-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCox_Galois_Chapter11.tex
1160 lines (888 loc) · 61.2 KB
/
Cox_Galois_Chapter11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\im}{\,\mathrm{Im}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 11 : FINITE FIELDS}
\subsection{THE STRUCTURE OF FINITE FIELDS}
\paragraph{Ex. 11.1.1}
{\it Let $\F_p \subset L$ be an extension such that $x^q-x$ splits completely over $L$, where $q=p^n$, and let $F$ be the set of roots of this polynomial. Prove that $F$ is a subfield of $L$.
}
\begin{proof}
Let $q=p^n$, where $p$ is prime. There exists an extension $\F_p \subset L$ such that $x^q-x$ splits completely over $L$. Write
$$F = \{\alpha \in L \ \vert \ \alpha^q=\alpha\}.$$
We show that $F$ is a subfield of $L$, with $q$ elements.
\be
\item[$\bullet$] $1\in F$, since $1^q=1$.
\item[$\bullet$] As the characteristic of $L$ is $p$, if $\alpha,\beta \in F$,
$$(\alpha + \beta)^{p^n} = \alpha^{p^n}+\beta^{p^n} = \alpha+\beta,$$ therefore $\alpha+\beta \in F$.
\item[$\bullet$] If $p$ is odd, $(-\alpha)^{p^n} = -\alpha^{p^n} = -\alpha$, so $-\alpha \in F$, and if $p=2$, $-\alpha = \alpha \in F$.
\item[$\bullet$] $(\alpha \beta)^q = \alpha^q \beta^q = \alpha \beta$, so $\alpha \beta \in F$.
\item[$\bullet$] If $\alpha \in F, \alpha \neq 0$, $(1/\alpha)^q = 1/ \alpha^q = 1 /\alpha$, therefore $1/\alpha \in F$.
\ee
Since the derivative of $f(x) = x^q-x$ is $-1$, then $\gcd(f,f')=1$. Therefore $f(x)$ has $q$ distinct roots in $L$, therefore $\vert F \vert = q = p^n$.
\end{proof}
\paragraph{Ex. 11.1.2}
{\it Suppose that $f,g \in F[x]$ are polynomials, not both zero, and let $h$ be their greatest common divisor as computed in $F[x]$. Now let $L$ be an extension field of $F$. Prove that $h$ is the greatest common divisor of $f,g$ when considered as polynomial in $L[x]$.
}
\begin{proof}
Recall the definition of the gcd in $F[x]$, where $f,g,h \in F[x]$ :
$h = f\wedge g$ if and only if
(i) $h$ is monic (or zero).
(ii) $h \mid f,\ h \mid g$
(iii) $\forall p \in F[x], (p \mid f,\ p \mid g) \Rightarrow p \mid h$.
Let $L$ be an extension field of $F$. $f$ satisfies (i)(ii) in $L[x]$, since $h$ divides $f$ in $F[x]$ if and only if $h$ divides $f$ in $L[x]$.
\be
\item[$\bullet$] If
$$\forall p \in L[x], (p \mid f,\ p \mid g) \Rightarrow p \mid h,$$
since $F[x] \subset L[x]$,
$$\forall p \in F[x], (p \mid f,\ p \mid g) \Rightarrow p \mid h.$$
So, $h = \gcd(f,g)$ in $L[x]$ implies that $h = \gcd(f,g)$ in $F[x]$.
\item[$\bullet$] Conversely, suppose that $h = \gcd(f,g)$ in $F[x]$.
By B\'ezout's Theorem, there exists $u,v \in F[x]$ such that $h = uf +vg$. Consequently, if $q \in L[x]$ divides $f$ and $g$ in $L[x]$, $q$ divides $h$ in $L[x]$. So $h$ satisfies (iii), therefore $h$ is the greatest common divisor of $f,g$ in $L[x]$.
\ee
\end{proof}
\paragraph{Ex. 11.1.3}
{\it Give a proof of Corollary 11.1.8 that uses neither Theorem 11.1.7 nor the Galois correspondence.
\medskip
{\bf Corollary 11.1.8} Let $\F_{p^m}$ and $\F_{p^n}$ be finite fields. Then $\F_{p^m}$ is isomorphic to a subfield of $\F_{p^n}$ if and only if $m\mid n$.
}
\begin{proof}
As in the text, if $\F_{p^n}$ has a subfield with $p^m$ elements, written $\F_{p^m}$, then
$$\F_p \subset \F_{p^m} \subset \F_{p^n},$$
therefore
$$n = [\F_{p^n} : \F_p] = [\F_{p^n} : \F_{p^m}] [\F_{p^m} : \F_{p}] = [\F_{p^n} : \F_{p^m}] \times m,$$
so $m \mid n$.
Conversely, suppose that $m \mid n$.
The elements of $\F_{p^n}$ are the $p^n$ distinct roots of $x^{p^n} - x$.
Since $m\mid n$, then $n = k m, k \in \N$, therefore $p^n - 1 = p^{km} - 1 = (p^m-1)\sum\limits_{i=0}^{k-1} p^{mi}$.
So $p^m-1$ divides $p^n - 1$, thus $p^n-1 = l (p^m-1), l \in \N$. Consequently
$$x^{p^n-1} - 1 = x^{l(p^m-1)}- 1 = (x^{p^m-1} - 1)\sum_{j=0}^{l-1} x^{j(p^m-1)},$$
therefore $ x^{p^m-1} - 1 \mid x^{p^n-1} - 1$, and also $x^{p^m} - x \mid x^{p^n}- x$.
Therefore the polynomial $x^{p^m} -x$ splits completely over $\F_{p^n}$. By Exercise 1, the set of its roots is a subfield of $\F_{p^n}$ with $p^m$ elements. By Corollary 11.1.3, it is isomorphic to $\F_{p^m}$.
\end{proof}
\paragraph{Ex. 11.1.4}
{\it Prove Theorem 11.1.9
\medskip
{\bf Theorem 11.1.9} Let $m\mid n$ and $\F_{p^m} \subset \F_{p^n}$. Then there is a group isomorphism
$$\Gal(\F_{p^n}/\F_{p^m}) \simeq \Z / {\frac{n}{m}} \Z$$
that sends $(\mathrm{Frob}_p)^m \in \Gal(\F_{p^n}/\F_{p^m})$ to $[1] \in \Z/\frac{n}{m}\Z$.
}
\begin{proof}
Write $F = \mathrm{Frob}_p$ the Frobenius automorphism of $\F_{p^n}$, which generates $G = \Gal(\F_{p^n}/\F_p) = \langle F \rangle$ (Theorem 11.1.7).
Let $H = \langle F^m \rangle$ be the subgroup of $G$ generated by $F^m$. As $m \mid n$, $H$ is a cyclic subgroup with $n/m$ elements, isomorphic to $\Z/\frac{n}{m}\Z$.
By the Galois correspondence, $H$ corresponds to the fixed field $L_H$, and $$\alpha \in L_H \iff F^m(\alpha) = F \iff \alpha^{p^m} = \alpha.$$
So $L_H$ is the set of the roots of $x^{p^m} - x$. $L_H$ is the unique subfield of $\F_{p^n}$ with $p^m$ elements, written $\F_{p^m}$ (cf Exercise 3).
By the Fundamental Theorem of Galois Theory (section 7.3),
$$\Gal(\F_{p^n}/\F_{p^m}) = \Gal(\F_{p^n}/L_H) = H = \langle F^m \rangle.$$
So $$\Gal(\F_{p^n}/\F_{p^m}) =\langle F^m \rangle \simeq \Z/\frac{n}{m}\Z,$$
where the isomorphism sends $F^m = (\mathrm{Frob}_p)^m$ on the generator $[1]\in \Z/\frac{n}{m}\Z$.
\end{proof}
\paragraph{Ex. 11.1.5}
{\it As noted in the text, if $f\in \Z[x]$ has degree $n$ and its leading coefficient is not divisible by a prime $p$, then $f(x) \equiv 0 \mod p$ has at most $n$ solutions modulo $p$. Here are two questions that explore what happens when $n=2$ and the modulus is arbitrary.
\be
\item[(a)] How many solutions does the congruence $x^2 - 1 \equiv 0 \mod 8$ have modulo 8?
\item[(b)] Fix an integer $m>1$, and assume that every polynomial of degree 2 in $\Z/m\Z[x]$ has at most two roots in $\Z/m\Z$. Is $m$ prime?
\ee
}
\begin{proof}
\be
\item[(a)]
$\pm1,\pm3$ are the roots in $\Z/8\Z$ of the polynomial $x^2-1 \in (\Z/8\Z)[x]$.
\item[(b)] Suppose that $m>1$ is not prime. Then $m$ is composite, so $m = uv$, where $1<u\leq v<m$.
