs+xYfc/c7RqOzpaMmFhBNKmIBVC8m3qfBrypde1X9/OKdDO9inPAqvhL7f8q6kFG8kpUPqRiuOz0gZd+38GNNgYLbCkfGvC8DYG3VFfhd3K17jgWLBxxjylSWUY5h+Cq4AqeVgjPpF/9NarI10M7Sukzphetnuwav+JfCrbg12zeLW3XnZIolJ1cm1jeJtkfaF3qslrW7pQsacQ3jTrOjpR1utQ/Aa/43Q8euyn6uE7VG1Me/z/1TrnKT0tHiK4QQQgghhBBCMoKoSJjufQwBg0FMaqdEK64lLrJ2x0WW7mjInR1XPuGrJRsp6TlVEEEckg8ntYMrEXnRQMX084f8Z+ix+v25xHpxuQYb1OVqY4LzXkz1zNQNcnIrbjzvfxkTnWPLW3RCKjya0GKuJf63NfV8eP17maUX7nfeE5rQGq4BVx8NuPq43nY1fhJ+xizPXJxU8jX7FwfjnkdXSyfUZmsl9b0RQgghhFRk1K41lqnt04o26YsQQkjZVZbJB5Wt/ZHu1gjrdNvqsrVxi/3/NNv2Swew1P+eLm4XXse34JqhIdcAWYwLJ+STOCQfwe9S0SSDyM99rneBZtGX8HSG2YdgiH0gLIwFADAzayruKNQO4mfA4GrrFVgvbsRR+ZjhcSVDBguW2jRpZre0J/RY/Sz+Y70MdsaWwlJpdbV0Qhv+AmwWt2qOza3idvQHxTQrm53SLt02K6wY47irTOncah+AjwKf4JhyHID2vHg2Ww9N+by4y3iF9VI873s5NHk+ErURKqYj8lHde+5s6VDudPvb+2Gl8ENoYViguJ59y/8++tqu1vVHlFbPR+ptuci0el5lhRVZnAsNubNxve0qrBM2YJZ3rqaeV9P5PPgNBtpvRhOuUdpNaCTpJVPHYtF4pfRmRlxBhqzbJkHCVml7TK89pZzCr+KWmPMziiv0t/fDy/7XcUo5bbjPhXw3HJIP4w/5T019uFPajZvsfTWxgBnuOTiJfMN8kx0LoHoxeSpLG9sMS7NfwhTPDGyXdur6gtT/m3J5cDFOU/PdJG7RtU8vsfSErQJd/5PEqyjftbKVo+i4Va+X1P0ZMLjI0g11uNplytvO2NDH2hvvBT7WfSe6WzqXKS192nb0tHTHp8EvNef68EUqVBRLTo2K8h1IB4flf3Vtwi6WTuVOd5j9NvworMEf0p/F6SsAGKDuAw1x/J0jkPLFcudDoqPFVwghhBBCCCGEZIRPg19gr/SHpoND7VTryLfDGMdd5Rp8FKmkgGB4R2VpHVjJGAyUqE40GqiYfo4aDNYyI0DZx9obK4KrsEpYrRvktDzwOW6y9UVj7pxy50NIZVBZAhsVebBqoezGD8JPhoMvb7MPwl2OO2JKp7ulC17NeQ5j3ZNCd+ULD8Z54cOjnnlYkD0nYe+FEEIIIaSyonZtsUxun1akSV+EEELiU5H7gEjFZXS3xyutfcAxnOZ1HwaWQ4Kkm2ADFE3Avtc50rBOPygdwuv+d7As+KnmGFUXHwC0ba57HCMwyH6zJo0W/HnoaumENcI6TRpuxY3F2QswunA8/pYPRn2P1KZJL/ulA7rzXQdL2xSVJrrLrZdgs7g19LsCxXDiCqn4dhpMlrrE2hNV2NwypcMxHK6wXYrX/W/rJkt1LedkKZ7hcZG1Oz4M/M+wPUBthIrplKyf7J3HNTYl7UnOcRhccCdESJrtAgQs9L6ImVlTNdtLqucB6CbZPpY1HYA59Xw0nS0dotbzChS85/8Ik133p92ERpJeMnUsFo1XygyJiCvEmmZZ8o7WDiqU3SiMWPwjfB8HY8e1tivxlG+RJt9dYd9roCgW8FT247i1cLhhWsmOBVC9mDyVqY1d3u9rXa42FmcvwAv+V/CG/50z88m1i3a5FTcecN6LC/gW5Sxtsc75vXXb7nfeg2psVdPyIBVfKr5rRt+ZWMsRvq9Rf2W3OM+hHfi2eC/wsW57HtckrvTCteVb4dPgl6HfFSg4KB/SvY5iyamRSfVNouUr+sXyzuPOLXe6PMPhQef9GFZ4j+4vwGXzqDepEf6auMdwX2IONtUFIIQQQgghhBBCkuEN/7u6znkAGG6/DQuz55q68EqsGDBgS+jAqugdRqWpTAMVw9FAxegK5ELdtgZsfVPSHu8cAyf0dyqQIeNp73Om5EFIZcBUkp+KbI24DlLYwM/iuyL0iHliq6oWWwMLs+aiLlsHgHYwJwCsFzfim+B35hWeEEIIISRNpLq9WpHatZncPk30pC+Lwf2G1ElfhBBCyocHb7iAvFLCDyGqA/LfurZWG76V5vegEsSXwRWh14W3a26zD8JjWdOjDoCvx9XFZNc4POScGNpX/V/9UdNqw18QdUL2JZaeocfqPnul/ajF1sTcrJmww3gCqwKF2jRp5rSij3/VZ+uloCQla8GdF3qsHvenFH2bm1R8RyT9XXE78/FNIG/Htzbcnsc1iiu9cJHnbrW+pzZCxRVAQLetClO2RX2iOYdrgEH2/prjQK0/vxVWYbu4M/Takur5/rZ+JfbLmFXPR2NUz6tpfh1cCVERTZ/QaMSsCY3hok1oJOklU8di0XilzGB2X78Zry1LXGGNuA4y5KjPfyusgospPtbUtE7IJ3WvrcGeZZhXKmIBVC8mRya2sTmGwyjHMDyTNRfVmWqh96V+1w7JRzCi8F687HsdipIe75lUHJX1++VWPLr6oVmcCz00jtJv0IhtGFd6mjS44jRKqu8olpx8mVjfJJJf0ffDVGWqmJL2+XwLXGe9Wvs5FK1WhhpD6sCe5zAlH2JMf/YghBASt5GF41JdhLgwABZlz091MQghhBBCEmaHuAv/yAdDHXjqQIybbX0x1HGrqXnVYKqH7rgT3sFZUgcUCwZyGnZQVdaBigoUGqgYhd9gsFZV1pxOwhpsdQxzDMHTvuc0A6YUKFgnbsBaYT26WjqZkhcxD10Hm4cHDxEigNjrj2RNFq1stok7dNt4cBjrvDuu9KqxVfG462EMLRwNAYJuoOgC7wu40NINdsZernITQgghhKQDatfqZXL7NBmTvl7zv6nrR/hWWIUB4o1oyTc3JS9CCMlEK6r8DxvEX7E6+DO+Cn4LL3yaya5GaCAuURUaxIfqRCykslHcjEKlUBe762bpjJGOoTHlc5XtcuyS9uDdwEe6dFTD7bdH3f88vqlu2+kz8aGGXAMMd9yOp33Gky2pTZNevIpXt83OGC++k0pGd+L2KJ4UlISUV6Hi1m3L4+ObcNqQbWC4/RzOeHtZhMf21XNTLpODaa5JCWsjJKo9oUBJaFyzosQei8aeRGxjzLtX7+32wfg88DWOKcd1/T5PeRdhcc4zAEqu54fYB+LdwEel5lXeer4k4fV8eHo++LBJ3FJpJzQqUAwnNJL0kqljsWi8UnpLl7iCGguIbBexYKCg6P18GPifbr+S2vRGbaxkxwKoXky8j3KWYo2wDquFn7Fe3AD5zHkoU/rhOljaYmnOS5jhnYPVwlpN20+ChMX+JfhZ3ICHnQ+iLlc7xaUllR0HDjLkUr9fyahn4vkeuw36E6qw8fVT1mDPMtyey+bElV64HEafhlfx6bZRLDm5Mr2+SRYLYzEtrZGOoVghrMIpaK+lGI7B2TPysGfAVtPyIlq0+AohhJhok7i5QnbklCRZFwWEEEIIIam0Wlir21aNqYpRjmGm5/VplfewT9qP1cJaLAt8hkPy4Rg6powDZQBCnbyVEQ1UTD88OAhngt0qWYl+x46y6m/rh+WBz3R3xSwKGD+PzjkdTB0cRsqProPNQxNazLNX+iP0WP28L7ZciFpszbjTbMrnYbRjOOb7FmqCcQBwTDmOV/1vxjwphBBCCCEknVG7Vi+T26cVZdIXIYSQsrMzdvSwdEUPS1fc4xyBDwLL8LLvDQQR1NTr4fVQC64ZusZ552OSXnyKX7ctcsDx7+Ju3WtYsHjAMaZMeY1yDMNXwRU4rRQA0E7Aq8nWQDtL66j75jDZum2esNhWP9s1eMW/FAVn0lYpUKhNk2ZssMEH7QQQt+JBDVRPUYmMBZWgbhsHLgUlIeVlFIvONjgnxcIo1g0AWUxWXOmFyzWYLOVX/AltIyz2v5awON6v4paEpFuRYo8OxqFb3Oe0XFCuPohwdsaGe5wjMNUzUzd5bau0A18Hv0Mfa+8KUc+XRq3nIycvbha3pt2ERpJeMnUsFo1XSm+JiiskewE4NRYQWe7wsaG7pN0GbYfo7YjwRSjU/5MdC6B6MfHqcXVxE9cXN9n74qB0CK/738Hy4GcAtMdTePurIXt2Wi0aUIXNxbysWXjX/yEW+l6EAFFz/P8mbsPgwjsxwXkfrrBemuLSkspscfYCTPHMDI3tB6C5rmHAoDpzFjjG3P6WI/K/uvzO55qXeZEGo37XgEF/USxsMG5DuhhnXOmFsxq8LxGCbhvFkpOL6hvzORg73BHXOYWKGzVRw5T0c9kcDLffhjmep9VGZej/3Eurocp/znKZkhHRocVXCCEkASrLINGKEvAhhBBCCEm03dKe0GO1M+g/1ssSFnxuwjVCE64RbrUNwDfCSsz3LkS+cipqx1RHvh0ut16C1/xv4i/5n4iBSOfhBtu1CSlnotFAxfTjYBwQIu6ic0o5jTow544CHFN05+973RN1g7X2ywfwQWA5brb3NSUvYi66Di4/mtBiniPyUd1n3dnSodzp9rf3w0rhB/wq/hZKX/083vK/j762q1E74g6+hBBCCCGZhtq1epncPq0ok74IIYSUj4txYoh9IHpaemCMewKOyscMJ0C14M/DMMeQFJWSVCQOxq5ZxAQACpRCzYDj36XiSdlqHX6RpRvqlPEOxnbGhj7W3ngv8LFuAkP3UtqYfkV/Z1UbrGFp29HT0h2fBL/QvY7aNOklh82GT9bGNPdJ+zV3Tq8IDsqHddvMWGCDJJ/f4M7OvjgnhkYb82DGZCnWIK4mQtLkYXYb4SX/khInWpdHItKsaLHHXCZXdx1+QP4LTZFnWh59rL3xQWA5tohbdf0RC7zP40JL1xLr+RPyyZjzKk89X3raRfX8p8EvNZ/jHmlf2k1oJOklU8di0Xil9GZGXOEt//vwoug6VH3NZZZeaMg10OX3XuAjFJw5ntTX9rJchCZco3K9j/BYQGS5I7eFL6KSxZQ8Z7aktJIRC6B6MbnqcXUx2TUOfay9MdHzENyKx7B93NHSDuOdZVvYrjLob78BbfnWmOqZiT/lvxC+EJNH8WK65zGsEdZhgvO+Ur87hBhpyTfH0pzFmO2dj6+D34WOsXC12Jp4xPVf1OPqmJZv53x9396crBlRF1SNxg4bfNCel08q+WiA+mUuE8MYX89aw/pH45Uvn9JtsxikS7Hk1Mn0+sYs2Uy2bvGVv6R/yt2uDHeD7To8vnU+mEYcQh/PmQVYzp6RV7tTfi9+fdWVYklpkLKjxVcIISQBKlpAhRBCCCEk0+2XDujaaB0sbROeL8Mw6GPtjY58O9ztvh9/SH8adkw15M7G1bYrEEQQj3uf0pTVq3hxte2KhJc1EWigYvqpylQJBZ9V+6UDQUjDHgAAIABJREFUaM43My2PLpaOuNDSDT8Ka3QB4xf9r+Eyay9UZauYlh8xB10Hm4smtJTPKfm0blse19iUtCc5x2FwwZ2awcUAIEDAQu+LmJk11ZR8CCGEEELSAbVri2Ry+7SiTPpyMA7T8iOEkEx2DtcAc10zcVvhSMiQqU+QRJXD5OgWX9kj7tO0gf6WD+r26xbnJOoOfFu8F/hYtz2Pa1Lifgekv3XbIuNDbflWhouvUJsmvdRha2nuQAwAPwprcKn14tQVysA6YUPosTpZpB5XN4UlIvFyMHZ4IxZbOSmfxDkGk4PjZUHZ7p5tJF/RT5ayGqSbiDYCtTPiczZbF3+fueGPaoPwKy4zeTLZeMc9GFI4QreczXHlBJ71La4Q9Xws2vKt8Gnwy9DvChQclA+l3YRGkl4ydSwWjVfKHPHGFX4WfsE2aYfms3MxLsPYww5xJ9aI6zWvzWWyyx2niIwFGE3oD198RVUnhoVToi1Ol4xYANWLqdHe0gaPuqZhjHsCgMxqHzfl87Ak5wXM9S7AJ8EvNN8lBQq+Dn6H38TteMT1IFrx56e4tKQycjFOzHBNQWe+A+Z5nwmd49TjbLu0E7cUDsN4xxhcaeuTyqLquBinblGsf+WjcaUlKkVrNSRioVKj/gQHY9dto1hy6mVyfWOG+mxdHJIPa/5uv4pb0Mt6oWl5sAyLwNOFsD9dJbToivq1tTW02wA8COAR0zIkAAA21QUghJB0woOHcuYnnFLCDyGEEEIISbzTEcFXAKjP1kta/lXZKpjnmhW6W160jqkW3Hmhx+prTin6CTqVRR22lq7N+6OwJkWliY4GKsbubK6+7jNdJ26I8ur4jXWMMhy451bcmOd9xvT8SPzoOjix1MGq7JluXApsxCZgcMfIKkyuKWmfwzXAIHt/3d2IFCj4VliF7eJOU/IhhBBCCEknmd6uzeT26dlsXd114AbhV9PzGe+4x/CO7OqkL0IIIeZpyufhMmsv6ucjJapv0Ab4TvhB87t6J81wzbhz48qvcZS7SDZiS56AulpYG3qstqMacNrJY9EmsVKbJr1cwLcMPVbb0yuCq3BIOpLCUmm5FTf+d2bSWbimJiw+QJLPaPL5ITm+4y2oBAEgIXG4k0q+bpuTcRq+1qw2AsUey6cRd07oceh8JvwAX8RiP+XVlM/DtdarNH9/Nb8PA8txQj6Z8no+FuH1vFreE/JJuAyOczMmNJp9vMY6oZGkl0wdi0XjlTJPWeMK5/PNQ4/VOunr4HeGC3Ikqr6MjAUwYHCZJXr7SP1unBtjmz58AZZkxgKoXkydTpb26GHpkpFtXjtjwxTXA5jleghZjCv0N1CP+8PyEYwovA8v+l6FrMgpLi2prK62XYElOS+gKddE8z1ToMCjePGI93FMcc+AO2JxkFSqy+n7XdcI6+JKKwgBg2w3a/4NtN1kyrlzp7g79Fgtb3X2LN3rKJZcMWRyfVNe4QspF/crfx9q85hF/lVA/ifHNAuvQF2IBXiwU36vxN+VOsPQ4iuEEGKiFVX+h3lZs9DXeg0csGsu8KIpKSiUjB9CCCGEkEzgjbi7HlDUOZ9MdbjauNp2RYltsGpsVd02j+JJZLESigYqpp/wu1Kqn+mq4I+Gd/Euj3pcXQyw3xQ1YPxVcIWp+ZH40XVw4tGElrIzCpSxjHld4bfbB6MmUwOA9lhXoOAp7yLT8iGEEEIISSeZ3K7N5PZpRZn0tV7YaGp+hBCS6a6zXpXqIpAKzig+tFpYgz3ivtB2o0kLVdj4FqirYTBwHwBy2Zyo+xyVj+HL4DelTgzPYYzToDZNeunA68emCxAx3fsYREVKQYn0HvXMQ6HBDUe6WTqnoDSkvIwWqYp34rwMBeMd92j+3e8YDRfjKnc5fxO3hx6r5a3BVo/6ejPaCBR7LJ+Olna6bW7FjVf9S03Pa6RjKLKZbM02BgxkKGduMqT92ySzno+VUT3vVXxpN6GRpJdMHYtF45UyU1niCm351rptPvjwmHe+bnui6kujWMCt9gGh+lKBfoEIBQo6WTrElD4DJiWxAKoXU+sG23WpLkJKXWq9GG9kv4gLuBaaa4OidqeMV/xLMaxwDA5Kh1NcUlJZNeDq45XsRfg/2w2hbeoxptb/gwqGYbO4NYWlLNaI1S/0sFpYC0ERypyWk3FgjPMu3T8H4yh3OX8QftL8zoBBXbaO7nUUS644Mr2+iVc7vo1u2wnlJN4NfGR6Xn9P2QfZF9GeLDqkrQDe6ZTfy5w7ABEAAJ/qAhBCSDqxM3b0sHRFD0tX3OMcgQ8Cy/Cy7w0EEdSsNKs+ZsCgBdcMXSkISgghhBCSUDbY4IO2I86teFAD0QcGJcJV1ivwQWB51OfVu1KF48AlskgJ1YFvi9fxtmabOlBxUdZ88Ezq35s6UDEy4E8DFY115NvhVWgDzQEE8axvMf7rGm9qXnfYB+PzwNc4rpwIfT7qtdRsz5M4l2uCxmEd7yQ16Do4Oa6zXoUvg9+muhiVhoNxoDBi8sZpuQC12JqmpG9nbLjHOQJTPTM1x7YCBVulHfg6+B36WHubkhchhBBCSDrJ1HZtJrdPO1ra4c3Ae5pt6iD2UY5hpuY10jEUK4TvNRO51Ulf0zyPYknO86jJ1jA1T0IIyVSt+fORxbjgMVj4nhAA6GLpgJf9r2u2yVAw1TMTL+UsRBbjgk/x6/YLGMTJYmGD8Q0XjO7ODRTdaXua5zH4EdDFh3pYumh+tzIWTV+3ito06aUT3x512No4Iv8LoDim8Zu4DQ94pmCW6yE4TZh4Eg9ZkTHH+zRWCN/rjtdcJged+PYpKRcpn8bcOdgobgZQfLz9LPwCj+KNeu6Kxs7YcJO9byKKiR+CP2mOOwYM6rN1o77ejDYCxR7Lpy3fGk444ENRPav+nd7wv4uWXHP0tPYwLa8qbC5GOYbice9Tms9DnQirQDsJPVn1fFlYGYtumwgBjdgG2IKiyZWRExotBvuURJ3QmAixTmgk6SVTx2LReKXMFWtcoYelC6oyVc4sAFb8mf0g/ITHPPMw0Tk2tCh6oupLo1iAAgWjHEMx2/tk1P1acufFnEcqYgFUL6ZWe74N7LAhgPjaUumgDlcbL2Q/jRf9r+F1/1uhHhr1eNwm7cDggmEY77wHV9kuT2lZSeXEMzzGOu9GF0tHPOyZjXzllGYBliPyvxhZOBa32gdguP02cClsb7WztMGy4GeabR7Fi8X+JRjluDNFpdLaJe7B79JuXVvwvIhFrwGKJVckVN/Ep6OlLaywQIAIoLhuesH3Klrx5+MCvoVpeQUPBnD4yQOo92CjokVXGISve5sH4ONO+b2uWl91pbmrF2UoWnyFEEISxMU4McQ+ED0tPTDGPQFH5WOGwfgW/HkY5hiSolISQgghhGSGHDYbPlnbj7BP2o9GXMOklqMF30wT5It0UNavvp7FZCW6WAlDAxXTT2v+fOQyOSg4c2c99TP9JPgFmnJNTB3YZ2fsGOe8G5M9D+sGa3nhxb2FE/Fc9nzU5+qZlicpH7oOThya0FI2uUyubkDLAfkvNEWeaXn0sfbGB4Hl2CJu1Q24WuB9HhdauppyFwhCCCGEkHSSqe3aTG6fVpRJXyeVfNznnoRFWfPjvtM2IYSQYhzDoRV/PtYI63T964QAQCv+fDRmz8F++QCA4jbAn/JfuLvwfszNmgk7bKE2guqkko8GqF/m/BjG+Di0wqrb5lG8eMgzC5vEzbrjtxZbQ3e39Hz5lGHa1KZJLwzDoL+tH57yLdJNYlwrrMfggjsxzjkaPSxdk1qu3eJezPY+iR3S75rtavkG2G4Ez9Aw8MqoA98O7weWabYFEMRT3kWmTyCP13phI/bLB3TnyuZ8s6j7mN1GoNhj2dkZGy63XoqPg59o+gdkyHjQ8wjGyCPQ335DKanErp/tWnwZXBHqj1DPTyoZcuj3ZNTzZWVUz1tgTbsJjSS9ZOpYLBqvlLlijSvwDI9+tmvwsv8NXZt+efBz7JP2Y5JrHPK4xgmrL41iAVvF7fhF3BR1HwUKxnkexFNZs2Oa8J2KWADVi6llZay4gG+JX8RNGd0PxzEcRjqGohPfHtM8j+KYclyzOIYXXszwzsEaYR0mu8ZV6nHXJHW6WjrhrZyXMc3zKNaLG0PHGFB0bbPE/xZ+ETbiEdd/U9YO6Mx3gAU8REgAiuuApf530YXviHaW1qWkkFiSImGW9wndtSEAtOPb6F5PseSKg+qb+GQxWehlvQhfBVdo2mYBBHCvewKmOyfjImt30/I7/PTfqNavJhzNXMULsBQ/6gngs075va5bX3VloWmZZig21QUghJB0dw7XAHNdM8GeOeVSA4QQQgghJPnqsLV0A3B+FNakpCyt+PN1ZVGtEzaEHqudevW46HeOqujUgYrq+zUaqLhaWJv0cu0W9+LOwnuwLPipZjsNVCwdz/C4xvofw890nm8hnvQ+C78SMC2/3tae6GnpockHKLquOqocw12F92G3uNe0/Ig56DrYfOpg1Wj1B9E6m62r+1ttEH41PZ/xjns0d+xTHVdO4FnfYtPzI4QQQgip7DK1XZvJ7VN1EHv4+w8fxP6u/0NT8+tnuxat+Qt0/QhA0ULMo9zjcFQ+ZmqehBCSqZqlweQVkliD7DcbxhJ+l3ZjQMFQw37jf+WjceUlKmIon5Lamt8HV2NwwTD8JPys2a6W7xbb/+kmeOcrxouvUJsm/dxs64s8rjGA4oke6v8H5cMY756CWwqGY1ngM5yWCxJWDlmR8bPwCya4H8KQwhHYIf2um7BSdAf32vg/ExdQIMnVydIeDthDv4dPIP8quCKFJSviVwKY7Z1veK7uwLctcd9EtBEo9lg2g+03wwpL6Hf1HCJCxJO+RbilYDi+CHwDr2LOjZCnOyfDxTgBQFdvqfkrUBJez8fDqJ53MPbQhEZV+ITGTcIWU8sQj/AJjZGMJjSS9JKpY7FovFLmKktc4Vb7QNRhawPQt+m3SjtwS8EwTHQ/hHXCBgy03WR6fRkeC1CgQIaMeb5nsEpYHXUfFiz2SfsxuGAYfgj+FFM+yY4FUL2YetQPV6y9pQ3ezHkJF1q6as7N6nG5QvgegwruxK/CbykuKamsqrFV8Uz2E7jbMQwcuNB29RjbLv2OWwqG45PAFykpXxU2F72tPXWxVwkSxrgfwEeB/6WkXAAQVIKY5nkUu6S9uuv2qkwVtOEv0O1DseSKheqb+Ay29de0zdTjy6N4McHzEB5wT8Vmcas5mUkK/hixE4qgqJkBRQuvhC/AsrFTfq+SO/BIqWjxFUIISYKmfB4us/bKuMGkhBBCCCEVxQV8y9DjUCd7cBUOSUeSXpZmnPFdjd2KG/8LfqHrcGzKNUlGsRKGBiqmn4H2m3SDp9T/3w18hBtPD8bLvjfwp/SXKfk96Lwf1ZmzNPmpj48pJzC08G686/8QsiKbkh8xB10Hm48CG7FrxJ0TelwcXP8BPpMGkaqa8nm41nqVLvinQMGHgeVYL2w0NT9CCCGEkHSQie3aTG+fVoRJX+rA27IOYieEEBLduZU8dkES72rbFWjHt9bEENSYTKFSCDc8kCFr2i5rhHVx5RWEgEG2mzX/BtpugoOxI18+hY8Dn+DWguGY6JmGQ/JhTVnUx025Juhru0aX9k5xNwDoJrZRmyb9cAyHac5JcKDoLvGRf3cFCnZLezHbOx//OX0DhhaMxrO+xfg2uAr7pQMQFCGufE/LBdgkbMF7/o8xyT0dl52+Dve5J+EH4acz3xBtPFOBAh4cprkmwc7YS0iZVGROxoH/2C4znEA+zfMonvUthqRIKSnbabkA97kn4qB8WPdcHbY2mvPNStw/UW0Eij3Grj5XD4Ps/XV/q/Bz2cPe2bj01LW4tWAEHvLMwiLfS1jifyuuuqUuVxvTnJM0+URSoOBJ77NYJ2yAhLId2yXV8+Wl1vNqGQGgOntW2k1oJOknU8di0XilzBVrXMHO2DDVOSE0WT7yWlSGgu+Fn3CveyKGue9BPbau7ro03vryiPwvLLCGFl1RiZCgQAktIhdOLRcDBqeVAkzwPIRRheNKrS+THQugejH1mvLGY44zVS6bg7lZs3C/4x5YwuJP6vfgiHwUo9zjsMj3Usquq0jld6t9ABZnL0BdtramDQAAXvgwyzsXk9zTUSi7k1622+2DwYctiqXWdQJEzPE+jTsK7sangS9xTD6etDLtEHdhROG9+FZYpevHYsCgr+1q3aLXKoolVxxU38SnKZ+H66xXR+2H+VFYg7sK78N/Tt2ASe5peM73MpYFPsXXwe+wVdxR5vx82z34a/IeRDR9whdgyQOwvlN+r5c75ffKvAE6JqHbOBNCSJJcZ70KXwa/TXUxCCGEEEIyUge+LV7H25ptAkRM9z6GRVnzwTNclD3Npwa/Iz3qmYdCpVAXBOpm6ZyMYiWMOlBxROF98MGnC2qGD1Scg6fQnGuGdpbWaMadiyZcI9Rn68LCWErJRe+0XIB90n7slf7AJnELfhE3wqN4Q3kC0HXwWsDTQMUYnMVWwwj7HZjvW6gbnKxAwTHlBBb7X8Ni/2vIYbLRkD0btblacMKJ5nxTXG+7ukz5VWFz8VjWNIwqHAcRkq6zOwgBT/oW4f3Acgy236xZbImkFl0Hm4smtMSuo6Ud3gy8p9nmVtx41b8UoxzDTM1rpGMoVgjfw60UB1KL7r5QNEB6Sc7zqMnWMDVPQgghhJDKLBPbtZnePlUnfb3qX6qbeBE+iJ31ssjjGuMcrgFqs7XgYpxoxDbERdbuZcpPnfQ10TNNk4/aj6AOYm8XaI0h9oFoxDU09f0SQkimqMfWCT02mmBLCABMc03C0ILROKGcNIwPRf7/TXAlGrEN0ZTPQ322HmqxNWFjrKXm42QcGOO8CwVyIQ7Jh0PxobsKx2K3tAcKjGNDKgccmO56EJxBvPAHQR1or45d1qI2TXppyufhiawZGOueBAGi4QIsChRIkLBd2ont0s7QvgyAKkwVVGOrIpfJgZNxwg4bOIYDBw4iRAQVASIEFCpunJDzcUI+CR+0E0ciJzRGPseAwUOuSWidJpMIM9lt9sH4IvAN/AjoJpC/4X8HXwVX4GrrFehi6YDG3DnIYrISXqYVwe+x0PciDstHdGViwOBG23WlppHINgLFHmM3zD4Ev4nbsFHcXOK5bJe0B7ulvaH9ulu6lLnOAoCe1h4YLQ/HM74Xon7uJ5V8jHFPCE1yi5VazydCcT1fpGiRiKJj+Hb7YKwIfh+a/B45ofHTwFfoZ7sGnS0dUIOtnpDyRdoh7sIT3qewU9pd5gmNJL1k6lgsGq+UucoSV2hvaYOHXBMxzfMoAP0CLOqxeko5jVPKac22yAmz6kIqv0u7sUvaE9peh62F74QfcEI+iRPKSRyW/oUPPt3+kWmxYEP1cHi9HP54k7gFm9xb4GQcJb7PZMcCqF5Mrfps3dBj6ocrdrO9L9ryrTDFMwN/yn+FvksAIEPG6/638YuwETNcU1Cfq5fi0pLKqAV/HpbmvITHvU/iy+C3mmNMgYJVwo/YXrAT012T0d7SJmnlasQ1xCD7zVjif8sw9rpD+h07vL8DAFyME7XYmnDBiamuiWjA1TelDKfk09gt7cU2cSd+FH7CTqloYcvIhfgAIJvJQn9b9IX4KJZccVB9E7/7nCOxVdqOvdIfhm08oKhfZJWwGghbw7u7pQvmZc0qc37HlhyG4zwXag6rBxQvuhIexOAA3Hbm3x6DJEgpaPEVQghJktb8+chiXKFORkIIIYQQkjyd+Paow9bGEflfAMUdZb+J2/CAZwpmuR4qNWBlljps7dBjtWNqo7AZf8h/6jqqcpkcdOLbJ6VciUQDFdNPf3s/bBW34xthpW5Ag/oYAE4rBdgq7cBWqWhl5uPKiTIPZgCAVvz5mBolMK4+/lv+B7O9T1J3bwVC18HmogktsWvLt4YTDvjgB1B8znjD/y5acs3R09rDtLyqsLkY5RiKx71P6c5NJ5V83OeehEVZ81GFzTUtT0IIIYSQyiwT27XUPk39pK/yDGInhBBirDZbC4B+YhIh4WqztfB09uMYWTgWhYrbcPB8OBEiFvlf0twR3Mk4kMvkwsk4YIf9THyIhaiICEKAAAFuxYOT8kmIEXcGN7rTZOTzVljwRNYMNObO0ZV/l7gHv4dN4govM7Vp0lcHS1ssyn4Sk93TcEw5YRgHU38Pp6BoAP1JKT+ma51o589o+ypQYIcN01yT0NvaM8Z3QyqyWmwNjHQMxXzfs7rjTIGCf+WjeMX/Bl7xvwGgaKEoF+PA09lz0IRrVO788+VTOCz/iz1nJkutFtYiXzmlOc+FH4812Rq4IYbFVxLZRqDYY+w4hsPjrkcw1j0JW6UdJZ7LzPqsBtv7w6f48ZJ/iWE9r+YXvlBDKvuGIut51Xlc0U2h021CI0k/mToWi8YrZaayxhUut14CC3jM8MyBD37deVxVljow/LWH5CM4EjwacxrhbTwWDDryHbBO3BAqj9Hk3NLqy2THAqheTC3qh4vuXL4JXs95EfO8C7A8+LmuD2eHtAuDC4ZhnHM0rrVdmeLSksrIyTjwsOtBdOLbY653gS7ee1Q5htHu+zHI1h93OYYm7Wawd9nvwG5xL9aK60vsc3UrHril/WDAwGvCtfRrvjfxqn8pAgiGtkW2CSMXch3ruBu5bE6J6VIsuWKg+iZ+dsaOeVmzcHfhePwjH4y5T7k8/pq8F3wNy6mz+tXKRfGiK+oCLOqCLADQNOI5EgNafIUQQpKEYzi04s/HGmFdSgMGhBBCCCGZiGEY9Lf1w1O+RbqOvbXCegwuuBPjnKPRw9I14WWpyxUtvhJ+x4R98n5dxwoDBgNsN4Jn0uPSnQYqpp9prkkQPSJWCj/qBt8ZfablvQ663HoJBEXALO9cXed8+PGkHgGpHqxF6DrYbBTYiJ2dseFy66X4OPiJJqguQ8aDnkcwRh6B/nbzBln0s12LL4MrsEXcqjk3AcA+aT9GucfhqazZpt5ViBBCCCGkssrEdi21TyvGpK94B7ETQggxVoXNxTjHaCiQQ9uacnkpLBGpqPK4xng1exEmeB7CPml/TPWtDDn0Oo/iDdXXRhM6S2MUf1MfV2OqYk7WDFzAt9DtJykSZnmf0LURWLBoxDbAH/IBatOksQv4Fng950XM8T5lGAcDSo49lvXYLI0CBc25ZpjqmmDKohuk4uhvvwG7pX34NPil4Tkl/Fjywguf4oOgCIZplcUz3hfwZuA9zbZoMV11kvBk5zjYGVupaSeyjUCxx7LJZrPwbPZ8zPbOx+fBr0s8l5lVfwxzDEF1thqe8C6ACLHc6SVKtHoeANrxxXesT7cJjST9ZOpYLBqvlHniiSv0tvZEI+4cPOyZjZ3SLsPPJHJSd1lEW3woWjoKFGQz2XjMNQ2dLO3xceATzPU+AwlSzN/dSMmOBVC9mDpnsdUwwHYj5LD33ZZuMhhiY6x40DUenS0d8Zh3XmgBYPWY8MGPR73z8JPwc6qLSiqxq2yXoxV/PqZ4ZoQWcVTPhTIULA28i1/ETZjhmmLaolMlYRkWj2c9goc8M7FKWB21PQSYG5cvUArhR0C3PVpd1t/WD1fa+pSaLsWSKwaqb8qnNlsLL2cvxGTPw9h0ZiGhRPfD/HHnzkNn9av1HIBJKF50RRW+IAspI7b0lxBCCDFLszMrohNCCCGEkOS72dYXeVxjAPqAy0H5MMa7p+CWguFYFvgMp+WChJXDCSfutA9BS645GBR3okR2fNZla+P/TJx4UxGoAxV7WS6MGuBmovwAxZ2mJf2UtH8kdaDiKzmLaOGVOFgYCx5zTcdQ+63gwJV5sEU8rrZdgXlZs5DFuAw7Hkv6vElq0HWwedTBqmMdo0L/elsuSnWxKqzB9pthhSX0u3rOECHiSd8i3FIwHF8EvoFX8ZWQSuymOyfDxTgB6O9MtE/aj8EFw/BD8CdT8iKEEEIIqcwytV1L7dPiSV9XWvuU2i9k9Fw8hjmGYJJzLDhwmjQj+5AIIYTEp7+9H/7PfmPoXztLm9J3IhmpPlcPr2QvwkDbTaF4Qix1cGlxIqPXlRQfCp9U19PSA2/kLDZceCWoBDHN8yh2SXt1aVRlquDV7OepTZMBqrFVMTvrYSzKmo+WXPMSJ3fEejwafV7R0lW3V2eq4QHnvXgl+1laeCVNTXE+gP62fobnlER9x0uKs6vPh/9/j+MudLV0ijn9RLYRKPZYNjbGimmuSXgy6zGcyzWJes4x8xjra7sGr2U/hxwm2/B5MyfLxaO0er5N2MQydULjxZYeujLHMiYlXuqExsh2j5pXvBMaSXrKxLFYNF4p88QbV2jENcRrOc9hivMB1GRrlFgHlfUzNPouAQBbQhpuxY1nfC/gi8A3uNx6KV7NXoSmYfVzPMdQMmMBVC+m1n3OURjnvDv0r5c1/WNrZXWJtSfeyH4RrbiWhsfJ90LRdyGVbVFSuZ3N1cPL2c9ioO0mzXb1GPtd2o1bC4ZjWeDTpJTHxlgx2/Uw7nOMgh22pB7bkef98O+c+vg2+yCMdd4dc5oUS64YqL4pnypsLp7Lno8HnPeiGlM1Kf0w66uufBDANQAOwXihFar44pAet88mhJBK4lyuSaqLQAghhBCSsTiGwzTnJIwovA8++HSBFwUKdkt7Mds7H3PwFJpzzdDO0hrNuHPRhGuE+mxdWBhLKbnonZYLsE/aj73SH9gkbsEv4sawVZCLsGFroypQYAGPaa5JsDP2cr/vikYdqLhR2IxFvpewTdoBwLgTKfzzKWsnU7SOV3V7DeYs3OYYjH7Wa8AytDZtvBiGwXDHbehtvQgv+l7Dj8JPoRWvIwcGmqWbpTPeznkFT3gX4HthtenpE3PRdbC5+tv7pboIlUZ9rh4G2fvjVf9S3flIrfMf9s4G62WRxzXGOVwD1GZrwcU40YhtiItKybo2AAAgAElEQVSs3cuUX12uNqY5J2GiZ5omHzUAd1opwATPQ2gXaI0h9oFoxDU09f0SQgghhFQmmdiupfZpEXXS12XWXnjO9zJ2S3tD5Qtn9qSvllxzzPTOwa4o+RFCCCEk8eyMDfc6R6Kv7Rq86HsVK4UfIUOO+vrIyWex1N/RYkPhzzXjzsVdjjvQzdLZMI0d4i484X0KO8/cwTZ8fwYM+tquhp21UZsmg7S3tMHLloXYKe7CB4Fl+F5Yg0KlMPR8eSdhRB5n6rZWXEtcZ7sKfay9YWWs8b8BUuExDINxztFox7fBXO/TOKacSNr32yiWHj5xygYbxjlH43rbVUkpTywo9hifbpbO6GbpjA3Cr/gquAJrhfU4phxPWH5N+Twszn4GAwuGQoJk+JrwRX6SdczHUs8zjLYs6oTGdwIf4gXfK/DBX2G+owwY3GYfhJGOoUkpD6m4MnEsFo1XyjzliStcY/sPrrT2wSphNT4MLMev4hbN8WLUZ1/WCezFY1CNn4seC2iI2mwt7Jb24bB8RLdPaZIdC6B6kVR0dbjaeCH7abzofw1L/G+GvpPhC0IQUh48w+Fe50h0srTHI57HcVLJ15yzffBjtvdJrBHW47/O8chlcxJaHoZhMMB+Iy6z9sIb/newPPAZfPAXP5/Ac7RRu1KBgtpsLUxzToxrIVaKJZN0caPtOlxnvRJfBL/B18HvsFn8DQLEhOW3vurKzzrl92oKYDSAuwCoq3grEf+TGNHiK4QQkkT12Dqhx9QQI4QQQghJvqZ8Hp7ImoGx7kkQIOqCTWrgTIKE7dJObJd2hvZlAFRhqqAaWxW5TA6cjBN22MAxHDhwECEiqAgQIaBQceOEnI8T8kn4oL1jceSdzyKfY8DgIdcktA67m046ooGK6SWPa4w5WY/gb+kgvgmuxFphHbZLv0cdSFVeNdjqmJP1CHaIu/Be4COsCH6PIIIA6G4yFQ1dB5NUGmYfgt/Ebdgobi6xzt8l7QkF6gCgu6VLmSe3AkBPaw+MlofjGd8LugEe6uNN4hZscm+Bk3GY+VYJIYQQQkglQO3TYqmY9PV6zov4NrgKHwSW4Vfxt9Bz1I9ACCGEJFcDrj5mZk3FcfkklgU+wfuBZchXTkV9ffjEbFW0+tsoNgQATjhwobUbrrdepRv0f0o+jd3SXmwTd+JH4SfslHaH9o/MI5vJQn/bDaHfqU2TWZrzzTCVn4gHFQlbxG34SfgZW6Ud2CPugxfecqdfgzkLrfjz0c7SBhdZuqEmW8OEUpPK5GJrD3S1dMKywCd4J/ARDsmHQ88lc0Krev5syZ2Haa7JaMidnZS8Y0Wxx/LpYGmLDpa2AICD0mH8KR/AX9I/yFfy4VP8OJutb1pejbiGuMX+f1jifwuAtm5WqdtkyBhYMBQuODHVNRENOHPKUZ56Ply6TWgk6SsTx2LReCUSK47hcIm1Jy6x9sQp+TR+En4uatOLO3BUOaZ7ffg5N/yxyqhe48ChGZeHtnxr/CJuwi5pD1iwmu9LSbGAdnxrdODbYY2wDjuknaEFYkqT7FgA1YukomMZFnc57kAnvh2meR7DUeWY5vtAiBm6WjrhzZyXMN3zGNaJGzTnJgUKfhB+wvaCnZjmmoROlvYJL0919iyMdd6NkY478bPwC9YK67Bb2ov90gH44E/IsR9ZP9ZgzsJN9r64yda33PUN9buSdGBhLLjWdiWutV0Jv+LHNnEn/pQO4C/5H5yU8+GH39RFhtdXXekD8ESn/F5zAVwO4EYAVwCoa1omGYRRFGo0kIqNYZjtAFpEbm/RogW2b9+eghIREr9T8mlcfrqvZttNtusx3jkmRSUihBBCCMlMW8UdmOyeprlrVOTgipI6GmPpRIu2f7R9FSiwo+hOeb2tPUtNP91INFAx7YiKiL/kfzSDtWqw1XGZtZfpeRXIhaGg+AbxV91AbQYMfq66wvR8SenoOpikWqHsxlj3JGyVdsRc5/ewdMW8rFlx57nYtwQv+ZeUOhhHFT7whc5VhBBCCCHpjdqn0UWb9HWzvW/pO5fRfukAvgv+EHUQO7XNCSGEkOSRFRl3u+/HRnFzmfYrKVbnhAN5XGO04s9He0sbdODb6iaBvuZ7E6/6lyJwZqIkoF/gRW0ThW6e4JyIK219SiwXtWky0wHpb/wl/YNjyjEclY/juHwCfsUPPwIIKkGIEMGBg4WxwAkHcthsVGWqohZbA/XYumjCNUIVNjfVb4NUMLvFvVgTNlkqXzkFj+LFS9nPoBl/brnSXuB9Hm8G3jO8NmzBNcMA+0241HIxWIYtVz6JQLHHykVWZIxzP4i14npd30dkn4Q6oe217OdwHt+0XPkmqp5X+ZWA4YRGAFiS/Xy5yx/5HQ0vv5kTGkn6y9SxWDReiZTVKfk0fpd2n2nTH8dR+RiOyyfgU/wIhNr0UlGbHjycjBM5TBaqssVt+sZcIzThGsF25tqzvLEAr+LDXmkfdot78bd8ECfkkzihnMRz2U9GfR+pigVQvUgqsgK5EI94H8ePwhpdX5J6/H+e+wGqsVVTVEKSDpb638Vzvpc1i7+p5ykWDPrbbsDbgQ905+dkHXsBJQiP4kEOkw2e4cuVlnpOVtVn66Et3wpdLB1xseVC8AxX3uJGRf2uJJO1bNkSO3bsMHpqh6IoLUvat1N+r+YA2gJoAyAPQB0AtddXXdnI9IKmEVp8hVR4tPgKSTfv+j+CAjn0e1Muj1ZYJYQQQghJgZNyPuZ4n8JK4ccyrUgc6+rPZU2zOdcMU10T0ISjfgwVDVQk8TomH8duaS/+kQ7iuHISJ+STeMg1MdXFylh0HUxSLaAEMds7H58Hvy6xflYDm90tXco1uRUAPg58grneZ3RB1Wh3A6PFVwghhBBCMge1TyuWeAaxE0IIIcRcASWIhzwzsUpYXeLEMHXbhXw3VGergWcscDEOZDPZqMpUQS22JuqxdVGXq11qnpETBVTRJqn9n+0GjHXeHfd7TDRq0xBCyiL8HOiEE+fzzdGGb4Wulo5owZ+X4tKVjmKPlYtRPW9ErXvNWHwlFfV8ukxoJOmPxmIlFo1XIuEyORZA9SKpaN73f4wFvhcQDFucDwAtvkJMs0PchameGfhHPqQ756rnW0B77q2Mx96f0l84rZxGLpOLakxV5LDZqS5SwlG/K6kIyrP4CokPLb5CKjxafIUQQgghhBCSSBuFzVjkewnbpKIOCaNAV2QAqizCO0yNttdgzsJtjsHoZ72mQt45ihBCCEkXa4R1eM73MnZLewFEXyjNjAEtQNFdKWd652BXlPwydXIrIYQQQggpQu1TQgghhJBiiqLgncCHeMH3CnzwlxivM3NSdrS7Hoc/HmIfiJGOoeXKjxBCKpKTcj5EiMhlcmFjrKkuDskAVM+XTSZOaCSEkHRGsYDyoXqRmMWvBCBC0G3PYrJSUBqSjnyKD7O9T+LL4LeGi14BlX/xFUJIatDiK8lXvuUDCSGEEEIIIYSQSq69pQ1etizETnEXPggsw/fCGhQqhaHnmTM/8Yp214BWXEtcZ7sKfay9YaUBTYQQQkjCdbN0RjdLZ2wQfsVXwRVYK6zHMeV4wvJryufh9ZwX8W1wFT4ILMOv4m+h58rbviCEEEIIIZUftU8JIYQQQooxDIMB9htxmbUX3vC/g+WBz+CDv/j5BLZVwidih0/Irs3WwjTnRLSztElY3oQQkgo0uYskG9XzZXMO1yDVRSCEEGIiigWUD9WLxCx2xgbAlupikDTmYBx42PUguvAdMcf7NHzwAShecIUQQkjlQYuvEEIIIYQQQgghAJrzzTCVn4gHFQlbxG34SfgZW6Ud2CPugxfecqdfgzkLrfjz0c7SBhdZuqHm/7N33/FyVPX/x98zW29NIY2EloQaOiQQIFRFJUoTFNEv5UtTqiBVBVSKBQVEaRYEVIqKNJWv4I/ee02QThIC6cnNbXu3zPz+SPaye3f33t29szszO6/nPgL3zszOOTv7mc85c2b3XHOsA7UGAACVmh7ZXtMj20uSFmY+0YfWPM3PfKSV9kr12gmtb67naHmfje6lz0b30geZeXoo+ZieSj2ruZk3ZXFTFQAAAKJ/CgBArl67V0usZeq0O2XIUIvRognm+LVfjkAQjDHX0RnNJ+vEpuP0TOp5PZ16Vm9n3tUHmXnqVaImX1TI/SK2tOae3lfiB+srsYPVbDQ5Xh6QRc4Dysf54m3lvj+08wCARnPE6hPyfjckXd16udrNtoJttwxvrrHmGB0Ym62l1nKttFeq2+pRpzq5FwBXVBK/AMq3X2xfbR2epvO7L9Gbmbd8OfHVQFyTYzhob5w37eEdJUlmzJyy08q9X5JkS/rsc6MeXulqxRoIk68AAAAAAJAjZIS0Q2Rb7RDZtn/ZvMwCzc98pKX2Ui2xlmmZtVwJO6GE+pS0k0orrZBCihgRNatJ7WabRhmjNN4cq0nmRE0NTdZIc0TZdei2e7TEWqrV9mp12l3qW1uGLVsxxRQ3YoorrrgR0xhzHY01x9TiUNTVMmu5FlmLtdJapT4lNdoYqdHmaK1vTlLICNWsXMu2tMBaWLB8w9D6NSsz6IIY34DTyJnOmRRaV5NC62q3SO3LmhzaUMc2HaFjm45Qj92rdzPv6e30u1pgLdRya4WW2ytqXwkAAAAPoV9bKMj9U+IBAIJrQWah7k3epyeST+tDa37RL91OMtfVduFttE90D+0a3lmG4e8Pq2NoGWW0YWh9jTJHaHd7V/XZSfXaCSWU0EeZj7XSXuXIvYRsvK1nTtL24W00MzJDe0V2V7jK/gd9GgyFnAenBOGeK+eLtw3n/YkbMe0VnaW9orP6t+2zk+q2u9VuOPflK6fb+WJo++FlxGe+ILSdQeC1uH47827eRF+GDKWV7l9fSXs5KbSubNt2vD9Tz3sBXnt/3M47XjdU/HodeR1etl5okn7fdrWu7f2dbu37W00mmqw1r12T08b4l9/bGy9q3rpVa0/JuKTttOa3OnzKJDgM2/Zf4kawGIYxR9K0gcunTZumOXPmuFAjAAAAAHDOh5n5eiX9mt5Iv6n3Mx9qnjVf3XZPRfuIKKwJ5nhNNNfVJqGp2i6ytbYNba02s7VGtXbGe5kPdE/ffXo29bzmWQuKbtNiNGvn8HTtHd1D+0b3drwOy60Vmt1xaN6s4oakp0c96HhZQRTk+AacRs4EAABAI6Bfi1zEAwD42zJrhZZYS7TCXqkeu1dtRqvGmmM01Zxc1oesu+wuXd3zO92T/JfstY/BZHP1RHOCjosfpdmxzznyOuA+N+4lfJiZrw67QyOMERptjBrWX9mkTxMM5Dy4yW/3XDlfvC0I74+T7XwxtP3wMuJzDb+1nRicG3E9sL20bVsX9FwiY+1DWhPX1tovEEuffpn4vhF3KGpEPN9eOoW84187r9ynaPyONke5XLNC5HX42cLMx0XjdePQFJmG6Xh5jXTNRxvTGPzU3njVlltuqblz5/b/Pn3ZntnJV2SEDFtrflv3uVEPL3Glgg2IyVfgeUy+AgAAAKDRvJf5QP/o+z89knpCi6zFeeuGM7v1wIG9KaHJ2jeyt/aL7avx5riq9+u09zIf6De9N+rx1JNaM9pT3sDslNBGOqnpOM2K7OJYXbKDogPLe4ZB0aoFPb4Bp5EzAQAA0Ajo1yIX8QAA/rXYWqI7+u7RE8mn9YE1r+g2zUaTdg3vrK/FD9FW4YKPfEmSPsos1Bld39UCa2FeO5A7DjzQwO12CG+ri1rO1xhzdJWvBm5qhHsJ9GkaHzkPbvJbnuR88TbeH2fQ9sPLiE//tZ0YWr3jeqj20pKV97sps/8LxNKnXyb+fevV+lHPTxq+vSTv+J/XvwxPXgfK12jXfLQxjcXr7Y0fMPlK/TH5CjyPyVcAAAAANIqXUq/qhsQf9WL6FUnFBwMHG6AcSqn9GZKmh3fQ4fFDtWtk56r374TbE3fomt7fKaV0f32Hes0DB2a/EjtIZzSd7MiM3wNnpM4O6jEoWjniG3AeORMAAACNgH4tchEPAOBPaTutGxO36M+J29WnZNkfdj4wOltnNJ+suBHvX7fcWqGjV5+oJfbSvG2zyhlbzm4z1lhHv2r7uaaENqr4NcEdjXIvgT5NYyPnwU1+y5OcL97G++Mc2n54WdDj029tJ8pTz7gut70stdyUmbd+jLGOltnLi9a5UdrLoOedRuHVL8OT14HyNeI1H21M4/Fqe+MnTL5Sf2G3KwAAAAAAQKNbZXXoyt5rdH9yzUDbUIOBlc7Knt1PsUFMe+3enk+/pOe7XtK24a10ZtOp2jS8cYWvYniSdlLf675IT6SeLvr6S71mo/+2xqfb/a3vbr2f+VCXt16aN/ALdxDfgPPImQAAAGgE9GuRi3gAAP9K2kmd3XWBnk2/UPAh5lKy292TvE8LrIX6VetlChtrPqp4YfelWmIvLcjvpcaCB+432zbYsrXUXq6TOr+jG9qu1qTQxGG9TtRWo9xLoE/T+Mh5cIsf8yTni7fx/jiDth9eFvT49GPbiaHVO64raS8Hm5Ql9wvFy+zlDdteBj3voLbI60BlGu2ajzYGgJcMf+omAAAAAABQ0tvpd3VU5zd1f/LB/iH63IG+0rOol/8oJXebbNmvpF/XMZ0n6ebEbTV7zQNZtqWzus7X46mnCl5/sboOfG2f3tpQ/2t5Mf2Kzum6UGk7U7fXgULEN+A8ciYAAAAaAf1a5CIeAMC/LNvSGV3f1TPp5/NyeDYfl5K7zUvpV3Vxz2WSpMeTT+mF9MsFOX7g78Ue2f1mt8uWsdJepe90fU99drKWhwLD0Cj3EujTND5yHtzixzzJ+eJtvD/OoO2HlwU9Pv3YdmJo9Y7ratvLgbLbFmv3Gqm9DHreCYrB8l8tkdeByjTaNR9tTPC41d40uMpmJcOgwm5XAAAAAACARjU3/V+d3HmmepUoGITM/jzYzYHhKDbomC0npbSu6/293s98oAubz1XICDla9kC/TdykZ9Mv5NVp4PEopdgNlOzA6HPpF3VV77U6s/nUGtYepRDfQG2QMwEAANAI6NciF/EAAP51W98deR+6lvI/QJ39PavYdrZs3Z98UAdGv6jb+/5esD77c6vRolmRXTQzPEMTzPEabY5U0k5pub1CL6df00PJRzXf+ijvA+LZ58+zFug3vX/Qac3fqunxQOUa6V4CfZrGR86DG/yaJzlfvI33xxm0/fCyIMenX9tODG04cZ27buDPz6Sf126rPitjwN+vz/2idrH9VxI/lqyiPw/cT2EMSUfFv+GL9jLIeafWZq78jGtlDzwH9us4pOznGpKeHvXgsOtAXgcq12jXfLQx9RH09qYW6nVMmx8dq+naM39hYbdy0U4r9y53l/Zzox5mfpFBcHAAAAAAAKiBTzKLdHrXeepRb8GA4sBBvpBC2ii0gTYLbaKpockaY66jccYYjTHHqNloUkwxRY2oYkZUGTujjDJKKqUeu0fddo9WWiu13F6pT6xFWpBZqLcz7+rdzPtKKy0pf9A0t+z7kw8qY2d0SesFNTsO8zIL9KfE7QU3RHKPxy7hnTQzMl2bhjbWSHOkJGmptUwvpl/Rg8lH9JH1cd5zcgd+/9Z3t6aHt9ee0Vk1ew0oRHwDtUHOBAAAQCOgX4tcxAMA+Ncia7F+23tjyQ8uS9JoY5Q2CK2nVqNVy60V+sRapFV2R/92uX7Wc6XmWwvyvjSR3c+Xop/XqU3f0khzREE9NtFUzYzM0Lfix+ju5D91de9v1W33FOznb3136avxgzXBHF+Do4FqNNK9BPo0jY+cBzf4NU9yvngb748zaPvhZUGOT7+2nRjacOP6psQtg+7fzvlvdv/1NrCNzS49selYz7eXQc479eBGPJZSWV2KxXRlyOtA5Rrtmo82pn6C3N7USt2OaXmHwLsHyoeYfAUAAAAAgBq4qOcyddirCwYDs4Ms44yx2j26i/aI7KYdwtsqakTL2m/ICCmkkKKKqtVokSRNDm1YsF3STurF9Ct6JPm4Hkg+1H9zIitbl/+XekRbJDbTN+JfHe5LLupPiduVVjpvEFRaczy2DW+tc5tP19TQ5ILnTQltpJ0j0/XN+P/qrr5/6Ore3yqhvrxjmP35Jz1XaNvw1kUHd1EbxDdQG+RMAAAANAL6tchFPACAf93Zd29e7s3N4VuGNtepTd/S9pFtCp73XOpF3ZL4q55JP583bjvPWlCQww0Z+mrsy/pO88lD1scwDB0c219bhrbQ6V3naYW9Mm99Smn9JXGnvt184nBeNhzUSPcS6NM0PnIe3ODXPMn54m28P86g7YeXBTk+/dp2YmjDjeubE7f2b1+KLVumzCG3k9a8lwO/nG7Jqug1ZWXLLFaf/vI83l4GOe/US/HJeWqr2HlQbj2c+rI5eR2oXKNd89HG1FdQ25taqssxHXgYihdZ7sFikpYyFO/BAwAAAACAqv0n+bBeSr9SdBB+I3MDXdZyke4dcbvOaT5dMyMzyr4hUImoEdUukZ303ZYz9Y+Rf9URsa8V3MjL1un63hv0cWaR43VI2Andn3yw/zjkDmh+Mfp5Xdt6RdEB0VwhI6RD4wfpt22/0jhzbMF+JGmV3aHLe3/teP1RHPEN1AY5EwAAAI2Afi1yEQ8A4F8ZO6N/9T1QNIfvF91XN7RdU/QD3JK0U2RHXdX2Mx0fPyrvCxMD/2KlJG0cmlLWB7hzbRreWJe1XpQ3Jpzd533JB2Tb3v8wbhA00r0E+jSNj5wHN/g1T3K+eBvvjzNo++FlQY5Pv7adGJoTcZ193lBffrXWPsphD3hUo9TEK6V4sb0Mct6pt4ExV+uH28jrQOUa7ZqPNsYdQWtv6qHmx9BQ/j/UHJOvAAAAAADgsD8mbsv7PTtwtH90P93S/nvtGZ0lw6jfyEer0aJTmk/QdW1XaITRXrA+pbSuT9zgeLnPpF5QUsn+37MDtNuFt9b3m89S2AiVva9Nwxvr6tZfaKSxZtbp3Bmubdn6T/JhPZd60fHXgELEN1Ab5EwAAAA0Avq1yEU8AIB/vZp+Xcvs5f2/Z3PuVqEt9IPm88oaAz6u6SjtG9m7/7kDvwBlyNA348dUVb+twtN0ZPzwgg/udtir9Vrmjar2CWc10r0E+jSNj5wHN/g1T3K+eBvvjzNo++FlQY5Pv7adGJqTcV3OBCxDPd+U2b+f3Ec1+6qG19rLIOedehssZorF5HAfbiOvA5VrtGs+2hh3BK29qYdaH1PZyv+HmmPyFQAAAAAAHPR+5kO9nXm3fxAlO3D32cheOr/lbIWNsGt12za8ta5tu0LNRlP/suyg4kPJR7Xa6nS0vNfShQOlhqRzm89QqIIB0awNQuvp4pbz+49t7v9t2bq859fK2Jlh1RmDI76B2iFnAgAAoBHQr0Uu4gEA/Gtu5q2CZYak77acWdGXHs5pPl3Naiq6boTRrlmRmdVWUYfHDlVcsYLlL6VerXqfcEaj3UugT9P4yHmoNz/nyZfSrxU8h/PFO8hnzqDth5cFNT793HbyeaWhORHXP235kVqN1pJfJK+EXeJRCVOmxhvjNN4s/W+COV7jzXFFn++l9jKoeaeeyonfUnE5nEdW7nsw1hgzaNyWE7/lIK8D1Wm0az7amPoKYntTa/U6pjKU/+/Tnef+tFDS/DL+zVv7fwzCvZ4IAAAAAAAN6PHUUwXLWo0Wnd38bRdqU2hqaLLOafq2ftDzk7wBnrQyeij1qA6Kfcmxst7JvNf/c3ZQabfITE0ObVj1PmdEdtCR8cN1U+KW/sHQ7OuYZy3QX/ru1NfjXxl23VEc8Q3UDjkTAAAAjYB+LXIRDwDgX/9Nv93/czbXzgjvqKmhyRXtp91s02eje+ve5H0FX6aYFZk5rL9eO8Js1x7R3fRA8qG88eC3M+9WvU84o9HuJdCnaXzkPNSbn/PkEzl153zxHvKZM2j74WVBjU8/t518XmloTsT13tHdNS28mS7ovlSvpl/Pa79KMWX2l7dTeEf9qu2yktsut1ZodsehBe2iJavofr8Y/ZwuaDm37PoP5KX2Mqh5p56Kxe/AWNsrsru+33yW2sxWx8rdeeU+BV8Sv7n9eo02RzlWRinkdaA6jXbNRxtTX0Fsb2qtXsd0yy231Ny5c/t/n75sTxXp5k5/btTDS6ouBHlMtysAAAAAAEAjeTP96azS2UGTz0c/oxFmu4u1yveF2L7aJDS14Obia+k5jpbzibW4YLBsZmSnYe/3+PjR/QPFA2elviHxR62yOoZdBoojvoHaIWcCAACgEdCvRS7iAQD860Or8I/e7RHZtap97RTZsejyTUObVLW/XNuHt8n73ZathdbHw94vhqfR7iXQp2l85DzUm5/z5EdFYo7zxTvIZ86g7YeXBTU+/dx28nmloTkV1+PNcbq+9UodGz8y74uv5ai2vSylkdrLoOadehsYv1nZnx9JPa5vdB6nl1KvuFVFR5HXgeo02jUfbUz9Ba29qQeOaWNi8hUAAAAAABz0QWZewUDgzuHpLtWmtC9GP5/3uy1bb2XecbSMlfbKgmWbOzAoGzZC+l7zmUVvj3bbPfpd4qZhl4HiiG+gdsiZAAAAaAT0a5GLeAAA/+q0uwrGgqeFN69qXxuHphRdPpy/Xvnpvqf2/5yt71Jr+bD3i+FptHsJ9GkaHzkP9ebnPNlj93K+eBj5zBm0/fCyoMann9tOPq80NCfj2jRMndB0tK5ru1JjjTGDTsBiyer/udr2spRGai+DmnfcMDB+cyf9sGVrsbVEJ3edqWt6f6e0nXGxpsNHXgeq02jXfLQx7ghSe1MvHNPGE3a7AgDQSC7u/pnbVaiSoQtaznG7EgAAADVTz37aQuvjvBtztmz9K/lvPZp6ooq91a6ftnV4Wk4pa2ZzXm6tcLSMhN1XsGyUMdKRfW8VnqYDo1/SXcl/FMxKfVffP/XV2MHaMLSBI2XhUyvtVQXLNs5qkqwAACAASURBVAyt70JNBleP+MYaXAc7h5zpHOISAADAPfRrCwW5f0o8AIB/ddvdBcuqzeHjzXFFl482R1W1v1wjjMK/httt9wx7vxiecu4leKGPtNJaJXvtI2teZkFB3brs7rxtDBn0aRoMOQ/15ud7rhllCr7o5eT5YsnS3xJ36f7k/6tqn1nZ3J2bv1fZHTVsf7xxj8cr+Wyo41z/96dca95HxjPgZUGNTz+3nXxeaWi1iOvtwlvr1vYbdEnPZXo49fiQ2zt1Hkl+7M8M3o8Jat5xU278PpJ6QsbahyRZsvWnxO16PvWSLm45X+uHJrlc2+qQ1+EW9685qrUmV3vlmm8o5Y5h0ca4KwjtTb1xTBsHk68AgIP+mbx/0NlxvciWLcMjN34AAABqpZ79tNyJV7IeST1Zcfm17qeNNccULCs2KOu0iBFxbF8nNh2rB1OPqNPuyltuydIve6/Tla0/cawsrFFs8LvZaHahJoNzK76DiOvg2iJnVoe4BAAA8Jag92vpn+YLejwAgF8UGwsudv+jHHHFii5v1vDHluNGvGBZSqlh7xfDU869BG/0keyCJUkl9a/kAwO2KtyOPk1jIeeh3vx8zzV7vZjL6fPlsfRTw24jiuXujDIFOd4JXrrH45V8NnQ7X7/3p1xDvY+0/fCyIMSnn9tOPq9UHSfius1s1c9aL9Kfe/+iXyWuL7pNts9QbXtZil/6M9X2Y4KQd9yWjd+/992rq3quU1JJSZ9OHPBm5i0dsfp4nd58sg6KfdHl2laOvA63eGNMsjK5udor13xD7nsYY1i0MfXV6O2NGzimjcF0uwIA0IhsHz0AAACCxK3+lRf7aRm72GCrswPKTUUGTwcOYA7HCLNdJ8SP7j9etuz+gamnU8/p2dQLjpWFNSJF5vHtsXtdqMng6hHfyFeva9ha5WkvIGc6z+1Ya4S4BAAAqBT92tLc7nO60T8lHgDAv2KKFixbbq+sal+mUfwjinGj+Ie7K9FhdRQsC/P36FxXyb0EL/Z6ytmKPk1jIeeh3vx9z7WQ0+eL5Ez7UKv9lteauMNr+Wy4bXA9H7kYz4CXBTU+/d128nmlodQ6rv+n6TD9b+wbJdfbsnVx92XqsFZXvO9SX+CvZT+jVu1fKUHNO15xSOwA3dR+naaENuo/RsbaR68S+mnPFTq368Kq4tdN5HW4rZbXFk4/cnntmq+UcsewaGO8o1HbGzdxTP2NyVcAoAYMHz0AAACCxK3+lRf7aYusxQXLWo0WR8toM9oKls3PfORoGYfEDtTU0GRJn97MNLRmYPSKnquVtjOOlhd0xd7TeZn5LtRkcPWIb+Sr31VsbfK0F5Azned2rDVCXAIAAFSKfm1pbvc53eifEg8A4F/F/tLsMmtZVfvK5OTicr/YU66V9qqCZU58OBzDU8m9BC/2ecrZjj5NYyHnod78fM+1WF6sxflSqzxfz/bEDV7LZ8Ntg+v5yMV4BrwsqPHp57aTzysNrR5x/c2mYzTVnFxy/cuZ1/SN1cfq+dRLFe23VBtZy35Grdq/UoKad7xkSmgj3dR2nb4c2z8v5rLH6NHUk1XFr5vI63BbPa4xapGrvXbNV0q5Y1i0Md7SiO2N2zim/sXkKwCGJW1n1GV3aZXVoR67V1aZM903smIzC5Y7AyEAAABqx81+mhf7fS+kX+7/OVu/dc3xjpaxnjmx4LW/nH7V0TJMw9R3mk7Jm5U6a561QDcl/uxoeUE3zhxb8J4+mXrWpdqUVo/4xqe4DnYGOdNZxCUAAIA76NcWF9T+KfEAAP41wRxfkMOfTb1Y1b4S6tPekT20V2R37R3Zo//nqFH4Vzor9W7m/f6fs/Vdxxg97P1ieMq9l+DnPhJ9msZCzkO9+fmea1zxmp4v2bL82j64zUv5bKj30csYz4CXBTU+/dx28nmlodUrrs9sPrXkhCO2bC21l+u0rrP1q57rlbbTjpXt935MUPOO10SNqM5tPkM/a7lIbUZr/zHKfnm7VvFbK+R1uMnP15xeuuYbTLljWLQx3tNo7Y0XcEz9iclXAJQlbWf0enqubk7cqnO6LtTXVx+rPVfup11XfVb7rNpfn+s4SHutmq1dV+2r2asO1TGrT9Kl3b/QnX33amHmE7erXzd3tv9ZZzWdqpnhGTKkvMawlME66PV4AAAABEE9+2mlWLI8009L2knd0/evvNdvyNAmoamOlrNRaIO8/duy9WDyUccHhqZHttfekT1kyy6YlfqmxC16K/2Oo+UF2VbhLfp/zh7jB5IPaaVVOEu5W+oV31iD62DnkDOdQ1wCAAC4h35toSD3T4kHAPCvYjn80dQTsu3K24kWo1k/bf1hwT8n/krs46mn8n43ZGjd0IRh7xfDU869BK/0kcopp9h6+jSNhZyHevPzPdex5jp5vzt9vtzVfovObjrNkfahkm29cA3tBK/ks2raecnd8ZChjiNtP7wiqPHp57aTzysNrd5xXYotW5Zs3dr3Nx3TeZLmZeYPuU9Dhsy1D2PtY3poe5lrX0d2m8HKrLSfUe9+TFDzjlftFZ2lP7f/XtuHt8mLMUNGxfHrJvI63OKVMclqc7VXrvmGUu4YFm2MdzVKe+MlHFN/CbtdASAIvtV5ul4qMuva3e23aaLHb369n/lQd/f9Sw8kH9QKe+WQ21uytMxermWZ5Xoj86buSf5LkrRxaIoOiO6n/WOz1WI017rarpkUmqivhA7WV+IHa2HmY/0xcXv/Mch2ynJ/NmRoQ3N9bZlz4QgAAADn1bOftshanDfbedYEY7ymR7Yf3gtxyK97f6Nl9vKCweKdItMdLWeH8Hb6a99decuW2yv0l7479Y34Vx0t6/TmE/VUx7NKKtm/zJChlNL6fvfFuqn9WrUarY6WGUTbh7fV7X1/z1vWq179pOcKXdZ6kUu1ylev+MYaXAc7h5zpHOISAADAPfRrCwW5f0o8AIB/bR/eRv9K3p+3bJXdob/0/V1fix/qUq3yLcx8rFfTbxSMBW8W2sSlGiGrnHsJbveR3kjP1YdW4YeYdwxvp3XN/M/zfWIt1osD7v3Rp2ks5DzUm5/vuc4I76gFyYV5y5w8X5xoH7rtHj2SerzgS2qbmFO1Wbixzxmv5LPB30cV/ar3SGOEZkV2qVsdB8N4BrwsqPHp57aTzysNrd5x/VjHk0qr+Je6s32MtzLv6sjV39RpzSfqkNgBZe/fkKFLWi9Qr907rOtcL/Vngpp3vGy8OVbXtV6pGxJ/1A2JPxXEVrXxW0/kdbjF7THJ4fLKNd9gKhnDoo3xtkZob7yGY+ofRjWzWgH1ZBjGHEnTBi6fNm2a5syZ40KNKufHyVcWZBbqN71/0H9SDxdcsA/HCKNdR8e/oa/FDlHICDm2Xy97MfWKzu2+UF12tyT1d76z/z80dqDOaj7N5VoCAAAET636aWk7rS91fFWr7I7+Zdl9HhidrXObz5BpmI69jkrd2PtnXZ/4Q96gpi1bzWrS/438u+JG3LGyuuwu7bfqEKVyblbashVTTNe0Xa6twwWXesPyh94/6zdrX9vA93P78La6svUnihuxvOcst1Zodseh/ccju/0zox50tG6NgvhGObgOrg45s7aISwAAgPqgX1ueoPRPiQcA8K+l1jId0HFY3ieGsjn85vbrNTm0oWt1yzq580y9kH65IIf/svWnmhmZ4XLtgq3aewn16iNVei+BPk3jI+eh3vx8z/WP7b/VV1cfWdfzpdL2Icjni5fzWfZ9XG13Fl2/R2Q3/aL1kjrXqjjafnhZUOPTz20nn1caWr3j+tc9v9Gf+m4vud6U2V8HQ4ZmRWbqpPjxOrzzmIK4zv4/d9l9I+7QaHOUpOqvc73Unwlq3vGLV9Ov64LuS7XYWlKQg7Lxe37zORppjih47s4r9xk0fmuJvA4v8dN9Wy9f82VV0obRxviHX9sbL6vkmG655ZaaO3du/zbTl+3ZP7OtETJsrflt3edGPbykvq+icbnXCwHgSZZt6dbE3/T11cfqgdRDcnLiFUnqsFfrqt7rdGznKVqY+cTRfXvVjpHt9OOWH/T/PnDmPgAAALijVv20sBHWl2P79/elcwfn7knepxM6T9O7mfcdKasSy6zlOq/rB/pN4sa85dn6fTl2gOM3BFqNVu0d3SPvusKQoT716dtd5+ix5JOOlndk/HBNMTfqLyf32L+cflVndH1X3XaPo2UGDfGNcnAdXB1yZm0RlwAAAPVBv7Y8QemfEg8A4F9jzTHaNTKzaA4/vvM0PZV61sXarfmiVO4HuLNajRZND+/gUq2QVe29hFr3kaq9l0CfpvGR81Bvfr7nun5oUt3Pl0rah6CfL17OZztGttNO4R1Lrh9njK1jbQZH2w8vC2p8+rnt5PNKQ6t3XJ/YdJya1VxyvSWrvw62bD2RekYndX2nqu9WVXOd67X+TFDzjl9sG95at7b/XntHCt+jbPx+ffWxeib1vIu1LEReh5f46b6tl6/5pMrbMNoY//Bre+NlHFNvY/IVAP167F6d2f19/bL3WvWpr6Zlzc38V//beaJeS79R1fPfTr+r3/beVPDvxdQrDtfUGTtFdtSsAZ1bAAAAuK9W/bQj41/XuuYESYWDc69n5uqI1cfr3K4L9WzqBVm25WjZA83LLNCVPdfo0I4j9Ejqif665BppjNCR8cNrUv7/xA6TqcLZeLvtHp3TfaHO7rpAr6Rfd6SssBHSj1q+p7BCkooPjB65+pt6K/2OI+UFFfGNcnAdXB1yZm0RlwAAAPVBv7Y8QemfEg8A4F9Hxb9eMN5qyFCn3akzu76n87su1oupV5S2M3Wr0xJrqc7qOl+39P01r27ZfD87+nmFjVDd6oPSqr2XUIs+khP3EujTND5yHurNz/dc3ThfhmofOF8+5eV89lDqsaLrDUmm4a0vONL2w8uCGp9+bjsxtHrH9dnNpw26jbX2ka3LSntV//JKr1fLvc71cn8mqHnHL1qNVv209Yc6r/kMxRTtX549ZsvtFTq96zxd2XONUnbKxZrmI6/DS/x039bL13zVtGG0Mf7h1/bGy8o9ptFTWmVEvDVu0ugM2/Z+g4BgMwxjjqRpA5dPmzZNc+bMcaFGlftW5+l6Kf1qwfK722/TxNAEF2pUaJXVoVO7ztZbmcE7BzFFtUtkZ80Ib69NwxtrkjlRrUaLwgqr0+5Sp92lj6yFeiP9pl5Kv1L0dedqUbOuartM24S3rKi+/+z7ty7q+VnB8uPiR+mEpqMr2le9PJ16Tqd3ndfficx2zg6NHaizhhi8AQAAQO3Uqp/2YuoVndZ1jjLK5O03OzCbLW+E0a4Z4R20Q2RbbR7aVFNCGw1rZvRF1mK9k35fL6df1dOp5/SBNa+//Gy5uXUxZOhnLT/SntFZVZc5lJ92X6m7kv/IKzNbp+zPo4yR2ja8lTYMbaB1zfFqNpq1rjlBW4cLLgeHdGffvfpZzy8Ljnf2Z1OmZkc/p6PiX1eL0azZHYcW1OmZUQ868dIbFvGNcnAdXB1yZm0RlwAAAPVBv7Y8QemfEg8A4F+Xdv9C9ybvGzSHxxTV+qH1NMEcpyajSSc3Ha8J5njH6vBRZqHeSM/VY6mn9HjqKaWULvgChC1bccX01xF/1HhzrGNlY3iqvZew1Fqmc7ovrLqPVKt7CfRpGh85D/Xm53uubpwvA6+hLVkyZGg9c6KWWEs5X3J4OZ9l65HLlKFDYwd5biyEth9eFtT49HPbiaHVO66PX32qXs1U98ekpTVxX6ye9424Q6PNUXnblroX8IXoZzQzPMMX/f+g5h2/+SAzT9/vvkjvZT4oiCNDhqaGJuvilvM1JbSRdl65T1nxW0vkdXiJn+7bevmar5o2jDbGf/zW3vjBYMfUyljqndut906Yq8RbPZq+bE9lh1aMkGFrzW/rPjfq4SWuVL4BMfkKPI/JV2qvx+7VSZ3f0dzMf0tuM8Jo1xHxr+ng6P5qM1vL3ve8zHzdkvir7kneVzBYnrvvG9uu1XqhSWXv14+TryTtpPZddaD6lJTk7U44AABAkNSyn3Z/8kH9oPvH/b8PHBDMyh0gkaR1jNEab47TaHOURhjtajGaFTdiCikkUyGllVbKTimllDrtLi23Vmi5vUKfZBarV7155Q0sY2AdTmk6QUfEvzas1zmUhJ3QsZ2n6N3M+0UHRgfWMWu3yExd3nppVWVe3vNr/bXvrqI3YnLLX9+cpPnWRwyKVoH4xlC4Dq4OObO2iEsAAID6oF9bnqD0T4kHAPCvPjupEzpP038zbxfk6WKfAzJk6Ka267R5eNNhlfv3vnv118SdWmwtUUJ9BWUW+wLEKU0n6H/ihw2rXDivmnsJ9tpHLkPS5qFNtWtkZ9fuJdCnaXzkPLjBr/dc3ThfknZSe6/6olJKD9h37n85XyRv5zNLVsHzTJmeHAuh7YeXBTk+/dp2Ymj1jus+O6kDOg7TSntVVfXN1qOcLxPn3gvIveY1JBky+5+f3Z8X+zNBzjt+k7STuqr3Ot3Rd0/e+5E9hlFFdUrTCbqi9+qy4rfWyOvwCj/dt/XyNV81bRhtjD/5rb3xg1LHNGOtmaTMSlj66Efva4OfbMzkKzUWdrsCANxl27a+333RoBOvfC6yj85u/rZGmO0V73/D0Ab6XstZ2je6j37U/RMtsZcVbNNhr9Y53RfqprbrFDWiFZfhF1Ejqq3DW+r59EsFnT0AAAC4p5b9tM9HP6OIwrq4+zL1KpG3/2KDTFnL7OVanlmhtZO5l6XUZIcDX1N2kNCUodOaTtTX418pv5AqxY24Lm+9VCd3nqWPrIVFByezvzvlzOZT1WP36p/JfxeUlztQOt/6qGhdMDTiG0PhOrg65MzaIi4BAADqg35teYLSPyUeAMC/YkZUV7X+TGd2fV9vZOaWHAeWnM3jCzMf60NrfsHyUm3I3pHdXf8SEoqr9l7CQLakNzNv663Mu4NsU9t7CfRpGh85D27w6z1XN86XqBHVOsY6WmQvHrB/yeR8yePlfGbKzJuAxcvtFm0/vCzI8enXthNDq3dcx4yo/tJ+kw5bfXRVE7AM/HL5YHLvBeTW3875r9f7/0HOO34TNaI6u/nb2jk8XZf0/Fwd9uq8Y5ZUUlf2XiPJG8eMvA6v8NN9Wy9f81XThtHG+JPf2hs/KHVMZUsyJDNuaoMfb7xmY0Ny8JTAAKbbFQDgrpsTt+rJ1DNF15kydXrTSbqk9YKqJl7JNSOyg65v+6XGGWOKrn83875+l7h5WGX4wWahTdyuAgAAAIqoZT9tn+ie+kP7tdo8tOmgA/cDH3aFj8H2k8uWrfHmOF3VelldbwhMMMfrhrartUN4u7z65srWudi6alzQco6Oih9etLzcslA94htD4Tq4OuTM2iIuAQAA6oN+bXmC0j8lHgDAv0aaI3Rt2xU6LPbltZ/lrN+nOQeOCecu19q6fD76GV3cckHd6oTKVXMvoRS37yXQp2l85Dy4wa/3XN04X4r9VWQj72fOlywv57Ms0wdfZaHth5cFOT792nZiaPWO65HmCN074i/aIrTZsPZTjmL3AgwVnjte7s8EOe/40R7R3fTn9t9ph/C2BTmtnn3DcpDX4RV+um/r5Wu+atow2hj/8lN74xfFjqls9U/Cgtrz/ogVgJp5L/OBfpO4seT685rPcPQiYb3QJP2q7eeKKVZ0/a2Jv+mjzELHyvOiTcMbu10FAAAAFFHrftrk0Ia6qf06nd98tsaZY/MG8nMNNcA/1CO7j1y5y6OK6n9ih+kv7Tdqp8iONX3NxYw0R+i6tit0dvO3NdoYVfI4ODlYeVLT8bq89VKNMdapeVlBRXxjMFwHV4+cWTvEJQAAQP3Qrx1akPqnxAMA+FfMiOo7zafoprbrtWdkliSVzONOKzXe3GI06wfN5+milu8rbIRqXg8MT6X3Ekq10V64l0CfpvGR8+AGv95zrff5MsocOeh6zpd8Xs1nh0QP8FXbRdsPLwtyfPq17cTQ6h3XMSOqm9uv13eaTlFMUUf2WUyxewHFWmSv92eCnHf8aJw5Vte2XqET4kfnTXznxWNGXocX+O2+rVev+aptw2hj/MtP7Y1f5B5TWTkrmM+mLsJuVwCAe37ac6UyyhRdd3T86zoo9iXHy5wS2kinNJ2gy3t/XbAupZT+lPiLvtvyHcfL9Yr1zIn9P9N5AAAA8I569dP2j+2n2dHP6ZHUE/p73z16Of2qrAE3AYar2M2BccZYHRCbrUNiBxT9S1D1dmjsQB0Yna3/S/5HDyQf0ivp15RSumblzYrsojtG7KC/9d2lO/v+oY+tTyR9eqzomzuD+EYxXAcPHznTecQlAABA/dGvLS2I/VPiAQD8a7PwJrqs9SJ9nFmkR1NP6KnUs3on855W2qtqVubAceGYYtovuq+OaTpC482xNSsXtVHuvYThfEGgXvcS6NM0PnIe3ODXe671Ol/a1FqwzF77X86X0ryWz5ZZy3Rn8h952/kBbT+8LMjx6de2E0Ord1x/LX6IDop9STf0/lF3J/+pDnv1kM+pJL5y7wV8+vw1/Nj/D3Le8RvDMHRs05GaEdlBF3RfokXWEsfyYy2Q1+Emv9639do133DbMNoYf/Jbe+MH2WP6y6Mvl/m9ZkXXi60ZCGMClppj8hUgoB5PPq1X068XXbdVaAt9M35Mzcr+auxg3dl3rz6w5hWs+3fyPzqj+STFjXjNynfTBHO8pOF9QAAAAADOq2c/LWSE9JnonvpMdE+tsjr0ZOoZPZl6Rq+n52qJvXTQ5w4cfCpV35BC2iy0sXYIb6c9ortqm9BWMgxvDVxFjIgOiM3WAbHZStgJvZF+Ux9m5mm+9ZFWWCuVUEKbhKY6Vl7ciOmI+Nf0P7HD9Ez6eT2YfFTPpJ7TUnu5Y2WA+EYhroOdQc50FnEJAADgDvq1xQW1f0o8AIC/TQxN0OGhQ3V4/FBJ0iqrQ6vsDnXb3dootIFj5WTbx7hi2io8TTMjM3RAdLZGmO2OlYH6K+deQrl9I7fvJdCnCQZyHurNz/dca32+tBjNBcvGGWN1WPzLnC9l8Eo+CyuUt52f0PbDy4Icn35uOzE4N+L65ObjdVLTcf1x/VTyGS3TiqLbV9KWZe8F5D9fiivq2/5/kPOOH20T3kq3tP9el3b/Qg+lHnO7OoMir8Mtfr9v65VrPifQxviXn9obv7DeSOvN3Z/XRldtplEHeHuCvkZh2LY/GwIEh2EYcyRNG7h82rRpmjNnjgs1qty3Ok/XS+lXC5bf3X6bJoYmuFAj6ZjVJ+mNzJsFyw0ZurHtWk0Lb17T8v/Z929d1POzout+2vJD7RPds6rnHxc/Sic0He1EFWvmlz3X9s+6KUnbh7fW3tE9im77XuYDHb568Ilwbmv/g6aGJjtaRwAAgCDyQj9tldWh/2be1vzMR1pqL9MSa6mWWcvVayfUpz5129362Fo06D4uablAe0ZmKWZEKyrbj5x4Hz7IzNNbmXf0dvpdfWR9rGXWci23V+ieEbc5Xd3AGyq+k3ZSvXZiyJtjN7f9RluEN61TreEEL+RXkDMHKjcuiUkAAABvadR+Lf3T6jRqPABAEJSTw09uOl6bhjbWaGOUpoamKGyE6lQ7uCn3XsJ9yQfUY/eo104orbSiRkSGjCHvlZXi1X4SfZpgKOd9Prf5DG0V2oKch0E1+mcKyjlXtg1trZHmCMUV0whjhHaMbMs1dJ042YcL8lgIbT+8rBHjk88rwYm4fiz5pM7qPn/QfZzZdKommOO0W2Sm5lkLhixzenh77RreWV+LH1rQXjZi+1dKI+YdrynnGOfGb9gI16lm1SGvo9aCfK0iNdYYFm1MfTVae+MF2WP6+i7PKfFWjySpbbeRCrWvOe/M5tCCqb+bduraze97btTDKZeq2nCITsBjuu0ePZ58Us+mX9Q7mfe0xFqqbntNYmw2mrSuOV5TQpO1U3hH7RmdVXQW96G8mX6r6MQrkjQrskvNJ16RpH2j++iynquUUKJg3YvpV4ecfMXPTm8+ye0qAAAAoAgv9NNGmiM005yhmZEZRdeXMyg1NTTZkx+S8qrJoQ01ObShvhD9rNtVaXhDxbdUXoxHjYjTVUONeSG/whmNlDOJSwAAgODyYr+W/ql7vBgPAIA1ZkV28d0H0zF8ufcSvho/uGB9OfcRgog+TWPYLrw1eQ9D4jMF0nktZ3CueFi5fTjGQoaHth9e5rX45PNKcMKk0MQht5ke2b6iPsqZzafSp3GI1/KOH1Uav24ir6PWuFYZWpDGsGhjnOWn9sarOp9clffr8jsW3+NWXRoZk68AHtFt9+iPidt0e+IO9RaZkESSOuyUOjKr9d/MO7ov+YBaepp1aPwgHRs/QnEjXnZZ/0reX3LdYbEvV1z3asSMqGZEdtDjqacK1r2XeT/v948zi3TQ6sPL2u/vEzfr94mbC5bf3X6bJoYmVFdZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQkJh8BfCA9zIf6Kyu87XQ+rii53WrRzcnbtWjySd0ZetPNSm0blnPeyT5RNHl6xijNT28fUV1GI4zm07V12NfKVjeVMFEMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVi8hXAZXPT/9UpXWepy+6ueh8fWvN1YtcZurHtWq1jjh502/cyH2iJvbTouj0iu8k0zKrrUamJoQmaGJpQt/IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABy1W+WBQAF5lnzdVrXucOaeCVrkbVYl3RfNuR2L6dfK7luh8i2w64HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAX4TdrgAQZBd2X6rV9uq8ZVFFtFdkd+0a2VmTQxtqlDlS3XaPllnL9WzqBT2QfEhL7KVF9/dk+lk9l3pRO0V2LFnm2+l3Sq7bJrRldS8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAh5h8BXBRx4CJCwzAdAAAIABJREFUV/aPfkHfbDpG48yxBdtODU3WzpHpOq7pKP285yr9K3l/0X3e0XfPoJOvvJf5sOjyJsU1wRxffuXraLw5VveN+Hvesv+XfEhX9F5TsO03Yl/VN+KHFSwfZYyoWf0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/MfkK4AExxfSDlvP02eheQ27bbDTpguZztNxaoWfSzxesfzr1rFJ2ShEjUvT5i63FRZdvEFpfhmFUVO96CRkhjTFG5y1rNVqLbttkNGmMObroOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFym2xUAgs6QoZ+0/qCsiVeyTMPUWc2nyVDhZCl9SmpO5r9Fn2fZlpbbK4quG2uOKbt8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACARhB2uwJA0E2cO06vvvKSZp28S0XP2yC0njYOTdE7mfcK1r2f+UDbhbcuWN6jHmVkFd3fKGNkReUDpVxzzTVaunRpwfKxY8fq5JNPdqFGQLBxTgLwEnISAAQXbQAAAKgW/QgAAAAAubhGAAAAAAAAAGqH8TcAABBkTL4CuOzfx/xDb4dfr+riY1po86KTr3xiLS66fcJOltxXm9FacflAMddee63mzp1bsHzatGlcZAMu4JwE4CXkJAAILtoAAABQLfoRAAAAAHJxjQAAAAAAAADUDuNvAAAgyEy3KwAEWc8bXUq83VP18yeY44suX2mtKro8rVTJfUWMSNX1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CMmXwFctPqJ4pOklKvdaC26PGEnii6PqPQEK2GFhlUXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2HyFcBFvXO6hvX8mBErujypVIntoyX3lbD7hlUXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2HyFcBFffMTw3q+WeIUtmQVXR5T8claJKnTHt5EMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH7D5CuAi9LLUnUtL2JE1Gq0FF3XZXfXtS4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuY/IVwEVWwqp7meONcUWXd9qdda4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAu5h8BXCRnbbrXuZ4s/jkKx9m5te5JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO4Ku10BAPW1YWh9PZV+tmD5UnuZllnLNcZcp2516bOT+kPiT0XXHRDdT5NCE+tWFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDxMvgIEzBahTUuuezP9tnaP7lK3usxJz9WNiT8XXXdQ9It1qwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgm0+0KAKivLcKblVz3WuaNOtZEejn9WtHl7Uab1g1NqGtdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8DD5ChAwG4Y20DhjbNF19ycflG3bdavLY6mnii7fJDS1bnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBxeQrQADtEd216PJF1mK9kH65LnX4OLNIb2beKrpueniHutQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEG5OvAAG0V2T3kuvuTd5XlzrcnfxHyXVfiH6mLnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBxuQrQADNCO+gDcz1i677T/JhvZl+q6bl99q9uqvvn0XXbRWapkmhiTUtHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGLyFSCQDMPQV2IHFV1nydLPe34l27ZrVv6NiT+rw15ddN2XY/vXrFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBcTL4CBNSBsdkab4wruu6NzFzdlfxHTcp9N/O+bk38rei6jUNTNDv6uZqUCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBCTrwABFTfiOqX5hJLrr+i5Wq+l33C0zE6rS9/t+qGSShVdf2rTN2UapCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAfzHIABNjno5/RruGdi65LKqVvd56nl1KvOFJWl92lb3edo3nWgqLrPxvZS7tEdnKkLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHIw+QoQcD9s+a7GGWOLrutWt07pOls3J25Txs5UXca7mfd19OqT9EbmzaLrNw5N0QUt51S0T7NE+uqz+yquHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCYmXwECbqQ5Qr9ovUStRkvR9WmldU3vb/W11f+r/+v7j/rsZNn7Xmwt1RU91+iI1SdovrWg6DbtRpt+3nKxmoymiurdbDQXXf5i+hXZtl3RvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDCF3a4AAPdtHt5Uv279uU7tOltddnfRbeZZC/SDnh/rF72/0ozwjto+vLU2CK2v8eY4NRtNMmSqx+7RImux3sm8p2dTL+il9KvKKFOy3HajXb9qvUyTQhMrrvNEc0LR5XMz/9WFPZfq4Oj+mmCOV9SIqs9OaLw5TmGDlAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7FTAQAJElbhrfQ79p+rbO6ztdC6+OS23XaXXoo9ageSj06rPLWMyfq562XaGpoclXPnxLaSM1qUo96C9bdn3xQ9ycfzFt2d/ttmhgqPmELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJtPtCgDwjqmhybq57XrtF923puV8LrKP/tj+m6onXpGksBHWntFZDtYKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDZOvAMjTbrbpRy3f09Wtv9DmoU0d3femoY11desvdEnrBWo1Woe9v2PiRyiiiAM1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQWTYtu12HYBBGYaxWlLbwOWxWExTp051oUaVi/96pELbRwuWv7rtM0ouSFT9WsL7xRX7fnvB8vRjfer7XkdVdR3InB5R5MAmhXaJyYgbFT/f7rGUeSap1L29sl5IOVKnXKG9Yopd0C4jNnjdeg5dJnuR5Xj5tZZUSh9lFg66zXqhSYp6aBKa9957T319fQXL/XTOAo2EcxKAlzRSTnKrn+bH/mEtcTwaD+9p4yq3DSAGaodjWx2OGwC4r5GuJQEMX9D7Z0F//QNxPADAv4aTw7lGCLZyYqcUr/YL6NMEA+8z6sXvseZk/f1+LLzIjWPaiO9jI74mNI6gxmdQX3dQOPH+VrqP4ZYZpJgM0mt1SzXH2O/jb8QV6qFR46yRXlcjvRY/4Hg7L3tM+z7olZ0sOhdIp23bhRMMYNiYfAWeZxhGQlLM7XoEndlkqm3WSLXOGKHmrVsV3SCu6PiozOaQjIghK2HJ6s4o+Umf+uYn1DunS13Pr1bXMx2yems76Ul0Ukzjjp+k9t1HKbpBXKH2kOykrUxnWskFCXW/1KmPfvyBrM5MTesBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECN9Nm2HXe7Eo2IyVfgeUy+AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo7JV2rEdLsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAGJl8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEEhMvgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgkMJuVwAowypJI4ssT0paUOe6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Mr6kqJFlq+qd0WCwrBt2+06AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDdmW5XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcwOQrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJyVcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBKTrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJCZfAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBITL4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJCYfAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIDH5CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBAYvIVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHE5CsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAonJVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEEpOvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgkJl8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEEhMvgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgkJh8BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAgMfkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEBi8hUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgcTkKwAAAAAAAAAAAAAAAAAA4P+zd9/RkpTVwsafDTPkIWeUICBJJSggCoiAEkQJIiKKWS+CoHgVxCt8oGLAACrBHMArKnANCIhwQSQjSURAQDKScx6Y2d8f1XhnmOmqPudUdXx+a521dPbb7970OlWnu6re/UqSJEmSJEmSJEnSSLL5iiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqSRZPMVSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSSPJ5iuSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSRpLNVyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSNJJuvSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSRpJNl+RJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNJJsviJJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpJE3qdQGSpImJiCnAqsDiwPytn+eAp4CHgNuBOzLz2Z4VKY0Yj0tJ/cLz0cwiIoBlgZWABYEFgLmApynek7uB2zPz3p4VKUmSJEmSJEmSJEmSJEmSJEmSJEnqqsjMXtcg1SYi5gDWB7YA1gRWA5YBplAsNH0KeKT18zBwI3BZ6+fKzHyiB2X3VEQsSbHINF4QujUzV+x+RaoSESsC2wJvAF4NLN3By6YCfwMuBH4PnJ2ZUxsqsesiYnGK9+NVwMuBFwNLAfPyfwuqHwf+BdwMXAlcAJybmc/0omYNl1E9LiNiU+CcHqVfJjPv7lFuqW+N6vmonVazlU2ANwJbUnxOmK+Dlz4AXAr8CfhtZl7bVI2S1E0R8SngsNmEDsnMg7tcTuNa14k2pPhb8ErgJcCLKJpvzQs8SXGN6CHgWuAK4BLgnMyc1ouaJUnqV6P2OWJGEbEg8FrgNRSfLZYDFgUWAebg/+493QncQvGZ4iLggsx8rgclS5IkSY0bte8IEbEExf23DSmeR1sZWJjiWuOcwKMUz6I9AtxH8VzKZcBlmXlTL2qWJEmSJEnS4Bq162/Pi4j1Ke7PbwSsTnFvflFgEvAYxfW3mymefb8MODUzH+xNtZIkaRjZfEVDISJWAfYE3g0sNs5ppgK/BX4InJGZ02sqr69FxNuBX8wmZPOVPhMRWwEfA7aieKB7Iu4HjgG+lZn3T7S2XoiIScDOwH8AmzK+9+QJ4ETg6My8pMbyNCJG/biMiPdT/N3sBZuvSDMY9fPRC0XE/MAewEcoHn6dqEuAbwC/Sr9ESxpgEXEasPVsQkN1QzYilgc+DryDzhqRvdC9wK+AozLzujprkyRpUI3K54gZRcR6wF4UnynmHccUD1F8pjjCzxSSJEkaNqPwHSEiJgNvpfhe8Fpm3diqUzcCPwJ+kpl31VSeJEmSJEmShtgoXH97XkQsBLyX4tnv1cf48ucoNhT+JvB7n/OWJEkTNdFFeVJPRcQiEXEM8A9gX8bfeAVgLuBtwB+AmyJi5xpKHATb97oAlYuIVSLiVIrfzW2o59y9OHAgcH1EfKSG+boqIrYD/g4cD2zG+N+T+YH3ABdHxCmtRk5SJY/Lf/OYkXrM89GsWs0F/wF8jXoarwBsQNGw8MKIWLumOSWpqyJiCvD6XtfRpIiYEhHfoljMsC/ja7wCsCTwUeDqiPhuRIx3HkmShsIofI6YUUQsGxG/ptgl6/2Mr/EKwCIUzcP/HhHfiYiF66pRkiRJ6qVR+I4QEdsA11I8l7Ix42+8AsV99S8Ct0fEcRGxRA0lSpIkSZIkaUiNwvW3583w3PcRjL3xCsAkYAvgd8BfI+K1NZYnSZJGkM1XNLAiYiPgGoquhnX/Lq8AnBARv46IZWueu29ExALAm3tdh9qLiB2BKykWUzdhEeDoiDghIuZvKEdtImLuiPgBcDLw0pqn35bii/YHap5XQ8bjciZ1NTWQNA6ej2YWEXNFxI8omqQs11CaDYGLIuI9Dc0vSU3aCZi710U0JSLWB64G9gYm1zTtnMCHgasiYvOa5pQkaRAN9eeIGUXEuynuPe1Q47RzUDRh+UtErFbjvJIkSVKvDO13hIiYHBHfB06l/vvhcwLvAq6NiN1rnluSJEmSJEnDY2ivvz0vIuaLiP+heO57qZqmfTnw54j4akTMWdOckiRpxNh8RQMpInYCzmb8Oxh3agfg8ohYp+E8vfIuYIFeF6HZi4h9gJOAbix23hk4OSLGu4Nn4yJiQeCPQJPNUeYDfhARhzWYQwPM43IWq/S6AGlUeT6aWUTMB5wJvK8L6eYBfhIRe3QhlyTV6SO9LqApEfEW4Bxg+YZSLAH8MSL2bmh+SZL63dB+jphRRHwG+CmwUEMpVgHOjogVGppfkiRJ6pah/I7Qut/0R+CDDadaDDg2Io6OCJ/flCRJkiRJ0gsN5fW350XEohTPfe/YwPRzAJ8EToqIeRqYX5IkDTlv3mngRMQmwM/pXgfHpYAzI2LVLuXrioiYG9i/13Vo9iLiHcARQHQx7euB47qYr2Ot39ffApt2KeWnIuJLXcqlAeFxOVt17/QlqQOej2bW6kz+K2CTLqc+urXYX5L6XkRsBWzY6zqaEBGvp/g70HSTsDmBb0XE+xvOI0lSXxnmzxEzajXkPrQLqZYBToyISV3IJUmSJNVuWL8jtO43/QLYrItpP0Jxz0+SJEmSJEkChvf62/Nm2HBzo4ZTbQ/81nvzkiRprPzwoIESEUsC/0PnjVeuBS4BbgQeAp4BFqZ4uHUj4FXA5A7mWQz4TUSsl5nPjLXuPnUQsGKvi9CsImIt4Md0tqD6VuDXwNkUv+/3Ak8AU4DFgdWALSi+NK7UwXxvjYh9M/PwcZTepCPp7AGX6cBfgfOBe4AHKN7HRSkaKb0GWJti0VyVT0fEdZn50/EUrOHicTmriFiC5nYBltSG56PZOgR4UwfjEvgzcDJwKXAD8DDwHMXn/SWAVwObU7wnVd3Og2JXwnUy85ZxVS5JXRAR8wPf6nUdTYiIFYCT6Pw60VXAecDdFH8X56U4/7+U4m/iIh3M8b2IuCszTxt7xZIkDZZh/hwxo1ZztU91OPxu4CzgGorrz5Morj2/GNgKWLqDOV4F7Ad8cczFSpIkST005N8R/h/w5g7HPkbxXMq1wO3A48BcFPeb1gQ2BpbrcK69I+KSzPzZ2MqVJEmSJEnSsBny62/P+z6wbgfjErgYuAi4jeKa3ALAssArKTbtrFoT+kbgG8A+4y1WkiSNnsjMXtcgdSwifgnsUjHsMeCbwA8y89aK+RYDPgzsS7HYpsrBmXlIJ7X2s4h4O3A85Yt2b83MFbtTkZ7X2knnAmCDiqG3A58ETsrMaR3MOwnYDfgCxUPgZZ4G1snMf1RX3LyI2IFi4XiZJ4GjgK9l5r0V8y0K7A18jOqFdY8Dr8jMmzssV0PI43L2IuLVwIVtwptk5nndrEcaBZ6PZhUR61I0W6xqLPo74IDMvKbDeZcG9qe42D5HxfCzgC3TL9eS+lBETAZOoGgqVeaQzDy4+YrqExFzUDRSqdoB42mK3WOPzszbK+bbnKJZ7SYVc94FvCwzH+y8YkmSBsswf46YUUSsQ3GNq6oB5wXA54AzMnN6m7kCeC3wFYpG4GWmUlx77ovv15IkSVKVYf6OEBGvoGjcX7VY488UizVOycznKubcHPgEnW0g8CCwSmY+1MFYSZIkSZIkDaFhvv72vIjYAzimYthzFA1avpyZt5XMtRiwB8Xz3lMq5nxrZv7PWGqVJEmjq2oRmdQ3ImJjqhuvnAG8NDMPrGq8ApCZD2Tml4A1KJqRVPlERCzcwbi+FBELRcRXgJ9T3nhFvfMuqhdUnwqslZm/6mRBNUBmPpeZxwLrUSwQLjMPcHgn8zYtIuamumvrv4CNMnO/qsYrAJn5YKuJ0suByyqGLwB8taNiNcw8LmdvlZLY9V2rQhotno9m9Q3KG69MA/bIzO07bbwCkJl3Z+a+wNYUO5mX2Rx4W6dzS1K3RMTawDlU34wdVHtR3XjlAmD1zDygrPEKQGZOz8wzM3NTiqZkT5QMXwb49piqlSRpgIzA5wjg381If05545VngY8CG2fm6e0arwBk4TyKXe4/UZF+LuAzYyxZkiRJ6okR+I7wDcobrzwJvDszX5eZv61qvAKQmWdl5nbAjkDVsyyLUmwcJkmSJEmSpBE0AtffiIjFgS9VDLsL2Cwz9yxrvAL/XhN6KLAO8PeKeb8dEQt2Xq0kSRplNl/RIPmvivgvgG0y8+6xTtz6wL0bcFjF0AWBXcc6fy9FxLwRsVVEfB+4HdgPj/2+1NoV81MVw04Dts/Mx8aTIzPvp1hE/OeKodu0Gh712vuAF5fEnwBen5lXjXXizLwT2BS4vGLoWyNirbHOr+HgcVmqXfOVRzpphCRpbDwfzSoi1gc2qxj23sz87nhzZOYZwBsoHqot84WI8DO2pJ6LiOUi4kMRcRZwBdXNSQZSRCwEfK5i2KnAGzppzvtCmXk8xXtX9rl2t4h45VjnliSpX43K54gX2JOiOX87TwFbZ+ZRmZmdTtpqwnI41Q1YdouI5TudV5IkSeqmUfmOEBEbAluUDHkc2DwzjxvP/Jn5G4oGjXdUDP2A95okSZIkSZJGx6hcf5vBF4CFS+L3UDReOX8sk2bmTcDrgX+WDFsW+OxY5pUkSaOrbIdwqW+0Gh9sXTLkSuA9mTltInkyc/+IWAXYqWTYzsB3JpKnCa0b8MsAKwOrAy8D1gfWo9hBUf1vK6CsyccdwG6d7KBTJjOfjYidKY6bZUuGfgI4byK5arBHRfxTmXn9eCfPzCcjYkfgKmChkqHvB/5zvHk00Dwu22vXfGXcx6SkUp6PZlX1t/mozPzZRJNk5hUR8SHgv0uGrQpsB/xuovkkqRMRMQ+wIsVnsjWBtYENKa4JjIJ9Kb8R+zdgp8x8ZrwJMvNvEbELcCbtr6H+P+At480hSVIv+DmiEBGLUPwtbyeBXTPzrPHmyMzDI+LVwC5thkyiaEB+yHhzSJIkSRPldwQ+WRF/f2ZePJEEmXlDRLwZuBSYs82wZYHX0Pv7b5IkSZIkSaqR198gIlYCPlgyZDrwjvGuD8vM+1rP+l1C++tve0bEVzLzgfHkkCRJo8PdEjQodq6I75GZU2vKtQ/wdEl8o4iYXFOuWkTED4FnKBbdngN8F9gbeDU2XhkkVb/n+2Xmw3Ukysz7KLqGltmu9QB6T7QaIa1dMuQ24PsTzZOZtwFfrhi27UTzaGB5XLbX7mKfzVekZng+mkFEzE3R7KSd+4D/qitfZv6c4oJ8mXfXlU+S2omIKRFxH/AUcC1wMvAVYDdG5GZs65pMWaPOZygako278crzMvMc4IslQ94cES+faB5JkrrBzxGz2AdYtCT+1cyso8HmfkDZxgFb1ZBDkiRJGjO/I0BEzEv58yCnZeYJdeTKzCuBoyuGbVpHLkmSJEmSJPWe199mshftm6IAfCczz55Igsy8nPI1ZvMDH5lIDkmSNBpsvqJBsX1J7JyJ7jAyo8y8Ezi9ZMh8wEvqyleTxWi/C7MGxzYlsduAX9ac74fAPSXxyfS26chmFfGfZOZzNeU6kmKBXjurR8QCNeXSYPG4bG+VNv/+j65WIY0Oz0czex3FRfB2vpeZj9Scs2zxPcA2EWHjQ0lNmxNYvNdF9Ni2wFIl8R9l5tU15vsm8ERJ3OZbkqRB4eeIloiYBHy4ZMg/gYPqyJWZt1I8RNfOBhGxUB25JEmSpDHyOwK8geI5sHYOqznfjyriNnqWJEmSJEkaHl5/AyJiPuD9JUOeAA6uKd3XgOkl8fdHRNSUS5IkDSmbr6jvRcSCwLolQ05sIO2pFfEVGsipERYRLwOWLRlybGaWfQEcs8ycCpxRMWyTOnOOUdVDJf9bV6LMfBz4U8WwlerKp8Hgcdle629zuwuB13ezFmkUeD6arTdWxH/cQM4/Ut6sbT5gvQbySpJmtkNJLCmapdQmMx8EjisZsqs3ZCVJGjg7UP49e7/MLPv+N1YnlMTmxGvPkiRJUq+8riR2P3BOncky80rgrpIhPo8mSZIkSZKkYbMzsEhJ/LjMvK+ORJn5T+DCkiErAa+tI5ckSRpeNl/RIHhZRfysBnLeXhF3F0LV7RUV8doajYxx3rUbytuJ5SvidTd4uLEivmDN+dT/PC7bW7UkZvMVqX6ej2ZV9p7c2rp4XqvMfAq4qGJYP5yjJWnYbVkSuzgz/9FAzrK/iS8CNm4gpyRJas6HSmLXAb+uOV/Vfaylas4nSZIkqTNlmwKdnZnZQM6yZ9J8Hk2SJEmSJEnD5i0V8e/WnO+3FfGqeiRJ0oib1OsCpA6sVRKbBtzQQM77K+JzNZBTo221kth04OKG8t5aEV+xobydWKAi/kDN+R6riD9Vcz71P4/L9lYuiTXxd1kadZ6PZlX2nlzQYN5+fk8kaehFxDIUzU7aOa+h1FXzvgE4t6HckiSpRhExBXh9yZCj6l5gmZl3R8QuwNxthlxXZz5JkiRJHSt7Ju3ahnJhXWd0AAAgAElEQVSWPZPm82iSJEmSJEkaGhExF/DGkiE3ZOaVNaf9LXBYSfxNwH4155QkSUPE5isaBMuWxG7LzGcbyDlPRfyRBnJOxNXAwuN43evqLkTjVraA+M7MbKrxR1WjofH8XtXlmYr4gtTbgKVqd9GHa8ylweBx2d4qbf79X5n5eFcrkUaD56MZRMS8wItLhtzYYPq+fE8kjZTngHPG8bqlKf97MijWrIg30oCrtWD6QWDRNkNe00ReSZJqNuqfI573BmBym9izwPFNJM3ME5qYV5IkSZqAkf6OEBFB8d/Szj8bSl32TFq/PY8mSZIkSZKk8Rvp628tmwFTSuK/rzthZl4fETcBL2kzZM2IWDwzq54JlyRJI8rmKxoEZR+ym7rpvEJF/MGG8o5LZn52PK+LiFp3b9SELFkSu6XBvNMq4u0eQu+G+yriy1Fv85WXlcSmA/fUmEuDweOyvXbNV/7R1Sqk0eH5aGZLAFESv6XB3P36nkgaEa1Gd5uN9XUR8V7gx3XX0wPLV8RvbzD3Q7RvvrJBRMyRmdMbzC9J0oT4OeLfti2JnZeZdV5zliRJkvqW3xGYH5ijJN6LZ9L66nk0SZIkSZIkjZ/X34DqTePPaijvpbRvvgLFZmu/ayi3JEkacGU3EKV+UdZ85cmGcq5fEkvguobyanQtUBJ7qMG8y1TEn2gwd5XbKuJvrCtRRCwFvKpkyDWZ2cv3Qr3hcdleu+Yr13e1Cml0eD6aWdn7AaP5nkjSqFisIt7k4oSyvy9TgDUbzC1JkupTdl35tK5VIUmSJKnXyp5HgwaeSYuIxYCVSoZcU3dOSZIkSZIkqYdeWRG/sKG8l1fE120oryRJGgI2X1Hfy8z/yMxo8/PauvNFxJzADiVDrslMdxpR3eYviT3VYN41KuJ3NZi7SlUH090joq6/Y58EoiR+fk15NFg8Lttbuc2/23xFaobno5mVvR8wmu+JJI2KeSvijzaY++mKeLsGhZIkqU9ExBLAi0uGnNutWiRJkiT1VmbeVfI8WmTmGQ2k3Yny5zXPayCnJEmSJEmS1CtlTU5uy8wHGspb1XxlrYbySpKkITCp1wVIfWh3YPmS+CndKkQj5cvAQm1i1zWYd/uK+A0N5q5yAfAwsHCb+CuAjwBHTSRJRKwBfLRi2LETyaGB5XE5GxExH7BMm/D1Lxg7F7AZsAnFhbOVWq+dj+Jz6BPAQ8DNwN8pOhf/MTPva6J2aYB5PprZHcDeJfG/NZE0IpYD1qsY1tNztCSNgGkV8fkazF3V+GWFBnNLkqR6lD3YNRW4oluFSJIkSRotrXvnnywZ8jTVmxRJkiRJkiRJAyEiXgQsWTKkkee9O5x79QZzS5KkAWfzFWkGEfES4OslQ6YxwUYP0uxk5nHdzhkRKwGvqxh2UTdqmZ3MfDYijgAOLhn2tYi4OTNPHU+OiFgU+B0wT8mwKzPzgvHMr8HmcdnWykC0iV0PEBHLA/sBuwGLlMy1YOtnBYomLXsB0yLiHOBo4DeZWbXAVhp6no9mlpl3AUf2IPX7aH/+e16vz9GSNOyeqIgvDNzWUO4lKuI2X5Ekqf+tUxK7PjOfaReMiNWBLYCNgJdSNPGfAswNPAU8CNwCXEXRWPz0zHywnrIlSZIkDYGvUHyXaOc4v0NIkiRJkiRpiKxREb+xwdz3AM8Ck9vEl28wtyRJGnBz9LoAqV9ExFrAmcCiJcN+mJlNLeKRuu3LtP8i+bw/dqOQEkdQfOltZx7g1xHx8YgY09+01sPyFwKrlAybDnx0LPNKEzQIx2W7Y+Y54K6I+CrFhbC9KG+80s6cwObAicDVEbHduKqUNFGDcD7qmohYkqKpVJlrMvPObtQjSSPs7or4ck0kjYjJwDIVw7whK0lS/1u7JHbtC/8hIiZHxB4RcUUrfiTwTmB9YClgPoprWQtQfBbYlOJ68s+BeyLi9xGxdb3/CZIkSZIGSUTMERFfAj5eMuxJiuYskiRJkiRJ0rB4cUX8pqYSZ2ZS/qzhQhExpan8kiRpsNl8RSMvIhaOiAOBS4CVSobeCPxnd6qSmhUROwO7VAy7MTP/0o162snMR4CdKTqOtjMXcDhwUUTsHBGTyuaMiKUi4jDgUsp3FQL4WmaeP5aapfEalOMSWLnNvz9JcVx9kuqGDZ1aHTg5Io6PiPE0cpE0DgN0PuqKiAjgexQ7mpc5vgvlSNKou6Uivn5Dedei+jPuQg3lliRJ9Wl3XQte8GBXqyHwtcAxwDrjyDUJeBNwWkRcFBGvGccckiRJkgZYRGwMnAd8umLof2bmP7tQkiRJkiRJktQtL6qI39Vw/qoNNZduOL8kSRpQpQvUpUHW2pV4UeD+zJzWWjQ5L8VimJcALwc2B7Zr/XuZ+4AdMvPxBkuWuiIi1gN+2sHQbzVdSycy87yIeB/wE8r/bq0PnAA8GBHnAVcADwBPA4tRfDHeGFiXzpqP/RQ4YPyVS50bsONylTb/vmDrpwm7AutHxHaZeV1DOSQxcOejbvkSsH3FmKcoGrRIkpr1N2AaMGebeFOLmrfoYMx8DeWWJEn1WbYkdif8+97S14G9a8y7IXBuRHwL2D8zp9Y4tyRJkqQui4glgCcz84nW/59McX1wWWBViuuU21E0da5ydGZ+p6laJUmSJEmSpB5ZriJ+d8P5/1URd3NgSZI0WzZf0TBbAbgBoOi7Mm7XADtm5vV1FCX1UkS8GjiF6kVhtwM/aL6izmTmf0fEXcBxlD8gD0XTpbe0fsZjGnBwZn5hnK+XxmQAj8t2zVeatjJwQURsmZmX96gGaagN4PmocRFxKLB/B0OPysx7m65HkkZdZj4ZEVdRNNWcnS0iYpnMrHtXjF06GFPV2FeSJPVQq0F/2c5Vd0XE3BQNvt/cQAlzAB8HNoqIHRv4vCJJkiSpew4H3jnB59GmAwcDPpsiSZIkSZKkYVS19uuBhvM/XhFfuOH8kiRpQM3R6wKkPvY48DnglTZe0TCIiPcBZ1E0J6nyscx8quGSxiQzzwLWpHiI5emG0lwLbGrjFXXLgB6XY22+8jjwB4odgz8BfAj4GHAo8DNauwp3aBHgjIhYY4w1SKowoOejxkTElIj4FfCZDobfSfG9QZLUHb8viU0CPlhnsojYFNigg6FVzcskSVJvLQlMLok/CvyKZhqvzGhD4M8R8eKG80iSJEnqXxcBr87Mz2dm9roYSZIkSZIkqQELVMQfbTh/1bqz+RvOL0mSBtSkXhcg9akEjga+n5lNNXmQuiIiFga+Beze4Ut+mJm/brCkccvMR4BPRMRZFA/C17mz+OPAJzLzghrnlGZrUI/LiJgL6HRhyLkUDVdOy8ypFfO+nGLn390pXwQDRWOI30TEBq1zgqQJGNTzUZMi4tXAscCqHQyfBrwzMx9rtipJ0gyOBw4siX8qIo7NzFsnmigi5gG+3eFwr7NKktTflqmIfxzYpmLMPcCZwE2t//0sxQNZywMvAzaiswe0VgFOjYhXZ+YTHYyXJEmSNDz+QdHU//JeFyJJkiRJkiQ1qGq9V9PPXletB52r4fySJGlAzdHrAqQ+FcB+wG0RcXxErNjbcqTxiYg3A3+n8wXV5wIfba6iiYmI9SLiDOBk6m28AkVX1dMi4uxWIwipEQN+XK5E9efHe4G3ZeammfnbqsYrAJn5t8z8ALAaxX9vlZdSNHaRNAEDfj6qXUTMFxGHAefTWeMVgI9l5jkNliVJeoHMvBY4q2TIFOBHEVHV1K9U6/XHAa/o8CVPTSSfJElq3JSKeFnjlVOA1wDLZOa7MvOgzDwqM7+XmYdn5r6Z+QZgceAdFN+1q7yMYhMASZIkSaNlNeBU4JaIeG9E+PymJEmSJEmShtE8FfHKdSYTVPU834SeL5QkScPLm3dSuQB2Ba6LiA/2uhipUxGxQkT8BvgdsGyHL7sUeEtmVnX37LqImCsivgRcDGzZcLrNgMsj4iAfclGdhuS4XKUifimwbmaeOJ7JM/Nm4PXAVzoY/oGIeM148kijbkjOR7WKiO2Ba4BP0fn35AMz86jmqpIklTi4Ir458NuImG88k0fESsD/AjuP4WVPjieXJEnqmqoHu2bnTmCzzNwuMy/MzCwbnJlPZ+YvgLWBL3Yw/7sjYrNx1CVJkiRp8L0I+DHw54hYqtfFSJIkSZIkSTWr2nD72YbzP1MRj4bzS5KkAeWicqkzcwPfj4iv9roQqUxEzBsRB1EsHt5+DC89Bdg8Mx9uprLxi4iFgNOBTwOTupR2EnAI8LvxLtaTnjdkx2VZ85WLgS0y818TSZCZ0zLz08DXOxh+yERySaNmyM5HtYiI1SLiVOA3wAodvuxZYI/M/EJzlUmSymTmucCvKoZtA1waETtFREc3SiNi4Yj4DHAVsMkYy7L5iiRJ/W2szVfOo2gyfM5YE7Wub/0XcEAHw/1uKUmSJI2211Jcx1y914VIkiRJkiRJNZpcFszM5xrOX7X+rOnmL5IkaUB1axG71Av3AO+b4f/PA0wBFgCWB9Zs/Swwhjk/GRF3ZeY3aqtSqklEvA34Kp0vHAaYBnwe+HxmTm+ksAmIiCnAn4B1OhiewNkUu5OfC9wB3A9MBRYFFgfWBTYGtgOW6WDONwG/joht+vH9Uf8bxuOSosnKCz0B7JaZj9aY51MUzV7KGkRsGRFrZOa1NeaVhtKQno/GrdXc7SBgbyou7r/AHcCumXl+I4VJksZiL2BTYOmSMWsAJwHXRcQfgLOAG4AHgIeB+YElgfWBLYG3Ulw7aufuknw2X5Ekqb+NpfnKtcCbJ9qENDO/HBGbAVuVDHttRGyYmbO75iZJkiSpP30XOLP1v+fg/55HWwRYHViL4p5cp7vnvgg4pfXd4P6aa5UkSZIkSZJ6obS5SkRMargBi81XJEnSuNh8RUMrMx8DflI2JiLmoNjJeCfgncBiHUz91Yi4MDMvnHCRUg0iYm3gm8DrxvjSm4H3tHYM7zutncmPpbPGKz8HvpiZf28Tv6v18zfg2IiYDOwKHAisWjH3GykWnv9XJ3VLMLzHZWZ+k+K/qxu5MiL2BbalvDHCO4HPdqMmaRAN6/lovFqf/98PHEqx2H4sTgD2yMwHay9MkjRmmXl/ROxI0YSzajH16q2fj08g5ZkU3yt3bxN/bAJzS5Kk5s3d4bhngO0m2nhlBp8E3kCxILOdXZl9w2NJkiRJfah1/6z0HlpELA3sALwd2KyDaV8CHAdsM9H6JEmSJEmSpD5Q1dxkbioatExQ1bppN1uTJEmzVfagnzT0MnN6Zp6TmR+juIn9eeCpipfNAXy7tXBT6pmIWDwijgEuZ2wLqqcDRwKv6PMF1f9B8SBKmYeBnTPznSWNV2aRmc9m5nEUjV2O6eAlB0TEWBetawSNwHHZVZl5M/D9imFv7EYt0qDxfDSriNgY+AvFeWUsjVfuBnbJzF1svCJJ/SUzLwJ2Bp5uONX1FE3/VigZc3vDNUiSpO74XmbeVNdkmXk1cHzFsO3ryidJkiSpP2Tm3Zn5ncx8PcW9uk4aLm4dEW9puDRJkiRJkiSpG6qe6et0A5Xxmr8i/kjD+SVJ0oCyeYTUkpmPZuZBFDsQPlQx/JWAN7vVExExZ0TsA9wA7MHYzuWXAxtl5t6Z+XgjBdYgIhYCPlcx7DHg9Zl50njzZOaTmbkn8OmqkoBDxptHw28Ujsseqlqcsl5EzNuVSqQB4PloVhGxXET8nGIHwvXG8NLpwHeANTLzhEaKkyRNWGaeQrEb7H0NpbgB2CIz76Vo3NvOLQ3llyRJ9ZjawZhpwJcbyP3divhKEbF0A3klSZIk9YHM/DOwCfDfHQz/fMPlSJIkSZIkSd1Q1dyk6eYrUyriNl+RJEmzZfMV6QUy83zgjRQP2Zb5QBfKkWYSERsAfwG+CSw8hpfeD+wJrJ+ZlzRRW832AJYoiSfwtsy8so5kmfkV4MiKYa+LiE3qyKfhMkLHZa9cBDxaEp8TWLlLtUh9zfPRzCJijoj4GHAt8I4xvvx8YIPM/EhmPlx/dZKkOmXmn4B1gVNrnvok4FWZeUdETAGWKxl7a825JUlSvZ7pYMxlmfmvuhNn5rnATRXDxtIsVJIkSdKAycxngd2B31QMfUVEvLILJUmSJEmSJElNeqgiPpZn3cejqvnKPQ3nlyRJA8rmK9JsZOalwDEVw7aOiPm7UY8UEZMj4vPABRQLyjo1FfgGsGpmHpOZ0xspsH7vqYifmJmn15zzAODeijG71JxTA2wEj8ueyMzngIsrhi3fjVqkfuX5aFYRsRJwDnAE1RfPZ3QzsGtmbpyZlzVSnCSpEZl5Z2a+CdiO4m/iRFwKbJOZO2fm840A1wSi5DW3TDCnJElq1lMdjDm7wfxVc6/UYG5JkiRJfSAzE9gHeLJi6M5dKEeSJEmSJElq0gMV8aUbzl+2IfgzmXl/w/klSdKAsvmK1N7ngbIFqJNwJ0J1QUQsR7F4+LPAnGN46YnAGpn5n5n5cCPFNSAi1gDWqBh2YN15M/Nx4EsVw7aoO68G06gdl32gqjHSWBorSEPF89GsImIH4Epg4zG87BFgP4r35JeNFCZJ6orMPCUzXwusDRxK0chvasXLpgGXAYcB62bm+pn5hxeMWavk9dMpGnhJkqT+1cmDU5c2mP+iiviLGswtSZIkqU9k5u3AjyuGbdCNWiRJkiRJkqQG3VERb7r5Stn8VbVJkqQRNqnXBUj9KjPvjYhLKb+hvR5wbpdK0giKiFcBvweWGsPLLgI+kZkXNlNV4zasiF+dmf9oKPdJwOEl8TUiYsnMrGoEoSE2osdlr91XEZ/clSqkPuP5aFYRcSBwCBAdvuRZ4DvAIZlZ1WFdkjRAMvMq4CrgsxExF7AisAKwMDAPRUOWx4DbgBsz8+mKKdcviV2dmU9MuGhJktSkTq7pNrmz1Y0V8QUazC1JkiSpv5wC7FUSdzMwSZIkSZIkDbpbK+JNN18pe77++oZzS5KkAWbzFancGZQ3X1myW4Vo9ETE5sBv6fyh61uB/TPzl81V1RXrVMT/2FTizLw9Iq4F1igZ9mI6e1BfQ2iEj8teq1oI+2RXqpD6iOejmUVEAEcCe47hZScDn8xML6BL0pDLzKkUN0wncs4vuz500QTmlSRJ3XEvkJQ362yyKeeDFfF5G8wtSZIkqb+cDTxH+2c3F46IyZn5bBdrkiRJkiRJkup0U0V81aYSR8SylN+D99lxSZLUls1X1LdauxJ/uGTIdZl5ZsNl3F4RX6Th/BpREbExxYLg+ToY/gzwJeCwzHyq0cK6o6y7KMA/Gs5/DeXNVxZvOL/61Igfl71Wddw93JUqpD7h+Wi2jqDzxivXA3tnZmMN3SRJwyUi5gdeXjLE5iuSJPW5zJwaEXcCLyoZVtUAeCKqvpO7qFKSJEnqkta9trKNgY7NzEebyp+ZT0fE/ZTv7rsIbgwkSZIkSZKkwfW3injZ83gT9dKK+FUN5pYkSQPO5ivqZ3MA3y6J/wFouvnKfRVxjyHVLiJWAn5DZwuqzwM+kJnD1HVz4Yp41XE5UVXzL9ZwfvUhj8ueW7IifmtXqpD6gOejWUXEx4B9Ohg6DTgM+FxmNrmgTpI0fDYFJpfEbb4iSdJguI7y5iuLNpi7qpn/4w3mliRJkjSz7YD9S+J/AS5uuIb7KG++4jNpkiRJkiRJGliZ+XBE3AYs32ZIk81X1qyIX9JgbkmSNOC8Sae+1drlYxowZ5sh7T5816nqYdcnu1CDRkhETAJOoLrBxzTgYOCLmTm96bq6rOpvU9MPoT9YEX+u4fzqMx6XEBGvpv2DX89k5mkNl7B+SewZ4LaG80t9wfPRrCJiA+BrHQy9DXhHZl7QcEmSpOG0ZUns1sy8tmuVSJKkibiO8r/rTTZfqZr7zgZzS5IkSZrZExXx5Wm++YrPpEmSJEmSJGnYXUL79Z8LRcQqmXljA3k3LIk9Cvi8nyRJasvmK+p3d9F+F8IVI2KOhheULlERv7/B3BpNnwZeWTHmMeBtmXl6F+rphaoHSKoWnE/UghXxxxrOr/7jcQl7AO9pE5seEfNn5tNNJI6IlwLLlAy5MjOfbSK31Ic8H80gIiYDP6H6e+35wI6ZeV/jRUmSGhcR89K+Ue/UzJzaQNqdSmInNZBPkiQ142LgoyXxNYGmmgxX7az1z4bySpIkSZrVvyriK3ehhrJn0p6lWAQiSZIkSZIkDbJzgZ1L4lsDRzaQ9zUlsT9l5rQGckqSpCExR68LkCrcXBKbD1ij4fxli72hvD5pTCJiKWD/imGPAlsN+YLqqqZGyzacv6rp0q0N51cf8bj8t7Lf+zmAdRrM/baK+J8azC31Dc9Hs/Vhqr8PnEPxnth4RZKGx58pmo3N7ueYupNFxAbAiiVDTqw7pyRJasy5FfHXNZh7o4r4pQ3mliRJkjSzque9qjZDqMPSJbFbG96MTJIkSZIkSeqGsyriW9edMCJWAVYpGfLHunNKkqThYvMV9bu/VsQ3aDh/1YO2VzWcX6NlL2CBkvjTwNaZeWGX6umVmyrimzacf9WS2LNU16fh4nFZqPp7vE0TSSNiMrBnxbCTm8gt9SHPRzOIiDmAT1YMuwDYNjOf6EJJkqTuebwk9uIG8v1HSexO4KIGckqSpAZk5q2UL7LcNCLmqTtvREyi/Lr2TZl5V915JUmSJLV1ZUW80efRIuKVlN/383k0SZIkSZIkDbzMvBr4Z8mQzSNi4ZrT7lhWEvCbmvNJkqQhY/MV9buqxaPbNZU4IuYHtiwZ8gjw96bya7S0Ggx8sGLYPiOyoLrqIZLNm3gAHiAilgTWLRlyRWY+3URu9R+Py5lcXBF/T0TM2UDe9wHLlsRvpmiuIA01z0eztS2wYkn8PmCXzHyyO+VIkrrojpJY2fe5MYuIJYB3lAz5WWZmnTklSVLj/qckthCwewM53wIsWRL/XQM5JUmSJLWRmQ8CN5QMWT4iXt5gCdtXxM9vMLckSZIkSZLUTWX36OcF3l1XoogI4EMlQ87LzDvryidJkoaTzVfU704HppfEt46IhRrK/TGgrMHDaZlZVps0FjsAy5TET8jM73ermB47j/Ljfgrw4YZyvxWIkvgfGsqr/uRx2dK6wPTXkiErAB+oM2dELA18pWLYd13sqhHh+WhWH6mIv9eL45I0tK4riS0eEevXmOsgihu8s/Ms8O0ac0mSpO74VUV83waaDO9ZEf9FzfkkSZIkVTutIr5rE0lbz7ntUTHslCZyS5IkSZIkST3w44r4Pq2NSuuwE7BqSfyHNeWRJElDzOYr6muZ+QBwdsmQ+SiapNQqIpYFDqgYdnzdeTXSdi6JTQX261YhvZaZD1E0YCmzf0QsWGfeiJgfOLBi2C/rzKm+53E5s6rf/69ExEvqSNTqOPw9YOGSYQ8Cx9SRTxoAno9m0PoM8IaSIWdk5qndqkeS1HUXVsTLdq7oWERsRPkiiF/a6EuSpMGTmZcAV5QMWQPYv658EbE9sEXJkMsy8+K68kmSJEnq2AkV8T0b2hDsIGCJkvgVmfmPBvJKkiRJkiRJXZeZ1wLnlAxZmepmxZUiYj7KN/99ENeESZKkDth8RYPgBxXx/SLipXUli4gpwMnAAiXDbgR+P4Y5fxIRWfJzywTL1gBr7aL5xpIhP8zMW7pUzrhExHsrfsczIlYcw5RVnU2XBX407oJn76vAMiXx/83Ma2rOqT7lcTlb3weeLokvDJwaEctNsO4AjgDeXDH0y5n56ERySYPA89FsvQEo63D+2QkVLEmqVUQcXPV3YIxTngc8UhJ/T0SsNYGSaX2m/QUwqc2Q6RTfISVJUoMa+BzxvMMq4gdHxKvGOfe/tRZqfrNi2BcnmkeSJEkaFXV+R8jM84DrSoYsDHxtwkXPICLeBexbMeyIOnNKkiRJkiRJnerhPfpDI2Llcc79vKMpGrm089XMLFsPI0mSBNh8RYPhROCfJfH5gd9FxFITTRQRi1E0XlmvYuihmTl9ovmkltdQPLTRznHdKqSP/By4rWLMWyPiK61GDRMSEYcCH6kY9oWJ5tFA8bh8gcy8H/h2xbDVgL9ERFmjiLYiYlGKv/v7VAy9Gh860+jwfDSrbUti17d2MZckDanMnAr8qmTIXMAvxrsrbUQsD5wJLF8y7DuZedV45pckSX3hBOCvJfHJwB8m0oAlIualuN+0QsmwizPzf8abQ5IkSdKEVS36+GBEfLyORBGxK8UmQ2XPuNwAHF9HPkmSJEmSJKlfZOapwMUlQ6YAJ0XEIuOZPyI+B7ynZMhdwLfGM7ckSRo97XZvlfpGZj4XEQcB/10ybDXgoojYLTMvHE+eiNgcOBZYrmLohcBPx5NDamPjkthTwOoRsVq3inmBOzPzjG4nzcypEfEZ4GcVQ/cDXhIRH8rMh8eaJyKWAb4PvKli6ImZ+aexzq+B5nE5e18A3k75QtRlgNMj4lSKnX3PrGpYFhHLAu+n2OVr0YoapgLvzcxnO65aGmyej2ZV9p7cFhHv7VYhs3FOZt7cw/ySNCqOAD5A+8bSLwP+FBE7ZuYtnU4aEVtSNDZbumTYfcBnO51TkiT1n8ycFhF7ABfQfuHjYsD/tq49lzV+m0VELAf8BNikZNhzwH+MZV5JkiRJtTsO+BSwRsmYwyNiJWD/8eyMGxELAN8APtTB8H28Dy5JkiRJkqQhtTdwEe2f+Vub4h79DplZtZk38O9NUY4APlwx9MDMfLLjSiVJ0kiz+YoGQmb+PCI+AGxeMmxF4PyIOAE4EjgvM7Ns3oiYC9gK+ASwWQelPALsXjWvNEZrl8Tmpdj5pldOB3rS5CEz/zsidgJ2qhi6M/DGiDgK+F4nC+siYhVgL4pmDwtWDL+7NVajxeNyNjLz0Yh4B3A2MFfF8G1bPw9FxHnANcCdwJMUn0EXAVYC1qd4v9tdRHuhT2TmZeMoXxpUno9mEBHzAauUDNmy9dMr7wBsvmku2O4AACAASURBVCJJDcvMayLixxQNWNpZB7g6Ig4DjszMB9sNjIh1gf0pGg1W2TMzHxpTwZIkqe9k5kURcSjlTdUWBH4ZEXsBn6NouPlcu8ERsRSwO3AQxc5cZQ7JzL+OsWxJkiRJNWptCPYRivvf7RozAuwD7BQRXwN+lpkPVM0dEStQNFzcg+LeeJWjMvMPHYyTJEmSJEmSBk5m/iUivgV8vGTYusBVEXEw8IPMfHx2gyJiEvA2ivv4Zc+VA5ySmT8cR8mSJGlE2XxFg+R9wBXAoiVjAtil9XNfRFwAXE+x2PsJYHLr9YsB6wEbAvN0mH8aReOVf46reqm9dXpdQB97L/ASqt+jBYEDgAMi4lbgXOB24KHWz3wUx/5LgI0pGj50Yiqwa2beO+bKNeg8LtvIzAsiYjfgl8CcHbxkEeDNrZ+JOiwzj6phHmmQeD6a2SvovFmTJGm47QdsDSxXMmZ+4BDgsxFxDvAX4A7gGWAh4KXA64DVO8z5pcw8cdwVS5KkfnMQxQ73b60YtylwJvBwRJxB0XTzHuBxYHFgKYqHwF5LZ99ZTwUOHWfNkiRJkmqUmedExNeBT1YMfRHFLrpfj4i/ApdTfDd4mP+73rgosDywCcUmYp06l2LjMEmSJEmSJGmYfYZiTderSsYsBBwOHDLDM3/3AUlxf/7lwBsoX1/6vHso3+BNkiRpFjZf0cDIzNsiYlfg98BcHbxkCWD7mtJPA96XmSfXNJ8EQERMBlbtdR39KjMfi4itgVOAV3b4shVaPxM1DXh3Zp5Tw1waIB6X1TLzpIh4E/ALYOEupf1CZh7YpVxSX/B8NFtr9roASVJ/yMwHI+LtwP8Cc1cMnwxs2foZr98Cn53A6yVJUp/JzGw1Gf4FsGMHL1mYYvesibgYeHtm5gTnkSRJklSfA4C1KRZtVJmTYsOv9WrKfSmwXWZOrWk+SZIkSZIkqS9l5lMRsT1wCeWbrkGxSfdENgF+BNg6M+8Z5+slSdKIcsdwDZTMPAPYDejmDefHge0z87gu5tToWArPxaVaX3RfB/yqi2mfBnbOzF92Maf6h8dlBzLzdOAVFItQm3QfxfFo4xWNIs9Hs1q21wVIkvpHZp4P7Erz14mOpfhMOr3hPJIkqctaCxx3AY7uQro/A9tk5uNdyCVJkiSpQ5n5HEVDxnO7nPr3wGaZ+WiX80qSJEmSJEk9kZn/AjYDbmkwzSPAmzLzygZzSJKkIeVCPg2czDyJ4kP2v7qQ7nxg3cw8pQu5NJqW7nUBgyAzn8jMtwPvAe5vON11wKsz8zcN51H/8rjsUGbenpk7AG8Bbqh5+qeAI4HVW3/7pVHk+WhWvieSpJm0vrttQ9G0r27TgM8B720twJAkSUMoM5/LzL2Ad1M8hFV7CormLltm5kMNzC9JkiRpgjLzCWBL4LtdSPcU8AmKzcCe6EI+SZIkSZIkqW9k5o3AaynWbdbtauBVrY3dJEmSxszmKxpImXkhsAbwTZrZ3fifwO7Apq0P9FJTXEA8Bpl5LLAq8BWg7p1/HgU+Q9Fw6a81z63B4nE5Rpl5MrAasBXwG4pFquN1OXAAsHxm7p2ZD9ZQojSoPB/NyvdEkjSLzDwLeAXwC4rFzXW4DFg/M/9fZtY1pyRJ6mOZeRywJvV+pvgr8PrM3Cszn61pTkmSJEkNyMypmbkHRROWvzeQYhrwE2CNzDw8M6c3kEOSJEmSJEnqe5n5L2BTYD/g8RqmfBr4MsVm3K4FlSRJ4xauHdCgi4ilgY8A76BoyjBejwGnAz8G/uANbqm/RcRCwLtaPxsCMc6prgB+Cvw4M+tu6CKNpNbx+RqKbsQbUDRLWAxYFJhEsZPXE8DdwG3A9cBfgAsy845e1CxJkqThEBHrAnsDuwDzj/HlCZwJHAP8LjMn0lRQkiQNsIhYC9iX4jPFlDG+/Fngj8B3gd/byE2SJEkaPBERwLbAhyg2IZlnAtP9Hfgl8KPMvLOG8iRJkiRJkqShERGLUdyffz+wzBhffi9wPPD1zLy97tokSdLosfmKhkpErEGx0PuVFI1YXgwsAcwLzA1Mpehk+CBwJ3Azxa6Dl1Is+HbXQWkARcTiwObAq4CXActTNHuYn+LYf4ai2cO9wO3AtRTH/dl+uZYkSZKk4RMRcwObUTQFXAf4/+zdd5jtd1Uv/vdKDiGNFAIhhARCNYIEIwEVkN4uYLBRIgkGudJU0CsK4hUBUUGvYkPKDxQhAiGAwKVIlN4RCCBNCCGkkCA9kF7W74898YYw8/3OzP7umXPOvF7Psx8Oe32+a63ZLXlyZt5zWJKDk+ydZLfMQni/meRrST6e5H1J3tXdX96EdQGA7VRV7Znkbpn9e8VtMvu7pwOS7JnksiQXZPbfnb+U2Q9UXvnvFN/cjH0BAIDpVdVemf0W3tslOSLJjZLcILP/1rhHZr8s6KLMfgHJOUnOyuz7Uk5J8h7flwIAAAAA45YCke+Q5J6Z/f38LTP7+/l9lo58J8m3Mvvlvx9N8v4kb+/uyzZ+WwBgZyV8BQAAAAAAAAAAAAAAAAAAAADYknbZ7AUAAAAAAAAAAAAAAAAAAAAAADaD8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAAAAAAAAAAAAbEnCVwAAAAAAAAAAAAAAAAAAAACALUn4CgAAAAAAAAAAAAAAAAAAAACwJQlfAQAAAAAAAAAAAAAAAAAAAAC2JOErAAAAAAAAAAAAAAAAAAAAAMCWJHwFAAAAAAAAAAAAAAAAAAAAANiShK8AAAAAAAAAAAAAAAAAAAAAAFuS8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAAAAAAAAAAAAbEnCVwAAAAAAAAAAAAAAAAAAAACALUn4CgAAAAAAAAAAAAAAAAAAAACwJQlfAQAAAAAAAAAAAAAAAAAAAAC2JOErAAAAAAAAAAAAAAAAAAAAAMCWJHwFAAAAAAAAAAAAAAAAAAAAANiShK8AAAAAAAAAAAAAAAAAAAAAAFuS8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAAAAAAAAAAAAbEnCVwAAAAAAAAAAAAAAAAAAAACALUn4CgAAAAAAAAAAAAAAAAAAAACwJQlfAQAAAAAAAAAAAAAAAAAAAAC2JOErAAAAAAAAAAAAAAAAAAAAAMCWJHwFAAAAAAAAAAAAAAAAAAAAANiShK8AAAAAAAAAAAAAAAAAAAAAAFuS8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAAAAAAAAAAAAbEnCVwAAAAAAAAAAAAAAAAAAAACALUn4CgAAAAAAAAAAAAAAAAAAAACwJQlfAQAAAAAAAAAAAAAAAAAAAAC2JOErAAAAAAAAAAAAAAAAAAAAAMCWJHwFAAAAAAAAAAAAAAAAAAAAANiShK8AAAAAAAAAAAAAAAAAAAAAAFuS8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAAAAAAAAAAAAbEnCVwAAAAAAAAAAAAAAAAAAAACALUn4CgAAAAAAAAAAAAAAAAAAAACwJQlfAQAAAAAAAAAAAAAAAAAAAAC2JOErAAAAAAAAAAAAAAAAAAAAAMCWJHwFAAAAAAAAAAAAAAAAAAAAANiShK8AAAAAAAAAAAAAAAAAAAAAAFuS8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAAAAAAAAAAAAbEnCVwAAAAAAAAAAAAAAAAAAAACALUn4CgAAAAAAAAAAAAAAAAAAAACwJQlfAQAAAAAAAAAAAAAAAAAAAAC2JOErAAAAAAAAAAAAAAAAAAAAAMCWJHwFAAAAAAAAAAAAAAAAAAAAANiShK8AAAAAAAAAAAAAAAAAAAAAAFuS8BUAAAAAAAAAAAAAAAAAAAAAYEsSvgIAAAAAAAAAAMCyquq6VfWUqnpPVX21qi6pqnOr6l1V9aSquvZm7wgAAAAAAAAA86ju3uwdAAAAAAAAAAAA2M5U1ROSPDPJ3gPHzkvypO5+/sZsBQAAAAAAAADTEr4CAAAAAAAAAADA96mqFyV55BoueW53/9qi9gEAAAAAAACARdllsxcAAAAAAAAAAABg+1FVf5DvD145J8mvJblhkmsmudHS/z/nKmd+taqevGFLAgAAAAAAAMBEqrs3ewcAAAAAAAAAAAC2A1V18ySfTnKNpbs+keTe3f1fy5w9MMm/Jjli6a6Lk9yqu7+4EbsCAAAAAAAAwBR22ewFAAAAAAAAAAAA2G48Lv8veOWiJD+zXPBKkizd/8Clc0lyzSSPXfiGAAAAAAAAADAh4SsAAAAAAAAAAABc6T5X+fOJ3X360OGl+quuctd9F7ATAAAAAAAAACyM8BUAAAAAAAAAAACudMOr/Pkjq7zm36/y5xtNuAsAAAAAAAAALJzwFQAAAAAAAAAAAJbTqzxX67gGAAAAAAAAALYLwlcAAAAAAAAAAAC40hlX+fPtVnnNUStcDwAAAAAAAADbPeErAAAAAAAAAAAAXOmtV/nzg6vqRkOHq+qwJA++yl3/soCdAAAAAAAAAGBhhK8AAAAAAAAAAABwpecluXTpz3skeX1VHbjcwaX7X59k96W7Lkny/IVvCAAAAAAAAAATEr4CAAAAAAAAAABAkqS7P5/kT65y122SfLyqHldVh1TVNZb+93FJTklyxFXOPqO7T93IfQEAAAAAAABgXtXdm70DAAAAAAAAAAAA24mqqiT/kOSX1nDZC7v70QtaCQAAAAAAAAAWZpfNXgAAAAAAAAAAAIDtR88cn+SJSS4YOf7dJL8ueAUAAAAAAACAHVV192bvAAAAAAAAAAAAwHaoqg5M8qgk/yPJLZLsm+TbST6X5C1JXtjd39i8DQEAAAAAAABgPsJXAAAAAAAAAAAAAAAAAAAAAIAtaZfNXgAAAAAAAAAAAAAAAAAAAAAAYDMIXwEAAAAAAAAAANgOVdWbqqqvdnv8Zu+10apq96o6+2qPw3eq6uDN3g0AAAAAAACAHZ/wFQAAAAAAAADYSVXVYcv80P6Vt9M3ez/YGVXVS7zvmEJVPSTJ/a5299lJXrCBOzx74PV85e3CqtpnkXt090VJnnm1u/dJ8leLnAsAAAAAAADA1iB8BQAAAAAAAAAAYDtSVfsl+ctlSn/c3Rdv0A67Jjl2FUd3T/ILC14nSV6U5EtXu+8Xqur+GzAbAAAAAAAAgJ2Y8BUAAAAAAAAAAIDty7OSHHS1+87KLIBko9w7ycGrPHvcIhdJku6+NMkzlyk9t6r2XPR8AAAAAAAAAHZewlcAAAAAAAAAAAC2E1X140l+ZZnSs7r7kg1c5fg1nL1LVR26qEWu4qVJTr3afTdK8vQNmA0AAAAAAADATkr4CgAAAAAAAAAAwHagqnZN8rz84Pd1fSXJizZwj/2SHL2WS5I8bEHr/LfuvizJHy5T+o2qOmLR8wEAAAAAAADYOQlfAQAAAAAAAAAA2D48NsmRy9z/Z9198QbucUyS3dd4zbGLWGQZL09y2tXu25bkBVVVG7QDAAAAAAAAADsR4SsAAAAAAAAAAACbrKqum+QZy5S+nuSFG7zO8eu45lZVtVxwzKS6+7Ikf7xM6SeSPHrR8wEAAAAAAADY+QhfAQAAAAAAAAAA2Hx/lGT/Ze7/y+6+YKOWqKrDk9x+nZcfN+UuA16a5Kxl7v+Tqjpwg3YAAAAAAAAAYCchfAUAAAAAAAAAACbS3cd3d61wO2yz92P7VFW3SfLIZUrfS/J3G7zOI+a49piq2nWyTVbQ3Zcm+fNlSvsl+T+Lng8AAAAAAADAzkX4CgAAAAAAAAAAwOZ6Tpb/Xq4Xdfe3NmqJpeCUYweOvCXJOQP1g5Lcc9KlVvb/JVnusTmuqu68QTsAAAAAAAAAsBMQvgIAAAAAAAAAALBJqur+Se62TOnyJH+1wevcO8nBA/WXJjlppMdQeMtkuvv8JC9Yofy3S0EyAAAAAAAAADBK+AoAAAAAAAAAAMAmqKpdkjx7hfI/d/fpG7hOkhw/UPtuktcnOXGkx89W1V6TbTTsb5Nctsz9t07yqA3aAQAAAAAAAIAdnPAVAAAAAAAAAACAzfGwJLdaofZXG7lIVe2X5OiBI6/u7guTfCDJGQPn9kryc1PutpLuPjvJ61YoP7Wq9tiIPQAAAAAAAADYsQlfAQAAAAAAAAAA2GBVtWuSp65Q/o/ufu9G7pPkmCS7D9RPSJLu7iSvGul17FRLrcLfrXD/QUkeuYF7AAAAAAAAALCDqtnfhQMAAAAAAAAAO5uqOizJl1Yof7m7D9uwZdihVdWeSW6eZP8k+yXZO8n5Sb67dDunu8/YvA1hx1NVxyZ52QrlX+vu527wPh9KcvsVymcluVF3X7F09qgk/z7Q7vIkh3b3OdNu+YOqqpJ8PsnNlimfluTmV+4NAAAAAAAAAMvZttkLAAAAAAAAAADLq6p9khye5MDMwi4qyXlJvpHkM9193iaut12oquskuUFmoSD7J9kryYWZBYOcnVnIzHbzOFXVNZLcN8ldktw2yU0yCzPZK7Odv57kP5N8OMnJST7Qm/CbdarqmkkekOTopT0PT7LryDXfTfKZJB9L8oYkb+/uSxa86kq7HJnkHpkFSdwis9fI3pl9Dd9eun0zyacye6w/nOQTm/FYL9JSKMUNMgvOufJ1dnFmgTlnJjm1uy/epN1ukuR+Se6c5JZJDk5yraX9vp3knMxeSx9O8vru/vpm7Llgv7PC/RcleflGLlJVh2fl4JUk+aerBph090eq6otJbrrC+V2THJPkL6bbcnnd3VX1siRPX6Z85evsjYveAwAAAAAAAIAdV+1k3zMCAAAAAAAAADu0qrprkgcluU9W/qH2JOkkp2X2A+Wv7O4PLtPrsCRfWuH6L3f3YXOsuimqas8kD0lytyR3yPBjdKUvJXl/kjcl+b/d/b05d7hrknesUP5Gd19nmWuuneR3kzwiyQFrGHdakucm+bvuvmiNq65ZVd04yZMze4z3nbPdd5K8Oskfd/dp8+42pqr2TfLYJI9McrN1tPhikhcneUl3nzPHHi9J8ksrlFf9vhvp8yvd/aIVrtszyYOT/HSSu2cWurKSKzILOPmXJH/f3St9Xkymqu6X5LeWdlutS5O8JckfdvdHlun5qRWu+/fufsTat1y8qrp7kretUH5td//8Bu/z7KwcBpMkt+7u73ucq+qPkjxl4JqPd/eRU+w3pqpunuTzK5Tf2N0/vRF7AAAAAAAAALBjEr4CAAAAAAAAANuBqvr5JM9Icst1tnhHkid394ev0vOw7CThK1V1SJLfyCxYYyhMYswFSV6U5E+7++x17nLXrDJ8paoqyeOSPDPz7X12ksd19xvm6LGiqjogye9nFl6y28TtL0vyj0me0t3/NXHvVNUuSZ6Q5H8nufYELS9J8qzMQmMuXsc+L8kmhK9U1bWSPCnJr2V9wTlXJDkpyf/q7q+s4/pBVXWTJC9Mco852nSSE5P8Wnd/4yq9V/oGqHd1913nmLcwVXVCkoetUD6mu1+5gbvsmuSMJAevcGTZEJWqOiLJJ0ba/0Boy6JU1ReyfPDS5UlutN7PfAAAAAAAAAB2frts9gIAAAAAAAAAsJVV1UFV9a9JXp31B68kyd2SvL+qfneazbYfVfXwJJ9O8luZL8AkSfZM8vgkn6uqx82725ClMIz/m+RvM//eN0jy+qp6flVdY+7lrqKq7pTkk5kFmEwdvJIk2zILzflkVd1xysZVdeMk70vyF5kmeCWZPQZPzWzf20/Uc6Gq6v5JvpDk97K+4JVk9n1ED0ny2aq6z1S7JUlVPSTJxzNf8EqSVJKHJjmlqn5k7sU2SVXtnuToFcpXJPm3DVwnSe6dlYNXkuRly93Z3Z9M8rmR3seud6l1ePMK9++alYNuAAAAAAAAAED4CgAAAAAAAABslqVgh1OS3HOilrsm+eOqel5V1UQ9N01V7V5Vr0ryj0n2mbj93kmeW1UvnTrMJEmq6oAk70ly/4lbPzrJv1TVXlM0q6q7Jjk5w8ELU7lekn+tqjtM0Wypz4eS/MQU/ZZxiyTvmDqIZEo186dJ3pjZ4zuFfZK8saoeOEWzqnpSklckudYU/ZYcmuQ9VXXbCXtupPtl5cfjlO7++kYuk+T4gdrlmT1/KzlxpPfDqmqjvkftLUN7bNAOAAAAAAAAAOyAhK8AAAAAAAAAwCZYCl45OclBC2j/mCTPWUDfDVNVu2UWKPGgBY86Lskrpgyrqaq9M3tubzNVz6u5e5I3VdXu8zSpqusneVWSPSbZanX2SPKaqtp/niZV9VNJ/jXJdSfZamV7Jnl1VS3quVy3pdCgE5L89gLab0vyT1X1w/M0WQpeeVaSRYRB7ZfkrVV1iwX0XrSHDNRO3rAtklTVfkmOHjjytu4+Z6D+ypERhyS5y5oXW593JrlwhdoRVXWrDdoDAAAAAAAAgB3Mts1eAAAAAAAAAAC2mqq6YZI3Jdl3gWOekMUEHmyUv0tyjw2a9fNJnpHk9yfoVUlemuTHVqh3klOSfDDJ6Um+nWT3JAdkFtZypyTXWcWcuyR5YZKHz7Hrs7O68JL3J3lrZsEGZyX5RpLzk+yV5FpJbprkh5Pce+m210i/g5I8LbPX6JpV1RGZvX/2XMXx85K8K7PH/GtJLkly7cwe4x9Pcvsku4302DvJCVV12+6+ZD07L0Al+fskv7jAGXsleV6Su67n4qp6WGbBK6vx5SQfSPLpJN9KckWSg5Mcmtlr6vorXHdAZq+FHUZV7ZnkAQNHNjR8JckxmX0GreRlQxd39+eq6pNJjhg4dlySd6xjtzXp7ouq6t1J7rPCkQdm9hoDAAAAAAAAgO9T3b3ZOwAAAAAAAADAllFV18gszOKoVRy/IMlrkrw5yceTnJlZeMRBSQ7JLJzkwUluvY5Vvtzdh63juoWrqvsneePIse9k9tj8S5JPJTk3yXczCxHYL7OAjSOT/GRmQQc3GOl3WZKjuvsTq9jvrll7kMDlSV6Q5DndfepA72skuX+Sp2c4zOBK/7O7X7zGXVJVN05yapJdBo59Islvdveqv9aq2jfJbyZ5cpJrDhz9XpKDu/u7q+291H+/JB/JLPBlyJlJnprkxO6+cKDf3kl+NclvZxbkMeR/dfdzVrHjS5L80grlVb/vRvqcmuRmK9Quy+wz41+SfDjJ2ZmF0Fya2fvi1pmFUDwi40E5SXKv7v631ex8paq61dLssYCctyT5o+5+30CvXZLcMbP3xN3WskeSd3X3Xdd4zUJV1b2ycsDKFUn2HnrNLmCfD2UWQrSc85Ncr7vPH+nxlCR/NHDkvCQHbcTXVVV/lOQpK5Q/1N0/segdAAAAAAAAANjxDH0DDQAAAAAAAAAwvSdlPHjliiR/meTQ7n54d7+yuz/X3ed396XdfWZ3f6C7n9ndR2QWpHDGohffCEtBC386cuwfktykux/Z3Sd192e7+1vdfVl3f6+7z+ruT3b3P3b3Y5LcJMkvZxbQspJtSf56mq/iB3wlyU92968OBa8kydLz+7okP5bkGavo/WdVdb117HRshr9v5F1J7rSW4JUk6e7vdPfTktw9s4Ccleyd5J5r6b3krzMevHJiksO7+yVjYQ9Lr5dnJ7ltks+M9H1yVe22+lUXaqXglZdn9t54YHc/r7s/2t3ndvcFS6+tr3b3v3X3rye5RZJ3r2LWo9ay2NJ7+O8zHLxyfpIHdff9hoJXkqS7r+ju93T33ZM8PLNQqh3ZHQZqp25w8MrhWTl4JUn+eSx4ZckrR+r7JDl61YvN52MDtdstBTgBAAAAAAAAwPcRvgIAAAAAAAAAG6Sqbpzkf48c+0aSu3f3b3b3N1fTt7vfkOSWSd4854rbg3tm9rWs5C+7+5dX+9gkSXdf0t3/kFnIwCcHjt65qm672r6rdHZmwSv/vpaLuvvy7v6DJI8bObp/kt9dx173HaidkeQB3f29dfRNknT3+5P8+sixH19Lz6q6a5LjRo69qLsf2t1rCujo7i9nFhgzFNBzYJKfXUvfDXRhkl/s7od195mruaC7v5LkPkk+OHL0AWsMnfmVDAd6nJ/kbt396jX0TJJ098sye+1+d63XbkeGwlc+sWFbzDxipP6y1TTp7tOSfGTk2Nh7dypD4Su7JLnzBu0BAAAAAAAAwA5E+AoAAAAAAAAAbJw/THLNgfo3k9y5u9+11sbdfX5mwRD/vM7dthe/MFD7cpInrbfxUijFAzMLf1jJI9fbfxmXJvmZ7j5jvQ26+3lJ/mbk2KOq6rqr7VlV25IcNXDk6fMEr1zFCUmGgkBuusZ+zx6pvyfJY9bY879191eTHD9y7KHr7b9AFyc5urtfsdYLu/uizEIxLhk4tkeSVYUSVdU1kvzeyLFj1xpGdFXd/Z4k90ty2Xp7bJaq2iXDoUND4VBT77JrkmMHjpyb5G1raHniSP0+a/mcWq/u/lKSbw0c+alF7wAAAAAAAADAjkf4CgAAAAAAAABsgKq6RZJjRo49pLs/s94Z3X3J0oyPrrfHdmDoB+NPWvoa1627T0/ytwNH7jZP/6v5i+7+yAR9npzk9IH6HhkOUbi6GybZbYXahUnWHOKxnO7uJG8eOLLvantV1T2T3H7gyEVJju/uy1fbcznd/dYkJw8cuVdVrfTYbZb/2d3/tt6Lu/vUJK8cOTYUGHJVv5jk0IH6K7r7davstaLufm9mYVY7mltl+HW/YeErSe6d5OCB+svX+H56VZIeqG/LxoUXnTJQGwqeAgAAAAAAAGCLEr4CAAAAAAAAABvj1zP89/T/ME+AwpW6++IkxyeZK4RiM1TVtiQ3GzjyxYlGvXigdnhV7T3BjO8keeYEfdLdFyR5xsix49bQ8gYDtfd194Vr6DXmrIHaWkJMHjtSf353n7aGfkP+bKC2V5IjJ5ozKyTJ0gAAIABJREFUhVd09wkT9HnZSP3Gq+zziIHa5Umesso+q/GnGX59bY9uM1I/dUO2mDl+pD72mvg+3X1Gkg+MHFvL59Q8vjRQO7KqaoP2AAAAAAAAAGAHIXwFAAAAAAAAABasqq6Z5OEDR76d5IlTzevuT2WNPzi/nbh2km0D9X2nGNLdX0jylYEjB04w5sXd/b0J+lzphCTnDNSPrKqDVtlrKFzm46tfaVXmDnKpqv2T3H/gyBVJ/s+8c67i7Rl+rI+acNY8Lsl0nxvvS3LpQP2wsQZVdUiSOw8ceXV3n762tVbW3Rcl+Zup+m2QsRCboc+lyVTVfkmOHjjy6e5ez2fBiSP121XVD62j71qdOVDbN8lqPysBAAAAAAAA2CKErwAAAAAAAADA4v2PJPsM1F/e3d+ceOZfT9xvI+w2Ur/rhLOOS/KgFW7fmKD/Syfo8d+6+9IkJ40cu/sq2304yd1WuP3VendcwXUn6HG/JNccqL+tu8+eYE6SpLuvSPKOgSOHTzVrTid19yRhHd19YZIvDhxZzfN4nyQ1UH/FmpZanROS9AL6LspQ+MqF3f3tDdrjmCS7D9TXG951UmZhSEOOXWfvtThrpD4WggMAAAAAAADAFjP026IAAAAAAAAAgGkcPVJ/ydQDu/uUqvp8kltM3XuBzhup36eq7tzd7553UHe/fd4eA87s7k8soO9rkjx+oH7bJC8fa9Ld30jyzol2GnPnCXrca6Q++jWvw2uTHLBCbYpwnim8buJ+X87KwTJ7ruL6ewzULkxy8po3GtHdX6mqjyY5aureCzIU+jFJkM4qHT9QuyLJP62naXefU1XvznBQ1sOq6qndvcjQnDNH6jdJ8v4FzgcAAAAAAABgByN8BQAAAAAAAAAW7+4DtS92978vaO5bswOFr3T3eVV1TpLrr3Ckkry6qo7u7g9u4Gpr9bYF9f1wkkuTXGOF+q0XNHddquoBSX5yglZjAS7vnGDG9+nu12QWdrM9m/pz47sDtT1Wcf3tB2of6+4L17jPar03wldWraoOz/Bz9c7uPmuOESdmOHzlxknumNnztihj4StDzwMAAAAAAAAAW9Aum70AAAAAAAAAAOzMquoGSW40cOTDCxz/gXkurqqnVVVPeDt9FWNPHqlfN8l7quqPq+ra83x9C/SxRTTt7ouSfGLgyE0WMXetquqQqvr9JK+eoNe1khw2cOTs7j593jk7oEuSnDFxzwsGarsNXVhVe2X49beQ98SSoffEdqOqdklyyMCR/9qgVR4xUj9hzv6vSXL5yJnj5pwx5qsjdeErAAAAAAAAAHwf4SsAAAAAAAAAsFhHjNRPWeDszyyw96I8fxVntiX53SRnVdU/VdXPVdW+C95rLRYZBnHqQO3gBc79b1W1e1X9UFXdp6oeXVXPqqpXVtUHq+qrSc5M8owk15xg3I8kqYH6RyeYsSM6t7t74p5D/YaegyS5+ciZT699nVX7/AJ7T2nvJLsO1C9a9AJVtWuSYweOXJhZeMq6dffXkrx95NiDqmqKz4eVXDhSP2CBswEAAAAAAADYAW3b7AUAAAAAAAAAYCd3y5H6xxc4eyioY7vU3R+sqlckOWYVx/dI8otLt8ur6mNJ3rV0e293f3txmw768ib13qOq9uru8+cdUlXbkhye5EeT/HCSGyc5bOl2UMbDOKZy2Ej9SxuxxHZos17bKxkL/jl7gbPPXWDvKe05Ul94+EqSe2f4uXp9d583wZxXJrnXQH3/JPdP8toJZi3noszChFb6nNprQXMBAAAAAAAA2EEJXwEAAAAAAACAxTpkpH7OogZ39/lVdUHGf+h/e/PYJD+S5NZruGbXJLdbuj0xyRVV9Ykk70zyjiTv7O7vTrzncjoLfE6TfG2kvkeSdYWvVNW+SR6Y5EFJ7plk9/X0mdhYqMdWDV+ZO2BnYtcfqS8yfOXrC+w9pbHP4Qs3YIfjR+rnVdXYmdXYdxVnjs2Cwle6u6vq4qz8Gbb3IuYCAAAAAAAAsOMSvgIAAAAAAAAAi3XQSP28Bc//Vnaw8JXu/k5V3SPJG5L8xDrb7JLkyKXbbya5rKo+kOSNSV7X3Z+fZNkf9J3uvmRBvZPxgIY1B6ZU1f6ZBdY8PttfKMGBI/WxMJqd1WWbvcDV7DNS/84CZ1+0wN5TGvscXujXUVX7JTl65Nijlm4b4f5Vde3u/uaC+l+YlT8P91rQTAAAAAAAAAB2ULts9gIAAAAAAAAAsJO71kh9kaEESXLxgvsvRHd/Lcmdkzw944Ejq7EtyU8leXaS/6yqU6rqN5aCR6Y0xa5DxgIaLl9Ls6p6SJIvJXlKpg9eOTXJJ+fsMRZYccGc/XdUV2z2AlczFvqzyGCR7S2IZiWbGr6S5JisI5xpgXZL8uAF9h/6bNhjgXMBAAAAAAAA2AEJXwEAAAAAAACAxRr7YffvbcgWO6DuvrS7n5bkFkn+Jsl5E7b/0STPSXJmVT27qvaZqO+iAxSuMcX8qtq1qp6X5JVJ9p17q//nu0lOSvLzSX44ySlz9ht7/2zV8JXtzSSvy3UaCzXZXoy9lmvB849fcP/1OHaBvYcezx0ylAwAAAAAAACAxRG+AgAAAAAAAACba48F958qVGTTdPdZ3f34JDdI8ktJ3pjpfnh+ryS/k+QTVXXkBP0um6DHkGuO1C9cZZ/nJXnMHHtcnOQLSU7OLBjnsUmOSrJ/dz+4u1/b3VM8FmPf29ITzGB+l47Ud1vg7L0W2HtKY59ZC/tnQVUdnuT2i+o/hztW1U0W1Hso7Ob8Bc0EAAAAAAAAYAe1bbMXAAAAAAAAAICd3EUj9X2SfG+B89cdvtLdT0vytMk2mVN3fy/JS5O8tKr2THKXJPdKco8kt05Sc7Q/LMk7quru3f2xOfosOkzngIHaJd099npLVf12kl9Z5bzLknwsyfuTfDrJZ5OcnuQr3b0RwSeref+w+caep2slOXdBsw9aUN+pjQUjLfKz4xEL7D2vhyX5wwX0HQpfuWAB8wAAAAAAAADYgQlfAQAAAAAAAIDFGgtW2SfJVxYxuKp2S7LbInpvtu6+IMlblm6pqmtnFsZy16XbesJY9k3y2qr6kaWgl/XYa53Xrdb1Bmqjr6Oqul6Sp65izmlJ/jzJid39jVXutgiref+w+c4fqS/yebrpAntPaVPCV6pq1yTHLqL3RI7LYsJXrjlQG3u9AgAAAAAAALDF7LLZCwAAAAAAAADATu7ckfqNFjj7sAX23q509ze7+5+7+wndfZsk10nyoCQvSHLWGlrdKMnvzLHK/lW1kBCFJTcbqK3m6/y9JHuPnHlhklt1999tcvBKkpwzUr/uhmzBmLHPuUU+Tz+0wN5T+vpIfVGfG/dOcvBA/d3dXYu6JbnDyH43r6ofn+7LTarqGkl2HThywZTzAAAAAAAAANjxCV8BAAAAAAAAgMUaC8S4zQJnH7HA3tu1pTCWV3f3Y7r70CRHJfmLJN9axeWPrqptc4xfZKDOLQdqpw9dWFWV5MEj/f+yux/d3RetdbEVDAUgrMaZI/Vbz9mfaYyF5CzyebrTAntPpru/lWTofbXngkYfP1I/YUFzr/TBJGeMnDl24pm7j9S/M/E8AAAAAAAAAHZwwlcAAAAAAAAAYLE+N1JfZPjKInvvULr7o939W0lumOQfRo4fmOTH5xi3kNCbqjo0yfUHjpwy0uLIJNcbqH82ye+sda8R+8x5/adG6gt5jVfV8VX1wRVuz1rEzB3cF0fqi3qetmUHCV9ZMhRSc+DUw6pqvyRHDxy5OMlJU8+9qu7uJK8eOfbQOQOvrm7ssfzyhLMAAAAAAAAA2AkIXwEAAAAAAACAxfr4SP0uVVULmv0TC+q7w+ru73X3Lyd58cjRo+YYc8c5rh1yr5H6R0fqY4EyL+ruS9ewz2rccM7rv5DkewP1H66q/eecsZyHZvZ4LXfrBczboXX3N5OcO3BkUZ9F9838AT8b6cyB2qELmHdMkt0H6m/q7m8vYO7VvWqkfp3MnsupHDxS/9KEswAAAAAAAADYCQhfAQAAAAAAAIAF6u6zMvwD9zdIcoep51bV9ZLcbeq+i1JVN6uqJ65we+gCRj4xyYUD9RvN0ft+c1w75OcGapcm+djI9QeO1E9e2zrDqmqPJLecp0d3X5HkPQNHtiX5mXlmXF1V7ZnkpwaOjAUqbVVDr7+bVtU8gUYr+aUF9Fykzw3UDqqqbRPPO36kfsLE85bV3R9KcvrIseMmHHn9kbrwFQAAAAAAAAC+j/AVAAAAAAAAAFi8t47UH7yAmQ9NsusC+i7K9ZL82Qq3Z049rLu/neT9A0euNUf7m1XV7ea4/gdU1Q2T3HfgyLu6+7sjba47Uj9rbVuNun+S3Sbo85aR+oMmmHFVxyTZc6A+FAazlb19pH7slMOq6oeS/OyUPTfAUPjKLkkOnmpQVR2e5PYDR76V5E1TzVuFk0bqR1fVPhPNGnscT5toDgAAAAAAAAA7CeErAAAAAAAAALB4rx2pP6KqrjPVsKraluQxU/XbIGcM1A6rqr0XMPNrA7VL5+z9m3Nef3VPyXCYzhtW0WPs+0QuWf06q/KEifqclOSygfp9qupHphhUVZXksQNHPtPdX5li1k5oLGTql6tqsnCRJH+SHStgKkk+M1I/dMJZjxipn9TdU7/nh7xqpL57kl+YaNb1B2oXJTl3ojkAAAAAAAAA7CSErwAAAAAAAADA4p2cZCiw4VpJfnfCeU9IcviE/TbCV7Jy+MeuSe6ygJkHDdSGgllW4yFVdcScPZIkVfVjSR45cOTiJCeuotVXR+qHrHqpEVX10CR3mqJXd5+b5C0DR3ZJ8vQpZiV5WJLbDtTHgpS2rO7+VJJPDBy5VpK/mGJWVR2b5Gen6LXBPjJSv8kUQ6pq1yTHjhw7YYpZq9XdH0ly2six4yYad9OB2ie7uyeaAwAAAAAAAMBOQvgKAAAAAAAAACxYd1+e5Pkjxx5XVXMHplTVIUmeOm+fjbb0GL1n4MhUP5SfJKmqaya5zcCRz845Ypck/1hVu83TpKr2T/LyJNsGjr2yu/9rFe3OGanfZ9WLDVgKnRl7va/Vn47Uf7aq7jHPgKo6MMmzB450NjiwYgf04pH6Q6rqV+YZUFV3TPKCeXpslu7+RpJTB44cOdGoeyc5eKD+5STvnWjWWpw0Ur9LVR06wZyhz/b3TdAfAAAAAAAAgJ2M8BUAAAAAAAAA2Bh/neRbA/Xdk7yqqvZd74Cq2jvJ65Pss94em+xNA7Wfr6qhH6hfq2OS7D9Qf/cEM340yQlVta7vz6iqayV5Q5IfGjh2RZI/X2XLsbCF36iqPVbZa1lVdYckb0uy7tfxcrr7vUn+bWh0kpdV1WHr6b8UkvOaDAdWnNzd/7me/lvIizIe8vP8qnr4eppX1QOTvDnJnuu5fjvxwYHaj0004/iR+j91d080ay1OHKlXkofNM6Cq9kxyk4EjwlcAAAAAAAAA+AHCVwAAAAAAAABgA3T3d5L8wcixWyc5uaquv9b+VXWdJCdnuh/e3wyvT7JSIMC2zMJpDp13SFXdLMlzBo68v7u/Mu+cJQ9K8qaqOmAtF1XVTTMLgLnTyNEXdvd/rKZnd38myWkDR26S5EXrCYupqj2r6ulJ3pXkOqu8bNsaxzw+yaUD9esneVdV/ehami69d96W8cd67P275XX3hUl+f+TYLkn+sapetvTYj6qqQ6rq75O8LjtuuNSV3jlQ+9GqqnmaV9V+SY4eOXbCPDPWq7tPSfKFkWPHzTnm1hn+nrj3z9kfAAAAAAAAgJ2Q8BUAAAAAAAAA2DjPTfLBkTO3T3JKVR1fVbuupmlV/XSSU5L85DLly9a24ubp7tOSnDRw5BZJ3ltVt13vjKp6QJIPJNlv4NjfrLf/Cu6b5PNV9cSxEJaqus5SiMknk4yFiHw1ye+tcZcXj9R/Mcmbq+qQ1TSrqgOq6slJTk3y1KwtUOWmawl66e7PJnn6yLEbJvlwVf15Vd1g6GBV7V5Vv57kPzIevHJCd39otbtuZd394iRvXsXRY5N8qapOqKqfqarDq2qfqrrG0vvgqKp6VFW9MbPQoEes0Of0iVbfKG8dqO2bWQjSPI5JsvtA/WNL76XNMvQZnyS3rKoj5+h/64Haad19zhy9AQAAAAAAANhJVfdKvzAKAAAAAOD/b+9OgyUryzuA/19Qgiu4YSSUsrhgUAmgRiuGDBkCEcWSGEyMuBCSElxhYqJGK5pYRktNURijiRtipQwCJaTKBXdcwKg1ooIiLqiIghabzgjDsDz5cK7GDN19t3O7753z+1X1h3mf9zzv08vpT3P/DQAA9K21dv8kG5PcewHbr0jyviTnJflGurCNG5PcNck+SQ5O8swkB465/ktJrkzypBG1H1TVnosYfSpaa/ulCx6ZFMpRSc5O8sYkX6yqW+fpuXOSw5OclOQP5hnhwiSPrKrbJvRbl+RTE3r8IsldxtRuSXL+3DmXJ9mUZKckeyR5VLr3dKd5ZkySm5Osr6rPLmDvr7TW7pwuKOV+82zdkuS96V7nLye5Ol2wyq5JHpIuGObxSdYlueOYHrckeWm692mcVyZ509x5eye5R1WdP2H+HZKcm+SP5pk/SW5N8sW5x/eSbE5379wnyUHpXus7L6DPD5PsX1XXLWBvWmvvTvKsMeUF33fz9Pl0Va1bSJ+F6mvuuV73SPLZJPstf7KJrkx3X58+pt7769SH1trFGf/a/HlVvW8Zvb+QLsRrnA1VdfJS+y9Xa23/JF+ZZ9vJVbVhif1PTfLsMeW3VdVzltIXAAAAAAAAgO2b8BUAAAAAAAAAmLLW2sHpAiTutILHXJ8uzON1SZ4yor4qw1eSpLX2r0mev8Dtm5J8Lsk3k1yb5LokW5PcPcnuSR6R5DHpQjfmszXJY6vqy/PMty6Tw1eemuS0rNz7W0meU1VvX8rFrbWjk5zR70i3szXJM5K8P91ncVwYzbZOq6pnT9rQWtslXbDHw5cz4AJtTvK4qvrqQi8QvvKrfrsn+UiShy1vsrFuTLI+3b1+7pg951XVISt0/pK11l6T5O/HlN9VVcctse++SS6ZsOXWJHtU1VVL6d+X1to304U4jXNVujknBmuN6X1Fkt8aU15fVZ9cbE8AAAAAAAAAtn+TfiUKAAAAAAAAAFgBVfWZJH+SZMsKHXFjkidV1XdWqP9Ke3GSjQvce7ckj09yUpJXJ3lzkrcleWOSDUkOzcKCV5LkefMFryzQl5L8aboAkr7dmuS4pQavJElVnZnklf2NdDs/SXJoVZ1RVbckOa/P5lX1sySHJflKn31HuDbd81hw8Ar/p6p+nORxST68Au23JHlqVX0+k0OObl6Bs/tw+oTaHy+j77Hz1D8x6+CVOfOFP/1muu/uRWmt/XbGB69clZ6/iwAAAAAAAADYfghfAQAAAAAAAIAZqKpzk6xPcnXPra9PcmRVfbbnvlNTVTclOTpdiMe0vKyq3tFXs6r6UJKjktzQV88kP0ry+Ko6dbmNquqfkrx++SPdzllJHrbN52/Z825rLkDi4CTn9N17zseTHFBVX1ih/oMwF5TzhCQnJtncU9srk/xhVX1g7t93nrC3z/uvN1V1UZJvjCnv3lr7ncX2bK3tmOSYebb952L7rpD5wleS5BlL6HvYhNqZVXXbEnoCAAAAAAAAMADCVwAAAAAAAABgRqrqgiQHJPlkTy2/muQxVfWJnvrNTFV9L8nvJ/n2Ch+1Jcmzq+p1fTeeC2D5vSSX9NDuvUkeXlUf66FXkqSqXpLkqUk29dDuy+kCMY6uqm0Dhd6f5CM9nPH/VNWmqjoqyV8m+WlPba9J8rwkh1XV5T31HLTqnJJk3yT/ke6eW4qbk7wjyX5V9flfW991wjWrMnxlznsm1I5YQr/Dkuw+oX5DkrOX0Ld3VXVxxofP/NKTW2t3XWTrwyfUTl9kLwAAAAAAAAAGRPgKAAAAAAAAAMxQVV2R5NAkT09y2RLb/DjJiUkOqqpL+5pt1qrq2+nCaU5JsnUFjvhYkv2r6rQV6J0kqaqvJHlEkhOS/GCRl29Nclq60JWnV9V1KzDfmUkemOQNSTYvYb5zkhxaVQdV1afGnFFJnpbkM8uZdZyqOjXJ3klekuQ7S2xzYZLjkuxRVW+Zm5keVdWPqur4JPdP8sJ0oVM3znPZzUnOT/KKJHtV1V+PuA/uNeH61Ry+clqSW8bUnrCEfs+ap35OVS32Hl9JZ8xTv0uSoxbarLV2zyTrx5QvTfL5MTUAAAAAAAAASPN/RQAAAAAAAABgdWit7ZDkiUn+IslhSe4xYftP04WH/He6P6q/eeUnnJ3W2gOSHJ/kmCR7LKPV5iRnJ3lrVS3pj/Fba+uSjAwambNXVX1/xHUtyWOTHJEuVOah6d7ju6YLibg63fv6pbn+561E4Mo4rbW7pwsvODTJo5LsluTeSXZK97pdl+RbSb6e5HNJPr6YMIe5z/cx6YKGHp7kPkkqyc/ThSOcn+R9VbVxGc+hJXnk3PN4VJKHJLlfutc4c8/hunSv9dfmzjy/qhYbjEMPWmt3TLJPkj2T7JrkDunuhU3pwoouq6pxASW/7PHWdN8No7ymql7R28A9a62dleQpI0qVZM+qunzKI61ZrbXnJvm3MeUXVNWbpzkPAAAAAAAAAGuL8BUAAAAAAAAAWIXmQiT2SvLAdAEdd0wXgHFtkkur6iczHG+mWmsPS3JwkkckeXCS3dMFhdwpXVDIbUm2pAvZuDLJZUkuSnJBkguqausyz1+XJYSvAP1rrZ2b5PAx5b+qqndOc57FmOe75OVV9c9THGdNa61tTHLgiNLVSR5QVTdMeSQAAAAAAAAA1pA7zHoAAAAAAAAAAOD2qvs1lcvmHvyaqro4ycWzngNYFR46obaqvz+r6rzW2oVJDhhRPq619tryy1rzaq09MqODV5LkFMErAAAAAAAAAMxnh1kPAAAAAAAAAAAAsFittfskuf+ELd+a1izL8Pox63snOXyag6xhzxuzfk2SU6Y5CAAAAAAAAABrk/AVAAAAAAAAAABgLVo/oXZZVf1oapMs3RlJvj6m9vxpDrIWtdZ2S/K0MeXXV9Wmac4DAAAAAAAAwNokfAUAAAAAAAAAAFiW1tp9W2u3THictALHjgvdSJJPr8B5vauq25K8dEz5iNbaQ6Y5zxp0QpLfGLF+RZI3TXkWAAAAAAAAANYo4SsAAAAAAAAAAMCyVNVPkmxJsuOYxxF9ntdaOyDJkRO2fLTP81ZSVX0gyYdHlFqSDVMeZ81ore2c5Lljyq+oqi3TnAcAAAAAAACAtUv4CgAAAAAAAAAA0IeNE2rrW2v79nFIa22nJP+eLpxklGuTnNPHWVP0gnThNdt6ZmvtvtMeZo04NsluI9Y3JnnPlGcBAAAAAAAAYA0TvgIAAAAAAAAAAPThoxNqLclbWms7LueA1todkrwzyaMnbHt3VY0KMlm1quq7SV47orRzkhOnPM6qN/c5+psx5ROrqqY5DwAAAAAAAABrm/AVAAAAAAAAAACgD6cnmRR6cUiS/2qt3X0pzVtreyT5YJJjJmz7RZKTl9J/FXhdkm+OWD+htbbrtIdZ5f4syT4j1t9bVZ+b9jAAAAAAAAAArG3CVwAAAAAAAAAAgGWrqu8mef88245O8tXW2vGttbstpG9r7UGttTcm+UaSw+bZ/o9VdcVC+q42VbU1yfEjSrskedGUx1m1WmstyUtHlDYn+dspjwMAAAAAAADAdqBVTfqxGQAAAAAAAAAAfl1rbV2ST03YsldVfX8608Dq0lrbJ8lFSe60gO03JrkwycYkVyb5WZKbktwlyb2SPDjJo5PsvcDjP5NkfVXdssixV5XW2ruSHLvN8nVJ9qyqn89gpFWltfbkJGePKL24qv5l2vMAAAAAAAAAsPYJXwEAAAAAAAAAWAThKzBZa+3YJO+a8rHfTfK7VXXNlM/tXWvtnkkuSbLbNqV/qKpXz2CkVaW1tjHJgdssX5TkwLUevAMAAAAAAADAbOww6wEAAAAAAAAAAIDtR1WdmuTvpnjk15Icsj0EryRJVV2b5EUjShtaa7tMe57VpLX2xNw+eKWSHC94BQAAAAAAAIClEr4CAAAAAAAAAAD0qqrekOToJNev8FFnJXlcVf1whc+Zqqo6PcmHtlneNcmGGYyzmrxqxNrbq+qCaQ8CAAAAAAAAwPZD+AoAAAAAAAAAANC7qjoryQOTnJzkpp7bfzvJE6vq6Kra1HPv1eKEJJu3WTuptXbvWQwza621JyU5aJvlq5K8ZAbjAAAAAAAAALAdEb4CAAAAAAAAAACsiKq6pqo2JHlQklcmuWQZ7W5K8qEkRybZt6o+2MOIq1ZVXZ7k5dss3y3Jy2YwzmrwqhFrL6yq66c9CAAAAAAAAADbl1ZVs54BAAAAAAAAAAAYiNbafkkek+SAJPsnuW+SXeYeOyb5RZLNSX6a5FtJLk3yP0k+XVU3zGJmAAAAAAAAAGD7JXwFAAAAAAAAAAAAAAAAAAAAABikHWY9AAAAAAAAAAAAAAAAAAAAAADALAhfAQAAAAAAAAAAAAAAAAAAAAAGSfgKAAAAAAAAAAAAAAAAAAAAADBIwlcAAAAAAAAAAAAAAAAAAAAAgEESvgIAAAAAAAAAAAAAAAAAAAAADJLwFQAAAAAAAAAAAAAAAAAAAABgkISvAAAAAAAAAAAAAAAAAAAAAACDJHwFAAAAAAAAAAAAAAAAAAAAABgk4SsAAAAAAAAAAAAAAAAAAAAAwCAJXwEAAAAAAAAAAAAAAAAAAAAABkn4CgAAAAAAAAAAAAAAAAAAAAAwSMJXAAAAAAAAAAAAAAAAAAAAAIBBEr4CAAAAAAAAAAAAAAAAAAAAAAyS8BUAAAAAAAAAAAAAAAAAAAAAYJCErwAAAAAAAAAAAAAAAAAAAAAAgyR8BQAAAAAAAAAAAADaq5g/AAADjklEQVQAAAAAAAAYJOErAAAAAAAAAAAAAAAAAAAAAMAgCV8BAAAAAAAAAAAAAAAAAAAAAAZJ+AoAAAAAAAAAAAAAAAAAAAAAMEjCVwAAAAAAAAAAAAAAAAAAAACAQRK+AgAAAAAAAAAAAAAAAAAAAAAMkvAVAAAAAAAAAAAAAAAAAAAAAGCQhK8AAAAAAAAAAAAAAAAAAAAAAIMkfAUAAAAAAAAAAAAAAAAAAAAAGCThKwAAAAAAAAAAAAAAAAAAAADAIAlfAQAAAAAAAAAAAAAAAAAAAAAGSfgKAAAAAAAAAAAAAAAAAAAAADBIwlcAAAAAAAAAAAAAAAAAAAAAgEESvgIAAAAAAAAAAAAAAAAAAAAADJLwFQAAAAAAAAAAAAAAAAAAAABgkISvAAAAAAAAAAAAAAAAAAAAAACDJHwFAAAAAAAAAAAAAAAAAAAAABgk4SsAAAAAAAAAAAAAAAAAAAAAwCAJXwEAAAAAAAAAAAAAAAAAAAAABkn4CgAAAAAAAAAAAAAAAAAAAAAwSMJXAAAAAAAAAAAAAAAAAAAAAIBBEr4CAAAAAAAAAAAAAAAAAAAAAAyS8BUAAAAAAAAAAAAAAAAAAAAAYJCErwAAAAAAAAAAAAAAAAAAAAAAgyR8BQAAAAAAAAAAAAAAAAAAAAAYJOErAAAAAAAAAAAAAAAAAAAAAMAgCV8BAAAAAAAAAAAAAAAAAAAAAAZJ+AoAAAAAAAAAAAAAAAAAAAAAMEjCVwAAAAAAAAAAAAAAAAAAAACAQRK+AgAAAAAAAAAAAAAAAAAAAAAMkvAVAAAAAAAAAAAAAAAAAAAAAGCQhK8AAAAAAAAAAAAAAAAAAAAAAIMkfAUAAAAAAAAAAAAAAAAAAAAAGCThKwAAAAAAAAAAAAAAAAAAAADAIAlfAQAAAAAAAAAAAAAAAAAAAAAGSfgKAAAAAAAAAAAAAAAAAAAAADBIwlcAAAAAAAAAAAAAAAAAAAAAgEESvgIAAAAAAAAAAAAAAAAAAAAADJLwFQAAAAAAAAAAAAAAAAAAAABgkISvAAAAAAAAAAAAAAAAAAAAAACDJHwFAAAAAAAAAAAAAAAAAAAAABgk4SsAAAAAAAAAAAAAAAAAAAAAwCAJXwEAAAAAAAAAAAAAAAAAAAAABkn4CgAAAAAAAAAAAAAAAAAAAAAwSMJXAAAAAAAAAAAAAAAAAAAAAIBB+l9dz02Qgx0yGAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 1765,
+ "width": 2223
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, axs = plt.subplots(2, 1, figsize=(9,7.), dpi=300, sharex=True)\n",
+ "fancy.plot_diffcake(axs[0], model_dpp, dsp_ticks=True, \n",
+ " no_xlabel=True, dsp_step=0.3)\n",
+ "fancy.plot_jcpds(axs[0], model, \n",
+ " show_index=False, in_cake=True, show_legend=True,\n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'],\n",
+ " bar_alpha=0.5, bar_thick=0.5)\n",
+ "fancy.plot_diffpattern(axs[1], model, dsp_ticks=True, dsp_step=0.3)\n",
+ "fancy.plot_jcpds(axs[1], model, bar_position=0.1, bar_height=5, \n",
+ " show_index=True, \n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "axs[1].text(0.7,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = axs[1].transAxes, fontsize=16)\n",
+ "plt.subplots_adjust(hspace=0)\n",
+ "plt.savefig('test.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "peakpo7721",
+ "language": "python",
+ "name": "peakpo7721"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/jnb-tools/3_2D_from_dpp/cake_from_dpp.py b/jnb-tools/3_2D_from_dpp/cake_from_dpp.py
new file mode 100644
index 0000000..f09b80f
--- /dev/null
+++ b/jnb-tools/3_2D_from_dpp/cake_from_dpp.py
@@ -0,0 +1,208 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# # Plot Caked Patterns from dpp files from PeakPo
+
+# - Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder.
+# - In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`.
+# - `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information.
+
+# This notebook takes advantage of the `PeakPo` modules and other local modules. They can be found in `../local_modules` folder.
+# The cell below defined the search path for this local module folder.
+
+# In[1]:
+
+
+import sys
+sys.path.append('../../peakpo')
+sys.path.append('../local_modules')
+
+
+# ## Check the versio of pyFAI in your conda environment
+
+# In[2]:
+
+
+import pyFAI
+pyFAI.version
+
+
+# Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book.
+
+# ## Read dpp
+
+# In[3]:
+
+
+import dill
+import numpy as np
+
+
+# Change the following two cells for your own dpp file
+
+# Data files should be in the `./data` folder. You need: `dpp`, `chi`, and `tif`.
+
+# In[4]:
+
+
+get_ipython().run_line_magic('ls', '../data/hStv/*.dpp')
+
+
+# In[5]:
+
+
+filen_dpp = '../data/hStv/hSiO2_404_009.dpp'
+
+
+# In[6]:
+
+
+with open(filen_dpp, 'rb') as f:
+ model_dpp = dill.load(f)
+
+
+# The cells below show how to look into the data structure of the `model_dpp` and get values from it.
+
+# ## Setup a new PeakPo model and assign info from dpp
+
+# In[7]:
+
+
+from model import PeakPoModel
+model = PeakPoModel()
+
+
+# Make sure to reset the chi folder location using the `new_chi_path` option.
+
+# In[8]:
+
+
+model.set_from(model_dpp, new_chi_path='../data/hStv')
+
+
+# ## Make XRD plot
+
+# In[9]:
+
+
+import matplotlib.pyplot as plt
+get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
+get_ipython().run_line_magic('matplotlib', 'inline')
+
+
+# ## Let's make some plots
+
+# In the plot below, we plot diffraction pattern in $2\theta$ scale to prevent any distortion in the diffraction pattern. We just plot tickmarks in d-spacing scale.
+
+# In[10]:
+
+
+import fancy_plots as fancy
+
+
+# In[11]:
+
+
+f, ax = plt.subplots(figsize=(9,3.5), dpi=300)
+fancy.plot_diffpattern(ax, model, dsp_ticks=True, dsp_step=0.3)
+fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5,
+ show_index=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+ax.text(0.70,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = ax.transAxes, fontsize=16)
+plt.savefig('test.pdf', bbox_inches='tight')
+
+
+# ## Can I add cake to the diffraction pattern?
+
+# In[12]:
+
+
+model_dpp.__dict__
+
+
+# In[13]:
+
+
+#model_dpp.__dict__['diff_img'].__dict__
+
+
+# In[14]:
+
+
+intensity_cake = model_dpp.__dict__['diff_img'].__dict__['intensity_cake']
+tth_cake = model_dpp.__dict__['diff_img'].__dict__['tth_cake']
+chi_cake = model_dpp.__dict__['diff_img'].__dict__['chi_cake']
+intensity_cake.shape
+
+
+# In[15]:
+
+
+print(tth_cake)
+
+
+# In[16]:
+
+
+plt.imshow(intensity_cake, origin="lower",
+ extent=[tth_cake.min(), tth_cake.max(),
+ chi_cake.min(), chi_cake.max()],
+ aspect="auto", cmap="gray_r", clim=(1.e2, 7.e3))
+#plt.xlim(0,20)
+
+
+# ## Modify plot_diffpattern function to plot cake
+
+# In[17]:
+
+
+from xrd_unitconv import *
+
+
+# In[18]:
+
+
+f, ax = plt.subplots(figsize=(9,3.5), dpi=300)
+fancy.plot_diffcake(ax, model_dpp, dsp_ticks=True, dsp_step=0.3)
+fancy.plot_jcpds(ax, model,
+ show_index=False, in_cake=True, show_legend=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'],
+ bar_alpha=0.5, bar_thick=0.5)
+#print(ax.axis())
+#pressure = model.get_saved_pressure()
+#temperature = model.get_saved_temperature()
+#ax.text(0.70,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+# transform = ax.transAxes, fontsize=16)
+#plt.savefig('test.pdf', bbox_inches='tight')
+
+
+# In[19]:
+
+
+f, axs = plt.subplots(2, 1, figsize=(9,7.), dpi=300, sharex=True)
+fancy.plot_diffcake(axs[0], model_dpp, dsp_ticks=True,
+ no_xlabel=True, dsp_step=0.3)
+fancy.plot_jcpds(axs[0], model,
+ show_index=False, in_cake=True, show_legend=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'],
+ bar_alpha=0.5, bar_thick=0.5)
+fancy.plot_diffpattern(axs[1], model, dsp_ticks=True, dsp_step=0.3)
+fancy.plot_jcpds(axs[1], model, bar_position=0.1, bar_height=5,
+ show_index=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+axs[1].text(0.7,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = axs[1].transAxes, fontsize=16)
+plt.subplots_adjust(hspace=0)
+plt.savefig('test.pdf', bbox_inches='tight')
+
+
+# In[ ]:
+
+
+
+
diff --git a/jnb-tools/3_2D_from_dpp/peakpo_plots.py b/jnb-tools/3_2D_from_dpp/peakpo_plots.py
new file mode 100644
index 0000000..abc2a60
--- /dev/null
+++ b/jnb-tools/3_2D_from_dpp/peakpo_plots.py
@@ -0,0 +1,537 @@
+import os
+import time
+import datetime
+import numpy as np
+import numpy.ma as ma
+from matplotlib.widgets import MultiCursor
+import matplotlib.transforms as transforms
+import matplotlib.patches as patches
+from PyQt5 import QtWidgets
+from PyQt5 import QtCore
+from ds_jcpds import convert_tth
+
+"""
+def get_cake_range(self):
+ if self.widget.checkBox_ShowCake.isChecked():
+ return self.widget.mpl.canvas.ax_cake.get_xlim(),\
+ self.widget.mpl.canvas.ax_cake.get_ylim()
+ else:
+ return None, None
+
+def _read_azilist(self):
+ n_row = self.widget.tableWidget_DiffImgAzi.rowCount()
+ if n_row == 0:
+ return None, None, None
+ azi_list = []
+ tth_list = []
+ note_list = []
+ for i in range(n_row):
+ azi_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 2).text())
+ azi_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 4).text())
+ tth_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 1).text())
+ tth_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 3).text())
+ note_i = self.widget.tableWidget_DiffImgAzi.item(i, 0).text()
+ tth_list.append([tth_min, tth_max])
+ azi_list.append([azi_min, azi_max])
+ note_list.append(note_i)
+ return tth_list, azi_list, note_list
+
+def zoom_out_graph(self):
+ if not self.model.base_ptn_exist():
+ return
+ data_limits = self._get_data_limits()
+ self.update(limits=data_limits,
+ cake_ylimits=(-180, 180))
+
+def update_to_gsas_style(self):
+ if not self.model.base_ptn_exist():
+ return
+ data_limits = self._get_data_limits(y_margin=0.10)
+ self.update(limits=data_limits, gsas_style=True)
+
+def _get_data_limits(self, y_margin=0.):
+ if self.widget.checkBox_BgSub.isChecked():
+ x, y = self.model.base_ptn.get_bgsub()
+ else:
+ x, y = self.model.base_ptn.get_raw()
+ return (x.min(), x.max(),
+ y.min() - (y.max() - y.min()) * y_margin,
+ y.max() + (y.max() - y.min()) * y_margin)
+"""
+
+def update(self, limits=None, gsas_style=False, cake_ylimits=None):
+ """Updates the graph"""
+ t_start = time.time()
+ self.widget.setCursor(QtCore.Qt.WaitCursor)
+ if limits is None:
+ limits = self.widget.mpl.canvas.ax_pattern.axis()
+ if cake_ylimits is None:
+ c_limits = self.widget.mpl.canvas.ax_cake.axis()
+ cake_ylimits = c_limits[2:4]
+ if (not self.model.base_ptn_exist()) and \
+ (not self.model.jcpds_exist()):
+ return
+ if self.widget.checkBox_ShowCake.isChecked() and \
+ self.model.diff_img_exist():
+ self.widget.mpl.canvas.resize_axes(
+ self.widget.horizontalSlider_CakeAxisSize.value())
+ self._plot_cake()
+ else:
+ self.widget.mpl.canvas.resize_axes(1)
+ self._set_nightday_view()
+ if self.model.base_ptn_exist():
+ if self.widget.checkBox_ShortPlotTitle.isChecked():
+ title = os.path.basename(self.model.base_ptn.fname)
+ else:
+ title = self.model.base_ptn.fname
+ self.widget.mpl.canvas.fig.suptitle(
+ title, color=self.obj_color)
+ self._plot_diffpattern(gsas_style)
+ if self.model.waterfall_exist():
+ self._plot_waterfallpatterns()
+ # if self.model.jcpds_exist():
+ # self._plot_jcpds(limits)
+ if self.model.ucfit_exist():
+ self._plot_ucfit()
+ if (self.widget.tabWidget.currentIndex() == 8):
+ if gsas_style:
+ self._plot_peakfit_in_gsas_style()
+ else:
+ self._plot_peakfit()
+ self.widget.mpl.canvas.ax_pattern.set_xlim(limits[0], limits[1])
+ if not self.widget.checkBox_AutoY.isChecked():
+ self.widget.mpl.canvas.ax_pattern.set_ylim(limits[2], limits[3])
+ self.widget.mpl.canvas.ax_cake.set_ylim(cake_ylimits)
+ if self.model.jcpds_exist():
+ self._plot_jcpds(limits)
+ if not self.widget.checkBox_Intensity.isChecked():
+ new_low_limit = -1.1 * limits[3] * \
+ self.widget.horizontalSlider_JCPDSBarScale.value() / 100.
+ self.widget.mpl.canvas.ax_pattern.set_ylim(
+ new_low_limit, limits[3])
+ if self.widget.checkBox_ShowLargePnT.isChecked():
+ label_p_t = "{0: 5.1f} GPa\n{1: 4.0f} K".\
+ format(self.widget.doubleSpinBox_Pressure.value(),
+ self.widget.doubleSpinBox_Temperature.value())
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.98, label_p_t, horizontalalignment='left',
+ verticalalignment='top',
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ fontsize=int(
+ self.widget.comboBox_PnTFontSize.currentText()))
+ xlabel = "Two Theta (degrees), {: 6.4f} A".\
+ format(self.widget.doubleSpinBox_SetWavelength.value())
+ self.widget.mpl.canvas.ax_pattern.set_xlabel(xlabel)
+ # if I move the line below to elsewhere I cannot get ylim or axis
+ # self.widget.mpl.canvas.ax_pattern.autoscale(
+ # enable=False, axis=u'both', tight=True)
+ """Removing the lines below for the tick reduce the plot time
+ significantly. So do not turn this on.
+ x_size = limits[1] - limits[0]
+ if x_size <= 50.:
+ majortick_interval = 1
+ minortick_interval = 0.1
+ else:
+ majortick_interval = 10
+ minortick_interval = 1
+ majorLocator = MultipleLocator(majortick_interval)
+ minorLocator = MultipleLocator(minortick_interval)
+ self.widget.mpl.canvas.ax_pattern.xaxis.set_major_locator(majorLocator)
+ self.widget.mpl.canvas.ax_pattern.xaxis.set_minor_locator(minorLocator)
+ """
+ self.widget.mpl.canvas.ax_pattern.format_coord = \
+ lambda x, y: "{0:.2f},{1:.2e},{2:.3f}A,{3:.3f}A-1".\
+ format(x, y,
+ self.widget.doubleSpinBox_SetWavelength.value()
+ / 2. / np.sin(np.radians(x / 2.)),
+ 4. * np.pi / self.widget.doubleSpinBox_SetWavelength.value() *
+ np.sin(np.radians(x / 2.)))
+ self.widget.mpl.canvas.ax_cake.format_coord = \
+ lambda x, y: "{0:.2f},{1:.2e},{2:.3f}A,{3:.3f}A-1".\
+ format(x, y,
+ self.widget.doubleSpinBox_SetWavelength.value()
+ / 2. / np.sin(np.radians(x / 2.)),
+ 4. * np.pi / self.widget.doubleSpinBox_SetWavelength.value() *
+ np.sin(np.radians(x / 2.)))
+ self.widget.mpl.canvas.draw()
+ print("Plot takes {0:.2f}s at".format(time.time() - t_start),
+ str(datetime.datetime.now())[:-7])
+ self.widget.unsetCursor()
+ if self.widget.checkBox_LongCursor.isChecked():
+ self.widget.cursor = MultiCursor(
+ self.widget.mpl.canvas,
+ (self.widget.mpl.canvas.ax_pattern,
+ self.widget.mpl.canvas.ax_cake), color='r',
+ lw=float(
+ self.widget.comboBox_VertCursorThickness.
+ currentText()),
+ ls='--', useblit=False) # useblit not supported for pyqt5 yet
+ """
+ self.widget.cursor_pattern = Cursor(
+ self.widget.mpl.canvas.ax_pattern, useblit=False,
+ lw = 1, ls=':')
+ self.widget.cursor_cake = Cursor(
+ self.widget.mpl.canvas.ax_cake, useblit=False, c= 'r',
+ lw = 1, ls=':')
+ """
+
+def _plot_ucfit(self):
+ i = 0
+ for j in self.model.ucfit_lst:
+ if j.display:
+ i += 1
+ if i == 0:
+ return
+ axisrange = self.widget.mpl.canvas.ax_pattern.axis()
+ bar_scale = 1. / 100. * axisrange[3]
+ i = 0
+ for phase in self.model.ucfit_lst:
+ if phase.display:
+ phase.cal_dsp()
+ tth, inten = phase.get_tthVSint(
+ self.widget.doubleSpinBox_SetWavelength.value())
+ bar_min = np.ones(tth.shape) * axisrange[2]
+ intensity = inten
+ bar_min = np.ones(tth.shape) * axisrange[2]
+ self.widget.tableWidget_UnitCell.removeCellWidget(i, 3)
+ Item4 = QtWidgets.QTableWidgetItem(
+ "{:.3f}".format(float(phase.v)))
+ Item4.setFlags(
+ QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
+ self.widget.tableWidget_UnitCell.setItem(i, 3, Item4)
+ if self.widget.checkBox_Intensity.isChecked():
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, intensity * bar_scale,
+ colors=phase.color,
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()))
+ else:
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, 100. * bar_scale,
+ colors=phase.color,
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()))
+ i += 1
+
+def _plot_cake(self):
+ intensity_cake, tth_cake, chi_cake = self.model.diff_img.get_cake()
+ min_slider_pos = self.widget.horizontalSlider_VMin.value()
+ max_slider_pos = self.widget.horizontalSlider_VMax.value()
+ if (max_slider_pos <= min_slider_pos):
+ self.widget.horizontalSlider_VMin.setValue(1)
+ self.widget.horizontalSlider_VMax.setValue(99)
+ intensity_cake_plot = ma.masked_values(intensity_cake, 0.)
+ prefactor = self.widget.spinBox_MaxCakeScale.value() / \
+ (10. ** self.widget.horizontalSlider_MaxScaleBars.value())
+ # intensity_cake_plot.max() / \
+ climits = np.asarray([
+ self.widget.horizontalSlider_VMin.value(),
+ self.widget.horizontalSlider_VMax.value()]) / \
+ 1000. * prefactor
+ if self.widget.checkBox_WhiteForPeak.isChecked():
+ cmap = 'gray'
+ else:
+ cmap = 'gray_r'
+ mid_angle = self.widget.spinBox_AziShift.value()
+ if mid_angle != 0:
+ int_new = np.array(intensity_cake_plot)
+ int_new[0:mid_angle] = intensity_cake[360 - mid_angle:361]
+ int_new[mid_angle:361] = intensity_cake[0:360 - mid_angle]
+ else:
+ int_new = np.array(intensity_cake_plot)
+ self.widget.mpl.canvas.ax_cake.imshow(
+ int_new, origin="lower",
+ extent=[tth_cake.min(), tth_cake.max(),
+ chi_cake.min(), chi_cake.max()],
+ aspect="auto", cmap=cmap, clim=climits) # gray_r
+ tth_list, azi_list, note_list = self._read_azilist()
+ tth_min = tth_cake.min()
+ tth_max = tth_cake.max()
+ if azi_list is not None:
+ for tth, azi, note in zip(tth_list, azi_list, note_list):
+ rect = patches.Rectangle(
+ (tth_min, azi[0]), (tth_max - tth_min), (azi[1] - azi[0]),
+ linewidth=0, edgecolor='b', facecolor='b', alpha=0.2)
+ rect1 = patches.Rectangle(
+ (tth[0], azi[0]), (tth[1] - tth[0]), (azi[1] - azi[0]),
+ linewidth=1, edgecolor='b', facecolor='None')
+ self.widget.mpl.canvas.ax_cake.add_patch(rect)
+ self.widget.mpl.canvas.ax_cake.add_patch(rect1)
+ if self.widget.checkBox_ShowCakeLabels.isChecked():
+ self.widget.mpl.canvas.ax_cake.text(
+ tth[1], azi[1], note, color=self.obj_color)
+ rows = self.widget.tableWidget_DiffImgAzi.selectionModel().\
+ selectedRows()
+ if rows != []:
+ for r in rows:
+ azi_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(r.row(), 2).text())
+ azi_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(r.row(), 4).text())
+ rect = patches.Rectangle(
+ (tth_min, azi_min), (tth_max - tth_min),
+ (azi_max - azi_min),
+ linewidth=0, facecolor='r', alpha=0.2)
+ self.widget.mpl.canvas.ax_cake.add_patch(rect)
+
+def _plot_jcpds(self, axisrange):
+ # t_start = time.time()
+ if (not self.widget.checkBox_JCPDSinPattern.isChecked()) and \
+ (not self.widget.checkBox_JCPDSinCake.isChecked()):
+ return
+ selected_phases = []
+ for phase in self.model.jcpds_lst:
+ if phase.display:
+ selected_phases.append(phase)
+ if selected_phases == []:
+ return
+ n_displayed_jcpds = len(selected_phases)
+ # axisrange = self.widget.mpl.canvas.ax_pattern.axis()
+ cakerange = self.widget.mpl.canvas.ax_cake.axis()
+ bar_scale = 1. / 100. * axisrange[3] * \
+ self.widget.horizontalSlider_JCPDSBarScale.value() / 100.
+ pressure = self.widget.doubleSpinBox_Pressure.value()
+ for i, phase in enumerate(selected_phases):
+ phase.cal_dsp(pressure,
+ self.widget.doubleSpinBox_Temperature.value())
+ tth, inten = phase.get_tthVSint(
+ self.widget.doubleSpinBox_SetWavelength.value())
+ if self.widget.checkBox_JCPDSinPattern.isChecked():
+ intensity = inten * phase.twk_int
+ if self.widget.checkBox_Intensity.isChecked():
+ bar_min = np.ones_like(tth) * axisrange[2] + \
+ self.widget.horizontalSlider_JCPDSBarPosition.\
+ value() / 100. * axisrange[3]
+ bar_max = intensity * bar_scale + bar_min
+ else:
+ data_limits = self._get_data_limits()
+ starting_intensity = np.ones_like(tth) * data_limits[2] + \
+ self.widget.horizontalSlider_JCPDSBarPosition.\
+ value() / 100. * axisrange[3]
+ bar_max = starting_intensity - \
+ i * 100. * bar_scale / n_displayed_jcpds
+ bar_min = starting_intensity - \
+ i * 100. * bar_scale / n_displayed_jcpds
+ if pressure == 0.:
+ volume = phase.v
+ else:
+ volume = phase.v.item()
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, bar_max, colors=phase.color,
+ label="{0:}, {1:.3f} A^3".format(
+ phase.name, volume),
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_ptn_Alpha.value())
+ # hkl
+ if self.widget.checkBox_ShowMillerIndices.isChecked():
+ hkl_list = phase.get_hkl_in_text()
+ for j, hkl in enumerate(hkl_list):
+ self.widget.mpl.canvas.ax_pattern.text(
+ tth[j], bar_max[j], hkl, color=phase.color,
+ rotation=90, verticalalignment='bottom',
+ horizontalalignment='center',
+ fontsize=int(
+ self.widget.comboBox_HKLFontSize.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_ptn_Alpha.value())
+ # phase.name, phase.v.item()))
+ if self.widget.checkBox_ShowCake.isChecked() and \
+ self.widget.checkBox_JCPDSinCake.isChecked():
+ self.widget.mpl.canvas.ax_cake.vlines(
+ tth, np.ones_like(tth) * cakerange[2],
+ np.ones_like(tth) * cakerange[3], colors=phase.color,
+ lw=float(
+ self.widget.comboBox_CakeJCPDSBarThickness.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_cake_Alpha.value())
+ if self.widget.checkBox_ShowMillerIndices_Cake.isChecked():
+ hkl_list = phase.get_hkl_in_text()
+ trans = transforms.blended_transform_factory(
+ self.widget.mpl.canvas.ax_cake.transData,
+ self.widget.mpl.canvas.ax_cake.transAxes)
+ for j, hkl in enumerate(hkl_list):
+ self.widget.mpl.canvas.ax_cake.text(
+ tth[j], 0.99, hkl, color=phase.color,
+ rotation=90, verticalalignment='top',
+ transform=trans, horizontalalignment='right',
+ fontsize=int(
+ self.widget.comboBox_HKLFontSize.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_cake_Alpha.value())
+ if self.widget.checkBox_JCPDSinPattern.isChecked():
+ leg_jcpds = self.widget.mpl.canvas.ax_pattern.legend(
+ loc=1, prop={'size': 10}, framealpha=0., handlelength=1)
+ for line, txt in zip(leg_jcpds.get_lines(), leg_jcpds.get_texts()):
+ txt.set_color(line.get_color())
+ # print("JCPDS update takes {0:.2f}s at".format(time.time() - t_start),
+ # str(datetime.datetime.now())[:-7])
+
+def _plot_waterfallpatterns(self):
+ if not self.widget.checkBox_ShowWaterfall.isChecked():
+ return
+ # t_start = time.time()
+ # count how many are dispaly
+ i = 0
+ for pattern in self.model.waterfall_ptn:
+ if pattern.display:
+ i += 1
+ if i == 0:
+ return
+ n_display = i
+ j = 0 # this is needed for waterfall gaps
+ # get y_max
+ for pattern in self.model.waterfall_ptn[::-1]:
+ if pattern.display:
+ j += 1
+ """
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.97 - n_display * 0.05 + j * 0.05,
+ os.path.basename(pattern.fname),
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ color=pattern.color)
+ """
+ if self.widget.checkBox_BgSub.isChecked():
+ ygap = self.widget.horizontalSlider_WaterfallGaps.value() * \
+ self.model.base_ptn.y_bgsub.max() * float(j) / 100.
+ y_bgsub = pattern.y_bgsub
+ if self.widget.checkBox_IntNorm.isChecked():
+ y = y_bgsub / y_bgsub.max() * \
+ self.model.base_ptn.y_bgsub.max()
+ else:
+ y = y_bgsub
+ x_t = pattern.x_bgsub
+ else:
+ ygap = self.widget.horizontalSlider_WaterfallGaps.value() * \
+ self.model.base_ptn.y_raw.max() * float(j) / 100.
+ if self.widget.checkBox_IntNorm.isChecked():
+ y = pattern.y_raw / pattern.y_raw.max() *\
+ self.model.base_ptn.y_raw.max()
+ else:
+ y = pattern.y_raw
+ x_t = pattern.x_raw
+ if self.widget.checkBox_SetToBasePtnLambda.isChecked():
+ x = convert_tth(x_t, pattern.wavelength,
+ self.model.base_ptn.wavelength)
+ else:
+ x = x_t
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y + ygap, c=pattern.color, lw=float(
+ self.widget.comboBox_WaterfallLineThickness.
+ currentText()))
+ if self.widget.checkBox_ShowWaterfallLabels.isChecked():
+ self.widget.mpl.canvas.ax_pattern.text(
+ (x[-1] - x[0]) * 0.01 + x[0], y[0] + ygap,
+ os.path.basename(pattern.fname),
+ verticalalignment='bottom', horizontalalignment='left',
+ color=pattern.color)
+ """
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.97 - n_display * 0.05,
+ os.path.basename(self.model.base_ptn.fname),
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ color=self.model.base_ptn.color)
+ """
+
+def _plot_diffpattern(self, gsas_style=False):
+ if self.widget.checkBox_BgSub.isChecked():
+ x, y = self.model.base_ptn.get_bgsub()
+ if gsas_style:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color, marker='o',
+ linestyle='None', ms=3)
+ else:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color,
+ lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ else:
+ x, y = self.model.base_ptn.get_raw()
+ if gsas_style:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color, marker='o',
+ linestyle='None', ms=3)
+ else:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color,
+ lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ x_bg, y_bg = self.model.base_ptn.get_background()
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_bg, y_bg, c=self.model.base_ptn.color, ls='--',
+ lw=float(
+ self.widget.comboBox_BkgnLineThickness.
+ currentText()))
+
+def _plot_peakfit(self):
+ if not self.model.current_section_exist():
+ return
+ if self.model.current_section.peaks_exist():
+ for x_c in self.model.current_section.get_peak_positions():
+ self.widget.mpl.canvas.ax_pattern.axvline(
+ x_c, ls='--', dashes=(10, 5))
+ if self.model.current_section.fitted():
+ bgsub = self.widget.checkBox_BgSub.isChecked()
+ x_plot = self.model.current_section.x
+ profiles = self.model.current_section.get_individual_profiles(
+ bgsub=bgsub)
+ for key, value in profiles.items():
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, value, ls='-', c=self.obj_color, lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ total_profile = self.model.current_section.get_fit_profile(
+ bgsub=bgsub)
+ residue = self.model.current_section.get_fit_residue(bgsub=bgsub)
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, total_profile, 'r-', lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ y_range = self.model.current_section.get_yrange(bgsub=bgsub)
+ y_shift = y_range[0] - (y_range[1] - y_range[0]) * 0.05
+ #(y_range[1] - y_range[0]) * 1.05
+ self.widget.mpl.canvas.ax_pattern.fill_between(
+ x_plot, self.model.current_section.get_fit_residue_baseline(
+ bgsub=bgsub) + y_shift, residue + y_shift, facecolor='r')
+ """
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, residue + y_shift, 'r-')
+ self.widget.mpl.canvas.ax_pattern.axhline(
+ self.model.current_section.get_fit_residue_baseline(
+ bgsub=bgsub) + y_shift, c='r', ls='-', lw=0.5)
+ """
+ else:
+ pass
+
+def _plot_peakfit_in_gsas_style(self):
+ # get all the highlights
+ # iteratively run plot
+ rows = self.widget.tableWidget_PkFtSections.selectionModel().\
+ selectedRows()
+ if rows == []:
+ return
+ else:
+ selected_rows = [r.row() for r in rows]
+ bgsub = self.widget.checkBox_BgSub.isChecked()
+ data_limits = self._get_data_limits()
+ y_shift = data_limits[2] - (data_limits[3] - data_limits[2]) * 0.05
+ i = 0
+ for section in self.model.section_lst:
+ if i in selected_rows:
+ x_plot = section.x
+ total_profile = section.get_fit_profile(bgsub=bgsub)
+ residue = section.get_fit_residue(bgsub=bgsub)
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, total_profile, 'r-', lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ self.widget.mpl.canvas.ax_pattern.fill_between(
+ x_plot, section.get_fit_residue_baseline(bgsub=bgsub) +
+ y_shift, residue + y_shift, facecolor='r')
+ i += 1
diff --git a/jnb-tools/3_2D_from_dpp/test.pdf b/jnb-tools/3_2D_from_dpp/test.pdf
new file mode 100644
index 0000000..b72d0d0
Binary files /dev/null and b/jnb-tools/3_2D_from_dpp/test.pdf differ
diff --git a/jnb-tools/4_peakfit_from_dpp/peakpo_plots.py b/jnb-tools/4_peakfit_from_dpp/peakpo_plots.py
new file mode 100644
index 0000000..abc2a60
--- /dev/null
+++ b/jnb-tools/4_peakfit_from_dpp/peakpo_plots.py
@@ -0,0 +1,537 @@
+import os
+import time
+import datetime
+import numpy as np
+import numpy.ma as ma
+from matplotlib.widgets import MultiCursor
+import matplotlib.transforms as transforms
+import matplotlib.patches as patches
+from PyQt5 import QtWidgets
+from PyQt5 import QtCore
+from ds_jcpds import convert_tth
+
+"""
+def get_cake_range(self):
+ if self.widget.checkBox_ShowCake.isChecked():
+ return self.widget.mpl.canvas.ax_cake.get_xlim(),\
+ self.widget.mpl.canvas.ax_cake.get_ylim()
+ else:
+ return None, None
+
+def _read_azilist(self):
+ n_row = self.widget.tableWidget_DiffImgAzi.rowCount()
+ if n_row == 0:
+ return None, None, None
+ azi_list = []
+ tth_list = []
+ note_list = []
+ for i in range(n_row):
+ azi_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 2).text())
+ azi_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 4).text())
+ tth_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 1).text())
+ tth_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(i, 3).text())
+ note_i = self.widget.tableWidget_DiffImgAzi.item(i, 0).text()
+ tth_list.append([tth_min, tth_max])
+ azi_list.append([azi_min, azi_max])
+ note_list.append(note_i)
+ return tth_list, azi_list, note_list
+
+def zoom_out_graph(self):
+ if not self.model.base_ptn_exist():
+ return
+ data_limits = self._get_data_limits()
+ self.update(limits=data_limits,
+ cake_ylimits=(-180, 180))
+
+def update_to_gsas_style(self):
+ if not self.model.base_ptn_exist():
+ return
+ data_limits = self._get_data_limits(y_margin=0.10)
+ self.update(limits=data_limits, gsas_style=True)
+
+def _get_data_limits(self, y_margin=0.):
+ if self.widget.checkBox_BgSub.isChecked():
+ x, y = self.model.base_ptn.get_bgsub()
+ else:
+ x, y = self.model.base_ptn.get_raw()
+ return (x.min(), x.max(),
+ y.min() - (y.max() - y.min()) * y_margin,
+ y.max() + (y.max() - y.min()) * y_margin)
+"""
+
+def update(self, limits=None, gsas_style=False, cake_ylimits=None):
+ """Updates the graph"""
+ t_start = time.time()
+ self.widget.setCursor(QtCore.Qt.WaitCursor)
+ if limits is None:
+ limits = self.widget.mpl.canvas.ax_pattern.axis()
+ if cake_ylimits is None:
+ c_limits = self.widget.mpl.canvas.ax_cake.axis()
+ cake_ylimits = c_limits[2:4]
+ if (not self.model.base_ptn_exist()) and \
+ (not self.model.jcpds_exist()):
+ return
+ if self.widget.checkBox_ShowCake.isChecked() and \
+ self.model.diff_img_exist():
+ self.widget.mpl.canvas.resize_axes(
+ self.widget.horizontalSlider_CakeAxisSize.value())
+ self._plot_cake()
+ else:
+ self.widget.mpl.canvas.resize_axes(1)
+ self._set_nightday_view()
+ if self.model.base_ptn_exist():
+ if self.widget.checkBox_ShortPlotTitle.isChecked():
+ title = os.path.basename(self.model.base_ptn.fname)
+ else:
+ title = self.model.base_ptn.fname
+ self.widget.mpl.canvas.fig.suptitle(
+ title, color=self.obj_color)
+ self._plot_diffpattern(gsas_style)
+ if self.model.waterfall_exist():
+ self._plot_waterfallpatterns()
+ # if self.model.jcpds_exist():
+ # self._plot_jcpds(limits)
+ if self.model.ucfit_exist():
+ self._plot_ucfit()
+ if (self.widget.tabWidget.currentIndex() == 8):
+ if gsas_style:
+ self._plot_peakfit_in_gsas_style()
+ else:
+ self._plot_peakfit()
+ self.widget.mpl.canvas.ax_pattern.set_xlim(limits[0], limits[1])
+ if not self.widget.checkBox_AutoY.isChecked():
+ self.widget.mpl.canvas.ax_pattern.set_ylim(limits[2], limits[3])
+ self.widget.mpl.canvas.ax_cake.set_ylim(cake_ylimits)
+ if self.model.jcpds_exist():
+ self._plot_jcpds(limits)
+ if not self.widget.checkBox_Intensity.isChecked():
+ new_low_limit = -1.1 * limits[3] * \
+ self.widget.horizontalSlider_JCPDSBarScale.value() / 100.
+ self.widget.mpl.canvas.ax_pattern.set_ylim(
+ new_low_limit, limits[3])
+ if self.widget.checkBox_ShowLargePnT.isChecked():
+ label_p_t = "{0: 5.1f} GPa\n{1: 4.0f} K".\
+ format(self.widget.doubleSpinBox_Pressure.value(),
+ self.widget.doubleSpinBox_Temperature.value())
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.98, label_p_t, horizontalalignment='left',
+ verticalalignment='top',
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ fontsize=int(
+ self.widget.comboBox_PnTFontSize.currentText()))
+ xlabel = "Two Theta (degrees), {: 6.4f} A".\
+ format(self.widget.doubleSpinBox_SetWavelength.value())
+ self.widget.mpl.canvas.ax_pattern.set_xlabel(xlabel)
+ # if I move the line below to elsewhere I cannot get ylim or axis
+ # self.widget.mpl.canvas.ax_pattern.autoscale(
+ # enable=False, axis=u'both', tight=True)
+ """Removing the lines below for the tick reduce the plot time
+ significantly. So do not turn this on.
+ x_size = limits[1] - limits[0]
+ if x_size <= 50.:
+ majortick_interval = 1
+ minortick_interval = 0.1
+ else:
+ majortick_interval = 10
+ minortick_interval = 1
+ majorLocator = MultipleLocator(majortick_interval)
+ minorLocator = MultipleLocator(minortick_interval)
+ self.widget.mpl.canvas.ax_pattern.xaxis.set_major_locator(majorLocator)
+ self.widget.mpl.canvas.ax_pattern.xaxis.set_minor_locator(minorLocator)
+ """
+ self.widget.mpl.canvas.ax_pattern.format_coord = \
+ lambda x, y: "{0:.2f},{1:.2e},{2:.3f}A,{3:.3f}A-1".\
+ format(x, y,
+ self.widget.doubleSpinBox_SetWavelength.value()
+ / 2. / np.sin(np.radians(x / 2.)),
+ 4. * np.pi / self.widget.doubleSpinBox_SetWavelength.value() *
+ np.sin(np.radians(x / 2.)))
+ self.widget.mpl.canvas.ax_cake.format_coord = \
+ lambda x, y: "{0:.2f},{1:.2e},{2:.3f}A,{3:.3f}A-1".\
+ format(x, y,
+ self.widget.doubleSpinBox_SetWavelength.value()
+ / 2. / np.sin(np.radians(x / 2.)),
+ 4. * np.pi / self.widget.doubleSpinBox_SetWavelength.value() *
+ np.sin(np.radians(x / 2.)))
+ self.widget.mpl.canvas.draw()
+ print("Plot takes {0:.2f}s at".format(time.time() - t_start),
+ str(datetime.datetime.now())[:-7])
+ self.widget.unsetCursor()
+ if self.widget.checkBox_LongCursor.isChecked():
+ self.widget.cursor = MultiCursor(
+ self.widget.mpl.canvas,
+ (self.widget.mpl.canvas.ax_pattern,
+ self.widget.mpl.canvas.ax_cake), color='r',
+ lw=float(
+ self.widget.comboBox_VertCursorThickness.
+ currentText()),
+ ls='--', useblit=False) # useblit not supported for pyqt5 yet
+ """
+ self.widget.cursor_pattern = Cursor(
+ self.widget.mpl.canvas.ax_pattern, useblit=False,
+ lw = 1, ls=':')
+ self.widget.cursor_cake = Cursor(
+ self.widget.mpl.canvas.ax_cake, useblit=False, c= 'r',
+ lw = 1, ls=':')
+ """
+
+def _plot_ucfit(self):
+ i = 0
+ for j in self.model.ucfit_lst:
+ if j.display:
+ i += 1
+ if i == 0:
+ return
+ axisrange = self.widget.mpl.canvas.ax_pattern.axis()
+ bar_scale = 1. / 100. * axisrange[3]
+ i = 0
+ for phase in self.model.ucfit_lst:
+ if phase.display:
+ phase.cal_dsp()
+ tth, inten = phase.get_tthVSint(
+ self.widget.doubleSpinBox_SetWavelength.value())
+ bar_min = np.ones(tth.shape) * axisrange[2]
+ intensity = inten
+ bar_min = np.ones(tth.shape) * axisrange[2]
+ self.widget.tableWidget_UnitCell.removeCellWidget(i, 3)
+ Item4 = QtWidgets.QTableWidgetItem(
+ "{:.3f}".format(float(phase.v)))
+ Item4.setFlags(
+ QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
+ self.widget.tableWidget_UnitCell.setItem(i, 3, Item4)
+ if self.widget.checkBox_Intensity.isChecked():
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, intensity * bar_scale,
+ colors=phase.color,
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()))
+ else:
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, 100. * bar_scale,
+ colors=phase.color,
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()))
+ i += 1
+
+def _plot_cake(self):
+ intensity_cake, tth_cake, chi_cake = self.model.diff_img.get_cake()
+ min_slider_pos = self.widget.horizontalSlider_VMin.value()
+ max_slider_pos = self.widget.horizontalSlider_VMax.value()
+ if (max_slider_pos <= min_slider_pos):
+ self.widget.horizontalSlider_VMin.setValue(1)
+ self.widget.horizontalSlider_VMax.setValue(99)
+ intensity_cake_plot = ma.masked_values(intensity_cake, 0.)
+ prefactor = self.widget.spinBox_MaxCakeScale.value() / \
+ (10. ** self.widget.horizontalSlider_MaxScaleBars.value())
+ # intensity_cake_plot.max() / \
+ climits = np.asarray([
+ self.widget.horizontalSlider_VMin.value(),
+ self.widget.horizontalSlider_VMax.value()]) / \
+ 1000. * prefactor
+ if self.widget.checkBox_WhiteForPeak.isChecked():
+ cmap = 'gray'
+ else:
+ cmap = 'gray_r'
+ mid_angle = self.widget.spinBox_AziShift.value()
+ if mid_angle != 0:
+ int_new = np.array(intensity_cake_plot)
+ int_new[0:mid_angle] = intensity_cake[360 - mid_angle:361]
+ int_new[mid_angle:361] = intensity_cake[0:360 - mid_angle]
+ else:
+ int_new = np.array(intensity_cake_plot)
+ self.widget.mpl.canvas.ax_cake.imshow(
+ int_new, origin="lower",
+ extent=[tth_cake.min(), tth_cake.max(),
+ chi_cake.min(), chi_cake.max()],
+ aspect="auto", cmap=cmap, clim=climits) # gray_r
+ tth_list, azi_list, note_list = self._read_azilist()
+ tth_min = tth_cake.min()
+ tth_max = tth_cake.max()
+ if azi_list is not None:
+ for tth, azi, note in zip(tth_list, azi_list, note_list):
+ rect = patches.Rectangle(
+ (tth_min, azi[0]), (tth_max - tth_min), (azi[1] - azi[0]),
+ linewidth=0, edgecolor='b', facecolor='b', alpha=0.2)
+ rect1 = patches.Rectangle(
+ (tth[0], azi[0]), (tth[1] - tth[0]), (azi[1] - azi[0]),
+ linewidth=1, edgecolor='b', facecolor='None')
+ self.widget.mpl.canvas.ax_cake.add_patch(rect)
+ self.widget.mpl.canvas.ax_cake.add_patch(rect1)
+ if self.widget.checkBox_ShowCakeLabels.isChecked():
+ self.widget.mpl.canvas.ax_cake.text(
+ tth[1], azi[1], note, color=self.obj_color)
+ rows = self.widget.tableWidget_DiffImgAzi.selectionModel().\
+ selectedRows()
+ if rows != []:
+ for r in rows:
+ azi_min = float(
+ self.widget.tableWidget_DiffImgAzi.item(r.row(), 2).text())
+ azi_max = float(
+ self.widget.tableWidget_DiffImgAzi.item(r.row(), 4).text())
+ rect = patches.Rectangle(
+ (tth_min, azi_min), (tth_max - tth_min),
+ (azi_max - azi_min),
+ linewidth=0, facecolor='r', alpha=0.2)
+ self.widget.mpl.canvas.ax_cake.add_patch(rect)
+
+def _plot_jcpds(self, axisrange):
+ # t_start = time.time()
+ if (not self.widget.checkBox_JCPDSinPattern.isChecked()) and \
+ (not self.widget.checkBox_JCPDSinCake.isChecked()):
+ return
+ selected_phases = []
+ for phase in self.model.jcpds_lst:
+ if phase.display:
+ selected_phases.append(phase)
+ if selected_phases == []:
+ return
+ n_displayed_jcpds = len(selected_phases)
+ # axisrange = self.widget.mpl.canvas.ax_pattern.axis()
+ cakerange = self.widget.mpl.canvas.ax_cake.axis()
+ bar_scale = 1. / 100. * axisrange[3] * \
+ self.widget.horizontalSlider_JCPDSBarScale.value() / 100.
+ pressure = self.widget.doubleSpinBox_Pressure.value()
+ for i, phase in enumerate(selected_phases):
+ phase.cal_dsp(pressure,
+ self.widget.doubleSpinBox_Temperature.value())
+ tth, inten = phase.get_tthVSint(
+ self.widget.doubleSpinBox_SetWavelength.value())
+ if self.widget.checkBox_JCPDSinPattern.isChecked():
+ intensity = inten * phase.twk_int
+ if self.widget.checkBox_Intensity.isChecked():
+ bar_min = np.ones_like(tth) * axisrange[2] + \
+ self.widget.horizontalSlider_JCPDSBarPosition.\
+ value() / 100. * axisrange[3]
+ bar_max = intensity * bar_scale + bar_min
+ else:
+ data_limits = self._get_data_limits()
+ starting_intensity = np.ones_like(tth) * data_limits[2] + \
+ self.widget.horizontalSlider_JCPDSBarPosition.\
+ value() / 100. * axisrange[3]
+ bar_max = starting_intensity - \
+ i * 100. * bar_scale / n_displayed_jcpds
+ bar_min = starting_intensity - \
+ i * 100. * bar_scale / n_displayed_jcpds
+ if pressure == 0.:
+ volume = phase.v
+ else:
+ volume = phase.v.item()
+ self.widget.mpl.canvas.ax_pattern.vlines(
+ tth, bar_min, bar_max, colors=phase.color,
+ label="{0:}, {1:.3f} A^3".format(
+ phase.name, volume),
+ lw=float(
+ self.widget.comboBox_PtnJCPDSBarThickness.
+ currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_ptn_Alpha.value())
+ # hkl
+ if self.widget.checkBox_ShowMillerIndices.isChecked():
+ hkl_list = phase.get_hkl_in_text()
+ for j, hkl in enumerate(hkl_list):
+ self.widget.mpl.canvas.ax_pattern.text(
+ tth[j], bar_max[j], hkl, color=phase.color,
+ rotation=90, verticalalignment='bottom',
+ horizontalalignment='center',
+ fontsize=int(
+ self.widget.comboBox_HKLFontSize.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_ptn_Alpha.value())
+ # phase.name, phase.v.item()))
+ if self.widget.checkBox_ShowCake.isChecked() and \
+ self.widget.checkBox_JCPDSinCake.isChecked():
+ self.widget.mpl.canvas.ax_cake.vlines(
+ tth, np.ones_like(tth) * cakerange[2],
+ np.ones_like(tth) * cakerange[3], colors=phase.color,
+ lw=float(
+ self.widget.comboBox_CakeJCPDSBarThickness.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_cake_Alpha.value())
+ if self.widget.checkBox_ShowMillerIndices_Cake.isChecked():
+ hkl_list = phase.get_hkl_in_text()
+ trans = transforms.blended_transform_factory(
+ self.widget.mpl.canvas.ax_cake.transData,
+ self.widget.mpl.canvas.ax_cake.transAxes)
+ for j, hkl in enumerate(hkl_list):
+ self.widget.mpl.canvas.ax_cake.text(
+ tth[j], 0.99, hkl, color=phase.color,
+ rotation=90, verticalalignment='top',
+ transform=trans, horizontalalignment='right',
+ fontsize=int(
+ self.widget.comboBox_HKLFontSize.currentText()),
+ alpha=self.widget.doubleSpinBox_JCPDS_cake_Alpha.value())
+ if self.widget.checkBox_JCPDSinPattern.isChecked():
+ leg_jcpds = self.widget.mpl.canvas.ax_pattern.legend(
+ loc=1, prop={'size': 10}, framealpha=0., handlelength=1)
+ for line, txt in zip(leg_jcpds.get_lines(), leg_jcpds.get_texts()):
+ txt.set_color(line.get_color())
+ # print("JCPDS update takes {0:.2f}s at".format(time.time() - t_start),
+ # str(datetime.datetime.now())[:-7])
+
+def _plot_waterfallpatterns(self):
+ if not self.widget.checkBox_ShowWaterfall.isChecked():
+ return
+ # t_start = time.time()
+ # count how many are dispaly
+ i = 0
+ for pattern in self.model.waterfall_ptn:
+ if pattern.display:
+ i += 1
+ if i == 0:
+ return
+ n_display = i
+ j = 0 # this is needed for waterfall gaps
+ # get y_max
+ for pattern in self.model.waterfall_ptn[::-1]:
+ if pattern.display:
+ j += 1
+ """
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.97 - n_display * 0.05 + j * 0.05,
+ os.path.basename(pattern.fname),
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ color=pattern.color)
+ """
+ if self.widget.checkBox_BgSub.isChecked():
+ ygap = self.widget.horizontalSlider_WaterfallGaps.value() * \
+ self.model.base_ptn.y_bgsub.max() * float(j) / 100.
+ y_bgsub = pattern.y_bgsub
+ if self.widget.checkBox_IntNorm.isChecked():
+ y = y_bgsub / y_bgsub.max() * \
+ self.model.base_ptn.y_bgsub.max()
+ else:
+ y = y_bgsub
+ x_t = pattern.x_bgsub
+ else:
+ ygap = self.widget.horizontalSlider_WaterfallGaps.value() * \
+ self.model.base_ptn.y_raw.max() * float(j) / 100.
+ if self.widget.checkBox_IntNorm.isChecked():
+ y = pattern.y_raw / pattern.y_raw.max() *\
+ self.model.base_ptn.y_raw.max()
+ else:
+ y = pattern.y_raw
+ x_t = pattern.x_raw
+ if self.widget.checkBox_SetToBasePtnLambda.isChecked():
+ x = convert_tth(x_t, pattern.wavelength,
+ self.model.base_ptn.wavelength)
+ else:
+ x = x_t
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y + ygap, c=pattern.color, lw=float(
+ self.widget.comboBox_WaterfallLineThickness.
+ currentText()))
+ if self.widget.checkBox_ShowWaterfallLabels.isChecked():
+ self.widget.mpl.canvas.ax_pattern.text(
+ (x[-1] - x[0]) * 0.01 + x[0], y[0] + ygap,
+ os.path.basename(pattern.fname),
+ verticalalignment='bottom', horizontalalignment='left',
+ color=pattern.color)
+ """
+ self.widget.mpl.canvas.ax_pattern.text(
+ 0.01, 0.97 - n_display * 0.05,
+ os.path.basename(self.model.base_ptn.fname),
+ transform=self.widget.mpl.canvas.ax_pattern.transAxes,
+ color=self.model.base_ptn.color)
+ """
+
+def _plot_diffpattern(self, gsas_style=False):
+ if self.widget.checkBox_BgSub.isChecked():
+ x, y = self.model.base_ptn.get_bgsub()
+ if gsas_style:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color, marker='o',
+ linestyle='None', ms=3)
+ else:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color,
+ lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ else:
+ x, y = self.model.base_ptn.get_raw()
+ if gsas_style:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color, marker='o',
+ linestyle='None', ms=3)
+ else:
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x, y, c=self.model.base_ptn.color,
+ lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ x_bg, y_bg = self.model.base_ptn.get_background()
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_bg, y_bg, c=self.model.base_ptn.color, ls='--',
+ lw=float(
+ self.widget.comboBox_BkgnLineThickness.
+ currentText()))
+
+def _plot_peakfit(self):
+ if not self.model.current_section_exist():
+ return
+ if self.model.current_section.peaks_exist():
+ for x_c in self.model.current_section.get_peak_positions():
+ self.widget.mpl.canvas.ax_pattern.axvline(
+ x_c, ls='--', dashes=(10, 5))
+ if self.model.current_section.fitted():
+ bgsub = self.widget.checkBox_BgSub.isChecked()
+ x_plot = self.model.current_section.x
+ profiles = self.model.current_section.get_individual_profiles(
+ bgsub=bgsub)
+ for key, value in profiles.items():
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, value, ls='-', c=self.obj_color, lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ total_profile = self.model.current_section.get_fit_profile(
+ bgsub=bgsub)
+ residue = self.model.current_section.get_fit_residue(bgsub=bgsub)
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, total_profile, 'r-', lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ y_range = self.model.current_section.get_yrange(bgsub=bgsub)
+ y_shift = y_range[0] - (y_range[1] - y_range[0]) * 0.05
+ #(y_range[1] - y_range[0]) * 1.05
+ self.widget.mpl.canvas.ax_pattern.fill_between(
+ x_plot, self.model.current_section.get_fit_residue_baseline(
+ bgsub=bgsub) + y_shift, residue + y_shift, facecolor='r')
+ """
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, residue + y_shift, 'r-')
+ self.widget.mpl.canvas.ax_pattern.axhline(
+ self.model.current_section.get_fit_residue_baseline(
+ bgsub=bgsub) + y_shift, c='r', ls='-', lw=0.5)
+ """
+ else:
+ pass
+
+def _plot_peakfit_in_gsas_style(self):
+ # get all the highlights
+ # iteratively run plot
+ rows = self.widget.tableWidget_PkFtSections.selectionModel().\
+ selectedRows()
+ if rows == []:
+ return
+ else:
+ selected_rows = [r.row() for r in rows]
+ bgsub = self.widget.checkBox_BgSub.isChecked()
+ data_limits = self._get_data_limits()
+ y_shift = data_limits[2] - (data_limits[3] - data_limits[2]) * 0.05
+ i = 0
+ for section in self.model.section_lst:
+ if i in selected_rows:
+ x_plot = section.x
+ total_profile = section.get_fit_profile(bgsub=bgsub)
+ residue = section.get_fit_residue(bgsub=bgsub)
+ self.widget.mpl.canvas.ax_pattern.plot(
+ x_plot, total_profile, 'r-', lw=float(
+ self.widget.comboBox_BasePtnLineThickness.
+ currentText()))
+ self.widget.mpl.canvas.ax_pattern.fill_between(
+ x_plot, section.get_fit_residue_baseline(bgsub=bgsub) +
+ y_shift, residue + y_shift, facecolor='r')
+ i += 1
diff --git a/jnb-tools/4_peakfit_from_dpp/test.pdf b/jnb-tools/4_peakfit_from_dpp/test.pdf
new file mode 100644
index 0000000..12ec08e
Binary files /dev/null and b/jnb-tools/4_peakfit_from_dpp/test.pdf differ
diff --git a/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.html b/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.html
new file mode 100644
index 0000000..a5d0157
--- /dev/null
+++ b/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.html
@@ -0,0 +1,14569 @@
+
+
+
+
+xrd_pattern-peakfitting
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Peak fitting for XRD pattern from dpp¶
+
+
+
+
+
+
+
+Please check setup_for_notebooks file if you have problem using the notebooks in this folder.
