-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbibliography.bib
950 lines (850 loc) · 32.2 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
@article{Nadaraya1964,
author = {Nadaraya, E. A.},
title = {On Estimating Regression},
journal = {Theory of Probability \& Its Applications},
volume = {9},
number = {1},
pages = {141-142},
year = {1964},
doi = {10.1137/1109020},
}
@Article{Leite2025,
AUTHOR = {Leite, Denis and Andrade, Emmanuel and Rativa, Diego and Maciel, Alexandre M. A.},
TITLE = {Fault Detection and Diagnosis in Industry 4.0: A Review on Challenges and Opportunities},
JOURNAL = {Sensors},
VOLUME = {25},
YEAR = {2025},
NUMBER = {1},
ARTICLE-NUMBER = {60},
URL = {https://www.mdpi.com/1424-8220/25/1/60},
ISSN = {1424-8220},
DOI = {10.3390/s25010060}
}
@misc{Hexagon2024,
note = {[Online; accessed 2025-01-03]},
author = {{Hexagon}},
year = {2024},
month = {mar 7},
title = {98% manufacturers face data woes that stifle innovation and time to market, {Hexagon}\textquoteright{}s report reveals},
howpublished = {https://hexagon.com/company/newsroom/press-releases/2024/98-percent-manufacturers-face-data-woes-that-stifle-innovation-and-time-to-market},
}
@article{Lavet2016,
author = {Vincent Fran{\c{c}}ois{-}Lavet and
Rapha{\"{e}}l Fonteneau and
Damien Ernst},
title = {How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies},
journal = {CoRR},
volume = {abs/1512.02011},
year = {2016},
url = {http://arxiv.org/abs/1512.02011},
eprinttype = {arXiv},
biburl = {https://dblp.org/rec/journals/corr/Francois-LavetF15.bib},
}
%% === ML baselines
@article{liu2020-92ML,
title={Calibration-based tool condition monitoring for repetitive machining operations},
author={Liu, Rui and Kothuru, Achyuth and Zhang, Shuhuan},
journal={Journal of Manufacturing Systems},
volume={54},
pages={285--293},
year={2020},
publisher={Elsevier}
}
@article{niu2020-93ML,
title={Multisensory based tool wear monitoring for practical applications in milling of titanium alloy},
author={Niu, Boya and Sun, Jie and Yang, Bin},
journal={Materials today: proceedings},
volume={22},
pages={1209--1217},
year={2020},
publisher={Elsevier}
}
@article{yang2020-94ML,
title={Vibration singularity analysis for milling tool condition monitoring},
author={Yang, Bin and Guo, Kai and Liu, Jiangwei and Sun, Jie and Song, Ge and Zhu, Shaowei and Sun, Chao and Jiang, Zhenxi and others},
journal={International Journal of Mechanical Sciences},
volume={166},
pages={105254},
year={2020},
publisher={Elsevier}
}
@article{lei2020-95ML,
title={Applications of machine learning to machine fault diagnosis: A review and roadmap},
author={Lei, Yaguo and Yang, Bin and Jiang, Xinwei and Jia, Feng and Li, Naipeng and Nandi, Asoke K},
journal={Mechanical systems and signal processing},
volume={138},
pages={106587},
year={2020},
publisher={Elsevier}
}
@article{zhou2020-96ML,
title={Tool condition monitoring in milling using a force singularity analysis approach},
author={Zhou, Chang’an and Guo, Kai and Sun, Jie and Yang, Bin and Liu, Jiangwei and Song, Ge and Sun, Chao and Jiang, Zhenxi},
journal={The International Journal of Advanced Manufacturing Technology},
volume={107},
pages={1785--1792},
year={2020},
publisher={Springer}
}
@inproceedings{patange2019-23ML,
title={Milling cutter condition monitoring using machine learning approach},
author={Patange, AD and Jegadeeshwaran, R and Dhobale, NC},
booktitle={IOP Conference Series: Materials Science and Engineering},
volume={624},
number={1},
pages={012030},
year={2019},
organization={IOP Publishing}
}
@article{madhusudana2016-64ML,
title={Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal},
author={Madhusudana, CK and Kumar, Hemantha and Narendranath, S},
journal={Engineering science and technology, an international journal},
volume={19},
number={3},
pages={1543--1551},
year={2016},
publisher={Elsevier}
}
@article{ou2020-97ML,
title={A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring},
