-
Notifications
You must be signed in to change notification settings - Fork 41
/
gcegnn.py
277 lines (235 loc) · 11.7 KB
/
gcegnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# @Time : 2022/3/22
# @Author : Yupeng Hou
# @Email : houyupeng@ruc.edu.cn
r"""
GCE-GNN
################################################
Reference:
Ziyang Wang et al. "Global Context Enhanced Graph Neural Networks for Session-based Recommendation." in SIGIR 2020.
Reference code:
https://github.com/CCIIPLab/GCE-GNN
"""
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import softmax
from recbole.model.loss import BPRLoss
from recbole.model.abstract_recommender import SequentialRecommender
class LocalAggregator(MessagePassing):
def __init__(self, dim, alpha):
super().__init__(aggr='add')
self.edge_emb = nn.Embedding(4, dim)
self.leakyrelu = nn.LeakyReLU(alpha)
def forward(self, x, edge_index, edge_attr):
return self.propagate(edge_index, x=x, edge_attr=edge_attr)
def message(self, x_j, x_i, edge_attr, index, ptr, size_i):
x = x_j * x_i
a = self.edge_emb(edge_attr)
e = (x * a).sum(dim=-1)
e = self.leakyrelu(e)
e = softmax(e, index, ptr, size_i)
return e.unsqueeze(-1) * x_j
class GlobalAggregator(nn.Module):
def __init__(self, dim, dropout, act=torch.relu):
super(GlobalAggregator, self).__init__()
self.dropout = dropout
self.act = act
self.dim = dim
self.w_1 = nn.Parameter(torch.Tensor(self.dim + 1, self.dim))
self.w_2 = nn.Parameter(torch.Tensor(self.dim, 1))
self.w_3 = nn.Parameter(torch.Tensor(2 * self.dim, self.dim))
self.bias = nn.Parameter(torch.Tensor(self.dim))
def forward(self, self_vectors, neighbor_vector, batch_size, masks, neighbor_weight, extra_vector=None):
if extra_vector is not None:
alpha = torch.matmul(torch.cat([extra_vector.unsqueeze(2).repeat(1, 1, neighbor_vector.shape[2], 1)*neighbor_vector, neighbor_weight.unsqueeze(-1)], -1), self.w_1).squeeze(-1)
alpha = F.leaky_relu(alpha, negative_slope=0.2)
alpha = torch.matmul(alpha, self.w_2).squeeze(-1)
alpha = torch.softmax(alpha, -1).unsqueeze(-1)
neighbor_vector = torch.sum(alpha * neighbor_vector, dim=-2)
else:
neighbor_vector = torch.mean(neighbor_vector, dim=2)
# self_vectors = F.dropout(self_vectors, 0.5, training=self.training)
output = torch.cat([self_vectors, neighbor_vector], -1)
output = F.dropout(output, self.dropout, training=self.training)
output = torch.matmul(output, self.w_3)
output = output.view(batch_size, -1, self.dim)
output = self.act(output)
return output
class GCEGNN(SequentialRecommender):
def __init__(self, config, dataset):
super(GCEGNN, self).__init__(config, dataset)
# load parameters info
self.embedding_size = config['embedding_size']
self.leakyrelu_alpha = config['leakyrelu_alpha']
self.dropout_local = config['dropout_local']
self.dropout_global = config['dropout_global']
self.dropout_gcn = config['dropout_gcn']
self.device = config['device']
self.loss_type = config['loss_type']
self.build_global_graph = config['build_global_graph']
self.sample_num = config['sample_num']
self.hop = config['hop']
self.max_seq_length = dataset.field2seqlen[self.ITEM_SEQ]
# global graph construction
self.global_graph = None
if self.build_global_graph:
self.global_adj, self.global_weight = self.construct_global_graph(dataset)
# item embedding
self.item_embedding = nn.Embedding(self.n_items, self.embedding_size, padding_idx=0)
self.pos_embedding = nn.Embedding(self.max_seq_length, self.embedding_size)
# define layers and loss
# Aggregator
self.local_agg = LocalAggregator(self.embedding_size, self.leakyrelu_alpha)
global_agg_list = []
for i in range(self.hop):
global_agg_list.append(GlobalAggregator(self.embedding_size, self.dropout_gcn))
self.global_agg = nn.ModuleList(global_agg_list)
self.w_1 = nn.Linear(2 * self.embedding_size, self.embedding_size, bias=False)
self.w_2 = nn.Linear(self.embedding_size, 1, bias=False)
self.glu1 = nn.Linear(self.embedding_size, self.embedding_size)
self.glu2 = nn.Linear(self.embedding_size, self.embedding_size, bias=False)
if self.loss_type == 'BPR':
self.loss_fct = BPRLoss()
elif self.loss_type == 'CE':
self.loss_fct = nn.CrossEntropyLoss()
else:
raise NotImplementedError("Make sure 'loss_type' in ['BPR', 'CE']!")
