-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_dumpYields.py
executable file
·51 lines (43 loc) · 2.55 KB
/
do_dumpYields.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
from os import path
import ROOT
from ROOT import gROOT, gDirectory
from ROOT import TChain
gROOT.SetBatch()
afs_path = "/afs/cern.ch/work/o/obondu/public/forRadion/plotTrees/"
samples = []
#samples.append( [label, samplePath, treeName, weight] )
samples.append( ["Data v17", "v17/2014-10-21_selection_noRegression_noMassCut_v17/Data_noRegression_noMassCut_v17.root", "Data", "1"] )
samples.append( ["Data v18", "v18/2014-10-22_selection_withRegression_noMassCut_v18/Data_withRegression_noMassCut_v18.root", "Data", "1"] )
samples.append( ["ggHH v17", "v17/2014-10-21_selection_noRegression_noMassCut_v17/ggHH_8TeV_noRegression_noMassCut_v17.root", "ggHH_8TeV", "1"] )
samples.append( ["ggHH v18", "v18/2014-10-22_selection_withRegression_noMassCut_v18/ggHH_8TeV_withRegression_noMassCut_v18.root", "ggHH_8TeV", "1"] )
samples.append( ["diphojet v17", "v17/2014-10-21_selection_noRegression_noMassCut_v17/diphojet_sherpa_8TeV_noRegression_noMassCut_v17.root", "diphojet_sherpa_8TeV", "1"] )
samples.append( ["diphojet v18", "v18/2014-10-22_selection_withRegression_noMassCut_v18/diphojet_sherpa_8TeV_withRegression_noMassCut_v18.root", "diphojet_sherpa_8TeV", "1"] )
samples.append( ["radion300 v17", "v17/2014-10-21_selection_noRegression_noMassCut_v17/Radion_m300_8TeV_noRegression_noMassCut_v17.root", "Radion_m300_8TeV", "1"] )
samples.append( ["radion300 v18", "v18/2014-10-22_selection_withRegression_noMassCut_v18/Radion_m300_8TeV_withRegression_noMassCut_v18.root", "Radion_m300_8TeV", "1"] )
cuts = []
#cuts.append( [cutname, cutstring] )
cuts.append( ["cat0", "njets_kRadionID_and_CSVM == 1"] )
cuts.append( ["cat1", "njets_kRadionID_and_CSVM >= 2"] )
for cutname, cut in cuts:
print "#####", cutname, "#####"
for label, file, tree, weight in samples:
chain = TChain(tree)
chain.Add( path.join(afs_path, file) )
n = 0.
if weight == "" or weight == "1." or weight == "1":
n = chain.GetEntries(cut)
else:
chain.Draw(">>elist", cut, "entrylist")
elist = gDirectory.Get("elist")
listEntries = elist.GetN()
chainEntries = chain.GetEntries()
treenum = 0 # Be careful with this if there is several trees in the chain
chain.SetEntryList(elist)
# print listEntries, chainEntries
for ientry in xrange(listEntries):
ievt = elist.GetEntryAndTree(ientry, ROOT.Long(treenum))
chain.GetEntry( ievt )
n += chain.evweight_w_btagSF
# print file, cut, n
print label, n