It consists of various links to help understand concepts, algorithms etc.
-
FormNet: Beyond Sequential Modeling for Form-Based Document Understanding https://ai.googleblog.com/2022/04/formnet-beyond-sequential-modeling-for.html
- paper link - https://arxiv.org/pdf/2203.08411.pdf
-
A Free And Powerful Labelling Tool Every Data Scientist Should Know https://towardsdatascience.com/a-free-and-powerful-labelling-tool-every-data-scientist-should-know-ce66473c7557
-
Microsoftโs releases an Extreme model Compression library. Itโs all-in-one. 32x reductions in size on BERT and GPT-3
- GitHub: https://lnkd.in/eA5c5WAx
- Papers:
-
Find statistical significance while dealing with proportions (2-sample binomial test):
- https://select-statistics.co.uk/calculators/sample-size-calculator-two-proportions/
Note that the above test is valid if the question you are asking have just two valid answers (e.g. yes or no)
- https://select-statistics.co.uk/calculators/sample-size-calculator-two-proportions/
-
All about NLP (Resources) https://github.com/ivan-bilan/The-NLP-Pandect
-
Pytorch : a curated list of tutorials, papers, projects, communities and more relating to PyTorch
-
Lightning โก fast forecasting with statistical and econometric models
-
Explainability for ๐ค Transformers models in 2 lines (For HF models)
- https://github.com/cdpierse/transformers-interpret
- 3 ways of explaining ๐ค(HF) models - https://www.linkedin.com/posts/rajistics_how-to-explain-predictions-from-transformer-activity-6965755799847530496-qPN9?utm_source=linkedin_share&utm_medium=ios_app
- ๐๐ ๐๐ฑ๐ฉ๐ฅ๐๐ข๐ง๐๐๐ข๐ฅ๐ข๐ญ๐ฒ ๐๐ญ๐๐ง๐๐จ๐ซ๐ ๐ฐ๐จ๐ซ๐ค๐ฌ๐ก๐จ๐ฉ - https://www.linkedin.com/posts/rami-krispin_machinelearning-ml-deeplearning-activity-7001184169494032384-k15M?utm_source=share&utm_medium=member_ios
- A guide for making black box model explainable - https://www.linkedin.com/posts/christoph-molnar_interpretable-machine-learning-activity-7021025855199961088-r_gs?utm_source=share&utm_medium=member_ios
- Explainable AI in Swiggy - https://www.linkedin.com/posts/soumyajyoti-banerjee-034aa153_we-hate-black-boxespart-i-activity-7045302991452520448-OkkG?utm_source=share&utm_medium=member_desktop
- Explainerdashboard is a Python library that helps make machine learning models more understandable - https://www.linkedin.com/posts/smritimishra_datascience-machinelearning-artificialintelligence-activity-7065680064155140096-Tz2s?utm_source=share&utm_medium=member_ios
-
Learn how to explain any black-box model to non-technical people with Bex T's post.
-
SHAP (SHapley Additive exPlanations)
-
LIME (Local Interpretable Model-agnostic Explanations)
-
A python library for producing fanciful test data
-
Awesome relation extraction : https://www.linkedin.com/posts/daniel-vila-suero-484b6b45_github-roomyleeawesome-relation-extraction-activity-6975030618577326080-FoET?utm_source=share&utm_medium=member_ios
-
Focal loss for imbalance data
-
BART PAPER explained
-
SetFit paper summary
- https://m.youtube.com/watch?v=6WBK7XSXJM8
- https://www.youtube.com/watch?v=8h27lV8v8BU (Efficient Few-Shot Learning with Sentence Transformers and different similar model comparison)
- SetFit few shot classification: https://www.philschmid.de/getting-started-setfit
- Compress models with knowledge distillation
https://www.linkedin.com/posts/huggingface_join-researchers-from-hugging-face-and-intel-activity-7005912068369301504-0IRp?utm_source=share&utm_medium=member_ios
-
Multi-headed attention
-
Transforms PDF, documents and images into enriched structured data
-
Model calibration
-
Python Fire is a library for automatically generating command line interfaces (CLIs) from absolutely any Python object
-
HF zero shot learning
-
Zero shot IBM
-
Timeseries forecasting library - sktime!