author={Ou, Jiayu and Li, Hongkun and Huang, Gangjin and Zhou, Qiang},
journal={Sensors},
volume={20},
number={10},
pages={2878},
year={2020},
publisher={MDPI}
}
@inproceedings{IEEE-PHM-2012,
title={PRONOSTIA: an experimental platform for bearings accelarated life test},
author={Nectoux, P and Gouriveau, R and Medjaher, K and Ramasso, E and Morello, B and Zerhouni, N and Varnier, C},
booktitle={Proceedings of the IEEE International Conference on Prognostics and Health Management, Denver, CO, USA},
volume={20},
year={2012}
}
@article{CWRU-2019,
title={CWRU bearing dataset and Gearbox dataset of IEEE PHM Challenge Competition in 2009},
author={Li, Zhenxiang},
journal={IEEE Dataport},
year={2019}
}
@article{Patange2021Review,
note = {[Online; accessed 2024-12-26]},
author = {Patange, Abhishek D. and Jegadeeshwaran, R.},
journal = {Materials Today: Proceedings},
year = {2021},
pages = {1106--1115},
publisher = {Elsevier BV},
title = {Review on tool condition classification in milling: A machine learning approach},
volume = {46},
}
@article{Siraskar2024ML,
note = {[Online; accessed 2024-12-26]},
author = {Siraskar, Rajesh and Kumar, Satish and Patil, Shruti and Bongale, Arunkumar and Kotecha, Ketan},
journal = {MethodsX},
year = {2024},
month = {6},
pages = {102754},
publisher = {Elsevier BV},
title = {Application of the {Nadaraya}-{Watson} Estimator based Attention Mechanism to the Field of Predictive aintenance},
volume = {12},
}
@article{fu2023ML,
title={EdgeCog: a real-time bearing fault diagnosis system based on lightweight edge computing},
author={Fu, Lei and Yan, Ke and Zhang, Yikun and Chen, Ruien and Ma, Zepeng and Xu, Fang and Zhu, Tiantian},
journal={IEEE Transactions on Instrumentation and Measurement},
year={2023},
publisher={IEEE}
}
@article{pandey2023ML,
title={Towards deploying DNN models on edge for predictive maintenance applications},
author={Pandey, Rick and Uziel, Sebastian and Hutschenreuther, Tino and Krug, Silvia},
journal={Electronics},
volume={12},
number={3},
pages={639},
year={2023},
publisher={MDPI}
}
@article{lu2021ML,
title={Kernel-based dynamic ensemble technique for remaining useful life prediction},
author={Lu, Hsuan-Wen and Lee, Chia-Yen},
journal={IEEE Robotics and Automation Letters},
volume={7},
number={2},
pages={1142--1149},
year={2021},
publisher={IEEE}
}
%% REINFORCE lecture
@misc{Matni2019,
author = {Matni, Nikolai},
title = {ESE 680-004: Learning and {Control} - {Lecture} 20: Model {Free} {Methods}},
year = {2019},
publisher = {University of Pennsylvania},
howpublished = {https://nikolaimatni.github.io/courses/ese680-fall2019/scribe-notes/lecture21.pdf},
}
%% === Empirical research
@misc{Politzer2021,
note = {[Online; accessed 2024-12-28]},
author = {Politzer-Ahles, Stephen},
year = {2021},
month = {may 2},
title = {Exploratory vs. confirmatory research},
howpublished = {https://www.polyu.edu.hk/cbs/sjpolit/classes/cbs6442/TypesOfResearchDesigns/exploratory-vs-confirmatory.html},
}
@article{Gamper2017,
note = {[Online; accessed 2024-12-29]},
year = {2017},
author = {Gamper, J.},
journal = {Faculty of Engineering Free University of Bozen-Bolzano},
title = {RESEARCH {METHODS} empirical/experimental {CS} research methods},
howpublished = {https://www.inf.unibz.it/\textasciitilde{}calvanese/teaching/2017-02-PhD-RM/RM-2017-M4-gamper.pdf},
}
@misc{Bouchrika2024,
note = {[Online; accessed 2024-12-26]},
author = {Bouchrika, Imed},
year = {2024},
month = {Nov 19},
title = {What is empirical research? {Definition}, types and samples in 2024},
howpublished = {https://research.com/research/what-is-empirical-research},
}
@Inbook{Germann2023,
author={Germann, Cornel},
title={Methodology and Empirical Research},
bookTitle={Chairperson Succession: Competences, Moderators, and Disclosure},
year={2023},
publisher={Springer Fachmedien Wiesbaden},
address={Wiesbaden},
pages={87--98},
isbn={978-3-658-40817-6},
doi={10.1007/978-3-658-40817-6_5},
url={https://doi.org/10.1007/978-3-658-40817-6_5}
}
