-
Notifications
You must be signed in to change notification settings - Fork 41
/
sept.py
302 lines (237 loc) · 13.1 KB
/
sept.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# @Time : 2022/3/29
# @Author : Lanling Xu
# @Email : xulanling_sherry@163.com
r"""
SEPT
################################################
Reference:
Junliang Yu et al. "Socially-Aware Self-Supervised Tri-Training for Recommendation." in KDD 2021.
Reference code:
https://github.com/Coder-Yu/QRec
"""
import numpy as np
import torch
import torch.nn.functional as F
from scipy.sparse import coo_matrix, eye
from torch_geometric.utils import degree
from recbole.model.init import xavier_uniform_initialization
from recbole.model.loss import BPRLoss, EmbLoss
from recbole.utils import InputType
from recbole_gnn.model.abstract_recommender import SocialRecommender
from recbole_gnn.model.layers import LightGCNConv
class SEPT(SocialRecommender):
r"""SEPT is a socially-aware GCN-based SSL framework that integrates tri-training.
Under the regime of tri-training for multi-view encoding, the framework builds three graph
encoders (one for recommendation) upon the augmented views and iteratively improves each
encoder with self-supervision signals from other users, generated by the other two encoders.
We implement the model following the original author with a pairwise training mode.
"""
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(SEPT, self).__init__(config, dataset)
# load dataset info
self.edge_index, self.edge_weight = dataset.get_norm_adj_mat()
self.edge_index, self.edge_weight = self.edge_index.to(self.device), self.edge_weight.to(self.device)
# generate intermediate data
self.social_edge_index, self.social_edge_weight, self.sharing_edge_index, \
self.sharing_edge_weight = self.get_user_view_matrix(dataset)
self._user = dataset.inter_feat[dataset.uid_field]
self._item = dataset.inter_feat[dataset.iid_field]
self._src_user = dataset.net_feat[dataset.net_src_field]
self._tgt_user = dataset.net_feat[dataset.net_tgt_field]
# load parameters info
self.latent_dim = config["embedding_size"]
self.n_layers = int(config["n_layers"])
self.drop_ratio = config["drop_ratio"]
self.instance_cnt = config["instance_cnt"]
self.reg_weight = config["reg_weight"]
self.ssl_weight = config["ssl_weight"]
self.ssl_tau = config["ssl_tau"]
# define layers and loss
self.user_embedding = torch.nn.Embedding(self.n_users, self.latent_dim)
self.item_embedding = torch.nn.Embedding(self.n_items, self.latent_dim)
self.gcn_conv = LightGCNConv(dim=self.latent_dim)
self.mf_loss = BPRLoss()
self.reg_loss = EmbLoss()
# storage variables for full sort evaluation acceleration
self.user_all_embeddings = None
self.restore_user_e = None
self.restore_item_e = None
# parameters initialization
self.apply(xavier_uniform_initialization)
self.other_parameter_name = ['restore_user_e', 'restore_item_e']
def get_norm_edge_weight(self, edge_index, node_num):
r"""Get normalized edge weight using the laplace matrix.
"""
deg = degree(edge_index[0], node_num)
norm_deg = 1. / torch.sqrt(torch.where(deg == 0, torch.ones([1]), deg))
edge_weight = norm_deg[edge_index[0]] * norm_deg[edge_index[1]]
return edge_weight
def get_user_view_matrix(self, dataset):
# Friend View: A_f = (SS) ⊙ S
social_mat = dataset.net_matrix()
social_matrix = social_mat.dot(social_mat)
social_matrix = social_matrix.toarray() * social_mat.toarray() + eye(self.n_users)
social_matrix = coo_matrix(social_matrix)
social_edge_index = torch.stack([torch.LongTensor(social_matrix.row), torch.LongTensor(social_matrix.col)])
social_edge_weight = self.get_norm_edge_weight(social_edge_index, self.n_users)
# Sharing View: A_s = (RR^T) ⊙ S
rating_mat = dataset.inter_matrix()
sharing_matrix = rating_mat.dot(rating_mat.T)
sharing_matrix = sharing_matrix.toarray() * social_mat.toarray() + eye(self.n_users)
sharing_matrix = coo_matrix(sharing_matrix)
sharing_edge_index = torch.stack([torch.LongTensor(sharing_matrix.row), torch.LongTensor(sharing_matrix.col)])
sharing_edge_weight = self.get_norm_edge_weight(sharing_edge_index, self.n_users)
return social_edge_index.to(self.device), social_edge_weight.to(self.device), \
sharing_edge_index.to(self.device), sharing_edge_weight.to(self.device)
def subgraph_construction(self):
r"""Perturb the joint graph to construct subgraph for integrated self-supervision signals.