- https://www.linkedin.com/posts/dipanzan_data-machinelearning-datascience-activity-6978023559562485760-gmbr?utm_source=share&utm_medium=member_ios
- Holy Grail of forecasting in 30 lines of code - https://www.linkedin.com/posts/activity-7033912189333733376-J3PI?utm_source=share&utm_medium=member_ios
- tutorial for multi-variate forecasting - https://www.linkedin.com/posts/niels-rogge-a3b7a3127_multivariate-probabilistic-time-series-forecasting-activity-7041093807597056000-Yuj0?utm_source=share&utm_medium=member_ios
-
Timeseries approaches
-
Price elasticity model
- https://www.linkedin.com/posts/dat-tran-a1602320_building-and-integration-of-a-simple-ml-price-activity-6983665162738139136-MZEK?utm_source=share&utm_medium=member_ios
- https://medium.com/priceloop-tech-blog/building-and-integration-of-a-simple-ml-price-optimization-model-into-priceloop-nocode-3f6e444d6207
-
Data science datasets
- https://datasciencedojo.com/blog/datasets-data-science-skills/?utm_campaign=DSD%20blogs%202022&utm_content=223545408&utm_medium=social&utm_source=linkedin&hss_channel=lcp-3740012
- 5 datasets (and starter notebooks) for image classification - https://www.linkedin.com/posts/harpreetsahota204_deeplearning-computervision-activity-7033543031341400064-qyDI?utm_source=share&utm_medium=member_ios
-
ML writer โ๏ธ
-
GPT-3 armed with a Python interpreter
-
Document AI
- https://www.linkedin.com/posts/niels-rogge-a3b7a3127_ai-microsoft-artificialintelligence-activity-6986627777626054656-vEJ8?utm_source=share&utm_medium=member_ios
- LiLT a Language independent Layout Transformer, which can be used for multilingual document processing https://www.linkedin.com/feed/update/urn:li:activity:7000873972640686081?utm_source=share&utm_medium=member_ios
-
TabPFN, a new tabular data classification method (with current limitation of 1000 records)
-
Tabular Deep Learning model train 119x faster
-
An open-source, diagnostic tool for analyzing Deep Neural Networks (DNN), without needing access to training or even test data - https://www.linkedin.com/posts/prithivirajdamodaran_dont-blindly-reuse-pre-trained-models-from-activity-7082591506200457217-hxEm?utm_source=share&utm_medium=member_ios
-
Graph machine learning Airbnb
- https://www.linkedin.com/posts/juliawallin_graph-machine-learning-at-airbnb-activity-6986686098471071744-0k2x?utm_source=share&utm_medium=member_ios
- Link Predictions = Binary Classification of node pairs
https://www.linkedin.com/posts/philipp-brunenberg_link-predictions-with-neo4j-gds-explained-activity-6990309425802526720-I72R?utm_source=share&utm_medium=member_ios
-
Python Notebook with simple question answering with Knowledge Graph and Transformer.
-
Graphs lift Document classification from 59.1% โ 81% acc (code inside) - https://www.linkedin.com/posts/prithivirajdamodaran_llms-are-so-good-because-they-are-secretly-activity-7081497074080325634-Ozi_?utm_source=share&utm_medium=member_ios
-
A very interesting project from Meta Research - xFormers, a modular and field agnostic library to flexibly generate transformer architectures from interoperable and optimized building blocks
-
SPEED up Sentence Transformers upto 8x and save $ via VoltaML
-
Detecting data drift (How Amazon SageMaker can assist you in detecting data drift using a simple design?)