+In this notebook, we will learn how to plot XRD patterns using the information saved in dpp
.
+dpp
is a project file saved in PeakPo
. You may plot, jcpds information and cake as well as many other information.
+
+
+
+
+
+
+
+
+
+
Check the versio of pyFAI in your conda environment¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
+ from ._conv import register_converters as _register_converters
+WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl
+
+
+
+
+
+
+
Out[2]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Note that the example data files I provided are made with pyFAI
version 0.14
. If you see version higher than 0.15
here, you will get error when you read the example dpp
file. In that case, you either follow the instruction in setup_for_notebooks.ipynb or you may use your own dpp for this note book.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
../data/hStv/hSiO2_404_009.dpp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Setup a new PeakPo model and assign info from dpp¶
+
+
+
+
+
+
+
+
Make sure to reset the chi folder location using the new_chi_path
option.
+
+
+
+
+
+
+
+
+
See xrd_pattern.ipynb
file for basic operations.
+
+
+
+
+
+
+
+
+
The following three modules are all in the ../local_modules
folder.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
(6.0005517, 20.994111, -49.297263099930205, 2799.9014723947657)
+(6.0005517, 20.994111, -2334.2171366494, 2799.9014723947657)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Check by changing the xrange
for plot_diffpattern
.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Get background subtracted pattern for masking.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[15]:
+
+
+
+
+
+
array([ 6.0005517, 6.0109784, 6.021405 , ..., 20.973258 , 20.983684 ,
+ 20.994111 ])
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[17]:
+
+
+
+
+
+
[<matplotlib.lines.Line2D at 0x123d78c50>]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Make initial peak position array¶
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[19]:
+
+
+
+
+
+
array([ 67, 220, 246, 325, 373, 397, 421])
+
+
+
+
+
+
+
+
+
+
+
+
Plot to see if the search positions are reasonable.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[20]:
+
+
+
+
+
+
[<matplotlib.lines.Line2D at 0x11c20e828>]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Define some functions for peak fitting¶
+
+
+
+
+
+
+
Define functions for peakfitting. Here we use LMFIT
module.
+
+
+
+
+
+
+
+
+
First fitting attempt without any restriction¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[[Model]]
+ (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))
+[[Fit Statistics]]
+ # function evals = 225
+ # data points = 480
+ # variables = 30
+ chi-square = 85049.827
+ reduced chi-square = 189.000
+ Akaike info crit = 2545.059
+ Bayesian info crit = 2670.273
+[[Variables]]
+ bg_intercept: 11.7490860 +/- 7.314150 (62.25%) (init= 0)
+ bg_slope: -1.92238746 +/- 0.867763 (45.14%) (init= 0)
+ pk0_fraction: 0.99914425 +/- 0.439206 (43.96%) (init= 0)
+ pk0_sigma: 0.09905194 +/- 0.022508 (22.72%) (init= 0.05)
+ pk0_center: 6.67814455 +/- 0.011066 (0.17%) (init= 6.699139)
+ pk0_amplitude: 13.7291342 +/- 3.199312 (23.30%) (init= 1000)
+ pk0_fwhm: 0.19810388 +/- 0.043560 (21.99%) == '2.0000000*pk0_sigma'
+ pk1_fraction: 0.71390507 +/- 1.440882 (201.83%) (init= 0)
+ pk1_sigma: 0.04899342 +/- 0.022649 (46.23%) (init= 0.05)
+ pk1_center: 8.27232961 +/- 0.013928 (0.17%) (init= 8.29442)
+ pk1_amplitude: 1.94815516 +/- 1.650007 (84.70%) (init= 1000)
+ pk1_fwhm: 0.09798684 +/- 0.045272 (46.20%) == '2.0000000*pk1_sigma'
+ pk2_fraction: 0.53578175 +/- 0.013639 (2.55%) (init= 0)
+ pk2_sigma: 0.04131704 +/- 0.000178 (0.43%) (init= 0.05)
+ pk2_center: 8.56763923 +/- 0.000107 (0.00%) (init= 8.565514)
+ pk2_amplitude: 298.762770 +/- 1.505359 (0.50%) (init= 1000)
+ pk2_fwhm: 0.08263408 +/- 0.000352 (0.43%) == '2.0000000*pk2_sigma'
+ pk3_fraction: 0.01241608 +/- 5.77e+05 (4647278978.67%) (init= 0)
+ pk3_sigma: 9.6370e-05 +/- 0.473812 (491658.24%) (init= 0.05)
+ pk3_center: 9.39347570 +/- 0.004071 (0.04%) (init= 9.389221)
+ pk3_amplitude: 22.7444443 +/- 1.28e+07 (56470649.79%) (init= 1000)
+ pk3_fwhm: 0.00019274 +/- 0.947947 (491825.72%) == '2.0000000*pk3_sigma'
+ pk4_fraction: 0.42273441 +/- 0.060602 (14.34%) (init= 0)
+ pk4_sigma: 0.07398460 +/- 0.001004 (1.36%) (init= 0.05)
+ pk4_center: 9.89043232 +/- 0.000654 (0.01%) (init= 9.889702)
+ pk4_amplitude: 114.039270 +/- 2.756552 (2.42%) (init= 1000)
+ pk4_fwhm: 0.14796921 +/- 0.001722 (1.16%) == '2.0000000*pk4_sigma'
+ pk5_fraction: 0.99989658 +/- 0.227448 (22.75%) (init= 0)
+ pk5_sigma: 0.03301947 +/- 0.003775 (11.43%) (init= 0.05)
+ pk5_center: 10.1384658 +/- 0.001881 (0.02%) (init= 10.13994)
+ pk5_amplitude: 16.1121387 +/- 1.941011 (12.05%) (init= 1000)
+ pk5_fwhm: 0.06603895 +/- 0.007729 (11.70%) == '2.0000000*pk5_sigma'
+ pk6_fraction: 0.00057210 +/- 0.209475 (36614.88%) (init= 0)
+ pk6_sigma: 0.08438759 +/- 0.002174 (2.58%) (init= 0.05)
+ pk6_center: 10.3880876 +/- 0.001593 (0.02%) (init= 10.39018)
+ pk6_amplitude: 48.6505860 +/- 3.622713 (7.45%) (init= 1000)
+ pk6_fwhm: 0.16877519 +/- 0.004349 (2.58%) == '2.0000000*pk6_sigma'
+[[Correlations]] (unreported correlations are < 0.500)
+ C(pk3_fraction, pk3_amplitude) = -1.000
+ C(bg_intercept, bg_slope) = -0.986
+ C(pk3_sigma, pk3_center) = -0.962
+ C(pk6_fraction, pk6_amplitude) = 0.954
+ C(pk4_fraction, pk4_amplitude) = 0.900
+ C(pk2_fraction, pk2_amplitude) = 0.830
+ C(pk1_fraction, pk1_amplitude) = 0.821
+ C(pk0_fraction, pk0_amplitude) = 0.701
+ C(bg_intercept, pk0_amplitude) = -0.694
+ C(pk5_fraction, pk5_amplitude) = 0.689
+ C(bg_slope, pk6_amplitude) = -0.616
+ C(bg_slope, pk0_amplitude) = 0.613
+ C(pk5_amplitude, pk6_amplitude) = -0.589
+ C(pk2_fraction, pk2_sigma) = -0.589
+ C(pk4_amplitude, pk5_amplitude) = -0.584
+ C(pk1_fraction, pk1_sigma) = -0.566
+ C(bg_slope, pk6_fraction) = -0.554
+ C(pk5_amplitude, pk6_fraction) = -0.545
+ C(bg_intercept, pk6_amplitude) = 0.544
+ C(pk0_fraction, pk0_sigma) = -0.539
+ C(pk4_fraction, pk5_amplitude) = -0.525
+ C(pk5_fraction, pk5_sigma) = -0.525
+
+
+
+
+
+
+
+
+
+
+
+
+
Plot the fitting results
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Do better initial guess¶
+
+
+
+
+
+
+
Pereform new fitting
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[[Model]]
+ (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))
+[[Fit Statistics]]
+ # function evals = 189
+ # data points = 480
+ # variables = 30
+ chi-square = 60700.902
+ reduced chi-square = 134.891
+ Akaike info crit = 2383.165
+ Bayesian info crit = 2508.379
+[[Variables]]
+ bg_intercept: 29.1722806 +/- 4.995923 (17.13%) (init= 0)
+ bg_slope: -3.83526210 +/- 0.645062 (16.82%) (init= 0)
+ pk0_fraction: 0.51590945 +/- 0.431690 (83.68%) (init= 0)
+ pk0_sigma: 0.03063716 +/- 0.004060 (13.25%) (init= 0.03)
+ pk0_center: 6.69518915 +/- 0.002586 (0.04%) (init= 6.699139)
+ pk0_amplitude: 6.55216766 +/- 1.023892 (15.63%) (init= 100)
+ pk0_fwhm: 0.06127433 +/- 0.008120 (13.25%) == '2.0000000*pk0_sigma'
+ pk1_fraction: 0.59988174 +/- 0.807284 (134.57%) (init= 0)
+ pk1_sigma: 0.06145041 +/- 0.008172 (13.30%) (init= 0.03)
+ pk1_center: 8.27073401 +/- 0.005765 (0.07%) (init= 8.29442)
+ pk1_amplitude: 4.56442997 +/- 1.489646 (32.64%) (init= 100)
+ pk1_fwhm: 0.12290083 +/- 0.016344 (13.30%) == '2.0000000*pk1_sigma'
+ pk2_fraction: 0.55998216 +/- 0.011321 (2.02%) (init= 0)
+ pk2_sigma: 0.04126828 +/- 0.000146 (0.35%) (init= 0.03)
+ pk2_center: 8.56758351 +/- 9.03e-05 (0.00%) (init= 8.565514)
+ pk2_amplitude: 302.091134 +/- 1.270450 (0.42%) (init= 100)
+ pk2_fwhm: 0.08253656 +/- 0.000292 (0.35%) == '2.0000000*pk2_sigma'
+ pk3_fraction: 0.73052766 +/- 0.365205 (49.99%) (init= 0)
+ pk3_sigma: 0.06668190 +/- 0.007879 (11.82%) (init= 0.03)
+ pk3_center: 9.37829233 +/- 0.003947 (0.04%) (init= 9.389221)
+ pk3_amplitude: 6.70558552 +/- 1.220807 (18.21%) (init= 100)
+ pk3_fwhm: 0.13336381 +/- 0.015759 (11.82%) == '2.0000000*pk3_sigma'
+ pk4_fraction: 0.31530220 +/- 0.059561 (18.89%) (init= 0)
+ pk4_sigma: 0.07496412 +/- 0.000848 (1.13%) (init= 0.03)
+ pk4_center: 9.89032617 +/- 0.000578 (0.01%) (init= 9.889702)
+ pk4_amplitude: 110.329860 +/- 2.513495 (2.28%) (init= 100)
+ pk4_fwhm: 0.14992825 +/- 0.001695 (1.13%) == '2.0000000*pk4_sigma'
+ pk5_fraction: 0.98649024 +/- 0.219909 (22.29%) (init= 0)
+ pk5_sigma: 0.04167542 +/- 0.003769 (9.05%) (init= 0.03)
+ pk5_center: 10.1371170 +/- 0.001982 (0.02%) (init= 10.13994)
+ pk5_amplitude: 19.7762331 +/- 2.139238 (10.82%) (init= 100)
+ pk5_fwhm: 0.08335085 +/- 0.007539 (9.05%) == '2.0000000*pk5_sigma'
+ pk6_fraction: 0.02796641 +/- 0.166538 (595.50%) (init= 0)
+ pk6_sigma: 0.08238659 +/- 0.001861 (2.26%) (init= 0.03)
+ pk6_center: 10.3885518 +/- 0.001341 (0.01%) (init= 10.39018)
+ pk6_amplitude: 48.4116664 +/- 3.192891 (6.60%) (init= 100)
+ pk6_fwhm: 0.16477319 +/- 0.003723 (2.26%) == '2.0000000*pk6_sigma'
+[[Correlations]] (unreported correlations are < 0.500)
+ C(bg_intercept, bg_slope) = -0.984
+ C(pk6_fraction, pk6_amplitude) = 0.942
+ C(pk4_fraction, pk4_amplitude) = 0.904
+ C(pk1_fraction, pk1_amplitude) = 0.902
+ C(pk0_fraction, pk0_amplitude) = 0.821
+ C(pk2_fraction, pk2_amplitude) = 0.819
+ C(pk5_fraction, pk5_amplitude) = 0.772
+ C(bg_slope, pk6_amplitude) = -0.659
+ C(pk3_fraction, pk3_sigma) = -0.654
+ C(pk4_amplitude, pk5_amplitude) = -0.638
+ C(pk3_fraction, pk3_amplitude) = 0.616
+ C(bg_intercept, pk6_amplitude) = 0.595
+ C(bg_slope, pk6_fraction) = -0.594
+ C(pk5_amplitude, pk6_amplitude) = -0.581
+ C(pk2_fraction, pk2_sigma) = -0.560
+ C(pk0_fraction, pk0_sigma) = -0.555
+ C(bg_intercept, pk6_fraction) = 0.536
+ C(pk4_fraction, pk5_amplitude) = -0.514
+ C(pk1_fraction, pk1_sigma) = -0.511
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Use the last fitting results for the next fitting¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[[Model]]
+ (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))
+[[Fit Statistics]]
+ # function evals = 503
+ # data points = 480
+ # variables = 30
+ chi-square = 47779.818
+ reduced chi-square = 106.177
+ Akaike info crit = 2268.275
+ Bayesian info crit = 2393.488
+[[Variables]]
+ bg_intercept: 28.3283335 +/- 4.486009 (15.84%) (init= 29.17228)
+ bg_slope: -3.99541920 +/- 0.582845 (14.59%) (init=-3.835262)
+ pk0_fraction: 0.74671887 +/- 0.313435 (41.97%) (init= 0.5159095)
+ pk0_sigma: 0.03050200 +/- 0.004038 (13.24%) (init= 0.03063717)
+ pk0_center: 6.69504203 +/- 0.002299 (0.03%) (init= 6.695189)
+ pk0_amplitude: 7.39223915 +/- 0.896851 (12.13%) (init= 6.552168)
+ pk0_fwhm: 0.06100400 +/- 0.008076 (13.24%) == '2.0000000*pk0_sigma'
+ pk1_fraction: 0.00473684 +/- 0.983531 (20763.43%) (init= 0.5998817)
+ pk1_sigma: 0.04023895 +/- 0.007253 (18.03%) (init= 0.06145042)
+ pk1_center: 8.27500294 +/- 0.005252 (0.06%) (init= 8.270734)
+ pk1_amplitude: 3.38135714 +/- 1.077574 (31.87%) (init= 4.56443)
+ pk1_fwhm: 0.08047791 +/- 0.014507 (18.03%) == '2.0000000*pk1_sigma'
+ pk2_fraction: 0.53523776 +/- 0.009813 (1.83%) (init= 0.5599822)
+ pk2_sigma: 0.04133250 +/- 0.000128 (0.31%) (init= 0.04126828)
+ pk2_center: 8.56765135 +/- 7.99e-05 (0.00%) (init= 8.567584)
+ pk2_amplitude: 298.846896 +/- 1.093183 (0.37%) (init= 302.0911)
+ pk2_fwhm: 0.08266501 +/- 0.000256 (0.31%) == '2.0000000*pk2_sigma'
+ pk3_fraction: 1.2819e-09 +/- 0.575693 (44910663219.10%) (init= 0.7305277)
+ pk3_sigma: 0.06052691 +/- 0.005850 (9.67%) (init= 0.06668191)
+ pk3_center: 9.38425335 +/- 0.004238 (0.05%) (init= 9.378292)
+ pk3_amplitude: 7.71940342 +/- 1.508313 (19.54%) (init= 6.705586)
+ pk3_fwhm: 0.12105382 +/- 0.011701 (9.67%) == '2.0000000*pk3_sigma'
+ pk4_fraction: 0.33341226 +/- 0.051429 (15.43%) (init= 0.3153022)
+ pk4_sigma: 0.07516648 +/- 0.000753 (1.00%) (init= 0.07496413)
+ pk4_center: 9.89032149 +/- 0.000512 (0.01%) (init= 9.890326)
+ pk4_amplitude: 111.694162 +/- 2.284480 (2.05%) (init= 110.3299)
+ pk4_fwhm: 0.15033296 +/- 0.001505 (1.00%) == '2.0000000*pk4_sigma'
+ pk5_fraction: 0.96950193 +/- 0.178592 (18.42%) (init= 0.9864902)
+ pk5_sigma: 0.04213893 +/- 0.003350 (7.95%) (init= 0.04167543)
+ pk5_center: 10.1370259 +/- 0.001720 (0.02%) (init= 10.13712)
+ pk5_amplitude: 19.4688965 +/- 1.893864 (9.73%) (init= 19.77623)
+ pk5_fwhm: 0.08427786 +/- 0.006701 (7.95%) == '2.0000000*pk5_sigma'
+ pk6_fraction: 0.08936925 +/- 0.145983 (163.35%) (init= 0.02796641)
+ pk6_sigma: 0.08243764 +/- 0.001599 (1.94%) (init= 0.0823866)
+ pk6_center: 10.3884873 +/- 0.001169 (0.01%) (init= 10.38855)
+ pk6_amplitude: 50.7440009 +/- 2.863534 (5.64%) (init= 48.41167)
+ pk6_fwhm: 0.16487528 +/- 0.003199 (1.94%) == '2.0000000*pk6_sigma'
+[[Correlations]] (unreported correlations are < 0.500)
+ C(bg_intercept, bg_slope) = -0.985
+ C(pk6_fraction, pk6_amplitude) = 0.948
+ C(pk3_fraction, pk3_amplitude) = 0.916
+ C(pk4_fraction, pk4_amplitude) = 0.909
+ C(pk1_fraction, pk1_amplitude) = 0.900
+ C(pk2_fraction, pk2_amplitude) = 0.819
+ C(pk5_fraction, pk5_amplitude) = 0.745
+ C(pk0_fraction, pk0_amplitude) = 0.735
+ C(bg_slope, pk6_amplitude) = -0.670
+ C(pk4_amplitude, pk5_amplitude) = -0.641
+ C(pk0_fraction, pk0_sigma) = -0.609
+ C(bg_intercept, pk6_amplitude) = 0.608
+ C(bg_slope, pk6_fraction) = -0.608
+ C(pk2_fraction, pk2_sigma) = -0.564
+ C(pk5_amplitude, pk6_amplitude) = -0.552
+ C(bg_intercept, pk6_fraction) = 0.552
+ C(pk4_fraction, pk5_amplitude) = -0.522
+ C(pk1_fraction, pk1_sigma) = -0.502
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Fix some parameters for fitting¶
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[30]:
+
+
+
+
+
+
Parameters([('bg_intercept',
+ <Parameter 'bg_intercept', value=28.32833357262428 +/- 4.49, bounds=[-inf:inf]>),
+ ('bg_slope',
+ <Parameter 'bg_slope', value=-3.9954192033102194 +/- 0.583, bounds=[-inf:inf]>),
+ ('pk0_fraction',
+ <Parameter 'pk0_fraction', value=0.746718872944975 +/- 0.313, bounds=[0.0:1.0]>),
+ ('pk0_sigma',
+ <Parameter 'pk0_sigma', value=0.030502000098484028 +/- 0.00404, bounds=[0.0:0.5]>),
+ ('pk0_center',
+ <Parameter 'pk0_center', value=6.6950420336582175 +/- 0.0023, bounds=[6.1991389:7.1991389]>),
+ ('pk0_amplitude',
+ <Parameter 'pk0_amplitude', value=7.392239151294238 +/- 0.897, bounds=[0.0:inf]>),
+ ('pk0_fwhm',
+ <Parameter 'pk0_fwhm', value=0.061004000196968056 +/- 0.00808, bounds=[-inf:inf], expr='2.0000000*pk0_sigma'>),
+ ('pk1_fraction',
+ <Parameter 'pk1_fraction', value=0.0047368437901394445 +/- 0.984, bounds=[0.0:1.0]>),
+ ('pk1_sigma',
+ <Parameter 'pk1_sigma', value=0.040238957993689484 +/- 0.00725, bounds=[0.0:0.5]>),
+ ('pk1_center',
+ <Parameter 'pk1_center', value=8.275002942079906 +/- 0.00525, bounds=[7.7944203000000005:8.7944203]>),
+ ('pk1_amplitude',
+ <Parameter 'pk1_amplitude', value=3.3813571421224795 +/- 1.08, bounds=[0.0:inf]>),
+ ('pk1_fwhm',
+ <Parameter 'pk1_fwhm', value=0.08047791598737897 +/- 0.0145, bounds=[-inf:inf], expr='2.0000000*pk1_sigma'>),
+ ('pk2_fraction',
+ <Parameter 'pk2_fraction', value=0.5352377607277863 +/- 0.00981, bounds=[0.0:1.0]>),
+ ('pk2_sigma',
+ <Parameter 'pk2_sigma', value=0.0413325079572846 +/- 0.000128, bounds=[0.0:0.5]>),
+ ('pk2_center',
+ <Parameter 'pk2_center', value=8.567651349923386 +/- 7.99e-05, bounds=[8.0655138:9.0655138]>),
+ ('pk2_amplitude',
+ <Parameter 'pk2_amplitude', value=298.84689642751647 +/- 1.09, bounds=[0.0:inf]>),
+ ('pk2_fwhm',
+ <Parameter 'pk2_fwhm', value=0.0826650159145692 +/- 0.000256, bounds=[-inf:inf], expr='2.0000000*pk2_sigma'>),
+ ('pk3_fraction',
+ <Parameter 'pk3_fraction', value=1.2818636707656594e-09 +/- 0.576, bounds=[0.0:1.0]>),
+ ('pk3_sigma',
+ <Parameter 'pk3_sigma', value=0.060526913876875005 +/- 0.00585, bounds=[0.0:0.5]>),
+ ('pk3_center',
+ <Parameter 'pk3_center', value=9.384253358157784 +/- 0.00424, bounds=[8.8892212:9.8892212]>),
+ ('pk3_amplitude',
+ <Parameter 'pk3_amplitude', value=7.719403428960279 +/- 1.51, bounds=[0.0:inf]>),
+ ('pk3_fwhm',
+ <Parameter 'pk3_fwhm', value=0.12105382775375001 +/- 0.0117, bounds=[-inf:inf], expr='2.0000000*pk3_sigma'>),
+ ('pk4_fraction',
+ <Parameter 'pk4_fraction', value=0.33341226288747644 +/- 0.0514, bounds=[0.0:1.0]>),
+ ('pk4_sigma',
+ <Parameter 'pk4_sigma', value=0.07516648474708912 +/- 0.000753, bounds=[0.0:0.5]>),
+ ('pk4_center',
+ <Parameter 'pk4_center', value=9.890321491864697 +/- 0.000512, bounds=[9.3897016:10.3897016]>),
+ ('pk4_amplitude',
+ <Parameter 'pk4_amplitude', value=111.69416284692755 +/- 2.28, bounds=[0.0:inf]>),
+ ('pk4_fwhm',
+ <Parameter 'pk4_fwhm', value=0.15033296949417824 +/- 0.00151, bounds=[-inf:inf], expr='2.0000000*pk4_sigma'>),
+ ('pk5_fraction',
+ <Parameter 'pk5_fraction', value=0.969501936318661 +/- 0.179, bounds=[0.0:1.0]>),
+ ('pk5_sigma',
+ <Parameter 'pk5_sigma', value=0.04213893040841052 +/- 0.00335, bounds=[0.0:0.5]>),
+ ('pk5_center',
+ <Parameter 'pk5_center', value=10.137025962124882 +/- 0.00172, bounds=[9.639942:10.639942]>),
+ ('pk5_amplitude',
+ <Parameter 'pk5_amplitude', value=19.46889654226545 +/- 1.89, bounds=[0.0:inf]>),
+ ('pk5_fwhm',
+ <Parameter 'pk5_fwhm', value=0.08427786081682104 +/- 0.0067, bounds=[-inf:inf], expr='2.0000000*pk5_sigma'>),
+ ('pk6_fraction',
+ <Parameter 'pk6_fraction', value=0.089369250814746 +/- 0.146, bounds=[0.0:1.0]>),
+ ('pk6_sigma',
+ <Parameter 'pk6_sigma', value=0.08243764124151592 +/- 0.0016, bounds=[0.0:0.5]>),
+ ('pk6_center',
+ <Parameter 'pk6_center', value=10.388487314912071 +/- 0.00117, bounds=[9.890182:10.890182]>),
+ ('pk6_amplitude',
+ <Parameter 'pk6_amplitude', value=50.74400090246448 +/- 2.86, bounds=[0.0:inf]>),
+ ('pk6_fwhm',
+ <Parameter 'pk6_fwhm', value=0.16487528248303185 +/- 0.0032, bounds=[-inf:inf], expr='2.0000000*pk6_sigma'>)])
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[[Model]]
+ (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))
+[[Fit Statistics]]
+ # function evals = 510
+ # data points = 480
+ # variables = 30
+ chi-square = 50433.257
+ reduced chi-square = 112.074
+ Akaike info crit = 2294.218
+ Bayesian info crit = 2419.431
+[[Variables]]
+ bg_intercept: 23.8937712 +/- 0 (0.00%) (init= 28.32833)
+ bg_slope: -3.43395798 +/- 0 (0.00%) (init=-3.995419)
+ pk0_fraction: 0.81497275 +/- 0 (0.00%) (init= 0.7467189)
+ pk0_sigma: 0.03062433 +/- 0 (0.00%) (init= 0.030502)
+ pk0_center: 6.69497495 +/- 0 (0.00%) (init= 6.695042)
+ pk0_amplitude: 7.71600697 +/- 0 (0.00%) (init= 7.392239)
+ pk0_fwhm: 0.06124866 +/- 0 (0.00%) == '2.0000000*pk0_sigma'
+ pk1_fraction: 0.00415563 +/- 0 (0.00%) (init= 0.004736844)
+ pk1_sigma: 0.04028962 +/- 0 (0.00%) (init= 0.04023896)
+ pk1_center: 8.30000000 +/- 0 (0.00%) (init= 8.3)
+ pk1_amplitude: 2.92514518 +/- 0 (0.00%) (init= 1000)
+ pk1_fwhm: 0.08057924 +/- 0 (0.00%) == '2.0000000*pk1_sigma'
+ pk2_fraction: 0.53241065 +/- 0 (0.00%) (init= 0.5352378)
+ pk2_sigma: 0.04134291 +/- 0 (0.00%) (init= 0.04133251)
+ pk2_center: 8.56765142 +/- 0 (0.00%) (init= 8.567651)
+ pk2_amplitude: 298.492876 +/- 0 (0.00%) (init= 298.8469)
+ pk2_fwhm: 0.08268582 +/- 0 (0.00%) == '2.0000000*pk2_sigma'
+ pk3_fraction: 0.00071570 +/- 0 (0.00%) (init= 1.281864e-09)
+ pk3_sigma: 0.05922553 +/- 0 (0.00%) (init= 0.06052691)
+ pk3_center: 9.38410655 +/- 0 (0.00%) (init= 9.384253)
+ pk3_amplitude: 7.42227692 +/- 0 (0.00%) (init= 7.719403)
+ pk3_fwhm: 0.11845107 +/- 0 (0.00%) == '2.0000000*pk3_sigma'
+ pk4_fraction: 0.37237975 +/- 0 (0.00%) (init= 0.3334123)
+ pk4_sigma: 0.07485621 +/- 0 (0.00%) (init= 0.07516648)
+ pk4_center: 9.89045474 +/- 0 (0.00%) (init= 9.890321)
+ pk4_amplitude: 113.124270 +/- 0 (0.00%) (init= 111.6942)
+ pk4_fwhm: 0.14971242 +/- 0 (0.00%) == '2.0000000*pk4_sigma'
+ pk5_fraction: 0.88984288 +/- 0 (0.00%) (init= 0.9695019)
+ pk5_sigma: 0.04142481 +/- 0 (0.00%) (init= 0.04213893)
+ pk5_center: 10.1375474 +/- 0 (0.00%) (init= 10.13703)
+ pk5_amplitude: 18.2814904 +/- 0 (0.00%) (init= 19.4689)
+ pk5_fwhm: 0.08284962 +/- 0 (0.00%) == '2.0000000*pk5_sigma'
+ pk6_fraction: 0.01367158 +/- 0 (0.00%) (init= 0.08936925)
+ pk6_sigma: 0.08278052 +/- 0 (0.00%) (init= 0.08243764)
+ pk6_center: 10.3882145 +/- 0 (0.00%) (init= 10.38849)
+ pk6_amplitude: 49.3175883 +/- 0 (0.00%) (init= 50.744)
+ pk6_fwhm: 0.16556104 +/- 0 (0.00%) == '2.0000000*pk6_sigma'
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.ipynb b/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.ipynb
new file mode 100644
index 0000000..443e8b9
--- /dev/null
+++ b/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.ipynb
@@ -0,0 +1,1162 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Peak fitting for XRD pattern from dpp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder. \n",
+ "- In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`. \n",
+ "- `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "sys.path.append('../local_modules')\n",
+ "sys.path.append('../../peakpo')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Check the versio of pyFAI in your conda environment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/DanShim/anaconda/envs/peakpo7721/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
+ " from ._conv import register_converters as _register_converters\n",
+ "WARNING:pyFAI.opencl.common:Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'0.14.2'"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pyFAI\n",
+ "pyFAI.version"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import dill\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "../data/hStv/hSiO2_404_009.dpp\n"
+ ]
+ }
+ ],
+ "source": [
+ "%ls ../data/hStv/*.dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "filen_dpp = '../data/hStv/hSiO2_404_009.dpp'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(filen_dpp, 'rb') as f:\n",
+ " model_dpp = dill.load(f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup a new PeakPo model and assign info from dpp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from model import PeakPoModel\n",
+ "model = PeakPoModel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make sure to reset the chi folder location using the `new_chi_path` option."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model.set_from(model_dpp, new_chi_path='../data/hStv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "See `xrd_pattern.ipynb` file for basic operations."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Make a simple plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following three modules are all in the `../local_modules` folder."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from xrd_unitconv import * # Make conversios between different x-axis units"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import quick_plots as quick # A function to plot XRD pattern\n",
+ "import fancy_plots as fancy # A function to plot XRD pattern"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "%config InlineBackend.figure_format = 'retina'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(6.0005517, 20.994111, -49.297263099930205, 2799.9014723947657)\n",
+ "(6.0005517, 20.994111, -2334.2171366494, 2799.9014723947657)\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABCsAAAHOCAYAAACxeoPHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8VFX+//H3zaRQI1UEpIuCUjQoICggwq50pamgorgW1GVdUNm1IJavuygiYGEV/AGKYMGKBWkBFFQEIiCKdAQjAQKEJIS0Ob8/4lxTJsnM5CYzCa/n4zEPp9x7zgm57HLf8znnWMYYAQAAAAAAhIqwYA8AAAAAAAAgN8IKAAAAAAAQUggrAAAAAABASCGsAAAAAAAAIYWwAgAAAAAAhBTCCgAAAAAAEFIIKwAAAAAAQEghrAAAAAAAACGFsAIAAAAAAIQUwgoAAAAAABBSCCsAAAAAAEBIIawAAAAAAAAhJTzYAyiOZVl7JUVL2hfkoQAAAAAAgLyaSjppjGnmZKMhH1ZIamRZluuSSy6pFeyBIHT8/PPPkqTWrVsHeSR5bdq0SZJ07rnn6uyzzw7yaM48oXpdILi4LuAN1wW84bqAN1wX8Ibr4k8///yz0tLSHG+3PIQV6ZUqVaqycePGYI8DIaRDhw6SpFC7LizLkiTdfffdeuSRR4I8mjNPqF4XCC6uC3jDdQFvuC7gDdcFvOG6+FOHDh20adOmfU63y5oVQCnIyMgI9hAAAAAAoNwirAAcYoyxn6enpwdxJAAAAABQvhFWAA7JPU/r5MmTQRwJAAAAAJRvhBWAQ5KSkuznR48eDeJIAAAAAKB8I6wAHJK7muLIkSNBHAkAAAAAlG/lYTeQ7a1bt44J9iAQWkJx1d3clRWEFcERitcFgo/rAt5wXcAbrgt4w3UBb7guSh+VFYBDmAYCAAAAAM4grAAckjusOHXqVBBHAgAAAADlG2EF4JDcYcXp06eDOBIAAAAAKN8IKwCH5A4rMjMz5Xa7gzgaAAAAACi/CCsAh6SmpuZ5nZ6eHqSRAAAAAED5RlgBOCQjIyPPa8IKAAAAAAgMYQXgkPxhBetWAAAAAEBgzoiwwu1269JLL5VlWdqwYYOjbb/zzjuyLEt33nmno+1WBLGxsRo3bpxiYmJUv359RUZGqnr16mrRooX69++vqVOnKj4+3qe29u3bJ8uyfHpERUWpUaNGGjp0qBYvXixjTCn/pDmorCg9kyZNsn+/kyZN8umclJQUXXnllXmujf/+97+lO1AAAAAAjjgjwopXXnlFGzduVP/+/XXppZc62vbw4cPVtm1bzZ49W998842jbRfmgQcesG++Vq1aVezxycnJ+s9//qOOHTsqOjpalStXVosWLTRkyBB98sknjt/Mf/fdd+ratat69uypF154QXFxcTp06JAyMzOVkpKiPXv26LPPPtP48ePVpEkT3XvvvUpJSXGs/4yMDB08eFDvv/++Bg4cqL59++rEiROOtV+Y/OFEaVZWbN26VePHj1e7du1Up04dRUREqFatWurQoYP+/ve/+xzKZWRk6OWXX1a3bt1Us2ZNRUVFqWnTpurTp48WLFhQIIApTEJCgh555BG1b99e1apVU7Vq1XTBBRfo5ptvVmxsbEl+1ICkpKSoT58++vrrr+33pk6dqn/9619lPhYAAAAA/gsP9gBK25EjR/Too49KkiZOnOh4+5ZlaeLEiRo2bJjGjBmjjRs3yuVyOd6Px+eff66pU6f6fHxcXJwGDBig3377Lc/7e/bs0Z49e/TBBx+ob9++mj9/vmrWrFni8c2bN0933HGHMjMzJUkRERG66qqr1KlTJ9WtW1dpaWnauXOnVqxYob179yorK0uvvPKKli1bpjVr1uicc87xqZ+ZM2d6fT89PV2HDx/WypUr9e2330qSlixZosGDB2v58uUKCyu9fK6sKiuefvppPfHEE8rKysrz/vHjx3X8+HFt2rRJL730km6//XbNnDlTERERXtvZt2+f+vXrp59++inP+/v379f+/fu1ZMkSTZ8+Xe+9954aN25c6HiWLl2q66+/vkAgtGPHDu3YsUPz58/XbbfdpldeeUWVKlUK8Kf2Xf6gwrIsvfTSS7rnnntKvW8AAAAAzqjwYcWjjz6qpKQkXX311brssstKpY/BgwerdevW2rx5s1588UXdf//9pdLPwYMHNWrUKJ8rIfbv36/evXsrMTFRktSsWTMNHz5c55xzjvbv36+FCxcqISFBn3/+uQYNGqTY2NgSBS1vvPGGbr31Vvv10KFD9cILL+jcc8/1evzixYs1ZswY/fbbb9q5c6f69Omj7777TpGRkcX2dffddxd7zEcffaRhw4YpKytLsbGxeuedd3TjjTf6/PP4qyzWrJg5c6Yee+wx+3WXLl3Us2dP1alTR7///ruWLl2quLg4SdLrr78ul8ulV199tUA7SUlJ6t27t3bt2iVJqlevnm688UY1adJEhw4d0nvvvac9e/Zo/fr16t27tzZt2qSqVasWaGfjxo0aNGiQ/bO2bdtW1157rWrWrKkdO3Zo4cKFSkpK0pw5c5Senq633nrL8T+T3FJSUtS3b187qAgLC9OsWbM0evToUu0XAAAAgMOMMSH9kLQxJibGBOKnn34yLpfLSDJLliwJqA1fvfbaa0aSiY6ONgkJCY63n5WVZa688kojKc8jNja20HP69+9vHzd8+HCTnp6e5/OTJ0+aLl262MdMnjw54PFt3brVVKlSxW5r4sSJPp138OBBU79+ffu8GTNmeD1u7969eX5uX40dO9Y+p1+/fj6fF4jrr78+zxjXrFnjaPvJyckmOjraSDIul8u8/fbbXo+bN2+eCQsLM5KMZVlmz549BY6577777HF2797dJCUl5fk8IyPDDB482D5mzJgxBdrIzs427du3t4/55z//adxud55j4uPjzfnnn28f88477wT0sz/++ON2G48//rjXY5KTk/P8HXG5XObNN98MqD8AAAAAvomJiTGSNhqHs4AKvWbFxIkTlZ2drQsuuEB/+ctfSrWvm266STVq1NDJkyf13HPPOd7+xIkT9dVXXykyMlIxMTHFHr9lyxZ9+umnkqQmTZpozpw5BSoWqlevrrlz5yo8PKfA5vnnnw946sLYsWN16tQpSTkVFU888YRP5zVs2FDTp0+3X0+ZMiWg/gtz3XXX2c+dXlw1v9Jes2LhwoU6efKkJOmOO+7Q9ddf7/W4W265RSNHjpSUE0auWLEiz+eHDx/WrFmzJEnR0dFauHChoqOj8xwTERGh2bNnq0aNGpJyqjQOHTqU55hPP/1UmzdvliR17NhRU6ZMkWVZeY6pX79+nsqOZ555xq+f2Vepqanq27evvvrqK0lSeHi4FixYoJtuuqlU+gMAAABQuipsWLF792598MEHkqTbbrutwE1UfuvXr9eYMWN00UUXqVq1aoqIiFDt2rXVqVMnTZgwQdu3by/y/MqVK+uGG26QJM2aNcu+cXfCsmXL7F0Mnn32WbVt27bYc+bNm2c/v+eee1SlShWvx7Vs2VI9evSQlHMTu3z5cr/H9/3339uLKEZGRuqll17y6/whQ4aoXr16kqRff/21wBoKJdGgQQP7+bFjxwo9bsWKFRo1apRatmypKlWqKDIyUvXq1VO3bt30xBNP6ODBg8X2VdprVmzatMl+PmTIkCKP7dChg/388OHDeT5755137LGNHDlS9evX99pGzZo1NXToUEk5P9v777+f5/Pc19j48eMLXQ+kR48eOu+88yRJmzdv1rZt24ocu7/yBxWRkZF67733NHz4cEf7AQAAAFB2KmxYMXfuXLndbklF39hlZGRo9OjR6tSpk/73v//pp59+UmpqqrKysnTs2DGtX79ezz77rC666KI8awV4M3DgQEk56wF8+OGHjvwchw4d0k033SS3261+/frpH//4h0/nffHFF/bzQYMGFXnsX//6V/t5IGFF7pvWwYMH28GDr8LCwrR06VLFxsYqNjZWdevW9XsMhUlNTbWfV6tWrcDnJ0+eVN++fdWrVy+98cYb2rVrl9LS0pSZmanDhw/rq6++0qRJk9SiRQuvaz/k5gkrPP04XVmRmZmpJk2a2I+i/P777/bz2rVr5/nMiWsjOztbS5culZRTxdCvX7+A2ikpT1CxZs0aSVKlSpX00Ucf6dprr3WsDwAAAABlr8IusPnee+9JyllU0vOtrjeTJk3SnDlzJElRUVEaOnSoLr74YrlcLsXHx+vzzz/XTz/9JLfbraeffloXXnhhoYs09ujRQ1FRUUpPT9f7779vl+IHyu12a+TIkTp8+LAaNGiguXPn+nRecnKyXQlSs2ZNXXDBBUUef8kll9jPt27d6vc4c2+f2rt3b7/Pl6R27doFdF5xcm8n660i5e6777Zv3qOjo3X99derVatWcrvdOnjwoD766CPt379fGRkZGjNmjNq0aaOuXbt67csTVkRHRyslJcXxyorZs2f7dFxiYqLmz58vKScIyv87+f777+3nnTt3LrKtwq6N7du329vNtmnTxuvim760UxL5g4oqVaro448/Vq9evRxpHwAAAEDwVMiwIj4+Xr/88ouknLn0hcnMzLS3wKxWrZrWrVtX4Ib2ueee05NPPqnHH39ckjRnzpxCw4rKlSurbdu22rBhg5YuXaqsrCx7PYhAPPXUU1q5cqXCwsL01ltvqU6dOj6dt3PnTnvHkGbNmhV7fO5v6Xfv3u3XGFNSUvJM2yitHVcCceTIkTzrhwwePDjP5wkJCXrnnXck5ayd8c0336hRo0Z5jpk6daruvPNOvf766zLGaN68eYWGFZ5wIjo6WvHx8aWyG0h+xhi53W653W4lJCQoNjZWTz75pL1V7YQJE9S8eXP7+GPHjuno0aOSpFq1aumss84qsv3GjRvLsiwZY7R//35lZ2fL5XLZf78k5Wm/MCW5xrzJH1RIUr9+/QgqAAAAgAqiQk4D+fbbb+3nRX1jv3PnTp04cUKSNHr06ELXgpgwYYIiIiIkSXv37i2yb883yKmpqSX6Bnn16tV66qmnJEmPPPKIva6EL+Lj4+3nuddsKEzuaRvHjx/3fZDKWQ/BE4xI0jnnnOPX+U5LTU3Vtm3bNGXKFLVr10779u2TJDVq1Ei33357nmM3btxoTxUaP358gaBCyqlMeOSRR+zXRf3+c1dWSM6vWeHN7t27FR4ersjISDVq1Ei33HKLdu3apRo1aui1114rsKClv9dGRESEatasKUnKyspScnJyQO2U5BrLz1tQIeVUUzk1/QoAAABAcFXIyoqff/7Zfl7U3P7o6Gg7EBgwYEChx0VGRioiIkKZmZnKzMwssu/clQybN2/OU/7uqyNHjmjEiBHKzs7WFVdcYVd1+MpzQymp2PJ8KWeev0fuNR58kZiYmOe1Z/cIbz799NMi/5w9unfvnmdqiTfFLZiaW7Vq1bRw4cICa1Y0btzY/v3nr7rILfefYVG//2CEFYU5ceKEFi1apMsvv1xt2rSx3/f32pAKXh81atQo02ssv+nTp9u/h9q1a6thw4basmWLJOlvf/ubOnbsqIYNG5aoDwAAAADBVSHDCs+36VLR3/qee+65evTRR4tsKzk5WdOnT/d5d49zzz3Xfr5nzx6fzsnNGKObb75Z8fHxqlmzphYsWCCXy+VXG1lZWfbzqKioYo/PfeNf2I4OhcnOzi7w2lOFEgquuuoqvfDCC2rfvn2Bz9q0aZPnRt6bo0eP+rwNqyesqF69uiTnF9j05uyzz9bMmTOVkZGhhIQErV+/XqtWrVJWVpaWLl2qHj16aPXq1brooosk+X9tSN6vj7K8xvLzBBX16tXT8uXLFRUVpUsuuUSpqak6duyYbrnlFi1fvtyvQAsAAABAaKmQYYVnTr7057fcvpyzevVqbdiwQXv37tW+ffu0b98+JSQk+NV37jUA8m8Z6YvJkyfryy+/lCS9/vrrXqcmFKdy5cr28+IqQSQpLS3Nfl7YFqeFyb/TRFJSUp5v0XNr166dvUZIfr/99puefvppn/strB0ppxKmbt26uvTSSwvdltNb/6tWrVJcXJz9u9+3b1+BypGi5F6zIvfr0hQdHa277747z3u7d+/WsGHDFBcXp8TERN1///1atmyZJP+vDcn79VGW15g3DRs21IoVK+zFY6dMmaIxY8ZIklauXKnnnntODz30UIn7AQAAABAcFTKsyF0FUdiNs8ehQ4f0wAMPaMGCBXnWXsitS5cuWrdunU99574R87fcfePGjfb2qPfcc4+uu+46v873yB3Q5C7XL4xnVwdJfm8bmv/4nTt3Frp1aePGjQvcWHusXbvWr7CisHb8tXPnTo0dO1ZLlizx+nlYWJg6duyYZx2UwuSfBlIWlRXetGjRQh9++KFatmypzMxMLV++XHv37lWzZs38vjakP6/jqKgou2qkLK+x/Jo2baqVK1fmmXJ19913a/Hixfr8888lSY8++qh69eqlmJiYEvUFAAAAIDgqZFiRO3QoLICQpF27dqlLly46cuSIpJxv5Dt27Kh27dqpefPmuuCCCxQTE6MGDRr4XFKeuz9/p29s3brVLq9/5ZVX9MorrxR7zlVXXWU//8c//qFp06apadOm9nueXSGKcuDAAfu5L7uH5FajRg21aNHC3uHh+++/1xVXXOFXG5J08OBBv88pqW+++UZXX321/a1/1apV1alTJ7Vt21bNmjVT69atFRMTo5SUFJ/+XEJpzYomTZqoc+fO+uqrryRJv/zyi5o1a6bGjRsrLCxMbrfbp2vj8OHD9s/RpEkTewpHWV5j+Y0aNcprG6+//rratm2ro0ePKjMzUyNGjNCmTZscqeQAAAAAULYqZFiRe5HH3OXn+Y0bN84OKgYPHqxXX33V5+1BC5P723RfFzB0WvPmzRUZGamMjAxt377d3m6yMLt27bKfX3zxxX7317NnTzusWLRokf75z3/63cbatWv9Pqek7rrrLvv6uOeee/Tf//7XrhzIzdcKhNJcs+LLL7/UNddcI0nq3bu3li5dWuw5uddPSUpKkpRTadSkSRPt3btXx48f1++//17kVJnCro1WrVrZz7dt21bsWEp6jfninHPO0WuvvWYvlvrLL7/o/vvv12uvvVYq/QEAAAAoPRUyrKhVq5b93HOTll96erq9NkR0dLTefPPNQr+BPXTokM99576x9Tf4uPzyy4tci8Fj3rx59rSEf/7znzr//PMl/blNa3h4uLp27arY2FilpaVp/fr1uvzyywttb/Xq1fZzf7ZI9RgxYoRmzZolSVq3bp2+//57XXbZZT6ff+rUKb399tt+91sS+/bts7eWPf/88/XSSy8VWj3j67olngqE0ggrcgcK27dv9+kcz7a8Ut6tQ3v06GFvwbpq1SrdeOONhbZR2LXRuHFjNWvWTHv37tWOHTsUHx9f5GK2Jb3GfHXddddp1KhRmjdvniRp1qxZ6tOnT8BTqgAAAAAER4UMK1q2bGk/L2x6QWJiov1NeNOmTYssFf/000997js+Pt5+nrtU3hcXXHCBvWBgUb799ls7rBg4cKDXm7+BAwcqNjZWUs4NW2FhRWpqqj744ANJOeHK1Vdf7deYpZybz65du9rVEffdd5/WrFnj824TEydOtCtcykru31OrVq2KnObjy+/fGGMvNOnZItXXBSx9cdFFFyk6OlonT57UgQMHtH379jzVDfklJSXp66+/lpQzvSl3eDRw4EDNmTNHUs61UVhYYYzRW2+9JSknABsyZEiezwcOHKjp06dLkmbPnq2JEyd6befgwYP2VrTt2rVT69atffiJAzdjxgytXr3a3hWI7UwBAACA8qdkewiGqNxl5p5vkPOrUaOGPf9+x44dOn78uNfjtm3bpn/9618+971//377eWnflBVl9OjR9s4k8+fP1/r1670e9/DDD9u7p9xxxx2KjIwMqL9p06bZ4cT69et1ww035FlU0Zvs7GxNnDhRzz//fEB9lkTu6psffvjBDq7yW7VqlU/j8wQTERER9p9DYW0GwuVy6YYbbrBfP/TQQ4Wux2KM0X333WdX+QwfPjzPlKQBAwaoRYsWkqTY2Fh9+OGHXtuZNm2aPcVj2LBhOvvss/N8PnbsWHt60bRp07xu1WuM0d///nf7z+Lee+/16ectiejoaM2bN8/+++3ZztTtdpd63wAAAACcUSHDig4dOtg3UXFxcV6PqVKlirp16yYpp1y/f//+9rQAt9utH3/8URMmTNCll16qEydO2JUXiYmJOn36dKE3Plu2bJGUs3NCMHciiI6O1n/+8x9JOTfS/fr108KFC+2bxn379mn06NGaMWOGpJz1DSZMmBBwf5deemmeKSwfffSRWrVqpalTp2rHjh3Kzs62Pzt48KBef/11XXzxxXrqqack5dwMn3POOQH3768LLrhAzZs3lyT9+uuvGjZsmB1sZWdna/369br77rvVq1cvWZZlX0+///673G53nt//vn377IAiMzNTO3bssJ876eGHH7anmCxevFj9+/fXd999Z4cWmZmZWr16tXr16qX58+dLygll8u+y4nK5NGPGDLuaZOTIkXr55ZftXXQSEhI0YcIEPfDAA5JyprU888wzBcbTvHlzjR8/XpJ0/Phx9erVS1988YW9SOy2bds0cOBAffTRR5KkSy65RKNHj3b0z6Qw3bp1s8cm5WxnOmXKlDLpGwAAAIADjDEh/ZC0MSYmxvirW7duRpI555xzCj1mw4YNplKlSkaS/ahWrZqJiIiwX0dGRpr58+ebQYMG2e9VrVrVDBs2rEB7GRkZpnr16kaSufrqq/0es69GjRpljyU2NtbnYyUZl8tloqOj87wXHR1tvvvuO0fG9t5775kaNWrkaV+SCQsLM7Vq1TJRUVF53rcsy4wbN85kZ2ebm266yUgy3bt3L9Du3r1785znhMWLF5uwsLA87VavXt24XK48r1esWGHat2+f589r3LhxhY7tmWeeMZJM3759HRlnbh988IGJjIzM0194eLipXbt2nutWkqldu7b5+uuvC21r4sSJBX4XZ511Vp73IiIizCeffFJoGxkZGaZXr14FzqlatWqe9xo0aGB2794d8M/9+OOP2209/vjjPp2Tnp5u2rVrl2dcGzZsCHgMAAAAAAqKiYkxkjYah7OACllZIeXMp5dyFsf84YcfvB7ToUMHffnll3nWlkhJSVFmZqbCwsL017/+VXFxcRo5cqTuu+8+u6w8NTXVa4n/t99+a5feDxs2zOGfKDBz587V1KlT7cU+s7OzdfLkSfvzbt266bvvvlPHjh0d6W/o0KH65ZdfNGHChDxTLdxut44dO2YvQhkWFqZevXppzZo1ev755xUWFqbevXs7MgZf9e/fX++++67q1q1rv5ecnKzs7GxFRERo+PDh+umnn9SzZ0+NHTvWPubkyZN5KkXyi4iIkOTsNBCP6667TrGxsercubP9XlZWlhITE/NMRRk1apTi4uLUtWvXQtt64oknNH/+fDVq1EhSTnCZe0Ha9u3ba/Xq1RowYEChbUREROiLL77Qv//9b7vqIzMzU6mpqfYxgwYN0vfff29XspSVyMhIzZ8/P0/Vy4gRI/KMDQAAAEBoskwh895DhWVZG2NiYmI2btzo13mHDh1S48aNlZmZqUmTJunxxx8v9NisrCytXLlSW7duldvt1rnnnqsrrrjCvonz2LRpk5YuXarw8HD17NmzwDSPsWPH6sUXX1TVqlV14MAB1axZ068xl6aMjAytXLlSu3fv1okTJ1SvXj117dq1VNfVcLvd2rRpk7Zu3aojR44oKytL0dHRatGihTp16pQnzAimtLQ0LVu2TNu3b1d4eLgaNWqkq666qsBuLqtWrdK6detUpUoV9e3b196FRcpZq8QTes2aNUt33HGHunfvbi8sWRr27duntWvXKiEhQadPn9ZZZ52l8847T126dPG6BWth3G63Vq9erR07dujo0aOqVauWOnbsqA4dOvg1npSUFK1YsUL79+9XSkqKGjZsqO7du/u90CwAAACA8qNDhw7atGnTJmOMfzcQxaiwYYWUs6XmwoUL1bx5c+3atavIHR9K6vTp02rUqJGOHj2q+++/Xy+88EKp9YXQs3PnTju8+OKLL9SnTx9dfvnlWrduXZBHBgAAAAClp7TCigo7DUSSHnnkEblcLu3Zs8ev7UcDsXDhQh09elRVqlTxa/cQVAyeXWCqVq2q2rVrSyqdaSAAAAAAcCao0GHFRRddpDFjxkhSqW6PaYyx23/ooYdUr169UusLoef333/XoEGDJEkNGza0t391ejcQAAAAADhTVOiwQpKefvpp1a9fX6tXr9batWtLpY9PPvlE27ZtU6NGjfTggw+WSh8IXeHh4Ro+fLiknC1jS3OBTQAAAAA4E1T4sOKss87StGnTJOXsflAann76aUnStGnTVKVKlVLpA6Grbt26+tvf/iYpZ3cMT2UFYQUAAAAABKbChxWSNHz4cPXt21fLli3TmjVrHG37008/1YYNG9SnTx8NHjzY0bZRfuTeNpRpIAAAAABQMuHBHkBZ+eyzz0ql3f79+yvUd1RB6csdVjANBAAAAABK5oyorABKm7fKCsIKAAAAAAgMYQXgAKaBAAAAAIBzCCsAB3iCifDwcKaBAAAAAEAJEVYADihszQrWMwEAAAAA/xFWAA7IHVa4XC65XC5JUnZ2djCHBQAAAADlEmEF4ICsrCxJsqsqmAoCAAAAAIEjrAAckLuyQhKLbAIAAABACRBWAA7IH1ZQWQEAAAAAgSOsABxQWGUFYQUAAAAA+I+wAnAA00AAAAAAwDmEFYADmAYCAAAAAM4hrAAcwDQQAAAAAHAOYQXgAKaBAAAAAIBzCCsABzANBAAAAACcQ1gBOIBpIAAAAADgHMIKwAFMAwEAAAAA5xBWAA5gGggAAAAAOIewAnAA00AAAAAAwDmEFYADmAYCAAAAAM4hrAAcwDQQAAAAAHAOYQXgAE9YER4eLolpIAAAAABQEoQVgAOYBgIAAAAAziGsABzANBAAAAAAcA5hBeCArKwsSewGAgAAAABOIKwAHMA0EAAAAAANK8dOAAAgAElEQVRwDmEF4ACmgQAAAACAcwgrAAdQWQEAAAAAziGsABxAZQUAAAAAOIewAnBAYZUVhBUAAAAA4D/CCsABTAMBAAAAAOcQVgAOYBoIAAAAADiHsAJwANNAAAAAAMA5hBWAA5gGAgAAAADOIawAHMA0EAAAAABwDmEF4ACmgQAAAACAcwgrAAcwDQQAAAAAnENYATiAaSAAAAAA4BzCCqCEjDHKzs6WJIWHh0tiGggAAAAAlARhBVBCnqoKl8sly7IkMQ0EAAAAAEqCsAIoofxTQHI/p7ICAAAAAPxHWAGUUFZWlqS8YQXTQAAAAAAgcIQVQAl5q6xgGggAAAAABI6wAighpoEAAAAAgLMIK4ASKqqygrACAAAAAPxHWAGUENNAAAAAAMBZ4U41ZFlWI0ndJV0gqZ6k6pKOSzoiaYekZcaYw071B4QKpoEAAAAAgLNKFFZYlmVJulnS3ZI6ed4u5HBjWVacpFckzTPGZJekbyBUUFkBAAAAAM4KOKywLKubpBcltZW0R9I8SV9L+lXSMUlJyqmuqCGpsaTLJV0habakf1mW9YAx5pMSjR4IAVRWAAAAAICzAgorLMt6U9IwSQsk3WaM2eTDaW/8cW47SWMlvWNZ1nJjzIBAxgCEChbYBAAAAABnBbrAZoqk84wxo30MKmzGmC3GmL9JaiFpd4D9AyHDW1jhcrlkWZbcbreys5nxBAAAAAD+CKiywhgzpqQdG2PiJd1f0naAYPMWVliWpYiICGVkZCgzM1MulytYwwMAAACAcseRrUsty8q2LOv5Yo6ZblkWu4GgwvEWVkhMBQEAAACAQJVkgc2BuV9KOi/fe/n76SmpaqD9AaGquLCCHUEAAAAAwD8l2br0I0nmj+dGUv8/HoWxJH1Zgv6AkFRYWMGOIAAAAAAQmJKEFU8qJ6SwJE2U9K0KDyPckg5IWlSC/oCQxDQQAAAAAHBWwGGFMWaS57llWbdK+twY87QDYwLKFU9YER6e968T00AAAAAAIDAlqaywGWOaOtEOUB4xDQQAAAAAnBVQWGFZ1lRJq40xH+d67QtjjBkfSJ9AqGIaCAAAAAA4K9DKivv/+O/H+V4Xx0girECFkpWVJYndQAAAAADAKYGGFVdJOpjvNXBGYhoIAAAAADgroLDCGLO6qNfAmYRpIAAAAADgLEcW2PSwLKuypPqSqipnS9MCjDFbnOwTCLbiwgqmgQAAAACAfxwJKyzLOkvSq5KulRRRzOEuJ/oEQgXTQAAAAADAWU5VVjwvabikY5LWSEpyqF0g5DENBAAAAACc5VRYMVDSLkmXGWMIKnBGYRoIAAAAADgrzKF2qklaTlCBMxHTQAAAAADAWU6FFVsknetQW0C5QmUFAAAAADjLqbBisqRrLMvq7VB7QLlBZQUAAAAAOMupNSsqS/pG0meWZb2rnEqL094ONMbMcKhPICR4woioqKg877PAJgAAAAAExqmwYn6u5yP+eHhjJBFWoEJJT0+X9Gc44cE0EAAAAAAIjFNhxW0OtQOUO57KifxhBdNAAAAAACAwjoQVxph5TrQDlEdMAwEAAAAAZzm1wCZwxmIaCAAAAAA4y5HKCsuyjvl4qDHG1HaiTyBUMA0EAAAAAJzl1JoVJ5WzeGb+tmspZ6cQSdom6YRD/QEhg2kgAAAAAOAsp9asaFrYZ5ZltZf0jKTzJN3gRH9AKCmssoJpIAAAAAAQmFJfs8IYs1nSQEmWpP+Wdn9AWStszQqmgQAAAABAYMpkgU1jTLakdZJ6l0V/QFkqrrKCsAIAAAAA/FOWu4G0llS1DPsDykRxa1YwDQQAAAAA/OPUbiADi/i4sqTrJF0qabUT/QGhhGkgAAAAAOAsp3YD+UgFdwPJzZJ0TNIDDvUHhAymgQAAAACAs5wKK55U4WFFhqRfJX1mjGHrUlQ4hBUAAAAA4Cynti6d5EQ7QHlU2JoVlSpVkvTnNBEAAAAAgG/KcoFNoEIqbM0KT3hx+vTpMh8TAAAAAJRnhBVACRhj7N0+PAtqengqKwgrAAAAAMA/hBVACeQOKsLC8v51IqwAAAAAgMAQVgAlUNjimhJrVgAAAABAoAgrgBIobL0KiTUrAAAAACBQjoQVlmX1tyzLqW1QgXLDl8oKwgoAAAAA8I9TlRWfSPrdsqz/WZbV3aE2gZBX2LalEmEFAAAAAATKqbBiriRL0p2SVlqWdcCyrMmWZbVzqH0gJPkyDSQ9PV3GmDIdFwAAAACUZ46EFcaY0ZLqSfqLpNmSIiQ9KCnOsqytlmU9aFlWAyf6AkJJUdNAwsPDFR4eLrfbraysrLIeGgAAAACUW44tsGmMyTbGLDfG3CWpgaSekmZKqinpv5L2W5b1qWVZAy3LYmFPVAhFTQPJ/T5TQQAAAADAd6USGhhj3MaYVZImSHpA0h5JLkl9JX0oaY9lWfcQWqC8K6qyQmLdCgAAAAAIhOM7eFiWdZakgZKGKGdaSJSkbElfSnpLOZUW90p6UVIz5UwXAcqlotaskAgrAAAAACAQjoQVlmXVlXStcgKKq/5o15L0nXICineMMUdyHf+SpBWSRoqwAuWYr5UVnlADAAAAAFA8pyorfldOOGFJ2i5pgaQFxpg93g42xhjLsg5K6uJQ/0BQeComPKFEfqxZAQAAAAD+czKseFs5AUWcj+c8KOnfDvUPBEVaWpokqXLlyl4/ZxoIAAAAAPivxGGFZVmVJL0naZ0fQYWMMQkl7RsItuIqKwgrAAAAAMB/Jd6NwxhzWtIIScNLPhygfKGyAgAAAACc59TWoa9K+qtlWc0cag8oFzwhRHFhBQtsAgAAAIDvnFqzYrmkayR9b1nWy5K2SsrwdqAx5hOH+gSCzlNZwQKbAAAAAOAcp8KK1ZKMcnYDeeyP5/lZf7zvcqhPIOh8rawgrAAAAAAA3zkVVjwp7wEFUKEVV1lBWAEAAAAA/nMkrDDGTHKiHaC88XWBTc9xAAAAAIDiObXAZrEsy/qnZVnvlFV/QFkobuvSKlWqSJJOnTpVZmMCAAAAgPLOqWkgsizrCuVsX1qtkEOukRTtVH9AKCiusqJq1aqSpNTU1DIbEwAAAACUd46EFX8EFbH6c/FMz2KbyvXaSHrWif6AUFFcZQVhBQAAAAD4z6lpIPcrJ4wYLamjpO2SZkuKkTRM0i+S5htjHnaoPyAkUFkBAAAAAM5zahpIR0nLjDFzJcmyrMWSrjTG/CDpB8uyNkj6xbKsJcaYtx3qEwi64rYuJawAAAAAAP85VVlRV9L+XK/3SGrteWGM2S9pmaSxDvUHhITiti4lrAAAAAAA/zkVVhyS1CTX672SzrIsq16u9w5KautQf0BIoLICAAAAAJznVFixQtJfLcu62bKsKEmb/nj/VkmyLCtSUndJxx3qDwgJVFYAAAAAgPOcCiv+KylF0lxJ/zDGJEr6QtL/WZb1taRtki6Q9J5D/QEhgcqKspWZmamFCxdq7dq1wR4KAAAAgFLkyAKbxphdlmW1kXSjpI1/vH2HpAWSuklyS3pL0qNO9AeECiorytadd96puXPnqlKlStq9e7caNGgQ7CEBAAAAKAVOVVbIGHPQGPOcMWblH69/N8ZcJSlaUnVjzC3GmDSn+gNCAZUVZefYsWN66623JOX8uU+dOjXIIwIAAABQWkocVliWVcmyrMOWZT3r7XNjTKox5nRJ+wFCEZUVZefjjz9WZmamwsNzCsJiY2ODPCIAAAAApaXEYcUfQcRvki4r+XCA8iMzM1Pp6elyuVyEFWVg48acGWaPPvqowsLCtHnzZv5cAQAAgArKqWkg4yR1sSzrHw61B4S85ORkSVL16tVlWZbXY6KiohQWFqbMzExlZmaW5fAqnF9++UWS1KFDB7Vr107Z2dnasGFDkEeFUJeRkaE33nhDs2fPtiuhAAAAEPocWWBTOQtr/iRpqmVZ9ytn948ML8cZY8wQh/oEgip3WFEYy7JUtWpVJScnKzU1VTVq1Cir4VU427dvlyS1atVKl112mX744Qf98MMP6t69e5BHhlA2btw4vfzyy5KkVatWaf78+UEeEQAAAHzhVFjxt1zPm/zx8MY41B8QdL6EFZLssCIlJYWwIkApKSk6ePCgIiIi1LRpU7Vt21aStHXr1iCPDKEsIyMjTzixaNEizZw5s9i/swAAAAg+p6aBNPPx0dyh/oCg84QV1apVK/K46OhoSdLJkydLfUwV1Y4dOyRJLVu2VHh4uNq1aydJ2rJlSzCHhRC3Zs0aJSUl6aKLLlLXrl2Vnp6uJUuWBHtYAAAA8IEjlRXGmP1OtAOUJ75WVniqKZKSkkp9TBVV7ikgkuzKim3btik7O1sulytoY0PoWrVqlSSpT58+qlatmtauXavvv/9ew4YNC+7AAAAAUCxHKissy8q2LOv5Yo6ZblnWYSf6A0KBr2HFWWedJYmwoiQ8i2tecMEFkqRatWqpYcOGOnXqlPbs2RPMoSGErV27VpJ0xRVX2NU4TB0CAAAoHwKurLAsa2Dul5LOy/de/n56SqoaaH9AqPG3suLEiROlPqaKKn9lhZRTXfHbb79p69atatmyZbCGhhCVmZmp9evXS5K6dOlih4VMHQIAACgfSjIN5CP9uWCmkdT/j0dhLElflqA/IKRQWVF2PJUVucOKdu3aacmSJdqyZYsGDx4crKEhRO3evVunTp1S06ZNVbduXdWuXVtVq1ZVfHy8EhMTVbt27WAPEQAAAEUoSVjxpHJCCkvSREnfqvAwwi3pgKRFJegPCCkpKSmSCCtKm9vtLjANRBI7gqBInmqc1q1bS5LCwsLUokULbdmyRXv27CGsAAAACHEBhxXGmEme55Zl3Srpc2PM0w6MCSgXmAZSNn799VedPn1a55xzjh38SGJHEBTJ29Shpk2basuWLdq/f78uu+yyYA0NAAAAPnBqN5CmTrQDlCdMAykb3qaAeF6Hh4dr9+7dSk1NVdWqLImDP3nCitzVOE2aNJEk7d/PBlYAAAChLqCwwrKsqZJWG2M+zvXaF8YYMz6QPoFQQ1hRNrzddEpSZGSkWrVqpR9//FE//fQT35QjD28hF2EFAABA+RFoZcX9f/z343yvi2MkEVagQvCED0wDKV2FVVZIOetW/Pjjj9qyZQthBWzGGK/TQAgrAAAAyo9Aw4qrJB3M9xo4oyQmJkqS6tSpU+RxVFaUTGGVFVLOuhULFy5kkU3kcfjwYZ04cUI1atTQ2Wefbb9PWAEAAFB+BBRWGGNWF/UaOBMcPXpUUvFhRc2aNSVJx44dK/UxVUTeviH38OwIwiKbyC13wGVZlv0+YQUAAED54cgCmx6WZbWRdK2klpKiJB2V9J2kD40xKU72BQSbp7KiuC0QPd/sHj58uNTHVNGcPHlSv//+uypVqqTGjRsX+Dz3jiDGmDw3pjhzFTZ1qG7duqpcubJOnDihkydPKjo6OhjDAwAAgA/CnGrIsqwXJG2W9ISkmyUNl3SPpLmS9luWNcKpvoBgc7vdPocVderUkWVZSkxMVFZWVlkMr8Lw3HS2bNlSLperwOfnnnuuatSoocTERMXHx5f18BCiCps6ZFmWHXpRXQEAABDaHAkrLMu6T9I/JMVLmiCpq6RWknpIelJSpqQ3Lcsa4ER/QLAlJSUpOztb0dHRioyMLPLY8PBw1alTR8YYe+oIfFPU4ppSzs1np06dJElfffVVmY0Loa2oqUNMBQEAACgfnKqsuFvSIUkXG2OmGGO+McbsMMasMcY8IekSSYmSHnaoPyCofF2vwsMzFSQhIaHUxlQRFXXT6dG9e3dJ0urVLJ2DHEWFXIQVAAAA5YNTYcV5kj4zxiR6+9AY87ukxZLaOdQfEFS+TgHxqFevniTCCn8VtROIB2EFcjt9+rT27dsnl8ulFi1aFPi8WbNmkqQ9e/aU9dAAAADgB6fCigRJxd21RUhi70ZUCP5WVhBWBKa4aSCSdOmll6py5cr6+eefWcQU2rVrl9xut5o1a+Z1ipYn+PJcWwAAAAhNToUVb0i6xrIsr3cUlmU1lDRA0gKH+gOCynNT7G9Ywc2077KysrRjxw5J0vnnn1/ocZGRkerSpYskqitQfMBFWAGPpKQkjR8/Xv/73//kdruDPRwAAJBPQGGFZVndcj8krVHO4pqxlmWNtSzrMsuyLrQs6wrLsh6StF7SHuWEGkC59+uvv0qS1+00valfv74k6eDBg6U2popmx44dysjIUNOmTVW9evUijy3rqSCLFi1S3759NXbsWKWmppZJn/CNJ4QobOrQeeedp7CwMO3Zs0fp6ellOTSEELfbrT59+mjq1KkaM2aMHnvssWAPCQAA5BMe4HmrJJl871l//PcFL8dbkupLipNUcP9BoJzxN6zwzJPfu3dvqY2potm6daskqW3btsUe26NHD0llE1a8//77GjZsmP16165d+vzzz0u9X/imuEVZo6Ki1Lx5c+3atUs7d+5UmzZtynJ4CBHvv/++vvnmG/v15MmTNWrUqCKruIDSkJCQoFGjRmnTpk0aMmSIXnjhBVWqVCnYwwKAkBBoWPGkCoYVwBmDsKL0bdmyRZLUrl3x6/J27NhRlSpV0o8//qijR4/6PD3HX4cPH9bdd98tSbrlllv08ccf64svvtDKlSvVs2fPUukT/imuskKS2rRpo127dmnz5s2EFWeo2bNnS5JefvllbdiwQXPmzNGsWbP03HPPBXlkOJNkZGSoT58+iouLkyT973//U1pamubOnRvcgQFAiAhoGogxZpIx5ok/tiV9RtKHkmZ53ivq4ejogSDxhBWebRCLkzusMIaczxeef7z5ElZERUWpc+fOkqSvvvqq1MZ077336ujRo+rZs6fmzJmjBx98UJL02GOP8XsNAZmZmXZFzoUXXljocTExMZL+vMZwZjlx4oRWrlwpl8ul4cOH684775QkvfHGG8rMzAzy6HAmefHFFxUXF6dmzZpp0aJFqlKliubNm6fY2NhgDw0AQoITC2xmSfpW0kQH2gJCnjHGDisaNWrk0zm1atVS9erVlZycbG97isIZY7R+/XpJOVUTvijtdSveffddLVq0SNWqVdPrr7+usLAwjR07VrVr19a6detKNSSBb7Zs2aK0tDS1bNmyyG2FPWHFpk2bympoCCGfffaZsrKy1K1bN9WpU0edOnXShRdeqMOHD+vTTz8N9vBwhsjKytL06dMlSTNmzNCQIUP073//W5I0btw4ZWdnB3N4ABASShxWmJyvE1dJusKyLNajQIUXHx+v9PR01alTR9WqVfPpHMuy1Lx5c0k5axygaLt371ZiYqLq1avnc/VKaYYVCQkJuueeeyRJzz33nJo2bSpJql69uv2t7FtvveV4v/CPZw2Cyy+/vMjjPGHFhg0buCE4A33wwQeSpOuuu05Szv8+33777ZKk//f//l/QxoUzy8cff6wDBw7o/PPPV9++fSVJ48ePV6NGjfTDDz/w/ykAIOe2Lr1HUnVJb1uW1cyhNoGQ9OOPP0qSLrroIr/O8ywU6VmLAYX79ttvJUmdOnWSZVnFHJ2jc+fOioyM1ObNm3X8+HFHx/Pggw8qMTFRV199te666648n914442ScnYIycjIcLRf+MdT3VJcWFG/fn01b95cycnJ+uGHH8piaAgRaWlpWrJkiSTp2muvtd8fOXKkXC6XvvjiCyUkJARreDiDzJgxQ5L097//XWFhOf8cr1y5sp5++mlJ0qRJk5iWBOCM51RYsVRShKTBknZZlpViWdYxLw/q31HueebE+7sw38UXXyxJ3Bz5wBNWeNah8EXlypXVsWNHGWP09ddfOzaWX3/9VQsWLJDL5dKsWbMKhCdt27ZVmzZtdOzYMS1btsyxfuEft9utFStWSJKuvvrqYo8v6+1uERqWLl2qU6dO6dJLL80zja9evXrq06ePsrOztWDBgiCOEGeCzZs3a82aNapevbpGjRqV57ORI0eqVatW2rt3r+bMmROkEQJAaHAqrIiUlC7p1z8eRyQleXmcdKg/IGg8lRWBhhUs6le87777TlJOZYU/PFuYrlq1yrGxvPXWW8rOztbQoUPthVLz81RXPPfcc0wrCJJNmzYpMTFRjRs31nnnnVfs8VdddZWknJtXnDnyTwHJzXPTOG/evDIdE848L774oiTptttuU/Xq1fN85nK59OSTT0qSnnrqKZ0+fbrMxxeo5ORkHT58ONjDAFCBOBJWGGOaGmOa+fJwoj8gmDZu3CjJt10qcrvkkksk5YQVaWlpjo+rojh16pR++OEHWZalyy67zK9zffm2/MiRI3r++ed9rnDx3MwOHTq00GPuuOMOnX322Vq9erUWLVrkx4jhFM83kIMGDfJp6tA111wjy7IUGxur5OTk0h4eQkBaWpo+/PBDSd7/Pg8YMEA1a9bU5s2btXnz5rIeHs4QiYmJ9noU9913n9djhgwZovbt2+vgwYN67bXXynJ4AZs5c6bq1KmjevXq6dZbbyW4B+AIpyorimVZ1uWWZQ0qq/6A0pCYmKgff/xRUVFR9iJ9vqpVq5YuueQSpaena+3ataU0wvIvNjZWWVlZ6tChQ4FvnIpz+eWXKzw8XHFxcUpKSirw+fHjxxUTE6MHHnhAHTt21Jo1a4ps78SJE1q7dq3CwsLUs2fPQo+rW7euHn74YUnSe++959eYUXIpKSl68803Jcle8LQ4devW1eWXX66MjAx2gDhDfP7550pOTlaHDh10/vnnF/g8KirKrpKaO3duGY8OZ4rZs2fr9OnT6tOnj1q2bOn1mLCwMD311FOSpGeeeUapqallOUS/rVixQvfcc4+9btO8efM0cSKbBAIoOcfCCsuywizLirEsq5u3h6T/k7TQqf6AYPCshdC5c2dVqlTJ7/N79eolSfryyy8dHVdF8sUXX0iSvTq6P6pWrarLLrtMbrfb61SQiRMn6uDBg5KkzMxM3X///XK73YW251ngrEePHqpVq1aRfQ8ePFhSzg3RsWPH/B47Avf2228rOTlZXbp08Wt6FjemZ5aFC3P+CeL5vXszevRoSTm7gngLPIGSyMzM1MsvvyxJGjt2bJHH9u/fXx07dlRCQoJ9TihKTU3VHXfcIUl6/PHHFRsbK8uyNHnyZBYUB1BijoQVlmXVkfSjpO8lxRby6CFpmxP9AcHy2WefSfpzbQR/9evXT1LOzhE5u/4iN7fbrY8++kjSn39W/howYICkghUOv/32m1577TVZlqX169erQYMGiouL08qVK722s3z5ck2fPl2WZWnq1KnF9tuoUSP17t1baWlpmjZtWkBjh/+ysrI0ZcoUSSqwU0txRowYoaioKC1dupSy/wru2LFj+uyzz2RZlq6//vpCj+vQoYOuuuoqnTx5Uq+88koZjhBngrlz5+rAgQNq3bq1/vKXvxR5rGVZ9s4gzzzzjA4dOlQWQ/TbhAkTtHfvXrVv316PPPKIevTooXvvvVfZ2dl68MEHgz08AOWdMabED0nPSHJLWinpRUkpklZLmiZpsaRMSQsk1Q6g7Y0xMTEGCLaMjAxTu3ZtI8ls2bIloDaysrJMgwYNjCSzZs0ah0dY/n311VdGkmnSpIlxu90BtbF7924jyVStWtUkJiba748bN85IMkOHDjXGGPPkk08aSWbIkCEF2ti0aZORZCSZG264wee+Y2NjjSTTokWLgMYO/82cOdNIMs2bNzcZGRl+n3///fcbSaZ///6lMLryLzs7O+C/i6HkqaeeMpLMNddcU+yxS5cuNZLM2WefbZKTk8tgdDgTHD9+3NSrV89IMgsXLvTpHLfbbfr162ckmREjRpTyCIv2zTffmGuvvda0atXKDBo0yEybNs2MHz/eSDIRERFm48aN9rFHjhwxZ511lpFklixZEsRRAwjUwYMHzbBhw0xMTIyZPn16scfHxMQYSRuNA9lC7odTYcVPkrbmev2qpA9zvb5RUqqklgG0XS7Dil9++cX069fPXHPNNebYsWPBHg4c8O677xpJ5sILLyzRP94ffvhhI8kMGDDAwdFVDEOGDDGSzIQJE0rUTq9evYwk8/DDDxtjjImPjzdVqlQxksymTZuMMcb89ttvxuVyGZfLZX777bc8599+++1GkmnatKk5fPiwz/1mZWWZmjVrGklm165dJfoZULydO3ea6OhoI8m8++67AbWRkJBgqlataiSZVatWOTzC8mv79u2mZ8+exuVymbp165qZM2cGe0gBO3TokH2drFy5stjj3W636dSpk5FkHnnkkTIYIc4E9957r5FkunbtarKzs30+b8+ePaZy5cpGklm8eHEpjrBwn3zyiYmIiLBD/NwPy7LM7NmzC5wzefJkI8m0bdvWZGVlBWHUAAKVmZlp2rdvn+fv+ueff17kOaEeViRLei3X6/GS9uU7Jk7S/ADaLndhRUZGRp5fcLDTcJRcVlaW6dChg5FkXn755RK1lZCQYP/D45NPPnFohOVfXFyckWQqVapk4uPjS9SWp0LD5XKZGTNm2OHFoEGD8hw3ePBgI8k89dRT9nsnTpywg42ff/7Z776HDh1qJJnnn3++RD8DinbgwAFz3nnnGUlm8ODBJQoQJ02aZFdnnDx50sFRlk8HDhww9evXL3BT8uqrrwZ7aH5LS0szV155pZFk+vXr5/N569atM5JMZGQkwSNK7K233jKWZRmXyxVQZeaUKVOMJFOjRg2zYcOGUhhh4b799lv73yx33XWX+f77783cuXPNyJEjzU033WRWr17t9by0tDTTuHFjI8nMmDGjTMcMlIZly5aZnj17mmbNmplrr722QldIL1682EgyjRo1MrfddpuRZLp3717kOaEeVhyR9Gau14MlZUmqlOu9VyUdCqDtchdWvP766wX+kbd8+fJgDwte7Nmzxzz22GOmd+/eZtCgQWb+/Plev/F49tlnjSTToEEDk5KSUuJ+Pd84REZGmpCXfSEAACAASURBVFtuucU8++yzZtmyZSH77cM333xjHnroIXPXXXeZRYsWmbS0NEfbd7vd5pprrjGSzLhx4xxp81//+leev4M1a9Y0e/fuzXOMp9y7UaNGJjMz0xhjzCuvvOLT/ygX5sMPPzSSzLnnnmvS09NL+FPAm3Xr1pnmzZsbSeaSSy4xJ06cKFF76enp5uKLL7anCQUynSQUud1u8+6775opU6aYnTt3+nROenq66dy5s5FkrrzySnP06FHz0ksv2aXecXFxpTxq56SmpprrrrvOSDINGzY0Bw4c8Ov8m2++2Ugy7dq1M0lJSaU0SlRk2dnZ5sknnzSWZRlJZvLkyQG346k8rFmzpvn6668dHql3O3fuNHXq1DGSzO233+53KPzBBx8YSaZy5crml19+KaVRAqUrPj7ejBgxwmtlUf/+/c3WrVuDPUTHef6/c/LkyebYsWPGsiwTGRlpUlNTCz0n1MOKlZJ+l1Trj9etlLOGxdW5jlks6UQAbZersCIjI8M0a9bMSDLz5883//d//2ckmdatW3PjEkKSkpLMrbfeav8DIvejc+fOZt26dcYYY06fPm2eeeYZExYWZiSZjz/+2JH+s7KyzH333Veg7zZt2oRUUnvkyBEzatSoAuNs3vz/s3fe4VFVaQP/3enpCQkloXcBKQYEG1iwYIHVxV7Z1UXXRVddFNeuH6uruNiQFQVU1FUXLIgLSrGBFRORXqT3kp6ZzGTK+/1xmZsE0jOTmSTn9zz3SebeM+e8c/p9z3ve002WLVsWsnSCyqCkpCQ5cOBASOIMBAIyc+ZMGTFihIwdO7ZSKwm/32+szr/55psSCAQMq6j//Oc/9UrX7/dLnz59BJCPPvqooT9DUY4NGzYYliuADB48uIJfkoawbt06YzvIyJEjZePGjSGJN1L4fD656qqrjLyyWq3y4YcfVvudQCBgbIHq2LFjhS1Qt99+uwDSr1+/kCsr60MgEJBvvvlGZsyYIVlZWVJaWioFBQWSnZ0tc+fOlYkTJxr+gRITE2XVqlV1TiMnJ0d69+4tgJx88smycuXKMPwShYg+d8rJyWk2ikIRkR9//FHOPPNMY6vEU0891SALMI/HI5deeqnRnl999dUQSns8q1evNtrQBRdcUO+yuf766wWQ3r17y65du0IspUIRPkpLS2Xq1KmSkJBgWP5OnjxZ1q5dK4888ogxZ9A0TcaNGyc7d+5sUHpbtmyRyy67TNLT02XgwIHy4osvVqscCBcHDx4Ui8UiZrPZsHQOWpcvXry4yu9Fu7Li90eVE/uBy47e2wnsAG4GngD8wOJ6xN2klBUvv/yy0Sn7fD5xu93Gy9Czzz4bafEUoq/KdunSxbBsuOGGG+Tjjz+WadOmSbt27YzJfevWrcXhcBif67siUh1r1qyRadOmyR133GGYSwJy/vnny6xZs+S7776TVatWyaZNm2TTpk2ydu1a2bBhg2zZsiWsvlACgYC8/vrrhkNRu90ud999t0yePNl4EQ+utDREjkAgIC+++KIR39y5c0P4K2rHnDlzBJB27drJu+++K4CkpqaK2+2ud5xB5cux204UdePw4cOycOFCefTRR2XEiBFGPXE4HPL3v/9dXC5XSNP76aefpHXr1gKIyWSS6667TpYtW9aguhAJAoGAjB8/XgBJSEiQkSNHGv1dVRONQCAgjzzyiLEK+tNPP1V47nQ6pVevXgLIdddd1+gvlYFAQLZu3SoffvihPPLII4YswasyxTMgAwcObNCq19atW40XNkB69OghEyZMkAULFsjOnTuPqxuBQEBcLledfBK0RHw+nyxYsECuvvpq6dChg5G/cXFxMmbMGJk3b16TVVysW7fOWJUMjieLFi0KSdxer9dwCszRbRmhUtgGCQQCMmfOHOMFbfjw4Q3aHpeXlycDBgwwrFM/+uijZuG0V9E8cbvdsnTpUpk4cWKFd4LRo0fLtm3bKoQ9cOCATJgwQSwWizFXvvPOO+Wbb76pU//lcrnk0UcfFbvdftwY1rp1a3n44Ydl0aJFsmXLFtm3b58UFxeHtQ09//zzxm8OcvfddwtU3DZ9LFGtrBBdqXAH+tGkdx79PBooOaqkCACHgBPrEW9W//79Qzrwu91u+eWXX+Tzzz+XRYsWyf/+9z/59NNP5ZNPPpGPP/5YPvroI/nggw9k7ty58v7778v7778vixYtkk8//VSysrIqdNput1vWr18v8+fPl3vvvdeosO+//74RZuHChcYEe968eWGrYIFAQDweT6Xx+/1+KS0tFafTKTt37pQNGzbI5s2bjS0NgUBASkpK5PDhw7J9+3ZZvXq1fP/997Jp0ybZsWOHOJ3OJj24FBUVyX/+8x+55pprxGw2CyCZmZnHrbYXFhbKQw89JPHx8UZHMWjQoJBNNKrD5XJV0NTW5urUqZPceuutsnjx4pBM7AKBgMyfP98wiQ+uMm/evNkIU1paKpMnTxabzWa85M+bN6/Oae3evdswa4WG+wKpLz6fz1j9Cl4PPfRQg+Lct2+fkT9ffPGF8QLTVCffocbj8ci+fftk8+bNkpWVJZ9//rm8/fbb8sILL8ijjz4qV199tbHNo/wVExMj48ePr7M5f13YvXu3jB8/3ujLg4qLHj16yOjRo+Xee++V2bNny3fffSd5eXlhk6O+5Obmyrhx44wxZ/ny5RIIBOSOO+4QQGJjY+XBBx80VjiLi4vlf//7n5x99tnGS//HH39cadzZ2dmGP5ehQ4fK0qVLq926lp+fL6tXr5Y1a9bU+oUqEAjIoUOHZOXKlTJv3jx54okn5JxzzjFOFih/paeny+WXXy4dOnQQTdPE4XBI3759jXL65ptvQjJ3yMvLk4kTJ0pycvJxMmiaJhkZGdKuXTuJj483lCY2m026d+8uZ511ltx4443y4IMPyqxZs46b7IaDvXv3yurVq2XDhg21znev1yubN2+WjRs3Sm5ubkjG+0AgIE6nUw4dOiTbtm2TNWvWyKeffip33XWXdO7c+bh8PLaM27VrJ3fffbfMmTNHfv7555Bswawte/bskenTp8s111wjo0ePlkmTJsmnn35apXLe7XbLp59+Ktdee61hiRkTEyP3339/WBYWZs+ebYwxiYmJ8tBDD8nWrVsbFKfP55PvvvuugqLlyiuvDIklVW5uruE7JqhEnD59etRtr9q9e7csWbJEvvrqK9myZYuxPbQh+P3+Zm9ZvWfPHpk5c6bcd999MnHiRJk2bZqsWrVK/H6/+P1+KS4uFqfTKW63W0pLS6PqfWLPnj2yYMECmTJlilx00UXGGBe8+vTpU6N/uS1btsjVV19d4XuJiYly3nnnyfjx4+Xpp5+WuXPnyqJFi2TZsmWyfPlyWbx4sbz88ssyevToCmnedNNNsmHDBpk3b54MGTKkyvm/1WqVPn36yPXXXy/PP/+8LF++PGSnVwXb6nvvvWfce+ONN4w+oTLuu+8+adOmTViUFZroCoGwoGlaT+A8oBT4REQO1SOOrNjY2MykpCQuu+wyRo8eTf/+/UlPT8dkMhEIBCgoKCA3N5e8vDzy8/ONq6CggLy8PPbs2cPOnTs5cOAAhw4dIjc3t8G/LTk5GavVSk5ODoFAoMKziRMnMmXKlAr3JkyYwMsvvwxA//79GTFiBG3btqVt27akpKTg9Xo5cuQIbreb2NhYSktLcbvdFBQUUFBQQHFxMaWlpXi9XtxuN263G4/HY/xfUFDAoUOH8Pl8AFitVgACgQB+v7/a3xIXF4fb7a4xnMViITExkYSEhAp/Y2Nj8Xg8xMTE0Lp1a9q2bUtGRgbp6emkp6eTkZFBmzZtMJvNFeLz+/0cPnwYj8cD6GeKm0wmzGazcfn9frZv385vv/3GoUOHOHToEAcPHuTgwYMUFBTQvXt3Bg0axODBgznppJNISEiokEZOTg4vvfQSL774Inl5eUY6f/vb3/jHP/6BzWar9Ld6vV4OHjxIfHw8ycnJ1eZLqMnNzWXOnDl8++237Ny5k5KSEkpKSjCZTFitVnw+Hz6fjwMHDuByuYzvJScnM3r0aMaMGUPfvn3p3r07dru9xvQKCwvJysrixx9/ZM6cOWzYsAGA9PR0nn76aa6//no0TTvuexs3buSWW27h22+/BeCyyy7j5ZdfJj09vcq0RIRffvmF2bNnM3v2bEpKSoiPj2fatGncdNNNdc2qkHH48GGuv/56Fi9eTI8ePVi1ahVxcXENivO+++4z+oFgX2U2m+nUqRN9+/ZlxIgRnHnmmWRmZhrtNZKIiFHOIkJpaSkej4ecnByj7blcLhITE0lKSiIxMRG73U5xcTGFhYVGX1VYWMimTZvYsGEDmqbRtm1bEhMT2bt3L3v27GHPnj0cPHiwVjLFxMSQmZnJKaecwrBhwzj//PNJSkoKZzYY7Nixg1mzZvHBBx+wadOm4/r5IK1bt6Z169akpqYaV7BPTU9Pp0ePHgCkpqbStm1b2rVrR+vWrUNS5j6fj99++401a9bwww8/sHz5crKzs/H7/TgcDj766CNGjRoF6GPB+PHjmTVrFqDXye7du7N9+3Zj3EhKSmLmzJlcfvnlVab57bffcs0117B7924AbDYbHTp0oFOnTmRkZGC1Wjlw4AAbNmxg165dFb4bGxtrjBtxcXGUlJTgdDrp1KkT3bp1Y+fOnaxevZqCgoJK027Tpg2DBg1iwIABDB8+nIsuugiLxQLofbbZbMZkMjUsU6vB5/OxcuVKPvvsM5YsWWLMK46tG3a73RjXKqN3796MGjWKE088kaSkJONKTEwkLS2N1NTU436Hz+fD7XZTWlqKxWLB5XLxyy+/sGXLFoqKiigqKiI/P5/ly5ezfv36Ct/t3LkzmZmZDBo0iB49epCUlERRUREbN25k/fr1bNiwgc2bN1NaWmp8JyYmhoyMDFJSUozx+Njx2WQyISL4/X58Ph+FhYUUFhbidDopLi7G6XRS3Ryza9eu3HbbbVxyySX07t0bs9nMnj17mDdvHq+++qoxFpUnLi6O+Pj4Kv8mJSUZeQj6+FZcXAxgyO31esnNzSUQCKBpGsnJyaSlpVFQUMCePXvYsGEDP/30U5Vyd+zYERExxmKv10thYaHxWy0WC3/60594+OGHqx0PG8ovv/zCpEmTWLJkiXHv5JNPZvTo0Zx//vl07doVq9WKx+OhqKiIvLw848rPzzf+3759Oxs3bmTLli1GvY2Pj+fFF19k3LhxlY7/9cHv9/Pvf/+bxx9/nCNHjgB6XnXo0IEOHTrQvn17MjIysNvtJCQk0KZNG9LS0khKSiImJsbIbxEhNTWV3NxcY2zavXs3eXl5mM1mLBYLJpOJwsJCcnJyyMnJITc3FxEhNjaW2NhYYmJijMvhcLB//37WrVvHvn37KshstVpJSkrCYrFgsViwWq3G/w6Hg/j4eOLj40lISCAuLg6r1YrL5arwDhJsW+3ataNr166kpqbi8XgIBALGHDM+Ph673X7cZbPZKr0fvBISEmjdujVpaWlGXxgq/H4/eXl5HDlyhIMHD7J9+3bjCs7Bg9f+/fsrjcNisRjjS3k0TSM+Pt4oC5vNZvQjx/41mUzGvCMpKYnk5GRjHLVYLEaZB9t3+XsigtfrrdBWfT4fpaWlbNy4kR9++IG9e/ceJ9+AAQM4//zzGTNmDGeccUat28Avv/zCnDlzWLRoEZs2bapTfg8dOpQpU6YwYsQI456I8MUXX/DJJ5+watUqdu3aRUlJCQUFBbjd7uPiMJlMDBw4kLPPPpvzzjuPESNGEBsbWyc5Dh06RHp6OhaLhcOHD5OYmAhAdnY2gwcPpk+fPseNMVu2bKFv377Bss4WkcF1SrQGwqqsCAWapmXZbLbM8oMogMPhwOFwUFBQUO1gWBkmk4mePXvSsWNHzGaz8ZIc/HvsJSLG5Gnv3r1s27bNqCQmk4nOnTvTq1cv+vTpw5VXXsmpp556XJoiwksvvcQTTzxBTk5OPXOjZqrrGIKNNzU1lfj4eLxeL3v37jUGJ5vNRlxcHAkJCSQkJBATE0NOTg6lpaUcOXKk2slXTZhMJtq0aYPNZqO4uJiSkhLcbnedy646NE2jR48e9OjRg/bt25OTk8OiRYuMsho2bBhXXHEFY8eOpUuXLiFLN1L4/X5+/fVXPvroIz788MPjOg+z2UybNm2MDtrv99OpUyf69etH165d2bVrF9nZ2cd1qBkZGdx3332MHz+emJiYamUIBAK88sorTJo0ieLiYmJjYxk+fDjdunWjU6dO2O12NE2jqKiI7OxssrKyjJccgCuuuIJnnnkmasrjyJEjxMfH43A4GhyXx+PhnnvuYfbs2bjdbmw2G16v97g6HxMTQ2xsrDEJC7a/YydUwUmVzWYjJiaGwsJC9u7dy/79+7FYLCQkJBiTnuBkqvygHZzA7d+/nx07dmCz2WjXrh27du1i3bp1FBUVGRNCr9fb4N9fHSaTibS0NOO3pqamkpaWRlpaGq1ataJTp04MHTqUvn37hnwCVh88Hg9btmxhw4YNbNy40fi7ceNGSkpK6hyfpmm0a9eOTp06YbPZjptE5ebmcvjwYfx+P0lJSfTs2ZOMjAwjXFFREYcOHWLXrl3H9fcmk4mRI0cyZcoUBg4cWOGZiLBixQqmT5/OBx98gNfrxWQykZmZye9+9zsmTJhQK+VsXl4ezz33HO+88w7btm2rMpzdbqdr164A7Nmzx3hprImkpCS6dOlC586d6datG2eccQannnoq6enpIXtxChXBcdRmsxkvzWazGafTyZ49e9i1axe7d+9m165drF27lqVLl1apjAliMplo3bo17dq1MxZjCgsLay1TfHw8Xbp0obS0lN27d9e6jnbs2BGbzcbBgwdrXVY14XA4KigU0tLSGDFiBOeeey7Dhw+vUrkkInz33XcsWbKE9evXs379ejZv3hz2vqm83BdccAEXX3wxrVq1IisrixUrVvDTTz9VORcaOHAgl19+Odddd51R7xuD5cuXM2PGDD7++GOcTmeD4urUqRNXXXUVf/nLX+jcuXOIJKyIx+Phww8/ZMaMGXz99ddhSaO+JCYmMnDgQAKBgNF2Q0Fw8S2cpKSkGMrzxMREfD4fgUAAu91uKK2Ci1/lL7fbTUlJiSFf8F3I7XZXqaQ/lmB7GTJkCBaLhfXr1/PVV18Z+RecS/r9fgKBQKXvKZEiKSmJIUOG0Lt3b4YOHcr5558fEiXjjh07WLt2Ldu3b2fr1q3s2LHDUDh7PB5sNhvt27fn7LPPZtSoUbRv375O8btcLtatW8fPP/9MVlYWWVlZrF27tkLe2mw2zjjjDM4991xGjhzJ4MGDj1s4PpZZs2Zxyy23cOGFF7Jw4ULjfnBxUdM0iouLjXmyiDBq1CgWL15MamoqOTk50aGs0DTtC+BxEal3L6Np2nnAoyJyRg3hsjIzMzNfffVV5s2bx4oVK9i4caOhlQW9oqWkpJCSkkJycjIpKSmG9i0pKYmMjAw6d+5M+/btjRWwmgqrOkSE3NxcvF4vKSkptVq9DuLxeFi8eDHbtm2rYCFgtVpJTU3F4XDgcrmw2+04HA5Dm5iQkIDNZsNqtRqKmmAYh8NhaKEdDoexKgplKwlVTfBExHhJqWmlr7S0lKKiImP1JPi/0+nEbrdTUlLCoUOHOHDgAPv372f//v3s27eP/fv3c/jw4UrjTEtLIzY21jD1CVqCBC/QV4WCk/W0tDTDIiUhIYFNmzYZL8Fr1qypdCJz4YUXcv/991fQVjZHNm7cyEcffcRXX33Fb7/9xvbt22ulDLLZbAwcOJCTTz6Zc845hzFjxtR51Xf37t3ccccdzJ8/v8awqampXHfdddx8880MGDCgTuk0Rfx+PyKCxWLB7Xazfft2srOz+frrr/n666/ZvHlzpEWsFKvVit1up1WrVrRp04Y2bdoQGxtLYWEh+fn5FBUV4fF4jJXy8hYXHTp04KSTTsJkMrFv3z6Ki4tp3769sYLWtm3bqFBCNJRAIMCBAweM1bvgFRzI9+zZw2+//YbZbCY3N5cDBw5w8OBBDh06FDJFbefOnTnxxBPJzMxk+PDhnHLKKcdZmFVGYWEhO3fupFOnTg2yVnG5XMbL+P79+/H5fLRu3ZqePXvSo0cPo5xFhOLiYsMKwOl0Gkq43377jd27d5ORkcHAgQNp165dveWJdrxeLz/++COLFy9mz549hjVSQUEB+fn5HDlyxLACLI/JZDLGaZ/Ph8ViYcCAAfTr14+UlBRjdbdfv36cfvrphtWg3+83xsnVq1ezY8cOY8zu3bs3ffr0oW/fvpxwwgnEx8cb6RUVFbFv3z4KCgqM8bj8+Bz8v/xCSLAfKK+caMhc61gCgUAFq43y/xcXF1NcXEx+fj45OTkcOXIETdNISEgwJthB2a1WKykpKVgsFmP1OCcnh6SkJDp06EDHjh057bTTKrWu83g87Nu37zhlcGJiYsT7NJfLxZIlS1i0aBErVqxg//79xstqfHx8hTly+Tlz+/bt6dOnD7169TJWURtT5r179xqWdwcOHKC0tJTCwkIOHjxIbm4u+fn5uN1uI88DgQC5ubmkpqbSpk0bWrduTYcOHUhLSzNehH0+H4mJiYa1W6tWrTCZTIY1V/BF3eVyUVJSQlpaGv369aNLly4V6mxJSQlFRUVGnOUVy26326h3wT6ttLSU2NhYkpOTjXeQrl27Eh8fbyx2FhQU4HA4jJe+/Px8w3ra4/Ecd1V2P3ivoKCAw4cPV2rlHQrKK0A6d+5M165d6datG+np6RXes9LS0ip9Fwou1ByrlPT7/cbCpcvlMizGyi+uBP/3+/0VrDgKCgrYuXMnhYWFhgVGdVYZlVnFWCwWOnXqxCmnnELv3r3DapHXmLhcLr7//nuWLVvGkiVLyMrKqjDXSEpK4qyzzmLkyJGMHDmSPn36HPd+ePHFF7Nw4UJmzJjB+PHjKzwbNGgQv/76K/Pnz2fMmDEAvPrqq9x66620atWK9u3bs2bNmqhRVjwJ3AP8CrwIfCgiNaruNU1LAMai+7foBTwhIlNq+E5WZmZmZlZWVoX7RUVFeL1ekpKSQjoYKsJDaWkpBw8exO/3Ex8fT0xMDHa7PaSDu8fjYdOmTWzfvp39+/eTmJjI0KFDDTPslkZJSQlHjhwxlFyaprF161bWrl1rvKT079+fAQMGVLkdxiAQgI+XwecrYPNOKCyGGAekJcPA3nDJWXByf7Zu3cq6devYsWMHu3fvNpRHNpuNAQMGMGTIEHr16tVsBoZKqWVeBcnPzzdePgBDCehyuYwVj/IrIMHVkfj4eDp06EB6erqxHS64ZezYAbv81bp1a7p3747H4+HQoUO0bduWgQMHkpKSQklJCVarFZvNFnUr2M0Jn8/H3r172b17N36/35hIBa+UlBTS0tKMrYZbtmzh4MGDxvPgCnXnzp1rtH5qNLLXH63zO6DQCTF2SEvR6/yo4ZDeOtISNhm8Xq+xbTUlJYXU1FQSEhKO7zez1sGU2bB+K3RoC7ddBWPOqRjmm59h3AOwbTEUOeG1ufD5t0fLqXzfdAJcciaMPR+ac/+sqDt1HNPCwt6D8NI7el3v2A5uHguZfSuGWbkGJk2FL14Pryw1EQFZg0q3w4cPc/jwYYqKigxryqByw263H2etWf4qr1gOBAL63NFdGr19RiT6M1cJzJlfVrbXXgLt21YMs3YLPP0anNQ34vmWk5PDF198wbJly1i6dClbt26t8Dw9PZ1zzjmHkSNHkpmZyYoVK5gwYQI2m41du3bRtm3F3zZlyhTuu+8+zj33XD7//HO+++47LrjgAlwuF++++y5TpkwhOzs7OpQVYPijeAb4HeABsoEf0E8ByQeKgUSgFdAZOB0YCJiBD4G7RaRG+6qqlBVRhZoAKJozh3Phwlv1l5GO7aBfD0g5uvpSUAwbt8H2vXDRCHj/XxAbJS9PkUDllaKl4SqBaybCgq/AZoVuHSDlqKVGQZFe30u9cNuV8MIDahwMFR8vhSvugS4ZcFIfWLURtu6GR2+HR24vC/f5CrjoNti8EM4eB4fzYGj/yvumFdnQpxt8/hq0SY3Iz2qy1FVx1FSIhjFt+c+6DBYL9OoCW3ZCsQtmPAp/HFsWLljX/WtDL0NtaUqy1sTWXdHbZ0RCtrVb4II/wYEjkJoMOfkQF6PX+wvLWW6//iH88SFw2KMu33bu3MmyZcuMqyr/YZMnT+bBBx887v7Bgwfp1asXhYWF9OzZ0/B5dfPNN/Paa68xZMiQ6FJWGBFo2hDgdmAUELTdLB9pcHnuADAfmCEiq+oQf3QrK6K5MSsUoeDae+HXjfDfqdCvZ+VhfvwVxt4FF4+AGY83rnzRhMorRWOTvb7mMOU5doWvodz+BHzyJcx4DEaeok/QyuP1wodL4bbH4c9XwZN3hzb9lsqgy/QVvfnT9Bcjvx9ueRjeWqCv1o4YoocLvhSNOgPyi2DBy9CqCr8ku/bpL1r9e8F7/6qdHLn5dZO7qrQjyYdLag5Tnt+fV/FzXRVHoXpBbajctSEaxrTTr9OtOxbNgOREXQl69d/gy59g5X/1+grRoQBobFnD2f9ffFt4+oxQEAnZLvgT7NwHC1+Bbh1hx164/C5dIbXmY+iUoYcbeiWsXAs530VfvpVDRFi/fj1Lly5l2bJlbNq0ifbt23PFFVdw6623VrTkK9fX/Prrrzz77LM4XS404KKLLmLcuHGYzWYmTryXw9t3bHtT8ruHUtaQOtjUNK0/+vaO1ugWFS5gP/CriGysZ5zRrayI5sasiD4aY3IRalqdAtMe0s3dqmPmPPj7c3D42/DJEu35F015pWgZ2AeCrxaO20RA00I/kW87HJ66q+KqYWW88BY8PRP2RZdDvSaLYxC8/TRcfkHZPU8pZI4FfwDWzteVGMGXovhYmPV/FcNXxtufwB1PQt4P0ZZTlwAAIABJREFUtZPD1E+vV7UlGleSM86Eg+Ucn1c3L66sDdVVcRSqPGio3LUhGsa02EyYPRmuvqjsXkERnPg7yGgNP76v34sGZUVjyxrO/j9paHj6jFAQCdkShuht4aZLy+7tPQgDLtW3QX32qn4vLhNKPBBY13iyhZtj+pryuoPyvX9ABEEwy4aQ7iMOqTcgEVkDrAllnFHPimy9wVS3WtApA/7+J71SKlo2EyaHf3IRajStdoOhwwbeMHt4jvb8i6a8UrQMDq2AR6fBi2/D+CvgmosbN323R38RromM1vqWSUVoSIjTzZDLY7fBq4/DiBth8ivw2ISyZzF2OHK8487jKPGAuQ5bddZ9Ao+8BB8sgcvPh4vPrP13o4W9X8HUN+DeZ2HSzfoWjrqwcTs8dJuuqAAwm+GVx+CnNTD+0TLFUahpqNy1IRrGNLtNV8SVJykBpj8Mv5sA09+F268JT9p1pbFlDWf/H64+IxREQjZNO95ysH1bePZeuOURmPsZXDFKrwMltTg9MRL5Vl+O6Wu0Kvqa0RdfwpZ169eG2m1803fHHmmiuTEroo/GmFyEmlFnwOPTdUdaA0+oPMy6LXqY808LryzRnn/RlFeKlkFSgj5ZeusT3TT1zJMbN/0RQ+CfM+GsoVVvczySB8/MhtMzG1e25syFw/V+pFtHOGeY/oIMeh7fdQP841XdwWn3jvr9sefDwy/pjk7HnFO5NcTCr3XFw9g6WKT16Q5vPqX77BpyYsVVx6aCpsE94+DZ13V/K53rdoRgnRVHoaKhcteGaBjTRgyGp16DUwfpfiCCjD4brr0YJk6BTulgjYJXmsaWNZz9f7j6jKYq28knwnNv6m0iqdyJW3/4Pby7EG59TC+D0zPh069g/rLoy7f6Usu+5oDdxBZKSyt92ACioGU3caK5MSuij8aYXISaFx6A0bdD5uVwQlc4sSe0CjrQK9adDq3fCgN66SZy4STa8y+a8krRcrBY4LzTICm+5rCh5sUHYOQfoct5cPbQY+p8Eaz9Db78Uffl9G61h38p6sLUSTBqvL6P2mSCZbPLXlSemQi79sOdT0Li0Trx7L260uiyO/WX6xO6Vuyb1m/VLV8uGqHHXRdiY2BA79D9tkigafqqdKf0un+3roqjUNIQuWtDNIxpz/8dzroJ+lwC7dvAvOdh6NFjz199XPcP8rsJunPfSBMJWcPV/4ezz2iKsj0zUR/r2p+l+/6Y9lBZv/efKTDsajjjehjUR78XjfnWEMLd11SXdCh9VoSDqPdZUeLWvTvP/bzmSvnesxBXC3NZRfPnnqd1h6zl9zVGOwu+hM9WwOpNkFugm3ymJMIJ3XTHWr8/LzymrpUR7fkXTXmlUISbEre+Z/2zFbB689E679UViid01bcG3HplxdUoRcMR0U+YWL1JX7ntcozydtE3+iktu/bDp//W763dAgu/gTWbj+mbjpZT8MVKUXuO5OmKo+z1xyuO/H7dweIHS3TFUZEzOrZ31pUFX8Ki5ZXUm0Ya05wumLdYr+vjr4TeXcue+f3w6lx9NXvnPlj7SfjkqA1NSdbasGZzFWUfBX1GY/dnew/qY93qzfDwbWWKCdDb9uRXysr2+3ejN9/CxODBg6PzNJBwE/XKiiBqAqBQKBQKhSISBALgLNG3pipFaMOoT16WVxyNOft4q7/KFEcKRVNC9TGKGgiXskLVtlBxYk/9UijqQlPp/Iuc8NpcfV/y5h1QWAwxDkhL1vexXnKmviXKpPyyKBQtjqx1MGW2bknYsZ1uRTHmnIphvvlZt0LctjgyMjZHdu3Tt8R9/i1s26OPJ6BbeQ7srffLt15VthUkXJQv/w5tdV9CTa38G5qXmqZbU1TlM+DCEfrVFPloqX6ST/nyveP6ituew30Sh5qDVE04yyda+phoobZ93bX3wrhLdavDK0fBsIG6O4CZ8/QTJAf00o82bqp9QiMTEssKTdNOFJGw9FBNxrJCoagtTa3z37oLzh4Hh/P0rRf9euhWQ6Bvddq4TT8Vp083+Py1qp3sKRSK5sfHS+GKe6BLBpzUB1Zt1PdlP3o7PHJ7WbhoOFawOfHzWn3/dHwsnHvqMf1ykX5CxYKvdEd+X74OPbuER47mUP61zUubFb6YHb68jEZe/S/c9rjuSHdof1i5Vn8Zu3ms7oMhSDjLV81Bqiac5aPaRUVq29dN/rfuyzA5Ue9/C4rghjEw+0O44gI9H7/8CZZnwafTYdTwyP2mEBPV20A0TQsAa4H/AO+JyI4GR1oWt1JWKJoPTbHzv/g2XRO84OWqj+jdtQ8uvBX694L3/tW48kUTHy6pW/jfK6e7igYS6To36DL9+Lb503TrML8fbnkY3loAX7yuT6Ihul9WmyJn3aQrtD94HqzWysMUOXUHnMkJ+nhTWzQN7r6pdmGbQ/nXNS8Xzmhc+api6hu1D1uXMi3PCRfrL8Fz/ll276EX9BMv5j5X1p+Es3yb0hyksfvjcJZPNLeLxqj7x1Lbvq7faN3ywr1KPxVo0r/0BcrbroKXHy6L77I7dAXcircbLlu4qWV+T506lYK9+/c8LodD6k04VMqKL4DhgBkQ4HvgHeC/IpLTwLijW1kRiQajaLpEc+dfFUlDYdb/weUXVB/u7U/gjich74fwyRLt7S3jTDhYrsurrn/VtOicuCuaFpGuc45B8PbTFfsHTylkjgV/ANbO1yd20fyy2hSJH6zn+6XnVh9u3ufwx4f0VeeVa/U6UNO8ry71pDmUf13zsnBlxfuRGpeGXRWeMi2PYxC8+yxcVi5vRPRTD3bshc0Ldcfx4SzfaJqD1ERj98fhLJ+Gtotw0hh1/1hq29clDNG3dwfW6WH2H9ZPEPnkZbjkrLLvvr8Ibn4IiqP0/bY8tczvgAiCYJYNlRyNWX9CskleRM7RNC0NuAy4HDgLOA14XtO0z4G3gE9ExBOK9KKK9xfVrcEoZUXL5ue1emdXlaIC9O0g99ykd/7RQIxd93ZeEyUeMId5v2i0t7e9X+kT13ufhUk365p0hSKcRLrOJcRBTn7Fe3abboI84kbdO/pjExpXppZAShL8tqvmcHsO6pZ8P74Pcz+Dq/4G/7wH7rs5NHI0h/Kva14eS6TGpXCVaXlSk/WX3vJoGrz6mH6c6d+egVceC3265YmmOUhNNHZ/HM7yaWi7CCeNUfePpbZ9XXBrd5CURPjdOdCzc8X7Rc7wyhtKapnfJwe3gYQ4+ZB59BORI8BrwGuapiUDl6IrLs4DLgYKNE37D/CaiPwaqnQjTiQajKLpEs2df1WMPV/ff5feWnckpFWiMF34te48aGyYtzVEe3vTNLhnnG7yl5J0vEd4hSLURLrOXTgcHp8O3TrCOcPAbNbvn54Jd90A/3gV0lKge0itQhXjLoXHXtYV39deDK1bVXyek6+/RD/yEvzlGv3eFaNg4pTQytEcyr8+eVmeSI5L4SjT8ow9T8+b+FgYeQp0ztDLuF9PmHwnTJqqPztlYBhliKI5SE00dn8czvJpaLsIN+Gu+8dS277uxJ7w0xr9ZKABvcFhh49eqhhXXgFMeweGnNh48jeUxs7vcoTl+AERyQfeAN7QNO08YDrQHbgd+LOmad8BT4nIwnCk3+hEsAAVTYxo7/wr49l79VWNy+7UNcsndIVWSfqzgmJ9b16REy4aAVMnhV+eaG9vmgbXXAyd0iMtiaKlEMk6N3USjBqvb10zmWDZ7LITEZ6ZqB/VeOeT0eMwuLnwxB1Q6oX7p8I9T+uTZKNfLtJN0U0muO1KmPzXsu9NuFb3lRQqmkP51zcvyxPJcSnUZVqef96jL57c+pjezyyZCeecoj+792Y9b56bE560g0TbHKQmGrM/Dmf5hKJdhJsJ1zbeSYy17euCC40njYXTT4Jv3qoYz3k3w3erdCugJTMbR/ZQ0Zj5XY6Q+KyoEKGmacAZwFjg90B7QAM2ojvgTAHGAcnA/SJSbe8e9T4rgkyZpRegOoZGUR0iesf/4tv6IFBd5//838s0t9HA2i36WfGrNurOrrw+3bzthK5w8Zm6BvlQDnTKCL8sTaG95eZX7QzMUwoHjzROXilaDpGqcyK6Z/OvV8L1o6Frh4rPF30Dcz/XnYktmB769FsyR/Lgyx9h/hew77A+2+rZWV9JPf90yGhTcxxuj34UZH1PUWgu5R/My9WbIbegbIxLSYSbLtVX9qsjmsalhpbpsezaB79ugmEDyuIMpnEkD/73NezcD9PCuH01muYgtaEx++Nwls+RPPjiB1izpaxdJCfofcuVo2rXxzQmgQB8+pXu8DI5MbRx17avO5gD468Al1tXXAVxe+DSO2BYf7j9GmibFlr5IkG5/B488uywnAaCiDT4QneseR7wCnAA8AMBYA/wLHDSMeHjgZXAjlrEnZWZmSkKRbPicK7I+wtFHnpB5PYnRP70iMh9z4rM/kBk78FIS3c8U98QaXuGiKmfSFymyF1PibhKKob5bLn+vKVzbF7d/U+VV4rwEuk6F+n0Wyo/rRYZfbtIbKaI1rfsMvUT6XSOPrbs2FMW/uOlItfdK/L7O0XmfS7i9ojcMEnE0l//TvoIkX+/W3c5mkP5l8+buZ+JlLhFrr+v4XkTbsJVpo2dRk00pTlIY7eHSJRPsVOP+7tfQhtvKAinbLUtW61v1WWi9Y3e/qQ+lMvvzMxMAbIkBLqF8leotoEcQreU0IB84HX000C+EjnedENEijVNWwNcF6L0FYqmRVoKXHmhfkU7k1+BR6fpWuRhA2DlGnjpHf186U9ejrR00UVlefXi27qfEpVXinAQ6ToX6fRbKou/hYv/DINOgInjjh6DXc5Kb+N2+O9n8NYn+rF6G7fBjX/XV6HjYuGaiXDeabD0e92hc78e8MWP8JfJuhnz9WNqJ0dzKP+3P6mYN9feq+fNsh8aljfh5li5Q1WmjZ1GTTSlOUhjt4dwls+Yv1T9zO/XrQzue1bvdzRgfiOWRSRkq23ZLvtBTz97feTaTKipZX5P3erBS6fuIU8/FBoPoASYi34aiK2W3xkAnFKLcMqyQqGIJF3OFfnrkxXvTX9X1w6X1wxHy6pGJFF5pWhsIl3nIp1+S2XIFSJ/eKD6MD6fyMW3iZxxnUjmWJGr7il79q/X9fJ44LmK3/njgyIn/b72cjSH8g9X3oSbxpA7GvKmKdWxxpY1nOUz6DJd7g5ni5x1U8Vr+PX6s5N+X3avMYmEbLUt2x4XiNCn7HNT6U+qo5b5vTK+n/xAlyKJUsuKYcAu0R1rVsrRE0JiRGT/USXJ6hClHVnu/Eftw2oavPBA+GRRRD9Nsb7sOwRnD614789Xw8Jv4IHn9TOn01IaR5Zoz79oyitFyyDSdS7S6bdU1m+Fh2+rPozZDDePhRsm6b6QHry17NmNv9MdQg4/ZmvxRSPgP/+rvRzNofy37GxY3kRqXGqo3NGSRk00pTrW2LKGs3x+ngtPvgpPz4RTB8Kjf9GP6gQodkLiUN0HxmknNew31IdIyFbbst13qOKJNZFoM6Gmlvl96x23kJ29bnOojy4N1YHEvwAP1xDmcWB9iNKrGq0vPDu75nDLf4Zz/whth0PiyTDoMvjX6+AqKQuzYy88Nk2veFVx4AjM/ABefhfeXgALvqr+UrRsmmJ9yWijO7Q6lukPg88P4x9tPFmiPf+iKa8ULYNI17lIp99SSU+DlWtrDrdmsz6Btln1OU2QhDj46w3Qp1vF8AeO6GFrS3Mo/4bmTaTGpXCVaWOnURNNqY41tqzhLB+zGR7+M/z4nr5tYcCl8M3P+rPKjo9tTCIhW23L1nKMY/xItJlQE+m6UF+TDODOclcA+PKYe+Wve4AdQGE90qnbNhD6iEyZVX2Yj5fqJivXThR5Z4HIu/8TueefIrYBIqddq5tOioh8+aMe38o11cf3zUo9vqdn1l5ORculqdWXR14UsQ/UTdiWfS9SVFz27K35+m+5/K+6GVxjmGBGc/5FW14pmj+RrnORTr+l8uJbIuYTdUeDP62u6OTN4xHJWidy7xQRa3+RZ2fr852UYSLzl4kcyas8zvW/iXQeqW8dqS3NofxDkTeRGJfCVaaNnUZNNKU61tiyNlb5+P163Y7NFLntMd0RvNZX5Nvs+scZKhpLttqW7clX6O+OkWwz4aSa/A6Xg82GKCsClJ364S/3f3XXO/VIJ/TKisGX6x60j+W/i/TvL/lW/1xbZYWISM9RFQcp+lTcs6RQlKcp1RefT/d4HD9YH1yXfV/2LCh3zEllXugbg2jNv2jMK0XzJtJ1LtLpt2SmvyvSbrier6Z+Io5B+hXM95RhuqJCRORQjsjp1+nlcOo1x8cV/E6nc0Q2bqu9DM2h/KvLm+BvCJ6wUl3eNPa4FCq5I51GTTSlOtbYsjZ2+WzarvsoCMYdDcqKIOGWrbZlG/w/km2mMagkv8OlrNBE6rezRNO0m4L/ArOBxcC7VQQPALuBr6WOCWqalpWZmZmZlZVVyy/0hf+7E3bt18+69fthzNkw4zHdKytAq1P0c29fPmbniqcUJj6jP9u8A/7wYNmzR2/Xzfs6ZeietYO4PZB2GpwzDCbdAqdnlskBIOHf+aJogrz9iX4+c1OqLyVu3etxp3RIStDvBeXO+0H3Tr9rP0z8Y/hlifb8i6a8UrQMIl3nIp1+S8Xng182wOrNkJsPXh88+IL+zL2qbF9xkF83Qm4BnD2s4v1gWVX2ndrQHMq/srwJ/obZk+HaS6rPm0iNSw2VO1rSqImmVMcaW9bGLp9g3L99Bt07hS7eUBBu2WpbtuedFvk20xiUy+/BV15GdnZ2togMrv5LdUyivsqKCpFo2lfAf0VkeoMjOz7uuisrEuN1RyY3jIH1v8HkGfDAeF2JAXDmjfDjanjiDhh7XuWVee9BeOdTmPQvePEBuHA4vP4RPDMbDi0vOyJs/jK49A5Y/TH071VRDoielydFdNNU60u0yB0tclRHU5BR0byIdJ2LdPotlfrkezjKqjmUf0N+QyR/f2OkHQ3lGw0y1JbGljWc6UVzvkdCttqmGc35Vl/K/abBgweHRVkREgebInJWOBQV9aZPN1gwHa66EB6/Q7d6+Hpl2fPXntDPuZ30L+gxCtJHwNi/wqv/BadLD9O+LQztr/9/6iDo0RmuvkhfxVj4TVlcHy6FE3tWVFQoFAqFQqFQKBQKhUKhqDf1OrpU07QPgQUi8nq5z7VBRGRsfdKsE+edVtE7aUYb3UwySK8ukDVPN5ta9oNuZfHVSvhwiX40y/K3oGP68fH27wV9u8MnX8J1o3XFxadfwcQ/hPsXKRQKhUKhUCgUCoVC0WKol7ICuBT9dI/yn2tDqI9erZyk+IqfNQ0CgaMSiO7HwmKBgSfoV/D++4vgxvvhqddg+iOVx33VhfCvN8Dr1RUcuQW6jwuFQqFQKBQKhUKhUCgUIaG+20C6Av93zOfaXMccMhsBPlgM1gGwdVfF+5qmb/M4ZSBs3V3196+6EAqLyywxTh0EXdqHV2aFQqFQKBQKhUKhUChaEPVSVojIThHJO+Zzra7QiV5Phg0Asxne+uT4ZyVu2L4XunWo+vu9u8KgE2D+F/p1rbKqUCgUCoVCoVAoFAqFIpTUdxvIcWiaFgNchX486XZN0xKAqcDpwE7gCRH5PlTp1ZuO6XDvH+CJf+tHz1w0Ahx2/ajStxdAsQv+eoMeNiFO//vBYn1rSc8u+uerLoTHp+tHhF05KhK/QqFQKBQKhUKhUCgUimZLSE4D0TQtHVgLzAJ6Hr09FbgZaA+cD3ypadrQUKTXYJ66B958CrbtgfGPwg33w5vzdcXF6o/ghKO7VQadoDvr/Ncb8PGysu9ffRG4PXDuqdAmNSI/QaFQKBQKhUKhUCgUiuaKJtJwn5eaps0E/ghMBF4B/MAR4BfgbKAP8APwhYiMqWPcWZmZmZlZWVkNllOhUCgUCoVCoVAoFApF6Bg8eDDZ2dnZIjI4lPGGxLICGAV8JSJTRcSFvvUjDpglIn4RWQt8BpwWovQUCoVCoVAoFAqFQqFQNFNCpaxIBTaV+zwC/ZjSL8rdOwIkhig9hUKhUCgUCoVCoVAoFM2UUCkr9gJty32+ENgmIuXPAO0N5IcoPYVCoVAoFAqFQqFQKBTNlFCdBvI5cIumaXcDHYEh6A42AdA07VrgTKCS80IVCoVCoVAoFAqFQqFQKMoIlbLiceBi4F9HP+cBzwFomvZf4HKg+Gg4hUKhUCgUCoVCoVAoFIoqCYmyQkQOaZrWH7gKSAbmici+o49/AbYDL5S7p1AoFAqFQqFQKBQKhUJRKaGyrEBEioCZldx/KlRpKBQKhUKhUCgUCoVCoWj+hExZAaBpWnegM/qxpVplYURE+a1QKBQKhUKhUCgUCoVCUSUhUVZompYBfAicXF0w9ONMzaFIU6FQKBQKhUKhUCgUCkXzJFSWFS8CQ4FNwCKgIETxKhQKhUKhUCgUCoVCoWhhhEpZMRJYBQwVEV+I4lQoFAqFQqFQKBQKhULRAjGFKB4r8INSVCgUCoVCoVAoFAqFQqFoKKGyrPgZ6BWiuBQKhQKRAD7PcnylP+L37UbEiabZ0UzJmC09sNhPw2LtE2kxFQpFE8Hv3YS39CcCFfqTJL0/sQ3DZE6LtIgKRZNAxE1pyWcEfDswmdtgdZyHydy6Qhi/bxse53vEJj0QISkVipqRgIvSkk/wlf6E37cbxAnlxgar/TQs9rPQtFCt7yvqSqiUFQ8DyzRN+6OIzA5RnAqFooUSCOThypuI37cZzdQGs6Wr8SIhASde92I8zjex2E4hNvkJNM0RYYkVCkW0IuLGVfAYPs+3gBWTOQPNlIAA4t1CqWsB4MUWcymOhL+qSalCUQ1+3zacefcggVw0LRGRQtzON4hNehyr/VQjXMB/GK/7M1DKCkWU4vftxZl3BxLIx2zti9U+DM2UAOhzTb9/J66CyZgsbxGXMhWTKSXCErdMQqWsGA78BLymadrNwK+Au5JwIiJ/C1GaCoWimeIuegERD/Gpb2K2dKs0jM+7Dlf+Q7iLXiQm8b5GllChUDQV3EXT8Hs3EZv8NBbbYDTNXuG5iA+v52tKCqegabE4Em6NkKSK5ozX/XWdwlsdZ4ZJkobhLpqGpsUSn/oyJkt7Av79uPIfwlXwGAmpb2Iyt4u0iApFrXAXPY/J3JbY1DcwmRIrDRPwH8CZNxF34fPEJj/eyBIqIHTKisnl/j/16FUZAihlhaLJ01wmHdGKz/MjjoS7q1RUAFis/XDE/RF38QylrFAoFFXi9XyNI/5WrPbTKn2uaRZsjpFIIAeP8x2lrFCEhZKiqUggr9wdqSa0RpLjm3CLVC983jXEJNyDydIeAJM5ndjkf1KccxMlhc8QlzI1whIqFLXD511NbOL9VSoqAEzmdtjjbqCk6LlGlExRnlApK84OUTwKRZOguUw6ohcN8NcimA1B+fVVKBRVI1IKWkyN4UymNERcjSCRoiWSkPYxpa73cBdPxx57HbbYSyMtUj3RQLNVuGMyt8aR8BdKCp/G6/4Cq+OcCMmmUNQeTbMTCBTUHFA8aJjDL5CiUkKirBCRui0zKxRNnOYz6YhOLPZheJyvY7b0wGztWWkY3XnX61htJzeydAqFoilhsQ7E43wHiy2zyj3HgUA+Hud/sFj7N7J0ipaCpmnYYq/G43oPzZTQZLdLmK19KHW9j9U2DM0Ub9y3xVyM172UksIpmMwZEZRQoagdVvuZeIpnYjKlYrGfgaZpx4Xxer7H7ZylLKQjSKgsKwDQNK0XcCnQG4gXkas0TbsY2CgiW0OZlkIRSZrLpCNacST8FVf+JIpzb8Zk7oTZ0g3tqJmeSDF+33bdC7mlO47EeyIsrUKhiGZiEu+iOO+vFB2+XFdYWLoaZr8ScOL3bcPnzUbTEohLeiyywiqaNZqmYXWci2ZuG2lR6k1M/J8pzruLwiOXYbb0IibhbszWHvqzpEdx5o6nOPd2zNbeEZZUoageR8IEJFCAq+AB0GIxmzuVm2s68ft2gLiw2E7BkXBHZIVtwYRMWaFp2sPAI2DYyQTt4q8HLtU07W8iMj1U6SkUkaY5TDqiFZMpmfhWM/B6VuDz/IjftxXxbQN8aFoCZktP7HE3YrWfiaaFVOeqUCiaGSZzBgmpb1NasgCf50e87qVIoBDwHVU2d8YRNw5bzO8qrBQrFOEgpom/9JitJ5CQ+halJQvw+7ZSfhusPna/gdv5Bj7Pd3CMM1uFIprQNDuxyU/g927FV/oDft82Y2wwmdpgiT0Zi/1ULNa+kRa1RaOJVLfXvpaRaNpoYD7wC/AUMBq4XkTMmqadAswATgRGi8jCOsadlZmZmZmVldVgORUKhUKhUCgUCoVCoSiPSADEDZpNLYTVg8GDB5OdnZ0tIoNDGW+oSuJuYD8wQkScmqadHnwgIj9omnYBsO5ouDopKxQKRctEAi5KSz7BV/oTft9uECdodjRTEmZLD6z207DYz0LTTJEWVaFQRDl+70Y8znfx+3dgMrXBFvM7rI4zKoTxla7CVfgPEtPmRkhKhaJpULE9tcYWc2ml7amk8EkS0v4bISkVipoJ+A/gcb6Hr/RHAv59GJZCWqwx19St7uIiKmdLJlTKisHAByLirOyhiBzQNG0poNwDKxSKGvH79uLMuwMJ5GO29sVqH4ZmSgCO7jH378RVMBmT5S3iUqZW6TRPoVAovO5vcBU8jMmcjtnSE79vC66CB7D7/oAj/g9GOBEP4j8YQUkViuinLu0p4D8QQUkViurxeTfizPsrmhaDxTYEW8wlaNrRuaYU4/ftwuN6F49rHnEpL2C2dIywxC2TUNq41BSXB1BqKYVCUSPuoucxmdsSm/pGledfB/wHcOZNxF34PLHJjzeyhAqFoqngds7GYhtKbPJTaJoFET8lhU/jcb6BxXYSFtugSIuoaAF4nO/VIbSGPe4cbVNlAAAgAElEQVSqsMnSEFR7UjQX3EXTsFgHEZv8jyq3fUjAhTP/HtxFLxCX8mwjS6iA0CkrfgbO1TQtQUSKjn2oaVosMAJ9K4hC0eRpLpOOaMXnXU1s4v1VKioATOZ22ONuoKTouUaUTKFQNDUCvl04km4yJqOaZiYmcSJ+73pKCp8hPnWO2p+sCDte9zL8vo2ARnmnlJUTvfMG1Z4UzQW/bxOxiQ9XW181Uyz22KtwFT7ViJIpyhOq3uRp4DPgc03TJgIxAJpuS3MS8DjQEXgoROkpFBGluUw6ohVNsxMIFNQcUDxoxgFECoVCcTyaFntcf6JpNmIS78OZNwGP800c8TdHSDpFSyE+9TW87i9wFTyKI/427HHXRVqkeqHak6K5oGkJBPx7agwX8B9G02IaQSJFZYREWSEiizVNmwA8Bywv9yj/6F8NeE5E3g5FegpFpGkuk45oxWo/E0/xTEymVCz2M9A07bgwXs/3uJ2zsDrOjICECoWiqWCxD8PjfB2TuT0WWyaapis4LbYB2GKvwOOcg2ZKxmTOiLCkiuaO1XEOWtHLkRajQaj2pGgu2GIuxO18HTQLVsd5x/k/CwQK8LqX4XbOxB7z+whJqQiZnZaITD/qRPM24FQgFXACvwKvi8jXoUpLoYgGmsOkI1pxJExAAgW4Ch7QPTKbO6Ed3RIi4sTv2wHiwmI7BUcTP7NeoVCEF0fCHbjy/oYr/x7ARFzK81hsJ+nP4m8n4D+Iu+h50JRbLUX4sceOxWTpGmkx6o1qT4rmgj3uFkS8uItewV00Dc2UhKYF55rFSCAP0LDFXIo9/k+RFbYFE9JNZSKyGbgnlHEqFNFMU590RCuaZic2+Qn8vm34PD/g921BAsWAD5OpDZbYk7HYT8Vs6Y4E8tDMyjxPoVBUjsmUTFyrmfi9v+IrXYXJ3NZ4pmlm4pIn4/V8j9f9JRLIryYmhaLh2OOuPe6eiAcRV5M42Uq1J0VzQdM0YhJuxx53Lb7SLAK+bUigEMGHpiVgMqVhdZyDyZwWaVFbNCFRVmiatg2YJSL/qCbMI8AlIjI0FGkqFNFAZZMORWjwON/H43pHn+xodmwxo3HE34qm2Y0wXs+PuPLvJantNxGUVKFQRDulrv8a/YnH9Q62mDE44scb/YnVfipgwpV/b2QFVTRrvO7leD1fIuLB5jgPi/00SgqfxuteCgiaKQV73B+wx14aaVGrRbUnRXPCZErG5hgJjDTuiZRQeOgCzNa+SlkRYeqtrNA0bUC5j12AE465d2w6o4D+9U1PoVC0HNzFb+BxzsbqOB+ztS9+70ZKXR8Q8O0lLuXpSIunUCiaEJX3J/MI+Pao/kTRaJSWfE5J4WRM5s5omgNXwWNYbCfjK/0ZW+xVmC1d8ZVm4y6aiqbFYIu5INIiV4pqT4rmgjNvUjVPA4DgLp6OpiWAphGX/M/GEk1RjoZYVqyi7BgEAa49elWFBvzQgPQUCkULobTkf9hixxKT8FfjnsfaB3fRVDyuj6N+1UmhUEQPqj9RRAMe1/tY7ecQm/y4/tn5Hu7i6djjrsMRfyugO/xzYcLjej9qlRWqPSmaC4HAIQK+39BMrTGZ2x/7FAARN2Cu+eA/RdhoiLJiDnrRacCNwHpgZRVhA8Bu4NUGpKdQRA0lhc/XKXxM4l1hkqR5IoEjWKyZFe7ZYy/D5/keT/EMrI6zMJmSIySdQqFoSqj+RBENBPx7cMTdZHy2xozCXfwyZuvACuGs9lPxupc0tni1RrUnRXMhvtVMPM638LjewWI9EXv8H9A0GwAScFF4+AJiEu7GYlMbAyJJvZUVIjIu+L+maTcCi0Uk6pxrugqexOteiD3uTzjib6r5CwpFLZBADl7Pd4AXTYsDLb7qwBrEoJQVdUEzpeH3bcHK8Ar3YxL/RlHODZQUPkNc8pMRkk6hUDQlVH+iiAY0rAT8+8s+a7HYYq/AbOlSIVwgkAOatZGlqz2qPSmaC5pmxhE/DqtjBCWF/8Sb8xUxiZOw2AaBpkVaPMVRQuJgU0RMoYgn1Ih48Hq+Bix43UuVskIRMmKT/w9f6a848yZgj7see9x1kRapWWGLGYXH+TbgxWIbgtnSB80Ui8nclpiEv1FSOBln/kNYbEMiLapCoYhyVH+iiAYs9qF4nG9iMnfAbOuPyZRETMKdFcL4fTvwON/Fcoy1RTSh2pOiuWG2dCMu5RVKXe/izJuILWYU9rhxkRZLcZSQHV2qaZoVGAF0BuLQt4cch4i8GKo0a8LrWQHiwh53Mx7nTPzerZit3RsreUUzx2IbWMkeN0UosMeNQ8SFxzUPj/Md4lKew2IbDIAt5gJEinEXTcfn+ZoquhqFQqEAVH+iiA4cCXfi8h/AVfB3zNZ+xLd6pcLzoiPXEPDvRTO1xpEwIUJS1oxqT4rmiKaZsMddh8U+nJLCpynO/SOq/kYHoTq6tA+wCOgYvFVFUAEaT1lR8jlm6yDssWPxON/E615qKCtKSxZSUvgkCa0/NfbWBQL5/8/efce5UZx/HP+Muq65YGyD6aaaboPBtNB7J9QfEIoJvZrem+ndEAhgOjiUEEoghACmBYyJTTfVmI5p9p1PXVrN7w9Jx/U7WdV333devC6WVqtHu7PPzM7uztD8y84EG87GF9yxXGHKIsxfeygu9xIt/276aRMABgx7vVIh9QnGuAnWH0+g7s+kU9+1mcc9t40bFv8XycR0rPNTpcIUkUWA8olUA5drEHWDb8VJfo61zR3eTzvfAlA/ZErLc/PVSMeT9GVuzzLUDb6FeORxYs3XEZ5/tNr0FVasOytuBJYBXgSeBpqKtN6Flk43kkpMJ9hwKsZVj8e3HonYCwTqj6x0aNKHVOto3X2FMf4u74YyrvrsvNgiIj1TPpFq4Pau1O371dxR0ZqOJ+nL/DV7Emu+rtJhCMXrrNgQeN1au02R1lewZOxFwIXXvzkA3sCWpBZMJJX4EI9vjYrGJiIiIiIiIiJdK9bAmGngwyKtqyiS0eeyg/tYbLo5M7IrbpKxFyodmoiIiIiIiIh0o1h3VrwGrFukdRXMSX2Lk/oYgAW/7NDmvWR8KgF7fBeftCWOTERERERERER6UqzOirOAN40xF1lrLyjSOhdaMvY8mCC1A6+g9VifTvITYqG/4CTe6fRzNt1xwCMRERERERERKa9idVacAHwKnGuMOZTMIyGxTpaz1tq9ivSdXUrGnsfr26hlKqUct3cUsdBkErEX8Po3yASUng/Z2UCc5PulDk1EREREREREelCszorxrf7/Utn/OlPy5yxSiQ9IO98TqDu6w3vGBPD41ycZf5lA3SGAm3j4IQJ1h5N2fiAevr/U4YmIiIiIiIhID4rVWbF8kdZTsGTs32CCePwbdvq+178ZqfjrOMnPCTacRSw0meZfD8DtWZ5gwxmE559Y5ohFREREREREpDVjbXUPKmmMmTF69OjRM2bMqHQoIiIiIiIiItLKmDFjmDlz5kxr7Ziel+69Yk1dKiIiIiIiIiJSFAv1GIgxxlnI77PW2mI9eiIiIiIiIiIifdDCdhyYnhcp6udEREREREREpJ9YqM4Ka60eHxERERERERGRklCng4iIiIiIiIhUFXVWiIiIiIiIiEhVUWeFiIiIiIiIiFQVdVaIiIiIiIiISFVRZ4WIiIiIiIiIVBV1VoiIiIiIiIhIVVFnhYiIiIiIiIhUFXVWiIiIiIiIiEhV8VQ6ABERkUKlreXVZIJpqQTfph3C1uIHBhoXK7o9bOz1McrjrXSYIiJV59NUkmmpJN+mU9ncaRhgXKzk9rCh18sQl7vSIYpICcWs5dlEjK8ch6EuF9v6/Axtd9zPdlJMiUc5t6a+rLGps0JERBZp89NpTgk38amTYphxsbzbwxBX5sbBkLX8OxnjnniEcR4fl9Y2EDCmwhGLiFRezFrODy/g9VQCL7Cky019Nj9+blM8lYiSjMIevgAnB+twKXeK9DmznRQnhZqYZ9MMMIYma7k7FuHS2nrGef0ty/2STvOvREydFSIiIvm4Phoibi0P1A9iBXfn1dpHqSRnhRdwQzTEmWWuaEVEqtGkaIhPnBRX1zawnseHv11nRMpaXk7GuSoaosYYjg7WVShSkfJ5ORHPa/nNff6eF6pik7LH9211gxnhdvOj43B2ZAHnhZt5oMHD8ArfWaXOChGRTvS3ympRNi2VYEKwrsuOCoDVPV7GB2q4NRbmTNRZISIyNRnn6EAtG3s7r788xrC1L8BvNs0Dsag6K6RfuDYaYp5Nt/zbdrOsAf7rW7zkMZXSB6kUp9TUMcKd6ZRYwu3mytoGDmqezxWRZm6oG1jR+NRZISLSif5WWS3KDOD0YjmfMaS625EiIv1IwkKwF492DDFuIlbJU/qHpxoGMyUe5eZYmAP9QfbwBysdUsm1764c6nJzfKCOy6PNvJiIs1UFL8ips0JEpBP9sbJaVG3o8XFXLMxKbg8rdXF3xZdOismxCGO9vjJHJyJSndbxeLk/HmW0x8dgV+cTBDam0zwYj7CmR6cM0j8YY9jfH+SheJQG42KJPj7A7GoeD3+LR9nQ66PO/J4HdvYH+E8yxpXRZkZ0kR/KQZlHRKQT/a2yWpSdHKzjtHAThzTPZ1mXmxXcHhqyVwtD1vKlk+KrtMNIt4cJuo1ZRASAU4J1HB9uZM8FvzHG42MFt5sGkxucOM2XjsPMVJJ6Y7iowreCi5STMYZtfH6GVfAkvVyOC9RyfKiJXZt+YxW3lwk1dayYvfBzUU0D40PzOTLUyKrdPGpbSuqsEBHpQn+qrBZlA10u7qgfxGvJONOSCWY7Kb60lhRQbwwruz0cEqhhc68fj0azFxEBYEm3mwfrB/N0Isa0ZILnE3EW2HRL7lzW5eHQQA27+wNtrriK9Acn9pOLG6t6vDzYMIinEzG+cFKkWz3xNdDl4t76QdwTi/DfZKLD4yLlYGyVP4NmjJkxevTo0TNmzKh0KCIiIiIiIiLSypgxY5g5c+ZMa+2YYq5Xd1aIiMgiL2zTPBWP8VYqwTdph7C1+DEMNIYV3R429vrZwuvDpTsrRERafJJK8mA8yhwnxTCXm939ATZtNzvIO6kEl0aa+XvDYhWKUkRKqXUeGOpys0cXeWBipJnHypwHdE+XiIgs0r5zHP5vwXxui4WJWxjn8bGHL8iOvgBrebz8YtNcHFnAIaFG5qXTPa9QRKQfeCURZ3yokU+cFMu6PXybdjgzvIDJsXCb5eIW5ip3ivRJ7fPAd93kgR8rkAd0Z4WIiCzSro+GGOpycW/tIAZ0Mb7I3LTDKaEmro+GuKS2ocwRiohUn8mxMBt4fFxZ24DHGBxruTzazN2xCKM9Xtb1aPYk6X+mxCJ5Lb9/oKZEkZRHtecBdVaIiHSiv1VWi7L3UknOrqnvsqMCYLjLzcGBGq6LhsoYmYhI9fo67XBIoLZl4GG3MZwerGdWKsUVkRAP1g/SoMTS77yQjPOxk8IAPY3saFj023/VngfUWSEi0on+VlktyvwGGm3PtybGrdWzjyIiWTXG0NQud/qM4Yyaeo4JNXJPLML4YG2FohOpjMn1g3gxEee8yAKOCdRyYB9v31V7HlBnhYhIJ/pbZbUo29zr545YmCEuF5t6fJhOrgC8kYxzRyzC5t5KTLwlIlJ9NvT4uCsWYYTLzRiPF3c2d67t8bKvP8g98QgDXC6W0vTd0s9s5fNzc7R/lPtqzwPqrBAR6UJ/qqwWZccH62iyljPDC6jBsKzbTUO2sg1Zy1eOQwTLOI+v38ybLiLSkxODdZwcbuKkcBMu4Ka6AYzOPp9+bKCWuWmH66MhatGjINL/7OUPsoLbXekwSq7a84A6K0REurGXP8jIflBZLcoCxnBpbQOznRRvJhN87qQIWUsKyzCXm7EeHxt5fazo9jDfpgka7U8RkYEuF3fVDeRdJ8k7qSTDW+VGtzFcVjuAN5NxXkwmaNRsINLPdHZHbdxawtYyuA/dbVTteUCdFSIi3dDjH4uGKbEID8QjNFqLH9jVH+SoQC2BVo+ETEsmmBBu4r8DF69coCIiVeRv8WhL7nwgFmE3f5AjW+XOcV4/BsOEcFOFIxUpn1eTcV5KxIlj2dYbYGOvj8sjzfwnGccCg42LQwM17OkPVjrUoqjmPKDOChERWaTdHQtzZyzCdl4/q3u8fOwkeSwe5XvH4eq6AZUOT0SkKnWWOx+NR/lOuVP6secSMS6ONLOsy03QGM6PLGCsx8fbqQT7+4Ms7/YwI5ng2miIGmPY3heodMgFqfY8oM4KERFZpD2diPFHX5CTa3LjUQQZ5Y5yTTTE4/Fon7nyISJSTMqdIh39LR5lK6+fS2obgMydmzfHwhzkr+Go7KwYO/oCuCLNTIlHF/nOimrPA+qsEBHpxHWRUK+XNdAqyUu5/ZpOM8brbfPanv4gbyQT3BYLs6XXz8A+9HypiEgxKHeKdPSt43CI//dHgHfwBZgUC7O2p+2xspHHx/OJWLnDK7pqzwN9MgMd09zIuMZfeK6TAvSj4zCu8RdeSsQrEJmILCp+s2meSkT5eyLKc8kYr6fi3f4nlTPE5eJzJ9Xh9dNq6nAsXBFtrkBUIiLVTblTpCOvgR/TTsu/a4xhH3+Q5doNtv6bTePtAzPlVHse6NN3VtwcDbOp10et6ZN9MiJSQhNrG3g3leCYUBMH+2s00GYV28Eb4L5YhKSF9TxeRnm81BjDMJeb02rquDjSzNnhJtbLTsUlIiLKnSKd2cDj4+54hKXcbtZyexngcnFSu2nPv3JSPBiLdLjbYlFU7Xmgz3ZWjHC5mJtOc2cswolB3Z4tIvlbx+NjKZemuax2hwVqiGB5NB7l/niEG2sHsJ43U6lu7wvQbC23REO8nEz0gWsgIiLFodwp0tFJwTrmhps4I7yA1d0e7qgf1Ob9fRfM47u0w1Dj4oTsGBaLsmrPA322s2JZl4dNvG4ejUfZxRdgBXfnP/UrJ8WkaJh3Ugl8xrCl189RgVoa9IyeiJBJ4ku06rAY1/gLAG9q+suq4TaGE4N1HBmo5bu0w/BW+Tu3v55vWIy3Ugl+qsAc4SIi1Ui5U6SjQS4Xf60fxOdOigXtyn3uuDgnWM+2Pj8+s+h341V7HuiznRUARwRqeDER55pIiL/UD+zw/ty0w5GhRlZweTijpp6otdwTi/CJk+KOuoG4+0ABFJHCLOqjPPcnAWNYsYuO6XqXi621L0VEOlDuFOloJbcHuri5dmd/3zsmqjUP9OnbB2qzt+e84yQ7Ha11cixCvTHcVDeA7XwBdvcHmVjbwMdOijdSiQpELCIiIiIiIiJ9urMCYBtfgPU9XiZFw4Rt21tX3komGOvxkQQi1hKxluXdHgYZw4epZGUCFhEREREREenn+vRjIDmnBus4sHk+d8Ui/NEXbHl9nk3zj0SMf3Ry10WTteUMUURERERERESy+kVnxTJuDwf4a3gwHmG9VlPM1BrDpl4fu7TqwMgZrPEqRERERERERCqizz8GknNIoIbFXS5uiIZbXlvH7eWndJq1Pd6W/5ZwubglGuKrtFPBaEVERERERET6r37TWREwhpODdXzTqhPisEAN76eSXBRewIuJOE/Eo5wQaqLJWsZ4fBWMVkRERERERKT/6jedFQCbev1s0qoTYhWPl0l1A/kh7XBxZAG3x8Ks4vYwqW4ANXoMRERERERERKQijK3ygSSNMTNGjx49esaMGZUORURERERERERaGTNmDDNnzpxprR1TzPX2qzsrRERERERERKT6qbNCRERERERERKqKOitEREREREREpKqos0JEREREREREqoo6K0RERERERESkqqizQkRERERERESqijorRERERERERKSqqLNCRERERERERKqKOitEREREREREpKqos0JEREREREREqoo6K0RERERERESkqqizQkRERERERESqijorRERERERERKSqeCodgIiUV9qmeSX5OtOSb/NN+jvCNowfPwNcA1jZPZJNvOMY5Vl1kf2+Uutrv0ekWD5Jfdb2uDB+BpoBrOQeyTjvWIa4Fqt0iIussI3wRPyfrbZvhAA+Brgy23cT7zi29G6Gy5T+GtTHqU95IPYwc9JfM9Qszp7+XdjMt3GbZWYm3+PiyJU8MeChkscjC6/Y9Vm1148/p3/hkdg/mJP+mmGuxdnVtyOrelZus8ys1CdMit7OrfXXFe2zxYp3G++WzHI+aZMH3LiI2Thb+DYtax7oTiH5qppyXSHy/R0xG+OZxPPMcb5imGso2/m2Yqhr8TbrnO3M4aHYI5xXe0YlflKLro5z10VBln5/5BJj52+x/vRBU98u1vcZa22x1lUSxpgZo0ePHj1jxoxKh9KtvnJwSd82P93IiaEz+NT5nGGuoazgWo56Vx0AIRvma+cbfkjPZSPvBlxWez4BE1ikvq/Uiv17qr1hJ9IbMRvj3PAlvJZ8Ey8eRriWpN78flz8kJ5LkiR7+ndlQvA41YN5+s75nqObT6HRNjLKsyoruJej3tQDELZhvnK+4b3UByznXpab6q5isGtQyWJ5OfE6Z4UvZEnXcFZwLcd7zoc02ibqTR0GV0u7Z6AZwP9S7/DmwBe0v4usWJ1Fxa7Pqr2+fyf5PieFzsBt3CzjWppv098RsVHOqjmFXf07tiz3ZnI6J4fOYtqgF4vy2WLF+7XzDWEiePCwpmdUSx743vmB/ySnsr5nNO+mPqDO1LKye0WWdo8oS4dKe4Xkq2rKde3lc56X7++Ybxs5ofl0frPzGGAaaLILCBJgYt35bOTdoCWGYpavhdXdcf7cq8+RWMqJ+5cKeIFngX2nD5oaKfQ7dWdFEbQvlBt5x3YolBeGL+Me94NlP7ikb5maeDWv5bfwbdbm39dGJhG3cR5qmMxI9/KdfubD1CzODF3A9ZFbOKt2wkLHWonvK7Vi/p7OEv4Qd+bKc8iGeS7xAnfFHlhkOnKkcj5JfZbX8u0br4W6MXorn6Q+49q6iazvGYPf+Nq8n7IppiZf5YrI9dSaIMcEjyjq9/d110YmMcy1OA/U3cEAV0Ony8xN/8SJzWdwbWQSE+vOL1ksd8TuYUPPepwYPJbjQ6cSsVEGm0HMt/PZzrsNw91DCdsw76U+xGL5vwXjubz2Qga5BvZq/V39vnwVWleWQj4xfZiaxRqeUZ28/jEPxh9hkBnIkq7hfOp8wWnh8zjC+RPjg39qWS5OnLnpn7r9jmLXz9Ve398SvZ2R7hW4se5K6l11hGyIc0KXcFXkBkZ5VmVF9wol+Wyx4j2++TRmpT4hRow/+ndnadcIAN43H/FC8mW29W7Ju6kPaLSNfJiaxQepj3g8/jSHBg7kyOChLettsgt4J/UeUJq6o5B8VU25rrV8z/Py/R0LbDM1Jsjt9fczwr0kPzhzOTN8AeeELmHKgMkMdw1bqLhLkQe7O86fPfcfvD9z5kfrz9v8GODvwPXAkXkF0Ql1VhRBtR5csmjqLrlcGrmGkA31aj0GwzRf297Xaam3ObXmhC4bEgBreEYxPngIf4newVkU1pgo9/e1V+xEXczfU+0NO1l0HN58HA5Oj8tZbCYvdHJVppBG69TEaxwTHM8m3nGdLusxHrbxbclv6XncF/ubOivy9G7qQ86tPa3bE/nhrmEcEvg/roneVNJYvna+4bDag7gxektLuydoAhy04M987HzC+bVn4DFu3kxO56TQmcxOz2Gf5j/h6uUQacW6Ynh15Cbm2fkt/7Z0fRdxZ3VlKeQTk8Xiirs6LJv7O8/OZ54zv+W1ybH7GO1Zh9HetXsdT0/1Wa7+3MS7Ec8lXmBD7/oFrQ9KW9/35FPnC86rPb3lKnCdqWNi3Xns13QYE8NXc3fDrSX5bLHi/TD1MafWHM+t0cmcG74EgwEy+99imRi9BsiU5zARXLhIk2Zy7D628v2h0w6VYtQd7RWSr6op17WW73levr/DsQ6n1pzACPeSACzpHs41dZdywILxXBa+lpvqr1qouEuRB3tznE8fNPWtsfO3uBC4HHVWVIdqPbhk0dRdcmmfaAyGJxryeSbY4NieKyY/PlKk8lhvtXxfW8VP1MX7PdXesJNFx78HPs7t0Xt4OP44u/t2Zjvflnmvo5BGa9wmCJpgj58d4hpCxBZ8R2i/4zc+Gm1Tj8vFife6U2Bh1ZgammxTh3bP2bUTOLL5JO6K3c+fg4cAmZx6bOAIbovdhYPDlt7N2Ni7YUnjy3lmwKM8FH+Um6K3cXBgf/b07VKW7y1WTBbL1ORrHZb944KDODl4HBu3ujU8SZLTQudxeeRapjTcjce4exlR9/VZrv7MnQyfGb6wmzUZ6kxdRev7nviMl4RNtHmtztRxRs1JnBo+l8diT/DHwO5F/2yx4vUbHzHinFFzEhPC5zDavTYznfcY5xnLm6npePBwcGB/YjbGE/F/cm3dRKJEuSh0ZZcdKsWoO9orJF9VU65rLd/zvHx/R5p0hzsSh7oW58TgUUyMXMMLiZfZ2rd53nGXJg/2rh0MxABvEb5QnRXFUK0Hlyyaekou1loODR3Drr4d2NO/K0u4h/d63eO863Nn7D5Wco9kZc+KnS4z25nDnbF72cCzXkG/oxLf116xE3Vxf09lO3Kk76gzdZwQPJpnE/9hhHsJRnvXyXsdhTRa1/WuxX2xKYzxrNPlY46N6Sbuj/2NtTxr5B1bf7elbzP+Gr2LIWYwm3k3xhjTYZn/Jqfx1+jdbOkt7eMM47xjuTN6Hy5jmJf+vSN4bc+a7Offi7tjDzDQDGCp7BXCBlc9taaGlE2xmmcVdvZvX9L4cowxHODfmwdiD1Nv6vKqJ6slpgNcHZetNbW4jOnw2c46i3rSU332zIBM3flg/BGWdS3NTXXdX939S+zOitb3PVnXsxb3xh5iTc/qLOteuuX1TX0bsV1yK26M3sYw17BOO3sK+Wyx4s3lgXNqTmU771ZMTb5GkABDXLuHG+cAACAASURBVIMxGALGT8RGeD7xEtv6tmypB86rPb3LDpVi1B3tFZKvqinXtZbveV6+v+Pb9PdMiT3GOO9Y6rLjPQHs4t+B5xMvcUXkOka4lsg77lLkwd60g8fO32J14ALg+YK/EHVWFEW1HlyyaOpNctnetzUreVbMO/FMCB7PKaGzObj5SJZ1Lc1I9/I0mExPcciG+DL9FXOcr1jRPZLTak4s+LeU+/vaK3aiLubvqXRHjvQtHuNmA88Y6kztQn2+kEbrhODxHBuawG5N+7OeZx1WcC9PQ/YKVNiGmO18xYzkO9Sbei6tP2+h4uvPTggeTWO6idPD51NDDcu5l26Vd8LMSX9FxEbZyLsBJ9UcU9JYTg4eywnO6XzifMbV0Rtpts0cGjgQYwzHB49kbvpnro1OotbUYLEt7Z4vna9KGldnjDFs69tyoZ/3LoV8Yups2Vxn0QjXkqznWRd39uS4q86i7vSmPvvSmYMbN1v7Nu+x/qx0fd+Tk4PHcXToZPZdcAiLmyFcUXchq3tWA+Dsmgl85/zAaeFzOz0pLOSzxYr34tqzW+WBIG5cRIjybOI/pEkTsVGmxB9jjGedNnmgpw6VQuuO9grJV9WU61rL9zwv39/xlfMNx4YmsFPj3qziWZnTgiewkmckAJfUnsuhzcfw5+YTWNWd/3hTxc6D3R3n5uwgay4zdjXgPeB94LhifKdmAymCmI1zcfgKXky+0mOhnFh7Xq9ulxW5PnILq3tWY9si3JbX3muJN3gzNZ3PnS9ZkF5ACocGU8ey7mXY2LshW3g3K+oVgtcSb/BG6i2+cOaU5fvaK/a2LMb2a0w3cUrobGY5n/TYsLux7koNzCtlcU7oYsZ412FP/655fS5m4zwZf4ZpyexxYZtJkaLB1LOse2k29m7Inv5d2lw1kvzMdubw3+Q0ZrfKo/WmjuWyeSd38lRq1lreSr7NzbE7+NyZ3aHd82N6Lt+nfyBJik2849TuKaLGdBMnhE7nU+dzXBhuqbu2pWPRsQ7nhC9havJVak0NERvt1RgDPdXP76c+Yk3PqF7Xn+VuX+QjaqO8mHiFL5wv2cO/M8u6l2l5z7EO/0j8k/8m3uTH9E/8bcDdeX/29cSbzO3ks8WM9wvnS95IvsUXqS/5zPmCeXYeSZtiJ9/2vJB8mUbb2KFDJWZjHNM8gVnOJ4xwLcH36R9LPqNEIfmqWnJdzsKe5+X2VW9+x8/pX3gy/ixfOLM5PHBwm4tYYRvhruj9vJ7MlK9XBv2rrL+/M53ljW8++pr5X8ybN3iXxY8GHp8+aGpRbgtWZ0URVdvBJSLVr9IdOSIiC+uz1Be8mnyDr51vCdnmqm33pG2aKDH8+Bf5fGqt5Z3Ue3zufMlm3o063PHwRvItXku+wdz0z1xfd3mFopRS66xMV6JDpVystXzhfMnS7qUIGH9FYtB5XvfGjBnDzJkzZ1prxxRzveqsEKlyxW5k5TNXdDFMTbzG/bEpzHG+ZqgrMyf8Pv4929xGVw1zR4vIwvs49SkPxB5mTvprhpnF2cO/C5v5Nm6zzMzke1wcuZInBuQzKLBUm7npn3gg9jDTkv/j+/QPLQMX15hgSx2yh3+XltvKW5eNoSZTB5SjbOQbZzl8nPqUl5OvE7dxtvZtzhqeUfw1ehdPxp+l2YZYyb0C44N/YqNWA2iWUrHr55/SP/Nm8m3iNs4ffBsz3DWMp+LP8mT8WUI2xErukRwc2L/LRx9LrZD2T2+31Smhs3izRG2Z1mX6u/T3pEkDmQFOl3QtwR6+ndkzsGtLme7Nvmu9z3KdX9W0z3KiNsoWjTtze/1NrOVZvaKxtNZVJ0q+x3pv8+Qlkav4x4AHy/ob2+vqWFhvvfVaOivGzt9iO+DZ6YOmFnziojErRKpQqRpZ+c4VXeijB/+IP80VketZ17MWe/h34WPnU66P/oXZzhzOrj21oHX3BerIkWqysOXx5cTrnBW+kCVdw1nZvSKfObM5PXw+452DGR/8U8tyceLMTf9U1t8kxTUr9SnHNk+gxgRZ2b0iQ11DcOFiNfcqDHA18Fz8BW6O3s6k6F9ZyT2STT0bcW/8obKXjdZxru8dza7uHWjI1nWhbF33YOwRHo49zl/qr2MZ91JF++6uvJF8i1ND5xI0ATx4eDT+BDv4tuHpxL/YyvsHVnAvx4zUu0wInc11dZczzju2pPH0pn7+OPUpz8T/TZo0H6ZmdXvC9WFqFieETidsI7gw3BadzAGBfbgzdi+ru1dlDc9qvJ/6iMObj+O2+uvLfhW6kPZPPm2ZUl0Cbl2mh7mGkibNMq6lWNI1nG/TP/B9+gdui93FbbG78OJhuGsYoz1rdVhP6w6Vattn10S6njExZR0slodij/K860UMhgk1x5c0nt6IEeOg5j+36UTJ91iP20Sv69Af03Mr9VOB7o+FUlFnhUiV6a6R9WriDebb+dwZvY+7ow+wl383BroGdLoeg+GAwN5tXst3ruiJdecX9Fseij3K9r6tuaj27JbXbo1O5t7YQ4zzjmUL36I14Gxu3vne6u73qSNHiqUY5bKQ8nhH7B429KzH1XUT8Rg3jnWYGLmGybH7GO1Zh9HetfOKT9p6MPZIr5ftLO8X003RWxntXZvdfTtxRviClsb4O6n32cG3DZ+nZ/MH7ybMSn3CT+mfuSt+P6Ncq3Bnwy1lLRu5OK+svQiP6bypG7YRTmg+nesiN3ND/RUliaO1u6MPMNqzNtfVXYbP+JgU+SsPxh9hL/+unF5zEgDj+ROnhc7jisj17OPfo1frXdh93lP97Dd+Tg2dizc7++CRzSd1e8L1UOxRlnItyXV1VxAwfq6O3Mjk2H1s7d28pS2RtEmOC53KbdG7mFR/dd4xF6KQ9k8l2jLt8/pfo3ezjHspDvLvy/XRvzDaszb7+vdsef/J+LO8kXoLPz4GuQYx2DWIxxP/7HTKdttqncXeZ4Xkq5cTr/GrnUedqaPW1HSI2mB4P/UhXuPNdFZQns6KfDtRPkl91utj/a7o/USIlqQOLUXd0d2xwCYemLlQoXZLnRVFUE0NCVn0ddfIejL+DLOcTzEY0qS5N/4Qho6jEkPnZS3fuaIL9WN6Lsd4j2jz2lGBw5iRfIdrIpPY0Lt+SQdeK/axmZt3PqezRkDr9U3zdX03RF/ryJHKKUa5LKQ8fu18w2G1B7U8puY2bs6sOZmPUh9zeeRapjTcvciPE1BJLySmtuT97vYtlL6N8XHqUy6qPYf7YlO6bYy/mHiFS8NXYTCEiZS9bOTi7KqjAqDW1HBAYG8uDXc/JWexfJn+irNrTsVnfADsH/gjD8QfZpyn7SMf2/q24LXwf7kpeluHfd7Z/u+qXPRUFnqqn4e7hracEJ8WPo/9/Ht1e8L1dfpbJtQczxDXYACODBzGc4kX2gzM6TVe9vDtzJWRG3vaXEVXSPunEm2Z9nk998jHOZFLsFh+Sf3KO6n3gcy+XsosyUAzgDRpGtONPDHgIc4NXcLzyZeYmni10xz+qfN50fdZIfnqbwPu4frILUxNvsohgQPYw//7dPMRG2WLxp24ou7Csk+BnW8nSrNt7vWxfmn4ahycktShpag7ujsW3jvuA1x3uYvzDHkr6qwogmpqSMiir7tG1t0Nt/JC4mXOCV/M9t6teS35BlMHPdPrdec7V3ShBpgBHW5ZM8ZwVu0EDl5wJDdEbuWs2lMK/p6uFPvYfGbAozwUz8w9f3Bgf/b07dLt8t2pdEeO9B3FKJeFlMcaU0NTu7ziMz7Orp3Akc0ncVfsfv4cPCTvmCSjdd4/NngEBwf2r1gs9aae79Lf93ji/XP6F4ImiLWWH9rVAeUoG7k4e5KLsxzS1jI//fvJZ72pZzPvxizjHtFmubCN4sfPebVndNjnhy44utM67abobR2+r6c6raf6udFp4uJWbZGeTrgMhqiNtbw+2DWQldwjWcLVdgBQhzQpijJJQF4Kaf9Uoi3TPq//M/4cu/h2YA//zhzafAy7+3ZmN/+OLcvvveBgjg0eyU3Rv7TcDbOTbzueT77UZQ5P2ETR91kh+arO1HJe7elsm9ySyyLX8nziJc6uOZWl3SO6uCxXHvl2omwxf+deH+tQujq0FHVHd8fCfg2Hsty1Kxf9mbqi9370R3c33MrE2vOxWI4NHsFbg17q8j89dy496amRtbVvc4a5hhKy4bwbWbm5ol9JvE5Xg+u2niu6UFv4NuWO6L08Ef8n3zs/4FgHgJHu5TkqeBhPJP7JjZFbiWQTdrEV+9g0xnCAf28Gm0HUmzqWcA/v9r/udJfwG20TN0RuLei3S/9RjHJZSHkc5x3LndH7eCv5v5ZjHGBtz5rs59+Lu2MP8EjsHz12GErXcnm/0nb2b88d0XuI2wTfOz+0vJ5rjA80A3gs9gS3R+9mJ/92rOBejiTJspeNXJx/iz3G/HRjh/cb001t4iyHdb1rcV/8b3yemg1kTp6vrrukzYwNC9LNPBr/B6t5Vul0nxezTuupfk6S5PH4Uy31c08nXKt6VuaR+OM0pjMnXQET4IGGO9oMzJiyDk8n/sUK7uUWYgsWppD2TyXaMu3z+m7+nXg4/ndeSb7Opt6NeDj+OG+l/keaNENdi1NPPe+m3seFmxjxTDxEMZguc3ip9lmh+WoD73r8reEulnMvw4ELxnNvbAqpVvmj3HKdKJfXXsg9sYc4uvlkvnUy7fTOOlHyPdZLWYcWu+7o7liw98QZvNfQIWPnb3ENUF+s79SdFUWytW/zTnu2RfKVa2R5cLOdb2sGuQa2eb8x3cQqrpWYlnqb/QJ75bXuE4JH05hu4vTw+T3OFX1SzTEF/5bjgn/m5/SvXB65DoNhUt3VrO8dDcBBgf2Yl57PlPhjmHjBX9WlYh+bxhi29W3JcNewgtaTS/g1Jsj6ntEMdw3DbdwtjZ+bo7dTY4Ks4RlVpMilLyu0XBZSHk8OHssJzumcEDodF4Zb6q5ltHcdAI4PHsnc9M9cG53Uye2zko+9/btX5CSvtSMDh5K0SR6MP8zNsdu5LzalZSDCkA1zRPJ4DIY9/btygG9vXku8QZBg2ctGLs5bondwQ/RWBpoBbQbYnGfnt8R5VOCwon53VyYEj+O40Gkc1Pxn1vKswe31bW+rP675VN5PfYQbV8vYAJ3t82LVaT3Vz4/Hn+Lt1Ez+l3oHg2k54Wqt9QnXicGjOT50Grs07cOm3o24rO6CNsteEr6K6ckZ/Gp/45q6SwuOP1+FtH8q1ZZpnde38W7RUqYTJPHg4bLItQA00EAzC5iafJUxnnVY0izBlPhjEM/cYdNVDi/lPtvbvzsj3csv9G8PmiBn1JzMNt4tmBi5lmfj/+7ysedyyXWi3BS9jQMXjOew4MGd3smY77G+lGtESevQQvdFm9i7ORbsIwl+9c/7aeifljyZIo41q6lLi+j+2N8Y6V6+bFNOSd9kreXm6O08En+cJKkuG1l7+HbhgMDexLLTmg40A6h31fXqO2Y7c3gj+RafOV8QSoc6zBW9onsk8+38gk/Ic+amf+Lz1GwGuQYSMIE28c5xvua15Bv8lP6Z02pOLMr3tVeKY7MpvaDLZ18TNsG8HrZfzMY4P3wZryRf75DwAW6M3Jpp/JDJ+LorS3pjYctloeXRWss7qfd5J/Ue2/u2YYR7iTbvv5F8ixcTLzPfNnFd3WUF/07JiNsEYRsueOamfH2c+pSTQ2cxz86njlpW9azM0q6lWNMzig2863FR+IqWxvhNdVeTJFmRstGYbuJ/qXf4wvmSBXYBKZui3tTT4KpnJ992DHEtVtTv60nSJnkj+RZhG2Fdz1qEibTUh9dFb2YJ1zD28u/GYtkxBDoTtwnuiT3Imp5RRanTcvXz6p7VWspR3Cb4wpnNGaEL+MX+ymJmMM8OfKzN59qfcK3hGcX8dCP/TryAQ5r/C+zTZvljmk9hqGtx/s+/D/WuuqK1L/JVSPunUm2Z1nm9Md3E26mZzHbmMDc9l1/Sv7G4GdIy4OmbqekYDOfUnEqTXcDc9E+cVnNilzm8nPssbdO8nnyTdT1r99heTds0P6V/JkwEay2PxZ/gm/T3nFpzfNFOvAsxM/kuEyPX4sHN1+lvub3+xjZjaeSO9RhxtvNt1fJ63CY4LXQua3hWa3Osl7sOzWdfdOZHZy5fOF8yyrNqy28Ys94Yvlr+u9kjbx91ELApsMz0QVOPKzRWdVaIVKnWFVLrRpYPLx84s3g/9REJEm0+M9S1OJt4N+RA/34s2cXt3g/FHuW+2BQabRN+fOzm35ljguPbzA9dzOkyZ6U+YXLsft5OzlyoeKtN++23u39nji5g+3XWUMwpR0eO9A3FKpcLWx6LfVxIW68kXufF5CvEbabhu4l3HBMj1/B84iUslsFmEIcHD2Yv/64ljyWX06cnZxAncynZZP+Xy+nz0vNZwb0ce/l349+JFytSNlpvs22z2+yyCm2znJ7qw429G3Cwf3+WcA8vyz7v6TsGMZDNfBuzrncttvdt3eazF4Wv6NC5Uu15oJD2TyXaMt1tz9y++8GZy/vOhxgMG3rWZ3pqBmnSDDIDOSJ4SJvy0VkOL+c+i9ooWzTu3Gaaz/a62s4WyzDXUDb2bsBB/v2ros0Ytwn+Gr2Lj51PObXmhDadKN0dW2nSLGYGtzl+y33s9GZf5GvMxmNwPVmPcZuNpg+a+mZRVooeAxGpWgNdA9jGtwXbsEXLa9OSb3Ny6CxWdq/IgYF9WN69XIe5419Mvsy/4v/hlvrrGOVZpc06J0fv547YPWzv25o13Ksxy/mUR+OP8336B66tm1j031BovNWms+33SPxxvitg+w13DWO4r/OrFcu7l2V597KFhCz9QDHL5cKUx1IcF/K7f8X/w4WRy1nOtQwBE+Dc8KVs4BnD9NRMDvDvzQru5fhf6h2ujtxIDUF28G9Tslha5/SDAvt2mdN/dOZycOAAnog/U5Gy0X6bnZfdZm9XYJvl9LY+PCB+OP/n35c74veUdJ/3tlw9mXiGdTxrdvj8BbVntvl3teeBQto/lWjLtI/33thDTIk/xr8TL7K4awifOp8TJEjubnuLZVrqbUa4lqDW1LCie2SH8tE+h5din00IndPle+nsNJ+Ton+lwdRjgGtafU9vt/Nz8cOros3oNz5OqDmqw+v55uwf0nNLcuwUsi8WZp2u84K5QTyuGjt/i/mAnT5o6m75xt2eOitEFiG3Riezo28bzqs9o8tlDgkcwKnhc7k+egt31LedfuupxLPs49+DU2p+vytrlGdVro7cyN/jTxX9ClOh8Vabcm8/kd6odLms9Pf3dVPij7K1d3Mm1p0PZKZknhT9KwcH9ueY4HgAdvJvhwsXD8UfLemJd745/ef0LxUpG9W0zXLy2Xb3x6eUPP5ib6NqzwOFxFeJtkz7eJ9IPMNPzi/Ms/NpdkIMMgNZwb0cTXYBXzhfAjDIDGwZTPGC2jN73Hel2Gc/pX/mc2c2i5shLN1uMFYnO/1qzMbw0HEqzr7SZsz32Fpgm0ty7BSyLxZmnQRbxhSpheJN+aPOiiK4JtL7g8VgmFBzfAmjkUVdd+XpM+cLBptBLct0Vp7cxs2uvh25MNzxmbZf078xxrNOm9f+6N+NN5JvcWv0Trby/oGBrgFF+BUZc5yvOTxwULfLdBdvoYp9bBZz+ylvSLEUo1wWUh7LnVf6m2+d7zk0cGDLv3fybcdN0dtY17NWm+U29m7A84nS3lqfy+k9lRdrLR+mZmGxfOe0nd2qHGWjmrZZTj714X+T09jat3nL67n4Zztz2mz739K/8YUzu9P90VO90dM2yq2zu+9o/V3VngcKia8SbZn28d5bfxv3xB7kjti9JElydGA8uwd24s3kdE4MZU7ul3aNaHkU4ZrITV3uu1zZKMU+y8V5X2wKa3pGMT7wp5YpjnPTfJ5Wc0Kb8R1yKt1m7Eq+9WO++SeNLcmxU8i+WJh1jjl7DK6n6gGOmz5o6ht5B9yFPtdZMXb+FpwQPIoDA/t2u1zKOvw9/iTPJP7NN863OKRZ2j2CnXzbsZ9/L9wm08v0gzOXfyaeYw//zizuGtLpun5Lz+P15DSSJKkztdSa2i6/12CYgE46pGs9laf3Uh/wZforoOvyNNv5stPENsS1GJ85s/kDm7R5/Yyak9iv6VAui1zLVXUXF+23DHENZpbzKZuxcbfLdRVvoYp9bBZz+ylvSLEUo1wWUh7LnVf6G4/x8EOraWVrTJB9/XuxnGuZNsv9lp6HB29JY8nl9J7KS8iGAIvB8J7zYYf1lLpsVNM2y8mnPjSYTuP/xvmWJ+PPtmx3gDSW15IdHw/vqd7oaRvl9nGCBLaL72j9XdWeBwqJrxJtmfbxuo2bw4MHs6ZndY4LncpV0RtYxr1Um8985HzCB86slmMybMOdlo9c2SjFPsvFublvUyaGr+alxGucXTOB0d61e5zLo9Jtxq7kWz/mm38aXPUlOXYK2RcLs85S6XOdFb2RsAkmhM7hf6mZ7OjbloMC+2GxvJt6n1uidzAz9R5X116Cy7j4MT2XO2P3sol3XJedFZfXXcg7yfc5KnQSBwf25+DA/mX+RdKXdFeeHo49zg3RW9jZuwPb+7ZihVaD+SRtktnOHJ5PvMTf4n/n2OARHda9k29b7o09SJIk63tGs7pnNWpMkGGuoZxecxIXRi7nzNCFbWYBKMS+/r24IXoLERttiTc3WFBv4i1UsY/NYm4/5Q0plmKUy0LKY7nzSn+zoXd97o49wNKuEazlWYOBrgGcUnNsm2XmOF/zQPxh1vF2HFugmHI5fW//npwSPJYrote3lJf2Of244JGEbZj7YlP4S/TOspaNatpmOfnUhyu7R3YZf+443dm3PVOTr7KmZ3Wur7s873h62kaX113Is/HnuTByOcu6luHRAfd2u77bo3dXdR4oJE9Voi3TVbxjvWNY0z2KD5xZHB06mdXdq7VM6XlK8Diujt7IwYH92dS7ESeFzui2fJQyd490L8+d9TfzQPxhTgqdyY6+bTk82P1dE5VuM3Yl3/rxvPCleeWf1dwrl/TYWZh9sTDrpLY0U8v2udlAenNnxV+id3BP7CEuq72gzW12AM/F/8P5kcs4t+Y0dvXvyIzkuxwdOpl76m/rcSCXvZoOYjf/ji2FeOz8zMCI0wdN7VXsIq11VZ5OrzmJydH7mG8bAfBm+xzj2VGTG0w9hwYO7DAFFYBjHW6K3saT8WeIEW8zPWFu/X78JEhgMEUZcfix+JMLHW+xFOvYLMX2U96QQhWzXC5MeaxEXulP5qcbOT10Hu87H7GGexSTG25ueS+3fV24GOpanEl1V7Gse5muVlUUrXN6mjRu3Hhwt+R0gBODR/N/gX0qVjaqbZvl9LY+3NG3bZfxt/4Nw13DmFR3FXsv+BOQX73R3TZq/R1u3Ozv34sTao5u83r776r2PFBofOVuy/Qm3vburJ/E+ObM3TS58j03/RPQedko1z772vmWiZFreDf1fkucXT16UA1txq70tn7MN/8s5RpRtmMnn32R7zrf/nkGngEejNtsXMzHQPpkZ8WRgcP4Kf0TLyZfIW3TbOrbiLNqTiFogsRsnB0a92Qdz5pcX39Fp+s4PzyRke7lWcwM5uLIlS2vjw/8iT8HD+nyu/8V/w9LuoezdnbUZJ10SCG6K08p6/CZ8zmfO7NZYJtJ2RS3xiYD8PrAf7c8P9aVmI3zXfp7hruGUmfq2qz/xQFPMy31Nj+lf+7xcareKjTeQhX72Czm9lPekGIpRrkspDyWO6/0N5+lvmCBbWY977otr+W273k1p7Odb6uS59KcXE5/PP40XrwMdQ1pyenQsbxUqmxU0zbLyac+7Cx++P035JYvpN7o6TvOqzmdZdxL9TonVHseKCS+SrRluov39rqbeCv1NpNj9wPweMMD7LkgM1ZCrnxv0rgd0H3ZKNc+y63z8YYHWKr94IytVLrN2JV868d88085j53e7ot8LHXBCgSWD/42eLehG0wfNHV2UVZKH30M5IFY5raaM2tOZo7zNXfFHmBJ1xIcFTyMWalPCBNhY9+4Lj9/cW1mWpaf079wXPDP3By9nQnB49nIu0G331uO0aSl/+iuPHmMm1GeVRnlWbXltVwi700SDxg/K7pX6PS9elcd2/g677VfWIXGW6hiH5vF3H7KG1IsxSiXhZTHcueV/mZlz4pdvreLf4cyRtJ9Tu9MpcpGNW2znHzqw+7i72z5hdHTd+S7nao9DxQSXyXaMt3Fu453TdbxrtnSWdH6pDOf/VbufdbTyXGl24xdybd+zDf/VOLYKVZHBcD8J38h8l7o6y/sR0XrqIBFo7Ni1Y8//jivDyzvXobrai/DmMyzM++nPmJm6j0AfrG/ArCka3iP6xnqWpzV3asBsKZn9Y5TtEjFjBkzBoDe3nEj/YPKhXRG5UI6o3IhnVG5kM6oXEhXxowZo3JRQq5KB1AKY73rtXRUQGZE3czI1JlnhADS2fllRURERERERKS69MnOirp2U8oYDGmb6ZzIzejxozO3w+dyXki8zHOJF0oXoIiIiIiIiIh0qU92VnRnlHsV/Pi7nC86bhNcEbmO91IflDkyEREREREREYF+2FnhMz728O/MtNTbvJX8X4f374tNIWzD7OLbsQLRiYiIiIiIiMiiMMBm0R0dPJwPUh8xIXQ2u/t3ZrRnbRzSvJr8L/9OvMjRgcMZ5VkFgBoTBGBq8lXqTC3LuJeqZOgiIiIiIiIifZ6x1lY6hm4ZY1LGGPe6667b88KA+4UG0n+NYR9N/L6O0wKYld2kjwj/vqAXzD4+zJZeWMIFSeAzh/TjCXgz9ftyLnBdVgNru7F3x7GP/L7ennzifAbAqu6Ve/0Z6Z3cDDGrrbZahSMpn57KU6HlrdzltRTf19tyUYrvLtY6lTeKrz/mi5xK54VqLs99oVxU0/bNxQK9i6dS2wz1PAAAFuxJREFUsff0vZUoF/lui/bLl7NOW5jvqqZy2pnexNdVuajEb+tu/xerbFRbO6kay1AuJvuZ0+t8UeixXiylWO87H7+LjabnWWsXK9pKWTQ6K+YADcBXFQ5FRERERERERNpaDlhgrV2+mCut+s4KEREREREREelf+t0AmyIiIiIiIiJS3dRZISIiIiIiIiJVRZ0VIiIiIiIiIlJV1FkhIiIiIiIiIlVFnRUiIiIiIiIiUlWqvrPCGLOLMea/xpgmY8wCY8wrxpitKh2XVIYxZgljzJ3GmB+MMQljzLfGmJuNMYMqHZuUnzHmGGOMNcYM7OQ9jzHmFGPMLGNMxBjzlTHmemNMfSVilfLpoVzUGGMmGmM+NcZEjTHzjTH/McZsUYlYpXy6KxedLLtTdtkbyhGbVE5P5cIYs0k2R/xmjAkbY942xuxb7jilvHqoRxqy7Ymvsm3RucaYe40xS1ciViktY8xixphJxpg5xpi4MeZXY8wTxph12y2ndmcJVPXUpcaYo4BbgbnAM8AwYLvs2+OstTMqFZuUnzFmMWAGsCzwAvAVsB6wDvARsKG1NlSxAKWsjDFuYDowGhhkrW1s9/6dwOHAJ8CrwIrAlsC7ZPJHrLwRSzl0Vy6MMT7gNWAs8D4wDVga2B5IA7tba/9Z9qCl5HrKF+2WbQBmASOAG621J5UnSim3XtQjOwNPAM3AU0AtmXZoHZl88WR5I5Zy6KEe8QP/BcYAb5Jpf64GbAz8CKxnrf2h7EFLSWQvhs4Aliezvz8AVgH+AESAzXLno2p3lkbV3lmR7Z28CXgHWM1aO95auwuwG+AFLqxgeFIZZ5LpqDjVWruNtfYIMhXJ3cDqwHGVDE5Kz2SMNsYcDrxMZv93ttzmZCqMl4C1rbVHWmu3Ai4m07l1enkilnLobbkgUybGAvcD62TLxY7AnoAbuNUY4y1HzFJ6eZSL9q4l01EhfVAe9UgtcA/wA7CmtfZP1to/ApsCceDS8kQs5ZBHvhhPpqPiZmvtRtbaI6y1mwAXAUsA55clYCmXM8l0VEzM7u8jrbWbAycDNcAtoHZnKVXtnRXGmKuA08hcLX+r3XuvAMtYa5evSHBSEcaYd4E1gdrWvZPGmJWAz4B/ZU88pI8yxtSRucLVXvsrH48CfwTGWmvfbvf5ecBca+0ypY5XyiOPcvEfYGtgOWvt1+3WMQ3YAPiDtfbVUsYr5dHbctHuM1sCL5K5mr47urOiz8kjXxxD5kRkP2vtw+3WcT+wM7CstXZBKeOV8sijXDxB5sLpytbaz1u9Hsx+/jNr7ahSxyvlYYz5nEzn9WLW2mir1w2ZjszhZC6kXovanSVRtXdWANsCX7XvqACw1v5BHRX9kgE6613LXQkNlzEWqYwosHer/2Z1sdxmwC+tKwyA7GNCM4GljTHKIX1Hb8vFCsD89h0VWd9m/y5V/PCkQnpbLoCWK+l3Am8Bk0oenVRKb8vFtkAM6PCoh7X2IGvtIHVU9Cm9LRcm+7d9e9SV/U9t0T4i2yGxHPBJ644KAJu52v9d9p9LoXZnyXgqHUBnsg2GNYGnjDEuYCcyt+5C5jmxf9tqvSVESukVYC3gBOAqgGz5ODP7/ksVikvKxFrrAI/l/m2M6fDojzFmBDCUTHnpzMdkrqCvBMwpQZhSZr0pF1nHAU77F40xHn6/5fenogcoFZFHuci5jEyjc1dgSAlDkwrKo1yMI3OSEssOwPsHwEfm+fUnrbWpkgcrZZNHuXiFTI442RhzXKvzkbPIdGSoLdp3uMh0XP3a/o3s2Ear5v6J2p0lU5WdFWSe+XKR6dF+mczzga391xizu7W2Q+GRPu1CMo2HK40xu5A5+Ncn8yzYv4DJlQtNqshi2b9dnXTOz/4dXIZYpIpYa//VxVsTydx18QuZDnHpZ4wxG5HpzLrEWvth9vlj6aeyHZhDgVmtHitsbZYxZhdr7Zflj04q7BZgG+AYYCNjzNvAKDIDbP4PuKKCsUkRZTuwnmj/enYA1tvIDLT7Ab8/PqR2ZwlU62MguWko9yUzA8i2ZArEssC9ZBLCPRWJTCopQeZWKoBNgCPIdFRApqfSdPYh6Xcasn/jXbyfu0WzWjtrpUyMMcOMMf8gM/BVGjhao3X3P9nR/SeTGcH9sgqHI9Uh1w79A5n2xt5k6pbhwJVkTk6fyN7dKf2LQ+bumjSZNugRZM5LAL6h88eVpY8wxowkcyF9fzIX1Y9E7c6SqtYk68v+TQN7WGv/Y60NW2u/IZMUvgN2Msbo2eL+5THgz8CDZKYNqiVzZ8VLZHq4r65caFJFktm/wS7ez+WXSBlikSqUHfX9CDJ3Z+1OZvCr3a21f69sZFIhFwIrA+OttYkKxyLVIVdPGOBP1trHrLXN1tqfrLVnkhnXZE1go4pFKJVyM3AO8AKwLpm26OrAo2RmlrqvcqFJqRhjvMaYs8jcSbEJmY6pLa21b6J2Z0lVa2dFKPt3trW2zQA31tok8Ez2n6uVNSqpGGPMOmTmNp8BHGyt/cxaG7HW/o/MqMw/Akdnr5BJ//Zz9u/ALt7PPSaiedD7IWPMYsDzwO1krp5OAUZZa5+uaGBSEcaYtYBTgVuyjU4R+L0dGiNzUtpe7tZwtUP7EWPMEDLTU35P5mLqu9m26CwyV9rfBXYxxqxQyTiluIwxywHTyNx55yPTYbVGqzpD7c4SqtbOiq+yf0NdvJ+7nUa3/fcfq2T/vmKtTbd+IzvS7ltkbq9attyBSdX5hkzv9ZpdvL8imbu2up0ZQPqe7BRiL5GZvvRLMldFDrDWalDN/ms0mbrjeGOMzf0HTM2+f2L2tXsqFqGUnbW2icxz5tH2bY4stUP7p5Fk8sVb1to2V8mz4xu8nP3nimWOS0rEGLMk8DqZuuJdYD1r7fHW2tbT3KrdWUJV+eyMtbbJGDMLWNUY09DJ1FDrZf9+UObQpHJySWGJLt7PPV86v4v3pZ+w1jrGmFeAHYwxa1prW/KEMWYgmZmF3tKUc/3SOWRmFJoBbG2tbaxwPFJ5s4AbO3l9KWAvMo3TV4Dp5QxKqsKbwI7GmBWttV+0ey/XDn2/zDFJZfW2LTqvDLFIeVwLjACeBfa01nYYl0LtztKq1jsrAO4AaoDrsqOuAmCM2YPMXLZPW2t/rFRwUnavk6kk/pgdtb2FMWYbMs+PvWat/aUSwUnVuS3794rcAGjZ+bKvJPNM4c2VCkwq6gAyz5buqY4KAbDWTrfWntT+P37PEa9kX3uoknFKRdyR/XuTMablWXRjzAbAfmQumL1VicCkYj4mM6D7OGPM3q3fyD5S9kcyd4e/U/7QpNiMMTVkxrX6Bdivs46KVtTuLJGqvLMiaxKwPZlnwzYyxkwDliQzXdCPwPEVjE3KzFq7wBhzFJmBi141xrwAfA0sT+aW7iYyg2yKYK19yhjzCLAP8K4x5g1gDJmrYU/rxKP/McYsDSxDpv44JdOG6NTNnVxFFZF+xlr7hDFmMpl26CxjzKtknknflsyo/4dYazXzQz9irbXGmMPJjJ33SPZq+mdkZonZnsyt/uOzj4TIom8MECBzvnFJN+2Gi9XuLJ2q7azI3lKzK3AKcBhwIPAbmalLL7DWflvJ+KT8rLUPGWM+A84gM53YVsCvZGYHuUgnGNLO/5G5RfdQ4BAyA2JdgOZA76+GZ/8uAZzYzXJPAMolIgKZGejeBo4lczdFM/BPMu1QPX/eD1lrp2YHfT+LzAXUjclcMHsGuMRaO7OS8UlR5doNq/D72HmduYHMoz9qd5aAUaewiIiIiIiIiFSTah6zQkRERERERET6IXVWiIiIiIiIiEhVUWeFiIiIiIiIiFQVdVaIiIiIiIiISFVRZ4WIiIiIiIiIVBV1VoiIiIiIiIhIVVFnhYiIiIj8f3t3HuzXeMdx/P1JidqFoKg2aIsuhLbWIMbSRSmldFOklqGlEVql9s6UmiqKaatF0KZUYx1UlKSxqxGZKEoQGm0Ra8RWfPvH9znNycnv3tz7k5v7S31eM2cev+c855zv+d1k5PneZzEzM+soTlaYmZmZmZmZWUdxssLMzMzMzMzMOoqTFWZmZmZmZmbWUZysMDMzMzMzM7OO4mSFmZm960kaLSl6evRzrMN7E6ukvSUNKf99RX/G3g6lWyQd34O2x5f3HN73kXUmST+QdLMk9XcsZmZm78Qi/R2AmZlZBxgHvNCo2w1YDRgLTF/gEXVtOnBGo+6jwHbAA+S71N3fl8FIGg3sBWwQEff2wSO+CawHfKEP7v3/6EzgcPJ7u6CfYzEzM2ubkxVmZvauFxFjgDH1OklDyWTFWRExoT/iaiUipgIj63WS9iaTFXdFxMjmNZKGLIjY5jdJSwA/Bn4VEc1kkrUQEbMknQn8RNLlEfFSf8dkZmbWDk8DMTMzs051ILAKcHZ/BzIvkgZIGtjfcRS/BFYARvV3IGZmZu1yssLMzKyXJB1a1kb4XqP+ulJ/TKP+9FI/tFb3cUmXSnpG0uuSHpR0jKT39nHsG0m6UdJMSc9LGivp/S3afUTSGElPS3pV0mRJIyUtUmsT5BQQgEmSptXOLVvWkHhA0ivlPn+RtGcvwj0IuC0iptUrJS0m6URJj0l6rXx3+3fzzp+WdJWk5yTNknSHpL26aLu7pEnlnR+VdLSkbav1P2rtpkmaKmkNSdcCs8jpONX57cv3/FI5xkva6Z3EJ2llSWdLeqS895OSzpW0ar1dRDwFTAT2l+R/65mZ2ULJ/wMzMzPrvWpdiGFVRekUblo+btFoPxx4Cphc2m4F3Emuw/AX4HzgZeBEYHyZ/tAX1gXGA4OAPwCPA18Crq43krQxcHc5dyu59sEA4DTg2lrC4gxynQzIaTTnlesHAH8GjivvdRFwEzAUuFDS0fMKVNI6wJrAzS1OjwGOAd4GLgSeIEcTfKPFfb5Y3mHLEtMYYEVgtKTzG20PBi4hp/9cTP68jmLuNUIqS5E/vyHAb4EZ5T4HAdcDHwOuAi4D1gGulHRcO/FJWob8M7M/MIX8mTwMjABukbRkI7aJ5KiUYZiZmS2MIsKHDx8+fPjw0TiACUAAw7s4Px14pvZ5/dL+eWAmsEipHwS8BVxYPg8kO9evAEMb9zyp3OPkXsa6d7ludBfnh5TzARxdq18EuK3Ub1Cre6S8x0drbQWcU9ruV6sfXeqG1uo2KnXnA6rVr1W+i/t68E6HlHt8sVG/Y6kfBwys1e9Re8fhpW55cuHUR4HVam0HAteWttuVutWB14GpwOBa2w2Al0rbvWv100rdZcCitfq1gTfIxMJytfqlgXvK+6/TRnz7ls+HN76Pw0r9iEb9NqX+2P7+u+TDhw8fPny0c3hkhZmZWXtuAAaXEQAwezTFz8nfuFdTPrYkRyVcXz5/nuwY/y7m3j3jBLJj3JupEr3xNJkQASAi3gSuKx/XrMW3JnBqRNxfaxvA0WQHeNd5POd54Egy6VLf6vVRcrrEUj2I9SOlfLxRv28pD4uIN2rxXUL+TOq+ASxLdtifrLV9gxz1AbPf5WtkkuDkiJhRazuJHLXRle9HxH9qnw8AFi3x/W9R0IiYSX73A4Cd24hvUCmbU3Z+BXyOHOFR90Qp1+4mdjMzs47l3UDMzMzaM44c0bA58CA53P5B4FLgWDJ5cTc5BSSY3ZHeuJTX0RARr0maDGwhaVBEPD+fY54SEW816maWskogbFbKTSWd3uIerzGPDnBEPAycLGlxScPIERVrkN/R0sBzPYh1xVI2dwHZGHghIqa0uOZ2cleUSvUuO0j6VKNt9W+g6l02LOWtLe57Rxcxvhq5O0td9cw9Je3WOLd845m9ie+PZALou5I2I//8TARujYg/tYit+o5X7iJ2MzOzjuZkhZmZWXtuINdMGAacW8prgL8Bz5DJitOArYBJEfF0uW5wKf/ZxX1fKeXi5AiF+enlbs6plCuU8vPdtF26u4dIWhQ4hVwgcyCZ4JhKTq3ZtOsr51B17Jsxr1Du1cqsFm0BvtLNc6p3qZ43o0WbmS3qIKd7NFXP7HLBz9ozexxfRDwmaT3gUHJkxrHl/CxJFwOjYs5tSl9sPMvMzGyh4mkgZmZmbShTBSYBm0tag1yUcWKZ9jARGCZpELmWxfW1S6tkxPK0thq5rkFPRh/0harDv3NEqItjcLd3yEUpRwKXk4t6LhERn4iIg4E3exhH9T0t0yK+FWlt1cbn6l2GdvMu1YiG10u5bIv7rtTDmOvPHNTNM3drtO1JfETE9Ig4LCLWItchGQHcC3yLTIzVVUmK+Z3wMjMzWyCcrDAzM2vfOODDzF5XYGIpJ5Ad6v2Yc70KyJ0cIEdczEHS6uQOEvdGxGt9EG9PTC7lBs0TZTvS30s6Yh73+AKZcBkREQ9W61ZIGszcyYeu/KuUzaTOZGAFSR9rcU1zF5bu3mUtSRdLGlGqHi3lei3uu00P4m0+c2jzhKRNyjN37G18ko4qW90KICIej4jzyWlGM8npSHXLlfKZXsRuZmbWMZysMDMza1+1hemhwLSI+Ef5PKGUo8hpDLfVrrmc/I36AZI+VFWWTuix5HSMX/dhzPNyGTmF4CBJa1WVkgYCZ5FTFv5da/92KetTS98A3kOOEqmuXxL4RS/iqDryH2zUX1DKH0l6T+3+X2X2uhOVi8ikyRGSVqq1XYZcNHMPZicprinlkZKWrrXdnBZbonaj2m70hPp2opLeRy6GuQu5tklv41sO2A34euN565DrjTzRqP9AKR/qRexmZmYdw2tWmJmZte9WMhmxKnBhrb5at2Jl4Kr6bhER8aykb5Od2kmSriGH6m9M/ob9BuA3Cyb8uUXEi+W3+ZcA90i6kdyhZAtyl5CxEXFB7ZIqQXOmpD9FxAnAeeTikbdLupJcf+MzwGPAfcC6ks6LiBF0bUIpNwfG1upHk532XYApkiYCq5CjOa4jd8ao3mWqpMOA00vb8WRyYOtyzakRUT1nHHAFuR7EFEk3kWtKfA54gBxxUSVmuhQREySdRiaw7i/xLQZsS+7ocUhZgLS38Z0BHAhcJGlf4O/k+iefJafWnNgIZZPae5mZmS10PLLCzMysTSUJMaF8nFirj9rnuTqLpbP/GeCvwA7kriKLkms97Nhix44FKiIuI7dcvZ3sZO9KJixGkb/trzsHuJMc1bBTuf5csmM9g9wS9JNkh3wYOXrkJWBHuhERD5Ad8i0b9W+TiYqTyPUl9iK389yVHBXSvM8ZZCLjoRLfDuR2qPtExOG1dgF8mdye9S1yNMX65HayPyvNmjuTdBX7qBLXjHLPbci1JXaKiDPbjO9JcsrH1cDHyXUqtib//G0VEbc0wtgCeJbckcbMzGyhozm3PzczMzPrDJJGkomCD0fEI/0Yx/HAccCGETGpv+LoKUkrAtOBn0bED/s7HjMzs3Z4ZIWZmZl1qnPITvd3+vpBkraX9KaknzfqVyZ33XiSHB2xMDiA3E3l1P4OxMzMrF0eWWFmZmYdS9Ku5DoVQyLi2T58zmLAXeTaFLeRu7YsQ64JsSywe0SM7foOnUHS4sA04OSIaG5namZmttBwssLMzMw6mqRrgckRcWQfP2cwuW7ITuQ6GC+T64qcEhHj+/LZ84ukQ4F9yCkrb/Z3PGZmZu1yssLMzMzMzMzMOorXrDAzMzMzMzOzjuJkhZmZmZmZmZl1FCcrzMzMzMzMzKyjOFlhZmZmZmZmZh3FyQozMzMzMzMz6yhOVpiZmZmZmZlZR3GywszMzMzMzMw6ipMVZmZmZmZmZtZRnKwwMzMzMzMzs47iZIWZmZmZmZmZdRQnK8zMzMzMzMysozhZYWZmZmZmZmYdxckKMzMzMzMzM+so/wUCkAIKWEOnYAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 231,
+ "width": 533
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,3.5))\n",
+ "fancy.plot_diffpattern(ax, model)\n",
+ "print(ax.axis())\n",
+ "fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5, \n",
+ " show_index=True, \n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)\n",
+ "print(ax.axis())\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "ax.text(0.01,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = ax.transAxes, fontsize=16)\n",
