-
Notifications
You must be signed in to change notification settings - Fork 1
/
valid_in.m
102 lines (87 loc) · 4.01 KB
/
valid_in.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
%% Import data from text file.
% Script for importing data from the following text file:
%
% /home/mas/17/elesourb/gitrepo/Fake-news-detection/valid.tsv
%
% To extend the code to different selected data or a different text file,
% generate a function instead of a script.
% Auto-generated by MATLAB on 2018/04/12 10:29:01
%% Initialize variables.
filename = '/home/mas/17/elesourb/gitrepo/Fake-news-detection/valid.tsv';
delimiter = '\t';
%% Read columns of data as text:
% For more information, see the TEXTSCAN documentation.
formatSpec = '%q%q%q%q%q%q%q%q%q%q%q%q%q%q%[^\n\r]';
%% Open the text file.
fileID = fopen(filename,'r');
%% Read columns of data according to the format.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'TextType', 'string', 'ReturnOnError', false);
%% Close the text file.
fclose(fileID);
%% Convert the contents of columns containing numeric text to numbers.
% Replace non-numeric text with NaN.
raw = repmat({''},length(dataArray{1}),length(dataArray)-1);
for col=1:length(dataArray)-1
raw(1:length(dataArray{col}),col) = mat2cell(dataArray{col}, ones(length(dataArray{col}), 1));
end
numericData = NaN(size(dataArray{1},1),size(dataArray,2));
for col=[1,9,10,11,12,13]
% Converts text in the input cell array to numbers. Replaced non-numeric
% text with NaN.
rawData = dataArray{col};
for row=1:size(rawData, 1)
% Create a regular expression to detect and remove non-numeric prefixes and
% suffixes.
regexstr = '(?<prefix>.*?)(?<numbers>([-]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
try
result = regexp(rawData(row), regexstr, 'names');
numbers = result.numbers;
% Detected commas in non-thousand locations.
invalidThousandsSeparator = false;
if numbers.contains(',')
thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
if isempty(regexp(numbers, thousandsRegExp, 'once'))
numbers = NaN;
invalidThousandsSeparator = true;
end
end
% Convert numeric text to numbers.
if ~invalidThousandsSeparator
numbers = textscan(char(strrep(numbers, ',', '')), '%f');
numericData(row, col) = numbers{1};
raw{row, col} = numbers{1};
end
catch
raw{row, col} = rawData{row};
end
end
end
%% Split data into numeric and string columns.
rawNumericColumns = raw(:, [1,9,10,11,12,13]);
rawStringColumns = string(raw(:, [2,3,4,5,6,7,8,14]));
%% Make sure any text containing <undefined> is properly converted to an <undefined> categorical
for catIdx = [1,3,4,5,6,7,8]
idx = (rawStringColumns(:, catIdx) == "<undefined>");
rawStringColumns(idx, catIdx) = "";
end
%% Create output variable
valid = table;
valid.jsonID = cell2mat(rawNumericColumns(:, 1));
valid.label = categorical(rawStringColumns(:, 1));
valid.statement = rawStringColumns(:, 2);
valid.subject = categorical(rawStringColumns(:, 3));
valid.speaker = categorical(rawStringColumns(:, 4));
valid.jobtitle = categorical(rawStringColumns(:, 5));
valid.stateinfo = categorical(rawStringColumns(:, 6));
valid.party = categorical(rawStringColumns(:, 7));
valid.barely_true = cell2mat(rawNumericColumns(:, 2));
valid.false = cell2mat(rawNumericColumns(:, 3));
valid.half_true = cell2mat(rawNumericColumns(:, 4));
valid.mostly_true = cell2mat(rawNumericColumns(:, 5));
valid.pants_on_fire = cell2mat(rawNumericColumns(:, 6));
valid.context = categorical(rawStringColumns(:, 8));
%% Clear temporary variables
clearvars filename delimiter formatSpec fileID dataArray ans raw col numericData rawData row regexstr result numbers invalidThousandsSeparator thousandsRegExp rawNumericColumns rawStringColumns catIdx idx;