- https://www.linkedin.com/posts/smritimishra_technology-dataarchitecture-datascience-activity-6992127674655617024-UwaZ?utm_source=share&utm_medium=member_ios
- https://www.linkedin.com/posts/pranjalyadav_understanding-handling-data-drift-with-ugcPost-7001263463796813824-EbGR?utm_source=share&utm_medium=member_ios
-
Production model - drifts
- https://www.linkedin.com/feed/update/urn:li:activity:7028677829483491328?utm_source=share&utm_medium=member_ios
- ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐จ๐๐๐ฅ ๐๐ซ๐ข๐๐ญ ๐ข๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ? - https://www.linkedin.com/feed/update/urn:li:activity:7046468651683643392?utm_source=share&utm_medium=member_desktop
-
Logistic regression
-
Fraud detection using graph
-
Acceleration: Planet of SPARSITY, speed up AND save training/inference $
- https://www.linkedin.com/posts/prithivirajdamodaran_planet-of-sparsity-speed-up-and-save-training-activity-6993086747928592384-8ikS?utm_source=share&utm_medium=member_ios
- different techniques to speed up the inference: https://www.linkedin.com/posts/sebastianraschka_i-talked-about-different-techniques-to-speed-activity-6993192240953114624-loNs?utm_source=share&utm_medium=member_ios
-
MLOps resources
- https://www.linkedin.com/posts/damienbenveniste_machinelearning-mlops-datascience-activity-6993598745867157506-90qh?utm_source=share&utm_medium=member_ios
- MLOps engineers and full stack data scientists! - https://www.linkedin.com/posts/bechir-trabelsi-652a3914a_github-googlecloudplatformml[โฆ]165138919424-BwNK?utm_source=share&utm_medium=member_desktop
- Data engineering or MLOps - https://www.linkedin.com/posts/benjaminrogojan_are-you-trying-to-learn-about-data-engineering-activity-7065536405120159744-AlLj?utm_source=share&utm_medium=member_ios
- Complete Jenkins Course - https://www.linkedin.com/posts/ann-afamefuna_like-share-devop-activity-7064181148456747009-sFtx?utm_source=share&utm_medium=member_ios
- how to design, implement, and deploy an ML system using MLOps good practices - https://www.linkedin.com/feed/update/urn:li:activity:7059421414784720897?utm_source=share&utm_medium=member_ios
- Top 7 MLOps GitHub Repository - https://www.linkedin.com/posts/youssef-hosni-b2960b135_top-7-mlops-github-repository-mlops-zoomcamp-activity-7089559914351661056-7cVe?utm_source=share&utm_medium=member_ios
- MLOps 8 week course - https://www.linkedin.com/posts/deshwalmahesh_mlops-deployment-serving-activity-7091635477732061184-_tQL?utm_source=share&utm_medium=member_ios
- Seldon-core microservice: open source, cloud agnostic, handles scaling, quick to get started, helpful documentation and active community
-
Pre-training with quality data
-
Fine-tuning Transformers is UNSTABLE. Why and How to fix it?
-
Notebooks and colab alternatives
-
Image, text, and tabular classifications using Ludwig
-
Free access to machine learning books that give you practical knowledge
- https://www.linkedin.com/posts/ashishpatel2604_datascientists-machinelearning-artificialintelligence-activity-6999235602076299265--Um5?utm_source=share&utm_medium=member_ios
- ๐๐ต๐ฒ๐ฐ๐ธ ๐ข๐ป๐ฒ ๐ผ๐ณ ๐๐ต๐ฒ ๐๐ฒ๐๐ ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ผ๐ผ๐ธ๐! - https://www.linkedin.com/posts/giannis-tolios_datascience-python-machinelearning-activity-7060620878262280192-VKfq?utm_source=share&utm_medium=member_ios
- Best YouTube Channels for Learning Data Science for Free in 2023 - https://www.linkedin.com/posts/youssef-hosni-b2960b135_best-youtube-channels-for-learning-data-science-activity-7053654804144828416-JFAn?utm_source=share&utm_medium=member_ios
- https://www.linkedin.com/posts/rahul-bharambe-rsb-560982257_learning-science-programming-activity-7036886697313210368-CPSt?utm_source=share&utm_medium=member_ios
-
PivotTableJS Python
-
BERTopic to explore arxiv articles
-
Classification tool for modeling uplift - the incremental impact of a treatment
-
Transformers for forecasting
-
Why Graph Algorithms & Graph Neural Networks for RecSys
-
Bandit-approach for our recommender system
-
Hashing function in recommender system
-
Ranking problem RecSys
-
Real time search or recommender system design look like?
