-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_main.py
231 lines (188 loc) · 8.66 KB
/
lstm_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import numpy as np
import shutil
import time
from scipy.spatial.transform import Rotation as R
from sklearn import preprocessing
from matplotlib import pyplot as plt
import warnings
import cv2
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
from lstm_model import LSTM,Conv1d,Linear
from lstm_dataloader import ProjSet
from lstm_utils import Evaluator
from tensorboardX import SummaryWriter
from focal_loss import FocalLoss,MSELoss
from context_network import ContextNet
from squeeze_seg import SqueezeSeg
from tqdm import tqdm
warnings.filterwarnings("ignore")
# torch.set_num_threads(1)
def calculate_weights_batch(sample,num_classes):
z = np.zeros((num_classes,))
y = sample.cpu().numpy()
mask = (y >= 0) & (y < num_classes)
labels = y[mask].astype(np.uint8)
count_l = np.bincount(labels, minlength=num_classes)
z += count_l
total_frequency = np.sum(z)
class_weights = []
for frequency in z:
class_weight = 1 / (np.log(1.02 + (frequency / total_frequency)))
class_weights.append(class_weight)
ret = np.array(class_weights)
return ret
def run_epoch(model,optim,dataloader,evaluator,writer,epoch,mode,is_cuda=False):
accum_loss = 0.0
batch_count = 0
len_dataset = len(dataloader)
evaluator.reset()
if mode == "train":
model.train()
else:
model.eval()
for sample in tqdm(dataloader):
points, labels = sample['inp'], sample['labels']
class_weights = calculate_weights_batch(labels, num_classes=2)
class_weights = torch.from_numpy(class_weights).float()
points = points.permute(0, 3, 1, 2)
geometric_mask = points[:,4,:,:].cpu().numpy().squeeze()
if is_cuda:
points, labels = points.cuda(), labels.cuda()
class_weights = class_weights.cuda()
# Focal loss
loss_function = FocalLoss(gamma=0, alpha=class_weights)
if mode == "train":
optim.zero_grad()
pred = model.forward(points)
loss = loss_function.forward(pred,labels)
loss.backward()
optim.step()
else:
with torch.no_grad():
pred = model.forward(points)
loss = loss_function.forward(pred,labels)
pred_label = torch.argmax(pred, dim=1).detach().cpu().numpy()
evaluator.add_batch(pred_label,labels.cpu().numpy(),geometric_mask)
accum_loss += loss.item()
batch_count += 1
writer.add_scalar('{}/Loss/iter'.format(mode), loss.item(), epoch * len_dataset + batch_count)
recall,iou,inp_recall,pred_inp_recall,inp_iou = evaluator.get_metrics(class_num=1)
# Metric for recall of geometric contexts
writer.add_scalar('{}/Loss/epoch'.format(mode), accum_loss / batch_count, epoch)
writer.add_scalar('{}/Precision'.format(mode),iou, epoch)
writer.add_scalar('{}/Net Recall'.format(mode),recall,epoch)
writer.add_scalar('{}/Input Contexts Recall'.format(mode), inp_recall, epoch)
writer.add_scalar('{}/Input Contexts Precision'.format(mode), inp_iou, epoch)
writer.add_scalar('{}/Pred Contexts Recall'.format(mode), pred_inp_recall, epoch)
print("Mode : {},Epoch : {}".format(mode,epoch))
print("Recall: {}, Precision : {}, Inp Precision :{}".format(recall,iou,inp_iou))
print("Input Recall: {}, Pred and Input Recall : {}".format(inp_recall,pred_inp_recall))
return recall,[]
def visualise_pred(model,dataset):
model.eval()
for sample in dataset:
image, points, points_label = sample['image'],sample['inp'],sample['labels']
seq_len, proj_points = sample['ring_lengths'],sample['proj_points']
# points = points.unsqueeze(0)
# points = points.permute(0, 3, 1, 2)
# with torch.no_grad():
# pred = model.forward(points)
# pred = np.argmax(pred.cpu().numpy(),axis=1).squeeze()
# geometric_mask = points[:, 4, :, :].cpu().numpy().squeeze()
# context_mask = geometric_mask == 1
# pred = (pred & context_mask).astype(int)
# print(np.unique(pred_out))
image = image.cpu().numpy()