Let $f(x) = vx^2 \in\Z/m\Z[x]$. Then $f(0) = f(u) = f(2u)=0$.
Moreover $u \not \equiv 0 \pmod {uv}, u \not \equiv 2u \pmod {uv}$.
If $2u \equiv 0 \pmod {uv}$, then $v \mid 2$. Since $1<u\leq v$, then $u=v=2$, and $m=4$.
So if $m$ is composite and $m>4$, the polynomial $f(x) = vx^2 \in\Z/m\Z[x]$ has at least three distinct roots in $\Z/m\Z$.
If $m = 4$, the polynomial $g(x) = 2x^2+2x \in \Z/4\Z[x]$ has 4 roots, namely $0,1,2,3$.
Conclusion:
If $m>1$ is not prime, there exists some polynomial of degree 2 in $\Z/m\Z[x]$ with more than 2 roots in $\Z/m\Z[x]$.
If $m>1$, and if every polynomial of degree 2 in $\Z/m\Z[x]$ has at most two roots in $\Z/m\Z[x]$, then $m$ is prime.
\ee
\end{proof}
\paragraph{Ex. 11.1.6}
{\it Let $F\in\Z[x]$ have degree $n$, and assume that the leading coefficient of $F$ is not divisible by $p$. Prove that the reduction of $F$ modulo $p$ is irreducible over $\F_p$ if and only if it is not possible to find polynomials $\varphi,\psi,\chi \in \Z[x]$, where $\deg(\varphi),\deg(\psi) < n$, such that
$$\varphi(x) \psi(x) = F(x) + p \chi(x).$$
This is how Galois defines irreducibility modulo $p$ in [Galois, p.113].
}
\begin{proof}
Write $\overline{F},\overline{\varphi}, \overline{\psi} \in \F_p[x]$ the reductions modulo $p$ of $F,\varphi,\psi \in \Z[x]$.
Let $F \in \Z[x]$ be a polynomial of degree $n>0$, and assume that the leading coefficient of $F$ is not divisible by $p$, so $\deg(\overline{F}) = n>0$, $\overline{F}$ is not zero, and
$\overline{F}$ is not an unit of $\F_p[x]$.
\be
\item[$\bullet$] Suppose that there exist polynomials $\varphi,\psi,\chi \in \Z[x]$, where $\deg(\varphi),\deg(\psi) < n$, such that
$$\varphi(x) \psi(x) = F(x) + p \chi(x).$$
Then $\overline{\varphi}(x) \overline{\psi}(x) = \overline{F}(x)$, and $\deg(\overline{\varphi}) \leq \deg(\varphi) < n$, and $\deg(\overline{\psi}) \leq \deg(\psi) < n$, with $\deg(\overline{F})\geq 1$. Hence $\overline{F}$ is not irreducible in $\F_p[x]$.
Conclusion: If $\overline{F}$ is irreducible over $\F_p$, it is not possible to find polynomials $\varphi,\psi,\chi \in \Z[x]$, where $\deg(\varphi),\deg(\psi) < n$, such that
$$\varphi(x) \psi(x) = F(x) + p \chi(x).$$
\item[$\bullet$] Conversely, suppose that $\overline{F}$ is not irreducible in $\F_p[x]$. Then there exist polynomials $p,q \in \F_p[x]$ with $\deg(p),\deg(q)<n$ and $\overline{F}(x) = p(x)q(x)$.
There exist some polynomials $\varphi, \psi \in \Z[x]$ such that $\overline{\varphi} = p, \overline{\psi} = q$ and $\deg(\varphi) = \deg(p) < n, \deg(\psi) = \deg(q)<n$ (if $p = \sum_{i=0}^d [a_i] x^i$, with $[a_d] \ne [0]$, take $\varphi = \sum_{i=0}^d a_i x^i$). Thus $\overline{F} = \overline{\varphi} \overline{\psi} $, therefore $\overline{\varphi \psi-F} = \overline{0}$, so $ \varphi \psi -F \in p \Z[x]$: there exists $\chi \in \Z[x]$ such that
$$\varphi(x) \psi(x) = F(x) + p \chi(x).$$
\ee
$\overline{F}$ is irreducible over $\F_p$ if and only if it is not possible to find polynomials $\varphi,\psi,\chi \in \Z[x]$, where $\deg(\varphi),\deg(\psi) < n$, such that
$$\varphi(x) \psi(x) = F(x) + p \chi(x).$$
\end{proof}
\paragraph{Ex. 11.1.7}
{\it Let $f \in \F_p[x]$ be irreducible of degree $\nu$. Use (7.1) and Theorem 11.1.7 to prove Galois's observation that if $i$ is one root of $f$ in a splitting field, then the other roots are given by $i^p,i^{p^2},\ldots,i^{p^{\nu-1}}$.
}
\begin{proof}
Since $f$ is irreducible, $L = \F_p[x] / \langle f \rangle$ is a field, and $[L : \F_p] = \deg(f) = \nu$, so $\vert L \vert = q= p^\nu$, and $L = \F_{q}$.
By Theorem 11.1.7, $ \F_p \subset L = \F_{q}$ is a Galois extension, therefore $L$ contains all roots of $f$, so $L$ is the splitting field of $f$ over $\F_p$.
Write $F = \mathrm{Frob}_p$ the Frobenius automorphism of $\F_q= \F_{p^\nu}$. By Theorem 11.1.7, $\Gal(\F_q/\F_p) = \langle F \rangle$.
Since $\F_p \subset F_q$ is a Galois extension (Theorem 11.1.7(a)), the irreducible polynomial $f \in \F_p[x]$ is separable, so $f$ has $\nu$ distinct roots.
If $i$ is a root of $f$ in $L = \F_q$, then $F^k(i),\ 0 \leq k < \nu$ is also a root of $f$. If $j$ is any root of $f$, since $f$ is irreducible, $\Gal(\F_q/\F_p) $ acts transitively on the set of the roots of $f$, so there exists $\sigma \in \Gal(\F_q/\F_p)$ such that $\sigma(i) = j$. Since $\Gal(\F_q/\F_p) = \langle F \rangle$ and since the order of $F$ is $\nu$, there exists $k, \ 0\leq k < \nu$, such that $F^k(i) = j$. Thus the set of the roots of $f$ is
$$\{i,F(i)=F^2(i), \ldots, F^{\nu -1}(i)\} = \{i,i^p,i^{p^2},\ldots,i^{p^{\nu - 1}}\}.$$
Since $f$ is separable, $f$ has $\nu$ distinct roots, so these elements are distinct. Therefore
$$f(x) = (x-i)(x-i^p)(x - i^{p^2})\cdots(x- i^{p^{\nu - 1}}).$$
(This is an example of (7.1).)
\end{proof}
\paragraph{Ex. 11.1.8}
{\it Let $I$ and $J$ be ideals in a ring $R$, and let $I+J = \{r+s\ | \ r\in I, s\in J\}$ be their sum. Also let $\overline{I} = \{r+ J\ | \ r \in I\}$. This is a subset of the quotient ring $R/J$.
\be
\item[(a)] Prove that $I+J$ is an ideal of $R$ and that $\overline{I}$ is an ideal of $R/J$.
\item[(b)] Show that the map $r+(I+J) \mapsto (r+J) + \overline{I}$ defines a well-defined ring isomorphism $R/(I+J) \simeq (R/J)/\overline{I}$.
\ee
}
\begin{proof}
\be
\item[(a)] $I+J$ is a subgroup of $(R,+)$. If $t \in I+J$ and $u \in R$, then $t = r+s, r \in I, s \in J$. As $I,J$ are ideals of $R$, $ur \in I, us \in J$, therefore $ut = ur + us \in I+J$, so $I+J$ is an ideal of $R$.
$\overline{I}$ is a subgroup of $R/J$, image of $I$ by the natural projection $\pi : R \to R/J$.
Let $\overline{r}= r+ J , r \in I$ be an element of $\overline{I}$, and $\overline{s} = s + J, s \in R$ be any element of $R/J$. Then by definition of the laws in $R/J$,
$$\overline{s}\, \overline{r} = (s+J)(r+J) = sr + J,$$
and $sr \in I$, since $s \in R, r \in I$.
Therefore $\overline{s}\, \overline{r} \in \overline{I}$, so $\overline{I}$ is an ideal of $R/J$.
\item[(b)] If $r+ (I + J) = s + (I+J)$, then $r-s \in I+J$, so $r-s = i+j$ for some $ i \in I,j\in J$.
Then $(r+J) - (s+J) = (r-s) + J = i+j + J = i+J \in \overline{I}$, since $i\in I$. So $(r+J)+ \overline{I}$ depends only of the class of $r$ modulo $I+J$, and the map
$$\varphi :
\left\{
\begin{array}{ccc}
R/(I+J)& \to & (R/J)/\overline{I} \\
r+(I+J) &\mapsto &(r+J) + \overline{I}
\end{array}
\right.
$$
is well defined.