-
Finding similar users - Approximate Nearest Neighbor Search
-
Recommender Systems
- https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7055200272851103744-LM5p?utm_source=share&utm_medium=member_ios
- Recommender Systems ยท Evaluation ยท Metrics ยท and Loss - https://www.linkedin.com/posts/vinija_recommender-systems-evaluation-metrics-activity-7067002662285676544-aFON?utm_source=share&utm_medium=member_ios
- Representing Users and Items in Large Language Models based Recommender Systems - https://www.linkedin.com/posts/reachsumit_representing-users-and-items-in-large-language-activity-7076565350162583553-kCm6?utm_source=share&utm_medium=member_ios
-
TOP 5 Linear Regression Models
-
Math for Machine Learning and Data Science
-
Awesome Machine Learning cheatsheets from Stanford's CS 229
-
What is a Feature Store and why is it such an important element in ๐ ๐๐ข๐ฝ๐ ๐ฆ๐๐ฎ๐ฐ๐ธ?
-
Positional embedding
-
ManimML - python library to visualize the working of neural networks.
-
The v0.13 release of BERTopic! ๐
-
Top2Vec
-
Lasso & Ridge
-
5 FREE courses
-
List of resources (ML/DL)
-
Research studying the effect of pruning on the generalization performance
-
Let's build GPT from scratch
- https://www.linkedin.com/posts/sudalairajkumar_lets-build-gpt-from-scratch-in-code-spelled-activity-7021322858660335619-pFoX?utm_source=share&utm_medium=member_ios
- How to train ChatGPT - https://www.linkedin.com/feed/update/urn:li:activity:7024476262949625857?utm_source=share&utm_medium=member_ios
- Code Self attention from scratch - https://www.linkedin.com/posts/sebastianraschka_understanding-the-self-attention-mechanism-activity-7029471702736637952-q2nf?utm_source=share&utm_medium=member_ios
- Create your own chatbot using the OpenAI library - https://www.linkedin.com/feed/update/urn:li:activity:7034529832700899328?utm_source=share&utm_medium=member_ios
- An open source implementation for LLaMA based ChatGPT training process using RHLF - https://www.linkedin.com/posts/sudalairajkumar_llm-foundationalmodels-chatgpt-activity-7036576670476099584-LcVI?utm_source=share&utm_medium=member_ios
- :robot_face: Large Language Model (LLM) Primers | ChatGPT, Prompt Engineering, RLHF - https://www.linkedin.com/posts/amanc_artificialintelligence-machinelearning-ai-activity-7083312744220803072-yjFB?utm_source=share&utm_medium=member_ios
-
Why does Deep Learning fail on tabular data?
