-
Notifications
You must be signed in to change notification settings - Fork 41
/
ncl.py
222 lines (169 loc) · 9.83 KB
/
ncl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
r"""
NCL
################################################
Reference:
Zihan Lin*, Changxin Tian*, Yupeng Hou*, Wayne Xin Zhao. "Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning." in WWW 2022.
"""
import torch
import torch.nn.functional as F
from recbole.model.init import xavier_uniform_initialization
from recbole.model.loss import BPRLoss, EmbLoss
from recbole.utils import InputType
from recbole_gnn.model.abstract_recommender import GeneralGraphRecommender
from recbole_gnn.model.layers import LightGCNConv
class NCL(GeneralGraphRecommender):
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(NCL, self).__init__(config, dataset)
# load parameters info
self.latent_dim = config['embedding_size'] # int type: the embedding size of the base model
self.n_layers = config['n_layers'] # int type: the layer num of the base model
self.reg_weight = config['reg_weight'] # float32 type: the weight decay for l2 normalization
self.ssl_temp = config['ssl_temp']
self.ssl_reg = config['ssl_reg']
self.hyper_layers = config['hyper_layers']
self.alpha = config['alpha']
self.proto_reg = config['proto_reg']
self.k = config['num_clusters']
# define layers and loss
self.user_embedding = torch.nn.Embedding(num_embeddings=self.n_users, embedding_dim=self.latent_dim)
self.item_embedding = torch.nn.Embedding(num_embeddings=self.n_items, embedding_dim=self.latent_dim)
self.gcn_conv = LightGCNConv(dim=self.latent_dim)
self.mf_loss = BPRLoss()
self.reg_loss = EmbLoss()
# storage variables for full sort evaluation acceleration
self.restore_user_e = None
self.restore_item_e = None
# parameters initialization
self.apply(xavier_uniform_initialization)
self.other_parameter_name = ['restore_user_e', 'restore_item_e']
self.user_centroids = None
self.user_2cluster = None
self.item_centroids = None
self.item_2cluster = None
def e_step(self):
user_embeddings = self.user_embedding.weight.detach().cpu().numpy()
item_embeddings = self.item_embedding.weight.detach().cpu().numpy()
self.user_centroids, self.user_2cluster = self.run_kmeans(user_embeddings)
self.item_centroids, self.item_2cluster = self.run_kmeans(item_embeddings)
def run_kmeans(self, x):
"""Run K-means algorithm to get k clusters of the input tensor x
"""
import faiss
kmeans = faiss.Kmeans(d=self.latent_dim, k=self.k, gpu=True)
kmeans.train(x)
cluster_cents = kmeans.centroids
_, I = kmeans.index.search(x, 1)
# convert to cuda Tensors for broadcast
centroids = torch.Tensor(cluster_cents).to(self.device)
centroids = F.normalize(centroids, p=2, dim=1)
node2cluster = torch.LongTensor(I).squeeze().to(self.device)
return centroids, node2cluster
def get_ego_embeddings(self):
r"""Get the embedding of users and items and combine to an embedding matrix.
Returns:
Tensor of the embedding matrix. Shape of [n_items+n_users, embedding_dim]
"""
user_embeddings = self.user_embedding.weight
item_embeddings = self.item_embedding.weight
ego_embeddings = torch.cat([user_embeddings, item_embeddings], dim=0)
return ego_embeddings
def forward(self):
all_embeddings = self.get_ego_embeddings()
embeddings_list = [all_embeddings]
for layer_idx in range(max(self.n_layers, self.hyper_layers * 2)):
all_embeddings = self.gcn_conv(all_embeddings, self.edge_index, self.edge_weight)
embeddings_list.append(all_embeddings)
lightgcn_all_embeddings = torch.stack(embeddings_list[:self.n_layers + 1], dim=1)
lightgcn_all_embeddings = torch.mean(lightgcn_all_embeddings, dim=1)
user_all_embeddings, item_all_embeddings = torch.split(lightgcn_all_embeddings, [self.n_users, self.n_items])
return user_all_embeddings, item_all_embeddings, embeddings_list
def ProtoNCE_loss(self, node_embedding, user, item):
user_embeddings_all, item_embeddings_all = torch.split(node_embedding, [self.n_users, self.n_items])
user_embeddings = user_embeddings_all[user] # [B, e]
norm_user_embeddings = F.normalize(user_embeddings)
user2cluster = self.user_2cluster[user] # [B,]
user2centroids = self.user_centroids[user2cluster] # [B, e]
pos_score_user = torch.mul(norm_user_embeddings, user2centroids).sum(dim=1)
pos_score_user = torch.exp(pos_score_user / self.ssl_temp)
ttl_score_user = torch.matmul(norm_user_embeddings, self.user_centroids.transpose(0, 1))
ttl_score_user = torch.exp(ttl_score_user / self.ssl_temp).sum(dim=1)