$\varphi$ is a ring homomorphism: if $\overline{r} = r+ I+J, \overline{s} = s+ I+J$, then
\begin{align*}
\varphi(\overline{r}) + \varphi(\overline{s}) &= ((r+J) + \overline{I} ) + ((s+J) + \overline{I} ) \\
&= ((r+J) + (s+J)) + \overline{I}\\
&= (r+s + J) +\overline{I}\\
&= \varphi(\overline{r+s})\\
&= \varphi(\overline{r} +\overline{s})
\end{align*}
\ee
and similarly $\varphi(\overline{r}) \varphi(\overline{s}) = \varphi(\overline{r} \overline{s})$ (and $\varphi(1) = (1 + J)+ \overline{I}$ is the unit of $(R/J)/\overline{I}$).
$\varphi$ is injective: if $r+(I+J) \in \ker(\varphi)$, then $(r+J)+\overline{I} = \overline{I}$, therefore $r+J \in \overline I$, so $r+J = i +J$ ,where $i \in I$, so $j = r-i \in J$ and $r = i+j \in I+J$, $r+(I+J) = I+J$ is zero in $R/(I+J)$.
$\varphi$ is surjective: any element $y$ of $(R/J)/\overline{I}$ is of the form $y= u + \overline{I}$, where $u \in R/J$ is such as $u = r+J$, where $r \in I$, so
$y = (r+ J) + \overline{I} = \varphi(r + I+J)$.
Conclusion :
$$R/(I+J) \simeq (R/J)/\overline{I}.$$
\end{proof}
\paragraph{Ex. 11.1.9}
{\it Let $f \in \Z[x]$ be monic and irreducible, and let $\alpha \in \C$ be a root of $f$. Then let $\overline{f} \in \F_p[x]$ be the reduction of $f$ modulo the prime $p$, and let $\langle p, f \rangle$ be as in (11.4):
$$\langle p,f\rangle = p\Z[x] + f\Z[x] =\{pR(x)+f(x)S(x)\ |\ R(x),S(x) \in \Z[x]\}.$$
\be
\item[(a)] Prove that the map $q(x) + f\Z[x] \mapsto q(\alpha)$ is a well-defined ring isomorphism $$\Z[x]/f\Z[x] \simeq \Z[\alpha].$$
\item[(b)] Use Exercise 8 to prove that $\Z[x]/\langle p, f\rangle \simeq \Z[\alpha]/p\Z[\alpha]$.
\item[(c)] Similarly prove that $\Z[x]/\langle p, f\rangle \simeq \F_p[x]/\langle \overline{f}\rangle$.
\ee
}
\begin{proof}
\be
\item[(a)] If $q_1,q_2 \in \Z[x]$ are such that $q_1(x) + f\Z[x] = q_2(x) + f \Z[x]$, then there exist $u_1,u_2 \in \Z[x]$ such that $q_1(x) + f(x) u_1(x) = q_2(x) + f(x) u_2(x)$. Since $f(\alpha) = 0$, then $q_1(\alpha) = q_2(\alpha)$, so the map
$$
\varphi : \left\{
\begin{array}{ccc}
\Z[x]/f\Z[x] &\to & \Z[\alpha] \\
q(x) + f\Z[x]& \mapsto & q(\alpha)
\end{array}
\right.
$$
is well defined.
Let $\tilde{q} = q(x) +f \Z[x], \tilde{r} = r(x) + f \Z[x]$ be elements of $\Z[x]/f\Z[x] $. Then
$$\varphi(\tilde{q})+ \varphi(\tilde{r}) = q(\alpha) + r(\alpha) = (q+r)(\alpha)= \varphi(q(x) + r(x) + f \Z[x]) = \varphi(\tilde{q}+ \tilde{r}).$$
Similarly, $\varphi(\tilde{q}) \varphi(\tilde{r}) = \varphi(\tilde{q}\, \tilde{r})$, and $\varphi(\tilde{1}) = 1$, so $\varphi$ is a ring homomorphism.
If $\varphi(\tilde{q}) = 0$, then $q(\alpha) = 0$. As $f$ is the minimal polynomial of $\alpha$ over $\Q$, $f$ divides $q$ in $\Q[x]$, so $q = u f$, where $u\in \Q[x]$. But $f$ is a monic polynomial in $\Z[x]$, so the algorithm of the Euclidean division gives a quotient $u \in \Z[x]$, therefore $q \in f\Z[x]$, and $\tilde{q} = 0$. $\ker(\varphi) = \{ \tilde{0}\}$, so $\varphi$ is injective.
Any element $z$ of $\Z[\alpha]$ is of the form $z =q(\alpha), q \in \Z[x]$, so $z = q(\alpha)=\varphi(\tilde{q})$: $\varphi$ is surjective.
$\varphi$ is a ring isomorphism:
$$\Z[x]/f\Z[x] \simeq \Z[\alpha].$$
\item[(b)] Let $R$ be the ring $\Z[x]$, and $I = p\Z[x]$, $J = f\Z[x]$ be the principal ideals of $\Z[x]$ generated by $p$ and $f$. By Exercise 8, $$\overline{I} = \{ r + J\ | \ r \in I\} =\{p q(x) + f \Z[x]\ | \ q(x) \in \Z[x]\}$$ is an ideal of $\Z[x]/f\Z[x]$, and
$$\Z[x]/\langle p, f\rangle = \Z[x]/ (p\Z[x] + f\Z[x]) \simeq (\Z[x]/ f \Z[x]) / \overline{I}.$$
The isomorphism $\varphi$ of part (a) sends $\Z[x]/ f \Z[x]$ on $\Z[\alpha]$ and the ideal $\overline{I}$ on $p \Z[\alpha]$, since $\varphi(pq(x)+f\Z[x]) = p q(\alpha)$ for all $q \in \Z[x]$.
Therefore $(\Z[x]/ f \Z[x]) / \overline{I} \simeq \Z[\alpha]/ p \Z[\alpha]$, so
$$\Z[x]/\langle p, f\rangle \simeq \Z[\alpha]/ p \Z[\alpha].$$
\item[(c)] If we switch $I,J$, then by Exercise 8, $R/(I+J) = R/(J+I) \simeq (R/I)/\overline{J}$, where
$$\overline{J} = \{s + I\ | \ s \in J\} = \{ f(x) v(x) + p \Z[x]\ | \ v(x) \in \Z[x]\} , $$
so
$$\Z[x]/\langle p, f\rangle \simeq (\Z[x]/p\Z[x])/ \overline{J}.$$
Let
$$ \psi : \left\{
\begin{array}{ccc}
\Z[x]/p\Z[x] &\to &\F_p[x] \\
u + p\Z[x]& \mapsto & \overline{u},
\end{array}
\right.
$$
where $\overline{u}$ is the reduction of $u\in \Z[x]$ modulo the prime $p$.
As in part (a), $\psi$ is a well-defined ring isomorphism, and $\psi$ sends $\overline{J}$ on $\langle \overline{f} \rangle$,
since for all $v(x) \in \Z[x]$, $\psi(f(x) v(x) + p \Z[x]) = \overline{f} \, \overline{v}$, and $\overline{v}$ takes all possible values in $\F_p[x]$ when $v \in \Z[x]$. Therefore $(\Z[x]/p\Z[x])/ \overline{J} \simeq \F_p[x]/ \langle \overline{f} \rangle$, so
$$\Z[x]/\langle p, f\rangle \simeq \F_p[x]/ \langle \overline{f} \rangle.$$
\ee
Finally, if $\alpha$ is a root of the irreducible polynomial $f \in \Z[x]$,
$$\Z[\alpha]/ p \Z[\alpha] \simeq \F_p[x]/ \langle \overline{f} \rangle,$$
and so $\Z[\alpha]/ p \Z[\alpha]$ is a finite field.
\end{proof}
\paragraph{Ex. 11.1.10}
{\it Let $f = 2+2x+2x^2+2x^3+2x^4+2x^5+2x^6+2x^7+x^8+x^9+x^{10} \in \F_3[x]$.
\be
\item[(a)] Use the method of Example 11.1.6 to determine the number of roots of $f$ in $\F_{3^3}$ and $\F_{3^7}$.
\item[(b)] Explain why the splitting field of $f$ over $\F_3$ is $\F_{3^{21}}$.