-
System design goldmine
-
[Python] 30 Libraries to Boost Your Data Science Productivity ๐
- https://www.linkedin.com/posts/avi-chawla_boost-your-data-science-productivity-activity-7020700472416026624-_PHM?utm_source=share&utm_medium=member_ios
- Python and its versatility (Please find the full list in the comments) - https://www.linkedin.com/posts/avi-chawla_i-reviewed-1000-python-libraries-and-discovered-activity-7026499417461469185-JhVs?utm_source=share&utm_medium=member_ios
- One of the Best Python Notes For Interview Preparation by University of Idaho - https://www.linkedin.com/posts/ashishpatel2604_python-notes-ugcPost-7027944399510605824-yZLF?utm_source=share&utm_medium=member_ios
Sourcery
, it's an automated refactoring tool that makes your code elegant, concise, and Pythonic in no time - https://www.linkedin.com/posts/avi-chawla_python-activity-7031942494841942016-yRu0?utm_source=share&utm_medium=member_ios- Top 25 pandas trickshttps : https://youtu.be/RlIiVeig3hc
- Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational - https://www.linkedin.com/posts/tunguz_datascience-artificialintelligence-generativeai-activity-7061317742380945408-GBih?utm_source=share&utm_medium=member_ios
- Python Code Optimization - https://www.kaggle.com/code/youssef19/python-code-optimization-for-data-scientists/notebook
- Jupyter notebook data frame - https://www.linkedin.com/posts/avi-chawla_pandas-datascience-activity-7070701001980223488-t62x?utm_source=share&utm_medium=member_ios
- leverage interactive controls using IPywidgets - https://www.linkedin.com/feed/update/urn:li:activity:7078795858707673088?utm_source=share&utm_medium=member_ios
- Drawdata is an open-source library that allows you to draw a 2D dataset in a notebook - https://www.linkedin.com/feed/update/urn:li:activity:7076993142960386049?utm_source=share&utm_medium=member_ios
- ๐ Top 7 GitHub repositories that will help you Master Python ๐ - https://www.linkedin.com/posts/ginacostag_data-python-artificialintelligence-activity-7037053521413689347-obRZ?utm_source=share&utm_medium=member_ios
-
Upskill yourself in 2023 with these high-quality FREE courses!
- https://www.linkedin.com/posts/stevenouri_artificialintelligence-deeplearning-datasci[โฆ]700518588416-KA2E?utm_source=share&utm_medium=member_desktop
- Top Free Courses of Large Language Models by World Biggest University - https://www.linkedin.com/posts/ashishpatel2604_largelanguagemodels-artificialintelligence-activity-7054669918599790592-rZ42?utm_source=share&utm_medium=member_ios
- Curated list of top-tier AI courses - https://www.linkedin.com/posts/sebastianraschka_ai-llm-deeplearning-activity-7066750909925511168-scw2?utm_source=share&utm_medium=member_ios
- Top 5 courses - https://www.linkedin.com/posts/rahulagwl_youtube-activity-7090533831664885760-wIY9?utm_source=share&utm_medium=member_ios
-
Microsoft recommender using transformer
-
Learn to DEPLOY your Machine Learning models!
-
Prompt Engineering
- ChatGPT Prompt Engineering for Developers Andrew NG - https://www.linkedin.com/posts/andrewyng_thrilled-to-announce-our-new-course-chatgpt-ugcPost-7057374304153333760-su5F?utm_source=share&utm_medium=member_ios
- https://www.linkedin.com/posts/sudalairajkumar_promptengineering-activity-7029420526498447360-rQ3q?utm_source=share&utm_medium=member_ios
- Overview - https://www.linkedin.com/posts/omarsar_machinelearning-deeplearning-ai-activity-7033122973544763392-D1dK?utm_source=share&utm_medium=member_ios
- Blind prompting =:woman_shrugging: Prompt engineering =๐ฉโ๐ฌ If you plan to use LLMs in production, this is a must-read:interrobang: :rocket: https://www.linkedin.com/posts/philipp-schmid-a6a2bb196_blind-prompting-prompt-engineering-activity-7055942829604270081-stj3?utm_source=share&utm_medium=member_ios
-
Promptify, a library that allows for the use of #LLMs to solve #NLP problems, including #NamedEntity Recognition, #Binary Classification, #MultiLabel Classification, and Question-Answering and return a python object
- https://www.linkedin.com/posts/aadityaura_prompt-gpt-opensource-activity-7024485145256591360-etIo?utm_source=share&utm_medium=member_ios
- NER - https://www.linkedin.com/posts/praveenr2998_named-entity-recognitionner-using-chatgpt-activity-7031614774664724480-e4Bd?utm_source=share&utm_medium=member_ios
-
A/B testing
- https://www.linkedin.com/posts/danleedata_ab-testing-in-data-science-interviews-by-activity-7027674504340373504-Y6Hz?utm_source=share&utm_medium=member_ios
- leAB library AB test - https://www.linkedin.com/posts/khuyen-tran-1401_python-testing-abtesting-activity-7075484308370591744-LA3p?utm_source=share&utm_medium=member_ios
-
SHAP-hypetune is a python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models!
