-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.py
executable file
·159 lines (150 loc) · 5.87 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# define constants
import sys
import datetime
import os
import argparse
def dir_path(string):
if os.path.isdir(string):
return string
else:
raise NotADirectoryError(string)
args = sys.argv[1:]
parser = argparse.ArgumentParser(prog='PROG', usage='%(prog)s [options]')
if args and args[0].startswith("-TP"):
# PROG: TRAIN AND PREDICT
parser = argparse.ArgumentParser(prog='TP', usage='%(prog)s [options]')
parser.add_argument("-TP", "--train-and-predict",
help="choose train and predict program",
action="store_true",
default=False
)
parser.add_argument("-P", "--only-predict",
help="choose only predict program",
action="store_true",
default=False
)
parser.add_argument("-v", "--version",
action='version',
version='%(prog)s 1.0'
)
parser.add_argument("-e", "--epochs",
required=False,
help="number of epochs to train a model",
type=int,
default=3,
)
parser.add_argument("-pat", "--patience",
required=False,
help="number of patience for earlystopping callback during fit",
type=int,
default=50,
)
parser.add_argument("-mon", "--monitor",
required=False,
help="Metric to monitor for earlystopping and modelcheckpoint callbacks during fit",
default='val_loss',
)
parser.add_argument("-c", "--comment",
nargs='?',
required=False,
help="general comment printed to log file",
default="no comment",
)
parser.add_argument("-d", "--dir-dataset",
required=True,
help="absolute directory path where dataset is stored",
)
parser.add_argument("-m", "--model-name",
required=True,
choices=['UNET', 'TRANSFER_LEARNING_VGG16',
'TRANSFER_LEARNING_VGG19'],
help="name of the model to train",
)
parser.add_argument("-s", "--save-path",
required=False,
default=parser.parse_args(args=args).dir_dataset,
help="absolute directory path where store results",
)
elif args and args[0].startswith("-P"):
# PROG: ONLY PREDICT
parser = argparse.ArgumentParser(prog='P', usage='%(prog)s [options]')
parser.add_argument("-TP", "--train-and-predict",
help="choose train and predict program",
action="store_true",
default=False
)
parser.add_argument("-P", "--only-predict",
help="choose only predict program",
action="store_true",
default=False
)
parser.add_argument("-v", "--version",
action='version',
version='%(prog)s 1.0'
)
parser.add_argument("-mw", "--model-weights",
required=True,
type=argparse.FileType('r'),
help="absolute file path where weights of a model are saved",
)
parser.add_argument("-c", "--comment",
nargs='?',
required=False,
help="general comment printed to log file",
default="test raw",
)
parser.add_argument("-m", "--model-name",
required=True,
choices=['UNET', 'TRANSFER_LEARNING_VGG16',
'TRANSFER_LEARNING_VGG19'],
help="name of the model to load",
)
parser.add_argument("-d", "--dir-dataset",
required=True,
type=dir_path,
help="absolute directory path where dataset is stored",
)
parser.add_argument("-s", "--save-path",
required=False,
type=dir_path,
default=parser.parse_args(args=args).dir_dataset,
help="absolute directory path where store results",
)
args = parser.parse_args(args=args)
#parameters initialization
description = ''
base_dir = ''
weights_path = ''
MODEL_NAME = ''
SIZE_X = 224
SIZE_Y = 224
IMAGE_SIZE = (SIZE_X, SIZE_Y)
NUM_CLASSES = 3
BATCH_SIZE = 8
EPOCHS = 0
patience = 50
monitor= 'val_loss'
pred_dir = args.save_path+"/predictions" + \
datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
if args.only_predict:
save_path, file_name=os.path.split(os.path.abspath(args.model_weights.name))
print(save_path)
program = 'ONLY_PREDICT'
description = args.comment
base_dir = args.dir_dataset
weights_path = args.model_weights.name
MODEL_NAME = args.model_name
pred_dir = save_path+"/predictions" + \
datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
print(pred_dir)
if args.train_and_predict:
program = 'TRAIN_AND_PREDICT'
description = args.comment
base_dir = args.dir_dataset
MODEL_NAME = args.model_name
EPOCHS = args.epochs
patience = args.patience
monitor=args.monitor
model_dir = base_dir+"model"
train_dir = base_dir+"train"
test_dir = base_dir+"test"