\ee
}
\begin{proof}
\item[(a)]
With the following Sage instructions:
\begin{verbatim}
sage: R.<x> = PolynomialRing(GF(3))
sage: f = -1-x-x^2-x^3-x^4-x^5-x^6-x^7+x^8+x^9+x^10
sage: gcd(f,x^(3^3) -x)
x^3 + 2*x^2 + x + 1
sage: gcd(f,x^(3^7) -x)
x^7 + 2*x^6 + 2*x^5 + x^4 + 2*x^3 + x^2 + 2
sage: gcd(f,x^3-x)
1
\end{verbatim}
we know that $f$ has 3 roots in $\F_{3^3}$, 7 roots in $\F_{3^7}$ (and no root in $\F_3$).
(The degree of $x^{3^{21}} -x$ is $10,460,353,203$. Too big for my computer!)
\item[(b)] We take all the finite field $\F_{p^\nu}$ as subfields of an algebraic closure $\Omega$ of $\F_p$, so by Corollary 11.1.8,
$$\F_{p^n} \subset \F_{p^m} \iff n \mid m.$$
(If you don't like algebraic closure, you can replace $\Omega$ by $\F_{3^{21}}$ which contains all the fields considered in this exercise.)
Note that $$\F_{3^3} \cap \F_{3^7} = \F_3.$$
Indeed, $\F_{3^3} \cap \F_{3^7}$ is a finite subfield of $\Omega$, so is of the form $\F_{3^n}$, where $n \mid 3$ and $n \mid 7$, thus $n=1$.
Moreover $f$ has not root in $\F_3$, since $\gcd(f,x^3-x)=1$. So the sets of the roots of $f$ in $\F_{3^3} $ and $ \F_{3^7}$ are disjointed. Therefore $f$ has 10 distinct roots in any field which contains $\F_{3^3} $ and $ \F_{3^7}$. In particular $f$ has 10 distinct roots in $\F_{3^{21}}$, and $\deg(f) = 10$, so $f$ splits completely in $\F_{3^{21}}$.
Name $\alpha_1,\alpha_2,\alpha_3$ the three roots of $f$ in $\F_{3^3}$, and $\alpha_4,\ldots,\alpha_{10}$ the seven roots of $f$ in $\F_{3^7}$.
Since 7 is prime, there is no strictly intermediate field between $\F_3$ and $\F_{3^7}$, and since $\alpha_i \not \in \F_3$, then $\F_3(\alpha_4, \ldots,\alpha_7) = \F_{3^7}$, and similarly $\F_3(\alpha_1,\alpha_2,\alpha_3) = \F_{3^3}$.
Let $K = \F_3(\alpha_1,\ldots,\alpha_{10})$. Then $K = \F_{3^r}\ (r \in \N)$, is a finite subfield of $\Omega$, which contains $\F_{3^3}$ and $\F_{3^7}$, so $3 \mid r$ and $7 \mid r$, with $\gcd(3,7)=1$, thus $21 \mid r$, therefore $K = \F_{3^r} \supset \F_{3^{21}}$, so $\F_{3^{21}} \subset \F_3(\alpha_1,\ldots,\alpha_{10})$. Moreover $\alpha_1,\ldots,\alpha_{10}$ are in $\F_{3^{21}}$, so
$$\F_3(\alpha_1,\ldots,\alpha_{10} )= \F_{3^{21}}.$$
(In other words $\F(\alpha_1,\ldots,\alpha_{10})$ is the compositum in $\Omega$ of $ \F_3(\alpha_1,\alpha_2,\alpha_3) = \F_{3^3}$ and $\F_3(\alpha_4, \ldots,\alpha_7) = \F_{3^7}$, and the
compositum of $\F_{3^3}$ and $\F_{3^7}$ in $\Omega$ is $\F_{3^{21}}$, so $\F_3(\alpha_1,\ldots,\alpha_{10} )= \F_{3^{21}}$.)
Therefore, $\F_{3^{21}}$ is the splitting field of $f$ over $\F_3$.
\end{proof}
\paragraph{Ex. 11.1.11}
{\it Let $f \in \F_p[x]$ be an irreducible polynomial of degree $n$. Prove that $f$ splits completely in $\F_{p^n}$.
}
\begin{proof}
Let $F = \F_p[x]/\langle f \rangle$. Since $f$ is irreducible over $\F_p$, $F$ is a field, and since $\deg(f) = n$, $|F | = p^n$, so $F$ is a field with $p^n$ elements.
Moreover $\overline{x} = x + \langle f \rangle$ is a root of $f$ in $F$.
By Theorem 11.1.2, $F$ is a splitting field over $\F_p$ of the separable polynomial $x^{p^n} -x$, therefore $F$ is a Galois extension of $\F_p$. As the irreducible polynomial $f$ has one root in $F$, it splits completely in $F$.
If $\F_{p^n}$ is a field with $p^n$ elements, there exists an isomorphism $\varphi : F \to \F_{p^n}$, which sends the roots of $f$ in $F$ on roots of $f$ in $\F_{p^n}$, so $f$ splits completely in $\F_{p^n}$, and this don't depends of the choice of the field with $p^n$ elements that we name $\F_{p^n}$.
\end{proof}
\bigskip
Note: let $\alpha$ be a root of $f$ in $\F_{p^n}$, and $\alpha_1=\alpha,\ldots,\alpha_n$ the roots of $f$ in $\F_{p^n}$. Then $[\F_{p^n} : \F_p] = n =[\F_p(\alpha) : \F_p]$, hence $\F_p(\alpha) = \F_{p^n}$. Since $\F_{p^n} = \F_{p}(\alpha) \subset \F_{p}(\alpha_1,\ldots,\alpha_n) \subset \F_{p^n}$, we conclude that
$$\F_{p^n} = \F_p(\alpha_1,\ldots,\alpha_n)$$
is a splitting field of $f$ over $\F_p$.
Since $\F_{p^n}$ is a splitting field of $f$ over $\F_p$, by Exercise 7,
$$f(x) = a (x -\alpha)(x - \alpha^p)(x-\alpha^{p^2})\cdots(x- \alpha^{p^{n-1}}),\ a \in \F_p.$$
\subsection{IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS (OPTIONAL)}
\paragraph{Ex. 11.2.1}
{\it Let $f \in F[x]$ be irreducible, where $F$ is a finite field. Prove that $f$ is separable.
}
\begin{proof} Let $L$ be the splitting field of $f$ over $F$, and $n =[L:F]$. Let $q = |F|$, where $q=p^\nu$ is a power of the characteristic $p$. Since $L$ is a vector space with dimension $n$ over $F$, then $|L|= q^n$ for some integer $n$. Therefore the order of every element of the group $L^*$ divides $q^n-1$, so for every element $\gamma \in L^*$, $\gamma^{q^{n-1}} = 1$. Consequently every element of $L$ is a root of $h(x) = x^{q^n}-x$. Since $h' (x)= -1$, $\gcd(h,h') = 1$, so $h$ is a separable polynomial. If $\alpha$ is a root of $f$ in the splitting field $L$, $h(\alpha) = 0$ and $f$ is irreducible over $F$, so $f$ divides $h$, and $h$ is separable, therefore $f$ is a separable polynomial.
\end{proof}
\paragraph{Ex. 11.2.2}
{\it This exercise concerns Theorem 11.2.2 and the factorisation (11.7).
\be
\item[(a)]
Compute $N_3$ and $N_4$ using only Theorem 11.2.2.
\item[(b)]
Write down the factorization (11.7) explicitly when $p^n = 4$ and $8$.
\ee
}
\begin{proof}
\be
\item[(a)] We know (Example 11.2.3) that $N_1 = p, N_2 = \frac{1}{2}(p^2-p)$.
By Theorem 11.2.2,
\begin{align*}
&3N_3 + N_1 = p^3,\\
&4 N_4+2N_2+N_1 = p^4.
\end{align*}
Therefore
\begin{align*}
N_3 &= \frac{1}{3}(p^3-p),\\
N_4 &= \frac{1}{4}(p^4-p^2).
\end{align*}
\item[(b)] For $p=2$ and $n=2, n=3$, we obtain $N_2 = 1, N_3 = 2$.
The factorisation (11.7) is here
$$x^4 - x = x(x-1) \times (x^2+x+1),$$
so $x^2+x+1$ is the only irreducible polynomial over $\F_2$ of degree 2.
With the following Sage instructions
\begin{verbatim}
R.<x> = GF(2)[]
factor(x^8-x)
\end{verbatim}
give
$$x \cdot (x + 1) \cdot (x^{3} + x + 1) \cdot (x^{3} + x^{2} + 1).
$$
So the two irreducible polynomial over $\F_2$ of degree 3 are
$$x^{3} + x + 1, \qquad x^{3} + x^{2} + 1.$$
\ee
\end{proof}
\paragraph{Ex. 11.2.3}
{\it Use Theorem 11.2.4 to compute $N_6$ and $N_{36}$.