@misc{Emerald2021,
note = {[Online; accessed 2024-12-26]},
year = {2021},
title = {Conduct empirical research},
publisher = {Emerald Publishing Limited},
howpublished = {https://www.emeraldgrouppublishing.com/how-to/research-methods/conduct-empirical-research#theoretical-framework},
}
@inbook{DeGroot1969,
url = {https://doi.org/10.1515/9783112313121-003},
title = {The Empirical Cycle In Science},
booktitle = {Methodology: Foundations of inference and research in the behavioral sciences},
author = {Adriaan D. De Groot and Spiekerman J. A. A.},
publisher = {De Gruyter Mouton},
address = {Berlin, Boston},
pages = {1--32},
doi = {doi:10.1515/9783112313121-003},
isbn = {9783112313121},
year = {1969},
lastchecked = {2024-12-28}
}
% ------------------------- 23-Dec-2024 -------------------------
%% === REINFORCE specific
@misc{Jayakody2023REINFORCE,
note = {[Online; accessed 2024-12-23]},
author = {Jayakody, Dilith},
year = {2023},
month = {feb 13},
title = {REINFORCE - {A} quick introduction (with code)},
howpublished = {https://dilithjay.com/blog/reinforce-a-quick-introduction-with-code},
}
%% ===== SUPPORT FOR SIMPLE ALGOS ! =====
@article{mania2018,
title={Simple random search provides a competitive approach to reinforcement learning},
author={Horia Mania and Aurelia Guy and Benjamin Recht},
year={2018},
eprint={1803.07055},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1803.07055},
}
% ------------------------- 22-Dec-2024 -------------------------
%% ===== AutoRL ! =====
@inproceedings{Eimer2023AutoRL,
title={Hyperparameters in reinforcement learning and how to tune them},
author={Eimer, Theresa and Lindauer, Marius and Raileanu, Roberta},
booktitle={International Conference on Machine Learning},
pages={9104--9149},
year={2023},
organization={PMLR}
}
%% ===== Training time =====
@article{Yang2023ReducingTime,
note = {[Online; accessed 2024-12-22]},
author = {Yang, Junjun and Tan, Kaige and Feng, Lei and El-Sherbeeny, Ahmed M. and Li, Zhiwu},
journal = {IEEE Access},
year = {2023},
pages = {59840--59853},
publisher = {{Institute of Electrical and Electronics Engineers (IEEE)}},
title = {Reducing the learning time of reinforcement learning for the supervisory control of discrete event systems},
volume = {11},
}
@misc{Ganeshkumar2020Minimising,
note = {[Online; accessed 2024-12-22]},
author = {Ganeshkumar, M},
year = {2020},
month = {jan 20},
publisher = {National University of Singapore},
title = {Minimising {Processing} {Time} when {Training} {Deep} {Reinforcement} {Learning} {Models}},
}
@misc{Anderlini2019,
note = {[Online; accessed 2024-12-22]},
author = {Anderlini, Enrico},
year = {2019},
month = {dec 13},
title = {Measures to improve computation time with reinforcement learning block in {Simulink}},
howpublished = {https://www.mathworks.com/matlabcentral/answers/496460-measures-to-improve-computation-time-with-reinforcement-learning-block-in-simulink#answer\textunderscore{}412231},
}
%% ===== AutoML =====
@inbook{Tornede2020AutoML,
note = {[Online; accessed 2024-12-21]},
address = {Cham},
author = {Tornede, Tanja and Tornede, Alexander and Wever, Marcel and Mohr, Felix and H{\" u}llermeier, Eyke},
booktitle = {Communications in {Computer} and {Information} {Science}},
year = {2020},
pages = {106--118},
publisher = {Springer International Publishing},
title = {AutoML for Predictive Maintenance: One tool to {RUL} them all},
}
@article{krzywanski2024AutoML,
title={AutoML-based predictive framework for predictive analysis in adsorption cooling and desalination systems},
author={Krzywanski, Jaroslaw and Sztekler, Karol and Skrobek, Dorian and Grabowska, Karolina and Ashraf, Waqar Muhammad and Sosnowski, Marcin and Ishfaq, Kashif and Nowak, Wojciech and Mika, Lukasz},
journal={Energy Science \& Engineering},
volume={12},
number={5},
pages={1969--1986},
year={2024},
publisher={Wiley Online Library}
}
@article{OLeary2023AutoML,
title={A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection.},
