-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnlabelled_training_using_barlow_function.py
348 lines (292 loc) · 11.8 KB
/
Unlabelled_training_using_barlow_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
class Generator(nn.Module):
def __init__(self, input_dim=100, output_dim=1, img_size=28):
super(Generator, self).__init__()
self.img_size = img_size
self.model = nn.Sequential(
nn.Linear(input_dim, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Linear(1024, img_size * img_size * output_dim),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), 1, self.img_size, self.img_size)
return img
class Discriminator(nn.Module):
def __init__(self, img_size=28, output_dim=1):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(img_size * img_size, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(256, output_dim),
nn.Sigmoid()
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
def gradient_penalty(discriminator, real_imgs, fake_imgs, device='cpu'):
alpha = torch.rand(real_imgs.size(0), 1, 1, 1).to(device)
interpolates = (alpha * real_imgs + (1 - alpha) * fake_imgs).requires_grad_(True)
d_interpolates = discriminator(interpolates)
gradients = torch.autograd.grad(outputs=d_interpolates, inputs=interpolates,
grad_outputs=torch.ones(d_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
class SyntheticDataset(Dataset):
def __init__(self, num_samples=10000, img_size=28, labeled=True):
self.num_samples = num_samples
self.img_size = img_size
self.labeled = labeled
self.data = np.random.rand(num_samples, img_size, img_size).astype(np.float32)
if labeled:
self.labels = np.random.randint(0, 2, num_samples) # Binary labels
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(10),
transforms.Normalize((0.5,), (0.5,))
])
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
img = self.data[idx]
img = self.transform(img)
if self.labeled:
label = self.labels[idx]
return img, torch.tensor(label, dtype=torch.float)
else:
return img
num_samples = 10000
synthetic_labeled_data = SyntheticDataset(num_samples=num_samples, labeled=True)
synthetic_unlabeled_data = SyntheticDataset(num_samples=num_samples, labeled=False)
labeled_data_loader = DataLoader(synthetic_labeled_data, batch_size=64, shuffle=True)
unlabeled_data_loader = DataLoader(synthetic_unlabeled_data, batch_size=64, shuffle=True)
adversarial_loss = nn.BCELoss()
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, weight_decay=1e-5)
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, weight_decay=1e-5)
scheduler_G = optim.lr_scheduler.StepLR(optimizer_G, step_size=10, gamma=0.5)
scheduler_D = optim.lr_scheduler.StepLR(optimizer_D, step_size=10, gamma=0.5)
l1_lambda = 1e-5
gp_lambda = 10
num_epochs = 10
g_losses = []
d_losses = []
def add_noise(z, noise_strength=0.1):
noise = torch.randn_like(z) * noise_strength
return z + noise
def add_noise_to_images(images, noise_strength=0.1):
noise = torch.randn_like(images) * noise_strength
return images + noise
for epoch in range(num_epochs):
for i, (imgs, _) in enumerate(labeled_data_loader):
valid = torch.ones(imgs.size(0), 1, requires_grad=False) * 0.9 # Label smoothing for real labels
fake = torch.zeros(imgs.size(0), 1, requires_grad=False) + 0.1 # Label smoothing for fake labels
real_imgs = imgs.to(next(discriminator.parameters()).device)
optimizer_G.zero_grad()
z = torch.randn(imgs.size(0), 100).to(next(generator.parameters()).device)
noisy_z = add_noise(z) # Inject noise into generator input
gen_imgs = generator(noisy_z)
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
l1_regularization = sum(param.abs().sum() for param in generator.parameters())
g_loss += l1_lambda * l1_regularization
g_loss.backward()
optimizer_G.step()
optimizer_D.zero_grad()
noisy_real_imgs = add_noise_to_images(real_imgs) # Inject noise into real images
real_loss = adversarial_loss(discriminator(noisy_real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
fake_imgs = generator(noisy_z)
gp = gradient_penalty(discriminator, real_imgs, fake_imgs)
d_loss += gp_lambda * gp
d_loss.backward()
optimizer_D.step()
scheduler_G.step()
scheduler_D.step()
g_losses.append(g_loss.item())
d_losses.append(d_loss.item())
print(f"Epoch {epoch+1}/{num_epochs}, Generator Loss: {g_loss.item()}, Discriminator Loss: {d_loss.item()}")
num_classes = 4
