-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
32 lines (24 loc) · 853 Bytes
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from parameters import Variables
def average_dictionary(list_of_dicts):
averaged_dict = dict()
for key in list_of_dicts[0]:
if isinstance(list_of_dicts[0][key], dict):
averaged_dict[key] = average_dictionary([dict_[key] for dict_ in list_of_dicts])
elif isinstance(list_of_dicts[0][key], list):
averaged_dict[key] = np.mean([dict_[key] for dict_ in list_of_dicts], axis=0)
else:
averaged_dict[key] = np.mean([dict_[key] for dict_ in list_of_dicts])
return averaged_dict
def average_results(results):
results = {
K : {
r : [result for result in results if result["K"] == K and result["r"] == r] for r in Variables.r.value
} for K in Variables.K.value
}
results = {
K : {
r : average_dictionary(results[K][r]) for r in Variables.r.value
} for K in Variables.K.value
}
return results