author={O'Leary, Christian and Toosi, Farshad Ghassemi and Lynch, Conor},
journal={ICAART (3)},
pages={421--433},
year={2023}
}
@article{Thessen2016,
author = {Anne E Thessen},
title = {Adoption of Machine Learning Techniques in Ecology and Earth Science},
volume = {1},
number = {},
year = {2016},
doi = {10.3897/oneeco.1.e8621},
publisher = {Pensoft Publishers},
abstract = {},
issn = {},
pages = {e8621},
URL = {https://doi.org/10.3897/oneeco.1.e8621},
eprint = {https://doi.org/10.3897/oneeco.1.e8621},
journal = {One Ecosystem}
}
% ------------------------- 29-Sept-2023 -------------------------
@article{autorl:parker2022,
title={Automated Reinforcement Learning (AutoRL): A Survey and Open Problems},
author={Parker-Holder, Jack and Rajan, Raghu and Song, Xingyou and Biedenkapp, Andr{\'e} and Miao, Yingjie and Eimer, Theresa and Zhang, Baohe and Nguyen, Vu and Calandra, Roberto and Faust, Aleksandra and others},
journal={Journal of Artificial Intelligence Research},
volume={74},
pages={517--568},
year={2022},
}
@article{sayyad2023,
title={Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time--Frequency-Based Features and Deep Learning Models},
author={Sayyad, Sameer and Kumar, Satish and Bongale, Arunkumar and Kotecha, Ketan and Abraham, Ajith},
journal={Sensors},
volume={23},
number={12},
pages={5659},
year={2023},
publisher={MDPI}
}
@inproceedings{andrychowicz2021matters,
title={What Matters for On-Policy Deep Actor-Critic Methods? a Large-Scale Study},
author={Andrychowicz, Marcin and Raichuk, Anton and Sta{\'n}czyk, Piotr and Orsini, Manu and Girgin, Sertan and Marinier, Rapha{\"e}l and Hussenot, Leonard and Geist, Matthieu and Pietquin, Olivier and Michalski, Marcin and others},
booktitle={International conference on learning representations},
year={2021}
}
@inproceedings{autorl:shala2022,
title={Auto{RL}-Bench 1.0},
author={Gresa Shala and Sebastian Pineda Arango and Andr{\'e} Biedenkapp and Frank Hutter and Josif Grabocka},
booktitle={Sixth Workshop on Meta-Learning at the Conference on Neural Information Processing Systems},
year={2022},
url={https://openreview.net/forum?id=RyAl60VhTcG}
}
@article{autorl:afshar2022,
title={Automated reinforcement learning: An overview},
author={Afshar, Reza Refaei and Zhang, Yingqian and Vanschoren, Joaquin and Kaymak, Uzay},
journal={arXiv preprint},
year={2022}
}
% -------------------------
@inproceedings{hardt2016,
title={Train faster, generalize better: Stability of stochastic gradient descent},
author={Hardt, Moritz and Recht, Ben and Singer, Yoram},
booktitle={International conference on machine learning},
pages={1225--1234},
year={2016},
organization={PMLR}
}
@article{song2019,
title={Observational overfitting in reinforcement learning},
author={Song, Xingyou and Jiang, Yiding and Tu, Stephen and Du, Yilun and Neyshabur, Behnam},
journal={arXiv preprint arXiv:1912.02975},
year={2019}
}
% -------------------------------------------------------------------------------------------------
% REINFORCE convergence issues
% -------------------------------------------------------------------------------------------------
@inproceedings{zhang2021sample,
title={Sample efficient reinforcement learning with REINFORCE},
author={Zhang, Junzi and Kim, Jongho and O'Donoghue, Brendan and Boyd, Stephen},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
volume={35},
number={12},
pages={10887--10895},
year={2021}
}
@article{zhang2021convergence,
title={On the convergence and sample efficiency of variance-reduced policy gradient method},
author={Zhang, Junyu and Ni, Chengzhuo and Szepesvari, Csaba and Wang, Mengdi and others},
journal={Advances in Neural Information Processing Systems},
volume={34},
pages={2228--2240},
year={2021}
}
@article{peck2019,
title={A Review of REINFORCE Algorithms},
author={Peck, Ryan and Renaux, Louis},
year={2019}
}
% -------------------------------------------------------------------------------------------------
% AutoML
