-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
152 lines (128 loc) · 5.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import yaml
import time
import torch
import argparse
import importlib
import torch.distributed
from torch.backends import cudnn
from tensorboardX import SummaryWriter
from shutil import copy2
def get_args():
# command line args
parser = argparse.ArgumentParser(
description='Flow-based Point Cloud Generation Experiment')
parser.add_argument('config', type=str,
help='The configuration file.')
# distributed training
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed nodes.')
parser.add_argument('--dist_url', default='tcp://127.0.0.1:9991', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--distributed', action='store_true',
help='Use multi-processing distributed training to '
'launch N processes per node, which has N GPUs. '
'This is the fastest way to use PyTorch for '
'either single node or multi node data parallel '
'training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. None means using all '
'available GPUs.')
# Resume:
parser.add_argument('--resume', default=False, action='store_true')
parser.add_argument('--pretrained', default=None, type=str,
help="Pretrained cehckpoint")
# Test run:
parser.add_argument('--test_run', default=False, action='store_true')
args = parser.parse_args()
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
# parse config file
with open(args.config, 'r') as f:
config = yaml.load(f)
config = dict2namespace(config)
# Create log_name
cfg_file_name = os.path.splitext(os.path.basename(args.config))[0]
run_time = time.strftime('%Y-%b-%d-%H-%M-%S')
# Currently save dir and log_dir are the same
config.log_name = "logs/%s_%s" % (cfg_file_name, run_time)
config.save_dir = "logs/%s_%s" % (cfg_file_name, run_time)
config.log_dir = "logs/%s_%s" % (cfg_file_name, run_time)
os.makedirs(config.log_dir+'/config')
copy2(args.config, config.log_dir+'/config')
return args, config
def main_worker(gpu, ngpus_per_node, cfg, args):
# basic setup
cudnn.benchmark = True
writer = SummaryWriter(logdir=cfg.log_name)
data_lib = importlib.import_module(cfg.data.type)
loaders = data_lib.get_data_loaders(cfg.data)
train_loader = loaders['train_loader']
test_loader = loaders['test_loader']
trainer_lib = importlib.import_module(cfg.trainer.type)
trainer = trainer_lib.Trainer(cfg, args)
start_epoch = 0
start_time = time.time()
if args.resume:
if args.pretrained is not None:
start_epoch = trainer.resume(args.pretrained) + 1
else:
start_epoch = trainer.resume(cfg.resume.dir) + 1
# If test run, go through the validation loop first
if args.test_run:
trainer.save(epoch=-1, step=-1)
val_info = trainer.validate(test_loader, epoch=-1)
trainer.log_val(val_info, writer=writer, epoch=-1)
# main training loop
print("Start epoch: %d End epoch: %d" % (start_epoch, cfg.trainer.epochs))
step = 0
for epoch in range(start_epoch, cfg.trainer.epochs):
# train for one epoch
for bidx, data in enumerate(train_loader):
step = bidx + len(train_loader) * epoch + 1
logs_info = trainer.update(data)
if step % int(cfg.viz.log_freq) == 0:
duration = time.time() - start_time
start_time = time.time()
print("Epoch %d Batch [%2d/%2d] Time [%3.2fs] Loss %2.5f"
% (epoch, bidx, len(train_loader), duration,
logs_info['loss']))
visualize = step % int(cfg.viz.viz_freq) == 0
trainer.log_train(
logs_info, data,
writer=writer, epoch=epoch, step=step, visualize=visualize)
# Save first so that even if the visualization bugged,
# we still have something
#if (step + 1) % int(cfg.viz.save_freq) == 0:
# trainer.save(epoch=epoch, step=step)
if (step + 1) % int(cfg.viz.val_freq) == 0:
val_info = trainer.validate(test_loader, epoch=epoch)
trainer.log_val(val_info, writer=writer, epoch=epoch, step=step)
trainer.save(epoch=epoch, step=step)
val_info = trainer.validate(test_loader, epoch=epoch)
trainer.log_val(val_info, writer=writer, epoch=epoch, step=step)
# Signal the trainer to cleanup now that an epoch has ended
trainer.epoch_end(epoch, writer=writer)
writer.close()
def main():
# command line args
args, cfg = get_args()
print("Arguments:")
print(args)
print("Configuration:")
print(cfg)
ngpus_per_node = torch.cuda.device_count()
main_worker(args.gpu, ngpus_per_node, cfg, args)
if __name__ == '__main__':
main()