}
\begin{proof}
By Theorem 11.2.4,
$$
N_n = \frac{1}{n} \sum_{m\mid n} \mu(m) p^{\frac{n}{m}}.
$$
\begin{align*}
N_6 &= \frac{1}{6}(\mu(1)p^6+\mu(2)p^3+\mu(3)p^2+\mu(6)p)\\
&=\frac{1}{6}(p^6-p^3-p^2+p)
\end{align*}
The $9 = 3\times 3$ factors $d$ of $36=2^2\times 3^2$, and the corresponding values of $\mu(d)$ are
$$
\begin{array}{c|c|c|c|c|c|c|c|c|c}
d &1 & 2 & 3 &4 &6 & 9 & 12 & 18 & 36 \\
\hline
\mu(d) & 1 & -1 & -1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
$$
\begin{align*}
N_{36} &= \frac{1}{36}(p^{36}-p^{18} -p^{12}+p^6)
\end{align*}
\end{proof}
\paragraph{Ex. 11.2.4}
{\it In Theorem 11.1.4 we used slitting fields to show that a field of order $p^n$ exists for any prime $p$ and integer $n\geq 1$. When Galois and others considered this question in the nineteenth century, their approach was to prove the existence of an irreducible polynomial in $\F_p[x]$ of degree $n$. In other words, they needed to prove that $N_n>0$.
\be
\item[(a)] Prove that $N_n>0$ using Theorem 11.1.4.
\item[(b)] Suppose that we have proved Theorem 11.2.4 but not Theorem 11.1.4. Use this to prove that $N_n>0$.
\ee
}
\begin{proof}
\be
\item[(a)] By Theorem 11.1.4, there exists a finite field $\F_{p^n}$ with $p^n$ elements. We know that the group $\F_{p^n}^*$ is cyclic. If $\alpha$ is a generator of $\F_{p^n}^*$, then $\alpha^{p^n-1} = 1$, and
$$\F_{p^n} =\{0,1,\alpha,\alpha^2,\ldots,\alpha^{p^{n}-2}\}= \F_p(\alpha).$$ This proves the Primitive Element Theorem in the case where the field is finite. Let $f$ be the minimal polynomial of $\alpha$. Then $\deg(f) = [\F_{p^n}:\F_p] = n$ and $f$ is monic irreducible over $\F_p$, so $N_n>0$.
\item[(b)] By Theorem 11.2.4,
$$N_n = \frac{1}{n} \sum_{d\mid n} \mu\left(\frac{n}{d}\right) p^{d}.$$
Let $n = p_1^{\alpha_1}\cdots p_s^{\alpha_s}$ be the decomposition of $n$ in primes.The factors $d$ of $n$ such that $\mu\left(\frac{n}{d}\right) \ne 0$ are the integers $d = p_1^{\alpha_1-\beta_1} \cdots p_s^{\alpha_s-\beta_s}$ where $\beta_i = 0,1$. The minimum such factor is $d_{min} = p_1^{\alpha_1-1} \cdots p_s^{\alpha_s-1}$.
If $N_n=0$ then $\sum_{d\mid n} \mu(\frac{n}{d}) p^{d} = 0$. Dividing by $p^{d_{min}}$,
$$\sum_{d\mid n,\, d > d_{min}} \mu\left(\frac{n}{d}\right) p^{d-d_{min}}=-\mu\left(\frac{n}{d_{min}}\right) = \pm 1.$$
As $p$ divides the left sum, $p\mid 1$. This is a contradiction, so $N_n >0$.
(This gives another proof of Theorem 11.1.4.)
\ee
\end{proof}
\paragraph{Ex. 11.2.5}
{\it Let $F$ be a field of characteristic $p$, and let $\alpha \in F$ be a root of unity. Prove that there is some $d\geq 1$ relatively prime to $p$ such that $\alpha$ is a $d$th root of unity.
}
\begin{proof}
Suppose that $\alpha \in F$ satisfies $\alpha^n = 1$ for some $n>0$.
As the characteristic of $F$ is $p$, $\F_p$ is a subfield of $F$. Since $\alpha$ is a root of $x^n-1$, then $\alpha$ is algebraic over $\F_p$, and $\nu = [\F_p(\alpha) : \F_p]<\infty$, so $|\F_p(\alpha)| = p^{\nu}$ is finite, and $\F_p(\alpha)$ is a finite field with $q = p^\nu$ elements. Since $\alpha$ is in the group $\F_p(\alpha)^*$, by Lagrange's Theorem, $$\alpha^{p^\nu -1} = 1.$$
Let $d\geq 1$ the order of $\alpha$ in the group $\F_p(\alpha)^*$. Then $\alpha^d = 1$ and $d \mid p^\nu - 1$, so $d$ is relatively prime to $p$.
\end{proof}
\paragraph{Ex. 11.2.6}
{\it This exercise is concerned with Example 11.2.8.
\be
\item[(a)] Show that $N_4 = 3$ when $p=2$. Then write down these three irreducible polynomials explicitly.
\item[(b)] Verify the factorization of $\Phi_{15}(x)$ given in the example.
\item[(c)] Show that the roots of $x^4+x^3+1$ and $x^4+x+1$ are the reciprocals of each other.
\ee
}
\begin{proof}
\be
\item[(a)]
For $p=2$, by Exercise 4,
$$N_4 = \frac{1}{4}(2^4-2^2) = 3.$$
With the Sage instructions
\begin{verbatim}
R.<x> = GF(2)[]
factor(x^16-x)
\end{verbatim}
we obtain
$$x^{16} - x = x \cdot (x + 1) \cdot (x^{2} + x + 1) \cdot (x^{4} + x + 1) \cdot (x^{4}
+ x^{3} + 1) \cdot (x^{4} + x^{3} + x^{2} + x + 1).$$
So the irreducible polynomial of degree 4 are
$$ x^{4} + x + 1 , \qquad x^{4}
+ x^{3} + 1 ,\qquad x^{4} + x^{3} + x^{2} + x + 1.$$
\item[(b)]As $x^{15} - 1 = \Phi_1(x) \Phi_3(x) \Phi_5(x) \Phi_{15}(x)$,
\begin{align*}
\Phi_{15}(x) &= \frac{(x^{15}-1)(x-1)}{(x^3-1)(x^5-1)}\\
&= \frac{x^{10}+x^5+1}{x^2+x+1}\\
&= x^8+x^7 +x^5 +x^4+x^3 + x+1
\end{align*}
The Sage instructions
\begin{verbatim}
R.<x>= GF(2)[]
p = (x^10+x^5+1)/(x^2+x+1)
factor(p)
\end{verbatim}
give the factorization in $\F_2[x]$
$$\Phi_{15}(x) = (x^{4} + x + 1) \cdot (x^{4} + x^{3} + 1).$$
\item[(c)]
If $\alpha$ is a root of $x^4+x^3+1$, then $\alpha \ne 0$ and $\alpha^4 + \alpha^3+1 = 0$. Dividing by $\alpha^4$, $$1 + \frac{1}{\alpha} + \frac{1}{\alpha^4} = 0,$$ $\alpha^{-1}$ is a root of $x^4+x+1$. Similarly, if $\beta$ is a root of $x^4+x+1$, $\beta^{-1}$ is a root of $x^4+x^3+1$.
(All these roots are the primitive $15$th roots of unity in $\F_{16}$.)
\ee
\end{proof}
\paragraph{Ex. 11.2.7}
{\it As in the discussion of Berlekamp's algorithm, let $R = \F_p[x]/\langle f \rangle$ and consider the $p$th power map $T : R \to R$. Prove that $T$ is a linear map when $R$ is regarded as a vector space over $\F_p$.
}
\begin{proof}
Let $\overline{g} = g+\langle f \rangle, \overline{h} = h+\langle f \rangle \in T$, and $\lambda \in \F_p$. Since the characteristic is $p$, $(g+h)^p = g^p+h^p$, so
\begin{align*}
T(\overline{g} + \overline{f})
&=(g+h)^p + \langle f \rangle\\
&=g^p+h^p+\langle f \rangle\\
&= (g^p+\langle f \rangle)+ (h^p+\langle f \rangle)\\
&= T(\overline{g}) + T(\overline{h}).
\end{align*}
Since $\lambda \in \F_p$, $\lambda^p=\lambda$, and $\lambda \langle f \rangle = \langle \lambda f \rangle$, $\lambda(g +\langle f \rangle) = \lambda g + \langle f \rangle$, so
\begin{align*}
T(\lambda \overline{g}) &= T(\lambda g + \langle f \rangle)\\
&=(\lambda g)^p + \langle f \rangle\\
&=\lambda g^p +\langle f \rangle\\
&=\lambda(g^p + \langle f \rangle)\\
&=\lambda T(\overline{g}).
\end{align*}
Thus $T:R\to R$ is linear.
\end{proof}
\paragraph{Ex. 11.2.8}
{\it Prove that Gauss formula (11.10) is equivalent to the formula given in Theorem 11.2.4.