% -------------------------------------------------------------------------------------------------
@article{AutoML-Hadi,
Author = {Hadi, Russul H. and Hady, Haider N. and Hasan, Ahmed M. and Al-Jodah,
Ammar and Humaidi, Amjad J.},
Title = {Improved Fault Classification for Predictive Maintenance in Industrial IoT Based on AutoML: A Case Study of Ball-Bearing Faults},
Journal = {PROCESSES},
Year = {2023},
Volume = {11},
Number = {5},
Month = {MAY 15},
DOI = {10.3390/pr11051507},
Article-Number = {1507},
}
@article{AutoML-Maurer,
Author = {Maurer, Matthias and Festl, Andreas and Bricelj, Bor and Schneider,
Germar and Schmeja, Michael},
Title = {AutoML for Log File Analysis (ALFA) in a Production Line System of
Systems pointed towards Predictive Maintenance},
Journal = {INFOCOMMUNICATIONS JOURNAL},
Year = {2021},
Volume = {13},
Number = {3},
Pages = {76-84},
Month = {SEP},
DOI = {10.36244/ICJ.2021.3.8},
}
@incollection{AutoML-Tornede,
Author = {Tornede, Tanja and Tornede, Alexander and Wever, Marcel and
Huellermeier, Eyke},
Book-Group-Author = {ACM},
Title = {Coevolution of Remaining Useful Lifetime Estimation Pipelines for
Automated Predictive Maintenance},
Booktitle = {PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE
(GECCO'21)},
Year = {2021},
Pages = {368-376},
DOI = {10.1145/3449639.3459395},
Keywords = {Coevolution; AutoML; Predictive Maintenance; Remaining Useful Lifetime},
Unique-ID = {WOS:000773791800045},
}
@article{AutoML-Cinar,
Author = {Cinar, Eyup and Kalay, Sena and Saricicek, Inci},
Title = {A Predictive Maintenance System Design and Implementation for
Intelligent Manufacturing},
Journal = {MACHINES},
Year = {2022},
Volume = {10},
Number = {11},
Month = {OCT 31},
DOI = {10.3390/machines10111006},
Article-Number = {1006},
Keywords = {automated machine learning (AutoML); cyber-physical systems (CPSs); data
augmentation; key performance indicators (KPIs); predictive maintenance
(PdM)},
Unique-ID = {WOS:000908038000001},
}
@article{AutoML-Ferreira,
Author = {Ferreira, Luis and Pilastri, Andre and Romano, Filipe and Cortez, Paulo},
Title = {Using supervised and one-class automated machine learning for predictive
maintenance},
Journal = {APPLIED SOFT COMPUTING},
Year = {2022},
Volume = {131},
Month = {DEC},
DOI = {10.1016/j.asoc.2022.109820},
EarlyAccessDate = {NOV 2022},
Article-Number = {109820},
Keywords = {Automated machine learning; Predictive maintenance; Supervised learning;
One -class learning},
Keywords-Plus = {EFFICIENT},
Unique-ID = {WOS:000895447300004},
}
@incollection{AutoML-Larocque,
Author = {Larocque-Villiers, Justin and Dumond, Patrick and Knox, David},
Book-Group-Author = {IEEE},
Title = {Automating Predictive Maintenance Using State-Based Transfer Learning
and Ensemble Methods},
Booktitle = {2021 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS
(ROSE 2021)},
Year = {2021},
DOI = {10.1109/ROSE52750.2021.9611768},
Keywords = {AutoML; Unsupervised Learning; Signal Processing; Transfer Learning;
Meta-Learning; Ensemble Learning},
Unique-ID = {WOS:000784140000011},
}
@incollection{AutoML-Rivas,
Author = {Rivas, Jannery and Boya-Lara, Carlos and Poveda, Hector},
Book-Group-Author = {IEEE},
Title = {Partial discharge detection in power lines using automated machine
learning},
Booktitle = {2022 8TH INTERNATIONAL ENGINEERING, SCIENCES AND TECHNOLOGY CONFERENCE,
IESTEC},
Year = {2022},
Pages = {223-230},
DOI = {10.1109/IESTEC54539.2022.00041},
Keywords = {partial discharge; detection; machine learning; AutoML; power lines},
Keywords-Plus = {IDENTIFICATION; CLASSIFICATION},
Unique-ID = {WOS:000986616400032},
}
@article{AutoML-Zarate,
Author = {Enriquez Zarate, Josue and Gomez Lopez, Maria de los Angeles and Carmona
Troyo, Javier Alberto and Trujillo, Leonardo},
Title = {Analysis and Detection of Erosion in Wind Turbine Blades},
Journal = {MATHEMATICAL AND COMPUTATIONAL APPLICATIONS},
Year = {2022},
Volume = {27},
Number = {1},
Month = {FEB},
DOI = {10.3390/mca27010005},