-
Machine Learning model LOSS functions
-
[Data engineering] Inefficient Python programs will degrade your data pipeline performance
- https://www.linkedin.com/posts/sarah-floris_dataengineering-dataengineer-python-activity-7033462088442253312-K8ZX?utm_source=share&utm_medium=member_ios
- Deploying your ML model - https://www.linkedin.com/posts/khuyen-tran-1401_automate-machine-learning-deployment-with-activity-7058088609752510466-uEt_?utm_source=share&utm_medium=member_ios
- Docker for data science - https://www.linkedin.com/feed/update/urn:li:activity:7071712311178051584?utm_source=share&utm_medium=member_ios
-
Outlining techniques for improving the training performance of your PyTorch model without compromising its accuracy.
-
Reinforcement Learning: An Introduction
- https://www.linkedin.com/feed/update/urn:li:activity:7036534106515468289?utm_source=share&utm_medium=member_ios
- ๐๐๐ข๐ง๐๐จ๐ซ๐๐ข๐ง๐ ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐ : ๐๐จ๐ฉ ๐๐ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ ๐ญ๐จ ๐๐๐ฑ๐ข๐ฆ๐ข๐ณ๐ ๐๐จ๐ฎ๐ซ ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ญ๐๐ง๐ญ๐ข๐๐ฅ - https://www.linkedin.com/feed/update/urn:li:activity:7066679327395876864?utm_source=share&utm_medium=member_ios
-
t-SNE
-
Awesome open data-centric AI
-
The Precision-Recall AUC is a much more actionable metric for highly imbalanced data
-
For generative models and active learning, Amazon Science has a fantastic video- https://youtu.be/2s_GtmofbyU
-
GPT tips
- https://www.linkedin.com/posts/stevenouri_gpt4-activity-7042775117508055040-MzmF?utm_source=share&utm_medium=member_desktop
- GPT4 will be supercharging ChatGPT but how to leverage its full potential? - https://www.linkedin.com/posts/stevenouri_gpt4-ugcPost-7042382267515621376-nT25?utm_source=share&utm_medium=member_desktop
- So far the best and the cheapest #chatgpt competitor local implementation, very fast output on a 2020 M1 Macbook Air - https://www.linkedin.com/posts/liuhongliang_chatgpt-activity-7042212001267269632-iaSL?utm_source=share&utm_medium=member_desktop (edited)
-
Today, most Large Language Models are aligned to human expectations with Reinforcement Learning from Human Feedback (RLHF).
-
FREE HuggingFace Course - (https://lnkd.in/exdqcZCE) This course is for anyone who wants to learn Natural Language Processing (NLP)
-
๐๐๐ฌ๐ญ๐๐ซ๐ข๐ง๐ ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐ง๐จ๐ฆ๐๐ฅ๐ฒ ๐๐๐ญ๐๐๐ญ๐ข๐จ๐ง: ๐๐ ๐๐จ๐ฉ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ, ๐๐ฏ๐๐ฅ๐ฎ๐๐ญ๐ข๐จ๐ง ๐๐๐ญ๐ซ๐ข๐๐ฌ ๐๐ง๐ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ
- https://www.linkedin.com/posts/maryammiradi_machinelearning-artificialintelligence-ai-activity-7044261452110516224-kbMf?utm_source=share&utm_medium=member_ios
- ๐๐๐ซ๐๐จ๐ซ๐ฆ ๐ฆ๐จ๐ซ๐ ๐ซ๐จ๐๐ฎ๐ฌ๐ญ ๐๐ฎ๐ญ๐ฅ๐ข๐๐ซ ๐๐๐ญ๐๐๐ญ๐ข๐จ๐ง ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง - https://www.linkedin.com/posts/banias_python-datascience-machinelearning-activity-7077314236946735104-rGlZ?utm_source=share&utm_medium=member_ios
-
Missing values imputations
-
MRMR (Minimum-Redundancy-Maximum-Relevance) is an efficient feature selection method that proved to work extremely well for automatic feature selection at scale.