"""
def rand_sample(high, size=None, replace=True):
return np.random.choice(np.arange(high), size=size, replace=replace)
# perturb the raw graph with edge dropout
keep = rand_sample(len(self._user), size=int(len(self._user) * (1 - self.drop_ratio)), replace=False)
row = self._user[keep]
col = self._item[keep] + self.n_users
# perturb the social graph with edge dropout
net_keep = rand_sample(len(self._src_user), size=int(len(self._src_user) * (1 - self.drop_ratio)), replace=False)
net_row = self._src_user[net_keep]
net_col = self._tgt_user[net_keep]
# concatenation and normalization
edge_index1 = torch.stack([row, col])
edge_index2 = torch.stack([col, row])
edge_index3 = torch.stack([net_row, net_col])
edge_index = torch.cat([edge_index1, edge_index2, edge_index3], dim=1)
edge_weight = self.get_norm_edge_weight(edge_index, self.n_users + self.n_items)
self.sub_graph = edge_index.to(self.device), edge_weight.to(self.device)
def get_ego_embeddings(self):
r"""Get the embedding of users and items and combine to an embedding matrix.
Returns:
Tensor of the embedding matrix. Shape of [n_items+n_users, embedding_dim]
"""
user_embeddings = self.user_embedding.weight
item_embeddings = self.item_embedding.weight
ego_embeddings = torch.cat([user_embeddings, item_embeddings], dim=0)
return ego_embeddings
def forward(self, graph=None):
all_embeddings = torch.cat([self.user_embedding.weight, self.item_embedding.weight])
embeddings_list = [all_embeddings]
if graph is None: # for the original graph
edge_index, edge_weight = self.edge_index, self.edge_weight
else: # for the augmented graph
edge_index, edge_weight = graph
for _ in range(self.n_layers):
all_embeddings = self.gcn_conv(all_embeddings, edge_index, edge_weight)
norm_embeddings = F.normalize(all_embeddings, p=2, dim=1)
embeddings_list.append(norm_embeddings)
all_embeddings = torch.stack(embeddings_list, dim=1)
all_embeddings = torch.sum(all_embeddings, dim=1)
user_all_embeddings, item_all_embeddings = torch.split(all_embeddings, [self.n_users, self.n_items], dim=0)
return user_all_embeddings, item_all_embeddings
def user_view_forward(self):
all_social_embeddings = self.user_embedding.weight
all_sharing_embeddings = self.user_embedding.weight
social_embeddings_list = [all_social_embeddings]
sharing_embeddings_list = [all_sharing_embeddings]
for _ in range(self.n_layers):
# friend view
all_social_embeddings = self.gcn_conv(all_social_embeddings, self.social_edge_index, self.social_edge_weight)
norm_social_embeddings = F.normalize(all_social_embeddings, p=2, dim=1)
social_embeddings_list.append(norm_social_embeddings)
# sharing view
all_sharing_embeddings = self.gcn_conv(all_sharing_embeddings, self.sharing_edge_index, self.sharing_edge_weight)
norm_sharing_embeddings = F.normalize(all_sharing_embeddings, p=2, dim=1)
sharing_embeddings_list.append(norm_sharing_embeddings)
social_all_embeddings = torch.stack(social_embeddings_list, dim=1)
social_all_embeddings = torch.sum(social_all_embeddings, dim=1)
sharing_all_embeddings = torch.stack(sharing_embeddings_list, dim=1)
sharing_all_embeddings = torch.sum(sharing_all_embeddings, dim=1)
return social_all_embeddings, sharing_all_embeddings
def label_prediction(self, emb, aug_emb):
prob = torch.matmul(emb, aug_emb.transpose(0, 1))
prob = F.softmax(prob, dim=1)
return prob
def sampling(self, logits):
return torch.topk(logits, k=self.instance_cnt)[1]
def generate_pesudo_labels(self, prob1, prob2):
positive = (prob1 + prob2) / 2
pos_examples = self.sampling(positive)
return pos_examples
def calculate_ssl_loss(self, aug_emb, positive, emb):
pos_emb = aug_emb[positive]
pos_score = torch.sum(emb.unsqueeze(dim=1).repeat(1, self.instance_cnt, 1) * pos_emb, dim=2)