Article-Number = {5},
Keywords = {wind energy; wind turbine blades; erosion; modal analysis; aerodynamic
analysis; AutoML},
Unique-ID = {WOS:000762715100001},
}
@article{AutoML-Garouani,
Author = {Garouani, Moncef and Ahmad, Adeel and Bouneffa, Mourad and Hamlich,
Mohamed and Bourguin, Gregory and Lewandowski, Arnaud},
Title = {Towards big industrial data mining through explainable automated machine
learning},
Journal = {INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY},
Year = {2022},
Volume = {120},
Number = {1-2},
Pages = {1169-1188},
Month = {MAY},
DOI = {10.1007/s00170-022-08761-9},
EarlyAccessDate = {FEB 2022},
Keywords = {Machine learning; AutoML; Explainable AI; Data analysis;
Decision-support systems; Industry 4; 0},
Keywords-Plus = {HYPERPARAMETER OPTIMIZATION},
Unique-ID = {WOS:000753286400002},
}
% -------------------------------------------------------------------------------------------------
@misc{Krishna2020,
author = {Velivela, Krishna and Yarram, Sudhir},
title = {Comparison of Reinforcement Learning Algorithms},
month = {Dec},
year = {2020},
publisher={Department of Computer Science and Engineering, University at Buffalo}
}
@inproceedings{sandeep2022experimental,
title={Experimental Evaluation of Reinforcement Learning Algorithms},
author={Sandeep Varma, N and Sinha, Vaishnavi and Pradyumna Rahul, K},
booktitle={International Conference on Computational Intelligence and Data Engineering},
pages={469--484},
year={2022},
organization={Springer}
}
@inproceedings{ford2022cognitive,
title={Cognitive radar mode control: a comparison of different reinforcement learning algorithms},
author={Ford, SA and Ritchie, M},
booktitle={International Conference on Radar Systems (RADAR 2022)},
volume={2022},
pages={107--112},
year={2022},
organization={IET}
}
@article{dulac2021,
title={Challenges of real-world reinforcement learning: definitions, benchmarks and analysis},
author={Dulac-Arnold, Gabriel and Levine, Nir and Mankowitz, Daniel J and Li, Jerry and Paduraru, Cosmin and Gowal, Sven and Hester, Todd},
journal={Machine Learning},
volume={110},
number={9},
pages={2419--2468},
year={2021},
publisher={Springer}
}
@inproceedings{henderson2018deep,
title={Deep Reinforcement Learning that Matters},
author={Henderson, Peter and Islam, Riashat and Bachman, Philip and Pineau, Joelle and Precup, Doina and Meger, David},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
volume={32},
number={1},
year={2018}
}
@inproceedings{duan2016benchmarking,
title={Benchmarking deep reinforcement learning for continuous control},
author={Duan, Yan and Chen, Xi and Houthooft, Rein and Schulman, John and Abbeel, Pieter},
booktitle={International conference on machine learning},
pages={1329--1338},
year={2016},
organization={PMLR}
}
@article{dulac2020empirical,
title={An empirical investigation of the challenges of real-world reinforcement learning},
author={Dulac-Arnold, Gabriel and Levine, Nir and Mankowitz, Daniel J and Li, Jerry and Paduraru, Cosmin and Gowal, Sven and Hester, Todd},
journal={arXiv preprint arXiv:2003.11881},
year={2020}
}
@article{dasic2006,
title={Analysis of Wear Cutting Tools by Complex Power-Exponential Function for Finishing Turning of the Hardened Steel 20crmo5 by Mixed Ceramic Tools},
author={Da{\v{s}}i{\'c}, Predrag},
journal={Fascicle VIII Tribology},
volume={12},
pages={54--60},
year={2006}
}
@book{graesser2019,
title={Foundations of deep reinforcement learning},
author={Graesser, Laura and Keng, Wah Loon},
year={2019},
publisher={Addison-Wesley Professional}
}
@article{mnih2015DQN,
title={Human-level control through deep reinforcement learning},
author={Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, Marc G and Graves, Alex and Riedmiller, Martin and Fidjeland, Andreas K and Ostrovski, Georg and others},
journal={nature},
volume={518},
number={7540},
pages={529--533},
year={2015},
publisher={Nature Publishing Group}
}
@inproceedings{riedmiller2005neural,