+ "plt.savefig('test.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Choose ROI"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Check by changing the `xrange` for `plot_diffpattern`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAJxCAYAAABi5ZiAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4lFX+/vH7pEEIBEKRJl1FpElAUFEERJQiKgh2cVndBVfRteGuLmLZ4oqIqPizXYqCLLIqIorSAlhBCCLCIkgAQSAoJSFA6pzfH3GebxKSMJM8UzJ5v64rlzOTZ845wICZe87nc4y1VgAAAAAAAOEqKtQLAAAAAAAAKA/hBQAAAAAACGuEFwAAAAAAIKwRXgAAAAAAgLBGeAEAAAAAAMIa4QUAAAAAAAhrhBcAAAAAACCsEV4AAAAAAICwRngBAAAAAADCGuEFAAAAAAAIa4QXAAAAAAAgrBFeAAAAAACAsBYT6gWcjDFmu6RESTtCvBQAAAAAAFBca0mZ1to2gZzEWGsDOX6lGWPyjTHR3bp1C/VSgLD0v//9T5LUoUOHEK8ECE/8Han6Dh8+rLS0NMXFxalTp06hXk7E4e8IUD7+jgDlW7dunay1BdbagG6OqArhxdH4+Phax44dC/VSgLDUvXt3SdLatWtDvBIgPPF3pOp79tlndffdd8sYo6ysLNWqVSvUS4oo/B0BysffEaB8tWrV0vHjx49ZaxMCOQ89LwAAQFjbuXOnJMla63wCCgAAqhfCCwAAENa84YUkbdy4MYQrAQAAoUJ4AQAAwtqOHTuc299//33oFgIAAEKG8AIAAIQ1dl4AAADCCwAAELaysrJ04MAB5z47LwAAqJ6qwmkja5OTk5Pp7gsAQPWzceNGderUSW3bttXu3buVm5urjIwMJSYmhnppAABAhSfypKamplpruwdyHnZeAACAsOUtGWnbtq06dOggSdq0aVMolwQAAEKA8AIAAIQtb3jRunVrdezYURJ9LwAAqI5iQr0AAACAsnhPGmnVqpWio6Ml0fcCAIDqiPACAACELe/Oi1atWqlu3bqS2HkBAEB1RHgBAADCVtHwonHjxpKkbdu2hXJJAAAgBAgvAABA2PKWjbRu3Vq1atWSJB0+fDiEKwIAAKFAeAEAAMJSdna29u3bp+joaDVr1kze490PHz4sa62MMSFeIQAACBZOGwEAAGFp165dkqRTTz1VMTExio2NVa1ateTxeJSVlRXi1QEAgGAivAAAAGGpaL8Lr3r16kmSMjIyQrImAAAQGoQXAAAgLO3bt0+S1KxZM+cxb3hB3wsAAKoXwgsAABCWjhw5IklKTEx0HiO8AACgeiK8AAAAYckbXtSpU8d5rG7dupIILwAAqG4ILwAAQFgqLbyg5wUAANUT4QUAAAhL5YUX7LwAAKB6IbwAAABhifACAAB4EV4AAICwRM8LAADgRXgBAADCEj0vAACAF+EFAAAIS5mZmZI4KhUAABBeAACAMEXZCAAA8CK8AAAAYYmGnQAAwIvwAgAAhCV6XgAAAC/CCwAAEJbYeQEAALwILwAAQNjJzc1Vbm6uoqOjVbNmTefxoj0vrLWhWh4AAAgywgsAABB2iu66MMY4j9esWVNxcXHKzc1VdnZ2qJYHAACCrFqEFx6PRz169JAxRmvWrHF17Dlz5sgYoz/84Q+ujhsJUlJSdM899yg5OVlNmzZVXFyc6tSpo3bt2mno0KGaMmWK9uzZ49NYO3bskDHGp68aNWqoRYsWuvrqq/Xhhx/yyVwEmDRpkvPnO2nSJJ+ek5WVpQsvvLDYa+Nf//pXYBcKwDWllYxIkjGGvhcAAFRD1SK8mD59utauXauhQ4eqR48ero49atQode7cWa+++qq++uorV8cuy3333ee8GVu+fPlJrz9y5Ij++c9/qmfPnkpMTFR8fLzatWunESNGaP78+a6/uV+1apV69+6t/v3765lnntG6deu0b98+5eXlKSsrS2lpafroo4907733qlWrVvrTn/6krKws1+bPzc3V7t279e6772rYsGEaPHhwxNVGb9iwQffee6+6dOmihg0bKjY2VvXr11f37t115513+hzS5ebm6oUXXlCfPn2UlJSkGjVqqHXr1ho0aJDefvtt5ebm+jROenq6HnroIXXt2lW1a9dW7dq11b59e910001KSUmpzC+1QrKysjRo0CB9/vnnzmNTpkzRgw8+GPS1AKgYb3iRmJh4wvfoewEAQPUTE+oFBNovv/yihx9+WJI0ceJE18c3xmjixIkaOXKkxo0bp7Vr1yo6Otr1ebw+/vhjTZkyxefr161bp8svv1w///xzscfT0tKUlpam9957T4MHD9bMmTOVlJRU6fXNmDFDt912m/Ly8iRJsbGx6tevn3r16qVGjRrp+PHj2rp1q5YuXart27crPz9f06dP1+LFi7Vy5Uo1adLEp3lefPHFUh/PycnR/v37tWzZMn399deSpE8++UTDhw/XkiVLFBVV9fO6J554Qo8++qjy8/OLPX7o0CEdOnRIqampev755/X73/9eL774omJjY0sdZ8eOHRoyZIg2bdpU7PGdO3dq586d+uSTT/Tss89q7ty5atmyZZnrWbRoka655poT3kRs2bJFW7Zs0cyZM/W73/1O06dPL1a3HiglgwtjjJ5//nndfvvtAZ8bgHvK2nkhFe97AQAAqoeIDy8efvhhZWRk6OKLL9Y555wTkDmGDx+uDh06aP369Xruued09913B2Se3bt3a/To0T7vlNi5c6cuueQSHThwQJLUpk0bjRo1Sk2aNNHOnTs1e/Zspaen6+OPP9YVV1yhlJSUSgUvb775pm655Rbn/tVXX61nnnlGp556aqnXf/jhhxo3bpx+/vlnbd26VYMGDdKqVasUFxd30rnGjh170mvmzZunkSNHKj8/XykpKZozZ46uu+46n3894ejFF1/U3/72N+f++eefr/79+6thw4bau3evFi1apHXr1kmSXnvtNUVHR+ull146YZyMjAxdcskl+vHHHyVJjRs31nXXXadWrVpp3759mjt3rtLS0rR69WpdcsklSk1NVUJCwgnjrF27VldccYVTd965c2ddeeWVSkpK0pYtWzR79mxlZGTo9ddfV05OjmbNmhWI3xZHVlaWBg8e7AQXUVFReuWVVzRmzJiAzgvAfeWFF+y8AACgGrLWhvWXpLXJycm2IjZt2mSjo6OtJPvJJ59UaAxfvfzyy1aSTUxMtOnp6a6Pn5+fby+88EIrqdhXSkpKmc8ZOnSoc92oUaNsTk5Ose9nZmba888/37nmySefrPD6NmzYYGvVquWMNXHiRJ+et3v3btu0aVPnedOmTSv1uu3btxf7dftq/PjxznOGDBni8/PC0ZEjR2xiYqKVZKOjo+1//vOfUq+bMWOGjYqKspKsMcampaWdcM0dd9zh/L5cdNFFNiMjo9j3c3Nz7fDhw51rxo0bd8IYBQUFtmvXrs41f/7zn63H4yl2zZ49e+wZZ5zhXDNnzpwK/dofeeQRZ4xHHnmk1GuOHDlS7O9IdHS0feuttyo0H4DQe+edd6wkO3z48BO+N3LkSCupzH8HAQBA8CQnJ1tJa22As4Gqv4e+HBMnTlRBQYHat2+vgQMHBnSuG2+8UfXq1VNmZqaeeuop18efOHGiPvvsM8XFxSk5Ofmk13/33XdasGCBJKlVq1Z6/fXXT9jRUKdOHb3xxhuKiSncgPP0008rJyenQusbP368jh07Jqlwx8Wjjz7q0/OaN2+uZ5991rk/efLkCs1flquuusq57Xaz1mCbPXu2MjMzJUm33XabrrnmmlKvu/nmm3XDDTdIKgwnly5dWuz7+/fv1yuvvCKpsJZ89uzZJ9SUx8bG6tVXX3U+3Xzttde0b9++YtcsWLBA69evlyT17NlTkydPLnYigCQ1bdq02M6Pf/zjH379mn119OhRDR48WJ999pkkKSYmRm+//bZuvPHGgMwHIPAoGwEAAEVFbHixbds2vffee5Kk3/3udye8qSpp9erVGjdunDp27KjatWsrNjZWDRo0UK9evTRhwgRt3ry53OfHx8fr2muvlSS98sorzht5NyxevNg5JeHf//63OnfufNLnzJgxw7l9++23q1atWqVed/rpp6tv376SCt/ULlmyxO/1ffPNN05Txri4OD3//PN+PX/EiBFq3LixJOmnn346oQdDZTRr1sy5ffDgwTKvW7p0qUaPHq3TTz9dtWrVUlxcnBo3bqw+ffro0Ucf1e7du11bU0WlpqY6t0eMGFHutd27d3du79+/v9j35syZ44RUN9xwg5o2bVrqGElJSbr66qslFTb2fPfdd4t9v+hr7N577y2zn0jfvn112mmnSZLWr1+vjRs3lrt2f5UMLuLi4jR37lyNGjXK1XkABBdlIwAAoKiIDS/eeOMNeTweSeW/0cvNzdWYMWPUq1cv/b//9/+0adMmHT16VPn5+Tp48KBWr16tf//73+rYsWOxXgOlGTZsmKTCfgLvv/++K7+Offv26cYbb5TH49GQIUN01113+fS8hQsXOrevuOKKcq+99NJLndsVCS+KvokdPny4E0T4KioqSosWLVJKSopSUlLUqFEjv9dQlqNHjzq3a9eufcL3MzMzNXjwYA0YMEBvvvmmfvzxRx0/flx5eXnav3+/PvvsM02aNEnt2rUrtXdEMOXl5alVq1bOV3n27t3r3G7QoEGx77nx2igoKNCiRYskFe5yGDJkSIXGqSxvcLFy5UpJUs2aNTVv3jxdeeWVrs0BIDQILwAAQFER27Bz7ty5kgqbVHo/9S3NpEmT9Prrr0uSatSooauvvlpnn322oqOjtWfPHn388cfatGmTPB6PnnjiCZ111lllNn3s27evatSooZycHL377rvO1v2K8ng8uuGGG7R//341a9ZMb7zxhk/PO3LkiLNTJCkpSe3bty/3+m7dujm3N2zY4Pc6ix7Xeskll/j9fEnq0qVLhZ53MkWPry1tx8rYsWOdN/OJiYm65pprdOaZZ8rj8Wj37t2aN2+edu7cqdzcXI0bN06dOnVS7969A7LWk3n11Vd9uu7AgQOaOXOmpMJgqOSfyTfffOPcPvfcc8sdq6zXxubNm53jbTt16lRqM09fxqmMksFFrVq19MEHH2jAgAGujA8gtHwJLzIyMoK6JgAAEDoRGV7s2bNHP/zwg6TCWvyy5OXlOUdu1q5dW19++eUJb3CfeuopPfbYY3rkkUckSa+//nqZ4UV8fLw6d+6sNWvWaNGiRcrPz3f6SVTE448/rmXLlikqKkqzZs1Sw4YNfXre1q1bnRNJ2rRpc9Lri36Kv23bNr/WmJWVVazMI1AnulTEL7/8Uqz/yPDhw4t9Pz09XXPmzJFU2Hvjq6++UosWLYpdM2XKFP3hD3/Qa6+9JmutZsyYEbLwojTWWnk8Hnk8HqWnpyslJUWPPfaYczTuhAkT1LZtW+f6gwcP6tdff5Uk1a9f36kbL0vLli1ljJG1Vjt37lRBQYGio6Odv1+Sio1flsq8xkpTMriQpCFDhhBcABHEG16U7Mkj0fMCAIDqKCLLRr7++mvndnmf6G/dutX5wWfMmDFl9pKYMGGCYmNjJUnbt28vd27vJ8xHjx6t1CfMK1as0OOPPy5Jeuihh5y+FL7Ys2ePc7toz4eyFC3zOHTokO+LVGE/BW9QIklNmjTx6/luO3r0qDZu3KjJkyerS5cu2rFjhySpRYsW+v3vf1/s2rVr1zqlRffee+8JwYVUuHPhoYcecu6f7M8/2LZt26aYmBjFxcWpRYsWuvnmm/Xjjz+qXr16evnll09okOnvayM2NlZJSUmSpPz8fOfNRDBfYyWVFlxIhbut3CrXAhB6lI0AAICiInLnxf/+9z/ndnm9ARITE52A4PLLLy/zuri4OMXGxiovL095eXnlzl10p8P69euLbZf31S+//KLrr79eBQUFuuCCC5xdH77y/sAn6aTb+aXCPgFeRXtE+OLAgQPF7nt/oCzNggULyv199rrooouKlaKU5mQNWIuqXbu2Zs+efULPi5YtWzp//iV3ZRRV9PfwZH/+4eLw4cP673//q/POO0+dOnVyHvf3tSGd+PqoV69eUF9jJT377LPOn0ODBg3UvHlzfffdd5KkW2+9VT179lTz5s0rNQeA0CO8AAAARUVkeOH9tF0q/1PhU089VQ8//HC5Yx05ckTPPvusz6eHnHrqqc7ttLQ0n55TlLVWN910k/bs2aOkpCS9/fbbio6O9muM/Px853aNGjVOen3RIKCsEyPKUlBQcMJ97y6VcNCvXz8988wz6tq16wnf69SpU7E39qX59ddffT72NRROOeUUvfjii8rNzVV6erpWr16t5cuXKz8/X4sWLVLfvn21YsUKdezYUZL/rw2p9NdHMF9jJXmDi8aNG2vJkiWqUaOGunXrpqNHj+rgwYO6+eabtWTJEr8CLgDhh54XAACgqIgML7w1/VLptbJlPWfFihVas2aNtm/frh07dmjHjh1KT0/3a+6iPQRKHlHpiyeffFKffvqpJOm1114rtZThZOLj453bvuwUOH78uHO7rCNVy1LyJIuMjIxin7IX1aVLF6fHSEk///yznnjiCZ/nLWscqXCnTKNGjdSjR48yjwEtbf7ly5dr3bp1zp/9jh07TthZEm4SExM1duzYYo9t27ZNI0eO1Lp163TgwAHdfffdWrx4sST/XxtS6a+PYL7GStO8eXMtXbrUaUY7efJkjRs3TpK0bNkyPfXUU3rggQcqPQ+A0CkvvKDnBQAA1U9EhhdFd0mU9Ubaa9++fbrvvvv09ttvF+vdUNT555+vL7/80qe5i74x83d7/Nq1a53jWG+//XZdddVVfj3fq2hgU3R7f1m8p0ZI8vuY0pLXb926tcyjUlu2bHnCG22vL774wq/woqxx/LV161aNHz9en3zySanfj4qKUs+ePYv1UQl37dq10/vvv6/TTz9deXl5WrJkibZv3642bdr4/dqQ/u91XKNGDedNRDBfYyW1bt1ay5YtK1aiNXbsWH344Yf6+OOPJUkPP/ywBgwYoOTk5ErNBSB0MjMzJRFeAACAQhEZXhQNIcoKJCTpxx9/1Pnnn69ffvlFUuEn9j179lSXLl3Utm1btW/fXsnJyWrWrJnPW9CLzudvuceGDRuc7fjTp0/X9OnTT/qcfv36ObfvuusuTZ06Va1bt3Ye8546UZ5du3Y5t305naSoevXqqV27ds4JEt98840uuOACv8aQpN27d/v9nMr66quvdPHFFzu7AhISEtSrVy917txZbdq0UYcOHZScnKysrCy/f19CrVWrVjr33HP12WefSZJ++OEHtWnTRi1btlRUVJQ8Ho9Pr439+/crJyfHGdNb8hHM11hJo0ePLnWM1157TZ07d9avv/6qvLw8XX/99UpNTXVlpweA4Ctv54W3186xY8fk8XgqXY4GAADCX0T+375o08ii29VLuueee5zgYvjw4fr555/12Wef6YUXXtC9996roUOH+nSSQlHZ2dnObV8bIrqtbdu2iouLkyRt3rz5hL4UJf3444/O7bPPPtvv+fr37+/c/u9//+v386XCnRfB9sc//tF5fdx+++3au3evli5dqqlTp+quu+7SwIED1bBhw3IDsGD59NNPZYyRMUYDBw706TlF+69468Jr1qzpNLE9dOiQ9u7dW+4YZb02zjzzTOf2xo0bT7qWyr7GfNGkSRO9/PLLzv0ffvhBd999d0DmAhB45YUX0dHRzs7K8v4/DwAAIkdE7ryoX7++c7usZl45OTlOb4nExES99dZbZX5Cu2/fPp/nLrqFvmHDhj4/T5LOO++8cns5eM2YMcMpY/jzn/+sM844Q9L/HQsbExOj3r17KyUlRcePH9fq1at13nnnlTneihUrnNv+HMnqdf311+uVV16RJH355Zf65ptvdM455/j8/GPHjuk///mP3/NWxo4dO5yjbM844ww9//zzZe6u8bfvSSAU7d2xefNmn55TdDt10VKevn37Oke+Ll++XNddd12ZY5T12mjZsqXatGmj7du3a8uWLdqzZ0+5QV9lX2O+uuqqqzR69GjNmDFDkvTKK69o0KBBFS7BAhAa1lqn3Ky08EIqPEkqOztbR48eDdmHBQAAIHgiMrw4/fTTndtllSMcOHBAubm5kgq3wJe3tXzBggU+z71nzx7ndtGt9b5o376904CwPF9//bUTXgwbNqzUN4PDhg1TSkqKpMI3cGWFF0ePHtV7770nqTBsufjii/1as1T4ZrR3797O7ok77rhDK1eu9Pk0i4kTJzo7YIKl6J/TmWeeWW5ZkD9//oHSsWNHJSYmKjMzU7t27dLmzZuL7X4oKSMjQ59//rmkwnKoomHSsGHD9Prrr0sqfG2UFV5YazVr1ixJhYHYiBEjin1/2LBhevbZZyVJr776qiZOnFjqOLt373aOvu3SpYs6dOjgw6+44qZNm6YVK1Y4pw5xfCpQ9Rw9elTWWtWqVavMEsyEhAT9+uuvysrK0imnnBLkFQIAgGCLyLKRotvSvZ8wl1SvXj2nRnbLli06dOhQqddt3LhRDz74oM9z79y507kd6Ddp5RkzZozT0GzmzJlavXp1qdf99a9/dU5nue2225xyE39NnTrVCStWr16ta6+9tliTxtIUFBRo4sSJevrppys0Z2UU3Z3z7bffOkFWScuXLw/J+kqKjo7Wtdde69x/4IEHyixnsdbqjjvucHYBjRo1qtinkpdffrnatWsnSUpJSdH7779f6jhTp051SkJGjhx5wpuD8ePHO28qpk6dWurRwNZa3Xnnnc7v75/+9Ceffr2VkZiYqBkzZjh/v73Hp3o8noDPDcAd5ZWMeHn/XfO3OTYAAKiaIjK86N69u/Omat26daVeU6tWLfXp00dSYZ+KoUOHOmUEHo9H33//vSZMmKAePXro8OHDzs6MAwcOKDs7u8w3Qt99952kwpMZQnnSQWJiov75z39KKjzKcsiQIZo9e7bzJnLHjh0aM2aMpk2bJqmwP8KECRMqPF+PHj2KlbzMmzdPZ555pqZMmaItW7YU67uxe/duvfbaazr77LP1+OOPSyp8c9ykSZMKz++v9u3bq23btpKkn376SSNHjnSCroKCAq1evVpjx47VgAEDZIxxXk979+6Vx+Mp9ue/Y8cOpx+FMcbZZeC2v/71r84P8h9++KGGDh2qVatWOSFGXl6eVqxYoQEDBmjmzJmSCkOakqe4REdHa9q0ac5ukxtuuEEvvPCCc0pPenq6JkyYoPvuu09S4ZuHf/zjHyesp23btrr33nslFfbPGDBggBYuXOg0nd24caOGDRumefPmSZK6deumMWPGuPp7UpY+ffo4a5MKj0+dPHlyUOYGUHmEFwAA4ATW2rD+krQ2OTnZ+qtPnz5Wkm3SpEmZ16xZs8bWrFnTSnK+ateubWNjY537cXFxdubMmfaKK65wHktISLAjR448Ybzc3Fxbp04dK8lefPHFfq/ZV6NHj3bWkpKS4vO1kmx0dLRNTEws9lhiYqJdtWqVK2ubO3eurVevXrHxJdmoqChbv359W6NGjWKPG2PsPffcYwsKCuyNN95oJdmLLrrohHG3b99e7Hlu+PDDD21UVFSxcevUqWOjo6OL3V+6dKnt2rVrsd+ve+65p8y1nezPpDLee+89GxcXV2y+mJgY26BBg2KvW0m2QYMG9vPPPy9zrIkTJ57wZ1G3bt1ij8XGxtr58+eXOUZubq4dMGDACc9JSEgo9lizZs3stm3bKvzrfuSRR5yxHnnkEZ+ek5OTY7t06VJsXWvWrKnwGgAEz5o1a6wk261btzKv6devn5VkFy9eHMSVAQCAkpKTk62ktTbA2UBE7ryQCuvxpcJmm99++22p13Tv3l2ffvppsd4UWVlZysvLU1RUlC699FKtW7dON9xwg+644w5nG/rRo0dLLTP4+uuvnU+LRo4c6fKvqGLeeOMNTZkyxWkeWlBQoMzMTOf7ffr00apVq9SzZ09X5rv66qv1ww8/aMKECcVKMzwejw4ePOgcuxkVFaUBAwZo5cqVevrppxUVFaVLLrnElTX4aujQoXrnnXfUqFEj57EjR46ooKBAsbGxGjVqlDZt2qT+/ftr/PjxzjWZmZnlnuDi67G6FXHVVVcpJSVF5557rvNYfn6+Dhw4oLy8PElSbGysRo8erXXr1ql3795ljvXoo49q5syZatGihaTCILNog9uuXbtqxYoVuvzyy8scIzY2VgsXLtRf/vIX5xPSvLy8Yp+EXnHFFfrmm2+cnS7BEhcXp5kzZzrlTN7jU/mUFgh/7LwAAAAlGRsGx0CWxxizNjk5OXnt2rV+PW/fvn1q2bKl8vLyNGnSJD3yyCNlXpufn69ly5Zpw4YN8ng8OvXUU3XBBRc4b+q8UlNTtWjRIsXExKh///4nlIWMHz9ezz33nBISErRr1y4lJSX5teZAys3N1bJly7Rt2zYdPnxYjRs3Vu/evQPal8Pj8Sg1NVUbNmzQL7/8ovz8fCUmJqpdu3bq1atXsXAjlI4fP67Fixdr8+bNiomJUYsWLdSvX78TTotZvny5vvzyS9WqVUuDBw92Tnnxevnll/XHP/5R69atC9hxoEXt2LFDX3zxhdLT05Wdna26devqtNNO0/nnn1/uD/wleTwerVixQlu2bNGvv/6q+vXrq2fPnurevbtf68nKytLSpUu1c+dOZWVlqXnz5rrooov8blwLAB9++KGGDRumIUOGlNk0+dprr9WcOXM0a9YsXX/99UFeIQAA8OrevbtSU1NTrbX+vYHwU0SeNiJJTZo00dVXX63Zs2frzTff1MSJE8v8RDwmJkYDBw7UwIEDyx0zOTm5zD4W2dnZmj17tqTCxpfhFFxIhZ9CX3bZZUGdMyoqSj169FCPHj2COq+/4uPjNWzYMGe3Tln69u1b7jGfmzZtUlRUVNDerLdu3dqVuaKiotSvXz/169evUuPUrl1bV1xxRaXXAwC+7LyoXbu2JHZeAABQXURs2YgkPfTQQ4qOjlZaWlrAj7ucPXu2fv31V9WqVcuv00kQGXbt2qVZs2bpsstBd2rAAAAgAElEQVQuU7169UK9HACo0rzljb6UjZzsZCsAABAZIjq86Nixo8aNGydJAT3u0lrrjP/AAw+ocePGAZsL4Wfv3r0666yzlJeXV+qpHAAA/3h3U3h3V5SGnhcAAFQvER1eSNITTzyhpk2basWKFfriiy8CMsf8+fO1ceNGtWjRQvfff39A5kD4iomJ0fjx47VhwwZ17do11MsBgCrPe3SzN6AoDeEFAADVS8SHF3Xr1tXUqVMlFZ6uEAhPPPGEJGnq1KmqVatWQOZA+GrUqJH+/ve/n9DgFQBQMd5Aorz/p3p3ZVA2AgBA9RDx4YUkjRo1SoMHD9bixYu1cuVKV8desGCB1qxZo0GDBmn48OGujg0AQHXEzgsAAFBSxJ42UtJHH30UkHGHDh2qcD9uFgCAqsQbXpS384LwAgCA6qVa7LwAAABVhzeQKG/nBUelAgBQvRBeAACAsOLPzgt6XgAAUD0QXgAAgLDiS8NOykYAAKheCC8AAEBY8aVhJ2UjAABUL4QXAAAgrFA2AgAASiK8AAAAYYWyEQAAUBLhBQAACCu+lI0QXgAAUL0QXgAAgLDiS9lIfHy8jDHKyclRfn5+sJYGAABChPACAACEFV/KRowx7L4AAKAaIbwAAABhIy8vT3l5eYqOjlZcXFy51xJeAABQfRBeAACAsFG0ZMQYU+61HJcKAED1QXgBAADChi/9Lrw4LhUAgOqD8AIAAIQNX04a8aJsBACA6oPwAgAAhA1fmnV6UTYCAED1QXgBAADCBjsvAABAaQgvAABA2KDnBQAAKA3hBQAACBv+lI2w8wIAgOqD8AIAAIQNf8pG6HkBAED1QXgBAADCBjsvAABAaQgvAABA2KDnBQAAKA3hBQAACBuUjQAAgNIQXgAAgLBB2QgAACgN4QUAAAgblI0AAIDSEF4AAICw4U/ZCDsvAACoPggvAABA2PCnbISeFwAAVB+EFwAAIGyw8wIAAJSG8AIAAISNijTspOcFAACRj/ACAACEDX8adlI2AgBA9UF4AQAAwgZlIwAAoDSEFwAAIGxUtGzEWhvQdQEAgNAivAAAAGHDn7KRuLg4xcbGqqCgQLm5uYFeGgAACCHCCwAAEDb8KRspeh2lIwAARDbCCwAAEDb8KRuRCC8AAKguCC8AAEBYsNb6VTYicVwqAADVBeEFAAAICzk5OfJ4PIqLi1NMTIxPz+G4VAAAqgfCCwAAEBb83XUhUTYCAEB1QXgBAADCgr/NOoteS9kIAACRjfACAACEBX+bdUqUjQAAUF0QXgAAgLBA2QgAACgL4QUAAAgLlSkbIbwAACCyEV4AAICwUJmyEXpeAAAQ2QgvAABAWKBsBAAAlIXwAgAAhAVvAEHZCAAAKInwAgAAhIXK7LygbAQAgMhGeAEAAMJCRcILjkoFAKB6ILwAAABhgbIRAABQFsILAAAQFmjYCQAAykJ4AQAAwoI3vPBn5wVHpQIAUD0QXgAAgLDg3T3BzgsAAFAS4QUAAAgLlI0AAICyEF4AAICwUJGyEY5KBQCgeiC8AAAAYaEiZSMclQoAQPVAeAEAAMJCRcpGvNceO3ZM1tqArAsAAIQe4QUAAAgL3t0T/pSNREdHq2bNmrLW6vjx44FaGgAACDHCCwAAEBYqsvNC4rhUAACqA8ILAAAQFioaXnDiCAAAkY/wAgAAhIWKlI0UvZ7wAgCAyEV4AQAAwgJlIwAAoCyEFwAAIOQ8Ho/TcDM+Pt6v57LzAgCAyEd4AQAAQq5ocBEV5d+PJ4QXAABEPsILAAAQchUtGZEILwAAqA4ILwAAQMhVtFmnRM8LAACqA8ILAAAQcuy8AAAA5SG8AAAAIUd4AQAAykN4AQAAQo6yEQAAUB7CCwAAEHLsvAAAAOUhvAAAACFHeAEAAMpDeAEAAELOjbIRwgsAACIX4QUAAAg5N3Ze0PMCAIDIRXgBAABCrjI7LygbAQAg8hFeAACAkKPnBQAAKA/hBQAACLnKhBcclQoAQOQjvAAAACFH2QgAACgP4QUAAAg5ykYAAEB5CC8AAEDIuVE2QngBAEDkIrwAAAAhV5mykZo1a8oYo+zsbBUUFLi9NAAAEAYILwAAQMhVZueFMYbSEQAAIhzhBQAACDlv6FCR8EKi7wUAAJGO8AIAAIScd+dFRcpGJI5LBQAg0hFeAACAkKtM2Ygk1alTR5J05MgR19YEAADCB+EFAAAIuco07JQILwAAiHSEFwAAIOQqu/MiMTFRkpSZmenamgAAQPggvAAAACFH2QgAACgP4QUAAAip/Px85ebmKioqSjVq1KjQGIQXAABENsILAAAQUkV3XRhjKjQG4QUAAJGN8AIAAISUt1lnRUtGJMILAAAiHeEFAAAIKe/Oi4qeNCLRsBMAgEhHeAEAAEKqss06JXZeAAAQ6QgvAABASFE2AgAATobwAgAAhJQbZSOEFwAARDbCCwAAEFJulI3Q8wIAgMhGeAEAAEKKshEAAHAyhBcAACCkKBsBAAAnQ3gBAABCip0XAADgZAgvAABASLm584KeFwAARCbCCwAAEFJuNOysWbOmYmJilJubq9zcXLeWBgAAwgThBQAACCk3ykaMMZSOAAAQwQgvAABASLlRNiLR9wIAgEhGeAEAAELKjZ0XEuEFAACRjPACAACElDds8IYPFZWYmCiJpp0AAEQiwgsAABBSboUX7LwAACByEV4AAICQIrwAAAAnQ3gBAABCivACAACcDOEFAAAIKW+PCm/Pioryhhf0vAAAIPIQXgAAgJByu2EnOy8AAIg8hBcAACBkrLWUjQAAgJMivAAAACGTnZ2tgoICxcXFKS4urlJjEV4AABC5CC8AAEDIuLXrougY9LwAACDyEF4AAICQcTO8oOcFAACRK8atgYwxLSRdJKm9pMaS6kg6JOkXSVskLbbW7ndrPgAAUPW5ddKIRNkIAACRrFLhhTHGSLpJ0lhJvbwPl3G5NcaskzRd0gxrbUFl5gYAAFVfIMpGCC8AAIg8FQ4vjDF9JD0nqbOkNEkzJH0u6SdJByVlqHD3RT1JLSWdJ+kCSa9KetAYc5+1dn6lVg8AAKo0wgsAAOCLCoUXxpi3JI2U9Lak31lrU3142pu/PbeLpPGS5hhjllhrL6/IGgAAQNVHw04AAOCLijbszJJ0mrV2jI/BhcNa+5219lZJ7SRtq+D8AAAgAtCwEwAA+KJCOy+steMqO7G1do+kuys7DgAAqLq8QYMbDTsTEhIkSUePHpXH41FUFIeqAQAQKVz5v7oxpsAY8/RJrnnWGMNpIwAAwOEt8XBj50VUVJRq164tScrKyqr0eAAAIHxUpmHnsKJ3JZ1W4rGS8/SXlFDR+QAAQORxs2zEO05WVpYyMzNd2c0BAADCQ2WOSp0nyf5220oa+ttXWYykTysxHwAAiDBuhxeJiYnau3cvfS8AAIgwlQkvHlNhaGEkTZT0tcoOJzySdkn6byXmAwAAESYQOy+KjgsAACJDhcMLa+0k721jzC2SPrbWPuHCmgAAQDXhdnhRt25dSVJGRoYr4wEAgPBQmZ0XDmttazfGAQAA1Yubp41IUr169SRJhw8fdmU8AAAQHioUXhhjpkhaYa39oMh9X1hr7b0VmRMAAEQet3deJCUlSZIOHTrkyngAACA8VHTnxd2//feDEvdPxkoivAAAAJLcPSpVYucFAACRqqLhRT9Ju0vcBwAA8IvbOy8ILwAAiEwVCi+stSvKuw8AAOALykYAAIAvXGnY6WWMiZfUVFKCCo9QPYG19js35wQAAFVTfn6+jh8/LmOMEhISXBmTnRcAAEQmV8ILY0xdSS9JulJS7Ekuj3ZjTgAAULVlZWVJKtx1YUypn3n4jfACAIDI5NbOi6cljZJ0UNJKSRyuDgAAyuV2yYhE2QgAAJHKrfBimKQfJZ1jrSW4AAAAJ+X2SSMSOy8AAIhUUS6NU1vSEoILAADgq0DsvCC8AAAgMrkVXnwn6VSXxgIAANVAoMtGrLWujQsAAELLrfDiSUmXGWMucWk8AAAQ4bzhRWJiomtj1qxZUzVq1FBubq6ys7NdGxcAAISWWz0v4iV9JekjY8w7KtyJUepPDNbaaS7NCQAAqrBA7LyQCktH0tPTdfjwYcXHx7s6NgAACA23wouZRW5f/9tXaawkwgsAABCw8CIpKUnp6ek6dOiQmjZt6urYAAAgNNwKL37n0jgAAKCaCMRpIxJNOwEAiESuhBfW2hlujAMAAKqPQJaNSIQXAABEErcadgIAAPglkGUjUuGJIwAAIDK4svPCGHPQx0uttbaBG3MCAICqLRCnjUjsvAAAIBK51fMiU4XNOEuOXV+FJ5FI0kZJ/BQBAAAkUTYCAAB851bPi9Zlfc8Y01XSPySdJulaN+YDAABVX0ZGhiT3d15QNgIAQOQJeM8La+16ScMkGUn/CvR8AACgajh4sLDqtH79+q6Oy84LAAAiT1AadlprCyR9KemSYMwHAADCH+EFAADwVTBPG+kgKSGI8wEAgDAWqPCCshEAACKPW6eNDCvn2/GSrpLUQ9IKN+YDAABVW15enrKyshQdHc1pIwAA4KTcOm1knk48baQoI+mgpPtcmg8AAFRh3l0RSUlJMsa4OjbhBQAAkcet8OIxlR1e5Er6SdJH1lp+igAAAAErGZEoGwEAIBK5dVTqJDfGAQAA1UMgw4u6detKKjyK1ePxKCoqmC2+AABAIPB/cwAAEHSBDC9iYmJUu3ZteTweZWVluT4+AAAIPsILAAAQdIEMLyRKRwAAiDSEFwAAIOgCHV7QtBMAgMhCeAEAAIKO8AIAAPiD8AIAAAQdZSMAAMAfroQXxpihxhi3jl0FAAARzhteeEMGtzVs2FCStH///oCMDwAAgsutnRfzJe01xvw/Y8xFLo0JAAAiVKB3XjRu3FiSlJ6eHpDxAQBAcLkVXrwhyUj6g6RlxphdxpgnjTFdXBofAABEEMILAADgD1fCC2vtGEmNJQ2U9KqkWEn3S1pnjNlgjLnfGNPMjbkAAEDVR3gBAAD84VrDTmttgbV2ibX2j5KaSeov6UVJSZL+JWmnMWaBMWaYMYZGoQAAVGOEFwAAwB8BCRGstR5r7XJJEyTdJylNUrSkwZLel5RmjLmdEAMAgOqnoKDAOcLUe6Sp2wgvAACILK6fEGKMqStpmKQRKiwjqSGpQNKnkmapcCfGnyQ9J6mNCstLAABANZGRkSFrrerWrauYmMAcVkZ4AQBAZHHlJwZjTCNJV6owsOj327hG0ioVBhZzrLW/FLn+eUlLJd0gwgsAAKqVQJeMSIVHsMbExCgjI0PZ2dmqWbNmwOYCAACB59bHHXtVGFYYSZslvS3pbWttWmkXW2utMWa3pPNdmh8AAFQRwQgvoqKidMopp2jPnj3av3+/WrZsGbC5AABA4LnVc2KvpCmSultrz7LWPlFWcFHE/ZLauTQ/AACoIoIRXkiUjgAAEEkqvfPCGFNT0lxJX1pr1/n6PGstP0kAAFANEV4AAAB/VXrnhbU2W9L1kkZVfjkAACDSEV4AAAB/uVU28pKkS40xbVwaDwAARCjCCwAA4C+3GnYukXSZpG+MMS9I2iApt7QLrbXzXZoTAABUQd7wIikpKaDzEF4A1cPnn3+u+fPna+XKlRo8eLD+9re/yRgT6mUBcJlb4cUKSVaFp4387bfbJZnfHo92aU4AAFAFsfMCgFteeukljR071rm/atUq7dixQy+//LJiYtx6qwMgHLj1N/oxlR5YAAAAFEN4AcANGzZs0F133SVJ+tOf/qSzzjpL999/v15//XXl5+frzTffDPEKAbjJlfDCWjvJjXEAAEDkO3TokCTCCwAVd+zYMV177bXKycnRmDFj9Pzzz0uSunfvrn79+umtt97SAw88oE6dOoV4pQDc4lbDzpMyxvzZGDMnWPMBAIDw5A0TGjVqFNB5CC+AyPXcc89p06ZNat++vaZNm+Y83qtXL40ZM0aS9NRTT4VqeQACwFjrTrWHMeYCFR6XWruMSy6TlGitLev7ZY27Njk5OXnt2rWVXSIAAAgxa63i4+OVk5OjzMxM1alTJ2BzFRQUKC4uTh6PRzk5OYqLiwvYXACCx+Px6PTTT1daWpoWLFigIUOGFPt+WlqaTj/9dEVFRSktLU0tWrQI0UqB6qF79+5KTU1NtdZ2D+Q8ruy8+C24SJF0h6RbJI3+7b+3FLl/iqRppT0fAABUDwcPHlROTo7q1KkT0OBCkqKjo53dHfv37w/oXACCZ+nSpUpLS1PLli112WWXnfD9tm3batSoUcrPz9fUqVNDsEIAgeBW2cjdKmzYOUZST0mbJb0qKVnSSEk/SJpprf2rS/MBAIAq6Oeff5YkNW/ePCjzUToCRJ6XXnpJknTrrbcqOrr0gwwfeOABSdLLL7+sY8eOBW1tAALHrfCip6TF1to3rLVrJH0oqaO19ltr7buSBkm61hhzrUvzAQCAKojwAkBl7Nu3Tx988IGio6Od3hal6datm3r16qWsrCzNmzcviCsEEChuhReNJO0scj9NUgfvHWvtTkmLJY13aT4AAFAFecOLU089NSjzEV4AkWXGjBnKz8/X0KFDTxqC3nTTTZLEkalAhHArvNgnqVWR+9sl1TXGNC7y2G5JnV2aDwAAVEHB3nnhnWf37t1BmQ9AYM2dO1eSdMstt5z02muuuUaxsbFavHix9u7dG+CVAQg0t8KLpZIuNcbcZIypISn1t8dvkSRjTJykiyQdcmk+AABQBQU7vGjdurUkaceOHUGZD0Dg7NixQ2vXrlVCQoIuvfTSk17fsGFDDR48WB6PR2+//XYQVgggkNwKL/4lKUvSG5LustYekLRQ0t+NMZ9L2iipvaS5Ls0HAACqIMILABX13nvvSZKGDBmi+Ph4n55z8803S6J0BIgEroQX1tofJXWS9KCkNb89fJukzySdJ6m1pFmSHnZjPgAAUDURXgCoqHfffVeSNGLECJ+fM2TIENWrV0/fffedNm7cGKilAQgCt3ZeyFq721r7lLV22W/391pr+0lKlFTHWnuztfa4W/MBAICqx9t7IljhRatWhS25fvrpJxUUFARlTgDu27Nnj7788kvVrFlTgwcP9vl5NWrU0PDhwyX9X78MAFVTpcMLY0xNY8x+Y8y/S/u+tfaotTa7svMAAICqLTs7WwcOHFB0dLROOeWUoMwZHx+vJk2aKD8/39n1AaDqef/99yVJl156qWrXru3Xc0eNGiVJmjNnjqy1rq8NQHBUOrz4LZj4WdI5lV8OAACIVHv27JEkNWvWTNHR0UGbl9IRoOqbP3++JDm7KPzRv39/NWjQQJs3b9b333/v9tIABIlbZSP3SDrfGHOXS+MBAIAIE+x+F15t2rSRRHgBVFVZWVlavny5jDF+lYx4xcbGOqHHnDlz3F4egCBxK7y4TtImSVOMMduNMQuMMe+V8vWuS/MBAIAqJlThhXfnxfbt24M6LwB3LFu2TLm5uerVq5caNmxYoTG8pSPvvPMOpSNAFRXj0ji3Frnd6rev0vAvBQAA1VSowwt2XgBV00cffSRJFdp14dW3b181atRIW7duVWpqqrp37+7W8gAEiVs7L9r4+NXWpfkAAEAVQ9kIAH9Za/Xxxx9LKjz2tKJiYmJ0zTXXSJJmzZrlytoABJcr4YW1dqevX27MBwAAqh52XgDw1/fff6/du3erSZMmOvvssys11k033SRJevvtt5Wfn+/G8gAEkSvhhTGmwBjz9EmuedYYs9+N+QAAQNWze/duScEPL1q2bCljjHbt2sUbFqCK8ZaMDBo0SFFRlXvrcs455+j0009Xenq6li5d6sbyAARRhf8FMMYM835JMpJOK/pYia/hkvpLSnBr4QAAoGoJ1c6LGjVqqFmzZiooKHACFABVw4IFCyRVrt+FlzHG2X0xc+bMSo8HILhMRbvtGmM88q8Bp5H0qbV2kJ/zrE1OTk5eu3atX+sDAADh4/jx40pISFBUVJSOHTumuLi4oM5/wQUX6IsvvlBKSor69u0b1LkBVEx6erqaNm2quLg4/fLLL6pTp06lx0xLS1O7du1Uq1Ytpaenq3bt2i6sFKjeunfvrtTU1FRrbUA74VbmtJHHVBheGEkTJX0t6dMyrvVI2iXpv5WYDwAAVFFbtmyRtVannXZa0IMLqbDvxRdffEHfC6AKmT9/vqy1GjBggCvBhSS1bdtWvXv31hdffKGZM2dq7NixrowLIPAqHF5Yayd5bxtjbpH0sbX2CRfWBAAAIsymTZskSR06dAjJ/N4TR7Zt2xaS+QH4b968eZKkK6+80tVx77zzTn3xxRd65pln9Ic//KHSvTQABIdbp420JrgAAABl+d///idJOuuss0Iyf8eOHSVJ3333XUjmB+CfI0eOaMmSJTLGaNiwYa6OPWLECLVs2VJbtmzRwoULXR0bQOBUaOeFMWaKpBXW2g+K3PeFtdbeW5E5AQBA1eUNL0K186Jr166SpPXr14dkfgD+WbhwoXJzc3XBBRfolFNOcXXsmJgY3Xnnnbr//vs1ZcoUDRkyxNXxAQRGRctG7v7tvx+UuH8yVhLhBQAA1Yy3bCRUOy/OOOMMxcfHa+fOnTp06JCSkpJCsg4AvglUyYjXrbfeqkcffVTLli3TunXr1K1bt4DMA8A9FS0b6SfphRL3ffnqX+GVAgCAKikvL09bt26VJLVv3z4ka4iOjlbnzp0lsfsCCHe5ubn66KOPJAUuvKhXr55uu+02SdJjjz0WkDkAuKtC4YW1doW1dluJ+z59ubd0AABQFWzbtk15eXlq1aqVEhISQraOs88+WxLhBRDuUlJSlJmZqc6dO6tdu3YBm+f+++9XzZo1NW/ePK1bty5g8wBwh6utdY0xnYwxDxtjZhhj/mOMed4Yc5MxhgOUAQCopkLdrNPL2/fi22+/Dek6AJTPWzJy1VVXBXSepk2b6vbbb5ckTZo0KaBzAag818ILY8wzktZLelTSTZJGSbpd0huSdhpjrndrLgAAUHWE+phUL+/OC8ILIHx5PB598EFhW71AlYwU9cADDyg+Pl7z58/XN998E/D5AFScK+GFMeYOSXdJ2iNpgqTeks6U1FfSY5LyJL1ljLncjfkAAEDVES47Lzp37ixjjDZu3Kjc3NyQrgVA6VavXq29e/eqVatWTuAYSI0bN9add94pSbrvvvtkrQ34nAAqxq2dF2Ml7ZN0trV2srX2K2vtFmvtSmvto5K6STog6a8uzQcAAKqIUB+T6lWnTh2ddtppysvL0+bNm0O6FgClK3rKiDEmKHP+5S9/UcOGDbVy5Uq9//77QZkTgP/cCi9Ok/SRtfZAad+01u6V9KGkLi7NBwAAqoD8/PywCS8kSkeAcGat1XvvvScpOCUjXvXq1XNOHLnvvvuUk5MTtLkB+M6t8CJdUoOTXBMrKcOl+QAAQBXw7bff6vjx42rXrp2SkpJCvRynaWdqamqIVwKgpFWrVmnr1q1q0qSJLrjggqDOfdttt6ljx47avn27nnvuuaDODcA3MS6N86ake40xZ1prT9iHaYxpLulySa+5NB8AAKgCli9fLknq27dvSNfhdd5550n6v3UBCB9vvPGGJOnGG29UTIxbb1N8ExMTo8mTJ2vQoEH65z//qdtuu01169YN6hoiSVpamj766CNt2LBBcXFxSkpK0g033KAzzzwz1EtDFVahfxWMMX1KPLRS0nWSUowx/5T0laSjkupLOl+FzTzTVBhyAACAamLFihWSpIsuuijEKynUu3dvxcfHa/369dq3b5+aNGkS6iUBkJSdna05c+ZIkkaPHh2SNVx66aXq06ePVq5cqcmTJ+vxxx8PyTqqsu3bt2vs2LFatGjRCd974oknNGTIEE2bNk1t27YNwepQ1ZmKdNQ1xngklXyit6NOaQM637PWRvs519rk5OTktWvX+rlKAAAQSgUFBWrQoIEyMjK0c+dOtWzZMtRLkiQNHjxYCxcu1FtvvaUbb7wx1MsBIOmdd97RNddco+TkZIXy5/4vv/xSvXv3VkJCgrZt26bGjRuHbC1Vicfj0fTp0/Xggw/q6NGjqlOnji677DJdeOGFMsbou+++01tvvaXs7Gw1a9ZMy5YtU/v27UO9bLike/fuSk1NTbXWdg/kPBXdj/WYSg8pAAAAJEnr169XRkaG2rRpEzbBhSQNHDhQCxcu1KJFiwgvgDDhLRkJ1a4Lr/PPP19Dhw7VggUL9OSTT2rKlCkhXU9VsHXrVv3+97/XZ599JkkaNWqUnnvuOZ1yyinFrvv73/+uq6++WitXrtRFF12kxYsXq3PnzqFYMqqoCoUX1tpJ3tvGmFhJHST9aq3d49K6AABAFectGQmXfhdeAwcOlCQtWrRI1tqgHccIoHQ7d+7Up59+qpiYGF133XWhXo4ee+wxLViwQC+//LIefvhh1a9fP9RLCkvWWr3yyiv685//rGPHjqlx48aaPn26hg8fXur1jRo10scff6xhw4Zp2bJluvDCC/XBBx+ETVkhwp8bp43kS/pa0kQXxgIAABHC2xQz3H4w7dChg5o3b6709HRt2LAh1MsBqr3p06fL4/Fo1KhRatSoUaiXo27dumngwIE6evSopk+fHurlhKXMzEyNGDFCf/zjH3Xs2DFdf/312rhxY5nBhVdCQoIWLFigq666ShkZGRo4cKDmz58fpFWjqqt0eGELm2Ysl3SBMcavfhYAACAyeTweZwtxuIUXxphiuy8AhM6xY8f0yiuvSJLGjx8f4tX8nwkTJkiSpk2bpuPHj4d4NeFl69atOvfcc/X+++8rMTFRs2bN0qxZs9SgQQOfnh8fH6+5c+fqzjvvVG5urm6++Wbt2rUrwKtGJHBj54Uk3S6pjqT/GGPauDQmAACoolauXKlDhw6pbdu2at26daiXcwJveDFv3rwQrwSo3mbNmqVDhw6pZypBoMcAACAASURBVM+e6tWrV6iX4+jXr5969Ojx/9m77zip6nv/46+zvbDL0qsFhaASRBFrjDVG0aCowajBmhvjNZarRpP4w25IMXY0lhijkRtvNMTeNXaMURTFhqIUBREpy/bdmfn+/hh3ssDSZ3eG3dfz8TiP2TnnzPl+FvbsznnP9/s9LFq0iDvuuCPT5WSN++67j1122YX333+fYcOGMW3aNI499tj1Pk5ubi7XXXcdY8aMobKykpNOOolEItEGFasjSVd48SSQDxwBfBxFUXUURUtaWRanqT1JkpTF/vKXvwBkxfj11hxyyCGUlpby8ssv8/7772e6HKlTCiFwww03ANnV6wKSPbSae1/87ne/o7GxMcMVZVZjYyM//vGPGTduHMuWLWPs2LFMnTqVrbfeeoOPGUURt912G7169eKZZ57h+uuvT2PF6ojSFV4UAA3A3K+XRUBlK8vyNLUnSZKyVF1dHffddx8Axx13XIaraV1ZWVnq08I//vGPGa5G6pwef/xx3nnnHfr27cu4ceMyXc4qDj/8cLbddlvmzJnDnXfemelyMiYej3Pcccfxxz/+kcLCQiZNmsSUKVMoKyvb6GP36dOHW2+9FYDzzz+fV199daOPqY4rLeFFCGHLEMKgdVnS0Z4kScpeDz74IMuXL2fnnXdm6NChmS5ntX784x8DcOedd9LQ0JDhaqTOJYTA5ZdfDsC5555LQUFBhitaVW5uLhddlLwnwcSJEztl74sQAqeddhp/+9vfKC8v56WXXuKnP/1pWu/SNHbsWM4880yampoYN24cX375ZdqOrY4lXT0v1iqKot2jKDqsvdqTJEmZ0TxkJFt7XTQbNWoUI0aMYPHixc59IbWz5557jqlTp9K9e3dOPfXUTJezWuPGjWObbbZh9uzZ3HXXXZkup93dcccd3HrrrRQVFfHwww8zatSoNmnnyiuv5Fvf+hafffYZo0eP5oMPPmiTdrRpS1t4EUVRThRFI6Mo2qu1BfgV8Nd0tSdJkrLPggULePzxx8nLy+Poo4/OdDlrFEVRqvfFpEmTSN5ATVJ7uOKKKwA4++yz6dKlS4arWb2WvS8uu+yyTnXnkaqqKi644AIAbr31Vr797W+3WVsFBQX87W9/Y/PNN2fatGnssMMO3HjjjW3WnjZNaQkvoijqCcwA/g38czXLPsC76WhPkiRlp9/+9rfE43EOPfRQevXqlely1mr8+PF0796dl156iYceeijT5UidwtNPP82zzz5LeXk5p59+eqbLWaujjjqKESNGMG/ePK677ro2bWvhwoXce++9/OMf/6C2trZN21qbX//61yxcuJDdd9+d8ePHt3l7/fv3Z/r06Zx88sk0NDRw+umn8+yzz7Z5u9p0pKvnxTnANsDzwE1AHfAScAPwKJAA7gEOSlN7kiQpy3z++efcfPPNAFx88cUZrmbddO3aNVXreeedR1NTU4Yrkjq2hoYGfvrTnwLwi1/8goqKigxXtHa5ubn8/ve/B5JzX7TFnAyffPIJe+21F3379uWoo47iiCOOoE+fPpx66qnU1NSkvb21+eijj7j66qsBuOaaa9I6x8WaVFRUcPvtt3PJJZcAcNJJJ7F8ufd8UFK6wouxwLshhP1CCGcAk4ElIYT/CSGMAY4HDgO6p6k9SZKUZSZOnEhDQwPjxo1j++23z3Q56+zUU09lyJAhzJw5MxW+SGobV111FTNnzmTo0KGce+65mS5nnX3nO9/h4IMPpqqqKu3h7AMPPMDIkSN58cUXKS4u5oADDmDXXXelurqaW265hX322YcvvvgirW2uyZNPPsluu+1GQ0MDxx57LLvuumu7td3sggsuYNSoUcydO5ezzz7bYX0C0hdebAZMbfF8JrBj85MQwl+/XrdpfAwjSZLWy6xZs7jtttuIomiT6XXRrKCggCuvvBKACy+8kNmzZ2e2IKmD+uSTT1JzXdx4441ZeYeRNfnd735Hbm4uN998M0899VRajnnbbbcxduxYKisrGTt2LPPnz+fJJ5/k1VdfZfr06Wy11Va8/vrr7LbbbsybNy8tba7JpEmTOOigg1iyZAmjR4/O2LwT+fn53HnnnRQWFvKnP/2J888/3wBDaQsv6oHiFs8/BQZGUVTUYt1rwHfS1J4kScoSsViM448/nqamJsaPH8+wYcMyXdJ6O/TQQznssMOorKzk2GOPdfiIlGaxWIzx48dTV1fHMcccw/7775/pktbbsGHDUsMZjj/++I0ePnLrrbdyyimnAPCrX/2KKVOmrDCMZvvtt2fq1KnssssuzJkzh+9973tUVVVtVJtrcuWVV3LGGWcQQuDiiy/m4Ycfzuiwnu222467776bvLw8fv/733PaaacZYHRy6Qov3gG+E0VR87CQ974+9rda7NMfKFr5hZIkadM2ceJEXnnlFQYMGMC1116b6XI2SBRF3H777QwcOJCpU6ducr1HpGx3+eWXM3XqVAYOHMikSZMyXc4G++Uvf8nee+/NF198wXHHHUdjY+MGHeeWW27hJz/5CZAcSnPBBRe0Oq9E7969eeyxx/jGN77B22+/zdFHH00sFtuo76Glv//97+y5554MGTKE888/nyiKuOWWW7jkkkvIyUnbjSk32Pe//30eeOABioqKuPnmm7nvvvsyXZIyKYSw0QtwBMlJORcAh3+9bg4wG/gRcBkQB57cgGO/MXLkyCBJkrLPM888E3Jzc0MUReGZZ57JdDkb7fnnnw85OTkBCNdcc02my5E6hEcffTTk5OSEKIrCP//5z0yXs9HmzZsXevToEYAwZsyYUF9fv16vv+mmmwIQgHD11Vev02s++uijVJunn376hpS9imeffTbk5uamaiksLAx33HFHWo6dbn/4wx8CELbYYotQV1eX6XK0kpEjRwbgjZCGbGFNS1ritBDCFOAsYAnJ+S8ATgf6ALcCE4DFJO9KIqVdTU0Nv/nNbzjhhBM4+OCDmThx4gYn4ZKkdfP6669z2GGHEY/HOf/889lvv/0yXdJG22uvvfjDH/4AwNlnn81VV11lN2VpIzz++OMcfvjhJBIJLrjgAvbZZ59Ml7TRBg4cyJNPPkn37t156KGHGDNmzDpNqBmPx7nwwgs57bTTALj22ms5++yz16nNwYMHc//991NQUMCkSZO4/vrrN+p7+PTTTxk3bhzxeJyzzjqL999/n0WLFnHiiSdu1HHbyn/9138xfPhw5syZk7oLijqhtkxGgCHAacB/Ab038Bj2vNAaTZ8+PWyzzTap1Lh52XHHHcOMGTMyXZ4kdUjTpk0LPXv2DEA45phjQjwez3RJaXXzzTen/p4cc8wxobKyMtMlSZucBx54IBQWFgYgnHbaaSGRSGS6pLR66623Ur8HKyoqwk033RSqq6tb3ff9998PBx54YABCTk5OmDRp0ga1effdd6eO8dBDD23QMaqqqsLw4cMDEA4++OAQi8U26Djt7ZlnnglAKC0tDe+//36my1EL7dXzok0PnpYCDS+0Bv/4xz9CUVFRAMK2224bbrvttnDXXXeFLbfcMgChpKQkPPDAA5kuU5I6jEQiEf7whz+kLkhGjx4dGhsbM11Wm7j77rtDaWlpAMJmm20Wfvvb34aFCxdmuixpk3D99deHKIo6bHDRbM6cOWH06NGpsLO0tDSMGzcuXHbZZeGWW24JF1xwQdhnn31S23v27BmefvrpjWrzkksuSbX15ptvrtdr4/F4OPzwwwMQhg4dGpYtW7ZRtbS3o446KgChT58+4d133810Ofpae4UXUdiArpBRFD0LXBpCeH69X/yfYxwAXBxC2HMt+70xcuTIkW+88caGNqUOavLkyZxwwgnE43FOOukkJk2aRElJCQBVVVWceuqp/O///i9RFHHllVdyzjnntDoRkiRtaurr6/nwww/58MMPmTlzJh9++CFffPEFsViM3NxcunfvTt++fdltt93YZ5996N+/f1ranTFjBuecc07qFoGnnHIK1157LcXFxWt55aZr5syZHHPMMUybNg1ITuy57bbbstNOO9GnTx+6d+9O9+7d6dGjR+pxyJAhqb9H6hhCCHzyySe8++67fPrppyxcuJCamhpycnLYYost2Hrrrdlhhx0YOHBgp3+vsWTJEs4++2zuuusuAC677DImTJjQof9dQgjce++9XHfddbzyyiut7lNSUsIPf/hDLrzwQjbbbLNW91mf9o477jgmT57MgAEDmDp16jof85JLLuHSSy+la9euvPbaa3zjG9/YqFraW21tLYcddhhPP/00vXv35uWXX2bw4MGZLqvT22mnnZg2bdq0EMJObdrQhiQewESSt0f9F/BDoHgdX1cGnAi8AVQB563Da+x5oVXccsstqTR/woQJrab5iUQiXH755amk+5RTTumwnw5K6vhmzJgRJkyYEPbYY49QUFCwylC5NS0jRowIEyZMCK+99tp6D+9oamoKjzzySPj+97+fmsiyoqIiTJ48uY2+0+wTi8XCww8/HMaMGRPy8/PX+u+dm5sbhg8fHs4444zw+OOPO7ncJqqqqirce++9Yfz48aF///7rdK716tUrHH/88eHvf/97WLp0aaa/hXbV1NQU7rzzztC3b98AhKKionDXXXdluqx29/HHH4fbbrstnH/++eHEE08MF110Ubj77rvT3sOhvr4+7LnnngEIAwcODO+8885aX3P77benhpw89thjaa2nPdXW1oYDDjgg9fettrY20yV1elnd8wIgiqIhwO+Aw4AGYBrwKsm7jCwDqoFyoDuwBcnbpo4AcoEpwNkhhHnr0I49L7SCq6++mnPPPReA3/zmN/z85z9f4/5/+9vfOOGEE6ivr2e//fZj8uTJ9O3btz1KlaSN8umnn3LPPffw17/+lXfeeSe1PooihgwZwjbbbMPQoUMZOnQom222GXl5eTQ1NbFkyRJmz57NCy+8wIsvvkhNTU3qtf369WPfffdlzz33ZNiwYWy22WYUFxfT2NiYWubPn88777zDyy+/zNNPP01lZSUAubm5/Pd//zcXX3wxPXv2bPd/j2zQ0NDAW2+9xYwZM1i8eDFLlixhyZIlqa8XLlzIzJkzicfjqdeUlJTwne98h9GjR7P//vszePDgDv0p9KZs4cKFPPTQQ9x///08/fTTNDQ0pLb16NGDUaNGsdVWW9G/f3+6dOlCU1MTs2fP5sMPP+TNN99kyZIlqf2jKGLHHXfkkEMO4YgjjmDEiBEd8v89FosxefJkrrjiCj7++GMA9txzT26//fZN7lP9Tc2SJUsYM2YMr7zyCl27duXPf/4zY8eObXXfhx9+mLFjxxKPx5k0aRI//elP27na9KqsrGTUqFF8/PHHnHzyydx+++2ZLqlTa6+eFxscXqQOEEWjSE7KeRDQfEXY8qDNv6W/AB4AbgkhvLUexze8EABz587lggsuYPLkyQDceOONqdma1+Zf//oXhx56KF9++SU9e/bklltu4fDDD++QbyIkbdpmzZrFfffdx3333cfrr7+eWt+tWze+//3vM3bsWPbYYw8qKirW6XgNDQ0899xzPPjggzz00EPMm7fWzw1WMXToUI4//niOP/54Bg4cuN6v72zq6up44403ePzxx3nkkUd4660V3/b07duXESNGsN122zFgwAD69+9P//796dWrFwUFBeTn55OXl7fKY15eHvX19VRXVwO0uk9ubm4mvuVNVgiBjz76iAceeID777+fqVOnNvf8JYoidt99d8aOHcvBBx/MtttuS07O6m/UF0Lggw8+4IEHHuDhhx/mtddeo6mpKbV90KBBHHHEERx++OHsvvvuazzWpmDp0qXcc889XHXVVcyaNQtI3hFjwoQJHHfccZv897epqKurY/z48UyZMgWAMWPGMGHCBEaNGkVOTg4hBG699VbOOOMMmpqa+H//7/9xxRVXZLjq9Jg+fTq77bYb9fX1XHTRRVxyySW+t8+QTSa8WOFgUTQc+AbQi2SPi1pgATA9hPDBBh7zjR133HFk81hTtY1EIkFTUxONjY00NTVRUFBAcXFxRt8EVVdXM3PmTF5//XWeeuopHnroIRoaGigoKODWW2/lhBNOWK/jff7555x44ok8/fTTQPIkO+eccxg7dqxjkyW1uxACCxYsYNasWcycOZNp06bx8ssvM3369NQ+paWljBkzhmOPPZYDDzyQgoKCjW7z3Xff5cUXX+SVV17hk08+Yd68eTQ2NlJQUJBaunfvzvDhw9lxxx054IADGDRo0MZ+u53a559/zqOPPspTTz3Fs88+y+LFi9usrSiKWg01SkpK2HzzzRk0aFBq2WqrrRg0aBD9+vXrNG/4Qwi8//77vPDCC6meSZ999llqe0FBAQcccACHHXYYY8aM2aiemrW1tbzwwgvcf//93H///SxcuDC1rW/fvowdO5bDDz+cfffdl/z8/I36vtrL559/zmOPPcYjjzzCY489luqZMnjwYC688EKOPfZY8vLyMlxl5xOPx7npppuYMGECy5cvB5K97IYNG0YsFuO5554D/nP75450vk+ePJnjjz+eRCLB+PHjuemmmygrK8t0WZ3OJhletIUoit7IyckZedBBB7H//vszatQohg0bRo8ePTJd2gZpbGykurqaZcuWsXTpUmpra4nH48RiMeLxOHV1dVRWVrJ8+XIqKytXWaqqqojH4yQSCRKJBCGEFR7XZV08Hl+he3BjYyOxWKzVegsLCykpKaGkpITi4uLU1wA1NTXEYjFKSkooKyujb9++9OvXj379+tGnTx9KSkooLCykqKiIwsJCEokE8XicZcuW8dVXX62yLFy4kC+++ILKykpisRiNjY2r1HPMMccwceJEttxyyw36908kEtx4441cfvnlLFq0CEh25z3wwAPZddddGTFiBCNGjKBv374d6hd7CIGGhgaWL19ObW3tKv//DQ0Nra6rra2lvr4eSHYXX90SRVGrP3stH9e0LZFIUFVVxZIlS2hoaEj9rDT//CYSCXJzcykvL19hKSsro7S0NPVzvbqlurq61fOpsbGRwsJCCgoKWn1si20FBQXk5eWt8vOVSCSIoqhD/dxlUvPPVFVVFfn5+RQVFVFUVERBQUFG/o0bGxt58803mTp1Kq+99hrTp0/n008/pa6ubpV9y8rKGDNmDOPGjePAAw/s0JNhdkaJRILZs2czffp0Pv74Y+bPn59aFi1aRCwWo6mpqdXHWCxGUVERpaWlRFHU6n4b8r6uvLyc7bbbjpEjR7Lzzjuzyy67MHTo0E2+F0c8HufTTz/l3XffZcaMGbz++uu8+OKLq4RH3bt3Z/To0YwdO5YDDzywTS584vE4U6dO5R//+AdTpkxh9uzZqW1lZWXsv//+qeEl3bt3T3v7G+qrr77i1Vdf5aWXXuKJJ55YoRdRFEXsv//+nHzyyYwbN87QIgssWLCAX//619x///0r9LIrKiri1ltv5bjjjstgdW3n4Ycf5uijj6ampobi4mLGjh3LDjvsQJ8+fcjJyUl9QNv8IW1jYyO5ubmUlpbSpUsXSktL6datG5tvvjmbb745hYWFmf6WNjmGF1+LougNYOTK6/v27cs3v/lNhgwZkvrUoGfPnvTo0YOePXvSvXt3ysrK1qnLWiwWo6GhgcrKSpYtW0ZtbS0NDQ00NDRQX1+/wV/X1dWlLsyXL19OdXX1akOCbND8iVteXh6NjY3U1tZmvJ7Bgwez3Xbbsf/++/Pd736XrbbaKi3Hrqur48477+RPf/oT//73v1fZ3rNnT3r37k1ZWVnqIrnl1+Xl5RQUFLR6YR6LxaipqaG6upqamhrq6urIz89f4VPNRCKReiPaHF7FYjHq6+upqamhtrZ2hcfWghwg9Sa1uYaW63JycsjPz6e+vp6qqqoVuq4qs6IoSgUZ+fn51NbWpi5ic3JyUp+WFhcX06VLl9TPX1lZGV26dKG4uJgoisjPz6eiooIePXowaNAgtthiC4qKisjLy0v9nJaXl6f1E73moKhlT62VlxACOTk5qaU55Gru0t7yMS8vj5ycHOrq6qitrV3tsmzZMhYvXkxtbW0qjGstkGoOf6uqqlq9iIuiiN69ezNw4EAGDhzIZpttRv/+/enTpw99+/ZNPfbu3Xuj/t0WLFjA66+/ztSpU3n55Zd57bXXUkFgSz179mTrrbdO3alg5MiRfOtb36KoqGiD21bn1tyTcuVgo6qqijlz5vDJJ5/w6aefppZZs2atME9Ds7KyMoYOHcqAAQNSQ1t69epFcXExZWVl9OrVi969e9O7d2/Ky8szFryGEKiqqmLRokV89NFHzJgxI7W89957rQaE/fr1Y++99+bb3/42e+21F9ttt127DnEIITB9+nSmTJnClClTePfdd1Pb8vPz+e53v8uhhx7K6NGjN/quFOsqFosxc+ZMpk+fzttvv8306dOZPn068+fPX2G/5vlbDj74YL73ve8xYMCAdqlP6yeEwHvvvcdnn33GsmXL2HnnndP2HjpbvfXWW5x11lm88MILG32svn37ssUWW6yyDB48mEGDBhlutMLw4mtRFL0xfPjwkeeddx7PP/8877zzDu++++4Kk4+t4bWUl5dTUVFBSUnJCp8oN3/S3Pwpb3vJy8ujS5cuVFRU0K1bN0pKSlJv4HNzcyksLKRr166Ul5fTtWvXVZaysjLy8/OJoih1YdD8dWvrVre9+cKpZWCx8huP5guElhcQzRcYIQS6dOlCbm4udXV1LFu2jC+++IIFCxawYMECvvzyS+rr61NhTn19fartiooKevXqRc+ePVdYevXqRd++famoqEhd7LfHm4m5c+fy1FNPpf5QT58+PTU5XUdSUFBAeXl5qkdMy///lZ83L8XFxRQVFRFF0Rp7NgCr/Jy1fFyXbWVlZalzouWFb/PS1NREVVVV6sJ0+fLlqVCw5QVya0tpaWmr51NBQcFqfy+s6+OGvKblRH7tobi4eIXfK+Xl5eTm5rYaPKzLsqloDnxisRh1dXXU19evV/09evRIBRndunWjoqKCrl27UlFRQUVFBeXl5amgt7a2lurqat59911ef/31Vd7wA2yzzTbsscce7Lrrruy0004MGTKE8vLydH7L0noLIfDll1+meib8+9//5rXXXluvuVEKCgro1atXqldsPB6nuLiY0tLSFc6/urq6VJhSXFy8wnuA3r17s/nmmzNgwIDUBwTNvVRbToi6ePHi1NeLFi1i0aJFqw34AQYMGMA3v/lNhg0bxvbbb8+ee+7JVlttlVW93ObOncvjjz/OfffdxzPPPLPC+9KBAwey00470a9fP3r16pV6/9T8uK5DyWpqaliwYAFffPFF6v1ay68XLFjQ6r9jSUkJo0aNYo899mCfffZh7733NlxVVvv000958MEHmTdvHgsXLiSEkPqwqPkxPz+feDxOTU1Nalm8eDFz5szhs88+W+OHzVEUpd4H5OXlrdLbvWWv95ycnFTP9eb31K3NZdRyae7B29xzvXnJz88nNze31ffIrS2QnNR0yZIlqd+jzV/H4/FUey3ryM/PX6Ht5seWvVZbZgctv7799tuZM2eO4UVrE3YmEgnmzp3LjBkzmDVrVup+281/0L766iuWLFmSmtBqbZov5pvflK483KHlsvJ/5prWFRUV0b17d3r16kXXrl3p0qXLRo9XVtsLITB//nyWLl2a6nbe8oK5+bGpqanVi/Hmi+Xmpbi4ODUMpnlp+alzy/CqqKiIkpISSktLU0N0SktL19jVvXl9yyEHzWFDU1MTRUVFlJWVmRJnkeahWw0NDTQ1Na0wHKvlp6Z1dXWpn8Hq6urU1/X19YQQaGxspLKyki+//DI1d0Fzj4jmoTLLly9Pe0Cbk5OzwhuAlZcoilb4Q97cw6jlELmVH1sOS1v5HGgOX3r06JEKt5p/Z68u7C0rK2u1y3ssFmPhwoV89tlnzJs3j3nz5qXewC9cuDA1fO3LL7/cqH+38vJydtppJ3beeWe+9a1vsccee3Tau3No07Rw4UI++eQT5s+fz+eff878+fNZvHgxdXV1LF++nEWLFvHll1/y5ZdfrvP7rbZSWlpKr1692GKLLRg+fHgqrBg2bBjdunXLaG3r64svvuChhx7ikUce4Z///Gdq/oL2MGjQILbffntGjBiRetxqq62ceFOdSjweZ/78+cyZM2eFZfbs2Xz88cfMnj27XT/43lSUlJRQW1treLExdxuJxWIsX748NRRk5THpLcefS1JHFEKgtrZ2lbl0EonEasOHtS2d4Y1sPB5n8eLFqSCjeVhh89L871hQULBC6LL11lszatQoBg8e3Cn+nSRIDsVctGgRixcvTn3qV1dXR01NDXl5ealPHJs/5Gnutdly3qv58+czb948FixYwPLly2loaKBbt250796d7t27061bN3r06JFamj8cah7K0hElEgk+/PBD3nnnnVQvk5bLV199tc49+YqKiujXr19qfrLWHp28XFq7pqYmKisrWbp0KYlEYpUeDy17ujfPZ9jcc72uri41VHzlpfmDq5Y9e1v2YI/FYqv07ljTEkKga9euq/we7datG/n5+avMp9T8QevK7TbX0vJD1Na+vuuuu5g7d67hhbdKlSRJkiQpO7XXnBdp+VgoiqJvpuM4kiRJkiRJK0tXn9a3oyh6O4qiX0RRtGWajilJkiRJkpS28OI5YFtgIjAriqKXoij67yiKeqTp+JIkSZIkqZNKS3gRQtgP6Af8BHga2Bm4EZgfRdGDURSNi6LIWx1IkiRJkqT1lrap0EMIX4UQbgshHAj0AU4GngIOAO4BFkRRNCmKohHpalOSJEmSJHV8bXIftxDCshDCn0MI3wMOBT4BKoDTgGlRFL0YRdHBbdG2JEmSJEnqWPLSfcAoebPXPYEjgSOAAUAEfAD8L9ANOBF4KIqiX4QQrkx3DZIkSZIkqeNIS3gRRsIQqgAAIABJREFURVEusB/JwGIs0ItkYDEfuAaYHEJ4s8X+FwP/BH4KGF5IkiRJkqTVSlfPiy9JDguJgGXAHcBk4LkQQlh55xBCdRRF7wA/TFP7kiRJUnZJJOD+Z+CJl2DmHFheDcVF0LMCRgyF7+0DOw/PdJVSx+U52KGkK7woAaaQHBbySAihcR1ecy1wa5raV2dTVQO33QtPvAwzZ6/0i2gb+N7ecOR3IadNpnWRJElas0VLYPRPYNp7sFlfGDYY+vdKbqushskPwxW3wMF7wf9dBSXFma1X6mg8BzucdIUXuwJzQwjLVrdDFEUVQHEIYQFACOHtNLWtzmbWXNj3RFi0FHYZDqO/Dd3Kk9sqq+GDT+C4X8DEW+GJ26B3j4yWK0mSOqGzfg119fDO/TBsSOv7/Gs6HPk/cPZv4JZL27c+qaPzHOxw0hVevEmyJ8W5a9jnUuB4khN2ShvuzImwWT94awp0r2h9n7nzk0nrmRPhnqvatz5JUsc35an12/+IA9qmDmWvx1+ESRNWf9EEsOsIuOSn8MtrvHBqT56/nYPnYIezweFFFEVntnwKjFxp3crtHAbkbmh7UspL0+D2y1cfXABs3h9++WM4Y2L71SVJ6jxOvwIWLv7P81Wn+PqPKIL4jLavSdkliiAWX/t+RQXQFGv7evQfnr+dg+dgh7MxPS+uBQLJ4CIAewF7r+U1f92I9qSk4kL4auna96trgFznvJAktYHPn4Or/wzn/R5+/iM49QeZrkjZ5qA94dKbkpMCjtim9X3e/Si5z3f3aN/aOjvP387Bc7DD2Zjw4qSvHyPgT8CTrD6cSADzgOc3oj0p6cjvwoU3QL9ecOh+yVR1ZY8+DxfdAEfazU+S1AaiCM45EX5/B3TrClsMyHRFyjbXXQBjToOR34dtBsE3h0D3rsltldUw4yN4bxZs/41k13a1H8/fzsFzsMPZ4PAihHBn89dRFJ0IPNhyndRmfn9esufF4WdCWWnyl1HLX0TvzUrejeTgveDqn2e2VklSxxVFcMwhsHm/TFeibNSzG0z9Kzz0T3j8JXj7w+TFUlMsOdH4jtvChJ8k51PIS9c0dFpnnr8dn+dghxOFNY3xygJRFL0xcuTIkW+88UamS1G2mfERPPoCvDMTllT+5xfRNoPgkL1hl+0zXaEkSZIkdWg77bQT06ZNmxZC2Kkt29mgiCmKoinAQyGEO1o8XxchhHDkhrQpreKbQ5KLJEmZlkhATV1yXiY/wVOzqhq47V544mWYORuWV0NxEfSsSI7B/97eyeGwOc7RJUlrs6F/XccCs1d6vi6yu5uHJEnSupo7Pzlm/omX4ZPPkgEGJIc0jhiavDD9yQ+gvEtm61RmzJoL+54Ii5bCLsNh9LeTPUQhOcz1g0/guF/AxFvhidugd4+MlitJ2W5Dw4tBwPKVnkuSJHUOr8+A/U+GLiXwnd3hR0e2uDCtgg8+hd//Ga6fDM/+CYZsmclqlQlnToTN+sFbU1Z/e/e582H0T5L73nNV+9YndXRTnlq//Y9wov9st0HhRQhhzpqeS23q6j+v+75RBGef0GalSJI6qZ9dCXvvDH+/FvLzW9+nqgYO/DGc9Wt49Jb2rU+Z99I0uP3y1QcXAJv3h1/+GM6Y2H51yfeSncXpV8DCxf95vqa5HqMI4jPaviZtlLQNyoyiqBj4AfB8COHTKIrKgKuBbwFzgMtCCFPT1Z46sf97DP49I/lLZm0TzvoHR5LUFl6fAXf/dvXBBSSHj5xzApzsLfg6peLC5N3R1qauAXKd86Jd+V6yc/j8uWRQdd7v4ec/glN/kOmKtJHSEl5EUdQPeAnYEhgNfEoyuPgRUAUMBfaNomivEMJr6WhTndi//g/ufRx+cC785hw4/0eZrkiS1Nl06wofz137fp8tTA4tUedz5HfhwhugXy84dL/kRfDKHn0eLroBjrS7ervyvWTnEEVwzonJuYm6dYUtBmS6Im2kdPW8uJzkvBc/A16KoqgQOJpkoLEvsC3wKjABODRNbaozG3dQssuuJEmZcOJYuOTGZM+LYw+BXt1X3L54WfLT3YtugJ8ek5kalVm/Py/Z8+LwM5O9cLYZBN27JrdVVsN7s5JDiw7eC67+eWZr7Yx8L9k5RBEccwhs3i/TlSgN0hVeHAQ8F0K4GiCKov2AUuD2EEIcmBFF0ePAPmlqT4LTj/VWqZKkzLjsDGhsgl9cDef8Fnp2a3FhWpUcZ52TA6ceBVecldlalRnFRfB/V8OFH8FjL8BbH8CyKmiKwWZ94YDd4ZC9Yfuh8OViKLWHTrvzvWTncPXPYcmy1W9vaISFXyXnoFFWS1d40QP4sMXzvUjeFvXZFuu+AsrT1J4E59nFT5KUIVEEvz0XzjsZnn0V3vkIllQmL0y7lSc/ZT9wT+jfO9OVKpOuuRN++8fk7VKLC+HH42Di/ySDjWZPvAQHn+pkgZnge8mOb+Vz8JSj4FdnrXgOPvea5+AmIl3hxedAnxbPRwOfhBDmtVg3FFhD5CVJkrSJ6dkNjhqdXKSWrrgZLp4E48fArtvDv9+BGybDrHnw4I2Zrk7q+Fo7B6+/OzlfkefgJild4cUTwH9FUXQ2sBkwiuSEnQBEUXQssDfwYJrakyRJkrLX7X+HM34I1/7y6xXHwC7bw08vh5vvgVOPzmh5UofnOdjhpCu8uBQ4BLjq6+dLgWsAoij6G/B9oPrr/aSNc+av1n3fKILrLmi7WiRJnZN/i7Q287+EfXdZcd1/Hw2PvgAXXAvfPzDZc0ftz/O3c/Ac7HDSEl6EEL6Momg48AOgArgvhDD/681vkrx16nUt1kkb7ouv4OHnk5PrdO0CXctWv69/cCRJbcG/RVqb/r2Tk3Qetv+K62+6EIYdCqdcDFOuz0xtnZ3nb+fgOdjhpKvnBSGEKuCPraz/dbrakAD42zXw4uuw9wnwix97b25JUvvzb5HW5vhD4de3Je9Ks/9usMtw6FIKm/VLXjwd/0sY9z/JbWpfnr+dg+dgh5O28AIgiqKtgS1I3iY1am2fEELbznsRbQdX/gx+dvKa93vxdbj0puTs4HX1sNVAOO7QZFeikuLkPrM/hz//IzkrrbOFZ5dvj4LBm2e6CklSZ+bfIq3JRadBVW1ygsDf/BGe+iPs9/VF0vhDk7dNPf8q+PtTyU/31b48fzs+z8EOJy3hRRRF/YEpwM5r2o3k7VNz09HmRnngGTj8TDjmYDj5iOR92P/9TnLs05Sn4YW7IDc3GV5cehN8bx/Di2x00X/DoIH/eR5tl3wM72WmHklS5+PfIq1Obi5c/fPkbRk/ngub9/vPtuafk6WvwpMvw9wFmamxs/P87dg8BzucdPW8uB7YBfgQeAyoTNNx28blNycDiclX/mfd0QfDbiPgqHPgn/+C7+yRsfK0jsYfmukKJEmdnX+LtDbFRTD8G61vqyj3NruZ5PnbOXgOdhjpCi/2B94CdgkhxNJ0zA1X35icgOXeJyAeh0P3hVsugdKS5PZP5iXv9buyQ/eD049NDhv58z/gpP+XXL/zUXDxaXD3Q7B5f3j2jhZtNUDPPeDM8TDx7Db/1iRJkiRJ6mxy0nScfODVrAguAK78U/LWODdfDGcfD399NDnOqdnwbyTv+/u722HW3P+sLyyAGybAHjvCAXvAb89Nrr/+Ahg/Bn4wGl58A5a26FjyxEtQUwfHHNI+35skSZIkSZ1MusKL14HV9MXJgG23goduSoYNl54B++0Kz//7P9tvuwyGDYafXwWDD4J+e8GRZ8Gtf4Oa2uQ+A/okZ6QF2H0HGLxFcmhJLJa8N3CzKU/DN4esviuSJEmSJEnaKOkKLy4E9oqiaC23+GgnB+yx4oyx/XsnZ5Nt9o0t4Y374K0pcNX5sNcoeGka/OSS5D1/561mwpbh34DttoYH/5l8HovBw8/Bsfa6kCRJkiSpraRrzotvA68Bt0VR9CNgOlDfyn4hhHBumtpcva5dVnweRZBINFeQnAcjLw9GbJNcmtf/32Nw/C+S9wO+6aLWj/2D0XDVn6GpCZ77NyypdMiIJEmSJEltKF3hxRUtvt7966U1AWj78GJN/v4kjDsbPn4ctm5xb+coSg4LuemvMGve6l//g9Fw8aRkcDHlqeSQki0HtH3dkiRJkiR1UukKL/ZN03Ha3q7bJ+/5+5cH4ZLTV9xWVw+ffg7f23v1rx86CHbYBh54NrlccErb1itJkiRJUieXlvAihPB8Oo7TLjbrB+edBJf9AT6eCwfvBUWFMHN28lao1bVw1nHJfctKk49/fzI5FGXIlsnnPxgNl94ETTE46qBMfBeSJEmSJHUa6ep5AUAURd8AxgJDgS4hhB9EUXQI8EEIYVY629oovz4HthsMf7gHTrk4OZhl834wZh8444fJgAOSPSwO2CM5x0X3rnDej5Lrjz4YfnkNHLgn9O6RoW9CkiRJkqTOIW3hRRRFFwIXAblfrwpfP44HxkZRdG4I4aZ0tbda4b1V1/154qrrjjs0uaxJbi48+cdV1285oPV2JEmSJElS2qXlVqlRFI0BLgXeBo4C/tJi83XATOCGKIoOTkd7kiRJkiSp80hXz4uzgQXAXiGEmiiKvtW8IYTwahRFBwLvfr3fo2lqU1qRvWEkSZnm3yKtC39OspP/L52H/9ebpLT0vAB2Ap4IIdS0tjGE8AXwNLBDmtqTJEmSJEmdRLrCC1h7L44GoDSN7UmSJEmSpE4gXeHF68B3oigqa21jFEUlwF4kh45IkiRJkiSts3SFF78F+gJPRFG0B1AMEEVRWRRFewGPAJuRnLxTkiRJkiRpnaVlws4QwpNRFJ0OXAO82GLTsq8fI+CaEMLd6WhPkiRJkiR1Hum62wghhJuiKHoaOBXYHegB1ADTgTtCCM+nqy1JkiRJktR5pC28AAghzATOSecxJUmSJElS55aWOS+iKPokiqL/t5Z9Loqi6LV0tCdJkiRJkjqPDe55EUXR9i2ebglss9K6lds5CBi+oe1JkiRJkqTOaWOGjbwFhK+/DsCxXy+rEwGvbkR7kiRJkiSpE9qY8OIukqFFBBwPvAf8ezX7JoB5wK0b0Z4kSZIkSeqENji8CCGc2Px1FEXHA0+GEJysU5IkSZIkpVVa7jYSQkjLxJ+SJEmSJEkrS9utUqMoygf2ArYASkkOJ1lFCOH6dLUpSZIkSZI6vrSEF1EUbQs8BmzWvGo1uwbA8EKSJEmSJK2zdPW8uA7YHHgGeAioTNNxJUmSJElSJ5eu8GI34KUQwgFpOp4kSZIkSRIA6ZpoMwHMSNOxJEmSJEmSUtIVXrwI7JimY0mSJEmSJKWkK7z4JfDNKIouTdPxJEmSJEmSgPTNeXEm8CEwIYqik0gOIalvZb8QQjgyTW1KkiRJkqROIF3hxX+1+Hrg10trQprakyRJkiRJnUS6wotBaTqOJEmSJEnSCtISXoQQ5qTjOJIkSZIkSStL14SdkiRJkiRJbWKDel5EURTfwPZCCCFdQ1UkSZIkSVInsKFBQtTOr5MkSZIkSZ3UBoUXIQSHm0iSJEmSpHbhEA5JkiRJm4wQEsQaXiTW+C/isXmEUEMUFRLlVJCbN5i8wj3Iy98202VKSjPDC0mSJEmbhERiKbVLf0Y8NpMopze5eYPIye0JQEjU0FT/JA01d5JXsBslFZcRRUUZrlhSuhheSJIkSdok1FddRwgNdOlxJ7l5W7W6T6zpXWqXTaC+6nqKy89v5woltRXDC0mSlBWa6p9fr/3zi/Zuo0okZatYw78oKjt7tcEFQF7+MIpKT6a++hbDC6kDMbyQJElZoa7qakJiaYs1YQ17R3QteqGtS5KUdSIgvg67FRCItXk1ktqP4YUkScoKZT3vp7H2Huqrb6Kw5IcUlIzNdEmSskxe4a401NxBbt5gcvOHtLpPPPYJDTV3kF+wcztXJ6ktGV5IkqSsEEURBSVH01B7D1FOGTm5fTNdkqQsU1R2FrXLfk71kh+Rk7s5uXlbEeWUAxBCNfHYpyRis8nJ25qi8nMyXK2kdDK8kCRJWSOKIvKLvkOU2yfTpUjKQjk5FXTpfgtNDS8Ra/gX8dgsQuwTIEYUlZGbN4TC0uPJL9ybKPJSR+pIPKMlSVJWKS47I9MlSMpy+YV7kl+4Z6bLkNSODC8kSZIkbTJCopbGugeJNb5GPDYPQg1EhUQ5XcnNG0x+4R7kFe5DFOVkulRJaWR4IUmSJGmTEI99Ts3SMwiJZeTmb0d+4a5EOWUAhEQN8fgcaiuvICfvL5R2u5qcnG4ZrlhSuhheSJIkSdok1FddS05uH0p6/JmcryfqXFki/gU1S39G/fJrKam4tJ0rlNRWDC8kSVJWaKi5Zz32jigs/UGb1SIpO8Wa3qak/BerDS4AcnL7Ulh6HHVV17RjZZLamuGFJEnKCk31zxCPfQBEQFjL3oYXUmcURYUkEpVr3zE0EJHb9gVJajeGF5IkKSt06XEbTfXPUlt5MUVdTqWw9IeZLklSlskv3JuG6j+Sk9ODvMI9iaJolX2aGqZSX3M7+UV7Z6BCSW3F8EKSJGWN/KL9iKpuzHQZkrJUUdnphEQltZUXQFRCbu7mRF8PIQmhhnhsNoRa8gp2o8jbLksdiuGFJEnKKoUlR5KTNyjTZUjKQlFUSEnFZcRjnxBreJV47CNCohqIkZPTm7ySnckr3J3cvK0JiaVEucWZLllSmhheSJKkrFJYemymS5CUxRpq/o+G2smExDKICikoHkNRl58QRYWpfZoa/kXtsvPo2ueFDFYqKZ0MLyRJkiRtEuqr/0xDzZ/IL/ouufnbEW/6gMbav5OIfU5pt99mujxJbcjwQpIkSdImobHuEQpKjqS47KzUuob8bamvupqG2vspLBmbweoktSXDC0mSlBXqll+7XvsXl/9PG1UiKVuFxFfk5Y9cYV1hyeHEGqbSUH0L+UX7kJNTkaHqJLUlwwtJkpQVQmIxTQ2vAE1EUSlEXVa/cwTFGF5InU2U05N47CPy+fYK64vLz6Vq8XHULf8dpRUTM1SdpLZkeCFJkrJCScXlxBqnU7P0dApLx1NY+sNMlyQpyxQUH0RDzd1AE3kFo8jN25Yop4Sc3D4Ul51L3fIrqFk2gbyCUZkuVVKaGV5IkqSskVcwgpzcAZkuQ1KWKiw9kRBqaai9j4aayZR2u4a8gp0AKCg+kBCqqa+6iVjD80CU2WIlpVWHDy9qKyfSVP8ohaU/pqjLCZkuR5IkrUVh6Unk5PZLPa9cuCcAXfu8lKmSJGWJKMqluOwMirqcQiL2GTm5fVLbmn9XlPd6jKbG1wjxhZkqU1Ib6NDhRQgNNDU8D+TRVP+04YUkSZuAguIDM12CpCwXRYXk5m/d+racMgqK9m/niiS1tZxMF9CWmhpeglBLYemJJOKfEm+alemSJEmSJEnSeurY4UXdE+Tm70BhyZFAPk31T6e2NdY9SuXCPUkklqXWJRLLqFy4J411j2agWkmSJEmS1JoOG14kEsuINb5GQfGBRDll5BWMorFFeCFJkiRJkjYNHTa8aKp/Bsghv3AfAPKL9iMkFhBrnJHRuiRJkiRJ0vrpuOFF3eNf3985EBJV5BXsAOSuMHREkiRJkiRlvw55t5F4bB7x2PsALF80eoVtTQ3/pCicsZpXhjauTJIkSZIkra8OGV401T8JUTGlFb8BotT6eNMH1FffRLzxzVZfFxJV7VShJEmSJElaVx02vMgv2IO8gp1WWJ+bvx311bfTWP80+YW7AhASSyGnAoB409vtXqskSZIkSVqzDjfnRazxHRLxz8kv2neVbVFURF7hzjQ1PEdu/rZALg01/0si/gWxxmk01Pyl/QuWJEmSJElr1OHCi6b6JyAqJq9wt1a35xfuBaGaeNNHFJf/kljjW1R9dSz1VTdSXP5zWg4zkSRJkiRJmdfhho0Ul/+M4vKfrXZ7QfHBFBQf3OL5QSts79rnxTarTZIkSZIkrb8OF15IkqSOpWuflzJdgqRNgL8rpI6tww0bkSRJkiRJHYvhhSRJkiRJymqGF5IkSZIkKasZXkiSJEmSpKxmeCFJkiRJkrKa4YUkSZIkScpqhheSJEmSJCmrGV5IkiRJkqSsZnghSZIkSZKymuGFJEmSJEnKaoYXkiRJkiQpqxleSJIkSZKkrGZ4IUmSJEmSsprhhSRJkiRJymqGF5IkSZIkKasZXkiSJEmSpKxmeCFJkiRJkrKa4YUkSZIkScpqhheSJEmSJCmrGV5IkiRJkqSsZnghSZIkSZKymuGFJEmSJEnKaoYXkiRJkiQpqxleSJIkSZKkrGZ4IUmSJEmSsprhhSRJkiRJymqGF5IkSZIkKasZXkiSJEmSpKxmeCFJkiRJkrKa4YUkSZIkScpqhheSJEmSJCmrGV5IkiRJkqSslpfpAiRJkiRJm47nGhvWa/99CgrbqBJ1JoYXkiRJkqR1dlVdNUtCIvU8rGHfCHi5oFeb16SOz/BCkiRJkrTOHizvzl8b6phUX8P4wmIOLyzOdEnqBAwvJEmSJEnrLIoijiks5n8b6iiPcuiXk5vpktQJOGGnJEmSJGm9RFHEAQWF9MnxklLtw54XkiRJkqT1dlZxl0yXoE7EmEySJEmSJGU1wwtJkiRJkpTVDC8kSZIkSVJWc84LSZIkSdI6+2t97Xrtf0xRSRtVos7E8EKSJEmStM6ebmrg/XiMCAhr2TfC8ELpYXghSZIkSVpnt5d145nGBi6sXc5pRaWMN5xQO3DOC0mSJEnSetm/oJA+kZeTaj/+tEmSJEmS1tuRhcVsnZub6TLUSThsRJIkSZK03hwuovZkzwtJkiRJkpTVDC8kSZIkSVJWc9iIJEmSJGmdXV1bvc77RsDZJV3arhh1GoYXkiRJkqR1tjgkeLmpgSagNIroEkWr3TcCzsbwQhvP8EKSJEmStM5+VVrOW7FGTquu5PjCEifuVLvokHNenFa1jN2XLeLxxvpVti2Ix9l92SKebWzIQGWSJEmStOnbIa+AgTkr3iZ192WL2H3ZogxVpI6uQ4YXzSbV1VATEpkuQ5IkSZI6nJOLShiel5/pMtRJdNjwYkBODstCgj/W12a6FEmSJEnqcA4qKGKE4YXaSYed82KLnDz2zM/l3oY6xhQUsVVu69/q7HiMG+pqeDPWSEEUsV9+IacWlVKe02FzHUmSJEmSNikd+gr9x0UldIty+P1qbuXzRSLOT6qXURsCPy8p49SiUl5pauR/aiqJh9DO1UqSJEmSpNZ06PCiNMrhzOJS3ow38WQrk3feXl9LWRRxfZeuHFhQxNjCYn5VWs778RivxBozULEkSZIkSVpZhw4vAA4oKGLnvHxuaGXyzn81NbJLXgFNQG0I1IbAoNw8ukURM2JNmSlYkiRJkiStoMPOedHSz4q7ML5qKX+qr+X7BcWp9UtCgn801vOPVnplVDpsRJIkSZKkrNApwovNc/M4trCEyQ21jGoxG25pFPHt/ALGtAg0mnWPovYsUZIkSZIkrUaHHzbS7MSiEnrl5HBtXU1q3Q65+SxMJBiRl59a+uXkcGNdNbMT8QxWK0mSJEmSmnWa8KIoiji7uAtzW4QSJxeV8HasiUtrlvNMYwP3N9RxZnUllSGwU15BBquVJEmSJEnNOk14AfDt/EL2bBFKDM3L54YuFcxPxLmsdjm31tcwNDePG7p0pcRhI5IkSZIkZYUOOefFTWUVq912ZZeuKzzfPi+fW8q6tXVJkiRJkiRpA3XI8EKSJEmS1L6mVvTKdAnqwDrVsBFJkiRJkrTpMbyQJEmSJElZzfBCkiRJkiRlNcMLSZIkSZKU1QwvJEmSJElSVjO8kCRJkiRJWc3wQpIkSZIkZTXDC0mSJEmSlNUMLyRJkiRJUlYzvJAkSZIkSVnN8EKSJEmSJGU1wwtJkiRJkpTVDC8kSZIkSVJWM7yQJEmSJElZzfBCkiRJkiRlNcMLSZIkSZKU1QwvJEmSJElSVjO8kCRJkiRJWc3wQpIkSZIkZTXDC0mSJEmSlNUMLyRJkiRJUlYzvJAkSZIkSVnN8EKSJEmSJGU1wwtJkiRJkpTVDC8kSZIkSVJWM7yQ/n979x0nVX3ucfzz7OzO7rIsiKJojApiQTRGIYqKYjc27Bo1iTGWxBKNooklBktujLFG1KuxRLH35Bp7jCg2bKBXgxVBL8Yaadvbc//4ncFh2F2WdWfPmZ3v+/Wa12F+5zfnPGd2DnPOM78iIiIiIiIiiabkhYiIiIiIiIgkmpIXIiIiIiIiIpJoSl6IiIiIiIiISKKVxh2AiIiIiMjyavM2nm5+lmnNL/NR21xqvZZyyhlYMpD1UsPZumxLRpaOiDvMgqL3VHqLPmvSHUpeSMGq9Tr+1vhg1n96dVSQZmDJQNaN/tPboWwcJaYGRiIiIn3JvLb5/LLmNN5pfY8hJauwdslQBqdWAqDGa3m06Qn+0nArW5WN4fyqiVRYRcwRJ5/eU+ktxfJZU4Km5yl5IQVpbuvHHLtoAvN9PiNLR7BV2eZUWzUAtV7LnNaPOKf2fG5K3cak/heyYsmgmCMWERFJjilNU5er/vbpcXmKpHsuqbuCRm/k9gE3MDw1rN06b7bM5PSas7ms7irOqDqllyMsPHpPpbcUw2etWBI0vU3JCylIl9RdwZCSlbm1/3UMLBnQbp1P2z7jl4tO45K6K/h9/4m9HKGIiMg3l68kw0V1k/jK5y1+7niHdQ1jWvqfyxVHvk1reZlT+53Y4Y0PwEalIzmq8nD+u/46zqDwbn56m97T3lfoScTuKobPWjEkaOKg5IUUpNda3uSsql91mLgAWLVkCIdX/JCL6yf1YmQiIiI9J19JhocG3sPtjfcwqf4aDqs4hP3S479xrL3LaPXWZdYqJ00LLb0QT1+g97S3FXoSsfv6/metGBI0cVDyQgpSuaWZ7wuWWa+RRko0qY6IiBSofCUZzIxDyw/k1oa7qLYfopHEAAAgAElEQVT+rJZatUe221u2LNuM6xtuZt3UcNYrXafdOrNaZ3N9w2TGlH6vl6MrTHpPe1/hJxG7pzg+a30/QRMHJS+kIO2QHsef6//CYFuRcWVjMbOl6jzXPI0/19/IDmV9o4mdiIgUn3wmGcyMXdI7sGrJkB7bZm85pfIEJtScyWGLfs5aJWswPDWMARZaY9Z4DR+0zWF26xzWSQ3nV/1+GXO0hUHvae8r9CRidxXDZ604EjS9z9w7bp6UBGb26qhRo0a9+uqrcYciCdLgjZxXewH/bH6afvRjaGqNrP/0apndNoc6r2ersjH8vuq3VFplzBGLiIh032V1V7Fh6Qbskt4h7lAS5Zmm53mh5SXea/2AhW0LaaGVAdaftVJrMrZsC7YvG0eppeIOs6A80/Q8z7e8yPuts/We9pJiPb/78vk7v20BE2rOZGbr28tM0Fze/48FP7nA6NGjmT59+nR3H53P/Sh5IQVtVutsnmuexqysL9hq68/Q6D+9DUs3iDtEEREREREpQsWSDOyt5IW6jUhBG54a1ulAOCIiIn1Jm7dRTwPllPeJC95votbr+Fvjg0xrfpmP2uZS63VUkGZgyUDWTQ1n67It2aFsHCWmsa+6akrTM9zScAezWz9klZKV2a98PAeV77dE99wXml/i5JozmDaorwweKZI/26S3Ypv0VnGH0WcoeSEiIiKSYJ+2fcatDXcxrfkVPm779+IZCfpZ5eKb9H3Lx9PfqmKOtPfMbf2YYxdNYL7PZ2TpCLYq25xqqwag1muZ0/oR59Sez02p25jU/8KCb5LdG/7a+HcuqLuMTUs3Zt/y8bzV+g6X1f83s1pnc2bVqXGHJ1JwlAzseUpeiIiIiCTUzJZ3OH7RKfSzSjYrG8Veqd0YEN2k10Q36bc13M1dDffz39WXsmbq213a7m0Nd3c5BsM4tOLAbsWfL5fUXcGQkpW5tf91HU6b/mnbZ/xy0WlcUncFv+8/sZcjLDy3N9zDrumdOLfqzMVlV9ffwOSG29mybHO2T2sAdOkZU5qmLlf9QvzsKRmYH0peSEEq9IsuERGRrphUfzWjyr7LH6vOpdTav2yr9TpOXPRrLq27kj9VX9Cl7T7RNIWZre9g2OKWHB1J4vfoay1vclbVrzpMXACsWjKEwyt+yMX1k3oxssL1SdunHFd29BJlx1QcwavNM7i47gq2KNtMA6D3sGK9nr2obhJf+bzFzzv7P8gwpqULr1WCkoH5oeSFFKRCv+gSERHpirda3uHcqt90mLgAqLJ+HFpxIP9Ve2GXt3vjgKt5oukpflN7HsdXHs1hFYf0RLi9ptzSzPcFy6zXSCMlaMyLrhhoA/mk7dMlysyMM6pO4bCFP+dPdVdzRtWEmKLrm4r1evahgfdwe+M9TKq/hsMqDmG/9Pi4Q+pxSgbmh5IXUpAK/aJLRESkK6qtmrltHy+z3udtXyz3hfBO6e2YVH9Nd0OL1Q7pcfy5/i8MthUZVzZ2iT7kGc81T+PP9TeyQ5l+4eyK7dPbcF395NBFqXQUq5YMIWUphqeGcUzlEVxZfy39rJKNSkfGHWqfUazXs2bGoeUHcmvDXVRbf1ZLrRp3SD1OycD8UPJCClYhX3SJiIh0xZ7lu3Jd/U2UkuL76Z0YVLLCEuvnty3giaYpXFt/IwdU7LPc2z+wfB/WTg3toWh7z4mVxzK/bQG/rp1IP/oxNLUGAyx0IanxWma3zaHO69mqbAwn9Tsu5mgLwy8qf8bnbV/yh7pLMYwr+l/EZmWjAPhxxcF81TaPOxrvxRpjDrSPKdbrWTNjl/QOrFoyJO5Q8kLJwPww986bKMXNzF4dNWrUqFdffTXuUCSBbmm4k+GpYWxVNibuUERERHqcu3Nl/bXc3Xg/zbSwgg1cYsDOr3wehrFf+V5MqDyeVDemT23zNj5r+5xa6iinnBVsINUl/Xv6UPJiVutsnm9+kXdb36emrYYWWqm2/gxNrcnYsi1YJzWceT6vz94g5cOnbZ/xXsssBpWsQIVVLPGZmN36Ic80P89nbZ/zq36/jDvUPqOYr2cXtC3scOyaJm/iqwI9fxu8gYm15/N087NLJQMBLq+7OiQDAYeCn21k9OjRTJ8+fbq7j87nfpS8EBEREUm4+W0LeLllOrNaZ7PQF9LiLVRbNUNTa7JF2WasXDJ4ubc5s+Vtbmi4hZebp9NE0xLrVilZma3LtuBH5QfzrYQ26b694R5ubriD+b6ActLsXb4nx1UeRYWVL66jaQiXT6F/JqRw5J6/+5TvybF98PzNJAM3LN1gqSmb+1IysLeSF+o2IiIiIpJwK5QMZOf09uzM9j2yvWnNL3NyzRmsl1qHH1UcxLDU0KWmYP1n81M80vgPrqq+lJGl6/fIfnvKDfW3cF3DTeya3omNUhsws/Ud7mm8n4/b/s0l/X8fd3gFqdA/E1I42jt/7268n7l98PxdtWQIq6bbbzkyLLUWw1Jr9XJEhU3JCxEREZEic3X9Deye3pnfVp3WYZ3DKw7l1NqzuKz+Kq6rTtZ0ow80PcxB5fsyod8vFpeNLB3BRXWXc1/jA+xfvleM0RWmQv9MSOHQ+SvdpeSFFKSL67r+hWkYp/Q7IY/RiIiI5Ee+vu9mt37IkRU/7rROylLsld6dc2rP73IMveXLtv8wunSTJcoOKN+b55tf5Or669mxbFtWKBkYU3SFqdA/E4WoWK9ni+H8Lda/bb4peSEF6T9tX/Fs8zSaaaa/VVFlVR3WNYxT0H8IIiJSePL1fTe4ZEVmtr7DOMZ2Wm9W6weJvIkYXLIS77bOYlu2XqL8tH4ncfCCn3J+3SVc2P+8mKIrTIX+mShExXo9Wwznb7H+bfNNyQspSH/ofw4zmv+XY2pO4rCKQ4pmXmwRESku+fq++0H5/vyp/irqvJ5d0zuydmrY4oHymr2ZWa2zebzpSe5svI/jK4/ukX32pD3SuzC54TaaaWaz0lFsWLoB/aySISWr8Ot+J3FO3R84veacJUb3l84V+meiEBXr9WwxnL/F+rfNtz6XvNh83vacWHkMP6r4Qaf1WryV+xr/h4eaHuOj1v+jlTbWSK3OHunvc3D5/ounGvt366c82PQo+5bv2a2RvCV/Ni3bmG+XrL5E2ebzwkBmLw2aEkdIIiIiPS4f33c/qNiPlKW4of5m7m68H4Cy6LKwMZplYoBVc3zl0fyw4qDuhp43R1YcRq3XcXfD/dzMHUtMQ3h2XejS8FzzNKY0T8WwOEMtGIX+mShUxXg9WyznbzH+bfOtzyUvuqLJmzil5je80jKd3dO78OOKg3Gc11r+l6vqr2N6y+tcVPU7SqyET9o+5fqGyWxdtqWSFwl0VMVhmq5LRET6vHx83x1Qvjf7pPfk3db3eK91Fgt9ES3ewtUNNwDw8MB7SVu6R/fZU1KW4uR+x3Ns5VHMbfuYVUtWWarOwwPvZVrLy3zW9nkMERamQv5MFLJiu54tpvO32P62+VaUyYvrGybzYssrnF91Njult1tcvkt6BzZObcjEuvN5sOlR9irfPb4gpUt2K9857hBERETyLl/fd6WWYmTpCEaWjlhclrlRLYSb1AorZ53U2u2uqy7pz87pnplatpgU+meiEBXr9WwxnL/F+rfNl5K4A8iHRm/i/NqL2XH+eLaftwcTa39PvdcD0OCN3NPwN8aWjlkicZGxa/nO7JreiXk+nwcbH+XYmpMBOHzRMVxbf1MvHoWIiIiIiIiIQB9NXtzacBdf+H84vd/JHFJxAI83PcnkhjsAmNnyNrXUMTa9ZYevP6/qN/yk4lA2LxvNLyp/BsAplSewW1qZMxEREREREZHe1ie7jQxLrcmlVedjFgZ4+d+WfzG95XUAvvAvAfhWybL7Hq1SsjIbpjYA4DulG7JGavVlvEJEREREREREelqfbHmxedn3FicuIMwlXOM1AJREh9xGWyyxiYiIiIiIiMjyKYTkxYi33npruV7Q36qWeG4YbR6SFZkZQz5p/bTD1z/R9BSPNj2xnGGKxGP06NGMHj067jBEEkvniEjndI6IdE7niEjnovv1Ecuq900VQvKiR41MrU855TzT/EK76xu9iQvqLuX1ljd6OTIRERERERERaU/RJS/Slmbf8j2Z1vIyLza/stT6mxvuoNZrGZ/WNKkiIiIiIiIiSdAnB+xclmMrj+SNln9xSs2Z7FO+J6NKv0srbUxtfo7Hmv7JsRVHMrJ0fQD6WSUAU5qn0t+qWDP17ThDFxERERERESk6RZm8qLRKrqm+nFsb7uTxpif5a+ODpEkzonQ9Lq76L8alxy6uu15qHcaUfo/bGu5mgFXz49TBMUYuIiIiIiIiUnz6XPLipUFTlio7u+r0pcrKLc2RlYdxZOVhnW4vZSmuqL6ox+ITERERERERkeVj7h53DJ0ysxYzS2266aZxhyIF4O3WdwEYkVov5kh6T2Y2ng022CDmSESSSeeI9EU9+X2Xe44U+ndpocefRMX+nvb290gxv999/dj76vHNmDEDd29197w2jiiE5MVsYAAwJ+ZQRERERERERGRJQ4GF7j4snztJfPJCRERERERERIpb0U2VKiIiIiIiIiKFRckLEREREREREUk0JS9EREREREREJNGUvBARERERERGRRFPyQkREREREREQSLfHJCzMbb2bPmdkCM1toZk+b2Y5xxyUiIslmZquZ2fVm9m8zazKz/zOzK81sUNyxiSSBma1tZreZ2WdmVm9mb5vZRDOriDs2kTiZ2XFm5ma2QjvrSs1sgpnNNLM6M5tjZpeZWXUcsYrEobNzJKfe7lG9TXpiv4lOXpjZMcADwNrAPcDTwJbAI2Y2Os7YROJiZttF/wks63FO3LGKxMXMVgJeAI4E/gVMBr4EjgeeMbP+MYYnEjszWxuYBhxKOEduA5qBc4EHzSwVY3gisYk++0d2UuUa4BLAgFuAWcBJwFQl/qQYdOEcyfazntx3aU9urCeZ2RrAJGAGsIO7z4/KdwMeBs4BxscWoEh85gKXd7J+d2Bd4M3eCUckkU4H1gJOdfdLAMzMgBuAnwK/AC6ILzyR2F0GrAwc4e43AphZCXA94Rw5Erg2vvBEek/0/bBp9DgcGNVBve0I58aTwG7u3hSVnwtMBH4NnJf/iEV6V1fPkajuRsB3gUOAPXo0Dnfvye31GDO7EPgVsIW7v5iz7mlgTXcfFktwIgllZlsAU4Fr3P3EuOMRiYuZvQZ8B6hy94as8nWBd4FH3H33uOITiVPUdepL4HV3H5WzbjDwBTDN3beMIz6R3ha1xlvUzqpBmR9Qo3r3AAcAm7v7yzmv/wr41N3XzHe8Ir2tq+dIVPdLYKWcepu6+2vfNI7EtrwAdgHm5CYuANx92xjiEUm0qK/lnYQbs1/HHI5I3AxoLztfFi1rezEWkaRZn9B1eEbuCnf/Mrrw3MzMqt29vYtVkb6mHjgw6/m5wMh26o0DvshOXAC4e42ZTQfGmNkwd5+dv1BFYtHVcwRC673y6N/HA9v1VBCJTF6YWRXhF7MHoiaMewCbR6ufAx7zpDYZEYnPecCawDbZvzSLFKmngY2BE4ELYXGT+NOj9U/GFJdIErRGy3QH60uBFLAa7f/SJtKnuHsrcG/muZn9IreOma0OrEL4fmnPW8AYQtddJS+kT+nKOZJV9+9Z9fbsyTgSmbwgfFmWAA3AU8A2OeufM7N93P3L3g5MJInMbGPgBOA2d38u7nhEEuAcwgDPfzSz8YSLys2ATYBHCGNfiBSrtwiDc25jZmXu3pxZYWabAZnR43Ob/YoUs8z58FkH6+dFyxV7IRaRopTU2UYy09j9ABhC6ELSnzD42mRgLHBTLJGJJNPvo6UGiRIJmoDp0b+3Bo4mJC4g/CJmcQQlkgTuXkO4jloLmGxm65hZlZntQZjdLdO6tTGmEEWSaEC07Oi8yHRHTOqPwyIFL6nJi0wzxjZgX3f/h7vXuvtHhAvQucAeZvbt2CIUSQgz+x6wJ3Cvu78XdzwiCXEvYXqu2wj9+6sILS+eBI4DLoovNJFEmEA4Hw4B3gNqgAcJgw4+HtVRC1eRr2VaKFV2sD5z/1LXC7GIFKWkJi9qouUsd5+ZvSJq2vhQ9HSDXo1KJJlOipZXxRqFSEKY2SbA94FXgcPc/V13r3P3V4C9gU+AY82svLPtiPRlUeuLnYBdgd8BfyC0eN0CWJXQeqmj5vEixejzaLlCB+sz3Ur+3QuxiBSlpDZrmhMtazpYn2mWpWa/UtTMbEXClF3vufszcccjkhDrR8un3b0te0U0IvyLwD6EJvPv9nZwIklgZqWAu/tjwGNZ5dXARsDz7q5uIyJf+4jQquI7Haxfh9BqfGYH60XkG0pkywt3X0A48UeY2YB2qnwvWr7Re1GJJNK+hKmI7l1WRZEikpkdYbUO1mfGVZrXwXqRPs3M0oSWFS+3s/pAwkwjj/RqUCIJF8228DQwxMyWSGCY2QqEmRFfdPeFccQnUgwSmbyIXAf0Ay41s1Sm0Mz2Jcyx/Hd3/ySu4EQSYny0fDTWKESS5VlCAuMAM9sqe4WZ7UwYwPMZd/8ijuBE4ubuTYRuVRub2aaZcjMbSuhCsgC4JpbgRJItc15cEE2/jZkZ8EfCWBhXxhWYSDFIarcRgCsI/TCPBLYys2nAt4CdCf2VT4gxNpHYRV+W2xIGkHop5nBEEsPdF5rZMcDNwFQzewL4EBhG6OO/gDBop0gxO5OQ+H7GzP5GaO6+N2F2t0PcXS2TRHK4+wNmdjdwEPCamT0PjCa0Cv+7u98ea4AifVxiW15ETbP2As4gJFl+BHyXMFXqGHf/MMbwRJJgHcKgUW+4e0PcwYgkSXQBuQXwV2AUcAShn/JtwGbu/maM4YnEzt3/QZiKPjOQ7d7ADGAXd787zthEEu6HwFmEFuKHAysCZxPGIBORPDJ3X3YtEREREREREZGYJLblhYiIiIiIiIgIKHkhIiIiIiIiIgmn5IWIiIiIiIiIJJqSFyIiIiIiIiKSaEpeiIiIiIiIiEiiKXkhIiIiIiIiIomm5IWIiIiIiIiIJJqSFyIiIiIiIiKSaEpeiIiIiIiIiEiiKXkhIiIiIiIiIomm5IWIiIiIiIiIJJqSFyIiUvTM7CYz864+Yo51u+WJ1cwON7Oh0b//Fmfs3WHBs2Z2ThfqnhMd53b5jyyZzOx0M3vGzCzuWERERHpSadwBiIiIJMDjwPycsgOA1YH7gLm9HlHH5gKX55SNBHYG3iIcS7aZ+QzGzG4CfgJs6u6v5WEXhwEbA3vmYdt90RXAqYT3bXLMsYiIiPQYJS9ERKToufvtwO3ZZWa2CSF5caW7PxVHXO1x9/eBk7LLzOxwQvLiJXc/Kfc1Zja0N2LraWbWDzgf+LO75yaXpB3uXmtmVwB/NLO/uvvCuGMSERHpCeo2IiIiIkl1LLAacFXcgSyLmZWYWTruOCLXACsBE+IOREREpKcoeSEiIrKczOzkaGyFX+WUPxKV/zan/E9R+SZZZRuZ2T1m9oWZNZrZ22b2WzOryHPsm5vZP81skZnNM7P7zOzb7dRbz8xuN7PPzazezF43s5PMrDSrjhO6jADMMLM5WesGRmNQvGVmddF2njazHy9HuMcBz7v7nOxCMys3s/PMbLaZNUTv3c86OebNzOwBM/vKzGrNbJqZ/aSDugeZ2YzomD8ws7PMbKfM+CFZ9eaY2ftmNszMHgZqCd13Mut3id7nhdFjipnt9U3iM7MhZnaVmc2KjvtjM7vBzL6VXc/dPwOmAj8zM13riYhIn6AvNBERkeWXGVdi60xBdJO4ZfR0m5z62wGfAa9HdbcFXiSM4/A0cCNQA5wHTIm6S+TDBsAUYBBwN/AhsB/w9+xKZjYGeCVa9xxh7IQS4DLg4awExuWEcTYgdLv5S/T6EuAJ4OzouG4BngQ2AW42s7OWFaiZjQDWBp5pZ/XtwG+BNuBm4CNCa4MftbOdvaNjGBfFdDuwMnCTmd2YU/cE4C5Cd6E7CX+vM1l6jJGM/oS/31DgVuDLaDvHAY8BGwIPAPcDI4D/MbOzuxOfmQ0gfGZ+BrxB+Ju8BxwBPGtmVTmxTSW0WtkaERGRvsDd9dBDDz300EOPnAfwFODAdh2snwt8kfX8u1H9ecAioDQqHwS0AjdHz9OEm+06YJOcbf4h2sYFyxnr4dHrbupg/dBovQNnZZWXAs9H5Ztmlc2KjmNkVl0Dro3qHp1VflNUtklW2eZR2Y2AZZUPj96LN7twTCdG29g7p3x8VP44kM4q/0HWMW4Xla1IGIj1A2D1rLpp4OGo7s5R2RpAI/A+MDir7qbAwqju4Vnlc6Ky+4GyrPL1gSZComGFrPJqYHp0/CO6Ed9R0fNTc96PU6LyI3LKd4zKJ8Z9Lumhhx566KFHTzzU8kJERKR7/gEMjloIwNetLSYRfpHPdBEZR2i18Fj0fHfCjfJtvvTsHOcSbpSXp2vF8vickCABwN1bgEeip2tnxbc2cIm7z8yq68BZhBvi/Zexn3nAGYQkTPbUsh8Qulf070Ks60XLD3PKj4qWp7h7U1Z8dxH+Jtl+BAwk3MB/nFW3idAqBL4+lkMJSYML3P3LrLozCK06OvJrd2/Oev5zoCyKb/Ego+6+iPDelwD7dCO+QdEyt4vPn4HdCC1Asn0ULdfvJHYREZGCodlGREREuudxQouHscDbhOb5bwP3ABMJyYxXCF1GnK9vrMdEy0fI4e4NZvY6sI2ZDXL3eT0c8xvu3ppTtihaZhIKW0XLLc3sT+1so4Fl3BC7+3vABWZWaWZbE1pcDCO8R9XAV12IdeVomTvLyBhgvru/0c5rXiDMupKROZY9zOx7OXUz10CZYxkVLZ9rZ7vTOoix3sPsL9ky+/yxmR2Qs27FnH0uT3z3EhJCvzSzrQifn6nAc+7+aDuxZd7jIR3ELiIiUlCUvBAREemefxDGXNgauCFaPgT8C/iCkLy4DNgWmOHun0evGxwt/93BduuiZSWhBUNPqulknUXLlaLl7p3Ure5sJ2ZWBlxIGHAzTUh4vE/oirNlx69cQuZGPzfmlaJttae2nboAB3eyn8yxZPb3ZTt1FrVTBqF7SK7MPjscQDRrn12Oz91nm9nGwMmElhsTo/W1ZnYnMMGXnBZ1Qc6+RERECpq6jYiIiHRD1LVgBjDWzIYRBnmcGnWTmApsbWaDCGNhPJb10kxyYkXatzphXISutE7Ih0wCYB93tw4egzvdQhjk8iTgr4RBQvu5+3fc/QSgpYtxZN6nAe3EtzLt+1bO88yxbNLJsWRaPDRGy4HtbHeVLsacvc9BnezzgJy6XYkPd5/r7qe4+3DCOCZHAK8BRxISZdkySYueToCJiIjEQskLERGR7nscWJevxyWYGi2fItxgH82S411AmCkCQouMJZjZGoQZKl5z94Y8xNsVr0fLTXNXRNOf3mFmpy1jG3sSEjBHuPvbmXEvzGwwSycjOvJJtMxN8rwOrGRmG7bzmtxZXjo7luFmdqeZHREVfRAtN25nuzt2Id7cfW6Su8LMtoj2OX554zOzM6OpdQ3A3T909xsJ3ZIWEbovZVshWn6xHLGLiIgklpIXIiIi3ZeZMvVkYI67/1/0/KloOYHQ7eH5rNf8lfCL+8/NbJ1MYXRTOpHQfeO6PMa8LPcTuhwcZ2bDM4VmlgauJHRx+DSrflu0zO6K2gSkCK1IMq+vAq5ejjgyN/Zr5ZRPjpa/M7NU1vYP4etxKzJuISRRTjOzVbLqDiAMwvkDvk5aPBQtzzCz6qy6Y2lnCtZOZKY3PTd7+lIzW5UwuOa+hLFRlje+FYADgB/m7G8EYbySj3LK14yW7y5H7CIiIomlMS9ERES67zlCcuJbwM1Z5ZlxL4YAD2TPRuHu/zGz4wk3uTPM7CFC0/4xhF/g/wFc3zvhL83dF0S/9t8FTDezfxJmQNmGMAvJfe4+OeslmYTNFWb2qLufC/yFMBjlC2b2P4TxO74PzAbeBDYws7+4+xF07KloORa4L6v8JsJN/L7AG2Y2FViN0NrjEcLMG5ljed/MTgH+FNWdQkgWbB+95hJ3z+znceBvhPEk3jCzJwljUuwGvEVokZFJ1HTI3Z8ys8sICa2ZUXzlwE6EGUNOjAY0Xd74LgeOBW4xs6OAdwjjp+xK6IpzXk4oW2Qdl4iISMFTywsREZFuipIST0VPp2aVe9bzpW4eo5v/7wMvA3sQZi0pI4wVMb6dGUF6lbvfT5ji9QXCTff+hATGBEJrgGzXAi8SWj3sFb3+BsKN9peEKUhHE27Qtya0LlkIjKcT7v4W4QZ9XE55GyFx8QfC+BQ/IUwfuj+h1Ujudi4nJDbejeLbgzD96k/d/dSseg4cSJgOtpXQ2uK7hOlrL42q5c580lHsE6K4voy2uSNhbIq93P2Kbsb3MaGLyN+BjQjjXGxP+Pxt6+7P5oSxDfAfwow3IiIiBc+WnH5dREREJBnM7CRC4mBdd58VYxznAGcDo9x9RlxxdJWZrQzMBS5299/EHY+IiEhPUMsLERERSaprCTfhv8j3jsxsFzNrMbNJOeVDCLN6fExoPVEIfk6YreWSuAMRERHpKWp5ISIiIollZvsTxrkY6u7/yeN+yoGXCGNbPE+YFWYAYUyJgcBB7n5fx1tIBjOrBOYAF7h77vSpIiIiBUvJCxEREUk0M3sYeN3dz8jzfgYTxh3ZizCORg1hXJIL3X1KPvfdU8zsZOCnhC4uLXHHIyIi0lOUvBARERERERGRRNOYFyIiIiIiIiKSaEpeiIiIiIiIiEiiKXkhIiIiIiIiIomm5IWIiIiIiIiIJJqSFyIiIiIiIiKSaEpeiIiIiIiIiEiiKXkhIiIiIiIiIomm5IWIiIiIiIiIJJqSFyIiIiIiIiKSaEpeiIiIiIiIiEiiKXkhIiIiIiIiIomm5IWIiIiIiIiIJJqSFyIiIiIiIiKSaP8PE2MOqy4AAAADSURBVMwIYOQUytYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 312,
+ "width": 535
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "f, ax = plt.subplots(figsize=(9,5))\n",
+ "fancy.plot_diffpattern(ax, model, xrange=[6, 11])\n",
+ "fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5, \n",
+ " show_index=True, \n",
+ " phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)\n",
+ "pressure = model.get_saved_pressure()\n",
+ "temperature = model.get_saved_temperature()\n",
+ "ax.text(0.01,0.9, \"(a) {0:.0f} GPa, {1: .0f} K\".format(pressure, temperature), \n",
+ " transform = ax.transAxes, fontsize=16)\n",
+ "plt.savefig('test.pdf', bbox_inches='tight')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Get background subtracted pattern for masking."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 6.0005517, 6.0109784, 6.021405 , ..., 20.973258 , 20.983684 ,\n",
+ " 20.994111 ])"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x, y = model.base_ptn.get_bgsub()\n",
+ "x"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Masking for ROI"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy.ma as ma\n",
+ "\n",
+ "x_ma = ma.masked_outside(x, 6., 11.)\n",
+ "x_roi = x_ma.compressed()\n",
+ "y_roi = ma.masked_where(np.ma.getmask(x_ma), y).compressed()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Quick plot to check"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKwAAAF8CAYAAADioSPBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmUZGV9//H30/sy07PADDAMhB1GtpFWMYhkBBElEI0RDSgRFRfcNVHxF35RTEg0/FQSRQhxQRNNFOMSFDGGHVmEGUaBaXYQZobZYJbe1+f3R1VX3Wq6p7unq6tu1bxf58y5VbeeunWLc4bT/Znv9/uEGCOSJEmSJElSWtSU+wYkSZIkSZKkJAMrSZIkSZIkpYqBlSRJkiRJklLFwEqSJEmSJEmpYmAlSZIkSZKkVDGwkiRJkiRJUqoYWEmSJEmSJClVDKwkSZIkSZKUKgZWkiRJkiRJShUDK0mSJEmSJKWKgZUkSZIkSZJSpa7cN5AGIYQngTbgqTLfiiRJkiRJUrU4ANgRYzxwum80sMpoa25uXrhs2bKF5b6Rmero6ABg2bJlZb4TKd38uyJNjX9XpKnx74o0Nf5dkaamWv6udHR00Nvbu0vvNbDKeGrZsmULV65cWe77mLH29nYAquG7SLPJvyvS1Ph3RZoa/65IU+PfFWlqquXvSnt7O6tWrXpqV97rDCtJkiRJkiSlioGVJEmSJEmSUsXASpIkSZIkSaliYCVJkiRJkqRUMbCSJEmSJElSqoQYY7nvoexCCCuPO+644yp9+r4kSZIkSVJaZHcJXBVjbJ/ue62wkiRJkiRJUqoYWEmSJEmSJClVDKwkSZIkSZKUKgZWkiRJkiRJShUDK0mSJEmSJKWKgZUkSdJu4OnnehgcHin3bUiSJE2JgZUkSVKV+/KvHuGkS2/izK/cbmglSZIqgoGVJElSlfvhyrUAPLShk98+s63MdyNJkjQ5AytJkqQqNjQ8woYdfbnnj2zsKuPdSJIkTY2BlSRJUhXbsKOP4ZGYe/7whh1lvBtJkqSpMbCSJEmqYmu39hY8f3hjZ5nuRJIkaeoMrCRJkqrYCwKrDZ3EGCdYLUmSlA4GVpIkSVVs7daegudbewbZ0jVQpruRJEmaGgMrSZKkKja2wgrgEdsCJUlSyhlYSZIkVbF14wRWD28wsJIkSelmYCVJklTF1m7recE5AytJkpR2BlaSJElVamh4hGe39b3gvDsFSpKktDOwkiRJqlIbO/sZGsnsCNhUn/+x79GNnYyMuFOgJElKLwMrSZKkKrX2+Xw74OF7t7GwtQGA7oFh1m174WwrSZKktDCwkiRJqlLJUGq/Bc0cunhO7vkTW7rLcUuSJElTUlfuG5AkSdLsWJvYIXDfBc0kmwC39QyU/oYkSZKmyAorSZKkKrV2a74lcOmCFtqa6nPPd/QNleOWJEmSpsTASpIkqUolK6yWLmimrTlfXL+jd7ActyRJkjQlBlaSJElVKhlY7begeUyFlYGVJElKLwMrSZKkKrWpsy/3eO95zbQ1JwKrXlsCJUlSehlYSZIkVaHB4RH6BkcAqAnQ2lBLW1OiJdAKK0mSlGIGVpIkSVWouz9fQdXaWEcIYUyFlYGVJElKLwMrSZKkKtSVCKzmNmYqq9wlUJIkVQoDK0mSpCrU3T+ce9yaDazmJXYJ7LTCSpIkpZiBlSRJUhXq6s8HUq3jVlgZWEmSpPQysJIkSapCXYkKq7nZYetjdwmMMZb8viRJkqbCwEqSJKkKFQxdb8gEVo11NTTUZn78GxgeoX9opCz3JkmSNJm6yZdMLoSwB/BZ4AxgCdAJ3A5cHGO8L7HufOCoCS7z6xjjNWOuex7wEeAwYBtwPXBRjPHZce7hDOD/AEcDvcBNwN/EGB+eyXeTJEmqRF1jdgkEsjsF1rGlawDI7BTYVF9blvuTJEnamRkHViGEBcA9wIHAncD/AIcDrwdODSGcFGNcmV1+AXDcBJdqAnKBVQjhIuBvgWeA7wL7AG/PXrM9xrg5sfZc4DvAc9lrzM1+/mkhhOMNrSRJ0u6mK7EL4GhLIGTmWOUCq75BFrc1lfzeJEmSJlOMlsALyYRVl8QYT4gxvjfGuAL4GNACXJ5YexDwtRhjGOfP+0YXhRAOJlOx9SBwVIzxPTHGM4F3A/sBX0isnQd8BdgIHBNjfGeM8SzgdcA84IoifEdJkqSKUtAS2JivopqbmGO1vXcISZKkNCpGYPVGMi14l4w5/0/ABuD4EML+IYSFwHzg8Slc831ALZmWwh2J81cD64FzQggt2XNvIxNMfTHGuH50YYzxJuAu4FXZAEySJGm30TXwwpZAgLZEtZU7BUqSpLSaUWAVQgjAAcBDMcbe5Gsxs+3M2uzTpcBoaDSVwGoFMEJmZtXYa94GNALHJ9YCXDfOdW7JHk+awmdKkiRVjWRL4JxkYFWwU6CBlSRJSqeZzrCqAc4Ctox9IYTQBhyRfboReEn28aYQwjvIzLnqBm6KMd4+5u3HAs/EGDvH+cyO7PFQMoPVlwPDwHhzqpJrJUmSdhvJlsCCwKopEVj12RIoSZLSaUaBVYxxGPjJ2PMhhFrgSmAOcH+M8fEQwluyL18L7DFm/bXAOTHGrmzQVU8m5BrP1uxxYfa4B/BcjHG8n7jGrp1QR0cH7e3t4762cuXKcc9LkiSlVVf/cO5xQUtgc6Il0AorSZJUBBPlKR0dHeOen4pizLAqkJ0XdTNwNtAHvDf70kHZ4y/IVFe1AC8Hfg2cCXwz+3pb9tg/wUd0Z4+jP221TWOtJEnSbqGrPx9GTVxhZWAlSZLSqWhBTgihHvgr4P8CzcDTwJ/HGO/MLvlX4EcxxuSsqbtDCKcDa4CzQgiHAduzrzVP8FEN2WNP9jg4jbUTWrZsmZVUkiSpanQnKqwmnmFlS6AkSZq5ifKU9vZ2Vq1atUvXLEqFVQjhADI78v09mZDoq8BRibCKGOPdY8Kq0fM7yA9XXw48T2Ym1fwJPm60nXB0R8BNwLzsAPjJ1kqSJO0WkjOs3CVQkiRVmhkHViGEJcDtwHHAauAlMcYPTTAwfSKja4dijINkdhI8MITQOs7aQ7LHB7LHh8jMvDp8CmslSZJ2C50TDV13l0BJklQBilFh9UVgX+A64OUxxtVjF4QQjgghxBDCzye4xiuyx99mjzcAtcDJY65TC5xCpmLqwcRagFPHue5pZOZb3Tq1ryJJklQdCnYJbHKXQEmSVFlmFFiFEFqANwCbycyrmmj4+cPAU8BpIYRXjrnGXwAvBW6OMT6ePX0VEIGLQwjJ+VQXAkuBy2OMMXvu20Av8IkQwqLEdd9KZqj7d7Jth5IkSbuF4ZFIz0B+hlVLfW3u8bzELoGdVlhJkqSUmunQ9XagCfg98Lfjj5EC4HPA+4GfAjeGEK4nM5T9cDIVU88BF4wujjGuDiFcCnwSeCCEcANwKLACuBf4UmLtxhDCXwJfA+4PIfwM2Bs4HXgC+OsZfkdJkqSK0j2QmF/VUEtNTf5nNHcJlCRJlWCmgdXe2ePhjD9DatRlMcZfhBCWk9lF8ETgNcBG4BvAJTHGJ5NviDF+KoTwFPBB4FwyVVyXAZ+JMfaNWXtFCGEL8CngHDI7DX4LuCjGuHlmX1GSJKmyTNQOCC/cJTDGyE7+0VGSJKksZhRYxRivAab8E06McQ1w9jTWXwFcMY17uWaq15YkSapWE+0QCNBYV0NDbQ0DwyMMDI/QPzRCU6JlUJIkKQ2KMXRdkiRJKdLZN/4OgQAhBNoSc6zcKVCSJKWRgZUkSVKV6e7PD1wfG1iBc6wkSVL6GVhJkiRVma6dtAQCzE3MsdreO/SC1yVJksrNwEqSJKnKJAOr8SusEi2BVlhJkqQUMrCSJEmqMoVD1184UL1wp0ADK0mSlD4GVpIkSVWmsMKq/gWvF1ZY2RIoSZLSx8BKkiSpyhQGVi+ssGppyAdWvQMGVpIkKX0MrCRJkqpM9yRD11sb8iFWz8DwC16XJEkqNwMrSZKkKjPZ0PXmRIWVgZUkSUojAytJkqQq09W388AqOYi9x5ZASZKUQgZWkiRJVaZ7YOctgc31icCq3worSZKUPgZWkiRJVaYrEULNaRqvwsqWQEmSlG4GVpIkSVWme9IZVokKq0EDK0mSlD4GVpIkSVUmOcNq/F0CExVW/c6wkiRJ6WNgJUmSVGUmq7BqSVZY2RIoSZJSyMBKkiSpisQY6UoOXU+EU6MKAysrrCRJUvoYWEmSJFWRnoFhYsw8bqqvoa72hT/utTQ4dF2SJKWbgZUkSVIVSQZQyVlVSc22BEqSpJQzsJIkSaoivYkAqnmcdkB4YUtgHC3JkiRJSgkDK0mSpCrSM5ifSdUyQWBVX1tDQ7ZVcCRC/9BISe5NkiRpqgysJEmSqkhBhVX9+IEVQEujbYGSJCm9DKwkSZKqyFRaAgFaEmFWd787BUqSpHQxsJIkSaoivYNTrbDKD2RPvkeSJCkNDKwkSZKqSLK9r2WCXQIzr1lhJUmS0svASpIkqYokq6WadlZhlQisep1hJUmSUsbASpIkqYr0FlRY7SywyldfdRtYSZKklDGwkiRJqiIFM6x2Glgldwm0JVCSJKWLgZUkSVIVSc6w2unQdVsCJUlSihlYSZIkVZG+KVdY2RIoSZLSy8BKkiSpiiTb+3Y+wypZYWVLoCRJShcDK0mSpCrSOzCSe7yzXQJbG62wkiRJ6WVgJUmSVEV6B6dWYZWcb+UMK0mSlDYGVpIkSVVkV4aud/fbEihJktLFwEqSJKmKJKuldjp0PdES2DNohZUkSUoXAytJkqQq0js4xQqrxGs9VlhJkqSUMbCSJEmqIskKq5aGugnXtTQmAitnWEmSpJQxsJIkSaoiPQWB1c5mWCVaAg2sJElSyhQlsAoh7BFC+EoI4ckQQn8IYUsI4SchhBePWVcXQvh4CGFNCKEnhPBUCOHLIYS5E1z3vBDCfSGE7hDCuhDCN0II+0yw9owQwh0hhM4QwqYQwvdDCIcX4/tJkiRVir5ES2DTTloCWxuSFVa2BEqSpHSZcWAVQlgA3AN8EHgWuBp4AHg9cHsIoT2x/Ergi0AA/g14HPgocGsIoWnMdS8CvgXsAXwXWAW8Hbg7hLBozNpzgWuBw4BrgFuyn3+3oZUkSdqdTLXCqrnBlkBJkpRexaiwuhA4ELgkxnhCjPG9McYVwMeAFuBygBDCCuBdwI3Asdl1pwCfA5YDnxy9YAjhYOCzwIPAUTHG98QYzwTeDewHfCGxdh7wFWAjcEyM8Z0xxrOA1wHzgCuK8B0lSZJSL8ZYMHR95xVWtgRKkqT0KkZg9UagF7hkzPl/AjYAx4cQ9gc+kD1/YYxxILHuUmAQOD9x7n1ALXBxjHFH4vzVwHrgnBBCS/bc28gEU1+MMa4fXRhjvAm4C3hVNgCTJEmqan2DI7nHjXU11NaECdcmK6x6DawkSVLKzCiwCiEE4ADgoRhjb/K1GGME1mafLgVOAjbHGO8Zs66LTLvffiGEA7OnVwAjwPXjXPM2oBE4PrEW4LpxbvGW7PGkaXwtSZKkipSsrmreSTsgFAZaA8MjDA6P7HS9JElSKc20wqoGOAv48NgXQghtwBGjT4HFwJoJrtORPR6aPR4LPBNj7JzC2uXAMPDwFNZKkiRVreTw9JadtAMChBAK1tgWKEmS0qRu8iUTizEOAz8Zez6EUEtmwPoc4H5gNHjaOMGltmaPC7NBV/1U1maPewDPxRjH295m7NoJdXR00N7ePu5rK1eunOztkiRJZVewQ+AkFVYALY21dPZnfoTqGRhiXnP9rN2bJEmqXhPlKR0dHeOen4pizLAqkJ0XdTNwNtAHvBdoy77cP8HburPHummuJbt+qmslSZKq1lR3CMyvcfC6JElKp6IFOSGEeuCvgP8LNANPA38eY7wzhDA6b6p5grc3ZI89ZAawT3Ut2fVTXTuhZcuWWUklSZIqWjJ0ap6kJRAKQ62efgMrSZK0aybKU9rb21m1atUuXbMoFVYhhAPI7Mj392RCoq8CR8UY78wu2ZQ9zp/gEntkj+uB58nMpJrK2tFrz8sOgJ9srSRJUtUqHLo++b9LFgRWA+NNV5AkSSqPGQdWIYQlwO3AccBq4CUxxg+NGZj+NJkqp6MnuMwhZHYFXBNjHAQeBw4MIbROsBbggezxITIzrw6fwlpJkqSq1VtQYTX5j3nNtgRKkqSUKkaF1ReBfYHrgJfHGFePXZAdzn4LsFcIoSC0CiHMB14G3B1j3JE9fQNQC5w8Zm0tcAqZiqkHE2sBTh3n3k4jM9/q1ul/LUmSpMrSWzDDavIKq9YGdwmUJEnpNKPAKoTQArwB2ExmXtVEw88hs2sgwOdDCDXZ9wfgC2RmUH01sfYqIAIXhxCS86kuBJYCl8cYY/bct4Fe4BMhhEWJe3sr8HLgO4kgTJIkqWr1JHcJnMIMq+ZEYNVtS6AkSUqRmQ5dbweagN8Dfzv+GCkAPhdj/O8Qwg+ANwOrQwh3ZN//EuDaGOP3RhfHGFeHEC4FPgk8EEK4ATgUWAHcC3wpsXZjCOEvga8B94cQfgbsDZwOPAH89Qy/oyRJUkXom+Yuga2JKqxeK6wkSVKKzDSw2jt7PJzxZ0iNuozMMPW3Ar8D3gGcB6wDPgN8fuwbYoyfCiE8BXwQOJdMFddlwGdijH1j1l4RQtgCfAo4B9gOfAu4KMa4eRe/myRJUkWZyS6BVlhJkqQ0mVFgFWO8BpiwrGqc9UPAJdk/U1l/BXDFNO7lmqneiyRJUrUp3CVwKoGVFVaSJCmdijF0XZIkSSnQm6iSmnaFVb+BlSRJSg8DK0mSpCqRrLCaygyrlsb8mt5BWwIlSVJ6GFhJkiRViYIZVlNqCcyv6bElUJIkpYiBlSRJUpXoG5zu0PX8DCtbAiVJUpoYWEmSJFWJZJVUMoyaSLLCypZASZKUJgZWkiRJVaKwJXDyH/OssJIkSWllYCVJklQlClsCp1lh5QwrSZKUIgZWkiRJVWImQ9e7B2wJlCRJ6WFgJUmSVCV6B5MzrKY3dN0KK0mSlCYGVpIkSVUiGTo1TWmXQCusJElSOhlYSZIkVYEY47QrrJoToVbf4AjDI3FW7k2SJGm6DKwkSZKqwMBwPnCqqwnU107+Y15NTSgIrZKBlyRJUjkZWEmSJFWBvoGR3OOpDFwf1dqYX9tjW6AkSUoJAytJkqQq0DOYD5uapzC/Krc2EW719FthJUmS0sHASpIkqQokB65PZX7VqNbEToE97hQoSZJSwsBKkiSpCvRMc4fAUckKq95BWwIlSVI6GFhJkiRVgb5p7hA4Kllh1W1LoCRJSgkDK0mSpCqQrLCaztD1ghlWtgRKkqSUMLCSJEmqAgWBVX3dTlYWam1wl0BJkpQ+BlaSJElVYFdbApsdui5JklLIwEqSJKkKFFZYTWeGlRVWkiQpfQysJEmSqkDv4K7NsGpxhpUkSUohAytJkqQq0Juojpre0HVbAiVJUvoYWEmSJFWBZIVVy3RaAhttCZQkSeljYCVJklQFCmZYTafCKhFu9fRbYSVJktLBwEqSJKkK9O3iDKvWRlsCJUlS+hhYSZIkVYFd3SUwGW512xIoSZJSwsBKkiSpCvQmAquW6VRYJYau91phJUmSUsLASpIkqQokh643TaPCKhlu2RIoSZLSwsBKkiSpChRWWNXtZGWhwsDKlkBJkpQOBlaSJElVYFdnWCXDLSusJElSWhhYSZIkVYHeXdwlsKXRlkBJkpQ+BlaSJElVINkSOK3Aqr6wJTDGWNT7kiRJ2hUGVpIkSVUgOX+qZRotgXW1NTTUZX4kHInQPzRS9HuTJEmaLgMrSZKkKtA3mA+aplNhBe4UKEmS0sfASpIkqcINDY8wMJwJrEKAxrrp/YjXmhi83t3vToGSJKn8DKwkSZIqXHLgekt9LSGEab0/WZGVvJYkSVK51E2+ZHpCCO8HLgcWxBi3jXntfOCoCd766xjjNWPWnwd8BDgM2AZcD1wUY3x2nM89A/g/wNFAL3AT8Dcxxodn9IUkSZJSblcHro9KtgRaYSVJktKgqIFVCKEWeNdOllwAHDfBa01ALrAKIVwE/C3wDPBdYB/g7cCpIYT2GOPmxNpzge8Az2WvMRd4PXBaCOF4QytJklTNklVRMw2sep1hJUmSUmDGgVXI1Jy/OPvnPCYOpAAOAr4WY/zAJNc8GPgs8CBwQoxxR/b8O4BvAl8A3pk9Nw/4CrAROC7GuD57/lXAjcAVwMm79u0kSZLSLzkovXkaOwSOaknOsDKwkiRJKVCMGVatwErg68CJEy0KISwE5gOPT+Ga7wNqgYtHw6qsq4H1wDkhhJbsubcB84AvjoZVADHGm4C7gFdlAzBJkqSqVFhhNf1/jyzcJdCWQEmSVH7FCKx6gbMSf9ZMsG40NJpKYLUCGCEzsyonxhiB24BG4PjEWoDrxrnOLdnjSVP4TEmSpIpUMMOqfvo/3hUGVlZYSZKk8ptxS2CMcRj44ejzEMIHJ1h6UPa4KdvadzjQDdwUY7x9zNpjgWdijJ3jXKcjezyUzGD15cAwMN6cquTanero6KC9vX3c11auXDnZ2yVJksomGVi17FKFVf49BlaSJGm6JspTOjo6xj0/FUXfJXAnRiusrgX2SL4QQrgWOCfG2BVCaAPqycykGs/W7HFh9rgH8FyMcbz69bFrJUmSqk7P4ExnWCWHrtsSKEmSyq+UgdVohdUvyO/+dwzwReBMMsPU3wy0Zdf1T3Cd7uxx9N7byMy1msraCS1btsxKKkmSVJH6Bma2S2Bro0PXJUnSrpsoT2lvb2fVqlW7dM1SBlb/CvwoxpicNXV3COF0MnOvzgohHAZsz77WPMF1GrLHnuxxcBprJUmSqk5yUPquVFgl39NrYCVJklKgGEPXpyTGePeYsGr0/A7yw9WXA8+TmUk1f4JLjbYTjlZVbQLmhRDCFNZKkiRVnWRLYMsuVVjl39Pdb0ugJEkqv5IFVpMYHa4+FGMcJLOT4IEhhNZx1h6SPT6QPT5EZubV4VNYK0mSVHWSLYFNuzTDyqHrkiQpXUoSWIUQjgghxBDCzydY8ors8bfZ4w1ALXDymOvUAqeQqZh6MLEW4NRxrnsamVlYt+7irUuSJKVez8DMKqzmJGZYdVphJUmSUqBUFVYPA08Bp4UQXpl8IYTwF8BLgZtjjI9nT18FRODiEEJyPtWFwFLg8hhjzJ77NtALfCKEsChx3bcCLwe+k207lCRJqkq9gzMbuj6nKTF03cBKkiSlQEmGrscYYwjh/cBPgRtDCNcDT5Np4zsFeA64ILF+dQjhUuCTwAMhhBuAQ4EVwL3AlxJrN4YQ/hL4GnB/COFnwN7A6cATwF/P/jeUJEkqn+Sg9F0Zut6aaAns6jOwkiRJ5VfKoeu/IDNU/YfZ4/nAYcA3gJfGGB8as/5TwPuBPuBc4GDgMuCUGGPfmLVXAG8G1gLnAO3At4ATY4ybZ/FrSZIkld1MK6zmJiqsuqywkiRJKVD0CqsY44qdvLYGOHsa17oCuGKKa68BrpnqtSVJkqrFTGdYtTYaWEmSpHRJyy6BkiRJ2kXJCqtd2SWwtTH/nu7+IfKjQiVJksrDwEqSJKnC9RZUWE2/gL6xrpaG2syPhUMjkf6hkaLdmyRJ0q4wsJIkSapwyQqrXWkJhMKdAm0LlCRJ5WZgJUmSVOFmuksgvLAtUJIkqZwMrCRJkircTHcJBJjTWJ973NlnYCVJksrLwEqSJKnC9QzkA6ZdrbCaY4WVJElKEQMrSZKkCjYyEukbzA9J3/WWQGdYSZKk9DCwkiRJqmB9Q/l2wMa6Gmpqwi5dZ46BlSRJShEDK0mSpArWMzDzHQLBwEqSJKWLgZUkSVIFK8YOgVAYWDnDSpIklZuBlSRJUgUrxg6BMGaGlbsESpKkMjOwkiRJqmAFFVYzCKzmNiVbAod3slKSJGn2GVhJkiRVsIIZVvV1O1m5c622BEqSpBQxsJIkSapgfYmWwCaHrkuSpCphYCVJklTBkuFSq4GVJEmqEgZWkiRJFSzZvpds65uuOU0GVpIkKT0MrCRJkipYMlyaM4PAqrXBGVaSJCk9DKwkSZIqWLECq+R7O/sMrCRJUnkZWEmSJFWwZDVUsq1vupLv7R4wsJIkSeVlYCVJklTBuvrzuwTOZIZVa2N+YHtX3xAxxhndlyRJ0kwYWEmSJFWwwpbAXd8lsLGulobazI+GQyOR/qGRGd+bJEnSrjKwkiRJqmAFLYGN9TO6VrLKysHrkiSpnAysJEmSKlhXYkB66wwqrKBwjlWXgZUkSSojAytJkqQKlgyW5s60wqrBwEqSJKWDgZUkSVIFS+7oN9MKq7nJCqs+AytJklQ+BlaSJEkVLBkszZnBLoFQuMtgMgiTJEkqNQMrSZKkClawS2DTzAKrZODVaYWVJEkqIwMrSZKkCjU4PEL/0AgANQGa62c4dD1ZYdU/PKNrSZIkzYSBlSRJUoXqTlRXtTbUEUKY0fUKWgIdui5JksrIwEqSJKlCFbMdEMa0BBpYSZKkMjKwkiRJqlDJwKp1hgPXYWxLoIGVJEkqHwMrSZKkCpUMlWa6QyAUVml1OXRdkiSVkYGVJElShepKDEYvRmCVrNLqGjCwkiRJ5WNgJUmSVKGSVVCtjTPbIRBgbqMVVpIkKR0MrCRJkipUYUtg/YyvV9AS6AwrSZJURgZWkiRJFapgl8AiVFi1NeVDr+29gzO+niRJ0q4qemAVQnh/CCGGEOaP81pdCOHjIYQ1IYSeEMJTIYQvhxDmTnCt80II94UQukMI60II3wgh7DPB2jNCCHeEEDpDCJtCCN8PIRxe7O8nSZKUFgWBVdPMZ1jNa84HVjsMrCRJUhkVNbAKIdQC79rJkiuBLwIB+DfgceCjwK0hhKYx17oI+BawB/BdYBXwduDuEMKiMWvPBa4FDgOuAW4BXp9da2glSZKqUrIlsLUIQ9fbmvPXsMJKkiSV04wDq5BxXAjhXcDNwHETrFtBJsy6ETg2xvjeGOMpwOeA5cAnE2sPBj4LPAgcFWN8T4zxTODdwH7AFxJr5wFfATYCx8QY3xljPAt4HTAPuGKm31GSJCmNOgvTHuElAAAgAElEQVRaAmceWDXX11JfGwDoHxqhb3B4kndIkiTNjmJUWLUCK4GvAyfuZN0HsscLY4wDifOXAoPA+Ylz7wNqgYtjjDsS568G1gPnhBBasufeRiaY+mKMcf3owhjjTcBdwKuyAZgkSVJV6S5yYBVCKJhjtaPPKitJklQexQiseoGzEn/WTLDuJGBzjPGe5MkYYxeZdr/9QggHZk+vAEaA68esjcBtQCNwfGItwHXjfOYtic+WJEmqKsVuCQTnWEmSpHSYcWAVYxyOMf5w9A+weeyaEMK+wGImDrM6ssdDs8djgWdijJ1TWLscGAYensJaSZKkqtHZV9wKK4C5zcmdAod2slKSJGn2FOcnm8ntkT1unOD1rdnjwhBCG1A/lbWJaz8XYxzvJ6qxayfU0dFBe3v7uK+tXLlysrdLkiSVXPdA8QMrK6wkSdJ0TZSndHR0jHt+Koq6S+BOtGWP/RO83p091k1z7ei1p7pWkiSpanT354eiz0pLoDOsJElSmZQqyBn9aad5gtcbsseeaa4dvfZU105o2bJlVlJJkqSKkmwJnNtUnB/r2hLX2W6FlSRJmoKJ8pT29nZWrVq1S9csVYXVpuxx/gSvj7YMrgeeJzOTaiprR689L4QQprBWkiSpajh0XZIkVatSBVZPk6lyOnqC1w8hsyvgmhjjIPA4cGAIoXWCtQAPZI8PkZl5dfgU1kqSJFWFoeERegfzLYEt9bVFuW5bwdB1AytJklQeJQmsYozDwC3AXiGEgtAqhDAfeBlwd4xxR/b0DUAtcPKYtbXAKWQqph5MrAU4dZyPPo3MfKtbi/A1JEmSUqN7IB9WzWmso6ZmvGLz6ZtnYCVJklKgVBVWAFdmj58PIdQAZNv4vkBmBtVXE2uvAiJwcQghOZ/qQmApcHmMMWbPfRvoBT4RQlg0ujCE8Fbg5cB3EkGYJElSVShsByxOdRVAW1OyJXC8TZglSZJmX8l2z4sx/ncI4QfAm4HVIYQ7gHbgJcC1McbvJdauDiFcCnwSeCCEcANwKLACuBf4UmLtxhDCXwJfA+4PIfwM2Bs4HXgC+OtSfD9JkqRS6pqF+VVghZUkSUqHUlZYAbwVuAhoAc4DFgKfAd40dmGM8VPA+4E+4FzgYOAy4JQYY9+YtVeQCcLWAueQCcK+BZwYY9w8S99FkiSpbJKB1dwiBlZtzflr7egzsJIkSeVR9AqrGOOKnbw2BFyS/TOVa10BXDHFtdcA10xlrSRJUqWbjR0CwQorSZKUDqWusJIkSVIRdPXlA6s5BlaSJKnKGFhJkiRVoGRLYDEDq7mJoetd/UOMjMSdrJYkSZodBlaSJEkVaLaGrtfWhNxMrBihs8+dAiVJUukZWEmSJFWgbT35dr35LfU7WTl9bYm2QAevS5KkcjCwkiRJqkDJ+VLJuVPF0OYcK0mSVGYGVpIkSRVoW89A7vGCloaiXrutKd9iaGAlSZLKwcBKkiSpAm3rnb2WwGTF1g4DK0mSVAYGVpIkSRVo6yzOsJpnS6AkSSozAytJkqQKtD3REjivucgtgQ5dlyRJZWZgJUmSVIGSLYELrLCSJElVxsBKkiSpwoyMxNndJdCh65IkqcwMrCRJkirMjr5BYsw8nttYR11tcX+km9eSHLo+VNRrS5IkTYWBlSRJUoXZlhi4Pq/I7YAAbU22BEqSpPIysJIkSaowhfOrijtwHQpbDB26LkmSysHASpIkqcJsS+wQOH8WKqwcui5JksrNwEqSJKnCzObAdYD5iaqt57sHdrJSkiRpdhhYSZIkVZit3bNbYbWwtYGakHm8rWeQweGRon+GJEnSzhhYSZIkVZjZnmFVWxNY2Jq/7nNdVllJkqTSMrCSJEmqMAW7BM5CSyDAnnMac483d/bPymdIkiRNxMBKkiSpwiRnWM2fhQorgEVz84HVli4DK0mSVFoGVpIkSRVma3KXwFmqsFpkhZUkSSojAytJkqQKk2wJnI2h6wB7JiqsNlthJUmSSszASpIkqcKUoiVwzzn569oSKEmSSs3ASpIkqcJsS7YEzlKFVXKGlS2BkiSp1AysJEmSKsjISCyosCrFLoFWWEmSpFIzsJIkSaognX1DjMTM4zmNddTXzs6Pc4W7BA7sZKUkSVLxGVhJkiRVkG29s98OCIUVVrYESpKkUjOwkiRJqiCl2CEQYEFLA7U1AcgMee8fGp61z5KULjFGNnX2MTQ8Uu5bkbQbqyv3DUiSJGnqtiV3CGyenR0CAWprAgtbG3LVVc91DbBkfvOsfZ6k8vv9c9185cbHuP3RLWzY0ccRe8/l629/CUsXtJT71iTthqywkiRJqiDJHQLnzWKFFTh4XdqdbNjex59+7Q5+uHItG3b0AfDQhk7e+LU7eHD99jLfnaTdkYGVJElSBUm2BC6Y5cCqcPC6gZVUrYZHIh/5z/t4vvuFGyxs6uzn7KvuYsP2vjLcmaTdmYGVJElSBSmYYTWLLYEAe87JX9/B61L1+ucbHuXuJ58HoCbAlW9r53vnH8/cpswEmR19Q1x16xPlvEVJuyEDK0mSpAryXHc+OJrNoeswtsLqhZUXkirfhu19XH7TY7nnHznlMF571N6ccMieXPaW5bnz//Gbp9k6TgWWJM0WAytJkqQKkmzL2Xte06x+1qLEDCsrrKTq9P17nmFoJAJw7H7z+eDJh+ReO/mIxRyx91wAegeH+fadT5XhDiXtrgysJEmSKsjoMGSAfWY7sEpUWG12hpVUdYaGR/iP3zyde37+iQdSWxNyz0MIXLDi4Nzzq+94ip6BoZLeo6Tdl4GVJElSBSmssGqe1c8q2CXQCiup6tz40KZcCL7nnAZOO3LvF6z546P3Yb+Fmf/XbOsZ5Mf3rSvpPUrafRlYSZIkVYjB4ZFcpVMIsDhRATUbkoGVFVZS9fnu3fnqqje/ZD8a6l7462FdbQ3vOOHA3PP/Wrm2JPcmSSUPrEIInwwhXDbBn1MS6+pCCB8PIawJIfSEEJ4KIXw5hDB3guueF0K4L4TQHUJYF0L4Rghhn9J9M0mSpNm1ubOfmBk1w55zGqmvnd0f5QqGrlthJVWVtVt7uPXRzUAmAD/7ZftPuPb1y5dQl20VXPX0Np7Y3FWSe5S0e6srw2d+Clg4wWsbgBuyj68E3gU8BPwbcAjwUWBFCOEPY4y5evgQwkXA3wLPAN8F9gHeDpwaQmiPMW6ejS8iSZJUSs8m2wHbZnd+FcD85nrqawODw5EdfUN09w/R2liOHx8lFdsv7t+QC8Bfeegi9lvYMuHaPeY08qojFvOrNRsB+NGqdfzVaYeX4jYl7cZKWmEVQphHJqz6ZIwxjPPn89l1K8iEVTcCx8YY3xtjPAX4HLAc+GTimgcDnwUeBI6KMb4nxngm8G5gP+ALpfuGkiRJs2fjjtLtEAhQUxPYd35+Ttbarb2z/pmSSuPn9z+be3zGMZM3pvzZcUtzj3983zpGsjsLStJsKXVL4OgWE49Psu4D2eOFMcaBxPlLgUHg/MS59wG1wMUxxh2J81cD64FzQggT/3OBJElShSh1hRVQUHXxzPM9JflMSbNr3bZeVj+zDYC6msBrXrTXpO85+YjFLGipz73/rieem9V7lKS0BlYnAZtjjPckT8YYu4BVwH4hhNHJfyuAEeD6MWsjcBvQCBw/s9uWJEkqvw3b8xVOpaiwAli6IB9Yrd1qYCVVg18kqqv+8OA9mN/SMOl7Gupq+JNjl+Se/2S1uwVKml2lDqwOyh53hBAuCCF8IYRwYQhh+eiCEMK+wGJgzQTX6MgeD80ejwWeiTF2TmGtJElSxdqwIz/4vFQVVksX5FsCn7ElUKoKv3hgQ+7xHx899X2q3vDifXOPr39gAwNDI0W9L0lKKvXUzIPJVEOtAuYnzv9DCOHrZNr79sie2zjBNbZmjwtDCG1A/VTWTnZjHR0dtLe3j/vaypUrJ3u7JEnSrEtWWO1TogorWwKl6rJhex8rf5/5Nam2JvCaI/ee8nuX7zefpQuaWbu1lx19Q9z26GZOWTZ5O6Gk6jdRntLR0THu+akoR4VVDfAN4A+AOcCryVRTnQ/8A9CWXTvR3snd2WPdNNdKkiRVtA2Joet7lSqwssJKqiq/6sj/W//xBy5kYevk7YCjQgiccUy+LfDa364v6r1JUlKpg5xLgEtijDclzt0QQngdmdDqw8DPs+ebx745a/T/qD1kBrBPde1OLVu2zEoqSZKUWjFGNm4vfUtgssJq7fM9xBgJIZTksyUV342JwGoqw9bHOvPYfbjylsxI4l+t2UjvwDDNDbVFuz9JlWmiPKW9vZ1Vq1bt0jVLWmEVY7xpTFg1ev5p4C4yA9JH/+lw/th1WaMtg+uB54HhKa6VJEmqWM93DzAwnJkX09ZUR2tjaf7dcY/WBprrM7+MdvYPsb13cJJ3SEqr3oFh7ng8v7vfyUdMP7B60T5tHLSoFYDugWFuenhT0e5PkpJK3RK4M6ND04fIVEQdPcG6Q8jMwVoTYxwks+PggSGE1gnWAjxQzBuVJEkqtWe359sBS7VDIGRagJKD19faFihVrDuf2EJ/dlD6IYvnsP8eLZO844VCCJyZaAv8yX3uFihpdpQssAohvDaEEEMIl4/zWj3wUmCAzM5+twB7hRCOHrNuPvAy4O4Y447s6RuAWuDkMWtrgVPIVFc9WOSvI0mSVFIbdyQDq4mmIcwOB69L1eGGjnw11MlHLN7l6/zJ8nxgddPDm9jaPTCj+5Kk8ZSywurXZIagvzWEcMSY1z4N7At8L8bYA1yZPf/5EEINQMgMS/gCmXlVX0289yogAheHEJI/vV0ILAUujzHGYn8ZSZKkUiqosGprLOlnFw5eN7CSKlGMkZseKk5gdfCiOSzfLzOVZXA48rPfOYFFUvGVLLCKMXYCHwPmAatCCD8MIXwthHAncDHwJPCp7Nr/Bn4AnA6sDiFcCfwGeA9wbYzxe4nrrgYuBV4MPBBCuCqEcBPwd8C9wJdK9R0lSZJmS3oqrGwJlCrRQxs6WZ8Nvuc21dH+BwtmdL03Hrdv7vF/rbItUFLxlXro+r8CJ5Bp4zsReCewCLgMOD7GmJzY91bgIqAFOA9YCHwGeNM41/0U8H4yA9vPBQ7OXvOUGGPf2PWSJEmVprDCqnQzrACWLkgEVlZYSRXphsTugH902CLqa2f2q+AZxyyhvjazY+jqZ7bx+OauGV1PksYqzfYyCTHGO4Ezp7BuCLgk+2cq170CuGJmdydJkpROT27pzj1ODkEvheTnOcNKqkzXP7gh9/jUF01/d8CxFrY28KrDF/M/azJB2I9WreUTp42d/CJJuy5NuwRKkiRpHDFGHt3YmXt+2F5zS/r5yZbAtVt7cTyoVFnWbu3hgXWZPavqawOvmsH8qqQ3Hrc09/j79zxD3+BwUa4rSWBgJUmSlHqbOvvZ0TcEwNzGOvYq8dD1ec31tDVlCvP7h0bY1Nlf0s+XNDO/fDDfDviKQ/akram+KNc9ZdniXIvylq4BfrraWVaSisfASpIkKeUe3ZifDXPoXnPIbJ5cWocsnpN7vObZHSX/fEm77pcP5NsBX3vk3kW7bn1tDe94xQG55/9625OMjFiBKak4DKwkSZJS7tFN+XbAQxeXth1w1JFL5uUer1lvYCVVis2d/dzz++cBqAnw6iLMr0o6+/j9mdOYqcB8bFMXtzyyuajXl7T7MrCSJElKuUc3FVZYlcOLlrTlHhtYSZXjfzs2Mjp27iUHLGTPOcVtKW5rquctL90v9/yKWx4v6vUl7b4MrCRJklLusURLYLI1r5SOTAZWtgRKFeP6WWoHTHrHKw6gtibTqvybJ5/njse2zMrnSNq9GFhJkiSlWIyRR5ItgSXeIXDUYXvNzf1C+uSWbrr6h8pyH5KmbkffIHc8ng+PTjtqdgKrpQtaOKs9v2Pg//ufh91NVNKMGVhJkiSl2HPdA2zrGQSgtaGWJfOaynIfTfW1HLIoX931kFVWUurd9NAmBoczwdHR+85j3/nNs/ZZHzrlUBpqM79ernp6Gzc7y0rSDBlYSZIkpdgjG/PVVYfsNbcsOwSOSrYFPugcKyn1CtoBZ6m6atS+85s5+2X5WVb/75cPu2OgpBkxsJIkSUqxx5ID18s0v2qUg9elytE3OMzND+ernE6bpflVSR941SE01mV+xXxw/Q5+uGrtrH+mpOplYCVJkpRij25MZ2D14LPby3gnkiZz6yOb6R0cBjKbNZRiw4bFbU2856SDcs//8fqH6ewbnPXPlVSdDKwkSZJS7OENyYHrZQ6s9skHVo9s6GJweKSMdyNpZ667/9nc49OO3Ktkn3vBioPZuy0za29LVz9fvemxkn22pOpiYCVJkpRSfYPDrF67Lff8qCXzyng3ML+lITe0eWB4pGC+lqT02NE3yC8S86tOP3qfkn12S0MdF77uiNzzb93+FM8831Oyz69mIyORLV39bO8dZGDIfzBQ9asr9w1IkiRpfPc9vS33S8lBi1pZ3FaeHQKTlu8/n3XbegG447HnOLLMIZqkF/rZb5+lP/v/jmX7tJX87+nrly/hO3c+xaqntzEwPMKXf/UIX3rL8pLeQzW5+eFN/HT1em55ZDPPdw8AUBPgpMMW8a4TD+TEQ/Ys64Yc0myxwkqSJCml7nriudzjlx+0RxnvJO+kQ/fMPb71Ubetl9LompXP5B6f1b605J8fQuDTpy/LPf/x6nV0POtGDdO1qbOPC/59Jed96x5+fN+6XFgFMBLh5oc3c+43fsNffPM3dPUPlfFOpdlhYCVJkpRSycDqD9MSWB22KPf47iefp3dguIx3I2msxzZ1ct/TmVbiuprA65cvKct9vPSAhZxyxGIAYoRLf/lwWe6jEsUYuebeZ3j1F28paO0EmNNYx9ymwkap2x7dwrnfuJvtvQ64V3UxsJIkSUqhvsHh3C+dAMcftLCMd5O3z7zm3G6FA0Mj3P3kc5O8Q1IpXbNybe7xKcsWs8ecxrLdyydeezijnWo3PrSJVU9vLdu9VIp123r5i2/+hk/88Hfs6MtXTb35JUv52YdO5HefeQ33f/Y0bv6rFZxz/P651+97ehtnX3UXG3f0leO2pVlhYCVJkpRCq57eykB2F75DFs9h8dzyz68alayyuvWRLWW8E0lJfYPDXHNvPrA6q32/Mt4NHLF3G29Yvm/u+RU3P17Gu0m3GCM/uW8dr73sVm57NP//1f0XtvDd84/nH990LEftO4+amkwCeMCerfz9nx7NxX9yZG7tmmd38KeX/7pgd1mpkhlYSZIkpdBdjyfnV6WjumpUMrC65ZFNZbwTSUn/vXp9bs7RknlNrDh80STvmH3vX3Fw7vGv1mx0d9Fx9A8N8+kf3c9Hv7+azmxVVU2A8088kOs/+kpeccieE7737SccwKVvOobabJC1fnsfZ115B09t6S7JvUuzycBKkiQphe5M4cD1UccfuJDGusyPkY9v7s7tGiipfGKMfPPXT+aev/2EA6irLf+ve4fuNZdTX7RX7vmVt1hllbRhex9nX3UX/3lPflD+/gtb+MF7/5CLzngRLQ11O3l3xlkv2Y9vnvdSWhtqAdjRN8THfrCaoWyVrlSpyv9/MEmSJBXYsL2Plb/PzHoJIX2BVVN9LS87MF/1dd3vni3j3UgCuPPx53go2wrWXF/Ln790/0neUToXJKqsfrp6Pc8831PGu0mPX9z/LK/9p1tZlZhX+IblS7juI6/kJQdMr7L2jw5bxL+ffzx12Uqr+57exldveqyo9yuVmoGVJElSyvz4vnWMxMzjEw7egz3LODR5Imcek9957D9+8zQxxjLejaRkddWb2pcyr6W+jHdT6Lj9F+Ram4dHIl+7efcOUmKM/MN1HVzw3VVs68ns7FcT4KI/XsaX37KcOY2TV1WN58X7L+Djrzks9/wrNz7GPU89X5R7lsrBwEqSJClFYoz8aFV+aPIbX7y0jHczsTOO3Ye52V+qntjSzV1P+EuRVC5r1u/gfzvy8+TOe8UB5buZCXz45ENzj6+5d+1uXWX15f99lH+59Ync8yXzmvjeu1/O+a88iDC6reIueu9JB+cqYIdHIu//7ip3DlTFMrCSJElKkfvXbefRTV0AtDTU8tqj9i7zHY2vpaGON7w4v/vX937zdBnvRtq9ffWmR3OPX3vk3hy8aE4Z72Z8f3jwHhyfDVKGRiJfufHRSd5Rnb5x+5P88w357/7qZXvxi4+eVLTW79qawGVvWc7C1gYANnf28/7vrqJvcLgo15dKycBKkiQpRX60al3u8euO2ofWXWwNKYWzX5afkfPLBzbwXFd/Ge9G2j09srGT6+7fkHv+oVMOKePdTCyEwMdOzber/deqdbvdTnaPb+7iH67ryD1fcfgivvbW45jXXNz2zSXzm/nq2S8mO86Klb/fyun/dJvtgao4BlaSJEkp0dU/xE9W5wOrPztu352sLr8XLWlj+X7zARgYHuHqO54q7w1Ju6Gv3JifB/XqZXtx5JJ5ZbybnXv5QXtwwsGZSqLhkcg//vKhMt9RaV3y8w6GsgMKj106jyve2k5D3ez8Sn7CIXvy6dctyz1/Yks3b/6XOwtazqW0M7CSJElKiat//WRuAO/SBc2p2x1wPOedcEDu8VW3PsG6bb3luxlpN7Py989z7W/X555/OKXVVUl/ddrhucfX3b+B3zw5O1U/j27s5B9+0cHrL/81yz/3P7zt63fzg3ueobt/aFY+bzI3P7yJGx/KzBkLAS7506Npbqid1c88/5UH8vd/enRuiHuMcNFPHuD3z+1elW2qXAZWkiRJKbC9Z7BgCO+HTz6UmpqZDd8thT85dglHLmkDoH9ohH+8fveqmJDKZXB4hL/+8QO556e+aC+OWTq/jHc0Ncftv4Azj83vMvp3P1/DyEjxdhmNMXL1r5/k9H++jX+55Ql++8w2tvUMcvtjW/jkf/2O13z5Vh7e0Fm0z5uKJ7d08zc/fTD3/M3t+3HUvrNfCRdC4Jzj9+d/PnYSBy1qBaBnYJi//MFvGS7if3NpthhYSZIkpcBVtz1OZ1/mX/4P2rOVN6a8HXBUTU3gb854Ue75T1ev517npEiz7upfP8VD2eClub6Wz5z5oknekR6feu3hNGZb4X63djs/uPeZoly3b3CYD37vPj577RoGh8cPZNZt6+VNV9zBrY9sLspnTub6BzbwJ1+5naezuyLOaawrqDIrhSXzm7nsLcupy/4jyL2/38qlv3yYGA2tlG4GVpIkSWX21JZuvnn7U7nnHz31MOpqK+fHtOMP2oPTj87vZvjxH/yWHX2DZbwjqbo9sbmLL/3qkdzzj7z6UJYuaCnjHU3P0gUtnP/KA3PPL752DY9ld0fdVX2Dw7z7O/fy8/ufzZ07at82/uXcdv734yfx6dcdQWu2Ba+zf4h3ffse7nhsy4w+czL/ftfved+/r6Qz24bYUFfDP77pGBbNbZzVzx3PMUvn86GTD809v/KWx/ncz4pb3SYVW+X8JCRJklSFBoZG+Mh/3kdvdsvxI/aeyxlH71Pmu5q+T79uWW5OytPP9/DpH93vv95Ls2BgaIQPJ/6fcdhec3jXiQdO8q70+cCrDuHgbJta7+AwH/zeKvqy32m6egaGeOfV93Dbo/kA6m0v35//uuAETjtybw5ZPJf3/tHBXPO+E9hnXhMAg8OR9/77Sh7dWNz2wIc27ODH963l7362hot+km/ZXLqgmR9dcAKnl/H/7+9/1cH80WGLcs+/9eunuCSxa6GUNgZWkiRJZfTl/32E367dDkB9beDSNx1bEbOrxtpvYQuf/7Ojc89//rtn+fptT5bxjqTqdOkvH+KBdTsAaKit4UtvXk59BVVkjmppqOOr5xyX2yXvoQ2dfOz7qxkYGpnWdbr7hzjvW/dwx+PP5c597NWH8XdvOJrGusKh5i9a0sYPLziBxdkKp86+zHs3dfbN8Ntk/OS+dbzun27j/7d35/FxXfXdxz/nzj7aJUuyLK+x491xbMdOYghJgBCSkLC0gSc0kEDaQkvg6dMWKKWlAZqHvX2VAg0QtkCgBdqUhBBCaOKQjSzOZsfyEu+bZMvaNSPNdvrHvTMa2ZIlL9KMpO/79ZrX1dxzR/pJmnvn3t/9nXP+33+8xJ2PDxz/Vs6s4L5bXzsu41adTMDn8K33ruGavKTZd5/YzSbvM0ik2Ey8I5uInBXWWvYe6+WZ3W08vqO1YDOmiIhMZfe8cIB/27Az9/yjVy5ixczinZJ+JG85bwbvvnB27vntv2ri23kDyYvImfneE7v5dl4i+ONXLS54EuRMLGko5+/zxsB7YHMzH/zRxlFXWnXEEtz03WcGzTT40SsX8X/feO6wr2msjPDdm9cS9boHHuyIc8v3nyOWOLNz4ef3tfOx/3yZ4wtL182t5kd/fCFVJcEz+v5nS8jv46s3rOJ1XqWVtXDbfa+oIlaKkhJWIlPQrqM9vO0bT3Lplzbwzm8+xY3feZpLv/QIv3mludChiYhMGQ++0sxf/+zl3PNLzp3GH7/2nAJGdHZ86i1LuWBOVe757b9q4vMPbCWZPrWqCREZ7M7HdvHp+7bknl++qJb3v2Zu4QI6S268cDbvf81Al8aHtx7huq89zsa9J5+84eUDHVzz1cd5bm97bt0nrlrMhy5fMOLPXN5YwdffvRqfV8266WAnH/nJC6c9c96hjjh/etfGXHXYnJooN6+fy+fesYK7bllHWThwWt93rPgcw6evW0bA5/7+G/e284sXDxU4KpETGWVSwRizcfXq1as3btxY6FBExtw9Lxzgk/dsJpYY+s7V9Wtm8tm3LScc8A3ZLiIiZ8Zay11P7eX2+5tIeEmcRfVl/McHLqIyWhx34M9Ub3+K933/2UFVDytnVXL725ZP6GoQkULIZCxfeHAr33x0oFpx9exKvv/+dZQXWSLkdFlr+fJvtvH1R3YOWq/FAxwAACAASURBVH/5olretqqRNXOqaKiI0N2XZMvhLn767H7u33R40EyAf/+Wpac8ltfdT+/lk/cMjDN108VzuO26ZRgz+m7ZsUSK6+94ilcOud00q6IBfvGh1zK7pvgHwf/cA02591VFJMDdf3yhjtFy1q1Zs4bnn3/+eWvtmlN9rRJWKGElU8c3NrzKF3+9Lfc86HNY1ljO/rY4rT39ufWrZlfyzfesoa4sXIgwRUTGTU9/ij2tvRzsiJNKWyyW0pCfqmiQ+XWluUHEz5bDnXH+4Rev8JstLbl1c2ui/PSDF0+6Y24skeLPfvQ8jx43dfzyxnLesLie82dVMqs6QkUkSEUkkBvHRqaOzniSrniSeDJN2O+joTI8IcdiGktdfUk+/vOXeWDzQBX82rlVfO9968768akY3PXUHj7/wNYhb6w6BoYqgCoL+/nK9St507LpJzaOQn7SBk4t8ZXJWG79yfP8apP7//E7hh/eciEXz685rVjGW09/itd/eQNHut3rgLKwn7vev45Vs6tGeKXI6ClhdYaUsJLJzlrLF369jTseHbhrdU5tCf96wyqWzaigI5bgH+59ZVAp8IyKMHfetJalM8oLEbKIyFnX2tPP07vaeG5vG1sOdbG7tTd3kj4Ux7jdRi6eX8MbFtezenYl/tO8mG7u7ONHv9/LnY/voi850DVuaUM533rvmgk1Hf2pyGQs335sF196cBupEbralAR9VEbd5FVDRZhljRWcP6uCi86pIRqcfBfmU01nPMnjO1p5Zvcxnt/XwZ5jvXT3DR4zyDEwsyrKkoYyVjRWcNmiOpbNKD+lapfJ5KEtLfzdf2+ipWvgOPXGJXX8y/9ZRckkTFZlHWiPcdu9W/htU8uI266dW8WXr1/JnJqS0/55mYzlwz95gfs3HQbAGPjCO87jnWtnjfjaLz24dVBV2OfesYIb1s0+ySuKz6YDndz4nafpjCcBKA/7ue/Drz2jv6lIPiWsAGNMFPgEcAPQCOwH7gb+v7U2OcJrlbCSSSudsfz9Lzbz46f35dZdfE4N377pgkF35qy1fPeJPdx+/5bc3ato0Mc/v+t8rjzNO1YiIoXWEUvw4CvN3PvSIZ7aeWzIu/OjVRkNcNnCWi5bVMcFc6torIwMeyGdyVh2tfbw+I5W/mfrEZ54tfWEn33z+rl84urFJ8xiNRltOdTFt363k19tbj7lGcCCPocLz6nmskV1XL6olnnTSqZsAmOi2d8W46EtLfy2qYVndreNmLQcSkNFmIvn13DRvBouXVRLffnkqkQ8nrWWJ149xlcf3jGoSy3A+14zl7+7Zmlu3KXJbt+xGPe+dJAN246y51gvrT0JIgEfs6ujrJlbxbvXzT5r3df6kmn+6M6n2Zg3Htatly/gr960cNjjzXcf381nfjkwptjN6+dy23XLzko84+2VQ5285zvP0NabANzB8P/rz9YTCU7+zycZe1M+YWWM8QO/BK4ENnqP84F1wAPANfYkv6gSVjJZdcaTfPKeTfzy5cO5dW9cUs/X3r1q2DGqHtl2hI/8+AW682YNvHn9XD7+5sX60BKRCaG9N8Fvm1p4YHMzj+04OmiMk+MFfIbZ1VFmV0eJBH1Y605zfqS7jx1Hek6Y7SnftNIgjVVRppUESVtLMp0hmbL0JlLsOtpLfJhZrpbNKOeT1yxh/fxpZ/qrTjgdsQQbth3lxf0dbD7YSVtvgo54ko5YYtTJxBkVYS6aX8PKmZUsaShnZlWE2rKQupIVgUzGsulgJ79tauGhLS1sbe4+6fbhgENNSYhwwKGnPzWokmg4K2dV8qal9VyxtJ5z60onTfLSWsuG7Uf51//ZwfP7Oga1TSsN8unrlnPNeQ0Fiq449CXThPzOmP3P23oT3Hjn02w53JVbt25eNZ9963IWTS8btO2Pn97H396zKff89Yvr+NZ71px2FW4xeGl/B9ff8VRubMV3rGrky9evxJkiCVIZO0pYGXMz8D3gh8BN2eSUMeb7wE3eurtO8nolrGTSsNay51iMX29u5pu/20lHbKDA8O2rGvniH5434kn9jpZubvnBc+xri+XWzZtWwq2XL+DalTM0zoiIFJVkOsOOlh427mvnwc3NPLXr2JAzPRkDq2dXcdE51ayeXcWCulIaKyPDXmB0xpM8s7uNR7Yd4eGmIzR39Z1RnOvn1/CutbO49rwZugA4TiZj6e5P0RlL0h5LsKu1h00HunhyZ+uISQ9w/7fV0SB15WHKQn58jsHvM/gdg89xCPgMPsfkPv9iiRR9yYy7nbetz3EIOMZ7rZNb7897XhLy01gZYWZVhFnVUWpKgpMmYXI6rLXsa4vx7J52nt3dxobtR06adFo5s4JLzq1l3bxqljSUM6108N+vL5lm59EeXjnUxZOvtvLw1iN0HddtMN/cmihXLK3niqXTWTOnasJVHllr2drcza83N/PfLx5k77HYoHa/Y7j+gll87MpFVJVMjgkZil1Pf4pbf/w8G7YNjL3ncwzr59dw6cJaZlZF2LDtKP/+7P5c+wVzqvjhLRdOihu7xw9Cf/WK6Xzl+vMnxe8mhaOElTHPAquAWdbaw3nrFwFbgcesta87yesnRcLqGxteZeeRXtbPr2H9ghoaKiKFDmlcZDLu3ezuvhQ9/Sm6+5J09aXo6UsRS6RIZ8Bi3Tu31l1ab5nx3v8Za7GWwesyFovbpS6VyZBMWxKpjHsHPe09T2dIpjIEfA6hgEMk4CMc8BEJ+IgEfYT8DpGgD79jiCXSJFIZQn6HaNBPTWmQ2rIQdWVhakqDJ00iZTKW7r4UbbEE7bEE7b0JjvUmaO3pp60nQSKdIZHKcKA9zqtHeoa8qHrvxXO47dplo75IautN8NGfvcT/bD0yaH1tWYirlk/niqX1nNdYSUV0csxOc7ZYa+n33ieOMe7DAZ9xL4JGc2Fjj3ufWtz3p7UD72VrLZkMdPcn6YwnSaYtGWvJZAbe2xlr8Rn3Aqss7Kc05Kc07B+x+5G1lnTG0pfK0N2XpLsvlbdM0ZdME/A5BHwOQb97IRj0OwRzz91HyH/iNgHH0YW6nLbOeJJNBzrZ2tzF/rYY+7zH/rZ47o7wUFbOquTa8xq45ryG0/5stNbyyqEuHt56hGd2t/HCvnZ6h5ltNWtaaZBVs6t43bnTuHxx3aQdp2qsHe6Ms2HbUR7eeoSndh6jp3/4BMZ4iwR8ueTV/NoSzq0vY9mMchbWl03Kiq++ZJpXj/SwcW87z+xp49ndbScdBy7oc1i/oIYrltbzxiX1p9ydL5nO8PKBTp7Z3cbvth/lmT1tQyajAWpKgrx+cR1XLK3nknNri/YCuzOW5KldrWzYdpQN244Oec4W9Dm8c+1MPnjpfB03CiCVzvDl32znzsd2jdiNdWlDOT/5k4smzfmwtZaP/+fL/PS5A7l1C+tLec9Fc7h8cR21ZaHceWQ6YwddF6UzlnDAvc6ZaMljGVtTOmFljCkD2oEXrLVrh2hvBqqBMmvtkJ+okyVhdfW/PDaohLW+PMTC+jLOrStjYX0p8+tKmVkVoa4sPC4HkXTGTfAkUhn6026ypt97nkhlSKQz9CczJLy23v601zUgQW9/mlgiRSyRprc/RVdfyrsoz5DO2NwjnkjTk0idtMvGRGAMhP0+gn73Ij/od/A5xk0aJNO0x5LDnqCNZHZ1lI+9eRHXrGg45bvA1lr+49n9/OP9TcNeIMyoCLOkoZyF08uojgYp8ZIipSEfJUG/+9xbF3CcgeQLA4nCdMbm/t/xZJp4Io3fMQS8JIjf58btJg/d/33KS9AkUpnca/KXfcN0xcn+FbPvGYsdWGncxBK4U7L39Kfp6U8SS6RzSahsl59kOpNLFOYnMEcam8V4P8Pxfs6gBNQ4vY8DPkM06M/9zHTGkvaSXWnvfzKW/I7JJbYGJ7pMXoIrL+Hlcwh47fnrAHoTafpTaXxmoALC5xiiQR8lIT8l2WXITzToy1UHhvw+KiLuTHDVk7xCwlrrJfNTpDPuftPT7yb1u/tSdPcn6elzj7PZpH+3l/RPpN0ke8jvJuDDQR/1ZWEaKsLUV7jL2tIQldHAWf8bZseA2ri3PffYebR31K9fNbuSq5ZP583LGsZkavF0xnKoI87hzj46YolcotbvJWfnVEepKQ2d9Z871aXSGTYd7OS5Pe00NXexvaWb5s5+jvX2F9W5QMjvsHRGOStnVrKgrpT68jDTy8PUl4eoLgkWfbeh/lSa3a29bG/pYUdLN9tbutnR0sOeY70jflZVRgNu4mhJPa9bWHtWBwfviCV4ZNsRHtrSwoZtR4ecSQ7croaXnFvLFUvrecPiuoLti0e7+9na3MW25m6aDnfz8oEOdhzpGXb7srCfP1jtJqqmV0zusbomgu0t3Xzmvi08/mrrkO1vPX8Gn3vHikk3KUQqneH2XzXxvSf2DNke9DkkM5mTHnPdG/Q+astCNFZGmFEZobEqQmNlJPe8rixU9MdCOTumesLqNcDjwA+stTcP0f4IcBmwyFq7fZjvsTESiaxesmTJkD9jIiSy2nsTrP7Hh0Z1suYYqIgEqIoGqYy6y/JIgPKwn7JwgNKwP5dsSqYHkkvJ9EDCKZ5I0xlP0tOfyl2kZ7fLfn06A2vK2VES9HHx/BreuKSed6yeecZd+DpiCe5+eh/ff3IPR09yJ1VkIioJ+pheEc4lHEpCPsrCAcpyyVd3mV1nDKTSA5WXqbR7vMv/OpXJkEp7607YLjP49XntGeseo7PVeca4XRFyD2MGP3cMqbQ9IVnblxxI4MYS6TE/Hgd8hpqSENPKgkwrDVFbGmJaWYhppSFqSoKUR9y/X3k4QFnYT3kkQEnQRyKdoS/hJp17+pNsbe5m04FONh3sZPPBzpN2BTpeY2WEZTPKWT+/hiuXT58yVcbiSqUztPYkONLdR9x7z6cyeftkemC/tLj7fTjgI2MH9tO0tx+nMwPVAtkbZdnv0RFPcKA9zv62GAfa46dd7ZVNrNeUuEnz6pIQ00qzX7tdvzLWEvL7vLHV3OrdvmSa/qR7TpbKWPyOoaokSFU0SFVJkJqSINMrwid0VbTW0ptI0xFL0BFLuo94gvZYkg6varut163iPtQRZ8+x2KhvlJWF/KyeU8W6edWsm1fNqlmnP5vmqehLpnlq5zF+4w3qPtz5iWNgzZwq1syp5ryZFdSXu3+fqpIg5WH/aSfbU+kMbb0JjnT3c7Snn6PdA48dR7rZ1txNa09ixO9THvZzycJarl7ewBuW1A07xqgUzqGOOI9sO8IL+zroiCXJWMvVKxr4g9WNk/qG1w9/v5fP/nLLKU+UMVo+x9BQEWZuTQmzqqNURgO5CaHye8Pk95LJWIvf5xAOOIT97nE85He8bt0D3cAHuoQb/M7gG6ShvAIBv8/JnXcZAwYz+PkQ/99EKkNnPJn3SOR6O+T/zFw83g3XkN8h6PMRCgzE4uQfpxk45uZf04cDvtznQrFbs2bofFRTUxPxeHzKJqyuA34BfNFa+/Eh2v8LeDtwsbX298N8jwmfsMrecXxy5zGe2nmMZ/e00T9GB5diFA36cl2eyrwLorKwn2jQj9/rhmWMe9KSPRANrDMYwHEGH6hybcYQ9Co/Al6lx6DnPkPKq/ZyLxS9ip+8C8dk2rrVHT6HRNqtJmvt6XdPcrr7ONabGDHZWBryU1USoNo7Ka2KBplWGqSmNETYO+DWl4eZN62EOTXRMemKkEpneGZPGw9ububZPe28eqTnpN1wpqrsh2LG61o3sBz998h/b2Y/MA35H6ju16VhPxWRQG4Q0uOTHamM9arFUrmqmtEkLxzjViFl96X8/Soc8A1KavfnV5kdl+jOf56tQhM5XX7HsKShnOWNFZwzzT3BnV0dZVZ1hLLw5OiOIROHtZbOeJID7XH2HOtlR0sP25q72XSwk4Md8YLGFvQ5lEf8RII+4ok0HbHkWUlcG+NWbi+fUcHauVVcMNcdi6rQ3X8yGcuLBzp4aIs72PurJ6liypdN+FVHg4QCoztvSqQytPb0j+rcbSg+x7BsRjmXnDuNyxfVcf44JfhETkdbb4L7Xz7EfS8fZndrL229iVwy2zHg9w30hnCMyd0wm+AphhyTO68eSF6NVQJvOFctn86/3XjKeZ6CUMJqCMaYG3EHW/+stfZTQ7T/ELgRuMRa+/gw32NSdAnMl0pn2NsW88q4e9je0s3+thj72+O56UrHw6Asdi6r7XbLye/+FvS5Yz1VeycNUa8rTyToIxp0L8izF+U+x+B4lQaRgI+SkG/Cf9Cn8qrX+lMZ+lPugd4xhlDAoTIaKMppz5PpDLtbe2k63MWuo725hEhPIuUmSbwuRr2JFL39aZLpzEBykIHki2PcO82RoJ9IwBl01zub7DBm4E6JzzF5A+U6RL0xw8IBn/t9vLstI42VlL2pYXDjyI4BZS15XRvd7mSDu6eZga+9pGW2+2LA5wx74p5/t2jgw94MmZwaK9m79PFE2v25eVU7Tm45djFY7/+aHf9tUFLL627pdhMevE1+Yiy7vbUQDfkJ+93kYLa7aLYKtNfrUtybSBHrT9ObSJFIZbBAvzc+15Gu/qIaD2esRAI+yiN+/I6D40BJ0H9Ckr807M9VQGXXB/2Od1xyqzrcWbz6aO7s43BnH81dfRztHru/YU1JkNVzqrzqiCpWNFao+kAmhNae/ly14MH2OC3dfbR09dPS1XdKMyIW0syqiDu0RH0pi+rLWFhfxvza0qIdGyrfrqM9ueTVxn3tBbt4jgZ9LKwvY0lDGYunl7OkoZwVjRUT4m8oMpRMxj0/G+l8ty/vnOFAe5xDHXEOdgxejqYCUSZWwmo4Z9IlcDJ0uM1OgTZc7X+2fi42TPuk5Pc5zK8tZX5tKW9ePrgtmc545eBeKXgsQXdfiq7suCX9KRxjcgmlgM/kxpDJJp3CAR8VEbdsM5d08tpDAZ934T66AabF/X/5fQ4lE2y4k4DPYaF3EisjM8bgM+DDUKhrbmMMYW9ygEL9/KDfPb5QBO93ay3tsSRHu/tz3X+y4+a5CdiB42K3Nw5UxloCXrI04HPLvv1e1WU2iTq4ffhts2Me+Z38Y6aX2MyNLQZp63ZTSmfILbNdmAI+J2+yB2fQxA8DE0CM7f+7L+lWjbb2JGj1usdkl229idzA/V19Kbri7t80nkx7nxlOLs7Z1VFWNFaworGC5Y0VzKyK6HNEJqRppSEuX1zH5YvrhmxPpjP09KVyXfGOeRU7x3rcsTyz1d79qQy9Cfe8LNsFJhRwcseQRNrmzufavclYDnXEh+xOG/HO3SqjgdyQEO7XblfCqmiQ6tIgtaUh5k0rOatjT423c2pL+cClpXzg0vm09vTzzO42XtrfwbaW7tzENe29iREnThhJdYn796oty3uUhphVHWFJQzmzqqKaaEQmFccxhJ2Tn1MYY9xzEG8Mq+WNFUNu15dMc6A9xu7WGIc743TFk/T0p3O9YrI9XbI3ubM9YJJpS593Iy2eSJPIdd12u30PGvPWW5c/bE1/blzldK4HxMAEXHbQOLtD8TkmV0xRHglQ6X0d9Dt5P3sglsRxPQ/yx3TO7wYI7k30gb+ju6yMTozugGNl4n4SDchOYVY5THuNtzw0DrFMCAGfk/tQFRGZyowxg8aMkdMTDviYWRU9pdmsMhmrCzmZsgI+x+3eP0bHnljCrXLuTaQpCfoojwSmbHXitNIQV69o4OoVDSe0uRPbuEnDVHp0ZVg+x7jj840ww7OInFw44GNBXRkL6orzxrfNS2LlJ7XCAUc308bRZEhYbfWWK4ZpXwC0WmubxykeERERGYGSVSJjJxr0T7qZy8ZCOOCjoSKiSRpE5AS58Y7R+UohTfjbAtbaw0ATsMoYU5PfZoxZBMwBHipEbCIiIiIiIiIicuomfMLKcwfuWFW3Z1cYYwLAP3lPv16IoERERERERERE5NRNllrhbwDvAj5gjFkJvARcCiwGvmatfaKQwYmIiIiIiIiIyOhNigora20KuAK3omomcBNggY94DxERERERERERmSAmS4UV1toY8FfeQ0REREREREREJqhJUWElA9asWcOaNWsKHYZI0dO+IjI62ldERkf7isjoaF8RGR3tK0pYiYiIiIiIiIhIkVHCSkREREREREREiooSViIiIiIiIiIiUlSUsBIRERERERERkaKihJWIiIiIiIiIiBQVY60tdAwFZ4w5FolEqpcsWVLoUM5YU1MTAJPhdxEZS9pXREZH+4rI6GhfERkd7SsiozNZ9pWmpibi8XibtbbmVF+rhBVgjNkNlAN7ChyKiIiIiIiIiMhkMRfostbOO9UXKmElIiIiIiIiIiJFRWNYiYiIiIiIiIhIUVHCSkREREREREREiooSViIiIiIiIiIiUlSUsBIRERERERERkaKihJWIiIiIiIiIiBQVJaxERERERERERKSoKGE1iRhjrjXGPGGM6TTGdBljHjXGvKHQcYmIyMRjjGkwxtxpjDlkjEkYY/YbY75mjKkqdGwixcQYc44x5m5jTIsxJm6M2WqM+ZQxJlzo2ESKgTHmz40x1hhTOUSb3xjzl8aYLcaYmDFmjzHmn40xZYWIVaSQTravHLfd1d52549XbIWihNUkYYz5IHAvcA7wM+BR4GLgAWPMmkLGJlIMjDGXeQf2kR63FTpWkUIzxtQATwG3AK8APwBagQ8BjxljSgsYnkjRMMacA/weeDfuvnI3kAQ+DfzSGOMrYHgiBeftA7ecZJM7gK8ABvghsBP4C+B3SvrKVDKKfSXfn45lLMXEX+gA5MwZY2YBXwVeAF5vre3w1l8F/Aq4Dbi2YAGKFIcDwL+cpP1q4Fxg8/iEI1LU/gaYA/y1tfYrAMYYA3wHeB9wK/D5woUnUjT+GagF3m+t/R6AMcYB7sTdV24BvlW48ETGn/d5scp73AysHma7y3D3kYeBq6y1CW/9p4FPAR8DPjP2EYsUxmj3FW/b5cBK4AbgmvGIrxgYa22hY5AzZIz5IvBR4CJr7dPHtT0KzLbWzitIcCITgDHmIuB3wB3W2o8UOh6RQjPGvAisAEqstX15688FtgMPWGuvLlR8IsXA6x7bCrxkrV19XNs04Cjwe2vtxYWIT6RQvCrc7iGaqrI31r3tfgb8IbDOWvvsca9vA5qttbPHOl6RQhntvuJt2wrUHLfdKmvti2MVXzFQhdXk8CZgz/HJKgBr7aUFiEdkwvDGSPh33IvwjxU4HJFiYYCh7mgFvGXvOMYiUqwW4Q6v8cLxDdbaVu/iYq0xpsxaO9QFichkFQeuz3v+aWDpENu9Djian6wCsNb2GGOeBy40xsyz1u4eu1BFCmq0+wq4Vbsh7+sPAZeNXVjFQwmrCc4YU4J7F/xerwT9GmCd1/wE8KBVGZ3IyXwGmA1ckl9JIjLFPQqcB3wE+CLkujn9jdf+cIHiEikmaW8ZHKbdD/iABoa+gy4yKVlr08DPs8+NMbcev40xphGow/28GUoTcCHucA1KWMmkNJp9JW/b+/K2e8sYh1Y0lLCa+Bpw7+71ARuAS45rf8IY8zZrbet4ByZS7Iwx5wEfBu621j5R6HhEishtuBN3fMEYcy3uhcNa4HzgAdyxrESmuibcAdYvMcYErLXJbIMxZi2QneXp+C4cIjKwX7QM097uLavHIRYRKVKaJXDiy04v/i6gHrd7YCnuYLk/AF4DfL8gkYkUv9u9pQb0FBksATzvff1a4E9wk1Xg3uk2hQhKpJhYa3twz7HmAD8wxiwwxpQYY67BnbE5W+HeX6AQRYpZubccbv/Idj1XgYXIFKaE1cSXLUPPAG+31j5kre211u7DvcA4AFxjjJlZsAhFipAx5gLgLcDPrbU7Ch2PSJH5Oe6UyXfjjtNTglth9TDw58CXCheaSFH5S9z94gZgB9AD/BJ3wOjfeNuoyl3kRNmKxMgw7dlrnNg4xCIiRUoJq4mvx1vutNZuyW/wStPv954uGdeoRIrfX3jLrxc0CpEiY4w5H7gS2Ai811q73Vobs9Y+B7wVOAz8mTEmdLLvIzIVeFVWbwTeDHwW+Bxu1ftFwHTcasXhujyJTGVHvGXlMO3ZLoOHxiEWESlSKrGc+PZ4y55h2rPltOq+IeIxxlTjTqO8w1r7WKHjESkyi7zlo9baTH6DN3PT08DbcLtBbR/v4ESKiTHGD1hr7YPAg3nry4DlwJPWWnUJFDnRPtzqqRXDtC/A7UGyZZh2EZkCVGE1wVlrO3EP5IuNMeVDbHKBt9w0flGJFL23404L+/ORNhSZgrKzmTUM054dO7F9mHaRKcEYE8StoHp2iObrcWcIfGBcgxKZILzZ0R4F6o0xg5JWxphK3FnPn7bWdhUiPhEpDkpYTQ7fBqLAPxljfNmVxpi3A68D7rPWHi5UcCJF6Fpv+euCRiFSnB7HTVr9oTFmfX6DMeYK3EHYH7PWHi1EcCLFwlqbwO06e54xZlV2vTFmLm73wE7gjoIEJzIxZPePzxtjHABjjAG+gDu21dcKFZiIFAd1CZwc/hV37IRbgPXGmN8DM4ArcMca+XABYxMpKt6J0KW4g30+U+BwRIqOtbbLGPNB4C7gd8aY3wJ7gXm4Y/V04g68LiLwt7g3Px4zxvw3bhemt+LO2HyDtVaViCLDsNbea4z5KfBO4EVjzJPAGtweIvdZa39c0ABFpOBUYTUJeCW11wGfwE1C3gisBH4AXGit3VvA8ESKzQLcAT43WWv7Ch2MSDHyLhIuAu4BVgPvxx1n5G5grbV2cwHDEyka1tqHgDcB2UkJ3gq8ALzJWvvTQsYmMkH8EfB3uL1FbgaqgX/AHWtURKY4Y60tdAwiIiIiIiIiIiI5qrASEREREREREZGiooSViIiIiIiIiIgUFSWsRERERERERESkqChhJSIiIiIiIiIiRUUJKxERERERERERKSpKWImIiIiIiIiIeOelNwAAAIRJREFUSFFRwkpERERERERERIqKElYiIiIiIiIiIlJUlLASEREREREREZGiooSViIiIiIiIiIgUFSWsRERERERERESkqChhJSIiIiIiIiIiRUUJKxERERERERERKSpKWImIiIiIiIiISFFRwkpERERERERERIqKElYiIiIiIiIiIlJU/hcCzPCF21eFmQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 190,
+ "width": 598
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "figure = plt.subplots(figsize=(10,3))\n",
+ "plt.plot(x_roi, y_roi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup fitting model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from lmfit.models import PseudoVoigtModel, LinearModel\n",
+ "from lmfit import Parameters"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Make initial peak position array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 67, 220, 246, 325, 373, 397, 421])"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from scipy.signal import find_peaks\n",
+ "\n",
+ "peaks, _ = find_peaks(y_roi, height=30.)\n",
+ "peaks"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot to see if the search positions are reasonable."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKwAAAF8CAYAAADioSPBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xmc5FV97//X6WV6unumZ4EZtmEb1lGWkVYxgjBACMpPXLhBI4Sokbhg3JKImHBj0JAoXA1GEa6J0Uj0JuJ1CYoYL8sgKKjTjGFpEBm2AWZhGaan9+X8/qjqrm81Xd3V3bV8q+b1fDzm8a361vl+65Q+Zqh+9+d8TogxIkmSJEmSJKVFQ7UnIEmSJEmSJCUZWEmSJEmSJClVDKwkSZIkSZKUKgZWkiRJkiRJShUDK0mSJEmSJKWKgZUkSZIkSZJSxcBKkiRJkiRJqWJgJUmSJEmSpFQxsJIkSZIkSVKqGFhJkiRJkiQpVQysJEmSJEmSlCpN1Z5AGoQQHgE6gEerPBVJkiRJkqR6cRCwM8Z48GwvNLDK6GhtbV2+Zs2a5dWeyHx1d3cDsGbNmirPREo3/65IxfHvilQc/65IxfHvilScevm70t3dTX9//5yuNbDKeHTNmjXLN2zYUO15zFtnZycA9fBZpHLy74pUHP+uSMXx74pUHP+uSMWpl78rnZ2ddHV1PTqXa+1hJUmSJEmSpFQxsJIkSZIkSVKqGFhJkiRJkiQpVQysJEmSJEmSlCoGVpIkSZIkSUqVEGOs9hyqLoSw4bjjjjuu1rvvS5IkSZIkpUV2l8CuGGPnbK9tKseEJEmSlCLbumHTehjsgZbFsPpkWLmm2rOSJEkqyMBKkiSpXm26FdZfDo/d8eLXDjwBTr4IVq+r8KQkSZJmZg8rSZKketT1dbj2zVOHVZA5f+2boevays5LkiSpCAZWkiRJ9WbTrXD9hyCOTT8ujsH1H8yMlyRJShEDK0mSpHqz/vKZw6pxcQzWX1He+UiSJM2SgZUkSVI92dZdeBlgIY/dnrlOkiQpJQysJEmS6smm9ZW9TpIkqQwMrCRJkurJYE9lr5MkSSoDAytJkqR60rK4stdJkiSVgYGVJElSPVl9cmWvkyRJKgMDK0mSpHqycg0ceMLsrjnwxMx1kiRJKWFgJUmSVG9OvghCkV/zQgOc/NHyzkeSJGmWDKwkSZLqzep1cNbnJ0KrGPNfnngaGuCsf8yMlyRJShEDK0mSpHp03B/B+d/l4ba1hJD/UoDMMsDzvwvHnV+N2UmSJE2rqdoTkCRJUpmsXsclSz/DM8//mhMa7mUR/eyilWNe8wbOfu3p1Z6dJElSQQZWkiRJdWzzjj6eiKt4aHTVxLm37tqLs6s4J0mSpJm4JFCSJKlOjYyO8fSOgRedf3BrTxVmI0mSVDwDK0mSpDq1tWeQkbFMi/WFzbmvfQ9t7WFsLBa6TJIkqeoMrCRJkurU5uf6Jh4fsXcHy9sXANA7NMqTO/qrNS1JkqQZGVhJkiTVqWQotf+yVg5buWji+aZneqsxJUmSpKLYdF2SJKlObX4+F1jtt6yV5CLAHX1DlZ+QJElSkaywkiRJqlObn88tCVy1rI2Ohc0Tz3cOjFRjSpIkSUUxsJIkSapTyQqrVcta6WjNFdfv7B+uxpQkSZKKYmAlSZJUp5KB1f7LWidVWBlYSZKk9DKwkiRJqlPbegYmHu+9pJWO1kRg1e+SQEmSlF4GVpIkSXVoeHSMgeExABoCtC9opGNhYkmgFVaSJCnFDKwkSZLqUO9groKqvaWJEMKkCisDK0mSlF4GVpIkSXVoVyKwWtySqaxyl0BJklQrDKwkSZLqUO/g6MTj9mxgtSSxS2CPFVaSJCnFDKwkSZLq0K7BXCDVPmWFlYGVJElKLwMrSZKkOrQrUWG1ONtsffIugTHGis9LkiSpGAZWkiRJdSiv6fqCTGDV0tTAgsbM17+h0TEGR8aqMjdJkqSZNM08ZGYhhD2AvwFeD+wL9AC3A5fGGO9OjLsAOKrAbe6IMV436b7vAD4EHA7sAG4ELokxPj3FHF4P/CVwNNAP3AL8dYzxwfl8NkmSpFq0a9IugUB2p8Amntk1BGR2ClzY3FiV+UmSJE1n3oFVCGEZ8EvgYODnwH8BRwBvBE4PIZwUY9yQHf4+4LgCt1oITARWIYRLgE8BTwDfAPYB3p69Z2eMcXti7PnA14Fns/dYnH3/M0IIxxtaSZKk3c2uxC6A40sCIdPHaiKwGhhmZcfCis9NkiRpJqVYEngxmbDqshjjq2OM74kxrgM+ArQBVyXGrga+FGMMU/x57/igEMIhZCq27gOOijG+O8Z4FvAnwP7AZxJjlwBfALYCx8QY/zjGeA7wOmAJcHUJPqMkSVJNyVsS2JKrolqc6GP1Qv8IkiRJaVSKwOpsMkvwLpt0/vPAFuD4EMIBIYTlwFLg4SLu+V6gkcySwp2J818DngLODSG0Zc/9IZlg6rMxxqfGB8YYbwHuBE7JBmCSJEm7jV1DL14SCNCRqLZyp0BJkpRW8wqsQggBOAh4IMbYn3wtZrad2Zx9ugoYD42KCazWAWNkelZNvudPgRbg+MRYgBumuM/67PGkIt5TkiSpbiSXBC5KBlZ5OwUaWEmSpHSabw+rBuAc4JnJL4QQOoAjs0+3Ai/PPt4WQngnmT5XvcAtMcbbJ11+LPBEjLFnivfszh4PI9NYfS0wCkzVpyo5VpIkabeRXBKYF1gtTARWAy4JlCRJ6TSvwCrGOAp8b/L5EEIjcA2wCLgnxvhwCOGt2ZevB/aYNP564NwY465s0NVMJuSayvPZ4/LscQ/g2RjjVN+4Jo8tqLu7m87Ozilf27Bhw5TnJUmS0mrX4OjE47wlga2JJYFWWEmSpBIolKd0d3dPeb4YpehhlSfbL+pW4G3AAPCe7Eurs8cfkamuagNeBdwBnAX8S/b1juxxsMBb9GaP49+2OmYxVpIkabewazAXRhWusDKwkiRJ6VSyICeE0Az8BfA/gVbgceAPYow/zw75J+A7McZkr6m7QghnAvcD54QQDgdeyL7WWuCtFmSPfdnj8CzGFrRmzRorqSRJUt3oTVRYFe5h5ZJASZI0f4XylM7OTrq6uuZ0z5JUWIUQDiKzI9/fkQmJvggclQiriDHeNSmsGj+/k1xz9bXAc2R6Ui0t8HbjywnHdwTcBizJNoCfaawkSdJuIdnDyl0CJUlSrZl3YBVC2Be4HTgO2Ai8PMb4gQIN0wsZHzsSYxwms5PgwSGE9inGHpo93ps9PkCm59URRYyVJEnaLfQUarruLoGSJKkGlKLC6rPAfsANwKtijBsnDwghHBlCiCGEHxa4xwnZ46+zx5uARuDUSfdpBE4jUzF1X2IswOlT3PcMMv2tbivuo0iSJNWHvF0CF7pLoCRJqi3zCqxCCG3Am4DtZPpVFWp+/iDwKHBGCOE1k+7xR8ArgFtjjA9nT38ZiMClIYRkf6qLgVXAVTHGmD33r0A/8NEQworEfc8j09T969llh5IkSbuF0bFI31Cuh1Vbc+PE4yWJXQJ7rLCSJEkpNd+m653AQuAx4FNTt5EC4JPAhcD3gZtDCDeSacp+BJmKqWeB940PjjFuDCFcAVwE3BtCuAk4DFgH/Ar4XGLs1hDCnwNfAu4JIfwA2Bs4E9gE/NU8P6MkSVJN6R1K9K9a0EhDQ+47mrsESpKkWjDfwGrv7PEIpu4hNe7KGOOPQghryewieCLwe8BW4CvAZTHGR5IXxBg/FkJ4FPhT4HwyVVxXAp+IMQ5MGnt1COEZ4GPAuWR2GvwqcEmMcfv8PqIkSVJtKbQcEF68S2CMkWl+6ShJklQV8wqsYozXAUV/w4kx3g+8bRbjrwaunsVcriv23pIkSfWq0A6BAC1NDSxobGBodIyh0TEGR8ZYmFgyKEmSlAalaLouSZKkFOkZmHqHQIAQAh2JPlbuFChJktLIwEqSJKnO9A7mGq5PDqzAPlaSJCn9DKwkSZLqzK5plgQCLE70sXqhf+RFr0uSJFWbgZUkSVKdSQZWU1dYJZYEWmElSZJSyMBKkiSpzuQ3XX9xQ/X8nQINrCRJUvoYWEmSJNWZ/Aqr5he9nl9h5ZJASZKUPgZWkiRJdSY/sHpxhVXbglxg1T9kYCVJktLHwEqSJKnO9M7QdL19QS7E6hsafdHrkiRJ1WZgJUmSVGdmarremqiwMrCSJElpZGAlSZJUZ3YNTB9YJRux97kkUJIkpZCBlSRJUp3pHZp+SWBrcyKwGrTCSpIkpY+BlSRJUp3ZlQihFi2cqsLKJYGSJCndDKwkSZLqTO+MPawSFVbDBlaSJCl9DKwkSZLqTLKH1dS7BCYqrAbtYSVJktLHwEqSJKnOzFRh1ZassHJJoCRJSiEDK0mSpDoSY2RXsul6Ipwalx9YWWElSZLSx8BKkiSpjvQNjRJj5vHC5gaaGl/8da9tgU3XJUlSuhlYSZIk1ZFkAJXsVZXU6pJASZKUcgZWkiRJdaQ/EUC1TrEcEF68JDCOl2RJkiSlhIGVJElSHekbzvWkaisQWDU3NrAgu1RwLMLgyFhF5iZJklQsAytJkqQ6kldh1Tx1YAXQ1uKyQEmSlF4GVpIkSXWkmCWBAG2JMKt30J0CJUlSuhhYSZIk1ZH+4WIrrHIN2ZPXSJIkpYGBlSRJUh1JLu9rK7BLYOY1K6wkSVJ6GVhJkiTVkWS11MLpKqwSgVW/PawkSVLKGFhJkiTVkf68CqvpAqtc9VWvgZUkSUoZAytJkqQ6ktfDatrAKrlLoEsCJUlSuhhYSZIk1ZFkD6tpm667JFCSJKWYgZUkSVIdGSi6wsolgZIkKb0MrCRJkupIcnnf9D2skhVWLgmUJEnpYmAlSZJUR/qHxiYeT7dLYHuLFVaSJCm9DKwkSZLqSP9wcRVWyf5W9rCSJElpY2AlSZJUR+bSdL130CWBkiQpXQysJEmS6kiyWmrapuuJJYF9w1ZYSZKkdDGwkiRJqiP9w0VWWCVe67PCSpIkpYyBlSRJUh1JVli1LWgqOK6tJRFY2cNKkiSljIGVJElSHenLC6ym62GVWBJoYCVJklKmJIFVCGGPEMIXQgiPhBAGQwjPhBC+F0J42aRxTSGEPwsh3B9C6AshPBpC+IcQwuIC931HCOHuEEJvCOHJEMJXQgj7FBj7+hDCz0IIPSGEbSGE/wghHFGKzydJklQrBhJLAhdOsySwfUGywsolgZIkKV3mHViFEJYBvwT+FHga+BpwL/BG4PYQQmdi+DXAZ4EAXAs8DHwYuC2EsHDSfS8BvgrsAXwD6ALeDtwVQlgxaez5wPXA4cB1wPrs+99laCVJknYnxVZYtS5wSaAkSUqvUlRYXQwcDFwWY3x1jPE9McZ1wEeANuAqgBDCOuBdwM3AsdlxpwGfBNYCF43fMIRwCPA3wH3AUTHGd8cYzwL+BNgf+Exi7BLgC8BW4JgY4x/HGM8BXgcsAa4uwWeUJElKvRhjXtP16SusXBIoSZLSqxSB1dlAP3DZpPOfB7YAx4cQDgDenz1/cYxxKDHuCmAYuCBx7r1AI3BpjHFn4vzXgKeAc0MIbdlzf0gmmPpsjPGp8YExxluAO4FTsgGYJElSXRsYHpt43NLUQGNDKDg2WWHVb2AlSZJSZl6BVQghAAcBD8QY+5OvxRgjsDn7dBVwErA9xvjLSeN2kVnut38I4eDs6XXAGHDjFPf8KdACHJ8YC3DDFFNcnz2eNIuPJUmSVJOS1VWt0ywHhPxAa2h0jOHRsWnHS5IkVdJ8K6wagHOAD05+IYTQARw5/hRYCdxf4D7d2eNh2eOxwBMxxp4ixq4FRoEHixgrSZJUt5LN09umWQ4IEELIG+OyQEmSlCZNMw8pLMY4Cnxv8vkQQiOZBuuLgHuA8eBpa4FbPZ89Ls8GXc3FjM0e9wCejTFOtb3N5LEFdXd309nZOeVrGzZsmOlySZKkqsvbIXCGCiuAtpZGegYzX6H6hkZY0tpctrlJkqT6VShP6e7unvJ8MUrRwypPtl/UrcDbgAHgPUBH9uXBApf1Zo9NsxxLdnyxYyVJkupWsTsE5sbYeF2SJKVTyYKcEEIz8BfA/wRagceBP4gx/jyEMN5vqrXA5Quyxz4yDdiLHUt2fLFjC1qzZo2VVJIkqaYlQ6fWGZYEQn6o1TdoYCVJkuamUJ7S2dlJV1fXnO5ZkgqrEMJBZHbk+zsyIdEXgaNijD/PDtmWPS4tcIs9ssengOfI9KQqZuz4vZdkG8DPNFaSJKlu5Tddn/n3knmB1dBU3RUkSZKqY96BVQhhX+B24DhgI/DyGOMHJjVMf5xMldPRBW5zKJldAe+PMQ4DDwMHhxDaC4wFuDd7fIBMz6sjihgrSZJUt/rzKqxm/prX6pJASZKUUqWosPossB9wA/CqGOPGyQOyzdnXA3uFEPJCqxDCUuCVwF0xxp3Z0zcBjcCpk8Y2AqeRqZi6LzEW4PQp5nYGmf5Wt83+Y0mSJNWW/rweVjNXWLUvcJdASZKUTvMKrEIIbcCbgO1k+lUVan4OmV0DAT4dQmjIXh+Az5DpQfXFxNgvAxG4NISQ7E91MbAKuCrGGLPn/hXoBz4aQliRmNt5wKuAryeCMEmSpLrVl9wlsIgeVq2JwKrXJYGSJClF5tt0vRNYCDwGfGrqNlIAfDLG+J8hhG8BbwE2hhB+lr3+5cD1McZvjg+OMW4MIVwBXATcG0K4CTgMWAf8CvhcYuzWEMKfA18C7gkh/ADYGzgT2AT81Tw/oyRJUk0YmOUuge2JKqx+K6wkSVKKzDew2jt7PIKpe0iNu5JMM/XzgP8G3gm8A3gS+ATw6ckXxBg/FkJ4FPhT4HwyVVxXAp+IMQ5MGnt1COEZ4GPAucALwFeBS2KM2+f42SRJkmrKfHYJtMJKkiSlybwCqxjjdUDBsqopxo8Al2X/FDP+auDqWczlumLnIkmSVG/ydwksJrCywkqSJKVTKZquS5IkKQX6E1VSs66wGjSwkiRJ6WFgJUmSVCeSFVbF9LBqa8mN6R92SaAkSUoPAytJkqQ6kdfDqqglgbkxfS4JlCRJKWJgJUmSVCcGhmfbdD3Xw8olgZIkKU0MrCRJkupEskoqGUYVkqywckmgJElKEwMrSZKkOpG/JHDmr3lWWEmSpLQysJIkSaoT+UsCZ1lhZQ8rSZKUIgZWkiRJdWI+Tdd7h1wSKEmS0sPASpIkqU70Dyd7WM2u6boVVpIkKU0MrCRJkupEMnRaWNQugVZYSZKkdDKwkiRJqgMxxllXWLUmQq2B4TFGx2JZ5iZJkjRbBlaSJEl1YGg0Fzg1NQSaG2f+mtfQEPJCq2TgJUmSVE0GVpIkSXVgYGhs4nExDdfHtbfkxva5LFCSJKWEgZUkSVId6BvOhU2tRfSvmhibCLf6Bq2wkiRJ6WBgJUmSVAeSDdeL6V81rj2xU2CfOwVKkqSUMLCSJEmqA32z3CFwXLLCqn/YJYGSJCkdDKwkSZLqwMAsdwgcl6yw6nVJoCRJSgkDK0mSpDqQrLCaTdP1vB5WLgmUJEkpYWAlSZJUB/ICq+amaUbma1/gLoGSJCl9DKwkSZLqwFyXBLbadF2SJKWQgZUkSVIdyK+wmk0PKyusJElS+hhYSZIk1YH+4bn1sGqzh5UkSUohAytJkqQ60J+ojppd03WXBEqSpPQxsJIkSaoDyQqrttksCWxxSaAkSUofAytJkqQ6kNfDajYVVolwq2/QCitJkpQOBlaSJEl1YGCOPazaW1wSKEmS0sfASpIkqQ7MdZfAZLjV65JASZKUEgZWkiRJdaA/EVi1zabCKtF0vd8KK0mSlBIGVpIkSXUg2XR94SwqrJLhlksCJUlSWhhYSZIk1YH8CqumaUbmyw+sXBIoSZLSwcBKkiSpDsy1h1Uy3LLCSpIkpYWBlSRJUh3on+MugW0tLgmUJEnpY2AlSZJUB5JLAmcVWDXnLwmMMZZ0XpIkSXNhYCVJklQHkv2n2maxJLCpsYEFTZmvhGMRBkfGSj43SZKk2TKwkiRJqgMDw7mgaTYVVuBOgZIkKX0MrCRJkmrcyOgYQ6OZwCoEaGma3Ve89kTj9d5BdwqUJEnVZ2AlSZJU45IN19uaGwkhzOr6ZEVW8l6SJEnV0jTzkNkJIVwIXAUsizHumPTaBcBRBS69I8Z43aTx7wA+BBwO7ABuBC6JMT49xfu+HvhL4GigH7gF+OsY44Pz+kCSJEkpN9eG6+OSSwKtsJIkSWlQ0sAqhNAIvGuaIe8Djivw2kJgIrAKIVwCfAp4AvgGsA/wduD0EEJnjHF7Yuz5wNeBZ7P3WAy8ETgjhHC8oZUkSapnyaqo+QZW/fawkiRJKTDvwCpkas5flv3zDgoHUgCrgS/FGN8/wz0PAf4GuA94dYxxZ/b8O4F/AT4D/HH23BLgC8BW4LgY41PZ86cANwNXA6fO7dNJkiSlX7JReussdggc15bsYWVgJUmSUqAUPazagQ3APwMnFhoUQlgOLAUeLuKe7wUagUvHw6qsrwFPAeeGENqy5/4QWAJ8djysAogx3gLcCZySDcAkSZLqUn6F1ex/H5m/S6BLAiVJUvWVIrDqB85J/Lm/wLjx0KiYwGodMEamZ9WEGGMEfgq0AMcnxgLcMMV91mePJxXxnpIkSTUpr4dV8+y/3uUHVlZYSZKk6pv3ksAY4yjw7fHnIYQ/LTB0dfa4Lbu07wigF7glxnj7pLHHAk/EGHumuE939ngYmcbqa4FRYKo+Vcmx0+ru7qazs3PK1zZs2DDT5ZIkSVWTDKza5lRhlbvGwEqSJM1WoTylu7t7yvPFKPkugdMYr7C6Htgj+UII4Xrg3BjjrhBCB9BMpifVVJ7PHpdnj3sAz8YYp6pfnzxWkiSp7vQNz7eHVbLpuksCJUlS9VUysBqvsPoRud3/jgE+C5xFppn6W4CO7LjBAvfpzR7H595Bpq9VMWMLWrNmjZVUkiSpJg0MzW+XwPYWm65LkqS5K5SndHZ20tXVNad7VjKw+ifgOzHGZK+pu0IIZ5Lpe3VOCOFw4IXsa60F7rMge+zLHodnMVaSJKnuJBulz6XCKnlNv4GVJElKgVI0XS9KjPGuSWHV+Pmd5JqrrwWeI9OTammBW40vJxyvqtoGLAkhhCLGSpIk1Z3kksC2OVVY5a7pHXRJoCRJqr6KBVYzGG+uPhJjHCazk+DBIYT2KcYemj3emz0+QKbn1RFFjJUkSao7ySWBC+fUw8qm65IkKV0qEliFEI4MIcQQwg8LDDkhe/x19ngT0AicOuk+jcBpZCqm7kuMBTh9ivueQaYX1m1znLokSVLq9Q3Nr8JqUaKHVY8VVpIkKQUqVWH1IPAocEYI4TXJF0IIfwS8Arg1xvhw9vSXgQhcGkJI9qe6GFgFXBVjjNlz/wr0Ax8NIaxI3Pc84FXA17PLDiVJkupS//D8mq4vWphoum5gJUmSUqAiTddjjDGEcCHwfeDmEMKNwONklvGdBjwLvC8xfmMI4QrgIuDeEMJNwGHAOuBXwOcSY7eGEP4c+BJwTwjhB8DewJnAJuCvyv8JJUmSqifZKH0uTdfbE0sCdw0YWEmSpOqrZNP1H5Fpqv7t7PEC4HDgK8ArYowPTBr/MeBCYAA4HzgEuBI4LcY4MGns1cBbgM3AuUAn8FXgxBjj9jJ+LEmSpKqbb4XV4kSF1S4rrCRJUgqUvMIqxrhumtfuB942i3tdDVxd5NjrgOuKvbckSVK9mG8Pq/YWAytJkpQuadklUJIkSXOUrLCayy6B7S25a3oHR8i1CpUkSaoOAytJkqQa159XYTX7AvqWpkYWNGa+Fo6MRQZHxko2N0mSpLkwsJIkSapxyQqruSwJhPydAl0WKEmSqs3ASpIkqcbNd5dAePGyQEmSpGoysJIkSapx890lEGBRS/PE454BAytJklRdBlaSJEk1rm8oFzDNtcJqkRVWkiQpRQysJEmSatjYWGRgONckfe5LAu1hJUmS0sPASpIkqYYNjOSWA7Y0NdDQEOZ0n0UGVpIkKUUMrCRJkmpY39D8dwgEAytJkpQuBlaSJEk1rBQ7BEJ+YGUPK0mSVG0GVpIkSTWsFDsEwqQeVu4SKEmSqszASpIkqYblVVjNI7BavDC5JHB0mpGSJEnlZ2AlSZJUw/J6WDU3TTNyeu0uCZQkSSliYCVJklTDBhJLAhfadF2SJNUJAytJkqQalgyX2g2sJElSnTCwkiRJqmHJ5XvJZX2ztWihgZUkSUoPAytJkqQalgyXFs0jsGpfYA8rSZKUHgZWkiRJNaxUgVXy2p4BAytJklRdBlaSJEk1LFkNlVzWN1vJa3uHDKwkSVJ1GVhJkiTVsF2DuV0C59PDqr0l17B918AIMcZ5zUuSJGk+DKwkSZJqWP6SwLnvEtjS1MiCxsxXw5GxyODI2LznJkmSNFcGVpIkSTUsb0lgS/O87pWssrLxuiRJqiYDK0mSpBq2K9EgvX0eFVaQ38dql4GVJEmqIgMrSZKkGpYMlhbPt8JqgYGVJElKBwMrSZKkGpbc0W++FVaLkxVWAwZWkiSpegysJEmSalgyWFo0j10CIX+XwWQQJkmSVGkGVpIkSTUsb5fAhfMLrJKBV48VVpIkqYoMrCRJkmrU8OgYgyNjADQEaG2eZ9P1ZIXV4Oi87iVJkjQfBlaSJEk1qjdRXdW+oIkQwrzul7ck0KbrkiSpigysJEmSalQplwPCpCWBBlaSJKmKDKwkSZJqVDKwap9nw3WYvCTQwEqSJFWPgZUkSVKNSoZK890hEPKrtHbZdF2SJFWRgZUkSVKN2pVojF6KwCpZpbVryMBKkiRVj4GVJElSjUpWQbW3zG+HQIDFLVZYSZKkdDCwkiRJqlH5SwKb532/vCWB9rCSJElVZGAlSZJUo/J2CSxBhVXHwlzo9UL/8LzvJ0mSNFclD6xCCBeGEGIIYekUrzWFEP4shHB/CKEvhPBoCOEfQgiLC9zrHSGEu0MIvSGEJ0MIXwkh7FNg7OtDCD8LIfSEELaFEP4jhHBEqT+fJElSWuQFVgvn38NqSWsusNppYCVJkqqopIFVCKEReNc0Q64BPgsE4FrgYeDDwG0hhIWT7nUJ8FVgD+CCu0ohAAAgAElEQVQbQBfwduCuEMKKSWPPB64HDgeuA9YDb8yONbSSJEl1KbkksL0ETdc7WnP3sMJKkiRV07wDq5BxXAjhXcCtwHEFxq0jE2bdDBwbY3xPjPE04JPAWuCixNhDgL8B7gOOijG+O8Z4FvAnwP7AZxJjlwBfALYCx8QY/zjGeA7wOmAJcPV8P6MkSVIa9eQtCZx/YNXa3EhzYwBgcGSMgeHRGa6QJEkqj1JUWLUDG4B/Bk6cZtz7s8eLY4xDifNXAMPABYlz7wUagUtjjDsT578GPAWcG0Joy577QzLB1GdjjE+ND4wx3gLcCZySDcAkSZLqSm+JA6sQQl4fq50DVllJkqTqKEVg1Q+ck/hzf4FxJwHbY4y/TJ6MMe4is9xv/xDCwdnT64Ax4MZJYyPwU6AFOD4xFuCGKd5zfeK9JUmS6kqplwSCfawkSVI6zDuwijGOxhi/Pf4H2D55TAhhP2AlhcOs7uzxsOzxWOCJGGNPEWPXAqPAg0WMlSRJqhs9A6WtsAJY3JrcKXBkmpGSJEnlU5pvNjPbI3vcWuD157PH5SGEDqC5mLGJez8bY5zqG9XksQV1d3fT2dk55WsbNmyY6XJJkqSK6x0qfWBlhZUkSZqtQnlKd3f3lOeLUdJdAqfRkT0OFni9N3tsmuXY8XsXO1aSJKlu9A7mmqKXZUmgPawkSVKVVCrIGf+201rg9QXZY98sx47fu9ixBa1Zs8ZKKkmSVFOSSwIXLyzN17qOxH1esMJKkiQVoVCe0tnZSVdX15zuWakKq23Z49ICr48vGXwKeI5MT6pixo7fe0kIIRQxVpIkqW7YdF2SJNWrSgVWj5Opcjq6wOuHktkV8P4Y4zDwMHBwCKG9wFiAe7PHB8j0vDqiiLGSJEl1YWR0jP7h3JLAtubGkty3I6/puoGVJEmqjooEVjHGUWA9sFcIIS+0CiEsBV4J3BVj3Jk9fRPQCJw6aWwjcBqZiqn7EmMBTp/irc8g09/qthJ8DEmSpNToHcqFVYtammhomKrYfPaWGFhJkqQUqFSFFcA12eOnQwgNANllfJ8h04Pqi4mxXwYicGkIIdmf6mJgFXBVjDFmz/0r0A98NISwYnxgCOE84FXA1xNBmCRJUl3IXw5YmuoqgI6FySWBU23CLEmSVH4V2z0vxvifIYRvAW8BNoYQfgZ0Ai8Hro8xfjMxdmMI4QrgIuDeEMJNwGHAOuBXwOcSY7eGEP4c+BJwTwjhB8DewJnAJuCvKvH5JEmSKmlXGfpXgRVWkiQpHSpZYQVwHnAJ0Aa8A1gOfAL4/ckDY4wfAy4EBoDzgUOAK4HTYowDk8ZeTSYI2wycSyYI+ypwYoxxe5k+iyRJUtUkA6vFJQysOlpz99o5YGAlSZKqo+QVVjHGddO8NgJclv1TzL2uBq4ucux1wHXFjJUkSap15dghEKywkiRJ6VDpCitJkiSVwK6BXGC1yMBKkiTVGQMrSZKkGpRcEljKwGpxoun6rsERxsbiNKMlSZLKw8BKkiSpBpWr6XpjQ5joiRUj9Ay4U6AkSao8AytJkqQatKMvt1xvaVvzNCNnryOxLNDG65IkqRoMrCRJkmpQsr9Usu9UKXTYx0qSJFWZgZUkSVIN2tE3NPF4WduCkt67Y2FuiaGBlSRJqgYDK0mSpBq0o798SwKTFVs7DawkSVIVGFhJkiTVoOfL2MNqiUsCJUlSlRlYSZIk1aAXEksCl7SWeEmgTdclSVKVGVhJkiTVoOSSwGVWWEmSpDpjYCVJklRjxsZieXcJtOm6JEmqMgMrSZKkGrNzYJgYM48XtzTR1Fjar3RL2pJN10dKem9JkqRiGFhJkiTVmB2JhutLSrwcEKBjoUsCJUlSdRlYSZIk1Zj8/lWlbbgO+UsMbbouSZKqwcBKkiSpxuxI7BC4tAwVVjZdlyRJ1WZgJUmSVGPK2XAdYGmiauu53qFpRkqSJJWHgZUkSVKNeb63vBVWy9sX0BAyj3f0DTM8Olby95AkSZqOgZUkSVKNKXcPq8aGwPL23H2f3WWVlSRJqiwDK0mSpBqTt0tgGZYEAuy5qGXi8faewbK8hyRJUiEGVpIkSTUm2cNqaRkqrABWLM4FVs/sMrCSJEmVZWAlSZJUY55P7hJYpgqrFVZYSZKkKjKwkiRJqjHJJYHlaLoOsGeiwmq7FVaSJKnCmqo9AUmSJM1OJZYE7rkod1+XBEq7mW3dsGk9DPZAy2JYfTKsXFPtWUnazRhYSZIk1ZgdySWBZaqwSvawckmgtJvYdCusvxweu+PFrx14Apx8EaxeV+FJSdpduSRQkiSphoyNxbwKq0rsEmiFlbQb6Po6XPvmqcMqyJy/9s3QdW1l5yVpt2VgJUmSVEN6BkYYi5nHi1qaaG4sz9e5/F0Ch6YZKanmbboVrv8QxLHpx8UxuP6DmfGSVGYGVpIkSTVkR3/5lwNCfoWVSwKlOrf+8pnDqnFxDNZfUd75SBIGVpIkSTWlEjsEAixrW0BjQwAyTd4HR0bL9l6Sqmhbd+FlgIU8dnvmOkkqIwMrSZKkGrIjuUNga3l2CARobAgsb8/d/1mXBUr1adP6yl4nSUUysJIkSaohyR0Cl5SxwgpsvC7tFgZ7KnudJBXJwEqSJKmGJJcELitzYJXfeN3ASqpLLYsre50kFcnASpIkqYbk9bAq45JAgD0X5e5v43WpTq0+GYAY53adJJWLgZUkSVINebY3FxyVs+k6TK6wsoeVVI+2tBzML8aOJIRZXHTgibByTdnmJElgYCVJklRTtrwwMPF47yULy/peKxI9rKywkurTf/zyCa4cOZvRWGRiFRrg5I+Wd1KShIGVJElSTdmyMxdY7VPuwCpRYbXdHlZS3RkZHeP//OJxfjZ2FB8fuYBY4MfD8eWCowQGz7wSVq+r2Bwl7b4MrCRJkmpIfoVVa1nfK2+XQCuspLpz8wPbJkLwm1vPYOS872SW+00SAtw5tobzhz7Ot8fWVXiWknZXTdWegCRJkoozPDo2UekUAqxMVECVQzKwssJKqj/fuOvxicdvefn+NB92JBx2Cmzrhk3rYbAHWhbznR2H8Ge3ZvrYDWzYzHnHH1itKUvajVQ8sAohXATsW+Dl62OMN2XHNQEfBC4ADgK2Ad8F/jrG2DPFfd8BfAg4HNgB3AhcEmN8usQfQZIkqSq29wxOLM3Zc1ELzY3lLZbPa7puhZVUVzY/38dtD20HMgH42155QO7FlWvymqqfvGuQpttuYmQs0vX4DjZt38XqFYsqPWVJu5lqVFh9DFhe4LUtwE3Zx9cA7wIeAK4FDgU+DKwLIfxOjHGiHj6EcAnwKeAJ4BvAPsDbgdNDCJ0xxu3l+CCSJEmV9HRyOWBHeftXASxtbaa5MTA8Gtk5MELv4AjtLRboS/XgR/dsmQjAX3PYCvZf3lZw7B6LWjjlyJX85P6tAHyn60n+4owjKjFNSbuxivawCiEsIRNWXRRjDFP8+XR23DoyYdXNwLExxvfEGE8DPgmsBS5K3PMQ4G+A+4CjYozvjjGeBfwJsD/wmcp9QkmSpPLZurNyOwQCNDQE9lua65O1+fn+sr+npMr44T25hSivP2afGcf/j+NWTTz+7t1PMjYWyzIvSRpX6abrh2SPD88w7v3Z48UxxqHE+SuAYTLLBMe9F2gELo0x7kyc/xrwFHBuCKHwrwskSZJqRKUrrIC8qosnnuuryHtKKq8nd/Sz8YkdADQ1BH7vJXvNeM2pR65kWVvzxPV3bnq2rHOUpLQGVicB22OMv0yejDHuArqA/UMIB2dPrwPGyPSsSo6NwE+BFuD4+U1bkiSp+ra8kKtwqkSFFcCqZbnAavPzBlZSPfhRorrqdw7Zg6VtC2a8ZkFTA284NteK+HsbnyzL3CRpXKUDq9XZ484QwvtCCJ8JIVwcQlg7PiCEsB+wEri/wD26s8fDssdjgSemasQ+xVhJkqSatWVnrvF5pSqsVi3LLQl8wiWBUl340b1bJh7/f0fPvBxw3Jtett/E4xvv3cLQyFhJ5yVJSZXumnkImWqoLmBp4vzfhxD+mczyvj2y57YWuMfz2ePyEEIH0FzM2Jkm1t3dTWdn55SvbdiwYabLJUmSyi5ZYbVPhSqsXBIo1ZctLwyw4bHMj0mNDYHfe+neRV+7dv+lrFrWyubn+9k5MMJPH9rOaWtmXk4oqf4VylO6u7unPF+MalRYNQBfAQ4EFgG/S6aa6gLg74GO7NhCeyf3Zo9NsxwrSZJU07Ykmq7vVanAygorqa78pDv3u/7jD17O8vaZlwOOCyHw+mNyywKv//VTJZ2bJCVVOsi5DLgsxnhL4txNIYTXkQmtPgj8MHu+dfLFWeP/ovaRacBe7NhprVmzxkoqSZKUWjFGtr5Q+SWByQqrzc/1EWMkhFCR95ZUejcnAqtimq1Pdtax+3DN+kxL4p/cv5X+oVFaFzSWbH6SalOhPKWzs5Ourq453bOiFVYxxlsmhVXj5x8H7iTTIH38V4dLJ4/LGl8y+BTwHDBa5FhJkqSa9VzvEEOjmX4xHQubaG+pzO8d92hfQGtz5ofRnsERXugfnuEKSWnVPzTKzx7O7e536pGzD6xesk8Hq1e0A9A7NMotD24r2fwkKanSSwKnM940fYRMRdTRBcYdSqYP1v0xxmEyOw4eHEJoLzAW4N5STlSSJKnSnn4htxywUjsEQmYJULLx+maXBUo16+ebnmEw2yj90JWLOGCPthmueLEQAmcllgV+7253C5RUHhULrEIIrw0hxBDCVVO81gy8Ahgis7PfemCvEMLRk8YtBV4J3BVj3Jk9fRPQCJw6aWwjcBqZ6qr7SvxxJEmSKmrrzmRgVagbQnnYeF2qDzd156qhTj1y5Zzv84a1ucDqlge38Xzv0LzmJUlTqWSF1R1kmqCfF0I4ctJrHwf2A74ZY+wDrsme/3QIoQEgZJolfIZMv6ovJq79MhCBS0MIyW9vFwOrgKtijLHUH0aSJKmS8iqsOloq+t75jdcNrKRaFGPklgdKE1gdsmIRa/fPdGUZHo384L/twCKp9CoWWMUYe4CPAEuArhDCt0MIXwoh/By4FHgE+Fh27H8C3wLOBDaGEK4BfgG8G7g+xvjNxH03AlcALwPuDSF8OYRwC/C3wK+Az1XqM0qSJJVLeiqsXBIo1aIHtvTwVDb4Xrywic4Dl83rfmcft9/E4//b5bJASaVX6abr/wS8mswyvhOBPwZWAFcCx8cYkx37zgMuAdqAdwDLgU8Avz/FfT8GXEimYfv5wCHZe54WYxyYPF6SJKnW5FdYVa6HFcCqZYnAygorqSbdlNgd8OTDV9DcOL8fBV9/zL40N2Z2DN34xA4e3r5rXveTpMkqs71MQozx58BZRYwbAS7L/inmvlcDV89vdpIkSen0yDO9E4+TTdArIfl+9rCSatON922ZeHz6S2a/O+Bky9sXcMoRK/mv+zNB2He6NvPRMyZ3fpGkuUvTLoGSJEmaQoyRh7b2TDw/fK/FFX3/5JLAzc/3Y3tQqbZsfr6Pe5/M7FnV3Bg4ZR79q5LOPm7VxOP/+OUTDAyPluS+kgQGVpIkSam3rWeQnQMjACxuaWKvCjddX9LaTMfCTGH+4MgY23oGK/r+kubnx/fllgOecOiedCxsLsl9T1uzcmKJ8jO7hvj+RntZSSodAytJkqSUe2hrrjfMYXstIrN5cmUdunLRxOP7n95Z8feXNHc/vje3HPC1L927ZPdtbmzgnSccNPH8n376CGNjVmBKKg0DK0mSpJR7aFtuOeBhKyu7HHDcS/ddMvH4/qcMrKRasb1nkF8+9hwADQF+twT9q5LedvwBLGrJVGD+dtsu1v9me0nvL2n3ZWAlSZKUcg9ty6+wqoaX7Nsx8djASqod/697K+Nt515+0HL2XFTaJcUdC5t56yv2n3h+9fqHS3p/SbsvAytJkqSU+21iSWByaV4lvTQZWLkkUKoZN5ZpOWDSO084iMaGzFLlXzzyHD/77TNleR9JuxcDK0mSpBSLMfKb5JLACu8QOO7wvRZP/ED6yDO97Bocqco8JBVv58AwP3s4Fx6dcVR5AqtVy9o4pzO3Y+D/+q8H3U1U0rwZWEmSJKXYs71D7OgbBqB9QSP7LllYlXksbG7k0BW56q4HrLKSUu+WB7YxPJoJjo7ebwn7LW0t23t94LTDWNCY+fGy6/Ed3Govq9La1g13XgPrr8gct3VXe0ZS2TVVewKSJEkq7Ddbc9VVh+61uCo7BI576b4dPJidz31P7eTlBy2v2lwkzSxvOWCZqqvG7be0lbe9cn/+9eePAfC/fvwgJx+2goaG6v2bVRc23QrrL4fH7njxaweeACdfBKvXVXhSUmVYYSVJkpRiv002XK9S/6pxNl6XasfA8Ci3PpircjqjTP2rkt5/yqG0NGV+xLzvqZ18u2tz2d+zrnV9Ha5989RhFWTOX/tm6Lq2svOSKsTASpIkKcUe2prOwOq+p1+o4kwkzeS232ynf3gUyGzWUIkNG1Z2LOTdJ62eeH75jQ/SMzBc9vetS5tuhes/BHFs+nFxDK7/YGa8VGcMrCRJklLswS3JhutVDqz2yQVWv9myi+HRGX6QklQ1N9zz9MTjM166V8Xe933rDmHvjkyvvWd2DfLFW35bsfeuK+svnzmsGhfHMr2tpDpjYCVJkpRSA8OjbNy8Y+L5UfsuqeJsYGnbgommzUOjY3n9tSSlx86BYX6U6F915tH7VOy92xY0cfHrjpx4/tXbH+WJ5/oq9v51YVt34WWAhTx2u43YVXcMrCRJklLq7sd3MDSS+Q376hXtrOyozg6BSWsPWDrx+Ge/fbaKM5FUyA9+/TSD2X871uzTwUsrHHa/ce2+HJf9t2JodIx/+MlvKvr+NW/T+speJ6WUgZUkSVJK3bkpFwi9avUeVZxJzkmH7Tnx+LaH3LZeSqPrNjwx8ficzlUVf/8QAh8/c83E8+9ufJLup92ooWiDc6xenet1UkoZWEmSJKVUMrD6nbQEVoevmHh81yPP0T80WsXZSJrst9t6uPvxzFLipobAG9fuW5V5vOKg5Zx25EoAYoQrfvxgVeZRi2LL3PoV9je0lXgmUnUZWEmSJKXQwPDoxA+dAMevXl7F2eTss6R1YrfCoZEx7nrEZYFSmly3YfPE49PWrGSPRS1Vm8tHX3sEIWQe3/zANroef75qc6kVT+7o5+MbM//ex1jcNePjPvLLJWzdOVCmmUmVZ2AlSZKUQl2PP89Qdhe+Q1cuYuXi6vevGpessrrtN89UcSaSkgaGR7nuV7nA6pzO/as4Gzhy7w7etHa/iedX3/pwFWeTbjFGvnf3k7z2ytv490cXcdfYkRNh30xCgDvH1nDjtmW8+ao78naXlWqZgZUkSVIK3flwsn9VOqqrxiUDq/W/2VbFmUhK+s+NT/Fc7xAA+y5ZyLojVsxwRflduO6Qicc/uX+ru4tOYXBklI9/5x4+/B8b6RkYAeALI2czVuSP65EGrho9G4CnXhjgnGt+xqPP9JZtvlKlGFhJkiSl0M9T2HB93PEHL6elKfM18uHtvTy5o7/KM5IUY+Rf7nhk4vnbX30QTY3V/3HvsL0Wc/pL9pp4fs16q6yStrwwwNu+fCf//stco/wDlrfx4Xf/CQ1v+DyEGf4/DA2EN/wjF7z9nbQvaARg58AIH/nWRkayVbpSrar+v2CSJEnKs+WFATY8lun1EkL6AquFzY288uBc1dcN//10FWcjCeDnDz/LA9mlYK3NjfzBKw6o8oxy3peosvr+xqd44rm+Ks4mPX50z9O89vO30ZXoV/imtftyw4dew8sPWg7H/RGc/1048MSpb3DgiZnXjzufkw9fwb9dcDxNDZl1hHc/voMv3vLbSnwMqWyaqj0BSZIk5fvu3U8ylm2i++pD9mDPKjZNLuSsY/blpw9l+lf9n188zgWvOZhQbMMVSSWXrK76/c5VLGlrruJs8h13wDJetXo5d256jtGxyJdu/S1/f/Yx5X/jbd2waT0M9kDLYlh9MqxcU/73nUGMkU//6AH+922bJs41BPjLM9fwrhMn/Vu6el3mTxGf5WUHLOPPfu9wLr8xsyPjF27+LSccuievOChdy8qlYhlYSZIkpUiMke905Zomn/2yVVWcTWGvP3YfPvWD++kZHGHTM73cuek5fueQdFWCSbuL+5/ayf/rzvWTe8cJB1VvMgV88NTDuHPTXQBc96vNXLjuUPZf3laeN9t0K6y/HB6748WvHXgCnHxRJgSqkn/4fw/lhVX7LlnI5966dvpq2pVrigrb3nPSIdz64HZ+8UgmHLzwG1384AMnsldHejbukIrlkkBJkqQUuefJF3ho2y4A2hY08tqj9q7yjKbWtqCJN70st/vXN3/xeBVnI+3evnjLQxOPX/vSvTlkxaIqzmZqv3PIHhyfXUo8Mhb5ws0PzXDFHHV9Ha5989RhFWTOX/tm6Lq2PO8/g6/c/gj/eFPus//umr340YdPKtnS78aGwJVvXcvy9gUAbO8Z5MJvdDEwPFqS+0uVZGAlSZKUIt/penLi8euO2of2lvQWxL/tlbkeOT++dwvP7hqs4myk3dNvtvZwwz1bJp5/4LRDqzibwkIIfOT0wyee/9+uJ0u/k92mW+H6D0Gcodl4HIPrP5gZX0EPb9/F39/QPfF83REr+NJ5x7GktbTLN/dd2soX3/Yysu2s2PDY85z5+Z/yy0efK+n7SOVmYCVJkpQSuwZH+N7GXGD1P47bb5rR1feSfTtYu/9SAIZGx/jazx6t7oSk3dAXbs411v7dNXvx0n2XVHE203vV6j14dXbp8OhY5PIfP1DaN1h/+cxh1bg4BuuvKO37z+CyH3Yzkm1QeOyqJVx9XicLmsrzI/mrD92Tj78ut4Rw0zO9vOV//zxvybmUdgZWkiRJKfG1Ox5hR98wAKuWtaZud8CpvOPVB008/vJtm3hyR3/1JiPtZjY89hzX//qpiecfTGl1VdJfnHHExOMb7tnCLx4pUdXPtu7CywALeez2zHUVcOuD27j5gUyfsRDgsjcfTeuCxrK+5wWvOZi/e/PRLMpW6sYIl3zvXh57tsSVbVKZGFhJu7tt3XDnNZnfMN15TcX+oy1JyvdC33BeE94PnnoYDQ3p33XvDcfuy0v37QBgcGSMy28sccWEpCkNj47xV9+9d+L56S/Zi2NWLa3ijIpz3AHLOOvYfSee/+0P72dsfFvU+di0vrLXzcIjz/Ty19+/b+L5Wzr356j9yl8JF0Lg3OMP4L8+chKrV7QD0Dc0yp9/69eMluJ/c6nMDKyk3dWmW+GrZ8KXXgU3fgxu+dvM8Uuvypyv8Jp+SdrdffmnD9MzMALA6j3bOTvlywHHNTQE/vr1L5l4/v2NT/Er+6RIZfe1Ox7lgS09ALQ2N/KJs14ywxXp8bHXHkFLdincf29+gW/96on533Swp7LXFenGe7fwhi/czuPP9QGwqKUpr8qsEvZd2sqVb11LU/aXIL967Hmu+PGDxGhopXQzsJJ2RynfPUWSdjePPtPLv9z+6MTzD59+OE2NtfM17fjVe3Dm0bndDP/sW79m58BwFWck1bdN23fxuZ/8ZuL5h373MFYta6vijGZn1bI2LnjNwRPPL73+fn6b3R11roab2+d2Ycvieb3vdP7tzsd4779toGcw88uIBU0NXP77x7BicUvZ3rOQY1Yt5QOnHjbx/Jr1D/PJH5Souk0qk9r5JiSpNFK+e4okVU2VlkgPjYzxoX+/m/7sluNH7r2Y1x+9T0Xeu5Q+/ro1E31SHn+uj49/5x5/e6+Z2Zpg1oZGxvhg4t+Mw/daxLtOPHiGq9Ln/accyiHZZWr9w6P86Te7GMh+ptnqGxrhLzcuBzJ9mooxPu6xJS+f03sW8sCWnXz37s387Q/u55Lv5ZZsrlrWynfe92rOrOK/7xeecgj/f3t3Hh5Xdd9//H3urNo3W7K8Y4N3Y2xjG0jAkISQsIYE0pKy0zRpQ/I0TQNN26Rk4ZetaR8S0tCEhJ22SVoSCBACSUzYDTaLjVe8b5Ita9eMZj2/P+6d0ciWLNlYmpH8eT3PPFdz7x3pSJpz597v/Z7vWT5jbPb5PS9s5/Yn1OekcBXuPMkiMjSOZfaUaecOZYtERPJr6wr32NhX1umU98DyW4b0OPjvz2zizd1tAAR8hu9esWBE1K461KTqYr71sfnc/PDrADz+1j5Om1jJJ8+ZlueWSUHKc78byb771AbW7mkHIOhz+LePn0ZgBGVkZhQH/dz5iUVc9sMXiCfTbGjo4PP/8wZ3/PnCo5o5ryuW5IZ7X2XlzjKuCM5imTO4OnrGwMvp2Xzh1+08MrGb2rLwsf4qWb96fQ+f//kbhwXNFkys4N4bllJVEnzXP+PdCPgcfnztYv7uf97k8TX7APjZC9v4yGkTmD+xcGeXlBPXyDuyicixK/DZU0REhl2eh0g/8vpufrRiS/b5Fy+YOaIvGi4+dTyfWDY5+/z2J9bzk5xC8iJA3vvdSHbPC9v4yXPbss9v/fCsYSnePVRm15fz5ZwaeE+ubeDTD64adKZVayTOdT9bmZ1p8I7kR0kP8hI3ZQ3fT17OntYoN937GpF48uh/gRyrd7Zwy/++dViwaunUah78y2V5D1ZlhPw+vn/VQs7xMq2shdsee1sZsVKQFLASOZEU8OwpIiLDLs9DpJ96u4G//8Vb2ednnzKGv3zvyM9G+srFczh9SlX2+e1PrOdbT24gkRpkdq+MbipNcMzufm4rX31sXfb5eTPHcuN7puavQcfJ1csmc+N7eoY0/mHDfi6983lW7Tjy5A1v7W7lou8/z2s7WrLrll9wBc6ld4AZ4DLXOGxadjuvMB+ANXva+Nx/vX7MM+ftbY3yV/evIp5039dTaoq5/qypfPOj87n/pqWUhQPH9H2His8xfPXSuQR8bjbvqh0t/PqNvYGRw74AACAASURBVHlulcjhFLASOZEU6OwpIiJ5cSxDpI8Day33vbidzz7cc3E0s66MH1y1cEQOBTxUOODjvhuXsvSk6uy6u57dwhV3vcTaPW15bJkUhDz1u5EsnbZ888n1fOPxnoz3RZMrueOqhRgz8o8Zxhi+fPFsPnPe9Oy6TY2dfOxHL3HDPSv59Rt72N0SIZW2tEbivLilib/979f52I9eZE9rNPuaL188h08tnw6LroVrHoEp7+37B055L1zzCLMv/Axfu2xudvUz6/fztWPINIrEk3zy/tdo6owBUFUc4IEbl3HbpXO5aulkwgHfUX2/4XLSmBJuzKl99i+Pvq1jtBQc1bASOYE8t6ubs4/lhUM4e4qISF54Q6QtMOjLvcwQ6drZx/xj97VF+Zdfv83v1jVm102tKeaBv1xKZXFhDBc5HkpCfu69YQl//eBqnt10AIA3d7Vy8Q+eZ96Ect4/q47TJlUyqbqIiqIgFUWBo6pZIyPUuylN8C763UjW3p3g1l++xZNrG7Lrlkyt4p4blmYnORgNjDF88YJZ1JWH+daTG4jE3SGBf9x4gD9udI8hjoG+EqDKwn6+d+UCPji3Z6ZSpp3rPvavd0cKxDrc89lpy3u9l/5i2RR2Nkf4z2fdocv3vbSDyTUlgy5in05b/v4Xb/L2XremmN8x/MdfLGZyzciYsfGz7zuFR1bvYX9HjLZogqt+8jL337iUhZOrBn6xyDAYPUc5EemXtZZv/3Yjv3+7lqdD7lj1wdyQy17ITVs+xC0UERl6TZ0xXtnazGs7mpm8+X5u4CiCVRlbnz2mC+eGtm4efHkHdz+/le5ET3bJnPpyfnzt4uNS7LfQFAf93HP9En7y3Fa++9RGkt6V5to97dmC0blKgj4qi93gVX1FmLkTKjhtUgVnTKuhOKhT1pGuLZpg9/OPMnfgXQ93jP1upHt6XSP//Ks1NLbHsus+MLuWO/58ISWjKFiV69ozp/K+WbXc9ug6nlnf2GtbX8GqJVOr+NcrFzClpqTvb1g7e8D3zq0XzGJ3czRbhPwbj6+jLOTn40smDdje7z29kSfW9AQTv/6ReZw5vWbA1xWK0pCfn163hKt/+gpt0QQd3Umu+9lKHvvse/v/m4oMo1FzpDPGFANfAq4CJgC7gIeA/2etTeSzbSL5lEpbvvzrtTz8yk5gIq+kj2L2FKB57FKqT8CTRBEZHVojcZ56u4FH39zLS1sOZi94bvYdhGMoKfL4axtJhPZw+tQqJlQW9TscJ522bG3q5PnNTfx+w35eeKfpsIut68+aypcunEXIX5jDRY4HxzF8avl0zj5lLD/+0xaeWNuQrfFyqK54iq54lD2tUdbta+f3G/YD7ixoy6ZVc+7MWs6bOZaTxpSMimFQJ4JdzRGeXtfIM+sbWbmtmU+bzcw9hn73xKpNdPp2sXzmWOrKR19wN5e1lhfeOcj3/7A5W0g844b3TOWfL5qDbxQMHT6SiVXF3H3d6ew8GOHRN/ewYuMBth/soqkzTlHAx+TqYhZPreITSycfl4LzjmP43scX0NDezaodLVgLt/zvW+xsjvCFD87o93jzs+e38cM/9kyacf1ZU7lq6eQ+9y1k8ydW8PAnl3HNT1fS3BWnvTvJpx9czf/99VkUBUfv55OMDGY0zAZgjPEDvwEuAFZ5j9OApcCTwEX2CL+oMWbVokWLFq1atWo4misybNqiCf7pkTX85q192XU3T93DFxpvxQyifkTKGq5JfIkZZ1zMrR+apQ8tERkRWrriPLO+kSfXNvDc5gMkUoefAlzv+y23Be4/6u99W+Ja7k19CIAxpUEmVBUzpiRIyloSqTSJpKUrnmTrgS6i/cxyNXd8Of900WzOmj7mqH/+SNcaibNi4wHe2NXK2j1tNHfFaY0maI3E+8ye6Mv4ijBnTK9hwcRKZteXM7GqiLFlIQI+DSnMt3TasmZPG8+sb+TpdY1saOhdA/N49LsFkyr54Jw6zp9Txym1paMmeGmtZcWmA/zg95tZvbO117YxpUG+euk8Ljq1Pk+tKwzdiRQhvzNk//PmrjhX3/0K6/b1ZIAuPamar182j5njepfHePiVnfzjI2uyz983q5YfX7MY/wg+Dr25q5Ur73qJuDdBxkcXTuBfr1wwKmorSn4tXryY1atXr7bWLj7a146WgNX1wD3AA8B1meCUMeZe4DpvXb+fjgpYyWhirWX7wQi/XdvAf/5pC62RngTDyxdO4DtXnErgzQcHnKEnheEfEp/kF6lzAbcw483nncwlC8arzoiIFJREKs3mxk5W7WzhqbUNvLT1YJ8zPRkDiyZXcca0as6uaOKM31406BpWmf3Oj32HzXbiMbXzrOk1/NmSSVxy6nhdABwinbZ0xJK0RRK0ROJsbepkze52XtzSdFjQoy/GQHVxkNryMGUhPz7H4PcZ/I7B5zgEfAafY7JBrUg8SXci7e7n7etzHAKO8V7rZNf7c56XhPxMqCxiYlURk6qLqSkJjpqAybGw1rKzOcKr21t4dVszKzbt7zV87VAXj2vlzta/OW79bmpNMefPqeP8OeNYPKVqxGUeWWvZ0NDBb9c28Ks39rDjYKTXdr9juPL0SdxywUyqSkZPjbtC1hlLcvPDq1nh1c0Cd0a9s6bXsHzGWCZWFbFi4wH++9Vd2e2nT6nigZuWjYobuw+9soN/emRt9vmF88fxvStPGxW/m+SPAlbGvAosBCZZa/flrJ8JbACes9aec4TXj4qA1X+seIct+7s4a3oNZ51cQ31FUb6bNCzSafdudkd3ks5Yko7uBO3dSTq7k0TiSVJpsFj3zq11l9Zbpr33f9parKX3urTF4g6pS6bTJFKWeDLt3kFPec9TaRLJNAGfQyjgUBTwEQ74KAr4KAr6CPkdioI+/I4hEk8RT6YJ+R2Kg35qSoOMLQtRWxampjR4xDvD6bSloztJcyROSyROS1ecg11xmjpjNHfGiafSxJNpdrdEeWd/Jw3t3Yd9j2vPnMJtl8ztuUjausKdeWfH84f/wCnvpX3Z5/n8yorskIyMsWUhPjxvHOfPqePUCZVUFBfWNL35Zq0l5r1PHGPchwM+414EDebCxh7yPrW4709re97L1lrSaeiIJWiLJkikLGlrSad73ttpa/EZ9wKrLOynNOSnNOwfcPiRtZZU2tKdTNPR7dYz6Fkm6U6kCPgcAj6HoN+9EAz6HYLZ5+4j5D98n4Dj6EJdjllbNMGa3W1saGhnV3OEnd5jV3M0e0e4LwsmVXLJqfVcdGp978/Gey48qgLQXfVn8NOT72TltmZe39lCV7zvDKqMMaVBFk6u4pxTxnDerFomVo2MIryFZl9blBUbD/CHDft5actBOmPJfDcpqyjgywavpo8t4ZS6MuaOL2dGXdmozPjqTqR4Z38nq3a0sHJ7M69ua2Z/R/8BqqDP4ayTazh/Th0fmF3nDuc7yn7XMW4ZD876EX/adICV25v7DEYD1JQEed+sWs6fU8fZp4wt2AvstkiCl7Y2sWLjAVZsPNDnOVvQ5/DxJRP59PLpOm7kQTKV5l9/t4m7n9uarb3Xnzn15fzXJ88YNefD1lpu/d+3+Plru7PrZtSVcs0ZUzhvVi1jy0LZ88hU2va6LkqlLeGAe50z0oLHMrRO6ICVMaYMaAFet9Yu6WN7A1ANlFlr+/xEHS0BqwvveK5XCmtdeYgZdWWcUlvGjLpSpteWMrGqiNqy8LAcRFJpN8ATT6aJpdxgTcx7Hk+miafSxBJp4t62rljKGxoQpyuWIhJPEomn6Iolae9OehflaVJpm31E4yk640lG+NsYYyDs9xH0uxf5Qb+DzzFu0CCRoiWS6PcEbSCTq4u55UMzuWh+fd/BkiPMnmKt5X9e3cU3Hl/f7wXC+Iows+vLmTGujOriICVeUKQ05KMk6Hefe+sCjtMTfKEnUJhK2+z/O5pIEY2n8DuGgBcE8fvcdrvBQ/d/n/QCNPFkOvua3GV3P0NxMn/FzHvGYntWGjewBNAVS9IZS9EZSxCJp7JBqMyQn0QqnQ0U5gYw+6vNkmG8n+F4P6dXAGqY3scBn6E46M/+zFTakvKCXSnvfzKU/I7JBrZ6B7pMToArJ+Dlcwh423PXgVvzJpZM4TM9GRA+x1Ac9FES8lOSWYb8FAd92ezAkN9HRZGfquIg1aM8Q8Ja6wXzk6TSbr/pjLlB/Y7uJB2xBJ3d7nE2E/Tv8IL+8ZQbZA/53QB8OOijrixMfUWYugp3ObY0RGVx4Lj/DTM1oFbtaMk+thzoGvTrF06u5MPzxvGhufX9z9a0dQU8cPkRs02zjONOkz7tXMDtN3tbo+xr66Y1Es8Gav1ecHZKdTE1paFBt1cGJ5lKs2ZPG69tb2F9QzubGjtoaItxsCtWUOcCIb/DnPHlLJhYycm1pdSVhxlXHqauPER1SbDghw3Fkim2NXWxqbGTzY0dbGrsYHNjJ9sPdg34WVVZHHADR7PrOGfG2MOLg7+LftcaifPHjft5el0jKzYeyM4kd6hwwOHsU8Zy/pw63j+rNm998UBHjA0N7Wxs6GD9vg7e2t3K5v2d/e5fFvbzsUVuoGpcxeiu1TUSbGrs4GuPreP5d5r63H7ZaeP55kfnj7pJIZKpNLc/sZ57Xtje5/agzyGRTh/xmOveoPcxtizEhMoixlcWMaGqiAmVRdnntWWhgj8WyvFxoges3gM8D9xnrb2+j+1/BM4FZlprN/XzPVYVFRUtmj2778LSIyGQ1dIVZ9E3nh7UyZpjoKIoQFVxkMpid1leFKA87KcsHKA07M8GmxKpnuBSItUTcIrGU7RFE3TGktmL9Mx+ma8HuiMhQ6ck6OPM6TV8YHYdH1008V0P4WuNxHnolZ3c++J2DhzhTqrISFQS9DGuIpwNOJSEfJSFA5Rlg6/uMrPOGEimejIvkyn3eJf7dTKdJpny1h22X7r363O2p617jM5k5xnjDkXIPozp/dwxJFP2sGBtd6IngBuJp4b8eBzwGWpKQowpCzKmNMTY0hBjykKMKQ1RUxKkvMj9+5WHA5SF/ZQXBSgJ+oin0nTH3aBzZyzBhoYO1uxuY82eNtbuaaO9e/CZNBMqi5g7vpyzptdwwbxxg88yXn3/gEOkMQ5c8n1YdM2g2yPDK5lK09QZZ39HN1HvPZ9M5/TJVE+/tLj9PhzwkbY9/TTl9eNUuidbIHOjLPM9WqNxdrdE2dUcYXdL9JizvTKB9ZoSN2heXRJiTGnma3foV9paQn43YzuTvdudSBFLuOdkybTF7xiqSoJUFQepKglSUxJkXEX4sKGK1lq64ilaI3FaIwn3EY3TEknQ6mVtN3e5Wdx7W6NsPxgZ9I2yspCfRVOqWHpSNUtPqmbhpMqBL0KPQ7/rTqR4actBfucVde/v/MQxsHhKFYunVHPqxArqyt2/T1VJkPKw/5iD7clUmuauOPs7YhzojHGgo+exeX8HGxs6aOqMD/h9ysN+zp4xlgvn1fP+2bWEA4WZGXYi29sa5Y8b9/P6zlZaIwnS1nLh/Ho+tmjCqL7h9cDLO/j6b9YNeDP2WPkcQ31FmKk1JUyqLqayOECpF+DOHQ2TO0ombS1+n0M44BD2u8fxkN/xhnX3DAPvGRJu8Du9b5CGchIE/D4ne95lDBhM7+d9/H/jyTRt0UTOI54d7ZD7M7Pt8W64hvwOQZ+PUKCnLU7ucZqeY27uNX044Mt+LhS6xYv7jketX7+eaDR6wgasLgV+DXzHWntrH9v/D7gcONNa+3I/32PEB6wydxxf3HKQl7Yc5NXtzcSG6OBSiIqDvuyQpzLvgqgs7Kc46MfvDcMyxj1pyRyIetYZDO4MIabX9szByhD0Mj8CXqZHr+c+Q9LL9nIvFL2Mn5wLx0TKutkdPod4ys0ma+qMuSc5Hd0c7IoPGGwsDfmpKglQ7Z2UVhUHGVMapKY0RNg74NaVhzlpTAlTaoqHZChCMpVm5fZmnlrbwKvbW3hnf+cRh+GcqDIfimlvaF3PcvDfI/e9mfnANOR+oLpfl4b9VBQFskVIDw12JNPWyxZLZrNqBhO8cIybhZTpS7n9Khzw9Qpqx3KzzA4JdOc+z2ShiRwrv2OYXV/OvAkVTBvjnuBOri5mUnURZeF3MRxjgCHSLP9iNsNDJMNaS1s0we6WKNsPdrG5sZONDR2s2dPGntZoXtsW9DmUF/kpCvqIxlO0RhLHJXBtjJu5PW98BUumVnH61Gpm15cfW+b+cex36bTljd2tPL3OLfb+zhGymHJlAn7VxUFCgcGdN8WTaZo6Y4M6d+uLzzHMHV/O2aeM4byZtZw2mACfSJ40d8V5/K29PPbWPrY1ddHcFc8Gsx0Dfl/PaAjHmOwNsxEeYsgy2fPqnuDVUAXw+vPheeP40dVHHefJCwWs+mCMuRq32PrXrbVf6WP7A8DVwNnW2j4+EUfPkMBcyVSaHc0RL427k02NHexqjrCrJUpz18B3e46XXlHsbFTbHZaTO/wt6HNrPVV7Jw3F3lCeoqCP4qB7QZ65KPc5BsfLNCgK+CgJ+Ub8B30yJ3stlkwTS7oHescYQgGHyuJAQU57nkil2dbUxfp97Ww90JUNiHTGk26QxBti1BVP0hVLkUile4KD9ARfHOPeaS4K+ikKOL3uemeCHcb03CnxOSanUK5DsVczLBzwud/Hu9syUK2kzE0Ng9uOTA0oa8kZ2ugOJ+s9PM30fO0FLTPDFwM+p98T99y7RT0f9qbP4NRQydylj8ZT7s/Nydpxssuha4P1/q+Z+m+9glrecEt3mHDvfXIDY5n9rYXikJ+w3w0OZoaLZrJAu7whxV3xJJFYiq54kngyjQViXn2u/e2xgqqHM1SKAj7Ki/z4HQfHgZKg/7Agf2nYn82AyqwP+h3vuORmdXTGkjS2d9PQ1s2+tm4a2rs50DF0f8OakiCLplR52RFVzJ9QMbTZB0cYIi1yNJo6Y9lswT0tURo7umlsj9HY3n1UMyLm08SqIre0RF0pM+vKmFFXxvSxpce/NtQQ9LutBzqzwatVO1vydvFcHPQxo66M2fVlzBpXzuz6cuZPqCjY+loiA0mn3fOzgc53u3POGXa3RNnbGmVPa+/lYDIQZWQFrPrzboYEjoYBt5kp0PrL/c/kz0X62T4q+X0O08eWMn1sKR+a13tbIpX20sG9VPBInI7uJO2ZuiWxJI4x2YBSwGeyNWQyQadwwEdFkZu2mQ06edtDAZ934T64AtPi/r/8PoeSEVbuJOBzmOGdxMrAjDH4DPgw5Cvj3xhD2JscIF8/P+h3jy8UwPvdWktLJMGBjlh2+E+mbp4bgO05LnZ4daDS1hLwgqUBn5v27feyLjNB1N7b+983U/PI7+QeM73AZra2GKSsO0wplSa7zAxhCvicnMkenF4TP/RMADG0/+/uhJs12tQZp8kbHpNZNnfFs4X727uTtEfdv2k0kfI+M5xsOydXFzN/QgXzJ1Qwb0IFE6uKhvdzpHa2AlRyXIwpDXHerFrOm1Xb5/ZEKk1ndzI7FO+gl7FzsNOt5ZnJ9o4l03TF3fOyzBCYUMDJHkPiKZs9n2vxJmPZ2xrtczhtkXfuVlkcyJaEcL92hxJWFQepLg0ytjTESWNKDq89NVSGoN9NG1vKp5aX8qnl02nqjLFyWzNv7mplY2NHduKalq74gBMnDKS6xP17jS3LeZSGmFRdxOz6ciZVFWuiERlVHMcQdo58TmGMcc9BvBpW8yZU9LlfdyLF7pYI25oi7GuL0h5N0BlLZUfFZEa6ZG5yZ0bAJFKWbu9GWjSeIp4duu0O++5V89Zbl1u2Jpatq5zKjoDomYDL9qqz2xefY7LJFOVFASq9r4N+J+dn97QlfsjIg9yazrnDAMG9id7zd3SXlcUjYzjgUBkNAavMFGaV/Wyv8ZZ7h6EtI0LA52Q/VEVETmTGmF41Y+TYhAM+JlYVH9VsVum01YWcnLACPscd3j9Ex55I3M1y7oqnKAn6KC8KnLC1kcaUhrhwfj0Xzq8/bJs7sY0bNEymBpeG5XOMW59vgBmeReTIwgEfJ9eWcXJtYd74tjlBrNygVjjgKCljGI2GgNUGbzm/n+0nA03W2oZhao+IiIgMQMEqkaFTHPSPupnLhkI44KO+omjwkzSIyAkjW+8Yna/k04i/LWCt3QesBxYaY2pytxljZgJTgKfz0TYRERERERERETl6Iz5g5bkLt1bV7ZkVxpgA8G/e0x/mo1EiIiIiIiIiInL0Rkuu8H8AfwZ8yhizAHgTWA7MAu601r6Qz8aJiIiIiIiIiMjgjYoMK2ttEjgfN6NqInAdYIHPeQ8RERERERERERkhRkuGFdbaCPAF7yEiIiIiIiIiIiPUqMiwkh6LFy9m8eLF+W6GSMFTXxEZHPUVkcFRXxEZHPUVkcFRX1HASkRERERERERECowCViIiIiIiIiIiUlAUsBIRERERERERkYKigJWIiIiIiIiIiBQUBaxERERERERERKSgGGttvtuQd8aYg0VFRdWzZ8/Od1PetfXr1wMwGn4XkaGkviIyOOorIoOjviIyOOorIoMzWvrK+vXriUajzdbamqN9rQJWgDFmG1AObM9zU0RERERERERERoupQLu19qSjfaECViIiIiIiIiIiUlBUw0pERERERERERAqKAlYiIiIiIiIiIlJQFLASEREREREREZGCooCViIiIiIiIiIgUFAWsRERERERERESkoChgJSIiIiIiIiIiBUUBq1HEGHOJMeYFY0ybMabdGPOsMeb9+W6XiIiMPMaYemPM3caYvcaYuDFmlzHmTmNMVb7bJlJIjDHTjDEPGWMajTFRY8wGY8xXjDHhfLdNpBAYY/7GGGONMZV9bPMbY/7OGLPOGBMxxmw3xvy7MaYsH20Vyacj9ZVD9rvQ2++04WpbvihgNUoYYz4NPApMA34BPAucCTxpjFmcz7aJFAJjzLnegX2gx235bqtIvhljaoCXgJuAt4H7gCbgM8BzxpjSPDZPpGAYY6YBLwOfwO0rDwEJ4KvAb4wxvjw2TyTvvD5w0xF2uQv4HmCAB4AtwN8Cf1LQV04kg+gruf5qKNtSSPz5boC8e8aYScD3gdeB91lrW731HwaeAG4DLslbA0UKw27gjiNsvxA4BVg7PM0RKWj/AEwB/t5a+z0AY4wBfgrcANwMfCt/zRMpGP8OjAVutNbeA2CMcYC7cfvKTcCP89c8keHnfV4s9B7XA4v62e9c3D7yB+DD1tq4t/6rwFeAW4CvDX2LRfJjsH3F23cesAC4CrhoONpXCIy1Nt9tkHfJGPMd4IvAGdbaVw7Z9iww2Vp7Ul4aJzICGGPOAP4E3GWt/Vy+2yOSb8aYN4D5QIm1tjtn/SnAJuBJa+2F+WqfSCHwhsc2AW9aaxcdsm0McAB42Vp7Zj7aJ5IvXhZuRx+bqjI31r39fgFcASy11r56yOubgQZr7eShbq9Ivgy2r3j7NgE1h+y30Fr7xlC1rxAow2p0+CCw/dBgFYC1dnke2iMyYng1Ev4b9yL8ljw3R6RQGKCvO1oBb9k1jG0RKVQzcctrvH7oBmttk3dxscQYU2at7euCRGS0igJX5jz/KjCnj/3OAQ7kBqsArLWdxpjVwDJjzEnW2m1D11SRvBpsXwE3azfkff0Z4Nyha1bhUMBqhDPGlODeBX/US0G/CFjqbX4BeMoqjU7kSL4GTAbOzs0kETnBPQucCnwO+A5khzn9g7f9D3lql0ghSXnLYD/b/YAPqKfvO+gio5K1NgX8MvPcGHPzofsYYyYAtbifN31ZDyzDLdeggJWMSoPpKzn7Ppaz38VD3LSCoYDVyFePe3evG1gBnH3I9heMMR+x1jYNd8NECp0x5lTgs8BD1toX8t0ekQJyG+7EHd82xlyCe+GwBDgNeBK3lpXIiW49boH1s40xAWttIrPBGLMEyMzydOgQDhHp6ReN/Wxv8ZbVw9AWESlQmiVw5MtML/5nQB3u8MBS3GK59wHvAe7NS8tECt/t3lIFPUV6iwOrva/fC3wSN1gF7p1uk49GiRQSa20n7jnWFOA+Y8zJxpgSY8xFuDM2ZzLcY3lqokghK/eW/fWPzNBzJViInMAUsBr5MmnoaeBya+3T1toua+1O3AuM3cBFxpiJeWuhSAEyxpwOXAz80lq7Od/tESkwv8SdMvkh3Do9JbgZVn8A/gb4bv6aJlJQ/g63X1wFbAY6gd/gFoz+nbePstxFDpfJSCzqZ3vmGicyDG0RkQKlgNXI1+ktt1hr1+Vu8FLTH/eezh7WVokUvr/1lj/MaytECowx5jTgAmAVcK21dpO1NmKtfQ24DNgH/LUxJnSk7yNyIvCyrD4AfAj4OvBN3Kz3M4BxuNmK/Q15EjmR7feWlf1szwwZ3DsMbRGRAqUUy5Fvu7fs7Gd7Jp1WwzdEPMaYatxplDdba5/Ld3tECsxMb/mstTadu8GbuekV4CO4w6A2DXfjRAqJMcYPWGvtU8BTOevLgHnAi9ZaDQkUOdxO3Oyp+f1sPxl3BMm6fraLyAlAGVYjnLW2DfdAPssYU97HLqd7yzXD1yqRgnc57rSwvxxoR5ETUGY2s/p+tmdqJ7b0s13khGCMCeJmUL3ax+YrcWcIfHJYGyUyQnizoz0L1BljegWtjDGVuLOev2Ktbc9H+0SkMChgNTr8BCgG/s0Y48usNMZcDpwDPGat3ZevxokUoEu85W/z2gqRwvQ8btDqCmPMWbkbjDHn4xZhf85aeyAfjRMpFNbaOO7Q2VONMQsz640xU3GHB7YBd+WlcSIjQ6Z/fMsY4wAYYwzwbdzaVnfmq2EiUhg0JHB0+AFu7YSbgLOMMS8D44HzcWuNfDaPbRMpKN6J0HLcYp8r89wckYJjrW03xnwauB/4kzHmGWAHcBJurZ423MLrIgL/iHvz4zljzK9whzBdhjtj81XWWmUiivTDWvuoMebnt/6R/AAAAV5JREFUwMeBN4wxLwKLcUeIPGatfTivDRSRvFOG1SjgpdReCnwJNwh5NbAAuA9YZq3dkcfmiRSak3ELfK6x1nbnuzEihci7SDgDeARYBNyIW2fkIWCJtXZtHpsnUjCstU8DHwQykxJcBrwOfNBa+/N8tk1khPgL4J9xR4tcD1QD/4Jba1RETnDGWpvvNoiIiIiIiIiIiGQpw0pERERERERERAqKAlYiIiIiIiIiIlJQFLASEREREREREZGCooCViIiIiIiIiIgUFAWsRERERERERESkoChgJSIiIiIiIiIiBUUBKxERERERERERKSgKWImIiIiIiIiISEFRwEpERERERERERAqKAlYiIiIiIiIiIlJQFLASEREREREREZGCooCViIiIiIiIiIgUFAWsRERERERERESkoChgJSIiIiIiIiIiBUUBKxERERERERERKSgKWImIiIiIiIiISEH5/w/FKJzEOvLcAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 190,
