Skip to content

RaineyAbe/CraneGlacier_flowlinemodeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Crane Glacier flowline modeling

Code package used to model Crane Glacier response to the 2002 Larsen B ice shelf collapse and sensitivities to future changes in climate.


Citation

Aberle R, Enderlin EM, Marshall H-P, Kopera M, Meehan TG (2023). Assessing controls on ice dynamics at Crane Glacier, Antarctic Peninsula, using a numerical ice flow model. Journal of Glaciology 69(277), 1109–1124. https://doi.org/10.1017/jog.2023.2


Estimated conditions along the glacier centerline (1994-2018):

drawing

Modeling results under unchanging climate conditions with varying fresh water depth in crevasses (d_fw) and climate perturbations for surface mass balance (SMB) and ocean thermal forcing (F_T) (1994-2100):

drawing

drawing


Correspondence

Rainey Aberle (raineyaberle@u.boisestate.edu)


Workflows:

  • steady-state-initial: tune the model by simulating the pre-ice shelf collapse conditions until reaching a steady state criterion, the ice shelf collapse (remove all back stress), and run the model forward until 2100 with a range of future climate conditions.
  • dynamic-initial-UNTESTED: (not recommended) tune the model to produce post-collapse conditions 2009-2018, then run the model forward until 2100 with a range a future changes in climate conditions.

Order of operations:

  • Synthesize observations and modeled conditions: a_centerline_observations.m, b_glacier_width.mlx, c_downscale_RACMO.m, d_rate_factor.m, e_cumulative_strain.m, f_LarsenC_melt.m
  • Save conditions to initialize model: g_save_initialization.m
  • Run model simulations: h_collapse_simulation.m

Extracted data:

To access observational data and model outputs averaged across the glacier width, see inputs-outputs/.

  • Centerline observations: all files with the observed_*.mat file name structure.
  • Model outputs: all files with the modeled_*.mat file name structure.
  • Other:
    • Crane_centerline.mat: delineated glacier centerline coordinates (Antarctic polar stereographic)
    • downscaled_RACMO_variables_2009-2019.mat: RACMO2.3 model outputs for snowmelt, snowfall, runoff, and surface mass balance (SMB) interpolated to the glacier centerline and downscaled using statistical methods described by Noël et al. (2016)
    • Tributary*.mat: estimated mass flux from glacier tributaries to the main trunk

Modeling results:

See workflows/steady-state-initial/results.

  • 1_SMB_DFW_TF: results in model year 2100 for the range of SMB, freshwater depth in crevasses (DFW), and ocean thermal forcing (TF) perturbations applied independently.
  • 2_SMB_enh: results in model year 2100 for SMB plus surface meltwater runoff-enhanced submarine melt (SMB_enh).
  • 3_SMB_enh+TF: results in model year 2100 for concurrent SMB_enh and TF perturbations.

Figures:

See figures/ for figures used in manuscript and otherwise.


Datasets not included in this repository which are used in the workflow

Velocities:

  • NASA ITS_LIVE (1999-2018) (Gardner et al., 2021): NSIDC
  • ERS-derived (1994-5) (Wuite et al., 2015): obtained through direct correspondence

Surface elevations:

Terminus positions:

Bed elevation:

  • NASA OIB L1B, manually digitized bed picks using the CReSIS toolbox (Paden et al., 2014): NSIDC

Modeled climate conditions:

  • RACMO v2.3 (Van Wessem et al., 2015; Lenaerts et al., 2018): obtained through direct correspondence with faculty and staff at Utrecht University

References

Dryak, M. C., and Enderlin, E. M. (2020). Analysis of Antarctic Peninsula glacier frontal ablation rates with respect to iceberg melt-inferred variability in ocean conditions. Journal of Glaciology. 66(257): 457-470. https://doi.org/10.1017/JOG.2020.21

Gardner, A. S., M. A. Fahnestock, and Scambos, T. A. (2021). MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities: Version 1. https://doi.org/10.5067/IMR9D3PEI28U

Gesch, D. B., Verdin, K. L., and Greenlee, S. K. (1999). New land surface digital elevation model covers the Earth. Eos Trans. AGU. 80(6), 69–70, https://doi.org/10.1029/99EO00050

Lenaerts, J., Ligtenberg, S., Medley, B., Van de Berg, W., Konrad, H., Nicolas, J., Van Wessem, J., Trusel, L., Mulvaney, R., Tuckwell, R., and others (2018). Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. 59(76pt1): 29-41. Annals of Glaciology. http://doi.org/10.1017/aog.2017.42

Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F. and Hale, R. (2010). Icebridge mcords l2 ice thickness, version 1. https://doi.org/63710.5067/GDQ0CUCVTE2Q

Paden, J., Li, J., Leuschen, C., Rodriguez-Morales, F. and Hale, R. (2014). Icebridge mcords l1b geolocated radar echo639strength profiles, version 2. https://doi.org/10.5067/90S1XZRBAX5N

Noël, B., Jan Van De Berg, W., MacHguth, H., Lhermitte, S., Howat, I., Fettweis, X. and Van Den Broeke, M.R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). 10(5), 2361–2377. The Cryosphere. https://doi.org/10.5194/tc-10-2361-2016

Van Wessem, J., Berg, V. D., Broeke, V. D., and Meijgaard, V. (2015). The modelled surface mass balance of the {Antarctic} {Peninsula} at 5.5 km horizontal resolution. 9, 5097–5136. The Cryosphere Discussions. http://doi.org/10.5194/tcd-9-5097-2015

Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., and Kern, M. (2015). Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. 9(3): 957-969. The Cryosphere. https://doi.org/10.5194/tc-9-957-2015

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published