title={Neural fitted Q iteration--first experiences with a data efficient neural reinforcement learning method},
author={Riedmiller, Martin},
booktitle={Machine Learning: ECML 2005: 16th European Conference on Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16},
pages={317--328},
year={2005},
organization={Springer}
}
@misc{OpenAI-baselines,
author = {Dhariwal, Prafulla and Hesse, Christopher and Klimov, Oleg and Nichol, Alex and Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu, Yuhuai and Zhokhov, Peter},
title = {OpenAI Baselines},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/openai/baselines}},
}
@article{REINFORCE-williams1992,
title={Simple statistical gradient-following algorithms for connectionist reinforcement learning},
author={Williams, Ronald J},
journal={Reinforcement learning},
pages={5--32},
year={1992},
publisher={Springer}
}
@inproceedings{A2C-mnih2016,
title={Asynchronous methods for deep reinforcement learning},
author={Mnih, Volodymyr and Badia, Adria Puigdomenech and Mirza, Mehdi and Graves, Alex and Lillicrap, Timothy and Harley, Tim and Silver, David and Kavukcuoglu, Koray},
booktitle={International conference on machine learning},
pages={1928--1937},
year={2016},
organization={PMLR}
}
@inproceedings{TRPO-schulman2015,
title={Trust region policy optimization},
author={Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan, Michael and Moritz, Philipp},
booktitle={International conference on machine learning},
pages={1889--1897},
year={2015},
organization={PMLR}
}
@article{DQN-mnih2013,
title={Playing atari with deep reinforcement learning},
author={Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Graves, Alex and Antonoglou, Ioannis and Wierstra, Daan and Riedmiller, Martin},
journal={arXiv preprint arXiv:1312.5602},
year={2013}
}
@article{PPO-schulman2017,
title={Proximal policy optimization algorithms},
author={Schulman, John and Wolski, Filip and Dhariwal, Prafulla and Radford, Alec and Klimov, Oleg},
journal={arXiv preprint arXiv:1707.06347},
year={2017}
}
@book{barto2018,
author={Richard Sutton and Andrew Barto},
year={2018},
title={Reinforcement Learning: An Introduction},
publisher={The MIT Press},
address={Cambridge, England},
edition={2nd. edition}
}
@misc{PHM-dataset,
doi = {10.21227/jdxd-yy51},
url = {https://dx.doi.org/10.21227/jdxd-yy51},
author = {Li, Xinghui},
publisher = {IEEE Dataport},
title = {2010 PHM Society Conference Data Challenge},
year = {2021}
}
@misc{NUAA-dataset,
doi = {10.21227/3aa1-5e83},
url = {https://dx.doi.org/10.21227/3aa1-5e83},
author = {Yingguang, LI and Changqing, LIU and Dehua, LI and Jiaqi, HUA and Peng, WAN},
publisher = {IEEE Dataport},
title = {Tool wear dataset of NUAA Ideahouse},
year = {2021}}
@inproceedings{dai2021reinforcement,
title={Reinforcement lion swarm optimization algorithm for tool wear prediction},
author={Dai, Zixiang and Jiang, Mingyan and Li, Xiaogang and Yuan, Dongfeng and Zhou, Xiaotian},
booktitle={2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)},
pages={1--7},
year={2021},
organization={IEEE}
}
@article{oshida2023development,
title={Development and implementation of real-time anomaly detection on tool wear based on stacked LSTM encoder-decoder model},
author={Oshida, Taisuke and Murakoshi, Tomohiro and Zhou, Libo and Ojima, Hirotaka and Kaneko, Kazuki and Onuki, Teppei and Shimizu, Jun},
journal={The International Journal of Advanced Manufacturing Technology},
pages={1--16},
year={2023},
publisher={Springer}
}
# Brian Duignan - Britannica
@misc{occams-razor,
author = {Britannica},
year = {2022},
title = {Occam's razor},
url = {https://www.britannica.com/topic/Occams-razor},
publisher = {Encyclopaedia Britannica},
note = {Accessed: 2023-06-23}
}
@misc{milling-market,
author = {{Future Market Insights}},
year = {2023},
month = {1},
title = {Milling Machine Market Outlook (2023 to 2033)},
url = {https://www.futuremarketinsights.com/reports/milling-machine-market},
publisher = {Future Market Insights, Inc.},