}
\begin{proof}
Let $n = p_1^{\alpha_1}\cdots p_s^{\alpha_s}$ the decomposition of $n$ in primes.
If $m\mid n$, then $m = p_1^{\beta_1}\cdots p_s^{\beta_s^s}$, $0\leq \beta_k \leq \alpha_k$.
If $\beta_k>1$ for some $k=1,\ldots,s$, then by definition $\mu(m)=0$, so $\beta_k = 0$ or $1$ if $\mu(m) \neq 0$.
The nonzero terms in the sum $$N_n = \frac{1}{n} \sum_{m\mid n} \mu(m) p^{\frac{n}{m}}$$ are those which satisfy $m = p_{i_1}\cdots p_{i_r}$, with $1\leq i_1<\cdots < i_r \leq s$, so $\mu(m) = (-1)^r$.
Thus
$$N_n = \frac{1}{n} \sum_{m\mid n} \mu(m)\, p^{\frac{n}{m}} = \frac{1}{n} \ \sum_{1\leq i_1<\cdots < i_r \leq s} (-1)^r\, p^{\frac{n}{p_{i_1}\cdots p_{i_r}}}.$$
With a less formal writing, we obtain
$$N_n = \frac{1}{n} \sum_{m\mid n} \mu(m)\, p^{\frac{n}{m}} = \frac{1}{n}\left(p^n - \sum_{a} p^{\frac{n}{a}} + \sum_{a,b} p^{\frac{n}{ab}} - \sum_{a,b,c} p^{\frac{n}{abc}}+\cdots \right),$$
where $\sum_a$ is the sum over all distinct primes $a$ dividing $n$, $\sum_{a,b}$ is the sum over all products of distinct primes $a,b$ dividing $n$, and so on.
\end{proof}
\paragraph{Ex. 11.2.9}
{\it State and prove analogs of Theorem 11.2.2 and 11.2.4 that count monic irreducible polynomials of degree $n$ in $\F_q[x]$, where $q$ is now a power of the prime $p$.
}
\bigskip
Let $q=p^{\nu}$ a power of the prime $p$.
\bigskip
{\bf Proposition 11.2.1 bis.}
{\it
Let $f \in \F_q[x]$ be irreducible over $\F_q$, of degree $m$. Then:
\be
\item[(a)] $f$ divides $x^{q^m}-x$.
\item[(b)] $f$ is separable.
\item[(c)] Given an integer $n\geq 1$, $f$ divides $x^{q^n} -x$ $\iff$ $f$ has a root in $\F_{q^n}$ $\iff$ $m\mid n$.
\ee
}
\begin{proof}
\be
Note: we suppose that all the fields considered here are subfields of a field $\Omega$, which can be an algebraic closure of $\F_q$. In this case, there is a unique subfield of $\Omega$ with a given cardinality $q^d$, written $\F_{q^d}$, where
$$\F_{q^d} = \{\alpha \in \Omega \ | \ \alpha^{q^d} = \alpha\}.$$
We begin with part (c). Let $\alpha \in \Omega$ be a root of $f$. Since $f$ is irreducible over $\F_q$, the extension $\F_q \subset \F_q(\alpha)$ has degree $m = \deg(f)$. So $| \F_q(\alpha)| = q^m$, therefore $\F_q(\alpha) = \F_{q^m}$ (see the note). If $\alpha \in \F_{q^n}$, then $\F_q(\alpha) = \F_{q^m} \subset \F_{q^n}$, therefore $m\mid n$ (Corollary 11.1.8). Conversely, if $m\mid n$, then $\F_q(\alpha) = \F_{q^m} \subset \F_{q^n}$, so the root $\alpha$ of $f$ is in $\F_{q^n}$. This proves the second equivalence of part (c).
If $f$ has a root $\alpha \in \F_{q^n}$, then $\alpha^{q^n} = \alpha$, so $\alpha$ is a root of $x^{q^n}-x$. As $f$ is the minimal polynomial of $\alpha$ over $\F_q$, $f(x) \mid x^{q^n}-x$.
Conversely, suppose that $f(x) \mid x^{q^n}-x$. Take any root $\alpha$ of $f$ in $\Omega$. As $f(x) \mid x^{q^n}-x$, then $\alpha^{q^n} = \alpha$, and this implies $\alpha \in \F_{q^n}$, so (c) is proved.
We get part (a) by taking $n=m$ in part (c), and part (b) follows immediately, since $x^{q^n} -x = x^{p^{n \nu }} - x$ is separable by the proof of Theorem 11.1.4.
\ee
\end{proof}
{\bf Theorem 11.2.2 bis.} {\it Let}
$${\mathcal N}'_m = \{f \in \F_q[x]\ |\ f \text{ is monic irreducible over } \F_q \text{ of degree } m\},$$
and $ N'_m = |{\mathcal N}'_m |$.
{\it Then, for any $n\geq 1$, we have
$$\sum_{m\mid n} m N'_m = q^n,$$
where the sum is over all positive divisors of $n$.}
\begin{proof}
Since $x^{q^n} - x$ is separable, we know that it factors as a product of distinct irreducible polynomials in $\F_p[x]$. Furthermore, since it is monic, we can assume that the polynomials in the factorization are also monic. Finally, part (c) of Proposition 11.2.1 bis shows that the polynomials in the factorization are {\it all} monic irreducible polynomials of $\F_p[x]$ whose degree $m$ divides $n$. Thus
$$x^{q^n} -x = \prod_{m\mid n} \prod_{f \in {\mathcal N}'_m} f.$$
Since every $f\in {\mathcal N}_m$ has degree $m$, taking the degree of each side give the desired formula.
\end{proof}
\bigskip
{\bf Theorem 11.2.4 bis.}
The number of monic irreducible polynomials of degree $n$ in $\F_q[x]$ is given by
$$N'_n = \frac{1}{n} \sum_{m\mid n} \mu(m) q^{\frac{n}{m}}.$$
\begin{proof}
Write $F(n) = nN'_n$ ,and $G(n) = \sum_{m\mid n} F(m) = q^n$.
The M\"obius inversion formula gives $F(n) = \sum_{m\mid n} \mu(m) G\left (\frac{n}{m} \right )$. So
$$n N'_n = \sum_{m\mid n} \mu(m) q^{\frac{n}{m}}.$$
\end{proof}
\paragraph{Ex. 11.2.10}
{\it Suppose that a monic polynomial $f\in \F_p[x]$ has a factorization $f = f_1\cdots f_k$, where $f_1,\ldots,f_k$ are distinct monic irreducible polynomials. Let $R = \F_p[x]/\langle f \rangle$, and let $R_i = \F_p[x]/\langle f_i \rangle$ for $i=1,\ldots,k$. Then consider the map
$$\varphi : R \to R_1\times \cdots \times R_k$$
defined by
$$\varphi(g+\langle f \rangle) = (g+ \langle f_1 \rangle, \ldots, g + \langle f_k \rangle).$$
The goal of this exercise is to prove that $\varphi$ is a ring isomorphism when we make $R_1\times \cdots R_k$ into a ring using coordinatewise addition and multiplication.
\be
\item[(a)] Prove that $\varphi$ is a well-defined ring homomorphism.
\item[(b)] Prove that $\varphi$ is one-to-one.
\item[(c)] Show that $R$ and $R_1\times \cdots \times R_k$ have the same dimension when considered as vector spaces over $\F_p$.
\item[(d)] Use the dimension theorem from linear algebra to conclude that $\varphi$ is a ring isomorphism.
\ee
}
\begin{proof}
\be
\item[(a)] Let $g,h \in \F_p[x]$. If $g+ \langle f \rangle = h + \langle f \rangle$, then $f \mid g-h$. Since $f_i \mid f, \ i=1,\ldots,k$, then $f_i \mid g-h$, so $g + \langle f_i \rangle = h + \langle f_i \rangle$. Therefore $\varphi$ is well-defined.
Write $\overline{g} = g+ \langle f \rangle, g \in \F_p[x]$. For all $g,h \in \F_p[x]$,
\begin{align*}
\varphi(\overline{g} +\overline{h}) &= (g+ h +\langle f_1 \rangle, \ldots, g + h + \langle f_k \rangle)\\
&=(g+ \langle f_1 \rangle + h + \langle f_1 \rangle,\ldots, g+ \langle f_k \rangle + h + \langle f_k)\\
&=(g+ \langle f_1 \rangle, \ldots, g + \langle f_k \rangle) + (h+ \langle f_1 \rangle, \ldots, h+ \langle f_k \rangle)\\
&= \varphi(\overline{g}) + \varphi(\overline{h}),
\end{align*}
and similarly
$$\varphi(\overline{g} \, \overline{h}) = \varphi(\overline{g}) \varphi(\overline{h}).$$
Finally $\varphi(1 + \langle f \rangle) = (1 +\langle f_1 \rangle, \ldots, 1+ \langle f_k \rangle)$ is the unit of $R_1\times \cdots \times R_k$ for the product.
