Skip to content

RajeshSiraskar-PhD/IRL_for_PdM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reinforcement Learning for Predictive Maintenance

Important notes for Thesis and Presentation

  • Only raw features. NO derived features like Dr Sameer Sayyad.
  • Proof of generalization:
    • Fundamentally different datasets - material, sensors etc.
    • Features are different

Important implementation notes

  • Rewards for NUAA and PHM similar range: Keep number of records similar - bout 1000
  • RUL value threshold should have some value and not 0

Approach: PhD Thesis work

V.1.0 11-Oct-2024:

  • Create two environments: PHM and NUAA

  • To demonstrate robustness - Use multiple data sets from each 3 + 3 = 6

  • Additional: Add noise and Break-down

  • Publish results

  • NUAA

Notes:

Environment:

  • Only raw features. NO derived features like Dr Sameer Sayyad.
    high = np.array(  [
        1.0,          # Max. force_x
        1.0,          # Max. force_y
        1.0,          # Max. force_z
        1.0,          # Max. vibration_x
        1.0,          # Max. vibration_y
        1.0,          # Max. vibration_z                
    ], dtype=np.float32,) 
PHM Uniwear
time time
force_x axial_force
force_y
force_z force_z
vibration_x vibration_x
vibration_y vibration_y
vibration_z vibration1
vibration2
tool_wear tool_wear
Dataset Workpiece Tool
PHM2010 Stainless steel (HRC52) Tungsten Carbide
NUAA Titanium (TC4) Solid Carbide

About

Inverse RL for Predictive Maintenance

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published