-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
61 lines (52 loc) · 2.25 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import os
import pathlib
import albumentations as A
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from albumentations.pytorch.transforms import ToTensorV2
from tqdm import tqdm
from TransInvNet.model.model import TransInvNet, CONFIGS
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--img_size', type=int,
default=352, help='training dataset size')
parser.add_argument('--weight_path', type=str,
default='outputs/exp05240731/train/TransInvNet-best.pth', help='path to the trained weight')
parser.add_argument('--test_path', type=str,
default='datasets/polyp-dataset/TestDataset/Kvasir', help='path to test dataset')
parser.add_argument('--output_path', type=str,
default='outputs/exp05240731/inference', help='path to output path')
parser.add_argument('--threshold', type=int,
default=0.5, help='sigmoid threshold')
opt = parser.parse_args()
cfg = CONFIGS['ViT-B_16']
model = TransInvNet(cfg, opt.img_size, vis=True).cuda()
model.load_state_dict(torch.load(opt.weight_path))
model.eval()
test_images_path = [i for i in (pathlib.Path(opt.test_path) / 'images').iterdir()]
trans = A.Compose([
A.Normalize(mean=[0.497, 0.302, 0.216],
std=[0.320, 0.217, 0.173]),
ToTensorV2(),
])
os.makedirs(opt.output_path, exist_ok=True)
with torch.no_grad():
tbar = tqdm(test_images_path, desc='\r', )
for img in tbar:
file_name = img.name
im = Image.open(img).convert('RGB')
w, h = im.size
im = im.resize((opt.img_size, opt.img_size))
img = np.array(im)
img = trans(image=img)['image'][None]
img = img.cuda()
pred = model(img)
pred = F.interpolate(pred, size=(h, w), mode='bilinear', align_corners=True)
result = pred.sigmoid().cpu().numpy().squeeze()
result[result >= 0.5] = 1
result[result < 0.5] = 0
pred_im = Image.fromarray(np.uint8(result * 255), 'L')
pred_im.save(pathlib.Path(opt.output_path) / file_name)