So $\varphi$ is a ring homomorphism.
\item[(b)] If $\overline{g} = g + \langle f \rangle \in \ker(\varphi)$, then $(g+ \langle f_1 \rangle, \ldots, g + \langle f_k \rangle) = (0,\ldots,0)$, so $f_1 \mid g, \ldots, f_k \mid g$. Since $f_1,\ldots,f_k$ are distinct monic irreducible polynomials, $f_1,\ldots,f_k$ are relatively prime, therefore $f = f_1\cdots f_k \mid g$. This implies that $\overline{g} = g + \langle f \rangle = \langle f \rangle =\overline{0}$.
$\ker(\varphi) = \{\overline{0}\}$, so $\varphi$ is injective.
\item[(c)] We know that $$\dim R = \dim (\F_p[x]/ \langle f \rangle) = \deg(f),$$ where $\dim R = \dim_{\F_p} R$ is the dimension of $R$ over $\F_p$.
Similarly, since $f =f_1 \cdots f_k$,
\begin{align*}
\dim (R_1\times \cdots \times R_k) &= \dim R_1 + \cdots + \dim R_k\\
&= \deg(f_1) + \cdots + \deg(f_k)\\
&= \deg(f).
\end{align*}
So $$ \dim R = \dim (R_1\times \cdots \times R_k).$$
\item[(d)]Since $\varphi$ is a ring homomorphism and $\varphi(\lambda \overline{g}) = \lambda \varphi (\overline{g}), \lambda \in \F_p, \overline{g} \in R$, $\varphi$ is linear ($\varphi$ is an algebra homomorphism).
$\varphi : R \to R_1\times \cdots \times R_k$ is linear, injective, and $ \dim R = \dim (R_1\times \cdots \times R_k)$, therefore $\varphi$ is bijective. So $\varphi$ is a ring isomorphism.
\ee
\end{proof}
\paragraph{Ex. 11.2.11}
{\it In the situation of Theorem 11.2.9, let $T:R \to R$ be the $p$th-power map, where $R = \F_p[x]/\langle f \rangle$ and $f$ is separable of degree $n$. The goal of this exercise is to prove that the rank of $T - 1_R$ is $n-k$, where $k$ is the number of irreducible factors of $f$ in $\F_p[x]$. We will use the isomorphism
$\varphi:R \simeq R' = R_1\times \cdots \times R_k$ constructed in Exercise 10.
\be
\item[(a)] Let $T' : R' \to R'$ be the map that is the $p$th power on each coordinate. Prove that $\varphi$ induces an isomorphism between the kernel of $T -1_R$ and the kernel of $T'-1_{R'}$.
\item[(b)] Prove that the kernel of $T'-1_{R'}$ has dimension $k$ as a vector space over $\F_p$.
\item[(c)] Prove that $T-1_R$ has rank $n-k$, and use this to give another proof of Theorem 11.2.9.
\ee
}
\begin{proof}
\be
\item[(a)] Let
$$
T' : \left\{
\begin{array}{ccc}
R'& \to & R' \\
y = (g_1+\langle f_1 \rangle , \ldots, g_k+\langle f_k \rangle)& \mapsto & y^p = (g_1^p+\langle f_1 \rangle , \ldots, g_k^p+\langle f_k \rangle)
\end{array}
\right.
$$
We show first that
$$T' = \varphi \circ T \circ \varphi^{-1},$$
which means that the following diagram is commutative:
\begin{center}
\begin{tikzpicture}
\node (A) at (4,3) {$R$};
\node (B) at (6,3) {$R$};
\node (C) at (4,1) {$R'$};
\node (D) at (6,1) {$R'$};
\draw[->] (A) edge node[above]{$T$} (B) ;
\draw[->] (A) edge node [left]{$\varphi $} node[right]{$\simeq$} (C);
\draw[->] (B) edge node [left]{$\varphi $} node[right]{$\simeq$} (D);
\draw[->] (C) edge node[above]{$T'$}(D);
\end{tikzpicture}
\end{center}
Let $y = (g_1+\langle f_1 \rangle , \ldots, g_k+\langle f_k \rangle)$ be any element of $R'$. By Exercise 10, $\varphi$ is bijective, so there exists a unique $x = g + \langle f \rangle \in R$ such that $\varphi(x) = y$. So there exists $g \in \F_p[x]$ such that $(g+ \langle f_1 \rangle, \ldots, g + \langle f_k \rangle) = (g_1+ \langle f_1 \rangle, \ldots, g_k + \langle f_k \rangle)$. We have so proved the Chinese Remainder Theorem: there exists $g \in \F_p[x]$ such that
$$g \equiv g_1 \pmod {f_1}, \ldots, g \equiv g_k \pmod {f_k}.$$
This implies
$$g^p \equiv g_1^p \pmod {f_1}, \ldots, g^p \equiv g_k^p \pmod {f_k},$$
thus
\begin{align*}
(\varphi \circ T \circ \varphi^{-1})(y) &= (\varphi \circ T)(g + \langle f \rangle)\\
&=\varphi( g^p + \langle f \rangle)\\
&= (g^p+\langle f_1 \rangle , \ldots, g^p+\langle f_k \rangle)\\
&= (g_1^p+\langle f_1 \rangle , \ldots, g_k^p+\langle f_k \rangle)\\
&= T'(y).
\end{align*}
Therefore $T' = \varphi \circ T \circ \varphi^{-1}.$
Now we prove that, for all $\overline{g} = g + \langle f \rangle \in R$,
$$T(\overline{g}) = \overline{g} \iff T'(\varphi(\overline{g})) = \varphi(\overline{g}).$$
\be
\item[$\bullet$] If $T(\overline{g}) = \overline{g}$, then
$$T'(\varphi(\overline{g})) = (\varphi \circ T \circ \varphi^{-1}) (\varphi(\overline{g})) = \varphi(T(\overline{g})) = \varphi(\overline{g}).$$
\item[$\bullet$] If $T'(\varphi(\overline{g})) = \varphi(\overline{g})$, then $(\varphi \circ T \circ \varphi^{-1})(\varphi(\overline{g})) = \varphi(\overline{g})$, so $(\varphi \circ T)(\overline{g})=\varphi(T(\overline{g})) = \varphi(\overline{g})$. Since $\varphi$ is bijective, $T(\overline{g}) = \overline{g}$, and the equivalence is proved.
\ee
Thus, if $\overline{g} \in \ker(T-1_R)$, then $T(\overline{g}) = \overline{g}$, $T'(\varphi(\overline{g})) = \varphi(\overline{g})$, $\varphi(\overline{g}) \in \ker(T' - 1_{R'})$.
Conversely, if $y \in \ker(T' - 1_{R'})$, then $y = \varphi(g), g \in R$, so $T'(\varphi(\overline{g}))= \varphi(\overline{g})$, therefore $T(\overline{g}) = \overline{g}$, so $g \in \ker(T - 1_R)$.
We have proved
$$\varphi(\ker(T-1_R)) = \ker(T'-1_{R'}),$$
so $\varphi$ induces an isomorphism between the kernel of $T -1_R$ and the kernel of $T'-1_{R'}$.
\item[(b)] Let $y = (g_1+\langle f_1 \rangle, \dots, g_k + \langle f_k \rangle )$. Then
$$y \in \ker(T'-1_{R'}) \iff f_1 \mid g_1^p -g, \ldots, f_k \mid g_k^p - g_k.$$
Let $T_i : R_i \to R_i$ defined by $T_i(g_i + \langle f_i \rangle) = g_i^p + \langle f_i \rangle$, where $1\leq i \leq k$.
Then $$\ker(T'-1_{R'}) = \ker(T_1-1_{R_1}) \times \cdots \times \ker(T_k-1_{R_k}) .$$
Moreover
$$g_1 \in \ker(T_1 - 1_{R_1}) \iff f_1 \mid g_1^p - g_1.$$
The set of $\alpha \in R_1 = \F_p[x]/\langle f_1 \rangle$ such that $\alpha^p - \alpha = 0$
is a subfield isomorphic to $\F_p$, the prime field $\{[0] + \langle f_1 \rangle, \cdots, [p-1] + \langle f_1 \rangle\}$, whose dimension is 1 as subspace of $R_1$:
$$\dim_{\F_p} \ker(T_1 - 1_{R_1}) = 1.$$
Similarly $\dim_{\F_p} \ker(T_i - 1_{R_i}) = 1$ for $i=1,\ldots,k$. Therefore
$$\dim_{\F_p} \ker(T'-1_{R'}) = k.$$
\item[(c)] By part (a), $\varphi(\ker(T-1_R)) = \ker(T'-1_{R'})$, where $\varphi$ is a vector space isomorphism, thus
$$\dim(\ker(T-1_R)) = \dim \ker(T'-1_{R'}) =k.$$
Therefore, by the Rank Theorem, $T-1_R$ has rank $n-k$.