-
Finetune large language models on single consumer GPUs
- https://www.linkedin.com/posts/sebastianraschka_languagemodels-deeplearning-ai-activity-7046837051211583488-wkcE?utm_source=share&utm_medium=member_ios
- Train a 7B model from scratch on a Single GPU! :exploding_head - https://www.linkedin.com/posts/sanyambhutani_we-can-now-train-a-7b-model-from-scratch-activity-7051736310427918336-2YD1?utm_source=share&utm_medium=member_ios
- LLMs to build a simple assistant - https://www.linkedin.com/posts/eugeneyan_experimenting-with-llms-to-research-reflect-[โฆ]836878950400-lcDT?utm_source=share&utm_medium=member_desktop
- Truly open-source and the world's first truly open instruction-tuned LLM!- https://www.linkedin.com/posts/maziyarpanahi_say-hello-to-dolly-v2-truly-open-source-ugcPost-7052922568273465344-C5E6?utm_source=share&utm_medium=member_ios
- Another LLM that can be used commercially - https://github.com/stability-AI/stableLM/
- You can now train and run you own LLM locally! GPT4All-J - https://www.linkedin.com/posts/liorsinclair_you-can-now-train-and-run-you-own-llm-locally-activity-7054846251082625024-_Xt3?utm_source=share&utm_medium=member_ios
- Try this for prototype which provides a central interface to connect your LLM's with external data - https://github.com/jerryjliu/llama_index
- The secret recipe for making Chat based models work ๐ฉโ๐ณ - https://www.linkedin.com/posts/sanyambhutani_the-secret-recipe-for-making-chat-based-models-activity-7060254012935139328-pPfP?utm_source=share&utm_medium=member_ios
- Outperforming LLMs with 2000x smaller models! ๐ - https://www.linkedin.com/posts/sanyambhutani_outperforming-llms-with-2000x-smaller-models-activity-7060977553104134144-1gRH?utm_source=share&utm_medium=member_ios
-
Challenges of LLM deployment on premises in seldon: (Seldon - LLMOps for Enterprise: Key Challenges when Deploying for Production)
-
Explores the exciting use cases of #LangChain and #ChatGPT
- https://www.linkedin.com/posts/pradipnichite_building-chatbot-using-langchain-and-chatgpt-activity-7058312972267380736-r1i3?utm_source=share&utm_medium=member_ios
- LangChain - https://www.linkedin.com/posts/sonali-pattnaik_generativeai-ai-activity-7063160223967973376-3K0P?utm_source=share&utm_medium=member_ios
- LangChain is really changing the game when it comes to building applications using LLMs - https://www.linkedin.com/feed/update/urn:li:activity:7066486064898560000?utm_source=share&utm_medium=member_desktop
- Free generative AI courses - https://www.linkedin.com/feed/update/urn:li:activity:7069751645164765185?utm_source=share&utm_medium=member_ios
- A prompting tool : https://github.com/microsoft/guidance
-
Sklearn Meets Large Language Models. It allows you to integrate language models like ChatGPT into scikit-learn for text analysis tasks - https://www.linkedin.com/posts/liorsinclair_just-found-out-about-scikit-llm-sklearn-activity-7066464504666013696-l-rc?utm_source=share&utm_medium=member_desktop
-
Curated list of papers about large language models, especially relating to ChatGPT
-
StarCoder โญ, the biggest open-source Code-LLM :robot_face:.
