-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainRegression.cc
269 lines (250 loc) · 12 KB
/
trainRegression.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// ROOT HEADERS
#include "TFile.h"
#include "TTree.h"
#include "TCut.h"
#include "TClonesArray.h"
// TMVA HEADERS
#include "TMVA/Factory.h"
#include "TMVA/Tools.h"
// C++ HEADERS
#include <string>
#include <iostream>
#include <sstream>
// DEFINES
#define DEBUG 0
#define USEHT 1
// namespaces
using namespace std;
using namespace TMVA;
int main(int argc, char *argv[])
{
if(DEBUG) cout << "DEBUG: Initialisation: reading parameters" << endl;
cout << "argc= " << argc << endl;
for(int iarg = 0 ; iarg < argc; iarg++)
cout << "argv[" << iarg << "]= " << argv[iarg] << endl;
string syntax = Form("WARNING: Syntax is %s -i (inputfile) -it (inputtree) -o (outputfile) -ox (outputxml) -n (numberOfSplit) -j (treeSplit)", argv[0]);
if( argc == 1 )
{
cerr << "WARNING: Arguments should be passed ! Default arguments will be used" << endl;
cerr << syntax << endl;
}
int nTrainingTrees = 1;
string inputfile = "jetTreeForTraining_m300.root";
string inputtree = "jets";
float w1 = 1.0;
string inputfile2 = "jetTreeForTraining_m500.root";
string inputtree2 = "jets";
float w2 = 1.0;
string inputfile3 = "jetTreeForTraining_m700.root";
string inputtree3 = "jets";
float w3 = 1.0;
string inputfile4 = "jetTreeForTraining_m1000.root";
string inputtree4 = "jets";
float w4 = 1.0;
string outputfile = "regression_test.root";
string outputxml = "test";
int n = 1;
int j = 0;
for(int iarg=0 ; iarg < argc ; iarg++)
{
if(strcmp("-i", argv[iarg]) == 0 && argc >= iarg + 1)
inputfile = argv[iarg+1];
if(strcmp("-i2", argv[iarg]) == 0 && argc >= iarg + 1)
inputfile2 = argv[iarg+1];
if(strcmp("-i3", argv[iarg]) == 0 && argc >= iarg + 1)
inputfile3 = argv[iarg+1];
if(strcmp("-i4", argv[iarg]) == 0 && argc >= iarg + 1)
inputfile4 = argv[iarg+1];
if(strcmp("-it", argv[iarg]) == 0 && argc >= iarg + 1)
inputtree = argv[iarg+1];
if(strcmp("-it2", argv[iarg]) == 0 && argc >= iarg + 1)
inputtree2 = argv[iarg+1];
if(strcmp("-it3", argv[iarg]) == 0 && argc >= iarg + 1)
inputtree3 = argv[iarg+1];
if(strcmp("-it4", argv[iarg]) == 0 && argc >= iarg + 1)
inputtree4 = argv[iarg+1];
if(strcmp("-w1", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> w1; }
if(strcmp("-w2", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> w2; }
if(strcmp("-w3", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> w3; }
if(strcmp("-w4", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> w4; }
if(strcmp("-n", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> n; }
if(strcmp("-j", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> j; }
if(strcmp("-o", argv[iarg]) == 0 && argc >= iarg + 1)
outputfile = argv[iarg+1];
if(strcmp("-ox", argv[iarg]) == 0 && argc >= iarg + 1)
outputxml = argv[iarg+1];
if(strcmp("-ntt", argv[iarg]) == 0 && argc >= iarg + 1)
{ std::stringstream ss ( argv[iarg+1] ); ss >> nTrainingTrees; }
if(strcmp("--help", argv[iarg]) == 0 || strcmp("-h", argv[iarg]) == 0)
{
cerr << "WARNING: Arguments should be passed ! Default arguments will be used" << endl;
cerr << syntax << endl;
cerr << "inputfile= " << inputfile << endl;
cerr << "inputtree= " << inputtree << endl;
cerr << "outputfile= " << outputfile << endl;
cerr << "outputxml= " << outputxml << endl;
return 2;
}
}
cout << "inputfile= " << inputfile << endl;
cout << "inputtree= " << inputtree << endl;
cout << "outputfile= " << outputfile << endl;
cout << "outputxml= " << outputxml << endl;
TFile *infile = TFile::Open(inputfile.c_str());
TTree *intree = (TTree*)infile->Get(inputtree.c_str());
TFile *infile2 = TFile::Open(inputfile2.c_str());
TTree *intree2 = (TTree*)infile2->Get(inputtree2.c_str());
TFile *infile3 = TFile::Open(inputfile3.c_str());
TTree *intree3 = (TTree*)infile3->Get(inputtree3.c_str());
