-
Notifications
You must be signed in to change notification settings - Fork 41
/
diffnet.py
158 lines (120 loc) · 7.17 KB
/
diffnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# @Time : 2022/3/15
# @Author : Lanling Xu
# @Email : xulanling_sherry@163.com
r"""
DiffNet
################################################
Reference:
Le Wu et al. "A Neural Influence Diffusion Model for Social Recommendation." in SIGIR 2019.
Reference code:
https://github.com/PeiJieSun/diffnet
"""
import numpy as np
import torch
import torch.nn as nn
from recbole.model.init import xavier_uniform_initialization
from recbole.model.loss import BPRLoss, EmbLoss
from recbole.utils import InputType
from recbole_gnn.model.abstract_recommender import SocialRecommender
from recbole_gnn.model.layers import BipartiteGCNConv
class DiffNet(SocialRecommender):
r"""DiffNet is a deep influence propagation model to stimulate how users are influenced by the recursive social diffusion process for social recommendation.
We implement the model following the original author with a pairwise training mode.
"""
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(DiffNet, self).__init__(config, dataset)
# load dataset info
self.edge_index, self.edge_weight = dataset.get_bipartite_inter_mat(row='user')
self.edge_index, self.edge_weight = self.edge_index.to(self.device), self.edge_weight.to(self.device)
self.net_edge_index, self.net_edge_weight = dataset.get_norm_net_adj_mat(row_norm=True)
self.net_edge_index, self.net_edge_weight = self.net_edge_index.to(self.device), self.net_edge_weight.to(self.device)
# load parameters info
self.embedding_size = config['embedding_size'] # int type:the embedding size of DiffNet
self.n_layers = config['n_layers'] # int type:the GCN layer num of DiffNet for social net
self.reg_weight = config['reg_weight'] # float32 type: the weight decay for l2 normalization
self.pretrained_review = config['pretrained_review'] # bool type:whether to load pre-trained review vectors of users and items
# define layers and loss
self.user_embedding = torch.nn.Embedding(num_embeddings=self.n_users, embedding_dim=self.embedding_size)
self.item_embedding = torch.nn.Embedding(num_embeddings=self.n_items, embedding_dim=self.embedding_size)
self.bipartite_gcn_conv = BipartiteGCNConv(dim=self.embedding_size)
self.mf_loss = BPRLoss()
self.reg_loss = EmbLoss()
# storage variables for full sort evaluation acceleration
self.restore_user_e = None
self.restore_item_e = None
# parameters initialization
self.apply(xavier_uniform_initialization)
self.other_parameter_name = ['restore_user_e', 'restore_item_e']
if self.pretrained_review:
# handle review information, map the origin review into the new space
self.user_review_embedding = nn.Embedding(self.n_users, self.embedding_size, padding_idx=0)
self.user_review_embedding.weight.requires_grad = False
self.user_review_embedding.weight.data.copy_(self.convertDistribution(dataset.user_feat['user_review_emb']))
self.item_review_embedding = nn.Embedding(self.n_items, self.embedding_size, padding_idx=0)
self.item_review_embedding.weight.requires_grad = False
self.item_review_embedding.weight.data.copy_(self.convertDistribution(dataset.item_feat['item_review_emb']))
self.user_fusion_layer = nn.Linear(self.embedding_size, self.embedding_size)
self.item_fusion_layer = nn.Linear(self.embedding_size, self.embedding_size)
self.activation = nn.Sigmoid()
def convertDistribution(self, x):
mean, std = torch.mean(x), torch.std(x)
y = (x - mean) * 0.2 / std
return y
def forward(self):
user_embedding = self.user_embedding.weight
final_item_embedding = self.item_embedding.weight
if self.pretrained_review:
user_reduce_dim_vector_matrix = self.activation(self.user_fusion_layer(self.user_review_embedding.weight))
item_reduce_dim_vector_matrix = self.activation(self.item_fusion_layer(self.item_review_embedding.weight))
user_review_vector_matrix = self.convertDistribution(user_reduce_dim_vector_matrix)
item_review_vector_matrix = self.convertDistribution(item_reduce_dim_vector_matrix)
user_embedding = user_embedding + user_review_vector_matrix
final_item_embedding = final_item_embedding + item_review_vector_matrix
user_embedding_from_consumed_items = self.bipartite_gcn_conv(x=(final_item_embedding, user_embedding), edge_index=self.edge_index.flip([0]), edge_weight=self.edge_weight, size=(self.n_items, self.n_users))
embeddings_list = [user_embedding]
for layer_idx in range(self.n_layers):
user_embedding = self.bipartite_gcn_conv((user_embedding, user_embedding), self.net_edge_index.flip([0]), self.net_edge_weight, size=(self.n_users, self.n_users))
embeddings_list.append(user_embedding)
final_user_embedding = torch.stack(embeddings_list, dim=1)
final_user_embedding = torch.sum(final_user_embedding, dim=1) + user_embedding_from_consumed_items
return final_user_embedding, final_item_embedding
def calculate_loss(self, interaction):
# clear the storage variable when training
if self.restore_user_e is not None or self.restore_item_e is not None:
self.restore_user_e, self.restore_item_e = None, None
user = interaction[self.USER_ID]
pos_item = interaction[self.ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
user_all_embeddings, item_all_embeddings = self.forward()
u_embeddings = user_all_embeddings[user]
pos_embeddings = item_all_embeddings[pos_item]
neg_embeddings = item_all_embeddings[neg_item]
# calculate BPR Loss
pos_scores = torch.mul(u_embeddings, pos_embeddings).sum(dim=1)
neg_scores = torch.mul(u_embeddings, neg_embeddings).sum(dim=1)
mf_loss = self.mf_loss(pos_scores, neg_scores)
# calculate regularization Loss
u_ego_embeddings = self.user_embedding(user)
pos_ego_embeddings = self.item_embedding(pos_item)
neg_ego_embeddings = self.item_embedding(neg_item)
reg_loss = self.reg_loss(u_ego_embeddings, pos_ego_embeddings, neg_ego_embeddings)
loss = mf_loss + self.reg_weight * reg_loss
return loss
def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_all_embeddings, item_all_embeddings = self.forward()
u_embeddings = user_all_embeddings[user]
i_embeddings = item_all_embeddings[item]
scores = torch.mul(u_embeddings, i_embeddings).sum(dim=1)
return scores
def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
if self.restore_user_e is None or self.restore_item_e is None:
self.restore_user_e, self.restore_item_e = self.forward()
# get user embedding from storage variable
u_embeddings = self.restore_user_e[user]
# dot with all item embedding to accelerate
scores = torch.matmul(u_embeddings, self.restore_item_e.transpose(0, 1))
return scores.view(-1)