+ "width": 598
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "figure = plt.subplots(figsize=(10,3))\n",
+ "plt.plot(x_roi, y_roi)\n",
+ "plt.plot(x_roi[peaks], y_roi[peaks], 'o')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup fitting model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from lmfit.models import PseudoVoigtModel, LinearModel\n",
+ "from lmfit import Parameters"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Define some functions for peak fitting"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Define functions for peakfitting. Here we use `LMFIT` module."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from xrd_pkfit import *"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## First fitting attempt without any restriction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[Model]]\n",
+ " (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))\n",
+ "[[Fit Statistics]]\n",
+ " # function evals = 225\n",
+ " # data points = 480\n",
+ " # variables = 30\n",
+ " chi-square = 85049.827\n",
+ " reduced chi-square = 189.000\n",
+ " Akaike info crit = 2545.059\n",
+ " Bayesian info crit = 2670.273\n",
+ "[[Variables]]\n",
+ " bg_intercept: 11.7490860 +/- 7.314150 (62.25%) (init= 0)\n",
+ " bg_slope: -1.92238746 +/- 0.867763 (45.14%) (init= 0)\n",
+ " pk0_fraction: 0.99914425 +/- 0.439206 (43.96%) (init= 0)\n",
+ " pk0_sigma: 0.09905194 +/- 0.022508 (22.72%) (init= 0.05)\n",
+ " pk0_center: 6.67814455 +/- 0.011066 (0.17%) (init= 6.699139)\n",
+ " pk0_amplitude: 13.7291342 +/- 3.199312 (23.30%) (init= 1000)\n",
+ " pk0_fwhm: 0.19810388 +/- 0.043560 (21.99%) == '2.0000000*pk0_sigma'\n",
+ " pk1_fraction: 0.71390507 +/- 1.440882 (201.83%) (init= 0)\n",
+ " pk1_sigma: 0.04899342 +/- 0.022649 (46.23%) (init= 0.05)\n",
+ " pk1_center: 8.27232961 +/- 0.013928 (0.17%) (init= 8.29442)\n",
+ " pk1_amplitude: 1.94815516 +/- 1.650007 (84.70%) (init= 1000)\n",
+ " pk1_fwhm: 0.09798684 +/- 0.045272 (46.20%) == '2.0000000*pk1_sigma'\n",
+ " pk2_fraction: 0.53578175 +/- 0.013639 (2.55%) (init= 0)\n",
+ " pk2_sigma: 0.04131704 +/- 0.000178 (0.43%) (init= 0.05)\n",
+ " pk2_center: 8.56763923 +/- 0.000107 (0.00%) (init= 8.565514)\n",
+ " pk2_amplitude: 298.762770 +/- 1.505359 (0.50%) (init= 1000)\n",
+ " pk2_fwhm: 0.08263408 +/- 0.000352 (0.43%) == '2.0000000*pk2_sigma'\n",
+ " pk3_fraction: 0.01241608 +/- 5.77e+05 (4647278978.67%) (init= 0)\n",
+ " pk3_sigma: 9.6370e-05 +/- 0.473812 (491658.24%) (init= 0.05)\n",
+ " pk3_center: 9.39347570 +/- 0.004071 (0.04%) (init= 9.389221)\n",
+ " pk3_amplitude: 22.7444443 +/- 1.28e+07 (56470649.79%) (init= 1000)\n",
+ " pk3_fwhm: 0.00019274 +/- 0.947947 (491825.72%) == '2.0000000*pk3_sigma'\n",
+ " pk4_fraction: 0.42273441 +/- 0.060602 (14.34%) (init= 0)\n",
+ " pk4_sigma: 0.07398460 +/- 0.001004 (1.36%) (init= 0.05)\n",
+ " pk4_center: 9.89043232 +/- 0.000654 (0.01%) (init= 9.889702)\n",
+ " pk4_amplitude: 114.039270 +/- 2.756552 (2.42%) (init= 1000)\n",
+ " pk4_fwhm: 0.14796921 +/- 0.001722 (1.16%) == '2.0000000*pk4_sigma'\n",
+ " pk5_fraction: 0.99989658 +/- 0.227448 (22.75%) (init= 0)\n",
+ " pk5_sigma: 0.03301947 +/- 0.003775 (11.43%) (init= 0.05)\n",
+ " pk5_center: 10.1384658 +/- 0.001881 (0.02%) (init= 10.13994)\n",
+ " pk5_amplitude: 16.1121387 +/- 1.941011 (12.05%) (init= 1000)\n",
+ " pk5_fwhm: 0.06603895 +/- 0.007729 (11.70%) == '2.0000000*pk5_sigma'\n",
+ " pk6_fraction: 0.00057210 +/- 0.209475 (36614.88%) (init= 0)\n",
+ " pk6_sigma: 0.08438759 +/- 0.002174 (2.58%) (init= 0.05)\n",
+ " pk6_center: 10.3880876 +/- 0.001593 (0.02%) (init= 10.39018)\n",
+ " pk6_amplitude: 48.6505860 +/- 3.622713 (7.45%) (init= 1000)\n",
+ " pk6_fwhm: 0.16877519 +/- 0.004349 (2.58%) == '2.0000000*pk6_sigma'\n",
+ "[[Correlations]] (unreported correlations are < 0.500)\n",
+ " C(pk3_fraction, pk3_amplitude) = -1.000 \n",
+ " C(bg_intercept, bg_slope) = -0.986 \n",
+ " C(pk3_sigma, pk3_center) = -0.962 \n",
+ " C(pk6_fraction, pk6_amplitude) = 0.954 \n",
+ " C(pk4_fraction, pk4_amplitude) = 0.900 \n",
+ " C(pk2_fraction, pk2_amplitude) = 0.830 \n",
+ " C(pk1_fraction, pk1_amplitude) = 0.821 \n",
+ " C(pk0_fraction, pk0_amplitude) = 0.701 \n",
+ " C(bg_intercept, pk0_amplitude) = -0.694 \n",
+ " C(pk5_fraction, pk5_amplitude) = 0.689 \n",
+ " C(bg_slope, pk6_amplitude) = -0.616 \n",
+ " C(bg_slope, pk0_amplitude) = 0.613 \n",
+ " C(pk5_amplitude, pk6_amplitude) = -0.589 \n",
+ " C(pk2_fraction, pk2_sigma) = -0.589 \n",
+ " C(pk4_amplitude, pk5_amplitude) = -0.584 \n",
+ " C(pk1_fraction, pk1_sigma) = -0.566 \n",
+ " C(bg_slope, pk6_fraction) = -0.554 \n",
+ " C(pk5_amplitude, pk6_fraction) = -0.545 \n",
+ " C(bg_intercept, pk6_amplitude) = 0.544 \n",
+ " C(pk0_fraction, pk0_sigma) = -0.539 \n",
+ " C(pk4_fraction, pk5_amplitude) = -0.525 \n",
+ " C(pk5_fraction, pk5_sigma) = -0.525 \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "mod, pars = make_model(x_roi[peaks])\n",
+ "out = mod.fit(y_roi, pars, x=x_roi, fit_kws={'maxfev': 500})\n",
+ "print(out.fit_report(min_correl=0.5))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot the fitting results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHpCAYAAADZD/4nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4lNX9///XyWSbZLIDYQ0QdiEIBLAFEalai5JKoGjLR1RoXb/+VGyLilYqLq0i1WK3Tz/WpW6tG2iooAUjoqwSUQREMUSCQAhhyUqWyfn9MTMhJBMIkGUIz8d15bpn7vt9nzkTnUuTV855G2utAAAAAAAAAAAAznRBrT0BAAAAAAAAAACApkDoAQAAAAAAAAAA2gRCDwAAAAAAAAAA0CYQegAAAAAAAAAAgDaB0AMAAAAAAAAAALQJhB4AAAAAAAAAAKBNIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAm0DoAQAAAAAAAAAA2gRCDwAAAAAAAAAA0CYQegAAAAAAAAAAgDYhuLUnEAiMMTskRUvKaeWpAAAAAAAAAMDp6iGp0Frbs7UnArQ0Qg+PaKfTGT9gwID41p5IS9m6daskacCAAa08E8Dji+8O1zwe1CWmFWdy5uHzDLQdfJ49+G/C8fH9CXx8llsXn5G2ryX/GQfK5/ls/Pf6bHzPaF6B8nluKVu3blVZWVlrTwNoFYQeHjkDBgyI37BhQ2vPo8WkpqZKks6m94zA1uPu/9Q83vD7y1txJmcePs9A28Hn2YP/Jhwf35/Ax2e5dfEZafta8p9xoHyez8Z/r8/G94zmFSif55aSmpqqrKysnNaeB9Aa6OkBAAAAAAAAAADaBEIPAAAAAAAAAADQJhB6AAAAAAAAAACANoHQAwAAAAAAAAAAtAmEHgAAAAAAAAAAoE0Ibu0JoHVs2LChtacAoInweQbaDj7PQNvAZxloO/g8A20Hn2fg7MFKDwAAAAAAAAAA0CYQegAAAAAAAAAAgDaB0AMAAAAAAAAAALQJhB4AAAAAAAAAAKBNIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAm0DoAQAAAAAAAAAA2gRCDwAAAOAMUVpaeszzsrKyVpoJAAAAAAQmQg8AAADgDLB+/XolJycfc65nz55av359K80IAAAAAAIPoQcAAAAQ4MrKypSWlqa8vGnHnM/Ly1NaWhorPgAAAADAi9ADAAAACHALFy5UXl6+pAfqXcvLy9PChQtbflIAAAAAEIAIPQAAAIAAl52dLSlRUsRxrgMAAAAACD0AAACAAOfp5dHtBNcBAAAAAIQeAAAAQIBLT09XTEyK32uJiYlKT09v4RkBAAAAQGAi9AAAAAACnNPp1IwZ99c7367dYGVkZMjpdLbCrAAAAAAg8AS39gQAAAAAnJgxSfXOzZu3XiNGhLbCbAAAAAAgMLHSAwAAADgD7NpV/9xHHxF4AAAAAEBthB4AAADAGSA3t/65zMyWnwcAAAAABDJCDwAAAOAM4G+lR3a2lJPT4lMBAAAAgIBF6AEAAAAEOLdb2r3b/zVWewAAAADAUYQeAAAAQIDbs8cTfPjz739vU1lZWctOCAAAAAACFKEHAAAAEOD8bW3l8+6769SzZ0+tX7++5SYEAAAAAAGK0AMAAAAIcP6amB8Vp7y8PKWlpbHiAwAAAMBZj9ADAAAACHDHW+khxUmS8vLytHDhwhaZDwAAAAAEKkIPAAAAIMCdaKWHT3Z2drPPBQAAAAACGaEHAAAAEMBKS0v18cffHqfiaOiRnJzc/BMCAAAAgABG6AEAAAAEqPXr1ys5OVnr1u0+TpUn9EhMTFR6enrLTAwAAAAAAhShBwAAABCAysrKlJaWpry8PEldj1MZrg4deigjI0NOp7OlpgcAAAAAASm4tScAAAAAoL6FCxd6Aw+HpM7Hrf344y3q3ZvAAwAAAABY6QEAAAAEoKNNyTvJE3xI0l6/tUeOEHgAAAAAgEToAQAAAASko03Ja29tleu39uDBZp8OAAAAAJwRCD0AAACAAJSenq7ExERJ3Wqd3eW3ltADAAAAADwIPQAAAIAA5HQ6lZGRIZdrQK2zrPQAAAAAgOMh9AAAAAAC1IgRI3T99ffVPL/yygv81hF6AAAAAIAHoQcAAAAQwEpLQ2oeX3jhEL81hB4AAAAA4EHoAQAAAASwwsKjj6Oj/dcQegAAAACAB6EHAAAAEMAIPQAAAACg8Qg9AAAAgABWO/SIifFfQ+gBAAAAAB6EHgAAAEAAO3z46GNWegAAAADA8QU31UDGmARJv5U0QVJnSUWSPpL0gLX201p1v5A0qIFhPrbWvlZn3Osk3S6pr6RDkpZKus9au8fPHCZImi0pRVKZpExJ91trt53OewMAAABaC9tbAQAAAEDjNUnoYYyJk7ReUk9JqyW9J6mfpCskXWKMucBau8FbfrOkYQ0MFS6pJvQwxtwn6UFJuZJektRJ0rXeMVOttfm1aqdJ+qekAu8YUd7Xv9QYcx7BBwAAAM5EhB4AAAAA0HhNtb3V3fIEHg9ba0dZa2+01l4oaaakCEl/rlWbLOkv1lrj5+smX5Exppc8K0c2Sxpkrb3BWpsm6XpJ3SQ9Wqs2RtJTkvIkDbbWzrDWTpE0XlKMpL820fsEAAAAWoy1dXp6LHtd/375bl2xOfOYOkIPAAAAAPBoqtBjkjzbST1c5/wfJe2VdJ4xJskYEy8pVtI3jRjzJkkOebbHqvWjnp6TtFvSVGNMhPfc1fKEG/Ottbt9hdbaTElrJI3zhigAAADAGaOsTKqq8jwOD7MK+X836rzcL/To0qcUWV6qkBDPtfJyTy0AAAAAnO1OO/QwxhhJPSR9aa095kcta62VtMv7tKskX/DQmNDjQknV8vTwqDvmSklhks6rVStJ7/gZZ4X3eEEjXhMAAAAIGLVXeSRH5UsHDkiSwqsqNGLXFsXFHb3Oag8AAAAAaJqeHkGSpkjaX/eCMSZaUn/v0zxJw72P9xljpsvT96NEUqa19qM6t58rKddaW+TnNbd6j33kaVY+RJJbkr++HbVrG7R161alpqb6vbZhwwa/5wEAAIDmVDv06B2+65hr39v5udbESfv2eZ4fPCh17tyCkwMAAECra+j3mVu3bvV7HjgbnHboYa11S1pU97wxxiHpb5JckjZZa78xxlzlvZwhKaFOfYakqdbaYm9YEiJPUOKP7+/Y4r3HBEkF1tqqRtQCAAAAZ4TaoUev0Nxjro3a+bme73H0OSs9AAAAAKBpVnrU4+2f8Zyk8yUdkXSj91Ky97hE0oOSciUNljRfUpqkZyRdKSnaW1fewEuUeI+++UfL0+ejMbV+DRgwgBUdAAAACCi1Q4/ujmNXegzMy1a3QQe1Rp49rgg9AAAAzj4N/T4zNTVVWVlZLTwbIDA0VSNzSZIxJsQYc4+kTfIEHjsl/cBau9pb8n+SLrfWTrPWfmWtLbPWrpV0maTvJE0xxvSVVOmtdzbwUqHeY6n3WHkStQAAAMAZ4fDho4+72mNXejhstb5X8WHNc0IPAAAAAGjC0MMY00PSGkmPyBM0/EnSoFqBh6y1a6219ZqNW2sLdbRh+RBJB+Tp0RHbwMv5tsbyre7YJynG21T9RLUAAADAGaH2So+O7l31rg899H7NY0IPAAAAAGii0MMY01nSR5KGSdooabi19v9roAl5Q3y1VdbaSknfSOppjIn0U9vbe/zCe/xSnh4g/RpRCwAAAJwRaoceHcpz610fsDez5jGhBwAAAAA03UqP+ZK6SHpH0vestRvrFhhj+htjrDHmPw2MMdp7/Mx7XC7JIekHdcZxSLpInpUbm2vVStIlfsa9VJ7eIB/6uQYAAAAErNqhR0Jp/dCj475Naq99kgg9AAAAAEBqgtDDGBMhaaKkfEk/tdY21Hx8m6QcSZcaY8bUGeMaSSMkfWCt/cZ7+u+SrKQHjDG1+3XcLamrpD9ba6333POSyiT92hjTvta4/yPpe5L+6d1CCwAAADhj+EIPo2pFF31Xc35zh+SaxxfqA0mEHgAAAAAgScFNMEaqpHBJ30p60H9bDUnSXEm3SHpL0vvGmKXyNDrvJ8/KjQJJN/uKrbUbjTHzJM2S9IUxZrmkPpIulPSJpD/Uqs0zxvxS0l8kbTLGLJbUUZ4G6dmS7m2C9wkAAAC0KF8j8/bKV7C7QpJ0KNyl5b1GaOC+bEnSSK3Ta7qS0AMAAAAA1DShR0fvsZ/899TwedJau8QYM0TSbySdL+mHkvIk/UPSw9baHbVvsNbeZYzJkXSrpGnyrCZ5UtIca+2ROrV/Ncbsl3SXpKmSDkt6VtJ91tr803uLAAAAQMvzrfToqqNNzPdEtVNubGLN83baL4mVHgAAAAAgNUHoYa19TVKDyzv81G+R9LOTqP+rpL+exFxea+zYAAAAQCDzhR7ddLSfx56odioMd9U8j9cBSdKBAy06NQAAAAAISE3VyBwAAABAE/O70iO6nQ7XCj3i5FniwUoPAAAAACD0AAAAAAKWr6dH3ZUehB4AAAAA4B+hBwAAABCg/G9v1d5v6FFeLpWVtej0AAAAACDgEHoAAAAAAcp/I/MEHQ6rH3pI0jPPvKkykg8AAAAAZ7HTbmQOAAAAoOlZ28BKj+j2Kgl1qsoEKdhWK0JlClW5KhSmW2+9Ww8+eIsyMjI0YsSIVpo5AAAAziQbNmxwSvqppIslJUsKad0Z4SxWKSlb0jJJ/0pNTT2lv+gi9AAAAAAC0JEjUlWVZFStLvqu5vyeqATJGB0OdymhzJOKxOmg8tRRkkt5eV8rLS1NO3bskNPpbKXZAwAA4EzgDTz+6HA4xjocjvigoCCnJNPa88JZy1ZXV/d2u93D3W739zds2HD7qQQfhB4AAABAAPI1Me+gfQpVpedJfLyOhIR7rjcQekhSXl6eFi5cqKlTp7b0tAEAAHBm+anD4RjrdDoTO3bsuNflcpU6HI7q1p4Uzk5utzuouLg4Yu/evR3LysrGut3un0p69mTHoacHAAAAEID89fNQt25Hr/tpZu4LPSQpOzu7OacHAACAtuFih8MR37Fjx70xMTHFBB5oTQ6HozomJqY4MTExz+FwxMuz5dpJI/QAAAAAApC/fh7q2rXm4WG/oUdUzbnk5OTmnB4AAADahuSgoCCny+Uqbe2JAD5RUVEl3q3Wep7K/YQeAAAAQAA60UoP/6GH51xiYqLS09Obe4oAAAA484VIMqzwQCAJCgqqlqe3TOgp3d+00wEAAADQFHyhRyftOXqyc+eahw2FHomJicrIyKCJOQAAAIAzkjHmtO4n9AAAAAACkK+ReYwOHz0ZH3/0up/QY8qUGdqxY4dGjBjRInMEAAAAgEAT3NoTAAAAAFCfb6XHMaFHdHTNw8Nh9UOP5ORzxQIPAAAAAGczVnoAAAAAAcgXekSr8OjJ2qGHn5UexcUtMjUAAAAACFiEHgAAAEAAIvQAAAAAWp8xJnXkyJH9WnseaDxCDwAAACDAlJaW6pNPvpbUcOhRSOgBAAAABKwFCxYkGGNS586d26G153K2IfQAAAAAAsj69euVnJys999fL6lO6BETU/PQ30qPoqKWmSMAAAAABCoamQMAAAABoqysTGlpacrLy5PkWdVRu5F5WUhIzWO2twIAAMCZpKioKOjFF1+M3bFjR1hycnL51VdffdDlctnWnhfaHlZ6AAAAAAFi4cKF3sBD8oUetVd6vJWZWfOY0AMAAABnihUrVkT07Nkz5ZZbbuk5b968zjfffHPPHj16DF6xYkVEa8/NJzMzM2LUqFF9IyMjh0ZHRw+59NJLe23fvj2kbt1HH30UMWHChOTExMTBYWFhw7p06ZIyadKkHmvXrnX6akaOHNnv9ttv7yFJc+bM6WaMSd22bVuoJFVXV+uJJ55od+655/aPiooaEhUVNaRfv37n3HXXXR0LCwv5fX0TYKUHAAAAECCys7NrPYtWqMoVpgpJUoWk7bm5ktpLkopDnZLDIbndilSpQlSh4uLQFp8zAAAAcDzFxcVm8uTJfQoKCo75XXRBQUHw5MmT++Tk5Hze2is+MjMzI8aPH9+/qqrKjB079lBcXJz7o48+iv7BD35wTAPzDz/8MOLiiy/uL0ljx4493L59+8rt27c7Fy1alLBkyZK4devWbUlJSSmfOHHigZCQkOpVq1ZFDx8+vDglJaU0NjbWLUk33nhj16effjqxc+fOFT/84Q8PGWO0evXqqMcee6zLypUro1etWvVVa3wP2hJCDwAAACBAJCcn13oWc8wqj0JJyb16SZ97TxgjxcVJ+/dL8qz2KCpKbLG5AgAAAI3x4osvxtUNPHwKCgqCX3zxxbibbrrpQEvPq7Zbb721e0VFhVm4cOFXV1xxRZF3bo6LL764T25ubpiv7u9//3u7yspKk5GR8dWECRNqOurNnDmz85NPPtnptddei01JScmbPXt2vsvlql61alV0Wlrawfvvv3+fJLndbr388svte/XqdSQrK2trdHR0tSSVlpaagQMHnrN69eqoPXv2BHfq1Kmqpb8HbQnLZQAAAIAAkZ6ersREX3ARfUw/jxKHQ+np6cfeEBd39KEOsr0VAAAAAk52dnbY6Vxvbh9//LFzy5YtEZdccskhX+AhSQkJCe7HHnsst3btJZdcUjhnzpxdtQMPSRo8eHCZJBUXFzuO91oVFRXm9ttv3zNv3rxcX+AhSREREbZHjx7lksQWV6ePlR4AAABAgHA6ncrIyNCECWnaty9a0fq25lq7Xr3kdDqPvaFO6LGtTHK7PbteAQAAAIEgOTm5/HSuN7ePP/7YJUnnn39+Ud1rF154YYmj1v9cX3vttYckKScnJ2TNmjUR2dnZodnZ2WH/+c9/4ure64/T6bSPPPLIXrfbrVWrVjk3b94cvmPHjrCtW7eGr1y5MqaJ3tJZj9QIAAAACCAjRozQ1q07JIUcs71VZMeO9YvrhB6SVFLS3DMEAAAAGu/qq68+mJCQ4He7poSEhKqrr776YEvPqbaCggKHJHXs2LGy7rWQkBCFhITUrMjIysoKHzZsWP+ePXsO/tnPftZ73rx5nT/77LPI4cOHN3rN9ZNPPpnQrl27c0ePHn3OzTffnPzCCy+0q6ysDOrVq1dZ07wjEHoAAAAAAaaqyrOio3booejo+oV+Qg+2uAIAAEAgcblc9o033vi6bvCRkJBQ9cYbb3zd2k3MIyMjqyUpPz+/3q5I+/fvdxw5ciRIkiorK5Went578+bNEfPmzft2z549Gw8ePPjZ+vXrt02ZMqVRwc3ixYuj7rzzzh4dOnSofO+9974sLi7Oys3N/WLx4sXZXbt2bdUVL20J21sBAAAAAcYXXJxK6FFUb1E+AAAA0LrGjh1bmpOT8/mLL74Yl52dHZacnFx+9dVXH2ztwEOShg4dWiZJK1eujJKUX/vau+++6/I9/uyzz8J37twZNmHChAO/+tWv9teu++abbxrVlyQjIyPGWqvf/e53uy655JJj1mjXbpiO00PoAQAAAAQYX+hRu5H5iUKPeB045l4AAAAgkLhcLnvTTTcdaO151DV+/PiiLl26VPz3v/+NzczMjBg3blyp5Gko/vDDD3f21YWFhVlJ2r17d2h1dbWCgjybKK1du9b55z//ud5etL7rVVVVxncuNDTUSlJOTk6o71x1dbXmzJmT+PXXXzvrjoFTw/ZWAAAAQIA5nZUehB4AAABA4wUHB+tvf/tbjsPh0I9+9KP+P/rRj5KnTp2aNGDAgIFBQUGKj4+vkqSBAweWp6amFmdlZbkGDx48YOrUqUmjRo3qO3r06HPGjh17WJLefPPN+AULFiRIUvfu3Ssk6emnn+5w3XXXdcvLy3Nce+21BaGhofauu+5Kuuyyy5KvvPLK7j179hz0pz/9qeO4ceMOS9LNN9+c9Omnn4a31vejLSD0AAAAAAKM39AjJqZ+IaEHAAAAcNomTJhQ9M4772wbPHhwyQcffBC7dOnSuDFjxhRmZmZ+FRwcbCXPyo2MjIxvJk2aVLBnz57Qt99+O6G6ulovv/zy12+88UbOj3/84wO7d+8O3bRpk1OSLrvssqIJEyYcOHToUPDrr7/errS0NGj48OFH3nzzza8GDhxYmpmZGfPBBx/EjBo1qigrK2vLggULcpOSkspXr14dVVhYyO/tTwPbWwEAAAABhp4eAAAAQMu66KKLStavX7+t7vm8vLzPfY87depU9cYbb+T4u/+tt97aIWmH77nD4VBGRsaOunWXX3558eWXX/6lvzG+/fbbL05l7jgWiREAAAAQYNjeCgAAAABODaEHAAAAEGBOpZE5oQcAAAAAEHoAAAAAAYeVHgAAAABwagg9AAAAgABzOo3M6ekBAAAA4GxG6AEAAAAEmEav9IiKkhwOSVKkShWiClZ6AAAAADirEXoAAAAAAabRPT2MkWJja57G6SChBwAAAICzGqEHAAAAEGAavdKjzvkoFRF6AAAAADirEXoAAAAAAaa4WApVucJU4TkRHCyFh/svjoqqeehSMT09AAAAAJzVCD0AAACAAFNc7GeVhzH+i12uow9VzEoPAAAAAGc1Qg8AAAAgwNQLPWJiGi4m9AAAAACAGoQeAAAAQIApLm5EE3OfWqEHPT0AAAAAnO0IPQAAAIAA43d7q4bQ0wMAAAAAajRZ6GGMSTDGPGWM2WGMKTfG7DfGLDLGDK1TF2yMudMYs8UYU2qMyTHGPGGMiWpg3OuMMZ8aY0qMMd8ZY/5hjOnUQO0EY8wqY0yRMWafMebfxph+TfUeAQAAgJZwUqEH21sBAAAAQI0mCT2MMXGS1ku6VdIeSc9J+kLSFZI+Msak1ir/m6T5koykFyR9I+kOSR8aY8LrjHufpGclJUh6SVKWpGslrTXGtK9TO01ShqS+kl6TtML7+msJPgAAAHAmOZ3Q48gRqaqqGScHAAAAoMktXrw4yhiTOmPGjG4nql26dKlr4MCBA0JDQ4dNmTKlhySNHDmynzEmdf/+/Y5mn2yAa6qVHndL6inpYWvtKGvtjdbaCyXNlBQh6c+SZIy5UNLPJb0v6Vxv3UWS5koaImmWb0BjTC9Jv5W0WdIga+0N1to0SddL6ibp0Vq1MZKekpQnabC1doa1doqk8ZJiJP21id4nAAAA0KwqKqTKylMLPaLk2duqpKS5ZgcAAAC0PQsWLEgwxqTOnTu3w6mOMXny5B7GmNRVq1Y5m3Ju/sycOTNpy5YtEWPGjDl80UUXFUrSxIkTD0yfPn1feHh4ta/OGJPav3//c5p7PoEmuInGmSSpTNLDdc7/UdJdks4zxiRJ+n/e83dbaytq1c2TdI+kX8gTgEjSTZIckh6w1tb6iU/PSXpI0lRjzK3W2lJJV8sTbjxsrd3tK7TWZhpj1kgaZ4zpZa395vTfKgAAANB8fNtTHdPIPCam4Rvq9PSQpKKi498CAAAA4My1Z8+eUJfL5V6+fHnN77tnz56d35pzCiSnvdLDGGMk9ZD0pbW2rPY1a62VtMv7tKukCyTlW2vX16krlmfrqm7GmJ7e0xdKqpa01M+YKyWFSTqvVq0kveNniiu8xwtO4m0BAAAArcIXepzq9la1xwAAAADQ9rjdbkVFRblbex6Bqim2twqSNEXSbXUvGGOiJfX3PZXUQdKWBsbZ6j328R7PlZRrrS1qRO0QSW5J2xpRCwAAAAQsQg8AAACg5YwcObLf7bff3kOS5syZ080Yk7pt27ZQ3/V3333XNXbs2N7R0dFDwsPDh/Xv3/+cRx55pL3bfTRzMMakvvnmmwmSNHr06HO6dOmS4rtWUFDguPPOOzsnJycPdDqdQ+Pj488dMWJEvz//+c/xJztX3zZcxcXFjj179oQaY1InT57cw/c+fD09fHWStG3bNqcxJvXOO+/sfIrfojPOaW9vZa11S1pU97wxxiFP03KXpE2SfOFFXgNDHfQe471hSUhjar3HBEkF1lp/LRvr1vq1detWpaam+r22YcOG490KAAAANJnTCT18PT0IPQAAAM4ODf0+c+vWrX7Po76JEyceCAkJqV61alX08OHDi1NSUkpjY2PdkvT3v/897pZbbkl2Op3ucePGHY6MjKxes2aN6957703KzMyMXrp06TcOh0PTp0/ft2LFiujs7OzwtLS0A3379j0ieVZkjB07tu/mzZsjBg4cWJqenn6gsLDQsWLFiuhbb72157fffhv22GOP7WnsXFNSUsqmT5++78UXX2wfGhpqr7zyyv0jR46s19HPV/fss892iI2NrUpPTz8watSos+anhKbq6XEMbxPy5ySdL+mIpBsl+X5SK2/gNt8/nOCTrJW3fncjawEAAICA5benx/FCjwZ6egAAAACnyxj5T1UCkLU6pb9cnz17dr7L5apetWpVdFpa2sH7779/nyTt3r07eObMmT1iYmKq1qxZs7VPnz4VklRVVaXJkyf3fPvtt+Pnz5/fftasWfnPPPNM7uTJk3tkZ2eH33333XtHjRpVJkkffvhhxObNmyMmT55c8Oqrr+YEBXk2Xtq8eXPY4MGDBy1cuDD+ZEKPcePGlY4bN670tddeS4iOjnY/88wzucere/bZZzskJiZWNlTXVjVpEGCMCZH0K0m/keSUtFPST621q40xvv4bDXWv9y0ZKpVUeRK18tY3ttavAQMGsKIDAAAArc7vSo/jdSVneysAAICzVkO/z0xNTVVWVlYLz6Ztefrpp+NLS0uDbr311j2+wEOSgoOD9eSTT+7KyMiIf+WVVxJmzZrVYAPxdu3aue+5557vrrrqqoO+wEOSBgwYUO50OqtLS0ubov0E6miy0MMY00PSG5KGydNf40+SZtfqybHPe4xtYIgE73G3pAPeMRpT6xu7kzHGeBudH68WAAAACFj09AAAAABa3/r16yMlKS0trbDutZ49e1YmJiZWbN++Pfx4Y6SkpJSnpKTsLS4uNu+++67rq6++CtuxY0fYmjVrXCUlJUExx/vjJpyyJgk9jDGdJX0kqYukjZKmW2s31inbKc9qixT511tStaQt1tpKY8w3knoZYyKttXX3JevtPX7hPX4pKUlSP+/j49VclhlxAAAgAElEQVQCAAAAAYueHgAAAAgUp7plVFtQUFAQLElJSUkV/q6Hh4dX79+/P+R4Y5SXl5tbbrml6wsvvNC+srLShIWF2aSkpCPf//73iz799NPI5pg3pKZaPjNfnsDjHUnf8xN4+Bqer5CUaIw5JvgwxsRKGilprbXW99PdckkOST+oU+uQdJE8Kzc216qVpEv8zO1SeXqDfHjybwsAAABoWU2x0oOeHgAAAMDpcTqd1ZKUn59fb+FAdXW18vPzQ+Pj46uON8bs2bM7PvPMMx1++MMfHsrKytpcWlqa9dVXX215/vnnc4ODg+vuWIQmctqhhzEmQtJESfny9O9oqPm4JP3Ne/y9MSbIe7+R9Kg8PTn+VKv275KspAeMMbX7ddwtqaukP9fayup5SWWSfm2MaV9rbv8j6XuS/lkrTAEAAAAC1kk3Mo88+gdiLpXIqFrr1m1RWVlZM80QAAAAaPsGDhxYJknLli2Lqnvtv//9r6ukpCRo6NChx11j/e6778Y6HA698sorOUOHDj3i6+uxZ8+e4OLiYkezTBxNstIjVVK4PH04HjTGPNnAV7y19m1Jr0q6TNJGY8zfJK2TdIOkDGvty75BvatF5kkaKukLY8zfjTGZkh6S9ImkP9SqzZP0S0ndJG0yxjxtjFks6QVJ2ZLubYL3CQAAADS7khIpVOUKk3cVvcMhOZ0N3+BwyB1+dCvhCJXqP//5QD179tT69eubebYAAADAmc8XRlRVVRnfuWuvvfZAUFCQFixY0HH37t01qz3Ky8vNww8/3EmSrr/++v3HGyM0NNS63W7l5OTUbINVWFgYNGPGjKTmfD8+xhi53W5z4sq2pSlCj47eYz9Jtx/ny/fnaf8j6T5JEZKukxQvaY6kn9Qd2Fp7l6RbJB2RNE1SL0lPSrrIWnukTu1fJV0paZekqfKEMc9KOt9am98E7xMAAABodsXFR3tzSJKioiTT8M8pZWVlOlBxdJthzxZXLuXl5SktLY0VHwAAAMAJdO/evUKSnn766Q7XXXddt7y8PEdqauqRmTNn7t69e3fowIEDB6anp/eYOnVq9379+g1cuXJl9JQpU/ZPnjy5Znehrl27VkjSbbfdlvTLX/6ykyRNmzZtvyRdcMEF/a+88sruaWlpPZOSkgbn5uaG9enTpywvLy90ypQpPZrrfXXs2LEiOzs7/Cc/+UmPV1999TjLx9uW0w49rLWvWWtNI75yvPVV1tqHrbW9rbXh1tpe1tq51lq/DWGstX+11g601jqttUnW2pkNbVXlnctwa22EtbaTtfbn1to9p/seAQAAgJZSXHy0N4ckT+hxHAsXLlRhdfXRchVJ8vT5yMvL08KFC5tjmgAAAECbcdlllxVNmDDhwKFDh4Jff/31dqWlpUGS9Pjjj+/53//93+ykpKTypUuXxi1atCje5XK5f//73+985ZVXvq09xm233ZY/ePDgki1btkQsXbo0VpJmzpy5/9FHH90ZGxtb9fbbbyds2rQp8vrrr89bt27dl/fdd9/uyMhI97Jly2Ka633NmTPnu4SEhMpFixbFb926NfzEd7QN9ZqwAAAAAGg99UKPWo3K/cnOztY5tZ577o065joAAACAhjkcDmVkZOzwd+2GG244eMMNNxw80Rg9e/as/Oyzz76se37WrFn5s2bNqrcT0TXXXHPommuu2eh7PmHChCJr7YbGzLeoqGhj3XPr1q3bVvfcjTfeeODGG2880Jgx25Km2N4KAAAAQBM52dAjOTm5dnXN9la1rwMAAADA2YLQAwAAAAggJxt6pKenqyI09Gh5rdAjMTFR6enpzTFNAAAAAAhIhB4AAABAADnZ0MPpdGrI+efXPPf19EhMTFRGRoacTmczzRQAAAAAAg89PQAAAIAAcrKhhyTFJyUdLVexXK5O2rFjB4EHAAAAgLMOoQcAAAAQQE4l9Khd41KxKivDRd4BAAAA4GzE9lYAAABAAGmK0KO8XKqsbIbJAQAAAECAI/QAAAAAAoTbLZWWnl7o4enpIZWUNPXsAAAAACDwEXoAAAAAAaK01HM86dAjKupouffeoqKmnBkAAAAAnBkIPQAAAIAAUezNOk53e6vaYwEAAADA2YTQAwAAAAgQhB4AAAAAcHoIPQAAAIAA0RShh6+nB6EHAAAAgLMRoQcAAAAQIE459KCnBwAAAABIIvQAAAAAAgbbWwEAAADA6SH0AAAAAAIEoQcAAADQOu68887OHTp0GOxwOFKXLFni2rZtW6gxJvXiiy/u1dpza4wuXbqkREVFDWlM7ciRI/sZY1Kbe06thdADAAAACBAFBeWS6OkBAAAAtKTVq1c7n3jiiU7l5eVBV111VX63bt0qY2Nj3dOnT993+eWXH/bVLViwIMEYkzp37twOrTlff372s5/tv+aaa/Jbex6BILi1JwAAAABAWr9+vWbNWiTp4WNCj0+//lpDk5OPfzM9PQAAAIBTtmPHjlBJmjx5csEzzzyT6ztf+3Gge/zxx/e09hwCBSs9AAAAgFZWVlamtLQ0FRVVSzp2pceka65RWVnZ8QeIiKh5GKlSBcnNSg8AAACgkdxut5GkmJgYd3O+TnFxsWnO8eFB6AEAAAC0soULFyovL0+SS8GqVLg821xVS8rZt08LFy48/gBBQVJkZM3TCJUSegAAAACNMHLkyH7XXHNNL0l68sknOxljUhcvXhxVt6fHyJEj+91+++09JGnOnDndjDGp27ZtC21o3DvvvLOzMSZ1yZIlrpkzZ3ZOSEg49/bbb+/qu56TkxMyderU7omJiYPDwsKG9ejRY9Cdd97Zuaio6Jjf2ZeVlZn7778/sW/fvuc4nc6hMTExQ8aOHds7MzMzonadv54e3377bcikSZN6xMXFnet0OocOGzas/5IlS+rtn+ub6wsvvBBb91pDvULefPPN6O9///t9XS7XUJfLNfS8887r+9JLL8U09P1oSWxvBQAAALSy7Oxs7yOXIlVSc7643vXjcLmkEs+9USpScXHUCW4AAAAAMHHixAMul8udmZkZM3jw4JLU1NSSHj16VPirCwkJqV61alX08OHDi1NSUkpjY2NPuDJk1qxZ3XJycsLGjBlTOGbMmCJJ2rx5c9i4ceP6FRQUhIwePbqwa9eu5Vu2bIl44oknOv3nP/+JXb169Zfx8fHVkvTjH/84edmyZbHDhg0rnjRpUkFeXl7IypUrY8aPHx+9fPnyraNHj/a7LDw/P98xZsyYfrm5uWFDhgwp6d+/f9mnn34amZ6e3jc6OrrqdL5nv//979vfc889SQkJCVUXXXTRoeDgYPvhhx9GX3311b2zsrJ2z58/v1W32iL0AAAAAFpZck3PDtcxW1sV17t+HFFRUl6ed5RienoAAADgtJkHTGprz6Gx7By74VTumz17dn63bt0qMzMzYy666KLCP/zhD7slqe4qjtmzZ+e7XK7qVatWRaelpR28//779zVm/J07d4atXr1666BBg8p956699toeBw8eDH777be3XX755TU/AMyaNavTvHnzOs+ZM6fTU0899d0XX3wRtmzZstgLL7zwcGZm5nZf3YcffhgxduzYAY8//nji6NGjcxp4X51yc3PD7rjjjj1PPPHEbklyu92aPn160gsvvND+pL5JtXz22Wdhv/nNb7qlpKSUvP/++1+3a9fOLUkHDx4MGj16dL8nn3yy89VXX31w6NChR071NU4X21sBAAAArSw9PV2JiYmSouqFHomJiUpPTz/xIK6jq9RdKmZ7KwAAACAAXHvttftqBx5r1651btiwwTVp0qSC2oGHJM2dO3dvVFSUe/HixbGSVFBQ4PAeg48cOVLTD+SCCy4ofeutt7664447/AYvbrdbr776arv27dtXPvLIIzWrLhwOh/7yl7/kulyuU+5d8tRTT7Wvqqoy8+bN2+ULPCQpLi6u+le/+tXe6upqvfbaa/W2yWpJrPQAAAAAWpnT6VRGRobOP79QroqjP/ccCQ5WRkaGnE7niQch9AAAAAACzuDBg4/ZfmrFihUuSdq+fXv4jBkzutWtDw0Ntbm5ueFVVVUaPXp06cCBA0s3bdoU2atXr0E//OEPD40dO7Zo/PjxRT/+8Y8bXNv9+eefhxcWFjouvvjiIqfTaWtfc7lctn///mWffPJJvd4ejbF+/XqXJD3//PMJ//73v+NqXzt48KBDkr766qvwUxm7qRB6AAAAAAFgxIgRGj7crZBVK2vODTzvPDlGjGjcALVCjygV6VtCDwAAAJymU90yCkeFhYUdEzr4Vm9kZWW5srKyGgweSkpKgmJiYqpXr169bd68ee3ffPPN+H/+858dnnvuuQ4Oh0Pf+973ChcsWJA7bNiwettI5efnOySpQ4cOlf7GjoiIaPRKj6qqKlP7+aFDh4Il6ZVXXmnX0D3FxcWtusMUoQcAAAAQIEpKHOpaa3srR3R042+OOtq4nJ4eAAAAQGCKjIyslqS5c+fm/uY3vzlhX5CoqKjquXPn5s2dOzcvPz/fsXTp0qg33ngj7q233oqfOHFi75ycnC+Cgo7NGFwuV7Xk2RbL35h5eXmh/s7XVV1drcLCQkdwcHBNcON0OqslKT8/f2Pt7a0CCT09AAAAgABRXCxFquToCddJrDhneysAAAAg4A0dOrRMkjZu3BhR95rb7daUKVN63HDDDV0l6aWXXoq5+OKLe2VlZYVLUvv27d3Tpk07tGjRoh0XXHDB4dzc3LBdu3bVCzaGDBlyJDQ01GZlZbkqK49d7PHdd98F5+TkHLP9VGhoaLUklZaWHpMXrF271nnkyJFjzp1zzjmlkrRmzZp681++fHnkhAkTkl9++eWYRn0zmgmhBwAAABAgiop0TCNzQg8AAAAgcPhWVNTd8ulkjB8/vqhbt27lixcvjv/www9rggO3263bbruty+uvv54QFRXllqTg4GAtX748dt68eYlu99FFFQcOHAjasWNHeERERHWHDh3qrbaIiIiwl1122YH8/PyQRx55pEPta7/+9a87l5eXHzP/pKSkCkl66623ahqQV1ZW6p577ulSd+wZM2YUSNIDDzzQubCwsCZf2LlzZ/Att9zS/b333otNSUmpt+VWS2J7KwAAACBAFBc3TegRpSJVVEgVFVJooxauAwAAADiR7t27V0jS008/3WHnzp2hjz766O7ExMST2uIpODhY//jHP3ZcccUVfS+55JL+o0aNKmzfvn3lxo0bI7/++mvnueeeW/LII4/slaSf/OQnhwcOHFj6r3/9q90nn3ziOvfcc0uqq6u1cuXK6P3794fce++9u8LDw62/11mwYMGutWvXRv32t7/t9s4778T26dPnyKZNmyJ27NgRPmTIkJKNGzdG+mqnTJlyePbs2e4lS5bEpaSkDOjTp0/Zhg0bXJLUu3fvI3v37g3x1U6YMKHo5z//ed4//vGPxP79+w8cOXJkcUVFhfn444+jCwsLHQ899FBuSkpK+al8f5sKKz0AAACAAOB2S6WlpxF61OnpIYnVHgAAAEATuuyyy4omTJhw4NChQ8Gvv/56u7rbQTXWJZdcUrJy5cqt48aNO5SVleXKyMiId7vd5o477tjz0UcfbfM1P3c4HHr33Xe//ulPf7q/uLg4aNGiRfFLliyJ69SpU8VTTz2V89BDD+U19BrdunWr+vjjj79MS0s7sGXLlohFixYlxMTEuN9///0vk5KSjgkl2rdv73777be/GjFiRPH27dvDP/jgg5jBgweXLF++fFt0dHRV3bGffvrpXU899VROXFxc1ZIlS+JWrVoVPWDAgNKXXnpp+7333nvCPiXNjZUeAAAAQAAo8bbyaKrtrSRP6BEf3xSzAwAAANquadOmHZo2bdqG2uf69etXYa095pzD4VBGRsaOxoz5hz/8Yfcf/vCH3Q1dT01NPbJ06dLsE43TpUuXqldeeeXbE9V99913m+qe69mzZ+Xbb79db75vvfXWDknHnL/gggtK161bt61u7YYNG+qdk6Rbb7214NZbby040bxaAys9AAAAgABQVOQ5NnXoAQAAAABnE0IPAAAAIAA0ZegRJc9ghB4AAAAAzjaEHgAAAEAA8AUUTdnTwxekAAAAAMDZgtADAAAACABsbwUAAAAAp4/QAwAAAAgAp73Sg9ADAAAAAAg9AAAAgEBATw8AAAAAOH2EHgAAAEAAaI6eHoQeAAAAAM42hB4AAABAAGiOnh40MgcAAABwtiH0AAAAAALAaa/0cDolYyRJESpTkNys9AAAAABw1iH0AAAAAAJAUZFkVK1IlRw9GRnZ+AGCgo6pj1QJoQcAAACAsw6hBwAAABAAiookp8oUJOs54XRKDsfJDVKrr0eUigg9AAAAAJx1CD0AAACAAFBcfBpbW/m5x6VienoAAAAAOOsEN8egxphbJP1ZUpy19lCda7+QNKiBWz+21r5Wp/46SbdL6ivpkKSlku6z1u7x87oTJM2WlCKpTFKmpPuttdtO6w0BAAAAzayoqOlDD1Z6AAAAADjbNPlKD2OMQ9LPj1Nyszwhhr+vi+qMdZ+kZyUlSHpJUpakayWtNca0r1M7TVKGPOHIa5JWSLrCW9vvtN8YAAAA0IyaY6UHoQcAAABwYiNHjuxnjEndv3//Se4ve3x33nlnZ2NM6uLFi6MkafHixVHGmNQZM2Z0a8rXCUSTJ0/uYYxJ3bZtW2hLv3aTrPQwxhhJQ71f10kadpzyZEl/sdb+vxOM2UvSbyVtljTKWlvoPT9d0jOSHpU0w3suRtJTkvIkDbPW7vaeHyfpfUl/lfSDU3t3AAAAQPNrkpUedXp67Cf0AAAAAE5o4sSJBwYNGlQaHh5e3Zyv06NHj4rp06fvu/DCC9mIthk11fZWkZI2nKjIGBMvKVbSN40Y8yZJDkkP+AIPr+ckPSRpqjHmVmttqaSrJcVIetgXeEiStTbTGLNG0jhjTC9rbWNeFwAAAGhxxcVSEj09AAAAgBY3e/bs/JZ4nUGDBpU/88wzuS3xWmezptreqkzSlFpfWxqo6+U9NiZ8uFBStTw9PGpYa62klZLCJJ1Xq1aS3vEzzgrv8YJGvCYAAADQKujpAQAAAACnr0lCD2ut21r7uu9LUkPJWLL3uM8YM90Y83tjzG+MMef7qT1XUq611t/fp231Hvt4j0MkuSX5a1hetxYAAAAIOIQeAAAAQOuo29NjwYIFCcaY1L/85S/x//znP2MHDx7cPzw8fFhcXNy5V155Zfe6vT/KysrMHXfc0blLly4pYWFhw3r27Dnw8ccfb1f3der29EhOTh5ojEldvXq1s27tQw891MEYk3rPPfd0PNn3Y4xJTU1N7ffFF1+EXXrppb2io6OHREVFDRk/fnzyl19+Wa/HRmlpqbnrrrs6JicnDwwLCxvWoUOHwVdddVX3r7/+ul7tpk2bwq666qruvvfasWPHwZdeemmvpUuXnvAHmAMHDgQNHjy4vzEm9bHHHmt/ovpT1VTbWzWWb6VHhjzNyWsYYzIkTbXWFhtjoiWFyNOjw5+D3mO895ggqcBaW9WIWr+2bt2q1NRUv9c2bDjhzl0AAADAKbO2iRqZ1+npUVkpVVRIoS3eOhAAAAAtoaHfZ27dutXveZycZ555pv3GjRtdY8aMOTxp0qT9H330UfRrr73Wrri42PHOO+9k++omTpyY/N5778V27dq1fNKkSQU7d+4MnTVrVveuXbuWH2/8SZMmHZg/f37n119/Pfb73/9+We1rixYtijPGaPr06QdOZe779u0LGTNmTP/OnTtXTJgw4cD27dudS5cujVu3bl3UmjVrtvbp06dC8gQ2F1xwQd8NGza4Bg4cWDp58uSCvXv3hrzxxhsJ77zzTtyyZcu2nXfeeWWStH379pBRo0YNKCkpcZx//vmFY8eOPbxr166w5cuXxyxbtix28eLF28aPH+/3T68KCwuDLrnkkj6bNm2KfPDBB3NnzZrVbFuKtXTo4VvpsUTSg5JyJQ2WNF9SmjwNyq+UFO2ta+hfihLv0Tf/aEm7G1kLAAAABJSyMqm6uulXekjSs8++rmuuuVxOZ70/HgMAAACOzxj/qUogsrbJ/3J948aNrn/9619f/+QnPymUpP379zt69+6d8t///je2sLAwKDo6uvrll1+Oee+992JHjRpVuHz58u3h4eFWkv7v//4v7oYbbkg+3vjXXXfdgfnz53desmRJ7Pz58/f4zufm5gZ/+umnrmHDhhX37du34lTmvmvXrrDJkycXvP766zm+c/fee2/HRx55pMvMmTO7Ll68OFuS7rnnnk4bNmxw3X333d/97ne/2+urXbx4cdTEiRP73nzzzd2zsrK+lKTnnnsuvri42PHHP/4x57bbbivw1f7xj39MuOOOO3q88sor8f5Cj9LSUnPppZf2zsrKct1333277rvvvn2n8p4aq6l6ejTW/0m63Fo7zVr7lbW2zFq7VtJlkr6TNMUY01dSpbe+oZ/MfH+rVuo9Vp5ErV8DBgzQhg0b/H4BAAAAzcm3DVVzhB433fRL9ezZU+vXrz+dKQIAACAANfT7zAEDBrT21NqE8ePHH/AFHpLUrl0794gRI4qqqqrMzp07QyTpH//4RztJeuKJJ3b5Ag9Juv766w+OGjWqsP6oRw0aNKh80KBBpVu3bo2ovZXUyy+/HFddXa2rrrqq4Hj3H48xRvPnz/+u9rnf/va3e+Pi4qqWLVsWW15ebtxut55//vn2SUlJ5Q8//PDe2rUTJkwoOv/88w9/+umnkTt37gyWpBEjRpTec889382YMeOY1SdDhw4tk6SSkpJ6eUN5ebn50Y9+1HvNmjVRv/71r3c/+OCDDe3u1GRadPWDN+Dwd77QGLNU0s/l6c+xUJ4eHbENDOXbGsu3umOfpE7GGONtdH68WgAAACCgFHm72J1u6FERGlrzFz9Hx4pSXt5OpaWlaceOHaz4AAAAABopJSWlrO656OhotyQVFRUFSdJnn33mioqKco8cObJe7ciRI0tWrVoVXfd8bVOmTCn44osvIl599dXYe++9d58kvfXWW3EhISH2uuuuO3i8e48nKSmpvHv37pW1z4WEhGjIkCElmZmZMdu3bw+tqKgwhw4dCo6IiKj+xS9+0a3uGPv37w+RpE2bNoUnJSUVX3HFFUVXXHFF0Z49e4Lfe++9iG+++SY0Ozs77L333mvo9/iaNm1az88//zwyODjYXnvttae0VdfJCqQtn3wNy6ustZXGmG8k9TLGRFprS+rU9vYev/Aev5SUJKmf9/HxagEAAICA4nelR2TkSY+zdvNmjfE+jqr532tPeJKXl6eFCxdq6tSppz5RAAAAnF2aYcuoM0l4eHh1Q9d8f3t/6NAhR1JSkt82DZGRke4TvcZ111134IEHHui2ePHi2HvvvXff3r17HevWrXONGzfucPv27U94f0Pi4+P99b+umVN5ebnxNWTfvXt36LPPPtuhobEKCwsdkpSTkxMyffr07itWrIix1srlcrl79ep1ZPjw4cXZ2dnh/u79/PPPI4cPH178ySefuG666aaklStXfn2q76mxWmx7K2NMf2OMNcb8p4GS0d7jZ97jckkOST+oM45D0kXyrNzYXKtWki7xM+6l8vQG+fAUpw4AAAA0K99Kj6NBhY5pSt5YuYcO1Tw+GqAc/cOy7OxsAQAAAGg6Tqez+uDBg34XF+zevTvU3/nakpKSqkaOHFm0fv16V35+vuOVV16Jc7v/f/buPSzqct0b+PdhYDg4nI+KDAImukBURmgvM8pVvaZhipokagGrerXMbe4VpXi9HbSyVmw3vq1W7fKQlvamSW3Z5uth+1pujRA0McFUZCkqJ4fDAAPI8Lx/wMBwFBFmLL6f6+Kamd/v+T3P87OuUeae+74NIi4u7o6yIurq6kRXx4uKipQA4Onp2ahSqZoA4OGHH66QUmZ19zN//vxKAIiNjQ04cuSIc1JS0tWCgoLTOp3u1KlTp/KWLVvWbY+OpUuXFmVkZJwLCwurOXr0qNOnn37qeif31Rvm7OlxDkABgKlCiPtNTwghngIQAeD/SSkvthz+dwASwBtCCNMc/FcBDAfwN5NSVp8B0AN4WQjhaTLvAgD/BGCrlLLH+mlERERERJbSZXmrPgQ9PEaMaH3eVdAjMLDHPopERERERHSbRo8era+oqLA+ceJEp0yHjIyMXtWsnTdvntZgMIidO3c6p6WluapUKkNsbGzFra/sXn5+vn1VVVW7z/+1Wq1VXl6evaen500/P7/G8ePH1ymVSpmbm+tgMHROKklOTvaZMWNGgFartaqsrLTKzMx0HDduXM26deuKTEtnnT9/3ra7fSxdurTUysoKGzZsuCyEwKpVq/zKy8sHNC5htqBHS4DieQBNAP5LCLFHCPE3IcRBNActbgBYYjL+FIC/ApgA4IwQ4t+FEIcBrAVwAsC/mowtBvAvAPwA5AghPhVCpAPYBiAfQLI57pGIiIiIqC+M5a3aZXr0oadH1PTpbZd3CHp4e3sjJiamr1skIiIiIqIuLFiwoAwAVq1a5dvY2FZR6uOPP3Y7e/asQ2/mWLRoUblSqZSff/65+/Hjxx2nT59e7uDg0LF39W2pr68XSUlJw0yPJSUlDauurlY8/vjjWgBwcHCQ0dHR2qtXryrXrVvXrrzVF1984fzuu+/6lpSU2Li5uTUpFAppZWWFsrIya71e35pF8uuvvyrffPNN31vt54EHHqidO3duWWlpqc2KFStuOf5OmDPTA1LK79DcqHxXy+MzAEYB2AggQkqZ12H8K2gOlNQBWAQgCMC/AXhISlnXYezfAcwDUAggDoAGwGYAk6WUpQN4W0REREREd6S/Mj3sPDzaLm8NoDjB29sbe/bsYRNzIiIiIqJ+9uKLL96IioqqPHDggEtwcHBIXFyc+qGHHgp6/vnnA6Kioip7M4eHh4chKiqq8vjx4zshL74AACAASURBVE6NjY1i4cKFnUpbHT582CExMdHvo48+cuvNnK6uro3btm3znDBhwugFCxaoJ0yYMHrjxo3earW6fu3atdeN4z744INCf3//+tWrV/tpNJrgJ5980v/ee+8dtXDhwpGOjo6NW7duLQAAlUolo6OjtYWFhbYhISF/iIuLU0+ZMmVkaGho6Lhx42qsrKzw/fffO7322mve3e1p/fr1V1UqlWHbtm1eR48e7VVAqC8GJOghpXxQSimklJ1ScKSUZ6WU86WUflJKWymlWkr5jJTyUjdz/V1KGSKltG8Z+1J3paqklDullBOllA5SyqFSyj9LKa93NZaIiIiI6G7RX5kepoESYwBl7txEXLp0CREREXeyRSIiIiIi6oJCocC+ffsuvvDCC0U6nU6xe/duj6KiIuWWLVsuzpw5s9clqubPn68FAG9v75vTp0/XdTyfk5Njv3nzZq8DBw44db66My8vr5t79+49p1Qqm3bv3u1+/fp15fz580uPHTuW5+Pj01rLaujQoY0ZGRm58fHxJYWFhba7d+92v3Lliu28efPKMjMzzwYHBzcYx27duvUfiYmJJTU1NYq0tDR3rVZrnZqaWpCWllawePHiourqakVGRsaQ7vbk6+vbmJSUdM1gMGDJkiX+XZXU6g+irS3G4CWEyAoPDw/Pysqy9FaIBq0Rr/5n6/OCdY9ZcCdERGRpg/HvhLfeAlavBq5iGIah5Ts7hYWAb+es7x7/fGprgSHNv2PoYQcH6PGXvwB//euAbZ3orjMY30MGm8H435j3PDjumag/aTQaZGdnZ0spNT2Ny8rKOmFnZzcmJCQk11x7o4EnhNAEBwfr8/Lyzlp6L331yy+/jKmrq8vVaDQTb/das5a3IiIiIiKizrrM9OhDeSvY2wOiubyuPeqgQCOqusyRJiIiIiIi+n1i0IOIiIiIyMJ0OkCgCY6mPT2GdJsV3j0h2pXFUqGaQQ8iIiIiIhpUGPQgIiIiIrIwnQ5wQG3bAQcHQKHo22Qd+nroOlUDJiIiIiIi+v2ytvQGiIiIiIgGu+rqfmhi3sW1zPQgIiIiIhp8pJSDunk1Mz2IiIiIiCxMp2sOULTqSz8PIwY9iIiIiIhoEGPQg4iIiIjIwgYq08MROgY9iIiIiIhoUGHQg4iIiIjIwvo104M9PYiIiIiIaBBj0IOIiIiIyMI6ZXqwvBUREREREVGfMOhBRERERGRhOt3ANTJvaADq6+9gc0RERERERL8hDHoQEREREVnYQDUyNwZSmO1BRERERESDBYMeREREREQW1NDQ/NNvmR4denoADHoQEREREdHgwaAHEREREZEFVbckeAxEpodxTjYzJyIiIiKiwYJBDyIiIiIiCyot1QMYuJ4eADM9iIiIiIho8GDQg4iIiIjIQjIzM3HffdMAtM/0+IdW2/dJ2dODiIiIiOi2REZGBgshNGVlZYr+nHfFihXDhBCa9PR0RwBIT093FEJoEhMT/fpznbvRnDlzRgghNOfOnVOae20GPYiIiIiILECv12PGjBm4ceMmgPaZHikffwy9Xt+3idnTg4iIiIjotsyaNUubkJBQYmdn1zSQ64wYMaIhISGh5MEHH2QB2gFkbekNEBERERENRmlpaSguLgYQDqB90KOwqgppaWmIi4u7/YnZ04OIiIiI6LasWrWq1BzrhIaG1m/atOmKOdYazJjpQURERERkAfn5+S3PnAG0L2+la3f+NrGnBxERERERDWIMehARERERWUBgYGDLs+agh2mmR3W787eJPT2IiIiIiG5Lx54eGzZscBdCaD788EO3rVu3uoSFhY22s7MLd3V1HTdv3jz/jr0/9Hq9WL58+TBfX9+xtra24QEBASHvv/++R8d1Ovb0CAwMDBFCaI4fP27fcezatWu9hBCalStX+tzu/QghNBqNJvjMmTO2U6dODXJychrv6Og4ftq0aYF5eXmdemzU1taKV155xScwMDDE1tY23MvLKyw2Ntb//Pnzncbm5OTYxsbG+hvv1cfHJ2zq1KlB+/btU3Uc25FWq7UKCwsbLYTQvPfee563e1+9xaAHEREREZEFxMTEwNvbG11leti6uyMmJqZvE7OnBxERERFRv9i0aZNnYmJikLu7e+Ps2bPLHB0dDTt37vR46qmn/E3HzZo1KzA1NXWolZWVnD179o1hw4Y1JCUl+e/atcutp/lnz56tBYBdu3a5dDz3zTffuAohkJCQoO3L3ktKSmzuv//+0YWFhcro6GjtmDFj9Pv27XO97777xpgGM/R6vYiKihr13nvv+To4ODTNmTPnRmhoaO3XX3/tHh4e/oeMjIzWgMyFCxdsJk2aNGbnzp0eQUFBdXPmzCkbNWqU/tChQ86PPfZY8Hfffddt4KOqqsrqkUceuScnJ2fImjVrriQlJQ1YSTH29CAiIiIisgB7e3vs2bMHDz54DLW17TM9UjduhL19py979Q7LWxERERFRfxFCY+kt9JqUWf095alTp1Rffvnl+blz51YBQFlZmWLkyJFjDxw44FJVVWXl5OTUtH37duf9+/e7TJo0qerQoUMX7OzsJAB88sknrs8991yP6dvx8fHalJSUYd99951LSkrKdePxK1euWJ88eVIVHh5ePWrUqIa+7L2wsNB2zpw5N3bt2lVgPJacnOzz9ttv+7700kvD09PT8wFg5cqVQ7OyslSvvvrq1XfeeafIODY9Pd1x1qxZo5YsWeKfnZ2dBwBbtmxxq66uVqSmphYsW7bshnFsamqq+/Lly0fs2LHDbdq0adXooLa2VkydOnVkdna2avXq1YWrV68u6cs99RYzPYiIiIiILCQiIgILF74AoH2mx7jJk/s+KRuZExERERH1i2nTpmmNAQ8A8PDwMEREROgaGxvF5cuXbQBg48aNHgCwfv36QmPAAwCeffbZ8kmTJvX49aPQ0ND60NDQ2tzcXAfT7Ivt27e7NjU1ITY29kZP1/dECIGUlJSrpsdef/31IldX18aDBw+61NfXC4PBgM8++8xTrVbXv/XWW0WmY6Ojo3WTJ0+uPHny5JDLly9bA0BERETtypUrryYmJrbLPpkwYYIeAGpqajrFG+rr68Wjjz468scff3R8+eWXr61Zs6a4r/fUW8z0ICIiIiKyoJoaawCyXaaHaeDittnZAVZWQFMT7FAPa9xEVZXNHe+TiIiIiGiwGTt2rL7jMScnJwMA6HQ6KwD4+eefVY6OjobIyMhOYyMjI2uOHTvm1NMaTzzxxI0zZ844fPXVVy7JycklAPDtt9+62tjYyPj4+PK+7l2tVtf7+/vfND1mY2OD8ePH1xw+fNj5woULyoaGBlFRUWHt4ODQ9Mwzz/h1nKOsrMwGAHJycuzUanX1zJkzdTNnztRdv37dev/+/Q4XL15U5ufn2+7fv79TeS6jRYsWBZw+fXqItbW1fPrpp/tUqut2MehBRERERGRBlZWALephg8bmAzY2gK1t3ycUormvR2UlgOZsj6oq137YKRERERENOgNQMuq3xM7Orqm7c1I2J3VUVFQo1Gp1fVdjhgwZYrjVGvHx8do33njDLz093SU5ObmkqKhI8dNPP6mmTJlS6enpecvru+Pm5tbY057q6+uFsSH7tWvXlJs3b/bqbq6qqioFABQUFNgkJCT4HzlyxFlKCZVKZQgKCqqbOHFidX5+vl1X154+fXrIxIkTq0+cOKFavHix+ocffjjf13vqLZa3IiIiIiKyoMrK9qWtTBuR91mHElfs6UFERERENDDs7e2bysvLu0wuuHbtmrKr46bUanVjZGSkLjMzU1VaWqrYsWOHq8FgEHFxcXeUFVFXVye6Ol5UVKQEAE9Pz0aVStUEAA8//HCFlDKru5/58+dXAkBsbGzAkSNHnJOSkq4WFBSc1ul0p06dOpW3bNmybnt0LF26tCgjI+NcWFhYzdGjR50+/fTTAf9GFoMeREREREQWVFmJ/itt1cUcjtCxpwcRERER0QAZPXq0vqKiwvrEiROdMh0yMjJ69Y/7efPmaQ0Gg9i5c6dzWlqaq0qlMsTGxlbcyb7y8/Ptq6qq2n3+r9VqrfLy8uw9PT1v+vn5NY4fP75OqVTK3NxcB4Ohc1JJcnKyz4wZMwK0Wq1VZWWlVWZmpuO4ceNq1q1bV2RaOuv8+fPdpqovXbq01MrKChs2bLgshMCqVav8ysvLBzQuwaAHEREREZEFDUimh8kczPQgIiIiIho4CxYsKAOAVatW+TY2tlWU+vjjj93Onj3r0Js5Fi1aVK5UKuXnn3/ufvz4ccfp06eXOzg4yFtf2b36+nqRlJQ0zPRYUlLSsOrqasXjjz+uBQAHBwcZHR2tvXr1qnLdunXtylt98cUXzu+++65vSUmJjZubW5NCoZBWVlYoKyuz1uv1rVkkv/76q/LNN9/0vdV+Hnjggdq5c+eWlZaW2qxYseKW4+8Egx5ERERERBY0IJkeTm29Ep1QBZ0OaOq2GjEREREREfXViy++eCMqKqrywIEDLsHBwSFxcXHqhx56KOj5558PiIqKquzNHB4eHoaoqKjK48ePOzU2NoqFCxd2Km11+PBhh8TERL+PPvrIrTdzurq6Nm7bts1zwoQJoxcsWKCeMGHC6I0bN3qr1er6tWvXXjeO++CDDwr9/f3rV69e7afRaIKffPJJ/3vvvXfUwoULRzo6OjZu3bq1AABUKpWMjo7WFhYW2oaEhPwhLi5OPWXKlJGhoaGh48aNq7GyssL333/v9Nprr3l3t6f169dfValUhm3btnkdPXq0VwGhvmDQg4iIiIjIQqQEqqoGINOjQ9BDSqCm5s6nJSIiIiKi9hQKBfbt23fxhRdeKNLpdIrdu3d7FBUVKbds2XJx5syZvS5RNX/+fC0AeHt735w+fXqnArU5OTn2mzdv9jpw4IBT56s78/Lyurl3795zSqWyaffu3e7Xr19Xzp8/v/TYsWN5Pj4+rbWshg4d2piRkZEbHx9fUlhYaLt79273K1eu2M6bN68sMzPzbHBwcINx7NatW/+RmJhYUlNTo0hLS3PXarXWqampBWlpaQWLFy8uqq6uVmRkZAzpbk++vr6NSUlJ1wwGA5YsWeLfVUmt/iCMXeYHMyFEVnh4eHhWVpalt0I0aI149T9bnxese8yCOyEiIksbTH8n6HTN8YnZ+BpfY27zwVmzgLS0bq/p1Z/PU08B27YBAOKxGZ8hHlevAsOGdT2c6PdkML2HDFaD8b8x73lw3DNRf9JoNMjOzs6WUmp6GpeVlXXCzs5uTEhISK659kYDTwihCQ4O1ufl5Z219F766pdffhlTV1eXq9FoJt7utcz0ICIiIiKykMqWZPeBzPQwls5iXw8iIiIiIhoMGPQgIiIiIrIQY9CjXU+PAShvBTDoQUREREREgwODHkREREREFtJl0GMAGpkDDHoQEREREdHgYG3pDRARERERDVbGQES/l7cymYNBDyIiIiKiwUVKOaibVzPTg4iIiIjIQsyR6WGcW6frbjAREREREdHvB4MeREREREQWYo5G5sz0ICIiIiKiwYRBDyIiIiIiCzFnT48ffvgZer3+zucmIiIiIiK6izHoQURERERkIQOW6dFFT4+dO/chICAAmZmZdz4/ERERERHRXYpBDyIiIiIiCxmoTI86pbL1uTHoATiiuLgYM2bMYMYHERERERH9bjHoQURERERkIV0GPfoh02Pv0aNt07XO3Vzyqri4GGlpaXe8BhERERER0d2IQQ8iIiIiIgsZqPJWvxYVtT5vy/Ro6/ORn59/x2sQERERERHdjRj0ICIiIiKykIEqb6UODoah5bk96mCDBgAurecDAwPveA0iIiIiIqK70YAEPYQQzwshpBDCpYtz1kKIFUKIs0KIWiFEgRBivRCiy6+0CSHihRAnhRA1QoirQoiNQoih3YyNFkIcE0LohBAlQoj/I4QI7u/7IyIiIiLqDwOV6REzezZ0QrRNCR0AVwCAt7c3YmJi7ngNIiIiIiKiu1G/Bz2EEAoAf+5hyEcAUgAIANsAXASwHMD3Qgi7DnOtBrAZgDuALwBkA3gaQIYQwrPD2EUA9gAYBWAngCMAZraMZeCDiIiIiO46lZWAAo1wQEtjcSEAB4c7ntfe3h723t6tr41BD29vb+zZswf29vZ3vAYRERER0e9FZGRksBBCU1ZWpujPeVesWDFMCKFJT093BID09HRHIYQmMTHRrz/XuRvNmTNnhBBCc+7cOaW517buj0mEEALAhJafeADh3Yx7EM0Bkf8CME1K2dBy/A0A/wtAEoA3W44FAXgdwC8AJkkpq1qOJwDYBOBdAIktx5wB/G8AxQDCpZTXWo5PaVnr7wD+1B/3SkRERETUXyorgSGoaTugUjUHPvqBrYcH0NLbwwlVUCr/gEuXLjHgQURERETUwaxZs7ShoaG1dnZ2TQO5zogRIxoSEhJKHnzwQd2tR1Nf9UvQA8AQAFm9GPdCy+OrxoBHi78CWAngGbQEPQAsBqAA8IYx4NFiC4C1AOKEEEullLUAFgJwBvCWMeABAFLKw0KIHwFMEUIESSkv3v6tERERERH1Pymbgx4+/dzPo5VJmSwnVKGhwRpC9Nc//4mIiIiIfj9WrVpVao51QkND6zdt2nTFHGsNZv1V3koP4AmTn7PdjIsCUCqlzDQ9KKWsRnPpKj8hREDL4QcBNAHY12GsBPADAFsA95qMBYC9Xax5xGRtIiIiIqK7Qm0tYDB0aGLeD/08Wjk5tT1F83eIysv7b3oiIiIiIqK7Ub8EPaSUBinlLuMPgE6RMSGELwAvdB8QyW15vKflcRyAK1LKrlJ9Oo4dD8AA4FwvxhIRERERWZyxibkzKtsOOjv33wIMehARERER9UrHnh4bNmxwF0JoPvzwQ7etW7e6hIWFjbazswt3dXUdN2/ePP+OvT/0er1Yvnz5MF9f37G2trbhAQEBIe+//75Hx3U69vQIDAwMEUJojh8/3qkG7dq1a72EEJqVK1f63O79CCE0Go0m+MyZM7ZTp04NcnJyGu/o6Dh+2rRpgXl5eZ16bNTW1opXXnnFJzAwMMTW1jbcy8srLDY21v/8+fOdxubk5NjGxsb6G+/Vx8cnbOrUqUH79u27Zdq6Vqu1CgsLGy2E0Lz33nuetxrfV+bMb3dveSzu5rzxVzA3IYQTAJvejDWZ+4aUsrEXY7uUm5sLjUbT5bmsrN5U7iIiIiIi6j1zBj2M2SQMehARERH9vnT3eWZubm6Xx+n2bNq0yfPUqVOq+++/v3L27NllR48eddq5c6dHdXW1Yu/evfnGcbNmzQrcv3+/y/Dhw+tnz5594/Lly8qkpCT/4cOH1/c0/+zZs7UpKSnDdu3a5fLHP/5Rb3rum2++cRVCICEhQduXvZeUlNjcf//9o4cNG9YQHR2tvXDhgv2+fftcf/rpJ8cff/wx95577mkAmgM2UVFRo7KyslQhISG1c+bMuVFUVGTz9ddfu+/du9f14MGD5+699149AFy4cMFm0qRJY2pqahSTJ0+ueuCBByoLCwttDx065Hzw4EGX9PT0c9OmTavuaj9VVVVWjzzyyD05OTlD1qxZcyUpKWnASoqZM+hh/K2ru//Qxg6O1rc51jj3tV6OJSIiIiKyOEtkemj79OsSEREREQ1aQnQdVbkbSdnv31w/deqU6ssvvzw/d+7cKgAoKytTjBw5cuyBAwdcqqqqrJycnJq2b9/uvH//fpdJkyZVHTp06IKdnZ0EgE8++cT1ueeeC+xp/vj4eG1KSsqw7777ziUlJeW68fiVK1esT548qQoPD68eNWpUQ09zdKewsNB2zpw5N3bt2lVgPJacnOzz9ttv+7700kvD09PT8wFg5cqVQ7OyslSvvvrq1XfeeafIODY9Pd1x1qxZo5YsWeKfnZ2dBwBbtmxxq66uVqSmphYsW7bshnFsamqq+/Lly0fs2LHDraugR21trZg6derI7Oxs1erVqwtXr15d0pd76i1zBgJutjx2StVpYUyVqb3Nsca5ezu2S2PGjGFGBxERERGZzYAHPTo0MgeY6UFERET0e9Pd55kajQbZ2dlm3s3vz7Rp07TGgAcAeHh4GCIiInQHDx50uXz5sk1oaGj9xo0bPQBg/fr1hcaABwA8++yz5Vu2bKk6duyYU1dzA82NzUNDQ2vPnDnjcP78eaUx+2L79u2uTU1NiI2NvdHdtbcihEBKSspV02Ovv/560d///nfvgwcPutTX1wtra2v52WefearV6vq33nqryHRsdHS0bvLkyZVHjhxxvnz5srVarW6MiIioXbly5dXExMR2X6eaMGGCHgBqamo6tdOor68Xjz766Mgff/zR8eWXX762Zs2a7qo79RtzBj2M0RuXbs4by19dA6BFc4+O3ow1zj1UCCFaGp33NJaIiIiIyOKY6UFEREREdHcbO3asvuMxJycnAwDodDorAPj5559Vjo6OhsjIyE5jIyMja3oKegDAE088cePMmTMOX331lUtycnIJAHz77beuNjY2Mj4+vs9fW1Kr1fX+/v43TY/Z2Nhg/PjxNYcPH3a+cOGCsqGhQVRUVFg7ODg0PfPMM34d5ygrK7MBgJycHDu1Wl09c+ZM3cyZM3XXr1+33r9/v8PFixeV+fn5tvv37+/uc3wsWrQo4PTp00Osra3l008/bZbfSMwZ9LiM5myLsd2cHwmgCcBZKeVNIcRFAEFCiCFSypouxgLAmZbHPABqAMEtz3saS0RERERkcezpQURERER3vQEoGfVbYmdn19TdOeN37ysqKhRqtbrLNg1Dhgwx3GqN+Ph47RtvvOGXnp7ukpycXFJUVKT46aefVFOmTKn09PS85fXdcXNz66r/deue6uvrhbEh+7Vr15SbN2/26m6uqqoqBQAUFBTYJCQk+B85csRZSgmVSmUICgqqmzhxYnV+fr5dV9eePn16yMSJE6tPnDihWrx4sfqHH34439d76q1O6SYDRUppAHAEgLcQol3gQwjhAiASQIaU0pgudAiAAsCfOoxVAHgIzZkbv5iMBYBHulh6Kpp7g3zfD7dBRERERNQvmOlBRERERPTbZ29v31ReXt5lcsG1a9eUXR03pVarGyMjI3WZmZmq0tJSxY4dO1wNBoOIi4u7o3+919XVia6OFxUVKQHA09OzUaVSNQHAww8/XCGlzOruZ/78+ZUAEBsbG3DkyBHnpKSkqwUFBad1Ot2pU6dO5S1btqzbHh1Lly4tysjIOBcWFlZz9OhRp08//dT1Tu6rN8wW9GjxUcvjOiGEFQAIIQSAd9Hck+MDk7H/DkACeEMIYdqv41UAwwH8zaSU1WcA9ABeFkJ4GgcKIRYA+CcAW02CKUREREREFseeHkREREREv32jR4/WV1RUWJ84caJTpkNGRoaqN3PMmzdPazAYxM6dO53T0tJcVSqVITY2tuJO9pWfn29fVVXV7vN/rVZrlZeXZ+/p6XnTz8+vcfz48XVKpVLm5uY6GAydk0qSk5N9ZsyYEaDVaq0qKyutMjMzHceNG1ezbt26ItPSWefPn7ftbh9Lly4ttbKywoYNGy4LIbBq1Sq/8vLyAY1LmDXoIaX8DwBfAZgO4JQQ4iMAPwF4DsAeKeV2k7GnAPwVwAQAZ4QQ/y6EOAxgLYATAP7VZGwxgH8B4AcgRwjxqRAiHcA2APkAks1xf0REREREvWWJTA8GPYiIiIiI+teCBQvKAGDVqlW+jY1tFaU+/vhjt7Nnzzr0Zo5FixaVK5VK+fnnn7sfP37ccfr06eUODg4de1fflvr6epGUlDTM9FhSUtKw6upqxeOPP64FAAcHBxkdHa29evWqct26de3KW33xxRfO7777rm9JSYmNm5tbk0KhkFZWVigrK7PW6/WtWSS//vqr8s033/S91X4eeOCB2rlz55aVlpbarFix4pbj74S5Mz0AYAGA1QAcAMQDcAPwGoC5HQdKKV8B8DyAOgCLAAQB+DcAD0kp6zqM/TuAeQAKAcQB0ADYDGCylLJ0gO6FiIiIiKhPWN6KiIiIiOi378UXX7wRFRVVeeDAAZfg4OCQuLg49UMPPRT0/PPPB0RFRVXeegbAw8PDEBUVVXn8+HGnxsZGsXDhwk7/cj98+LBDYmKi30cffeTWmzldXV0bt23b5jlhwoTRCxYsUE+YMGH0xo0bvdVqdf3atWuvG8d98MEHhf7+/vWrV6/202g0wU8++aT/vffeO2rhwoUjHR0dG7du3VoAACqVSkZHR2sLCwttQ0JC/hAXF6eeMmXKyNDQ0NBx48bVWFlZ4fvvv3d67bXXvLvb0/r166+qVCrDtm3bvI4ePdqrgFBfDEjQQ0r5oJRSSCk7peBIKRullG9JKUdKKe2klEFSyjellA3dzPV3KWWIlNJeSqmWUr7UXakqKeVOKeVEKaWDlHKolPLPUsrrXY0lIiIiIrIkNjInIiIiIvrtUygU2Ldv38UXXnihSKfTKXbv3u1RVFSk3LJly8WZM2f2ukTV/PnztQDg7e19c/r06bqO53Nycuw3b97sdeDAAafOV3fm5eV1c+/eveeUSmXT7t273a9fv66cP39+6bFjx/J8fHxaa1kNHTq0MSMjIzc+Pr6ksLDQdvfu3e5XrlyxnTdvXllmZubZ4ODg1s/tt27d+o/ExMSSmpoaRVpamrtWq7VOTU0tSEtLK1i8eHFRdXW1IiMjY0h3e/L19W1MSkq6ZjAYsGTJEv+uSmr1B9HWFmPwEkJkhYeHh2dlZVl6K0SD1ohX/7P1ecG6xyy4EyIisrTB8nfCffcZcOyYAhcQhCDkNx/89Vfgnnt6vK7Xfz43bgAeHgCAcrjADeXw9ARKum0xSPT7MFjeQwazwfjfmPc8OO6ZqD9pNBpkZ2dnSyk1PY3Lyso6YWdnNyYkJCTXXHujgSeE0AQHB+vz8vLOWnovffXLL7+Mqaury9VoRDPqVQAAIABJREFUNBNv91pLlLciIiIiIhrUMjMzkZFxEUD7TI+T+fn9t0inRuYS5eUAv/NERERERES/Zwx6EBERERGZkV6vx4wZM2AwuACQ7YIeM596Cnq9vn8WUioBOzsAgAJNcEAtGhuB6ur+mZ6IiIiIiOhuxKAHEREREZEZpaWlobi4BIA77KGHDRoBAHUArpSUIC0trf8WY18PIiIiIiIaZKwtvQEiIiIiosEkPz8fgAsARbssj8p25/uJo2NrEw8nVKEYPigvB9Tq/luCiIiIiIjuLlLKQd28mpkeRERERERmFBgYCKC5wXhXQY/m8/3EJNOjua8HoNX23/RERERERER3GwY9iIiIiIjMKCYmBq6u9wDoHPTw9vZGTExM/y3WRdCD5a2IiIiIiOj3jEEPIiIiIiIzsre3x+rV6wG0D3rUKZXYs2cP7O3t+2+xLnp6MNODiIiIiIh+z9jTg4iIiIjIzFxdRwFoH/SY9OijUERE9O9CzPQgIiIiIqJBhpkeRERERERmduNG86Np0EPh5tb/Czk6tj5l0IOIiIiIiAYDBj2IiIiIiMysrKz50TToAWfn/l+IjcyJiIiIiGiQYdCDiIiIiMjMLBn0YKYHERERERH9njHoQURERERkZl2VtxrooAcbmRMRERER0WDAoAcRERERkZmZLdODPT2IiIiIiGiQYdCDiIiIiMjMLFneKj+/HNu3b4der+//9YiIiIiIfoMiIyODhRCasrIyRX/Ou2LFimFCCE16erojAKSnpzsKITSJiYl+/bnO3WjOnDkjhBCac+fOKc29NoMeRERERERmZixvZQxEABjwoIcxwFJeDixYsAABAQHIzMzs/zWJiIiIiH5jZs2apU1ISCixs7NrGsh1RowY0ZCQkFDy4IMP6gZyncHO2tIbICIiIiIaTJqazNjTw82t9akrjHWtnAFYobi4GDNmzMClS5dgb2/f/2sTEREREf1GrFq1qtQc64SGhtZv2rTpijnWGsyY6UFEREREZEYVFc2BDwBwtRrgoIera+tTN7TU1IIVmgMfQHFxMdLS0vp/XSIiIiIiIgth0IOIiIiIyIyMWR4A4DLQmR4mQQ9XVJieaH2Wn5/f/+sSEREREf2GdOzpsWHDBnchhObDDz9027p1q0tYWNhoOzu7cFdX13Hz5s3z79j7Q6/Xi+XLlw/z9fUda2trGx4QEBDy/vvve3Rcp2NPj8DAwBAhhOb48eOdUq/Xrl3rJYTQrFy50ud270cIodFoNMFnzpyxnTp1apCTk9N4R0fH8dOmTQvMy8vr1GOjtrZWvPLKKz6BgYEhtra24V5eXmGxsbH+58+f7zQ2JyfHNjY21t94rz4+PmFTp04N2rdvn+pW+9JqtVZhYWGjhRCa9957z/N276u3GPQgIiIiIjIjYxNzAHCUA9/IvEmI5rVQA2vcbDnRVvYqMDCw/9clIiIiIvod2LRpk2diYmKQu7t74+zZs8scHR0NO3fu9Hjqqaf8TcfNmjUrMDU1daiVlZWcPXv2jWHDhjUkJSX579q1y627uQFg9uzZWgDYtWuXS8dz33zzjasQAgkJCdq+7L2kpMTm/vvvH11YWKiMjo7WjhkzRr9v3z7X++67b4xpMEOv14uoqKhR7733nq+Dg0PTnDlzboSGhtZ+/fXX7uHh4X/IyMhoDchcuHDBZtKkSWN27tzpERQUVDdnzpyyUaNG6Q8dOuT82GOPBX/33XfdBj6qqqqsHnnkkXtycnKGrFmz5kpSUtKAlRRjTw8iIiIiIjMyBj1sUQelbGh+YWMD2Nn1/2JWVhCuroC2+fckV5SjFF4A3AEA3t7eiImJ6f91iYiIiOj3QQiNpbfQa1Jm9feUp06dUn355Zfn586dWwUAZWVlipEjR449cOCAS1VVlZWTk1PT9u3bnffv3+8yadKkqkOHDl2ws7OTAPDJJ5+4Pvfccz1+wyg+Pl6bkpIy7LvvvnNJSUm5bjx+5coV65MnT6rCw8OrR40a1dCXvRcWFtrOmTPnxq5duwqMx5KTk33efvtt35deeml4enp6PgCsXLlyaFZWlurVV1+9+s477xQZx6anpzvOmjVr1JIlS/yzs7PzAGDLli1u1dXVitTU1IJly5a15rCnpqa6L1++fMSOHTvcpk2bVt1xL7W1tWLq1Kkjs7OzVatXry5cvXp1SV/uqbeY6UFEREREZEbGoEenJuYtGRn9TXTZzNwb3t7e2LNnD5uYExERERF1Y9q0aVpjwAMAPDw8DBEREbrGxkZx+fJlGwDYuHGjBwCsX7++0BjwAIBnn322fNKkSVWdZ20TGhpaHxoaWpubm+tgmn2xfft216amJsTGxt7o6fqeCCGQkpJy1fTY66+/XuTq6tp48OBBl/r6emEwGPDZZ595qtXq+rfeeqvIdGx0dLRu8uTJlSdPnhxy+fJlawCIiIioXbly5dXExMR22ScTJkzQA0BNTU2neEN9fb149NFHR/7444+OL7/88rU1a9YU9/WeeouZHkREREREZmTs6dEp6DFQ2jUzb/7d5Mknl2PTpo8Y8CAiIiIi6sHYsWP1HY85OTkZAECn01kBwM8//6xydHQ0REZGdhobGRlZc+zYMaee1njiiSdunDlzxuGrr75ySU5OLgGAb7/91tXGxkbGx8eX93RtT9Rqdb2/v/9N02M2NjYYP358zeHDh50vXLigbGhoEBUVFdYODg5NzzzzjF/HOcrKymwAICcnx06tVlfPnDlTN3PmTN3169et9+/f73Dx4kVlfn6+7f79+zuV5zJatGhRwOnTp4dYW1vLp59+uk+lum4Xgx5ERERERGbUbabHQOki08PHZwIY7yAiIiKiWxqAklG/JXZ2dk3dnZOyOamjoqJCoVar67saM2TIEMOt1oiPj9e+8cYbfunp6S7JycklRUVFip9++kk1ZcqUSk9Pz1te3x03N7fGnvZUX18vjA3Zr127pty8ebNXd3NVVVUpAKCgoMAmISHB/8iRI85SSqhUKkNQUFDdxIkTq/Pz87us13v69OkhEydOrD5x4oRq8eLF6h9++OF8X++pt1jeioiIiIjIjMwe9Ogi06OoqLvBRERERER0O+zt7ZvKy8u7TC64du2asqvjptRqdWNkZKQuMzNTVVpaqtixY4erwWAQcXFxd5QVUVdX12X93KKiIiUAeHp6NqpUqiYAePjhhyuklFnd/cyfP78SAGJjYwOOHDninJSUdLWgoOC0Tqc7derUqbxly5Z126Nj6dKlRRkZGefCwsJqjh496vTpp5+6dje2vzDoQURERERkRmYvb9VFpgeDHkRERERE/WP06NH6iooK6xMnTnTKdMjIyFD1Zo558+ZpDQaD2Llzp3NaWpqrSqUyxMbGVtzJvvLz8+2rqqraff6v1Wqt8vLy7D09PW/6+fk1jh8/vk6pVMrc3FwHg6FzUklycrLPjBkzArRarVVlZaVVZmam47hx42rWrVtXZFo66/z587bd7WPp0qWlVlZW2LBhw2UhBFatWuVXXl4+oHEJBj2IiIiIiMzIkpkeDHoQEREREfWvBQsWlAHAqlWrfBsb2ypKffzxx25nz5516M0cixYtKlcqlfLzzz93P378uOP06dPLHRwc5K2v7F59fb1ISkoaZnosKSlpWHV1teLxxx/XAoCDg4OMjo7WXr16Vblu3bp25a2++OIL53fffde3pKTExs3NrUmhUEgrKyuUlZVZ6/X61iySX3/9Vfnmm2/63mo/DzzwQO3cuXPLSktLbVasWHHL8XeCQQ8iIiIiIjNieSsiIiIiot+PF1988UZUVFTlgQMHXIKDg0Pi4uLUDz30UNDzzz8fEBUVVXnrGQAPDw9DVFRU5fHjx50aGxvFwoULO5W2Onz4sENiYqLfRx995NbVHB25uro2btu2zXPChAmjFyxYoJ4wYcLojRs3eqvV6vq1a9deN4774IMPCv39/etXr17tp9Fogp988kn/e++9d9TChQtHOjo6Nm7durUAAFQqlYyOjtYWFhbahoSE/CEuLk49ZcqUkaGhoaHjxo2rsbKywvfff+/02muveXe3p/Xr119VqVSGbdu2eR09erRXAaG+YNCDiIiIiMiMLFneyl00Z3pUVAB1dQO3JBERERHRYKFQKLBv376LL7zwQpFOp1Ps3r3bo6ioSLlly5aLM2fO7HWJqvnz52sBwNvb++b06dN1Hc/n5OTYb9682evAgQNOvZnPy8vr5t69e88plcqm3bt3u1+/fl05f/780mPHjuX5+Pi01rIaOnRoY0ZGRm58fHxJYWGh7e7du92vXLliO2/evLLMzMyzwcHBDcaxW7du/UdiYmJJTU2NIi0tzV2r1VqnpqYWpKWlFSxevLiourpakZGRMaS7Pfn6+jYmJSVdMxgMWLJkiX9XJbX6gzB2mR/MhBBZ4eHh4VlZWZbeCtGgNeLV/2x9XrDuMQvuhIiILO33/HdCUxNgY9P8+K94CS/h35pPvP8+8C//0qs5bvvP55tvgJgYAMABu2j8j7o9zdcWAP7+t7V9ot+E3/N7CAG1tbX4w5uHW1/nvvYn2NvbW3BH5jEY/78ejPdM1J80Gg2ys7OzpZSansZlZWWdsLOzGxMSEpJrrr3RwBNCaIKDg/V5eXlnLb2Xvvrll1/G1NXV5Wo0mom3ey0zPYiIiIiIzKSiojngAQAeNubP9PBUlLc+Z4krIvotqa2txZtvvglv7/YVMwICApCZmWmhXREREdHdyNrSGyAiIiIiGiyMpa0AwNOmErjZ8sJcPT1EW2lgBj2I6LciMzMT0dHRKCkpAQC4m5wrLi7GjBkzcOnSpUGR8UFERES3xkwPIiIiIiIzKS1te+6hMOlN6NarXoR9YzK3k4GZHkT026LX6zFjxozWgEdXiouL8Ze//AV6vd6MOyMiIqK7FYMeRERERERmkp9f3/rc5eb1thMeHgO3qEmmx5CGcgDNPf0Y9CCiu11tbS3+8pe/oLi4+JZjP/zwQ5a6IiIiaiGlzPot9/O4Uwx6EBERERGZQWZmJpYseav19ZA6k6CHu3sXV/QTe3vA1hYAYGOohz2avwnNoAcR3c0yMzMRGBiIDz/80ORoJID/22Hk/wMwE0BbqStmfBAREQ1uDHoQEREREQ0wY3mW6mpj7w4Jd1S3nXdwGLjFhWiX7eGK5hJXDHoQ0d3K+J7ZPsPjnwFkAPgfHUY/AOAbAM8BaA58pKWlmWWfREREdHdi0IOIiIiIaIClpaW1fHg3HADgCB2UaAIAVANI27dvYDdg2swczb1EGPQgortV23um0f0AUm5x1QcAogAA+fn5A7QzIiIi+i1g0IOIiIiIaIC1fQDXHPTwQFnruRswwwd0Js3MmelBRHe79u+JHgB2AFC0vM7oMDq75dEGwNcARmD48OEDu0EiIiK6qzHoQUREREQ0wAIDA1uedQ56lLU7P0C6yfSQcmCXJSLqi7b3RAFgKwDfltdlAOZ0GD0TgDGK2xwgSUp6hQ3NiYiIBjEGPYiIiIiIBlhMTAy8vIYCGAYAcMeN1nNVSiViYmIGdgMmmR4+yuagR10dsHHjTjb8JaK7ztSpU+Hs7IzmAMc0kzOL4O3d2GF0IYAYAPUtr/8JpaX3saE5ERHRIMagBxERERHRALO3t8eWLXvRXH4F8MCl1nNhDz4Ie3v7gd2ASaaH6ubF1ufPPrsaAQEB/EY0Ed01MjMzERISgsrKKgCvmZxZD2/vk9izZ08XV/0I4H+bvF6L4uJSNjQnIiIapBj0ICIiIiIyAw+P8a3PAx1LW5+7BwcP/OImmR4ustDkhA+Ki4v5jWgiuivo9XrMmDGjpYn5XAChLWd0UKlScfbsWURERHRz9ToAVS3P/wBgERuaExERDVIWCXoIIZKEEP/Wzc9DJuOshRArhBBnhRC1QogCIcR6IYRjN/PGCyFOCiFqhBBXhRAbhRBDzXdnRERERERdKzSJNYzxvtn2wsNj4Bc3yfRwRbHJCR8AQHFxMb8RTUQWl5aW1hLwsEL7LI8NqK7+B/bt29fD1TcAvG/y+g34+Y0ciG0SERHRXc5SmR6vAPjnbn5Mv7bxEYAUNHcv2wbgIoDlAL4XQtiZTiiEWA1gMwB3AF8AyAbwNIAMIYTnQN4MEREREdGtmAY9htm0NTKHu/vAL26S6eGGUpMTPq3P+I1oIrK0tvehuQBCWp5Xofljga7fp7y9vU1erQdQ0vLcH//1X2pmsRERUa9ERkYGCyE0ZWVliv6cd8WKFcOEEJr09HRHAEhPT3cUQmgSExP9+nOdu9GcOXNGCCE0586dU5p7bbMHPYQQzgDcACRJKUUXP+taxj0I4M8A/gvAOCnl/5RSPgTgTQDjASSZzBkE4HUAvwAIlVI+J6WcAeBZAH4A3jXfHRIRERERdWYa9PAUJkEPs2d6VJicaAt6BAYGDvw+iIh60PY+tNLkaCqA8g7n2+zZs8ck8FEN01//t251xIgR7FtERES3NmvWLG1CQkKJnZ1d00CuM2LEiIaEhISSBx98UDeQ6wx2lsj0CGp5vNjjKOCFlsdXpZQNJsf/CuAmgGdMji0GoADwhpSyyuT4FgDXAMQJIRz6vGMiIiIiojtkGvRwabrR9sLsQQ/T36+agx7e3t6IiYkZ+H0QEfUgJiYGrq6Pofl7jgBQi+bsje7fpyIiInDp0iVs3rwZKpUKwEY0Bz8AYCxKSoLZt4iIiG5p1apVpZs2bbqiUqnkQK4TGhpav2nTpitPPfVUxa1HU1/dzUGPKAClUsp2X8mQUlajuXSVnxAioOXwgwCaAOzrMFYC+AGALYB772zbRERERER9Zxr0cKyzXHkrD6s6kxM+8Pb2xp49e2Bvbz/w+yAi6kZtbS12794ND4/VJke3Ayi/5fuUvb09lEolqqurAVSiuTq20YvsW0RERDTIWCLoYcxHrRJCLBFCvCuEeFUIYfwqB4QQvgC8AJztZo7clsd7Wh7HAbgipewqLajjWCIiIiIiszMNethVW668ldqxraSun98/4dKlS4iIiOjqKiIis8jMzERgYCAWLvxnnD8/ofX47Nkl+OKLL3r1PtW+38cHJs9nARjOvkVERNSjjj09NmzY4C6E0Hz44YduW7dudQkLCxttZ2cX7urqOm7evHn+HXt/6PV6sXz58mG+vr5jbW1twwMCAkLef//9Tv/Q79jTIzAwMEQIoTl+/HinyP7atWu9hBCalStX+nQ8dytCCI1Gowk+c+aM7dSpU4OcnJzGOzo6jp82bVpgXl5epx4btbW14pVXXvEJDAwMsbW1Dffy8gqLjY31P3/+fKexOTk5trGxsf7Ge/Xx8QmbOnVq0L59+1S32pdWq7UKCwsbLYTQvPfeewPWh9t6oCbuQRCaszKyAbiYHH9HCPEpmktVGb/uVtzNHOUtj25CCCcANr0Z29OmcnNzodFoujyXlZXV06VERERERD2S0jToIaGoNClvZY5MD5Ogh7WuHAJNkLCCVusKO7uBX56IqDt6vR4zZsxAcXExgL+guVADAGTgv/97Az7//FKvMtHa9/s4i+b2oH9C88ce/5N9i4jod6u7zzNzc3O7PE63Z9OmTZ6nTp1S3X///ZWzZ88uO3r0qNPOnTs9qqurFXv37m2NqM+aNStw//79LsOHD6+fPXv2jcuXLyuTkpL8hw8fXt/T/LNnz9ampKQM27Vrl8sf//jHdrUYv/nmG1chBBISErR92XtJSYnN/fffP3rYsGEN0dHR2gsXLtjv27fP9aeffnL88ccfc++5554GoDlgExUVNSorK0sVEhJSO2fOnBtFRUU2X3/9tfvevXtdDx48eO7ee+/VA8CFCxdsJk2aNKampkYxefLkqgceeKCysLDQ9tChQ84HDx50SU9PPzdt2rTqrvZTVVVl9cgjj9yTk5MzZM2aNVeSkpJK+3JfvWGJoEcgmjNMNgLYAOAGgH9qef4MmoMU/9Eytrv/KWpaHq0BON3GWCIiIiIisysrAxpautQNd9JBVN1sfuHgAJijrJSNDaBSAdXVEE1NGO6kw5UqZ9TUAMXFgM9tf3eMiKh/pKWltQQ8BJq/A2n099ayVHFxcbecJyYmBt7e3i1zAc3ZHn8CAAixGI89NqSfd05ENEgI0XVU5W4kZb9/c/3UqVOqL7/88vzcuXOrAKCsrEwxcuTIsQcOHHCpqqqycnJyatq+fbvz/v37XSZNmlR16NChC3Z2dhIAPvnkE9fnnnuux6h7fHy8NiUlZdh3333nkpKSct14/MqVK9YnT55UhYeHV48aNaqhpzm6U1hYaDtnzpwbu3btKjAeS05O9nn77bd9X3rppeHp6en5ALBy5cqhWVlZqldfffXqO++8U2Qcm56e7jhr1qxRS5Ys8c/Ozs4DgC1btrhVV1crUlNTC5YtW9b6Ta7U1FT35cuXj9ixY4dbV0GP2tpaMXXq1JHZ2dmq1atXF65evbqkL/fUW5Yob/UWgD9JKf8ipbwspayRUh4CMA3NAYplaG5KDgDd/QZoTKupRXNT896O7daYMWOQlZXV5Q8RERER0Z0wLW0V4m3m0lZGJn09xqvbvix24YL5tkBE1FFb2amH0dYCVAvg/3Q43zN7e3vs2bMH3t7eLUf+A0Dzm6+UHvjuO0t8/EFENPC6+zxzzJgxlt7a78K0adO0xoAHAHh4eBgiIiJ0jY2N4vLlyzYAsHHjRg8AWL9+faEx4AEAzz77bPmkSZOqOs/aJjQ0tD40NLQ2NzfXwbSU1Pbt212bmpoQGxt7o6freyKEQEpKylXTY6+//nqRq6tr48GDB13q6+uFwWDAZ5995qlWq+vfeuutItOx0dHRusmTJ1eePHlyyOXLl60BICIionblypVXExMT22WfTJgwQQ8ANTU1nf7Cra+vF48++ujIH3/80fHll1++tmbNmu4qNvUbs2c/SCkPd3P8shDiRwAPATB2V3Tpaizayl9dQ/O/hgy9HEtEREREZHamQY9R7jeA8y0vzBn0cHUFLl8GAPxhaDn2nAkAAFy8CEyebL5tEBGZais7lWBy9DMYPxa4nbJUERERuHTpEt5//3289957qK7eAqC5MfrTT3+PoCAX9jAiIqLbMnbsWH3HY05OTgYA0Ol0VgDw888/qxwdHQ2RkZGdxkZGRtYcO3bMqeNxU0888cSNM2fOOHz11VcuycnJJQDw7bffutrY2Mj4+Pjynq7tiVqtrvf3979peszGxgbjx4+vOXz4sPOFCxeUDQ0NoqKiwtrBwaHpmWee8es4R1lZmQ0A5OTk2KnV6uqZM2fqZs6cqbt+/br1/v37HS5evKjMz8+33b9/f3efzWPRokUBp0+fHmJtbS2ffvrpPpXqul13W8knYyPyRjRnZoztZtxINPcFOSulvCmEuAggSAgxREpZ08VYADjT77slIiIiIuoF06BHoJNJpoc5+nkYmWR6jPJo+8IYMz2IyJJiYmLg6XkPSktjTI5uBgB4e3sjJiam6wt78Le//Q3V1dUANsEY9Gho+BOmT9fg8uXjveoRQkRELQagZNRviZ2dXVN356RsTuqoqKhQqNXqLlsvDBkyxHCrNeLj47VvvPGGX3p6uktycnJJUVGR4qefflJNmTKl0tPT85bXd8fNza2xpz3V19cLY0P2a9euKTdv3uzV3VxVVVUKACgoKLBJSEjwP3LkiLOUEiqVyhAUFFQ3ceLE6vz8/C67BZ4+fXrIxIkTq0+cOKFavHix+ocffjjf1bj+ZNb8TiHEo0IIKYT4WxfnbABEAGgAkAvgCABvIcTYDuNcAEQCyJBSGtODDqG5JNafOoxVoDlz5BqAX/r5doiIiIiIesU06KF2sFB5K6+232GCVG0ldC9eNN8WiIg6sre3x5//vB+A8XOSLAA58Pb2xp49e247QNHWIwQALqG5oTkAKFBWNh1paWn9sm8iIiIje3v7pvLy8i6TC65du6bs6rgptVrdGBkZqcvMzFSVlpYqduzY4WowGERcXNwdZUXU1dWJro4XFRUpAcDT07NRpVI1AcDDDz9cIaXM6u5n/vz5lQAQGxsbcOTIEeekpKSrBQUFp3U63alTp07lLVu2rNseHUuXLi3KyMg4FxYWVnP06FGnTz/91PVO7qs3zF3U8r/R3LdjgRBidIdzKwH4AtgupawF8FHL8XVCCCsAEEIIAO+iuX/HBybX/jsACeANIYTpv4heBTAcwN+kMfRGRERERGRmBQVtX7JqKMpuO2HOoIdJt/LhNm3lepnpQUSWVFtbi1272pqMP/poMb744gtcunSpT6WoOvcA2WjyPBEXL/auRwgREVFvjR49Wl9RUWF94sSJTpkOGRkZqt7MMW/ePK3BYBA7d+50TktLc1WpVIbY2NiKO9lXfn6+fVVVVbvP/7VarVVeXp69p6fnTT8/v8bx48fXKZVKmZub62AwdE4qSU5O9pkxY0aAVqu1qqystMrMzHQcN25czbp164pMS2edP3/etrt9LF26tPT/s3fm4VFUWR9+OyFLZ4MESFgDhFVBkCWojKIofm6ghEVk0xAdBRRHEVE2dRQdFxwGRIRxBERBkEBwEpVhkVEZEcMmqIBgwhIgO5Clk0CS/v64XenqpDvpJJ2FcN7nqaer7r1VdXu7VXXOPb/j5ubGokWLThkMBmbNmtX2/PnzNeqXqFWnh9lszgaeBRoD+wwGQ7TBYFhiMBh2AX9FTcN4wdL238DnwL3AAYPBsBT4CXgciDWbzWt0xz0AvAP0Bn4xGAz/NBgMO4B5wB7g77X1HgVBEARBEARBT3x8POvX/1iyffzHf1sra1PeSuf0CCm2Oj0k0kMQhLoiPj6e0ND/4/jx5paSS+zdO53OnTtXWYKqbA6QjYBmM+rEpUs3VrG3giAIgmCfcePGpQPMmjWrdWGhdbLTsmXLgn777TcfZ44xYcKE856enuZPP/206a4cg1upAAAgAElEQVRdu/zvvffe8z4+PtWaxF9QUGCYMWNGK33ZjBkzWuXk5Ljff//9mQA+Pj7mIUOGZJ45c8bzzTfftJG3Wr16deO33nqrdWpqqkdQUFCxu7u72c3NjfT09EZ5eXklUSS///6756uvvtq6ov7ceuutppEjR6anpaV5TJs2rcL21aG2Iz0wm80fAgNQklQ3A1FAc+AfwA1ms1kfCjMOJcDpA0QCQcDLwEg7x30BmILKdjYB6Gg55h1mszm/dHtBEARBEARBqGny8vIYOnQoly+3LylrhjWfxqWAcnMauhad08M3JxnNnpiZqRZBEITaRBsfMzLu05XGkpZ2mKFDh5KXVyYXrFNEREQQEhKiK8kHSuZM8s037at8bEEQBEGwx9SpUzMGDhx4cevWrU26du3afezYsaF33HFHxylTpnQYOHDgRWeO0axZs6KBAwde3LVrV0BhYaFh/PjxZe7Qd+zY4RMVFdV26dKlQfaOUZrAwMDCTz75pHnv3r27jRs3LrR3797dPvroo5DQ0NCCefPmndPaLV68OKldu3YFc+bMadu3b9+uDz30ULsbbrihy/jx4zv5+/sXrlq16gSAn5+feciQIZlJSUle3bt3v3bs2LGhgwYN6tSjR48evXr1ynVzc+O7774LePnll0Mc9WnBggVn/Pz8ij755JPgnTt3OuUQqgq17vQAMJvNu8xm81Cz2dzCbDZ7m83mTmaz+Vmz2ZxWql2h2Wx+3VLvbTabO5rN5lfNZvMlB8f9wGw2dzebzUaz2RxqOWaWvbaCIAiCIAiCUNMobfl8lOIqQAFNsT73/FRGhqUG0Tk9DMnJdOxorZo16yPWrFkjhkBBEGoNNT6mAQ/rSlcCkJKSUuXcG0ajkdjY2FKOD6vE1Q8/tKJdu57Ex8dX6fiCIAiCUBp3d3c2b978x5NPPpmcnZ3tvnHjxmbJycmeK1eu/OOBBx5wWqJqzJgxmQAhISGX77333uzS9YcOHTKuWLEieOvWrU7NnAoODr781VdfHfX09CzeuHFj03PnznmOGTMm7YcffjjSokWLEi2rli1bFu7evftwZGRkalJSktfGjRubnj592uvBBx9Mj4+P/61r164ltvhVq1adjIqKSs3NzXWPiYlpmpmZ2WjhwoUnYmJiTkyaNCk5JyfHfffu3b72ewStW7cunDFjxtmioiImT57czp6kliuwm2BFEARBEARBEITqo7Tlr9GVHEGfxeNkTg4311ZndE4PkpMJCjoPqByCy5ZtZdmydSWJg6uioy8IglAZ1Pg4GJXaEyAF2FyqvmqEh4eTmJjIunXrmDp1Kjk5+4CfgV6AD2lptzN06FASExOrLKMlCIIgNCx++umno/rtp59+OuPpp5/OsNd2w4YNJ4AT+jKj0WhevHjxmcWLF58p3X7atGnp2vqQIUOyzWbzXnvHjYqKOh8VFWW3rqI+OeLWW2817d69+/eK2oWEhBStWLHiNHC6vHYBAQHFH330kd1277///pn333+/5P3b+5wA5s6dmzp37lyHic9dQZ1EegiCIAiCIAjC1YDSlu+uK/nNxukR2Llz7XVG5/QwJyezZ89aXWUnQM2uro6sjCAIgrOo8TFSV/IpUFiqvuoYjUY8PT3JycmxlOgTmj9arWgSQRAEQRDqN+L0EARBEARBEIQaIiIiAh+ffroSW6fHoFGjaq8zzZuDm7r9N6Snc8m0X1dp1boSQ6AgCLXBoEERQISu5OOStZCQECIiIsrsU1lso0VWAwWW9f5Aj2pFkwiCIAiCUH8Rp4cgCIIgCIIg1BBGo5GePcfoSn6hqb6+TZvSu9Qc7u7K8WEhmMO6yk42TcUQKAhCTWIymZgz5yDgbSnZCxwCKJHZc4XslG20SCawSbcdxblz5ySyTRAEQRAaIOL0EARBEARBEIQaJCmpccn680/cgqe24eMDta0lr5O4asEfugpbp0d1ZWUEQRAcER8fT1hYGMuXWxOXenmt44knnmD16tUkJia6LK9QRESEw4TmMIElS/5Fhw4dJKm5IAiC0OAwm817jxw58ltd96OuEKeHIAiCIAiCINQQWVmQlKTWPTzg9WeHWSubNbO/U02ic3p0a1wAXLZstQR8ANfJygiCIJQmLy+PoUOHkpLSGBhgKb1EQcFyNm3aREREhEsTixuNRmJjY3WOj23ASct6M2Co5DISBEEQhAaIOD0EQRAEQRAEoYb4TTe3qmtX8LiYbi1o2rTsDjWNzukx76nJuLuf0lV2dKmsjCAIQmliYmJISUkBHtGVxgEZNZZPKDw8nMTERKZMmQKYgRW62kcByWUkCIIgCA0NcXoIgiAIgiAIQg2hd3pcey1w7py1QOeAqDV05+xgNHL77e1Ltv/yl/ddKisjCIJQGpUvyA2YoCtdWaq+YhrnZdPr7FEaFRU61d5oNNKyZUvd+Yot63cBbSp1bkEQBEEQ6j+N6roDgiAIgiAIgtBQ0Ts9unfHqnUF0LZtrffHxtGSnEzPnu5s3ao2jcZbaj3FiCAIVxcqX9DtgDb+pQJfl6ovh/R0eOcddn2wEJ/LBaT6BoLbn2HSJOjQwYlzg5K32g7ciXLARALzaNOmTaXfjyAIgiAI9ROJ9BAEQRAEQRCEGuLXX63r116LrdOjLgxspZweN95o3dy9u/a7IwjC1UVERATe3pN0JasBFa1RYT6hL79Ujo2338bncgEAwbnn4e23oUcP2LmzwnNbc3voE5pPBAy88MILktBcEARBEBoI4vQQBEEQBEEQhBqijLxVPXN63HCDdTM+HoqKar9LgiBcPVy6ZMRs1js2VgJUnE/o2DF46CHIySkpym/kaa03mWD4cDh1ys7OCi2peXBwMLAJyLTUhAG3kZqaKgnNBUEQBKGBIE4PQRAEQRAEQagBUlJMJfY3d/di2rTJq3dOjzZtQJO5z8mxddIIgiC4mtWrCygoUGaIpk2TeOmlYaxevbr8fEJ5eTBqlNXh0bYtk4bNpMczn/PoiLnQvLkqT0uDYcOUA8QB4eHhvPXWW0ABKspEQxKaC4IgCEJDQpwegiAIgiAIguBi4uPjufbaESXbRUWH6dKlA/l//GFtVA+cHgYDNhJXc+fGsWbNGpnpLAiCy4mPj+eZZw6UbGdkzGfZsmV07tzZcYQHwLPPws8/q3VPT/jiCzZ3/ROF7o3Y3ukG2LABGlnSle7fD08+WW4/kkqcz3qJqxFAEwBiYmJkDBQEQRCEKxxxegiCIAiCIAiCC8nLy2Po0KFkZnbWlf5CSkoK5tOnrUV14fRo3Bi8vNR6Tg7k5NCqlbVPX3xxjnHjxtGhQwfRthcEwWXk5eVxzz3Pc/mypql3GVhDSkpK+ZJS334Ly5ZZt//xD+jd27bNLbfA++9bt1euhAMHcIQ1ofnPwD7LujcwBoDo6GgZA+sBplIRO+KIEgRBECqDOD0EQRAEQRAEwYXExMSQkpIC3KEr/ZYgoGQuc0AA+PvXet8wGGyiPfJPnmTNmr/oGqiwjwoNkYIgCJUgJiaGjIyRupJNQBpQjqSU2QwvvWTdHjECJk0q2w7g8cfhgQes23PmOOyL44Tmj5asyRhYd5hMJl599VXdd6Ro0aIFkyZNkmhEQRBqjP79+3c1GAx909PT3V153GnTprUyGAx94+Li/AHi4uL8DQZD36ioqLauPE99ZMSIEe0NBkPfo0ePelbc2rWI00MQBEEQBEEQXEhCQgLgDtymK92OTVxHXUR5aOicHt9//jnnz28BtAzm3QE/QLTtBUFwHYcPnwYe1pV8YFOvxs1S7NgB332n1hs1gvnzlePWEfPmWeu//BL+9z+7zbSE5sqovgbIt9T0BXqVtJMxsPaJj4+nQ4cOvPzyy+ToktYDZGVlsWzZMsaNG0fz5s157bXXxPkhCIJLGTZsWObEiRNTvb29i2vyPO3bt780ceLE1Ntuuy27Js9ztSNOD0EQBEEQBEFwIUo6pS/Q2FKSBPxeL50eF48eBXKBXywlbkC/knq7hkhBEIRKcu7cbUCAZesIsMOm3io5ZcFshpdftm5PnAjt25d/kh49YPx46/asWeo4dggPDycxMZGRIwcDG3U1UTbtjh49Wv45BZdgMplYsWIFt99+O6mpl4DhwJRSrVqXrOXm5vLSSy/Rvn17kSETBMFlzJo1K2358uWn/fz87F88XESPHj0Kli9ffvrhhx++UJPnudoRp4cgCIIgCIIguJCIiAj8/HQyK3wDUC+dHu29vS1ru3UNrJnNyxgiBUEQKkluromtWzvpSpba1IeEhBAREWG70/btsHOnWvfwgNmznTvZK69Yk5p/9x1s2+awqdFotJxXL3E1HpXfQ7Fw4UIxqtcgmpRVcHAroqK+JScnBkgFNgDvl2qdhHKYTUYTi0xNTWXQoEGsXLlSoj4EQRAEG8TpIQiCIAiCIAguxGg0cs01T+pKtgPQ1dfXWlRPnB69QkIsEi96p4dKNGzXECkIglAJ4uPjadt2FKdONbWUmICPS+pDQkKIjY3FaDTa7vj669b1qCho1865E4aFwWOPWbcXLSq3eUREBMHBvwFaVFsQehmuixcvSm6PGiI+Pp727Tvw8st7yM39AVgJDAY8ytmrK7AEOA1MBQzk5uYyceJEST4vCEK1KZ3TY9GiRU0NBkPfJUuWBK1atapJz549u3l7e/cJDAzs9eCDD7YrnfsjLy/P8Mwzz7Rq3br1dV5eXn06dOjQff78+c1Kn6d0To+wsLDuBoOh765du4yl286bNy/YYDD0nTlzZovSdRVhMBj69u3bt+svv/ziddddd3UMCAi43t/f//p77rkn7MiRI2VybJhMJsMLL7zQIiwsrLuXl1ef4ODgnqNHj2537NixMm0PHTrkNXr06Hbae23RokXPu+66q+PmzZv9KupXZmamW8+ePbsZDIa+b7/9dvPKvi9nEaeHIAiCIAiCILiQ/Hw4dKhxyfb06X1YvXo1T+sdCPXE6eGRkUFsbCxNmx7XNbiF4ODW9g2RgiAITpKXl8fQoUM5f36CrnQtcAFfX19WrFhBYmIi4eHhtjv++iv8979q3d1dyVRVhuees65/+SWUI9NnNBqJi/s3Xl4f6g+A3lQiuT1ciyZlNWjQcNLSPgD+DVxbqtVuSud9AX2Oj6bAIpRMWgdAfU+DBw8mMzOzZjouCMJVy/Lly5tHRUV1bNq0aeHw4cPT/f39i9avX9/s4YcftvHIDxs2LGzhwoUt3dzczMOHD89o1arVpRkzZrSLjo4OKu/4w4cPzwSIjo5uUrpu06ZNgQaDgYkTJ1ZpcEtNTfW45ZZbuiUlJXkOGTIk85prrsnbvHlz4J/+9Kdr9M6MvLw8w8CBA7u8/fbbrX18fIpHjBiR0aNHD9OGDRua9unT59rdu3eXPBQcP37cY8CAAdesX7++WceOHfNHjBiR3qVLl7zt27c3vu+++7p+/fXXDh0fWVlZbnfeeWfnQ4cO+b722munZ8yYkVaV9+UMjWrqwIIgCIIgCIJwNfLNN/nk5yt5lJYts3j11ceV82DFCmujeuL0IDmZ8PBwTp7cTGhoLpmZvkBTxo1bzn/+8x+OHTtGRESEOD8EQag0MTExpKT4AKN0pe8BKieDp6en/bFlqU7+atgwCA2t3Ik7dYK774bNm1VOjw8+gHfecdg8PDycZ57ZwltvXQCaAF2A+4FNJW0kv5FriI+PZ+jQoaSktAe+B9rrarOAd4DlwFlLWZyuvgUq58qzaI4OuBU4CIwD/k1WVhZhYWFs3bq1rDNNEISqYzD0resuOI3ZvNfVhzxw4IDf2rVrj40cOTILID093b1Tp07Xbd26tUlWVpZbQEBA8Zo1axpv2bKlyYABA7K2b99+3Nvb2wzw4YcfBj7++OPl6sVGRkZmvvvuu62+/vrrJu++++45rfz06dON9u/f79enT5+cLl26XKpK35OSkrxGjBiRER0dfUIrmz17dos33nij9bPPPtsmLi4uAWDmzJkt9+7d6/fiiy+e+dvf/pastY2Li/MfNmxYl8mTJ7fbt2/fEYCVK1cG5eTkuC9cuPDE008/naG1XbhwYdNnnnmm/WeffRZ0zz336D3VgIokueuuuzrt27fPb86cOUlz5sxJrcp7chaJ9BAEQRAEQRAEFxEfH8+DD1oNdufOfWqV3EhKsjasL06Ps8qw5OtrJDLSKr+1YMFZ5s6dy7hx40QyRBCEKqEcBdMATf1jC3CgVH0pcnLgY6v8FVNKJ7N2kqeesq5/9BGYTOU279mzA7aRBTNs6s+dOycSV9UkIyODO++8k5SUO4DvsHV4LAM6AvOwOjxKk4tymnWztCu0lPsBMShniEiSCYLgeu65555MzeEB0KxZs6Lw8PDswsJCw6lTpzwAPvroo2YACxYsSNIcHgB//vOfzw8YMCCr7FGt9OjRo6BHjx6mw4cP++ijL9asWRNYXFzM6NGjM8rbvzwMBgPvvvvuGX3ZK6+8khwYGFi4bdu2JgUFBYaioiI+/vjj5qGhoQWvv/56sr7tkCFDsm+++eaL+/fv9z116lQjgPDwcNPMmTPPREVF2USf9O7dOw8gNze3jL+hoKDAcPfdd3f68ccf/Z9//vmzr732WkpV35OziNNDEARBEARBEFyAJuWSm3uzrvQbUlJSGDpkCObTp63Fden00GvjJySomdDAsGH5ukYRgHrmSklJEQOSIAiVwmQykZCQhZqZr2EbbREWZmfi65o1kJ2t1rt2hUGDqtaBu+9W+T0Azp+HtWvLbR4REUGzZp8BBZaSm4A/ldQvWbJEHMBVwGQysXr1aiZNmkSbNm25ePExYDXa9QXOo643k4B0m3199XmwgFdffRU/Pz/gEjAXuBH4w1LrBvwdJXllICUlhenTp8t1SxAEl3DdddeVGUwCAgKKALKzs90Afv75Zz9/f/+i/v37l2nbv3//3IrOMWrUqAyAzz//vETi6osvvgj08PAwR0ZGnq9q30NDQwvatWt3WV/m4eHB9ddfn1tQUGA4fvy458GDB70vXLjQqLCw0PDYY4+1jYqKslnS09M9AA4dOuQN8MADD2S/8cYbydnZ2e4bN24MeOedd5pNnjy59cSJEzvY6wPAhAkTOnz//fcBjRo1Mj/yyCO1okMo8laCIAiCIAiC4AKUlEtLoJ+l5BLwDQB5qakYtIY+PtCkjGRv7dGiheqDyQQXL0JmJjRtyqlTG1FJzDsCjYG7UVrrVk37sWPH1l2/BUG4IrBKGD0B+FhK9wPbStqEhIQQoc9zBMoBu2SJdXvyZDAYqBLu7mr/559X24sXq4ToDjAajXz11UcMHBhNfv44S+lc1Dio0BzAiYmJIvnnBNbfgTaZ9y1sI2h+AYYAJ8vsGxwcTFxcHKM2WJVP5s6dy/Tp01m3bh1Tp04lJ2cv6pq1CdAmG0wFvIBJLFmyhA0bNhAbGytSV4JQXWpAMupKwtvbu9hRndkyeejChQvuoaGhBfba+Pr6FlV0jsjIyMy//vWvbePi4prMnj07NTk52f2nn37yGzRo0MXmzZtXuL8jgoKCCu2Va30qKCgwaAnZz54967lixYpgR8fKyspyBzhx4oTHxIkT23377beNzWYzfn5+RR07dszv169fTkJCgre9fQ8ePOjbr1+/nD179vhNmjQp9Pvvvz9W1ffkLBLpIQiCIAiCIAguQEm1TNaVrEfNYgWbuI42bapuyHMFBgN07Gjd/kPNlE1MTEAlGdZ4yGY30bQXBKEitIi3lJRcQCcxpYvyCAkJITY2tqzjYPdu+PlntW40wiOPVK8zUVHgbbG97N+vlnIIDw/nxx9HYDBotq27gNts2khSc+ew/g40h8cb2Do8vkU5KmwdHr6+vrz66qucOHHCrqPCaDQSGRnJN998Q0BAAJABDMb22vU48CFaxIdEKgqCUBsYjcbi8+fP2w0uOHv2rKe9cj2hoaGF/fv3z46Pj/dLS0tz/+yzzwKLiooMY8eOrVZURH5+vt2HjuTkZE+A5s2bF/r5+RUDDB48+ILZbN7raBkzZsxFgNGjR3f49ttvG8+YMePMiRMnDmZnZx84cODAkaefftphjo6nnnoqeffu3Ud79uyZu3PnzoB//etfgdV5X84gTg9BEARBEARBcAEhIV1RyVQ1rDOWyzg96ppOnazrx48DmtSM3nB0P9ZZ2g6kaARBEHSoiLcU4BmguaX0BMoJDFOmTCExMdH+zPvly63rY8ZUPyIuKAhGjLB/fAf06uVN794HdSV/K9NGHMAVs3btWp3D4xVgpq52E8qhdLGkxNfXlxUrVpCWlsbcuXMrjKQJDw8nMTGRxo0boyTJxgGrdC0eBRYDiNSVIAi1Qrdu3fIuXLjQaM+ePWUiHXbv3u3nzDEefPDBzKKiIsP69esbx8TEBPr5+RWNHj36QnX6lZCQYMzKyrKx/2dmZrodOXLE2Lx588tt27YtvP766/M9PT3Nhw8f9ikqKhtUMnv27BZDhw7tkJmZ6Xbx4kW3+Ph4/169euW++eabyXrprGPHjnk56sdTTz2V5ubmxqJFi04ZDAZmzZrV9vz58zXqlxCnhyAIgiAIgiBUE5PJxI4dbQFNg/xn4IeS+msDAqyN65vTwxLpERERQXBwGvCrpcIXGAlAQEAAd999N4IgCOWhHAJNged1pX9FSzrdsmVL+wZtkwnWrbNuP/qoazqkl7RavRry8x23tfDIIyew5va4EXjApr5NfRjD6zHx8fFMnTrVsjUbeFlX+2/gQayfLzRu3JgdO3YQGRlZKdmwoKAgtm7dSkhICFAMTARW6FpMQSU8l5wsgiDUPOPGjUsHmDVrVuvCQqui1LJly4J+++03H4c76pgwYcJ5T09P86efftp0165d/vfee+95Hx8fc8V7OqagoMAwY8aMVvqyGTNmtMrJyXG///77MwF8fHzMQ4YMyTxz5oznm2++aSNvtXr16sZvvfVW69TUVI+goKBid3d3s5ubG+np6Y3y8vJKokh+//13z1dffbV1Rf259dZbTSNHjkxPS0vzmDZtWoXtq4M4PQRBEARBEAShGsTHx9OhQxiffaaflWyN8ggJCWH66NHWqvpgMNPLW1kiPYxGI3Fxsfj5faFr+DLgQVZWFtdee60YjARBKJfWrVujZvVrjt7fgE9K6h1GjG3aBFlZar1zZ7jpJtd06LbboH17tX7+PHzxRXmtAfjzn+/Cx0dvPH8dcC/ZeuGFF2QsdIAma5Wbm4uSs5qnq/0SGAVY8+kGBASQkJBQ5ZwbWsTHlClTUI6PR1GJ0jVmA88BKuJj8ODBZGbWSv5cQRCuMqZOnZoxcODAi1u3bm3StWvX7mPHjg294447Ok6ZMqXDwIEDL1Z8BGjWrFnRwIEDL+7atSugsLDQMH78+DID1o4dO3yioqLaLl26NMiZYwYGBhZ+8sknzXv37t1t3Lhxob179+720UcfhYSGhhbMmzfvnNZu8eLFSe3atSuYM2dO2759+3Z96KGH2t1www1dxo8f38nf379w1apVJwD8/PzMQ4YMyUxKSvLq3r37tWPHjg0dNGhQpx49evTo1atXrpubG999913Ayy+/HOKoTwsWLDjj5+dX9MknnwTv3LnTKYdQVRCnhyAIgiAIgiBUEc3Ak5raF+hmKc0CVpfIdSQmJtLarJukVR+cHnbkrUAZkA4dmozBoD1jhQFPAIg2uiAI5RIfH8/zzy8CntSVzgaUVIbd5OUaK1da1yMjXZf3yM0NJk60bjshcWU0GomJuQGDIdtS0h14uqQ+NTW11sdCk8lks11fx2GrvNmzqMTlGluAEcClkpKQkBC2bdtGUJBTdjuHGI1G5s+fb4n4MAORQJyuxXxARfxkZWURFhYmTitBEFyOu7s7mzdv/uPJJ59Mzs7Odt+4cWOz5ORkz5UrV/7xwAMPOC1RNWbMmEyAkJCQy/fee2926fpDhw4ZV6xYEbx169aAsnuXJTg4+PJXX3111NPTs3jjxo1Nz5075zlmzJi0H3744UiLFi1KtKxatmxZuHv37sORkZGpSUlJXhs3bmx6+vRprwcffDA9Pj7+t65du5YM4KtWrToZFRWVmpub6x4TE9M0MzOz0cKFC0/ExMScmDRpUnJOTo777t27fe33CFq3bl04Y8aMs0VFRUyePLmdPUktV2Awm6sVJdMgMBgMe/v06dNn7969dd0VQbhqaf/ilyXrJ968rw57IgiCINQ1V9I1Yc2aNYwb92fgF6CDpfQ9NAPZ6tWrGTt2LNxzD2zerKr//W8YOrTK53TJ53PiBHSw9DckBJKTS6rUe9oD/N1Skgp0BHIA3XsShHrKlTSGNBTy8vLo0KEDKSl/B7TxYTdKHgqCg4OJi4uzP6P/1CkVjWE2K2fHyZPQtm2556vUd3zypBrvKnF8gJEj97JhQ1/LVi7QA5WfRFEbY2FurolHH40jOjqENtNzSsoz3n+WceNuZ+DAgURERFRKFqqmMJlMPPLII0RHt0BdBzW+AYYAeXh5eREZGel0vyvzPcfHx+uSpxuBzcBAS20RMBrYACiHS2JiYr343AShJunbty/79u3bZzab+5bXbu/evXu8vb2v6d69++Ha6ptQ8xgMhr5du3bNO3LkyG913Zeq8uuvv16Tn59/uG/fvv0qu69EegiCIAiCIAhCFVH69a9idXhkAK+VqgeOHbPu1K5dLfWuHNq2BQ8PtZ6SAtnWiWSqz0uAk5aSYGB6SX1MTEy9nWUsCELdoGb4X4/V4QHwYsnaW2+95VjC6JNPlEMCYPBgpxwSlaJdO3VcUOf5+GOnduvR4z/AIcuWL/CBTX1NjYUmk4nVq1czadIkAgNXs27dgxQV3WrTJidnO8uW/ci4cePqRa6K+Ph4wsLCiI5uiq3D41tgKKA+p6VLl7J06VLGjh3rcoeDrdRVnuW8+yy17sAaQP0OJLm5IAhCw0ecHoIgCN12IWEAACAASURBVIIgCIJQRS5d6gU8oyt5Dkgr2QoLC4O8PNCcH25u0KVLbXbRPu7u1kgPsPYPTXO/AHhJt8OLwA0AREdH1wsjmyAI9QOTycT69V9h6xT4BPhvyVZSUpL9nc1mW2krvRSVK9Efd8UKKC6ucJcuXdoDj6FyRQDcDYwvqa+JsVBzHowfP55ly4q4fPnPDlq2Bb4HutdprgqTycSKFSu4/fbbSUkZAizV1f4PFeGhpLlCQkIYrc9vVQPYSl1lob6zo5ZaT2ATWvSRJDcXBEFo2IjTQxAEQRAEQRCqwJYt+3njjWuwJrjdBlhnEJfo1x85Yp3F3LEjeHvXdlft4yCvR0REhMVg9Cmgyb96ARuBFoDk9xAEQaEZ6Tdt6oVtxNs0m3YOE5j/8IN1/AkIgGHDaqajw4ZBkyZqPSEBvvuuwl3UWHgSWKwrXQJcU7LlyrFQyxGl5JnCS503xs4e/qhx2rNOclVo331UVBQ5OcOBf+pqdwP3oMkihoSEEBsbWytyUkajkdjYWAICAlCTEO4ETllqfYGvgOsASW4uCILQkBGnhyAIgiAIgiBUkuTkPO67z42iIs1xYEJL+A1Kv77EwPObTkb32mtrtZ/l4sDpoRmMQkKaAyNRBkyAVig9dE9A5EEE4WrHaqS/Flsnx3NAesmW0wnMH3oIasoobjSCPv+GkwnNY2Njad58IaCNkf4oB4R/SbuUlBTWrVtX7S6uXbvW4vBojhprvSw1P6OPMFFo4+71wCsAXLx4sUad0Zrs1rx581i2bBmDBw+29HcssAKreWkvcBegZBNHjhxJYmKiY3mzGkCTumrcuDFwGuX4SLXUBgL/QeWqkuTmgiA0XMxm894rOZ9HdRGnhyAIgiAIgiBUgpQUE337JlFY2MtSUgQ8Alglomz063/91bpz9+611c2K6djRuv7HHzZVmsFo5Mh+qOSvRZaaAahZsgGAyIMIwtWMMtK7A2uxRrxtp3TEm8MZ/iYT6J0FjzxSg70FoqKs69HRcPFihbuEh4dz8uQvDB78AZpME3RFvUdDSbupU6dWaxyMj49n6tSpqM9xHUq+CuA8MFx3bo0XSq3/Cag5Z7Redmvu3LlMmjSJrKwsYBJKykwzLR1AORisn21dJVoPCgpi69atlsjF31FSV1q/WgJbUc78mncYCYIgCLWPOD0EQai36GcTrVmzRm5CBUEQhDpn/fpDtG6dxNmznXWlTwDRNu1s9OuvsEgPDaPRaJmdvR14XldzB/AdmrFIpK4E4eojPj6ep556FvgcCLaUJgMTStpUOMN/0ybIVtEAdO4MN91Ugz0G+vSBnj3Vel4efP65U7sZjUYmTuyLyu+hEQEsRzOp5OTkMGjQIFauXFmpsVCfEyM3Nxd4ExhkqS1GRVEk2NlzMcpoj6UPa4CmgOud0bayW3rmovK4aGalQ6hE4edLWpQb5VML2CY3348+qbqSY9sCBAHqWhYTY09GTBAEQbgSEaeHIAj1jtWrVzNp0iRatWpVMpto3LhxMpNUEARBqDNyc0088cS3PPhgO4qK9InIpwMflWlvo1+vd3pcIZEeGtb8HguAWbqaXigDktLfd5W8iyAI9RvNSD9o0B2YTH9HizCAQlRU2LmSthXO8NdLW0VGgsHgqKVrMBhsoz2ckLjSUGPhN8DfdaWRqIgPFeWSm5vLxIkTnX5msc2JkQOMQ11TNF4CNjvY2wxMxOpgCEXl91AmHlfmqrDKbml4oq57r+rKdqOcNRklJbWZx6M8bJObf4+Sbbxsqe0O7EBz3MXExIgDXxAEoYEgTg9BEOock8k2XHv8+PEsW7aMi6VCziXRnCAIglAXREcfIigonn/+81Y0WSc1U/Rh4N0y7W1mtubnWx0KBgN07VoLPXaS9u3BzfI4cPo0FBSUaWLN7xEC/A31njVjUTBK2/5ToAWTJk1i0qRJEp0pCA0UvZE+N/dNQOdAYBYqAkxR4Qz/06dh2za1bjDAhAmO27qScePAw0Ot//ijrVO6HLSx0MfnZeBDXc14IBaVh0PhzDNLRkYGd955p86Z8Ch6WTD4AngDAC8vL5544gmb/VWuijOoMVnjbmBOyZYrclVYZbc0WgLfYvvdb0FFACqHh6+vLytWrKj1PB7lYZvc/CvU51Zsqe2Jcoa0ITo6WibaCYIgNBDE6SEIQp2iPTw5iySaEwRBEGqLP/6ACRPyGTWqK5cu3aqvAW5C6ZjbUmZm69GjUGwxrISF1VyS3qrg5QVtLbrxZjMkJtptZisP8gkqQa1OvotxwHEKCuaybNlaxo0bR/PmzXnttdfE+SEIDQSrkT4VFfk1RVe7HHinZMvPz6/iGf6ffKLGHYDBg61jUU3TrBncf791e8UKp3cNDw/n/fffQ0kafqCruQeVbPzOkpKsrCzatGnDpEmTWLFiBStWrOCll17iySef5LHHHqNt27a6CV7PA//CmhflN5RRXn0+S5cuZenSpTZ9seaqiENzjiheRi8xVp1cFZqslZLdArgfFeF3o67VxyjJKNWmcePG7Nixg8jIyDqP8CiNbXLztahcXFq+qi7A/4AeItkoCILQQGhU1x0QBOHqRXt4unjxIu0qsd/FixcZNGgQixcvZvTo0fXuhloQBEGoPCaTiZiYGI4ePQrcUFKuzRbNyMigWbNmtG/fHoAzZ87QunXrkvWwsDCXJEstLoYdO2DZMtiwwUxxsbeutgilo/4SkFVm3ylTpjB//nzbPtRXaSuNTp3g5Em1fuwYdOtmt5kmD7JhwwZSUnYA1wH/QBmNAHyB2cBUYDm5uYt46aWXmD9/PiNHjsTb29vm+9N/p127dq2zRLfClYs2ZiQmJpaMBdrvCv97S9rNmzfPZePD1Up8fDyDBw8mK8sMbEIZvzVWA3+2af/ee++VP8PfbC4rbVWbREXBhg1qfdUqeOMNa/RHBYwePZoXX3yRlJQpwAVgpqWmJSri4WvgFeAn8vLyWLZsGcuWLXNwtL7AImCArmwvKmJDXWNCQkIYPXp0mT01A/706dNZsuQl1HXzDtS81lVAY9T1yprcvMz1qRxMJhPPP/+8JRIlCJiPktPSKERJcS0sKQkICCAhIYGgoCCnzlEXaMnNVY6ST1HOmrUoya5QlOPjIVJSvmbdunVE1vZvUxAEQXAZ4vQQBKFOsD48lTUaOYOmmfviiy8SGxtbb0KnBUEQBOfRjJbff/89a9euLZn12u6FuJI2UXr99Qrw9fXlhRdeYPr06ZUybprNcOAArFlzmVWr8klN9bfU6PXlvwX+gprNW5aQkBD7BqVff7Wu16ck5hrXXAPbt6v1fftg6FCHTTV5kEGDBpGbewGlZ78aeBu43tIqAHgGeBr4hqysVSxf/jmQU243AgICbJwj4ggR9JR2cCQmJrJgwQJLHoSytHvB6vSYO3cuoMaHZ599lrCwMJc6ShsyJpOJdevW8fTTT5OT0wFYB1yja7Ee5fgsLilxZKS3Ydcu5WQF8PeHYcNc2/GK+L//g1at4OxZSE2Fr76CBx5waldtHFRG81moa8PHQIilxT1YIz9igf8Cp4EU1PgYDNyCchzdiq34xreWcqvDo7yIGVtn9EPANlS+JYD3UIm65wImlixZwoYNG5x6boqPj7e8vwsox8ZsoImuhSar9U1JidbX+uzw0NAcRg8//DDR0dGoSJVowB/1HcUCs3jqqafp3r27PGcKgiBcoYjTQxCEWkcLla6qw0OPppmbmJh4RdxkC4IgXK1U1mhZFXJzc+1GF5Q2oJvNcPRoHu+/v5edO40cP96BnJwgwMOy6NkKvIbS+7ZPuYYpfaRHfXR69O9vXd+9u8Lm4eHhLF68mIkTtRm/W4E+wEMoLXntPboBgy3LJdTn9xVqFvThMsfNyspieamkwgEBAYwZM4aBAweKcfoqxWQyMX/+fN55551qjxW5ubnMmzfPpqyqjtKGju3nXoyKXHgWW/PBO6goh6KSEqcTV+ujPEaPBh8fF/XcSRo1gkcegb/9TW0vX+600wOsRvN169YxdepUcnJ6oiIhxmKVqOplWeY4OoyOSyjJsFeAfHx9fZ2OaNecMGoy2W3Al1gjR6YBI4DngE2kpKRUGC2fkZHBHXc8Qnb2ZOBxVASLnjXAU8B5Hn/8cdq2bXtFOhCNRiMREREWp8cW1GcWB7RDfYdvkZt7B/feG8WpUz9dUe9NEARBUBjMmo7mVYzBYNjbp0+fPnv37q3rrghCg0cLlV6yZAnKIBIE+NLuhfdL2px8KxIVauy8jqrRaOThhx8Ww4ggCEI9oypGS32kx8m3hlSzB75Ae4zGnnTt+hCZmR1JTQ0lP9+/nH0uoORBPgR+cXxkZwxTXbvC77+r9b17oU+fqr0NHe1f/LJk/cSb91XvYMeOQZcuaj0oCNLTVVLhcsjLy6NDhw66BLx6/g8V6XEXjtMHnkDNEN5tWX5Bbzi1R+lIEL3M2ZVocBMco48A++yzz6o0SaayY4jmYLvhBiWtdzX+rsp+7maU0ftZoLWuZR4q6fZnJSWVMdKTlwctWoD2ve7cCX/6U6X7W+1xUD/2ubtDUpLqVyWxjV7vinJyjAK8nDzCF6hoiuOAyomxdetWu9EF5b3nzMxMwsLCuHjxMioC517bnTmH+s7+C/yGj08GM2Y8xzPPPEdampE//oDo6DOsWHGWoqI+WJ03Gr8DMyz9VQ6uxMTEGv9/uPR6V4qy17JgYCOg/z2mcfvtm4mNHYmPz9UxFggNi759+7Jv3759ZrO5b3nt9u7du8fb2/ua7t27l52ZIgh1yK+//npNfn7+4b59+/ar7L4NKtLDYDD4oKabjEHdmZ1Gxdy/YTabL9dl3wThaiM/X0mEJyZCQgIcPXqZrVuPc/ToBYqLpwKvAoFYDSJf6vZOs7wWo+QwzqESpuqXE0Ci5bXARjNXZu0JgiDUDfq8HBkZGRQUFLB+/fpqRvb1AoyAt2VppFs8UDrcASj9cm0JQmlzdwCaAcrOduBAeee5gJK0iAb+AxSU26vyDFMlFBTAcWXIwmBwmC+jTunUSTk7MjPVcvw4dO5c7i628i6lHR9bLEtr1KznMUDvUm3aA1GWBcCE0rHfh4oCOYxK5Jtesoe9SBA9eukiezlgqlOmzx9T0T4iy1U5aiMCzBmysrLs5l64Gu4pbR3TuSiD799Q/93AUq3/C0wGjpSUODUW6tm0yerw6NQJBgwov31N0bkz3HyzcroUFcGnn8L06ZU+jBb1oRwOR1FJxCehkprfi3KEtEHJX10EUoEE1LPPlyjZK0V1cmLY5qoYgpKfegdobmnREhX5MQ0AkwleeUUtVlpj6+ACOItKlL4MlcejEhE99RxbycZc1HdzGyriZibqObU533wzgSZNdvGvfwXw8MP1MDeXIAguo3///l3j4+P90tLSDjRr1qz8GTmVYNq0aa0WLFjQMjY29vchQ4Zkx8XF+Q8dOrTLxIkTU5cvX37aVeepj4wYMaL9xo0bmx45cuRQ165dL9XmuRuM08NgMDRCueXvQj01bUeJC78C3GAwGO4zS1gLYPtwcbXNYKoM5SVHdNVDdE08bFfl2M7+DvTGrNTUC3h6hmE0diUjw5djxwpJSfEhL68F2dnNuXDBB7NZP1PUA1sNYGdwQxmyAlAPDI44g3p4SAQSyM1N5KWXtvD222sYO/Y2br31Fvmdu4iK/hflGXvs7VuZRMSljamV+b1XxQhVnfM5+3++GmeSCg0De//n3bt32+TlKB93lBGoA8oA3kG3tMc2b0a5nopqcAHYg0pa+h/gJyqKNtBw2jD1++8qMzpA+/a1L+HiDAaDkrjavFlt795dodMDrIa+mJgYvvvuOzsz8s+gDG7vAK1QiXnvQUWCBJQ6mg9K4/6WUuXpqNnFp4CTllf9uvW3Zk+6qK6Q/CT2secUjY6OdnLMqBuclcy7ErA3bv/440+sXh1Pbm4PYAlKjq60nBEow/eLwCc2pVUy0pdOYF5BZFmNEhWlnB6gJK6ee65K/bF1OKSgItY3WRbncEVODNvk5kuAf6O+t4eBykSxFKMcXEtQkR2FJTVTpkypVEL0+k5ZycZCVLTON8BylNwVXL58E488Au++e4IBA7Zzyy1KHstsNlf52UgQhPrHsGHDMnv06GHy9vYurrh11Wnfvv2liRMnpt52223ZNXmeq50G4/QAxqMcHp8Aj2gODoPBsBKVXW0CSqfgqsaalMx2RsmVJhdQU8ZIrexKeAhzNdoMydDQThw7dgEfn/ZkZ3vzxx/ZpKUZyMry4+hRE5cvdwQGoW6cHclWVIYMSic3DQwsxmRyo6D8SbY6tFlJtsaSnBz45z8L+Oc/T+Du/j+6dw+ibVt3CguTMJvP0bKlgW7dGtO4cR4ZGScrbYh2tWOsJp1brjifs7Mv7Y0plZm5aW+2riv+k6WlK+rTGFBfZijXpBOpIVORQ68undU18f6c+z8HYB2b21he9Q6OtpTNnaHHfrLwqlGAMpKfQMko7QHigT+Ays+HqZRhas8e63r3ejw79MYbbZ0e48c7tZvRaGTs2LGMHTuWBQsWMH/+fN5++207v42zKOPRctTjx42WpT9wAyoqxx7NLIujmeBZQDJqdm6andd0lHProm5x+uaiyjjKT3Kl3W9XlvLui670e+srLeeM/rsIDg7l119T+fDDLeTltQA6osbfjsBIVPJmR/yOclx+Qun/TpWM9ImJsHWrWjcYYMIE5/etCUaNgqlTITcXDh9W49+NN1bpUKUdwc5MAqiJ35BtcvMU4AVgFnA7MASVd6k7KgJEc/CcQ8lrHUXNHd0GnC9z7JCQkAbl8NAYPXo0L774YqnIxW9Qn9VcVE4Udc9y8GB7Dh58lKVLf6JRo2l4ev4bk+lsucd3NP7Xh3s8QRBsmTVrVlrFrapPjx49Chp6hEd9oCE5PZ5ETc97oVREx99QTo/HuMqdHlry6NIyBJWRC6hto6y9ssrNJL0aMKDkPnx0i9HBdmn5D+uSmxvIvHnNgSYu6lcRSmFORV9YX89gNURkYp1Va9VezsxUzpTCQsjOhrNn4fRp+P77RObPX8ulSyEow1kYynBWWnNWjxfQlaKirhw8CAcPgpJKKY0JdXOfiXoIPE+jRhvo27cDLVsayc1N4fLlTAIDvWjTJpDMzNNs3PgJeXmpqNlc2pKHmh119VLRmFIRNTVb15F0RX2gPs1QdpbKPsDVZ4dedcrqSooFKnd9dvQQbTbD5ctw6ZJ6vXDBRGzsf0hMPEuTJm04cSKNtWtjyc93Q+XGSLK8Pmt59QOa6pYglJHaz4Xv9GfU2JpvWS6jZmLqlyxsjdsXsEohnqMqzo3SVEqzXuObb6zrVdCsrzUszmAAfvyxSocwGo3MnTuX6dOnV2D0KwR2WhaNFkA4yhB3LSoytBsV/460aNAulehpAbZOEG3JRd0L2Fvs1eVbjnXJsujXy6rq1sf7bWcd2M5M8qjLsbCu0N9XlP7+XGG0LC5WCnl5eWoiT+klI6OAnTsPcPr0eS5cKMTdPQg3t2BSU4tJSMimuHgA8ADW/5Gz0k3pKJm/Naj/qe34WaWxUGPZMnXhAbjrLgh15PCsJfz8VCJ17b+5fHmVnR5Q1hEcExNDQkICbdq0AdT/Jj09vcYnkJSVICwCtlqWqtG4ceMGIWllD8eSjSaUzNXHKAGR0bq6/hQW9qewcBEqKuZL4DvUPYvts2BVno2qMiHKVdeOup5cU1/6JQjClU+DSGRuMBj8UdbK/WazuYyYqMFgSEY9hfubzeYy07uulkTma9asYdy4caiHw95YZ3bYey2vzhX71NfjG1DRC24oQ7pbqaV0WXXbNEJpkXtg1SX3cLDtqK6ufJfFqJmbp7F1bmgOjlPYe+h3hD7hZHlJ6qxJ+jQjSiOsuu1hdl6bOd0H11GEMn7ol0vlbBda9ikstV7VsmLdYi71WpNlpevB9kG5dFl1X+vbsexhTyLBkWyCs22ru39NtXXVubRx2GBncVV5bZxDG+udXVzZXrtGlF0MBk+8vPwxmz24fNlAcXFdzn85h7peaPmZEvHxSeW++67lpzBr5N4r3dJsDEUdOnQAICkpiTZt2pCQkFDjxlZtRrPTmvWgDHutW8O5c2r7p5+gMvuXg8sTu2ZmQtOmat3DQ+nte3tX+7B5eXklkbmlvz/tO3UcAWBATWzogLrOh6JkRvTr9VAurAT9tf4S9p0j2j2AvWu6K14ruk4X4+3tTf/+/fDwaERAgB/NmzfDzQ0yMzNo1iyQ1NQU4uJiyc/PLbOv43sCZ58vHV0LKtfO29vIqFGjaNGiJefOJXPxYjYHrw0rqU9ZuIr8/HwqN6a7o+4xq/7aqJE33bv3xNe3MRcvmjCZinF398HDw4/CQjdMpiIMBiOFhW7k55u5dMmA2exJcbEHhYXuFBW5IqLaGc6h1KG/R83y34+jCTzBwcHExcVVbizUKCiANm0g3ZKr54sv4P77q9ZlXDgO/u9/KrcHgL+/GrN9fat+vBqksu85Ly+PdevWMXXq1GpdIwMCAkhMTKyW9FZVqclE5qXJy8vTSYPZoztKLmwkatKhPbJQjo9fUPmpTqMmYZxGRSFeOfa3ihwvrnCyVMVhXt1JAleb80QSmVeO0jk9Fi1a1PQvf/lL+/fffz/Rz8+veP78+S1+//13H6PRWHTnnXdeWLJkSZI+90deXp5h5syZLdevX980PT3do1WrVgVPPvlkytmzZz3Ly+kRFhbWPTEx0fuHH3747aabbsrT92nevHnBc+fObfviiy+e+dvf/pZcmfdjMBj69unTJ+fjjz8+8dxzz7XZtWuXv9ls5uabb85asGBBUrdu3WxybJhMJsNf//rXkPXr1zc9c+aMV+PGjQsHDRp0cd68eec6d+5s0/bQoUNe8+bNa7Fz586A9PR0j8DAwMJevXrlPvvssyl33313yZ/aXk6PzMxMt9tuu63LoUOHfN96661TM2bMcBhhI4nMoSfqDvNXB/WHURmp2qFidMs2OHyYvn3tjwENxRmSkJBgWeuBmo0gCPYoRM3wSsVWJiIFJQ9yGuXQOINe37U6hISEON22rGZuIVZny3Y7e/ijDCbtUDNJW6C0iku/elXnLZTCHWuUjSAIQv3BbIb8/No4kwl1nUiyvJ5BXUM0J8dJ1Ex5hTVZ8HsYjUYbI0dkZGSFZ5s5c2alJEXKIyAggFGjRuHl5VW92bhHjlgdHk2aQJ8+Ve5TjRMUBF26qBwkly/D/v1w003VPqw267ki3nvvPRvniNURouXwcNhxINiyNLfz2gzbyNYmlC+r5kq8LEt50kF1T34+fPddRa3G1EZXqkx+Pnxim2qCdtd+qatfV8s9UhQWws+uVOqrMpdQ9/ZnUbJ+2pKAkjM6V+ERXJLQPTra6vBo2xbuq1kDttMMGGAd/7KzYePGupfdchFGo5HIyEi6d+/OkCFDSE1NrfQxXJFr5EqhrDRYaX5Fqab/BZUnZQxKplFPAPZzVIGaEJiCii7M0i252DrHL5da15zY5U1Eq0ydfsHhdm4uzJv3Myq3mlZ3AiUR6mi/34Ef7JR/Z+d82nqvcurK9lH166sK+19+3SlCQqZVfkJLPcaRPfPw4avah+Eyli9f3vzAgQN+t9xyy8Xhw4en79y5M2D9+vXNcnJy3L/66ivN2MqwYcPCtmzZ0qRNmzYFw4cPzzh16pTnjBkz2rVp06ZcfdXhw4dnvvvuu62io6OblHZ6bNq0KdBgMDBx4sTMqvQ9NTXV45ZbbunWqlWrS0OGDMk8fvy4cfPmzYE//fST/48//nhYc2bk5eUZBg4c2GXv3r1+3bt3N40YMSIjOTnZY8OGDU2/+uqrwG3bth294YYb8gCOHz/uMWDAgGtyc3Pdb7755qxbb731YlJSktf27dsbb9u2rUlcXNzRe+65x643Mysry+3OO+/sfOjQId/XXnvtdHkOj+rSUJwelqlp2LsygVWQsuFfqcshLCys4kbCFYpebiGvnPVs7Es6aFIgaai/S+3NQAkODiY2NpZRG5y/Ca84eaqebOCgZSkPPyDQsgTp1rXFDyXl4lvOui9q1k9tzcwTBEFwBfYetAuwle5ztOSgZAEzLIu27tjp4Ovry7RpzxMWFkZSUpJLZtvZkxQpa0Av2yeXOTjssV3niL/tNnAvT4qxHnDDDcroB0riygVOD2ex5xzRHCHlO7IyLcuRypwN+1KfemlQX2xlQu0tRmwjqbx067XlWBEaPgUoB3E2arzVXu0tWSjnRjpWKdk0S3nlcXm+iQ8+sK4//nj9GRMNBpg4EWbOVNvLlzcYp4dGeHg4J06cKCfvUlmqJWNWHU6fhvXr4csvISmJ/afO4VFcyB9BbSA9Rl1PR450STSiPTSpq8GDB5fzfJkJ/MOytAKGoubY3oLKYeYID1Seszau67BQRQaQkrKLoUOHkpiYeFVEfFQbg6HcSJF6hdns8pnrBw4c8Fu7du2xkSNHZgGkp6e7d+rU6bqtW7c2ycrKcgsICChes2ZN4y1btjQZMGBA1vbt2497e3ubAT788MPAxx9/vFyDbGRkZOa7777b6uuvv27y7rvvlsxGOH36dKP9+/f79enTJ6dLly6XyjuGI5KSkrxGjBiRER0dfUIrmz17dos33nij9bPPPtsmLi4uAWDmzJkt9+7d61c6oiQuLs5/2LBhXSZPntxu3759RwBWrlwZlJOT475w4cITTz/9dIbWduHChU2feeaZ9p999lmQPaeHyWQy3HXXXZ327dvnN2fOnKQ5c+ZU3htfCRqK0yPA8urIc5ZreXX4fq+55poGE9HhiIiICEJCQkhJuYg10sMZ2ZbKSLzUVNvaOn5xqaW0VJC9MmfaOCorxGpkulzF9ZJIuiuKMjPGNnxZ8U46nE+e6izaA6Mrckk1wmr88NItjrY1KQR78gjOlunrNGkGt1Lr1Smru7PxmwAAIABJREFUzD6a00cvR1EVybnyXuvjsRw5C+2VV7dtbZ6rMm1dcS57s9DMVSivyj6uPkeRk0tl2jrT/pKD5bKDspqnNhP+lmdA18ss1aSeOmCbz+P222vmHK7khhus0+V3767bvlC+I0uTyaqatFmeZamUOkAlMeDYIaLf9qK6Ekrlv1Z0za7otTr7ODuBxnE7Nzd3QkPb0rZtW9ydNJC7uanlmK5syBBl19YWNzfb7eLiQs6cOYPJlIOPj5Hc3GyOHPmVwsJ8XCMzpo3LpaVPnZFCrX1cEtVRmoMHlYwUQKNG8Nhjrjmuq3j4YZg9WyVS+e9/VaRet2513SuX4nzepSpKOlaX/fthxgzYts2mONDy2iv5GHx0DD76CKZNgyeegGeesUozuhBtgp2tpLIjzgLLLAsoh8Z1lqUDVidHG+pGdlkoj5SUFGJiYpyKSq3vOLJnWuStark3DY977rknU3N4ADRr1qwoPDw8e9u2bU1OnTrl0aNHj4KPPvqoGcCCBQuSNIcHwJ///OfzK1euzPrhhx8C7B0bVGLzHj16mH755RefY8eOeWrRF2vWrAksLi5m9OjRGY72rQiDwcC77757Rl/2yiuvJH/wwQch27Zta1JQUGBo1KiR+eOPP24eGhpa8Prrr9vcJA8ZMiT75ptvvvjtt982PnXqVKPQ0NDC8PBw08yZM89ERUXZRJ/07t07DyA3N7fMTOCCggLD3Xff3enHH3/0f/7558++9tprjgIXXEZDcXpoT+yO7so8La+mWuhLvcU2Qdeguu6OcBVSU0Yvezfx5Ud/1DSaPnduRQ0FQRAaHDUaPVFFnJVZchlFRbBjh3X7jjtq79xVRZ+89/vvlfHPrX5ELpb3/WnSZo6SBZfOIVKVMi1/TEX72EYVaYZroSK0+8MbLb9BV0SAtX/Ruh4bW1HrRigZVCt5eV1cJpl3JVDjjulFi6zrw4dDixauPX51adVKecf+/W+1vWCBSrreAKnIoVzr1+z0dHjxRRVh42y+2bQ0mDdPfUeLF8OoUcqD6ULKSio7S5Jl+dpOnTdKetEfNW9XW/wom49Nv+1O5ZzSztTpJ27Z23ZFXX05hr06q3qQVQZeEBxz3XXX5ZUuCwgIKALIzs52A/j555/9/P39i/r371+mbf/+/XPLc3oAjBo1KuOXX37x+fzzz5vMnj07FeCLL74I9PDwMEdGRp4vb9/yCA0NLWjXrp3NTDcPDw+uv/763B07djQ+fvy456VLlwwXLlxo5OPjU/zYY4+1LX2M9PR0D4BDhw55h4aG5jzwwAPZDzzwQPa5c+cabdmyxeePP/7wTEhI8NqyZUsTR/2YMGFCh4MHD/o2atTI/Mgjj1RJqquyNBSnhxYO4+jD1dz/Z2uhL/Wa0rJAV8NNfHUo/RDm6odoVz9sV7asKjMkSxuznD1fbdxAuz76Q3CEkqeZVpLYriIJGUf7VjYRcVV+f872y1Xnc/b/XBvJlwWhpin9f76aEkOWy/79cOGCWm/ZEq65pm774ww9e6rcHpmZcPYs7NoFf/pTXfeqQmrdoVUBjvOTyP021E+nqD0qksxbv359HU6uqR61Pm6fO2ebdOWpp2rmPNVl2jSr0+Pjj+G11yA4uG77VMPU+fi5a5dyWJzRTUB2d1cTBUaNgptuou/SA5gNBrqmneCz7sXwz38qCSxQzo/Ro2HtWuU0aeLQ1lYl9LYTzbFu7/7dkc2g7Pifj2tUBQRXIjLwTlIDklFXEt7e3sWO6swWh+2FCxfcQ0ND7c548fX1rVCiJTIyMvOvf/1r27i4uCazZ89OTU5Odv/pp5/8Bg0adLF58+ZVlngJCgqym4xX61NBQYEhPT3dHeDs2bOeK1ascHjxy8rKcgc4ceKEx8SJE9t9++23jc1mM35+fkUdO3bM79evX05CQoJd/cGDBw/69uvXL2fPnj1+kyZNCv3++++P2WvnShqK00MT8r3OQX0nIN1sNtdkHPsVQ83JBdQuNWGMrG0jfX3A3gxJR06WK+kzKR39UdEM0OoYou05AOqTc8uV56vo4diehIyz+1Y0W7c6vz+tX5WZCVwbv/f6NEO5NpxIDR17Dj2oe2d1Tb0/cXCUQ2lpKxfPQK0RPDyUTvo//6m21669Ipwe9Q1n5dXq+v9ckzi6L7qS7iP1OPpOr4TJNfVi3F60CC5ZpLpuvBFuvrn2zl0ZBg6Efv1gzx4oKIAlS+CVV+q6Vw0Tsxneew+eew4Kdba4++6D+fNtpMUyfE8AsKtdL5hzn4oK2bABpk+HpCTVKCYGfvsN4uKgUyeXdtXe/19//17Rf6q8Z6P6dI93tRISEkJERERdd0NoIBiNxuLz58/btbOfPXvW0165ntDQ0ML+/ftnx8fH+6Wlpbl/9tlngUVFRYaxY8dWKyoiPz/f7oNIcnKyJ0Dz5s0LtTaDBw++sHXr1j8qOubo0aM7xMfH+8+YMePM5MmTM7RIkv/973/Gzz//3K6W31NPPZW8cOHCM7179+62c+fOgH/961+Bjz32WJUjWJyhQTg9zGbzOYPBcBjobTAYmprN5hKtM4PB0BUVr/xZnXWwHlNZuYDaNspWxegqVI46n+FTw1Tl/TlriJbfYlmq83uqyd9iff2d19d+VURlHuDgynDoXUnXpcpen6vrzJWxrgroNcmvhHweGqNHW50e69fDP/5Rf5INX8HUx/vtqjiwK5rkcTWNFY4m19S20dLRJLB6811kZdkmMJ8xo/46gQ0GZUh/6CG1/f778MIL0MB/y7VOcbFydvzjH9aywEBYuRLuv7/i/Rs1Utequ+9WvyftmnX0qMpNtXEj3HprjXRdozL375W916/OhChXXDvqy+Sa2uiXlrumoV+vhNqjW7dueXv27PHbs2ePd79+/fL1dbt37/Zz5hgPPvhg5o8//ui/fv36xjExMYF+fn5Fo0ePvlCdfiUkJBi1ZOtaWWZmptuRI0eMzZs3v9y2bdvCpk2bFnl6epoPHz7sU1RUVCaX2uzZs1scPHjQ+PHHH590d3cnPj7ev1evXrlvvvmmTXDBsWPHvBz146mnnkpzc3Nj0aJFpwYNGnTNrFmz2o4YMeJiYGCgwyia6tIgnB4WlgILgdeBSQAGg8ED+Lul/v066tcVy5VqjBOE6iK/fUEoH/mP1C3izK3nnDoF27dbtwcPrru+VJZbb4WQEEhJUcu3315ZTpsrkLocTyuKztQ7YWRcsE9Fs8CdiTJ2VF8fIlKrzYcfguZY69zZOaN2XTJiBLRrBydPqlwTH38MkybVda8aDoWF8OijsGqVtaxfP4iOVp97ZWjcWOX0+H/27js8qir9A/j3TM1MMukJCaG3UKUEKRbsioIFftjL6op17bqudRW7rmV1dde6KlgXBVFUFBQFUbogEHoPEEhPJplk2vn9ceZOSU9IZlK+n+e5z60zc6bcOzPnPec9p5wCXHMNUFmp0jNOnAh88QVw1lktW/YwaQu/scN1DWvqb8+WaiTA7zRqLZdffnn+6tWrYx544IGMb775ZqfBoKrc33jjjcTs7GxrY+7jyiuvLLrvvvt6fPDBB0mrVq2yTZ06tcBqtTZywKPaVVVViXvvvbfr66+/nqNtu/fee7va7Xb9xRdfnA8AVqtVTp48uXDOnDlJzzzzTKo2pggAfPjhh3HPPvtsRlZWVlliYqLXbrcLnU6H/Px8g8PhEBaLRQLAtm3bTI899lhGQ+U56aSTKqZNm5Y/e/bs5Lvuuivj3XffbbW8fx0p6PFvABcDuEEIMRzAegAnARgI4FUp5bJIFo6IiIgoUtrCn+hO4623VEtWQOUl79EjsuVpCr0euOgilXYEUCmuGPTosHhdaB18XX0qK0Nb899zT9vvOWYwAHfcAdx5p1p/+mlVoW6us+EqNZbbrXrRfP55YNvUqcCHHwJRtaZ/b5xLLgH69AHOPx/IzVWfu/POU4GUc889+nJ3Qm31GtZWy0WkufXWWwvmzp2bsHDhwvjMzMwhY8eOLTt8+LDxp59+ip8wYULJkiVL4hq6j+TkZM+ECRNKFi1aFA8AV1xxRY3UVosXL7bOmjUracyYMeU33nhjg6mvEhIS3LNmzUpZsWJFzODBgyuys7Ot69ati+7Ro0fVE088cUg77tVXX81Zs2ZNzEMPPdR9zpw5Cf3796/cvXu3eeXKlbb4+Hj3zJkz9wBATEyMnDx5cuG8efMShwwZMnjcuHFlhw4dMi1btix20qRJhXv37o1asmRJ7COPPNJlxowZh2sr00svvXTg22+/TZg1a1bqtddeW3DCCSdUNPQ8mkPXGncaCVJKN4AzoHp2dAPwJwASwG2+iYiIiIio9TidKuihufnmyJWlubTULoCqnNJy8RMRNcXrrwfGXEhNBa66KrLlaazp04GUFLW8b1/oNZ2ax+tVPTyCAx7XXgv8739HF/DQjBkD/PproLeI06kCKl99dfT3TUTUSHq9HgsWLNj5l7/8JbesrEw/Z86c5NzcXNN777238/zzz290iqpLL720EAC6dOniOuecc8qq79+wYYPl3XffTV24cGFsY+4vNTXV9c0332w1mUzeOXPmJB06dMh06aWX5v36669b0tLS/AOkp6enu1esWLH56quvPpKTk2OeM2dO0v79+80XXXRR/qpVq7IzMzP9fwpmzpy5989//vOR8vJy/dy5c5MKCwsNL7/88p65c+fuufHGG3Ptdrt+xYoV0XWVKSMjw33vvfce9Hg8uOmmm3p6PM0ep71eQhtlvjMTQqwZNWrUqDVr1kS6KESdVq/7vvYv73lmUgRLQkREkdZuvxM+/TQQNOjaVaVIMbR8x+pWfX28XqB3b1XZB6g0Ieef37KPQdTK2u01pKMoK1Ot7/Pz1frLLwO3tWw7xFZ9j196CbjrLrWclgbs3AlYG5WZpFW1y8+1lMCtt6oxUjS3365e40aM79Kk57x3r+qduGuXWjebgW++YY9F6tSysrKwdu3atVLKrPqOW7NmzeqoqKhBQ4YM2RyuslHrE0JkZWZmOrZs2ZId6bI016ZNmwZVVlZuzsrKGt3U23aYnh5ERERERBH1738Hlq+/vlUCHq1Opwvt7fHoo4F0XUREjfHii4GAR8+ewA03RLY8TXXTTUCGLy15bi7w6quRLU979uCDoQGP6dMbHfBosp49gSVLVMANAKqqVKqrFSta/rGIiKjNY9CDiIiIiOhorV+vKlsAlbf+uusiW56jcfvtgDa457p1qgcLEVFj5OUBzz8fWH/ssfY3JkZUFPDww4H1Z58FiooiV5726umn1aS5+GKV9qw1Ah6ajAxg0SLV2xIAysuBs88G/vij9R6TiIjaJAY9iIiIiIiOhtcL/OUvgfULLghUuLRHXbsGBvIFgIce4tgeRNQ4f/87YLer5SFDgMsvj2x5muvPfw70GCgsVD0WqPFeew144IHA+uTJwKxZ4RnMvndvYOFCIClJrRcVAWeeCezY0fqPTUREbQaDHkRERERER+PNN4Fly9SywQA88khky9MS7r0XSExUy7t2qedIRFSfZctUS37NU0+Fp5K7NRiNwHPPBdZffx1YuTJy5fF6cfLO1bh21RdIKm/0eLiR8cEHwC23BNZPOUUNWm40hq8MgwcD330HxPrG+T18GDj9dGD//vCVgYgowqSUa9rzeB5Hi0EPIiIiIqLmOnBABQg0f/sbMGxY5MrTUuLiQls2P/QQW8kSUd2cTjWWkebcc9XUnk2dCpxzjlqWErjxRsDtDm8ZpAQ+/BAYPhzvffYoHv7xbXz93m3A8uXhLUdjzZsHXH11YH3sWODLLwMpE8MpKwuYPz/w2Hv3AmecARw5Ev6yEBFR2DHoQURERETUHC4XcO21QFmZWh8wQAUHOoqbbwZ69VLLJSUqbZf2XImIgj33HJDta0waHa0G/27NsRvCQQj1PKKi1PrvvwOvvBLeMtxyC3DFFcDGjf5NafZC4KSTgP/+N7xlaciPP6pxOzwetT5sGPDNN0BMTOTKdOKJwJw5gV4mW7cCZ50FFLfx3jJERAQp5VHdnkEPIiIiIqKm8npVwOO77wLb3nwzUDnWEURFAbNnBwYh3rQJ+NOf1HMnItKsWQM8/nhg/ckngR49IleeltS7d+ig5vffr55vOHz6KfDvf/tX7SYLSszRasXpVN9Bn38enrI0ZOVK4LzzgKoqtd63L/D994E0iZE0cSLw0UeAzlf9tW4dMGmSGuSciDQuANLj8bCemNoMr9erAyABNGtwQX6YiYiIiIiaQko10PesWYFt99+vWt52NKNHh47nMXeuqmhzuSJXJiJqOwoLgf/7P1UJD6hrRvB4Dh3BPfcAI0eqZacTuOgi1futNe3cCVx3XWD9ggtw/I3/xeSrX8bmlF6B7dddp9IsRtLGjcDZZweCCBkZwKJFQFpaZMsVbNo04O23A+u//gpMmRII0hDRLq/X67Db7dZIF4RIU1ZWFu31eh0Adjfn9gx6EBERERE1VkUFcOWVoSlOrrtOtWzuqK66Crj99sD6e++pXP1MdUXUuXm9KvXS3r1qPTYW+Pjj9jt4eV1MJjUQt82m1nftUsHfo0y7USenE7jkksA1tk8f4P33UWKxYX98Gi6+7JlAT5qiosj2wMvOVgOEFxaq9aQkYOHCQGrEtuSaa4B//jOwvnAhcOml4R+nhahtWuTxeApzc3PTiouLbR6PR3e0qYWImkNKCY/HoysuLrYdPny4i8fjKQSwqDn3ZWjhshERERERdUw7d6oWzevXB7ZdeCHwn/+0/9z1DXn+eVUBp+WQ/+47YNw4YOZMNVgsEXUuUgL33Qd8+21g28yZQL9+kStTa+rXT/UUuPhitf7558Df/gY8+2zLX//vuw9YvVotG40qzVVsrH93aVSM6ml48snqffjhB+Cll4C7727ZcjTkjz9UwCMvT63bbOq7YdCg8JajKW6/XfXSeeQRtT53LnDZZcAHH6jgFlHn9YnH4xnvcDhO2r9/f6JOp8sA0MF/3FIbJr1er8Pj8Rz2eDw/A/ikOXfCoAcRERERUX2cTlXp/8QTgMMR2D59OvDaax2vVXNtDAZV4detG/DYY2pbdjYwdizw4IMqvVdHGs+EiOo3Ywbwj38E1v/2N+D88yNXnnC46CJgyRJ13QfU809IUNe/ljJ/vgpgaJ59VqUMq27CBPWaP/OMWr/vPuC444Dx41uuLPVZtUqNlaH18LDZ1KDl7SEI/vDDKvDx4otqffZswG4HPvsMsDKzD3VOWVlZjjVr1tzu8Xgu8Xg8pwPoDYCRQIoUJ1RKq0UAPsnKynI0cHytGPQgIiIiIqqNx6Na8z7yCLBlS2C7yaQqvaZPj1zZIkEIVdHZq5fK2V9RoV6jxx5TPUBmzFCpsAz8i0HUYUkJPPWUOt81552ngsKdwT//CeTkAPPmqfUHHlC9Me6+++h7fOTkqFRVmsmTgTvuqPv4GTNUL49Vq1SKpgsvBNauBVJTj64cDZk/X/V4qahQ63FxwIIFqvdfeyCEasjgdgdSVX77LXDWWcAXX6gUXUSdkK9i+V3fRNTucUwPIiIiIqJgDocat2LYMFWxExzwGDFCDYDa2QIewa65RqX4OuGEwLacHJXjfuBA4F//Uq1miahjqapS176HHgpsmzhRjXfRWYKdBgPwySfAqacGtv31r8ANNwQGc2+OkhLgggsCPScyMoB3360/kGIyqV4KiYlq/cABlaqptcaokBL4979Vjx4t4JGYqAYtby8BD40QKoD18MOBbb/8onovbt4cuXIREVGLYdCDiIiIiEhK1Vr2jjuArl1VxX5wxYfNBrz8sjqmPaTvaG39+gE//aR6vAS3Kt65E7jtNlVhd/31qhKJA2EStX/79gEnnRQY1wdQFf9z5gBmc+TKFQlRUaqnx/HHB7a99RZwxhmBQd2borxc9epYs0at63TARx8ByckN37ZnT+DDDwPBkR9+AC6/HHC5ml6O+lRUAFdfDfzlL4FB03v3Vo0Aaku/1R4IoXoqvvBCYNvOnSqA8+WXkSsXERG1CAY9iIiIiKhzqqhQKTnuvltV4o8ZowIbxcWBY2w2NWbFrl2qMr+ztGZuDL0euPlmVUk0Y4ZKcaIpLVWVgCeeCHTvrgIgc+eqwdCJqP1wuVQqoEGDgBUrAtuvvFKlObJYIle2SIqJUT0cLr88sG3JEmDIEPU94vE07n5KS4EpU1SAWPPGG2rMjsaaOBH4+98D6//7HzBtGlBZ2fj7qM+mTSoQMHNmYNvo0cBvvwGZmS3zGJF0110qeKeN51Faqnqz3HJL6DheRETUrjDoQURERESdQ3k5sGwZ8PTTqoVyQgJw9tlqMNNdu0KP7dNHDSC7Z4/KVd+YFredVUyMqnDLyVE9PwYMCN1/4IAKgEydqnKln3Ya8OSTqsIwOMBERG2Hy6UquYcPV+mbtHRGer1KC/T++5034KGJigJmzVLXM62nRXm56jE4bBjwwQf1p5pau1b1HFy4MLDtxReblz7xkUeAW28NrH/5pfqe27696felcTpVT4iRI4ENGwLbr74a+PlnoEuX5t93W6MFnrp3D2x77TUV3Fm6NHLlIiKiZmNTNSIKD7dbVYYcPgzk5QH5+YF5eTme+mUH9F4vKo0mAEuB6Gg1xcQAaWlAt25qSkk5+kECiYioY5NSfd9s3Qr88QewerVKG7J5cyAtR21iY1XFx2WXAaefrlKMUOPFxKieHzfdpFKezJypWhwHBzZcLuDHH9WkGThQ9bIZNUq1Jh80SH3n8/ueKPy2bVOpld59V6W0CjZ0qOqFcNxxkSlbWySEGsz8lFNUsCI7W23fvFn1hnn4YTU4+ZVXAn37qn2lpcBLL6kB4YPHAZkxA7jzzuaX4+WXVSDquefUtt9+U0GrJ55Qaakam4ZMSuCrr4D77w88H0Dd/tVX1fhNHfH6PHIk8Pvv6n384gu1LTtb9bq56ir1fmVkRLaMRETUaAx6EFHLKSpSLWWDp9271Xzv3npbOl0WvLL267ofw2RSPzZ79VJ5ZPv0UXNtOTW1Y/4IJyKiUE4nsH+/+n7Zt0/Nd+xQgY6tW1WlUmMMGaLysJ9xhuqB0Nly07cGIVSu++OPVy1lly8Hvv0W+OYbYN26msdv2aKm4NQpNpsKhgwYAPTooaaePQPLNlv4ng9RR1ZYqM7RH35Qva/++KPmMTExqifB7bcDRmP4y9gejB+vKsyffRb4xz8Cqfz27FHBjBkz1DUtKUm9xsGp/mJiVDDpsstqvetGEwJ45hn1GA8+qP57ORwqhePzz6seKNOnBwY+r87rVSkfn3pK9YoMNnYs8M476juzI0tKUqmu3nxTvW7l5Wr7zJlqAPvp04G//U19DxERUZvGoAcRNY7XC+Tmqoql2qbdu8OTosLpVI+1ezeweHHN/VZrIAgSHBTp1UsNTJuUxJa7RERtkdMJlJQARUUYfnAr4ivtSC4vBp7bpHptVJ/y8po+QLYQqtLp2GNV2o/TT2erzdZmMAAnnKCmJ58EDh5UqVyWLwdWrlSVf7U1iigrU4PGr1pV+/3Gx6tKp7Q01eAhJaXmPDlZHRcXx4pa6tycTvV7fefO0Gn9elUpX5eUFBXouPlmlQ6Q6mcyqZ4dt9wC/OtfqjdH8P+jLVtq3iYuTqX+KylR18Z+/dT3ksnUvDIIAdx7rwrkX311IIh16JCqrH/wQdUrZcoUNTD9wIHquvy//wGvv14zHVZMjEpxddttKrVZZyAEcMMNwDnnqPE+PvtMbXc6gX//W71OkyapAMjEic1/r4iIqFUx6EHUGUmp8vKWlASmoiJVgXTkSM0pL0/9UHa5ju5x09LUj3itIiI5WS3HxOCBb7bBC4EotxOPntZLtaopL1ctdQ8eVKmxcnIaDqxUVKjB9jZtqn2/waDyz6alAenpgXlKivozV9vEVr9ERIqUanDWqqrAVFERuGZry7Vt05bLytS1vPqk5YsHMC/4Mb9pZlm1ngKDBqm0SVlZwIgRqgKHIqdrV5Xq5U9/UusOh2odvXKl+u7OzlZpYYqK6r8f7XNTW6v02lgsqnJRC4JUn6KjVcMJbaq+Xn17VJT6fcCGFBQOXq+6htrt6hoaPNeWS0rUb/bgSUsnW1LS+McymVSF7mWXqXlnH7ejMUpLVfBo7141375dBZTqS6eoKSlRqcTefTd0e0KC+s+iTUlJQOykwP6PPw69nmnXKItFzUeOVEHjV15R44QcOqRu53ar4Io2jojBUHvg2WhUqQoffFAFkjuj7t2B2bNVD6iHHgJWrFDbvV6V/uurr1RazLPPVgGSE05Qje2YdYCIqE1g0IMoXLSKIq83MHe7VYsRlyt0Xtu2+uYOh6osqm0K3ldaqioISkvrH1SvuSwW1bOi+qT1tIiOrvOmHx0MpLR69P5JdR6H8nKVzmTPntD0Wdq8oT91brcaUPXAgaY9r5iY0HFGtOXqk8Wi/iyaTKoypPpybdu0ZaNRtaAKngyGmtt0Ov6YJmoNUqrJ61VT8HJd2xpab8pt3G71/eB2B6aWXg/e5nSGBi+C1+tarqpqeu+K1iKEuu5qFUPduqnvnGOOUQGOfv3UtZXXy7bNYlHjAwSPESClanSRna2+32vrYVpV1bTHcTjUlJvbsuXX6+v/jq9vm9msvueDJ+27v77l5hyn0wUmIULXG5qO5vhwnX/Vrt9mtxOQEjopVUCgoeu09vu8+vWy+uRyNW+/dv2srAyd17at+lwLHLcWk0ldN088UaX4mzCh46aPk7L296qqqu7gfXDgvqwMKChQwaSCAjXl5ja+t7tOp76r9Hr1f6a+/2NFRWoK7h3yt6D/SA2lwjIYAsFZvV5VzldU1HzMusrgcqkUTx99pG6rBYeD/w9pk7auPV5UVM3JYglc86r/t6lvagtOP12dG4sWqfRhwWNSlZYCn36qJkA1qBsxQqUBy8xUDf409enjAAAgAElEQVS6dlVzZhwgIgorIdvKH9cIEkKsGTVq1Kg1a9ZEuijhcfPNqktme8PPatsS/Ce2Bf7QuoPeX0NL/EHW7o+fGyIiqkukAiJH+bgVukCqJqv3KHthtlfVv9/5fU/UdG0lKNyM8zfPGg8BCSElkhyNHMMpUrRAoBChr7kWrAterue1eGf0+dBJFdS7bP13rVzotqHX3+b7l/c8OzmCJemk2so1oqXdeKNKVdYJZGVlYe3atWullFmRLgtRuLGnR2e0eDH/GNLRC/4MtcDnKeRixM8nERGFQ6S+b47yca3eJvZyICKqTTv+zZ1SEYaxBFuK1uP/KF27el7DBxG1pHZ8jahXbWODElGHw751RERERERERERERETUIbCnR2d06qnA1q2RLsXRaSvdLNtKOdqDBl4rlycw0J9Rz3hsu9NRWwF1Jh31etZRn1c41PfaVd+nrbfQ612AQPqmJHEUY1BVT3XY2NSHkb6mNfD4+UYr4Hupk50V9R4LoOOcB635vnSU16gukXx+QjTuvWvBMu6MTvYv9y3PP/o7jPQ1oaOr673XXvda9r8z9CxIISCFwHV/fNvwfTV2f/DjtjGPH3cFJAQqjSY8tdQ38Hn1718thVb1VFqtpSmvVWPSEtZ3f1Zr88tT3/029f1u7uejrkwJTX0dmquNfq4j4tRTI10CIgoDBj06o9deUxNRG9L/vsBA5nueqWcgcyIi6vCy+J1Qr9F8fYjqdRrPkQ7v8aD3+LqVcyNYkvB5J+g5P7Xg1QiWJIyCnjPKyyNXDiIianfYnJqIiIiIiIiIiIiIiDoEBj2IiIiIiIiIiIiIiKhDYNCDiIiIiIiIiIiIiIg6BAY9iIiIiIiIiIiIiIioQ2DQg4iIiIiIiIiIiIiIOgQGPYiIiIiIiIiIiIiIqENg0IOIiIiIiIiIiIiIiDoEBj2IiIiIiIiIiIiIiKhDYNCDiIiIiIiIiIiIiIg6BAY9iIiIiIiIiIiIiIioQ2DQg4iIiIiIiIiIiIiIOgQGPYiIiIiIiIiIiIiIqENg0IOIiIiIiIiIiIiIiDoEBj2IiIiIiIiIiIiIiKhDYNCDiIiIiIiIiIiIiIg6BAY9iIiIiIiIiIiIiIioQzCE88GEEN0A3FPPIQ9LKcuCju8B4EkApwGIBZAN4J9Syo9que8kADMAnAsgBcBOAG8CeFVKKVvsSRARERERERERERERUZsU1qAHgJEAbq9n/zMAygBACNEVwC8AMgAsAHAAwBkAPhRC9JBSPqPdSAhhA7AIwAgAP/mOPx7AKwCGALixpZ8IERERERERERERERG1LeEOevTxzVOllHkNHPsUgO4Apksp3wEAIUQMgOUAHhNCzJZS7vQdezdUwOMJKeXDvmMNUMGPG4QQH0kpl7TwcyEiIiIiIiIiIiIiojYk3GN69AVQ1lDAQwgRD+AyANlawAMApJR2AP8CYATwJ9+xAsBNAIoAPBF0rBvAP3yr01vwORARERERERERERERURsUiaDHzgaPUqmpjAC+qWXfz775Sb75YACpAH6QUlZVO3YZAHfQsURERERERERERERE1EFFIr3VJiHEaABnAbAB2AFgjpSyMOi4Eb75plruYysAL4D+DR0rpbQLIXIA9BRCREkpK1vgORAREREREVEb4PQ4cbDsIA6UHoDD7YDb6w7ZL6WESg5ARERERJ1F2IIevjRUvaF6Zfxftd3PCyGuklJ+6VtP8s0PV78fKaUUQpQASGzoWJ8iAL0AxAPIrat8mzdvRlZWVq371qxZU9fNiKgVub1ulFaVIiEqgX9WiYiIiDo5KSV2FO7Awl0LsTxnOVYcWIHtBdshIUOO64n5/uXkfyRjaOpQDEsdhlN7n4rT+5yOWHNsuItORETUauqqz9y8eXOYS0LUdoSzp0cGADOAEgAXQ6WusgG4FMCTAGYLIcZJKX8HoP0KrZ6uSlMedExjjgXC36uFiJrp2nnXYtn+ZdhVtAsurwtDU4fi8VMex/mZ5zP4QUREncYPu37A7OzZGN11NKYOmopES2LDN2qkClcFNhzegEp3JdxeN7rauiIzORM6Ee7st0T1szvtWLx7MRbsWIAFOxdgV9GuJt2+0FGIJXuXYMneJXht1Wsw6AwY3208TuhxAo7vfjwm9JwAm9nWSqUnIiIiokgIZyCgDMAUABuklNq4HnYAL/oqMV8A8FeoAcxdvv2WOu7LBKDCt9yYYxF0fK0GDRrEHh1EbcR/1/03ZH3jkY2Y8ukUjMkYg9fOeQ2ju46OUMmIiIjCY9m+ZZj44US4vW68seYN3PT1TbhoyEX4z6T/HNX9ur1uvLXmLTy8+GEUOApC9iVaEnFc9+MwbdA0XDjkQliN1qN6LKLmkFJi45GN/iDH0r1L4fK66jxeQCAtJg3dYrsh1hwLg86ALRvrvn+3142l+5Zi6b6lAACT3oSTe52MSf0nYfKAyeiT0KelnxK1Iy6PC3O3zEV2Xjbio+KRaEnE4JTBGJE2AgYd21ESUdtUV31mVlYW1q5dG+bSELUNR/WtLYToBWB3Iw9PkFJ+Uce+/0EFPbTxOY745vG1PKYOQAKAXQ0d65ME1QukqJHlJKIwc7gcde4z6Az+3MwrD6zE2LfH4s5xd2LGyTMQbYoOVxGJiKgVSSlRWlWKAkcBCh2FIftm/DQDLq8LeqGHQWdAoiURydZk9EnogxFpI2DUGyNU6taTa8/FRZ9dFDI2gdvrxkcbPoJe6KE6TTeNlBJfbfsKD/34EDYc2VDrMYWOQszfNh/zt83HbQtuw2VDL8P0UdOR1bX2lAlELUFKiW0F27A8ZzmW7F2C73Z+hwNlB+o8PtoYjdP6nIaTe56Mcd3GYWT6SEQZokKO6XXf1/7lPbfvwcYjG/Hr/l/x7Y5v8Xvu7yHHOj1OfL/ze3y/83vcvuB2DEoe5A+AHNf9uA55jWlPKt2V+HX/r9hfsh8p0SlIj0nHgKQBLf44DpcDr69+HS8tfwn7S/fX2G8z2TCh5wRcOPhCTB00tVP3DuI4OURE1B4cbVMFO4APG3mss559Zb659s9ui28+rJZjewAwAtjY0LFCCDOA7lC9S2T1/Z3Zm2vexPAuwzEqfRR/yFNEHSg9gCmfTgHwiH9bz7ie+M+k/+DEnifC4XLgmV+ewWurXkOVpwpe6cULv72AOZvn4I3Jb+CMvmdErvDUZnilF17phcfrUXPpgUlvgklvavjGTeD2ulFWVYbSqlKUVpWi0l0Jo94Is94Ms8EMk94UsmzSm5gqhiiI2+vG9oLt2HhkIzYe2YgNRzZg45GN2F28O6SCPzgf/6M/P1rn/UUbo3F8j+Mxqf8kTB00Fd1iu7Vm8cPC7XXjks8uwcGygwBU74v+if2x4sAKAMCsP2ahZxODHl9v+xoP/PgA/jj8R8j2rrau6JvQFzqhw6a8TcivyPfvK60qxetrXsfra17HiLQRmD5yOi4bdhkSLAlH+QxDaddu7bodzmumlBKV7kpUuivhcDvgcDnqnVe5q2DQGWDUGxFjikFaTBrSYtKQHpPOhhhNUFxZjJUHVmJ5znL/VFRZf/u0Y7ocg4l9J2Jiv4k4vsfxTfp+7xnfEz3je2LSgEl48rQnkWvPxS/7fsGyfcvw454fa5wXm/M3Y3P+Zjz/2/OIj4rHWX3PwuQBkzGx30QkW5Ob9ZypaYorizF702zMzp6NpfuWotJdGbLfpDchHXNa7PH2lezDeR+fh/WH19d5TJmzDF9v/xpfb/8aN319Eyb2m4gz+pyB0/qchn6J/Y7q2iWlhIRs9n3sK9mH5TnLsfrgauiFHiPTR2JU+ij0TejbYsGJ4spifLThI/z39/9ia8FW3HLsLXjslMdYl0BERG2WCFcsQAjxCVSztDFSylXV9p0D4GsAH0gprxRCpAE4AGCdlDKr2rE3AHgdwA1SyjeFEEYA+VDpq3pIKV1Bx54FYAGAp6WUD9RTtjWjRo0a1VnSW+Xac5H+QjoAwGq0Yly3cRidPhoDkwciMzkTA5MHtmjO6EiTUsLldaHCVQGHy6HmbgdKq0pRUlkCu9MOr/RCQvorTt1eN8qd5Sh3lcPutIdMwdvKneUQQkAndNAJHfRCr+Y6NTfq1J/iGFMM9Dq9ehwZeJzgx2zsdovBAqvRCqvRimhjNKxGK+Kj4pFkTUKiJbHGFGeOgxACAqLNtchZkbMCUz6dgkP2Q+jpCFRw/THjxBoDTO4s3Ikb5t+AH3b/ELL9quFX4enTnkZXW9ewlLmt067p1d9rrbK+pKrE/9l3uB1weVzwSA+MOiPMBjOklChzlqGsqgx2px1lTt/ct17hrkCFqwJV7qqQz3rw518ndJCQ8Hg9cHvd8EiPv0LL7XXD4/UEyhs08Kj2GdUJHQTU3O11w+11w+V1qbnHhZKqEhQ5imB32uGRKshRF5Pe5D8HtclmssFqtPrLGFy+2ublrnJ/kKPCVW+mxFoZdUYVDDGYYdabG79cRyBFWw6+TfVjjDpjjdcteFkndP7riNVohcWorisWgyVkWa/TN/n5UuM5Pc4aFTkAoBd6WI3WNnfNbgyv9MLutKOksgQlVSXYU7wnJMCxJX8LnJ762sEowd8Jey2TG/34Wmqm/xv8f+gR16NZzyHSHv/5cfz9p78DUNfFBVcswJl9z8Rln1+Gjzd+DCD09dnzzKR67++9de/hmnnXhGyLNkbj/hPux13j74LFqDLESimxvXA7vtjyBd5e+za2F26vcV9RhihMGzwN00dOx4SeE5r8Gc0pzVGDT+eswIYjG5Cdlx3SotqoMyLdlo4MWwa62roiw5aBjFi13NXWFdHGaEQZomA2mBFliIJJb4LL4woJXGjLle5KlFSW4GDZQeTac1FcVYyyqjIUOgpxyH4Ih8oOocxZVk9pmybGFIMu0V2QbE1GSnQKMmwZ6B3fG30T+2JQ8iAMSBrQ6SoHSypLsCV/i3/SggnbCrY1eNv4qHic2fdMTOw7EWf2PRMZsRlNeuyQnh4NnCP7S/b7K7MX7VpU63UZAHRCh3HdxmFy/8mYNGAShqUOa5fX6bZs5YGVePG3FzF3y9wGvyuCr4MnjPkYfz3urxieNrzJj7k8Zzku+OQCHC4/7N+WGp2Ky4ZeBrfXjdzyXPy2/7d6ex9ZDBZkJmeiZ1xPJFuTkWhJ9F+jtMmgM8DutPt/h5c6S1HkKMK+kn3YU7wHZc4yGHQGRBmiMCZjDK4ZcQ2mDpoakmaw+ud6W8E23Dj/Rizes7jWcg1MHogrj7kSVxxzRbO/Ex0uB55d9iyeW/YcHO7Q3vljM8bijclvIC0mDTazzV9Wr/Tiow0fYd7WedALPRItiegd3xtTB01F38S+jX5su9OOoX//2b+e2ncG8iryUO4sh0d6MCx1GMZkjEGX6C6wO+1weV0Y3208Tu9zOswGs/92W/K34JUVr+CQ/RCO7Xosjut+HAodhdh4ZCMsBguuOOYKpNvSm/X6BJNSYnfxbmTnZWNL/hYcLDuIQkdhyFTlqfL/H9H+m8SaY5EQlYAESwLSY9LRPa47esT1QPfY7gyo01HzpbdaW71ulagzCGfQ4xoA/wUwH8BULTghhLABWApgOICTpZQ/+7bPgRoD5FIp5Se+bekAVkCN39FPSlni2/4igDsB3C+lfCbofn8CMATAICllnWm4OlvQ47Psz3Dh7AvrPSbFmoK+iX3RI64Hutm6IS4qDjGmGMSZ45ASnYLU6FSkWFOQEp0Cm8lW5w9+r/TC5XHB6XGGTGXOMn/AobaKuSp3Fao8Vf65y+OCXqfSWnilt0YAI/hPrsOllu1Ou//HRX15gDsTm8mG1OhUpMWkoV9iPwxIGoDMpExkJmeiX2K/GqkBWtOs9bNw3VfXocpTBaBxFThSSry//n3c9d1dIS0CzXozrs+6HneOuxO9E3q3bsHrUemuRJW7KtDrwFchX+Wu8n9WK1wVIZ/fcle5v+dAmTPQg0CbHG6HP1AQHEDQloPPL+080miBAyFEyHaixjLqjDUCIjaTDT3ieqBXfC/ER8WrVs++AG+sORax5ljYzDY1N9n86/W1ypVS+oNi2qR9zqtP1Y+r73iP9NQISGspkox6Iww6g7/8wdu0dbfXrc5rT5X//K5tXftOK3OW+VM+aN91ZVVlNQKJ2rb6KnT0Qo/4qHh0iemC7rHd1RSn5hmxGUiPSUe6LR1JlqSwVboVOgqxo3AHdhbuxI7CHdhRtAN7i/eiqLLIH+QoqSwJCWY2RbQxGomWRCRZk1C0+wn/9svP+BVRhih4pRdOjxMFjgIcKT+CNYfWYF/Jvjrvb0zGGEwbNK3JlSyRtK9kHwa+OtBfsfT4KY/joQkPAQDyyvMw6LVBKHAUNDroMXfzXEybPc0fHLYarbh59M24+7i7kRaTVuftpJRYum8p3l77NmZnz661Erh/Yn+cl3keju9+PI7NOBZdbV39rZSllDhSfgQbj2zE+sPrsTxnOX7L+Q05pTlNf1E6CKPOiAFJAzAkdQgGJg1El5guSLIkIcmahGRrMhKiEvwVo1pAui1XqEspUeGqQH5FPvIr8pFXkYdtBdtCAhy59txG31+yNRnjuo3D2IyxOK33aTg249ijGj+hKUGPYBWuCizevRjzt83H19u/rjXNkaZ7bHdMHjAZk/pPwqm9T/UHENsbr/Si0FGII+VHkFeehyPlR3Ck/AgKHAWQUoZ8dwYvW4wW/++BhKgEfzCyKe9bubMcaw+txcoDK/Hlti+xZO+SWo8bkDQAI9JGoMhRhL0le7GtYFuN4LhO6DDj5Bm4/4T7G91o4+MNH+Oaedf4/48YdAY8d/pzuHH0jSHvp5QSO4t2Yu7mufhgwwc1ege1ljhzHP563F/9Aergz/VNkzfikZ8e8Ze9Pjqhw/mZ5+POcXfihB4nNOraIqXEvK3zcOd3d2JP8Z5GlXdk2kic1fcsLNi5AOty19V6zLFdj8WEnhOQmZSJ/kn90dXWFekx6dAJHSrdldh4ZCPmbZ2Hb3d8i635W9HD8ZX/to1tBKGlIutq64qiyiJ8nv15vb9N4sxxeOb0Z3B91vVN7m3j9rqxbN8yfLHlC3yx9YtGv1aNlRCVgJToFMSYYmAxWPx1J1q9SXDDJq/01miEGdworfo2vU4Ps16dt1GGKFiMFrWsV8tmvdl/ztd2HQhu5KZNAGr8ntbW9UIPu9OOosoiFFcWo6iyCEWOwHK5szzk93rw3KAzwKQ3wWKw+MtqMVhg1KnGBNr765/L+tf/PuHv6J/Uv0Xfq7aKQQ/qzMIZ9DAAWAjgZKhxQH6ASq81EUAagNeklLcEHd8DwBoAiQC+AlAA4Dzf+qVSyv8FHRvrO7af7zH2+O63O4B7pJQvNFC2ThX0+HX/r3h99etYum9pi3wpay1SrUZrjUpYj/Q0fAfUZiRbk/0/PNNt6ega0xXptnSkx6T7f2wFT9HG6Ca3BF+fux7/XPFPvLfuPf+2REsibIUz/esN/Tk9bD+M2xfcjk83fVpjX2ZSJs7ocwaGpw3H4JTB/kEtbSZbjbJqaS203jta757guda7p/o2u0sF1QoqCvx/+Mtd5U16LajlaAGe4J4nVe6qFr8GCQh/xX6sORYWo8V/vdOCtNWXSTHrzYgxxUBC1ghW8Lui+Yw6I9Ji0vwt4bUpPSYdaTFpSLYm+ytV62ukEKy4shhb87dia8FWbMnfgvWH1+P3Q7/jkP1Qi5S5W2w3DE0dimGpwzA0dSiGpg7FwOSB9bZmrcue4j1YsGMBPt/8ORbvXlznZ6lnXE+c1OskjMsYh+FpwzEsdViL5WPPr8jH6oOr/dPu4t0oqChAcWUxMmIzcEyXY5CVnoWrhl/VYK/ESz67xP/dNjJtJFZdtyrku+vDPz7EFXOvaDDosaNwBz7d+CkeW/KY/zo0Im0EvrviO6RGpzbp+WkpTd5a+1adlViA6lnXLbYbKt2VKKgoaFRFnEar1IjENVOrRNEqUGqbRxmi/BUtHq8HTq8TJZUlyLXn+qemPN/GMOgMiI+KD5nizHGINcf6A4Be6VU9X/RmOL1OlDvL/Q0qtF6ZTo8TEhJx5riQ+0qISlCpuXzB02hTNMx6M0qqSkJaJRc5ivxj7RQ6Cv3L+RX5dfaIaMxzG95lOMZ1G4fx3cZjXLdx6JPQp0WDPM0NegSTUmLDkQ3+AMhv+3+rs+LUrDdjVPoojMkYg8ykTH/qs7SYNHSJ6RJyfWttUkoUVxarIEZFXo1ghn+bb55fkV9vr9mmSohKQJeYLogxxfgrPhMsCUi0JMJisEBAoMJdgbWH1mLjkY11PnZWehauOOYKTB00tUYvhUNlhzD+ycDAvMGV4af3OR0zL5hZb8t9r/Rixk8z8NiSx/zbEi2JmHPRHJzU66QGn+PmvM1YuGshFu5aiBU5K5BXkdfgbY5Gj7geuGPsHXh5XmAsk+DnrBd6nNTrJIzNGAspJX7P/R3L9i+D3WmvcV/HdDkG00dOx+XHXF5ndoet+Vtx+4Lb8d3O70K2D00dihuybkC5sxwPLX4oLI2qmtvzszmsRivizHFIi0nDFcdcgemjptfIPgCo3i8Ldy3EF1u+wFfbvgpJDUntw7I/L8Nx3Y+LdDHCgkEP6szCFvQAAF8qqusBXAtgAAAvgA0A3gHwbvVxN4QQfQA8A+A0ACYA6wA8LqX8vpb7TgHwNIDJAGIBbAbwvJTy40aUq1MFPYLllObg1/2/+rtgbsnfgm0F22p0XW3vggMz2p9Ym9mGOHMcbGZbSAsIbYo2Rteo5I8xxSDaFNhuNVohIEJa9WsVeNof0nJneUjrX+3+tUparSV+bdur7wPg7yGg/aktd5ajqLKoRtdZ7Y9pWVVZs1vdNobFYAl5feKj4tEjrgd6xvX0d8ctd5Zjb8lebMrbVKPCZHDKYHx5yZc47bkt/m2N/XP63Y7v8PDih7Hq4KqGD4ZqRaxVFmgVAi35J68tq15ZHxcVB4vBApPeBL1OD5fHhSpPFQQEbGabv8u1f262+c8Jq9EKk97k79ES/PnXzgEhhL9FT20tg4IrNgTUspbWTUvpJiGhF/qQ1kJGvRE2kw0JlgTYTDYYdAb/eVKdlBJVnqoaKeqCU9NVb0VU2zy4B0NTW95q6fW0iietB1uLLXtrD7a4PC5/y6rgVlbaa+jxekJ6HmkVZcG565uTyouaRi/0sBgt/nNA4/K6ml2ZWB+jzogka5K/dble6EPOYZfHhb0le3Gk/MhRPY5WaRAfFY/U6FR/YEOb4qPiG7yP5lRY5lfkY96Wefhs82dYtGtRg5UxfRP6YnjacPRL6OcP8GvzZGsybGZ1jdHO45LKEhQ4CpBTmoM1B9dg9aHVWHVgFfaW7G1U+Yw6Iy4Zegn+etxfMaxLzWHrluxdgpPeC1S2Lbl6CU7seWLIMVJKnPvxudj4x03+bb8/chwSLAkochTh440f491172L1wdUht+uf2B9Lr1mKLjFdGlXWuqw9tBZvr30bH274EKVVpU2+vdVoxZiMMRjfbTxGpY/CkJQh6JfYz5/2qcJVgYNlB3Gw7CAOlB7AgbIDarnsAHLtuXC4HCE9rao8VTDpTf5Wqv7Wqr4ARbQpWr2vMelItCT6v/+0cTjio+JbJI2flBIlVSU4bD+M/Ip8HCk/gr0le7G7aDe2F27HprxN9fZK6qjMejMGJA3AwOSBNabWDgK0RNCjurzyPCzYsQBfb/8aC3YsQElVSaNvazPZkBaThtToVESbokM+p8Etl7XUldp3tklvgoT0/3bRfre6vK4avYO1QEd+RX677eVu0BlwydBLcM/4expMVRX8HvfIfBZL9y31r9tMNjxy0iO4deytNXqaHig9gBvm34CvtwduPzB5IOZfOr/ZvQILKgqwtWArcu25yK/IR6GjsEamA5fHFfKbMi5KBTG7xXZDr/heSLQkqnRa9lx8tOEjvPP7O9hRuCPkcWoLAIxKH4V3znsHI9JGhBxb7izHvK3z8O66d7Fo16IaZTboDBjXbRxO7306TuhxAkalj0JOaQ7+ufyfmPXHrJDPUJIlCU+f9jT+PPLP/mvmipwVePDHB7G9cDscLgcKHYUhDQ8sBgvuGn8XBqcMRl55Hn7Y/QMW7FjQpM+mXujRrWKef/3dG6zoEdcD0aZoOD1OrDm4BmsOrUG5sxw2sw12px1fbv0SO4t21rivs/udjfMzz8eKAyvwe+7vSLGmYHDKYHyz/Zta0zkCQKw5FlMHTcXQlKHoEtMFW/O3Yt3hdfhx9491/k6ONcdiVPooDEoehD4JfZBkSfIH/RItiTDpTYFGdL5JS91b4CjAwbKD2FeyD/tL92N/yf52ey63dQx6EHUOYQ16tFWdOehRG6/0Yn/Jfuwp3oP9pftxsOygP6d/UWVRjRZDDQVIgnOZarnmY0wx/pRZWiVccKWmWW8OyVtv1Bv9Y20IiBo56IO7OGp/eK1Gq3+ci3CmbWqrvNKLksoSHCk/gpzSHGwr2IZtBduwtUC15t1TvCfsAYDzM8/HzCkzEWuObfafUyklFuxYgH+t/BcW71ncKhWFjaWlAqreldhsMPs/q9U/u1ajNSQNUPCk5cbVggfV0wrodXr/ORWcL1gI4R8QUQtCGPVGDqhNTaIFjYIH8q1wVaC4shh7S/ZiT/Eef05lp8fpz1NdPVWblr6tod4cOqHzp5sKnrTPe637dPXs8wWugoNxwenhqqdWrC3VojbWjfa9EpwCQNtu1psRbYxGfFQ8bGab/zwz6oywmQPBw5Bgom85yhBVZxCtyl2FosoiHCw7iJzSHOwv2a/+APu+lw+VHcIh+6FmVTw3l8VgQb/EfuiX2A99E/qiX2I/9YfemhTSCr0lxi042grLIkcRvtz6JT7b/BkW717c7J54Jr2pxXsf6IQON2TdgCdOfcLfynbp3qW49str/RUvFw+5GJ9M+6TW2+faczP0/T0AABGCSURBVDHuicBv1t6DnofVaMUPu36otbdB7/jeWPynxegZ37PFnkOFqwKLdi3Cr/t/xbL9y7A5bzMKHAUhx8SYYjAkZQiGpg7FqPRRGN9tPIZ1GXZUKYvas7KqMmTnZWNT3ibsLNyJAofqKarNixxF/muTFoRu68x6M5Ktyf6pV3wvDEoe5A9s9IrvFbGxoVoj6BHM5XFh2f5lmL9tPuZvm4+tBVtb/DHCSQtSp1gDaYyTrcnQ6/Q1xmXTlsucZdhbrH4P2J12/2+GpjS2EhAYnDIYYzLG4Niux2LygMnoHte9UbcNfo93PHUWHv3pUTy19KmQx+8d3xsXDbkI5/Q/B06PE38c/gOP/fxYSMDqzL5n4tNpnzYqIB9Obq8b76x9Bw8tfsjfkyA46FGWeBUePPFB3Db2tgavq5uObMLLK17GB3980KRri07ocGPWjXj81McbHPOztKoUC3cuxPc7v4fVaMU9x91TYyyeQkchftj1gz8F3p7iPThkP4Rcey4EBKIMUUiyJuHMPmfivMzzMKHnBAx6+Ef/7RtzLkspkZ2X7Q9C2Z12nNLrFBybcWytx1e6K/HkkifxyspXmv2bKj0mHRcMvAAXDLwAJ/c6ud6Urk3hlV4cKT+C4spi2J12OFyOGg2ZgutQdELn/81bvVFm9YZq2rns9Dj96cFrSxle39iHAqLG73IAIb+tg39fu71uRBujkWBJ8Pc4DF6OMcX4y1j9sdxet7+swY20gseK1H5Ta42J6ls/q99ZTe752l4x6EGdGYMeYNDjaLk8Ln9rYe1LWKuArd6im9out9eNvPI8VZnmG+BTWz5YdhBFlUW1tphvKqPOiGmDp+GGrBtCBkFtiT+nDpcDS/ctxYqcFcjOz/ZXwmgVr7X9CTPrzYg2RSPaGB0y19J3+bfVsj3RkhjyZ7+xqWOIOhspJRxuB+xOe63BDX5XNF+Fq8IfANFayGuTlpM9vyIfBRUFja74N+vN6J/UX435lJSJwSmDMSp9FAYkDQhbBWZLVli6PC6sPbQWS/ctxbrcdVh/eD02521usbRqZr0ZI9JGYHTX0RjddTSGpg5FijUFNrMNu4p2YV3uOry//n38su+XkNvFmmORmZQJndBhxYEV/u0WgwVbbtlS76Czwa9Pbek+THoTJvabiAsHX4gpA6eEZSDUsqoyHCg7AKvRimRrcljT+XREVe4qlFSVoLiyGCWVal5cWYySqhLohR5mgxkCwt/zxaw3+3s1R5ui/Q2BtJ4CWk8A7f4KHAXqt579IIori1HhqkCluxJx5jh/i+RESyISohL8jYiCp2RrMqKN0W322t3aQY/qDtsPY9XBVVhzcA1ySnOQWx5IfXbYfjjsrbW1cfyCx2JMjU4NDWz49iVbk1usktbj9aDQUYjD5YfhcKlx6ao8Vf5W7FXuKn9PXu27pbmpBmt7jxfvXoybv7kZW/K31HWzEHeMvQP/OPMfbToYW1JZgpnrZ2L1odX4eflF/u1/zDix1tRLDd3XJxs/wX/X/RcrD6ys99gTepyAVya+gpHpI5tV7pYSrnPZK73+Bjzfbv8WL/z2Qr3BzIHJA3FB5gWYMmgKRncdzcZl1GYx6EGdGYMeYNCDqLm80guHyxESBMmvyMfekr3YV7LP3zrWpDehZ1xP9IrvhWO6HIMka1KN+2rtH7Re6UW5sxwlVSX+9GXRpug2/SeHiKglaWMtaKk3vNIbMg6OXuiRbktH99juEWudrWnt74RKdyWy87Kx4fAG5JTmBAL+vqB/cWUxSqtK/cFyg84Am8mGJGsSUqwpGJY6LCTI0ZjeLSsPrMTDix/G9ztrZGn1M+qMeOvct/CnEX+q977qCnqMSh+Fa0dei0uHXooES0KDZSLqqMId9KiPlBJFlUXItecirzzP35paa6kc3Kq60l3pH5zY6XH6gyU2kw3Rpmjohbo2G3SGGj2EY82x/mBGZ+jlXtd77PQ48erKV2v06AjWN6Ev3jnvnUaN39GWtOTn+kj5Efyw6wf8tOcnrD60GhsOb4BXejFl0BTcOe5OjO82vk0ENSN1LnulF7/s+wXrc9cjOy8bh8sPo39ifwxNHarG7knODFtZiI4Ggx7UmbG2j4iaTSd0qieEKRpdcHR5wlubTuhUSpkWGriWiKi9iTJEISM2o0a6ic4oyhCFUemjMCp9VJ3HaCneTHpTi7TgHJMxBgsuX4B5W+fh7u/vxq6iXf59AgJXDr8SM06egV7xvZp0v9MGT8MpvU7B2f3ORu+E3kddTiJqWUIIfw8ZpES6NB2fSW/CXePvwk2jb8KiXYswZ8scrD64GkmWJHSL7YZR6aNw4+gbO31vtNToVFw67FJcOuxSAAhprEbqv+OEnhMwoeeESBeFiIiaiUEPIiIiIqJqhBAt3lpaCIELBl6A8zLPw+6i3f4UZINTBqNPQp9m3efsC2e3aBmJiDoCi9GCczPPxbmZ50a6KO0Cgx1ERNTRMOhBRERERBRGOqFD38S+6JvYN9JFISIiIiIi6nA42hIREREREREREREREXUIDHoQEREREREREREREVGHwKAHERERERERERERERF1CAx6EBERERERERERERFRh8CgBxERERERERERERERdQgMehARERERERERERERUYfAoAcREREREREREREREXUIDHoQEREREREREREREVGHwKAHERERERERERERERF1CAx6EBERERERERERERFRh8CgRyeVlZWFrKysSBeDiFoAz2eijoPnM1HHwHOZqOPg+UzUcfB8Juo8GPQgIiIiIiIiIiIiIqIOgUEPIiIiIiIiIiIiIiLqEBj0ICIiIiIiIiIiIiKiDoFBDyIiIiIiIiIiIiIi6hAY9CAiIiIiIiIiIiIiog5BSCkjXYaIE0IUWCyWxEGDBkW6KGGzefNmAEBnes7Utm08UOJfHpoRF8GStD88n4k6Dp7PCr8T6sfXp+3juRxZPEc6vnC+x23lfO6Mn+vO+JypdbWV8zlcNm/eDIfDUSilTIp0WYjCjUEPAEKI3QBiAeyJcFGIiIiIiIiIiIiIjlYvAKVSyt6RLghRuDHoQUREREREREREREREHQLH9CAiIiIiIiIiIiIiog6BQQ8iIiIiIiIiIiIiIuoQGPQgIiIiIiIiIiIiIqIOgUEPIiIiIiIiIiIiIiLqEBj0ICIiIiIiIiIiIiKiDoFBj05ICHGuEGKZEKJECFEqhPhZCHFapMtFRETUWQkh0oUQbwshDgohnEKI/UKIV4UQCZEuGxE1jRCijxDiQyHEYSGEQwixRQjxdyFEVKTLRkQNE0LcLISQQoj4WvYZhBB3CSGyhRAVQog9QoiXhBC2SJSViOpX3/lc7bhzfMeNCFfZiKh1MejRyQghbgTwJYA+AGYD+BnAeADfCiGyIlk2ImocIcTJvh9kDU2PRrqsRNQwIUQSgN8AXAtgE4D3AeQD+AuApUKImAgWj4iaQAjRB8ByAJdBnc8fAnABmAFgvhBCH8HiEVEDfOfotfUc8jqAFwAIALMA7ARwB4AlDGwStS2NOJ+DXd+aZSGi8DNEugAUPkKI7gBeAfA7gFOllMW+7WcD+AbAowDOjVgBiaixcgC8XM/+cwD0B7AxPMUhoqN0H4CeAO6RUr4AAEIIAeAdANcAuAXAM5ErHhE1wUsAUgD8WUr5LgAIIXQA3oY6n68F8GbkikdE1fm+c0f6pqsBjKrjuJOhzuEfAZwtpXT6ts8A8HcA9wJ4rPVLTER1aez57Dt2KIDhAC4FMCkc5SOi8BFSykiXgcJECPEcgL8CGCelXFFt388Aekgpe0ekcETUIoQQ4wAsAfC6lPK2SJeHiBomhFgHYBiAaCllZdD2/gC2AfhWSnlOpMpHRI3jS0eXD2C9lHJUtX3JAPIALJdSjo9E+Yiodr4elWW17ErQGgr6jpsNYBqAMVLKVdVuXwggV0rZo7XLS0R1a+z57Ds2H0BSteNGSinXtVb5iCh82NOjczkTwJ7qAQ8AkFKeFIHyEFEL8uUS/gSqkvTeCBeHiBpPAKitFYrRNy8PY1mIqPkyodIH/159h5Qy31e5cqwQwialrK1ChogiwwHgwqD1GQAG13LcBAB5wQEPAJBS2oUQawGMFUL0llLubr2iElEDGns+A6oHptm3/BcAJ7desYgo3Bj06CSEENFQrUi/9HWxnwRgjG/3MgDfSXb7IWrvHgPQA8CJwa3FiajN+xnAMQBuA/Ac4E+Hc59v/48RKhcRNY3HNzfVsd8AQA8gHbW3QiWiCJBSegB8pq0LIW6pfowQIgNAKtR3dm02AxgLlWKWQQ+iCGnM+Rx07FdBx01u5aIRUZgx6NF5pEO1PKsE8BOAE6vtXyaEuEBKmR/ughHR0RNCHAPgVgAfSimXRbo8RNQkjwIYD+BZIcS5UBUnxwIYAeBbqLE9iKjt2ww1aPmJQgijlNKl7RBCHAsg3rdaPZUGEbV92nl7uI79Rb55YhjKQkRERA3QRboAFDYJvvnFALpApbqKgRo49X0AxwN4LyIlI6KW8KRvzsETidofJ4C1vuUTAFwHFfAAVGtREYlCEVHTSCntUL+newJ4XwjRTwgRLYSYBGA2AmnsqiJURCJqvljfvK7zV0tFyYalREREbQCDHp2H1s3eC2CKlHKhlLJcSrkPqnIlB8AkIUS3iJWQiJpFCDEawGQAn0kpt0e6PETUZJ8BuB7Ah1BjAkRD9fT4EcDNAP4RuaIRURPdBXXuXgpgOwA7gPlQgxx/7zuGPauJ2h+t55aljv3a/+2KMJSFiIiIGsCgR+dh9813Simzg3f4ut5/7VsdFNZSEVFLuMM3fy2ipSCiJhNCjABwFoA1AK6SUm6TUlZIKVcDOB/AIQA3CSHM9d0PEbUNvt4epwOYCOBxAE9D9bQeByANqmdXXelxiKjtOuKbx9exX0t/dTAMZSEiIqIGsOtl57HHN7fXsV/rjssUGkTtiBAiEcA0ANullEsjXR4iarJM3/xnKaU3eIeU0i6EWAHgAqh0OdvCXTgiahohhAGAlFJ+B+C7oO02AEMB/CqlZHorovZnH1QvjmF17O8HlVUhu479REREFEbs6dFJSClLoH6ADRRCxNZyyGjffEP4SkVELWAKADNUehwian/KfPP0OvZrY3IV1bGfiNoIIYQJqifHqlp2XwhAD+DbsBaKiFqElNID4GcAXYQQIYEPIUQ8gDEAVkgpSyNRPiIiIgrFoEfn8hYAK4AXhRB6baMQYgqACQC+klIeilThiKhZzvXNF0S0FETUXL9ABT6mCSGOC94hhDgDamDzpVLKvEgUjogaT0rphEpVd4wQYqS2XQjRCyrVVQmA1yNSOCJqCdr5+4wQQgcAQggB4FmosT5ejVTBiIiIKBTTW3Uu/4LKL3wtgOOEEMsBdAVwBlTO8FsjWDYiaiLfn6yToAZWXBnh4hBRM0gpS4UQNwKYCWCJEGIRgL0AekONC1ACNZg50f+3d8c4IkVRAIb/16usQS8hwgqmNJ1EKMQuiMRaFBTTEEqlRCUhYQN2oTuKN9EPkmeu71vBqd//zrlcDk/bf0T4sG3bm/ZzN6fVler+zNjagktqZt5u23ZW3au+bNv2sbrZfjXh3cy8OnRAAOAXmx7/kfOV3LvVk/bg9bC6Xr2obs/M9wPHAy7uWvtjil9n5sfRwwC/5/wjyZ3qdXWjetx+M/xldWtmvh04HnABM/O+Oqk+tceO0+pzdTIzZ0fOBvwVD6pn7RcUHlVXq+ftb+wBAP+IbWaOngEAAAAAAOCP2fQAAAAAAACWIHoAAAAAAABLED0AAAAAAIAliB4AAAAAAMASRA8AAAAAAGAJogcAAAAAALAE0QMAAAAAAFiC6AEAAAAAACxB9AAAAAAAAJYgegAAAAAAAEsQPQAAAAAAgCWIHgAAAAAAwBJEDwAAAAAAYAmiBwAAAAAAsATRAwAAAAAAWILoAQAAAAAALEH0AAAAAAAAlvAT+P9eyK7VO2cAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 244,
+ "width": 798
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "n_peaks = len(x_roi[peaks])\n",
+ "figure, ax = plt.subplots(figsize=(12,4))\n",
+ "plot_fitresult(ax, x_roi, y_roi, out, n_peaks)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Do better initial guess"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pereform new fitting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[Model]]\n",
+ " (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))\n",
+ "[[Fit Statistics]]\n",
+ " # function evals = 189\n",
+ " # data points = 480\n",
+ " # variables = 30\n",
+ " chi-square = 60700.902\n",
+ " reduced chi-square = 134.891\n",
+ " Akaike info crit = 2383.165\n",
+ " Bayesian info crit = 2508.379\n",
+ "[[Variables]]\n",
+ " bg_intercept: 29.1722806 +/- 4.995923 (17.13%) (init= 0)\n",
+ " bg_slope: -3.83526210 +/- 0.645062 (16.82%) (init= 0)\n",
+ " pk0_fraction: 0.51590945 +/- 0.431690 (83.68%) (init= 0)\n",
+ " pk0_sigma: 0.03063716 +/- 0.004060 (13.25%) (init= 0.03)\n",
+ " pk0_center: 6.69518915 +/- 0.002586 (0.04%) (init= 6.699139)\n",
+ " pk0_amplitude: 6.55216766 +/- 1.023892 (15.63%) (init= 100)\n",
+ " pk0_fwhm: 0.06127433 +/- 0.008120 (13.25%) == '2.0000000*pk0_sigma'\n",
+ " pk1_fraction: 0.59988174 +/- 0.807284 (134.57%) (init= 0)\n",
+ " pk1_sigma: 0.06145041 +/- 0.008172 (13.30%) (init= 0.03)\n",
+ " pk1_center: 8.27073401 +/- 0.005765 (0.07%) (init= 8.29442)\n",
+ " pk1_amplitude: 4.56442997 +/- 1.489646 (32.64%) (init= 100)\n",
+ " pk1_fwhm: 0.12290083 +/- 0.016344 (13.30%) == '2.0000000*pk1_sigma'\n",
+ " pk2_fraction: 0.55998216 +/- 0.011321 (2.02%) (init= 0)\n",
+ " pk2_sigma: 0.04126828 +/- 0.000146 (0.35%) (init= 0.03)\n",
+ " pk2_center: 8.56758351 +/- 9.03e-05 (0.00%) (init= 8.565514)\n",
+ " pk2_amplitude: 302.091134 +/- 1.270450 (0.42%) (init= 100)\n",
+ " pk2_fwhm: 0.08253656 +/- 0.000292 (0.35%) == '2.0000000*pk2_sigma'\n",
+ " pk3_fraction: 0.73052766 +/- 0.365205 (49.99%) (init= 0)\n",
+ " pk3_sigma: 0.06668190 +/- 0.007879 (11.82%) (init= 0.03)\n",
+ " pk3_center: 9.37829233 +/- 0.003947 (0.04%) (init= 9.389221)\n",
+ " pk3_amplitude: 6.70558552 +/- 1.220807 (18.21%) (init= 100)\n",
+ " pk3_fwhm: 0.13336381 +/- 0.015759 (11.82%) == '2.0000000*pk3_sigma'\n",
+ " pk4_fraction: 0.31530220 +/- 0.059561 (18.89%) (init= 0)\n",
+ " pk4_sigma: 0.07496412 +/- 0.000848 (1.13%) (init= 0.03)\n",
+ " pk4_center: 9.89032617 +/- 0.000578 (0.01%) (init= 9.889702)\n",
+ " pk4_amplitude: 110.329860 +/- 2.513495 (2.28%) (init= 100)\n",
+ " pk4_fwhm: 0.14992825 +/- 0.001695 (1.13%) == '2.0000000*pk4_sigma'\n",
+ " pk5_fraction: 0.98649024 +/- 0.219909 (22.29%) (init= 0)\n",
+ " pk5_sigma: 0.04167542 +/- 0.003769 (9.05%) (init= 0.03)\n",
+ " pk5_center: 10.1371170 +/- 0.001982 (0.02%) (init= 10.13994)\n",
+ " pk5_amplitude: 19.7762331 +/- 2.139238 (10.82%) (init= 100)\n",
+ " pk5_fwhm: 0.08335085 +/- 0.007539 (9.05%) == '2.0000000*pk5_sigma'\n",
+ " pk6_fraction: 0.02796641 +/- 0.166538 (595.50%) (init= 0)\n",
+ " pk6_sigma: 0.08238659 +/- 0.001861 (2.26%) (init= 0.03)\n",
+ " pk6_center: 10.3885518 +/- 0.001341 (0.01%) (init= 10.39018)\n",
+ " pk6_amplitude: 48.4116664 +/- 3.192891 (6.60%) (init= 100)\n",
+ " pk6_fwhm: 0.16477319 +/- 0.003723 (2.26%) == '2.0000000*pk6_sigma'\n",
+ "[[Correlations]] (unreported correlations are < 0.500)\n",
+ " C(bg_intercept, bg_slope) = -0.984 \n",
+ " C(pk6_fraction, pk6_amplitude) = 0.942 \n",
+ " C(pk4_fraction, pk4_amplitude) = 0.904 \n",
+ " C(pk1_fraction, pk1_amplitude) = 0.902 \n",
+ " C(pk0_fraction, pk0_amplitude) = 0.821 \n",
+ " C(pk2_fraction, pk2_amplitude) = 0.819 \n",
+ " C(pk5_fraction, pk5_amplitude) = 0.772 \n",
+ " C(bg_slope, pk6_amplitude) = -0.659 \n",
+ " C(pk3_fraction, pk3_sigma) = -0.654 \n",
+ " C(pk4_amplitude, pk5_amplitude) = -0.638 \n",
+ " C(pk3_fraction, pk3_amplitude) = 0.616 \n",
+ " C(bg_intercept, pk6_amplitude) = 0.595 \n",
+ " C(bg_slope, pk6_fraction) = -0.594 \n",
+ " C(pk5_amplitude, pk6_amplitude) = -0.581 \n",
+ " C(pk2_fraction, pk2_sigma) = -0.560 \n",
+ " C(pk0_fraction, pk0_sigma) = -0.555 \n",
+ " C(bg_intercept, pk6_fraction) = 0.536 \n",
+ " C(pk4_fraction, pk5_amplitude) = -0.514 \n",
+ " C(pk1_fraction, pk1_sigma) = -0.511 \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "mod, pars = make_model(x_roi[peaks], fwhm=0.03, amplitude=100.)\n",
+ "out = mod.fit(y_roi, pars, x=x_roi, fit_kws={'maxfev': 500})\n",