TFile *infile4 = TFile::Open(inputfile4.c_str());
TTree *intree4 = (TTree*)infile4->Get(inputtree4.c_str());
TFile *outfile = new TFile(outputfile.c_str(), "RECREATE");
// TTree *outtree = new TTree(outputxml.c_str(), Form("%s reduced", outputxml.c_str()));
// TFile *infile = TFile::Open("jetTreeForTraining.root");
// TTree *intree = (TTree*)infile->Get("jets");
// TFile *outfile = new TFile("regressionParton2TMVA.root","RECREATE");
// TFile *outfile = new TFile("regressionGen2TMVA_globeinputs.root","RECREATE");
// TMVA::Factory* factory = new TMVA::Factory("factoryJetRegParton2",outfile,"!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression");
TMVA::Factory* factory = new TMVA::Factory(outputxml.c_str(),outfile,"!V:!Silent:Color:DrawProgressBar:AnalysisType=Regression");
int nTrain = 0;
int nTrain2 = 0;
int nTrain3 = 0;
int nTrain4 = 0;
int nTest = 0;
int nTest2 = 0;
int nTest3 = 0;
int nTest4 = 0;
if( n == 1 )
{
factory->AddRegressionTree(intree, w1);
if( nTrainingTrees > 1) factory->AddRegressionTree(intree2, w2);
if( nTrainingTrees > 2) factory->AddRegressionTree(intree3, w3);
if( nTrainingTrees > 3) factory->AddRegressionTree(intree4, w4);
} else {
for(int i = 0 ; i < n ; i++)
{
string selection = Form("(event %% %i == (%i %% %i)) && jet_genDR<0.4 && jet_csvBtag > 0.", n, j+i, n);
if(i == 0)
{
factory->AddRegressionTree( intree->CopyTree(selection.c_str()), w1, TMVA::Types::kTraining );
nTrain = intree->CopyTree(selection.c_str())->GetEntries();
cout << "nTrain= " << nTrain << endl;
if( nTrainingTrees > 1)
{
factory->AddRegressionTree( intree2->CopyTree(selection.c_str()), w2, TMVA::Types::kTraining );
nTrain2 = intree2->CopyTree(selection.c_str())->GetEntries();
cout << "nTrain2= " << nTrain2 << endl;
}
if( nTrainingTrees > 2)
{
factory->AddRegressionTree( intree3->CopyTree(selection.c_str()), w3, TMVA::Types::kTraining );
nTrain3 = intree3->CopyTree(selection.c_str())->GetEntries();
cout << "nTrain3= " << nTrain3 << endl;
}
if( nTrainingTrees > 3)
{
factory->AddRegressionTree( intree4->CopyTree(selection.c_str()), w4, TMVA::Types::kTraining );
nTrain4 = intree4->CopyTree(selection.c_str())->GetEntries();
cout << "nTrain4= " << nTrain4 << endl;
}
nTrain += nTrain2 + nTrain3 + nTrain4;
cout << "nTrain= " << nTrain << endl;
} else if(i == 1) {
factory->AddRegressionTree( intree->CopyTree(selection.c_str()), w1, TMVA::Types::kTesting );
nTest = intree->CopyTree(selection.c_str())->GetEntries();
cout << "nTest= " << nTest << endl;
if( nTrainingTrees > 1)
{
factory->AddRegressionTree( intree2->CopyTree(selection.c_str()), w2, TMVA::Types::kTesting );
nTest2 = intree2->CopyTree(selection.c_str())->GetEntries();
cout << "nTest2= " << nTest2 << endl;
}
if( nTrainingTrees > 2)
{
factory->AddRegressionTree( intree3->CopyTree(selection.c_str()), w3, TMVA::Types::kTesting );
nTest3 = intree3->CopyTree(selection.c_str())->GetEntries();
cout << "nTest3= " << nTest3 << endl;
}
if( nTrainingTrees > 3)
{
factory->AddRegressionTree( intree4->CopyTree(selection.c_str()), w4, TMVA::Types::kTesting );
nTest4 = intree4->CopyTree(selection.c_str())->GetEntries();
cout << "nTest4= " << nTest4 << endl;
}
nTest += nTest2 + nTest3 + nTest4;
cout << "nTest= " << nTest << endl;
/* } else {
factory->AddRegressionTree( intree->CopyTree(selection.c_str()), w1, TMVA::Types::kValidation );
cout << "nEval= " << intree->CopyTree(selection.c_str())->GetEntries() << endl;
if( nTrainingTrees > 1)
factory->AddRegressionTree( intree2->CopyTree(selection.c_str()), w2, TMVA::Types::kValidation );
if( nTrainingTrees > 2)
factory->AddRegressionTree( intree3->CopyTree(selection.c_str()), w3, TMVA::Types::kValidation );
if( nTrainingTrees > 3)
factory->AddRegressionTree( intree4->CopyTree(selection.c_str()), w4, TMVA::Types::kValidation );
*/
}
}
}
// intree->CopyTree(selection.c_str());
factory->AddVariable("jet_pt" , "p_{T}^{j}", "GeV",'F');
