Skip to content

ICLR'22 Spotlight Programmatic Reinforcement Learning without Oracles

License

Notifications You must be signed in to change notification settings

Roadsong/pi-PRL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Programmatic Reinforcement Learning without Oracles

Wenjie Qiu, He Zhu

Rutgers University

ICLR 2022 @ Spotlight

[OpenReview] [Project Homepage]

Installation

We tested our code on Ubuntu 18.04 LTS x86_64 platform. Please make sure to read below instructions before using requirements.txt.

  • Required Dependencies

    $ sudo apt install libopenmpi-dev libosmesa6-dev libgl1-mesa-glx libglfw3 libgl1-mesa-dev patchelf
    
  • Install MuJoCo

    Download zip:

    $ wget https://roboti.us/download/mujoco200_linux.zip
    

    Create mujoco directory on your home folder:

    $ mkdir ~/.mujoco
    

    Unzip and move:

    $ unzip ./mujoco200_linux.zip 
    $ mv ./mucjoco200_linux ~/.mujoco/
    
    $ cd ~/.mujoco 
    $ mv ./mujoco200_linux mujoco200
    

    Download the key:

    $ wget https://roboti.us/file/mjkey.txt
    

    Check if the MuJoCo library and key are ready:

    $ ls ~/.mujoco
    mjkey.txt mujoco200
    

    Export to library path:

    $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mujoco200/bin
    

    Upgrade pip (required):

    $ python3 -m pip --upgrade
    

    Notes: at this point, you may use requirements.txt to install the reamaining python packages.

    Install mujoco-py:

    $ pip3 install mujoco-py==2.0.2.13
    

    Now you should be able to import mujoco_py.

  • Install Python Packages

    Tested on Python 3.6.9 (default version on Ubuntu 18.04).

    Install python packages:

    $ pip3 install numpy torch matplotlib z3-solver pillow tqdm tabulate joblib gym pathos==0.2.8 mpi4py==3.1.1
    

Architecture Search for Programmatic Policies (π-PRL)

Solving Ant Cross Maze (0), Ant Random Goal (1), HalfCheetah Hurdle (2) and Pusher (3) environments

$ python3 pi_PRL.py -e [environment number, default=0] -s [random seed, default=123] -d [directory to save, default=data]

Programmatic High-level Planning (π-HPRL)

Solving Ant Maze (0), Ant Push (1) and Ant Fall (2) environments.

$ python3 pi_HPRL.py -e [environment number, default=0] -s [random seed, default=123] -d [directory to save, default=data]

References

About

ICLR'22 Spotlight Programmatic Reinforcement Learning without Oracles

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%