self.reset_parameters()
self.other_parameter_name = ['global_adj', 'global_weight']
def reset_parameters(self):
stdv = 1.0 / np.sqrt(self.embedding_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def _add_edge(self, graph, sid, tid):
if tid not in graph[sid]:
graph[sid][tid] = 0
graph[sid][tid] += 1
def construct_global_graph(self, dataset):
self.logger.info('Constructing global graphs.')
item_id_list = dataset.inter_feat['item_id_list']
src_item_ids = item_id_list[:,:4].tolist()
tgt_itme_id = dataset.inter_feat['item_id'].tolist()
global_graph = [{} for _ in range(self.n_items)]
for i in tqdm(range(len(tgt_itme_id)), desc='Converting: '):
tid = tgt_itme_id[i]
for sid in src_item_ids[i]:
if sid > 0:
self._add_edge(global_graph, tid, sid)
self._add_edge(global_graph, sid, tid)
global_adj = [[] for _ in range(self.n_items)]
global_weight = [[] for _ in range(self.n_items)]
for i in tqdm(range(self.n_items), desc='Sorting: '):
sorted_out_edges = [v for v in sorted(global_graph[i].items(), reverse=True, key=lambda x: x[1])]
global_adj[i] = [v[0] for v in sorted_out_edges[:self.sample_num]]
global_weight[i] = [v[1] for v in sorted_out_edges[:self.sample_num]]
if len(global_adj[i]) < self.sample_num:
for j in range(self.sample_num - len(global_adj[i])):
global_adj[i].append(0)
global_weight[i].append(0)
return torch.LongTensor(global_adj).to(self.device), torch.FloatTensor(global_weight).to(self.device)
def fusion(self, hidden, mask):
batch_size = hidden.shape[0]
length = hidden.shape[1]
pos_emb = self.pos_embedding.weight[:length]
pos_emb = pos_emb.unsqueeze(0).expand(batch_size, -1, -1)
hs = torch.sum(hidden * mask, -2) / torch.sum(mask, 1)
hs = hs.unsqueeze(-2).expand(-1, length, -1)
nh = self.w_1(torch.cat([pos_emb, hidden], -1))
nh = torch.tanh(nh)
nh = torch.sigmoid(self.glu1(nh) + self.glu2(hs))
beta = self.w_2(nh)
beta = beta * mask
final_h = torch.sum(beta * hidden, 1)
return final_h
def forward(self, x, edge_index, edge_attr, alias_inputs, item_seq_len):
batch_size = alias_inputs.shape[0]
mask = alias_inputs.gt(0).unsqueeze(-1)
h = self.item_embedding(x)
# local
h_local = self.local_agg(h, edge_index, edge_attr)
# global
item_neighbors = [F.pad(x[alias_inputs], (0, self.max_seq_length - x[alias_inputs].shape[1]), "constant", 0)]
weight_neighbors = []
support_size = self.max_seq_length
for i in range(self.hop):
item_sample_i, weight_sample_i = self.global_adj[item_neighbors[-1].view(-1)], self.global_weight[item_neighbors[-1].view(-1)]
support_size *= self.sample_num
item_neighbors.append(item_sample_i.view(batch_size, support_size))
weight_neighbors.append(weight_sample_i.view(batch_size, support_size))
entity_vectors = [self.item_embedding(i) for i in item_neighbors]
weight_vectors = weight_neighbors
session_info = []
item_emb = h[alias_inputs] * mask
# mean
sum_item_emb = torch.sum(item_emb, 1) / torch.sum(mask.float(), 1)