+ "print(out.fit_report(min_correl=0.5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHpCAYAAADZD/4nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4lNXd//HPyWSbMNmBsAYSZBOCQAAtqEjVWpQogaItD6jY1u3xp+LToqKVStW2ItVit6d1a936uIGGClooAgooJqIIEcUQCQIhhCWZJIRkcn5/ZCYkYRICZBmS9+u6ct0z9/2dM2ei4+XkM+d8jbVWAAAAAAAAAAAAZ7qgtp4AAAAAAAAAAABAcyD0AAAAAAAAAAAA7QKhBwAAAAAAAAAAaBcIPQAAAAAAAAAAQLtA6AEAAAAAAAAAANoFQg8AAAAAAAAAANAuEHoAAAAAAAAAAIB2gdADAAAAAAAAAAC0C4QeAAAAAAAAAACgXSD0AAAAAAAAAAAA7QKhBwAAAAAAAAAAaBcIPQAAAAAAAAAAQLsQ3NYTCATGmB2SoiTltvFUAAAAAAAAAOB09ZVUZK1NauuJAK2N0KNalNPpjBs8eHBcW0+ktWRnZ0uSBg8e3MYzARr2+beHa24P7RndhjMJbLyfgfaD93M1/vvfOH4/gY/3cuvjfdGxtOY/70B5P3fEf8c74mtGywqU93Nryc7OVllZWVtPA2gThB7VcgcPHhyXmZnZ1vNoNampqZKkjvSacebpe8+/am5n/uaKNpxJYOP9DLQfvJ+r8d//xvH7CXy8l1sf74uOpTX/eQfK+7kj/jveEV8zWlagvJ9bS2pqqrKysnLbeh5AW6CnBwAAAAAAAAAAaBcIPQAAAAAAAAAAQLtA6AEAAAAAAAAAANoFQg8AAAAAAAAAANAuEHoAAAAAAAAAAIB2IbitJ4C2kZmZ2dZTANBMeD8D7QfvZ6B94L0MtB+8n4H2g/cz0HGw0gMAAAAAAAAAALQLhB4AAAAAAAAAAKBdIPQAAAAAAAAAAADtAqEHAAAAAAAAAABoFwg9AAAAAAAAAABAu0DoAQAAAAAAAAAA2gVCDwAAAAAAAAAA0C4QegAAAAAAAAAAgHaB0AMAAAAAAAAAALQLhB4AAADAGaK0tLTO/bKysjaaCQAAAAAEJkIPAAAA4AywceNGJSQ8VudcUlKSNm7c2EYzAgAAAIDAQ+gBAAAABLiysjJNmnSV3O6f1Tmfn5+vtLQ0VnwAAAAAgBehBwAAABDgFi9erH37JCniuGv5+flavHhxq88JAAAAAAIRoQcAAAAQ4HJyciT1PsF1AAAAAAChBwAAABDgkpOT1VjoUX0dAAAAAEDoAQAAAAS49PR0uVyD/VyJU0JCgtLT01t9TgAAAAAQiAg9AAAAgADndDp15ZX/fdz56OgrlZGRIafT2QazAgAAAIDAE9zWEwAAAABwYpWV3Y4791//9TeNHs3/0gMAAACADys9AAAAgDNAXt7x595/n8ADAAAAAGoj9AAAAADOALt2HX/us8+kwsLWnwsAAAAABCpCDwAAACDAeTzS7t3+r61Z07pzAQAAAIBARugBAAAABLg9e6qDD382bGjduQAAAABAICP0AAAAAAKcv62tfDZs+FplZWWtNxkAAAAACGCEHgAAAECA89fE3GfNms+UlJSkjRs3tt6EAAAAACBAEXoAAAAAAa6xlR5SrPLz85WWlsaKDwAAAAAdHqEHAAAAEOAaW+khxUqS8vPztXjx4laZDwAAAAAEKkIPAAAAIMCdaKWHT05OTovPBQAAAAACGaEHAAAAEMBKS0v1yScFjVQcCz2Sk5NbfkIAAAAAEMAIPQAAAIAAtXHjRiUnJ2v79iONVEVKClZCQoLS09Nba2oAAAAAEJAIPQAAAIAAVFZWprS0NOXn75fUo9HaLl0GKCMjQ06ns3UmBwAAAAABKritJwAAAADgeIsXL1Z+fr6kXpIc3rN7/dauWJGpYcPCW2tqAAAAABCwWOkBAAAABKBjTcl71Trrv6N5WRmBBwAAAABIhB4AAABAQDrWlLx3rbN5fmsPHmzx6QAAAADAGYHQAwAAAAhA6enpSkhIUN2VHv5Dj0OHWmVKAAAAABDwCD0AAACAAOR0OpWRkaGIiH61zu7xW8tKDwAAAACoRugBAAAABKjRo0frRz+6qeb+rFnpfusIPQAAAACgGqEHAAAAEMBKS4Nrbl988Ri/NYQeAAAAAFCN0AMAAAAIYEVFx25HRfmvIfQAAAAAgGqEHgAAAEAAqx16REf7ryH0AAAAAIBqhB4AAABAADt8+NhtVnoAAAAAQOMIPQAAAIAAxvZWAAAAANB0wScuaRpjTLykX0qaJKmHpGJJ70t60Fr7Sa26n0ga2sAwH1hrX6037vWS7pA0QNIhScsl3W+t3eNnDpMkzZWUIqlM0ipJD1hrt53OawMAAADaCqEHAAAAADRds4QexphYSRslJUlaL+ldSQMlXSXpUmPMhdbaTG/5LZJGNjBUuKSa0MMYc7+kX0nKk/SipO6SrvOOmWqtLahVO1PSPyQVeseI9D7/ZcaYcwk+AAAAcKaxtm7oEfPO/+n153+pF0dM1BtDL645T+gBAAAAANWaa6XHPaoOPB621t7vO2mMuVPS45L+KOk87+lkSX+y1v53YwMaY/qpeuXIFkljrbVF3vOzJD0j6beSbvCei5b0pKR8SSOttbu95ydI+o+kP0v6bnO8UAAAAKC1HDkiVVZW33aGVSn4/92i1IMHNTT/a73T/zs1dUVFkscjORxtNFEAAAAACBDN1dNjiqq3k3q43vnfS9or6VxjTKIxJk5SjKSvmzDmzZIcqt4eq9b32/ScpN2SphtjIrznZkiKlrTQF3hIkrV2laQNkiZ4QxQAAADgjFG7iXlS5P6aJR1hngqN+jZb0dH+awEAAACgozrt0MMYYyT1lfSFtbas9jVrrZW0y3u3lyRf8NCU0OMiSVWq7uFRf8y1ksIknVurVpLe9jPOau/xwiY8JwAAABAwam9t1T88r86183ZuVmzssftscQUAAAAAzbO9VZCkaZL2179gjImSNMh7N1/SKO/tfd5tqgZKKpG0ylr7fr2HnyMpz1pb7Oc5s73H/qpuVj5ckkeSv74dtWsblJ2drdTUVL/XMjMz/Z4HAAAAWlLt0CM5dFeda+ft3KyYhGP3CT0AAAA6nob+npmdne33PNARnHboYa31SFpS/7wxxiHpL5JckjZba782xlzjvZwhKb5efYak6dZatzcsCVF1UOKP7yNdnPcYL6nQWlvZhFoAAADgjFA79OgTVHelR8rer9TjrGJtUqQkQg8AAAAAkJqvkXkd3v4Zz0k6X9IRSTd5LyV7j8sk/UpSnqRhkhZKSlN1g/KrJUV568obeIoS79E3/yhV9/loSq1fgwcPZkUHAAAAAkrt0KOX6q70CLZVOs/zgd7W9yURegAAAHREDf09MzU1VVlZWa08GyAwNFcjc0mSMSbEGHOvpM2qDjx2SvqutXa9t+Rvkq6w1s601n5prS2z1n4o6XJJ30qaZowZIKnCW+9s4KlCvcdS77HiJGoBAACAM0Lt5uTdK/OOuz7K/V7NbUIPAAAAAGjG0MMY01fSBkmPqDpo+IOkobUCD1lrP7TWHtds3FpbpGMNy4dLOqDqHh0xDTydb2ss3+qOfZKivU3VT1QLAAAAnBFqr/TocnTXcdfPLniv5jahBwAAAAA0U+hhjOkh6X1JIyVtkjTKWvv/GmhC3hBfbaW1tkLS15KSjDGd/NSe5T1+7j1+oeoeIAObUAsAAACcEWqHHvGlx6/06J3/sVze/40m9AAAAACA5lvpsVBST0lvSzrPWrupfoExZpAxxhpj/tXAGOO8x0+9x5WSHJK+W28ch6SLVb1yY0utWkm61M+4l6m6N8iapr0UAAAAIDD4Qg+jKkUXH1vpsSO2uyQpqMqjcfpAEqEHAAAAAEjNEHoYYyIkTZZUIOmH1tqGmo9vk5Qr6TJjzAX1xrhW0mhJ71lrv/ae/qskK+lBY0ztfh33SOol6Y/WWus993dJZZJ+bozpUmvc/5J0nqR/eLfQAgAAAM4YvtCjiwrk8FS3vTsU7tJ7yaNqas7X+9XnD7X69AAAAAAg4AQ3wxipksIlfSPpV/7bakiS5ku6VdKbkv5jjFmu6kbnA1W9cqNQ0i2+YmvtJmPMAklzJH1ujFkpqb+kiyR9LOl3tWrzjTH/I+lPkjYbY5ZK6qbqBuk5ku5rhtcJAAAAtCpfI/PeOra11Z7Izvqyc5+a+920VxIrPQAAAABAap7Qo5v3OFD+e2r4PGGtXWaMGS7pF5LOl/Q9SfmSnpb0sLV2R+0HWGvvNsbkSrpN0kxVryZ5QtI8a+2RerV/Nsbsl3S3pOmSDkt6VtL91tqC03uJAAAAQOvzrfTopWNbW+2J7KzD4a6a+7GqTjsIPQAAAACgGUIPa+2rkhpc3uGnfqukH51E/Z8l/fkk5vJqU8cGAAAAApkv9Kiz0iOqs4rCOtXcJ/QAAAAAgGOaq5E5AAAAgGbmb6XH7sgurPQAAAAAgAYQegAAAAAByt9Kj70NbG916JBUVdWq0wMAAACAgEPoAQAAAAQoXyPzOis9ovyHHtZKTz/9qsrKylp1jgAAAAAQSJqjkTkAAACAZmZtwys9isMiau5Hq0hB8qhKDt1448/0i1/8P2VkZGj06NGtPWUAAACcgTIzM52SfijpEknJkkLadkbowCok5UhaIemfqampp/SNLkIPAAAAIAAdOSJVVkpGVeqpb2vO74mMV1WQQ0VhnRRVXiJJitZhHVScJJfy83cqLS1NO3bskNPpbKPZAwAA4EzgDTx+73A4xjscjrigoCCnJNPW80KHZauqqs7yeDyjPB7PdzIzM+84leCD0AMAAAAIQL5VHl21T6GqqL4TF6cjIeGSpMPhrprQI1YHa0IPScrPz9fixYs1ffr01p42AAAAziw/dDgc451OZ0K3bt32ulyuUofDQac4tAmPxxPkdrsj9u7d262srGy8x+P5oaRnT3YcenoAAAAAAcjf1lbq3bvmpr++Hr7QQ5JycnJacnoAAABoHy5xOBxx3bp12xsdHe0m8EBbcjgcVdHR0e6EhIR8h8MRp+ot104aoQcAAAAQgPw1MVevXseuh3equX0s9IisOZecnNyS0wMAAED7kBwUFOR0uVylbT0RwCcyMrLEu9Va0qk8ntADAAAACEAnWulRFNbwSo+EhASlp6e39BQBAABw5guRZFjhgUASFBRUpereMqGn9PjmnQ4AAACA5uALPbprz7GTPXvW3Gxoe6uEhARlZGTQxBwAAADAGckYc1qPJ/QAAAAAApAv9IjW4WMnY2NrbvoLPX70o5u0Y8cOjR49ulXmCAAAAACBJritJwAAAADgeL7QI0pFx05GRdXc9Bd69O8/QizwAAAAANCRsdIDAAAACEC+RuYNhR5FfkIPt7tVpgYAAAAAAYvQAwAAAAhAJ1zpEdap5jahBwAAANAyjDGpY8aMGdjW80DTEXoAAAAAAehktreK0SFJUnFxq0wNAAAAwAksWrQo3hiTOn/+/K5tPZeOhtADAAAACDClpaX67LMdkuqFHtHRNTf99fRgpQcAAACAjo5G5gAAAEAA2bhxo9LS0pSf/zdJSYrW4WMXT9DInNADAAAAgaq4uDjohRdeiNmxY0dYcnJy+YwZMw66XC7b1vNC+8NKDwAAACBAlJWVeQOPfEnVqzpqr/QoCwmpue0v9GB7KwAAAASi1atXRyQlJaXceuutSQsWLOhxyy23JPXt23fY6tWrI9p6bj6rVq2KGDt27IBOnTqNiIqKGn7ZZZf12759e0j9uvfffz9i0qRJyQkJCcPCwsJG9uzZM2XKlCl9P/zwQ6evZsyYMQPvuOOOvpI0b9683saY1G3btoVKUlVVlR5//PHO55xzzqDIyMjhkZGRwwcOHHj23Xff3a2oqIi/1zcDVnoAAAAAAWLx4sXewEOSohSqcoXpqCTpqKTFb78tKUaSVFyrkXmMDsmoSm43n5EAAAAQWNxut5k6dWr/wsLCOn+LLiwsDJ46dWr/3Nzcz9p6xceqVasiJk6cOKiystKMHz/+UGxsrOf999+P+u53v1ungfmaNWsiLrnkkkGSNH78+MNdunSp2L59u3PJkiXxy5Yti/3oo4+2pqSklE+ePPlASEhI1bp166JGjRrlTklJKY2JifFI0k033dTrqaeeSujRo8fR733ve4eMMVq/fn3ko48+2nPt2rVR69at+7ItfgftCaEHAAAAECBycnJq3Yuqs8qjSFLOjh2SRkiSKh3Bksslud0KklWUiuR2x7TqfAEAAIATeeGFF2LrBx4+hYWFwS+88ELszTfffKC151Xbbbfd1ufo0aNm8eLFX1511VXF3rk5Lrnkkv55eXlhvrq//vWvnSsqKkxGRsaXkyZNqllnPXv27B5PPPFE91dffTUmJSUlf+7cuQUul6tq3bp1UWlpaQcfeOCBfZLk8Xj00ksvdenXr9+RrKys7KioqCpJKi0tNUOGDDl7/fr1kXv27Anu3r17ZWv/DtoTvgoGAAAABIjk5ORa9+qGHoePuy4pNvbYTR2kpwcAAAACTk5OTtjpXG9pH3zwgXPr1q0Rl1566SFf4CFJ8fHxnkcffTSvdu2ll15aNG/evF21Aw9JGjZsWJkkud1uR2PPdfToUXPHHXfsWbBgQZ4v8JCkiIgI27dv33JJYour08dKDwAAACBApKenKyEhwbvFVZSitbPmWmlwsNLT0zX3s/8ce0BsrJRX/TksVgeVV5wkayVjWnniAAAAQAOSk5PLT+d6S/vggw9cknT++ecf1yHvoosuKnE4juUY11133SFJys3NDdmwYUNETk5OaE5OTti//vWv2PqP9cfpdNpHHnlkr8fj0bp165xbtmwJ37FjR1h2dnb42rVro5vpJXV4pEYAAABAgHA6ncrIyFDXrn0khdZZ6dEnJUVOp7PuA+qt9PB4pPI2/cgIAAAA1DVjxoyD8fHxfrdrio+Pr5wxY8bB1p5TbYWFhQ5J6tatW0X9ayEhIQoJCalZkZGVlRU+cuTIQUlJScN+9KMfnbVgwYIen376aadRo0Y1ec31E088Ed+5c+dzxo0bd/Ytt9yS/Pzzz3euqKgI6tevX1nzvCIQegAAAAABZPTo0froo2xJqhN6RPXseXxxvdBDEltcAQAAIKC4XC77+uuvf1U/+IiPj698/fXXv2rrJuadOnWqkqSCgoLjdkXav3+/48iRI0GSVFFRofT09LO2bNkSsWDBgm/27Nmz6eDBg59u3Lhx27Rp05oU3CxdujTyrrvu6tu1a9eKd9999wu3252Vl5f3+dKlS3N69erF15eaCdtbAQAAAAHG46le0VE79FBU1PGFfkKP4mKpc+cWnR4AAABwUsaPH1+am5v72QsvvBCbk5MTlpycXD5jxoyDbR14SNKIESPKJGnt2rWRkgpqX3vnnXdcvtuffvpp+M6dO8MmTZp04Gc/+9n+2nVff/11k/qSZGRkRFtr9etf/3rXpZdeWlL7Wu2G6Tg9hB4AAABAgPGt1jiZ0CNGh+o8FgAAAAgkLpfL3nzzzQfaeh71TZw4sbhnz55H//3vf8esWrUqYsKECaVSdUPxhx9+uIevLiwszErS7t27Q6uqqhQUVL2J0ocffuj84x//2K3+uL7rlZWVNR33QkNDrSTl5uaG+s5VVVVp3rx5CV999ZWz/hg4NWxvBQAAAAQYX3ARrcPHTkb76WvI9lYAAADAaQkODtZf/vKXXIfDoe9///uDvv/97ydPnz49cfDgwUOCgoIUFxdXKUlDhgwpT01NdWdlZbmGDRs2ePr06Yljx44dMG7cuLPHjx9/WJLeeOONuEWLFsVLUp8+fY5K0lNPPdX1+uuv752fn++47rrrCkNDQ+3dd9+dePnllydfffXVfZKSkob+4Q9/6DZhwoTDknTLLbckfvLJJ+Ft9ftoDwg9AAAAgADT5JUeMTE1Nwk9AAAAgFMzadKk4rfffnvbsGHDSt57772Y5cuXx15wwQVFq1at+jI4ONhK1Ss3MjIyvp4yZUrhnj17Qt966634qqoqvfTSS1+9/vrruVdeeeWB3bt3h27evNkpSZdffnnxpEmTDhw6dCj4tdde61xaWho0atSoI2+88caXQ4YMKV21alX0e++9Fz127NjirKysrYsWLcpLTEwsX79+fWRRURF/tz8NbG8FAAAABJhT2d6qdk8PAAAAACfn4osvLtm4ceO2+ufz8/M/893u3r175euvv57r7/FvvvnmDkk7fPcdDocyMjJ21K+74oor3FdcccUX/sb45ptvPj+VuaMuEiMAAAAgwJxO6MFKDwAAAAAdGaEHAAAAEGAIPQAAAADg1BB6AAAAAAGGRuYAAAAAcGoIPQAAAIAAQ08PAAAAADg1hB4AAABAgDmV0CNGhyRZVnoAAAAA6NAIPQAAAIAA0+TQIzRUioiQJAXLo0gVE3oAAAAA6NAIPQAAAIAA0+TQQ5JiYmpuRusw21sBAAAA6NAIPQAAAIAA43ZLoSpXuMqrTwQHS+Hh/osjI2tuuuRmpQcAAACADo3QAwAAAAgwbne9VR7R0ZIx/otdrmM3CT0AAAAAdHCEHgAAAECAOS70aGhrK6lO6EFPDwAAAAAdHaEHAAAAEGBOKvSot70VPT0AAAAAdGSEHgAAAECAOdWVHmxvBQAAAKCja7bQwxgTb4x50hizwxhTbozZb4xZYowZUa8u2BhzlzFmqzGm1BiTa4x53BgT2cC41xtjPjHGlBhjvjXGPG2M6d5A7SRjzDpjTLExZp8x5v+MMQOb6zUCAAAArcHtlqJ1+NgJtrcCAAAAgCZpltDDGBMraaOk2yTtkfScpM8lXSXpfWNMaq3yv0haKMlIel7S15LulLTGGBNeb9z7JT0rKV7Si5KyJF0n6UNjTJd6tTMlZUgaIOlVSau9z/8hwQcAAADOJH4bmTek3vZWbrdkbQtODgAAAECzW7p0aaQxJvWGG27ofaLa5cuXu4YMGTI4NDR05LRp0/pK0pgxYwYaY1L379/vaPHJBrjmWulxj6QkSQ9ba8daa2+y1l4kabakCEl/lCRjzEWSfizpP5LO8dZdLGm+pOGS5vgGNMb0k/RLSVskDbXW3mitTZP0U0m9Jf22Vm20pCcl5UsaZq29wVo7TdJESdGS/txMrxMAAABoUUePShUVp769VVWVVFbWghMEAAAA2plFixbFG2NS58+f3/VUx5g6dWpfY0zqunXrnM05N39mz56duHXr1ogLLrjg8MUXX1wkSZMnTz4wa9asfeHh4VW+OmNM6qBBg85u6fkEmuBmGmeKpDJJD9c7/3tJd0s61xiTKOm/vefvsdYerVW3QNK9kn6i6gBEkm6W5JD0oLW21ic+PSfpIUnTjTG3WWtLJc1QdbjxsLV2t6/QWrvKGLNB0gRjTD9r7den/1IBAACAluPbnupUQw/fGBERLTE7AAAAAG1tz549oS6Xy7Ny5cqav3fPnTu3oC3nFEhOe6WHMcZI6ivpC2ttne+UWWutpF3eu70kXSipwFq7sV6dW9VbV/U2xiR5T18kqUrScj9jrpUUJuncWrWS9LafKa72Hi88iZcFAAAAtInTCT0iVVxnDAAAAADtj8fjUWRkpKet5xGommN7qyBJ0yTdXv+CMSZK0iDfXUldJW1tYJxs77G/93iOpDxrbXETaodL8kja1oRaAAAAIGD5AosmNzKv19NDkor9/R80AAAAgOOMGTNm4B133NFXkubNm9fbGJO6bdu2UN/1d955xzV+/PizoqKihoeHh48cNGjQ2Y888kgXj+dY5mCMSX3jjTfiJWncuHFn9+zZM8V3rbCw0HHXXXf1SE5OHuJ0OkfExcWdM3r06IF//OMf4052rr5tuNxut2PPnj2hxpjUqVOn9vW9Dl9PD1+dJG3bts1pjEm96667epzir+iMc9rbW1lrPZKW1D9vjHGoumm5S9JmSb6PXvkNDHXQe4zzhiUhTan1HuMlFVprK5tQ61d2drZSU1P9XsvMzGzsoQAAAECz8bvSo7FG5g1sbwUAAID2r6G/Z2ZnZ/s9j+NNnjz5QEhISNW6deuiRo0a5U5JSSmNiYnxSNJf//rX2FtvvTXZ6XR6JkyYcLhTp05VGzZscN13332Jq1atilq+fPnXDodDs2bN2rd69eqonJyc8LS0tAMDBgw4IlWvyBg/fvyALVu2RAwZMqQ0PT39QFFRkWP16tVRt912W9I333wT9uijj+5p6lxTUlLKZs2ate+FF17oEhoaaq+++ur9Y8aMKWmo7tlnn+0aExNTmZ6efmDs2LEd5lNCc/X0qMPbhPw5SedLOiLpJkm+r6eVN/Aw3z+c4JOslbd+dxNrAQAAgIDF9lYAAAAIFMbIf6oSgKzVKX1zfe7cuQUul6tq3bp1UWlpaQcfeOCBfZK0e/fu4NmzZ/eNjo6u3LBhQ3b//v2PSlJlZaWmTp2a9NZbb8UtXLiwy5w5cwqeeeaZvKlTp/bNyckJv+eee/aOHTu2TJLWrFkTsWXLloipU6cWvvLKK7lBQdUbL23ZsiVs2LBhQxcvXhx3MqHHhAkTSidMmFD66quvxkdFRXmeeeaZvMbqnn322a4JCQkVDdW1V80aBBhjQiT9TNIvJDkl7ZT0Q2vtemOMr/9GQ93rfUuGSiVVnEStvPVNrfVr8ODBrOgAAABAmzvp0IPtrQAAADqshv6emZqaqqysrFaeTfvy1FNPxZWWlgbddttte3yBhyQFBwfriSee2JWRkRH38ssvx8+ZM6fBBuKdO3f23Hvvvd9ec801B32BhyQNHjy43Ol0VpWWljZH+wnU02yhhzGmr6TXJY1UdX+NP0iaW6snxz7vMaaBIeK9x92SDnjHaEqtb+zuxhjjbXTeWC0AAAAQsE5npQfbWwEAAADNY+PGjZ0kKS0traj+taSkpIqEhISj27dvD29sjJSUlPKUlJS9brfbvPPOO64vv/wybMeOHWEbNmxwlZSUBEU3to0tTlmzhB7GmB6S3pfUU9IOOLx/AAAgAElEQVQmSbOstZvqle1U9WqLFPl3lqQqSVuttRXGmK8l9TPGdLLW1t+X7Czv8XPv8QtJiZIGem83VgsAAAAErJNuZE7oAQAAgBZyqltGtQeFhYXBkpSYmHjU3/Xw8PCq/fv3hzQ2Rnl5ubn11lt7Pf/8810qKipMWFiYTUxMPPKd73yn+JNPPunUEvOG1FzLZxaqOvB4W9J5fgIPX8Pz1ZISjDF1gg9jTIykMZI+tNb6krOVkhySvluv1iHpYlWv3NhSq1aSLvUzt8tU3Rtkzcm/LAAAAKB10dMDAAAAaHtOp7NKkgoKCo5bOFBVVaWCgoLQuLi4ysbGmDt3brdnnnmm6/e+971DWVlZW0pLS7O+/PLLrX//+9/zgoOD6+9YhGZy2qGHMSZC0mRJBaru39FQ83FJ+ov3+BtjTJD38UbSb1Xdk+MPtWr/KslKetAYU7tfxz2Sekn6Y62trP4uqUzSz40xXWrN7b8knSfpH7XCFAAAACBg+Q09Glv2Tk8PAAAAoNkNGTKkTJJWrFgRWf/av//9b1dJSUnQiBEjGv260TvvvBPjcDj08ssv544YMeKIr6/Hnj17gt1ut6NFJo5mWemRKilc1X04fmWMeaKBnzhr7VuSXpF0uaRNxpi/SPpI0o2SMqy1L/kG9a4WWSBphKTPjTF/NcaskvSQpI8l/a5Wbb6k/5HUW9JmY8xTxpilkp6XlCPpvmZ4nQAAAECLc7ulUJUrXN7vEgUHS+GNbBUcGlpdIylUFQrRUWVmblNZWVkrzBYAAAA48/nCiMrKSuM7d9111x0ICgrSokWLuu3evbtmtUd5ebl5+OGHu0vST3/60/2NjREaGmo9Ho9yc3NrtsEqKioKuuGGGxJb8vX4GGPk8XjMiSvbl+YIPbp5jwMl3dHIj29N/n9Jul9ShKTrJcVJmifpB/UHttbeLelWSUckzZTUT9ITki621h6pV/tnSVdL2iVpuqrDmGclnW+tLWiG1wkAAAC0OLf72DZVkqpXcphGPqcYo0rnsYXRkSrWO++8r6SkJG3cuLEFZwoAAAC0D3369DkqSU899VTX66+/vnd+fr4jNTX1yOzZs3fv3r07dMiQIUPS09P7Tp8+vc/AgQOHrF27NmratGn7p06dWrM8u1evXkcl6fbbb0/8n//5n+6SNHPmzP2SdOGFFw66+uqr+6SlpSUlJiYOy8vLC+vfv39Zfn5+6LRp0/q21Ovq1q3b0ZycnPAf/OAHfV955ZVG9sxtX0479LDWvmqtNU34yfXWV1prH7bWnmWtDbfW9rPWzrfW+m0IY639s7V2iLXWaa1NtNbObmirKu9cRllrI6y13a21P7bW7jnd1wgAAAC0Frf72DZVkupsX+VPWVmZ9paU1Nyvfmyk8vPzlZaWxooPAAAA4AQuv/zy4kmTJh04dOhQ8Guvvda5tLQ0SJIee+yxPf/7v/+bk5iYWL58+fLYJUuWxLlcLs9vfvObnS+//PI3tce4/fbbC4YNG1aydevWiOXLl8dI0uzZs/f/9re/3RkTE1P51ltvxW/evLnTT3/60/yPPvroi/vvv393p06dPCtWrGhkL9vTM2/evG/j4+MrlixZEpednd3I8vH25bgmLAAAAADaznGhR61G5f4sXrxYw6uqjpXLLan6Mfn5+Vq8eLGmT5/eElMFAAAA2gWHw6GMjIwd/q7deOONB2+88caDJxojKSmp4tNPP/2i/vk5c+YUzJkz57idiK699tpD11577Sbf/UmTJhVbazObMt/i4uJN9c999NFH2+qfu+mmmw7cdNNNB5oyZnvSHNtbAQAAAGgmJxt65OTk1K6uE3r4rgMAAABAR0HoAQAAAASQkw09kpOT64Qe1f1AXHWuAwAAAEBHQegBAAAABJCTDT3S09N1NCzsWLm3p4ckJSQkKD09vSWmCQAAAAABidADAAAACCAnG3o4nU6NvuiiY+Xe7a0SEhKUkZEhp9PZMhMFAAAAgABEI3MAAAAggJxs6CFJ8X361NyOVLHCwztrx44dBB4AAAAAOhxCDwAAACCAnEroocjIY+Vy68iREIWFhbTA7AAAAAAgsLG9FQAAABAgPB6prOwUQo9aNb7HlpY29+wAAAAAIPARegAAAAABoqSk+tgcoYfb3VAxAAAAALRfhB4AAABAgPAFFacTekSquM5YAAAAANCREHoAAAAAAeKUQ496PT0kqbi4OWcGAAAAAGcGQg8AAAAgQDTHSg+2twIAAADQkRF6AAAAAAGC7a0AAAAA4PQQegAAAAABgu2tAAAAAOD0EHoAAAAAAYLtrQAAAIC2cdddd/Xo2rXrMIfDkbps2TLXtm3bQo0xqZdcckm/tp5bU/Ts2TMlMjJyeFNqx4wZM9AYk9rSc2orhB4AAABAgCgsLJdE6AEAAAC0pvXr1zsff/zx7uXl5UHXXHNNQe/evStiYmI8s2bN2nfFFVcc9tUtWrQo3hiTOn/+/K5tOV9/fvSjH+2/9tprC9p6HoEguK0nAAAAAEDauHGj7r57iaSH64Qen3z1lUYkJTX+YHp6AAAAAKdsx44doZI0derUwmeeeSbPd7727UD32GOP7WnrOQQKVnoAAAAAbaysrExpaWkqLraS6q70SJ85U2VlZY0PcNxKD0tPDwAAAKCJPB6PkaTo6GhPSz6P2+02LTk+qhF6AAAAAG1s8eLFys/Pl+RSsCoUruptrjySvtm3T4sXL258gNDQ6h9JwfIoTOWs9AAAAACaYMyYMQOvvfbafpL0xBNPdDfGpC5dujSyfk+PMWPGDLzjjjv6StK8efN6G2NSt23bFtrQuHfddVcPY0zqsmXLXLNnz+4RHx9/zh133NHLdz03Nzdk+vTpfRISEoaFhYWN7Nu379C77rqrR3FxcZ2/2ZeVlZkHHnggYcCAAWc7nc4R0dHRw8ePH3/WqlWrImrX+evp8c0334RMmTKlb2xs7DlOp3PEyJEjBy1btuy4/XN9c33++edj6l9rqFfIG2+8EfWd73xngMvlGuFyuUace+65A1588cXohn4frYntrQAAAIA2lpOT473lUieV1Jx3H3e9ES6XdOCApOotrtzu8OadJAAAANAOTZ48+YDL5fKsWrUqetiwYSWpqaklffv2PeqvLiQkpGrdunVRo0aNcqekpJTGxMSccGXInDlzeufm5oZdcMEFRRdccEGxJG3ZsiVswoQJAwsLC0PGjRtX1KtXr/KtW7dGPP74493/9a9/xaxfv/6LuLi4Kkm68sork1esWBEzcuRI95QpUwrz8/ND1q5dGz1x4sSolStXZo8bN87vsvCCggLHBRdcMDAvLy9s+PDhJYMGDSr75JNPOqWnpw+IioqqPJ3f2W9+85su9957b2J8fHzlxRdffCg4ONiuWbMmasaMGWdlZWXtXrhwYZtutUXoAQAAALSx5ORk763IOltbuY+73ojIyJrQwyW33O4uzTtJAAAAdDjmQZPa1nNoKjvPZp7K4+bOnVvQu3fvilWrVkVffPHFRb/73e92S1L9VRxz584tcLlcVevWrYtKS0s7+MADD+xryvg7d+4MW79+ffbQoUPLfeeuu+66vgcPHgx+6623tl1xxRU1HwDmzJnTfcGCBT3mzZvX/cknn/z2888/D1uxYkXMRRdddHjVqlXbfXVr1qyJGD9+/ODHHnssYdy4cbkNvK7ueXl5YXfeeeeexx9/fLckeTwezZo1K/H5558/5Q8Ln376adgvfvGL3ikpKSX/+c9/vurcubNHkg4ePBg0bty4gU888USPGTNmHBwxYsSRU32O08X2VgAAAEAbS09PV0JCgvyFHgkJCUpPTz/xIPX6etDTAwAAAGh711133b7agceHH37ozMzMdE2ZMqWwduAhSfPnz98bGRnpWbp0aYwkFRYWOrzH4CNHjtT0A7nwwgtL33zzzS/vvPNOv8GLx+PRK6+80rlLly4VjzzySM2qC4fDoT/96U95LpfrlHuXPPnkk10qKyvNggULdvkCD0mKjY2t+tnPfra3qqpKr7766nHbZLUmVnoAAAAAbczpdCojI0Pnn18s19Fjn3uOBAcrIyNDTqfzxIPUCz3o6QEAAAC0vWHDhtXZfmr16tUuSdq+fXv4DTfc0Lt+fWhoqM3LywuvrKzUuHHjSocMGVK6efPmTv369Rv6ve9979D48eOLJ06cWHzllVc2+DWnzz77LLyoqMhxySWXFDudTlv7msvlsoMGDSr7+OOPj+vt0RQbN250SdLf//73+P/7v/+LrX3t4MGDDkn68ssv23SvXUIPAAAAIACMHj1aI0d6FLZhbc25oeedJ8fo0U0boFboEali7SP0AAAAwGk61S2jcExYWFid0MG3eiMrK8uVlZXVYPBQUlISFB0dXbV+/fptCxYs6PLGG2/E/eMf/+j63HPPdXU4HDrvvPOKFi1alDdy5MjjtpEqKChwSFLXrl0r/I0dERHR5JUelZWVpvb9Q4cOBUvSyy+/3Lmhx7jd7jbdYYrQAwAAAAgQJSUOxdfa3soRFdX0B0dG1tx0ya2v2d4KAAAACDidOnWqkqT58+fn/eIXvzhhX5DIyMiq+fPn58+fPz+/oKDAsXz58sjXX3899s0334ybPHnyWbm5uZ8HBdXNGFwuV5VUvS2WvzHz8/ND/Z2vr6qqSkVFRY7g4OCa4MbpdFZJUkFBwaba21sFEnp6AAAAAAHC7Vadnh61V2+cENtbAQAAAAFvxIgRZZK0adOmiPrXPB6Ppk2b1vfGG2/sJUkvvvhi9CWXXNIvKysrXJK6dOnimTlz5qElS5bsuPDCCw/n5eWF7dq167hgY/jw4UdCQ0NtVlaWq6Ki7mKPb7/9Njg3N7fO9lOhoaFVklRaWlonL/jwww+dR44cqXPu7LPPLpWkDRs2HDf/lStXdpo0aVLySy+9FN2kX0YLIfQAAAAAAkRxcfOEHpEqJvQAAAAAmplvRUX9LZ9OxsSJE4t79+5dvnTp0rg1a9bUBAcej0e33357z9deey0+MjLSI0nBwcFauXJlzIIFCxI8nmOLKg4cOBC0Y8eO8IiIiKquXbset9oiIiLCXn755QcKCgpCHnnkka61r/385z/vUV5eXmf+iYmJRyXpzTffrGlAXlFRoXvvvbdn/bFvuOGGQkl68MEHexQVFdXkCzt37gy+9dZb+7z77rsxKSkpx2251ZrY3goAAAAIEKcVetTb3qq0VPJ4JIejGScIAAAAdGB9+vQ5KklPPfVU1507d4b+9re/3Z2QkHBSWzwFBwfr6aef3nHVVVcNuPTSSweNHTu2qEuXLhWbNm3q9NVXXznPOeeckkceeWSvJP3gBz84PGTIkNJ//vOfnT/++GPXOeecU1JVVaW1a9dG7d+/P+S+++7bFR4ebv09z6JFi3Z9+OGHkb/85S97v/322zH9+/c/snnz5ogdO3aEDx8+vGTTpk2dfLXTpk07PHfuXM+yZctiU1JSBvfv378sMzPTJUlnnXXWkb1794b4aidNmlT84x//OP/pp59OGDRo0JAxY8a4jx49aj744IOooqIix0MPPZSXkpJSfiq/3+bCSg8AAAAgAFRUSOXlzbe9lSSVlDTX7AAAAABcfvnlxZMmTTpw6NCh4Ndee61z/e2gmurSSy8tWbt2bfaECRMOZWVluTIyMuI8Ho+5884797z//vvbfM3PHQ6H3nnnna9++MMf7ne73UFLliyJW7ZsWWz37t2PPvnkk7kPPfRQfkPP0bt378oPPvjgi7S0tANbt26NWLJkSXx0dLTnP//5zxeJiYl1QokuXbp43nrrrS9Hjx7t3r59e/h7770XPWzYsJKVK1dui4qKqqw/9lNPPbXrySefzI2Nja1ctmxZ7Lp166IGDx5c+uKLL26/7777TtinpKWx0gMAAAAIAL7tqJoz9HC7pZPphQ4AAAB0RDNnzjw0c+bMzNrnBg4ceNRaW+ecw+FQRkbGjqaM+bvf/W737373u90NXU9NTT2yfPnynBON07Nnz8qXX375mxPVffvtt5vrn0tKSqp46623jpvvm2++uUNSnfMXXnhh6UcffbStfm1mZuZx5yTptttuK7ztttsKTzSvtsBKDwAAACAAFBdXH5urp4ck+noAAAAA6HAIPQAAAIAAcNorPer19JCOBSkAAAAA0FEQegAAAAABoDlXetTe3goAAAAAOhJCDwAAACAAsL0VAAAAAJw+Qg8AAAAgALTE9laEHgAAAAA6GkIPAAAAIAC0xPZW9PQAAAAA0NEQegAAAAABgJ4eAAAAAHD6CD0AAACAAHDa21vR0wMAAAAACD0AAACAQND8Kz0s21sBAAAA6HAIPQAAAIAAUFwsGVXJpZJjJyMimj5AcLAUHi5JCpKVU2Ws9AAAAADQ4RB6AAAAAAHA7ZYiVHrsRESE5HCc3CD1trgi9AAAAADQ0RB6AAAAAAGguPg0trbyiYw89nC5CT0AAAAAdDjBLTGoMeZWSX+UFGutPVTv2k8kDW3goR9Ya1+tV3+9pDskDZB0SNJySfdba/f4ed5JkuZKSpFUJmmVpAestdtO6wUBAAAALaxZQo96fT3o6QEAAACgo2n2lR7GGIekHzdScouqQwx/PxfXG+t+Sc9Kipf0oqQsSddJ+tAY06Ve7UxJGaoOR16VtFrSVd7agaf9wgAAAIAW5HY3f+jBSg8AAADgxMaMGTPQGJO6f//+k9xftnF33XVXD2NM6tKlSyMlaenSpZHGmNQbbrihd3M+TyCaOnVqX2NM6rZt20Jb+7mbZaWHMcZIGuH9uV7SyEbKkyX9yVr73ycYs5+kX0raImmstbbIe36WpGck/VbSDd5z0ZKelJQvaaS1drf3/ARJ/5H0Z0nfPbVXBwAAALS85l7pEali7Sb0AAAAAE5o8uTJB4YOHVoaHh5e1ZLP07dv36OzZs3ad9FFF7EmuwU11/ZWnSRlnqjIGBMnKUbS100Y82ZJDkkP+gIPr+ckPSRpujHmNmttqaQZkqIlPewLPCTJWrvKGLNB0gRjTD9rbVOeFwAAAGh1xcVSQjP39GB7KwAAAODE5s6dW9AazzN06NDyZ555Jq81nqsja67trcokTav1s7WBun7eY1PCh4skVam6h0cNa62VtFZSmKRza9VK0tt+xlntPV7YhOcEAAAA2gTbWwEAAADA6WuW0MNa67HWvub7kdRQMpbsPe4zxswyxvzGGPMLY8z5fmrPkZRnrfX3/bRs77G/9zhckkeSv4bl9WsBAACAgNMS21sRegAAAAAnVr+nx6JFi+KNMal/+tOf4v7xj3/EDBs2bFB4ePjI2NjYc66++uo+9Xt/lJWVmTvvvLNHz549U8LCwkYmJSUNeeyxxzrXf576PT2Sk5OHGGNS169f76xf+9BDD3U1xqTee++93U729RhjUlNTUwd+/vnnYZdddlm/qKio4ZGRkcMnTpyY/MUXXxzXY6O0tNTcfffd3ZKTk4eEhYWN7Nq167Brrrmmz1dffXVc7ebNm8OuueaaPr7X2q1bt2GXXXZZv+XLl5/wA8yBAweChg0bNsgYk/roo492OVH9qWqu7a2ayrfSI0PVzclrGGMyJE231rqNMVGSQlTdo8Ofg95jnPcYL6nQWlvZhFq/srOzlZqa6vdaZuYJd+4CAAAATpnHI5WWNkPoUW97qyNHpMpKKbi1/68fAAAAraKhv2dmZ2f7PY+T88wzz3TZtGmT64ILLjg8ZcqU/e+//37Uq6++2tntdjvefvvtHF/d5MmTk999992YXr16lU+ZMqVw586doXPmzOnTq1ev8sbGnzJlyoGFCxf2eO2112K+853vlNW+tmTJklhjjGbNmnXgVOa+b9++kAsuuGBQjx49jk6aNOnA9u3bncuXL4/96KOPIjds2JDdv3//o1J1YHPhhRcOyMzMdA0ZMqR06tSphXv37g15/fXX499+++3YFStWbDv33HPLJGn79u0hY8eOHVxSUuI4//zzi8aPH394165dYStXroxesWJFzNKlS7dNnDjR71evioqKgi699NL+mzdv7vSrX/0qb86cOS22pVhrf/zxrfRYJulXkvIkDZO0UFKaqhuUXy0pylvX0L8UJd6jb/5RknY3sRYAAAAIKCXe/2Nt7u2tJOnZZ1/VjBmT5HQe9+UxAAAAoHHG+E9VApG1zf7N9U2bNrn++c9/fvWDH/ygSJL279/vOOuss1L+/e9/xxQVFQVFRUVVvfTSS9HvvvtuzNixY4tWrly5PTw83ErS3/72t9gbb7wxubHxr7/++gMLFy7ssWzZspiFCxfu8Z3Py8sL/uSTT1wjR450Dxgw4OipzH3Xrl1hU6dOLXzttddyfefuu+++bo888kjP2bNn91q6dGmOJN17773dMzMzXffcc8+3v/71r/f6apcuXRo5efLkAbfcckufrKysLyTpueeei3O73Y7f//73ubfffnuhr/b3v/99/J133tn35ZdfjvMXepSWlprLLrvsrKysLNf999+/6/777993Kq+pqZqrp0dT/U3SFdbamdbaL621ZdbaDyVdLulbSdOMMQMkVXjrG/pk5ltWU+o9VpxErV+DBw9WZmam3x8AAACgJfkajrdE6HHjjbOVlJSkjRs3ns4UAQAAEIAa+nvm4MGD23pq7cLEiRMP+AIPSercubNn9OjRxZWVlWbnzp0hkvT00093lqTHH398ly/wkKSf/vSnB8eOHVt0/KjHDB06tHzo0KGl2dnZEbW3knrppZdiq6qqdM011xQ29vjGGGO0cOHCb2uf++Uvf7k3Nja2csWKFTHl5eXG4/Ho73//e5fExMTyhx9+eG/t2kmTJhWff/75hz/55JNOO3fuDJak0aNHl957773f3nDDDXVWn4wYMaJMkkpKSo7LG8rLy833v//9szZs2BD585//fPevfvWrhnZ3ajatuvrBG3D4O19kjFku6ceq7s+xWNU9OmIaGMq3NZZvdcc+Sd2NMcbb6LyxWgAAACCgNFfocTQ0tOYbP5HytcZzKT9/m9LS0rRjxw5WfAAAAABNlJKSUlb/XFRUlEeSiouLgyTp008/dUVGRnrGjBlzXO2YMWNK1q1bF1X/fG3Tpk0r/PzzzyNeeeWVmPvuu2+fJL355puxISEh9vrrrz/Y2GMbk5iYWN6nT5+K2udCQkI0fPjwklWrVkVv37499OjRo+bQoUPBERERVT/5yU961x9j//79IZK0efPm8MTERPdVV11VfNVVVxXv2bMn+N133434+uuvQ3NycsLefffdhv6Or5kzZyZ99tlnnYKDg+111113Slt1naxA2vLJ96ms0lpbYYz5WlI/Y0wna21JvdqzvMfPvccvJCVKGui93VgtAAAAEFB8DcePBRU6pdDjo+xsne97eE2AUv0ZKz8/X4sXL9b06dNPfaIAAADoWFpgy6gzSXh4eFVD13zfvT906JAjMTHRb5uGTp06eU70HNdff/2BBx98sPfSpUtj7rvvvn179+51fPTRR64JEyYc7tKlywkf35C4uDh//a9r5lReXm58Ddl3794d+uyzz3ZtaKyioiKHJOXm5obMmjWrz+rVq6OttXK5XJ5+/fodGTVqlDsnJyfc32M/++yzTqNGjXJ//PHHrptvvjlx7dq1X53qa2qqVtveyhgzyBhjjTH/aqBknPf4qfe4UpJD0nfrjeOQdLGqV25sqVUrSZf6GfcyVfcGWXOKUwcAAABalN+VHrWakjfVrkOHam4fG+vYODk5OQIAAADQfJz/n727D4u62vfG/14Mz8zw/KTIIGiiG0RlBO/tKcpdXaYbU8QkUQvY1dEyj3l2lOJ196CVdfL26N1u1y4f0tTuNKlbtvlDPf4sfxohaGKCicRRRJ4cHgYYUIb1+wMGhodBRBgs3q/r4prvrO/6rrW+1jUXzOf7+SwHh+bKyspukwuKi4ttu2s3pVarmyIjI3WZmZnK8vJyxZ49e9wMBoOIj4+/q6yIhoYG0V17SUmJLQB4eXk1KZXKZgB45JFHqqSUWeZ+FixYUA0AcXFxgcePH3dJTk6+VlhYeE6n0509e/Zs3vLly83u0bFs2bKSjIyMi2FhYXUnTpxw/vTTT93u5r56w5J7elwEUAhguhDiAdMTQoinAEQA+H+llJdbm/8BQAJ4QwhhmoP/KoARAP5mUsrqMwB6AC8LIbxMxl0I4H8A2CGl7LF+GhERERHRYDEGPe4208Nz5Mj2yztlegBAUFCP+ygSEREREdEdGjt2rL6qqsr69OnTXTIdMjIyevVL/fz587UGg0Hs3bvXJTU11U2pVBri4uKqbn+leQUFBQ41NTUdvv/XarVWeXl5Dl5eXrf8/f2bJk6c2GBraytzc3MdDYauSSUpKSm+s2bNCtRqtVbV1dVWmZmZqgkTJtStX7++xLR01qVLl+zMrWPZsmXlVlZW2Lx58xUhBFavXu1fWVk5oHEJiwU9WgMUzwNoBvBfQogDQoi/CSGOoCVocQPAUpP+ZwH8B4BJAM4LIf4hhDgGYB2A0wD+l0nfUgD/DsAfQI4Q4lMhRBqAnQAKAKRY4h6JiIiIiPqi2/JWfcj0uH/GjPbL28ZqCXr4+PggJiamr0skIiIiIqJuLFy4sAIAVq9e7dfU1F5R6uOPP3a/cOGCY2/GWLx4caWtra38/PPPPU6dOqWaOXNmpaOjY+e9q+9IY2OjSE5OHm7alpycPLy2tlbx+OOPawHA0dFRRkdHa69du2a7fv36DuWtdu3a5fLuu+/6lZWV2bi7uzcrFAppZWWFiooKa71e35ZF8ssvv9i++eabfrdbz4MPPlg/b968ivLycpuVK1fetv/dsGSmB6SU36Jlo/J9ra/PABgDYAuACCllXqf+r6AlUNIAYDGAUQD+E8DDUsqGTn3/DmA+gCIA8QA0ALYBuF9KWT6At0VEREREdFf6q7yVvadn27Fppgbgh4oAACAASURBVIePjw8OHDjATcyJiIiIiPrZiy++eCMqKqr68OHDrsHBwSHx8fHqhx9+eNTzzz8fGBUVVd2bMTw9PQ1RUVHVp06dcm5qahKLFi3qUtrq2LFjjklJSf4fffSRe2/GdHNza9q5c6fXpEmTxi5cuFA9adKksVu2bPFRq9WN69atu27s98EHHxQFBAQ0rlmzxl+j0QQ/+eSTAVOmTBmzaNGi0SqVqmnHjh2FAKBUKmV0dLS2qKjILiQk5A/x8fHqadOmjQ4NDQ2dMGFCnZWVFb777jvn1157zcfcmjZu3HhNqVQadu7c6X3ixIleBYT6YkCCHlLKh6SUQkrZJQVHSnlBSrlASukvpbSTUqqllM9IKX81M9bfpZQhUkqH1r4vmStVJaXcK6WcLKV0lFIOk1L+RUp5vbu+RERERET3iv4qb2V6jTHo8cQTz+DXX39FRETE3SyRiIiIiIi6oVAocOjQocsvvPBCiU6nU+zfv9+zpKTEdvv27Zdnz57d6xJVCxYs0AKAj4/PrZkzZ+o6n8/JyXHYtm2b9+HDh527Xt2Vt7f3rYMHD160tbVt3r9/v8f169dtFyxYUH7y5Mk8X1/ftlpWw4YNa8rIyMhNSEgoKyoqstu/f7/H1atX7ebPn1+RmZl5ITg4+Kax744dO/47KSmprK6uTpGamuqh1WqtN23aVJiamlq4ZMmSktraWkVGRoaTuTX5+fk1JScnFxsMBixdujSgu5Ja/UG0b4sxdAkhssLDw8OzsrIGeylEZGLkq/9sOy5c/+dBXAkREVnSUPz8f/114I03gBL4wAetewAWFwPDhnXp2+O/T00N4OICAKiFE1SoRXIy8O67A7VyonvDUPzcGMqG4n9v3vPQuGei/qTRaJCdnZ0tpdT01C8rK+u0vb39uJCQkFxLrY0GnhBCExwcrM/Ly7sw2Gvpq59//nlcQ0NDrkajmXyn11q0vBUREREREXXVX+Wt4NT+UJUSdRBoRk23OdJERERERES/Twx6EBERERENMp0OsIIBTqhvb3TsQ4lbhaLDdY6oZ9CDiIiIiIiGFAY9iIiIiIgGWW1tpywPpRKw6uOv6p329WDQg4iIiIiIhhLrwV4AEREREdFQp9P1Q2kr02vLWvYFUUGHmhrfu1wdERERERH9lkgph/Tm1cz0ICIiIiIaZDpdS4CijUm2xh1jpgcREREREQ1hDHoQEREREQ2y2tpOQY+7yfToFPTQ6XroS0RERERE9DvDoAcRERER0SDr1/JWJkGPlvJWd7EwIiIiIiKi3xgGPYiIiIiIBlm/lrcyCZiwvBUREREREQ01DHoQEREREQ2ygSxv1dgINDbexeKIiIiIiIh+Qxj0ICIiIiIaRFK2BD0GoryVcUzu60FEREREREMFgx5ERERERIOorq4l8DEQ5a2MY7LEFRERERERDRUMehARERERDaLa1gSPgSpvBTDoQUREREREQweDHkREREREg6isTA9gYMtbMehBRERERERDBYMeRERERESDJDMzE9OmzQHQMdOjsKKi74OaBD1Y3oqIiIiI6PYiIyODhRCaiooKRX+Ou3LlyuFCCE1aWpoKANLS0lRCCE1SUpJ/f85zL4qNjR0phNBcvHjR1tJzM+hBRERERDQI9Ho9Zs2aBa22CUDHoMd7f/879Hp93wY2yRJhpgcRERER0e3NmTNHm5iYWGZvb988kPOMHDnyZmJiYtlDDz2ku31v6ivrwV4AEREREdFQlJqaitLSUgBTAXQsb1VUU4PU1FTEx8ff+cAsb0VEREREdEdWr15dbol5QkNDG7du3XrVEnMNZcz0ICIiIiIaBAUFBa1HLgA6ZnrUdjh/hxj0ICIiIiKiIYxBDyIiIiKiQRAUFNR65AqgY9BD1+H8HTIpb8U9PYiIiIiIbq/znh6bN2/2EEJoPvzwQ/cdO3a4hoWFjbW3tw93c3ObMH/+/IDOe3/o9XqxYsWK4X5+fuPt7OzCAwMDQ95//33PzvN03tMjKCgoRAihOXXqlEPnvuvWrfMWQmhWrVrle6f3I4TQaDSa4PPnz9tNnz59lLOz80SVSjVxxowZQXl5eV322KivrxevvPKKb1BQUIidnV24t7d3WFxcXMClS5e69M3JybGLi4sLMN6rr69v2PTp00cdOnRI2blvZ1qt1iosLGysEELz3nvved3pffUWgx5ERERERIMgJiYGPj4+MGZ6mJa3svPwQExMTN8GZqYHEREREVG/2Lp1q1dSUtIoDw+Pprlz51aoVCrD3r17PZ966qkA035z5swJ2rRp0zArKys5d+7cG8OHD7+ZnJwcsG/fPveexp87d64WAPbt2+fa+dzXX3/tJoRAYmKiti9rLysrs3nggQfGFhUV2UZHR2vHjRunP3TokNu//Mu/jDMNZuj1ehEVFTXmvffe83N0dGyOjY29ERoaWv/VV195hIeH/yEjI6MtIJOfn28zderUcXv37vUcNWpUQ2xsbMWYMWP0R48edfnzn/8c/O2335oNfNTU1Fg9+uij9+Xk5DitXbv2anJy8oCVFOOeHkREREREg8DBwQEHDhzAQw9lo76+Y6bHB9u3w8Ghy8NevcOgBxERERH1FyE0g72EXpMyq7+HPHv2rPKLL764NG/evBoAqKioUIwePXr84cOHXWtqaqycnZ2bd+/e7ZKenu46derUmqNHj+bb29tLAPjkk0/cnnvuuR7TtxMSErQbNmwY/u2337pu2LDhurH96tWr1mfOnFGGh4fXjhkz5mZf1l5UVGQXGxt7Y9++fYXGtpSUFN+3337b76WXXhqRlpZWAACrVq0alpWVpXz11VevvfPOOyXGvmlpaao5c+aMWbp0aUB2dnYeAGzfvt29trZWsWnTpsLly5ffMPbdtGmTx4oVK0bu2bPHfcaMGbXopL6+XkyfPn10dna2cs2aNUVr1qwp68s99RYzPYiIiIiIBklERARiY/8CoGPQY+IDD/R9UJOgh3FMnc5cZyIiIiIiMmfGjBlaY8ADADw9PQ0RERG6pqYmceXKFRsA2LJliycAbNy4scgY8ACAZ599tnLq1Kk9Pn4UGhraGBoaWp+bm+tomn2xe/dut+bmZsTFxd3o6fqeCCGwYcOGa6Ztr7/+eombm1vTkSNHXBsbG4XBYMBnn33mpVarG996660S077R0dG6+++/v/rMmTNOV65csQaAiIiI+lWrVl1LSkrqkH0yadIkPQDU1dV1iTc0NjaKxx57bPQPP/ygevnll4vXrl1b2td76i1mehARERERDaK6OmsINMMJde2NytuWwzXP0REQApASjtDDCgbU1Chufx0REREREXUwfvx4fec2Z2dnAwDodDorAPjpp5+UKpXKEBkZ2aVvZGRk3cmTJ517muOJJ564cf78eccvv/zSNSUlpQwAvvnmGzcbGxuZkJBQ2de1q9XqxoCAgFumbTY2Npg4cWLdsWPHXPLz821v3rwpqqqqrB0dHZufeeYZ/85jVFRU2ABATk6OvVqtrp09e7Zu9uzZuuvXr1unp6c7Xr582bagoMAuPT29S3kuo8WLFweeO3fOydraWj799NN9KtV1pxj0ICIiIiIaRNXVgCPqYYXWh8IcHADFXQQprKwAJyegtiWr3Al1qKnp8e8sIiIiIqLuDUDJqN8Se3v7ZnPnpGz5/b2qqkqhVqsbu+vj5ORkuN0cCQkJ2jfeeMM/LS3NNSUlpaykpETx448/KqdNm1bt5eV12+vNcXd3b+ppTY2NjcK4IXtxcbHttm3bvM2NVdP6FFVhYaFNYmJiwPHjx12klFAqlYZRo0Y1TJ48ubagoMC+u2vPnTvnNHny5NrTp08rlyxZov7+++8v9fWeeovlrYiIiIiIBlF1dcfSVlCp7n7QTvt6cE8PIiIiIqKB4eDg0FxZWdltckFxcbFtd+2m1Gp1U2RkpC4zM1NZXl6u2LNnj5vBYBDx8fF3lRXR0NAgumsvKSmxBQAvL68mpVLZDACPPPJIlZQyy9zPggULqgEgLi4u8Pjx4y7JycnXCgsLz+l0urNnz57NW758udk9OpYtW1aSkZFxMSwsrO7EiRPOn376qdvd3FdvMOhBRERERDSIqqraNxwH0D9BD5MxVNAx6EFERERENEDGjh2rr6qqsj59+nSXTIeMjIxe1a2dP3++1mAwiL1797qkpqa6KZVKQ1xcXNXdrKugoMChpqamw/f/Wq3WKi8vz8HLy+uWv79/08SJExtsbW1lbm6uo8HQNakkJSXFd9asWYFardaqurraKjMzUzVhwoS69evXl5iWzrp06ZKduXUsW7as3MrKCps3b74ihMDq1av9KysrBzQuwaAHEREREdEg6pLpcTf7eXQzBoMeREREREQDZ+HChRUAsHr1ar+mpvaKUh9//LH7hQsXHHszxuLFiyttbW3l559/7nHq1CnVzJkzKx0dHeXtrzSvsbFRJCcnDzdtS05OHl5bW6t4/PHHtQDg6Ogoo6OjtdeuXbNdv359h/JWu3btcnn33Xf9ysrKbNzd3ZsVCoW0srJCRUWFtV6vb8si+eWXX2zffPNNv9ut58EHH6yfN29eRXl5uc3KlStv2/9uMOhBRERERDSIBqS8lXP7Hh4q6FBbC3Tz4BYREREREd2lF1988UZUVFT14cOHXYODg0Pi4+PVDz/88Kjnn38+MCoqqro3Y3h6ehqioqKqT5065dzU1CQWLVrUpbTVsWPHHJOSkvw/+ugj996M6ebm1rRz506vSZMmjV24cKF60qRJY7ds2eKjVqsb161bd93Y74MPPigKCAhoXLNmjb9Gowl+8sknA6ZMmTJm0aJFo1UqVdOOHTsKAUCpVMro6GhtUVGRXUhIyB/i4+PV06ZNGx0aGho6YcKEOisrK3z33XfOr732mo+5NW3cuPGaUqk07Ny50/vEiRO9Cgj1BYMeRERERESDpKEBuHlzAMpbmQQ9nNGS5lFba64zERERERH1lUKhwKFDhy6/8MILJTqdTrF//37PkpIS2+3bt1+ePXt2r0tULViwQAsAPj4+t2bOnKnrfD4nJ8dh27Zt3ocPH3buenVX3t7etw4ePHjR1ta2ef/+/R7Xr1+3XbBgQfnJkyfzfH192x6JGjZsWFNGRkZuQkJCWVFRkd3+/fs9rl69ajd//vyKzMzMC8HBwTeNfXfs2PHfSUlJZXV1dYrU1FQPrVZrvWnTpsLU1NTCJUuWlNTW1ioyMjKczK3Jz8+vKTk5udhgMGDp0qUB3ZXU6g/CuMv8UCaEyAoPDw/Pysoa7KUQkYmRr/6z7bhw/Z8HcSVERGRJQ+nzv7QU8PUF4vAFvsCClsYnngC+/NLsNb3691m0CNi1CwCwGDvwORbjyhXA37/flk50TxlKnxs0NP97856Hxj0T9SeNRoPs7OxsKaWmp35ZWVmn7e3tx4WEhORaam008IQQmuDgYH1eXt6FwV5LX/3888/jGhoacjUazeQ7vZaZHkREREREg6S6Ndl9IMtbGTM9uK8HERERERENBQx6EBERERENEmPQwxLlrRj0ICIiIiKioYBBDyIiIiKiQVLVWuG3Q6aHUnn3AzPoQUREREREQ5T1YC+AiIiIiGioYnkrIiIiIiLqb1LKIb15NTM9iIiIiIgGCctbERERERER9S8GPYiIiIiIBkm3mR4sb0VERERERNRnDHoQEREREQ0SS5a3OnHiHPR6/d2PTUREREREdA9j0IOIiIiIaJAMWHkrkzGMQY/9+9MRGBiIzMzMux+fiIiIiIjoHsWgBxERERHRIBmo8lYNtrZtx8agB+CM0tJSzJo1ixkfRERERET0u8WgBxERERHRIBmo8lYHT5xoOzYNegBAaWkpUlNT73oOIiIiIiKiexGDHkREREREg6SqquW1v8tbXSotbTtuD3q4tLUVFBTc9RxERERERET3IgY9iIiIiIgGyUCVt/IPDoah9dgBDbDGLQCubeeDgoLueg4iIiIiIqJ70YAEPYQQzwshpBDCtZtz1kKIlUKIC0KIeiFEoRBioxCi20fahBAJQogzQog6IcQ1IcQWIcQwM32jhRAnhRA6IUSZEOL/CCGC+/v+iIiIiIj6Q0vQQ/Z7eauYuXOhE6J9SOgAuAMAfHx8EBMTc9dzEBERERER3Yv6PeghhFAA+EsPXT4CsAGAALATwGUAKwB8J4Sw7zTWGgDbAHgA2AUgG8DTADKEEF6d+i4GcADAGAB7ARwHMLu1LwMfRERERHTPqa4G7NEABZpbGuzsABubux7XwcEBDj4+be9bSly5w8fHBwcOHICDg8Ndz0FERERE9HsRGRkZLITQVFRUKPpz3JUrVw4XQmjS0tJUAJCWlqYSQmiSkpL8+3Oee1FsbOxIIYTm4sWLtpae27o/BhFCCACTWn8SAISb6fcQWgIi/wVghpTyZmv7GwD+J4BkAG+2to0C8DqAnwFMlVLWtLYnAtgK4F0ASa1tLgD+N4BSAOFSyuLW9mmtc/0dwJ/6416JiIiIiPqDlC1BD9d+Lm1lZOfpCZSUAGgJelhZqVFQ8CscHRnwICIiIiIyNWfOHG1oaGi9vb1980DOM3LkyJuJiYllDz30kO72vamv+iXoAcAJQFYv+r3Q+vqqMeDR6j8ArALwDFqDHgCWAFAAeMMY8Gi1HcA6APFCiGVSynoAi9CyM+NbxoAHAEgpjwkhfgAwTQgxSkp5+c5vjYiIiIio/zU0ALduod9LW7Vxdm4/RA2am63Q1MSABxERERFRZ6tXry63xDyhoaGNW7duvWqJuYay/ipvpQfwhMnPBTP9ogCUSykzTRullLVoKV3lL4QIbG1+CEAzgEOd+koA3wOwAzDFpC8AHOxmzuMmcxMRERER3ROMm5i3lJ5qZRKouGudgh4AoNX23/BERERERET3on4JekgpDVLKfcYfAF0iY0IIPwDeMB8QyW19va/1dQKAq1LK7lJ9OvedCMAA4GIv+hIRERERDbqqqpZXF1S3N7q49N8E3QQ9Kiv7b3giIiIiot+Lznt6bN682UMIofnwww/dd+zY4RoWFjbW3t4+3M3NbcL8+fMDOu/9odfrxYoVK4b7+fmNt7OzCw8MDAx5//33PTvP03lPj6CgoBAhhObUqVNdUrLXrVvnLYTQrFq1yvdO70cIodFoNMHnz5+3mz59+ihnZ+eJKpVq4owZM4Ly8vK67LFRX18vXnnlFd+goKAQOzu7cG9v77C4uLiAS5cudembk5NjFxcXF2C8V19f37Dp06ePOnTo0G1r9Wq1WquwsLCxQgjNe++953W7/n3VX+WtesOj9bXUzHnjn2DuQghnADa96Wsy9g0pZVMv+nYrNzcXGo2m23NZWb2p3EVERERE1HvGTA9LBj2Y6UFERET0+2Lu+8zc3Nxu2+nObN261evs2bPKBx54oHru3LkVJ06ccN67d69nbW2t4uDBgwXGfnPmzAlKT093HTFiROPcuXNvXLlyxTY5OTlgxIgRjT2NP3fuXO2GDRuG79u3z/WPf/yj3vTc119/7SaEQGJiYp9+iy8rK7N54IEHxg4fPvxmdHS0Nj8/3+HQoUNuP/74o+qHH37Ive+++24CLQGbqKioMVlZWcqQkJD62NjYGyUlJTZfffWVx8GDB92OHDlyccqUKXoAyM/Pt5k6deq4uro6xf3331/z4IMPVhcVFdkdPXrU5ciRI65paWkXZ8yYUdvdempqaqweffTR+3JycpzWrl17NTk5ecBKilky6GH8q8vcf+i61lfrO+xrHLu4l32JiIiIiAadMejhiqr2RgY9iIiIiOheIkT3UZV7kZT9/uT62bNnlV988cWlefPm1QBARUWFYvTo0eMPHz7sWlNTY+Xs7Ny8e/dul/T0dNepU6fWHD16NN/e3l4CwCeffOL23HPPBfU0fkJCgnbDhg3Dv/32W9cNGzZcN7ZfvXrV+syZM8rw8PDaMWPG3OxpDHOKiorsYmNjb+zbt6/Q2JaSkuL79ttv+7300ksj0tLSCgBg1apVw7KyspSvvvrqtXfeeafE2DctLU01Z86cMUuXLg3Izs7OA4Dt27e719bWKjZt2lS4fPnyG8a+mzZt8lixYsXIPXv2uHcX9KivrxfTp08fnZ2drVyzZk3RmjVryvpyT71lyUDArdZXc7snGlNl6u+wr3Hs3vbt1rhx45jRQUREREQWMxiZHixvRURERPT7Yu77TI1Gg+zsbAuv5vdnxowZWmPAAwA8PT0NERERuiNHjrheuXLFJjQ0tHHLli2eALBx48YiY8ADAJ599tnK7du315w8edLsxn2hoaGNoaGh9efPn3e8dOmSrTH7Yvfu3W7Nzc2Ii4u7Ye7a2xFCYMOGDddM215//fWSv//97z5HjhxxbWxsFNbW1vKzzz7zUqvVjW+99VaJad/o6Gjd/fffX338+HGXK1euWKvV6qaIiIj6VatWXUtKSurwONWkSZP0AFBXV9dlO43Gxkbx2GOPjf7hhx9UL7/8cvHatWvNVXfqN5YMehijN65mzhvLXxUD0KJlj47e9DWOPUwIIVo3Ou+pLxERERHRoOs26OFq7tffPlCp2g6Z6UFEREREdOfGjx+v79zm7OxsAACdTmcFAD/99JNSpVIZIiMju/SNjIys6ynoAQBPPPHEjfPnzzt++eWXrikpKWUA8M0337jZ2NjIhISEPj+2pFarGwMCAm6ZttnY2GDixIl1x44dc8nPz7e9efOmqKqqsnZ0dGx+5pln/DuPUVFRYQMAOTk59mq1unb27Nm62bNn665fv26dnp7uePnyZduCggK79PR0s3/ILF68OPDcuXNO1tbW8umnn7bIXySWDHpcQUu2xXgz50cDaAZwQUp5SwhxGcAoIYSTlLKum74AcL71NQ+AGkBw63FPfYmIiIiIBh339CAiIiKie94AlIz6LbG3t282d8747H1VVZVCrVZ3u02Dk5OT4XZzJCQkaN944w3/tLQ015SUlLKSkhLFjz/+qJw2bVq1l5fXba83x93dvbv9r9vW1NjYKIwbshcXF9tu27bN29xYNTU1CgAoLCy0SUxMDDh+/LiLlBJKpdIwatSohsmTJ9cWFBTYd3ftuXPnnCZPnlx7+vRp5ZIlS9Tff//9pb7eU291STcZKFJKA4DjAHyEEB0CH0IIVwCRADKklMZ0oaMAFAD+1KmvAsDDaMnc+NmkLwA82s3U09GyN8h3/XAbRERERET9guWtiIiIiIh++xwcHJorKyu7TS4oLi627a7dlFqtboqMjNRlZmYqy8vLFXv27HEzGAwiPj7+rh5ZamhoEN21l5SU2AKAl5dXk1KpbAaARx55pEpKmWXuZ8GCBdUAEBcXF3j8+HGX5OTka4WFhed0Ot3Zs2fP5i1fvtzsHh3Lli0rycjIuBgWFlZ34sQJ508//dTtbu6rNywW9Gj1UevreiGEFQAIIQSAd9GyJ8cHJn3/AUACeEMIYbpfx6sARgD4m0kpq88A6AG8LITwMnYUQiwE8D8A7DAJphARERERDbqq1v3LmelBRERERPTbNXbsWH1VVZX16dOnu2Q6ZGRkKHszxvz587UGg0Hs3bvXJTU11U2pVBri4uKq7mZdBQUFDjU1NR2+/9dqtVZ5eXkOXl5et/z9/ZsmTpzYYGtrK3Nzcx0Nhq5JJSkpKb6zZs0K1Gq1VtXV1VaZmZmqCRMm1K1fv77EtHTWpUuX7MytY9myZeVWVlbYvHnzFSEEVq9e7V9ZWTmgcQmLBj2klP8XwJcAZgI4K4T4CMCPAJ4DcEBKuduk71kA/wFgEoDzQoh/CCGOAVgH4DSA/2XStxTAvwPwB5AjhPhUCJEGYCeAAgAplrg/IiIiIqLeYnkrIiIiIqLfvoULF1YAwOrVq/2amtorSn388cfuFy5ccOzNGIsXL660tbWVn3/+ucepU6dUM2fOrHR0dOy8d/UdaWxsFMnJycNN25KTk4fX1tYqHn/8cS0AODo6yujoaO21a9ds169f36G81a5du1zeffddv7KyMht3d/dmhUIhraysUFFRYa3X69uySH755RfbN9980+9263nwwQfr582bV1FeXm6zcuXK2/a/G5bO9ACAhQDWAHAEkADAHcBrAOZ17iilfAXA8wAaACwGMArAfwJ4WErZ0Knv3wHMB1AEIB6ABsA2APdLKcsH6F6IiIiIiPrEGPRwhckDXCxvRURERET0m/Liiy/eiIqKqj58+LBrcHBwSHx8vPrhhx8e9fzzzwdGRUVV334EwNPT0xAVFVV96tQp56amJrFo0aIujysdO3bMMSkpyf+jjz5y782Ybm5uTTt37vSaNGnS2IULF6onTZo0dsuWLT5qtbpx3bp11439Pvjgg6KAgIDGNWvW+Gs0muAnn3wyYMqUKWMWLVo0WqVSNe3YsaMQAJRKpYyOjtYWFRXZhYSE/CE+Pl49bdq00aGhoaETJkyos7Kywnfffef82muv+Zhb08aNG68plUrDzp07vU+cONGrgFBfDEjQQ0r5kJRSSCm7pOBIKZuklG9JKUdLKe2llKOklG9KKW+aGevvUsoQKaWDlFItpXzJXKkqKeVeKeVkKaWjlHKYlPIvUsrr3fUlIiIiIhpMN260vDLTg4iIiIjot0uhUODQoUOXX3jhhRKdTqfYv3+/Z0lJie327dsvz549u9clqhYsWKAFAB8fn1szZ87UdT6fk5PjsG3bNu/Dhw87d726K29v71sHDx68aGtr27x//36P69ev2y5YsKD85MmTeb6+vm21rIYNG9aUkZGRm5CQUFZUVGS3f/9+j6tXr9rNnz+/IjMz80JwcHDb9/Y7duz476SkpLK6ujpFamqqh1artd60aVNhampq4ZIlS0pqa2sVGRkZTubW5Ofn15ScnFxsMBiwdOnSgO5KavUH0b4txtAlhMgKDw8Pz8rKGuylEJGJka/+s+24cP2fB3ElmKX6YwAAIABJREFURERkSUPl83/s2GZcvGiFYgzDMJS0NBYVAX49Z3r3+t+nqgpwa9kjsBrOcEU1nJyA2tq7XjrRPWeofG5Qi6H435v3PDTumag/aTQaZGdnZ0spNT31y8rKOm1vbz8uJCQk11Jro4EnhNAEBwfr8/LyLgz2Wvrq559/HtfQ0JCr0Wgm3+m1g1HeioiIiIhoSMvMzMQvv7TUmjLN9MjKz++/SVSq9kPoINCMujrgZrf51URERERERL8PDHoQEREREVmQXq9HdPRsSOkKa9yCI/QAgCYAf54/H3q9vn8mUigAp5bMcitIOKEOAPf1ICIiIiKi3zcGPYiIiIiILCg1NRVlZY0AFB2yPGoAlJaVITU1tf8m474eREREREQ0xFgP9gKIiIiIiIaSgoICAJ4AOpa2qu5wvp84OwPXr7ccogbF8GOmBxERERHR75yUckhvXs1MDyIiIiIiCwoKCkJPQY+W8/2EmR5ERERERDTEMOhBRERERGRBMTExcHEZDQBwRVVbezUAHx8fxMTE9N9kDHoQEREREdEQw6AHEREREZEFOTg4YNmy1wF0zPTQ29nhwIEDcHBw6L/JVKq2Q2PQg+WtiIiIiIjo94x7ehARERERWZhKFQigY9DjkdhYWEdE9O9EzPQgIiIiIqIhhpkeREREREQWVlHR8moa9LB2d+//iRj0ICIiIiKiIYZBDyIiIiIiC7txo+XVNOgBF5f+n6iboAfLWxERERER0e8Zgx5ERERERBbWXaaHpYIezPQgIiIiIqLfMwY9iIiIiIgsjEEPIiIiIiKigcGgBxERERGRhRmDHq6oam+0UNAjP/8Gdu/eDb1e3//zERERERERDTIGPYiIiIiILKzbTA9X1/6fyCToYZzrxo1mLFy4EIGBgcjMzOz/OYmIiIiIfmMiIyODhRCaiooKRX+Ou3LlyuFCCE1aWpoKANLS0lRCCE1SUpJ/f85zL4qNjR0phNBcvHjR1tJzW1t6QiIiIiKioaypqX0z8QEvb2USSGmfyw0AUFpailmzZuHXX3+Fg4ND/89NRERERPQbMWfOHG1oaGi9vb1980DOM3LkyJuJiYllDz30kG4g5xnqGPQgIiIiIrIg0z013K2qAeOfVQMR9HBza58LreklsAagAqBDaWkpUlNTER8f3/9zExERERH9RqxevbrcEvOEhoY2bt269aol5hrKWN6KiIiIiMiCjKWtAMBFDHCmh7t726EbKk1PtB0VFBT0/7xERERERESDhEEPIiIiIiILMg16OMsBDnp0yPSoBCDb3hkFBQX1/7xERERERL8hnff02Lx5s4cQQvPhhx+679ixwzUsLGysvb19uJub24T58+cHdN77Q6/XixUrVgz38/Mbb2dnFx4YGBjy/vvve3aep/OeHkFBQSFCCM2pU6e61Jtdt26dtxBCs2rVKt87vR8hhEaj0QSfP3/ebvr06aOcnZ0nqlSqiTNmzAjKy8vrssdGfX29eOWVV3yDgoJC7Ozswr29vcPi4uICLl261KVvTk6OXVxcXIDxXn19fcOmT58+6tChQ8rbrUur1VqFhYWNFUJo3nvvPa87va/eYtCDiIiIiMiCjEEPG9yEXXNDyxuFAnB07P/JHBwg7e0BALZoghPqWk94AAB8fHwQExPT//MSEREREf0ObN261SspKWmUh4dH09y5cytUKpVh7969nk899VSAab85c+YEbdq0aZiVlZWcO3fujeHDh99MTk4O2Ldvn7u5sQFg7ty5WgDYt2+fa+dzX3/9tZsQAomJidquV95eWVmZzQMPPDC2qKjINjo6Wjtu3Dj9oUOH3P7lX/5lnGkwQ6/Xi6ioqDHvvfeen6OjY3NsbOyN0NDQ+q+++sojPDz8DxkZGW0Bmfz8fJupU6eO27t3r+eoUaMaYmNjK8aMGaM/evSoy5///Ofgb7/91mzgo6amxurRRx+9Lycnx2nt2rVXk5OTB6ykGPf0ICIiIiKyIGPQo8sm5kIMyHzC3R0oLgbQUuKqDkoAPvDx8cGBAwe4iTkRERERmSeEZrCX0GtSZvX3kGfPnlV+8cUXl+bNm1cDABUVFYrRo0ePP3z4sGtNTY2Vs7Nz8+7du13S09Ndp06dWnP06NF8e3t7CQCffPKJ23PPPddjWnVCQoJ2w4YNw7/99lvXDRs2XDe2X7161frMmTPK8PDw2jFjxtzsy9qLiorsYmNjb+zbt6/Q2JaSkuL79ttv+7300ksj0tLSCgBg1apVw7KyspSvvvrqtXfeeafE2DctLU01Z86cMUuXLg3Izs7OA4Dt27e719bWKjZt2lS4fPnyG8a+mzZt8lixYsXIPXv2uM+YMaO281rq6+vF9OnTR2dnZyvXrFlTtGbNmrK+3FNvMdODiIiIiMiCjEEPV1S1N7p2ebCr/5js6+GOlofE4uNX4tdff0VERMTAzUtERERE9Bs3Y8YMrTHgAQCenp6GiIgIXVNTk7hy5YoNAGzZssUTADZu3FhkDHgAwLPPPls5derUmq6jtgsNDW0MDQ2tz83NdTTNvti9e7dbc3Mz4uLibvR0fU+EENiwYcM107bXX3+9xM3NrenIkSOujY2NwmAw4LPPPvNSq9WNb731Volp3+joaN39999ffebMGacrV65YA0BERET9qlWrriUlJXXIPpk0aZIeAOrq6rrEGxobG8Vjjz02+ocfflC9/PLLxWvXri3t6z31FjM9iIiIiIgsyGymx0DpsK9Hy98mvr7hYIIHEREREVHPxo8fr+/c5uzsbAAAnU5nBQA//fSTUqVSGSIjI7v0jYyMrDt58qRzT3M88cQTN86fP+/45ZdfuqakpJQBwDfffONmY2MjExISKvu6drVa3RgQEHDLtM3GxgYTJ06sO3bsmEt+fr7tzZs3RVVVlbWjo2PzM8884995jIqKChsAyMnJsVer1bWzZ8/WzZ49W3f9+nXr9PR0x8uXL9sWFBTYpaenm32Ka/HixYHnzp1zsra2lk8//XSfSnXdKQY9iIiIiIgsyOJBD5NMDze0/M1UUmKuMxERERGRiQEoGfVbYm9v32zunJQtSR1VVVUKtVrd2F0fJycnw+3mSEhI0L7xxhv+aWlprikpKWUlJSWKH3/8UTlt2rRqLy+v215vjru7e1NPa2psbBTGDdmLi4ttt23b5m1urJqaGgUAFBYW2iQmJgYcP37cRUoJpVJpGDVqVMPkyZNrCwoK7Lu79ty5c06TJ0+uPX36tHLJkiXq77///lJf76m3WN6KiIiIiMiCbrQmqA9G0MOY6cGgBxERERFR/3BwcGiurKzsNrmguLjYtrt2U2q1uikyMlKXmZmpLC8vV+zZs8fNYDCI+Pj4u8qKaGho6HbTwJKSElsA8PLyalIqlc0A8Mgjj1RJKbPM/SxYsKAaAOLi4gKPHz/ukpycfK2wsPCcTqc7e/bs2bzly5eb3aNj2bJlJRkZGRfDwsLqTpw44fzpp5+6mevbXxj0ICIiIiKyoMHM9DAGPa5fN9eZiIiIiIjuxNixY/VVVVXWp0+f7pLpkJGRoezNGPPnz9caDAaxd+9el9TUVDelUmmIi4uruv2V5hUUFDjU1NR0+P5fq9Va5eXlOXh5ed3y9/dvmjhxYoOtra3Mzc11NBi6JpWkpKT4zpo1K1Cr1VpVV1dbZWZmqiZMmFC3fv36EtPSWZcuXbIzt45ly5aVW1lZYfPmzVeEEFi9erV/ZWXlgMYlGPQgIiIiIrKge2FPD2Z6EBERERH1j4ULF1YAwOrVq/2amtorSn388cfuFy5ccOzNGIsXL660tbWVn3/+ucepU6dUM2fOrHR0dJS3v9K8xsZGkZycPNy0LTk5eXhtba3i8ccf1wKAo6OjjI6O1l67ds12/fr1Hcpb7dq1y+Xdd9/1Kysrs3F3d29WKBTSysoKFRUV1nq9vi2L5JdffrF98803/W63ngcffLB+3rx5FeXl5TYrV668bf+7waAHEREREZEFDWamh4do2dOjshJoaBi4KYmIiIiIhooXX3zxRlRUVPXhw4ddg4ODQ+Lj49UPP/zwqOeffz4wKiqq+vYjAJ6enoaoqKjqU6dOOTc1NYlFixZ1KW117Ngxx6SkJP+PPvrIvbsxOnNzc2vauXOn16RJk8YuXLhQPWnSpLFbtmzxUavVjevWrWvL/f7ggw+KAgICGtesWeOv0WiCn3zyyYApU6aMWbRo0WiVStW0Y8eOQgBQKpUyOjpaW1RUZBcSEvKH+Ph49bRp00aHhoaGTpgwoc7Kygrfffed82uvveZjbk0bN268plQqDTt37vQ+ceJErwJCfcGgBxERERGRhdy8CdTUtBy7C5NsdVfXgZvUJOgxzK79b6fS0oGbkoiIiIhoqFAoFDh06NDlF154oUSn0yn279/vWVJSYrt9+/bLs2fP7nWJqgULFmgBwMfH59bMmTN1nc/n5OQ4bNu2zfvw4cPOvRnP29v71sGDBy/a2to279+/3+P69eu2CxYsKD958mSer69vWy2rYcOGNWVkZOQmJCSUFRUV2e3fv9/j6tWrdvPnz6/IzMy8EBwcfNPYd8eOHf+dlJRUVldXp0hNTfXQarXWmzZtKkxNTS1csmRJSW1trSIjI8PJ3Jr8/PyakpOTiw0GA5YuXRrQXUmt/iCMu8wPZUKIrPDw8PCsrKzBXgoRmRj56j/bjgvX/3kQV0JERJb0e/78v34dGN6aYL7LPgnxDdta3nzyCfDMM70a447/fdLTgenTAQA/qv6EKbqjAIAffgCmTOn92onuZb/nzw3qqL6+Hn9481jb+9zX/gQHB4dBXJFlDMX/x4fiPRP1J41Gg+zs7GwppaanfllZWaft7e3HhYSE5FpqbTTwhBCa4OBgfV5e3oXBXktf/fzzz+MaGhpyNRrN5Du9lpkeREREREQWYixtBQCeNoNX3grgZuZE9NtSX1+PN998Ez4+HStmBAYGIjMzc5BWRURERPciBj2IiIiIiCzEtKSUl5VJmV73XpXl7RuTsV2a2+fkZuZE9FuRmZmJwMBAvPbaa6itre1wrrS0FNOmTcP27duh1+sHaYVERER0L2HQg4iIiIjIQi5fbmw7dr5lkmrh6Tlwk7q5tR0qb7YHPZjpQUS/BXq9HrNmzUJZWZnZPnV1dUhMTGTWBxEREQFg0IOIiIiIyCIyMzPx7//+n23vHeuL208OZNDDxQUQAgBgf1MHa9wCwEwPIrr31dfX469//StKTdPkelBaWopZs2Yx44OIiIY8KWXWb3k/j7vFoAcRERER0QAzPqlcV+fa2iLhibr2846OAze5lVWHbA9XVAFg0IOI7m2ZmZkICgrChx9+aNI6AsB/dur5AYDxbe9KS0uRmppqgRUSERHRvYpBDyIiIiKiAZaamtr6pPIIAIAzamCDZgCADkDqt98O7AJM9vVwR0uJK5a3IqJ7lTFQ3DHDYxGAywD+rVPvFwBkA3i8raWgoGDA10hERET3LgY9iIiIiIgGWPsXcP4AAE9UtJ2rgAW+oDPJ9HBDJQBmehDRvas9UGz0RwBbANiaucIawB4AkQCAESNGDOj6iIiI6N7GoAcRERER0QALCgpqPWr5Iq5z0KP9/ADpJtOjpASQcmCnJSLqi46B4GEAvkJ7wCO3U+/Lra+OAA4ACMIrr7zCDc2JiIiGMAY9iIiIiIgGWExMDLy9AwG0BB880V5bSmdri5iYmIFdgEnQY4RDS9Dj1i1Aqx3YaYmI+qI9EGwNYB9aAh9AS5h4Rqfej7W2A4A3gH0oK6vghuZERERDGIMeREREREQDzMHBAX/72zdt7z2R33Y84U9/goODw8AuwKS8lb+yPdKxZcs/+aUgEd1zpk+fDhcXFwDPAJja2moAEAcfn4ZOvfMBRAMwfpZNAvAUNzQnIiIawhj0ICIiIiKyADe38W3H97lVtR17BAcP/OQmmR7yxk9tx6+8shGBgYEsA0NE94zMzEyEhISguvoWgP9pcuZ1+Pj8jAMHDnRzVQaAd03evwXAiRuaExERDVEMehARERERWUBRUfvxeF9D+xtPz4Gf3CTo4dJ8zeSEL0pLS1kGhojuCXq9HrNmzWrdxHw52staXYNK9Q9cuHABERERZq7+DwDFrcfDAfx14PdLIiIionvSoAQ9hBDJQoj/NPPzsEk/ayHESiHEBSFEvRCiUAixUQihMjNughDijBCiTghxTQixRQgxrLu+RERERESWdPVq+7GvzY32NxYOerjBZG74AgDLwBDRPSE1NbU14OEG4BWTM69DpyvDoUOHulzj4+PTelQPIMXkTDIiIwd4vyQiIiK6Jw1WpscrAP7NzI/pYxsfAdgAQADYCeAygBUAvhNC2JsOKIRYA2AbAA8AuwBkA3gaQIYQwmsgb4aIiIiI6HZMMz082zbdhWWCHiZ7erjDdPfy9ueDWAaGiAZb++fQKwBcW48vouVP/e4/pw4cOGAS+NgB4GzrsSP+7d8KmcVGRES9EhkZGSyE0FRUVCj6c9yVK1cOF0Jo0tLSVACQlpamEkJokpKS/PtznntRbGzsSCGE5uLFi7aWntviQQ8hhAsAdwDJUkrRzc/61n4PAfgLgP8CMEFK+a9SyocBvAlgIoBkkzFHAXgdwM8AQqWUz0kpZwF4FoA/Ohb3JCIiIiKyONOgh0uThYMeJpke7tCZnPBtO2IZGCIabC2fQ0oAS01aU9CyiXn3n1MRERH49ddfsWvXLvzrvz4LR8d32s4dPDgcAQGh3LeIiIhua86cOdrExMQye3v75oGcZ+TIkTcTExPLHnroId3te1NfDUamx6jW18u36fdC6+urUsqbJu3/AeAWgGdM2pYAUAB4Q0pZY9K+HS1FPeOFEI59XjERERER0V0yLW/lpB+8oIcb6kxOtGR6+Pj4ICaGZWCIaHDFxMRApXoRgHNrSy6A/QB6/pxycHBATEwMvv76a9TX7wWQ13rGBeXl0dy3iIiIbmv16tXlW7duvapUKuVAzhMaGtq4devWq0899VTVQM4z1N3LQY8oAOVSyg6PZEgpa9FSuspfCBHY2vwQgGYAhzr1lQC+B2AHYMrdLZuIiIiIqO9MMz1sawavvJWHuGVywh8+Pj44cOAAHBwcBn4dRERm1NfXY9++/VAolpu0/m8AslefU+37gUgAm0zO/BtKS8u5bxEREdEQMhhBD2M+ao0QYqkQ4l0hxKtCiInGDkIIPwDeAC6YGSO39fW+1tcJAK5KKbtLC+rcl4iIiIjIourrAW3rVho2imZYVZpsJu7hMfALMAl6eCkkWr4UBBSKUbh06VdERESYuZCIaOBlZmYiKCgITz21A1VVxrJ71UhKssGuXbvw66+3/5zquN/HDqBt/6IgAI9z3yIiIupR5z09Nm/e7CGE0Hz44YfuO3bscA0LCxtrb28f7ubmNmH+/PkBnff+0Ov1YsWKFcP9/PzG29nZhQcGBoa8//77XZ5u6rynR1BQUIgQQnPq1Kkukf1169Z5CyE0q1at8u187naEEBqNRhN8/vx5u+nTp49ydnaeqFKpJs6YMSMoLy+vyx4b9fX14pVXXvENCgoKsbOzC/f29g6Li4sLuHTpUpe+OTk5dnFxcQHGe/X19Q2bPn36qEOHDilvty6tVmsVFhY2Vgihee+99wZsH27rgRq4B6PQkpWRjfadyQDgHSHEp2gpVWX8y6/UzBiVra/uQghnADa96dvTonJzc6HRaLo9l5WV1dOlREREREQ9unat/XjcsCqIotZSwS4ugI3NwC/A3h5wdATq6yGamnDfsDpcuq6EwWCF8nIHqFQDvwQiou7o9XrMmjWrNUvjRZMzW/HPf/4ffPDB+l5lonXc76MewMcAVrW+fwlBQUVdLyIi+h0w931mbm5ut+10Z7Zu3ep19uxZ5QMPPFA9d+7cihMnTjjv3bvXs7a2VnHw4MG2iPqcOXOC0tPTXUeMGNE4d+7cG1euXLFNTk4OGDFiRGNP48+dO1e7YcOG4fv27XP94x//2KEW49dff+0mhEBiYqLW3PU9KSsrs3nggQfGDh8+/GZ0dLQ2Pz/f4dChQ24//vij6ocffsi97777bgItAZuoqKgxWVlZypCQkPrY2NgbJSUlNl999ZXHwYMH3Y4cOXJxypQpegDIz8+3mTp16ri6ujrF/fffX/Pggw9WFxUV2R09etTlyJEjrmlpaRdnzJhR2916ampqrB599NH7cnJynNauXXs1OTm5vC/31RuDEfQIQkuGyRYAmwHcAPA/Wo+fQUuQ4v+29jX3P4WxELE12ot99qYvEREREZHFme7nEeJTARi/e7NEloeRm1tLygmAiWotLl1veRArPx/gHuZENFjay1KNAjCztbUZwN9QWlqK1NRUxMfH33acmJgY+Pj4tI4FAB8A+CtanpGMQmAgS6cTEfWJEN1HVe5FUvb7k+tnz55VfvHFF5fmzZtXAwAVFRWK0aNHjz98+LBrTU2NlbOzc/Pu3btd0tPTXadOnVpz9OjRfHt7ewkAn3zyidtzzz3X42/aCQkJ2g0bNgz/9ttvXTds2HDd2H716lXrM2fOKMPDw2vHjBlzs6cxzCkqKrKLjY29sW/fvkJjW0pKiu/bb7/t99JLL41IS0srAIBVq1YNy8rKUr766qvX3nnnnRJj37S0NNWcOXPGLF26NCA7OzsPALZv3+5eW1ur2LRpU+Hy5cvb0tc3bdrksWLFipF79uxx7y7oUV9fL6ZPnz46OztbuWbNmqI1a9aU9eWeemswylu9BeBPUsq/SimvSCnrpJRHAcxAS4BiOVo2JQcAc49zGNNq6tGyqXlv+5o1btw4ZGVldftDRERERHQ3TPfzGO1m4f08jEw2M/+Db/vDYpcuWW4JRESdtZed+gvav6I4COM2oL0tS+Xg4IADBw7Ax8entaUY7c9TAo88sguZmZndXktE9Ftm7vvMcePGDfbSfhdmzJihNQY8AMDT09MQERGha2pqEleuXLEBgC1btngCwMaNG4uMAQ8AePbZZyunTp1a03XUdqGhoY2hoaH1ubm5jqalpHbv3u3W3NyMuLi4Gz1d3xMhBDZs2HDNtO31118vcXNzazpy5IhrY2OjMBgM+Oyzz7zUanXjW2+9VWLaNzo6Wnf//fdXnzlzxunKlSvWABAREVG/atWqa0lJSR2yTyZNmqQHgLq6ui7xhsbGRvHYY4+N/uGHH1Qvv/xy8dq1a81VbOo3Fs9+kFIeM9N+RQjxA4CHATS0Nrt21xft5a+K0VKo09DLvkREREREFmca9AhUDn7QY4xH+99O+fmWWwIRUWctZamsADxl0vqPTud7JyIiAhcuXEBQUBCqq6sBbAUQCwCor5+H6GgNCgsv9apcFhEREQCMHz9e37nN2dnZAAA6nc4KAH766SelSqUyREZGdukbGRlZd/LkSefO7aaeeOKJG+fPn3f88ssvXVNSUsoA4JtvvnGzsbGRCQkJlT1d2xO1Wt0YEBBwy7TNxsYGEydOrDt27JhLfn6+7c2bN0VVVZW1o6Nj8zPPPOPfeYyKigobAMjJybFXq9W1s2fP1s2ePVt3/fp16/T0dMfLly/bFhQU2KWnp5v7bh6LFy8OPHfunJO1tbV8+umn+1Sq607dayWfjBuRN6ElM2O8mX6j0ZLvekFKeUsIcRnAKCGEk5Syrpu+AHC+31dLRERERNQLpuWt/B0GKejh7d12GKRszyZn0IOIBlNMTAxcXeNQVeXX2lIK4FsAgI+PD2JiYu5ovEOHDrUGPADg/wFwDYAfAB+UlWl6XS6LiIhaDUDJqN8Se3v7ZnPnpGxJ6qiqqlKo1eput15wcnIy3G6OhIQE7RtvvOGflpbmmpKSUlZSUqL48ccfldOmTav28vK67fXmuLu7N/W0psbGRmHckL24uNh227Zt3t31B4CamhoFABQWFtokJiYGHD9+3EVKCaVSaRg1alTD5MmTawsKCuy7u/bcuXNOkydPrj19+rRyyZIl6u+//37Ac80tWt5KCPGYEEIKIf7WzTkbABEAbgLIBXAcgI8QYnynfq4AIgFkSCmN6UFH0VIS60+d+irQkjlSDODnfr4dIiIiIqJeMc308LEepKCHr2/b4QjrtnLBDHoQ0aBycHCARvOBSctOAE3w8fHBgQMH7jgro2M5LAOAz0ze/6XX5bKIiIh6y8HBobmysrLb5ILi4mLb7tpNqdXqpsjISF1mZqayvLxcsWfPHjeDwSDi4+PvKiuioaFBdNdeUlJiCwBeXl5NSqWyGQAeeeSRKilllrmfBQsWVANAXFxc4PHjx12Sk5OvFRYWntPpdGfPnj2bt3z5crN7dCxbtqwkIyPjYlhYWN2JEyecP/30U7e7ua/esPSeHv8fWvbtWCiEGNvp3Cq0PH6xW0pZD+Cj1vb1QggrABBCCADvomX/DtPfiv4BQAJ4Qwhh+hvRqwBGAPibNIbeiIiIiIgsLD+//QEx3a8mNeUtGfQYNqzt0Ov/Z+/Mw6Oosj78dvYmGwkJYZEAAQUFF8CAg4qiOAqSkQiCLGqSccEFF0QUERfAHYZBkZFRCKKASiAqqAzL+LmMgBFEURZBghAgCVlIJ+kmIUl/f9yudHXSnbU7CXDe56mnq+69VXV7u1V1zzm/U2aX6z14EMob7D8mCILQODIyzHz9dWjl9sSJASxfvpz09HRiY2PrfbzqclhLdOvDCAu7qGEdFQRBEAQX9OzZ03Ly5EmfH3/8sVqkw7Zt24LqcozRo0fnlZeXG1atWhWampoaFhQUVD5mzJiTjenXwYMHjSaTyWH+Py8vz2vv3r3GyMjI0506dSq77LLLTvn5+Vn37NnTqtzJQ8H06dPbxcXFdc3Ly/MqKCjwSktLC7700kuLX3nllUy9dNb+/fv9XfXjoYceOuHl5cUbb7xx2GAw8PTTT3fKz8/3qF2iSY0eVqu1EHgMCAV2GAyGFIO1yi7kAAAgAElEQVTBsNBgMGwBXgDSgSdtbT8DPgaGATsNBsPbwA/AvcBaq9W6QnfcncDrQB/gV4PB8G+DwfAVMBv4EfhHU71HQRAEQRAEQdDz/fc/snev/QFiz3ef2CubKdLDPz+zUu2qtNQxEkUQBKGpSEtL46KLZlFW5m0r+YHU1Nmcf/75Dc67ER8fr0tmDioh+te2dR/y8+Ma0WNBEARBqM748eNzAJ5++umOZWV2RalFixaF7969u1VdjnHHHXfk+/n5WT/44IM2W7ZsCR42bFh+q1atGuXEX1JSYpg6dWoHfdnUqVM7FBUVef/tb3/LA2jVqpV1+PDheUePHvV75ZVXHOStli9fHvrqq692zM7O9g0PD6/w9va2enl5kZOT42OxWCqjSH7//Xe/mTNndqQWrrnmGvOoUaNyTpw44Tt58uRa2zeGpo70wGq1vgMMRElSXQUkAZHAP4EBVqtVHwozHngGaAUkAOHAc8AoJ8d9EngAlQT9DqCb7ZjXW63WU1XbC4IgCIIgCIKnsVgs/O1vjwO+tpJDRGB/ECoJDm66zuiMHhw/Tvfu9k2RuBIEoamxWCzExcVRWDhSV7qUrKws4uLisFiq5YKtE0ajkbVr11YxfCyuXFu40ILZ3LBjC4IgCIIzJk2alDto0KCCjRs3tu7Ro0evcePGRV9//fXdHnjgga6DBg0qqP0IEBERUT5o0KCCLVu2hJSVlRkmTJhQTdrqq6++apWUlNTp7bffDq/LMcPCwsref//9yD59+vQcP358dJ8+fXouXrw4Kjo6umT27NmVercLFizI6Ny5c8kzzzzTqV+/fj1uv/32zgMGDLhgwoQJ3YODg8uWLVt2CCAoKMg6fPjwvIyMDP9evXpdNG7cuOjBgwd37927d+9LL7202MvLi2+++Sbkueeei3LVp3nz5h0NCgoqf//999t+9913dTIINYQmN3oAWK3WLVarNc5qtbazWq0BVqu1u9VqfcxqtZ6o0q7MarW+aKsPsFqt3axW60yr1Vrq4rj/slqtvaxWq9FqtUbbjmly1lYQBEEQBEEQPE1qaiq5ufp7/t/Qx3Z8s3t303VGJ29FZqaD0eONN75gxYoVDZ5kFARBqC+pqalkZUUCl9tKTgErAcjKyiI1NbXBx46NjSU9PZ3ly5dz3333ERKyCVBTA8ePh3DeeWNIS0ur+SCCIAiCUEe8vb1Zv379Hw8++GBmYWGh95o1ayIyMzP9li5d+sctt9xSZ4mqsWPH5gFERUWdHjZsWGHV+l27dhmTk5Pbbty4MaQux2vbtu3pL774Yp+fn1/FmjVr2hw/ftxv7NixJ77//vu97dq1qwxFb9++fdm2bdv2JCQkZGdkZPivWbOmzZEjR/xHjx6dk5aWtrtHjx6Vc/HLli37MykpKbu4uNg7NTW1TV5ens/8+fMPpaamHpo4cWJmUVGR97Zt2wJd9aljx45lU6dOPVZeXs7999/f2ZmkljtwmmBFEARBEARBEITGoxLm9tKV7HYwehw4eZIbmqozVSI9jMYMVPo7+Oyz3/jss6mViYMboqMvCIJQH9T4mKgr+QQ4WaW+4RiNRuLj45k8eTImUxbKoHIfAPn5I4iLiyM9Pb3BMlqCIAjC2cUPP/ywT7/98MMP5z788MO5ztquXr36EHBIX2Y0Gq0LFiw4umDBgqNV20+ePDlHWx8+fHih1Wrd7uy4SUlJ+UlJSU7rauuTK6655hrztm3bfq+tXVRUVHlycvIR4EhN7UJCQioWL17stN1bb7119K233qp8/84+J4AZM2Zkz5gxw2Xic3fQLJEegiAIgiAIgnAuoBLq6pPmOkZ6tL3wwqbrTGQkeNlu/3NzSVnxgq5ShX00VlZGEAShrkRHdwMm6EqSHeqrJySvPyqaJMu2tVhXM5qsrOJGRZMIgiAIgtByEaOHIAiCIAiCIHiI+Ph4vL0vrdz25lfCdPXDJkyovpOn8PamMns5EFD4g67SrnXVWFkZQRCEuuDvfyugjUlHgE2VdVFRUcTHxzf6HI7RImnAr7b1IGBMo6NJBEEQBEFomYjRQxAEQRAEQRA8hLe3Eb1BIYw9lTfgZSEhGJsykTk4SFy1Rz/Z1w0wVG7JRKAgCJ7EbDbz2mt6VYtlQAVApcyeO2SnqkeL6KM9/s7x48clsk0QBEEQzkLE6CEIgiAIgiAIHuL336G8XN1yR0QUMXPS3yvrfKKiXO3mOXTJzNtRBGiSwK0Ae507ZGUEQRCckZaWRufO/dmxwz7mBAamcN9997F8+XLS09PdllcoPj6eKIex9gNAy8X6FxYu/C9du3aVpOaCIAjCWYfVat2+d+/e3c3dj+ZCjB6CIAiCIAiC4CF26x4z+vcP4v6RI+0FERHVd/A0ukiPHsHBwAFdpYpIcZesjCAIQlUsFgtxcXHk5NwI+NhKv6O4eCeffPIJ8fHxbk0sbjQaWbt2rc7wkQN8pmuRKLmMBEEQBOEsRIwegiAIgiAIguAhfvvNvn7RRcDRo/aCjh2bvD/6SI/Hxo4lIOCIrvJit8rKCIIgVMWeWDxRV6oSmHsqn1BsbCzp6ek88MADtpIluto7AR/JZSQIgiAIZxli9BAEQRAEQRAED6E3evTqBRzRGRk6dWry/ugjPTp6ezNz5t8qt6+88nG3ysoIgiBUReULuhzobSspBj6uUl873hXlBJcUg9Vap/ZGo5H2lUbfDYBmgG4HDAVg3759dTqWIAiCIAgtHzF6CIIgCIIgCIKH0Mtb9eoFZGTYC847r8n7o4/04Phxrr7ar3IzK6urRHgIguBRVL4gfZRHClBUpb4G8vJg9my2vXUnu/45hv8seRBefRUyM+t4boBy4D1djcq1NH/+fMntIQiCIAhnCWL0EARBEARBEAQPUFoK+/fbty+8kOY3eugiPcjM5LLLwNdXbR44ALm5zncTBEFwB0OHxmMwjNOVJFeu1ZpP6NNPoXNnmDGDCHMBAD1yDsNTT0GPHrBtW43ndkxqnqyruRmIoqCgQHJ7CIIgCMJZghg9BEEQBEEQBMED/PyzhbIytR4RUYS3t8VR3qoFGD0CAqBPH3tRLXOGgiAIjWLtWi+s1ta2rYPANwC15xP66ScYOxaKipzXm0wQFwc1yGNpSc1DQkKAA5XnVgnV7wQ8l1dEEARBEISmRYwegiAIgiAIguBm0tLSGDJkauV2Ts7XdO3aldPp6fZGzZzTg+PHwWrliivsRa+//i0rVqwQT2dBENxOWloa99zzP13JUgIDWzFz5sya8wllZ8OIEaCNS50789jNk7nkkQ+ZfPNj0KaNKj9xAoYNUxJYLoiNjeXRRx+1bekTmt8LGACVbF3GQEEQBEE4sxGjhyAIgiAIgiC4EYvFQlxcHCbT5brS/5GXlYWvNhnn5eVogGgqgoLUAlBSAgUFREb+UVn9f/9nZvz48XTt2lW07QVBcBsWi4Vhwx6gtPRaXekyiouLeeutt1zvWFYGo0fD4cNqOyQE/vMfUntfhykgiDW9r4fPPgN/f1W/bx9MmFBjgvMePXrY1j4GTtrWuwPXA5CSkiJjoCAIgiCc4YjRQxAEQRAEQRDcSGpqKllZWWgTaIr/0lHfqF07ezKNpkaXzPxUejr//OdYXeUAwEBWVpZo2wuC4DZSU1PJybkF+xTEBuBPoBZJqaVL4euv1brBACtWqPwdegYOhPfft29/+SX85z8u+2LP7WHBMaH5xMo1GQObH7PZ7LCdnJzM7NmzJRpREARBqBNi9BAEQRAEQRAEN3Lw4EHgfEDL2VEA/IhDBo/mkLbS0EWYfJeSQm5uGpBtK2kNqAlF0bYXBMFd7N9/CPi7ruRth/qDznJxWCzw/PP27aefhptvdn6C226De++1bz/xBJSXO22q5fZQho9FuppbALtRWMbA5sFsNjNz5kxd0nlFUlISM2bMYPz48URGRjJr1iwxfgiC4Fb69+/fw2Aw9MvJyfF253EnT57cwWAw9Fu3bl0wwLp164INBkO/pKSkZnwgaBpGjhzZxWAw9Nu3b59fU59bjB6CIAiCIAiC4EZiYmJwjPL4Gih3NHo0RxJzDZ3Ro3D/ftvaVl2DAZVrTiciBUEQ6kl+/tXYDQrHgbUO9WrcrMKCBXD0qFpv1w6mTav5JC+8AIGBav3XX1WUiAtiY2NJT09n1KheqDEaVELzux3ayRjYNJjNZpYvX87EiRNp3749zz33HEWuktYDxcXFPPvss3Tp0kVkyARBcBsjRozIS0xMzA4ICKjw5Hm6dOlSmpiYmH3ttdcWevI85zpi9BAEQRAEQRAENxIfH4+/v94beTNAyzF66OStOvtpTlfbdA3smc2dTkQKgiDUA7PZzKZN+rHkXaCscisqKor4+HjHnU6ehJdftm8/+6zdoOGKdu3gySft2zNmQA0T50aj0Xbef+lK7wHsDr7nNedYfY6QlpZGTEwMEyZMYNGibzCZJgNpwLEqLd8FbkcZpxTZ2dkMHjyYpUuXStSHIAiN5umnnz6xZMmSI0FBQa4TQ7mB3r17lyxZsuTInXfeebL21kJDEaOHIAiCIAiCILgRf38j/v436UqU0aOH0WgvaiHyVhe3bWuTENFHegwEXExECoIg1IO0tDSio6/jt9+0rEYVqMlrRVRUFGvXrsWoHx8BXnsN8vPVerducLdjBIZLJk+2G3aPH4dFi2psHh8fT9u232OX+OsE3FpZ/+STT0okgQfJzc3lhhtuICurC/A/YDfwHHA5eqkxxd+BlcAB4GEgAFBRH4mJiZJ8XhAEQXBAjB6CIAiCIAiC4EZ27gSTSXmihoRYmDnzdpYvX07iDTfYG7WQSA/fEydYu3YtkZGHgFJb6SW0aTPA+USkIAhCHbFYLMTFxZGbO0pX+gVwmMDAQJKTk0lPTyc2NtZxx6IieOst+/bs2eDrW7eTBgbCc8/Zt998E8rKXDY3Go2sW7eaVq10idCZUrmWnZ0tCc3djF7K6rzz+lJQ8AbK8D6wjkfoDMwHdqKMI4qsrCyGDBlCXl6e2/ssCMK5QdWcHm+88UYbg8HQb+HCheHLli1rfckll/QMCAjoGxYWduno0aM7V839YbFYDI8++miHjh07Xuzv79+3a9euvebMmRNR9TxVc3rExMT0MhgM/bZs2VLtxnv27NltDQZDv2nTprWrWlcbBoOhX79+/Xr8+uuv/jfeeGO3kJCQy4KDgy8bOnRozN69e6vl2DCbzYYnn3yyXUxMTC9/f/++bdu2vWTMmDGd9+/fX63trl27/MeMGdNZe6/t2rW75MYbb+y2fv36oNr6lZeX53XJJZf0NBgM/V577bXI+r6vuiJGD0EQBEEQBEFwI+vXl1au9+qVxZQpjzNu3Di8jx+3N2ohOT3IzCQ2NpY///yVvn2zK4snTfq2+kSkIAhCPUhNTSUry4ySjNJQUlLFxcX4+fk5N6wuWwYmk1q/4AIYPbp+J77zToiwzTH9+Sd8+mmNzWNjY3nppY7AKVtJf+CqynpJaO4+HKWsdnLq1PfAnboWJUAKcBtVRCGBF7BH5AD0AL4HpgMGAEwmEzExMRLxIQiCW1myZElkUlJStzZt2pTdeuutOcHBweWrVq2KuPPOOzvr240YMSJm/vz57b28vKy33nprbocOHUqnTp3aOSUlJbym49966615ACkpKa2r1n3yySdhBoOBxMTEBll0s7Ozfa+++uqeGRkZfsOHD8+78MILLevXrw+78sorL9QbMywWi2HQoEEXvPbaax1btWpVMXLkyNzevXubV69e3aZv374Xbdu2rfKCfeDAAd+BAwdeuGrVqohu3bqdGjlyZM4FF1xg2bx5c+jNN9/c48svv3Rp+DCZTF433HDD+bt27QqcNWvWkalTp55oyPuqCz61NxEEQRAEQRAEoS6kpaXxwguFwHUAbNkym65d17F27VpijxyxN2xOeStdpAe2PhmNRh5//DzGj1fFixcX4e39FjExMcTHx0vEhyAI9UYlAb8bCLWV7AW+rFJfhYoKFZ2hMWkSeNXTV9NohIkTVYQIwLx5MHJkjbsUFh4A3sduoJkCfFdzX4V6oUlZFRQUAPcCbwJ65+E1wOPAIRdHeB54BfUdvQgEA77AbOBilPGklIKCAuLi4khPT5drlyC4C4OhX3N3oc5YrdvdfcidO3cGffjhh/tHjRplAsjJyfHu3r37xRs3bmxtMpm8QkJCKlasWBG6YcOG1gMHDjRt3rz5QEBAgBXgnXfeCbv33ntrTJKXkJCQN3fu3A5ffvll67lz51Z6SR05csTnp59+Curbt2/RBRdcUFrTMVyRkZHhP3LkyNyUlJRDWtn06dPbvfTSSx0fe+yx89atW3cQYNq0ae23b98e9NRTTx19+eWXM7W269atCx4xYsQF999/f+cdO3bsBVi6dGl4UVGR9/z58w89/PDDuVrb+fPnt3n00Ue7rFy5Mnzo0KHVkmqZzWbDjTfe2H3Hjh1BzzzzTMYzzzyTXbWNO5FID0EQBEEQBEFwAxaLhWHD7qG0dJCudBNZWVncOnw41qwsVWQwOBoemhp9cvL0dCgvByAuDvz9KwA4ciSMGTNWMH78eNFJFwShQXTu3A14RFfyD8CeGzYmxskc0KZNsHevWg8OhrvuatjJ77/fLon1v/9BLWOY6ss/dCVxwAWVW8ePHxeJq0agRXgog8dsYBF2g0cecDMwEtcGD5gxYwZBQT4oY8mlqBwgGmOA/6AZ2CQ6RxAEdzJ06NA8zeABEBERUR4bG1tYVlZmOHz4sC/A4sWLIwDmzZuXoRk8AO655578gQMHmqof1U7v3r1Levfubd6zZ08rffTFihUrwioqKhgzZkxuTfvXhMFgYO7cuUf1Zc8//3xmWFhY2aZNm1qXlJQYysvLee+99yKjo6NLXnzxxUx92+HDhxdeddVVBT/99FPg4cOHfQBiY2PN06ZNO5qUlOQQfdKnTx8LQHFxcTV7Q0lJieGmm27qvnXr1uAnnnji2KxZs7Ia+p7qihg9BEEQBEEQBMENpKamkpNzC/Zg6q+BPwHwys7GYLU9/7RrV3d9ek8QHAxRUWq9tBQyMgDw8bEAn+sajgHU5JFo2guCUB/MZjPff98elX8B4AQqkkIRFRVFfHx89R3feMO+npSkxquG0KEDjBlj354/v8bm8fHxREXlA2ttJV7AE5X1CxcuFANwAzCbzSQnJ3PddddhMhUCC1ByVBo7gH6oXC92jEYj9913n0PZzJkzyc7OJjk5maCgE8A1KAOIxrXAV0AYoK7Jct0SBMEdXHzxxdUGk5CQkHKAwsJCL4Cff/45KDg4uLx///7V2vbv37+4tnPcdtttuQAff/xxpcTVp59+Gubr62tNSEjIb2jfo6OjSzp37nxaX+br68tll11WXFJSYjhw4IDfL7/8EnDy5EmfsrIyw913390pKSnJYcnJyfEF2LVrVwDALbfcUvjSSy9lFhYWeq9Zsybk9ddfj7j//vs7JiYmdnXVjzvuuKPrt99+G+Lj42O96667miT5kshbCYIgCIIgCIIb2L8/HWfa9QAOYlbNmc9Do3t30CJPDhyAzp1JTU2lpGQ1ysMZlNHjecDuNTtu3Lhm6KwgCGcSaWlpDB8eR3b2Z7rShWg5M6Kioli7dm116aE//oAvbJPfBgM89FDjOvLoo/DBB2r944/hn/+05/qogtFoZO3atdx440vk52tjYALwKnAAsBuARTapbqSlpREXF0dWVhYq58YS1GeqsQ4YDTjOD4aEhJCenk54eDhdnvrcoc5oNJKQkECvXr0YMmQIJtPDwBHgNVuLPsAGYAgpKSl8++23Sl5SclQJQuPwgGTUmURAQECFqzqrzanp5MmT3tHR0SXO2gQGBpbXdo6EhIS8F154odO6detaT58+PTszM9P7hx9+CBo8eHBBZGRkrfu7Ijw8vKymPpWUlBi0hOzHjh3zS05ObuvqWCaTyRvg0KFDvomJiZ2//vrrUKvVSlBQUHm3bt1OXX755UUHDx4McLbvL7/8Enj55ZcX/fjjj0ETJ06M/vbbb/c39D3VFYn0EARBEARBEAQ3cPLk1dgTr2ah9MkVDmaO5sznodG9u339gJrQU5r1XwCFtoqewGWVzUTTXhCE2rBYLMTFxZGdfRkqITgoY8dCAgMDSU5OJj093fkk9OLFoEXEDR3qOE41hH794Ior1Prp07B8eY3NY2NjOXp0BR077rOV+KAZfjVENqluaPk7sjTjOgtwNHisAOKpavCIiopi06ZNhIfXmPOX2NhY0tPTCQ0NBV4HEgFtTvJyVO6YIIlUFAShyTAajRX5+flOgwuOHTvm56xcT3R0dFn//v0L09LSgk6cOOG9cuXKsPLycsO4ceMaFRVx6tQpg7PyzMxMP4DIyMiyoKCgCoAhQ4actFqt210tY8eOLQAYM2ZM16+//jp06tSpRw8dOvRLYWHhzp07d+59+OGHXeboeOihhzK3bdu275JLLin+7rvvQt59992wxryvuiBGD0EQBEEQBEFwA7t2XanbehewR5JfGBRkr2opkR4aNqOH0rQ/BXyqazilcs2p/r4gCIKO1NRU20T3LF3pYiCb4uJi/Pz8nEdJlJfDe+/Zt++91z0dSky0ry9ZYjequMBoNHLzzd/rSsYCvR3a7Nu3D8E1jvk7QEXLPKBrsRi4A1DOx5qU1fLly10bxJwQHh7Oxo0biYqKApYCejmsvwCpgB9ZWVlMmTJFDB+CIHiUnj17Wk6ePOnz448/Vot02LZtW5CzfaoyevTovPLycsOqVatCU1NTw4KCgsrHjBlzsjH9OnjwoNFkMjnM/+fl5Xnt3bvXGBkZebpTp05ll1122Sk/Pz/rnj17WpWXVw8qmT59eru4uLiueXl5XgUFBV5paWnBl156afErr7ySqZfO2r9/v7+rfjz00EMnvLy8eOONNw4bDAaefvrpTvn5+R61S4jRQxAEQRAEQRAayc8/W9i82du2VQH8u7IuKiqK+4YPtzduoUYPpWkfhfLI1RgPXEpISAg33XRTU/ZQEIQzEGUQiAO0ietTwEuV9S4jxjZsgGPH1HrbtjBsmHs6NGYMaEaWX36Bn36qdZdrrvEHNGkuLxwNODB//nzJ7eECLdLHZNJy9j4DTNW1WA7cixaVERISQkZGBm+//Tbjxo2rt2yYFvExatQolLOBXhJtCPAeYGDhwoVERkYya9YsMX4IguARxo8fnwPw9NNPdywrsytKLVq0KHz37t2t6nKMO+64I9/Pz8/6wQcftNmyZUvwsGHD8lu1alWztb4WSkpKDFOnTu2gL5s6dWqHoqIi77/97W95AK1atbIOHz487+jRo36vvPKKg7zV8uXLQ1999dWO2dnZvuHh4RXe3t5WLy8vcnJyfCwWS2UUye+//+43c+bMjrX155prrjGPGjUq58SJE76TJ0+utX1jEKOHIAiCIAiCIDSCH35Io3///+lKPick5KSD52q70lJ7dQuVt9I07aOiDgGf6Bq/iMlk4qKLLpKJPkEQXJKWlsa8efOBmbrShcCxyi2XEWPJyfb1CRPA19c9nQoNhZEjnZ/HBfHx8YSH/1NXMgKVNFtRUFDQ5JJJZrPZYbulTtzbI30AHsXRYPQJSuJKGTzqKmVVG0ajkfj4eNvWW8AMXe3tgEpiX1xczLPPPkuXLl3kWiYIgtuZNGlS7qBBgwo2btzYukePHr3GjRsXff3113d74IEHug4aNKig9iNARERE+aBBgwq2bNkSUlZWZpgwYUI1aauvvvqqVVJSUqe33367ToNnWFhY2fvvvx/Zp0+fnuPHj4/u06dPz8WLF0dFR0eXzJ49+7jWbsGCBRmdO3cueeaZZzr169evx+233955wIABF0yYMKF7cHBw2bJlyw4BBAUFWYcPH56XkZHh36tXr4vGjRsXPXjw4O69e/fufemllxZ7eXnxzTffhDz33HNRrvo0b968o0FBQeXvv/9+2++++65OBqGGIEYPQRAEQRAEQWggFouFv/71HUpLh9hKKoDZmEwmPvnkE+Lj45Xn6qFD9p1aQqRHt2729T/+gAo1CRUbG8vu3bsJCnoVuz76zcDVoo0uCIJLNA//wsIbsOcCKgZeqWwTFRWlm5zWkZcHn+pk9fSSVO5Af7zly+HUqRqbG41G1q9/FR+fVbrStwG7JHtT5fYwm83MnDnTFoVnp127dkycOJEVK1a0mDHZbDbrPpO7gXm62g3AGKCs9twuDcAeqQgwG8eIxUnA05Vb2dnZci0TBMHteHt7s379+j8efPDBzMLCQu81a9ZEZGZm+i1duvSPW265pc4SVWPHjs0DiIqKOj1s2LDCqvW7du0yJicnt924cWNIXY7Xtm3b01988cU+Pz+/ijVr1rQ5fvy439ixY098//33e9u1a1epZdW+ffuybdu27UlISMjOyMjwX7NmTZsjR474jx49OictLW13jx49Kj24li1b9mdSUlJ2cXGxd2pqapu8vDyf+fPnH0pNTT00ceLEzKKiIu9t27YFuupTx44dy6ZOnXqsvLyc+++/v7MzSS13YLDWoml5LmAwGLb37du37/bt25u7K4Ig6Ojy1OeV64deubkZeyIIgiA0JWfS+P/OO6u4996rgPa2krfQy2ssX76ccbffDsHBoHnqnjgBERENPqfbPp+ICMjNVesZGdBRRZivWLGC8ePHozTS77I1/gG4EihT72ncuIafVxA8wJk0bpyNqHHjHmAPEG0rfRltsjk0NJSNGzc6n+ResAAmTVLrsbHwww+1nq9e33dFhTL0asbnjz6C0aNrPcfkyXOYN+9eQJtXmoGaUFeMGjWKZcuW1VuSqa6kpaVx880jOHHiCqAPnZ/sU1n356t2ycSoqCjWrl3rNgNCQ0hLSyMuLs4W5XEnkIzdx/Zb4CbAXPPvwAn1+Z4d++CFSpY+RtfiHpQElkKuZZQzng4AACAASURBVMK5QL9+/dixY8cOq9Xar6Z227dv/zEgIODCXr167Wmqvgmex2Aw9OvRo4dl7969u5u7Lw3lt99+u/DUqVN7+vXrd3l995VID0EQBEEQBEFoAFYrLFzYDbvB4xh6b1Kw6dcfOmQ3eERGNsrg4VacSFyBXnP/OUBz6uoPvA4o+RLxkBUEQcPu4f8MdoNHNvBaZZtHHnnE9US3XnLK3VEeAF5ekJBg316ypE67XX55B2C6rmQ6cH7lVkpKCl27dnW7VJLZbCY5OZlrrx3LiROrgNWoz1bPckDJrmdlZTFkyBDy8qqpoHgcra/XXXedzdhwO7AE+1TTj8BwwExISAgHDx70mHFGy+/xwAMPoCIV7wQ26Vq8jZIqU8i1TBAE4exGjB6CIAiCIAiC0AAeeiiDnTv76komASaHNjExMbBb51zVq1eT9K1OuDB62DX3/8RRG/1R4HaPTfQJgnDmkZaWRkxMDCkpvwFTdDVTAbuaR48ePZwf4JdfYMcOte7vD7ff7pmOJiSAwZZvdcMGOHKk1l3i4+Np23Y1oI11AajE2PZ8I+6W/dM+z6SkRZjN3wADXbQcB/wKXAyAyWQiJiamScdle1+TKCoqAkYC7wPethY7gb8CJrfl76gNo9HInDlzbFJXpUA8yvCCrV8rgUGA54xWgiAIQstAjB6CIAiCIAiCUE/+9a9SFi7U5+ZYAaxxaFOpX//bb/bClmT00Of10Bk9HLXRX8Pxfb0LxEp+D0EQKvN4ZGVlo6T9NGPAd8CyynYuc3mAY5RHfDyEhXmms507w3XXqXWrFZYtq7k9agJ93bpPCQ+fBpTZSv+CFvWm4a78Hrm5udxwww1kZfUG/g/oYKspB95wskckKleGGsubMsG6va9a0vK/oQwKPrbtX4EbgHxGjRrl1vwdtWE0Glm7di1t27YFioBhwH5bbQDwGXAJ0LxRMoIgCIJnEaOHIAiCIAiCINQRqxX++c9SHnzQR1e6GXCUZAkNDWXt2rVK611v9LjooibpZ51wEemhTRjZDR8JwD7beiDwX+B6srKymDJlihg+BOEc5cMPP7RNek8GBttKy4AHAJU7VMs34TTvRWkpfPCBfdsT0lZ6kpLs68nJakCvhdjYWDIy1nLxxSt1pY+gZJzs7Nu3j8agRU0UFFyKmpQPsNXkAjfazqmnwPbaDtiIZiDx5LhsNptZvnw5EydOpFOnThQUaH0YCqzCbvTaC1wP5ADKkO6pvCeuiI2N5dChQ8ycOZOgIAsq4uS4rTYUWA90AZonSkYQBKEpsFqt28/kfB6NRYwegiAIgiAIglAHSkogPv4Ejz3mh9Wq3UbvQMlnlDq0ddCvP8PkrcCujT5q1CigEPUec2y1QcDnwBgWLlwo8iCCcA6SlpbGpEmTUPl+XtbVzAV2AdTu4f/555BjG1fOOw+uv96DPUZFkoSGqvU//oBvv63TbkajkSef9Ebl1tB4F7301Pz58xs0DupzYphMvVFjaytb7WHU57vZyZ7DAc2w0RX4D6CiZDwxLmtGmQkTJrBo0SKdUWUM8AngZ9s+gDJ4ZAO1RPl4GKPRyIwZM8jOzmbUqMtRydQ1Q017VJRMJNC0UTKCIAhC0yBGD0EQWhSaB9Hs2bMdylesWCE3oYIgCEKz8eOPMGBABZ9+GqkvRXm4FlZrX6lfX1EBe/bYK1qy0aOK17PRaNRNVu0BrgY0HXx/4EPgXbKyikQeRBDOITRZq+JiH9Q4oHn4b0WfB6hWD3+9tNVdd4G3t+u27sBohLFjnZ+/Fm69NZ7IyKeA320lgShDw1WAmjQfPHgwS5curfMzi2NOjKtRERtBttpjwHXAQRd7fweMAk7btnsDX9j65d5cI9WlrDQeQX3/msEj3dbnY0AtUT5NiP1a9gsQB5yy1ZyP+szUZ+4umTJBEAShZSBGD0EQWgx6D6IZM2Y41I0fP57IyEhmzZolxg9BEAShycjJgYcfhgEDrPz8s/7W+X2UESC72j4Onq2HDoHZrNYjIyEiwsM9rgcRERASotaLiiC7+ntxzO+xF7jS9qrxd2AnJtNAkQcRhHMAs9nMlClTyMrKB1JQUQagkpbfjjYJX6uHf2YmfPGFfTshwSP9rYZeQuvjj6GwutHaGUajkc8/X0Fg4Dgg01YaBHyJyl0BxcXFJCYm1umZxdGQMB74FHuERxbKePBHZfvAwECH/UNDQ1ET9ncBFbbSK4BUNGmsrKwsPvroozq9P1fYZbcKdKV+qBwu/9SV7UYlCD9CYGAgycnJTZrHozbs17JvUb/TclvN5SjjlYoASk1NlWdNQRCEswQxegiC0Ozow7qzsnJRN+9Vk/X5UlxczLPPPkuXLl1kUkUQBEHwKJmZMHUqdOkCb74JFRUGW40FeBS4E7u3qJ1qnq0tVdoKwGCoUeIKnOX3OIKaWNPr23cHvqSg4CMGDZpUL09nQRDOHLQJ8IULFwErgCG62iTgTwCCgoJq9/D/4AMot008X32141jkSWJj7WOx2QwpKfXYNZbHH78Zlb9Eyw8RhMoP8SpaxIv2zNKuXTsmTpxIcnIyycnJPPvsszz44IPcfffdtpwYFcC/gQ+wR8uko6JH7DlCQkND+eqrrxz6snHjRtu4vBKYpKu5ASXb1BqASZMmNfi5SYvoMZlMutKOwNeovC0a39n6nFHZ14SEhGaP8NCjXctCQkJQBqb7dLUDUbmqIkhJSRHJRkEQhLMEn9qbCIIgeI60tDTi4uJsXk6XAkuAvrbaz3UtdwNPAavJzs5m8ODBLFiwgDFjxrSoG2pBEAShcZi1qAgbmrdobm4uERERdOnSBYCjR48SExPj1gSpZWXw3//Cv/8Nn36qth35D2qix7ncyAMPPMCcOXMc+9NSk5hrnH8+7Nih1n/7Da68sloTLb/HlClTWLhwIUoTfRywDliI5iELN3Lq1I0kJn7J/feP4vHH+9KtW4zD99ejR49mSWornN1UHTeee+45+a25GS0yoaCgCDVRP1JX+wwqwkDx5ptv1uzhb7U6Skt5OoG5HoNBRZU88YTaTk6u1/mVdOFe4FrURHlHlC/pVFTOiJmoz6ICk8nEokWLWLRoUZWj+KA+v1fQkmkrdqGSlh+vLAkJCeHgwYOEh4fDavuzUfVxOQzQ5IGvRhkihlJUdKRBz01ms5knnniiiqRVAipnS7iu7EMgETjl2NcWiPaZqciVxYAReNNW2xf4BriZrKx0hgwZQnp6eot9L4IgCELtiNFDEIRmw/7wVIAyaMzE7uVUle6oEPr3gPsqw8efeuop1q5d22JCpwVBEIS6YzabSU1NJT09nY4dO5Kens68efNo8+CHlW2SkpJqPEZISAijRo0iICCgQZPqubnw9dcqn+6nn6rt6vwMvIB+Uq8qUVFR1Q0e0LIjPQD69gVN/mTbNrj3XqfNjEYjc+bMYfXq1bpJsBXAJtRncw+g6fEP5dSpobz44l6UM8MHVJ3E039nnjRkCWcf2rixb98+cnNzKSkpISUlhdYTl1e2mTlzJtD48eFcR/usv/32W5YtW4bF4gt8BgzTtZoLvFi5FRUVxZgxY2o+cFqafWwMDITbbnNzz2thwgR46ikVafLttyrKrY6RJppMUlbW70A/YCnK2AFwCep5ZT8q6fl3qHxIpahnnEtRicnvRBlL9KSgxtGTlSVa5KCriXfHcflFVCTiXFttL9S16zGKi9+r13OTo1MawMXAP3CM7CkDpgDz69TXlkJ4eDgbN260vb8FQDHwDur6dSGwDYjHZPofMTExbNy4UZ4zBUEQzlDE6CEIQrOQlpbGkCFDMJlOoXTRJ+hqLagb68uc7HkX0AOIBzLJysoSTxxBEIQzDLPZzJw5c3j99dcpKiqqVt+mHscymUwsWbLEoSwkJISxY8cyaNCgyglOq1VJVh04AL/+qoIb0tLgl1+sWK0GF0f/FnU9+hSwumhTS7JWfaRHSzR6XHGFfX3r1hqbavIg6vqtyZ1kA/cDC4DnUN7LmoJuT+A1lDfz/1CTgBswmfZU+870BAYG8thjjxETEyOGEAFwnHz/8MMPq+QXULR2sp+r8UEMITXjfIy+AFiDmkzXWIya+FbUOXG1PsrjttsgKMh1W0/Qrh0MGwZr16rt996DWbPqtKs2DtqNAsOAh1DyVtr7Ph/l0FUX8oAHURETisDAwDpHZmj9GTx4MMXF/0AZmJei8m6E2dbHAi+QlbWl1qgPTdJKvbd+tvcxqkqrg8BdGI3bufPO+xyutWcCWsTHnXfeSUpKMlCEeh71ByKBzcCjFBS8TVxcHOnp6WfMexMEQRDsiNFDEIQmxWw289FHH/Hwww9TVGRESWNcrWvxP1SI9H5bnUayrRyUlviPwC3Adkwmk3jiCIIgtHD0k5YrV66sohHui5og70V179cPULesPihPzNNVllLdugEwYjIZWbSoFYsWGfHy2kFoaE+Ki0MoLXUWTVjV4JEBrEJ5fu6p9X05lbTSqKiAPbpjtER5q379wNtbeTzv2QMFBRAa6rK5ozyIfuL5N2A00A2YjHJmsCVJxwt1rdeu95koWZjNwFcoDXs7xcXFzJ4926HMmSFLODtxFQHmzEDaEOpqKD1XSUtLY/jw4WRnZ9tKfFHSTc+gJchWzAaerdyqcSzUY7HASl1OoKaUttKTmOho9Hj+eTUW1gFtHPzoo4+YNGkSRUVvAh+hcms8iDI21MZx4G2URGBOZWloaGi9n2liY2NZsGABiYmJqBwfR1DGjm62FjfaljSKi1eQmPhPnnxyGuvWfeZwnsJCePHFr8jKuhclYdizypnKgXnAc4SE+JCennHGOp0ZjUbi4+NJSUlBXfOPAJ8AUSjjx7+AG8nKupspU6bU7bctCIIgtCgMVqtrr7UzDYPB0AqYhnJl6Ii6ci0HXrJaradr2G973759+27fvr1pOioI5yDVPcYGoW7KO+haLUJ5SikR9c5P2o0ef746HPUgMQ+7fIYFlTRReUbVxytKEARB8Bw1T1pGo6Qy9EtP9PKGnZ+065b/+erNHu5tGZCGmoT/zLZet/vjqKiomj1A09MhJkatR0ZC5SRi4+jylP3zOfSKGz6fvn3hp5/U+saNMGRIze1xJn9SlVYo7+C7gGuwX7udkQPs0C0/oTyJK5y21keCOMv34u6yo0eP0rFjx2r1EiHgXmqLAKuN6veNDeNciwTRy4VlZWWxfPlyiouLUf/Z24HpKNkfjVPA31Hydopax0I9K1fCuHFqvVs32L9f5dmoJ40eB0tLoWNHyLEZHOo49lWlupEoEJVM/CrgStQkui/KwP47aoz7HliLMtbbCQkJqTF6vab3bLFY6Nq1q25MboUyTD2CPfrOYQ8Mhmw6dWqFxQKnTwdSUGCsIfLxE+B54OfKiJ6mcDZz+/VOR/XPLBp1H3CprtVxYApt225m3TqRVBbOPPr168eOHTt2WK3WfjW12759+48BAQEX9urVq3aPH0FoQn777bcLT506tadfv36X13ffsybSw2Aw+KDibW8EtqNcxy5DXZkHGAyGm61nk4WnEegnIkQuoH5UncQB5w+/Vqu1xs+4qhZxQx+2a9tHO7fWH/353P0AV9NnU1JSwqpVq2xeva1Q2t/TsU+AVABPoCREFIGBgU7O8ibK6/ZjlAeVEWU4uRGYSnHxCRITE3nooYd48sknmTJlivy2BY8g46hwruNszNeuVXYDhw/QG7th40vbq+soAs9zEhVJqE087UDdNhbW+0ihoaG1y7j8/LN9vSVGeWgMGGA3emzdWqeJv+qezlUnqc3AMtsSAYxA6d4PxjEJLrb6v9oWjRLgAOq70pY/gQyKizOqRYI0F5KfpP44Gz+2bdvmJAKsKhEoA2lPlNRSB6AdShAvAPhD1/Y7lP/bn7blMHDI1uZUjf07FyJBapYLi0H5EP4d6Fplzx+Bu1G5IhR1Ggv16KWtEhIaZPBwC35+MH48zFc5KXj33QYZPWJjYzl06BBz5szhtddes42Fn9iWutPYnBjVZbfMqKi7xcCjqOg7faSOEau1M4cP13TUIlQuq38AO4F6RPScAVSXbDyMUhR4FXjY1qo9sJzs7G8YPHgqhw+vPmOjWwRBqJ3+/fv3SEtLCzpx4sTOiIiIcncdd/LkyR3mzZvXfu3atb8PHz68cN26dcFxcXEXJCYmZi9ZsuSIu87TEhk5cmSXNWvWtNm7d++uHj16lDbluc8aowfqKn4jSozxLs3AYTAYlqJczO5APXWd0zjzyjubvZnqa1yoyeBQ19D6wMBAKioqsFgslWX6z1hLtuhMi9gTBAQE4O3tbfPYcqSmB/X6GFnq9tm0QiXnex7H6I4TqL/vhsoSLaz7ttV2j9jk5GTbpMomVALAz7B7nSWgpK5eBJZSXJzLs88+y5w5c87YiYjaDGye9Fz1lKdsS+iDO87n7Pfu6r90JrznM+H/cDbREKN3c38/NUdthAOdbMv5QFvgepS8R1Q9z5QO7EJ5+J+vKx+PisYoQxnJfVBa5b66Rdu2oqIA9UshylPzOPoEsY0hJCSEgwcP1j7x8X//Z1/v398t5/YIV1wBb7+t1mvJ66HHaDSSkJBAr169qng6VyUHeNe2eKG8aK8HrgMG4twQ5o+SO3OVByUfJUV2xPZ6DHVPkVPlNZeq3tTuxNkEuZ5zPT9J/aWqvFET7T2dLLVl+9EbPa500aYCZfzYB+yt8prp8sgmk4lFixaxaNEiAgMDzyjnGleJ3+3PIpHAUJRB8nqgr5OjFKKkrN5ESRwp6jwWahw8CJs2qXWDAe68s2Fvyl38/e92o8eaNXDihIrKqydGo5EZM2YwZcoUUlNT+eabb1zmntHjbmOac2P0b6hnsGmonEvXoqLv2js5QjnwK/ADyof0M9R1VBEVFXXWGDw0qks2nkJFx2wA/o39uXUQxcVfERm5ib/+9Se6dj1EZKT7nBTPps9UEM5kRowYkde7d29zQECA83BjN9GlS5fSxMTE7Guvvbb+nldCnTmbjB4Poq7ST1aJ6HgZZfS4m3Pc6OGYlMxOXRL8ObuYN+Qi7U4jRG37NLVxQcOZcaG2B2JPcuqUa282z/bLDzVR0QfluTkcFe6t53/AGOBoZYnDw9NqezizNqmiPHEOoLxw3gVus7UIA+agDB+fAZsxmbawZMkyNLmsqlSdiGgpBgB3a1cLnqc5/+PuwhNyMe4yojdFdFxTGJsac12q7ftp6INzebmSVzeb7a9mMxQVwfHjJaxc+R/Wr/+B0tJAlEEjGDVhMg5l6HAWlVcbeSjjxi7gF9vrbzhGW+hzOq2gJVEvb9zNm+3r11/vuU41Fn0y823bwGqtl/e1c09nV1Sg5Kt+Ql23DahJ7r665RKcT8jpCbMtF9ehhydtS4FtMVV51a8XoTyktcXiZLvuwePO8pPU5f/c0uW06uKc4fx+xh8VnaHl7+mKiizQli6oe0hP4aU719AqdQXYDSB/YjeoaUs+oL5TZ841zfX91PRdmM1lrF79XwoLfVCTt9G25R+214twdEaqSg4wH1hAVaNxgyIT3nlHjS8AN90E0dF139cTXHyxGv+2boXTp1VujylTat/PBUajkXHjxjFu3DjmzZtHamoqBw8e5LzzzgPU95KTk+PR34veGO347J+DkhJeZNsOQl3X26DGtZO2Ns6fHYOCguoX0XMGER4ezsaNG6t8Xp+jjK3PoowgSoKzomII69cPQUUiJgOvoCIRG46n7vEEQag/Tz/99ImmOE/v3r1LzvYIj5bAWZHTw2AwBKPuQn+yWq3VRBYNBkMmyhUx2Gq1ljipPydyeqxYsYLx48ejHiJvd9HK2e/B1W9Elfv5+XPttdfQpk2E7ea6mMDAwMob4Ly8XIqLiykrK2Pnzp2cOmWpdoz6nM8dfT5zzufJvnmjHvy8dOtVX13VBaAiN4y2Rb8einp4auvivKC8MZ9FJdize4tV1Yd1puGal5dXJXnqTSivs+4uzlVuO18G6ma+EDWxUYia2NAnwHW2lNley1GfZYVtcee69h3V97Uh+7Tkc7kqawrO5vM1x3XeULkEB4dy222jbf9rA4cO/Ulubh5t2kTQqZOa7Pjzz8MOZVarKsvPz6ekpJS1a9dRWFioO67jORpe3tB9XI2ZdRlXG7qPN46RDc4XHx8jUVGdMBh88fIKwNe3FeXlBiyWMkpLAfywWgMoLfWhpMSb8nJP+r9YUJOHVQ0cx2rdU6/N/3zPEw4TRV27KrmVrVu31smT1h00yBs3KwvatVPrvr6Qnw9OpRvrj9s1zisqoE0bOGmb1DxwQGntNwCLxeJyoq9+hr9gVMRPD5SU0fnAebrFv0H9cw+ncDSClKDuJ1wtp2up19qU17oYjf4MHDgAf38fQkODaN++LQaDlezs4xQWnqR162A6dmyHl5eV48czOHmygNatW9Ohg5rYPnbsaJ3KsrOzadu2LVYrZGRkkZ9fRFBQGJGRHTh27ASffvoFp06V4TgGBaGS1+uXYNtrGOoZpC4Jnl1RhDJK6A0TmahoHjOdn5xT2bLXrt189dUfWCyRQGfbohlV6pasujplKKNtru61CH1kmZ9fBRdf3I2AACutWwcQERGOwWAlJyeH4uJCgoODiIxsg8EA+fl5tGkTBljJysrBZLIQGBhKWFgE5eVenDiRT1HRKYzGYEJCwqmoMJCba8JsLsHPL5iAgHDy8izs3n2I8nI/1P24toSiHn8bMuacBtajDM6fovf0b1RkQmkpdOpkz230ySdwyy0N6J/CbePg0qX2ZOrnnw/79jWf5FYt1Pc9WyyWGiQI60dycjIJCQmNOkZD8GROj6pYLBamTJnCwoULq9T0AJ5Byb45Gz8OAP9B5WrZiopYdT8NNZi35Aj65ujDuWZEkpweLYOq8lbN3Z+mpLHyVpLTQ7mDeaPcBJ2xB+WW2JnGmuHPYA4e1C6+XdDnTmgspaWwYUPt7RTj3HZe4UzkN+A94C3URIGiPgnIq3virEdpxt+B0h6+osoe3tilVwRBaGoKC2HJErU0nHnu6s5ZT1kZHD1aezv3UYjyhj6CkozZg31S8jB1NboFBgYyefJkYmJiyMjI4F3d3IyrSZaEhIRKT9p9+/ZVTqrbc0g1nkbJ2Pz3v/b1K65wm8HDI3h5qbwe//mP2t66tcFGD83T2RVvvvmmw3emGbIOHjxYJSqgEHvelaoYUPkdOmE3grS3lUVWeW1Dwye5XRFgW5pe191icQwgaj7Ge/DYGdjHEf3iGBl822234e9/PhERf6FHjx48/Yv9CJ9//kSlAU791n6yjQ+fYTJFojy4e2CXzupB7fmGfFBOPa4de0pLoen96C5r5P5mlEH6f8BXwDcoByE7bpH0+uQTu8GjY0e42bMT2HVm9Gh49FEoKFBJ1b/6Cq67rrl75Rb0UR/2vBX1JyoqijFjxri5dy0Po9HInDlzWL16dRV1jH2oZ83nUXlSxgGtdfXdbcuDtu0i1P3QfpSjh37JRl3fCoFilBNc3XAWOSg0nKoOl4IA1XN6vPHGG20eeeSRLm+99VZ6UFBQxZw5c9r9/vvvrYxGY/kNN9xwcuHChRn63B8Wi8Uwbdq09qtWrWqTk5Pj26FDh5IHH3wwq+p5qub0iImJ6ZWenh7w/fff7/7LX/6i9xRn9uzZbWfMmNHpqaeeOvryyy+71uJ0gsFg6Ne3b9+i995779Djjz9+3pYtW4KtVitXXXWVad68eRk9e/Z0MEKYzWbDCy+8ELVq1ao2R48e9Q8NDS0bPHhwwezZs4+ff/75Dm137drlP3v27HbfffddSE5Ojm9YWFjZpZdeWvzYY49l3XTTTTVa2vPy8ryuvfbaC3bt2hX46quvHp46dapHImzOFqOHJvBa7YdkI9/26vLJZM+ePfTr59zwebZEgMTExDR3F4RzigqUl4smYfEZzuySbdu2Zd26dfW62XCuV6tphfdCpff5CzAAMXYIgiDURAWO8j3aejHKk7nqonk4Z6OMGg2PsqjJY/hdnWdnTTibYH/zzTfrKLPkSFXDS6O9APVGj5YsbaVxxRV2o8e2bSrBrweoySgybdq0alEiW7dudZLg2orK13EC50YRPV6oyanWqIiD0BpeQ1Ge8VoEq95zXttuwcarM4Iy1CNbJirPTjrqflFb0lHjj3Nqmnx/+hfHccP5+GCpYij9hpSUh23RR+1QBpDzcTSoaUtwQ990M1KGehTOR43bf2JP7H4YlQflAK4mXuvjmFQrWt4ggHvuAZ8WMhXRqhXccQcsWKC2//3vs8booVE9b0Xd0SaGm8wjvrQUvvxS5Vg5dIjNv/6B8XQJf4SfB6f/C4MHw9Ch4O1uY7aienJzPX+gDBuPA7eiZJaHoKLc9AQBsbalNoptS03KA3oFAlcKArW91qetq330EfkNXRqzvzvPvZGsrCzi4uJIT08/KyI+XM1n7tkjgRvuYMmSJZE7d+4MuvrqqwtuvfXWnO+++y5k1apVEUVFRd5ffPFFZXjXiBEjYjZs2ND6vPPOK7n11ltzDx8+7Dd16tTO5513XjXVIT233npr3ty5czukpKS0rmr0+OSTT8IMBgOJiYl5Del7dna279VXX92zQ4cOpcOHD887cOCAcf369WE//PBD8NatW/doxgyLxWIYNGjQBdu3bw/q1auXeeTIkbmZmZm+q1evbvPFF1+Ebdq0ad+AAQMsAAcOHPAdOHDghcXFxd5XXXWV6ZprrinIyMjw37x5c+imTZtar1u3bt/QoUOdPoiZTCavG2644fxdu3YFzpo164inDB5w9hg9Qmyvrn5E2p3z2fJ+G0R8fDxRUVFkZR3HeaSHszBeV6G99Sn3VNuz/Xye7ls56gbG1WtNdZqsgxbOr1/XEsZmo5euqkpjPcZcJ0/9DUfjih/qwbUD6mFVk1kIRt2Q1i4XoxYDdgkaQ5XXxq6Do5xOFsLGNQAAIABJREFUXV4bsk9DX5vrHE3F2Xy+5nhvNT2U1Lfcncdy1zlqGx/rMoY2tG1dHohrWjQZnaqyPE2Lp5MAV00o60pPXZPJcouBwxl6d/wzYQJNn9fj+++bpQvOJqm1iJ6GGLIUFdiNdu7CH0eDiF8dFt86tPFu4OLlotxd14C6jjFFqAgBbSnUrRdgl6JqWASYO/6nrgyljsmn/8/F3n4oH7pwlM+dJh/lTO7ViIoGqnrPaHCxrsmpltVxOY1jrhn9uG5Bfd75OOZKqh9u9YLet09FUICKLPv73xt/THdy7712o8eaNZCZaZcnPEtwnrfCNW41eNUFkwlefBEWL4bc3MpiLeawQ2EO/GMn/OMf0L27is5JSgIP9K12I9EplPzbCtS4cDVwJcrpLha7T25dCESM6c3BlUAOWVlZpKam1hihKtgwGGqUx2pRWK1u91zfuXNn0Icffrh/1KhRJoCcnBzv7t27X7xx48bWJpPJKyQkpGLFihWhGzZsaD1w4EDT5s2bDwQEBFgB3nnnnbB77723Ri/0hISEvLlz53b48ssvW8+dO/e4Vn7kyBGfn376Kahv375FF1xwQb2loQAyMjL8R44cmZuSknJIK5s+fXq7l156qeNjjz123rp16w4CTJs2rf327duDqkaUrFu3LnjEiBEX3H///Z137NixF2Dp0qXhRUVF3vPnzz/08MMPVw7a8+fPb/Poo492WblyZbgzo4fZbDbceOON3Xfs2BH0zDPPZDzzzDPZVdu4k7PFCHDa9urqiqdlwzO7qOfCCy88ayI6XKF5LagbncebuzvCOUijdIBdUHvy1FKUV84fjT6XIAiCUD88MWlZV2qTWfIo6elqAeVFPGBA8/SjPgwYoCYjKyqUPk9GBtiMRc1NfQ1Z7i7LyMioIT9Jk+rJnfV44l6xNpwln3YumVeKMtzUS1nijMAuF+bvmSTb+hwJcXEtZmyp5OKL4S9/gS1bVELzf/0LXnihuXvldrTJfP04Wl1asIllf6xW+PhjeOwxOH689vag8k499BC88YZKPn9FVXnjxlN3I1EpsNm2aEQCF6HU1Tug5Bc72JYIlOOd5ownNA9247tdBv7MxtV8pi2nRxP35uxj6NCheZrBAyAiIqI8Nja2cNOmTa0PHz7s27t375LFixdHAMybNy9DM3gA3HPPPflLly41ff/99yHOjg0qsXnv3r3Nv/76a6v9+/f7adEXK1asCKuoqGDMmDG5rvatDYPBwNy5cx1uWJ9//vnMf/3rX1GbNm1qXVJSYvDx8bG+9957kdHR0SUvvviiw43O8OHDC6+66qqCr7/+OvTw4cM+0dHRZbGxseZp06YdTUpKcvAq6tOnjwWguLjYiyqUlJQYbrrppu5bt24NfuKJJ47NmjWrdgt8IzlbjB6aZai1i3rN1F575syzHP2Njt2byfMJQM829JM4NSXnDAgIwNvbm+Li6mH6VR8u6vuwXdM+zm5e9eerXyLRxn82Hnl40lF1MkR+20JTUdN/XBDOBaoaNbRrVVMbOFocemmrQYPAz89125ZCWJiS4dq4UW1//DFMnty8fapCsxqynFD3/CSCM5rTKOoKd0rmtXSazMCUn6+89zXuv98z52ksjzyijB6gjB7TpkFAQPP2yQM4+43rpQWb9H9oNqtojY8+cizv1ElJjg0ezJAP91Pu5U2PE4d4u+spSE6GkydVu99/hyuvhCefhJkz3S6Z1vC5kxPA13VoZ8Aum+hD7coDPtSsPlDba0Pb6iPT0K27c/HUcV0dO6fyWxAZeKEuXHzxxZaqZSEhIeUAhYWFXgA///xzUHBwcHn//v2rte3fv39xTUYPgNtuuy33119/bfXxxx+3nj59ejbAp59+Gubr62tNSEjIr2nfmoiOji7p3LnzaX2Zr68vl112WfFXX30VeuDAAb/S0lLDyZMnfVq1alVx9913V9OIz8nJ8QXYtWtXQHR0dNEtt9xSeMsttxQeP37cZ8OGDa3++OMPv4MHD/pv2LDB1bw8d9xxR9dffvkl0MfHx3rXXXe5MwTbJWeL0WOv7fViF/XdgRyr1Xr2ueU0gNq8mTw1Gd5c1Me4UJvBobYHMu3hV3/DCFR7IPakAUCjtptXVw/qVd9zfT6n5n5Yrem3faZORLgyInnKc9WTnrItoQ/uOp/+9w7V/+Nnyns+0/4PZwt1vS61tO+nJU5QtljONGkrjTFj7EaPjz5qcUaPlkZ98pO0tP9zU3Mmjx9ng3ONxyM5auLf/wbNOaR3b/jrXz1/zoYwcqSabD9yBE6cgOXLW54Ml4doFoPy4cMwYgT89JO9rF07JV81ZoyKPAQObFIynOnhHeGVm5VxY/FimDEDCgtVdOLLL8PPP6vrVlDV/BqNoy7Pl9BYJ0VxnmouoqKiKp/nhFrwgGTUmURAQIDz5FeA1aqCOk6ePOkdHR3tVDs4MDDQtfa7jYSEhLwXXnih07p161pPnz49OzMz0/uHH34IGjx4cEFkZGSt+7siPDy8rKY+lZSUGHJycrwBjh075pecnNzW1bFMJpM3wKFDh3wTExM7f/3116FWq5WgoKDybt26nbr88suLDh486NRj4Jdffgm8/PLLi3788cegiRMnRn/77bf7G/qe6spZYfSwWq3HDQbDHqCPwWBoY7VaK8N+DAZDD1Rc4cpm62ALpiZd25ou5o15cHOnEaK2fZr0hh7XN4zN4ZVY281rS/OWdDf1TZTa0gwAZ9qEwLnOmfxfcvZ/cMdv291GdE9Gx3mizFUf6ntdquv3s3XrVo9MwjWH1MwZT3ExfPGFfftMSGKuER+vvLBPn4YffoCDB0E8IBtEbd7UteWZcS2n1bIm2mtzzjib7mdauuNYc0Rb10ppqZIg0pg8GQwG1+2bEx8fmDQJpk5V2/PmqSiEltrfM5mff1bGr2ydlPs998Drr0NoaM37BgWpqJwRIyAx0Z4r5osv4JprYN06aN/eI9129/NzXa4J57rB3JNoMm5n+rVJaDkYjcaK/Px8p/Psx44dqzXsOzo6uqx///6FaWlpQSdOnPBeuXJlWHl5uWHcuHGNioo4deqU0wtZZmamH0BkZGSZ1mbIkCEn/5+9+w6Pqsr/B/4+UzPpvRIgFKlKiYoFwbKKAuraFV0LllXXtqsia+/i/ly7rmVd13V1/YLiriIqKIogRUhEEEIvARIgPZlkkmnn98eZOyW9ziST9+t57nPnlpk5U+7MvedzzucsXbq0zdzwl112Wc66deti5syZc/CWW24p03qS/Pjjj5b58+cnN3ef22677dBLL710cMKECSNXrlwZ+/e//z3hhhtu6HQPlvYIi6CHxxsAXgLwFICbAUAIYYRvxO7XQlSuPqe9f+adqSgL6Uk3kUe4B3yIOqInjwf/3m9dCUL05/+O9n4+2mDPHel1xPe9h3z0EaBVfA4bBowfH9rydERiIjBtmqo0AlSKq7lzQ1umMNLV39vWGiYFu2dkOAUzOqOjDceC1fu0130W8+cDRZ4M02lpQG8//77xRjWWR20tsHkz8M03wJlnhrpU4SUvT72nFZ56LoMBeO01NZh8RwwapD6fhx4Cnn5arcvPByZPBpYv733jxjSju+tdelNv8t5chl79m0l92siRI23r16+PXr9+fcSxxx5b779t7dq17eqGdumll5avWbMmZsGCBXGffvppQnR0tOuyyy6r7Eq5du/ebdEGW9fWlZeX67Zu3WpJSUlxZGdnO5OSklwmk0kWFBREulwu6PX6gMd44IEH0jdu3Gh577339un1eqxbty5m3LhxtfPmzQvIqLRjxw5zS+W47bbbSnQ6HV5++eXC0047bdT999+ffdFFF1UlJCS02Iumq8Ip6PE6gMsA/F4IMQ7ALwCmAhgJ4FUp5Y+hLFw4YsUxERG1hv8TwcX3u5f42998t2++2Zuio8+4/HJf0OOjjxj06EV4jPdu/HwakRL46199y7fdBphbrAvpHeLjVe+BV19Vy88+y6BHd1q7VgXWtYYBcXHAZ5+psa86Q6cDnnpKBUBuvRVwuVQPxdNOA77/HsjK6raihxJ/W4j6hiuvvLJ0/fr10ffff3/W4sWLdxk84wy9+eabiVu2bIlsz2P87ne/q5g7d+7Af//730nr1q2LufDCC8siIyNl2/dsWUNDg5gzZ07mG2+8cUBbN2fOnEyr1aq/7LLLSgEgMjJSzpw5s3zhwoVJ8+bNS9XGFAGADz74IO7ZZ5/Nys3NrUlMTHRbrVah0+lQWlpqsNlswmKxSADYvn276fHHH2/zh3fq1Kl1F198cemCBQuS//SnP2W9++67+7vy+lrTx67CWialdAI4E6pnxwAA1wCQAO7wTEREREREPWf9etWKFVCVe9deG9LidMp55/kG7/3lF6CgILTlIaK+6fPPgQ0b1G2LRQWB+4K77gK0Fq7ffgusWBHa8oSLX38Fzj7bF/BITFTvb2cDHv5uuglYuBAwGtXyzp0q8FFc3PXHJiJqp9tvv71sypQpVUuXLo0fMWLEmFmzZg0844wzht566605U6ZMaVf+y+TkZNeUKVOqVq9eHet0OsVVV13VJLXVd999Fzl79uzsN954I7E9j5mQkOB8//33UyZMmDDyyiuvHDhhwoSR77zzTtrAgQMbnnzySe8P5auvvnpg0KBBDQ8++GB2bm7uiMsvv3zQpEmTjrrqqquGxcTEOP/1r3/tBYDo6Gg5c+bM8gMHDpjHjBkzetasWQNPO+20YWPHjh07bty4Wp1Ohx9++CH2kUceSWupTC+88MLB6Oho1/vvv5+6cuXKdgWEOiNsgh4AIKWsk1LeLaXMllJapJSjpZSvSG1UGSIiIiKinuLfy+Oyy4CkpNCVpbNiYoAZM3zLL74YurIQUd/kdgMPP+xbvukmILnZFN+9z9ChwO9+51t+5JHQlSVc7NunenhUejK0JCcDy5YBubnd9xznnQcsWKDSZQHAjh0qyFLZpawwRETtptfr8dVXX+36wx/+cKimpka/cOHC5EOHDpn++c9/7jr//PPb/WN0xRVXlANAWlqaY/r06TWNt2/atMny7rvvpi5dujS2PY+XmprqWLx48TaTyeReuHBhUnFxsemKK64oWbVq1db09HTvAOkZGRnOtWvXFlx77bVHDhw4YF64cGHS/v37zZdeemnpunXrtowYMcKu7fuvf/1r3+zZs4/U1tbqP/3006Ty8nLDSy+9tPfTTz/de/PNNx+yWq36tWvXRrVUpqysLOecOXOKXC4XbrnllkEuV6fHaW+VYDwAEELkTZw4cWKe1jKPiHqFwXO/8N7eO29GK3sSEVE46ZO//xUVKpWGzaaWV68GTjihR56qx9+fb78FfvMbdVuvB7ZsAY46qvufh6gb9cnfjXD18cfAJZeo25GRKuVQWosNPjulRz/vXbuAESNUuiRApUqaOrV7n6MT+uR3vKREjbOxfbtajolR7+fEie26e4df86efqu+e9tlNngx8/bX6HhL1Q7m5ucjPz8+XUrYaZczLy1sfERExasyYMeziG0aEELkjRoywbd26dUuoy9JZmzdvHlVfX1+Qm5t7bEfvG1Y9PYiIiIiIQuLZZ30Bj3HjgEmTQluerjjjDOD009Vtl0sNFEtE1B4uV2Avj9tv7/aAR48bOjQwPSF7e3ROTQ0wfbov4GEyAf/7X7sDHp1ywQXAP/7hW165Erj0UsDh6LnnJCKiXolBDyIiIiKirti0KXDA3rvvBoQIXXm6wzPP+G7Pnw/k54euLETUd3z4oW8soJgY4N57Q1ueznrwQV+qpOXLgUWLQluevqahQQUg1q9Xy0Ko78Zpp/X8c199NfD8877lL74AZs9WadeIiKjfYNCDiIiIiKiz3G6Vr97pVMtTpgBXXRXaMnWH449XFVaae+5hhRERta66GrjvPt/yH//YN8c2AoDBg4EbbvAt33UXUF8fsuL0KS6XCjx8+61v3d/+Blx0UfDK8Mc/Avff71v+97+BP/0JYHp3IqJ+g0EPIiIiIqLOeustYM0addtoBN54o+/38tA8+SSg81wufPedWiYiaskjjwDFxep2Robq9daXPfEEkJCgbu/aFdijL1ikVCma/vIXvPzZX/Daf5/BtO2rem/lvZTAH/6geghqHn8c+P3vg1+WJ59UjRI0L70EPP108MtBRBQiUsq8vjyeR1cx6EFERERE1BkrV6rWpJq5c4FRo0JXnu42ejQwZ45v+dFHgS+/DFlxiKgX27ABePll3/LzzwOxsaErT3dITg4M9j71FFBYGLznt9nUeBSnnALcdx/OK/gBM7b9iDc/fVqNlbFjR/DK0l4PPwy8+aZv+bbbVKqwUBACeP31wB4mDz6oGicQEVHYY9CDiIiIiKijNm8Gzj3Xl+5kxIjAVBrh4oknfIOaSwnMmuXL109EBKh0Rrfe6kuBd/rpwGWXhbZM3eX3vwfGj1e3bTbglluC08viyBE1/sXHHze//auvVLl++KHny9JeL74YGCSaNUv1rghl70e9HvjgA+CMM3zrbr0VWLAgdGUiIqJ2kV38v2XQg4iIiIioI7ZvB84+G6isVMupqcDixUBERGjL1RMMBuA//wEGDFDLlZWq1fG6daEtFxH1Hk89BaxerW4bjcBrr4VPmj+9Hnj1Vd/y4sWByz2hqAg48URg7VrfuksuwQNn3Yp/jz8Hbnje27o6FXzPz+/Z8rTH++8H9nw85xzgn//0pUgMJbMZ+PRT4Nhj1bKUwJVXAkuXhrZcRL2LA4B0uVy94KAlUtxutw6ABGDvzP35ZSYiIiIiaq8lS9Qg3wcOqOXoaJXyaciQ0JarJ6WmAp98AkRFqeWyMtWSe8mS0JaLiEJv+XLgscd8y/ffD4wcGbry9ISTTw6s0L/3XmDjxp55rspKFVTfvVst63TAK68A8+fjgwnT8eC0P+D8q58H0tPV9upqYNo0YOvWnilPeyxaBFx3nW/55JNVDxWjMXRlaiwmRv1Xjxihlh0O4IILAgNLRP3bbrfbbbNarZGhLgiRpqamJsrtdtsA7OnM/Rn0ICIiIiJqi9MJzJunWq9WVal1ERGq9ejEiaEtWzAcfzzw7bdAYqJatlpVxdzcuYC9U42viKivKylRKYy0tFZTpwIPPRTaMvWUZ54BJkxQtxsagMsvB2pquvc56uuB888HNm1SywaDCjjfdlvAbpsyhqugszbIemkpcOaZwL593Vue9li0SI2Z4XKp5aOPBj7/HIjshfWmycnqfdN6LtbWqrFRfv01tOUi6h2+cblc5YcOHUqvrKyMcblcuq6mFiLqDCklXC6XrrKyMubw4cNpLperHMA3nXksQzeXjYiIiIgovOTnAzfeGJhCJCsL+N//gNzc0JUr2CZNUoO3n3WW6ukiJfDss8DXX6uBYSdNCnUJiShYamuB3/5WpWICVIXyBx+odFDhyGxWqf4mTlRppQoKVGX/okWAydT1x3c4VCDFf4yOd95R73Fzjj5apdr6zW/UZ3HggAp8rFgBpKV1vTzt8emnauwWh0Mt5+So/wMtGNMbDRyoAh+nnKJ6LZaXA6eeqsrdn/7PiZr6yOVynWiz2abu378/UafTZQEIkzyF1AdJt9ttc7lch10u13IAH3XmQRj0ICIiIiJqzt69Km3Lv/7la8kMqFzrCxf60ov0J6NGqXQg117ry4e+YQNwwgmqwu7pp1XFFxGFL7sduPhiYNUq37r33lPB4HA2YgTw+uvq9w9Qv4HXXafGs+jK2BVOpxpj4n//86179lng6qtbv98JJ6j7TJ+uPpMdO1Sqq2+/BZKSOl+e9njvPeD66309PIYMAZYtAzIyevZ5u8OoUSrV1emnq16LZWVq0PhFi4ApU0JdOqKQyM3NteXl5d3pcrkud7lcvwGQA6AbIrpEnWKHSmn1DYCPcnNzbZ15EAY9iKh3qa1Vgx/m5+ODNQWwOBqwYvBEoPoUIDY21KUjIqL+YONG4OWXVbBDa8EKqJa+jz4K3H1378pVHmyZmcBXX6k88/fdp1K9AMBHHwELFqiWv/feC4wfH9pyElH3s9uB3/1O/QZoXnxRVbz3B9dco9JIPfKIWv7wQzW202uvqXRUHeVwqCDKggW+dffeq6b2OOMM9dt78cUqOP/LL6oXg38ap+4kpfoffPxx37qjjlKBlp54vp5y3HGqzGefDVRUqFRlZ50F/OMfKmUbUT/kqVh+1zMR9Xkc04OIeo/vvweOOUZVoPzf/+HkfRsxsWgb7lz1H2DYMNWySmtNRERE1J2qq4F//lPlpB83TqUV8Q94nHWWyrM+d27/DnhodDrgzjuBzZtVZZvG5VKVgBMmqFbIb7/tGwOFiPo2beyI+fN96x5+WP0W9CcPPQTcfLNv+a23VBoqq7Vjj1NWpnpmfPihb92dd6peHqIDWWUuuEBV1mv3KShQg4lv29ax8rSltha46qrAgMfRR6truL4U8NAcf7xKJ6b12mxoUD1uHnwwsHcnERH1SQx6EFHouVyq1exppwG7dze/T0kJ8Ic/AOedx8oTIiLqHoWFwJtvqgqjtDSVpsQ/nzoATJ4MLF+u8n0PHx6acvZmQ4eqFsorVqhUIf7WrgVuuglITQVmzgTefRc4eDA05SSirtmwQY3b4/8befvtqtV/fyME8OqrqoJc88UX6v9iy5b2PcYvv6hK9+++86275RbghRc6FvDQXHONGnNEC8oXFgLHHqt6LHbHYMSbN6veEf4BmrPOUuM89YWUVi0ZO1a9hpEjfeueego45xyguDh05SIioi5j0IOIQqumBjj/fOD5533r4uOBF17A7y59HPdMvwsHYlN82xYvVi1Ht28PflmJiKhvO3JE5ey++25g9Ghg0CDVWve//wXq63376fUqRdOPP6oKPub4btvkySpVyPr1amwP/94wdruqEJw9W7UGHjFCVe4tWKAaNRBR72WzAX/+s6pA1xonCaF6I7z0Uucq6MOBXq8CCvff71v3yy+ql9vTT6txOppTW6t6tefmBjb2evJJlSKrK+/nZZcBn38OREaqZatVBUMuv7zzAWenU6UvO+441YNEc+ON6v80HNIPDx0KrFmjUl1plixRvVj++9/QlYuIiLqEQQ8iCp29e1XO2S++8K2bMUO1JLrrLqzImYiPj/4NzrjxTWDOHN8+W7eqlmZLlgS9yERE1AdICRQVqUr4554DLr0UGDxY9eY491wVaPevvNGMH6/2LyxUOdJPOqn/Vuh1Vm6uam1cVKQqyiZMaLrP9u3AG2+ozyU1VQ2Ae9FFqnXt4sWqdW13tEwmos6rr1fH6ahRwLx5vhSzkZHAwoXq3Ly//z7qdOp36513fIFeux144AEVWH/vPV/wo65OBTVGjwb+8hff+xkVpSrWH3ige97PadNUz7ujjvKtmz9fpQq+7z6Voqy91q1T11x//KMKfgGAxaJ67b31VnileoyLU0Gc++7zfQ5lZaon6MyZwM6doS0fERF1GAcyJ6LQ+Owz1fKostK37v77gSeeUBcQfhoMJmDes6oyavZsdRFWWam6HT/3HHDXXbzoIiLqb5xOVbFeWKgGlS0sBHbsUKlFtm5tXyrEiAjg1FNV685zzgmsJKKuSU5WuenvvFO1Zv7kEzXw8Y8/+gY+1+zZo6aFC33r4uPV5+E/DRqkeoqkp3duwGAKD1IChw6p4//QIaC8HKivxzV5eXDq9Kg3mIGFDUB2tgp2JifzPLEjfv1VpTB69131/vqbMkVVdo8YEZqy9VazZ6tUVdddp3q7Aer/6NprVS+ZwYPV/1JFReD9pkxRKRb9Uyt1h4kTgfx8dY3097+rdfX1Ktjy4osqyHzDDer5m/st3bhRDdTeuJfD2LGqQcCYMd1b3t5Cr1cBvmnTgN/9ztc75osvVGO7m24C7rlHfZ5ERNTr8WqBiIKrrEzl/n31Vd86o1Gd8F93Xev3veIKlU/9t79VJ6FuN/CnP6k866+8wlzrRER9iZTqP2HvXvWbXlamppoaPPzNL4h02KBzu4GDH6nfe7dbtTQtLVUBDu1/oCMiIlRl0KRJajDeqVN9aUCo5wwZAtx7r5rq64HVq4Fly9S0bl3ggPGaykrgp5/U1JhOp3LIDxjgmzIzgZQUVcHtP4+NZYV3X1Vbq3oFbd2qBmTWpu3b1bZGHvNfWPyC77bFogJmgweryvqRI1XvhZEjVU+j/vz9kBI4cEAdZ999p3rHbd3adL+kJOCZZ4Drr2/SOIk8xo5Vv22PPqrG5airU+uLi5uODRETAzz2WM823IqKAt5+W6W8mjsXyMtT6+121RvvP/8BEhJUwP+MM1T6sm3bVFDrm28CHysiQg3efs89gMnUM+XtTU47TQV+5s5VQSMp1f/Ua6+p3k+XXaaOhVNP5fFARNSLCcmu4xBC5E2cOHFinnYiQETdr6QE+Mc/1AWTf+vb7GzV5fqEE5rcZfBcX9qrvfNm+DYcOgRceKG6sNCYTGqg89//nq3PiIiCSQtG1NaqSp66Ot/t8nIV1NB6YhQVqXE1KirUmE5aeo+eEBurKjbHjFEtcI8/XlVKhUE6jhb/H/siu12ltczPB37+Wc03bmy2UrtTjEYVAImPV+lLYmN9c//b2jw6WgXCGk8Wi5rr9d1TLlLcbnVet2OHqmwvKPDNCwt7/vkTElTwwz8QMnKkCpKEQ+VuQ4P6va2oUIHiffvUpP0ub96sgs0tycxUFd033qiOjV4kpL+DNpt6D3ftUmmPdu1S3+FffmnaO6Y1aWnqumXwYCAnR80HD1a92ZKS1PfTrydGp1+z2w18/LHqIb9uXfvvB6gGAk89pYIiIQgQhvz/Li8PuOMOYNWqptsGDlSN8c45RzWisFiCXz6iNuTm5iI/Pz9fSpkb6rIQBRt7ehBR99Na727apCowvv5atRxrXLk1fboaADApqWOPn56uWqPNmaN6jLjdqtI6hl20AAAgAElEQVTkhRfUdNJJqsXSiSeqAegyMlhJQUS9k9ut0jS5XGremdsduY/DoSrB7PbW523towU5amubpioKNZNJVVgedZQanHTQIFVZV1amKlNTU1UlOP8XegeTSY374T/2h5a+aPt237Rjh2qRfuAAcPhw+x/f4Wi+pXVXyts4GGI2q8lkUlNLt9vaZjCoSa/vudt6fc9WXEqpfhOsVjWVlamGL6Wlal5SoirfCwvVtH9/8z192hIXp47t9HR1PEdG4r38YhjcLkQ4GnBRTpSvgr+6uuXHqahQjWj8G9IA6j1KT1eNcwYOVHPtufx7E/kHylp6X91u9RqdzubnLa2rr1e/tf5Tc+u09bW1vgCHNmnjMHSExQKcdx4wa5ZK/RcOwR9AfTe1/7H6et9/XX29CtJXVzc/VVWp7+2RI+q358iR1r9TjUVEqO9KcXHTa6HDh9X0ww8t3z8+Xl0rxcYCZz3hW3/11ao3R+PJYgn8XTGZfN+nWbPUf+Pq1er4a2mwdX9Ll6rJZFLHQEaGmmuBZP9JWxcdrcoREdF0bjT2rd5VubnAypWq98vTTwPff+/bVlgIvPyymgwGYNw41cDi6KNV8HToUBXYMptDVnwiov6MPT3QD3t6vPce8OCDre/Tle9FR+/b1v7B+I52ND1GR3S2/O25X1ffG+3+zb1+/8eWMnDZ7fat0ybtMdzutlvu6vWq5VIbrWEOVPou1AbEt7Cv1oKtrQtmIVT3Y20C1Nz/pFtb77+updvt0dL+felEv7v09HHc2/7LuuvY7KnH6+w+Xdm/q4/Vmedr/DvWkcds/LvX3udpz2NTm5wQcAsBKXQwa5kj/P97uoMQTf8btGVtm/9+jZe1240fs63n7Mj6FmyWUd7bY3R1HbqvV+P3MdT/TW09f+Pyulxq0s47tBRojSfq+/zP2/znjeyMTgEACCkxtNZvsGb/3w3/81XyaRwgayllj5S+Y7Uj/5FCtP2f23i5jXXbI5MhpIROSgytK226j/9nHcz/ZCFU5b5/YFSnU+XQekLW16upg+W6Z/pd0LtdMLpdeHLJ6z30AoKkuf/RZtYNvts3rsjeFy5suk97rtvaut3a9V7jfZxOXwOQ9n5+zV2H+p9bND7emiuD/7lHa8/TkfUd3aerz9FenXmsjpbrySdVirJ+gD09qD9jT4/+aN481UqOKFRcLtXirw0D/BdquvicUvoqSIiIqFczQAuqu4GeqptsHLTvQ8J0CFmi5rUzUDGs/GAQChOmtHPk3tZzrxVH2faHugjNk9LXA6e11GGd8NziF7v18UJKCxh0JPBjt/dMWXoar0N7n+ee6zdBD6L+jKMuERERERERERERERFRWGBPj/4oK0vltCbq5fzb/fTDhFBERP2Wyy8dgZ6pwppwCl+7JYPsez1ViHpCRUQ0pOeMMbG+q12Eqbdbkz0WEgJSACcVbgp1cYLik7Gnw6EzwKnT46oNX3bszh1JGcT/XQp32dmhLgERBQGDHv3RN9+EugRE7ZIz9wvv7b3zZoSwJEREFExD+fvfqmF8f4iamMDjol+5vB9+3nf7vearfl4cwpIEkd9rZjCGiIg6gumtiIiIiIiIiIiIiIgoLDDoQUREREREREREREREYYFBDyIiIiIiIiIiIiIiCgsMehARERERERERERERUVhg0IOIiIiIiIiIiIiIiMICgx5ERERERERERERERBQWGPQgIiIiIiIiIiIiIqKwwKAHERERERERERERERGFBQY9iIiIiIiIiIiIiIgoLDDoQUREREREREREREREYYFBDyIiIiIiIiIiIiIiCgsMehARERERERERERERUVhg0IOIiIiIiIiIiIiIiMICgx5ERERERERERERERBQWGPQgIiIiIiIiIiIiIqKwwKAHERERERERERERERGFBUMwn0wIMQDAPa3s8pCUssZv/4EAngJwBoBYAFsAvCil/LCZx04C8BiAcwGkANgF4C0Ar0opZbe9CCIiIiIiIiIiIiIi6pWCGvQAMAHAna1snwegBgCEEJkAVgLIAvAVgIMAzgTwgRBioJRynnYnIUQMgG8AjAfwvWf/kwG8DGAMgJu7+4UQEREREREREREREVHvEuygxxDPPFVKWdLGvk8DyAZwg5TyHQAQQkQDWAPgcSHEAinlLs++d0MFPJ6UUj7k2dcAFfz4vRDiQynlD938WoiIiIiIiIiIiIiIqBcJ9pgeQwHUtBXwEELEA5gFYIsW8AAAKaUVwCsAjACu8ewrANwCoALAk377OgH8P8/iDd34GoiIiIiIiIiIiIiIqBcKRdBjV5t7qdRURgCLm9m23DOf6pmPBpAK4FspZUOjfX8E4PTbl4iIiIiIiIiIiIiIwlQo0lttFkIcC2AagBgAOwEslFKW++033jPf3MxjbAPgBjC8rX2llFYhxAEAg4QQEVLK+m54DURERERERERERERE1AsFLejhSUOVA9Ur46JGm58TQlwtpfzMs5zkmR9u/DhSSimEqAKQ2Na+HhUABgOIB3CopfIVFBQgNze32W15eXkt3Y2IiIiIiIiIiIgoJFqqzywoKAhySYh6j2Cmt8oCYIZKN3UZVC+PTKhByM0AFgghJnj2jfXMG6er0tTCF7Bpz75A8Hu1EBERERERERERERFREAUzEFAD4AIAm6SU2rgeVgDPq04g+CuAe6EGMHd4tltaeCwTgDrP7fbsC7/9mzVq1Cj26CAiIiKiXkFKiXkr5+HDXz/EqYNOxV0n3IWhiUO77fHtLjv2Vu6FQWeAxWBBSlQKDDq2ESIicrgcOFB9AEa9EWa9GUmRSdCJYA+HSkTUfi3VZ+bm5iI/Pz/IpSHqHbp0ZSOEGAxgTzt3T5BS/reFbfOhgh7a+BxHPPP4Zp5TByABwO629vVIguoFUtHOchIRERERhdTr617H/cvuBwD8euRXvL7+dcw6ehbemPFGlx63sr4Sr697HS+ueREldSXe9ZHGSJww4AScMvAUXDTqIhyddnSXnocomGwOW8Dyx1s+hklvgklvgllvhklvQqQxEgNiByA5MhmeRnfUBzhcDizdvRSbj2yGTuhg0BkwJGEIeiJpRU1DDV796VX8dfVfUWYr866PMcVgYsZETMqahHNHnIuTsk/ql0EQKSV+3P8jtpRswQUjL0BKVEqoi0RERNSirjbnsgL4oJ372lvZVuOZOz3zrZ55c1dbAwEYAfza1r5CCDOAbKjeJbKd5SQiIiIiCpnv936Pu76+K2CdW7rx743/RqQhEsB5HXo8p9uJb3d/i//8+h98UvAJrHZrk33qHHVYtmcZlu1ZhseWP4bx6eNx9TFXY9bRs5AWndaVl9MnuaUbNocNdY462JxqXu+sh17oYdKbEGWKQmpUKkx6U9sPRl3ilm4csh7C3sq9AdO+qn3YW7kXB6sPotZRi0FY5L3PJQsuafHxLAYL0qPTERcRh4SIBAyOH4zhicMxPGk4hicOx7DEYYgyRQXjpVErtpZuxRvr38CHmz4MCNBq/D/v6oZqxJpjm+zTER9u+hB3fHlHQLBDU2OvwfJ9y7F833L8ZdVfkBGdgZlHzcTpOafj1MGnIj06vUvP3dvZXXa8t+E9vLruVWw8vBEA8NB3D+Hd89/F9OHTm72P0+3E9rLtiDBEICM6AxZjS4k5gqPOUYeyujIMiB3gDXrWOepg0Bl6/HfcLd2oaahBVUMVHC4Hok3RiDXHIsIQwQAsEVEP6lLQQ0pZCuCq9uwrhPhICHEZgOOllOsabT7ZM//FM/8OgBvAmQDmNtp3mme+xDNfD6AawFQhhFFK6fDb91So9FZLQF5u6caZ75+JY1KPweSBk3HywJPD/kSto6SUaHA1oLqhGjUNNahuqFa37TUB62rsNXC5XXBLNyQk3NKtbku/2571za1rbrvT7YTD7YDdZYfD5Zm7HU1uA4DFaIHFYIHFaEGkMdJ722LwLRv1Ru9Fu0FngMVoQbQpGmlRaUiPTvdOqVGpMOqN7X6PHC4Hah21qLXXBszd0o0kSxKSI5ORaEns0GNS8DhcDtQ76+GSLrjcLpgNZkQYIiClRK2jFnWOuiafba3ds95RC7vLDp3QQS/00Ov0Teba91l7fJdUx4l2vDRHCAG90EMndN7JJV1wuBze48LhcqDGXoMKWwWsDqv3ONIm7fHd0g2T3oQYUwyiTdEBU4w5BpHGSEgpA8rlX1b/ea2j1vsb4P87UN1QDZvDBpPeBKPe6G1R2txk1HVxewce36AzNLmAklLC4XZ4319eYFFvU++sR1ldGcpsZSi3lQdsu3fJvbA5bd7j22K0IMoYhcyYTEzMmIhx6eMQaYwMUcm7377KfbhkwSVwulVboAnpE5ASlYIlu9Tp7Fv5b2FQB4Ieuyt2Y+aHM1FQ2nQgy+TIZESbomG1W1FaVxqwbcOhDdhwaAPuXXovzh52Nq4edzXOG3EeIgwRXXh1SoWtApuObMKmw5uwp3IP6p31sLvsiDJGBZybZMRkID06HcmRyR1qVa2dx1XWV6KopghFNUWosFWguqEa5bZytc5a5P0d9w9s1DnqYHPY0OBqabjAQImWRKRHpyMtKg1p0WlItiQjOTIZWbFZyInPwZCEIRgUP6hftgpvD5fbhcO1h72f08Hqg97bhdWF2Fu5F4VVhbC7Wms/1zE2pw17KltPVpAZk4nhicMxMnkkcjNykZuZi7GpY/tFkEtKCavdinJbOXRCB7PBDLPeDLNB9Zjpye+ylBLf7/0ef139V3yx44t232/gCwPxxxP+iPtPub/D1x5u6cYj3z2CJ1c8GbA+0ZKICEMEau21qGqoCthWbC3G2/lv4+38twEAaVFpGJM6BsMShiErNguZMZnIivHMY7OQZEnq9nMvKSW2lW3Dou2LkF+cD7vLDqfbibSoNJyYfSJOzj4ZwxKHdfl5fzr4E2747AZsOrIpYP2R2iOY8eEMTB8+HUmWJESbonHigBMxbdg0LNuzDA8uexC7KnZ59x8YNxBXHn0lrht/HYYnDW/3a/R38fyLcbj2MCpsFWhwNWB44nAck3YMooxROGQ9BKvDignpEzBt6DSMTB4JIQTKbeV4ZsUzeOWnV9DgakCiJRHj08ejqKYI20q3waAz4PoJ1+OZ3zyD+IiWkoe0zel2YvX+1Vi+bzm2lW3DjrIdKLYWo6q+CtUN1ZBo2gZXL/SIMccgzhyHBEuC9/9kYOxAZMdlIzs2G9lx2UiJTEG0KRoRhoiAayL/OgOH2wG3dDe5lmprMulNiDBENHv9EAw2hw0V9RWosFWg1lHrLVdz15haWbX6Dr1OH/TyElHfIoLVAUIIcR2AfwBYBOBCLTghhIgBsALAOACnSimXe9YvhBoD5Aop5UeedRkA1kKN3zFMSlnlWf88gD8C+LOUcp7f434PYAyAUVLKFs9shRB5EydOnNhfxvTYfGQzxv5tbMC6rJgsjEgegRFJnil5BIYmDMWA2AEhb5XRHK31nVY5q12gahetNocN1Q3VKLOVoayuDDX2Gl/FrafytrqhGpX1laix18DpdsLpdsLldnlPJLTKhv5EJ3TeFACNJ7d0B1R8O9yOth8QQJw5DsmRqgIgKTIJ8RHxiDZGQ6/T40D1ARRWFcLmtMGoM8KgM8CoN8KoM8KoN2Lf1jnex5k44R00uBpwyHoIR2qPoN5ZD4fLASEEIo2R3inKGBWwHG2KRpQxCrHmWGTEZCAzJhOx5tgmJ1IGnaHZkyuDzhCwzi3dzQYDtO8iABh0hoDJG8zynJBqt51uJ+wuO2xOm/d9rXPWeQMOdY462F1270mylLLJ7cZzLYCm7aeVu8HZgBp7DWoaalBjr+nWygPqffyPXafbiVp7LVzS5d3u//3UjhPtWPHeNkXBYrCoIAnUcaa1ih0YNxCD4wcjPiIeep0eRp0RMeYYWAyWfhVQcbldaHA1wGq3orK+Ela7FVJKCCFgd9lR01ADq92KGrtn3njZXoMGZ9OKVb1Oj3hzPOIj4pEWnYbs2GwMjFMXwJkxmX1u3AUpJaobqnGg+oD3d393xW7srtyNPRV7sLtid5OWtYNsvha8+ywzW318vdDjuKzjcOaQM3HW0LMwKWtSnw64n/ufc7Fou3r9aVFpWH/TemTFZOG3//dbfLbtMwCB78/eeTNafKyCkgL85v3foKimKGD96JTRmHPSHMw6epb3vdpftR8rC1fif9v+h/9u/W+zlf5x5jhcMvoSXDjqQpyeczrMBnO7XtP+qv1YUbgCP+z7ASsKV2BLyZZ23U+jF3qkRKXAYrAEBIONOiMaXA3Nngc2V8EUKhaDBaNSRmFMyhiMThmNkckjkRaVhqTIJCRZkpBgSQi7oIjdZUdVfZU3oKEFMw7W+IIaB2sO4pD1UIuNITrCqDMis/ZT7/LECe/A6XaiwdUAu8vuPQ8qrCpEdUN1p57DpDfhmLRjkJuRi2Mzj0VuhgqE9JXfG6fbicPWwwHvv3a7qKYIR2qPoKSuBKV1pah31rf4OJHGSMSaY5FkScLolNEYmzoWQxKGeBtUDUsc1uHrRykllu9bjke+fwQ/7PuhyfbMmEycd9R5sBgtsDls2HB4A4p3POjdrv1PnDb4NMy/ZD6SI5Pb9bw2hw3X/u9azN8837tuUNwgPDTlIVw97moY9UZIKXGg+gDWF63H17u+xsKChc32PGmNSW9CZkwmEi2JSIhIQHxEPBIiEhAXEQed0AU04AGA1KhU5MTnYHD8YOQk5CAtKg0SEkP+/KX3MY1Zd2Fn+c5Wn3dY4jBcOPJCXDT6IhyXeVyHztFq7bV46LuH8NLalwKOUe16q6Pvgb8RSSOQm5mLCekTcFTSURieOFxdn+n02Fe5D1/v+hrf7vkWGw5tQELlh977tXU+4C/GFINYcyyqGqqa7d3YWFpUGq4Zdw3iI+KRHp2O3478LRIsCa3ep9xWjq92foVF2xfhq51foaK+72ZU1wkdIgwRAZNZb/ZeB+uErsltKaW3HkWbJKS6pvdc22uTUW+ETuhgtVtRYavwBjra28CgOdrz+F8LA4HXyQCabAeAVbNX4cTsE7v2pvURnjE98qWUuaEuC1GwBTPoYQCwFKr3xR4A30L1NDkbQDqA16SUt/ntPxBAHoBEAJ8DKIPqy58IFQiZ77dvrGffYZ7n2Ot53GwA90gp/9pG2fpV0OON9W/gli9uaff+iZZExJpjEWWMQlyEqsBOiUzxzhMsCd4eBloFkN1l915geG83uujQAg7N9Waod9YHTA2uBm/lrcvtgs1pa7vg1Od1pNKLiEJPJ3SINcd6LzRjzDEBy9Gm6MALJBkYcG5ucsmWt7Xnvv4txrSLNP+LMaPe2GRZu+10O73/QfXOejQ4GwKWQxEc1wmdagEfnaECudGZ3oBuRrRnHpOB1KjUbguOlNvKUVBSgJ3lO3HIekhNtWqu9Q4QEBBCQEB4exMJCFjtVhysOdiuCgd/Xfn9jzHF4LSc07xBkOGJw/tMMO6b3d/gzPfPBKDe0+XXLscpg04BoAIHo18fDavd2mbQo6imCIu2L8IDyx7wfkZmvRm3Hncrrhh7BY7NPLbV96SyvhIfb/kY7/3yHlYWrmx2nxhTDE4YcAImZkzEmJQxyIzJRGpUqrd3xfay7fj50M/IK85DYVVhp9+TUGrcmzbCEAG3dMPhdqCqvgoldSXdUmGvEzrEmeNg0pug1+kRaYxEfES8d9IqSeMj4hFrjvX2ZJFSwmK0wKw3extR+DcG0s6vAXgfJ8GSgISIBCRFJiEjOgNZsVlIiEgI+D643C5vj8aqhqomvZyrG6phtVsDphp7DQ5ZD6GopgiHrYe7VJHVnOTIZAyKG4TB8YMDpkFxg5Adl404cxxy/rzYu39rwcDK+kqU1pWiqr4KpXWl2Fm+EzvKd6ipbAf2VO5p9++7WW8ODIRk5mJQ3CBEGiNh0puC8ttjd9lRVleGkrqSJr1l/AMbh2sPd8v3tS0CwltZnxqVirSoNOTE52Bo4lBkxWQhLiIOBp0BW0u3YtPhTVhzcA1WFq7EIeuhJo9z7ohzcdtxt+H0nNObtOoePNfXE8T/f2Jw/GAsvHQhJmRMaLWch62Hcf5H52PtwbXeddOGTsP/Xfx/iIuIa/F+TrcTq/avwrI9y/Dd3u/w08GfWg0SdQethX9WrW+I1I7+N2bHZuPCURfiolEX4aTsk1ptJb9k1xL8ftHvsbdyr3ddpDESD015CDcfezOcbidu/PxG/HdrS0O2KrHmWMSaY3HIeqjT50zdeT1oMVgC6hEERIsB8ihjFG6YeANmT5iNUcmjvNkTCkoLsGTXEnyx4wus2r+q3cdUjCkGcRFxMOqM3oZo3f07Se334+wfcVL2SaEuRlAw6EH9WdCCHgAghDACuAnA9QCOgkphtQnAOwDebTzuhhBiCIB5AM6ASlO1AcATUsom6aqEECkAngEwE0AsgAIAz0kp/9OOcvWroEdVfRVW7V+FFYUrsLJwJX46+BP/cJth1Bm9J2paxZ1/5Z1WgWfUGSGE8Fas+Vf4NF7nv76ldVqlm5aypqXbEhI2h83botG/daN20Wtz2OB0O71dQN3SjTpHHaobqnG49rCv8sp6qMMX7jqhQ5QxClGmKO880hgJAdWNuLSuFOW28i61tGTQo+dorXmMOtXqRqssERDez7K5zzfKqJbNBnPTVFB+twUE9Dq9r3uyJ2jpf0w01jhVlRtub28b/9ZCMeYYJEQkINoUDYPO0KSbtl6nh4Cnpb2nRX3jqdZR6y1j49ZL/j19dELnTYmlHff+vwMWo8XbY6elSQvmtrjd3bXtjZ/Dv0eHP73Qe3sDUfjTCR1So1K9gRBtSo1K9X6H/YMiQgi4pRvFNcXYXbEbeyr3qKliT5dac7aXQWdAoiURSZYkJEUmYf82X3bTm2duQpQxynts25w2WO1W7CjfgbyiPGwt3drqf82A2AE4LvM45GbkYnTKaAxJGIIhCUMQY47plrJrrYA3l2zG5iObUWwtRq29Fg2uBgyOH4yJGRNxXOZxbY6L4XK7MOHNCd4UIteOvxbvnv9uwD4vrXkJd319V7NBDyklvt71NZ5e8TRWFK4IuF+0KRqfXf4ZTss5rcOvb1f5Lvx747/xr43/wu6K3R2+f3MMOgPGpo7FMWnHYGTSSHU+pTeipqEmIKhWXFOMQ9ZDnWo9q/VA0777yZHJiDXFIi4izrsuISJBBTT8AhvacoQhos3eFy63C6V1pd5zqsPWwyizlaGktgSF1YXYU7EHO8p34Ejtkc6+VUGhEzrEmGJgMVq8/5PBlByZHJgOyC8tUE58DgbFD0K0KbrNx/GvBG8t6NEWh8uBfVX7sKNsBzYe3oj1xeuRV5TXZkqsxvRC3+Scyv+2SW8KOD9qfL6k3ba77Kior0BlfSUanA1wuB2wOWzeHu21jtpOv9aWmPVmJEUmAQAanA1ocDV4n7unGXQGzB4/G/ecdE+raZD8P+8bp2/Ag9/5en4YdUY8MvUR3Df5vmYbAPxy6Bec/9H52Fe1z7vu1mNvxUvnvNThBgMutwt7KvdgS8kWFFYV4mD1QW+wSZt3tndRY42vjaKMUThr6FmYNnQakiKTICCwrWwbftz/I37Y90OLx3JaVBpmHjUTuRm5GJc+DiOSRiDRkoifD/2MR79/FJ9v/zxg/zOHnIk3Z76JnIQc7zopJdYVrcPuit2wu+zYX7Ufi3cuxpoDaxBhiMAdx9+B+ybfh/iIeDhcDny580u88/M7WLxjcYcCIP6v+dHLS5ATn4MESwIEBLaUbMGvR35Vab2i06AXeny/73t8u/vbgJRkwxOH46nTn8JFoy/CrvJd2FyyGenR6Tgm7Rh8ueNL3PHVHU16RPoz6oxIjUpFUU1Rq+cbWTFZmD58Oo7NPBbDE4djUPwgb7C6ue+Vlra3sr4SFbYKlNaVoqimCPur96OwqhD7q/djf9V+VNZXotZRC5vDFtBAx7/Xo9aTosn1VCuTy+3yXgOG6vrApDd5A/Ja46iWUg5rZa131ne5R+fK61bi5IEnt71jGGDQg/qzoAY9eqv+FvRozOFyYE/lHmwr3YbtZduxrWwbtpVtw77KfThYc7DXpnnSLkz9J/+L1mhTtLfyROup4l+BG2uO9Z6EGHXGgBRHBp2h3SkbwoV2guFfkerfU0cI4U0dFWWKgllvbrP1msvt8ram0yatZYvD7UBmTCYGxQ1CrDk2IDepNr/2Dd9F3HNXqxRYGTEZSItKQ6QxEgadARLS26rRPy2Ufyouq92KqoYqb0u3WkdtkxMprcV4cydZ/tuaC/Z4L2QNkRBCBLQ0d7gd0Amd92TUIAJbkhv1xhZTc/m3EtSCBM3dbq51tfbZaOXWxreIMccgxhTT4sB5Wmoe6rtcbpc3UNLgbIBBZ/BWrgDwXuRowRrteLHarai113qDQla71XtBoaV1q26oRkldiXfwWC1tlt1lh9Vu7fGWjr2NgIDZYEaUMQrxEfGIMcd4j08tQKeNK+OdmwOXmzsWHS4HqhqqvGMPaBe9hVWFOFx7OBQvtcssBgsGxA5AVmwWsmOzvWMdDEkYgpyEHGTGZAZUMHek8rKsrgzL9izD0t1LsWTXkoBKrNYkRyZjSMIQDE0YqsZdiBukUo9YfK3qo03R6iLbr5FBZX0ltpRsUUGOks3YUrKlzQotAYEZR83AnZPuxBk5ZzT7O/t23tu4adFNAFQL0+23b0dmTGbAPi63Cyf94yQc3vmwd91PDx2HNQfW4IkfnsD6ovVNHjchIgFfXvklJg2Y1K73pSVSSqw+sBoLCxbi062fdigAEmmMxIkDTsQpA0/BKYNOwaSsSR0aKLrB2YCSuhLveYl/HnOzwRwQrNB6Z/SmNHCldaXqO3NEfV92Vuz0jmFTVlfWZLyAcKAXesSaY5ESldIkmKEFNLQeat11zt1dQY+WlNWVIWI2OkUAABFTSURBVL84H3nFeVhftB55xXkBLeH7gtSoVF8gPDrwc0iLTkNKZApSolIQZYxq9nfK/3ygqKYIm45swuYjm3Gw5iAO1x7G/qr92FO5p1MVqLHmWFw6+lI8MOUBDI4f3Ob+jT/vz7Z9hisXXhlQ0T8hfQLuPvFuXDz6YpgNZtQ56vDE8ifw3OrnvNe4OqHDC9NewO3H395j58BaQFcLXmlTVX0VJGRAYzi3dKOopiig8YH2G+EfAHjzBgNOHXxqi8dPvbMeS3ctxScFn+CzbZ+1GTzWxnfylxCRgBemvYCrx13d7vfG5rDBbDC3GDS2OWz45fAvyCvKw+aSzdhRvgO7ynd5xxqMMkZh6uCpOGvIWZg8cDJOeWaj977tPa7d0o2q+ipvGuvB8YNbDWJXN1RjYcFCHKw+iOqGaizeuRi/Hvm1zecREJg0YBJmDp+JGUfNwLi0cX32Okrr3RyQbcPZ0GT8Q//bOqFrktZZe6yWpihjlLfHoZYxpDPvmZQyoLGX/zUxgCbXxP7b++pn1FkMelB/xqAHGPRojcvtQpmtzNvqq7K+EiW1KtdrSV0JSmpLUG2v9vYq0IIFJr0JJp3Je1sbJ0JbjjZFqwoiU0yTwXqNOqO3hZ02aWNKON1O6IQOkcbIsMt9TE319MUrEXUvrcVa41Qo2m2r3drsBZIWdG5u0gLRzW5r435avuHGF2neoKRnbJ3GY+1owVej3giz3qzyGhvM3vzG2rLW0y+YGpwN3hQyxdZibzC32FqM4ppi77rGg1J3RYQhAiOTR2JE0ghkxWQFDDSdEpUS0Iuo8fhCFqMFWTFZiI+I79B71dnffykldpbvxJJdS7B091Is27MMNfaaDr3enjYubRyeOeMZnD3sbAghIKXEuxvexR+//qM3ePL4qY/joakPNXv/vZV7ceq8zd7lsrjLm1RU6YUeUwdPxblHnYsrxl7RZi+TjpJSYnfFbuQX5yO/OB+7K3erXqO1Jd6eFNmx2RifPh7j08djTMqYPjPuQShogU7td6jOURdQMRpQSdpQ5R3QFYC3csqkNzVpCOTfO1hrSVxRX+Htkau1RG+uNbiWiiXWHIs4c5w3iKv1FGscwI02RXsr1NOi01qsNO9JoThvLKsrQ15xHvKK8rC+eD02HNrg7X0RrIZjeqFHoiXR22OmpQBTenR6UAZib3A2YGf5ThysOYgjtUdwsPogdlfsxs6KnSipLUGNvQY2hw05CTk4OvVojE8fj5OzT8bY1LEdGpi4uc97e9l2XPPfa7DmwJqAfbXvsDZYsibaFI2PLvoIM47q3dcZ1Q3VMOvNGPHgN951HfmOO1wOfL/3e3xS8Ak+3fppm73PBASuOPoKPH/W893+/9FRoTiupZT4audXeDv/7YAUjTqhQ058DiZmTMTMo2binGHnICUqJShlIuosBj2oP2PQAwx6EPVWDHoQEXWO3WUPGLDWPxiiBaa0wATgG+RRGzxV64GRE5+DrNisoDc06M40NVtKtiCvOA8/F/+MXRW7vOm77C57dxQVgBovYUzKGIxJGYMhCUO86fcKSguwrmgdVu1f1eQ+k7ImYUDsAOyr2hfQQ2NA7ABsu20bIo2RLT5fS7nsIwwRuHHijZhz8hwMiB3QTa+Owp3D5YDVbkWdo87bI60vNi7qbeeNDpcjoOdx49t2l71J62m3dHt7G2u39ULv7YFmMaheTBGGCCRFJiHJonq097eWy0DLn7fT7cRzq57DI98/0urv/OSBk/HWzLcwKmVUj5azO3XHd9zldmH1gdVYvX81fjn8CzYe3og9lXu8wc9LRl+Ch6c+jLGpY7ulzF3VG47rqvoqHKk9guy4bEQYIkJSBqLOYtCD+rPe0++biIiIiLqFSW9Cdlw2suOyQ12UkDLqjRiXPg7j0scBfmPaaulDdpWrIMjuit04UHMAFTZf6pGK+grU2mu96ZO01ElRpigMSxiGMakqyDEmdQwyojNarXTcUbYDr/z0Ct75+R3UOeoAAGsPrg0YQBcAcuJzMP+S+a0GPJpjMVhwy7G34J6T7kFGTEaH7ktk1BtVuhFLQqiLElaMeiPi9SpVHgWPQWfA3Mlzce34a/FO/jt4K/8tb0t9QI1n8eTpT2L2hNl9MrjXVXqdHpMHTsbkgZO966SUKLeVw6hXY1pSoLiIuFYHtyciot6JQQ8iIiIi6ld0QocBsQMwIHYApg6e2uPPNzxpOF4+52X8efKf8cQPT+Dt/LcDUt/ohR73nHQPHp76cIcDHi9MewGzjp6F1KjU7i42EVGflR6djgemPIC5k+diX9U+NcaZZwyujqTR6g+EEN6B64mIiMIFgx5EREREREGQEZOB12e8jrmT52LdwXWQkNAJHXIzcjEoflCnHvOuE+7q5lISEYUPvU6PIQlDQl0MIiIiCjIGPYiIiIiIgmhg3EAMjBsY6mIQERERERGFpf6XxJKIiIiIiIiIiIiIiMISgx5ERERERERERERERBQWGPQgIiIiIiIiIiIiIqKwwKAHERERERERERERERGFBQY9iIiIiIiIiIiIiIgoLDDoQUREREREREREREREYYFBDyIiIiIiIiIiIiIiCgsMehARERERERERERERUVhg0IOIiIiIiIiIiIiIiMICgx5ERERERERERERERBQWGPTop3Jzc5GbmxvqYhBRN+DxTBQ+eDwThQcey0Thg8czUfjg8UzUfzDoQUREREREREREREREYYFBDyIiIiIiIiIiIiIiCgsMehARERERERERERERUVhg0IOIiIiIiIiIiIiIiMICgx5ERERERERERERERBQWhJQy1GUIOSFEmcViSRw1alSoixI0BQUFAID+9Jqp7/n1YJX39tisuBCWpHfj8UwUPng8K/z9bx3fn96Px3Lw8bjoX4L5efeW47k/fsf742umntVbjudgKSgogM1mK5dSJoW6LETBxqAHACHEHgCxAPaGuChEREREREREREREXTUYQLWUMifUBSEKNgY9iIiIiIiIiIiIiIgoLHBMDyIiIiIiIiIiIiIiCgsMehARERERERERERERUVhg0IOIiIiIiIiIiIiIiMICgx5ERERERERERERERBQWGPQgIiIiIiIiIiIiIqKwwKBHPySEOFcI8aMQokoIUS2EWC6EOCPU5SIiIuqvhBAZQoi/CyGKhBB2IcR+IcSrQoiEUJeNiDpGCDFECPGBEOKwEMImhNgqhHhYCBER6rIRUduEELcKIaQQIr6ZbQYhxJ+EEFuEEHVCiL1CiBeEEDGhKCsRta6147nRftM9+40PVtmIqGcx6NHPCCFuBvAZgCEAFgBYDuBEAF8KIXJDWTYiah8hxKmeE7K2pkdDXVYiapsQIgnAagDXA9gM4D0ApQD+AGCFECI6hMUjog4QQgwBsAbALKjj+QMADgCPAVgkhNCHsHhE1AbPMXp9K7u8AeCvAASA9wHsAnAXgB8Y2CTqXdpxPPu7qSfLQkTBZwh1ASh4hBDZAF4G8DOA06WUlZ715wBYDOBRAOeGrIBE1F4HALzUyvbpAIYD+DU4xSGiLpoLYBCAe6SUfwUAIYQA8A6A6wDcBmBe6IpHRB3wAoAUALOllO8CgBBCB+DvUMfz9QDeCl3xiKgxz3/uBM90LYCJLex3KtQxvAzAOVJKu2f9YwAeBjAHwOM9X2Iiakl7j2fPvmMBjANwBYAZwSgfEQWPkFKGugwUJEKIvwC4F8AJUsq1jbYtBzBQSpkTksIRUbcQQpwA4AcAb0gp7wh1eYiobUKIDQCOBhAlpaz3Wz8cwHYAX0opp4eqfETUPp50dKUAfpFSTmy0LRlACYA1UsoTQ1E+Imqep0dlTTObErSGgp79FgC4GMDxUsp1je5fDuCQlHJgT5eXiFrW3uPZs28pgKRG+02QUm7oqfIRUfCwp0f/chaAvY0DHgAgpZwagvIQUTfy5BL+CKqSdE6Ii0NE7ScANNcKxeiZ1waxLETUeSOg0gf/3HiDlLLUU7lynBAiRkrZXIUMEYWGDcAlfsuPARjdzH5TAJT4BzwAQEppFULkA5gkhMiRUu7puaISURvaezwDqgem2XP7DwBO7bliEVGwMejRTwghoqBakX7m6WI/A8Dxns0/AvhastsPUV/3OICBAE7xby1ORL3ecgDHALgDwF8AbzqcuZ7ty0JULiLqGJdnbmphuwGAHkAGmm+FSkQhIKV0AfhYWxZC3NZ4HyFEFoBUqP/s5hQAmASVYpZBD6IQac/x7Lfv5377zezhohFRkDHo0X9kQLU8qwfwPYBTGm3/UQjxWyllabALRkRdJ4Q4BsDtAD6QUv4Y6vIQUYc8CuBEAM8KIc6Fqjg5DsB4AF9Cje1BRL1fAdSg5acIIYxSSoe2QQhxHIB4z2LjVBpE1Ptpx+3hFrZXeOaJQSgLERERtUEX6gJQ0CR45pcBSINKdRUNNXDqewBOBvDPkJSMiLrDU545B08k6nvsAPI9tycDuBEq4AGo1qIiFIUioo6RUlqhzqcHAXhPCDFMCBElhJgBYAF8aewaQlREIuq8WM+8peNXS0XJhqVERES9AIMe/YfWzd4N4AIp5VIpZa2UshCqcuUAgBlCiAEhKyERdYoQ4lgAMwF8LKXcEeryEFGHfQzgJgAfQI0JEAXV02MZgFsB/L/QFY2IOuhPUMfuFQB2ALACWAQ1yPESzz7sWU3U92g9tywtbNeut+uCUBYiIiJqA4Me/YfVM98lpdziv8HT9f4Lz+KooJaKiLrDXZ75ayEtBRF1mBBiPIBpAPIAXC2l3C6lrJNSrgdwPoBiALcIIcytPQ4R9Q6e3h6/AXA2gCcAPAPV0/oEAOlQPbtaSo9DRL3XEc88voXtWvqroiCUhYiIiNrArpf9x17P3NrCdq07LlNoEPUhQohEABcD2CGlXBHq8hBRh43wzJdLKd3+G6SUViHEWgC/hUqXsz3YhSOijhFCGABIKeXXAL72Wx8DYCyAVVJKprci6nsKoXpxHN3C9mFQWRW2tLCdiIiIgog9PfoJKWUV1AnYSCFEbDO7HOuZbwpeqYioG1wAwAyVHoeI+p4azzyjhe3amFwVLWwnol5CCGGC6smxrpnNlwDQA/gyqIUiom4hpXQBWA4gTQgREPgQQsQDOB7AWilldSjKR0RERIEY9Ohf3gYQCeB5IYReWymEuADAFACfSymLQ1U4IuqUcz3zr0JaCiLqrJVQgY+LhRAn+W8QQpwJNbD5CillSSgKR0TtJ6W0Q6WqO0YIMUFbL4QYDJXqqgrAGyEpHBF1B+34nSeE0AGAEEIAeBZqrI9XQ1UwIiIiCsT0Vv3LK1D5ha8HcJIQYg2ATABnQuUMvz2EZSOiDvJcZE39/+3dMWpWURCG4e/0Vu5ASC9ERFeQ0r8LBC3Eyi0YAllLhFikUZIyVglYiKCgG8gSTJVuLE5In9/ANePzrGDq+945k3lY8evC4wBrqKrLMcbbJO+TnI0xPie5SPIo8y7A78xj5sD9sJv5I8L5GONT5nM3qyQPkuxUla0tuKeq6niMcZRkO8mPMcaXJE8yX004qaoPiw4IANyw6fEfuV7JfZHkXWbwepXkcZKDJM+q6mLB8YDb28g8pvizqq6WHgZYz/VHkudJPibZTPIm883wwyRPq+rXguMBt1BVp0m2knzLjB2rJN+TbFXV0ZKzAXfiZZK9zBcUXid5mGQ/88YeAPCPGFW19AwAAAAAAAB/zaYHAAAAAADQgugBAAAAAAC0IHoAAAAAAAAtiB4AAAAAAEALogcAAAAAANCC6AEAAAAAALQgegAAAAAAAC2IHgAAAAAAQAuiBwAAAAAA0ILoAQAAAAAAtCB6AAAAAAAALYgeAAAAAABAC6IHAAAAAADQgugBAAAAAAC0IHoAAAAAAAAtiB4AAAAAAEALogcAAAAAANDCHx6lLw1Q4HRZAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 244,
+ "width": 798
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "n_peaks = len(x_roi[peaks])\n",
+ "figure, ax = plt.subplots(figsize=(12,4))\n",
+ "plot_fitresult(ax, x_roi, y_roi, out, n_peaks)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Use the last fitting results for the next fitting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pars_new = out.params"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[Model]]\n",
+ " (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))\n",
+ "[[Fit Statistics]]\n",
+ " # function evals = 503\n",
+ " # data points = 480\n",
+ " # variables = 30\n",
+ " chi-square = 47779.818\n",
+ " reduced chi-square = 106.177\n",
+ " Akaike info crit = 2268.275\n",
+ " Bayesian info crit = 2393.488\n",
+ "[[Variables]]\n",
+ " bg_intercept: 28.3283335 +/- 4.486009 (15.84%) (init= 29.17228)\n",
+ " bg_slope: -3.99541920 +/- 0.582845 (14.59%) (init=-3.835262)\n",
+ " pk0_fraction: 0.74671887 +/- 0.313435 (41.97%) (init= 0.5159095)\n",
+ " pk0_sigma: 0.03050200 +/- 0.004038 (13.24%) (init= 0.03063717)\n",
+ " pk0_center: 6.69504203 +/- 0.002299 (0.03%) (init= 6.695189)\n",
+ " pk0_amplitude: 7.39223915 +/- 0.896851 (12.13%) (init= 6.552168)\n",
+ " pk0_fwhm: 0.06100400 +/- 0.008076 (13.24%) == '2.0000000*pk0_sigma'\n",
+ " pk1_fraction: 0.00473684 +/- 0.983531 (20763.43%) (init= 0.5998817)\n",
+ " pk1_sigma: 0.04023895 +/- 0.007253 (18.03%) (init= 0.06145042)\n",
+ " pk1_center: 8.27500294 +/- 0.005252 (0.06%) (init= 8.270734)\n",
+ " pk1_amplitude: 3.38135714 +/- 1.077574 (31.87%) (init= 4.56443)\n",
+ " pk1_fwhm: 0.08047791 +/- 0.014507 (18.03%) == '2.0000000*pk1_sigma'\n",
+ " pk2_fraction: 0.53523776 +/- 0.009813 (1.83%) (init= 0.5599822)\n",
+ " pk2_sigma: 0.04133250 +/- 0.000128 (0.31%) (init= 0.04126828)\n",
+ " pk2_center: 8.56765135 +/- 7.99e-05 (0.00%) (init= 8.567584)\n",
+ " pk2_amplitude: 298.846896 +/- 1.093183 (0.37%) (init= 302.0911)\n",
+ " pk2_fwhm: 0.08266501 +/- 0.000256 (0.31%) == '2.0000000*pk2_sigma'\n",
+ " pk3_fraction: 1.2819e-09 +/- 0.575693 (44910663219.10%) (init= 0.7305277)\n",
+ " pk3_sigma: 0.06052691 +/- 0.005850 (9.67%) (init= 0.06668191)\n",
+ " pk3_center: 9.38425335 +/- 0.004238 (0.05%) (init= 9.378292)\n",
+ " pk3_amplitude: 7.71940342 +/- 1.508313 (19.54%) (init= 6.705586)\n",
+ " pk3_fwhm: 0.12105382 +/- 0.011701 (9.67%) == '2.0000000*pk3_sigma'\n",
+ " pk4_fraction: 0.33341226 +/- 0.051429 (15.43%) (init= 0.3153022)\n",
+ " pk4_sigma: 0.07516648 +/- 0.000753 (1.00%) (init= 0.07496413)\n",
+ " pk4_center: 9.89032149 +/- 0.000512 (0.01%) (init= 9.890326)\n",
+ " pk4_amplitude: 111.694162 +/- 2.284480 (2.05%) (init= 110.3299)\n",
+ " pk4_fwhm: 0.15033296 +/- 0.001505 (1.00%) == '2.0000000*pk4_sigma'\n",
+ " pk5_fraction: 0.96950193 +/- 0.178592 (18.42%) (init= 0.9864902)\n",
+ " pk5_sigma: 0.04213893 +/- 0.003350 (7.95%) (init= 0.04167543)\n",
+ " pk5_center: 10.1370259 +/- 0.001720 (0.02%) (init= 10.13712)\n",
+ " pk5_amplitude: 19.4688965 +/- 1.893864 (9.73%) (init= 19.77623)\n",
+ " pk5_fwhm: 0.08427786 +/- 0.006701 (7.95%) == '2.0000000*pk5_sigma'\n",
+ " pk6_fraction: 0.08936925 +/- 0.145983 (163.35%) (init= 0.02796641)\n",
+ " pk6_sigma: 0.08243764 +/- 0.001599 (1.94%) (init= 0.0823866)\n",
+ " pk6_center: 10.3884873 +/- 0.001169 (0.01%) (init= 10.38855)\n",
+ " pk6_amplitude: 50.7440009 +/- 2.863534 (5.64%) (init= 48.41167)\n",
+ " pk6_fwhm: 0.16487528 +/- 0.003199 (1.94%) == '2.0000000*pk6_sigma'\n",
+ "[[Correlations]] (unreported correlations are < 0.500)\n",
+ " C(bg_intercept, bg_slope) = -0.985 \n",
+ " C(pk6_fraction, pk6_amplitude) = 0.948 \n",
+ " C(pk3_fraction, pk3_amplitude) = 0.916 \n",
+ " C(pk4_fraction, pk4_amplitude) = 0.909 \n",
+ " C(pk1_fraction, pk1_amplitude) = 0.900 \n",
+ " C(pk2_fraction, pk2_amplitude) = 0.819 \n",
+ " C(pk5_fraction, pk5_amplitude) = 0.745 \n",
+ " C(pk0_fraction, pk0_amplitude) = 0.735 \n",
+ " C(bg_slope, pk6_amplitude) = -0.670 \n",
+ " C(pk4_amplitude, pk5_amplitude) = -0.641 \n",
+ " C(pk0_fraction, pk0_sigma) = -0.609 \n",
+ " C(bg_intercept, pk6_amplitude) = 0.608 \n",
+ " C(bg_slope, pk6_fraction) = -0.608 \n",
+ " C(pk2_fraction, pk2_sigma) = -0.564 \n",
+ " C(pk5_amplitude, pk6_amplitude) = -0.552 \n",
+ " C(bg_intercept, pk6_fraction) = 0.552 \n",
+ " C(pk4_fraction, pk5_amplitude) = -0.522 \n",
+ " C(pk1_fraction, pk1_sigma) = -0.502 \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "out = mod.fit(y_roi, pars_new, x=x_roi, fit_kws={'maxfev': 500})\n",
