-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontext_network.py
101 lines (81 loc) · 2.96 KB
/
context_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
from torch import nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(
self,
in_channels=1,
n_classes=2,
depth=5,
wf=6,
padding=False,
batch_norm=False,
up_mode='upconv',
dropout = 0
):
super(UNet, self).__init__()
assert up_mode in ('upconv', 'upsample')
self.padding = padding
self.depth = depth
prev_channels = in_channels
self.down_path = nn.ModuleList()
for i in range(depth):
self.down_path.append(
Conv(prev_channels, 2 ** (wf + i))
)
prev_channels = 2 ** (wf + i)
self.up_path = nn.ModuleList()
for i in reversed(range(depth - 1)):
self.up_path.append(
UNetUpBlock(prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm,dropout)
)
prev_channels = 2 ** (wf + i)
self.last = nn.Conv1d(prev_channels, n_classes, kernel_size=1)
def forward(self, x,*args):
blocks = []
for i, down in enumerate(self.down_path):
x = down(x)
if i != len(self.down_path) - 1:
blocks.append(x)
x = F.max_pool1d(x, 2)
for i, up in enumerate(self.up_path):
x = up(x, blocks[-i - 1])
return self.last(x)
class UNetUpBlock(nn.Module):
def __init__(self, in_size, out_size, up_mode, padding, batch_norm,dropout):
super(UNetUpBlock, self).__init__()
if up_mode == 'upconv':
self.up = nn.Sequential(
nn.ConvTranspose2d(in_size, out_size, kernel_size=(3,3),stride=2,padding=1,output_padding=1),
nn.LeakyReLU())
elif up_mode == 'upsample':
self.up = nn.Sequential(
nn.Upsample(mode='bilinear', scale_factor=2),
nn.Conv2d(in_size, out_size, kernel_size=1),
)
self.conv_block = nn.Sequential(nn.Conv1d(in_size,out_size,kernel_size=3,padding=1),
nn.LeakyReLU())
def forward(self, x, bridge):
up = self.up(x)
out = torch.cat((up,bridge),dim=1)
out = self.conv_block(out)
return out
class ContextNet(nn.Module):
def __init__(self,inp_size,out_size):
super(ContextNet, self).__init__()
self.conv_1 = nn.Conv2d(inp_size,64,kernel_size=(3,7),stride=1,padding=(1,3))
self.conv_2 = nn.Conv2d(64,32,kernel_size=(3,7),stride=1,padding=(1,3))
self.conv_3 = nn.Conv2d(32,out_size,kernel_size=(3,7),stride=1,padding=(1,3))
def forward(self, x):
x = F.leaky_relu(self.conv_1(x))
x = F.leaky_relu(self.conv_2(x))
x = self.conv_3(x)
return x
if __name__=="__main__":
import numpy as np
model = ContextNet(5,2)
inp = np.random.randn(16,5,7,1280)
inp = torch.from_numpy(inp).float()
out = model.forward(inp)
print(out.shape)
print(model)