-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
170 lines (139 loc) · 4.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import logging
import sys
import os
import pandas as pd
import transformers
import evaluate
import datasets
from arguments import TrainingArguments
from dataset import HandWrittenDataset, KTRDataset
from transformers import (
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
VisionEncoderDecoderModel,
TrOCRProcessor,
HfArgumentParser,
get_scheduler,
default_data_collator,
set_seed,
)
logger = logging.getLogger(__name__)
def create_dataloaders(args):
if not args.handwritten_dataset:
from sklearn.model_selection import train_test_split
df = pd.read_csv(args.csv_path)
train_df, test_df = train_test_split(
df, test_size=args.test_split, random_state=args.seed
)
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
train_dataset = KTRDataset(
root_dir=args.root_dir,
df=train_df,
processor=processor,
max_target_length=args.max_length,
)
eval_dataset = KTRDataset(
root_dir=args.root_dir,
df=test_df,
processor=processor,
max_target_length=args.max_length,
)
return train_dataset, eval_dataset
else:
train_dataset = HandWrittenDataset(
root_dir=args.root_dir,
train=True,
processor=processor,
max_target_length=args.max_length,
test_split=args.test_split,
)
eval_dataset = HandWrittenDataset(
root_dir=args.root_dir,
train=False,
processor=processor,
max_target_length=args.max_length,
test_split=args.test_split,
)
return train_dataset, eval_dataset
parser = HfArgumentParser(TrainingArguments)
args = parser.parse_args()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
# Sanity check
# if the dataset is not handwritten we must have csv_path of the labels
if not args.handwritten_dataset:
assert args.csv_path is not None, "Please provide csv_path"
if args.seed is not None:
set_seed(args.seed)
model = VisionEncoderDecoderModel.from_pretrained(args.model_ckpt)
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
processor = TrOCRProcessor.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
train_dataset, eval_dataset = create_dataloaders(args)
cer_metric = evaluate.load("cer")
wer_metric = evaluate.load("wer")
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"cer": cer, "wer": wer}
trainer = Seq2SeqTrainer(
model=model,
tokenizer=processor.tokenizer,
args=Seq2SeqTrainingArguments(
predict_with_generate=True,
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.valid_batch_size,
num_train_epochs=args.num_train_epochs,
max_steps=args.max_train_steps,
learning_rate=args.learning_rate,
output_dir=args.output_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
lr_scheduler_type=args.lr_scheduler_type,
weight_decay=args.weight_decay,
dataloader_num_workers=8,
warmup_steps=args.num_warmup_steps,
fp16=True,
# bf16=True, # bfloat16 training
torch_compile=True, # optimizations
optim="adamw_torch_fused", # improved optimizer
# logging & evaluation strategies
logging_dir=f"{args.output_dir}/logs",
logging_strategy="steps",
logging_steps=1000,
evaluation_strategy="epoch",
save_strategy="epoch",
save_total_limit=2,
load_best_model_at_end=True,
# report_to="wandb",
push_to_hub=args.push_to_hub,
hub_strategy="end",
hub_model_id=args.model_ckpt,
),
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
)
checkpoint = None
if args.resume_from_checkpoint is not None:
checkpoint = args.resume_from_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()