+ "print(out.fit_report(min_correl=0.5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHpCAYAAADZD/4nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8lNXd9/HvyWSbZLIDYQ0kyCYEgQC2ICJVa1FSCYi23KJiW7fHR4W7RUUrFZe2ItVibfv0dmvderuBhgpaMEWURSSiyKYYIkEghLBkJcvkPH9kJgxhAgGyDMnn/Xql1zXXdebMmei8avLN7/yMtVYAAAAAAAAAAABnu6DWXgAAAAAAAAAAAEBTIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAm0DoAQAAAAAAAAAA2gRCDwAAAAAAAAAA0CYQegAAAAAAAAAAgDaB0AMAAAAAAAAAALQJhB4AAAAAAAAAAKBNIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAmxDc2gsIBMaYHZKiJeW28lIAAAAAAAAA4Ez1klRkrU1u7YUALY3Qo1a00+mMHzBgQHxrL6SlbNmyRZI0YMCAVl4J0LAvvztcdz6oW0wrriSw8XkG2g4+z0fx/wEN43sT+Pgstw4+G+1HS/6zDpTPc3v897s9vmc0r0D5PLeULVu2qLy8vLWXAbQKQo9auQMGDIhfv359a6+jxaSlpUmS2tN7xtmn1z3/qjtf/7srWnElgY3PM9B28Hk+iv8PaBjfm8DHZ7l18NloP1ryn3WgfJ7b47/f7fE9o3kFyue5paSlpSk7Ozu3tdcBtAZ6egAAAAAAAAAAgDaB0AMAAAAAAAAAALQJhB4AAAAAAAAAAKBNIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoE4JbewFoHevXr2/tJQBoInyegbaDzzPQNvBZBtoOPs9A28HnGWg/qPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAm0DoAQAAAAAAAAAA2gRCDwAAAAAAAAAA0CYQegAAAAAAAAAAgDaB0AMAAAAAAAAAALQJhB4AAADAWaKsrOyYx+Xl5a20EgAAAAAITIQeAAAAwFlg3bp1SklJOeZacnKy1q1b10orAgAAAIDAQ+gBAAAABLjy8nKlp6crPz//mOv5+flKT0+n4gMAAAAAPAg9AAAAgAC3cOFCT+DxX8fdy8/P18KFC1t+UQAAAAAQgAg9AAAAgACXk5MjyUh66gT3AQAAAACEHgAAAECAq+3l0VFS3AnuAwAAAAAIPQAAAIAAl5GRofj48/zeS0xMVEZGRguvCAAAAAACE6EHAAAAEOCcTqfuuefp464nJiYqMzNTTqezFVYFAAAAAIEnuLUXAAAAAODknM4+x1379NMd6t6dwAMAAAAAvKj0AAAAAM4CeXnHX1u7lsADAAAAAHwRegAAAABngV27jr/2wQctvw4AAAAACGSEHgAAAMBZwF+lB6EHAAAAAByL0AMAAAA4C/gLPbZulXbvbvm1AAAAAECgIvQAAAAAAlxNjfTdd/7vZWW17FoAAAAAIJARegAAAAABbt8+qarK/72XXtqq8vLyll0QAAAAAAQoQg8AAAAgwPlrYu61dOknSk5O1rp161puQQAAAAAQoAg9AAAAgADnr5/HUXHKz89Xeno6FR8AAAAA2j1CDwAAACDAnajSQ4qTJOXn52vhwoUtsh4AAAAACFSEHgAAAECAO1mlh1dOTk6zrwUAAAAAAhmhBwAAABDAysrK9NFHuScYcTT0SElJafb1AAAAAEAgI/QAAAAAAtS6deuUkpKi1atPVOpRG3okJiYqIyOjZRYGAAAAAAGK0AMAAAAIQOXl5UpPT1d+fr6k7icY6VSnTknKzMyU0+lsqeUBAAAAQEAKbu0FAAAAADjewoULPYGHkdTthGNXr96qlBQCDwAAAACg0gMAAAAIQEebkneSFOo53+937JEjBB4AAAAAIBF6AAAAAAHpaFPyHj5Xd/kde/Bgsy8HAAAAAM4KhB4AAABAAMrIyFBiYqKO7efhv6E5oQcAAAAA1CL0AAAAAAKQ0+lUZmamoqLO9blKpQcAAAAAnAihBwAAABCgRowYoZtv/k3d46uuGuV3HKEHAAAAANQi9AAAAAACWGlpSN35RRed53cMoQcAAAAA1CL0AAAAAAJYUdHR8+ho/2MOHGiZtQAAAABAoCP0AAAAAAJYY0IPKj0AAAAAoBahBwAAABDACD0AAAAAoPEIPQAAAIAA5ht6xMT4H0PoAQAAAAC1gptqImNMgqTfSJogqaukYkkfSXrQWvuZz7ifSxrUwDQfW2tfrzfvDZLulNRX0iFJSyXdb63d42cNEyTNlpQqqVxSlqQHrLXbzuS9AQAAAK3l8OGj51R6AAAAAMCJNUnoYYyJk7ROUrKk1ZLel9RP0pWSLjXGXGitXe8ZfqukYQ1MFS6pLvQwxtwv6SFJeZJeltRF0vWeOdOstQU+Y6dJ+oekQs8cUZ7Xv8wYcz7BBwAAAM5GbG8FAAAAAI3XVNtb3aPawOMRa+0oa+3N1tqLJM2QFCHpaZ+xKZL+bK01fr5u8Q4yxvRWbeXIJkmDrLU3WWvTJf1CUg9Jv/cZGyPpKUn5kgZba2+01k6RNF5SjKS/NNH7BAAAAFqUb+gRu/hFZb5wp36yYekxYwg9AAAAAKBWU4Uek1S7ndQj9a7/UdJeSecbY5KMMfGSYiV904g5b5HkUO32WD4/6ukFSbslTTXGRHiuXavacGO+tXa3d6C1NkvSGknjPCEKAAAAcNaoqJAqK2vPQ4NrFDLz/yo1/xvN/fdfFVVRqmBP3faRI7VfAAAAANDenXHoYYwxknpJ2mqtLfe9Z621knZ5HnaX5A0eGhN6XCSpRrU9POrPuVJSmKTzfcZK0rt+5lnhOV7YiNcEAAAAAoZvP4+UqAIZz4XQmmqNyNukuLij96n2AAAAAICm6ekRJGmKpP31bxhjoiX19zzMlzTcc77PGDNdtX0/SiVlWWs/qvf08yTlWWuL/bzmFs+xj2qblQ+R5Jbkr2+H79gGbdmyRWlpaX7vrV+/3u91AAAAoDn5bm3VN2KX5BNsjPr2c30cJxV4utwdPCh16dKy6wMAAEDrauj3mVu2bPF7HWgPzjj0sNa6JS2qf90Y45D0V0kuSRuttd8YY67x3M6UlFBvfKakqdbaEk9YEqLaoMQf74978Z5jgqRCa211I8YCAAAAZwXf0CMlJO+Ye6N2fqG45KOPqfQAAAAAgKap9DiOp3/GC5IukHRE0s2eWyme4xJJD0nKkzRY0nxJ6ZKek3S1pGjPuIoGXqLUc/SuP1q1fT4aM9avAQMGUNEBAACAgOIbevRyHBt6nLtvh3oO2q+16iCJ0AMAAKA9auj3mWlpacrOzm7h1QCBoakamUuSjDEhxph7JW1UbeCxU9IPrLWrPUP+R9IV1tpp1tqvrLXl1tq1ki6X9J2kKcaYvpKqPOOdDbxUqOdY5jlWncJYAAAA4KzgG3p0q2uVd9T3K/5Td07oAQAAAABNGHoYY3pJWiPpUdUGDX+SNMgn8JC1dq219rhm49baIh1tWD5E0gHV9uiIbeDlvFtjeas79kmK8TRVP9lYAAAA4Kzg28i8a3XecfeHHs6qOyf0AAAAAIAmCj2MMV0lfSRpmKQNkoZba/9vA03IG+IdW22trZL0jaRkY0ykn7HneI5feo5bVdsDpF8jxgIAAABnBd9Kj46Vx1d6DNjzQd05oQcAAAAANF2lx3xJ3SS9K+l71toN9QcYY/obY6wx5l8NzDHac/zcc1wuySHpB/XmcUi6WLWVG5t8xkrSpX7mvUy1vUE+bNxbAQAAAAKDb+iRUHZ8pUenwq3q4iloJvQAAAAAgCYIPYwxEZImSiqQ9BNrbUPNx7dJypV0mTFmTL05rpM0QtJ/rLXfeC7/TZKV9KAxxrdfxz2Sukt62lprPdf+Lqlc0q+MMR195v0vSd+T9A/PFloAAADAWcMbehjVKKbku7rrn3U5WuA8TrVbXBF6AAAAAIAU3ARzpEkKl/StpIf8t9WQJM2VdJuktyV9YIxZqtpG5/1UW7lRKOlW72Br7QZjzDxJsyR9aYxZLqmPpIskfSrpDz5j840x/y3pz5I2GmMWS+qs2gbpOZLua4L3CQAAALQob+jRSfvkcFdJkg6GRymr93AN3bNNkjRcn+oV/RehBwAAAACoaUKPzp5jP/nvqeH1pLV2iTFmiKRfS7pA0g8l5Ut6VtIj1todvk+w1t5tjMmVdLukaaqtJnlS0hxr7ZF6Y/9ijNkv6W5JUyUdlvS8pPuttQVn9hYBAACAludtZN5dR/t57I1K0J6oDnWPE1QoiUoPAAAAAJCaIPSw1r4uqcHyDj/jN0v66SmM/4ukv5zCWl5v7NwAAABAIPNWevTQ0X4eu6M76nC4q+5xnGrTjgMHWnRpAAAAABCQmqqROQAAAIAm5g096ld6+As9qPQAAAAAAEIPAAAAIGD5rfSI8l/pQegBAAAAAIQeAAAAQMDyX+nRwW/oceRI7RcAAAAAtGeEHgAAAECA8jYyP7anh//QQ5KeffYtlZeXt9j6AAAAACDQnHEjcwAAAADNw1+lx56oDioLCVdlULBCa6rl1BGF6YgqFK7bb79bDz10mzIzMzVixIhWWjUAAADOJuvXr3dK+omkSySlSApp3RWhHauSlCNpmaR/pqWlndZfdBF6AAAAAAGookKqrJSMatRN39Vd3xuVIBmjw+EudSw7JKm22mOvukhyKT9/u9LT07Vjxw45nc5WWj0AAADOBp7A448Oh2Osw+GIDwoKckoyrb0utFu2pqbmHLfbPdztdn9//fr1d55O8EHoAQAAAAQgb5VHJ+1TqKpqHyQk6EhIeO39BkIPScrPz9fChQs1derUll42AAAAzi4/cTgcY51OZ2Lnzp33ulyuMofDUdPai0L75Ha7g0pKSiL27t3buby8fKzb7f6JpOdPdR56egAAAAAByF8/D3XvfvR+eGTd+dG+HlF113JycppzeQAAAGgbLnE4HPGdO3feGxMTU0LggdbkcDhqYmJiShITE/MdDke8ardcO2WEHgAAAEAA8tfPQz161J36b2Z+9FpKSkpzLg8AAABtQ0pQUJDT5XKVtfZCAK+oqKhSz1ZryafzfEIPAAAAIAB5Q4+GKz2OBhzxOuA5q72WmJiojIyM5l4iAAAAzn4hkgwVHggkQUFBNartLRN6Ws9v2uUAAAAAaAre0KOL9hy92K1b3WlDlR6JiYnKzMykiTkAAACAs5Ix5oyeT+gBAAAABCBv6BGjw0cvxsXVnR4OOz70mDLlZ9qxY4dGjBjRImsEAAAAgEAT3NoLAAAAAHA8byPzaBUdvRgdffS+n0qP3r3PEwUeAAAAANozKj0AAACAAOSt9Ggo9CjyE3qUlLTI0gAAAAAgYBF6AAAAAAHoZKGHv0oPQg8AAACgaRlj0kaOHNmvtdeBxiP0AAAAAAJMWVmZPv30K0n1Qo+YmLpTf6FHcXHLrA8AAADAiS1YsCDBGJM2d+7cTq29lvaG0AMAAAAIIOvWrVNKSoqWLVsrqV4jcyo9AAAAAOCEaGQOAAAABIjy8nKlp6crPz9fUm1Vh2+lR3lISN05oQcAAADOJsXFxUEvvfRS7I4dO8JSUlIqrr322oMul8u29rrQ9lDpAQAAAASIhQsXegIPSYr2/O/R0OPtrKy6c0IPAAAAnC1WrFgRkZycnHrbbbclz5s3r+utt96a3KtXr8ErVqyIaO21eWVlZUWMGjWqb2Rk5NDo6Oghl112We/t27eH1B/30UcfRUyYMCElMTFxcFhY2LBu3bqlTpo0qdfatWud3jEjR47sd+edd/aSpDlz5vQwxqRt27YtVJJqamr0xBNPdDjvvPP6R0VFDYmKihrSr1+/c+++++7ORUVF/L6+CVDpAQAAAASInJwcn0fRClWFwlQpSaqUtD0vT1JHSVJZSLgUHCxVV8upIwrTERUXh7f4mgEAAIATKSkpMZMnT+5TWFh4zO+iCwsLgydPntwnNzf3i9au+MjKyooYP358/+rqajN27NhDcXFx7o8++ij6Bz/4wTENzD/88MOISy65pL8kjR079nDHjh2rtm/f7ly0aFHCkiVL4j755JPNqampFRMnTjwQEhJSs2rVqujhw4eXpKamlsXGxrol6eabb+7+zDPPJHbt2rXyhz/84SFjjFavXh312GOPdVu5cmX0qlWrvmqN70FbQugBAAAABIiUlBSfR9HH9PMokpTSu7f0heeCMVJcnFRQIKm22qOkpEuLrRUAAABojJdeeimufuDhVVhYGPzSSy/F3XLLLQdael2+br/99p6VlZVm4cKFX1155ZXFnrU5Lrnkkj55eXlh3nF/+9vfOlRVVZnMzMyvJkyYUOy9PmPGjK5PPvlkl9dffz02NTU1f/bs2QUul6tm1apV0enp6QcfeOCBfZLkdrv1yiuvdOzdu/eR7OzsLdHR0TWSVFZWZgYOHHju6tWro/bs2RPcpUuX6pb+HrQllMsAAAAAASIjI0OJiYmeR9HHbG1V4nAoIyPj2CfExR091UG2twIAAEDAycnJCTuT+83t448/dm7evDni0ksvPeQNPCQpISHB/dhjj+X5jr300kuL5syZs8s38JCkwYMHl0tSSUmJ40SvVVlZae6888498+bNy/MGHpIUERFhe/XqVSFJbHF15qj0AAAAAAKE0+lUZmamp5l5jKK1q+5ex9695XQ6j31CvdBjS5nkdkuOE/6oBQAAALSclJSUijO539w+/vhjlyRdcMEFxfXvXXTRRaUOn/+4vv766w9JUm5ubsiaNWsicnJyQnNycsL+9a9/xdV/rj9Op9M++uije91ut1atWuXctGlT+I4dO8K2bNkSvnLlypgmekvtHqkRAAAAEEBGjBihrVt3SAo7ptIjsnPn4wfXCz0kqbS0uVcIAAAANN611157MCEhwe92TQkJCdXXXnvtwZZek6/CwkKHJHXu3Lmq/r2QkBCFhITUVWRkZ2eHDxs2rH9ycvLgn/70p+fMmzev6+effx45fPjwRtdcP/nkkwkdOnQ4b/To0efeeuutKS+++GKHqqqqoN69e5c3zTsCoQcAAAAQYKqrays6fEMPRUcfP9BP6MEWVwAAAAgkLpfLvvnmm1/XDz4SEhKq33zzza9bu4l5ZGRkjSQVFBQctyvS/v37HUeOHAmSpKqqKmVkZJyzadOmiHnz5n27Z8+eDQcPHvx83bp126ZMmdKo4Gbx4sVRM2fO7NWpU6eq999/f2tJSUl2Xl7el4sXL87p3r17q1a8tCVsbwUAAAAEGG9w4dvI3G/oER9fd0roAQAAgEA1duzYstzc3C9eeumluJycnLCUlJSKa6+99mBrBx6SNHTo0HJJWrlyZZSkAt977733nst7/vnnn4fv3LkzbMKECQd++ctf7vcd98033zSqL0lmZmaMtVa//e1vd1166aXH1Gj7NkzHmSH0AAAAAAKMN7ig0gMAAABthcvlsrfccsuB1l5HfePHjy/u1q1b5b///e/YrKysiHHjxpVJtQ3FH3nkka7ecWFhYVaSdu/eHVpTU6OgoNpNlNauXet8+umnj9uL1nu/urraeK+FhoZaScrNzQ31XqupqdGcOXMSv/76a2f9OXB62N4KAAAACDB+Q48YP30NCT0AAACAMxIcHKy//vWvuQ6HQz/60Y/6/+hHP0qZOnVq0oABAwYGBQUpPj6+WpIGDhxYkZaWVpKdne0aPHjwgKlTpyaNGjWq7+jRo88dO3bsYUl666234hcsWJAgST179qyUpGeeeabTDTfc0CM/P99x/fXXF4aGhtq777476fLLL0+5+uqreyYnJw/605/+1HncuHGHJenWW29N+uyzz8Jb6/vRFhB6AAAAAAHmdCo94lX7R3PFxc25MgAAAKDtmTBhQvG77767bfDgwaX/+c9/YpcuXRo3ZsyYoqysrK+Cg4OtVFu5kZmZ+c2kSZMK9+zZE/rOO+8k1NTU6JVXXvn6zTffzP3xj398YPfu3aEbN250StLll19ePGHChAOHDh0KfuONNzqUlZUFDR8+/Mhbb7311cCBA8uysrJi/vOf/8SMGjWqODs7e/OCBQvykpKSKlavXh1VVFTE7+3PANtbAQAAAAGG7a0AAACAlnXxxReXrlu3blv96/n5+V94z7t06VL95ptv5vp7/ttvv71D0g7vY4fDoczMzB31x11xxRUlV1xxxVZ/c3z77bdfns7acSwSIwAAACDANLqROaEHAAAAAByD0AMAAAAIMFR6AAAAAMDpIfQAAAAAAsyZNDKnpwcAAACA9ozQAwAAAAgwVHoAAAAAwOkh9AAAAAACTKNDj8hIKThYkuTUEYXpCKEHAAAAgHaN0AMAAAAIMI1uZG7McdUehB4AAAAA2jNCDwAAACDANLrSo951l0ro6QEAAACgXSP0AAAAAAJMSYkUqgqFqbL2QnCwFB7uf7DLdfRUJVR6AAAAAGjXCD0AAACAAFNSUq/KIyamdisrf3xCjygVE3oAAAAAaNcIPQAAAIAAc1zo0dDWVhKVHgAAAADgg9ADAAAACDAlJY1oYu4VFVV3Sk8PAAAAAO0doQcAAAAQYKj0AAAAAIDT02ShhzEmwRjzlDFmhzGmwhiz3xizyBgztN64YGPMTGPMZmNMmTEm1xjzhDEmqoF5bzDGfGaMKTXGfGeMedYY06WBsROMMauMMcXGmH3GmP81xvRrqvcIAAAAtITTDT3o6QEAAACgvWuS0MMYEydpnaTbJe2R9IKkLyVdKekjY0yaz/C/SpovyUh6UdI3ku6S9KExJrzevPdLel5SgqSXJWVLul7SWmNMx3pjp0nKlNRX0uuSVnhefy3BBwAAAM4mZ1LpUV4uud3NuDgAAAAATW7x4sVRxpi0G2+8scfJxi5dutQ1cODAAaGhocOmTJnSS5JGjhzZzxiTtn//fkezLzbANVWlxz2SkiU9Yq0dZa292Vp7kaQZkiIkPS1JxpiLJP1M0geSzvOMu1jSXElDJM3yTmiM6S3pN5I2SRpkrb3JWpsu6ReSekj6vc/YGElPScqXNNhae6O1doqk8ZJiJP2lid4nAAAA0KyqqqSKino9PWJiGn5CvZ4ekqj2AAAAAE7BggULEowxaXPnzu10unNMnjy5lzEmbdWqVc6mXJs/M2bMSNq8eXPEmDFjDl988cVFkjRx4sQD06dP3xceHl7jHWeMSevfv/+5zb2eQBPcRPNMklQu6ZF61/8o6W5J5xtjkiT9H8/1e6y1lT7j5km6V9LPVRuASNItkhySHrTW+vyZm16Q9LCkqcaY2621ZZKuVW248Yi1drd3oLU2yxizRtI4Y0xva+03Z/5WAQAAgOZTWlp7PN1KD8nTCP0EOQkAAACAs9eePXtCXS6Xe/ny5XW/7549e3ZBa64pkJxxpYcxxkjqJWmrtbbc95611kra5XnYXdKFkgqstevqjStR7dZVPYwxyZ7LF0mqkbTUz5wrJYVJOt9nrCS962eJKzzHC0/hbQEAAACtwlulcbo9PXznAAAAAND2uN1uRUVFsaltA5pie6sgSVMk3VH/hjEmWlJ/70NJnSRtbmCeLZ5jH8/xPEl51triRowdIsktaVsjxgIAAAAB60xCD7a3AgAAAE7NyJEj+9155529JGnOnDk9jDFp27ZtC/Xef++991xjx449Jzo6ekh4ePiw/v37n/voo492dPs00jPGpL311lsJkjR69Ohzu3Xrluq9V1hY6Jg5c2bXlJSUgU6nc2h8fPx5I0aM6Pf000/Hn+pavdtwlZSUOPbs2RNqjEmbPHlyL+/78Pb08I6TpG3btjmNMWkzZ87seprforPOGW9vZa11S1pU/7oxxqHapuUuSRslecOL/AamOug5xnvCkpDGjPUcEyQVWmurGzHWry1btigtLc3vvfXr15/oqQAAAECTOeXQw09Pj2J/fzYEAACANqeh32du2bLF73Ucb+LEiQdCQkJqVq1aFT18+PCS1NTUstjYWLck/e1vf4u77bbbUpxOp3vcuHGHIyMja9asWeO67777krKysqKXLl36jcPh0PTp0/etWLEiOicnJzw9Pf1A3759j0i1FRljx47tu2nTpoiBAweWZWRkHCgqKnKsWLEi+vbbb0/+9ttvwx577LE9jV1rampq+fTp0/e99NJLHUNDQ+3VV1+9f+TIkaUNjXv++ec7xcbGVmdkZBwYNWpUu/nTqKbq6XEMTxPyFyRdIOmIpJsleX9Sq2jgad5/OMGnOFae8bsbORYAAAAIWN7Q45hG5lR6AAAAoBUYI/+pSgCyVqf1l+uzZ88ucLlcNatWrYpOT08/+MADD+yTpN27dwfPmDGjV0xMTPWaNWu29OnTp1KSqqurNXny5OR33nknfv78+R1nzZpV8Nxzz+VNnjy5V05OTvg999yzd9SoUeWS9OGHH0Zs2rQpYvLkyYWvvfZablBQ7cZLmzZtChs8ePCghQsXxp9K6DFu3LiycePGlb3++usJ0dHR7ueeey7vROOef/75TomJiVUNjWurmjQIMMaESPqlpF9LckraKekn1trVxhhv/42Gutd7S4bKJFWdwlh5xjd2rF8DBgygogMAAACtzm+lx4m6khN6AAAAtFsN/T4zLS1N2dnZLbyatuWZZ56JLysrC7r99tv3eAMPSQoODtaTTz65KzMzM/7VV19NmDVrVoMNxDt06OC+9957v7vmmmsOegMPSRowYECF0+msKSsra4r2E6inyUIPY0wvSW9KGqba/hp/kjTbpyfHPs8xtoEpEjzH3ZIOeOZozFjv3F2MMcbT6PxEYwEAAICARSNzAAAAoPWtW7cuUpLS09OL6t9LTk6uSkxMrNy+fXv4ieZITU2tSE1N3VtSUmLee+8911dffRW2Y8eOsDVr1rhKS0uDYk70x004bU0Sehhjukr6SFI3SRskTbfWbqg3bKdqqy1S5d85kmokbbbWVhljvpHU2xgTaa2tvy/ZOZ7jl57jVklmANUjAAAgAElEQVRJkvp5zk80FgAAAAhYpZ7/8j2Tnh6EHgAAAGgKp7tlVFtQWFgYLElJSUmV/u6Hh4fX7N+/P+REc1RUVJjbbrut+4svvtixqqrKhIWF2aSkpCPf//73iz/77LPI5lg3pKYqn5mv2sDjXUnf8xN4eBuer5CUaIw5JvgwxsRKGilprbXW+9PdckkOST+oN9Yh6WLVVm5s8hkrSZf6Wdtlqu0N8uGpvy0AAACgZZ1JpQeNzAEAAICm4XQ6aySpoKDguMKBmpoaFRQUhMbHx1efaI7Zs2d3fu655zr98Ic/PJSdnb2prKws+6uvvtr897//PS84OLj+jkVoImccehhjIiRNlFSg2v4dDTUfl6S/eo6/M8YEeZ5vJP1etT05/uQz9m+SrKQHjTG+/TrukdRd0tM+W1n9XVK5pF8ZYzr6rO2/JH1P0j98whQAAAAgYJ1yI/OIiLrTSJUpSG598slmlZeXN9MKAQAAgLZv4MCB5ZK0bNmyqPr3/v3vf7tKS0uDhg4desIa6/feey/W4XDo1VdfzR06dOgRb1+PPXv2BJeUlDiaZeFokkqPNEnhqu3D8ZAx5skGvuKtte9Iek3S5ZI2GGP+KukTSTdJyrTWvuKd1FMtMk/SUElfGmP+ZozJkvSwpE8l/cFnbL6k/5bUQ9JGY8wzxpjFkl6UlCPpviZ4nwAAAECzKymRQlWhMHmq6IODJaez4ScEBcntcz9SpVq8OEvJyclat25dM68WAAAAOPt5w4jq6mrjvXb99dcfCAoK0oIFCzrv3r27rtqjoqLCPPLII10k6Re/+MX+E80RGhpq3W63cnNz67bBKioqCrrxxhuTmvP9eBlj5Ha7zclHti1NEXp09hz7SbrzBF/eP0/7L0n3S4qQdIOkeElzJF1Vf2Jr7d2SbpN0RNI0Sb0lPSnpYmvtkXpj/yLpakm7JE1VbRjzvKQLrLUFTfA+AQAAgGZXUnK0Ibmk2u2rTMM/p5SXl2t/xdFi69otrlzKz89Xeno6FR8AAADASfTs2bNSkp555plON9xwQ4/8/HxHWlrakRkzZuzevXt36MCBAwdmZGT0mjp1as9+/foNXLlyZfSUKVP2T548uW53oe7du1dK0h133JH03//9310kadq0afsl6cILL+x/9dVX90xPT09OSkoanJeXF9anT5/y/Pz80ClTpvRqrvfVuXPnypycnPCrrrqq12uvvXaC8vG25YxDD2vt69Za04ivXM/4amvtI9bac6y14dba3tbaudZavw1hrLV/sdYOtNY6rbVJ1toZDW1V5VnLcGtthLW2i7X2Z9baPWf6HgEAAICWUlJytDeHpGMalfuzcOFCFdXU1D2ufW7tc/Lz87Vw4cLmWCYAAADQZlx++eXFEyZMOHDo0KHgN954o0NZWVmQJD3++ON7/t//+385SUlJFUuXLo1btGhRvMvlcv/ud7/b+eqrr37rO8cdd9xRMHjw4NLNmzdHLF26NFaSZsyYsf/3v//9ztjY2Op33nknYePGjZG/+MUv8j/55JOt999//+7IyEj3smXLYprrfc2ZM+e7hISEqkWLFsVv2bIlvLleJ9Ac14QFAAAAQOs5LvTwaVTuT05Ojgb4PPZWevjeBwAAANAwh8OhzMzMHf7u3XTTTQdvuummgyebIzk5uerzzz/fWv/6rFmzCmbNmnXcTkTXXXfdoeuuu26D9/GECROKrbXrG7Pe4uLiDfWvffLJJ9vqX7v55psP3HzzzQcaM2db0hTbWwEAAABoIqcaeqSkpPiO9myN5TrmPgAAAAC0F4QeAAAAQAA51dAjIyNDlaGhR4f7VHokJiYqIyOjOZYJAAAAAAGJ0AMAAAAIIKcaejidTg0dM+bocE9Pj8TERGVmZsrpdDbTSgEAAAAg8NDTAwAAAAggpxp6SFJ8UtLR4SpRVFQX7dixg8ADAAAAQLtD6AEAAAAEkNMJPXzHRKlYVVXhIu8AAAAA0B6xvRUAAAAQQE4r9IiKOjpcJTpyRKqubobFAQAAAECAI/QAAAAAAkRNjVRaemaVHt7nlpQ0NBgAAAAA2i5CDwAAACBAlJdL1hJ6AAAAAMDpIvQAAAAAAoQ3qDjTnh6+cwEAAABAe0LoAQAAAASI0w496vX08J0LAAAAANoTQg8AAAAgQDRFpYf3ucXFTbkyAAAAADg7EHoAAAAAAaIpQw8qPQAAAAC0R4QeAAAAQICgpwcAAAAAnBlCDwAAACBA0NMDAAAAaB0zZ87s2qlTp8EOhyNtyZIlrm3btoUaY9IuueSS3q29tsbo1q1balRU1JDGjB05cmQ/Y0xac6+ptRB6AAAAAAGisLBCEj09AAAAgJa0evVq5xNPPNGloqIi6Jprrino0aNHVWxsrHv69On7rrjiisPecQsWLEgwxqTNnTu3U2uu15+f/vSn+6+77rqC1l5HIAhu7QUAAAAAkNatW6df/vItSb89JvT47OuvNTQl5cRPpqcHAAAAcNp27NgRKkmTJ08ufO655/K8133PA93jjz++p7XXECio9AAAAABaWXl5udLT01VcXCPp2EqPSdddp/Ly8hNP4HRKxkiSIlSuILkJPQAAAIBGcrvdRpJiYmLczfk6JSUlpjnnRy1CDwAAAKCVLVy4UPn5+ZJcClaVwlW7zVWNpNx9+7Rw4cITTxAUJEVG1j10qYTQAwAAAGiEkSNH9rvuuut6S9KTTz7ZxRiTtnjx4qj6PT1GjhzZ78477+wlSXPmzOlhjEnbtm1baEPzzpw5s6sxJm3JkiWuGTNmdE1ISDjvzjvv7O69n5ubGzJ16tSeiYmJg8PCwob16tVr0MyZM7sWFxcf8zv78vJy88ADDyT27dv3XKfTOTQmJmbI2LFjz8nKyorwHeevp8e3334bMmnSpF5xcXHnOZ3OocOGDeu/ZMmS4/bP9a71xRdfjK1/r6FeIW+99Vb097///b4ul2uoy+Uaev755/d9+eWXYxr6frQktrcCAAAAWllOTo7nzKVIldZdLznu/glERdXtaVUbegTEzxsAAABAQJs4ceIBl8vlzsrKihk8eHBpWlpaaa9evSr9jQsJCalZtWpV9PDhw0tSU1PLYmNjT1oZMmvWrB65ublhY8aMKRozZkyxJG3atCls3Lhx/QoLC0NGjx5d1L1794rNmzdHPPHEE13+9a9/xa5evXprfHx8jST9+Mc/Tlm2bFnssGHDSiZNmlSYn58fsnLlypjx48dHL1++fMvo0aP9loUXFBQ4xowZ0y8vLy9syJAhpf379y//7LPPIjMyMvpGR0dXn8n37He/+13He++9NykhIaH64osvPhQcHGw//PDD6Guvvfac7Ozs3fPnz2/VrbYIPQAAAIBWllLXs8N1zNZWJcfdP4F6fT1oZA4AAIAzZR40aa29hsayc+z603ne7NmzC3r06FGVlZUVc/HFFxf94Q9/2C1J9as4Zs+eXeByuWpWrVoVnZ6efvCBBx7Y15j5d+7cGbZ69eotgwYNqvBeu/7663sdPHgw+J133tl2xRVX1P0AMGvWrC7z5s3rOmfOnC5PPfXUd19++WXYsmXLYi+66KLDWVlZ273jPvzww4ixY8cOePzxxxNHjx6d28D76pKXlxd211137XniiSd2S5Lb7db06dOTXnzxxY6n9E3y8fnnn4f9+te/7pGamlr6wQcffN2hQwe3JB08eDBo9OjR/Z588smu11577cGhQ4ceOd3XOFNsbwUAAAC0soyMDCUmJkqKOi70SExMVEZGxsknqRd6sL0VAAAA0Pquv/76fb6Bx9q1a53r1693TZo0qdA38JCkuXPn7o2KinIvXrw4VpIKCwsdnmPwkSNH6vqBXHjhhWVvv/32V3fddZff4MXtduu1117r0LFjx6pHH320rurC4XDoz3/+c57L5Trt3iVPPfVUx+rqajNv3rxd3sBDkuLi4mp++ctf7q2pqdHrr79+3DZZLYlKDwAAAKCVOZ1OZWZm6oILDslVefTnniPBwcrMzJTT6Tz5JD6hR5SKCT0AAACAADB48OBjtp9asWKFS5K2b98efuONN/aoPz40NNTm5eWFV1dXa/To0WUDBw4s27hxY2Tv3r0H/fCHPzw0duzY4vHjxxf/+Mc/brC2+4svvggvKipyXHLJJcVOp9P63nO5XLZ///7ln3766XG9PRpj3bp1Lkn6+9//nvC///u/cb73Dh486JCkr776Kvx05m4qhB4AAABAABgxYoRGjnQr6KOP6q4NPP98OUaMaNwEUVF1py6VqJDQAwAAAGfodLeMwlFhYWHHhA7e6o3s7GxXdnZ2g8FDaWlpUExMTM3q1au3zZs3r+Nbb70V/49//KPTCy+80MnhcOh73/te0YIFC/KGDRt23DZSBQUFDknq1KlTlb+5IyIiGl3pUV1dbXwfHzp0KFiSXn311Q4NPaekpKRVd5gi9AAAAAACRFmZQ519trdyREc3/sn09AAAAAACXmRkZI0kzZ07N+/Xv/71SfuCREVF1cydOzd/7ty5+QUFBY6lS5dGvfnmm3Fvv/12/MSJE8/Jzc39Mijo2IzB5XLVSLXbYvmbMz8/P9Tf9fpqampUVFTkCA4OrgtunE5njSQVFBRs8N3eKpDQ0wMAAAAIEMXFOqanh2+QcVL09AAAAAAC3tChQ8slacOGDRH177ndbk2ZMqXXTTfd1F2SXn755ZhLLrmkd3Z2drgkdezY0T1t2rRDixYt2nHhhRcezsvLC9u1a9dxwcaQIUOOhIaG2uzsbFdV1bHFHt99911wbm7uMdtPhYaG1khSWVnZMXnB2rVrnUeOHDnm2rnnnlsmSWvWrDlu/cuXL4+cMGFCyiuvvBLTqG9GMyH0AAAAAAJESUnThB709AAAAACanreiov6WT6di/PjxxT169KhYvHhx/IcfflgXHLjdbt1xxx3d3njjjYSoqCi3JAUHB2v58uWx8+bNS3S7jxZVHDhwIGjHjh3hERERNZ06dTqu2iIiIsJefvnlBwoKCkIeffTRTr73fvWrX3WtqKg4Zv1JSUmVkvT222/XNSCvqqrSvffe263+3DfeeGOhJD344INdi4qK6vKFnTt3Bt92220933///djU1NTjttxqSWxvBQAAAASIM6r0qNfTo6JCqqqSQkKacIEAAABAO9azZ89KSXrmmWc67dy5M/T3v//97sTExFPa4ik4OFjPPvvsjiuvvLLvpZde2n/UqFFFHTt2rNqwYUPk119/7TzvvPNKH3300b2SdNVVVx0eOHBg2T//+c8On376qeu8884rramp0cqVK6P3798fct999+0KDw+3/l5nwYIFu9auXRv1m9/8pse7774b26dPnyMbN26M2LFjR/iQIUNKN2zYEOkdO2XKlMOzZ892L1myJC41NXVAnz59ytevX++SpHPOOefI3r17636qmDBhQvHPfvaz/GeffTaxf//+A0eOHFlSWVlpPv744+iioiLHww8/nJeamlpxOt/fpkKlBwAAABAAamqk0tKm295KEtUeAAAAQBO6/PLLiydMmHDg0KFDwW+88UaH+ttBNdall15aunLlyi3jxo07lJ2d7crMzIx3u93mrrvu2vPRRx9t8zY/dzgceu+9977+yU9+sr+kpCRo0aJF8UuWLInr0qVL5VNPPZX78MMP5zf0Gj169Kj++OOPt6anpx/YvHlzxKJFixJiYmLcH3zwwdakpKRjQomOHTu633nnna9GjBhRsn379vD//Oc/MYMHDy5dvnz5tujo6Or6cz/zzDO7nnrqqdy4uLjqJUuWxK1atSp6wIABZS+//PL2++6776R9SpoblR4AAABAACgrk6xt+tAjLq6pVggAAAC0TdOmTTs0bdq09b7X+vXrV2mtPeaaw+FQZmbmjsbM+Yc//GH3H/7wh90N3U9LSzuydOnSnJPN061bt+pXX33125ON++677zbWv5acnFz1zjvvHLfet99+e4ekY65feOGFZZ988sm2+mPXr19/3DVJuv322wtvv/32wpOtqzVQ6QEAAAAEgOLi2mNT9fSQqPQAAAAA0P4QegAAAAABwBtQNFVPD985AQAAAKC9IPQAAAAAAkBTVnp45/DOCQAAAADtBaEHAAAAEADOuNKDRuYAAAAAQOgBAAAABAJ6egAAAADAmSP0AAAAAAIAPT0AAAAA4MwRegAAAAABgJ4eAAAAAHDmCD0AAACAANAcoQeVHgAAAADaG0IPAAAAIACc8fZWTqcUVPuf904dkUPVhB4AAAAA2h1CDwAAACAAFBdLRjWKVOnRi5GRjZ/AmOOqPQg9AAAAALQ3hB4AAABAACgpkZwqV5Bs7QWnU3I4Tm2SeqEHPT0AAAAAtDeEHgAAAEAAKC4+g62t/DyHSg8AAAAA7VFwc0xqjLlN0tOS4qy1h+rd+7mkQQ089WNr7ev1xt8g6U5JfSUdkrRU0v3W2j1+XneCpNmSUiWVS8qS9IC1dtsZvSEAAACgmZWUNG3oEaViQg8AAAAA7U6TV3oYYxySfnaCIbeqNsTw93Vxvbnul/S8pARJL0vKlnS9pLXGmI71xk6TlKnacOR1SSskXekZ2++M3xgAAADQjJqk0iMq6ujTqfQAAAAAGmXkyJH9jDFp+/fvP8X9ZU9s5syZXY0xaYsXL46SpMWLF0cZY9JuvPHGHk35OoFo8uTJvYwxadu2bQtt6ddukkoPY4yRNNTzdYOkYScYniLpz9ba/3OSOXtL+o2kTZJGWWuLPNenS3pO0u8l3ei5FiPpKUn5koZZa3d7ro+T9IGkv0j6wem9OwAAAKD5Ncf2VgWEHgAAAMBJTZw48cCgQYPKwsPDa5rzdXr16lU5ffr0fRdddBHd95pRU21vFSlp/ckGGWPiJcVK+qYRc94iySHpQW/g4fGCpIclTTXG3G6tLZN0raQYSY94Aw9JstZmGWPWSBpnjOltrW3M6wIAAAAtrqRE6t7EoQeNzAEAAICTmz17dkFLvM6gQYMqnnvuubyWeK32rKm2tyqXNMXna3MD43p7jo0JHy6SVKPaHh51rLVW0kpJYZLO9xkrSe/6mWeF53hhI14TAAAAaBU0MgcAAACAM9ckoYe11m2tfcP7JamhZCzFc9xnjJlujPmdMebXxpgL/Iw9T1Ketdbf36dt8Rz7eI5DJLkl+WtYXn8sAAAAEHCapJG5T08PGpkDAAAAjVO/p8eCBQsSjDFpf/7zn+P/8Y9/xA4ePLh/eHj4sLi4uPOuvvrqnvV7f5SXl5u77rqra7du3VLDwsKGJScnD3z88cc71H+d+j09UlJSBhpj0lavXu2sP/bhhx/uZIxJu/feezuf6vsxxqSlpaX1+/LLL8Muu+yy3tHR0UOioqKGjB8/PmXr1q3H9dgoKyszd999d+eUlJSBYWFhwzp16jT4mmuu6fn1118fN3bjxo1h11xzTU/ve+3cufPgyy67rPfSpUtP+gPMgQMHggYPHtzfGJP22GOPdTzZ+NPVVNtbNZa30iNTtc3J6xhjMiVNtdaWGGOiJYWotkeHPwc9x3jPMUFSobW2uhFj/dqyZYvS0tL83lu//qQ7dwEAAACnzdrmqfSorJQqK6XQFm8dCAAAgJbQ0O8zt2zZ4vc6Ts1zzz3XccOGDa4xY8YcnjRp0v6PPvoo+vXXX+9QUlLiePfdd3O84yZOnJjy/vvvx3bv3r1i0qRJhTt37gydNWtWz+7du1ecaP5JkyYdmD9/ftc33ngj9vvf/365771FixbFGWM0ffr0A6ez9n379oWMGTOmf9euXSsnTJhwYPv27c6lS5fGffLJJ1Fr1qzZ0qdPn0qpNrC58MIL+65fv941cODAssmTJxfu3bs35M0330x4991345YtW7bt/PPPL5ek7du3h4waNWpAaWmp44ILLigaO3bs4V27doUtX748ZtmyZbGLFy/eNn78eL9/elVUVBR06aWX9tm4cWPkQw89lDdr1qxm21KspUMPb6XHEkkPScqTNFjSfEnpqm1QfrWkaM+4hv6lKPUcveuPlrS7kWMBAACAgFJZKVVXN33oIUkvvPCGpk27Qk7ncX88BgAAAJyYMf5TlUBkbZP/5fqGDRtc//znP7++6qqriiRp//79jnPOOSf13//+d2xRUVFQdHR0zSuvvBLz/vvvx44aNapo+fLl28PDw60k/c///E/cTTfdlHKi+W+44YYD8+fP77pkyZLY+fPn7/Fez8vLC/7ss89cw4YNK+nbt2/l6ax9165dYZMnTy584403cr3X7rvvvs6PPvpotxkzZnRfvHhxjiTde++9XdavX++65557vvvtb3+71zt28eLFURMnTux766239szOzt4qSS+88EJ8SUmJ449//GPuHXfcUegd+8c//jHhrrvu6vXqq6/G+ws9ysrKzGWXXXZOdna26/777991//337zud99RYTdXTo7H+R9IV1tpp1tqvrLXl1tq1ki6X9J2kKcaYvpKqPOMb+snM+7dqZZ5j1SmM9WvAgAFav3693y8AAACgOXkbjjdH6HHzzTOVnJysdevWnckSAQAAEIAa+n3mgAEDWntpbcL48eMPeAMPSerQoYN7xIgRxdXV1Wbnzp0hkvTss892kKQnnnhilzfwkKRf/OIXB0eNGlV0/KxHDRo0qGLQoEFlW7ZsifDdSuqVV16Jq6mp0TXXXFN4ouefiDFG8+fP/8732m9+85u9cXFx1cuWLYutqKgwbrdbf//73zsmJSVVPPLII3t9x06YMKH4ggsuOPzZZ59F7ty5M1iSRowYUXbvvfd+d+ONNx5TfTJ06NBySSotLT0ub6ioqDA/+tGPzlmzZk3Ur371q90PPfRQQ7s7NZkWrX7wBBz+rhcZY5ZK+plq+3MsVG2PjtgGpvJujeWt7tgnqYsxxnganZ9oLAAAABBQvL03zjT0qAwLq/uLnygV153l529Wenq6duzYQcUHAAAA0Eipqanl9a9FR0e7Jam4uDhIkj7//HNXVFSUe+TIkceNHTlyZOmqVaui61/3NWXKlMIvv/wy4rXXXou977779knS22+/HRcSEmJvuOGGgyd67okkJSVV9OzZs8r3WkhIiIYMGVKalZUVs3379tDKykpz6NCh4IiIiJqf//znPerPsX///hBJ2rhxY3hSUlLJlVdeWXzllVcW79mzJ/j999+P+Oabb0JzcnLC3n///YZ+j69p06Ylf/HFF5HBwcH2+uuvP62tuk5VIG355P2prNpaW2WM+UZSb2NMpLW2tN7YczzHLz3HrZKSJPXznJ9oLAAAABBQ/FZ6REae8jxrNm3Shao/V214kp+fr4ULF2rq1Kmnv1AAAAC0L82wZdTZJDw8vKahe96/vT906JAjKSnJb5uGyMhI98le44Ybbjjw4IMP9li8eHHsfffdt2/v3r2OTz75xDVu3LjDHTt2POnzGxIfH++v/3XdmioqKoy3Ifvu3btDn3/++U4NzVVUVOSQpNzc3JDp06f3XLFiRYy1Vi6Xy927d+8jw4cPL8nJyQn399wvvvgicvjw4SWffvqp65ZbbklauXLl16f7nhqrxba3Msb0N8ZYY8y/Ghgy2nP83HNcLskh6Qf15nFIuli1lRubfMZK0qV+5r1Mtb1BPjzNpQMAAADNym/oERV1yvPsOnj0D8GOznX0D8tycnIEAAAAoOk4nc6agwcP+i0u2L17d6i/676SkpKqR44cWbxu3TpXQUGB49VXX41zu91m6tSpZ1QVceTIEePv+t69e0MlqWPHjtUul6tGki655JJD1tr1DX399Kc/PSxJ11xzTfKKFStiZs2a9V1ubu4XxcXFGzZs2LD1jv/P3r2HRV3ue+N/3wwMB4fzUZFB0EQXiMoIPctllLv6mS7MY5KoK2BVl5b5mHtFKV5PB63MFY8bn1ardnlIS9tpUj9Z5vawfSy3SgiamGAqshQVEIfTwDDIcD9/wMDIScRhxuL9ui6u+XJ/77m/91e7SObz/Xw+S5Z02aNj8eLFJVlZWeciIyNrjxw54vbpp5963st99YQ1e3qcA1AEYJIQ4iHzE0KIPwGIBvB/pZQXW4b/HYAE8KYQwjwH/zUAgwH8zayU1WcA9ABeEUL4mq07D8D/ALBFStlt/TQiIiIiIlsxlbdqK0mFXgU9fIYMaT3uLOgRGtptH0UiIiIiIrpLI0aM0FdWVtqfOHGiQ6ZDVlZWj2rWzpkzR2s0GsWOHTvcMzIyPFUqlTE+Pr7yXvZVWFjoXF1dfdvn/1qt1q6goMDZ19f3VlBQUOOYMWPqlUqlzM/PdzEaOyaVpKamBkydOjVEq9XaVVVV2WVnZ7uOHj26ds2aNSXmpbPOnz/v2NU+Fi9efMPOzg7r16+/LITAihUrgioqKvo0LmG1oEdLgOIFAE0A/ksIsVsI8TchxAE0By1uAlhkNv8UgL8CGAvgjBDi34UQhwCsBnACwP82m1sK4F8BBAHIE0J8KoTIBLAVQCGAVGvcIxERERFRb5gyPW4LevSip0fslCmtx21rNQc9/P39MWPGjN5ukYiIiIiIOjFv3rxyAFixYkVgY2NbRamPP/7Y6+zZsy49WWPBggUVSqVSfv75597Hjh1znTJlSoWLi0v73tV3xWAwiJSUlEHmYykpKYN0Op3iySef1AKAi4uLjIuL0169elW5Zs2a28pbffHFF+7vvfdeYFlZmYOXl1eTQqGQdnZ2KC8vt9fr9a1ZJL/88ovyrbfeCrzTfh5++OG62bNnl9+4ccNh2bJld5x/L6yZ6QEp5XdoblS+s+X1WQDDAWwAEC2lLGg3/1U0B0rqASwAMBTAvwF4VEpZ327u3wHMAVAMIAGABsAmABOklDf68LaIiIiIiO5Jp43Me5Hp4eTbmvRstpYr/P39sXv3bjYxJyIiIiKysJdeeulmbGxs1f79+z3CwsLCExIS1I8++ujQF154ISQ2NraqJ4A/oDcAACAASURBVGv4+PgYY2Njq44dO+bW2Ngo5s+f36G01aFDh1ySk5ODPvroI6+erOnp6dm4detW37Fjx46YN2+eeuzYsSM2bNjgr1arDatXr75umvfBBx8UBwcHG1auXBmk0WjCnn766eAHH3xw+Pz584e5uro2btmypQgAVCqVjIuL0xYXFzuGh4f/LiEhQT1x4sRhEREREaNHj661s7PD999/7/b666/7d7WndevWXVWpVMatW7f6HTlypEcBod7ok6CHlPIRKaWQUnZIwZFSnpVSzpVSBkkpHaWUainls1LKS12s9XcpZbiU0rll7stdlaqSUu6QUo6TUrpIKQdKKf8spbze2VwiIiIiovuFpTI9zN9jCnrMnv1nXLp0CdHR0feyRSIiIiIi6oRCocDevXsvvvjiiyU1NTWKXbt2+ZSUlCg3b958cdq0aT0uUTV37lwtAPj7+9+aMmVKTfvzeXl5zps2bfLbv3+/W8d3d+Tn53drz54955RKZdOuXbu8r1+/rpw7d+6No0ePFgQEBLTWsho4cGBjVlZWfmJiYllxcbHjrl27vK9cueI4Z86c8uzs7LNhYWENprlbtmz5Z3Jyclltba0iIyPDW6vV2qenpxdlZGQULVy4sESn0ymysrIGdLWnwMDAxpSUlGtGoxGLFi0K7qykliWItrYY/ZcQIicqKioqJyfH1lshIjNDXvtH63HRmj/acCdERGRt/e3/AWvWAMuXA1cxCIPQ8sxOcTEQ2DHru9s/G70ecGl+YKoejnBGPV55BVi7ts+2TnTf6G8/N/qz/vh3zXvuH/dMZEkajQa5ubm5UkpNd/NycnJOODk5jQwPD8+31t6o7wkhNGFhYfqCgoKztt5Lb/38888j6+vr8zUazbi7fa9Vy1sREREREVFHFsv0cHIC7Jr/ie8EA+xxC9Wd5kgTERERERH9NjHoQURERERkYzU1gEATBqC2bbA3QQ8hbusFooKuNaBCRERERETUHzDoQURERERkYzod4II62KGl9KyLC6BQ9G6xdn09mOlBRERERET9ib2tN0BERERE1N/V1FigtFUn72XQg4iIiIio/5FS9uvm1cz0ICIiIiKyMZ2uOUDRyqxE1V0zC3q4ooZBDyIiIiIi6lcY9CAiIiIisjGLZnqwpwcREREREfVjDHoQEREREdlYX2V6sLwVERERERH1Nwx6EBERERHZGHt6EBERERERWQaDHkRERERENlZT03c9PQwGwGC4h80RERERERH9ijDoQURERERkYzpd3/X0AMC+HkRERERE1G8w6EFEREREZEONjYBe33c9PQAGPYiIiIiIqP9g0IOIiIiIyIZqa5tfb8v0sHDQg309iIiIiIiov2DQg4iIiIjIhsrK9AD6ppG5aU0GPYiIiIiIqL9g0IOIiIiIyEays7Px+9//fwBuL2/1T62294t20tODQQ8iIiIioq7FxMSECSE05eXlCkuuu2zZskFCCE1mZqYrAGRmZroKITTJyclBlrzO/WjWrFlDhBCac+fOKa19bQY9iIiIiIhsQK/XY+rUqbh58xaA2zM90j7+GHq9vncLs6cHEREREdFdmT59ujYpKanMycmpqS+vM2TIkIakpKSyRx55hP9C70P2tt4AEREREVF/lJGRgdLSUgCjAdye6VFcXY2MjAwkJCTc/cLs6UFEREREdFdWrFhxwxrXiYiIMGzcuPGKNa7VnzHTg4iIiIjIBgoLC1uO3AHcnumhu+38XWLQg4iIiIiI+jEGPYiIiIiIbCA0NLTlqDnoYZ7pUXPb+btk1tODjcyJiIiIiO6sfU+P9evXewshNB9++KHXli1bPCIjI0c4OTlFeXp6jp4zZ05w+94fer1eLF26dFBgYOAoR0fHqJCQkPD333/fp/112vf0CA0NDRdCaI4dO+bcfu7q1av9hBCa5cuXB9zt/QghNBqNJuzMmTOOkyZNGurm5jbG1dV1zOTJk0MLCgo69Nioq6sTr776akBoaGi4o6NjlJ+fX2R8fHzw+fPnO8zNy8tzjI+PDzbda0BAQOSkSZOG7t27V9V+bntardYuMjJyhBBCs3btWt+7va+eYtCDiIiIiMgGZsyYAX9/f3SW6eHo5YUZM2b0bmH29CAiIiIisoiNGzf6JicnD/X29m6cOXNmuaurq3HHjh0+f/rTn4LN502fPj00PT19oJ2dnZw5c+bNQYMGNaSkpATv3LnTq7v1Z86cqQWAnTt3erQ/980333gKIZCUlKTtzd7LysocHnrooRHFxcXKuLg47ciRI/V79+71/MMf/jDSPJih1+tFbGzs8LVr1wa6uLg0zZo162ZERETd119/7R0VFfW7rKys1oDMhQsXHMaPHz9yx44dPkOHDq2fNWtW+fDhw/UHDx50/+Mf/xj23XffdRn4qK6utnv88ccfyMvLG7Bq1aorKSkpfVZSjD09iIiIiIhswNnZGbt378bEiT+gtvb2oEf6xo1wdu7wsFfPsLwVEREREVmKEBpbb6HHpMyx9JKnTp1Sffnll+dnz55dDQDl5eWKYcOGjdq/f79HdXW1nZubW9O2bdvc9+3b5zF+/PjqgwcPXnBycpIA8Mknn3g+//zz3aZvJyYmatPS0gZ99913HmlpaddN41euXLE/efKkKioqSjd8+PCG3uy9uLjYcdasWTd37txZZBpLTU0NeOeddwJffvnlwZmZmYUAsHz58oE5OTmq11577eq7775bYpqbmZnpOn369OGLFi0Kzs3NLQCAzZs3e+l0OkV6enrRkiVLbprmpqeney9dunTI9u3bvSZPnqxDO3V1dWLSpEnDcnNzVStXrixeuXJlWW/uqaeY6UFEREREZCPR0dH405+WALi9vNXoCRN6vyiDHkREREREFjF58mStKeABAD4+Psbo6OiaxsZGcfnyZQcA2LBhgw8ArFu3rtgU8ACA5557rmL8+PHd/ks8IiLCEBERUZefn+9inn2xbds2z6amJsTHx9/s7v3dEUIgLS3tqvnYG2+8UeLp6dl44MABD4PBIIxGIz777DNftVptePvtt0vM58bFxdVMmDCh6uTJkwMuX75sDwDR0dF1y5cvv5qcnHxb9snYsWP1AFBbW9sh3mAwGMQTTzwx7Pjx466vvPLKtVWrVpX29p56ipkeREREREQ2VFtrD0DelulhHri4a46OgL090NgIRzTAAQ2oru5QipeIiIiIiO5g1KhR+vZjbm5uRgCoqamxA4CffvpJ5erqaoyJiekwNyYmpvbo0aNu3V3jqaeeunnmzBmXr776yiM1NbUMAL799ltPBwcHmZiYWNHbvavVakNwcPAt8zEHBweMGTOm9tChQ+4XLlxQNjQ0iMrKSnsXF5emZ599Nqj9GuXl5Q4AkJeX56RWq3XTpk2rmTZtWs3169ft9+3b53Lx4kVlYWGh4759+zqU5zJZsGBByOnTpwfY29vLZ555pleluu4Wgx5ERERERDZUVQUo0QAHNDYPODg0By56S4jmoEllJYDmbI+amm5LCRMRERERda4PSkb9mjg5OTV1dU7K5qSOyspKhVqtNnQ2Z8CAAcY7XSMxMVH75ptvBmVmZnqkpqaWlZSUKH788UfVxIkTq3x9fe/4/q54eXk1drcng8EgTA3Zr127pty0aZNfV2tVV1crAKCoqMghKSkp+PDhw+5SSqhUKuPQoUPrx40bpyssLHTq7L2nT58eMG7cON2JEydUCxcuVP/www/ne3tPPcXyVkRERERENlRVBctleXSyhgo6lrciIiIiIuojzs7OTRUVFZ0mF1y7du2OKddqtboxJiamJjs7W3Xjxg3F9u3bPY1Go0hISLinrIj6+nrR2XhJSYkSAHx9fRtVKlUTADz22GOVUsqcrr7mzp1bBQDx8fEhhw8fdk9JSblaVFR0uqam5tSpU6cKlixZ0mWPjsWLF5dkZWWdi4yMrD1y5Ijbp59+6nkv99UTDHoQEREREdlQVdXt/Tzg6nrvi5oFPVxRw6AHEREREVEfGTFihL6ystL+xIkTHTIdsrKyevRE05w5c7RGo1Hs2LHDPSMjw1OlUhnj4+Mr72VfhYWFztXV1bd9/q/Vau0KCgqcfX19bwUFBTWOGTOmXqlUyvz8fBejsWNSSWpqasDUqVNDtFqtXVVVlV12drbr6NGja9esWVNiXjrr/PnzXaaqL168+IadnR3Wr19/WQiBFStWBFVUVPRpXIJBDyIiIiIiG+qTTA+zwAmDHkREREREfWfevHnlALBixYrAxsa2ilIff/yx19mzZ116ssaCBQsqlEql/Pzzz72PHTvmOmXKlAoXFxd553d2zWAwiJSUlEHmYykpKYN0Op3iySef1AKAi4uLjIuL0169elW5Zs2a28pbffHFF+7vvfdeYFlZmYOXl1eTQqGQdnZ2KC8vt9fr9a1ZJL/88ovyrbfeCrzTfh5++OG62bNnl9+4ccNh2bJld5x/Lxj0ICIiIiKyoT7J9HBr65XoihrU1ADynn5lIiIiIiKizrz00ks3Y2Njq/bv3+8RFhYWnpCQoH700UeHvvDCCyGxsbFVPVnDx8fHGBsbW3Xs2DG3xsZGMX/+/A6lrQ4dOuSSnJwc9NFHH/WoYZ+np2fj1q1bfceOHTti3rx56rFjx47YsGGDv1qtNqxevfq6ad4HH3xQHBwcbFi5cmWQRqMJe/rpp4MffPDB4fPnzx/m6urauGXLliIAUKlUMi4uTltcXOwYHh7+u4SEBPXEiROHRURERIwePbrWzs4O33//vdvrr7/u39We1q1bd1WlUhm3bt3qd+TIkR4FhHqDQQ8iIiIiIhuREqiubpfpYeGghxuq0dQE1NXd+7JERERERHQ7hUKBvXv3XnzxxRdLampqFLt27fIpKSlRbt68+eK0adN6XKJq7ty5WgDw9/e/NWXKlJr25/Py8pw3bdrkt3//freO7+7Iz8/v1p49e84plcqmXbt2eV+/fl05d+7cG0ePHi0ICAhorWU1cODAxqysrPzExMSy4uJix127dnlfuXLFcc6cOeXZ2dlnw8LCGkxzt2zZ8s/k5OSy2tpaRUZGhrdWq7VPT08vysjIKFq4cGGJTqdTZGVlDehqT4GBgY0pKSnXjEYjFi1aFNxZSS1LEJKPfEEIkRMVFRWVk5Nj660QkZkhr/2j9bhozR9tuBMiIrK2/vL/AL0ecHEBZuJrfI3ZzYPTpwMZGV2+p0d/NomJwGefAQCSsBGbkYRr14CBAy21c6L7T3/5uUH98++a99w/7pnIkjQaDXJzc3OllJru5uXk5JxwcnIaGR4enm+tvVHfE0JowsLC9AUFBWdtvZfe+vnnn0fW19fnazSacXf7XmZ6EBERERHZSFVLsrvFy1uZreGG5oYe7OtBRERERET9AYMeREREREQ2Ygp6WLyRebueHgBQ0yFBnoiIiIiI6LeHQQ8iIiIiIhvps0yPdj09AGZ6EBERERFR/2Bv6w0QEREREfVX1sj0YNCDiIiIiKh/kVL26+bVzPQgIiIiIrIR9vQgIiIiIiKyLAY9iIiIiIhsxJo9PRj0ICIiIiKi/oBBDyIiIiIiG+k06NFHPT1++OEU9Hr9va9NRERERER0H2PQg4iIiIjIRqzZyPyrr75DSEgIsrOz7319IiIiIiKi+xSDHkRERERENtJX5a3qHRxaj01BD8ANpaWlmDp1KjM+iIiIiIjoN4tBDyIiIiIiG+mrTI89R460HpsHPQCgtLQUGRkZ93wNIiIiIiKi+xGDHkRERERENtJXmR6/lJS0Hret3RZMKSwsvOdrEBERERER3Y8Y9CAiIiIispG+yvRQDx+OWy3HTjBACQMAj9bzoaGh93wNIiIiIiKi+1GfBD2EEC8IIaQQwqOTc/ZCiGVCiLNCiDohRJEQYp0QotPf7oQQiUKIk0KIWiHEVSHEBiHEwC7mxgkhjgohaoQQZUKI/xBChFn6/oiIiIiILKGvMj1mzJwJnRCt3zev7wkA8Pf3x4wZM+75GkRERERERPcjiwc9hBAKAH/uZspHANIACABbAVwEsBTA90IIp3ZrrQSwCYA3gC8A5AJ4BkCWEMK33dwFAHYDGA5gB4DDAKa1zGXgg4iIiIjuO1VVgB2McEFLY3EhABeXe17X2dkZLgEBrd839/XwhL+/P3bv3g1nZ+d7vgYRERER0W9FTExMmBBCU15errDkusuWLRskhNBkZma6AkBmZqarEEKTnJwcZMnr3I9mzZo1RAihOXfunNLa17a3xCJCCAFgbMtXIoCoLuY9guaAyH8BmCylbGgZfxPA/wKQAuCtlrGhAN4A8DOA8VLK6pbxJAAbAbwHILllzB3A/wFQCiBKSnmtZXxiy7X+DuBfLHGvRERERESWUlXVrrTVgAGAnWWeS3L08QGuXwfQnOnh6Pg7XLp0iQEPIiIiIqJ2pk+fro2IiKhzcnJq6svrDBkypCEpKanskUceqbnzbOotiwQ9AAwAkNODeS+2vL5mCni0+CuA5QCeRUvQA8BCAAoAb5oCHi02A1gNIEEIsVhKWQdgPgB3AG+bAh4AIKU8JIQ4DmCiEGKolPLi3d8aEREREVHfqKoCfM1LW1mgn0crN7e2Q1TDYHCAvb2D5dYnIiIiIvqNWLFixQ1rXCciIsKwcePGK9a4Vn9mqfJWegBPmX2d7WJeLIAbUsps80EppQ7NpauChBAhLcOPAGgCsLfdXAngBwCOAB40mwsAezq55mGzaxMRERER3Rfq64GGBsv382hlFkBpLm8FVFRYbnkiIiIiIqL7kUWCHlJKo5Ryp+kLQIfImBAiEIAfug6I5Le8PtDyOhrAFSllZ6k+7eeOAWAEcK4Hc4mIiIiIbM7UxNwdVW2D7u6Wu0C7TA8A0GottzwRERER0W9F+54e69ev9xZCaD788EOvLVu2eERGRo5wcnKK8vT0HD1nzpzg9r0/9Hq9WLp06aDAwMBRjo6OUSEhIeHvv/++T/vrtO/pERoaGi6E0Bw7dqxDDdrVq1f7CSE0y5cvD2h/7k6EEBqNRhN25swZx0mTJg11c3Mb4+rqOmby5MmhBQUFHXps1NXViVdffTUgNDQ03NHRMcrPzy8yPj4++Pz58x3m5uXlOcbHxweb7jUgICBy0qRJQ/fu3XvHJ7i0Wq1dZGTkCCGEZu3atb53mt9blipv1RPeLa+lXZw3PXfmJYRwA+DQk7lma9+UUjb2YG6n8vPzodFoOj2Xk9OTyl1ERERERD1nzaCHKZuEmR5EREREvy1dfZ6Zn5/f6TjdnY0bN/qeOnVK9dBDD1XNnDmz/MiRI247duzw0el0ij179hSa5k2fPj103759HoMHDzbMnDnz5uXLl5UpKSnBgwcPNnS3/syZM7VpaWmDdu7c6fH73/9eb37um2++8RRCICkpqVePLpWVlTk89NBDIwYNGtQQFxenvXDhgvPevXs9f/zxR9fjx4/nP/DAAw1Ac8AmNjZ2eE5Ojio8PLxu1qxZN0tKShy+/vpr7z179ngeOHDg3IMPPqgHgAsXLjiMHz9+ZG1trWLChAnVDz/8cFVxcbHjwYMH3Q8cOOCRmZl5bvLkybrO9lNdXW33+OOPP5CXlzdg1apVV1JSUvqspJg1gx6m37q6+ouubXm1v8u5prWv9XAuEREREZHNMdODiIiIiO57QnQeVbkfSWnxJ9dPnTql+vLLL8/Pnj27GgDKy8sVw4YNG7V//36P6upqOzc3t6Zt27a579u3z2P8+PHVBw8evODk5CQB4JNPPvF8/vnnQ7tbPzExUZuWljbou+++80hLS7tuGr9y5Yr9yZMnVVFRUbrhw4c3dLdGV4qLix1nzZp1c+fOnUWmsdTU1IB33nkn8OWXXx6cmZlZCADLly8fmJOTo3rttdeuvvvuuyWmuZmZma7Tp08fvmjRouDc3NwCANi8ebOXTqdTpKenFy1ZsuSmaW56err30qVLh2zfvt2rs6BHXV2dmDRp0rDc3FzVypUri1euXFnWm3vqKWsGAm61vHZI1WlhSpWpu8u5prV7OrdTI0eOZEYHEREREVlNnwc92NODiIiI6Devq88zNRoNcnNzrbyb357JkydrTQEPAPDx8TFGR0fXHDhwwOPy5csOERERhg0bNvgAwLp164pNAQ8AeO655yo2b95cffToUbfO1gaaG5tHRETUnTlzxuX8+fNKU/bFtm3bPJuamhAfH3+zq/feiRACaWlpV83H3njjjZK///3v/gcOHPAwGAzC3t5efvbZZ75qtdrw9ttvl5jPjYuLq5kwYULV4cOH3S9fvmyvVqsbo6Oj65YvX341OTn5tsepxo4dqweA2traDu00DAaDeOKJJ4YdP37c9ZVXXrm2atWqrqo7WYw1gx6m6I1HF+dN5a+uAdCiuUdHT+aa1h4ohBAtjc67m0tEREREZHO2yPRg0IOIiIiIqOdGjRqlbz/m5uZmBICamho7APjpp59Urq6uxpiYmA5zY2JiarsLegDAU089dfPMmTMuX331lUdqamoZAHz77beeDg4OMjExsdf/gler1Ybg4OBb5mMODg4YM2ZM7aFDh9wvXLigbGhoEJWVlfYuLi5Nzz77bFD7NcrLyx0AIC8vz0mtVuumTZtWM23atJrr16/b79u3z+XixYvKwsJCx3379nX1OT4WLFgQcvr06QH29vbymWeesUruuTWDHpfRnG0xqovzwwA0ATgrpbwlhLgIYKgQYoCUsraTuQBwpuW1AIAaQFjLcXdziYiIiIhszhY9PVjeioiIiIjuSh+UjPo1cXJyaurqnOnZ+8rKSoVare60TcOAAQOMd7pGYmKi9s033wzKzMz0SE1NLSspKVH8+OOPqokTJ1b5+vre8f1d8fLy6qz/deueDAaDMDVkv3btmnLTpk1+Xa1VXV2tAICioiKHpKSk4MOHD7tLKaFSqYxDhw6tHzdunK6wsNCps/eePn16wLhx43QnTpxQLVy4UP3DDz+c7+099VSHdJO+IqU0AjgMwF8IcVvgQwjhASAGQJaU0pQudBCAAsC/tJurAPAomjM3fjabCwCPd3LpSWjuDfK9BW6DiIiIiMgimOlBRERERPTr5+zs3FRRUdFpcsG1a9eUnY2bU6vVjTExMTXZ2dmqGzduKLZv3+5pNBpFQkLCPT2yVF9fLzobLykpUQKAr69vo0qlagKAxx57rFJKmdPV19y5c6sAID4+PuTw4cPuKSkpV4uKik7X1NScOnXqVMGSJUu67NGxePHikqysrHORkZG1R44ccfv000897+W+esJqQY8WH7W8rhFC2AGAEEIAeA/NPTk+MJv77wAkgDeFEOb9Ol4DMBjA38xKWX0GQA/gFSGEr2miEGIegP8BYItZMIWIiIiIyOZs0dODmR5ERERERJY1YsQIfWVlpf2JEyc6ZDpkZWWperLGnDlztEajUezYscM9IyPDU6VSGePj4yvvZV+FhYXO1dXVt33+r9Vq7QoKCpx9fX1vBQUFNY4ZM6ZeqVTK/Px8F6OxY1JJampqwNSpU0O0Wq1dVVWVXXZ2tuvo0aNr16xZU2JeOuv8+fOOXe1j8eLFN+zs7LB+/frLQgisWLEiqKKiok/jElYNekgp/38AXwGYAuCUEOIjAD8CeB7AbinlNrO5pwD8FcBYAGeEEP8uhDgEYDWAEwD+t9ncUgD/CiAIQJ4Q4lMhRCaArQAKAaRa4/6IiIiIiHqquuWRHFNAAgAzPYiIiIiIfmXmzZtXDgArVqwIbGxsqyj18ccfe509e9alJ2ssWLCgQqlUys8//9z72LFjrlOmTKlwcXFp37v6rhgMBpGSkjLIfCwlJWWQTqdTPPnkk1oAcHFxkXFxcdqrV68q16xZc1t5qy+++ML9vffeCywrK3Pw8vJqUigU0s7ODuXl5fZ6vb41i+SXX35RvvXWW4F32s/DDz9cN3v27PIbN244LFu27I7z74W1Mz0AYB6AlQBcACQC8ALwOoDZ7SdKKV8F8AKAegALAAwF8G8AHpVS1reb+3cAcwAUA0gAoAGwCcAEKeWNProXIiIiIqJesUVPDwY9iIiIiIgs66WXXroZGxtbtX//fo+wsLDwhIQE9aOPPjr0hRdeCImNja268wqAj4+PMTY2turYsWNujY2NYv78+R1ytA8dOuSSnJwc9NFHH3n1ZE1PT8/GrVu3+o4dO3bEvHnz1GPHjh2xYcMGf7VabVi9evV107wPPvigODg42LBy5cogjUYT9vTTTwc/+OCDw+fPnz/M1dW1ccuWLUUAoFKpZFxcnLa4uNgxPDz8dwkJCeqJEycOi4iIiBg9enStnZ0dvv/+e7fXX3/dv6s9rVu37qpKpTJu3brV78iRIz0KCPVGnwQ9pJSPSCmFlLJDCo6UslFK+baUcpiU0klKOVRK+ZaUsqGLtf4upQyXUjpLKdVSype7KlUlpdwhpRwnpXSRUg6UUv5ZSnm9s7lERERERLZki54eLG9FRERERGRZCoUCe/fuvfjiiy+W1NTUKHbt2uVTUlKi3Lx588Vp06b1uETV3LlztQDg7+9/a8qUKTXtz+fl5Tlv2rTJb//+/W4d392Rn5/frT179pxTKpVNu3bt8r5+/bpy7ty5N44ePVoQEBDQWstq4MCBjVlZWfmJiYllxcXFjrt27fK+cuWK45w5c8qzs7PPhoWFtX5uv2XLln8mJyeX1dbWKjIyMry1Wq19enp6UUZGRtHChQtLdDqdIisra0BXewoMDGxMSUm5ZjQasWjRouDOSmpZgmhri9F/CSFyoqKionJycmy9FSIyM+S1f7QeF635ow13QkRE1tYf/h/w8MNGfP+9AucxDMNwsXnw3Dlg+PBu39fjPxutFvD2BgBUwh2eqERAAHCdjwTRb1R/+LlBzfrj3zXvuX/cM5ElaTQa5Obm5kopNd3Ny8nJOeHk5DQyPDw831p7o74nhNCEupN3mgAAIABJREFUhYXpCwoKztp6L731888/j6yvr8/XaDTj7va9tihvRURERETUr2VnZ+Po0XMAbs/0OFlYaLmLmDUyby5vJaHVAnzmiYiIiIiIfssY9CAiIiIisiK9Xo+pU6eisdEDgLwt6DH9mWeg1+stcyEHB8DZGQCgQBNcUIeGBsBSyxMREREREd2PGPQgIiIiIrKijIwMlJaWAvCBE+qhxC0AgAHA5bIyZGRkWO5infT1YDNzIiIiIiL6LbO39QaIiIiIiPqTwsJCACoASrijpHW86rbzFuLqCpSWAmgOepRgILRaIDDQcpcgIiIiIqL7i5SyXzevZqYHEREREZEVhYaGAvABcHs/j6rbzlsIMz2IiIiIiKifYdCDiIiIiMiKZsyYAS+vMAAdgx7+/v6YMWOG5S7WSdBDq7Xc8kRERERERPcbBj2IiIiIiKzI2dkZr7+eDuD2oIdeqcTu3bvh3NJ83CLMgh6uqAHATA8iIiIiIvptY08PIiIiIiIr6yzTY/wTT0ARHW3ZC7m6th6yvBUREREREfUHzPQgIiIiIrKy8vLmV/Ogh8LLy/IXYnkrIiIiIiLqZxj0ICIiIiKysps3m1/Ngx5wd7f8hdjInIiIiIiI+hkGPYiIiIiIrKyzTI++DnqYenow04OIiIiIiH7LGPQgIiIiIrIyqwU92NODiIiIiIj6GQY9iIiIiIisjOWtiIiIiIiI+gaDHkREREREVmaL8lamoMeFC1ps27YNer3e8tcjIiIiIvoViomJCRNCaMrLyxWWXHfZsmWDhBCazMxMVwDIzMx0FUJokpOTgyx5nfvRrFmzhgghNOfOnVNa+9oMehARERERWZktgh6ma2m1TZg3bx5CQkKQnZ1t+WsSEREREf3KTJ8+XZuUlFTm5OTU1JfXGTJkSENSUlLZI488UtOX1+nv7G29ASIiIiKi/kRKK5a38vRsO0RF6xEgUFpaiqlTp+LSpUtwdna2/LWJiIiIiH4lVqxYccMa14mIiDBs3LjxijWu1Z8x04OIiIiIyIp0OqChofnYQ/Rx0MPLq+0QLZEWKAA0NzgvLS1FRkaG5a9LRERERERkIwx6EBERERFZkam0FWCFoEenmR7N35kUFhZa/rpERERERL8i7Xt6rF+/3lsIofnwww+9tmzZ4hEZGTnCyckpytPTc/ScOXOC2/f+0Ov1YunSpYMCAwNHOTo6RoWEhIS///77Pu2v076nR2hoaLgQQnPs2LEOqderV6/2E0Joli9fHnC39yOE0Gg0mrAzZ844Tpo0aaibm9sYV1fXMZMnTw4tKCjo0GOjrq5OvPrqqwGhoaHhjo6OUX5+fpHx8fHB58+f7zA3Ly/PMT4+Pth0rwEBAZGTJk0aunfvXtWd9qXVau0iIyNHCCE0a9eu9b3b++opBj2IiIiIiKzIVNoKANxk3/f0aLJr/ie/CnVwQEuKCdoyQEJDQy1/XSIiIiKi34CNGzf6JicnD/X29m6cOXNmuaurq3HHjh0+f/rTn4LN502fPj00PT19oJ2dnZw5c+bNQYMGNaSkpATv3LnTq6u1AWDmzJlaANi5c6dH+3PffPONpxACSUlJ2t7svayszOGhhx4aUVxcrIyLi9OOHDlSv3fvXs8//OEPI82DGXq9XsTGxg5fu3ZtoIuLS9OsWbNuRkRE1H399dfeUVFRv8vKymoNyFy4cMFh/PjxI3fs2OEzdOjQ+lmzZpUPHz5cf/DgQfc//vGPYd99912XgY/q6mq7xx9//IG8vLwBq1atupKSktJnJcXY04OIiIiIyIpMmR6OqIdStgQh7O0BJyfLX0wICE/P1kiLJypQBn+Ygh7+/v6YMWOG5a9LRERERL8NQmhsvYUekzLH0kueOnVK9eWXX56fPXt2NQCUl5crhg0bNmr//v0e1dXVdm5ubk3btm1z37dvn8f48eOrDx48eMHJyUkCwCeffOL5/PPPd/uEUWJiojYtLW3Qd99955GWlnbdNH7lyhX7kydPqqKionTDhw9v6G6NrhQXFzvOmjXr5s6dO4tMY6mpqQHvvPNO4Msvvzw4MzOzEACWL18+MCcnR/Xaa69dfffdd0tMczMzM12nT58+fNGiRcG5ubkFALB582YvnU6nSE9PL1qyZEnr41zp6eneS5cuHbJ9+3avyZMn69rvpa6uTkyaNGlYbm6uauXKlcUrV64s68099RQzPYiIiIiIrMgU9OjQxFyIPrmeMOvr0Vbiyg/+/v7YvXs3m5gTEREREXVh8uTJWlPAAwB8fHyM0dHRNY2NjeLy5csOALBhwwYfAFi3bl2xKeABAM8991zF+PHjqzuu2iYiIsIQERFRl5+f72KefbFt2zbPpqYmxMfH3+zu/d0RQiAtLe2q+dgbb7xR4unp2XjgwAEPg8EgjEYjPvvsM1+1Wm14++23S8znxsXF1UyYMKHq5MmTAy5fvmwPANHR0XXLly+/mpycfFv2ydixY/UAUFtb2yHeYDAYxBNPPDHs+PHjrq+88sq1VatWlfb2nnqKmR5ERERERFZkKm/VIejRV8z6enih+XeThIS/4NNPNzDgQURERETUjVGjRunbj7m5uRkBoKamxg4AfvrpJ5Wrq6sxJiamw9yYmJjao0ePunV3jaeeeurmmTNnXL766iuP1NTUMgD49ttvPR0cHGRiYmJFd+/tjlqtNgQHB98yH3NwcMCYMWNqDx065H7hwgVlQ0ODqKystHdxcWl69tlng9qvUV5e7gAAeXl5Tmq1Wjdt2rSaadOm1Vy/ft1+3759LhcvXlQWFhY67tu3r0N5LpMFCxaEnD59eoC9vb185plnelWq624x6EFEREREZEWmTA83mD30ZaWghynTY9CgKDDeQURERER31Aclo35NnJycmro6J2VzUkdlZaVCrVYbOpszYMAA452ukZiYqH3zzTeDMjMzPVJTU8tKSkoUP/74o2rixIlVvr6+d3x/V7y8vBq725PBYBCmhuzXrl1Tbtq0ya+rtaqrqxUAUFRU5JCUlBR8+PBhdyklVCqVcejQofXjxo3TFRYWdlqv9/Tp0wPGjRunO3HihGrhwoXqH3744Xxv76mnWN6KiIiIiMiKuixv1Vc6KW9VUtLVZCIiIiIiuhvOzs5NFRUVnSYXXLt2TdnZuDm1Wt0YExNTk52drbpx44Zi+/btnkajUSQkJNxTVkR9fX2n9XNLSkqUAODr69uoUqmaAOCxxx6rlFLmdPU1d+7cKgCIj48POXz4sHtKSsrVoqKi0zU1NadOnTpVsGTJki57dCxevLgkKyvrXGRkZO2RI0fcPv30U8+u5loKgx5ERERERFZ0P5S3YtCDiIiIiMgyRowYoa+srLQ/ceJEh0yHrKwsVU/WmDNnjtZoNIodO3a4Z2RkeKpUKmN8fHzlveyrsLDQubq6+rbP/7VarV1BQYGzr6/vraCgoMYxY8bUK5VKmZ+f72I0dkwqSU1NDZg6dWqIVqu1q6qqssvOznYdPXp07Zo1a0rMS2edP3/esat9LF68+IadnR3Wr19/WQiBFStWBFVUVPRpXIJBDyIiIiIiK2KmBxERERHRb8e8efPKAWDFihWBjY1tFaU+/vhjr7Nnz7r0ZI0FCxZUKJVK+fnnn3sfO3bMdcqUKRUuLi7yzu/smsFgECkpKYPMx1JSUgbpdDrFk08+qQUAFxcXGRcXp7169apyzZo1t5W3+uKLL9zfe++9wLKyMgcvL68mhUIh7ezsUF5ebq/X61uzSH755RflW2+9FXin/Tz88MN1s2fPLr9x44bDsmXL7jj/XjDoQURERERkRVYPejDTg4iIiIioz7z00ks3Y2Njq/bv3+8RFhYWnpCQoH700UeHvvDCCyGxsbFVd14B8PHxMcbGxlYdO3bMrbGxUcyfP79DaatDhw65JCcnB3300Udena3RnqenZ+PWrVt9x44dO2LevHnqsWPHjtiwYYO/Wq02rF69+rpp3gcffFAcHBxsWLlyZZBGowl7+umngx988MHh8+fPH+bq6tq4ZcuWIgBQqVQyLi5OW1xc7BgeHv67hIQE9cSJE4dFREREjB49utbOzg7ff/+92+uvv+7f1Z7WrVt3VaVSGbdu3ep35MiRHgWEeoNBDyIiIiIiK7J6eatOMj3Ky4Fbt7p6AxERERER9ZRCocDevXsvvvjiiyU1NTWKXbt2+ZSUlCg3b958cdq0aT0uUTV37lwtAPj7+9+aMmVKTfvzeXl5zps2bfLbv3+/W0/W8/Pzu7Vnz55zSqWyadeuXd7Xr19Xzp0798bRo0cLAgICWmtZDRw4sDErKys/MTGxrLi42HHXrl3eV65ccZwzZ055dnb22bCwsAbT3C1btvwzOTm5rLa2VpGRkeGt1Wrt09PTizIyMooWLlxYotPpFFlZWQO62lNgYGBjSkrKNaPRiEWLFgV3VlLLEoSpy3x/JoTIiYqKisrJybH1VojIzJDX/tF6XLTmjzbcCRERWdtv9f8BUgJOTkBDA5CGZViGdc0n/vpX4C9/6dEad/1n8+23wPTpAIB9yjhMatgNACguBgL7NKmcyLp+qz83qKP++HfNe+4f90xkSRqNBrm5ublSSk1383Jyck44OTmNDA8Pz7fW3qjvCSE0YWFh+oKCgrO23ktv/fzzzyPr6+vzNRrNuLt9b6dd5YmIiIiIyPJ0uuaABwB4K6oA04NNVipv5WuvBVquX1LCoAcR/XrU1dUhIyMD586dA/Bg67her4ezs7PtNkZERET3HZa3IiIiIiKyElNpKwDwVVq/vJWXqGg9Zl8PIvq1yM7ORmhoKObPn49Vq1bddi4kJATZ2dk22hkRERHdjxj0ICIiIiKyElMTcwDwUZj1JvTqUS/C3jHL9HA3tl2TQQ8i+jXQ6/WYOnUqSktLOz1fWlqKiRMnYvPmzdDr9VbeHREREd2PGPQgIiIiIrKSS5cMrccejWZRBx+fvruoWUBFdasCQHNPPwY9iOh+V1dXh7/85S9dBjxMamtrkZSUxKwPIiKiFlLKnF9zP497xaAHEREREZEVZGdn489/fr31e1X9tbaT3t59d2FnZ8DREQBgb2yAM5qfhGbQg4juZ6aSVh9++GG7MyPafR/eelRaWoqpU6cy44OIiKifY9CDiIiIiKiPmcqz1NS4tYxIeEPXdt7FpW83YFbiygvNJa4Y9CCi+1XnJa0CAHwF4Od2s88A+C8AzcHj0tJSZGRkWGWfREREdH9i0IOIiIiIqI9lZGS0fHg3GACggg6OMAIAagFk/Od/9u0GzEpceaK5mTmDHkR0v2r7mWniAuA/ATyFzj/GmAjgWwBOAIDCwsK+3iIRERHdxxj0ICIiIiLqY20fwDUHPXzQ1tH8JqzwAR0zPYjoV6Tjz8RPAUR2Mbup5fUPALYCEBg8eHBfbY2IiIh+BRj0ICIiIiLqY6GhoS1HzR/EeeNm67ny2873EWZ6ENGvyO0/E18GMNfs+2fbzV5mdjwbwCq8+uqrbGhORETUjzHoQURERETUx2bMmAE/P38AgQBuz/SoVioxY8aMvt2AWaaHr6I500OnAzZu/IoNf4novjNp0iS4u7sDiACw1uzMR/D3z2w3O73ly+RVlJV5sKE5ERFRP8agBxERERFRH3N2dsa2bXsADAAA+OBK67lRjzwCZ2fnvt2AWaaHe9Ol1uM//3k5QkJC+EQ0Ed03srOzER4ejqqqKgDvALBvOXMMfn7vYPfu3Z28axmAwy3H9gDeY0NzIiKifoxBDyIiIiIiK/Dzi2o9Dh5Q1nrsPXx431/cLNPDQxabnQhAaWkpn4gmovuCXq/H1KlTW5qYjwcwteVMEwYMWIb8/FOIjo7u5J1NuL3M1XQAsWxoTkRE1E8x6EFEREREZAXFZrGGkX71bd/4+PT9xc2CHp4oNTsRAAB8IpqI7gsZGRktAQ+gOcvDZBtqa49j79693bw7F82NzE3ex5AhfdwviYiIiO5LNgl6CCFShBD/1sXXo2bz7IUQy4QQZ4UQdUKIIiHEOiGEaxfrJgohTgohaoUQV4UQG4QQA613Z0REREREnTMPegxStvX0gLd331/crLyVF26YnQhoPeIT0URka20/hyYBeLjl+BaA19udb+Pv72/2XSoAU1A5GseODWQWGxER9UhMTEyYEEJTXl6usOS6y5YtGySE0GRmZroCQGZmpqsQQpOcnBxkyevcj2bNmjVECKE5d+6c0trXtlWmx6sA/mcXX+a5qh8BSAMg0PzIxkUASwF8L4RwMl9QCLESwCYA3gC+QPNjHs8AyBJC+PblzRARERER3Yl50MPP7mbbN1bP9KgwO9EW9AgN5RPRRGRbbT+HXjcb/QRAYbvzbXbv3m0W+LgC86bmH37oxL5FRETUI9OnT9cmJSWVOTk5NfXldYYMGdKQlJRU9sgjj9T05XX6O/s7T7EsIYQ7AC8AKVLKv3Yz7xEAfwbwXwAmSykbWsbfBPC/AKQAeKtlbCiANwD8DGC8lLK6ZTwJwEYA7wFI7ps7IiIiIiK6M/Ogh2eTLTM9qs1ONAc9/P39MWPGjL7fBxFRN2bMmAEvr0nQan/fMmIAsBpA1z+noqOjcenSJfzHf/wHXnrpJeh069D8rKQjgN+jtHQIpk6dikuXLsHZ2dlKd0JERL82K1asuHHnWfcuIiLCsHHjxivWuFZ/ZotMj6EtrxfvMO/FltfXTAGPFn9Fc37rs2ZjCwEoALxpCni02AzgGoAEIYRLr3dMRERERHSPzIMergazoIeVMz287cz6iSAA/v7+2L17Nz8MJCKbqqurw65du+Dt/YbZ6JcArt/x55SzszOUSiV0Oh2AUgDbzc4uZd8iIiKifuZ+DnrEArghpbwtD1VKqUNz6aogIURIy/AjAJoA7G03VwL4Ac2PeDx4b9smIiIiIuo986CHc62Vy1uZZXqoVW0ldYcM+QMuXbqE6Ojozt5FRGQV2dnZCA0Nxfz5L+P8+bGt4zNnXsUXX3zRo59Tt/f7+Dez49kAgti3iIiIutW+p8f69eu9hRCaDz/80GvLli0ekZGRI5ycnKI8PT1Hz5kzJ7h97w+9Xi+WLl06KDAwcJSjo2NUSEhI+Pvvv9/hH/rte3qEhoaGCyE0x44d6xDZX716tZ8QQrN8+fKA9ufuRAih0Wg0YWfOnHGcNGnSUDc3tzGurq5jJk+eHFpQUNChx0ZdXZ149dVXA0JDQ8MdHR2j/Pz8IuPj44PPnz/fYW5eXp5jfHx8sOleAwICIidNmjR07969qjvtS6vV2kVGRo4QQmjWrl3bZy0prF7eCoCpCGe1EGIRgCEAKgDslVKeAgAhRCAAPwCHu1gjH81BjAcAXAIwGsAVKWVntdDyW14fAHCoq03l5+dDo9F0ei4nJ6eb2yEiIiIiurO2oIeEfZWVy1t5eLQe2usqINAECTtUV3uBCR5EZEt6vR5Tp05FaWkpmhuRO7acOY7//u/1+PzznpWlur3fx09o/vV/Ipo/9ngRoaG/+X6xRNRPdfV5Zn5+fqfjdHc2btzoe+rUKdVDDz1UNXPmzPIjR4647dixw0en0yn27NnTGlGfPn166L59+zwGDx5smDlz5s3Lly8rU1JSggcPHmzobv2ZM2dq09LSBu3cudPj97//vd783DfffOMphEBSUpK2N3svKytzeOihh0YMGjSoIS4uTnvhwgXnvXv3ev7444+ux48fz3/ggQcagOaATWxs7PCcnBxVeHh43axZs26WlJQ4fP3119579uzxPHDgwLkHH3xQDwAXLlxwGD9+/Mja2lrFhAkTqh9++OGq4uJix4MHD7ofOHDAIzMz89zkyZN1ne2nurra7vHHH38gLy9vwKpVq66kpKT0WUkxWwQ9hqI5KyMXgIfZ+LtCiE/RXKrK9JtfaRdrmLovegkh3AA49GRur3dMRERERHQPqqubvwDAx1EHYWip3ursDLhYoQqrgwOgUgE6HURTE3wda1BmcIdWC1RU3Fb9iojIqjIyMloCHvYAFpmd+T+tZakSEhLuuM6MGTPg7+/fshYArENz0AMQ4nlMnuxk4Z0TEfUTQnQeVbkfSWnxJ9dPnTql+vLLL8/Pnj27GgDKy8sVw4YNG7V//36P6upqOzc3t6Zt27a579u3z2P8+PHVBw8evODk5CQB4JNPPvF8/vnnQ7tbPzExUZuWljbou+++80hLS7tuGr9y5Yr9yZMnVVFRUbrhw4c3dLdGV4qLix1nzZp1c+fOnUWmsdTU1IB33nkn8OWXXx6cmZlZCADLly8fmJOTo3rttdeuvvvuuyWmuZmZma7Tp08fvmjRouDc3NwCANi8ebOXTqdTpKenFy1ZsqQ1fT09Pd176dKlQ7Zv3+7VWdCjrq5OTJo0aVhubq5q5cqVxStXrizrzT31lC3KW4W2XHcDgGAAKgCPATiL5j4d7wJwa5nbVSSstuXV/i7ndmnkyJHIycnp9IuIiIiI6F5cvdp2HB5g5dJWJmYlrsao2x4Wu3inorNERH2orezUkwACW45LAOxod757zs7O2L17N/z9/VtGMgE0v1dKT+zerejyvUREv2ZdfZ45cuRIW2/tN2Hy5MlaU8ADAHx8fIzR0dE1jY2N4vLlyw4AsGHDBh8AWLduXbEp4AEAzz33XMX48eOrO67aJiIiwhAREVGXn5/vYl5Katu2bZ5NTU2Ij4+/2d37uyOEQFpa2lXzsTfeeKPE09Oz8cCBAx4Gg0EYjUZ89tlnvmq12vD222+XmM+Ni4urmTBhQtXJkycHXL582R4AoqOj65YvX341OTn5tuyTsWPH6gGgtra2Q7zBYDCIJ554Ytjx48ddX3nllWurVq3qKnnBYmyR6fE2gLellOalpg4KISajOfCxBMA/Wsa7ymE1/QdQh+am5j2dS0RERERkdeb9PMK8y4F/tnxjjdJWJp6ewOXLAIDfDazAvvPN7fEuXADGjbPeNoiIzLWVpUoyG/0Epl/1by9b1b3o6GhcunQJ77//PtauXQudbhOAVQCA5547ipEjB7CHERER3ZVRo0bp24+5ubkZAaCmpsYOAH766SeVq6urMSYmpsPcmJiY2qNHj7q1Hzf31FNP3Txz5ozLV1995ZGamloGAN9++62ng4ODTExMrOjuvd1Rq9WG4ODgW+ZjDg4OGDNmTO2hQ4fcL1y4oGxoaBCVlZX2Li4uTc8++2yHWpDl5eUOAJCXl+ekVqt106ZNq5k2bVrN9evX7fft2+dy8eJFZWFhoeO+ffs82r/XZMGCBSGnT58eYG9vL5955pleleq6W1YPerQLdpiPXxZCHAfwKID6luGu/rBMvx1eA6AFYOzhXCIiIiIiqzMPegz1MOvnYaNMjxG+bQ+MMdODiGxpxowZ8PEZhfLyJ8xGNwEA/P39MWPGjLte829/+xt0Oh2AzwC8CcAODQ2xmDIlBpcv/9CjHiFERNSiD0pG/Zo4OTk1dXVOyuakjsrKSoVare60CtGAAQOMd7pGYmKi9s033wzKzMz0SE1NLSspKVH8+OOPqokTJ1b5+vre8f1d8fLyauxuTwaDQZgasl+7dk25adMmv67Wqq6uVgBAUVGRQ1JSUvDhw4fdpZRQqVTGoUOH1o8bN05XWFjYaS3J06dPDxg3bpzuxIkTqoULF6p/+OGH8729p56yRXmr7pgakTeiOTNjVBfzhqG5L8hZKeUtABcBhAghBnQxFwDOWHKjREREREQ9ZR70CB5go/JWfm2/w4Sq2kroXrhgvS0QEbXn7OyMuXP/gbZnMv8vgEvw9/fH7t277zpA0dYjBACuANjfcmyH8vIpyMjIsMS2iYiIWjk7OzdVVFR0mlxw7do1ZWfj5tRqdWNMTExNdna26saNG4rt27d7Go1GkZCQcE9ZEfX19aKz8ZKSEiUA+Pr6NqpUqiYAeOyxxyqllDldfc2dO7cKAOLj40MOHz7snpKScrWoqOh0TU3NqVOnThUsWbKkyx4dixcvLsnKyjoXGRlZe+TIEbdPP/20zzsKWjXoIYR4QgghhRB/6+ScA4BoAA0A8gEcBuAvhBjVbp4HgBgAWVJKU020gwAUAP6l3VwFmjNHrgH42cK3Q0RERETUI+ZBj0FKs0wPa5a3CghoPVQr28r1MtODiGyptrYOu3a5tn7/5JMV+OKLL3Dp0qVelaLq2ANkg9lxEi5c6FmPECIiop4aMWKEvrKy0v7EiRMdMh2ysrJUPVljzpw5WqPRKHbs2OGekZHhqVKpjPHx8ZX3sq/CwkLn6urq2z7/12q1dgUFBc6+vr63goKCGseMGVOvVCplfn6+i9HYMakkNTU1YOrUqSFardauqqrKLjs723X06NG1a9asKTEvnXX+/HnHrvaxePHiG3Z2dli/fv1lIQRWrFgRVFFR0adxCWtnevw3mhuLzxNCjGh3bjmau5Ztk1LWAfioZXyNEMIOAIQQAsB7aO7f8YHZe/8dgATwphDC/DGQ1wAMBvA3aco3IiIiIiKysn/+s+0XCH2xWYUAa2Z6mAU9/GVb0IOZHkRkK9nZ2VCrZ+HqVVO1ah2OHftXPPDAA70uQdWxB8i3AEwZdiEwGH7fy93+P/bOPC6qev//z2EfNkUFXFHR65K2KKJdb2neMlu0RE1TtNBfi1m2h3ubtuf12uLVbwu2uOVCJVmp5W25qaFmWmq5QIoKiCgIgygwvz8+c5gzwwwMMKy+n4/Hecw5n8/nnPkMM5zl8/q8X29BEARBcExsbGwWwMyZM9sUFVkdpZYsWdJs3759/q4cY8KECWd8fHzMH3/8cfOtW7cG3XLLLWf8/f2rNZ5dWFhoiI+Pb60vi4+Pb52Xl+d52223ZQP4+/ubhw4dmn38+HGfl19+2cbeatmyZU1eeeWVNpmZmd7NmjUr8fT0NHt4eJCVleVVUFBQGkXy559/+jz//PNtKurPwIEDTaNGjco6deqU9+OPP15h++oGJIc2AAAgAElEQVRQq6KH2Ww+BzwGNAF2GQyGNQaDYZHBYNiKMtpMAaZZ2n4OfALcAuw2GAyLgZ+B+4D1ZrN5ue64u4HXgF7AbwaD4f8MBsMWYB6wA/hXbX1GQRAEQRAEQdCTnJzM5s0ppduHtm+wVtaR6BFsSsfLEoB/8iTk59deNwRBEAAKCgoYNmwY2dnDdKWrOXUqhWHDhlFQUCYXrEvExMQQHh6uK7kALCvd+vbbDlU+tiAIgiA4YurUqacHDBiQs2nTpqZdu3btMW7cuIjrr7++05QpUzoOGDAgx5VjtGjRonjAgAE5W7duDS4qKjKMHz++jLXVli1b/CdNmtRu8eLFzRwdw56QkJCijz76KLRXr17dYmNjI3r16tXtvffeC4+IiCicN2/eSa3dW2+9lda+ffvC2bNnt4uKiup65513tu/Xr1+X8ePHdw4KCir68MMPUwECAwPNQ4cOzU5LS/Pt0aPHZePGjYsYNGhQ5549e/a88sor8z08PPj++++Dn3nmmXBnfVqwYMHxwMDA4o8++ijsxx9/dEkQqgq1ntPDbDa/A/RHWVJdA0wCQoF/A/3MZrPe/ysWmA34A3FAM+AZYJSD404DpqCSoE8AOlmOeb3ZbD5v314QBEEQBEEQapqCggKGDh1JcXFHS0kJLbBGqV8ICnK8Y02gEz08MtNp395aVcYNRhAEoYZRuTfOAmN1pSqBeUZGRpVzbxiNRtavX28nfLxfurZtWxvat7+K5OTkKh1fEARBEOzx9PTkq6++Ovzggw+mnzt3znPdunUt0tPTfZYuXXr49ttvd9miauzYsdkA4eHhF2+55ZZz9vV79+41JiQkhG3atCnYleOFhYVd3LBhwx8+Pj4l69ata37y5EmfsWPHnvrpp58OtGzZsjQUvVWrVkXbt2/fHxcXl5mWlua7bt265seOHfMdPXp0VnJy8r6uXbte0Np++OGHf02aNCkzPz/fMzExsXl2drbXwoULUxMTE1MnT56cnpeX57l9+3ZHebcBaNOmTVF8fPyJ4uJiHnjggfaOLLXcgUFcn8BgMOzs3bt37507d1bcWBCEWqPD9C9K11NfvrUOeyIIgiDUNo3lGrB8+XJiY18G9lhKDvMNnUsT0X07fTr/fOmlSh2zyn+b3buhVy+13rMnN7XZy9dfq82xYz9h6NAiYmJiqmwpIwh1TWM5b1wqzJs3jzlz9gKrLCWHgc6l9XPnzmX27NkO93Xluy4oKGDVqlVMnTqVvLw8YCfQ21L7AOHhiaSkpDSYc96l+Pu+FD+zILiTqKgodu3atctsNkeV127nzp07/Pz8uvfo0WN/bfVNqHkMBkNU165dCw4cOLCvrvtSVX7//ffu58+f3x8VFdWnsvvWeqSHIAiCIAiCIFwqqIS6l+lK9qFPXX44x6Vod/egi/QgPZ2goIzSzRUrfiY2NpaOHTvK7GdBEGoFlXtjoq5kqYP6qmM0GvHx8bEIHqCP9oBJ1YomEQRBEAShfiOihyAIgiAIgiDUEGrQzlb00GfxCO3WrfY6ExoKHpbb/6wsNn/5hq6yE6AsZarjpS8IguAqffvGAIN1JR+WroWHhxMTE1Pt9zhi4923HCi0rEcDl9vVC4IgCILQWBDRQxAEQRAEQRBqiJiYGHx9e+tKfrMRPYbExtZeZzw9lfBhwT//Z11lp9I1mf0sCEJtsHq1EfC0bH0DHAWU4LF+/Xq32E7ZRoucAfTntomcPHlSRF5BEARBaISI6CEIgiAIgiAINYTRaKRVq+tLtwP4DV/LerGvL8bmzR3vWFPoLK5ackhX0dmmmcx+FgShJsnPN/HGG7ml2/fe683cuXNZtmwZKSkpREdHu+V9YmJinCY0hwksWvSO2PoJgiAIjRKz2byzIefzqC4iegiCIAiCIAhCDXHhAhw7Zp2t/NxDN5aue+qiLmoNG9HjuK6iPeBdulVdL31BEARnJCcn067daNLTgy0luXz22d0MGTKEcePGuTWxuNFoZP369Trh4xvgL8t6C2CY2PoJgiAIQiNERA9BEARBEARBqCH+/BOKi9V6hw7wxN13WCtbtHC4T42iEz26BBuBY5YtT5Tw4T4vfUEQBHsKCgoYNmwYZ87cpitdRWZmao0JD9HR0aSkpDBlyhSgBPhAVzsJEFs/QRAEQWhsiOghCIIgCIIgCDXEPl1A+WWXASdPWgvCwmq9P3rR44lx4/D2Pqar7OxWL31BEAR7EhMTycjIBe7UlS4FalZ4UFaDrWzeT3EToMrF1k8QBEEQGg8iegiCIAiCIAhCDVFG9EhLsxa0a1fr/dGLHm29vLjrrr6l26NHv+RWL31BEAR7lLAQA2jWVn8CP9nVV8DOnbz52StsfHcKs759F/bscem9rbZ9KcC3lnVP4C4A2rZt69JxBEEQBEGo/4joIQiCIAiCIAg1xO+/W9d79MBW9KiLATad6EF6On//u1fpZmHhVRLhIQhCjaKEh4m6kqUO6p2QkgI33gh9+jDswA90OX2Ue5M/hSuvhEGD4PTpct/bNqm5PqG5sriaNm2aJDQXBEEQhEaCiB6CIAiCIAiCUEOUG+lRD0SPfv2sm9u3g9lc+10SBOHSISpqBPBPy1YJ8GFpXbn5hM6ehSFDYNMmx/X//S/ExEBhodP31pKah4WFAeuAHEtNF+AfZGZmSkJzQRAEQWgkiOghCIIgCIIgCDVATo6JP/4oKd3u0KGg3oke3btDUFDpJseOOd5NEATBHSxb5oF1GGITcByg/HxCxcUQGwsHD6ptDw8+6z6QqcOe4vPuA8BgUOU//ACTJpWr3kZHR/PKK68ABcBKXc29gCQ0FwRBEITGgogegiAIgiAIguBmkpOT6dTpJoqLtdvtv7jiio4UHDpkbVQPRA9PT9Cn8IiPX8vy5ctlprMgCG5n+/ZkXnzxhK4kgYCAAJ5//vny8wk9+yxs2GDdXr6cR257ivWXDeTh2+Lh1Vdt6pg3r9x+pJWKz+/pSkcDIYBKti7nQEEQBEFo2IjoIQiCIAiCIAhupKCggGHDhnH6tD5R+T4yMjIwHz1qLaoL0aNJE/D1Vet5eZCXR0SEdRBy1apUYmNj6dixo3jbC4LgNgoKCrjpplcpLu5gKTkLfEZ+fj5vv/228x23bbMVMeLjYcwY2zZPPAGTJ1u3586FchKiW/OGJAO7LOtGtITma9askXOgIAiCIDRwRPQQBEEQBEEQBDeSmJhIRkYGVt96gK00Bfy1zYAAJUDUNgaDTbTH+b/+IjFxhq6BSvKRkZEh3vaCILiNxMREzp4drSv5EDgPlGMpZTbDtGnW7cGD4cUXy7YzGODNN+Hqq9X2xYswa5bTvtgmNF+sq7EKJ3IOrDtMJhPLli3j6aeftilPSEhg3rx5Eo0oCEKN0bdv364GgyEqKyvL053Hffzxx1sbDIaopKSkIICkpKQgg8EQNWnSpHYV7dvQGTlyZAeDwRD1xx9/+NT2e4voIQiCIAiCIAhu5EjpDOPrdaXfYBPX0bat1Ye+ttGJHj988gk5OV/rKqMAL0C87QVBcB+//poBDNeVLLGpP+IoMuPrr+H779W6lxcsWgSeTsahvLxg/nzr9sqV4CRSQ0toroSP5UCupaYbMLC0nZwDa5/k5GQiIyMZP348c+fOtambNGkSc+bMITY2ltDQUObOnSvihyAIbmX48OHZEydOzPTz8yupuHXV6dChw4WJEydmXnfddedq8n0udUT0EARBEARBEAQ3oqxTIoEOlpJzwM9lRY+6Qid65PzxB5AB/GUpMQKXl9Y7HIgUBEGoJKmpgwBvy9YPwD6beqvllIWSEpg507p9zz3QuXP5b9K/P4wcad1+6imnSc2jo6NJSUlh1KibgY90NZNt2v3xxx/lv6fgFkwmEwkJCVx33SQyMu5FWY+dtGu1BBgBeJCfn8/TTz9Nhw4dxIZMEAS3MXPmzFPvv//+scDAQMcXDzfRs2fPwvfff//YXXfddbYm3+dSR0QPQRAEQRAEQXAjMTExBAXpZzR/DxTVH9Gj1NYFOvj5Wda26Rr0K10rMxApCIJQSfLyTHz7bSddiW2UR3h4ODExMbY7rV4Nv/yi1o1GmDPHtTd76SUV9QHw3Xfw1VdOmxqNRsv76vszArAKwwsXLpRB9RrEZDLx/PPP06LFQCZNaovJtBeYC/RB/z0o7gPWAr8D4wFPMjMzGTRoEEuXLpWoD0EQBMEGET0EQRAEQRAEwY0YjUauvlo3Q5lvAegWEGAtqieRHleGh1ssXrbrGijRw+FApCAIQiVITk6mXbtJZGUFWUpOA2tK68PDw1m/fj1Go9G6k9mskpFrPPIItG7t2hv+7W9w//3Wbb3llQNUfo9M4H+WEh/gwdL6nJwcye1RQyQnJ9OhQw+eecaPgoKfgMEu7tkNFZ3zA9CB/Px8Jk6cKMnnBUGoNvY5Pd54443mBoMhatGiRc0+/PDDpldccUU3Pz+/3iEhIVeOHj26vX3uj4KCAsOjjz7auk2bNpf7+vr27tixY4/XX3+9hf372Of0iIyM7GEwGKK2bt1qtG87b968MIPBEDVjxgx7JbhCDAZDVFRUVNfffvvNd8iQIZ2Cg4OvCgoKuurmm2+OPHDgQJkcGyaTyTBt2rSWkZGRPXx9fXuHhYVdMWbMmPYHDx4s03bv3r2+Y8aMaa991pYtW14xZMiQTl999VVgRf3Kzs72uOKKK7oZDIaoV199NbSyn8tVRPQQBEEQBEEQBDdSUgK7dzcv3Z4ypRvLli3jEb3tSj0RPbxPn2b9+vWEhBzUNbiGsDAHA5GCIAiVoKCggGHDhnH27F260g+AQgICAkhISCAlJYXo6GjbHbdsgd9/V+sBARAfX7k3fuop8LAMdXzzDfz2m9OmWn4Po1Gf0HwK4F+6Jbk93IvVymoip059BsRjtT4rAtYDdwL218mXgRzd9t+B3cAdgPqebrjhBrKzs2uy+4IgXIK8//77oZMmTerUvHnzohEjRmQFBQUVr169usVdd93VXt9u+PDhkQsXLmzl4eFhHjFixOnWrVtfiI+Pb79mzZpm5R1/xIgR2QBr1qxpal/36aefhhgMBiZOnFilk1tmZqb3tdde2y0tLc1n6NCh2d27dy/46quvQv7xj39014sZBQUFhgEDBnR59dVX2/j7+5eMHDnydM+ePU1r165t3rt378u2b99e+lBw6NAh7/79+3dfvXp1i06dOp0fOXJkVpcuXQq++eabJrfeemvXL7/80qnwkZub6zF48OC/7d27N2Du3LnH4uPjT1Xlc7mCV00dWBAEQRAEQRAuRZKTCzh1Sj0XBAae59VXxxMQYIQPPrA2qieiB+npREdHc/jwJ7RqdZHCQm+gM1OmLObrr7/m4MGDxMTEiPghCEKlSUxMJCOjGXCLpaQEWARAfn4+Pj4+js8tb75pXY+Lg5CQyr1x+/YQEwNr16rtN96A//s/p82jo6N54olOzJt3GOgENAPiSvsKkt/IXSQnJzNs2DAyMroD/wX0E6C/RwlOvzvZewZK+Hjcsu4NNAE+AeYA88jNzSUyMpJNmzaVFdMEQag6BkNUXXfBZczmne4+5O7duwNXrlx5cNSoUbkAWVlZnp07d75806ZNTXNzcz2Cg4NLli9f3mTjxo1N+/fvn/vNN98c8vPzMwO88847Iffdd1+5frFxcXHZ8+fPb/3ll182nT9/fmlCo2PHjnn98ssvgb17987r0qXLhar0PS0tzXfkyJGn16xZk6qVzZo1q+WLL77Y5rHHHmublJR0BGDGjBmtdu7cGTh9+vTjL730UrrWNikpKWj48OFdHnjggfa7du06ALB06dJmeXl5ngsXLkx9+OGHT2ttFy5c2PzRRx/tsGLFimY333xznn1fTCaTYciQIZ137doVOHv27LTZs2dnVuUzuYpEegiCIAiCIAiCm0hOTuaGG14s3c7LW0+nThbLjbQ0a8P6InqcVM9VISFGRozwLi1+9tl9zJkzh9jYWLEMEQShSiih4FFdyWfAYbt6O1JT4fPPrdsPPVS1N39U974ffQRZWeU27969C/BvXclj6IdLTp48KRZX1eT06dMMHjyYjIxrgY1YBY9C4H5gIM4FD40c4BngGkD/+5kLLAAMYkkmCILbufnmm7M1wQOgRYsWxdHR0eeKiooMR48e9QZ47733WgAsWLAgTRM8AO69994z/fv3zy17VCs9e/Ys7Nmzp2n//v3++uiL5cuXh5SUlDBmzJjT5e1fHgaDgfnz5x/Xlz377LPpISEhRZs3b25aWFhoKC4u5oMPPgiNiIgofOGFF9L1bYcOHXrummuuyfnll18Cjh496gUQHR1tmjFjxvFJkybZRJ/06tWrACA/P7+M3lBYWGi46aabOm/bti3oqaeeOjF37tyMqn4mVxHRQxAEQRAEQRDcgGblkpfXV1f6DRkZGQwbNgxzfRE92usi8VNSSldjYgp1je4sXdP6LwNIgiC4islk4siRc4De2upfNm0iIx1MfF20SHkEAtx4I3TrVrUO/OMf0Lu3Wj9/Ht55p9zmMTExhIZ+AWjjN52B23XdWiQCcBUwmUwsW7aMyZMn065dO3JyhgIrsdpZpQPXAWUjcfz9/W2258yZQ2Cg5pjyM9AL2KRr8SjwHmAgIyODJ598Uq5bgiC4hcsvv7zMySQ4OLgY4Ny5cx4Av/76a2BQUFBx3759y7Tt27dvfkXvcccdd5wG+OSTT0otrj777LMQb29vc1xc3Jmq9j0iIqKwffv2F/Vl3t7eXHXVVfmFhYWGQ4cO+ezZs8fv7NmzXkVFRYZ77rmn3aRJk2yWrKwsb4C9e/f6Adx+++3nXnzxxfRz5855rlu3Lvi1115r8cADD7SZOHFiR2f9mDBhQscffvgh2MvLy3z33XfXig+h2FsJgiAIgiAIghtQVi5mYIiudDMApowMDFqRry80b06d0aoVGI1QUABnzkB2NjRrhsmUCNwENAUigT7ADsDqaT9u3Li667cgCA0Cq4XRfYCfVgr8WNomPDycmJgY2x1NJnj3Xev21KlV74TBoKI97rKILosWqdwgnp4OmxuNRr74YhXXXfcRJtMjltJZgDWXhyYAp6SkiOWfC1h/B9pk3ruB97HOvd2PSl5+vMy+YWFhJCUlccdaq/PJ888/z4wZM1i1ahVTp04lLy8XGAp8jJbXAyYC+cBUFi1axNq1a1m/fr1YXQlCdakBy6iGhJ+fX4mzOrNZBXWcPXvWMyIiotBRm4CAgOKK3iMuLi77ueeea5eUlNR01qxZmenp6Z4///xz4KBBg3JCQ0Mr3N8ZzZo1KyqvT4WFhQYtIfuJEyd8EhISwpwdKzc31xMgNTXVe+LEie2/++67JmazmcDAwOJOnTqd79OnT96RI0f8HO27Z8+egD59+uTt2LEjcPLkyRE//PDDQUft3IlEegiCIAiCIAiCG1BWLZMALSr9JzQrlzb6hm3bqgG5usJggE6drNuHVR+PHTuEfoBPH+0B4mkvCELFaBFvGRm5wIO6GmuUR3h4uCV5uJ1w8MknSogFdY665RaqxejREGYZu0lLg02bym0eHR3Nb7/dh5eXZpseBYywaSNJzV3D+jvQBI8RqCgMbQhqD8rOylbwCAgI4Pnnnyc1NdWhUGE0GomLi+Pbb78lODgYuIC6Vr2na/UQ8AIgkYqCINQeRqOx5MyZMw6DC06cOOHjqFxPREREUd++fc8lJycHnjp1ynPFihUhxcXFhnHjxlUrKuL8+fMOHzrS09N9AEJDQ4sCAwNLAG644YazZrN5p7Nl7NixOQBjxozp+N133zWJj48/npqauufcuXO7d+/efeDhhx92mqPjoYceSt++ffsfV1xxRf6PP/4Y/O6771YyYVflEdFDEARBEARBENxAhw6dgMm6EmsSXBszq7q0ttLQix6HDgGa1cxKXaPRYI1PcWxFIwiCoENFvGWgElKHW0qPAmsAmDJlCikpKY5n3ickWNfvvx88qjlc4esLEyY4Pr4TOnY0cvXVO3Qlz2M/bCICcMWsXLlSJ3hcDywHtCibXcAg4FRp+4CAABISEjh16hRz5sypMJImOjqalJQUmjRpApQA9wErdC1mohKeI1ZXgiDUCt26dSs4e/as144dO8pEOmzfvj3Q0T72jB49Oru4uNiwevXqJomJiSGBgYHFY8aMOVudfh05csSYm5trcyHLzs72OHDggDE0NPRiu3btiq666qrzPj4+5v379/sXF5cNKpk1a1bLYcOGdczOzvbIycnxSE5ODrryyivzX3755XS9ddbBgwd9nfXjoYceOuXh4cEbb7xx1GAwMHPmzHZnzpypUV1CRA9BEARBEARBqCYmk4nk5FBAy5eRhTbIB3BZcLC1cX0QPTp3tq5bIj1iYmIIC/sd1XeAdqhksRAcHMxNN91Uq10UBKHhoQSBQGCarvRFQLlrtGrVyvGA9uHD8P33at3T01asqA4TJ1rXP/1U2flVwPjxJwAt52wPYKxNfdv6cA6vxyQnJzO11JqsL/ApoI2DHUBZQFq/hyZNmrBlyxbi4uIqZRvWrFkzNm3aRHh4OEr4uAv4XNdiPjAGkJwsgiDUPLGxsVkAM2fObFNUZHWUWrJkSbN9+/b5O91Rx4QJE874+PiYP/744+Zbt24NuuWWW874+/ubK97TOYWFhYb4+PjW+rL4+PjWeXl5nrfddls2gL+/v3no0KHZx48f93n55Zdt7K2WLVvW5JVXXmmTmZnp3axZsxJPT0+zh4cHWVlZXgUFBaWzo/7880+f559/3ia43REDBw40jRo1KuvUqVPejz/+eIXtq4OIHoIgCIIgCIJQDZKTk4mMjOSNN/Q5At8DlK1veHg4T43VDZrVhwEzB5EeRqORpKREjMYvdA1nAZCbm8tll10mA0aCIJRLmzZtUPZCoZaSVFQeB4XTiLGlS63rt9wCLVu6p0M9eoAWVXLhAqxYUX574K67biUgQJ/4/Dmsibdh2rRpci50gmZrlZ+fD1wGbECJYADHgBuxCutKUD9y5EiVc25oER9TpkxBCWujge91LT5ERZWoiI8bbriBbBeEL0EQhMoyderU0wMGDMjZtGlT065du/YYN25cxPXXX99pypQpHQcMGJDjyjFatGhRPGDAgJytW7cGFxUVGcaPH1/mhLVlyxb/SZMmtVu8eHEzV44ZEhJS9NFHH4X26tWrW2xsbESvXr26vffee+ERERGF8+bNO6m1e+utt9Lat29fOHv27HZRUVFd77zzzvb9+vXrMn78+M5BQUFFH374YSpAYGCgeejQodlpaWm+PXr0uGzcuHERgwYN6tyzZ8+eV155Zb6Hhwfff/998DPPPBPurE8LFiw4HhgYWPzRRx+F/fjjjy4JQlVBRA9BEARBEARBqCJW3/JArAnMS4AlpXYdKSkp9c/eykGkB6gBpG+/vR3QQtuHAP8ExBtdEITySU5OJj7+BeApXelcQAnCDpOXA5SUwAcfWLfj4tzbMX20hwsWV0ajkfXrB2EwWPKL0AnNKgkgMzOz1s+FJpPJZru+noet9mbtgY1Ac0vNKVTS8mOlbcPDw9m8eTPNmrk0bucUo9HI66+/bon4KARuB3631PqgclVdDigBPzIyUkQrQRDcjqenJ1999dXhBx98MP3cuXOe69ata5Genu6zdOnSw7fffrvLFlVjx47NBggPD794yy23nLOv37t3rzEhISFs06ZNwWX3LktYWNjFDRs2/OHj41Oybt265idPnvQZO3bsqZ9++ulAy5YtS72sWrVqVbR9+/b9cXFxmWlpab7r1q1rfuzYMd/Ro0dnJScn7+vatauW8IoPP/zwr0mTJmXm5+d7JiYmNs/OzvZauHBhamJiYurkyZPT8/LyPLdv3x7grE9t2rQpio+PP1FcXMwDDzzQ3pGlljswaFnmL2UMBsPO3r179965c2ddd0UQBB0dpltnmqa+fGsd9kQQBEGobRrKNWD58uXExsYCSYDWzy+AoQAsW7aMcePGwdCh8IXlMyUmwvDhVX5Pt/xtjhyxRnu0bAknSyd6WT6TCbjHUpKMsihRlH4mQahnNJTzRmOkoKCAjh07kpHxEDDbUnoI6A4UERYWRlJSkuMZ/Zs3w+DBar1FCzh+HHzKz/laqe/6zBlo1QoKVfQdv/4KV1xR4WcaN+5nVqzQzn0mlNVVaml9bZwLTSYTr7/+Oq+99hrNH7TmXDrzn3GMHTuWAQMGEBMTUylbqJrCZDJx9913s2bN98CPwN8sNedQ0RY78fX1JS4uzuV+V+Z7Tk5O1iVPbwdsBTTnlOPA39FEl/DwcFJSUurF300QapKoqCh27dq1y2w2R5XXbufOnTv8/Py69+jRY39t9U2oeQwGQ1TXrl0LDhw4sK+u+1JVfv/99+7nz5/fHxUV1aey+0qkhyAIgiAIgiBUEeVfPwar4FECzLOrp9RCCoCIiFrqXTlERICXl1pPT4f8/NIq1ednAW0mcTQwqrQ+MTGx3s4yFgShblAz/AOxjfJ4Hi2XxyuvvOLcwkgffREbW6HgUWlCQkAfYeJCtAdA166bgF8sW/7A2zb1NXUuNJlMLFu2jMmTJ9OyZQTPPPMbeXnTbNrk5uayZMkSYmNj60WuCs3mcc2ajcBXWAWP88BtgJpgunjxYhYvXsy4cePcLjjYWl0dA24GNEeZNpZ+NQUkubkgCMKlgIgegiAIgiAIglBFmjSJBN7QlSwCtpVuRUZGqtnFetGja9fa6p5zvLygQwfrts7iSnnuH8f2c70GKAuSNWvW1ItBNkEQ6gcmk4l16xKBN7EmrN4OfFzaJi0tzfHOZ8/CunXWbXdbW2noLa4+/ljl96iAv/2tI3A/SswGuAW4o7S+Js6Fmngwfvx4liz5inPnvgQ+wRo9o7EcUHlP6jJXhclkIiEhgX/+859kZOQA64Feltpi4Ox1K9EAACAASURBVE7gv4CKrhgzZkyN9sfW6movEANo3/VlwGdov1FJbi4IgtC4EdFDEARBEARBEKrAzz8n89RTRiDMUpIGzCytL/WvP3gQNK/ajh0hwKnFbe3iJK9HTEyMZcDoZUAbROsArAA8AcnvIQiCQhukX7u2CDWzHpRIMAWwWmk7TWD+ySdw/rxav+oqtdQE119vzaeUlWW1GywHdS48CvxHV7oEdT5UuPNcaM0RlYH6W+5CRdo5Yiwqb0VvoG5yVWjf/aRJk8jLu4gSFAboWvw/S5m6Hq5fv75W7KRUTpb1BAcHA1uAu3W1A4CP0IbCJLm5IAhC40VED0EQBEEQBEGoJCZTAYMG7aSwUJ+UdwrKuxzCwsKsAzy//25tctlltdrPctFyeoBNJIo2YBQe7gvoZkdzI/BS6ZbYgwjCpY11kL4AWKir+Q9qwF7hNIE52FpN6aMx3I2nJ9ytG/x2OaH5ekJD/w0ctZSGAGuwRrSoc+GqVauq3cWVK1daBA8tT5SW4PsCsMDBHs1QycJ7AJCTk1OjYrRmuzVv3jyWLFnCDTfcYOmvliz8Rl3rxwGVnH7UqFGkpKQ4tzerATSrqyZNmgArgSd0tXeg/3tKcnNBEBorZrN5Z0PO51FdRPQQBEEQBEEQhEpgMpkYNGgTJtNkXek7KFsPhY1//T7ds0Z9Ej2cRHqAdcBo1Cgf4DldzVOowSyF2IMIwqWLdZD+HUDLVZSJ3oqp3Bn++/fDNosdoLc31HBScBvrrA0bVD6jCoiOjuavv/YwaNB/sNokRWEr8sDUqVOrdR5MTk5m6tSpKMHjQ6xDNUdR0QmP2+1x2vLaHNgMqPN5TYnRetutOXPmMHnyZHJzcwEjsA5rlA+o798qKtRVovVmzZqxadMmS+Tiv4B/62ofBp4s3appwUgQBEGofUT0EAShQbB8+XK5CRUEQRDqnK1bkwkN/ZCff75NV7oWeMCmnY1/vV706NGjRvtXKZxEemgYjUbL7OzngM91NfMtiwEQqytBuBSxDtLfA4zW1TwInAVcmOH/wQfW9WHDoEWLGuqthc6d4dpr1Xpxscrt4QJGo5F77rkceExXej/wTOlWXl4egwYNYunSpZU6F+pzYuTnj8JW8NgD9EHlR7FnCJBrWW8JfIMmPLlbjLa13dLTBBVpcquu7DnghdKtcqN8agHb5OaPo/KjaLwGWIW2jIwMEhMTa7mHgiAIQk0hoocgCPUKLWx68uTJNuWxsbEyk1QQBEGoU/76q4CBAy/YRXhsQg2aFNu0tfGvr6/2VuVEemgoT/swYDzwg67mcdTsXjVI6S57F0EQ6je2g/QdgDd0tYtR1k+Kcmf4FxXBhx9at2vS2kqP/n0SEsBsdt5WR0xMDGFha4FlutJn0Qsf+fn5TJw40eVnFtucGFOApdgKHv8ETjnZeycqsbrJsh2BEj7cn9zcGtGjpw3wPXCNrmwu6m+iqM08HuVhTW4eBtwFfKerTUBvy5WYmCgCviAIQiNBRA9BEOocvdDRunVrxo8fz5IlS8q0k0RzgiAIQl1QUgL/+U8h3boVc/HiP3Q1nwMxWC1PFDYzWy9cUInMNbp3r+nuuk7HjmBQ0RocPar6aoc1v4c/MBgV1aIxHJVIV33WyZMnM3nyZInOFIRGiu0gfVNgA8reCGAv+kiICmf4b9wIJ09qjeGmm2qo13bccQcEBKj1fftgxw6XdjMajSQlrcff/2HgK13NsyjbJJ/SEleeWU6fPs3gwYPJyDht2f8VXe1ulOChLKx8fX25//77bfZXuSr+B9wOFFpKO6OsrpTw4Y5cFdaIHj3XoESXK3RljwFPAxAQEEBCQkKt5/EoD2tyc1/Utes3S40P6lquolXWrFkjE+0EQRAaCSJ6CIJQp+j9YZcsWUJOTiTwXyDPrmVvQBLNCYIgCLWH2Qxffnme9u3TmDLFl/PnAy01JSjP8uFAvs0+ZWa2HjqkZjQDtG8PgYHUG/z8oG1btV5SAqmpDptZ7UH+H8rGRp9QNwwV8fE1hYWXsWTJEmJjYwkNDWXu3LkifghCI8E6SJ+ByiOxEWsejzzgTuA8AIGBgRXP8NcnEp8wAby8aqTfZQgMVMKHo35UQHR0NG+/PR917tcLH48AW4EupSW5ubm0bduWyZMnk5CQQEJCAk8//TQPPvgg99xzD+3atSMnpx3KuuoR3bG2AAOx5uyAxYsXs3jxYpu+WHNVbEYl5rZcZ+hh6Us3oHq5KjRbq/x87TpnQOXC+BYIt5QVoaInVL6MJk2asGXLFuLi4uo8wsMea3JzMyoHyV+WGl9UIvYRgFg2CoIgNBZq6c5CEAShLNrDU05ODuom+gmUB6yPg9Y/A28D08nJyWHQoEG89dZbjBkzpt7dUAuCIAiVx2QykZiYyB9//MHp06ch6JbSuqeffprTp0/TokULOnToAMDx48dp06ZN6XpkZKTbkqUWF8OXX8Ls2ef49dcgoK2uNhW4D2VrZcuUKVN4/fXXbftQX62tNDp1gmPH1PqhQ9Cli8Nmmj3I2rVrych4HPgaeBfr3+ZGy7IW+Bf5+T/x9NNP8/rrrzNq1Cj8/Pxsvr+UlJTS77Rr1651luhWaLho54yUlJTSc4ES4RQJlsFsd58fLkWSk5O54YYbLImrW6AiPLSotQuoaC9r7qI333yz/Bn+p0/D57o8QfoE47VBXBwsXarWV6yAf/1LicAuMGbMGKZPn05GxnBgJUoAATVB61eURdVrwBEKCgpYsmSJgwj2zsBLqFxQ+ueeT4AJ6KMHw8PDGTNmTJl+aAP4Tz75JIsWLUJZEH6MGuLpgIoCGQn8tzS5eZnrUzmYTCaeeuopna1VJ9Q5/zpdq0yUEK7sooKDgzly5AjNmjVz6T3qAi25ucpRMgAl4HQCvFF//0eBt0otG+Nq+7cpCIIguA0RPQRBqBNsH56CgFWoGTfO8ETNLOoH3EZ+fiYTJ05k+vTprF+/vt6ETguCIAiuow1a/vDDD6xcudIigivaT7OKHnPnznXpeAEBAUybNo0nn3yySoObBw+q8a933y3h2DEP1PVJ4wJqIOsFoOzsz/DwcMcDSvok5vVR9OjWDf77X7W+ezfccovTppo9yKBBg8jP/xroibJkuQd1nQY1yDYSSAbeIzd3Fe+//36F3QgODmbs2LEMGDBABqeFMtgLHCkpKSxYsIC8PNvI4PbTkkrXJ02aZFMXEBDAY489RmRkpAghLmIymVi1ahUPP/yw5W/dDfgC0HIWlaAG2zeX7uNskN6GFSusdnrR0dCjh9v7Xi7XXguRkXDkCJw9qwSY0aMr3g/reVANmscAU1HXBl/AD5gM3Is6B36PsgAsRA2qX456lhlod9TzwCxUFJ01x0hFOTFsxehVQA6wGggEmqGiRt4CZrBo0SLWrl3r0nNTcnKyLnF5CGpi2mOAv67VDlRkxDGbvtZnwUNDE4zuuusu1qwZiMqF0hV1HXsT+BvwGFOnTqVHjx7ynCkIgtBAEdFDEIRaRwuVVoJHW9TDk94TdjtwNzDfwd79UCHbtwB/lHrmpqSkNIibbEEQBEENpL3++uu89tprukHLJqjB8qtQA0N6dqJsKFJRM2l3AvuxTx6en5/vMLrAWSRBcTH8+ON53nzzD376KYyTJ1tZavQOsBdQiU5ftrx/WcodmNKLHrU9sOcKffuCZpuybVuFzaOjo3nrrbeYOHEiaoBtMsrW5AU0axBLS8uyEBUV8gXwJdoAmT25ubmlM6JlcFrQcHyu0AgArkVFHLRDJVbW8ypwHPgT2El+fibz5s2zPUI1hdLGiuO/++2oKIamlu0SVKTC6tL9XE5crbeUqq0E5no8PODuu+GZZ6z9cVH0AOug+apVq5g6dSp5ed+hkrj/3dLCE7jaslTENmAicKC0JCAgwOWIdk2EUZPJvkIJKl+g5fWAh1Df3QIyMt6rMFreGokfjppw9iDq+qxRhBK753LffXfTrl27BnmONhqNxMTEsGbNGmAA8BnW7+th4HLy8sYzbNgwUlJSGtRnEwRBEBQGs9lccatGjsFg2Nm7d+/eO3furOuuCEKjRwuVVmHY/VFhxPqH1JdQSfCKbGbr/fXKl6iBE20maQ5KGPkMUP6xmzZtkpk4giAI9Qx726rCwkJWr15tEb6bonzgR6EGHbxL92s/7YvS9b9eudXRkVHJXneiZpzuRA0aFTtoC0FBIdx44/0UFESQn9+V7OwuHDzYnPPnnQ1knALeR1krOh6oByeWVnp69rRaXG3bBv36OT2Wq3SYbv3bpL7s6G9TCfbts4oxYWGQnm5Nbu6EgoICOnbsqLM90eiBsgYZj5rx7Ii9KGucb1Azoc+61M3g4GCXhCyh4aOPAFuxYoXlXAFqJv0A4CbgBtTvzdNm3/LPG0dRtnRJlldrPh4t0qif5f/zUhTbnP/dw1Cz3/WiQD4wFlgPVG6Qnj174Mor1bqvr0pmHhJS6f5W+zyYmgodO6p1Dw84ehTa2AtnFWMbvT4QmAEMqWCvEtTv8E30UTJQ/jNNeZ85OzubyMhIS8Rka5QIM8zuCOdQ59/v8PPby4MPjmL69PsoKTFy+jQkJR1k9uwkLlz4B9DXQb9/QUX27SI8PLxWxAC3Xu/ssL2W+QEfYPs7zwImMWVKu0pZgwlCfSIqKopdu3btMpvNUeW127lz5w4/P7/uPXr02F9bfRMEV/j999+7nz9/fn9UVFSfyu7bqCI9DAaDP+ouYyxqFPUYsAx40Ww2X6zLvgnCpY7tjDETKgHss1gfVi+gQsE/dHKEt1GzfFeiZvY1AT5FzeKbLXk+BEEQ6hHl2VapKIrBqJmtw1EDmVXBHyWe99eVFaE8xjOweqIbgVDOnQtl7dqKbn0LUclpV6CSml4ot7VTSyuNixfhzz+t2927O25Xl3TrBsHBkJsLmZnw119gybvhDFt7F73w8TvqWj4ddTt+FyraQ8/llmWaZfsPVITndmAXKoInB3tyc3PL2GTZCyGO8oW4o0yfP8ZZ/aU2QO4uKratMqIiiEYBQ7G1nKssEcD/syyFKOufJOAzcnPTHOZeuBQiQZxH0zRHiZhTsZ3pnwbchhoAr8LEIy2XBsDw4VUSPNxChw7wz3/Ct99CSQl89BFMn17pw2hRH0pw+A6V36IZcI1lCUfl7fBEne92oc53J8ocqzo5MWxzVZxAfUdjUZF4Wq6bIGAMMIbz52H+fLVYUbZOZTmAem77BDC7HtFTz7G1bMxHTcL4HTUBzxOVv+ZzFi1azSef9GfDhv+TCXaC0Mjp27dv1+Tk5MBTp07tbtGiheOZVFXg8ccfb71gwYJW69ev/3Po0KHnkpKSgoYNG9Zl4sSJme+//77z2VWNgJEjR3ZYt25d8wMHDuzt2rVr+Q9XbqbRiB4Gg8ELWIeaVrETNX3sKtTVuZ/BYLjVLGEtgO3DhTyguYb9LNWafLCuysN2dY9d2d+Bo8SR5b2f7azeIcBcbAdBslEPs1sAdQN611138VWZd05C2RisQyXoA4hHDZrFk5//GRMnTuShhx4SW4xGTGV/f9WdEVyV95NEvUJjx9H/hXatcua1D1HAHagoAGezaX9GXQv2AON05VcD7YEuluNEoexs7PFCzXBtXYlPcwJlv7QRNQM2t/zmFsLCwioe9Dl8WAkfAG3bKnGhvuHhoSyuNltmG2/fXqHoAdaBvsTERL7//nu7meGnUT7yb6ESxN5iWa6jbARIV8tyl67sBCop8j6UNdFR1MSHo+gjQxwJIXWJ3pZLzv9lcRT1tWbNGjtRFCAYNdt6JHArarKLI0pQv5FdKOu5NJSNj8ZMlNBxBeqxUJ+PwBcVMXIT6ne6HVhrWY6UttJb5jX0nDOOztvbt2+3+981oKJpxqMGgAPtjvI+Kr+D+j+s9CD9hQvw8cfW7bqwttITF6dED4B334X4eHVOrCS2gkMG6tnmc8viGu7IiVE2ufkK1CSxWJSAVRmLxQuoZ6+PUBE9auyvwujGBoatZaMZeB74L2rubFtLqzvIyrqZa655k5de+g2TyfHzpYyzCELDZ/jw4dk9e/Y0+fn5ldTk+3To0OHCxIkTM6+77rpzNfk+lzqNRvRA3ZkNQV2V79YEDoPBsBTlgTMB51PILxlsk5IpnM2Sa2iDxTUlTGzfvt3BLNXGh71/trPBXeeDWeURhnpwuhvbGbmgEvyNR7MOCQ4OLs3PoQ9nTkhIsHjm/gL0Rv2rayHOXVA39MnAUvLzVzn0bHY0EOFIWHL1t+9s0K+8fcv7ndakuFXbYlpN9aFqvz+FvXVFTb+fu/pQ3TJ3fc8N7ZpQH3D3damuBk5dTSBclnDULNfrUbdokU7aqXO3iqw4qSvXix5aJICeMKwCSB/La1vK5zhqxuo+y/G2oh/gdIVKzfzetcu6Xh+TmGv062crelSUhNiC0Whk3LhxjBs3jgULFvD666/z6quv2v02DqMsXN5EDTr/E/V7uBq4Er2lmRVNuLrBQV0utiLISZQVWaZuOQWccekzuJP8/Pwy9x8ajeV+21VcFzg0OqCseG5DWQQ5+l0AHESJk18BPwL25yG96PGSbt0TNeFmqGW50m6/fpblVVQEw+eW9/gZKGlwOWdcP28bULP7h6P+324AWtkfDnXefBhlC6ao0iB9YiKcOqXW27aFGxz9j9cio0bBww+rZOaHD8OWLXD99VU6lL0Q7Mrzo3Zf6E4xzTa5eQZQALxrWa5E/X8NRAnSoaiolHyUWH0S9ZvfiopYybY5doXRjQ2UMWPGMH36dN0YyfcooXQ+6vkVIJALF2bwxBM5wCJgNgEB95WeCxyNGVT0/Fkf7vEEQbBl5syZp2rjfXr27FnY2CM86gONSfR4EDX9YJpdRMdLqCvVPVziooeWPNref7miWXKuDobXVpmjPlT8ICVURHkP6q5hRHmzh6Fm33ZE3Vj3Rs2w87Rrfx6V9PRF1Ey98h+e4uLi6NGjh8Uz9wzqwfhhVDCXllBRnzR1D+qG/VfgCPn5qcyb9yaOLDOcUd6NakWDfo72ld9p3aIfsLiU+1BdKvMAdykLejUlmJc3cOroM1f2IbrigTIv1MzfJqhojWDUAJk2SN0KFZFxBUr0cEYG8DEqQfjvlfkT6MhEJcb+Ulfmg7oOhWO97lzEOhBe9YjqSnnWa2zZYl3vby/61yP0eUZcSGbuCKPRyJw5c3jyySfLGfQzoWYOazm7/FADS/1Q/vE9gG6Ub3kWDPS0LOVxETWIdxZ17bd/tV/Pt/TP/tWEsk2rHvXlfru2InzLv98xoETQvqgI3oFAeaLgflSy7DWonDBVoRiVMHobymK1HWryzHCUEKcXWXpZlmdQ4tn/UAJLMrCb/PzsepEQ3Zmwbnve9kANajdHCY0dUQJTR8vSg/Itw/YA81ARMOp+vUrnQg39/c8994Cn/fNBLWM0woQJ8OabanvJkiqLHupwtkJwYmIiR44coW1bJcinpKSQlZVV44Pczi0If7Usb1T6mE2aNGkUllaOcPz3Og3EYc3tpV1zmqAc1WeQn7+ZefM+Ad7DdtKGorLP19W1bKzKtaM+CLcVXWNEEBIEoao0ikTmBoMhCHVH+ovZbC5jsmgwGNJRd3tBZrO50EH9JZHIfPny5cTGxqJu8u9z0srZ78FReU21bUzHqIs+e6IecPSLK2XO2vhaFj/durbtjxIcmqIGmlzhAvB/KLHDenPoKFTaUeI62yR9oB7ingYmu9iHItTpItvyakIJMAW6V229EPWQXOTg1VGZ/rUY9R2VWF71i6OymmwLtr8XR+tVqa+tfRpKP1yh/OTArrdx57Fq+/3ceSyDk8WjAZVp51pHi1c5da7v4+1tpGPHznh4eOPjY8TPL5jiYg9ycws5f74YDw8j3t7+mEwXSU/PpqTEC3U+9ba8aosvrp/rHXEW+Aw1ePk1jgaSg4ODueOOO/D19eWLoFtKy+/2/bl0oKijJfFsWloabdu25ciRI26NyHJEWFgYSUlJlffyjoyElBS1/v33cO21bumP2xO7ZmZCuEWk8vVV+T18qvNdKwoKCkoHZe2/P23wz9YCE9TvtiPQHTUQ3hElpEVYXp1ZHdUkFygriGj3CYWW+qq+XsD23sL+HqMqZUVoA9TOcDUCtvIRj96o7ygUJUCGWpZWQGfL0pOKc3PsREVbrEFFZpX/WR5//HEiIyN59kBoafmz3U65eH4IQU2mGQXcSMV5hk6i7LSOoaKNjqIs2XLx9zdz4439CQgwEx4eRLt2bTEY4OjRo5w5k03z5s1o164dBgMcP55OWFgbioo8SE09QXb2OYKDWxAW1pbiYg/S0jI5cyafwMAQmjdvSVGRJ8ePn+Xs2YucP+/Jb78dobDQC/X3DrS8aksIKh9BU9R1pjJkAatQUdW2EXZVPhcC/PGHyiEEykLqr79UtEcVcdt58Lff4PLL1bqXF6SlWc+H9YzKfuaCggJWrVpliZav+jVSH4lf23SYloSHuYQSD0+3JzK3p6CgQGcNpscTlQtlNura5IhfUOLoT8BuVFSa29IB1Dh1NanJ1WtMZSf91HehpzaRROaVwz6nxxtvvNH8kUce6fD222+nBAYGlrz++ust//zzT3+j0Vg8ePDgs4sWLUrT5/4oKCgwzJgxo9Xq1aubZ2Vlebdu3brwwQcfzDhx4oRPeTk9IiMje6SkpPj99NNP+/7+978X6Ps0b968sDlz5rSbPn368Zdeeim9Mp/HYDBE9e7dO++DDz5IfeKJJ9pu3bo1yGw2c8011+QuWLAgrVu3bjYzwkwmk+G5554LX716dfPjx4/7NmnSpGjQoEE58+bNO/m3v/3Npu3evXt9582b1/LHH38MzsrK8g4JCSm68sor8x977LGMm266qfSf2lFOj+zsbI/rrruuy969ewNeeeWVo/Hx8U4jbCSRuXUaubOpgvtRJsLtUcbAlyRHjmj2DW1RF2xBqC1KgB9Qs8TWYD8TpjKh0mU9c08DjwDPoW5GJ6BmjDp7wPPC+gAuCILQ+LHPpV0+VR+AKkse6sF/CyrV2lacRVo4miX9hW5w57nnniv3nWbMmFEpSxFXqdbs7ZQUq+Dh728bTVHfCAtTeTxSU6GwEPbsgT6Vfq4ogzbruSLefPNNO2usQ5ZlvYPWzVC39O1RE3nCHCyh2CZeri6a8Ne0oob1jBLdYrZ5zc83M2+e4zrrq7b+/xyUeWMVQt0hip5HnSfWoyKBjjtspRc40tLSygxcPas7b8TFxQHW84M2476sEHIGZQjwIUqMGYI134ej/EOtLMvfy9SYTPDpp5X86HVOOiovyg8o+6pfsBfN3BLJ8n//Z10fNqxagodb6dlTReL99BMUFcEHH6jcHo0Ao9FYGi0/dOhQMjMzK30Md+QaqRRnz8LKlbB6NaSkcODYcbyLizjSrA2kDVCROGPHgp99fqjqU9YaTKMYWA6sRAmk96LOD/pIJS1CbKpluxBl75iGOp9pSzoqujBX95qHdbJd3VB914eapSZyeGm/bUlOL7jC+++/H7p79+7Aa6+9NmfEiBFZP/74Y/Dq1atb5OXleW7YsKHUK3f48OGRGzdubNq2bdvCESNGnD569KhPfHx8+7Zt25aZgK9nxIgR2fPnz2+9Zs2apvaix6effhpiMBiYOHFitrP9yyMzM9P72muv7da6desLQ4cOzT506JDxq6++Cvn555+Dtm3btl8TMwoKCgwDBgzosnPnzsAePXqYRo4ceTo9Pd177dq1zTds2BCyefPmP/r161cAcOjQIe/+/ft3z8/P97zmmmtyBw4cmJOWlub7zTffNNm8eXPTpKSkP26++WaHamZubq7H4MGD/7Z3796AuXPnHitP8KgujUX0aG55zXBSr5n6Or1S79+/n6gox8JnY4kAiYx05qUtCO6gADWLNxvrzLc/UDP1duPMVsqlRLB2aJ65tjOXsoH/WJZglGVCP5RPcSfUwEgzKp5ZKAiCIDinCPVwnm95zUM9wJ/QLSdR800OU14klDu9zB1ZimjRBa5aC1Y0mFpptOS4AAMGuCVyoka5+moleoDK6+EG0cNV7K2x9HYw27ZtsxOysi3LLxUc1Rf1iNDEsjS1e7Vf97csAXbrAZS16GwoaJG79ZFM1Hf4E2qwfRvqXrIs1T1XOBLfnAul51ATdNZYtjujchP1R1mxXY6Kdm5IZKOiN9KBFN2SipoP6HjSqFvzTZw/D0uXWrfvv7/qx6oJ7r9fiR6gxJknn6xSQvP6SnR0NKmpqU7yLjmmWjZmVSErC2bOhI8+Ur8XC9p/299OH4Nly9QycyY89hhMmQKBgW7thmZ1pSyVc+1qS1ARq5+hJomMQokg11I2D5EvKlqxMvm8SlCTQy5ijQTULxdRwohe0LbfdkdZdZwHGkr5t2RkZDBs2DBSUlIaRcSHs/HM/fvdFLhhMJQbKVKvMJvdPoi7e/fuwJUrVx4cNWpULkBWVpZn586dL9+0aVPT3Nxcj+Dg4JLly5c32bhxY9P+/fvnfvPNN4f8/PzMAO+8807IfffdV+6AbFxcXPb8+fNbf/nll03nz59fOkv42LFjXr/88ktg796987p06VIln960tDTfkSNHnl6zZk2qVjZr1qyWL774YpvHHnusbVJS0hGAGTNmtNq5c2egfURJUlJS0PDhw7s88MAD7Xft2nUAYOnSpc3y8vI8Fy5cmPrwww+f1touXLiw+aOPPtphxYoVzRyJHiaTyTBkyJDOu3btCpw9e3ba7NmzK6/GV4LGInoEW16dKWf5ltfG8nmrRExMDOHh4WRkHMNxpIczKxFH5TXVtjEdo676rN28uOuGSLNuOO9gvQClKebg/N/PMdWdMVb+zKVcYLNlsccbFfLfzPLqh8pH4ujVF1vLGC9s7WMqeq2OBY67rHPA9vfiaL0q9bW1T0Pqh6s2V660q+1jNfS+V8X6rb6Ui7aDdwAAIABJREFUaeddZ0tRBfWV3acIxw/Rzh6uHZVXHr1tVW14mdsPcL755ptObZbcInA44ptvrOv//Kf7jltT9OunZteCEj0efLDWu+Dou4uLi6uikFWIVYirLpplk14UMWIb4eBrt+5KnS/W+wv9PYQ7yupKqLmIuj/MQuXR0SeZP4yK4PkDR/739tRknozyci/YRoJoUUdLLXt6oibStENZrmmv4SiLKW0JQv1O9PcJ9uvFlD3Xlrd+EfVY62jJs9s+i/oOzlDZ2eM18ndfswayLRNU27eHG290z3HdxR13wCOPWBOaf/013HxzXffKrbiWd0lRqzPgzWZYvhwefVQJH66Qng7TpimBatkyt0dSahPsbC2V7UkD/m1ZglE5c/qjJt31QJ0bKosH6hm0oQmrDZF/AD+RkZFBYmKiS1GpwqXNzTffnK0JHgAtWrQojo6OPrd58+amR48e9e7Zs2fhe++91wJgwYIFaZrgAXDvvfeeWbp0ae5PP/0U7OjYoBKb9+zZ0/Tbb7/5Hzx40EeLvli+fHlISUkJY8aMOe1s34owGAzMnz/fJoT22WefTf/Pf/4Tvnnz5qaFhYUGLy8v8wcffBAaERFR+MILL9jMhhg6dOi5a665Jue7775rcvToUa+IiIii6Oho04wZM45PmjTJJvqkV69eBQD5+fllZg4UFhYabrrpps7btm0Leuqpp07MnTvXWeCC22gsIsBFy6uzuzJtap3J2QG6d+/eaCI6nGGboOuFuu6OcAni1hljFio/c0lLaFujgrIgCIJA3ST3dYSrNktuw2y2jfSoRmLcWkM/aPTjj+ozGJxNsqhdKitk6ZMFu6NMyx/jqL42cspUDfvJEB66dfvXqtTZi6KFlrLK5LlSaPeHV199NVCDQqQTKooEWbFihW7GdzEqQiK1xvtVm9TEPXopZjP8+9/W7XvvrfsE5vYYjTBpEvzrX2p7wYJGJ3polBcZWetJowsK1N9dE9w1rrpKlQ8eTM8leyk2eND9VArrehSppPMnLGL24cPwj3/As8+q6A83RueUtVQuj1xgo2XRCAY6oCJC2liWtij7xWC7JRAlrttHiwg1h9XCz2oD37BxNp5pyelRy71pfFx++eVlwlGDg4OLAc6dO+cB8OuvvwYGBQUV9+3bt0zbvn375pcnegDccccdp3/77Tf/Tz75pOmsWbMyAT777LMQb29vc1xc3Jny9i2PiIiIwvbt21/Ul3l7e3PVVVflb9mypcmhQ4d8Lly4YDh79qyXv79/yT333FNGtc3KyvIG2Lt3r19ERETe7bfffu72228/d/LkSa+NGzf6Hz582OfIkSO+GzdudOoFO2HChI579uwJ8PLyMt99991VsuqqLI1F9NBGL539cTX7K3dM9WrQaLMWasL3urFjP0u1ph6sK/uwXZ2y6j6o661AKnq/mp7V68gWo/4ORAjuwNXfn6vWNu56v5rsgyDUN+wtobRrVW0PWtY7fv8dtEGSkBA1gFPf6d0bgoLg3DmVi+SXX1RZPaXWhaxysM8ZAfXh/K9Fk0F9SqZbm1Ff1cF+YLgytkD1Hbdb+VXEDz+ANhjn5wf33Vcz71Ndpk5V4kxJCWzapBKc9+xZ172qUer0PJqRAcOHw7Zt1rJ27WDRIhg6tLQoz/cwALvadIfptypbq6VLVd6V3FwoLoY5c2D/fkhIcKuVpH7sxNXny4CAAEpKSigoyAX2WBZXMaCED59yFg/d4lnBdlXKNLcCV9wFGnK5ddK82MC7SA1YRjUk/Pz8SpzVmc3qfuvs2bOeERERDi1QAgICKrwZi4uLy37uuefaJSUlNZ01a1Zmenq6588//xw4aNCgnNDQ0CrfzDVr1qyovD4VFhYasrKyPAFOnDjhk5CQEObsWLm5uZ4Aqamp3hMnTmz/3XffNTGbzQQGBhZ36tTpfJ8+ffKOHDniMFxtz549AX369MnbsWNH4OTJkyN++OGHg1X9TK7SWESPA5bXy53UdwayzGZzpbLcN1Yqmt1Rv2etlU9NCBONfeDG0YN6RSJLff2blDdTz9FAhCNhqSq/fe3hEXBpX2e/05oStyr6zLX1fu7qQ1V+f9qM4Ip+BzX5e69OH+r6e26o14T6gLuuS/VBOKv1gbKGjD7KY9CghuEN7+sLt98OH3+stletqteiR32iooFDZ1Epjf3c2lAEjopoyJNr6sV5W4ueALjrLggNrb33rgwdOkBMDKxdq7YXLoR33qnTLjVajhxREZBaHimAe+5Rv5WgCvIv+vqqHCxDhsD48fC//6ny5cuVPdaaNRUfoxK4+nyp//8CKnXPb3uPV3UrUaHyhIeHl35nglBdjEZjyZkzZxyOs584caJCRTYiIqKob9++55KTkwNPnTrluWLFipDi4mLDuHHjqhUVcf78eYeh2+np6T4AoaGhRVqbG2644eymTZsOV3TMMWPGdExOTg6Kj48//sADD5zWIkn+97//GT/55JMWjvZ56KGH0hcuXHi8V69e3X788cfgd999N+See+6pcgSLKzQK0cNsNp80GAz7gV4Gg6G52WwulW0NBkNXoD2wos46WI8p7yGtKoPhdTmA11AfpOqa+jRTsiaoyuerjFBi//BY0b7yO60b6sPvvD70oTq4+n9RHwS2+nKtcvfgUkV5Kdw5w7xeDJQ1ZPT5PBqCtZXGnXfaih4vv0x9sbhqyNSX++3GEuFbV1QuIXrtUN5Emnpx3j54ED7/3Lr92GN11xdXeOwxq+jx0Ufw4ov1V6RpqBw5AtddB8eOqW0PD2UnNnVq5a43HTrAf/8LDz8M//mPKtu4UeWL2bjRrcKHPa7c01f2nt8dlo2VvXbUN+HW0TWmJif9aLlrGtN1SqhbunXrVrBjx47AHTt2+PXp0+e8vm779u2Brhxj9OjR2du2bQtavXp1k8TExJDAwMDiMWPGnK1Ov44cOWLUkq1rZdnZ2R4HDhwwhoaGXmzXrl1R8+bNi318fMz79+/3Ly4uxtPOhnLWrFkt9+zZY/zggw/+8vT0JDk5OejKK6/Mf/nll22CCw4ePOjrrB8PPfTQKQ8PD954442jgwYN6j5z5sx2I0eOzAkJCXEaRVNdGoXoYWExsBB4AZgMYDAYvAFtasnbddSvBktDH6AThKpSnd++/N8IjRX5bdc9VfkOKvsQXW8GyhoyWVnw1VfW7YYkegwerOy4zpyBv/5SCc0teRaEmqG2z62VjYDV1uW84BhXIuihZgT6BiEs/fvfKqcHwK23QrduddufiujfH/r0gR07oLBQDaY//XRd96rxkJqqoh81wcPPD1avtrGzqhReXvD229CyJTzzjCrbtg2GDYMNG8Df3y3drg3q6j67PkxqqugaU9lJP3KvK9QVsbGxWTt27AicOXNmmw0bNhz28lJD7kuWLGm2b98+l05IEyZMODN9+vSIjz/+uHlycnLQiBEjTvv7+1c+YZqOwsJCQ3x8fOvFixenaWXx8fGt8/LyPMeMGZMF4O/vbx46dGj2unXrmr/88sthWk4RgGXLljV55ZVX2kRFRZ1r1qxZSV5ensHDw4OsrCyvgoICg9FoNAP8+eefPs8//3ybivozcOBA06hRo7JWr17d4vHHH2+TkJBwrDqfrzwak+ixCPj/7N13mFTV/T/w95m+u7ON7ZSlC0sRYRFQQVBjiYhGxULkG41Eo1ETExN7I5YYozExRvOzxBZLxIAiKioqiKiogIj0svTtdbbM7JTz++PMvTOzvc7Mzr5fz3OfO7fszJnZuXfuPZ9zPucSAL8UQkwCsBnAbABjATwhpVwXycIRERERhRuDVRHw738Djf7UFNOmAWPGRLY8nWGxABdcADz3nFp+/XUGPWIMzwm9h59tE8XFaowFjT8VbFQTQvX2uOwytfy3vwE33ggktTn2LHVESQnwox8BBw+qZZtN9QI6/fTuPa8QKjCVmqp6fQDAmjXqt+ztt1U6LGpVXzhv9YUyEgHADTfcUL5s2bLUjz76KGXMmDHjp0+f7iguLjavXr065eSTT67+7LPPktt7jvT0dO/JJ59cvWrVqhQAWLhwYbPUVp9++mn8yy+/nDZt2rS6a665pt3UV6mpqZ6XX345Y/369fZx48bVb9u2Lf67775LyM3Ndd1///2F2n5PPPHE4Q0bNtjvvPPOIUuXLk0dPXq0s6CgwPr1118npqSkeF566aX9AGC32+U555xT8fbbbw8YP378uBkzZjgKCwst69atS5o7d27FgQMHbJ999lnSPffck7V48eLilsr02GOPHXn//fdTX3755cxFixaVz5w5s76999EVfSDBcMdIKT0ATofq2TEYwOVQo/f92j8REREREfUenw/4178Cy9deG7mydNWllwYev/GGGiSWiKizHnoIaGhQjydPVi38+4KLLwZGjlSPKyuBxx+PbHliQW2t6umz158m3mpVAYnuBjyC3XAD8PDDgeUPPlBjyPh6LWsKEVEIo9GIlStX7r3uuuuKHA6HcenSpelFRUWWF154Ye95553X4RRVCxYsqACArKws99lnn+1oun3Lli1xzz//fOZHH33UoYh8Zmam+7333ttpsVh8S5cuTSssLLQsWLCg9IsvvtiRnZ2tX+jn5OR41q9fv/2KK64oOXz4sHXp0qVphw4dsl588cVl33zzzbYxY8boAw699NJLB6688sqSuro647Jly9IqKipMf//73/cvW7Zs/zXXXFNUW1trXL9+fUJrZRo0aJDn5ptvPur1enHttdcO9fbS/YbQRpnvz4QQG6ZMmTJlw4YNkS4KEQUZduu7+uP9D82NYEmIiCjc+uRvwPvvA2efrR6npgJHjgC9kDqhVz8bjwcYNEi1ygXU+CSnntqzr0HUS/rkeSMWHTmiAgcul1p++23g3HN79CV69X/94ovAFVeoxykpKi1TcrsNdHtdn/x+u93Aeeep30dAjeGxbFmHvw+dfs+LFwP33htY/vWvVY8djk9F/VR+fj42bty4UUqZ39Z+GzZs+NZms+WNHz9+e7jKRr1PCJE/ZsyYhh07dmyLdFm6auvWrXlOp3N7fn7+1M7+bcz09CAiIiIiiqgnnww8vvLKXgl49DqTCbjoosDyffcFcvITEXXEgw8GAh7HH6/GWOhLLrsMGDVKPa6qAv7+98iWp6+SErjmmkDAA1C/kz0cAAtx992q14fm8cdDe4AQEVG/waAHEREREVF3FRQA7wZapOKXv4xcWbrrxhtV8AMAVq9WaUKIiDriwAHgmWcCy3/8Y99rZW8yAXfdFVj+619VqivqnHvvVeNcae68s/d/G4UAHnssNHh/662q9w4REfUrDHoQEREREXXX734X6BFxxhnA6NGRLU93jBoFXHVVYPnWW5kXnYg65s47VUojADjxRODMMyNbnq766U8D5/HqatWDgDru6adVwEtzxRWhy73JaARefhmYMyewbtGi0B4nREQU8xj0ICIiIiLqjqVLgbfeCizfeWfkytJT7r4biI9XjzdvBl57LbLlIaLo99lnwH/+E1i+//6+18tDYzIBf/pTYPnJJ9W5kNr31lvAtdcGls86SwVBwvldsFpVOSZNUsteLzB/PrB+ffjKQEQUYVLKDX15PI/uYtCDiIiIiKirqqqA668PLF91FTBrVuTK01Oys4Hf/jawfPPNQHFx5MpDRNHN7QZ+9avA8kUXAaecErny9IQLLgB+9CP12OdTY0VEYoyjvXuB11/H7z97Cbeufh7jiveFvwwdtXYtsGBBoHdgfj6wZAlgNoe/LMnJqnfHsGFqub4emDsX2LUr/GUhIqKwY9CDiIiIiKgrpFTjXxQWquXs7NgaMPUPfwDS09Xjo0dVJaaWtoaIKNg//gFs3aoeJySocTD6OiHUQNjaGEdr1wKvvhq+13e7geuuUykHFyzA9V++gWvW/w8rXviNGhujtDR8ZemIH35Qg5Q7nWp51CjgvfcAuz1yZcrJUeNSab9l5eUq5Zr2u01ERFFLdrOhAYMeRERERERdcc89oYOj/uMfQEpK5MrT05KTVV50LSXJ2rWhvT+IiABgzx51PtTccw8weHDkytOT8vKA3/wmsPzrXwNHjvT+62qV808+2WyTAVKlixo3Dti4sffL0hEHDqjyVlWp5awsFWzIzIxsuQDgmGOAFSsCKRv37wd+/GM1VgsRadwApNfrZT0xRQ2fz2cAIAE0duXv+WUmIiIiIuqsxx4D7rsvsLxwIXDhhZErT2856yzgwQcDy//8J7B4cWRSvBBR9HG5gEsuAWpr1fK4caoHXCy5+25gyBD1uKIC+L//U2NE9JajR4ETTgA+/TSwbuZMPDV9PlYPzw+sKytT6bciHfjQAjRHj6rlxESVVmrEiMiWK9j06cCbb6pBzgE1PstPfqK+v0QEAPt8Pl9DbW1tfKQLQqRxOBwJPp+vAUBBV/6eQQ8iIiIioo7y+VQr5t/9LrDuxz8Gnnuu7w7Y255bblGprTT33qtSq3g8ESsSEUWJW28NVLqbzcBLL0Vm/IbelJSkBmjXzvGffgo88kjvvFZFhQog7N4dWHf//cBnn+HPc67AFRfdi0UX3gWkpqptlZWRDXxUVwNnnw3s3KmWLRY1gPjkyZEpT1u032rN6tUqgKWNP0LUv63yer0VRUVF2VVVVYler9fQ3dRCRF0hpYTX6zVUVVUlFhcXZ3m93goAq7ryXKYeLhsRERERUWyqrFQ9Ot57L7DupJNU61GLJXLl6m1CAM8/r97/Kv89xzPPAAUFan2spLEhos556y3gb38LLP/lL2rg6lh08snAHXeoAAQA3HknMHUqcNppPfcadXXAOeeosTEANZbIa68B8+cH9hECH4+aDtz+ExXsqKwMBD5WrQKmTOm58rSnqkoFaL7+Wi8bXn4ZOPXU8JWhsy6/HCgqUsE6QA2ybrer3zStFwhR//S61+s9oaGhYfahQ4cGGAyGQQBitDUP9QHS5/M1eL3eYq/XuwbA6115EgY9iIiIiIjaIiXwxhtqPIvgwU9PO00FPOL7QSaAhATg3XeBX/xCVWoBqoJtwgTg738Hfvaz2O3pQkTNrV0LLFgQWJ43T413Ecvuvlud9776SvV0O/984LPPgOOO6/5zNzSodEtffhlY98ILoQGPYFOmqLJEKvBRWakCHt98E1j35JPAxRf3/mt31803q1Rcjz+ulp9/Xn3+sdhLiaiD8vPzGzZs2PAbr9d7qdfr/RGA4QBiuEUPRblGqJRWqwC8np+f39CVJ2HQg4iij88HlJdjVNlB2DyN2JU+NNIlIiKi/mrDBuC224CPPgpdf8stqsWvqR9dTlssauD2oUOBBx5QwaDqauCKK4CnngL+/Gdg9uxIl5KIetvmzSrI4XSq5eHDVcVxrAc+zWYVAD/hBDWYucOhUiZ9+SUwbFjXn9fpVAGPVUHZO/7xD+Cyy9r+u0gFPg4cUO97+/bAuqeeAq65pvdesycJocblcjjU9xYAXn8dqK8HXn1VBfmJ+iF/xfLz/omoz+OYHkQUXVasUIPeZWZi1XO/wooXb8Tqp68Cli3joKlERBQeUqpWzHPnqvQlwQGP7Gxg6VLgoYf6V8BDI4QawH3NGmDkyMD69euBOXNUhdt77zFHOlGs+uYb4IwzVMATALKy1DkyLS2y5QqXIUPUIN3JyWq5qAiYNQvYsqVrz1dXp3qMfPhhYN0DDwDXX9+xv9cCH+Ea42PTJmDGjNCAx//7f30n4KExGIBnnwWuuy6wbvlyFbjXBmQnIqI+jUEPIooODQ3q4n7ePNV6KMhARxlwwQXAuecCxcURKiAREcW80lLVunbiRJW/PXjsDoNBpW7ZsUNVUPV3s2ap1t433RQ6nsnHH6tgUV6e6vlx+HDkykhEPevNN1WlcEmJWk5OBj74IDQA2h9MnKjGM9HOfYcPAzNnAp980rnnOXhQ/d3KlYF1f/wjcPvtnXue1gIfGzZ07nna89JLqrxFRWrZYlFjjlx9dc++TrgYDOo3/5ZbAus2bACOPz4wTgkREfVZDHoQUeQdOaIGgv3nPwPr4uOxd8AgVNoSA+tWrGjesoiIiKirpAT27FFpOc48E8jJUYGNrVsD+wgBXHop8P33auwKrXUvqRQgjzwC7NqlBoc1BN1a7NqlBorNzVUBpD//WX2G7LVJPa2+Xn3fPv0Us/dtwJy932JmwSZ1HFdV8TvXE+rrgT/8AbjoItVQCQAGDFCB4UmTIlu2SJkzB3jnHTUINgDU1KgeMPfcAzQ2tv/3n3yiKte/+y6w7u67gbvu6lp5Wgp8nHSSqtTv7jFQX6/Gc7r8cvUYAFJSVO+USy/t3nNHmhCq5+ZTTwUGMj96VH12Dz0EeL2RLR8REXUZgx5EFFnff68CGZs2Bdadfz5w8CBOu+r/YfYvn8F/jvtxIEfw/v3AiScCq1dHorRERNTXFRcDS5aolqkjRgCjRwO/+pWqvAmu3EhIUPts3apaso4fH7kyR7uhQ9WAu3v2AL/7HZCUFNimpQq79VZVOTpkiPpcX38dKChghTR1jpSqkviRR1QF/LBh6lgdMwY49VS8uOQevPDmvfjPG3cBEyaoCuDsbNX76N57gXXrWInZWZ98oo7dRx4JrBs9Wg3mfeKJkStXNDjjDHV+GzhQLXu9qqfGtGnq82lJRQWwaBFw2mmBHjNmM/DMM8Dixd0rT9PAh8ulAvlnnw3s3t2151y1SvVsee65wLqxY9WxFEtjOF1zjepxozVs8HjUeF6nnaZ6eBIRUZ/DoAcRRc6SJaqLtJb6wmQCnnwS+N//9LzANTY77jzzOtWSShtUrqpKddn+619ZWUJERC2TUv2+vPeeGoPivPOAwYNVBejFF6sKpv37m//dzJnqt+joUZWnPC8v7EXvs4YPBx59VPXgfPFFVVnUdGDjI0fUZ79ggQo6ZWUB55yjKgpXrAD27mWlNIVqbFRjKCxapCqXJ09WvQ7efLNZStQWlZSo88Dixer4zs4GrrhCXW86HL1e/D5JSpWqbs4cdRzv2RPYdsYZqkJ/9OiIFS+qHHec+jxmzgys27xZDXZ+9tlqm5Sq58V99wHHHAP8+9+BfTMy1Gf9i1/0THmmTAG++CK0B87KlcC4cSrA39GUg/v2AQsXAqefrh5rfvpTNa7LuHE9U95ooo2FMmNGYN2aNSroc/PNqjcPERH1GUKywhBCiA1TpkyZsqGnc14SUcvq6oAbb1SDx2mSktTN6+mn66uG3fqu/nj/Q3NVjtVzzgnkkQVUr5CnnwbS08NRciIi6mlSqtQ0a9eqlqP79wNHj6LscDHqzTbU2OyYcMJElQZk2jTVsjg+Xv2tx6OCEwcPqsrPPXuAnTsDU11d+69vt6uKvdNPV78pQ4b05rvtEc1+H6NZcbGqcHv/fZX7v6qq/b+x2VTF4Lhxap6bq6ahQ9X/Jy6u98tNkeVyqRbmS5YAb7/d9vfGZFIBzUGDsOaoSr1k9TRihs2lKni1dEwtsVhURedFF6nAqNZCvj/S0v3997/Af/6jzqHBkpNVUPPKK5sHMyMg6s6DXq9KJXXbbYDTGbotNVWlhXK5QtdfeCHw+OOBniLt6NR7drmAO+5Q/7NgBoO6n1q0SAWwbLbQ7Xv2qL959ln1Gxv8Hh59VAUMw/j/j8j/2e1WgfgHHwR8vsD6lBTVc+Y3v1Hp3Yj6gPz8fGzcuHGjlDI/0mUhCjcGPcCgB1HYuN2q5ed996kKKs2wYcDy5aoVTZAWL3IPHlQ3psGDyyUnq4v6G25ofuFORETRx+MBPv8cWLZMDQYb/JvQHoNBBcqFUK0uO9srIC5OtYQ99VQV6JgxQ6UW6UOirrKvozweYP16Ffz46iv1W15d3fnnycgIBEKys4HMTLWu6XzAgECOdop+FRUqOLZ8uZq31gsjLU1V1s6eDUyfrlLP+Y/hZseGz6fS+nz7rUqNumJFaOOZYCaTCoDMnw/Mm6e+R7HM5QK2bVMt27/6SgWZWur9ZjIB//d/wP33d7hyPhyi8jzo86nP8Z57Wk9vBQCJicDPfw5cdZUK7GoDorejS+95/Xo1UPeaNc23xcer7/ysWarsH3+sUj02dfHFKjiTldWx1+xBEf0/b94MXHedapARzGZTAasrr1TnIf7OUBRj0IP6M1OkC0BEMU5KNW7Hm28Cr7yi8ncHu/RS4F//6vjAsLm5qjXwTTcBTzyh1lVXqy7Hjzyinm/hQlWhxQtQIqLe5/OpltR1daola/A8+HF5ucrFv3mz6tnRtMVrZ16vI70FANUyNS9P/SZMnQrk56tc5CZeAkeEyaQGhz3pJLXs86lWxevXqwDI1q2qEra4uO3nKS1VU3sNloRQlYvJyYEpJSV0WZsSElQFoDY1XdYmXlv0HLdbjem2Zg3w7rsqENpaEHPoUBWMuPBC1eOro/8Hg0GN9zFmDHDZZeo7t2GDSpv6zjuhg0h7PKpX0sqV6rszdSpw1lmqJ9iMGYEeZtHO61WplMrK1FReruaHDqnrcG06cqTtNLF2uwp23HyzaqBEisejPs+CApX2ae9eNe3ZA2zZ0rGUaQ6HCiI8/rj6rg0erNL9aVNOjurFnp6uArjp6R2/V2pq+nTg00/V9/ovf1GPNfX1Ksi4fHnLfztmjOrV8OMfd/31+7JJk9R95yuvqPR4Wpo3p1Ote+UV9b856yzgzDNVT9Thw6OiJxQREbGnBwD29CDqFq9XtbStrFSVUCUlKsVIQYGq2NqwQVVMNJWRATz8MHD55a1eGLbbsmfFChX82LWr+bbERHVTPGmSuvgcNkxdlA4YoKaUFFZ6EVHvklJVsGlzbWpt2eNR51SPp/nj9pa7ss3lUrnyXa7A1Nlll6vt1DHhZrEAxx6rKh/mzVPBjj7Wi6MjorKFc0+qrAS2b1cBkIIC1RNImw4fDk25Em5Wq6r8ttnUY4ul+byj66xWdS0SPBmN7T8eul1oAAAgAElEQVTuyn4GQ2ASInS56SREz1ba+XwqkLV7t5o2b1bBjk2b2k5BN3y46t07f74KQHSgTJ0+NgoK1NgeS5aE9iJuymxWPZKnTFHnmBEj1LVlbq76LmjnV7c79Hzb3rK2zuVSFakdnTc0ALW1qvK8tjb0cXfOyQkJqhfcggUq3VcUB3o69L+WMvB7F/wZNl2ur1f3Mw6HmmuTw6EaV5WVqe9wSYkKInWmDiU9XX136uvVd79p6qvOvOdbVgTe88o7VGAqMVHNbbbAeclqVceL9ntfV6feT3m56s3T1fNocrLq7ZGVpR6nprYcRNbKExcXKFfwY23qjWO6t3i9wBtvqPvX4GBpUxkZ6hwxbpwa92bgQBXEGjhQ9UxkVgIKM/b0oP6MQQ/0w6DHww+rHJVtiYbvRTjL0J3XiobPqqmWytReOaVse5+m27vzvrWb/3YudB1Ot/440dpGgKKxUU3dEVyWjtzsN90/nIQIfP7dfe1o/P72V5H8X0TD96Any9Dd54qGz4PgFgZIIeAVBsSZgipqgUBFTkdSWzWtzAUC5/mWzqHR3ELT/90sNAQqTXJ8Xa9A67O0axItaNh00vahvquLx2GlNQGQgIBESmN95/64v35nmgbCuqKnf3fbWwZQYk2EQUoI+JDmqmu+X6T+n0KoQKPZrKbgRlZSNg98daKcr046C0afF1ZvI36yrYV0VbHEfw4YdvM7+qr9D89rfm7ozD1bR7e195xSquuP4PE+Oiv4eqQnytTVfbuyf2eF87qqo691xx3AnXf2blmiBIMe1J+xmXN/9PzzHRvYk6i3dDBIkRi84G5trx4SDTdJRESkM0sfIAHAC3Ry2I4QWo+aGJKDTlbmEvU1XbwWS3XW9nBB+gHt/NjZ8ZEiLLO+g2kOw00LbLh7/ublp5tX9vhzRq3WGvHFyn0aA/SR9cor/SboQdSfdbEpBxERERERERERERERUXRhT4/+KC8P2LEj0qUgaldwu1xGaImIolhn0010gFMEzvw22c2eGjHWm89pDIxTYvP2dldI6lc6c+y2l2ozHClNmrzG3qQsAGrdyJqi3n99TQfSMXVoWywIUyqb/407BT4hIIXAxT98HJbX7DFd/IxuP/1a+CDgNFvxt/cea/v5wvF/CHeK6GhOP9kRsX7s9yUTJkS6BEQUBgx69EdLl0a6BEQdMiJaBq4jIqKwG8vfgFbxsyFq2Wk8NvqNm4L+1xd//1EESxI+rwa957+980gESxJGQe851lJVEhFR72LjaSIiIiIiIiIiIiIiigkMehARERERERERERERUUxg0IOIiIiIiIiIiIiIiGICgx5ERERERERERERERBQTGPQgIiIiIiIiIiIiIqKYwKAHERERERERERERERHFBAY9iIiIiIiIiIiIiIgoJjDoQUREREREREREREREMYFBDyIiIiIiIiIiIiIiigkMehARERERERERERERUUxg0IOIiIiIiIiIiIiIiGICgx5ERERERERERERERBQTGPQgIiIiIiIiIiIiIqKYwKAHERERERERERERERHFBAY9iIiIiIiIiIiIiIgoJjDoQUREREREREREREREMcEUzhcTQgwG8Ps2drlLSukI2j8XwAMATgOQBGAbgL9JKV9t4bnTACwGMA9ABoC9AJ4G8ISUUvbYmyAiIiIiIiIiIiIioqgU1qAHgMkAftPG9ocAOABACDEQwOcABgFYCeAIgNMBvCKEyJVSPqT9kRAiEcAqAMcBWO3f/yQAjwMYD+Cann4jREREREREREREREQUXcId9Bjhn2dKKUvb2fdBAEMA/EJK+RwACCHsAL4C8EchxBIp5V7/vjdBBTzul1Le5d/XBBX8+KUQ4lUp5Wc9/F6IiIiIiIiIiIiIiCiKhHtMj5EAHO0FPIQQKQB+CmCbFvAAACllLYB/ADADuNy/rwBwLYBKAPcH7esB8Bf/4i968D0QEREREREREREREVEUikTQY2+7e6nUVGYA77WwbY1/Pts/HwcgE8DHUkpXk33XAfAE7UtERERERERERERERDEqEumttgohpgI4E0AigD0AlkopK4L2O84/39rCc+wE4AMwur19pZS1QojDAIYKIWxSSmcPvAciIiIiIiIiIiIiIopCYQt6+NNQDYfqlXFhk82PCCF+JqVc7l9O88+Lmz6PlFIKIaoBDGhvX79KAMMApAAoaq1827dvR35+fovbNmzY0NqfEREREREREREREUVEa/WZ27dvD3NJiKJHOHt6DAJgBVAN4BKo1FWJABYAeADAEiHEDCnlJgBJ/r9pmq5KUxe0T0f2BcLfq4WIiIiIqMs+3Psh3tj6BqYOnIoL8i5AZkJmjz23y+PC1tKtqHfXw+lxIseeg7yMPBhEuLPfEhERERER9axwBgIcAM4HsEVKqY3rUQvgr6oTCB4F8AeoAczd/u1xrTyXBUC9/3FH9kXQ/i3Ky8tjjw4iIiIiigqfH/wcc1+dC4/Pg+c2PYfr3rsOF+RdgGfmPdOt5/VJH17e/DJuWXULiutCO0onWZMwfdB0zB83H5dOuBRJ1qRWnoWIKHb5pA8VDRUwG8ywmWywmqyRLhIRUZtaq8/Mz8/Hxo0bw1waoujQraCHEGIYgIIO7p4qpXyrlW1vQAU9tPE5SvzzlBZe0wAgFcC+9vb1S4PqBVLZwXISEREREUVMUW0RLl5yMTw+j77OJ314c9ubsBgtUG2EOm/tgbW4ZdUt+PLwly1ur3HV4KN9H+GjfR/htx/8FhePvxiLJi/CSUNOgr+REhFRWLk8Lry/531sK90GozDCbDRjROoIAOYef60GdwOe2fgMHl73MI44jujrByYOxNSBUzF90HTMO2YeJmRO6LfnxCM1R7CzfCdm5s70/x4RERFFp+729KgF8EoH921sY5vDP9fu7Hb45xNb2DcX6grnh/b2FUJYAQyB6l0iO1hOIiKiDpFS9tubXiLqHR6fB5e+eSkKawsBAGlxacjLyMPnBz8HALy65VUM7WTQ4+sjX+O2j2/DJwWfhKzPTMjE6AGjYTKYsKNsR0jPj3p3PV747gW88N0LGJM2BldOvhKXT7ocWfasbr7DACklqpxVcPvc8Pg8sFvsYetdUtdYhxpXDRo8DWhwN4TM6931zdY1uBvg9DhhNBhhNphht9iRbc9Glj0L2fZsZNuzkWpL5W8CUQ/5vvh7PPXNU/jv1v+i0tm8/eJQrNAf17hqun3uWLp9Ka5/73r93BvsqOMolu9cjuU7l+OOT+7AMWnH4NxjzsUpw0/BrNxZSLQmduu1o52UEh8XfIx/fvNPLN+5HD7pw7FZx+K1C1/DuIxxkS5e1PP4PKhyVqGyoRJunxt2i12fGDgiIuo93Qp6SCnLACzsyL5CiNeFEJcAmCal/KbJ5pP8883++acAfABOB3Brk33P9M8/9M+/BVADYLYQwiyldAftOwcqvdWHIJ3H58HYJ8bi2KxjMSt3FmbmzsSk7En99gfX4/PA4/PA6/OqufTC7XXD0ehAjasGDpeaa5O2Xnvs9Xnhkz5ISDWXUl8Oftx0W2vLHp8Hbp8bbq+72bzR26g/FkIg3hyPeHM84kxx+uN4czzizP5lUzzMRrN+w24ymJBgTkCiNRFZCVkYmDgQOYk5yLHnIMuehQRzAowGY6c/Q5/0weVxweV1QUAgyZrEm/4oJKVEnbsODpcDjkYHnB4nPD4PfNIHi9GCOFMcJCTqGutQ567T57WNtc3WNXobYRAGGIURRoOx2Vz7bnulF16fF16pjhPtcUsEBIwGIwzCoE/a8en2uvVjo8ZVg0pnJWoba/Xn9ElfyOSVXliMFiRaEkNuLOwWOxItiYg3x0NC6uVpa17nrgs5BwRPLq8LRmGExWhpNpmN5pbXGzq+vtPP0cL+Hp8HdY11qHfXw2gwwmQwhUzx5njYLXZYjVYetxT1PD4PDtccxv6q/ahtrNXPG5kJmRiYOBAZ8Rld+h2LJn9a+yesObAGgDovvnbhazh95OlYuHQhXtnS0bZGAe/sfAfn//f8kHOv2WDGTSfchDtOvgN2ix2A+o04UH0Ab+94G89uehY/lPyg77+zfCduWXUL7vjkDpxzzDlYNHkRzhp1FkyGjt9K+KQP20q34ctDX2L9kfXYUrIF20u3w9HoCNnPbrFjYOJADEwciEGJg/R5TmIOEswJsJqsKt2M0QqL0QK3z60HJJweJxo8gcfVzmocdRzF0dqjqHJWweFyoKKhAoW1hahx1XT6s2yPyWBCenw6MuIzMChpEIanDMeI1BHIS8/D+MzxyE3O5ZgpTUgp9WsKs7HnW+53phwenwcur0u/pnV5XDAajEi1pcJusfeL30gpJWoba1HeUI4qZxVMBpN+n6HdX/TmPaOUEh/s/QCPfvkoVu1b1eG/y30sF7+d8VvcPuv2Tn+PpJT40+d/wh2f3BGyPt4cD6MwosHTENLrDgB2le/CI18+gke+fAQGYcDwlOEYlzEOI1NHIicxR91j2XP0c1lv3Bvtq9yHTws+xZoDa7CtdBuEEDAZTBiUOAizh87G7GGzMTFzYrdft6CyANe+ey0+2PtByPrvi7/H1Ken4sYZNyLbno0kaxJm5c7CyAEjcaTmCB5c+yDe3/M+7BY7cpNzMSFzAq447gqMTR/b5bLUuGpw1HEUJXUlqGusw9CUoRiZOhIGYcARxxGU15djTPoY/XdN8+HeD/HA2gdwsPogJmROwMTMidhftR/fHv0WVpMV1+Rfg2umXtOt6wef9GHD0Q34dP+n2FG2AzvKduCo4ygqnZVt/t6YDWYkWhORYktBqi0VWfYsDEkagsFJg/V5WnwaEswJsJls8Pg8aPQ2tjj5pA9moxlmg1mfmwymkHsrgzBAQup1CyaDSU/hpv22asu99Xvl9XlVEMhZicqGSn1e21ir7i+D7imD7zctRgtsJhviTHFqbo6DyWCClFKve2lrDkB/PHrAaCRYEnrl/RFR9BDh6gAhhPg5gH8DWAHgAi04IYRIBLAWwCQAc6SUa/zrl0KNAbJASvm6f10OgPVQ43eMklJW+9f/FcBvAdwmpXwo6HlXAxgPIE9K2WoaLiHEhilTpkzpL2N6bCzciPyn80PWGYURI1JHYEz6GIxNG4sx6WMwMnUkhiQPwaDEQbCZbGG/0JdSwu1zw+lx6jcdRmGEV3pR767XK/Hq3HV6i7x6d73eGq/GVYPyhnKUN5TD4XKEVNhqrfsqnZVwepxhfV/RTrvwaToJiGY3gi6vC43exmY3AtpNv3bjn5GQgfQ4tRxvjodBGNDgacCOsh3YWb4TtY21MBlM+gWa9vjgzlv055w8+VnUNtbiYPVBHKk5ol/U2Uw2/SIxNS5VzYMe2y122Ew2xJvjVXkSMvTK/ZaCToC6yUm0JsJitKhAk/+iUAs6aY9rG2v1AILD5UBtYy0kpH5hZjKYYBRG+KRP/7umwaxGb2PI91j7jmqPG72NbV68aZXzwcE77X8QXAaX16UHCYhaYhAG2C12JJgT1NySgDhTHIQQEFBB1mRbMgbYBiA3ORfDUoYhxZYS0uo5yZqERGsikqxJsFvsvXKz5JM+/fvekUm7wTMKo34j1TTwo90UapP2e6dVgmkVqE6PEy6vK2TZ6XHC4XKoCtVGh34ecXldIecHR2OTx/55g7tBP6YB6OeQZFsykq3JITe/2g2wFrDOTMjsVKVzd3h9Xuyt3Ivd5buxu2I3dpXvwu6K3ThYfRBOjzPkPOnxeSCEgFEY9XNR0/Oi9thusbd6/n5gyUD99UfkPYqCqgIcqj7UauAUAOJMcTg261hMzp6MyTmTMTl7MiZmTYTNZAvHxxSiKz3BDlYfxNgnxqLB0wAAuO+U+3DnyXcCAMrqy5D3zzyU1ZdhaEOghfP+h+a2+nyfHfgMZ/7nTP1axyiM+Nmkn+GOWXdg5ICRbZb9m6Pf4LmNz+G1H15rFpgAVLqXuaPn4qQhJ+H4QcdjWMowxJvjAQBOjxMHqg7gh5IfsLl4M746/BXWH1nfK4GGviTBnIC8jDyMTR+LrIQspMWlIS0+DWlxaUiNS4XFaIFRGPXzbYotBUnWpG6dS7XrhZ48H2sBpRpXDapd1ah2VqPaVY1CRyGOOI6gtK5UXY+30Ium6dzpcerXJlajNaSRglbR3vSaNM4UB6tRjbEQ3NjBJ334cN15ejlnTnut2XatsUSVswpFtUUorS9Fg7tBv95qjclgQootBQPiBiArIQvjM8bj2KxjMTFrIiZmTkSyLbnHPt+epo1PUVRbhEJHIYpqi/SpsFYtF9cVo7y+HBUNFXD73G0+n9VoRYotBenx6RifOR6TsiZh1IBRyLZnI8eeg2Epw7oUeFi1bxXuXn03vjr8VbPtw1KG4dxjzoXNZEO9ux6bijbh8K7b9O0H4s4BAJwy7BQsuWgJ0uLTOvS6Lo8Lv1zxS7y4+UV9XY49B7fNvA1X5V8Fm8kGr8+LHWU78M3Rb/DB3g/wzs53UOeu69T7izPFIScxBwPiBiDFlqImawqSbcl64E+7L/D4PEixpSArIQtZ9ixkJWQhMyETtY21WPR04L5Ve89tyU3Oxfy8+bho/EWYPmh6p36TPD4P/v7V33H36rtR7w4dHtVkMDW7/9PkpeehoKqg1XvsU4adgovGXYSTck/C+IzxrQYaDtccxsbCjfj184HtLb1ngzCEVGqbDCZMHTgVk7ImwWayYVvpNny076N2329+Tj5+dfyvkGhJRJY9CycOObHda6wGdwM+LvgYy3cuxzu73kFRbVG7r9OXaNds2vVz02tqCRnSOM3j80BChlxTa9eCWvCltrEW1a7qSL81rLtyHU4ccmKkixEW/jE9Nkop89vfmyi2hDPoYQLwEVTviwIAH0P1NDkLQDaAf0oprw/aPxfABgADALwDoBzAuf7lBVLKN4L2TfLvO8r/Gvv9zzsEwO+llI+2U7Z+FfR44usncMP7N3Tqb7QeAsm2ZGTEZ+iVxxnxGUi1pSLOHIc4Uxy80guXR1WEaxXizZb9FUHVrmo4XI6Qizyt0kSrSGrr5oNiX3ClTkcu7IkouiSYE5oFQrRAgtZzpzMBDK1nUm8zCIN+Qx/NgUIBgYyEDD21jtayNMeeg5zEHGQlZGFA3ACkxadhQNyADrXOlVKipK4E28u2Y0fZDmwr3YaNhRuxqWhTs0qP3tZTvwFGYcTotNF6686JmRMxIXMCRqSO6HavECkl9lXuw7dHv8WGwg349ui3OFB9AOX15ah2VWNQ4iBMyp6EqTlT8fPJP8ewlGFtPt+C/y3A6z+8DgA4Lvs4fHvVtyFlfOX7V7Bw2cJ2gx717nq8teMtXPvutXqgYUTqCKy8bCVGp43u1Husa6zDkm1L8Nym5/QUW61Ji0uD0+PsVIWg3WJHnCkORoMRVc6qsDVGsRgtSLGlIM4Up7dg1x43W+df1ipA3T43qp3VKK4rDqlAbik41F0CQm8FrAVBvD4vXF4XfNIHq9EKq8kKl8elN6LQGgZp194AkGhJ1AMpydZkpMalIjshGzmJOUiLS0O8OR5WkxXVzmpUNFSoyVkR0gq30lkZ1v9RV0Tq2nFI0hCMGjAKI1JHICM+A3HmOCSYE/RAiRbMTbGl6MFgrfLQZDDBarK22+NSu1fySR9cXlfI/6bKWYXyhvJAYKOuSH9cXFfcagV1bzAbzPpnkZmQiayELAxLGYaRA0ZiYOJAvVHE9tLt2Fy8GV8e/hJrD6xFaX1pyPMYhAHzx83Hdcdfh5m5M5sF7obd+q7+OPh/PTxlOJZeshTHZR+HtpTVl+GC/16AtQfX6uvmDJuD/138PwyIG9Dq3zW4G7Bq3yp8UvAJVh9Yjc1Fm8N2z9qd7/eQpCGYP24+Lhp3EaYPnt5mIHRT4SZc9c5V2FAYqB8RELg6/2rcOONGPQ3j1tKtnX8TQRLMCRifOR4TMiYgIyEDNpMNhY5CfFzwMfZW7gUQuWN6WMow3Dj9Rlx+3OVIsanhY6WUKKwtxMo9K7F853J8uPdDvZFCWwQEkm3JSLWp4LbWk97hcrTZkIN6z+c//xwn5Z7U/o4xgEEP6s/CFvQAACGEGcDVABYBOAYqhdUWAM8BeL7puBtCiBEAHgJwGlSaqu8A3CelbJauSgiRAeBPAM4BkARgO4BHpJSvdaBc/SrooaUX+Pzg5/j84Of44tAXKKjq6Hj0sUdA6L0LglsiaJV0SdYkJFpafmy32PVWC0IINYfo8rKA6pbctFuqlrImeJ2E1Hu3aJOWhzq450ujtxFxZtUiziu9qGusQ7WrWm/dVegoRGFtIUrqSvQWx12h3XT7pA+1jbU98r9h0KPnxZnikGhNRKIlETaTDWajGQZh0IONgLoBSbAkhM6brNO+T8Epq4LnWivv1root3RT3zRFlU/69AErg1vka5U/iZZE/fhrmhZLe09aD5ymU527Tk+L01KKruByaz0YgivvtSnOFNdqN/PgXkEh673N13d4X1/rz9HS87g8Lr01vZbSKziAoPc0aqyDy+sK99eRwsxusasgiL9VuUEY9NSOWlqXgsqCFnOnR0JrvwHZ9mwMTxmO1LhUvVdocW0xjjiOoKKhosPPH2eKw/jM8RiZOjIkldLAxIFIj09Hsi0ZdotdfTYeFxyNKjWS1vpUC3RUOas69HpaBd4tJ92CKTlTmm1fe2AtTn7hZH35sys+w6yhs0L2kVJi3mvz8MP31+rrvrv3JKTYUuDxebBq3yq8uuVVLNuxLOS3ONuejXVXrvMP/tt1O8t24t+b/o0XNr+AkrqSTv99tj0bJww+AScMPgH5A/MxPmM8MhMyQ3pXVTmrcNRxFEccR9S8Rs2L6orQ4G7Qe5s6PU40ehsD6S6CegRoqS+0VFk5dtXCOsmahGRbsr7c072YG9wNKG8oR0ldCQ5WH0RBZQF2V+zG1tKt2FqyFeUN5T36erHCZDDpv/vd1Z1rR6Mw6sEHbe7xeVDprAxL0FdAhHyXtUppl8elp9QMh3hzvArU2FLhld6QsW7q3fW9HkCxGC24esrVuOnEm9oMFAcHPX5x9ibc9eld+rLZYMbiOYvxh5P+0GJr/W2l23Dua+fqFesAcOVxV+Kpc57qdPquBncDdpXvwvay7ThUfQhHHUdRWFuoUuv5p45UjHdE8Pe7NOlizB46G6cMOwUzBs+AzWSDy+vC5qLNWH1gNVbtW9Xq79PgpME4b8x5mDZoGiZnT8YxacfAarKioLIAD659EM9/93xIZfzEzIl4Zt4zmD54esj7/s/3/8Geij2od9djX9U+fLzvY/17mp+Tj8VzFiMzIRN7K/fiv1v/q48H0tX3fDThfOQm5yLLngWbyYa9FXtxsPogAOgpEHdX7G72HAZhwJXHXYmr8q/CzrKd2F62HYMSB2HqwKn4YO8HeHDtg20eX1ov2z0Ve9o8j6fFpWHuMXMxbeA0jE0fi2Epw/TfnpYaWWi9fLQMFBUNFSh0FOJQzSEcrjmsz6ud1ahz18Hpceopbq0ma7OUtgKiWXpsrfdF8P0VAL1uQbv+03s0+39fe/t8owXfg3v4JloTIaXU7yebpkrW7le1lJYNngY9y4FWl9LeXNv3hfNewOScyb36HqMFgx7Un4U16BGt+lvQoyX17nrsLt+tpxvaWb4TB6oO4FDNIRQ6Ctvt5txb9ByTRque0sQgDEiwJCDeHI8Ec0KLY1nEmeJgt9j1tAFJ1qRmlbZJ1iSk2lIRb47vFzl6OyI4lUtwTmwt9UDwTWDw3Gwwh3yGTo8T5fXlKK0vRVl9GUrr/PP6Urg8qmWi0WDEyNSRyMvIQ3p8ut41Vmv57fa6cfm/AhU2j12uKjZyk3MxJHkIzAYz3D436t31+sBwTfOCajepWu+isvoylNSVwOV1hQScgoNQ2rgXNa4auL1u/f21NG6CNj5KoiVRHzvCaDDqaaa0tFMGYWg1eGU2mvXvcfD3Wnustfpr7eItOFCnVdID0F9bq9C0mqx6kI6oJdrYH1pQqLaxVvW489981LvrUe2sRml9KQ5UHcD+6v165YeW7k0bB8nR6Oix4GdLmqajam3SxpdpKUDXtJeJdmPYtMWdQRj0CtSWJqvJigRzAlLjUpFoSdSPQbPRrM4N2jmihbkWOGt6bOtj1zRUorC2UN34VgdugLWAdVl9WVh7RObYczA2fSxGDxiN0WmjMXrAaIxIHYFEa2LIedJkMDVLv9faY+19tnT+/uTLC/XXfmqRAcNTh2No8lDEmeNaLWNJXQk2FW7CpiI1bSzciL0Ve6Oq56iAwC+m/AIPnvYg0uPTAQCfH/wci5Yvwq7yXQCAS8Zfgtfnv97i3xc6CnHCAxv15byJTyAzIRMr96xsMRCRakvF6itW49isY3vsPbi9bqw7tA5fHPoC6w6tw/bS7ThUc0ivDDUZTMi2Z2N8xnhMyJyAKTlTcOKQEzE0eWi/veaSUqK0vhRbS7Zib+VelNerFKzavNJZqZ+PtPOtljYv2pgMJiRbk/U0fNo8MyETgxIHIcue1WLPmdbmWk52p8cZ0kCh3l0fci3a9NoUQLPUKw8uGaSX8/6fVraY4lBL55hjz0FGQoZ+vdVWzy+Xx6Wfn/ZX7ceWki3YUrIF3xd/j+2l2yN2r9RRydZkvVdgTmIOshOyQ5azErKQHp+OtPi0NtMBav+nKmcVDlYfVJ9D8RYcdhxGUW0RDlYfxOGaw10qY6otFZeMvwS3z7odQ5KHtLt/cNBj/0Nz8faOt7Fw2cKQ64/8nHzcdMJNuCDvAlhNVjg9Tjz0+UP40+d/0ntBCQj8+Ud/xu9P/H2vnJ+klKhx1aCotghVzqqQqcZVo49no90XGIURlc5KFNcW673JSutLYbfYcWDHzfrz7rj/tDb/V43eRny872Ms2bYEb+14q80GDQICg5IGoai2KCSoZTVacffsu/GHE//QoZRltStWaXYAABAiSURBVI21WHdwHZKsSZgxeEazz/NwzWG8ue1NrDu0DusOrmtx0HhNnCkOxw86PuQ973rg9GZBKafHCYMw6OvL6suw9sBaFNYWwuVxQQiBM0ae0eaA63sr9uKZjc+gsLYQtY21WLN/TYeD1GPTx+LcY87FuWPOxYzBM/r8uGIarVFJ0/ETg6+ptZ7RWqNN7T4zuEFN08lusevpcSk8GPSg/oxBDzDo0RFahVaVswqldaUhldnVrmq9Z4HWPVur+NAGmdTWacvBLbWDK5G1i704UxysJisraPu5pjczRNR3aL2+HC6HCob4AyHaDVJHAxctBTJ6kxYkcXvdITdw0cjtdaO0vlTvsdd0Xlpfqudor2io6HAKBbvFjrHpY5GXnoe89DxMyJyAqQOnIicxp5ffUaie+g2oa6zD1tKt+KHkB2wpVhWVP5T8gOK64p4oJgbEDUB+Tj6mDpyKqQOnYnzGeKTHp8NusWNv5V5sLNyIF757AR8XfBzyd4mWRByTdgxMBhPWH1mvr48zxWHH9TuQm5zb6mu2ltYl2Ji0Mbhs4mVYNGURBiYObHGfnuT1eVFSV4J4c3yvDNrbX3l9XtS4akIqSY0GI6xGNcis1vNFC8AGN6KIM8XpFZXa2EPVLhVMKa8v188X2rW80+PUW98OiBugt/YPbo2bYktBgjkhav+/kbh2dHvd2Fe5T5+qXdVocDegtrFWBUqCgrk1rpqQ4K9WOej0ONsNnBiFGshXq+BNsaU0aymtjauhBTS0qa1gcU9zuBz6IM4ldSU46jiKgqoC7K3ci7L6MjhcDjg9TowcMBKTsiZhSs4UzMydiXEZ4zo19kxL/+udZTvxs7d+hq+PfB2yb6otFcm2ZFQ0VISMLRRvjscrF7yCn4z9STffdXh09fvt9rrxScEnWLJtCZbtWNahXpGnDj8VT819CsekHdOlsnZESV0JthRvwfay7fr3wmK0YGbuTMwYPANWkzUix3S9ux4vfvcint30LLYUbwk5Nu0WO/Jz8jHvmHmYN2Zer34+RD2BQQ/qz6L3Tp6iisVo0W9+upsagYiIYp9BGPQ0YIMwqP0/iBJCCJiEKaqDHRqz0aynY2qPT/rgcDn0luVai8+mA00OTByIwUmDo7ZCsysSLAmYNmgapg2aFrK+tK4UP5T8gMM1hwNpSGpVOqVKZ6WeTkLrxWK32PVBpydkTtADHcNShrX6eY3LGIdxGeOw8NiF2Fy0GXd+eidW7FKpOhyNjpB86YDqxfTk3CfbDHi0JceegwUTFuCyYy/D5OzJYf0/Gg3GsAfG+gOjwagqtONSu/U8ybbkqB5suy8zG80Ykz4GY9LHdOt5vD6v3pulwR1Ih2QymJBsS9Z7Bka7RGsijh90fERee0z6GKy7ch0eXvcwFq9ZrPfm0IJPwaYPmo5n5j2DiVkTI1HUsDIbzThz1Jk4c9SZeGruU1i9fzW+OPQFNhVtwubizThYfVBPezR76GzcO+dezBk2p9fLlZmQidNGnIbTRpzW66/VGfHmeFx7/LW49vhr4fa6sbtiN4prizFqwKiYu0YiIopl0X9HT0RERETdYhAGvdKTjReUjIQMnDL8lLC93qTsSXhnwTtYsWsFfvfB70LyjgsILDx2IRbPWYzhqcM79bxnjjwTs3Jn4UcjfoSpA6cyZQRRH2U0qHHE7BZ7pIvSp5kMJtw+63ZccdwVeG7jc3h649MhKbfS49Pxxzl/xNX5V/fL86XZaMbpI0/H6SNP19c1ehuxv2o/LEZLm+Oo9Edmo1lvwEBERH0Lgx5ERERERGFyzjHn4OzRZ+NA1QEU1RahvKEc4zLGdTkYtXLhyh4uIRFR3zcwcSDumn0Xbpt1GwoqC/SgUlpcWr8MdrTFYrQwTRMREcUcBj2IiIiIiMLIINTA7J3t1UFERJ1jMpgwOm10pItBREREYdbxkcKIiIiIiIiIiIiIiIiiGIMeREREREREREREREQUExj0ICIiIiIiIiIiIiKimMCgBxERERERERERERERxQQGPYiIiIiIiIiIiIiIKCYw6EFERERERERERERERDGBQQ8iIiIiIiIiIiIiIooJDHoQEREREREREREREVFMYNCDiIiIiIiIiIiIiIhiAoMeREREREREREREREQUExj06Kfy8/ORn58f6WIQUQ/g8UwUO3g8E8UGHstEsYPHM1Hs4PFM1H8w6EFERERERERERERERDGBQQ8iIiIiIiIiIiIiIooJDHoQEREREREREREREVFMYNCDiIiIiIiIiIiIiIhiAoMeREREREREREREREQUE4SUMtJliDghRHlcXNyAvLy8SBclbLZv3w4A6E/vmfqeH45U648nDEqOYEmiG49notjB4zmAvwGt42cT/XgsRwaPjf4jnP/raDme++P3uz++Z+pd0XI8h8v27dvR0NBQIaVMi3RZiMKNQQ8AQogCAEkA9ke4KERERERERERERETdNQxAjZRyeKQLQhRuDHoQEREREREREREREVFM4JgeREREREREREREREQUExj0ICIiIiIiIiIiIiKimMCgBxERERERERERERERxQQGPYiIiIiIiIiIiIiIKCYw6EFERERERERERERERDGBQY9+SAgxTwixTghRLYSoEUKsEUKcFulyERER9VdCiBwhxLNCiKNCiEYhxCEhxBNCiNRIl42IOkcIMUII8YoQolgI0SCE2CGEuFsIYYt02YiofUKIXwkhpBAipYVtJiHE74QQ24QQ9UKI/UKIx4QQiZEoKxG1ra3jucl+Z/v3Oy5cZSOi3sWgRz8jhLgGwHIAIwAsAbAGwAkA3hdC5EeybETUMUKIOf4LsvameyNdViJqnxAiDcCXABYB2ArgRQBlAK4DsFYIYY9g8YioE4QQIwB8BeCnUMfzKwDcABYDWCGEMEaweETUDv8xuqiNXf4F4FEAAsDLAPYCuBHAZwxsEkWXDhzPwa7uzbIQUfiZIl0ACh8hxBAAjwPYBOBUKWWVf/2PAbwH4F4A8yJWQCLqqMMA/t7G9rMBjAbwQ3iKQ0TddCuAoQB+L6V8FACEEALAcwB+DuB6AA9FrnhE1AmPAcgAcKWU8nkAEEIYADwLdTwvAvB05IpHRE35f3Mn+6crAExpZb85UMfwJwB+LKVs9K9fDOBuADcD+GPvl5iIWtPR49m/7wQAkwAsADA3HOUjovARUspIl4HCRAjxMIA/AJghpVzfZNsaALlSyuERKRwR9QghxAwAnwH4l5Ty15EuDxG1TwjxHYCJABKklM6g9aMB7ALwvpTy7EiVj4g6xp+OrgzAZinllCbb0gGUAvhKSnlCJMpHRC3z96h0tLApVWso6N9vCYD5AKZJKb9p8vcVAIqklLm9XV4ial1Hj2f/vmUA0prsN1lK+V1vlY+Iwoc9PfqXMwDsbxrwAAAp5ewIlIeIepA/l/DrUJWkN0e4OETUcQJAS61QzP55XRjLQkRdNwYqffCmphuklGX+ypXjhRCJUsqWKmSIKDIaAFwUtLwYwLgW9jsZQGlwwAMApJS1QoiNAKYLIYZLKQt6r6hE1I6OHs+A6oFp9T++DsCc3isWEYUbgx79hBAiAaoV6XJ/F/u5AKb5N68D8IFktx+ivu6PAHIBzApuLU5EUW8NgGMB/BrAw4CeDudW//ZPIlQuIuocr39uaWW7CYARQA5aboVKRBEgpfQCeFNbFkJc33QfIcQgAJlQv9kt2Q5gOlSKWQY9iCKkI8dz0L7vBO13Ti8XjYjCjEGP/iMHquWZE8BqALOabF8nhPiJlLIs3AUjou4TQhwL4AYAr0gp10W6PETUKfcCOAHAn4UQ86AqTo4HcByA96HG9iCi6LcdatDyWUIIs5TSrW0QQhwPIMW/2DSVBhFFP+24LW5le6V/PiAMZSEiIqJ2GCJdAAqbVP/8EgBZUKmu7FADp74I4CQAL0SkZETUEx7wzzl4IlHf0whgo//xTABXQQU8ANVaVESiUETUOVLKWqjr6aEAXhRCjBJCJAgh5gJYgkAaO1eEikhEXZfkn7d2/GqpKNmwlIiIKAow6NF/aN3sfQDOl1J+JKWsk1IehKpcOQxgrhBicMRKSERdIoSYCuAcAG9KKXdHujxE1GlvArgawCtQYwIkQPX0+ATArwD8JXJFI6JO+h3UsbsAwG4AtQBWQA1y/KF/H/asJup7tJ5bca1s1+6368NQFiIiImoHgx79R61/vldKuS14g7/r/bv+xbywloqIesKN/vk/I1oKIuo0IcRxAM4EsAHAz6SUu6SU9VLKbwGcB6AQwLVCCGtbz0NE0cHf2+NHAM4CcB+AP0H1tJ4BIBuqZ1dr6XGIKHqV+OcprWzX0l8dDUNZiIiIqB3setl/7PfPa1vZrnXHZQoNoj5ECDEAwHwAu6WUayNdHiLqtDH++RoppS94g5SyVgixHsBPoNLl7Ap34Yioc4QQJgBSSvkBgA+C1icCmADgCykl01sR9T0HoXpxTGxl+yiorArbWtlOREREYcSeHv2ElLIa6gJsrBAiqYVdpvrnW8JXKiLqAecDsEKlxyGivsfhn+e0sl0bk6uyle1EFCWEEBaonhzftLD5IgBGAO+HtVBE1COklF4AawBkCSFCAh9CiBQA0wCsl1LWRKJ8REREFIpBj/7lGQDxAP4qhDBqK4UQ5wM4GcA7UsrCSBWOiLpknn++MqKlIKKu+hwq8DFfCHFi8AYhxOlQA5uvlVKWRqJwRNRxUspGqFR1xwohJmvrhRDDoFJdVQP4V0QKR0Q9QTt+HxJCGABACCEA/BlqrI8nIlUwIiIiCsX0Vv3LP6DyCy8CcKIQ4isAAwGcDpUz/IYIlo2IOsl/kzUbamDFryNcHCLqAilljRDiGgAvAfhMCLEKwAEAw6HGBaiGGsyciPqG26EaIqwVQrwFle7mPAB2AAuklOy1RdRHSSmXCyHeAHAxgO+EEF8AyIfKmvCOlPLViBaQiIiIdOzp0Y/4u+SeC+A2qIDXQgCTALwIYLqU8kAEi0dEnTcKajDFLVJKZ6QLQ0Rd468kmQFgGYApAK6Eyhn+CoDjpZQ/RLB4RNQJUsqPAJwB4FuoYMd5ADYBOENK+UYky0ZEPeIyAHdCZVC4AsAAAPdAjbFHREREUUJIKSNdBiIiIiIiIiIiIiIiom5jTw8iIiIiIiIiIiIiIooJDHoQEREREREREREREVFMYNCDiIiIiIiIiIiIiIhiAoMeREREREREREREREQUExj0ICIiIiIiIiIiIiKimMCgBxERERERERERERERxQQGPYiIiIiIiIiIiIiIKCYw6EFERERERERERERERDGBQQ8iIiIiIiIiIiIiIooJDHoQEREREREREREREVFMYNCDiIiIiIiIiIiIiIhiAoMeREREREREREREREQUExj0ICIiIiIiIiIiIiKimMCgBxERERERERERERERxQQGPYiIiIiIiIiIiIiIKCYw6EFERERERERERERERDGBQQ8iIiIiIiIiIiIiov+/UTAsAAD1glYRqURiWAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 244,
+ "width": 798
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "n_peaks = len(x_roi[peaks])\n",
+ "figure, ax = plt.subplots(figsize=(12,4))\n",
+ "plot_fitresult(ax, x_roi, y_roi, out, n_peaks)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Fix some parameters for fitting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Parameters([('bg_intercept',\n",
+ " ),\n",
+ " ('bg_slope',\n",
+ " ),\n",
+ " ('pk0_fraction',\n",
+ " ),\n",
+ " ('pk0_sigma',\n",
+ " ),\n",
+ " ('pk0_center',\n",
+ " ),\n",
+ " ('pk0_amplitude',\n",
+ " ),\n",
+ " ('pk0_fwhm',\n",
+ " ),\n",
+ " ('pk1_fraction',\n",
+ " ),\n",
+ " ('pk1_sigma',\n",
+ " ),\n",
+ " ('pk1_center',\n",
+ " ),\n",
+ " ('pk1_amplitude',\n",
+ " ),\n",
+ " ('pk1_fwhm',\n",
+ " ),\n",
+ " ('pk2_fraction',\n",
+ " ),\n",
+ " ('pk2_sigma',\n",
+ " ),\n",
+ " ('pk2_center',\n",
+ " ),\n",
+ " ('pk2_amplitude',\n",
+ " ),\n",
+ " ('pk2_fwhm',\n",
+ " ),\n",
+ " ('pk3_fraction',\n",
+ " ),\n",
+ " ('pk3_sigma',\n",
+ " ),\n",
+ " ('pk3_center',\n",
+ " ),\n",
+ " ('pk3_amplitude',\n",
+ " ),\n",
+ " ('pk3_fwhm',\n",
+ " ),\n",
+ " ('pk4_fraction',\n",
+ " ),\n",
+ " ('pk4_sigma',\n",
+ " ),\n",
+ " ('pk4_center',\n",
+ " ),\n",
+ " ('pk4_amplitude',\n",
+ " ),\n",
+ " ('pk4_fwhm',\n",
+ " ),\n",
+ " ('pk5_fraction',\n",
+ " ),\n",
+ " ('pk5_sigma',\n",
+ " ),\n",
+ " ('pk5_center',\n",
+ " ),\n",
+ " ('pk5_amplitude',\n",
+ " ),\n",
+ " ('pk5_fwhm',\n",
+ " ),\n",
+ " ('pk6_fraction',\n",
+ " ),\n",
+ " ('pk6_sigma',\n",
+ " ),\n",
+ " ('pk6_center',\n",
+ " ),\n",
+ " ('pk6_amplitude',\n",
+ " ),\n",
+ " ('pk6_fwhm',\n",
+ " )])"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pars_new = out.params\n",
+ "pars_new"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pars_new['pk1_center'].set(min=8.3, max=8.4, vary=True)\n",
+ "pars_new['pk1_amplitude'].set(1000., vary=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[Model]]\n",
+ " (((((((Model(linear, prefix='bg_') + Model(pvoigt, prefix='pk0_')) + Model(pvoigt, prefix='pk1_')) + Model(pvoigt, prefix='pk2_')) + Model(pvoigt, prefix='pk3_')) + Model(pvoigt, prefix='pk4_')) + Model(pvoigt, prefix='pk5_')) + Model(pvoigt, prefix='pk6_'))\n",
+ "[[Fit Statistics]]\n",
+ " # function evals = 510\n",
+ " # data points = 480\n",
+ " # variables = 30\n",
+ " chi-square = 50433.257\n",
+ " reduced chi-square = 112.074\n",
+ " Akaike info crit = 2294.218\n",
+ " Bayesian info crit = 2419.431\n",
+ "[[Variables]]\n",
+ " bg_intercept: 23.8937712 +/- 0 (0.00%) (init= 28.32833)\n",
+ " bg_slope: -3.43395798 +/- 0 (0.00%) (init=-3.995419)\n",
+ " pk0_fraction: 0.81497275 +/- 0 (0.00%) (init= 0.7467189)\n",
+ " pk0_sigma: 0.03062433 +/- 0 (0.00%) (init= 0.030502)\n",
+ " pk0_center: 6.69497495 +/- 0 (0.00%) (init= 6.695042)\n",
+ " pk0_amplitude: 7.71600697 +/- 0 (0.00%) (init= 7.392239)\n",
+ " pk0_fwhm: 0.06124866 +/- 0 (0.00%) == '2.0000000*pk0_sigma'\n",
+ " pk1_fraction: 0.00415563 +/- 0 (0.00%) (init= 0.004736844)\n",
+ " pk1_sigma: 0.04028962 +/- 0 (0.00%) (init= 0.04023896)\n",
+ " pk1_center: 8.30000000 +/- 0 (0.00%) (init= 8.3)\n",
+ " pk1_amplitude: 2.92514518 +/- 0 (0.00%) (init= 1000)\n",
+ " pk1_fwhm: 0.08057924 +/- 0 (0.00%) == '2.0000000*pk1_sigma'\n",
+ " pk2_fraction: 0.53241065 +/- 0 (0.00%) (init= 0.5352378)\n",
+ " pk2_sigma: 0.04134291 +/- 0 (0.00%) (init= 0.04133251)\n",
+ " pk2_center: 8.56765142 +/- 0 (0.00%) (init= 8.567651)\n",
+ " pk2_amplitude: 298.492876 +/- 0 (0.00%) (init= 298.8469)\n",
+ " pk2_fwhm: 0.08268582 +/- 0 (0.00%) == '2.0000000*pk2_sigma'\n",
+ " pk3_fraction: 0.00071570 +/- 0 (0.00%) (init= 1.281864e-09)\n",
+ " pk3_sigma: 0.05922553 +/- 0 (0.00%) (init= 0.06052691)\n",
+ " pk3_center: 9.38410655 +/- 0 (0.00%) (init= 9.384253)\n",
+ " pk3_amplitude: 7.42227692 +/- 0 (0.00%) (init= 7.719403)\n",
+ " pk3_fwhm: 0.11845107 +/- 0 (0.00%) == '2.0000000*pk3_sigma'\n",
+ " pk4_fraction: 0.37237975 +/- 0 (0.00%) (init= 0.3334123)\n",
+ " pk4_sigma: 0.07485621 +/- 0 (0.00%) (init= 0.07516648)\n",
+ " pk4_center: 9.89045474 +/- 0 (0.00%) (init= 9.890321)\n",
+ " pk4_amplitude: 113.124270 +/- 0 (0.00%) (init= 111.6942)\n",
+ " pk4_fwhm: 0.14971242 +/- 0 (0.00%) == '2.0000000*pk4_sigma'\n",
+ " pk5_fraction: 0.88984288 +/- 0 (0.00%) (init= 0.9695019)\n",
+ " pk5_sigma: 0.04142481 +/- 0 (0.00%) (init= 0.04213893)\n",
+ " pk5_center: 10.1375474 +/- 0 (0.00%) (init= 10.13703)\n",
+ " pk5_amplitude: 18.2814904 +/- 0 (0.00%) (init= 19.4689)\n",
+ " pk5_fwhm: 0.08284962 +/- 0 (0.00%) == '2.0000000*pk5_sigma'\n",
+ " pk6_fraction: 0.01367158 +/- 0 (0.00%) (init= 0.08936925)\n",
+ " pk6_sigma: 0.08278052 +/- 0 (0.00%) (init= 0.08243764)\n",
+ " pk6_center: 10.3882145 +/- 0 (0.00%) (init= 10.38849)\n",
+ " pk6_amplitude: 49.3175883 +/- 0 (0.00%) (init= 50.744)\n",
+ " pk6_fwhm: 0.16556104 +/- 0 (0.00%) == '2.0000000*pk6_sigma'\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "out = mod.fit(y_roi, pars_new, x=x_roi, fit_kws={'maxfev': 500})\n",
+ "print(out.fit_report(min_correl=0.5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHpCAYAAADZD/4nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4lNX9///XyWSbZLIDYQ0kyCYEgQC2oCJValFSCYi2fETFtm5ffyq2RUUrFZe2ItVit0/rVtd+3EBDBS2IiLJKRBEQxRAJAiGEJStZJuf3x8yEkEwgQJYheT6uK9d9z32fOXMmmkuT17zP21hrBQAAAAAAAAAAcKYLau0FAAAAAAAAAAAANAVCDwAAAAAAAAAA0CYQegAAAAAAAAAAgDaB0AMAAAAAAAAAALQJhB4AAAAAAAAAAKBNIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAm0DoAQAAAAAAAAAA2gRCDwAAAAAAAAAA0CYQegAAAAAAAAAAgDaB0AMAAAAAAAAAALQJwa29gEBgjNkhKVpSTisvBQAAAAAAAABOVy9Jhdba5NZeCNDSCD08op1OZ/yAAQPiW3shLWXr1q2SpAEDBrTySoCGffHd4ZrzQd1iWnElgY2fZ6Dt4Of5xPhvA9+DMwE/y62Dn432oyX/WQfKz3N7/Pe7Pb5nNK9A+XluKVu3blVZWVlrLwNoFYQeHjkDBgyI37BhQ2uvo8WkpaVJktrTe8aZp9fd/6k53/D7y1pxJYGNn2eg7eDn+cT4bwPfgzMBP8utg5+N9qMl/1kHys9ze/z3uz2+ZzSvQPl5bilpaWnKysrKae11AK2Bnh4AAAAAAAAAAKBNIPQAAAAAAAAAAABtAqEHAAAAAAAAAABoEwg9AAAAAAAAAABAm0DoAQAAAAAAAAAA2oTg1l4AWseGDRtaewkAmgg/z0Dbwc8z0Dbwswy0Hfw8A20HP89A+0GlBwAAAAAAAAAAaBMIPQAAAAAAAAAAQJtA6AEAAAAAAAAAANoEQg8AAAAAAAAAANAmEHoAAAAAAAAAAIA2gdADAAAAAAAAAAC0CYQeAAAAAAAAAACgTSD0AAAAAM4QpaWlxzwuKytrpZUAAAAAQGAi9AAAAADOAOvXr1dKSsox15KTk7V+/fpWWhEAAAAABB5CDwAAACDAlZWVKT09XXl5ecdcz8vLU3p6OhUfAAAAAOBF6AEAAAAEuAULFngDj8vr3cvLy9OCBQtaflEAAAAAEIAIPQAAAIAAl52d7T375wnuAwAAAED7RugBAAAABDhPL48Okjoe5z4AAAAAgNADAAAACHAZGRmKjx/i915iYqIyMjJaeEUAAAAAEJgIPQAAAIAA53Q6NWvWX+tdT0xMVGZmppxOZyusCgAAAAACT3BrLwAAAADAiYWH96l3LStrh7p2JfAAAAAAAB8qPQAAAIAzwK5d9a+tW0fgAQAAAAC1EXoAAAAAZ4Dc3PrX3n+/5dcBAAAAAIGM0AMAAAA4AxB6AAAAAMCJEXoAAAAAZwB/21tt3izl5bX8WgAAAAAgUBF6AAAAAAGuutp/6CFJy5e37FoAAAAAIJARegAAAAABbv9+qaLC/73nn/9SZWVlLbsgAAAAAAhQhB4AAABAgPPXz8Nn8eK1Sk5O1vr161tuQQAAAAAQoAg9AAAAgADX0NZWHnHKy8tTeno6FR8AAAAA2j1CDwAAACDAHa/SQ4qTJOXl5WnBggUtsh4AAAAACFSEHgAAAECAa0zoIUnZ2dnNvhYAAAAACGSEHgAAAEAAKy0t1Ucf7TjOiKOhR0pKSvMvCAAAAAACGKEHAAAAEKDWr1+vlJQUrVp1vFIPT+iRmJiojIyMllkYAAAAAAQoQg8AAAAgAJWVlSk9PV15eXmSuh9nZIQ6dUpSZmamnE5nSy0PAAAAAAJScGsvAAAAAEB9CxYs8AYeRscPPaTVq79USgqBBwAAAABQ6QEAAAAEoKNNyTtJCvWeF/gde+QIgQcAAAAASIQeAAAAQEA62pS8dpXHLr9jDx5s9uUAAAAAwBmB0AMAAAAIQBkZGUpMTJTUo9ZV/w3NCT0AAAAAwIPQAwAAAAhATqdTmZmZioo6u9ZVKj0AAAAA4HgIPQAAAIAANWLECN14429rHl9xxSi/4wg9AAAAAMCD0AMAAAAIYKWlITXnF1442O8YQg8AAAAA8CD0AAAAAALY4cNHz6Oj/Y8h9AAAAAAAD0IPAAAAIIAVFh49J/QAAAAAgOMj9AAAAAACGKEHAAAAADQeoQcAAAAQwAg9AAAAAKDxgptqImNMgqTfSpogqaukIkkfSXrAWvtprXE/lzSogWk+tta+Vmfe6yTdLqmvpEOSlki6z1q7x88aJkiaJSlVUpmk5ZLut9ZuO533BgAAALSW2qFHTIz/MYQeAAAAAODRJKGHMSZO0npJyZJWS3pPUj9Jl0saZ4y5wFq7wTv8ZknDGpgqXFJN6GGMuU/Sg5JyJb0kqYuka71zpllr82uNnSbpeUkF3jmivK9/iTHmXIIPAAAAnIka08j8wIGWWQsAAAAABLqm2t7qbnkCj4ettaOstTdaay+UNENShKS/1BqbIumv1lrj5+sm3yBjTG95Kkc2Sxpkrb3BWpsu6ReSekj6Q62xMZKelJQnabC19npr7RRJ4yXFSPpbE71PAAAAoEXVrvSIXbNE/3zjQY37es0xY6j0AAAAAACPpgo9JsmzndTDda7/SdJeSecaY5KMMfGSYiV904g5b5LkkGd7rFq/6uk5SbslTTXGRHivXS1PuDHPWrvbN9Bau1zSGkljvSEKAAAAcMYoL5cqKjznIcFWITdcp3Hb1+rxRfMUXnlEwd667SNHPF8AAAAA0N6dduhhjDGSekn60lpbVvuetdZK2uV92F2SL3hoTOhxoaRqeXp41J1zpaQwSefWGitJ7/iZZ4X3eEEjXhMAAAAIGLWrPHpFFcjk5UmSXBVlGr5rq+Lijt6n2gMAAAAAmqanR5CkKZL2171hjImW1N/7ME/ScO/5PmPMdHn6fpRIWm6t/ajO08+RlGutLfLzmlu9xz7yNCsfIsktyV/fjtpjG7R161alpaX5vbdhwwa/1wEAAIDmVLufR9+IXVKtYGPUzs+0Pk7K93a5O3hQ6tKlZdcHAACA1tXQ3zO3bt3q9zrQHpx26GGtdUtaWPe6McYh6e+SXJI2WWu/McZc5b2dKSmhzvhMSVOttcXesCREnqDEH9+ve/HeY4KkAmttVSPGAgAAAGeE2pUevUNzj7k36tvP9XzS0cdUegAAAABA01R61OPtn/GcpPMkHZF0o/dWive4WNKDknIlDZY0T1K6pGckXSkp2juuvIGXKPEefeuPlqfPR2PG+jVgwAAqOgAAABBQjtneynFs6JG6d7u6nX1YntZ2hB4AAADtUUN/z0xLS1NWVlYLrwYIDE3VyFySZIwJMcbcI2mTPIHHTkk/sNau9g75p6TLrLXTrLVfWWvLrLVrJV0q6TtJU4wxfSVVesc7G3ipUO+x1HusPImxAAAAwBmhdujRraZVnofDVuv7lR/WPCb0AAAAAIAmDD2MMb0krZH0iDxBw58lDaoVeMhau9ZaW6/ZuLW2UEcblg+RdECeHh2xDbycb2ssX3XHPkkx3qbqJxoLAAAAnBFqhx5dq3Lr3R926P2ac0IPAAAAAGii0MMY01XSR5KGSdooabi19v9roAl5Q3xjq6y1lZK+kZRsjIn0M/Ys7/EL7/FLeXqA9GvEWAAAAOCMULuReaeKXfXuD9hL6AEAAAAAtTVVpcc8Sd0kvSPpe9bajXUHGGP6G2OsMeY/Dcwx2nv8zHtcJskh6Qd15nFIukieyo3NtcZK0jg/814iT2+QD/3cAwAAAAJW7UqP+NL6lR5d9n2uDsqXROgBAAAAAFIThB7GmAhJEyXlS/qJtbah5uPbJOVIusQYc36dOa6RNELSB9bab7yX/yHJSnrAGFO7X8fdkrpL+ou11nqv/UtSmaRfG2M61pr3fyR9T9Lz3i20AAAAgDPG0dDDKrb4aKXH1o69as4v1AeSCD0AAAAAQJKCm2CONEnhkr6V9KD/thqSpDmSbpH0lqT3jTFL5Gl03k+eyo0CSTf7BltrNxpj5kqaKekLY8wySX0kXSjpE0l/rDU2zxjzS0l/lbTJGLNIUmd5GqRnS7q3Cd4nAAAA0KJ8oUcH7VdwleezRYVhkfrvWedqQH6OJOlcrdXrmkLoAQAAAABqmtCjs/fYT/57avg8Ya1dbIwZIuk3ks6T9ENJeZKelvSwtXZH7SdYa+8yxuRIulXSNHmqSZ6QNNtae6TO2L8ZY/ZLukvSVEmHJT0r6T5rbf7pvUUAAACg5fl6evTQ0a2tdkd1UG5sYs3jDtovSTpwoEWXBgAAAAAB6bRDD2vta5IaLO/wM36LpJ+exPi/SfrbSazltcbODQAAAAQyX6VHdx3d2mpvVAcVhrtqHsfLk3ZQ6QEAAAAATdfIHAAAAEAT84Uex1R6RHfQ4VqhR5w8aQehBwAAAAAQegAAAAABq6FKD0IPAAAAAPCP0AMAAAAIUP56euxpIPQ4csTzBQAAAADtGaEHAAAAEKD8VXrsju6ow2H1Qw9JevrpN1VWVtZi6wMAAACAQHPajcwBAAAANA9/PT32RiWoJNSpKhOkYFutCJUpVOWqUJhuvfUuPfjgLcrMzNSIESNaadUAAAA4k2zYsMEp6SeSLpaUIimkdVeEdqxSUrakpZL+nZaWdkqf6CL0AAAAAAJQeblUUSEZVR9T6bEnqoNkjA6Hu5RQ5klF4nRQeeosyaW8vO1KT0/Xjh075HQ6W2n1AAAAOBN4A48/ORyOMQ6HIz4oKMgpybT2utBu2erq6rPcbvdwt9v9/Q0bNtx+KsEHoQcAAAAQgHxVHh20X2Gq8DyIjVVpqCfI8B96REmS8vLytGDBAk2dOrWllw0AAIAzy08cDscYp9OZ2Llz570ul6vU4XBUt/ai0D653e6g4uLiiL1793YuKysb43a7fyLp2ZOdh54eAAAAQADy18RcPXrUnBb6aWYuHb2WnZ3dnMsDAABA23Cxw+GI79y5896YmJhiAg+0JofDUR0TE1OcmJiY53A44uXZcu2kEXoAAAAAAchfE/PaocfhE4QeKSkpzbk8AAAAtA0pQUFBTpfLVdraCwF8oqKiSrxbrSWfyvMJPQAAAIAA5K+Jubp3rzk9XuiRmJiojIyM5l4iAAAAznwhkgwVHggkQUFB1fL0lgk9pec37XIAAAAANAVf6NFFe45e7Nat5vRQeFTN+dHQI0qJiYnKzMykiTkAAACAM5Ix5rSeT+gBAAAABCBfT49YHTp6MT7+6H0/lR5TplyvHTt2aMSIES2yRgAAAAAINMGtvQAAAAAA9fkqPaJVePRidHTN6eHwyJpzX+jRu/c5osADAAAAQHtGpQcAAAAQgE4cehyt9IjXAUlScXGLLA0AAAAAAhahBwAAABCA/IYeMTFH7/vZ3qqoqEWWBgAAALQbxpi0kSNH9mvtdaDxCD0AAACAAFNaWqpPPvlKkhSjw0dvNFDp4Qs9qPQAAAAAAsP8+fMTjDFpc+bM6dTaa2lvCD0AAACAALJ+/XqlpKRo6dJ1khq3vRWhBwAAAAB40MgcAAAACBBlZWVKT09XXl6eJE/AUTv0KAsJqTkn9AAAAMCZpKioKOjFF1+M3bFjR1hKSkr51VdffdDlctnWXhfaHio9AAAAgACxYMECb+Ah+Qs93v7gg5rzw2H09AAAAMCZYcWKFRHJycmpt9xyS/LcuXO73nzzzcm9evUavGLFiojWXpvP8uXLI0aNGtU3MjJyaHR09JBLLrmk9/bt20Pqjvvoo48iJkyYkJKYmDg4LCxsWLdu3VInTZrUa+3atU7fmJEjR/a7/fbbe0nS7Nmzexhj0rZt2xYqSdXV1Xr88cc7nHPOOf2joqKGREVFDenXr9/Zd911V+fCwkL+Xt8EqPQAAAAAAkR2dnatR9EKVbnCVS5JqpD0dW6upI6SpJJQp+RwSG63IlSmUJWruDisxdcMAAAAHE9xcbGZPHlyn4KCgmP+Fl1QUBA8efLkPjk5OZ+3dsXH8uXLI8aPH9+/qqrKjBkz5lBcXJz7o48+iv7BD35wTAPzDz/8MOLiiy/uL0ljxow53LFjx8rt27c7Fy5cmLB48eK4devWbUlNTS2fOHHigZCQkOpVq1ZFDx8+vDg1NbU0NjbWLUk33nhj96eeeiqxa9euFT/84Q8PGWO0evXqqEcffbTbypUro1etWvVVa3wP2hJCDwAAACBApKSk1HoUc0yVR6GklN69pc+9F4yR4uKk/fsleao9ios7t9haAQAAgMZ48cUX4+oGHj4FBQXBL774YtxNN910oKXXVdutt97as6KiwixYsOCryy+/vMi7NsfFF1/cJzc3t+aTRf/4xz86VFZWmszMzK8mTJhQU2c9Y8aMrk888USX1157LTY1NTVv1qxZ+S6Xq3rVqlXR6enpB++///59kuR2u/Xyyy937N2795GsrKyt0dHR1ZJUWlpqBg4cePbq1auj9uzZE9ylS5eqlv4etCWUywAAAAABIiMjQ4mJid5H0ceEHiUOhzIyMo59Qlzc0VMdpKcHAAAAAk52dvZxy5FPdL+5ffzxx84tW7ZEjBs37pAv8JCkhIQE96OPPppbe+y4ceMKZ8+evat24CFJgwcPLpOk4uJix/Feq6Kiwtx+++175s6dm+sLPCQpIiLC9urVq1yS2OLq9FHpAQAAAAQIp9OpzMxMbzPzaEVrV829jikpcjqdxz6hTujxZankdnt2vQIAAAACQUpKSvnp3G9uH3/8sUuSzjvvvHod8i688MISR63/ub722msPSVJOTk7ImjVrIrKzs0Ozs7PD/vOf/8TVfa4/TqfTPvLII3vdbrdWrVrl3Lx5c/iOHTvCtm7dGr5y5cqYJnpL7R6pEQAAABBARowYoS+/3CEp7JhKj4jOfrauio+vOfU1My8pae4VAgAAAI139dVXH0xISPC7XVNCQkLV1VdffbCl11RbQUGBQ5I6d+5cWfdeSEiIQkJCaioysrKywocNG9Y/OTl58E9/+tOz5s6d2/Wzzz6LHD58eKNrrp944omEDh06nDN69Oizb7755pQXXnihQ2VlZVDv3r3LmuYdgdADAAAACDCVlZ6KjhgdPnoxxs8Hv+pUekhiiysAAAAEFJfLZd94442v6wYfCQkJVW+88cbXrd3EPDIyslqS8vPz6+2KtH//fseRI0eCJKmyslIZGRlnbd68OWLu3Lnf7tmzZ+PBgwc/W79+/bYpU6Y0KrhZtGhR1J133tmrU6dOle+9996XxcXFWbm5uV8sWrQou3v37q1a8dKWsL0VAAAAEGB8wUXtSg9FR9cfSOgBAACAM8CYMWNKc3JyPn/xxRfjsrOzw1JSUsqvvvrqg60deEjS0KFDyyRp5cqVUZLya9979913Xb7zzz77LHznzp1hEyZMOPCrX/1qf+1x33zzTaP6kmRmZsZYa/W73/1u17hx446p0a7dMB2nh9ADAAAACDCnEnrE68AxzwUAAAACicvlsjfddNOB1l5HXePHjy/q1q1bxX//+9/Y5cuXR4wdO7ZU8jQUf/jhh7v6xoWFhVlJ2r17d2h1dbWCgjybKK1du9b5l7/8pd5etL77VVVVxnctNDTUSlJOTk6o71p1dbVmz56d+PXXXzvrzoFTw/ZWAAAAQIA5nUqPonrtFwEAAAA0JDg4WH//+99zHA6HfvSjH/X/0Y9+lDJ16tSkAQMGDAwKClJ8fHyVJA0cOLA8LS2tOCsryzV48OABU6dOTRo1alTf0aNHnz1mzJjDkvTmm2/Gz58/P0GSevbsWSFJTz31VKfrrruuR15enuPaa68tCA0NtXfddVfSpZdemnLllVf2TE5OHvTnP/+589ixYw9L0s0335z06aefhrfW96MtIPQAAAAAAoyvGTnbWwEAAADNb8KECUXvvPPOtsGDB5d88MEHsUuWLIk7//zzC5cvX/5VcHCwlTyVG5mZmd9MmjSpYM+ePaFvv/12QnV1tV5++eWv33jjjZwf//jHB3bv3h26adMmpyRdeumlRRMmTDhw6NCh4Ndff71DaWlp0PDhw4+8+eabXw0cOLB0+fLlMR988EHMqFGjirKysrbMnz8/NykpqXz16tVRhYWF/N3+NLC9FQAAABBgfMEFjcwBAACAlnHRRReVrF+/flvd63l5eZ/7zrt06VL1xhtv5Ph7/ltvvbVD0g7fY4fDoczMzB11x1122WXFl1122Zf+5vj222+/OJW141gkRgAAAECAoZE5AAAAAJwaQg8AAAAgwNDTAwAAAABODaEHAAAAEGCo9AAAAACAU0PoAQAAAAQYenoAAAAAwKkh9AAAAAACTKMrPVwuyeGQJEWoTKEqJ/QAAAAA0K4RegAAAAABptGhhzH1qj3o6QEAAACgPSP0AAAAAAJMo0OPOtejVESlBwAAAIB2jdADAAAACDDFxVKoyhWucs+F4GApPNz/4KiomlOXigk9AAAAALRrhB4AAABAgCkurlPlERPj2crKH5fr6CmhBwAAAIB2jtADAAAACDD1Qo+GtraS6oUe9PQAAAAA0J4RegAAAAAB5lRDD3p6AAAAAGjvCD0AAACAAHNSoQc9PQAAAACgRpOFHsaYBGPMk8aYHcaYcmPMfmPMQmPM0Drjgo0xdxpjthhjSo0xOcaYx40xUQ3Me50x5lNjTIkx5jtjzNPGmC4NjJ1gjFlljCkyxuwzxvyfMaZfU71HAAAAoCUUF0sxOnz0wklsb0XoAQAAAKA9a5LQwxgTJ2m9pFsl7ZH0nKQvJF0u6SNjTFqt4X+XNE+SkfSCpG8k3SHpQ2NMeJ1575P0rKQESS9JypJ0raS1xpiOdcZOk5Qpqa+k1ySt8L7+WoIPAAAAnEn8NjJvSJ3Qo6xMqqpqxsUBAAAAaHKLFi2KMsakXX/99T1ONHbJkiWugQMHDggNDR02ZcqUXpI0cuTIfsaYtP379zuafbEBrqkqPe6WlCzpYWvtKGvtjdbaCyXNkBQh6S+SZIy5UNLPJL0v6RzvuIskzZE0RNJM34TGmN6Sfitps6RB1tobrLXpkn4hqYekP9QaGyPpSUl5kgZba6+31k6RNF5SjKS/NdH7BAAAAJpVZaVUXn7qPT0kqaSkuVYHAAAAtD3z589PMMakzZkzp9OpzjF58uRexpi0VatWOZtybf7MmDEjacuWLRHnn3/+4YsuuqhQkiZOnHhg+vTp+8LDw6t944wxaf379z+7udcTaIKbaJ5JksokPVzn+p8k3SXpXGNMkqT/571+t7W2ota4uZLukfRzeQIQSbpJkkPSA9baWr/x6TlJD0maaoy51VpbKulqecKNh621u30DrbXLjTFrJI01xvS21n5z+m8VAAAAaD6+wOJUe3pI3u2xjlMcAgAAAODMtWfPnlCXy+VetmxZzd+7Z82ald+aawokp13pYYwxknpJ+tJaW1b7nrXWStrlfdhd0gWS8q216+uMK5Zn66oexphk7+ULJVVLWuJnzpWSwiSdW2usJL3jZ4krvMcLTuJtAQAAAK3C15PjVHt61J4DAAAAQNvjdrsVFRXlbu11BKqm2N4qSNIUSbfVvWGMiZbU3/dQUidJWxqYZ6v32Md7PEdSrrW2qBFjh0hyS9rWiLEAAABAwPIFFqeyvZUv9Cjy93/QAAAAAOoZOXJkv9tvv72XJM2ePbuHMSZt27Ztob777777rmvMmDFnRUdHDwkPDx/Wv3//sx955JGObvfRzMEYk/bmm28mSNLo0aPP7tatW6rvXkFBgePOO+/smpKSMtDpdA6Nj48/Z8SIEf3+8pe/xJ/sWn3bcBUXFzv27NkTaoxJmzx5ci/f+/D19PCNk6Rt27Y5jTFpd955Z9dT/BadcU57eytrrVvSwrrXjTEOeZqWuyRtkuT71SuvgakOeo/x3rAkpDFjvccESQXWWn8tG+uO9Wvr1q1KS0vze2/Dhg3HeyoAAADQZPyGHo1sZO7r6UGlBwAAQPvQ0N8zt27d6vc66ps4ceKBkJCQ6lWrVkUPHz68ODU1tTQ2NtYtSf/4xz/ibrnllhSn0+keO3bs4cjIyOo1a9a47r333qTly5dHL1my5BuHw6Hp06fvW7FiRXR2dnZ4enr6gb59+x6RPBUZY8aM6bt58+aIgQMHlmZkZBwoLCx0rFixIvrWW29N/vbbb8MeffTRPY1da2pqatn06dP3vfjiix1DQ0PtlVdeuX/kyJH1Ovr5xj377LOdYmNjqzIyMg6MGjWq3fyW0FQ9PY7hbUL+nKTzJB2RdKMk38fTyht4mu8fTvBJjpV3/O5GjgUAAAACVlNUehB6AAAAoCkYI/+pSgCyVqf0yfVZs2blu1yu6lWrVkWnp6cfvP/++/dJ0u7du4NnzJjRKyYmpmrNmjVb+/TpUyFJVVVVmjx5cvLbb78dP2/evI4zZ87Mf+aZZ3InT57cKzs7O/zuu+/eO2rUqDJJ+vDDDyM2b94cMXny5IJXX301JyjIs/HS5s2bwwYPHjxowYIF8ScTeowdO7Z07Nixpa+99lpCdHS0+5lnnsk93rhnn322U2JiYmVD49qqJg0CjDEhkn4l6TeSnJJ2SvqJtXa1McbXf6Oh7vW+kqFSSZUnMVbe8Y0d69eAAQOo6AAAAECrO+nQo4FG5gAAAGj7Gvp7ZlpamrKyslp4NW3LU089FV9aWhp066237vEFHpIUHBysJ554YldmZmb8K6+8kjBz5swGG4h36NDBfc8993x31VVXHfQFHpI0YMCAcqfTWV1aWtoU7SdQR5OFHsaYXpLekDRMnv4af5Y0q1ZPjn3eY2wDUyR4j7slHfDO0Zixvrm7GGOMt9H58cYCAAAAAaspGpnT0wMAAAA4PevXr4+UpPT09MK695KTkysTExMrtm/fHn68OVJTU8tTU1P3FhcXm3fffdf11Vdfhe3YsSNszZo1rpKSkqCY421ji1PWJKGHMaarpI8kdZO0UdJ0a+3GOsN2ylNtkSr/zpJULWmLtbbSGPONpN7OknDmAAAgAElEQVTGmEhrbd19yc7yHr/wHr+UlCSpn/f8eGMBAACAgEVPDwAAAASKU90yqi0oKCgIlqSkpKQKf/fDw8Or9+/fH3K8OcrLy80tt9zS/YUXXuhYWVlpwsLCbFJS0pHvf//7RZ9++mlkc6wbUlOVz8yTJ/B4R9L3/AQevobnKyQlGmOOCT6MMbGSRkpaa631/Xa3TJJD0g/qjHVIukieyo3NtcZK0jg/a7tEnt4gH5782wIAAABaFj09AAAAgNbndDqrJSk/P79e4UB1dbXy8/ND4+Pjq443x6xZszo/88wznX74wx8eysrK2lxaWpr11VdfbfnXv/6VGxwcXHfHIjSR0w49jDERkiZKypenf0dDzccl6e/e4++NMUHe5xtJf5CnJ8efa439hyQr6QFjTO1+HXdL6i7pL7W2svqXpDJJvzbGdKy1tv+R9D1Jz9cKUwAAAICAddKhR+TRD4hFqlRBcmvdui0qKytrphUCAAAAbd/AgQPLJGnp0qVRde/997//dZWUlAQNHTr0uB83evfdd2MdDodeeeWVnKFDhx7x9fXYs2dPcHFxsaNZFo4mqfRIkxQuTx+OB40xTzTwFW+tfVvSq5IulbTRGPN3Sesk3SAp01r7sm9Sb7XIXElDJX1hjPmHMWa5pIckfSLpj7XG5kn6paQekjYZY54yxiyS9IKkbEn3NsH7BAAAAJpdcbEUqnKFy/tZouBgKfw4WwUHBcntPPoZoQiVatGiD5ScnKz169c382oBAACAM58vjKiqqjK+a9dee+2BoKAgzZ8/v/Pu3btrqj3Ky8vNww8/3EWSfvGLX+w/3hyhoaHW7XYrJyenZhuswsLCoOuvvz6pOd+PjzFGbrfbnHhk29IUoUdn77GfpNuP8+X7eNr/SLpPUoSk6yTFS5ot6Yq6E1tr75J0i6QjkqZJ6i3pCUkXWWuP1Bn7N0lXStolaao8Ycyzks6z1uY3wfsEAAAAml1x8dHeHJKkqCjJNPx7SllZmQrKjxZbe57rUl5entLT06n4AAAAAE6gZ8+eFZL01FNPdbruuut65OXlOdLS0o7MmDFj9+7du0MHDhw4MCMjo9fUqVN79uvXb+DKlSujp0yZsn/y5Mk15dndu3evkKTbbrst6Ze//GUXSZo2bdp+Sbrgggv6X3nllT3T09OTk5KSBufm5ob16dOnLC8vL3TKlCm9mut9de7cuSI7Ozv8iiuu6PXqq68ep3y8bTnt0MNa+5q11jTiK8c7vspa+7C19ixrbbi1tre1do611m9DGGvt36y1A621TmttkrV2RkNbVXnXMtxaG2Gt7WKt/Zm1ds/pvkcAAACgpRQXH+3NIckTehzHggULVFhdXfPY81xPn4+8vDwtWLCgOZYJAAAAtBmXXnpp0YQJEw4cOnQo+PXXX+9QWloaJEmPPfbYnv/93//NTkpKKl+yZEncwoUL410ul/v3v//9zldeeeXb2nPcdttt+YMHDy7ZsmVLxJIlS2IlacaMGfv/8Ic/7IyNja16++23EzZt2hT5i1/8Im/dunVf3nfffbsjIyPdS5cujWmu9zV79uzvEhISKhcuXBi/devW45SPty31mrAAAAAAaD31Qo9ajcr9yc7O1oBaj2uHHr77AAAAABrmcDiUmZm5w9+9G2644eANN9xw8ERzJCcnV3722Wdf1r0+c+bM/JkzZ9bbieiaa645dM0112z0PZ4wYUKRtXZDY9ZbVFS0se61devWbat77cYbbzxw4403HmjMnG1JU2xvBQAAAKCJnGzokZKSUnu097lRx9wHAAAAgPaC0AMAAAAIICcbemRkZKgyNLTmsa+nhyQlJiYqIyOjOZYJAAAAAAGJ0AMAAAAIICcbejidTg0577yjw73bWyUmJiozM1NOp7OZVgoAAAAAgYeeHgAAAEAAOdnQQ5Lie/Y8OlzFiorqoh07dhB4AAAAAGh3CD0AAACAAHIqoUftMS4Vq6IiXOQdAAAAANojtrcCAAAAAkhThB7l5VJlZTMsDgAAAAACHKEHAAAAECCqq6WSktMLPTyNzD3zAAAAAEB7Q+gBAAAABIjSUs/xpEOPqKijw73PLS5uaDAAAAAAtF2EHgAAAECA8AUVp7u9Ve25AAAAAKA9IfQAAAAAAkRThh5FRU25MgAAAAA4MxB6AAAAAAHC14ejKXp6UOkBAAAAoD0i9AAAAAACxClXetDTAwAAAAAkEXoAAAAAAYOeHgAAAABwegg9AAAAgABBTw8AAACgddx5551dO3XqNNjhcKQtXrzYtW3btlBjTNrFF1/cu7XX1hjdunVLjYqKGtKYsSNHjuxnjElr7jW1FkIPAAAAIEAUFJRLoqcHAAAA0JJWr17tfPzxx7uUl5cHXXXVVfk9evSojI2NdU+fPn3fZZdddtg3bv78+QnGmLQ5c+Z0as31+vPTn/50/zXXXJPf2usIBMGtvQAAAAAA0vr16/WrX70p6XfHhB6ffv21hiYnH//J9PQAAAAATtmOHTtCJWny5MkFzzzzTK7veu3zQPfYY4/tae01BAoqPQAAAIBWVlZWpvT0dBUVVUs6ttIjY9o0lZWVHX8Cp1MyRpIUoTIFyU3oAQAAADSS2+02khQTE+NuztcpLi42zTk/PAg9AAAAgFa2YMEC5eXlSXLJoSqFy7PNlVvSt/v2acGCBcefIChIioyseRipEnp6AAAAAI0wcuTIftdcc01vSXriiSe6GGPSFi1aFFW3p8fIkSP73X777b0kafbs2T2MMWnbtm0LbWjeO++8s6sxJm3x4sWuGTNmdE1ISDjn9ttv7+67n5OTEzJ16tSeiYmJg8PCwob16tVr0J133tm1qKjomL/Zl5WVmfvvvz+xb9++ZzudzqExMTFDxowZc9by5csjao/z19Pj22+/DZk0aVKvuLi4c5xO59Bhw4b1X7x4cb39c31rfeGFF2Lr3muoV8ibb74Z/f3vf7+vy+Ua6nK5hp577rl9X3rppZiGvh8tie2tAAAAgFaWnZ3tPXMpUiU114vr3T8Ol6tmT6soFam4OLppFwkAAAC0QRMnTjzgcrncy5cvjxk8eHBJWlpaSa9evSr8jQsJCaletWpV9PDhw4tTU1NLY2NjT1gZMnPmzB45OTlh559/fuH5559fJEmbN28OGzt2bL+CgoKQ0aNHF3bv3r18y5YtEY8//niX//znP7GrV6/+Mj4+vlqSfvzjH6csXbo0dtiwYcWTJk0qyMvLC1m5cmXM+PHjo5ctW7Z19OjRfsvC8/PzHeeff36/3NzcsCFDhpT079+/7NNPP43MyMjoGx0dXXU637Pf//73He+5556khISEqosuuuhQcHCw/fDDD6Ovvvrqs7KysnbPmzevVbfaIvQAAAAAWllKSor3LOqYra2K690/jqgoae9eSZ7tsdjeCgAAAKfLPGDSWnsNjWVn2w2n8rxZs2bl9+jRo3L58uUxF110UeEf//jH3ZJUt4pj1qxZ+S6Xq3rVqlXR6enpB++///59jZl/586dYatXr946aNCgct+1a6+9ttfBgweD33777W2XXXZZzf+5z5w5s8vcuXO7zp49u8uTTz753RdffBG2dOnS2AsvvPDw8uXLt/vGffjhhxFjxowZ8NhjjyWOHj06p4H31SU3Nzfsjjvu2PP444/vliS3263p06cnvfDCCx1P6ptUy2effRb2m9/8pkdqamrJ+++//3WHDh3cknTw4MGg0aNH93viiSe6Xn311QeHDh165FRf43SxvRUAAADQyjIyMpSYmCjJVS/0SExMVEZGxokncR2tUif0AAAAAALDtddeu6924LF27Vrnhg0bXJMmTSqoHXhI0pw5c/ZGRUW5Fy1aFCtJBQUFDu8x+MiRIzX9QC644ILSt95666s77rjDb/Didrv16quvdujYsWPlI488UlN14XA49Ne//jXX5XKdcu+SJ598smNVVZWZO3fuLl/gIUlxcXHVv/rVr/ZWV1frtddeq7dNVkui0gMAAABoZU6nU5mZmTrvvMNyVRz9vedIcLAyMzPldDpPPEmd0IOeHgAAAEDrGzx48DHbT61YscIlSdu3bw+//vrre9QdHxoaanNzc8Orqqo0evTo0oEDB5Zu2rQpsnfv3oN++MMfHhozZkzR+PHji3784x83+H/8n3/+eXhhYaHj4osvLnI6nbb2PZfLZfv371/2ySef1Ovt0Rjr1693SdK//vWvhP/7v/+Lq33v4MGDDkn66quvwk9l7qZC6AEAAAAEgBEjRmjkSLeCPvqo5tqg731PjhEjGjdBrdAjSkUqoNIDAAAAp+lUt4zCUWFhYceEDr7qjaysLFdWVlaDwUNJSUlQTExM9erVq7fNnTu345tvvhn//PPPd3ruuec6ORwOfe973yucP39+7rBhw+ptI5Wfn++QpE6dOlX6mzsiIqLRlR5VVVWm9uNDhw4FS9Irr7zSoaHnFBcXt+oOU4QeAAAAQIAoKXGoS63trRzRJ9GMPCqq5pTtrQAAAIDAFBkZWS1Jc+bMyf3Nb35zwr4gUVFR1XPmzMmbM2dOXn5+vmPJkiVRb7zxRtxbb70VP3HixLNycnK+CAo6NmNwuVzVkmdbLH9z5uXlhfq7Xld1dbUKCwsdwcHBNcGN0+mslqT8/PyNtbe3CiT09AAAAAACRHGxjunpUbt644To6QEAAAAEvKFDh5ZJ0saNGyPq3nO73ZoyZUqvG264obskvfTSSzEXX3xx76ysrHBJ6tixo3vatGmHFi5cuOOCCy44nJubG7Zr1656wcaQIUOOhIaG2qysLFdl5bHFHt99911wTk7OMdtPhYaGVktSaWnpMXnB2rVrnUeOHDnm2tlnn10qSWvWrKm3/mXLlkVOmDAh5eWXX45p1DejmRB6AAAAAAGiqKjpQg96egAAAABNy1dRUXfLp5Mxfvz4oh49epQvWrQo/sMPP6wJDtxut2677bZur7/+ekJUVJRbkoKDg7Vs2bLYuXPnJrrdR4sqDhw4ELRjx47wiIiI6k6dOtWrtoiIiLCXXnrpgfz8/JBHHnmkU+17v/71r7uWl5cfs/6kpKQKSXrrrbdqGpBXVlbqnnvu6VZ37uuvv75Akh544IGuhYWFNfnCzp07g2+55Zae7733Xmxqamq9LbdaEttbAQAAAAGiXqVHZGTjn1ynp0dFhVRRIYU2qnAdAAAAwIn07NmzQpKeeuqpTjt37gz9wx/+sDsxMfGktngKDg7W008/vePyyy/vO27cuP6jRo0q7NixY+XGjRsjv/76a+c555xT8sgjj+yVpCuuuOLwwIEDS//97393+OSTT1znnHNOSXV1tVauXBm9f//+kHvvvXdXeHi49fc68+fP37V27dqo3/72tz3eeeed2D59+hzZtGlTxI4dO8KHDBlSsnHjxppfNqZMmXJ41qxZ7sWLF8elpqYO6NOnT9mGDRtcknTWWWcd2bt3b4hv7IQJE4p+9rOf5T399NOJ/fv3Hzhy5MjiiooK8/HHH0cXFhY6HnroodzU1NTyU/n+NhUqPQAAAIAAUF19mttb1enpIUklJU21OgAAAACXXnpp0YQJEw4cOnQo+PXXX+9Qdzuoxho3blzJypUrt44dO/ZQVlaWKzMzM97tdps77rhjz0cffbTN1/zc4XDo3Xff/fonP/nJ/uLi4qCFCxfGL168OK5Lly4VTz75ZM5DDz2U19Br9OjRo+rjjz/+Mj09/cCWLVsiFi5cmBATE+N+//33v0xKSjomlOjYsaP77bff/mrEiBHF27dvD//ggw9iBg8eXLJs2bJt0dHRVXXnfuqpp3Y9+eSTOXFxcVWLFy+OW7VqVfSAAQNKX3rppe333nvvCfuUNDcqPQAAAIAA4Asommp7K8kTosTFNcXqAAAAgLZr2rRph6ZNm7ah9rV+/fpVWGuPueZwOJSZmbmjMXP+8Y9/3P3HP/5xd0P309LSjixZsiT7RPN069at6pVXXvn2ROO+++67TXWvJScnV7799tv11vvWW2/tkHTM9QsuuKB03bp12+qO3bBhQ71rknTrrbcW3HrrrQUnWldroNIDAAAACAC+xuNNGXrQ1wMAAABAe0PoAQAAAAQAX0DRFKFHlDyTFRc3NBgAAAAA2iZCDwAAACAAnHalh5+eHoQeAAAAANobQg8AAAAgADRlpQehBwAAAID2itADAAAACAD09AAAAACA00foAQAAAAQAenoAAAAAwOkj9AAAAAACwGmHHvT0AAAAAABCDwAAACAQNMf2VoQeAAAAANobQg8AAAAgAJx2pYfTKRnjOdUROVRFTw8AAAAA7Q6hBwAAABAAioslo2pFquToxcjIxk9gTL1qDyo9AAAAALQ3hB4AAABAACgqkpwqU5Cs54LTKTkcJzdJnb4ehB4AAAAA2htCDwAAACAAFBefxtZWfp5D6AEAAACgPQpujkmNMbdI+oukOGvtoTr3fi5pUANP/dha+1qd8ddJul1SX0mHJC2RdJ+1do+f150gaZakVEllkpZLut9au+203hAAAADQzIqKmj70oKcHAAAAgPamySs9jDEOST87zpCb5Qkx/H1dVGeu+yQ9KylB0kuSsiRdK2mtMaZjnbHTJGXKE468JmmFpMu9Y/ud9hsDAAAAmlFTV3pEqYhKDwAAAKARRo4c2c8Yk7Z///6T3F/2+O68886uxpi0RYsWRUnSokWLoowxaddff32PpnydQDR58uRexpi0bdu2hbb0azdJpYcxxkga6v26TtKw4wxPkfRXa+3/O8GcvSX9VtJmSaOstYXe69MlPSPpD5Ku916LkfSkpDxJw6y1u73Xx0p6X9LfJP3g1N4dAAAA0PyapNKjTk+PfYQeAAAAwAlNnDjxwKBBg0rDw8Orm/N1evXqVTF9+vR9F154ITXZzaiptreKlLThRIOMMfGSYiV904g5b5LkkPSAL/Dwek7SQ5KmGmNutdaWSrpaUoykh32BhyRZa5cbY9ZIGmuM6W2tbczrAgAAAC2uqEjqQU8PAAAAoMXNmjUrvyVeZ9CgQeXPPPNMbku8VnvWVNtblUmaUutrSwPjenuPjQkfLpRULU8PjxrWWitppaQwSefWGitJ7/iZZ4X3eEEjXhMAAABoFc3RyJyeHgAAAADamyYJPay1bmvt674vSQ0lYyne4z5jzHRjzO+NMb8xxpznZ+w5knKttf5+VdvqPfbxHodIckvy17C87lgAAAAg4DR1I3N6egAAAACNU7enx/z58xOMMWl//etf459//vnYwYMH9w8PDx8WFxd3zpVXXtmzbu+PsrIyc8cdd3Tt1q1balhY2LDk5OSBjz32WIe6r1O3p0dKSspAY0za6tWrnXXHPvTQQ52MMWn33HNP55N9P8aYtLS0tH5ffPFF2CWXXNI7Ojp6SFRU1JDx48enfPnll/V6bJSWlpq77rqrc0pKysCwsLBhnTp1GnzVVVf1/Prrr+uN3bRpU9hVV13V0/deO3fuPPiSSy7pvWTJkhP+AnPgwIGgwYMH9zfGpD366KMdTzT+VDXV9laN5av0yJSnOXkNY0ympKnW2mJjTLSkEHl6dPhz0HuM9x4TJBVYa6saMdavrVu3Ki0tze+9DRtOuHMXAAAAcMqsbaJKjzo9PSorpYoKKbTFWwcCAACgJTT098ytW7f6vY6T88wzz3TcuHGj6/zzzz88adKk/R999FH0a6+91qG4uNjxzjvvZPvGTZw4MeW9996L7d69e/mkSZMKdu7cGTpz5sye3bt3Lz/e/JMmTTowb968rq+//nrs97///bLa9xYuXBhnjNH06dMPnMra9+3bF3L++ef379q1a8WECRMObN++3blkyZK4devWRa1Zs2Zrnz59KiRPYHPBBRf03bBhg2vgwIGlkydPLti7d2/IG2+8kfDOO+/ELV26dNu5555bJknbt28PGTVq1ICSkhLHeeedVzhmzJjDu3btClu2bFnM0qVLYxctWrRt/Pjxfj96VVhYGDRu3Lg+mzZtinzwwQdzZ86c2WxbirV06OGr9Fgs6UFJuZIGS5onKV2eBuVXSor2jmvoX4oS79G3/mhJuxs5FgAAAAgo5eVSVVXTb28lSc8997qmTbtMTme9D48BAAAAx2eM/1QlEFnb5J9c37hxo+vf//7311dccUWhJO3fv99x1llnpf73v/+NLSwsDIqOjq5++eWXY957773YUaNGFS5btmx7eHi4laR//vOfcTfccEPK8ea/7rrrDsybN6/r4sWLY+fNm7fHdz03Nzf4008/dQ0bNqy4b9++Faey9l27doVNnjy54PXXX8/xXbv33ns7P/LII91mzJjRfdGiRdmSdM8993TZsGGD6+677/7ud7/73V7f2EWLFkVNnDix780339wzKyvrS0l67rnn4ouLix1/+tOfcm677bYC39g//elPCXfccUevV155Jd5f6FFaWmouueSSs7Kyslz33Xffrvvuu2/fqbynxmqqnh6N9U9Jl1lrp1lrv7LWlllr10q6VNJ3kqYYY/pKqvSOb+g3M99n1Uq9x8qTGOvXgAEDtGHDBr9fAAAAQHPybUPVHKHHjTf+UsnJyVq/fv3pLBEAAAABqKG/Zw4YMKC1l9YmjB8//oAv8JCkDh06uEeMGFFUVVVldu7cGSJJTz/9dAdJevzxx3f5Ag9J+sUvfnFw1KhRhfVnPWrQoEHlgwYNKt26dWtE7a2kXn755bjq6mpdddVVBcd7/vEYYzRv3rzval/77W9/uzcuLq5q6dKlseXl5cbtdutf//pXx6SkpPKHH354b+2xEyZMKDrvvPMOf/rpp5E7d+4MlqQRI0aU3nPPPd9df/31x1SfDB06tEySSkpK6uUN5eXl5kc/+tFZa9asifr1r3+9+8EHH2xod6cm06LVD96Aw9/1QmPMEkk/k6c/xwJ5enTENjCVb2ssX3XHPkldjDHG2+j8eGMBAACAgOJrOH66oUdFaGjNJ36iVFRzlpe3U+np6dqxYwcVHwAAAEAjpaamltW9Fh0d7ZakoqKiIEn67LPPXFFRUe6RI0fWGzty5MiSVatWRde9XtuUKVMKvvjii4hXX3019t57790nSW+99VZcSEiIve666w4e77nHk5SUVN6zZ8/K2tdCQkI0ZMiQkuXLl8ds3749tKKiwhw6dCg4IiKi+uc//3mPunPs378/RJI2bdoUnpSUVHz55ZcXXX755UV79uwJfu+99yK++eab0Ozs7LD33nuvob/ja9q0acmff/55ZHBwsL322mtPaauukxVIWz75fiurstZWGmO+kdTbGBNprS2pM/Ys7/EL7/FLSUmS+nnPjzcWAAAACCh+Q4/IyJOeZ82WLbpAdefyhCd5eXlasGCBpk6deuoLBQAAQPvSDFtGnUnCw8OrG7rn++z9oUOHHElJSX7bNERGRrpP9BrXXXfdgQceeKDHokWLYu+99959e/fudaxbt841duzYwx07djzh8xsSHx/vr/91zZrKy8uNryH77t27Q5999tlODc1VWFjokKScnJyQ6dOn91yxYkWMtVYul8vdu3fvI8OHDy/Ozs4O9/fczz//PHL48OHFn3zyieumm25KWrly5den+p4aq8W2tzLG9DfGWGPMfxoYMtp7/Mx7XCbJIekHdeZxSLpInsqNzbXGStI4P/NeIk9vkA9PcekAAABAs/K7vVWtpuSNtevg0Q+CHZ3r6AfLsrOzBQAAAKDpOJ3O6oMHD/otLti9e3eov+u1JSUlVY0cObJo/fr1rvz8fMcrr7wS53a7zdSpU0+rKuLIkSPG3/W9e/eGSlLHjh2rXC5XtSRdfPHFh6z9/9m797Coy31v/O+bgeE0nI+KDIImukBURvBZrsLc1WO6MEVNEnUFrOrSMh/zWZGK1+6glbliu/VptWqVh7S0nSb1yDIfD9uf5dYIQRMTTEW2oiLgcGYYZLh/f8DAcBRxGEjer+vi4jvf7/297/urXRjzmc/nIzM7+5o3b145AMTGxgYeO3bMJSkp6Xp+fv7ZysrKM2fOnMldunRppz06lixZUpienn4hLCys+vjx486ffvqp2/08V3dYsqfHBQD5AKYIIR4xvSCE+BOACAD/n5TyctPpfwCQAN4UQpjm4K8AMATA30xKWX0GQAfgVSGEl8m88wH8DwDbpZRd1k8jIiIiIuorxkyPlpJU6FHQw3Po0ObjjoIeQUFd9lEkIiIiIqJ7NHLkSF1ZWZn1qVOn2mU6pKend6tm7dy5c7UGg0Hs3r3bJTU11U2lUhliY2PL7mdfeXl59hUVFa3e/9dqtVa5ubn2Xl5ed/z9/evHjh1bq1QqZU5OjoPB0D6pJDk52Xf69OmBWq3Wqry83CojI8NpzJgx1evWrSs0LZ118eJF2872sWTJkmIrKyts2rTpqhACq1at8i8tLe3VuITFgh5NAYoXATQA+E8hxD4hxN+EEIfRGLS4DWCxyfgzAP4KYByAc0KIfwghjgJYC+AUgH8zGXsLwP8G4A8gWwjxqRAiDcAOAHkAki3xjEREREREPWHM9GgV9OhBT4+oadOaj017egCAj48PYmJierpFIiIiIiLqwPz580sAYNWqVX719S0VpT7++GP38+fPO3RnjoULF5YqlUr5+eefe5w8edJp2rRppQ4ODm17V98TvV4vkpKSBpueS0pKGlxVVaV46qmntADg4OAgo6OjtdevX1euW7euVXmrL774wuW9997zKyoqsnF3d29QKBTSysoKJSUl1jqdrjmL5Ndff1W+9dZbfnfbz6RJk2rmzJlTUlxcbLN8+fK7jr8flsz0gJTyOzQ2Kt/T9P05ACMAbAYQIaXMbTP+NTQGSmoBLAQwDMC/A3hMSlnbZuzfAcwFUAAgDoAGwFYAD0spi3vxsYiIiIiI7kuHPT16kOlh59Wc9Nwq08PHxwf79u1jE3MiIiIiIjN7+eWXb0dFRZb3oIwAACAASURBVJUfOnTINTg4OCQuLk792GOPDXvxxRcDo6Kiyrszh6enpyEqKqr85MmTzvX19WLBggXtSlsdPXrUITEx0f+jjz5y786cbm5u9Tt27PAaN27cyPnz56vHjRs3cvPmzT5qtVq/du3am8ZxH3zwQUFAQIB+9erV/hqNJviZZ54JmDBhwogFCxYMd3Jyqt++fXs+AKhUKhkdHa0tKCiwDQkJ+V1cXJx68uTJw0NDQ0PHjBlTbWVlhe+//9759ddf9+lsTxs2bLiuUqkMO3bs8D5+/Hi3AkI90StBDynlo1JKIaVsl4IjpTwvpZwnpfSXUtpKKdVSyueklFc6mevvUsoQKaV909hXOitVJaXcLaUcL6V0kFIOklL+WUp5s6OxRERERET9hbkyPUzvMQY95sz5M65cuYKIiIj72SIREREREXVAoVDgwIEDl1966aXCyspKxd69ez0LCwuV27Ztuzxjxoxul6iaN2+eFgB8fHzuTJs2rbLt9ezsbPutW7d6Hzp0yLn93e15e3vf2b9//wWlUtmwd+9ej5s3byrnzZtXfOLEiVxfX9/mWlaDBg2qT09Pz4mPjy8qKCiw3bt3r8e1a9ds586dW5KRkXE+ODi4zjh2+/bt/52YmFhUXV2tSE1N9dBqtdYbN27MT01NzV+0aFFhVVWVIj093bGzPfn5+dUnJSXdMBgMWLx4cUBHJbXMQbS0xRi4hBCZ4eHh4ZmZmX29FSIyMXTFP5uP89f9sQ93QkRE/cWD+m/Du+8Cq1YB1zEYg9H0mZ2CAsCvfdZ3l38GOh3g0PiBqVrYwh61+MtfgL/+tde2TtRvPKg/H6i9gfh3zWceGM9MZE4ajQZZWVlZUkpNV+MyMzNP2dnZjQoJCcmx1N6o9wkhNMHBwbrc3Nzzfb2Xnvrll19G1dbW5mg0mvH3eq9Fy1sREREREVF7Zsv0sLMDrBr/F98OeljjTnPpLCIiIiIiooGAQQ8iIiIioj5WWQkINMAR1S0nexL0EKJVLxAVqlDRYWFYIiIiIiKiBxODHkREREREfayyEnBADazQVHrWwQFQKHo2WZu+Hgx6EBERERHRQGLd1xsgIiIiIhroqqpaGo8D6FmWRwf3MuhBRERERDTwSCkHdPNqZnoQEREREfWxyso2/TxMSlTdszZBD/b0ICIiIiKigYRBDyIiIiKiPlZVZYYm5kYmARMnVDLTg4iIiIiIBhQGPYiIiIiI+lhlZZvyVmbM9GDQg4iIiIiIBhIGPYiIiIiI+phZMz0Y9CAiIiIiogGMQQ8iIiIioj7Wm5kedXWAXn8fmyMiIiIiIvoNYdCDiIiIiKiP9WZPDwBsZk5ERERERAMGgx5ERERERH2ovh7Q6Xov0wMAS1wREREREdGAwaAHEREREVEfqmqKdbTK9GDQg4iIiIiIqEcY9CAiIiIi6kPFxToAvdfIHGB5KyIiIiIiGjgY9CAiIiIi6iMZGRn4/e//J4DW5a3+W6vt+aQd9PRgpgcRERERUeciIyODhRCakpIShTnnXb58+WAhhCYtLc0JANLS0pyEEJrExER/c67TH82ePXuoEEJz4cIFpaXXZtCDiIiIiKgP6HQ6TJ8+Hbdv3wHQOtMj5eOPodPpejYxy1sREREREd2TmTNnahMSEors7OwaenOdoUOH1iUkJBQ9+uijzMXuRdZ9vQEiIiIiooEoNTUVt27dAjAGQOtMj4KKCqSmpiIuLu7eJ2bQg4iIiIjonqxatarYEuuEhobqt2zZcs0Saw1kzPQgIiIiIuoDeXl5TUcuAFpnelS1un6P2NODiIiIiIgGMAY9iIiIiIj6QFBQUNNRY9DDNNOjstX1e8SeHkRERERE96RtT49NmzZ5CCE0H374ofv27