ttl_score = torch.matmul(emb, aug_emb.transpose(0, 1))
pos_score = torch.sum(torch.exp(pos_score / self.ssl_tau), dim=1)
ttl_score = torch.sum(torch.exp(ttl_score / self.ssl_tau), dim=1)
ssl_loss = - torch.sum(torch.log(pos_score / ttl_score))
return ssl_loss
def calculate_rec_loss(self, interaction):
# clear the storage variable when training
if self.restore_user_e is not None or self.restore_item_e is not None:
self.restore_user_e, self.restore_item_e = None, None
user = interaction[self.USER_ID]
pos_item = interaction[self.ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
self.user_all_embeddings, item_all_embeddings = self.forward()
u_embeddings = self.user_all_embeddings[user]
pos_embeddings = item_all_embeddings[pos_item]
neg_embeddings = item_all_embeddings[neg_item]
# calculate BPR Loss
pos_scores = torch.mul(u_embeddings, pos_embeddings).sum(dim=1)
neg_scores = torch.mul(u_embeddings, neg_embeddings).sum(dim=1)
mf_loss = self.mf_loss(pos_scores, neg_scores)
# calculate regularization Loss
u_ego_embeddings = self.user_embedding(user)
pos_ego_embeddings = self.item_embedding(pos_item)
neg_ego_embeddings = self.item_embedding(neg_item)
reg_loss = self.reg_loss(u_ego_embeddings, pos_ego_embeddings, neg_ego_embeddings)
loss = mf_loss + self.reg_weight * reg_loss
return loss
def calculate_loss(self, interaction):
# preference view
rec_loss = self.calculate_rec_loss(interaction)
# unlabeled sample view
aug_user_embeddings, _ = self.forward(graph=self.sub_graph)
# friend and sharing views
friend_view_embeddings, sharing_view_embeddings = self.user_view_forward()
user = interaction[self.USER_ID]
aug_u_embeddings = aug_user_embeddings[user]
social_u_embeddings = friend_view_embeddings[user]
sharing_u_embeddings = sharing_view_embeddings[user]
rec_u_embeddings = self.user_all_embeddings[user]
aug_u_embeddings = F.normalize(aug_u_embeddings, p=2, dim=1)
social_u_embeddings = F.normalize(social_u_embeddings, p=2, dim=1)
sharing_u_embeddings = F.normalize(sharing_u_embeddings, p=2, dim=1)
rec_u_embeddings = F.normalize(rec_u_embeddings, p=2, dim=1)
# self-supervision prediction
social_prediction = self.label_prediction(social_u_embeddings, aug_u_embeddings)
sharing_prediction = self.label_prediction(sharing_u_embeddings, aug_u_embeddings)
rec_prediction = self.label_prediction(rec_u_embeddings, aug_u_embeddings)
# find informative positive examples for each encoder
friend_pos = self.generate_pesudo_labels(sharing_prediction, rec_prediction)
sharing_pos = self.generate_pesudo_labels(social_prediction, rec_prediction)
rec_pos = self.generate_pesudo_labels(social_prediction, sharing_prediction)
# neighbor-discrimination based contrastive learning
ssl_loss = self.calculate_ssl_loss(aug_u_embeddings, friend_pos, social_u_embeddings)
ssl_loss += self.calculate_ssl_loss(aug_u_embeddings, sharing_pos, sharing_u_embeddings)
ssl_loss += self.calculate_ssl_loss(aug_u_embeddings, rec_pos, rec_u_embeddings)
# L = L_r + β * L_{ssl}
loss = rec_loss + self.ssl_weight * ssl_loss
return loss
def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_all_embeddings, item_all_embeddings = self.forward()
u_embeddings = user_all_embeddings[user]
i_embeddings = item_all_embeddings[item]
scores = torch.mul(u_embeddings, i_embeddings).sum(dim=1)
return scores
def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
if self.restore_user_e is None or self.restore_item_e is None:
self.restore_user_e, self.restore_item_e = self.forward()
# get user embedding from storage variable
u_embeddings = self.restore_user_e[user]
# dot with all item embedding to accelerate
scores = torch.matmul(u_embeddings, self.restore_item_e.transpose(0, 1))
return scores.view(-1)