-
Current open-source ChatGPT alternatives
- https://www.linkedin.com/posts/saattrupdan_chatgpt-generativeai-opensource-activity-7055833276703219713-K8-Q?utm_source=share&utm_medium=member_ios
- HuggingChat - https://www.linkedin.com/posts/clementdelangue_i-believe-we-need-open-source-alternatives-activity-7056722611371663362-I_Rq?utm_source=share&utm_medium=member_ios
- 1,000+ AI tools were released in April'2023 - https://www.linkedin.com/feed/update/urn:li:activity:7058073510253858816?utm_source=share&utm_medium=member_ios
-
Running GPT on your laptop is now possible thanks to GPT4All
- https://www.linkedin.com/posts/hajar-mousannif_ml-ai-aiot-activity-7047111968347820033-P75p?utm_source=share&utm_medium=member_ios
- 100% Private & Local PDF ChatBot (without langchain), Video talks about using falcon series models locally and query it - https://www.youtube.com/watch?v=hSQY4N1u3v0
- LLAMA2 - The repo to try this locally, good to see it supports MAC os too (the best part you can use GPU's for the quick inferencing) - https://github.com/ggerganov/llama.cpp
- how to fine-tune LLMs!- https://www.linkedin.com/posts/akshay-pachaar_lit-gpt-ugcPost-7090663892741144576-33Et?utm_source=share&utm_medium=member_ios
- Fine-tune Llama-2 - https://www.linkedin.com/posts/itamar-g1_fine-tune-llama-2-with-a-few-lines-of-code-activity-7087691271275786240-Q7gS?utm_source=share&utm_medium=member_ios
- Llama 2 - https://www.linkedin.com/posts/philipp-schmid-a6a2bb196_llama-2-every-resource-you-need-activity-7088184410990092288-nApZ?utm_source=share&utm_medium=member_ios
- Train LLMs in just 50 lines of code! - https://m.youtube.com/watch?v=JNMVulH7fCo
-
Federated Learning!
-
๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐ ๐ซ๐จ๐ฆ ๐๐๐ซ๐๐ญ๐๐ก ๐๐ฌ๐ข๐ง๐ ๐๐ฎ๐ฆ๐๐ฒ ๐๐ง๐ ๐๐ฒ๐ญ๐ก๐จ๐ง
- https://www.linkedin.com/feed/update/urn:li:activity:7048317846677803009?utm_source=share&utm_medium=member_desktop
- ๐ Scikit-Learn Cheatsheet to Machine Learning :robot_face: - https://www.linkedin.com/posts/ginacostag_scikit-learn-cheatsheet-ugcPost-7076565233271463936-BSBE?utm_source=share&utm_medium=member_ios
- Machine Learning advancements in the leading industry (blogs and links) - https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7059914026977247232-v6YY?utm_source=share&utm_medium=member_ios
- do Feature Selection automatically? Try ๐ฆ๐ซ๐ฆ๐ซ. ๐ฆ๐ซ๐ฆ๐ซ (minimum-Redundancy-Maximum-Relevance) is a minimal-optimal feature selection algorithm at scale. - https://www.linkedin.com/posts/banias_python-datascience-machinelearning-activity-7078039042574934017-kqSd?utm_source=share&utm_medium=member_ios
-
Cosine Similarity for 1 Trillion Pairs of Vectors
-
How does Uber predict ride ETAs?
-
Information Gain (IG)
- https://www.linkedin.com/posts/danny-butvinik_artificialintelligence-machinelearning-activity-7074966254163247104--M-E?utm_source=share&utm_medium=member_ios
- Gini index and entropy - https://www.linkedin.com/posts/danny-butvinik_artificialintelligence-patternrecognition-activity-7085122970544664576-XAtn?utm_source=share&utm_medium=member_ios
-
How do you deal with imbalanced data?
-
Outliers treatment
-
Hyperparameter (HP) tuning is Bayesian Optimization Hyper Band
-
XGBoost
-
Testing code that relies on external services, like a database
-
Active learning: package scikit-activeml is a Python library for active learning on top of SciPy and scikit-learn
-
Prediction โ Estimation
-
Chebyshev distance
-
Generalized Linear Models
-
5-week Software Engineering crash course curriculum designed specifically for Data Scientists and Machine Learning Engineers