proto_nce_loss_user = -torch.log(pos_score_user / ttl_score_user).sum()
item_embeddings = item_embeddings_all[item]
norm_item_embeddings = F.normalize(item_embeddings)
item2cluster = self.item_2cluster[item] # [B, ]
item2centroids = self.item_centroids[item2cluster] # [B, e]
pos_score_item = torch.mul(norm_item_embeddings, item2centroids).sum(dim=1)
pos_score_item = torch.exp(pos_score_item / self.ssl_temp)
ttl_score_item = torch.matmul(norm_item_embeddings, self.item_centroids.transpose(0, 1))
ttl_score_item = torch.exp(ttl_score_item / self.ssl_temp).sum(dim=1)
proto_nce_loss_item = -torch.log(pos_score_item / ttl_score_item).sum()
proto_nce_loss = self.proto_reg * (proto_nce_loss_user + proto_nce_loss_item)
return proto_nce_loss
def ssl_layer_loss(self, current_embedding, previous_embedding, user, item):
current_user_embeddings, current_item_embeddings = torch.split(current_embedding, [self.n_users, self.n_items])
previous_user_embeddings_all, previous_item_embeddings_all = torch.split(previous_embedding, [self.n_users, self.n_items])
current_user_embeddings = current_user_embeddings[user]
previous_user_embeddings = previous_user_embeddings_all[user]
norm_user_emb1 = F.normalize(current_user_embeddings)
norm_user_emb2 = F.normalize(previous_user_embeddings)
norm_all_user_emb = F.normalize(previous_user_embeddings_all)
pos_score_user = torch.mul(norm_user_emb1, norm_user_emb2).sum(dim=1)
ttl_score_user = torch.matmul(norm_user_emb1, norm_all_user_emb.transpose(0, 1))
pos_score_user = torch.exp(pos_score_user / self.ssl_temp)
ttl_score_user = torch.exp(ttl_score_user / self.ssl_temp).sum(dim=1)
ssl_loss_user = -torch.log(pos_score_user / ttl_score_user).sum()
current_item_embeddings = current_item_embeddings[item]
previous_item_embeddings = previous_item_embeddings_all[item]
norm_item_emb1 = F.normalize(current_item_embeddings)
norm_item_emb2 = F.normalize(previous_item_embeddings)
norm_all_item_emb = F.normalize(previous_item_embeddings_all)
pos_score_item = torch.mul(norm_item_emb1, norm_item_emb2).sum(dim=1)
ttl_score_item = torch.matmul(norm_item_emb1, norm_all_item_emb.transpose(0, 1))
pos_score_item = torch.exp(pos_score_item / self.ssl_temp)
ttl_score_item = torch.exp(ttl_score_item / self.ssl_temp).sum(dim=1)
ssl_loss_item = -torch.log(pos_score_item / ttl_score_item).sum()
ssl_loss = self.ssl_reg * (ssl_loss_user + self.alpha * ssl_loss_item)
return ssl_loss
def calculate_loss(self, interaction):
# clear the storage variable when training
if self.restore_user_e is not None or self.restore_item_e is not None:
self.restore_user_e, self.restore_item_e = None, None
user = interaction[self.USER_ID]
pos_item = interaction[self.ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
user_all_embeddings, item_all_embeddings, embeddings_list = self.forward()
center_embedding = embeddings_list[0]
context_embedding = embeddings_list[self.hyper_layers * 2]
ssl_loss = self.ssl_layer_loss(context_embedding, center_embedding, user, pos_item)
proto_loss = self.ProtoNCE_loss(center_embedding, user, pos_item)
u_embeddings = user_all_embeddings[user]
pos_embeddings = item_all_embeddings[pos_item]
neg_embeddings = item_all_embeddings[neg_item]
# calculate BPR Loss
pos_scores = torch.mul(u_embeddings, pos_embeddings).sum(dim=1)
neg_scores = torch.mul(u_embeddings, neg_embeddings).sum(dim=1)
mf_loss = self.mf_loss(pos_scores, neg_scores)
u_ego_embeddings = self.user_embedding(user)
pos_ego_embeddings = self.item_embedding(pos_item)
neg_ego_embeddings = self.item_embedding(neg_item)
reg_loss = self.reg_loss(u_ego_embeddings, pos_ego_embeddings, neg_ego_embeddings)
return mf_loss + self.reg_weight * reg_loss, ssl_loss, proto_loss
def predict(self, interaction):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_all_embeddings, item_all_embeddings, embeddings_list = self.forward()
u_embeddings = user_all_embeddings[user]
i_embeddings = item_all_embeddings[item]
scores = torch.mul(u_embeddings, i_embeddings).sum(dim=1)
return scores
def full_sort_predict(self, interaction):
user = interaction[self.USER_ID]
if self.restore_user_e is None or self.restore_item_e is None:
self.restore_user_e, self.restore_item_e, embedding_list = self.forward()
# get user embedding from storage variable
u_embeddings = self.restore_user_e[user]
# dot with all item embedding to accelerate
scores = torch.matmul(u_embeddings, self.restore_item_e.transpose(0, 1))
return scores.view(-1)