image = cv2.cvtColor(image,cv2.COLOR_RGB2BGR)
proj_points = proj_points.cpu().numpy()
seq_len = seq_len.cpu().numpy()
points = points.numpy()
points_label = points_label.numpy()
# points_label[points_label == -100] = 0
points_label = 255*points_label.astype(np.uint8)
points_label = points_label[::-1,:]
depth = points[::-1,:,3]
depth = (depth-np.min(depth))/(np.max(depth)-np.min(depth))
depth = 255*depth.astype(np.uint8)
cv2.imshow("range",depth)
# print(np.unique(points_label))
# plt.imshow(points_label,cmap='gray')
# plt.show()
# for i in range(points.shape[2]):
# len = int(seq_len[i])
# projection_pts = proj_points[i,:len]
# pred = points[i,:,4]
# pred_out = pred[i]
# for j in range(projection_pts.shape[0]):
# x_0, y_0 = int(projection_pts[j, 1]), int(projection_pts[j, 0])
# if pred[i,y_0] == 1:
# pt_color = (0,0,255)
# else:
# pt_color = (0,255,0)
#
# cv2.circle(image,(y_0,x_0),2,pt_color,thickness=1)
cv2.imshow("feed",image)
if cv2.waitKey(10) == ord('q'):
print('Quitting....')
break
cv2.waitKey(0)
if __name__ == '__main__':
visualise_mode = True
exp_num = "exp_6"
num_epochs = 20
save_interval = 1
# model = ContextNet(inp_size=5,out_size=2)
model = SqueezeSeg()
if not visualise_mode:
batch_size = 4
train_dataset = ProjSet("/media/ash/OS/IIIT_Labels/train/", class_num=2, split="train")
val_dataset = ProjSet("/media/ash/OS/IIIT_Labels/val/", class_num=2, split="val")
# use_gpu = not visualise_mode
use_gpu = True
print("Using GPU: {}".format(use_gpu))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
if use_gpu:
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# poly_decay = lambda epoch: pow((1-epoch/num_epochs),0.9)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=poly_decay)
log_dir = "../context_network_logs/logs/"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
writer = SummaryWriter(os.path.join(log_dir,exp_num))
writer.add_text(text_string=str(list(model.children())), tag='model_info')
evaluator = Evaluator(num_classes=2)
# checkpoint = torch.load('/scratch/ash/road_prior/checkpoints/exp_4/best_model.pth.tar')
# model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
best_recall = 0.0
for i in range(0, num_epochs):
start = time.time()
_, __ = run_epoch(model, optimizer, train_loader, evaluator, writer, epoch=i, mode="train", is_cuda=use_gpu)
# print("Epoch took:", time.time() - start)
# scheduler.step(epoch=i)
if i % save_interval == 0:
recall, confusion_mat = run_epoch(model, optimizer, val_loader, evaluator, writer, epoch=i, mode="val",is_cuda=use_gpu)
# writer.add_text("confusion matrix on val set", str(list(confusion_mat)), global_step=i)
# print("Saving checkpoint for Epoch:{}".format(i))
checkpoint = {'epoch': i,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
dir_path = os.path.join('../context_network_logs/checkpoints',exp_num)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
file_path = os.path.join(dir_path, 'checkpoint_{}.pth.tar'.format(i))
torch.save(checkpoint, file_path)
if recall > best_recall:
shutil.copyfile(file_path, os.path.join(dir_path, 'best_model.pth.tar'))
best_recall = recall
else:
test_dataset = ProjSet("/media/ash/OS/IIIT_Labels/val/", class_num=2, split="test")
# test_loader = DataLoader(test_dataset,batch_size=4,shuffle=False,num_workers=4)
# checkpoint = torch.load('../context_network_logs/checkpoints/checkpoint_12.pth.tar', map_location='cpu')
# model.load_state_dict(checkpoint['state_dict'])
visualise_pred(model,test_dataset)