dtdw8LCRtrZ2YW7ubmNmTt3bkDb3h86nU4sW7ZssJ+f32hbW9vwwMDAkPfff9+z7Tpte3oEBQWFCCE0J0+etG87du3atd5CCM3KlSt97/V5hBAajUYTfO7cOdspU6YMc3Z2Huvk5DR26tSpQbm5ue16bNTU1IjXXnvNNygoKMTW1jbc29s7LDY2NuDixYvtxmZnZ9vGxsYGGJ/V19c3bMqUKcMOHDigaju2La1WaxUWFjZSCKFZv369170+V3cx6EFERERE1AdiYmLg4+ODjjI9bN3dERMT07OJWd6KiIiIiMgstmzZ4pWYmDjMw8OjftasWSVOTk6G3bt3e/7pT38KMB03c+bMoI0bNw6ysrKSs2bNuj148OC6pKSkgD179rh3Nf+sWbO0ALBnzx7Xtte++eYbNyEEEhIStD3Ze1FRkc0jjzwysqCgQBkdHa0dNWqU7sCBA25/+MMfRpkGM3Q6nYiKihqxfv16PwcHh4bZs2ffDg0Nrfn66689wsPDf5eent4ckLl06ZLNxIkTR+3evdtz2LBhtbNnzy4ZMWKE7siRIy5//OMfg7/77rtOAx8VFRVWTzzxxEPZ2dmOa9asuZaUlNRrJcXY04OIiIiIqA/Y29tj3759mDz5B1RXt8702LhlC+zt233Yq3sY9CAiIiIicxFC09db6DYpM8095ZkzZ1RffvnlxTlz5lQAQElJiWL48OGjDx065FpRUWHl7OzcsHPnTpeDBw+6Tpw4seLIkSOX7OzsJAB88sknbi+88EKX6dvx8fHalJSUwd99951rSkrKTeP5a9euWZ8+fVoVHh5eNWLEiLqe7L2goMB29uzZt/fs2ZNvPJecnOz7zjvv+L3yyitD0tLS8gBg5cqVgzIzM1UrVqy4/u677xYax6alpTnNnDlzxOLFiwOysrJyAWDbtm3uVVVVio0bN+YvXbr0tnHsxo0bPZYtWzZ0165d7lOnTq1CGzU1NWLKlCnDs7KyVKtXry5YvXp1UU+eqbuY6UFERERE1EciIiLwpz8tBdA602PMww/3fFL29CAiIiIiMoupU6dqjQEPAPD09DRERERU1tfXi6tXr9oAwObNmz0BYMOGDQXGgAcAPP/886UTJ07s8uNHoaGh+tDQ0JqcnBwH0+yLnTt3ujU0NCA2NvZ2V/d3RQiBlJSU66bn3njjjUI3N7f6w4cPu+r1emEwGPDZZ595qdVq/dtvv11oOjY6Orry4YcfLj99+rTj1atXrQEgIiKiZuXKldcTExNbZZ+MGzdOBwDV1dXt4g16vV48+eSTw3/88UenV1999caaNWtu9fSZuouZHkREREREfai62hqAbBX0MA1c3DNbW8DaGqivhy3qYIM6VFS0K8VLRERERER3MXr0aF3bc87OzgYAqKystAKAn3/+WeXk5GSIjIxsNzYyMrL6xIkTzl2t8fTTT98+d+6cw1dffeWanJxcBADffvutm42NjYyPjy/t6d7VarU+ICDgjuk5GxsbjB07tvro0aMuly5dUtbV1YmysjJrBweHhueee86/7RwlJSU2AJCdnW2nVqurZsyYUTljxozKmzdvWh88eNDh8uXLyry8PNuDBw+2K89ltHDhwsCzZ886Wltby2effbZHpbruFYMeRERERER9qLwcUKIONqhvPGFj0xi46CkhGoMmZWUAGrM9Kiq6LCVMRERERNSxXigZ9VtiZ2fX0Nk1KRuTOsrKyhRqtVrf0RhHR0fD3daIj4/Xvvnmm/5paWmuycnJRYWFhYqffvpJNXny5HIvL6+73t8Zd3f3+q72pNfrhbEh+40bN5Rbt2717myuiooKBQDk5+fbJCQkBBw7dsxFSgmVSmUYNmxY7fjx46vy8vLsOrr37NmzjuPHj686deqUatGiReoffvjhYk+fqbtY3oqIiIiIqA+Vl8N8WR4dzNEY9Lj/KYmIiIiIqD17e/uG0tLSDpMLbty4cdeUa7VaXR8ZGVmZkZGhKi4uVuzatcvNYDCIuLi4+8qKqK2tFR2dLywsVAKAl5dXvUqlagCAxx9/vExKmdnZ17x588oBIDY2NvDYsWMuSUlJ1/Pz889WVlaeOXPmTO7SpUs77dGxZMmSwvT09AthYWHVx48fd/7000/d7ue5uoNBDyIiIiKiPlRe3rqJOZyc7n9Sk6CHEyrZ04OIiIiIqJeMHDlSV1ZWZn3q1Kl2mQ7p6end+kTT3LlztQaDQezevdslNTXVTaVSGWJjY8vuZ195eXn2FRUVrd7/12q1Vrm5ufZeXl53/P3968eOHVurVCplTk6Og8HQPqkkOTnZd/r06YFardaqvLzcKiMjw2nMmDHV69atKzQtnXXx4sVOU9WXLFlSbGVlhU2bNl0VQmDVqlX+paWlvRqXYNCDiIiIiKgP9Uqmh0ngxAmVzPQgIiIiIuol8+fPLwGAVatW+dXXt1SU+vjjj93Pnz/v0J05Fi5cWKpUKuXnn3/ucfLkSadp06aVOjg4yLvf2Tm9Xi+SkpIGm55LSkoaXFVVpXjqqae0AODg4CCjo6O1169fV65bt65VeasvvvjC5b333vMrKiqycXd3b1AoFNLKygolJSXWOp2uOYvk119/Vb711lt+d9vPpEmTaubMmVNSXFxss3z58ruOvx8MehARERER9aFeyfRwbumVaAx6yPv6lYmIiIiIiDry8ssv346Kiio/dOiQa3BwcEhcXJz6scceG/biiy8GRkVFlXdnDk9PT0NUVFT5yZMnnevr68WCBQvalbY6evSoQ2Jiov9HH33UrYZ9bm5u9Tt27PAaN27cyPnz56vHjRs3cvPmzT5qtVq/du3am8ZxH3zwQUFAQIB+9erV/hqNJviZZ54JmDBhwogFCxYMd3Jyqt++fXs+AKhUKhkdHa0tKCiwDQkJ+V1cXJx68uTJw0NDQ0PHjBlTbWVlhe+//9759ddf9+lsTxs2bLiuUqkMO3bs8D5+/Hi3AkI9waAHEREREVEfkbKXMj1Mgh7OqICUQHX1/U9LREREREStKRQKHDhw4PJLL71UWFlZqdi7d69nYWGhctu2bZdnzJjR7RJV8+bN0wKAj4/PnWnTprUrUJudnW2/detW70OHDjm3v7s9b2/vO/v377+gVCob9u7d63Hz5k3lvHnzik+cOJHr6+vbXMtq0KBB9enp6Tnx8fFFBQUFtnv37vW4du2a7dy5c0syMjLOBwcH1xnHbt++/b8TExOLqqurFampqR5ardZ648aN+ampqfmLFi0qrKqqUqSnpzt2tic/P7/6pKSkGwaDAYsXLw7oqKSWOQjJj3xBCJEZHh4enpmZ2ddbISITQ1f8s/k4f90f+3AnRETUXzxo/zbU1ACOjkAM9mIvZjeenDkTSE3t9J5u/Rk8+yywfTsAIAFbsA0JuHEDGDTIbFsn6ncetJ8P1LmB+HfNZx4Yz0xkThqNBllZWVlSSk1X4zIzM0/Z2dmNCgkJybHU3qj3CSE0wcHButzc3PN9vZee+uWXX0bV1tbmaDSa8fd6LzM9iIiIiIj6SHlTsnurTA8zl7dyRmNDD/b1ICIiIiKigYBBDyIiIiKiPtJh0MPM5a2MczPoQUREREREAwGDHkREREREfcQY9OjNRubM9CAiIiIiooHEuq83QEREREQ0UPVapodJ4MQY9Khs1wqRiIiIiIgeRFLKAd28mpkeRERERER9xJh9wUwPIiIiIiIi82DQg4iIiIioj7CnBxERERERkXkx6EFERERE1Ecs2dPjhx/OQKfT3f/cRERERERE/RiDHkREREREfcSSPT2++uo7BAYGIiMj4/7nJyIiIiIi6qcY9CAiIiIi6iMdBj3MkOlRq1Q2HxuDHoAzbt26henTpzPjg4iIiIiIHlgMehARERER9ZHeKm+1//jxlumaAyqNJa9u3bqF1NTU+16DiIiIiIioP2LQg4iIiIioj/RWeatfCwubj00zPYzy8vLuew0iIiIiIqL+iEEPIiIiIqI+0luZHuoRI1DfdGwHPZTQA3Bpvh4UFHTfaxAREREREfVHvRL0EEK8KISQQgjXDq5ZCyGWCyHOCyFqhBD5QogNQogOf7sTQsQLIU4LIaqFENeFEJuFEIM6GRsthDghhKgUQhQJIf5DCBFs7ucjIiIiIjKH3sr0iJk1C5VCNL9unN8NAODj44OYmJj7XoOIiIiIiKg/MnvQQwihAPDnLoZ8BCAFgACwA8BlAMsAfC+EsGsz12oAWwF4APgCQBaAZwGkCyG82oxdCGAfgBEAdgM4BmBG01gGPoiIiIio3ykvB6xggAOaGosLATg43Pe89vb2cPD1bX5tDHr4+Phg3759sLe3v+81iIiIiIgeFJGRkcFCCE1JSYnCnPMuX758sBBCk5aW5gQAaWlpTkIITWJior851+mPZs+ePVQIoblw4YLS0mtbm2MSIYQAMK7pKx5AeCfjHkVjQOQ/AUyVUtY1nX8TwL8CSALwVtO5YQDeAPALgIlSyoqm8wkAtgB4D0Bi0zkXAP8HwC0A4VLKG03nJzet9XcA/2KOZyUiIiIiMpfy8jalrRwdASvzfC7J1tMTuHkTQGNfD1vb3+HKlSsMeBARERERtTFz5kxtaGhojZ2dXUNvrjN06NC6hISEokcffbTy7qOpp8wS9ADgCCCzG+Neavq+whjwaPJXACsBPIemoAeARQAUAN40BjyabAOwFkCcEGKJlLIGwAI0Fil+2xjwAAAp5VEhxI8AJgshhkkpL9/7oxERERER9Y7ycsDTzP08OprLGRXQ622gUNiYb34iIiIiogfEqlWrii2xTmhoqH7Lli3XLLHWQGau8lY6AE+bfJ3vZFwUgGIpZYbpSSllFRpLV/kLIQKbTj8KoAHAgTZjJYAfANgCmGAyFgD2d7DmMZO1iYiIiIj6hdpaoK6uMSDRzAz9PJo5O7ccNq1RWmq+6YmIiIiIiPojswQ9pJQGKeUe4xeAdpExIYQfAG90HhDJafr+UNP3MQCuSSk7SvVpO3YsAAOAC90YS0RERETU54xNzF1Q3nLSxcV8C5gEPYyN0hn0ICIiIiJqr21Pj02bNnkIITQffvih+/bt213DwsJG2tnZhbu5uY2ZO3duQNveHzqdTixbtmywn5/faFtb2/DAwMCQ999/37PtOm17egQFBYUIITQnT55sV4N27dq13kIIzcqVK33bXrsbIYRGo9EEnzt3znbKlCnDnJ2dxzo5OY2dOnVqUG5ubrseGzU1NeK1117zDQoKCrG1tQ339vYOi42NDbh48WK7sdnZ2baxsbEBxmf19fUNmzJlyrADBw7c9RNcWq3WKiwsbKQQQrN+/Xqvu43vKXOVt+oOj6bvtzq5bvwVzF0I4QzApjtjTea+LaWs78bYDuXk5ECj0XR4LTOzO5W7iIiIiIi6z5JBD2Z6EBERET2YOns/Mycnp8PzdG+2bNnidebMGdUjjzxSPmvWrJLjx487796927Oqqkqxf//+POO4mTNnBh08eNB1yJAh+lmzZt2+evWqMikpKWDIkCH6ruafNWuWNiUlZfCePXtcf//73+tMr33zzTduQggkJCRoe7L3oqIim0ceeWTk4MGD66Kjo7WXLl2yP3DggNtPP/3k9OOPP+Y89NBDdUBjwCYqKmpEZmamKiQkpGb27Nm3CwsLbb7++muP/fv3ux0+fPjChAkTdABw6dIlm4kTJ46qrq5WPPzwwxWTJk0qLygosD1y5IjL4cOHXdPS0i5MnTq1qqP9VFRUWD3xxBMPZWdnO65Zs+ZaUlJSr5UUs2TQw/hbV2d/0dVN363vcaxx7hvdHEtERERE1OeMQY9W5a3MGfRo09MDALQ9+nWJiIiIiAYsITqOqvRHUpr9k+tnzpxRffnllxfnzJlTAQAlJSWK4cOHjz506JBrRUWFlbOzc8POnTtdDh486Dpx4sSKI0eOXLKzs5MA8Mknn7i98MILQV3NHx8fr01JSRn83XffuaakpNw0nr927Zr16dOnVeHh4VUjRoyo62qOzhQUFNjOnj379p49e/KN55KTk33feecdv1deeWVIWlpaHgCsXLlyUGZmpmrFihXX33333ULj2LS0NKeZM2eOWLx4cUBWVlYuAGzbts29qqpKsXHjxvylS5feNo7duHGjx7Jly4bu2rXLvaOgR01NjZgyZcrwrKws1erVqwtWr15d1JNn6i5LBgLuNH1vl6rTxJgqU3OPY41zd3dsh0aNGsWMDiIiIiKyGGZ6EBEREdH96uz9TI1Gg6ysLAvv5sEzdepUrTHgAQCenp6GiIiIysOHD7tevXrVJjQ0VL9582ZPANiwYUOBMeABAM8//3zptm3bKk6cOOHc0dxAY2Pz0NDQmnPnzjlcvHhRacy+2Llzp1tDQwNiY2Nvd3bv3QghkJKSct303BtvvFH497//3efw4cOuer1eWFtby88++8xLrVbr33777ULTsdHR0ZUPP/xw+bFjx1yuXr1qrVar6yMiImpWrlx5PTExsdXHqcaNG6cDgOrq6nbtNPR6vXjyySeH//jjj06vvvrqjTVr1nRW3clsLBn0MEZvXDu5bix/dQOAFo09Oroz1jj3ICGEaGp03tVYIiIiIqI+1xc9PZjpQURERETUfaNHj9a1Pefs7GwAgMrKSisA+Pnnn1VOTk6GyMjIdmMjIyOruwp6AMDTTz99+9y5cw5fffWVa3JychEAfPvtt242NjYyPj6+xx9bUqvV+oCAgDum52xsbDB27Njqo0ePuly6dElZV1cnysrKrB0cHBqee+45/7ZzlJSU2ABAdna2nVqtrpoxY0bljBkzKm/evGl98OBBh8uXLyvz8vJsDx482Nn7+Fi4cGHg2bNnHa2treWzzz5rkd9ILBn0uIrGbIvRnVwfDqABwHkp5R0hxGUAw4QQjlLK6g7GAsC5pu+5ANQAgpuOuxpLRERERNTnmOlBRERERP1eL5SM+i2xs7Nr6Oya8bP3ZWVlCrVa3WGbBkdHR8Pd1oiPj9e++eab/mlpaa7JyclFhYWFip9++kk1efLkci8vr7ve3xl3d/eO+l8370mv1wtjQ/YbN24ot27d6t3ZXBUVFQoAyM/Pt0lISAg4duyYi5QSKpXKMGzYsNrx48dX5eXl2XV079mzZx3Hjx9fderUKdWiRYvUP/zww8WePlN3tUs36S1SSgOAYwB8hBCtAh9CCFcAkQDSpZTGdKEjABQA/qXNWAWAx9CYufGLyVgAeKKDpaegsTfI92Z4DCIiIiIis+j1oEcHPT0Y9CAiIiIiMi97e/uG0tLSDpMLbty4oezovCm1Wl0fGRlZmZGRoSouLlbs2rXLzWAwiLi4uPvKiqitrRUdnS8sLFQCgJeXV71KpWoAgMcff7xMSpnZ2de8efPKASA2Njbw2LFjLklJSdfz8/PPVlZWnjlz5kzu0qVLO+3RsWTJksL09PQLYWFh1cePH3f+9NNP3e7nubrDYkGPJh81fV8nhLACACGEAPAeGntyfGAy9h8AJIA3hRCm/TpWABgC4G8mpaw+A6AD8KoQwss4UAgxH8D/ALDdJJhCRERERNTn+iLTg+WtiIiIiIjMa+TIkbqysjLrU6dOtct0SE9PV3Vnjrlz52oNBoPYvXu3S2pqqptKpTLExsaW3c++8vLy7CsqKlq9/6/Vaq1yc3Ptvby87vj7+9ePHTu2VqlUypycHAeDoX1SSXJysu/06dMDtVqtVXl5uVVGRobTmDFjqtetW1doWjrr4sWLtp3tY8mSJcVWVlbYtGnTVSEEVq1a5V9aWtqrcQmLBj2klP8XwFcApgE4I4T4CMBPAF4AsE9KudNk7BkAfwUwDsA5IcQ/hBBHAawFcArAv5mMvQXgfwPwB5AthPhUCJEGYAeAPADJlng+IiIiIqLuqmj6SI4le3ow04OIiIiIyLzmz59fAgCrVq3yq69vqSj18ccfu58/f96hO3MsXLiwVKlUys8//9zj5MmTTtOmTSt1cHBo27v6nuj1epGUlDTY9FxSUtLgqqoqxVNPPaUFAAcHBxkdHa29fv26ct26da3KW33xxRcu7733nl9RUZGNu7t7g0KhkFZWVigpKbHW6XTNWSS//vqr8q233vK7234mTZpUM2fOnJLi4mKb5cuX33X8/bB0pgcAzAewGoADgHgA7gBeBzCn7UAp5WsAXgRQC2AhgGEA/h3AY1LK2jZj/w5gLoACAHEANAC2AnhYSlncS89CRERERNQj7OlBRERERPTb9/LLL9+OiooqP3TokGtwcHBIXFyc+rHHHhv24osvBkZFRZXffQbA09PTEBUVVX7y5Enn+vp6sWDBgnY52kePHnVITEz0/+ijj9y7M6ebm1v9jh07vMaNGzdy/vz56nHjxo3cvHmzj1qt1q9du/amcdwHH3xQEBAQoF+9erW/RqMJfuaZZwImTJgwYsGCBcOdnJzqt2/fng8AKpVKRkdHawsKCmxDQkJ+FxcXp548efLw0NDQ0DFjxlRbWVnh+++/d3799dd9OtvThg0brqtUKsOOHTu8jx8/3q2AUE/0StBDSvmolFJIKdul4Egp66WUb0sph0sp7aSUw6SUb0kp6zqZ6+9SyhAppb2UUi2lfKWzUlVSyt1SyvFSSgcp5SAp5Z+llDc7GktERERE1Jf6oqcHy1sREREREZmXQqHAgQMHLr/00kuFlZWVir1793oWFhYqt23bdnnGjBndLlE1b948LQD4+PjcmTZtWmXb69nZ2fZbt271PnTokHP7u9vz9va+s3///gtKpbJh7969Hjdv3lTOmzev+MSJE7m+vr7NtawGDRpUn56enhMfH19UUFBgu3fvXo9r167Zzp07tyQjI+N8cHBw8/v227dv/+/ExMSi6upqRWpqqodWq7XeuHFjfmpqav6iRYsKq6qqFOnp6Y6d7cnPz68+KSnphsFgwOLFiwM6KqllDqKlLcbAJYTIDA8PD8/MzOzrrRCRiaEr/tl8nL/uj324EyIi6i8epH8bJk0y4PvvFbiI4RiOy40nL1wARozo8r5u/xlotYCHBwCgDC5wQxl8fYGb/EgQPaAeYmBXQgAAIABJREFUpJ8P1LWB+HfNZx4Yz0xkThqNBllZWVlSSk1X4zIzM0/Z2dmNCgkJybHU3qj3CSE0wcHButzc3PN9vZee+uWXX0bV1tbmaDSa8fd6b1+UtyIiIiIiGtAyMjJw4sQFAK0zPU7n5ZlvEZNMj8aeHhJaLcDPPBERERER0YOMQQ8iIiIiIgvS6XSYPn066utdAchWQY+Zzz4LnU5nnoVsbAB7ewCAAg1wQA3q6gBzTU9ERERERNQfMehBRERERGRBqampuHXrFgBP2KEWStwBAOgBXC0qQmpqqvkW66CvB5uZExERERHRg8y6rzdARERERDSQ5OXlAVABUMIFhc3ny1tdNxNnZ6CoqPEQFSjEIGi1gJ+f+ZYgIiIiIqL+RUo5oJtXM9ODiIiIiMiCgoKCAHgCaN3Po7zVdTNxdm4+bOzrwUwPIiIiIiJ6sDHoQURERERkQTExMXB3HwGgfdDDx8cHMTEx5lvMJOjB8lZERERERDQQMOhBRERERGRB9vb2eP31TQBaBz1qbWywb98+2Dc1HzeLDnp6aLXmm56IiIiIiKi/YU8PIiIiIiILc3cPBtA66PH7J5+EIiLCvAsx04OIiIiIiAYYZnoQEREREVnY7duN302DHgp3d/Mv1EFPD2Z6EBERERHRg4xBDyIiIiIiCyspafxuGvSAi4v5F+qgvBUzPYiIiIiI6EHGoAcRERERkYUZgx7GQASA3gl6sLwVERERERENMAx6EBERERFZWEflrSwV9GB5KyIiIiIiepAx6EFEREREZGEWK2/VQU8PZnoQEREREdGDjEEPIiIiIiIL68ueHpcv38bOnTuh0+nMvx4RERER0W9QZGRksBBCU1JSojDnvMuXLx8shNCkpaU5AUBaWpqTEEKTmJjob851+qPZs2cPFUJoLly4oLT02gx6EBERERFZmMXKW5nM6YqyprUl5s+fj8DAQGRkZJh/TSIiIiKi35iZM2dqExISiuzs7Bp6c52hQ4fWJSQkFD366KOVvbnOQGfd1xsgIiIiIhpIpLRgpoebW8shSpuPAIFbt25h+vTpuHLlCuzt7c2/NhERERHRb8SqVauKLbFOaGiofsuWLdcssdZAxkwPIiIiIiILqqoC6uoaj12FJYMexg7mCgCNZa9u3bqF1NRU869LRERERETURxj0ICIiIiKyIGNpK8ACQQ939+bDlkyPxldGeXl55l+XiIiIiOg3pG1Pj02bNnkIITQffvih+/bt213DwsJG2tnZhbu5uY2ZO3duQNveHzqdTixbtmywn5/faFtb2/DAwMCQ999/37PtOm17egQFBYUIITQnT55sl3q9du1abyGEZuXKlb73+jxCCI1Gowk+d+6c7ZQpU4Y5OzuPdXJyGjt16tSg3Nzcdj02ampqxGuvveYbFBQUYmtrG+7t7R0WGxsbcPHixXZjs7OzbWNjYwOMz+rr6xs2ZcqUYQcOHFDdbV9ardYqLCxspBBCs379eq97fa7uYtCDiIiIiMiCjKWtAMBZ9n4j8wYhGg9RDWvcabrQEvQICgoy/7pERERERA+ALVu2eCUmJg7z8PConzVrVomTk5Nh9+7dnn/6058CTMfNnDkzaOPGjYOsrKzkrFmzbg8ePLguKSkpYM+ePe6dzQ0As2bN0gLAnj17XNte++abb9yEEEhISNC2v/PuioqKbB555JGRBQUFyujoaO2oUaN0Bw4ccPvDH/4wyjSYodPpRFRU1Ij169f7OTg4NMyePft2aGhozddff+0RHh7+u/T09OaAzKVLl2wmTpw4avfu3Z7Dhg2rnT17dsmIESN0R44ccfnjH/8Y/N1333Ua+KioqLB64oknHsrOznZcs2bNtaSkpF4rKcaeHkREREREFmQMeiihh63UN76wtgZ6o6+GlRWEu3tzeokbSlEMbwAeAAAfHx/ExMSYf10iIiIiejAIoenrLXSblJnmnvLMmTOqL7/88uKcOXMqAKCkpEQxfPjw0YcOHXKtqKiwcnZ2bti5c6fLwYMHXSdOnFhx5MiRS3Z2dhIAPvnkE7cXXnihy08YxcfHa1NSUgZ/9913rikpKTeN569du2Z9+vRpVXh4eNWIESPqerL3goIC29mzZ9/es2dPvvFccnKy7zvvvOP3yiuvDElLS8sDgJUrVw7KzMxUrVix4vq7775baByblpbmNHPmzBGLFy8OyMrKygWAbdu2uVdVVSk2btyYv3Tp0uYc9o0bN3osW7Zs6K5du9ynTp1a1XYvNTU1YsqUKcOzsrJUq1evLli9enVRT56pu5jpQURERERkQcbyVu2amDdlZJibMOnr4d7c18MbPj4+2LdvH5uYExERERF1YurUqVpjwAMAPD09DREREZX19fXi6tWrNgCwefNmTwDYsGFDgTHgAQDPP/986cSJEyvaz9oiNDRUHxoaWpOTk+Ngmn2xc+dOt4aGBsTGxt7u6v6uCCGQkpJy3fTcG2+8Uejm5lZ/+PBhV71eLwwGAz777DMvtVqtf/vttwtNx0ZHR1c+/PDD5adPn3a8evWqNQBERETUrFy58npiYmKr7JNx48bpAKC6urpdvEGv14snn3xy+I8//uj06quv3lizZs2tnj5TdzHTg4iIiIjIgoyZHu2CHr2lVTPzxr4e8+f/BZ98spkBDyIiIiKiLowePVrX9pyzs7MBACorK60A4Oeff1Y5OTkZIiMj242NjIysPnHihHNXazz99NO3z5075/DVV1+5JicnFwHAt99+62ZjYyPj4+NLu7q3K2q1Wh8QEHDH9JyNjQ3Gjh1bffToUZdLly4p6+rqRFlZmbWDg0PDc8895992jpKSEhsAyM7OtlOr1VUzZsyonDFjRuXNmzetDx486HD58mVlXl6e7cGDB9uV5zJauHBh4NmzZx2tra3ls88+26NSXfeKQQ8iIiIiIgvqNNOjt3TQzHzw4PBeqaZFRERERA+YXigZ9VtiZ2fX0Nk1KRuTOsrKyhRqtVrf0RhHR0fD3daIj4/Xvvnmm/5paWmuycnJRYWFhYqffvpJNXny5HIvL6+73t8Zd3f3+q72pNfrhbEh+40bN5Rbt2717myuiooKBQDk5+fbJCQkBBw7dsxFSgmVSmUYNmxY7fjx46vy8vLsOrr37NmzjuPHj686deqUatGiReoffvjhYk+fqbtY3oqIiIiIyIL6MtPDWN6qsLCzwUREREREdC/s7e0bSktLO0wuuHHjhrKj86bUanV9ZGRkZUZGhqq4uFixa9cuN4PBIOLi4u4rK6K2trbD+rmFhYVKAPDy8qpXqVQNAPD444+XSSkzO/uaN29eOQDExsYGHjt2zCUpKel6fn7+2crKyjNnzpzJXbp0aac9OpYsWVKYnp5+ISwsrPr48ePOn376qVtnY82FQQ8iIiIiIguyeNCjg0wPBj2IiIiIiMxj5MiRurKyMutTp061y3RIT09XdWeOuXPnag0Gg9i9e7dLamqqm0qlMsTGxpbdz77y8vLsKyoqWr3/r9VqrXJzc+29vLzu+Pv7148dO7ZWqVTKnJwcB4OhfVJJcnKy7/Tp0wO1Wq1VeXm5VUZGhtOYMWOq161bV2haOuvixYu2ne1jyZIlxVZWVti0adNVIQRWrVrlX1pa2qtxCQY9iIiIiIgsyOLlrTro6cGgBxERERGRecyfP78EAFatWuVXX99SUerjjz92P3/+vEN35li4cGGpUqmUn3/+ucfJkyedpk2bVurg4CDvfmfn9Hq9SEpKGmx6LikpaXBVVZXiqaee0gKAg4ODjI6O1l6/fl25bt26VuWtvvjiC5f33nvPr6ioyMbd3b1BoVBIKysrlJSUWOt0uuYskl9//VX51ltv+d1tP5MmTaqZM2dOSXFxsc3y5cvvOv5+MOhBRERERGRBLG9FRERERPTgePnll29HRUWVHzp0yDU4ODgkLi5O/dhjjw178cUXA6OiosrvPgPg6elpiIqKKj958qRzfX29WLBgQbvSVkePHnVITEz0/+ijj9w7mqMtNze3+h07dniNGzdu5Pz589Xjxo0buXnzZh+1Wq1fu3btTeO4Dz74oCAgIEC/evVqf41GE/zMM88ETJgwYcSCBQuGOzk51W/fvj0fAFQqlYyOjtYWFBTYhoSE/C4uLk49efLk4aGhoaFjxoyptrKywvfff+/8+uuv+3S2pw0bNlxXqVSGHTt2eB8/frxbAaGeYNCDiIiIiMiC+kN5q5IS4M6dzm4gIiIiIqLuUigUOHDgwOWXXnqpsLKyUrF3717PwsJC5bZt2y7PmDGj2yWq5s2bpwUAHx+fO9OmTatsez07O9t+69at3ocOHXLuznze3t539u/ff0GpVDbs3bvX4+bNm8p58+YVnzhxItfX17e5ltWgQYPq09PTc+Lj44sKCgps9+7d63Ht2jXbuXPnlmRkZJwPDg6uM47dvn37fycmJhZVV1crUlNTPbRarfXGjRvzU1NT8xctWlRYVVWlSE9Pd+xsT35+fvVJSUk3DAYDFi9eHNBRSS1zEMYu8wOZECIzPDw8PDMzs6+3QkQmhq74Z/Nx/ro/9uFOiIiov/it/9sgJWBvD+j1QAqWYzk2NF7461+Bv/ylW3Pc85/BN98AMTEAgIPKaEyp2wcAuH4dGDy4qxuJflt+6z8fqPsG4t81n3lgPDOROWk0GmRlZWVJKTVdjcvMzDxlZ2c3KiQkJMdSe6PeJ4TQBAcH63Jzc8/39V566pdffhlVW1ubo9Foxt/rvR12lSciIiIiIvOrrm4MeACAu6IcMH6wyUKZHl7WpUDT57QKCxn0IKLfjpqaGqSmpuLChQsAJjSf1+l0sLe377uNERERUb/D8lZERERERBZiLG0FAJ7KipYXzt3KUO8Z054eorT5mH09iOi3IiMjA0FBQViwYAHWrFnT6lpgYCAyMjL6aGdERETUHzHoQURERERkIbdvtxx7KUx6E5oEJszOZG6XhpY1GfQgot8CnU6H6dOn49atWx1ev3XrFiZPnoxt27ZBp9NZeHdERETUHzHoQURERERkIfn5tc3HrvUmUQcvr95b1KS8lWMdMz2I6LejpqYGf/nLXzoNeBhVV1cjISGBWR9ERERNpJSZv+V+HveLQQ8iIiIiIgvIyMhAQsK/Nr9W1d5ouejh0XsL29sDSiUAwMaghx0aPwnNoAcR9WfGklYffvihyVkBYE6bkX8CoALQmPUxffp0ZnwQERENcAx6EBERERH1MmN5lspKY+8OCQ9Utlx3dOy9xYVole3hjsYSVwx6EFF/1XFJq1AAPwPY3Wb0ZwAuAPgdgMbAR2pqqkX2SURERP0Tgx5ERERERL0sNTW16c27IQAAR1TDDgYAQA2A1P/3/3p3AyZ9PdzQWOKKQQ8i6q9afmYaeQLYD2B0J3cMBvBPAN4AgLy8vF7dHxEREfVvDHoQEREREfWyljfgGoMenihpvnYbFniDziTowUwPIurvWv9MtAKwE4B/0+vqNqOrmr4PBfB/AdhjyJAhvbo/IiIi6t8Y9CAiIiIi6mVBQUFNR41vxHngdvO1klbXe4lJeStmehBRf9f6Z+LrAJ4wef10m9GxQFPmHDABwN/x2muvsaE5ERHRAMagBxERERFRL4uJiYG3tw86yvSoVCoRExPTuxswyfTwVDRmelRWAlu2/Acb/hJRvzNlyhS4uLgAGA/gX02uvAUfn6w2o/cD+F8mr59FUdFQNjQnIiIawBj0ICIiIiLqZfb29ti1az8AFQDAE9ebr4VMmgR7e/ve3YBJpodrw5Xm4z//eSUCAwP5iWgi6jcyMjIQEhKC8vJyAGtNrhyCt/dH2LdvXwd3/Q3AHpPX69nQnIiIaABj0IOIiIiIyAK8vcObj9UOLQ16PUaM6P3FTTI9XGWByQVf3Lp1i5+IJqJ+QafTYfr06U1NzB8BMKXpigGOjiuQk3MOERERndy9EsCdpuNJAKLZ0JyIiGiAYtCDiIiIiMgCCkxiDb/zNgkweHj0/uKtGpmbNvPwBQB+IpqI+oXU1NSmgAfQOstjO6qrs3DgwIEu7r4E4COT1+8hIGCY2fdIRERE/V+fBD2EEElCiH/v5Osxk3HWQojlQojzQogaIUS+EGKDEMKpk3njhRCnhRDVQojrQojNQohBlnsyIiIiIqKOmQY9BitbenrA07P3F2/VyNxk7aagBwB+IpqI+lzLz6HHAUQ1Hd8B8Fab6y18fHxMXq0BUNF0/Dt8//0QZrEREVG3REZGBgshNCUlJQpzzrt8+fLBQghNWlqaEwCkpaU5CSE0iYmJ/uZcpz+aPXv2UCGE5sKFC0pLr91XmR6vobHTWEdfprmqHwFIASAA7ABwGcAyAN8LIexMJxRCrAawFYAHgC8AZAF4FkC6EMKrNx+GiIiIiOhuTIMeXorbLS8sEfQwyfRwQ6nJhZagR1BQUO/vg4ioCy0/h0ybl38KIL/N9Rb79u0zCXwUA3i/5c5PHTF0KPsWERHR3c2cOVObkJBQZGdn19Cb6wwdOrQuISGh6NFHH63szXUGOmtLLyiEcAHgDiBJSvnXLsY9CuDPAP4TwFQpZV3T+TfR+H9ASWj6uIcQYhiANwD8AmCilLKi6XwCgC0A3gOQ2DtPRERERER0d6ZBD/cGk2wLS5S3Msn0cG/+FDRgDHr4+PggJiam9/dBRNSFmJgYuLv/C7TaR5rO1AF4G0DnP6ciIiJw5coV/Md//AdefvllVFX9DcAKAA4AwlFU9BCmT5+OK1euwN7e3kJPQkREvzWrVq0qtsQ6oaGh+i1btlyzxFoDWV9kehiLal6+y7iXmr6vMAY8mvwVjfmtz5mcWwRAAeBNY8CjyTYANwDECSEcerxjIiIiIqL7ZBr0cKrru0wPD6takwu+8PHxwb59+/hmIBH1qZqaGuzduxfe3m+anN0D4Ppdf07Z29tDqVSiqqoKgBbA5yZX/xf7FhEREQ0w/TnoEQWgWErZKg9VSlmFxtJV/kKIwKbTjwJoAHCgzVgJ4AcAtgAm3N+2iYiIiIh6zjToYV9t4Z4eJkEPtVNLSd2goD/gypUriIiI6OguIiKLyMjIQFBQEBYseBm5ueHN52fMKMAXX3zRrZ9Trft9bDI5jgGgZt8iIiLqUtueHps2bfIQQmg+/PBD9+3bt7uGhYWNtLOzC3dzcxszd+7cgLa9P3Q6nVi2bNlgPz+/0ba2tuGBgYEh77//frv/0W/b0yMoKChECKE5efJku8j+2rVrvYUQmpUrV/q2vXY3QgiNRqMJPnfunO2UKVOGOTs7j3Vycho7derUoNzc3HY9NmpqasRrr73mGxQUFGJraxvu7e0dFhsbG3Dx4sV2Y7Ozs21jY2MDjM/q6+sbNmXKlGEHDhxQ3W1fWq3WKiwsbKQQQrN+/fpea0lh8fJWAIxFOCuEEIsBDAVQCuCAlPIMAAgh/AB4AzjWyRw5aAxiPATgCoAxAK5JKTuqhZbT9P0hAEc721ROTg40Gk2H1zIzM7t4HCIiIiKiu2sJekjYlFu4vJVJ0MOmqhSABCBQXu4BJngQUV/S6XSYPn06bt26BWA5GstSAcBpnDz5b9i1q3tlqVr3+/gFwGE0NkRXAHgJQUFDzLxzIqL+obP3M3Nycjo8T/dmy5YtXmfOnFE98sgj5bNmzSo5fvy48+7duz2rqqoU+/fvb46oz5w5M+jgwYOuQ4YM0c+aNev21atXlUlJSQFDhgzRdzX/rFmztCkpKYP37Nnj+vvf/15neu2bb75xE0IgISFB25O9FxUV2TzyyCMjBw8eXBcdHa29dOmS/YEDB9x++uknpx9//DHnoYceqgMaAzZRUVEjMjMzVSEhITWzZ8++XVhYaPP111977N+/3+3w4cMXJkyYoAOAS5cu2UycOHFUdXW14uGHH66YNGlSeUFBge2RI0dcDh8+7JqWlnZh6tSpVR3tp6KiwuqJJ554KDs723HNmjXXkpKSeq2kWF8EPYahMSsjC4Cryfl3hRCforFUlfE3v1udzGHsvuguhHAGYNOdsT3eMRERERHRfaisBMrLG49dbWog9E2/+9jZAQ4WqMKqVAKOjkB1NYTBAE9lJUrqnHH7NlBWBri63n0KIqLekJqa2hTwEABeNLnyAYqKGstSxcXF3XWemJgY+Pj4NM0FAP+OxqAHIMTzmDrVzsw7JyIaIIToOKrSH0lp9k+unzlzRvXll19enDNnTgUAlJSUKIYPHz760KFDrhUVFVbOzs4NO3fudDl48KDrxIkTK44cOXLJzs5OAsAnn3zi9sILLwR1NX98fLw2JSVl8HfffeeakpJy03j+2rVr1qdPn1aFh4dXjRgxoq6rOTpTUFBgO3v27Nt79uzJN55LTk72feedd/xeeeWVIWlpaXkAsHLlykGZmZmqFStWXH/33XcLjWPT0tKcZs6cOWLx4sUBWVlZuQCwbds296qqKsXGjRvzly5d2lyzd+PGjR7Lli0bumvXLveOgh41NTViypQpw7OyslSrV68uWL16dVFPnqm7+qK8VVDTupsBBABQofH/RM6jsU/HuwCcm8Z2FgmrbvpufY9jOzVq1ChkZmZ2+EVEREREdD+uX285DvVtk+UhhGU2YdLMfIx/y4fFLt+t6CwRUS9qKTv1P9FSDVsLYFeb612zt7fHvn374OPj03RmP4DGe6V0Q1qaotN7iYh+yzp7P3PUqFF9vbUHwtSpU7XGgAcAeHp6GiIiIirr6+vF1atXbQBg8+bNngCwYcOGAmPAAwCef/750okTJ1a0n7VFaGioPjQ0tCYnJ8fBtJTUzp073RoaGhAbG3u7q/u7IoRASkrKddNzb7zxRqGbm1v94cOHXfV6vTAYDPjss8+81Gq1/u233y40HRsdHV358MMPl58+fdrx6tWr1gAQERFRs3LlyuuJiYmtsk/GjRunA4Dq6up28Qa9Xi+efPLJ4T/++KPTq6++emPNmjWdJS+YTV9kerwN4G0ppWmpqSNCiKloDHwsBfDPpvOd5bAa/wOoQWNT8+6OJSIiIiKyONN+HiM9S4BrTS8s0c/DyM0NuNa4cKhfKY5cHgqgMejRSVUEIqJe11KWKsHk7DYAujbX7y4iIgJXrlzB+++/j/Xr16OqaiuANQCA5577L4wcqWIPIyIiuiejR4/WtT3n7OxsAIDKykorAPj5559VTk5OhsjIyHZjIyMjq0+cOOHc9rypp59++va5c+ccvvrqK9fk5OQiAPj222/dbGxsZHx8fGlX93ZFrVbrAwIC7pies7GxwdixY6uPHj3qcunSJWVdXZ0oKyuzdnBwaHjuuef8285RUlJiAwDZ2dl2arW6asaMGZUzZsyovHnzpvXBgwcdLl++rMzLy7M9ePBgp7njCxcuDDx79qyjtbW1fPbZZ3tUquteWTzo0SbYYXr+qhDiRwCPAahtOt3ZH5ax/NUNNH4ExNDNsUREREREFmea6THM1eTDWpYMephkeozwbPld49Ily22BiKitmJgYeHkFo7h4psnZLQAAHx8fxMTE3POcf/vb31BVVQXgMwBvArBCXd0kTJs2Hlev/le3eoQQEVGTXigZ9VtiZ2fX0Nk1KRuTOsrKyhRqtbrDKkSOjo6Gu60RHx+vffPNN/3T0tJck5OTiwoLCxU//fSTavLkyeVeXl53vb8z7u7u9V3tSa/XC2ND9hs3bii3bt3q3dlcFRUVCgDIz8+3SUhICDh27JiLlBIqlcowbNiw2vHjx1fl5eV1WEvy7NmzjuPHj686deqUatGiReoffvjhYk+fqbv6orxVV4yNyOvRmJkxupNxw9HYF+S8lPIOgMsAAoUQjp2MBYBz5twoEREREVF3mWZ6BDhauIm5kXfL7zDDnFpK6LK8FRH1JXt7eyQkHABg23QmA8Av8PHxwb59++45QNHSIwRoTKs73HRshZKSaUhNTTXLvomIiIzs7e0bSktLO0wuuHHjhrKj86bUanV9ZGRkZUZGhqq4uFixa9cuN4PBIOLi4u4rK6K2trbDOrqFhYVKAPDy8qpXqVQNAPD444+XSSkzO/uaN29eOQDExsYGHjt2zCUpKel6fn7+2crKyjNnzpzJXbp0aac9OpYsWVKYnp5+ISwsrPr48ePOn376qdv9PFd3WDToIYR4UgghhRB/6+CaDYAIAHUAcgAcA+AjhBjdZpwrgEgA6VJKY020IwAUAP6lzVgFGjNHbgD4xcyPQ0RERETULaZBj8G2JkEPS2Z6NNe5B9S2LeV6GfQgor5UU1ODPXtUza+nTi3CF198gStXrvSoFFX7HiBbTY4TcOlS93qEEBERddfIkSN1ZWVl1qdOnWqX6ZCenq7q6J625s6dqzUYDGL37t0uqampbiqVyhAbG1t2P/vKy8uzr6ioaPX+v1artcrNzbX38vK64+/vXz927NhapVIpc3JyHAyG9kklycnJvtOnTw/UarVW5eXlVhkZGU5jxoypXrduXaFp6ayLFy/atru5yZIlS4qtrKywadOmq0IIrFq1yr+0tLRX4xKWzvT4LzQ2Fp8vhBjZ5tpKAH4AdkopawB81HR+nRDCCgCEEALAe2js3/GByb3/ACABvCmEMP0YyAoA/z97ZxoeRZW24buzd1a2JKxhFRAYFULAQUVQHEVBCSAIQUz4mBkUcNTByKqjoKLCIC4MjAqIsi9RySACDqOigAFEUAHBBCFAEkIgW4dAQn8/Tle6OulOOkln5b2vq66uOudU1elOp7rqPOd93pbAu2Yt3kgQBEEQBEEQqpnff7c+QFxOPmCtqE7Ro2nTotVQs1X0EHsrQRBqioSEBMLCBpKYqF0L89m37+/ccMMNFbagKpkD5BNAGzNqz9Wrt1awt4IgCIJgn6ioqHSA6dOntygosDpKLVmypNEvv/zi68wxHn300YteXl7mjz/+uPHu3bsD7r///ou+vr6VGs/Oz883xMbGNteXxcbGNs8gS1glAAAgAElEQVTJyXF/8MEHMwB8fX3NgwYNyjhz5ozX3LlzbeytVq5cGfTaa6+1SEtL82zUqNE1d3d3s5ubG+np6R55eXlFUSS//vqr10svvdSirP7ceeedpuHDh6efP3/e85lnnimzfWWoVtHDbDZnA08DQcABg8GwwWAwLDIYDLtRRptJwHOWtp8B64D7gYMGg2Ex8D3wF2Cz2WxepTvuQeANoDvwk8Fg+LfBYNgJzAH2Af+srvcoCIIgCIIgCHoSEhLYts0aTnFi7xZrZXXaW+lEj6C8FNzd1fqZM5BXIuWiIAhC1ZKXl8fgwYO5cGGQrvRTzp8/xuDBg8mr4IUpMjKSUF1km0oZWjR8wM6dbSp8bEEQBEGwx+TJky/07ds3c/v27Q06derUdfTo0WF33313+yeeeKJt3759M505RpMmTQr79u2buXv37sCCggLDmDFjSlhb7dy503fcuHGtFi9e3MjeMYrTsGHDgo8++ii4e/funaOiosK6d+/e+YMPPggNCwvLnzNnzjmt3TvvvJPcunXr/JkzZ7YKDw/v9Mgjj7Tu3bt3xzFjxnQICAgoWLFixUkAf39/86BBgzKSk5O9u3bt2mX06NFh/fv379CtW7duN998c66bmxtff/114AsvvBDqqE8LFiw44+/vX/jRRx+F7Nq1yylBqCJUe04Ps9n8HtAHZUl1OzAOCAbeBHqbzWa9/1cUMBPwBaKBRsALwHA7x30OeAJ1R/Mo0N5yzLvNZvPl4u0FQRAEQRAEoarJy8tj0KChFBa2LSprgvX55UpgYPV1Rid6uKelEBZmrSrhBiMIglDFqNwb6ajHd43lAKSmplY494bRaGTz5s3FhA+rxdW33zajdetuJCQkVOj4giAIglAcd3d3tm7d+tvEiRNTsrOz3Tdt2tQkJSXFa/ny5b899NBDTltUjRo1KgMgNDT06v33359dvP7w4cPGZcuWhWzfvt2ph4iQkJCrW7ZsOebl5XVt06ZNjc+dO+c1atSo8999993Rpk2bFoWiN2vWrGDv3r1HoqOj05KTk703bdrU+PTp094jRoxIT0hI+KVTp05XtLYrVqz4fdy4cWm5ubnucXFxjTMyMjwWLlx4Mi4u7uSECRNScnJy3Pfu3Wsv7zYALVq0KIiNjT1bWFjI448/3tqepZYrMIjrExgMhv09evTosX///pruiiAIOtpM/U/R+sm5D9RgTwRBEITaQl37bVi1ahVRUS9jTS93ku20ZYBla+dzz9F/7txyHbPCn8GBAxAertZvuok/hf7I9u1qc/TotTzwQCGRkZEVtpQRhJqmrl0frnfmzJnDrFl7gHhLyVkgDFCDH7Nnz2bmzJl293Xmb52Xl8fatWuZPHkyOTk5wCFASxn6f4SG/oekpKQ6c827Hr/f1+N7FgRXEh4ezoEDBw6Yzebw0trt379/n4+Pz41du3Y9Ul19E6oeg8EQ3qlTp7yjR4/+UtN9qSg///zzjZcvXz4SHh7es7z7VnukhyAIgiAIgiBcL6iEul10Jb+gz+LxW6ZT0e6uQRfpQUoKAQHWAOtVq/YSFRVF27ZtZfazIAjVgsq9Ea0r+QhN8LDWVxyj0YiXl5dF8ADbhObjKhVNIgiCIAhC7UZED0EQBEEQBEGoItSgnV70+NlG9GjSuXP1dSY4GAwq36D5/Hm+/OIdXWV7QFnKVMZLXxAEwVn69o0EHtSVfFi0FhoaSmRkZKXPkWjj3fcxcNWyfhvQsVi9IAiCIAj1BRE9BEEQBEEQBKGKiIyMxNtb7yjwM/rU5feOHl19nfH0hCZKcjGYzRhzv9dVti9ak9nPgiBUB3FxRsDLsrUXUK4qoaGhbN682SW2U7bRIuexWmkBxHDu3DkReQVBEAShHiKihyAIgiAIgiBUEUajkRYtBhRt+/IT2jDeNS8vjE2a2N+xqtBZXDXluK6ig00zmf0sCEJVYjKZ+Oc/LxRtjx17jdmzZ7Ny5UqSkpKIiIhwyXkiIyOLJTRfqlsfy6JFS8TWTxAEQaiXmM3m/XU5n0dlEdFDEARBEARBEKqIq1fh9Gnfou0XJ91TtO6ms5uqNmxEj2RdRWvAo2irsl76giAIjkhISKBVqwc4eVKLe7vM559Hc++99zJ69GiXJhY3Go1s3rxZJ3x8DqRY1psD94qtnyAIgiDUQ0T0EARBEARBEIQq4rfflPAB0KoVTIl52FrZuLH9naoSnejRKdAHOGPZ8gTCANd56QuCIBQnLy+PwYMHk5ExWFf6CefP/1plwkNERARJSUk88cQTqETpK3S14wCx9RMEQRCE+oaIHoIgCIIgCIJQRfz8s3W9Sxfg3DlrQUhItfdHL3pMGTMGT89TusoOLvXSFwRBKE5cXBypqReAMbrSZUA5hQezGe+CK06f12g00qxZM5vzKQYDymZQbP0EQRAEof4goocgCIIgCIIgVBG/6Fx0u3QBknWWUq1aVXt/9KJHSw8PoqKsvvmjRs11qZe+IAhCcZSwcD+gib5ngB3F6kuhoAA++ogd7z/OkfnDWLlmOnz4IeTklHluq23fUWC3Zd0LiAKgZcuWTr8PQRAEQRBqNyJ6CIIgCIIgCEIVoRc9unbFVvSoiQE2nehBSgp//KM1j8eVK90lwkMQhCpFCQ/RupIVwLVi9Q7Ytw86d4axY+mQkYwbZm77/RBER0OnTnDkSKnntk1qrk9oriyunnvuOUloLgiCIAj1BBE9BEEQBEEQBKGKKGFvVctEj969rZt79lR/dwRBuL64/fZIYJCuZHnRWqn5hM6ehUGDVKKk0urT0x2eW0tqHhISAqwFTJaam4AepKWlSUJzQRAEQagniOghCIIgCIIgCFVAVpaJI0cKi7bbtMmrdaJH167g66s2z5xRiyAIQlWxZo074GnZ+g74FaD0fEJXr8KIEZCaqrYDA5l/exR3j/8Xr/aLtl7EEhNhyBDIz3d4/oiICF577TUgG9igqxkPSEJzQRAEQagviOghCIIgCIIgCC4mISGBdu0GUFDgbilJpnv3tuTpZynXAtHDwwN69rQWTZmynlWrVslMZ0EQXM733ycwY8avupLl+Pn58dJLL5WeT+jZZ+Hbb9W6mxvExfH2baP4rXErlvQeDqtWgcGg6r/9FiZPLrUfyUXi8we60jGAP6CSrcs1UBAEQRDqNiJ6CIIgCIIgCIILycvLY/DgwVy4oBc1jpCamkrByZPWopoQPRo2BE/LLOusLDCZaN36XFH1mjWJREVF0bZtW/G2FwTBZeTl5TFw4PMUFHTTSoC15Obm8u677zre8ZtvYOFC6/Yrr8Bdd9m2eegheOMN6/Z778EPPzg8pDVvyNeAlgckABgNwIYNG+QaKAiCIAh1HBE9BEEQBEEQBMGFxMXFkZqaCugH5vYQAASYzWrTaFQCRHVjMEBRIl+4/PvvfPbZDF0DleQjNTVVvO0FQXAZcXFxZGQ8rCtZA2QBpVhKmc0wQ3d9evBBiI21f4JnnoHBg63bU6c67IttQvPFuprHi9bkGlhzmEwmVq5cyfPPP29TvmzZMubMmSPRiIIgVBm9evXqZDAYwtPT093Lbu08zzzzTHODwRAeHx8fABAfHx9gMBjCx40b18qV56mNDBs2rI3BYAg/duyYV3WfW0QPQRAEQRAEQXAhiYmJlrW7daVfYhPX0bKl1Y6lutFZXH29bh2ZmV/oKnsC6jlPvO0FQXAVP/98FnhEV7LYpt563dSxbZuK9AAVofbmm46vmwYDzJ2r7K+0fXfssNtUS2iuhI8VqKgTgFuAXkXt5BpY/ShryHaMGTOG2bNn29SNGzeOWbNmERUVRXBwMLNnzxbxQxAElzJkyJCMmJiYNB8fn2tVeZ42bdpciYmJSevXr192VZ7nekdED0EQBEEQBEFwIco6pRVwg6XEBOwuKXrUFDrRI/PYMeAsoHnc+wNdi+rtDkQKgiCUk9On+wGWhOP8AHxvU2+1nLJgNsPMmdbt8eOhbdvST9KlC8TEWLdjY+Ga/XGriIgIkpKSGD58ACrqRGOCTbtjx46Vfk7BJZhMJpYtW0a/fiNJTR0KxAP7i7WaiSZK5ebm8vzzz9OmTRuxIRMEwWVMnz79/NKlS0/7+/ubq/I83bp1y1+6dOnpsWPHXqrK81zviOghCIIgCIIgCC4kMjKSwMBIXcku4EqtFD1a+/hY1vbqGvQuWisxECkIglBOcnNN7NjRQVdiG+URGhpKZGSk7U6ffAL79ql1Hx9bAaQ0XnxR2QeCyuuxaZPDpkaj0XLef+lKHwEaFW0tXLhQBtWrEJPJxEsvvURw8O2MG9cIk+k4sAh4AOhRrPVs1G/V/4A/AZCWlkb//v1Zvny5RH0IgiAINojoIQiCIAiCIAguxGg0cttts3Ql/wWgs5+ftahFi+rtlB6d6NG9aVOLxUtJ0cPuQKQgCEI5SEhIoFWr0Zw718BSkg2sKqoPDQ1l8+bNGDWhAlSUh97aaOJEaN7cuRO2aAF/+5t1+803S20eGRlJSMgprFEFRvS5PTIzMyW3RxWRkJBA69ZdeeEFIybTXuAhNHvF0rkT+AL4DxBCbm4uMTExknxeEIRKUzynx1tvvdXYYDCEL1q0qNGKFSsa3HTTTZ19fHx6NGzY8OYRI0a0Lp77Iy8vz/DUU081b9GixR+8vb17tG3btuu8efOaFD9P8Zwe7dq162owGMJ3795tLN52zpw5IQaDIXzatGlNi9eVhcFgCA8PD+/0008/ed97773tAwMDbwkICLhl4MCB7Y4ePVoix4bJZDI899xzTdu1a9fV29u7R0hIyE0jR45sffz48RJtDx8+7D1y5MjW2ntt2rTpTffee2/7rVu3+pfVr4yMDLebbrqps8FgCH/99deDy/u+nEVED0EQBEEQBEFwIWYzHDxofb75619vYOXKlTwzYoS1US2J9PC8cIHNmzfTsOGvugZ97A9ECoIglIO8vDwGDx7MxYuP6ko/BnLw8/Nj2bJlJCUlERERYbvj7t0qSgNUlMdzz5XvxE8+qXKAAHz7LewvbpNkxWg0Eh+/GR8fffTJJMC7aEtye7gWq5XVX0lP3wI8C3jqWnwNTETlmNKzAriq274fOGx5VX+nAQMGkJGRUWV9FwTh+mTp0qXB48aNa9+4ceOCoUOHpgcEBBSuX7++ydixY1vr2w0ZMqTdwoULm7m5uZmHDh16oXnz5ldiY2Nbb9iwoZGjYwMMHTo0A2DDhg0Nitd98sknDQ0GAzExMRW6uKWlpXnecccdnZOTk70GDRqUceONN+Zt3bq14W233XajXszIy8sz9O3bt+Prr7/ewtfX99qwYcMudOvWzbRx48bGPXr06LJ3796ih4ITJ0549unT58b169c3ad++/eVhw4ald+zYMe/LL78MeuCBBzp9/vnnDoWPrKwst3vuueeGw4cP+82ePft0bGzs+Yq8L2fwqKoDC4IgCIIgCML1yA8/5HHunHou8PW9wrx5o/H3N8LHH1sb1RLRg5QUIiIiOH58Nc2aFXD1qgdwI5MmLeKLL77g+PHjREZGivghCEK5iYuLIzXVH9BHjL0LqJwMXl5e9q8t77xjXY+KguByTgJt1gxGjICVK9X222/D8uUOm0dERPD3v2/h5ZeTgZZAUyAKWFrURvIbuYaEhAQGDx5MampvlE1VoK52FzAZOOhg78dQeT2mYY3GCUFFfDwLzCMrK4t27dqxffv2kmKaIAgVx2AIr+kuOI3Z7FjpriAHDx70X7NmzfHhw4dnAaSnp7t36NDhD9u3b2+QlZXlFhgYeG3VqlVB27Zta9CnT5+sL7/88oSPj48Z4L333mv4l7/8pVS/2Ojo6Iz58+c3//zzzxvMnz//nFZ++vRpjx9++MG/R48eOR07drxSkb4nJyd7Dxs27MKGDRtOamUzZsxo+sorr7R4+umnW8bHxycCTJs2rdn+/fv9p06deubVV19N0drGx8cHDBkypOPjjz/e+sCBA0cBli9f3ignJ8d94cKFJ5988skLWtuFCxc2fuqpp9qsXr260cCBA3OK98VkMhnuvffeDgcOHPCfOXNm8syZM9Mq8p6cRSI9BEEQBEEQBMFFJCQk0K/fS0XbJtN/6NDBYrmRnGxtWFtEj7NnAWjc2MiDD1rnQ82adZhZs2YRFRUlliGCIFQIJRQ8hXXY4XPg52L1xUhJgQ0brNsTJ1bs5E8+aV1fvRpSU0tt3qXLDYDeCuvvgKFo69y5c2JxVUkuXLjAPffcQ2rqECAOq+CRB4wD7sCx4KFxGngCuAc4qyt/w7IYxJJMEASXM3DgwAxN8ABo0qRJYURERHZBQYHh1KlTngAffPBBE4AFCxYka4IHwJ///OeLffr0ySp5VCvdunXL79atm+nIkSO++uiLVatWNbx27RojR468UNr+pWEwGJg/f/4Zfdk//vGPlIYNGxbs2LGjQX5+vqGwsJAPP/wwOCwsLP/ll19O0bcdNGhQ9u233575ww8/+J06dcoDICIiwjRt2rQz48aNs4k+6d69ex5Abm5uCb0hPz/fcN9993XYs2dPwLPPPnt29uzZpf8wuwARPQRBEARBEATBBWhWLtnZ+tml/yU1NZXBgwdjri2iR6tW1vWTJ4tWhw7N1zUaWbSm9V8GkARBcBaTyURSUhYQoyudZ9OmXTs7E1/few+uWiyM+vSB7t0r1oFeveDWW9X6lSvw73+X2jwyMpLg4E8BbVyqCzCwqH7RokUiAFcAk8nEypUrmTBhAq1atSIzczwqkb02FJUE9AGWldjX19fXZnvWrFn4+2uOKTuAm4CvdC2mAB8ABlJTU5kyZYr8bgmC4BL+8Ic/lLiYBAYGFgJkZ2e7Afz444/+AQEBhb169SrRtlevXrllnePhhx++ALBu3boii6tPP/20oaenpzk6OvpiRfseFhaW37p1a703IJ6entxyyy25+fn5hhMnTngdOnTI59KlSx4FBQWG8ePHtxo3bpzNkp6e7glw+PBhH4CHHnoo+5VXXknJzs5237RpU+Abb7zR5PHHH28RExPT1lE/Hn300bbffPNNoIeHh/mxxx6rFh9CsbcSBEEQBEEQBBegrFyuoB8ogy8ByE5Ntc4Z9vQsv12LK2nZEry9IT8f0tMhMxOCgsjP/wTljR4AdAZuBn4ErJ72o0ePrrl+C4JQJ7BaGP0f4GcpPQj8t6hNaGgokZGRtjtevQqLdbk1Jk2qXEeefBL27FHr//oXTJsGHvaHQIxGI//5zyr69VuFyTTBUjoT2FLURhOAk5KSxPLPCazfA20y7wxgjq7FXuABoOQE5pCQEOLj43l4o9X55KWXXmLatGmsXbuWyZMnk5NzAbgPWIXVQi0GuAw8waJFi9i4cSObN28WqytBqCxVYBlVl/Dx8bnmqM5sVkEdly5dcg8LC8u318bPz6+wrHNER0dnvPjii63i4+MbzJgxIy0lJcX9+++/9+/fv39mcHBwmfs7olGjRgWl9Sk/P9+gJWQ/e/as17Jly0IcHSsrK8sd4OTJk54xMTGtv/rqqyCz2Yy/v39h+/btL/fs2TMnMTHRx96+hw4d8uvZs2fOvn37/CdMmBD2zTffHK/oe3IWifQQBEEQBEEQBBegrFqiAW0w7ABwBIAW+oYtWoBbDd6Gu7lBW91ErN9+A+DMmePAp7qGj9jsJp72giCUhRbxlpqaicrPoGGN8ggNDWXz5s0lhYPPPiuy3CM0FIYNq1xnhg1TxwE4dw6++KLU5hERERw8GI2bmzYh9o+oQXkrktTcOazfA03wmIyt4PE/YADFBQ8/Pz9eeuklTp48aVeoMBqNREdH89///pfAwECUwPEw+vwrKt/HG4BEKgqCUH0YjcZrFy9etKusnz171steuZ6wsLCCXr16ZSckJPifP3/effXq1Q0LCwsNo0ePrlRUxOXLlw32ylNSUrwAgoODC/z9/a8BDBgw4JLZbN7vaBk1alQmwMiRI9t+9dVXQbGxsWdOnjx5KDs7++DBgwePPvnkkw5zdEyaNCll7969x2666abcXbt2Bb7//vsNK/O+nEFED0EQBEEQBEFwAW3atAMm6EoWFa3ZmFnVpLWVRocO1nWL6KGsZtbqGo202cWuFY0gCIIOFfGWisq7oOUPSgbWAfDEE0+QlJRkf+b9Mp3F0fjx4FXmGFHpeHnBo49at0tJZq5xww0+9Or1g67kZfS5PUAEYGdYs2aNTvAYA7ylq92Giiq05rj18/Nj2bJlnD9/nlmzZpUZSRMREUFSUhJBQUFAIfBnYKWuxRRUwnPE6koQhGqhc+fOeZcuXfLYt29fiUiHvXv3+tvbpzgjRozIKCwsNKxfvz4oLi6uob+/f+HIkSMvVaZfiYmJxqysLJvx/4yMDLejR48ag4ODr7Zq1arglltuuezl5WU+cuSIb2FhyaCSGTNmNB08eHDbjIwMt8zMTLeEhISAm2++OXfu3Lkpeuus48ePezvqx6RJk867ubnx1ltvnTIYDEyfPr3VxYsXq1SXENFDEARBEARBECqJyWTi4MHGQEdLySVgdVF918BAa+PaIHq0b29dP3ECUJ72ISE/ApptcFtAeeIHBgZy3333VWsXBUGoeyhBwB+Yqit9GVBjIs2aNbM/oH3uHGzdat2OiSnZpiLoj/PZZ3Ch7FywY8cmA5r9+s2oSAIrLWvDNbwWk5CQwOTJWpTPYGzzdXyLsqKyChBBQUHs3LmT6OjoctmGNWrUiO3btxMaGgpcAx4DNulavAKMBSQniyAIVU9UVFQ6wPTp01sUFFgdpZYsWdLol19+8XW4o45HH330opeXl/njjz9uvHv37oD777//oq+vr7nsPR2Tn59viI2Nba4vi42NbZ6Tk+P+4IMPZgD4+vqaBw0alHHmzBmvuXPn2thbrVy5Mui1115rkZaW5tmoUaNr7u7uZjc3N9LT0z3y8vKKZgX8+uuvXi+99JJNcLs97rzzTtPw4cPTz58/7/nMM8+U2b4yiOghCIIgCIIgCJUgISGBdu3aMX++SVe6HFDboaGhPBcVZa2qDQNmdiI9jEYj8fEb8fH5XNdQzZTNysqiS5cuMmAkCEKptGjRAvgboOUtSkIll1Y4jBj7+GPQZpf27WsrzFaGLl1UUnNQCc1Xry69PRAdPRBf3/d1JbPRp0N97rnn5FroAM3WKjc3F+iHivDRPrsfgUFov42gBPXExMQK59zQIj6eeOIJVMTHKLRcWor3gT8BKuJjwIABZGRUS/5cQRCuMyZPnnyhb9++mdu3b2/QqVOnrqNHjw67++672z/xxBNt+/btm+nMMZo0aVLYt2/fzN27dwcWFBQYxowZU+KCtXPnTt9x48a1Wrx4cSNnjtmwYcOCjz76KLh79+6do6Kiwrp37975gw8+CA0LC8ufM2fOOa3dO++8k9y6dev8mTNntgoPD+/0yCOPtO7du3fHMWPGdAgICChYsWLFSQB/f3/zoEGDMpKTk727du3aZfTo0WH9+/fv0K1bt24333xzrpubG19//XXgCy+8EOqoTwsWLDjj7+9f+NFHH4Xs2rXLKUGoIojoIQiCIAiCIAgVxOpb7gU8qKv5V5FdR1JSUu2zt7IT6QFqAGnbtgdQs2ZBvafbAPFGFwShdBISEoiNfRVlLaTxIlqUh93k5QBms631VHS0azumP57eQssBRqORzz67A4NBG6PqiBJyFGlpadV+LTSZTDbbtfU6bLU3Cwc+AzSXlxPAvagoSEVoaCg7duygUSOnxu0cYjQamTdvniXi4wowFCWwAHgCG4EegBLw27VrJ6KVIAgux93dna1bt/42ceLElOzsbPdNmzY1SUlJ8Vq+fPlvDz30kNMWVaNGjcoACA0NvXr//fdnF68/fPiwcdmyZSHbt28PLLl3SUJCQq5u2bLlmJeX17VNmzY1PnfunNeoUaPOf/fdd0ebNm1a5GXVrFmzgr179x6Jjo5OS05O9t60aVPj06dPe48YMSI9ISHhl06dOl3R2q5YseL3cePGpeXm5rrHxcU1zsjI8Fi4cOHJuLi4kxMmTEjJyclx37t3r5+jPrVo0aIgNjb2bGFhIY8//nhre5ZarsCgZZm/njEYDPt79OjRY//+/TXdFUEQdLSZ+p+i9ZNzHyilpSAIgnC9UNt+G1atWkVUVBQqF8YIS+kO4B4AVq5cyejRo+HBB2HzZlW9YUOlEvS65DM4fhw6Wqy4WraE06eLqtR7KgQ0L/xvgduL6ovekyDUMmrb9eF6Ii8vj7Zt25KaOgWr6HEU6AYUEhISQnx8vP0Z/QkJ1mgMPz9ISQH/0u3Py/W3vngRmjWD/Hy1/eOPcNNNZb6nkSMTWLdO628u0AU4VVRfHddCk8nEvHnzeOONN2g8cU1R+cV/jWbUqFH07duXyMjIctlCVRUmk4nHHnuMDRt+Ab4CmlhqzqDE89/x9vYmOjra6X6X5++ckJCgS57eDNgNtLbUpqIS0ycBSnBJSkqqFZ+bIFQl4eHhHDhw4IDZbA4vrd3+/fv3+fj43Ni1a9cj1dU3oeoxGAzhnTp1yjt69OgvNd2XivLzzz/fePny5SPh4eE9y7uvRHoIgiAIgiAIQgVR/vUPYhU8QPmI6+uBpCRrdatW1dG10mndGtwsjwLJyaCbNaz6/DxqxiyowSprFEtcXFytnWUsCELNoGb4BwNP6UpfQFkOwWuvvebYwkgffTF8eJmCR7lp2BCGDLFuO5HQHKBLl+3AIcuWH/COTX1VXQtNJhMrV65kwoQJNG3akhde2E9OzrM2bbKysliyZAlRUVG1IleFZvO4YcMBYDtWweMCahLA7wAsXryYxYsXM3r0aJcLDrZWV+eA+wDNGSYU2Ao0BiS5uSAIwvWAiB6CIAiCIAiCUEEaNmwDLNKVLAV2Fm21a9cOCgrg2DFrk86dq6l3peDlpYQPDZ0oozz3T2L7vuYBKop+w4YNtRmgd7UAACAASURBVGKQTRCE2oHJZGLTpk+AxVjzN/wPlc9BkZycbH/ny5dt82y4KoF5cfTH/fhjuHq1zF1uuKENMEFXMhhlnaSoimuhJh6MGTOGJUs+Izt7M/ApSojWsx24EajZXBUmk4lly5Zx1113kZrqgYp01PLlZqOEBzVxPDQ0lJEjR1Zpf2ytro6iBPvLltqOQDygxBZJbi4IglC/EdFDEARBEARBECrA998nMGWKG9DCUpKK3su+yL/+xAnrAFvLlhDolAVv1aPP62FJZg4QGRlpGTB6GciylN4AfAwYAMnvIQiCQhuk37gxAC3/j4oSe9ymncME5p9+CpcsVudt28Idd1RNRwcMgBaWa/X587BlS5m7qGthIkrM0fg3Vssk114LrTmiUoG+wAGsn2lxBljq7wNqJleF9rcfN24cOTk+KCGmraU2D5W0fB+gfg83b95cLXZSRqORzZs3ExgYiLJnHI01T9WtwBrAHZDk5oIgCPUZET0EQRAEQRAEoZzk5eVx111fcfmy3s99MnARgJCQEOsAzy86G92uXau1n6XSoYN1XZfMXBswCg11B/6q22EwKimxQuxBBOH6xjpI7wG8rquZh5plr3CYwBxKJjB3q6IhCnd3GDvWuu1kQvPNmzcTHLwA0CJVGgPrAa+idqmpqaxdu7bSXVyzZo1F8BiCiphoaqkpBN61s4cPEAf8CYDMzMwqFaM12605c+awZMkSBgwYYOlvEPAFWuSJNZn41wAMHz6cpKQkx/ZmVYBmdRUUFIT6jJ7U1T6IPpJRkpsLglBfMZvN++tyPo/KIqKHIAiCIAiCIJQDk8nEPffEk5s7RVe6CjUQprDxr9eLHl26VEsfncJBpAdYB4yGDy/AdjBzFvoZ3GIPIgjXL2qQPh1YjZYrQVnjzSlqU+oM/zNnYNs267ZelKgKoqOt6//5D6SllblLREQEv/9+kP79/wVollgRwEKbdpMnT67UdTAhIYHJkyejBI91gKelJg2VE2NSsT00S0If4BPgbqDqxGi97dasWbOYMGECWVlZKMHjc6CHpWUhEIXKn6GoqUTrjRo1Yvv27ZbIxXeBV3W1fwFmFm1VtWAkCIIgVD8iegiCUCdYtWqV3IQKgiAINc6ePQmEhPyLb799WFe6FYi2aWfjX//zz9b12iR6OIj00DAajZbZ2dNQs3g1FqFP1i5WV4Jw/WEdpH8R0CypCoHHUNZGTszw/+gjuGaxHbrrLmjTpkr7TMeO0KePWi8ogJUrndrNaDQyfnxX4O+60gnoB81zcnLo378/y5cvL9e1UJ8TIzf3PmwFj1+BcPR5oqz0R0sOrnJUfAb0A1wvRtvabukJQeVu+aOu7M/AhqKtUqN8qgHb5ObTgRW62tmANddLamoqcXFx1dxDQRAEoaoQ0UMQhFqFFjY9YcIEm/KoqCiZSSoIgiDUKGfO5HHnndnk5uoHvnYBw7DOAFbY+NfXwUgPDeVpHww8AuzV1UwD1gKNANfZuwiCULuxHaS/E5ihq30ezdIIypjhbzbbWkzpozCqEn1C82XLVD+cIDIykpCQdah8EBqz0Qsfubm5xMTEOP3MYpsTI4qSgkd/rLZaxfndUn/Ksu2LStLdF3Btrgqr7ZaeNqi/9S26somA9W9anXk8SsM2ufl4QBddxL9RdleKuLg4EfAFQRDqCSJ6CIJQ4+iFjubNmzNmzBiWLFlSop0kmhMEQRBqArMZPvggnxtuuMqVK3fpanagErWabNrbzGwtKIBjx6yVtUn00AszJ0+qvhbDmt/DG7gL2KyrHQH8hMr1ARMmTGDChAkSnSkI9RTbQfqb0Fv6qYFkq31QmTP89+yBX39V6wEBMHRoVXS5JCNGgDYIf/gw/PCDU7sZjUbi4zfj6zsJ20Hz2cAbgEdRiTPPLBcuXOCee+4hNTUNeAGVLF0bnjmGito4C4C3tzd//etfbfZXuSqSUNdlTRjxA/6DlvzcFbkqrBE9eu4EEoBOlm0twkflyfDz82PZsmXVnsejNKzJzY2oiQoHLDUeqMgU9f3bsGGDTLQTBEGoJ4joIQhCjaL3h12yZAmZme2Bbyg+gKTNIpJEc4IgCEJ1sn37Zdq2/Z3x473JywvU1bwC3Atk2rQvMbM1MRHy89V68+bQoEF1dNs5/PygWTO1XlAAp07ZbWa1B4kGIrFNqNsMZavyOfn5N7JkyRKioqIIDg5m9uzZIn4IQj3BOkifCtyMGlz3tdT+DjwKqKgJf3//smf46xOYjxihrkfVQWAgDBtm3XYioblGREQE7747D3gIW+FjCur5pU1RSVZWFi1btmTChAksW7aMZcuW8fzzzzNx4kTGjx9Pq1atyMwMQonn/9Ad63vgduBcUcnixYtZvHixTV+suSp+Q0V8nLXU+KNybNwKVC5XhWZrlZubqyudCGwHmli284GH0WyjgoKC2LlzJ9HR0TUe4VEca3Jzd+B+QLN19ERFLo4ExLJREAShvuBRdhNBEISqQXt4yszMBAzAM6hBJC87rROAfwLPk5mZSf/+/XnnnXcYOXJkrbuhFgRBEMqPyWQiLi6OY8eOceHCBZo0aUIbi797UlJSURn0KtpnmWWw6syZM7Rr185lyVILCmDLFnjhhWwOHgwAWutqz6ASeW8usd8TTzzBvHnzbPtQW62tNNq3h3OWwbUTJ2yjP3Ro9iAbN24kNXUSKo/Jv1GiB8B9lmUDsIDc3O94/vnnmTdvHsOHD8fHx8fh37RTp041luhWqLto14ykpCRatGhhKQ0pqq+q68P1SEJCAgMGDLAkru6DSpytCbgpwABUwm3F22+/XfoMf5MJ1uhsovSWU9VBTAx8/LFaX7UK5s0Db2+ndh05ciRTp04lNfUhVKTLIEvNrcBh4F/AfCCVvLw8lixZYieCvSHwJMomMEhX/gUqCsEqMoSGhjJy5MgS/dAG8KdMmcKiRYtQwsdXQFMgwHKs+4DdRcnNS/w+lYLJZOLZZ5/V2Vo1B94HBupapaAiJHYDEBgYSGJiIo0aNXLqHDWBltxc5Si5E/gvKmLFA1iF+vwWFlk2RleX7ZogCILgckT0EAShRrB9ePIHVmN9aLCHBxCLSpQ3hNzcDGJiYpg6dSqbN2+uNaHTgiAIgvNog5bffPMNa9assYjgpdP6ufii9XHjxtnU+fn58dxzzzFlypRyD25euwYHDsDGjbB8+TVSUtxQA0caBcCbqKS9OSX2Dw0NtT+gVNtFj06dYNcutX7oEPzpTw6bavYg/fv3Jzc3HugKvI5KBOtuaTXcsiQAH5CVtY6lS5eW2Y3AwEBGjRpF3759ZXBaKEFxgSMpKYkFCxaQk2P7v1jW9eHpp5+mXbt2IoQ4iclkYu3atTz55JOWz3osSuzUBIKLqIi3E0X7OBqkt+GTTyArS63fcIM1uXh10a8ftG4Nv/8OGRmweTMMH+7Urtp1UA2aP4iK8ngZFS3gDzwLTEJFcPwP+BGV2N0duAnojRI2fHVHLQReQ0V8WPNDlZUTw1aM/hVldbUTCAUCLed/AXidRYsWsXHjRqeemxISEnSJy72Av6J++xrqWu0HhqBZa2l9rc2Ch4YmGI0dO5YNG+4EvkT9nrmhfuc7AE8xefJkunbtKs+ZgiAIdRQRPQRBqHa0UGkleLRAJd3TJ8H7HhgDLLCz9x3Ad6hZRklFnrlJSUl14iZbEARBUANp8+bN44033igxaFkSA9AFNbv4lmJ1+1DWGqnAWXJzz/D8878xd+4o7r33DzRqlEfz5n507lwyksBkguPH4Ztv8lm3LpmDB4PJztbsq/QOsFdRth1z0Q/s6Sl1YOrnn63rXbuW8V5rgIgI+OADtb53b+ltUYNF77zzDjExMagBzz+jfq9fRg2AFbW0LAtRVihbUJYrJ+0eNysrq2hGtAxOCxqlXyuMqNwFXYBWQMti9XNRA7K/AvvIzc1gzpw5Ni0qI5TWZ0p+7kHAEuAvulZpqHw+h4pKnE5cXTyBucHgqq47h5sbPPYYvPSStT9Oih5gHTRfu3YtkydPJifnK+A9lKgB6rs5GC3fUekcR4lJe4pK/Pz8nI5o10QYNZnsCHA3SvgIRgkWr1r6MZ3U1K/KjJa3RuJfRQnaMwF9BOA11DV/Jn/5y1hatWpVJ6/RRqORyMhINmzYgMpR8ilaLhQlWnUlJyeKwYMHk5SUVKfemyAIgqAQ0UMQhGrFNlT6j8A6bB9S3wCmo2bU6nnWUgcqBDkB5R38eVGej+3bt8tMHEEQhFpGcduq/Px81q9fbxG+HeGOSuI6EpVDoomu7j+69XAH54S4uKIt4Azu7gdo3DiEwkIjV64E6gQOb6C9naOkAB+iErPaz3UBDiyt9NT2SI/eva3rTogeoLd30WxPfkH9nboBf0NNXPCx1HmjIjm1aM6jKAHkv8BeIL3E8XNzc0sMTgcGBtrYZIklVv1FHwG2evVq3bXCAyV+DgT+hBpgLv44q78+PFes7gQqD8Nm1KBwPrm5uUU2bKNGjaK35f/hehTb7H/uBlS+hjdR9kYah1ED6b8D5Ruk59Qp+PJLtW4wwKOPuvqtOEd0tFX02LpV2fxpOY6cwGg0Eh0dTdeuXS2Cwy2oz2QmSvAtix9Qn+sa4EpRaVBQULmfaTQRpl27dmRm/oyy2voY9awF6v/mf8BecnOXERPzChMnTmLqVFvBb9u2HxgyZD55ea8Dj6CiRfT8hhJCviE0NJQ333yzTv9/REZGEhoaavktuxv1m69FKfUHDpKa+li5rcEEQRCE2kG9Ej0MBoMvyhhzFGr6+GlgJfCK2Wy+Wtq+giBULbYzxvJQ4dszsdphXEWFTjtKJjgPNTv0I9RASmPUoMlcJM+HIAhC7aIitlUquuJOYATK+iPYRb3xBW6gsPAG0tLKansBFX24CfUbU1yAt8WhpZVGYSEcPWrdro2iR7du4OurlKLTp+HsWZVwvRRs7V1SdTU/oSI/pqIGzB5FWbno6WxZnrFsJ6HEj++BA8AR9LkBNLKyskrYZBUXQuzlC3FF2ZkzZ4pyRjiqv94GyF1F2bZVniiR42FUJFFDh8cqmw6W5QmURd12lACymaysdLu5F66HSBD70TQeqEfqacAfiu2xATXwrdqWe5B+xQowq4Tn3HMPtGpV2bdQMdq2VTZX//uf8jdcsQKeKy6UlY2t4PAZ8Bnqe9Yf9ZvWDPXs4oGKOtqPilr/vsSxKpMTwzZXRSIqOn4qyt7K09KqN9o12WRK5/nnU3nxxYMEBrbk8uVA8vK6o8SS4lwA5qDyleQ7H9FTy7G1bMxFfed/QX1mbqgcQZ+zaNFK1q3rxZYtS2WCnSDUc3r16tUpISHB//z58webNGlS6KrjPvPMM80XLFjQbPPmzb8OGjQoOz4+PmDw4MEdY2Ji0pYuXXraVeepjQwbNqzNpk2bGh89evRwp06drpS9h+uoN6KHwWDwQD2h3ou6k/gS5YHwD6C3wWB4wGzW7q6ub/QPF/KA5hzOJletqYftyh67vN8De4kjSzufdVZvNvAQyhP2Jt0RL6IeZtWsL6PRyNixY9la4swbUDYF67FGh0xFeYfPIDd3HTExMUyaNElsMeox5f3+VXZGcEXOJ4l6hfqOvf8L7bfKkde+fbxQAzNDUUJHqIN2acC3qGSpd+rKw1GiRlPUfJfmxV5bAH4OjlmAEtMPW46tDUI593wTEhJS9qDPyZNw+bJab9oUaqMNo4cHhIfDN9+o7b17ITKyzN20gb64uDi+/vrrYjPyLwDvWpa2wP2ogeu7ULYvetpalkd0ZRmogacjqEHCU5bld1QEjrqltyeE1CR6Wy65/pfEXtTXhg0b7IiiPsADqPu7hyhd6PgF9eh3EjXf7SFd3QygNeqR8GaseShA5V6ItCyFwNfARiAOOFvUqngkSF3OOWPvur13717d/64HcDtqpvtISgrP51C2P5uKSso9SH/tGixfbt2u6STRMTFK9AB4/3149lllfVVObAWHVFRU0QmU5ZVzuCInRsnk5i+jIkmmANFYI/BARVA2obAQLl50dMRjwAcoazN1fS8zurGOYWvZaAZeQl0PVmKNbooiPf0Bbr99Aa+/fpjs7LN2ny9lnEUQ6j5DhgzJ6Natm8nHx+daVZ6nTZs2V2JiYtL69euXXZXnud6pN6IHKo7+XtQ08Mc0gcNgMCwHHkNNNVtRY72rJdgmJVM4miVX1waLq0qY2Lt3bzlmqdZdivtnOxrcLd9glkZ7VBTHGGzFDlCh1mNRD6rq+6jl52gz1WpRsGzZMotn7h6gO+pf/T5LbQdgLfA88BG5uavtejbbG4iwJyw5+913NOhX2r6lfU+rUtyqbjGtqvpQse+fQkuSq1lXVPX5XNWHypa56u9c134TagOu/l2qqYFTZxMIO0cT1ABkL5TdRj8cixJnUCL3OpTXuTZ3RS96HHDinIGogYumKKEjB7iEEtFLj+SwR7lmfh88aF2/8cZyn6vauPXWcoseoCYpjB49mtGjR7NgwQLmzZvH66+/Xuy7kYRVAPFB/f3uRc027oHtIJxGI9Tg6+126q6g/naaEJKCEsXO23m97NT7cBX2bLk06sv9trM4L3BoNEMJHYOBAdgmedZzCmVh9TlqYLL48fSixyu6dS+U1Y+WZ6Gjrs4dNSu/P/AOSlyNB75AXWPMdS7njHPX7Wao+/JJKDukfkCAnaNlo2b4v4q6dioqNEj/3//Cb7+p9aAgGDKk9PZVzfDh8OSTkJkJJ07Azp1w990VOlRxIdiZ50ftvtCVYpptcvNUlCXV46i5oCNRNk79KGldBer6moD639oC7LKpLTO6sY5S0rLxfyihdCEw2lLWgCtXXuSpp9It5X/Hz+8vRdcCe2MGZT1/1oZ7PEEQbJk+ffr56jhPt27d8ut7hEdtoD6JHhNR03SeKxbR8SpK9BjPdS56aMmjbW0Iyp4l5+xgeHWV2etD2Q9SQlmU9qDuHIGoQYqmQBtUwrtbgJ6oGZwlzgjMRuXpUCJ6aQ9Ptp656ahZo5NR4cda+64ou6u5QCLqofUgcJzc3ETmzHkPNfvUuUGu0m5Uyxr0s7evfE9rFv2AxfXch8pSnge461nQqyrBvLSBU3vvubwP0WUPlBlQM/WNqNnXvrrFaHn1R4kbIbqlGUqgLmtw7BxWoeM7rEJHZciyLEfLalgq5fKs19i507req1elzl+lVCCvR3GMRiOzZs1iypQppQz6XUYNJH9h2fZEWef0sixdgRuxP/Cq4YW6x2hXShuNXNQgbabuNdPBdi4q/4u2FN++TGW+j7Xlfru6InxLv98xoO4Ne6ISB9+BmtDiiJOoaN91qAHZinAF+MqyTEGJHoNRlll9UFY2Gn+0LC+j7ht3o65HB4DD5OaerRUJ0e0J62FhbTl27Azvvrsak8kXFa3RxPL6Mtb/nbaUjLoqTjLwPvAWKipbUaFrocbixdb1xx6Dmh7g9fWFsWPh7bfV9pIlFRY9oKQQHBcXR2JiIi1bqgj1pKQk0tPTq3yQ274FYSrqb/kWVuumJqjf5WxL/XmU5XBJgoKC6oWllT3sf17pQBSwFJXbSxNKm6CeYV8gNzeeOXPWAm9TUoAt//N1ZS0bK/LbURuE27J+Y0QQEgShohjqg+OTwWAIQN2J/WA2m0uYLBoMhhTUr3mA2WzOt1O/v0ePHj32799f9Z2tQVatWkVUVBTqBmdwOfZ09jtSnu9SfTtmTZ/fgJql5mZnqUi5J8oCwKeMV3/Uv1ZDnNdQc1Gz6OahT15qL1RaH+lxcu4DAGRkZFg8c7UbywaoRJWTcTxbuDiZlnNfsPQnDzWgoX/NQw1wFKBu/gt0S2nb1yyLuZTX0uoqsq+GuYzXqqirymO78rzVhaGenacmzlUfF+3a6u6idWfbegBeeHr60abNDRgMXnh6GvH2DqSw0EBOTj6XL1/D3d0bDw9fTKYC0tIyuHbNHTWw7Fls0a7/ruZXYCuwkYCAQ4wYMQxvb2+aNGlC27ZKNNcPFH2YbxUP/tH5PImJiS6NyLJHSEgI8fHx5ffy7tIFjhxR69u2Kf96F2Dv97FSJCdbffX9/eHSJXB3L30fJ8jLyysalNX+fsX/pvYT27dEiR9dUIOzYbrFVbleKoJeDLkM5KMG04u/OluWj+39RAFqDpej7fLWObonuYavry9/+9tk2rZtw++/J5GRcYEmTRrTtm0boLx2ddo1Qrtu+KJyrzVGDRA2Rk2KaYeK/u2CuocsjSOofBsbKEvo8PPz45lnnqFdu3b846j1++H89aEpSvwYior2KOueNhMlCJxFRaSdQQ0Y52A0wm233YLRCI0a+dHMkhj77NlzZGZmERQURNOmzTCb4fz5DIKCQigocOfs2XQyMy9jNDagQYMQrl514/z5TLKzr+DtHYifX0MKCty5cCGP7GwD+fmepKRkU1ioCc3+KLHQUYSMs/yOEiVXowQi2/uoCl8L1YcAYWEq1xHAzz9XKs+Ry66DP/0Ef7DkLfHwUNfDUEdWizVLed9zXl4ea9eutUTLV/w3Uh+JX924/PeuFPLy8nTWYHo8Uc4EM7A/me8qShzdhRJID6KuC3WHmprU5Gz0cHkn/dR2oac6CQ8P58CBAwfMZnN4ae3279+/z8fH58auXbseqa6+1UaK5/R46623Gv/tb39r8+677yb5+/tfmzdvXtNff/3V12g0Ft5zzz2XFi1alKzP/ZGXl2eYNm1as/Xr1zdOT0/3bN68ef7EiRNTz54961VaTo927dp1TUpK8vnuu+9++eMf/5in79OcOXNCZs2a1Wrq1KlnXn311ZTyvB+DwRDeo0ePnA8//PDk3//+95a7d+8OMJvN3H777VkLFixI7ty5s02ODZPJZHjxxRdD169f3/jMmTPeQUFBBf3798+cM2fOuRtuuMGm7eHDh73nzJnTdNeuXYHp6emeDRs2LLj55ptzn3766dT77ruv6J/aXk6PjIwMt379+nU8fPiw32uvvXYqNjbWYYTNzz//fOPly5ePhIeH9yzPe4f6E+lxE+oJ/2cH9UdQMZytUU/W1yWJiYmWtfaoWTuCUF1cBrahvJI/Qx8aD+ULlS7pmXsJlWRxDuqBNQr1wFrawFyQZWlf/rciCIJQx7h6FY4fd7Z16QmsK08OKuIiAZW8+hsgUTdLemuZvwUf6gZAoi1+8NOmTSuXpYizVGr29tmzVsHDywtuu80lfaoSWrZUycvPnoWcHPjlF+sgYCXQZj2Xxdtvv13MGivZsmy3d1SsAkgrbCOKgoute9rZvzJoUU11H5MJXn3VUW0htkLJNPSCiVpXoqrrPuOrqOvBZsvym91WeoEjOTm5xMDVP0q5Pmgz7ksKISnAYsvSCJV/5k+WpamdXmj3kV1L1OTlwY4d5XzrNcYF4DgqJ8p+1Od/wm5Ll0SyLF1qFTz69q2U4OFSunWDPn3gu++goEDlHKlAQvPaiNFoLIqWHzRoEGlpaeU+hityjZQLs1lZQ37yCZw6xdKvf8K78ArHG4dBpzSVfL6tPeGh8pS0BtO4ispt8iHKIuzP2FptegJ9LYtGJmro6QxWgfQsSiDNRkWgZluWXKyT6GqGyrs+VC1VkcNL+25LcnrBGZYuXRp88OBB/zvuuCNz6NCh6bt27Qpcv359k5ycHPctW7Zog60MGTKk3bZt2xq0bNkyf+jQoRdOnTrlFRsb27ply5YlJuDrGTp0aMb8+fObb9iwoUFx0eOTTz5paDAYiImJyahI39PS0jzvuOOOzs2bN78yaNCgjBMnThi3bt3a8Pvvvw/Ys2fPEU3MyMvLM/Tt27fj/v37/bt27WoaNmzYhZSUFM+NGzc23rJlS8MdO3Yc6927dx7AiRMnPPv06XNjbm6u++2335515513ZiYnJ3t/+eWXQTt27GgQHx9/bODAgXbVzKysLLd77rnnhsOHD/vNnj37dGmCR2WpL6JHY8trqoN6LR7X4S/1kSNHCA+3L3zWlwiQdu2csQEQhIqSjUo8mo6aJXYSpTfuB37CUai0U4lgi6F55trOXMpFJZxbibrxvAXlF94JJW60xjrbsPKzVwVBEK5f9JY/eQ7W01F5FfRLEvoEwa70MrdnKaJFFzhrLVjWYGq5+e9/ret9+igbldpM794QF6fW9+xxiejhLMWtsfR2MHv27CkmZOWhkusec+LIgVgHqLWlgZ2yIGyt2rTFD1v7tuuF6rhPSgMOofL17ELNks6y27Ky1wp74ptjoTQD6/0kwA0o+6tbUVZs3VDfl9pMDtZ78vO65RxKTEpEXY+rMd9EYSH8+9/W7QkTKn6squCvf1WiB6h+VjCheW0lIiKCkydPOsi7ZJ9K2ZhVhKtXlb3Y4sUqCsjCXZbX234/BOPiwWBQeadiY22tGV2EZnWlLJWLX5MKsF4fOgIjUA4a9uwrg4AIy1IeNPHjqp1FcxUoywWgvE4D5XEXMDtYKlpXVcctq+49UlNPM3jwYJKSkupFxIej8cwjR1wUuGEwlBopUqswm10+iHvw4EH/NWvWHB8+fHgWQHp6unuHDh3+sH379gZZWVlugYGB11atWhW0bdu2Bn369Mn68ssvT/j4+JgB3nvvvYZ/+ctfSh2QjY6Ozpg/f37zzz//vMH8+fPPaeWnT5/2+OGHH/x79OiR07FjxyulHcMRycnJ3sOGDbuwYcOGk1rZjBkzmr7yyistnn766Zbx8fGJANOmTWu2f/9+/+IRJfHx8QFDhgzp+Pjjj7c+cODAUYDly5c3ysnJcV+4cOHJJ5988oLWduHChY2feuqpNqtXr25kT/QwmUyGe++9t8OBAwf8Z86cmTxz5szyq/HloL6IHloWLkfKWa7ltb683woRGRlJaGgoqalpOB/p4aytSXnsT+rbMWv6/AasM+/0VgbXKlFegBpUyMdq32Dv1YR6qLqII1HDEZWdMVb6zKWrqFnE9uwQoGEOQAAAIABJREFUDKgBD83DVu9DX/zVG3XZ0BZPJ7bdsNrZOPNanrb2XvXvq7TXqqirymO78rxuaHljqofqstSqTuuu6j5XfVu0a22hk+vlaVvaeiHKQkf/wFyZ7StUNDF0YGAgDz/8cJFtVVV7mRcf4Hz77bcd2iy5ROCwh170qIRHfLVx661W0WPvXvjzn6u9C/b+dtHR0RUWsqz5XFyRJ9IN6/2Bdq/gZVm8i706W6a/z3DH9p7C3QV19u4bHN1TVEbo0F8rtOvEBd2SblmSUAPuv+J4rpqVqsyTUVruBdtIkOOW5UPd3k2AFqjIuBaWJZiSOY6M2B+A09YLUffU9mzPHJXlokSNHNSEo+LrJt05KkaVfO5btsBpy/9hcDAMHeqa47qKhx+Gv/1NWfslJsLnn8MDVWulVN04l3dJUe0z4L/9Fh5/HA4fLrut2QybNqll2DAlkjRp4tLuaBPsbC2Vi/MrymlgDhAK3I4SSHujosAaVPDsml1g3R+Er918DpwmNTWVuLg4p6JSheubgQMHZmiCB0CTJk0KIyIisnfs2NHg1KlTnt26dcv/4IMPmgAsWLAgWRM8AP785z9fXL58edZ3330XaO/YoBKbd+vWzfTTTz/5Hj9+3EuLvli1alXDa9euMXLkyAuO9i0Lg8HA/PnzbTz3/vGPf6T861//Ct2xY0eD/Px8g4eHh/nDDz8MDgsLy3/55ZdtLLQGDRqUffvtt2d+9dVXQadOnfIICwsriIiIME2bNu3MuHHjbKJPunfvngeQm5tbYuZAfn6+4b777uuwZ8+egGefffbs7Nmzy74ZrCT1RQTQRlsd/TJ4WV5Njg5w44031puIDkfYJuiq/gdZQXDpjDEL5Z+5ZEaJNBfLaCcIgiBUlppI7msPZ22WXIbZDF9+ad2+6y7HbWsL+hmz2oznWkJ5hSx9DhhXlCUnJ9tNRNy2bdtqySlTvTg7IUM/E7lyaPeHt956K1CFQqQDyooEWb16dbEZ35qI82OV9626qIp7dBvefNO6HhMD3t6uPX5lMRrh//4P5s9X2//8Z70TPTRKi4ys9qTRhYUwbRq88YZtua+viua4807Gbz2N2QA3piUxxScVtutsDzduVILJ0qUwcKBLu1bSUrk0UlE2zht1Zc2BNpZXbWmBEk0Dii1+WCfQCdWDVRy22sDXbRyNZ1pyelRzb+off/jDH/KKlwUGBhYCZGdnuwH8+OOP/gEBAYW9evUq0bZXr165pYkeAA8//PCFn376yXfdunUNZsyYkQbw6aefNvT09DRHR0dXeAArLCwsv3Xr1jY3bJ6entxyyy25O3fuDDpx4oTXlStXDJcuXfLw9fW9Nn78+FbFj5Genu4JcPjwYZ+wsLCchx56KPuhhx7KPnfunMe2bdt8f/vtN6/ExETvbdu2OVR8H3300baHDh3y8/DwMD/22GMVsuoqL/VF9NCmeDv6cDX7q7MO6q8btFkLVeF7Xd8pPku1qh6sy/uwXZmyyj6o661AyjpfVc/qtWeLUf8GIgQ9zn7/nJ8R7JrzVWUfBKG2UdwSSvutqu5By1rHb7/BqVNq3d8f6oJfdM+eaiAyP1/lIjl6FDp3ruleOaTahaxSKJ4zAury9V9va+J6qjPqqzIUHxgujy1QbcflVn5lceCANfLN3R0mTqya81SWyZOVOFNYqPp78CDccktN96pKqdHraGYmPPIIbN1qLfP1heefV98Rf38Advym8vR82aE3U+Y+oBLPz50LKy0WdCkpcP/98PrrMGWKsr9yEfqxE2efL/38/Lh27Rp5eWep2PCTJn7YWzxw3jmgvE4DpZVpE7YNDpaK1lVm38rWJRd94mID7yRVYBlVl/Dx8XF4Y2Q2KxHt0qVL7mFhYXYdiPz8/ArtleuJjo7OePHFF1vFx8c3mDFjRlpKSor7999/79+/f//M4ODgMvd3RKNGjewmDNL6lJ+fb0hPT3cHOHv2rNeyZctCHB0rKyvLHeDkyZOeMTExrb/66qsgs9mMv79/Yfv27S/37NkzJzEx0W6C3UOHDvn17NkzZ9++ff4TJkwI++abb5zOOllR6ovocdTy6sh8uAOQbjaby5Xlvr5S1uyOujxrrSqEifo+cGPvQb0skaW2fialzdSzNxBhT1iqyHdfe3gEnNrX0fe0qsStst5zdZ3PVX2oyPdPmxFc1vegKr/vlelDTf+d6+pvQm3AVb9LtWHgtNoHyuoyemurO+8Ezzowe9PPT81s3rRJba9dCy+8ULN9qiOUNXDoKCqlvl9b64rAURZ1eXJNrbhua9ETACNGQFhY9Z27PLRureyS1q1T22++qZKaC64nORnuuUeJ6xoDByqrqrK+H926wccfw6hRKjpHi8KIjVUWagsWKHHNRTj7fKn//wLKdc9ve49XgNVqWqhqQkNDi/5mglBZjEbjtYsXL9odZz979qyXvXI9YWFhBb169cpOSEjwP3/+vPvq1asbFhYWGkaPHl2pqIjLly/bVYNTUlK8AIKDgwu0NgMGDLi0ffv238o65siRI9smJCQExMbGnnn88ccvaJEk3377rXHdunV2PQcnTZqUsnDhwjPdu3fvvGvXrsD333+/4fjx46vUgqVeiB5ms/mcwWA4AnQ3GAyNzWZzkdeZwWDohMpgvLrGOliLKe0hrSKD4TU5gFdXH6Rqmto0U7IqqMj7K49QUvzhsax95XtaM9SG73lt6ENlcPb/ojYIbLXlt8rVg0tl5aVw5QzzWjFQVpepa9ZWGo88YhU91qxRM25dOGv2eqW23G/XlwjfmqJ8CdGrh9Im0tSK6/bp00pA1fj732uuL87wzDNW0WPVKnj1VWjWrGb7VN84dQr691e5UzRmzICXXipf8vgHHlA5QIYPh6+/VmVvvw1paUoU8ai6oS5n7unLe8/vCsvG8v521Dbh1t5vTFVO+tFy19Sn3ymhZuncuXPevn37/Pft2+fTs2dPm0SIe/fu9XfmGCNGjMjYs2dPwPr164Pi4uIa+vv7F44cOfJSZfqVmJho1JKta2UZGRluR48eNQYHB19t1apVQePGjQu9vLzMR44c8S0sLMS9mHg8Y8aMpocOHTJ++OGHv7u7u5OQkBBw8803586dO9cmuOD48eMO/SsnTZp03s3NjbfeeutU//79b5w+fXqrYcOGZTZs2LDKErDWC9HDwmJgIfAyMAHAYDB4Av+01L9bQ/2qs9T1ATpBqCiV+e7L/41QX5Hvds1Tkb9BeR+ia81AWV0mK0sl7dWoC0nMNR54QEV85OaqGbiHDsHNN9d0r+o11X1tLW8ErLYu1wX7OBNBD1Uj0NcJYWnhQmUXBdCvH4SH12h3yqR3b+jTR+U1unpVDaK/8kpN96r+cPKkEjxOnlTbnp7w4YcqaqMiBAfDF1/A2LGwfr0qW7tWHXf5cpdGfFQ1NXWfXRsmNZX1G1PeST9yryvUFFFRUen79u3znz59eostW7b85mERX5csWdLol19+8XXmGI8++ujFqVOnhn388ceNExISAoYOHXrB19fXXPaejsnPzzfExsY2X7x4cZGvW2xsbPOcnBz3kSNHpgP4+vqaBw0alLFp06bGc+fODdFyigCsXLky6LXXXmsRHh6e3ahRo2s5OTkGNzc30tPTPfLy8gxGo9HM/7N332FSVXcfwL9n+uxs7wUWpC1NEBYQLNgriBrFiDFRwQKaxMTX+NpbYnmNPRpLUBN7RLErdkVRelFg6R2219k29bx/nLlTlu1lZnf2+3me+9y5ZWfOzM69c+/5nfM7ALZt22a69957c9oqzwknnFB/4YUXli1atCj1hhtuyHnppZf2d+X9tSaagh7/BPBrANcIIcZDjSx3AoCRAJ6SUi6LZOGIiIiIwo3Bqgh49VVAazU5ahQwblxky9MRMTHArFnAG74O0v/9L4MeUYbnhJ7Dz7aJigrg+ecDyzfeGLmydMQNN6igBwA89ZTqnZKS0vrfUNuKi1UjAC3gYTKpgchnzuza81osqmdiWhrwz3+qda++qsaoev75jvUe6Yf6wnmrL5SRCAD+8Ic/lL/77rtJX3zxRWJeXt6Yo48+2l5cXGz89ttvE6dPn169dOnShLaeIzU11TN9+vTqL7/8MhEALr300sNSW33zzTcxr7zySsqUKVPq5s+f32bqq6SkJPcrr7yStmLFitjRo0fXb968OWb9+vW23Nxcx9/+9rdCbb+nnnrqwJo1a2Jvv/32gYsXL04aPnx44+7du80rV66MS0xMdL/88st7ACA2NlbOnDmz4v33308eM2bM6KlTp9oLCwtNy5Yti58xY0bF3r17LUuXLo2/6667Mu65557i5sr02GOPHfz000+TXnnllfR58+aVH3fccfVtvY/OiJpfACmlG8BpUD07BgC4DGoUvj/6JiIiIiKiniNloNIFAK69tu+lh7r44sDjN99U74mIqKP+/nfAblePR41SYzb0BeedB4werR7b7aFjklDn2O1qsHEtpZXZDLz3XtcDHhqdTgWorrkmsO6FF4C//KV7np+IqB30ej2WLFmy87rrriuy2+36xYsXpxYVFZn+/e9/7zz33HPbnaJqzpw5FQCQkZHhOvvss+1Nt//yyy/Wl156Kf2LL76Ib8/zpaenuz755JOtJpPJu3jx4pTCwkLTnDlzSn/88cctmZmZ/gHSs7Ky3CtWrCi4/PLLSw4cOGBevHhxyv79+80XXXRR2apVqzbn5eU5tX1ffvnlvXPnzi2pq6vTv/vuuykVFRWGJ554Ys+77767Z/78+UW1tbX6FStW2FoqU05Ojvumm2465PF4sGDBgkEeT6fHaW+VkLyRgRBizcSJEyeuWbMm0kUhoiCDb/7Y/3jPgzMiWBIiIuotevVvw/ffA9Onq8c2G3DwIJDQZqOuDuvRz8DhADIyAC1/9vLlKuULUR/Qq88P/UlRETB0KFDva7j51lvA7Nnd+hI9+r9etEgNug6oc/nu3aonQYT1ye+30wmccw7w+edqWacD3n1X9Spshw69Z69XDW4ePAD9ww/3/rFkiHpQfn4+1q5du1ZK2Wp+wTVr1qy2WCyjxowZUxCuslHPE0Lk5+XlNWzZsmVzpMvSWZs2bRrV2NhYkJ+fP6mjfxs1PT2IiIiIiCIquJfHpZf2SMCjx5nNwK9+FVh+4IHIlYWI+qYHHggEPMaPBy64ILLl6agLLgCOPFI9rqtTvVao47QghBbwAIBnn213wKPDdDpg4ULg/PMD6268UaW7IiKifodBDyIiIiKirioqUvnJNQsWRK4sXfXHoMyw778PLOPQeETUTvv3q4ptzd/+1vfGVdDpgHvuCSw/9ZTquUcdc8stoQGHu+8GrrqqZ19Trwdefx04/vjAuiuuCA28EBFRv9DHrj6IiIiIiHqh224DXC71+Jhj+vYA4EcdBQQPGnrzzRzbg4ja59ZbVUojAJg6FZjRR9IwNXXeecCECepxQwPHh+ioJ54AHnoosHz11cCdd4bntS0WFbAfO1Ytu92qB+Pq1eF5fSIi6hUY9CAiIiIi6oqvvgJefDGwfMstkStLd/nrXwGjUT3+4Qfgo48iWx4i6v2++Sa0Zf999wFCRK48XSFE6CDmb7wBfPttxIrTp/z3v8Cf/xxYnjULePrp8H4XkpKATz8FBg5Uy3V1ajD17dvDVwYiogiTUq7py+N5dBWDHkREREREnVVfD1xzTWD5wguBmTMjV57uMmQIMH9+YPl//geoqYlceYiod3M4QtP6/frXwMknR6483eGkk4CLLw4sX3ddoEdfOHm9wNatOH/j15izfgnS7eXhL0N7ff018NvfBnoHTpumAkYGQ/jLMmAA8NlnKgACAKWlwBlnqHSUREQU9Rj0ICIiIiLqrNtvB3buVI8TEoAnn4xsebrT7bcDsbHq8fbtqiLL641smYiod3r4YWDrVvU4Lg549NHIlqe7PPxw4Dy4eTPw+OPhff033gCys4GRI/HYx4/igc+ewnfPX63Oz70tEL1+vUoLpgWGRo1SvQRjYiJXJq0MVqta3r1b9fjobZ8dEREdRnYxvS6DHkREREREnfHkk8BjjwWWH34YyMqKXHm6W3o68NxzgeUPPgDuvTdy5SGi3unnn1VKPM1996mK+miQkxM6FsXttwMbNvT860oJ3HWXGl+puDhkk9XtUJ/xyJHAxo09X5b22L0bOOsswG5Xy9nZwJIlQHJyZMsFqHG2/vtfNUA9AKxbp8b4cDgiWy6i3sUFQHo8HtYTU6/h9Xp1ACQAZ2f+nl9mIiIiIqKOevll4PrrA8tnnQXMmxe58vSUSy5Rqa0099wDPPts5MpDRL2L3Q7Mnh2oQJ44Ebj22siWqbtdf31gUHOnU6W8qqvruddzuYBLLw0NMicl4eshk7ApfUhgXWGhSiG2aVPPlaU9mqaNSkhQAY/c3MiWK9g554QG8b/6Crj8cvZeJArY5fV6G2prayPYNYsolN1ut3m93gYAuzvz9wx6EBERERG1l5TAU08Bc+cG1k2bBixa1HcH7G3Lgw8Cp54aWF6wQLV27mKXcyLq46RUY/9s26aWbTbgtdcAvT6y5epuJpNKM2WzqeUtW4A//alnXsvrBa68Enj99cC6008Hdu/G3Nl3Y+blj+NPM/9HpRADVMDh5JOBgoKeKU9bqqpCBwg3m1WvwCOPjEx5WnPllaE9kt58UwX1+VtGBABfejyeiqKiosyqqqo4j8ej62pqIaLOkFLC4/Hoqqqq4oqLizM8Hk8FgC8781wRGE2KiIiIiKgP0gYtf/XVwLpx44CPPw5UhkUjg0GlBjnjDGD1arXuvvtUJdczz/SO9CVEFH7//Gdo5fyzz6qUS9EoL08FvK+4Qi0vXKjO/3/4Q/e9hpTATTepnoSa+fOBf/zDPxC4FDq8N+YkPH7rBSoYUlsLlJSowPSyZcDgwd1XnrZUV4f+Lgihvg/Tp4evDB11222qh8w//6mWH38cSExUKcyiteECUfu86fF4pjU0NJywf//+ZJ1OlwOABwVFivR6vQ0ej6fY4/F8B+DNzjwJgx5ERERERG358kvguusCLZoBID9fDZCalBS5coVLcjLw7bfARRcBn3yi1r31FvD998DzzwMzZ0a0eEQUZm+8EVrhP2+eSskUzS67DPj8c/XeAZX2KiNDnRe7w4MPAo88ElieN09VzjdXGT9tmkohdeaZKvBx6JAKgvzwgxqPqadVVamAx8qVgXXPPqvGyujNhFDjcRUXA++8o9bdfbdKz3bffQx8UL+Vn5/fsGbNmus9Hs/FHo/nVABHADBFulzUbzmhUlp9CeDN/Pz8hs48CYMeRNT7NDYCO3di6r6fYXa7sC47L9IlIiKi/mrbNuCOO1QFf7B581SrX4slMuWKBJsNeP99VdGpjetRWKhypZ91FnD//cBRR0W2jETU8z76CPjd7wJpgSZPVhXJ0U4I1cNj925g+XL1/i+9VPUUOP30rj33o48Ct94aWD7vPHWeba0S/thjVSqpM89UY41s364ef/21KlNPOXhQnfN/+SWw7plngKuv7rnX7E56veqxWVMDfPGFWvfAA0BDgwo66ZgFnvonX8XyS76JqM/j2ZyIeg8pgX//G8jKAsaOxZtv3Ir/LLoLS5+7EnjxReZbJSKi8Pn5Z1WZNWpUaMAjPl5Vei1c2L8CHhqDQVVuvfeeauGs+fRTNdDv7NkqxQp/s4mi08svAxdcALjdannMGHX8x/STsW9jYlTQR0vj5XKpnm7BKak66qmn1NgSmpNOUr1JDO1oo3rSSWpsCq2ift06ta6kpPPlaU1Bgepl0jTgMX9+z7xeT7FYVMAouJfi44+rXjv19ZErFxERdRsGPYiod6iqAi65ROXJraoK2ZTYWKta1J5yimpZRERE1BNqaoD//Ac45hhg/Hg1IK/XG9j+m98AW7eq36T+7txzgU2b1O92cEvkt98GjjtOtfx+5hmgoiJyZSSi7uP1AjffrFI8OZ1q3ZAhKt1TSkpkyxZuKSnAZ58BAwaoZZdLfS533QV4PO1/HinV3wSnCTv+eODDDzsWVD//fOBf/wosr18PnHACcOBA+5+jPd5/XwU89u9XywaDCvb0tYCHxmJRKa4uvDCw7p131Gd36FDkykVERN2CQQ8iirwdO4ApU1QrJU1GBlYOGI0D8WmBdd98Axx9tGp9S0RE1B0OHQJeeUW1XE5PBy6/HPjpp9B9zjhD9V549VUgMzMixeyVUlJUT8yffwZmzQrdtmYNcO216vOaORN4+mlg167IlJOin8MB7N6NoeX7MbR8PwZVHmJr7e60ZQtw4onA//1fYN3YsSqNUnZ2xIoVUbm5wI8/AkceGVh3772qwjx47KeWNDQAc+aov9FMnQp8/LFKJdhRc+cCL70U6PGxZYu6v/r2244/V1NuN3DLLSrlVnW1WmezqbL+9rddf/5IMpnUPeif/hRYt3q1avjw8ceRKxcREXUZgx5EFFk//qgu8LdvD6y78kpg505c9JuHcOqVz+DZoy9QuVcB1dPjuONU6yoiIqKOqq5WFRl//rOqtMvJUbnpFy9WFacaoxH49a9V3vYlS1TvD2re2LGqBfCGDaoXjNkc2OZyqc/7978Hhg4F8vJU5dKHH6qBZIk6qrISePdd4H//V6XxychQLbaHDMFXCxfgq4UL8N3zV6tK2ZQUNe7Bn/+s0gWVlka69H1LdbXqiTB+PPD994H1M2eqa/hBgyJXtt5g4EA1cHjweB7LlqnP6+67AwGCpn76CZg0CfjvfwPrTjtN/dbExXW+PJdfrirwtbRYhYWqp/xf/6rOxZ3x88+qd8eDDwbWDRoELF3a9XFMegu9HnjsMRWc1+45y8rU9/z669VA8URE1Ocw6EFEkSGlSntx8slAeblaZ7EAr7+uumf7Wjg1Gi148MQr1E1AfLzaz24Hzj5btYzqSBdyIiLqX8rKVEvkv/8duPhiYPhwNbjrzJkqd/emTYf/zfjxqjXzgQOq8ujoo8Nf7r5q3Dg11smBA8A//qFaGTe1bRvwxBOqZ0hmpqo8mz1b/Y+++kr1vOF4INTUzp3quDz+eCAtDfjVr4CHHlKt2Fsbu6CiQlXOP/64SqOakaEazzz0kGoJT807cAC4/XZ1fN57byCdlcEA3HGHGtOnK5Xz0SQ+Xo3xceedgWBDYyNwzz3A4MEqaLRvn1pfXKxSWR17LLB5c+A5rr0W+OQTICGh6+WZPVuNsZKaqpa9XlW2ceNUALq959eaGvUdyM9XPR80Z56pevJNnNj1svY2116rBjYP7r305JNq/JZFi/jbRETUx7RjZCwiom5WUqJagn70UWBdWpoaTG7q1Ob/5tRTVcups89WeWS9XnUTsXSpqmAZPDgsRScioghwu4G9e4H9+3HMnvUQAGpNVqBksvo92L9fbd+xQ425oU3tGU/CZFIVUKeeqipStcFpqfNSU1XPjt//XqW0+vRTNX39tUrpEmzfPjW9/XZgXXy8+j+MGgWMGKHSyGhTTo7qhUPRb8cOVdG4aJEanLk1Oh2QnY2dvoxWZrcDA+orA4Nta6RU15PLlqmeIiNGqPEQZs9WlbjB49P0N7t3q/E5/vtfFUxqWsE7ebK65h43LiLF69WMRhXkOP98Nc7R+vVqfVWVChrde68a/6O4OLTHhc0GPPIIcM013VueU09VZZgzJ9BDZ8sWFfCfNg247jo1jkVwrzxNXR3w/PPA/ferhgMas1n1XrnppkAKrWh00kmq1+LcuapHIqAyDVx0kbpPveMO4Kyz+ve5goiojxCS0WoIIdZMnDhx4po1ayJdFKLoVlGhug4/8YTqraHR0mIMGRKy++CbA3lU9zw4Qz0oKlIX8MH5aU0m1TLn1ltV8ISIiPouKVUQY8kSVQG3cqWqcAgeULwrDAaVg/3kk1U6keOO61z+9Ahq9vexL2hsBL77Tv1fV6xQrYUbGzv2HL7KbeTmqtQymZnqtz89PXSelqZaTbNiqu/wetV34sMPVUOYDRua308IlRroxBNVT6z8fFWhbDCEHhv3n6XS+6xfr84jX32len20dP87eLCqCL7wQtVLKVq/O263Osfu3KlSF61Zo9L4tTTmTl6eGs/h0ksDqX96gV57HnS71ThRd97Z+kDiWVkqpe9xx6nUf4MGBXqKtKDD79ntBh59FPjb30LvvQAgORmYMUMFQk4+Wd2nPfecGqepqip032OOAV54ISKNAiL2f5ZSjeN1442H9yY76ijgqqvUPWlSUvjKRNQJ+fn5WLt27VopZX6ky0IUbgx6gEEPoh5VVQV8+SXwzjvqJrauLnT79derHLEWy2F/2uJFrsejWkz99a+hN65Go2p5c8kl6kY4I6Ob3wwRER1GSpX6pK5ODRwcPG/usd2ufhuCp8pK1QK2srLjleCtsVpVb4GJE1XFaH6+Cng085vTl/Tayr6OcrlUirGVK9W0aRNQUNByHvyOMhhU4KM9k80GxMQ0P2nbLJborQiPlNJSNSbCJ5+oHsBFRc3vZzIBZ5wBXHCButZLT292tzaPjdJSleLn/fdV8K2lwc4zM9XrnXGGSqk1YEBH31n4SKnOrzU1arLbVQv90tLQad8+FdjYu7ft9LA6nRoL4qqrVA+4XhTs0PSK82BjowrK79yppo0bVbBu/frD73naoterwMewYapHW3AgNz0dSErC4MWBMWn2PHB2+89HJSWqh/wLL3RsbI+BA9X91m9/G7HeHRH/P1dVqR4uzzwTSPOmMZtV44kZM9S5YvBg/kZQr8OgB/VnTG9FRJ3ncKhWQcFTURGwZ4+68F+3TqUmaM6oUarXxxlndPx19XrVhfyMM1Trm59+UutdLtUy8IMP1PIRR6iWOEOHql4k6elqQMvUVDVPSVE30UREPUVK1XpZm2tTc8tut6qIcrsPf9zWcme2OZ3qPO5wtP24pe0Oh6o07K3jKzVU+LB8AAAgAElEQVQ0qMo/rYxutypzHw96RA2jUf1OH3UUcPXVap2U6lqioEBNe/aoSlotDVZhYfuf3+1W44ZpY4d1By0QYrGoCi+T6fB5e9eZzSowo016fc891ukCkxChy0239USlncMRSEG3caPqYbB6tUpD1xKTSY0fMHs2cM453TPeQVqaGuz58svV+eHzz1XDnPffVwEDTVER8J//qAlQPYsmTVK9k0eOVL2NMjPVuBbB51e3W12PtmfZ6VSV5p2Z6utDgxzd0ZDRZgNOOEENTj17dui4BtFEC9Q3NqrvpfaZOhzqO1FbG/hsm07avU5xsZo37RHRErNZfW9MJuCXX5oP7ns8KijVUo8bAPjfoNTABoP6/sXHq7nVqiaLJXRuMqnnbmxUqZu2bFFjJzVN/dac/ftV6q1bblE9Q7R7qNRUdTzGxYXO4+MD5bFY1BR8zjMa+15QIDFRjQn0l7+osaeeey7w/3M4VLBWS9mcmalSYI0bp/7fw4erHj0ZGW324iEiou7Hnh7ohz09HnlEtfToaZ39bvX272Rr5esNZW9ahvaUqbW/CU4n0h3vTwh1AWwwhF70NvPcNY7AxXi8uZULRZdLXXR2V/m0eVsX5cHbu+MCvq/dBFDHdfc5IhLnnEie5zr62l0pa284n1Ogclav91fKVnj18AodPEIgwywCASOXS03tSYMVXOmrne+Dp+b2b886TfD3pwfO7YcQyMOeDcfhrxnNpAxMWsCw6aTtR31XJ4+bGqMKaAoAca5mKpb5vQjQznd6feCc2F06c//Rwf332FIhpBc6KTGwrrzF/UKWw/n/1+lUJb9W4a99vl5vaADM61VBiXb8dt1zylXQeb0we1y4aenLPfwGIijo+B9804f+x3v+PqvN/bu0vr37av+zjn6fgq8x2nMf2Vo5w3Xf2Bvvcbvj+e64QwXz+gH29KD+jOHm/mjhwo53tyXqLlIePohpC+KDF5wt7dXNWFlCRNR7SKkqFoJ6kiQHb28hM01nnrcvyUZtpItA1LM6eR0W72zfNSYhNHjYBw2u6kCvr0jwegM9IrvJXV/9q9ueq1dr6fjvo99Vv+DAPEXWyy/3m6AHUX8WmcSMRERERERERERERERE3Yw9PfqjvDyVy5Oolwtuy8MILRFRH9XR1FBtcIjAL4JZdrLVZ3MtLftQ68tGvdH/2OLpwKC0RD2lO9LIdINdCZmQUK85tLodPQGEaPnYb6vsnTmP9KHzTI/RPtcufhafjpgGKQQkBGZs+7EbCtb7vTRxJiQEHAYTFqx8p/3HXSRS6PbE72xzKdjCeUzx+I0eo0dHugREFAYMevRH770X6RIQtcuQmz/2P97z4IwIloSIiHqLPP42YCQ/A6Jmncxjo99YEPS/ntFP/tf3BL3nBcsXRbAkYRT0nvtqSkoiIooMNp4mIiIiIiIiIiIiIqKowKAHERERERERERERERFFBQY9iIiIiIiIiIiIiIgoKjDoQUREREREREREREREUYFBDyIiIiIiIiIiIiIiigoMehARERERERERERERUVRg0IOIiIiIiIiIiIiIiKICgx5ERERERERERERERBQVGPQgIiIiIiIiIiIiIqKowKAHERERERERERERERFFBQY9iIiIiIiIiIiIiIgoKjDoQUREREREREREREREUYFBDyIiIiIiIiIiIiIiigoMehARERERERERERERUVRg0IOIiIiIiIiIiIiIiKICgx5ERERERERERERERBQVDOF8MSHEAAA3trLLHVJKe9D+uQDuA3AKgHgAmwE8LqV8vZnnTgFwD4BzAKQB2AngeQBPSSllt70JIiIiIiIiIiIiIiLqlcIa9AAwAcD1rWx/EIAdAIQQ2QB+AJADYAmAgwBOA/CaECJXSvmg9kdCiDgAXwI4CsC3vv2PBfAkgDEA5nf3GyEiIiIiIiIiIiIiot4l3EGPIb55upSytI197wcwEMCVUsoXAEAIEQtgOYB7hRCLpJQ7ffv+D1TA429Syjt8+xqggh/XCCFel1Iu7eb3QkREREREREREREREvUi4x/QYCsDeVsBDCJEI4BIAm7WABwBIKWsB/AOAEcBlvn0FgAUAKgH8LWhfN4C/+xav7Mb3QEREREREREREREREvVAkgh4729xLpaYyAvikmW3f+eYn+OajAaQD+EpK6Wiy7zIA7qB9iYiIiIiIiIiIiIgoSkUivdUmIcQkAGcAiAOwA8BiKWVF0H5H+eabmnmOrQC8AIa3ta+UslYIcQDAICGERUrZ2A3vgYiIiIiIiIiIiIiIeqGwBT18aaiOgOqVcUGTzQ8LIX4npfzAt5zimxc3fR4ppRRCVANIbmtfn0oAgwEkAihqqXwFBQXIz89vdtuaNWta+jMiIiIiIiIiIiKiiGipPrOgoCDMJSHqPcLZ0yMHgBlANYBfQ6WuigMwB8B9ABYJIaZKKdcBiPf9TdN0VZq6oH3asy8Q/l4tRERERESd9u2eb7Fo0yJMzJqIWXmzkGZL67bnrnPWYW3hWtQ6a9HobkRmbCYmZE2AxWDpttcgIiIiIiKKhHAGAuwAzgfwi5RSG9ejFsCjqhMIHgHwF6gBzF2+7dYWnssEoN73uD37Imj/Zo0aNYo9OoiIiIioV1h+YDlOf+V0uLzqUlf3kQ6z8mbhhVkvdOl5vdKLhWsX4pavbkFFQ0XINqPOiAlZEzB79Gz8bvzvkG5L79JrERH1RS6PCwftB2HWmxFjjEG8OR6+Ogsiol6ppfrM/Px8rF27NsylIeoduhT0EEIMBrC7nbsnSSnfa2HbW1BBD218jhLfPLGZ19QBSAKwq619fVKgeoFUtrOcREREREQRU1pXitmLZvsDHoAKVry35T0YdUYAl3XqeZfuXYobP78Rqw6tana7y+vCyoMrsfLgStz61a04d+S5uHLClTh1yKnQ6/Sdek0ioq5we934Yd8P2F6+HTaTDXGmOOSl5vXIa1U1VuHJFU/i8eWPo7IxUH2QGpOKKTlTMDVnKs7JOwfjM8b32yDIvup92Fa+DdMHTYdJb2r7D4iIiCKkqz09agG81s59na1ss/vmbt98i29+ZDP75gIwAtjY1r5CCDOAgVC9S2Q7y9kvNLobmb6gD/N4PRBCQCd0kS4KUb/llV44PU4YdUZWBhK1oc5Zh4KyAmws2Yjt5duxr2YfDtQcQJ2zDm6vG3qdHgPiB2BwwmCMShuFydmTMTZ9LIx6Y6SLHnYerwe/WfwbHKg5AABItCRibPpY/LDvBwDAos2LMKiDQY+1hWtx85c344tdX4SsHxA/AGPSxsCkN2Fr+VZsK9/m3+byuvD25rfx9ua3kZuQi7lHzcUVE65AbkJuF99hgJQSDe4GuDwueKQHNqMNZoO5256/rddudDeiwd2ABldDu+aN7kYYdAYYdUbEmmKRGZvpn1JjUvlbQNRNpJRYfmA5Xlz3It7b+h7K6ssO22cQPgrZv6tBiBfWvoAbPr8BNY6aw7aV1Zfhk+2f4JPtn+DOb+/EsORhODfvXJw4+EQcn3s8EiwJXXrt3s7j9eDdLe/iX2v/hS92fgEJiXEZ4/DWhW/1WAAqWmi/NZWNlahqrILL40KcOQ5xpjjEmeNg1pv7bQCNiKindSnoIaUsA3Bpe/YVQrwphPg1gClSyqbNy471zTf45t8A8AI4DcDNTfY9wzf/3DdfDaAGwAlCCKOU0hW074lQ6a0+B/k53A6kPpSKkakjcVzucTg+93hMyp6EgQkD+1Ululd6UeOogd1hh9vrhkd61Nzrgcvrgt1hh91pR42jxr+f/7Fvvd1ph8frgYSEV3ohpezyY7fXDZfHBZfXFfI4eC6hYnhal+vWJqPeqG7qXQ0w6AywmWyIN8UjMzYT2XHZyIrLQnZcNjJjM2Ez2mAxWGDSmzp88aV9bjqh6/FWP91xYxONpJTwSA8EVEAs+DPSKpa077XdYUejuxFurxte6YVJb4LFYIGERJ2zDnWuulbnTo8TOqGDXqeHXugPm2vfa4/XA4/0wOP1qGWp5s0RENDr9NAJnX9ye93+48At1bzGUYPKxkrUOmvhld6QSXsd7T3FmeMQa4oNTMZYxJnjEGOM8X9eTcsZMpce1Dnr/Md+yPHvsPuPRe1739Jk1Blb3643wqRrY3snn9/tdaPOVYd6Vz30Qg+DzhAyxRhjEGuKhc1k61e/AdR9HG4HSupKUFJXguK6YjWvLUZxXTF2Ve7CxpKN2FW5y3+8tGT1odUhyxaDBUdlHoXJ2ZPVlDMZI1JG9ORb6RUe/enRkODEq+e/ihkjZmDu+3Px0vqXOvx8S3Yswaw3ZoX0GjHrzbj5uJvxv8f+L6zGQIbY8vpyfLD1AyxctxA/7v/Rv35f9T7c/d3duOe7e3DGsDNw1cSrMHPEzA793kspsa18G5YfWI4VB1dgY8lGbC7djPKG8pD9UmNSkROXg5z4HDX3Pc6Oy/YHRSwGC8x6M0x6E1xeFxrdjf5rHe1xo7sR1Y5qHLIfQlFtEaoaq1DjqEFFQwUKawtRXFsc8pl0lU7okBaThtSYVPUe4nNwROIRGJo0FKPSRmF02mjEm+PbfqJ+wOP1oM5VhwZXA8wGM6wGa6euPbublBIOjyPkuySEQGpMKmxGW8TL1x84PU68suEVPLXqKawvWt/uv5v6wlTcMf0OzBwxs8Ov6fF68Jcv/oLHlj8Wsj7Zmgyjzgi70456V2im7B0VO/DIT4/gkZ8eAQDkJuRiZOpIDE4YjDRbGtJt6Ui3pSMtJvA4JSYFBl33ZRdvdDdi+YHl+Gb3N9hYutF/H5tuS0d+Vj4m50zGhMwJXW48sPrQaiz4eMFhv9E/F/+M/Ofzcdvxt2FQ4iCkWFMwbeA0xJvj0ehuxHOrn8OSnUsQa4rFoIRBGJM2BheMvqBL58EtZVtQaC9EeUM5GlwNGJo8FKPTRsOsN+OQ/RCqHdXIS8mDzWQL+bsVB1bg/h/ux77qfRiTNgZj08diT9UerDy4Eia9CfMnzcfvxv+uS9fBLo8Ly/Yvw9e7v8aWsi3YVr4NhbWFqGqsgtPTcvtfg86AeHM8kq3JSLYmIys2CwPjByI3IRe5CbkYmDAQaTFpiDXFwmKwqPuiJnUD2twrvYfdS+mEDnrRzDrffia9CVaDFRaDJeyBeyklap21qGysRGVDJepcdf7yNnePqd2vWg1WWI1WGHXGDp2XtfoWQN138pxOFP1EuDpACCGuAPAigI8A/EoLTggh4gB8D2A8gBOllN/51i+GGgNkjpTyTd+6LAAroMbvGCalrPatfxTAnwHcIqV8MOh5vwUwBsAoKWWLabiEEGsmTpw4sb+M6fHj/h9x7IvHHrbearBieMpw5KXkYWTqSAxNGoqBCQORE5eDeHN8j1eKaRWQTo8Tje5GONwO/02rw+Pw/9h5vB7Uu+pR76r3V+TVu+rR4GpQc1+LvBpHDcobylHeUA67w35YpW2ts7bNCpj+Sid0IRcUVoMVep0eTo/Tf2GlPXZ6nHB5XSEV2WkxaRgQPwDptnT/BVySJQnJ1mSYDWZIKWF32rG5dDM2lW6C3WE/rCJWr9OjcPvt/uccdeRTqHXWYm/VXhy0H4RO6GA1WGEz2ZBiTUFKTApSY1LVY99ykiUJNpMNZr2qIEmJUdssBktIxXZwpbeU0l8JbNQb4fQ44XA74PQ4/ZPDo5ZrnbX+ym8tkOCVXn/5te+sV3pDPqvgi1Onx4l6d33Id1P7bmvBBQnpv0hrOtfKrQUvmv4fDToD9EIPh8fRYrCBSGM1WP0BIpvJBqvB6g+gxRhjkGBOQJIlCbkJuRicOBiJlkTodXoYdUZ/q7V4c7z/cXe30pdSBdO0YFh7pqY3d8GBH6PeGHLeMerUsnYTJKUKRAdXomoVYsGT3WFHtaM6JBDmcDv85wW70x76OGje4G6Adi2m/a1e6JFgSUCCOQEZsRkYGD8QA+IHYED8AAyMH+gPWKfFpIXtBtXj9WB7xXYUlBZgS9kWFJSp+Y6KHSEpQHpanCkOydVv+Jefv8qIMWljkB2X3atuXt1eN+wOOxIsCR26bjpkP4QR/xiBOlcdAODW427FfafcBwCobKjE6H+ORlFtEQY1BFo473lwRovPt+LACpz88sn+Cjud0OGy8Zfhjul34IikI1oty+bSzVi4diFe3vDyYYEJAEi3pWPG8Bk4duCxOHrA0Tgi8Qh/RZPT48Teqr3YWLIRv5T8guUHlmP5geVh/a70RgPjB2JM+hiMTBmJjNiMkOuXJEsSTHoT9Do9YowxSLQkwmqw9qrvdTCt8VB1YzWqHdWoaqzCIfshHKg5gOLaYn+r5uCp1lnbbAUyoCqgLAYLrEYrzHozzAZzyNykNzW/Tm+GUW/0X8t98eN5/uc8bsob/l6ZWk+dpsGx4PWN7sYW369Zb/YHtLLjsjEuYxwmZE7AUZlHYVjysD7Ty0e7BtcC09q8pK4EZfVlqGioUPdP9eWoaqzy3xMEBxttJhtiTbFIsiRhRMoIjEodhYEJA/3X+5357S+pK8E7m9/BAz88gP01+w/bnh2XjZOPOBlurxvl9eVYeXAlEqsCCSf2WlWw4w9T/oBHTn+k3WWoddbikncuwYfbPvSvG548HHdMvwNzjpwDg84Ar/RiR8UOrDiwAp/u+BQfbvsQtc7aDr9HAYFkazLSbelIjUlFoiXR30OkaSOhREsiMmMzkRWbhczYTGTEZsDlcWHe84HvaHHcha1+ZwEg3hyPU444BWcNOwvn5J2DzNjMdpe3urEat319G/656p8h98wCAgadodmgsUlvwilHnIINxRtwyH7osO0xxhjMGTsH5408D1NyprQ4bpRXerGhaANWH1qN+xZl+9dr/+fWGHVGTBs4DflZ+bAZbdhSvgVvb367zb87duCxuCb/GthMNqTb0jF1wNQ2g1TVjdX4bOdn+GDrB/hk+yd9/jfOoDPAYrD4J7PefFjwIbjRm9Zg0+P1+K+7JWTINXXwNbdO6FSQo6HS/xvh9rrbLlgLtHvd4GBGS4+b+nHuj5g2cFqnX7sv8Y3psVZKmR/pshCFWziDHgYAX0D1vtgN4CuoniZnAsgE8LSU8vdB++cCWAMgGcCHAMoBzPItz5FSvhW0b7xv32G+19jje96BAG6UUj7SRtn6VdBj4dqFuPrDqztV4a8Xev/NWVpMGtJsaUiyJPkrxz1ej79COLhyOLji2OFxwO6wo6qxCnanPaQymNpHQPSLgE1wpU57LnKJws2kN4X0vqJQFoNFBUF8wZBYU6z/BqmzUzhoN1HNBRN7E53QId2W7k+vkx2rgiFZsVnIistChi0DKTEp/uBze1uYltWXoaC0AAVlBdhcuhlrCtdgbeHaZisqO1LWESkjMDZ9LEamjMTgxMHITchFnDkOJr0Jje5G7Kveh12Vu7CuaB1WHVyFvdV7m32u5n4bEswJGJ02GmPSxqh5+hjkxOX4g909lSbL5XFhU+kmrDq4CqsPrcbqwtXYVbkLVY1VAACb0YYjM47E5OzJuHLilRiXMa7V57vsvcvw8oaXAQBj0sZg/fz1If+3xQWLccFbF7QZ9HB6nFiyYwmueP8K/2DluQm5WPKbJRiVNqpD79HhduD9re9j4dqFh6XHairFmgKHx9GhCkGjzgiLwQKd0MHutIf1mDPrzf7GHW3OfS1htQY61Y5qFNcWo6i2CEW1Rc0GhrrKoDMg0ZIYMsWb4/3X217p9VdMOTwO1WjC14ii3lXvv/b2Si8SLAmqktWs5kmWJFWpGpeFFGsKYowxMBvMqG6sRkVDBSobK9W8oRIVjRX+SiptHhzk7U0ice1oM9owNn0sRqSMwPDk4ciIzfA3INDOvylWdS7uiXORy+NCtUP934KDGUW1RepxUHCjuLYYDe6Gbi+DRkD4ezllxWX5v2/Zcdn+c7LFYIHL48LawrVYcXAFVhxcgT1Vew57LqvBikuOvARzJ8zF1AFTQwLIHq8HQ29d4l8O/l9PHzQdb134FjJiM1ot6/7q/TjnjXOwoXiDf915I8/Dq+e/elhPgWCN7kZ8tesrfLPnG3yz5xtsKNoAj/S05+Ppsq58vwUEpg6YivNGnofzR56P4SnDm91PSok3Nr6BGz67AcV1xf71Zr0Zf576ZyyYvAAVDRW4aNFF2F6xvXNvxGdA/ACMTB2JEckjEG+Oh16nx+6q3fh85+f+lGaRuh88IvEIXH/09fjt+N8i2ZoMQAVjdlXuwqfbVfDr2z3ftqsOw6Q3IcmShERLIox6Y0jjF9aBRMayuctwzMBjIl2MsGDQg/qzsAU9AEAIYQRwNYB5AEZApbD6BcALAF5qOu6GEGIIgAcBnAKVpmo9gL9KKQ9LVyWESAPwAICZAOIBFAB4WEr5RtN9m/nbfhX0ANQgbT/t/wnf7/seP+7/EZtLN6O0vjTSxQo7rTLOqDf6W//qdWoe3GI53uSbm+MPq8Az6Az+ltDBaYU681gI4W8ZYdQb/S0ktMfaXK/T+/ODaj1dWpqcHqe/1ZyW5qa6sRqFtYUorC3EIfshFNoLUVxX7M9Z3ZmKRQHhTzPRXRUWDHp0nHZD2Nz/wGKw+PPHxpniYDFY/K1utB5WgLp5t5lsofMm68x6c/PpoHzz4FRVTVsHNU29pWmaqsorvdALfUhrfK1HQaIlEXGmOP/x17S7toCA0+OE3WlHrbP2sKnOWQchhL9sLXWl1gkdYk2xgWM/6DygHf+AuvkO7g3U3KT1kGpzP08b+3nbuZ8vyGzQGWAz2lRKryYBB6fHGVJJRtEt3hzvr3hLtiZDJ3T+nmJurxsOtwO7q3Y3mzu9NXqh96fzyLBlhMwHxA/A2PSxyEvN6/BYYiV1JVh9aDVWHVyFVYfUVFJX0qnfhgRzAlJiUvzHbrw5HqkxqUiPSfeXPTUmNeQcGWdW50mtV582FdoLsaZwDVYdWoX1RevbbGkb7PShp+PW427FCYNPOGzbigMrMPWFqf7lL3/7JU4Zcsph+81eNBur1lzuX15959FIjUmFx+vB0r1L8cbGN/BOwTv+YAegUkb9cMUPXc69vrtyN15c9yJeXP9is61426KlP5maMxUTsyZidNrokPSqbq8bxbXFOGQ/hIP2gzhYc9D/uKi2CA3uBn9PYIfHAYfb4U93ETxZjSpAYTPa/EHAFKv6/ydYEvwtqINTe3WV0+NEaV0pyurLUFJXgn3V+7C7aje2V2zHppJN2Fa+jZVbQWxGG6xGq+qF4Wrots+mq9eOwalerEYrXB4XyurL4PA4uqV8NqMNJr3psBbQVoMVMcYYWI2+ua+XNaC+W3aHup7RgvFa4K2qsapLAeneKC0mDTcecyOumngVkqxJLe43+OaP/Y/zJ76IxQWL/csp1hQ8ceYTuOTIS5q95vxx/4+44K0LUFRb5F930zE34YFTH+hwVgOnx4mdFTuxtXwrDtkPobSuVKV8rC8JPK4r6ZbAaNPv9/Dk4Thp8Ek4Lvc4xJvjIYTAzoqdWHVoFX7Y90OzvWY0w5OHY0rOFEzInIAx6WMwImUE1hauxf3f3491RetC9j196Ol4+uynMSx5mH+d3WHHv9b+C1vKtqDGUYOt5VtDUpJlxmbipmNuQrotHbsqd+GtzW9hY8lGdFTwe3alX42hSUOREpMCo86IreVbsaVsC7zSi+y4bJj0Juyo2NHs88wePRtXTrwSW8vU3wyIH4DJOZPx1a6v8MhPj7R6DsqMzUSGLQM7Kna0er08MH4gzhlxDibnTEZeSh4GJw5GkjWp1esfh9uBakc1KhsqUVZfhkP2Q9hXvQ/7a/b751pPOS1dddO6AW2uE7rDU/9KT+hyUCrg4CwbDa6GiASyrQYrkqxJSLIk+RtHtXR/qf1eaL30OtsYSkDg+yu+x7G5h2c/iUYMelB/FtagR2/VH4MezaloqMDWsq3YWr4VW8u2Ym/1Xuyv2Y9Ce2GgorCHK8V0Qgejzui/WdUmk97kT2miEzp/xWvw2BX+mwVfq7xYU6w/bUC8Of6wStvgCksK5fa6Qy4oGlwN8EhPyPgB2hgD2lgC2o2Zx+tBcV0x9lfvR3lDOSoaKgItBRsq/BeUJr0JeSl5GJs+Fum29JCKN2265OlAF+Fn5qmco4MSB2Fg/EAIIdDgaoDdaUd5vUpjVlZf5n+svW6Du8FfsVter/ZxeV2Hdc/VKr4FBOpd9ah11sLldYWkVGg6VoLNaDssCKalYAseI0bLlxp8YRr8OWoV0tp3Ovj7rQ1upwXFms6DU/UEBxO0dHFad2Pt9Yla4pVeNLga/Of6WmctGt2N/u9Svase1Y3VKK0vxd6qvdhTvQd1zjr/TUhwujdt7JOeaLGt9cJoz6R1vQ8eUya4C76WFzl47JimrTW1VHpNK1X9Xf8NZtiMNn8gTjsXBqf8amkeb46H1WgNySssIODy+sauaahEYW0hDtQcwP7q/Wpes18FrX05rcMpOy4bY9LGYFTqKIxMHYlRaaOQl5KHjNiMsIwHI6VEYW0hjrkvUBmTM+J+bCrZhGpHdY+/fkfFGGNarIy8eOzFePi0h5ETnwMAWH5gOeZ9MA+bSzcDUK2N3/31u83+bVl9GSbdu8K/PHT0oxgQPwBf7PwChbWFh+0fa4rFN5d9g0nZk7r6lvzcXjdWHFiBH/b9gB/2/4CC0gLsrd7rr4DQCz0yYjMwOm00xqaNxYSsCZg2YBqGJQ/rtemaeprL48KOih3YVLoJOyp2+K9XtFRClY2V/nNRvaseVY1VHQqoRUKsKdbfe0QLJg2IG4CsuCwkW5NDeqgkmBNaTZerpRJscDX4A1pa8N7hdvh7j2uPg7cHpzK8f1GO/zn/OqcikLPed28RfD4Pvt+wGqwwG8zNnsuklKh31aOsvgyl9aXYVbkL64vWY33ReqwrWhdScd4XWAwWZNgykBGb4a/M1QK/2r1TijUFSdakkHFOtPRba8sAABDQSURBVICjdp1cVFuEgjLVK7C0rtR/7d2ZilOz3oyJWRMxe/RsXDPpGsQYY9r8m+Cgx+4HzsaDPzyI276+LeT1TxtyGv549B9x5rAzYdAZYHfYcdvXt+GplU/59zPoDHhu5nOYO2Fuh8vdEVpqruK6YlQ2qNQ+2m+Xdi9i0BkgIFDeUI6i2iIU2gtRVKd6k5n1ZuzZ8hf/8y279Sj/b0hzpJTYUrYFS3YswQfbPsDSvUs7fF2WFZuFx898HLNHz27XuXtX5S58vvNzxJnicP6o80P+j1JK/HTgJ7y16S2sPLgS64rWtXqOy7BlYPqg6Vi55jL/uuZ6NmrvSTt2C+2F+HbPtzhQc8CfQvTMYWfi6AFHt/haBaUFeH7N8yiqK0K9qx7L9i1r9zVWflY+ZuXNwqy8WRifMb7P/sZJKUPGyNKO+ZZSQmv3uNr3VpsAtNpj22a0+YMciZZEmA3mTpdZu9cG4L8/bulxX/2/dAcGPag/Y9ADDHp0hNPjRFl9mbrorytFaX0pqhur/WNpGHQGf35drWI4uLJYWx/cUju4Mriv5MOl8Ai+mWktZzkR9T5aJZHWfb/GUYNaZ22HghbNjfXT05XrWpDH5XH5exn1Vk6PEyV1JSi0F/oDIcHz0vpSlNeXd7giKsYYo4IaqaMwKnWUPz1TVlxWD7+j9mn62yClxCH7If84UZtKNmFr+VaU1pf6g+E92XoxNyHXP9j6pOxJODLjSKRYU6ATOhTXFWNt4Vr8e/2/8U7BOyEVThaDBSNSRsBqsGLFwUAQw6w3Y/N1mzEkaUiLrxn8GbTUmj03IRcXj7kY8yfNb3P8ju7g8XpQUlcCq9GKeHN8WAJh0U5rARw8LkaNowZ6oYfZYIaA8AcAtABscCMKreGQlFKNvxH0XBUNFf5zRVVjFepcdXC4HUiwJPjHYdPGaNAqqILnCeaEXnndHolrx6LaImwqUcGsHRU7VKtsl2oIoJ1/tcBWTzUG0NJIZcRmqICGL6iRYcvwjwmhrYszxfVYBaDT4/SnKiyrL/N/BgdrDuKA/QBqHDVodDfC4/VgdNpoTMmZgqNzjsa4jHEdbpzT3P/6y11fYt4H87Cvel/IvtqYfk177SRZkrD414tx4uATO/+mw6gr3++y+jJ8tO0jvLflPXy287NWAw5WgxULJi3AXSfe1aWBx1vj8riws3IntpZtxc7KnWh0N8IrvbAZbThx8IkYnzkeOqGLyDFd76rHyxtexgvrXsAvxb+EfGdSrCmYkjMFs/JmYeaImRgQPyAsZSLqLAY9qD/rvXfy1CuZ9CZkx2UjOy677Z2JiKjfEkKo3nUmW4cGzow0IQQMwtCrgx0ak97kH+C8LV7pRXVjdUircgAhvcX0Oj2y47KRm5DbpyqshVA55HPic3Da0NMO2+7xelDVWIWy+jJ/z9VqR7U/7Uhpfak/9Uits9afa1vr7RSc4i7eHI8EcwKOTD8Sk3NUkKOlgVgBlRLj7OFn4+zhZ2NX5S7c8c0deP2X1wGovPA/F/8csr9e6PHEmU+0GvBoTbotHReNvghzjpxzWA78nqbX6XtNYCxamA1mpBvSW/2OtRf/Nz1HG1epuXR0wbzSC7vDfljLZ5fX5U8xG5yiVmucqNfpQ1LyCggY9UZ/oCPWFNtrWjGb9CYMSx4WkgYpnE4dcio2LtiIW7+6FU+vetof8G6u1f6Zw87EMzOeweDEwWEuZWSkxqTi8qMux+VHXY4GV4O/p9L6ovXYVr4NW8u3wqAz4Hfjfofrp17fLeed1hj1RoxMHYmRqSN79HU6I8YYg/mT5mP+pPnweD3YXbUbJXUlGJY8DGkxab3meCMiotb1/jt6IiIiIuoSndCpVtrWpIhVRkWKXqdX6VpiUiJajiFJQ/Dar17DlROuxPVLrscvJb/4twkIzDlyDu4+4e4WB5dtyXkjz8PUnKk4YfAJmJQ9qU8E7Ij6I53QIcGSEOliRL04cxz+cfY/cN2U6/Diuhfxys+vhKQgy03IxQOnPIA5Y+f028prq9GKaQOnYdrAaZEuSq+n1+kjGsgjIqLO410REREREVGYnHTESdgwfwOKaotw0H4QxbXFGJU2qtO9O1oa+4OIqD8bmToSD532EO4/5X7sqtwFi8HiHyy5vwY7iIiI+hMGPYiIiIiIwkgIgay4LKYcIiLqYQadASNSRkS6GERERBRmfSdhMxERERERERERERERUSsY9CAiIiIiIiIiIiIioqjAoAcREREREREREREREUUFBj2IiIiIiIiIiIiIiCgqMOhBRERERERERERERERRgUEPIiIiIiIiIiIiIiKKCgx6EBERERERERERERFRVGDQg4iIiIiIiIiIiIiIogKDHkREREREREREREREFBUY9CAiIiIiIiIiIiIioqjAoEc/lZ+fj/z8/EgXg4i6AY9noujB45koOvBYJooePJ6JogePZ6L+g0EPIiIiIiIiIiIiIiKKCgx6EBERERERERERERFRVGDQg4iIiIiIiIiIiIiIogKDHkREREREREREREREFBUY9CAiIiIiIiIiIiIioqggpJSRLkPECSHKrVZr8qhRoyJdlLApKCgAAPSn90x9z8aD1f7HY3MSIliS3o3HM1H04PHcNv428DPoC3gsRwaPjf4jnP/r3nI898fvd398z9SzesvxHC4FBQVoaGiokFKmRLosROHGoAcAIcRuAPEA9kS4KERERERERERERERdNRhAjZTyiEgXhCjcGPQgIiIiIiIiIiIiIqKowDE9iIiIiIiIiIiIiIgoKjDoQUREREREREREREREUYFBDyIiIiIiIiIiIiIiigoMehARERERERERERERUVRg0IOIiIiIiIiIiIiIiKICgx79kBDiHCHEMiFEtRCiRgjxnRDilEiXi4iIqL8SQmQJIRYKIQ4JIZxCiP1CiKeEEEmRLhsRdYwQYogQ4jUhRLEQokEIsUUIcacQwhLpshFR24QQ1wohpBAisZltBiHEDUKIzUKIeiHEHiHEY0KIuEiUlYha19rx3GS/s337HRWushFRz2LQo58RQswH8AGAIQAWAfgOwDQAnwoh8iNZNiJqHyHEib4LsramuyNdViJqmxAiBcBPAOYB2ATgPwDKAFwH4HshRGwEi0dEHSCEGAJgOYBLoI7n1wC4ANwD4CMhhD6CxSOiNviO0Xmt7PIsgEcACACvANgJ4E8AljKwSdS7tON4DnZ1T5aFiMLPEOkCUPgIIQYCeBLAOgAnSymrfOvPAvAJgLsBnBOxAhJRex0A8EQr288GMBzAxvAUh4i66GYAgwDcKKV8BACEEALACwCuAPB7AA9GrnhE1AGPAUgDMFdK+RIACCF0ABZCHc/zADwfueIRUVO+39wJvulyABNb2O9EqGP4awBnSSmdvvX3ALgTwE0A7u35EhNRS9p7PPv2HQtgPIA5AGaEo3xEFD5CShnpMlCYCCEeAvAXAFOllCuabPsOQK6U8oiIFI6IuoUQYiqApQCelVL+MdLlIaK2CSHWAzgSgE1K2Ri0fjiAbQA+lVKeHanyEVH7+NLRlQHYIKWc2GRbKoBSAMullNMiUT4iap6vR6W9mU1JWkNB336LAFwIYIqUclWTv68AUCSlzO3p8hJRy9p7PPv2LQOQ0mS/CVLK9T1VPiIKH/b06F9OB7CnacADAKSUJ0SgPETUjXy5hN+EqiS9KcLFIaL2EwCaa4Vi9M3rwlgWIuq8PKj0weuabpBSlvkqVyYLIeKklM1VyBBRZDQAmB20fA+A0c3sNx1AaXDAAwCklLVCiLUAjhZCHCGl3N1zRSWiNrT3eAZUD0yz7/F1AE7suWIRUbgx6NFPCCFsUK1IP/B1sZ8BYIpv8zIAn0l2+yHq6+4FkAvg+ODW4kTU630HYByAPwJ4CPCnw7nZt/3rCJWLiDrG45ubWthuAKAHkIXmW6ESUQRIKT0A3taWhRC/b7qPECIHQDrUb3ZzCgAcDZVilkEPoghpz/EctO+HQfvN7OGiEVGYMejRf2RBtTxrBPAtgOObbF8mhDhPSlkW7oIRUdcJIcYB+AOA16SUyyJdHiLqkLsBTAPwf0KIc6AqTiYDOArAp1BjexBR71cANWj58UIIo5TSpW0QQkwGkOhbbJpKg4h6P+24LW5he6VvnhyGshAREVEbdJEuAIVNkm/+awAZUKmuYqEGTv0PgGMB/DsiJSOi7nCfb87BE4n6HieAtb7HxwG4CirgAajWoiIShSKijpFS1kJdTw8C8B8hxDAhhE0IMQPAIgTS2DkiVEQi6rx437yl41dLRcmGpURERL0Agx79h9bN3gvgfCnlF1LKOinlPqjKlQMAZgghBkSshETUKUKISQBmAnhbSrk90uUhog57G8DVAF6DGhPABtXT42sA1wL4e+SKRkQddAPUsTsHwHYAtQA+ghrk+HPfPuxZTdT3aD23rC1s1+6368NQFiIiImoDgx79R61vvlNKuTl4g6/r/ce+xVFhLRURdYc/+eZPR7QURNRhQoijAJwBYA2A30kpt0kp66WUqwGcC6AQwAIhhLm15yGi3sHX2+NUAGcC+CuAB6B6Wk8FkAnVs6ul9DhE1HuV+OaJLWzX0l8dCkNZiIiIqA3setl/7PHNa1vYrnXHZQoNoj5ECJEM4EIA26WU30e6PETUYXm++XdSSm/wBillrRBiBYDzoNLlbAt34YioY4QQBgBSSvkZgM+C1scBGAvgRykl01sR9T37oHpxHNnC9mFQWRU2t7CdiIiIwog9PfoJKWU11AXYSCFEfDO7TPLNfwlfqYioG5wPwAyVHoeI+h67b57VwnZtTK7KFrYTUS8hhDBB9eRY1czm2QD0AD4Na6GIqFtIKT0AvgOQIYQICXwIIRIBTAGwQkpZE4nyERERUSgGPfqXfwGIAfCoEEKvrRRCnA9gOoAPpZSFkSocEXXKOb75koiWgog66weowMeFQohjgjcIIU6DGtj8eyllaSQKR0TtJ6V0QqWqGyeEmKCtF0IMhkp1VQ3g2YgUjoi6g3b8PiiE0AGAEEIA+D+osT6eilTBiIiIKBTTW/Uv/4DKLzwPwDFCiOUAsgGcBpUz/A8RLBsRdZDvJusEqIEVV0a4OETUCVLKGiHEfAAvA1gqhPgSwF4AR0CNC1ANNZg5EfUNt0I1RPheCPEeVLqbcwHEApgjpWSvLaI+Skr5gRDiLQAXAVgvhPgRQD5U1oQPpZSvR7SARERE5MeeHv2Ir0vuLAC3QAW8LgUwHsB/ABwtpdwbweIRUccNgxpM8RcpZWOkC0NEneOrJJkK4F0AEwHMhcoZ/hqAyVLKjREsHhF1gJTyCwCnA1gNFew4F8A6AKdLKd+KZNmIqFv8BsDtUBkULgeQDOAuqDH2iIiIqJcQUspIl4GIiIiIiIiIiIiIiKjL2NODiIiIiIiIiIiIiIiiAoMeREREREREREREREQUFRj0ICIiIiIiIiIiIiKiqMCgBxERERERERERERERRQUGPYiIiIiIiIiIiIiIKCow6EFERERERERERERERFGBQQ8iIiIiIiIiIiIiIooKDHoQEREREREREREREVFUYNCDiIiIiIiIiIiIiIiiAoMeREREREREREREREQUFRj0ICIiIiIiIiIiIiKiqMCgBxERERERERERERERRQUGPYiIiIiIiOj/27MDGQAAAIBB/tb3+EojAABYkB4AAAAAAMCC9AAAAAAAABakBwAAAAAAsCA9AAAAAACAhQBCqCAayKhKWAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "image/png": {
+ "height": 244,
+ "width": 798
+ },
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "n_peaks = len(peaks)\n",
+ "figure, ax = plt.subplots(figsize=(12,4))\n",
+ "plot_fitresult(ax, x_roi, y_roi, out, n_peaks)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "peakpo7721",
+ "language": "python",
+ "name": "peakpo7721"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.py b/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.py
new file mode 100644
index 0000000..35d867d
--- /dev/null
+++ b/jnb-tools/4_peakfit_from_dpp/xrd_pattern-peakfitting.py
@@ -0,0 +1,319 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# # Peak fitting for XRD pattern from dpp
+
+# - Please check [setup_for_notebooks](../0_setup/setup_for_notebooks.ipynb) file if you have problem using the notebooks in this folder.
+# - In this notebook, we will learn how to plot XRD patterns using the information saved in `dpp`.
+# - `dpp` is a project file saved in `PeakPo`. You may plot, jcpds information and cake as well as many other information.
+
+# In[1]:
+
+
+import sys
+sys.path.append('../local_modules')
+sys.path.append('../../peakpo')
+
+
+# ## Check the versio of pyFAI in your conda environment
+
+# In[2]:
+
+
+import pyFAI
+pyFAI.version
+
+
+# Note that the example data files I provided are made with `pyFAI` version `0.14`. If you see version higher than `0.15` here, you will get error when you read the example `dpp` file. In that case, you either follow the instruction in [setup_for_notebooks.ipynb](./setup_for_notebooks.ipynb) or you may use your own dpp for this note book.
+
+# ## Read dpp
+
+# In[3]:
+
+
+import dill
+import numpy as np
+
+
+# In[4]:
+
+
+get_ipython().run_line_magic('ls', '../data/hStv/*.dpp')
+
+
+# In[5]:
+
+
+filen_dpp = '../data/hStv/hSiO2_404_009.dpp'
+
+
+# In[6]:
+
+
+with open(filen_dpp, 'rb') as f:
+ model_dpp = dill.load(f)
+
+
+# ## Setup a new PeakPo model and assign info from dpp
+
+# In[7]:
+
+
+from model import PeakPoModel
+model = PeakPoModel()
+
+
+# Make sure to reset the chi folder location using the `new_chi_path` option.
+
+# In[8]:
+
+
+model.set_from(model_dpp, new_chi_path='../data/hStv')
+
+
+# See `xrd_pattern.ipynb` file for basic operations.
+
+# ## Make a simple plot
+
+# The following three modules are all in the `../local_modules` folder.
+
+# In[9]:
+
+
+from xrd_unitconv import * # Make conversios between different x-axis units
+
+
+# In[10]:
+
+
+import quick_plots as quick # A function to plot XRD pattern
+import fancy_plots as fancy # A function to plot XRD pattern
+
+
+# In[11]:
+
+
+get_ipython().run_line_magic('matplotlib', 'inline')
+get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
+
+
+# In[12]:
+
+
+import matplotlib.pyplot as plt
+
+
+# In[13]:
+
+
+f, ax = plt.subplots(figsize=(9,3.5))
+fancy.plot_diffpattern(ax, model)
+print(ax.axis())
+fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5,
+ show_index=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
+print(ax.axis())
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+ax.text(0.01,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = ax.transAxes, fontsize=16)
+plt.savefig('test.pdf', bbox_inches='tight')
+
+
+# ## Choose ROI
+
+# Check by changing the `xrange` for `plot_diffpattern`.
+
+# In[14]:
+
+
+f, ax = plt.subplots(figsize=(9,5))
+fancy.plot_diffpattern(ax, model, xrange=[6, 11])
+fancy.plot_jcpds(ax, model, bar_position=0.1, bar_height=5,
+ show_index=True,
+ phase_names = ['hStv', 'Au', 'Ne', 'hCt'], bar_vsep=5.)
+pressure = model.get_saved_pressure()
+temperature = model.get_saved_temperature()
+ax.text(0.01,0.9, "(a) {0:.0f} GPa, {1: .0f} K".format(pressure, temperature),
+ transform = ax.transAxes, fontsize=16)
+plt.savefig('test.pdf', bbox_inches='tight')
+
+
+# Get background subtracted pattern for masking.
+
+# In[15]:
+
+
+x, y = model.base_ptn.get_bgsub()
+x
+
+
+# Masking for ROI
+
+# In[16]:
+
+
+import numpy.ma as ma
+
+x_ma = ma.masked_outside(x, 6., 11.)
+x_roi = x_ma.compressed()
+y_roi = ma.masked_where(np.ma.getmask(x_ma), y).compressed()
+
+
+# Quick plot to check
+
+# In[17]:
+
+
+figure = plt.subplots(figsize=(10,3))
+plt.plot(x_roi, y_roi)
+
+
+# ## Setup fitting model
+
+# In[18]:
+
+
+from lmfit.models import PseudoVoigtModel, LinearModel
+from lmfit import Parameters
+
+
+# ## Make initial peak position array
+
+# In[19]:
+
+
+from scipy.signal import find_peaks
+
+peaks, _ = find_peaks(y_roi, height=30.)
+peaks
+
+
+# Plot to see if the search positions are reasonable.
+
+# In[20]:
+
+
+figure = plt.subplots(figsize=(10,3))
+plt.plot(x_roi, y_roi)
+plt.plot(x_roi[peaks], y_roi[peaks], 'o')
+
+
+# ## Setup fitting model
+
+# In[21]:
+
+
+from lmfit.models import PseudoVoigtModel, LinearModel
+from lmfit import Parameters
+
+
+# ## Define some functions for peak fitting
+
+# Define functions for peakfitting. Here we use `LMFIT` module.
+
+# In[22]:
+
+
+from xrd_pkfit import *
+
+
+# ## First fitting attempt without any restriction
+
+# In[23]:
+
+
+mod, pars = make_model(x_roi[peaks])
+out = mod.fit(y_roi, pars, x=x_roi, fit_kws={'maxfev': 500})
+print(out.fit_report(min_correl=0.5))
+
+
+# Plot the fitting results
+
+# In[24]:
+
+
+n_peaks = len(x_roi[peaks])
+figure, ax = plt.subplots(figsize=(12,4))
+plot_fitresult(ax, x_roi, y_roi, out, n_peaks)
+
+
+# ## Do better initial guess
+
+# Pereform new fitting
+
+# In[25]:
+
+
+mod, pars = make_model(x_roi[peaks], fwhm=0.03, amplitude=100.)
+out = mod.fit(y_roi, pars, x=x_roi, fit_kws={'maxfev': 500})
+print(out.fit_report(min_correl=0.5))
+
+
+# In[26]:
+
+
+n_peaks = len(x_roi[peaks])
+figure, ax = plt.subplots(figsize=(12,4))
+plot_fitresult(ax, x_roi, y_roi, out, n_peaks)
+
+
+# ## Use the last fitting results for the next fitting
+
+# In[27]:
+
+
+pars_new = out.params
+
+
+# In[28]:
+
+
+out = mod.fit(y_roi, pars_new, x=x_roi, fit_kws={'maxfev': 500})
+print(out.fit_report(min_correl=0.5))
+
+
+# In[29]:
+
+
+n_peaks = len(x_roi[peaks])
+figure, ax = plt.subplots(figsize=(12,4))
+plot_fitresult(ax, x_roi, y_roi, out, n_peaks)
+
+
+# ## Fix some parameters for fitting
+
+# In[30]:
+
+
+pars_new = out.params
+pars_new
+
+
+# In[31]:
+
+
+pars_new['pk1_center'].set(min=8.3, max=8.4, vary=True)
+pars_new['pk1_amplitude'].set(1000., vary=True)
+
+
+# In[32]:
+
+
+out = mod.fit(y_roi, pars_new, x=x_roi, fit_kws={'maxfev': 500})
+print(out.fit_report(min_correl=0.5))
+
+
+# In[33]:
+
+
+n_peaks = len(peaks)
+figure, ax = plt.subplots(figsize=(12,4))
+plot_fitresult(ax, x_roi, y_roi, out, n_peaks)
+
+
+# In[ ]:
+
+
+
+
diff --git a/jnb-tools/Convert_CIF_to_JCPDS.ipynb b/jnb-tools/Convert_CIF_to_JCPDS.ipynb
deleted file mode 100644
index e0ea95d..0000000
--- a/jnb-tools/Convert_CIF_to_JCPDS.ipynb
+++ /dev/null
@@ -1,597 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 0. General note"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "* `pymatgen` works only with `py35`\n",
- "\n",
- "* This notebook shows how to make an XRD plot using `pymatgen`.\n",
- "\n",
- "* This also aims to show how to read `CIF` files, convert them to `JCPDS`."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1. General setup"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import pymatgen as mg\n",
- "from pymatgen import Lattice, Structure\n",
- "from pymatgen.analysis.diffraction.xrd import XRDCalculator\n",
- "from pymatgen.symmetry.analyzer import SpacegroupAnalyzer\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "import matplotlib.pyplot as plt"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Import `ds_jcpds` which is used by `peakpo`. Because of this, if you move this notebook out of its original directory, this notebook needs modification to function properly."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "import sys\n",
- "sys.path.insert(0, '../peakpo')\n",
- "import ds_jcpds"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "fn_cif = \"../jcpds_from_cif/CIFs/corundum_Kirfel1990.cif\"\n",
- "fn_jcpds = '../jcpds_from_cif/Al2O3.jcpds'\n",
- "comments_jcpds = \"corundum by Kirfel 1990\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "k0 = 160.\n",
- "k0p = 4.00\n",
- "alpha = 3.16e-5"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "wl_xray = 0.3344\n",
- "xrange = (0,40)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2. Read CIF of Bridgmanite"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The `cif` file below was downloaded from American mineralogist crystal structure database."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": true,
- "run_control": {
- "marked": true
- }
- },
- "outputs": [],
- "source": [
- "material = mg.Structure.from_file(fn_cif)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3. Get some contents from CIF"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Unit-cell volume = 254.524259692\n",
- "Density = 3.991226963516955 g\n",
- "Chemical formula = Al12 O18\n"
- ]
- }
- ],
- "source": [
- "print('Unit-cell volume = ', material.volume)\n",
- "print('Density = ', material.density)\n",
- "print('Chemical formula = ', material.formula)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4. Get lattice parameters"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Lattice parameters = 4.757 4.757 12.9877 90.0 90.0 120.0\n",
- "trigonal\n"
- ]
- }
- ],
- "source": [
- "lattice = material.lattice\n",
- "print('Lattice parameters = ', lattice.a, lattice.b, lattice.c, \\\n",
- " lattice.alpha, lattice.beta, lattice.gamma)\n",
- "crystal_system = SpacegroupAnalyzer(material).get_crystal_system()\n",
- "print(crystal_system)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5. Get diffraction pattern"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "c = XRDCalculator(wavelength=wl_xray)\n",
- "pattern = c.get_xrd_data(material, two_theta_range = xrange)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 5.1. Extract twotheta, d-sp, int, hkl"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[ 5.50982446e+00 3.47871214e+00 4.78556021e+01 1.00000000e+00\n",
- " 0.00000000e+00 2.00000000e+00]\n",
- " [ 7.51871844e+00 2.55009722e+00 7.97457632e+01 1.00000000e+00\n",
- " 0.00000000e+00 4.00000000e+00]\n",
- " [ 8.06202386e+00 2.37850000e+00 3.72574125e+01 2.00000000e+00\n",
- " -1.00000000e+00 0.00000000e+00]\n",
- " ..., \n",
- " [ 3.96871028e+01 4.92557143e-01 1.18076820e+00 4.00000000e+00\n",
- " -2.00000000e+00 2.40000000e+01]\n",
- " [ 3.98302664e+01 4.90858219e-01 8.50345008e-03 8.00000000e+00\n",
- " 0.00000000e+00 8.00000000e+00]\n",
- " [ 3.98888823e+01 4.90166221e-01 1.38637524e-01 8.00000000e+00\n",
- " -4.00000000e+00 1.50000000e+01]]\n"
- ]
- }
- ],
- "source": [
- "d_lines = []\n",
- "for values in pattern:\n",
- " hkl_key = values[2].keys()\n",
- " hkl_txt = str(hkl_key)[12:-3].split(\",\")\n",
- " # print(hkl_txt[0], hkl_txt[1], hkl_txt[-1])\n",
- " d_lines.append([values[0], values[3], values[1], \\\n",
- " int(hkl_txt[0]), int(hkl_txt[1]), int(hkl_txt[-1]) ])\n",
- "\n",
- "diff_lines = np.asarray(d_lines)\n",
- "print(diff_lines)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 5.2. Table output"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Two Theta \n",
- " d-spacing \n",
- " intensity \n",
- " h \n",
- " k \n",
- " l \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 5.509824 \n",
- " 3.478712 \n",
- " 47.855602 \n",
- " 1.0 \n",
- " 0.0 \n",
- " 2.0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 7.518718 \n",
- " 2.550097 \n",
- " 79.745763 \n",
- " 1.0 \n",
- " 0.0 \n",
- " 4.0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 8.062024 \n",
- " 2.378500 \n",
- " 37.257413 \n",
- " 2.0 \n",
- " -1.0 \n",
- " 0.0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 8.860143 \n",
- " 2.164617 \n",
- " 0.470187 \n",
- " 0.0 \n",
- " 0.0 \n",
- " 6.0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 9.200940 \n",
- " 2.084604 \n",
- " 88.646843 \n",
- " 2.0 \n",
- " -1.0 \n",
- " 3.0 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Two Theta d-spacing intensity h k l\n",
- "0 5.509824 3.478712 47.855602 1.0 0.0 2.0\n",
- "1 7.518718 2.550097 79.745763 1.0 0.0 4.0\n",
- "2 8.062024 2.378500 37.257413 2.0 -1.0 0.0\n",
- "3 8.860143 2.164617 0.470187 0.0 0.0 6.0\n",
- "4 9.200940 2.084604 88.646843 2.0 -1.0 3.0"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "table = pd.DataFrame(data = diff_lines, # values\n",
- " columns=['Two Theta', 'd-spacing', 'intensity', 'h', 'k', 'l']) # 1st row as the column names\n",
- "table.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 5.3. Plot peak positions generated from pymatgen"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAC9CAYAAAB8p0MwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD9JJREFUeJzt3X+M5PVdx/HnG65iIqXX643RCz+uTQMYDLmUuYt/eHYp\npOXsmaCQAIYQY+xUmiCh/AGGSNSkRgWiBqF1FEqJjdfYoOkfXDh69pQDCuzhNdAGa2JCbU9k7q6e\nHFbJ3b79Y2aX2bnd2/l8d3bnO3vPRzK5mfn+et97Pjv72s939ruRmUiSJGl4Z427AEmSpEljgJIk\nSSpkgJIkSSpkgJIkSSpkgJIkSSq0bjUPtnHjxty8efOy99PpdGg0GssvaI2zT8OxT0uzR8OxT8Ox\nT8OxT0tb6R4dOHDgcGYueIBVDVCbN29menp62ftpNpsj2c9aZ5+GY5+WZo+GY5+GY5+GY5+WttI9\niojXF1vmKTxJkqRCBihJkqRCExmgWq3WuEuYCPZpOPZpafZoOPZpOPZpOPZpaePsUQz7p1wi4kZg\nS2beHRFXAfcBJ4E9mXlPRLwH+CJwMXAC+PXMfK1/H81mMz2fK0mSJkFEHMjM5kLLlpyBioizIuJp\n4LHe4wAeBnZm5lbg5yJiK3ALcCQztwF3Aw+MqH5JkqRaWTJAZeYMsAP4TO+pi4FDmXmo93g3sB24\nGnii99wzwJbRlipJklQPQ30GKjNPADO9hx8AjvQtPgas738+u+cFMyLm7b/T6dBsNudu7XZ7ufWr\nRqamujdJkiZVu92eyynAxsXWq3IdqKPA+/oebwA6/c/3TvNlb/ZqTqPR8JoWkiSptlqt1tyH0yPi\n8GLrVfktvO8C50fEpog4G9gJPA3sBa7rrfMJuqfxJEmS1pziGajMnImI2+l+9ukEsCszX4uIfwMe\nj4hp4G3g5tGWKkmSVA9DB6jMfKzv/h5gz8Dyd4AbR1aZJElSTU3khTQlSZLGyQAlSZJUyAAlSZJU\nyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAA1IaamujdJ\nkjR+BihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRC\nBihJkqRC66psFBEBPAxcBvw4cBdwBPhLIIBXgE9l5syI6pQkSaqNqjNQVwMbMvMXgF8F/gx4CLg1\nM7fRDVHXjaZESZKkeqkaoE4C742Is4D3AyeATZn5cm/5k8D2wY06nQ7NZnPu1m63Kx5ekiRp9Nrt\n9lxOATYutl6lU3jAs8D9wGvAJuA+4Jf6lh8D1g9u1Gg0mJ6ernjI+pqa6v67b984q5AkScvVarVo\ntVoARMThxdarOgN1N7A7My8GPgTcCpzXt3wD0Km4b0mSpFqrGqDOAd7s3f+v3u3tiNjSe+5a4Kll\n1iZJklRLVU/h3Q88GhG/TDdM/QHwKvBIRMwA+zNzz4hqlCRJqpVKASozj9KdZRp0xfLKkSRJqj8v\npClJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJ\nklTIACVJklTIACVJklTIACVJklTIACVJklTIAKWJNzXVvUmStFoMUJIkSYUMUJIkSYUMUJIkSYUM\nUJIkSYUMUJIkSYUMUJIkSYUqB6iIuCsiDkbEgYjYGRFXRcTLEfFSRHxulEVKkiTVyboqG0XEVuAG\nYBuwAXgGmAGuzMxDEbE3IrZm5kujK1WSJKkeqs5A/SLwpcx8JzPfAK4HDmXmod7y3cD2URQoSZJU\nN5VmoIBNwE9GxJPAucBe4Ejf8mPABYMbdTodms3m3ONWq0Wr1apYgiRJ0mi1223a7fbsw42LrVc1\nQL1FNzh9ElgP/Avwrb7lG4DO4EaNRoPp6emKh5QkSVpZ/ZM7EXF4sfWqnsJ7HjiWmQm8TXfG6cMR\nsSkizgZ2Ak9X3LckSVKtVZ2BegL4+YjY19vHvXRP4e0GTgC7MvO1kVQoSZJUM5UCVG/m6Y4FFu1Z\nXjmSJEn154U0JUmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmg\nJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSCq25ADU11b2pOnsoSdLprbkAJUmStNIMUJIkSYUM\nUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJooXmJBklQHBihJkqRCywpQEXFWRHwzIq6JiMsj4oWI\neDEiHokIw5kkSVqTlhtybgMu6d1/CLg1M7cBAVy3zH1LkiTVUuUAFREXAjuAr/X2sykzX+4tfhLY\nvvzyJEmS6mc5M1APAncCCawHfti37FjvuXk6nQ7NZnPu1m63l3F4SZKk0Wq323M5Bdi42Hrrquw8\nIm4GXsnMb0cEwFHgvL5VNgCdwe0ajQbT09NVDilJkrTiWq0WrVYLgIg4vNh6lQIU3dNzPxsR+4BL\ngY8AH4qILZl5ELgW+GLFfUuSJNVapQCVmZ+evR8RjwG7gDeBRyJiBtifmXtGUqEkSVLNVJ2BmpOZ\nv9b38Irl7m8tmr3w475946xCkiSNitdqkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJ\nKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSA\nkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKrSuykYRcQ7wOPBBYAa4FzgJ\n3Nf7d09m3jOqIiVJkuqkUoACbgKOZuYNEdEAnqMbpK7MzEMRsTcitmbmSyOrVNJpTU11/923b5xV\nSNKZoeopvNeBL/Tu/wg4FziUmYd6z+0Gtg9u1Ol0aDabc7d2u13x8NLKm5p6N5RIks4M7XZ7LqcA\nGxdbr9IMVGZ+AyAiLgP+Cvg8cHnfKseACwa3azQaTE9PVzmkJEnSimu1WrRaLQAi4vBi61U9hUdE\n3AtcD9wB/ID5M04bgE7VfUuSJNVZ1Q+R3wRsBbZm5v9FxFnA+RGxCfhPYCfwqdGVKUmSVB9VZ6B2\n0P0NvKciYva52+l+9ukEsCszX1t+eZIkSfVT9TNQtyyyaM8yapEkSZoIXkhTkiSpkAFKkiSpkAFK\n0prm9bwkrQQDlHSGMlhIUnUGKEmSpEIGKEmSpEIGKEmSpEIGKEmrxs9dSVorDFDSaRw8WI9v+AaP\n+eyHpHEzQEmSJBUyQEk14+yKJNWfAUqSJKmQAUpjsZZmWdbS/0WSNBwDlCRJUiEDlLQKnKWabL5+\nkgYZoCSNhaFE0iRbN+4CJKkOZsPcvn2nPidJg5yBksbA2RdpaX6dqM6cgZK0bAvN3izk4MHR7Wtw\n/VnDbjfJSnskafScgdKqm5oa7hvpWleXPxOjhS13nA7OntR5NmW5tY17+0k5ptYWA5RWnG9U41XS\n/1G/Vr72a5OvqzTCABUR74mIv46IFyPiuYi4dFT7llZS3b8ZnOkzdiv5+qz0a79Ss4wHD8L+/fUe\nt2eS9eu7t2FNTb27zWq9hqcb67P1DFNL3d8vV9MoZ6BuAY5k5jbgbuCBEe5bS3BQn8qeaLmOHx9t\neJ3U07bDfi2VznbOhohhe3y6b/SlIQbmvx6TMvs6rtOlq/l+utix6vaePsoAdTXwRO/+M8CWEe77\njFK3QaLFnW52aKHXsc6vbZWZrirftBY79ij6UhJQRjWzN1t71f9Dfw+H3cfx43Dy5HABYDB0LPTZ\nrP37q/diqe1H9drOHuf48VP3PTU1//lhHT8+fybvdONnsfA2NQXHji1+/KX+/0uN2YW2P3jw3XEz\nWNNixzt4sOw1XmhcV9lHySzb7LH27+/e6i4yczQ7itgDfDYzX+09/j5wYWbOzK5z0UUXZaPRmNum\n1WrRarVGcnxJkqTlarfbtNttAA4cOPB6Zm5eaL1RBqhdwIOZ+WxEBPC9zLygf51ms5nT09MjOZ4k\nSdJKiogDmdlcaNkoT+HtBa7r3f8E3dN4kiRJa84oL6T5JeDxiJgG3gZuHuG+JUmSamNkM1CZ+U5m\n3piZzcz8aGb++6j2PWj23KROzz4Nxz4tzR4Nxz4Nxz4Nxz4tbZw9msgLaTqohmOfhmOflmaPhmOf\nhmOfhmOflmaAkiRJmiAj+y28oQ4W0QFeH8GuNgKHR7Cftc4+Dcc+Lc0eDcc+Dcc+Dcc+LW2le3RR\nZjYWWrCqAUqSJGkt8BSeJElSIQOUJElSIQOUJElSoYkLUBHxTxGxr3d7eNz11E1E3BgRf9i7f1VE\nvBwRL0XE58ZdW50M9OnGiHixb1xtG3d94xQR50TEV3o9+WZEfNyxdKpF+uRYGhAR742Iv++9dz8f\nEVc4nuZbpEeOpUVExFm9r7lrIuLyiHih16tHImLVcs0or0S+4iLiJ4C3MvOT466lbnqD5ilgO/Cn\nvb9H+DBwZWYeioi9EbE1M18aa6FjNtin3tMfAW7LzBfGVli93AQczcwbIqIBPAfM4FgatFCf/g7H\n0qDPAv+YmX8SER8Dfh/4MI6nfoM9+j3gOziWFnMbcEnv/kPArZn5ckQ8SvdPyv3tahQxaTNQlwCb\nI+IfIuLpiNg67oLqIjNngB3AZ3pPXQwcysxDvce76YaGM9oCfQK4FPidiHgmIv4oIs4eT3W18Trw\nhd79HwHn4lhayEJ9+hkcS4O+DvxN7/4G4L9xPA0a7NFb+L60oIi4kO57+NfoZphNmflyb/GTrOJY\nmrQAdQL4c+Aq4HbgKxExUbNoKykzT9CdKQD4AHCkb/ExYP2qF1VDA30CeBb4LeCjQAO4dRx11UVm\nfiMzvxURlwFPA5/HsXSKBfr0ALAfx9I8mflsZr4REbuBLwOv4niaZ4EefRXflxbzIHAnkHTHzQ/7\nlq3qWJq08PEq8Ep2L171nYg4DPwU8P3xllVLR4H39T3eAHTGVEvd3Z+ZJwEi4qvAr4y5nrGLiHuB\n64E7gB8w/6c6x1JPf58yc29EnO1Ymi8izgfeyMwdEbEZ+Gdgum+VM348LdCj54HzHUvzRcTNdDPA\nt7ufUuEocF7fKqs6liZtBuq3gd8FiIifptu4/xhnQTX2XeD8iNjUm/rdSfenZPWJiB8DvhcR7+89\n9THmv7mfcSLiJmArsDUz9+JYWtBgnxxLi3oQ+Hjv/v/QvWq042m+wR79L46lhWwHroyIfcA1wB8D\nH4qILb3l19L9jOuqmLQZqAeBL0fEfrqnYFqzCV3zZeZMRNxO9/MFJ4BdmfnamMuqncx8JyLuBL4e\nEW8B/wo8Ouayxm0H8EHgqd5PedA9Ze5Ymm+hPjmWTnUP8BcRcRfd7zm/CZyN46nfYI9+g+5pO8dS\nn8z89Oz9iHgM2AW8CTwSETPA/szcs1r1+KdcJEmSCk3aKTxJkqSxM0BJkiQVMkBJkiQVMkBJkiQV\nMkBJkiQVMkBJkiQVMkBJkiQV+n9eeoNV7QGergAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "f = plt.figure(figsize=(10,3))\n",
- "plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b');"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6. Convert to JCPDS"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Setup an `jcpds` object from a `cif` file"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "material_jcpds = ds_jcpds.JCPDS()\n",
- "material_jcpds.set_from_cif(fn_cif, k0, k0p, \\\n",
- " thermal_expansion=alpha, two_theta_range=xrange)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Calculate diffraction pattern at a pressure."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "no symmetry is given\n"
- ]
- }
- ],
- "source": [
- "material_jcpds.cal_dsp(pressure = 100.)\n",
- "dl = material_jcpds.get_DiffractionLines()\n",
- "tth, inten = material_jcpds.get_tthVSint(wl_xray)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAC9CAYAAAB8p0MwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD9JJREFUeJzt3X+M5PVdx/HnG65iIqXX643RCz+uTQMYDLmUuYt/eHYp\npOXsmaCQAIYQY+xUmiCh/AGGSNSkRgWiBqF1FEqJjdfYoOkfXDh69pQDCuzhNdAGa2JCbU9k7q6e\nHFbJ3b79Y2aX2bnd2/l8d3bnO3vPRzK5mfn+et97Pjv72s939ruRmUiSJGl4Z427AEmSpEljgJIk\nSSpkgJIkSSpkgJIkSSpkgJIkSSq0bjUPtnHjxty8efOy99PpdGg0GssvaI2zT8OxT0uzR8OxT8Ox\nT8OxT0tb6R4dOHDgcGYueIBVDVCbN29menp62ftpNpsj2c9aZ5+GY5+WZo+GY5+GY5+GY5+WttI9\niojXF1vmKTxJkqRCBihJkqRCExmgWq3WuEuYCPZpOPZpafZoOPZpOPZpOPZpaePsUQz7p1wi4kZg\nS2beHRFXAfcBJ4E9mXlPRLwH+CJwMXAC+PXMfK1/H81mMz2fK0mSJkFEHMjM5kLLlpyBioizIuJp\n4LHe4wAeBnZm5lbg5yJiK3ALcCQztwF3Aw+MqH5JkqRaWTJAZeYMsAP4TO+pi4FDmXmo93g3sB24\nGnii99wzwJbRlipJklQPQ30GKjNPADO9hx8AjvQtPgas738+u+cFMyLm7b/T6dBsNudu7XZ7ufWr\nRqamujdJkiZVu92eyynAxsXWq3IdqKPA+/oebwA6/c/3TvNlb/ZqTqPR8JoWkiSptlqt1tyH0yPi\n8GLrVfktvO8C50fEpog4G9gJPA3sBa7rrfMJuqfxJEmS1pziGajMnImI2+l+9ukEsCszX4uIfwMe\nj4hp4G3g5tGWKkmSVA9DB6jMfKzv/h5gz8Dyd4AbR1aZJElSTU3khTQlSZLGyQAlSZJUyAAlSZJU\nyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAAlSZJUyAA1IaamujdJ\nkjR+BihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRCBihJkqRC\nBihJkqRC66psFBEBPAxcBvw4cBdwBPhLIIBXgE9l5syI6pQkSaqNqjNQVwMbMvMXgF8F/gx4CLg1\nM7fRDVHXjaZESZKkeqkaoE4C742Is4D3AyeATZn5cm/5k8D2wY06nQ7NZnPu1m63Kx5ekiRp9Nrt\n9lxOATYutl6lU3jAs8D9wGvAJuA+4Jf6lh8D1g9u1Gg0mJ6ernjI+pqa6v67b984q5AkScvVarVo\ntVoARMThxdarOgN1N7A7My8GPgTcCpzXt3wD0Km4b0mSpFqrGqDOAd7s3f+v3u3tiNjSe+5a4Kll\n1iZJklRLVU/h3Q88GhG/TDdM/QHwKvBIRMwA+zNzz4hqlCRJqpVKASozj9KdZRp0xfLKkSRJqj8v\npClJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJ\nklTIACVJklTIACVJklTIACVJklTIACVJklTIAKWJNzXVvUmStFoMUJIkSYUMUJIkSYUMUJIkSYUM\nUJIkSYUMUJIkSYUMUJIkSYUqB6iIuCsiDkbEgYjYGRFXRcTLEfFSRHxulEVKkiTVyboqG0XEVuAG\nYBuwAXgGmAGuzMxDEbE3IrZm5kujK1WSJKkeqs5A/SLwpcx8JzPfAK4HDmXmod7y3cD2URQoSZJU\nN5VmoIBNwE9GxJPAucBe4Ejf8mPABYMbdTodms3m3ONWq0Wr1apYgiRJ0mi1223a7fbsw42LrVc1\nQL1FNzh9ElgP/Avwrb7lG4DO4EaNRoPp6emKh5QkSVpZ/ZM7EXF4sfWqnsJ7HjiWmQm8TXfG6cMR\nsSkizgZ2Ak9X3LckSVKtVZ2BegL4+YjY19vHvXRP4e0GTgC7MvO1kVQoSZJUM5UCVG/m6Y4FFu1Z\nXjmSJEn154U0JUmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSChmg\nJEmSChmgJEmSChmgJEmSChmgJEmSChmgJEmSCq25ADU11b2pOnsoSdLprbkAJUmStNIMUJIkSYUM\nUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJooXmJBklQHBihJkqRCywpQEXFWRHwzIq6JiMsj4oWI\neDEiHokIw5kkSVqTlhtybgMu6d1/CLg1M7cBAVy3zH1LkiTVUuUAFREXAjuAr/X2sykzX+4tfhLY\nvvzyJEmS6mc5M1APAncCCawHfti37FjvuXk6nQ7NZnPu1m63l3F4SZKk0Wq323M5Bdi42Hrrquw8\nIm4GXsnMb0cEwFHgvL5VNgCdwe0ajQbT09NVDilJkrTiWq0WrVYLgIg4vNh6lQIU3dNzPxsR+4BL\ngY8AH4qILZl5ELgW+GLFfUuSJNVapQCVmZ+evR8RjwG7gDeBRyJiBtifmXtGUqEkSVLNVJ2BmpOZ\nv9b38Irl7m8tmr3w475946xCkiSNitdqkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJ\nKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSA\nkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKrSuykYRcQ7wOPBBYAa4FzgJ\n3Nf7d09m3jOqIiVJkuqkUoACbgKOZuYNEdEAnqMbpK7MzEMRsTcitmbmSyOrVNJpTU11/923b5xV\nSNKZoeopvNeBL/Tu/wg4FziUmYd6z+0Gtg9u1Ol0aDabc7d2u13x8NLKm5p6N5RIks4M7XZ7LqcA\nGxdbr9IMVGZ+AyAiLgP+Cvg8cHnfKseACwa3azQaTE9PVzmkJEnSimu1WrRaLQAi4vBi61U9hUdE\n3AtcD9wB/ID5M04bgE7VfUuSJNVZ1Q+R3wRsBbZm5v9FxFnA+RGxCfhPYCfwqdGVKUmSVB9VZ6B2\n0P0NvKciYva52+l+9ukEsCszX1t+eZIkSfVT9TNQtyyyaM8yapEkSZoIXkhTkiSpkAFKkiSpkAFK\n0prm9bwkrQQDlHSGMlhIUnUGKEmSpEIGKEmSpEIGKEmSpEIGKEmrxs9dSVorDFDSaRw8WI9v+AaP\n+eyHpHEzQEmSJBUyQEk14+yKJNWfAUqSJKmQAUpjsZZmWdbS/0WSNBwDlCRJUiEDlLQKnKWabL5+\nkgYZoCSNhaFE0iRbN+4CJKkOZsPcvn2nPidJg5yBksbA2RdpaX6dqM6cgZK0bAvN3izk4MHR7Wtw\n/VnDbjfJSnskafScgdKqm5oa7hvpWleXPxOjhS13nA7OntR5NmW5tY17+0k5ptYWA5RWnG9U41XS\n/1G/Vr72a5OvqzTCABUR74mIv46IFyPiuYi4dFT7llZS3b8ZnOkzdiv5+qz0a79Ss4wHD8L+/fUe\nt2eS9eu7t2FNTb27zWq9hqcb67P1DFNL3d8vV9MoZ6BuAY5k5jbgbuCBEe5bS3BQn8qeaLmOHx9t\neJ3U07bDfi2VznbOhohhe3y6b/SlIQbmvx6TMvs6rtOlq/l+utix6vaePsoAdTXwRO/+M8CWEe77\njFK3QaLFnW52aKHXsc6vbZWZrirftBY79ij6UhJQRjWzN1t71f9Dfw+H3cfx43Dy5HABYDB0LPTZ\nrP37q/diqe1H9drOHuf48VP3PTU1//lhHT8+fybvdONnsfA2NQXHji1+/KX+/0uN2YW2P3jw3XEz\nWNNixzt4sOw1XmhcV9lHySzb7LH27+/e6i4yczQ7itgDfDYzX+09/j5wYWbOzK5z0UUXZaPRmNum\n1WrRarVGcnxJkqTlarfbtNttAA4cOPB6Zm5eaL1RBqhdwIOZ+WxEBPC9zLygf51ms5nT09MjOZ4k\nSdJKiogDmdlcaNkoT+HtBa7r3f8E3dN4kiRJa84oL6T5JeDxiJgG3gZuHuG+JUmSamNkM1CZ+U5m\n3piZzcz8aGb++6j2PWj23KROzz4Nxz4tzR4Nxz4Nxz4Nxz4tbZw9msgLaTqohmOfhmOflmaPhmOf\nhmOfhmOflmaAkiRJmiAj+y28oQ4W0QFeH8GuNgKHR7Cftc4+Dcc+Lc0eDcc+Dcc+Dcc+LW2le3RR\nZjYWWrCqAUqSJGkt8BSeJElSIQOUJElSIQOUJElSoYkLUBHxTxGxr3d7eNz11E1E3BgRf9i7f1VE\nvBwRL0XE58ZdW50M9OnGiHixb1xtG3d94xQR50TEV3o9+WZEfNyxdKpF+uRYGhAR742Iv++9dz8f\nEVc4nuZbpEeOpUVExFm9r7lrIuLyiHih16tHImLVcs0or0S+4iLiJ4C3MvOT466lbnqD5ilgO/Cn\nvb9H+DBwZWYeioi9EbE1M18aa6FjNtin3tMfAW7LzBfGVli93AQczcwbIqIBPAfM4FgatFCf/g7H\n0qDPAv+YmX8SER8Dfh/4MI6nfoM9+j3gOziWFnMbcEnv/kPArZn5ckQ8SvdPyv3tahQxaTNQlwCb\nI+IfIuLpiNg67oLqIjNngB3AZ3pPXQwcysxDvce76YaGM9oCfQK4FPidiHgmIv4oIs4eT3W18Trw\nhd79HwHn4lhayEJ9+hkcS4O+DvxN7/4G4L9xPA0a7NFb+L60oIi4kO57+NfoZphNmflyb/GTrOJY\nmrQAdQL4c+Aq4HbgKxExUbNoKykzT9CdKQD4AHCkb/ExYP2qF1VDA30CeBb4LeCjQAO4dRx11UVm\nfiMzvxURlwFPA5/HsXSKBfr0ALAfx9I8mflsZr4REbuBLwOv4niaZ4EefRXflxbzIHAnkHTHzQ/7\nlq3qWJq08PEq8Ep2L171nYg4DPwU8P3xllVLR4H39T3eAHTGVEvd3Z+ZJwEi4qvAr4y5nrGLiHuB\n64E7gB8w/6c6x1JPf58yc29EnO1Ymi8izgfeyMwdEbEZ+Gdgum+VM348LdCj54HzHUvzRcTNdDPA\nt7ufUuEocF7fKqs6liZtBuq3gd8FiIifptu4/xhnQTX2XeD8iNjUm/rdSfenZPWJiB8DvhcR7+89\n9THmv7mfcSLiJmArsDUz9+JYWtBgnxxLi3oQ+Hjv/v/QvWq042m+wR79L46lhWwHroyIfcA1wB8D\nH4qILb3l19L9jOuqmLQZqAeBL0fEfrqnYFqzCV3zZeZMRNxO9/MFJ4BdmfnamMuqncx8JyLuBL4e\nEW8B/wo8Ouayxm0H8EHgqd5PedA9Ze5Ymm+hPjmWTnUP8BcRcRfd7zm/CZyN46nfYI9+g+5pO8dS\nn8z89Oz9iHgM2AW8CTwSETPA/szcs1r1+KdcJEmSCk3aKTxJkqSxM0BJkiQVMkBJkiQVMkBJkiQV\nMkBJkiQVMkBJkiQVMkBJkiQV+n9eeoNV7QGergAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "f = plt.figure(figsize=(10,3))\n",
- "plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')\n",
- "plt.vlines(tth, 0., inten, color = 'r');"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7. Save to a JCPDS file"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "material_jcpds.write_to_file(fn_jcpds, comments=comments_jcpds)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8. Read back the written JCPDS for test"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "material_test = ds_jcpds.JCPDS(filename = fn_jcpds)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Calculate a pattern at a pressure"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "material_test.cal_dsp(pressure = 10.)\n",
- "material_test.get_DiffractionLines()\n",
- "tth, inten = material_test.get_tthVSint(wl_xray)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAC9CAYAAAB8p0MwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEXpJREFUeJzt3X+M5Hddx/Hnuz3ExALDcWv0UuhBSMEg5AJzjX94MqUE\nqNQELQmtaYgxMlgSrMAf1BAbNWJUINZUCo4WCpF4RIJKml565WRrt/zqXh1CIRWNSRFOZK+Ha7ei\nzd29/WNmdmfnZmb3Mzt789295yOZ7He+Pz/33s/N97Wf73e/G5mJJEmSNu+SWTdAkiRppzFASZIk\nFTJASZIkFTJASZIkFTJASZIkFdpzIQ+2b9++PHDgwJb3s7S0xNzc3NYbtEtZn/Gsz8as0XjWZzzr\nM571Ga9K9Tlx4sSpzBzamAsaoA4cOMDi4uKW91Ov16eyn93K+oxnfTZmjcazPuNZn/Gsz3hVqk9E\nPD5qmZfwJEmSChmgJEmSCu3IANVsNmfdhEqzPuNZn41Zo/Gsz3jWZzzrM95OqU9s9k+5RMQNwMHM\nvDUirgE+AJwFjmXm+yLiGcDHgSuBM8CvZuZj/fuo1+tZleuakiRJ40TEicysD1u24QhURFwSEfcD\nd3ffB3AncF1mHgJ+JiIOAW8FnsjMq4BbgQ9Nqf2SJEmVsmGAysxzwLXAO7qzrgROZubJ7vujwGHg\ntcBnu/MeBA5Ot6mSJEnVsKl7oDLzDHCu+/Z5wBN9i5eBWv/87FwXzIhYt/+lpSXq9frqq9VqbbX9\nqoBGo/M6/40kSTtLq9VazSnAvlHrTfIcqNPAc/re7wWW+ud3L/Nld/Rq1dzcXGWe7SBJkjSo2Wyu\n3sgeEadGrTfJb+F9C7g8IvZHxKXAdcD9wHHg+u46r6dzGU+SJGnXKR6BysxzEXELnXufzgBHMvOx\niPg34JMRsQg8Bdw03aZKkiRVw6YDVGbe3Td9DDg2sPxp4IaptUySJKmiduSDNCVJkmbJACVJklTI\nACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklTIACVJklSo+I8J\n68JrNDpf5+lNzM+oJZIkCRyBkiRJKmaAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJKmSAkiRJ\nKmSAkiRJKmSAkiRJKmSAkiRJKjTRn3KJiADuBF4G/CjwXuAJ4C+AAL4OvC0zz02pnZIkSZUx6QjU\na4G9mflzwC8Dfwp8GLg5M6+iE6Kun04TJUmSqmXSAHUWeFZEXAI8FzgD7M/MR7rL7wUOD260tLRE\nvV5ffbVarQkPL0mSNH2tVms1pwD7Rq030SU84CHgg8BjwH7gA8Av9C1fBmqDG83NzbG4uDjhIaur\n0eh8nac3MT+jlkiSpK1oNps0m00AIuLUqPUmHYG6FTiamVcCLwJuBp7dt3wvsDThviVJkipt0gD1\nTOD73en/6r6eioiD3XlvAu7bYtskSZIqadJLeB8EPhYRv0gnTP0B8ChwV0ScAxYy89iU2ihJklQp\nEwWozDxNZ5Rp0Ku21hxJkqTq80GakiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQ\nkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQkiRJhQxQ2pEajc5r9AxJ\nkraPAUqSJKmQAUqSJKmQAUqSJKmQAUqSJKmQAUqSJKmQAUqSJKnQxAEqIt4bEe2IOBER10XENRHx\nSEQ8HBHvn2YjJUmSqmTPJBtFxCHgLcBVwF7gQeAccHVmnoyI4xFxKDMfnl5TJUmSqmHSEaifBz6R\nmU9n5veANwMnM/Nkd/lR4PA0GihJklQ1E41AAfuBH4+Ie4HLgOPAE33Ll4HnD260tLREvV5ffd9s\nNmk2mxM2QZIkabparRatVqv3dt+o9SYNUE/SCU5vBGrAPwNf61u+F1ga3Ghubo7FxcUJDylJkrS9\n+gd3IuLUqPUmvYT3JWA5MxN4is6I04sjYn9EXApcB9w/4b4lSZIqbdIRqM8CPxsR89193EbnEt5R\n4AxwJDMfm0oLJUmSKmaiANUdeXrXkEXHttYcSZKk6vNBmpIkSYUMUJIkSYUMUJIkSYUMUJIkSYUM\nUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYUMUJIkSYV2XYBq\nNKBda3QmVKTR6CvbujeSJKnfrgtQkiRJ280AJUmSVMgAJUmSVMgAJUmSVMgAJUmSVMgAJUmSVMgA\npco774kKjQa3txvDV5Yk6QIwQEmSJBXaUoCKiEsi4ssR8YaIeEVEfCUivhoRd0WE4UySJO1KWw05\n7wRe0p3+MHBzZl4FBHD9FvctSZJUSRMHqIh4AXAt8LnufvZn5iPdxfcCh7fePEmSpOrZygjUHcB7\ngARqwA/6li13562ztLREvV5ffbVarS0cXpIkabpardZqTgH2jVpvzyQ7j4ibgK9n5jciAuA08Oy+\nVfYCS4Pbzc3Nsbi4OMkhJUmStl2z2aTZbAIQEadGrTdRgKJzee6nI2IeeCnwSuBFEXEwM9vAm4CP\nT7hvSZKkSpsoQGXm23vTEXE3cAT4PnBXRJwDFjLz2FRaKEmSVDGTjkCtysxf6Xv7qq3ub7fpPQBy\nfn7wjSRJ2ql8VpMkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIh\nA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5Qk\nSVIhA5QkSVIhA5QkSVIhA5QkSVIhA5QkSVKhPZNsFBHPBD4JvBA4B9wGnAU+0P16LDPfN61GSpIk\nVclEAQq4ETidmW+JiDngi3SC1NWZeTIijkfEocx8eGotlbSq0eh8nZ/faKYkaTtMegnvceCj3ekf\nApcBJzPzZHfeUeDw4EZLS0vU6/XVV6vVmvDw0vZoNNZyyPAZkqTdrNVqreYUYN+o9SYagcrMLwBE\nxMuAvwQ+Aryib5Vl4PmD283NzbG4uDjJISVJkrZds9mk2WwCEBGnRq036SU8IuI24M3Au4Dvsn7E\naS+wNOm+JUmSqmzSm8hvBA4BhzLz/yLiEuDyiNgP/CdwHfC26TVTkiSpOiYdgbqWzm/g3RcRvXm3\n0Ln36QxwJDMf23rzJEmSqmfSe6DeOmLRsS20RZIkaUfwQZqSJEmFDFCSJEmFDFCSdoWxj+zyeV6S\npswAJV0khmYIg4UkTcQAJUmSVMgAJUmSVMgAJUmSVMgAJWnqRt5a5T1XknYJA5Q0oN0eOMefN2P7\nnZczLtLg4W/WSaoqA5QkSVIhA5Q0Y8NGm25vN4avLEmqBAOUJElSIQOULpjdcl+PD6SUJBmgJEmS\nChmgpG3gKNXO42/8SSphgJK0rXwmlKTdaM+sGyBJF1Ivs83Pr5/XbsM8DWj0LTTgSRrBACVdIO12\n5+vB3ozVk/P8BW+LNGvDguxkK0mzYYCSVGzoeW1g5sgHuPctaLfhNxtDzo9DwuXgvtZt0mhwz0Kb\nf73s4OCSHWtsdjBYSDPnPVC6YNrttVGY1WsmF5GVlc5rnXbbh2bO2MiuuMk+2n8r19hHdcz4nq8N\nDz9mha1sO43tJ7GpXXofnrbAAKVtM/jZdM9Kg3tWGiPW1rSM+g3AwaA2NB9s4YSyLiD3ub3tk9V3\nGsOHtLGpBaiIeEZE/FVEfDUivhgRL53WvqVpqvIjBkaGmotktG7cb+xtJYSNCnfQCXhbCfbj9j1+\n4cb7XVgY0y0XFqBWm2jf2pxGo1PiDT8aajWo1datv+FjMTa1443bN24X6w4zZuV2rcHKnk22pyKf\nlVUwzRGotwJPZOZVwK3Ah6a4b42xrj9f5J17tzztXBfW2bNDLq9CZ2ZhABp579eGC2dro6x3e7tB\nu9bY9KW43sm7Vhs9MnnPQm3tB4R2e2Su6M1v10asAGsHG/LvGfsx0PuebPKzYrMfKZseee3ucNMf\nVSNWnHT7RmNE35/4AGWbF/1AW7HP82kGqNcCn+1OP0jfLxtp81b7R8U6itacd6LpngCGnRvbtc5J\np+flZ6txAp1kpGvg/LS2TeFP0iMzScEo09iT/WZPEIX/x0adZ1cvTY9pf6PRGTDqteO8H3r6a9hd\nuLLSCXb9/Wp1u3Z7LfV1T769gDEYctq1BstR4/cXBney/vgvXhn9vV9YgOXl4csaDTj7wEJnpSE2\nc+m+d39gu73+e9X7Prfb8PfLDV6+vHD+N7P37xm4yXBlpdPm3j91aHZtt2F5meUH2p3mD6zUXbzW\n12q1TujrO3S71uisNKSTrax0l48a+WnDysJaZ+4dvlaDPXvWnwvWfdu6K96zUOPzD+xZ9xkzrl+v\nLLRZWVj/WdXrSufp7+x9K68stMePjA7sY2VPjXatwcLoLnL+MTe18uxFZk5nRxHHgHdn5qPd998B\nXpCZ53rrXHHFFTk3N7e6TbPZpNlsTuX4kiRJW9VqtWi1WgCcOHHi8cw8MGy9aQaoI8AdmflQRATw\n7cx8fv869Xo9FxcXp3I8SZKk7RQRJzKzPmzZNC/hHQeu706/ns5lPEmSpF1nmg/S/ATwyYhYBJ4C\nbpriviVJkipjaiNQmfl0Zt6QmfXMfHVm/vu09j2od21Sw1mf8azPxqzReNZnPOsznvUZb6fUZ5qX\n8C6YnVLcWbE+41mfjVmj8azPeNZnPOsz3k6pz44MUJIkSbM0td/C29TBIpaAx6ewq33AqSnsZ7ey\nPuNZn41Zo/Gsz3jWZzzrM16V6nNFZs4NW3BBA5QkSdJu4CU8SZKkQgYoSZKkQgYoSZKkQjsuQEXE\nP0bEfPd156zbUyURcUNE/GF3+pqIeCQiHo6I98+6bVUwUJ8bIuKrfX3pqlm3bxYi4pkR8eluLb4c\nEa+z76wZUR/7Tp+IeFZE/F33s/lLEfEq+9CaEfWxDw2IiEu6/8feEBGviIivdGt0V0RUMqtM80nk\n2y4ifgx4MjPfOOu2VEm3c90HHAZu7/4twjuBqzPzZEQcj4hDmfnwTBs6I4P16c5+JfDOzPzKzBpW\nDTcCpzPzLRExB3wROId9p2dYff4W+06/dwMPZOafRMRrgN8DXox9qGewPr8LfBP70KB3Ai/pTn8Y\nuDkzH4mIj9H5M3F/M7OWjVDJVDfGS4ADEfEPEXF/RByadYOqIDPPAdcC7+jOuhI4mZknu++P0gkP\nF6Uh9QF4KfDbEfFgRPxRRFw6m9bN3OPAR7vTPwQuw77Tb1h9fgr7Tr/PA3/dnd4L/Df2oX6D9XkS\nP3/WiYgX0PmM/hydXLI/Mx/pLr6XivafnRagzgB/BlwD3AJ8OiJ21CjadsnMM3RGDgCeBzzRt3gZ\nqF3wRlXIQH0AHgJ+A3g1MAfcPIt2zVpmfiEzvxYRLwPuBz6CfWfVkPp8CFjAvrMqMx/KzO9FxFHg\nU8Cj2IdWDanPZ/DzZ9AdwHuApNNXftC3rLL9Z6eFj0eBr2fn4VXfjIhTwE8A35ltsyrnNPCcvvd7\ngaUZtaWqPpiZZwEi4jPAL824PTMTEbcBbwbeBXyX9T/tXfR9p78+mXk8Ii6176yJiMuB72XmtRFx\nAPgnYLFvlYu6Dw2pz5eAy+1DHRFxE53z+jc6d59wGnh23yqV7T87bQTqt4DfAYiIn6RT5P+YZYMq\n6lvA5RGxvzs0fB2dn54FRMSPAN+OiOd2Z72G9R/4F42IuBE4BBzKzOPYd9YZrI99Z6g7gNd1p/+H\nzhOk7UNrBuvzv9iH+h0Gro6IeeANwB8DL4qIg93lb6JzD2vl7LQRqDuAT0XEAp3LMc1eiteazDwX\nEbfQuffgDHAkMx+bcbMqIzOfjoj3AJ+PiCeBfwE+NuNmzcq1wAuB+7o//UHn8rh9p2NYfew7670P\n+POIeC+dc8qvA5diH+oZrM+v0blsZx8CMvPtvemIuBs4AnwfuCsizgELmXlsRs0byz/lIkmSVGin\nXcKTJEmaOQOUJElSIQOUJElSIQOUJElSIQOUJElSIQOUJElSIQOUJElSof8Hp86EAzN1enkAAAAA\nSUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "f = plt.figure(figsize=(10,3))\n",
- "plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')\n",
- "plt.vlines(tth, 0., inten, color = 'r');"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "anaconda-cloud": {},
- "kernelspec": {
- "display_name": "Python [conda env:py35peakpo]",
- "language": "python",
- "name": "conda-env-py35peakpo-py"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.5.3"
- },
- "latex_envs": {
- "LaTeX_envs_menu_present": true,
- "autocomplete": true,
- "bibliofile": "biblio.bib",
- "cite_by": "apalike",
- "current_citInitial": 1,
- "eqLabelWithNumbers": true,
- "eqNumInitial": 0,
- "hotkeys": {
- "equation": "Ctrl-E",
- "itemize": "Ctrl-I"
- },
- "labels_anchors": false,
- "latex_user_defs": false,
- "report_style_numbering": false,
- "user_envs_cfg": false
- },
- "nav_menu": {},
- "toc": {
- "navigate_menu": true,
- "number_sections": true,
- "sideBar": true,
- "threshold": 6,
- "toc_cell": false,
- "toc_section_display": "block",
- "toc_window_display": false
- }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}
diff --git a/jnb-tools/Convert_CIF_to_JCPDS.py b/jnb-tools/Convert_CIF_to_JCPDS.py
deleted file mode 100644
index 9be8bad..0000000
--- a/jnb-tools/Convert_CIF_to_JCPDS.py
+++ /dev/null
@@ -1,207 +0,0 @@
-
-# coding: utf-8
-
-# In[1]:
-
-
-get_ipython().magic('matplotlib inline')
-
-
-# # 0. General note
-
-# * `pymatgen` works only with `py35`
-#
-# * This notebook shows how to make an XRD plot using `pymatgen`.
-#
-# * This also aims to show how to read `CIF` files, convert them to `JCPDS`.
-
-# # 1. General setup
-
-# In[2]:
-
-
-import pymatgen as mg
-from pymatgen import Lattice, Structure
-from pymatgen.analysis.diffraction.xrd import XRDCalculator
-from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
-import numpy as np
-import pandas as pd
-import matplotlib.pyplot as plt
-
-
-# Import `ds_jcpds` which is used by `peakpo`. Because of this, if you move this notebook out of its original directory, this notebook needs modification to function properly.
-
-# In[3]:
-
-
-import sys
-sys.path.insert(0, '../peakpo')
-import ds_jcpds
-
-
-# In[4]:
-
-
-fn_cif = "../jcpds_from_cif/CIFs/corundum_Kirfel1990.cif"
-fn_jcpds = '../jcpds_from_cif/Al2O3.jcpds'
-comments_jcpds = "corundum by Kirfel 1990"
-
-
-# In[5]:
-
-
-k0 = 160.
-k0p = 4.00
-alpha = 3.16e-5
-
-
-# In[6]:
-
-
-wl_xray = 0.3344
-xrange = (0,40)
-
-
-# # 2. Read CIF of Bridgmanite
-
-# The `cif` file below was downloaded from American mineralogist crystal structure database.
-
-# In[7]:
-
-
-material = mg.Structure.from_file(fn_cif)
-
-
-# # 3. Get some contents from CIF
-
-# In[8]:
-
-
-print('Unit-cell volume = ', material.volume)
-print('Density = ', material.density)
-print('Chemical formula = ', material.formula)
-
-
-# # 4. Get lattice parameters
-
-# In[9]:
-
-
-lattice = material.lattice
-print('Lattice parameters = ', lattice.a, lattice.b, lattice.c, lattice.alpha, lattice.beta, lattice.gamma)
-crystal_system = SpacegroupAnalyzer(material).get_crystal_system()
-print(crystal_system)
-
-
-# # 5. Get diffraction pattern
-
-# In[10]:
-
-
-c = XRDCalculator(wavelength=wl_xray)
-pattern = c.get_xrd_data(material, two_theta_range = xrange)
-
-
-# ## 5.1. Extract twotheta, d-sp, int, hkl
-
-# In[11]:
-
-
-d_lines = []
-for values in pattern:
- hkl_key = values[2].keys()
- hkl_txt = str(hkl_key)[12:-3].split(",")
- # print(hkl_txt[0], hkl_txt[1], hkl_txt[-1])
- d_lines.append([values[0], values[3], values[1], int(hkl_txt[0]), int(hkl_txt[1]), int(hkl_txt[-1]) ])
-
-diff_lines = np.asarray(d_lines)
-print(diff_lines)
-
-
-# ## 5.2. Table output
-
-# In[12]:
-
-
-table = pd.DataFrame(data = diff_lines, # values
- columns=['Two Theta', 'd-spacing', 'intensity', 'h', 'k', 'l']) # 1st row as the column names
-table.head()
-
-
-# ## 5.3. Plot peak positions generated from pymatgen
-
-# In[13]:
-
-
-f = plt.figure(figsize=(10,3))
-plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b');
-
-
-# # 6. Convert to JCPDS
-
-# Setup an `jcpds` object from a `cif` file
-
-# In[14]:
-
-
-material_jcpds = ds_jcpds.JCPDS()
-material_jcpds.set_from_cif(fn_cif, k0, k0p, thermal_expansion=alpha, two_theta_range=xrange)
-
-
-# Calculate diffraction pattern at a pressure.
-
-# In[15]:
-
-
-material_jcpds.cal_dsp(pressure = 100.)
-dl = material_jcpds.get_DiffractionLines()
-tth, inten = material_jcpds.get_tthVSint(wl_xray)
-
-
-# In[16]:
-
-
-f = plt.figure(figsize=(10,3))
-plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')
-plt.vlines(tth, 0., inten, color = 'r');
-
-
-# # 7. Save to a JCPDS file
-
-# In[17]:
-
-
-material_jcpds.write_to_file(fn_jcpds, comments=comments_jcpds)
-
-
-# # 8. Read back the written JCPDS for test
-
-# In[18]:
-
-
-material_test = ds_jcpds.JCPDS(filename = fn_jcpds)
-
-
-# Calculate a pattern at a pressure
-
-# In[19]:
-
-
-material_test.cal_dsp(pressure = 10.)
-material_test.get_DiffractionLines()
-tth, inten = material_test.get_tthVSint(wl_xray)
-
-
-# In[20]:
-
-
-f = plt.figure(figsize=(10,3))
-plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')
-plt.vlines(tth, 0., inten, color = 'r');
-
-
-# In[ ]:
-
-
-
-
diff --git a/jnb-tools/Convert_CIF_to_JCPDS.txt b/jnb-tools/Convert_CIF_to_JCPDS.txt
deleted file mode 100644
index bd574a7..0000000
--- a/jnb-tools/Convert_CIF_to_JCPDS.txt
+++ /dev/null
@@ -1,84 +0,0 @@
-
-%matplotlib inline
-
-import pymatgen as mg
-from pymatgen import Lattice, Structure
-from pymatgen.analysis.diffraction.xrd import XRDCalculator
-from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
-import numpy as np
-import pandas as pd
-import matplotlib.pyplot as plt
-
-import sys
-sys.path.insert(0, '../')
-import ds_jcpds
-
-fn_cif = "./CIFs/bridgmanite_Horiuchi1987.cif"
-
-material = mg.Structure.from_file(fn_cif)
-
-print('Unit-cell volume = ', material.volume)
-print('Density = ', material.density)
-print('Chemical formula = ', material.formula)
-
-lattice = material.lattice
-print('Lattice parameters = ', lattice.a, lattice.b, lattice.c, \
- lattice.alpha, lattice.beta, lattice.gamma)
-print(SpacegroupAnalyzer(material).get_crystal_system())
-
-wl_xray = 0.3344
-xrange = (0,30)
-
-c = XRDCalculator(wavelength=wl_xray)
-pattern = c.get_xrd_data(material, two_theta_range = xrange)
-
-d_lines = []
-for lines in pattern:
- hklarr = lines[2].keys()
- for line in hklarr:
- d_lines.append([lines[0], lines[3], lines[1]] + list(line))
-
-diff_lines = np.asarray(d_lines)
-
-table = pd.DataFrame(data = diff_lines, # values
- columns=['Two Theta', 'd-spacing', 'intensity', 'h', 'k', 'l']) # 1st row as the column names
-table.head()
-
-f = plt.figure(figsize=(10,3))
-plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b');
-
-k0 = 260.
-k0p = 4.
-alpha = 1.e-5
-
-material_jcpds = ds_jcpds.JCPDS()
-material_jcpds.set_from_cif(fn_cif, k0, k0p, \
- thermal_expansion=alpha)
-
-material_jcpds.cal_dsp(pressure = 100.)
-dl = material_jcpds.get_DiffractionLines()
-tth, inten = material_jcpds.get_tthVSint(wl_xray)
-
-f = plt.figure(figsize=(10,3))
-plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')
-plt.vlines(tth, 0., inten, color = 'r');
-
-fn_jcpds = './bm.jcpds'
-comments_jcpds = "test bridgmanite"
-
-material_jcpds.write_to_file(fn_jcpds, comments=comments_jcpds)
-
-material_test = ds_jcpds.JCPDS(filename = fn_jcpds)
-
-material_test.cal_dsp(pressure = 10.)
