-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathsgl.py
233 lines (182 loc) · 9.82 KB
/
sgl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
# @Time : 2022/3/8
# @Author : Changxin Tian
# @Email : cx.tian@outlook.com
r"""
SGL
################################################
Reference:
Jiancan Wu et al. "SGL: Self-supervised Graph Learning for Recommendation" in SIGIR 2021.
Reference code:
https://github.com/wujcan/SGL
"""
import numpy as np
import torch
import torch.nn.functional as F
from torch_geometric.utils import degree
from recbole.model.init import xavier_uniform_initialization
from recbole.model.loss import EmbLoss
from recbole.utils import InputType
from recbole_gnn.model.abstract_recommender import GeneralGraphRecommender
from recbole_gnn.model.layers import LightGCNConv
class SGL(GeneralGraphRecommender):
r"""SGL is a GCN-based recommender model.
SGL supplements the classical supervised task of recommendation with an auxiliary
self supervised task, which reinforces node representation learning via self-
discrimination.Specifically,SGL generates multiple views of a node, maximizing the
agreement between different views of the same node compared to that of other nodes.
SGL devises three operators to generate the views — node dropout, edge dropout, and
random walk — that change the graph structure in different manners.
We implement the model following the original author with a pairwise training mode.
"""
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(SGL, self).__init__(config, dataset)
# load parameters info
self.latent_dim = config["embedding_size"]
self.n_layers = int(config["n_layers"])
self.aug_type = config["type"]
self.drop_ratio = config["drop_ratio"]
self.ssl_tau = config["ssl_tau"]
self.reg_weight = config["reg_weight"]
self.ssl_weight = config["ssl_weight"]
self._user = dataset.inter_feat[dataset.uid_field]
self._item = dataset.inter_feat[dataset.iid_field]
# define layers and loss
self.user_embedding = torch.nn.Embedding(self.n_users, self.latent_dim)
self.item_embedding = torch.nn.Embedding(self.n_items, self.latent_dim)
self.gcn_conv = LightGCNConv(dim=self.latent_dim)
self.reg_loss = EmbLoss()
# storage variables for full sort evaluation acceleration
self.restore_user_e = None
self.restore_item_e = None
# parameters initialization
self.apply(xavier_uniform_initialization)
self.other_parameter_name = ['restore_user_e', 'restore_item_e']
def train(self, mode: bool = True):
r"""Override train method of base class. The subgraph is reconstructed each time it is called.
"""
T = super().train(mode=mode)
if mode:
self.graph_construction()
return T
def graph_construction(self):
r"""Devise three operators to generate the views — node dropout, edge dropout, and random walk of a node.
"""
if self.aug_type == "ND" or self.aug_type == "ED":
self.sub_graph1 = [self.random_graph_augment()] * self.n_layers
self.sub_graph2 = [self.random_graph_augment()] * self.n_layers
elif self.aug_type == "RW":
self.sub_graph1 = [self.random_graph_augment() for _ in range(self.n_layers)]
self.sub_graph2 = [self.random_graph_augment() for _ in range(self.n_layers)]
def random_graph_augment(self):
def rand_sample(high, size=None, replace=True):
return np.random.choice(np.arange(high), size=size, replace=replace)
if self.aug_type == "ND":
drop_user = rand_sample(self.n_users, size=int(self.n_users * self.drop_ratio), replace=False)
drop_item = rand_sample(self.n_items, size=int(self.n_items * self.drop_ratio), replace=False)
mask = np.isin(self._user.numpy(), drop_user)
mask |= np.isin(self._item.numpy(), drop_item)
keep = np.where(~mask)
row = self._user[keep]
col = self._item[keep] + self.n_users
elif self.aug_type == "ED" or self.aug_type == "RW":
keep = rand_sample(len(self._user), size=int(len(self._user) * (1 - self.drop_ratio)), replace=False)
row = self._user[keep]
col = self._item[keep] + self.n_users
edge_index1 = torch.stack([row, col])
edge_index2 = torch.stack([col, row])
edge_index = torch.cat([edge_index1, edge_index2], dim=1)
deg = degree(edge_index[0], self.n_users + self.n_items)
norm_deg = 1. / torch.sqrt(torch.where(deg == 0, torch.ones([1]), deg))
edge_weight = norm_deg[edge_index[0]] * norm_deg[edge_index[1]]
return edge_index.to(self.device), edge_weight.to(self.device)
def forward(self, graph=None):
all_embeddings = torch.cat([self.user_embedding.weight, self.item_embedding.weight])
embeddings_list = [all_embeddings]
if graph is None: # for the original graph
for _ in range(self.n_layers):
all_embeddings = self.gcn_conv(all_embeddings, self.edge_index, self.edge_weight)
embeddings_list.append(all_embeddings)
else: # for the augmented graph
for graph_edge_index, graph_edge_weight in graph:
all_embeddings = self.gcn_conv(all_embeddings, graph_edge_index, graph_edge_weight)
embeddings_list.append(all_embeddings)
embeddings_list = torch.stack(embeddings_list, dim=1)
embeddings_list = torch.mean(embeddings_list, dim=1, keepdim=False)
user_all_embeddings, item_all_embeddings = torch.split(embeddings_list, [self.n_users, self.n_items], dim=0)
return user_all_embeddings, item_all_embeddings
def calc_bpr_loss(self, user_emd, item_emd, user_list, pos_item_list, neg_item_list):
r"""Calculate the the pairwise Bayesian Personalized Ranking (BPR) loss and parameter regularization loss.