# sum
# sum_item_emb = torch.sum(item_emb, 1)
sum_item_emb = sum_item_emb.unsqueeze(-2)
for i in range(self.hop):
session_info.append(sum_item_emb.repeat(1, entity_vectors[i].shape[1], 1))
for n_hop in range(self.hop):
entity_vectors_next_iter = []
shape = [batch_size, -1, self.sample_num, self.embedding_size]
for hop in range(self.hop - n_hop):
aggregator = self.global_agg[n_hop]
vector = aggregator(self_vectors=entity_vectors[hop],
neighbor_vector=entity_vectors[hop + 1].view(shape),
masks=None,
batch_size=batch_size,
neighbor_weight=weight_vectors[hop].view(batch_size, -1, self.sample_num),
extra_vector=session_info[hop])
entity_vectors_next_iter.append(vector)
entity_vectors = entity_vectors_next_iter
h_global = entity_vectors[0].view(batch_size, self.max_seq_length, self.embedding_size)
h_global = h_global[:,:alias_inputs.shape[1],:]
h_local = F.dropout(h_local, self.dropout_local, training=self.training)
h_global = F.dropout(h_global, self.dropout_global, training=self.training)
h_local = h_local[alias_inputs]
h_session = h_local + h_global
h_session = self.fusion(h_session, mask)
return h_session
def calculate_loss(self, interaction):
x = interaction['x']
edge_index = interaction['edge_index']
edge_attr = interaction['edge_attr']
alias_inputs = interaction['alias_inputs']
item_seq_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(x, edge_index, edge_attr, alias_inputs, item_seq_len)
pos_items = interaction[self.POS_ITEM_ID]
if self.loss_type == 'BPR':
neg_items = interaction[self.NEG_ITEM_ID]
pos_items_emb = self.item_embedding(pos_items)
neg_items_emb = self.item_embedding(neg_items)
pos_score = torch.sum(seq_output * pos_items_emb, dim=-1) # [B]
neg_score = torch.sum(seq_output * neg_items_emb, dim=-1) # [B]
loss = self.loss_fct(pos_score, neg_score)
return loss
else: # self.loss_type = 'CE'
test_item_emb = self.item_embedding.weight
logits = torch.matmul(seq_output, test_item_emb.transpose(0, 1))
loss = self.loss_fct(logits, pos_items)
return loss
def predict(self, interaction):
test_item = interaction[self.ITEM_ID]
x = interaction['x']
edge_index = interaction['edge_index']
edge_attr = interaction['edge_attr']
alias_inputs = interaction['alias_inputs']
item_seq_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(x, edge_index, edge_attr, alias_inputs, item_seq_len)
test_item_emb = self.item_embedding(test_item)
scores = torch.mul(seq_output, test_item_emb).sum(dim=1) # [B]
return scores
def full_sort_predict(self, interaction):
x = interaction['x']
edge_index = interaction['edge_index']
edge_attr = interaction['edge_attr']
alias_inputs = interaction['alias_inputs']
item_seq_len = interaction[self.ITEM_SEQ_LEN]
seq_output = self.forward(x, edge_index, edge_attr, alias_inputs, item_seq_len)
test_items_emb = self.item_embedding.weight
scores = torch.matmul(seq_output, test_items_emb.transpose(0, 1)) # [B, n_items]
return scores