-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFine_Tuned_GAN_model.py
184 lines (153 loc) · 6.58 KB
/
Fine_Tuned_GAN_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Generator(nn.Module):
def __init__(self, input_dim=100, output_dim=1, img_size=28):
super(Generator, self).__init__()
self.img_size = img_size
self.model = nn.Sequential(
nn.Linear(input_dim, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Linear(1024, img_size * img_size * output_dim),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), 1, self.img_size, self.img_size)
return img
class Discriminator(nn.Module):
def __init__(self, img_size=28, output_dim=1):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(img_size * img_size, 512),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Dropout(0.3),
nn.Linear(256, output_dim),
nn.Sigmoid()
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
def gradient_penalty(discriminator, real_imgs, fake_imgs, device='cpu'):
alpha = torch.rand(real_imgs.size(0), 1, 1, 1).to(device)
interpolates = (alpha * real_imgs + (1 - alpha) * fake_imgs).requires_grad_(True)
d_interpolates = discriminator(interpolates)
gradients = torch.autograd.grad(outputs=d_interpolates, inputs=interpolates,
grad_outputs=torch.ones(d_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
class SyntheticDataset(Dataset):
def __init__(self, num_samples=10000, img_size=28, labeled=True):
self.num_samples = num_samples
self.img_size = img_size
self.labeled = labeled
self.data = np.random.rand(num_samples, img_size, img_size).astype(np.float32)
if labeled:
self.labels = np.random.randint(0, 2, num_samples) # Binary labels
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(10),
transforms.Normalize((0.5,), (0.5,))
])
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
img = self.data[idx]
img = self.transform(img)
if self.labeled:
label = self.labels[idx]
return img, torch.tensor(label, dtype=torch.float)
else:
return img
num_samples = 10000
synthetic_labeled_data = SyntheticDataset(num_samples=num_samples, labeled=True)
synthetic_unlabeled_data = SyntheticDataset(num_samples=num_samples, labeled=False)
labeled_data_loader = DataLoader(synthetic_labeled_data, batch_size=64, shuffle=True)
unlabeled_data_loader = DataLoader(synthetic_unlabeled_data, batch_size=64, shuffle=True)
adversarial_loss = nn.BCELoss()
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, weight_decay=1e-5)
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, weight_decay=1e-5)
scheduler_G = optim.lr_scheduler.StepLR(optimizer_G, step_size=10, gamma=0.5)
scheduler_D = optim.lr_scheduler.StepLR(optimizer_D, step_size=10, gamma=0.5)
l1_lambda = 1e-5
gp_lambda = 10
num_epochs = 10
g_losses = []
d_losses = []
def add_noise(z, noise_strength=0.1):
noise = torch.randn_like(z) * noise_strength
return z + noise
def add_noise_to_images(images, noise_strength=0.1):
noise = torch.randn_like(images) * noise_strength
return images + noise
for epoch in range(num_epochs):
for i, (imgs, _) in enumerate(labeled_data_loader):
valid = torch.ones(imgs.size(0), 1, requires_grad=False) * 0.9 # Label smoothing for real labels
fake = torch.zeros(imgs.size(0), 1, requires_grad=False) + 0.1 # Label smoothing for fake labels
real_imgs = imgs.to(next(discriminator.parameters()).device)
optimizer_G.zero_grad()
z = torch.randn(imgs.size(0), 100).to(next(generator.parameters()).device)
noisy_z = add_noise(z) # Inject noise into generator input
gen_imgs = generator(noisy_z)
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
l1_regularization = sum(param.abs().sum() for param in generator.parameters())
g_loss += l1_lambda * l1_regularization
g_loss.backward()
optimizer_G.step()
optimizer_D.zero_grad()
noisy_real_imgs = add_noise_to_images(real_imgs) # Inject noise into real images
real_loss = adversarial_loss(discriminator(noisy_real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
fake_imgs = generator(noisy_z)
gp = gradient_penalty(discriminator, real_imgs, fake_imgs)
d_loss += gp_lambda * gp
d_loss.backward()
optimizer_D.step()
scheduler_G.step()
scheduler_D.step()
g_losses.append(g_loss.item())
d_losses.append(d_loss.item())
print(f"Epoch {epoch+1}/{num_epochs}, Generator Loss: {g_loss.item()}, Discriminator Loss: {d_loss.item()}")
num_generate_samples = 1000
z_labeled = torch.randn(num_generate_samples, 100)
gen_imgs_labeled = generator(z_labeled)
gen_imgs_labeled = gen_imgs_labeled.detach().numpy()
# Create corresponding labels for the generated labeled data
labels_labeled = np.ones((num_generate_samples, 1))
# Generate 1,000 unlabeled samples
z_unlabeled = torch.randn(num_generate_samples, 100)
gen_imgs_unlabeled = generator(z_unlabeled)
gen_imgs_unlabeled = gen_imgs_unlabeled.detach().numpy()
labeled_data = {'images': gen_imgs_labeled, 'labels': labels_labeled}
unlabeled_data = {'images': gen_imgs_unlabeled}