Args:
user_emd (torch.Tensor): Ego embedding of all users after forwarding.
item_emd (torch.Tensor): Ego embedding of all items after forwarding.
user_list (torch.Tensor): List of the user.
pos_item_list (torch.Tensor): List of positive examples.
neg_item_list (torch.Tensor): List of negative examples.
Returns:
torch.Tensor: Loss of BPR tasks and parameter regularization.
"""
u_e = user_emd[user_list]
pi_e = item_emd[pos_item_list]
ni_e = item_emd[neg_item_list]
p_scores = torch.mul(u_e, pi_e).sum(dim=1)
n_scores = torch.mul(u_e, ni_e).sum(dim=1)
l1 = torch.sum(-F.logsigmoid(p_scores - n_scores))
u_e_p = self.user_embedding(user_list)
pi_e_p = self.item_embedding(pos_item_list)
ni_e_p = self.item_embedding(neg_item_list)
l2 = self.reg_loss(u_e_p, pi_e_p, ni_e_p)
return l1 + l2 * self.reg_weight
def calc_ssl_loss(self, user_list, pos_item_list, user_sub1, user_sub2, item_sub1, item_sub2):
r"""Calculate the loss of self-supervised tasks.
Args:
user_list (torch.Tensor): List of the user.
pos_item_list (torch.Tensor): List of positive examples.
user_sub1 (torch.Tensor): Ego embedding of all users in the first subgraph after forwarding.
user_sub2 (torch.Tensor): Ego embedding of all users in the second subgraph after forwarding.
item_sub1 (torch.Tensor): Ego embedding of all items in the first subgraph after forwarding.
item_sub2 (torch.Tensor): Ego embedding of all items in the second subgraph after forwarding.
Returns:
torch.Tensor: Loss of self-supervised tasks.
"""
u_emd1 = F.normalize(user_sub1[user_list], dim=1)
u_emd2 = F.normalize(user_sub2[user_list], dim=1)
all_user2 = F.normalize(user_sub2, dim=1)
v1 = torch.sum(u_emd1 * u_emd2, dim=1)
v2 = u_emd1.matmul(all_user2.T)
v1 = torch.exp(v1 / self.ssl_tau)
v2 = torch.sum(torch.exp(v2 / self.ssl_tau), dim=1)
ssl_user = -torch.sum(torch.log(v1 / v2))
i_emd1 = F.normalize(item_sub1[pos_item_list], dim=1)
i_emd2 = F.normalize(item_sub2[pos_item_list], dim=1)
all_item2 = F.normalize(item_sub2, dim=1)
v3 = torch.sum(i_emd1 * i_emd2, dim=1)
v4 = i_emd1.matmul(all_item2.T)
v3 = torch.exp(v3 / self.ssl_tau)
v4 = torch.sum(torch.exp(v4 / self.ssl_tau), dim=1)
ssl_item = -torch.sum(torch.log(v3 / v4))
return (ssl_item + ssl_user) * self.ssl_weight
def calculate_loss(self, interaction):
if self.restore_user_e is not None or self.restore_item_e is not None:
self.restore_user_e, self.restore_item_e = None, None
user_list = interaction[self.USER_ID]
pos_item_list = interaction[self.ITEM_ID]
neg_item_list = interaction[self.NEG_ITEM_ID]
user_emd, item_emd = self.forward()
user_sub1, item_sub1 = self.forward(self.sub_graph1)
user_sub2, item_sub2 = self.forward(self.sub_graph2)
total_loss = self.calc_bpr_loss(user_emd, item_emd, user_list, pos_item_list, neg_item_list) + \
self.calc_ssl_loss(user_list, pos_item_list, user_sub1, user_sub2, item_sub1, item_sub2)
return total_loss
def predict(self, interaction):
if self.restore_user_e is None or self.restore_item_e is None:
self.restore_user_e, self.restore_item_e = self.forward()
user = self.restore_user_e[interaction[self.USER_ID]]
item = self.restore_item_e[interaction[self.ITEM_ID]]
return torch.sum(user * item, dim=1)
def full_sort_predict(self, interaction):
if self.restore_user_e is None or self.restore_item_e is None:
self.restore_user_e, self.restore_item_e = self.forward()
user = self.restore_user_e[interaction[self.USER_ID]]
return user.matmul(self.restore_item_e.T)