note = {Accessed: 2023-06-23}
}
@article{SB3-paper,
author = {Raffin, Antonin and Hill, Ashley and Gleave, Adam and Kanervisto, Anssi and Ernestus, Maximilian and Dormann, Noah},
title = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
year = {2021},
issue_date = {January 2021},
publisher = {JMLR.org},
volume = {22},
number = {1},
issn = {1532-4435},
journal = {J. Mach. Learn. Res.},
month = {jan},
articleno = {268},
numpages = {8},
}
@misc{SB3-algorithms,
title = {Stable-Baselines3 - Master list of algorithms},
author = {{SB3-Algorithms}},
year={2022},
url = {https://stable-baselines3.readthedocs.io/en/master/guide/algos.html},
note = {Accessed: 2023-06-27}
}
@misc{SB3-home,
title = {Stable-Baselines3 Docs - Reliable Reinforcement Learning Implementations},
url = {https://stable-baselines3.readthedocs.io/en/master/index.html},
note = {Accessed: 2023-05-14},
}
@misc{SB3-DefaultNetwork,
title = {Stable-Baselines3 - Default Network Architecture},
author = {{SB3-Default Network Architecture}},
year={2022},
url = {https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#default-network-architecture},
note = {Accessed: 2023-06-27}
}
@article{SB3-PPO-implementation,
author = {Huang, Shengyi; Dossa, Rousslan Fernand Julien; Raffin, Antonin; Kanervisto, Anssi; Wang, Weixun},
title = {The 37 Implementation Details of Proximal Policy Optimization},
year = {2022},
month = {March},
day = {25},
publisher = {},
note = {Accessed: 2023-06-27}
}
@article{siraskar2023,
title={Reinforcement learning for predictive maintenance: a systematic technical review},
author={Siraskar, Rajesh and Kumar, Satish and Patil, Shruti and Bongale, Arunkumar and Kotecha, Ketan},
journal={Artificial Intelligence Review},
pages={1--63},
year={2023},
publisher={Springer}
}
% Scopus - ML for milling machine predictive maintenance
@ARTICLE{Twardowski2023,
author = {Twardowski, Paweł and Czyżycki, Jakub and Felusiak-Czyryca, Agata and Tabaszewski, Maciej and Wiciak-Pikuła, Martyna},
title = {Monitoring and forecasting of tool wear based on measurements of vibration accelerations during cast iron milling},
year = {2023},
journal = {Journal of Manufacturing Processes},
volume = {95},
pages = {342 – 350},
doi = {10.1016/j.jmapro.2023.04.036},
}
@ARTICLE{Denkena2023,
author = {Denkena, Berend and Klemme, Heinrich and Stiehl, Tobias H.},
title = {Tool Wear Monitoring Using Process Data of Multiple Machine Tools by Means of Machine Learning},
year = {2023},
journal = {ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb},
volume = {118},
number = {5},
pages = {298 – 301},
doi = {10.1515/zwf-2023-1059},
}
@ARTICLE{Qin2023,
author = {Qin, Bo and Wang, Yongqing and Liu, Kuo and Jiang, Shaowei and Luo, Qi},
title = {A novel online tool condition monitoring method for milling titanium alloy with consideration of tool wear law},
year = {2023},
journal = {Mechanical Systems and Signal Processing},
volume = {199},
doi = {10.1016/j.ymssp.2023.110467},
}
@ARTICLE{Qiang2023,
author = {Qiang, Biyao and Shi, Kaining and Liu, Ning and Ren, Junxue and Shi, Yaoyao},
title = {Integrating physics-informed recurrent Gaussian process regression into instance transfer for predicting tool wear in milling process},
year = {2023},
journal = {Journal of Manufacturing Systems},
volume = {68},
pages = {42 – 55},
doi = {10.1016/j.jmsy.2023.02.019},
}
@ARTICLE{Panzer2021,
title={Deep reinforcement learning in production systems: a systematic literature review},
author={Panzer, Marcel and Bender, Benedict},
journal={International Journal of Production Research},
year={2021},
publisher={Taylor and Francis}
}
@ARTICLE{Erhan2021,
author={Erhan, L. and Ndubuaku, M. and Di Mauro, M. and Song, W. and Chen, M. and Fortino, G. and Bagdasar, O. and Liotta, A.},
title={Smart anomaly detection in sensor systems: A multi-perspective review},
journal={Information Fusion},
year={2021},
volume={67},
pages={64-79},
doi={10.1016/j.inffus.2020.10.001},
publisher={Elsevier B.V.},
}