factory->AddVariable("jet_eta" , "#eta^{j}", "",'F');
factory->AddVariable("jet_emfrac" , "#epsilon_{EM}^{j}", "", 'F');
factory->AddVariable("jet_nConstituents", "n_{const}^{j}", "", 'I');
factory->AddVariable("jet_hadfrac" , "#epsilon_{HAD}^{j}", "", 'F');
factory->AddVariable("jet_secVtxPt" , "2^{nd}vtx_{p_{T}}", "", 'F');
factory->AddVariable("jet_secVtx3dL" , "2^{nd}vtx_{3dL}", "", 'F');
factory->AddVariable("ev_met_corr_pfmet", "MET", "", 'F');
factory->AddVariable("jet_dPhiMet" , "#Delta #phi(j, MET)", "",'F');
// adding variables for test 06 and above
factory->AddVariable("ev_rho" , "#rho", "GeV",'F');
if( USEHT ) factory->AddVariable("ph1_pt+ph2_pt" , "HT(#gamma#gamma)", "GeV", 'F');
// factory->AddSpectator("ev_weight", 'F');
// factory->SetWeightExpression("ev_weight");
// factory->AddVariable("jet_csvBtag" ,"CSV output", "",'F');
// factory->AddVariable("jet_Chadfrac" ,'F');
// factory->AddVariable("jet_Phofrac" ,'F');
// factory->AddVariable("jet_Nhadfrac" ,'F');
// factory->AddVariable("jet_Elefrac" ,'F');
// factory->AddVariable("jet_Mufrac" ,'F');
// factory->AddVariable("jet_ptD" ,'F');
// factory->AddVariable("jet_secVtx3deL",'F');
//factory->AddVariable("jetE" ,'F');
// factory->AddTarget("jet_prtPt");
factory->AddTarget("jet_genPt");
// TCut preselectionCut("jet_prtDR<0.6 && jet_csvBtag > 0.");
TCut preselectionCut("jet_genDR<0.4 && jet_csvBtag > 0.");
unsigned int nentries = intree->GetEntries(preselectionCut);
cout << "nentries= " << nentries << endl;
cout << "nTrain + nTest = " << nTrain + nTest << endl;
if(DEBUG) cout << "prepare training" << endl;
// factory->PrepareTrainingAndTestTree(preselectionCut,"nTrain_Regression=10000:nTest_Regression=10000");
factory->PrepareTrainingAndTestTree(preselectionCut,"SplitMode=Block:nTrain_Regression=0:nTest_Regression=0");
if(DEBUG) cout << "book method" << endl;
// factory->BookMethod(TMVA::Types::kMLP,"MLP","NCycles=700:HiddenLayers=N,N-1:TestRate=5:TrainingMethod=BFGS:VarTRansform=Norm");
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:nCuts=25"); // default
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:nCuts=-1:PruneStrength=-1:PruneMethod=CostComplexity");
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=1000:nCuts=25:MaxDepth=4"); // TMVA manual, page 110: Currently it looks as if in TMVA, better results for the whole forest are often achieved when pruning is not applied, but rather the maximal tree depth is set to a relatively small value (3 or 4) already during the tree building phase.
// factory->BookMethod(TMVA::Types::kBDT,"BDT",Form("NTrees=%i:nCuts=25:MaxDepth=4", 500)); // test
// factory->BookMethod(TMVA::Types::kBDT,"BDT",Form("NTrees=%i:nCuts=25:MaxDepth=4", 200)); // test02
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:nCuts=25"); // test03 (back to default)
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:nCuts=25:PruneStrength=-1"); // test04
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:nCuts=25:MaxDepth=10"); // test05
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:MaxDepth=-1:PruneStrength=-1"); // test06
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:MaxDepth=-1:PruneStrength=-1:PruneBeforeBoost=True:NNodesMax=4000:SeparationType=RegressionVariance:PruneMethod=CostComplexity"); // test07
// factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=500:MaxDepth=-1:PruneStrength=-1:PruneBeforeBoost=True:NNodesMax=4000:SeparationType=RegressionVariance:PruneMethod=CostComplexity"); // test08
factory->BookMethod(TMVA::Types::kBDT,"BDT","NTrees=200:MaxDepth=-1:PruneStrength=-1:PruneBeforeBoost=True:SeparationType=RegressionVariance:PruneMethod=CostComplexity"); // test09
if(DEBUG) cout << "train" << endl;
factory->TrainAllMethods();
if(DEBUG) cout << "test" << endl;
factory->TestAllMethods();
if(DEBUG) cout << "evaluate" << endl;
factory->EvaluateAllMethods();
return 0;
}