In particular,
$f$ is irreducible over $\F_p$ $\iff$ $k=1$ $\iff$ $T-1_R$ has rank $n-1$.
This is another proof of Theorem 11.2.9.
\ee
\end{proof}
\paragraph{Ex. 11.2.12}
{\it Let $f \in \F_p[x]$ be monic and separable of degree $n>1$, and assume that $T-1_R$ has rank $\neq n-1$. By theorem 11.2.9, $f$ is reducible. In this exercise, you will use the kernel of $T-1_R$ to produce a nontrivial factorization of $f$.
\be
\item[(a)] Show that the constant polynomials in $\F_p[x]$ give a one-dimensional subset of the kernel of $T-1_R$.
\item[(b)] Prove that there is a nonconstant polynomial $h$ of degree $<n$ such that $f \mid h^p - h$. Parts (c),(d) and (e) will use $h$ to produce a nontrivial factorization of $f$.
\item[(c)] Explain why $h^p-h = \prod_{a\in \F_p} (h-a)$.
\item[(d)] Use parts (b) and (c) to show that $f = \prod_{a\in \F_p} \gcd(f,h-a)$.
\item[(e)] Use $\deg(h)<n$ to show that $f \nmid \gcd(f,h-a)$. Conclude that the factorization of part (d) is nontrivial, i.e., $\gcd(f,h-a)$ is a nonconstant factor of $f$ of degree $<n$ for at least two $a \in \F_p$.
\ee
The basic idea of Berlekamp's algorithm is that one can factor $f$ into irreducibles by taking the gcd's of the nontrivial factors $\gcd(f,h-a)$ produced by part (e) as we vary $h$ and $a$.
}
\begin{proof}
\be
\item[(a)] Let $\alpha = [i] + \langle f \rangle$ be the coset of the constant polynomial $[i] \in \F_p$. Then $(T -1_R)(\alpha) = \alpha^p - \alpha = ([i]^p - [i]) + \langle f \rangle = [0] + \langle f \rangle = \overline{0}$, so $\alpha \in \ker(T-1_R)$.
$$\mathrm{vect}_{\F_p} ([1]+ \langle f \rangle) = \{\alpha \in R\ | \ \exists [i] \in \F_p, \ \alpha = [i] + \langle f \rangle\}$$
is a one-dimensional subspace of the kernel of $T-1_R$, corresponding to the constant polynomials in $\F_p[x]$.
\item[(b)] By part (a), the rank of $T-1_R$ is not $n$, and by hypothesis this rank is not $n-1$, so the rank of $T-1_R$ is less than $n-1$, so the kernel of $T-1_R$ has dimension at least 2.
Therefore there exists a polynomial $h$, with $\deg(h)<n$, such that $\overline{h} = h + \langle f \rangle \in \ker(T-1_R)$ which is not in the one-dimensional subspace of part (a), thus $h$ is not a constant polynomial. Since $h \in \ker(T-1_R)$, $h^p + \langle f \rangle = h + \langle f \rangle$, thus $f \mid h^p-h$.
Conclusion: there is a nonconstant polynomial $h$ of degree $<n$ such that $f \mid h^p - h$.
\item[(c)] In $k[x]$, we know that
$$x^p -x = \prod_{a \in \F_p} (x- a).$$
The formal composition with $h(x)$ gives
$$h^p -h = \prod_{a \in \F_p} (h- a).$$
\item[(d)] We know that if $f_1,\ldots,f_s$ are polynomials in $\F_p[x]$ such that $\gcd(f_i,f_j)=1$ if $i\ne j$, then
$$\gcd(f,f_1\cdots f_s) = \gcd(f,f_1) \cdots \gcd(f,f_s).$$
Take $f_a = h-a \in \F_p[x]$. Then $a \ne b \Rightarrow \gcd(f_a,f_b) = 1$, since $$\frac{1}{b-a} (h-a) - \frac{1}{b-a}(h-b) = 1.$$
Therefore, since $f \mid h^p-h$,
\begin{align*}
f &= \gcd(f,h^p-h)\\
&= \gcd(f, \prod_{a \in \F_p} (h- a))\\
&= \prod_{a \in \F_p} \gcd(f,h-a)
\end{align*}
\item[(e)] Since $\deg(h)<n$, $\deg(h-a)<n$, therefore $\deg(\gcd(f,h-a))<n$. Moreover, since $f \ne 0$, $\deg(\gcd(f,h-a))\geq 0$, so $f$ cannot divide $\gcd(f,h-a)$ when $a \in \F_p$.
Therefore the product $\prod_{a \in \F_p} \gcd(f,h-a)$ has more than one nonconstant factor (if all factors except one are constant, then $f \mid \gcd(f,h-a)$ for some $a \in \F_p$, which is impossible).
So $\gcd(f,h-a)$ is a nonconstant factor of $f$ (and non associate to $f$) for at least two $a\in \F_p$.
\ee
\end{proof}
\paragraph{Ex. 11.2.13}
{\it Consider the polynomial $f = x^6+x^4+x+1 \in \F_2[x]$.
\be
\item[(a)] Use Exercise 11 and the method of Example 11.2.10 to show that $f$ is the product of three irreducible polynomials in $\F_2[x]$. Also find a basis of the kernel of $T-1_R$.
\item[(b)] One element of the kernel is $(0,0,1,1,0,1)$. This corresponds to $h=x^2+x^3+x^5$, since we are using the basis of $R$ given by the cosets of $1,x,\ldots,x^5$. Show that $\gcd(f,h)$ and $gcd(h+1)$ give a non trivial factorization $f=g_1g_2$ as in Exercise 12.
\item[(c)] Pick an element $h'$ of the kernel not in the span of $1$ and $h$. Compute $\gcd(g_i,h')$ and $gcd(g_i,h'+1)$ for $i=1,2$.
\item[(d)] Part (c) should show that $f$ is a product of three nonconstant polynomials. Why is this the irreducible factorization of $f$?
\ee
}
\begin{proof}
\be
\item[(a)] Since $f' = 1$, $\gcd(f,f') = 1$, so $f$ is separable and we can use Berlekamp's algorithm directly.
If we apply $T$ to each element of the basis, then
\begin{align*}
1& \mapsto 1\\
x &\mapsto x^2\\
x^2 &\mapsto x^4\\
x^3 & \mapsto 1+x+x^4\\
x^4 &\mapsto 1+x+x^2+x^3+x^4\\
x^5 &\mapsto 1+x+x^2+x^3+x^5.
\end{align*}
It follows that the matrix $A$ of $T$ relative to the basis $1,x,x^2,x^4,x^4,x^5$ is
$$
A =
\begin{pmatrix}
1&0&0&1&1&1\\
0&0&0&1&1&1\\
0&1&0&0&1&1\\
0&0&0&0&1&1\\
0&0&1&1&1&0\\
0&0&0&0&0&1
\end{pmatrix}
$$
and
$$A-I =
\begin{pmatrix}
0&0&0&1&1&1\\
0&1&0&1&1&1\\
0&1&1&0&1&1\\
0&0&0&1&1&1\\
0&0&1&1&0&0\\
0&0&0&0&0&0
\end{pmatrix}
$$
With Sage : \begin{verbatim} (A-1).rank() \end{verbatim}
we know that the rank of $A-I$ is $3 = 6-3$, so $f$ is the product of 3 irreducible factors.
With Sage : \begin{verbatim} (A-1).right_kernel() \end{verbatim}
we obtain that the kernel of $A-I$ is the span of $v_1,v_2,v_3$, where
\begin{align*}
v_1 &= (1,0,0,0,0,0)\\
v_2 &= (0,0,1,1,0,1)\\
v_3 & = (0,0,0,0,1,1),
\end{align*}
corresponding to the 3 polynomials
\begin{align*}
h_0 &= 1\\
h {\phantom{0}}&= x^2+x^3+x^5\\
h'{\phantom{\,}} &= x^4+x^5
\end{align*}
By exercise 12 (e), $\gcd(f,h-a)$ is a non trivial factor for at least two $a$ in $\F_2$. Since $\F_2$ has only two elements, $\gcd(f,h)$ and $\gcd(f,h-1)$ are two non trivial factors of $f$, and
\begin{align*}
&\gcd(f,h) = \gcd(x^6+x^4+x+1,x^2+x^3+x^5)= x^3+x+1\\
&\gcd(f,h+1) = \gcd(x^6+x^4+x+1,1+x^2+x^3+x^5) = x^3+1