num_generate_samples = 1000
z_labeled = torch.randn(num_generate_samples, 100)
gen_imgs_labeled = generator(z_labeled)
gen_imgs_labeled = gen_imgs_labeled.detach().numpy()
labels_labeled = np.random.randint(0, num_classes, size=(num_generate_samples,)).astype(np.int64)
z_unlabeled = torch.randn(num_generate_samples, 100)
gen_imgs_unlabeled = generator(z_unlabeled)
gen_imgs_unlabeled = gen_imgs_unlabeled.detach().numpy()
labeled_data = {'images': gen_imgs_labeled, 'labels': labels_labeled}
unlabeled_data = {'images': gen_imgs_unlabeled}
plt.figure(figsize=(10, 5))
plt.plot(g_losses, label="Generator Loss")
plt.plot(d_losses, label="Discriminator Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()
print(labeled_data)
print(unlabeled_data)
print("End")
unlabeled_images_tensor = torch.tensor(unlabeled_data['images'], dtype=torch.float32)
labeled_images_tensor = torch.tensor(labeled_data['images'], dtype=torch.float32)
labeled_labels_tensor = torch.tensor(labeled_data['labels'].squeeze(), dtype=torch.long)
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# Define the ResNet15 model
class ResNet15(nn.Module):
def __init__(self):
super(ResNet15, self).__init__()
self.resnet = models.resnet18(pretrained=False) # Use ResNet-18 as base model
self.resnet.fc = nn.Identity() # Remove the final fully connected layer
def forward(self, x):
return self.resnet(x)
# Define the Barlow Twins model
class BarlowTwins(nn.Module):
def __init__(self, base_encoder, projection_dim):
super(BarlowTwins, self).__init__()
self.encoder = base_encoder
self.projection_head = nn.Sequential(
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, projection_dim)
)
def forward(self, x1, x2):
h1 = self.encoder(x1)
h2 = self.encoder(x2)
z1 = self.projection_head(h1)
z2 = self.projection_head(h2)
return z1, z2
def loss(self, z1, z2):
z1 = F.normalize(z1, dim=-1)
z2 = F.normalize(z2, dim=-1)
c = torch.matmul(z1.T, z2) / z1.size(0)
on_diag = torch.diagonal(c).add_(-1).pow(2).sum()
off_diag = (c**2).sum() - torch.diagonal(c).pow(2).sum()
return on_diag + off_diag
# Define the Custom Dataset with Data Augmentation
class CustomAugmentedDataset(Dataset):
def __init__(self, images, transform=None, augmentations=None):
self.images = images
self.transform = transform
self.augmentations = augmentations
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx].numpy() # Convert tensor to numpy array
image = image.transpose(1, 2, 0) # Change from (C, H, W) to (H, W, C)
# Ensure the array is of type uint8
image = (image * 255).astype(np.uint8)
# Handle single channel images by converting them to 3 channels
if image.shape[2] == 1:
image = np.concatenate([image] * 3, axis=2)
image = Image.fromarray(image) # Convert to PIL image
# Apply augmentations
aug1, aug2 = self.augmentations
image_1 = aug1(image)
image_2 = aug2(image)
if self.transform:
image_1 = self.transform(image_1)
image_2 = self.transform(image_2)
return image_1, image_2
# Define data augmentations
def get_augmentations():
return [
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2)
]),
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(30),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3)
])
]
def create_dataloader(images_tensor, batch_size=64):
augmentations = get_augmentations()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
dataset = CustomAugmentedDataset(images=images_tensor, transform=transform, augmentations=augmentations)
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
unlabeled_loader = create_dataloader(unlabeled_images_tensor)
labeled_loader = create_dataloader(labeled_images_tensor)
base_encoder = ResNet15()
model = BarlowTwins(base_encoder, projection_dim=128)
criterion = nn.MSELoss() # Barlow Twins loss function
optimizer = optim.Adam(model.parameters(), lr=1e-3)
num_epochs = 10
g_losses = []
d_losses = []
def nums() :
for epoch in range(num_epochs):
model.train()
total_loss = 0.0
for images_1, images_2 in unlabeled_loader:
z1, z2 = model(images_1, images_2)
loss = model.loss(z1, z2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(unlabeled_loader)
g_losses.append(avg_loss)
print(f"Epoch {epoch+1}, Loss: {avg_loss}")
plt.figure(figsize=(10, 5))
plt.plot(g_losses, label="Generator Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()
nums()
print("end")