-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_model.py
219 lines (169 loc) · 8.76 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 28 22:55:25 2018
@author: Rishi
"""
'''
CNN Model
'''
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import sys
from tensorflow.contrib import learn
from text_cnn import TextCNN
import data_helpers as dh
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
#================================= Loading data ==============================#
print("Loading data...")
with open('test+train.tsv',encoding='utf8') as tsvfile:
train_test_data = pd.read_csv(tsvfile, delimiter='\t',header=None)
tsvfile.close()
with open('test.tsv',encoding='utf8') as tsvfile:
test_data=pd.read_csv(tsvfile, delimiter='\t', header=None)
tsvfile.close()
with open('train.tsv',encoding='utf8') as tsvfile:
train_data=pd.read_csv(tsvfile, delimiter='\t', header=None)
tsvfile.close()
test_text=test_data[2]
Y_test=test_data[1]
train_test_text=train_test_data[2]
Y_train_test=train_test_data[1]
train_text=train_data[2]
Y_train=train_data[1]
del test_data, train_test_data, train_data
#============================== Model Parameters =================================#
# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim",128, " Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS(sys.argv)
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
# Load data
print("Loading data...")
x_text, y = dh.load_data_and_labels(train_test_text,Y_train_test)
x_1, y_train = dh.load_data_and_labels(train_text,Y_train)
x_2, y_test = dh.load_data_and_labels(test_text,Y_test)
# Build vocabulary
print("building vocab...")
max_document_length = max([len(x.split(" ")) for x in x_text])
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
x = np.array(list(vocab_processor.fit_transform((x_text))))
x_train = np.array(list(vocab_processor.fit_transform((x_1))))
x_test = np.array(list(vocab_processor.fit_transform((x_2))))
g=tf.Graph()
with g.as_default():
sess=tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement= True))
with sess.as_default():
''' instantiate the class TextCNN '''
print("instantiating the class...")
cnn = TextCNN(
sequence_length=x_train.shape[1],
num_classes = y_train.shape[1],
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda)
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-4)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
print("keep track of grad and values....")
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
# Output directory for models and summaries
print("output directoru for models and summaries...")
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
print("summaries for loss and accuracy...")
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
# Train Summaries
print("train summaries...")
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Test summaries
print("test summaries...")
test_summary_op = tf.summary.merge([loss_summary, acc_summary])
test_summary_dir = os.path.join(out_dir, "summaries", "test")
test_summary_writer = tf.summary.FileWriter(test_summary_dir, sess.graph)
# Checkpointing
print("checkpointing...")
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
# Tensorflow assumes this directory already exists so we need to create it
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.all_variables())
# Write vocabulary
print("write vocab...")
vocab_processor.save(os.path.join(out_dir, "vocab"))
print("sess.run...")
sess.run(tf.initialize_all_variables())
print("train_step...")
def train_step(x_batch, y_batch):
# a single training step
feed_dict = {cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob }
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
print("test step...")
def test_step(x_batch, y_batch, writer=None):
feed_dict = {cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0}
step, summaries, loss, accuracy = sess.run([global_step, test_summary_op, cnn.loss, cnn.accuracy], feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
if writer:
writer.add_summary(summaries, step)
print("generate batches...")
# Generate batches
batches = dh.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...
for batch in batches:
print("inside loop...")
# print('batch',batch[1,1])
x_batch, y_batch = zip(*batch)
# print('x_batch, y_batch',x_batch, y_batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print("inside if1...")
print("\nEvaluation:")
test_step(x_test, y_test, writer=test_summary_writer)
print("")
if current_step % FLAGS.checkpoint_every == 0:
print("inside if2...")
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print("Saved model checkpoint to {}\n".format(path))