-dl = material_test.get_DiffractionLines()
-tth, inten = material_test.get_tthVSint(wl_xray)
-print(dl)
-
-f = plt.figure(figsize=(10,3))
-plt.vlines(diff_lines[:,0], 0., diff_lines[:,2], color='b')
-plt.vlines(tth, 0., inten, color = 'r');
-
-
-
-
diff --git a/jnb-tools/data/hStv/LaB6_37keV_p49_center.poni b/jnb-tools/data/hStv/LaB6_37keV_p49_center.poni
new file mode 100755
index 0000000..ec071a5
--- /dev/null
+++ b/jnb-tools/data/hStv/LaB6_37keV_p49_center.poni
@@ -0,0 +1,12 @@
+# Nota: C-Order, 1 refers to the Y axis, 2 to the X axis
+# Calibration done at Sat Feb 21 09:28:00 2015
+PixelSize1: 7.9e-05
+PixelSize2: 7.9e-05
+Distance: 0.196171211837
+Poni1: 0.0815325481193
+Poni2: 0.0820848848084
+Rot1: 0.00490714466113
+Rot2: -0.00207980067919
+Rot3: 1.61249618769e-09
+SplineFile: None
+Wavelength: 3.344e-11
diff --git a/jnb-tools/data/hStv/hSiO2_404_009.chi b/jnb-tools/data/hStv/hSiO2_404_009.chi
new file mode 100755
index 0000000..c7f1f85
--- /dev/null
+++ b/jnb-tools/data/hStv/hSiO2_404_009.chi
@@ -0,0 +1,2159 @@
+T:\dac_user\2015\IDD_2015-1\Shim\Patterns\hSiO2_404_009.chi
+2th_deg
+
+ 2155
+ 5.2133383E-03 1.2963100E+02
+ 1.5640014E-02 1.2848430E+02
+ 2.6066689E-02 1.2528075E+02
+ 3.6493364E-02 1.2215631E+02
+ 4.6920040E-02 1.2175079E+02
+ 5.7346715E-02 1.2099041E+02
+ 6.7773391E-02 1.2134892E+02
+ 7.8200066E-02 1.2225930E+02
+ 8.8626741E-02 1.2278797E+02
+ 9.9053417E-02 1.2405809E+02
+ 1.0948009E-01 1.2352196E+02
+ 1.1990677E-01 1.2368451E+02
+ 1.3033344E-01 1.2221304E+02
+ 1.4076012E-01 1.2260592E+02
+ 1.5118679E-01 1.2221601E+02
+ 1.6161347E-01 1.2214278E+02
+ 1.7204014E-01 1.2061057E+02
+ 1.8246682E-01 1.2056897E+02
+ 1.9289350E-01 1.2239610E+02
+ 2.0332017E-01 1.2383230E+02
+ 2.1374685E-01 1.2475546E+02
+ 2.2417352E-01 1.2456155E+02
+ 2.3460020E-01 1.2391153E+02
+ 2.4502687E-01 1.2365759E+02
+ 2.5545355E-01 1.2408375E+02
+ 2.6588022E-01 1.2367503E+02
+ 2.7630690E-01 1.2459472E+02
+ 2.8673357E-01 1.2562374E+02
+ 2.9716025E-01 1.2689087E+02
+ 3.0758692E-01 1.2680581E+02
+ 3.1801360E-01 1.2729023E+02
+ 3.2844027E-01 1.2778881E+02
+ 3.3886695E-01 1.2840668E+02
+ 3.4929363E-01 1.2884174E+02
+ 3.5972030E-01 1.2951340E+02
+ 3.7014698E-01 1.2955702E+02
+ 3.8057365E-01 1.2917598E+02
+ 3.9100033E-01 1.2861789E+02
+ 4.0142700E-01 1.2843484E+02
+ 4.1185368E-01 1.2787016E+02
+ 4.2228035E-01 1.2851453E+02
+ 4.3270703E-01 1.2911147E+02
+ 4.4313370E-01 1.3104161E+02
+ 4.5356038E-01 1.3197005E+02
+ 4.6398705E-01 1.3360765E+02
+ 4.7441373E-01 1.3519031E+02
+ 4.8484041E-01 1.3646887E+02
+ 4.9526708E-01 1.3688760E+02
+ 5.0569376E-01 1.3719972E+02
+ 5.1612043E-01 1.3734822E+02
+ 5.2654711E-01 1.3729778E+02
+ 5.3697378E-01 1.3780754E+02
+ 5.4740046E-01 1.3873573E+02
+ 5.5782713E-01 1.3947758E+02
+ 5.6825381E-01 1.4039496E+02
+ 5.7868048E-01 1.4091055E+02
+ 5.8910716E-01 1.4112596E+02
+ 5.9953383E-01 1.4260883E+02
+ 6.0996051E-01 1.4344644E+02
+ 6.2038719E-01 1.4431828E+02
+ 6.3081386E-01 1.4515114E+02
+ 6.4124054E-01 1.4693111E+02
+ 6.5166721E-01 1.4862527E+02
+ 6.6209389E-01 1.4990849E+02
+ 6.7252056E-01 1.5159460E+02
+ 6.8294724E-01 1.5307549E+02
+ 6.9337391E-01 1.5494032E+02
+ 7.0380059E-01 1.5606003E+02
+ 7.1422726E-01 1.5719536E+02
+ 7.2465394E-01 1.5786269E+02
+ 7.3508061E-01 1.5836473E+02
+ 7.4550729E-01 1.5926468E+02
+ 7.5593397E-01 1.6066457E+02
+ 7.6636064E-01 1.6191602E+02
+ 7.7678732E-01 1.6309547E+02
+ 7.8721399E-01 1.6506424E+02
+ 7.9764067E-01 1.6677887E+02
+ 8.0806734E-01 1.6824657E+02
+ 8.1849402E-01 1.6963058E+02
+ 8.2892069E-01 1.7103958E+02
+ 8.3934737E-01 1.7300203E+02
+ 8.4977404E-01 1.7504912E+02
+ 8.6020072E-01 1.7824438E+02
+ 8.7062739E-01 1.8089207E+02
+ 8.8105407E-01 1.8282430E+02
+ 8.9148075E-01 1.8437918E+02
+ 9.0190742E-01 1.8680444E+02
+ 9.1233410E-01 1.8898079E+02
+ 9.2276077E-01 1.9115622E+02
+ 9.3318745E-01 1.9399237E+02
+ 9.4361412E-01 1.9606429E+02
+ 9.5404080E-01 1.9878935E+02
+ 9.6446747E-01 2.0112436E+02
+ 9.7489415E-01 2.0413582E+02
+ 9.8532082E-01 2.0739891E+02
+ 9.9574750E-01 2.1044969E+02
+ 1.0061742E+00 2.1270454E+02
+ 1.0166008E+00 2.1502200E+02
+ 1.0270275E+00 2.1747729E+02
+ 1.0374542E+00 2.1995329E+02
+ 1.0478809E+00 2.2312088E+02
+ 1.0583076E+00 2.2590111E+02
+ 1.0687342E+00 2.2931071E+02
+ 1.0791609E+00 2.3189900E+02
+ 1.0895876E+00 2.3473778E+02
+ 1.1000143E+00 2.3717773E+02
+ 1.1104409E+00 2.4059103E+02
+ 1.1208676E+00 2.4388310E+02
+ 1.1312943E+00 2.4797942E+02
+ 1.1417210E+00 2.5250548E+02
+ 1.1521476E+00 2.5645712E+02
+ 1.1625743E+00 2.6062610E+02
+ 1.1730010E+00 2.6429837E+02
+ 1.1834277E+00 2.6913220E+02
+ 1.1938543E+00 2.7346317E+02
+ 1.2042810E+00 2.7832181E+02
+ 1.2147077E+00 2.8215649E+02
+ 1.2251344E+00 2.8699393E+02
+ 1.2355610E+00 2.9181766E+02
+ 1.2459877E+00 2.9746609E+02
+ 1.2564144E+00 3.0329507E+02
+ 1.2668411E+00 3.0908017E+02
+ 1.2772677E+00 3.1552368E+02
+ 1.2876944E+00 3.2131378E+02
+ 1.2981211E+00 3.2850555E+02
+ 1.3085478E+00 3.3466110E+02
+ 1.3189744E+00 3.4077094E+02
+ 1.3294011E+00 3.4566232E+02
+ 1.3398278E+00 3.5151620E+02
+ 1.3502545E+00 3.5673856E+02
+ 1.3606811E+00 3.6271695E+02
+ 1.3711078E+00 3.6747165E+02
+ 1.3815345E+00 3.7290817E+02
+ 1.3919612E+00 3.7773541E+02
+ 1.4023878E+00 3.8280356E+02
+ 1.4128145E+00 3.8857870E+02
+ 1.4232412E+00 3.9365347E+02
+ 1.4336679E+00 4.0021448E+02
+ 1.4440945E+00 4.0569833E+02
+ 1.4545212E+00 4.1192847E+02
+ 1.4649479E+00 4.1624307E+02
+ 1.4753746E+00 4.2186832E+02
+ 1.4858012E+00 4.2624408E+02
+ 1.4962279E+00 4.3136942E+02
+ 1.5066546E+00 4.3523154E+02
+ 1.5170813E+00 4.3935754E+02
+ 1.5275079E+00 4.4364136E+02
+ 1.5379346E+00 4.4863528E+02
+ 1.5483613E+00 4.5426968E+02
+ 1.5587880E+00 4.5913889E+02
+ 1.5692146E+00 4.6532809E+02
+ 1.5796413E+00 4.7071088E+02
+ 1.5900680E+00 4.7794482E+02
+ 1.6004947E+00 4.8382697E+02
+ 1.6109213E+00 4.9061273E+02
+ 1.6213480E+00 4.9626373E+02
+ 1.6317747E+00 5.0150504E+02
+ 1.6422014E+00 5.0578448E+02
+ 1.6526280E+00 5.1026791E+02
+ 1.6630547E+00 5.1565692E+02
+ 1.6734814E+00 5.2027380E+02
+ 1.6839081E+00 5.2509692E+02
+ 1.6943347E+00 5.2903442E+02
+ 1.7047614E+00 5.3364899E+02
+ 1.7151881E+00 5.3791406E+02
+ 1.7256148E+00 5.4266211E+02
+ 1.7360415E+00 5.4813641E+02
+ 1.7464681E+00 5.5377692E+02
+ 1.7568948E+00 5.5876422E+02
+ 1.7673215E+00 5.6332422E+02
+ 1.7777482E+00 5.6748328E+02
+ 1.7881748E+00 5.7113770E+02
+ 1.7986015E+00 5.7517950E+02
+ 1.8090282E+00 5.7949805E+02
+ 1.8194549E+00 5.8486383E+02
+ 1.8298815E+00 5.9063458E+02
+ 1.8403082E+00 5.9570032E+02
+ 1.8507349E+00 6.0061926E+02
+ 1.8611616E+00 6.0535956E+02
+ 1.8715882E+00 6.1049634E+02
+ 1.8820149E+00 6.1471039E+02
+ 1.8924416E+00 6.1857367E+02
+ 1.9028683E+00 6.2137720E+02
+ 1.9132949E+00 6.2504962E+02
+ 1.9237216E+00 6.2903070E+02
+ 1.9341483E+00 6.3276331E+02
+ 1.9445750E+00 6.3684406E+02
+ 1.9550016E+00 6.4052551E+02
+ 1.9654283E+00 6.4376691E+02
+ 1.9758550E+00 6.4720001E+02
+ 1.9862817E+00 6.5006897E+02
+ 1.9967083E+00 6.5324860E+02
+ 2.0071350E+00 6.5675317E+02
+ 2.0175617E+00 6.5960669E+02
+ 2.0279884E+00 6.6241235E+02
+ 2.0384150E+00 6.6562695E+02
+ 2.0488417E+00 6.6967017E+02
+ 2.0592684E+00 6.7391479E+02
+ 2.0696951E+00 6.7841498E+02
+ 2.0801217E+00 6.8207501E+02
+ 2.0905484E+00 6.8549573E+02
+ 2.1009751E+00 6.8873285E+02
+ 2.1114018E+00 6.9246075E+02
+ 2.1218284E+00 6.9506427E+02
+ 2.1322551E+00 6.9819421E+02
+ 2.1426818E+00 7.0210016E+02
+ 2.1531085E+00 7.0627710E+02
+ 2.1635351E+00 7.0951562E+02
+ 2.1739618E+00 7.1235907E+02
+ 2.1843885E+00 7.1443567E+02
+ 2.1948152E+00 7.1668860E+02
+ 2.2052418E+00 7.1922461E+02
+ 2.2156685E+00 7.2157831E+02
+ 2.2260952E+00 7.2423029E+02
+ 2.2365219E+00 7.2629828E+02
+ 2.2469485E+00 7.2860919E+02
+ 2.2573752E+00 7.3121545E+02
+ 2.2678019E+00 7.3460492E+02
+ 2.2782286E+00 7.3648193E+02
+ 2.2886552E+00 7.3917804E+02
+ 2.2990819E+00 7.4133490E+02
+ 2.3095086E+00 7.4416174E+02
+ 2.3199353E+00 7.4655841E+02
+ 2.3303619E+00 7.4964996E+02
+ 2.3407886E+00 7.5211688E+02
+ 2.3512153E+00 7.5431165E+02
+ 2.3616420E+00 7.5578821E+02
+ 2.3720686E+00 7.5614178E+02
+ 2.3824953E+00 7.5630853E+02
+ 2.3929220E+00 7.5719684E+02
+ 2.4033487E+00 7.5863373E+02
+ 2.4137753E+00 7.6044922E+02
+ 2.4242020E+00 7.6356238E+02
+ 2.4346287E+00 7.6639612E+02
+ 2.4450554E+00 7.6929248E+02
+ 2.4554821E+00 7.7186737E+02
+ 2.4659087E+00 7.7342566E+02
+ 2.4763354E+00 7.7413812E+02
+ 2.4867621E+00 7.7463232E+02
+ 2.4971888E+00 7.7480328E+02
+ 2.5076154E+00 7.7591394E+02
+ 2.5180421E+00 7.7719751E+02
+ 2.5284688E+00 7.7922607E+02
+ 2.5388955E+00 7.8089032E+02
+ 2.5493221E+00 7.8287091E+02
+ 2.5597488E+00 7.8558746E+02
+ 2.5701755E+00 7.8737579E+02
+ 2.5806022E+00 7.8877039E+02
+ 2.5910288E+00 7.8939520E+02
+ 2.6014555E+00 7.9104065E+02
+ 2.6118822E+00 7.9190875E+02
+ 2.6223089E+00 7.9297034E+02
+ 2.6327355E+00 7.9386578E+02
+ 2.6431622E+00 7.9538867E+02
+ 2.6535889E+00 7.9755115E+02
+ 2.6640156E+00 7.9959412E+02
+ 2.6744422E+00 8.0218567E+02
+ 2.6848689E+00 8.0377771E+02
+ 2.6952956E+00 8.0642603E+02
+ 2.7057223E+00 8.0817413E+02
+ 2.7161489E+00 8.1021954E+02
+ 2.7265756E+00 8.1116968E+02
+ 2.7370023E+00 8.1220923E+02
+ 2.7474290E+00 8.1411078E+02
+ 2.7578556E+00 8.1647272E+02
+ 2.7682823E+00 8.1813123E+02
+ 2.7787090E+00 8.1911615E+02
+ 2.7891357E+00 8.2107605E+02
+ 2.7995623E+00 8.2304535E+02
+ 2.8099890E+00 8.2514783E+02
+ 2.8204157E+00 8.2602441E+02
+ 2.8308424E+00 8.2732916E+02
+ 2.8412690E+00 8.2791418E+02
+ 2.8516957E+00 8.2864258E+02
+ 2.8621224E+00 8.2973187E+02
+ 2.8725491E+00 8.3156818E+02
+ 2.8829757E+00 8.3439636E+02
+ 2.8934024E+00 8.3743567E+02
+ 2.9038291E+00 8.3970911E+02
+ 2.9142558E+00 8.4036322E+02
+ 2.9246824E+00 8.4171417E+02
+ 2.9351091E+00 8.4271722E+02
+ 2.9455358E+00 8.4425146E+02
+ 2.9559625E+00 8.4571002E+02
+ 2.9663891E+00 8.4773035E+02
+ 2.9768158E+00 8.4911084E+02
+ 2.9872425E+00 8.4980933E+02
+ 2.9976692E+00 8.5112170E+02
+ 3.0080958E+00 8.5271759E+02
+ 3.0185225E+00 8.5560321E+02
+ 3.0289492E+00 8.5834210E+02
+ 3.0393759E+00 8.6116962E+02
+ 3.0498025E+00 8.6393701E+02
+ 3.0602292E+00 8.6593359E+02
+ 3.0706559E+00 8.6807141E+02
+ 3.0810826E+00 8.7052710E+02
+ 3.0915092E+00 8.7514685E+02
+ 3.1019359E+00 8.7939124E+02
+ 3.1123626E+00 8.8413635E+02
+ 3.1227893E+00 8.8831805E+02
+ 3.1332160E+00 8.9404449E+02
+ 3.1436426E+00 8.9910095E+02
+ 3.1540693E+00 9.0480688E+02
+ 3.1644960E+00 9.1084204E+02
+ 3.1749227E+00 9.1660846E+02
+ 3.1853493E+00 9.2260699E+02
+ 3.1957760E+00 9.2820905E+02
+ 3.2062027E+00 9.3499268E+02
+ 3.2166294E+00 9.4101031E+02
+ 3.2270560E+00 9.4932068E+02
+ 3.2374827E+00 9.5653705E+02
+ 3.2479094E+00 9.6495996E+02
+ 3.2583361E+00 9.7274713E+02
+ 3.2687627E+00 9.7938135E+02
+ 3.2791894E+00 9.8560376E+02
+ 3.2896161E+00 9.9165979E+02
+ 3.3000428E+00 9.9826495E+02
+ 3.3104694E+00 1.0046443E+03
+ 3.3208961E+00 1.0115790E+03
+ 3.3313228E+00 1.0176677E+03
+ 3.3417495E+00 1.0241592E+03
+ 3.3521761E+00 1.0291981E+03
+ 3.3626028E+00 1.0358838E+03
+ 3.3730295E+00 1.0406548E+03
+ 3.3834562E+00 1.0462776E+03
+ 3.3938828E+00 1.0522206E+03
+ 3.4043095E+00 1.0577375E+03
+ 3.4147362E+00 1.0627745E+03
+ 3.4251629E+00 1.0665013E+03
+ 3.4355895E+00 1.0718496E+03
+ 3.4460162E+00 1.0753268E+03
+ 3.4564429E+00 1.0807921E+03
+ 3.4668696E+00 1.0841340E+03
+ 3.4772962E+00 1.0897539E+03
+ 3.4877229E+00 1.0947382E+03
+ 3.4981496E+00 1.1006890E+03
+ 3.5085763E+00 1.1055226E+03
+ 3.5190029E+00 1.1104136E+03
+ 3.5294296E+00 1.1158386E+03
+ 3.5398563E+00 1.1206399E+03
+ 3.5502830E+00 1.1253815E+03
+ 3.5607096E+00 1.1289613E+03
+ 3.5711363E+00 1.1340729E+03
+ 3.5815630E+00 1.1382241E+03
+ 3.5919897E+00 1.1445706E+03
+ 3.6024163E+00 1.1496813E+03
+ 3.6128430E+00 1.1554773E+03
+ 3.6232697E+00 1.1597788E+03
+ 3.6336964E+00 1.1636741E+03
+ 3.6441230E+00 1.1682751E+03
+ 3.6545497E+00 1.1724437E+03
+ 3.6649764E+00 1.1777791E+03
+ 3.6754031E+00 1.1818856E+03
+ 3.6858297E+00 1.1881698E+03
+ 3.6962564E+00 1.1916730E+03
+ 3.7066831E+00 1.1970658E+03
+ 3.7171098E+00 1.2008750E+03
+ 3.7275364E+00 1.2055110E+03
+ 3.7379631E+00 1.2092361E+03
+ 3.7483898E+00 1.2139502E+03
+ 3.7588165E+00 1.2195978E+03
+ 3.7692431E+00 1.2252659E+03
+ 3.7796698E+00 1.2324415E+03
+ 3.7900965E+00 1.2366708E+03
+ 3.8005232E+00 1.2427950E+03
+ 3.8109499E+00 1.2455094E+03
+ 3.8213765E+00 1.2504246E+03
+ 3.8318032E+00 1.2530940E+03
+ 3.8422299E+00 1.2569644E+03
+ 3.8526566E+00 1.2605793E+03
+ 3.8630832E+00 1.2652334E+03
+ 3.8735099E+00 1.2700009E+03
+ 3.8839366E+00 1.2744977E+03
+ 3.8943633E+00 1.2803197E+03
+ 3.9047899E+00 1.2847930E+03
+ 3.9152166E+00 1.2911190E+03
+ 3.9256433E+00 1.2945983E+03
+ 3.9360700E+00 1.2992429E+03
+ 3.9464966E+00 1.3024532E+03
+ 3.9569233E+00 1.3077593E+03
+ 3.9673500E+00 1.3125732E+03
+ 3.9777767E+00 1.3179790E+03
+ 3.9882033E+00 1.3231312E+03
+ 3.9986300E+00 1.3283057E+03
+ 4.0090567E+00 1.3350734E+03
+ 4.0194834E+00 1.3395902E+03
+ 4.0299100E+00 1.3463660E+03
+ 4.0403367E+00 1.3494626E+03
+ 4.0507634E+00 1.3539592E+03
+ 4.0611901E+00 1.3557258E+03
+ 4.0716167E+00 1.3595110E+03
+ 4.0820434E+00 1.3617209E+03
+ 4.0924701E+00 1.3652545E+03
+ 4.1028968E+00 1.3694854E+03
+ 4.1133234E+00 1.3738374E+03
+ 4.1237501E+00 1.3800551E+03
+ 4.1341768E+00 1.3848483E+03
+ 4.1446035E+00 1.3915917E+03
+ 4.1550301E+00 1.3957106E+03
+ 4.1654568E+00 1.4007438E+03
+ 4.1758835E+00 1.4046416E+03
+ 4.1863102E+00 1.4092618E+03
+ 4.1967368E+00 1.4146699E+03
+ 4.2071635E+00 1.4199731E+03
+ 4.2175902E+00 1.4258226E+03
+ 4.2280169E+00 1.4314540E+03
+ 4.2384435E+00 1.4385507E+03
+ 4.2488702E+00 1.4431375E+03
+ 4.2592969E+00 1.4501781E+03
+ 4.2697236E+00 1.4540820E+03
+ 4.2801502E+00 1.4602043E+03
+ 4.2905769E+00 1.4642134E+03
+ 4.3010036E+00 1.4700360E+03
+ 4.3114303E+00 1.4740616E+03
+ 4.3218569E+00 1.4792671E+03
+ 4.3322836E+00 1.4854832E+03
+ 4.3427103E+00 1.4907084E+03
+ 4.3531370E+00 1.4966433E+03
+ 4.3635636E+00 1.5009489E+03
+ 4.3739903E+00 1.5071671E+03
+ 4.3844170E+00 1.5116910E+03
+ 4.3948437E+00 1.5184916E+03
+ 4.4052703E+00 1.5232350E+03
+ 4.4156970E+00 1.5291140E+03
+ 4.4261237E+00 1.5337637E+03
+ 4.4365504E+00 1.5399542E+03
+ 4.4469770E+00 1.5455105E+03
+ 4.4574037E+00 1.5519169E+03
+ 4.4678304E+00 1.5579755E+03
+ 4.4782571E+00 1.5637085E+03
+ 4.4886837E+00 1.5690587E+03
+ 4.4991104E+00 1.5737573E+03
+ 4.5095371E+00 1.5787064E+03
+ 4.5199638E+00 1.5847559E+03
+ 4.5303905E+00 1.5902028E+03
+ 4.5408171E+00 1.5953555E+03
+ 4.5512438E+00 1.6009811E+03
+ 4.5616705E+00 1.6082347E+03
+ 4.5720972E+00 1.6152401E+03
+ 4.5825238E+00 1.6231111E+03
+ 4.5929505E+00 1.6288616E+03
+ 4.6033772E+00 1.6353301E+03
+ 4.6138039E+00 1.6393073E+03
+ 4.6242305E+00 1.6441625E+03
+ 4.6346572E+00 1.6499969E+03
+ 4.6450839E+00 1.6564377E+03
+ 4.6555106E+00 1.6629766E+03
+ 4.6659372E+00 1.6697065E+03
+ 4.6763639E+00 1.6774255E+03
+ 4.6867906E+00 1.6847073E+03
+ 4.6972173E+00 1.6921624E+03
+ 4.7076439E+00 1.6974237E+03
+ 4.7180706E+00 1.7035833E+03
+ 4.7284973E+00 1.7085375E+03
+ 4.7389240E+00 1.7144442E+03
+ 4.7493506E+00 1.7202069E+03
+ 4.7597773E+00 1.7278488E+03
+ 4.7702040E+00 1.7361912E+03
+ 4.7806307E+00 1.7437566E+03
+ 4.7910573E+00 1.7512981E+03
+ 4.8014840E+00 1.7570029E+03
+ 4.8119107E+00 1.7654495E+03
+ 4.8223374E+00 1.7716755E+03
+ 4.8327640E+00 1.7797706E+03
+ 4.8431907E+00 1.7854319E+03
+ 4.8536174E+00 1.7930164E+03
+ 4.8640441E+00 1.8010178E+03
+ 4.8744707E+00 1.8089825E+03
+ 4.8848974E+00 1.8170466E+03
+ 4.8953241E+00 1.8228572E+03
+ 4.9057508E+00 1.8301556E+03
+ 4.9161774E+00 1.8355935E+03
+ 4.9266041E+00 1.8441366E+03
+ 4.9370308E+00 1.8494435E+03
+ 4.9474575E+00 1.8562484E+03
+ 4.9578841E+00 1.8617644E+03
+ 4.9683108E+00 1.8689438E+03
+ 4.9787375E+00 1.8760646E+03
+ 4.9891642E+00 1.8836006E+03
+ 4.9995908E+00 1.8918955E+03
+ 5.0100175E+00 1.8993673E+03
+ 5.0204442E+00 1.9085488E+03
+ 5.0308709E+00 1.9146277E+03
+ 5.0412975E+00 1.9226562E+03
+ 5.0517242E+00 1.9277437E+03
+ 5.0621509E+00 1.9373562E+03
+ 5.0725776E+00 1.9440793E+03
+ 5.0830042E+00 1.9527859E+03
+ 5.0934309E+00 1.9598251E+03
+ 5.1038576E+00 1.9668391E+03
+ 5.1142843E+00 1.9723016E+03
+ 5.1247109E+00 1.9775374E+03
+ 5.1351376E+00 1.9840054E+03
+ 5.1455643E+00 1.9901946E+03
+ 5.1559910E+00 1.9987476E+03
+ 5.1664176E+00 2.0062677E+03
+ 5.1768443E+00 2.0154823E+03
+ 5.1872710E+00 2.0223136E+03
+ 5.1976977E+00 2.0315254E+03
+ 5.2081244E+00 2.0396467E+03
+ 5.2185510E+00 2.0478380E+03
+ 5.2289777E+00 2.0576389E+03
+ 5.2394044E+00 2.0666111E+03
+ 5.2498311E+00 2.0771155E+03
+ 5.2602577E+00 2.0851709E+03
+ 5.2706844E+00 2.0952061E+03
+ 5.2811111E+00 2.1017842E+03
+ 5.2915378E+00 2.1107969E+03
+ 5.3019644E+00 2.1180530E+03
+ 5.3123911E+00 2.1275391E+03
+ 5.3228178E+00 2.1359849E+03
+ 5.3332445E+00 2.1450593E+03
+ 5.3436711E+00 2.1538906E+03
+ 5.3540978E+00 2.1629705E+03
+ 5.3645245E+00 2.1732944E+03
+ 5.3749512E+00 2.1818091E+03
+ 5.3853778E+00 2.1930557E+03
+ 5.3958045E+00 2.2026826E+03
+ 5.4062312E+00 2.2151379E+03
+ 5.4166579E+00 2.2260378E+03
+ 5.4270845E+00 2.2390999E+03
+ 5.4375112E+00 2.2504641E+03
+ 5.4479379E+00 2.2619592E+03
+ 5.4583646E+00 2.2728872E+03
+ 5.4687912E+00 2.2846367E+03
+ 5.4792179E+00 2.2978105E+03
+ 5.4896446E+00 2.3111362E+03
+ 5.5000713E+00 2.3249473E+03
+ 5.5104979E+00 2.3382739E+03
+ 5.5209246E+00 2.3526465E+03
+ 5.5313513E+00 2.3667219E+03
+ 5.5417780E+00 2.3820662E+03
+ 5.5522046E+00 2.3965693E+03
+ 5.5626313E+00 2.4112490E+03
+ 5.5730580E+00 2.4254380E+03
+ 5.5834847E+00 2.4397195E+03
+ 5.5939113E+00 2.4555188E+03
+ 5.6043380E+00 2.4709839E+03
+ 5.6147647E+00 2.4865984E+03
+ 5.6251914E+00 2.5026907E+03
+ 5.6356180E+00 2.5188660E+03
+ 5.6460447E+00 2.5323818E+03
+ 5.6564714E+00 2.5474294E+03
+ 5.6668981E+00 2.5626646E+03
+ 5.6773247E+00 2.5787776E+03
+ 5.6877514E+00 2.5936587E+03
+ 5.6981781E+00 2.6087473E+03
+ 5.7086048E+00 2.6215386E+03
+ 5.7190314E+00 2.6342881E+03
+ 5.7294581E+00 2.6457375E+03
+ 5.7398848E+00 2.6581199E+03
+ 5.7503115E+00 2.6710420E+03
+ 5.7607381E+00 2.6837080E+03
+ 5.7711648E+00 2.6964446E+03
+ 5.7815915E+00 2.7066062E+03
+ 5.7920182E+00 2.7158481E+03
+ 5.8024448E+00 2.7227883E+03
+ 5.8128715E+00 2.7302405E+03
+ 5.8232982E+00 2.7378269E+03
+ 5.8337249E+00 2.7458752E+03
+ 5.8441515E+00 2.7544250E+03
+ 5.8545782E+00 2.7627017E+03
+ 5.8650049E+00 2.7713152E+03
+ 5.8754316E+00 2.7784624E+03
+ 5.8858582E+00 2.7855369E+03
+ 5.8962849E+00 2.7914268E+03
+ 5.9067116E+00 2.7968540E+03
+ 5.9171383E+00 2.8023076E+03
+ 5.9275650E+00 2.8080667E+03
+ 5.9379916E+00 2.8131731E+03
+ 5.9484183E+00 2.8191882E+03
+ 5.9588450E+00 2.8254231E+03
+ 5.9692717E+00 2.8313743E+03
+ 5.9796983E+00 2.8377581E+03
+ 5.9901250E+00 2.8427900E+03
+ 6.0005517E+00 2.8481943E+03
+ 6.0109784E+00 2.8521978E+03
+ 6.0214050E+00 2.8570076E+03
+ 6.0318317E+00 2.8616116E+03
+ 6.0422584E+00 2.8662441E+03
+ 6.0526851E+00 2.8718462E+03
+ 6.0631117E+00 2.8759534E+03
+ 6.0735384E+00 2.8800681E+03
+ 6.0839651E+00 2.8845237E+03
+ 6.0943918E+00 2.8899666E+03
+ 6.1048184E+00 2.8951406E+03
+ 6.1152451E+00 2.8996975E+03
+ 6.1256718E+00 2.9050442E+03
+ 6.1360985E+00 2.9104402E+03
+ 6.1465251E+00 2.9146218E+03
+ 6.1569518E+00 2.9190776E+03
+ 6.1673785E+00 2.9236257E+03
+ 6.1778052E+00 2.9277737E+03
+ 6.1882318E+00 2.9310508E+03
+ 6.1986585E+00 2.9357905E+03
+ 6.2090852E+00 2.9399026E+03
+ 6.2195119E+00 2.9439861E+03
+ 6.2299385E+00 2.9485229E+03
+ 6.2403652E+00 2.9537339E+03
+ 6.2507919E+00 2.9579067E+03
+ 6.2612186E+00 2.9627200E+03
+ 6.2716452E+00 2.9677224E+03
+ 6.2820719E+00 2.9716516E+03
+ 6.2924986E+00 2.9756575E+03
+ 6.3029253E+00 2.9807346E+03
+ 6.3133519E+00 2.9867849E+03
+ 6.3237786E+00 2.9917920E+03
+ 6.3342053E+00 2.9955898E+03
+ 6.3446320E+00 2.9995474E+03
+ 6.3550586E+00 3.0033726E+03
+ 6.3654853E+00 3.0075647E+03
+ 6.3759120E+00 3.0108362E+03
+ 6.3863387E+00 3.0154736E+03
+ 6.3967653E+00 3.0205186E+03
+ 6.4071920E+00 3.0249727E+03
+ 6.4176187E+00 3.0294673E+03
+ 6.4280454E+00 3.0344189E+03
+ 6.4384720E+00 3.0395366E+03
+ 6.4488987E+00 3.0441404E+03
+ 6.4593254E+00 3.0486409E+03
+ 6.4697521E+00 3.0523010E+03
+ 6.4801787E+00 3.0556831E+03
+ 6.4906054E+00 3.0593760E+03
+ 6.5010321E+00 3.0632876E+03
+ 6.5114588E+00 3.0686196E+03
+ 6.5218854E+00 3.0723298E+03
+ 6.5323121E+00 3.0746948E+03
+ 6.5427388E+00 3.0773816E+03
+ 6.5531655E+00 3.0811599E+03
+ 6.5635921E+00 3.0851069E+03
+ 6.5740188E+00 3.0897947E+03
+ 6.5844455E+00 3.0955801E+03
+ 6.5948722E+00 3.1018374E+03
+ 6.6052989E+00 3.1077122E+03
+ 6.6157255E+00 3.1139541E+03
+ 6.6261522E+00 3.1186770E+03
+ 6.6365789E+00 3.1259980E+03
+ 6.6470056E+00 3.1357146E+03
+ 6.6574322E+00 3.1510107E+03
+ 6.6678589E+00 3.1745625E+03
+ 6.6782856E+00 3.1971882E+03
+ 6.6887123E+00 3.2159929E+03
+ 6.6991389E+00 3.2220266E+03
+ 6.7095656E+00 3.2126265E+03
+ 6.7199923E+00 3.2003821E+03
+ 6.7304190E+00 3.1873489E+03
+ 6.7408456E+00 3.1775547E+03
+ 6.7512723E+00 3.1725793E+03
+ 6.7616990E+00 3.1702283E+03
+ 6.7721257E+00 3.1706658E+03
+ 6.7825523E+00 3.1709590E+03
+ 6.7929790E+00 3.1737771E+03
+ 6.8034057E+00 3.1768306E+03
+ 6.8138324E+00 3.1802578E+03
+ 6.8242590E+00 3.1824587E+03
+ 6.8346857E+00 3.1862180E+03
+ 6.8451124E+00 3.1898674E+03
+ 6.8555391E+00 3.1942449E+03
+ 6.8659657E+00 3.1992253E+03
+ 6.8763924E+00 3.2035017E+03
+ 6.8868191E+00 3.2064036E+03
+ 6.8972458E+00 3.2099924E+03
+ 6.9076724E+00 3.2137463E+03
+ 6.9180991E+00 3.2179902E+03
+ 6.9285258E+00 3.2218994E+03
+ 6.9389525E+00 3.2264087E+03
+ 6.9493791E+00 3.2309001E+03
+ 6.9598058E+00 3.2351577E+03
+ 6.9702325E+00 3.2385398E+03
+ 6.9806592E+00 3.2418237E+03
+ 6.9910858E+00 3.2458965E+03
+ 7.0015125E+00 3.2498237E+03
+ 7.0119392E+00 3.2535256E+03
+ 7.0223659E+00 3.2567053E+03
+ 7.0327925E+00 3.2599216E+03
+ 7.0432192E+00 3.2649614E+03
+ 7.0536459E+00 3.2691167E+03
+ 7.0640726E+00 3.2729263E+03
+ 7.0744992E+00 3.2757290E+03
+ 7.0849259E+00 3.2803943E+03
+ 7.0953526E+00 3.2849072E+03
+ 7.1057793E+00 3.2891819E+03
+ 7.1162059E+00 3.2934844E+03
+ 7.1266326E+00 3.2965652E+03
+ 7.1370593E+00 3.3001951E+03
+ 7.1474860E+00 3.3032854E+03
+ 7.1579126E+00 3.3068447E+03
+ 7.1683393E+00 3.3105103E+03
+ 7.1787660E+00 3.3146628E+03
+ 7.1891927E+00 3.3186772E+03
+ 7.1996193E+00 3.3218391E+03
+ 7.2100460E+00 3.3250068E+03
+ 7.2204727E+00 3.3287185E+03
+ 7.2308994E+00 3.3325813E+03
+ 7.2413260E+00 3.3367690E+03
+ 7.2517527E+00 3.3418533E+03
+ 7.2621794E+00 3.3457607E+03
+ 7.2726061E+00 3.3497476E+03
+ 7.2830327E+00 3.3535386E+03
+ 7.2934594E+00 3.3561213E+03
+ 7.3038861E+00 3.3587212E+03
+ 7.3143128E+00 3.3616951E+03
+ 7.3247395E+00 3.3657356E+03
+ 7.3351661E+00 3.3698892E+03
+ 7.3455928E+00 3.3738474E+03
+ 7.3560195E+00 3.3780281E+03
+ 7.3664462E+00 3.3831838E+03
+ 7.3768728E+00 3.3877358E+03
+ 7.3872995E+00 3.3932749E+03
+ 7.3977262E+00 3.3966953E+03
+ 7.4081529E+00 3.4008940E+03
+ 7.4185795E+00 3.4033740E+03
+ 7.4290062E+00 3.4077646E+03
+ 7.4394329E+00 3.4104939E+03
+ 7.4498596E+00 3.4142842E+03
+ 7.4602862E+00 3.4177603E+03
+ 7.4707129E+00 3.4217856E+03
+ 7.4811396E+00 3.4245493E+03
+ 7.4915663E+00 3.4282747E+03
+ 7.5019929E+00 3.4324688E+03
+ 7.5124196E+00 3.4362483E+03
+ 7.5228463E+00 3.4387891E+03
+ 7.5332730E+00 3.4420188E+03
+ 7.5436996E+00 3.4460876E+03
+ 7.5541263E+00 3.4507859E+03
+ 7.5645530E+00 3.4560134E+03
+ 7.5749797E+00 3.4600701E+03
+ 7.5854063E+00 3.4638662E+03
+ 7.5958330E+00 3.4669270E+03
+ 7.6062597E+00 3.4705398E+03
+ 7.6166864E+00 3.4738010E+03
+ 7.6271130E+00 3.4780261E+03
+ 7.6375397E+00 3.4811150E+03
+ 7.6479664E+00 3.4827437E+03
+ 7.6583931E+00 3.4868210E+03
+ 7.6688197E+00 3.4898376E+03
+ 7.6792464E+00 3.4933384E+03
+ 7.6896731E+00 3.4961257E+03
+ 7.7000998E+00 3.4997502E+03
+ 7.7105264E+00 3.5045706E+03
+ 7.7209531E+00 3.5097654E+03
+ 7.7313798E+00 3.5143787E+03
+ 7.7418065E+00 3.5190173E+03
+ 7.7522331E+00 3.5232798E+03
+ 7.7626598E+00 3.5282524E+03
+ 7.7730865E+00 3.5339468E+03
+ 7.7835132E+00 3.5388645E+03
+ 7.7939398E+00 3.5434348E+03
+ 7.8043665E+00 3.5481304E+03
+ 7.8147932E+00 3.5520977E+03
+ 7.8252199E+00 3.5558789E+03
+ 7.8356465E+00 3.5605195E+03
+ 7.8460732E+00 3.5645093E+03
+ 7.8564999E+00 3.5688132E+03
+ 7.8669266E+00 3.5723608E+03
+ 7.8773532E+00 3.5767522E+03
+ 7.8877799E+00 3.5817112E+03
+ 7.8982066E+00 3.5857568E+03
+ 7.9086333E+00 3.5919497E+03
+ 7.9190599E+00 3.5970684E+03
+ 7.9294866E+00 3.6028066E+03
+ 7.9399133E+00 3.6071787E+03
+ 7.9503400E+00 3.6127632E+03
+ 7.9607666E+00 3.6179116E+03
+ 7.9711933E+00 3.6238049E+03
+ 7.9816200E+00 3.6291812E+03
+ 7.9920467E+00 3.6340144E+03
+ 8.0024734E+00 3.6380425E+03
+ 8.0129000E+00 3.6410798E+03
+ 8.0233267E+00 3.6429248E+03
+ 8.0337534E+00 3.6449597E+03
+ 8.0441801E+00 3.6476350E+03
+ 8.0546067E+00 3.6495391E+03
+ 8.0650334E+00 3.6515330E+03
+ 8.0754601E+00 3.6539917E+03
+ 8.0858868E+00 3.6565374E+03
+ 8.0963134E+00 3.6589160E+03
+ 8.1067401E+00 3.6623833E+03
+ 8.1171668E+00 3.6670393E+03
+ 8.1275935E+00 3.6718496E+03
+ 8.1380201E+00 3.6794377E+03
+ 8.1484468E+00 3.6877288E+03
+ 8.1588735E+00 3.6966641E+03
+ 8.1693002E+00 3.7046301E+03
+ 8.1797268E+00 3.7126790E+03
+ 8.1901535E+00 3.7189868E+03
+ 8.2005802E+00 3.7256780E+03
+ 8.2110069E+00 3.7333408E+03
+ 8.2214335E+00 3.7433320E+03
+ 8.2318602E+00 3.7538491E+03
+ 8.2422869E+00 3.7648083E+03
+ 8.2527136E+00 3.7750720E+03
+ 8.2631402E+00 3.7834033E+03
+ 8.2735669E+00 3.7901196E+03
+ 8.2839936E+00 3.7966467E+03
+ 8.2944203E+00 3.8004390E+03
+ 8.3048469E+00 3.8025337E+03
+ 8.3152736E+00 3.8011877E+03
+ 8.3257003E+00 3.7986736E+03
+ 8.3361270E+00 3.7962910E+03
+ 8.3465536E+00 3.7951956E+03
+ 8.3569803E+00 3.7964004E+03
+ 8.3674070E+00 3.7998760E+03
+ 8.3778337E+00 3.8041980E+03
+ 8.3882603E+00 3.8110305E+03
+ 8.3986870E+00 3.8199084E+03
+ 8.4091137E+00 3.8308105E+03
+ 8.4195404E+00 3.8453970E+03
+ 8.4299670E+00 3.8635718E+03
+ 8.4403937E+00 3.8882266E+03
+ 8.4508204E+00 3.9193887E+03
+ 8.4612471E+00 3.9614551E+03
+ 8.4716737E+00 4.0190896E+03
+ 8.4821004E+00 4.1021538E+03
+ 8.4925271E+00 4.2274946E+03
+ 8.5029538E+00 4.4174243E+03
+ 8.5133804E+00 4.7027080E+03
+ 8.5238071E+00 5.0906538E+03
+ 8.5342338E+00 5.5764419E+03
+ 8.5446605E+00 6.0739331E+03
+ 8.5550871E+00 6.4632583E+03
+ 8.5655138E+00 6.6282266E+03
+ 8.5759405E+00 6.5148950E+03
+ 8.5863672E+00 6.1960820E+03
+ 8.5967938E+00 5.7568179E+03
+ 8.6072205E+00 5.3049741E+03
+ 8.6176472E+00 4.9252109E+03
+ 8.6280739E+00 4.6180146E+03
+ 8.6385005E+00 4.4010630E+03
+ 8.6489272E+00 4.2472686E+03
+ 8.6593539E+00 4.1441025E+03
+ 8.6697806E+00 4.0746782E+03
+ 8.6802072E+00 4.0274592E+03
+ 8.6906339E+00 3.9950215E+03
+ 8.7010606E+00 3.9708206E+03
+ 8.7114873E+00 3.9539680E+03
+ 8.7219140E+00 3.9424131E+03
+ 8.7323406E+00 3.9373442E+03
+ 8.7427673E+00 3.9359290E+03
+ 8.7531940E+00 3.9372659E+03
+ 8.7636207E+00 3.9387568E+03
+ 8.7740473E+00 3.9401760E+03
+ 8.7844740E+00 3.9389890E+03
+ 8.7949007E+00 3.9354902E+03
+ 8.8053274E+00 3.9329675E+03
+ 8.8157540E+00 3.9305862E+03
+ 8.8261807E+00 3.9297046E+03
+ 8.8366074E+00 3.9299976E+03
+ 8.8470341E+00 3.9312197E+03
+ 8.8574607E+00 3.9333733E+03
+ 8.8678874E+00 3.9348247E+03
+ 8.8783141E+00 3.9382529E+03
+ 8.8887408E+00 3.9407830E+03
+ 8.8991674E+00 3.9444438E+03
+ 8.9095941E+00 3.9468389E+03
+ 8.9200208E+00 3.9489753E+03
+ 8.9304475E+00 3.9519924E+03
+ 8.9408741E+00 3.9547617E+03
+ 8.9513008E+00 3.9570764E+03
+ 8.9617275E+00 3.9585562E+03
+ 8.9721542E+00 3.9589553E+03
+ 8.9825808E+00 3.9585205E+03
+ 8.9930075E+00 3.9589019E+03
+ 9.0034342E+00 3.9582332E+03
+ 9.0138609E+00 3.9564150E+03
+ 9.0242875E+00 3.9552832E+03
+ 9.0347142E+00 3.9558386E+03
+ 9.0451409E+00 3.9564810E+03
+ 9.0555676E+00 3.9584446E+03
+ 9.0659942E+00 3.9592659E+03
+ 9.0764209E+00 3.9602625E+03
+ 9.0868476E+00 3.9613435E+03
+ 9.0972743E+00 3.9642756E+03
+ 9.1077009E+00 3.9659861E+03
+ 9.1181276E+00 3.9696018E+03
+ 9.1285543E+00 3.9725757E+03
+ 9.1389810E+00 3.9754915E+03
+ 9.1494076E+00 3.9769502E+03
+ 9.1598343E+00 3.9776467E+03
+ 9.1702610E+00 3.9779307E+03
+ 9.1806877E+00 3.9794890E+03
+ 9.1911143E+00 3.9831028E+03
+ 9.2015410E+00 3.9874983E+03
+ 9.2119677E+00 3.9918540E+03
+ 9.2223944E+00 3.9956082E+03
+ 9.2328210E+00 3.9994177E+03
+ 9.2432477E+00 4.0040591E+03
+ 9.2536744E+00 4.0098220E+03
+ 9.2641011E+00 4.0147927E+03
+ 9.2745277E+00 4.0210637E+03
+ 9.2849544E+00 4.0279785E+03
+ 9.2953811E+00 4.0352156E+03
+ 9.3058078E+00 4.0425730E+03
+ 9.3162344E+00 4.0500635E+03
+ 9.3266611E+00 4.0588953E+03
+ 9.3370878E+00 4.0679692E+03
+ 9.3475145E+00 4.0771453E+03
+ 9.3579411E+00 4.0850542E+03
+ 9.3683678E+00 4.0924241E+03
+ 9.3787945E+00 4.0975371E+03
+ 9.3892212E+00 4.1009370E+03
+ 9.3996479E+00 4.1009224E+03
+ 9.4100745E+00 4.0996743E+03
+ 9.4205012E+00 4.0960479E+03
+ 9.4309279E+00 4.0936863E+03
+ 9.4413546E+00 4.0898606E+03
+ 9.4517812E+00 4.0863372E+03
+ 9.4622079E+00 4.0827207E+03
+ 9.4726346E+00 4.0786055E+03
+ 9.4830613E+00 4.0756255E+03
+ 9.4934879E+00 4.0711943E+03
+ 9.5039146E+00 4.0678748E+03
+ 9.5143413E+00 4.0661433E+03
+ 9.5247680E+00 4.0671213E+03
+ 9.5351946E+00 4.0673933E+03
+ 9.5456213E+00 4.0688594E+03
+ 9.5560480E+00 4.0714158E+03
+ 9.5664747E+00 4.0738438E+03
+ 9.5769013E+00 4.0758191E+03
+ 9.5873280E+00 4.0782043E+03
+ 9.5977547E+00 4.0813127E+03
+ 9.6081814E+00 4.0856667E+03
+ 9.6186080E+00 4.0890999E+03
+ 9.6290347E+00 4.0936858E+03
+ 9.6394614E+00 4.0987378E+03
+ 9.6498881E+00 4.1045596E+03
+ 9.6603147E+00 4.1100117E+03
+ 9.6707414E+00 4.1168564E+03
+ 9.6811681E+00 4.1238037E+03
+ 9.6915948E+00 4.1320850E+03
+ 9.7020214E+00 4.1401748E+03
+ 9.7124481E+00 4.1499395E+03
+ 9.7228748E+00 4.1618589E+03
+ 9.7333015E+00 4.1744697E+03
+ 9.7437281E+00 4.1898550E+03
+ 9.7541548E+00 4.2094390E+03
+ 9.7645815E+00 4.2316089E+03
+ 9.7750082E+00 4.2616616E+03
+ 9.7854348E+00 4.2966909E+03
+ 9.7958615E+00 4.3399126E+03
+ 9.8062882E+00 4.3882783E+03
+ 9.8167149E+00 4.4437734E+03
+ 9.8271415E+00 4.5078711E+03
+ 9.8375682E+00 4.5743652E+03
+ 9.8479949E+00 4.6448379E+03
+ 9.8584216E+00 4.7081118E+03
+ 9.8688482E+00 4.7597163E+03
+ 9.8792749E+00 4.7891172E+03
+ 9.8897016E+00 4.7967749E+03
+ 9.9001283E+00 4.7811426E+03
+ 9.9105549E+00 4.7405977E+03
+ 9.9209816E+00 4.6886841E+03
+ 9.9314083E+00 4.6323481E+03
+ 9.9418350E+00 4.5797563E+03
+ 9.9522616E+00 4.5374600E+03
+ 9.9626883E+00 4.5005547E+03
+ 9.9731150E+00 4.4680142E+03
+ 9.9835417E+00 4.4326528E+03
+ 9.9939683E+00 4.3921519E+03
+ 1.0004395E+01 4.3546367E+03
+ 1.0014822E+01 4.3213027E+03
+ 1.0025248E+01 4.2961572E+03
+ 1.0035675E+01 4.2789956E+03
+ 1.0046102E+01 4.2684893E+03
+ 1.0056528E+01 4.2635200E+03
+ 1.0066955E+01 4.2627681E+03
+ 1.0077382E+01 4.2676196E+03
+ 1.0087808E+01 4.2778887E+03
+ 1.0098235E+01 4.2954399E+03
+ 1.0108662E+01 4.3173672E+03
+ 1.0119088E+01 4.3389316E+03
+ 1.0129515E+01 4.3560815E+03
+ 1.0139942E+01 4.3631919E+03
+ 1.0150368E+01 4.3582588E+03
+ 1.0160795E+01 4.3431123E+03
+ 1.0171222E+01 4.3215879E+03
+ 1.0181649E+01 4.2989287E+03
+ 1.0192075E+01 4.2796870E+03
+ 1.0202502E+01 4.2642305E+03
+ 1.0212929E+01 4.2541143E+03
+ 1.0223355E+01 4.2501274E+03
+ 1.0233782E+01 4.2507549E+03
+ 1.0244209E+01 4.2683574E+03
+ 1.0254635E+01 4.2922300E+03
+ 1.0265062E+01 4.3192563E+03
+ 1.0275489E+01 4.3445977E+03
+ 1.0285915E+01 4.3480879E+03
+ 1.0296342E+01 4.3692256E+03
+ 1.0306769E+01 4.3865435E+03
+ 1.0317195E+01 4.4233398E+03
+ 1.0327622E+01 4.4465581E+03
+ 1.0338049E+01 4.4626392E+03
+ 1.0348475E+01 4.4806704E+03
+ 1.0358902E+01 4.4965396E+03
+ 1.0369329E+01 4.5109316E+03
+ 1.0379755E+01 4.5262505E+03
+ 1.0390182E+01 4.5338730E+03
+ 1.0400609E+01 4.5350532E+03
+ 1.0411035E+01 4.5280288E+03
+ 1.0421462E+01 4.5105894E+03
+ 1.0431889E+01 4.4948486E+03
+ 1.0442315E+01 4.4680645E+03
+ 1.0452742E+01 4.4444189E+03
+ 1.0463169E+01 4.4330444E+03
+ 1.0473595E+01 4.4056982E+03
+ 1.0484022E+01 4.3886768E+03
+ 1.0494449E+01 4.3559189E+03
+ 1.0504875E+01 4.3380635E+03
+ 1.0515302E+01 4.3139546E+03
+ 1.0525729E+01 4.2987192E+03
+ 1.0536155E+01 4.2932437E+03
+ 1.0546582E+01 4.2931548E+03
+ 1.0557009E+01 4.2954727E+03
+ 1.0567435E+01 4.2981411E+03
+ 1.0577862E+01 4.2994731E+03
+ 1.0588289E+01 4.3003086E+03
+ 1.0598716E+01 4.3010552E+03
+ 1.0609142E+01 4.3005566E+03
+ 1.0619569E+01 4.2999033E+03
+ 1.0629996E+01 4.2993833E+03
+ 1.0640422E+01 4.2980693E+03
+ 1.0650849E+01 4.2968374E+03
+ 1.0661276E+01 4.2971880E+03
+ 1.0671702E+01 4.2991968E+03
+ 1.0682129E+01 4.3009912E+03
+ 1.0692556E+01 4.3028477E+03
+ 1.0702982E+01 4.3041841E+03
+ 1.0713409E+01 4.3048428E+03
+ 1.0723836E+01 4.3059141E+03
+ 1.0734262E+01 4.3073574E+03
+ 1.0744689E+01 4.3092808E+03
+ 1.0755116E+01 4.3098115E+03
+ 1.0765542E+01 4.3109102E+03
+ 1.0775969E+01 4.3116318E+03
+ 1.0786396E+01 4.3126997E+03
+ 1.0796822E+01 4.3138965E+03
+ 1.0807249E+01 4.3153115E+03
+ 1.0817676E+01 4.3172095E+03
+ 1.0828102E+01 4.3189058E+03
+ 1.0838529E+01 4.3197988E+03
+ 1.0848956E+01 4.3206074E+03
+ 1.0859382E+01 4.3221772E+03
+ 1.0869809E+01 4.3249956E+03
+ 1.0880236E+01 4.3274175E+03
+ 1.0890662E+01 4.3308271E+03
+ 1.0901089E+01 4.3322720E+03
+ 1.0911516E+01 4.3337261E+03
+ 1.0921942E+01 4.3343726E+03
+ 1.0932369E+01 4.3349526E+03
+ 1.0942796E+01 4.3357612E+03
+ 1.0953222E+01 4.3371309E+03
+ 1.0963649E+01 4.3385190E+03
+ 1.0974076E+01 4.3395562E+03
+ 1.0984503E+01 4.3416870E+03
+ 1.0994929E+01 4.3431616E+03
+ 1.1005356E+01 4.3446543E+03
+ 1.1015783E+01 4.3458931E+03
+ 1.1026209E+01 4.3469238E+03
+ 1.1036636E+01 4.3478311E+03
+ 1.1047063E+01 4.3490684E+03
+ 1.1057489E+01 4.3502368E+03
+ 1.1067916E+01 4.3518032E+03
+ 1.1078343E+01 4.3551558E+03
+ 1.1088769E+01 4.3575723E+03
+ 1.1099196E+01 4.3598594E+03
+ 1.1109623E+01 4.3599097E+03
+ 1.1120049E+01 4.3603110E+03
+ 1.1130476E+01 4.3622090E+03
+ 1.1140903E+01 4.3659756E+03
+ 1.1151329E+01 4.3687139E+03
+ 1.1161756E+01 4.3711382E+03
+ 1.1172183E+01 4.3715552E+03
+ 1.1182609E+01 4.3731450E+03
+ 1.1193036E+01 4.3745845E+03
+ 1.1203463E+01 4.3770327E+03
+ 1.1213889E+01 4.3775781E+03
+ 1.1224316E+01 4.3788955E+03
+ 1.1234743E+01 4.3803247E+03
+ 1.1245169E+01 4.3831040E+03
+ 1.1255596E+01 4.3856226E+03
+ 1.1266023E+01 4.3885483E+03
+ 1.1276449E+01 4.3907144E+03
+ 1.1286876E+01 4.3923071E+03
+ 1.1297303E+01 4.3941821E+03
+ 1.1307729E+01 4.3953091E+03
+ 1.1318156E+01 4.3960771E+03
+ 1.1328583E+01 4.3967422E+03
+ 1.1339009E+01 4.3974307E+03
+ 1.1349436E+01 4.3980586E+03
+ 1.1359863E+01 4.3993740E+03
+ 1.1370289E+01 4.4009053E+03
+ 1.1380716E+01 4.4028257E+03
+ 1.1391143E+01 4.4047974E+03
+ 1.1401570E+01 4.4069561E+03
+ 1.1411996E+01 4.4092383E+03
+ 1.1422423E+01 4.4103228E+03
+ 1.1432850E+01 4.4126582E+03
+ 1.1443276E+01 4.4144023E+03
+ 1.1453703E+01 4.4181362E+03
+ 1.1464130E+01 4.4212656E+03
+ 1.1474556E+01 4.4228267E+03
+ 1.1484983E+01 4.4235859E+03
+ 1.1495410E+01 4.4233955E+03
+ 1.1505836E+01 4.4237959E+03
+ 1.1516263E+01 4.4262861E+03
+ 1.1526690E+01 4.4283662E+03
+ 1.1537116E+01 4.4305161E+03
+ 1.1547543E+01 4.4326665E+03
+ 1.1557970E+01 4.4351025E+03
+ 1.1568396E+01 4.4376953E+03
+ 1.1578823E+01 4.4402134E+03
+ 1.1589250E+01 4.4418135E+03
+ 1.1599676E+01 4.4426636E+03
+ 1.1610103E+01 4.4448330E+03
+ 1.1620530E+01 4.4472085E+03
+ 1.1630956E+01 4.4498477E+03
+ 1.1641383E+01 4.4514033E+03
+ 1.1651810E+01 4.4532456E+03
+ 1.1662236E+01 4.4550547E+03
+ 1.1672663E+01 4.4569917E+03
+ 1.1683090E+01 4.4591562E+03
+ 1.1693516E+01 4.4625933E+03
+ 1.1703943E+01 4.4657812E+03
+ 1.1714370E+01 4.4685337E+03
+ 1.1724796E+01 4.4718345E+03
+ 1.1735223E+01 4.4752393E+03
+ 1.1745650E+01 4.4780952E+03
+ 1.1756076E+01 4.4811123E+03
+ 1.1766503E+01 4.4849565E+03
+ 1.1776930E+01 4.4892603E+03
+ 1.1787357E+01 4.4948691E+03
+ 1.1797783E+01 4.5010381E+03
+ 1.1808210E+01 4.5076948E+03
+ 1.1818637E+01 4.5137500E+03
+ 1.1829063E+01 4.5212935E+03
+ 1.1839490E+01 4.5309868E+03
+ 1.1849917E+01 4.5423325E+03
+ 1.1860343E+01 4.5554917E+03
+ 1.1870770E+01 4.5715308E+03
+ 1.1881197E+01 4.5907803E+03
+ 1.1891623E+01 4.6143657E+03
+ 1.1902050E+01 4.6398833E+03
+ 1.1912477E+01 4.6763594E+03
+ 1.1922903E+01 4.7201011E+03
+ 1.1933330E+01 4.7789067E+03
+ 1.1943757E+01 4.8446670E+03
+ 1.1954183E+01 4.9068848E+03
+ 1.1964610E+01 4.9681445E+03
+ 1.1975037E+01 5.0104048E+03
+ 1.1985463E+01 5.0418823E+03
+ 1.1995890E+01 5.0466128E+03
+ 1.2006317E+01 5.0445039E+03
+ 1.2016743E+01 5.0160356E+03
+ 1.2027170E+01 4.9641978E+03
+ 1.2037597E+01 4.8870776E+03
+ 1.2048023E+01 4.8107666E+03
+ 1.2058450E+01 4.7510493E+03
+ 1.2068877E+01 4.7035356E+03
+ 1.2079303E+01 4.6662866E+03
+ 1.2089730E+01 4.6360293E+03
+ 1.2100157E+01 4.6123242E+03
+ 1.2110583E+01 4.5945669E+03
+ 1.2121010E+01 4.5783477E+03
+ 1.2131437E+01 4.5658643E+03
+ 1.2141863E+01 4.5532993E+03
+ 1.2152290E+01 4.5449478E+03
+ 1.2162717E+01 4.5383428E+03
+ 1.2173144E+01 4.5342690E+03
+ 1.2183570E+01 4.5307305E+03
+ 1.2193997E+01 4.5268452E+03
+ 1.2204424E+01 4.5238779E+03
+ 1.2214850E+01 4.5219878E+03
+ 1.2225277E+01 4.5212852E+03
+ 1.2235704E+01 4.5212383E+03
+ 1.2246130E+01 4.5203608E+03
+ 1.2256557E+01 4.5190703E+03
+ 1.2266984E+01 4.5189165E+03
+ 1.2277410E+01 4.5183608E+03
+ 1.2287837E+01 4.5173779E+03
+ 1.2298264E+01 4.5162935E+03
+ 1.2308690E+01 4.5164556E+03
+ 1.2319117E+01 4.5151968E+03
+ 1.2329544E+01 4.5147432E+03
+ 1.2339970E+01 4.5150020E+03
+ 1.2350397E+01 4.5151099E+03
+ 1.2360824E+01 4.5154858E+03
+ 1.2371250E+01 4.5150889E+03
+ 1.2381677E+01 4.5151250E+03
+ 1.2392104E+01 4.5145161E+03
+ 1.2402530E+01 4.5151240E+03
+ 1.2412957E+01 4.5162871E+03
+ 1.2423384E+01 4.5174785E+03
+ 1.2433810E+01 4.5164556E+03
+ 1.2444237E+01 4.5160312E+03
+ 1.2454664E+01 4.5154258E+03
+ 1.2465090E+01 4.5171011E+03
+ 1.2475517E+01 4.5170962E+03
+ 1.2485944E+01 4.5175620E+03
+ 1.2496370E+01 4.5172241E+03
+ 1.2506797E+01 4.5166836E+03
+ 1.2517224E+01 4.5160088E+03
+ 1.2527650E+01 4.5158735E+03
+ 1.2538077E+01 4.5149136E+03
+ 1.2548504E+01 4.5142881E+03
+ 1.2558930E+01 4.5143555E+03
+ 1.2569357E+01 4.5149985E+03
+ 1.2579784E+01 4.5157168E+03
+ 1.2590211E+01 4.5165991E+03
+ 1.2600637E+01 4.5173320E+03
+ 1.2611064E+01 4.5177046E+03
+ 1.2621491E+01 4.5190010E+03
+ 1.2631917E+01 4.5196284E+03
+ 1.2642344E+01 4.5213867E+03
+ 1.2652771E+01 4.5221421E+03
+ 1.2663197E+01 4.5236123E+03
+ 1.2673624E+01 4.5241001E+03
+ 1.2684051E+01 4.5244551E+03
+ 1.2694477E+01 4.5232910E+03
+ 1.2704904E+01 4.5221880E+03
+ 1.2715331E+01 4.5218545E+03
+ 1.2725757E+01 4.5221875E+03
+ 1.2736184E+01 4.5227402E+03
+ 1.2746611E+01 4.5242007E+03
+ 1.2757037E+01 4.5245908E+03
+ 1.2767464E+01 4.5250522E+03
+ 1.2777891E+01 4.5269175E+03
+ 1.2788317E+01 4.5280132E+03
+ 1.2798744E+01 4.5302656E+03
+ 1.2809171E+01 4.5318833E+03
+ 1.2819597E+01 4.5339854E+03
+ 1.2830024E+01 4.5364766E+03
+ 1.2840451E+01 4.5387715E+03
+ 1.2850877E+01 4.5407090E+03
+ 1.2861304E+01 4.5431191E+03
+ 1.2871731E+01 4.5470620E+03
+ 1.2882157E+01 4.5509097E+03
+ 1.2892584E+01 4.5577573E+03
+ 1.2903011E+01 4.5671309E+03
+ 1.2913437E+01 4.5787646E+03
+ 1.2923864E+01 4.5884829E+03
+ 1.2934291E+01 4.5957568E+03
+ 1.2944717E+01 4.5959185E+03
+ 1.2955144E+01 4.5916787E+03
+ 1.2965571E+01 4.5814678E+03
+ 1.2975998E+01 4.5719497E+03
+ 1.2986424E+01 4.5627612E+03
+ 1.2996851E+01 4.5587134E+03
+ 1.3007278E+01 4.5546152E+03
+ 1.3017704E+01 4.5519277E+03
+ 1.3028131E+01 4.5494468E+03
+ 1.3038558E+01 4.5499443E+03
+ 1.3048984E+01 4.5521123E+03
+ 1.3059411E+01 4.5552227E+03
+ 1.3069838E+01 4.5579209E+03
+ 1.3080264E+01 4.5621694E+03
+ 1.3090691E+01 4.5678320E+03
+ 1.3101118E+01 4.5755898E+03
+ 1.3111544E+01 4.5858589E+03
+ 1.3121971E+01 4.5976680E+03
+ 1.3132398E+01 4.6112793E+03
+ 1.3142824E+01 4.6223306E+03
+ 1.3153251E+01 4.6320869E+03
+ 1.3163678E+01 4.6360488E+03
+ 1.3174104E+01 4.6371245E+03
+ 1.3184531E+01 4.6349941E+03
+ 1.3194958E+01 4.6265571E+03
+ 1.3205384E+01 4.6153804E+03
+ 1.3215811E+01 4.6014541E+03
+ 1.3226238E+01 4.5885928E+03
+ 1.3236664E+01 4.5780239E+03
+ 1.3247091E+01 4.5705654E+03
+ 1.3257518E+01 4.5648872E+03
+ 1.3267944E+01 4.5613340E+03
+ 1.3278371E+01 4.5584209E+03
+ 1.3288798E+01 4.5572490E+03
+ 1.3299224E+01 4.5564531E+03
+ 1.3309651E+01 4.5553843E+03
+ 1.3320078E+01 4.5543438E+03
+ 1.3330504E+01 4.5537969E+03
+ 1.3340931E+01 4.5532695E+03
+ 1.3351358E+01 4.5538652E+03
+ 1.3361784E+01 4.5546606E+03
+ 1.3372211E+01 4.5567622E+03
+ 1.3382638E+01 4.5589106E+03
+ 1.3393065E+01 4.5608516E+03
+ 1.3403491E+01 4.5621284E+03
+ 1.3413918E+01 4.5628438E+03
+ 1.3424345E+01 4.5622393E+03
+ 1.3434771E+01 4.5602871E+03
+ 1.3445198E+01 4.5597822E+03
+ 1.3455625E+01 4.5592715E+03
+ 1.3466051E+01 4.5590654E+03
+ 1.3476478E+01 4.5578696E+03
+ 1.3486905E+01 4.5576338E+03
+ 1.3497331E+01 4.5576890E+03
+ 1.3507758E+01 4.5585420E+03
+ 1.3518185E+01 4.5593384E+03
+ 1.3528611E+01 4.5592979E+03
+ 1.3539038E+01 4.5568960E+03
+ 1.3549465E+01 4.5558462E+03
+ 1.3559891E+01 4.5553760E+03
+ 1.3570318E+01 4.5574565E+03
+ 1.3580745E+01 4.5587588E+03
+ 1.3591171E+01 4.5606621E+03
+ 1.3601598E+01 4.5617964E+03
+ 1.3612025E+01 4.5636138E+03
+ 1.3622451E+01 4.5646406E+03
+ 1.3632878E+01 4.5656816E+03
+ 1.3643305E+01 4.5662822E+03
+ 1.3653731E+01 4.5691333E+03
+ 1.3664158E+01 4.5709551E+03
+ 1.3674585E+01 4.5730259E+03
+ 1.3685011E+01 4.5747378E+03
+ 1.3695438E+01 4.5762202E+03
+ 1.3705865E+01 4.5773271E+03
+ 1.3716291E+01 4.5782627E+03
+ 1.3726718E+01 4.5809473E+03
+ 1.3737145E+01 4.5841855E+03
+ 1.3747571E+01 4.5890054E+03
+ 1.3757998E+01 4.5918540E+03
+ 1.3768425E+01 4.5919780E+03
+ 1.3778852E+01 4.5878823E+03
+ 1.3789278E+01 4.5867046E+03
+ 1.3799705E+01 4.5853047E+03
+ 1.3810132E+01 4.5862305E+03
+ 1.3820558E+01 4.5870742E+03
+ 1.3830985E+01 4.5887480E+03
+ 1.3841412E+01 4.5896157E+03
+ 1.3851838E+01 4.5908340E+03
+ 1.3862265E+01 4.5935234E+03
+ 1.3872692E+01 4.5966313E+03
+ 1.3883118E+01 4.6018052E+03
+ 1.3893545E+01 4.6094878E+03
+ 1.3903972E+01 4.6192715E+03
+ 1.3914398E+01 4.6306245E+03
+ 1.3924825E+01 4.6462295E+03
+ 1.3935252E+01 4.6664370E+03
+ 1.3945678E+01 4.6912192E+03
+ 1.3956105E+01 4.7199766E+03
+ 1.3966532E+01 4.7508921E+03
+ 1.3976958E+01 4.7812871E+03
+ 1.3987385E+01 4.8081035E+03
+ 1.3997812E+01 4.8253613E+03
+ 1.4008238E+01 4.8326074E+03
+ 1.4018665E+01 4.8259370E+03
+ 1.4029092E+01 4.8110273E+03
+ 1.4039518E+01 4.7882295E+03
+ 1.4049945E+01 4.7615703E+03
+ 1.4060372E+01 4.7351489E+03
+ 1.4070798E+01 4.7083716E+03
+ 1.4081225E+01 4.6841079E+03
+ 1.4091652E+01 4.6627974E+03
+ 1.4102078E+01 4.6432593E+03
+ 1.4112505E+01 4.6252856E+03
+ 1.4122932E+01 4.6100269E+03
+ 1.4133358E+01 4.5976592E+03
+ 1.4143785E+01 4.5875312E+03
+ 1.4154212E+01 4.5811069E+03
+ 1.4164638E+01 4.5757930E+03
+ 1.4175065E+01 4.5724946E+03
+ 1.4185492E+01 4.5689473E+03
+ 1.4195919E+01 4.5652319E+03
+ 1.4206345E+01 4.5622627E+03
+ 1.4216772E+01 4.5597480E+03
+ 1.4227199E+01 4.5585854E+03
+ 1.4237625E+01 4.5568682E+03
+ 1.4248052E+01 4.5545762E+03
+ 1.4258479E+01 4.5530112E+03
+ 1.4268905E+01 4.5529678E+03
+ 1.4279332E+01 4.5526294E+03
+ 1.4289759E+01 4.5522090E+03
+ 1.4300185E+01 4.5520317E+03
+ 1.4310612E+01 4.5527046E+03
+ 1.4321039E+01 4.5515767E+03
+ 1.4331465E+01 4.5498555E+03
+ 1.4341892E+01 4.5478706E+03
+ 1.4352319E+01 4.5463979E+03
+ 1.4362745E+01 4.5441069E+03
+ 1.4373172E+01 4.5417251E+03
+ 1.4383599E+01 4.5401733E+03
+ 1.4394025E+01 4.5383452E+03
+ 1.4404452E+01 4.5368237E+03
+ 1.4414879E+01 4.5331455E+03
+ 1.4425305E+01 4.5295269E+03
+ 1.4435732E+01 4.5260386E+03
+ 1.4446159E+01 4.5228604E+03
+ 1.4456585E+01 4.5193921E+03
+ 1.4467012E+01 4.5175112E+03
+ 1.4477439E+01 4.5165693E+03
+ 1.4487865E+01 4.5154106E+03
+ 1.4498292E+01 4.5144136E+03
+ 1.4508719E+01 4.5123398E+03
+ 1.4519145E+01 4.5111353E+03
+ 1.4529572E+01 4.5093105E+03
+ 1.4539999E+01 4.5071948E+03
+ 1.4550425E+01 4.5058203E+03
+ 1.4560852E+01 4.5047490E+03
+ 1.4571279E+01 4.5022861E+03
+ 1.4581706E+01 4.4996416E+03
+ 1.4592132E+01 4.4988394E+03
+ 1.4602559E+01 4.4990225E+03
+ 1.4612986E+01 4.4990977E+03
+ 1.4623412E+01 4.4987578E+03
+ 1.4633839E+01 4.4979585E+03
+ 1.4644266E+01 4.4975674E+03
+ 1.4654692E+01 4.4968130E+03
+ 1.4665119E+01 4.4955376E+03
+ 1.4675546E+01 4.4939668E+03
+ 1.4685972E+01 4.4925952E+03
+ 1.4696399E+01 4.4936606E+03
+ 1.4706826E+01 4.4942109E+03
+ 1.4717252E+01 4.4947373E+03
+ 1.4727679E+01 4.4938418E+03
+ 1.4738106E+01 4.4921069E+03
+ 1.4748532E+01 4.4907891E+03
+ 1.4758959E+01 4.4900093E+03
+ 1.4769386E+01 4.4914531E+03
+ 1.4779812E+01 4.4930215E+03
+ 1.4790239E+01 4.4941367E+03
+ 1.4800666E+01 4.4959873E+03
+ 1.4811092E+01 4.4950752E+03
+ 1.4821519E+01 4.4943071E+03
+ 1.4831946E+01 4.4919521E+03
+ 1.4842372E+01 4.4892207E+03
+ 1.4852799E+01 4.4864585E+03
+ 1.4863226E+01 4.4828647E+03
+ 1.4873652E+01 4.4797217E+03
+ 1.4884079E+01 4.4767539E+03
+ 1.4894506E+01 4.4738774E+03
+ 1.4904932E+01 4.4720112E+03
+ 1.4915359E+01 4.4702485E+03
+ 1.4925786E+01 4.4695127E+03
+ 1.4936212E+01 4.4698950E+03
+ 1.4946639E+01 4.4699355E+03
+ 1.4957066E+01 4.4707451E+03
+ 1.4967493E+01 4.4712261E+03
+ 1.4977919E+01 4.4719180E+03
+ 1.4988346E+01 4.4731128E+03
+ 1.4998773E+01 4.4727812E+03
+ 1.5009199E+01 4.4717192E+03
+ 1.5019626E+01 4.4702739E+03
+ 1.5030053E+01 4.4676958E+03
+ 1.5040479E+01 4.4650708E+03
+ 1.5050906E+01 4.4621763E+03
+ 1.5061333E+01 4.4602319E+03
+ 1.5071759E+01 4.4586870E+03
+ 1.5082186E+01 4.4574219E+03
+ 1.5092613E+01 4.4570273E+03
+ 1.5103039E+01 4.4555591E+03
+ 1.5113466E+01 4.4539868E+03
+ 1.5123893E+01 4.4530444E+03
+ 1.5134319E+01 4.4522529E+03
+ 1.5144746E+01 4.4510952E+03
+ 1.5155173E+01 4.4494741E+03
+ 1.5165599E+01 4.4479341E+03
+ 1.5176026E+01 4.4456748E+03
+ 1.5186453E+01 4.4433745E+03
+ 1.5196879E+01 4.4418154E+03
+ 1.5207306E+01 4.4400928E+03
+ 1.5217733E+01 4.4396138E+03
+ 1.5228159E+01 4.4385566E+03
+ 1.5238586E+01 4.4383359E+03
+ 1.5249013E+01 4.4371704E+03
+ 1.5259439E+01 4.4362007E+03
+ 1.5269866E+01 4.4354458E+03
+ 1.5280293E+01 4.4349307E+03
+ 1.5290719E+01 4.4338184E+03
+ 1.5301146E+01 4.4326538E+03
+ 1.5311573E+01 4.4318022E+03
+ 1.5321999E+01 4.4308062E+03
+ 1.5332426E+01 4.4293438E+03
+ 1.5342853E+01 4.4285728E+03
+ 1.5353279E+01 4.4283462E+03
+ 1.5363706E+01 4.4271167E+03
+ 1.5374133E+01 4.4267075E+03
+ 1.5384560E+01 4.4275117E+03
+ 1.5394986E+01 4.4288413E+03
+ 1.5405413E+01 4.4303857E+03
+ 1.5415840E+01 4.4334243E+03
+ 1.5426266E+01 4.4358276E+03
+ 1.5436693E+01 4.4382261E+03
+ 1.5447120E+01 4.4399038E+03
+ 1.5457546E+01 4.4401318E+03
+ 1.5467973E+01 4.4399463E+03
+ 1.5478400E+01 4.4390659E+03
+ 1.5488826E+01 4.4378037E+03
+ 1.5499253E+01 4.4344009E+03
+ 1.5509680E+01 4.4300259E+03
+ 1.5520106E+01 4.4249775E+03
+ 1.5530533E+01 4.4196748E+03
+ 1.5540960E+01 4.4145278E+03
+ 1.5551386E+01 4.4099385E+03
+ 1.5561813E+01 4.4068330E+03
+ 1.5572240E+01 4.4032700E+03
+ 1.5582666E+01 4.4002290E+03
+ 1.5593093E+01 4.3979272E+03
+ 1.5603520E+01 4.3959390E+03
+ 1.5613946E+01 4.3948931E+03
+ 1.5624373E+01 4.3926177E+03
+ 1.5634800E+01 4.3910640E+03
+ 1.5645226E+01 4.3886094E+03
+ 1.5655653E+01 4.3878745E+03
+ 1.5666080E+01 4.3865957E+03
+ 1.5676506E+01 4.3855542E+03
+ 1.5686933E+01 4.3838555E+03
+ 1.5697360E+01 4.3823931E+03
+ 1.5707786E+01 4.3800737E+03
+ 1.5718213E+01 4.3777407E+03
+ 1.5728640E+01 4.3761191E+03
+ 1.5739066E+01 4.3740669E+03
+ 1.5749493E+01 4.3720063E+03
+ 1.5759920E+01 4.3699272E+03
+ 1.5770347E+01 4.3683350E+03
+ 1.5780773E+01 4.3678184E+03
+ 1.5791200E+01 4.3673687E+03
+ 1.5801627E+01 4.3668345E+03
+ 1.5812053E+01 4.3655044E+03
+ 1.5822480E+01 4.3640112E+03
+ 1.5832907E+01 4.3625156E+03
+ 1.5843333E+01 4.3607783E+03
+ 1.5853760E+01 4.3594805E+03
+ 1.5864187E+01 4.3588979E+03
+ 1.5874613E+01 4.3588076E+03
+ 1.5885040E+01 4.3580063E+03
+ 1.5895467E+01 4.3569683E+03
+ 1.5905893E+01 4.3560659E+03
+ 1.5916320E+01 4.3543403E+03
+ 1.5926747E+01 4.3519355E+03
+ 1.5937173E+01 4.3501816E+03
+ 1.5947600E+01 4.3484297E+03
+ 1.5958027E+01 4.3479653E+03
+ 1.5968453E+01 4.3477554E+03
+ 1.5978880E+01 4.3476260E+03
+ 1.5989307E+01 4.3477397E+03
+ 1.5999733E+01 4.3489790E+03
+ 1.6010160E+01 4.3514404E+03
+ 1.6020587E+01 4.3532617E+03
+ 1.6031013E+01 4.3547847E+03
+ 1.6041440E+01 4.3549888E+03
+ 1.6051867E+01 4.3533135E+03
+ 1.6062293E+01 4.3497705E+03
+ 1.6072720E+01 4.3454712E+03
+ 1.6083147E+01 4.3415171E+03
+ 1.6093573E+01 4.3383530E+03
+ 1.6104000E+01 4.3360938E+03
+ 1.6114427E+01 4.3353799E+03
+ 1.6124853E+01 4.3353848E+03
+ 1.6135280E+01 4.3332744E+03
+ 1.6145707E+01 4.3317554E+03
+ 1.6156133E+01 4.3299160E+03
+ 1.6166560E+01 4.3294106E+03
+ 1.6176987E+01 4.3282197E+03
+ 1.6187414E+01 4.3280957E+03
+ 1.6197840E+01 4.3293921E+03
+ 1.6208267E+01 4.3312310E+03
+ 1.6218694E+01 4.3335020E+03
+ 1.6229120E+01 4.3371919E+03
+ 1.6239547E+01 4.3409067E+03
+ 1.6249974E+01 4.3446055E+03
+ 1.6260400E+01 4.3476689E+03
+ 1.6270827E+01 4.3513652E+03
+ 1.6281254E+01 4.3555688E+03
+ 1.6291680E+01 4.3609722E+03
+ 1.6302107E+01 4.3672817E+03
+ 1.6312534E+01 4.3740864E+03
+ 1.6322960E+01 4.3829502E+03
+ 1.6333387E+01 4.3958169E+03
+ 1.6343814E+01 4.4109146E+03
+ 1.6354240E+01 4.4282129E+03
+ 1.6364667E+01 4.4492095E+03
+ 1.6375094E+01 4.4709600E+03
+ 1.6385520E+01 4.4934375E+03
+ 1.6395947E+01 4.5137515E+03
+ 1.6406374E+01 4.5311899E+03
+ 1.6416800E+01 4.5438428E+03
+ 1.6427227E+01 4.5512788E+03
+ 1.6437654E+01 4.5514243E+03
+ 1.6448080E+01 4.5446675E+03
+ 1.6458507E+01 4.5319351E+03
+ 1.6468934E+01 4.5150625E+03
+ 1.6479360E+01 4.4956196E+03
+ 1.6489787E+01 4.4752739E+03
+ 1.6500214E+01 4.4541299E+03
+ 1.6510640E+01 4.4335322E+03
+ 1.6521067E+01 4.4141807E+03
+ 1.6531494E+01 4.3967002E+03
+ 1.6541920E+01 4.3791108E+03
+ 1.6552347E+01 4.3629707E+03
+ 1.6562774E+01 4.3484419E+03
+ 1.6573201E+01 4.3366440E+03
+ 1.6583627E+01 4.3262168E+03
+ 1.6594054E+01 4.3168921E+03
+ 1.6604481E+01 4.3069727E+03
+ 1.6614907E+01 4.2982358E+03
+ 1.6625334E+01 4.2890034E+03
+ 1.6635761E+01 4.2819839E+03
+ 1.6646187E+01 4.2749214E+03
+ 1.6656614E+01 4.2696128E+03
+ 1.6667041E+01 4.2642427E+03
+ 1.6677467E+01 4.2597183E+03
+ 1.6687894E+01 4.2547412E+03
+ 1.6698321E+01 4.2500586E+03
+ 1.6708747E+01 4.2454912E+03
+ 1.6719174E+01 4.2414507E+03
+ 1.6729601E+01 4.2383135E+03
+ 1.6740027E+01 4.2361870E+03
+ 1.6750454E+01 4.2342578E+03
+ 1.6760881E+01 4.2329810E+03
+ 1.6771307E+01 4.2316865E+03
+ 1.6781734E+01 4.2303848E+03
+ 1.6792161E+01 4.2283896E+03
+ 1.6802587E+01 4.2266699E+03
+ 1.6813014E+01 4.2253438E+03
+ 1.6823441E+01 4.2253228E+03
+ 1.6833867E+01 4.2241792E+03
+ 1.6844294E+01 4.2229473E+03
+ 1.6854721E+01 4.2206377E+03
+ 1.6865147E+01 4.2196362E+03
+ 1.6875574E+01 4.2195171E+03
+ 1.6886001E+01 4.2190845E+03
+ 1.6896427E+01 4.2184165E+03
+ 1.6906854E+01 4.2173789E+03
+ 1.6917281E+01 4.2174458E+03
+ 1.6927707E+01 4.2173506E+03
+ 1.6938134E+01 4.2186782E+03
+ 1.6948561E+01 4.2208320E+03
+ 1.6958987E+01 4.2249033E+03
+ 1.6969414E+01 4.2294819E+03
+ 1.6979841E+01 4.2347017E+03
+ 1.6990268E+01 4.2405225E+03
+ 1.7000694E+01 4.2477554E+03
+ 1.7011121E+01 4.2567065E+03
+ 1.7021548E+01 4.2663350E+03
+ 1.7031974E+01 4.2740186E+03
+ 1.7042401E+01 4.2810942E+03
+ 1.7052828E+01 4.2834824E+03
+ 1.7063254E+01 4.2831406E+03
+ 1.7073681E+01 4.2793105E+03
+ 1.7084108E+01 4.2752036E+03
+ 1.7094534E+01 4.2698584E+03
+ 1.7104961E+01 4.2673491E+03
+ 1.7115388E+01 4.2690020E+03
+ 1.7125814E+01 4.2748799E+03
+ 1.7136241E+01 4.2852935E+03
+ 1.7146668E+01 4.2983076E+03
+ 1.7157094E+01 4.3103096E+03
+ 1.7167521E+01 4.3183267E+03
+ 1.7177948E+01 4.3189580E+03
+ 1.7188374E+01 4.3134810E+03
+ 1.7198801E+01 4.3011147E+03
+ 1.7209228E+01 4.2846172E+03
+ 1.7219654E+01 4.2652749E+03
+ 1.7230081E+01 4.2468667E+03
+ 1.7240508E+01 4.2273730E+03
+ 1.7250934E+01 4.2110859E+03
+ 1.7261361E+01 4.1957637E+03
+ 1.7271788E+01 4.1842139E+03
+ 1.7282214E+01 4.1742227E+03
+ 1.7292641E+01 4.1663193E+03
+ 1.7303068E+01 4.1587788E+03
+ 1.7313494E+01 4.1526279E+03
+ 1.7323921E+01 4.1459839E+03
+ 1.7334348E+01 4.1404272E+03
+ 1.7344774E+01 4.1354541E+03
+ 1.7355201E+01 4.1321909E+03
+ 1.7365628E+01 4.1287939E+03
+ 1.7376055E+01 4.1256201E+03
+ 1.7386481E+01 4.1222690E+03
+ 1.7396908E+01 4.1197393E+03
+ 1.7407335E+01 4.1173408E+03
+ 1.7417761E+01 4.1156626E+03
+ 1.7428188E+01 4.1131787E+03
+ 1.7438615E+01 4.1107769E+03
+ 1.7449041E+01 4.1076021E+03
+ 1.7459468E+01 4.1048242E+03
+ 1.7469895E+01 4.1018882E+03
+ 1.7480321E+01 4.0999961E+03
+ 1.7490748E+01 4.0972949E+03
+ 1.7501175E+01 4.0956350E+03
+ 1.7511601E+01 4.0945142E+03
+ 1.7522028E+01 4.0933584E+03
+ 1.7532455E+01 4.0909695E+03
+ 1.7542881E+01 4.0884236E+03
+ 1.7553308E+01 4.0849709E+03
+ 1.7563735E+01 4.0837490E+03
+ 1.7574161E+01 4.0829551E+03
+ 1.7584588E+01 4.0815056E+03
+ 1.7595015E+01 4.0800999E+03
+ 1.7605441E+01 4.0797129E+03
+ 1.7615868E+01 4.0794878E+03
+ 1.7626295E+01 4.0783679E+03
+ 1.7636721E+01 4.0762749E+03
+ 1.7647148E+01 4.0738015E+03
+ 1.7657575E+01 4.0711443E+03
+ 1.7668001E+01 4.0699448E+03
+ 1.7678428E+01 4.0688308E+03
+ 1.7688855E+01 4.0680103E+03
+ 1.7699281E+01 4.0663652E+03
+ 1.7709708E+01 4.0654573E+03
+ 1.7720135E+01 4.0648425E+03
+ 1.7730561E+01 4.0644155E+03
+ 1.7740988E+01 4.0627998E+03
+ 1.7751415E+01 4.0610498E+03
+ 1.7761842E+01 4.0593660E+03
+ 1.7772268E+01 4.0575229E+03
+ 1.7782695E+01 4.0547595E+03
+ 1.7793122E+01 4.0526045E+03
+ 1.7803548E+01 4.0502664E+03
+ 1.7813975E+01 4.0484517E+03
+ 1.7824402E+01 4.0468184E+03
+ 1.7834828E+01 4.0446680E+03
+ 1.7845255E+01 4.0433062E+03
+ 1.7855682E+01 4.0429924E+03
+ 1.7866108E+01 4.0429624E+03
+ 1.7876535E+01 4.0434307E+03
+ 1.7886962E+01 4.0441743E+03
+ 1.7897388E+01 4.0448870E+03
+ 1.7907815E+01 4.0434587E+03
+ 1.7918242E+01 4.0414199E+03
+ 1.7928668E+01 4.0382759E+03
+ 1.7939095E+01 4.0353835E+03
+ 1.7949522E+01 4.0329800E+03
+ 1.7959948E+01 4.0315767E+03
+ 1.7970375E+01 4.0298755E+03
+ 1.7980802E+01 4.0287534E+03
+ 1.7991228E+01 4.0271582E+03
+ 1.8001655E+01 4.0253491E+03
+ 1.8012082E+01 4.0240957E+03
+ 1.8022508E+01 4.0220798E+03
+ 1.8032935E+01 4.0211890E+03
+ 1.8043362E+01 4.0194373E+03
+ 1.8053788E+01 4.0179182E+03
+ 1.8064215E+01 4.0163035E+03
+ 1.8074642E+01 4.0149146E+03
+ 1.8085068E+01 4.0132798E+03
+ 1.8095495E+01 4.0107615E+03
+ 1.8105922E+01 4.0091748E+03
+ 1.8116348E+01 4.0072917E+03
+ 1.8126775E+01 4.0062983E+03
+ 1.8137202E+01 4.0055225E+03
+ 1.8147628E+01 4.0043086E+03
+ 1.8158055E+01 4.0031589E+03
+ 1.8168482E+01 4.0024905E+03
+ 1.8178909E+01 4.0024597E+03
+ 1.8189335E+01 4.0027205E+03
+ 1.8199762E+01 4.0037568E+03
+ 1.8210189E+01 4.0032244E+03
+ 1.8220615E+01 4.0008162E+03
+ 1.8231042E+01 3.9974265E+03
+ 1.8241469E+01 3.9949568E+03
+ 1.8251895E+01 3.9938325E+03
+ 1.8262322E+01 3.9933613E+03
+ 1.8272749E+01 3.9923115E+03
+ 1.8283175E+01 3.9914629E+03
+ 1.8293602E+01 3.9903723E+03
+ 1.8304029E+01 3.9884109E+03
+ 1.8314455E+01 3.9860925E+03
+ 1.8324882E+01 3.9851001E+03
+ 1.8335309E+01 3.9838594E+03
+ 1.8345735E+01 3.9826851E+03
+ 1.8356162E+01 3.9811111E+03
+ 1.8366589E+01 3.9791257E+03
+ 1.8377015E+01 3.9781196E+03
+ 1.8387442E+01 3.9779902E+03
+ 1.8397869E+01 3.9768887E+03
+ 1.8408295E+01 3.9761738E+03
+ 1.8418722E+01 3.9750916E+03
+ 1.8429149E+01 3.9741604E+03
+ 1.8439575E+01 3.9729873E+03
+ 1.8450002E+01 3.9714133E+03
+ 1.8460429E+01 3.9698472E+03
+ 1.8470855E+01 3.9691323E+03
+ 1.8481282E+01 3.9678357E+03
+ 1.8491709E+01 3.9671047E+03
+ 1.8502135E+01 3.9647573E+03
+ 1.8512562E+01 3.9633767E+03
+ 1.8522989E+01 3.9623137E+03
+ 1.8533415E+01 3.9602920E+03
+ 1.8543842E+01 3.9585391E+03
+ 1.8554269E+01 3.9566018E+03
+ 1.8564696E+01 3.9551660E+03
+ 1.8575122E+01 3.9533787E+03
+ 1.8585549E+01 3.9506697E+03
+ 1.8595976E+01 3.9483921E+03
+ 1.8606402E+01 3.9471082E+03
+ 1.8616829E+01 3.9460471E+03
+ 1.8627256E+01 3.9451421E+03
+ 1.8637682E+01 3.9446592E+03
+ 1.8648109E+01 3.9438352E+03
+ 1.8658536E+01 3.9430269E+03
+ 1.8668962E+01 3.9415664E+03
+ 1.8679389E+01 3.9407437E+03
+ 1.8689816E+01 3.9396023E+03
+ 1.8700242E+01 3.9389736E+03
+ 1.8710669E+01 3.9378572E+03
+ 1.8721096E+01 3.9370537E+03
+ 1.8731522E+01 3.9368030E+03
+ 1.8741949E+01 3.9366245E+03
+ 1.8752376E+01 3.9364243E+03
+ 1.8762802E+01 3.9361279E+03
+ 1.8773229E+01 3.9359238E+03
+ 1.8783656E+01 3.9352554E+03
+ 1.8794082E+01 3.9346411E+03
+ 1.8804509E+01 3.9344553E+03
+ 1.8814936E+01 3.9340642E+03
+ 1.8825362E+01 3.9338323E+03
+ 1.8835789E+01 3.9332224E+03
+ 1.8846216E+01 3.9319832E+03
+ 1.8856642E+01 3.9307900E+03
+ 1.8867069E+01 3.9304070E+03
+ 1.8877496E+01 3.9297866E+03
+ 1.8887922E+01 3.9296228E+03
+ 1.8898349E+01 3.9299094E+03
+ 1.8908776E+01 3.9302468E+03
+ 1.8919202E+01 3.9302178E+03
+ 1.8929629E+01 3.9305564E+03
+ 1.8940056E+01 3.9315388E+03
+ 1.8950482E+01 3.9326736E+03
+ 1.8960909E+01 3.9336304E+03
+ 1.8971336E+01 3.9338462E+03
+ 1.8981763E+01 3.9341768E+03
+ 1.8992189E+01 3.9340935E+03
+ 1.9002616E+01 3.9333335E+03
+ 1.9013043E+01 3.9327603E+03
+ 1.9023469E+01 3.9332317E+03
+ 1.9033896E+01 3.9337043E+03
+ 1.9044323E+01 3.9352612E+03
+ 1.9054749E+01 3.9383389E+03
+ 1.9065176E+01 3.9409248E+03
+ 1.9075603E+01 3.9421399E+03
+ 1.9086029E+01 3.9431084E+03
+ 1.9096456E+01 3.9423850E+03
+ 1.9106883E+01 3.9406985E+03
+ 1.9117309E+01 3.9377034E+03
+ 1.9127736E+01 3.9355552E+03
+ 1.9138163E+01 3.9338372E+03
+ 1.9148589E+01 3.9344385E+03
+ 1.9159016E+01 3.9349507E+03
+ 1.9169443E+01 3.9351577E+03
+ 1.9179869E+01 3.9348601E+03
+ 1.9190296E+01 3.9343816E+03
+ 1.9200723E+01 3.9343396E+03
+ 1.9211149E+01 3.9346746E+03
+ 1.9221576E+01 3.9353323E+03
+ 1.9232003E+01 3.9356379E+03
+ 1.9242429E+01 3.9349653E+03
+ 1.9252856E+01 3.9345674E+03
+ 1.9263283E+01 3.9346401E+03
+ 1.9273709E+01 3.9350859E+03
+ 1.9284136E+01 3.9350168E+03
+ 1.9294563E+01 3.9357581E+03
+ 1.9304989E+01 3.9364126E+03
+ 1.9315416E+01 3.9371279E+03
+ 1.9325843E+01 3.9377219E+03
+ 1.9336269E+01 3.9392932E+03
+ 1.9346696E+01 3.9402642E+03
+ 1.9357123E+01 3.9415994E+03
+ 1.9367550E+01 3.9415522E+03
+ 1.9377976E+01 3.9421787E+03
+ 1.9388403E+01 3.9426084E+03
+ 1.9398830E+01 3.9429182E+03
+ 1.9409256E+01 3.9429919E+03
+ 1.9419683E+01 3.9434595E+03
+ 1.9430110E+01 3.9431309E+03
+ 1.9440536E+01 3.9434780E+03
+ 1.9450963E+01 3.9441379E+03
+ 1.9461390E+01 3.9451765E+03
+ 1.9471816E+01 3.9444758E+03
+ 1.9482243E+01 3.9453442E+03
+ 1.9492670E+01 3.9463254E+03
+ 1.9503096E+01 3.9477097E+03
+ 1.9513523E+01 3.9480098E+03
+ 1.9523950E+01 3.9488225E+03
+ 1.9534376E+01 3.9493677E+03
+ 1.9544803E+01 3.9509678E+03
+ 1.9555230E+01 3.9523645E+03
+ 1.9565656E+01 3.9536401E+03
+ 1.9576083E+01 3.9545825E+03
+ 1.9586510E+01 3.9552017E+03
+ 1.9596936E+01 3.9569265E+03
+ 1.9607363E+01 3.9592141E+03
+ 1.9617790E+01 3.9607117E+03
+ 1.9628216E+01 3.9620674E+03
+ 1.9638643E+01 3.9636235E+03
+ 1.9649070E+01 3.9657231E+03
+ 1.9659496E+01 3.9678901E+03
+ 1.9669923E+01 3.9695413E+03
+ 1.9680350E+01 3.9709734E+03
+ 1.9690776E+01 3.9719810E+03
+ 1.9701203E+01 3.9733982E+03
+ 1.9711630E+01 3.9754036E+03
+ 1.9722056E+01 3.9784255E+03
+ 1.9732483E+01 3.9825054E+03
+ 1.9742910E+01 3.9864124E+03
+ 1.9753336E+01 3.9899775E+03
+ 1.9763763E+01 3.9929983E+03
+ 1.9774190E+01 3.9950657E+03
+ 1.9784617E+01 3.9985784E+03
+ 1.9795043E+01 4.0024380E+03
+ 1.9805470E+01 4.0066785E+03
+ 1.9815897E+01 4.0114966E+03
+ 1.9826323E+01 4.0153765E+03
+ 1.9836750E+01 4.0188828E+03
+ 1.9847177E+01 4.0224463E+03
+ 1.9857603E+01 4.0269177E+03
+ 1.9868030E+01 4.0326099E+03
+ 1.9878457E+01 4.0391897E+03
+ 1.9888883E+01 4.0458887E+03
+ 1.9899310E+01 4.0529170E+03
+ 1.9909737E+01 4.0600999E+03
+ 1.9920163E+01 4.0674695E+03
+ 1.9930590E+01 4.0739263E+03
+ 1.9941017E+01 4.0770718E+03
+ 1.9951443E+01 4.0772041E+03
+ 1.9961870E+01 4.0745073E+03
+ 1.9972297E+01 4.0701064E+03
+ 1.9982723E+01 4.0650532E+03
+ 1.9993150E+01 4.0607898E+03
+ 2.0003577E+01 4.0558955E+03
+ 2.0014003E+01 4.0521694E+03
+ 2.0024430E+01 4.0475161E+03
+ 2.0034857E+01 4.0443022E+03
+ 2.0045283E+01 4.0398997E+03
+ 2.0055710E+01 4.0374539E+03
+ 2.0066137E+01 4.0344463E+03
+ 2.0076563E+01 4.0328391E+03
+ 2.0086990E+01 4.0311514E+03
+ 2.0097417E+01 4.0307720E+03
+ 2.0107843E+01 4.0295996E+03
+ 2.0118270E+01 4.0283330E+03
+ 2.0128697E+01 4.0273091E+03
+ 2.0139123E+01 4.0263191E+03
+ 2.0149550E+01 4.0259856E+03
+ 2.0159977E+01 4.0258582E+03
+ 2.0170404E+01 4.0258875E+03
+ 2.0180830E+01 4.0258879E+03
+ 2.0191257E+01 4.0257322E+03
+ 2.0201684E+01 4.0263340E+03
+ 2.0212110E+01 4.0273857E+03
+ 2.0222537E+01 4.0297478E+03
+ 2.0232964E+01 4.0322993E+03
+ 2.0243390E+01 4.0351821E+03
+ 2.0253817E+01 4.0382644E+03
+ 2.0264244E+01 4.0440784E+03
+ 2.0274670E+01 4.0511272E+03
+ 2.0285097E+01 4.0572380E+03
+ 2.0295524E+01 4.0613342E+03
+ 2.0305950E+01 4.0623840E+03
+ 2.0316377E+01 4.0614116E+03
+ 2.0326804E+01 4.0571873E+03
+ 2.0337230E+01 4.0523066E+03
+ 2.0347657E+01 4.0472952E+03
+ 2.0358084E+01 4.0445137E+03
+ 2.0368510E+01 4.0426790E+03
+ 2.0378937E+01 4.0417349E+03
+ 2.0389364E+01 4.0409045E+03
+ 2.0399790E+01 4.0417803E+03
+ 2.0410217E+01 4.0417729E+03
+ 2.0420644E+01 4.0422793E+03
+ 2.0431070E+01 4.0422676E+03
+ 2.0441497E+01 4.0430210E+03
+ 2.0451924E+01 4.0422036E+03
+ 2.0462350E+01 4.0417881E+03
+ 2.0472777E+01 4.0406460E+03
+ 2.0483204E+01 4.0400642E+03
+ 2.0493630E+01 4.0399658E+03
+ 2.0504057E+01 4.0409290E+03
+ 2.0514484E+01 4.0420872E+03
+ 2.0524910E+01 4.0428210E+03
+ 2.0535337E+01 4.0424565E+03
+ 2.0545764E+01 4.0424778E+03
+ 2.0556191E+01 4.0430251E+03
+ 2.0566617E+01 4.0438794E+03
+ 2.0577044E+01 4.0448826E+03
+ 2.0587471E+01 4.0458982E+03
+ 2.0597897E+01 4.0471978E+03
+ 2.0608324E+01 4.0493037E+03
+ 2.0618751E+01 4.0514578E+03
+ 2.0629177E+01 4.0531233E+03
+ 2.0639604E+01 4.0553569E+03
+ 2.0650031E+01 4.0574785E+03
+ 2.0660457E+01 4.0598638E+03
+ 2.0670884E+01 4.0616853E+03
+ 2.0681311E+01 4.0639856E+03
+ 2.0691737E+01 4.0663606E+03
+ 2.0702164E+01 4.0690242E+03
+ 2.0712591E+01 4.0723391E+03
+ 2.0723017E+01 4.0768171E+03
+ 2.0733444E+01 4.0807888E+03
+ 2.0743871E+01 4.0869956E+03
+ 2.0754297E+01 4.0944341E+03
+ 2.0764724E+01 4.1056128E+03
+ 2.0775151E+01 4.1257588E+03
+ 2.0785577E+01 4.1622456E+03
+ 2.0796004E+01 4.1958945E+03
+ 2.0806431E+01 4.2250918E+03
+ 2.0816857E+01 4.2538799E+03
+ 2.0827284E+01 4.2684390E+03
+ 2.0837711E+01 4.2739121E+03
+ 2.0848137E+01 4.2736221E+03
+ 2.0858564E+01 4.2600698E+03
+ 2.0868991E+01 4.2244160E+03
+ 2.0879417E+01 4.1709287E+03
+ 2.0889844E+01 4.1446841E+03
+ 2.0900271E+01 4.1310635E+03
+ 2.0910697E+01 4.1222886E+03
+ 2.0921124E+01 4.1171143E+03
+ 2.0931551E+01 4.1135366E+03
+ 2.0941977E+01 4.1120015E+03
+ 2.0952404E+01 4.1113438E+03
+ 2.0962831E+01 4.1110850E+03
+ 2.0973258E+01 4.1102573E+03
+ 2.0983684E+01 4.1086001E+03
+ 2.0994111E+01 4.1079346E+03
+ 2.1004538E+01 4.1084224E+03
+ 2.1014964E+01 4.1083179E+03
+ 2.1025391E+01 4.1089136E+03
+ 2.1035818E+01 4.1092769E+03
+ 2.1046244E+01 4.1092900E+03
+ 2.1056671E+01 4.1095391E+03
+ 2.1067098E+01 4.1098838E+03
+ 2.1077524E+01 4.1102524E+03
+ 2.1087951E+01 4.1118569E+03
+ 2.1098378E+01 4.1139199E+03
+ 2.1108804E+01 4.1162100E+03
+ 2.1119231E+01 4.1170781E+03
+ 2.1129658E+01 4.1180737E+03
+ 2.1140084E+01 4.1188232E+03
+ 2.1150511E+01 4.1209229E+03
+ 2.1160938E+01 4.1229531E+03
+ 2.1171364E+01 4.1251963E+03
+ 2.1181791E+01 4.1264053E+03
+ 2.1192218E+01 4.1284805E+03
+ 2.1202644E+01 4.1305474E+03
+ 2.1213071E+01 4.1321504E+03
+ 2.1223498E+01 4.1328608E+03
+ 2.1233924E+01 4.1349512E+03
+ 2.1244351E+01 4.1368203E+03
+ 2.1254778E+01 4.1392739E+03
+ 2.1265204E+01 4.1423921E+03
+ 2.1275631E+01 4.1452744E+03
+ 2.1286058E+01 4.1478096E+03
+ 2.1296484E+01 4.1496094E+03
+ 2.1306911E+01 4.1518745E+03
+ 2.1317338E+01 4.1534224E+03
+ 2.1327764E+01 4.1554639E+03
+ 2.1338191E+01 4.1579688E+03
+ 2.1348618E+01 4.1613208E+03
+ 2.1359045E+01 4.1644736E+03
+ 2.1369471E+01 4.1682173E+03
+ 2.1379898E+01 4.1714644E+03
+ 2.1390325E+01 4.1750161E+03
+ 2.1400751E+01 4.1779878E+03
+ 2.1411178E+01 4.1823613E+03
+ 2.1421605E+01 4.1862798E+03
+ 2.1432031E+01 4.1899092E+03
+ 2.1442458E+01 4.1917310E+03
+ 2.1452885E+01 4.1945112E+03
+ 2.1463311E+01 4.1982217E+03
+ 2.1473738E+01 4.2028774E+03
+ 2.1484165E+01 4.2075161E+03
+ 2.1494591E+01 4.2122949E+03
+ 2.1505018E+01 4.2167651E+03
+ 2.1515445E+01 4.2213950E+03
+ 2.1525871E+01 4.2267578E+03
+ 2.1536298E+01 4.2339165E+03
+ 2.1546725E+01 4.2407842E+03
+ 2.1557151E+01 4.2477651E+03
+ 2.1567578E+01 4.2552603E+03
+ 2.1578005E+01 4.2635767E+03
+ 2.1588431E+01 4.2724663E+03
+ 2.1598858E+01 4.2819043E+03
+ 2.1609285E+01 4.2916719E+03
+ 2.1619711E+01 4.3017139E+03
+ 2.1630138E+01 4.3115195E+03
+ 2.1640565E+01 4.3206235E+03
+ 2.1650991E+01 4.3287192E+03
+ 2.1661418E+01 4.3341055E+03
+ 2.1671845E+01 4.3377002E+03
+ 2.1682271E+01 4.3383740E+03
+ 2.1692698E+01 4.3373164E+03
+ 2.1703125E+01 4.3335757E+03
+ 2.1713551E+01 4.3297251E+03
+ 2.1723978E+01 4.3245571E+03
+ 2.1734405E+01 4.3205015E+03
+ 2.1744831E+01 4.3170117E+03
+ 2.1755258E+01 4.3145151E+03
+ 2.1765685E+01 4.3125938E+03
+ 2.1776112E+01 4.3100825E+03
+ 2.1786538E+01 4.3073945E+03
+ 2.1796965E+01 4.3067251E+03
+ 2.1807392E+01 4.3061338E+03
+ 2.1817818E+01 4.3061362E+03
+ 2.1828245E+01 4.3061548E+03
+ 2.1838672E+01 4.3063428E+03
+ 2.1849098E+01 4.3076260E+03
+ 2.1859525E+01 4.3095493E+03
+ 2.1869952E+01 4.3113384E+03
+ 2.1880378E+01 4.3131157E+03
+ 2.1890805E+01 4.3152959E+03
+ 2.1901232E+01 4.3178770E+03
+ 2.1911658E+01 4.3211211E+03
+ 2.1922085E+01 4.3231113E+03
+ 2.1932512E+01 4.3260898E+03
+ 2.1942938E+01 4.3289268E+03
+ 2.1953365E+01 4.3329365E+03
+ 2.1963792E+01 4.3370200E+03
+ 2.1974218E+01 4.3409092E+03
+ 2.1984645E+01 4.3449482E+03
+ 2.1995072E+01 4.3495249E+03
+ 2.2005498E+01 4.3539346E+03
+ 2.2015925E+01 4.3592964E+03
+ 2.2026352E+01 4.3644204E+03
+ 2.2036778E+01 4.3688081E+03
+ 2.2047205E+01 4.3740513E+03
+ 2.2057632E+01 4.3796865E+03
+ 2.2068058E+01 4.3860054E+03
+ 2.2078485E+01 4.3926577E+03
+ 2.2088912E+01 4.3997065E+03
+ 2.2099338E+01 4.4064766E+03
+ 2.2109765E+01 4.4137231E+03
+ 2.2120192E+01 4.4208882E+03
+ 2.2130618E+01 4.4293452E+03
+ 2.2141045E+01 4.4377598E+03
+ 2.2151472E+01 4.4474839E+03
+ 2.2161899E+01 4.4573789E+03
+ 2.2172325E+01 4.4680752E+03
+ 2.2182752E+01 4.4781577E+03
+ 2.2193179E+01 4.4889321E+03
+ 2.2203605E+01 4.4988970E+03
+ 2.2214032E+01 4.5073740E+03
+ 2.2224459E+01 4.5139253E+03
+ 2.2234885E+01 4.5185679E+03
+ 2.2245312E+01 4.5211548E+03
+ 2.2255739E+01 4.5221382E+03
+ 2.2266165E+01 4.5224121E+03
+ 2.2276592E+01 4.5229067E+03
+ 2.2287019E+01 4.5239336E+03
+ 2.2297445E+01 4.5251992E+03
+ 2.2307872E+01 4.5272417E+03
+ 2.2318299E+01 4.5298037E+03
+ 2.2328725E+01 4.5240518E+03
+ 2.2339152E+01 4.4533369E+03
+ 2.2349579E+01 4.2362056E+03
+ 2.2360005E+01 3.8756890E+03
+ 2.2370432E+01 3.4622537E+03
+ 2.2380859E+01 3.0481914E+03
+ 2.2391285E+01 2.6810833E+03
+ 2.2401712E+01 2.3193298E+03
+ 2.2412139E+01 1.8542343E+03
+ 2.2422565E+01 1.3386278E+03
+ 2.2432992E+01 8.1379791E+02
+ 2.2443419E+01 3.7624478E+02
+ 2.2453845E+01 1.0761805E+02
+ 2.2464272E+01 6.8590584E+00
diff --git a/jnb-tools/data/hStv/hSiO2_404_009.dpp b/jnb-tools/data/hStv/hSiO2_404_009.dpp
new file mode 100644
index 0000000..d1f64c2
Binary files /dev/null and b/jnb-tools/data/hStv/hSiO2_404_009.dpp differ
diff --git a/jnb-tools/data/hStv/hSiO2_404_009.ppss b/jnb-tools/data/hStv/hSiO2_404_009.ppss
new file mode 100644
index 0000000..f9177fd
Binary files /dev/null and b/jnb-tools/data/hStv/hSiO2_404_009.ppss differ
diff --git a/jnb-tools/data/hStv/hSiO2_404_009.tif b/jnb-tools/data/hStv/hSiO2_404_009.tif
new file mode 100755
index 0000000..74e2dff
Binary files /dev/null and b/jnb-tools/data/hStv/hSiO2_404_009.tif differ
diff --git a/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.azi.cake.npy b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.azi.cake.npy
new file mode 100644
index 0000000..02467b5
Binary files /dev/null and b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.azi.cake.npy differ
diff --git a/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.bg.chi b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.bg.chi
new file mode 100644
index 0000000..18940d3
--- /dev/null
+++ b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.bg.chi
@@ -0,0 +1,1443 @@
+# BG ROI: 6.00000, 21.00000
+# BG Params: 20, 10, 20
+
+1439
+6.0005517e+00 2.8351539e+03
+6.0109784e+00 2.8443329e+03
+6.0214050e+00 2.8527559e+03
+6.0318317e+00 2.8605005e+03
+6.0422584e+00 2.8676384e+03
+6.0526851e+00 2.8742358e+03
+6.0631117e+00 2.8803536e+03
+6.0735384e+00 2.8860480e+03
+6.0839651e+00 2.8913705e+03
+6.0943918e+00 2.8963681e+03
+6.1048184e+00 2.9010840e+03
+6.1152451e+00 2.9055576e+03
+6.1256718e+00 2.9098247e+03
+6.1360985e+00 2.9139178e+03
+6.1465251e+00 2.9178663e+03
+6.1569518e+00 2.9216966e+03
+6.1673785e+00 2.9254328e+03
+6.1778052e+00 2.9290960e+03
+6.1882318e+00 2.9327054e+03
+6.1986585e+00 2.9362778e+03
+6.2090852e+00 2.9398282e+03
+6.2195119e+00 2.9433696e+03
+6.2299385e+00 2.9469132e+03
+6.2403652e+00 2.9504690e+03
+6.2507919e+00 2.9540453e+03
+6.2612186e+00 2.9576492e+03
+6.2716452e+00 2.9612863e+03
+6.2820719e+00 2.9649615e+03
+6.2924986e+00 2.9686785e+03
+6.3029253e+00 2.9724401e+03
+6.3133519e+00 2.9762482e+03
+6.3237786e+00 2.9801042e+03
+6.3342053e+00 2.9840085e+03
+6.3446320e+00 2.9879613e+03
+6.3550586e+00 2.9919618e+03
+6.3654853e+00 2.9960091e+03
+6.3759120e+00 3.0001019e+03
+6.3863387e+00 3.0042382e+03
+6.3967653e+00 3.0084160e+03
+6.4071920e+00 3.0126331e+03
+6.4176187e+00 3.0168868e+03
+6.4280454e+00 3.0211744e+03
+6.4384720e+00 3.0254931e+03
+6.4488987e+00 3.0298398e+03
+6.4593254e+00 3.0342115e+03
+6.4697521e+00 3.0386052e+03
+6.4801787e+00 3.0430175e+03
+6.4906054e+00 3.0474457e+03
+6.5010321e+00 3.0518863e+03
+6.5114588e+00 3.0563365e+03
+6.5218854e+00 3.0607932e+03
+6.5323121e+00 3.0652535e+03
+6.5427388e+00 3.0697145e+03
+6.5531655e+00 3.0741735e+03
+6.5635921e+00 3.0786279e+03
+6.5740188e+00 3.0830751e+03
+6.5844455e+00 3.0875127e+03
+6.5948722e+00 3.0919386e+03
+6.6052989e+00 3.0963504e+03
+6.6157255e+00 3.1007463e+03
+6.6261522e+00 3.1051243e+03
+6.6365789e+00 3.1094829e+03
+6.6470056e+00 3.1138203e+03
+6.6574322e+00 3.1181352e+03
+6.6678589e+00 3.1224264e+03
+6.6782856e+00 3.1266927e+03
+6.6887123e+00 3.1309330e+03
+6.6991389e+00 3.1351466e+03
+6.7095656e+00 3.1393328e+03
+6.7199923e+00 3.1434910e+03
+6.7304190e+00 3.1476208e+03
+6.7408456e+00 3.1517217e+03
+6.7512723e+00 3.1557937e+03
+6.7616990e+00 3.1598368e+03
+6.7721257e+00 3.1638508e+03
+6.7825523e+00 3.1678361e+03
+6.7929790e+00 3.1717928e+03
+6.8034057e+00 3.1757215e+03
+6.8138324e+00 3.1796224e+03
+6.8242590e+00 3.1834961e+03
+6.8346857e+00 3.1873435e+03
+6.8451124e+00 3.1911650e+03
+6.8555391e+00 3.1949616e+03
+6.8659657e+00 3.1987340e+03
+6.8763924e+00 3.2024833e+03
+6.8868191e+00 3.2062105e+03
+6.8972458e+00 3.2099164e+03
+6.9076724e+00 3.2136023e+03
+6.9180991e+00 3.2172694e+03
+6.9285258e+00 3.2209186e+03
+6.9389525e+00 3.2245514e+03
+6.9493791e+00 3.2281688e+03
+6.9598058e+00 3.2317722e+03
+6.9702325e+00 3.2353628e+03
+6.9806592e+00 3.2389419e+03
+6.9910858e+00 3.2425108e+03
+7.0015125e+00 3.2460709e+03
+7.0119392e+00 3.2496234e+03
+7.0223659e+00 3.2531697e+03
+7.0327925e+00 3.2567109e+03
+7.0432192e+00 3.2602485e+03
+7.0536459e+00 3.2637838e+03
+7.0640726e+00 3.2673179e+03
+7.0744992e+00 3.2708521e+03
+7.0849259e+00 3.2743877e+03
+7.0953526e+00 3.2779258e+03
+7.1057793e+00 3.2814676e+03
+7.1162059e+00 3.2850143e+03
+7.1266326e+00 3.2885670e+03
+7.1370593e+00 3.2921267e+03
+7.1474860e+00 3.2956945e+03
+7.1579126e+00 3.2992714e+03
+7.1683393e+00 3.3028584e+03
+7.1787660e+00 3.3064563e+03
+7.1891927e+00 3.3100661e+03
+7.1996193e+00 3.3136886e+03
+7.2100460e+00 3.3173246e+03
+7.2204727e+00 3.3209749e+03
+7.2308994e+00 3.3246401e+03
+7.2413260e+00 3.3283209e+03
+7.2517527e+00 3.3320179e+03
+7.2621794e+00 3.3357317e+03
+7.2726061e+00 3.3394628e+03
+7.2830327e+00 3.3432117e+03
+7.2934594e+00 3.3469787e+03
+7.3038861e+00 3.3507643e+03
+7.3143128e+00 3.3545688e+03
+7.3247395e+00 3.3583924e+03
+7.3351661e+00 3.3622353e+03
+7.3455928e+00 3.3660979e+03
+7.3560195e+00 3.3699801e+03
+7.3664462e+00 3.3738821e+03
+7.3768728e+00 3.3778039e+03
+7.3872995e+00 3.3817456e+03
+7.3977262e+00 3.3857070e+03
+7.4081529e+00 3.3896882e+03
+7.4185795e+00 3.3936888e+03
+7.4290062e+00 3.3977089e+03
+7.4394329e+00 3.4017482e+03
+7.4498596e+00 3.4058065e+03
+7.4602862e+00 3.4098833e+03
+7.4707129e+00 3.4139785e+03
+7.4811396e+00 3.4180917e+03
+7.4915663e+00 3.4222225e+03
+7.5019929e+00 3.4263704e+03
+7.5124196e+00 3.4305351e+03
+7.5228463e+00 3.4347160e+03
+7.5332730e+00 3.4389127e+03
+7.5436996e+00 3.4431245e+03
+7.5541263e+00 3.4473509e+03
+7.5645530e+00 3.4515914e+03
+7.5749797e+00 3.4558453e+03
+7.5854063e+00 3.4601120e+03
+7.5958330e+00 3.4643908e+03
+7.6062597e+00 3.4686811e+03
+7.6166864e+00 3.4729822e+03
+7.6271130e+00 3.4772933e+03
+7.6375397e+00 3.4816138e+03
+7.6479664e+00 3.4859430e+03
+7.6583931e+00 3.4902800e+03
+7.6688197e+00 3.4946241e+03
+7.6792464e+00 3.4989746e+03
+7.6896731e+00 3.5033307e+03
+7.7000998e+00 3.5076916e+03
+7.7105264e+00 3.5120565e+03
+7.7209531e+00 3.5164247e+03
+7.7313798e+00 3.5207954e+03
+7.7418065e+00 3.5251677e+03
+7.7522331e+00 3.5295408e+03
+7.7626598e+00 3.5339141e+03
+7.7730865e+00 3.5382867e+03
+7.7835132e+00 3.5426578e+03
+7.7939398e+00 3.5470266e+03
+7.8043665e+00 3.5513924e+03
+7.8147932e+00 3.5557544e+03
+7.8252199e+00 3.5601118e+03
+7.8356465e+00 3.5644639e+03
+7.8460732e+00 3.5688099e+03
+7.8564999e+00 3.5731492e+03
+7.8669266e+00 3.5774809e+03
+7.8773532e+00 3.5818044e+03
+7.8877799e+00 3.5861189e+03
+7.8982066e+00 3.5904239e+03
+7.9086333e+00 3.5947186e+03
+7.9190599e+00 3.5990023e+03
+7.9294866e+00 3.6032745e+03
+7.9399133e+00 3.6075345e+03
+7.9503400e+00 3.6117816e+03
+7.9607666e+00 3.6160153e+03
+7.9711933e+00 3.6202351e+03
+7.9816200e+00 3.6244403e+03
+7.9920467e+00 3.6286304e+03
+8.0024734e+00 3.6328050e+03
+8.0129000e+00 3.6369634e+03
+8.0233267e+00 3.6411053e+03
+8.0337534e+00 3.6452301e+03
+8.0441801e+00 3.6493374e+03
+8.0546067e+00 3.6534268e+03
+8.0650334e+00 3.6574979e+03
+8.0754601e+00 3.6615503e+03
+8.0858868e+00 3.6655836e+03
+8.0963134e+00 3.6695975e+03
+8.1067401e+00 3.6735917e+03
+8.1171668e+00 3.6775658e+03
+8.1275935e+00 3.6815197e+03
+8.1380201e+00 3.6854530e+03
+8.1484468e+00 3.6893655e+03
+8.1588735e+00 3.6932569e+03
+8.1693002e+00 3.6971272e+03
+8.1797268e+00 3.7009759e+03
+8.1901535e+00 3.7048032e+03
+8.2005802e+00 3.7086088e+03
+8.2110069e+00 3.7123925e+03
+8.2214335e+00 3.7161542e+03
+8.2318602e+00 3.7198940e+03
+8.2422869e+00 3.7236118e+03
+8.2527136e+00 3.7273074e+03
+8.2631402e+00 3.7309808e+03
+8.2735669e+00 3.7346321e+03
+8.2839936e+00 3.7382613e+03
+8.2944203e+00 3.7418683e+03
+8.3048469e+00 3.7454533e+03
+8.3152736e+00 3.7490163e+03
+8.3257003e+00 3.7525573e+03
+8.3361270e+00 3.7560765e+03
+8.3465536e+00 3.7595739e+03
+8.3569803e+00 3.7630498e+03
+8.3674070e+00 3.7665042e+03
+8.3778337e+00 3.7699372e+03
+8.3882603e+00 3.7733490e+03
+8.3986870e+00 3.7767399e+03
+8.4091137e+00 3.7801100e+03
+8.4195404e+00 3.7834594e+03
+8.4299670e+00 3.7867885e+03
+8.4403937e+00 3.7900974e+03
+8.4508204e+00 3.7933864e+03
+8.4612471e+00 3.7966556e+03
+8.4716737e+00 3.7999055e+03
+8.4821004e+00 3.8031361e+03
+8.4925271e+00 3.8063479e+03
+8.5029538e+00 3.8095410e+03
+8.5133804e+00 3.8127158e+03
+8.5238071e+00 3.8158725e+03
+8.5342338e+00 3.8190115e+03
+8.5446605e+00 3.8221331e+03
+8.5550871e+00 3.8252375e+03
+8.5655138e+00 3.8283251e+03
+8.5759405e+00 3.8313963e+03
+8.5863672e+00 3.8344512e+03
+8.5967938e+00 3.8374903e+03
+8.6072205e+00 3.8405139e+03
+8.6176472e+00 3.8435224e+03
+8.6280739e+00 3.8465160e+03
+8.6385005e+00 3.8494951e+03
+8.6489272e+00 3.8524601e+03
+8.6593539e+00 3.8554112e+03
+8.6697806e+00 3.8583489e+03
+8.6802072e+00 3.8612734e+03
+8.6906339e+00 3.8641852e+03
+8.7010606e+00 3.8670845e+03
+8.7114873e+00 3.8699717e+03
+8.7219140e+00 3.8728471e+03
+8.7323406e+00 3.8757111e+03
+8.7427673e+00 3.8785639e+03
+8.7531940e+00 3.8814061e+03
+8.7636207e+00 3.8842377e+03
+8.7740473e+00 3.8870592e+03
+8.7844740e+00 3.8898709e+03
+8.7949007e+00 3.8926732e+03
+8.8053274e+00 3.8954662e+03
+8.8157540e+00 3.8982504e+03
+8.8261807e+00 3.9010260e+03
+8.8366074e+00 3.9037934e+03
+8.8470341e+00 3.9065527e+03
+8.8574607e+00 3.9093044e+03
+8.8678874e+00 3.9120487e+03
+8.8783141e+00 3.9147858e+03
+8.8887408e+00 3.9175161e+03
+8.8991674e+00 3.9202397e+03
+8.9095941e+00 3.9229570e+03
+8.9200208e+00 3.9256681e+03
+8.9304475e+00 3.9283735e+03
+8.9408741e+00 3.9310731e+03
+8.9513008e+00 3.9337674e+03
+8.9617275e+00 3.9364564e+03
+8.9721542e+00 3.9391405e+03
+8.9825808e+00 3.9418198e+03
+8.9930075e+00 3.9444945e+03
+9.0034342e+00 3.9471648e+03
+9.0138609e+00 3.9498309e+03
+9.0242875e+00 3.9524929e+03
+9.0347142e+00 3.9551511e+03
+9.0451409e+00 3.9578055e+03
+9.0555676e+00 3.9604563e+03
+9.0659942e+00 3.9631037e+03
+9.0764209e+00 3.9657477e+03
+9.0868476e+00 3.9683886e+03
+9.0972743e+00 3.9710263e+03
+9.1077009e+00 3.9736611e+03
+9.1181276e+00 3.9762930e+03
+9.1285543e+00 3.9789221e+03
+9.1389810e+00 3.9815484e+03
+9.1494076e+00 3.9841721e+03
+9.1598343e+00 3.9867933e+03
+9.1702610e+00 3.9894119e+03
+9.1806877e+00 3.9920281e+03
+9.1911143e+00 3.9946417e+03
+9.2015410e+00 3.9972530e+03
+9.2119677e+00 3.9998620e+03
+9.2223944e+00 4.0024685e+03
+9.2328210e+00 4.0050727e+03
+9.2432477e+00 4.0076746e+03
+9.2536744e+00 4.0102741e+03
+9.2641011e+00 4.0128713e+03
+9.2745277e+00 4.0154660e+03
+9.2849544e+00 4.0180584e+03
+9.2953811e+00 4.0206484e+03
+9.3058078e+00 4.0232358e+03
+9.3162344e+00 4.0258208e+03
+9.3266611e+00 4.0284032e+03
+9.3370878e+00 4.0309830e+03
+9.3475145e+00 4.0335601e+03
+9.3579411e+00 4.0361344e+03
+9.3683678e+00 4.0387060e+03
+9.3787945e+00 4.0412747e+03
+9.3892212e+00 4.0438404e+03
+9.3996479e+00 4.0464030e+03
+9.4100745e+00 4.0489625e+03
+9.4205012e+00 4.0515187e+03
+9.4309279e+00 4.0540716e+03
+9.4413546e+00 4.0566211e+03
+9.4517812e+00 4.0591670e+03
+9.4622079e+00 4.0617092e+03
+9.4726346e+00 4.0642477e+03
+9.4830613e+00 4.0667822e+03
+9.4934879e+00 4.0693128e+03
+9.5039146e+00 4.0718392e+03
+9.5143413e+00 4.0743614e+03
+9.5247680e+00 4.0768791e+03
+9.5351946e+00 4.0793924e+03
+9.5456213e+00 4.0819010e+03
+9.5560480e+00 4.0844048e+03
+9.5664747e+00 4.0869037e+03
+9.5769013e+00 4.0893975e+03
+9.5873280e+00 4.0918862e+03
+9.5977547e+00 4.0943695e+03
+9.6081814e+00 4.0968474e+03
+9.6186080e+00 4.0993196e+03
+9.6290347e+00 4.1017862e+03
+9.6394614e+00 4.1042468e+03
+9.6498881e+00 4.1067014e+03
+9.6603147e+00 4.1091498e+03
+9.6707414e+00 4.1115919e+03
+9.6811681e+00 4.1140276e+03
+9.6915948e+00 4.1164568e+03
+9.7020214e+00 4.1188791e+03
+9.7124481e+00 4.1212947e+03
+9.7228748e+00 4.1237032e+03
+9.7333015e+00 4.1261047e+03
+9.7437281e+00 4.1284989e+03
+9.7541548e+00 4.1308857e+03
+9.7645815e+00 4.1332650e+03
+9.7750082e+00 4.1356367e+03
+9.7854348e+00 4.1380005e+03
+9.7958615e+00 4.1403566e+03
+9.8062882e+00 4.1427046e+03
+9.8167149e+00 4.1450445e+03
+9.8271415e+00 4.1473762e+03
+9.8375682e+00 4.1496996e+03
+9.8479949e+00 4.1520145e+03
+9.8584216e+00 4.1543209e+03
+9.8688482e+00 4.1566186e+03
+9.8792749e+00 4.1589075e+03
+9.8897016e+00 4.1611876e+03
+9.9001283e+00 4.1634588e+03
+9.9105549e+00 4.1657209e+03
+9.9209816e+00 4.1679740e+03
+9.9314083e+00 4.1702178e+03
+9.9418350e+00 4.1724524e+03
+9.9522616e+00 4.1746776e+03
+9.9626883e+00 4.1768935e+03
+9.9731150e+00 4.1790998e+03
+9.9835417e+00 4.1812966e+03
+9.9939683e+00 4.1834838e+03
+1.0004395e+01 4.1856614e+03
+1.0014822e+01 4.1878293e+03
+1.0025248e+01 4.1899873e+03
+1.0035675e+01 4.1921357e+03
+1.0046102e+01 4.1942742e+03
+1.0056528e+01 4.1964027e+03
+1.0066955e+01 4.1985216e+03
+1.0077382e+01 4.2006305e+03
+1.0087808e+01 4.2027292e+03
+1.0098235e+01 4.2048183e+03
+1.0108662e+01 4.2068973e+03
+1.0119088e+01 4.2089662e+03
+1.0129515e+01 4.2110253e+03
+1.0139942e+01 4.2130745e+03
+1.0150368e+01 4.2151134e+03
+1.0160795e+01 4.2171427e+03
+1.0171222e+01 4.2191619e+03
+1.0181649e+01 4.2211712e+03
+1.0192075e+01 4.2231705e+03
+1.0202502e+01 4.2251600e+03
+1.0212929e+01 4.2271396e+03
+1.0223355e+01 4.2291093e+03
+1.0233782e+01 4.2310693e+03
+1.0244209e+01 4.2330196e+03
+1.0254635e+01 4.2349600e+03
+1.0265062e+01 4.2368909e+03
+1.0275489e+01 4.2388122e+03
+1.0285915e+01 4.2407237e+03
+1.0296342e+01 4.2426259e+03
+1.0306769e+01 4.2445187e+03
+1.0317195e+01 4.2464019e+03
+1.0327622e+01 4.2482759e+03
+1.0338049e+01 4.2501408e+03
+1.0348475e+01 4.2519962e+03
+1.0358902e+01 4.2538428e+03
+1.0369329e+01 4.2556803e+03
+1.0379755e+01 4.2575087e+03
+1.0390182e+01 4.2593284e+03
+1.0400609e+01 4.2611393e+03
+1.0411035e+01 4.2629414e+03
+1.0421462e+01 4.2647350e+03
+1.0431889e+01 4.2665202e+03
+1.0442315e+01 4.2682967e+03
+1.0452742e+01 4.2700651e+03
+1.0463169e+01 4.2718253e+03
+1.0473595e+01 4.2735772e+03
+1.0484022e+01 4.2753213e+03
+1.0494449e+01 4.2770574e+03
+1.0504875e+01 4.2787856e+03
+1.0515302e+01 4.2805062e+03
+1.0525729e+01 4.2822192e+03
+1.0536155e+01 4.2839245e+03
+1.0546582e+01 4.2856227e+03
+1.0557009e+01 4.2873135e+03
+1.0567435e+01 4.2889971e+03
+1.0577862e+01 4.2906737e+03
+1.0588289e+01 4.2923434e+03
+1.0598716e+01 4.2940062e+03
+1.0609142e+01 4.2956622e+03
+1.0619569e+01 4.2973117e+03
+1.0629996e+01 4.2989548e+03
+1.0640422e+01 4.3005913e+03
+1.0650849e+01 4.3022216e+03
+1.0661276e+01 4.3038458e+03
+1.0671702e+01 4.3054638e+03
+1.0682129e+01 4.3070760e+03
+1.0692556e+01 4.3086824e+03
+1.0702982e+01 4.3102829e+03
+1.0713409e+01 4.3118779e+03
+1.0723836e+01 4.3134675e+03
+1.0734262e+01 4.3150515e+03
+1.0744689e+01 4.3166303e+03
+1.0755116e+01 4.3182039e+03
+1.0765542e+01 4.3197723e+03
+1.0775969e+01 4.3213359e+03
+1.0786396e+01 4.3228946e+03
+1.0796822e+01 4.3244483e+03
+1.0807249e+01 4.3259976e+03
+1.0817676e+01 4.3275422e+03
+1.0828102e+01 4.3290821e+03
+1.0838529e+01 4.3306178e+03
+1.0848956e+01 4.3321492e+03
+1.0859382e+01 4.3336762e+03
+1.0869809e+01 4.3351992e+03
+1.0880236e+01 4.3367181e+03
+1.0890662e+01 4.3382329e+03
+1.0901089e+01 4.3397440e+03
+1.0911516e+01 4.3412512e+03
+1.0921942e+01 4.3427546e+03
+1.0932369e+01 4.3442543e+03
+1.0942796e+01 4.3457505e+03
+1.0953222e+01 4.3472430e+03
+1.0963649e+01 4.3487322e+03
+1.0974076e+01 4.3502179e+03
+1.0984503e+01 4.3517003e+03
+1.0994929e+01 4.3531792e+03
+1.1005356e+01 4.3546550e+03
+1.1015783e+01 4.3561277e+03
+1.1026209e+01 4.3575970e+03
+1.1036636e+01 4.3590634e+03
+1.1047063e+01 4.3605267e+03
+1.1057489e+01 4.3619868e+03
+1.1067916e+01 4.3634441e+03
+1.1078343e+01 4.3648984e+03
+1.1088769e+01 4.3663496e+03
+1.1099196e+01 4.3677981e+03
+1.1109623e+01 4.3692438e+03
+1.1120049e+01 4.3706864e+03
+1.1130476e+01 4.3721263e+03
+1.1140903e+01 4.3735635e+03
+1.1151329e+01 4.3749976e+03
+1.1161756e+01 4.3764291e+03
+1.1172183e+01 4.3778579e+03
+1.1182609e+01 4.3792836e+03
+1.1193036e+01 4.3807068e+03
+1.1203463e+01 4.3821272e+03
+1.1213889e+01 4.3835446e+03
+1.1224316e+01 4.3849593e+03
+1.1234743e+01 4.3863713e+03
+1.1245169e+01 4.3877803e+03
+1.1255596e+01 4.3891865e+03
+1.1266023e+01 4.3905900e+03
+1.1276449e+01 4.3919904e+03
+1.1286876e+01 4.3933880e+03
+1.1297303e+01 4.3947827e+03
+1.1307729e+01 4.3961743e+03
+1.1318156e+01 4.3975630e+03
+1.1328583e+01 4.3989487e+03
+1.1339009e+01 4.4003312e+03
+1.1349436e+01 4.4017107e+03
+1.1359863e+01 4.4030870e+03
+1.1370289e+01 4.4044601e+03
+1.1380716e+01 4.4058300e+03
+1.1391143e+01 4.4071966e+03
+1.1401570e+01 4.4085599e+03
+1.1411996e+01 4.4099196e+03
+1.1422423e+01 4.4112761e+03
+1.1432850e+01 4.4126290e+03
+1.1443276e+01 4.4139782e+03
+1.1453703e+01 4.4153239e+03
+1.1464130e+01 4.4166660e+03
+1.1474556e+01 4.4180041e+03
+1.1484983e+01 4.4193386e+03
+1.1495410e+01 4.4206691e+03
+1.1505836e+01 4.4219956e+03
+1.1516263e+01 4.4233182e+03
+1.1526690e+01 4.4246367e+03
+1.1537116e+01 4.4259508e+03
+1.1547543e+01 4.4272609e+03
+1.1557970e+01 4.4285666e+03
+1.1568396e+01 4.4298678e+03
+1.1578823e+01 4.4311647e+03
+1.1589250e+01 4.4324569e+03
+1.1599676e+01 4.4337445e+03
+1.1610103e+01 4.4350274e+03
+1.1620530e+01 4.4363056e+03
+1.1630956e+01 4.4375787e+03
+1.1641383e+01 4.4388470e+03
+1.1651810e+01 4.4401103e+03
+1.1662236e+01 4.4413683e+03
+1.1672663e+01 4.4426212e+03
+1.1683090e+01 4.4438689e+03
+1.1693516e+01 4.4451110e+03
+1.1703943e+01 4.4463478e+03
+1.1714370e+01 4.4475791e+03
+1.1724796e+01 4.4488046e+03
+1.1735223e+01 4.4500246e+03
+1.1745650e+01 4.4512388e+03
+1.1756076e+01 4.4524469e+03
+1.1766503e+01 4.4536493e+03
+1.1776930e+01 4.4548456e+03
+1.1787357e+01 4.4560358e+03
+1.1797783e+01 4.4572197e+03
+1.1808210e+01 4.4583974e+03
+1.1818637e+01 4.4595688e+03
+1.1829063e+01 4.4607336e+03
+1.1839490e+01 4.4618920e+03
+1.1849917e+01 4.4630439e+03
+1.1860343e+01 4.4641890e+03
+1.1870770e+01 4.4653275e+03
+1.1881197e+01 4.4664591e+03
+1.1891623e+01 4.4675838e+03
+1.1902050e+01 4.4687016e+03
+1.1912477e+01 4.4698124e+03
+1.1922903e+01 4.4709161e+03
+1.1933330e+01 4.4720126e+03
+1.1943757e+01 4.4731020e+03
+1.1954183e+01 4.4741840e+03
+1.1964610e+01 4.4752587e+03
+1.1975037e+01 4.4763261e+03
+1.1985463e+01 4.4773859e+03
+1.1995890e+01 4.4784382e+03
+1.2006317e+01 4.4794830e+03
+1.2016743e+01 4.4805201e+03
+1.2027170e+01 4.4815496e+03
+1.2037597e+01 4.4825713e+03
+1.2048023e+01 4.4835852e+03
+1.2058450e+01 4.4845914e+03
+1.2068877e+01 4.4855897e+03
+1.2079303e+01 4.4865800e+03
+1.2089730e+01 4.4875624e+03
+1.2100157e+01 4.4885369e+03
+1.2110583e+01 4.4895032e+03
+1.2121010e+01 4.4904616e+03
+1.2131437e+01 4.4914119e+03
+1.2141863e+01 4.4923540e+03
+1.2152290e+01 4.4932881e+03
+1.2162717e+01 4.4942139e+03
+1.2173144e+01 4.4951316e+03
+1.2183570e+01 4.4960410e+03
+1.2193997e+01 4.4969422e+03
+1.2204424e+01 4.4978352e+03
+1.2214850e+01 4.4987198e+03
+1.2225277e+01 4.4995962e+03
+1.2235704e+01 4.5004644e+03
+1.2246130e+01 4.5013241e+03
+1.2256557e+01 4.5021757e+03
+1.2266984e+01 4.5030189e+03
+1.2277410e+01 4.5038537e+03
+1.2287837e+01 4.5046803e+03
+1.2298264e+01 4.5054986e+03
+1.2308690e+01 4.5063086e+03
+1.2319117e+01 4.5071103e+03
+1.2329544e+01 4.5079037e+03
+1.2339970e+01 4.5086887e+03
+1.2350397e+01 4.5094655e+03
+1.2360824e+01 4.5102341e+03
+1.2371250e+01 4.5109944e+03
+1.2381677e+01 4.5117465e+03
+1.2392104e+01 4.5124905e+03
+1.2402530e+01 4.5132261e+03
+1.2412957e+01 4.5139537e+03
+1.2423384e+01 4.5146732e+03
+1.2433810e+01 4.5153844e+03
+1.2444237e+01 4.5160877e+03
+1.2454664e+01 4.5167829e+03
+1.2465090e+01 4.5174700e+03
+1.2475517e+01 4.5181492e+03
+1.2485944e+01 4.5188204e+03
+1.2496370e+01 4.5194837e+03
+1.2506797e+01 4.5201391e+03
+1.2517224e+01 4.5207867e+03
+1.2527650e+01 4.5214264e+03
+1.2538077e+01 4.5220584e+03
+1.2548504e+01 4.5226827e+03
+1.2558930e+01 4.5232992e+03
+1.2569357e+01 4.5239082e+03
+1.2579784e+01 4.5245095e+03
+1.2590211e+01 4.5251033e+03
+1.2600637e+01 4.5256896e+03
+1.2611064e+01 4.5262685e+03
+1.2621491e+01 4.5268399e+03
+1.2631917e+01 4.5274039e+03
+1.2642344e+01 4.5279607e+03
+1.2652771e+01 4.5285102e+03
+1.2663197e+01 4.5290525e+03
+1.2673624e+01 4.5295876e+03
+1.2684051e+01 4.5301156e+03
+1.2694477e+01 4.5306365e+03
+1.2704904e+01 4.5311505e+03
+1.2715331e+01 4.5316575e+03
+1.2725757e+01 4.5321575e+03
+1.2736184e+01 4.5326507e+03
+1.2746611e+01 4.5331372e+03
+1.2757037e+01 4.5336168e+03
+1.2767464e+01 4.5340897e+03
+1.2777891e+01 4.5345561e+03
+1.2788317e+01 4.5350157e+03
+1.2798744e+01 4.5354689e+03
+1.2809171e+01 4.5359155e+03
+1.2819597e+01 4.5363557e+03
+1.2830024e+01 4.5367895e+03
+1.2840451e+01 4.5372169e+03
+1.2850877e+01 4.5376380e+03
+1.2861304e+01 4.5380528e+03
+1.2871731e+01 4.5384615e+03
+1.2882157e+01 4.5388639e+03
+1.2892584e+01 4.5392602e+03
+1.2903011e+01 4.5396505e+03
+1.2913437e+01 4.5400346e+03
+1.2923864e+01 4.5404128e+03
+1.2934291e+01 4.5407850e+03
+1.2944717e+01 4.5411512e+03
+1.2955144e+01 4.5415116e+03
+1.2965571e+01 4.5418661e+03
+1.2975998e+01 4.5422148e+03
+1.2986424e+01 4.5425577e+03
+1.2996851e+01 4.5428948e+03
+1.3007278e+01 4.5432262e+03
+1.3017704e+01 4.5435519e+03
+1.3028131e+01 4.5438719e+03
+1.3038558e+01 4.5441862e+03
+1.3048984e+01 4.5444949e+03
+1.3059411e+01 4.5447980e+03
+1.3069838e+01 4.5450955e+03
+1.3080264e+01 4.5453874e+03
+1.3090691e+01 4.5456738e+03
+1.3101118e+01 4.5459546e+03
+1.3111544e+01 4.5462299e+03
+1.3121971e+01 4.5464996e+03
+1.3132398e+01 4.5467638e+03
+1.3142824e+01 4.5470225e+03
+1.3153251e+01 4.5472757e+03
+1.3163678e+01 4.5475234e+03
+1.3174104e+01 4.5477655e+03
+1.3184531e+01 4.5480022e+03
+1.3194958e+01 4.5482333e+03
+1.3205384e+01 4.5484589e+03
+1.3215811e+01 4.5486789e+03
+1.3226238e+01 4.5488934e+03
+1.3236664e+01 4.5491024e+03
+1.3247091e+01 4.5493057e+03
+1.3257518e+01 4.5495035e+03
+1.3267944e+01 4.5496956e+03
+1.3278371e+01 4.5498821e+03
+1.3288798e+01 4.5500629e+03
+1.3299224e+01 4.5502380e+03
+1.3309651e+01 4.5504074e+03
+1.3320078e+01 4.5505710e+03
+1.3330504e+01 4.5507289e+03
+1.3340931e+01 4.5508809e+03
+1.3351358e+01 4.5510271e+03
+1.3361784e+01 4.5511673e+03
+1.3372211e+01 4.5513016e+03
+1.3382638e+01 4.5514299e+03
+1.3393065e+01 4.5515521e+03
+1.3403491e+01 4.5516683e+03
+1.3413918e+01 4.5517783e+03
+1.3424345e+01 4.5518822e+03
+1.3434771e+01 4.5519798e+03
+1.3445198e+01 4.5520711e+03
+1.3455625e+01 4.5521560e+03
+1.3466051e+01 4.5522345e+03
+1.3476478e+01 4.5523065e+03
+1.3486905e+01 4.5523720e+03
+1.3497331e+01 4.5524308e+03
+1.3507758e+01 4.5524830e+03
+1.3518185e+01 4.5525284e+03
+1.3528611e+01 4.5525670e+03
+1.3539038e+01 4.5525987e+03
+1.3549465e+01 4.5526234e+03
+1.3559891e+01 4.5526411e+03
+1.3570318e+01 4.5526517e+03
+1.3580745e+01 4.5526551e+03
+1.3591171e+01 4.5526512e+03
+1.3601598e+01 4.5526399e+03
+1.3612025e+01 4.5526212e+03
+1.3622451e+01 4.5525950e+03
+1.3632878e+01 4.5525611e+03
+1.3643305e+01 4.5525196e+03
+1.3653731e+01 4.5524703e+03
+1.3664158e+01 4.5524132e+03
+1.3674585e+01 4.5523480e+03
+1.3685011e+01 4.5522749e+03
+1.3695438e+01 4.5521936e+03
+1.3705865e+01 4.5521041e+03
+1.3716291e+01 4.5520064e+03
+1.3726718e+01 4.5519002e+03
+1.3737145e+01 4.5517855e+03
+1.3747571e+01 4.5516623e+03
+1.3757998e+01 4.5515304e+03
+1.3768425e+01 4.5513897e+03
+1.3778852e+01 4.5512402e+03
+1.3789278e+01 4.5510818e+03
+1.3799705e+01 4.5509144e+03
+1.3810132e+01 4.5507378e+03
+1.3820558e+01 4.5505520e+03
+1.3830985e+01 4.5503570e+03
+1.3841412e+01 4.5501525e+03
+1.3851838e+01 4.5499386e+03
+1.3862265e+01 4.5497151e+03
+1.3872692e+01 4.5494820e+03
+1.3883118e+01 4.5492392e+03
+1.3893545e+01 4.5489865e+03
+1.3903972e+01 4.5487240e+03
+1.3914398e+01 4.5484515e+03
+1.3924825e+01 4.5481689e+03
+1.3935252e+01 4.5478761e+03
+1.3945678e+01 4.5475732e+03
+1.3956105e+01 4.5472599e+03
+1.3966532e+01 4.5469363e+03
+1.3976958e+01 4.5466022e+03
+1.3987385e+01 4.5462576e+03
+1.3997812e+01 4.5459024e+03
+1.4008238e+01 4.5455366e+03
+1.4018665e+01 4.5451600e+03
+1.4029092e+01 4.5447726e+03
+1.4039518e+01 4.5443744e+03
+1.4049945e+01 4.5439653e+03
+1.4060372e+01 4.5435451e+03
+1.4070798e+01 4.5431140e+03
+1.4081225e+01 4.5426717e+03
+1.4091652e+01 4.5422184e+03
+1.4102078e+01 4.5417538e+03
+1.4112505e+01 4.5412780e+03
+1.4122932e+01 4.5407909e+03
+1.4133358e+01 4.5402925e+03
+1.4143785e+01 4.5397827e+03
+1.4154212e+01 4.5392615e+03
+1.4164638e+01 4.5387290e+03
+1.4175065e+01 4.5381849e+03
+1.4185492e+01 4.5376294e+03
+1.4195919e+01 4.5370623e+03
+1.4206345e+01 4.5364838e+03
+1.4216772e+01 4.5358936e+03
+1.4227199e+01 4.5352919e+03
+1.4237625e+01 4.5346787e+03
+1.4248052e+01 4.5340538e+03
+1.4258479e+01 4.5334174e+03
+1.4268905e+01 4.5327694e+03
+1.4279332e+01 4.5321097e+03
+1.4289759e+01 4.5314385e+03
+1.4300185e+01 4.5307558e+03
+1.4310612e+01 4.5300615e+03
+1.4321039e+01 4.5293556e+03
+1.4331465e+01 4.5286382e+03
+1.4341892e+01 4.5279093e+03
+1.4352319e+01 4.5271689e+03
+1.4362745e+01 4.5264171e+03
+1.4373172e+01 4.5256539e+03
+1.4383599e+01 4.5248792e+03
+1.4394025e+01 4.5240934e+03
+1.4404452e+01 4.5232961e+03
+1.4414879e+01 4.5224876e+03
+1.4425305e+01 4.5216680e+03
+1.4435732e+01 4.5208372e+03
+1.4446159e+01 4.5199954e+03
+1.4456585e+01 4.5191426e+03
+1.4467012e+01 4.5182787e+03
+1.4477439e+01 4.5174040e+03
+1.4487865e+01 4.5165186e+03
+1.4498292e+01 4.5156224e+03
+1.4508719e+01 4.5147156e+03
+1.4519145e+01 4.5137983e+03
+1.4529572e+01 4.5128704e+03
+1.4539999e+01 4.5119322e+03
+1.4550425e+01 4.5109837e+03
+1.4560852e+01 4.5100250e+03
+1.4571279e+01 4.5090563e+03
+1.4581706e+01 4.5080775e+03
+1.4592132e+01 4.5070890e+03
+1.4602559e+01 4.5060907e+03
+1.4612986e+01 4.5050827e+03
+1.4623412e+01 4.5040653e+03
+1.4633839e+01 4.5030384e+03
+1.4644266e+01 4.5020023e+03
+1.4654692e+01 4.5009571e+03
+1.4665119e+01 4.4999028e+03
+1.4675546e+01 4.4988396e+03
+1.4685972e+01 4.4977677e+03
+1.4696399e+01 4.4966872e+03
+1.4706826e+01 4.4955982e+03
+1.4717252e+01 4.4945010e+03
+1.4727679e+01 4.4933956e+03
+1.4738106e+01 4.4922821e+03
+1.4748532e+01 4.4911609e+03
+1.4758959e+01 4.4900318e+03
+1.4769386e+01 4.4888952e+03
+1.4779812e+01 4.4877513e+03
+1.4790239e+01 4.4866000e+03
+1.4800666e+01 4.4854417e+03
+1.4811092e+01 4.4842766e+03
+1.4821519e+01 4.4831046e+03
+1.4831946e+01 4.4819260e+03
+1.4842372e+01 4.4807412e+03
+1.4852799e+01 4.4795500e+03
+1.4863226e+01 4.4783527e+03
+1.4873652e+01 4.4771496e+03
+1.4884079e+01 4.4759407e+03
+1.4894506e+01 4.4747263e+03
+1.4904932e+01 4.4735066e+03
+1.4915359e+01 4.4722816e+03
+1.4925786e+01 4.4710516e+03
+1.4936212e+01 4.4698169e+03
+1.4946639e+01 4.4685774e+03
+1.4957066e+01 4.4673334e+03
+1.4967493e+01 4.4660851e+03
+1.4977919e+01 4.4648328e+03
+1.4988346e+01 4.4635764e+03
+1.4998773e+01 4.4623163e+03
+1.5009199e+01 4.4610527e+03
+1.5019626e+01 4.4597856e+03
+1.5030053e+01 4.4585152e+03
+1.5040479e+01 4.4572419e+03
+1.5050906e+01 4.4559656e+03
+1.5061333e+01 4.4546866e+03
+1.5071759e+01 4.4534052e+03
+1.5082186e+01 4.4521213e+03
+1.5092613e+01 4.4508353e+03
+1.5103039e+01 4.4495473e+03
+1.5113466e+01 4.4482574e+03
+1.5123893e+01 4.4469658e+03
+1.5134319e+01 4.4456728e+03
+1.5144746e+01 4.4443783e+03
+1.5155173e+01 4.4430826e+03
+1.5165599e+01 4.4417861e+03
+1.5176026e+01 4.4404885e+03
+1.5186453e+01 4.4391902e+03
+1.5196879e+01 4.4378915e+03
+1.5207306e+01 4.4365922e+03
+1.5217733e+01 4.4352927e+03
+1.5228159e+01 4.4339932e+03
+1.5238586e+01 4.4326935e+03
+1.5249013e+01 4.4313940e+03
+1.5259439e+01 4.4300950e+03
+1.5269866e+01 4.4287962e+03
+1.5280293e+01 4.4274980e+03
+1.5290719e+01 4.4262006e+03
+1.5301146e+01 4.4249038e+03
+1.5311573e+01 4.4236080e+03
+1.5321999e+01 4.4223133e+03
+1.5332426e+01 4.4210197e+03
+1.5342853e+01 4.4197273e+03
+1.5353279e+01 4.4184364e+03
+1.5363706e+01 4.4171468e+03
+1.5374133e+01 4.4158587e+03
+1.5384560e+01 4.4145723e+03
+1.5394986e+01 4.4132877e+03
+1.5405413e+01 4.4120048e+03
+1.5415840e+01 4.4107238e+03
+1.5426266e+01 4.4094448e+03
+1.5436693e+01 4.4081677e+03
+1.5447120e+01 4.4068928e+03
+1.5457546e+01 4.4056200e+03
+1.5467973e+01 4.4043494e+03
+1.5478400e+01 4.4030810e+03
+1.5488826e+01 4.4018149e+03
+1.5499253e+01 4.4005511e+03
+1.5509680e+01 4.3992897e+03
+1.5520106e+01 4.3980307e+03
+1.5530533e+01 4.3967740e+03
+1.5540960e+01 4.3955198e+03
+1.5551386e+01 4.3942681e+03
+1.5561813e+01 4.3930187e+03
+1.5572240e+01 4.3917718e+03
+1.5582666e+01 4.3905274e+03
+1.5593093e+01 4.3892853e+03
+1.5603520e+01 4.3880457e+03
+1.5613946e+01 4.3868086e+03
+1.5624373e+01 4.3855738e+03
+1.5634800e+01 4.3843413e+03
+1.5645226e+01 4.3831112e+03
+1.5655653e+01 4.3818833e+03
+1.5666080e+01 4.3806576e+03
+1.5676506e+01 4.3794343e+03
+1.5686933e+01 4.3782129e+03
+1.5697360e+01 4.3769936e+03
+1.5707786e+01 4.3757764e+03
+1.5718213e+01 4.3745611e+03
+1.5728640e+01 4.3733476e+03
+1.5739066e+01 4.3721359e+03
+1.5749493e+01 4.3709259e+03
+1.5759920e+01 4.3697175e+03
+1.5770347e+01 4.3685105e+03
+1.5780773e+01 4.3673051e+03
+1.5791200e+01 4.3661009e+03
+1.5801627e+01 4.3648978e+03
+1.5812053e+01 4.3636960e+03
+1.5822480e+01 4.3624950e+03
+1.5832907e+01 4.3612948e+03
+1.5843333e+01 4.3600955e+03
+1.5853760e+01 4.3588966e+03
+1.5864187e+01 4.3576981e+03
+1.5874613e+01 4.3565001e+03
+1.5885040e+01 4.3553021e+03
+1.5895467e+01 4.3541041e+03
+1.5905893e+01 4.3529062e+03
+1.5916320e+01 4.3517077e+03
+1.5926747e+01 4.3505089e+03
+1.5937173e+01 4.3493095e+03
+1.5947600e+01 4.3481093e+03
+1.5958027e+01 4.3469081e+03
+1.5968453e+01 4.3457059e+03
+1.5978880e+01 4.3445023e+03
+1.5989307e+01 4.3432973e+03
+1.5999733e+01 4.3420907e+03
+1.6010160e+01 4.3408821e+03
+1.6020587e+01 4.3396716e+03
+1.6031013e+01 4.3384590e+03
+1.6041440e+01 4.3372439e+03
+1.6051867e+01 4.3360262e+03
+1.6062293e+01 4.3348059e+03
+1.6072720e+01 4.3335825e+03
+1.6083147e+01 4.3323559e+03
+1.6093573e+01 4.3311261e+03
+1.6104000e+01 4.3298927e+03
+1.6114427e+01 4.3286555e+03
+1.6124853e+01 4.3274146e+03
+1.6135280e+01 4.3261693e+03
+1.6145707e+01 4.3249198e+03
+1.6156133e+01 4.3236658e+03
+1.6166560e+01 4.3224070e+03
+1.6176987e+01 4.3211432e+03
+1.6187414e+01 4.3198744e+03
+1.6197840e+01 4.3186003e+03
+1.6208267e+01 4.3173206e+03
+1.6218694e+01 4.3160352e+03
+1.6229120e+01 4.3147440e+03
+1.6239547e+01 4.3134466e+03
+1.6249974e+01 4.3121429e+03
+1.6260400e+01 4.3108329e+03
+1.6270827e+01 4.3095160e+03
+1.6281254e+01 4.3081923e+03
+1.6291680e+01 4.3068617e+03
+1.6302107e+01 4.3055238e+03
+1.6312534e+01 4.3041784e+03
+1.6322960e+01 4.3028257e+03
+1.6333387e+01 4.3014650e+03
+1.6343814e+01 4.3000965e+03
+1.6354240e+01 4.2987199e+03
+1.6364667e+01 4.2973351e+03
+1.6375094e+01 4.2959418e+03
+1.6385520e+01 4.2945401e+03
+1.6395947e+01 4.2931295e+03
+1.6406374e+01 4.2917102e+03
+1.6416800e+01 4.2902819e+03
+1.6427227e+01 4.2888444e+03
+1.6437654e+01 4.2873976e+03
+1.6448080e+01 4.2859416e+03
+1.6458507e+01 4.2844759e+03
+1.6468934e+01 4.2830006e+03
+1.6479360e+01 4.2815157e+03
+1.6489787e+01 4.2800208e+03
+1.6500214e+01 4.2785159e+03
+1.6510640e+01 4.2770011e+03
+1.6521067e+01 4.2754760e+03
+1.6531494e+01 4.2739408e+03
+1.6541920e+01 4.2723953e+03
+1.6552347e+01 4.2708394e+03
+1.6562774e+01 4.2692730e+03
+1.6573201e+01 4.2676961e+03
+1.6583627e+01 4.2661088e+03
+1.6594054e+01 4.2645108e+03
+1.6604481e+01 4.2629021e+03
+1.6614907e+01 4.2612829e+03
+1.6625334e+01 4.2596529e+03
+1.6635761e+01 4.2580122e+03
+1.6646187e+01 4.2563610e+03
+1.6656614e+01 4.2546989e+03
+1.6667041e+01 4.2530260e+03
+1.6677467e+01 4.2513427e+03
+1.6687894e+01 4.2496485e+03
+1.6698321e+01 4.2479436e+03
+1.6708747e+01 4.2462283e+03
+1.6719174e+01 4.2445023e+03
+1.6729601e+01 4.2427657e+03
+1.6740027e+01 4.2410189e+03
+1.6750454e+01 4.2392615e+03
+1.6760881e+01 4.2374938e+03
+1.6771307e+01 4.2357160e+03
+1.6781734e+01 4.2339279e+03
+1.6792161e+01 4.2321297e+03
+1.6802587e+01 4.2303218e+03
+1.6813014e+01 4.2285039e+03
+1.6823441e+01 4.2266762e+03
+1.6833867e+01 4.2248392e+03
+1.6844294e+01 4.2229925e+03
+1.6854721e+01 4.2211365e+03
+1.6865147e+01 4.2192715e+03
+1.6875574e+01 4.2173974e+03
+1.6886001e+01 4.2155144e+03
+1.6896427e+01 4.2136230e+03
+1.6906854e+01 4.2117228e+03
+1.6917281e+01 4.2098144e+03
+1.6927707e+01 4.2078981e+03
+1.6938134e+01 4.2059737e+03
+1.6948561e+01 4.2040417e+03
+1.6958987e+01 4.2021023e+03
+1.6969414e+01 4.2001555e+03
+1.6979841e+01 4.1982017e+03
+1.6990268e+01 4.1962411e+03
+1.7000694e+01 4.1942741e+03
+1.7011121e+01 4.1923007e+03
+1.7021548e+01 4.1903212e+03
+1.7031974e+01 4.1883361e+03
+1.7042401e+01 4.1863453e+03
+1.7052828e+01 4.1843493e+03
+1.7063254e+01 4.1823485e+03
+1.7073681e+01 4.1803428e+03
+1.7084108e+01 4.1783326e+03
+1.7094534e+01 4.1763186e+03
+1.7104961e+01 4.1743006e+03
+1.7115388e+01 4.1722790e+03
+1.7125814e+01 4.1702544e+03
+1.7136241e+01 4.1682267e+03
+1.7146668e+01 4.1661964e+03
+1.7157094e+01 4.1641640e+03
+1.7167521e+01 4.1621294e+03
+1.7177948e+01 4.1600932e+03
+1.7188374e+01 4.1580558e+03
+1.7198801e+01 4.1560173e+03
+1.7209228e+01 4.1539780e+03
+1.7219654e+01 4.1519387e+03
+1.7230081e+01 4.1498991e+03
+1.7240508e+01 4.1478598e+03
+1.7250934e+01 4.1458214e+03
+1.7261361e+01 4.1437838e+03
+1.7271788e+01 4.1417475e+03
+1.7282214e+01 4.1397131e+03
+1.7292641e+01 4.1376805e+03
+1.7303068e+01 4.1356502e+03
+1.7313494e+01 4.1336227e+03
+1.7323921e+01 4.1315981e+03
+1.7334348e+01 4.1295768e+03
+1.7344774e+01 4.1275594e+03
+1.7355201e+01 4.1255458e+03
+1.7365628e+01 4.1235366e+03
+1.7376055e+01 4.1215320e+03
+1.7386481e+01 4.1195325e+03
+1.7396908e+01 4.1175382e+03
+1.7407335e+01 4.1155495e+03
+1.7417761e+01 4.1135670e+03
+1.7428188e+01 4.1115905e+03
+1.7438615e+01 4.1096206e+03
+1.7449041e+01 4.1076577e+03
+1.7459468e+01 4.1057019e+03
+1.7469895e+01 4.1037535e+03
+1.7480321e+01 4.1018131e+03
+1.7490748e+01 4.0998805e+03
+1.7501175e+01 4.0979562e+03
+1.7511601e+01 4.0960408e+03
+1.7522028e+01 4.0941340e+03
+1.7532455e+01 4.0922364e+03
+1.7542881e+01 4.0903483e+03
+1.7553308e+01 4.0884697e+03
+1.7563735e+01 4.0866011e+03
+1.7574161e+01 4.0847427e+03
+1.7584588e+01 4.0828945e+03
+1.7595015e+01 4.0810569e+03
+1.7605441e+01 4.0792303e+03
+1.7615868e+01 4.0774145e+03
+1.7626295e+01 4.0756099e+03
+1.7636721e+01 4.0738169e+03
+1.7647148e+01 4.0720353e+03
+1.7657575e+01 4.0702654e+03
+1.7668001e+01 4.0685077e+03
+1.7678428e+01 4.0667618e+03
+1.7688855e+01 4.0650282e+03
+1.7699281e+01 4.0633071e+03
+1.7709708e+01 4.0615984e+03
+1.7720135e+01 4.0599023e+03
+1.7730561e+01 4.0582191e+03
+1.7740988e+01 4.0565485e+03
+1.7751415e+01 4.0548909e+03
+1.7761842e+01 4.0532463e+03
+1.7772268e+01 4.0516150e+03
+1.7782695e+01 4.0499966e+03
+1.7793122e+01 4.0483915e+03
+1.7803548e+01 4.0467998e+03
+1.7813975e+01 4.0452212e+03
+1.7824402e+01 4.0436559e+03
+1.7834828e+01 4.0421041e+03
+1.7845255e+01 4.0405655e+03
+1.7855682e+01 4.0390402e+03
+1.7866108e+01 4.0375284e+03
+1.7876535e+01 4.0360297e+03
+1.7886962e+01 4.0345444e+03
+1.7897388e+01 4.0330724e+03
+1.7907815e+01 4.0316134e+03
+1.7918242e+01 4.0301676e+03
+1.7928668e+01 4.0287349e+03
+1.7939095e+01 4.0273151e+03
+1.7949522e+01 4.0259083e+03
+1.7959948e+01 4.0245143e+03
+1.7970375e+01 4.0231329e+03
+1.7980802e+01 4.0217641e+03
+1.7991228e+01 4.0204080e+03
+1.8001655e+01 4.0190640e+03
+1.8012082e+01 4.0177323e+03
+1.8022508e+01 4.0164128e+03
+1.8032935e+01 4.0151051e+03
+1.8043362e+01 4.0138092e+03
+1.8053788e+01 4.0125251e+03
+1.8064215e+01 4.0112524e+03
+1.8074642e+01 4.0099909e+03
+1.8085068e+01 4.0087407e+03
+1.8095495e+01 4.0075013e+03
+1.8105922e+01 4.0062727e+03
+1.8116348e+01 4.0050548e+03
+1.8126775e+01 4.0038472e+03
+1.8137202e+01 4.0026498e+03
+1.8147628e+01 4.0014625e+03
+1.8158055e+01 4.0002849e+03
+1.8168482e+01 3.9991169e+03
+1.8178909e+01 3.9979583e+03
+1.8189335e+01 3.9968091e+03
+1.8199762e+01 3.9956687e+03
+1.8210189e+01 3.9945371e+03
+1.8220615e+01 3.9934142e+03
+1.8231042e+01 3.9922996e+03
+1.8241469e+01 3.9911932e+03
+1.8251895e+01 3.9900949e+03
+1.8262322e+01 3.9890042e+03
+1.8272749e+01 3.9879212e+03
+1.8283175e+01 3.9868456e+03
+1.8293602e+01 3.9857771e+03
+1.8304029e+01 3.9847157e+03
+1.8314455e+01 3.9836612e+03
+1.8324882e+01 3.9826133e+03
+1.8335309e+01 3.9815719e+03
+1.8345735e+01 3.9805369e+03
+1.8356162e+01 3.9795080e+03
+1.8366589e+01 3.9784851e+03
+1.8377015e+01 3.9774682e+03
+1.8387442e+01 3.9764569e+03
+1.8397869e+01 3.9754513e+03
+1.8408295e+01 3.9744513e+03
+1.8418722e+01 3.9734566e+03
+1.8429149e+01 3.9724672e+03
+1.8439575e+01 3.9714831e+03
+1.8450002e+01 3.9705041e+03
+1.8460429e+01 3.9695302e+03
+1.8470855e+01 3.9685614e+03
+1.8481282e+01 3.9675975e+03
+1.8491709e+01 3.9666386e+03
+1.8502135e+01 3.9656847e+03
+1.8512562e+01 3.9647358e+03
+1.8522989e+01 3.9637918e+03
+1.8533415e+01 3.9628529e+03
+1.8543842e+01 3.9619190e+03
+1.8554269e+01 3.9609902e+03
+1.8564696e+01 3.9600666e+03
+1.8575122e+01 3.9591484e+03
+1.8585549e+01 3.9582354e+03
+1.8595976e+01 3.9573281e+03
+1.8606402e+01 3.9564264e+03
+1.8616829e+01 3.9555305e+03
+1.8627256e+01 3.9546406e+03
+1.8637682e+01 3.9537570e+03
+1.8648109e+01 3.9528797e+03
+1.8658536e+01 3.9520090e+03
+1.8668962e+01 3.9511453e+03
+1.8679389e+01 3.9502886e+03
+1.8689816e+01 3.9494394e+03
+1.8700242e+01 3.9485979e+03
+1.8710669e+01 3.9477644e+03
+1.8721096e+01 3.9469393e+03
+1.8731522e+01 3.9461229e+03
+1.8741949e+01 3.9453156e+03
+1.8752376e+01 3.9445177e+03
+1.8762802e+01 3.9437298e+03
+1.8773229e+01 3.9429520e+03
+1.8783656e+01 3.9421851e+03
+1.8794082e+01 3.9414293e+03
+1.8804509e+01 3.9406852e+03
+1.8814936e+01 3.9399532e+03
+1.8825362e+01 3.9392338e+03
+1.8835789e+01 3.9385276e+03
+1.8846216e+01 3.9378350e+03
+1.8856642e+01 3.9371567e+03
+1.8867069e+01 3.9364931e+03
+1.8877496e+01 3.9358449e+03
+1.8887922e+01 3.9352126e+03
+1.8898349e+01 3.9345968e+03
+1.8908776e+01 3.9339981e+03
+1.8919202e+01 3.9334172e+03
+1.8929629e+01 3.9328545e+03
+1.8940056e+01 3.9323109e+03
+1.8950482e+01 3.9317869e+03
+1.8960909e+01 3.9312830e+03
+1.8971336e+01 3.9308001e+03
+1.8981763e+01 3.9303387e+03
+1.8992189e+01 3.9298996e+03
+1.9002616e+01 3.9294833e+03
+1.9013043e+01 3.9290905e+03
+1.9023469e+01 3.9287219e+03
+1.9033896e+01 3.9283781e+03
+1.9044323e+01 3.9280598e+03
+1.9054749e+01 3.9277676e+03
+1.9065176e+01 3.9275022e+03
+1.9075603e+01 3.9272642e+03
+1.9086029e+01 3.9270543e+03
+1.9096456e+01 3.9268730e+03
+1.9106883e+01 3.9267211e+03
+1.9117309e+01 3.9265990e+03
+1.9127736e+01 3.9265073e+03
+1.9138163e+01 3.9264467e+03
+1.9148589e+01 3.9264178e+03
+1.9159016e+01 3.9264209e+03
+1.9169443e+01 3.9264567e+03
+1.9179869e+01 3.9265256e+03
+1.9190296e+01 3.9266282e+03
+1.9200723e+01 3.9267648e+03
+1.9211149e+01 3.9269359e+03
+1.9221576e+01 3.9271419e+03
+1.9232003e+01 3.9273832e+03
+1.9242429e+01 3.9276600e+03
+1.9252856e+01 3.9279728e+03
+1.9263283e+01 3.9283218e+03
+1.9273709e+01 3.9287071e+03
+1.9284136e+01 3.9291291e+03
+1.9294563e+01 3.9295878e+03
+1.9304989e+01 3.9300834e+03
+1.9315416e+01 3.9306160e+03
+1.9325843e+01 3.9311857e+03
+1.9336269e+01 3.9317922e+03
+1.9346696e+01 3.9324358e+03
+1.9357123e+01 3.9331163e+03
+1.9367550e+01 3.9338334e+03
+1.9377976e+01 3.9345870e+03
+1.9388403e+01 3.9353770e+03
+1.9398830e+01 3.9362029e+03
+1.9409256e+01 3.9370643e+03
+1.9419683e+01 3.9379610e+03
+1.9430110e+01 3.9388925e+03
+1.9440536e+01 3.9398581e+03
+1.9450963e+01 3.9408575e+03
+1.9461390e+01 3.9418899e+03
+1.9471816e+01 3.9429545e+03
+1.9482243e+01 3.9440509e+03
+1.9492670e+01 3.9451780e+03
+1.9503096e+01 3.9463350e+03
+1.9513523e+01 3.9475210e+03
+1.9523950e+01 3.9487352e+03
+1.9534376e+01 3.9499762e+03
+1.9544803e+01 3.9512432e+03
+1.9555230e+01 3.9525349e+03
+1.9565656e+01 3.9538501e+03
+1.9576083e+01 3.9551876e+03
+1.9586510e+01 3.9565461e+03
+1.9596936e+01 3.9579240e+03
+1.9607363e+01 3.9593201e+03
+1.9617790e+01 3.9607329e+03
+1.9628216e+01 3.9621606e+03
+1.9638643e+01 3.9636020e+03
+1.9649070e+01 3.9650552e+03
+1.9659496e+01 3.9665185e+03
+1.9669923e+01 3.9679904e+03
+1.9680350e+01 3.9694689e+03
+1.9690776e+01 3.9709522e+03
+1.9701203e+01 3.9724387e+03
+1.9711630e+01 3.9739263e+03
+1.9722056e+01 3.9754131e+03
+1.9732483e+01 3.9768973e+03
+1.9742910e+01 3.9783769e+03
+1.9753336e+01 3.9798498e+03
+1.9763763e+01 3.9813143e+03
+1.9774190e+01 3.9827683e+03
+1.9784617e+01 3.9842096e+03
+1.9795043e+01 3.9856363e+03
+1.9805470e+01 3.9870466e+03
+1.9815897e+01 3.9884383e+03
+1.9826323e+01 3.9898095e+03
+1.9836750e+01 3.9911583e+03
+1.9847177e+01 3.9924827e+03
+1.9857603e+01 3.9937808e+03
+1.9868030e+01 3.9950510e+03
+1.9878457e+01 3.9962913e+03
+1.9888883e+01 3.9974998e+03
+1.9899310e+01 3.9986751e+03
+1.9909737e+01 3.9998155e+03
+1.9920163e+01 4.0009194e+03
+1.9930590e+01 4.0019854e+03
+1.9941017e+01 4.0030121e+03
+1.9951443e+01 4.0039982e+03
+1.9961870e+01 4.0049427e+03
+1.9972297e+01 4.0058444e+03
+1.9982723e+01 4.0067023e+03
+1.9993150e+01 4.0075158e+03
+2.0003577e+01 4.0082842e+03
+2.0014003e+01 4.0090069e+03
+2.0024430e+01 4.0096836e+03
+2.0034857e+01 4.0103141e+03
+2.0045283e+01 4.0108984e+03
+2.0055710e+01 4.0114367e+03
+2.0066137e+01 4.0119293e+03
+2.0076563e+01 4.0123768e+03
+2.0086990e+01 4.0127800e+03
+2.0097417e+01 4.0131398e+03
+2.0107843e+01 4.0134575e+03
+2.0118270e+01 4.0137344e+03
+2.0128697e+01 4.0139724e+03
+2.0139123e+01 4.0141731e+03
+2.0149550e+01 4.0143390e+03
+2.0159977e+01 4.0144723e+03
+2.0170404e+01 4.0145757e+03
+2.0180830e+01 4.0146523e+03
+2.0191257e+01 4.0147053e+03
+2.0201684e+01 4.0147381e+03
+2.0212110e+01 4.0147545e+03
+2.0222537e+01 4.0147586e+03
+2.0232964e+01 4.0147548e+03
+2.0243390e+01 4.0147477e+03
+2.0253817e+01 4.0147422e+03
+2.0264244e+01 4.0147435e+03
+2.0274670e+01 4.0147571e+03
+2.0285097e+01 4.0147888e+03
+2.0295524e+01 4.0148444e+03
+2.0305950e+01 4.0149304e+03
+2.0316377e+01 4.0150533e+03
+2.0326804e+01 4.0152198e+03
+2.0337230e+01 4.0154369e+03
+2.0347657e+01 4.0157118e+03
+2.0358084e+01 4.0160520e+03
+2.0368510e+01 4.0164650e+03
+2.0378937e+01 4.0169586e+03
+2.0389364e+01 4.0175407e+03
+2.0399790e+01 4.0182191e+03
+2.0410217e+01 4.0190021e+03
+2.0420644e+01 4.0198976e+03
+2.0431070e+01 4.0209138e+03
+2.0441497e+01 4.0220588e+03
+2.0451924e+01 4.0233405e+03
+2.0462350e+01 4.0247668e+03
+2.0472777e+01 4.0263455e+03
+2.0483204e+01 4.0280840e+03
+2.0493630e+01 4.0299894e+03
+2.0504057e+01 4.0320686e+03
+2.0514484e+01 4.0343281e+03
+2.0524910e+01 4.0367735e+03
+2.0535337e+01 4.0394105e+03
+2.0545764e+01 4.0422436e+03
+2.0556191e+01 4.0452766e+03
+2.0566617e+01 4.0485123e+03
+2.0577044e+01 4.0519534e+03
+2.0587471e+01 4.0556006e+03
+2.0597897e+01 4.0594532e+03
+2.0608324e+01 4.0635104e+03
+2.0618751e+01 4.0677690e+03
+2.0629177e+01 4.0722238e+03
+2.0639604e+01 4.0768694e+03
+2.0650031e+01 4.0816970e+03
+2.0660457e+01 4.0866957e+03
+2.0670884e+01 4.0918539e+03
+2.0681311e+01 4.0971558e+03
+2.0691737e+01 4.1025831e+03
+2.0702164e+01 4.1081162e+03
+2.0712591e+01 4.1137305e+03
+2.0723017e+01 4.1193984e+03
+2.0733444e+01 4.1250901e+03
+2.0743871e+01 4.1307702e+03
+2.0754297e+01 4.1363993e+03
+2.0764724e+01 4.1419350e+03
+2.0775151e+01 4.1473286e+03
+2.0785577e+01 4.1525262e+03
+2.0796004e+01 4.1574701e+03
+2.0806431e+01 4.1620950e+03
+2.0816857e+01 4.1663298e+03
+2.0827284e+01 4.1700978e+03
+2.0837711e+01 4.1733141e+03
+2.0848137e+01 4.1758864e+03
+2.0858564e+01 4.1777152e+03
+2.0868991e+01 4.1786919e+03
+2.0879417e+01 4.1786992e+03
+2.0889844e+01 4.1776103e+03
+2.0900271e+01 4.1752882e+03
+2.0910697e+01 4.1715859e+03
+2.0921124e+01 4.1663439e+03
+2.0931551e+01 4.1593919e+03
+2.0941977e+01 4.1505477e+03
+2.0952404e+01 4.1396132e+03
+2.0962831e+01 4.1263787e+03
+2.0973258e+01 4.1106191e+03
+2.0983684e+01 4.0920957e+03
+2.0994111e+01 4.0705478e+03
diff --git a/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.bgsub.chi b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.bgsub.chi
new file mode 100644
index 0000000..9527469
--- /dev/null
+++ b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.bgsub.chi
@@ -0,0 +1,1443 @@
+# BG ROI: 6.00000, 21.00000
+# BG Params: 20, 10, 20
+
+1439
+6.0005517e+00 1.3040414e+01
+6.0109784e+00 7.8648863e+00
+6.0214050e+00 4.2517458e+00
+6.0318317e+00 1.1111313e+00
+6.0422584e+00 -1.3942905e+00
+6.0526851e+00 -2.3896002e+00
+6.0631117e+00 -4.4002140e+00
+6.0735384e+00 -5.9799277e+00
+6.0839651e+00 -6.8467639e+00
+6.0943918e+00 -6.4014945e+00
+6.1048184e+00 -5.9434065e+00
+6.1152451e+00 -5.8601366e+00
+6.1256718e+00 -4.7805446e+00
+6.1360985e+00 -3.4776281e+00
+6.1465251e+00 -3.2444590e+00
+6.1569518e+00 -2.6190419e+00
+6.1673785e+00 -1.8070854e+00
+6.1778052e+00 -1.3223416e+00
+6.1882318e+00 -1.6546111e+00
+6.1986585e+00 -4.8734857e-01
+6.2090852e+00 7.4385646e-02
+6.2195119e+00 6.1653679e-01
+6.2299385e+00 1.6096828e+00
+6.2403652e+00 3.2648644e+00
+6.2507919e+00 3.8613632e+00
+6.2612186e+00 5.0708462e+00
+6.2716452e+00 6.4361240e+00
+6.2820719e+00 6.6901047e+00
+6.2924986e+00 6.9790049e+00
+6.3029253e+00 8.2945173e+00
+6.3133519e+00 1.0536695e+01
+6.3237786e+00 1.1687825e+01
+6.3342053e+00 1.1581267e+01
+6.3446320e+00 1.1586142e+01
+6.3550586e+00 1.1410834e+01
+6.3654853e+00 1.1555582e+01
+6.3759120e+00 1.0734344e+01
+6.3863387e+00 1.1235395e+01
+6.3967653e+00 1.2102557e+01
+6.4071920e+00 1.2339587e+01
+6.4176187e+00 1.2580479e+01
+6.4280454e+00 1.3244462e+01
+6.4384720e+00 1.4043547e+01
+6.4488987e+00 1.4300627e+01
+6.4593254e+00 1.4429395e+01
+6.4697521e+00 1.3695849e+01
+6.4801787e+00 1.2665554e+01
+6.4906054e+00 1.1930345e+01
+6.5010321e+00 1.1401264e+01
+6.5114588e+00 1.2283070e+01
+6.5218854e+00 1.1536606e+01
+6.5323121e+00 9.4413157e+00
+6.5427388e+00 7.6670852e+00
+6.5531655e+00 6.9863603e+00
+6.5635921e+00 6.4790223e+00
+6.5740188e+00 6.7196078e+00
+6.5844455e+00 8.0673582e+00
+6.5948722e+00 9.8988423e+00
+6.6052989e+00 1.1361794e+01
+6.6157255e+00 1.3207850e+01
+6.6261522e+00 1.3552679e+01
+6.6365789e+00 1.6515133e+01
+6.6470056e+00 2.1894276e+01
+6.6574322e+00 3.2875466e+01
+6.6678589e+00 5.2136094e+01
+6.6782856e+00 7.0495530e+01
+6.6887123e+00 8.5059858e+01
+6.6991389e+00 8.6879962e+01
+6.7095656e+00 7.3293667e+01
+6.7199923e+00 5.6891084e+01
+6.7304190e+00 3.9728149e+01
+6.7408456e+00 2.5833011e+01
+6.7512723e+00 1.6785575e+01
+6.7616990e+00 1.0391544e+01
+6.7721257e+00 6.8149679e+00
+6.7825523e+00 3.1229204e+00
+6.7929790e+00 1.9842565e+00
+6.8034057e+00 1.1091445e+00
+6.8138324e+00 6.3541815e-01
+6.8242590e+00 -1.0374422e+00
+6.8346857e+00 -1.1254530e+00
+6.8451124e+00 -1.2975994e+00
+6.8555391e+00 -7.1667836e-01
+6.8659657e+00 4.9127993e-01
+6.8763924e+00 1.0183728e+00
+6.8868191e+00 1.9314743e-01
+6.8972458e+00 7.5961534e-02
+6.9076724e+00 1.4395970e-01
+6.9180991e+00 7.2083752e-01
+6.9285258e+00 9.8075868e-01
+6.9389525e+00 1.8573183e+00
+6.9493791e+00 2.7313178e+00
+6.9598058e+00 3.3855311e+00
+6.9702325e+00 3.1770171e+00
+6.9806592e+00 2.8817856e+00
+6.9910858e+00 3.3856702e+00
+7.0015125e+00 3.7527958e+00
+7.0119392e+00 3.9021881e+00
+7.0223659e+00 3.5356402e+00
+7.0327925e+00 3.2106848e+00
+7.0432192e+00 4.7128617e+00
+7.0536459e+00 5.3329252e+00
+7.0640726e+00 5.6084113e+00
+7.0744992e+00 4.8769086e+00
+7.0849259e+00 6.0066259e+00
+7.0953526e+00 6.9813979e+00
+7.1057793e+00 7.7142525e+00
+7.1162059e+00 8.4700812e+00
+7.1266326e+00 7.9982050e+00
+7.1370593e+00 8.0683808e+00
+7.1474860e+00 7.5908670e+00
+7.1579126e+00 7.5732944e+00
+7.1683393e+00 7.6519294e+00
+7.1787660e+00 8.2064825e+00
+7.1891927e+00 8.6110715e+00
+7.1996193e+00 8.1504923e+00
+7.2100460e+00 7.6821810e+00
+7.2204727e+00 7.7436226e+00
+7.2308994e+00 7.9412138e+00
+7.2413260e+00 8.4481329e+00
+7.2517527e+00 9.8353995e+00
+7.2621794e+00 1.0028987e+01
+7.2726061e+00 1.0284780e+01
+7.2830327e+00 1.0326948e+01
+7.2934594e+00 9.1426019e+00
+7.3038861e+00 7.9569061e+00
+7.3143128e+00 7.1263382e+00
+7.3247395e+00 7.3432229e+00
+7.3351661e+00 7.6538696e+00
+7.3455928e+00 7.7495234e+00
+7.3560195e+00 8.0479864e+00
+7.3664462e+00 9.3016697e+00
+7.3768728e+00 9.9318669e+00
+7.3872995e+00 1.1529303e+01
+7.3977262e+00 1.0988260e+01
+7.4081529e+00 1.1205823e+01
+7.4185795e+00 9.6851597e+00
+7.4290062e+00 1.0055662e+01
+7.4394329e+00 8.7456753e+00
+7.4498596e+00 8.4777476e+00
+7.4602862e+00 7.8770020e+00
+7.4707129e+00 7.8070807e+00
+7.4811396e+00 6.4575780e+00
+7.4915663e+00 6.0521833e+00
+7.5019929e+00 6.0983577e+00
+7.5124196e+00 5.7131746e+00
+7.5228463e+00 4.0730561e+00
+7.5332730e+00 3.1061132e+00
+7.5436996e+00 2.9631244e+00
+7.5541263e+00 3.4349727e+00
+7.5645530e+00 4.4219866e+00
+7.5749797e+00 4.2247768e+00
+7.5854063e+00 3.7542171e+00
+7.5958330e+00 2.5361779e+00
+7.6062597e+00 1.8586716e+00
+7.6166864e+00 8.1878660e-01
+7.6271130e+00 7.3276871e-01
+7.6375397e+00 -4.9884586e-01
+7.6479664e+00 -3.1992838e+00
+7.6583931e+00 -3.4590015e+00
+7.6688197e+00 -4.7865030e+00
+7.6792464e+00 -5.6362088e+00
+7.6896731e+00 -7.2050062e+00
+7.7000998e+00 -7.9414182e+00
+7.7105264e+00 -7.4859207e+00
+7.7209531e+00 -6.6593111e+00
+7.7313798e+00 -6.4166591e+00
+7.7418065e+00 -6.1503746e+00
+7.7522331e+00 -6.2610252e+00
+7.7626598e+00 -5.6617058e+00
+7.7730865e+00 -4.3398871e+00
+7.7835132e+00 -3.7932852e+00
+7.7939398e+00 -3.5917785e+00
+7.8043665e+00 -3.2619765e+00
+7.8147932e+00 -3.6566694e+00
+7.8252199e+00 -4.2328965e+00
+7.8356465e+00 -3.9443635e+00
+7.8460732e+00 -4.3006108e+00
+7.8564999e+00 -4.3359634e+00
+7.8669266e+00 -5.1200989e+00
+7.8773532e+00 -5.0521654e+00
+7.8877799e+00 -4.4077476e+00
+7.8982066e+00 -4.6671191e+00
+7.9086333e+00 -2.7689086e+00
+7.9190599e+00 -1.9339188e+00
+7.9294866e+00 -4.6789034e-01
+7.9399133e+00 -3.5575657e-01
+7.9503400e+00 9.8159179e-01
+7.9607666e+00 1.8962877e+00
+7.9711933e+00 3.5698251e+00
+7.9816200e+00 4.7409020e+00
+7.9920467e+00 5.3839575e+00
+8.0024734e+00 5.2375123e+00
+8.0129000e+00 4.1164079e+00
+8.0233267e+00 1.8195471e+00
+8.0337534e+00 -2.7036711e-01
+8.0441801e+00 -1.7023914e+00
+8.0546067e+00 -3.8876632e+00
+8.0650334e+00 -5.9648577e+00
+8.0754601e+00 -7.5585524e+00
+8.0858868e+00 -9.0461847e+00
+8.0963134e+00 -1.0681474e+01
+8.1067401e+00 -1.1208375e+01
+8.1171668e+00 -1.0526549e+01
+8.1275935e+00 -9.6701134e+00
+8.1380201e+00 -6.0152718e+00
+8.1484468e+00 -1.6366593e+00
+8.1588735e+00 3.4071814e+00
+8.1693002e+00 7.5029498e+00
+8.1797268e+00 1.1703062e+01
+8.1901535e+00 1.4183603e+01
+8.2005802e+00 1.7069250e+01
+8.2110069e+00 2.0948322e+01
+8.2214335e+00 2.7177757e+01
+8.2318602e+00 3.3955064e+01
+8.2422869e+00 4.1196542e+01
+8.2527136e+00 4.7764636e+01
+8.2631402e+00 5.2422506e+01
+8.2735669e+00 5.5487490e+01
+8.2839936e+00 5.8385416e+01
+8.2944203e+00 5.8570655e+01
+8.3048469e+00 5.7080400e+01
+8.3152736e+00 5.2171421e+01
+8.3257003e+00 4.6116278e+01
+8.3361270e+00 4.0214479e+01
+8.3465536e+00 3.5621651e+01
+8.3569803e+00 3.3350606e+01
+8.3674070e+00 3.3371841e+01
+8.3778337e+00 3.4260807e+01
+8.3882603e+00 3.7681474e+01
+8.3986870e+00 4.3168501e+01
+8.4091137e+00 5.0700531e+01
+8.4195404e+00 6.1937564e+01
+8.4299670e+00 7.6783321e+01
+8.4403937e+00 9.8129213e+01
+8.4508204e+00 1.2600234e+02
+8.4612471e+00 1.6479946e+02
+8.4716737e+00 2.1918415e+02
+8.4821004e+00 2.9901768e+02
+8.4925271e+00 4.2114672e+02
+8.5029538e+00 6.0788328e+02
+8.5133804e+00 8.8999221e+02
+8.5238071e+00 1.2747813e+03
+8.5342338e+00 1.7574304e+03
+8.5446605e+00 2.2518000e+03
+8.5550871e+00 2.6380208e+03
+8.5655138e+00 2.7999015e+03
+8.5759405e+00 2.6834987e+03
+8.5863672e+00 2.3616308e+03
+8.5967938e+00 1.9193276e+03
+8.6072205e+00 1.4644602e+03
+8.6176472e+00 1.0816885e+03
+8.6280739e+00 7.7149859e+02
+8.6385005e+00 5.5156790e+02
+8.6489272e+00 3.9480853e+02
+8.6593539e+00 2.8869128e+02
+8.6697806e+00 2.1632930e+02
+8.6802072e+00 1.6618577e+02
+8.6906339e+00 1.3083631e+02
+8.7010606e+00 1.0373611e+02
+8.7114873e+00 8.3996308e+01
+8.7219140e+00 6.9565985e+01
+8.7323406e+00 6.1633128e+01
+8.7427673e+00 5.7365050e+01
+8.7531940e+00 5.5859847e+01
+8.7636207e+00 5.4519093e+01
+8.7740473e+00 5.3116790e+01
+8.7844740e+00 4.9118065e+01
+8.7949007e+00 4.2817028e+01
+8.8053274e+00 3.7501267e+01
+8.8157540e+00 3.2335803e+01
+8.8261807e+00 2.8678579e+01
+8.8366074e+00 2.6204226e+01
+8.8470341e+00 2.4666952e+01
+8.8574607e+00 2.4068896e+01
+8.8678874e+00 2.2776028e+01
+8.8783141e+00 2.3467099e+01
+8.8887408e+00 2.3266941e+01
+8.8991674e+00 2.4204121e+01
+8.9095941e+00 2.3881932e+01
+8.9200208e+00 2.3307153e+01
+8.9304475e+00 2.3618944e+01
+8.9408741e+00 2.3688597e+01
+8.9513008e+00 2.3309037e+01
+8.9617275e+00 2.2099771e+01
+8.9721542e+00 1.9814789e+01
+8.9825808e+00 1.6700714e+01
+8.9930075e+00 1.4407401e+01
+9.0034342e+00 1.1068388e+01
+9.0138609e+00 6.5840972e+00
+9.0242875e+00 2.7902836e+00
+9.0347142e+00 6.8753366e-01
+9.0451409e+00 -1.3244810e+00
+9.0555676e+00 -2.0117064e+00
+9.0659942e+00 -3.8377548e+00
+9.0764209e+00 -5.4852064e+00
+9.0868476e+00 -7.0450569e+00
+9.0972743e+00 -6.7507193e+00
+9.1077009e+00 -7.6749730e+00
+9.1181276e+00 -6.6911651e+00
+9.1285543e+00 -6.3463586e+00
+9.1389810e+00 -6.0569338e+00
+9.1494076e+00 -7.2219377e+00
+9.1598343e+00 -9.1465848e+00
+9.1702610e+00 -1.1481206e+01
+9.1806877e+00 -1.2539050e+01
+9.1911143e+00 -1.1538933e+01
+9.2015410e+00 -9.7547365e+00
+9.2119677e+00 -8.0079622e+00
+9.2223944e+00 -6.8603277e+00
+9.2328210e+00 -5.6550188e+00
+9.2432477e+00 -3.6154888e+00
+9.2536744e+00 -4.5210920e-01
+9.2641011e+00 1.9214306e+00
+9.2745277e+00 5.5976729e+00
+9.2849544e+00 9.9200918e+00
+9.2953811e+00 1.4567243e+01
+9.3058078e+00 1.9337163e+01
+9.3162344e+00 2.4242719e+01
+9.3266611e+00 3.0492112e+01
+9.3370878e+00 3.6986221e+01
+9.3475145e+00 4.3585206e+01
+9.3579411e+00 4.8919758e+01
+9.3683678e+00 5.3718100e+01
+9.3787945e+00 5.6262431e+01
+9.3892212e+00 5.7096635e+01
+9.3996479e+00 5.4519396e+01
+9.4100745e+00 5.0711830e+01
+9.4205012e+00 4.4529183e+01
+9.4309279e+00 3.9614678e+01
+9.4413546e+00 3.3239519e+01
+9.4517812e+00 2.7170238e+01
+9.4622079e+00 2.1011495e+01
+9.4726346e+00 1.4357828e+01
+9.4830613e+00 8.8432554e+00
+9.4934879e+00 1.8815204e+00
+9.5039146e+00 -3.9644029e+00
+9.5143413e+00 -8.2180650e+00
+9.5247680e+00 -9.7578387e+00
+9.5351946e+00 -1.1999070e+01
+9.5456213e+00 -1.3041576e+01
+9.5560480e+00 -1.2989000e+01
+9.5664747e+00 -1.3059906e+01
+9.5769013e+00 -1.3578436e+01
+9.5873280e+00 -1.3681899e+01
+9.5977547e+00 -1.3056833e+01
+9.6081814e+00 -1.1180701e+01
+9.6186080e+00 -1.0219739e+01
+9.6290347e+00 -8.1003552e+00
+9.6394614e+00 -5.5089860e+00
+9.6498881e+00 -2.1417917e+00
+9.6603147e+00 8.6189035e-01
+9.6707414e+00 5.2644523e+00
+9.6811681e+00 9.7760561e+00
+9.6915948e+00 1.5628239e+01
+9.7020214e+00 2.1295662e+01
+9.7124481e+00 2.8644813e+01
+9.7228748e+00 3.8155651e+01
+9.7333015e+00 4.8365007e+01
+9.7437281e+00 6.1356137e+01
+9.7541548e+00 7.8553324e+01
+9.7645815e+00 9.8343919e+01
+9.7750082e+00 1.2602495e+02
+9.7854348e+00 1.5869036e+02
+9.7958615e+00 1.9955602e+02
+9.8062882e+00 2.4557368e+02
+9.8167149e+00 2.9872886e+02
+9.8271415e+00 3.6049488e+02
+9.8375682e+00 4.2466562e+02
+9.8479949e+00 4.9282340e+02
+9.8584216e+00 5.5379094e+02
+9.8688482e+00 6.0309775e+02
+9.8792749e+00 6.3020969e+02
+9.8897016e+00 6.3558727e+02
+9.9001283e+00 6.1768379e+02
+9.9105549e+00 5.7487676e+02
+9.9209816e+00 5.2071012e+02
+9.9314083e+00 4.6213026e+02
+9.9418350e+00 4.0730388e+02
+9.9522616e+00 3.6278236e+02
+9.9626883e+00 3.2366123e+02
+9.9731150e+00 2.8891438e+02
+9.9835417e+00 2.5135617e+02
+9.9939683e+00 2.0866808e+02
+1.0004395e+01 1.6897531e+02
+1.0014822e+01 1.3347339e+02
+1.0025248e+01 1.0616991e+02
+1.0035675e+01 8.6859924e+01
+1.0046102e+01 7.4215059e+01
+1.0056528e+01 6.7117257e+01
+1.0066955e+01 6.4246538e+01
+1.0077382e+01 6.6989132e+01
+1.0087808e+01 7.5159461e+01
+1.0098235e+01 9.0621638e+01
+1.0108662e+01 1.1046988e+02
+1.0119088e+01 1.2996539e+02
+1.0129515e+01 1.4505617e+02
+1.0139942e+01 1.5011743e+02
+1.0150368e+01 1.4314535e+02
+1.0160795e+01 1.2596965e+02
+1.0171222e+01 1.0242599e+02
+1.0181649e+01 7.7757463e+01
+1.0192075e+01 5.6516544e+01
+1.0202502e+01 3.9070522e+01
+1.0212929e+01 2.6974663e+01
+1.0223355e+01 2.1018122e+01
+1.0233782e+01 1.9685587e+01
+1.0244209e+01 3.5337807e+01
+1.0254635e+01 5.7270026e+01
+1.0265062e+01 8.2365425e+01
+1.0275489e+01 1.0578554e+02
+1.0285915e+01 1.0736420e+02
+1.0296342e+01 1.2659969e+02
+1.0306769e+01 1.4202482e+02
+1.0317195e+01 1.7693792e+02
+1.0327622e+01 1.9828215e+02
+1.0338049e+01 2.1249844e+02
+1.0348475e+01 2.2867417e+02
+1.0358902e+01 2.4269683e+02
+1.0369329e+01 2.5525132e+02
+1.0379755e+01 2.6874183e+02
+1.0390182e+01 2.7454462e+02
+1.0400609e+01 2.7391389e+02
+1.0411035e+01 2.6508742e+02
+1.0421462e+01 2.4585437e+02
+1.0431889e+01 2.2832843e+02
+1.0442315e+01 1.9976778e+02
+1.0452742e+01 1.7435377e+02
+1.0463169e+01 1.6121908e+02
+1.0473595e+01 1.3212098e+02
+1.0484022e+01 1.1335553e+02
+1.0494449e+01 7.8861499e+01
+1.0504875e+01 5.9277944e+01
+1.0515302e+01 3.3448430e+01
+1.0525729e+01 1.6500018e+01
+1.0536155e+01 9.3191623e+00
+1.0546582e+01 7.5321283e+00
+1.0557009e+01 8.1591706e+00
+1.0567435e+01 9.1440403e+00
+1.0577862e+01 8.7994042e+00
+1.0588289e+01 7.9652130e+00
+1.0598716e+01 7.0489554e+00
+1.0609142e+01 4.8943782e+00
+1.0619569e+01 2.5915522e+00
+1.0629996e+01 4.2852445e-01
+1.0640422e+01 -2.5219600e+00
+1.0650849e+01 -5.3842267e+00
+1.0661276e+01 -6.6578298e+00
+1.0671702e+01 -6.2670252e+00
+1.0682129e+01 -6.0848338e+00
+1.0692556e+01 -5.8347101e+00
+1.0702982e+01 -6.0988099e+00
+1.0713409e+01 -7.0351486e+00
+1.0723836e+01 -7.5533800e+00
+1.0734262e+01 -7.6940590e+00
+1.0744689e+01 -7.3494948e+00
+1.0755116e+01 -8.3924394e+00
+1.0765542e+01 -8.8621458e+00
+1.0775969e+01 -9.7041162e+00
+1.0786396e+01 -1.0194900e+01
+1.0796822e+01 -1.0551848e+01
+1.0807249e+01 -1.0686054e+01
+1.0817676e+01 -1.0332665e+01
+1.0828102e+01 -1.0176327e+01
+1.0838529e+01 -1.0819026e+01
+1.0848956e+01 -1.1541805e+01
+1.0859382e+01 -1.1499004e+01
+1.0869809e+01 -1.0203604e+01
+1.0880236e+01 -9.3006397e+00
+1.0890662e+01 -7.4058481e+00
+1.0901089e+01 -7.4719987e+00
+1.0911516e+01 -7.5251227e+00
+1.0921942e+01 -8.3819502e+00
+1.0932369e+01 -9.3017416e+00
+1.0942796e+01 -9.9893218e+00
+1.0953222e+01 -1.0112114e+01
+1.0963649e+01 -1.0213170e+01
+1.0974076e+01 -1.0661707e+01
+1.0984503e+01 -1.0013284e+01
+1.0994929e+01 -1.0017615e+01
+1.1005356e+01 -1.0000738e+01
+1.1015783e+01 -1.0234561e+01
+1.1026209e+01 -1.0673190e+01
+1.1036636e+01 -1.1232254e+01
+1.1047063e+01 -1.1458252e+01
+1.1057489e+01 -1.1749983e+01
+1.1067916e+01 -1.1640865e+01
+1.1078343e+01 -9.7425892e+00
+1.1088769e+01 -8.7773480e+00
+1.1099196e+01 -7.9387468e+00
+1.1109623e+01 -9.3340706e+00
+1.1120049e+01 -1.0375403e+01
+1.1130476e+01 -9.9173378e+00
+1.1140903e+01 -7.5878533e+00
+1.1151329e+01 -6.2837241e+00
+1.1161756e+01 -5.2909348e+00
+1.1172183e+01 -6.3026543e+00
+1.1182609e+01 -6.1386497e+00
+1.1193036e+01 -6.1222950e+00
+1.1203463e+01 -5.0944513e+00
+1.1213889e+01 -5.9664775e+00
+1.1224316e+01 -6.0638377e+00
+1.1234743e+01 -6.0465849e+00
+1.1245169e+01 -4.6762704e+00
+1.1255596e+01 -3.5639482e+00
+1.1266023e+01 -2.0416638e+00
+1.1276449e+01 -1.2759611e+00
+1.1286876e+01 -1.0808841e+00
+1.1297303e+01 -6.0057123e-01
+1.1307729e+01 -8.6515926e-01
+1.1318156e+01 -1.4858827e+00
+1.1328583e+01 -2.2064732e+00
+1.1339009e+01 -2.9004607e+00
+1.1349436e+01 -3.6520706e+00
+1.1359863e+01 -3.7130282e+00
+1.1370289e+01 -3.5547572e+00
+1.1380716e+01 -3.0042745e+00
+1.1391143e+01 -2.3991990e+00
+1.1401570e+01 -1.6037798e+00
+1.1411996e+01 -6.8133339e-01
+1.1422423e+01 -9.5326534e-01
+1.1432850e+01 2.9212110e-02
+1.1443276e+01 4.2408729e-01
+1.1453703e+01 2.8122623e+00
+1.1464130e+01 4.5996295e+00
+1.1474556e+01 4.8225813e+00
+1.1484983e+01 4.2473272e+00
+1.1495410e+01 2.7263632e+00
+1.1505836e+01 1.8002855e+00
+1.1516263e+01 2.9679101e+00
+1.1526690e+01 3.7295364e+00
+1.1537116e+01 4.5652632e+00
+1.1547543e+01 5.4056129e+00
+1.1557970e+01 6.5358870e+00
+1.1568396e+01 7.8274868e+00
+1.1578823e+01 9.0487400e+00
+1.1589250e+01 9.3565500e+00
+1.1599676e+01 8.9191194e+00
+1.1610103e+01 9.8055810e+00
+1.1620530e+01 1.0902939e+01
+1.1630956e+01 1.2268997e+01
+1.1641383e+01 1.2556292e+01
+1.1651810e+01 1.3135328e+01
+1.1662236e+01 1.3686409e+01
+1.1672663e+01 1.4370476e+01
+1.1683090e+01 1.5287332e+01
+1.1693516e+01 1.7482280e+01
+1.1703943e+01 1.9433365e+01
+1.1714370e+01 2.0954588e+01
+1.1724796e+01 2.3029852e+01
+1.1735223e+01 2.5214702e+01
+1.1745650e+01 2.6856439e+01
+1.1756076e+01 2.8665362e+01
+1.1766503e+01 3.1307220e+01
+1.1776930e+01 3.4414711e+01
+1.1787357e+01 3.8833316e+01
+1.1797783e+01 4.3818429e+01
+1.1808210e+01 4.9297400e+01
+1.1818637e+01 5.4181225e+01
+1.1829063e+01 6.0559890e+01
+1.1839490e+01 6.9094752e+01
+1.1849917e+01 7.9288596e+01
+1.1860343e+01 9.1302709e+01
+1.1870770e+01 1.0620335e+02
+1.1881197e+01 1.2432119e+02
+1.1891623e+01 1.4678191e+02
+1.1902050e+01 1.7118168e+02
+1.1912477e+01 2.0654696e+02
+1.1922903e+01 2.4918504e+02
+1.1933330e+01 3.0689405e+02
+1.1943757e+01 3.7156499e+02
+1.1954183e+01 4.3270081e+02
+1.1964610e+01 4.9288576e+02
+1.1975037e+01 5.3407872e+02
+1.1985463e+01 5.6449644e+02
+1.1995890e+01 5.6817458e+02
+1.2006317e+01 5.6502088e+02
+1.2016743e+01 5.3551552e+02
+1.2027170e+01 4.8264823e+02
+1.2037597e+01 4.0450627e+02
+1.2048023e+01 3.2718138e+02
+1.2058450e+01 2.6645791e+02
+1.2068877e+01 2.1794591e+02
+1.2079303e+01 1.7970661e+02
+1.2089730e+01 1.4846686e+02
+1.2100157e+01 1.2378730e+02
+1.2110583e+01 1.0506365e+02
+1.2121010e+01 8.7886065e+01
+1.2131437e+01 7.4452366e+01
+1.2141863e+01 6.0945274e+01
+1.2152290e+01 5.1659736e+01
+1.2162717e+01 4.4128868e+01
+1.2173144e+01 3.9137394e+01
+1.2183570e+01 3.4689521e+01
+1.2193997e+01 2.9902995e+01
+1.2204424e+01 2.6042720e+01
+1.2214850e+01 2.3267996e+01
+1.2225277e+01 2.1688965e+01
+1.2235704e+01 2.0773924e+01
+1.2246130e+01 1.9036664e+01
+1.2256557e+01 1.6894625e+01
+1.2266984e+01 1.5897596e+01
+1.2277410e+01 1.4507057e+01
+1.2287837e+01 1.2697550e+01
+1.2298264e+01 1.0794853e+01
+1.2308690e+01 1.0147038e+01
+1.2319117e+01 8.0865456e+00
+1.2329544e+01 6.8395452e+00
+1.2339970e+01 6.3133019e+00
+1.2350397e+01 5.6443534e+00
+1.2360824e+01 5.2516618e+00
+1.2371250e+01 4.0944838e+00
+1.2381677e+01 3.3784562e+00
+1.2392104e+01 2.0256332e+00
+1.2402530e+01 1.8978639e+00
+1.2412957e+01 2.3333842e+00
+1.2423384e+01 2.8053408e+00
+1.2433810e+01 1.0711753e+00
+1.2444237e+01 -5.6476442e-02
+1.2454664e+01 -1.3570753e+00
+1.2465090e+01 -3.6888649e-01
+1.2475517e+01 -1.0529743e+00
+1.2485944e+01 -1.2584062e+00
+1.2496370e+01 -2.2595542e+00
+1.2506797e+01 -3.4554820e+00
+1.2517224e+01 -4.7778634e+00
+1.2527650e+01 -5.5528767e+00
+1.2538077e+01 -7.1447846e+00
+1.2548504e+01 -8.3945669e+00
+1.2558930e+01 -8.9437073e+00
+1.2569357e+01 -8.9096674e+00
+1.2579784e+01 -8.7927321e+00
+1.2590211e+01 -8.5042469e+00
+1.2600637e+01 -8.3576018e+00
+1.2611064e+01 -8.5638564e+00
+1.2621491e+01 -7.8389016e+00
+1.2631917e+01 -7.7755320e+00
+1.2642344e+01 -6.5740046e+00
+1.2652771e+01 -6.3681143e+00
+1.2663197e+01 -5.4401594e+00
+1.2673624e+01 -5.4874940e+00
+1.2684051e+01 -5.6605164e+00
+1.2694477e+01 -7.3455277e+00
+1.2704904e+01 -8.9624790e+00
+1.2715331e+01 -9.8029711e+00
+1.2725757e+01 -9.9700075e+00
+1.2736184e+01 -9.9105354e+00
+1.2746611e+01 -8.9364577e+00
+1.2757037e+01 -9.0259797e+00
+1.2767464e+01 -9.0375443e+00
+1.2777891e+01 -7.6385556e+00
+1.2788317e+01 -7.0025202e+00
+1.2798744e+01 -5.2032761e+00
+1.2809171e+01 -4.0322281e+00
+1.2819597e+01 -2.3702834e+00
+1.2830024e+01 -3.1287450e-01
+1.2840451e+01 1.5545934e+00
+1.2850877e+01 3.0710135e+00
+1.2861304e+01 5.0662590e+00
+1.2871731e+01 8.6005252e+00
+1.2882157e+01 1.2045806e+01
+1.2892584e+01 1.8497081e+01
+1.2903011e+01 2.7480446e+01
+1.2913437e+01 3.8729998e+01
+1.2923864e+01 4.8070121e+01
+1.2934291e+01 5.4971814e+01
+1.2944717e+01 5.4767274e+01
+1.2955144e+01 5.0167095e+01
+1.2965571e+01 3.9601677e+01
+1.2975998e+01 2.9734886e+01
+1.2986424e+01 2.0203522e+01
+1.2996851e+01 1.5818589e+01
+1.3007278e+01 1.1388992e+01
+1.3017704e+01 8.3758328e+00
+1.3028131e+01 5.5749241e+00
+1.3038558e+01 5.7580728e+00
+1.3048984e+01 7.6173859e+00
+1.3059411e+01 1.0424684e+01
+1.3069838e+01 1.2825377e+01
+1.3080264e+01 1.6781976e+01
+1.3090691e+01 2.2158211e+01
+1.3101118e+01 2.9635195e+01
+1.3111544e+01 3.9629045e+01
+1.3121971e+01 5.1168398e+01
+1.3132398e+01 6.4515473e+01
+1.3142824e+01 7.5308091e+01
+1.3153251e+01 8.4811197e+01
+1.3163678e+01 8.8525416e+01
+1.3174104e+01 8.9358973e+01
+1.3184531e+01 8.6991924e+01
+1.3194958e+01 7.8323797e+01
+1.3205384e+01 6.6921523e+01
+1.3215811e+01 5.2775166e+01
+1.3226238e+01 3.9699361e+01
+1.3236664e+01 2.8921542e+01
+1.3247091e+01 2.1259686e+01
+1.3257518e+01 1.5383730e+01
+1.3267944e+01 1.1638413e+01
+1.3278371e+01 8.5388226e+00
+1.3288798e+01 7.1861016e+00
+1.3299224e+01 6.2150940e+00
+1.3309651e+01 4.9768959e+00
+1.3320078e+01 3.7727560e+00
+1.3330504e+01 3.0680230e+00
+1.3340931e+01 2.3886029e+00
+1.3351358e+01 2.8381493e+00
+1.3361784e+01 3.4933156e+00
+1.3372211e+01 5.4606177e+00
+1.3382638e+01 7.4807137e+00
+1.3393065e+01 9.2994504e+00
+1.3403491e+01 1.0460087e+01
+1.3413918e+01 1.1065453e+01
+1.3424345e+01 1.0357112e+01
+1.3434771e+01 8.3073275e+00
+1.3445198e+01 7.7111379e+00
+1.3455625e+01 7.1155111e+00
+1.3466051e+01 6.8309151e+00
+1.3476478e+01 5.5630968e+00
+1.3486905e+01 5.2618283e+00
+1.3497331e+01 5.2581805e+00
+1.3507758e+01 6.0590098e+00
+1.3518185e+01 6.8099912e+00
+1.3528611e+01 6.7308987e+00
+1.3539038e+01 4.2972972e+00
+1.3549465e+01 3.2227646e+00
+1.3559891e+01 2.7348774e+00
+1.3570318e+01 4.8048087e+00
+1.3580745e+01 6.1037386e+00
+1.3591171e+01 8.0109454e+00
+1.3601598e+01 9.1565104e+00
+1.3612025e+01 1.0992615e+01
+1.3622451e+01 1.2045639e+01
+1.3632878e+01 1.3120471e+01
+1.3643305e+01 1.3762594e+01
+1.3653731e+01 1.6662987e+01
+1.3664158e+01 1.8541948e+01
+1.3674585e+01 2.0677857e+01
+1.3685011e+01 2.2462896e+01
+1.3695438e+01 2.4026568e+01
+1.3705865e+01 2.5222953e+01
+1.3716291e+01 2.6256332e+01
+1.3726718e+01 2.9047113e+01
+1.3737145e+01 3.2399978e+01
+1.3747571e+01 3.7343103e+01
+1.3757998e+01 4.0323604e+01
+1.3768425e+01 4.0588258e+01
+1.3778852e+01 3.6642057e+01
+1.3789278e+01 3.5622775e+01
+1.3799705e+01 3.4390333e+01
+1.3810132e+01 3.5492705e+01
+1.3820558e+01 3.6522163e+01
+1.3830985e+01 3.8391032e+01
+1.3841412e+01 3.9463182e+01
+1.3851838e+01 4.0895381e+01
+1.3862265e+01 4.3808257e+01
+1.3872692e+01 4.7149277e+01
+1.3883118e+01 5.2566002e+01
+1.3893545e+01 6.0501264e+01
+1.3903972e+01 7.0547524e+01
+1.3914398e+01 8.2173038e+01
+1.3924825e+01 9.8060639e+01
+1.3935252e+01 1.1856088e+02
+1.3945678e+01 1.4364602e+02
+1.3956105e+01 1.7271668e+02
+1.3966532e+01 2.0395582e+02
+1.3976958e+01 2.3468487e+02
+1.3987385e+01 2.6184588e+02
+1.3997812e+01 2.7945888e+02
+1.4008238e+01 2.8707080e+02
+1.4018665e+01 2.8077699e+02
+1.4029092e+01 2.6625467e+02
+1.4039518e+01 2.4385507e+02
+1.4049945e+01 2.1760503e+02
+1.4060372e+01 1.9160377e+02
+1.4070798e+01 1.6525759e+02
+1.4081225e+01 1.4143615e+02
+1.4091652e+01 1.2057905e+02
+1.4102078e+01 1.0150549e+02
+1.4112505e+01 8.4007611e+01
+1.4122932e+01 6.9236012e+01
+1.4133358e+01 5.7366688e+01
+1.4143785e+01 4.7748471e+01
+1.4154212e+01 4.1845351e+01
+1.4164638e+01 3.7064008e+01
+1.4175065e+01 3.4309676e+01
+1.4185492e+01 3.1317930e+01
+1.4195919e+01 2.8169595e+01
+1.4206345e+01 2.5778936e+01
+1.4216772e+01 2.3854381e+01
+1.4227199e+01 2.3293490e+01
+1.4237625e+01 2.2189516e+01
+1.4248052e+01 2.0522383e+01
+1.4258479e+01 1.9593839e+01
+1.4268905e+01 2.0198422e+01
+1.4279332e+01 2.0519655e+01
+1.4289759e+01 2.0770470e+01
+1.4300185e+01 2.1275892e+01
+1.4310612e+01 2.2643140e+01
+1.4321039e+01 2.2221134e+01
+1.4331465e+01 2.1217284e+01
+1.4341892e+01 1.9961304e+01
+1.4352319e+01 1.9229001e+01
+1.4362745e+01 1.7689771e+01
+1.4373172e+01 1.6071223e+01
+1.4383599e+01 1.5294050e+01
+1.4394025e+01 1.4251834e+01
+1.4404452e+01 1.3527581e+01
+1.4414879e+01 1.0657867e+01
+1.4425305e+01 7.8588608e+00
+1.4435732e+01 5.2013643e+00
+1.4446159e+01 2.8650394e+00
+1.4456585e+01 2.4954067e-01
+1.4467012e+01 -7.6753518e-01
+1.4477439e+01 -8.3473996e-01
+1.4487865e+01 -1.1080332e+00
+1.4498292e+01 -1.2088229e+00
+1.4508719e+01 -2.3757748e+00
+1.4519145e+01 -2.6629621e+00
+1.4529572e+01 -3.5598975e+00
+1.4539999e+01 -4.7373603e+00
+1.4550425e+01 -5.1634373e+00
+1.4560852e+01 -5.2760456e+00
+1.4571279e+01 -6.7701778e+00
+1.4581706e+01 -8.4359396e+00
+1.4592132e+01 -8.2496352e+00
+1.4602559e+01 -7.0681871e+00
+1.4612986e+01 -5.9850053e+00
+1.4623412e+01 -5.3075063e+00
+1.4633839e+01 -5.0799166e+00
+1.4644266e+01 -4.4348584e+00
+1.4654692e+01 -4.1440599e+00
+1.4665119e+01 -4.3651515e+00
+1.4675546e+01 -4.8727667e+00
+1.4685972e+01 -5.1725451e+00
+1.4696399e+01 -3.0266202e+00
+1.4706826e+01 -1.3873364e+00
+1.4717252e+01 2.3625637e-01
+1.4727679e+01 4.4622154e-01
+1.4738106e+01 -1.7519512e-01
+1.4748532e+01 -3.7175330e-01
+1.4758959e+01 -2.2491924e-02
+1.4769386e+01 2.5579256e+00
+1.4779812e+01 5.2702309e+00
+1.4790239e+01 7.5366831e+00
+1.4800666e+01 1.0545611e+01
+1.4811092e+01 1.0798637e+01
+1.4821519e+01 1.1202521e+01
+1.4831946e+01 1.0026082e+01
+1.4842372e+01 8.4795392e+00
+1.4852799e+01 6.9085481e+00
+1.4863226e+01 4.5120242e+00
+1.4873652e+01 2.5720790e+00
+1.4884079e+01 8.1316914e-01
+1.4894506e+01 -8.4889533e-01
+1.4904932e+01 -1.4954075e+00
+1.4915359e+01 -2.0331101e+00
+1.4925786e+01 -1.5388970e+00
+1.4936212e+01 7.8135273e-02
+1.4946639e+01 1.3581453e+00
+1.4957066e+01 3.4117364e+00
+1.4967493e+01 5.1410297e+00
+1.4977919e+01 7.0852261e+00
+1.4988346e+01 9.5363872e+00
+1.4998773e+01 1.0464914e+01
+1.5009199e+01 1.0666508e+01
+1.5019626e+01 1.0488332e+01
+1.5030053e+01 9.1805884e+00
+1.5040479e+01 7.8288783e+00
+1.5050906e+01 6.2106698e+00
+1.5061333e+01 5.5452659e+00
+1.5071759e+01 5.2817693e+00
+1.5082186e+01 5.3005531e+00
+1.5092613e+01 6.1920227e+00
+1.5103039e+01 6.0117842e+00
+1.5113466e+01 5.7294159e+00
+1.5123893e+01 6.0786271e+00
+1.5134319e+01 6.5801284e+00
+1.5144746e+01 6.7169044e+00
+1.5155173e+01 6.3914693e+00
+1.5165599e+01 6.1480395e+00
+1.5176026e+01 5.1863063e+00
+1.5186453e+01 4.1842907e+00
+1.5196879e+01 3.9239156e+00
+1.5207306e+01 3.5005802e+00
+1.5217733e+01 4.3211130e+00
+1.5228159e+01 4.5634449e+00
+1.5238586e+01 5.6423837e+00
+1.5249013e+01 5.7763664e+00
+1.5259439e+01 6.1057332e+00
+1.5269866e+01 6.6496012e+00
+1.5280293e+01 7.4327171e+00
+1.5290719e+01 7.6178312e+00
+1.5301146e+01 7.7499708e+00
+1.5311573e+01 8.1941933e+00
+1.5321999e+01 8.4928603e+00
+1.5332426e+01 8.3241097e+00
+1.5342853e+01 8.8455107e+00
+1.5353279e+01 9.9098371e+00
+1.5363706e+01 9.9699380e+00
+1.5374133e+01 1.0848795e+01
+1.5384560e+01 1.2939419e+01
+1.5394986e+01 1.5553601e+01
+1.5405413e+01 1.8380906e+01
+1.5415840e+01 2.2700534e+01
+1.5426266e+01 2.6382791e+01
+1.5436693e+01 3.0058354e+01
+1.5447120e+01 3.3011038e+01
+1.5457546e+01 3.4511763e+01
+1.5467973e+01 3.5596920e+01
+1.5478400e+01 3.5984938e+01
+1.5488826e+01 3.5988754e+01
+1.5499253e+01 3.3849771e+01
+1.5509680e+01 3.0736235e+01
+1.5520106e+01 2.6946796e+01
+1.5530533e+01 2.2900773e+01
+1.5540960e+01 1.9008028e+01
+1.5551386e+01 1.5670427e+01
+1.5561813e+01 1.3814302e+01
+1.5572240e+01 1.1498232e+01
+1.5582666e+01 9.7015992e+00
+1.5593093e+01 8.6418508e+00
+1.5603520e+01 7.8932806e+00
+1.5613946e+01 8.0844884e+00
+1.5624373e+01 7.0439353e+00
+1.5634800e+01 6.7227316e+00
+1.5645226e+01 5.4981935e+00
+1.5655653e+01 5.9911967e+00
+1.5666080e+01 5.9380676e+00
+1.5676506e+01 6.1199390e+00
+1.5686933e+01 5.6426006e+00
+1.5697360e+01 5.3994952e+00
+1.5707786e+01 4.2972715e+00
+1.5718213e+01 3.1796334e+00
+1.5728640e+01 2.7715396e+00
+1.5739066e+01 1.9309544e+00
+1.5749493e+01 1.0803956e+00
+1.5759920e+01 2.0973732e-01
+1.5770347e+01 -1.7552536e-01
+1.5780773e+01 5.1329195e-01
+1.5791200e+01 1.2678251e+00
+1.5801627e+01 1.9366677e+00
+1.5812053e+01 1.8084184e+00
+1.5822480e+01 1.5162260e+00
+1.5832907e+01 1.2207979e+00
+1.5843333e+01 6.8284615e-01
+1.5853760e+01 5.8393213e-01
+1.5864187e+01 1.1997762e+00
+1.5874613e+01 2.3075027e+00
+1.5885040e+01 2.7041851e+00
+1.5895467e+01 2.8641555e+00
+1.5905893e+01 3.1597498e+00
+1.5916320e+01 2.6325525e+00
+1.5926747e+01 1.4266066e+00
+1.5937173e+01 8.7205840e-01
+1.5947600e+01 3.2040250e-01
+1.5958027e+01 1.0571916e+00
+1.5968453e+01 2.0494810e+00
+1.5978880e+01 3.1236749e+00
+1.5989307e+01 4.4424341e+00
+1.5999733e+01 6.8883217e+00
+1.6010160e+01 1.0558250e+01
+1.6020587e+01 1.3590088e+01
+1.6031013e+01 1.6325703e+01
+1.6041440e+01 1.7744916e+01
+1.6051867e+01 1.7287301e+01
+1.6062293e+01 1.4964630e+01
+1.6072720e+01 1.1888731e+01
+1.6083147e+01 9.1611811e+00
+1.6093573e+01 7.2268561e+00
+1.6104000e+01 6.2010883e+00
+1.6114427e+01 6.7243567e+00
+1.6124853e+01 7.9702395e+00
+1.6135280e+01 7.1050727e+00
+1.6145707e+01 6.8356356e+00
+1.6156133e+01 6.2502061e+00
+1.6166560e+01 7.0036229e+00
+1.6176987e+01 7.0764642e+00
+1.6187414e+01 8.2213275e+00
+1.6197840e+01 1.0791787e+01
+1.6208267e+01 1.3910384e+01
+1.6218694e+01 1.7466792e+01
+1.6229120e+01 2.2447880e+01
+1.6239547e+01 2.7460090e+01
+1.6249974e+01 3.2462588e+01
+1.6260400e+01 3.6836038e+01
+1.6270827e+01 4.1849180e+01
+1.6281254e+01 4.7376474e+01
+1.6291680e+01 5.4110475e+01
+1.6302107e+01 6.1757919e+01
+1.6312534e+01 6.9907958e+01
+1.6322960e+01 8.0124537e+01
+1.6333387e+01 9.4351887e+01
+1.6343814e+01 1.1081815e+02
+1.6354240e+01 1.2949296e+02
+1.6364667e+01 1.5187444e+02
+1.6375094e+01 1.7501822e+02
+1.6385520e+01 1.9889741e+02
+1.6395947e+01 2.2062195e+02
+1.6406374e+01 2.3947974e+02
+1.6416800e+01 2.5356088e+02
+1.6427227e+01 2.6243440e+02
+1.6437654e+01 2.6402667e+02
+1.6448080e+01 2.5872591e+02
+1.6458507e+01 2.4745919e+02
+1.6468934e+01 2.3206191e+02
+1.6479360e+01 2.1410393e+02
+1.6489787e+01 1.9525315e+02
+1.6500214e+01 1.7561402e+02
+1.6510640e+01 1.5653110e+02
+1.6521067e+01 1.3870466e+02
+1.6531494e+01 1.2275945e+02
+1.6541920e+01 1.0671548e+02
+1.6552347e+01 9.2131341e+01
+1.6562774e+01 7.9168936e+01
+1.6573201e+01 6.8947927e+01
+1.6583627e+01 6.0108011e+01
+1.6594054e+01 5.2381339e+01
+1.6604481e+01 4.4070597e+01
+1.6614907e+01 3.6952859e+01
+1.6625334e+01 2.9350460e+01
+1.6635761e+01 2.3971663e+01
+1.6646187e+01 1.8560417e+01
+1.6656614e+01 1.4913942e+01
+1.6667041e+01 1.1216674e+01
+1.6677467e+01 8.3756394e+00
+1.6687894e+01 5.0927404e+00
+1.6698321e+01 2.1149884e+00
+1.6708747e+01 -7.3711680e-01
+1.6719174e+01 -3.0515892e+00
+1.6729601e+01 -4.4522436e+00
+1.6740027e+01 -4.8319061e+00
+1.6750454e+01 -5.0037080e+00
+1.6760881e+01 -4.5127900e+00
+1.6771307e+01 -4.0295049e+00
+1.6781734e+01 -3.5431009e+00
+1.6792161e+01 -3.7401452e+00
+1.6802587e+01 -3.6519165e+00
+1.6813014e+01 -3.1600808e+00
+1.6823441e+01 -1.3534313e+00
+1.6833867e+01 -6.5997265e-01
+1.6844294e+01 -4.5188140e-02
+1.6854721e+01 -4.9879679e-01
+1.6865147e+01 3.6467125e-01
+1.6875574e+01 2.1197154e+00
+1.6886001e+01 3.5700916e+00
+1.6896427e+01 4.7935447e+00
+1.6906854e+01 5.6560573e+00
+1.6917281e+01 7.6313608e+00
+1.6927707e+01 9.4524762e+00
+1.6938134e+01 1.2704470e+01
+1.6948561e+01 1.6790349e+01
+1.6958987e+01 2.2801013e+01
+1.6969414e+01 2.9326411e+01
+1.6979841e+01 3.6500029e+01
+1.6990268e+01 4.4281431e+01
+1.7000694e+01 5.3481289e+01
+1.7011121e+01 6.4405832e+01
+1.7021548e+01 7.6013818e+01
+1.7031974e+01 8.5682497e+01
+1.7042401e+01 9.4748886e+01
+1.7052828e+01 9.9133124e+01
+1.7063254e+01 1.0079214e+02
+1.7073681e+01 9.8967748e+01
+1.7084108e+01 9.6870960e+01
+1.7094534e+01 9.3539796e+01
+1.7104961e+01 9.3048547e+01
+1.7115388e+01 9.6723022e+01
+1.7125814e+01 1.0462552e+02
+1.7136241e+01 1.1706683e+02
+1.7146668e+01 1.3211124e+02
+1.7157094e+01 1.4614564e+02
+1.7167521e+01 1.5619731e+02
+1.7177948e+01 1.5886483e+02
+1.7188374e+01 1.5542518e+02
+1.7198801e+01 1.4509743e+02
+1.7209228e+01 1.3063915e+02
+1.7219654e+01 1.1333622e+02
+1.7230081e+01 9.6967604e+01
+1.7240508e+01 7.9513163e+01
+1.7250934e+01 6.5264471e+01
+1.7261361e+01 5.1979886e+01
+1.7271788e+01 4.2466375e+01
+1.7282214e+01 3.4509607e+01
+1.7292641e+01 2.8638836e+01
+1.7303068e+01 2.3128630e+01
+1.7313494e+01 1.9005160e+01
+1.7323921e+01 1.4385779e+01
+1.7334348e+01 1.0850357e+01
+1.7344774e+01 7.8946702e+00
+1.7355201e+01 6.6450723e+00
+1.7365628e+01 5.2573405e+00
+1.7376055e+01 4.0881471e+00
+1.7386481e+01 2.7364754e+00
+1.7396908e+01 2.2010863e+00
+1.7407335e+01 1.7912682e+00
+1.7417761e+01 2.0956145e+00
+1.7428188e+01 1.5881925e+00
+1.7438615e+01 1.1563026e+00
+1.7449041e+01 -5.5648767e-02
+1.7459468e+01 -8.7768596e-01
+1.7469895e+01 -1.8652942e+00
+1.7480321e+01 -1.8169510e+00
+1.7490748e+01 -2.5855708e+00
+1.7501175e+01 -2.3212215e+00
+1.7511601e+01 -1.5265624e+00
+1.7522028e+01 -7.7559600e-01
+1.7532455e+01 -1.2668705e+00
+1.7542881e+01 -1.9247244e+00
+1.7553308e+01 -3.4988466e+00
+1.7563735e+01 -2.8520633e+00
+1.7574161e+01 -1.7875899e+00
+1.7584588e+01 -1.3889001e+00
+1.7595015e+01 -9.5699596e-01
+1.7605441e+01 4.8263250e-01
+1.7615868e+01 2.0733279e+00
+1.7626295e+01 2.7580147e+00
+1.7636721e+01 2.4580299e+00
+1.7647148e+01 1.7662339e+00
+1.7657575e+01 8.7887925e-01
+1.7668001e+01 1.4371316e+00
+1.7678428e+01 2.0689706e+00
+1.7688855e+01 2.9820781e+00
+1.7699281e+01 3.0580501e+00
+1.7709708e+01 3.8588859e+00
+1.7720135e+01 4.9401985e+00
+1.7730561e+01 6.1964149e+00
+1.7740988e+01 6.2512552e+00
+1.7751415e+01 6.1588640e+00
+1.7761842e+01 6.1196576e+00
+1.7772268e+01 5.9079059e+00
+1.7782695e+01 4.7628571e+00
+1.7793122e+01 4.2129993e+00
+1.7803548e+01 3.4666349e+00
+1.7813975e+01 3.2305336e+00
+1.7824402e+01 3.1625161e+00
+1.7834828e+01 2.5639176e+00
+1.7845255e+01 2.7407289e+00
+1.7855682e+01 3.9522032e+00
+1.7866108e+01 5.4340081e+00
+1.7876535e+01 7.4009552e+00
+1.7886962e+01 9.6299296e+00
+1.7897388e+01 1.1814631e+01
+1.7907815e+01 1.1845290e+01
+1.7918242e+01 1.1252323e+01
+1.7928668e+01 9.5409613e+00
+1.7939095e+01 8.0683538e+00
+1.7949522e+01 7.0717471e+00
+1.7959948e+01 7.0624002e+00
+1.7970375e+01 6.7425810e+00
+1.7980802e+01 6.9892635e+00
+1.7991228e+01 6.7502344e+00
+1.8001655e+01 6.2850772e+00
+1.8012082e+01 6.3633921e+00
+1.8022508e+01 5.6669906e+00
+1.8032935e+01 6.0838702e+00
+1.8043362e+01 5.6280546e+00
+1.8053788e+01 5.3930780e+00
+1.8064215e+01 5.0511492e+00
+1.8074642e+01 4.9237126e+00
+1.8085068e+01 4.5391221e+00
+1.8095495e+01 3.2601954e+00
+1.8105922e+01 2.9020944e+00
+1.8116348e+01 2.2368892e+00
+1.8126775e+01 2.4511035e+00
+1.8137202e+01 2.8727133e+00
+1.8147628e+01 2.8461015e+00
+1.8158055e+01 2.8739945e+00
+1.8168482e+01 3.3735785e+00
+1.8178909e+01 4.5013559e+00
+1.8189335e+01 5.9114203e+00
+1.8199762e+01 8.0880963e+00
+1.8210189e+01 8.6872776e+00
+1.8220615e+01 7.4019612e+00
+1.8231042e+01 5.1268658e+00
+1.8241469e+01 3.7635859e+00
+1.8251895e+01 3.7376169e+00
+1.8262322e+01 4.3570682e+00
+1.8272749e+01 4.3903299e+00
+1.8283175e+01 4.6172921e+00
+1.8293602e+01 4.5951500e+00
+1.8304029e+01 3.6951853e+00
+1.8314455e+01 2.4312774e+00
+1.8324882e+01 2.4868038e+00
+1.8335309e+01 2.2875325e+00
+1.8345735e+01 2.1482279e+00
+1.8356162e+01 1.6031452e+00
+1.8366589e+01 6.4063421e-01
+1.8377015e+01 6.5143942e-01
+1.8387442e+01 1.5332894e+00
+1.8397869e+01 1.4374112e+00
+1.8408295e+01 1.7225247e+00
+1.8418722e+01 1.6350276e+00
+1.8429149e+01 1.6932195e+00
+1.8439575e+01 1.5041913e+00
+1.8450002e+01 9.0920575e-01
+1.8460429e+01 3.1703044e-01
+1.8470855e+01 5.7092301e-01
+1.8481282e+01 2.3820708e-01
+1.8491709e+01 4.6611436e-01
+1.8502135e+01 -9.2743486e-01
+1.8512562e+01 -1.3590598e+00
+1.8522989e+01 -1.4780686e+00
+1.8533415e+01 -2.5608819e+00
+1.8543842e+01 -3.3798652e+00
+1.8554269e+01 -4.3883699e+00
+1.8564696e+01 -4.9005723e+00
+1.8575122e+01 -5.7696527e+00
+1.8585549e+01 -7.5657433e+00
+1.8595976e+01 -8.9359572e+00
+1.8606402e+01 -9.3182222e+00
+1.8616829e+01 -9.4834237e+00
+1.8627256e+01 -9.4985237e+00
+1.8637682e+01 -9.0977993e+00
+1.8648109e+01 -9.0444911e+00
+1.8658536e+01 -8.9821116e+00
+1.8668962e+01 -9.5788883e+00
+1.8679389e+01 -9.5449184e+00
+1.8689816e+01 -9.8370654e+00
+1.8700242e+01 -9.6243079e+00
+1.8710669e+01 -9.9072003e+00
+1.8721096e+01 -9.8855571e+00
+1.8731522e+01 -9.3199071e+00
+1.8741949e+01 -8.6910622e+00
+1.8752376e+01 -8.0933868e+00
+1.8762802e+01 -7.6018588e+00
+1.8773229e+01 -7.0282466e+00
+1.8783656e+01 -6.9296624e+00
+1.8794082e+01 -6.7882308e+00
+1.8804509e+01 -6.2298752e+00
+1.8814936e+01 -5.8889527e+00
+1.8825362e+01 -5.4015310e+00
+1.8835789e+01 -5.3051861e+00
+1.8846216e+01 -5.8518158e+00
+1.8856642e+01 -6.3667266e+00
+1.8867069e+01 -6.0861434e+00
+1.8877496e+01 -6.0582997e+00
+1.8887922e+01 -5.5898351e+00
+1.8898349e+01 -4.6874191e+00
+1.8908776e+01 -3.7513146e+00
+1.8919202e+01 -3.1993876e+00
+1.8929629e+01 -2.2981467e+00
+1.8940056e+01 -7.7207678e-01
+1.8950482e+01 8.8673754e-01
+1.8960909e+01 2.3473551e+00
+1.8971336e+01 3.0460775e+00
+1.8981763e+01 3.8380536e+00
+1.8992189e+01 4.1938876e+00
+1.9002616e+01 3.8502069e+00
+1.9013043e+01 3.6698104e+00
+1.9023469e+01 4.5098061e+00
+1.9033896e+01 5.3262081e+00
+1.9044323e+01 7.2014258e+00
+1.9054749e+01 1.0571282e+01
+1.9065176e+01 1.3422588e+01
+1.9075603e+01 1.4875674e+01
+1.9086029e+01 1.6054092e+01
+1.9096456e+01 1.5511958e+01
+1.9106883e+01 1.3977441e+01
+1.9117309e+01 1.1104429e+01
+1.9127736e+01 9.0478606e+00
+1.9138163e+01 7.3904505e+00
+1.9148589e+01 8.0207424e+00
+1.9159016e+01 8.5298049e+00
+1.9169443e+01 8.7010159e+00
+1.9179869e+01 8.3344870e+00
+1.9190296e+01 7.7534307e+00
+1.9200723e+01 7.5748023e+00
+1.9211149e+01 7.7386954e+00
+1.9221576e+01 8.1903804e+00
+1.9232003e+01 8.2547040e+00
+1.9242429e+01 7.3052569e+00
+1.9252856e+01 6.5945806e+00
+1.9263283e+01 6.3183280e+00
+1.9273709e+01 6.3788014e+00
+1.9284136e+01 5.8877270e+00
+1.9294563e+01 6.1702783e+00
+1.9304989e+01 6.3291831e+00
+1.9315416e+01 6.5118657e+00
+1.9325843e+01 6.5362342e+00
+1.9336269e+01 7.5009551e+00
+1.9346696e+01 7.8283638e+00
+1.9357123e+01 8.4831158e+00
+1.9367550e+01 7.7187580e+00
+1.9377976e+01 7.5916611e+00
+1.9388403e+01 7.2314275e+00
+1.9398830e+01 6.7153266e+00
+1.9409256e+01 5.9275945e+00
+1.9419683e+01 5.4984715e+00
+1.9430110e+01 4.2383987e+00
+1.9440536e+01 3.6198862e+00
+1.9450963e+01 3.2804210e+00
+1.9461390e+01 3.2866234e+00
+1.9471816e+01 1.5212837e+00
+1.9482243e+01 1.2933428e+00
+1.9492670e+01 1.1474044e+00
+1.9503096e+01 1.3747433e+00
+1.9513523e+01 4.8875816e-01
+1.9523950e+01 8.7338587e-02
+1.9534376e+01 -6.0845653e-01
+1.9544803e+01 -2.7536811e-01
+1.9555230e+01 -1.7042302e-01
+1.9565656e+01 -2.0998096e-01
+1.9576083e+01 -6.0512426e-01
+1.9586510e+01 -1.3444016e+00
+1.9596936e+01 -9.9749853e-01
+1.9607363e+01 -1.0604390e-01
+1.9617790e+01 -2.1218209e-02
+1.9628216e+01 -9.3244280e-02
+1.9638643e+01 2.1493030e-02
+1.9649070e+01 6.6786686e-01
+1.9659496e+01 1.3716006e+00
+1.9669923e+01 1.5509395e+00
+1.9680350e+01 1.5044906e+00
+1.9690776e+01 1.0288018e+00
+1.9701203e+01 9.5952950e-01
+1.9711630e+01 1.4772894e+00
+1.9722056e+01 3.0124267e+00
+1.9732483e+01 5.6080846e+00
+1.9742910e+01 8.0354564e+00
+1.9753336e+01 1.0127652e+01
+1.9763763e+01 1.1683970e+01
+1.9774190e+01 1.2297447e+01
+1.9784617e+01 1.4368777e+01
+1.9795043e+01 1.6801695e+01
+1.9805470e+01 1.9631920e+01
+1.9815897e+01 2.3058272e+01
+1.9826323e+01 2.5567046e+01
+1.9836750e+01 2.7724526e+01
+1.9847177e+01 2.9963561e+01
+1.9857603e+01 3.3136858e+01
+1.9868030e+01 3.7558913e+01
+1.9878457e+01 4.2898447e+01
+1.9888883e+01 4.8388921e+01
+1.9899310e+01 5.4241884e+01
+1.9909737e+01 6.0284371e+01
+1.9920163e+01 6.6550125e+01
+1.9930590e+01 7.1940894e+01
+1.9941017e+01 7.4059652e+01
+1.9951443e+01 7.3205861e+01
+1.9961870e+01 6.9564595e+01
+1.9972297e+01 6.4262000e+01
+1.9982723e+01 5.8350880e+01
+1.9993150e+01 5.3273966e+01
+2.0003577e+01 4.7611298e+01
+2.0014003e+01 4.3162550e+01
+2.0024430e+01 3.7832533e+01
+2.0034857e+01 3.3988104e+01
+2.0045283e+01 2.9001329e+01
+2.0055710e+01 2.6017225e+01
+2.0066137e+01 2.2516989e+01
+2.0076563e+01 2.0462303e+01
+2.0086990e+01 1.8371412e+01
+2.0097417e+01 1.7632180e+01
+2.0107843e+01 1.6142130e+01
+2.0118270e+01 1.4598566e+01
+2.0128697e+01 1.3336747e+01
+2.0139123e+01 1.2145971e+01
+2.0149550e+01 1.1646631e+01
+2.0159977e+01 1.1385922e+01
+2.0170404e+01 1.1311753e+01
+2.0180830e+01 1.1235573e+01
+2.0191257e+01 1.1026936e+01
+2.0201684e+01 1.1595946e+01
+2.0212110e+01 1.2631215e+01
+2.0222537e+01 1.4989173e+01
+2.0232964e+01 1.7544473e+01
+2.0243390e+01 2.0434378e+01
+2.0253817e+01 2.3522173e+01
+2.0264244e+01 2.9334860e+01
+2.0274670e+01 3.6370065e+01
+2.0285097e+01 4.2449235e+01
+2.0295524e+01 4.6489755e+01
+2.0305950e+01 4.7453555e+01
+2.0316377e+01 4.6358291e+01
+2.0326804e+01 4.1967499e+01
+2.0337230e+01 3.6869703e+01
+2.0347657e+01 3.1583350e+01
+2.0358084e+01 2.8461650e+01
+2.0368510e+01 2.6213959e+01
+2.0378937e+01 2.4776256e+01
+2.0389364e+01 2.3363800e+01
+2.0399790e+01 2.3561182e+01
+2.0410217e+01 2.2770815e+01
+2.0420644e+01 2.2381660e+01
+2.0431070e+01 2.1353816e+01
+2.0441497e+01 2.0962215e+01
+2.0451924e+01 1.8863052e+01
+2.0462350e+01 1.7021298e+01
+2.0472777e+01 1.4300480e+01
+2.0483204e+01 1.1980160e+01
+2.0493630e+01 9.9764488e+00
+2.0504057e+01 8.8603580e+00
+2.0514484e+01 7.7590627e+00
+2.0524910e+01 6.0475072e+00
+2.0535337e+01 3.0460038e+00
+2.0545764e+01 2.3422657e-01
+2.0556191e+01 -2.2515161e+00
+2.0566617e+01 -4.6329363e+00
+2.0577044e+01 -7.0708216e+00
+2.0587471e+01 -9.7023603e+00
+2.0597897e+01 -1.2255363e+01
+2.0608324e+01 -1.4206731e+01
+2.0618751e+01 -1.6311204e+01
+2.0629177e+01 -1.9100534e+01
+2.0639604e+01 -2.1512505e+01
+2.0650031e+01 -2.4218497e+01
+2.0660457e+01 -2.6831925e+01
+2.0670884e+01 -3.0168565e+01
+2.0681311e+01 -3.3170186e+01
+2.0691737e+01 -3.6222519e+01
+2.0702164e+01 -3.9091963e+01
+2.0712591e+01 -4.1391431e+01
+2.0723017e+01 -4.2581335e+01
+2.0733444e+01 -4.4301295e+01
+2.0743871e+01 -4.3774602e+01
+2.0754297e+01 -4.1965177e+01
+2.0764724e+01 -3.6322181e+01
+2.0775151e+01 -2.1569757e+01
+2.0785577e+01 9.7194187e+00
+2.0796004e+01 3.8424450e+01
+2.0806431e+01 6.2996785e+01
+2.0816857e+01 8.7550068e+01
+2.0827284e+01 9.8341161e+01
+2.0837711e+01 1.0059801e+02
+2.0848137e+01 9.7735742e+01
+2.0858564e+01 8.2354612e+01
+2.0868991e+01 4.5724099e+01
+2.0879417e+01 -7.7705000e+00
+2.0889844e+01 -3.2926166e+01
+2.0900271e+01 -4.4224678e+01
+2.0910697e+01 -4.9297263e+01
+2.0921124e+01 -4.9229584e+01
+2.0931551e+01 -4.5855308e+01
+2.0941977e+01 -3.8546212e+01
+2.0952404e+01 -2.8269395e+01
+2.0962831e+01 -1.5293716e+01
+2.0973258e+01 -3.6183134e-01
+2.0983684e+01 1.6504422e+01
+2.0994111e+01 3.7386831e+01
diff --git a/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.int.cake.npy b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.int.cake.npy
new file mode 100644
index 0000000..78ac32e
Binary files /dev/null and b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.int.cake.npy differ
diff --git a/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.tth.cake.npy b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.tth.cake.npy
new file mode 100644
index 0000000..8ac46df
Binary files /dev/null and b/jnb-tools/data/hStv/temporary_pkpo/hSiO2_404_009.tth.cake.npy differ
diff --git a/jnb-tools/local_modules/fancy_plots.py b/jnb-tools/local_modules/fancy_plots.py
new file mode 100644
index 0000000..2138d80
--- /dev/null
+++ b/jnb-tools/local_modules/fancy_plots.py
@@ -0,0 +1,188 @@
+import numpy as np
+from xrd_unitconv import *
+
+def plot_diffcake(ax_cake, model, xrange=[5,20], yrange=None,
+ no_yticks=True, dsp_ticks=False,
+ no_xlabel=False, dsp_step = 0.2):
+ """
+ ax_pattern = axis of diffraction pattern
+ model = PeakPo model
+
+ """
+ wavelength = model.base_ptn.wavelength
+ ax_cake.set_ylabel('Azimuthal angle (degrees)')
+
+ if no_yticks:
+ ax_cake.set_yticks([])
+
+ intensity_cake = model.__dict__['diff_img'].__dict__['intensity_cake']
+ tth_cake = model.__dict__['diff_img'].__dict__['tth_cake']
+ chi_cake = model.__dict__['diff_img'].__dict__['chi_cake']
+
+ """
+ if dsp_ticks and (xrange is not None):
+ xrange[0] = dsp2tth(xrange[0], wavelength)
+ xrange[1] = dsp2tth(xrange[1], wavelength)
+ """
+
+ if xrange is None:
+ xrange = [tth_cake.min(), tth_cake.max()]
+ if yrange is None:
+ yrange = [intensity_cake.min(), intensity_cake.max()]
+ #x = np.ma.masked_where( (tth_cake <= xrange[0]) | (tth_cake >= xrange[1]), tth_cake )
+ #y = np.ma.masked_where( (tth_cake <= xrange[0]) | (tth_cake >= xrange[1]), intensity_cake )
+ x = tth_cake
+ y = intensity_cake
+ ax_cake.set_xlim(xrange)
+ #ax_cake.set_ylim(yrange)
+ ax_cake.imshow(intensity_cake, origin="lower",
+ extent=[tth_cake.min(), tth_cake.max(), chi_cake.min(), chi_cake.max()],
+ aspect="auto", cmap="gray_r", clim=(1.e2, 7.e3))
+
+ #if xrange is not None:
+ # ax_pattern.set_xlim(x.min(),x.max())
+ x_roi = np.ma.masked_outside(x, xrange[0], xrange[1]).compressed()
+ print(xrange)
+
+ if dsp_ticks:
+ ticks = np.arange( np.floor( (tth2dsp(x_roi, wavelength)*10.).max())/10.,
+ np.ceil( (tth2dsp(x_roi, wavelength)*10.).min())/10.,-dsp_step)
+ if ticks.size <= 20.:
+ ticks_in_tth = dsp2tth(ticks, wavelength)
+ ax_cake.set_xticks(ticks_in_tth)
+ ax_cake.set_xticklabels(np.around(ticks, decimals=2))
+ if not no_xlabel:
+ ax_cake.set_xlabel('d-spacing ($\mathdefault{\AA}$)')
+ else:
+ if not no_xlabel:
+ ax_cake.set_xlabel('Two Theta (degrees)')
+
+def plot_diffpattern(ax_pattern, model, xrange=None, yrange=None, bgsub=True,
+ no_yticks=True, dsp_ticks=False, dsp_step = 0.2,
+ no_xlabel=False):
+ """
+ ax_pattern = axis of diffraction pattern
+ model = PeakPo model
+ xrange = always in two theta unit even for dsp_ticks=True
+ """
+ wavelength = model.base_ptn.wavelength
+ ax_pattern.set_ylabel('Intensity (arbitrary unit)')
+
+ if no_yticks:
+ ax_pattern.set_yticks([])
+ if bgsub:
+ x_data, y_data = model.base_ptn.get_bgsub()
+ else:
+ x_data, y_data = model.base_ptn.get_raw()
+ """
+ if dsp_ticks and (xrange is not None):
+ xrange[0] = dsp2tth(xrange[0], wavelength)
+ xrange[1] = dsp2tth(xrange[1], wavelength)
+ """
+ if xrange is None:
+ xrange = [x_data.min(), x_data.max()]
+ if yrange is None:
+ yrange = [y_data.min(), y_data.max()]
+ x = np.ma.masked_where( (x_data <= xrange[0]) | (x_data >= xrange[1]), x_data )
+ y = np.ma.masked_where( (x_data <= xrange[0]) | (x_data >= xrange[1]), y_data )
+ ax_pattern.set_xlim(xrange)
+ ax_pattern.set_ylim(yrange)
+ ax_pattern.plot(x, y, c='k', lw=1.0)
+
+ #if xrange is not None:
+ # ax_pattern.set_xlim(x.min(),x.max())
+
+ if dsp_ticks:
+ ticks = np.arange( np.floor( (tth2dsp(x, wavelength)*10.).max())/10.,
+ np.ceil( (tth2dsp(x, wavelength)*10.).min())/10.,-dsp_step)
+ ticks_in_tth = dsp2tth(ticks, wavelength)
+ ax_pattern.set_xticks(ticks_in_tth)
+ ax_pattern.set_xticklabels(np.around(ticks, decimals=2))
+ if not no_xlabel:
+ ax_pattern.set_xlabel('d-spacing ($\mathdefault{\AA}$)')
+ else:
+ if not no_xlabel:
+ ax_pattern.set_xlabel('Two Theta (degrees)')
+
+def plot_jcpds(ax_pattern, model,
+ in_cake=False,
+ show_index=False, show_legend=False,
+ bar_height=1., bar_position=0., bar_vsep=0.,
+ phase_names=None, bar_alpha=1.0, bar_thick=1.):
+ """
+ bar position: position of the bar base in fraction. negative number will shift
+ bars further down
+ """
+ selected_phases = []
+ for phase in model.jcpds_lst:
+ if phase.display:
+ selected_phases.append(phase)
+ if phase_names is not None:
+ if len(phase_names) != len(selected_phases):
+ return
+ else:
+ phase_names = []
+ for phase in selected_phases:
+ phase_names.append(phase.name)
+
+ n_displayed_jcpds = len(selected_phases)
+ axisrange = ax_pattern.axis()
+ #bar_scale = 1. / 100. * axisrange[3] * bar_factor / 100.
+ pressure = model.get_saved_pressure()
+ temperature = model.get_saved_temperature()
+ wavelength = model.base_ptn.wavelength
+ for i, phase in enumerate(selected_phases):
+ phase.cal_dsp(pressure, temperature)
+ tth, inten = phase.get_tthVSint(wavelength)
+ intensity = inten * phase.twk_int
+ starting_intensity = np.ones_like(tth) * axisrange[2] - \
+ bar_position * (axisrange[3] - axisrange[2])
+ if in_cake:
+ bar_max = axisrange[3] * np.ones_like(tth)
+ bar_min = axisrange[2] * np.ones_like(tth)
+ else:
+ bar_max = starting_intensity - \
+ (i*bar_vsep) * 100. * (bar_height) / n_displayed_jcpds
+ bar_min = starting_intensity - \
+ (i*bar_vsep+1) * 100. * (bar_height) / n_displayed_jcpds
+ if pressure == 0.:
+ volume = phase.v
+ else:
+ volume = phase.v.item()
+ ax_pattern.vlines(
+ tth, bar_min, bar_max, colors=phase.color,
+ label=phase_names[i],
+ lw=bar_thick,
+ alpha=bar_alpha)
+ # hkl
+ if show_index:
+ hkl_list = phase.get_hkl_in_text()
+ for j, hkl in enumerate(hkl_list):
+ if tth[j] >= axisrange[0] and tth[j] <= axisrange[1]:
+ ax_pattern.text(
+ tth[j], bar_max[j], hkl.replace(" ", ""), color=phase.color,
+ rotation=90, verticalalignment='bottom',
+ horizontalalignment='center',
+ fontsize=8.,
+ alpha=1.0)
+ if in_cake:
+ pass
+ else:
+ ax_pattern.text(
+ axisrange[0] + (axisrange[1] - axisrange[0])*0.01,
+ (bar_max[0] + bar_min[0])/2., phase_names[i],
+ color=phase.color,
+ verticalalignment='center',
+ horizontalalignment='left',
+ fontsize=8.,
+ alpha=1.0)
+ ymin = axisrange[2] - bar_position * (axisrange[3] - axisrange[2]) - \
+ ( (n_displayed_jcpds-1) * bar_vsep + 1) * 100. * bar_height / n_displayed_jcpds
+ if not in_cake:
+ ax_pattern.set_ylim((ymin, axisrange[3]))
+
+ if show_legend:
+ leg_jcpds = ax_pattern.legend(
+ loc=0, prop={'size': 10}, framealpha=0., handlelength=1)
+ for line, txt in zip(leg_jcpds.get_lines(), leg_jcpds.get_texts()):
+ txt.set_color(line.get_color())
\ No newline at end of file
diff --git a/jnb-tools/local_modules/quick_plots.py b/jnb-tools/local_modules/quick_plots.py
new file mode 100644
index 0000000..c89f7e0
--- /dev/null
+++ b/jnb-tools/local_modules/quick_plots.py
@@ -0,0 +1,44 @@
+import matplotlib.pyplot as plt
+import numpy as np
+
+def plot_diffpattern(ax_pattern, model):
+ """
+ ax_pattern = axis of diffraction pattern
+ model = PeakPo model
+ """
+ wavelength = model.base_ptn.wavelength
+ ax_pattern.set_ylabel('Intensity (arbitrary unit)')
+
+ ax_pattern.set_yticks([])
+ x_data, y_data = model.base_ptn.get_bgsub()
+ xrange = [x_data.min(), x_data.max()]
+ yrange = [y_data.min(), y_data.max()]
+ ax_pattern.set_xlim(xrange)
+ ax_pattern.set_ylim(yrange)
+ ax_pattern.plot(x_data, y_data, c='k', lw=1.0)
+ ax_pattern.set_xlabel('Two Theta (degrees)')
+
+def plot_jcpds(ax_pattern, model):
+ selected_phases = []
+ for phase in model.jcpds_lst:
+ if phase.display:
+ selected_phases.append(phase)
+ n_displayed_jcpds = len(selected_phases)
+ axisrange = ax_pattern.axis()
+ pressure = model.get_saved_pressure()
+ temperature = model.get_saved_temperature()
+ wavelength = model.base_ptn.wavelength
+ bar_min = 0.
+ bar_scale = 1. / 100. * axisrange[3]
+ for i, phase in enumerate(selected_phases):
+ phase.cal_dsp(pressure, temperature)
+ tth, inten = phase.get_tthVSint(wavelength)
+ intensity = inten * phase.twk_int
+ if pressure == 0.:
+ volume = phase.v
+ else:
+ volume = phase.v.item()
+ ax_pattern.vlines(
+ tth, bar_min, intensity*bar_scale, colors=phase.color,
+ label=phase.name, lw=1.0, alpha=1.0)
+ ax_pattern.legend()
\ No newline at end of file
diff --git a/jnb-tools/local_modules/xrd_io.py b/jnb-tools/local_modules/xrd_io.py
new file mode 100644
index 0000000..4ae5255
--- /dev/null
+++ b/jnb-tools/local_modules/xrd_io.py
@@ -0,0 +1,27 @@
+import numpy as np
+
+def write_chi(filen, x, y, preheader = None):
+ """
+ write a chi file
+
+ :filen = string, filename and path
+ :x = two theta array
+ :y = intensity array
+ :preheader = header. Each component of a list represents a line of header.
+ Only first three will be used
+ """
+ if preheader is None:
+ preheader = "\n\n\n"
+ header = str(x.__len__())
+ np.savetxt(filen, np.asarray([x,y]).T, \
+ fmt='%1.7e', header = header, comments = preheader)
+
+def read_chi(fname):
+ """
+ read a chi file and return two arrays: twotheta and intensity
+
+ :fname = string, filename and path
+ """
+ data = np.loadtxt(fname, skiprows = 4)
+ twotheta, intensity = data.T
+ return twotheta, intensity
\ No newline at end of file
diff --git a/jnb-tools/local_modules/xrd_pkfit.py b/jnb-tools/local_modules/xrd_pkfit.py
new file mode 100644
index 0000000..02a00bf
--- /dev/null
+++ b/jnb-tools/local_modules/xrd_pkfit.py
@@ -0,0 +1,44 @@
+from lmfit.models import PseudoVoigtModel, LinearModel
+from lmfit import Parameters
+
+def make_model(peak_positions, fwhm=0.05, max_fwhm=0.5, pos_range=0.5, amplitude=1000.):
+ n_peaks = len(peak_positions)
+ pars = Parameters()
+
+ bg = LinearModel(prefix='bg_')
+ pars.update(bg.make_params(slope=0, intercept=0))
+
+ mod = bg
+ #pars['bg_intercept'].set(vary=True)
+ #pars['bg_slope'].set(vary=True)
+
+ for i in range(n_peaks):
+ prefix = 'pk{}_'.format(i)
+ peak = PseudoVoigtModel(prefix= prefix)
+ # Set this zero
+ pars.update( peak.make_params())
+ pars[prefix+'center'].set(peak_positions[i], min=peak_positions[i]-pos_range,
+ max=peak_positions[i]+pos_range, vary=True)
+ pars[prefix+'sigma'].set(fwhm, min=0., max=max_fwhm, vary=True)
+ pars[prefix+'amplitude'].set(amplitude, min=0., vary=True)
+ pars[prefix+'fraction'].set(0.0, min=0., max=1., vary=True)
+ mod += peak
+ return mod, pars
+
+def plot_fitresult(ax, x, y, out, n_peaks):
+ #plt.title(data_filename)
+ comps = out.eval_components(x=x)
+ ax.plot(x, y, 'k.', label='data')
+ #plt.plot(spr_x, init, 'k--')
+ ax.plot(x, out.best_fit, 'b-', label='total fit')
+ #plt.plot(x, comps['pk_water_'], 'b-', label='indiv. peak')
+ #plt.plot(x, comps['pk1_']+comps['pk2_']+comps['pk3_']+comps['pk4_'], 'g-', label='No H2O')
+ #plt.plot(spr_x_fit, comps['bg_'], 'b-', label='background')
+ ax.plot(x, y - out.best_fit - y.max()*0.2, 'g-', label='fit residue')
+
+ for i in range(n_peaks):
+ prefix = 'pk{}_'.format(i)
+ ax.axvline(out.params[prefix+'center'])
+ ax.plot(x, comps[prefix] - y.max()*0.1, 'r-', label='indiv. peak')
+
+ ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
\ No newline at end of file
diff --git a/jnb-tools/local_modules/xrd_unitconv.py b/jnb-tools/local_modules/xrd_unitconv.py
new file mode 100644
index 0000000..fdacc5e
--- /dev/null
+++ b/jnb-tools/local_modules/xrd_unitconv.py
@@ -0,0 +1,7 @@
+import numpy as np
+
+def dsp2tth(dsp, wavelength):
+ return np.rad2deg( np.arcsin( wavelength / (2. * dsp) ) ) * 2.
+
+def tth2dsp(tth, wavelength):
+ return 0.5 * wavelength / np.sin( np.deg2rad(tth/2.) )
\ No newline at end of file
diff --git a/peakpo.bat b/peakpo.bat
deleted file mode 100755
index d397602..0000000
--- a/peakpo.bat
+++ /dev/null
@@ -1,3 +0,0 @@
-activate py36pkpo
-cd C:\Users\Shim\peakpo-v7\peakpo
-python -m peakpo
diff --git a/peakpo.command b/peakpo.command
deleted file mode 100755
index 631f239..0000000
--- a/peakpo.command
+++ /dev/null
@@ -1,3 +0,0 @@
-conda activate py36pkpo
-cd ~/python/peakpo-v7/peakpo
-python -m peakpo
diff --git a/peakpo/peakpo.py b/peakpo/peakpo.py
index d8b83e8..c780c53 100644
--- a/peakpo/peakpo.py
+++ b/peakpo/peakpo.py
@@ -1,12 +1,15 @@
+import os
import sys
import time
import numpy
import traceback
from io import StringIO
from PyQt5 import QtWidgets
-import qdarkstyle
+from PyQt5 import QtCore
+from PyQt5.QtCore import Qt
from control import MainController
from utils import ErrorMessageBox
+import qdarkstyle
def excepthook(exc_type, exc_value, traceback_obj):
@@ -42,7 +45,11 @@ def excepthook(exc_type, exc_value, traceback_obj):
errorbox.exec_()
+#app = QtWidgets.QApplication(sys.argv)
+QtCore.QCoreApplication.setAttribute(Qt.AA_EnableHighDpiScaling, True)
+os.environ["QT_AUTO_SCREEN_SCALE_FACTOR"] = "1"
app = QtWidgets.QApplication(sys.argv)
+# app.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)
sys.excepthook = excepthook
app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5())
# app.setStyleSheet('fusion')
diff --git a/peakpo/view/qtd.py b/peakpo/view/qtd.py
index 9515b38..b44e458 100644
--- a/peakpo/view/qtd.py
+++ b/peakpo/view/qtd.py
@@ -2,7 +2,7 @@
# Form implementation generated from reading ui file '../ui/peakpo.ui'
#
-# Created by: PyQt5 UI code generator 5.6
+# Created by: PyQt5 UI code generator 5.9.2
#
# WARNING! All changes made in this file will be lost!
@@ -14,7 +14,7 @@ class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(931, 750)
- MainWindow.setMinimumSize(QtCore.QSize(0, 750))
+ MainWindow.setMinimumSize(QtCore.QSize(931, 750))
MainWindow.setMaximumSize(QtCore.QSize(16777215, 16777215))
font = QtGui.QFont()
font.setFamily("Helvetica")
@@ -983,7 +983,7 @@ def setupUi(self, MainWindow):
self.tab_Cake1 = QtWidgets.QWidget()
self.tab_Cake1.setObjectName("tab_Cake1")
self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.tab_Cake1)
- self.verticalLayout_3.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_3.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_3.setObjectName("verticalLayout_3")
self.pushButton_ApplyCakeView = QtWidgets.QPushButton(self.tab_Cake1)
sizePolicy = QtWidgets.QSizePolicy(
@@ -1144,7 +1144,7 @@ def setupUi(self, MainWindow):
self.tab_Cake2 = QtWidgets.QWidget()
self.tab_Cake2.setObjectName("tab_Cake2")
self.verticalLayout_19 = QtWidgets.QVBoxLayout(self.tab_Cake2)
- self.verticalLayout_19.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_19.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_19.setObjectName("verticalLayout_19")
self.groupBox_29 = QtWidgets.QGroupBox(self.tab_Cake2)
sizePolicy = QtWidgets.QSizePolicy(
@@ -1334,7 +1334,7 @@ def setupUi(self, MainWindow):
self.tab_JCPDSList1 = QtWidgets.QWidget()
self.tab_JCPDSList1.setObjectName("tab_JCPDSList1")
self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.tab_JCPDSList1)
- self.verticalLayout_4.setContentsMargins(12, 0, 12, 12)
+ self.verticalLayout_4.setContentsMargins(12, -1, 12, 12)
self.verticalLayout_4.setObjectName("verticalLayout_4")
self.pushButton_ForceUpdatePlot = QtWidgets.QPushButton(self.tab_JCPDSList1)
self.pushButton_ForceUpdatePlot.setObjectName("pushButton_ForceUpdatePlot")
@@ -1551,7 +1551,7 @@ def setupUi(self, MainWindow):
self.tab_JCPDSList2 = QtWidgets.QWidget()
self.tab_JCPDSList2.setObjectName("tab_JCPDSList2")
self.verticalLayout_23 = QtWidgets.QVBoxLayout(self.tab_JCPDSList2)
- self.verticalLayout_23.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_23.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_23.setObjectName("verticalLayout_23")
self.groupBox_9 = QtWidgets.QGroupBox(self.tab_JCPDSList2)
sizePolicy = QtWidgets.QSizePolicy(
@@ -1881,7 +1881,7 @@ def setupUi(self, MainWindow):
self.tab_UnitCellFit = QtWidgets.QWidget()
self.tab_UnitCellFit.setObjectName("tab_UnitCellFit")
self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.tab_UnitCellFit)
- self.verticalLayout_5.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_5.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_5.setObjectName("verticalLayout_5")
self.groupBox_15 = QtWidgets.QGroupBox(self.tab_UnitCellFit)
sizePolicy = QtWidgets.QSizePolicy(
@@ -2013,7 +2013,7 @@ def setupUi(self, MainWindow):
self.tab_Output = QtWidgets.QWidget()
self.tab_Output.setObjectName("tab_Output")
self.verticalLayout_9 = QtWidgets.QVBoxLayout(self.tab_Output)
- self.verticalLayout_9.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_9.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_9.setObjectName("verticalLayout_9")
self.groupBox_17 = QtWidgets.QGroupBox(self.tab_Output)
self.groupBox_17.setFlat(True)
@@ -2046,14 +2046,13 @@ def setupUi(self, MainWindow):
self.tab_PkFt = QtWidgets.QWidget()
self.tab_PkFt.setObjectName("tab_PkFt")
self.verticalLayout_14 = QtWidgets.QVBoxLayout(self.tab_PkFt)
- self.verticalLayout_14.setContentsMargins(3, 3, 3, 0)
+ self.verticalLayout_14.setContentsMargins(3, 3, 3, -1)
self.verticalLayout_14.setObjectName("verticalLayout_14")
self.tabWidget_PeakFit = QtWidgets.QTabWidget(self.tab_PkFt)
self.tabWidget_PeakFit.setObjectName("tabWidget_PeakFit")
self.tab_PeakFitSection = QtWidgets.QWidget()
self.tab_PeakFitSection.setObjectName("tab_PeakFitSection")
self.verticalLayout_15 = QtWidgets.QVBoxLayout(self.tab_PeakFitSection)
- self.verticalLayout_15.setContentsMargins(0, 0, 0, 0)
self.verticalLayout_15.setObjectName("verticalLayout_15")
self.frame_28 = QtWidgets.QFrame(self.tab_PeakFitSection)
sizePolicy = QtWidgets.QSizePolicy(
@@ -2099,7 +2098,6 @@ def setupUi(self, MainWindow):
self.tab_PeakFitPeaks = QtWidgets.QWidget()
self.tab_PeakFitPeaks.setObjectName("tab_PeakFitPeaks")
self.verticalLayout_16 = QtWidgets.QVBoxLayout(self.tab_PeakFitPeaks)
- self.verticalLayout_16.setContentsMargins(0, 0, 0, 0)
self.verticalLayout_16.setObjectName("verticalLayout_16")
self.groupBox_35 = QtWidgets.QGroupBox(self.tab_PeakFitPeaks)
sizePolicy = QtWidgets.QSizePolicy(
@@ -2189,7 +2187,6 @@ def setupUi(self, MainWindow):
self.tab_PeakFitConfig = QtWidgets.QWidget()
self.tab_PeakFitConfig.setObjectName("tab_PeakFitConfig")
self.verticalLayout_13 = QtWidgets.QVBoxLayout(self.tab_PeakFitConfig)
- self.verticalLayout_13.setContentsMargins(0, 0, 0, 0)
self.verticalLayout_13.setObjectName("verticalLayout_13")
self.groupBox_25 = QtWidgets.QGroupBox(self.tab_PeakFitConfig)
self.groupBox_25.setFlat(True)
@@ -2250,7 +2247,7 @@ def setupUi(self, MainWindow):
self.tab_Bkgn = QtWidgets.QWidget()
self.tab_Bkgn.setObjectName("tab_Bkgn")
self.verticalLayout_10 = QtWidgets.QVBoxLayout(self.tab_Bkgn)
- self.verticalLayout_10.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_10.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_10.setObjectName("verticalLayout_10")
self.groupBox_7 = QtWidgets.QGroupBox(self.tab_Bkgn)
sizePolicy = QtWidgets.QSizePolicy(
@@ -2452,7 +2449,7 @@ def setupUi(self, MainWindow):
self.tab_Process = QtWidgets.QWidget()
self.tab_Process.setObjectName("tab_Process")
self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.tab_Process)
- self.verticalLayout_7.setContentsMargins(3, 0, 3, 12)
+ self.verticalLayout_7.setContentsMargins(3, -1, 3, 12)
self.verticalLayout_7.setObjectName("verticalLayout_7")
self.groupBox_10 = QtWidgets.QGroupBox(self.tab_Process)
sizePolicy = QtWidgets.QSizePolicy(
diff --git a/shortcuts/peakpo.bat b/shortcuts/peakpo.bat
new file mode 100755
index 0000000..48326b9
--- /dev/null
+++ b/shortcuts/peakpo.bat
@@ -0,0 +1,6 @@
+REM In the line below replace py36pkpo with your conda environment for peakpo
+conda activate py36pkpo
+REM In the line below replace the path with your path to peakpo
+cd C:\Users\Shim\peakpo-v7\peakpo
+REM Do not change the line below
+python -m peakpo
diff --git a/shortcuts/peakpo.command b/shortcuts/peakpo.command
new file mode 100755
index 0000000..4418c5d
--- /dev/null
+++ b/shortcuts/peakpo.command
@@ -0,0 +1,4 @@
+eval "$(conda shell.bash hook)"
+conda activate peakpo2018
+cd ~/Dropbox\ \(ASU\)/python/PeakPo-V7/peakpo
+python -m peakpo